_ainl

=

-

[

T T

|

L

Lo Lo o

!

Ey

LS R |

April 1996
Order Number: 312487-005

Paragon’ System
C Calls

Reference Manual

Intel® Corporation

Copyright ©1996 by Intel Server Systems Product Development, Beaverton, Oregon. All rights reserved. No part of this work may be reproduced
or copied in any form or by any means...graphic, electronic, or mechanical including photocopying, taping, or information storage and retrieval
systems...without the express written consent of Intel Corporation. The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this document. Intel Corporation
makes no commitment to update or to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication, or disclosure is subject to restrictions
stated in Intel’s software license agreement. Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subpara-
graphs (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule-
vard, Santa Clara, CA 95052-8119. For all Federal use or contracts other than DoD, Restricted Rights under FAR 52.227-14, ALT. Il shall apply.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

286 386 Intel iPSC
287 1387 Intel386 Paragon
i 1486 Intel387

487 Intel486

860 Intel487

Other brands and names are the property of their respective owners.

Copyright ® The University of Texas at Austin, 1994

All rights reserved.

This software and documentation constitute an unpublished work and contain valuable trade secrets and proprietary information belonging to the
University. None of the foregoing material may be copied, duplicated or disclosed without the prior express written permission of the University.
UNIVERSITY EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES CONCERNING THIS SOFTWARE AND DOCUMENTATION,
INCLUDING ANY WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR ANY PARTICULAR PURPOSE, AND WARRAN-
TIES OF PERFORMANCE, AND ANY WARRANTY THAT MIGHT OTHERWISE ARISE FROM COURSE OF DEALING OR USAGE OF
TRADE. NO WARRANTY IS EITHER EXPRESS OR IMPLIED WITH RESPECT TO THE USE OF THE SOFTWARE OR DOCUMENTA-
TION. Under no circumstances shall University or Intel be liable for incidental, special, indirect, direct or consequential damages or loss of profits,
interruption of business, or related expenses which may arise from the use of, or inability to use, software or documentation, including but not limited
to those resulting from defects in the software and/or documentation, or loss or inaccuracy of data of any kind.

[=

3

'3

—3

o
&

L]

E 4

E 9

il

-

3

[

B

| =

| i

€ 3

A

|8

3

&l
-
il WARNING
Some of the circuitry inside this system operates at hazardous energy and
lj electric shock voltage levels. To avoid the risk of personal injury due to
contact with an energy hazard, or risk of electric shock, do not enter any
- portion of this system unless it is intended to be accessible without the use
Lj of a tool. The areas that are considered accessible are the outer enclosure
and the area just inside the front door when all of the front panels are in-
stalled, and the front of the diagnostic station. There are no user service-
r] able areas inside the system. Refer any need for such access only to tech-
nical personnel that have been qualified by Intel Corporation.
{“’1
= CAUTION
— This equipment has been tested and found to comply with the limits for a
l N Class A digital device, pursuant to Part 15 of the FCC Rules. These limits
are designed to provide reasonable protection against harmful interfer-
== ence when the equipment is operated in a commercial environment. This
IJ equipment generates, uses, and can radiate radio frequency energy and,

if not installed and used in accordance with the instruction manual, may
cause harmful interference to radio communications. Operation of this
equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own
expense.

o

LIMITED RIGHTS

The information contained in this document is copyrighted by and shall re-
main the property of Intel Corporation. Use, duplication or disclosure by
the U.S. Government is subject to Limited Rights as set forth in subpara-
graphs (a)(15) of the Rights in Technical Data and Computer Software
clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule-
vard, Santa Clara, CA 95052. For all Federal use or contracts other than
DoD Limited Rights under FAR 52.2272-14, ALT. lli shall apply. Unpub-
lished—rights reserved under the copyright laws of the United States.

B

Eood [Lo Lo - (.|

I

>
a

o

B

1]

|

i .

-
I
™

B
7
[
-
i

7]
o
™

o)

IR S N

i

{

e B B S T B
U S AN SR S RN SR R W |]

i

|

oA

|

_—
LA

4

E

Preface

The PatragonTM C system calls are described in two manuals:

» The OSF/I Programmer’s Reference describes the standard OSF/1 system calls, library
routines, file formats, and special files.

¢ The ParagonTM System C Calls Reference Manual (this manual) describes the system calls and
library routines (referred to collectively as “system calls™) that let you access the special
capabilities of the Paragon. These calls let you:
- Create and control parallel applications and partitions.
- Exchange messages between processes.
- Get information about the computing environment.
- Perform global operations optimized for the Intel supercomputer’s architecture.
- Perform 64-bit integer arithmetic (used for manipulating file pointers that exceed 32 bits).

- Read and write files in the Parallel File System (PFS).

This manual assumes that you are proficient in using the C programming language and the operating
system.

NOTE

Programming examples in this manual are intended only to
demonstrate the use of Paragon C system calls; they are not
intended as examples of good programming practice. For
example, in some cases, the return values of functions are not
checked for error conditions. This is not recommended, but the
error checks have been omitted in order to make the example
shorter and easier to read.

Preface

Paragon™ System C Calls Reference Manual

NOTE

Do not use the Mach system call interface. This interface is not
supported. It is not documented in SSD manuals, but you may
read about Mach elsewhere. If you use Mach system calls, your
application may fail. Mach memory allocation and Paragon
memory allocation do not work together.

Organization

vi

The manual contains a “manual page” for each operating system C system call, organized
alphabetically. Each manual page provides the following information:

¢ Synopsis (including call syntax, parameter declarations, and include files).

e Description of any parameters.

* Description of the call (including programming hints).

* Return values (if applicable).

* Error messages (including causes and remedies).

e Examples.

¢ Limitations and workarounds information.

* Related calls.

Some of the manual pages in this manual discuss several related system calls. For example, the
cread() manual page discusses both the cread() and creadv() system calls. The title of a manual
page that discusses more than one call is the name of the first call discussed on the page. To find the

discussion of any system call, use the Index at the back of this manual.

Appendix A tells how to select message types and build message type selectors for the
message-passing system calls.

Appendix B lists the error codes that can be returned in the global variable errno by operating system
C system calls.

&
]

| S

.
‘

L

= a
i

£

™

4

I

"

R
il

b

|

H

| - B4

A

b

Looa

i

.

¢

.

!
B

‘ ¢ LA

|

Paragon™ System C Calls Reference Manual Preface

Notational Conventions

This section describes the following notational conventions:
* Type style conventions

+ System call syntax descriptions

Type Style Conventions
This manual uses the following type style conventions:

Bold Identifies command names and switches, system call names, reserved words,
and other items that must be used exactly as shown.

Italic Identifies variables, filenames, directories, processes, user names, and writer
annotations in examples. Italic type style is also occasionally used to
emphasize a word or phrase.

Plain-Monospace
Identifies computer output (prompts and messages), examples, and values of
variables. Some examples contain annotations that describe specific parts of
the example. These annotations (which are not part of the example code or
session) appear in italic type style and flush with the right margin.

Bold-Italic-Monospace
Identifies user input (what you enter in response to some prompt).

Bold-Monospace)
Identifies the names of keyboard keys (which are also enclosed in angle
brackets). A dash indicates that the key preceding the dash is to be held down
while the key following the dash is pressed. For example:

<Break> <8> <Ctrl-Alt-Del>

vii

Preface Paragon™ System C Calls Reference Manual

System Call Syntax Descriptions

In this manual, a prototype for each system call is described in the “Synopsis™ section, which
contains the following:

¢ Include file declarations needed by the system call.
¢ Syntax of the system call.
¢ Parameter declarations of each system call.

The following notational conventions apply to the “Synopsis” section:

Bold Identifies system call names.
Italic Identifies parameter names.
[] (Brackets) Surround optional items.

| (Bar) Separates two or more items of which you may select only one.
{ 3 (Braces) Surround two or more items of which you must select one.
(Ellipsis dots) Indicate that the preceding item may be repeated.

For example, the synopsis for the iprobe() system call appears as follows:

#include <nx.h>
long iprobe(
long typesel);

viii

E

E &

L

4

L

k.

"

-

i

—

[

LA

A

o

i

§

{ L [N

b £

|

E AT TR I SR

{

A

Lo L

Paragon™ System C Calls Reference Manual Preface

Applicable Documents

For more information, refer to the following documents:

OSF/1 Programmer’s Reference

OSF/1 Network Application Programmer’s Guide
ParagonTM System User’s Guide

ParagonTM System Fortran Calls Reference Manual

ParagonTM System Commands Reference Manual

How Errors are Handled

How the operating system operating system handles errors depends on the system call involved:

For operating system system calls whose names begin with “nx_”, the calls either return -1 and
set the variable errno to a value that describes the error, or it sends a signal to the calling process.
You can use nx_perror(3) or perror(3) to print a message for the value of errno.

For all other operating system system calls (except those whose names begin with “nx_""), the
system normally displays a message on the terminal and terminates the calling process.

For all operating system system calls (except those whose names begin with “nx_"), there is a
corresponding underscore system call that returns -1 and sets the variable errno to a value that
describes the error. The underscore system calls are identified by an underscore (_) as the first
character of the name. For example, the _crecv() system call is the underscore version of the

crecv() system call. The underscore calls allow you to write programs that take specific actions
when an error occurs. These calls do not terminate a process when an error occurs. You can use
nx_perror(3) or perror(3) to print a message for the value of errno. For a complete list of the
errno values set by the underscore calls, see Appendix B that contains the errro manual page.

Preface Paragon™ System C Calls Reference Manual

Comments and Assistance

Intel Scalable Systems Division is eager to hear of your experiences with our products. Please call
us if you need assistance, have questions, or otherwise want to comment on your Paragon system.

U.S.A./Canada Intel Corporation
Phone: 800-421-2823
Internet: support@ssd.intel.com

United Kingdom Intel Corporation (UK) Ltd.

France Intel Corporation Scalable Systems Division

1 Rue Edison-BP303 Pipers Way
78054 St. Quentin-en-Yvelines Cedex Swindon SN3 IRJ
France England
0590 8602 (tOll free) 0800 212665 (tOll free)
(44) 793 491056
(44) 793 431062
(44) 793 480874
(44) 793 495108
Intel Japan K.K. Germany Intel Semiconductor GmbH
Scalable Systems Division Dornacher Strasse 1
5-6 Tokodai, Tsukuba City 85622 Feldkirchen bei Muenchen
Ibaraki-Ken 300-26 Germany
Japan 0130 813741 (toll free)

0298-47-8904

World Headquarters
Intel Corporation
Scalable Systems Division
15201 N.W. Greenbrier Parkway
Beaverton, Oregon 97006
US.A.
(503) 677-7600 (Monday through Friday, 8 AM to 5 PM Pacific Time)
Fax: (503) 677-9147

If you have comments about our manuals, please fill out and mail the enclosed Comment Card. You
can also send your comments electronically to the following address:

techpubs @ssd.intel.com
(Internet)

L
W

w o
‘k g

mo

=
3

El

4
4

A
L

&

-
L S |

e B
4 & 4

L.

i

W
i
[4
l”"
L
[”‘W
sl
sl
l ol

M

|
e

B

e mopm -

Table of Contents

CPROBE()....vceueveeeseeoeeseresesseseseeeeesseeeessesssteseeee e eesseesee e eesee e s e seessene s eeeesenese st sessaeeseeee e eeeereeeeseeees 1
CREAD() .o eeeee e seeeee e ees e seeseeesessssse s e s s eeses s et e s eeeee et e e e s s e s eseee s reeesseseeseseee 4
(0311037) F T OO OSSOSO 8
CSEND() «rreeereeeeeeeeeseeeeeeeeseseeeseeessssessesseeee st e eee e ee e ae s et ee s eee st s ses e eeseeeeesesneeresetenee e seseseeenereen 12
CSENDRECV() eveoveeoeeeeeseeeeeeeeesesesesessesseeessees s e ess s ses et ssease e eesesseeet e eessessesssses s sesenes st seessenessenn 15
CWRITE() e veseeeeeseseesesseseeeeeseeseeeessesssessesese e ees s ees s ae et ees eeeeeseeeeteseee e aes s eeeseesesenet e eeessessesreen 18
DICLOCK() - vveerereeeeveesesees e eessseeesseesseeseesesessseesssessseeesseeesesesesesesessseees e e ssseeneeseesesrenesense s enes e sesrens 21
EADDI()vvveoeevveeereeveeeeeeeeeseeessseeeeseessessessesesese s et ese e se e ettt ettt eee s eeee e eeee s e 23
ESEEK() . vvvvevvvveeeesesesesesessessesseesssssseessssesseessssessssessessessssessseeeseseessssesssessesessessesesesessesssensssessesesssseeens 28
ESIZE() veereeeeeeeeereeeesesseeeseseeses s esseseeseesseessesesesseesesseeseseeses et sesseeeses e se s e ee et es et es s ee s enes e eereenn 32
ESTAT() cerreeveeereeeereeseeesesssessseesseeseessesssesseseseeesessessessssseessseeses e eeeeseeeessesesessesesases s eeesenessssresessneseeses 36
ETOS() e vvermeeeeeeeeeseesseeseesesssesseseeesssssseessessessesessesesssesesesesesesessessesseseseseseesseteessasesseseneseeseenessesesenns 40
FONTL() «evoreeveeereeeeseeseeeseessseseesessseesssesseseeses e eesseeseeesesseseseeeeeeeseseeesseeeeeseeesessseeeeeesseeseesesese e eesesseeeeseens 43
ST [0] () et e e e et ettt s et ettt et eer e eee s 56
FORK_REMOTE_CTL() - vevevveerevrereseeseeeseesssseeseesesesesssesessssesesssssssssssssesssssssssssssessessssesseesesennessessssens 58
FPGETROUND() ..o vvereevereeeeeeseseeeseesssesseessssesesssesesseesssesssseessesessessesesseaessssassessseesssesessssessseeseeseesenns 60
GOOL().eereveverees e eeeeereseseseeseeeseeseesssesseseese e seeesaseese s seet e e e st seee et sseeesee s eeeses e eness s sesseesesseesseesesses 64
Y0 0 I < OO 67
GDHIGH() covvvvee et eeeeeseseeseesssesesee st s seeeseseese s eess e ee e reeeessesseseeseneeses e seess e seseeesseeeseeeseessesees 71

TGDLOW() covoeeeeveeeeeeeeeeee e sees s esseeesseee e e e eeeet e e s e ss et se s e ee s s ente et st et en s eeeseneseeeenenn 75
GDPROD() covvveoorevereeeeeeeesseeeeesesesesssseesseseseseseesssesesesessees e st sseeseesseseseesseeesesseeesess s seseseeseeesessseesessenns 79
GDSUM() evvveoeeereeeeeeeeeseseeessseseessseessseese s seessssesessseses e eesseseeeesesesseessesesesseeseness s sesseesesseseeeseesessenns 83
GETPFSINFO() - eooveeeeeeeeseeeseseeseeeseeessessssessssesessessessesesseenes e ses e ase s s se e sessesseesseseseeseeeseeesessseseseene 87

xi

Table of Contents Paragon™ System C Calls Reference Manual
1Y N[0T T TP 90
GIOR() - v eveeeereeeeees e eeeeeeeeeseeeeessese e ssesesesesesee e eseseseses e esereseesensaeesesensenesseeseseeeseeseneeesesemsesaee s enrnsenenees 93
€10 N T TP PP 96
[T =11 YOO OO 100
GSENDX (). vevveeereeeeeeeseeeeeeeeeseeeesseseesesessassesestessessssssssesesssssesassesesssessasssssssssssssssnssssneensesssassessessnenens 104
LTS3 (o] | OO 106
HRECV() 1.veoevveeveeeessesessesssss e st sessssssssssssssssss s esssssessesssssssssnsssssssssssensssssnssesssnsssssnssnssssssnssssnssnssanes 109
HSEND() cvevvevereeeee et esesee e sese e se st eneseses e e s e se e e sene s s ss et sneseses e ensssesnesst e sessassee e sansan st entensees 115
HSENDRECV() -t eeee e vesees st ee s eeseesees s seseseseseseeass s sseseesessese st ssessssessessessssesesesensenesssassanes 120
INFOCOUNT() cvoveeeeeeeeeeseseeeseeeeeesessssseseseseeseesesseeeeeseneseessssssesessessssesssteseesessssenessasesssesessassssessssnenns 124
IODONE(). .11 verveereeeeseessesserssssssssessssssssesssssasssssss s s st s s st s s sss e ess st ansssssessassessssnesessessassassansssessnetans 127
TOMODE() «.vevveeeeeee e ceeeeeeseeseeseeseseesseeeeseseseseeseeses st eeeesseseeneeeseesesssensesessesesenessssesessssesesereneneneeseessenees 130
TOWAIT() vt ee e s e es e s s s s ee s eeeseeas s eesseeseseseeesses s seaes s ssenseeeseneesessenes 133
IPROBE() ...veveveueeeeestistesssessssessssssessesssesessass s sssssssesssesssss s ssssssssesssssassssnsasssssasssssessssessnsassastssassanssens 136
IREAD()....evevvseeeneeseessesssseseeseesssssessssesssesesessses et es s sses s s st en s s et ees e s s tess e st s snss st et st st ensensssanetnnens 140
IREADOFF()....cvovveoveceistesseseeeeeseessesssessssesssess s ses s sasss s s s et st st ess s s asssessessensassssessssassasssassanssssnssasssas 144
12T =(02 V7)Y 147
ISEND() . eeveeeeeeeeeeeseeeeesees e eeeeee e eee e e s eeeeeeees s esseseees s eeses s e s s eneenaeseese e eeeesereeessasesseeeaeeeeneensneeenees 151
ISENDRECV() ..o verveeeeteeeossesesesseesssseeseess e sessss s s essessssesssssessssessssesssssssessessesessessasssessssesesesssssesenes 154
£ =] 1 OO 157
ISNAN() .. teeeeeeeeteeeseee e e veseas s esseseeeseseesessessesssseesesessses s esesenssessssssenesteeneseesssesesssssesensensssnesssersans 159
IWRITE() +oveoveveeeacesisssessssssesssesesesessass s ssssssssssssesess s s ss s sssessssessesasssesssesnssess e sssssesensessassensessnnssens 161
IWRITEOFF() . vvvveeeeevseeseeseeeeeesesesessesssesssessssssssssssssseseesssssseesssesessessesessssesmssesesassasssssenesssss et s sesssssenes 165
1S3 4 =1 YOO 168
XS T 127N =T T O 172
Y T@ U) VOO 175
MSGICANCEL() ... ueeiiteeiitt et s s e eree s sttt e s ee e s e e sttt e ste e s e e rae e e s s saeaeeessee s b st e e s aaeeabessaseeesnnneee st nsaesssennsns 182
IMSGDONE() ..eeevereereereesseseeseeeeesseessessseeeseseseesaeeseeeassessesessessessesseesesesessssessesessesssesessessessesssesesseenens 184
Y ESTeT (eI Lo]= =1 YOO 186
MSGMERGIE() ..veeeeeeeieiiinsiiis sttt er st s e teesre e e s e e e s s sse e e e esee s sbe s e neesse e s sannasssaneesssnnsessneasan 188
IMSGWAIT (). ettt see s et eee st es s e es st sesse e s se et et ensesas et ses st ees s e ssesess st eneseses st ansessareanes 190
MY HOST() +evevreerereeeeesetesssesesessesesssesessessessesseesesssesessessssesessssesseseeseassseesseesesaesenessesnsesesseeneassnesesenenns 193

Xii

i

'™
i

v
Hy

]

sl

FW
"

rﬂ"”x
(WP

Ll
o

[T NS S B T R O |

S T R TR |

[

Paragon™ System C Calls Reference Manual

Table of Contents

B

L

N S [

{

i

J

5.

|

\

A

-

i

o

! Lo S

MYNODE()ocveivieveevesteeesaessssststes st esseseas st s s s st ss st sassesss st sss s s bessesssssssses st st ens s sassansanen 194
MYPTYPE()....cvuctieeeereeteetessessssssesses e st estess st sssssas s es st s sss st et s sesssss s s s ssts st s ssssesssassens s sessansanes 196
NIODONE() .oocvevieveeeeteeeeaeseses s tes e sesbessas st sas s s s e st s e s st es s st sss s e ses s st e s s ssessessstenss s sarsansaen 197
N T 7Y o YOO 199
NUMNODES().....ovvueeetiestiesesseseisctssessessssesssssssssssssssssessssssssessesassssessssssssssssssssssssssssssssssssessesesesassssanes 201
NX_APP_NODES()......evurvereeereesassessssesssssssesssssssssssssssssssssssassssassessssasssssassssessssssssassassessssessssassns 204
NX_APP_RECT() vuevcerietieseeseseseeessesssssssesssssssssesssssasessssssssassssassssasasssssssesssasssssassesssssssssssessesesesassssnes 206
NX_CHPART_EPL() coovvucveecteeieeeete e scese st ssssesssss s essssssssessss st sesssssssssssssassssssssssssassanasssssssssesessssnes 208
NX_EMPTY _NODES()....ucvuiuereereeeeeriesessesasssssssssssesasssesssssssssssssssssassssssssssesssssassesssssssssesssssssssassessns 214
NX_FAILED_NODES() ...vuvuevveesieeeeisesseesiesssssesssssssestasssessssssssssasssssssssssnsassssssssssssssssssssssassssssssssseses 217
NX_INITVE() 1ocvcveeeecteeeeeteeeeeessses st esse s st enssss s ssssssssssss st asasasssnssasessentassessssssessssassassssansssssssessnens 220
NX_INITVE_ATTR() . cvevvveereeieseseeeesestesassesssesssssssssnssssssssssssssassnsssssnssessnes 225
NX_LOAD() «..ecvoreeeeeeeeessesseeeeessesessessssssessesasssssssssssssssssstassssassssassetassesetssass st ansetassasssnsnsessesasesessnsanes 238
NX_IMIKPART () v cvoeeeieeeteseceesssessessssssssesse s saesessssssess s s assessesastssesssassnsssssassasssssssassassasasssssnsesnsesassnes 241
NX_MKPART_ATTR() cvuvvvreeeesieeeeieessesssssssssssssssssssssssssssssssssasssssssssssssssessssssssssssssnsassssassssssssessnses 244
NX_NFORK() ovovvveeeeetesessesssessesssessssssssesssessesssstssassansssssssssessssssssssesssssssesssssssnsassssssssnsasssssssssssasssses 255
NX_PART_ATTR() v vcvereeeeecereteessetesssssssssssssssssssssssessesssssssssssssssssasssssssssssessessssssssessssssssessssssssesassns 258
NX_PART_NODES() ..vuvievvereeievesesessessssesssessssssssassessessssssssssssssssssssssssssassssssssssssassssssssssssssssssasssssssan 261
NX_PERROR()couevrureeeieseeisseseesssssesssessesssssssssssssssessssassasessassssessssassssssssasssssessessssassssssessesesesesassnes 263
NX_PRI()cv.vecverveeaeeeeesseseissessesesssesassssssssesasssssesssessssesssessssssssssssssesastas e sessesssssessessessssansansssssssssnsesassanes 265
NX_PSPART() c.vvveevvieesetesscessessessetesesssssesssseseesassessessssssesessessasssssassneesensasssessasssssssssnssnssensanassessesns 267
NX_RMPART()....ecvveverrtsseseesssessessesessssssss s seseesseseessesaesssssessssessessesssassssesssssasssssasssssasssssssssassassanes 271
NX_WAITALL() cvvvvvveeeteeesesessesasss st s s st sssssss e s essassssesssstessssstassssssssessassessnssssessesassnsssssssssssssesanens 274
OPEN()...cvvieitectestesteae st este s e tes s s e ssss e s e s sass st ssase s s s esss e e et essetabane et ense s st an st ans et s s et ebanessasantesanens 276
PES_HOST_INIT() ouvurveetrreeeriierrseesssesessssssssesssssesssssssssssssesssassesasssssssssssssasssssssssssssesnssssssssassessssses 283
RMKNOD() cv.ocveevevseeceeeetesstesssssse s ssssssssssssssssessesss s ssssssessssasassesssssessssassassessssnsssssessssassssessssnsssesseses 285
READOFF() «...ovevuveteeseeseseetessesesastesssessessssessssssssssessesasssssssasssssesaseesetensssassssebsssssssssnsessesesesessssanes 287
SETIOMODE() «.vuvucveviteecteeetisetesesssessssssessssssesssssssssssssssssssssessssssesesesssssassssasassssssssssssssesessssnsassssesnas 289
SETPTYPE() c.cvcvvteeeevetesessesessssas s sessesasssssssassssssssssssssssssesssssasssssssssssasssssssassssassssssssesnssssassssssssssesas 297
STATPES(). v iteeeeveeieteetesee e esetessss s s esss s st ss s esssssas e s s st s s ss et s st es s s st asasas s st ansessssa s ssesansassssanasnassesaeas 301
TABLE() cvuvuvuveciaetctteesesesss s st s st tssses s sss s s s ssssess st en s s s s aessntas s st es st e b e s e et an s st esaesaes s e e s sae e et etenantares 306
WRITEOFF() coucvurveeeecieresacsesstsssesesesassassessssssasssssssnsssssssasssssessssesssesassssesssssssssssssssesssssssssssessassssassnns 316

Xiii

Table of Contents Paragon™ System C Calls Reference Manual

Appendix A
Message Types and Typesel Masks

Appendix B
Errno Manual Page

Xiv

4

[S .

¢

4

3

A wa A
4

.
ko

€ 1

»

Al

Paragon" System C Calls Reference Manual Table of Contents

I List of Tables

[Ju Table A-1. TYPESEI MASK LISE ..ottt ettt re e e e s b ens A-3

Table of Contents

Paragon™ System C Calls Reference Manual

i"“%
-

o
"

mo

Ea
E! [. S

3

i
L

4

s sa Ea g
4

H

o4 b

l‘w
F1

——
3

[

|
£

IS S S

4

i
L

1 [4

| |

|) i
] [

f.u I(A
4

0

-

Paragon™ System C Calls Reference Manual Manual Pages

CPROBE() CPROBE()

cprobe(), cprobex(): Waits (blocks) until a message is ready to be received. (Synchronous probe)

Synopsis
#include <nx.h>

void cprobe(
long typesel);

void cprobex(
long typesel,
long nodesel,

long ptypesel,
long info[]);

Parameters

typesel Message type(s) to receive. Setting this parameter to -1 probes for a message of
any type. Refer to Appendix A of the Para,gonTM System C Calls Reference
Manual for more information about message type selectors.

nodesel Node number of the sender. Setting the nodesel parameter to -1 probes for a
message from any node.

ptypesel Process type of the sender. Setting the ptypesel parameter to -1 probes for a
message from any process type.

info ' Eight-element array of long integers in which to store message information. The
first four elements contain the message’s type, length, sending node, and sending
process type. The last four elements are reserved for system use. If you do not
need this information, you can specify the global array msginfo, which is the array
used by the info...() calls. See the nx.h include file for information about the global
array msginfo.

Manual Pages

Paragon™ System C Calls Reference Manual -

CPROBE() (cont.) CPROBE() (cont.)

Description

Use the appropriate synchronous probe system call to block the calling process until a specified
message is ready to be received:

* Use the cprobe() function to wait for a message of a specified type. Use the info...() system calls
to get more information about the message.

e Use the cprobex() function to wait for a message of a specified type from a specified sender and
store information about the message in the info array.

When a synchronous probe system call successfully returns, the message of the specified type is
available. Use the receive system calls (for example, crecv() or irecv()) to receive the message.

These are synchronous system calls. The calling process waits (blocks) until the specified message
is ready to be received. To probe for a message of the specified type without blocking the calling
process, use one of the asynchronous probe system calls (for example, iprobe()).

Return Values

Errors

Upon successful completion, the cprobe() and cprobex() functions return control to the calling
process; no values are returned. Otherwise, these functions display an error message to standard
error and cause the calling process to terminate.

Upon successful completion, the _cprobe() and _cprobex() functions return O (zero). Otherwise,
these functions return -1 and set errno to indicate the error.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

L
A

T

w

o
"

-

m

-
W

M
.

-

o

r"!
Ll
I

s

E

ke

i

S

= b

.

L) — | el] e] _—
! L4

£

- A“
O I Y SR N |

Paragon™ System C Calls Reference Manual Manual Pages

CPROBEO (cont.) CPROBEO (cont.)

Examples
The following example does a synchronous probe and runs on a two-node partition.
#include <nx.h>
#define INIT_TYPE 10
long iam;
main()
{
char msgbuf[80], smsg[80];
iam = mynode() ;
if(iam==0) {
sprintf (smsg, "Hello from node %d”,iam) ;

csend (INIT_TYPE, smsg, sizeof(smsg), -1, 0);
printf (“Node %d sent: %s\n”,iam, smsqg) ;

}
else {
cprobe (INIT_TYPE) ;
if (infocount () <= sizeof (msgbuf)) ({
crecv (INIT_TYPE, msgbuf, sizeof (msgbuf));
printf(“Node %d received: %s\n”,iam,msgbuf) ;
}
}

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

crecv(), errno, infocount(), infonode(), infoptype(), infotype(), iprobe(), irecv()

™
Manual Pages Paragon™ System C Calls Reference Manual { &
¥
i .
e
i
N ™
CREAD() CREAD() -
w o
cread(), creadv(): Reads from a file and blocks the calling process until the read completes. (Synchronous read) . =
{, -
Synopsis o
#include <nx.h> i
"
void cread(-
int fildes, :
. T
void *buffer,
unsigned int nbytes); o
l R
#include <sys/uio.h>
W T
void creadv(.-
int fildes, -
struct iovec *iov, &
int iovcount);
:n xigl
i
Parameters
-
fildes File descriptor identifying the file to be read. e
buffer Pointer to the buffer in which to store the data after it is read from the file. P
[
nbytes Number of bytes to read from the file associated with the fildes parameter.
5 -
iov Pointer to an array of iovec structures that identifies the buffers into which the data | .
read is placed. The iovec structure has the following form:
ﬁ' et
struct iovec ({ [
caddr_t iov_base;
int iov_len; ﬂ e
Yi o
The iovec structure is defined in the sys/uio.h include file. -
iovcount Number of iovec structures pointed to by the iov parameter.
P
TM:
-
4 ;

[

o

— .

b

{
oA

3

_ -

i
1o

i

|
S to

L

“& ﬁ- "
i Lo

‘.

4

O T R N

4 Lo k

[|

Paragon™ System C Calls Reference Manual Manual Pages

CREAD() (cont.) CREADO (cont.)

Description

Other than return values and an additional error, the cread() and creadv() functions are identical to
the OSF/1 read() and readv() functions, respectively. See the read(2) manual page in the OSF/1
Programmer’s Reference.

These calls are synchronous system calls. The calling process waits (blocks) until the read
completes. Use the iread() or ireadv() function to read a file without blocking the calling process.

NOTE

To preserve data integrity, all 1/0 requests are processed on a
“first-in, first-out” basis. This means that if an asynchronous 1/O
call is followed by a synchronous I/O call on the same file, the
synchronous call will block until the asynchronous operation has
completed. '

Reading past the end of a file causes an error. You can do one of the following to prevent end-of file
errors:
¢ Use the iseof() function to detect end-of-file before calling the cread() or creadv() functions.

¢ Use the Iseek() function to determine the length of a file before calling the cread() or creadv()
functions.

e Usethe _cread() or _creadv() function to detect end-of-file or that the number of bytes read is
less than the number of bytes requested.

Return Values

Upon successful completion, the cread() and creadv() functions return control to the calling
process; no values are returned. Otherwise, the cread() and creadv() functions write an error
message on the standard error output and cause the calling process to terminate.

Upon successful completion, the _cread() and _creadv() functions return the number of bytes read.
Otherwise, these functions return -1 and set errno to indicate the error. These functions return 0
(zero) if end-of-file is reached.

Manual Pages

CREAD() (cont.)

Errors

Examples

Paragon™ System C Calls Reference Manual

CREADO (cont.)

If the _cread() and _creadv() functions fail, errno may be set to one of the error code values
described for the OSF/1 read() function or the following value:

EMIXIO

In M_SYNC or M_GLOBAL I/O mode, nodes are attempting different

operations (reads and writes) to a shared file. In these modes, all nodes must
perform the same operation. In the M_GLOBAL I/O mode, nodes are attempting
different sized reads (using the nbytes parameter) from a shared file.

The following example does a synchronous read and runs in a multi-node partition. Note that the
file/tmp/mydata must exist in order for this example to correctly execute.

#include <memory.h>
#include <sys/stat.h>
#include <fentl.h>
#include <nx.h>

long iam;

main ()

{

int fd;
struct stat result;
char msgbuf[100];

iam = mynode();
memset (msgbuf, 0,100) ;

fd = gopen(“/tmp/mydata”, O_RDWR, M_UNIX,
fstat (fd, &result);
if (liseof (£d)) {
cread(fd, msgbuf, result.st_size);
printf (“Node %d read: %s”,iam,msgbuf) ;
}

0644) ;

"

-

"
E]

=a
|

L

sl

Paragon™ System C Calis Reference Manual Manual Pages

I CREAD() (cont CREAD() (cont,)

il

[‘ Limitations and Workarounds

l’ N For information about limitations and workarounds, see the release notes files in
ol /usr/share/release_notes.

IAJ See Also

l ™ cwrite(), gopen(), iread(), iseof(), iwrite(), setiomode()

OSF/1 Programmer’s Reference: 1seek(2), open(2), read(2)

Manual Pages

CRECV()

Paragon System C Calls Reference Manual

CRECV()

crecv(), crecvx(): Posts a receive for a message and blocks the calling process until the receive completes.
(Synchronous receive)

Synopsis

Parameters

#include <nx.h>

void crecv(

long typesel,
char *buf,
long count);

void crecvx(

long typesel,
char *buf,
long count,
long nodesel,
long ptypesel,
long info[]);

typesel

buf
count

nodesel

ptypesel

Message type(s) to receive. Setting this parameter to -1 receives a message of any
type. Refer to Appendix A of the Paragon”" System C Calls Reference Manual for
more information about message type selectors.

Points to the buffer where the message should be placed.

Length (in bytes) of the buf parameter.

Node number of the sender. Setting the nodesel parameter to -1 receives a
message from any node.

Process type of the sender. Setting the ptypesel parameter to -1 receives a message
from any process type.

i

™

d

S

Paragon™ System C Calls Reference Manual Manual Pages

CRECV() (con.) CRECV() (cont.)

Description

info Eight-element array of long integers in which to store message information. The
first four elements contain the message’s type, length, sending node, and sending
process type. The last four elements are reserved for system use. If you do not
need this information, you can specify the global array msginfo, which is the array
used by the info...() functions.

Use the appropriate synchronous receive system call to post a receive for a message and wait until
the receive completes:

* Use the crecv() function to receive a message of a specified type.

e Use the crecvx() function to receive a message of a specified type from a specified sender and
place information about the message in an array.

When the receive completes, the message is stored in the specified buffer and the calling process
resumes execution. If the message is too long for the buf buffer, your application terminates with an
error and the receive does not complete.

After the crecv() function completes, you can use the info...() functions to get more information
about the message after it is received. After the crecvx() function completes, the same message
information is returned in the info parameter.

These are synchronous system calls. The calling process waits (blocks) until the receive completes.
To post a receive for a message without blocking the calling process, use an asynchronous receive
system call (for example, the irecv() function) or a handler receive system call (for example, the
hrecv() function). Note that posting too many asynchronous calls can cause the application to
deplete the available pool of message IDs. If no message IDs are available, crecv() and crecvx() may
fail with your application terminating and the synchronous receive function not completing.

Return Values

Upon successful completion, the crecv() and erecvx() functions return control to the calling process;
no values are returned. If an error occurs, these functions print an error message to standard error
and cause the calling process to terminate.

The _crecv() and _crecvx() functions return -1 when an error occurs and set errno to indicate the
error. Otherwise, these functions return 0.

Manual Pages

Paragon' " System C Calls Reference Manual

CRECV() (cont.) CRECV() (cont.)

Errors

Examples

10

The _crecv() and _crecvx() functions can return the following errno value:
EQMSGLONG The message received was too long for the buf message buffer.
EQNOMID The application has too many outstanding message requests from asynchronous

system calls. No message IDs are available from the system for the synchronous
receive.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

The following example uses the crecv() function to do a synchronous receive. The example can run
in a multi-node partition.

#include <nx.h>
#define INIT_TYPE 10
long iam;

main()
{
char msgbuf[80], smsg[80];

iam = mynode();

if (iam==0) {
sprintf (smsg, “"Hello from node %d\n”,iam);
csend (INIT_TYPE, smsg, strlen(smsg)+1, -1, 0);
printf (“Node %d sent: %s”,iam, smsg);

}
else {
cprobe (INIT_TYPE) ;
if(infocount () <= sizeof(msgbuf)) {
crecv (INIT_TYPE, msgbuf, sizeof (msgbuf));
printf (“Node %d received: %s\n”,iam,msgbuf) ;
}
}

= oA Ea
B 4 k4

=
| S

a

g g

FooA
I

“

-
i

[I = |
| B4 b

v

B

RN TR T RN SR R TR B T B

L3

1

[’“ﬂ
.
o

il

al

L

Paragon™ System C Calls Reference Manual Manual Pages

CRECVO (cont.) CRECV() (cont.)

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

cprobe(), csend(), csendrecv(), errno, hrecv(), hsend(), hsendrecv(), infocount(), infonode(),
infoptype(), infotype(), iprobe(), irecv(), isend(), isendrecv()

11

Manual Pages Paragon" System C Calls Reference Manual

CSEND() CSEND()

Sends a message and blocks the calling process until the send completes. (Synchronous send)

Synopsis
#include <nx.h>

void csend(

long type,
char *buf,

long count,
long node,

long ptype);

Parameters

type Type of the message to send. Refer to Appendix A of the Paragon"" System C
Calls Reference Manual for more information about message types.

buf Points to the buffer containing the message to send. The buffer may be of any valid
data type.

count Number of bytes to send in the buf parameter.
node Node number of the message destination (the receiving node). Setting the node
parameter to -1 sends the message to all nodes in the application (except the

sending node when the ptype parameter is the sender’s process type).

ptype Process type of the message destination (the receiving process).

Description

This is a synchronous system call. The calling process waits (blocks) until the send completes.
Completion of the send does not mean that the message was received, only that the message was sent
and the send buffer (buf) can be reused. To send a message without blocking the calling process, use
one of the asynchronous send system calls (for example, isend()) or one of the handler-send system
calls (for example, hsend()) instead.

12

™

o

¥
.

’*ﬁ
i .

i
R

-
il

‘“m

o

5

—
R D S

4

3

8

k|

A

L

4

i
3

A

t [|

L

SN S S SRR U B S

Paragon System C Calls Reference Manual

CSEN D() (cont.)

Return Values

Errors

Examples

Manual Pages

CSEND() (cont.)

Upon successful completion, the esend() function returns control to the calling process; no values

are returned. Otherwise, this function displays an error message to standard error and causes the

calling process to terminate.

Upon successful completion, the _csend() function returns 0 (zero). Otherwise, this function returns
-1 and sets errno to indicate the error.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

The following example uses the csend() function to do a synchronous send. The example can run in
a multi-node partition.

#include <nx.h>

#define INIT_TYPE 10

long iam;

main ()

{

char msgbuf[80], smsg([80];

iam = mynode() ;

if (iam==0) {
sprintf (smsg, "Hello from node %d\n”,iam) ;
csend (INIT_TYPE, smsg, strlen(smsg)+1l, -1, 0);
printf (“Node %d sent: %s”,iam, smsg);

}
else {
cprobe (INIT_TYPE) ;
if (infocount () <= sizeof (msgbuf)) {
crecv (INIT_TYPE, msgbuf, sizeof (msgbuf));
printf (“Node %d received: %s\n”,iam,msgbuf) ;
}
}

13

Manual Pages

Paragon™ System C Calls Reference Manual

CSEN D() (cont.) CSEN D() (cont.)

Limitations and Workarounds

See Also

14

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

cprobe(), crecv(), csendrecv(), errno, hrecv(), hsend(), hsendrecv(), iprobe(), irecv(), isend(),
isendrecv()

a—
LI |

e 4

e B
kg

o
"

1

——
[|

s

L4

ERR T

L

i L4

IS

|

S |

L

S T

{

Lo

A-“ "‘A“
Lo

4

|
[

5]

|

-

4

]

!
i

Paragon™ System C Calls Reference Manual Manual Pages

CSENDRECV()

CSENDRECV()

Sends a message, posts a receive for a reply, and blocks the calling process until the receive completes. (Synchronous

send-receive)

Synopsis

#include <nx.h>

long csendrecv(

long type,
char *sbuf,

long scount,

long node,
long ptype,

long typesel,

char *rbuf,

long rcount);

Parameters

type

sbuf
scount

node

ptype

typesel

rbuf

- rcount

Type of the message to send. Refer to Appendix A of the Paragon™" System C
Calls Reference Manual for information on message types.

Points to the buffer of the message to send.

Number of bytes to send in the sbuf parameter.

Node number of the message destination (the receiving node). Setting the node
parameter to -1 sends the message to all nodes in the application (except the
sending node when the ptype parameter is set to the sender’s process type).
Process type of the message destination (the receiving process).

Message type(s) to receive. Setting this parameter to -1 receives a message of any
type. Refer to Appendix A of the ParagonTM System C Calls Reference Manual for
more information about message type selectors.

Points to the buffer where the message should be placed.

Length (in bytes) of the rbuf parameter.

15

Manual Pages

CSENDRECVO (cont.)

Description

Paragon System C Calls Reference Manual

CSENDRECV() (cont.)

The csendrecv() function sends a message and waits for a reply. When a message whose type
matches the type(s) specified by the typesel parameter arrives, the calling process receives the
message, stores it in rbuf, and resumes execution.

This is a synchronous system call. The calling process waits (blocks) until the receive completes. To
send a message and post a receive for the reply without blocking the calling process, use the
isendrecv() function or the hsendrecv() function (asynchronous system calls) instead of the
csendrecv() function.

If the received message is too long for the rbuf buffer when using the csendrecv() function, your
application terminates with an error and the receive does not complete. If the received message is
too long for the rbuf buffer when using the _csendrecv() function, the receive completes with no
error returned and the content of rbuf is undefined.

The csendrecv() function does not affect the information returned by the info...() system calls.

If you use force-type messages with the csendrecv() function, you are responsible for posting the
receive on the receiving node before the message arrives. Otherwise, the receive will not complete
and the message will be lost. The csendrecv() function does not do internal synchronization of
messages. See Appendix A, “Message Types and Typesel Masks” on page A-1 of the Paragon”"
System C Calls Reference Manual for more information on force-type messages.

Return Values

Errors

16

Upon successful completion, the csendrecv() function returns the length (in bytes) of the received
message, and returns control to the calling process. Otherwise, this function displays an error
message to standard error and causes the calling process to terminate.

Upon successful completion, the _csendrecv() function returns length (in bytes) of the received
message. Otherwise, this function returns -1 and sets errno to indicate the error.

Refer to the errno manual page for a complete list of errors that can occur in the C underscore system
calls.

EINVAL The received message is too long for the receive buffer.

v
‘s

e
i

L

A
E

3

£

[
L

-

LI

[T TR TR B R B S |

2

3 Lo [i ¢ 4 [

B

|

I

4 ,4
[L L i

!

[

B

F

E

b4

i

¥

Paragon™ System C Calls Reference Manual Manual Pages

CSENDRECV/() (cont,) CSENDRECV() (cont,

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

cprobe(), crecv(), csend(), errno, hrecv(), hsend(), hsendrecv(), infocount(), iprobe(), irecv(),
isend(), isendrecv()

17

Manual Pages

CWRITE()

Paragon™ System C Calls Reference Manual

cwrite(), cwritev(): Writes to a file and blocks the calling process until the write completes. (Synchronous write)

Synopsis

#include <nx.h>

void cwrite(
int fildes,

void *buffer,
unsigned int nbytes);

#include <sys/uio.h>

void cwritev(
int fildes,

struct iovec iov[],
int iovcount);

Parameters
fildes
buffer
nbytes

iov

iovcount

18

File descriptor identifying the open file to which the data is to be written.
Pointer to the buffer containing the data to be written.
Number of bytes to write to the file associated with the fildes parameter.

Pointer to an array of iovec structures, which identifies the buffers containing the
data to be written. The iovec structure has the following form:

struct iovec {
caddr_t iov_base;
int iov_len;
}:
The iovec structure is defined in the sys/uio.h include file.

Number of iovec structures pointed to by the iov parameter.

CWRITE()

»)
al

o

-

i

- gl

l i

£ g4

4

4

i

[]] []]
b Fooa

L

i

=

[

el
Lo

t

E]

L b £ L 3 i

I
I

Paragon™ System C Calls Reference Manual Manual Pages
CWRITE() (con, CWRITE() (cont,
Description

Other than the return values and an additional error, the cwrite() and ewritev() functions are
identical to the OSF/1 write() and writev() functions, respectively. See the write(2) manual page in
the OSF/1 Programmer’s Reference.

These are synchronous system calls. The calling process waits (blocks) until the write completes.
Use the iwrite() or iwritev() function to write a file without blocking the calling process.

NOTE

To preserve data integrity, all /O requests are processed on a
“first-in, first-out” basis. This means that if an asynchronous 1/O
call is followed by a synchronous I/O call on the same file, the
synchronous call will block until the asynchronous operation has
completed.

Use the iseof() function to determine whether the write moved the file pointer to the end of the file.

Return Values

Errors

Upon successful completion, the cwrite() and ewritev() functions return control to the calling
process; no values are returned. Otherwise, the cwrite() and cwritev() functions write an error
message on the standard error output and cause the calling process to terminate.

Upon successful completion, the _cwrite() and _cwritev() function return the number of bytes
written. Otherwise, these functions return -1 and set errno to indicate the error.

If the _cwrite() function fails, errno may be set to one of the values described for the OSF/1 write(2)
function or the following value:

EMIXIO In the M_SYNC or M_GLOBAL I/O mode, nodes are attempting different
operations (reads and writes) to a shared file. In these modes, all nodes must
perform the same operation. In the M_GLOBAL I/O mode, nodes are attempting
different sized reads (using the nbytes parameter) from a shared file.

19

Manual Pages Paragon " System C Calls Reference Manual
CWRITE() (cont) CWRITE() (cont)
Examples

The following example does a synchronous write.

#include <fcntl.h>
#include <nx.h>

long iam;
main ()
{
int fd;
char buffer[80];
iam = mynode () ;
fd = gopen(”/tmp/mydata”,O_CREAT | O_TRUNC | O_RDWR, M_LOG,
0644) ;
sprintf (buffer, "Hello from node %d\n”,iam);

cwrite (fd, buffer, strlen(buffer));
close(£fd);

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also
cread(), gopen(), iread(), iseof(), iwrite(), setiomode()

OSF/I Programmer’s Reference: open(2), write(2)

20

oA
j

Ea = A
E £ g 8

i

A koa
El

3

4

[

3

mem mm A
b

3

l"m
)
™

—
£ 4

i

3

4 e 4)

4 ;

{

_&

L

f

E Lo

L |

——
£

wisd

b

sl

Paragon™ System C Calls Reference Manual Manual Pages

DCLOCK() DCLOCK()

Returns time in seconds since the system was booted.

Synopsis
#include <nx.h>

double dclock(void);

Description
The dclock() function measures time intervals in seconds. The time is obtained from the RPM global

clock. The dclock() value rolls over approximately every 14 years, and has an accuracy of 100
nanoseconds on each node and 1 microsecond across all nodes.

Return Values
Upon successful completion, the dclock() function returns a double precision value for the elapsed
time (in seconds) since booting the node and returns control to the calling process. Otherwise, the
dclock() function displays an error message to standard error and causes the calling process to
terminate.
Upon successful completion, the _dclock() function returns the elapsed time (in seconds) since
booting the system. Otherwise, the _dclock() function returns -1 and sets errno to indicate the error.

Errors

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

21

Manual Pages Paraganrwl System C Calls Reference Manual
DCLOCKO (cont.) DCLOCKO (cont.)
Examples

The following example uses the dclock() function to calculate the elapsed time of a program
segment.

#include <nx.h>
long iam;
main ()
{
double start_time, end_time, elapsed_time;
iam = mynode() ;
start_time = dclock();
sleep(5);
end_time = dclock();

elapsed_time = end_time - start_time;
printf (“\nNode %d elapsed time = %f\n”,iam,elapsed_time);

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

errno, rpm

22

=
4w

-
a

.

-

™.

i A

i”:
-

-

_d

e

i Paragon™ System C Calls Reference Manual Manual Pages

{. EADD() EADD()

oy
A

o eadd(), ecmp(), ediv(), emod(), emul(), esub(): Perform mathematical operations on extended (64-bit) integers.

—
E4

Synopsis
- #include <nx.h>
esize_t eadd(

esize_tel,
esize_t e2);

S |

) long ecmp(
esize_tel,
esize_te2);

- i
Lo

- long ediv(
I esize_te,
i long n);
-
’l J long emod(
- esize_t e,
{ ‘ long n),
l - esize_t emul(
. esize_t e,
long n);

A

L

esize_t esub(
esize_tel,
esize_te2);

tod Lo

l»: k
ad
ad

I

Manual Pages

EADD() (cont.)

Parameters
e, el, e2

n

Description

Paragon™ System C Calls Reference Manual

EADD() (cont.)

Extended integer values

Integer value used to multiply or divide an extended integer

Extended integers are signed 64-bit integers with values from -2**63 to 2**63 - 1. Extended-integer
functions are for accessing extended file sizes in the Parallel File System (PFS).

Use these functions to perform the following mathematical operations on extended integers:

eadd()

ecmp()
ediv()

emod()
emul()

esub()

Return Values

Add an extended integer to another extended integer.

Compare two extended integers.

Divide an extended integer by an integer.

Get the remainder of an extended integer divided by an integer.
Multiply an extended integer with an integer.

Subtract an extended integer from another extended integer.

Upon successful completion, the eadd(), emul(), and esub() functions return the computed value of
type esize_t (see the nx.h include file). The type esize_t has the following structure:

struct s_size {

Y

long slow;
long shigh;

typedef struct s_size esize_t;

24

i
i o

v

iy

L]
o

ko

.
£

E

s=a
¥

ki

=
i

¥

I
P o4 ok 4

4

S

4

E

A

b

i

£

£

[

i

L 4

B L4 A

‘AJ

L 4

L

-
(.

[

(SR

A

E

Paragon"’I System C Calls Reference Manual Manual Pages

EADDO (cont.) EADD() (cont.)

Errors

Upon successful completion, the eemp() function returns the following values:

-1 ifel <e2
0 ifel =e2
1 ifel >e2

Upon successful completion, the ediv() and emod() functions return the computed value (of type
long). Otherwise, the eadd(), ecmp(), ediv(), emod(), emul(), and esub() functions write an error
message on the standard error output and cause the calling process to terminate.

Upon successful completion, the _eadd(), _ecmp(), _ediv(), _emod(), _emul(), and _esub()
functions return the same value as their respective non-underscore version of the function.

Otherwise, these functions return -1 (the functions that return an esize_t structure return -1 in both
fields of the structure) and set errno to indicate the error.

If an error occurs during an _eadd(), _ecmp(), _ediv(), _emod(), _emul(), or _esub() function,
errno may be set to the following error code value:

EQESIZE Arithmetic overflow of extended integer.

If an error occurs during an _ediv() or an _emod() function, errno may be set to the following error
code value:

EQESIZE Quotient does not fit into a long integer or division by zero.

25

Manual Pages

EADDO (cont.)

Examples

Paragon™ System C Calls Reference Manual

EADD() (cont.)

The following example uses the extended mathematical functions to do calculations on some
extended integers.

