
c
[J

[J

(J

c
c
[

[J

[J

r=
E:
[

1=
C
[J

1=
[~

IJ
[~

P ™ aragon System

C Calls

Reference Manual

Intel@ Corporation

April 1996

Order Number: 312487-005

Copyright © 1996 by Intel Server Systems Product Development, Beaverton, Oregon. All rights reserved. No part of this work may be reproduced
or copied in any form or by any means ... graphic, electrOnic, or mechanical including photocopying, taping, or information storage and retrieval
systems ... without the express written consent of Intel Corporation. The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this document Intel Corporation
makes no commitment to update or to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication, or disclosure is subject to restrictions
stated in Intel's software license agreement. Use, duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subpara­
graphs (c)(l)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule­
vard, Santa Clara, CA 95052-8119. For all Federal use or contracts other than DoD, Restricted Rights under FAR 52.227-14, ALT. III shall apply.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

286
287

i386
i387
i486
i487
i860

Other brands and names are the property of their respective owners.

Copyright ® The University of Texas at Austin, 1994
All rights reserved.

Intel
Intel386
Inte1387
Intel486
Intel487

iPSC
Paragon

This software and documentation constitute an unpublished work and contain valuable trade secrets and proprietary information belonging to the
Uuiversity. None of the foregoing material may be copied, duplicated or disclosed without the prior express written permission of the Uuiversity.
UNIVERSITY EXPRESSLY DISCLAIMS ANY AND ALL WARRANTIES CONCERNING THIS SOFTWARE AND DOCUMENTATION,
INCLUDING ANY WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR ANY PARTICULAR PURPOSE, AND W ARRAN­
TIES OF PERFORMANCE, AND ANY WARRANTY THAT MIGHT OTHERWISE ARISE FROM COURSE OF DEALING OR USAGE OF
TRADE. NO WARRANTY IS EITHER EXPRESS OR IMPLIED WITH RESPECT TO THE USE OF THE SOFTWARE OR DOCUMENTA­
TION. Under no circumstances shall Uuiversity or Intel be liable for incidental, special, indirect, direct or consequential damages or loss of profits,
interruption of business, or related expenses which may arise from the use of, or inability to use, software or documentation, including but not limited
to those resulting from defects in the software and/or documentation, or loss or inaccuracy of data of any kind.

ii

------ . __ ._------

D
if ,
il ,J

"
..,

I
"...I

" ""'1

Ii ...I

I" "':TI

:.. -'

~ "
ILM

rtY"1""']

ill ..,
~.",

II

" l.J

(J

I··~

-AI

IJ
[J

(]

IJ
[J

[J

[J

rJ
[

[,
.J

IJ

._._-_ .. _-------------

WARNING
Some of the circuitry inside this system operates at hazardous energy and
electric shock voltage levels. To avoid the risk of personal injury due to
contact with an energy hazard, or risk of electric shock, do not enter any
portion of this system unless it is intended to be accessible without the use
of a tool. The areas that are considered accessible are the outer enclosure
and the area just inside the front door when all of the front panels are in­
stalled, and the front of the diagnostic station. There are no user service­
able areas inside the system. Refer any need for such access only to tech­
nical personnel that have been qualified by Intel Corporation.

CAUTION
This equipment has been tested and found to comply with the limits for a
Class A digital device, pursuant to Part 15 of the FCC Rules. These limits
are designed to provide reasonable protection against harmful interfer­
ence when the equipment is operated in a commercial environment. This
equipment generates, uses, and can radiate radio frequency energy and,
if not installed and used in accordance with the instruction manual, may
cause harmful interference to radio communications. Operation of this
equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own
expense.

LIMITED RIGHTS
The information contained in this document is copyrighted by and shall re­
main the property of Intel Corporation. Use, duplication or disclosure by
the U.S. Government is subject to Limited Rights as set forth in subpara­
graphs (a)(15) of the Rights in Technical Data and Computer Software
clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule­
vard, Santa Clara, CA 95052. For all Federal use or contracts other than
DoD Limited Rights under FAR 52.2272-14, ALT. III shall apply. Unpub­
lished-rights reserved under the copyright laws of the United States.

iii

iv

,.-.-..,
,~' I

~.~

"'--"" I ". I

[J

[J !

IJ

I·.".,
..oJ

(J

(J

c

(~

rJ

(1
.. -.l

IJ
1.-"

.~

II·~
~ ._...J

I
··~

. ..J

[. .,., .. :

iIiiI

Preface

The Paragon ™ C system calls are described in two manuals:

• The OSFll Programmer's Reference describes the standard aSF/1 system calls, library
routines, file formats, and special files.

• The Paragon ™ System C CallsReference Manual (this manual) describes the system calls and
library routines (referred to collectively as "system calls") that let you access the special
capabilities of the Paragon. These calls let you:

Create and control parallel applications and partitions.

Exchange messages between processes.

Get information about the computing environment.

Perform global operations optimized for the Intel supercomputer's architecture.

Perform 64-bit integer arithmetic (used for manipulating file pointers that exceed 32 bits).

Read and write files in the Parallel File System (PFS).

This manual assumes that you are proficient in using the C programming language and the operating
system .

NOTE

Programming examples in this manual are intended only to
demonstrate the use of Paragon C system calls; they are not
intended as examples of good programming practice. For
example, in some cases, the return values of functions are not
checked for error conditions. This is not recommended, but the
error checks have been omitted in order to make the example
shorter and easier to read.

v

.--------~------------ .-----

Preface Paragon ™ System C Calls Reference Manual

NOTE

Do not use the Mach system call interface. This interface is not
supported. It is not documented in SSD manuals, but you may
read about Mach elsewhere. If you use Mach system calls, your
application may fail. Mach memory allocation and Paragon
memory allocation do not work together.

Organization

vi

The manual contains a "manual page" for each operating system C system call, organized
alphabetically. Each manual page provides the following information:

• Synopsis (including call syntax, parameter declarations, and include files).

• Description of any parameters.

• Description of the call (including programming hints).

Return values (if applicable).

• Error messages (including causes and remedies).

• Examples.

• Limitations and workarounds information.

• Related calls.

Some of the manual pages in this manual discuss several related system calls. For example, the
creadO manual page discusses both the creadO and creadvO system calls. The title of a manual
page that discusses more than one call is the name of the first call discussed on the page. To find the
discussion of any system call, use the Index at the back of this manual.

Appendix A tells how to select message types and build message type selectors for the
message-passing system calls.

Appendix B lists the error codes that can be returned in the global variable ermo by operating system
C system calls.

D

lit·""
I
1Il_",,;

l ' .,J

I']

lj

(-l
.~

I
"'~

!
; I

"_-.J

[J

l=
[~

IJ
[~

[J

Paragon ™ System C Calls Reference Manual Preface

Notational Conventions
This section describes the following notational conventions:

• Type style conventions

System call syntax descriptions

Type Style Conventions

This manual uses the following type style conventions:

Bold

Italic

Identifies command names and switches, system call names, reserved words,
and other items that must be used exactly as shown.

Identifies variables, filenames, directories, processes, user names, and writer
annotations in examples. Italic type style is also occasionally used to
emphasize a word or phrase.

Plain-Monospace
Identifies computer output (prompts and messages), examples, and values of
variables. Some examples contain annotations that describe specific parts of
the example. These annotations (which are not part of the example code or
session) appear in italic type style and flush with the right margin.

Bold-Italic-Monospace
Identifies user input (what you enter in response to some prompt).

Bold-Monospace
Identifies the names of keyboard keys (which are also enclosed in angle
brackets). A dash indicates that the key preceding the dash is to be held down
while the key following the dash is pressed. For example:

<Break> <s> <Ctrl-Alt-Del>

vii

Preface Paragon'" System C Calls Reference Manual

System Call Syntax Descriptions

viii

In this manual, a prototype for each system call is described in the "Synopsis" section, which
contains the following:

• Include file declarations needed by the system call.

• Syntax of the system call.

• Parameter declarations of each system call.

The following notational conventions apply to the "Synopsis" section:

Bold Identifies system call names.

Italic Identifies parameter names.

(Brackets) Surround optional items.

(Bar) Separates two or more items of which you may select only one.

{ } (Braces) Surround two or more items of which you must select one.

(Ellipsis dots) Indicate that the preceding item may be repeated.

For example, the synopsis for the iprobeO system call appears as follows:

#include <nx.h>
long iprobe(

long typeset);

[]

~'" , ,

i;.,.~

,
~ ~I

r:

I,''''' , ,

""

[J

(--,
j

[J

IJ
[J

(.. --,
•• ,-------l

r=
[:
. .-.J

. ['9
, '

l~
l'~

,-,

(
""1

j

lJ

Paragon ™ System C Calls Reference Manual Preface

Applicable Documents
For more information, refer to the following documents:

• OSFll Programmer's Reference

• OSFll Network Application Programmer's Guide

• Paragon™ System User's Guide

TM
• Paragon System Fortran Calls Reference Manual

• Paragon™ System Commands Reference Manual

How Errors are Handled
How the operating system operating system handles errors depends on the system call involved:

• For operating system system calls whose names begin with "nx_", the calls either return -1 and
set the variable ermo to a value that describes the error, or it sends a signal to the calling process.
You can use nx_perror(3) or perror(3) to print a message for the value of ermo.

• For all other operating system system calls (except those whose names begin with "nx_"), the
system normally displays a message on the terminal and terminates the calling process .

• For all operating system system calls (except those whose names begin with "nx_"), there is a
corresponding underscore system call that returns -1 and sets the variable ermo to a value that
describes the error. The underscore system calls are identified by an underscore CJ as the first
character of the name. For example, the _crecvO system call is the underscore version of the
crecvO system call. The underscore calls allow you to write programs that take specific actions
when an error occurs. These calls do not terminate a process when an error occurs. You can use
DX_perror(3) or perror(3) to print a message for the value of ermo. For a complete list of the
ermo values set by the underscore calls, see Appendix B that contains the e"no manual page.

ix

Preface Paragon ™ System C Calls Reference Manual

Comments and Assistance

x

Intel Scalable Systems Division is eager to hear of your experiences with our products. Please call
us if you need assistance, have questions, or otherwise want to comment on your Paragon system.

France Intel Corporation
1 Rue Edison-BP303

U.S.AJCanada Intel Corporation
Phone: 800-421-2823

Internet: support@ssd.intel.com

United Kingdom Intel Corporation (UK) Ltd.
Scalable Systems Division
Pipers Way

78054 St. Quentin-en-Yvelines Cedex
France

Swindon SN3 IRJ
England

05908602 (toll free)

Intel Japan K.K.
Scalable Systems Division
5-6 Tokodai, Tsukuba City
!baraki-Ken 300-26
Japan
0298-47-8904

0800212665 (toll free)
(44) 793 491056
(44) 793 431062
(44) 793 480874
(44) 793 495108

Germany Intel Semiconductor GmbH
Dornacher Strasse 1
85622 Feldkirchen bei Muenchen
Germany
0130813741 (toll free)

World Headquarters
Intel Corporation

Scalable Systems Division
15201 N.W. Greenbrier Parkway

Beaverton, Oregon 97006
U.S.A.

(503) 677-7600 (Monday through Friday, 8 AM to 5 PM Pacific Time)
Fax: (503) 677-9147

If you have comments about our manuals, please fill out and mail the enclosed Comment Card. You
can also send your comments electronically to the following address:

techpubs@ssd.intel.com
(Internet)

n.l. lJ

r:rr-- --'I
I

r:
[J

U
I.~i

.• ..,.;i

(-:
,-~

(J

c
(J

I.'" .~

1"9

, _-.J

I~

r:
(

'''''1

. ..J

(~

I i
_.J

C

l-=
[:
I-~

,.oJ

[j

C

----.,---------------

Table of Contents

CPROBEO .. 1

CREADO .. 4

CRECVO .. 8

CSENDO .. 12

CSENDRECVO '" ... 15

CWRITEO ... 18

DCLOCKO .. 21

EADDO ... 23

ESEEKO ... 28

ESIZEO .. 32

ESTATO ... 36

ETOSO ... 40

FCNTLO ... 43

FLICKO ... 56

FORK_REMOTE_CTLO ... 58

FPGETROUNDO .. 60

GCOLO ... 64

GCOLXO .. 67

GDHIGHO .. 71

. GDLOWO ... 75

GDPRODO ... 79

GDSUMO ... 83

GETPFSINFOO .. 87

xi

Table of Contents Paragon"" System C Calls Reference Manual [J

xii

!If'-"
GIANDO ... 90 ill .. ,..)

GIORO .. 93

GOPENO .. 96

GOPFO ... 100

GSENDXO .. 104

GSYNCO .. 106

HRECVO .. 109

HSENDO .. 115

HSENDRECVO .. 120

INFOCOUNTO ... 124

IODONEO ... 127

IOMODEO .. 130

IOWAITO .. 133

IPROBEO ... 136

IREADO .. 140

IREADOFFO ... 144

IRECVO .. 147

ISENDO .. 151

ISENDRECVO .. 154

ISEOFO .. 157

ISNANO .. 159

IWRITEO .. 161

IWRITEOFFO ... 165

LSIZEO ... 168

MASKTRAPO ... 172

MOUNTO .. 175

MSGCANCELO .. 182

MSGDONEO ... 184

MSGIGNOREO '" ... 186

MSGMERGEO ... 188

r"''''1
1L.""i

~r~
1....J

MSGWAITO·························· .. ·.··············.· .. 190 (.:J
MYHOSTO ... 193

[J
[J

("~

-

(:
--'

[
I

-~)

(--',
<~

l:
1-'1

~

(
i

--""

1=
I~

IJ

[-~
I
~

. __ I

l:
("' j

I=~
(-"'"

_ .• J

-~~~~.~------------------

Paragon ™ System C Calls Reference Manual Table of Contents

MYNODEO ... 194

MYPTYPEO .. 196

NIODONEO .. 197

NIOWAITO ... 199

NUMNODESO '" , .. 201

NX_APP _NODESO .. 204

NX_APP _RECTO ... 206

NX_CHPART _EPLO .. 208

NX_EMPTY _NODESO ... 214

NX_FAILED_NODESO .. 217

NX_INITVEO .. 220

NX_INITVE_A TIRO ... 225

NX_LOADO .. 238

NX_MKPARTO ... 241

NX_MKPART_ATIRO ... 244

NX_NFORKO ... 255

NX_PART _A TIRO ... 258

NX_PART _NODESO .. , ... 261

NX_PERRORO .. 263

NX_PRIO .. 265

NX_PSPARTO ... 267

NX_RMPARTO ... 271

NX_ WAITALLO '" , ... 274

OPENO ... 276

PFS_HOST _IN ITO .. 283

RMKNODO ... 285

READOFFO ... 287

SETIOMODEO ... 289

SETPTYPEO .. 297

STATPFSO ... 301

TABLEO ... 306

WRITEOFFO ... 316

xiii

---------------- --

Table of Contents Paragon TM System C Calls Reference Manual

Appendix A
Message Types and Typesel Masks

Types .. A-1

Typesel Masks .. A-2

Appendix B
Errno Manual Page

ERRNO .. B-2

xiv

l"r'~'
!' "

[:
(:
r~ i. ____

I:
(:
[-TI1

--'

(-.-.
....

[J

I:
.----J

(:
,~J

r~

1=
1:=

I~ , ,
~_I

I, '""[. ,

-:J

IJ
[~

I
-~

,..j

r:
t:

Paragon ™ System C Calls Reference Manual Table of Contents

List of Tables

Table A-1. Typesel Mask List .. A-3

xv

Table of Contents Paragon TM System C Calls Reference Manual

I:

xvi c

I:

[
"~

.~

["'"
.J

[J

[: . __J

[J

1''"1· ' '

, ,.J

, 1J"'9·

(..,..,
! !
-~

I '...,
,~

I~
(; -=

__ ..:.-1

r=

I-J
[4

r=
l:

Paragon TM System C Calls Reference Manual Manual Pages

CPROBE() CPROBE()

cprobeO, cprobexO: Waits (blocks) until a message is ready to be received. (Synchronous probe)

Synopsis

Parameters

#include <nx.h>

void cprobe(
long typesel);

void cprobex(
long typesel,
long nodesel,
long ptypesel,
long info[]);

typesel

nodesel

ptypesel

info

Message type(s) to receive. Setting this parameter to -1 probes for a message of
any type. Refer to Appendix A of the Paragon TM System C Calls Reference
Manual for more information about message type selectors.

Node number of the sender. Setting the nodesel parameter to -1 probes for a
message from any node.

Process type of the sender. Setting the ptypesel parameter to -1 probes for a
message from any process type.

Eight-element array of long integers in which to store message information. The
first four elements contain the message's type, length, sending node, and sending
process type. The last four elements are reserved for system use. If you do not
need this information, you can specify the global array msginfo, which is the array
used by the info ••• O calls. See the nx.h include file for information about the global
array msginfo.

Manual Pages Paragon™ System C Calls Reference Manual

CPROBEO (cont.) CPROBEO (cont.)

Description

Use the appropriate synchronous probe system call to block the calling process until a specified
message is ready to be received:

• Use the cprobeO function to wait for a message of a specified type. Use the info ... O system calls ~,.,

to get more information about the message. *-.--.i

• Use the cprobexO function to wait for a message of a specified type from a specified sender and r-.~'

store information about the message in the info array. ~ =.0

When a synchronous probe system call successfully returns, the message of the specified type is
available. Use the receive system calls (for example, crecvO or irecv()) to receive the message.

These are synchronous system calls. The calling process waits (blocks) until the specified message
is ready to be received. To probe for a message of the specified type without blocking the calling
process, use one of the asynchronous probe system calls (for example, iprobeO).

Return Values

Errors

2

Upon successful completion, the cprobeO and cprobexO functions return control to the calling
process; no values are returned. Otherwise, these functions display an error message to standard
error and cause the calling process to terminate.

Upon successful completion, the _cprobeO and _cprobexO functions return 0 (zero). Otherwise,
these functions return ~ 1 and set ermo to indicate the error.

Refer to the e"no manual page for a list of errors that can occur in the C underscore system calls.

I:
C

IJ

[J

I"'":
~

IJ

r=
(°1
. __ J

I:

Ii

Paragon TM System C Calls Reference Manual Manual Pages

CPROBEO (cont.) CPROBEO (cont.)

Examples

The following example does a synchronous probe and runs on a two-node partition.

#include <nx.h>

#define INIT_TYPE 10

long iam;

main()
{

char msgbuf[80] , smsg[80];

iam = mynode();
if (iam==O) {

sprintf(smsg,"Hello from node %d",iam);
csend(INIT_TYPE, smsg, sizeof(smsg), -1, 0);
printf("Node %d sent: %s\n",iam,smsg);

else {
cprobe(INIT_TYPE) ;
if(infocount() <= sizeof(msgbuf))

crecv(INIT_TYPE, msgbuf, sizeof(msgbuf));
printf("Node %d received: %s\n",iam,msgbuf);

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease _notes.

crecvO, ermo, infocountO, infonodeO, infoptypeO, infotypeO, iprobeO, irecvO

3

Manual Pages Paragon ™ System C Calls Reference Manual

CREADO CREADO

creadO, creadvO: Reads from a file and blocks the calling process until the read completes. (Synchronous read)

Synopsis

Parameters

4

#include <nx.h>

void cread(
intfildes,
void *buffer,
unsigned int nbytes);

#include <sys/uio.h>

void creadv(
int fildes,
struct iovec *iov,
int iovcount);

fildes

buffer

nbytes

iov

iovcount

File descriptor identifying the file to be read.

Pointer to the buffer in which to store the data after it is read from the file.

Number of bytes to read from the file associated with the fildes parameter.

Pointer to an array of iovec structures that identifies the buffers into which the data
read is placed. The iovec structure has the following form:

struct iovec {
caddr_t iov_base;
int

} ;

The iovec structure is defined in the syS/uio.h include file.

Number of iovec structures pointed to by the iov parameter.

D·
. I

.. JiIj

(1'!
:'. i
~ ...

~ .. ~

ilL.!

[J

["1
Ai

(' .A

IJ
IJ

[J

rJ
I~

1=
(J

(.~
-"'""

[• I. . ,
_--J

1,-1

--'

(
~I

,._;

IJ

Paragon ™ System C Calls Reference Manual Manual Pages

CREAD() (cont.) CREAD() (cont.)

Description

Other than return values and an additional error, the creadO and creadvO functions are identical to
the OSFIl readO and readvO functions, respectively. See the read(2) manual page in the OSFll
Programmer's Reference.

These calls are synchronous system calls. The calling process waits (blocks) until the read
completes. Use the ireadO or ireadvO function to read a file without blocking the calling process.

NOTE

To preserve data integrity, all 1/0 requests are processed on a
"first-in, first-out" basis. This means that if an asynchronous 1/0
call is followed by a synchronous 1/0 call on the same file, the
synchronous call will block until the asynchronous operation has
completed. .

Reading past the end of a file causes an error. You can do one of the following to prevent end-of file
errors:

• Use the iseofO function to detect end-of-file before calling the creadO or creadvO functions.

• Use the lseekO function to determine the length of a file before calling the creadO or creadvO
functions.

• Use the _creadO or _creadvO function to detect end-of-file or that the number of bytes read is
less than the number of bytes requested.

Return Values

Upon successful completion, the creadO and creadvO functions return control to the calling
process; no values are returned. Otherwise, the creadO and creadvO functions write an error
message on the standard error output and cause the calling process to terminate.

Upon successful completion, the _creadO and _creadvO functions return the number of bytes read.
Otherwise, these functions return -1 and set ermo to indicate the error. These functions return 0
(zero) if end-of-file is reached.

5

Manual Pages Paragon™ System C Calls Reference Manual

CREADO (cant.) CREADO (cant.)

Errors

Examples

6

If the _creadO and _creadvO functions fail, erma may be set to one of the error code values
described for the OSPIl readO function or the following value:

EMIXIO In M_SYNC or M_GLOBAL liD mode, nodes are attempting different
operations (reads and writes) to a shared file. In these modes, all nodes must
perform the same operation. In the M_GLOBAL 110 mode, nodes are attempting
different sized reads (using the nbytes parameter) from a shared file.

The following example does a synchronous read and runs in a multi-node partition. Note that the
fileitrnpimydata must exist in order for this example to correctly execute.

#include <memory.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <nx.h>

long iam;

main() .
{

}

int fd;
struct stat result;
char ~sgbuf[lOOl;

iam = mynode();

memset(msgbuf,O,lOO);

fd = gopen(u/tmp/mydata", O_RDWR, M_UNIX, 0644);
fstat(fd, &result);
if (!iseof(fd)) {

cread(fd, msgbuf, result.st_size);
printf(UNode %d read: %s" ,iam,msgbuf);

[J
If""!
l--d

[J

[J

c
c
[J

c
r:

(;
~J

IJ

ri " !
. '.--!

C--.-· ' :
I :

t=

[J

IJ
.. ~.i
I...J

C

Paragon ™ System C Calls Reference Manual Manual Pages

CREAD() (cont.) CREAD() (cont.)

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

cwriteO, gopenO, ireadO, iseofO, iwriteO, setiomodeO

OSFll Programmer's Reference: Iseek(2), open(2), read(2)

7

Manual Pages Paragon™ System C Calls Reference Manual

CRECVO CRECVO

crecvO, crecvxO: Posts a receive for a message and blocks the calling process until the receive completes.
(Synchronous receive)

Synopsis

Parameters

8

#include <nx.h>

void crecv(
long typesel,
char *buf,
long count);

void crecvx(
long typesel,
char *buf,
long count,
long nodesel,
long ptypesel,
long info[]);

typesel Message type(s) to receive. Setting this parameter to -1 receives a message of any
type. Refer to Appendix A of the Paragon ™ System C Calls Reference Manual for
more information about message type selectors.

buf

count

nodesel

ptypesel

Points to the buffer where the message should be placed.

Length (in bytes) of the bufparameter.

Node number of the sender. Setting the nodesel parameter to -1 receives a
message from any node.

Process type of the sender. Setting the ptypesel parameter to -1 receives a message
from any process type.

iL ...

If-"
WL .. ,

[1
-""

1=
[J

[J

IJ
IJ
[J

c
[J

IJ
[J

c

c
c
IJ

IJ

[J .
. \

Paragon ™ System C Calls Reference Manual Manual Pages

CRECVO (cont.) CRECVO (cont.)

Description

info Eight-element array of long integers in which to store message information. The
first four elements contain the message's type, length, sending node, and sending
process type. The last four elements are reserved for system use. If you do not
need this information, you can specify the global array msginfo, which is the array
used by the info ••• O functions.

Use the appropriate synchronous receive system call to post a receive for a message and wait until
the receive completes:

• Use the crecvO function to receive a message of a specified type.

• Use the crecvxO function to receive a message of a specified type from a specified sender and
place information about the message in an array.

When the receive completes, the message is stored in the specified buffer and the calling process
resumes execution. If the message is too long for the bufbuffer, your application terminates with an
error and the receive does not complete.

After the crecvO function completes, you can use the info ••• O functions to get more information
about the message after it is received. After the crecvxO function completes, the same message
information is returned in the info parameter.

These are synchronous system calls. The calling process waits (blocks) until the receive completes.
To post a receive for a message without blocking the calling process, use an asynchronous receive
system call (for example, the irecvO function) or a handler receive system call (for example, the
brecvO function). Note that posting too many asynchronous calls can cause the application to
deplete the available pool of message IDs. If no message IDs are available, crecvO and crecvxO may
fail with your application terminating and the synchronous receive function not completing.

Return Values

Upon successful completion, the crecvO and crecvxO functions return control to the calling process;
no values are returned. If an error occurs, these functions print an error message to standard error
and cause the calling process to terminate.

The _crecvO and _crecvxO functions return -1 when an error occurs and set ermo to indicate the
error. Otherwise, these functions return O.

9

Manual Pages Paragon ™ System C Calls Reference Manual

CRECVO (cont.) CRECVO (cont.)

Errors

Examples

10

The _ci'ecvO and _crecvxO functions can return the following ermo value:

EQMSGLONG The message received was too long for the bUfmessage buffer.

EQNOMID The application has too many outstanding message requests from asynchronous
system calls. No message IDs are available from the system for the synchronous
receive.

Refer to the e"no manual page for a list of errors that can occur in the C underscore system calls.

The following example uses the crecvO function to do a synchronous receive. The example can run
in a multi-node partition.

#include <nx.h>

#define INIT_TYPE 10

long iami

main()
{

}

char msgbuf[80], smsg[80]i

iam = mynode () i

if (iam==O) {
sprintf (smsg, "Hello from node %d\n", iam) i

csend(INIT_TYPE, smsg, strlen(smsg) +1, -1, 0) i

printf("Node %d sent: %s",iam,smsg) i

else {
cprobe(INIT_TYPE) i

if (infocount() <= sizeof(msgbuf))
crecv(INIT_TYPE, msgbuf, sizeof(msgbuf)) i

printf("Node %d received: %s\n",iam,msgbuf)i
}

[j
!'" ,
[, '
11-...1

,"'1
IL.J

rf "l
it...!

[l
cJoOI

(J

[]

lJ
[J

r:

[J

(i
CLJ

[J

[J

[J

IJ
IJ

I~

[J

Paragon TM System C Calls Reference Manual Manual Pages

CRECVO (cont.) CRECVO (cont.)

Limitations and Workarounds

See Also

For information about limitations and workarounds. see the release notes files in
lusrlsharelrelease _notes.

cprobeO. csendO. csendrecvO. errno. hrecvO. hsendO. hsendrecvO. infocountO. infonodeO.
infoptypeO. infotypeO. iprobeO. irecvO. isendO. isendrecvO

11

, .. --~.--~--------------------

Manual Pages Paragon ™ System C Calls Reference Manual

CSEND() CSEND()

Sends a message and blocks the calling process until the send completes. (Synchronous send)

Synopsis

Parameters

Description

12

#include <nx.h>

voidcsend(
long type,
char *buf,
long count,
long node,
long ptype);

type

buf

count

node

ptype

Type of the message to send. Refer to Appendix A of the Paragon TM System C
Calls Reference Manual for more information about message types.

Points to the buffer containing the message to send. The buffer may be of any valid
data type.

Number of bytes to send in the bufparameter.

Node number ofthe message destination (the receiving node). Setting the node
parameter to -1 sends the message to all nodes in the application (except the
sending node when the ptype parameter is the sender's process type).

Process type of the message destination (the receiving process).

This is a synchronous system call. The calling process waits (blocks) until the send completes.
Completion of the send does not mean that the message was received, only that the message was sent
and the send buffer (buj) can be reused. To send a message without blocking the calling process, use
one of the asynchronous send system calls (for example, isend()) or one of the handler-send system
calls (for example, hsend()) instead.

If]
I.

~~ ,,,J

rJ

[J

[J

1'\!1
L

[J
(.~

_;;,J

(J

[J

1.·-:
.~

r=
r:

(.,
.J

[: .J

IJ
[J

-------.--~---~-.-----------------

Paragon ThI System C Calls Reference Manual Manual Pages

CSENDO (cont.) CSEND() (cont.)

Return Values

Errors

Examples

Upon successful completion, the csendO function returns control to the calling process; no values
are returned. Otherwise, this function displays an error message to standard error and causes the
calling process to terminate.

Upon successful completion, the _csendO function returns 0 (zero). Otherwise, this function returns
-1 and sets ermo to indicate the error.

Refer to the ermo manual page for a list of errors that can occur in the C underscore system calls.

The following example uses the csendO function to do a synchronous send. The example can run in
a multi-node partition.

#include <nx.h>

#define INIT_TYPE 10

long iam;

main ()
{

char msgbuf[80], smsg[80];

iam = mynode () ;
if (iarn==O) {

sprintf (smsg, "Hello from node %d\n", iam) ;
csend(INIT_TYPE, smsg, strlen(smsg)+l, -1, 0);
printf ("Node %d sent: %s", iam, smsg) ;

else {
cprobe(INIT_TYPE);

}

if (infocount() <= sizeof(msgbuf))
crecv(INIT_TYPE, msgbuf, sizeof(msgbuf));
printf("Node %d received: %s\n",iarn,msgbuf);

13

---------- ----------------

Manual Pages Paragon ™ System C Calls Reference Manual

CSENDO (cont.) CSENDO (cont.)

Limitations and Workarounds

See Also

14

For information about limitations and workarounds. see the release notes files in
lusrlshare!release _notes.

cprobeO. crecvO. csendrecvO. ermo. hrecvO. hsendO. hsendrecvO. iprobeO. irecvO. isendO.
isendrecvO

r·~
. I ill ..

ri
~

(I
_.oJ

lJ

r:

1··"'9

~I

(.-.,
~j

r:
I·. '9

.-.J

(:
~

I··.....,
.....J

I:

[J

l~

(J

Paragon TM System C Calls Reference Manual Manual Pages

CSENDRECV() CSENDRECVO

Sends a message, posts a receive for a reply, and blocks the calling process until the receive completes. (Synchronous
send-receive)

Synopsis

Parameters

#include <nx.h>

long csendrecv(
long type,
char *sbuf,
long scount,
long node,
longptype,
long typesel,
char *rbuf,
long rcount);

type

sbuf

scount

node

ptype

Type of the message to send. Refer to Appendix A of the Paragon™ System C
Calls Reference Manual for information on message types.

Points to the buffer of the message to send.

Number of bytes to send in the sbuf parameter.

Node number of the message destination (the receiving node). Setting the node
parameter to -1 sends the message to all nodes in the application (except the
sending node when the ptype parameter is set to the sender's process type).

Process type ofthe message destination (the receiving process).

typesel Message type(s) to receive. Setting this parameter to -1 receives a message of any
type. Refer to Appendix A of the Paragon TM System C Calls Reference Manual for
more information about message type selectors.

rbuf Points to the buffer where the message should be placed.

rcount Length (in bytes) of the rbufparameter.

15

Manual Pages Paragon ™ System C Calls Reference Manual

CSENDRECVO (cont.) CSENDRECVO (cont.)

Description

The csendrecvO function sends a message and waits for a reply. When a message whose type
matches the type(s) specified by the typesel parameter arrives, the calling process receives the
message, stores it in rbuj, and resumes execution.

This is a synchronous system call. The calling process waits (blocks) until the receive completes. To
send a message and post a receive for the reply without blocking the calling process, use the
isendrecvO function or the hsendrecvO function (asynchronous system calls) instead of the
csendrecvO function.

If the received message is too long for the rbufbuffer when using the csendrecvO function, your
application terminates with an error and the receive does not complete. If the received message is
too long for the rbufbuffer when using the _csendrecvO function, the receive completes with no
error returned and the content of rbuf is undefined.

The csendrecvO function does not affect the information returned by the info ••• O system calls.

If you use force-type messages with the csendrecvO function, you are responsible for posting the
receive on the receiving node before the message arrives. Otherwise, the receive will not complete
and the message will be lost. The csendrecvO function does not do internal synchronization of
messages. See Appendix A, "Message Types and Typesel Masks" on page A-I of the Paragon TM

System C Calls Reference Manual for more information on force-type messages.

Return Values

Errors

16

Upon successful completion, the csendrecvO function returns the length (in bytes) of the received
message, and returns control to the calling process. Otherwise, this function displays an error
message to standard error and causes the calling process to terminate.

Upon successful completion, the _csendrecvO function returns length (in bytes) of the received
message. Otherwise, this function returns -1 and sets ermo to indicate the error.

Refer to the ermo manual page for a complete list of errors that can occur in the C underscore system
calls.

EINVAL The received message is too long for the receive buffer.

r-'
'- ~I,\

I i ,..-

" C,·,

[J

[J

I:

I ~""

, ,
,_J

I:

["-1

.J

Paragon ™ System C Calls Reference Manual Manual Pages

CSENDRECVO (cont.) CSENDRECVO (cont.)

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

cprobeO, crecvO, csendO, ermo, hrecvO, hsendO, hsendrecvO, infocountO, iprobeO, irecvO,
isendO, isendrecvO

1~'iIfi 17
i

..J

Manual Pages Paragon ™ System C Calls Reference Manual

CWRITEO CWRITEO

cwrite(), cwritevO: Writes to a file and blocks the calling process until the write completes. (Synchronous write)

Synopsis

Parameters

18

#include <nx.h>

void cwrite(
intfildes,
void *buffer,
unsigned int nbytes);

#include <sys/uio.h>

void cwritev(
int fildes,
struct iovec iov[],
int iovcount);

fildes

buffer

nbytes

iov

iovcount

File descriptor identifying the open file to which the data is to be written.

Pointer to the buffer containing the data to be written.

Number of bytes to write to the file associated with the fildes parameter.

Pointer to an array of iovec structures, which identifies the buffers containing the
data to be written. The iovec structure has the following form:

struct iovec {
caddr_t iov_basei
int

} i

The iovec structure is defined in the syS/uio.h include file.

Number of iovec structures pointed to by the iov parameter.

(]

(
'!!'1

.. ~

[)

------------ -- ---------

I:

(
-"1

----""

I. ·~
. ...,

[J

I:
I "'!

~

['i

1=:
r:

I~

[:
c
[J

IJ
()

Paragon ™ System C Calls Reference Manual Manual Pages

CWRITEO (cont.) CWRITEO (cont.)

Description

Other than the return values and an additional error, the cwriteO and cwritevO functions are
identical to the OSF!1 writeO and writevO functions, respectively. See the write(2) manual page in
the OSFll Programmer's Reference.

These are synchronous system calls. The calling process waits (blocks) until the write completes.
Use the iwriteO or iwritevO function to write a file without blocking the calling process.

NOTE

To preserve data integrity, all 1/0 requests are processed on a
"first-in, first-out" basis. This means that if an asynchronous 1/0
call is followed by a synchronous 1/0 call on the same file, the
synchronous call will block until the asynchronous operation has
completed.

Use the iseofO function to determine whether the write moved the file pointer to the end of the file.

Return Values

Errors

Upon successful completion, the cwriteO and cwritevO functions return control to the calling
process; no values are returned. Otherwise, the cwriteO and cwritevO functions write an error
message on the standard error output and cause the calling process to terminate.

Upon successful completion, the _cwriteO and _cwritevO function return the number of bytes
written. Otherwise, these functions return -1 and set ermo to indicate the error.

If the _cwriteO function fails, ermo may be set to one of the values described for the OSF!1 write(2)
function or the following value:

EMIXIO In the M_SYNC or M_GLOBAL ua mode, nodes are attempting different
operations (reads and writes) to a shared file. In these modes, all nodes must
perform the same operation, In the M_ GLOBAL UO mode, nodes are attempting
different sized reads (using the nbytes parameter) from a shared file.

19

Manual Pages Paragon ™ System C Calls Reference Manual

CWRITEO (cont.) CWRITEO (cont.)

Examples

The following example does a synchronous write.

#include <fcntl.h>
#include <nx.h>

long iam;

main()
{

}

int fd;
char buffer[80];

iam = mynode();

fd = gopen("/tmp/mydata",O_CREAT I O_TRUNC I O_RDWR, M_LOG,
0644);

sprintf(buffer,"Hello from node %d\n",iam);
cwrite(fd, buffer, strlen(buffer));
close (fd) ;

Limitations and Workarounds

See Also

20

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

creadO, gopenO, ireadO, iseofO, iwriteO, setiomodeO

OSFll Programmer's Reference: open(2), write(2)

D

,.,,
,

(-""
\' .. ~

I:
lJ

Ie"",,!

.-~

[J

I~

I '1

"j

I· ... ~
.~

I'
(J

IJ
I ;

.-U

(.. ~
-~

[J

(J

IJ
C

Paragon ™ System C Calls Reference Manual Manual Pages

DCLOCK() DCLOCKO

Returns time in seconds since the system was booted.

Synopsis

Description

#include <nx.h>

double dclock(void);

The dclockO function measures time intervals in seconds. The time is obtained from the RPM global
clock. The dclockO value rolls over approximately every 14 years, and has an accuracy of 100
nanoseconds on each node and 1 microsecond across all nodes.

Return Values

Errors

Upon successful completion, the dclockO function returns a double precision value for the elapsed
time (in seconds) since booting the node and returns control to the calling process. Otherwise, the
dclockO function displays an error message to standard error and causes the calling process to
terminate.

Upon successful completion, the _dclockO function returns the elapsed time (in seconds) since
booting the system. Otherwise, the _dclockO function returns -1 and sets ermo to indicate the error.

Refer to the ermo manual page for a list of errors that can occur in the C underscore system calls.

21

Manual Pages Paragon TM System C Calls Reference Manual

DCLOCKO (cont.) DCLOCKO (cont.)

Examples

The following example uses the dclockO function to calculate the elapsed time of a program
segment.

#include <nx.h>

long iam;

main()
{

double start_time, end_time, elapsed_time;

iam = mynode();
start_time = dclock();
sleep(5);

end_time = dclock();
elapsed_time = end_time - start_time;
printf("\nNode %d elapsed time = %f\n",iam,elapsed_time);

Limitations and Workarounds

See Also

22

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

~."'1

~.Aoi

[""" "

,

,-'"'1
IJ , a_=

[J

IJ

IJ

IJ
[J

[J

I
"~

~,

I··

.~.

, '

,-,

[J

1'='1

.. _J

(:
.. el

I·• .'.~ , -.J

[J

LJ
IJ
[1

~I

Paragon ™ System C Calls Reference Manual Manual Pages

EADDO EADDO

eaddO, ecmpO, edivO, emodO, emulO, esubO: Perform mathematical operations on extended (64-bit) integers.

Synopsis

#include <nx.h>

esize_t eadd(
esize_t el,
esize_t e2);

long ecmp(
esize_tel,
esize_t e2);

long ediv(
esize_t e,
long n);

long emod(
esize_t e,
long n);

esize_t emul(
esize_t e,
long n);

esize_t esub(
esize_t el,
esize_t e2);

23

Manual Pages Paragon ™ System C Calls Reference Manual

EADDO (cont.) EADDO (cont.)

Parameters

Description

e, el, e2 Extended integer values

n Integer value used to multiply or divide an extended integer

Extended integers are signed 64-bit integers with values from -2**63 to 2**63 - 1. Extended-integer
functions are for accessing extended file sizes in the Parallel File System (PFS).

Use these functions to perform the following mathematical operations on extended integers:

eaddO Add an extended integer to another extended integer.

ecmpO Compare two extended integers.

edivO Divide an extended integer by an integer.

emodO Get the remainder of an extended integer divided by an integer.

emuiO Multiply an extended integer with an integer.

esubO Subtract an extended integer from another extended integer.

Return Values

24

.--~-----

Upon successful completion, the eaddO, emulO, and esubO functions return the computed value of
type esize_t (see the nx.h include file). The type esize_t has the following structure:

struct s_size
long
long

} i

SlOWi

shighi

typedef struct s_size esize_ti

(.. ~
, .~

IJ

[.~. '
-~

(... ~
.JMJJ

[~

(J

(i

[J

IJ

(J

(J

l '
AI

Paragon TM System C Calls Reference Manual Manual Pages

EADD() (cant.) EADD() (cant.)

Errors

Upon successful completion, the ecmpO function returns the following values:

-1 if el < e2

o if el = e2

1 if el > e2

Upon successful completion, the edivO and emodO functions return the computed value (of type
long). Otherwise, the eaddO, ecmpO, edivO, emodO, emulO, and esubO functions write an error
message on the standard error output and cause the calling process to terminate.

Upon successful completion, the _eaddO, _ecmpO, _edivO, _emodO, _emulO, and _esubO
functions return the same value as their respective non-underscore version of the function.
Otherwise, these functions return -1 (the functions that return an esize_t structure return -1 in both
fields of the structure) and set erma to indicate the error.

If an error occurs during an _eaddO, _ecmpO, _edivO, _emodO, _emulO, or _esubO function,
erma may be set to the following error code value:

EQESIZE Arithmetic overflow of extended integer.

If an error occurs during an _edivO or an _emodO function, erma may be set to the following error
code value:

EQESIZE Quotient does not fit into a long integer or division by zero.

25

--------- .-~-------

Manual Pages Paragon™ System C Calls Reference Manual

EADDO (cont.) EADDO (cont.)

Examples

The following example uses the extended mathematical functions to do calculations on some
extended integers.

26

#include <nx.h>

void display () ;

long. iam;

main()
{

static char *three
static char *four
char ss[20];
long r,r4;
esize_t e3, e4, e_sum, e_sub, e_mul;

printf (" \n") ;
e3 stoe(three);
e4 stoe (four) ;
r4 4;

e_sum = eadd(e3,e4);
display (II e_sum = ", e_sum) ;

e_sub = esub(e4,e3);
display (lie_sub = ", e_sub) ;

e_mul = emul(e3,100);
display("e_mul = ",e_mul);

r = ecmp(e3,e4);
printf("e_cmp = %ld\n",r);

r = emod(e3,r4);
printf (lie_mod = %ld\n", r) ;

r = ediv(e3,r4);
printf (lIe_div = %ld\n", r);

[J

IJ

lJ

(J

IJ
1-,

..1

[J

(":
. __ .J

(.. ~
. ...J

[J

I-I
i._J

(' -j

1."1

.0

l=

1'"1

. .oJ

U

- - .. _------.---~---------------------- .. -~---.----- - _----_._------

Paragon ™ System C Calls Reference Manual Manual Pages

EADDO (cont.) EADDO (cont.)

void display(ss,eout)
char *SSi

esize_t eouti

char s[20];
etos(eout,s);
printf(U%s%s\nU,ss,s) ;

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease _notes.

eseekO, esizeO, estatO, etosO, stoeO

27

Manual Pages

ESEEK()

Paragon™ System C Calls Reference Manual

ESEEK()

,,"II
'"~

Moves a file's read-write file pointer.

Synopsis

Parameters

#include <nx.h>
#include <unistd.h>

esize_t eseek(
intfildes,
esize_t offset,
int whence);

fildes File descriptor for an open extended file or standard OSFIl file.

offset

whence

The value, in bytes, to be used in conjunction with the whence parameter to set the
file pointer.

Specifies how to interpret the offset parameter in setting the file pointer associated
with the fildes parameter. Values for the whence parameter are as follows (defmed
in unistd.h):

Sets the file pointer to offset bytes from the beginning
of the file.

Sets the file pointer to its current location plus offset
bytes.

Sets the file pointer to the size of the file plus offset
bytes.

11'!r--"""'1

~;

If'"
Description l-.i

You can use the eseekO function to access regular files and extended files, while the IseekO function [~
does not support extended files. A regular file cannot exceed 2G - 1 bytes. -

Other than the return values and additional errors, the eseekO function behavior is identical to the [-"':
OSFIlIseekO function. See Iseek(2) in the OSFll Programmer's Reference. ..=

[:
Ai

28 I[J

lJ

I-"-j
, ,

I
_-1

1=
1=
(J

c

(J

[
"'1

J

c
n,',", LJ

Paragon ™ System C Calls Reference Manual Manual Pages

ESEEK() (cont.) ESEEK() (cont.)

This function may block while asynchronous 110 requests queued by the same process to the same
file complete.

Return Values

Errors

Upon successful completion, the eseekO function returns an extended integer (esize_t) that is the
new position of the file pointer measured in bytes from the beginning of the file.

The esize_t structUre has the following format (see the nx.h include file):

struct s_size {
long
long

} ;

slow;
shigh;

typedef struct s_size esize_t;

Because regular files cannot exceed 2G - 1 bytes, the resulting file offset must not exceed 2G - 1
bytes when moving the file pointer of a non-extended file. However, when working with extended
files, the theoretical resulting file offset can reach a 64-bit value. Realistically though, the file offset
depends on how many file systems the extended file is stripped across. Thus, any call to eseekO that
results in a file offset that exceeds the system-dependent limit produces an error.

When the eseekO function does not successfully complete, it writes an error message on the standard
error output and causes the calling process to terminate.

Upon successful completion, the _eseekO function returns the same value as the eseekO function.
Otherwise, the _eseekO function returns -1 in both fields of the esize_t structure and sets errno to
indicate the error.

If the _eseekO function fails, ermo may be set to one of the error code values described for the
OSFIl Iseek(2) function or to one of the following values:

ECFPS

EMIXIO

In 110 modes M_SYNC, M_RECORD, or M_GLOBAL, nodes are attempting
to seek to different positions in a shared file. In these modes, any seeks must be
performed by all nodes to the same file position.

In 110 modes M_SYNC or M_GLOBAL, nodes are attempting different
operations to a shared file. In these modes, all nodes must perform the same
operation.

29

---------------------------~----

Manual Pages Paragon™ System C Calls Reference Manual

ESEEKO (cont.) ESEEKO (cont.)

Examples

30

EFBIG The resulting offset as determined by the whence and offset parameters exceeds
the maximum file offset allowable for this type of file on this particular file
system.

The following example shows how to use the eseekO function to move the file pointer in a file.

#include <fcntl.h>
#include <nx.h>
#include <unistd.h>

long iam;

main()
{

int fd;
esize_t offset, new_size, new-pos;
char s[20];

fd = gopen(u/tmp/mydata U, O_RDWR, M_UNIX, 0644);

offset =stoe(U1000");
new_size = esize(fd,offset,SIZE_SET);
etos(new_size,s) ;
printf(Unew size = %s\n", s);

offset = stoe(U500~);
new-pos = eseek(fd,offset,SEEK_SET);

etos(new-pos,s);
printf(Unew position
close (fd) ;

%s\n", s);

"'- --

(. ~. -=

C

l:
[J

[J

(J

[.. ~
.->

[J,
..J

[1
.. ---1

I·~

... .J

IJ

l=
[:

Paragon ™ System C Calls Reference Manual Manual Pages

ESEEKO (cont.) ESEEKO (cont.)

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

creadO, cwriteO, esizeO, ireadO, iseofO, iwriteO, setiomodeO

OSFll Programmer's Reference: fcntl(2), Iseek(2), open(2)

31

Manual Pages Paragon ™ System C Calls Reference Manual

ESIZEO ESIZEO

Increases the size of a file.

Synopsis

Parameters

32

#include <nx.h>

esize_t esize(
int fildes,
esize_t offset,
int whence);

fildes

offset

whence

File descriptor for an extended file or standard OSFIl file open for writing. A
standard OSFIl file cannot have a resulting size greater than 2G - 1 bytes.

Value, in bytes, to be used in conjunction with the whence parameter to set the file
size.

Specifies how to interpret the offset parameter in increasing the size of the file
associated with the fildes parameter. Values for the whence parameter are as
follows (defined in nx.h):

Sets the file size to the greater of the current size or to
the value of the offset parameter.

Sets the file size to the greater of the current size or the
current location of the file pointer plus the value of the
offset parameter.

Sets the file size to the greater of the current size or the
current size plus the value of the offset parameter.

-----------------------------------~-------------

(]

[J

[J

[:
l:

IJ

[J

IJ

IJ
[J

c
c
(J

[J

[J

(J-I :

IJ

IJ

[-'l

J

Paragon ™ System C Calls Reference Manual Manual Pages

ESIZEO (cant.) ESIZEO (cant.)

Description

The esizeO function increases the size of a file. This function cannot decrease the size of a file. See
the OSFIl truncateO manual page for information about decreasing a file's size.

You can use the esizeO function to access regular files and extended files, while the IsizeO function
does not support extended files. Extended files can have a size a greater than 2G - 1 bytes, while
regular files cannot.

Use the esizeO function to allocate sufficient file space before starting performance-sensitive
calculations or storage operations. This increases an application's throughput, because the I/O
system does not have to allocate data blocks for every write that extends the file size.

The esizeO function does not affect FIFO special files, directories, or the position of the file pointer.
The contents of the new file space allocated by esizeO is undefined.

The esizeO function updates the modification time of the opened file. If the file is a regular file it
clears the file's set-user ID and set-group ID attributes.

You cannot use the esizeO function with a file that has enforced file locking enabled and file locks
on the file.

Return Values

Upon successful completion, the esizeO function returns an extended integer (type esize_t) that
indicates the new size of the file (in bytes). If the new size specified by the affset and whence
parameters is greater that the available disk space, the esizeO function allocates what disk space is
available and returns the new size of the file. Otherwise, the esizeO function writes an error message
on the standard error output and causes the calling process to terminate.

Upon successful completion, the _esizeO function returns an extended integer that indicates the new
size of the file (in bytes). Otherwise, the _esizeO function returns -1 in both fields of the esize_t
structure and sets erma to indicate the error.

