PARAGON"™ OSF/1
USER’S GUIDE

Intel® Corporation

April 1993

Order Number: 312489-001




Copyright ©1993 by Intel Supercomputer Systems Division, Beaverton. Oregon. All rights reserved. No part of this work may be reproduced or
copied in any form or by any means...graphic, electronic, or mechanical including photocopying, taping, or information storage and retrieval sys-
tems...without the express written consent of Intel Corporation. The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including. but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this document. Intel Corporation
makes no commitment to update or to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication, or disclosure is subject to restrictions
stated in Intel’s software license agreement. Use. duplication, or disclosure by the U.S. Government is subject to restrictions as set forth in subpara-
graphs (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule-
vard, Santa Clara, CA 9502. For all Federal use or contracts other than DoD, Restricted Rights under FAR 52.227-14, ALT. III shall apply.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

286 iCS Intellink Plug-A-Bubble

287 iDBP iOSP

4-SITE iDIS iPDS PROMPT

Above iLBX iPSC Promware

BITBUS im iRMX

COMMputer Im iSBC ProSolver

Concurrent File System iMDDX iSBX QUEST

Concurrent Workbench iMMX iSDM

CREDIT Insite iSXM QueX

gf“ﬂ Pigeline Modul int ] KEPROM Quick-Pulse Programming
- .

}::;?rp A?;;ect ¢ imelBOS El;rpar;;gl; nager Ripplemode

GENIUS Intelevision MCS RMX/80

'2 imeligem Identifier Megachassis ) RUPI

I'ICE int_ligent Programming MICROMAINFRAME

i386 e MULTI CHANNEL Seamless

387 Intel MULTIMODULE SLD

1486 Intel386 ONCE

1487 Intel387 OpenNET SugarCube

i860 Intel486 OTP UPl

ICE Intel487 Paragon

iCEL Intellec PC BUBBLE VLSIiCEL

Ada is a registered trademark of the U.S. Government, Ada Joint Program Office

APSO is a service mark of Verdix Corporation

DGL is a trademark of Silicon Graphics, Inc.

Ethernet is a registered trademark of XEROX Corporation

EXABYTE is a registered trademark of EXABYTE Corporation

Excelan is a trademark of Excelan Corporation

EXOS is a trademark or equipment designator of Excelan Corporation

FORGE is a trademark of Applied Parallel Research. Inc.

Green Hills Software, C-386, and FORTRAN-386 are trademarks of Green Hills Software, Inc.
GVAS is a trademark of Verdix Corporation

IBM and IBM/VS are registered trademarks of International Business Machines

Lucid and Lucid Common Lisp are trademarks of Lucid, Inc.

NFS is a trademark of Sun Microsystems

OSF, OSF/1, OSF/Motif, and Motif are trademarks of Open Software Foundation. Inc.

PGI and PGF77 are trademarks of The Portland Group. Inc.

PostScript is a trademark of Adobe Systems Incorporated

ParaSoft is a trademark of ParaSoft Corporation

SGI and SiliconGraphics are registered trademarks of Silicon Graphics, Inc.

Sun Microsystems and the combination of Sun and a pumeric suffix are trademarks of Sun Microsystems
The X Window System is a trademark of Massachusetts Institute of Technology

UNIX is a trademark of UNIX System Laboratories

VADS and Verdix are registered trademarks of Verdix Corporation

VAST2 is a registered trademark of Pacific-Sierra Research Corporation

VMS and VAX are trademarks of Digital Equipment Corporation

VP/ix is a trademark of INTERACTIVE Systems Corporation and Phoenix Technologies, Ltd.
XENIX is a trademark of Microsoft Corporation

|

e
| I |

{ - |
¥



.

-

lw’
&
”

!

! |
il

REV. REVISION HISTORY DATE

-001 Original Issue 4/93

LIMITED RIGHTS

The information contained in this document is copyrighted by and shall re-
main the property of Intel Corporation. Use, duplication or disclosure by
the U.S. Government is subject to Limited Rights as set forth in subpara-
graphs (a)(15) of the Rights in Technical Data and Computer Software
clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule-
vard, Santa Clara, CA 95052. For all Federal use or contracts other than
DoD Limited Rights under FAR 52.2272-14, ALT. lll shall apply.

iii



L
i

L
L W

[ !
& =

-

o

[ W

v
.

]

.
& .l



T
-

[

P

ko

[
gl
l !

il

—
Lo

4
-

y
o

., »
S |

Ei

g— | amanl il | ] ——
Lo oo ! 4 L LA

M

Preface

This manual tells how to use the Paragon OSF/1 operating system on an Intel supercomputer.