26

#include <nx.h>

void display () ;

long iam;

main ()

{
static char *three = {#3"};
static char *four = {“4"};

char ss([20];
long r,r4;

esize_t e3, ed, e_sum, e_sub,

printf (“\n”);

e3 = stoe(three);
ed = stoe(four);
rd = 4;

e_sum = eadd(e3,ed);
display (“e_sum = “,e_sum);

e_sub = esub(e4,el);
display(“e_sub = “,e_sub);

e_mul = emul(e3,100);
display (“e_mul = “,e_mul);

r = ecmp (e3,ed);
printf(*e_cmp = %1d\n”,r);

r = emod(e3,r4);
printf (“e_mod = %1d\n”,r);

r = ediv(e3,rd);
printf(“e_div = %1d\n”,r);

e_mul;

-

[

N"?
b

i)

el

N'm
d.

I N
&
J e
d

k!

W

-
l i Paragon™ System C Calls Reference Manual Manual Pages

I

EADD() (cont.) EAD D() (cont.)

A

vold display (ss,eout)
char *ss;
esize_t eout;

v

{
char s[20];
etos (eout, s) ;
7 printf (“%$s%s\n”,ss,s);
. }

4

Limitations and Workarounds

|

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

' £ £ 4

&

~ See Also

eseek(), esize(), estat(), etos(), stoe()

Satt - i |
[—

["’1 A 27

T

Manual Pages ParagonTM System C Calls Reference Manual g«
-
i
e
b o
wm
ESEEK() ESEEK() .-
—
Moves a file’s read-write file pointer. .
e
Synopsis La
#include <nx.h> e
#include <unistd.h> b
. wo
esize_t eseek(;
int fildes, o
esize_t offset, -
int whence); .
-
Parameters . o
fildes File descriptor for an open extended file or standard OSF/1 file. o
-
offset The value, in bytes, to be used in conjunction with the whence parameter to set the
file pointer. m
whence Specifies how to interpret the offset parameter in setting the file pointer associated
with the fildes parameter. Values for the whence parameter are as follows (defined r
in unistd.h): & o
SEEK_SET Sets the file pointer to offset bytes from the beginning F-
of the file. -
SEEK_CUR Sets the file pointer to its current location plus offset f' R
bytes. |
SEEK_END Sets the file pointer to the size of the file plus offset JW ™
bytes. i
H’ T
Description .
You can use the eseek() function to access regular files and extended files, while the Iseek() function W -
does not support extended files. A regular file cannot exceed 2G - 1 bytes. -

Other than the return values and additional errors, the eseek() function behavior is identical to the
OSF/1 Iseek() function. See Iseek(2) in the OSF/I Programmer’s Reference.

£ 3 o4

28 [w
il

sl
l'ﬂ
il
lu‘
[M‘
i
l']
|

=

¢

9
s

i b4

[

b 3

4

L

i
i

[|

I3

e Bl B

Paragon™ System C Calls Reference Manual Manual Pages

ESEEK() (cont.) ESEE K() (cont.)

This function may block while asynchronous I/O requests queued by the same process to the same
file complete.

Return Values

Errors

Upon successful completion, the eseek() function returns an extended integer (esize_t) that is the
new position of the file pointer measured in bytes from the beginning of the file.

The esize_t structure has the following format (see the nx.h include file):

struct s_size {
long slow;
long shigh;
Y
typedef struct s_size esize_t;

Because regular files cannot exceed 2G - 1 bytes, the resulting file offset must not exceed 2G - 1
bytes when moving the file pointer of a non-extended file. However, when working with extended
files, the theoretical resulting file offset can reach a 64-bit value. Realistically though, the file offset
depends on how many file systems the extended file is stripped across. Thus, any call to eseek() that
results in a file offset that exceeds the system-dependent limit produces an error.

‘When the eseek() function does not successfully complete, it writes an error message on the standard
error output and causes the calling process to terminate.

Upon successful completion, the _eseek() function returns the same value as the eseek() function.
Otherwise, the _eseek() function returns -1 in both fields of the esize_t structure and sets errno to
indicate the error. '

If the _eseek() function fails, errno may be set to one of the error code values described for the
OSF/1 Iseek(2) function or to one of the following values:

ECFPS In I/O modes M_SYNC, M_RECORD, or M_GLOBAL, nodes are attempting
to seek to different positions in a shared file. In these modes, any seeks must be
performed by all nodes to the same file position.

EMIXIO In I/O modes M_SYNC or M_GLOBAL, nodes are attempting different

operations to a shared file. In these modes, all nodes must perform the same
operation.

29

v

Manual Pages ParagonTM System C Calls Reference Manual g

¥y
[

ESEEK() (cont) ESEEK() (cont.) -

o
EFBIG The resulting offset as determined by the whence and offset parameters exceeds ' :
the maximum file offset allowable for this type of file on this particular file .
system. ,
f! ™
A
Examples -
The following example shows how to use the eseek() function to move the file pointer in a file. .
#include <fentl.h>
#include <nx.h> B
#include <unistd.h> .
long iam; B
e
main () 9
{ " -
int fd; o
esize_t offset, new_size, new_pos; h
w
char s[20];
Pr i)
fd = gopen(“/tmp/mydata”, O_RDWR, M_UNIX, 0644); .
offset = stoe(”1000”"); P
new_size = esize(fd,offset,SIZE_SET); u
etos (new_size,s); -
printf(“new size = %s\n”, s); w o
offset = stoe(”500"); .-
new_pos = eseek(fd,offset, SEEK_SET) ; -
a
etos (new_pos, s) ; =
printf (“new position = %s\n”, s); vy
close(£fd); “
} -
.

4

b

E]

peay s A
T

b

™

W

E-

F —
T T

E

B

L

4

L>‘4

Paragon™ System C Calls Reference Manual Manual Pages

ESEE K() (cont.) ESEEK() (cont.)

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also
cread(), cwrite(), esize(), iread(), iseof(), iwrite(), setiomode()

OSF/1 Programmer’s Reference: fentl(2), 1seek(2), open(2)

31

Manual Pages Paragon™ System C Calls Reference Manual

ESIZE() ESIZE()

Increases the size of a file.

Synopsis
#include <nx.h>
esize_t esize(
int fildes,
esize_t offset,
int whence);
Parameters
fildes File descriptor for an extended file or standard OSF/1 file open for writing. A
standard OSF/1 file cannot have a resulting size greater than 2G - 1 bytes.
offset Value, in bytes, to be used in conjunction with the whence parameter to set the file
size.
whence Specifies how to interpret the offset parameter in increasing the size of the file
associated with the fildes parameter. Values for the whence parameter are as
follows (defined in nx.h):

SIZE_SET Sets the file size to the greater of the current size or to
the value of the offset parameter.

SIZE_CUR Sets the file size to the greater of the current size or the
current location of the file pointer plus the value of the
offset parameter.

SIZE_END Sets the file size to the greater of the current size or the
current size plus the value of the offset parameter.

32

!
|

.

ol

I

R

i

L

Paragon™ System C Calls Reference Manual Manual Pages

ESIZE() (cont.) ES'ZE() (cont.)

Description

The esize() function increases the size of a file. This function cannot decrease the size of a file. See
the OSF/1 truncate() manual page for information about decreasing a file’s size.

You can use the esize() function to access regular files and extended files, while the Isize() function
does not support extended files. Extended files can have a size a greater than 2G - 1 bytes, while
regular files cannot.

Use the esize() function to allocate sufficient file space before starting performance-sensitive
calculations or storage operations. This increases an application’s throughput, because the I/O
system does not have to allocate data blocks for every write that extends the file size.

The esize() function does not affect FIFO special files, directories, or the position of the file pointer.
The contents of the new file space allocated by esize() is undefined.

The esize() function updates the modification time of the opened file. If the file is a regular file it
clears the file’s set-user ID and set-group ID attributes.

You cannot use the esize() function with a file that has enforced file locking enabled and file locks
on the file.

Return Values

Upon successful completion, the esize() function returns an extended integer (type esize_t) that
indicates the new size of the file (in bytes). If the new size specified by the offser and whence
parameters is greater that the available disk space, the esize() function allocates what disk space is
available and returns the new size of the file. Otherwise, the esize() function writes an error message
on the standard error output and causes the calling process to terminate.

Upon successful completion, the _esize() function returns an extended integer that indicates the new
size of the file (in bytes). Otherwise, the _esize() function returns -1 in both fields of the esize_t
structure and sets errno to indicate the error.

The type esize_t has the following structure (see the nx.h include file):

struct s_size {
long slow;
long shigh;
Y

typedef struct s_size esize_t;

33

Manual Pages

ES'ZE() (cont.)

Notes

Errors

34

Paragon™ System C Calls Reference Manual
g

ESIZEO (cont.)

Since NFS does not support disk block preallocation, esize() and _esize() are not supported on files
that reside in remote file systems that have been NFS mounted. The esize() and _esize() functions
are supported only on files in UFS and PFS file systems.

If the new size specified by offsetr and whence is greater than the available disk space, esize()
allocates what disk space is available and returns the actual new size.

If the _esize() function fails, errno may be set to one of the following error code values:

EAGAIN

EACCES

EBADF

EFBIG

EFSNOTSUPP

EINVAL

ENOSPC

EROFS

The file has enforced mode file locking enabled and there are file locks on the file.
Write access permission to the file was denied.
The fildes parameter is not a valid file descriptor.

The file size specified by the whence and offset parameters exceeds the maximum
file size.

The fildes parameter refers to a file that resides in a file system that does not
support this operation. The esize() function does not support files that reside in
remote file systems and have been NFS mounted.

The file is not a regular file.

No space left on device.

The file resides on a read-only file system.

E]

b

L

4

A pa e
!

-

ﬂj
l"”!
;u
[“1

Paragon™ System C Calls Reference Manual Manual Pages

|

E

ESIZE() (con.) ESIZE() (cont.)

A

Examples

P

The following example shows how to use the esize() function to increase the size of a file.

. i.
e 4

#include <fcntl.h>
#include <nx.h>
#include <unistd.h>

4

B

4

long iam;

B

main ()

{
int fd;
esize_t offset, new_size, new_pos;
char s[20];

|

Fﬁq o o] ——

b

fd = gopen (“/tmp/mydata”, O_RDWR, M_UNIX, 0644);

-3

offset = stoe(#1000”);

new_size = esize(fd,offset,SIZE_SET);
etos (new_size,s);

printf(“new size = %s\n”, s);

ja

|
4

offset = stoe(”500");
new_pos = eseek (fd,offset, SEEK_SET) ;

e
[E

{

etos (new_pos, s) ;
printf(“new position = %s\n”, s);
close(fd);

3

i

Limitations and Workarounds

—] |
: [

.

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

—
Fod

See Also

eseek(), Isize()

=
[u‘ OSF/1 Programmer’s Reference: chmod(2), dup(2), fentl(2), Iseek(2), open(2), truncate()

4

Manual Pages Paragon™ System C Calls Reference Manual

ESTAT() ESTAT()

estat(), lestat(), festat(): Gets status of a file.

Synopsis
#include <nx.h>
long estat(

char *path,
struct estat *buffer);

long lestat(
char *path,
struct estat *buffer);

long festat(
int fildes,
struct estat *buffer);

Parameters
path Pointer to the pathname identifying a file.

buffer Pointer to an estat structure in which the status information is placed. The estat
structure is described in the sys/estat.h header file.

36

g1

b9

=T = I = B 2
P

E

I

"

L

i

-

-l

i

i
il

[

A

4

1

[

i

1

!
i

4

¥

i
4

[

b

4

i

|

E

B

L 4 i

11

Paragon " System C Calls Reference Manual

Manual Pages

ESTATO (cont.) ESTAT() (cont.)
The estat structure has the following form:
struct estat {
dev_t st_dev;
ino_t st_1ino;
mode_t st_mode;
nlink_t st_nlink;
uid_t st_uid;
gid_t st_gid;
dev_t st_rdev;
esize_t st_size;
time_t st_atime;
int st_sparel;
time_t st_mtime;
int st_spare2;
time_t st_ctime;
int st_spare3;
ulong_t st_blksize;
long st_blocks;
ulong_t st_flags;
ulong_t st_gen;
Y
fildes File descriptor for an extended file or standard OSF/1 file open for writing. A
standard OSF/1 file cannot be greater than 2G - 1 bytes.
Description

You can use the estat(), lestat(), and festat() functions to access regular files and extended files,
while the stat(), Istat(), and fstat() functions do not support extended files. Extended files can have
a size a greater than 2G - 1 bytes, while regular files cannot.

The estat(), lestat(), and festat() function semantics are identical to the OSF/1 stat(), Istat(), and
fstat() functions, respectively. See the stat(2) manual page in the OSF/I Programmer’s Reference.

The estat() function gets information about the file named by the path parameter. Read, write, or
execute permission for the named file is not required, but all directories listed in the pathname
leading to the file must be searchable. The file information is written to the area specified by the
buffer parameter, which is a pointer to an estat structure, defined in the sys/estat.h header file.

37

Manual Pages

Paragon™ System C Calls Reference Manual

ESTAT() (con) ESTAT() (conz.)

The lestat() function is like the estat() function, except when the named file is a symbolic link. In
this case, the lestat() function returns information about the link. The estat() and festat() functions
return information about the file the link references. For symbolic links, the lestat() function sets the
st_size field of the estat structure to the length of the symbolic link, and sets the st_mode field to
indicate the file type.

The festat() function is identical to the estat() function except it returns information about an open
file specified by the fildes parameter.

Return Values

Errors

Examples

38

Upon successful completion, the estat(), lestat(), and festat() functions return a value of 0 (zero).
Otherwise, these functions display an error message to standard error and cause the calling process
to terminate.

Upon successful completion, the _estat(), _lestat(), and _festat() functions return a value of 0
(zero). Otherwise, these functions return -1 and set errno to indicate the error.

If the _estat(), _lestat(), or _festat() functions fail, errno may be set to one of the error code values
described for the OSF/1 stat() function.

The following example shows how to use the festat() and estat() functions to access statistics about
files:

#include <fcntl.h>
#include <nx.h>

void display();
main ()
{

int fd;

struct estat result;

fd = gopen(”/tmp/mydata”, O_RDWR, M_UNIX, 0644);

»
&

r
‘a

1

v
oo

-l
e

3

5 A
k.

=
§

§

m

A
"

nal

L
&l

b

wrileriie

Bl

£

)

Lo B B T B
L4

B

i
i |

—— - e il
S Loy Cod

Paragon" System C Calls Reference Manual Manual Pages

ESTAT() (conz) ESTAT() (cont.)

festat (fd, &result) ;
printf (“st_atime = %1d\n”,result.st_atime);

display (“st_size = “,result.st_size);

estat (“/tmp/mydata”, &result) ;

printf (“st_atime = %1d\n”,result.st_atime);
display (“st_size = “,result.st_size);

close(fd) ;

void display (ss, eout)
char *ss;
esize_t eout;
{
char s[20];
etos(eout, s);
printf (“%s%s\n”,ss,s);

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also
eseek(), esize()

OSF/1 Programmer’s Reference: dup(2), open(2), stat(2)

39

L
Manual Pages . Paragon™ System C Calls Reference Manual { ,J

L
W
e
d
o
ETOS() ETOS() -
LI
etos(), stoe(): Converts an extended integer to a string or a string to an extended integer. .
-
Synopsis i.
#include <nx.h> y-
-
void etos(—
esize_te, w
char *s);
esize_t stoe(& .
char *s);
™
-
Parameters e
|
| i
e An extended integer. 4
s Pointer to a null-terminated character string. E M
"
Description E ‘1
Extended integers are signed 64-bit integers with values from -2**63 to 2**63 - 1. Always use the -
extended-integer functions to access extended integers. The following functions perform conversion K ‘
operations for extended integers: ~
|
etos() Converts an extended integer to a character string. ﬁ ‘
stoe() Converts a null-terminated character string to an extended integer. -
i
Return Values v
On successful completion, the etos() function returns control to the calling process; no values are A
explicitly returned. On successful completion, the stoe() function returns control to the calling -
process and returns an extended integer (type esize_t). Otherwise, these functions display an error | y
message to standard error and cause the calling process to terminate. -
y
sl

I
“ I

Paragon System C Calls Reference Manual Manual Pages

ETOS() (con.) ETOS() (con.)

Errors

Examples

The esize_t structure has the following format (see the nx.4 include file):

struct s_size {
long slow;
long shigh;
i

typedef struct s_size esize_t;
Upon successful completion, the _etos() function returns 0 (zero) and the _stoe() function returns an
extended integer. Otherwise, the _etos() function returns -1 and sets errno to indicate the error. The

_stoe() function returns -1 in both fields of the esize_t return structure and sets errno to indicate the
error.

If the _etos() or _stoe() functions fail, errno may be set to the following error code value:

EQESIZE Argument is too large. The size of the extended integer must be less than
2**63 -1 or an overflow occurs.

EQESIZE Illegal character in string for the _stoe() function.

The following example shows how to use the conversion functions for extended integers:
#include <nx.h>
void display () ;
long iam;
main ()
{
static char *three

static char *four
char ss[20];

I
~
Y
S
EREY
e
~ ~

long r,r4;
esize_t e3, ed, e_sum, e_sub, e_mul;

printf (“\n”);
e3 = stoe(three);

41

Manual Pages

ETOS() (cont.)

ed stoe (four) ;
rd = 4;

e_sum = eadd(e3,ed);

display(“e_sum = “,e_sum) ;

e_sub = esub(e4d,el);

display (“e_sub = “,e_sub);

e_mul = emul (e3,100);

display (“e_mul = “,e_mul);

r = ecmp(e3,ed);

printf(“e_cmp = %1d\n”,r);

r = emod(e3,r4d);

printf(“e_mod = %1d\n”,r);

r = ediv(e3,rd);

printf(“e_div = %$1d\n”,r);

}

void display (ss, eout)
char *ss;
esize_t eout;
{
char s[20];
etos (eout, s) ;
printf(“%s%s\n”,ss,s);

Limitations and Workarounds

Paragon™ System C Calls Reference Manual

ETOS() (cont.)

For information about limitations and workarounds, see the release notes files in

/usr/share/release_notes.

See Also

eadd(), ecmp(), ediv(), emod(), emul(), eseek(), esub()

42

-
i

A

A

e
L

v o

L
b

4

&
&

=
£ 4

4

4

a
!

-
& 4

{ 3}
A |

4

£

g b &4

‘«' = .

=

i

4

-

-

— mmm mem s e
Lo |

Paragon™ System C Calls Reference Manual

CNTL()

Manual Pages

FCNTL()

fentl(), dup(), dup2(): Controls open file descriptors.

Synopsis

Parameters

#include <fcntl.h>
#include <sys/types.h>
#include <unistd.h>
#include <pfs/pfs.h>

int fentl (
int filedes,
int request [,
int argument | struct flock *argument]);

int dup(
int filedes);
int dup2(
int old,
int new);
filedes Specifies an open file descriptor obtained from a successful gopen(), open(),
fentl(), or pipe() function.
request Specifies the operation to be performed.
argument Specifies a variable that depends on the value of the request parameter.
old Specifies an open file descriptor.
new Specifies an open file descriptor that is returned by the dup2() function.

43

”
Manual Pages Paragon™ System C Calls Reference Manual l o

-
da
o
e
FCNTL() (cont.) FCNTLO (cont.) .
The following are values for the request parameter:)”' i
.
F_DUPFD Returns a new file descriptor as follows:
N ™
¢ Lowest numbered available file descriptor greater than or equal to the L
argument parameter, taken as type int.
i
* Same object references as the original file. .
* Same file pointer as the original file. (That is, both file descriptors share o
one file pointer if the object is a file). -
e Same access mode (read, write, or read-write). m)
[
e Same file status flags. (That is, both file descriptors share the same file -
status flags). : IW |
'
¢ The close-on-exec flag (FD_CLOEXEC bit) associated with the new file B
descriptor is cleared so that the file will remain open across exec :" X‘
functions. i
F_SVR_BUFFER e
Enables or disables PFS buffering for the file referenced by the filedes parameter. L
The argument parameter is interpreted as a boolean: TRUE enables server -
buffering; FALSE disables it. The fileservers cache stripe-file data in their ro
memory-resident, disk-block caches. These fileservers use a read-ahead and -
write-behind caching algorithm. PFS buffering is recommended only when the IO
request size is less than 64K bytes; otherwise, the fieservers’s cache may thrash. mo
Dirty cache buffers are flushed to disk when F_SVR_BUFFER changes from @
TRUE to FALSE.
L
'
.
ﬂ ‘
& .

[

A

4

¢ 4

E 4

44 [il
-

il

I
il

B

A

B!

A

B

Paragon™ System C Calls Reference Manual Manual Pages

FCNTL() (cont.)

F_GETSATTR

FCNTL() (cont.)

Gets the PFS stripe attributes of the file referred to by the filedes parameter. The
argument parameter is taken as a pointer to a sattr structure, in which the stripe
attributes are returned. The structure sattr has the following form:

struct sattr {
size_t s_sunitsize; /* stripe unit size */
uint_t s_sfactor; /* stripe factor */
uint_t s_start_sdir; /* base stripe dir */
}

The stripe attributes returned are a subset of the default stripe attributes for the
PFS file system in which the file resides, and consist of:

e The file’s stripe unit size, in bytes. This is the unit of data interleaving
used in the PFS file.

* Thefile’s stripe factor. This is the size of the PFS file’s stripe group. The
file is striped in a round robin fashion to the number of stripe directories
specified by this value.

e The file’s base stripe directory. This is the stripe directory at which
striping begins for the file. Stripe directories define the storage locations
for the PFS file. The ordered set of stripe directories across which the file
is striped define the file’s stripe group. When a PFS file is created, it
inherits its default stripe group from the PFS file system in which the file
resides. (The file system stripe group is specified by the system
administrator when the file system is mounted.) By default, the base
stripe directory for a newly created file is selected randomly from the
file’s stripe group.

When specified in the sattr structure, the base stripe directory is
represented as an index between 0 and stripe_factor-1, inclusive, where
stripe_factor is the default stripe factor of the PFS file. The file is striped
in a round-robin fashion to stripe directories starting at this location.

45

Manual Pages

FC NTLO (cont.)

F_SETSATTR

F_GETFD

F_SETFD

F_GETFL

F_SETFL
F_GETOWN

F_SETOWN

46

Paragon System C Calls Reference Manual

FCNTL() (cont.)

Sets the PFS stripe attributes of the file referred to by the filedes parameter. The
argument parameter is taken as a pointer to a sattr structure which contains the
file’s new stripe attributes. The base stripe directory and the stripe factor must
specify a subset of the PFS file’s stripe group; in other words, the base stripe
directory must be between 0 and stripe_factor-1 and the stripe factor must be less
than or equal to stripe_factor, where stripe_factor is the current stripe factor of the
PFS file.

Gets the value of the close-on-exec flag associated with the file descriptor filedes.
File descriptor flags are associated with a single file descriptor and do not affect
other file descriptors that refer to the same file. The argument parameter is
ignored.

Sets the close-on-exec flag associated with the filedes parameter to the value of
the argument parameter, taken as type int. If the argument parameter is 0 (zero),
the file remains open across the exec functions. If the argument parameter is
FD_CLOEXEC, the file is closed on successful execution of the next exec
function.

Gets the file status flags and file access modes for the file referred to by the filedes
parameter. The file access modes can be extracted by using the mask
O_ACCMODE on the return value. File status flags and file access modes are
associated with the file description and do not affect other file descriptors that
refer to the same file with different open file descriptions. The argument
parameter is ignored.

Sets the file status flags to the argument parameter, taken as type int, for the file
to which the filedes parameter refers. The file access mode is not changed.

Gets the process ID or process group currently receiving SIGIO and SIGURG
signals. Process groups are returned as negative values.

Sets the process or process group to receive SIGIO and SIGURG signals. Process
groups are specified by supplying the argument parameter as negative; otherwise
the argument parameter, taken as type int, is interpreted as a process ID.

d o

B
"

4

&

4

5

4

N
b4

‘ﬂ‘

Y

Paragon™ System C Calls Reference Manual Manual Pages

FCNTL() (cont.) FC NTL() (cont.)

The following values for the request parameter are available for record locking:

F_GETLK Gets the first lock that blocks the lock description pointed to by the argument
parameter, taken as a pointer to type struct flock. The information retrieved
overwrites the information passed to the fentl() function in the flock structure. If
no lock is found that would prevent this lock from being created, then the structure
is left unchanged except for the lock type, which is set to F_UNLCK.

F_SETLK Sets or clears a file segment lock according to the lock description pointed to by
argument, taken as a pointer to type struct flock. F_SETLK is used to establish
shared locks (F_RDLCK), or exclusive locks (F_WRLCK), as well as remove
either type of lock (F_UNLCK). If a shared (read) or exclusive (write) lock cannot
be set, the fentl() function returns immediately with a value of -1.

F_SETLKW Same as F_SETLK except that if a shared or exclusive lock is blocked by other
locks, the process will wait until it is unblocked. If a signal is received while
fentl() is waiting for a region, the function is interrupted, -1 is returned, and errno
is set to [EINTR].

47

Manual Pages

Paragon™ System C Calls Reference Manual

FCNTL() (cont.) FCNTL() (cont.)

Description

48

The fentl() function performs controlling operations on the open file specified by the filedes
parameter.

The fentl(), dup(), and dup2() functions, which suspend the calling process until the request is
completed, are redefined so that only the calling thread is suspended.

When used to permanently set the stripe attributes of a file, you can only use F_SETSATTR on a
PFS file that has not yet been written to (it is zero-length). Once set, the new attributes of the file are
permanent; further attempts to reset the attributes of the file will result in an error. Whenever an
F_SETATTR request is completed successfully, the file pointer for filedes resets to point to the
beginning of the file.

The F_SETSATTR request also allows the stripe attributes of an already written-to file to be
temporarily mapped to new attributes if the file is opened read-only. In this case, the new attributes
apply only to the file descriptor specified by the filedes parameter, and go away when the file is
closed. This remapping can be useful for writing a matrix out to a file using one type of
decomposition, and reading the matrix back in using a different decomposition.

For a simple example, consider an 8§x8 matrix with a record size of 4K bytes and a total of 64 records.
If this matrix is written to a PFS file with a stripe factor of 8 and a stripe unit size of 32K bytes, the
matrix will automatically be written using a column decomposition. If the stripe attributes of the file
are then mapped to use a stripe unit size of 4K bytes, the matrix is read back in using a row
decomposition.

The stripe attributes of a PFS file can also be displayed from the command line by using the -P
switch with the Is command. See the Is(1) man page for more information.

The O_NDELAY and O_NONBLOCK requests affect only operations against file descriptors

derived from the same open() function. In BSD, these apply to all file descriptors that refer to the
object.

When a shared lock is set on a segment of a file, other processes are able to set shared locks on that
segment or a portion of it. A shared lock prevents any other process from setting an exclusive lock
on any portion of the protected area. A request for a shared lock fails if the file descriptor was not
opened with read access.

An exclusive lock prevents any other process from setting a shared lock or an exclusive lock on any
portion of the protected area. A request for an exclusive lock fails if the file descriptor was not
opened with write access.

The flock() structure describes the type (1_type), starting offset (I_whence), relative offset (I_start),
size (I_len) and process ID (I_pid) of the segment of the file to be affected.

-
-

¥
& u

.
& o

[
oo

m'*"'\
-

{"m
.

NW
.

vy
w
Km’
l‘mr

-

%
' W Paragon™ System C Calls Reference Manual Manual Pages

[FCNTL() (cont) FCNTL() (cont)

The value of I_whence is set to SEEK_SET, SEEK_CUR or SEEK_END, to indicate that the
relative offset 1_start bytes is measured from the start of the file, from the current position, or from
the end of the file, respectively. The value of 1_len is the number of consecutive bytes to be locked.
The 1_len value may be negative (where the definition of off_t permits negative values of 1_len).
The 1_pid field is only used with F_GETLK to return the process ID of the process holding a
blocking lock. After a successful F_GETLK request, the value of I_whence becomes SEEK_SET.

|

ko

If I_len is positive, the area affected starts at 1_start and ends at 1_start +1_len - 1. If 1_len is

" negative, the area affected starts at1_start +1_len and ends at1_start - 1. Locks may start and extend
beyond the current end of a file, but may not be negative relative to the beginning of the file. If1_len
is set to 0 (zero), a lock may be set to always extend to the largest possible value of the file offset for
that file. If such a lock also has 1_start set to 0 (zero) and 1_whence is set to SEEK_SET, the whole
file is locked. Changing or unlocking a portion from the middle of a larger locked segment leaves a
smaller segment at either end.

4

[]] —
[

¢
e

4

£

3

Locking a segment that is already locked by the calling process causes the old lock type to be
removed and the new lock type to take effect. All locks associated with a file for a given process are
removed when a file descriptor for that file is closed by that process or the process holding that file
descriptor terminates. Locks are not inherited by a child process in a fork() function.

ko

_3

8

If a regular file has enforced record locking enabled, record locks on the file will affect calls to other
calls, including creat(), open(), read(), write(), truncate(), and ftruncate().

t

A potential for deadlock occurs if a process controlling a locked region is put to sleep by attempting
to lock another process’ locked region. If the system detects that sleeping until a locked region is
unlocked would cause a deadlock, the fentl() function fails with an [EDEADLK] error.

R

i

B

- -, ; . ; -] i

{

L4 b

=

e

B

l =

kil 49
e

Manual Pages

Paragon™ System C Calls Reference Manual

FC NTL() (cont.) FCNTLO (cont.)

Notes

50

Care should be used when attempting to set the stripe attributes of a file that is opened from multiple
nodes. Use of the F_SETSATTR request on a file descriptor does not affect other already-existing
descriptors for the same file. Possible file corruption could result if the file is then written to using
any of the already-existing descriptors. For example, if a file is opened by multiple nodes and then
a single node sets the stripe attributes, the new attributes are only visible to that node. The other
nodes must close and reopen the file to get the new attributes. For performance reasons, issue the
F_SETSATTR request from only one node, rather than from all nodes running the application.

The dup(filedes) function is equivalent to fnctl(filedes, F_DUPFD, 0).
The dup2(old, new) function is equivalent to fentl(old, F_DUPFD, new).

The file locks set by the fentl() and lockf() functions do not interact in any way with the file locks
set by the flock() function. If a process sets an exclusive lock on a file using the fentl() or lockf()

function, the lock will not affect any process that is setting or clearing locks on the same file using
the flock() function. It is therefore possible for an inconsistency to arise if a file is locked by different
processes using flock() and fentl(). (The fentl() and lockf() functions use the same mechanism for
record locking.)

4

A e
| S]

e

™
i

il

e o4

.

E

v

|

=]

]

ko

4

3

Paragon" System C Calls Reference Manual Manual Pages

FCNTL() (cont.)

Return Values

Errors

FCNTL() (cont.)

Upon successful completion, the value returned depends on the value of the request parameter as

follows:

F_DUPFD

Returns a new file descriptor.

F_GETSATTR Returns 0 (zero).

F_SETSATTR Returns 0 (zero).

F_GETFD
F_SETFD

F_GETFL

F_SETFL
F_GETOWN
F_GETLK
F_SETLK

F_SETLKW

Returns FD_CLOEXEC or 0 (zero).
Returns a value other than -1.

Returns the value of file status flags and access modes. (The return value will not
be negative.)

Returns a value other than -1.
Returns the value of descriptor owner.
Returns a value other than -1.
Returns a value other than -1.

Returns a value other than -1.

If the fentl() function fails, a value of -1 is returned and errno is set to indicate the error.

If the fentl() function fails, errno may be set to one of the following values:

EBADF

EBADF

EBADF

The filedes parameter is not a valid open file descriptor.

The request parameter is F_SETLK or F_SETLKW, the type of lock (I_type) is
a shared lock (F_RDLCK), and filedes is not a valid file descriptor open for
reading.

The type of lock (I_type) is an exclusive lock (F_WRLCK), and filedes is not a
valid file descriptor open for writing.

51

Manual Pages

FCNTL() (cont.)

52

EBADF

EEXIST

ENOTPFS

EMFILE

EINVAL

EINVAL

EINVAL

EINVAL

EFAULT

ESRCH

EAGAIN

EAGAIN

EINTR

ENOLCK

Paragon™ System C Calls Reference Manual

FCNTL() (cont.)

The request parameter is F_SETSATTR but the file’s stripe attributes have
already been permanently set by a previous call to fentl().

The request parameter is F_SETSATTR but the file is not zero-length, or is not
open read-only.

The file referred to by the filedes parameter is not a PFS file; i.e., it is not a regular
file in a PFS file system.

The request parameter is F_DUPFD and OPEN_MAX file descriptors are
currently open in the calling process, or no file descriptors greater than or equal to
argument are available.

The set of attributes specified by the sattr structure is not a subset of the default
stripe attributes of the PFS file system in which the file resides.

The request parameter is F_DUPFD and the argument parameter is negative or
greater than or equal to OPEN_MAX.

An illegal value was provided for the request parameter.

The request parameter is F_GETLK, F_SETLK, or F_SETLKW and the data
pointed to by argument is invalid, or filedes refers to a file that does not support
locking.

The argument parameter is an invalid address.

The value of the request parameter is F_SETOWN and the process ID given as
argument is not in use.

The request parameter is F_SETLK, the type of lock (I_type) is a shared
(F_RDLCK) or exclusive (F_WRLCK) lock, and the segment of a file to be
locked is already exclusive-locked by another process.

The request parameter is F_SETLK, and the type is an exclusive lock and some
portion of the segment of a file to be locked is already shared-locked or
exclusive-locked by another process.

The request parameter is F_SETLKW and the fentl() function was interrupted by
a signal which was caught.

The request parameter is F_SETLK or F_SETLKW and satisfying the lock or
unlock request would result in the number of locked regions in the system
exceeding a system-imposed limit.

4 E

-3

1

A A Ea =
-

3

~w

2

. ‘ﬁ

al

l”ﬂ
_—
[
l’ﬂ
ul

4

H

i

i

4

s [] M ——
[L4

B b

L

4

Tl ﬁiq —
L TS|

. 44}
Lo

]

L

4

—— !-. ——
Lo

t

Paragon™ System C Calls Reference Manual

FCNTL() (cont.)

Examples

EDEADLK

Manual Pages

FCNTL() (cont.)

The request parameter is F_SETLKW, the lock is blocked by some lock from

another process and putting the calling process to sleep, and waiting for that lock

to become free would cause a deadlock.

If the dup() or dup2() function fails, errno may be set to one of the following values:

EBADF

EMFILE

EINTR

The filedes or old parameter is not a valid open file descriptor or the new
parameter file descriptor is negative or greater than OPEN_MAX.

The number of file descriptors exceeds OPEN_MAX or there is no file descriptor

above the value of the new parameter.

The dup2() function was interrupted by a signal which was caught.

This example creates a new file, reads and prints its default striping attributes, sets new striping
attributes, and then closes the file. After closing the file the example opens the file and gets the new
striping attributes and prints them.

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#define
#define

main()

{

int

struct s

/* Creat
if |

<stdio.h>
<sys/stat.h>
<stdarg.h>
<fcntl.h>
<sys/param.h>
<sys/types.h>
<unistd.h>
<sys/mount.h>
<pfs/pfs.h>
<errno.h>
<nx.h>

PERMS 0777
FILE “/pfs/my_file”

fda;
attr sattr;
e new file */
(fd = creat (FILE, PERMS))
perror (“creat”);
exit(1l);

1}
H
|

=

53

Manual Pages

Paragon™ System C Calls Reference Manual

FCNTL() (cont.) FC NTL() (cont.)

54

/* Gets current stripe attributes */

if (fentl(fd, F_GETSATTR, &sattr) != 0) {
perror (“default get fcntl”);
exit (1) ;

}

/* Prints stripe attributes */
printf (“Default attributes for %s\n”, FILE);
printf(------— == - \n”) ;
printf (“Stripe Unit Size:(s_sunitsize): %d\n”,
sattr.s_sunitsize);

printf (“Stripe Factor: (s_sfactor): gd\n”,
sattr.s_sfactor) ;
printf (“Stripe Index: (s_start_sdir): %d\n”,

sattr.s_start_sdir);
printf(“\n”);

if (2 > sattr.s_sfactor) {

printf (“New stripe factor must be less than or equal to\n”);
printf (“existing default stripe factor.\n”):

printf (“Read the comments at the beginning of this source\n”);
printf(“code for more details.\n”);

exit(1l);

}

/* Update the sattr structure with the new stripe attributes so
they can be written later */
sattr.s_sunitsize = 63556;
sattr.s_sfactor = 2;
sattr.s_start_sdir = 0;

/* Sets new stripe attributes */

if (fcntl(fd, F_SETSATTR, &sattr) != 0) {
perror (“New set fcntl”);
exit (1) ;

}

/* Close file */

if (close(fd) != 0) {
perror (“close”);
exit (1) ;

}

/* Open file */
if ((fd = open(FILE, O_RDONLY)) == -1) {
perror (“open”) ;

&
A
"™

B

w

.

"

o

P

v-

o

il
il
™

b

i

)

e

r?
i

»
.

B j I D U R

E

3

— iy iﬁ1 iﬁﬂ -
i Lo L -

Lo

ParagonTM System C Calls Reference Manual

Manual Pages

FCNTLO (cont.) FC NTL() (cont.)

exit (1) ;
}
/* Gets current stripe attributes */
if (fentl (fd, F_GETSATTR, &sattr) != 0) {
perror (“New get fcntl”);
exit (1) ;
}

/* Prints stripe attributes */
printf (“New attributes for %s\n”, FILE);

printf(#--—---------~~ \n");

printf (“Stripe unit size: (s_sunitsize): %d\n”,
sattr.s_sunitsize);

printf (“Stripe Factor: (s_sfactor): gd\n”,
sattr.s_sfactor) ;

printf (“Stripe Index: (s_start_sdir): gd\n”",

sattr.s_start_sdir);
printf (“\n”) ;

/* Close file */

if(close(fd) != 0) {
perror (“close”) ;
exit (1) ;

}

See Also

commands: 1s(1), showfs(1)

Functions: close(2), exec(2), gopen(3), lockf(3), open(2), read(2), setiomode((3), truncate(2),

write(2)

55

Manual Pages

FLICK()

Paragon™ System C Calls Reference Manual

FLICK()

Gives control of the node processor to the operating system for as long as 10 milliseconds.

Synopsis

Description

56

#include <nx.h>

void flick(void);

The flick() function temporarily releases control of the node processor to another process in the same
application. If there are no other processes in the same application when a process calls the flick()
function, control returns to the operating system. For example, if your application has several
handler-receive operations set up and nothing else to do, it should call the flick() function. The
operating system can then more efficiently respond to an incoming message and wake up your
process.

The flick() function does not affect an application’s rollin or rollout.

The flick() function works differently depending on whether the calling process is the only process
on the node or there are multiple processes on the node:

» If the calling process is the only process on the node, the flick() function suspends execution of
the calling process and gives control of the node to the operating system until any interrupt
occurs. The operating system handles the interrupt and returns control of the node to the calling
process. This improves performance by eliminating interrupt overhead; the operating system
does not have to take control of the node before handling the interrupt. The operating system
never retains control of the node longer than 10 milliseconds; the internal clock generates an
interrupt at 10 millisecond intervals.

e If there are multiple processes on the node, the flick() function suspends the calling process and
gives control to the next scheduled process on the node. The calling process resumes executing
when it is next scheduled to execute. This provides higher performance because control passes
to the next scheduled process immediately and the scheduler does not intervene.

o

.
‘('F !

o

Ea

I
1

Rl

4l

—— !
bk A

Paragon™ System C Calls Reference Manual Manual Pages

FLICK() (cont.) FLIC K() (cont.)

Return Values
Upon successful completion, the flick() function returns control to the calling process; no values are
returned. Otherwise, this function displays an error message to standard error and causes the calling

process to terminate.

Upon successful completion, the _flick() function returns 0 (zero). Otherwise, this function returns
-1 and sets errno to indicate the error.

Errors

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also
errno

OSF/1 Programmer’s Reference: sleep()

57

Manual Pages

Paragon' " System C Calls Reference Manual

FORK_REMOTE_CTL() FORK_REMOTE_CTL()

Enables or disables remote process creation.

Synopsis

Parameters

Description

58

#include <sll/sll.h>

int fork_remote_ctl(
int flag);

flag Specifies whether processes can be created on nodes other than the nodes on
which the application is running. The flag value must be one of the following:

ENABLE_FORK_REMOTE
Enables remote process creation.

DISABLE_FORK_REMOTE
Disables remote process creation.

The flag values are specified in the include file sil/sll.h.

The fork_remote_ctl() function is only available for the system administrator.

The fork_remote_ctl() function allows an application to create processes on nodes other than the
node the application is running on. The bootmagic string ENABLE_FORK_REMOTE must be set to
t or T (true) for remote process creation to work.

The fork_remote_ctl() function only specifies whether processes can be created on a remote node
using the fork() function.

The fork_remote_ctl() function only affects the node it is executed on and only prevents remote
process creation for processes originating on that node. Other nodes can still create processes
remotely on a node, even if the fork_remote_ctl() with DISABLE_FORK_REMOTE has been
executed on the node.

| S

oA
4

3

F
| S—

3

A Ba A
& B4

[

4

e B
I

B4

—
S

i

4

2

f—
Ko

4

B

k|

£

i

v

S

b

3

Mol S—
£ t Ni

o

i Lo Lo

[

B

4
3

Lo

B

[SR N

Paragon™ System C Calls Reference Manual Manual Pages

FORK_REMOTE_CTL() (con.) FORK_REMOTE_CTL() (cont)

Return Values

If fork_remote_ctl() succeeds, it returns 0. If an error occurs, fork_remeote_ctl() returns -1 and sets
errno to indicate the error.

Errors
EINVAL The flag parameter was neither ENABLE_FORK_REMOTE nor
DISABLE_FORK_REMOTE.
ENOSYS The boot magic string ENABLE_FORK_REMOTE has been set to FALSE at
boot time.
EPERM The effective user ID of the calling process is not root.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

bootmagic, load_leveld, parameters

59

Manual Pages Paragon™ System C Calls Reference Manual

FPGETROUND() FPGETROUND()

fpgetround(), fpsetround(), fpgetmask(), fpsetmask(), fpgetsticky(), fpsetsticky(): IEEE floating-point
environment control.

Synopsis
#include <ieeefp.h>
fp_rnd fpgetround(void);
fp_rnd fpsetround(
fp_rnd rnd_dir);
fp_except fpgetmask(void);
fp_except fpsetmask(
fp_except mask);
fp_except fpgetsticky(void);
fp_except fpsetsticky(
fp_except sticky);
Parameters
rnd_dir The new rounding mode for the calling process. Must be one of the following
values:

FP_RNor 0 Round to nearest representable number (if two
representable numbers are equidistant, round to the
even one).

FP_ RMorl Round toward minus infinity.

FP_RP or 2 Round toward plus infinity.

FP_RZ or3 Round toward zero (truncate).

These are the only valid values for the enum type fp_rnd, which is declared
in <ieeefp.h>.
60

£

. B

B

B4 |

4

[

A

3

A

£

E]

L

4
SN

3

B

H

Lo [t

A

k|

S ST

L

Paragon™ System C Calls Reference Manual Manual Pages
FPGETROUND() (con) FPGETROUND() (con.)
mask The new exception mask for the calling process. You can create this mask value

Description

by OR-ing together the following constants, which are defined in <ieecefp.h>:
FP_X_INV Invalid operation exception.
FP_X_DZ Divide-by-zero exception.
FP_X_OFL Overflow exception.
FP_X_UFL Underflow exception.
FP_X_IMP Imprecise (loss of precision) exception.

sticky The new exception sticky flags for the calling process. You can create this value
by OR-ing together the same constants used for mask.

The fpget...() and fpset...() functions get and set the i860%® microprocessor’s floating-point rounding
mode, exception flags, and exception sticky flags for the calling process.

The floating-point rounding mode determines what happens when a floating-point value generated
in a calculation cannot be represented exactly. You can use fpgetround() to determine the current

-rounding mode and fpsetround() to set the rounding mode.

NOTE

When you convert a floating-point value to an integer type in C, it
always truncates. The processor’s rounding mode is ignored.

There are six floating-point exceptions: divide by zero, overflow, underflow, imprecise (inexact)
result, denormalization, and invalid operation. When one of these exceptions occurs, the
corresponding exception sticky flag is set to 1. If the corresponding exception mask bit is set to 1,
the exception is trapped. You can use fpgetsticky() and fpsetsticky() to get and set the exception
sticky flags, and fpgetmask() and fpsetmask() to get and set the exception mask.

61

Manual Pages Paragon™ System C Calls Reference Manual

FPGETROUND() (conz.) FPGETROUND() (conz.)

NOTE

fpsetsticky() and fpsetmask() set the sticky flags and exception
mask to the specified values. Any bits not set in the mask or sticky
argument are cleared.

" To set or clear a particular mask or sticky flag, get the current mask or sticky flags, modify it, and
then call fpsetsticky() or fpsetmask() with the modified mask or sticky flags.

NOTE

After an exception, you must clear the corresponding sticky flag to
recover from the trap and proceed.

If the sticky flag is not cleared before the next floating-point exception occurs, an incorrect
exception type may be signaled. For the same reason, when you call fpsetmask(), you must be sure
that the sticky flag corresponding to each exception being enabled is cleared.

Return Values

Upon successful completion, the fpget...() and fpset...() functions return the following values and
return control to the calling process:

fpgetround() Returns the current rounding mode.
fpsetround() Returns the previous rounding mode.
fpgetmask() Returns the current exception mask.
fpsetmask() Returns the previous exception mask.
fpgetsticky() Returns the current exception sticky flags.
fpsetsticky() Returns the previous exception sticky flags.

Otherwise, these functions display an error message to standard error and cause the calling process
to terminate.

62

L |

A e o
-

| S

™
"

i
i

o
"

vl
.

i
.

o4

3

£

Paragon™ System C Calls Reference Manual Manual Pages

FPGETROUND() (con.) FPGETROUND() (con.)

Upon successful completion, the _fptget...() and _fptset...() functions return the following values:
_fpgetround() Returns the current rounding mode.

_fpsetround() Returns the previous rounding mode.

_fpgetmask() Returns the current exception mask.

_fpsetmask() Returns the previous exception mask.

_fpgetsticky() Returns the current exception sticky flags.

_fpsetsticky() Returns the previous exception sticky flags.

Otherwise, these functions return -1 and set errno to indicate the error.

Errors

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

errno, isnan()

63

Manual Pages Paragon™ System C Calls Reference Manual

GCOL() GCOL()

Collects contributions from all nodes. (Global concatenation operation)

Synopsis
#include <nx.h>
void gceol(
char x[],
long xlen,
char y(],
long ylen,
long *ncnt);
Parameters
x Pointer to the input buffer to be used in the operation. This parameter can be of
any type.
xlen Length (in bytes) of x.
y Pointer to the output buffer to be used in the operation (y contains the desired
result). This parameter must be of the same data type as x.
ylen Length (in bytes) of y.
nent Pointer to the number of bytes returned in y.
Description
The gcol() function collects and concatenates (in node number order) a contribution from each node
in the current application. The x and y parameters can be of any data type, but they must be of the
same data type. The result is returned in y to every node.
Problems that involve computing matrix vector products by allowing the nodes to compute partial
answers can use geol() to collect and concatenate the entire vector.
If the lengths of the contributions from all the nodes are known, use geolx() instead of gcol().
64

b

B

Ea B3
r

1

El

Boa |]
b 3

s & a

e
€ 4

E|

rBeBeBely
| S | E B4 g4 L

4

B | I A L4 L e L [T S i 4 Lo ek ¢4 S | N R] Eod

Paragon™ System C Calls Reference Manual Manual Pages

GCOLO (cont.) GCOL() (cont.)

This is a “global” operation, which means that all nodes in the application must execute this
operation before the process can continue on any node, and all participating processes must have the
same process type.

Return Values
Upon successful completion, the geol() function returns control to the calling process; no values are
returned. Otherwise, this function displays an error message to standard error and causes the calling

process to terminate.

Upon successful completion, the _geol() function returns 0 (zero). Otherwise, this function returns
-1 and sets errno to indicate the error.

Errors

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

Examples

The following example shows how to use the gcol() function to do a global collect from all nodes in
an application:

#include <nx.h>
#include <math.h>

#define M 4
#define N 16

void display () ;
long iam, nbrnodes;

main()
{
int i, count=0;
double x[M], yI[N], dot, norm, dummy;
char msg [80] ;
int dpsize = 8;

iam = mynode () ;

65

Manual Pages

GCOL() (cont.)

}

Paragon™ System C Calls Reference Manual

GCOLO (cont.)

nbrnodes = numnodes() ;

dot = 0.0;
for(i=0; i<M; i++) {
x[1] = (double) (iam * M + 1);

printf (“Node %d x[%d] = %3.1f\n”,iam,i,x[1]);
}

for(i=0; 1i<M; i++)
dot += x[1]1*x[1];
printf (“Node %d dot = %$f\n”,iam,dot);

gdsum(&dot, 1, &dummy) ;
sprintf (msg, "dot = %f\n”,dot);
display (msg) ;

norm = sgrt (dot) ;

for(i=0; i<M; i++)
x[1] = x[i]/norm;

gcol (x, M*dpsize, y, nbrnodes*M*dpsize, &count);

if(liam) {
for (i=0;i<nbrnodes*M; i++)
printf (“%3.1f “,v[i]);
printf (“\n”);

void display (dmsg)
char *dmsg;

{

}

if(!iam) printf (“\n%s”,dmsqg);

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

errno, geolx(), gdhigh(), gdlow(), gdprod(), gdsum(), giand(), gior(), gopf()

66

A
Y

™
i

3

A mes
£

t

oA
¢ 4

3

&
[

oA
E*jl.

=
:)

4 S

1 3

1

Paragon™ System C Calls Reference Manual Manual Pages

GCOLX() GCOLX()

Collects contributions of known length from all nodes. (Global concatenation operation for contributions of known
length)

Synopsis
#include <nx.h>
void geolx(
char x[],
long xlens([],
char y[]);
Parameters
x Pointer to the input buffer to be used in the operation. This parameter may be of
any type.
xlens Pointer to an array containing the length (in bytes) of the input buffer x expected
on each node. The elements in x/ens must be in increasing node number order.
y Pointer to the output buffer to be used in the operation (y receives the desired
result). This parameter must be of the same data type as x.
Description

The gceolx() function globally collects and concatenates (in node number order) a contribution of
specified length from each node in the current application. The x and y parameters can be of any data
type, but they must be of the same data type. The result is returned in y to every node. By providing
the expected length of each contribution, geolx() improves the speed of this operation compared to
geol() due to the reduced overhead of calculating where each contribution belongs in the output
buffer.

If the lengths of the contributions from all the nodes are unknown, use geol() instead of gcolx().
This is a “global” operation, which means that all nodes in the application must execute this

operation before the process can continue on any node, and all participating processes must have the
same process type.

67

Manual Pages Paragon™ System C Calls Reference Manual

GCO LX() (cont.) GCOLXO (cont.)

Return Values

Upon successful completion, the geolx() function returns control to the calling process; no values
are returned. Otherwise, this function displays an error message to standard error and causes the
calling process to terminate.

Upon successful completion, the _geolx() function returns 0 (zero). Otherwise, this function returns
-1 and sets errno to indicate the error.

Errors
Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.
Examples
The following example shows how to use the geolx() function to do a global collect from all nodes
in an application:
#include <math.h>
#define M 4
#define N 16
void display () ;
long iam, nbrnodes;
main()
{
int i, count=0;
double x[M], yI[N], dot, norm, dummy;
char msg[80];
int dpsize = 8;
long xlen(4];
iam = mynode () ;
nbrnodes = numnodes () ;
dot = 0.0;
68

B
6

»
| al

E

3

=

&

4

4 ; i

{

4

.