The type esize_t has the following structure (see the nx.h include file):

struct s_size
long
long

} i

slow;
shighi

typedef struct s_size esize_ti

33

Manual Pages Paragon TM System C Calls Reference Manual

ESIZEO (cant.) ESIZEO (cant.)

Notes

Errors

34

Since NFS does not support disk block preallocation, esizeO and _esizeO are not supported on files
that reside in remote file systems that have been NFS mounted. The esizeO and _esizeO functions
are supported only on files in UFS and PFS file systems.

If the new size specified by offset and whence is greater than the available disk space, esizeO
allocates what disk space is available and returns the actual new size.

If the _esizeO function fails, erma may be set to one of the following error code values:

EAGAIN

EACCES

EBADF

EFBIG

The file has enforced mode file locking enabled and there are file locks on the file.

Write access permission to the file was denied.

The fildes parameter is not a valid file descriptor.

The file size specified by the whence and offset parameters exceeds the maximum
file size.

EFSNOTSUPP The fildes parameter refers to a file that resides in a file system that does not
support this operation. The esizeO function does not support files that reside in
remote file systems and have been NFS mounted.

EINVAL The file is not a regular file.

ENOSPC No space left on device.

EROFS The file resides on a read-only file system.

D

!lA,

.-'" I"~

~~

IJ
(J

[J

[J

IJ
I']

I]

I
~"

.J

I:

IJ

(i

[J

[J

IJ

Paragon TM System C Calls Reference Manual Manual Pages

ESIZEO (cant.) ESIZEO (cant.)

Examples

The following example shows how to use the esizeO function to increase the size of a file.

#include <fcntl.h>
#include <nx.h>
#include <unistd.h>

long iam;

main()
{

}

int fd;
esize_t offset, new_size, new-pos;
char s[20J;

fd = gopen("/tmp/mydata", O_RDWR, M_UNIX, 0644);

offset = stoe(llOOO");
new_size = esize(fd,offset,SIZE_SET);
etos(new_size,s);
printf("new size = %s\n", s);

offset = stoe(1500");
new-pos = eseek(fd,offset,SEEK_SET);

etos(new-pos,s) ;
printf ("new position
close (fd) ;

%s\n", s);

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlshare/release _notes.

eseekO,lsizeO

OSFll Programmer's Reference: chmod(2), dup(2), fcnt1(2), Iseek(2), open(2), truncateO

35

Manual Pages Paragon ™ System C Calls Reference Manual

ESTAT() ESTAT()

estatO, lestatO, festatO: Gets status of a file.

Synopsis

Parameters

36

#include <nx.h>

long estate
char *path,
struct estat *buffer);

long lestat(
char *path,
struct estat *buffer);

long festat(
int fildes,
struct estat * buffer);

path

buffer

Pointer to the pathname identifying a file.

Pointer to an estat structure in which the status information is placed. The estat
structure is described in the syslestat.h header file.

(]

[]

(J

IJ

(J
IJ

[J

[J

IJ
[J

I--·~.'"

J

[
-""'1

.cJ

[~j

. .J

Paragon ™ System C Calls Reference Manual Manual Pages

EST A TO (cont.) ESTATO (cont.)

Description

fildes

The estat structure has the following fonn:

struct estat {

dev_ t st_dev;
ina - t st _ina;
mode - t st_mode;
nlink_ t st_nlink;
uid_ t st_uid;
gid_t st_gid;
dev_ t st_rdev;
esize - t st _size;
time - t st_atime;
int st_sparel;
time - t st_mtime;
int st_spare2;
time - t st_ctime;
int st_spare3;
ulong_t st_blksize;
long st_blocks;
ulong_t st_flags;
ulong_t st _gen;

} ;

File descriptor for an extended file or standard OSF!l file open for writing. A
standard OSFIl file cannot be greater than 2G - 1 bytes.

You can use the estatO,lestatO, and festatO functions to access regular files and extended files,
while the statO, IstatO, and fstatO functions do not support extended files. Extended files can have
a size a greater than 2G - 1 bytes, while regular files cannot.

The estatO, lestatO, and festatO function semantics are identical to the OSFIl statO, IstatO, and
fstat{) functions, respectively. See the stat(2) manual page in the OSFll Programmer's Reference.

The estatO function gets infonnation about the file named by the path parameter. Read, write, or
execute permission for the named file is not required, but all directories listed in the patbname
leading to the file must be searchable. The file infonnation is written to the area specified by the
buffer parameter, which is a pointer to an estat structure, defined in the syslestat.h header file.

37

Manual Pages Paragon TM System C Calls Reference Manual

ESTAT() (cont.) ESTATO (cont.)

The lestatO function is like the estatO function, except when the named file is a symbolic link. In
this case, the lestatO function returns information about the link. The estatO and festatO functions
return information about the file the link references. For symbolic links, the lestatO function sets the
sCsize field of the estat structure to the length of the symbolic link, and sets the scmode field to
indicate the file type.

The festatO function is identical to the estatO function except it returns information about an open
file specified by the fildes parameter.

Return Values

Errors

Examples

38

Upon successful completion, the estatO, lestatO, and festatO functions return a value of 0 (zero).
Otherwise, these functions display an error message to standard error and cause the calling process
to terminate.

Upon successful completion, the _estatO, _lestatO, and _festatO functions return a value of 0
(zero). Otherwise, these functions return -1 and set ermo to indicate the error.

If the _estatO, _lestatO, or _festatO functions fail, ermo may be set to one of the error code values
described for the OSF!1 statO function.

The following example shows how to use the festatO and estatO functions to access statistics about
files:

#include <fcntl.h>
#include <nx.h>

void display();

main()
{

int fd;
struct estat result;

fd = gop en (H/tmp/mydataH, O_RDWR, M_UNIX, 0644);

(~19\. . I
Al

(J

[J

[J

()

(J

r=
r-'
I, --9
, j

[-"1" ' ,

__ ,J

I I
; _ "J

[~

r~

[J

Paragon™ System C Calls Reference Manual Manual Pages

ESTATO (cont.) ESTATO (cont.)

festat(fd,&result) ;
printf("st_atime = %ld\n",result.st_atime);
display("st_size = ",result.st_size);
estat("/tmp/mydata",&result) ;
printf("st_atime %ld\n",result.st_atime);
display("st_size = ",result.st_size);
close (fd) ;

void display(ss,eout)
char *ss;
esize_t eout;

char s[20];
etos(eout,s);
printf("%s%s\n",ss,s) ;

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlshare/release _notes.

eseekO, esizeO

OSFll Programmer's Reference: dup(2), open(2), stat(2)

39

Manual Pages Paragon TM System C Calls Reference Manual

ETOSO ETOSO

etosO, stoeO: Converts an extended integer to a string or a string to an extended integer.

Synopsis

Parameters

Description

#include <nx.h>

void etos(
esize_t e,
char *s);

esize_t stoe(
char *s);

e

s

An extended integer.

Pointer to a null-tenninated character string.

Extended integers are signed 64-bit integers with values from -2**63 to 2**63 - 1. Always use the
extended-integer functions to access extended integers. The following functions perform conversion
operations for extended integers:

etosO Converts an extended integer to a character string.

stoeO Converts a null-tenninated character string to an extended integer.

Return Values

40

On successful completion, the etosO function returns control to the calling process; no values are
explicitly returned. On successful completion, the stoeO function returns control to the calling
process and returns an extended integer (type esize_t). Otherwise, these functions display an error
message to standard error and cause the calling process to tenninate.

r~ __ -AJ

IJ

'.·."'1 l~

l:
[J

I:
IJ
I i
~

IJ
[J

1=

I:

IJ

Paragon TM System C Calls Reference Manual Manual Pages

ETOS() (cont.) ETOS() (cont.)

Errors

Examples

The esize_t structure has the followiJ;lg fonnat (see the nx.h include file):

struct s_size {
long
long

} ;

slow;
shigh;

typedef struct s_size esize_t;

Upon successful completion, the _etosO function returns 0 (zero) and the _stoeO function returns an
extended integer. Otherwise, the _etosO function returns -1 and sets ermo to indicate the error. The
_stoeO function returns -1 in both fields of the esize_t return structure and sets ermo to indicate the
error.

If the _etosO or _stoeO functions fail, ermo may be set to the following error code value:

EQESIZE Argument is too large. The size of the extended integer must be less than
2**63 -lor an overflow occurs.

EQESIZE Illegal character in string for the _stoeO function.

The following example shows how to use the conversion functions for extended integers:

#include <nx.h>

void display () ;

long iam;

main()
{

static char *three
static char *four
char ss[20J;

long r,r4;

{"3"};
{"4"};

esize_t e3, e4, e_surn, e_sub, e_rnul;

printf ("\n") ;
e3 = stoe~three);

--_ .. _-------

41

Manual Pages Paragon TM System C Calls Reference Manual

ETOS() (cont.) ETOS() (cont.)

}

e4 = stoe(four);
r4 = 4;

e_sum = eadd(e3,e4);
display ("e_sum = ", e_sum) ;

e_sub = esub(e4,e3);
display ("e_sub = ", e_sub) ;

e_ffiul = emul(e3,100);
display (" e_mul = ", e_mul) ;

r = ecmp(e3,e4);
printf ("e_cmp = %ld\n", r) ;

r = emod(e3,r4);
printf ("e_mod = %ld\n", r) ;

r = ediv(e3,r4);
printf ("e_div = %ld\n", r) ;

void display(ss,eout)
char *ss;
esize_t eout;
{

char s [20] ;

}

etos(eout,s) ;
printf("%s%s\n",ss,s) ;

Limitations and Workarounds

See Also

42

For information about limitations and workarounds. see the release notes files in
lusrlsharelrelease_notes.

eaddO. ecmpO. edivO. emodO. emulO. eseekO. esuhO

[
""1)1, ' I
ill

!lr '-h ,
l..J

I""' "",
l.. ~,

[:
~:

[J

.---~.~~.- -----

I:
IJ

IJ

I
~·

i ~J

(. .,
. ..UJ

1=
(. ...,

_~J

(~

r~:

[J

(J

[' AI

I~

Paragon TM System C Calls Reference Manual Manual Pages

FCNTL() FCNTL()

fcntlO, dupO, dup20: Controls open file descriptors.

Synopsis

Parameters

#include <fcntl.h>
#include <sys/types.h>
#include <unistd.h>
#include <pfs/pfs.h>

int fcntl (
int Jiledes,
int request [,
int argument I struct flock *argument]);

int dupe
intJiledes);

int dup2(
int old,
int new);

JUedes

request

argument

old

new

Specifies an open file descriptor obtained from a successful gopenO, openO,
fcntlO, or pipeO function.

Specifies the operation to be performed.

Specifies a variable that depends on the value of the request parameter.

Specifies an open file descriptor.

Specifies an open file descriptor that is returned by the dup20 function.

43

Manual Pages Paragon ™ System C Calls Reference Manual

FCNTL() (cont.) FCNTL() (cont.)

44

The following are values for the request parameter:

Returns a new file descriptor as follows:

F _SVR_BUFFER

• Lowest numbered available file descriptor greater than or equal to the
argument parameter, taken as type into

• Same object references as the original file.

• Same file pointer as the original file. (That is, both file descriptors share
one file pointer if the object is a file).

• Same access mode (read, write, or read-write).

• Same file status flags. (That is, both file descriptors share the same file
status flags).

• The close-on-exec flag (FD _ CLOEXEC bit) associated with the new file
descriptor is cleared so that the file will remain open across exec
functions.

Enables or disables PFS buffering for the file referenced by thefiledes parameter.
The argument parameter is interpreted as a boolean: TRUE enables server
buffering; FALSE disables it. The fileservers cache stripe-file data in their
memory-resident, disk-block caches. These fileservers use a read-ahead and
write-behind caching algorithm. PFS buffering is recommended only when the 10
request size is less than 64K bytes; otherwise, the fieservers's cache may thrash.
Dirty cache buffers are flushed to disk when F _SVR_BUFFER changes from
TRUE to FALSE.

[]

[)

I:

(J

[J

[]

IJ
1-:
r:

(
'''1

-.I

1=

[;
.~

(
~i

. -.1

[J

IJ
IJ

("'!'I.-, ..

....... _ .. _ .. _._._----

Paragon ™ System C Calls Reference Manual Manual Pages

FCNTLO (cont.) FCNTLO (cont.)

Gets the PFS stripe attributes of the file referred to by the JUedes parameter. The
argument parameter is taken as a pointer to a sattr structure, in which the stripe
attributes are returned. The structure sattr has the following form:

struct sattr {
size_t s_sunitsize; /* stripe unit size */
uint_t s_sfactor; /* stripe factor */
uint_t s_start_sdir; /* base stripe dir */

The stripe attributes returned are a subset of the default stripe attributes for the
PFS file system in which the file resides, and consist of:

• The file's stripe unit size, in bytes. This is the unit of data interleaving
used in the PFS file.

• The file's stripe Jactor. This is the size of the PFS file's stripe group. The
file is striped in a round robin fashion to the number of stripe directories
specified by this value.

• The file's base stripe directory. This is the stripe directory at which
striping begins for the file. Stripe directories define the storage locations
for the PFS file. The ordered set of stripe directories across which the file
is striped define the file's stripe group. When a PFS file is created, it
inherits its default stripe group from the PFS file system in which the file
resides. (The file system stripe group is specified by the system
administrator when the file system is mounted.) By default, the base
stripe directory for a newly created file is selected randomly from the
file's stripe group.

When specified in the sattr structure, the base stripe directory is
represented as an index between 0 and stripeJactor-l, inclusive, where
stripe Jactor is the default stripe factor of the PFS file. The file is striped
in a round-robin fashion to stripe directories starting at this location .

45

Manual Pages Paragon™ System C Calls Reference Manual

FCNTLO (cant.) FCNTLO (cant.)

46

Sets the PFS stripe attributes of the file referred to by the JUedes parameter. The
argument parameter is taken as· a pointer to a sattr structure which contains the
file's new stripe attributes. The base stripe directory and the stripe factor must
specify. a subset of the PFS file's stripe group; in other words, the base stripe
directory must be between 0 and stripe Jactor-l and the stripe factor must be less
than or equal to stripe Jactor, where stripe Jactor is the current stripe factor of the
PFS file.

F _GETFD Gets the value of the close-on-exec flag associated with the file descriptorfiledes.
File descriptor flags are associated with a single file descriptor and do not affect
other file descriptors that refer to the same file. The argument parameter is
ignored.

Sets the close-on-exec flag associated with the Jiledes parameter to the value of
the argument parameter, taken as type into If the argument parameter is 0 (zero),
the file remains open across the exec functions. Ifthe·argument parameter is
FD_CLOEXEC, the file is closed on successful execution of the next exec
function.

F _ GETFL Gets the file status flags and file access modes for the file referred to by the filedes
parameter. The file access modes can be extracted by using the mask
O_ACCMODE on the return value. File status flags and file access modes are
associated with the file description and do not affect other file descriptors that
refer to the same file with different open file descriptions. The argument
parameter is ignored.

F _SETFL Sets the file status flags to the argument parameter, taken as type int, for the file
to which the filedes parameter refers. The file access mode is not changed.

F _GETOWN Gets the process ID or process group currently receiving SIGIO and SIGURG
signals. Process groups are returned as negative values.

F _SET OWN Sets the process or process group to receive SIGIO and SIGURG signals. Process
groups are specified by supplying the argument parameter as negative; otherwise
the argument parameter, taken as type int, is interpreted as a process ID.

IJ

[.. ~ . .Ai

[:

1····"".1
_..J

(J

IJ

I ·..,.,
.-1

I· ~
.:.4..1

I~

I_~

I~

19

. ...,.J

[j

[J

[J

IJ

IJ
c

Paragon ™ System C Calls Reference Manual Manual Pages

FCNTLO (cont.) FCNTLO (cont.)

The following values for the request parameter are available for record locking:

F _GETLK Gets the first lock that blocks the lock description pointed to by the argument
parameter, taken as a pointer to type struct flock. The information retrieved
overwrites the information passed to the fcntIO function in the flock structure. If
no lock is found that would prevent this lock from being created, then the structure
is left unchanged except for the lock type, which is set to F _ UNLCK.

F _SETLK Sets or clears a file segment lock according to the lock description pointed to by
argument, taken as a pointer to type struct flock. F _SETLK is used to establish
shared locks (F _RDLCK), or exclusive locks (F _ WRLCK), as well as remove
either type of lock (F _VNLCK).1f a shared (read) or exclusive (write) lock cannot
be set, the fcntIO function returns immediately with a value of -1.

F _SETLKW Same as F _SETLK except that if a shared or exclusive lock is blocked by other
locks, the process will wait until it is unblocked. If a signal is received while
fcntIO is waiting for a region,· the function is interrupted, -1 is returned, and errno
is set to [EINTR].

47

Manual Pages Paragon TM System C Calls Reference Manual

FCNTL() (cont.) FCNTL() (cont.)

Description

48

The fcntIO function performs controlling operations on the open file specified by the JUedes
parameter.

The fcntIO, dupO, and dup20 functions, which suspend the calling process until the request is
completed, are redefined so that only the calling thread is suspended.

When used to permanently set the stripe attributes of a file, you can only use F _SETSATTR on a
PFS file that has not yet been written to (it is zero-length). Once set, the new attributes of the file are
permanent; further attempts to reset the attributes of the file will result in an error. Whenever an
F _SET A TTR request is completed successfully, the file pointer for JUedes resets to point to the
beginning of the file.

The F _SETSATTR request also allows the stripe attributes of an already written-to file to be
temporarily mapped to new attributes if the file is opened read-only. In this case, the new attributes
apply only to the file descriptor specified by the JUedes parameter, and go away when the file is
closed. This remapping can be useful for writing a matrix out to a file using one type of
decomposition, and reading the matrix back in using a different decomposition.

For a simple example, consider an 8x8 matrix with a record size of 4 K bytes and a total of 64 records.
If this matrix is written to a PFS file with a stripe factor of 8 and a stripe unit size of 32K bytes, the
matrix will automatically be written using a column decomposition. If the stripe attributes of the file
are then mapped to use a stripe unit size of 4K bytes, the matrix is read back in using a row
decomposition.

The stripe attributes of a PFS file can also be displayed from the command line by using the -P
switch with the Is command. See the Is(l) man page for more information.

The O_NDELAY and O_NONBLOCK requests affect only operations against file descriptors
derived from the same openO function. In BSD, these apply to all file descriptors that refer to the
object.

When a shared lock is set on a segment of a file, other processes are able to set shared locks on that
segment or a portion of it. A shared lock prevents any other process from setting an exclusive lock
on any portion of the protected area. A request for a shared lock fails if the file descriptor was not
opened with read access.

An exclusive lock prevents any other process from setting a shared lock or an exclusive lock on any
portion of the protected area. A request for an exclusive lock fails if the file descriptor was not
opened with write access.

The flockO structure describes the type (I_type), starting offset (I_whence), relative offset (I_start),
size (I_len) and process ID (l_pid) of the segment of the file to be affected.

I:

I·' .. ·.·' ~
IJ

[J

(J

(J

I~

I "'.' . ..J

I i
~I

1'''4 , .

; ._ .. i

[J

[J

(J

IJ
[J

Paragon ™ System C Calls Reference Manual Manual Pages

FCNTL() (cont.) FCNTL() (cont.)

The value ofl_whence is set to SEEK_SET, SEEK_CUR or SEEK_END, to indicate that the
relative offset Cstart bytes is measured from the start of the file, from the current position, or from
the end of the file, respectively. The value of I_len is the number of consecutive bytes to be locked.
The I_len value may be negative (where the definition of otT_t permits negative values of I_len).
The I-pid field is only used with F _GETLK to return the process ID of the process holding a
blocking lock. After a successful F _ GETLK request, the value of C whence becomes SEEK_SET.

If Uen is positive, the area affected starts at Cstart and ends at Cstart + Clen - 1. If I_len is
. negative, the area affected starts at I_start + Clen and ends at Cstart - 1. Locks may start and extend

beyond the current end of a file, but may not be negative relative to the beginning of the file. If I_len
is set to 0 (zero), a lock may be set to always extend to the largest possible value of the file offset for
that file. If such a lock also has I_start set to 0 (zero) and I_whence is set to SEEK_SET, the whole
file is locked. Changing or unlocking a portion from the middle of a larger locked segment leaves a
smaller segment at either end.

Locking a segment that is already locked by the calling process causes the old lock type to be
removed and the new lock type to take effect. All locks associated with a file for a given process are
removed when a file descriptor for that file is closed by that process or the process holding that file
descriptor terminates. Locks are not inherited by a child process in a forkO function.

If a regular file has enforced record locking enabled, record locks on the file will affect calls to other
calls, including creatO, openO, readO, writeO, truncateO, and ftruncateO.

A potential for deadlock occurs if a process controlling a locked region is put to sleep by attempting
to lock another process' locked region. If the system detects that sleeping until a locked region is
unlocked would cause a deadlock, the fcntlO function fails with an [EDEADLK] error.

49

Manual Pages Paragon TM System C Calls Reference Manual

FCNTL() (cant.) FCNTLO (cant.)

Notes

50

------""------

Care should be used when attempting to set the stripe attributes of a file that is opened from multiple
nodes. Use ofthe F _SETSATTR request on a file descriptor does not affect other already-existing
descriptors for the same file. Possible file corruption could result if the file is then written to using
any of the already-existing descriptors. For example, if a file is opened by multiple nodes and then
a single node sets the stripe attributes, the new attributes are only visible to that node. The other
nodes must close and reopen the file to get the new attributes. For performance reasons, issue the
F _SETSATTR request from only one node, rather than from all nodes running the application.

The dup(filedes) function is equivalent to fnctl(filedes, F _DUPFD, 0).

The dup2(old, new) function is equivalent to fcntl(old, F _DUPFD, new).

The file locks set by the fcntlO and lockfO functions do not interact in any way with the file locks
set by the tlockO function. If a. process sets an exclusive lock on a file using the fcntlO or lockfO
function, the lock will not affect any process that is setting or clearing locks on the same file using
the tlockO function. It is therefore possible for an inconsistency to arise if a file is locked by different
processes using tlockO and fcntlO. (The fcntlO and lockfO functions use the same mechanism for
record locking.)

"',.,
I ...

r~
lAl

[
~

. ...,

l:
(:

--

I ,
... ..1

[J

IJ
IJ

(j

(""1
, ,j

1-:
. .;,..J

I·~
.J

I
"~

',.J

[J

[J
I i

" .J

IJ
Il

r:
....,
LJ

Paragon ™ System C Calls Reference Manual Manual Pages

FCNTL() (cont.) FCNTL() (cont.)

Return Values

Errors

Upon successful completion, the value returned depends on the value of the request parameter as
follows:

Returns a new file descriptor.

F_GETSATTR Returns 0 (zero).

F_SETSATTR Returns 0 (zero).

Returns FD_CLOEXEC or 0 (zero).

Returns a value other than -1.

F _ GETFL Returns the value of file status flags and access modes. (The return value will not
be negative.)

F _SETFL Returns a value other than -1 .

F _GETOWN Returns the value of descriptor owner.

Returns a value other than -1.

F _SETLK Returns a value other than -1.

F _SETLKW Returns a value other than -1.

If the fcntlO function fails, a value of -1 is returned and errno is set to indicate the error.

If the fcntlO function fails, errno may be set to one of the following values:

EBADF The JUedes parameter is not a valid open file descriptor.

EBADF The request parameter is F _SETLK or F _SETLKW, the type of lock (Ctype) is
a shared lock (F _RDLCK), andfiledes is not a valid file descriptor open for
reading.

EBADF The type of lock (Ctype) is an exclusive lock (F _ WRLCK), andfiledes is not a
valid file descriptor open for writing .

51

Manual Pages

FCNTL() (cont.)

EBADF

EEXIST

ENOTPFS

EMFILE

EINVAL

EINVAL

EINVAL

EINVAL

EFAULT

ESRCH

EAGAIN

EAGAIN

EINTR

ENOLCK

52

Paragon™ System C Calls Reference Manual

FCNTL() (cont.)

The request parameter is F _SETSATTR but the file's stripe attributes have
already been permanently set by a previous call to fcntlO.

The request parameter is F _SETSATTR but the file is not zero-length, or is not
open read-only.

The file referred to by thejiledes parameter is not a PFS file; Le., it is not a regular
file in a PFS file system.

The request parameter is F _DUPFD and OPEN_MAX file descriptors are
currently open in the calling process, or no file descriptors greater than or equal to
argument are available.

The set of attributes specified by the sattr structure is not a subset of the default
stripe attributes of the PFS file system in which the file resides.

The request parameter is F _DUPFD and the argument parameter is negative or
greater than or equal to OPEN_MAX.

An illegal value was provided for the request parameter.

The request parameter is F _ GETLK, F _SETLK, or F _SETLKW and the data
pointed to by argument is invalid, or jiledes refers to a file that does not support
locking.

The argument parameter is an invalid address.

The value of the request parameter is F _SETOWN and the process ill given as
argument is not in use.

The request parameter is F _SETLK, the type oflock (I_type) is a shared
(F _RDLCK) or exclusive (F _ WRLCK) lock, and the segment of a file to be
locked is already exclusive-locked by another process.

The request parameter is F _SETLK, and the type is an exclusive lock and some
portion of the segment of a file to be locked is already shared-locked or
exclusive-locked by another process.

The request parameter is F _SETLKW and the fcntlO function was interrupted by
a signal which was caught.

The request parameter is F _SETLK or F _SETLKW and satisfying the lock or
unlock request would result in the number of locked regions in the system
exceeding a system-imposed limit.

(.. ""'." .,

..oJ

I:

IJ
[J

IJ
(J

I, '."°1
'.J

r~

I,' i I
·~

1=

c

Paragon™ System C Calls Reference Manual Manual Pages

FCNTL() (cont.) FCNTL() (cont.)

Examples

EDEADLK The request parameter is F _SETLKW, the lock is blocked by some lock from
another process and putting the calling process to sleep, and waiting for that lock
to become free would cause a deadlock.

If the dupO or dup20 function fails, ermo may be set to one of the following values:

EBADF The JUedes or old parameter is not a valid open file descriptor or the new
parameter file descriptor is negative or greater than OPEN_MAX.

EMFILE The number of file descriptors exceeds OPEN_MAX or there is no file descriptor
above the value of the new parameter.

EINTR The dup20 function was interrupted by a signal which was caught.

This example creates a new file, reads and prints its default striping attributes, sets new striping
attributes, and then closes the file. After closing the file the example opens the file and gets the new
striping attributes and prints them.

#include
#include
#include
#include
#include
#include
#include
#include
#include
#include
#include

#define
#define

main()

<stdio.h>
<sys/stat.h>
<stdarg.h>
<fcntl.h>
<sys/param.h>
<sys/types.h>
<unistd.h>
<sys/mount.h>
<pfs/pfs.h>
<errno.h>
<nx.h>

PERMS
FILE

{

intfd;
struct sattr sattr;
/* Create new file */

0777
"/pfs/my_file ll

if ((fd = creat(FILE, PERMS))
perror("creat") ;

-1) {

exit (1);

53

Manual Pages Paragon ™ System C Calls Reference Manual

FCNTL() (cont.) FCNTLO (cont.)

54

/* Gets current stripe attributes */
if (fcntl(fd, F_GETSATTR, &sattr) != 0) {

perror(Ndefault get fcntl");
exit(l) ;

/* Prints stripe attributes */
printf("Default attributes for %s\nN, FILE);
printf(H-----------------------------------\n") ;
printf(NStripe Unit Size: (s_sunitsize): %d\n",

sattr.s_sunitsize) :
printf(NStripe Factor: (s_sfactor):

sattr.s_sfactor) :
printf(HStripe Index: (s_start_sdir):

sattr.s_start_sdir):
printf ("\n") ;

if (2 > sattr.s_sfactor)

%d\n" ,

%d\n" ,

printf(HNew stripe factor must be less than or equal to\n"):
printf(Hexisting default stripe factor.\n");
printf(HRead the comments at the beginning of this source\n");
printf (Hcode for more details. \n") ;
exit (1) ;
}

/* Update the sattr structure with the new stripe attributes so
they can be written later */

sattr.s_sunitsize = 63556;
sattr.s_sfactor = 2;
sattr.s_start_sdir = 0:

/* Sets new stripe attributes */
if (fcntl(fd, F_SETSATTR, &sattr) != 0) {

perror (HNew set fcntl");
exit(l) ;

}

/* Close file */
if (close(fd) != 0) {

perror(Hclose") :
exit (1) :

}

/* Open file */
if ((fd = open(FILE, O_RDONLY))

perror (H open") ;
-1) {

,"'1
....;

f'"
L-Mi

I:
r:
l:

IJ

[J

IJ
[J

(J

c
[J

(.. .."

-.~I

c

c
[
,-""""'1

, ,
-'..J

c

[J

[J

Paragon TM System C Calls Reference Manual Manual Pages

FCNTL() (cont.) FCNTL() (cont.)

See Also

exit(l)j

/* Gets current stripe attributes */
if (fcntl(fd, F_GETSATTR,&sattr) != 0) {

perror(UNew get fcntlU)j
exit(l)j

}

/* Prints stripe attributes */
printf(UNewattributes for %s\n U , FILE) j

printf(U-------------------------------\nU) j

printf (UStripe unit size: (s_sunitsize): %d\n U,
sattr.s_sunitsize)j

printf(UStripe Factor: (s_sfactor):
sattr.s_sfactor) j

printf(UStripe Index: (s_start_sdir):
sattr.s_start_sdir)j

printf (U \n") j

/* Close file */
if(close(fd) != 0) {

perror (Uclose") j

exit(l)j

commands: Is(l), showfs(l)

%d\n" ,

%d\n" ,

Functions: close(2), exec(2), gopen(3), lockf(3), open(2), read(2), setiomode«3), truncate(2),
write(2)

55

Manual Pages Paragon ™ System C Calls Reference Manual

FLICK() FLICK()

Gives control of the node processor to the operating system for as long as 10 milliseconds.

Synopsis

Description

56

#include <nx.h>

void flick(void);

The tlickO function temporarily releases control of the node processor to another process in the same
application. If there are no other processes in the same application when a process calls the tlickO
function, control returns to the operating system. For example, if your application has several
handler-receive operations set up and nothing else to do, it should call the f1ickO function. The
operating system can then more efficiently respond to an incoming message and wake up your
process.

The f1ickO function does not affect an application's rollin or rollout.

The flickO function works differently depending on whether the calling process is the only process
on the node or there are multiple processes on the node:

• If the calling process is the only process on the node, the tlickO function suspends execution of
the calling process and gives control of the node to the operating system until any interrupt
occurs. The operating system handles the interrupt and returns control of the node to the calling
process. This improves performance by eliminating interrupt overhead; the operating system
does not have to take control of the node before handling the interrupt. The operating system
never retains control of the node longer than 10 milliseconds; the internal clock generates an
interrupt at 10 millisecond intervals.

• If there are multiple processes on the node, the tlickO function suspends the calling process and I ~
gives control to the next scheduled process on the node. The calling process resumes executing
when it is next scheduled to execute. This provides higher performance because control passes
to the next scheduled process immediately and the scheduler does not intervene. l:

l:
f~
L.I

IJ
[J

r:
r:
[J

IJ
r~

[
I

_J

[J

IJ
(
. -""1

~

rJ

r]

- ---- --~----------------~-~---- ----------------------~--- ---

Paragon ™ System C Calls Reference Manual Manual Pages

FLlCK() (cont.) FLlCK() (cont.)

Return Values

Errors

Upon successful completion, the flickO function returns control to the calling process; no values are
returned. Otherwise, this function displays an error message to standard error and causes the calling
process to terminate.

Upon successful completion, the _flickO function returns 0 (zero). Otherwise, this function returns
-1 and sets errno to indicate the error.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease _notes.

errno

OSFll Programmer's Reference: sleepO

57

Manual Pages Paragon™System C Calls Reference Manual

Enables or disables remote process creation.

Synopsis

Parameters

Description

58

#include <slllsl1.h>

int fork_remote_ctl(
intflag);

flag Specifies whether processes can be created on nodes other than the nodes on
which the application is running. The flag value must be one of the following:

ENABLE_FORK_REMOTE
Enables remote process creation.

DISABLE_FORK_REMOTE
Disables remote process creation.

The flag values are specified in the include file slllsll.h.

The fork_remote_ctlO function is only available for the system administrator.

The fork_remote_ctlO function allows an application to create processes on nodes other than the
node the application is running on. The bootmagic string ENABLE_FORK_REMOTE must be set to
tor T (true) for remote process creation to work.

The fork_remote_ctlO function only specifies whether processes can be created on a remote node
using the forkO function.

The fork_remote_ctlO function only affects the node it is executed on and only prevents remote
process creation for processes originating on that node. Other nodes can still create processes
remotely on a node, even if the fork_remote_ctlO with DISABLE_FORK_REMOTE has been
executed on the node.

[)

[J

(J

IJ
(J

(J

[J

IJ

('1

('-'
.. ~

('.'9
J;oJ

I
·-~

~

r:
r:

I~

[~~

1-_,
--...;.J

[~

I~I
.-J

(J

13
~

Paragon™ System C Calls Reference Manual Manual Pages

Return Values

Errors

If fork_remote_ctlO succeeds, it returns o. If an error occurs, fork_remote_ctlO returns -1 and sets
ermo to indicate the error.

EINVAL

ENOSYS

EPERM

The flag parameter was neither ENABLE_FORK_REMOTE nor
DISABLE_FORK_REMOTE.

The boot magic string ENABLE_FORK_REMOTE has been set to FALSE at
boot time.

The effective user ID of the calling process is not root.

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

bootmagic, load_leveld, parameters

59

Manual Pages Paragon™ System C Calls Reference Manual

FPGETROUNDO FPGETROUNDO

fpgetroundO. fpsetroundO. fpgetmaskO. fpsetmaskO. fpgetstickyO. fpsetstickyO: IEEE floating-point
environment control.

Synopsis

Parameters

60

#include <ieeefp.h>

fp_md fpgetround(void);

fp_md fpsetround(
fp_md md_dir);

fp_except fpgetmask(void);

fp_exceptfpsetmask(
fp_except mask);

fp_except fpgetsticky(void);

fp_except fpsetsticky(
fp_except sticky);

The new rounding mode for the calling process. Must be one of the following
values:

Round to nearest representable number (if two
representable numbers are equidistant. round to the
even one).

Round toward minus infinity.

Round toward plus infinity.

Round toward zero (truncate).

These are the only valid values for the enum type fp_rnd. which is declared
in <ieeefp.h>.

[J

[J

(~

C

---------------------------~-----~ ----- ----

r:

rJ

(
""I

.,Ia.1

1"4

.o/l<,i

r~
(~I

(--'"
_.J

1_-_~1

.J

I~

r-1

(: __ ..J

I:

- ---- ----~------- ---------- ----------------

Paragon ™ System C Calls Reference Manual Manual Pages

FPGETROUNDO (cont.) FPGETROUNDO (cont.)

Descri ption

mask

sticky

The new exception mask for the calling process. You can create this mask value
by OR-ing together the following constants, which are defined in <ieeefp.h>:

Invalid operation exception .

Divide-by-zero exception.

Overflow exception.

Underflow exception.

Imprecise (loss of precision) exception.

The new exception sticky flags for the calling process. You can create this value
by OR-ing together the same constants used for mask.

The fpget ••• O and fpset ... O functions get and set the i860® microprocessor's floating -point rounding
mode, exception flags, and exception sticky flags for the calling process.

The floating-point rounding mode determines what happens when a floating-point value generated
in a calculation cannot be represented exactly. You can use fpgetroundO to determine the current
rounding mode and fpsetroundO to set the rounding mode.

NOTE

When you convert a floating-point value to an integer type in C, it
always truncates. The processor's rounding mode is ignored.

There are six floating-point exceptions: divide by zero, overflow, underflow, imprecise (inexact)
result, denormalization, and invalid operation. When one of these exceptions occurs, the
corresponding exception sticky flag is set to 1. If the corresponding exception mask bit is set to 1,
the exception is trapped. You can use fpgetstickyO and fpsetstickyO to get and set the exception
sticky flags, and fpgetmaskO and fpsetmaskO to get and set the exception mask.

61

Manual Pages Paragon ™ System C Calls Reference Manual

FPGETROUNDO (cont.) FPGETROUNDO (cont.)

NOTE

fpsetsticky() and fpsetmask() set the sticky flags and exception
mask to the specified values. Any bits not set in the mask or sticky
argument are cleared.

To set or clear a particular mask or sticky flag, get the current mask or sticky flags, modify it, and
then call fpsetstickyO or fpsetmaskO with the modified mask or sticky flags.

NOTE

After an exception, you must clear the corresponding sticky flag to
recover from the trap and proceed.

If the sticky flag is not cleared before the next floating-point exception occurs, an incorrect
exception type may be signaled. For the same reason, when you call fpsetmaskO, you must be sure
that the sticky flag corresponding to each exception being enabled is cleared.

Return Values

62

Upon successful completion, the fpget ••• O and fpset..,O functions return the following values and
return control to the calling process:

fpgetroundO Returns the current rounding mode.

fpsetroundO Returns the previous rounding mode.

fpgetmaskO Returns the current exception mask.

fpsetmaskO Returns the previous exception mask.

fpgetstickyO Returns the current exception sticky flags.

fpsetstickyO Returns the previous exception sticky flags.

Otherwise, these functions display an error message to standard error and cause the calling process
to terminate.

[]

[.. " ...

(.~ J

l:
l:
(
, ."'1

~

(~

lJ

I·"'.·
""

I
·~

. ..J

I:
(4f

~~

I:

I ·"!
'.

~.,

1=

('"1.
. -,

r:

(~!

. .-.!

(J

Paragon TM System C Calls Reference Manual Manual Pages

FPGETROUNDO (cont.) FPGETROUNDO (cont.)

Upon successful completion, the 3ptget ••• () and _fptset ••• O functions return the following values:

_fpgetroundO Returns the current rounding mode.

3psetround() Returns the previous rounding mode.

_fpgetmaskO Returns the current exception mask.

_fpsetmask() Returns the previous exception mask.

_fpgetstickyO Returns the current exception sticky flags.

_fpsetstickyO Returns the previous exception sticky flags.

Otherwise, these functions return -1 and set ermo to indicate the error.

Errors

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls .

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlshare/release _notes.

errno, isnanO

63

Manual Pages Paragon'" System C Calls Reference Manual

GCOLO GCOL()

Collects contributions from all nodes. (Global concatenation operation)

Synopsis

Parameters

Description

64

#include <nx.h>

void gcol(

x

xlen

y

ylen

char x[],
long xlen,
char y[],
long ylen,
long *ncnt);

Pointer to the input buffer to be used in the operation. This parameter can be of
any type.

Length (in bytes) of x.

Pointer to the output buffer to be used in the operation (y contains the desired
result). This parameter must be of the same data type as x.

Length (in bytes) ofy.

ncnt Pointer to the number of bytes returned in y.

The gcolO function collects and concatenates (in node number order) a contribution from each node
in the current application. The x and y parameters can be of any data type, but they must be of the
same data type. The result is returned in y to every node.

Problems that involve computing matrix vector products by allowing the nodes to compute partial
answers can use gcolO to collect and concatenate the entire vector.

If the lengths of the contributions from all the nodes are known, use gcolxO instead of gcolO.

()

(: Ail

rr-'l
I.l_~

~'1

~."J

(J

[J

I:
1'''''1
·I._~~

(J

I -.~.-·· JIU

r:
1-W1

~1

1=
I· ---~

--,

I~

14

-'

I "'i.
!

..J

r=

13

Paragon™ System C Calls Reference Manual Manual Pages

GCOLO (cont.) GCOLO (cont.)

This is a "global" operation, which means that all nodes in the application must execute this
operation before the process can continue on any node, and all participating processes must have the
same process type.

Return Values

Errors

Examples

Upon successful completion, the gcolO function returns control to the calling process; no values are
returned. Otherwise, this function displays an error message to standard error and causes the calling
process to terminate.

Upon successful completion, the _gcolO function returns 0 (zero). Otherwise, this function returns
-1 and sets ermo to indicate the error.

Refer to the e"no manual page for a list of errors that can occur in the C underscore system calls.

The following example shows how to use the gcolO function to do a global collect from all nodes in
an application:

#include <nx.h>
#include <math.h>

#define M 4
#define N 16

void display () ;

long iam, nbrnodes;

main ()
{

int i, count=O;
double x[MJ, y[NJ, dot, norm, dummy;
char
int

iam

msg [80J ;
dpsize = 8;

= mynode () ;

65

Manual Pages Paragon TM System C Calis Reference Manual

GCOL{) (cont.) GCOL{) (cont.)

nbrnodes = numnodes();
dot = 0.0;
for(i=O; i<M; i++)

xli] = (double) (iam * M + i);
printf(IINode %d x[%d] = %3.1f\n",iam,i,x[i]);

for(i=O; i<M; i++)
dot += x[i]*x[i];

printf("Node %d dot = %f\n",iam,dot);

gdsurn(&dot, 1, &durnrny);
sprintf(msg,"dot = %f\n",dot);
display (msg) ;

norm = sqrt(dot);

for(i=O; i<M; i++)
xli] = xli] Inorm;

gcol(x, M*dpsize, y, nbrnodes*M*dpsize, &count);

if (! iam) {
for(i=O;i<nbrnodes*Mi i++)

printf(II%3.1f lI,y[i]);
printf (II \n") ;

void display(drnsg)
char *drnsgi
{

if (! iam) printf ("\n%s", drnsg) ;

Limitations and Workarounds

See Also

66

-~-~~-.. -~~-

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease _notes.

ermo, gcoixO, gdhighO, gdiowO, gdprodO, gdsumO, giandO, giorO, gopf()

[--.,.
.JIl

[~ .. ~

~-"1

~.~

(]

(J

I:

(J

lJ

r:

[:
r:

I, .4

-"

(:
"-'

I! .' -"-"

I:

I~

[J

IJ

Paragon ™ System C Calls Reference Manual Manual Pages

GCOLXO GCOLXO

Collects contributions of known length from all nodes. (Global concatenation operation for contributions of known
length)

Synopsis

Parameters

Description

#include <nx.h>

void gcolx(

x

char x[],
long xlens[],
char y[]);

Pointer to the input buffer to be used in the operation. This parameter may be of
any type.

xlens Pointer to an array containing the length (in bytes) of the input buffer x expected
on each node. The elements in xlens must be in increasing node number order.

y Pointer to the output buffer to be used in the operation (y receives the desired
result). This parameter must be of the same data type as x.

The gcolxO function globally collects and concatenates (in node number order) a contribution of
specified length from each node in the current application. The x and y parameters can be of any data
type, but they must be of the same data type. The result is returned in y to every node. By providing
the expected length of each contribution, gcolxO improves the speed of this operation compared to
gcolO due to the reduced overhead of calculating where each contribution belongs in the output
buffer.

If the lengths of the contributions from all the nodes are unknown. use gcolO instead of gcolxO.

This is a "global" operation, which means that all nodes in the application must execute this
operation before the process can continue on any node, and all participating processes must have the
same process type.

67

- -~-----------------~-----------

Manual Pages Paragon 1M System C Calls Reference Manual

GCOLXO (cont.) GCOLXO (cont.)

Return Values

Errors

Examples

68

Upon successful completion, the gcolxO function returns control to the calling process; no values
are returned. Otherwise, this function displays an error message to standard error and causes the
calling process to terminate.

Upon successful completion, the J:colxO function returns 0 (zero). Otherwise, this function returns
-1 and sets errno to indicate the error.

Refer to the e"no manual page for a list of errors that can occur in the C underscore system calls.

The following example shows how to use the gcolxO function to do a global collect from all nodes
in an application:

#include <math.h>

#define M
#define N

4
16

void display () ;

long iam, nbrnodes;

main ()
{

int i, count=O;
double x[M], y[N], dot, norm, dummy;
char msg[80];
int
long

dpsize = 8;
xlen[4];

iam
nbrnodes =

mynode() ;
nurnnodes()i

dot = 0.0;

[.. l .,/;j

,.--"
t..J

r e
-\

~=;

I""
1 . .J

l ··'m

.MI

[:

I:
IJ
lJ
a-:

I:

1_'"
. ..J

I: ".
-~

I~

IJ
[J
[J

c

-------~ ------~ ----------------~--~------------------

Paragon ™ System C Calls Reference Manual Manual Pages

GCOLXO (cont.) GCOLXO (cont.)

for(i=Oi i<nbrnodesi i++)
xlen[i] = 4*sizeof(double)i

for(i=Oi i<Mi i++)
xli] = (double) (iam * M + i) i

printf(NNode %d x[%d] = %3.1f\n N,iam,i,x[i])i

for(i=Oi i<Mi i++)
dot += x[i]*x[i]i

printf(NNode %ddot = %f\nN,iam,dot)i

gdsum(&dot, 1, &dummY)i
sprintf(msg, Ndot = %f\nN,dot)i
display (msg) i

norm = sqrt(dot)i

for(i=Oi i<Mi i++)
xli] = x[i]/normi

gcolx(x, xlen, Y)i

if(!iam)
for (i=Oii<nbrnodes*Mi i++)

printf(N%3.1f N,y[i]) i

printf (N\nN) i

void display(dmsg)
char *dmsgi

if(!iam) printf(N\n%sN,dmsg)i
}

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
lusrlshare!release_notes.

69

Manual Pages Paragon™ System C Calls Reference Manual

GCOLXO (cont.) GCOLXO (cont.)

See Also

ermo, gcolO, gdhighO, gdlowO, gdprodO, gdsumO, gopfO, giandO, giorO, gsyncO

70

~
l.

I:

I:
l~

[~

(J

rJ

I:

I
"~

,I
,.-J

I ~:
,~

r:

IJ
I~

1=
[J

IJ
u
c

Paragon Th1 System C Calls Reference Manual Manual Pages

GDHIGHO GDHIGHO

gdhighO, gihighO, gshighO: Determines the maximum value across all nodes. (Global maximum operation)

Synopsis

Parameters

#include <nx.h>

void gdhigh(
double x[],
long n,
double work[]);

void gihigh(
longx[],
long n,
long work[]);

void gshigh(
floatx[],
long n,
float work[]);

x

n

work

Pointer to the buffer that contains the data in which to find the maximum. The final
result of the global maximum operation is returned in this buffer.

Number of elements in x.

Pointer to the buffer that receives the contributions from other nodes. The number
of elements in work must be at least n.

71

,~,.-----------------.--_._-----_._.

Manual Pages Paragon ™ System C Calls Reference Manual

GDHIGHO (cont.) GDHIGHO (cont.)

Description

Use the following functions to determine maximum values across nodes:

• Use gdhighO to determine the double precision maximum value of x across all nodes.

• Use gihighO to determine the integer maximum value of x across all nodes.

• Use gshighO to determine the float maximum value of x across all nodes.

The result is returned in x to every node. When x is a vector, each element of the resulting vector
represents the maximum of the corresponding vector elements of all nodes.

This is a "global" operation, which means that all nodes in the application must execute this
operation before the process can continue on any node, and all participating processes must have the
same process type.

Return Values

Errors

72

Upon successful completion, the gdhighO, gihighO, and gshighO functions return control to the
calling process; no values are returned. Otherwise, these functions display an error message to
standard error, and cause the calling process to terminate.

Upon successful completion, the ~dhighO, ~highO, and ~shighO functions return 0 (zero).
Otherwise, these functions return -1 and set ermo to indicate the error.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

(
-on

.M

('"
-"'"'

I:
IJ

IJ
r:
I:
rJ
I,

-.", ' ,

J

(J

1'9

j

[I

'I' ,I :

, ,
-'

IJ
IJ
IJ

IJ

Paragon ™ System C Calls Reference Manual Manual Pages

GDHIGHO (cont.) GDHIGHO (cont.)

Examples

The following example shows how to use the gdhighO function to detenmne the maximum value
across all nodes of an application:

#include <nx.h>

long iami
main()

}

int i, numElements, maxElement, list[50] i

numElements = 10i
iam = mynode() i

for(i=Oii<lOii++)
list[i] = iam*lO + ii

if (iam==O) {
for (i=Oii<numElementsii++)

printf(1I %d:list[%d] = %d\n",iam,i,list[i])i
gsync () i

else {
gsync() i

for(i=Oii<numElements; i++)
printf(U %d:list[%d] = %d\n",iam,i,list[i]);

maxElement = findMin(list,numElements);
if (iam == 0)

printf(UMax is %d\n",maxElement);

int findMin(list,numElements)
int list [] i

int numElements;

int maxElement, index;
int temp,k;
index = 0;
for(k=l; k<numElements; k++)

if (list[k] > list[index])
index = k;

maxElement = list[index]i
printf(U%d: maxElement = %d\n",iam, maxElement)i
gihigh(&maxElement,l,&temp);
return (maxElement) ;

73

Manual Pages Paragon TM System C Calls Reference Manual

GDHIGHO (cont.) GDHIGHO (cont.)

Limitations and Workarounds

See Also

74

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease _notes.

ermo, gcolO, gcolxO, gdiowO, gdprodO, gdsumO, giandO, giorO, gopfO, gsyncO

I
'~

'\

.. ,.,j

l:
(J

IJ

,-,
. ..1

(j

rJ

IJ

I:
I, .~ .. ',

-'

["J

Ii

Ij

IJ
l:
(J

~

Paragon ™ System C Calls Reference Manual Manual Pages

GDLOWO GDLOWO

gdlowO, gilowO, gslowO: Determines the minimum value across all nodes. (Global minimum operation)

Synopsis

Parameters

#include <nx.h>

void gdlow(
double x[],
long n,
double work[]);

void gilow(
long x[],
long n,
long work[]);

void gslow(
floatx[],
long n,
float work[]);

x

n

work

Pointer to the buffer that contains the data in which to find the minimum. The final
result of the global minimum operation is returned in this buffer.

Number of elements in x.

Pointer to the buffer that receives the contributions from other nodes. The number
of elements in work must be at least n.

75

Manual Pages Paragon ™ System C Calls Reference Manual

GDLOWO (cont.) GDLOWO (cont.)

Description

Use the following functions to determine minimum values across nodes:

• Use gdlowO to determine the double precision minimum value of x across all nodes.

• Use giiowO to determine the integer minimum value of x across all nodes.

• Use gslowO to determine the float minimum value of x across all nodes.