This manual assumes that you are an application programmer proficient in the C or Fortran language
and the UNIX operating system. The manual provides you with enough detail to begin using your

system.

Organization

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter S

Chapter 6

Provides an overview of the Paragon OSF/1 software and Intel
supercomputer hardware.

Describes the Paragon OSF/1 commands that you can enter at the shell
prompt and the Paragon OSF/1 cross-development commands that run on
supported workstations.

Describes the message-passing system calls available to programs in Paragon
OSF/1.

Describes the other general-purpose system calls available in Paragon OSF/1.

Describes the parallel I/O calls you can use for parallel access to the Intel
supercomputer’s file systems.

Tells how to prepare an application for the Paragon OSF/1 operating system.
The steps described are applicable to applications that are written for a
parallel computer and applications that are ported from a sequential
computer. This chapter discusses three examples: an integration, a
matrix*vector multiplication, and the N-Queens problem.




Preface

Appendix A

Appendix B

Paragon OSF/1 User's Guide

Summarizes the commands and system calls of Paragon OSF/1. The
complete syntax of each command and call is provided, along with a brief
description of each.

Describes the level of support offered by Paragon OSF/1 for the commands
and system calls of the iPSC® system.

Notational Conventions

This manual uses the following notational conventions:

Bold

Italic

Identifies command names and switches, system call names, reserved words,
and other items that must be used exactly as shown.

Identifies variables, filenames, directories, partitions, user names, and writer
annotations in examples. Italic type style is also occasionally used to
emphasize a word or phrase.

Plain-Monospace

Identifies computer output (prompts and messages), examples, and values of
variables.

Bold-Italic-Monospace

Identifies user input (what you enter in response to some prompt).

Bold-Monospace

vi

Identifies the names of keyboard keys (which are also enclosed in angle
brackets). A dash indicates that the key preceding the dash is to be held down
while the key following the dash is pressed. For example:

<Break> <s> <Ctrl-Alt-Del>
(Brackets) Surround optional items.
(Ellipsis dots) Indicate that the preceding item may be repeated.

(Bar) Separates two or more items of which you may select only one.

(Braces) Surround two or more items of which you must select one.

-
| 3 |

[

=

=
IS |

¥ oA
El

o
k; ’l

Fa e
4 E



lm

—

I

I

l"—vm
Im,‘

Paragon™ OSF/1 User's Guide

Applicable Documents

For more information, refer to the following manuals:

Paragon” Manuals

Paragon’" OSF/1 Commands Reference Manual
Paragon™ OSF/1 C C ompiler User’s Guide

ParagonTM OSF/1 Fortran Compiler User’s Guide
Paragon’" OSF/1 C System Calls Reference Manual
ParagonTM OSF/1 Fortran System Calls Reference Manual
Paragon™ OSF/1 Software Tools User’s Guide
ParagonTM OSF/1 Interactive Parallel Debugger Manual

Paragon™ XP/S i860™" 64-Bit M. icroprocessor Assembler Reference Manual

Other Manuals

OSF/1 User’s Guide

OSF/1 Programmer’s Reference

OSF/1 Command Reference

Effective Fortran 77 - Michael Metcalf

C: A Reference Manual - Harbison and Steele

The C Programming Language - Kernighan and Ritchie
CLASSPACK Basic Math Library User’s Guide - Kuck & Associates

CLASSPACK Basic Math Library/C User’s Guide - Kuck & Associates

Preface

vii



Preface

Comments and Assistance

viii

Paragon™ OSF/1 User's Guide

Intel Supercomputer Systems Division is eager to hear of your experiences with our products. Please
call us if you need assistance, have questions, or otherwise want to comment on your Paragon

system.

U.S.AJ/Canada Intel Corporation
phone: 800-421-2823
Internet: support@ssd.intel.com

Intel Corporation Italia s.p.a.
Milanofiori Palazzo

20090 Assago

Milano

Italy

1678 77203 (toll free)

France Intel Corporation

1 Rue Edison-BP303

78054 St. Quentin-en-Yvelines Cedex
France

0590 8602 (toll free)

Japan Intel Corporation K.K.
Supercomputer Systems Division
5-6 Tokodai, Tsukuba City

United Kingdom Intel Corporation (UK) Ltd.
Supercomputer System Division

Pipers Way

Swindon SN3 IRJ

England

0800 212665 (toll free)

(44) 793 491056 (answered in French)

(44) 793 431062 (answered in Italian)

(44) 793 480874 (answered in German)

(44) 793 495108 (answered in English)

Germany Intel Semiconductor GmbH
Domacher Strasse 1
8016 Feldkirchen bel Muenchen

Ibaraki-Ken 300-26 Germany
Japan 0130 813741 (toll free)
0298-47-8904
World Headquarters
Intel Corporation

Supercomputer Systems Division
15201 N.W. Greenbrier Parkway
Beaverton, Oregon 97006

US.A.