[T

A

L“ A’

|

PR B G Bl el Bl 0 MBI 0 Boall Bl 0 Beall 0 BN SR gaam
- [|

Lo

-

Paragon System C Calls Reference Manual

Manual Pages

GCOLX() (cont.) GCOLX() (cont.)

for(i=0; i<nbrnodes; 1i++)
xlen[i] = 4*sizeof (double);

for(i=0; i<M; i++) |
x[1] = (double) (iam * M + 1i);
printf (“Node %d x[%d] = %3.1f\n”,iam,1i,x[1]);

}

for(i=0; i<M; i++)
dot += x[1i]*x[1];
printf (“Node %d dot = %f\n”,iam,dot);

gdsum(&dot, 1, &dummy) ;
sprintf (msg, “dot = %$f\n”,dot);
display (msg) ;

norm = sqgrt (dot) ;

for(i=0; i<M; i++)
x[i] = x[i]/norm;

gcolx(x, xlen, vy);

if(!iam) {
for (1i=0; i<nbrnodes*M; i++)
printf(“%3.1f “,y[i]);
printf (“\n”);

3

void display (dmsg)
char *dmsg;
{
if(!iam) printf(“\n%s”,dmsg);
}

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

69

Manual Pages

Paragon™ System C Calls Reference Manual

GCOLX() (cont.) GCOLX() (cont.)

See Also

70

errno, geol(), gdhigh(), gdlow(), gdprod(), gdsum(), gopf(), giand(), gior(), gsync()

»
¥

It m
y

-
Al

wom
o

-

¥

v
8
v
.-

o

{
"

m
&
m o
o

™

MM

.

B3

|

3

L

e 4

Eo4 Lo Lo [L3 Lo oo S

L

Paragon" System C Calls Reference Manual Manual Pages

GDHIGH() GDHIGH()

gdhigh(), gihigh(), gshigh(): Determines the maximum value across all nodes. (Global maximum operation)

Synopsis
#include <nx.h>

void gdhigh(
double x[],
long n,
double work[]);

void gihigh(
long x[],
long n,
long work[]);

void gshigh(
float x[],
long n,
float work[]);

Parameters

x Pointer to the buffer that contains the data in which to find the maximum. The final
result of the global maximum operation is returned in this buffer.

n Number of elements in x.

work Pointer to the buffer that receives the contributions from other nodes. The number
of elements in work must be at least n.

71

Manual Pages

Paragon" System C Calls Reference Manual
g

GDHIGH() (con,) GDHIGH() (con

Description

Use the following functions to determine maximum values across nodes:

e Use gdhigh() to determine the double precisioﬁ maximum value of x across all nodes.
* Use gihigh() to determine the integer maximum value of x across all nodes.

e Use gshigh() to determine the float maximum value of x across all nodes.

The result is returned in x to every node. When x is a vector, each element of the resulting vector
represents the maximum of the corresponding vector elements of all nodes.

This is a “global” operation, which means that all nodes in the application must execute this
operation before the process can continue on any node, and all participating processes must have the
same process type.

Return Values

Errors

72

Upon successful completion, the gdhigh(), gihigh(), and gshigh() functions return control to the
calling process; no values are returned. Otherwise, these functions display an error message to
standard error, and cause the calling process to terminate.

Upon successful completion, the _gdhigh(), _gihigh(), and _gshigh() functions return 0 (zero).
Otherwise, these functions return -1 and set errno to indicate the error.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

¥ "

o
[W

N
"

oo
o

-
.

. il

[W™

m —
.

-

w -

-

W -
Lﬂ L)

w"
miﬁ

E B4 Eoo4

[

1

4 [SN B

4 e

[

i

[| S|

] o

3

]

L4

i

4

d

iy e [- o [- o —— ooy m—— —— L]

Lo

i
S

K

——

£

4

—

g

L

Paragon'" System C Calls Reference Manual Manual Pages

GDHIGH() (cont.) GDHIGH() (con,

Examples

The following example shows how to use the gdhigh() function to determine the maximum value
across all nodes of an application:

#include <nx.h>

long iam;
main() {
int i, numElements, maxElement, list[50];

numElements = 10;
iam = mynode() ;
for(i=0;i<10;i++)
list[i] = iam*10 + 1i;
if (iam==0) {
for (i=0;i<numElements; i++)
printf(# %d:1ist[%d] = %d\n”,iam,i,list[i]);
gsync() ;
}
else {
gsync () ;
for (i=0;i<numElements; i++)
printf (¥ %d:1ist[%d] = %d\n”,iam,i,list[i]);
}
maxElement = findMin(list,numElements) ;
if (iam == 0)
printf (“Max is %d\n”,maxElement) ;
}
int findMin(list,numElements)
int list[];
int numElements;
{
int maxElement, index;
int temp,k;
index = 0;
for(k=1; k<numElements; k++)
if (list[k] > list[index])
index = k;
maxElement = list[index];
printf (“%d: maxElement = %d\n”,iam, maxElement) ;
gihigh (&maxElement, 1, &temp) ;
return (maxElement) ;

73

Manual Pages

Paragon™ System C Calls Reference Manual

GDH'GHO (cont.) GDHIGHO (cont.)

Limitations and Workarounds

See Also

74

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

errno, geol(), geolx(), gdlow(), gdprod(), gdsum(), giand(), gior(), gopf(), gsync()

"
v

v
o

"

P

W
o

i

i

=
b 4

k|

L

4

e B B S
| T

b

)

-
o

&l

——
-

-y

b

4

1
-

k!

[ERUU A T T

£

re

Paragon" System C Calls Reference Manual Manual Pages

GDLOW() | GDLOW()

gdlow(), gilow(), gslow(): Determines the minimum value across all nodes. (Global minimum operation)

Synopsis
#include <nx.h>

void gdlow(
double x[],
long n,
double work[]);

void gilow(
long x[],
long n,
long work(]);

void gslow(
float x[],
long n,
float work[]);

Parameters

x Pointer to the buffer that contains the data in which to find the minimum. The final
result of the global minimum operation is returned in this buffer.

n Number of elements in x.

work Pointer to the buffer that receives the contributions from other nodes. The number
of elements in work must be at least n.

75

Manual Pages

Paragon™ System C Calls Reference Manual

GD LOW() (cont.) GD LOW() (cont.)

Description

Use the following functions to determine minimum values across nodes:

¢ Use gdlow() to determine the double precision minimum value of x across all nodes.
e Use gilow() to determine the integer minimum value of x across all nodes.

e Use gslow() to determine the float minimum value of x across all nodes.

The result is returned in x to every node. When x is a vector, each element of the resulting vector
represents the minimum of the corresponding vector elements of all nodes.

This is a “global” operation, which means that all nodes in the application must execute this
operation before the process can continue on any node, and all participating processes must have the
same process type.

Return Values

Errors

76

Upon successful completion, the gdlow(), gilow(), and gslow() functions return control to the calling
process; no values are returned. Otherwise, these functions display an error message to standard
error, and cause the calling process to terminate.

Upon successful completion, the _gdlow(), _gilow(), and _gslow() functions return 0 (zero).
Otherwise, these functions return -1 and set errno to indicate the error.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

™
-

v
e a

N*”»
.

.

I
u A

[A

L
I

™

. gl

h

Ay

e

-

-

3

f [

E

L

— ‘ - }
L4

3

[

Lo

Paragon™ System C Calls Reference Manual Manual Pages

GDLOWO (cont.) GDLOWO (cont.)

Examples

The following example shows how to use the gilow() function to determine the minimum value
across all nodes of an application:

#include <nx.h>
long iam;

main () {
int i, iam, numElements, minElement, 1list[50];

numElements = 10;

iam = mynode() ;

for(1=0;1i<10;i++)
list[i] = d1am*10 + 1i;

if(iam::) {
for(i=0;i<numElements; i++)
printf(“ %d:1list[%d] = %d\n”,iam,i,list[i]);

gsync () ;
}
else {
gsync () ;
for(i=0;i<numElements; i++)
printf (# 2%d:1list([%d] = %d\n”,iam,i,list[i]);
}
minElement = findMin (list,numElements) ;
if (iam == 0)
printf (“Min is %d\n”,minElement) ;
}
int findMin(list,numElements)
int list[];
int numElements;
{

int minElement, index;
int temp, k;

77

Manual Pages Paragon™ System C Calls Reference Manual [ﬂ

£ 4

GDLOW() (cont.) GDLOWO (cont.)

. meoT
index = 0;

for (k=1; k<numElements; k++) e
if (list[k] < list[index]) -
index = k; 1‘ i
minElement = list[index];
gilow (&minElement, 1, &temp) ; .
return (minElement) ; E ‘
} E
!w)
Limitations and Workarounds
For information about limitations and workarounds, see the release notes files in E
Jusr/share/release_notes. -
™
.-
See Also
L
errno, geol(), geolx(), gdhigh(), gdprod(), gdsum(), giand(), gior(), gopf(), gsync() W o
"
"

| | I

b

B

4

A pea Ea F oA
E|

3

]
i

)

i

N
sl

78 [M
Y

-
sl

—

l

S R I RS

i Lo

A

b

A

b

[

LR |

Paragon™ System C Calls Reference Manual Manual Pages

GDPROD() GDPROD()

gdprod(), giprod(), gsprod(): Calculates a product across all nodes. (Global multiplication operation)

Synopsis
#include <nx.h>

void gdprod(
double x[],
long n,
double work(]);

void giprod(
long x[],
long n,
long workl[]); .

void gsprod(
float x[],
long n,
float work[]);

Parameters

x Pointer to the buffer that contains the data for the multiplication. The final result
of the global multiplication operation is returned in this buffer.

n Number of elements in x.

work Pointer to the buffer that receives the contributions from other nodes. The number
‘ of elements in work must be at least 7.

79

Manual Pages

Paragon" System C Calls Reference Manual

GDPROD() (cont.) GDPRODO (cont.)

Description

Use the following functions to calculate products across nodes:

e Use gdprod() to calculate the double precision product of x across all nodes.
* Use giprod() to calculate the integer product of x across all nodes.

e Use gsprod() to calculate the float product of x across all nodes.

The result is returned in x to every node. When x is a vector, each element of the resulting vector
represents the product of the corresponding vector elements of all nodes.

This is a “global” operation, which means that all nodes in the application must execute this

operation before the process can continue on any node, and all participating processes must have the
same process type.

Return Values

Errors

80

Upon successful completion, the gdprod(), giprod(), and gsprod() functions return control to the
calling process; no values are returned. Otherwise, these functions display an error message to
standard error and cause the calling process to terminate.

Upon successful completion, the _gdprod(), _giprod(), and _gsprod() functions return 0 (zero).
Otherwise, these functions return -1 and set errno to indicate the error.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

&
o

3

4

e ==
5 | 13 A

4

oA

e | oo P4 g 4 g Lo | o4

Mu
Lo

' T R R G U

Paragon™ System C Calls Reference Manual

GDPRODO (cont.)

Examples

Manual Pages

GDPRODO (cont.)

The following example shows how to use the giprod() function to determine a product across all
nodes of an application:

#include <nx.h>

long iam;

main ()

{

long final, initial;
long x[5], work[5];
int 1i;

iam = mynode () ;
if(liam) {
for(i=0;i<5;i++)

x[1] = 1i;
}
else {
for(i=0; i<5; i++)
X[i] = i;
}

if(!iam) {
printf (“\n”);
for(i=0;1<5;i++) {
printf(#%d “,x[1i]);
}
printf (“\n”);
}

giprod(x,5,work) ;

if(!iam) {
printf (“\n”);
for(i=0;1i<5;i++) {
printf(#%d “,x[i]);
}
printf (“\n”);

81

v |

Manual Pages Paragon™ System C Calls Reference Manual . j

y "
M |

-

GDPROD() (cont.) GDPRODO (cont.)

A

A me
E 4

.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in g
/usr/share/release_notes.

See Also E ‘“

errno, geol(), geolx(), gdhigh(), gdlow(), gdsum(), giand(), gior(), gopf(), gsync()

™
82 [i
o

—
LA |

| S |

4

3

4

B

(.

4

[

: [k] e ¥

u‘, _‘

¥

K

[

oo

Paragon™ System C Calls Reference Manual Manual Pages

GDSUM() GDSUM()

gdsum(), gisum(), gssum(): Calculates a sum across all nodes. (Global addition operation)

Synopsis

#include <nx.h>

void gdsum(
double x[],
long n,
double work([]);

void gisum(
long x[],
long n,
long work[]);

void gssum(
float x[],
long n,
float work[]);

Parameters

x Pointer to the buffer that contains the data for the addition. The final result of the
global addition operation is returned in this buffer.

n Number of elements in x.

work Pointer to the buffer that receives the contributions from other nodes. The number
of elements in work must be at least n.

83

Manual Pages

Paragon™ System C Calls Reference Manual

GDSUMO (cont.) GDSU M() (cont.)

Description

Use the following functions to calculate sums across nodes:

¢ Use gdsum() to calculate the double precision sum of x across all nodes.
e Use gisum() to calculate the integer sum of x across all nodes.

¢ Use gssum() to calculate the float sum of x across all nodes.

The result is returned in x to every node. When x is a vector, each element of the resulting vector
represents the sum of the corresponding vector elements of all nodes.

This is a “global” operation, which means that all nodes in the application must execute this
operation before the process can continue on any node, and all participating processes must have the
same process type.

Return Values

Errors

84

Upon successful completion, the gdsum(), gisum(), and gssum() functions return control to the
calling process; no values are returned. Otherwise, these functions display an error message to
standard error, and cause the calling process to terminate.

Upon successful completion, the _gdsum(), _gisum(), and _gssum() functions return O (zero).
Otherwise, these functions return -1 and set errno to indicate the error.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

| R
4 &

g

r] ——— | =] = | il el = a4
=) | B4 ¢ 3 [¥4 (S

®

2

.

B

[

2

|3

3

b

3

s

. E |]

i

i

3

#

|8

i

i

! i LA

b]
[E |

i

A al

)
ol

Paragon" System C Calls Reference Manual

GDSUM() (cont.)

Examples

Manual Pages

GDSU M() (cont.)

The following example shows how to use the gisum() function to determine a sum across all nodes
of an application:

#include <nx.h>

long iam;
main ()

{

long final, initial;
long x[5], work[5];
int 1i;

iam = mynode() ;
if(!iam) {
for(1i=0;1i<5;1i++)

x[1] = 1i;
}
else {
for(1=0; 1<5; 1i++)
x[1i] = 1;
}

if(!iam) {
printf (“\n”);
for(i=0;1<5;1i++) {
printf(“%d “,x[1]);
}
printf (“\n”") ;
}

gisum(x,5,work);

if(tiam) {
printf (“\n”);
for(i=0;i<5;1i++) {
printf (“%d “,x[1]);
}
printf (“\n”);

85

Manual Pages Paragon" System C Calls Reference Manual

GDSUMO (cont.) GDSUM() (cont.)
Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

errno, geol(), geolx(), gdhigh(), gdlow(), gdprod(), giand(), gior(), gopf(), gsync()

86

E A
4

g 4 {

A

&
Pl

| S

[

& 1

-

E,i‘ [S]

E

£

-

-

¢ . |-

4
o4 (B

“M ‘. “.
4 4 A

B!

T - - ——
Lo

4

£ 4

|3

Paragon™ System C Calls Reference Manual Manual Pages

GETPFSINFO() GETPFSINFO()

Get the stripe attributes of mounted Parallel File System (PFS).

Synopsis

Parameters

Description

#include <nx.h>
#include <pfs/pfs.h>

long getpfsinfo(
struct pfsmntinfo **attrbufp);

attrbufp Points to the array of pfsmntinfo structures that describe the stripe attributes of
each currently mounted PFS file system. The pfsmntinfo structure is defined in the
pfs/pfs.h header file and has the following form:

struct pfsmntinfo ({
char m_mntonnamel];
struct statpfs m_statpfs;
Y

The getpfsinfo() function returns the mount point and stripe attributes of each currently mounted
PFS file system. The getpfsinfo() function returns this information in the attrbufp parameter, which
is an array of pfsmntinfo structures. This information is contained in a static area, so you must copy
the information to save it.

The pfsmntinfo structure consists of two elements, the pathname of the file system mount point and

a statpfs structure. The pfsmntinfo structure is of variable length, since the stazpfs structure contains
a variable number of variable length pathnames (see the description of the p_sdirs field).

87

Manual Pages Paragon"" System C Calls Reference Manual

GETPFSINFO() (con) GETPFSINFO() (cont,

The fields of the pfsmntinfo structure are:
m_mntonname Directory name on which the PFS file system has been mounted.

m_statpfs The statpfs structure which describes the PFS file system. The pfsmntinfo structure
is defined in the pfs/pfs.h header file and has the following form:

struct statpfs {

uint_t p_reclen;

long p_magic;
size_t p_sunitsize;
uilnt_t p_sfactor;
uint_t p_reserved[2];
pathname_t p_sdirs;

Y
The fields of the statpfs structure include the following:
p_reclen Length of this statpfs structure.

p_sunitsize The stripe unit size for the parallel file system, in bytes; that is, the size of the unit
of data interleaving for regular files.

p_sfactor The number of stripe units per file stripe; that is, the degree of interleaving for
regular files.
p_sdirs A list of pathnames specifying the set of directories that define the stripe group for

this Parallel File System. The number of pathnames in the list is equal to

_sfactor. Each pathname is of type pathname_t. The pathname list can be
traversed with a pointer of type (pathname_t *) and the use of the NEXTPATHY()
macro defined in the pfs/pfs.h header file.

To obtain general mount information for all types of mounted file systems, use the standard OSF/1
getmntinfo() function.

Return Values

Upon successful completion, the getpfsinfo() function returns a count of the number of elements in
the array. If an error occurs, the getpfsinfo() function returns a value of -1 and sets errno to indicate
the error (attrbufp is left unmodified).

88

i

k
-

v
[P

N*’\
P

™
M e
l .

0

vy

ad

ﬂ i
i L
l’m’\

-

bl

o

[

[B4

)

5

3 E|

i

¢ H £

i

.

{

4

{

4

i 4 s

i

i

Lo

S

E

d

B

K|

_—

E

Paragon™ System C Calls Reference Manual Manual Pages

GETPFSINFO() (cont.) GETPFSINFO() (cont.)

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also
mount, mount(), showfs(), statpfs()

OSF/1 Programmer’s Reference: getmntinfo(3), mount(2), mount(8), statfs(2)

89

Manual Pages

GIAND()

Paragon" System C Calls Reference Manual

GIAND()

giand(), gland(): Performs an AND across all nodes. (Global AND operation)

Synopsis

Parameters

Description

90

#include <nx.h>

void giand(
long x[],
long n,
long work(]);

void gland(
long x[],
long n,
long work([]);

x Pointer to the buffer that contains the data for the AND operation. The final result
of the global AND operation is returned in this buffer.

n) Number of elements in x.

work Pointer to the array that receives the contributions from other nodes. The number
of elements in work must be at least n.

Use the following functions to perform AND operations across all nodes:
¢ Use giand() to calculate the bitwise AND of x across all nodes.
* Use gland() to calculate the logical AND of x across all nodes.

The result is returned in x to every node. When x is a vector, each element of the resulting vector
represents the AND of the corresponding vector elements of all nodes.

This is a “global” operation, which means that all nodes in the application must execute this
operation before the process can continue on any node, and all participating processes must have the
same process type.

-
-

m
o

¥
-

[}

B4

"

ey

4

4

|] Sy] — —— —— [] — —
L e 4

4
o

&

o

4 -

3

&

o

t

4

- | ‘

Paragon™ System C Calls Reference Manual Manual Pages

GIANDO (cont.) GlAND() (cont.)

Return Values

Upon successful completion, the giand(), and gland() functions return control to the calling process;
no values are returned. Otherwise, these functions display an error message to standard error and
cause the calling process to terminate.

Upon successful completion, the _giand(), and _gland() functions return 0 (zero). Otherwise, these
functions return -1 and set errno to indicate the error.

Errors

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

Examples

The following example shows how to use the giand() function to perform a global AND across all
nodes of an application:

#include <nx.h>
long iam;

main()

{
long final, initial;
long x[5], work[5];
int 1i;

iam = mynode() ;
if(!iam)
for(i=0;i<5;i++)
x[1] = 1;
else
for(i=0; 1i<5; 1i++)
x[1] = ~1i;

91

B

Manual Pages Paragon" System C Calls Reference Manual F

L

.
"
i
A
GlAND() (cont.) GIANDO (cont.) 4.
if(tiam) { Hv
printf (“\n”); |
for(i=0;i<5;i++) -
printf(¥%d “,x[i]);
printf (“\n”"); &

}

u A
giand(x, 5,work) ; i~
if(tiam) { m

printf (“\n”); -
for(i=0;1i<5;1i++) _
printf(“%d *,x[1i]); K
printf (“\n”); =
}

3

b
:

4

Limitations and Workarounds

=
E

For information about limitations and workarounds, see the release notes files in
/Jusr/share/release_notes.

e

|
E_

See Also

| e |
]

.3

errno, geol(), geolx(), gdhigh(), gdlow(), gdprod(), gdsum(), gior(), gopf(), gsync()

4

£

|

B4

4

S

E o4

.

LI

¥

=4

92

E

|

4 [|

5

3

£

]

AR

™
i

™
l

Paragon™ System C Calls Reference Manual Manual Pages

GIOR()

GIOR()

gior(), glor(): Performs an OR across all nodes. (Global OR operation)

Synopsis

Parameters

Description

#include <nx.h>

void gior(
long x[],
long n,
long work[]);

void glor(
long x[],
long n,
long work[]);

x Pointer to the buffer that contains the data for the OR operation. The final result
of the global OR operation is returned in this buffer.

n Number of elements in x.

work Pointer to the buffer that receives the contributions from other nodes. The number
of elements in work must be at least n.

Use the following functions to perform OR operations across all nodes:
e Use gior() to calculate the bitwise OR of x across all nodes.
¢ Use glor() to calculate the logical OR of x across all nodes.

The result is returned in x to every node. When x is a vector, each element of the resulting vector
represents the OR of the corresponding vector elements of all nodes.

This is a “global” operation, which means that all nodes in the application must execute this

operation before the process can continue on any node, and all participating processes must have the
same process type.

93

Manual Pages

GlOR() (cont.)

Return Values

Errors

Examples

94

Paragon™ System C Calls Reference Manual

GIORO (cont.)

Upon successful completion, the gior(), and glor() functions return control to the calling process; no
values are returned. Otherwise, these functions display an error message to standard error, and cause
the calling process to terminate.

Upon successful completion, the _gior(), and _glor() functions return 0 (zero). Otherwise, these

functions return -1 and set errno to indicate the error.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

The following example shows how to use the gior() function to perform a global OR across all nodes
of an application:

#include <nx.h>

long iam;
main ()

{

long final, initial;
long x[5], work[5];
int 1i;

iam = mynode();
if(tiam) {
for(i=0;1i<5;1i++)

x[i] = 1;
}
else {
for (i=0; i<5; i++)
x[1] = ~1i;
}

»
]

1
"

"
i

.

..

-

i

m
i

| S | [S
|2 |4

4

4

€

2

¥

4

=l == Bl | =] & 4
¥4

i

"

)

m
-

E]

-

4

[

B

LR S

L
.

]

{ B8

L

{

H

I

b

[|

o4 {

SR

f—
L

Paragon™ System C Calls Reference Manual

GIORO (cont.)

if(tiam) {
printf (“\n”") ;
for(i=0;1<5;1i++) {
printf(“%d *,x[1]);
}
printf (“\n") ;
}

gior (x,5,work) ;

if(liam) {
printf (“\n”) ;
for(i=0;1i<5;1i++) {
printf(“%d “,x[1i]);
}
printf (“\n") ;

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

errno, geol(), geolx(), gdhigh(), gdlow(), gdprod(), gdsum(), giand(), gopf(), gsync()

Manual Pages

GlORO (cont.)

95

Manual Pages Paragon™ System C Calls Reference Manual

GOPEN() GOPEN()

Performs a global open of a file for reading or writing, sets the I/O mode of the file, and performs a global
synchronization.

Synopsis
#include <fcntl.h>
#include <nx.h>
int gopen(
const char *path,
int oflag,
int iomode,
mode_t mode);
Parameters
path Pointer to a pathname of the file to be opened or created. If the path parameter
refers to a symbolic link, the gopen() function opens the file pointed to by the
symbolic link.
oflag Specifies the type of access, special open processing, the type of update, and the
initial state of the open file. The parameter value is constructed by logically ORing
the special open processing flags. These flags are defined in the fcntl. h header file
and are described in the OSF/1 open(2) manual page.
iomode I/0 mode to be assigned to the file associated with fildes. Values for the mode
parameter are as follows:
M_UNIX Each node has its own file pointer; access is
unrestricted.
M_LOG All nodes use the same file pointer; access is first
come, first served; records may be of variable length.
M_SYNC All nodes use the same file pointer; access is in node
order; records are in node order but may be of variable
length.
96

i

3

A

2

E

Eood

i}

il

I

b
¥)

-

B

[S

A1

§

¢

{

i |

£

i

E |

B

Paragon™ System C Calls Reference Manual Manual Pages

GOPEN() (con.) GOPEN() (cont.)

M_RECORD Eachnode has its own file pointer; access is first come,
first served; records are in node order and of fixed
length.

M_GLOBAL All nodes use the same file pointer, all nodes perform
the same operations.

M_ASYNC Each node has its own file pointer; access is
unrestricted; I/O atomicity is not preserved in order to
allow multiple readers/multiple writers and records of
variable length.

Refer to the setiomode() manual page for detailed information on each I/O mode.

mode Specifies the read, write, and execute permissions of the file to be created
(requested by the O_CREAT flag in the gopen() interface). If the file already
exists, this parameter is ignored. This parameter is constructed by logically ORing
values described in the sys/mode.h header file.

Description

The gopen() function allows all nodes in an application to open and share the same file. The gopen()
function performs a global open; all nodes can open the same file without issuing multiple I/O
requests.

Other than the addition of the iomode parameter, additional return values, and additional errors, the
semantics of the gopen() function are identical to the OSF/1 open() function. See the open(2)
manual page in the OSF/I Programmer’s Reference.

You can use the gopen() function to specify the I/O mode of a shared file when it is opened, rather
than requiring an additional call to the setiomode() subroutine. This improves performance when
many nodes open and set the /O mode of the same file. You use the iomode parameter to specify a
file’s I/O mode. See the setiomode() manual page for a description of the file I/O modes.

Use the setiomode() function to change a file’s I/O mode after the file is opened. Use the iomode()
function to return a unit’s current I/O mode.

The gopen() function globally synchronizes all nodes in an application. Therefore, all the
application’s nodes must call the gopen() function before any node can continue executing. In the
M_LOG, M_SYNC, M_RECORD, and M_GLOBAL IO modes, closing the file also performs a
global synchronizing operation.

97

»

Manual Pages : Paragon™ System C Calls Reference Manual m
E r
4.
¥y
&«
Fm
GOPENO (cont.) GOPENO (cont.) L
‘When using the OSF/1 fork() function to create new processes, the default I/O mode for the child M .
process’s file descriptors is determined by the file type (PFS or non-PFS) and the setting of the .-
bootmagic variable PSF_ASYNC_DFLT. For information on how this default I/O mode is -
determined, see the setiomode() manual page description. i ﬂ
‘When using the OSF/1 dup() function to duplicate a file, the file descriptor for the duplicate file is .
reset to the /O mode M_UNIX. K '
o
S
Return Values "
Upon successful completion, gopen() returns the file descriptor representing the open file. If an error -
occurs, gopen() writes an error message on the standard error output, and causes the calling process N
to terminate. -
o
Upon successful completion, the _gopen() function returns the file descriptor representing the open ‘ "
file. Otherwise, this function returns a value of -1 and sets errno to indicate the error. ’
"
Errors -
¥ -
If the _gopen() function fails, errno may be set to one of the error code values described for the Im N
OSF/1 open() function or one of the following values:
-
EINVAL The given value for iomode is not valid. h N
EINVAL The file named by the path parameter is not a regular file. y -
k i
EMIXIO The given path is invalid because all nodes sharing the file have not specified the
same path. x
EMIXIO The given value for iomode is not valid because all nodes sharing the file named “
by path have not used the same value. -
1l
1

98 lm
=

¢

kS

A

[

Paragon™ System C Calls Reference Manual Manual Pages
GOPEN() (cont.) GOPEN() (cont.)
Examples

The following example shows how to use the gopen() function to open a file for writing:

#include <fcntl.h>
#include <nx.h>

long iam;

main ()
{
int f£4;
char buffer[80];

iam = mynode() ;

fd = gopen(”/tmp/mydata”,O_CREAT | O_TRUNC | O_RDWR, M_LOG,
0644) ;

sprintf (buffer, ”Hello from node %d\n”,iam);

cwrite (fd, buffer, strlen(buffer));

close(£fd) ;

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

cread(), cwrite(), eseek(), estat(), iread(), iseof(), iwrite(), setiomode()

OSF/1 Programmer’s Reference: chmod(2), close(2), dup(2), fentl(2), lockf(2), Iseek(2), open(2),
read(2), stat(2), truncate(2), umask(2), write(2)

99

Manual Pages

GOPF()

Paragon™ System C Calls Reference Manual

GOPF()

Makes a global operation of a user-defined function.

Synopsis
#include <nx.h>
void gopf(
char x[],
long xlen,
char work[],
long (*function)());
Parameters
x Pointer to the buffer that contains the final result of the user-defined function.
xlen Length (in bytes) of x.
work Pointer to the buffer that receives the contributions from other nodes. The length
of work must be at least xlen.
function Pointer to the user-defined function to be called. The function is defined
separately. The function must be an associative and commutative function of the
two vectors x and work defined above: the first parameter must be the same as the
x parameter and the second parameter must be the same as the work parameter.
Description
The gopf() function gives a user-defined function the same global properties as system-defined
global communications functions (such as gdsum()). These properties are:
e All nodes must call the global routine (in this case, gopf(), which in turn calls the user-written
function).
* Allnodes in the application must complete the call before the process can continue on any node.
» All participating processes must have the same process type.
* Each node calculates the result and stores it in the x buffer.
100

-
e

B

=

Mm

.

i

= 3
4

B3
E|

[S

5

[]
| S

L)

k.

-
ﬂ e
™
Y
L

e

i1

&

E |

E

&

l

o

d

A

I3
|-

i

!

S

] b (. b [.

[

—
[| B4

Paragon™ System C Calls Reference Manual Manual Pages

GOPF() (cont.) GOPF() (cont.)

* The work array receives contributions from other nodes.
e The result is returned in x to all nodes.

e The function must be associative and commutative.

Return Values
Upon successful completion, the gopf() function returns control to the calling process; no values are
returned. Otherwise, this function displays an error message to standard error, and causes the calling

process to terminate.

Upon successful completion, the _gopf() function returns O (zero). Otherwise, this function returns
-1 and sets errno to indicate the error.

Errors

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

Examples

The following example shows how to use the gopf() function in an application. The example
distributes a vector over the nodes of a partition. Node 1 has the maximum element.

The global function specified in the gopf() function must have two parameters: the input value and
an array for the contributions of other nodes. The following is an example of a global function
max_node(). This function finds the maximum element and returns a structure that contains the
maximum value and the number of the node on which it resides.

#include <math.h>

long max_node() ;

struct PIVOT_NODE ({
double max;

long node;
Y

101

Manual Pages

GO PF() (cont.)

102

main ()

{

struct PIVOT_NODE mine,work;

double
long

N = 10;
xlen =
mine.node =
iam =
max_loc

for (i=0;i<N;i++)
x[1] = (double) (iam*N + 1i);
if(iam ==1) x[4] = 100.00;

mine.max =

if(iam==0) {
printf (#\
printf (#
for(i=0;i
printf
printf (#\
gsync () ;
}
else {
gsync () ;
printf (~
for(i=0;1
printf
printf (“\
}

for(i=1; i<N;

x[10];
iam, 1,

sizeof (x);
mynode () ;
mine.node;
0;

fabs (x[0]);

nll);
%2d: “,iam);
<N; 1++)

(* %3.1f #,x[1]);

n");

%2d: “,iam);
<N; i++)

(7 %3.1f",x[1]);

n");

i+4+) {

if (mine.max < fabs(x[il))
mine.max = fabs(x[i]);

max_loc

= 13

{

Paragon™ System C Calls Reference Manual

GOPFO (cont.)

max_loc, xlen, N;

»
&

™

-

T
ol

e
1

Ei

3

=il = =
A

éi

T B

4

B

=

k.

A

e

I £

N

1
A

t

Paragon™ System C Calls Reference Manual Manual Pages

GOPF() (cont.) GOPFO (cont.)

gopf ((char *)&mine, sizeof (mine), (char *)&work, max_node) ;

if (iam==0) {
printf (“mine.max $f\n”,mine.max) ;
printf (“mine.node = %d\n”,mine.node) ;

long max_node (mine,work)
char *mine, *work;

{
struct PIVOT_NODE *smine, *swork;
int iam;
iam = mynode();
smine = (struct PIVOT_NODE *)mine;
swork = (struct PIVOT_NODE *)work;
if(smine->max <= swork->max) {
smine->max = sSwork->max;
smine->node = swork->node;
}
}

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

errno, geol(), geolx(), gdhigh(), gdlow(), gdprod(), gdsum(), giand(), gior(), gsync()

103

Manual Pages

GSENDX()

Paragon™ System C Calls Reference Manual

GSENDX()

Sends a message to a list of nodes.

Synopsis
#include <nx.h>
void gsendx(
long type,
char *buf,
long count,
long nodef],
long nodecount);
Parameters
type Message type of the message being sent. Refer to Appendix A of the ParagonTM
System C Calls Reference Manual for information on message types. The message
type must be the same for all participating processes, and there must be no other
messages of this type in the application.
buf Pointer to the message buffer containing the message to be sent. The buffer may
be any valid data type.
count Length (in bytes) of the message being sent.
nodes Pointer to a list of node numbers for the nodes receiving the message.
nodecount Number of nodes in the nodes parameter.
Description
The gsendx() function sends a message to a set of nodes specified by the nodes parameter. The nodes
that receive the message must call crecv(), irecv(), or hrecv() to receive the message. These receive
calls must use the message type specified by gsendx(). In addition, all participating processes must
have the same process type.
104

hi
Y

y v
-

Ad

e

e
i

N e
i

mr

m

l"ﬁ
k]

.

i

MJ

——
[

4

£

i L 8

R
Lo

4

L BN BN B B
Lo ‘

S

{

—
-

B

ko

Paragon™ System C Calls Reference Manual Manual Pages

GSENDX() (cont.) GSENDX() (cont.)

Return Values
Upon successful completion, the gsendx() function returns control to the calling process; no values
are returned. Otherwise, this function displays an error message to standard error and causes the
calling process to terminate.
Upon successful completion, the _gsendx() function returns 0 (zero). Otherwise, this function
returns -1 and sets errno to indicate the error.

Errors

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

errno, crecv(), csend(), csendrecv(), irecv(), isend(), isendrecv(), hrecv(), hsend(), hsendrecv()

105

Manual Pages Paragon™ System C Calls Reference Manual

GSYNC() GSYNC()

Synchronizes all node processes in an application. (Global synchronization operation)

Synopsis
#include <nx.h>

void gsync(void);

Description
When a node process calls the gsyne() function, it waits until all other nodes in the application call
gsync() before continuing. All nodes in the application must call gsyne() before any node in the
application can continue. All participating processes must have the same process type.

Return Values
Upon successful completion, the gsyne() function returns control to the calling process; no values
are returned. Otherwise, this function displays an error message to standard error and causes the
calling process to terminate.
Upon successful completion, the _gsync() function returns 0 (zero). Otherwise, this function returns
-1 and sets errno to indicate the error.

Errors

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

106

3

oA
b

B

(== T
|

4
3

[

3

= il = |
B4

P

B4 B

S

| S

4

‘ e

e
Lo

L T B
S

Paragon™ System C Calls Reference Manual

GSYNC() (cont.)

Examples

Manual Pages

GSYNCO (cont.)

The following example shows how to use the gsync() subroutine to synchronize an application
running on multiple nodes in a partition:

#include <stdio.h>
#include <nx.h>

#define MAX_1IDS 900

main ()

{

long n, node;

long my_node, num_nodes;
long rmid [MAX_IDS];

char rbuf[10], sbufl[l0];

my_node = mynode() ;
num_nodes = numnodes () ;

if(my_node == 0) {
printf("Starting ...\n");
}

/* Post receives */
for (node = 0; node < num_nodes; node++)
rmid[node] = irecv(l, rbuf, 10);

/* Send a message to each node */
for (node = 0; node < num_nodes; node++)
csend(1l, sbuf, 10, node, 0);

/* Check received messages */
for (node = 0; node < num_nodes; node++)
msgwait (rmid[nodel) ;

/* Wait for all nodes to complete */
gsync () ;

{

{

{

107

Manual Pages

Paragon™ System C Calls Reference Manual

GSYNCO (cont.) GSYNCO (cont.)

if (my_node == 0) {
printf ("Finished!\n") ;
}

Limitations and Workarounds

See Also

108

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

errno

-
&

T”
»

il

v
[

m
"

1

= a
B

3

5
E

4

E

=
|

§
i

I
§
w

7

N
H"!
-l
1
a

'w‘

u

®
=

Wil

*

¢

™

wn

5

k

4

[

B

N |

oo

e id

L |

Paragon™ System C Calls Reference Manual Manual Pages

HRECV() HRECV()

hrecv(), hrecvx(): Posts areceive for a message and returns immediately; invokes a specified handler when the receive
completes. (Asynchronous receive with interrupt-driven handler)

Synopsis
#include <nx.h>

void hrecv(
long typesel,
char *buf,
long count,
void (*handler) ());

void hrecvx(
long typesel,
char *buf,
long count,
long nodesel,
long ptypesel,
void (*xhandler) (),
long hparam);

Parameters
typesel Message type(s) to receive. Setting this parameter to -1 receives a message of any

type. Refer to Appendix A of the Para gonTM System C Calls Reference Manual for
more information about message type selectors.

buf Address of the buffer where the message is received.
count Length (in bytes) of the buf parameter.
handler Pointer to the handler to execute when the receive completes, after a call to the

hrecv() function. This handler is user-written and must have four parameters only.
See the “Description” section for a description of the handler for the hrecv()
function.

109

Manual Pages

Paragon™ System C Calls Reference Manual

HRECVO (cont.) HRECVO (cont.)
nodesel Node number of the sender. Setting nodesel to -1 receives a message from any
node.
ptypesel Process type of the sender. Setting ptypesel to -1 receives a message from any

Description

110

process type.

xhandler Pointer to the handler to execute when the receive completes, after a call to the
hrecvx() function. This handler is user-written and must have five parameters
only. See the “Description” section for a description of the handler for the
hrecvx() function.

hparam Integer that is passed directly to the handler specified by the xhandler parameter.
Typically, the hparam value is used by the handler to identify the request that
invoked the handler, making it possible to write shared handlers.

The hrecv() and hrecvx() functions are asynchronous message-passing system calls. After calling a
handler receive function, the function posts a receive for a message, specifies a handler to receive
the message, and returns immediately. The calling process continues to run until the message arrives.
When the message arrives, the message is stored in the buffer buf, the calling process is interrupted,
and the specified handler is started. After the handler is started, the handler and the calling process
may run concurrently until the handler finishes. (In previous releases of the operating system
operating system, the calling process was interrupted and did not run at all until the handler
returned.)

The handler contains code that you write to process the message or information about the message
after the message is received. The handler receives the following information about a message: the
message’s type, length, sending node, and process type. A handler for the hrecv() and hrecvx()
functions must have the following arguments:
type The message type (specified in the corresponding send operation).
count The message length (in bytes). If the received message is too long for the
buffer buf, the receive completes, no error is returned, the content of buf is
undefined, and this argument is set to 0 (zero).
node The node that sent the message.

ptype The process type of the process that sent the message.

A handler for the hrecvx() function requires a fifth parameter, hparam. The hparam parameter is an
integer passed to the handler that identifies the request invoking the handler.

b
»

ki

i o

| | S

4

L |

!

| SR
b

B4
E ¢

B4
|

B4
g

5 a
¥ 4

W
@

',""

il

&

R hal
il
M o
|
v
l il

"

P

L]

€

k7

4

&

4

LoE L S &

& k]

Lo

S

Paragon" System C Calls Reference Manual Manual Pages

HRECV() (cont.) HRECV() (cont.)

An example handler for the hrecv() function has the following form:

void myhandler (
long type,
long count,
long node,
long ptype);

An example handler for the hrecvx() function has the following form:

void myhandler (
long type,
long count,
long node,
long ptype,
long hparam);

Because the handler and the main program may run concurrently, parts of the main program may
have to be protected from being executed at the same time as the handler. Use the masktrap()
function to ensure a critical section of code in the main program is not interrupted by the execution
of the handler. If a handler is active when a masktrap() function is called in the main program, the
main program blocks in the masktrap() call until the handler completes. See the masktrap() manual
page for more information about using the masktrap() function to protect a section of code from
interrupts.

NOTE

The masktrap() function may be called from a handler, but it is
unnecessary and has no effect. This is supported because code
that calls the masktrap() function may be used by both the
handler and the main program. The purpose of the masktrap()
function is to protect the main program from the handler.

CAUTION

The handler runs in the same memory space as the main program
(but they have separate stacks).

111

Manual Pages

Paragon'" System C Calls Reference Manual

HRECV() (cont.) HRECV() (cont.)

These calls are asynchronous system calls. To post a receive and block the calling process until the
receive completes, use one of the synchronous receive system calls (for example, crecv()). To
receive a message and return a message ID (MID), use one of the other asynchronous receive system
calls (for example, irecv()).

Using the hrecvx() function, you can post multiple handler requests with the same shared handler.
The hrecvx() function is identical to the hrecv() function except for an additional parameter,
hparam. The hparam parameter is an integer value that is passed by the hrecvx() function to the
handler. The handler uses this value to identify which handler request it is servicing.

NOTE

Once you have established a handler for a message type, do not
attempt to receive a message of that type with a crecv...() or
irecv...() call.

NOTE

There are a limited number of message IDs available for
applications. Applications that use the irecv() and irecvx()
functions must explicitly release unused message IDs. If an
application runs out of message IDs, the application may fail. This
can affect the hrecv() and hrecvx() functions, because they use
message |Ds internally.

Once a handler is invoked, no other handler will interrupt until the first handler returns. For this
reason, do not use the longjump() function within a handler.

Return Values

Errors

112

Upon successful completion, the hrecv() and hrecvx() functions return control to the calling
process; no values are returned. Otherwise, these functions display an error message to standard
error and cause the calling process to terminate.

Upon successful completion, the _hrecv() and _hrecvx() functions returns 0 (zero). Otherwise,
these functions return -1 and set errno to indicate the error.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

"
“

4

-

|

)

e 4 ;

b L

-

B

L
|

o

. i i L

w8

Paragon™ System C Calls Reference Manual

HRECV() (cont.)

Examples

Manual Pages

HRECV() (cont.)

The following example shows how to use the hrecv() function in a message passing application
running on two nodes. The example posts an hrecv() to receive a message type 100, and on receipt

executes a handler named proc.

#include <memory.h>
#include <nx.h>

void proc();
long iam;
main() {

char buf[80];
long mask;

iam = mynode();
memset (buf, 0,80) ;

if(iam == 0) {
printf (“\n%d: Before hrecv\n”,

hrecv (100, buf, sizeof (buf) ,proc);

mask = masktrap(l):;

printf (“%d: After hrecv\n”, iam);

printf (“%d Waiting ...\n”,iam);
masktrap (mask) ;
sleep(5);
printf (“%d Completed \n”,iam);

}

else {
sleep(l);
sprintf (buf, “Hello from node %d\n”,iam);
printf (“Node 1 sends to node 0\n”);
csend (100, buf,strlen(buf),0,0);

})

void proc(type, count,node,pid)
long type, count, node, pid;

{
printf (”%d Entered handler:\n”, iam);
printf(“%d type = %d\n”,iam, type);
printf(#“%d count = %d\n”,iam, count);
printf (“%d node = %d\n”,iam, node);
printf(“%d pid = %d\n”,iam, pid);

}

113

Manual Pages

Paragon™ System C Calls Reference Manual

HRECV() (cont.) HRECVO (cont.)

Limitations and Workarounds

See Also

114

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

cprobe(), csend(), crecv(), csendrecv(), errno, hsend(), hsendrecv(), iprobe(), isend(), irecv(),
isendrecv(), masktrap()

¥ 1 &4

|

'

& a
3

P

3

P

w
ol

4 & 4

£

hal

. £ ¥ ¢ I

— — S fm— — ——
i L) i i SN | S | i

¢

i

I
]

4
i

%
.

ki

Lo {

|
|

p—
bood

Paragon™ System C Calls Reference Manual Manual Pages

HSEND() HSEND()

hsend(), hsendx(): Sends a message and returns immediately; invokes a specified handler when the send completes.
(Asynchronous send with interrupt-driven handler)

Synopsis
#include <nx.h>

void hsend(

long type,
char *buf,

long count,
long node,

long ptype,
void (*handler) ());

void hsendx(

long type,
char *buf,

long count,
long node,

long ptype,
void (*xhandler) (),

long hparam);

Parameters

type Type of the message to send. Refer to Appendix A of the ParagonTM System C
Calls Reference Manual for information on message types.

buf Points to the buffer containing the message to send. The buffer may be of any valid
data type.

count Number of bytes to send in the buf parameter.
node Node number of the message destination (the receiving node). Setting node to -1

sends the message to all nodes in the application (except the sending node when
the value of the ptype parameter is the sender’s process type).

115

Manual Pages

Paragon™ System C Calls Reference Manual

HSEND() (cont.) HSEND() (cont.)
ptype Process type of the message destination (the receiving process).
handler Pointer to the handler to execute when the send completes, after calling the

Description

116

hsend() function. This handler is user-written and must have four parameters
only. See the “Description” section for a description of the handler for the hsend()
function.

xhandler Pointer to the handler to execute when the send completes, after calling the
hsendx() function. This user-written handler and the handler must have five
parameters only. See the “Description” section for a description of the handler for
the hsendx() function.

hparam Integer that is passed directly to the handler specified by the xhandler parameter.
Typically, the hparam value is used by the handler to identify the request that
invoked the handler, making it possible to write shared handlers.

The hsend() and hsendx() functions are asynchronous message-passing system calls. After calling
one of these functions, the function starts a sending process and returns immediately. The sending
process sends the message in the buffer buf to a destination specified by node. The calling process
continues to run while the send is completing. When the send completes, the sending process
interrupts the calling process and executes the specified handler. Completion of the send does not
mean that the message was received, only that the message was sent and the send buffer (buf) can
be reused. After the handler is started, the handler and the calling process may run concurrently until
the handler finishes. (In previous releases of the operating system operating system, the calling
process was interrupted and did not run at all until the handler returned.)

CAUTION

The handler runs in the same memory space as the main program
(but they have separate stacks).

Because of this, parts of the main program may have to be protected from being executed at the same
time as the handler.

The handler contains user-written code that runs after the send buffer is available for reuse. The
handler receives information about the message including the message’s type, length, receiving
node, and process type. |

.
. 3

| N |

o

&

-

aih

4

k

S

|

A

1

- ¢ [k. - E

- L] ————
E ; 1 DR RS

Paragon™ System C Calls Reference Manual Manual Pages

HSENDO (cont.) HSEND() (cont.)

Using the hsendx() function, you can post multiple handler requests with the same shared handler.
The hsendx() function is identical to the hsend() function except for an additional parameter,
hparam. The hparam parameter is an integer value that is passed by the hsendx() function to the
handler. The handler uses this value to identify which request it is servicing.

These are asynchronous system calls. To send a message and block the calling process until the send
completes, use one of the synchronous send system calls (for example, the csend() function). To
send a message and return a message ID (MID), use one of the other asynchronous send system calls
(for example, isend()).

A handler for the hsend() and hsendx() functions must have the following arguments:

type The message type.

count The message length (in bytes).

node The node number that is running the process that receives the message.
ptype The process type of the node that receives the sent the message.

A handler for the hsendx() function requires a fifth parameter, hparam. The hparam parameter is an
integer the handler uses to identify the request invoking the handler.

An example handler for the hsend() function has the following form:

void myhandler (
long type,
long count,
long node,
long ptype);

An example handler for the hsendx() function has the following form:

void myhandler (
long type,
long count,
long node,
long ptype,
long hparam);

To ensure a critical section of code is not interrupted when the handler executes, use the masktrap()
function to protect that section of code.

Once a handler is invoked, no other handler can interrupt the calling process until the first handler
returns. For this reason, do not use the longjump() function within a handler.

117

Manual Pages

Paragon™ System C Calls Reference Manual

HSENDO (cont.) HSENDO (cont.)

NOTE

There are a limited number of message IDs available for
applications. Applications that use the isend() and isendx()
functions must explicitly release unused message IDs. If an
application runs out of message IDs, the application may fail. This
can affect the hsend() and hsendx() functions, because they use
message IDs internally.

Return Values

Errors

Examples

118

Upon successful completion, the hsend() and hsendx() functions return control to the calling
process; these functions do not return a value. Otherwise, these functions display an error message
to standard error and cause the calling process to terminate.

Upon successful completion, the _hsend() and _hsendx() functions return 0 (zero). Otherwise, these
functions return -1 and set errno to indicate the error.

Refer to the errro manual page for a list of errors that can occur in the C underscore system calls.

The following example shows how to use the hsend() function in a message passing application
running on two nodes. The example uses the hsend() function to send a message and execute a
handler named proc after the send completes.

#include <string.h>
#include <memory.h>

#include <nx.h>

void proc();
long iam;

main() {

char buf[80], rbuf[80];
long mask;

"

’
&
8 i

=
2

3

s 2
'

[

4

E

4

r 4

|

o
[& 4

i e

k

4

&

L

3

[

b

3

k)

4 b N B 3

£

L L Lot i ; .

B4

Paragon™ System C Calls Reference Manual Manual Pages

HSEND() (cont.)

HSEND() (cont.)

iam = mynode () ;

memset (buf, 0, 80) ;

memset (rbuf, 0,80) ;

if(iam == 0) {
sprintf (buf, "Hello from node %d4d\n”,iam) ;
printf (”\n%d: Before hsend\n”, iam);
hsend (100, buf,strlen(buf)+1,1,0,proc);
mask = masktrap(l); /* Disable traps */
printf(#%d: After hsend: %s\n”, iam,buf);

printf(”Waiting ...\n”);
mask = masktrap(mask); /* Enable traps */
sleep(5);

}

else {
printf (“Node 1 receives from node 0\n”);
crecv (100, rbuf,sizeof (rbuf)) ;
printf(#%d: %s\n”,iam,rbuf);

}

void proc (type, count,node,pid)
long type, count, node, pid;

{

printf (“Node %d Entered handler:\n”,iam);
printf (“type = %d\n”,type);

printf (“count = %d\n”,count) ;

printf (“node = %d\n”,node);

printf (“pid = %d\n”,pid);

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

cprobe(), csend(), crecv(), csendrecv(), errno, hrecv(), hsendrecv(), iprobe(), isend(), irecv(),
isendrecv(), masktrap()

119

Manual Pages Paragon™ System C Calls Reference Manual

HSENDRECV() HSENDRECV()

Sends a message and posts a receive for a reply; invokes a user-written handler when the receive completes.
(Asynchronous send-receive with interrupt-driven handler)

Synopsis
#include <nx.h>

void hsendrecv(
long type,
char *sbuf,
long scount,
long node,
long ptype,
long typesel,
char *rbuf,
long rcount,

void (*handler) ());

Parameters

type Type of the message to send. Refer to Appendix A of the Paragon™ System C
Calls Reference Manual for information on message types.

sbuf Points to the buffer containing the message to send. The buffer may be of any valid
data type.

scount Number of bytes to send in the sbuf parameter.

node Node number of the message destination (the receiving node). Setting node to -1
sends the message to all nodes in the application (except the sending node when
ptype is the sender’s process type).

ptype Process type of the message destination (the receiving process).

typesel Message type(s) to receive. Setting this parameter to -1 receives a message of any

type. Refer to Appendix A of the ParagonTM System C Calls Reference Manual for
more information about message type selectors.

120

.