The result is returned in x to every node. When x is a vector, each element of the resulting vector
represents the minimum of the corresponding vector elements of all nodes.

This is a "global" operation, which means that all nodes in the application must execute this
operation before the process can continue on any node, and all participating processes must have the
same process type.

Return Values

Errors

76

Upon successful completion, the gdlowO, gilowO. and gslowO functions return control to the calling
process; no values are returned. Otherwise. these functions display an error message to standard
error, and cause the calling process to terminate.

Upon successful completion, the ~dlowO, ~owO, and ~slowO functions return 0 (zero).
Otherwise, these functions return -1 and set ermo to indicate the error.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

1.171
I

11

I:

[J

I:
1"",

~J

1=
1_-""· • I
1

..J

1=
1=

lJ

Paragon ™ System C Calls Reference Manual Manual Pages

GDLOWO (cont.) GDLOWO (cont.)

Examples

The following example shows how to use the gilowO function to determine the minimum value
across all nodes of an application:

#include <nx.h>

long iami

main()
int i, iam, numElements, minElement, list[50] i

numElements = 10i
iam = mynode()i
for(i=Oii<10ii++)

list[i] iam*10 + ii

if (iam==O) {
for(i=Oii<numElementsi i++)

printf(N %d:list[%d] = %d\nN,iam,i,list[i])i
gsync() i

else {
gsync() i

for(i=Oii<numElementsi i++)
printf(N %d:list[%d] = %d\nN,iam,i,list[i])i

minElement = findMin(list,numElements)i
if (iam == 0)

printf(NMin is %d\n",minElement)i

int findMin(list,numElements)
int list[]i
int numElementsi
{

int minElement, indexi
int temp,ki

77

Manual Pages Paragon TM System C Calls Reference Manual

GDLOWO (cont.) GDLOWO (cont.)

index = 0;
for(k=l; k<numElements; k++)

if (list[k] < list[index])
index = k;

minElement = list [index] ;
gilow(&minElement,l,&temp);
return (minElement) ;

Limitations and Workarounds

See Also

78

For infonnation about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

errno, gcolO, gcolxO, gdhighO, gdprodO, gdsumO, giandO, giorO, gopfO, gsyncO

[)

,,~

,- . .J

[J

l -·Wj

."'"

l 1
.~

IJ
(j

("-"
.. ..J

I~' . ,

~

(J

[~

IJ
I~

1"\
.J

(J

("~ :.J
~

Paragon 1M System C Calls Reference Manual Manual Pages

GDPROD() GDPROD()

gdprodO, giprodO, gsprodO: Calculates a product across all nodes. (Global multiplication operation)

Synopsis

Parameters

#include <nx.h>

void gdprod(
double x[],
long n,
double work[]);

void giprod(
longx[],
long n,
long work[]);

void gsprod(
floatx[],
long n,
float work[]);

x

n

work

Pointer to the buffer that contains the data for the multiplication. The final result
of the global multiplication operation is returned in this buffer.

Number of elements in x.

Pointer to the buffer that receives the contributions from other nodes. The number
of elements in work must be at least n.

79

Manual Pages Paragon ™ System C Calls Reference Manual

GDPROD() (cont.) GDPROD() (cont.)

Description

Use the following functions to calculate products across nodes:

• Use gdprodO to calculate the double precision product of x across all nodes.

• Use giprodO to calculate the integer product of x across all nodes.

• Use gsprodO to calculate the float product of x across all nodes.

The result is returned in x to every node. When x is a vector, each element of the resulting vector
represents the product of the corresponding vector elements of all nodes.

This is a "global" operation, which means that all nodes in the application must execute this
operation before the process can continue on any node, and all participating processes must have the
same process type.

Return Values

Errors

80

Upon successful completion, the gdprodO, giprodO, and gsprodO functions return control to the
calling process; no values are returned. Otherwise, these functions display an error message to
standard error and cause the calling process to terminate.

Upon successful completion, the _gdprodO, ~iprodO, and ~sprodO functions return 0 (zero).
Otherwise, these functions return -1 and set ermo to indicate the error.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

ia -.-.

(~

I:
(:

r:
1--11'1

.. i

r:

I:

r:

I~

Paragon TM System C Calls Reference Manual Manual Pages

GDPROD{) (cont.) GDPRODO (cont.)

Examples

The following example shows how to use the giprodO function to determine a product across all
nodes of an application:

#include <nx.h>

long iam;

main()
{

long final, initial;
long x[S], work[S];
int i;

iam = mynode();
if (! iam) {

for(i=O;i<5;i++)
x[i] = i;

else
for(i=O; i<S; i++)

x[i] = i;

if(!iam)
printf("\n") ;
for(i=O;i<S;i++)

printf("%d ",x[i]);

giprod(x,S,work);

if (! iam) {
printf("\n");
for(i=O;i<S;i++)

printf("%d U,x[i]);

printf (" \n") ;

81

Manual Pages Paragon ™ System C Calls Reference Manual

GDPROD() (cant.) GDPROD() (cant.)

Limitations and Workarounds

See Also

82

For information about limitations and workarounds. see the release notes files in
lusrlsharelrelease_notes.

ermo. gcolO. gcolxO. gdhighO. gdlowO. gdsumO. giandO. giorO. gopfO. gsyncO

(,~

[J

r:
L

(J

(J

IJ
IJ
IJ

r:

I· .-~
-'

,-:

[-1!'1 .• --,
J

IJ

Paragon ™ System C Calls Reference Manual Manual Pages

GDSUMO GDSUMO

gdsumO. gisumO. gssumO: Calculates a sum across all nodes. (Global addition operation)

Synopsis

Parameters

#include <nx.h>

void gdsum(
double x[],
long n,
double work[]);

void gisum(
long x[],
long n,
long work[]);

void gssum(
floatx[],
long n,
float work[]);

x

n

work

Pointer to the buffer that contains the data for the addition. The final result of the
global addition operation is returned in this buffer.

Number of elements in x.

Pointer to the buffer that receives the contributions from other nodes. The number
of elements in work must be at least n.

83

Manual Pages Paragon™ System C Calls Reference Manual

GDSUMO (cont.) GDSUMO (cont.)

Description

Use the following functions to calculate sums across nodes:

• Use gdsumO to calculate the double precision sum of x across all nodes.

• Use gisumO to calculate the integer sum of x across all nodes.

• Use gssumO to calculate the float sum of x across all nodes.

The result is returned in x to every node. When x is a vector, each element of the resulting vector
represents the sum of the corresponding vector elements of all nodes.

This is a "global" operation, which means that all nodes in the application must execute this
operation before the process can continue on any node, and all participating processes must have the
same process type.

Return Values

Errors

84

Upon successful completion, the gdsumO, gisumO, and gssumO functions return control to the
calling process; no values are returned. Otherwise, these functions display an error message to
standard error, and cause the calling process to terminate.

Upon successful completion, the ~dsumO, ~umO, and _gssumO functions return 0 (zero).
Otherwise, these functions return -1 and set ermo to indicate the error.

Refer to the ermo manual page for a list of errors that can occur in the C underscore system calls.

[)

I· '1
.J

(;J

I "",
....

IJ

l~

r· ._iiJJ

r:
1_-""1

J

1_- "I

.-""

I:

r~

I:
r"l
r:
I:

I.J
I ~1

I~

IJ
IJ

Paragon ™ System C Calls Reference Manual Manual Pages

GDSUMO (cont.) GDSUMO (cont.)

Examples

The following example shows how to use the gisumO function to determine a sum across all nodes
of an application:

#include <nx.h>

long iami
main()
{

}

long final, initiali
long x[S], work[S] i

int ii

iam = mynode() i

if (! iam) {
for(i=Oii<Sii++)

xli] = ii

else

}

for(i=Oi i<Si i++)
xli] = ii

if(!iam) {
printf (H\nH) i

for(i=Oii<Sii++)
printf(H%d H,x[i])i

printf (H \n") i

gisum (x, S, work)i

if(!iam) {
printf (H \n") i

for(i=Oii<Sii++) {
printf("%d ·,X[i])i

printf (H\n") i

85

Manual Pages Paragon ™ System C Calls Reference Manual

GDSUMO (cont.) GDSUMO (cont.)

Limitations and Workarounds

See Also

86

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease _notes.

ermo, gcolO, gcolxO, gdhighO, gdlowO, gdprodO, giandO, giorO, gopfO, gsyncO

IJ

(. ,
..,.J

IJ

(--./iiIJ

~
(

.

.. ~

-'"

I~

I ""'
_~I:

I '
._,-..,.J

l:
I~

-- ---~-----.- -------

Paragon ™ System C Calls Reference Manual Manual Pages

GETPFSINFO() GETPFSINFO()

Get the stripe attributes of mounted Parallel File System (PFS).

Synopsis

Parameters

Description

#include <nx.h>
#include <pfs/pfs.h>

long getpfsinfo(
struct pfsmntinfo **attrbufp);

attrbufp Points to the array of pfsmntinfo structures that describe the stripe attributes of
each currently mounted PFS file system. The pfsmntinfo structure is defined in the
pfslpfs.h header file and has the following form:

struct pfsmntinfo {

} i

char m_mntonname[]i
struct statpfs m_statpfsi

The getpfsinfoO function returns the mount point and stripe attributes of each currently mounted
PFS file system. The getpfsinfo() function returns this information in the attrbufp parameter, which
is an array of pfsmntirifo structures. This information is contained in a static area, so you must copy
the information to save it.

The pfsmntinfo structure consists of two elements, the pathname of the file system mount point and
a statpfs structure. The pfsmntirifo structure is of variable length, since the statpfs structure contains
a variable number of variable length pathnames (see the description of the p_sdirs field).

87

Manual Pages Paragon ™ System C Calls Reference Manual

GETPFSINFOO (cont.) GETPFSINFOO (cont.)

The fields of the pfsmntinfo structure are:

m_mntonname Directory name on which the PFS file system has been mounted.

m_statpfs The statpfs structure which describes the PFS file system. The pfsmntinfo structure
is defined in the pfs/pfs.h header file and has the following form:

struct statpfs {
uint_t
long
size_t
uint_t
uint_t
pathname_t

} ;

p_reclen;
p_magic;
p_sunitsize;
p_sfactor;
p_reserved[2] ;
p_sdirs;

The fields of the statpfs structure include the following:

p_reclen

p _sunitsize

p_sfactor

Length of this statpfs structure.

The stripe unit size for the parallel file system, in bytes; that is, the size of the unit
of data interleaving for regular files.

The number of stripe units per file stripe; that is, the degree of interleaving for
regular files.

A list of pathnames specifying the set of directories that define the stripe group for
this Parallel File System. The number of patbnames in the list is equal to
p _sfactor. Each patbname is of type pathname _t. The pathname list can be
traversed with a pointer of type (pathname_t *) and the use of the NEXTPATHO
macro defined in the pfs/pfs.h header file.

To obtain general mount information for all types of mounted file systems, use the standard OSFIl
getmntinfoO function.

Return Values

88

Upon successful completion, the getpfsinfoO function returns a count of the number of elements in
the array. If an error occurs, the getpfsinfoO function returns a value of -1 and sets ermo to indicate
the error (attrbujp is left unmodified).

[]

[: .l1
,.&l

I:

(
""!

. .

.''''

l:
(J

I~·
joJ

I :
""

r:
('-

..:.lIU

1-"'!

."

I :
1-

,-'
1-

I
'~

.'

I~

r=
I:
I "i

_ J

(~

1-=

I~=
I_~

.-"-'

[~

---'

IJ

----- -------------- -------

Paragon TM System C Calls Reference Manual Manual Pages

GETPFSINFOO (cont.) GETPFSINFOO (cont.)

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

mount, monntO, showfsO, statpfsO

OSFll Programmer's Reference: getmntinfo(3), mount(2), mount(8), statfs(2)

89

Manual Pages Paragon"" System C Calls Reference Manual

GIAND() GIAND()

giandO, glandO: Performs an AND across all nodes. (Global AND operation)

Synopsis

Parameters

Description

90

#include <nx.h>

void giand(
long x[],
long n,
long work[]);

void gland(
long x[],
long n,
long work[]);

x

n

work

Pointer to the buffer that contains the data for the AND operation. The final result
of the global AND operation is returned in this buffer.

Number of elements in x.

Pointer to the array that receives the contributions from other nodes. The number
of elements in work must be at least n.

Use the following functions to perform AND operations across all nodes:

• Use giandO to calculate the bitwise AND of x across all nodes.

• Use glandO to calculate the logical AND of x across all nodes.

The result is returned in x to every node. When x is a vector, each element of the resulting vector
represents the AND of the corresponding vector elements of all nodes.

This is a "global" operation, which means that all nodes in the application must execute this
operation before the process can continue on any node, and all participating processes must have the
same process type.

[~ .. .1

I]

I:

(.. :
."""

IJ
I~

(~

r:
I:
r:

I :

(-­... :

(-ej

(. -~

•• j

r:

(
.~

.-<.-!

IJ
IJ

Paragon ™ System C Calls Reference Manual Manual Pages

GIANDO (cont.) GIANDO (cont.)

Return Values

Errors

Examples

Upon successful completion, the giandO, and g1andO functions return control to the calling process;
no values are returned. Otherwise, these functions display an error message to standard error and
cause the calling process to terminate.

Upon successful completion, the -W.andO, and ~andO functions return 0 (zero). Otherwise, these
functions return -1 and set ermo to indicate the error.

Refer to the ermo manual page for a list of errors that can occur in the C underscore system calls.

The following example shows how to use the giandO function to perform a global AND across all
nodes of an application:

#include <nx.h>

long iam;

main()
{

long final, initial;
long x[5], work[5];
int i;

iam = mynode();
if (! iam)

for(i=O;i<5;i++)
xli] = i;

else
for(i=O; i<5i i++)

xli] = -i;

91

Manual Pages Paragon TM System C Calls Reference Manual

GIAND() (cont.) GIAND() (cont.)

if (! iam) {

}

printf (" \n") ;
for(i=O;i<S;i++)

printf("%d ",x[i]);
printf (" \n") ;

giand(x,5,work);

if (! iam) {

}

printf("\n") ;
for(i=O;i<S;i++)

printf("%d ",x[i]);
printf("\n") ;

Limitations and Workarounds

See Also

92

For information about limitations and workarounds, see the release notes files in
lusrlshare!release_notes.

e"no, gcolO, gcolxO, gdhighO, gdlowO, gdprodO, gdsumO, giorO, gopfO, gsyncO

[. j •

~. ""
'. 1

. .I

IJ
I:
I:
I:
I~

I!

1'-'
"a.I

I:

I
-~

...

I' ~
~,

I ~\

lJ
I".' ,~

Paragon ™ System C Calls Reference Manual Manual Pages

GIOR() GIOR()

giorO, glorO: Performs an OR across all nodes. (Global OR operation)

Synopsis

Parameters

Description

#include <nx.h>

void gior(
long x[],
long n,
long work[]);

void glor(
long x[],
long n,
long work[]);

x Pointer to the buffer that contains the data for the OR operation. The final result
of the global OR operation is returned in this buffer.

n Number of elements in x.

work Pointer to the buffer that receives the contributions from other nodes. The number
of elements in work must be at least n.

Use the following functions to perform OR operations across all nodes:

• Use giorO to calculate the bitwise OR of x across all nodes.

• Use glorO to calculate the logical OR of x across all nodes.

The result is returned in x to every node. When x is a vector, each element of the resulting vector
represents the OR of the corresponding vector elements of all nodes.

This is a "global" operation, which means that all nodes in the application must execute this
operation before the process can continue on any node, and all participating processes must have the
same process type.

93

Manual Pages Paragon™ System C Calls Reference Manual

GIOR() (cont.) GIOR() (cont.)

Return Values

Errors

Examples

94

Upon successful completion, the giorO, and glorO functions return control to the calling process; no
values are returned. Otherwise, these functions display an error message to standard error, and cause
the calling process to terminate.

Upon successful completion, the ~orO, and -worO functions return 0 (zero). Otherwise, these
functions return -1 and set ermo to indicate the error.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

The following example shows how to use the giorO function to perform a global OR across all nodes
of an application:

#include <nx.h>

long iam;
main()
{

long final, initial;
long x[S], work[S];
int i;

iam = myna de () ;
if (! iam) {

for(i=O;i<S;i++)
xli] = i;

else
for(i=O; i<S; i++)

xli] = -i;

()

(~

I:
I:
I:
I:
IJ
I~

(!

r:
Ij

IJ

(~

1=

I '~
I~

I -I

, ~J

IJ

[J

IJ

Paragon™ System C Calls Reference Manual Manual Pages

GIOR() (cont.) GIOR() (cont.)

if (! iam) {
printf(l/\nl/) ;
for(i=O;i<5;i++)

printf(l/%d I/,x[i]);
}

printf(l/\n") ;

gior (x, 5, work) ;

if(!iam) {

}

printf (I/\n") ;

for(i=O;i<5;i++)
printf(l/%d I/,x[i]);

}

printf (I/\n") ;

Limitations and Workarounds

See Also

For infonnation about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

errno, gcolO, gcolxO, gdbighO, gdlowO, gdprodO, gdsumO, giandO, gopf(), gsyncO

95

Manual Pages Paragon TM System C Calls Reference Manual

GOPEN() GOPEN()

Performs a global open of a file for reading or writing, sets the I/O mode of the file, and performs a global
synchronization.

Synopsis

Parameters

96

#include <fcntl.h>
#include <nx.h>

int gopen(

path

const char *path,
int oflag,
int iomode,
mode_t mode);

Pointer to a patbname of the file to be opened or created. If the path parameter
refers to a symbolic link, the gopenO function opens the file pointed to by the
symbolic link.

oflag Specifies the type of access, special open processing, the type of update, and the
initial state of the open file. The parameter value is constructed by logically ORing
the special open processing flags. These flags are defined in thefcntl.h header file
and are described in the OSPIl open(2) manual page.

iomode I/O mode to be assigned to the file associated withfildes. Values for the mode
parameter are as follows:

Each node has its own file pointer; access is
unrestricted.

All nodes use the same file pointer; access is first
come, first served; records may be of variable length.

All nodes use the same file pointer; access is in node
order; records are in node order but may be of variable
length.

-----.-.. ----~-- .. ----------------------~---------~----.

I!""
Ii~

I!i" ""

"'"

I:
1·'''''1 ,.,

I:

l~

(
","1

>II:!

I J
(-""' , '

I J

I·: ~
IJ
(",.' ,

~

IJ
IJ
I '~

~,

Paragon ™ System C Calls Reference Manual Manual Pages

GOPEN() (cant.) GOPEN() (cant.)

Description

mode

M_RECORD Each node has its own file pointer; access is first come,
first served; records are in node order and of fixed
length.

M_GLOBAL All nodes use the same me pointer, all nodes perform
the same operations.

M_ASYNC Each node has its own me pointer; access is
unrestricted; I/O atomicity is not preserved in order to
allow multiple readers/multiple writers and records of
variable length.

Refer to the setiomodeO manual page for detailed information on each I/O mode.

Specifies the read, write, and execute permissions of the file to be created
(requested by the O_CREAT flag in the gopenO interface). If the file already
exists, this parameter is ignored. This parameter is constructed by logically ORing
values described in the syslmode.h header me.

The gopenO function allows all nodes in an application to open and share the same me. The gopenO
function performs a global open; all nodes can open the same me without issuing multiple I/O
requests.

Other than the addition of the iomode parameter, additional return values, and additional errors, the
semantics of the gopenO function are identical to the OSP/1 openO function. See the open(2)
manual page in the OSFll Programmer's Reference.

You can use the gopenO function to specify the I/O mode of a shared me when it is opened, rather
than requiring an additional call to the setiomodeO subroutine. This improves performance when
many nodes open and set the I/O mode of the same me. You use the iomode parameter to specify a
me's I/O mode. See the setiomodeO manual page for a description of the me I/O modes.

Use the setiomodeO function to change a me's I/O mode after the me is opened. Use the iomodeO
function to return a unit's current I/O mode.

The gopenO function globally synchronizes all nodes in an application. Therefore, all the
application's nodes must call the gopenO function before any node can continue executing. In the
M_LOG, M_SYNC, M_RECORD, and M_GLOBAL I/O modes, closing the me also performs a
global synchronizing operation.

97

Manual Pages Paragon ™ System C Calls Reference Manual

GOPENO (cont.) GOPENO (cont.)

When using the OSFIl forkO function to create new processes, the default I/O mode for the child
process's file descriptors is determined by the file type (PFS or non-PFS) and the setting of the
bootmagic variable PSF _ASYNC_DFLT. For information on how this default I/O mode is
determined, see the setiomodeO manual page description.

When using the OSFIl dupO function to duplicate a file, the file descriptor for the duplicate file is
reset to the I/O mode M_ UNIX.

Return Values

Errors

98

Upon successful completion, gopenO returns the file descriptor representing the open file. If an error
occurs, gopenO writes an error message on the standard error output, and causes the calling process
to terminate.

Upon successful completion, the ~openO function returns the file descriptor representing the open
file. Otherwise, this function returns a value of -1 and sets ermo to indicate the error.

If the ~open() function fails, ermo may be set to one of the error code values described for the
OSF/l openO function or one of the following values:

EINVAL

EINVAL

EMIXIO

EMIXIO

The given value for iomode is not valid.

The file named by the path parameter is not a regular file.

The given path is invalid because all nodes sharing the file have not specified the
same path.

The given value for iomode is not valid because all nodes sharing the file named
by path have not used the same value.

(. "i.
Ai

I "'·· . I

~

I:

IJ

(.. ~
""

I··~

(~

(";
."

I '1

~J

I : .L1

I~

': , _J

I ·",
.. -.1

rJ

(l
. .J

[J

IJ

Paragon™ System C Calls Reference Manual Manual Pages

GOPENO (cont.) GOPENO (cont.)

Examples

The following example shows how to use the gopenO function to open a file for writing:

#include <fcntl.h>
#include <nx.h>

long iam;

main()
{

int fd;
char buffer[80];

iam = mynode () ;

fd = gopen("/tmp/mydata",O_CREAT I O_TRUNC I O_RDWR, M_LOG,
0644);

sprintf (buffer, "Hello from node %d\n", iam) ;
cwrite(fd, buffer, strlen(buffer));
close (fd) ;

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

creadO, cwriteO, eseekO, estatO, ireadO, iseofO, iwriteO, setiomodeO

OSFll Programmer's Reference: chmod(2), close(2), dup(2), fcntl(2), lockf(2), Iseek(2), open(2),
read(2), stat(2), truncate(2), umask(2), write(2)

99

Manual Pages Paragon ™ System C Calls Reference Manual

GOPF() GOPF()

Makes a global operation of a user-defined function.

Synopsis

Parameters

Description

100

#include <nx.h>

void gopf(

x

xlen

char x[],
long xlen,
char work[],
long (*junction)O);

Pointer to the buffer that contains the final result of the user-defined function.

Length (in bytes) of x.

work Pointer to the buffer that receives the contributions from other nodes. The length
of work must be at least xlen.

function Pointer to the user-defined function to be called. The function is defined
separately. The function must be an associative and commutative function of the
two vectors x and work defined above: the first parameter must be the same as the
x parameter and the second parameter must be the same as the work parameter.

The gopfO function gives a user-defined function the same global properties as system-defined
global communications functions (such as gdsum()). These properties are:

• All nodes must call the global routine (in this case, gopfO, which in turn calls the user-written
function).

• All nodes in the application must complete the call before the process can continue on any node.

• All participating processes must have the same process type.

• Each node calculates the result and stores it in the x buffer.

r:

[
."1

'.J

I:
I:
IJ
I:

I]

1-"'1

.. ,

1=

I, ~I
'J

I '1

j

IJ

Paragon TM System C Calls Reference Manual Manual Pages

GOPF() (cont.) GOPF() (cont.)

• The work array receives contributions from other nodes.

• The result is returned in x to all nodes .

The function must be associative and commutative.

Return Values

Errors

Examples

Upon successful completion, the gopfO function returns control to the calling process; no values are
returned. Otherwise, this function displays an error message to standard error, and causes the calling
process to terminate.

Upon successful completion, the J{opfO function returns 0 (zero). Otherwise, this function returns
-1 and sets ermo to indicate the error.

Refer to the e"no manual page for a list of errors that can occur in the C underscore system calls.

The following example shows how to use the gopfO function in an application. The example
distributes a vector over the nodes of a partition. Node 1 has the maximum element.

The global function specified in the gopfO function must have two parameters: the input value and
an array for the contributions of other nodes. The following is an example of a global function
max_DodeO. This function finds the maximum element and returns a structure that contains the
maximum value and the number of the node on which it resides.

#include <math.h>

long max_node();

struct PIVOT_NODE
double max;
long node;

} ;

~ 101

Manual Pages

GOPF() (cont.)

102

main()
{

struct PIVOT_NODE mine, work;
double x[10] ;

Paragon TM System C Calls Reference Manual

GOPF() (cont.)

long iam, i, max_loc, xlen, N;

N = 10;
xlen
mine.node
iam
max_loc

sizeof(x);
mynode ();
mine.node;

= 0;

for(i=O;i<N;i++)
xli] = (double) (iam*N + i);

if(iam ==1) x[4] = 100.00;

mine.max fabs(x[O]);

if (iam==O) {
printf ("\n");
printf (" %2d: ", iam) ;
for(i=O;i<N; i++)

printf(" %3.1f ",x[i]);
printf (" \n") ;
gsync();

else {
gsync();
printf (" %2d: ", iam) ;
for(i=O;i<N; i++)

printf(" %3.1f",x[i]);
printf (" \n") ;

for(i=l; i<N; i++)
if (mine.max < fabs(x[i]))

mine.max fabs(x[i]);
i· ,

"' -:;:-:i I '~I

~~

IJ
(:
-~

[J

I::

(
''"1

I

"1

I· -: cJ

IJ
IJ
I _,
: J

I"~

I:
..J

[J

[J

IJ

~------,.---.--. ---.---------------~

Paragon ™ System C Calls Reference Manual Manual Pages

GOPF{) (cont.) GOPF{) (cont.)

gopf((char *)&mine, sizeof(mine) , (char *)&work, max_node);

if(iam==O)
printf ("mine . max
printf("mine.node

long max_node (mine,work)
char *mine, *work;

%f\n",mine.max) ;
%d\n",mine.node) ;

struct PIVOT_NODE *smine, *swork;
int iam;

iam mynode () ;
smine (struct PIVOT_NODE *)mine;
swork = (struct PIVOT_NODE *)work;

if(smine->max <= swork~>max)
smine->max = swork->max;
smine->node = swork->node;

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

ermo, gcol(), gcolxO, gdhighO, gdlowO, gdprodO, gdsumO, giandO, giorO, gsyncO

103

Manual Pages Paragon TM System C Calls Reference Manual

GSENDXO GSENDXO

Sends a message to a list of nodes.

Synopsis

Parameters

Description

104

#include <nx.h>

void gsendx(
long type,
char *buf,
long count,
long node [],
long nodecount);

type

buf

count

nodes

nodecount

Message type of the message being sent. Refer to Appendix A of the Paragon ™
System C Calls Reference Manual for information on message types. The message
type must be the same for all participating processes, and there must be no other
messages of this type in the application.

Pointer to the message buffer containing the message to be sent. The buffer may
be any valid data type.

Length (in bytes) of the message being sent.

Pointer to a list of node numbers for the nodes receiving the message.

Number of nodes in the nodes parameter.

The gsendxO function sends a message to a set of nodes specified by the nodes parameter. The nodes
that receive the message must call crecvO, irecvO, or hrecvO to receive the message. These receive
calls must use the message type specified by gsendxO. In addition, all participating processes must
have the same process type.

(
.-y,

.. -lii

I:
I:
I:

I:
[J
(-."'!
.~

I'· .,
.-.l

I '". . ' ,

1=

r~

I~
I ·,

J

1··-'. I
_I

(I
. ..J

IJ

Paragon ™ System C Calls Reference Manual Manual Pages

GSENDXO (cant.) GSENDXO (cant.)

Return Values

Errors

Upon successful completion, the gsendxO function returns control to the calling process; no values
are returned. Otherwise, this function displays an error message to standard error and causes the
calling process to terminate.

Upon successful completion, the _gsendxO function returns 0 (zero). Otherwise, this function
returns -1 and sets erma to indicate the error.

Refer to the e"no manual page for a list of errors that can occur in the C underscore system calls.

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease _notes.

ermo, crecvO, csendO, csendrecvO, irecvO, isendO, isendrecvO, brecvO, hsendO, hsendrecvO

105

~."."-~ .. --.-----------------------------------

Manual Pages Paragon™ System C Calls Reference Manual

GSVNCO GSVNCO

Synchronizes all node processes in an application. (Global synchronization operation)

Synopsis

Description

#inc1ude <nx.h>

void gsync(void);

When a node process calls the gsyncO function, it waits until all other nodes in the application call
gsyncO before continuing. All nodes in the application must call gsyncO before any node in the
application can continue. All participating processes must have the same process type.

Return Values

Errors

106

Upon successful completion, the gsyncO function returns control to the calling process; no values
are returned. Otherwise, this function displays an error message to standard error and causes the
calling process to terminate.

Upon successful completion, the _gsyncO function returns 0 (zero). Otherwise, this function returns
-1 and sets ermo to indicate the error.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

i '""l
, I

.Ali

rr -,
~ k-)

(J

(J

IJ
[J

I~

I:

I
'~

. .j

IJ
rJ
I~

1. ' .J

11
IJ

IJ

Paragon ™ System C Calls Reference Manual Manual Pages

GSYNCO (cont.) GSYNCO (cont.)

Examples

The following example shows how to use the gsyncO subroutine to synchronize an application
running on multiple nodes in a partition:

#include <stdio.h>
#include <nx.h>

#define MAX_IDS 900

main()
{

long
long
long
char

n, node;
my_node, num_nodes;
rmid [MAX_IDS] ;
rbuf[10] , sbuf[lO];

my_node = mynode();
num_nodes = numnodes();

if(my_node == 0) {
printf("Starting ... \n");

/* Post receives */
for (node = 0; node < num_nodes; node++)

rmid[node] = irecv(l, rbuf, 10);

/* Send a message to each node */
for (node = 0; node < num_nodes; node++) {

csend(l, sbuf, la, node, 0);

/* Check received messages */
for (node = 0; node < num_nodes; node++) {

msgwait(rmid[node]);

/* Wait for all nodes to complete */
gsync () ;

107

Manual Pages Paragon ™ System C Calls Reference Manual

GSYNCO (cont.) GSYNCO (cont.)

}

if(my_node == 0) {
printf("Finished!\n") ;

Limitations and Workarounds

See Also

108

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

errno

[)

(~

[J

~I
I.",

(J

IJ
IJ
IJ

I)

[~

I:
r:

I:
(

-"'1

-.I

1_-""1

_..J

Paragon ™ System C Calls Reference Manual Manual Pages

HRECVO HRECVO

hrecvO, hrecvxO: Posts a receive for a message and returns immediately; invokes a specified handler when the receive
completes. (Asynchronous receive with interrupt-driven handler)

Synopsis

Parameters

#include <nx.h>

void hrecv(
long typesel,
char *buf,
long count,
void (*handler) 0);

void hrecvx(
long typesel,
char *buf,
long count,
long nodesel,
long ptypesel,
void (*xhandler) 0,
long hparam);

typesel Message type(s) to receive. Setting this parameter to -1 receives a message of any
type. Refer to Appendix A of the Paragon TM System C Calls Reference Manual for
more information about message type selectors.

buf

count

handler

Address of the buffer where the message is received.

Length (in bytes) of the bufparameter.

Pointer to the handler to execute when the receive completes, after a call to the
hrecvO function. This handler is user-written and must have four parameters only.
See the "Description" section for a description of the handler for the hrecvO
function.

109

Manual Pages Paragon™ System C Calls Reference Manual

HRECVO (cont.) HRECVO (cont.)

Description

110

nodesel

ptypesel

xhandler

hparam

Node number of the sender. Setting nodesel to -1 receives a message from any
node.

Process type of the sender. Setting ptypesel to -1 receives a message from any
process type.

Pointer to the handler to execute when the receive completes, after a call to the
hrecvxO function. This handler is user-written and must have five parameters
only. See the "Description" section for a description of the handler for the
hrecvxO function.

Integer that is passed directly to the handler specified by the xhandler parameter.
Typically, the hparam value is used by the handler to identify the request that
invoked the handler, making it possible to write shared handlers.

The hrecvO and brecvxO functions are asynchronous message-passing system calls. After calling a
handler receive function, the function posts a receive for a message, specifies a handler to receive
the message, and returns immediately. The calling process continues to run until the message arrives.
When the message arrives, the message is stored in the buffer buf, the calling process is interrupted,
and the specified handler is started. After the handler is started, the handler and the calling process
may run concurrently until the handler finishes. (In previous releases of the operating system
operating system, the calling process was interrupted and did not run at all until the handler
returned.)

The handler contains code that you write to process the message or information about the message
after the message is received. The handler receives the following information about a message: the
message's type, length, sending node, and process type. A handler for the hrecvO and hrecvxO
functions must have the following arguments:

type

count

node

ptype

The message type (specified in the corresponding send operation).

The message length (in bytes). If the received message is too long for the
buffer buf, the receive completes, no error is returned, the content of bufis
undefined, and this argument is set to 0 (zero).

The node that sent the message.

The process type of the process that sent the message.

A handler for the hrecvxO function requires a fifth parameter, hparam. The hparam parameter is an
integer passed to the handler that identifies the request invoking the handler.

()

[J

I:
IJ
I:

r:
I:
I :

r
~l

-,

I-~

1'"1

~I

1_'-'
. -.-.-!

I 1
J

1'9

IJ
(J

Paragon TM System C Calls Reference Manual Manual Pages

HRECVO (cont.) HRECVO (cont.)

An example handler for the hrecvO function has the following form:

void myhandler(
long type,
long count,
long node,
long ptype) i

An example handler for the hrecvxO function has the following form:

void myhandler(
long type,
long count,
long node,
long ptype,
long hparam) i

Because the handler and the main program may run concurrently, parts of the main program may
have to be protected from being executed at the same time as the handler. Use the masktrapO
function to ensure a critical section of code in the main program is not interrupted by the execution
of the handler. If a handler is active when a masktrapO function is called in the main program, the
main program blocks in the masktrapO call until the handler completes. See the masktrapO manual
page for more information about using the masktrapO function to protect a section of code from
interrupts.

NOTE

The masktrapO function may be called from a handler, but it is
unnecessary and has no effect. This is supported because code
that calls the masktrapO function may be used by both the
handler and the main program. The purpose of the masktrapO
function is to protect the main program from the handler.

CAUTION

The handler runs in the same memory space as the main program
(but they have separate stacks).

111

Manual Pages Paragon ™ System C Calls Reference Manual

HRECVO (cont.) HRECVO (cont.)

These calls are asynchronous system calls. To post a receive and block the calling process until the
receive completes, use one of the synchronous receive system calls (for example, crecvO). To
receive a message and return a message ID (MID), use one of the other asynchronous receive system
calls (for example, irecvO).

Using the hrecvxO function, you can post multiple handler requests with the same shared handler.
The hrecvxO function is identical to the hrecvO function except for an additional parameter,
hparam. The hparam parameter is an integer value that is passed by the hrecvxO function to the
handler. The handler uses this value to identify which handler request it is servicing.

NOTE

Once you have established a handler for a message type, do not
attempt to receive a message of that type with a crecv ... () or
irecv ... O call.

NOTE

There are a limited number of message IDs available for
applications. Applications that use the irecvO and irecvxO
functions must explicitly release unused message IDs. If an
application runs out of message IDs, the application may fail. This
can affect the hrecv() and hrecvxO functions, because they use
message IDs internally.

Once a handler is invoked, no other handler will interrupt until the first handler returns. For this
reason, do not use the longjumpO function within a handler.

Return Values

Errors

112

Upon successful completion, the hrecvO and hrecvxO functions return control to the calling
process; no values are returned. Otherwise, these functions display an error message to standard
error and cause the calling process to terminate.

Upon successful completion, the _hrecvO and _hrecvxO functions returns 0 (zero). Otherwise,
these functions return -1 and set ermo to indicate the error.

Refer to the e"no manual page for a list of errors that can occur in the C underscore system calls.

I:
[.. ~

.J4J

[J

rr,
IlJ

i '"
IJl ~,

r ~l
Ill .. __ J

IJ
I:
I:
I:
l:
[~

r:

(
~""1

, ,

-'

I~ ~,':
_I

I ~I

'I~"'l
~J

[J

IJ

Paragon 1M System C Calls Reference Manual Manual Pages

HRECVO (cont.) HRECVO (cont.)

Examples

The following example shows how to use the hrecvO function in a message passing application
running on two nodes. The example posts an hrecvO to receive a message type 100, and on receipt
executes a handler named proc.

#include <memory.h>
#include <nx.h>

void proc();
long iam;
main() {

char buf[80];
long mask;

iam = mynode () ;
memset(buf,O,80);

if (iam == 0) {
printf("\n%d: Before hrecv\n", iam);
hrecv(lOO,buf,sizeof(buf) ,proc);
mask = masktrap(l);
print f ("%d: After hrecv\n", iam);
printf ("%d Waiting ... \n" ,iam) ;
masktrap (mask) ;
sleep(S);
printf ("%d Completed \n", iam) ;

else {
sleep(l);

}

sprintf(buf,"Hello from node %d\n",iam);
printf ("Node 1 sends to node O\n");
csend(lOO,buf,strlen(buf) ,0,0);

void proc(type,count,node,pid)
long type, count, node, pid;
{

printf ("%d Entered handler: \n", iam);
printf ("%d type = %d\n", iam, type);
printf("%d count = %d\n",iam, count);
printf(N%dnode = %d\n",iam, node);
printf ("%d pid = %d\n", iam, pid);

113

Manual Pages Paragon ™ System C Calls Reference Manual

HRECVO (cont.) HRECVO (cont.)

Limitations and Workarounds

See Also

114

For information about limitations and workarounds. see the release notes files in
lusrlshare/release _notes.

cprobeO. csendO. crecvO. csendrecvO. e"no. hsendO. hsendrecvO. iprobeO. isendO. irecvO.
isendrecvO. masktrapO

['\If"!

l. ,';

r..- --I

l.._J

1'''
~=

(.. "1

.1..1

IJ
IJ

(,"~ ...

(--
,,,j

I ','"
'0

1-'

I~

I~
I, ,."

-,

I --,
v

I ",
,-,

I~

I:
~

Paragon ™ System C Calls Reference Manual Manual Pages

HSENDO HSENDO

hsendO, hsendxO: Sends a message and returns immediately; invokes a specified handler when the send completes.
(Asynchronous send with interrupt-driven handler)

Synopsis

Parameters

#include <nx.h>

void hsend(
long type,
char *buf,
long count,
long node,
longptype,
void (*handler) 0);

void hsendx(
long type,
char *buf,
long count,
long node,
longptype,
void (*xhandler) 0,
long hparam);

type

buf

count

node

Type of the message to send. Refer to Appendix A of the Paragon TM System C
Calls Reference Manual for information on message types.

Points to the buffer containing the message to send. The buffer may be of any valid
data type.

Number of bytes to send in the blff parameter.

Node number of the message destination (the receiving node). Setting node to -1
sends the message to all nodes in the application (except the sending node when
the value of the ptype parameter is the sender's process type).

115

---------------------------_. __ ._------------

Manual Pages Paragon 1M System C Calls Reference Manual

HSEND() (cont.) HSEND() (cont.)

Description

116

ptype

handler

xhandler

hparam

Process type of the message destination (the receiving process).

Pointer to the handler to execute when the send completes, after calling the
hsendO function. This handler is user-written and must have four parameters
only. See the "Description" section for a description of the handler for the hsendO
function.

Pointer to the handler to execute when the send completes, after calling the
hsendxO function. This user-written handler and the handler must have five
parameters only. See the "Description" section for a description of the handler for
the hsendxO function.

Integer that is passed directly to the handler specified by the xhandler parameter.
Typically, the hparam value is used by the handler to identify the request that
invoked the handler, making it possible to write shared handlers.

The hsendO and hsendxO functions are asynchronous message-passing system calls. After calling
one of these functions, the function starts a sending process and returns immediately. The sending
process sends the message in the buffer bufto a destination specified by node. The calling process
continues to run while the send is completing. When the send completes, the sending process
interrupts the calling process and executes the specified handler. Completion of the send does not
mean that the message was received, only that the message was sent and the send buffer (buf) can
be reused. After the handler is started, the handler and the calling process may run concurrently until
the handler finishes. (In previous releases of the operating system operating system, the calling
process was interrupted and did not run at all until the handler returned.)

CAUTION

The handler runs in the same memory space as the main program
(but they have separate stacks).

Because of this, parts of the main program may have to be protected from being executed at the same
time as the handler.

The handler contains user-written code that runs after the send buffer is available for reuse. The
handler receives information about the message including the message's type, length, receiving
node, and process type.

[J

[-"1
1/

[.. ~ . I

..J

r-1

I. .d

IJ

IJ
(J

I:

I~:

1,0'\ , '

.J

1.1
,,,J

IJ

IJ

rJ
I. ' ,~
I]

u

Paragon TM System C Calls Reference Manual Manual Pages

HSEND() (cont.) HSEND() (cont.)

Using the hsendxO function, you can post multiple handler requests with the same shared handler.
The hsendxO function is identical to the hsendO function except for an additional parameter,
hparam. The hparam parameter is an integer value that is passed by the hsendxO function to the
handler. The handler uses this value to identify which request it is servicing.

These are asynchronous system calls. To send a message and block the calling process until the send
completes, use one of the synchronous send system calls (for example, the csendO function). To
send a message and return a message ID (MID), use one of the other asynchronous send system calls
(for example, isendO).

A handler for the hsendO and hsendxO functions must have the following arguments:

type The message type.

count The message length (in bytes).

node The node number that is running the process that receives the message.

ptype The process type of the node that receives the sent the message.

A handler for the hsendxO function requires a fifth parameter, hparam. The hparam parameter is an
integer the handler uses to identify the request invoking the handler.

An example handler for the hsendO function has the following form:

void rnyhandler(
long type,
long count,
long node,
long ptype);

An example handler for the hsendxO function has the following form:

void rnyhandler(
long type,
long count,
long node,
long ptype,
long hpararn) ;

To ensure a critical section of code is not interrupted when the'handler executes, use the masktrapO
function to protect that section of code.

Once a handler is invoked, no other handler can interrupt the calling process until the first handler
returns. For this reason, do not use the longjumpO function within a handler.

117

Manual Pages Paragon TM System C Calls Reference Manual

HSEND() (cont.) HSEND() (cont.)

NOTE

There are a limited number of message IDs available for
applications. Applications that use the isendO and isendxO
functions must explicitly release unused message IDs. If an
application runs out of message IDs, the application may fail. This
can affect the hsendO and hsendxO functions, because they use
message IDs internally.

Return Values

Errors

Examples

118

Upon successful completion, the hsendO and hsendxO functions return control to the calling
process; these functions do not return a value. Otherwise, these functions display an error message
to standard error and cause the calling process to terminate.

Upon successful completion, the _hsendO and _hsendxO functions return 0 (zero). Otherwise, these
functions return -1 and set ermo to indicate the error.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

The following example shows how to use the hsendO function in a message passing application
running on two nodes. The example uses the hsendO function to send a message and execute a
handler named proc after the send completes.

#include <string.h>
#include <memory.h>
#include <nx.h>

void proc()i
long iami

main () {

char buf[80], rbuf[80]i
long maski

[~ ..
;j/

('1
.. ..iII

I:

I:
I ~

-
I:

[!

("-"

"'"
I ,

.liJ

IJ
I:

I ~1
_I

I:

I .~ , '

.-J

I:

I
'~

. ..J

1'1
.j

I:J

Paragon ™ System C Calls Reference Manual Manual Pages

HSENDO (cont.) HSENDO (cont.)

iam = mynode();
memset(buf,0,80) ;
memset(rbuf,O, 80) ;
if(iarn == 0) {

sprintf (buf, "Hello from node %d\n", iam) ;
printf("\n%d: Before hsend\n", iam);
hsend(lOO,buf,strlen(buf)+l,l,O,proc);
mask = masktrap(l); /* Disable traps */
printf("%d: After hsend: %s\n", iam,buf);
printf("Waiting ... \n");
mask = masktrap(mask); /* Enable traps */
sleep(5) ;

else {
print f ("Node 1 receives from node ° \n") ;
crecv(lOO,rbuf,sizeof(rbuf));
printf("%d: %s\n" ,iam,rbuf);

void proc(type,count,node,pid)
long type, count, node, pid;
{

printf("Node %d Entered handler:\n",iam);
printf("type = %d\n",type);
printf("count = %d\n",count);
printf("node = %d\n",node);
printf("pid = %d\n",pid);

Limitations and Workarounds

See Also

For information about limitations and workarounds. see the release notes files in
lusrlshare/release _notes.

cprobeO. csendO. crecvO. csendrecvO. errno. hrecvO. hsendrecvO. iprobeO. isendO. irecvO.
isendrecvO. masktrapO

119

Manual Pages Paragon ™ System C Calls Reference Manual

HSENDRECVO HSENDRECVO

Sends a message and posts a receive for a reply; invokes a user-written handler when the receive completes.
(Asynchronous send-receive with interrupt-driven handler)

Synopsis

Parameters

120

#include <nx.h>

void hsendrecv(
long type,
char *sbuf,
long scount,
long node,
longptype,
long typesel,
char *rbuf,
long rcount,
void (*handler) 0);

type

shuf

scount

node

ptype

typesel

Type of the message to send. Refer to Appendix A of the Paragon 1M System C
Calls Reference Manual for information on message types.

Points to the buffer containing the message to send. The buffer may be of any valid
data type.

Number of bytes to send in the shuf parameter.

Node number of the message destination (the receiving node). Setting node to-l
sends the message to all nodes in the application (except the sending node when
ptype is the sender's process type).

Process type of the message destination (the receiving process).

Message type(s) to receive. Setting this parameter to -1 receives a message of any
type. Refer to Appendix A of the Paragon 1M System C Calls Reference Manual for
more information about message type selectors.

I:

I:

(j

I_ -"1

_J

I~

IJ
IJ

IJ
IJ
[J

---- ----_ .. _-------------- ---------_ ... ----- ------------

Paragon ™ System C Calls Reference Manual Manual Pages

HSENDRECVO (cont.) HSENDRECVO (cont.)

Description

rbuf Points to the buffer for storing the reply.

rcount

handler

Length (in bytes) of the rbufparameter.

Pointer to the handler to execute when the receive completes after a call to the
hrecvO function. This handler is user-written and must have four parameters only.
See the "Description" section for a description of the user-written handler for the
hrecvO function.

The hsendrecvO function is an asynchronous system call. The function sends a message and
immediately posts a receive, specifying the handler to be invoked when the receive completes. The
calling process continues to run until the receive completes. When the receive completes, the calling
process is interrupted and the specified handler is started. After the handler is started, the handler
and the calling process may run concurrently until the handler finishes. (In previous releases of the
operating system operating system, the calling process was interrupted and did not run at all until
the handler returned.)

CAUTION

The handler runs in the same memory space as the main program
(but they have separate stacks). -

Because of this, parts of the main program may have to be protected from being executed at the same
time as the handler.

The handler contains code that you write to process the message or information about the message
after the message is received. The handler receives the following information about the received
message: the message's type, length, sending node, and process type.

If the send part of the hsendrecvO function fails, the receive is never posted. The send buffer is not
available for reuse until after returning from the handler.

121

Manual Pages Paragon™ System C Calls Reference Manual

HSENDRECVO (cont.) HSENDRECVO (cont.)

122

The handler must have four parameters (which correspond to the message information passed by the
receive function):

type

count

node

ptype

The message type (specified in the corresponding send operation).

The message length (in bytes). If the received message is too long for the
buffer rbuf, the receive completes, no error is returned, the content of rbufis
undefined, and this argument is set to 0 (zero).

The node of the process that sent the message.

The process type of the process that sent the message.

This is an asynchronous system call. To block the calling process until the send/receive completes,
use the synchronous system call csendrecvO. To do an asynchronous send/receive in which a
message ID (MID) is provided to determine when the receive completes, use the system call
isendrecvO.

The handler must have the following form:

void myhandler(
long type,
long count,
long node,
long ptype) i

To ensure that a critical section of code is not interrupted by the execution of the handler, use the
masktrapO function to protect that section of code.

Once a handler is invoked, no other handler can interrupt until the first handler returns. For this
reason, do not use the longjumpO function within a handler.

NOTE

There are a limited number of message IDs available for
applications. Therefore, applications need to release unused
message IDs. The hsendrecvO function uses message IDs
internally, but does not return message IDs, like the isendrecvO
function does. The handlers associated with the hsendrecvO
function releases these message IDs.

I' ""'.
~.~

1. ~1
Ai

If"''"'
l

l:

I:

r:

r1

r=
I .""

..J

I -"l

--'

1=
I~

I:
(J

IJ

-----------""------- --- ----_._----------------------_._-_.~"- --~--.--------------

Paragon ™ System C Calls Reference Manual Manual Pages

HSENDRECVO (cont.) HSENDRECVO (cont.)

Return Values

Errors

Upon successful completion, the bsendrecvO function returns control to the calling process; no
value is returned. Otherwise, this function displays an error message to standard error and causes the
calling process to terminate.

Upon successful completion, the _bsendrecvO function returns 0 (zero). Otherwise, this function
returns -1 and sets ermo to indicate the error.

Refer to the e"no manual page for a list of errors that can occur in the C underscore system calls.

Limitations and Workarounds

See Also

For infonnation about limitations and workarounds, see the release notes files in
lusrlshare/release _notes.

cprobeO, crecvO, csendO, csendrecvO, e~o, brecvO, bsendO, iprobeO, irecvO, isendO,
isendrecvO, masktrapO

123

Manual Pages Paragon™ System C Calls Reference Manual

INFOCOUNTO INFOCOUNTO

infocountO, infonodeO, infoptypeO, infotypeO: Gets information about a pending or received message.

Synopsis

Description

124

#include <nx.h>

long infocount(void);

long infonode(void);

long infoptype(void);

long infotype(void);

Use the info ••• O system calls to return information about a pending or received message. Return
values are defined only when these system calls are used immediately after completion of one of the
following (any of these conditions indicates that a message has arrived):

• A cprobeO, crecvO, or msgwaitO system call.