(503) 629-7600

If you have comments about the Paragon manuals, please fill out and mail the enclosed Comment
Card. You can also send your comments electronically to the following address:

techpubs@ssd.intel.com (Internet)

I
T

P

v
i

L
-

E[W B
-

Fr"’I

-

.
-



Table of Contents

Chapter 1
Introduction
INTFOAUCTION ...t s e st sas st s 1-1
SYSIEM HATAWArE ...t st ass s srsa bbb bbb e bt een 1-1
INOES .ottt et s e st e sr e s saas s s e e s et aesb s se e e s s ae s sanassneeesabbesnstassananssnsnnansrnnt 1-2
NOGE INtErCONNECE NEIWOIK ...covueeiierieierieeseirceesiesrtesree st es e sresesressrnessn s e e s saesressssasssnorasssnsessnassunessen 1-2
/O INEEITACES ..oviiiicrirercrrrinreee st e st e e e sr e s r e e e s s b ee e e sres e s snes s sesaee s e sasesasareenassseensranesssassnesnenssnns 1-2
SYSLEM SOTIWAIE ... st b s st b st s s sane s 1-2
Paragon™ OSF/1 OPErating SYStEM .....vueueiuneuscssnsssssssssssssssssssssssssssssssesssssssesssssssssssssssssssssaens 1-3
LT Y [o o 1= OO 1-3
Programming MO ...c..eiiiiiiiiiiiiititt ettt ettt ene e saeeneae 1-4
Cross-Development FACIIItY ..covvcieereriiiiiiinrieesisie sttt sse s ssss s s srssen s ssssns s s 1-4




Table of Contents Paragon™ OSF/1 User's Guide

Chapter 2
Using Paragon™ OSF/1 Commands

INTFOAUCTION ...ttt s s st s 2-1
L= (.01 a1 o PP 2-1
Using Paragon™ OSF/1 Commands on the INtel® SUPEICOMPULET ......uuvverueereererseresnsssesisessssenesnees 2-2
Using Paragon™ OSF/1 COMMANAS 0N WOTKSIAHONS .....ceueeresesnsssnsssssssesssssssssssssssssessassssssssssans 2-2
A QUICK EXSMPIE ...eeienreireriiirenstssereteeseisesenseesstsssssress s sanes e seassessesseensssasssssess senssssnsnssssssnssssnsansnsaeses 2-3

INTOrMation YOU NEEA .....ovuiiiiiiiittrct sttt s s e e e s e 2-3
Compiling, Linking, and Executing an ApplICaHON ..ottt ees e 2-3

Compiling and Linking APPIICAtIONS ... 2-5
Configuring Your Environment for Cross-DevelopmMENt .......occccreeiiinieeienniesseniesessreessnssessessssesseese 2-6
Tips for COMPiling @NA LINKING vecveiiereereeieeniniessriseesseesnsersessessessnsesssssesssssssseessessssssesssrasssnessssssassessaess 2-8

USING Other SWItChES ..ottt e sttt s ann 2-8
INCIUGING NXA OF FNX eeeeeeeeeeteerectetteesre e esesstee s sesssssssssnassssssessssssssa s ssmassssssasnssssansnsrssssnasnsss 2-8
Specifying Include File and Library PathNames ......ccocvvrcerenienenennsincenienssrnesssersssessesssonsessonnens 2-8
Preprocessing 2 FOMran PrOGramM .....ccooieecceeieeeireineeminnireeesesssesssesssesssssssssssssasssssssssssassssessnassseses 2-9
Order Of SWILCHES .cvviiiiiciiiiiie et st b e st sa s e st sb s 2-10

RUNNING APPLICALIONS ...ttt s s s et en e 2-11
1L S T=Ye 1] =To (o] o H O SO P R 2-11
Controlling the Application’s Execution Characteristics .......cuvvvriivmnmiinnisnienenssssennsssnssesesnnesens 2-12

Using the Default Partition ...ttt 2-13
Setting Your Default Partition ......coceviiiininin e s sse st e sesens 2-13
Determining the Current Default Partition .......ccccciviinicinnenisnieniesentsesesesessse s s 2-14

SpeCifying APPIICALION SIZE .viviirierririeiserre e sreeneessrsse e sses e s e sseessesbesssesbasssessnasaesenassnsesseans 2-14

Specifying APPICELION PHOMY .vvvccvererrereiererserssrseseessesserssessessesssnsssssssssesssssssssssssssesssessssanssenss 2-15