“

A

£

B3 | =

™
!
sl

e

™
l-‘m
kil
E

"

-

_
LS |

_——— []
£ 4 B4

3

§

3

B

oy

4

b

A

[

L |

e B B B

Paragon™ System C Calls Reference Manual Manual Pages
HSENDRECV() (cont, HSENDRECV() (cont.)
rbuf Points to the buffer for storing the reply.
rcount Length (in bytes) of the rbuf parameter.
handler Pointer to the handler to execute when the receive completes after a call to the

Description

hrecv() function. This handler is user-written and must have four parameters only.
See the “Description” section for a description of the user-written handler for the
hrecv() function.

The hsendrecv() function is an asynchronous system call. The function sends a message and
immediately posts a receive, specifying the handler to be invoked when the receive completes. The
calling process continues to run until the receive completes. When the receive completes, the calling
process is interrupted and the specified handler is started. After the handler is started, the handler
and the calling process may run concurrently until the handler finishes. (In previous releases of the
operating system operating system, the calling process was interrupted and did not run at all until
the handler returned.)

CAUTION

The handler runs in the same memory space as the main program
(but they have separate stacks).

Because of this, parts of the main program may have to be protected from being executed at the same
time as the handler.

The handler contains code that you write to process the message or information about the message
after the message is received. The handler receives the following information about the received

message: the message’s type, length, sending node, and process type.

If the send part of the hsendrecv() function fails, the receive is never posted. The send buffer is not
available for reuse until after returning from the handler.

121

™

Manual Pages Paragon™ System C Calls Reference Manual “
QW%
o
»m
-
p=
HSENDRECV() (cont.) HSENDRECVO (cont.) g
The handler must have four parameters (which correspond to the message information passed by the ‘” ‘T‘
receive function): &
type The message type (specified in the corresponding send operation). i ”
P
count The message length (in bytes). If the received message is too long for the
buffer rbuf, the receive completes, no error is returned, the content of rbuf'is W b
undefined, and this argument is set to 0 (zero). “
node The node of the process that sent the message. ‘W ‘
ptype The process type of the process that sent the message.
This is an asynchronous system call. To block the calling process until the send/receive completes, “
use the synchronous system call csendrecv(). To do an asynchronous send/receive in which a -
message ID (MID) is provided to determine when the receive completes, use the system call e
isendrecv(). o
The handler must have the following form: m .
void myhandler (
long type, . "
long count, L
long node, .
long ptype); S
u‘ d
To ensure that a critical section of code is not interrupted by the execution of the handler, use the N
masktrap() function to protect that section of code. " '
& -
Once a handler is invoked, no other handler can interrupt until the first handler returns. For this '
reason, do not use the longjump() function within a handler. z -
NOTE ﬂ“

There are a limited number of message IDs available for -
applications. Therefore, applications need to release unused a
message IDs. The hsendrecv() function uses message IDs
internally, but does not return message IDs, like the isendrecv() -
function does. The handlers associated with the hsendrecv() M
function releases these message IDs. B

122 I“"
-

e

&

4

L

*

B

E]

=

3

‘ T [|

!

A

b

|

L

i

| i]

£

£

P o

Paragon™ System C Calls Reference Manual Manual Pages

HSENDRECV() (cont,) HSENDRECV() (cont,)

Return Values
Upon successful completion, the hsendrecv() function returns control to the calling process; no
value is returned. Otherwise, this function displays an error message to standard error and causes the
calling process to terminate.
Upon successful completion, the _hsendrecv() function returns 0 (zero). Otherwise, this function
returns -1 and sets errno to indicate the error.

Errors

Refer to the errrno manual page for a list of errors that can occur in the C underscore system calls.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

cprobe(), crecv(), csend(), csendrecv(), errno, hrecv(), hsend(), iprobe(), irecv(), isend(),
isendrecv(), masktrap()

123

»
Manual Pages Paragon System C Calls Reference Manual { @

L B

da

&

L

INFOCOUNTY() INFOCOUNT/() b s

o

infocount(), infonode(), infoptype(), infotype(): Gets information about a pending or received message. [
Synopsis K" !

#include <nx.h> Jd

o

long infocount(void); -

™

. . P
long infonode(void);

m’ 1
long infoptype(void); -
long infotype(void); K -

Description : Ml

L
Use the info...() system calls to return information about a pending or received message. Return -
values are defined only when these system calls are used immediately after completion of one of the I
following (any of these conditions indicates that a message has arrived): -
* A cprobe(), crecv(), or msgwait() system call. E

¢ A cprobex() or crecvx() system call whose info parameter was set to the global array msginfo.

* An iprobe() or msgdone() system call that returns 1.

If the mid parameter in the msgwait() or msgdone() functions represents a merged message ID (that E
is, it was returned by the msgmerge() function), the information returned for the info...() calls is o
unpredictable. i

Al

l |
i

124 kil
Ll

i
A

oo

[i

33

Y

1

S

I [[|

3

b

i

o4 Lo {

b

Paragon™ System C Calls Reference Manual Manual Pages

|NFOCOUNTO (cont.) |NFOCOUNT() (cont.)

Return Values

Upon successful completion, the info...() functions return the following information about pending
or received messages and return control to the calling process:

infocount() Returns length in bytes (count) of message.
infonode() Returns node ID (node) of sender.
infoptype() Returns process type (ptype) of sender.
infotype() Returns type (type) of message.

Otherwise, these functions display an error message to standard error and cause the calling process
to terminate.

If you issue an info...() call before doing any message passing, the call returns -1.

Upon successful completion, the _infocount(), _infonode(), _infoptype(), and _infotype()
functions return the same values as the corresponding non-underscore function. Otherwise, these
functions return -1 and set errno to indicate the error.

Errors

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

Examples

The following example shows how to use the info...() functions to get information about a message
in an application.

long iam;

main ()

{
long node, type, ptype, count;
char rmsg[80],smsg[80];

iam = mynode();

125

Manual Pages Paragon System C Calls Reference Manual

INFOCOUNT() (conz) INFOCOUNT() (conz

if(!iam) {
sprintf (smsg, “"Hello from node %d\n”,iam);
csend (100, smsg,strlen(smsg) + 1,1,0);

}
else {
crecv (100, rmsg, sizeof (rmsg)) ;
node = infonode() ;
type = infotype();
ptype = infoptype();
count = infocount () ;
printf (“node = %d\n”,node) ;
printf (“type = %d\n”, type) ;
printf (“ptype = %d\n”,ptype) ;
printf (“count = %d\n”,count);
}

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

cprobe(), crecv(), errno, iprobe(), msgdone(), msgmerge(), msgwait()

126

R |

e e
-

E 4

E

L3

S

L] —— E A
[

M”l
A
Km

o
ﬂ"\

ki
™

I
A

%

&

4

B

3

il

&

!

-

] [] i] Soril) fiaitl) — -——_— ——— L] " —— —
i ; L t ;) 1

f—_— |]
i |

N

|5

— g
A

L

ol B

Paragon" System C Calls Reference Manual Manual Pages

IODONE() IODONE()

Determines whether an asynchronous read or write operation is complete.

Synopsis
#include <nx.h>

long iodone(
long id);

Parameters
id Non-negative I/O ID returned by an asynchronous read or write system call (for
example, iread() or iwrite()).
Description
The iodone() function determines whether the asynchronous read or write operation (for example,
iread() or iwrite()) identified by the id parameter is complete. If the operation is complete, this
function releases the I/O ID for the operation.

If the iodone() function returns 1 (indicating that the I/O operation is complete):

¢ The buffer specified in an iread() call contains valid data (if the id parameter identifies a read
operation).

* The buffer specified in an iwrite() call is available for reuse (if the id parameter identifies a
write operation).

* The I/O ID specified by the id parameter is released for use in another asynchronous read or
write.

Use the iowait() function if you need the blocking version of this function.

NOTE

You must call either the iowait() or iodone() function after an
asynchronous read or write to ensure that the operation is
complete and to release the I/O ID.

127

R

Manual Pages ParagonTM System C Calls Reference Manual i
I
Y
M
m
IODONEO (cont.) IODONEO (cont.) L
w
Return Values & -
Upon successful completion, the iodone() function returns control to the calling process and returns ¥ w
the following values: b
0 Read or write is not yet complete. "
dow
1 Read or write is complete.
W Rl
If an error occurs, the iodone() function displays an error message to standard error and causes the =
calling process to terminate.
m i
Upon successful completion, the _iodone() function returns the same values as the iodone() e
function. Otherwise, the _iodone() function returns -1 when an error occurs and sets errno to i
indicate the error. N -
e a
Errors i
b s
If the _iodone() function fails, errno may be set to the following error code value: -
&
EBADID The id parameter is not a valid /O ID. * o
hd
Examples ‘-
The following example shows how to use the iodone() function to determine if an asynchronous K :
write is complete: -
il
#include <fcntl.h> ﬁ
#include <nx.h> -
m
long iam; l Py
main () ™
{ !
int fd, id; -
long mode; o
char buffer[80]; H

iam = mynode () ;

-
128 l*
w

1————
3 [S| B4 SO

1

B b . S S SRS Y AU S SN S SN RN SR |

Paragon™ System C Calls Reference Manual

|ODONE() (cont.)

fd = gopen (“/tmp/mydata”,O_CREAT | O_TRUNC
0644) ;

mode = iomode (f4d) ;

Manual Pages

IODONE() (cont.)

| O_RDWR, M_UNIX,

if(!iam) printf(“%d: iomode = %d\n”,iam, mode) ;

sprintf (buffer, “Hello from node %d\n”,iam);
id = iwrite(fd, buffer, strlen(buffer));
while (!iodone(id))

printf(“%d: write not done\n”,iam);
printf (#%d: write done\n”,iam);

close(fd) ;

Limitations and Workarounds

For information about limitations and workarounds, see the release notes
/usr/share/release_notes.

See Also

iowait(), iread(), iwrite()

files in

129

Manual Pages Paragon™ System C Calls Reference Manual

IOMODE() IOMODE()

Gets the I/O mode of a file.

Synopsis
#include <nx.h>

long iomode(
int fildes);

Parameters

fildes A file descriptor representing an open file.

Description
The iomode() function determines the current I/O mode of the file identified by fildes. A file’s I/O
mode determines how a process may access the file.

Return Values
Upon successful completion, the iomode() function returns the current I/O mode of the file
descriptor identified by the fildes parameter. The I/O mode can be M_UNIX, M_LOG, M_SYNC,
M_RECORD, M_GLOBAL, or M_ASYNC. Refer to the setiomode() manual page for

descriptions of each I/O mode.

If an error occurs, the iomode() function writes an error message on the standard error output and
causes the calling process to terminate.

Upon successful completion, the _iomode() function returns the same values as the iomode()
function. Otherwise, the _iomode() function returns -1 and sets errno to indicate the error.

130

w7
,

P

"

. A

4

Ej &

#

s

Lo R i F 4

el
Lo

i

L

iescinalf Tl !
. k| O |

4

|

bk &

R

|

!
1
sl

Paragon™ System C Calls Reference Manual Manual Pages
|0MODEO (cont.) |0MODE() (cont.)
Errors

Examples

If the _iomode() function fails, errno may be set to the following error code value:

EBADF

The fildes parameter is not a valid file descriptor.

The following example show how to use the iomode() function to determine the I/O mode of an
opened file:

#include <fcntl.h>
#include <nx.h>

long iam;

main ()

{

int fd, id;
long mode;
char buffer([80];

iam = mynode() ;

fd = gopen (“/tmp/mydata”,O_CREAT | O_TRUNC | O_RDWR, M_UNIX,
0644) ;

mode = iomode (£d);

if(!iam) printf(”%d: iomode = %d\n”,iam, mode) ;

sprintf (buffer, "Hello from node %d\n”,iam);
id = iwrite(fd, buffer, strlen(buffer));

iowait (id) ;
close (£fd);

131

Manual Pages

|OMODEO (cont.)

Limitations and Workarounds

See Also

132

Paragon™ System C Calls Reference Manual

lOMODEO (cont.)

For information about limitations and workarounds, see the release notes files in

/Jusr/share/release_notes.

gopen(), setiomode()

OSF/I Programmer’s Reference: dup(2), open(2)

i
v
o

o

-

-
o

m
"W

| |
B9

4”3 a4
J o4

B
£

]
r

r#

[

o

Eoo | 3 g

ey

Paragon™ System C Calls Reference Manual Manual Pages

IOWAIT() IOWAIT()

Waits (blocks) until an asynchronous read or write operation completes.

Synopsis
#include <nx.h>

void iowait(
long id);

Parameters
id Non-negative I/O ID returned by an asynchronous read or write system call (for
example, iread() or iwrite()).
Description

The iowait() function waits until an asynchronous read or write function (for example, the iread()
or iwrite() function) identified by id completes. When the iowait() function returns:

¢ The buffer specified in an iread() call contains valid data (if the id parameter identifies a read
operation).

¢ The buffer specified in an iwrite() call is available for reuse (if the id parameter identifies a
write operation).

e The I/O ID specified by the id parameter is released for use in another asynchronous read or
write.

Use the iodone() function for the non-blocking version of this function.

NOTE

You must call either the iowait() or iodone() function after an
asynchronous read or write to ensure that the operation is
complete and to release the I/O ID.

133

Manual Pages

Paragon System C Calls Reference Manual

|0WA|T() (cont.) |OWA|T() (cont.)

Return Values

Errors

Examples

134

Upon successful completion, the iowait() function returns control to the calling process; no values
are returned. If an error occurs, the iowait() function displays an error message to standard error and
causes the calling process to terminate.

Upon successful completion, the _iowait() function returns 0. Otherwise, the _iowait() function
returns -1 when an error occurs and sets errno to indicate the error.

If the _iowait() function fails, errno may be set to the following error code value:

EBADID The id parameter is not a valid I/O ID.

The following example shows how to use the iowait() function to determine if an asynchronous
write has completed:

#include <fcntl.h>
#include <nx.h>

long iam;

main()

{
int f£d, id;
char buffer[80];
iam = mynode () ;

fd = gopen(”/tmp/mydata”,O_CREAT | O_TRUNC | O_RDWR, M_UNIX,
0644) ;

sprintf (buffer, “Hello from node %d\n”,iam) ;

id = iwrite(fd, buffer, strlen(buffer));

printf(“%d: write not done\n”,iam);

iowait (id);

printf (#“%2d: write done\n”,iam) ;

close(fd);

Ry
&
17
A

.

‘s

"

&

v
.

m

it

il
.

rﬂ""‘l

|

Bl

L
" x

v
’

el

T

E A
3 | S

g

B4

|

|

R B Sl el A
B

[

B

| &

g 4

E]

L E 4 & [| g

[TR SN o]

[
cod

J

-
i

|

|

—— —_— ——] J—— —
[¢ B ¢

O

-

Paragon™ System C Calls Reference Manual

IOWAITO (cont.)

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

iodone(), iread(), iwrite()

Manual Pages

|OWA|T() (cont.)

135

Manual Pages Paragon " System C Calls Reference Manual

IPROBE() IPROBE()

iprobe(), iprobex(): Determines whether a message is ready to be received. (Asynchronous probe)

Synopsis
#include <nx.h>
long iprobe(
long typesel);
long iprobex(
long typesel,
long nodesel,
long ptypesel,
long info[]);
Parameters
typesel Message type or set of message types for which to probe. Setting this parameter
to -1 probes for a message of any type. Refer to Appendix A of the ParagonTM
System C Calls Reference Manual for more information about message type
selectors.
nodesel Node number of the sender. Setting nodesel to -1 probes for a message from any
node.
ptypesel Process type of the sender. Setting ptypesel to -1 probes for a message from any
process type.
info Eight-element array (four bytes per element) in which to store message
information. The first four elements contain the message’s type, length, sending
node, and sending process type. The last four elements are reserved for system
use. If you do not need this information, you can specify the global array msginfo,
which is the array used by the info...() system calls.
136

-

4

3
&

“w

e
l wd
ke

d

i E 3

w
™

%

=

E

3

{

¢

A

e

(I

E |

B

Paragon™ System C Calls Reference Manual Manual Pages

|PROBE() (cont.) lPROBEO (cont.)

Description

Use the appropriate asynchronous probe function to determine if the specified message is ready to
be received:

* Use the iprobe() function to probe for a message of a specified type.

* Use the iprobex() function to probe for a message of a specified type from a specified sender
and place information about the message in an array.

If the iprobe() function returns 1 (indicating that the specified message is ready to be received), you
can use the info...() system calls to get more information about the message. Otherwise, the info...()

system calls are undefined.

Similarly, if the iprobex() function returns 1, you can examine the info array to get more information
about the message. Otherwise, the info array is undefined.

These are asynchronous system calls. To probe for a message and block the calling process until the
message is ready to be received, use one of the synchronous probe system calls (for example,
cprobe()).

Return Values

Upon successful completion, the iprobe() and iprobex() functions return the following values and
return control to the calling process:

0 If the specified message is not available.
1 If the specified message is available.

Otherwise, these functions display an error message to standard error and cause the calling process
to terminate.

Upon successful completion, the _iprobe() and _iprobex() functions return the following values:
0 If the specified message is not available.
1 If the specified message is available.

Otherwise, these functions return -1 and set errno to indicate the error.

137

Manual Pages Paragon™ System C Calls Reference Manual

IPROBEO (cont.) |PROBEO (cont.)

Errors

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

Examples

The following example shows how to use the iprobe() function to determine whether an
asynchronous message is ready to be received:

long iam;

main() {
long msgid, probe;
char smsg[80], rmsgl[80];
iam = mynode();

sprintf (smsg, "Hello from node %d\n”,iam) ;

probe = iprobe(-1);

printf (“%d: Before send iprobe = %d\n”,iam,probe) ;
csend (100, smsg, strlen(smsg)+l ,-1,0);

sleep(5);
probe = iprobe(-1);

printf(”%d: After send iprobe = %d\n”,iam,probe) ;

msgid = irecv (100, rmsg, sizeof(rmsg));
msgwailt (msgid) ;

printf(#“%d: received: %s\n”,iam,rmsg);

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

138

l i
sl
bl
el

w

il

[
™

4

Paragon™ System C Calls Reference Manual Manual Pages

|5

IPROBE() (cont,) IPROBE() (ot

See Also

- cprobe(), errno, infocount(), infonode(), infoptype(), infotype()

{

3

,_ AA

_—

-

4

j;

[| £

g

o4

139

. PEEM e e e e e

L |

Manual Pages Paragon™ System C Calls Reference Manual !E

b
¥

&‘T
d .
v

IREAD() IREAD() is

wor
iread(), ireadv(): Reads from a file and returns immediately. (Asynchronous read) L

Synopsis &
#include <nx.h> L

long iread(.
int fildes, "
void *buffer, ‘-
unsigned int nbytes);

#include <sys/uio.h> me
, e
long ireadv(o
int fildes, "
struct iovec *iov,
int iovcount); ™
"
Parameters rm
&
fildes File descriptor identifying the open file to be read. R
buffer Pointer to the buffer in which the data is placed after it is read. A
nbytes Number of bytes to read from the file associated with the fildes parameter. R m
. sl
iov Pointer to an array of iovec structures that identifies the buffers into which the data
is placed. The iovec structure has the following form: l ﬂ'
o
struct iovec ({
caddr_t iov_base; "i
int iov_len; el
}i
Al
The iovec structure is defined in the sys/uio.h include file. “
iovcount - Number of iovec structures pointed to by the iov parameter. "
el
“‘\»
L

140 l -
i

“

=

4

e

] 4

4

; [[

—
© 4

Lo

ol

o Lo b & i

-

[

Paragon™ System C Calls Reference Manual Manual Pages
IREAD() (cont IREAD() (con,
Description

Other than the return values, the additional errors, and the asynchronous behavior, the iread() and
ireadv() functions are identical to the OSF/1 read() and readv() functions, respectively. See the
read(2) manual page in the OSF/I Programmer’s Reference.

The iread() and ireadv() functions are asynchronous system calls. These functions return to the
calling process immediately; the calling process continues to run while the read is being done. If the

calling process needs the data for further processing, it must do one of the following:

e Use either the cread() or creadv() function (synchronous system calls) instead of the iread() or
ireadv() function, respectively.

* Use iowait() to wait until the read completes.

* Loop until iodone() returns 1, indicating that the read is complete.

NOTE

To preserve data integrity, all I/O requests are processed on a
“first-in, first-out” basis. This means that if an asynchronous I/O
call is followed by a synchronous I/O call on the same file, the
synchronous call will block until the asynchronous operation has
completed.

After an iread() or ireadv() call, you can perform other read or write calls on the same file without
waiting for the read to finish.

Use the iseof() function to determine whether the file pointer is at the end of the file.

Return Values

Upon successful completion, the iread() and ireadv() functions return control to the calling process
and return a non-negative I/O ID for use in iodone() and iowait() system calls. Otherwise, the
iread() and ireadv() functions display an error message to standard error and cause the calling
process to terminate.

Upon successful completion, the _iread() and _ireadv() functions return a non-negative I/O ID. The

I/O ID is for use by the iodone() and iowait() functions. Otherwise, the _iread() and _ireadv()
functions return -1 when an error occurs and set errno to indicate the error.

141

Manual Pages Paragon™ System C Calls Reference Manual

|READ() (cont.) IREAD() (cont.)

NOTE

The number of I/O IDs is limited, and an error occurs when no I/O
IDs are available for a requested asynchronous read or write.
Therefore, your program should release the returned I/O ID as
soon as possible by calling iodone() or iowait().

Errors

If the _iread() or _ireadv() function fails, errno may be set to one of the error code values described
for the OSF/1 read(2) function or one of the following values:

EMIXIO In I/O modes M_SYNC and M_GLOBAL, nodes are attempting different
operations (reads and writes) to a shared file. In these modes, all nodes must
perform the same operation.

EMREQUEST An asynchronous system call has been attempted, but too many requests are
already outstanding. Use either iowait() or iodone() to clear asynchronous read
and write requests that are outstanding.

Examples

The following example shows how to use the iread() and iowait() functions to do an asynchronous
read:

#include <fcntl.h>
#include <nx.h>

long iam;
main ()
{
int £d,id;
char msgbuf[18];

iam = mynode () ;

I

fd gopen (“/tmp/mydata”, O_RDWR, M_UNIX, 0644);
id iread(_fd, msgbuf, sizeof (msgbuf));
iowait (id);

"

142

ks
&

¥
-

{‘m
"

-
[

3

B
i

A e
e A4

(S|
{ 9

o
"

g

LA
o

I

L)

hail]

s

I

™

i

el

“

L

A

=

¥

&

4

S

" [1

i

B

€

B

L
S

|

b

4

b

oA b |

o |

e

Paragon™ System C Calls Reference Manual Manual Pages

IREAD() (cont.) |READ() (cont.)

printf (“Node %d read: %s\niseof = %d\n”,iam,msgbuf,
iseof (£d));

Limitations and Workarounds

" For information about limitations and workarounds, see the release notes files in
Jusr/share/release_notes.

See Also
cread(), cwrite(), gopen(), iodone(), iowait(), iseof(), iwrite(), setiomode()

OSF/1 Programmer’s Reference: dup(2), open(2), read(2)

143

Manual Pages Paragon™ System C Calls Reference Manual ﬁz
A
K A
i
IREADOFF() IREADOFF() ua
mo
ireadoff(), ireadvoff(): Asynchronous reads from a file at a specified offset. -
N oy
Synopsis L
#include <sys/types.h> L2
#include <nx.h> -
long ireadoff(" |
int fildes, ' =
esize_t offset, -
char *buffer, (P
unsigned int nbytes);
m
-
#include <sys/types.h> -
#include <sys/uio.h> N
long ireadvoff(™
int fildes, -
esize_t offset, .
struct iovec *iov, W
int iovcount), ”
v
"

Description of Parameters

fildes A file descriptor identifying the file to be read. & ~
offset Offset from the beginning of the file where to begin the read. ﬁ "
buffer Pointer to the buffer in which the data is stored after it is read. B
nbytes The number of bytes to read from the file associated with the fildes parameter. l ,.,,
iov Pointer to an array of iovec structures that identify the buffers into which the data M il

is to be placed. "

iovcount The number of iovec structures pointed to by the iov parameter. lm

il

144 IW
-

S

4

" |

=

e 4

Paragon™ System C Calls Reference Manual Manual Pages
IREADOFF() (cont) IREADOFF() (conz)
Discussion

Ireadoff() reads nbytes asynchronously from the file specified by the descriptor fd starting at the
offset specified by offset into the buffer pointed to by buffer. Ireadvoff() is similar, but it reads the
data into the iovcount buffers specified by iov.

Ireadoff() and ireadvoff() are similar to iread() and ireadv() except for reading starting at a

user-specified offset (instead of the offset maintained by the system file pointer) and the following
additional differences:

¢ The current value of the system file pointer is not modifed.
¢ Currently only M_UNIX and M_ASYNC IO modes are supported.

e Paragon PFS is the only file system type that currently supports these functions.

Return Values

Upon successful completion, a non-negative I/O ID for use in iodone(),iowait(), niodone() and
niowait() calls is returned. If an error occurs, these functions return -1 and set errno to indicate the
erTor.

NOTE

The number of I/O IDs is limited, and an error occurs when no /O
IDs are available for a requested asynchronous read or write.
Therefore, your program should release the 1/0 ID as soon as
possible by calling iodone(), iowait(), niodone() or niowait().

145

Manual Pages Paragon" System C Calls Reference Manual &

IREADOFF() (cont.) IREADOFF() (cont,) u

Errors -
Errors are as described in OSF/1 read(), except that the following errors can also occur: mm
EMREQUEST An asynchronous call has been attempted, but too many requests are already
outstanding. Use either iowait() or iodone() to clear asynchronous read and write e
a

requests that are outstanding.

EFSNOTSUPP The file referred to by filedes is not in a file system of a type that supports this ™
operation. Currently only the PFS file systems support this operation. b

EINVAL The file referred to by filedes is in an unsupported iomode. Currently only "o
M_UNIX and M_ASYNC are supported. PO

See Also - a
cread(), gopen(), iodone(), iowait(), iread(), iseof(), niodone(), niowait(), readoff() setiomode() ™

OSF/1 Programmer’s Reference: dup(), open(), read()

M’\
W E)

il

el

wm,

d

W
i
Al
o
M
b

w

o/

I

146 ki
@

B

|

b

4

[

|

t

S

b4

o

——

Paragon™ System C Calls Reference Manual Manual Pages

IRECV()

IRECV()
irecv(), irecvx(): Posts a receive for a message and returns immediately. (Asynchronous receive)

Synopsis
#include <nx.h>

long irecv(
long typesel,
char *buf,
long count);

long irecvx(
long typesel,
char *buf,
long count,
long nodesel,

long ptypesel,
long info[]);

Parameters

typesel Message type(s) to receive. Setting this parameter to -1 receives a message of any
type. Refer to Appendix A of the ParagonTM System C Calls Reference Manual for
more information about message type selectors.

buf Points to the address where the message should be placed.
count Length (in bytes) of the buf parameter.
nodesel Node number of the sender. Setting

the nodesel parameter to -1 receives a message from any node.

ptypesel Process type of the sender. Setting the ptypesel parameter to -1 receives a message
from any process type.

147

Manual Pages

Paragon™ System C Calls Reference Manual

IRECV() (conz.) IRECV() (con.)

Description

148

info Eight-element array of long integers in which to store message information. The
first four elements contain the message’s type, length, sending node, and sending
process type. The last four elements are reserved for system use. If you do not
need this information, you can specify the global array msginfo, which is the array
used by the info...() system calls.

Use the appropriate asynchronous receive function to post a receive for a message and return
immediately:

* Use the irecv() function to post a receive for a message of a specified type.

e Use the irecvx() function to post a receive for a message of a specified type from a specified
sender and place information about the message in an array.

The asynchronous receive system calls return a message ID that you can use with the msgdone() and
msgwait() system calls to determine when the receive completes (and the buffer contains valid data).

For the irecv() function, you can use the info...() system calls to get more information about the
message after it is received. For the irecvx() function, the same message information is returned in
the info array. Until the receive completes, neither the info...() system calls nor the info array contain
valid information.

If the message is too long for the buffer, the receive completes with no error returned, and the content
of the buffer is undefined. To detect this situation, check the value of the infocount() function or the
second element of the info array.

These are asynchronous system calls. The calling process continues to run while the receive is being
done. If your program needs the received message for further processing, it must do one of the
following:

¢ Use the msgwait() function to wait until the receive completes.

* Loop until the msgdone() function returns 1, indicating that the receive is complete.

e Use one of the synchronous system calls (for example, crecv()) instead.

L
A

"

el

k)
M Ll
-

i

-

.

l‘ﬂ
™

i

)

—
[]

Paragon™ System C Calls Reference Manual * Manual Pages

IRECV() (con.) IRECV() (cont.)

Return Values

Upon successful completion, the irecv() and irecvx() functions return a message ID and return
control to the calling process. If an error occurs, these functions print an error message to standard
error and cause the calling process to terminate. The message ID is for use with the msgcancel(),
msgdone(), msgignore(), msgmerge(), or msgwait() system calls.

Upon successful completion, the _irecv() and _irecvx() functions return a message ID. Otherwise,
these functions return -1 and set errno to indicate the error.

NOTE

- The number of message IDs is limited. The error message
“Too many requests” is returned and your application will stop
when no message IDs are available for a requested asynchronous
send or receive. Your program should release its message IDs as
soon as possible by caling msgcancel()) msgdone(),
msgignore(), or msgwait().

Errors
If the _isend() function fails, errno may be set to the following value:
EQNOMID Your application has used all the available message IDs and no message IDs are
available. Use either the msgcancel(), msgdone(), msgignore(), or msgwait()

subprogram with the receive to release message IDs.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

149

Manual Pages

IRECVO (cont.)

Examples

Paragon™ System C Calls Reference Manual
g

IRECVO (cont.)

The following example shows how to use the irecv() function to do an asynchronous receive:

long iam;

main() {

long msgid;
char smsg([80], rmsg([80];

iam = mynode () ;

sprintf (smsg, “"Hello from node %d\n”,iam);
msgid = irecv (100, rmsg, sizeof(rmsg));
csend (100, smsg, strlen(smsg)+l ,-1,0);

msgwait (msgid) ;

printf (#%d: received: %s\n”,iam,rmsg) ;

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

crecv(), csend(), csendrecv(), errno, hrecv(), hsend(), hsendrecv(), infocount(), infonode(),
infoptype(), infotype(), isend(), isendrecv(), msgcancel(), msgdone(), msgignore(), msgmerge(),
msgwait()

150

4

R
£

4

=

T
1

F

e
-

ol
‘o

&

3

E

E

£

F A

4

- | el =l el ===]
B4

E

-

@l

. i E [3

W ‘.
Lo

= |
4 L

[

4

&

L El { i

{ .
| S— |

[|

Paragon™ System C Calls Reference Manual Manual Pages

ISEND()

ISEND()

Sends a message and returns immediately. (Asynchronous send)

Synopsis

Parameters

Description

#include <nx.h>

long isend(

long type,
char *buf,

long count,
long node,

long ptype

bype
buf
count

node

ptype

);

Type of the message to send. Refer to Appendix A of the Paragon”" System C
Calls Reference Manual for information on message types.

Points to the buffer containing the message to send. The buffer may be of any valid
data type. '

Number of bytes to send in the buf parameter.
Node number of the message destination (that is, the receiving node). Setting node
to -1 sends the message to all nodes in the application (except the sending node

when the ptype is the sender’s process type).

Process type of the message destination (that is, the receiving process).

The isend() function returns a message ID that you can use with the msgdone() and msgwait()
functions to determine when the send completes. Completion of the send does not mean that the
message was received, only that the message was sent and the send buffer (buf) can be reused.

In an asynchronous system call, the calling process continues to run while the send is being done.
To send a message and block the calling process until the send completes, use an synchronous send

call (for example,

csend()).

151

Manual Pages . Paragon " System C Calls Reference Manual

ISEND() (cont.) ISEND() (cont.)

Return Values

Upon successful completion, the isend() function returns a message ID and returns control to the
calling process. If an error occurs, this function displays an error message to standard error and
causes the calling process to terminate. The message ID is for use with the msgcancel(), msgdone(),
msgignore(), msgmerge(), or msgwait() system calls.

Upon successful completion, the _isend() function returns a message ID. Otherwise, this function
returns -1 and sets errno to indicate the error.

NOTE

The number of message IDs is limited. The error message
“Too many requests” is returned and your application will stop
when no message IDs are available for a requested asynchronous
send or receive. Your program should release its message IDs as
soon as possible by caling msgcancel()) msgdone(),
msgignore(), or msgwait().

Errors

If the _isend() function fails, errno may be set to the following value:

EQNOMID Your application has used all the available message IDs and no message IDs are
available. Use either the msgcancel(), msgdone(), msgignore(), or msgwait()
function with the receive to release message IDs.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

152

R
}

.
t

LI

4

e

] =
S £ 4

4 & 2

L

»
l

b

N

4 o4 e [

5
B

[i i E]

.

kil

i
-

ad
[

|

|

N

]
|

[.

- =

Paragon™ System C Calls Reference Manual Manual Pages

ISENDV() (conz.) ISEND() (cont.)

Examples
The following example shows how to use the isend() function to do an asynchronous send:
#include <nx.h>
#define INIT_TYPE 10
long ilam;

main ()
{
long msgid;
char msgbuf[80], smsg(80];

iam = mynode() ;
if(!iam) {
sprintf (smsg, "Hello from node %d\n”,iam) ;
msgid = isend (INIT_TYPE, smsg, sizeof(smsg), 1, 0);
printf (“Node %d sent: %s”,iam,smsqg);
msgwait (msgid) ;
printf (“Node %d send buffer available for
writing\n”,iam) ;

}
else {
crecv (INIT_TYPE, msgbuf, sizeof (msgbuf));
printf (“Node %d received: %s\n”,iam,msgbuf);
}

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

cprobe(), crecv(), csend(), csendrecv(), errno, hrecv(), hsend(), hsendrecv(), iprobe(), irecv(),
isendrecv(), msgcancel(), msgdone(), msgignore(), msgmerge(), msgwait()

153

Manual Pages

ISENDRECV()

Paragon™ System C Calls Reference Manual

ISENDRECV()

Sends a message, posts a receive for a reply, and returns immediately. (Asynchronous send-receive)

Synopsis

#include <nx.h>

long isendrecv(

long type,
char *sbuf,

long scount,

long node,
long ptype,

long typesel,

char *rbuf,

long rcount);

Parameters

type

sbuf

scount

node

- ptype

typesel

rbuf

rcount

154

Type of the message to send. Refer to Appendix A of the PazragonTM System C
Calls Reference Manual for more information about message types.

Points to the buffer containing the message to send. The buffer may be of any valid
data type.

Number of bytes to send in the sbuf parameter.

Node number of the message destination (that is, the receiving node). Setting node
to -1 sends the message to all nodes in the application (except the sending node
when ptype is the sender’s process type).

Process type of the message destination (that is, the receiving process).

Message type(s) to receive. Setting this parameter to -1 receives a message of any
type. Refer to Appendix A of the ParagonTM System C Calls Reference Manual for
more information about message type selectors.

Points to the buffer in which to store the reply.

Length (in bytes) of the rbuf parameter.

[=]
E [S|

|-

L e B
1 | S

Fa
E|

A oA

B

-3

E

E|

e pem W A kA
|

[

£

[

¥

5 Lo

I

L

A

L

b

L4 { 4

[|

b

Paragon™ System C Calls Reference Manual Manual Pages
|SENDRECVO (cont.) |SENDRECV() (cont.)
Description

The isendrecv() function sends a message and immediately posts a receive for a reply. The
isendrecv() function immediately returns a message ID that you can use with msgdone() and
msgwait() to determine when the send-receive completes (that is, the reply is received). When the
reply arrives, the calling process receives the message and stores it in the rbuf buffer.

If the reply is too long for rbuf, the receive completes with no error returned, and the content of the
rbuf buffer is undefined.

This is an asynchronous system call. The calling process continues to run while the send-receive
operation is occurring. To determine if the message sent is received, do either of the following:

e Use the msgwait() function to wait until the receive completes.
¢ Loop until the msgdone() function returns 1, indicating that the receive is complete.
You can use the info...() system calls to get more information about a message after it is received.

For synchronous message passing applications, use the csendrecv() function instead of the
isendrecv() function.

Return Values

Upon successful completion, the isendrecv() function returns a message ID and returns control to
the calling process. If an error occurs, this function displays an error message to standard error and
causes the calling process to terminate. The message ID is for use with the msgcancel(), msgdone(),
msgignore(), msgmerge(), or msgwait() system calls.

Upon successful completion, the _isendrecv() function returns a message ID. Otherwise, this
function returns -1 and sets errno to indicate the error.

NOTE

The number of message IDs is limited. The error message
“Too many requests” is returned and your application will stop
when no message IDs are available for a requested asynchronous
send or receive. Your program should release its message IDs as
soon as possible by caling msgcancel()) msgdone(),
msgignore(), or msgwait().

155

Manual Pages Paragon™ System C Calls Reference Manual
|SENDRECVO (cont.) ISENDRECV() (cont.)
Errors

If the _isendrecv() function fails, errno may be set to the following value:
EQNOMID Your application has used all the available message IDs and no message IDs are
available. Use either the msgcancel(), msgdone(), msgignore(), or msgwait()

function with the receive to release message IDs.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

cprobe(), crecv(), csend(), csendrecv(), errno, hrecv(), hsend(), hsendrecv(), iprobe(), irecv(),
isend(), isendrecv(), msgcancel(), msgdone(), msgignore(), msgmerge(), msgwait()

156

B

.

v
i

L

o
o

Fr 1

[S

3 4
AR |

N A 5 4
g4 | 3

-

1.

|
s

I

w

2

i

|] il F P [= ¢

i

H

t i

|
Lo

™

ol

Paragon™ System C Calls Reference Manual Manual Pages

ISEOF() ISEOF()

Determines whether the file pointer is at end-of-file.

Synopsis

#include <nx.h>
long iseof(
int fildes);
Parameters

fildes A file descriptor representing an open file.

Description
Use the iseof() function together with read or write operations to determine whether the file pointer
in a file is at the end-of-file. This function blocks until all asynchronous requests made by the process
to the same file are processed.

Return Values

Upon successful completion, the iseof() function returns control to the calling process and returns
the following values:

0 File pointer is not at end-of-file.
1 File pointer is at end-of-file.

Otherwise, the iseof() function writes an error message on the standard error output and causes the
calling process to terminate.

Upon successful completion, the _iseof() function returns the same values as the iseof() function.
Otherwise, the _iseof() function returns -1 and sets errno to indicate the error.

157

Manual Pages Paragon™ System C Calls Reference Manual
ISEOF() (cont.) lSEOFO (cont.)
Errors

If the _iseof() function fails, errno may be set to the following error code value:

EBADF The fildes parameter is not a valid file descriptor.

EMIXIO In M_SYNC or M_GLOBAL I/O mode, nodes are attempting different
operations (reads and writes) to a shared file. In these modes, all nodes must
perform the same operation. In the M_GLOBAL IO mode, nodes are attempting
different sized reads (using the nbytes parameter) from a shared file..

Limitations and Workarounds
For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

cread(), cwrite(), eseek(), iread(), iwrite(), Iseek()

OSF/1 Programmer’s Reference: open(2), read(2), write(2)

158

R
W

»

ki
| al

L

{

L [——
b (B oy

_A
td

Ei

[|

el

M N RN eam e mee e
[| i

[

Paragon™ System C Calls Reference Manual Manual Pages

ISNAN()

ISNAN()

isnan(), isnand(), isnanf(): Test for floating-point NaN (Not-a-Number).

Synopsis

Parameters

Description

#include <ieeefp.h>

int isnan(
double dsrc);

int isnand(
double dsrc);

int isnanf(
float fsrc);

dsrc Any double value.

fsrc Any float value.

These functions determine whether or not their argument is an IEEE “Not-a-Number”” (NaN). None
of these functions ever generates an exception, even if the argument is a NaN.

Return Values

Upon successful completion, the isnan(), isnand(), and isnanf() functions return 1 if the argument
is a NaN or 0 if the argument is not a NaN, and these functions return control to the calling process.
If an error occurs, these functions print an error message to standard error and cause the calling
process to terminate.

Upon successful completion, the _isnan(), _isnand(), and _isnanf() functions return 1 if the

argument is a NaNor 0 if the argument is not a NaN. Otherwise, these functions return -1 when an
error occurs and set errno to indicate the error.

159

Manual Pages

|SNAN() (cont.)

Errors

Paragon™ System C Calls Reference Manual

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

Limitations and Workarounds

See Also

160

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

errno, fpgetround()

lSNANO (cont.)

»
&

"
)

v
A

’-
i s

mm
e

ﬂ"’“&
ol
"

i

A
w4

4

i

-

24l

-

i . B E]

—

S

——
b

Paragon™ System C Calls Reference Manual Manual Pages

IWRITE()

IWRITE()

iwrite(), iwritev(): Writes to a file and returns immediately. (Asynchronous write)

Synopsis

Parameters

#include <nx.h>

long iwrite(
int fildes,

void *buffer,
unsigned int nbytes);

#include <sys/uio.h>

long iwritev(
int fildes,

struct iovec *iov,
int iovcount);

fildes
buffer
nbytes

iov

iovcount

File descriptor identifying the file to which the data is to be written.
Pointer to the buffer containing the data to be written.
Number of bytes to write.

Pointer to an array of iovec structures, which identifies the buffers containing the
data to be written. The iovec structure has the following form:

struct iovec {
caddr_t iov_base;
int iov_len;
Y

The iovec structure is defined in the sys/uio.h include file.

Number of iovec structures pointed to by the iov parameter.

161

Manual Pages

Paragon™ System C Calls Reference Manual

lWRITE() (cont.) IWRITE() (cont.)

Description

Other than return values, additional errors, and asynchronous behavior (all discussed in this manual
page), the iwrite() and iwritev() functions are identical to the OSF/1 write() and writev() functions,
respectively. See write(2) in the OSF/1 Programmer’s Reference.

The iwrite() and iwritev() functions are asynchronous system calls. Asynchronous system calls
return immediately to the calling process. The calling process continues to run while the write is
being done. If the calling process needs the write buffer for further processing, it must do one of the
following:

¢ Use either the ewrite() or cwritev() function (synchronous system calls) instead of the iwrite()
or iwritev() function, respectively.

¢ Use iowait() to wait until the write completes.

* Loop until iodone() returns a 1, indicating that the write is complete.

NOTE

To preserve data integrity, all I/O requests are processed on a
“first-in, first-out” basis. This means that if an asynchronous 1/0
call is followed by a synchronous I/0O call on the same file, the
synchronous call will block until the asynchronous operation has
completed.

After an iwrite() or iwritev() call, you can perform other read or write calls on the same file without

- waiting for the write to finish.

To determine whether the write operation moved the file pointer to the end of the file, use the iseof()
system call.

Return Values

162

Upon successful completion, the iwrite() and iwritev() functions return control to the calling
process and return a non-negative I/O ID for use in iodone() and iowait() functions. Otherwise, the
iwrite() and iwritev() functions display an error message to standard error and causes the calling
process to terminate.

I’

="
&
M

|
E oA

B3
Bd

4
4

4

[

&

ey ol _—— — — — _—— ——— L
€ E E]

{

s

b L [.

——
[N |

™

sl

-
&

Paragon™ System C Calls Reference Manual Manual Pages

|WR|TE() (cont.) |WR|TE() (cont.)

Errors

Examples

Upon successful completion, the _iwrite() and _iwritev() functions return a non-negative I/O ID.
You can use this I/O ID with the iodone() and iowait() functions. Otherwise, the _iwrite() and
_iwritev() functions return -1 and sets errno to indicate the error.

NOTE

The number of I/O IDs is limited, and an error occurs when no I/O
IDs are available for a requested asynchronous read or write.
Therefore, your program should release the returned I/O ID as
soon as possible by calling iodone() or iowait().

If the _iwrite() or _iwritev() function fails, errno may be set to one of the error code values
described in the OSF/1 write(2) function or one of the following values:

EMIXIO In /O modes M_SYNC or M_GLOBAL, nodes are attempting different
operations (reads and writes) to a shared file. In these modes, all nodes must
perform the same operation.

EMREQUEST An asynchronous system call has been attempted, but too many requests are
already outstanding. Use either iowait() or iodone() to clear asynchronous read
and write requests that are outstanding.

The following example shows how to use the iwrite(), iodone(), and iowait() functions to do an
asynchronous write:

#include <fcntl.h>
#include <nx.h>

long iam;

main()

{
int fd, id;
long mode;
char buffer[80];

163

Manual Pages Paragon™ System C Calls Reference Manual

IWR'TE() (cont.) IWRITEO (cont.)

iam = mynode() ;

fd = gopen (“/tmp/mydata”,O0_CREAT | O_TRUNC | O_RDWR,
M_UNIX, 0644);

mode = iomode(fd);
if(!iam) printf(“%d: iomode = %d\n”,iam, mode) ;

sprintf (buffer, "Hello from node %d\n”,iam);
id = iwrite(fd, buffer, strlen(buffer));
if (iam) {
while (!iodone(id))
printf(“%d: write not done\n”,iam);
printf (“%d: write done\n”,iam) ;

}

else {
printf (“%d: write not done\n”,iam);
iowait (id) ;
printf(“%d: write done\n”,iam);

}

close(fd) ;

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also
cread(), cwrite(), gopen(), iodone(), iowait(), iread(), iseof(), setiomode()

OSF/1 Programmer’s Reference: dup(2), open(2), write(2)

164

L
W

M
L

A
El

[

4

E

_ A

| == B L =]
[

i

RS

a

"
g

bl
™

i —— —— _—— — L] —— [}
[|

Paragon™ System C Calls Reference Manual Manual Pages

IWRITEOFF() IWRITEOFF()

iwriteoff(), iwritevoff(): Asynchronous writes to a file at a specified offset.

Synopsis

#include <sys/types.h>
#include <nx.h>

long iwriteoff(
int fildes,
esize_t offset,
char *buffer,
unsigned int nbytes);

#include <sys/types.h>
#include <sys/uio.h>

long iwritevoff(
int fildes,
esize_t offset,
struct iovec *iov,
int iovcount);

Description of Parameters

fildes A file descriptor identifying the file to which the data is to be written.

offset Offset from the beginning of the file at which to begin the write.

buffer Pointer to the buffer containing the data to be written.

nbytes The number of bytes to write to the file associated with the fildes parameter.

iov Pointer to an array of iovec structures that identify the buffers from which the data

is to be written.

iovcount The number of iovec structures pointed to by the iov parameter.

165

Manual Pages

Paragon™ System C Calls Reference Manual

IWRITEOFF() (cont.) IWRITEOFF() (cont.

Discussion

iwriteoff() writes nbytes asynchronously to the file specified by the descriptor fd starting at the offset
specified by offset from the buffer pointed to by buffer. iwritevoff() is similar, but it writes the data
from the iovcount buffers specified by iov.

iwriteoff() and iwritevoff() are identical to iwrite() and iwritev() except for writing starting at a
user-specified offset (instead of the offset maintained by the system file pointer) and the following
additional differences:

e The current value of the system file pointer is not modifed.

. Currently only M_UNIX and M_ASYNC I/O modes are supported.

* Paragon PFS is the only file system type that currently supports these functions.

* The O_APPEND flag used in the open function to obtain the file descriptor has no effect on the
write. The write is performed at the position specified by the offset parameter.

Return Values

166

Upon successful completion, a non-negative 1/O ID for use in iodone(), iowait(), niodone() and
niowait() calls is returned. If an error occurs, these functions return -1 and set errno to indicate the
error.

NOTE

The number of I/0 IDs is limited, and an error occurs when no I/O
IDs are available for a requested asynchronous read or write.
Therefore, your program should release the I/O ID as soon as
possible by calling iodone(), iowait(), niodone() or niowait().

o

i
-

A
-

o4 | S

3
B

oA

i
L)
1.

FY

. |

Paragon™ System C Calls Reference Manual Manual Pages
IWRITEO FF() (cont.) IWR'TEOFF() (cont.)
Errors

See Also

Errors are as described in OSF/1 write(), except that the following errors can also occur:
EMREQUEST An asynchronous call has been attempted, but too many requests are already
outstanding. Use either iowait() or iodone() to clear asynchronous read and write

requests that are outstanding.

EFSNOTSUPP The file referred to by filedes is not in a file system of a type that supports this
operation. Currently only the PFS file systems support this operation.

EINVAL The file referred to by filedes is in an unsupported iomode. Currently only
M_UNIX and M_ASYNC are supported.

cwrite(), gopen(), iodone(), iowait(), iseof(), iwrite(), niodone(), niowait(), setiomode(),
writeoff()

OSF/1 Programmer’s Reference: dup(), open(), write()

167

Manual Pages

LSIZE()

Paragon™ System C Calls Reference Manual

LSIZE()

Increases the size of a file.

Synopsis

Parameters

Description

168

#include <nx.h>

long Isize(
int fildes,
off_t offset,
int whence),

fildes A file descriptor representing a regular file opened for writing.

offset The value, in bytes, to be used together with the whence parameter to increase the
file size. The type off_t is defined in sys/types.h (included in nx.h).

whence Specifies how offset affects the file size. The values for the whence parameter are
defined in nx.h as follows:

SIZE_SET Sets the file size to the greater of the current size or
offset.

SIZE_CUR Sets the ﬁle'size to the greater of the current size or the
current location of the file pointer plus offset.

SIZE_END Sets the file size to the greater of the current size or the
current size plus offset.

The Isize() function increases the size of a file according to the offset and whence parameters.

Use the Isize() function to allocate sufficient file space before starting performance-sensitive
applications or storage operations. This increases throughput for I/O operations on a file, because
the I/O system does not have to allocate data blocks for every write that extends the file size.

This function cannot decrease the size of a file. See the OSF/1 truncate() manual page for
information about decreasing a file’s size.

I
i

E

N‘“‘l
-

M’”
&

S
Mdﬂ

M ™
& .

T

& Paragon™ System C Calls Reference Manual Manual Pages
.

w

N LSIZE() (cont.) LSIZE() (cont.)

The Isize() function has no effect on FIFO special files or directories, and does not effect the position
of the file pointer. The contents of file space allocated by the Isize() function is undefined.

If the file has enforced file locking enabled and there are file locks on the file, the Isize() function
< fails.

The Isize() function updates the modification time of the opened file. If the file is a regular file it
“ clears the file’s set-user ID and set-group ID attributes.

To increase the size of an extended file, use the esize() function.

- Note

& 2

If the requested size is greater than the available disk space,
Isize() allocates the available disk space and returns the actual
new size.

|] ——
. [

Note

Because NFS does not support disk block preallocation, the
Isize() and _lIsize() functions are not supported on files that reside
7 in remote file systems that have been NFS mounted. The Isize()
and _lsize() functions are supported on files in UFS and PFS file
systems only.

Return Values

Upon successful completion, the Isize() function returns the new size of the file, in bytes. If the new
size specified by the offset and whence parameters is greater than the available disk space, the Isize()
™ function allocates what disk space is available and returns the new size of the file. Otherwise, the
Isize() function displays an error message to standard error and causes the calling process to
terminate.

Upon successful completion, the _lsize() function returns the same value as the Isize() function.
Otherwise, the _lsize() function returns -1 and sets errno to indicate the error.

,\ 169

-

Manual Pages

LS'ZE() (cont.)

Errors

Examples

170

Paragon™ System C Calls Reference Manual

LSIZEO (cont.)

If the _Isize() function fails, errno may be set to one of the following error code values:

EAGAIN

EACCES

EBADF

EFBIG

EFSNOTSUPP

EINVAL

ENOSPC

EROFS

The file has enforced mode file locking enabled and there are file locks on the file.
Write access permission to the file was denied.
The fildes parameter is not a valid file descriptor.

The file size specified by the whence and offset parameters exceeds the maximum
file size.

The fildes parameter refers to a file that resides in a file system that does not
support this operation. The lsize() function does not support files that reside in
remote file systems and have been NFS mounted.

The file is not a regular file.

No space left on device.

The file resides on a read-only file system.