• A cprobexO or crecvxO system call whose info parameter was set to the global array msginjo.

• An iprobeO or msgdoneO system call that returns 1.

If the mid parameter in the msgwaitO or msgdoneO functions represents a merged message ID (that
is, it was returned by the msgmergeO function), the information returned for the info ••• O calls is
unpredictable.

('" 'jJ

!'r "'1

~.!

rf"l
IA...J

I:
I, ~

""

I:

IJ

1_".
~;

14
-",I

1--"\
.:,,!

I:
I~

t:
I::
[J

Paragon ™ System C Calls Reference Manual Manual Pages

INFOCOUNTO (cont.) INFOCOUNTO (cont.)

Return Values

Errors

Examples

Upon successful completion. the info ••• O functions return the following information about pending
or received messages and return control to the calling process:

infocountO Returns length in bytes (count) of message.

infonodeO Returns node ID (node) of sender.

infoptypeO Returns process type (ptype) of sender.

infotypeO Returns type (type) of message.

Otherwise. these functions display an error message to standard error and cause the calling process
to terminate.

If you issue an info ••• O call before doing any message passing. the call returns -1.

Upon successful completion. the _infocountO. _infonodeO. _infoptypeO. and _infotypeO
functions return the same values as the corresponding non-underscore function. Otherwise. these
functions return -1 and set ermo to indicate the error.

Refer to the ermo manual page for a list of errors that can occur in the C underscore system calls.

The following example shows how to use the info ••• O functions to get information about a message
in an application.

long iam;

main()
{

long node, type, ptype, count;
char rmsg[80],smsg[80];

iam = mynode();

125

Manual Pages Paragon ™ System C Calls Reference Manual

INFOCOUNTO (cont.) INFOCOUNTO (cont.)

if(!iam)
sprintf (smsg, "Hello from node %d\n", iam);
csend(100,smsg,strlen(smsg) + 1,1,0);

else {
crecv(100,rmsg,sizeof(rmsg));
node = infonode();
type = infotype();
ptype = infoptype();
count = infocQunt();
printf("node = %d\n",node);
printf("type = %d\n",type);
printf ("ptype %d\n" ,ptype) ;
printf (Hcount = %d\n", count) ;

Limitations and Workarounds

See Also

126

For information about limitations and workarounds. see the release notes files in
lusrlsharelrelease _notes.

cprobeO. crecvO. ermo, iprobeO, msgdoneO, msgmergeO, msgwaitO

[]

(",'1
~

[''''1
; ,

jj;J

(J

I:
I:
I~

(!

('"
.il:1

r·,.,
~

1_­
~:

I· "'"
.... ...i

I:

IJ

Paragon ™ System C Calls Reference Manual Manual Pages

IODONE() IODONE()

Determines whether an asynchronous read or write operation is complete.

Synopsis

Parameters

Description

#include <nx.h>

long iodone(
long id);

id Non-negative I/O ID returned by an asynchronous read or write system call (for
example, ireadO or iwrite()) .

The iodoneO function determines whether the asynchronous read or write operation (for example,
ireadO or iwriteO) identified by the id parameter is complete. If the operation is complete, this
function releases the I/O ID for the operation.

If the iodoneO function returns 1 (indicating that the I/O operation is complete):

• The buffer specified in an ireadO call contains valid data (if the id parameter identifies a read
operation).

• The buffer specified in an iwriteO call is available for reuse (if the id parameter identifies a
write operation).

The I/O ID specified by the id parameter is released for use in another asynchronous read or
write.

Use the iowaitO function if you need the blocking version of this function.

NOTE

You must call either the iowait() or iodone() function after an
asynchronous read or write to ensure that the operation is
complete and to release the 1/0 10.

127

Manual Pages Paragon TM System C Calls Reference Manual

IODONE{) (cont.) IODONE{) (cont.)

Return Values

Errors

Examples

128

Upon successful completion, the iodoneO function returns control to the calling process and returns
the following values:

o Read or write is not yet complete.

1 Read or write is complete.

If an error occurs, the iodoneO function displays an error message to standard error and causes the
calling process to terminate.

Upon successful completion, the _iodoneO function returns the same values as the iodoneO
function. Otherwise, the _iodoneO function returns -1 when an error occurs and sets ermo to
indicate the error.

If the _iodoneO function fails, ermo may be set to the following error code value:

EBADID The id parameter is not a valid 110 ID.

The following example shows how to use the iodoneO function to determine if an asynchronous
write is complete:

#include <fcntl.h>
#include <nx.h>

long iam;

main()
{

int fd, id;
long mode;
char buffer[80] ;

iam = myna de () ;

R"'i
1a.J

I:

I: ~. I "',

IJ

[]

I:

I ··~

-'"

("--'"

:.li,1

IJ

1=

1=

[~

IJ
c
[J

Paragon™ System C Calls Reference Manual Manual Pages

IODONE() (cont.) IODONE() (cont.)

fd gopen (H /tmp/mydata H ,O_CREAT
0644);

mode = iomode(fd);
if(!iam) printf(H%d: iomode = %d\nH,iam, mode);

sprintf(buffer,HHello from node %d\nH,iam);
id = iwrite(fd, buffer, strlen(buffer));
while (!iodone(id))

printf (H%d: write not done\n H, iam) ;
printf (H%d: write done\nH, iam) ;

close (fd) ;

Limitations and Workarounds

See Also

For information about limitations and workarounds. see the release notes files in
lusrlsharelrelease _notes.

iowaitO. ireadO. iwriteO

129

Manual Pages Paragon™ System C Calls Reference Manual

IOMODE() IOMODE()

Gets the 110 mode of a file.

Synopsis

Parameters

Description

#include <nx.h>

long iomode(
intfildes);

fildes A file descriptor representing an open file.

The iomodeO function determines the current 110 mode of the file identified by fildes. A file's 110
mode determines how a process may access the file.

Return Values

130

Upon successful completion, the iomodeO function returns the current 110 mode of the file
descriptor identified by thefildes parameter. The 110 mode can be M_VNIX, M_LOG, M_SYNC,
M_RECORD, M_GLOBAL, or M_ASYNC. Refer to the setiomodeO manual page for
descriptions of each I/O mode.

If an error occurs, the iomodeO function writes an error message on the standard error output and .
causes the calling process to terminate.

Upon successful completion, the _iomodeO function returns the same values as the iomodeO
function. Otherwise, the _iomodeO function returns -1 and sets erma to indicate the error.

If' .. lJJ

I:
I. "'''·
' ,

~I

(J

I :
r~

r:

IJ

1·.1
~I

Paragon 1M System C Calls Reference Manual Manual Pages

IOMODE{) (cont.) IOMODE{) (cont.)

Errors

Examples

If the _iomodeO function fails, ermo may be set to the following error code value:

EBADF The fildes parameter is not a valid file descriptor.

The following example show how to use the iomodeO function to determine the I/O mode of an
opened file:

#include <fcntl.h>
#include <nx.h>

long iam;

main()
{

}

int fd, id;
long mode;
char buffer [80] ;

iam = mynode();

fd = gopen(n/tmp/mydata",O_CREAT
0644);

mode = iomode(fd);
if (! iam) printf (n%d: iomode = %d\n", iam, mode);

sprintf(buffer,nHello from node %d\n",iam);
id = iwrite(fd, buffer, strlen(buffer));

iowait(id) ;
close (fd) ;

131

Manual Pages Paragon ™ System C Calls Reference Manual

IOMODEO (cont.) IOMODEO (cont.)

Limitations and Workarounds

See Also

132

For information about limitations and workarounds, see the release notes files in
lusr/share/release _notes.

gopenO, setiomodeO

OSF/l Programmer's Reference: dup(2), open(2)

(J

IJ
IJ

I~

I---\f

iiii

I:
I:

I ",
-~

(-'
.)

1-_~1

~

IJ
c

Paragon ™ System C Calls Reference Manual Manual Pages

IOWAITO IOWAITO

Waits (blocks) until an asynchronous read or write operation completes.

Synopsis

Parameters

Description

#include <nx.h>

void iowait(
long id);

id Non-negative 110 ID returned by an asynchronous read or write system call (for
example, ireadO or iwriteO).

The iowaitO function waits until an asynchronous read or write function (for example, the ireadO
or iwriteO function) identified by id completes. When the iowaitO function returns:

• The buffer specified in an ireadO call contains valid data (if the id parameter identifies a read
operation).

• The buffer specified in an iwriteO call is available for reuse (if the id parameter identifies a
write operation).

• The 110 ID specified by the id parameter is released for use in another asynchronous read or
write .

Use the iodoneO function for the non-blocking version of this function.

NOTE

You must call either the iowaitO or iodoneO function after an
asynchronous read or write to ensure that the operation is
complete and to release the 110 10.

133

Manual Pages Paragon ™ System C Calls Reference Manual

IOWAITO (cont.) IOWAITO (cont.)

Return Values

Errors

Examples

134

Upon successful completion, the iowaitO function returns control to the calling process; no values
are returned. If an error occurs, the iowaitO function displays an error message to standard error and
causes the calling process to terminate.

Upon successful completion, the _iowaitO function returns O. Otherwise, the _iowaitO function
returns -1 when an error occurs and sets errno to indicate the error.

If the _iowaitO function fails, errno may be set to the following error code value:

EBADID The id parameter is not a valid I/O ID.

The following example shows how to use the iowaitO function to determine if an asynchronous
write has completed:

#include <fcntl.h>
#include <nx.h>

long iam;

main()
{

int fd, id;
char buffer[80];
iam =mynode();

fd = gopen("/tmp/mydata",O_CREAT I O_TRUNC I O_RDWR, M_UNIX,
0644) ;

sprintf (buffer, "Hello from node %d\n", iam) ;
id = iwrite(fd, buffer, strlen(buffer));
printf("%d: write not done\n",iam);
iowait (id);
printf("%d: write done\n",iam);
close(fd) ;

(.. ~. i

(J

IJ
IJ

IJ
(J

("1 ..

I
··~

..
(.. ~

.w

(C:

I:
r~

I~

I ·""
•• 1

1··--,
i'

1"1

r~

(.:

r'~

I ""'
---.1

I~
I

···~

.. ,

I ~,

~I

I ~

.;J

(
"4

.-1

IJ
1".""'1· ...

B

r:

Paragon ™ System C Calls Reference Manual Manual Pages

IOWAITO (cant.) IOWAITO (cant.)

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

iodoneO, ireadO, iwriteO

135

Manual Pages Paragon 1M System C Calls Reference Manual

IPROBE() IPROBE()

iprobeO, iprobexO: Determines whether a message is ready to be received. (Asynchronous probe)

Synopsis

Parameters

136

#include <nx.h>

long iprobe(
long typesel);

long iprobex(
long typesel,
long nodesel,
long ptypesel,
long in/o[]);

typesel

nodesel

ptypesel

info

Message type or set of message types for which to probe. Setting this parameter
to -1 probes for a message of any type. Refer to Appendix A of the Paragon TM

System C Calls Reference Manual for more information about message type
selectors.

Node number of the sender. Setting nodesel to -1 probes for a message from any
node.

Process type of the sender. Setting ptypesel to -1 probes for a message from any
process type.

Eight-element array (four bytes per element) in which to store message
information. The first four elements contain the message's type, length, sending
node, and sending process type. The last four elements are reserved for system
use. If you do not need this information, you can specify the global array msginfo,
which is the array used by the info ••• O system calls.

[J

(~

~."1

~~

IJ
(1

J

I:

IJ
I:

I:
r:
I:

I:
I ~,

1=

1'1
."J

Paragon TM System C Calls Reference Manual Manual Pages

IPROBE() (cont.) IPROBE() (cont.)

Description

Use the appropriate asynchronous probe function to determine if the specified message is ready to
be received:

• Use the iprobeO function to probe for a message of a specified type.

• Use the iprobexO function to probe for a message of a specified type from a specified sender
and place information about the message in an array.

If the iprobeO function returns 1 (indicating that the specified message is ready to be received), you
can use the info ••• O system calls to get more information about the message. Otherwise, the info ... O
system calls are undefined.

Similarly, if the iprobexO function returns I, you can examine the info array to get more information
about the message. Otherwise, the info array is undefined.

These are asynchronous system calls. To probe for a message and block the calling process until the
message is ready to be received, use one of the synchronous probe system calls (for example,
cprobe()).

Return Values

Upon successful completion, the iprobeO and iprobexO functions return the following values and
return control to the calling process:

o If the specified message is not available.

1 If the specified message is available.

Otherwise, these functions display an error message to standard error and cause the calling process
to terminate.

Upon successful completion, the _iprobeO and _iprobexO functions return the following values:

o If the specified message is not available.

1 If the specified message is available.

Otherwise, these functions return -1 and set ermo to indicate the error.

137

Manual Pages Paragon TM System C Calls Reference Manual

IPROBE() (cont.) IPROBE() (cont.)

Errors

Examples

Refer to the e"no manual page for a list of errors that can occur in the C underscore system calls.

The following example shows how to use the iprobeO function to determine whether an
asynchronous message is ready to be received:

long iam;

main () {

}

long msgid, probe;
char smsg[80] , rmsg[80];

iam = mynode () ;

sprintf(smsg,"Hello from node %d\n",iam);

probe = iprobe(-l);
printf("%d: Before send iprobe = %d\n",iam,probe);

csend(lOO, smsg, strlen(smsg)+l ,-1,0);
sleep(5) ;
probe = iprobe(-l);
printf("%d: After send iprobe = %d\n",iam,probe);

msgid = irecv(lOO, rmsg, sizeof(rmsg));
msgwai t (msgid) ;

printf("%d: received: %s\n",iam,rmsg);

Limitations and Workarounds

138

For information about limitations and workarounds, see the release notes files in
lusrlshare/release _notes.

------------- --------~ ---~

1Y-1I'1
\ I-
~_...J

IJ
I]

I:
I~

I ,
Joi

r:
1"',

...J

I ""
~

I· .. '" ._,

I :
I ··"

,-,

r~

r~<

I~
I

··~

, _.J

I~~

I .• ~~
r.~

I~
I

·'~I

. ..J

I ·~.·

.0'

I~

(-:
~"

[J

I~ .jjjJ

I·~

.M

..... -~ ~~---~

Paragon ™ System C Calls Reference Manual Manual Pages

IPROBEO (cont.) IPROBEO (cont.)

See Also

cprobeO. e"no. infocountO. infonodeO. infoptypeO. infotypeO

139

Manual Pages Paragon™ System C Calls Reference Manual

IREAO() IREAO()

ireadO. ireadvO: Reads from a file and returns immediately. (Asynchronous read)

Synopsis

Parameters

140

#include <nx.h>

long iread(
intfildes,
void *buffer,
unsigned int nbytes);

#include <sys/uio.h>

long ireadv(
int fildes,
struct iovec *iov,
int iovcount);

fildes

buffer

nbytes

iov

iovcount

File descriptor identifying the open file to be read.

Pointer to the buffer in which the data is placed after it is read.

Number of bytes to read from the file associated with the fildes parameter.

Pointer to an array of iovec structures that identifies the buffers into which the data
is placed. The iovec structure has the following form:

struct iovec
caddr_t iov_base;
int iov_len;

} ;

The iovec structure is defined in the sys/uio.h include file.

Number of iovec structures pointed to by the iov parameter.

[.~

.. ..J

IJ
IJ
I:
IJ

r:

I
~~ ~-.;

-"'

I ~..,'

,J

("'
.J

I ,'"
J

IJ
IJ

Paragon ™ System C Calls Reference Manual Manual Pages

IREAD() (cant.) IREAD() (cant.)

Description

Other than the return values, the additional errors, and the asynchronous behavior, the ireadO and
ireadvO functions are identical to the OSF!1 readO and readvO functions, respectively. See the
read(2) manual page in the OSFll Programmer's Reference.

The ireadO and ireadvO functions are asynchronous system calls. These functions return to the
calling process immediately; the calling process continues to run while the read is being done. If the
calling process needs the data for further processing, it must do one of the following:

• Use either the creadO or creadvO function (synchronous system calls) instead of the ireadO or
ireadvO function, respectively.

• Use iowaitO to wait until the read completes.

• Loop until iodoneO returns 1, indicating that the read is complete.

NOTE

To preserve data integrity, all 1/0 requests are processed on a
''first-in, first-out" basis. This means that if an asynchronous 1/0
call is followed by a synchronous 1/0 call on the same file, the
synchronous call will block until the asynchronous operation has
completed.

After an ireadO or ireadvO call, you can perform other read or write calls on the same file without
waiting for the read to finish.

Use the iseof() function to determine whether the file pointer is at the end of the file.

Return Values

Upon successful completion, the ireadO and ireadvO functions return control to the calling process
and return a non-negative I/O ill for use in iodoneO and iowaitO system calls. Otherwise, the
ireadO and ireadvO functions display an error message to standard error and cause the calling
process to terminate.

Upon successful completion, the _ireadO and _ireadvO functions return a non-negative I/O ill. The
I/O ill is for use by the iodoneO and iowaitO functions. Otherwise, the _ireadO and _ireadvO
functions return -1 when an error occurs and set ermo to indicate the error.

141

Manual Pages Paragon ™ System C Calls Reference Manual

IREADO (cont.) IREADO (cont.)

Errors

Examples

142

NOTE

The number of I/O IDs is limited, and an error occurs when no 1/0
IDs are available for a requested asynchronous read or write.
Therefore, your program should release the returned 1/0 10 as
soon as possible by calling iodone() or iowailO.

If the _ireadO or _ireadvO function fails, ermo may be set to one of the error code values described
for the OSFIl read(2) function or one of the following values:

EMIXIO . In 110 modes M_SYNC and M_GLOBAL, nodes are attempting different
operations (reads and writes) to a shared file. In these modes, all nodes must
perform the same operation.

EMREQUEST An asynchronous system call has been attempted, but too many requests are
already outstanding. Use either iowaitO or iodoneO to clear asynchronous read
and write requests that are outstanding.

The following example shows how to use the ireadO and iowaitO functions to do an asynchronous
read:

#include <fcntl.h>
#include <nx.h>

long iami

main()
{

int fd,idi
char msgbuf[181i

iam = myna de () i

fd = gopen(H/tmp/mydata H, O_RDWR, M_VNIX, 0644)i
id = iread(fd, msgbuf, sizeof(msgbuf));
iowait (id) i

[]

(11. ' I

.JJJ

rJ

~J

I:
(J

I:
IJ
(~

r:

1_ •. '
;.,J

I :

IJ

1""1
: '

. ...1

I '
.-.J

I:
1-.'1

,,)

IJ

- ----------- -_. ------- ---------~------~--------------------

Paragon ™ System C Calls Reference Manual Manual Pages

IREADO (cont.) IREADO (cont.)

printf("Node %d read: %s\niseof
iseof (fd)) i

%d\n",iarn,rnsgbuf,

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

creadO, cwriteO, gopenO, iodoneO, iowaitO, iseofO, iwriteO, setiomodeO

OSFll Programmer's Reference: dup(2), open(2), read(2)

143

Manual Pages Paragon ™ System C Calls Reference Manual

IREADOFF() IREADOFF()

ireadotTO. ireadvoffO: Asynchronous reads from a file at a specified offset.

Synopsis

#include <sys/types.h>
#include <nx.h>

long ireadotT(
int fildes,
esize_t offset,
char *buffer,
unsigned int nbytes);

#include <sys/types.h>
#include <sys/uio.h>

long ireadvotT(
intfildes,
esize_t offset,
struct iovec *iov,
int iovcount);

Description of Parameters

fildes

offset

buffer

nbytes

iov

iovcount

144

A file descriptor identifying the file to be read.

Offset from the beginning of the file where to begin the read.

Pointer to the buffer in which the data is stored after it is read.

The number of bytes to read from the file associated with the fildes parameter.

Pointer to an array of iovec structures that identify the buffers into which the data
is to be placed.

The number of iovec structures pointed to by the iov parameter.

I]

("'" , ~

joJ

I:
I:

I:
I ''';

,JIii

1"'1
:e!

1""1

~I

I cri

... ,

1"
1·

,'-1
, ,

"J

I~

I "~
.J

I~

I'~

rJ

I "~

, '"

IJ
(J
I".·~

.J

(""'1

... .J

Paragon TM System C Calls Reference Manual Manual Pages

IREADOFF() (cont.) IREADOFF() (cont.)

Discussion

IreadotTO reads nbytes asynchronously from the file specified by the descriptor fd starting at the
offset specified by offset into the buffer pointed to by buffer. IreadvoffO is similar, but it reads the
data into the iovcount buffers specified by iov.

IreadotTO and ireadvotTO are similar to ireadO and ireadvO except for reading starting at a
user-specified offset (instead of the offset maintained by the system file pointer) and the following
additional differences:

• The current value of the system file pointer is not modifed.

• Currently only M_UNIX and M_ASYNC I/O modes are supported.

• Paragon PFS is the only file system type that currently supports these functions.

Return Values

Upon successful completion, a non-negative I/O ID for use in iodoneO,iowaitO, niodoneO and
niowaitO calls is returned. If an error occurs, these functions return -1 and set ermo to indicate the
error.

NOTE

The number of I/O IDs is limited, and an error occurs when no I/O
IDs are available for a requested asynchronous read or write.
Therefore, your program should release the I/O 10 as soon as
possible by calling iodone(), iowaitO, niodone() or niowait().

145

Manual Pages Paragon™ System C Calls Reference Manual

IREADOFF() (cont.) IREADOFF() (cont.)

Errors

See Also

146

Errors are as described in OSFIl readO. except that the following errors can also occur:

EMREQUEST An asynchronous call has been attempted. but too many requests are already
outstanding. Use either iowaitO or iodoneO to clear asynchronous read and write
requests that are outstanding.

EFSNOTSUPP The file referred to by JUedes is not in a file system of a type that supports this
operation. Currently only the PFS file systems support this operation.

EINVAL The file referred to by JUedes is in an unsupported iomode. Currently only
M_UNIX and M_ASYNC are supported.

creadO, gopenO. iodoneO. iowaitO. ireadO, iseofO. niodoneO, niowaitO, readotTO setiomodeO

OSFll Programmer's Reference: dupO. openO. readO

(]

1_ '1
..Ii

~J

(J

,-""

,A-i

I:
I lP'I

-.,;

----~ -- ------------------------

r:

I:

I
··~

".

1=

I· --.'~
~,

1'-1

I J

I:
IJ

Paragon ™ System C Calls Reference Manual Manual Pages

IRECVO IRECVO

irecvO, irecvxO: Posts a receive for a message and returns immediately. (Asynchronous receive)

Synopsis

Parameters

#include <nx.h>

long irecv(
long typesel,
char *buf,
long count);

long irecvx(
long typesel,
char *buf,
long count,
long nodesel,
long ptypesel,
long info[]);

typesel Message type(s) to receive. Setting this parameter to -1 receives a message of any
type. Refer to Appendix A of the Paragon TM System C Calls Reference Manual for
more information about message type selectors.

buf

count

nodesel

ptypesel

Points to the address where the message should be placed.

Length (in bytes) of the bufparameter.

Node number of the sender. Setting
the nodesel parameter to -1 receives a message from any node.

Process type of the sender. Setting the ptypesel parameter to -1 receives a message
from any process type.

147

Manual Pages Paragon™ System C Calls Reference Manual

IRECVO (cant.) IRECVO (cant.)

Description

148

info Eight-element array of long integers in which to store message information. The
first four elements contain the message's type, length, sending node, and sending
process type. The last four elements are reserved for system use. If you do not
need this information, you can specify the global array msginfo, which is the array
used by the info ... O system calls.

Use the appropriate asynchronous receive function to post a receive for a message and return
immediately:

• Use the irecvO function to post a receive for a message of a specified type.

• Use the irecvxO function to post a receive for a message of a specified type from a specified
sender and place information about the message in an array.

The asynchronous receive system calls return a message ID that you can use with the msgdoneO and
msgwaitO system calls to determine when the receive completes (and the buffer contains valid data).

For the irecvO function, you can use the info ••• O system calls to get more information about the
message after it is received. For the irecvxO function, the same message information is returned in
the info array. Until the receive completes, neither the info ... O system calls nor the info array contain
valid information.

If the message is too long for the buffer, the receive completes with no error returned, and the content
of the buffer is undefined. To detect this situation, check the value of the infocountO function or the
second element of the info array.

These are asynchronous system calls. The calling process continues to run while the receive is being
done. If your program needs the received message for further processing, it must do one of the
following:

• Use the msgwaitO function to wait until the receive completes.

• Loop until the msgdoneO function returns 1, indicating that the receive is complete.

• Use one of the synchronous system calls (for example, crecv{)) instead.

(~
.JiI

I:

c

I:

r:
I:
r:

("

I '"1
~I

IJ

Paragon ™ System C Calls Reference Manual Manual Pages

IRECVO (cont.) IRECVO (cont.)

Return Values

Errors

Upon successful completion, the irecvO and irecvxO functions return a message ID and return
control to the calling process. If an error occurs, these functions print an error message to standard
error and cause the calling process to terminate. The message ID is for use with the msgcancelO,
msgdoneO, msgignoreO, msgmergeO, or msgwaitO system calls.

Upon successful completion, the jrecvO and _irecvxO functions return a message ID. Otherwise,
these functions return -1 and set ermo to indicate the error.

NOTE

The number of message IDs is limited. The error message
"Too many requests" is returned and your application will stop
when no message IDs are available for a requested asynchronous
send or receive. Your program should release its message IDs as
soon as possible by calling msgcancelO, msgdoneO,
msgignoreO, or msgwait().

If the _isendO function fails, ermo may be set to the following value:

EQNOMID Your application has used all the available message IDs and no message IDs are
available. Use either the msgcanceIO,msgdoneO, msgignoreO, or msgwaitO
subprogram with the receive to release message IDs.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

149

Manual Pages Paragon™ System C Calls Reference Manual

IRECVO (cont.) IRECVO (cont.)

Examples

The following example shows how to use the irecvO function to do an asynchronous receive:

long iami

main () {

long msgidi
char smsg[80] , rmsg[80]i

iam = mynode()i
sprintf(smsg,"Hello from node %d\n",iam)i
msgid = irecv(100, rmsg, sizeof(rmsg))i
csend(100, smsg, strlen(smsg)+l ,-1,0) i

msgwait (msgid) i

printf("%d: received: %s\n",iam,rmsg) i

Limitations and Workarounds

See Also

150

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease _notes.

crecvO, csendO, csendrecvO, ermo, hrecvO, hsendO, hsendrecvO, infocountO, infonodeO,
infoptypeO, infotypeO, isendO, isendrecvO, msgcancelO, msgdoneO, msgignoreO, msgmergeO,
msgwaitO

I·~ .-'1

[:

lYi
~,.J

I:
1·"1

."-!

I ·~
....

l~

(:

I:

(

-¥'

.. ,

I:
I~

I··.,.··
-~

I: ~j
. ..J

I·-.~

..cJ

IJ
n
LJ

Paragon ™ System C Calls Reference Manual Manual Pages

ISEND() ISEND()

Sends a message and returns immediately. (Asynchronous send)

Synopsis

Parameters

Description

#include <nx.h>

long isend(

type

buf

long type,
char *buf,
long count,
long node,
long ptype);

Type of the message to send. Refer to Appendix A of the Paragon TM System C
Calls Reference Manual for information on message types.

Points to the buffer containing the message to send. The buffer may be of any valid
data type.

count Number of bytes to send in the buf parameter.

node

ptype

Node number of the message destination (that is, the receiving node). Setting node
to -1 sends the message to all nodes in the application (except the sending node
when the ptype is the sender's process type).

Process type ofthe message destination (that is, the receiving process).

The isendO function returns a message ID that you can use with the msgdoneO and msgwaitO
functions to determine when the send completes. Completion of the send does not mean that the
message was received, only that the message was sent and the send buffer (buf) can be reused.

In an asynchronous system call, the calling process continues to run while the send is being done.
To send a message and block the calling process until the send completes, use an synchronous send
call (for example, csendO).

151

Manual Pages Paragon ™ System C Calls Reference Manual

ISEND() (cont.) ISEND() (cont.)

Return Values

Errors

152

Upon successful completion, the isendO function returns a message ID and returns control to the
calling process. If an error occurs, this function displays an error message to standard error and
causes the calling process to terminate. The message ID is for use with the msgcancelO, msgdoneO.
msgignoreO. msgmergeO. or msgwaitO system calls.

Upon successful completion. the _isendO function returns a message ID. Otherwise, this function
returns -1 and sets erma to indicate the error.

NOTE

The number of message IDs is limited. The error message
"Too many requests" is returned and your application will stop
when no message IDs are available for a requested asynchronous
send or receive. Your program should release its message IDs as
soon as possible by calling msgcancel(). msgdone().
msgignore(). or msgwait().

If the _isendO function fails. ermo may be set to the following value:

EQNOMID Your application has used all the available message IDs and no message IDs are
available. Use either the msgcancelO. msgdoneO. msgignoreO. or msgwaitO
function with the receive to release message IDs.

Refer to the e"no manual page for a list of errors that can occur in the C underscore system calls.

!lr1!l1
Ii i
aAi

IJ

r:
(... ~

'"

(
"'l

~,

r"'

I:

1=
I:

I-~
--'.!

IJ

Paragon TM System C Calls Reference Manual Manual Pages

ISEND() (cont.) ISEND() (cont.)

Examples

The following example shows how to use the isendO function to do an asynchronous send:

#include <nx.h>

#define INIT_TYPE 10

long iam;

main()
{

long msgid;
char msgbuf[80], smsg[80];

iam = mynode()i
if(!iam) {

sprintf(smsg,"Hello from node %d\n",iam);
msgid = isend(INIT_TYPE, smsg, sizeof(smsg), 1, 0);
printf ("Node %d sent: %s", iam, smsg) i

msgwai t (msgid) ;
printf("Node %d send buffer available for

writing\n", iam) ;

else

}

crecv(INIT_TYPE, msgbuf, sizeof(msgbuf));
printf ("Node %d received: %s\n", iam,msgbuf) ;

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

cprobeO, crecvO, csendO, csendrecvO, errno, hrecvO, hsendO, hsendrecvO, iprobeO, irecvO,
isendrecvO, msgcancelO, msgdoneO, msgignoreO, msgmergeO, msgwaitO

153

Manual Pages Paragon ™ System C Calls Reference Manual

ISENDRECVO ISENDRECVO

Sends a message, posts a receive for a reply, and returns immediately. (Asynchronous send-receive)

Synopsis

Parameters

154

#include <nx.h>

long isendrecv(
long type,
char *sbuf,
long scount,
long node,
longptype,
long typesel,
char *rbuf,
long rcount);

type

sbuf

scount

node

ptype

typesel

rbuf

rcount

Type of the message to send. Refer to Appendix A of the Paragon TM System C
Calls Reference Manual for more information about message types.

Points to the buffer c~ntaining the message to send. The buffer may be of any valid
data type.

Number of bytes to send in the sbuf parameter.

Node number ofthe message destination (that is, the receiving node). Setting node
to -1 sends the message to all nodes in the application (except the sending node
whenptype is the sender's process type).

Process type of the message destination (that is, the receiving process).

Message type(s) to receive. Setting this parameter to -1 receives a message of any
type. Refer to Appendix A of the Paragon TM System C Calls Reference Manual for
more information about message type selectors.

Points to the buffer in which to store the reply.

Length (in bytes) of the rbufparameter.

(J

I:
IJ
[J

(' •
I~

I ""l

,,oj

I:
r:
I
-~

'"

1,""1

:oj

I:
I~

[=

I~

I:

IJ
IJ
IJ

Paragon ™ System C Calls Reference Manual Manual Pages

ISENDRECVO (cont.) ISENDRECVO (cont.)

Description

The isendrecvO function sends a message and immediately posts a receive for a reply. The
isendrecvO function immediately returns a message ID that you can use with msgdoneO and
msgwaitO to determine when the send-receive completes (that is, the reply is received). When the
reply arrives, the calling process receives the message and stores it in the rbuJbuffer.

If the reply is too long for rbuf, the receive completes with no error returned, and the content of the
rbuJbuffer is undefined.

This is an asynchronous system call. The calling process continues to run while the send-receive
operation is occurring. To determine if the message sent is received, do either of the following:

Use the msgwaitO function to wait until the receive completes.

• Loop until the msgdoneO function returns 1, indicating that the receive is complete.

You can use the info ••• O system calls to get more information about a message after it is received.

For synchronous message passing applications, use the csendrecvO function instead of the
isendrecvO function.

Return Values

Upon successful completion, the isendrecvO function returns a message ID and returns control to
the calling process. If an error occurs, this function displays an error message to standard error and
causes the calling process to terminate. The message ID is for use with the msgcancelO, msgdoneO,
msgignoreO, msgmergeO, or msgwaitO system calls.

Upon successful completion, the _isendrecvO function returns a message ID. Otherwise, this
function returns -1 and sets ermo to indicate the error.

NOTE

The number of message IDs is limited. The error message
"Too many requests" is returned and your application will stop
when no message IDs are available for a requested asynchronous
send or receive. Your program should release its message IDs as
soon as possible by calling msgcancel(), msgdone(),
msgignore(), or msgwait().

155

Manual Pages Paragon™ System C Calls Reference Manual

ISENDRECVO (cont.) ISENDRECVO (cont.)

Errors

If the _isendrecvO function fails, ermo may be set to the following value:

EQNOMID Your application has used all the available message IDs and no message IDs are
available. Use either the msgcancelO, msgdoneO, msgignoreO, or msgwaitO
function with the receive to release message IDs.

Refer to the e"RO manual page for a list of errors that can occur in the C underscore system calls.

Limitations and Workarounds

See Also

156

For information about limitations and workarounds, see the release notes files in
lusrlshare!release_notes.

cprobeO, crecvO, csendO, csendrecvO, e"RO, hrecvO, hsendO, hsendrecvO, iprobeO, irecvO,
isendO, isendrecvO, msgcancelO, msgdoneO, msgignoreO, msgmergeO, msgwaitO

--~ .. --------.--------~~------------.----------

[]
(.'1

.. ~

(J

U

CJ

IJ
IJ
IJ
1.11']

J

r:
r:
r~

r:
r:
l

~c"O'!

-,

r=

r:
[;' -_.

,-'

1-,
, -'

I~

Paragon ™ System C Calls Reference Manual Manual Pages

ISEOF() ISEOF()

Determines whether the file pointer is at end-of-file.

Synopsis

Parameters

Description

#include <nx.h>

long iseof(
intfildes);

fildes A file descriptor representing an open file.

Use the iseofO function together with read or write operations to determine whether the file pointer
in a file is at the end-of-file. This function blocks until all asynchronous requests made by the process
to the same file are processed.

Return Values

Upon successful completion, the iseofO function returns control to the calling process and returns
the following values:

o File pointer is not at end-of-file.

1 File pointer is at end-of-file.

Otherwise, the iseofO function writes an error message on the standard error output and causes the
calling process to terminate.

Upon successful completion, the _iseofO function returns the same values as the iseofO function.
Otherwise, the _iseofO function returns -1 and sets ermo to indicate the error.

157

-~.--.----.----------------

Manual Pages Paragon TM System C Calls Reference Manual

ISEOF() (cont.) ISEOF() (cont.)

Errors

If the _iseofO function fails, ermo may be set to the following error code value:

EBADF

EMIXIO

The fildes parameter is not a valid file descriptor.

In M_SYNC or M_GLOBAL liD mode, nodes are attempting different
operations (reads and writes) to a shared file. In these modes, all nodes must
perform the same operation. In the M_GLOBAL liD mode, nodes are attempting
different sized reads (using the nbytes parameter) from a shared file ..

Limitations and Workarounds

See Also

158

For information about limitations and workarounds, see the release notes files in
lusrlshare!release_notes.

creadO, cwriteO, eseekO, ireadO, iwriteO, lseekO

OSFll Programmer's Reference: open(2), read(2), write(2)

[J

[J
I WL_

IJ
(J

lJ
IJ
(]

r-......
iitd

I:

r:
I
~

"-,

I:

1'1
1·""1

> • ...,...J,

I"'

IJ

Paragon ™ System C Calls Reference Manual Manual Pages

ISNAN{) ISNAN{)

isnanO, isnandO, isnanfO: Test for floating-point NaN (Not-a-Number).

Synopsis

Parameters

Description

#include <ieeefp.h>

int isnan(
double dsrc);

int isnand(
double dsrc);

int isnanf(
floatfsrc);

dsrc

fsrc

Any double value.

Any float value.

These functions determine whether or not their argument is an IEEE "Not-a-Number" (NaN). None
of these functions ever generates an exception, even if the argument is a NaN.

Return Values

Upon successful completion, the isnanO, isnandO, and isnanfO functions return 1 if the argument
is a NaN or 0 if the argument is not a NaN, and these functions return control to the calling process.
If an error occurs, these functions print an error message to standard error and cause the calling
process to terminate.

Upon successful completion, the _isnanO, _isnandO, and _isnanro functions return 1 if the
argument is a NaNor 0 if the argument is not a NaN. Otherwise, these functions return -1 when an
error occurs and set ermo to indicate the error.

159

Manual Pages Paragon™ System C Calls Reference Manual

ISNAN() (cont.) ISNAN() (cont.)

Errors

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

Limitations and Workarounds

See Also

160

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

errno, fpgetroundO

(·11
.M

[J

IJ
IJ
I~

IJ
1:1

------ -------------------------------

1·-1'1

-""

r~

I:
(-.'

_.1

I

I:

I :
1. '"1

I

1-.··.,
""-'

IJ
IJ

Paragon ™ System C Calls Reference Manual Manual Pages

IWRITEO IWRITEO

iwriteO, iwritevO: Writes to a file and returns immediately. (Asynchronous write)

Synopsis

Parameters

#include <nx.h>

long iwrite(
intfildes,
void *buffer,
unsigned int nbytes);

#include <sys/uio.h>

long iwritev(
intfildes,
struct iovec *iov,
int iovcount);

fildes File descriptor identifying the file to which the data is to be written.

buffer Pointer to the buffer containing the data to be written.

nbytes Number of bytes to write.

iov Pointer to an array of iovec structures, which identifies the buffers containing the
data to be written. The iovec structure has the following fonn:

struct iovec
caddr_t iov_basei
int iov_len;

} ;

The iovec structure is defined in the syS/uio.h include file.

iovcount Number of iovec structures pointed to by the iov parameter.

161

Manual Pages Paragon ™ System C Calls Reference Manual

IWRITEO (cont.) IWRITEO (cont.)

Description

Other than return values, additional errors, and asynchronous behavior (all discussed in this manual
page), the iwriteO and iwritevO functions are identical to the OSFIl writeO and writevO functions,
respectively. See write(2) in the OSFll Programmer's Reference.

The iwriteO and iwritevO functions are asynchronous system calls. Asynchronous system calls
return immediately to the calling process. The calling process continues to run while the write is
being done. If the calling process needs the write buffer for further processing, it must do one of the
following:

• Use either the cwriteO or cwritevO function (synchronous system calls) instead of the iwriteO
or iwritevO function, respectively.

• Use iowaitO to wait until the write completes.

• Loop until iodoneO returns a 1, indicating that the write is complete.

NOTE

To preserve data integrity, all 1/0 requests are processed on a
"first-in, first-out" basis. This means that if an asynchronous 1/0
call is followed by a synchronous 1/0 call on the same file, the
synchronous call will block until the asynchronous operation has
completed.

After an iwriteO or iwritevO call, you can perform other read or write calls on the same file without
. waiting for the write to finish.

To determine whether the write operation moved the file pointer to the end of the file, use the iseofO
system call.

Return Values

162

Upon successful completion, the iwriteO and iwritevO functions return control to the calling
process and return a non-negative YO ID for use in iodoneO and iowaitO functions. Otherwise, the
iwriteO and iwritevO functions display an error message to standard error and causes the calling
process to terminate.

[j

[J

[J

[J

ii
," ' lilt. .J

(J

IJ

I:
r:

I:
I:
1-""
, -"~

("1

I
1_-,

. _1

r=

IJ

Paragon™ System C Calls Reference Manual Manual Pages

IWRITEO (cont.) IWRITEO (cont.)

Errors

Examples

Upon successful completion, the _iwriteO and _iwritevO functions return a non-negative I/O ill.
You can use this I/O ill with the iodoneO and iowaitO functions. Otherwise, the _iwriteO and
_iwritevO functions return -1 and sets ermo to indicate the error.

NOTE

The number of I/O IDs is limited, and an error occurs when no 1/0
IDs are available for a requested asynchronous read or write.
Therefore, your program should release the returned 1/0 ID as
soon as possible by calling iodoneO or iowaitO.

If the _iwriteO or _iwritevO function fails, ermo may be set to one of the error code values
described in the OSPII write(2) function or one of the following values:

EMIXIO In I/O modes M_SYNC or M_GLOBAL, nodes are attempting different
operations (reads and writes) to a shared file. In these modes, all nodes must
perform the same operation.

EMREQUEST An asynchronous system call has been attempted, but too many requests are
already outstanding. Use either iowaitO or iodoneO to clear asynchronous read
and write requests that are outstanding.

The following example shows how to use the iwriteO, iodoneO, and iowaitO functions to do an
asynchronous write:

#include <fcntl.h>
#include <nx.h>

long iam;

main()
{

int fd, id;
long mode;
char buffer [80] ;

163

Manual Pages Paragon TM System C Calls Reference Manual

IWRITE() (cont.) IWRITE() (cont.)

}

iam = myna de () ;

fd = gopen(H!tmp!mydataH,O_CREAT
M_UNIX, 0644);

mode = iomode(fd);
if (! iam) printf (H%d: iomode = %d\n", iam, mode);

sprintf (buffer, "Hello from node %d\n", iam) ;
id = iwrite(fd, buffer, strlen(buffer));
if (iam) {

}

while (! iodone (id))
printf ("%d: write not done\n", iam) ;

printf (H%d: write done\n", iam) ;

else {

}

printf ("%d: write not done\n", iam) ;
iowait (id);
printf (H%d: write done\n", iam) ;

close (fd) ;

Limitations and Workarounds

See Also

164

For information about limitations and workarounds. see the release notes files in
lusrlsharelrelease _notes.

creadO. cwriteO. gopenO. iodoneO. iowaitO. ireadO. iseofO. setiomodeO

OSFll Programmer's Reference: dup(2). open(2), write(2)

(]

()
(

."'1

.iJ

t.~~.' LAj

IJ

I~

I·~
.JJ

(J
I ~

. ..J

[:
r:
I :

I. ·~
~

(]

IJ

Paragon ™ System C Calls Reference Manual Manual Pages

IWRITEOFFO IWRITEOFFO

iwriteoffO. iwritevoffO: Asynchronous writes to a file at a specified offset.

Synopsis

#include <sys/types.h>
#include <nx.h>

long iwriteoff(
int fildes,
esize_t offset,
char *buffer,
unsigned int nbytes);

#include <sys/types.h>
#include <sys/uio.h>

long iwritevoff(
intfildes,
esize_t offset,
struct iovec *iov,
int iovcount);

Description of Parameters

fildes

offset

buffer

nbytes

iov

iovcount

A file descriptor identifying the file to which the data is to be written.

Offset from the beginning of the file at which to begin the write.

Pointer to the buffer containing the data to be written.

The number of bytes to write to the file associated with the fildes parameter.

Pointer to an array of iovec structures that identify the buffers from which the data
is to be written.

The number of iovec structures pointed to by the iov parameter.

165

Manual Pages Paragon™ System C Calls Reference Manual

IWRITEOFFO (cont.) IWRITEOFFO (cont.)

Discussion

iwriteoffO writes nbytes asynchronously to the file specified by the descriptorjd starting at the offset
specified by offset from the buffer pointed to by buffer. iwritevoffO is similar, but it writes the data
from the iovcount buffers specified by iov.

iwriteoffO and iwritevoffO are identical to iwriteO and iwritevO except for writing starting at a
user-specified offset (instead of the offset maintained by the system file pointer) and the following
additional differences:

• The current value of the system file pointer is not modifed.

• Currently only M_UNIX and M_ASYNC 110 modes are supported.

• Paragon PFS is the only file system type that currently supports these functions.

• The 0 _APPEND flag used in the open function to obtain the file descriptor has no effect on the
write. The write is performed at the position specified by the offset parameter.

Return Values

166

Upon successful completion, a non-negative 110 ill for use in iodoneO, iowaitO, niodoneO and
niowaitO calls is returned. If an error occurs, these functions return -1 and set ermo to indicate the
error.

NOTE

The number of I/O IDs is limited, and an error occurs when no I/O
IDs are available for a requested asynchronous read or write.
Therefore, your program should release the I/O 10 as soon as
possible by calling iodoneO, iowait(), niodone() or niowaitO.

---- -~--

(]

lJ
IJ
I:
I:
1=

c

r:
I:
I--~

~,

r:
I:

(--,

1-'"
, ,

--J

I:

t. --.'

I

1=
I_·~~

IJ
I)

I:

-------------~----------~------

Paragon ™ System C Calls Reference Manual Manual Pages

IWRITEOFFO (cont.) IWRITEOFFO (cont.)

Errors

See Also

Errors are as described in OSFIl writeO, except that the following errors can also occur:

EMREQUEST An asynchronous call has been attempted, but too many requests are already
outstanding. Use either iowaitO or iodoneO to clear asynchronous read and write
requests that are outstanding.

EFSNOTSUPP The file referred to by JUedes is not in a file system of a type that supports this
operation. Currently only the PFS file systems support this operation.

EINVAL The file referred to by JUedes is in an unsupported iomode. Currently only
M_UNIX and M_ASYNC are supported.

cwriteO, gopenO, iodoneO, iowaitO, iseofO. iwriteO. niodoneO, niowaitO, setiomodeO,
writeoffO

OSFll Programmer's Reference: dupO. openO. writeO

167

Manual Pages Paragon™ System C Calls Reference Manual

LSIZEO LSIZEO

Increases the size of a file.

Synopsis

Parameters

Description

168

#include <nx.h>

long lsize(
intfildes,
ofet offset,
int whence);

fildes A file descriptor representing a regular file opened for writing.

offset

whence

The value. in bytes, to be used together with the whence parameter to increase the
file size. The type ofet is defined in sysltypes.h (included in nx.h).

Specifies how offset affects the file size. The values for the whence parameter are
defined in nx.h as follows:

SIZE_CUR

Sets the file size to the greater of the current size or
offset.

Sets the file size to the greater of the current size or the
current location of the file pointer plus offset.

Sets the file size to the greater of the current size or the
current size plus offset.

The IsizeO function increases the size of a file according to the offset and whence parameters.

Use the IsizeO function to allocate sufficient file space before starting performance-sensitive
applications or storage operations. This increases throughput for 110 operations on a file, because
the 110 system does not have to allocate data blocks for every write that extends the file size.

This function cannot decrease the size of a file. See the OSFIl truncateO manual page for
information about decreasing a file's size.

('1\
.JJ

I.J

It"'!
Ill.J

I:

IJ
('~ ..

r:
I:
I:
I·.· ,-

.<J

I
·~

~I

r=
I "l
I',

.J

I~

IJ

I:

Paragon ™ System C Calls Reference Manual Manual Pages

LSIZEO (cont.) LSIZEO (cont.)

The IsizeO function has no effect on FIFO special files or directories, and does not effect the position
of the file pointer. The contents of file space allocated by the IsizeO function is undefined.

If the file has enforced file locking enabled and there are file locks on the file, the IsizeO function
fails.

The IsizeO function updates the modification time of the opened file. If the file is a regular file it
clears the file's set-user ill and set-group ID attributes.

To increase the size of an extended file, use the esizeO function.

Return Values

Note

If the requested size is greater than the available disk space,
Isize() allocates the available disk space and returns the actual
new size.

Note

Because NFS does not support disk block preallocation, the
Isize() and _Isize() functions are not supported on files that reside
in remote file systems that have been NFS mounted. The Isize()
and _Isize() functions are supported on files in UFS and PFS file
systems only.

Upon successful completion, the IsizeO function returns the new size of the file, in bytes. If the new
size specified by the offset and whence parameters is greater than the available disk space, the IsizeO
function allocates what disk space is available and returns the new size of the file. Otherwise, the
IsizeO function displays an error message to standard error and causes the calling process to
terminate.

Upon successful completion, the _lsizeO function returns the same value as the IsizeO function.
Otherwise, the _lsizeO function returns -1 and sets ermo to indicate the error.

169

Manual Pages Paragon ™ System C Calls Reference Manual

LSIZEO (cont.) LSIZEO (cont.)

Errors

Examples

170

If the _lsizeO function fails, errno may be set to one of the following error code values:

EAGAIN

EACCES

EBADF

EFBIG

The file has enforced mode file locking enabled and there are file locks on the file.

Write access permission to the file was denied.

Thefildes parameter is not a valid file descriptor.

The file size specified by the whence and offset parameters exceeds the maximum
file size.

EFSNOTSUPP The fildes parameter refers to a file that resides in a file system that does not
support this operation. The IsizeO function does not support files that reside in
remote file systems and have been NFS mounted.

EINVAL The file is not a regular file.

ENOSPC No space left on device.

EROFS The file resides on a read-only file system.

The following example shows how to use the IsizeO function to increase the size of a file with
different whence values:

#include <fcntl.h>
#include <nx.h>
#include <unistd.h>

main()
{

int fdj
off_t offsetj
long newsize, new-P0sj
esize_t loc, eoffsetj

fd= gopen("/tmp/mydata", O_RDWR, M_UNIX, 0644)j

CJ

111""1
~...;

IJ
IJ

r:
I:
I

"'~

"'.

(.....
~'I

1·1

I:
I~I

(;

I~
I· . ..,

_J

1'"1

. ..J

IJ
IJ
I~

----~-.. ---.---.~

Paragon ™ System C Calls Reference Manual Manual Pages

LSIZEO (cont.) LSIZEO (cont.)

offset = 1000;
newsize = lsize(fd,offset,SIZE_SET);
printf("new_size = %d\n",newsize);

eoffset = stoe("lOOO");
loc = eseek(fd, eoffset, SEEK_END);

newsize = Isize(fd,offset,SIZE_CUR);
printf ("new_size = %d\n", newsize) ;

newsize = lsize(fd,offset,SIZE_END);
printf ("new_size = %d\n", newsize) ;

close (fd) ;

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease _notes.

eseekO, esizeO

OSFll Programmer's Reference: fcntl(2), lseek(2), open(2), truncate(2)

171

Manual Pages Paragon ™ System C Calls Reference Manual

MASKTRAP() MASKTRAP()

Enables or disables send and receive traps.