SPECIfYiNG ProCESS TYPE wiovirviereirieniiiiiiiisii ittt st s s s sses s sssss st anasssesnssnsenessne 2-16

Running a Program on a Subset 0f the NOGES .....oviereirnienriiinirinre e et esasseses 2-16

Running Applications Consisting of Multiple Programs .......ccccvveeverisnnemnsnssssnessiessessesnens 2-18

Running an Application in a Particular Partition ......cccceevcvciiineecnencveeinniesseeescne e sssssseessnns 2-20

Specifying Message-Passing Configuration Parameters ......cccceeveeccenervenenssesesnsesssmsisssnsnnne 2-21

X

"

"

L B
i

.
P

mom
"

.

[

-

LA
i

M'“\
A

1
I

ki
-



e Bl

e R

Paragon™ OSF/1 User's Guide Table of Contents
Managing Running AppliCatioNs ... s 2-23
Managing Partitions ...t 2-24
SPECIAI PAMIIONS .eevreeiieiriterctieieritesieeiseersseesieeeasssessressesssessssssesssnsssnsesenssssnssssssstesssesssersessessessssans 2-25
The ROOt Partition ....ccceiieiiiiitc ittt e s s 2-25

The SErviCe Partition ...cociceeccriiieincenrr sttt e s e s a s b 2-27

The COMPULE PartitiOn ..ceiiceeiicieiiieeiciretinieesin e csistessssessssesssssesssssnssssesessrssssssesssssessnss sesssssnss 2-27
Partition Pathnames ... s s 2-27
Partition CharaCteriStiCS ....ccvivriinmniniiiniiits s s e bbb e aes 2-28
Parent Partition ...t s e s 2-29
Partition NAME ...cviiiiiiiiiiiiinn e e s e s e 2-29

Nodes Allocated to the Partition ... 2-29

Node Numbers Within @ Partition ..., 2-30

L8 T =T= o] = N oo =1 O 2-31

Owner, Group, and ProteCtion MOGES .....cccccvieneeriieiiirresnireesceessnsnesessnsssssesssssssssssssessessssssassnsns 2-32
Scheduling CharaCteriStICS .....cuvvverreersrirerreseresisstestseesesse s ssesssssesessesssssesesssassonsasessssssessesaesas 2-32

31¢=Talo =00 IS Yol s =To (1] 1o Yo N OO OSSO 2-33

LCE=ToTo S To 1 =To (V] 15T o [OOSR RRPPRTR 2-34

MaEKING PArItIONS ..eeveeeieeirceereierieeseeesressseese e sosser s snssneessnessssnsessassnsssseesonsssstsnseesaessrasassessosasssnss 2-38
Specifying the Nodes Allocated to the Partition .........cceccevivicniiniinin e, 2-38
Specifying ProteCtion MOGES ....ccivieerireiiiiiiiiirenirieessesenerssnesesseeseseesssasessstsssssnssssssssessessanssssnans 2-40
Specifying Scheduling CharaCteristiCs .....ccovrneininriieeirnese e 2-41
REMOVING PArtitiONS ouveieceriiiirrecreeisiisesisessssreessnessssesssesssenessraessssnssassnessssnssssnsessssnasssesssanssssssseessnnss 2-42
Removing Partitions Containing Running AppliCatIONS ....icccecceivrininneinienis e 2-43
Removing Partitions Containing Subpartitions .......ccvevirrrinsieinistenrcee s 2-43
Showing Partition CharaCteriStCS .....ccivrererirerimniiiire et s ss e s e e 2-44
ISy (o o ST0] o] o}=Ta €1 {14 -3 OO TORRO 2-45
Listing the Applications in @ Partition ......cccveceeeeiriiieie e 2-47
Changing Partition CharaCteriStiCS ...uiviveveriiernirniinereineesieneessessrsesessessseesrassssnsssssesessnssssasssessssasns 2-48