The following example shows how to use the Isize() function to increase the size of a file with
different whence values:

#include <fcntl.h>
#include <nx.h>
#include <unistd.h>

main ()
{

int

fd;

off_t offset;
long newsize, new_pos;
esize_t loc, eoffset;

fd = gopen(”/tmp/mydata”, O_RDWR, M_UNIX, 0644);

R
A

.
t

%

¥

(SR

4

3

Paragon™ System C Calls Reference Manual Manual Pages

LS'ZE() (cont.) LSIZE() (cont.)

offset 1000;
newsize = lsize(fd,offset,SIZE_SET);
printf (“new_size = %d\n”,newsize);

eoffset = stoe(#1000");
loc = eseek(fd, eoffset, SEEK_END);

newsize = lsize(fd,offset,SIZE_CUR) ;
printf (“new_size = %d\n”,newsize);

newsize = lsize(fd,offset,SIZE_END) ;
printf (“new_size = %d\n”,newsize);

close(fd);

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also
eseek(), esize()

OSF/1 Programmer’s Reference: fentl(2), Iseek(2), open(2), truncate(2)

171

"
Manual Pages Paragon™ System C Calls Reference Manual ﬂ P

V’ﬂ

&

N »
"

MASKTRAP() MASKTRAP() o

Enables or disables send and receive traps. -

m

Synopsis i
#include <nx.h> d
"

long masktrap(
long state);

Parameters
state The state of send-receive traps: -
0 Enables (allows) send and receive traps.
™
.

1 Disables (blocks) send and receive traps.

Other values are not defined.

-
b

Description ' -

The masktrap() function enables and disables send and receive handlers. This function protects
critical code from being interrupted by the handler procedure that is executed when using the h...()
calls (hrecv(), hsend(), or hsendrecv()). A masktrap(1) prevents any handler from running; a
masktrap(0) enables handlers. Any pending interrupts are honored when the mask is removed. The
masktrap() function returns the previous masking state (1 or 0).

L]

4

E

CAUTION

3

S

When using any of the h...() calls, you must use masktrap()
around any code in the main program that could interfere with calls
in the handler.

A A e b
L.

t

For example, if the handler performs any I/O, you must put masktrap() calls around any I/O call in
the main program that could be called while the handler is active. If you do not do this, you could
find characters from the handler’s output interleaved with characters from the main program’s
output.

Pl
E__4

172 lﬂ
B

e

E

k]

oo — —
[|

E

4

3

%

¥

E |

3

|

5

< k]

t

]
oo

i

t

4

b

*

&

4
3

4

i S 3

|-

I
&

Paragon'" System C Calls Reference Manual Manual Pages

MASKTRAP() (con.) MASKTRAP() (con:.)

Sometimes it is not as obvious which calls could interfere with each other. For example, any two
library calls that could allocate or free memory could cause the memory subsystem to become
confused if they were called at the same time. To be safe, keep the handler simple and use the
masktrap() function to protect all library calls following the h...() call that could call the same
subsystems as the handler while the handler is active.

Calls to the masktrap() function are necessary, because a handler and the main program share the
same memory space and can change each other’s global variables. This could cause any
non-reentrant function to fail if it is called by both the handler and the main program at the same
time.

Return Values

Errors

Examples

Upon successful completion, the masktrap() function returns the previous value of state and returns
control to the calling process. Otherwise, this function displays an error message to standard error
and causes the calling process to terminate.

Upon successful completion, the _masktrap() function returns the previous value of state.
Otherwise, this function returns -1 and sets errno to indicate the error.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

The following example runs on two nodes and shows how to use the masktrap() function to with
the hrecv() function. After posting an hrecv(), the application must not be interrupted until the
receive handler completes A masktrap() call with state parameter value set to 1 prevents the handler
from executing. A masktrap() call with state parameter value set to 0 (zero) allows the handler to
execute immediately.

#include <memory.h>
#include <nx.h>

void proc();
long iam;

main() {

char buf[80];
long mask;

173

Manual Pages

MASKTRAP() (cont,)

iam = mynode() ;
memset (buf, 0,80);

if(iam ==

Paragon™ System C Calls Reference Manual

MAS KTRAP() (cont.)

printf (“\n%d: Before hrecv\n”, iam);
hrecv (100,buf, sizeof (buf) ,proc);

mask = masktrap(l);

v
»

a

-
| S

L |
I

printf (#%d: After hrecv\n”, iam);

printf (“%d Waiting ...\n”,iam);

printf (“%d: No hrecv interrupts can occur\n”,iam);
mask = masktrap (mask) ;

Limitations and Workarounds

See Also

174

}

void proc (type, count,node,pid)

sleep(5);
printf (#%d: Until now\n”,iam);
printf (“%d Completed \n”,iam);

}

else {
sleep(1l);
sprintf (buf, “Hello from node %d\n”,iam);
printf (“Node 1 sends to node 0\n”);
csend (100, buf, strlen(buf),0,0);

}

long type, count,

{
printf (”%d Entered handler:\n”, iam);
printf (“%d %d\n”,iam, type);
printf (#%d %2d\n”,iam, count);
printf (#%d node = %d\n”,iam, node);

printf (“%d

%d\n”,iam, pid);

For information about limitations and workarounds, see the release notes files in

/usr/share/release_notes.

errno, hrecv(), hsend(), hsendrecv()

[]

E

¥

1

pea mem e
& FEo3

L]
Eooa

4

E

%

¥

@l

———— — — — L L] —]
[

pe—
i

4 { [} B

—— -
Lo

e e e e B e
T I S I T

Paragon™ System C Calls Reference Manual Manual Pages

MOUNT/()

MOUNT/()

mount(), umount(): Mount or unmount a file system.

Synopsis

Parameters

#include <sys/mount.h>

void mount(
int type,

char *mnt_path,
int mnt_flag,
caddr_t data);

void umount(

char *mnt_path,
int umnt_flag);

bype

mnt_path

mnt_flag

Defines the type of the file system. The types of file systems are MOUNT_UFS
and MOUNT_PFS.

Points to a null-terminated string containing the appropriate pathname.

Specifies whether certain semantics should be suppressed when accessing the file
system. Valid flags are:

M_RDONLY The file system should be treated as read-only; no
writing is allowed (even by a process with appropriate
privilege). Physically write-protected and magnetic
tape file systems must be mounted read-only or errors
will occur when access times are updated, whether or
not any explicit write is attempted.

M_NOEXEC Do not allow files to be executed from the file system.

M_NOSUID Do not honor setuid or setgid bits on files when
executing them.

175

Manual Pages

MOUNTY() (cont.
data
umnt_flag

176

M_NODEV

Paragon™ System C Calls Reference Manual

MOU NT() (cont.)

Do not interpret special files on the file system.

M_SYNCHRONOUS

M_FMOUNT

M_UPDATE

All I/O to the file system should be done
synchronously.

Forcibly mount, even if the file system is unclean.

The mount command is being applied to an already
mounted file system. This allows the mount flags to be
changed without requiring that the file system be
umounted and remounted.

M_PFS_SERVER_BUFFERING

Enable PFS server buffering. The fileservers cache
stripe-file data in their memory-resident, disk-block
caches. These fileservers use a read-ahead and
write-behind caching algorithm. PFS buffering is
recommended only when the IO request size is less
than 64K bytes; otherwise, the fieservers’s cache may
thrash.

Some file systems may not allow all flags to be changed. For example, most file
systems do not allow a change from read-write to read-only.

Points to a structure that contains the type-specific parameters to mount.

Specifies one of the following values:

MNT_FORCE

The file system should be forcibly umounted even if
files are still active. Active special devices continue to
work, but any further accesses to any other active files
result in errors even if the file system is later
remounted. Support for forcible unmount is filesystem
dependent.

Eoa
t

B

Ea A
| 1

il
.
M
M .&J

v

.

L ¢ [

B

¢ i r B i i

[

—
b 4

I
ol

Paragon™ System C Calls Reference Manual Manual Pages
MOU NT() (cont.) MOU NT() (cont.)
Description

Notes

Except in the case of file-on-file mounting, the mount() function mounts a file system on the
directory pointed to by the mnt_path parameter. Following the mount, references to mnt_path refer
to the root of the newly mounted file system.

The mnt_path parameter must point to a directory or file that already exists.

For file-on-file mounting the mount() function mounts a file specified by the data parameter onto
another file specified by the mnt_path parameter. Either file may be of any type, but mnz_path
cannot already have a file system or another file mounted on it.

The umount() function unmounts a file system mounted at the directory pointed to by the mnt_path
parameter. The associated directory reverts to its ordinary interpretation.

For file-on-file mounting the data argument points to a ffs_args structure containing flags and the
file to be mounted. In ffs_flags if FFS_FD is true, then the file is specified by the file descriptor,
ffs_filedesc, otherwise by the pathname*ffs_pathname. If FFS_CLONE is true, then new mount
point should exhibit CLONE behavior; specifically, calls such as chmod() and chown() should have
no effect on the mounted file. (The original file is, of course, always unaffected, since the mount
point hides it.) If the file descriptor refers to a pipe, a call to stat() will return the number of unread
bytes in the sz_size field.

If file systems other than FFS (such as UFS or NFS) are modified to permit mounts by unprivileged
users, it may be appropriate to ensure that the M_NODEYV flag is set in the mount structure that is

created, so that users cannot obtain undeserved access through devices.

An additional argument structure, pfs_args, has been added to the mount.h header file to support
mounting a parallel file system (PFS).

177

Manual Pages

Paragon™ System C Calls Reference Manual

MOUNT() (cont.) MOU NT() (cont.)

Return Values

Errors

178

The mount() function returns O (zero) if the file system was successfully mounted. Otherwise, -1 is
returned. The mount can fail if the mnz-path parameter does not exist or is of the wrong type. For a
UFS file system, the mount can fail if the special device specified in the ufs_args structure is
inaccessible, is not an appropriate file, or is already mounted. A mount can also fail if there are
already too many file systems mounted, either system wide, or for a specific file system type.

The umount() function returns 0 (zero) if the file system was successfully unmounted. Otherwise,

-1 is returned. The unmount will fail if there are active files in the mounted file system, unless the
MNT_FORCE flag is set and the file system supports forcible unmounting.

If the mount() function fails, errno may be set to one of the following values:
EPERM The caller does not have appropriate privilege.

ENAMETOOLONG .
A component of a pathname exceeded NAME_MAX characters, or an entire
pathname exceeded PATH_MAX characters.

ELOOP Too many symbolic links were encountered in translating a pathname.
ENOENT A component of the mnt-path parameter does not exist.
ENOTDIR A component of the name parameter is not a directory, or a path prefix of the

special parameter is not a directory.

EINVAL A pathname contains a character with the high-order bit set.

EBUSY Another process currently holds a reference to the mnt-path parameter.
EDIRTY The file system is not clean and M_FORCE is not set.

EFAULT The mnt-path parameter points outside the process’ allocated address space.

The following errors can occur for a UFS file system mount:
ENODEV A component of ufs_args fspec does not exist.

ENOTBLK The fspec field is not a block device.

L

|

=
E

(S

A

ad

¢

|3

k|

B

4

E

|

i
L

[J‘ | H E £ 1

P

H i [j

|

H

i

E

— — J— —— - —

B

Paragon'" System C Calis Reference Manual Manual Pages
MOU NT() (cont.) MOUNT() (cont.)
ENXIO The major device number of fspec is out of range (this indicates no device driver
exists for the associated hardware).
EBUSY The device pointed to by the fspec field is already mounted.
EMFILE No space remains in the mount table.
EINVAL The super block for the file system had a bad magic number or an out of range
block size.
ENOMEM Not enough memory was available to read the cylinder group information for the
file system.
EIO An I/0O error occurred while reading the super block or cylinder group
information.
EFAULT The fspec field points outside the process’ allocated address space.

The following errors can occur for a NFS compatible file system mount:

ETIMEDOUT NFS timed out trying to contact the server.

EFAULT

Some part of the information described by nfs_args points outside the process’
allocated address space.

The following errors can occur for a PFS compatible file system mount:

ENODEV

ENOTBLK

ENXIO

EBUSY

EMFILE

EINVAL

ENOMEM

A component of the pfs_args fspec field does not exist
The fspec field is not a block device.

The major device number of fspec is out of range (this indicates no device driver
exists for the associated hardware).

The device pointed to by the fspec field is already mounted.
No space remains in the mount table.

The super block for the file system had a bad magic number or an out of range
block size.

Not enough memory was available to read the cylinder group information for the
file system.

179

Manual Pages

MOU NT() (cont.)

EIO
EFAULT

EINVAL

ENOTDIR

ENOENT

Paragon™ System C Calls Reference Manual

MOUNT() (cont,

An I/O error occurred while reading the super block or cylinder group
information.

Some part of the information described by pfs_args points outside the process’s
allocated address space.

The value specified by the stripe_unit_size field of the pfs_args structure is
invalid; for example, the value is not positive or is greater than the maximum file
size supported by the file system.

A path name specified in the stripe_dir field of the pfs_args structure does not
refer to a directory.

A path name specified in the stripe_dir field of the pfs_args structure does not
exist.

If the umount() function fails, errno may be set to one of the followihg values:

EPERM The caller does not have appropriate privilege.
ENOTDIR A component of the path is not a directory.
EINVAL The pathname contains a character with the high-order bit set.
ENAMETOOLONG
A component of a pathname exceeded NAME_MAX characters, or an entire
pathname exceeded PATH_MAX characters.
ELOOP Too many symbolic links were encountered in translating the pathname.
EINVAL The requested directory is not in the mount table.
EBUSY A process is holding a reference to a file located on the file system.
EIO An /O error occurred while writing cached file system information.
EFAULT The mnt-path parameter points outside the process’ allocated address space.

180

-
v o

£

e
B

F 3 Fa
B3 'S

[

=
S B S

I
!

e

e
b

I
ol
»n

N

&

£

4

|

E|

B

FI

®

|

13

H

€

i

el
Lo L

i)

L

i
)

B4 T 1

- o 41 ki L

o

Paragon™ System C Calls Reference Manual Manual Pages
MOU NT() (cont.) MOUNT() (cont.)
See Also

files: fstab(4), pfstab(4)
Calls: getpfsinfo(3), getmntinfo(3), statfs(2), statpfs(3)

Commands: mount(8)

181

Manual Pages Paragon™ System C Calls Reference Manual

MSGCANCEL() - MSGCANCEL()

Cancels an asynchronous send or receive operation.

Synopsis
#include <nx.h>
void msgcancel(
long mid);
Parameters
mid The message ID returned by one of the asynchronous send or receive system calls
(for example, isend(), irecv(), or isendrecv()) or by the msgmerge() system call.
Description
The msgcancel() function cancels an asynchronous send or receive operation. When msgcancel()
returns, you do not know whether the send or receive operation completed, but you do know the
following:
e The asynchronous operation is no longer active.
¢ The message buffer may be reused.
* The message ID is released.
NOTE
The number of message IDs is limited, and an error occurs when
no message IDs are available for a requested asynchronous send
or receive. Therefore, your program should release its message
IDs as soon as possible by calling msgcancel(), msgdone(),
msgignore(), or msgwait().
182

e
| 2] L |

L |

L |
[S

4

i

sa A
-

M A
a

bl

o
*
a
N
-

4

5

4

- v b]
¥ 2

b

[=] ———— —— —— W
| x t i t E] s

3

3

bi §

S L4 4

¢

§

—— W — — [—"] ==

p—
£ A

™

&l

R

Paragon™ System C Calls Reference Manual Manual Pages

MSGCANCEL() (conz) MSGCANCEL() (cont)

Return Values
Upon successful completion, the msgcancel() function returns control to the calling process; no
values are returned. Otherwise, this function displays an error message to standard error and causes
the calling process to terminate.
Upon successful completion, the _msgcancel() function returns 0 (zero). Otherwise, this function
returns -1 and sets errno to indicate the error.

Errors

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

errno, isend(), irecv(), isendrecv(), msgdone(), msgignore(), msgmerge(), msgwait()

183

Manual Pages

MSGDONE()

Paragon™ System C Calis Reference Manual

MSGDONE()

Determines whether an asynchronous send or receive operation is complete.

Synopsis

#include <nx.h>

long msgdone(

Parameters

mid

Description

long mid);

Message ID returned by one of the asynchronous send or receive system calls (for
example, isend(), irecv(), or isendrecv()) or by the msgmerge() system call.

If the msgdone() function returns 1, it means the asynchronous send or receive operation identified
by mid is complete, and indicates the following:

184

The buffer contains valid data (if mid identifies a receive operation), or the buffer is available
for reuse (if mid identifies a send operation).

The info array (used by the extended receive system calls) contains valid information.
The info...() system calls return valid information.

The message ID number that identifies the asynchronous send or receive (mid) is released for
use in a future asynchronous send or receive.

NOTE

The number of message IDs is limited, and an error occurs when
no message IDs are available for a requested asynchronous send
or receive. Therefore, your program should release its message
IDs as soon as possible by calling msgcancel(), msgdone(),
msgignore(), or msgwait().

o
s

v

[

"

4
| 1

g 4

E A

ol

Mﬂ
al
Rl
*

a

W

L]

(3

L B N]
[}

—
1

il

-
]

ol

=

wea mem mem
F U B

3

%

i i 1 [L) LS [|

[S | [S i i

Paragon™ System C Calls Reference Manual Manual Pages

MSGDONEO (cont.) MSGDONEO (cont.)

If the mid parameter in the msgdone() function represents a merged message ID (that is, it was
returned by the msgmerge() function), the information returned for the info...() calls is
unpredictable.

Return Values

Upon successful completion, the msgdone() function returns the following values and returns
control to the calling process:

0 If the send or receive is not yet complete.
1 If the send or receive is complete.

Otherwise, this function displays an error message to standard error and causes the calling process.
to terminate.

Upon successful completion, the _msgdone() function returns the following:
0 If the send or receive is not yet complete.
1 If the send or receive is complete.

Otherwise, this function returns -1 and sets errno to indicate the error.

Errors

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

errno, infocount(), infonode(), infoptype(), infotype(), irecv(), isend(), isendrecv(), msgcancel(),
msgignore(), msgmerge(), msgwait()

185

Manual Pages

Paragon™ System C Calls Reference Manual

MSGIGNORE() MSGIGNORE()

Releases a message ID as soon as its asynchronous send or receive operation completes.

Synopsis

#include <nx.h>

void msgignore(

Parameters

mid

Description

long mid);

The message ID returned by one of the asynchronous send or receive system calls
(for example, isend(), irecv(), or isendrecv()) or by the msgmerge() system call.

The msgignore() function releases a message ID as soon as its asynchronous send or receive
operation completes. This is a non-blocking system call.

NOTE

The number of message IDs is limited, and an error occurs when
no message IDs are available for a requested asynchronous send
or receive. Therefore, your program should release its message
IDs as soon as possible by calling msgcancel(), msgdone(),
msgignore(), or msgwait().

Note the following:

186

An application must have some alternate means to determine when it can reuse a send or receive
buffer.

Do not use msgignore() as a substitute for msgwait().

The mid cannot be reused by msgdone() or msgwait().

E oo

FA g e
B4 B o4 k4

[

1.

F A -5
B

LI

o
4 }

wl

)
IM

™
.

o

L]

&

L] b
i H 4 i

t

] ﬁ

[~] | ==

§

E] e SR ¢

L

LA |

Paragon™ System C Calls Reference Manual Manual Pages

MSGIGNORE() (ot MSGIGNORE() (cont,)

Return Values

Upon successful completion, the msgignore() function returns control to the calling process; no
values are returned. Otherwise, this function displays an error message to standard error and causes
the calling process to terminate.

Upon successful completion, the _msgignore() function returns 0 (zero). Otherwise, this function
returns -1 and sets errno to indicate the error.

Errors

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

errno, irecv(), isend(), msgcancel(), msgdone(), msgmerge(), msgwait()

187

Manual Pages

Paragon™ System C Calls Reference Manual

MSGMERGE() MSGMERGE()

Groups two message IDs together so they can be treated as one.

Synopsis

Parameters

Description

188

#include <nx.h>

long msgmerge(
long midl,
long mid2);

midl, mid2 Message IDs returned by asynchronous send or receive system calls (for example,
isend(), irecv(), or isendrecv()) or by the msgmerge() system call.

The msgmerge() function groups mid2 with midl and returns a message ID to use for both. After
calling msgmerge(), the original message IDs (midl and mid2) become invalid (although they are
not released until the new message ID is released). The operation associated with the new message
ID (msgdone() or msgwait()) does not complete until both of the asynchronous send or receive
operations associated with the original message IDs complete.

Normally, msgmerge() returns mid!, and only mid2 becomes invalid. As a special case, one mid can
be -1, in which case the other mid is returned with no other action.

Do not use the info...() system calls after a call to the msgmerge() function; the information returned
is unpredictable.

i Paragon™ System C Calls Reference Manual Manual Pages
ki

= MSGMERGEO (cont.) MSGMERGEO (cont.)
. Return Values

Upon successful completion, the msgmerge() function returns a message ID and returns control to
. the calling process. Otherwise, this function displays an error message to standard error and causes
the calling process to terminate. The returned message ID is for use in msgcancel(), msgdone(),
msgignore(), msgmerge(), or msgwait() system calls.

Upon successful completion, the _msgmerge() function returns a message ID. Otherwise, this
function returns -1 and sets errno to indicate the error.

NOTE

The number of message IDs is limited, and an error occurs when
no message IDs are available for a requested asynchronous send
or receive. Therefore, your program should release its message
IDs as soon as possible by calling msgecancel(), msgdone(),
msgignore(), or msgwait().

)

4

Errors

-

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

i

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

i

L

errno, irecv(), isend(), isendrecv(), msgcancel(), msgdone(), msgignore(), msgwait()

{AA

4

4

3

£

B

£

189

b

Manual Pages Paragon™ System C Calls Reference Manual

MSGWAIT() MSGWAIT()

Waits (blocks) until an asynchronous send or receive operation completes.

Synopsis
#include <nx.h>
void msgwait(
long mid);
Parameters
mid The message ID returned by one of the asynchronous send or receive system calls
(for example, isend(), irecv(), or isendrecv()) or by the msgmerge() system call.
Description
The msgwait() function causes a node process to wait until an asynchronous send or receive
operation (for example, isend() or irecv()) completes. When the msgwait() function returns:
» The buffer contains valid data (if mid identifies a receive operation), or the buffer is available
for reuse (if mid identifies a send operation).
¢ The info array (used by the extended receive system calls) contains valid information.
¢ The info...() system calls return valid information.
* The message ID that identifies the asynchronous send or receive (mid) is released for use in a
future asynchronous send or receive.
NOTE
The number of message IDs is limited, and an error occurs when
no message IDs are available for a requested asynchronous send
or receive. Therefore, your program should release its message
IDs as soon as possible by calling msgcancel(), msgdone(),
msgignore(), or msgwait().
190

|

o g e
-

B4 | 200E |

B

b

]

Ea e Foa BoA
[S

b

.

- —]
E]

™

o

—
B

.,xJ

|

F

Paragon™ System C Calls Reference Manual

MSGWAIT() (cont.)

Return Values

Errors

Examples

#include <nx.h>
long iam;

main() {

long msgid;
char smsg[80], rmsg[80];

iam = mynode() ;
sprintf (smsg, "Hello from node %d\n”,iam);
msgid = irecv (100, rmsg, sizeof(rmsg));

csend (100, smsg, strlen(smsg)+1 ,-1,0);

msgwait (msgid) ;

printf (#“%d: received: %s\n”,iam,rmsg) ;

Manual Pages

MSGWAIT() (cont.)

If the mid parameter in the msgwait() function represents a merged of message ID (that is, it was
returned by the msgmerge() function), the information returned for the info...() calls is
unpredictable.

Upon successful completion, the msgwait() function returns control to the calling process; no values
are returned. Otherwise, this function displays an error message to standard error and causes the
calling process to terminate.

Upon successful completion, the _msgwait() function returns 0 (zero). Otherwise, this function
returns -1 and sets errno to indicate the error.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

The following example shows how to use the msgwait() function to wait until an asynchronous
receive completes:

191

Manual Pages Paragon™ System C Calls Reference Manual

MSGWAIT() (con, MSGWAIT() (cont,)

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

errno, infocount(), infonode(), infoptype(), infotype(), irecv(), isend(), isendrecv(), msgcancel(),
msgdone(), msgignore(), msgmerge()

192

| SN |

ko

L I |

4

4

)

B

4

(3

4

|

. g A A A R
| S

E 4

T

L _—_— _—
E

al

]

,, U A,
3 L4 L

,,,

l"ﬂ
&

Paragon™ System C Calls Reference Manual Manual Pages

MYHOST() MYHOST()

Gets the node number of the controlling process.

Synopsis
#include <nx.h>

long myhost(void);

Description
The myhost() function returns the node number of the caller’s controlling process (the host process)

for use in send and receive operations. For controlling processes, myhost() returns the same number
as mynode(), which is the node number of the calling process.

Return Values
Upon successful completion, the myhost() function returns the node number of the controlling
process and returns control to the calling process. Otherwise, this function displays an error message
to standard error and causes the calling process to terminate.
Upon successful completion, the _myhest() function returns the node number of the controlling
process. Otherwise, this function returns -1 and sets errno to indicate the error.

Errors

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

csendrecv(), errno, hsend(), hsendrecv(), isendrecv(), mynode(), myptype(), numnodes(),
nx_loadve(), nx_nfork()

193

Manual Pages Paragon™ System C Calls Reference Manual

MYNODE() MYNODE()

Gets the node number of the calling process.

Synopsis
#include <nx.h>

long mynode(void);

Description
The mynode() function returns the node number of the calling process (an integer between 0 and
numnodes()).

Return Values
Upon successful completion, the mynode() function returns the node number of the calling process
and returns control to the calling process. Otherwise, this function displays an error message to
standard error and causes the calling process to terminate.
Upon successful completion, the _mynode() function returns the node number of the calling
process. Otherwise, this function returns -1 and sets errno to indicate the error.

Errors

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

194

LS |

e
B %

L |

4 L
i LI |

E
13

-a

Ea
&

B4
E

{

I |

Paragon™ System C Calls Reference Manual Manual Pages

MYNODE() (cont.) MYNODE() (cont.)

Examples

The following example shows how to use the mynode() function to get the node number of the
calling process and use the node number in an application:

long iam;

main ()

{
long node, type, ptype, count;
char rmsg[80],smsg[80];

iam = mynode() ;

if(tdiam) {
sprintf (smsg, "Hello from node zd\n”,iam) ;
csend (100, smsg,strlen(smsg) + 1,1,0);
}
else {
crecv (100, rmsg, sizeof (rmsg)) ;
node = infonode () ;
type = infotype();
ptype = infoptype():;
count = infocount () ;
printf (“node = %d\n”,node) ;
printf (“type gd\n”, type) ;
(
(

printf (“ptype = %d\n”,ptype) ;
%d\n”,count) ;

printf (“count

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

errno, myhost(), myptype(), numnodes(), nx_loadve(), nx_nfork()

195

Manual Pages Paragon' " System C Calls Reference Manual

MYPTYPE() MYPTYPE()

Gets the process type of the calling process.

Synopsis
#include <nx.h>

long myptype(void);

Description

The myptype() function returns the process type of the calling process.

Return Values

Upon successful completion, the myptype() function returns the process type (ptype) of the calling
process and returns control to the calling process. Otherwise, this function displays an error message
to standard error and causes the calling process to terminate.

Upon successful completion, the _myptype() function returns the process type (ptype) of the calling
process. Otherwise, this function returns -1 and sets errno to indicate the error.

Errors

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

csend(), csendrecv(), errno, hsend(), hsendrecv(), isend(), isendrecv(), myhost(), mynode(),
numnodes(), nx_loadve(), nx_nfork(), setptype()

196

"
a
-

"

A
& w

"

.-

o

[

e Ba oA
B4 |

L
A

il

Ri
i

Fa S e
£ 4

=

wl

—

LA |

_—
€ A

Paragon™ System C Calls Reference Manual Manual Pages

NIODONE() NIODONE()

Determine whether an asynchronous read or write operation is complete and return the number of bytes transferred if
the operation is complete.

Synopsis
#include <nx.h>

long niodone(
long id);

Description of Parameters

id The non-negative I/O ID returned by iread() or iwrite().

Discussion
Use niodone() to determine whether the asynchronous read or write operation (e.g., iread(),
ireadoff(), iwrite() or iwriteoff()) identified by id is complete. If niodone() returns a non-negative

number (indicating that the operation is complete):

* The buffer contains valid data (if id identifies a read operation), or the buffer is available for
reuse (if id identifies a write operation).

¢ The I/O ID number that identifies the asynchronous read or write (id) is released for use in a
future asynchronous read or write.

NOTE

You must use one of iodone(), iowait(), niodone() or niowait()
after an asynchronous read or write to ensure that the operation is
complete and to release the I/O ID number.

197

Manual Pages

Paragon™ System C Calls Reference Manual

NlODONEO (cont.) NlODONE() (cont.)

Return Values

Errors

See Also

198

Upon successful completion, niodone() returns

>0 If the read or write is complete. The number represents the number of bytes
transferred in the I/O.
-1 If the read or write is not complete. If the read or write is complete but

unsuccessful, errno is set to the error.

EBADID The id parameter is not a valid /O ID.

iodone(), iowait(), iread(), ireadoff(), iwrite(), iwriteoff(), niowait()

R
]

r=
-

™
hm’

S

3

L

[

4

4

[

—— =
[.. | |

Snmnd

aah

£

}

-

o

L

4

H h
] r i

3

Paragon™ System C Calls Reference Manual Manual Pages

NIOWAIT() NIOWAIT()

Wait (block) until an asynchronous read or write operation completes. Return the number of bytes transferred if the
operation completed successfully.

Synopsis
#include <nx.h>

long niowait(
long id);

Description of Parameters

id The non-negative I/O ID returned by niread() or niwrite().

Discussion

Use niowait() to cause a process to wait until the asynchronous read or write operation (e.g., iread()
ireadoff(), iwrite() or iwriteoff()) identified by id completes. When niowait() returns:

e The buffer contains valid data (if id identifies a read operation), or the buffer is available for
reuse (if id identifies a write operation).

e The I/O ID number that identifies the asynchronous read or write (id) is released for use in a
future asynchronous read or write.

NOTE

You must use one of iodone(), iowait(), niodone() or niowait()
after an asynchronous read or write to ensure that the operation is
complete and to release the 1/0 ID number.

Return Values

Upon successful completion, niowait() simply returns the number of bytes transferred by the I/O
operation. If an error occurs, niowait() sets errno to indicate the error and returns -1.

199

Manual Pages

Paragon™ System C Calls Reference Manual

N'OWA'T() (cont.)
Errors

EBADID The id parameter is not a valid I/O ID.
See Also

200

iodone(), iowait(), iread(), ireadoff(), iwrite(), iwriteoff(), niodone()

NlOWAITO (cont.)

- -
-
m
N

M‘m
o

e
-

Fod
S T SR R SO

4

B

[

- ==l = = |] LS
|-

[S

i

—
)

i

B

Y

o

sl

e

al

-y

) SR |

[L [Loy

£ 5 k] 3 L i

o 4

o4

Paragon™ System C Calls Reference Manual Manual Pages

NUMNODES() NUMNODES()

Gets the number of nodes in an application.

Synopsis
#include <nx.h>

long numnodes(void);

Description

The numnodes() function returns the number of nodes allocated to the application.

Return Values
Upon successful completion, the numnodes() function returns the number of nodes in an application
and returns control to the calling process. Otherwise, this function displays an error message to

standard error and causes the calling process to terminate.

Upon successful completion, the _numnodes() function returns the number of nodes in an
application. Otherwise, this function returns -1 and sets errno to indicate the error.

Errors

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

Examples

The following example shows how to use the msgwait() function to wait until an asynchronous
receive completes:

#include <math.h>

#define M 4
#define N 16

void display () ;

long iam, nbrnodes;

201

Manual Pages

NUMNODESO (cont.)

main ()
{

int i, count=0;

Paragon System C Calls Reference Manual

NUMNODESO (cont.)

double x[M], yI[N], dot, norm, dummy;

char msg[80];
int dpsize = 8;
long xlen(4];

iam = mynode () ;
nbrnodes = numnodes () ;
dot = 0.0;

for(i=0; i<nbrnodes; i++)

xlen[i] = 4*sizeof (double);

for (1i=0; i<M; 1i++) {

x[1] = (double) (iam * M + 1i);

printf (“Node %d x[%d]
}

for (i=0; i<M; i++)
dot += x[1]*x[i];

= %3.1f\n”,iam,i,x[1i]);

printf (“Node %d dot = %f\n”,iam,dot);

gdsum(&dot, 1, &dummy) ;

sprintf (msg, “dot = %f\n”,dot);
if(tiam) printf(“\n%s”,msqg);

norm = sgrt(dot) ;

for(i=0; 1<M; i++)
x[1i] = x[1i]/norm;

gcolx(x, xlen, Vy);

if(liam) {
for (i=0; i<nbrnodes*M;

i++)

printf (#%3.1f #,y[1i]);

printf (“\n");

202

ko4

E o

| .

A A g

A
E] [|

|3

EoA
El

b

EoA
b

3

E
{

A
|

B

4

B

-4

[

4

L

¢4

| S

R

E

]

|

¥

el

¥

4

li

g

b

J L | [

il

[

i

E

i
5

4

o4 S L : ; 4

g4

Bl

Paragon™ System C Calls Reference Manual

NUMNODES() (cont.)

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
/Jusr/share/release_notes.

errno, myhost(), mynode(), nx_initve(), nx_load()

Manual Pages

NUMNODESO (cont.)

203

Manual Pages

NX_APP_NODES()

Paragon™ System C Calls Reference Manual

NX_APP_NODES()

Returns the list of nodes allocated to an application.

Synopsis

Parameters

Description

#include <nx.h>

long nx_app_nodes(
pid_t pgroup,
nx_nodes_t *node_list,
unsigned long *list_size);

pgroup

node_list

list_size

Process group ID for the application, O (zero) to specify the calling application.
The pid_t type is defined in the include file sys/types.h. If the process group ID is
not that of the calling process, the calling process’s group ID must either be root
or the same user ID as the specified application.

Pointer variable that specifies the address of the list of nodes for the application.
The node numbers are root-partition node numbers. The nx_nodes_t type is
defined in the include file allocsys.h. The call allocates memory and fills in the
values for this parameter. Free this memory using the free() function.

Address of a variable into which the nx_app_nodes() function stores the number
of elements in the node_list parameter. The call fills in the value for this
parameter.

The nx_app_nodes() function returns the list of node numbers for the nodes an application is
running on. You must have read permission on the partition the application is running in to use this

call.

Return Values

204

On successful completion, the nx_app_nodes() function returns 0 (zero). Otherwise, -1 is returned
and errno is set to indicate the error.

d

i

A

;

. Paragon™ System C Calls Reference Manual Manual Pages
NX_APP__NODES() (cont.) NX_APP__NODES() (cont.)
Examples

i

The following example prints the list of nodes for an application:

#include <nx.h>

L]] _—— I L] —— — —
: E 4 B E 4

main() {

nx_nodes_t mynodes;

unsigned long nnodes;

int i, status;

ﬂ ,,,,, status = nx_app_nodes (0, &mynodes, &nnodes);
- if (status != 0) {
ol nx_perror ("nx_app_nodes () ") ;
exit (1) ;

™) }

for(i = 0; 1 < nnodes; 1i++) {

printf ("%d\n", mynodes[i]);

}

i

free (mynodes) ;
}

Note the use of the & operator in the call to nx_app_nodes().

g 3 E

Errors

EANOEXIST The specified process group does not exist.

&

EPACCESS Insufficient access permission for this operation on the partition.

Limitations and Workarounds

4

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

[

i

[]] [] L}]
& 4 k T i

¥

See Also

I*‘ mynode(), nx_part_nodes(), nx_failed_nodes()

205

Manual Pages Paragon™ System C Calls Reference Manual

NX_APP_RECT() NX_APP_RECT()

nx_app_rect(), mypart(): Returns the height and width of the rectangle of nodes allocated to the current application.

Synopsis
#include <nx.h>
long nx_app_rect(

long *rows,
long *cols);

long mypart(
long *rows,
long *cols);

Parameters
rows Address of a long integer variable that specifies the number of rows in the set of
nodes for the application. If the set of nodes is not a rectangle, the value pointed
to by rows is set to 1.
cols Address of a long integer variable that specifies the number of columns in the set
of nodes for the application. If the node set is not a rectangle, the value pointed to
by cols is set to the number of nodes in the application.

Description

The nx_app_rect() function returns the rectangular dimensions of the node set of the application
from which the function call is made.

The mypart() function is identical to the nx_app_rect() function and is provided for compatibility
with the Touchstone DELTA system.
Return Values

On successful completion, the nx_app_rect() function returns O (zero). Otherwise, -1 is returned
and errno is set to indicate the error.

206

=1

[|

P
)

b
i

E

B4

4

13

i

E 3 B i 4

aw e BNE Deal

Paragon™ System C Calls Reference Manual Manual Pages

NX_APP_RECT() (cont.) NX_APP_RECT() (con.)

Errors

Refer to the errno manual page for a list of errors that can occur in this system call.

Examples

This example returns the number of rows and columns used by the application. Note the use of
“&rows” and “&cols” indicating that these variables must have space allocated prior to passing the
pointers to nx_add_rect().

main() {
long rows, cols, result;
int status;
if (mynode() == 0) {

status = nx_app_rect (&rows, &cols);

if(status != 0) {
nx_perror ("nx_app_rect ()");
exit(1l);

}

printf ("\n");

printf ("\nNumber of columns = %d", cols);

(
printf ("\nNumber of rows = %d", rows);
(
printf("\n");

Limitations and Workarounds
For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

application, mkpart, nx_app_nodes(), nx_initve_rect(), nx_mkpart(), nx_part_attr(),
nx_root_nodes()

4

[

B ; ; 4 i i |

o4

R
Manual Pages Paragon™ System C Calls Reference Manual { A
B
&
R
l.
I
NX_CHPART_EPL() NX_CHPART_EPL() .«
. .-
nx_chpart_epl(), nx_chpart_mod(), nx_chpart_name(), nx_chpart_owner(), nx_chpart_rq(), .
nx_chpart_sched(): Changes a partition’s characteristics.
&
i
Synopsis .
#include <nx.h> s
long nx_chpart_epl(-
char *partition, -
long priority); ™
"
long nx_chpart_mod(|
char *partition, "
long mode); s
long nx_chpart_name(K 2
char *partition,
char *name); o
'S A‘J
long nx_chpart_owner(B
char *partition, N ‘
long owner, .-
long group); w
.
long nx_chpart_rq(
char *partition, M ’“
long rollin_quantum); -
long nx_chpart_sched(M Aj
char *partition,
long sched_type); H -
¥
.
R ™
ul
{ -
al

208 l"
E

E

2

4

4

m;;

Paragon™ System C Calls Reference Manual Manual Pages

NX_CHPART_EPL() (cont,

Parameters

NX_CHPART_EPL() (con.)

partition Pointer to the relative or absolute pathname of an existing partition for which you
are changing the characteristics.

priority (nx_chpart_epl() only)
New effective priority limit for the partition, expressed as an integer with a range
from 0 (lowest priority) to 10 (highest priority) inclusive.

The calling process must have write permission for the partition to use the
nx_chpart_epl() function.

mode (nx_chpart_mod() only)
New protection modes for the partition, expressed as an octal number. See the
chmod() function in the OSF/1 Programmer’s Reference for more information on
specifying protection modes.

The calling process must be the owner of the partition or root user to use the
nx_chpart_mod() function.

name (nx_chpart_name() only)
New name for the partition, expressed as a string of any length containing only
uppercase letters, lowercase letters, digits, and underscores. The
nx_chpart_name() function can only change the partition’s name “in place;”
there is no way to move a partition to a different parent partition.

The calling process must have write permission on the parent partition of the
specified partition to use the nx_chpart_name() function.

owner (nx_chpart_owner() only)
New owner for the partition, expressed as a numeric user ID (UID). If the owner
parameter is -1, the partition’s owner is not changed. See the OSF/I
Programmer’s Reference for information about using the getpwnam() function to
convert a user name to a numeric user ID.

The permissions required for the nx_chpart_owner() function depend on the

operation. To change the partition’s ownership, the calling process must be the
system administrator.

209

Manual Pages Paragon™ System C Calls Reference Manual

NX_CHPART_EPL() (con, NX_CHPART_EPL() (cont.

group (nx_chpart_owner() only)
New group for the partition, expressed as a numeric group ID (GID). If the group
parameter is -1, the group is unchanged. See the OSF/I Programmer’s Reference
for information about using the getgrnam() function to convert a group name to
a numeric group ID.

The permissions required for the nx_chpart_owner() function depend on the
operation. To change the partition’s group, the calling process must either be the
system administrator or must be the partition’s owner and changing the group to
a group that the calling process belongs to.

rollin_quantum (nx_chpart_rq() only)
New rollin quantum for the partition, expressed as an integer number of
milliseconds, or O to specify infinite rollin quantum. The specified value must not
be greater than 86,400,000 milliseconds (24 hours). If you specify a value that is
not a multiple of 100, the value is silently rounded up to the next multiple of 100.

The minimum rollin quantum can be set in the allocator.config file. See the
allocator.config manual page for more information.

The calling process must have write permission for the partition to use the
nx_chpart_rq() function.

sched_type (nx_chpart_sched() only)
Type of scheduling for the partition. These scheduling types are defined in the
nx.h include file and can be specified:
NX_GANG Gang scheduling (rollin quantum = 0).
NX_SPS Space sharing.

The calling process must have write permission for the partition to use the
nx_chpart_sched() function.
Description
The following functions change specific characteristics of a partition:

nx_chpart_epl()
Changes the partition’s effective priority limit.

nx_chpart_mod()
Changes the partition’s protection modes.

210

y "
-

il
‘

w

™
4 .

S
W sl

e

-

i

LA
& .

[t

[
-

w

-

o

-

»
b

™
P

o
o

L
.

e

il
i

Rl

“

%

4

B { & 3 i ¢ i : ¢ ¢ i 4 ¢]

¥

Paragon™ System C Calls Reference Manual Manual Pages

NX_CHPART_EPL() (con.) NX_CHPART_EPL() (con)

nx_chpart_name()
Changes the partition’s name.

nx_chpart_owner()
Changes the partition’s owner and group.

nx_chpart_rq() Changes the partition’s rollin quantum.

nx_chpart_sched()
Changes the partition’s scheduling type.

When you create a partition with the mkpart command or the nx_mkpart...() functions, you set a
partition’s initial characteristics. You can set specific characteristics or use the default
characteristics. After creating a partition, you are the partition’s owner and you can use the
nx_chpart...() functions or the chpart command to change the partition’s characteristics.

The nx_chpart_epl() function changes the effective priority limit for a partition. The effective
priority limit ranges from O to 10. The effective priority limit is the upper priority limit on a partition.
This limit does not affect the priority of applications or partitions within a partition. The system uses
the effective priority limit for gang scheduling in partitions. See the ParagonTM System User’s Guide
for more information about effective priority limits and gang scheduling.

The nx_chpart_name() function changes the partition’s name. You cannot use this function to
change the partition’s parent partition or the partition’s relationship in a partition hierarchy.

Each partition has an owner, a group, and protection modes that determine who can perform what
operations on a partition. When you create a partition, you become the partition’s owner and the
partition’s group is set to your current group. The nx_chpart_owner() function changes the owner
and group of a partition. The owner and group must be specified as a numeric ID, not as a name. Use
the OSF/1 getpwnam() function to convert an owner name to a user ID, and use the OSF/1
getgrnam() function to convert a group name to a numeric group ID. See the OSF/I Programmer’s
Reference for more information about these functions.

A partition’s protection modes consist of three groups of permission bits that indicate the read, write
and execute permissions for the owner, group, and other users of the partition. A partition’s
protection modes are initially set when the partition is created. The nx_chpart_meod() function
changes the protection mode for a partition. Set the mode parameter to the three-digit octal value that
represents the protection mode you want for the partition. See the chmod command in the OSF/I
Command Reference for more information on specifying protection modes.

211

Manual Pages

NX_CHPART_EPL() (conz,)

Paragon System C Calls Reference Manual

NX_CH PART_EPL() (cont.)

The nx_chpart_sched() function changes the partition’s scheduling to either space sharing
(NX_SPS) or gang scheduling (NX_GANG). The nx_chpart_sched() function has the following
restrictions:

* You cannot change a partition’s scheduling to or from standard scheduling.

* You cannot change a partition’s scheduling to space sharing if the partition contains any active
applications or overlapping partitions.

The allocator may limit the number of partitions that can use gang scheduling. For information on
the allocator, see the allocator manual page in the Paragon'" XP/S System Commands Reference
Manual. You cannot change a partition’s scheduling to gang scheduling if the request exceeds the
maximum number of partitions allocated for gang scheduling. The rollin quantum is automatically
set to O (zero) when changing to gang-scheduling.

Return Values

Errors

212

On successful completion, the partition’s characteristic was successfully changed and O (zero) is
returned. Otherwise, the partition’s characteristic is not changed, -1 is returned, and errno is set to
indicate the error.

When -1 is returned by this function, errno is set to one of the following values:

EEXCEEDCONF
The request would exceed the configuration parameters.

EPACCES The application has insufficient access permission on a partition.

EPALLOCERR
An internal error occurred in the node allocation server.

EPINGRP An invalid group ID was specified.

EPINRN You specified a partition name that was not a simple name. You cannot change a
partition’s relationship within a partition hierarchy.

EPINUSER An invalid user ID was specified.

[]

E |

A pa pom
(S

E

3

B
E

5
4

Ea s oa
B4 I

Fd

A

k. | .

-
LS |

l’m
¥ |

Paragon™ System C Calls Reference Manual Manual Pages
NX_CHPART_EPL() (con:) NX_CHPART_EPL() (cont.)
EPINVALPART

The specified partition (or its parent) does not exist.
EPINVALPRI An invalid priority level was specified.
EPLOCK The specified partition is currently being updated and is locked by someone else.

EPPARTEXIST
The specified partition already exists.

ESCHEDCONF
The scheduling parameters conflict with the allocator configuration.

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

PazragonTM System C Calls Reference Manual: nx_mkpart(), nx_pspart(), nx_rmpart()

ParagonTM XP/S System Commands Reference Manual: allocator, allocator.config, chpart, Ispart,
mkpart, pspart, rmpart

OSF/1 Command Reference: chgrp(1), chmod(1), chown(1)

OSF/1 Programmer’s Reference: getgrnam(3), getpwnam(3)

213

Manual Pages Paragon" System C Calls Reference Manual

NX_EMPTY_NODES() NX_EMPTY_NODES()

Returns the list of empty nodes in the root partition.

Synopsis
#include <nx.h>

int nx_empty_nodes(
nx_nodes_t *node_list,
unsigned long */ist_size);

Parameters

node_list Pointer variable into which the nx_empty:_nodes() function stores the address of
the list of empty nodes found in the root partition. The node numbers are
root-partition node numbers. The nx_nodes_t type is defined in the include file
allocsys.h, which is included by the include file nx.h. The call allocates memory
for this parameter. Free this memory using the free() function.

list_size Address to a variable into which the nx_empty_nodes() function stores the
number of elements in the node_list array.
Description
The nx_empty_nodes() function returns the list of empty nodes in the root partition. An empty node
is a node in the root partition that does not have a node board in the corresponding slot. An empty

node is specified as “empty” in the SYSCONFIG.TXT file. An empty node shows up as a dash (-) in
the display of the showpart command.

NOTE

Do not call the nx_empty_nodes() function on more than a few
nodes at once.

If many nodes use the nx_empty_nodes() function at the same time, the node allocator daemon can
become overwhelmed with requests. If all the nodes in your application need this information, you
should have one node make the call and then distribute the information to the other nodes.

214

| S]

e}

[.

= e
| S

|
3

R
3

£}

B

4

3

A

E

A

e wa Fa Ea A
B4

k.

iy
B4

%

|3

is

¥

b

&

] E]

o

$

¢ £ B3

¥

Ed

M

—— - — —
£ 4 b b

¥ i
- 4

H

L4

3

&

—— —_—— —]]
[[| 1

&

—
B4

A

e

Paragon™ System C Calls Reference Manual Manual Pages

NX_EMPTY_NODES() (con.) NX_EMPTY_NODES() (con.)

Return Values

On successful completion, the nx_empty_nodes() function returns 0 (zero). Otherwise, -1 is
returned and errno is set to indicate the error.

Examples
The following example prints the list of the empty nodes in the root partition:
#include <nx.h>
main() {
nx_nodes_t empty;
unsigned long nempty;
int i, status;
status = nx_empty_nodes (&empty, &nempty) ;
if (status !'= 0) {
nx_perror ("nx_empty_nodes () ") ;
exit(1);
}
for(i = 0; 1 < nempty; i++) {
printf ("%d\n", emptyl[i]);
}
free (empty) ;
}
Note the use of the & operator in the call to nx_empty_nodes().
Errors

Refer to the errno manual page for a list of errors that can occur in this system call.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

215

Manual Pages

NX_EMPTY_NODES() (cont,)

See Also

216

Paragon™ System C Calls Reference Manual

NX_EMPTY_NODES() (cont.

Paragon"" System C Calls Reference Manual: nx_app_nodes(), nx_failed_nodes()

ParagonTM XP/S System Commands Reference Manual: showpart

.
L |

B | S] B

B3
4

™o
@

m il
" W
o
"
T
el

f

-

4

Paragon™ System C Calls Reference Manual Manual Pages

¥

1

o

4

£

NX_FAILED_NODES() NX_FAILED_NODES()

Returns a list of the failed nodes in the root partition.

¥

Synopsis
#include <nx.h>
int nx_failed_nodes(

nx_nodes_t *node_list,
unsigned long *list_size);

S L : ¢ Ao €

Parameters

w,

node_list Pointer variable into which the nx_failed_nodes() function stores the address of
the list of failed nodes found in the root partition. The node numbers are
root-partition node numbers. The nx_nodes_t type is defined in the include file
allocsys.h, which is included by the include file nx.k. The call allocates memory
for this parameter. Free this memory using the free() function.

list_size Address to a variable into which the nx_failed_nodes() function stores the
number of elements in the node_list array.

- i i 3

Description

The nx_failed_nodes() function returns the list of failed nodes in the root partition. The system
boots the nodes that are listed in the SYSCONFIG.TXT file on the diagnostic station. If a node fails
- to boot, it is listed as a bad or failed node. A failed node shows up as an X in the display of the
showpart command.

NOTE

Do not call the nx_failed_nodes() function on more than a few
o nodes at once.

If many nodes use the nx_failed_nodes() function at the same time, the node allocator daemon can
become overwhelmed with requests. If all the nodes in your application need this information, you
should have one node make the call and then distribute the information to the other nodes.

E

|

E]

€

4

217

S | 5 L b ; i

&

Manual Pages Paragon™ System C Calls Reference Manual

NX_FAILED_NODES() (con, NX_FAILED_NODES() (cont.

Return Values

On successful completion, the nx_failed_nodes() function returns 0 (zero). Otherwise, -1 is returned
and errno is set to indicate the error.

Examples
The following example prints the list of the failed nodes in the root partition:
#include <nx.h>
main() {
nx_nodes_t failed;
unsigned long nfailed;
int i, status;
status = nx_failed_nodes (&failed, &nfailed);
if(status != 0) {
nx_perror ("nx_failed_nodes()");
exit (1) ;
}
for(i = 0; 1 < nfailed; i++) {
printf("%d\n", failed[i]);
}
free(failed) ;
}
Note the use of the & operator in the call to nx_failed_nodes().
Errors

Refer to the errno manual page for a list of errors that can occur in this system call.
Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

218

|
g

E
E

P
Gk

|
d

wa A
T

A

3

T T]
| S |

L

4

E

k|

¥

i3

[

Akl

*

e

4

E

5 ; : H

.

4

b

4

b

3

sl j] ey Sait]

i
1

H

3

4

2

Lo - Lol f

b4

-
£ o

Paragon™ System C Calls Reference Manual

NX_FAILED_NODES() (conz,

See Also

calls: mynode(), nx_app_nodes(), nx_empty_nodes()

commands: allocator, showpart

Manual Pages

NX_FAILED_NODES() (cont,)

219

Manual Pages ParagonTM System C Calls Reference Manual

NX_INITVE() NX_INITVE()

nx_initve(), nx_initve_rect(): Initializes a parallel application on a partition.