Synopsis

Parameters

Description

172

#include <nx.h>

long masktrap(
long state);

state The state of send-receive traps:

o Enables (allows) send and receive traps.

1 Disables (blocks) send and receive traps.

Other values are not defined.

The masktrapO function enables and disables send and receive handlers. This function protects
critical code from being interrupted by the handler procedure that is executed when using the h ••• O
calls (hrecvO, hsendO, or hsendrecv()). A masktrap(l) prevents any handler from running; a
masktrap(O) enables handlers. Any pending interrupts are honored when the mask is removed. The
masktrapO function returns the previous masking state (lor 0).

CAUTION

When using any of the h ... O calls, you must use masktrap()
around any code in the main program that could interfere with calls
in the handler.

For example, if the handler performs any JlO, you must put masktrapO calls around any JlO call in
the main program that could be called while the handler is active. If you do not do this, you could
find characters from: the handler's output interleaved with characters from the main program's
output.

(J

I:

IJ
I:

r:
I ~

.oJ

r:

1_- ... ,
...

I :

Ij

lJ
1·~.1

--

---~.- .•. -------------------.- .. -.--.~-----------.--.---

Paragon ™ System C Calls Reference Manual Manual Pages

MASKTRAPO (cont.) MASKTRAPO (cont.)

Sometimes it is not as obvious which calls could interfere with each other. For example, any two
library calls that could allocate or free memory could cause the memory subsystem to become
confused if they were called at the same time. To be safe, keep the handler simple and use the
masktrapO function to protect all library calls following the h ••• O call that could call the same
subsystems as the handler while the handler is active.

Calls to the masktrapO function are necessary, because a handler and the main program share the
same memory space and can change each other's global variables. This could cause any
non-reentrant function to fail if it is called by both the handler and the main program at the same
time.

Return Values

Errors

Examples

Upon successful completion, the masktrapO function returns the previous value of state and returns
control to the calling process. Otherwise, this function displays an error message to standard error
and causes the calling process to terminate.

Upon successful completion, the _masktrapO function returns the previous value of state.
Otherwise, this function returns -1 and sets ermo to indicate the error.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

The following example runs on two nodes and shows how to use the masktrapO function to with
the hrecvO function. After posting an hrecvO, the application must not be interrupted until the
receive handler completes A masktrapO call with state parameter value set to I prevents the handler
from executing. A masktrapO call with state parameter value set to 0 (zero) allows the handler to
execute immediately.

#include <memory.h>
#include <nx.h>

void proc()i
long iami

main () {

char buf[80]i
long maski

173

Manual Pages Paragon 1M System C Calls Reference Manual

MASKTRAPO (cont.) MASKTRAPO (cont.)

}

iam = mynode();
memset(buf,O,80) ;

if (iam == 0) {

}

printf(H\n%d: Before hrecv\n", iam);
hrecv(lOO,buf,sizeof(buf) ,proc);
mask = masktrap(l);
printf(H%d: After hrecv\n", iam);
printf("%d Waiting ... \n",iam);
printf (H%d: No hrecv interrupts can occur\n", iam) ;
mask = masktrap(mask);
sleep(5);
printf (H%d: Until now \n", iam) ;
printf (H%d Completed \n", iam) ;

else {
sleep(l) ;

}

sprintf (buf, HHello from node %d\n H, iam) ;
printf(UNode 1 sends to node O\nH);
csend(lOO,buf,strlen(buf) ,0,0) ;

void proc(type,count,node,pid)
long type, count, node, pid;
{

printf ("%d Entered handler: \n H, iam);
printf ("%d type = %d\n", iam, type);
printf("%d count = %d\n",iam, count);
printf(H%d node = %d\n",iam, node);
printf(H%d pid = %d\n",iam, pid);

Limitations and Workarounds

See Also

174

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease _notes.

ermo, hrecvO, hsendO, hsendrecvO

(""
J<.i.

I:
(:
I:

r:

1 :
I

~ ~.,

,-.1

I i

~I

I'

1=
I ~~~

(J

IJ

Paragon ™ System C Calls Reference Manual Manual Pages

MOUNTO MOUNTO

mountO, umountO: Mount or unmount a file system.

Synopsis

Parameters

#include <sys/mount.h>

voidmount(
int type,
char *mnt.."path,
int mntJlag,
caddr_t data);

void umount(
char *mnt"'path,
int umntJlag);

type Defines the type of the file system. The types of file systems are MOUNT _ UFS
and MOUNT]FS.

mncpath

mntJlag

Points to a null-terminated string containing the appropriate pathname.

Specifies whether certain semantics should be suppressed when accessing the file
system. Valid flags are:

M_RDONL Y The file system should be treated as read-only; no
writing is allowed (even by a process with appropriate
privilege). Physically write-protected and magnetic
tape file systems must be mounted read-only or errors
will occur when access times are updated, whether or
not any explicit write is attempted.

Do not allow files to be executed from the file system.

Do not honor setuid or setgid bits on files when
executing them.

175

Manual Pages

MOUNTO (cont.)

data

umntJlag

176

Paragon ™ System C Calls Reference Manual

MOUNTO (cont.)

Do not interpret special files on the file system.

M_SYNCHRONOUS
All 110 to the file system should be done
synchronously.

M_FMOUNT Forcibly mount, even if the file system is unclean.

M_ UPDATE The mount command is being applied to an already
mounted file system. This allows the mount flags to be
changed without requiring that the file system be
umounted and remounted.

M_PFS_SERVER_BUFFERING
Enable PFS server buffering. The fileservers cache
stripe-file data in their memory-resident, disk-block
caches. These fileservers use a read-ahead and
write-behind caching algorithm. PFS buffering is
recommended only when the 10 request size is less
than 64K bytes; otherwise, the fieservers's cache may
thrash.

Some file systems may not allow all flags to be changed. For example, most file
systems do not allow a change from read-write to read-only.

Points to a structure that contains the type-specific parameters to mount.

Specifies one of the following values:

MNT_FORCE The file system should be forcibly umounted even if
files are still active. Active special devices continue to
work, but any further accesses to any other active files
result in errors even if the file system is later
remounted. Support for forcible unmount is filesystem
dependent.

[)
r-,
U

(J

I:
(. i

J

IJ

I:

[
'I"I

...... 1

(--,
~'

I '"
,-,

I-~'

1=

I "
. .1

(: _Ail

-.-.--~~--- -_._-----

Paragon ™ System C Calls Reference Manual Manual Pages

MOUNTO (cont.) MOUNTO (cont.)

Description

Notes

Except in the case of file-on-file mounting, the mountO function mounts a file system on the
directory pointed to by the mntyath parameter. Following the mount, references to mntyath refer
to the root of the newly mounted file system.

The mntyath parameter must point to a directory or file that already exists.

For file-on-file mounting the mountO function mounts a file specified by the data parameter onto
another file specified by the mntyath parameter. Either file may be of any type, but mntyath
cannot already have a file system or another file mounted on it.

The umountO function unmounts a file system mounted at the directory pointed to by the mntyath
parameter. The associated directory reverts to its ordinary interpretation.

For file-on-file mounting the data argument points to affs_args structure containing flags and the
file to be mounted. InffsJlags ifFFS]D is true, then the file is specified by the file descriptor,
ffsJiledesc, otherwise by the pathname>!ffsyathname. IfFFS_CLONE is true, then new mount
point should exhibit CLONE behavior; specifically, calls such as chmodO and chownO should have
no effect on the mounted file. (The original file is, of course, always unaffected, since the mount
point hides it.) If the file descriptor refers to a pipe, a call to statO will return the number of unread
bytes in the sCsize field.

If file systems other than FFS (such as UFS or NFS) are modified to permit mounts by unprivileged
users, it may be appropriate to ensure that the M_NODEV flag is set in the mount structure that is
created, so that users cannot obtain undeserved access through devices.

An additional argument structure, pfs_args, has been added to the mount.h header file to support
mounting a parallel file system (PFS).

177

Manual Pages Paragon ™ System C Calls Reference Manual

MOUNTO (cont.) MOUNTO (cont.)

Return Values

Errors

178

The mountO function returns 0 (zero) if the file system was successfully mounted. Otherwise, -1 is
returned. The mount can fail if the mnt-path parameter does not exist or is of the wrong type. For a
UPS file system, the mount can fail if the special device specified in the ufs_args structure is
inaccessible, is not an appropriate file, or is already mounted. A mount can also fail if there are
already too many file systems mounted, either system wide, or for a specific file system type.

The umountO function returns 0 (zero) if the file system was successfully unmounted. Otherwise,
-1 is returned. The unmount will fail if there are active files in the mounted file system, unless the
MNT _FORCE flag is set and the file system supports forcible unmounting.

If the mountO function fails, errno may be set to one of the following values:

EPERM The caller does not have appropriate privilege.

ENAMETOOLONG

ELOOP

ENOENT

ENOTDIR

EINVAL

EBUSY

EDIRTY

EFAULT

A component of a pathname exceeded NAME_MAX characters, or an entire
patbname exceeded PATH_MAX characters.

Too many symbolic links were encountered in translating a pathname.

A component of the mnt-path parameter does not exist.

A component of the name parameter is not a directory, or a path prefix of the
special parameter is not a directory .

A pathname contains a character with the high-order bit set.

Another process currently holds a reference to the mnt-path parameter.

The file system is not clean and M_FORCE is not set.

The mnt-path parameter points outside the process' allocated address space.

The following errors can occur for a UPS file system mount:

ENODEV A component of ufs_args fspec does not exist.

ENOTBLK The fspec field is not a block device.

[J

(J

lJ
(·.1

. .iIoJ

r:

I '"
.;J

I,

I'

I
I '"

. :.:J

Paragon ™ System C Calls Reference Manual Manual Pages

MOUNTO (cont.)

ENXIO

EBUSY

EMFILE

EINVAL

ENOMEM

EIO

EFAULT

MOUNTO (cont.)

The major device number of fspec is out of range (this indicates no device driver
exists for the associated hardware).

The device pointed to by the fspec field is already mounted.

No space remains in the mount table.

The super block for the file system had a bad magic number or an out of range
block size.

Not enough memory was available to read the cylinder group information for the
file system.

An I/O error occurred while reading the super block or cylinder group
information.

The fspec field points outside the process' allocated address space.

The following errors can occur for a NFS compatible file system mount:

ETIMEDOUT NFS timed out trying to contact the server.

EFAULT Some part of the information described by nfs_args points outside the process'
allocated address space.

The following errors can occur for a PFS compatible file system mount:

ENODEV

ENOTBLK

ENXIO

EBUSY

EMFILE

EINVAL

ENOMEM

A component of the pjs_args jspec field does not exist

The jspec field is not a block device.

The major device number ofjspec is out of range (this indicates no device driver
exists for the associated hardware).

The device pointed to by the jspec field is already mounted.

No space remains in the mount table.

The super block for the file system had a bad magic number or an out of range
block size .

Not enough memory was available to read the cylinder group information for the
file system.

179

Manual Pages Paragon ™ System C Calls Reference Manual

MOUNTO (cont.) MOUNTO (cont.)

180

EIO

EFAULT

EINVAL

ENOTDIR

ENOENT

An VO error occurred while reading the super block or cylinder group
information.

Some part of the information described by pfs_args points outside the process's
allocated address space.

The value specified by the stripe_unicsize field of the pfs_args structure is
invalid; for example, the value is not positive or is greater than the maximum file
size supported by the file system.

A path name specified in the stripe_dir field of the pfs_args structure does not
refer to a directory.

A path name specified in the stripe_dir field of the pfs_args structure does not
exist.

If the umountO function fails, errno may be set to one of the following values:

EPERM The caller does not have appropriate privilege.

ENOTDIR A component of the path is not a directory.

EINVAL The pathname contains a character with the high-order bit set.

ENAMETOOLONG

ELOOP

EINVAL

EBUSY

EIO

EFAULT

A component of a patbname exceeded NAME_MAX characters, or an entire
pathname exceeded PATH_MAX characters.

Too many symbolic links were encountered in translating the pathname.

The requested directory is not in the mount table.

A process is holding a reference to a file located on the file system.

An VO error occurred while writing cached file system information.

The mnt-path parameter points outside the process' allocated address space.

[J

[J

(: , ,

""

[1
".~

ffl
1..1

(J

1'1
. ..d

(J

(J

1. '111-

• ,MIOl

r:
1-'
i .. I

I.­

(~

I··..,
~,

I
-~

.. "

I '.'."
"

I -I

_I

r:
I ~~

.~

(
'"'"1

,.J

1=
I ~,

(-'
"

I'"

19

1-."
,.;::.'

1_.,
.,J

IJ
I.· .. ~

.M

Paragon™ System C Calls Reference Manual Manual Pages

MOUNTO (cont.) MOUNTO (cont.)

See Also

files: fstab(4), pfstab(4)

Calls: getpfsinfo(3), getmntinfo(3), statfs(2), statpfs(3)

Commands: mount(8)

181

Manual Pages Paragon™ System C Calls Reference Manual

MSGCANCEL{) MSGCANCEL()

Cancels an asynchronous send or receive operation.

Synopsis

Parameters

Description

182

#include <nx.h>

void msgcancel(
long mid);

mid The message ID returned by one of the asynchronous send or receive system calls
(for example. isendO. irecvO. or isendrecvO) or by the msgmergeO system call.

The msgcancelO function cancels an asynchronous send or receive operation. When msgcancelO
returns. you do not know whether the send or receive operation completed. but you do know the
following:

• The asynchronous operation is no longer active.

• The message buffer may be reused.

• The message ID is released.

NOTE

The number of message IDs is limited, and an error occurs when
no message IDs are available for a requested asynchronous send
or receive. Therefore, your program should release its message
IDs as soon as possible by calling msgcancelO, msgdoneO,
msgignoreO, or msgwaitO.

[~

[~

[.. 1']
.~

(
"1

~

[J

IJ
IJ

I.' ..oJ

(J

(J

I
·~

,,ii.!

I·"",
.<oJ

I:

I··."
-'

1"""1

"J

1 -.~1

"

I"~'
I ."

1··-
~.J

I·~

I ~
I. "",

.,,"

[.~

.. ..lo.I

Paragon ™ System C Calls Reference Manual Manual Pages

MSGCANCELO (cont.) MSGCANCEL() (cont.)

Return Values

Errors

Upon successful completion, the msgcancelO function returns control to the calling process; no
values are returned. Otherwise, this function displays an error message to standard error and causes
the calling process to terminate.

Upon successful completion, the _msgcancelO function returns 0 (zero). Otherwise, this function
returns -1 and sets ermo to indicate the error.

Refer to the e"no manual page for a list of errors that can occur in the C underscore system calls.

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

errno, isendO, irecvO, isendrecvO, msgdoneO, msgignoreO, msgmergeO, msgwaitO

183

Manual Pages Paragon ™ System C Calls Reference Manual (]

[~

D
MSGDONEO MSGDONEO

Determines whether an asynchronous send or receive operation is complete.

Synopsis

Parameters

#include <nx.h>

long msgdone(
long mid);

mid Message ill returned by one of the asynchronous send or receive system calls (for
example, isendO, irecvO, or isendrecvO) or by the msgmergeO system call.

(]

r"
l..~

Description ~_ J

184

If the msgdoneO function returns 1, it means the asynchronous send or receive operation identified l'f- ""1
by mid is complete, and indicates the following: I.i ..l

The buffer contains valid data (if mid identifies a receive operation), or the buffer is available r-:
for reuse (if mid identifies a send operation). 1,& __ ~J

• The info array (used by the extended receive system calls) contains valid information.

• The info ••• O system calls return valid information.

The message ill number that identifies the asynchronous send or receive (mid) is released for
use in a future asynchronous send or receive.

NOTE

The number of message IDs is limited, and an error occurs when
no message IDs are available for a requested asynchronous send
or receive. Therefore, your program should release its message
IDs as soon as possible by calling msgcancel(), msgdone(),
msgignore(), or msgwait().

I_ '1
, I

_ki

IJ
IJ
lJ
I:
(J

--.-----------~

r:
I:
I '"
I ~,

I :
r~,

I~

r:
(';

~,

r=

Paragon ™ System C Calls Reference Manual Manual Pages

MSGDONE() (cant.) MSGDONE() (cont.)

If the mid parameter in the msgdoneO function represents a merged message ID (that is, it was
returned by the msgmergeO function), the information returned for the info ••• O calls is
unpredictable.

Return Values

Errors

Upon successful completion, the msgdoneO function returns the following values and returns
control to the calling process:

o If the send or receive is not yet complete.

1 If the send or receive is complete.

Otherwise, this function displays an error message to standard error and causes the calling process.
to terminate.

Upon successful completion, the _msgdoneO function returns the following:

o If the send or receive is not yet complete.

1 If the send or receive is complete.

Otherwise, this function returns -1 and sets erma to indicate the error.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease _notes.

errno, infocountO, infonodeO, infoptypeO, infotypeO, irecvO, isendO, isendrecvO, msgcancelO,
msgignoreO, msgmergeO, msgwaitO

185

Manual Pages Paragon™ System C Calls Reference Manual

MSGIGNOREO MSGIGNOREO

Releases a message ID as soon as its asynchronous send or receive operation completes.

Synopsis

Parameters

Description

186

#include <nx.h>

void msgignore(
long mid);

mid The message ID returned by one of the asynchronous send or receive system calls
(for example, isendO, irecvO, or isendrecv()) or by the msgmergeO system call.

The msgignoreO function releases a message ID as soon as its asynchronous send or receive
operation completes. This is a non-blocking system call.

NOTE

The number of message IDs is limited, and an error occurs when
no message IDs are available for a requested asynchronous send
or receive. Therefore, your program should release its message
IDs as soon as possible by calling msgcancel(), msgdone(),
msgignoreO, or msgwaitO.

Note the following:

• An application must have some alternate means to determine when it can reuse a send or receive
buffer.

• Do not use msgignoreO as a substitute for msgwaitO.

• The mid cannot be reused by msgdoneO or msgwaitO.

(J

IJ
I:
IJ
lJ
(J

()

r:
I ~I

I '.,.,
,w

(-"

I ~

I~,

I "
,."

I~

1''''1
"jI/

Paragon TM System C Calls Reference Manual Manual Pages

MSGIGNOREO (cont.) MSGIGNOREO (cont.)

Return Values

Errors

Upon successful completion, the msgignoreO function returns control to the calling process; no
values are returned. Otherwise, this function displays an error message to standard error and causes
the calling process to terminate.

Upon successful completion, the _msgignoreO function returns 0 (zero). Otherwise, this function
returns -1 and sets ermo to indicate the error.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

errno, irecvO, isendO, msgcancelO, msgdoneO, msgmergeO, msgwaitO

187

Manual Pages Paragon TM System C Calls Reference Manual

MSGMERGEO MSGMERGEO

Groups two message IDs together so they can be treated as one.

Synopsis

Parameters

Description

188

#include <nx.h>

long msgmerge(
long mid1,
long mid2);

midI, mid2 Message IDs returned by asynchronous send or receive system calls (for example,
isendO, irecvO, or isendrecvO) or by the msgmergeO system call.

The msgmergeO function groups mid2 with midI and returns a message ID to use for both. After
calling msgmergeO, the original message IDs (midI and mid2) become invalid (although they are
not released until the new message ID is released). The operation associated with the new message
ID (msgdoneO or msgwaitO) does not complete until both of the asynchronous send or receive
operations associated with the original message IDs complete.

Normally, msgmergeO returns midI, and only mid2 becomes invalid. As a special case, one mid can
be -1, in which case the other mid is returned with no other action.

Do not use the info ••• O system calls after a call to the msgmergeO function; the information returned
is unpredictable.

(, '1\,
' !
.~

(',':
~

(J

[J

(J

(J

IJ
(J

[]

[~

I:
r:
r:
I ""

,,,

I:
r=
(.. ~

1,'1

~I

I ~:
.J

r-' '"'

(
''¥!

. .!

Paragon ™ System C Calls Reference Manual Manual Pages

MSGMERGE() (cont.) MSGMERGE(} (cont.)

Return Values

Errors

Upon successful completion, the msgmergeO function returns a message ID and returns control to
the calling process. Otherwise, this function displays an error message to standard error and causes
the calling process to terminate. The returned message ID is for use in msgcancelO, msgdoneO,
msgignoreO, msgmergeO, or msgwaitO system calls.

Upon successful completion, the _mSgmergeO function returns a message ID. Otherwise, this
function returns -1 and sets ermo to indicate the error.

NOTE

The number of message IDs is limited, and an error occurs when
no message IDs are available for a requested asynchronous send
or receive. Therefore, your program should release its message
IDs as soon as possible by calling msgcancel(), msgdone(),
msgignoreO, or msgwait().

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlshare/release _notes.

e"no, irecvO, isendO, isendrecvO, msgcancelO, msgdoneO, msgignoreO, msgwaitO

189

Manual Pages Paragon ™ System C Calls Reference Manual

MSGWAITO MSGWAITO

Waits (blocks) until an asynchronous send or receive operation completes.

Synopsis

Parameters

Description

190

#include <nx.h>

void msgwait(
long mid);

mid The message ID returned by one of the asynchronous send or receive system calls
(for example, isendO, irecvO, or isendrecvO) or by the msgmergeO system call.

The msgwaitO function causes a node process to wait until an asynchronous send or receive
operation (for example, isendO or irecv()) completes. When the msgwaitO function returns:

• The buffer contains valid data (if mid identifies a receive operation), or the buffer is available
for reuse (if mid identifies a send operation).

• The info array (used by the extended receive system calls) contains valid information.

• The info ••• O system calls return valid information.

The message ID that identifies the asynchronous send or receive (mid) is released for use in a
future asynchronous send or receive.

NOTE

The number of message IDs is limited, and an error occurs when
no message IDs are available for a requested asynchronous send
or receive. Therefore, your program should release its message
IDs as soon as possible by calling msgcancel(}, msgdone(},
msgignore(}, or msgwaitO.

(.. ~ -"'

(j

iJ
[J

I]
11
~

(J

IJ
(J

I :

r:

I ~""

-,

1=

I
~.,

. .,J

I ~'.,
-~

I ~
_.w

I " _...J

Paragon ™ System C Calls Reference Manual Manual Pages

MSGWAITO (cant.) MSGWAITO (cant.)

If the mid parameter in the msgwaitO function represents a merged of message ill (that is, it was
returned by the msgmergeO function), the information returned for the info ••• O calls is
unpredictable.

Return Values

Errors

Examples

Upon successful completion, the msgwaitO function returns control to the calling process; no values
are returned. Otherwise, this function displays an error message to standard error and causes the
calling process to terminate.

Upon successful completion, the _msgwaitO function returns 0 (zero). Otherwise, this function
returns -1 and sets erma to indicate the error.

Refer to the e"no manual page for a list of errors that can occur in the C underscore system calls.

The following example shows how to use the msgwaitO function to wait until an asynchronous
receive completes:

#include <nx.h>

long iam;

main () {
long msgid;
char smsg[80) , rmsg[80);

iam = mynode();
sprintf(smsg,"Hello from node %d\n",iam);
msgid = irecv(100, rmsg, sizeof(rmsg));
csend(100, smsg, strlen(smsg)+l ,-1,0);

msgwait (msgid) ;

printf("%d: received: %s\n",iam,rmsg);

191

Manual Pages Paragon ™ System C Calls Reference Manual

MSGWAITO (cont.) MSGWAITO (cont.)

Limitations and Workarounds

See Also

192

For information about limitations and workarounds. see the release notes files in
lusrlsharelrelease_notes.

ermo. infocountO. infonodeO. infoptypeO. infotypeO. irecvO. isendO. isendrecvO. msgcancelO.
msgdoneO. msgignoreO. msgmerge()

--------,--, ,---~,---------_.

[J

[J

I:
(:

(J

[J

I'"
,III!

I:

I '''',
, ""

(:

1'''1

.J

IJ
r~

I~~

I ""","",
,,'

I ',' iii

Paragon ™ System C Calls Reference Manual Manual Pages

MYHOSTO MYHOSTO

Gets the node number of the controlling process.

Synopsis

Description

#include <nx.h>

long mybost(void);

The myhostO function returns the node number of the caller's controlling process (the host process)
for use in send and receive operations. For controlling processes, myhostO returns the same number
as mynodeO, which is the node number of the calling process.

Return Values

Errors

Upon successful completion, the myhostO function returns the node number of the controlling
process and returns control to the calling process. Otherwise, this function displays an error message
to standard error and causes the calling process to terminate.

Upon successful completion, the _myhostO function returns the node number of the controlling
process. Otherwise, this function returns -1 and sets ermo to indicate the error.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

csendrecvO, errno, hsendO, hsendrecvO. isendrecvO, mynode{), myptypeO, numnodesO,
mUoadveO, nx_nforkO

193

Manual Pages Paragon TM System C Calls Reference Manual

MVNODEO MVNODEO

Gets the node number of the calling process.

Synopsis

Description

#include <nx.h>

long mynode(void);

The mynodeO function returns the node number of the calling process (an integer between 0 and
numnodes()).

Return Values

Errors

194

Upon successful completion, the mynodeO function returns the node number of the calling process
and returns control to the calling process. Otherwise, this function displays an error message to
standard error and causes the calling process to terminate.

Upon successful completion, the _mynodeO function returns the node number of the calling
process. Otherwise, this function returns -1 and sets ermo to indicate the error.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

--_ .. _- --------~~~~.------.---.~-.--~.-~~------

(.. '~
jj

(",",

, '

.JIJ

IJ
IJ

[:
I:

(--

1_'"
•. ,1

I, '''1
"

('"

IJ
IJ

I"

l ~;

(':
_I

(]

c

Paragon ™ System C Calls Reference Manual Manual Pages

MYNODEO (cont.) MYNODEO (cont.)

Examples

The following example shows how to use the mynode() function to get the node number of the
calling proce,ss and use the node number in an application:

long iam;

main()
{

}

long node, type, ptype, count;
char rmsg[80] ,smsg[80];

iam = mynode();

if(!iam) {
sprintf(smsg,"Hello from node %d\n",iam);
csend(100,smsg,strlen(smsg) + 1,1,0);

else {
crecv(100,rmsg,sizeof(rmsg));
node = infonode();

}

type = infotype();
ptype = infoptype();
count = infocount();
printf ("node = %d\n", node) ;
printf(Htype = %d\n",type);
printf("ptype %d\n",ptype);
printf ("count = %d\n", count) ;

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

ermo, myhostO, myptypeO, numnodesO, DX_loadveO, DX_nforkO

195

Manual Pages Paragon™ System C Calls Reference Manual

MYPTYPEO MYPTYPEO

Gets the process type of the calling process.

Synopsis

#include <nx.h>

long myptype(void);

Description

The myptypeO function returns the process type of the calling process.

Return Values

Errors

Upon successful completion, the myptypeO function returns the process type (ptype) of the calling
process and returns control to the calling process. Otherwise, this function displays an error message
to standard error and causes the calling process to terminate.

Upon successful completion, the _myptypeO function returns the process type (ptype) of the calling
process. Otherwise, this function returns -1 and sets ermo to indicate the error.

Refer to the e"RO manual page for a list of errors that can occur in the C underscore system calls.

Limitations and Workarounds

See Also

196

For information about limitations and workarounds, see the release notes files in
lusrlshare/release _notes.

csendO, csendrecvO, ermo, hsendO, hsendrecvO, isendO, isendrecvO, myhostO, mynodeO,
numnodesO, DX_loadveO, DX_nforkO, setptypeO

[. ~
.M

(J

(J

(J

(J

r:
I:

r:

I--~
1-:

I~'

I~:

1=
IJ
(J

Paragon 1M System C Calls Reference Manual Manual Pages

NIODONE() NIODONE()

Determine whether an asynchronous read or write operation is complete and return the number of bytes transferred if
the operation is complete.

Synopsis

#include <nx.h>

long niodone(
long id);

Description of Parameters

Discussion

id The non-negative I/O ill returned by ireadO or iwriteO.

Use niodoneO to determine whether the asynchronous read or write operation (e.g., ireadO,
ireadoffO, iwriteO or iwriteoff()) identified by id is complete. If niodoneO returns a non-negative
number (indicating that the operation is complete):

• The buffer contains valid data (if id identifies a read operation), or the buffer is available for
reuse (if id identifies a write operation).

• The I/O ID number that identifies the asynchronous read or write (id) is released for use in a
future asynchronous read or write.

NOTE

You must use one of iodone(), iowait(), niodone() or niowaitO
after an asynchronous read or write to ensure that the operation is
complete and to release the I/O 10 number.

197

Manual Pages Paragon TM System C Calls Reference Manual

NIODONE{) (cont.) NIODONE{) (cont.)

Return Values

Upon successful completion, niodoneO returns

Errors

See Also

198

>0

-1

EBADID

If the read or write is complete. The number represents the number of bytes
transferred in the 110.

If the read or write is not complete. If the read or write is complete but
unsuccessful, ermo is set to the error.

The id parameter is not a valid 110 ID.

iodoneO, iowaitO, ireadO, ireadotTO, iwriteO, iwriteotTO, niowaitO

(-~

jj

(]

I.:
IJ

.. _------ ---- ~-.~~~~~~~--------

I .,

I:

(~\

I ~I

. .\

I~

I:

I·~.I
Ai

Paragon ™ System C Calls Reference Manual Manual Pages

NIOWAITO NIOWAITO

Wait (block) until an asynchronous read or write operation completes. Return the number of bytes transferred if the
operation completed successfully.

Synopsis

#include <nx.h>

long niowait(
long id);

Description of Parameters

Discussion

id The non-negative 110 ID returned by nireadO or niwriteO.

Use niowaitO to cause a process to wait until the asynchronous read or write operation (e.g., ireadO
ireadoffO, iwriteO or iwriteoffO) identified by id completes. When niowaitO returns:

• The buffer contains valid data (if id identifies a read operation), or the buffer is available for
reuse (if id identifies a write operation) .

• The 110 ID number that identifies the asynchronous read or write (id) is released for use in a
future asynchronous read or write.

NOTE

You must use one of iodone(), iowait(), niodone() or niowait()
after an asynchronous read or write to ensure that the operation is
complete and to release the I/O ID number.

Return Values

Upon successful completion, niowaitO simply returns the number of bytes transferred by the 110
operation. If an error occurs, niowaitO sets ermo to indicate the error and returns -1.

199

Manual Pages Paragon TM System C Calls Reference Manual u

NIOWAITO (cont.) NIOWAITO (cont.)

Errors

EBADID The id parameter is not a valid I/O ill.

See Also fir'"
~t~

iodoneO. iowaitO, ireadO. ireadoffO, iwriteO, iwriteoffO, niodoneO

1. -"1
J

IJ
200 []

.. ---.. --.----.-

r:
I

..

..
r~l

_I

1=
I~ -.J

(-'1
~I

r~

I
"'",,'"

I
-

--

I~
~

1=
r~

I.:
I

"-~

~

I -'

1=
1-"

I~

IJ
(~

-I .-
I~ -~

Paragon"" System C Calls Reference Manual Manual Pages

NUMNODESO NUMNODESO

Gets the number of nodes in an application.

Synopsis

#include <nx.h>

long numnodes(void);

Description

The numnodesO function returns the number of nodes allocated to the application.

Return Values

Errors

Examples

Upon successful completion, the numnodesO function returns the number of nodes in an application
and returns control to the calling process. Otherwise, this function displays an error message to
standard error and causes the calling process to terminate.

Upon successful completion, the _numnodesO function returns the number of nodes in an
application. Otherwise, this function returns -1 and sets errno to indicate the error.

Refer to the errno manual page for a list of errors that can occur in the C underscore system calls.

The following example shows how to use the msgwaitO function to wait until an asynchronous
receive completes:

#include <math.h>

#define M 4
#define N 16

void display();

long iam, nbrnodes;

201

Manual Pages Paragon ™ System C Calls Reference Manual

NUMNODESO (cont.) NUMNODESO (cont.)

202

main()
{

}

int i, count=O;
double x[M], y[N], dot, norm, dummy;
char msg[80];
int dpsize = 8;
long xlen [4] ;

iam
nbrnodes
dot

mynode();
numnodes() ;
0.0;

for(i=O; i<nbrnodes; i++)
xlen[i] = 4*sizeof(double);

for(i=O; i<M; i++)
x[i] = (double) (iam * M + i) i
printf ("Node %d x [%d] = %3 .If\n'' , iam, i,x [i]) ;

}

for(i=Oi i<Mi i++)
dot += x[i]*x[i]i

printf("Node %d dot = %f\n" ,iam,dot) i

gdsum(&dot, 1, &dummY)i
sprintf(msg,"dot = %f\n",dot)i
if (! iam) printf ("\n%s" ,msg) ;

norm = sqrt(dot)i

for(i=Oi i<M; i++)
x[i] = x[i]/normi

gcolx(x, xlen, y);

if (! iam)
for(i=Oii<nbrnodes*M; i++)

printf(H%3.1f ",y[i]);
printf (" \n") i

}

[]

~I
U

(J
[J

I , _,J

[J

(
-11ft ..

r:
I:

1"'1

.• J

Ij

1""1

. _I

I~

I ~

IJ

Paragon ™ System C Calls Reference Manual Manual Pages

NUMNODESO (cant.) NUMNODESO (cant.)

Limitations and Workarounds

See Also

For information about limitations and workarounds. see the release notes files in
lusrlsharelrelease_nates.

e"no. myhostO. mynodeO. DX_initveO. DX_loadO

203

Manual Pages Paragon™ System C Calls Reference Manual

Returns the list of nodes allocated to an application.

Synopsis

Parameters

Description

#include <nx.h>

long nx_app_nodes(
pid_tpgroup,
nx_nodes_t *node_list,
unsigned long *liscsize);

pgroup

liscsize

Process group ID for the application, 0 (zero) to specify the calling application.
The pid_t type is defined in the include file sys/types.h. If the process group ID is
not that of the calling process, the calling process's group ID must either be root
or the same user ID as the specified application.

Pointer variable that specifies the address of the list of nodes for the application.
The node numbers are root-partition node numbers. The DX_Dodes_t type is
defined in the include file aUocsys.h. The call allocates memory and fills in the
values for this parameter. Free this memory using the freeO function.

Address of a variable into which the Dx_app_DodesO function stores the number
of elements in the node_list parameter. The call fills in the value for this
parameter.

The Dx_app_DodesO function returns the list of node numbers for the nodes an application is
running on. You mUllt have read permission on the partition the application is running in to use this
call.

Return Values

204

On successful completion, the Dx_app_DodesO function returns 0 (zero). Otherwise, -1 is returned
and ermo is set to indicate the error.

[-~

-~

rr--'
iL.J

[]

IJ
IJ
[J

[J

[J

r:
(... ...,

Jill

r:

I~

I'"

I·'"
,J

I'
I"!

I:
r~

.M

r:

Paragon ™ System C Calls Reference Manual Manual Pages

NX_APP _NODESO (cont.) NX_APP _NODESO (cont.)

Examples

Errors

The following example prints the list of nodes for an application:

#include <nx.h>

main () {

nx_nodes_t mynodes;
unsigned long nnodes;
int i, status;

status nx_app_nodes(O, &mynodes, &nnodes);

if (status ! = 0) {

}

nx-perror (II nx_app_nodes () II) ;

exit(l);

forti = 0; i < nnodes; i++) {
printf ("%d\n", mynodes [iJ);

}

free (mynodes) ;

Note the use of the & operator in the call to nx_app_nodesO.

EANOEXIST The specified process group does not exist.

EPACCESS Insufficient access permission for this operation on the partition.

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease _notes.

205

Manual Pages Paragon ™ System C Calls Reference Manual

DX_app_rectO, mypartO: Returns the height and width of the rectangle of nodes allocated to the current application.

Synopsis

Parameters

Description

#include <nx.h>

long nx_app_rect(
long *rows,
long *cols);

long mypart(
long *rows,
long *cols);

rows

cols

Address of a long integer variable that specifies the number of rows in the set of
nodes for the application. If the set of nodes is not a rectangle, the value pointed
to by rows is set to 1.

Address of a long integer variable that specifies the number of columns in the set
of nodes for the application. If the node set is not a rectangle, the value pointed to
by cols is set to the number of nodes in the application.

The DX_app]ectO function returns the rectangular dimensions of the node set of the application
from which the function call is made.

The mypartO function is identical to the DX_app]ectO function and is provided for compatibility
with the Touchstone DELTA system.

Return Values

206

On successful completion, the DX_app]ectO function returns 0 (zero). Otherwise, -1 is returned
and ermo is set to indicate the error.

[, .. '1 11

[J

IJ

IJ
(J

IJ

1-:
I ~

...

r-'"
~.

1_--..,
'"

I

I

I ~

I ~

I~

Paragon ™ System C Calls Reference Manual Manual Pages

NX_APP _RECTO (cont.)

Errors

Examples

Refer to the errno manual page for a list of errors that can occur in this system call.

This example returns the number of rows and columns used by the application. Note the use of
"&rows" and "&cols" indicating that these variables must have space allocated prior to passing the
pointers to nx_add_rectO.

main() {

long
int

rows, eols, result;
status;

if (mynode() == 0) {
status = nx_app_reet(&rows, &eols);

if(status != 0) {
nx-perror ("nx_app_reet () ") ;
exit(l);

printf("\n") ;
printf("\nNumber of rows = %d", rows);
printf("\nNumber of columns = %d", eols);
printf (" \n") ;

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

application, mkpart, DX_app_nodesO, nx_initve_rectO, DX_mkpartO, nx_parCattrO,
DX_rooCnodesO

207

Manual Pages Paragon TM System C Calls Reference Manual

nx_cbparCepIO. DX_cbparCmodO, DX_cbparCnameO, DX_cbparCownerO. nx_cbparCrqO.
nx_cbparCscbedO: Changes a partition's characteristics.

Synopsis

208

#include <nx.h>

long nx_cbparCepl(
char *partition,
long priority);

long nx_cbparCmod(
char *partition,
long mode);

long DX_cbparCname(
char *partition,
char *name);

long DX_chparCowner(
char *partition,
long owner,
long group);

long nx_chparCrq(
char *partition,
long rollin_quantum);

long nx_chparCsched(
char *partition,
long sched_type);

[J

[J

': ~JJ

(J

('""!
.. ~

(J

[J

l:

r:
I :

I:
r:
I:
I

-~

. ,0'

(

1·-.-

("

I:

Paragon ™ System C Calls Reference Manual Manual Pages

Parameters

partition Pointer to the relative or absolute pathname of an existing partition for which you
are changing the characteristics.

priority (nx_chparCepIO only)
New effective priority limit for the partition, expressed as an integer with a range
from 0 (lowest priority) to 10 (highest priority) inclusive.

The calling process must have write permission for the partition to use the
nx_chparCeplO function.

mode (nx_chparCmodO only)
New protection modes for the partition, expressed as an octal number. See the
chmodO function in the OSFll Programmer's Reference for more information on
specifying protection modes.

The calling process must be the owner of the partition or root user to use the
nx_chparCmodO function.

name (ox_chparCnameO only)
New name for the partition, expressed as a string of any length containing only
uppercase letters, lowercase letters, digits, and underscores. The
nx_chparCnameO function can only change the partition's name "in place;"
there is no way to move a partition to a different parent partition.

The calling process must have write permission on the parent partition of the
specified partition to use the ox_chparCnameO function.

owner (nx_chparCownerO only)
New owner for the partition, expressed as a numeric user ID (UID). If the owner
parameter is -1, the partition's owner is not changed. See the OSFll
Programmer's Reference for information about using the getpwnamO function to
convert a user name to a numeric user ID.

The permissions required for the nx_chparCownerO function depend on the
operation. To change the partition's ownership, the calling process must be the
system administrator.

209

Manual Pages

Description

210

Paragon TM System C Calls Reference Manual

group (wcchparCownerO only)
New group for the partition, expressed as a numeric group ID (GID). If the group
parameter is -1, the group is unchanged. See the OSFIl Programmer's Reference
for information about using the getgmamO function to convert a group name to
a numeric group ID.

The permissions required for the nx_chparCownerO function depend on the
operation. To change the partition's group, the calling process must either be the
system administrator or must be the partition's owner and changing the group to
a group that the calling process belongs to.

rollin_quantum (DX_chparCrqO only)
New rollin quantum for the partition, expressed as an integer number of
milliseconds, or 0 to specify infinite rollin quantum. The specified value must not
be greater than 86,400,000 milliseconds (24 hours). If you specify a value that is
not a multiple of 100, the value is silently rounded up to the next multiple of 100.

The minimum rollin quantum can be set in the allocator.config file. See the
aIlocator.contig manual page for more information.

The calling process must have write permission for the partition to use the
DX_chparCrqO function.

sched_type (nx_chparCschedO only)
Type of scheduling for the partition. These scheduling types are defined in the
nx.h include file and can be specified:

Gang scheduling (rollin quantum = 0).

Space sharing.

The calling process must have write permission for the partition to use the
DX_chparCschedO function.

The following functions change specific characteristics of a partition:

nx_chparCeplO
Changes the partition's effective priority limit.

DX_chparCmodO
Changes the partition's protection modes.

["~
, I

.A1

['1'1
I I

,AI

11"""']
~."J

I]

[J

lJ

I:

1-

1-,

1-"1

"'"

I:

Paragon TM System C Calls Reference Manual Manual Pages

nx_chparCnameO
Changes the partition's name.

nx_chparCownerO
Changes the partition's owner and group.

DX_chparCrqO Changes the partition's rollin quantum.

nx_chparCschedO
Changes the partition's scheduling type.

When you create a partition with the mkpart command or the nx_mkpart ••• O functions, you set a
partition's initial characteristics. You can set specific characteristics or use the default
characteristics. After creating a partition, you are the partition's owner and you can use the
DX_chpart ••• O functions or the chpart command to change the partition's characteristics.

The nx_chpart_epIO function changes the effective priority limit for a partition. The effective
priority limit ranges from 0 to lO. The effective priority limit is the upper priority limit on a partition.
This limit does not affect the priority of applications or partitions within a partition. The system uses
the effective priority limit for gang scheduling in partitions. See the Paragon TM System User's Guide
for more information about effective priority limits and gang scheduling.

The nx_chpart_nameO function changes the partition's name. You cannot use this function to
change the partition's parent partition or the partition's relationship in a partition hierarchy.

Each partition has an owner, a group, and protection modes that determine who can perform what
operations on a partition. When you create a partition, you become the partition's owner and the
partition's group is set to your current group. The DX_chpart_ownerO function changes the owner
and group of a partition. The owner and group must be specified as a numeric ID, not as a name. Use
the aSF/! getpwnamO function to convert an owner name to a user ID, and use the aSF/l
getgrnamO function to convert a group name to a numeric group ID. See the OSFll Programmer's
Reference for more information about these functions.

A partition's protection modes consist of three groups of permission bits that indicate the read, write
and execute permissions for the owner, group, and other users of the partition. A partition's
protection modes are initially set when the partition is created. The DX_chpart_modO function
changes the protection mode for a partition. Set the mode parameter to the three-digit octal value that
represents the protection mode you want for the partition. See the chmod command in the OSFll
Command Reference for more information on specifying protection modes.

211

Manual Pages

-.---.-----------.-----.-.--.-.-.. ---.~.-~-----~~.

Paragon ™ System C Calls Reference Manual

The DX_chparCscbedO function changes the partition's scheduling to either space sharing
(NX_SPS) or gang scheduling (NX_GANG). The DX_cbparCscbedO function has the following
restrictions:

• You cannot change a partition's scheduling to or from standard scheduling.

• You cannot change a partition's scheduling to space sharing if the partition contains any active
applications or overlapping partitions.

The allocator may limit the number of partitions that can use gang scheduling. For information on
the allocator, see the allocator manual page in the Paragon ™ XP/S System Commands Reference
Manual. You cannot change a partition's scheduling to gang scheduling if the request exceeds the
maximum number of partitions allocated for gang scheduling. The rollin quantum is automatically
set to 0 (zero) when changing to gang-scheduling.

Return Values

Errors

212

On successful completion, the partition's characteristic was successfully changed and 0 (zero) is
returned. Otherwise, the partition's characteristic is not changed, -1 is returned, and errno is set to
indicate the error.

When -1 is returned by this function, errno is set to one of the following values:

EEXCEEDCONF
The request would exceed the configuration parameters.

EPACCES The application has insufficient access permission on a partition.

EPALLOCERR
An internal error occurred in the node allocation server.

EPINGRP An invalid group ID was specified.

EPINRN You specified a partition name that was not a simple name. You cannot change a
partition's relationship within a partition hierarchy.

EPINUSER An invalid user ID was specified.

l .. ' .Mil

[.. 1'1
.iIi

r-.;
r.h :
• .M

(
"'1

.... J!

IJ
IJ
[J

[J

l:

I~
(.....

I
I
I'~

(-""
,~

I··.-~

..&l'

Paragon ™ System C Calls Reference Manual Manual Pages

EPINVALPART
The specified partition (or its parent) does not exist.

EPINV ALPRI An invalid priority level was specified.

EPLOCK The specified partition is currently being updated and is locked by someone else.

EPPARTEXIST
The specified partition already exists.

ESCHEDCONF
The scheduling parameters conflict with the allocator configuration.

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlshare/release _notes.

Paragon TM System C Calls Reference Manual: DX_mkpartO, DX_pspartO, DX_rmpartO

Paragon ™ XPIS System Commands Reference Manual: allocator, allocator.contig, chpart, lspart,
mkpart, pspart, rmpart

OSFll Command Reference: chgrp(l), chmod(1), chown(l)

OSFll Programmer's Reference: getgrnam(3), getpwnam(3)

213

Manual Pages Paragon™ System C Calls Reference Manual

Returns the list of empty nodes in the root partition.

Synopsis

Parameters

Description

214

#include <nx.h>

int nx_empty _Dodes(
nx_nodes_t *node_list,
unsigned long *lisCsize);

lisCsize

Pointer variable into which the DX_empty~nodesO function stores the address of
the list of empty nodes found in the root partition. The node numbers are
root-partition node numbers. The DX_nodes_t type is defined in the include file
allocsys.h, which is included by the include file nx.h. The call allocates memory
for this parameter. Free this memory using the freeO function.

Address to a variable into which the nx_empty _nodesO function stores the
number of elements in the node_list array.

The nx_empty _nodesO function returns the list of empty nodes in the root partition. An empty node
is a node in the root partition that does not have a node board in the corresponding slot. An empty
node is specified as "empty" in the SYSCONFIG. TXT file. An empty node shows up as a dash (-) in
the display of the showpart command.

NOTE

Do not call the nx_empty _nodes() function on more than a few
nodes at once.

If many nodes use the nx_empty _nodesO function at the same time, the node allocator daemon can
become overwhelmed with requests. If all the nodes in your application need this information, you
should have one node make the call and then distribute the information to the other nodes.

l... =-1

J""l
lAoi

'1 ,-=
I:
l:
[J

IJ

-------- ---

r:
I :
r:
1_-"1

'"

(
.~

~,

1-'

I~

I ~

[J

[J
I]

Paragon™ System C Calls Reference Manual Manual Pages

NX_EMPTY _NODESO (cont.) NX_EMPTY _NODESO (cont.)

Return Values

Examples

Errors

On successful completion, the ox_empty _DodesO function returns 0 (zero). Otherwise, -1 is
returned and ermo is set to indicate the error.

The following example prints the list of the empty nodes in the root partition:

#include <nx.h>
main () {

nx_nodes_t empty;
unsigned long nempty;
int i, status;

status nx_empty_nodes(&empty, &nempty);

if(status != 0) {
nx-perror (II nx_empty _nodes () II) ;

exit(l) ;

for(i = 0; i < nemptYi i++) {
printf("%d\n", empty[i]li

free Cempty l ;

Note the use of the & operator in the call to Dx_empty_DodesO.

Refer to the errno manual page for a list of errors that can occur in this system call.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease _notes.

215

Manual Pages Paragon™ System C Calls Reference Manual

See Also

Paragon™ System C Calls Reference Manual: DX_app_DodesO. DX_failed_DodesO

TM
Paragon XP/S System Commands Reference Manual: showpart

216

f~
'-.. ~

c

I:
(' . ..1

l:
l=

u

I~

r:

I':

r-:
("-'

(- -.
_.,

1=

.~--------~.-~--------~-~----

Paragon TM System C Calls Reference Manual Manual Pages

Returns a list of the failed nodes in the root partition.

Synopsis

Parameters

Description

#include <nx.h>

int nx3ailed_nodes(
nx_nodes_t *node_list,
unsigned long * lisCsize);

liscsize

Pointer variable into which the Dx_falled_Dodes() function stores the address of
the list of failed nodes found in the root partition. The node numbers are
root-partition node numbers. The DX_Dodes_t type is defined in the include file
allocsys.h, which is included by the include file nx.h. The call allocates memory
for this parameter. Free this memory using the free() function.

Address to a variable into which the DX_falled_Dodes() function stores the
number of elements in the node_list array.

The DX_falled_DodesO function returns the list of failed nodes in the root partition. The system
boots the nodes that are listed in the SYSCONFIG. TXT file on the diagnostic station. If a node fails
to boot, it is listed as a bad or failed node. A failed node shows up as an X in the display of the
showpart command.

NOTE

Do not call the nx_failed_nodes() function on more than a few
nodes at once.

If many nodes use the DX_falled_Dodes() function at the same time, the node allocator daemon can
become overwhelmed with requests. If all the nodes in your application need this information, you
should have one node make the call and then distribute the information to the other nodes.

217

Manual Pages Paragon™ System C Calls Reference Manual

Return Values

Examples

Errors

On successful completion, the Dx3ailed_DodesO function returns 0 (zero). Otherwise, -1 is returned
and ermo is set to indicate the error.

The following example prints the list of the failed nodes in the root partition:

#include <nx.h>
main () {

nx_nodes_t failed;
unsigned long nfailed;
int i, status;

status nx_failed_nodes(&failed, &nfailed);

if(status != 0) {
nx-perror("nx_failed_nodes() ");
exit(l);

forti = 0; i < nfailed; i++) {
printf("%d\n", failed[i]);

free (failed) ;

Note the use of the & operator in the call to Dx_failed_DodesO.

Refer to the errno manual page for a list of errors that can occur in this system call.