Xi



Table of Contents Paragon™ OSF/1 User's Guide
Chapter 3
. ™ .
Using Paragon =~ OSF/1 Message-Passing System Calls
INFOAUCTION ... s sse st ensnaenens e s 3-1
Process CharacteriStiCs ...t ss s ssss s saes 3-3
NOGE NUMDEIS «.uveriierriiiie et rsees s e ssree s s s ae s ssrnessbe s sanrassse s ssesessssssaanessssntesssnssssasstensasans 3-3
L daTo =T Y/ o= R 3-4
Message CharacCteriStiCs ... s 3-6
MESSAJE LENGN eeeiiiiiciiii e e s ss e 3-6
MESSAQJE TYPE vvvererrereerriicsriiestrsessee e s s sssssressessnesesstessasstasasssessnensssssssnassssaessnsssesssssssanenesessnssnesnsnsens 3-6
MESSAGE ID ..eiiiieiitrc e b s sr b 3-7
MESSAQGE OFUEN ..o s s s seen b s s 37
Names of Send and Receive Calls ... e 3-7
Synchronous Send and RECEIVE ...t ess s s snees 3-8
Synchronous Send to MUItIDIE NOGES .....coveverreiiinieiniierree st srs e sss e e s s e enenenes 3-9
Asynchronous Send and RECEIVE ..............coviereerecnnes et ssen s 3-10
Releasing MESSAGE IDS ...oiccvviirriienrrt et sse s st sr s e s e s s s sb e s e s s b e ar b saneas 3-13
MeErging MESSEGE IDS ....cuiimiiiicereiie e e st s e e e e e s s b e r e srnn s 3-13
Probing for Pending MeSSAges ...t sssssssessesenes 3-15
Getting Information About Pending or Received Messages ... 3-16
Flushing and Canceling MeSSages ... ssssensees 3-17
FIuShing PenQing MESSAQES ..evievrrvrerrrereireeserriessiesisressseessanssssssiessssesssssesssressssessesssasssssssnssssasssesseass 3-17
Canceling an Asynchronous Send OF RECEIVE ....c.ccvvvueiveeirrercrennininessreneesssessnssresssessenissesssassseesanes 3-19
Message Passing with Fortran COMMONS ... 3-20
Treating a Message as an INterrupt ... 3-22
Passing Information t0 the HANGIET .....cceeviceieiiieiceccctis e ccessr s sseese e s srrae s seneseraesenessane 3-24
Preventing INtEITUDES it snie st ssssr s e s s as st e s e sns s samas s snnnssasasessnasissnassns 3-25
Xii

[
il

L S
i
e
o

"
W .

]

&

|

4

|3

1

A Fa pa Fa
b

b

P
B

I



Paragon™ OSF/1 User's Guide Table of Contents
Extended ReCeiVe @nNd Probe ...t sssss e sesassesseenesnens 3-26
GIODAI OPEIAtIONS ...t e st sea st ea sttt 3-29

Chapter 4

Using Other Paragon”™ OSF/1
System Calls

INTFOAUCTION ... e s s e 4-1
Controlling Application EXE@CULION ... esse e sese s 4-2
Controlling Application Execution with System Calls .......ccevevrinriicreniiesnnsnersrennennieessesseessessressaesensens 4-3
Creating an Application With NX_INIVE() .iciivrerrenirnrenirriissneeseeessnessaesesnssnssseesseessnssssesssnnssnsssnes 4-4

Setting an Application’s Priority With NX_Pri() .ecccevrersreerseriescnersereesnnesessessnsesssesnsssnssssesssnesssassves 4-7
Copying a Process onto the Nodes With NX_NOrK() ..eeceeervrcrerrerereminnnnnennessineesee s ssessnesseeesane 4-7
Loading a Program onto the Nodes With RX_I080() .v.ecreerrivrireersnminntsnnensirsstsnsieessssnessssssesessnees 4-9
Loading a Program onto the Nodes with nx_I0adVe() ..eiveerrceeerenriirrereeserenreninseee e e scnsessssenens 4-10
Waiting for Application Processes with nx_waitall() .......cccovvvvrinininnine e, 4-11

USING PIDS ceeeiiiiiteercrie ettt sserere s sssssae e ssse e es st ae s seen s sane e aesssennsassssntensssenstessnnensnsssnsnsnsans 4-12

The CONrOlliNG PrOCESS ..viiercieiiiriiestiesineesisteesree s iessrssssseassaeessssessessessasasessssssssssssnssessanenesnnnesnsnnnns 4-13
PrOCESS GIOUDPS .cvueerereririiieiiiieessiieseieeeessessinesisssesssseesssssssssssssnesessaessssnesssssessssesssssesssnssssssanssssnss 4-14
Process Groups in Paragon™ OSF/T ....mirsiensssessessessssssessessessesssssesssssssessssssasans 4-15

Killing APPIICALION PrOCESSES .iicivrerrrirercierinrraiesteresiesrnsssissessesnessssnesssssessssessssnessrassssssnsssnsnns 4-15