Synopsis
#include <nx.h>

long nx_initve(
char *partition,
long size,
char *account,
int *argc,
char *argv[]);

long nx_initve_rect(
char *partition,
long anchor_node,
long rows,
long cols,
char *account,
int *argc,
char *argv[]);

Parameters

partition Relative or absolute pathname of the partition in which to run the application. A
null string (“”’” or NULL) specifies using the default partition. The default partition
is the partition specified by the NX_DFLT_PART environment variable, or is the
.compute partition if the NX_DFLT_PART environment variable is not set. The
specified partition must exist and must give execute permission to the calling
process.

If the -pn switch is specified on the command line, the specified partition
pathname overrides the partition parameter, unless you set the value of argc to 0
(zero).

size Number of nodes to run the application on. A value of 0 (zero) species the default
size. The default size is the size specified by the NX_DFLT_SIZE environment
variable, or all nodes of the partition if the NX_DFLT_SIZE environment variable
is not set. The size parameter must be a non-negative integer.

220

F | | | S]

a Ea
i | 3

.
3

-
‘-:‘

e
¥

i
e w

i

W .

w
@

W
.-

Yo
-

ki
i

1.
"
A

[‘zﬂ,
&

3

i

i

T

&

Paragon™ System C Calls Reference Manual Manual Pages

NX_INITVE() (cont,) NX_INITVE() (cont.

Description

If the -sz or -nd switch is specified on the command line, it overrides the value of
the size parameter, unless you set the value of argc to 0 (zero).

account Reserved for future use. Set this parameter to NULL.

argc Pointer to an integer that is the number of arguments on the command line
(including the application name). If the argc value is 0 (zero), the command line
and all command line arguments are ignored. When nx_initve() and
nx_initve_rect() return, argc indicates the number of remaining command line

arguments after all the recognized arguments are removed from argv.

argv Array of character pointers to null-terminated strings containing the application’s
command line arguments. All recognized arguments are removed from argv.

anchor_node Node number of the node in the upper left-hand corner of the partition’s rectangle.
If the node number is -1, the allocator chooses the partition placement. For node
numbers greater than or equal to O (zero), the partition is anchored on that node.

rows Number of rows in the partition’s rectangle.

cols Number of columns in the partition’s rectangle.

The nx_initve() and nx_initve_rect() functions initialize an application to run in a specified
partition. These functions create a new, empty application. The process that calls the nx_initve() or
nx_initve_rect() function becomes the new application’s controlling process. Use the nx_initve()
and nx_initve_rect() functions as follows in an application:

e Call either function before any other Paragon system calls.

e Call either function only once.

e Use the -Inx switch to link a program that calls either function. Do not use the -nx option.

The nx_initve() and nx_initve_rect() functions just initialize a program. Use the nx_loadve(),
nx_load(), or nx_nfork() calls to start a program’s processes.

221

Manual Pages

Paragon™ System C Calls Reference Manual

NX_I NlTVE() (cont.) NX_I N |TVE() (cont.)

The nx_initve() function initializes an application to run in a specified number of nodes. Other than
specifying a size, you cannot control how the nodes for your application are allocated. The

nx_initve() function attempts to allocate a square group of nodes if it can. If this is not possible, the
nx_initve() function attempts to allocate a rectangular group of nodes that is either twice as wide as
it is high or twice as high as it is wide. If this is not possible, the nx_initve() function allocates any

available nodes. In this case, nodes allocated to the application may not be contiguous (that is, they

may not all be physically next to each other).

The nx_initve_rect() function initializes an application to run in a specified set of nodes allocated
as arectangle. You can specify the size and shape of the partition using the rows and cols parameters.
You can specify the placement of the application within its partition using the anchor_node
parameter. If you specify anchor_node to be -1, the allocator places the application wherever it fits.
The nx_initve_rect() function fails if the specified rectangle cannot be allocated, even if the
equivalent number of nodes are available in a non-rectangular shape.

The nx_initve() and nx_initve_rect() functions recognize the following command line switches for
an application: -gth, -mbf, -mea, -mex, -nd, -pkt, -plk, -pn, -pri, -sct, -sth, and -sz. See the
application manual page for a description of these switches. When a switch is recognized, the
appropriate application characteristic is set, the switch and any associated argument are removed
from argv, and the variable pointed to by argc is decremented appropriately. The remaining switches
and arguments are moved to the beginning of argv.

The nx_initve() and nx_initve_rect() functions do not recognize the command line arguments -pt,
-on, and \; application. If you want your application to have the same interface as an application
linked with the -nx switch, you must parse the argument list for these arguments and pass the
appropriate values to the nx_load() or nx_loadve() function.

The application’s scheduling priority is specified by the -pri argument in argv. If the -pri switch is
not specified or the argc parameter is 0 (zero), then the scheduling priority is set to 5.

When calling the nx_initve() and nx_initve_rect() functions, the calling process becomes the
controlling process of the application. If the calling process is not already the process group leader,
the nx_initve() and nx_initve_rect() functions disassociate the calling process from its current
process group, create a new process group, and make the calling process the process group leader of
the new process group.

The nx_initve() and nx_initve_rect() functions do not set the calling process’s ptype.

Return Values

222

>0 Number of nodes on which the application was created.

-1 An error occurred and errno is set.

=
e 4

S}

ma
[3

=]
B o

| S |
4

mo

[—

m

w .

™
o

|
B

Ea F R
B4 b

A

-
[

4

S

e s
4

w

"

N

£ 3
I . Paragon™ System C Calls Reference Manual ‘ Manual Pages
[NX_INITVE() (cont) NX_INITVE() (cont,
l « Errors

3

When -1 is returned by this function, errno is set to one of the following values:

&

EAEXIST An application has already been established for the process group.

&

k

EAINVALMBF
The memory buffer size is invalid or out of range.

EAINVALMEA
The memory each size is invalid or out of range.

EAINVALMEX
: The memory export size is invalid or out of range.

EAINVALPKT
The packet size is invalid or out of range.

| b

G

EAINVALSTH
The send threshold size is invalid or out of range.

E

EAINVALGTH
The give threshold size is invalid.or out of range.

EAOVLP A partition or application overlaps with another partition or application.
EAREJPLK An application cannot use the -plk switch in a gang-scheduled partition.

EINCOMPAT Your application’s code is no longer up to date with the current release of the
installed operating system. You must relink your application.

EPALLOCERR
An internal error occurred in the node allocation server.

i

EPACCES The application has insufficient access rights to a partition for this operation.

|

EPBADNODE A bad node was specified.

b

4

" EPINVALPRI An invalid priority value was specified.

[

EPINVALPART
The specified partition was not found.

|

¢ : 5 ‘ I i 4 ¢ t H r

b

EPXRS The request exceeds the partition resources.

223

Manual Pages Paragon™ System C Calls Reference Manual

NX_'N'TVE() (cont.) NX_'N'TVE() (cont.)

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also
ParagonTM System C Calls Reference Manual: nx_app_rect(), nx_load(), nx_nfork()

ParagonTM XP/S System Commands Reference Manual: allocator, application

224

.
| S]

| S}

il
.

..
i"‘

e

S

3

Fa Ea
&

F 3
S

4

L

L

B

E|

[

4

gy pem ma Ea b A

-
(.

[S

[T T

|
B

|] e o] R [] ——— m_— . ——
8] | g : 3 b b L i i

|

¢

B

1
|
I
|
l

4

Paragon™ System C Calls Reference Manual Manual Pages

NX_INITVE_ATTR()

NX_INITVE_ATTR()

Initializes a new application with specified attributes.

Synopsis

Parameters

#include <nx.h>

long nx_initve_attr(
char *partition,

int *argc,

char *argv(],
[int attribute, {long | char* | long *} value] ...
NX_ATTR_END);

partition

arge

argv

attribute

Relative or absolute pathname of the partition in which to run the application. A
null string (“”” or NULL) specifies the default partition. The default partition is the
partition specified by the NX_DFLT_PART environment variable, or is the
.compute partition if the NX_DFLT_PART environment variable is not set. The
specified partition must exist and must give execute permission to the calling
process.

If you use the -pn switch on the command line, the specified partition pathname
overrides the partition parameter (unless the value of argc is zero).

Pointer to an integer that is the number of arguments on the command line
(including the application name). If the argc value is zero, the command line and
all command-line arguments are ignored. When nx_initve_attr() returns, argc
indicates the number of remaining command-line arguments after all the
recognized arguments are removed from argv.

Array of character pointers to nuli-terminated strings containing the application’s
command-line arguments. All recognized arguments are removed from argv.

Attribute constant to use for creating the new partition. The attribute parameter
must be followed by the value parameter. The value parameter sets the value of
the attribute. See the “Attributes” section for the list of attribute constants you can
use with the attribute parameter.

225

Manual Pages

Paragon™ System C Calls Reference Manual

NX_INITVE_ATTR() (cont) NX_INITVE_ATTR() (ot

Description

226

value Value of the attribute specified by the attribute parameter. A value parameter must
follow each artribute parameter. The data type of the value parameter depends on
the preceding attribute parameter. See the “Attributes” section for a description of
values.

NX_ATTR_END
Constant that marks the end of the list of attribute, value pairs.

The nx_initve_attr() function initializes an application to run in a specific partition. The
nx_initve_attr() function has the functionality of the nx_initve() and nx_initve_rect() functions,
but you use attributes to specify how to initialize the application.

You specify attributes in the argument list of the function as a set of zero or more attribute, value
pairs: an attribute constant and a value. The attribute constant is the name of the attribute. The
attribute value can be either an integer, array of integers, or a character string depending on the
attribute. You use the attribute parameter to specify the attribute constant and the value parameter
to specify the value of the attribute. See the “Attributes” section for the list of the attributes that can
be set in the nx_initve_attr() function.

The nx_initve_attr() function recognizes the following command line switches for an application:
-gth, -mbf, -mea, -mex, -nd, -pkt, -plk, -pn, -pri, -sct, -sth, and -sz. See the application manual
page for a description of these switches. When a switch is recognized, the appropriate application
characteristic is set, the switch and any associated argument are removed from argv, and the variable
pointed to by argc is decremented appropriately. The remaining switches and arguments are moved
to the beginning of argv. v

The nx_initve_attr() function does not recognize the command line arguments -pt, -on, and \;
application. If you want your application to have the same interface as an application linked with
the -nx switch, you must parse the argument list for these arguments and pass the appropriate values
to the nx_load() or nx_loadve() function.

When calling the nx_initve_attr() function, the calling process becomes the controlling process of
the application. If the calling process is not already the process group leader, the nx_initve_attr()
function disassociates the calling process from its current process group, creates a new process
group, and makes the calling process the process group leader of the new process group.

The application’s scheduling priority is specified by the -pri argument in argv. If the -pri switch is
not specified or the argc parameter is 0 (zero), then the scheduling priority is set to 5.

oA
t

L
b

E 4
[

A
3 b o

Fa g oa
4

3

Ea Foa
El

B

A [S |

E

#

4

4

i i

t

L S B CE B

= o i Mo s By e B M By

Paragon™ System C Calls Reference Manual

NX_I N |TVE_ATTR() (cont.)

Attributes

Manual Pages

NX_INITVE_ATTR() (con)

The attribute parameter can be set with the following attribute constants:

Attribute Constant

NX_ATTR_ANCHOR

NX_ATTR_GTH

NX_ATTR_MBF

NX_ATTR_MEA

Description

Specifies the node number of the node in the upper
left-hand corner of the partition rectangle. The value
parameter must be of type long.

You may only specify NX_ATTR_ANCHOR when
NX_ATTR_RECT is present. If the value parameter is -1,
the system chooses the partition placement. For node
numbers greater than or equal to zero, the partition is
anchored on that node.

Specifies the threshold for the “give me more messages”
message in bytes. The value parameter must be of type
long.

If you use the -gth give_threshold switch from the
command line and argc is not zero (i.e. itis in the argc/argv
list), it overrides the value of the NX_ATTR_GTH value.

Specifies the total amount of memory allocated to message
buffers in bytes. The value parameter must be of type long.

If you use the -mbf memory_buffer switch from the
command line and argc is not zero, it overrides the value of
the NX_ATTR_MBF value.

Specifies the amount of memory allocated to buffering
messages from each other node in bytes. The value
parameter must be of type long.

If you use the -mea memory_each switch from the
command line and argc is not zero, it overrides the value of
the NX_ATTR_MEA value.

227

Manual Pages

NX_INITVE_ATTR() (con.

Attribute Constant

NX_ATTR_MEX

NX_ATTR_NOC

NX_ATTR_PKT

NX_ATTR_PLK

NX_ATTR_PRI

228

Paragon™ System C Calls Reference Manual

NX___'N'TVE_ATTR() (cont.)

Description

Specifies the total amount of memory allocated to
buffering messages from other nodes in bytes. The value
parameter must be of type long.

If you use the -mex memory_export switch from the
command line and argc is not zero, it overrides the value of
the NX_ATTR_MEX value.

Specifies the total number of other processes from which
each process expects to receive messages. The value
parameter must be of type long. The default value is the
number of nodes allocated for the application.

If you use the -noc correspondents switch from the
command line and argc is not zero, it overrides the value of
the NX_ATTR_NOC value.

Specifies the size of each message packet in bytes. The
value parameter must be of type long.

If you use the -pkt packet_size switch from the command
line and argc is not zero, it overrides the value of the
NX_ATTR_PKT value.

Specifies whether to lock the data area of each process into
memory. The value parameter must be of type long. The
value 1 locks the data area of each process into memory,
while the value O (zero) does not.

This attribute is the same as -plk in argv list. The existing
interaction between -plk and REJECT_PLK is preserved.

Specifies the priority at which the application runs. The
value parameter must be of type long.

If you use the -pri priority switch from the command line
and argc is not zero, it overrides the value of the
NX_ATTR_PRI value.

&
A

A
'

¥
-

Ea
| -

o

“

¥

E |

£

4

13

&

#

&

4

;

i

oy

4

i

r

]

¢

%

i

-

Paragon™ System C Calls Reference Manual

NX_INITVE_ATTR() (cont.)

Attribute Constant

NX_ATTR_RECT

NX_ATTR_RELAXED

NX_ATTR_SCT

NX_ATTR_STH

Manual Pages

NX_INITVE_ATTR() (con.

Description

Specifies running the application on a rectangular node set.
The value parameter must be of type long *. The value
parameter is a pointer to an array of two integers; the first
integer is the height of the rectangle, while the second is its
width.

If you specify NX_ATTR_SEL, all the nodes in the
rectangle must be consistent with the selected attributes.

If you use either a -sz or a -nd switch from the command
line and argc is not zero, it overrides the value of the
NX_ATTR_RECT value.

Specifies whether to relax the requirement that all nodes
requested must be available and eligible for allocation. The
value parameter must be of type long. The value 0 does not
relax the requirement, while the value 1 relaxes the
requirement.

If you specify a value of 1 and also use NX_ATTR_RECT
and NX_ATTR_RECT, the requirement that all requested
nodes must be allocated for the application is relaxed.

Specifies the number of bytes to send right away when the
available memory is above send_threshold. The value
parameter must be of type long.

1If you use the -sct send_count switch from the command

line and argc is not zero, it overrides the value of the
NX_ATTR_SCT value.

Specifies the send threshold for sending multiple packets.
The value parameter must be of type long.

If you use the -sth send_threshold switch from the

command line and argc is not zero, it overrides the value of
the NX_ATTR_STH value.

229

Manual Pages Paragon System C Calls Reference Manual
NX_INITVE_ATTR() (conz) NX_INITVE_ATTR() (con.)
Attribute Constant Description
NX_ATTR_SZ Specifies the size of the application (number of nodes to
run the application on).The value parameter must be of
type long.

The default for value is 0 (zero).

A value of 0 (zero) or -1 specifies using the default size set
by the NX_DFLT_SIZE environment variable, or when
NX_DFLT_SIZE is not set, is all nodes of the partition.

If you use either a -sz or a -nd switch from the command
line and argc is not zero, it overrides the value of the
NX_ATTR_SZ value.

Nodes are selected using the criteria specified by the
NX_ATTR_SEL attribute, if any. If the value of the
NX_ATTR_RELAXED attribute is specified as 1, fewer
nodes than the requested number may be allocated and the
application will run.

NX_ATTR_SEL Specifies a pointer to a node attribute string. The value
parameter must be of type char *.

If you specify multiple NX_ATTR_SEL attributes, the
result is the logical AND of all of them. Node attribute
strings are case-insensitive.

If you use the -nt node_type switch from the command line
and argc is not zero, it overrides the values of both the
NX_ATTR_SEL and NX_MKPART_ATTR_EXCL

* values.

NX_ATTR_SEL Values
The following shows the format of the value parameter for the NX_ATTR_SEL attribute.
node_attribute Selects nodes having the specified attribute. For example,
when node_attribute equals the string mp, only MP nodes

are selected. The standard node attributes are shown in the
“Node Attributes” section.

230

5
B4

o
4

b

-
LS

A

B
[y

—a pFa
| [

4

] E

L

B s

pam mem A s FA
LA |

|

fF s 8 & 4 o4 & 4 kB & p o9

i

L H

: f b ; 4 S

T]
I + . b

o . L b3 ©d e b

Paragon™ System C Calls Reference Manual

NX_INITVE_ATTR() (con,

tnode_attribute

[relop][valuelnode_attribute

ntype[,ntype]...

Manual Pages

NX_INITVE_ATTR() (cont.

Selects nodes not having the specified attribute. For
example, when node_attribute equals the string lio, only
nodes that are not I/0 nodes are selected. Note that no
white space may appear between the ! and node_attribute.

Selects nodes having a specified value or range of values
for the attribute. For example, the string >=16mb selects
nodes with 16M bytes or more of RAM. The string 32mb
selects nodes with exactly 32M bytes of RAM. And, the
string >proc selects nodes with more than one processor.

The relop can be =, >, >=, <, <=, !=, or ! (!= and ! mean the
same thing). If the relop is omitted, it defaults to =.

The value can be any nonnegative integer. If the value is
omitted, it defaults to 1.

The node_attribute can be any attribute shown in the
“Node Attributes” section, but is usually either proc or mb.
(Other attributes have the value 1 if present or 0 if absent.)

No white space may appear between the relop, value, and
attribute.

Selects nodes having all the attributes specified by the list
of ntypes, where each ntype is a node type specifier of the
form node_attribute, tnode_attribute, or
[relop][valuelnode_attribute. For example, the string
32mb, lio selects non-io nodes with 32M bytes of RAM.

You can use white space (space, tab, or newline) on either
side of each comma, but not within an ntype.

231

o
Manual Pages Paragon™ System C Calls Reference Manual b

T
o
T\

r
mo

NX_INITVE_ATTR() (conz.) | NX_INITVE_ATTR() (cont.) ..

m
Node Attributes Lu

The following shows the most common values for node_attribute. A node attribute that is indented
is a more specific version of the attribute from the previous level of indentation. For example, net
and scsi nodes are specific types of io node; enet and hippi nodes are specific types of net node (and

-
e 4

also specific types of io node). LA
..
Attribute Meaning
rl!' ™
bootnode Boot node. e
gp GP (two-processor) node.
mp MP (three-processor) node. A
mcp Node with a message coprocessor. "
nproc Node with n application processors (not counting the message coprocessor).
nmb Node with nM bytes of physical RAM. ™™
io Any I/O nodes. "y
net I/O node with any type of network interface.
enet Network node with Ethernet interface. o
hippi Network node with HIPPI interface. -
sesi I/0 node with a SCSI interface.
disk SCSI node with any type of disk. i
raid Disk node with a RAID array. -
tape SCSI node with any type of tape drive.
3480 Tape node with a 3480 tape drive. "
dat Tape node with a DAT drive. W
IDstring SCSInode whose attached device returned the specified IDstring. For example, a
disk node might have the IDstring NCR ADP-92/01 0304. o
-
Specifying the Nodes Allocated to the Application y "
. -
The nx_initve_attr() function provides the following ways to specify the nodes allocated to the
application: I
[
e Using NX_ATTR_SZ alone requests the specified number of nodes. A value of 0 or -1 requests
the number of nodes specified by $NX_DFLT _SIZE, or all the nodes of the partition if w
$NX_DFLT_SIZE is not set. '

[

%

e pea A
—

L2

232

-

al

i

Paragon™ System C Calls Reference Manual Manual Pages

NX_INITVE_ATTR() (cont) NX_INITVE_ATTR() (conz.)

NX_ATTR_SZ attempts to allocate a square group of nodes. If this is not possible, it attempts
to allocate a rectangular group of nodes that is either twice as wide as it is high or twice as high
as it is wide. If this is not possible, it allocates any available nodes. In this case, the nodes
allocated to the application may not be contiguous.

* Using NX_ATTR_RECT alone requests a rectangle of nodes specified by height and width.
The system places the rectangle within the partition.

* Using both NX_ATTR_RECT and NX_ATTR_ANCHOR requests a rectangle of nodes
specified by height and width, whose upper left corner is located at the specified anchor node.
You can place NX_ATTR_RECT and NX_ATTR_ANCHOR in any order within the
argument list. If you supply a value of -1 for NX_ATTR_ANCHOR, the system determines
the anchor node within the partition.

* Using NX_ATTR_SEL alone requests all nodes by attribute (of a specific node type) in the"
partition.

* Using NX_ATTR_SEL together with NX_ATTR_SZ, NX_ATTR_RECT, and/or
NX_ATTR_ANCHOR requests the nodes specified by the NX_ATTR_SZ,
NX_ATTR_RECT, and/or NX_ATTR_ANCHOR, all of which must have the attributes
specified by the NX_ATTR_SEL.

* Notusing NX_ATTR_SEL,NX_ATTR_SZ,NX_ATTR_RECT, or NX_ATTR_ANCHOR
requests the number of nodes specified by SNX_DFLT_SIZE. When $SNX_DFLT_SIZE is not
set, all nodes of the partition are requested.

¢ Using NX_ATTR_RELAXED with a value of 1 together with NX_ATTR_SEL,
NX_ATTR_SZ,NX_ATTR_MAP, NX ATTR_RECT, or NX_ATTR_ANCHOR requests
all the available nodes (nodes that meet the attribute requirements) in the specified node set
(requested size and/or shape), up to the number of nodes requested. For NX_INITVE_ATTR()
to return successfully, at least one of the specified nodes must be available.

You can override all the attributes with command-line switches, particularly the node set size and
location. For example, either the -sz or -nd switch overrides NX_ATTR_SZ, NX_ATTR_RECT,
and NX_ATTR_ANCHOR. If you override an attribute with a command-line switch, the effect is
as though you had specified it in the nx_initve_attr() call.

The following combinations of these attributes are invalid:

* NX_ATTR_ANCHOR without NX_ATTR_RECT.

* NX_ATTR_SZ or NX_ATTR_MAP together with NX_ATTR_RECT.

233

Manual Pages Paragon™ System C Calls Reference Manual

NX_INITVE_ATTR() (conz.) NX_INITVE_ATTR() (cont)

e NX_ATTR_RELAXED together with NX_ATTR_RECT, unless you also specify
NX_ATTR_ANCHOR with a value other than -1.

Using any of these combinations of attributes causes nx_initve_attr() to fail with the error “invalid
attribute specified.”

Examples
The following example creates an application whose characteristics (partition, number of nodes, and
so on) are determined using command-line switches. If you run this program without command-line
switches, it runs on the default number of nodes in your default partition.

#include <nx.h>

main (int argc, char *argv[]) {
int n;

n = nx_initve_attr("", &argc, argv, NX_ATTR_END) ;

}

After this call, the variable n contains the number of nodes in the new application, or a -1 if any error
occurs. The variable argc contains the count of arguments not recognized and subsequently removed
by nx_initve(). The array argv contains pointers to the arguments.

234

e 1

& o

1

e A

B

F o3
El

| .

(.

4

4 4

b

B4

g pem pea A e
B4

E oo

]

['s

4

E

4

&

%

B

4

¥

k

H

1

-

o

i

—— — — n— — —— i L} — — | —— — _— — — — L] L]
3 L b £ i th £ b 2 i i ;

B

Paragon™ System C Calls Reference Manual Manual Pages

NX_INITVE_ATTR() (conz) NX_INITVE_ATTR() (conz.)

The following example creates an application that consists of all available nodes in a rectangle 10
nodes high and 20 nodes wide whose upper left corner is node O (the upper left corner of the
partition) in the partition mypart. The example ignores any command-line switches that you provide:

#include <nx.h>
long rectl[2];

int i, n;
rect[0] = 10;
rect[1l] = 20;
i = 0;

n = nx_initve_attr ("mypart", &i, NULL,
NX_ATTR_RELAXED, 1,
NX_ATTR_RECT, rect,
NX_ATTR_ANCHOR, O,
NX_ATTR_END) ;

}
After any of these calls, the variable n contains the number of nodes in the new application, or a -1
if any error occurs.
Return Values
>0 Allocated nodes: The number of nodes allocated for the application.
-1 Error: No nodes matched the attributes specified in the attribute selector. An error

has occurred and errno has been set. Note that the error occurs even if
NX_ATTR_RELAXED is setto 1.

235

Manual Pages

Paragon™ System C Calls Reference Manual

NX_INITVE_ATTR() (cont) NX_INITVE_ATTR() (conz.)

Errors

236

When -1 is returned by this function, errno is set to one of the following values:
EAEXIST An application has already been established for the process group.

EAINVALMBF
The memory buffer size is invalid or out of range.

EAINVALMEA
The memory each size is invalid or out of range.

EAINVALMEX
The memory export size is invalid or out of range.

EAINVALPKT

The packet size is invalid or out of range.

EAINVALSTH
The send threshold size is invalid or out of range.

EAINVALGTH
The give threshold size is invalid or out of range.

EAOVLP A partition or application overlaps with another partition or application.
EAREJPLK An application cannot use the -plk switch in a gang-scheduled partition.

EINCOMPAT Your application’s code is no longer up to date with the current release of the
installed operating system. You must relink your application.

EPALLOCERR
An internal error occurred in the node allocation server.

EPACCES The application has insufficient access rights to a partition for this operation.

EPBADNODE A bad node was specified.

o A e
L . f

o4

El

F A
k

F 3
2

Lo
o

P

&

£

i

H

E

4

<

4

o

&

|

B

LS |

-

Paragon™ System C Calls Reference Manual Manual Pages

NX_INITVE_ATTR() (conz.) NX_INITVE_ATTR() (con.)

EPINVALPRI An invalid priority value was specified.

EPINVALPART
The specified partition was not found.

EPNOMATCH
Some nodes in the map or rectangle do not qualify. An attribute selector was
specified with nodes in the map or rectangle that do not.have all the specified node
attributes.

EPXRS The request exceeds the partition resources.

Limitations and Workérounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also
commands: application, chpart, Ispart, mkpart, pspart, rmpart

calls: nx_initve(), nx_mkpart_attr(), nx_mkpart_epl(), nx_rmpart()

237

Manual Pages ; Paragon™ System C Calls Referénce Manual

NX_LOAD() NX_LOAD()

nx_load(), nx_loadve(): Loads and starts an executable image.

Synopsis
#include <nx.h>

long nx_load(
long node_list[],
long numnodes,
long ptype,
long pid_list[],
char *pathname);

long nx_loadve(
long node_list[],
long numnodes,
long ptype,
long pid_list{],
char *pathname,
char *argv[],
char *envp[]);

Parameters

node_list Array of node numbers on which to load and start the executable image.

NOTE

Do not specify the same node number more than once. If you
specify the same node twice, two processes are created on the
specified node, but one of the processes is terminated shortly after
creation with the error setptype: Ptype already in use.

numnodes Number of node numbers in the node_list. If numnodes is set to -1, the application
is loaded onto all the application’s nodes (the node_list parameter is ignored).

238

LS.]

L T
& e 4 [

[|
4

B3

3
i

=
}

lm
el

R

l

ol

l uj
&l

I TN S S S S S DN SRR AN S S SRR SEN T SRS ST SN TN S S T

sl

Paragon™ System C Calls Reference Manual Manual Pages

NX_LOAD() (cont.)

Description

ptype

pathname

pid_list

argv

envp

NX_LOAD() (cont.)

Process type of the new process(es).
Pathname of the executable image to load and start.

Array of OSF/1 process IDs (PID) of the new processes. Each element of the
pid_list array identifies the process ID of the node identified by the corresponding
element of node_list. An entry of 0 (zero) indicates that the process on the
corresponding node was not started successfully. The pid_list array must be the
size of the number of nodes used in the application.

If the numnodes parameter equals -1, the first element of the pid_list array equals
the PID of node 0, the second element of the pid_list array equals the PID of node
1, and so on for all the nodes in the system.

The argument vector pointer to pass to the executable image’s new processes
(corresponds to the argv parameter of the OSF/1 execve(2) system call).

The environment vector pointer to pass to the executable image’s new processes
(corresponds to the env parameter of the OSF/1 execve(2) system call).

The nx_load() and nx_loadve() functions load and start an executable image on the nodes specified
by the node_list parameter. The nx_loadve() function is just like the nx_load() function except it
lets you specify the argument list and environment variables for the new process. These calls can
only be made after the calling process makes an initial nx_initve() call.

The nx_load() and nx_loadve() functions return immediately to the calling process. Use
nx_waitall() to wait for processes created by nx_load() and nx_loadve().

Return Values

>0

-1

Number of nodes on which the executable image was loaded and started
successfully.

Error; errno is set.

239

Manual Pages Paragon™ System C Calls Reference Manual

NX__LOAD() (cont.) NX_LOADO (cont.)

NOTE

Itis possible that loading and starting the executable image could
fail on more than one node, and that each failure could be for a
different reason. In such a case, the value of errno reflects only
‘one of the failures, and it is not possible to determine which one.
Errors
When -1 is returned by this function, errno is set to one of the following values:

EPALLOCERR An internal error occurred in the node allocation server.

EPBADNODE The specified node is a bad node.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also
nx_initve(), nx_nfork(), nx_waitall(), setptype()

OSF/1 Programmer’s Reference: execve(2)

240

e oA

|

| B |

LR T S T S I
'3

Ed = L - F 3
L 1 3 B i

B
'S

‘-

]

|

%

-

l i Paragon"'I System C Calls Reference Manual Manual Pages
' "

l. NX_MKPART() NX_MKPART()
l © nx_mkpart(), nx_mkpart_rect(), nx_mkpart_map(): Creates a new partition.

l Synopsis

[- #include <nx.h>

long nx_mkpart(
char *partition,
long size,
long type);

—_ <
] k

long nx_mkpart_rect(
char *partition,

I
£ 4

long rows,
- long cols,
I J long #ype);

long nx_mkpart_map(
char *partition,
long numnodes,
long node_list[],

long type);

L s 4 A [

Parameters

——

partition New partition’s relative or absolute pathname. The new partition must not exist.
The parent partition of the new partition must exist and must give the calling
process write permission.

—
& i

size Number of nodes for the new partition, or -1 to specify all nodes of the parent
partition. If you specify a size smaller than the number of nodes in the parent
partition, the system selects the nodes that make up the new partition and the
nodes are not necessarily contiguous.

— []
& H £ 4

type New partition’s scheduling type: NX_STD specifies standard scheduling and
NX_GANG specifies gang scheduling. The scheduling type names are specified
in the nx.h include file. See the ParagonTM System User’s Guide for more
information about partitions and scheduling.

-

rows Number of rows in the new partition.

lv 241
|

—
® ol

Manual Pages

Paragon™ System C Calls Reference Manual

NX_MKPART() (con.) NX_MKPART() (con.)
cols Number of columns in the new partition. |
numnodes Number nodes in the parent partition available to the new partition.
node_list Array of node numbers that list the nodes in the parent partition available to the

Description

new partition. Do not specify the same node number more than once.

The nx_mkpart(), nx_mkpart_rect(), or nx_mkpart_map() functions create partitions for your
application programs. The nx_mkpart() function creates a partition with a specified number of
nodes. The system selects the shape of the partition and the nodes that make up the partition. The
nodes are not necessarily contiguous.

The nx_mkpart_rect() function creates a partition with a rectangular shape and a specified number
of rows and columns. The system allocates the rectangular partition where it can in the parent
partition.

The nx_mkpart_map() function creates a partition with a specified list of nodes. You pass the
numnodes and nodelist parameters to specify the number of nodes and the list of nodes to use for the
new partition. The node numbers listed in the nodelist must exist and be available in the parent
partition The system allocates the nodes for the new partition from the nodelist only.

When you create a partition with the nx_mkpart...() functions, the new partition gets default
characteristics. The partition’s owner and group are set to the owner and group of the calling process.
All other characteristics including the effective priority limit, protection mode, and rollin quantum
are set to the same values as the parent partition. If you want to change a partition’s characteristics,
use the nx_chpart...() functions.

Return Values

242

>0 Number of nodes allocated for the partition.

-1 Error; errno is set.

| |

g
_—

.
e 4

k]

L
E

A | i} []
® ?

o
-

{M""_\

[-

L

m
[-]

. N
.

=
b

4

|
¢

£

4

#

]

|2

H

i

&

&
&

#

€

%

1

[=] [

i

i
L

3

¢

3

£

b

£ 5 2 i [i z

——
[

I
l”’?
u

Paragon™ System C Calls Reference Manual Manual Pages
NX_MKPART() (cont, NX_MKPART() (cont.
Errors

When -1 is returned by this function, errno is set to one of the following values:
EPACCES The application has insufficient access permission on a partition.
EPALLOCERR An internal error occurred in the node allocation server.

EPBADNODE The specified node is a bad node or is not present in the partition. You specified
the same node number more than once in the node_list parameter.

EPBXRS Partition request contains bad or missing nodes.

EPINVALPART
The specified partition (or its parent) does not exist.

EPLOCK Partition is currently in use or being updated.

EPPARTEXIST
The specified partition already exists.

EPXRS Request exceeds the partition’s resources.

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

chpart, Ispart, mkpart, nx_chpart(), nx_rmpart(), pspart, rmpart

243

Manual Pages Paragon™ System C Calls Reference Manual

NX_MKPART_ATTR() NX_MKPART_ATTR()

Creates a new partition with specified attributes.

Synopsis
#include <nx.h>

long nx_mkpart_attr(
char *partition,
[int attribute, {long | char * | long *} value,] ...
NX_ATTR_END);

Parameters

partition New partition’s relative or absolute pathname. The new partition must not exist.
The parent partition of the new partition must exist and must give the calling
process write permission.

attribute Attribute constant to use for creating the new partition. The attribute parameter
must be followed by the value parameter which sets the value of the attribute. See
the “Attributes” section for the list of attribute constants you can use with the
attribute parameter.

value Value of the attribute specified by the attribute parameter. A value parameter must
follow each attribute parameter. The data type of the value parameter depends on
the preceding attribute parameter. See the “Attributes” section for a description of
the values for the

NX_ATTR_END
Constant that marks the end of the list of attribute, value pairs.

Description

The nx_mkpart_attr() function provides the functionality of the nx_mkpart(), nx_mkpart_rect(),
or nx_mkpart_map() functions to create partitions for your application programs.

The nx_mkpart_attr() function creates a partition using attributes that specify the partition’s
characteristics. You specify the attributes in the function’s argument list. An attribute consists of an
attribute constant and a value. The attribute constant is the name of the attribute. The attribute value
can be either an integer, array of integers, or a character string depending on the attribute. You use
the attribute parameter to specify the attribute constant and the value parameter to specify the value
of the attribute. See the “Attributes” section for the list of the attributes that can be set in the
nx_mkKkpart_attr() function.

244

|

A g
[

1 3

|

LS |

=l
E

E 2
3 E]

A
-

F o

7
%

1

4

Paragon™ System C Calls Reference Manual Manual Pages

F

£

[

s

4

E

NX_MKPART_ATTR() (cont. NX_MKPART_ATTR() (cont)

]

When you create a partition with the nx_mkpart_attr() function, the new partition gets default
characteristics. The partition’s owner and group are set to the owner and group of the calling process.
Other characteristics including the effective priority limit, protection mode, and rollin quantum are
set, by default, to the same values as the parent partition, but can be changed using attributes.

3

E

£

Attributes

The attribute parameter can be set with the following attribute constants. The values for the value
parameter are described in the “Description” column.

Attribute Constant Description
NX_ATTR_ANCHOR Specifies the upper-left corner of a rectangular partition

when used with the NX_ATTR_RECT attribute. The
value parameter must be of type long.

i

If NX_ATTR_SEL is specified, the selected attributes .
must be consistent with all nodes in the list unless
NX_ATTR_RELAXED is specified.

¢

NX_ATTR_EPL Specifies the effective priority limit of the new partition.
The value parameter must be of type long and be an integer
that ranges from 0 to 10, inclusive (0 is low priority, while
10 is high).

i

The new partition uses gang scheduling. NX_ATTR_EPL
can be used with or without NX_ATTR_SCHED.
However, if NX_ATTR_SCHED is present, it must be set
to NX_GANG or NX_SPS. If NX_ATTR_EPL is not
specified, and the partition is to be gang scheduled
(NX_ATTR_RQ or NX_ATTR_SCHED equals
NX_GANG or NX_SPS), the partition has the same
effective priority limit as its parent.

iy
)

]

NX_ATTR_MAP Specifies a set of nodes to use for a partition. The value
parameter must be of type long *. It functions as a pointer
to an array of node numbers.

4

3

NX_ATTR_SZ must also be specified to give the length of
the array, but need not precede it in the list of arguments. If
NX_ATTR_SEL is specified, the selected attributes must
be consistent with all nodes in the list unless
NX_ATTR_RELAXED is specified. Do not specify the
same node number more than once.

4

£

o

[T

S

245

Manual Pages

NX_MKPART_ATTR() (cont.

Attribute Constant

NX_ATTR_MOD

NX_ATTR_RECT

NX_ATTR_RELAXED

NX_ATTR_RQ

NX_ATTR_SCHED

246

Paragon™ System C Calls Reference Manual

NX_MKPART_ATTR() (cont,)

Description

Specifies the protection modes for the partition. The value
parameter must be of type long.

Specifies a rectangular partition. The value parameter must
be of type long *. It functions as a pointer to an array of
two integers; the first integer is the height of the rectangle
and the second integer is its width.

If NX_ATTR_SEL is specified but
NX_ATTR_RELAXED is not, the selected attributes
must be consistent with all nodes in the rectangle.

Specifies whether to relax the requirement that all nodes
requested must be available and eligible for allocation. The
value parameter must be of type long. The value of 0 has
no effect; the value of 1 relaxes the requirement.

Specifies the rollin quantum for the new partition.The
value parameter must be of type long. It specifies
milliseconds and must not be larger than 86,400,000 (24
hours). A value of 0 means infinite; once rolled in, an
application runs to completion.

NX_ATTR_RQ can be used with or without
NX_ATTR_SCHED. However, if NX_ATTR_SCHED
is present, it must be set to NX_GANG. If
NX_ATTR_RQ is not specified, and the partition is to be
gang scheduled (NX_ATTR_SCHED equals
NX_GANG), the partition has the same rollin quantum as
its parent. '

Specifies the new partition's scheduling type. The value
parameter must be of type long. It must be NX_STD for
standard, NX_SPS for space sharing or NX_GANG for
gang scheduling. If you do not specify a type, it defaults to
that of the parent partition. The scheduling type names are
specified in the nx.h include file. See the ParagonTM System
User’s Guide for more information about partitions and
scheduling.

Eow e g
|] [|

e 4

[L |
4

L
¢

i)
B

o
4

f

Mmoo
-

M
"

me

-

=a E
E)

g

k|

e wa
3

"
i)

k4
&

-

k

!

g

E

2

E

3

#

¢ v L . 4 é .

-y e
T [

Paragon™ System C Calls Reference Manual

NX_MKPART_ATTR() (cont.

Attribute Constant

NX_ATTR_SZ

NX_ATTR_SEL

NX_ATTR_SEL Values

Manual Pages

NX_MKPART_ATTR() (ot

Description

Specifies the number of nodes in the new partition. The
value parameter must be of type long. A 0 (zero) or -1 for
value requests that all nodes in the parent partition that
meet the criteria specified by NX_ATTR_SEL be
allocated. If value is smaller than the parent partition is
specified, the nodes are selected by the system and are not
necessarily contiguous.

A pointer to a Node Attribute string. The value parameter
must be of type char *.

If you specify multiple NX_ATTR_SELs, the Attribute
Selector is the logical and of all of them. Node Attribute .
strings are case-insensitive. The Node Attribute string may
consist of a comma-separated list of selectors. See the
“NX_ATTR_SEL Values” section for information on how
to specify value.

The following shows the format of the value parameter for the NX_ATTR_SEL attribute.

node_attribute

tnode_attribute

Selects nodes having the specified attribute. For example,
when node_attribute equals the string mp, only MP nodes
are selected. The standard node attributes are shown in the
“Node Attributes” section.

Selects nodes not having the specified attribute. For
example, when node_attribute equals the string lio, only
nodes that are not I/O nodes are selected. Note that no
white space may appear between the ! and node_attribute.

247

Manual Pages Paragon™ System C Calls Reference Manual

A
- [|

[

L3 |

| =]
4

NX_MKPART_ATTR() (conz) NX_MKPART_ATTR() (cont.)

[relop][valuelnode_attribute Selects nodes having a specified value or range of values
for the attribute. For example, the string >=16mb selects
nodes with 16M bytes or more of RAM. The string 32mb
selects nodes with exactly 32M bytes of RAM. And, the
string >proc selects nodes with more than one processor.

L
'

[=]
| S

The relop canbe =, >, >=, <, <=, !=, or! (!= and ! mean the
same thing). If the relop is omitted, it defaults to =.

= .
E

The value can be any nonnegative integer. If the value is : :

omitted, it defaults to 1. -

The node_attribute can be any attribute shown in the i ﬁ

“Node Attributes” section, but is usually either proc or mb. =

(Other attributes have the value 1 if present or O if absent.) _—

No white space may appear between the relop, value, and “.
attribute.

wo

ntype[,ntypel]... Selects nodes having all the attributes specified by the list .

of ntypes, where each ntype is a node type specifier of the .

form node_attribute, 'node_attribute, or L

[relop][valuelnode_attribute. For example, the string i

32mb, lio selects non-io nodes with 32M bytes of RAM. _—

You can use white space (space, tab, or newline) on either .

side of each comma, but not within an ntype. v

.

i

.

i

-

M,. ™

& .

248 [“ﬂ
&

4

¥

i 4 i A

! B e H % 4

i k]

El

i € A &

L

3 i

d

i

4

ke

4

—— [| [] —— ——— —
L E| 3 : 3

L

Paragon™ System C Calls Reference Manual

NX_MKPART_ATTR() (cont.

Node Attributes

Manual Pages

NX_M KPART_ATTR() (cont.)

The following shows the most common values for node_attribute. A node attribute that is indented
is a more specific version of the attribute from the previous level of indentation. For example, net

and scsi nodes are specific types of io node; enet and hippi nodes are specific types of net node (and
also specific types of io node).

Attribute

bootnode
gp
mp
mep
nproc
nmb
io
net
enet
hippi
scsi
disk
raid
tape
3480
dat
IDstring

Meaning

Boot node.

GP (two-processor) node.

MP (three-processor) node.

Node with a message coprocessor.

Node with n application processors (not counting the message coprocessor).

Node with nM bytes of physical RAM.
Any I/O nodes.

I/0 node with any type of network interface.
Network node with Ethernet interface.
Network node with HIPPI interface.
1/O node with a SCSI interface.

SCSI node with any type of disk.

Disk node with a RAID array.

SCSI node with any type of tape drive.
Tape node with a 3480 tape drive.
Tape node with a DAT drive.

SCSI node whose attached device returned the specified IDstring. For example, a

disk node might have the IDstring NCR ADP-92/01 0304.

Specifying the Nodes Allocated to the Partition

nx_mkpart_attr() provides the following ways to specify the nodes allocated to the partition:

* Using NX_ATTR_SZ alone requests the specified number of nodes. A value of 0 or -1 requests
all the nodes in the parent partition.

NX_ATTR_SZ attempts to create a square partition. If this is not possible, it attempts to create
a rectangular partition that is either twice as wide as it is high or twice as high as it is wide. If
this is not possible, it uses any available nodes. In this case, the nodes allocated to the partition
may not be contiguous.

¢ Using both NX_ATTR_MAP and NX_ATTR_SZ requests the specified list of nodes.
NX_ATTR_MAP and NX_ATTR_SZ can appear in any order in the argument list.

249

Manual Pages

NX_MKPART_ATTR() (con,)

Paragon™ System C Calls Reference Manual

NX__M KPART__A-ITRO (cont.)

Using NX_ATTR_RECT alone requests a rectangular partition of the specified height and
width. The system places the rectangle within the parent partition.

Using both NX_ATTR_RECT and NX_ATTR_ANCHOR requests a rectangular partition of
the specified height and width, whose upper left corner is located at the specified anchor node
within the parent partition. NX_ATTR_RECT and NX_ATTR_ANCHOR can appear in any
order in the argument list. If the value of NX_ATTR_ANCHOR is -1, the system determines
the anchor node within the parent partition. '

Using NX_ATTR_SEL alone requests all the nodes by attribute (of a specified node type) in
the parent partition.

Using NX_ATTR_SEL together with NX_ATTR_SZ, NX_ATTR_MAP,
NX_ATTR_RECT, and/or NX_ATTR_ANCHOR requests the nodes specified by the
NX_ATTR_SZ, NX_ATTR_MAP, NX_ATTR_RECT, and/or NX_ATTR_ANCHOR, all
of which must have the node type specified by the NX_ATTR_SEL.

Not using NX_ATTR_SEL, NX_ATTR_SZ, NX_ATTR_MAP, NX_ATTR_RECT, or
NX_ATTR_ANCHOR requests all the nodes in the parent partition.

Using NX_ATTR_RELAXED with a value of 1 together with NX_ATTR_SEL,
NX_ATTR_SZ,NX ATTR_MAP,NX ATTR_RECT, or NX_ ATTR_ANCHOR requests
all the available nodes (nodes that meet the attribute requirements) in the specified node set
(requested size and/or shape), up to the number of nodes requested. For

NX_MKPART_ATTR() to return successfully, at least one of the specified nodes must be
available.

The following combinations of these attributes are invalid:

NX_ATTR_MAP without NX_ATTR_SZ.
NX_ATTR_ANCHOR without NX_ATTR_RECT.
NX_ATTR_SZ or NX_ATTR_MAP together with NX_ATTR_RECT.

NX_ATTR_RELAXED together with NX_ATTR_RECT, unless you also specify
NX_ATTR_ANCHOR with a value other than -1.

Using any of these combinations of attributes causes nx_mkpart_attr() to fail with the error
“invalid attribute specified.”

250

F_?
e

4

T
=

|

[

F A B4
| R B |

4 b

3

3

b]

k]

A Ea ga pA pa
t

[

B

e B)
L

4

.2

)

4

E

3

E

¥

5

T L) —_— —— T — —
5 S a

—
: 4

Lo LA

E

3

o |

[i

Paragon™ System C Calls Reference Manual Manual Pages

NX_MKPART_ATTR() (con.) NX_MKPART_ATTR() (conz.)

Examples

The following example creates a new partition called newpart (using a relative partition pathname)
whose parent partition is the .compute partition. The new partition consists of all the nodes in the
.compute partition and has the same scheduling type, rollin quantum, and effective priority limit as
the .compute partition. In this example (and those following), the variable r is assigned the number
of nodes in the new partition, or -1 if any error occurred.

include <nx.h>
int n;

n = nx_mkpart_attr ("newpart", NX_ATTR_END) ;

}

The following example creates a new space-shared partition called mypart (using an absolute
partition pathname) whose parent partition is the .compute partition and which has 54 nodes:

#include <nx.h>
int n;

n = nx_mkpart_attr(".compute.mypart",
NX_ATTR_SZ, 54,
NX_ATTR_SCHED, NX_SPS,
NX_ATTR_END) ;

251

Manual Pages

NX_MKPART_ATTR() (ot

252

Paragon™ System C Calls Reference Manual

NX_M KP ART_ATTR() (cont.)

The following example creates a new gang-scheduled partition called rect whose parent partition is
mypart. It is 3 nodes high and 4 nodes wide, and has its upper left corner at node 1 of mypart. It has
a rollin quantum of 600,000 milliseconds (10 minutes) and the same effective priority limit as
mypart:

#include <nx.h>
long rect([2];

int n;
rect[0] = 3;
rect[1l] = 4;

n = nx_mkpart_attr(".compute.mypart.rect",
NX_ATTR_RECT, rect,
NX_ATTR_ANCHOR, 1,
NX_ATTR_RQ, 600000,
NX_ATTR_END) ;

}

The following example creates a new gang-scheduled partition called corners whose parent partition
is rect and consists of the four corner nodes of rect. It has an effective priority limit of 3. All other
characteristics are the same as rect:

#include <nx.h>
long nodes(4];
int n;

nodes[0] = 0;
nodes[1l] = 3;
nodes|[2] = 8;
nodes (3] = 11;
n = nx_mkpart_attr(".compute.mypart.rect.corners",
NX_ATTR_MAP, nodes,
NX_ATTR_Sz, 4,
NX_ATTR_EPL, 3,
NX_ATTR_END) ;

A e e
B

|

e
E

L
A

s
| S

¥ A
b

[

-

E

B3 5
4 i

=
e =

M

| = | o B
[|

B

e |
A oA

#*

13

*

|3

E

e 4

4 1

|
A

ja

i

i

B

i

L

E

!.! |] — (—— I- iﬁ-) —— _—] - ey — —— ——— — — I-q —
a i i b [T | ‘ Loz & : 5

¥

Paragon™ System C Calls Reference Manual Manual Pages

NX_MKPART_ATTR() (conz,)

NX_M KPART_ATI'R() (cont.)

The following example creates a new partition called bigmem whose parent partition is the .compute
partition and consists of all available nodes with 64M bytes or more of physical RAM. All other
characteristics of bigmem are the same as those of the .compute partition:

include <nx.h>
int n;

n = nx_mkpart_attr ("bigmem",
NX_ATTR_SEL, ">=64mb",
NX_ATTR_RELAXED, 1,
NX_ATTR_END) ;

Return Values

Errors

>0 Allocated nodes: The number of nodes allocated for the partition.
-1 Error: No nodes matched the attributes specified in the attribute selector. An error

has occurred and errno has been set. Note that the error occurs even if
NX_ATTR_RELAXED is setto 1.

When -1 is returned by this function, errno is set to one of the following values:

EINVAL Invalid attribute specified in the attribute parameter, including error in the Some
nodes in the map or rectangle do not qualify attribute selector.

EPACCES The application has insufficient access permission on a partition.

EPALLOCERR
An internal error occurred in the node allocation server.

EPBADNODE The specified node is a bad node or is not present in the partition.

EPBXRS Partition request contains bad or missing nodes.

253

Manual Pages Paragon™ System C Calls Reference Manual
NX_MKPART_ATTR() (cont. NX_MKPART_ATTR() (cont.
EPINVALPART
The specified partition (or its parent) does not exist.
EPLOCK Partition is currently in use of being updated.
EPNOMATCH

Some nodes in the map or rectangle do not qualify. An attribute selector was
specified with nodes in the map or rectangle that do not.have all the specified node
attributes.

EPPARTEXIST
The specified partition already exists.

EPXRS Request exceeds the partition’s resources.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also
commands: application, chpart, Ispart, mkpart, pspart, rmpart

calls: nx_mkpart_epl(), nx_rmpart()

254

"
A

ki
il

H

oA
- S

|

B A

Ea
E|

LI

I

L
b

4

b

¥4

[.

| S

&
l

Iy
-

T D [TS T AN TN SRS CRE RN SR BN S

{ v { i s .

B 1 T

|

Paragon™ System C Calls Reterence Manual Manual Pages

NX_NFORK() NX_NFORK()

Forks the calling process and creates an application’s processes.