Limitations and Workarounds

218

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease _notes.

------------_._--

l:
L
(:

.-"'1 !1' ')

IJrl

I:

[:
,,",

lJ

r:
I:
I::
r:
I'~

I ",
".

(.....
~,

1-
1·'·',

.J

I
·~

~

I:
I ""'"

-ei

r"l
I'
I ~,

r
I ~,

.~

I~

I:
IJ
(]

Paragon™ System C Calls Reference Manual Manual Pages

See Also

commands: allocator, showpart

219

Manual Pages Paragon™ System C Calls Reference Manual

nx_initveO, nx_initve_rectO: Initializes a parallel application on a partition.

Synopsis

Parameters

220

#include <nx.h>

long nx_initve(
char *partition,
long size,
char *account,
int *argc,
char *argv[]);

long nx_initve_rect(
char *partition,
long anchor_node,
long rows,
long cols,
char *account,
int *argc,
char *argv[]);

partition Relative or absolute patbname of the partition in which to run the application. A
null string ("" or NULL) specifies using the default partition. The default partition
is the partition specified by the NX_DFLT_PARTenvironment variable, or is the
.compute partition if the NX_DFLT_PARTenvironment variable is not set. The
specified partition must exist and must give execute permission to the calling
process.

size

If the -pn switch is specified on the command line, the specified partition
pathname overrides the partition parameter, unless you set the value of argc to 0
(zero).

Number of nodes to run the application on. A value of 0 (zero) species the default
size. The default size is the size specified by the NX_DFLLSIZE environment
variable, or all nodes of the partition if the NX_DFLT _SIZE environment variable
is not set. The size parameter must be a non-negative integer.

[:

(J

1"1·
1 . .aJ

I:

[J

l -'<i
.M

[~

I ~1

.,

1=:

(J

14

~,

I '1

!,

I'"

IJ
("

,11/

Paragon ™ System C Calls Reference Manual Manual Pages

NX_INITVE() (cont.) NX_INITVE() (cont.)

Description

account

argc

argv

rows

cols

If the -sz or -nd switch is specified on the command line, it overrides the value of
the size parameter, unless you set the value of argc to 0 (zero).

Reserved for future use. Set this parameter to NULL.

Pointer to an integer that is the number of arguments on the command line
(including the application name). If the argc value is 0 (zero), the command line
and all command line arguments are ignored. When DX_initveO and
nx_initve_rectO return, argc indicates the number of remaining command line
arguments after all the recognized arguments are removed from argv.

Array of character pointers to null-terminated strings containing the application's
command line arguments. All recognized arguments are removed from argv.

Node number of the node in the upper left -hand comer of the partition's rectangle.
If the node number is -1, the allocator chooses the partition placement. For node
numbers greater than or equal to 0 (zero), the partition is anchored on that node.

Number of rows in the partition's rectangle.

Number of columns in the partition's rectangle.

The DX_initveO and nx_initve_rectO functions initialize an application to run in a specified
partition. These functions create a new, empty application. The process that calls the DX_initveO or
nx_initve_rectO function becomes the new application's controlling process. Use the nx_initveO
and DX_initve_rectO functions as follows in an application:

• Call either function before any other Paragon system calls.

• Call either function only once.

• Use the -lnx switch to link a program that calls either function. Do not use the -nx option.

The DX_initveO and nx_initve_rectO functions just initialize a program. Use the nx_IoadveO,
DX_IoadO, or DX_nforkO calls to start a program's processes.

221

Manual Pages Paragon™ System C Calls Reference Manual

NX_INITVEO (cont.) NX_INITVEO (cont.)

The DX_initveO function initializes an application to run in a specified number of nodes. Other than
specifying a size, you cannot control how the nodes for your application are allocated. The
nx_initveO function attempts to allocate a square group of nodes if it can. If this is not possible, the
nx_initveO function attempts to allocate a rectangular group of nodes that is either twice as wide as
it is high or twice as high as it is wide. If this is not possible, the DX_initveO function allocates any
available nodes. In this case, nodes allocated to the application may not be contiguous (that is, they
may not all be physically next to each other). +

The DX_initve]ectO function initializes an application to run in a specified set of nodes allocated
as a rectangle. You can specify the size and shape of the partition using the rows and cols parameters.
You can specify the placement of the application within its partition using the anchor_node
parameter. If you specify anchor _node to be -1, the allocator places the application wherever it fits.
The nx_initve_rectO function fails if the specified rectangle cannot be allocated, even if the
equivalent number of nodes are available in a non-rectangular shape.

The nx_initveO and nx_initve_rectO functions recognize the following command line switches for
an application: -gth, -mbf, -mea, -mex, -nd, -pkt, -plk, -pn, -pri, -set, -sth, and -sz. See the
application manual page for a description of these switches. When a switch is recognized, the
appropriate application characteristic is set, the switch and any associated argument are removed
fromargv, and the variable pointed to by argc is decremented appropriately. The remaining switches
and arguments are moved to the beginning of argv.

The DX_initveO and DX_initve_rectO functions do not recognize the command line arguments -pt,
-on, and \; application. If you want your application to have the same interface as an application
linked with the -DX switch, you must parse the argument list for these arguments and pass the
appropriate values to the nx_loadO or nx_loadveO function.

The application's scheduling priority is specified by the -pri argument in argv. If the -pri switch is
not specified or the argc parameter is 0 (zero), then the scheduling priority is set to 5.

When calling the DX_initveO and DX_initve_rectO functions, the calling process becomes the
controlling process of the application. If the calling process is not already the process group leader,
the DX_initveO and nx_initve_rectO functions disassociate the calling process from its current
process group, create a new process group, and make the calling process the process group leader of
the new process group.

The DX_initveO and DX_initve_rectO functions do not set the calling process's ptype.

Return Values

>0 Number of nodes on which the application was created.

-1 An error occurred and ermo is set.

222

l.=
[~

lJ
(J

I:

I····.""
Jti.'

1 ~.,
..t.!

I:
1=

1=
1-"1

. ..J

IJ
l.l . ~

Paragon ™ System C Calls Reference Manual Manual Pages

NX_INITVEO (cont.) NX_INITVEO (cont.)

Errors

When -1 is returned by this function, ermo is set to one of the following values:

EAEXIST An application has already been established for the process group.

EAINVALMBF
The memory buffer size is invalid or out of range.

EAINVALMEA
The memory each size is invalid or out of range.

EAINVALMEX
The memory export size is invalid or out of range.

EAINVALPKT
The packet size is invalid or out of range.

EAINVALSTH
The send threshold size is invalid or out of range,

EAINVALGTH
The give threshold size is invalid. or out of range.

EAOVLP A partition or application overlaps with another partition or application.

EAREJPLK An application cannot use the -plk switch in a gang-scheduled partition.

EINCOMPAT Your application's code is no longer up to date with the current release of the
installed operating system. You must relink your application.

EPALLOCERR
An internal error occurred in the node allocation server.

EPACCES The application has insufficient access rights to a partition for this operation.

EPBADNODE A bad node was specified .

EPINV ALPRI An invalid priority value was specified.

EPINVALPART
The specified partition was not found .

EPXRS The request exceeds the partition resources.

223

Manual Pages Paragon ™ System C Calls Reference Manual

NX_INITVE() (cont.) NX_INITVE() (cont.)

Limitations and Workarounds

See Also

224

For information about limitations and workarounds, see the release notes files in
lusrlshare/release _notes.

Paragon™ System C Calls Reference Manual: nx_app_rectO, nx_loadO, nx_nforkO

Paragon™ XPIS System Commands Reference Manual: allocator, application

[]
[.~

.. ..iI

[... ~
_Aoi

rr:
iJoJ

J~
i....J

[.-'
.. I

.!

[J

[J

(:
. .JoI

r:
I .. ,

.I.e

(-'"
1 _,_

l:
[~

[~

(J

I)

I]

.----------~------~------ .-~-.----~------ ------------- -- ------

Paragon ™ System C Calls Reference Manual Manual Pages

Initializes a new application with specified attributes.

Synopsis

Parameters

#include <nx.h>

long nx_initve_attr(
char *partition,
int *argc,
char *argv[],
[int attribute, {long I char* I long *} value] ...
NX_ATTR_END);

partition

argc

argv

attribute

Relative or absolute pathname of the partition in which to run the application. A
null string ("" or NULL) specifies the default partition. The default partition is the
partition specified by the NJCDFLT_PARTenvironment variable, or is the
.compute partition if the NX_DFLT_PARTenvironment variable is not set. The
specified partition must exist and must give execute permission to the calling
process.

If you use the -pn switch on the command line, the specified partition pathname
overrides the partition parameter (unless the value of argc is zero).

Pointer to an integer that is the number of arguments on the command line
(including the application name). If the argc value is zero, the command line and
all command-line arguments are ignored. When llX_initve_attrO returns, argc
indicates the number of remaining command-line arguments after all the
recognized arguments are removed from argv.

Array of character pointers to null-terminated strings containing the application's
command-line arguments. All recognized 'arguments are removed from argv.

Attribute constant to use for creating the new partition. The attribute parameter
must be followed by the value parameter. The value parameter sets the value of
the attribute. See the" Attributes" section for the list of attribute constants you can
use with the attribute parameter.

225

Manual Pages

Description

226

value

Paragon ™ System C Calls Reference Manual

Value of the attribute specified by the attribute parameter. A value parameter must
follow each attribute parameter. The data type of the value parameter depends on
the preceding attribute parameter. See the "Attributes" section for a description of
values.

NX_ATTR_END
Constant that marks the end of the list of attribute, value pairs.

The DX_initve_attrO function initializes an application to run in a specific partition. The
DX_initve_attrO function has the functionality of the nx_initveO and nx_initve_rectO functions,
but you use attributes to specify how to initialize the application.

You specify attributes in the argument list of the function as a set of zero or more attribute, value
pairs: an attribute constant and a value. The attribute constant is the name of the attribute. The
attribute value can be either an integer, array of integers, or a character string depending on the
attribute. You use the attribute parameter to specify the attribute constant and the value parameter
to specify the value of the attribute. See the "Attributes" section for the list of the attributes that can
be set in the DX_initve_attrO function.

The DX_initve_attrO function recognizes the following command line switches for an application:
-gth, -mbf, -mea, -mex, -nd, -pkt, -plk, -pn, -pri, -sct, -sth, and -sz. See the application manual
page for a description of these switches. When a switch is recognized, the appropriate application
characteristic is set, the switch and any associated argument are removed from argv, and the variable
pointed to by argc is decremented appropriately. The remaining switches and arguments are moved
to the beginning of argv.

The nx_initve_attrO function does not recognize the command line arguments -pt, -on, and \;
application. If you want your application to have the same interface as an application linked with
the -nx switch, you must parse the argument list for these arguments and pass the appropriate values
to the DX_IoadO or DX_IoadveO function.

When calling the DX_initve_attrO function, the calling process becomes the controlling process of
the application. If the calling process is not already the process group leader, the nx_initve_attrO
function disassociates the calling process from its current process group, creates a new process
group, and makes the calling process the process group leader of the new process group.

The application's scheduling priority is specified by the -pri argument in argv. If the -pri switch is
not specified or the argc parameter is 0 (zero), then the scheduling priority is set to S.

(. ~ " I
-jIi

tOO "'i

A!

(~

I
-~

...

I:
r:
(

-"1

_..,t,I

(
"1

J

r·o'"

. ~

1_.,
.~:

1'9
r··....,

,_.".J

1-·...,
. ..J

rJ
(]

Paragon ™ System C Calls Reference Manual Manual Pages

Attributes

The attribute parameter can be set with the following attribute constants:

Attribute Constant Description

Specifies the node number of the node in the upper
left-hand comer of the partition rectangle. The value
parameter must be of type long.

You may only specify NX_ATTR_ANCHOR when
NX_ATTR_RECT is present. If the value parameter is -1,
the system chooses the partition placement. For node
numbers greater than or equal to zero, the partition is
anchored on that node.

Specifies the threshold for the "give me more messages"
message in bytes. The value parameter must be of type
long .

If you use the -gtb give_threshold switch from the
command line and argc is not zero (Le. it is in the argc/ argv
list), it overridesthe value of the NX_ATTR_GTH value.

Specifies the total amount of memory allocated to message
buffers in bytes. The value parameter must be of type long.

If you use the -mbf memory_buffer switch from the
command line and argc is not zero, it overrides the value of
the NX_ATTR_MBF value.

Specifies the amount of memory allocated to buffering
messages from each other node in bytes. The value
parameter must be of type long .

If you use the -mea memory_each switch from the
command line and argc is not zero, it overrides the value of
the NX_ATTR_MEA value.

227

._----_._----_ _. __ ... _--_._-------

Manual Pages

Attribute Constant

228

.. _-_. __ . --._ .. _ .. _._-----_._ .. _----------

Paragon™ System C Calls Reference Manual

Description

Specifies the total amount of memory allocated to
buffering messages from other nodes in bytes. The value
parameter must be of type long.

r"'i
I.M

iJ
If you use the -mex memory_export switch from the ~J
command line and argc is not zero, it overrides the value of
the NX_ATTR_MEX value.

Specifies the total number of other processes from which
each process expects to receive messages. The value
parameter must be of type long. The default value is the
number of nodes allocated for the application.

If you use the -noc correspondents switch from the
command line and argc is not zero, it overrides the value of
the NX_ATTR_NOC value.

Specifies the size of each message packet in bytes. The
value parameter must be of type long.

If you use the -pkt packeCsize switch from the command
line and argc is not zero, it overrides the value of the
NX_ATTR_PKT value.

Specifies whether to lock the data area of each process into
memory. The value parameter must be of type long. The
value 1 locks the data area of each process into memory,
while the value 0 (zero) does not.

This attribute is the same as -plk in argv list. The existing
interaction between -plk and REJECT _PLK is preserved.

Specifies the priority at which the application runs. The
value parameter must be of type long.

If you use the -pri priority switch from the command line
and argc is not zero, it overrides the value of the
NX_ATTR_PRI value.

I'
I "" -,

(J

(]

(]

[J

I:
I

'~

'"

(~

I
--~'

_.liI.:

1""1

.1

('-"

--,

('-:
~J

('4

(-'

I .. ,

I I
""

IJ
I)

-------------------, ,---, ,

Paragon ™ System C Calls Reference Manual

Attribute Constant

Manual Pages

Description

Specifies running the application on a rectangular node set.
The value parameter must be of type long *. The value
parameter is a pointer to an array of two integers; the first
integer is the height of the rectangle, while the second is its
width.

If you specify NX_ATTR_SEL, all the nodes in the
rectangle must be consistent with the selected attributes.

If you use either a -sz or a -nd switch from the command
line and argc is not zero, it overrides the value of the
NX_ATTR_RECT value.

Specifies whether to relax the requirement that all nodes
requested must be available and eligible for allocation. The
value parameter must be of type long. The value 0 does not
relax the requirement, while the value 1 relaxes the
requirement.

If you specify a value of 1 and also use NX_ATTR_RECT
and NX_ATTR_RECT, the requirement that all requested
nodes must be allocated for the application is relaxed.

Specifies the number of bytes to send right away when the
available memory is above send_threshold. The value
parameter must be of type long.

If you use the -sct send_count switch from the command
line and argc is not zero, it overrides the value of the
NX_ATTR_SCT value.

Specifies the send threshold for sending multiple packets.
The value parameter must be of type long.

If you use the -sth send_threshold switch from the
command line and argc is not zero, it overrides the value of
the NX_ATTR_STH value.

229

-_. __ . __ ._---_._--------_._---_._-----_ .. _ .. __ ._._-_.----------_. __ ._. -' -----_._---_._ ... _ _._ .. ,,,._---,, .. _.,,-

Manual Pages

230

Attribute Constant

Paragon ™ System C Calls Reference Manual

Description

Specifies the size of the application (number of nodes to
run the application on).The value parameter must be of
type long.

The default for value is 0 (zero).

A value of 0 (zero) or -1 specifies using the default size set
by the N}CDFLT_SIZE environment variable, or when
NX_DFLT _SIZE is not set, is all nodes of the partition.

If you use either a -sz or a -nd switch from the command
line and argc is not zero, it overrides the value of the
NX_ATTR_SZ value.

Nodes are selected using the criteria specified by the
NX_ATTR_SEL attribute, if any. If the value of the
NX_ATTR_RELAXED attribute is specified as 1, fewer
nodes than the requested number may be allocated and the
application will run.

Specifies a pointer to a node attribute string. The value
parameter must be of type char *.

If you specify multiple NX_ATTR_SEL attributes, the
result is the logical AND of all of them. Node attribute
strings are case-insensitive.

If you use the -nt nodejype switch from the command line
and argc is not zero, it overrides the values of both the
NX_ATTR_SEL and NX_MKPART_ATTR_EXCL
values.

The following shows the format of the value parameter for the NX_ATTR_SEL attribute.

Selects nodes having the specified attribute. For example,
when node_attribute equals the string mp, only MP nodes
are selected. The standard node attributes are shown in the
"Node Attributes" section.

[J

(]
If.,
~".J

[:
. .JJ

Paragon TM System C Calls Reference Manual

(-""
.. ,

I
···~

.. "'"

!node _attribute

1-..
< ••

[relop] [value] node _attribute

1-

(."''
. ...J

(~

I~

I~ ntype[,ntype] ...

1.'

I~

I:

c

Manual Pages

Selects nodes not having the specified attribute. For
example, when node_attribute equals the string !io, only
nodes that are not liD nodes are selected. Note that no
white space may appear between the! and node_attribute.

Selects nodes having a specified value or range of values
for the attribute. For example, the string >=16mb selects
nodes with 16M bytes or more of RAM. The string 32mb
selects nodes with exactly 32M bytes of RAM. And, the
string >proc selects nodes with more than one processor.

The relop can be =, >, >=, <, <=, !=, or ! (!= and ! mean the
same thing). If the relop is omitted, it defaults to =.

The value can be any nonnegative integer. If the value is
omitted, it defaults to 1 .

The node~attribute can be any attribute shown in the
"Node Attributes" section, but is usually either proc or mb.
(Other attributes have the value 1 if present or 0 if absent.)

No white space may appear between the relop, value, and
attribute.

Selects nodes having all the attributes specified by the list
of ntypes, where each ntype is a node type specifier of the
form node_attribute, !node_attribute, or
[relop][value]node_attribute. For example, the string
32mb, lio selects non-io nodes with 32M bytes of RAM.

You can use white space (space, tab, or newline) on either
side of each comma, but not within an ntype.

231

Manual Pages

232

Paragon ™ System C Calls Reference Manual

Node Attributes

The following shows the most common values for node_attribute. A node attribute that is indented
is a more specific version of the attribute from the previous level of indentation. For example, net
and scsi nodes are specific types of io node; enet and hippi nodes are specific types of net node (and
also specific types ofio node).

Attribute

bootnode
gp
mp
mcp
nproc
nmb
io
net
enet
bippi

scsi
disk
raid

tape
3480
dat

/Dstring

Meaning

Boot node.
GP (two-processor) node.
MP (three-processor) node.
Node with a message coprocessor.
Node with n application processors (not counting the message coprocessor).
Node with nM bytes of physical RAM.
Any 110 nodes.
110 node with any type of network interface.
Network node with Ethernet interface.
Network node with RIPPI interface.
110 node with a SCSI interface.
SCSI node with any type of disk.
Disk node with a RAID array.
SCSI node with any type of tape drive.
Tape node with a 3480 tape drive.
Tape node with a DAT drive.
SCSI node whose attached device returned the specified IDstring. For example, a
disk node might have the /Dstring NCR ADP-92101 0304.

Specifying the Nodes Allocated to the Application

The DX_initve_attrO function provides the following ways to specify the nodes allocated to the
application:

• Using NX_ATTR_SZ alone requests the specified number of nodes. A value of 0 or -1 requests
the number of nodes specified by $NJCDFLT _SIZE, or all the nodes of the partition if
$NX_DFLT_SIZE is not set.

(.~

.. -tJ

[J

~.~

~~

(J

[]

[J

I:
I::
I~~~

(-""

"".

I
,0'
(~

IC~'I

(~:

I'
I~

I~,

I.Yl

.'!JJ

Paragon TM System C Calls Reference Manual Manual Pages

NX_ATTR_SZ attempts to allocate a square group of nodes. If this is not possible, it attempts
to allocate a rectangular group of nodes that is either twice as wide as it is high or twice as high
as it is wide. If this is not possible, it allocates any available nodes. In this case, the nodes
allocated to the application may not be contiguous.

• Using NX_ATTR_RECT alone requests a rectangle of nodes specified by height and width.
The system places the rectangle within the partition.

• Using both NX_ATTR_RECT and NX_ATTR_ANCHOR requests a rectangle of nodes
specified by height and width, whose upper left comer is located at the specified anchor node.
You can place NX_ATTR_RECT and NX_ATTR_ANCHOR in any order within the
argument list. If you supply a value of -1 for NX_ATTR_ANCHOR, the system determines
the anchor node within the partition.

Using NX_ATTR_SEL alone requests all nodes by attribute (of a specific node type) in the" ,
partition.

Using NX_ATTR_SEL together with NX_ATTR_SZ, NX_ATTR_RECT, and/or
NX_ATTR_ANCHOR requests the nodes specified by the NX_ATTR_SZ,
NX_A TTR_RECT, and/or NX_ATTR_ANCHOR, all of which must have the attributes
specified by the NX_ATTR_SEL.

Not using NX_ATTR_SEL, NX_ATTR_SZ, NX_ATTR_RECT, or NX_ATTR_ANCHOR
requests the number of nodes specified by $NX_DFLT _SIZE. When $NX_DFL T _SIZE is not
set, all nodes of the partition are requested.

Using NX_ATTR_RELAXED with a value of 1 together with NX_ATTR_SEL,
NX_ATTR_SZ, NX_ATTR_MAP, NX_ATTR_RECT, or NX_ATTR_ANCHOR requests
all the available nodes (nodes that meet the attribute requirements) in the specified node set
(requested size and/or shape), up to the number of nodes requested. For NX_INITVE_ATTRO
to return successfully, at least one of the specified nodes must be available.

You can override all the attributes with command-line switches, particularly the node set size and
location. For example, either the -sz or -nd switch overrides NX_ATTR_SZ, NX_ATTR_RECT,
and NX_ATTR_ANCHOR. If you override an attribute with a command-line switch, the effect is
as though you had specified it in the nx_initve_attrO call.

The following combinations of these attributes are invalid:

233

---~---~--------------------~-- -------

Manual Pages

Examples

234

Paragon ™ System C Calls Reference Manual

• NX_ATTR_RELAXED together with NX_ATTR_RECT, unless you also specify
NX_ATTR_ANCHOR with a value other than -1.

Using any of these combinations of attributes causes nx_initve~attrO to fail with the error "invalid
attribute specified."

The following example creates an application whose characteristics (partition, number of nodes, and
so on) are determined using command-line switches. If you run this program without command-line
switches, it runs on the default number of nodes in your default partition.

#include <nx.h>

main(int argc, char *argv[]) {
int n;

n

After this call, the variable n contains the number of nodes in the new application, or a -1 if any error
occurs. The variable argc contains the count of arguments not recognized and subsequently removed
by nx_initveO. The array argv contains pointers to the arguments.

(J

(J

,: [
"""'1

' ~

[
.,"'l, ,-

-""

[J

[J

I:
(',.,

" ..

r--'
j"

("

('"

I
"~~

,-,,"

[
~I

~,

r~'

I:~

I','~
, ..

Paragon ™ System C Calls Reference Manual Manual Pages

The following example creates an application that consists of all available nodes in a rectangle 1 0
nodes high and 20 nodes wide whose upper left corner is node 0 (the upper left corner of the
partition) in the partition my part. The example ignores any command-line switches that you provide:

#include <nx.h>
long rect[2);
int i, n;

rect[O) 10;
rect[l)
i = 0;

20;

n nx_initve_attr ("mypart", &i, NULL,
NX_ATTR_RELAXED, 1,
NX_ATTR_RECT, rect,
NX_ATTR_ANCHOR, 0,
NX_ATTR_END) ;

After any of these calls, the variable n contains the number of nodes in the new application, or a -1
if any error occurs.

Return Values

>0

-1

Allocated nodes: The number of nodes allocated for the application.

Error: No nodes matched the attributes specified in the attribute selector. An error
has occurred and erma has been set. Note that the error occurs even if
NX_AITR_REIAXED is set to 1.

235

--_. __ . __ . __ ... _ _._ .. __ .. _._--_._--

Manual Pages

Errors

236

Paragon TM System C Calls Reference Manual

When -1 is returned by this function, ermo is set to one of the following values:

EAEXIST An application has already been established for the process group.

EAINVALMBF
The memory buffer size is invalid or out of range.

EAINVALMEA
The memory each size is invalid or out of range.

EAINVALMEX
The memory export size is invalid or out of range.

EAINVALPKT
The packet size is invalid or out of range.

EAINVALSTH
The send threshold size is invalid or out of range.

EAINVALGTH
The give threshold size is invalid or out of range.

EAOVLP A partition or application overlaps with another partition or application.

EAREJPLK An application cannot use the -plk switch in a gang-scheduled partition.

EINCOMPAT Your application's code is no longer up to date with the current release of the
installed operating system. You must relink your application.

EPALLOCERR
An internal error occurred in the node allocation server.

EPACCES The application has insufficient access rights to a partition for this operation.

EPBADNODE A bad node was specified.

f. II
l.

(J

(]

[J

I.• '"

I"""
..:J

I'..,
~,

I ·",
\c'

I ~~
,~

("-
.~",~.:

I '.!
.0.1

I)

c

Paragon TM System C Calls Reference Manual Manual Pages

EPINV ALPRI An invalid priority value was specified.

EPINVALPART
The specified partition was not found.

EPNOMATCH
Some nodes in the map or rectangle do not qualify. An attribute selector was
specified with nodes in the map or rectangle that do not. have all the specified node
attributes.

EPXRS The request exceeds the partition resources.

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

commands: application, chpart, lspart, mkpart, pspart, rmpart

237

Manual Pages Paragon ™ System C Calls Reference Manual

nx_IoadO, DX_IoadveO: Loads and starts an executable image.

Synopsis

Parameters

238

#include <nx.h>

long DX_Ioad(
long node _list[J,
long numnodes,
longptype,
long pid_list[] ,
char *pathname);

long DX_Ioadve(
long node_list[],
long numnodes,
longptype,
long pid_list[J,
char *pathname,
char *argv[],
char *envp[]);

Array of node numbers on which to load and start the executable image.

numnodes

NOTE

Do not specify the same node number more than once. If you
specify the same node twice, two processes are created on the
specified node, but one of the processes is terminated shortly after
creation with the error setptype: Ptype already in use.

Number of node numbers in the node_list. If numnodes is set to -1, the application
is loaded onto all the application's nodes (the node_list parameter is ignored).

I:

(J

[:
... ..J

[J

I.·"" .A.i

I:

141'1

..

I:
1_-,.,

~,

(-'''.
,

('""
"

1."'\
~I

(:
.oj

I:

I'~

,al

11

Paragon ™ System C Calls Reference Manual Manual Pages

NX_LOADO (cont.) NX_LOADO (cont.)

Description

ptype

pathname

argv

envp

Process type ofthe new process(es).

Pathname of the executable image to load and start.

Array of OSFIl process IDs (PID) of the new processes. Each element of the
pid_list array identifies the process ID of the node identified by the corresponding
element of node_list. An entry of 0 (zero) indicates that the process on the
corresponding node was not started successfully. The pid_list array must be the
size of the number of nodes used in the application.

If the numnodes parameter equals -1, the first element of the pid_list array equals
the PID of node 0, the second element of the pid_list array equals the PID of node
1, and so on for all the nodes in the system.

The argument vector pointer to pass to the executable image's new processes
(corresponds to the argv parameter of the OSFIl execve(2) system call).

The environment vector pointer to pass to the executable image's new processes
(corresponds to the env parameter of the OSFIl execve(2) system call).

The nx_IoadO and nx_IoadveO functions load and start an executable image on the nodes specified
by the node_list parameter. The DX_IoadveO function is just like the DX_IoadO function except it
lets you specify the argument list and environment variables for the new process. These calls can
only be made after the calling process makes an initial DX_initveO call.

The nx_loadO and nx_loadveO functions return immediately to the calling process. Use
DX_ waitallO to wait for processes created by DX_IoadO and DX_IoadveO.

Return Values

>0

-1

Number of nodes on which the executable image was loaded and started
successfully.

Error; ermo is set.

239

Manual Pages Paragon™ System C Calls Reference Manual

NX_LOAD() (cant.) NX_LOADO (cant.)

Errors

NOTE

It is possible that loading and starting the executable image could
fail on more than one node, and that each failure could be for a
different reason. In such a case, the value of ermo reflects only
one of the failures, and it is not possible to determine which one.

When -1 is returned by this function, erma is set to one of the following values:

EPALLOCERR An internal error occurred in the node allocation server.

EPBADNODE The specified node is a bad node.

Limitations and Workarounds

See Also

240

For information about limitations and workarounds, see the release notes files in
lusrlshare/release _notes.

OSFll Programmer's Reference: execve(2)

[:

r'"' L _

1_-..,
•• 1IIt!

IJ

I:
1-:

I:
1,-... ·

.• iIir:

I"~
,"-,

IJ
(

'=1,

~I

I~'

1-
,~

r:

------------ - ---,--~------

Paragon ™ System C Calls Reference Manual Manual Pages

Synopsis

Parameters

#include <nx.h>

long nx_mkpart(
char *partition,
long size,
long type);

long nx_mkparCrect(
char *partition,
long rows,
long cols,
long type);

long nx_mkparCmap(
char *partition,
long numnodes,
long node_list[],
long type);

partition New partition's relative or absolute pathname. The new partition must not exist.
The parent partition of the new partition must exist and must give the calling
process write permission.

size

type

rows

Number of nodes for the new partition, or -1 to specify all nodes of the parent
partition. If you specify a size smaller than the number of nodes in the parent
partition, the system selects the nodes that make up the new partition and the
nodes are not necessarily contiguous.

New partition's scheduling type: NX_STD specifies standard scheduling and
NX_GANG specifies gang scheduling. The scheduling type names are specified
in the nx.h include file. See the Paragon™ System User's Guide for more
information about partitions and scheduling.

Number of rows in the new partition.

241

Manual Pages Paragon™ System C Calls Reference Manual

NX_MKPARTO (cont.) NX_MKPARTO (cont.)

Description

cols

numnodes

Number of columns in the new partition.

Number nodes in the parent partition available to the new partition.

Array of node numbers that list the nodes in the parent partition available to the
new partition. Do not specify the same node number more than once.

The nx_mkpartO, nx_mkparCrectO, or nx_mkparCmapO functions create partitions for your
application programs. The nx_mkpartO function creates a partition with a specified number of
nodes. The system selects the shape of the partition and the nodes that make up the partition. The
nodes are not necessarily contiguous.

The nx_mkpart_rectO function creates a partition with a rectangular shape and a specified number
of rows and columns. The system allocates the rectangular partition where it can in the parent
partition.

The nx_mkpart_mapO function creates a partition with a specified list of nodes. You pass the
numnodes and nodelist parameters to specify the number of nodes and the list of nodes to use for the
new partition. The node numbers listed in the node list must exist and be available in the parent
partition The system allocates the nodes for the new partition from the node list only.

When you create a partition with the DX_mkpart ... O functions, the new partition gets default
characteristics. The partition's owner and group are set to the owner and group of the calling process.
All other characteristics including the effective priority limit, protection mode, and rollin quantum
are set to the same values as the parent partition. If you want to change a partition's characteristics,
use the nx_chpart ... O functions.

Return Values

>0 Number of nodes allocated for the partition.

-1 Error; ermo is set.

242

.:

l_=

r:

(-'"

,z,

I ~I

~

I '"'
'"j

1~1

I, ''': .,

(""
,CJ

I, .,
~,

I~

C

Paragon TM System C Calls Reference Manual Manual Pages

NX_MKPARTO (cont.) NX_MKPARTO (cont.)

Errors

When -1 is returned by this function, ermo is set to one of the following values:

EPACCES The application has insufficient access permission on a partition.

EPALLOCERR An internal error occurred in the node allocation server.

EPBADNODE The specified node is a bad node or is not present in the partition. You specified
the same node number more than once in the node_list parameter.

EPBXRS Partition request contains bad or missing nodes.

EPINVALPART
The specified partition (or its parent) does not exist.

EPLOCK Partition is currently in use or being updated.

EPPARTEXIST
The specified partition already exists.

EPXRS Request exceeds the partition's resources.

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

chpart, Ispart, mkpart, nx_chpartO, DX]mpartO, pspart, rmpart

243

--_._-_._._-_ .. _--.---

Manual Pages Paragon ™ System C Calls Reference Manual

Creates a new partition with specified attributes.

Synopsis

Parameters

Description

244

#include <nx.h>

long nx_mkparCattr(
char *partition,
[int attribute, {long I char * I long *} value,] ...
NX_ATTR_END);

partition

attribute

value

New partition's relative or absolute pathname. The new partition must not exist.
The parent partition of the new partition must exist and must give the calling
process write permission.

Attribute constant to use for creating the new partition. The attribute parameter
must be followed by the value parameter which sets the value of the attribute. See
the "Attributes" section for the list of attribute constants you can use with the
attribute parameter.

Value of the attribute specified by the attribute parameter. A value parameter must
follow each attribute parameter. The data type of the value parameter depends on
the preceding attribute parameter. See the "Attributes" section for a description of
the values for the

NX_ATTR_END
Constant that marks the end of the list of attribute, value pairs.

The DX_mkpa~CattrO function provides the functionality of the DX_mkpartO, nx_mkpart_rectO,
or DX_mkparCmapO functions to create partitions for your application programs.

The DX_mkpart_attrO function creates a partition using attributes that specify the partition's
characteristics. You specify the attributes in the function's argument list. An attribute consists of an
attribute constant and a value. The attribute constant is the name of the attribute. The attribute value
can be either an integer, array of integers, or a character string depending on the attribute. You use
the attribute parameter to specify the attribute constant and the value parameter to specify the value
of the attribute. See the "Attributes" section for the list of the attributes that can be set in the
DX_mkparCattrO function.

l:
I:
(J

[J

IJ
[~

r:
r:

(
""'I

...... 1

I '"
-,

1'"-''1

. .1

1-
1-'-"

.'

Ii
.oJ

[j

." L,J

.. -_. __ .. __ .. _._ _._. __ -----------

Paragon ™ System C Calls Reference Manual Manual Pages

When you create a partition with the DX_mkparCattrO function, the new partition gets default
characteristics. The partition's owner and group are set to the owner and group of the calling process.
Other characteristics including the effective priority limit, protection mode, and rollin quantum are
set, by default, to the same values as the parent partition, but can be changed using attributes.

Attributes

The attribute parameter can be set with the following attribute constants. The values for the value
parameter are described in the "Description" column.

Attribute Constant Description

Specifies the upper-left corner of a rectangular partition
when used with the NX_ATTR_RECT attribute. The
value parameter must be of type long.

If NX_ATTR_SEL is specified, the selected attributes
must be consistent with all nodes in the list unless
NX_A TTR_RELAXED is specified.

Specifies the effective priority limit of the new partition.
The value parameter must be of type long and be an integer
that ranges from 0 to 10, inclusive (0 is low priority, while
10 is high).

The new partition uses gang scheduling. NX_ATTR_EPL
can be used with or without NX_ATTR_SCHED.
However, if NX_ATTR_SCHED is present, it must be set
to NX_GANG or NX_SPS. If NX_ATTR_EPL is not
specified, and the partition is to be gang scheduled
(NX_ATTR_RQ or NX_ATTR_SCHED equals
NX_GANG or NX_SPS), the partition has the same
effective priority limit as its parent.

Specifies a set of nodes to use for a partition. The value
parameter must be of type long *. It functions as a pointer
to an array of node numbers.

NX_ATTR_SZ must also be specified to give the length of
the array, but need not precede it in the list of arguments. If
NX_ATTR_SEL is specified, the selected attributes must
be consistent with all nodes in the list unless
NX_A TTR_RELAXED is specified. Do not specify the
same node number more than once.

245

Manual Pages

Attribute Constant

246

Paragon TM System C Calls Reference Manual

Description

Specifies the protection modes for the partition. The value
parameter must be of type long.

Specifies a rectangular partition. The value parameter must
be of type long *. It functions as a pointer to an array of
two integers; the first integer is the height of the rectangle
and the second integer is its width.

If NX_ATTR_SEL is specified but
NX_ATTR_RELAXED is not, the selected attributes
must be consistent with all nodes in the rectangle.

Specifies whether to relax the requirement that all nodes
requested must be available and eligible for allocation. The
value parameter must be of type long. The value of 0 has
no effect; the value of 1 relaxes the requirement.

Specifies the rollin quantum for the new partition. The
value parameter must be of type long. It specifies
milliseconds and must not be larger than 86,400,000 (24
hours). A value of 0 means infinite; once rolled in, an
application runs to completion.

NX_ATTR_RQ can be used with or without
NX_ATTR_SCHED. However, if NX_ATTR_SCHED
is present, it must be set to NX_GANG. If
NX_ATTR_RQ is not specified, and the partition is to be
gang scheduled (NX_ATTR_SCHED equals
NX_GANG), the partition has the same rollin quantum as
its parent.

Specifies the new partition's scheduling type. The value
parameter must be of type long. It must be NX_STD for
standard, NX_SPS for space sharing or NX_GANG for
gang scheduling. If you do not specify a type, it defaults to
that of the parent partition. The scheduling type names are
specified in the nx.h include file. See the Paragon ™ System
User's Guide for more information about partitions and
scheduling.

[... -.,
. .A

I:

IJ

1·.-· ...

1_-· ..
'"

I:

I··,
-,

I:

(-""' ..
~

(
--'l

.;.,

I]

IJ

Paragon ™ System C Calls Reference Manual

Attribute Constant

Manual Pages

Description

Specifies the number of nodes in the new partition. The
value parameter must be of type long. A 0 (zero) or -1 for
value requests that all nodes in the parent partition that
meet the criteria specified by NX_ATTR_SEL be
allocated. If value is smaller than the parent partition is
specified, the nodes are selected by the system and are not
necessarily contiguous.

A pointer to a Node Attribute string. The value parameter
must be of type char *.

If you specify multiple NX_ATTR_SEL's, the Attribute
Selector is the logical and of all of them. Node Attribute;.;
strings are case-insensitive. The Node Attribute string may
consist of a comma-separated list of selectors. See the
"NX_ATTR_SEL Values" section for information on how
to specify value.

The following shoW's the format of the value parameter for the NX_ATTR_SEL attribute.

node_attribute

!node _attribute

Selects nodes having the specified attribute. For example,
when node_attribute equals the string mp, only MP nodes
are selected. The standard node attributes are shown in the
"Node Attributes" section.

Selects nodes not having the specified attribute. For
example, when node_attribute equals the string !io, only
nodes that are not I/O nodes are selected. Note that no
white space may appear between the ! and node_attribute.

247

Manual Pages

[relop][value]node_attribute

ntype[,ntype] ...

248

Paragon ™ System C Calls Reference Manual

Selects nodes having a specified value or range of values
for the attribute. For example, the string >=16mb selects
nodes with 16M bytes or more of RAM. The string 32mb
selects nodes with exactly 32M bytes of RAM. And, the
string >proc selects nodes with more than one processor.

The relop can be =, >, >=, <, <=, !=, or ! (!= and ! mean the
same thing). If the relop is omitted, it defaults to =.

The value can be any nonnegative integer. If the value is
omitted, it defaults to 1.

The node_attribute can be any attribute shown in the
"Node Attributes" section, but is usually either proc or mb.
(Other attributes have the value 1 if present or 0 if absent.)

No white space may appear between the relop, value, and
attribute.

Selects nodes having all the attributes specified by the list
of ntypes, where each ntype is a node type specifier of the
form node_attribute, !node_attribute, or
[relop][value]node_attribute. For example, the string
32mb, !io selects non-io nodes with 32M bytes of RAM.

You can use white space (space, tab, or newline) on either
side of each comma, but not within an ntype.

[-..,
.' ,

.,oJ

[
'~

.'"

[J

[J

I -~
..... Paragon TM System C Calls Reference Manual Manual Pages

r:
I:
I:
I~

I"
('--'

. "-'

I

I~

I
"~

."

IJ

---- -----

Node Attributes

The following shows the most common values for node_attribute. A node attribute that is indented
is a more specific version of the attribute from the previous level of indentation. For example, net
and scsi nodes are specific types of io node; enet and hippi nodes are specific types of net node (and
also specific types of io node).

Attribute

bootnode
gp
mp
mcp
nproc
nmb
io
net
enet
hippi
scsi
disk
raid

tape

Meaning

Boot node.
GP (two-processor) node.
MP (three-processor) node.
Node with a message coprocessor.
Node with n application processors (not counting the message coprocessor).
Node with nM bytes of physical RAM.
Any I/O nodes.
I/O node with any type of network interface.
Network node with Ethernet interface.
Network node with HIPPI interface .
I/O node with a SCSI interface.
SCSI node with any type of disk.
Disk node with a RAID array.
SCSI node with any type of tape drive.
Tape node with a 3480 tape drive.
Tape node with a DAT drive.

3480
dat

IDstring SCSI node whose attached device returned the specified IDstring. For example, a
disk node might have the IDstring NCR ADP-92101 0304.

Specifying the Nodes Allocated to the Partition

DX_mkparCattrO provides the following ways to specify the nodes allocated to the partition:

• Using NX_ATTR_SZ alone requests the specified number of nodes. A value of 0 or -1 requests
all the nodes in the parent partition.

NX_ATTR_SZ attempts to create a square partition. If this is not possible, it attempts to create
a rectangular partition that is either twice as wide as it is high or twice as high as it is wide. If
this is not possible, it uses any available nodes. In this case, the nodes allocated to the partition
may not be contiguous.

• Using both NX_ATTR_MAP and NX_ATTR_SZ requests the specified list of nodes.
NX_ATTR_MAP and NX_ATTR_SZ can appear in any order in the argument list.

249

Manual Pages

250

Paragon TM System C Calls Reference Manual

Using NX_ATTR_RECT alone requests a rectangular partition of the specified height and
width. The system places the rectangle within the parent partition.

• Using both NX_ATTR_RECT and NX_ATTR_ANCHOR requests a rectangular partition of
the specified height and width, whose upper left corner is located at the specified anchor node
within the parent partition. NX_ATTR_RECT and NX_ATTR_ANCHOR can appear in any
orderin the argument list. If the value ofNX_ATTR_ANCHOR is -1, the system determines
the anchor node within the parent partition.

• Using NX_ATTR_SEL alone requests all the nodes by attribute (of a specified node type) in
the parent partition.

• Using NX_ATTR_SEL together with NX_ATTR_SZ, NX_ATTR_MAP,
NX_ATTR_RECT, and/or NX_ATTR_ANCHOR requests the nodes specified by the
NX_ATTR_SZ, NX_ATTR_MAP, NX_ATTR_RECT, and/or NX_ATTR_ANCHOR, all
of which must have the node type specified by the NX_ATTR_SEL.

• Not using NX_ATTR_SEL, NX_ATTR_SZ, NX_ATTR_MAP, NX_ATTR_RECT, or
NX_ATTR_ANCHOR requests all the nodes in the parent partition.

• Using NX_ATTR_RELAXED with a value of 1 together with NX_ATTR_SEL,
NX_ATTR_SZ, NX_ATTR_MAP, NX_ATTR_RECT, or NX_ATTR_ANCHOR requests
all the available nodes (nodes that meet the attribute requirements) in the specified node set
(requested size and/or shape). up to the number of nodes requested. For
NX_MKP ART _ATTRO to return successfully. at least one of the specified nodes must be
available.

The following combinations of these attributes are invalid:

• NX_ATTR_RELAXED together with NX_ATTR_RECT, unless you also specify
NX_ATTR_ANCHOR with a value other than -1.

Using any of these combinations of attributes causes nx_mkparCattrO to fail with the error
"invalid attribute specified."

rr -
!
bat:. =

~i
~J

[:
L

l=
(J

[J

------"---_."-"

I:

I '"
'"

1-
I~-'

__ -• ..J

1_=

I:

I
·~

. ..1

Paragon TM System C Calls Reference Manual Manual Pages

Examples

The following example creates a new partition called newpart (using a relative partition pathname)
whose parent partition is the .compute partition. The new partition consists of all the nodes in the
.compute partition and has the same scheduling type, rollin quantum, and effective priority limit as
the .compute partition. In this example (and those following), the variable n is assigned the number
of nodes in the new partition, or -1 if any error occurred.

include <nx.h>
int n;

}

The following example creates a new space-shared partition called mypart (using an absolute
partition pathname) whose parent partition is the .compute partition and which has 54 nodes:

#include <nx.h>
int n;

n nx_mkpart_attr(".compute.mypart",
NX_ATTR_SZ, 54,
NX_ATTR_SCHED, NX_SPS,
NX_ATTR_END) ;

251

Manual Pages

252

Paragon ™ System C Calls Reference Manual

The following example creates a new gang-scheduled partition called reet whose parent partition is
my part. It is 3 nodes high and 4 nodes wide, and has its upper left corner at node 1 of my part. It has
a rollin quantum of 600,000 milliseconds (10 minutes) and the same effective priority limit as
mypart:

#include <nx.h>
long rect[2];
int n;

rect [0] = 3;
rect[l] = 4;

n nx_mkpart_attr(".compute.mypart.rect",
NX_ATTR_RECT, rect,
NX_ATTR_ANCHOR, 1,
NX_ATTR_RQ, 600000,
NX_ATTR_END) ;

The following example creates a new gang-scheduled partition called comers whose parent partition
is reet and consists of the four corner nodes of reet. It has an effective priority limit of 3. All other
characteristics are the same as reet:

#include <nx.h>
long nodes [4] ;
int n;

nodes [0]
nodes [1]
nodes [2]
nodes [3]

=
=

0;
3;
8;
11;

n = nx_mkpart_attr(".compute.mypart.rect.comers",
NX_ATTR_MAP, nodes,
NX_ATTR_SZ, 4,
NX_ATTR_EPL, 3,
NX_ATTR_END) ;

(J
[J

(]

(J

[.1
,4Oi

[J

r"" ...

r"'!Ii

..

I:
1-
I "",'

"

1_"'
j

I '·""
d

I:

1=

I ,J

r:

D

Paragon ™ System C Calls Reference Manual Manual Pages

The following example creates a new partition called bigmem whose parent partition is the . compute
partition and consists of all available nodes with 64M bytes or more of physical RAM. All other
characteristics of bigmem are the same as those of the .compute partition:

include <nx.h>

int n;

n nx_mkpart_attr ("bigmem",

}

NX_ATTR_SEL, " >= 64mb" ,
NX_ATTR_RELAXED, 1,

NX_ATTR_END) ;

Return Values

Errors

>0

-1

Allocated nodes: The number of nodes allocated for the partition.

Error: No nodes matched the attributes' specified in the attribute selector. An error
has occurred and errno has been set. Note that the error occurs even if
NlCAITR_REIAXED is set to 1.

When -1 is returned by this function, errno is set to one of the following values:

EINVAL Invalid attribute specified in the attribute parameter, including error in the Some
nodes in the map or rectangle do not qualify attribute selector.

EPACCES The application has insufficient access permission on a partition.

EPALLOCERR
An internal error occurred in the node allocation server.

EPBADNODE The specified node is a bad node or is not present in the partition.

EPBXRS Partition request contains bad or missing nodes.

253

Manual Pages Paragon ™ System C Calls Reference Manual

EPINVALPART

EPLOCK

EPNOMATCH

EPPARTEXIST

EPXRS

The specified partition (or its parent) does not exist.

Partition is currently in use or being updated.

Some nodes in the map or rectangle do not qualify. An attribute selector was
specified with nodes in the map or rectangle that do not.have all the specified node
attributes.

The specified partition already exists.

Request exceeds the partition's resources.

Limitations and Workarounds

See Also

254

For information about limitations and workarounds, see the release notes files in
/usr/share/release _notes.

commands: application, chpart, lspart, mkpart, pspart, rmpart

r"l
'-Ai

(J

IJ
11

AJ

(J

[J
(-."l

. .1

(J

I~'

I·.~·

...

I"~

("'

(
~

--'

I~
I

~-

~I

I~

1.'
I --~.

--

(.
-'~

.,p..r

l:

Paragon ™ System C Calls Reference Manual Manual Pages

Forks the calling process and creates an application's processes.

Synopsis

Parameters

#include <nx.h>

long nx_nfork(
long node _list[] ,
long numnodes,
longptype,
long pid_list[]);

Array of node numbers on which to fork the calling process.

NOTE

Do not specify the same node number more than once. If you
specify the same node twice, two processes are created on the
specified node, but one of the processes is terminated shortly after
creation with the error setptype: Ptype already in use.

numnodes Length of the node_list array (that is, the number of nodes on which to fork the
calling process). If you set the numnodes parameter to -1, the DX_nforkO uses all
the nodes of the application and ignores the node_list parameter.

ptype Process type ofthe new process(es).

255

- - - -.. -----~-~----

Manual Pages Paragon TM System C Calls Reference Manual

NX_NFORKO (cont.) NX_NFORKO (cont.)

Description

Array in which nx_nforkO records the aSP/1 process IDs of the new processes.
Each element of the pid_list array contains the aSPIl process ID of the process
that was forked on the node identified by the corresponding element of the
node_list array. An entry of 0 (zero) indicates that the process on the
corresponding node was not forked successfully. Valid pid_list values exist only
for the calling process. The values in the pid_list arrays of any child processes
created by DX_nforkO are invalid.

If the numnodes parameter equals -1, the first element of the pid_list array equals
the PID of node 0, the second element of the pid_list array equals the PID of node
1, and so on for all the nodes in the system.

The DX_nforkO function forks the calling process onto the nodes specified by the node_list
parameter. The fork operation copies the calling process onto a specified set of nodes with a
specified process type. It creates one child process for each specified node. The DX_nforkO function
is similar to the aSP/1 forkO call, except that it can fork processes onto multiple nodes and specifies
a process type for the child processes. This call can only be made after an initial nx_initveO call.

Return Values

256

If the fork succeeds:

• The parent process receives a value that indicates the number of child processes that were
created (that is, the number of nodes on which the process was forked).