An EXxample CONtrolliNg PrOCESS ...ovvrveerirrierrsresissessressessessresssesenessessnssssssessssssessesessssansssessessne 4-16
Message Passing Between Controlling Process and Application PrOCESSES .....ccovetrrrrrreessmscesssersessssisnesanens 4-17
Partition Management Calls ... st 4-20
MaKING PArtIONS wvevveiecciiirenieccieenie s ssstre e csseessssessses s sntesssseesssses s sasasssaassssnasnssensanassssensssnnnens 4-20
REMOVING PartitiONS weivreiiecieiiiniin ettt s se e ees e esssrssesene s sbasesanesssnsesssssessnssssnnsasssnasssnnnanann 4-22
Changing Partition CharaCteriStiCS .u..iiiriviriniiieininieeiiiinieseesiessseesssersssesssssessersnsssesenssssssssnssessessans 4-24
HaNAIING EFTOIS ... s bbbt b sns 4-27

xiii



Table of Contents Paragon™ OSF/1 User's Guide
Floating-Point CONEIOI ...t 4-29
Detecting NOt-a-NUMDET ....oocciiie ettt sesess e sss e s s s s s sessas s s s s assses senesonsnes 4-30
Controlling Floating-Point BENAVIOT .....ccocciriieniririniierie s sssseesesessssssssssssensssssssesssessssresseseasssssss 4-30
ROUNAING MOGE .uveiiiiiiiiiisieeeniesrcresssesssss st rsssae s ssee s s esssnssssrasssnessssssasssnnssnnsesnsnssssnnssssnssnnns 4-30
Exception Mask and StCKY FIAGS ..civverrerrrrericereieninieimsiesesessersssessesssesesesseesseessesessesoessssensens 4-31
Fortran Exception Mask VAIUES ......ccciiniiiiiiniiinntiteni st sssessnnesnes crrerenes 4-32
MISCellan@oUS CallS ...t s bas s 4-33
Temporarily Releasing Control of the ProCeSSOr .viiiiicienereirrrie st esressseee e s e essessssssseanes 4-33
BlNKING the LED ..eoietiriitictieii et ettt s sae st e e st s s sae s et n s e s e srne s e e st s asn e sanesenans 4-33
TIMING EXECULION 1ottt ittt et s s sse s sba s e s st st s e s s sbas s s sae 4-34
IPSC® System COMPALIDIlItY CalLS .........cccccorooreeeeeeresseeeeeesesscsesesssssssessessessssssesess s 4-36
Chapter 5
Using Parallel File /O
INTFOAUCTION ... e s e as b s s s bt e s 5-1
Increasing the Size 0f @ File ... s 5-1
Using Parallel /O CallS ...ttt seas et ssa s sssnns 5-2
OPENING FIlS ... sttt s b s s s st ar s 5-3
Opening One File Per Node with “H###” FIlENAMES .....ccveiveiieenrierieeies e eessestesssnssreseesnssaesessesssssaes 5-3
Special Considerations for FOMIAN ......cciviiiiiivtiiniiirie e ssresseeresrarsssesssssssessresessessresssesesssessessssssseens 5-4
Formatted Versus Unformatted /O ....covcvvivienireecrisiren et ssnsssas s sesss e sesesssesrassessnassenans 5-4
NEW FIlES 1rriiieiiiiiiciniiiin e sene st ssae st s ae s s s s sseas s e ae s sras s saae s sanesaseessnanssnsssessasnsnssseenstanessnes 5-5
UNNAMEA FIlES ceiiieiiiieice ettt st e st s ess e sate s srae e sane e sbessesessansnsssannssssasessanenannnesnans 5-5
USING /O MOAES ...t e st e s 5-6
M_UNIX (MOAE 0) .cueirerieieeceniterincne e serssesteseesssesssssesssesnsessessesisnsssssesasesasenssssesstsssasessssessesnessasssaes 5-7
M_LOG (MOOE 1) cciiiiciieeicctiieccerttess s et ee s sesass e tsse e s be e s st s e san s aesessaaa v ssnenssssstnstasasssssessnssansassnnaesinn 5-7
M_SYNC (MOUE 2) cvirieeiicererrireiiriesseeeis e sresse s sre s s e seessaesrnesesseesaeransstsssasssessasssessasssesaesssesasssseseasnssans 5-7
M_RECORD (MOUE 3) .cuveiieieireirierenientssiesssinseessesseessssasassessessessssssssssnesessssassssessasssesnsssstensssssssassssns 5-8
xiv

A e
B3

e

o
k4



l*-w
&
™
h,]i

-

Y

)

ad

Paragon™ OSF/1 User's Guide Table of Contents
AN 1/O MOGE EXAMPIE cuviiciiiiiiiiniiiie et sttt ss s s saa st s sha s s sb e b b sbas sas s eb b b s 5-9
Ll d =TT = =T s g o] [P N 5-10