Synopsis
#include <nx.h>

long nx_nfork(
long node_list(],
long numnodes,

long ptype,
long pid_list[]);
Parameters

node_list Array of node numbers on which to fork the calling process.

NOTE

Do not specify the same node number more than once. If you
specify the same node twice, two processes are created on the
specified node, but one of the processes is terminated shortly after
creation with the error setptype: Ptype already in use.

numnodes Length of the node_list array (that is, the number of nodes on which to fork the
calling process). If you set the numnodes parameter to -1, the nx_nfork() uses all
the nodes of the application and ignores the node_list parameter.

ptype Process type of the new process(es).

255

Manual Pages

Paragon™ System C Calls Reference Manual

NX_NFORK() (cont. ~ NX_NFORK() (ot

Description

pid_list Array in which nx_nfork() records the OSF/1 process IDs of the new processes.
Each element of the pid_list array contains the OSF/1 process ID of the process
that was forked on the node identified by the corresponding element of the
node_list array. An entry of 0 (zero) indicates that the process on the
corresponding node was not forked successfully. Valid pid_list values exist only
for the calling process. The values in the pid_list arrays of any child processes
created by nx_nfork() are invalid.

If the numnodes parameter equals -1, the first element of the pid_list array equals
the PID of node 0, the second element of the pid_list array equals the PID of node
1, and so on for all the nodes in the system.

The nx_nfork() function forks the calling process onto the nodes specified by the node_list
parameter. The fork operation copies the calling process onto a specified set of nodes with a
specified process type. It creates one child process for each specified node. The nx_nfork() function
is similar to the OSF/1 fork() call, except that it can fork processes onto multiple nodes and specifies
a process type for the child processes. This call can only be made after an initial nx_initve() call.

Return Values

256

If the fork succeeds:

e The parent process receives a value that indicates the number of child processes that were
created (that is, the number of nodes on which the process was forked).

¢ Each child process receives the value 0 (zero).
If the fork fails:
* The calling process receives the value -1.

* Each successfully created child process receives the value 0 (zero).

NOTE

It is possible that the fork could fail on more than one node, and
that each failure could be for a different reason. In such a case, the
value of erro reflects only one of the failures, and it is not possible
to determine which one.

Eo2

-

-

™
-

i

4

¥

b

A

v

4

E

%

4 [3

2

1

{

i

L § E

3

. |

[

L |

ParagonTM System C Calls Reference Manual

Manual Pages

NX_N FORK() (cont.) NX___N FOR K() (cont.)

Errors

When -1 is returned by this function, errno is set to one of the following values:

EPALLOCERR An internal error occurred in the node allocation server.

EPBADNODE The specified node is a bad node.

Limitations and Workarounds
For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also
nx_initve(), nx_load(), setptype()

OSF/1 Programmer’s Reference: fork(2)

257

Manual Pages Paragon™ System C Calls Reference Manual

NX_PART_ATTR() NX_PART_ATTR()

Returns information about a partition.

Synopsis
#include <nx.h>
int nx_part_attr(
char *partition,
nx_part_info_t *attributes);
Parameters
partition Relative or absolute pathname of a partition. The partition must exist and give
read permission to the calling process.
attributes Pointer to an nx_part_info_t structure that contains information about the
partition specified by the partition parameter. The nx_part_info_t type is defined
in the include file allocsys.k (included in the include file nx. /). You must allocate
space for this structure.
Description
The nx_part_attr() function returns the partition characteristics of the partition specified by the
partition parameter.
The nx_part_info structure includes the following fields:
uid User ID for the partition’s owner.
gid Group ID for the partition’s owner.
access Access permissions for the partition. A three-digit octal number.
sched Scheduling type for the partition (defined in nx.h):
NX_GANG Gang scheduling.
NX_SPS Space sharing.
NX_STD Standard scheduling.
258

E |

3

B4

A Eam pem Ew
S

L |

-
[

Eoa
4

3
.

b

4

b ¥4 b

E

b

A pa Ba pFEa k%
4

| S

oy
-

E 9

B i . N Y
{] 4 L A # 4 €

1

* _

i

: i L | L 1 i

H

]

&

4

3

B

-

Paragon" System C Calls Reference Manual Manual Pages
NX_PART_ATTR() (con) NX_PART_ATTR() (con.
rq Rollin quantum for the partition. The value is 0 (zero) for a standard-scheduled or

space-shared partition.

epl Effective priority limit for the partition. The value is 0 (zero) for a
standard-scheduled partition.

nodes Number of nodes in the partition.

mesh_x Width of the partition (columns). This is set only if the node set is a contiguous
rectangle.

mesh_y Height of the partition (rows). This is set only if the node set is a contiguous
rectangle.

enclose_mesh_x Width of the smallest rectangle that completely encloses the partition.

enclose_mesh_y Height of the smallest rectangle that completely encloses the partition.

Return Values
On successful completion, the nx_part_info() function returns 0 (zero). Otherwise, -1 is returned
and errno is set to indicate the error.

Example
The following example prints the rollin quantum and effective priority limit for the partition mypart:

#include <nx.h>
main () {

nx_part_info_t info;
int status;

status = nx_part_attr("mypart", &info);

if(status != 0) {
nx_perror ("nx_part_attr()");
exit (1) ;

}

printf("rg = %d, epl = %d\n", info.rq, info.epl);
}

Note the use of the & operator on the structure info in the call to nx_part_attr().

259

Manual Pages Paragon" System C Calls Reference Manual
NX_PART_ATTR() (con) NX_PART_ATTR() (con,
Errors
EPACCES The application has insufficient access permission on a partition.
EPINVALPART

The specified partition (or its parent) does not exist.
Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

chpart, Ispart, nx_chpart_epl(), nx_pspart(), nx_part_nodes(), pspart, showpart

260

[e

E 4

-

B
W

&
b

"

mm
o

o

-

M

.

L
w

i
"

¥
& .

H"‘l
e .

a_
i
&

i
¥

-

¥

]
5

I8

Eo

_,u

1

f

SR : B ? :

L |

Bl

Paragon™ System C Calls Reference Manual Manual Pages

NX_PART_NODES() NX_PART_NODES()

Returns the root partition node numbers for a partition.

Synopsis
#include <nx.h>
int nx_part_nodes(
char *partition,
nx_nodes_t *node_list,
unsigned long *list_size);
Parameters
partition Relative or absolute pathname of a partition. The specified partition must exist and
must give read permission to the calling process.
node_list Pointer variable into which the nx_part_nodes() function stores the address of the
list of nodes in partition. The call allocates memory for this parameter. Free this
memory using the free() function.
list_size Address of a variable into which the nx_part_nodes() function stores the number
of elements in the node_list array.
Description

The nx_part_nodes() function returns the root partition node numbers for the partition specified by
the partition parameter.

Return Values

On successful completion, the nx_part_nodes() function returns 0 (zero). Otherwise, -1 is returned
and errno is set to indicate the error.

261

Manual Pages Paragon™ System C Calls Reference Manual
NX_PART_NODES() (cont) 'NX_PART_NODES() (cont,
Examples

The following example prints the root node numbers for the partition mypart:

#include <nx.h>

main () {
nx_nodes_t mynodes;
unsigned long nnodes;
int i, status;

status = nx_part_nodes ("mypart", &mynodes, &nnodes);

if(status != 0) {
nx_perror ("nx_part_nodes() ") ;
exit (1) ;
}
for(i = 0; 1 < nnodes; 1i++) {
printf ("%d\n", mynodes[i]);
}
free (mynodes) ;
}
Errors
EPACCES The application has insufficient access permission on a partition.
EPINVALPART

The specified partition (or its parent) does not exist.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/Jusr/share/release_notes.

See Also

mynode(), nx_app_nodes(), nx_empty_nodes(), nx_failed_nodes()

262

.

e 4

4

3

4

3

A

Fa mma pa poa
B

3

£
t |

|

|

= =
4 e

.
4

t

5

®© o E 4 £

E

%

E

—_—

3

: 4 i

K

[] [] |] ———]
i I | £

8

Paragon’" System

NX_PERR

C Calls Reference Manual Manual Pages

OR() NX_PERROR()

Print an error message corresponding to the current value of errno.

Synopsis

Parameters

Description

Errors

Limitations

#include <nx.h>
#include <errno.h>

void nx_perror(
char *string);

string String that contains the name of the program or function that caused the error.

Other than additional errors and the error message format, nx_perror() is identical to the OSF/1
perror() call. See perror(2) in the OSF/I Programmer’s Reference.

There is a standard error message for each value of errno, which you can print out by calling
nx_perror(). nx_perror() prints its argument (any string), the current node number and process
type, and the error message associated with the current value of errno to the standard error output in
the following format:

(node n, ptype p) string: error_message

The include file errno.h declares errno and defines constants for the possible errno values.
Refer to the errno manual page for a complete list of error codes that occur in the C underscore

system calls.

and Workarounds

For information about limitations and workarounds, see the release notes files in
" Jusr/share/release_notes.

263

Manual Pages

NX_PERROR() (con.

See Also

errno

OSF/1 Programmer’s Reference: perror(2)

264

Paragon™ System C Calls Reference Manual

NX___PERROR() (cont.)

| SR

o

Ew A pew
E A

{
E

|

A
k

]\"\"‘

e

"
P

o
-
[

LA
w

4

13

4

3

4

B pa Ba A
B4

¥

B4 | |

L I

“

¥

4

E

4

3

s

: : ¢ 1 L

;_W -«,
i 4 ; i

i

e i
¢ S

,A_W

i

4

E

4

L

L i i : i :
&] 1 i i

L |

Paragon™ System C Calls Reference Manual Manual Pages

NX_PRI()

NX_PRI()

Sets the priority of an application.

Synopsis

Parameters

Description

#include <nx.h>

long nx_pri(
long pgroup,
long priority);

pgroup Process group ID for the application, or 0 (zero) to specify the application of the
calling process. If the specified process group ID is not a process group ID of the
calling process, the calling process’s user ID must either be root or the same user
ID as the specified application.

priority New priority for the application, an integer from 0 (lowest priority) to 10 (highest
priority) inclusive.

An application runs in a partition with a priority. The priority determines how and when the
application is scheduled to run in the partition. The nx_pri() function sets an application’s priority.
An application’s priority can range from O (low priority) to 10 (high priority), inclusive; an
application with the higher priority takes scheduling precedence over applications with lower
priorities. See the ParagonTM System User’s Guide for more information on scheduling and an
application’s priority.

If you do not call nx_pri() and you do not use the -pri switch with your application, the default
priority is 5.

Return Values

>0 No errors; priority successfully set.

-1 Error; errno is set.

265

Manual Pages Paragon™ System C Calls Reference Manual
NX_PRI() (cont.) NX__PRI() (cont.)
Errors

When -1 is returned by this function, errno is set to one of the following values:

EANOEXIST The specified process group is an invalid value. For example, you specified a
negative number for the process group value.

EPALLOCERR An internal error occurred in the node allocation server.
EPERM The calling process does not have permission to change the application’s priority.
EPINVALPRI The specified priority is out of the range of priority values.

ESRCH The specified process group does not exist.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes. ‘

See Also

nx_chpart(), nx_initve(), nx_nfork(), nx_load()

266

Fa
E 4

=
3%

£ a
b

N*"\
"

o
-

Mo
Ca.
™3

"

.
@

A

3

%

L3

]

i
E

%

L]

i i | H i & L)

]

&

4

L S

—
{ i}

o

4

4

b

A4

[| i S

E

!

Paragon™ System C Calls Reference Manual Manual Pages

NX_PSPART()

NX_PSPART/()

Returns information about the applications and active partitions in a specified partition.

Synopsis

#include <sys/time.h>
#include <nx.h>

int nx_pspart(

char *partition,
nx_pspart_t **pspart_list,
unsigned long *list_size);

Parameters

partition

pspart_list

list_size

Description

Relative or absolute pathname of a partition. The specified partition must exist and
must give read permission to the calling process.

Pointer variable into which the nx_pspart() function stores the address of an array
of nx_pspart_t structures. Each structure contains information about an
application or active partition in the partition specified by the partition parameter.
The nx_pspart_t type is defined in the include file allocsys.h, which is included
by the include file nx.h. The call allocates memory for this parameter. Free this
memory using the free() function.

Pointer variable into which the nx_pspart() function stores the number of
elements in the pspart_list parameter.

The nx_pspart() function provides information about the status of the applications and active
partitions in a specified partition. The nx_pspart_t structure contains the following information:

object_type

object_id

uid

Indicates if the object is an active partition (NX_PARTITION) or an application
(NX_APPLICATION).

Process group ID for an application or a partition ID (arbitrary integer) for a
partition.

Numeric user ID of the object’s (partition or application) owner.

267

Manual Pages

NX_PSPART() (con,)
gid
size
priority

rolled_in
rollin_q
elapsed

active

time_started

Return Values

Paragon™ System C Calls Reference Manual

NX_P S PART() (cont.)

Numeric group ID of the object’s group.
Number of nodes in the object.
Priority of the object.

Amount of time the object has been rolled in during the current rollin quantum, in
milliseconds.

Rollin quantum of the object’s parent partition (the partition specified in the
nx_pspart() call), in milliseconds.

Total amount of time the object has been rolled in since it was started, in
milliseconds.

Indicates whether the object is active (rolled in), inactive (rolled out), and/or has
been dumping core. The values are as follows:

0 Object is inactive and is or has not been dumping core.
1 Object is active and is or has not been dumping core.
2 Object is inactive and is either currently dumping core

or has dumped core. This active value applicable only
when object is an application.

3 Object is active and is either currently dumping core or
has dumped core. This active value applicable only
when object is an application.

Time the object was started, as returned by the time() call. If the object is a
subpartition, the time is when the oldest application started in the subpartition.

On successful completion, the nx_pspart() function returns 0 (zero). Otherwise, -1 is returned and
errno is set to indicate the error.

268

E]

A g mw pew
¥ k=3 L [3

E A
¢

E]

A
&

4

¥

[“="1 E o
L

1.

@ ¥ 4 B 4

&

4

£

s

i

E S U T S B SR)

&

¥

E|

£

1

5

[

I

Paragon™ System C Calls Reference Manual

NX_PS PART() (cont.)

Manual Pages

NX_PSPART() (cont.

Examples
The following example prints the numeric user ID and size for every application and subpartition in
the partition mypart:
#include <nx.h>
main() {
nx_pspart_t *info;
nx_pspart_t *ptr;
unsigned long nobjs;
int status, 1i;
status = nx_pspart("mypart", &info, &nobjs);
if(status != 0) {
nx_perror("nx_pspart ()");
exit (1) ;
}
ptr = info;
for(i = 0; 1 < nobjs; i++) {
printf ("uid = %d, size = %d\n", ptr->uid, ptr->size);
ptr++;
}
free(info) ;
}
Note the use of the & operator on the structure info and the variable nobyjs in the call to nx_pspart().
Errors
EPACCES The application has insufficient access permission on a partition.
EPINVALPART

The specified partition (or its parent) does not exist.

269

Manual Pages Paragon™ System C Calls Reference Manual

NX_PSPARTO (cont.) NX__PSPART() (cont.)
Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

pspart

270

P

=

= a
[S |

=3

=

3

= |

L8

oA

e B B |

€ =

A

1

4

&

4

8

4

E

F

&)

] Py
i i | |

g

b

S

S Seew eewm pean

ParagonTM System C Calls Reference Manual Manual Pages

NX_RMPART()

Removes a partition.

Synopsis

Parameters

NX_RMPART()

#include <nx.h>

long nx_rmpart(
char *partition,

long force,

long recursive);

partition

force

recursive

Relative or absolute pathname of the partition to be removed. The parent partition
must give write permission to the calling process.

Removes partitions that contain running applications. If the value is 0 (zero), the
partition will not be removed if any applications are running in the partition. Any
other value specifies removing the partition even if applications are running in the
partition.

Recursively remove the partition. A value of 0 (zero) specifies that the partition
will not be removed if the partition has any subpartitions.

A non-zero value specifies that the partition and all its subpartitions will be
removed recursively. There cannot be any applications running in the partition or
any of its subpartitions. If applications are running in the partition or any of its
subpartitions, the nx_rmpart() function does not remove the partition or any of
its subpartitions.

The force parameter set to a positive integer and used with the recursive parameter

allows a partitions and subpartitions to be removed if they have applications
running in them.

271

Manual Pages

Paragon™ System C Calls Reference Manual

NX_RMPART() (cont.) NX_RMPART() (con.)

Description

The nx_rmpart() function removes from the system a partition, its subpartitions, and applications
running in the partition or its subpartitions. A calling process must have write permission on the
parent partition to remove the partition.

The force parameter specifies whether to remove the partition if it contains applications. A 0 (zero)
value specifies not to remove a partition if it contains applications. Any other value forces the
partition to be removed. This is a safety mechanism so you do not accidently destroy an application
or subpartition.

The recursive parameter specifies whether to remove the partition and all its subpartitions. A 0
(zero) value specifies not to remove a partition if it contains subpartitions. Any other value removes
the partition and all its subpartitions.

If you provide non-zero values for both the force and recursive parameters, nx_rmpart() removes
the partition and all its subpartitions, even if applications are running in the partition or its
subpartitions.

Return Values

Errors

272

>0 Partition was successfully removed.

-1 Error; errno is set.

When -1 is returned by this function, errno is set to one of the following values:
EPACCESS Insufficient access permission for this operation on a permission.
EPALLOCERR An internal error occurred in the node allocation server.

EPINVALPART
The specified partition does not exist.

EPLOCK The specified partition is currently being updated and is locked by someone else.

EPNOTEMPTY
The specified partition contains one or more subpartitions or running applications.

L] &

oA
| 2

EE
E

ko
3

A e
L

1
il

F

B4
(3

™

[R

ol

mo

i
i
1

4

4

3

3

|

3 | |4 #

o £ 4

‘ﬁi
i il

4

L

i

-

“J

[

|

j i

|

i

e EEERERE

Paragon™ System C Calls Reference Manual Manual Pages

NX_RMPART() (cont.) NX_RMPARTY() (con,)
Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also

chpart, Ispart, mkpart, nx_chpart(), nx_mkpart(), pspart, rmpart

273

Manual Pages Paragon™ System C Calls Reference Manual

NX_WAITALL() NX_WAITALL()

Waits for all the child processes of a calling process to stop or terminate

Synopsis
#include <nx.h>

long nx_waitall(void);

Description
The nx_waitall() function takes no parameters, waits for all the child processes of a calling process
to stop or terminate, and returns 0 (zero) for successful termination of child processes or -1 for
unsuccessful termination of child processes. Otherwise, the nx_waitall() function is identical to the
OSF/1 wait() function. See wait(2) in the OSF/I Programmer’s Reference.
The nx_waitall() function suspends the application’s calling process until all the application’s child
process stop or terminate. An application can start child process with the nx_nfork(), nx_load(), or
nx_loadve() functions.
If the nx_waitall() function detects that one of the processes being waited for has been terminated

by the signal SIGBUS, SIGFPE, SIGILL, SIGSEGYV, or SIGSYS, the nx_waitall() function
terminates the whole application by sending a SIGKILL to the process group.

Return Values
0 All the application’s processes terminated successfully

-1 One or more of the application’s processes terminated with an error

Errors

If the nx_waitall() function fails, errno may be set to one of the error code values described for the
OSF/1 wait(2) function.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

274

] [|

E

4

L

E]

L Ea | o) Lt
e 4

S

-

|
o

3

4

A Ea
b

[

| =]
[

E 4

e maa
e |

3

#

&

B

i

& 4 ¢ :] B & % . !

=11
A

|

1

B

4

Paragon™ System C Calls Reference Manual

NX__WA'TALL() (cont.)

See Also

nx_nfork(), nx_load()

Manual Pages

NX_WAITALL() (conr.

275

Manual Pages Paragon™ System C Calls Reference Manual

OPEN() OPEN()

open(), creat(): Opens or creates a file for reading or writing.

Synopsis

#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>

int open(
const char *path,
int oflag [,
mode_t mode]);

int creat(
const char *path,
mode_t mode);

Parameters

path Specifies the file to be opened or created. If the path parameter refers to a
symbolic link, the open() function opens the file pointed to by the symbolic link.

oflag Specifies the type of access, special open processing, the type of update, and the
initial state of the open file. The parameter value is constructed by logically ORing
special open processing flags. These flags are defined in the fentl.h header file and
are described below.

mode Specifies the read, write, and execute permissions of the file to be created
(requested by the O_CREAT flag in the open() interface). If the file already exists,
this parameter is ignored. This parameter is constructed by logically ORing values
described in the sys/mode.h header file.

276

e A

A

E

L T B
[| 3

oA
| S

o

i

o

hl

Eo3

B
o

L
4]

E 4
b

i

—
B oo

4

&

|

H

4

&
j

4

S

J
¥

¢ O |

£

i

e B L
LA Eoo4 {

|
I

i [
i T |

i

i

4

&

€ |

R | N ‘ oo

B

Paragon™ System C Calls Reference Manual Manual Pages
OPEN() (conz.) OPEN() (cont)
Description

The open() and creat() functions establish a connection between the file named by the path
parameter and a file descriptor. The opened file descriptor is used by subsequent I/O functions, such
as read() and write(), to access that file.

The returned file descriptor is the lowest file descriptor not previously open for that process. No
process can have more than OPEN_MAX file descriptors open simultaneously.

The open() and creat() functions, which suspend the calling process until the request is completed,
are redefined so that only the calling thread is suspended.

The file offset, marking the current position within the file, is set to the beginning of the file. The
new file descriptor is set to remain open across exec functions. (See the fentl() function.)

The file status flags and file access flags are designated by the oflag parameter. The oflag parameter
is constructed by bitwise-inclusive ORing exactly one of the file access flags (O_RDONLY,
O_WRONLY, or O_RDWR) with one or more of the file status flags.

File Access Flags

The file access flags are as follows:

O_RDONLY The file is open for reading only.

O_WRONLY The file is open for writing only.

O_RDWR The file is open for reading and writing.

Exactly one of the file access values (O_RDONLY, O_WRONLY, or O_RDWR) must be
specified. If none is set, O_RDONLY is assumed.

File Status Flags

File status flags that specify special open processing are as follows:

O_CREAT If the file exists, this flag has no effect except as noted under O_EXCL. If the file
does not exist, a regular file is created with the following characteristics:

¢ The owner ID of the file is set to the effective user ID of the process.

* The group ID of the file is set to the group ID of its parent directory.

277

Manual Pages

Paragon™ System C Calls Reference Manual

OPEN() (cont.) OPENO (cont.)

278

¢ The file permission and attribute bits are set to the value of the mode
parameter, modified as follows:

All bits set in the process file mode creation mask are
cleared.

The set-user ID attribute (S_ISUID bit) is cleared.
The set-group ID attribute (S_ISGID bit) is cleared.
The S_ISVTX attribute bit is cleared.

The calling process must have write permission to the file’s parent directory with
respect to all access control policies to create a new file.

O_EXCL If O_EXCL and O_CREAT are set, the open fails if the file exists.

O_NOCTTY If the path parameter identifies a terminal device, this flag assures that the
terminal device does not become the controlling terminal for the process.

O_TRUNC If the file does not exist, this flag has no effect. If the file exists and is a regular
file, and if the file is successfully opened O_RDWR or O_WRONLY:

* The length of the file is truncated to 0 (zero).
¢ The owner and group of the file are unchanged.
e The set-user ID attribute of the file mode is cleared.
* The set-user ID attribute of the file is cleared.
The open fails if either of the following conditions are true:
* The file supports enforced record locks and another process has locked a portion of the file.
* The file does not allow write access.
If the oflag parameter also specifies O_SYNC, the truncation is a synchronous update.

A program can request some control over when updates should be made permanent for a regular file
opened for write access.

r o

| | r H

EA
| |

——— E 3
b4 :

oA
]

|

|
E)

| S | F A
b b

E X B3
(2 L

A pa
|

[

t o4

.

E

N T N)
¥ 4

E =

-

¥

4

& 4 E = El [

4

; EoooA i

b

4

i

A . : £ 4 ; ;

y

«

k]

E

ParagonTM System C Calls Reference Manual Manual Péges

OPEN() (cont.) OPEN() (cont.)

File status flags that define the initial state of the open file are as follows:

O_SYNC If set, updates and writes to regular files and block devices are synchronous
updates. File update is performed by:

¢ fclear()

e ftruncate()

¢ open() with O_TRUNC

e write()
On return from a function that performs a synchronous update (any of the above
system calls, when O_SYNC is set), the calling process is assured that all data for
the file has been written to permanent storage, even if the file is also open for
deferred update.

O_APPEND If set, the file pointer is set to the end of the file prior to each write.

O_NONBLOCK, O_NDELAY

If set, the call to open() will not block, and subsequent read() or write()
operations on the file will be nonblocking.

General Notes on oflag Parameter Flag Values

The effect of O_CREAT is immediate.

‘When opening a FIFO with O_RDONLY:

* If neither O_NDELAY nor O_NONBLOCK is set, the open() function blocks until another
process opens the file for writing. If the file is already open for writing (even by the calling
process), the open() function returns without delay.

e If O_NDELAY or O_NONBLOCK is set, the open() function returns immediately.

When opening a FIFO with O_WRONLY:

e If neither O_NDELAY nor O_NONBLOCK is set, the open() function blocks until another
process opens the file for reading. If the file is already open for reading (even by the calling

process), the open() function returns without delay.

* If O_NDELAY or O_NONBLOCK is set, the open() function returns an error if no process
currently has the file open for reading.

279

Manual Pages Paragon™ System C Calls Reference Manual

OPEN() (cont.) OPEN() (cont.)

When opening a block special or character special file that supports nonblocking opens, such as a
terminal device:

e Ifneither O_NDELAY nor O_NONBLOCK is set, the open() function blocks until the device
is ready or available.

¢ IfO_NDELAY or O_NONBLOCK is set, the open() function returns without waiting for the
device to be ready or available. Subsequent behavior of the device is device-specific.

Numbered Files

If three or more # characters are in a file name, these characters are replaced by the number of the
node (within the application) that opens the file. For example, assume that the same program is
running on several nodes, and each node opens a file named file###. The result is that each node
opens a separate file. Node 0 opens file000, node 1 opens file001, node 2 opens file002, and so on.

If the node number has more than three digits but the filename has only three # characters, the
filename is lengthened by the number of characters necessary to add the extra digits to the name. For
example, opening data.### on every node of an application running on 2000 nodes opens files
data.000, data.001, data.002, ..., data.999, data.1000, data.1001, ..., data. 1998, and data.1999.
Less than three # characters in the file name appear as actual # characters. For example, the file
file##1 is a single file accessible by each node.
Return Values
Upon successful completion, the open() and creat() functions return the file descriptor, a
nonnegative integer. Otherwise, a value of -1 is returned and errno is set to indicate the error.
Errors
If the open() or creat() function fails, errno may be set to one of the following values:
EACCES Search permission is denied on a component of the path prefix, or the type of
access specified by the oflag parameter is denied for the named file, or the file
does not exist and write permission is denied for the parent directory, or

O_TRUNC is specified and write permission is denied.

EAGAIN The O_TRUNC flag is set, the named file exists with enforced record locking
enabled, and there are record locks on the file.

280

Lot
4

| £

4

|3

e I

4 [

=4
e

Foa
i

Fw o
4 B

oA

3
b

&
E

.
il

E

Ea
3

B4

3

L

A

5
=

I |

e pea g BA A R

¥ s

4

vk

F

¥

£

i

Lk “ R BEow !

-

m ,N

Kl

B

i

L 3 3 . : i !

e

Paragon™ System C Calls Reference Manual Manual Pages
OPEN() (cont.) OPENO (cont.)
EDQUOT The directory in which the entry for the new link is being placed cannot be

extended because the quota of disk blocks or i-nodes defined for the user on the
file system containing the directory has been exhausted.

EEXIST The O_CREAT and O_EXCL flags are set and the named file exists.

EFAULT The path parameter is an invalid address.

EINTR A signal was caught during the open() function.

EISDIR The named file is a directory and write access is requested.

ELOOP Too many links were encountered in translating path.

EMFILE The system limit for open file descriptors per process has already reached
OPEN_MAX.

ENAMETOOLONG
The length of the path string exceeds PATH_MAX, or a pathname component is
longer than NAME_MAX. ‘

ENFILE The system file table is full.

ENOENT The O_CREAT flag is not set and the named file does not exist, or O_CREAT
is set and the path prefix does not exist, or the path parameter points to the empty
string.

ENOSPC The directory that would contain the new file cannot be extended, the file does not
exist, and O_CREAT is requested.

ENOTDIR A component of the path prefix is not a directory.

ENXIO The named file is a character special or block special file, and the device

associated with this special file does not exist.

The named file is a multiplexed special file and either the channel number is
outside of the valid range or no more channels are available.

The O_NONBLOCK flag is set, the named file is a FIFO, O_WRONLY is set,
and no process has the file open for reading.

EOPNOTSUPP The named file is a socket bound to the file system (a UNIX domain socket) and

cannot be opened.

281

Manual Pages

Paragon™ System C Calls Reference Manual

OPEN() (cont.) OPEN() (cont.)

See Also

282

EROFS The named file resides on a read-only file system and write access is required.

ETXTBSY The file is being executed and oflag is O_WRONLY or O_RDWR.

Functions: chmod(2), close(2), fentl(2), lockf(3), Iseek(2), read(2), stat(2), truncate(2),
umask(2), write(2)

[S |

|

g] ¥

E

L | g3
i 3

|
|

Py KA
; g b

]
E

-
2

E 3
ki

F

A
K

o oFa F
& B

[

‘r‘

A s
4 B4

it

4

e
B

.

b

o
T

L

4

lE‘

#

E

4

q

3 ! ¥

3 L

4

— e .
L4 - P4 |

posni
i A

[|

k!

£

Paragon™ System C Calls Reference Manual Manual Pages

PFS_HOST_INIT() PFS_HOST_INIT()

Populate an emulator’s PFS stripe directory cache.

Synopsis

Parameters

Description

int pfs_host_init(
char *pfs_name);

pfs_name Pointer to the root of a PFS file system (for example, “/pfs”).

The pfs_heost_init() call populates the calling task's emulator-resident, PFS-stripe-directory cache
with (Mach IPC) ports for each of the PFS stripe directories. These ports allow the emulator to
communicate directly with the file server that services each PFS stripe file.Without this cache, the
emulator sends pathname operations to the boot-node file server, which redirects them to the file
server that services the stripe file. Using the pfs_host_init() call results in a significant Mach IPC
load reduction for the boot-node.

The cache exists in the portion of the emulator's memory that is inherited across the fork() family
of system calls. Consequently, the pfs_host_init() call need only be called by the parent of a parallel
program; all children will inherit the PFS-stripe-directory cache.

The pfs_host_init() call is most effective for those programs that do repetitive pathname system
calls (open(), stat(), unlink(), access(), and so on) on PFS-resident files. Virtually any system call
that has a pathname argument that references a PFS file will benefit from using the pfs_host_init()
call.

Return Values

Return values are those defined in /usr/include/errno.h:
ESUCCESS Indicates success.

ENOENT Indicates a bad PFS path or one that is not a PFS file system.

283

Manual Pages Paragon™ System C Calls Reference Manual

PFS_HOST_INIT() (cont) PFS_HOST_INIT() (cont,)

Limitations and Workarounds
The pfs_host_init() call can be used only once per application.
Only one PFS file system can be cached per application.

If a cached PFS file system is dismounted and then remounted, the cache will be invalid.

284

A

& 2

]
13 [

L]

L]
B

e I |
Eood

3

E 3
b

¥
)

|

L B |
i

[
I

Paragon™ System C Calls Reference Manual Manual Pages

RMKNOD() RMKNOD()

l Creates a special file on a remote 1/O node
[- Synopsis
l - #include <sys/types.h>
#include <sys/stat.h>
! int rmknod (
const char *path,
int mode,

S
i

dev_t device,
long node);

o .
Eh

. Parameters
l - path Names the new file. If the final component of the path parameter names a
) symbolic link, the link will be traversed and pathname resolution will continue.
! mode Specifies the file type, attributes, and access permissions. This parameter is
constructed by logically ORing values described in the sys/mode.h header file.
l - device Depends upon the configuration and is used only if the mode parameter specifies
a block or character special file. If the file you specify is a remote file, the value
! - of the device parameter must be meaningful on the node where the file resides.
node Node number of a remote I/O node that can be the boot node or any other I/O node.
Description

H

i

Other than the addition of the node parameter, the rmknod() function is identical to the OSF/1
mknod() function. See the mknod(2) manual page in the OSF/I Programmer’s Reference.

The rmknod() function creates a special file that references a remote I/O node specified by the node
parameter. The remote I/O node can be the boot node or any other I/O node. This function requires
superuser privilege.

4

b

4

3 i
[

B

|]
|

[*ﬂ 285
&

Manual Pages Paragon™ System C Calls Reference Manual

RMKNOD() (cont.) RMKNODO (cont.)

Return Values
‘Upon successful completion of the rmknod() function a value of O (zero) is returned. Otherwise, a
value of -1 is returned and errno is set to indicate the error.

Errors
If the rmknod() function fails, errno may be set to one of the error code values described for the
OSF/1 mknod() function.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/Jusr/share/release_notes.

See Also
rmknod
OSF/1 Programmer’s Reference: chmod(2), mkdir(2), mknod(2), open(2), umask(2), stat(2)
OSF/1 Command Reference: chmod(1), mkdir(1), mknod(8)

286

peam g
¥ 3 S

| 2

L

I e T = |
3 4

| SR

[2
u .

Fos

p

|4

3

E

|

i

4

¥

#

L

‘A,
. &

e
1

E]

8

1

i H : Lod

i

&

4

&

o

Paragonm System C Calls Reference Manual Manual Pages

READOFF() READOFF()

readoff(), readvoff(): Synchronous reads from a file at a specified offset.

Synopsis

#include <sys/types.h>
#include <nx.h>

int readoff(
int fildes,
esize_t offset,
char *buffer,
unsigned int nbytes);

#include <sys/types.h>
#include <sys/uio.h>

int readvoff(
int fildes,
esize_t offset,
struct iovec *iov,
int iovcount);

Description of Parameters

fildes A file descriptor identifying the file to be read.

offset Offset from the beginning of the file where to begin the read.

buffer Pointer to the buffer in which the data is stored after it is read.

nbytes The number of bytes to read from the file associated with the fildes parameter.

iov Pointer to an array of iovec structures that identify the buffers into which the data
is to be placed.

iovcount The number of iovec structures pointed to by the iov parameter.

287

Manual Pages

Paragon™ System C Calls Reference Manual

READOFF() (cont.) READOFF() (cont.)

Discussion

Readoff() and readvoff() perform the read operation starting at the offset specified by the offset
parameter. .

These functions do not modify the system file pointer(s) (unlike read() and readv()).
Currently these functions can be used only on files on the Paragon PFS.

Currently only M_UNIX and M_ASYNC IO modes are supported.

Return Values

Errors

See Also

288

Upon successful completion, a non-negative integer representing the number of bytes read is
returned. If an error occurs, these functions return -1 and set errno to indicate the error.

Errors are as described in OSF/1 read(), except that the following errors can also occur:

EFSNOTSUPP The file referred to by filedes is not in a file system of a type that supports this
operation. Currently only the PFS file systems support this operation.

EINVAL The file referred to by filedes is in an unsupported iomode. Currently only
M_UNIX and M_ASYNC are supported.

cread(), gopen(), iodone(), iowait(), iread(), ireadoff(), iseof(), niodone(), niowait(), setiomode()

OSF/1 Programmer’s Reference: dup(), open(), read()

> 4

3

k

pa
4

3

| [}
i L3

-
I

A e
4 E- 1

t

3

£

E

3

L T e I
E

'L

| S} | S

b o

o T Lo Lo oo Lo Lk P 4 s et Eooa oo oo

| e man e wen e

¥

Paragon™ System C Calls Reference Manual Manual Pages

SETIOMODE() SETIOMODE()

Sets the I/O mode of a file and performs a global synchronization operation.

Synopsis
#include <nx.h>

void setiomode(
int fildes,
int iomode),

Parameters
fildes A file descriptor representing an open file.

iomode The I/O mode to be assigned to the file associated with fildes. Values for the
iomode parameter are as follows:

M_UNIX Each node has its own file pointer; access is
unrestricted.
M_LOG All nodes use the same file pointer; access is first

come, first served; records may be of variable length.

M_SYNC All nodes use the same file pointer; access is in node
order; records are in node order but may be of variable
length.

M_RECORD Eachnode has its own file pointer; access is first come,
first served; records are in node order and of fixed
length.

M_GLOBAL All nodes use the same file pointer, all nodes perform
the same operations.

M_ASYNC Each node has its own file pointer; access is
unrestricted; I/O atomicity is not preserved in order to
allow multiple readers/multiple writers and records of
variable length.

Refer to the “Description” section for detailed information on each mode.

289

Manual Pages

Paragon™ System C Calls Reterence Manual

SET|OMODE() (cont.) SETIOMODEO (cont.)

Description

290

The setiomode() function changes the I/O mode of an open shared file. A shared file is a file that is
opened for access by all nodes in an application. To explicitly specify an I/O mode at the time a file
is opened, use the gopen() function.

The default I/O mode shared files are opened with depends on two things: the type of file and the
value of the PFS_ASYNC_DFLT bootmagic string. Behavior is as follows:

non-PFS files The default I/O mode is M_UNIX for all non-PFS files. This behavior holds
true regardless of the PFS_ASYNC_DFLT bootmagic string.

PFS files The default I/O mode is M_UNIX when PFS_ASYNC_DFLT is set to any
value other than 1. When PFS_ASYNC_DFLTis setto 1, the default I/O mode
is M_ASYNC.

This method of determining the default I/O mode also holds true during fork() operations. In other
words, the I/O modes associated with the parent process’ file descriptors are not inherited by the

child process. Instead, all I/O modes in the child process default accordingly. When using the dup()
function to duplicate a file, the file descriptor for the duplicate file is reset to the I/O mode M_UNIX.

NOTE

To determine the current setting for PFS_ASYNC_DFLT, use the
getmagic command. For information on this command, see the
getmagic manual page.

Each node calling setiomode() must specify a file descriptor with the fildes parameter that refers to
the same file. The file pointer must be in the same position in the file for each node at the time the
call to setiomode() is made.

In addition to setting the file’s I/O mode, setiomode() performs a global synchronizing operation
like that of the gsyne() call. All nodes must call the setiomode() function before any node can
continue executing. In the M_LOG, M_SYNC, M_RECORD, and M_GLOBAL I/O modes,
closing the file also performs a global synchronizing operation.

Use the iomode() function to return a file’s current I/O mode.

4

oA
L]

| S

b=
o

L T
4 i Eoo3 E

S
'S

¢

o

4

4

b 4

ke

4

Paragon’ System C Calls Reference Manual Manual Pages

B

4

t

S

SETIOMODE() (cont,) SETIOMODE() (cont

&

M_UNIX (Mode 0)

i

The features of this mode are as follows:

&

* Each node has a unique file pointer.

4

* Nodes are not synchronized.

#

e Variable-length, unordered records.

This mode conforms with standard UNIX file sharing semantics for different processes accessing
the same file. In this mode, each node maintains its own file pointer and can access information
anywhere in the file at any time. If two nodes write to the same place in the file, the latest data written
by one node overwrites the data written previously by the other node.

4

This mode is often used when each node is responsible for data in a specific area of a file.

:

Although nodes are not synchronized as in the M_SYNC mode, this mode currently supports only
a single reader/single writer. If multiple readers/multiple writers are required, use the M_RECORD
or M_ASYNC modes. If all nodes read the same data, use the M_GLOBAL mode.

4

Depending on the shared file type (PFS or non-PFS) and the PFS_ASYNC_DFLT bootmagic
variable setting, M_UNIX can be the default I/O mode (see the “Description” section for more
ﬂ"““ information).

1 M_LOG (Mode 1)
The features of this mode are as follows:
l L e Shared file pointer.
I - ¢ Nodes are not synchronized.
e Variable-length, unordered records.
lﬂ,‘ In this mode, all nodes use the same file pointer. I/O requests from nodes are handled on a first-come,
first-served basis. Because requests can be performed in any order, the order of the data in the file
[= may vary from run to run.

This mode is often used for log files. The files stdin, stdout, and stderr are always opened in this

l kb mode.
Ll

Because only one node may access the file at a time, this mode has lower performance than the
M_RECORD, M_GLOBAL, and M_ASYNC modes.

291

Manual Pages

SET'OMODE() (cont.)

202

Paragon™ System C Calls Reference Manual

SETIOMODE() (cont.

M_SYNC (Mode 2)

The features of this mode are as follows:

* Shared file pointer.

* Nodes are synchronized.

¢ Variable-length recofds, stored in node order.

In this mode, all nodes use the same file pointer, but I/O requests are handled in node order. This
mode treats file accesses as global operations in which all nodes must complete their access before
any node can access the file again. The amount of data requested by the application to be read or
written may vary from node to node.

In this mode, all nodes must perform the same file operations in the same order. The only valid use
of the Iseek() and eseek() function is for all nodes to seek to the same position in the file prior to an
access.

Because nodes must access the file in node order, this mode has the lowest performance than the
M_RECORD, M_GLOBAL, and M_ASYNC modes.

M_RECORD (Mode 3)

The features of this mode are as follows:

* Unique file pointer.

¢ Nodes are not synchronized.

* Fixed-length records, stored in node order.

* Highly parallel.

In this mode, each node maintains its own file pointer and the application can access the file at any
time. The data for each corresponding access.(that is, the nth read or write) must be the same length

for all nodes. This guarantees that each node reads/writes to separate areas of the file, allowing the
file system to provide access to the file in a highly parallel fashion.

e o Ea Ea
-

|

Fou

|

E]

4

-

E

2

5

k4

L

i

£

#

¥

4

4

i [|

] |]
S | 4 E

4

[

i
A4

& o4

A 3 §

§

]

4

. e ses e e e
[[| < {

|

Paragon™ System C Calls Reference Manual Manual Pages

SETIOMODE() (con.) SETIOMODE() (con.)

NOTE

No verification is performed. You must make sure that all the
nodes in the application make the same calls and read and write
the same number of bytes.

Files created in this mode resemble files created in the M_SYNC mode (that is, the data appear in
node order). The application should perform the same file operations in the same order on all nodes.
However, for higher performance only the Iseek() and eseek() system calls are synchronized. The

only valid use of one of these calls is for all nodes to seek to the same position in the file prior to an
access.

Because all nodes may access the file in parallel when either reading or writing, this mode offers
higher performance than the M_UNIX, M_LOG, and M_SYNC modes.

M_GLOBAL (Mode 4)

The features of this mode are as follows:

e Shared file pointer.

* Nodes are synchronized.

e Variable-length, unordered records.

* All nodes access the same data.

* Data read/written from/to disk only once.

This mode coordinates I/O requests so that multiple identical I/O requests to the same file from
different nodes are not issued.

In the M_GLOBAL mode, all nodes use the same file pointer for a file, and each I/O request from
an application is a global operation in which all nodes must perform the same file accesses in the
same order. All nodes read the same data and all nodes write the same data, although the data written
is not checked. All write operations return the same number of bytes written. The only valid use for
the Iseek() or eseek() functions is for all nodes to seek to the same position in the file prior to an
access.

293

Manual Pages

Paragon™ System C Calls Reference Manual

SET'OMODE() (cont.) SET'OMODEO (cont.)

2094

Because identical requests are combined into a single request, the M_GLOBAL mode provides a
higher-performance alternative to the M_UNIX mode when all nodes read and write the same data.
For example, this mode is useful for parallel applications that initialize by having all nodes
sequentially read the same data file.

M_ASYNC (Mode 5)

The features of this mode are as follows:

¢ Each node has a unique file pointer.

* Nodes are not synchronized.

e Variable-length, unordered records.

* Multiple readers/multiple writers are allowed with no restrictions.

The M_ASYNC mode is similar to the M_UNIX mode, except it does not support standard UNIX
file sharing semantics for different processes accessing the same file. This mode does not guarantee
that I/O operations are atomic. For example, if multiple nodes write to the same area of a file at the
same time, parts of the file area may contain data from one write while other parts may contain data
from other writes. If a node reads from the same area of the file at this time, the returned data may
consist partially of old data and partially of new data. Other I/O modes guarantee that I/O operations
are atomic, so that only the data from one write is seen in areas of the file where multiple processes
are writing simultaneously, and all nodes are notified when the file size changes.

In this mode, an application must control parallel access to the file. This allows multiple readers
and/or multiple writers to access the file simultaneously with no restrictions on record size or file
offset.

If a file is opened with the O_APPEND flag and multiple nodes write to the file simultaneously, the
results are unpredictable because nodes are not synchronized whenever the end-of-file changes.

It is not required that all nodes read or write to the file, and there are no restrictions on using Iseek()
or eseek(). '

Because all nodes may access the file in parallel when either reading or writing, this mode offers
higher performance than the M_UNIX, M_LOG, and M_SYNC modes.

You can cause M_ASYNC mode to be the default /O mode by setting the PFS_ASYNC_DFLT
bootmagic string to one (1).

E |

L3

Foa A] L
& [] -2

| il
E

A
i

.4
s

4
3

e
1

.-
w. i

L
& -

w
-

i
i

b

E

P |

4

[

&

4 L | [

|

E

.

.|

] 4

faan
=

[= S B Lo [| T | S L3 L4 A S |

Paragon™ System C Calls Reference Manual Manual Pages

SET'OMODE() (cont.)

Return Values

Errors

SET|OMODE() (cont.)

Upon successful completion, the setiomode() function returns control to the calling process; no
values are returned. Otherwise, the setiomode() function writes an error message on the standard
error output and causes the calling process to terminate.

Upon successful completion, the _setiomode() function returns O (zero). Otherwise, the
_setiomode() function returns -1 and sets errno to indicate the error.

If the _setiomode() function fails, errno may be set to one of the following error code values:

EBADF

EINVAL

EINVAL

EMIXIO

EMIXIO

EMIXIO

The fildes parameter is not a valid file descriptor.
The given value for iomode is not a valid I/O mode.
The file referenced by filedes is not a regular file.

The given filedes is invalid because all nodes have not specified a filedes that
represents the same file.

The given value for iomode is not valid because all nodes sharing the file
represented by fildes have not used the same value.

In I/O modes M_LOG, M_SYNC, M_RECORD, or M_GLOBAL, all nodes
sharing the file have not set the file pointer to the same location.

205

Manual Pages

Paragon™ System C Calls Reference Manual

SETIOMODE() (con) SETIOMODE() (ot

Examples

The following example shows how to use the setiomode() function to set the I/O mode after opening
a file, but before writing to the file.

#include <fcntl.h>
#include <nx.h>

long iam;
main ()
{
int fd;
char buffer(80];

iam = mynode () ;

fd = gopen(”/tmp/mydata”,O_CREAT | O_TRUNC ‘| O_RDWR, M_UNIX,
0644) ;

/* Read some data from the file and do some computation */
/* on the data before changing the file mode and writing */
/* the file. */

setiomode (fd, M_RECORD) ;
sprintf (buffer, "Hello from node %d\n”,iam) ;

cwrite(fd, buffer, strlen(buffer));
close(fd) ;

Limitations and Workarounds

See Also

296

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

cread(), cwrite(), gopen(), iomode(), iread(), iwrite()

OSF/1 Programmer’s Reference: dup(2), fork(2), open(2)

oA g
[B

=
LS

E A
4

Fa
P

"=
Y B

-3
El

e

B3
&

E
3

E 3
H

F o3

.

"o

E

b

[

E |

E

B4

-

&

B

E

k.

k]

£ 4

—
e 4

i
g

|

£

4

Kl

-
b [| {

-

i

i
i

E

i

4 | L 9

4

R | .

B

Fa o

Paragon™ System C Calls Reference Manual Manual Pages

SETPTYPE() SETPTYPE()

Sets the process type of the calling process.

Synopsis

Parameters

Description

#include <nx.h>

void setptype(
long ptype);

ptype Process type you are assigning to a process. The ptype must be a non-negative
integer between 0 and 2**30 - 1.

The calling process’s process type can be set only if the process type is currently
INVALID_PTYPE. A process cannot change it’s process type once it has been set to a valid value.

The setptype() function sets the process type of a calling process. A process type is an integer that
uniquely distinguishes a process from another process in the same application on the same node.
You can use process types with processes as follows:

e A process can have one process type only.

* Processes on different nodes may have the same process type.

* Multiple processes running on the same node in the same application must have different
process types (ptypes).

* Multiple processes running on the same node may have the same process type only if they
belong to different applications.

* A process may not change its process type once it has set a valid process type.
* Once a process has used a process type, the process type is associated with the process for the

life of the application. No other process on the same node in the same application can use that
process type, even if the original process terminates.

297

Manual Pages

Paragon™ System C Calls Reterence Manual

SETPTYPEO (cont.) SETPTYPE() (cont.)

208

The setptype() function has the following restrictions:

* Do not use the setptype() function in applications linked with the -nx switch. Instead, link with
the -Inx switch. For all processes in applications linked with the -nx switch, the process type is
set automatically to the value specified with the -pt switch. The default process type value is 0
(zero).

* Do not use the setptype() function in processes created with the nx_nfork(), nx_load(), or
nx_loadve() functions. These functions have a ptype parameter for specifying the process type
of newly created processes in an application.

* Do not use the setptype() function in controlling processes that do not use message passing,
because the setptype() function assigns memory for message buffering that will be unused.

If an application creates additional processes after it starts up and no process type is specified for the
new process, the process type of the new process is set to the value INVALID_PTYPE (a negative
constant defined in the header file nx.h). A process whose process type is INVALID_PTYPE
cannot send or receive messages. A process must call setptype() to set its process type to a valid
value before it can send or receive any messages. (This is the only valid use of the setptype()
function.)

The standard OSF/1 fork() function creates a new process on the same node as the process that calls
it. The fork() function does not provide any way to specify the new process’s process type. The
process type of a process created by fork() is set to INVALID_PTYPE. The new process must call
the setptype() function before it can send or receive messages. The specified process type must be
different from the parent’s process type and different from the process type of any other process in
the same application on the same node.

A process’s process type is inherited across an exec() function call. If you call the fork() function
followed by a call to the exee() function, you can call the setptype() function either before or after
the exec() function (either fork(); setptype(); exec(); or fork(); exec(); setptype();).

If a process has multiple threads of control, the threads have the same process types. (See the
pthread_create() function in the OSF/I Programmer’s Reference for information on threads.)
When a thread is created, it has the same process type as the thread (process) that created it. Do not
use the setptype() function to set the process type of a thread.

L4 e 4

=a A
e

| |
-3

E A
i 4

B omoa
.

[
&

A
i J

o
A

E 3

wl

o

Rl

3

i |

pesm . | = |
[3

[

4

-

H 9
4 |29

iz

i

L

i

]

I

[

i

B G el el e e

3
£

—
e

Paragon™ System C Calls Reference Manual Manual Pages

SETPTYP E() (cont.) SETPTYPE() (cont.)

Return Values

Errors

Examples

Upon successful completion, the setptype() function returns control to the calling process; no values
are returned. Otherwise, this function displays an error message to standard error and causes the
calling process to terminate.

Upon successful completion, the _setptype() function returns 0 (zero). Otherwise, this function
returns -1 and sets errno to indicate the error.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

The following example shows a message-passing application that uses the setptype() function to set
the process type for the calling process:

#include <nx.h>
#define MSGTYPE 100

main ()
{
long buf;
long len;
long parent_ptype, child_ptype;

len = sizeof (buf);
parent_ptype = myptype();
child_ptype = parent_ptype + 1;

if (fork() == 0) { /* Child */

setptype (child_ptype) ;

csend (MSGTYPE, &buf, len, mynode(), parent_ptype);
}
else { /* Parent */

csend (MSGTYPE, &buf, len, mynode(), child_ptype);

}

crecv (MSGTYPE, &buf, len);

printf (“Node %d, “, mynode());

printf (“ptype %d, msg from node %d, “, myptype(), infonode());

printf (“ptype %d\n”, infoptype());

299

Manual Pages

SETPTYP E() (cont.)