• Each child process receives the value 0 (zero).

If the fork fails:

• The calling process receives the value -1.

• Each successfully created child process receives the value 0 (zero).

NOTE

It is possible that the fork could fail on more than one node, and
that each failure could be for a different reason. In such a case, the
value of ermo reflects only one of the failures, and it is not possible
to determine which one.

[.. ~
•

(]

!'t.,
I . .

~.~

I'f'l
&.J

IJ
~~
__J

[~

r:
I··...,.·

'""

I. ·~
.,'..oJ

I-~

1--'

I:,
1-
I ·',

~I

I:

(-'

(.c.

I ,
.JiIJ

Paragon ™ System C Calls Reference Manual Manual Pages

NX_NFORK() (cont.) NX_NFORK() (cont.)

Errors

When -1 is returned by this function, ermo is set to one of the following values:

EPALLOCERR An internal error occurred in the node allocation server.

EPBADNODE The specified node is a bad node.

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlshare!release_notes.

mdnitveO, nx_loadO, setptypeO

OSFll Programmer's Reference: fork(2)

257

· --.-- ... ---------~-.----

Manual Pages Paragon TM System C Calls Reference Manual

Returns information about a partition.

Synopsis

Parameters

Description

258

#include <nx.h>

int nx_parCattr(
char *partition,
nx_parCinfo_t *attributes);

partition

attributes

Relative or absolute patbname of a partition. The partition must exist and give
read permission to the calling process.

Pointer to an nx-parCinfo_t structure that contains information about the
partition specified by the partition parameter. The DX-parCinfo_t type is defined
in the include file allocsys.h (included in the include file nx.h). You must allocate
space for this structure.

The nx_parCattrO function returns the partition characteristics of the partition specified by the
partition parameter.

The DX-parCinfo structure includes the following fields:

uid User II) for the partition's owner.

gid Group ID for the partition's owner.

access Access permissions for the partition. A three-digit octal number.

sched Scheduling type for the partition (defined in nx.h):

Gang scheduling.

Space sharing.

Standard scheduling.

(J

r --,
I

~.J

[i, ' '
A.i

[J

LJ
IJ

I:
I '"',

~,.

I '·'
._.«tJ

I :

I

(~

('-
-'

I:
(

""1

"".1

I~

C

Paragon ™ System C Calls Reference Manual Manual Pages

rq

epl

nodes

mesh-y

Rollin quantum for the partition. The value is 0 (zero) for a standard-scheduled or
space-shared partition.

Effective priority limit for the partition. The value is 0 (zero) for a
standard-scheduled partition.

Number of nodes in the partition.

Width of the partition (columns). This is set only if the node set is a contiguous
rectangle.

Height of the partition (rows). This is set only if the node set is a contiguous
rectangle.

enclose_mesh_x Width of the smallest rectangle that completely encloses the partition.

enclose_mesh-y Height of the smallest rectangle that completely encloses the partition.

Return Values

Example

On successful completion, the DX_parCinfoO function returns 0 (zero). Otherwise, -1 is returned
and errno is set to indicate the error.

The following example prints the rollin quantum and effective priority limit for the partition mypart:

#include <nx.h>
main () {

nx-part_info_t info;
int status;

status = nx-part_attr("mypart", &info);

if(status != 0) {
nx-perror (IInx-part_attr () ") ;
exit(l) ;

printf ("rq %d, epl %d\n", info.rq, info.epl);

Note the use of the & operator on the structure info in the call to nx_parCattrO.

259

Manual Pages Paragon 1M System C Calls Reference Manual

Errors

EPACCES The application has insufficient access permission on a partition.

EPINV ALPART
The specified partition (or its parent) does not exist.

Limitations and Workarounds

See Also

260

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease _notes.

I{'f'\
i~

'-'~ i..A1

~ .. ~

It ...

rr~ iJ

~."I.
- ' , ,

-"'"

r~
i~

l:
(J

IJ

I
'-~

,'"

(....
,,",

I
--'~'

". ,..;.;

(--.. ,
. 1;:

1-... ,
~,

r--

(-'~

I-~-

1-

1_....,
'..;J

I--~',
, -"-'

I'J

~
n u

Paragon ™ System C Calls Reference Manual Manual Pages

Returns the root partition node numbers for a partition .

Synopsis

Parameters

Description

#include <nx.h>

int DX_part_Dodes(
char *partition,
nx_nodes_t *node_list,
unsigned long *liscsize);

partition

lisCsize

Relative or absolute patbname of a partition. The specified partition must exist and
must give read permission to the calling process.

Pointer variable into which the Dx-parCDodesO function stores the address of the
list of nodes in partition. The call allocates memory for this parameter. Free this
memory using the freeO function.

Address of a variable into which the Dx_parCnodesO function stores the number
of elements in the node_list array.

The DX-part_DodesO function returns the root partition node numbers for the partition specified by
the partition parameter.

Return Values

On successful completion, the DX_part_DodesO function returns 0 (zero). Otherwise, -1 is returned
and errno is set to indicate the error.

261

Manual Pages

Examples

Errors

Paragon ™ System C Calls Reference Manual

The following example prints the root node numbers for the partition mypart:

#include <nx.h>
main () {

mynodes;
unsigned long nnodes;
int i, status;

status nx-part_nodes ("mypart ", &mynodes, &nnodes);

if(status != 0) {
nx-perror ("nx-part_nodes () ") ;
exit(l) ;

forti = 0; i < nnodes; i++) {
printf (" %d\n", mynodes [i]) ;

free (mynodes) ;

EPACCES The application has insufficient access permission on a partition.

EPINVALPART
The specified partition (or its parent) does not exist.

Limitations and Workarounds

See Also

262

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease _notes.

I'" .'"
~ ... ~

(J
~~
1.--""

r:
(J

()

1_"""
' '.'

(''''''
-,

1=
1=

I,
1--,

. ,'

Paragon ™ System C Calls Reference Manual Manual Pages

Print an error message corresponding to the current value of ermo.

Synopsis

Parameters

Description

Errors

#include <nx.h>
#include <errno.h>

void nx_perror(
char *string);

string String that contains the name of the program or function that caused the error.

Other than additional errors and the error message format, nx_perrorO is identical to the OSF/l
perrorO call. See perror(2) in the OSFll Programmer's Reference.

There is a standard error message for each value of ermo, which you can print out by calling
DX_perrorO. nx_perrorO prints its argument (any string), the current node number and process
type, and the error message associated with the current value of ermo to the standard error output in
the following format:

(node n, ptype p) string: error_message

The include file ermo.h declares ermo and defines constants for the possible ermo values .

Refer to the errno manual page for a complete list of error codes that occur in the C underscore
system calls.

Limitations and Workarounds

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

263

Manual Pages Paragon™ System C Calls Reference Manual

See Also

errno

OSFll Programmer's Reference: perror(2)

264

(
... 10;

. ..i

,-~

U

,T\
IL"")

[J

l:
[:
I:

l:

I~:

I, ''''',
.-l

r .•

I "
• .J

I
'~

.~

[J

.. ----~-----

Paragon ™ System C Calls Reference Manual Manual Pages

Sets the priority of an application.

Synopsis

Parameters

Description

#include <nx.h>

long nx_pri(
long pgroup,
long priority);

pgroup

priority

Process group ID for the application, or 0 (zero) to specify the application of the
calling process. If the specified process group ID is not a process group ID of the
calling process, the calling process's user ID must either be root or the same user
ID as the specified application.

New priority for the application, an integer from 0 (lowest priority) to 10 (highest
priority) inclusive.

An application runs in a partition with a priority. The priority determines how and when the
application is scheduled to run in the partition. The DX_priO function sets an application's priority.
An application's priority can range from 0 (low priority) to 10 (high priority), inclusive; an
application with the higher priority takes scheduling precedence over applications with lower
priorities. See the Paragon™ System User's Guide for more information on scheduling and an
application's priority.

If you do not call nx_priO and you do not use the -pri switch with your application, the default
priority is 5.

Return Values

>0 No errors; priority successfully set.

-1 Error; ermo is set.

265

------------------------- -------- ------ --------------~ -- --

Manual Pages

Errors

Paragon ™ System C Calls Reference Manual

When -1 is returned by this function, errno is set to one of the following values:

EANOEXIST The specified process group is an invalid value. For example, you specified a
negative number for the process group value.

EPALLOCERR An internal error occurred in the node allocation server.

EPERM The calling process does not have permission to change the application's priority.

EPINV ALPRI The specified priority is out of the range of priority values.

ESRCH The specified process group does not exist.

Limitations and Workarounds

See Also

266

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease _notes.

r:

r:
(J
(-~

11

I:
r:

I':
(""'-'

'"

I ~"

i

[--, :
~,

(J

l:
(, -,:

.J

I:

r:
c

Paragon ™ System C Calls Reference Manual Manual Pages

Returns information about the applications and active partitions in a specified partition.

Synopsis

Parameters

Description

#include <sys/time.h>
#include <nx.h>

int nx_pspart(
char *partition,
nx_psparCt **psparClist,
unsigned long *lisCsize);

partition

lisCsize

Relative or absolute patbname of a partition. The specified partition must exist and
must give read permission to the calling process.

Pointer variable into which the m,-pspartO function stores the address of an array
of nx-psparct structures. Each structure contains information about an
application or active partition in the partition specified by the partition parameter.
The nx-pspart_t type is defined in the include file allocsys.h, which is included
by the include file nx.h. The call allocates memory for this parameter. Free this
memory using the freeO function.

Pointer variable into which the nx-pspartO function stores the number of
elements in the pspart_list parameter.

The DX-pspartO function provides information about the status of the applications and active
partitions in a specified partition. The DX-psparCt structure contains the following information:

objecctype

objecUd

uid

Indicates if the object is an active partition (NX_P ARTITION) or an application
(NX_APPLICA TION).

Process group ID for an application or a partition ID (arbitrary integer) for a
partition.

Numeric user ID of the object's (partition or application) owner.

267

Manual Pages

gid

size

priority

elapsed

active

Paragon ™ System C Calls Reference Manual

NX_PSPARTQ (cont.)

Numeric group ID of the object's group.

Number of nodes in the object.

Priority of the object.

Amount of time the object has been rolled in during the current rollin quantum, in
milliseconds.

Rollin quantum of the object's parent partition (the partition specified in the
nx_pspartO call), in milliseconds.

Total amount of time the object has been rolled in since it was started, in
milliseconds.

Indicates whether the object is active (rolled in), inactive (rolled out), and/or has
been dumping core. The values are as follows:

o

1

2

3

Object is inactive and is or has not been dumping core.

Object is active and is or has not been dumping core.

Object is inactive and is either currently dumping core
or has dumped core. This active value applicable only
when object is an application.

Object is active and is either currently dumping core or
has dumped core. This active value applicable only
when object is an application.

Time the object was started, as returned by the timeO call. If the object is a
subpartition, the time is when the oldest application started in the subpartition.

Return Values

268

On successful completion, the nx_pspartO function returns 0 (zero). Otherwise, -1 is returned and
ermo is set to indicate the error.

[:

,-"
L

l:

(J

".---~ .. --.--- - -----.- ... ,-~---.-.-~---.-----.-.~---~----" -

I". ' ..

r
·~

.. '
I
"'~

. .l>J

I~I

(

-""'1

..J,..J

1_=

~

r:

r·.,
~J

I]

D

Paragon ™ System C Calls Reference Manual Manual Pages

NX_PSPARTO (cont.) NX_PSPARTO (cont.)

Examples

Errors

The following example prints the numeric user ID and size for every application and subpartition in
the partition mypart:

#include <nx.h>
rnain() {

nx-pspart_t
nx-pspart_t
unsigned long
int

*info;
*ptr;
nobjs;
status, i;

status nx-pspart("rnypart", &info, &nobjs);

}

if(status != 0) {
nx-perror (II nx-pspart () II) ;

exit(l);

ptr= info;
for(i = 0; i < nobjs; i++)

printf("uid = %d, size
ptr++;

free(info) ;

%d\n", ptr->uid, ptr->size);

Note the use of the & operator on the structure info and the variable nobjs in the call to DX_pspartO.

EPACCES The application has insufficient access permission on a partition.

EPINVALPART
The specified partition (or its parent) does not exist.

269

Manual Pages Paragon TM System C Calls Reference Manual

NX_PSPARTO (cont.)

Limitations and Workarounds

See Also

270

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

pspart

r:

(-:

(.... ~
u

I·~·

I-~

I:

lJ

(]

Paragon 1M System C Calls Reference Manual Manual Pages

Removes a partition.

Synopsis

Parameters

#include <nx.h>

long nx_rmpart(
char *partition,
long force,
long recursive);

partition

force

recursive

Relative or absolute pathname of the partition to be removed. The parent partition
must give write permission to the calling process.

Removes partitions that contain running applications. If the value is 0 (zero), the
partition will not be removed if any applications are running in the partition. Any
other value specifies removing the partition even if applications are running in the
partition.

Recursively remove the partition. A value of 0 (zero) specifies that the partition
will not be removed if the partition has any subpartitions.

A non-zero value specifies that the partition and all its subpartitions will be
removed recursively. There cannot be any applications running in the partition or
any of its subpartitions. If applications are running in the partition or any of its
subpartitions, the nx_rmpartO function does not remove the partition or any of
its subpartitions.

Theforce parameter set to a positive integer and used with the recursive parameter
allows a partitions and subpartitions to be removed if they have applications
running in them.

271

---------------~-------.-

Manual Pages Paragon ™ System C Calls Reference Manual

NX_RMPARTO (cont.) NX_RMPARTO (cont.)

Description

The DX]mpartO function removes from the system a partition, its subpartitions, and applications
running in the partition or its subpartitions. A calling process must have write permission on the
parent partition to remove the partition.

The force parameter specifies whether to remove the partition if it contains applications. A 0 (zero)
value specifies not to remove a partition if it contains applications. Any other value forces the
partition to be removed. This is a safety mechanism so you do not accidently destroy an application
or subpartition.

The recursive parameter specifies whether to remove the partition and all its subpartitions. A 0
(zero) value specifies not to remove a partition if it contains subpartitions. Any other value removes
the partition and all its subpartitions.

If you provide non-zero values for both theforce and recursive parameters, DX]mpartO removes
the partition and all its subpartitions, even if applications are running in the partition or its
subpartitions.

Return Values

>0 Partition was successfully removed.

-1 Error; ermo is set.

Errors

When -1 is returned by this function, ermo is set to one of the following values:

EPACCESS Insufficient access permission for this operation on a permission.

EPALLOCERR An internal error occurred in the node allocation server.

EPINVALPART
The specified partition does not exist.

EPLOCK The specified partition is currently being updated and is locked by someone else.

EPNOTEMPTY

[:

The specified partition contains one or more subpartitions or running applications. ["!1,

lIIi

272

I-y

~Jl;

r:
1""

~I

I
~-""I

.MJ

I:
I:
I~

I
~~

~I

[=

C

l=~
["',.,

-.J

I~

r=
I~

I~
[,

I~

l:
I)

C

Paragon ™ System C Calls Reference Manual Manual Pages

NX_RMPART() (cant.) NX_RMPART() (cant.)

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

chpart, lspart, mkpart, nx_chpartO, nx_mkpartO, pspart, rmpart

273

Manual Pages Paragon™ System C Calls Reference Manual

NX_ WAITALLO

Waits for all the child processes of a calling process to stop or terminate

Synopsis

Description

#include <nx.h>

long nx_waitall(void);

The nx_ waitallO function takes no parameters, waits for all the child processes of a calling process
to stop or terminate, and returns 0 (zero) for successful termination of child processes or -1 for
unsuccessful termination of child processes. Otherwise, the nx_ waitallO function is identical to the
OSFIl waitO function. See wait(2) in the OSFll Programmer's Reference.

The nx_ waitallO function suspends the application's calling process until all the application's child
process stop or terminate. An application can start child process with the DX_nforkO, nx_loadO, or
DX_loadveO functions.

If the nx_ waitallO function detects that one of the processes being waited for has been terminated
by the signal SIGBUS, SIGFPE, SIGILL, SIGSEGV, or SIGSYS, the nx_waitallO function
terminates the whole application by sending a SIGKILL to the process group.

Return Values

o All the application's processes terminated successfully

-1 One or more of the application's processes terminated with an error

Errors

["1
. I ..

If~

If the DX_ waitallO function fails, erma may be set to one of the error code values described for the i~
OSFIl wait(2) function.

Limitations and Workarounds

274

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease _notes.

(1
""

r:
I
-~

...
I--"'~

'"

r~
1_--,

"

(-.. ,

r~

I. ~-.'
"

i=
r

"~

1IJ

[

["~

I-~"

'-'" ~,

('-'

(',

I'~

[J

[J

[j

D

Paragon ™ System C Calls Reference Manual Manual Pages

NX_WAITALL() (cont.) NX_WAITALL() (cont.)

See Also

275

Manual Pages Paragon™ System C Calls Reference Manual

OPEN() OPEN()

openO, creatO: Opens or creates a file for reading or writing.

Synopsis

Parameters

276

#include <fcntl.h>
#include <sys/stat.h>
#include <sys/types.h>

int open(
const char *path,
int oflag [,
mode_t mode]);

int create
const char *path,
mode_tmode);

path

ojlag

mode

Specifies the file to be opened or created. If the path parameter refers to a
symbolic link, the openO function opens the file pointed to by the symbolic link.

Specifies the type of access, special open processing, the type of update, and the
initial state of the open file. The parameter value is constructed by logically ~Ring
special open processing flags. These flags are defined in the fcntl.h header file and
are described below.

Specifies the read, write, and execute permissions of the file to be created
(requested by the 0_ CREAT flag in the openO interface). If the file already exists,
this parameter is ignored. This parameter is constructed by logically ~Ring values
described in the sys/mode.h header file.

lJ
[J

(J

IJ

I:
(-

"~

I ··,.,
.. _~J

I'...,
-"'-'

14

.d

r:
I:

1
-~1

__ .!!...J

I." .. .,
"~

I
-~

_~J

l:

II

Paragon ™ System C Calls Reference Manual Manual Pages

OPENO (cant.) OPENO (cant.)

Description

The openO and creatO functions establish a connection between the file named by the path
parameter and a file descriptor. The opened file descriptor is used by subsequent 110 functions, such
as readO and writeO, to access that file.

The returned file descriptor is the lowest file descriptor not previously open for that process. No
process can have more than OPEN_MAX file descriptors open simultaneously.

The openO and creatO functions, which suspend the calling process until the request is completed,
are redefined so that only the calling thread is suspended.

The file offset, marking the current position within the file, is set to the beginning of the file. The
new file descriptor is set to remain open across exec functions. (See the fcntlO function.)

The file status flags and file access flags are designated by the oflag parameter. The oflag parameter
is constructed by bitwise-inclusive DRing exactly one of the file access flags (O_RDONLY,
0_ WRONL Y, or 0 _RDWR) with one or more of the file status flags.

File Access Flags

The file access flags are as follows:

O_RDONLY The file is open for reading only.

0_ WRONLY The file is open for writing only.

The file is open for reading and writing.

Exactly one of the file access values (O_RDONLY, O_WRONLY, orO_RDWR) must be
specified. If none is set, O_RDONLY is assumed.

File Status Flags

File status flags that specify special open processing are as follows:

If the file exists, this flag has no effect except as noted under 0 _EX CL. If the file
does not exist, a regular file is created with the following characteristics:

The owner ill of the file is set to the effective user ill of the process.

• The group ill of the file is set to the group ill of its parent directory.

277

Manual Pages Paragon ™ System C Calls Reference Manual

OPENO (cont.) OPENO (cont.)

278

• The file permission and attribute bits are set to the value of the mode
parameter, modified as follows:

All bits set in the process file mode creation mask are
cleared.

The set-user ill attribute (S_ISUID bit) is cleared.

The set-group ill attribute (S_ISGID bit) is cleared.

The S_ISVTX attribute bit is cleared.

The calling process must have write permission to the file's parent directory with
respect to all access control policies to create a new file.

O_EXCL If O_EXCL and O_CREAT are set, the open fails if the file exists.

° _NOCTTY If the path parameter identifies a terminal device, this flag assures that the
terminal device does not become the controlling terminal for the process.

O_TRUNC If the file does not exist, this flag has no effect. If the file exists and is a regular
file, and if the file is successfully opened O_RDWR or 0_ WRONLY:

• The length of the file is truncated to 0 (zero).

• The owner and group of the file are unchanged.

• The set-user ill attribute of the file mode is cleared.

• The set-user ill attribute of the file is cleared.

The open fails if either of the following conditions are true:

• The file supports enforced record locks and another process has locked a portion of the file.

• The file does not allow write access.

If the oflag parameter also specifies O_SYNC, the truncation is a synchronous update.

A program can request some control over when updates should be made permanent for a regular file
opened for write access.

[:
l:
[:

[J

l:
IJ
I:

(.".
.,iii

I":
I:
[-."

.• ~

I.
···~

~ .. ~

I:
[:

(....

I-~~

I ",'
. . '

Paragon ™ System C Calls Reference Manual Manual Pages

OPEN() (cont.) OPEN() (cont.)

File status flags that define the initial state of the open file are as follows:

If set, updates and writes to regular files and block devices are synchronous
updates. File update is performed by:

• fclear()

• ftruncate()

• openO with O_TRUNC

• writeO

On return from a function that performs a synchronous update (any of the above
system calls, when O_SYNC is set), the calling process is assured that all data for
the file has been written to permanent storage, even if the file is also open for
deferred update.

If set, the file pointer is set to the end of the file prior to each write.

O_NONBLOCK,O_NDELAY
If set, the call to openO will not block, and subsequent read() or writeO
operations on the file will be nonblocking.

General Notes on 011ag Parameter Flag Values

The effect of O_CREAT is immediate.

When opening a FIFO with O_RDONL Y:

• If neither 0 _NDELAY nor 0 _NONBLOCK is set, the openO function blocks until another
process opens the file for writing. If the file is already open for writing (even by the calling
process), the openO function returns without delay .

• If 0 _NDELA Y or 0 _NONBLOCK is set, the openO function returns immediately.

When opening a FIFO with 0_ WRONLY:

• If neither 0 _NDELA Y nor 0 _NONBLOCK is set, the openO function blocks until another
process opens the file for reading. If the file is already open for reading (even by the calling
process), the openO function returns without delay.

If 0 _NDELA Y or 0 _NONBLOCK is set, the openO function returns an error if no process
currently has the file open for reading.

279

Manual Pages Paragon TM System C Calls Reference Manual

OPEN() (cont.) OPEN() (cont.)

When opening a block special or character special file that supports nonblocking opens, such as a
terminal device:

• If neither 0 _NDELAY nor 0 _NONBLOCK is set, the openO function blocks until the device
is ready or available.

• If 0 _NDELA Y or 0 _NONBLOCK is set, the openO function returns without waiting for the
device to be ready or available. Subsequent behavior of the device is device-specific.

Numbered Files

If three or more # characters are in a file name, these characters are replaced by the number of the
node (within the application) that opens the file. For example, assume that the same program is
running on several nodes, and each node opens a file namedjile###. The result is that each node
opens a separate file. Node 0 opensjileOOO, node 1 opensjileOOI, node 2 opensjile002, and so on.

If the node number has more than three digits but the filename has only three # characters, the
filename is lengthened by the number of characters necessary to add the extra digits to the name. For
example, opening data.### on every node of an application running on 2000 nodes opens files
data.OOO, data.OOI, data.002, ... , data.999, data. 1000, data.lOOI, ... , data.1998, and data.1999.

Less than three # characters in the file name appear as actual # characters. For example, the file
jile##l is a single file accessible by each node.

Return Values

Errors

280

Upon successful completion, the openO and creatO functions return the file descriptor, a
nonnegative integer. Otherwise, a value of -1 is returned and errno is set to indicate the error.

If the openO or creatO function fails, ermo may be set to one of the following values:

EACCES

EAGAIN

Search permission is denied on a component of the path prefix, or the type of
access specified by the oflag parameter is denied for the named file, or the file
does not exist and write permission is denied for the parent directory, or
O_TRUNC is specified and write permission is denied.

The O_TRUNC flag is set, the named file exists with enforced record locking
enabled, and there are record locks on the file.

r:

[J

l:
Ll
[.. ~

.;0

I',··
,-,,"

I ·,.
... '

1,-"<

, ~,

I "
,~I

I
-~:

_",J

(""

<'

r=
r:
IC~'

(~,

I"'
I::
(

-'1

--'

I"~

..JiJ

Paragon ™ System C Calls Reference Manual Manual Pages

OPENO (cont.)

EDQUOT

EEXIST

EFAULT

EINTR

EISDIR

ELOOP

EMFILE

OPENO (cont.)

The directory in which the entry for the new link is being placed cannot be
extended because the quota of disk blocks or i-nodes defined for the user on the
file system containing the directory has been exhausted.

The O_CREAT and O_EXCL flags are set and the named file exists.

The path parameter is an invalid address.

A signal was caught during the openO function.

The named file is a directory and write access is requested.

Too many links were encountered in translating path.

The system limit for open file descriptors per process has already reached
OPEN_MAX.

ENAMETOOLONG

ENFILE

ENOENT

ENOSPC

ENOTDIR

ENXIO

The length of the path string exceeds PATH_MAX, or a pathname component is
longer than NAME_MAX.

The system file table is full.

The 0_ CREAT flag is not set and the named file does not exist, or 0_ CREAT
is set and the path prefix does not exist, or the path parameter points to the empty
string.

The directory that would contain the new file cannot be extended, the file does not
exist, and 0_ CREAT is requested.

A component of the path prefix is not a directory.

The named file is a character special or block special file, and the device
associated with this special file does not exist.

The named file is a multiplexed special file and either the channel number is
outside of the valid range or no more channels are available.

The O_NONBLOCK flag is set, the named file is a FIFO, 0_ WRONLY is set,
and no process has the file open for reading.

EOPNOTSUPP The named file is a socket bound to the file system (a UNIX domain socket) and
cannot be opened.

281

Manual Pages Paragon™ System C Calls Reference Manual

OPEN() (cont.) OPEN() (cont.)

See Also

282

EROFS The named file resides on a read-only file system and write access is required.

ETXTBSY The file is being executed and oflag is 0_ WRONL Y or 0 _RDWR.

Functions: chmod(2), close(2), fcntl(2),lockf(3), Iseek(2), read(2), stat(2), truncate(2),
umask(2), write(2)

I:

I ''''
'"'

I'··."
.~'"

1_,"',
_'t

i '--
r>2

IJ

I:
(-"'"

. ,~~

(
'~

-.~

Paragon ™ System C Calls Reference Manual Manual Pages

Populate an emulator's PFS stripe directory cache.

Synopsis

Parameters

Description

int pfs_hosCinit(
char *pfs_name);

Pointer to the root of a PFS file system (for example, "/pfs").

The pfs_hosCinitO call populates the calling task's emulator-resident, PFS-stripe-directory cache
with (Mach IPC) ports for each of the PFS stripe directories. These ports allow the emulator to
communicate directly with the file server that services each PFS stripe file.Without this cache, the
emulator sends patbname operations to the boot-node file server, which redirects them to the file
server that services the stripe file. Using the pfs_hosCinitO call results in a significant Mach IPC
load reduction for the boot-node.

The cache exists in the portion of the emulator's memory that is inherited across the forkO family
of system calls. Consequently, the pfs_hosCinitO call need only be called by the parent of a parallel
program; all children will inherit the PFS-stripe-directory cache.

The pfs_hosCinitO call is most effective for those programs that do repetitive pathname system
calls (openO, statO, unlinkO, accessO, and so on) on PFS-resident files. Virtually any system call
that has a patbname argument that references a PFS file will benefit from using the pfs_hosCinitO
call.

Return Values

Return values are those defined in lusrlincludelermo.h:

ESUCCESS Indicates success.

ENOENT Indicates a bad PFS path or one that is not a PFS file system.

283

Manual Pages Paragon TM System C Calls Reference Manual [:

Limitations and Workarounds

The pfs_hosCinitO call can be used only once per application.

Only one PFS file system can be cached per application.

If a cached PFS file system is dismounted and then remounted. the cache will be invalid.

[~

.. .j

284 L:

I:
1-",,-

. -iIij'

I--_-·~

~-

r~

I:'

I ~.

I~

I]

()

(]

~-------~-~------------

Paragon™ System C Calls Reference Manual Manual Pages

RMKNOD() RMKNOD()

Creates a special file on a remote 110 node

Synopsis

Parameters

Description

#include <sys/types.h>
#include <sys/stat.h>

intrmknod (
const char *path,
int mode,
dev_t device,
long node);

path

mode

device

node

Names the new file. If the final component of the path parameter names a
symbolic link, the link will be traversed and pathname resolution will continue.

Specifies the file type, attributes, and access permissions. This parameter is
constructed by logically ORing values described in the syslmode.h header file.

Depends upon the configuration and is used only if the mode parameter specifies
a block or character special file. If the file you specify is a remote file, the value
of the device parameter must be meaningful on the node where the file resides.

Node number of a remote 110 node that can be the boot node or any other 110 node.

Other than the addition of the node parameter, the rmknodO function is identical to the OSFIl
mknodO function. See the mknod(2) manual page in the OSFll Programmer's Reference.

The rmknodO function creates a special file that references a remote 110 node specified by the node
parameter. The remote 110 node can be the boot node or any other I/O node. This function requires
superuser privilege.

285

Manual Pages Paragon TM System C Calls Reference Manual

RMKNOD() (cont.) RMKNODO (cont.)

Return Values

Errors

-Upon successful completion of the rmknodO function a value of 0 (zero) is returned. Otherwise, a
value of -1 is returned and ermo is set to indicate the error.

If the rmknodO function fails, ermo may be set to one of the error code values described for the
OSFIl mknodO function.

Limitations and Workarounds

See Also

286

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease _notes.

rmknod

OSFll Programmer's Reference: chmod(2), mkdir(2), mknod(2), open(2), umask(2), stat(2)

OSFll Command Reference: chmod(l), mkdir(l), mknod(8)

l:

(:

I:
r:
I:
I:

... ~.
1_,

I:
l:
I~
I·e,

I~:

1-'

r:

Paragon ™ System C Calls Reference Manual Manual Pages

READOFF(} READOFF(}

readoff(), readvoff(): Synchronous reads from a file at a specified offset.

Synopsis

#include <sys/types.h>
#include <nx.h>

int readotT(
intfildes,
esize_t offset,
char *buffer,
unsigned int nbytes);

#include <sys/types.h>
#include <sys/uio.h>

int readvotT(
intfildes,
esize_t offset,
struct iovec *iov,
int iovcount);

Description of Parameters

fildes

offset

buffer

nbytes

iov

iovcount

A file descriptor identifying the file to be read.

Offset from the beginning of the file where to begin the read.

Pointer to the buffer in which the data is stored after it is read.

The number of bytes to read from the file associated with the fildes parameter.

Pointer to an array of iovec structures that identify the buffers into which the data
is to be placed.

The number of iovec structures pointed to by the iov parameter.

287

Manual Pages Paragon TM System C Calls Reference Manual

READOFFO (cont.) READOFFO (cont.)

Discussion

ReadoffO and readvoffO perform the read operation starting at the offset specified by the offset
parameter.

These functions do not modify the system file pointer(s) (unlike readO and readvO).

Currently these functions can be used only on files on the Paragon PFS.

Currently only M_UNIX and M_ASYNC I/O modes are supported.

Return Values

Errors

See Also

288

Upon successful completion, a non-negative integer representing the number of bytes read is
returned. If an error occurs, these functions return -1 and set ermo to indicate the error.

Errors are as described in OSFIl readO, except that the following errors can also occur:

EFSNOTSUPP The file referred to by JUedes is not in a file system of a type that supports this
operation. Currently only the PFS file systems support this operation.

EINVAL The file referred to by filedes is in an unsupported iomode. Currently only
M_UNIX and M_ASYNC are supported.

creadO, gopenO, iodoneO. iowaitO. ireadO, ireadoffO, iseofO. niodoneO, niowaitO, setiomodeO

OSFIl Programmer's Reference: dupO. openO. readO

[~

.. iII

,.
Ii .•

~ :

l:
(

.. l'l

.J

(·.11
.JiII

1_.,
~

1 __ ·..,
.JI!J

I:

r:

(~J

I:

1=

I
-~

-~

Paragon TM System C Calls Reference Manual Manual Pages

SETIOMODE() SETIOMODE()

Sets the 110 mode of a file and performs a global synchronization operation.

Synopsis

Parameters

#include <nx.h>

void setiomode(
intfildes,
int iomode);

fildes A file descriptor representing an open file.

iomode The 110 mode to be assigned to the file associated withfildes. Values for the
iomode parameter are as follows:

Each node has its own file pointer; access is
unrestricted.

M_LOG All nodes use the same file pointer; access is first
come, first served; records may be of variable length.

M_SYNC All nodes use the same file pointer; access is in node
order; records are in node order but may be of variable
length.

M_RECORD Each node has its own file pointer; access is first come,
first served; records are in node order and of fixed
length.

M_GLOBAL All nodes use the same file pointer, all nodes perform
the same operations.

M_ASYNC Each node has its own file pointer; access is
unrestricted; 110 atomicity is not preserved in order to
allow multiple readers/multiple writers and records of
variable length.

Refer to the ''Description'' section for detailed information on each mode.

289

Manual Pages Paragon TM System C Calls Reference Manual

r:
SETIOMODEO (cont.) SETIOMODEO (cont.)

Description

290

The setiomodeO function changes the liD mode of an open shared file. A shared file is a file that is
opened for access by all nodes in an application. To explicitly specify an liD mode at the time a file
is opened, use the gopenO function.

The default liD mode shared files are opened with depends on two things: the type of file and the
value of the PFS_ASYNC_DFLTbootmagic string. Behavior is as follows: .. ~

I
I

non-PFS files The default liD mode is M_UNIX for all non-PFS files. This behavior holds be

PFS files

true regardless of the PFS_ASYNC_DFLTbootmagic string.

The default liD mode is M_UNIX when PFS_ASYNC_DFLTis set to any
value other than 1. When PFS_ASYNC _DFLTis setto 1, the default liD mode
isM_ASYNC.

This method of determining the default liD mode also holds true during forkO operations. In other

I -

words, the liD modes associated with the parent process' file descriptors are not inherited by the rr -<'l

child process. Instead, all liD modes in the child process default accordingly. When using the dupO ~--""
function to duplicate a file, the file descriptor for the duplicate file is reset to the liD mode M_ UNIX.

NOTE

To determine the current setting for PFS_ASYNC_DFL T, use the
getmagic command. For information on this command, see the
getmagic manual page.

Each node calling setiomodeO must specify a file descriptor with the fildes parameter that refers to
the same file. The file pointer must be in the same position in the file for each node at the time the
call to setiomodeO is made.

In addition to setting the file's liD mode, setiomodeO performs a global synchronizing operation
like that of the gsyncO call. All nodes must call the setiomodeO function before any node can
continue executing. In the M_LOG, M_SYNC, M_RECORD, and M_GLOBAL liD modes,
closing the file also performs a global synchronizing operation.

Use the iomodeO function to return a file's current liD mode.

~."!

lacoJ

r:
W-""
li.J

(
"1

.'*'

r~

[:

- ----------_._-------

I:
I:

I
-~.-

.""

1_-"-'
, -

(=

I'"'

1=
1'-'

-'.1

1_-"·
...J

Paragon ™ System C Calls Reference Manual Manual Pages

SETIOMODE() (cont.) SETIOMODE() (cont.)

The features of this mode are as follows:

• Each node has a unique file pointer.

• Nodes are not synchronized.

• Variable-length, unordered records.

This mode conforms with standard UNIX file sharing semantics for different processes accessing
the same file. In this mode, each node maintains its own file pointer and can access information
anywhere in the file at any time. If two nodes write to the same place in the file, the latest data written
by one node overwrites the data written previously by the other node.

This mode is often used when each node is responsible for data in a specific area of a file.

Although nodes are not synchronized as in the M_SYNC mode, this mode currently supports only
a single reader/single writer. If multiple readers/multiple writers are required, use the M_RECORD
or M_ASYNC modes. If all nodes read the same data, use the M_GLOBAL mode.

Depending on the shared file type (PFS or non-PFS) and the PFS_ASYNC_DFLTbootmagic
variable setting, M_UNIX can be the default I/O mode (see the "Description" section for more
information).

The features of this mode are as follows:

• Shared file pointer.

• Nodes are not synchronized.

• Variable-length, unordered records.

In this mode, all nodes use the same file pointer. I/O requests from nodes are handled on a first-come,
first-served basis. Because requests can be performed in any order, the order of the data in the file
may vary from run to run.

This mode is often used for log files. The files stdin, stdout, and stderr are always opened in this
mode.

Because only one node may access the file at a time, this mode has lower performance than the
M_RECORD, M_GLOBAL, and M_ASYNC modes.

291

Manual Pages Paragon TM System C Calls Reference Manual

SETIOMODE() (cont.) SETIOMODE() (cont.)

292

M_SYNC (Mode 2)

The features of this mode are as follows:

Shared file pointer.

• Nodes are synchronized.

• Variable-length records. stored in node order.

In this mode, all nodes use the same file pointer, but liD requests are handled in node order. This
mode treats file accesses as global operations in which all nodes must complete their access before
any node can access the file again. The amount of data requested by the application to be read or
written may vary from node to node.

In this mode, all nodes must perform the same file operations in the same order. The only valid use
of the IseekO and eseekO function is for all nodes to seek to the same position in the file prior to an
access.

Because nodes must access the file in node order. this mode has the lowest performance than the
M_RECORD, M_GLOBAL, and M_ASYNC modes.

M_RECORD (Mode 3)

The features of this mode are as follows:

Unique file pointer.

• Nodes are not synchronized.

Fixed-length records. stored in node order.

• Highly parallel.

In this mode, each node maintains its own file pointer and the application can access the file at any
time. The data for each corresponding access , (that is,. the nth read or write) must be the same length
for all nodes. This guarantees that each node reads/writes to separate areas of the file, allowing the
file system to provide access to the file in a highly parallel fashion.

I:

I.:

I ··
'"

r:
I:

(--
- .. ","'

I~

l:
1-=

I~

[--.
"":,,,1

IJ

Paragon ™ System C Calls Reference Manual Manual Pages

SETIOMODEO (cont.) SETIOMODEO (cont.)

NOTE

No verification is performed. You must make sure that all the
nodes in the application make the same calls and read and write
the same number of bytes.

Files created in this mode resemble files created in the M_SYNC mode (that is, the data appear in
node order). The application should perform the same file operations in the same order on all nodes.
However, for higher performance only the IseekO and eseekO system calls are synchronized. The
only valid use of one of these calls is for all nodes to seek to the same position in the file prior to an
access.

Because all nodes may access the file in parallel when either reading or writing, this mode offers
higher performance than the M_UNIX, M_LOG, and M_SYNC modes.

M_GLOBAL (Mode 4)

The features of this mode are as follows:

• Shared file pointer.

• Nodes are synchronized.

• Variable-length, unordered records.

• All nodes access the same data.

• Data read/written from/to disk only once.

This mode coordinates 110 requests so that multiple identical 110 requests to the same file from
different nodes are not issued.

In the M_GLOBAL mode, all nodes use the same file pointer for a file, and each 110 request from
an application is a global operation in which all nodes must perform the same file accesses in the
same order. All nodes read the same data and all nodes write the same data, although the data written
is not checked. All write operations return the same number of bytes written. The only valid use for
the IseekO or eseekO functions is for all nodes to seek to the same position in the file prior to an
access.

293

Manual Pages Paragon TM System C CaUs Reference Manual

SETIOMODE() (cont.) SETIOMODE() (cont.)

294

Because identical requests are combined into a single request, the M_GLOBAL mode provides a
higher-performance alternative to the M_UNIX mode when all nodes read and write the same data.
For example, this mode is useful for parallel applications that initialize by having all nodes
sequentially read the same data file.

M_ASYNC (Mode 5)

The features of this mode are as follows:

• Each node has a unique file pointer.

• Nodes are not synchronized.

• Variable-length, unordered records.

• Multiple readers/multiple writers are allowed with no restrictions.

The M_ASYNC mode is similar to the M_UNIX mode, except it does not support standard UNIX
file sharing semantics for different processes accessing the same file. This mode does not guarantee
that 110 operations are atomic. For example, if multiple nodes write to the same area of a file at the
same time, parts of the file area may contain data from one write while other parts may contain data
from other writes. If a node reads from the same area of the file at this time, the returned data may
consist partially of old data and partially of new data. Other 110 modes guarantee that 110 operations
are atomic, so that only the data from one write is seen in areas of the file where multiple processes
are writing simultaneously, and all nodes are notified when the file size changes.

In this mode, an application must control parallel access to the file. This allows multiple readers
and/or multiple writers to access the file simultaneously with no restrictions on record size or file
offset.

If a file is opened with the O_APPEND flag and multiple nodes write to the file simultaneously, the
results are unpredictable because nodes are not synchronized whenever the end-of-file changes.

It is not required that all nodes read or write to the file, and there are no restrictions on using IseekO
oreseekO.

Because all nodes may access the file in parallel when either reading or writing, this mode offers
higher performance than the M_UNIX, M_LOG, and M_SYNC modes.

You can cause M_ASYNC mode to be the default 110 mode by setting the PFS_ASYNC_DFLT
bootmagic string to one (1).

I :

r:

r -

I
-~

.m

.(-1'\
.iOJ

I' 1 . .J

1=

1_'"
_..oJ

[J

Paragon ™ System C Calls Reference Manual Manual Pages

SETIOMODE() (cont.) SETIOMODE() (cont.)

Return Values

Errors

Upon successful completion, the setiomodeO function returns control to the calling process; no
values are returned. Otherwise, the setiomodeO function writes an error message on the standard
error output and causes the calling process to terminate.

Upon successful completion, the _setiomodeO function returns 0 (zero). Otherwise, the
_setiomQdeO function returns -1 and sets ermo to indicate the error.

If the _setiomodeO function fails, ermo may be set to one of the following error code values:

EBADF

EINVAL

EINVAL

EMIXIO

EMIXIO

The fildes parameter is not a valid file descriptor.

The given value for iomode is not a valid 110 mode.

The file referenced by filedes is not a regular file.

The givenfiledes is invalid because aU nodes have not specified afiledes that
represents the same file.

The given value for iomode is not valid because all nodes sharing the file
represented by fildes have not used the same value.

EMIXIO In 110 modes M_LOG, M_SYNC, M_RECORD, or M_GLOBAL, all nodes
sharing the file have not set the file pointer to the same location.

295

Manual Pages Paragon ™ System C Calls Reference Manual

SETIOMODE{) (cont.) SETIOMODE{) (cont.)

Examples

The following example shows how to use the setiomodeO function to set the 110 mode after opening
a file, but before writing to the file.

#include <fcntl.h>
#include <nx.h>

long iami
main()
{

int fdi
char buffer[80]i

iam = mynode() i

fd = gopen(H/tmp/mydataH,O_CREAT
0644) i

/* Read some data from the file and do some computation */
/* on the data before changing the file mode and writing */
/* the file. */

setiomode(fd, M_RECORD)i

sprintf (buffer, HHello from node %d\n H , iam) i

cwrite(fd, buffer, strlen(buffer))i
close (fd) i

Limitations and Workarounds

See Also

296

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

creadO, cwriteO, gopenO, iomodeO, ireadO, iwriteO

OSFll Programmer's Reference: dup(2), fork(2), open(2)

[:

r
k

[J

[-.. """1. ':1
, I

[~

(-"

.. j;

l=
[-""1 ..

. .J

[J

IJ

Paragon ™ System C Calls Reference Manual Manual Pages

SETPTVPEO SETPTVPEO

Sets the process type of the calling process.

Synopsis

Parameters

Description

#include <nx.h>

void setptype(
long ptype);

ptype Process type you are assigning to a process. The ptype must be a non-negative
integer between 0 and 2**30 - 1.

The calling process's process type can be set only if the process type is currently
INVALID _PTYPE. A process cannot change it's process type once it has been set to a valid value.

The setptypeO function sets the process type of a calling process. A process type is an integer that
uniquely distinguishes a process from another process in the same application on the same node.
You can use process types with processes as follows:

• A process can have one process type only.

• Processes on different nodes may have the same process type.

• Multiple processes running on the same node in the same application must have different
process types (ptypes).

• Multiple processes running on the same node may have the same process type only if they
belong to different applications.

• A process may not change its process type once it has set a valid process type.

• Once a process has used a process type, the process type is associated with the process for the
life of the application. No other process on the same node in the same application can use that
process type, even if the original process terminates.

297

Manual Pages Paragon™ System C Calls Reference Manual

SETPTVPE() (cont.) SETPTVPEO (cont.)

298

The setptypeO function has the following restrictions:

• Do not use the setptypeO function in applications linked with the -nx switch. Instead, link with
the -lnx switch. For all processes in applications linked with the -ox switch, the process type is
set automatically to the value specified with the -pt switch. The default process type value is 0
(zero).

• Do not use the setptypeO function in processes created with the nx_nforkO, nx_IoadO, or
nx_IoadveO functions. These functions have a ptype parameter for specifying the process type
of newly created processes in an application.

• Do not use the setptypeO function in controlling processes that do not use message passing,
because the setptypeO function assigns memory for message buffering that will be unused.

If an application creates additional processes after it starts up and no process type is specified for the
new process, the process type of the new process is set to the value INVALID_PTYPE (a negative
constant defined in the header file nx.h). A process whose process type is INV ALID_PTVPE
cannot send or receive messages. A process must call setptypeO to set its process type to a valid
value before it can send or receive any messages. (This is the only valid use of the setptypeO
function.)

The standard OSFIl forkO function creates a new process on the same node as the process that calls
it. The forkO function does not provide any way to specify the new process's process type. The
process type of a process created by forkO is set to INVALID _PTVPE. The new process must call
the setptypeO function before it can send or receive messages. The specified process type must be
different from the parent's process type and different from the process type of any other process in
the same application on the same node.

A process's process type is inherited across an execO function call. If you call the forkO function
followed by a call to the execO function, you can call the setptypeO function either before or after
the execO function (either forkO; setptypeO; execO; or forkO; execO; setptypeO;).

If a process has multiple threads of control, the threads have the same process types. (See the
pthread_createO function in the OSFll Programmer's Reference for information on threads.)
When a thread is created, it has the same process type as the thread (process) that created it. Do not
use the setptypeO function to set the process type of a thread.

.1'"--..,
~cO\J

r=

lJ

r:
r····""

,dIo,

r:

I~

r=

r-:

Paragon ™ System C Calls Reference Manual Manual Pages

SETPTYPEO (cont.) SETPTYPEO (cont.)

Return Values

Errors

Examples

Upon successful completion, the setptypeO function returns control to the calling process; no values
are returned. Otherwise, this function displays an error message to standard error and causes the
calling process to terminate.

Upon successful completion, the _setptypeO function returns 0 (zero). Otherwise, this function
returns -1 and sets ermo to indicate the error.

Refer to the ermo manual page for a list of errors that can occur in the C underscore system calls.

The following example shows a message-passing application that uses the setptypeO function to set
the process type for the calling process:

#include <nx.h>
#define MSGTYPE 100

main()
{

long buf;
long len;
long parent-ptype, child-ptype;

len = sizeof(buf);
parent-ptype = myptype();
child-ptype = parent-ptype + 1;

if (fork() == 0) { /* Child */
setptype(child-ptype) ;
csend(MSGTYPE, &buf, len, mynode(), parent-ptype);

else { /* Parent */
csend(MSGTYPE, &buf, len, mynode(), child-ptype);

}

crecv(MSGTYPE, &buf, len);
printf (HNode %d, H, mynode ()) ;
printf (Hptype %d, msg from node %d, H myptype (), infonode ()) ;
printf (Hptype %d\n H, infoptype ()) ;

299

Manual Pages Paragon ™ System C Calls Reference Manual

SETPTVPE() (cont.) SETPTVPE() (cont.)

The output for this example is as follows:

% setptype -sz 1
Node 0, ptype 0 received msg from node 0, ptype 1
Node 0, ptype 1 received msg from node 0, ptype 0
% setptype -sz 2
Node 0, ptype 0 received msg from node 0, ptype 1
Node 0, ptype 1 received msg from node 0, ptype 0
Node 1, ptype 0 received msg from node 1, ptype 1
Node 1, ptype 1 received msg from node 1, ptype 0

Limitations and Workarounds

See Also

300

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease _notes.

conunands:~pliCation,

functions: errno, myptypeO, nx_loadO, nx_nforkO

OSFll Programmer's Reference: exec(2), fork(2), pthread_create(3)

r:

(!ri
I ,

ilt.J

, I [,'''l
, .~

[J

lJ

I
~· ..

.. :

[~'

r~""

"

1---

1--'

r-"i

.. -j

1-:
[-'

I
---~·

c'

I-~

l~-..
..,

I:

c

Paragon 1M System C Calls Reference Manual Manual Pages

STATPFSO STATPFSO

statpfsO, fstatpfsO: Gets Parallel File System (PFS) statistics.

Synopsis

Parameters

#include <sys/mount.h>
#include <nx.h>
#include <pfs/pfs.h>

long statpfs(
char *path,
struct estatfs *is_buffer,
struct statpfs *pfs_buffer,
unsigned int pfs_bufsize);

long fstatpfs(
int fildes,
struct estatfs *fs_buffer,
struct statpfs *pfs_buffer,
unsigned int pfs_bufsize);

path Pointer to a pathname of a file within a mounted PFS file system.

Pointer to a buffer that is an estatfs structure in which the status information of the
file system is returned. If this value is set to NULL, no status information is
returned. The estatfs structure is described in the pfs/pfs.h header file.

fildes

Pointer to a buffer that is a statpfs structure in which the PFS stripe attributes of
the file system are returned. If this value is set to NULL, no PFS information is
returned. The statpfs structure is described in the pfs/pfs.h header file.

Size in bytes of the pfs_buffer parameter. If this parameter is 0 (zero), no statpfs
structure is returned in the pfs_buffer parameter.

File descriptor for an open file within a mounted PFS file system.

301

Manual Pages Paragon ™ System C Calls Reference Manual r:

ST ATPFSO (cant.) STATPFSO (cant.)