C EXAMPIE it isrtrserercre s essre sreese s s e sseesbesssnasn e saseesanssaresssranssesssesesnssnes sasssnannssseesnns 5-11
Compiling and RuNNing the EXaMPIE ....c.ccveveviiinniniiene et snesns 5-12
M_UNIX OUPUL ceriiiiieesiieticee et sreee s sie s sees e nesaseesnnesssnssssanse s snesssnsnessanssensansssnes snssasssnnassonns 5-13
M_LOG QUIPUL eeeieiiiriricreeiseeiee e isreesreresesssaessessssesseasssesnessssessesasssesssesssesssnessessssessnssnanesssessrnns 5-14
M_SYNC OUPUL ettt et sn s bbb e b st s e st e b b sb e b s b d et 5-14
M_RECORD OQUIPUL «eiiiiiire ettt s st s s st sss s st sba s e n s s e s saae s ssbesabnes 5-15
Reading and Writing Files in Parallel ... 5-15
Y aTed T de oL U= 1= TP 5-16
ASYNCIIONOUS Fl€ 1/ ettt crre et ese e s sanessease s e s sressnes s nesarassssessnesnsssnes sunnnsnnesens 5-18
Detecting End-of-File and Moving the File Pointer ............ccccovnnncsnncninnen. 5-19
Flushing Fortran Buffered l/O ...t senseses s sssse s 5-20
Increasing the Size 0f @ File ... e 5-21
Performing Extended Arithmetic ... ees 5-23
Extended File Manipulation Calls ... 5-25
Closing Files in Parall@l ...t sssss e 5-26
Controlling TApe DEVICES ...ttt s 5-26
NaMING TAPE DEBVICES ...vvcreirererrrerirrrrrieniesiesstisesessserssessssssessessesssessssssssnesssesesssnsessssesssnssssessnaessressnes 5-27
Performing Operations on Tape DEVICES .....cccvvercriirieiserssresnenieeesrnniesrenssesssnssnnsssesssnsasssesssnessnsssses 5-28
Getting Status Of TAPE DEVICES ...cccviriiiiceierreiescirsersesre s esiesnresserssseesssesennsssnssssesssesssnessnsasssessssasas 5-29
Synchronization SUMMATY ... s s 5-31



Table of Contents Paragon™ OSF/1 User's Guide
Chapter 6
Designing a Parallel Application
INTFOAUCTION ... e st bt s e e e st a et 6-1
The ParagonTM OSF/1 Programming Model ... 6-2
Parallel Programming TeChNIQUES ...t 6-2
Separating the User Interface from the COmMPULALIoN .....cc.everernirrininienessi st 6-3
BalanCing the LOAG ...t 6-3
Domain DECOMPOSIION ..eiivveiriiiireeristeiisrissrireeeestesessrsessssssssesssesessesesneesssnsassasnessnnssssnsesssessasases 6-3
CONtrol DECOMPOSILION ..vevveererseeririeestersaeressrerseesserssesesseesnerssesssssessssssersesssessnsssssssesserasnsssssensesanens 6-5
Making the Program Independent of the Number 0f NOGES .......ccvviiieinieerimneninenne e 6-5
Designing Your COMMUNICAtION SIrAtEOY ...ccevrererverrerieerersesresmrinssssessesssssssssssessssssssessessessessmsessessessens 6-6
USING GIODAI OPEIELIONS ..cccveeiererirreirresieresesnssessssssrssasssesnessssnssasessssnssssessssnssssessessnssnssssnsnssranses 6-6
Using Alternate NOJe TOPOIOGIES uveirvreriirerminiimiirisiseisiisineesiesmmess s sasssssssesssssssssesssssssss 6-6
Example Application: Calculating pi ...........cccovennncinnncne s e 6-7
Example Application: Matrix*Vector Multiplication ..o 6-11
Example Application: The N-Queens Problem ... 6-13
Appendix A

Summary of Commands
and System Calls

ComMMANd SUMMANY ...ttt e ss s s b s s sae st s s A-1
Compiling and Linking APPlICALIONS ....cvirerereniriserseiniissreseenssnsnrssss s e s raessnesssasssensessenssessasssnsssessnes A-1
RUNNING APPLICALIONS ..iiiiiieiriiiriiitirinis e siieersisss s ses e ressesssesseresnnessssassssaessrassnssaesessnsensssesasssassanassns A-2
Managing ParttIONS ..ccicveveiieerere ittt s e e et e s st A-2
INCreasing the Size Of @ FilE it s e s e e e e e s e ser s s s e sntsnan A-2
MiSCEllAaNEOUS COMMEANGS ..vevveuererrireseeersseesienressessssssssssessaesssses s sasssansssessesssssessensessaensesesssasssssssssnnne A-3