The output for this example is as follows:

% setptype -8z 1

Node 0, ptype 0 received
Node 0, ptype 1 received

% setptype -sz 2

Node 0, ptype
Node 0, ptype
Node 1, ptype
Node 1, ptype

Limitations and Workarounds

See Also

300

For information about limitations and workarounds, see the release notes files in

/usr/share/release_notes.

commands: application,

P O Rr O

received
received
received
received

msg
msg

msg
msg
msg
msg

from
from

from
from
from
from

functions: errno, myptype(), nx_load(), nx_nfork()

Paragon" System C Calls Reference Manual

node
node

node
node
node
node

o O

P = O O

~

~

SETPTYPE() (cont.)

ptype
ptype

btype
ptype
ptype
ptype

OSF/1 Programmer’s Reference: exec(2), fork(2), pthread_create(3)

o

[eaSNeN s

. A
L L [S |

LI T o

| |
E]

il

| S
[

E

4

3

| o | L
E

.

B

o e
| | S

g d E ! B3 | |

R

. —— — —
¢ i : | E 4 3

e B,
i ;

1

A R T T

5 " . i
i i

i A | S | [Lod 3 4 L }

Paragon™ System C Calls Reference Manual Manual Pages

STATPFS()

STATPFS()

statpfs(), fstatpfs(): Gets Parallel File System (PFS) statistics.

Synopsis

Parameters

#include <sys/mount.h>
#include <nx.h>
#include <pfs/pfs.h>

long statpfs(
char *path,

struct estatfs *fs_buffer,
struct statpfs *pfs_buffer,
unsigned int pfs_bufsize);

long fstatpfs(
int

fildes,

struct estatfs *fs_buffer,
struct statpfs *pfs_buffer,
unsigned int pfs_bufsize);

path

fs_buffer

Dpfs_buffer

pfs_bufsize

fildes

Pointer to a pathname of a file within a mounted PFS file system.

Pointer to a buffer that is an estatfs structure in which the status information of the
file system is returned. If this value is set to NULL, no status information is
returned. The estatfs structure is described in the pfs/pfs.h header file.

Pointer to a buffer that is a statpfs structure in which the PFS stripe attributes of
the file system are returned. If this value is set to NULL, no PFS information is
returned. The statpfs structure is described in the pfs/pfs.h header file.

Size in bytes of the pfs_buffer parameter. If this parameter is 0 (zero), no statpfs
structure is returned in the pfs_buffer parameter.

File descriptor for an open file within a mounted PFS file system.

301

Manual Pages

Paragon™ System C Calls Reference Manual

STATPFS() (cont.) STATPFS() (cont.)

Description

302

The statpfs() and fstatpfs() functions return the file system statistics of a mounted file system. If the
mounted file system is a PFS file system, stripe attribute information is also returned. Stripe
attributes determine how the PFS file system stripes regular files. The file system statistics for the
mounted file system are returned in the format of an estatfs structure.The stripe attributes are
returned in the format of a statpfs structure. The estatfs and statpfs data structures are defined in the
pfs/pfs.h header file.

Upon successful completion, the statpfs() and fstatpfs() functions return an estatfs structure in the
J5_buffer parameter. The estatfs structure is similar to the statfs structure returned by the statfs() and
fstatfs() system calls, except that extended (64-bit) fields are used where appropriate. The estatfs
structure is specified in the pfs/pfs.h header file and has the following form:

struct estatfs {

short f_type;

short f_flags;

long f_fsize;

long f_bsize;

esize_t f _blocks;

esize_t f_bfree;

esize_t f_bavail;

long f_files;

long f_ffree;

mnt_fsid_t f_fsid;

long f_sparel9];

char f_mntonname [MNT_MNAMELEN] ;
char f_mntfromname [MNT_MNAMELEN] ;

Y

The fields of the estatfs structure include the following:

f_type Type of the file system as defined in sys/mount.h.
[flags Copy of the mount flags used when the file system was mounted.
f_fsize File system fragment size. This is the smallest unit of data that is transferred

between the file system and the media on which the data is stored. If the file
system is of type PFS, this is the fragment size of the file systems containing the
stripe data. If the file systems containing the stripe data do not all have the same
fragment size, this field is set to -1.

a

[S |

B
E

A =3 L
B

3

e = [|

By Weem)

i

b

3

E

B

=W

Paragon™ System C Calls Reference Manual Manual Pages
STATPFS() (cont) STATPFS() (cont,
f_bsize File system block size. This is the optimal unit of data transfer between the file

f_blocks

f_bfree

f_bavail

f files

[f_ffree

[fsid
f_spare
f_mntonname

f_mntfromname

system and the media on which the data is stored. If the file system is of type PFS,
this is the block size of the file systems containing the stripe data. If the file
systems containing the stripe data do not all have the same block size, this field is
setto -1.

Total number of data blocks in the file system. If the file system is of type PFS,
this is the total number of data blocks available for the stripe data. This field
contains an extended (64-bit) value and is expressed in 1K byte units.

Number of free blocks in the file system. If the file system is of type PFS, this is
the total number of free data blocks available for stripe data. This field contains
an extended (64-bit) value and is expressed in 1K byte units.

Number of free blocks in the file system available to non-super user. If the file
system is of type PFS, this is the total number of free blocks available for stripe
data. This field contains an extended (64-bit) value and is expressed in 1K byte
units.

Total file nodes in the file system. If the file system is of type PFS, this is the total
number of file nodes available in the disk partition that the PFS file system was
mounted on.

Free file nodes in the file system. If the file system is of type PFS, this is the
number of free file nodes in the disk partition that the PFS file system was
mounted on.

File system identifier.

Reserved for later use; not used.

Directory on which the file system is mounted.

Disk partition containing the file system that is mounted on f_mntonname.

303

Manual Pages

Paragon™ System C Calls Reference Manual

STATPFS() (cont,) STATPFS() (cont,)

If the mounted file system is a PFS file system, upon successful completion the statpfs() and
fstatpfs() functions return a statpfs structure in the buffer pointed to by the pfs_buffer parameter.
The statpfs structure is of variable length since it contains a variable number of variable length
pathnames (see the description of the p_sdirs field). To determine if the entire structure fit into the
buffer, check the p_reclen field. If the entire structure was not received, try again using a buffer of
size greater than or equal to the p_reclen field. The statpfs structure is specified in the pfs/pfs.h
header file and has the following form:

struct statpfs {

uint_t p_reclen;
size_t p_sunitsize;
uint_t p_sfactor;

pathname_t p_sdirs;
Y

The fields of the statpfs structure include the following:

p_reclen The total length of the statpfs structure. If the file system is not of type PFS, then
this field is set to 0 (zero).

p_sunitsize The stripe unit size for this parallel file system, in bytes; that is, the size of the unit
of data interleaving for regular files.

p_sfactor The number of stripe units per file stripe, that is, the degree of interleaving for
regular files.
p_sdirs A list of pathnames specifying the set of directories that define the stripe group for

this parallel file system. The number of pathnames in the list is equal to p_sfactor.
Each pathname is of type pathname_t. You can search the pathname list using a
pointer of type (pathname_t *) and the NEXTPATH() macro defined in pfs/pfs.h.

To obtain a preallocated array of statpfs structures describing the stripe attributes of each currently
mounted PFS file system, use the getpfsinfo() function. To obtain general mount information for
any type of mounted file system, use the standard OSF/1 statfs() or fstatfs() function.

Return Values

Upon successful completion, the statpfs() and fstatpfs() functions return a value of 0 (zero) to the
calling process. Otherwise, these functions return a value of -1 and set errno to indicate the error.

LI]

|]

=

e 4

|

B

| R |

£

E

B
4

A F

¥4
[N | &

|

¥

Ea R Fa
3

i

F 4
i

i
i

p=m a
LI

Ed

-
E s

«

‘t:

4

#

1

t

q

5

]

*

4

Paragon™ System C Calls Reference Manual Manual Pages
STATP FS() (cont.) STATP FS() (cont.)
Errors

If the statpfs() or fstatpfs() functions fail, errno may be set to one of the values described in the
OSF/1 statfs(2) manual page.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
/usr/share/release_notes.

See Also
getpfsinfo(), estat(), showfs()

OSF/1 Programmer’s Reference: getmntinfo(3), stat(2), statfs(2)

305

Manual Pages

TABLE()

Paragon™ System C Calls Reference Manual

TABLE()

Examines or updates elements from a system table

Synopsis

Parameters

Description

306

#include <sys/table.h>
int table(id, index, addr, nel, lel)
int id;
int index;
char *addr;
int nel,
u_int lel;
id ID of the system table that contains the elements.
index Index of an element within the table.
addr Pointer to a character variable to copy the element values to (on examine) or from
(on update).
nel Signed number that specifies how many elements to copy and in which direction.
A positive value requests copying the elements from the kernel to the address
addr. A negative value copies the elements from the address addr to the kernel.
lel Expected size of a single element.

The table() function is used to examine or update one or more elements in a system table. The
system table is specified by the id parameter and the starting element is specified by index.

The table() function copies the element values to or from the address specified by the addr
parameter. The nel parameter specifies the number of elements to copy, starting from the value of
the index parameter. A positive value indicates an examine operation. The elements are copied from
the kernel to address addr. A negative value indicates an update operation. The elements are copied
from the address addr to the kernel.

| 3

Fa mea

4 e e

4

!

[

R

5 a

| =

pea gm pew F @

3

4

£

A

4 3

4

[

4

£

||

[

[S T T T T T T S SR IR B SR |

[T (S [

B T N L T S P

Paragon™ System C Calls Reference Manual Manual Pages

TAB LE() (cont.) TAB LE() (cont.)

The lel parameter specifies the expected element size. If multiple elements are specified, successive
addresses are calculated for the addr parameter by incrementing it by the value of lel for each
element copied. If the size of a given element is larger than the lel value, the table() function
truncates excess data on an update (from the address addr to the kernel) and stores only the expected
size on an examine (from the kernel to address addr). If the size of a given element is smaller than
the lel value, the table() function copies only the valid data on an update and pads the element value
on an examine.

The table() function guarantees that an update operation will not change the offset and size of any
field within an element. New fields are added only at the end of an element. The table() function
returns a count of the elements examined or updated. To determine the actual number of elements
in a table before requesting any data, call the table() function with the lel parameter set to 0 (zero)
and the nel parameter set to the maximum positive integer. The id parameter must specify one of the
following tables:

TBL_NODEINFO
The index is by node slot, which is incremented by one for successive elements.
Each element is a signed integer that represents a node number. The elements are
sorted in ascending order. This table is examine only. It cannot be updated.

TBL_U_TTYD
The controlling terminal device number table. The index is by process ID and
exactly one element may be requested. If the process ID is O (zero), the current
process is indexed. Only 0 and the current process ID are currently supported. The
element is of type dev_t as defined in the include file sys/types.h. This table can
be examined only; it cannot be updated.

TBL_UAREA The U-area table. The index is by process ID. See include file user.k for the
(pseudo) structure user that is returned.

TBL_LOADAVG
The system load average vector (pseudo) table. The index must be 0 (zero) and
exactly one element may be requested. The element has the following structure:

struct tbl_loadavg {
union {
long 1[31;
double d[3];
} tl_avenrun;
int tl_lscale;
long tl_mach_factor[3];
Y

307

Manual Pages

TAB LE() (cont.)

Paragon™ System C Calls Reference Manual

TAB LE() (cont.)

If the scale is 0 (zero), the load average vector is the floating point variant. If the
scale is non-zero, the load average vector has been scaled by the indicated factor
(typically 1000) to produce the long integer variant. This table can be examined
only; it cannot be updated.

TBL_INCLUDE_VERSION

The system include file version number (pseudo) table. The index must be 0 (zero)
and exactly one element may be requested. The include version is a unique
integer. It identifies the layout of kernel data structures that are imported by
certain kernel-dependent programs. This table can be examined only; it cannot be
updated.

TBL_ARGUMENTS

The process command argument table containing the saved arguments for
processes. The index is by process ID and exactly one element may be requested.
Arguments for processes other than the current process can be accessed only by
the root. This table can be examined only; it cannot be updated.

TBL_MAXUPRC

308

The maximum process count per user ID table. The index is by process ID and
exactly one element may be requested. If the process ID is O (zero), the current
process is indexed. Only 0 and the current process ID are currently supported. The
element is of short integer type. The maximum count includes all processes
running under the current user ID even though the limit affects only the current
process and any children created with that limit in effect. The limit can be changed
only by root.

|

-

o

|]

3

e

[

[

Foa

I I

L

pim Saw BEA

L2

[]

&

-

axd

‘ [b

|3

i

[

.

g

e =

E]

»

4

&

*

¢

El

H oo

el B B] R mm m .- —_—

i

Lo

-

ParagonTM System C Calls Reference Manual

TAB LE() (cont.)

TBL_PGINFO

Manual Pages

TAB LE() (cont.)

The pager information table. The index must be a valid node number to return
information about a single node, or -1 to indicate all nodes. This table can be
examined only; it cannot be updated. Each element is a tbl_pginfo_10 structure

defined as follows:

struct tbl_pginfo_10
{
unsigned long pg_free;
unsigned long pg_npgs;
unsigned long pg_pagein_count;
unsigned long pg_pagein_fail;
unsigned long pg_pageout_count;
unsigned long pg_pageout_fail;
unsigned long pg_pageinit_count;
unsigned long pg _pageinit_write;
unsigned long pg_hipage;
int pg_type;
#define PG_KERN_DEFAULT 0
#define PG_VNODE_FILE
#define PG_VNODE_RAWPART 2
*/

="

char pg_name[PATH_MAX+1];

int pg_prefer;
int pg_node;
services

/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*
/*

/*
/*
/*

Number of unallocated pages */
Total number of pages */

Number of page read requests */
Number of page read errors */
Number of page write requests */
Number of page write errors */
Number of page initialisations */
Number of " " actually written */
Highest page number allocated */
Type of paging file */

Kernel default paging file */
Vnode pager paging file */

Vnode pager-paging to raw partition

Paging file pathname */
Preferred paging file*/
For vnode pager:the node that

* this file/partition
* For kernel default pager: node number

309

Manual Pages

TABLEO (cont.)

TBL_PROCINFO

Paragon™ System C Calls Reference Manual

TABLEO (cont.)

The process status information table. The index is by system-wide process slot
entry number. Status information for processes other than the current process can
be accessed only by root. This table can be examined only; it cannot be updated.
Each element is a thl_procinfo structure defined as follows:

#define PI_COMLEN 19 /* length of command name */

struct
int
int
int
int
int
int

tbl_procinfo {

pi_uid; /* user ID */

pi_pid; /* proc ID */

pi_ppid; /* parent proc ID */

pi_pgrp; /* proc group ID */

pi_ttyd; /* controlling terminal number */
pi_status; /* process status: */

#define PI_EMPTY 0 /* - no process */
#define PI_ACTIVE 1 /* - active process */
#define PI_EXITING 2 /* - exiting */
#define PI_ZOMBIE 3 /* - zombie */

int

pi_flag; /* other random flags */

char pi_comm[PI_COMLEN+1l];/*short command name

*/
int
int
int
int
int
int
int
int
int
int
int
int
int

}i

TBL_ENVIRONMENT

pi_ruid; /* (real) user ID */
pi_svuid; /* saved (effective)
pi_rgid; /* (real) group ID */
pi_svgid; /* saved (effective)
pi_session; /* session ID */
pi_tpgrp; /* tty pgrp */
pi_tsession; /* tty session id */
pi_jobc; /* # procs qualifying pgrp
for job control */

user ID */

group ID */

pi_cursig;

pi_sig; /* signals pending */

pi_sigmask; /* current signal mask */

pi_sigignore; /* signals being ignored */

pi_sigcatch; /* signals being caught by
user */

The process environment table. The index is by process ID and exactly one
element may be requested. Environment information for processes other than the
current process can be accessed only by root. This table can be examined only; it
cannot be updated.

310

=

[I}

]

13

P pw

F A = F3

4

4

E

”

3

g

3

5

£ a

s

e I | =

e 3

E e

|]

A

| |

Paragon™ System C Calls Reference Manual Manual Pages

;
H

¥

#

¥

TABLE() (cont.) TABLE() (cont.)

TBL_SYSINFO
The system time information table. The index must be 0 (zero) and exactly one
element may be requested. The system information table contains ticks of time
accumulated in the various system states: user, nice, system, and idle. The system
tick frequency and profiling (if configured) frequency are also provided for
conversion from ticks to time values. This table can be examined only; it cannot
be updated. The element has the following structure:

4

b

o

struct tbl_sysinfo {

long si_user; /* User time */

long si_nice; /* Nice time */

long si_sys; /* System time */

long si_idle; /* Idle time */

long si_hz; /* System clock ticks per second */

long si_phz; /* System profile clock (if used)
*/

long si_boottime; /* Boot time in seconds */

Y

1

LB 4 ooH

-l

IS i

d

t

TBL_DKINFO The disk statistics table. The index is by disk number. This table can be examined
only; it cannot be updated. The element has the following structure:

#define DI_NAMESZ 8
struct tbl_dkinfo {
int di_ndrive; /* Maximum no. of disks providing
statistics */
int di_busy; /* Bit mask of disks currently

?ﬁi g — |]

l busy */
long di_time; /* Amount of time requested disk
is busy */
- long di_seek; /* Number of seeks for requested
= disk */

long di_xfer; /* Number of data transfer
operations */

long di_wds; /* Number of words transferred */

long di_wpms; /* Words transferred per
millisecond */

int di_unit; /* The disk unit */

char di_name[DI_NAMESZ+1]; /* The disk name */

L

oo

A

PN N e N ew
Lo

E

[: 311

Manual Pages Paragon™ System C Calls Reference Manual

TABLE() (cont.) TABLE() (cont.)

TBL_TTYINFO
The TTY statistics table. The index must be 0 (zero) and exactly one element may
be requested. This table can be examined only; it cannot be updated. The element
has the following structure:

struct tbl_ttyinfo {
long ti_nin; /* Number of characters input */
long ti_nout; /* Number of characters output */
long ti_cancc; /* Portion of input chars on
CANNON gueue */
long ti_rawcc; /* Portion of input chars on
RAW queue */
Y

TBL_MSGDS The message queue ID table. The index is the index into the queue array. Each
element is a msqid_ds structure as defined in msqid_ds(). This table can be
examined only; it cannot be updated.

TBL_SEMDS The semaphore ID table. The index is the index into the array of semaphore IDs.
Each element is a semid_ds structure as defined in semid_ds(). This table can be
examined only; it cannot be updated.

TBL_SHMDS The shared memory region ID table. The index is the index into the array of shared
memory region IDs. Each element is a shmid_ds structure as defined in
shmid_ds(). This table can be examined only; it cannot be updated.

TBL_MSGINFO
The message information table. This table can be examined only; it cannot be
updated. The message information structure is defined in the include file
sys/msg.h as follows:

struct msginfo {
int msgmax; /* max message size */
int msgmnb; /* max # bytes on queue */
int msgmni; /* # of message queue identifiers */
int msgtgl; /* # of system message headers */
Y

The index is by field position within the message information structure as follows:

MSGINFO_MAX
The maximum message size.

MSGINFO_MNB
The maximum number of bytes on the queue.

312

A Ea e

| I

Foa

FoA

LS |

#

£ o4 v A

#

E

E

i

: 1 : # E 4 4

3

5

4

{

B

o | Recang — -y |)
Ly ! Lo rook

4

y [

Paragon™ System C Calls Reference Manual Manual Pages

TAB LE() (cont.) TAB LE() (cont.)

MSGINFO_MNI
The number of message queue IDs.

MSGINFO_TQL
The number of system message headers.

TBL_SEMINFO
The semaphore information table. This table can be examined only; it cannot be
updated. The semaphore information structure is defined in the include file
sys/sem.h as follows:

struct seminfo ({

int semmni; /* # of semaphore identifiers */

int semmsl; /* max # of semaphores per id */

int semopm; /* max # of operations per semop
call */

int semume; /* maxnumber of undo entries per
process */

int semvmx; /* semaphore maximum value */

int semaem; /* adjust on exit max value */

Y

The index is by field position within the semaphore information structure as
follows:

SEMINFO_MNI
The number of semaphore IDs.

SEMINFO_MSL
The maximum number of semaphores per ID.

SEMINFO_OPM
The maximum number of operations per the semop()
call.

SEMINFO_UME
The maximum number of undo entries per process.

SEMINFO_VMX
The semaphore maximum value.

SEMINFO_AEM
The maximum adjust on exit value

313

Manual Pages Paragon™ System C Calls Reference Manual

TAB LE() (cont.) TABLE() (cont.)

TBL_SHMINFO
The shared memory information table. This table can be examined only; it cannot
be updated. The shared memory information structure is defined in the include
sys/shm.h as the follows:

struct shminfo {
int shmmax; /* max shared memory segment size */
int shmmin; /* min shared memory segment size */
int shmmni; /* number of shared memory
identifiers */
int shmseg; /* max attached shared memory
segments per process */
Y

The index is by field position within the shared memory information structure as
follows:

SHMINFO_MAX
The maximum shared memory region size.

SHMINFO_MIN
The minimum shared memory region size.

SHMINFO_MNI
The number of shared memory IDs.

SHMINFO_SEGSHMINFO_SEG
The maximum number of attached shared memory
regions per process.

TBL_INTR The system interrupt information table. The system interrupt structure is defined
in the include sys/table.h as follows:

struct tbl_intr {
long in_devintr; /* Device interrupts
(non-clock) */
long in_context; /* Context switches */
long in_syscalls; /* Syscalls */
long in_forks; /* Forks */
long in_vforks; /* Vforks */
Y

There is no index into the table. This table can be examined only; it cannot be
updated.

314

=

-

A g
¥

£

Fa me

¢ a2

4

4

il

o

l

w

' g

4 [ST

&

k! 4)

i

i

| £ 4 B8

4

e oA (ST ST S T T S S N S I U DR S

;

LI

o

Paragon™ System C Calls Reference Manual Manual Pages

TAB LE() (cont.)

Return Values

TAB LE() (cont.)

A positive return value indicates that the call succeeded for that number of elements. A return value
of -1 indicates that an error occurred, and an error code is stored in the global variable errno.

Errors
EFAULT
EINVAL
EINVAL

EINVAL

EINVAL
EINVAL

EPERM

ESRCH

See Also

The addr parameter is an invalid address.
The table specified by the id parameter is not defined.
The index parameter is not valid for the specified table.

The specified table allows only an index of the current process ID with exactly one
element. Some other index or element number was specified.

An element length of 0 (zero) was supplied for the TBL_ARGUMENTS table.
An attempt was made to update an examine-only table.

An attempt was made to change the maximum number of processes or the account
ID, and the caller was not root.

The process specified by a process ID index cannot be found.

Interfaces: setmodes(1), acct(2), tty(4), acct(5)

315

Manual Pages Paragon™ System C Calls Reference Manual

WRITEOFF() WRITEOFF()

Synchronous writes to a file at a specified offset.

Synopsis

#include <sys/types.h>
#include <nx.h>

int writeoff(
int fildes,
esize_t offset,
char *buffer,
unsigned int nbytes);

#include <sys/types.h>
#include <sys/uio.h>

int writevoff(
int fildes,
esize_t offset,
struct iovec *iov,
int iovcount);

Description of Parameters

fildes A file descriptor identifying the file to be written to.

offset Offset from the beginning of the file where to begin the write.

buffer Pointer to the buffer containing the data is to be written.

nbytes The number of bytes to write to the file associated with the fildes parameter.

iov Pointer to an array of iovec structures that identify the buffers from which the data

is to be written.

iovcount The number of iovec structures pointed to by the iov parameter.

316

E

R

-

E

=1

| S

-

sl

|

L]
L

Paragon™ System C Calls Reference Manual Manual Pages

— [] nan
Bk I [

WRITEOFF() (cont.) WRITEOFF() (cont.

—
; 3

Discussion

Writeoff() and writevoff() perform the write operation starting at the offset specified by the offset
parameter.

||
£

These functions do not modify the system file pointer(s) (unlike write() and writev()).

—
[|

Currently these functions can be used only on files on the Paragon PFS.

Lo

Currently only M_UNIX and M_ASYNC I/O modes are supported.

The O_APPEND flag used in the open function to obtain the file descriptor has no effect on the
write. The write is performed at the position specified by the offset parameter.

S 1 i E

Return Values

Upon successful completion, a non-negative integer representing the number of bytes written is
returned. If an error occurs, these functions return -1 and set errno to indicate the error.

B4 S

Errors
l - Errors are as described in OSF/1 write(), except that the following errors can also occur:
EFSNOTSUPP The file referred to by filedes is not in a file system of a type that supports this
l K operation. Currently only the PFS file systems support this operation.
EINVAL The file referred to by filedes is in an unsupported iomode. Currently only
l - M_UNIX and M_ASYNC are supported.
See Also

[T |

cwrite(), gopen(), iodone(), iowait(), iseof (), iwrite(), iwriteoff(), niodone(), niowait(),
setiomode()

-

OSF/I Programmer’s Reference: dup(), open(), write()

=
-l

317

Manual Pages

Paragon™ System C Calls Reference Manual

318

o

A

3

Fooa

3

e

4

A

a

e

a A

L)

L

e

LS

*

2

#

[

0y

4

3

4

E 5 & 3

i

Dl
£ 3

4
3

b

i e e
! Bl [

|
E [| 1 Lok i

&

lw

Message Types and Typesel Masks

Types

The type parameter used in message passing calls is a user-defined integer value used to identify the
kind of information contained in the message. Types 0to 999, 999, 999 are normal types that can
be used by any send or receive call.

NOTE

Types 1,000,000,000 to 1,073,741,823 and 2,000,000,000 and up
are used by the system and should be avoided. Their use may
produce unpredictable results.

Types 1,073,741,824 to 1,999,999,999 are special force types intended specifically for the
csendrecv(), hsendrecv(), and isendrecv() functions. Force types have three special properties:

1. A message with a force type bypasses the normal flow control mechanisms and is not delayed
by clogged message buffers on the sending or receiving node.

2. Force types do not match the -1 wildcard type selector. This property can be used to guarantee
that the message is received by the proper buffer, no matter what other messages are also
received.

3. A message with a force type is discarded if no receive is posted (as when the receiving process
has been killed). In general, bypassing the normal flow control mechanisms causes no problem
because the send-receive calls guarantee that a receive is posted for the message.

If you use force-type messages with the csendrecv() function, you are responsible for posting the
receive on the receiving node before the message arrives. Otherwise, the receive will not complete
and the message will be lost. The csendrecv() function does not do internal synchronization of
messages.

A-1

Message Types and Typesel Masks

Paragon™ System C Calls Reference Manual

Typesel Masks

A-2

The typesel parameter used in receive calls is an integer value that specifies the type(s) of message
you are waiting for in a probe, receive, or flush operation. You assign a type to a message when you
initiate a send operation. The typesel (type selector) allows you to select a specific message type or
a set of message types based on a 32-bit mask. The typesel can be set as follows:

* If typesel is a non-negative integer, a specific message type will be recognized. All other
messages will be ignored.

» If typesel is -1, the first message to arrive for the process that initiated a probe or receive
operation will be recognized. After the first message has been received, you canuse -1 again
to receive or probe the next message, and so on.

e If typesel is any negative number other than -1, a set of message types will be recognized. In
this case, bits 0-29 of the typesel correspond to types 0-2 9. For example, if bit number 3 is set
to 1 in the typesel, then a message of type 3 will be recognized. If bit number 3 is setto 0, then
a message of type 3 will be ignored.

Bit 30 allows you to select all types greater than 29 as a group. Bit 30 can be used in conjunction
with bits 0-29, as desired. Bit 31 set to 1 makes the typesel parameter negative and indicates that
it is a mask.

To generate a mask, add the constant 0x80000000 and the/ hexadecimal numbers associated with

the types you want to select. For example, if you want to receive message types 1, 2, 5, and 12, add

the following hex numbers:
0x80000000 + 0x2 + Ox4 + 0x20 + 0x1000 = 0x80001026

Enter the following in your program code:
crecv (0x80001026, buf, len);

If you want to receive any message except type 0, use the following:

crecv (OxXFFFFFFFE, buf, len):;

Table A-1 shows the hexadecimal number associated with bits 0-31.

- a

[2

L I

E 8

-

.

-

—a

F3

|

|

E A

- =R F oA

=

€

ﬁ’“a

E]

E]

B
o

E

E

A

E | [[]

3

B

Lo S | . £ 4

d
il

e e Bl e

|

Lo

{ Lo | B I

[S

E)

£

4

— e pem e e
(S|

Paragon™ System C Calls Reference Manual

Message Types and Typesel Masks

Table A-1. Typesel Mask List (1 of 2)

Type Hex Number
0 0x00000001
1 0x00000002
2 0x00000004
3 0x00000008
4 0x00000010
5 0x00000020
6 0x00000040
7 0x00000080
8 0x00000100
9 0x00000200
10 0x00000400
11 0x00000800
12 0x00001000
13 0x00002000
14 0x00004000
15 0x00008000
16 0x00010000
17 0x00020000
18 0x00040000
19 0x00080000
20 0x00100000
21 0x00200000
22 0x00400000
23 0x00800000
24 0x01000000
25 0x02000000
26 0x04000000

Message Types and Typesel Masks

Paragon™ System C Calls Reference Manual

Table A-1. Typesel Mask List (2 of 2)

Type Hex Number
27 0x08000000

28 0x10000000

29 0x20000000
Other types 0x40000000

A-4

I T

5 a

L |

Fa L=}

3

oA Fo

B

Fa g3 FO3

-

A A

A

e peew BoA

4 [S

)

E

|

E

A

]

k

A

L S B [B4

= Il e B we Bl u B uey B e B o

Errno Manual Page

This appendix contains the manual page that describes the errno global variable, possible errno
values, and error handling using operating system C system calls.

The errno global variable is set with an error value that has an associated message that helps
determine the problem in a program. This manual page provides a complete list of the error values
for operating system C system calls. You can also find the list of error codes in the file
/usr/include/sys/errno.h. See the OSF/1 Programmer’s Reference for more information about error
codes and error numbers.

B-1

Manual Pages

ERRNO

Paragon System C Calls Reference Manual

ERRNO

Error values returned by functions in the errno global variable.

Synopsis

Description

#include <errno.h>

There are two versions of the operating system C system calls:
* The standard C system calls that send a message to standard error when an error occurs
* The underscore C system calls that return an error code (errno) when an error occurs

The standard C system calls terminate a process when an error occurs and send a message to standard
error describing the error. For example, the crecv() function terminates when an error occurs and it
sends a message to the standard error describing the error.

The underscore C system calls are identified by an underscore as the first character of the name. For
example, the _crecv() function is the underscore version of the crecv() function. The underscore
calls allow you to write programs that take specific actions when an error occurs. They return a
non-negative value upon successful completion. When an error occurs in an underscore system call,
the call does not terminate the process, but returns a -1 value and sets the errno global variable with
an error value.

The errno global variable is set with an error value that has an associated message that helps
determine the problem in a program. This manual page provides a complete list of the error values
for operating system C system calls. You can also find the list of error codes in the file
fusr/include/sys/errno.h. See the OSF/1 Programmer’s Reference for more information about error
codes and error numbers.

There are two functions you can use to print out the error code for a program that terminates with an
error: perror() and nx_perror(). The perror() function writes an error message on the standard
error output that describes the last error encountered by a function, library function, or Paragon

. OSF/1 system call. The nx_perror() function is identical to the perror() function, except that it

writes the current node number and process type in addition to the error message.

| |

e B =

| |

] 3 Food

-

| |

[CE |

=

| |

peam peam A

o2

™

il

=i

)

——
[|

4 A

e B
B4 b

Paragon™ System C Calls Reference Manual

ERRNO (cont.)

Manual Pages

ERRNO (cont.)

For example, the underscore C system call _crecv() call does not terminate when an error occurs.
On a error, it returns a ~1 and sets errno to the error code for the error that occurred. You can use
perror() or nx_perror() to print the error message.

The following table lists the errno values for operating system system calls. The table lists the error
code, the error code number, the message text, and notes on the error code. The message text appears

in italic text.

Error Code

E2BIG

EACCES

EADDRINUSE

EADDRNOTAVAIL

EAEXIST

EAFNOSUPPORT

EAGAIN

EAINVALGTH

EAINVALMBF

Value

7

13

48

49

158

47

35

156

151

Messages and Notes

Arg list too long. The number of bytes received by the
argument is too big.

Permission denied. The calling process does not have
permission for the operation.

Address already in use. The specified address is
already in use.

Can't assign requested address. The specified address
is not available from the local machine.

Application exists for process group.

Address family not supported by protocol family. The
addresses in a specified address family cannot be used
with the socket.

Resource temporarily unavailable. A resource, such as
a lock or process, is temporarily unavailable.

Give threshold invalid or out of range. For information
about the range of values for the give threshold, see the
application manual page either online or in the
ParagonTM System Commands Reference Manual.

Memory buffer invalid or out of range. For
information about the range of values for the memory
buffer size, see the application manual page either
online or in the ParagonTM System Commands
Reference Manual.

B-3

Manual Pages

ERRNO (cont.)

EAINVALMEA

EAINVALMEX

EAINVALPKT

EAINVALSCT

EAINVALSTH

EALREADY

EANOEXIST

EANOTPGL
EANXACCT

EAOVLP

153

152

150

155

154

37

164

157

141

141

Paragon™ System C Calls Reference Manual

ERRNO (cont.)

Memory each invalid or out of range. For information
about the range of values for the memory each size, see
the application manual page either online or in the
ParagonTM System Commands Reference Manual.

Memory Export invalid or out of range. For
information about the range of values for the memory
export size, see the application manual page either
online or in the Paragon’" System Commands
Reference Manual.

Packet size invalid or out of range. For information
about the range of values for the packet size, see the
application manual page either online or in the
ParagonTM System Commands Reference Manual.

Send count invalid or out of range. For information
about the range of values for the send count size, see
the application manual page either online or in the
ParagonTM System Commands Reference Manual.

Send threshold invalid or out of range. For
information about the range of values for the send
count size, see the application manual page either
online or in the ParagonTM System Commands
Reference Manual.

Operation already in progress.

Application does not exist for process group. The
specified process group does not exist.

Calling process not process group leader.
NX accounting permission denied.
Regquest overlaps with nodes in use. A partition or

application overlaps with another partition or
application.

L
g]

=
»

LS 1

E 1

| ==

Eoa

i

! | ':
E ! koo

4

E

3

[t

E

i

T |

L}
{

[

K|

£

|
i

t N

o i

b

4

8 ¢ i i

—
P4

lﬂ
"
i

"y

ERRNO (cont.)

Paragon™ System C Calls Reference Manual

EAREJPLK

EBADF

EBADID

EBADMSG
EBADPORT
EBADRPC

EBUSY

ECFPS

ECHILD

ECLONEME

ECONNABORTED

ECONNREFUSED

ECONNRESET

EDEADLK

EDESTADDRREQ

144

215

84

101

72

16

199

10

88

54

11

39

Manual Pages

ERRNO(cont.)

Use of -pik not allowed in gang-scheduled partition.
An application cannot use the -plk switch in a
gang-scheduled partition.

Bad file number. A socket or file descriptor parameter
is invalid.

Asynchronous request ID invalid. The id parameter is
not a valid I/O ID.

Next message has wrong type.
Failed port to struct translation.
RPC structure is bad.

Device busy. The requested element is unavailable, or
the associated system limit was exceeded.

Seek to different file pointers. Two or more application
processes are calling Iseek() with different shared I/O
modes (M_SYNC, M_RECORD, or M_GLOBAL).

No child processes. The child process does not exist,
or the requested child process information is
unavailable.

Tells open to clone the device.

Software caused connection abort. The software
caused a connection to abort because there is no space
on the socket’s queue and the socket cannot receive
further connections.

Connection refused.

Connection reset by peer. The attempt to connect was
rejected.

Resource deadlock avoided. There is a probable
deadlock condition, or the requested lock is owned by

someone else.

Destination address required.

Manual Pages

ERRNO (con.)

EDIRTY

EDOM
EDQUOT
EDUPPKG
EEXIST
EEXCEEDCONF

EFAULT

EFBIG

EFSNOTSUPP
EHOSTDOWN
EHOSTUNREACH

EIDRM

EIMODE

B-6

89

33

69

90

17

146

14

27

210

65

81

202

Paragon™ System C Calls Reference Manual

ERRNO (cont.)

Mounting a dirty file system w/o force. The file system
is not clean and M_FORCE is not set.

Argument out of domain. The value of the parameter is
a Not a Number (NaN).

Disc quota exceeded. The file system of the requested
directory has exceeded the user’s quota of disk blocks.

Duplicate package name. The loaded module exported
a package which duplicated the package name of a
module already loaded in the same process.

File exists. The requested file already exists.

Exceeded allocator configuration parameters. The
application exceeded the configuration parameters for
the partition. See the allocator manual page.

Bad address. The requested addréss is in some way
invalid.

File too large. The file size exceeds the process’ file
size limit, or the requested semaphore number is
invalid.

For the stat(), Istat(), or fstat() system call, the file is
an extended file (the file size can exceed 2G - 1 bytes).
Use the estat(), lestat(), or festat() system call,
respectively.

Operation not supported by this file system.

Host is down.

Host is unreachable.

Identifier removed. The requested semaphore or
message queue ID has been removed from the system.

Bad io mode number. Use the /O mode M_UNIX,
M_LOG, M_SYNC, M_RECORD, or
M_GLOBAL.

A Foa N

7

oA

i

Foos |]

e

P

F 3

koA

—a

| ZEE |

o

wm E e

ek

¥4

|

[4

L L T T B T N

i

#

e e

L IR

i ¢ ! i) i

K]

Paragon™ System C Calls Reference Manual

ERRNO (cont.)

EINCOMPAT

EINPROGRESS

EINTR

EINVAL

EIO

EISCONN

EISDIR

ELOCAL

ELOOP

EMFILE

EMIXIO

216

36

22

56

21

103

62

24

201

Manual Pages

ERRNO (cont.)

The application and the OS are of incompatible
revisions. Your applications code is no longer with the
current release of the installed operating system. You
must your application.

Operation now in progress.

Interrupted system call. The operation was interrupted
by a signal.

Invalid argument. The argument or parameter is not
valid for the system call.

I/0 error. An V/O error occurred while reading or
writing to the file system.

Socket is already connected. The socket is already
connected.

Is a directory. The request is for a write to a file but the
specified file name is a directory, or the function is
trying to rename a file as a directory.

Handle operation locally.

Too many levels of symbolic links. Too many symbolic
links were encountered in translating a pathname.

Too many open files. Too many files descriptors are
open, no space remains in the mount table, or the
attempt to attach a shared memory region exceeded the
maximum number of attached regions for a process.

Mixed file operations. In M_SYNC or M_GLOBAL
I/O mode, nodes are attempting different operations
(reads and writes) to a shared file. In these modes, all
nodes must perform the same operation. In the
M_GLOBAL I/O mode, nodes are attempting
different sized reads (using the nbytes parameter) from
a shared file. See the setiomode() function for a
description of the I/O modes for file operations.

Manual Pages

ERRNO (cont.)

EMLINK
EMSGSIZE
ENAMETOOLONG
ENETDOWN

ENETRESET

ENETUNREACH
ENFILE

ENFPS

ENOBUFS
ENOCFS

ENODATA

ENODEV

ENOENT

ENOEXEC

31

40

63

50

52

51

23

200

55

204

86

19

" Paragon™ System C Calls Reference Manual

ERRNO(cont.)

Too many links. The number of links would exceed
LINK_MAX.

Message too long. The message is too large to be sent
all at once, as the socket requires.

File name too long. The pathname argument exceeds
PATH_MAX (1024 characters) or the pathname
component exceeds NAME_MAX (255 characters).
Network is down.

Network dropped connection on reset.

Network is unreachable. No route to the network or
host is present.

File table overflow. Too many files are currently open
in the system.

Different file pointers.

No buffer space available. Insufficient resources, such
as buffers, are available to complete the call.

No CFS available. The concurrent file system (CFS) is
not available.

No message on stream head read q.

No such device. The file descriptor refers to an object
that cannot be mapped, the requested block special
device file does not exist, or a file system is
unmounted.

No such file or directory. A pathname component of
the parameter does not exist.

Exec format error. The parameter specifies a file with
a bad object file format.

ou

P

-3

E] [

e

B

a Foa

L |

=

F =

g 4 E

= |

s 4

4

L4 d

!

b

Paragon™ System C Calls Reference Manual

ERRNO (cont.)

ENOLCK
ENOMEM
ENOMSG
ENOPKG
ENOPROTOOPT
ENOSDIR

ENOSPC

ENOSR
ENOSTR

ENOSYM

ENOSYS

ENOTBLK

ENOTCONN

ENOTDIR

ENOTEMPTY

ENOTPFS

77

12

80

92

42

82

28

82

87

93

78

15

57

20

66

212

Manual Pages .

ERRNO (cont.)

No locks available. The lock table is full because too
many regions are already locked.

Not enough space. Insufficient memory is available
for the requested function.

No message of desired type. A message of a requested
type does not exist.

Unresolved package name. One or more unresolved
package names were found.

Option not supported by protocol. The option is
unknown.

PFSS stripe dir not available.

No space left on device. There is not enough memory
space to extend the file system or device for file or
directory writes.

Out of STREAMS resources.

fd not associated with a stream.

Unresolved symbol name. One or more unresolved
external symbols were found.

Function not implemented.

Block device required. The specified device is not a
block device.

Socket is not connected. The socket is not connected.

Not a directory. A component of the pathname is not a
directory.

Directory not empty.

Non-striped regular file in a PFS.

Manual Pages

ERRNO (cont.)

B-10

ENOTSOCK
ENOTTY
ENXIO

EOPNOTSUPP

EPACCES

EPALLOCERR
EPBADNODE

EPERM

EPFNOSUPPORT
EPFSBUSY
EPINGRP

EPINRN

EPINUSER
EPINVALMOD

EPINVALPART

EPINVALPRI

EPINVALSCHED

38

25

45

139

130

132

46

214

160

161

159

136

133

134

138

Paragon™ System C Calls Reference Manual

ERRNO(cont.)

Socket operation on non-socket. The parameter refers
to a file not a socket.

Not a typewriter. The specified request does not apply
to the kind of object that the descriptor references.

No such device or address. The device or address does
not exist.

Operation not supported on socket. The socket does
not support the requested operation, or the socket does

not accept the connection.

Partition permission denied. The application has
insufficient access permission on a partition.

Allocator internal error.
Bad node specification.

Not owner. The calling process does not have
permissions for the operation.

Protocol family not supported.
PFS stripe file in use.
Invalid group.

Invalid partition rename. Use a simple name for a
partition name.

Invalid user.
Invalid mode.

Partition not found. The specified partition (or its
parent) does not exist.

Invalid priority.

Invalid Scheduling.

k]

¥

A A A
& 4

oA
A4

L

¥ i

[3

|

.

Fod
L i

ka4 F 3
E}

A

£

|
v

1 3 3

&

k]

B3

L 3

b SN R N R R S

k.

Paragon™ System C Calls Reference Manual

ERRNO (cont.)

EPIPE

EPLOCK

EPNOTEMPTY
EPPARTEXIST
EPROCLIM
EPROCUNAVAIL
EPROGMISMATCH
EPROGUNAVAIL
EPROTO

EPROTONOSUPPORT

EPROTOTYPE
EPXRS
EQBADFIL

EQBLEN

EQDIM
EQESIZE

EQHND

EQLEN

32

162

135

137

67

76

75

74

85

131

183

171

195

205

179

172

Manual Pages

ERRNO (cont.)

Broken pipe. An attempt was made to write to a pipe
or FIFO that is not open for reading by any process.

Partition lock denied. You specified a partition that is
currently in use and being updated by someone else.
You cannot change the characteristics of a partition
that is currently being used.

Partition not empty.

Fartition exists.

Too many processes.

Bad procedure for program.

Program version wrong.

RPC program not available.

Error in protocol.

Protocol not supported. The socket or protocol is not
supported.

Protocol wrong type for socket.
Exceeds partition resources.
Invalid object file. Specify a loadable file.

Buffer length exceeds allocation. Make sure the buffer
length does not exceed the buffer size.

Invalid dimension.
Invalid size.

Invalid handler type. Select one of the handlers listed
in the handler description.

Invalid length. Use a non-negative number or a length
that is less than or equal to the maximum message

length.

Manual Pages

ERRNO (cont.)

EQMEM
EQMID

EQMODE

EQMSGLONG

EQMSGSHORT

EQNOACT

EQNODE

EQNOMID

EQNOPROC
EQNOSET
EQPARAM
EQPATH

EQPBUF

EQPCCODE

EQPCNODE

B-12

190

178

196

174

198

182

176

191

180

193

184

207

170

188

186

Paragon™ System C Calls Reference Manual

ERRNO (cont.)

Not enough memory. Simplify the application
program.

Invalid message id. Use the message ID (MID)
returned by the irecv() or isend() functions.

Invalid diagnostic channel mode.

Received message too long for buffer. Make sure the
buffer is large enough to hold the message.

Received message too short for buffer.

No active process. Use the process ID (PID) of a
loaded process.

Invalid node. Use the numnodes() function to
determine the partition size and the myhost() function
to determine the host node number.

Too many requests. Use the msgwait() function for
outstanding requests from the irecv() or isend()
functions.

Out of process slots. Use fewer processes.

No ptype defined.

Invalid parameter.

Path name too long.

Invalid buffer pointer. Specify a pointer that contains
the address of a valid data buffer.

Invalid ccode pointer.

Invalid cnode pointer.

]

L3

a5

|

4

-

E 3

oA

i

- A _

[3

!

e 5 — -

t S]

E 3

o

>

)

il

B

4

1 3

l“m
d

Paragon™ System C Calls Reference Manual

ERRNO (cont.)

EQPCPID

EQPFIL

EQPGRP

EQPID
EQPRIV
EQSET
EQSTATUS

EQTAM

EQTIME
EQTYPE
EQUSEPID
EQUSM

ERANGE

ERDEOF

EREMOTE

EREMOTEPORT

ERFORK

EROFS

187

185

209

175

189

192

197

208

173

177

181

194

34

206

71

102

140

30

Manual Pages

ERRNO (cont.)

Invalid cpid pointer. Do not call the setpid() function
again.

Invalid file name pointer.

Supplied processes group does not exist or is under
control of another TAM.

Invalid ptype. The PID must not be negative.
Privileged operation.

Ptype already set.

Invalid diagnostic channel status.

Max number of applications under debug was
reached.

Time limit exceeded.

Invalid type. Use a non-negative number.
Ptype already in use. Select another PID.
Invalid diagnostic channel usm id.

Result too large. The symbol address could not be
converted into an absolute value.

Attempt to read past end of file.
Item is not local to host.
Returned port is remote.

Do an rfork instead of a fork.

Read-only file system. The directory in which the file
is to be created is located on a read-only file system.

B-13

Manual Pages

ERRNO (cont.)

B-14

ERPCMISMATCH

ESCHEDCONF

ESETIO

ESHUTDOWN

73

145

203

58

ESOCKTNOSUPPORT 44

ESPIPE

ESRCH

ESTALE

ETIME

ETIMEDOUT

ETOOMANYREFS

ETXTBSY

EUSERS

29

70

83

60

59

26

68

Paragon™ System C Calls Reference Manual

ERRNO(cont.)

RPC version is wrong.

Scheduling parameters conflict with allocator
configuration parameters.The scheduling parameters
conflict with the allocator configuration. See the
allocator manual page.

File is not synchronized. In /O modes M_SYNC and
M_RECORD, all nodes must read or write
synchronously.

Can't send after socket shutdown.
Socket type not supported.

lllegal seek. An invalid seek operation was requested
for a pipe (FIFO), socket, or multiplexed special file.

No such process. The requested process or child
process ID is invalid, no disk quota is found for the
specified user, or the specified thread ID does not refer
to an existing thread.

Missing file or file system. The process’ root or current
directory is located in a virtual file system that has
been unmounted.

System call timed out.

Connection timed out. The establishment of the
connection timed out before the connection could be
made.

Too many references: can't splice.

Text file busy. The file is currently opened for writing
by another process, or a write access is requested by a

pure procedure (shared text) file that is being executed.

Too many users. There are too many users.

Fa s oA

F 3

| S

£

Ea Fa Fa FA

E

L

1

B

A

o

!

3

(R N S T TR SN S S SRS RN SN S RN T T S A T |

Paragon™ System C Calls Reference Manual

ERRNO (cont.)

EVERSION

EWOULDBLOCK

EXDEV

Limitations and Workarounds

91

35

18

Manual Pages

ERRNO (cont.)

Version mismatch.

Operation would block. The file is locked, but
blocking is not set. The socket is marked nonblocking,
so the connection cannot be completed.

Cross-device link. The link and the file are on different
file systems.

For information about limitations and workarounds, see the release notes files in

/usr/share/release_notes.

See Also

application, nx_perror(), perror(3)

B-15

Manual Pages

Paragon™ System C Calls Reference Manual

E A

[|

|

& A

[

3

£

| 23] [|

=

oA

(=

L]

5 oa

-

kel

£

mea=

C

cprobe 1
cprobex 1
cread 4
creadv 4
creat 276
crecv 8, 43
crecvx 8
csend 12
csendrecv 15
cwrite 18

cwritev 18

D

dclock 21
dup 43
dup2 43

E

eadd 23
ecmp 23
ediv 23

emod 23
emul 23
ermo B-2
eseek 28
esize 32
estat 36
esub 23
etos 40

exec 298

F
fentl 43

festat 36

flick 56

fork 298
fork_remote_ctl 58
fpgetmask 60
fpgetround 60
fpgetsticky 60
fpsetmask 60
fpsetround 60
fpsetsticky 60

Index

Index-1

Index

fstatpfs 301

G

gcol 64
gcolx 67
gdhigh 71
gdlow 75
gdprod 79
gdsum 83
giand 90
gihigh 71
gilow 75
gior 93
giprod 79
gisum 83
gland 90
glor 93
gopen 96
gopf 100
gsendx 104
gshigh 71
gslow 75
gsprod 79
gssum 83

gsync 106

H

hrecv 109
hrecvx 109
hsend 115

Index-2

Paragon™ System C Calls Reference Manual

hsendrecv 120
hsendx 115

|

infocount 124
infonode 124
infoptype 124
infotype 124
iodone 127
iomode 130
iowait 133
iprobe 136
iprobex 136
iread 140
ireadoff 144
ireadv 140
ireadvoff 144
irecv 147
irecvx 147
isend 151
isendrecv 154
iseof 157
isnan 159
isnand 159
isnanf 159
iwrite 161
iwriteoff 165
iwritev 161

iwritevoff 165

| |

ol

o B ==

Paragon" System C Calls Reference Manual

L
lestat 36
Isize 168

M

masktrap 172
mount 175
msgcancel 182
msgdone 184
msgignore 186
msgmerge 188
msgwait 190
myhost 193
mynode 194

myptype 196

N

niodone 197

niowait 199
numnodes 201
nx_app_nhodes 204
nx_app_rect 206
nx_chpart_epl 208
nx_chpart_mod 208
nx_chpart_name 208
nx_chpart_owner 208
nx_chpart_rq 208
nx_chpart_sched 208
nx_empty_nodes 214

nx_failed_nodes 217

nx_initve 220
nx_initve_attr 225
nx_initve_rect 220
nx_load 238
nx_loadve 238
nx_mkpart 241
nx_mkpart_attr 244
nx_mkpart_map 241
nx_mkpart_rect 241
nx_nfork 255
nx_part_attr 258
nx_part_nodes 261
nx_perror 263
nx_pri 265
nx_pspart 267
nx_rmpart 271
nx_waitall 274

(0]
open 276

P
pthread_create 298

R

readoff 287
readvoff 287
rmknod 285

Index

Index-3

Index

S

setiomode 289
setptype 297

statpfs 301
stoe 40

T
table 306

U

umount 175

Index-4

Paragon™ System C Calls Reference Manual

5

pe

= a

s

e

- a

F