~1

Description ~ . .J

302

The statpfsO and fstatpfsO functions return the file system statistics of a mounted file system. If the ~ ~~
mounted file system is a PFS file system, stripe attribute information is also returned. Stripe L JJ

attributes determine how the PFS file system stripes regular files. The file system statistics for the
mounted file system are returned in the format of an estatfs structure. The stripe attributes are l' ""1

returned in the format of a statpfs structure. The estatfs and statpfs data structures are defined in the (.. .J

pfslpfs.h header file.

Upon successful completion, the statpfsO and fstatpfsO functions return an estatfs structure in the
fs_buffer parameter. The estatfs structure is similar to the statfs structure returned by the statfsO and
fstatfsO system calls, except that extended (64-bit) fields are used where appropriate. The estatfs
structure is specified in the pfslpfs.h header file and has the following form:

struct estatfs
short
short

f_type;
f_flags;

} ;

long
long
esize_t
esize_t
esize_t
long
long
mnt_fsid_t
long
char
char

f_fsize;
f_bsizei
f_blocksi
f_bfreei
f_bavaili
f_filesi
f_ffree;
f_fsidi
f_spare[9li
f_mntonname[MNT_MNAMELENl;
f_mntfromname[MNT_MNAMELENl;

The fields of the estatfs structure include the following:

Ltype

fJlags

fJsize

Type of the file system as defined in sys/mount.k

Copy of the mount flags used when the file system was mounted.

File system fragment size. This is the smallest unit of data that is transferred
between the file system and the media on which the data is stored. If the file
system is of type PFS, this is the fragment size of the file systems containing the
stripe data. If the file systems containing the stripe data do not all have the same
fragment size, this field is set to -1.

-----_.----------------------

r:

I:
1_,",

. ,_.AI

("''''

_-,.1

1"---
~ ,

[~~

(-"""

-"'

r-'
1 __ ,
r~

c

Paragon ™ System C Calls Reference Manual Manual Pages

STATPFS() (cont.) STATPFSO (cont.)

Lbsize File system block size. This is the optimal unit of data transfer between the file
system and the media on which the data is stored. If the file system is of type PFS,
this is the block size of the file systems containing the stripe data. If the file
systems containing the stripe data do not all have the same block size, this field is
set to -1.

Lblocks Total number of data blocks in the file system. If the file system is of type PFS,
this is the total number of data blocks available for the stripe data. This field
contains an extended (64-bit) value and is expressed in lK byte units.

Lbfree Number of free blocks in the file system. If the file system is of type PFS, this is
the total number of free data blocks available for stripe data. This field contains
an extended (64-bit) value and is expressed in lK byte units.

Lbavail Number of free blocks in the file system available to non-super user. If the file
system is of type PFS, this is the total number of free blocks available for stripe
data. This field contains an extended (64-bit) value and is expressed in lK byte
units.

f ...files Total file nodes in the file system. If the file system is of type PFS, this is the total
number of file nodes available in the disk partition that the PFS file system was
mounted on.

f ...ffree Free file nodes in the file system. If the file system is of type PFS, this is the
number of free file nodes in the disk partition that the PFS file system was
mounted on.

fJsid File system identifier.

f -.spare Reserved for later use; not used.

Lmntonname Directory on which the file system is mounted.

Lmntfromname Disk partition containing the file system that is mounted onLmntonname.

303

- ---~-.. -.... ---------.-~.----------

Manual Pages Paragon ™ System C Calls Reference Manual

STATPFS() (cant.) STATPFSO (cant.)

If the mounted file system is a PFS file system, upon successful completion the statpfsO and
fstatpfsO functions return a statpfs structure in the buffer pointed to by the pfs_buffer parameter.
The statpfs structure is of variable length since it contains a variable number of variable length
patbnames (see the description of the p_sdirs field). To determine if the entire structure fit into the
buffer, check the p Jeclen field. If the entire structure was not received, try again using a buffer of
size greater than or equal to the pJeclen field. The statpfs structure is specified in the pfs/pfs.h
header file and has the following form:

struct statpfs
uint_t
size_t p_sunitsize;
uint_t p_sfactor;
pathname_t p_sdirs;

} ;

The fields of the statpfs structure include the following:

p _sunitsize

p_sfactor

The total length of the statpfs structure. If the file system is not oftype PFS, then
this field is set to 0 (zero).

The stripe unit size for this parallel file system, in bytes; that is, the size of the unit
of data interleaving for regular files.

The number of stripe units per file stripe, that is, the degree of interleaving for
regular files.

A list of pathnames specifying the set of directories that define the stripe group for
this parallel file system. The number of patbnames in the list is equal to p 3factor.
Each patbname is of type pathname_t. You can search the pathname list using a
pointer of type (pathname_t *) and the NEXTPATHO macro defined in pfs/pfs.h.

To obtain a preallocated array of statpfs structures describing the stripe attributes of each currently
mounted PFS file system, use the getpfsinfoO function. To obtain general mount information for
any type of mounted file system, use the standard OSF!! statfsO or fstatfsO function.

Return Values

304

Upon successful completion, the statpfsO and fstatpfsO functions return a value of 0 (zero) to the
calling process. Otherwise, these functions return a value of -1 and set erma to indicate the error.

... ----.---~-.. ----

r:

I'" ~.

I
ilL..,;

r=:
I.''''

....

r=

l_
(-

1_,=,

,~,

I. "'''
_I

(-

1-01

l-.'~

~"

['"
0 1

[
'''1

....-kJ'

[~ .. 1
-lI;J

c

Paragon ™ System C Calls Reference Manual Manual Pages

STATPFS() (cont.) STATPFS() (cont.)

Errors

If the statpfsO or fstatpfsO functions fail, ermo may be set to one of the values described in the
OSFIl statfs(2) manual page.

Limitations and Workarounds

See Also

For information about limitations and workarounds, see the release notes files in
lusrlshare/release _notes.

getpfsinfoO, estatO, showfsO

OSFlI Programmer's Reference: getmntinfo(3), stat(2), statfs(2)

305

Manual Pages Paragon TM System C Calls Reference Manual

TABLEO TABLEO

Examines or updates elements from a system table

Synopsis

Parameters

Description

306

#include <sys/table.h>

int table(id, index, addr, nel, lei)
int id;

id

int index;
char *addr;
int nel;
u_int lei;

ID of the system table that contains the elements.

index Index of an element within the table.

addr

nel

lei

Pointer to a character variable to copy the element values to (on examine) or from
(on update).

Signed number that specifies how many elements to copy and in which direction.
A positive value requests copying the elements from the kernel to the address
addr. A negative value copies the elements from the address addr to the kernel.

Expected size of a single element.

The tableO function is used to examine or update one or more elements in a system table. The
system table is specified by the id parameter and the starting element is specified by index.

The tableO function copies the element values to or from the address specified by the addr
parameter. The nel parameter specifies the number of elements to copy, starting from the value of
the index parameter. A positive value indicates an examine operation. The elements are copied from
the kernel to address addr. A negative value indicates an update operation. The elements are copied
from the address addr to the kernel.

[:

(" "

..J

[:

[~.~ . ,

...I

l:

[",

-'"

r:

[''''
-,,"

(-,

[--.

[~

.~------------- ---- ---------~- ----- -------

Paragon 1M System C Calls Reference Manual Manual Pages

TABLEO (cont.) TAB LEO (cont.)

The lei parameter specifies the expected element size. If multiple elements are specified, successive
addresses are calculated for the addr parameter by incrementing it by the value of lei for each
element copied. If the size of a given element is larger than the lei value, the tableO function
truncates excess data on an update (from the address addr to the kernel) and stores only the expected
size on an examine (from the kernel to address addr). If the size of a given element is smaller than
the lei value, the tableO function copies only the valid data on an update and pads the element value
on an examine.

The tableO function guarantees that an update operation will not change the offset and size of any
field within an element. New fields are added only at the end of an element. The tableO function
returns a count of the elements examined or updated. To determine the actual number of elements
in a table before requesting any data, call the tableO function with the lei parameter set to 0 (zero)
and the nel parameter set to the maximum positive integer. The id parameter must specify one of the
following tables:

TBL_NODEINFO
The index is by node slot, which is incremented by one for successive elements.
Each element is a signed integer that represents a node number. The elements are
sorted in ascending order. This table is examine only. It cannot be updated.

The controlling terminal device number table. The index is by process ID and
exactly one element may be requested. If the process ID is 0 (zero), the current
process is indexed. Only 0 and the current process ID are currently supported. The
element is of type dev _t as defined in the include file sys/types.h. This table can
be examined only; it cannot be updated.

TBL_UAREA The U-area table. The index is by process ID. See include file user.h for the
(pseudo) structure user that is returned.

TBL_LOADA VG
The system load average vector (pseudo) table. The index must be 0 (zero) and
exactly one element may be requested. The element has the following structure:

struct tbl_loadavg {
union {

} ;

long 1 [3] ;
double d[3];

tl_avenrun;
int tl_lscale;
long tl_mach_factor[3]i

307

Manual Pages Paragon ™ System C Calls Reference Manual

TABLEO (cont.) TABLEO (cont.)

308

If the scale is 0 (zero), the load average vector is the floating point variant. If the
scale is non-zero, the load average vector has been scaled by the indicated factor
(typically 1000) to produce the long integer variant. This table can be examined
only; it cannot be updated.

TBL_INCLUDE_ VERSION
The system include file version number (pseudo) table. The index must be 0 (zero)
and exactly one element may be requested. The include version is a unique
integer. It identifies the layout of kernel data structures that are imported by
certain kernel-dependent programs. This table can be examined only; it cannot be
updated.

TBL_ARGUMENTS
The process command argument table containing the saved arguments for
processes. The index is by process ID and exactly one element may be requested.
Arguments for processes other than the current process can be accessed only by
the root. This table can be examined only; it cannot be updated.

TBL_MAXUPRC
The maximum process count per user ID table. The index is by process ID and
exactly one element may be requested. If the process ID is 0 (zero), the current
process is indexed. Only 0 and the current process ID are currently supported. The
element is of short integer type. The maximum count includes all processes
running under the current user ID even though the limit affects only the current
process and any children created with that limit in effect. The limit can be changed
only by root.

[:

(J

(. ..

I·.· ...

I:

l:

[J

(J

c

-------- ---------

Paragon TM System C Calls Reference Manual Manual Pages

TABLE{) (cant.) TABLE{) (cant.)

The pager information table. The index must be a valid node number to return
information about a single node, or -1 to indicate all nodes. This table can be
examined only; it cannot be updated. Each element is a thCpginJo_JO structure
defined as follows:

struct tbl-pginfo_10
{

unsigned long pg_freei
unsigned long pg_npgsi

/* Number of unallocated pages */
/* Total number of pages */

unsigned long pg-pagein_count;
unsigned long pg-pagein_fail;
unsigned long pg-pageout_count;
unsigned long pg-pageout_fail;
unsigned long pg-pageinit_counti
unsigned long pg-pageinit_writei /*
unsigned long pg_hipage;

/* Number of page read requests */

/* Number of page read errors */
/* Number of page write requests */
/* Number of page write errors */
/* Number of page initialisations */

Number of " " actually written */
/* Highest page number allocated */
/* Type of paging file */ int pg_type;

o
1

/* Kernel default paging file */
/* Vnode pager paging file */

#define PG_KERN_DEFAULT
#define PG_VNODE_FILE
#define PG_VNODE_RAWPART
*/

2 /* Vnode pager-paging to raw partition

int
int

services

} ;

pg-prefer;
pg_node;

/* Paging file pathname */
/* Preferred paging file*/
/* For vnode pager:the node that

* this file/partition
* For kernel default pager: node number
*/

309

-----"_._-------

Manual Pages Paragon ™ System C Calls Reference Manual

TABLE() (cont.) TABLE() (cont.)

310

TBL_PROCINFO
The process status information table. The index is by system-wide process slot
entry number. Status information for processes other than the current process can
be accessed only by root. This table can be examined only; it cannot be updated.
Each element is a tbl...procinfo structure defined as follows:

#define PI_COMLEN 19 /* length of command name */

struct tbl-procinfo {

*/

} ;

TBL_ENVIRONMENT

int pi_uid; /* user ID */
int pi-pid; /* proc ID */
int pi-ppid; /* parent proc ID */
int pi-pgrp; /* proc group ID */
int pi_ttyd; /* controlling terminal number */
int pi_status; /* process status: */
#define PI_EMPTY 0 /* - no process */
#define PI_ACTIVE 1 /* - active process */
#define PI_EXITING 2 /* - exiting */
#define PI_ZOMBIE 3 /* - zombie */
int pi_flag; /* other random flags */
char pi_comm[PI_COMLEN+1];/*short command name

int pi_ruid; /* (real) user ID */
int pi_svuid; /* saved (effective) user ID */
int pi_rgid; /* (real) group ID */
int pi_svgid;/* saved (effective) group ID */
int pi_session; /* session ID */
int pi_tpgrp; /* tty pgrp */
int pi_tsession; /* tty session id */
int pi_jobc; /* # procs qualifying pgrp

for job control */
int pi_cursig;
int pi_sig; /* signals pending */
int pi_sigrnask; /* current signal mask */
int pi_sigignore; /* signals being ignored */
int pi_sigcatch; /* signals being caught by

user */

The process environment table. The index is by process ID and exactly one
element may be requested. Environment information for processes other than the
current process can be accessed only by root. This table can be examined only; it
cannot be updated.

(
.. ~I

oJ

r:

I:

(',,""

'"

('"

I:

1=

c

Paragon ™ System C Calls Reference Manual Manual Pages

TABLEO (cont.) TABLEO (cont.)

The system time information table. The index must be 0 (zero) and exactly one
element may be requested. The system information table contains ticks of time
accumulated in the various system states: user, nice, system, and idle. The system
tick frequency and profiling (if configured) frequency are also provided for
conversion from ticks to time values. This table can be examined only; it cannot
be updated. The element has the following structure:

struct tbl_sysinfo {

*/

} ;

long si_user; /* User time */
long si_nice; /* Nice time */
long si_sys; /* System time */
long si_idle; /* Idle time */
long si_hz; /* System clock ticks per second */
long si-phz; /* System profile clock (if used)

long si_boottime; /* Boot time in seconds */

TBL_DKINFO The disk statistics table. The index is by disk number. This table can be examined
only; it cannot be updated. The element has the following structure:

#define DI_NAMESZ 8
struct tbl_dkinfo {

} ;

int di_ndrive; /* Maximum no. of disks providing
statistics */

int di_busy; /* Bit mask of disks currently
busy */

long di_time; /* Amount of time requested disk
is busy */

long di_seek; /* Number of seeks for requested
disk */

long di_xfer; /* Number of data transfer
operations */

long di_wds; /* Number of words transferred */
long di_wpms; /* Words transferred per

millisecond */
int di_unit; /* The disk unit */
char di_name[DI_NAMESZ+ll; /* The disk name */

311

- ------------ --------------------------

Manual Pages Paragon ™ System C Calls Reference Manual

TABLEO (cont.) TABLEO (cont.)

312

The TTY statistics table. The index must be 0 (zero) and exactly one element may
be requested. This table can be examined only; it cannot be updated. The element
has the following structure:

struct tbl_ttyinfo
long ti_nini /* Number of characters input */
long ti_nouti /* Number of characters output */
long ti_cancci /* Portion of input chars on

} i

CANNON queue */
long ti_rawcci /* Portion of input chars on

RAW queue */

TBL_MSGDS The message queue ID table. The index is the index into the queue array. Each
element is a msqid_ds structure as defined in msqid_dsO. This table can be
examined only; it cannot be updated.

TBL_SEMDS The semaphore ID table. The index is the index into the array of semaphore IDs.
Each element is a semid_ds structure as defined in semid_dsO. This table can be
examined only; it cannot be updated.

TBL_SHMDS The shared memory region ID table. The index is the index into the array of shared
memory region IDs. Each element is a shmid_ds structure as defined in
shmid_dsO. This table can be examined only; it cannot be updated.

TBL_MSGINFO
The message information table. This table can be examined only; it cannot be
updated. The message information structure is defined in the include file
syslmsg.h as follows:

struct msginfo
int msgmaxi /* max message size */
int msgmnbi /* max # bytes on queue */
int msgmnii /* # of message queue identifiers
int msgtq1i /* # of system message headers */

} i

*/

The index is by field position within the message information structure as follows:

MSGINFO_MAX
The maximum message size.

MSGINFO_MNB
The maximum number of bytes on the queue.

f_'" lAO

[:

(J

I:
I--~

_-11

I'"

(
'""1

~I

I~

I~
",JJ

c

Paragon ™ System C Calls Reference Manual Manual Pages

TABLEO (cont.) TABLEO (cont.)

MSGINFO_MNI
The number of message queue IDs.

MSGINFO_TQL
The number of system message headers.

TBL_SEMINFO
The semaphore information table. This table can be examined only; it cannot be
updated. The semaphore information structure is defined in the include file
sys/sem.h as follows:

struct seminfo
int semmnii /* # of semaphore identifiers */
int semmsli /* max # of semaphores per id */
int semopmi /* max # of operations per semop

call */
int semumei /* maxnurnber of undo entries per

process */
int semvmxi /* semaphore maximum value */
int semaemi /* adjust on exit max value */

} i

The index is by field position within the semaphore information structure as
follows:

SEMINFO_MNI
The number of semaphore IDs.

SEMINFO_MSL
The maximum number of semaphores per ID.

SEMINFO_OPM
The maximum number of operations per the semopO
call.

SEMINFO_UME
The maximum number of undo entries per process.

SEMINFO_ VMX
The semaphore maximum value.

SEMINFO_AEM
The maximum adjust on exit value

313

--------------------.-----

Manual Pages Paragon TM System C Calls Reference Manual

TABLEO (cont.) TABLEO (cont.)

TBL_SHMINFO

314

The shared memory information table. This table can be examined only; it cannot
be updated. The shared memory information structure is defined in the include
syS/shm.h as the follows:

struct shrninfo
int shrnmaxi /* max shared memory segment size */
int shrnmini /* min shared memory segment size */
int shrnmnii /* number of shared memory

identifiers */
int shrnsegi /* max attached shared memory

segments per process */
} ;

The index is by field position within the shared memory information structure as
follows:

SHMINFO_MAX
The maximum shared memory region size.

SHMINFO_MIN
The minimum shared memory region size.

SHMINFO_MNI
The number of shared memory IDs.

SHMINFO_SEGSHMINFO_SEG
The maximum number of attached shared memory
regions per process.

The system interrupt information table. The system interrupt structure is defined
in the include sys/table.h as follows:

struct tbl_intr {

} ;

long in_devintr; /* Device interrupts
(non-clock) */

long in_context; /* Context switches */
long in_syscalls; /* Syscalls */
long in_forks; /* Forks */
long in_vforksi /* Vforks */

There is no index into the table. This table can be examined only; it cannot be
updated.

[:

[:

r:
r:
I:

I -~'

.... 1

I~

I-_-~

.......o:.J

I--~',

.-","

1.'-""-
_...iIl...t

r:
IJ
I]

D

Paragon ™ System C Calls Reference Manual Manual Pages

TABLEO (cant.) TABLEO (cant.)

Return Values

Errors

See Also

A positive return value indicates that the call succeeded for that number of elements. A return value
of -1 indicates that an error occurred, and an error code is stored in the global variable erma.

EFAULT

EINVAL

EINVAL

EINVAL

EINVAL

EINVAL

EPERM

ESRCH

The addr parameter is an invalid address.

The table specified by the id parameter is not defined.

The index parameter is not valid for the specified table.

The specified table allows only an index of the current process ID with exactly one
element. Some other index or element number was specified.

An element length of 0 (zero) was supplied for the TBL_ARGUMENTS table.

An attempt was made to update an examine-only table.

An attempt was made to change the maximum number of processes or the account
ID, and the caller was not root.

The process specified by a process ID index cannot be found.

Interfaces: setmodes(l), acct(2), tty(4), acct(5)

315

Manual Pages Paragon™ System C Calls Reference Manual

WRITEOFFO WRITEOFFO

Synchronous writes to a file at a specified offset.

Synopsis

#include <sys/types.h>
#include <nx.h>

int writeotT(
intfildes,
esize_t offset,
char *buffer,
unsignedint nbytes);

#include <sys/types.h>
#include <sys/uio.h>

int writevotT(
intfildes,
esize_t offset,
struct iovec *iov,
int iovcount);

Description of Parameters

fildes

offset

buffer

nbytes

iov

iovcount

316

A file descriptor identifying the file to be written to.

Offset from the beginning of the file where to begin the write.

Pointer to the buffer containing the data is to be written.

The number of bytes to write to the file associated with the fildes parameter.

Pointer to an array of iovec structures that identify the buffers from which the data
is to be written.

The number of iovec structures pointed to by the iov parameter.

(:

I:
I:

I:

I -~
.'

I::

I~

I:

IJ
[J

D

Paragon ™ System C Calls Reference Manual Manual Pages

WRITEOFF() (cant.) WRITEOFF() (cant.)

Discussion

WriteoffO and writevoffO perform the write operation starting at the offset specified by the offset
parameter.

These functions do not modify the system file pointer(s) (unlike writeO and writevO).

Currently these functions can be used only on files on the Paragon PFS.

Currently only M_UNIX and M_ASYNC I/O modes are supported.

The a_APPEND flag used in the open function to obtain the file descriptor has no effect on the
write. The write is performed at the position specified by the offset parameter.

Return Values

Errors

See Also

Upon successful completion, a non-negative integer representing the number of bytes written is
returned. If an error occurs, these functions return -1 and set erma to indicate the error.

Errors are as described in OSFIl writeO. except that the following errors can also occur:

EFSNOTSUPP The file referred to by JUedes is not in a file system of a type that supports this
operation. Currently only the PFS file systems support this operation.

EINVAL The file referred to by filedes is in an unsupported iomode. Currently only
M_UNIX and M_ASYNC are supported.

cwriteo. gopenO. iodoneO, iowaitO. iseofO. iwriteO. iwriteoffO. niodoneO, niowaitO,
setiomodeO

OSFll Programmer's Reference: dupO, openO, writeO

317

Manual Pages Paragon™ System C Calls Reference Manual

318

I
···~

..

I:
I":

i=

l=

I ~

(. .,
.>.J

Message Types and Typesel Masks

Types
The type parameter used in message passing calls is a user-defined integer value used to identify the
kind of information contained in the message. Types 0 to 9 9 9 , 9 9 9 , 9 9 9 are normal types that can
be used by any send or receive call.

NOTE

Types 1,000,000,000 to 1,073,741,823 and 2,000,000,000 and up
are used by the system and should be avoided. Their use may
produce unpredictable results.

Types 1,073,741,824 to 1,999,999,999 are specialforce types intended specifically for the
csendrecvO, hsendrecvO, and isendrecvO functions. Force types have three special properties:

1. A message with a force type bypasses the normal flow control mechanisms and is not delayed
by clogged message buffers on the sending or receiving node.

2. Force types do not match the -1 wildcard type selector. This property can be used to guarantee
that the message is received by the proper buffer, no matter what other messages are also
received.

3. A message with a force type is discarded if no receive is posted (as when the receiving process
has been killed). In general, bypassing the normal flow control mechanisms causes no problem
because the send-receive calls guarantee that a receive is posted for the message.

If you use force-type messages with the csendrecvO function, you are responsible for posting the
receive on the receiving node before the message arrives. Otherwise, the receive will not complete
and the message will be lost. The csendrecvO function does not do internal synchronization of
messages.

A-1

.---_._-------

Message Types and Typesel Masks Paragon ™ System C Calls Reference Manual

Typesel Masks

A-2

The typesel parameter used in receive calls is an integer value that specifies the type(s) of message
you are waiting for in a probe, receive, or flush operation. You assign a type to a message when you
initiate a send operation. The typesel (type selector) allows you to select a specific message type or
a set of message types based on a 32-bit mask. The typesel can be set as follows:

• If typesel is a non-negative integer, a specific message type will be recognized. All other
messages will be ignored.

• If typesel is -1, the first message to arrive for the process that initiated a probe or receive
operation will be recognized. After the first message has been received, you can use -1 again
to receive or probe the next message, and so on.

• If typesel is any negative number other than -1, a set of message types will be recognized. In
this case, bits 0-29 of the typesel correspond to types 0 - 2 9. For example, if bit number 3 is set
to 1 in the typesel, then a message of type 3 will be recognized. If bit number 3 is set to 0, then
a message of type 3 will be ignored.

Bit 30 allows you to select all types greater than 29 as a group. Bit 30 can be used in conjunction
with bits 0-29, as desired. Bit 31 set to 1 makes the typesel parameter negative and indicates that
it is a mask.

To generate a mask, add the constant Ox8 0 0 0 0 0 0 0 and the hexadecimal numbers associated with
the types you want to select. For example, if you want to receive message types 1, 2, 5, and 12, add
the following hex numbers:

Ox80000000 + Ox2 + Ox4 + Ox20 + Ox1000 Ox80001026

Enter the following in your program code:

crecv (Ox80001026, buf, len);

If you want to receive any message except type 0, use the following:

crecv (OxFFFFFFFE, buf, len);

Table A-I shows the hexadecimal number associated with bits 0-31.

. --- --- -- ------------

[:

[J

(:

I:
I:

I
··~

....

1_-,,.,
...iJ;

1-.. ""1.·

.~!

I:
l:

1=
1=:
(-'

. .J

~
1-,

__ ...:,;J

[i
_.oJ

Paragon ™ System C Calls Reference Manual

Type

0

1

2

3

4

5

6

7

8

9

lO

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

Message Types and Typesel Masks

Table A-I. Typesel Mask List (1 of 2)

Hex Number

OxOOOOOOOl

OxOOOOOO02

OxOOOOOO04

OxOOOOOO08

OxOOOOOOl0

OxOOOOO020

OxOOOOOO40

OxOOOOOO80

OxOOOOOl00

OXOOOO0200

OXOOOO0400

OxOOOO0800

OxOOOOlOOO

OxOOO02000

OxOOOO4000

OxOOO08000

OxOOOl0000

OxOOO20000

OxOOO40000

OxOOO80000

OxOOl00000

Ox00200000

Ox00400000

Ox00800000

OxOl000000

Ox02000000

Ox04000000

A-3

----~-~-----~------------------- ---- ----------- ---------

Message Types and Typesel Masks Paragon TM System C Calls Reference Manual

[:

Table A-t. Typesel Mask List (2 of 2)

Type Hex Number

27 Ox08000000

28 OxlOOOOOOO

29 Ox20000000

Other types Ox40000000

i -

r I... _

c:

I:
(J

A-4 I:

l:
I:
I~

. JW

[~
. .JIO

[~
__ " • .1

I·~
l.J

[i
.cJ

[~
•. .-J

('~
-~

r=
[J

~

[J

1=
[~

..J

t=1
l:
[~

IJ
U
D

~---~---.- --~.----.. ---...

Errno Manual Page

This appendix contains the manual page that describes the ermo global variable, possible ermo
values, and error handling using operating system C system calls.

The erma global variable is set with an error value that has an associated message that helps
determine the problem in a program. This manual page provides a complete list of the error values
for operating system C system calls. You can also find the list of error codes in the file
lusrlincludelsyslermo.h. See the OSFll Programmer's Reference for more information about error
codes and error numbers.

8-1

- --"--_._"---- -_.".-. ----"~----------.------ .. ----.--------- ------ -------- ------

Manual Pages Paragon™ System C Calls Reference Manual

ERRNO ERRNO

Error values returned by functions in the ermo global variable.

Synopsis

Description

8-2

#include <errno.h>

There are two versions of the operating system C system calls:

• The standard C system calls that send a message to standard error when an error occurs

• The underscore C system calls that return an error code (ermo) when an error occurs

The standard C system calls terminate a process when an error occurs and send a message to standard
error describing the error. For example, the crecvO function terminates when an error occurs and it
sends a message to the standard error describing the error.

The underscore C system calls are identified by an underscore as the first character of the name. For
example, the _crecvO function is the underscore version of the crecvO function. The underscore
calls allow you to write programs that take specific actions when an error occurs. They return a
non-negative value upon successful completion. When an error occurs in an underscore system call,
the call does not terminate the process, but returns a -1 value and sets the ermo global variable with
an error value.

The ermo global variable is set with an error value that has an associated message that helps
determine the problem in a program. This manual page provides a complete list of the error values
for operating system C system calls. You can also find the list of error codes in the file
lusrlincludelsyslermo.h. See the OSFll Programmer's Reference for more information about error
codes and error numbers.

There are two functions you can use to print out the error code for a program that terminates with an
error: perrorO and nx_perrorO. The perrorO function writes an error message on the standard
error output that describes the last error encountered by a function, library function, or Paragon
OSFIl system call. The nx-perrorO function is identical to the perrorO function, except that it
writes the current node number and process type in addition to the error message.

f '"
Ii •

[J

IJ
I :

r:

r:

IJ

-- -----------.--.---~~---~--~---~-~------------~-~---

Paragon ™ System C Calls Reference Manual Manual Pages

ERRNO (cont.) ERRNO(cont.)

For example, the underscore C system call_crecvO call does not terminate when an error occurs.
On a error, it returns a -1 and sets ermo to the error code for the error that occurred. You can use
perrorO or nx_perrorO to print the error message.

The following table lists the ermo values for operating system system calls. The table lists the error
code, the error code number, the message text, and notes on the error code. The message text appears
in italic text.

Error Code Value

E2BIG 7

EACCES 13

EADDRINUSE 48

EADDRNOTA VAIL 49

EAEXIST 158

EAFNOSUPPORT 47

EAGAIN 35

EAIl.'i"'V ALGTH 156

EAINVALMBF 151

Messages and Notes

Arg list too long. The number of bytes received by the
argument is too big.

Permission denied. The calling process does not have
permission for the operation.

Address already in use. The specified address is
already in use.

Can't assign requested address. The specified address
is not available from the local machine.

Application exists for process group.

Address family not supported by protocol family. The
addresses in a specified address family cannot be used
with the socket.

Resource temporarily unavailable. A resource, such as
a lock or process, is temporarily unavailable.

Give threshold invalid or out of range. For information
about the range of values for the give threshold, see the
application manual page either online or in the

TM
Paragon System Commands Reference Manual.

Memory buffer invalid or out of range. For
information about the range of values for the memory
buffer size, see the application manual page either
online or in the Paragon TM System Commands
Reference Manual.

8-3

Manual Pages

ERRNO (cont.)

EAINVALMEA 153

EAINVALMEX 152

EAINVALPKT 150

EAINVALSCT 155

EAINVALSTH 154

EALREADY 37

EANOEXIST 164

EANOTPGL 157

EANXACCT 141

EAOVLP 141

6-4

Paragon™ System C Calls Reference Manual

ERRNO(cont.)

Memory each invalid or out of range. For information
about the range of values for the memory each size, see
the application manual page either online or in the

TM
Paragon System Commands Reference Manual.

Memory Export invalid or out of range. For
information about the range of values for the memory
export size, see the application manual page either
online or in the Paragon TM System Commands
Reference Manual.

Packet size invalid or out of range. For information
about the range of values for the packet size, see the
application manual page either online or in the

TM
Paragon System Commands Reference Manual.

Send count invalid or out of range. For information
about the range of values for the send count size, see
the application manual page either online or in the

TM
Paragon System Commands Reference Manual.

Send threshold invalid or out of range. For
information about the range of values for the send
count size, see the application manual page either
online or in the Paragon TM System Commands
Reference Manual.

Operation already in progress.

Application does not exist for process group. The
specified process group does not exist.

Calling process not process group leader.

NX accounting permission denied.

Request overlaps with nodes in use. A partition or
application overlaps with another partition or
application.

[J

!If
I·' a...J

(..... '"! ..

IJ

[~'.'
J

r:

1.=

I~

1.=

I:
[:
(:

--""

(J

Paragon ™ System C Calls Reference Manual

ERRNO (cont.)

EAREJPLK

EBADF

EBADID

EBADMSG

EBADPORT

EBADRPC

EBUSY

ECFPS

ECHILD

ECLONEME

ECONNABORTED

ECONNREFUSED

ECONNRESET

EDEADLK

EDESTADDRREQ

144

9

215

84

101

72

16

199

10

88

53

61

54

11

39

-------~--~~------------ .. ---~

Manual Pages

ERRNO (cont.)

Use of -plk not allowed in gang-scheduled partition.
An application cannot use the -plk switch in a
gang-scheduled partition.

Bad file number. A socket or file descriptor parameter
is invalid.

Asynchronous request ID invalid. The id parameter is
not a valid liD ID.

Next message has wrong type.

Failed port to struct translation.

RPC structure is bad.

Device busy. The requested element is unavailable, or
the associated system limit was exceeded.

Seek to different file pointers. Two or more application
processes are calling IseekO with different shared 110
modes (M_SYNC, M_RECORD, or M_GLOBAL).

No child processes. The child process does not exist,
or the requested child process information is
unavailable.

Tells open to clone the device.

Software caused connection abort. The software
caused a connection to abort because there is no space
on the socket's queue and the socket cannot receive
further connections.

Connection refused.

Connection reset by peer. The attempt to connect was
rejected.

Resource deadlock avoided. There is a probable
deadlock condition, or the requested lock is owned by
someone else.

Destination address required.

8-5

Manual Pages

ERRNO (cont.)

EDIRTY 89

EDOM 33

EDQUOT 69

EDUPPKG 90

EEXIST 17

EEXCEEDCONF 146

EFAULT 14

EFBIG 27

EFSNOTSUPP 210

EHOSTDOWN 64

EHOSTUNREACH 65

EIDRM 81

EIMODE 202

8-6

--------- ------------------------------------ -- --

Paragon™ System C Calls Reference Manual

ERRNO(cont.)

Mounting a dirtyfile system wlo force. The file system
is not clean and M_FORCE is not set.

Argument out of domain. The value of the parameter is
a Not a Number (NaN).

Disc quota exceeded. The file system of the requested
directory has exceeded the user's quota of disk blocks.

Duplicate package name. The loaded module exported
a package which duplicated the package name of a
module already loaded in the same process.

File exists. The requested file already exists.

Exceeded allocator configuration parameters. The
application exceeded the configuration parameters for
the partition. See the allocator manual page.

Bad address. The requested address is in some way
invalid.

File too large. The file size exceeds the process' file
size limit, or the requested semaphore number is
invalid.

For the statO, IstatO, or fstatO system call, the file is
an extended file (the file size can exceed 2G - 1 bytes).
Use the estatO, lestat(), or festatO system call,
respectively.

Operation not supported by this file system.

Host is down.

Host is unreachable.

Identifier removed. The requested semaphore or
message queue ID has been removed from the system.

Bad io mode number. Use the I/O mode M_UNIX,
M_LOG, M_SYNC, M_RECORD, or
M_GLOBAL.

r -
Ii .,

L..

If''''
~-ld

Paragon ™ System C Calls Reference Manual

ERRNO (cont.)

EINCOMPAT

EINPROGRESS

EINTR

EINVAL

EIO

EISCONN

EISDIR

ELOCAL

ELOOP

I·~··
EMFILE

[~ EMIXIO

I~'

IJ

216

36

4

22

5

56

21

103

62

24

201

Manual Pages

ERRNO(cont.)

The application and the OS are of incompatible
revisions. Your applications code is no longer with the
current release of the installed operating system. You
must your application.

Operation now in progress.

Interrupted system call. The operation was interrupted
by a signal.

Invalid argument. The argument or parameter is not
valid for the system call.

UO error. An I/O error occurred while reading or
writing to the file system.

Socket is already connected. The socket is already
connected.

Is a directory. The request is for a write to a file but the
specified file name is a directory, or the function is
trying to rename a file as a directory.

Handle operation locally.

Too many levels of symbolic links. Too many symbolic
links were encountered in translating a pathname.

Too many open files. Too many files descriptors are
open, no space remains in the mount table, or the
attempt to attach a shared memory region exceeded the
maximum number of attached regions for a process.

Mixedfile operations. In M_SYNC or M_GLOBAL
110 mode, nodes are attempting different operations
(reads and writes) to a shared file. In these modes, all
nodes must perform the same operation. In the
M_GLOBAL I/O mode, nodes are attempting
different sized reads (using the nbytes parameter) from
a shared file. See the setiomodeO function for a
description of the 110 modes for file operations.

B-7

·.-.----~-----.-.----.--. -..,.----- -_._......,..._----------------------

!I ,..
Manual Pages . Paragon ™ System C Calls Reference Manual " ~ ;.

{ ~ ' . ..

{ :
r --,

ERRNO (cont.) ERRNO(cont.) 'k. ...

EMLINK 31 Too many links. The number of links would exceed
r--~

liNK_MAX. I. '-.

EMSGSIZE 40 Message too long. The message is too large to be sent If '
l~ all at once, as the socket requires.

ENAMETOOLONG 63 File name too long. The pathname argument exceeds ' '1 ~ ..J PATH_MAX (1024 characters) or the pathname
component exceeds NAME_MAX (255 characters). '" ~,

I

ENETDOWN 50 Network is down. I..

I""

ENETRESET 52 Network dropped connection on reset. i, ... ~

ENETUNREACH 51 Network is unreachable. No route to the network or I'" -~,

host is present. ~""
ENFILE 23 File table overflow. Too many files are currently open

in the system. r-'
iIIl ,J

ENFPS 200 Different file pointers.
rr~

ENOBUFS 55 No buffer space available. Insufficient resources, such ~

as buffers, are available to complete the call. r-'

ENOCFS 204 No CFS available. The concurrent file system (CFS) is l..L . ..J

not available.
rf"'l

ENODATA 86 No message on stream head read q. IILJ

ENODEV 19 No such device. The file descriptor refers to an object 1""'"
that cannot be mapped, the requested block special Ii.. -'"
device file does not exist, or a file system is J ~~
unmounted. i..l

ENOENT 2 No such file or directory. A pathname component of
the parameter does not exist. ~~

1.-

ENOEXEC 8 Exec format error. The parameter specifies a file with
(~ a bad object file format.

': ..w.J

['"

[~

l~ 8-8 I "I ..

[-
AI,

(
-r'

-Ail

1_...,
-.. ,.!

I-~'

[~

[~

r=
I

--~

_.~J

[O-

r"

I

1=:
[=

(J

I]

(]

Paragon TM System C Calls Reference Manual

ERRNO (cont.)

ENOLCK 77

ENOMEM 12

ENOMSG 80

ENOPKG 92

ENOPROTOOPT 42

ENOSDIR 82

ENOSPC 28

ENOSR 82

ENOSTR 87

ENOSYM 93

ENOSYS 78

ENOTBLK 15

ENOTCONN 57

ENOTDIR 20

ENOTEMPTY 66

ENOTPFS 212

Manual Pages

ERRNO(cont.)

No locks available. The lock table is full because too
many regions are already locked.

Not enough space. Insufficient memory is available
for the requested function.

No message of desired type. A message of a requested
type does not exist.

Unresolved package name. One or more unresolved
package names were found.

Option not supported by protocol. The option is
unknown.

PFS stripe dir not available.

No space left on device. There is not enough memory
space to extend the file system or device for file or
directory writes.

Out of STREAMS resources.

fd not associated with a stream.

Unresolved symbol name. One or more unresolved
external symbols were found.

Function not implemented.

Block device required. The specified device is not a
block device.

Socket is not connected. The socket is not connected.

Not a directory. A component of the pathname is not a
directory.

Directory not empty.

Non-striped regular file in a PFS.

B·9

Manual Pages Paragon ™ System C Calls Reference Manual (:
l: ,.
1'- ..

I' ,,,
ERRNO (cont.) ERRNO(cont.) Ii ~

ENOTSOCK 38 Socket operation on non-socket. The parameter refers i
to a file not a socket. loll T

ENOTTY 25 Not a typewriter. The specified request does not apply (~
to the kind of object that the descriptor references.

ENXIO 6 No such device or address. The device or address does
~ ~.

I

not exist. ... 0

EOPNOTSUPP 45 Operation not supported on socket. The socket does r
not support the requested operation, or the socket does L

not accept the connection.
f"'"
!

EPACCES 139 Partition permission denied. The application has i... ~I

insufficient access permission on a partition.
~. ""l,
I
I

EPALLOCERR 130 Allocator internal error.
EPBADNODE 132 Bad node specification. r~

I. ..
EPERM 1 Not owner. The calling process does not have

permissions for the operation. roo-
I
i4 ,"

EPFNOSUPPORT 46 Protocol family not supported. rr .~

EPFSBUSY 214 PFS stripe file in use. ~.~

EPINGRP 160 Invalid group. ~"1
I

I.L...J

EPINRN 161 Invalid partition rename. Use a simple name for a
partition name. [:

EPINUSER 159 Invalid user.
W~

EPINVALMOD 136 Invalid mode. i..J

EPINVALPART 133 Partitionnotfound. The specified partition (or its (~
parent) does not exist. '""

EPINVALPRI 134 Invalid priority.
,"':
i,.,

EPINVALSCHED 138 Invalid Scheduling.

(:
l:

8-10 (~ ..

I~

l:

I)

c

Paragon ™ System C Calls Reference Manual

ERRNO (cont.)

EPIPE 32

EPLOCK 162

EPNOTEMPTY 135

EPPARTEXIST 137

EPROCLIM 67

EPROCUNA VAIL 76

EPROGMISMATCH 75

EPROGUNAVAIL 74

EPROTO 85

EPROTONOSUPPORT 43

EPROTOTYPE 41

EPXRS 131

EQBADFIL 183

EQBLEN 171

EQDIM 195

EQESIZE 205

EQHND 179

EQLEN 172

Manual Pages

ERRNO(cont.)

Broken pipe. An attempt was made to write to a pipe
or FIFO that is not open for reading by any process.

Partition lock denied. You specified a partition that is
currently in use and being updated by someone else.
You cannot change the characteristics of a partition
that is currently being used.

Partition not empty.

Partition exists.

Too many processes.

Bad procedure for program.

Program version wrong.

RPC program not available.

Error in protocol.

Protocol not supported. The socket or protocol is not
supported.

Protocol wrong type for socket.

Exceeds partition resources.

Invalid object file. Specify a loadable file.

Buffer length exceeds allocation. Make sure the buffer
length does not exceed the buffer size.

Invalid dimension.

Invalid size.

Invalid handler type. Select one of the handlers listed
in the handler description.

Invalid length. Use a non-negative number or a length
that is less than or equal to the maximum message
length.

8-11

Manual Pages

ERRNO (cont.)

EQMEM 190

EQMID 178

EQMODE 196

EQMSGLONG 174

EQMSGSHORT 198

EQNOACT 182

EQNODE 176

EQNOMID 191

EQNOPROC 180

EQNOSET 193

EQPARAM 184

EQPATH 207

EQPBUF 170

EQPCCODE 188

EQPCNODE 186

8-12

Paragon ™ System C Calls Reference Manual

ERRNO(cont.}

Not enough memory. Simplify the application
program.

Invalid message id. Use the message ID (MID)
returned by the irecvO or isendO functions.

Invalid diagnostic channel mode.

Received message too long for buffer. Make sure the
buffer is large enough to hold the message.

Received message too short for buffer.

No active process. Use the process ID (PID) of a
loaded process.

Invalid node. Use the numnodesO function to
determine the partition size and the myhostO function
to determine the host node number.

Too many requests. Use the msgwaitO function for
outstanding requests from the irecvO or isendO
functions.

Out of process slots. Use fewer processes.

No ptype defined.

Invalid parameter.

Path name too long.

Invalid buffer pointer. Specify a pointer that contains
the address of a valid data buffer.

Invalid ccode pointer.

Invalid cnode pointer.

(. ~.' , ,

,J

"" ' I
I
I.g, -

r:

r=
1-. -,

.. '

[='

[J
I~.·.
L

(]

Paragon ™ System C Calls Reference Manual

ERRNO (cont.)

EQPCPID

EQPFIL

EQPGRP

EQPID

EQPRIV

EQSET

EQSTATUS

EQTAM

EQTIME

EQTYPE

EQUSEPID

EQUSM

ERANGE

ERDEOF

EREMOTE

EREMOTEPORT

ERFORK

EROFS

Manual Pages

ERRNO(cont.)

187 Invalid cpid pointer. Do not call the setpidO function
again.

185 Invalid file name pointer.

209 Supplied processes group does not exist or is under
control of another TAM.

175 Invalid ptype. The PID must not be negative.

189 Privileged operation .

192 Ptype already set.

197 Invalid diagnostic channel status.

208 Max number of applications under debug was
reached.

173 Time limit exceeded.

177 Invalid type. Use a non-negative number.

181 Ptype already in use. Select another PID.

194 Invalid diagnostic channel usm id.

34 Result too large. The symbol address could not be
converted into an absolute value.

206 Attempt to read past end offile.

71 Item is not local to host.

102 Returned port is remote.

140 Do an rfork instead of a fork.

30 Read-only file system. The directory in which the file
is to be created is located on a read-only file system.

8-13

Manual Pages

ERRNO (cont.)

ERPCMISMATCH 73

ESCHEDCONF 145

ESETIO 203

ESHUTDOWN 58

ESOCKTNOSUPPORTM

ESPIPE 29

ESRCH 3

ESTALE 70

ETlME 83

ETIMEDOUT 60

ETOOMANYREFS 59

ETXTBSY 26

EUSERS 68

8-14

._----- - .. -.,---~--- ------- ---------~~.-.--.

Paragon TM System C Calls Reference Manual

ERRNO(cont.)

RPC version is wrong.

Scheduling parameters conflict with allocator
configuration parameters. The scheduling parameters
conflict with the allocator configuration. See the
allocator manual page.

File is not synchronized. In I/O modes M_SYNC and
M_RECORD, all nodes must read or write
synchronously.

Can't send after socket shutdown.

Socket type not supported.

Illegal seek. An invalid seek operation was requested
for a pipe (FIFO), socket, or multiplexed special file.

No such process. The requested process or child
process ill is invalid, no disk quota is found for the
specified user, or the specified thread ill does not refer
to an existing thread.

Missingfile or file system. The process' root or current
directory is located in a virtual file system that has
been unmounted.

System call timed out.

Connection timed out. The establishment of the
connection timed out before the connection could be
made.

Too many references: can't splice.

Textfile busy. The file is currently opened for writing
by another process, or a write access is requested by a
pure procedure (shared text) file that is being executed.

Too many users. There are too many users.

I:

II

r::
I'''''

"-~)

l='

('-'

.-J

r=
[-~"

_...:..1

IJ
IJ

Paragon ™ System C Calls Reference Manual

ERRNO (cont.)

EVERSION 91

EWOULDBLOCK 35

EXDEV 18

Limitations and Workarounds

Manual Pages

ERRNO(cont.)

Version mismatch.

Operation would block. The file is locked, but
blocking is not set. The socket is marked nonblocking,
so the connection cannot be completed.

Cross-device link. The link and the file are on different
file systems.

For information about limitations and workarounds, see the release notes files in
lusrlsharelrelease_notes.

See Also

application, nx-perrorO, perror(3)

8-15

Manual Pages Paragon™ System C Calls Reference Manual

8-16

- ~--~~-.----~---- -_._-_.-_.-,------ --~

11
11
1:.

£: Index
I:
1-:

[:

r" c ernod 23

.--- cprobe 1 ernul 23
-,

L cprobex 1 ermo B-2

[J
cread 4 eseek 28

creadv4 esize 32

[J
creat 276 estat 36

crecv 8,43 esub 23

IJ
crecvx8 etas 40

csend 12 exec 298

IJ
csendrecv 15

cwrite 18 F

IJ
cwritev 18 fcntl43

festat 36

[J
0 flick 56

dclock 21 fork 298

l~
dup43 fork_rernote_ctl 58

dup243 fpgetrnask 60

l:
fpgetround 60

E fpgetsticky 60

l:
eadd 23 fpsetrnask 60

ecrnp 23 fpsetround 60

r: ediv 23 fpsetsticky 60
·1
!

I} .'
D Index-1

Index

fstatpfs 301

G
gcol64

gcolx 67

gdhigh 71

gdlow 75

gdprod 79

gdsum 83

giand 90

gihigh 71

gilow 75

gior 93

giprod 79

gisum 83

gland 90

glor 93

gopen 96

gopf 100

gsendx 104

gshigh 71

gslow 75

gsprod 79

gssum 83

gsync 106

H
hrecv 109

hrecvx 109

hsend 115

Index-2

Paragon ™ System C Calls Reference Manual

hsendrecv 120

hsendx 115

infocount 124

infonode 124

infoptype 124

infotype 124

iodone 127

iomode 130

iowait 133

iprobe 136

iprobex 136

iread 140

ireadoff 144

ireadv 140

ireadvoff 144

irecv 147

irecvx 147

isend 151

isendrecv 154

iseof 157

isnan 159

isnand 159

isnanf 159

iwrite 161

iwriteoff 165

iwritev 161

iwritevoff 1 65

,II .' ... ,

. "
L

--_ ... _-_. -_._-- ----.-.~--.----- .. ------.-~-- -~--- ---.-~~~--

II -, Paragon TM System C Calls Reference Manual Index

(j j

r=
r= L nx_initve 220

l:
lestat 36 nx_initve_attr 225

Isize 168 nx_initve_rect 220

I:
nx_load 238

M nx_loadve 238

(~
masktrap 172 nx_mkpart 241

--.:.i mount 175 nx_mkpart_attr 244

(-~
msgcancel 182 nx_mkpart_map 241

" msgdone 184 nx_mkpart_rect 241

., ~.? msgignore 186 nx_nfork 255

1- msgmerge 188 nx_part_attr258

l:'
msgwait 190 nx_part_nodes 261

myhost 193 nx_perror 263

[: mynode 194 nx_pri 265

.-->'w myptype 196 nx_pspart 267

I:
nx_rmpart 271

N nx_ waitall 274

~
niodone 197

niowait 199 0

[J
numnodes 201 open 276

nx_app_nodes 204

(J
nx_app_rect 206 P

nx_chpart_epI208 pthread_create 298

(J
nx_chpart_mod 208

nx_chpart_name 208 R

[J
nx_chpart_owner208 read off 287

nx_chparCrq 208 readvoff 287

l:
nx_chpart_sched 208 rmknod 285

" nx_empty_nodes 214

I~
nx_tailed_nodes 217

....JJ6I

£: ,,'>

II Index-3

Index

s
setiomode 289

setptype 297

statpfs 301

stoe 40

T
table 306

u
umount 175

Index-4

Paragon ™ System C Calls Reference Manual

------_.,' -----------------

,
'i ..

" ~ r • •

,""

r
I

I..