xvi

I



»
[W Paragon™ OSF/1 User's Guide Table of Contents

-

7

I!
P

[ . C System Call Summary ............ccooevveeunee. e b A-3
- Process CharaCteriStiCS .....iumiiiinineiniisn e A-3
I - SyNChronous SENA aNd RECEIVE .....eccvvvvriieierririerseeeeeseesteseesteeserssnessrsssessssssessersssssessesssssssssessaenssess A-4
! " ASYNChronous Send and RECEIVE ......cuuiuerriermiiisnieissts st A5
“ Probing for PeNdiNG MESSAGES ...eueevireeerereressressssssessseseseesssssesessssssssssssesssesessssssnssssessssssssssssssensssses A-8
™ Getting Information About Pending or Received MESSAZES ...cicvevrvrernrinssnsneserereniisensensssessssssnessenss A-6
l “ Flushing and CanCeliNg MESSATES ........wuremrersnnssesssssssssnsssessesssssesssesssssssssssssessssssssssssssssssssons A-6
= Treating 2 MeSSage as 8N INEEITUPL ..vivieeeiciieriiinnie et et ste s saseeessree s re s sr e e s sae s saesenraessssssessnsnees A-7

l & Extended RECIVE and ProDE ......coviiiiiiniiiiecrrrc sttt st st s A-8
= GlODAI OPEIALIONS ..ocoerrreererrririiereiesreresrireressesseassessesssersssssesstesessasssessessssessssssssssssessesssassessassssessasssenne A-9

! - Controlling APPlCatIoN EXECULION ..vevreireiceeereereecsirirersessnssreeseesessssssssesssssesesssssssssssssssessessasssesssessassnns A-12
- Partition ManagemeENt .....cccccivieereereniiresnnnenrmssressnesnisssreeseressnsssessnsesssnssssessssassnenssesssssssnssssessssasssens A-13
lu HaNAING EITOIS ..uviiceeieieiesieesreesnesssrssssesssssresssnessessesessnsessenssesssnssnnsessasssnsssssesssssssssssassnesssanssssnessnns A-14
- FIoating=Point CONIIOl .....ccovvirreierereecricre s sreessrsssssetsssnessssssessneseressssessanassnssssssssnsssesssenssssnessnns A-14

l -~ MiISCEIIANEOUS CAllS ...eeiiriieriiierreirsesiee sttt st st s s st sne b eb e as e e st s se s e sb e s snnantns A-15
Y- IPSC® SYStEM COMPALIDIILY .v.vverevescrmeseeserssesesesssesessssesesessesessessesssesssesssssssssssessssesssesssesssssasseens A-15
l J 1O MOTES ...vvvoevevseaseessessssss s sssesssssss s sssssbesssss st s ss s s s e b st s sp s e sttt besn st eres A-16
. Reading and Wting Files iN PAIAIE! ......ceveereeerereeseeeeseeresessssssssesessesssessenesssssssessessessessesesssssseees A-17

l . Detecting End-of-File and Moving the File POINEN .....ccccereiiieieiiirereirsie sttt ssne e A-17
- INCreasing the SiZ€ Of @ FIl ...viviviverireirecceercrrce st reresrer e ssre s sar s saae s sra s srasssnesraesssaesaessasesssbaesanne A-18

I d EXtENAEA File MBMIDPUIBLON «vvvvvvereeeeeeeesreesesseseneesesseseesssessssesesssesessesssesssesnesseesssssessesesssessesessssses A-18
l Performing Extended ArtNMELIC vcvveciivirerernriineireresiressesessesseesnessreseseesssesssesssessssssesesssnessssessnsesans A-19
’ Fortran System Call SUMMATY ...t sssssss s A-20

: PrOCESS CHAraCLENISHICS .uvveveverrersresessssessesssssesesssssssssssesssssssssssssssssssessssstassssssessssssssessesesesssnens A-20
Synchronous SeNd and RECEIVE ...cciviriirierirnrenirceiirireseire e sressesssesssessaessssssessessesssesesssesseesssesananns A-21

l"‘ ASYNCNIONOUS SENT NG RECEIVE ..uvrvucrirereeirereteesesesssesssssesesssssssesssssssssesesssessssssssssssesesssssesssesses A-22
Probing for PEndiNg MESSATES ....vveirirvereeririreerieieceiisinessiesssessressseessssessnessssessassssssssessssesssesssnessssnsns A-23

lj Getting Information About Pending or RECEIVEd MESSAGES ....c.ueurerreversesessnesnsssssesssesssssessssanens A-23
Flushing and Canceling MESSAJES ....ccovivieiiniiirie st estssstssressssssnessesseessessssssssanessssssesssssnsnsne A-24

[j Treating @ MESSAge @S AN INTEITUPE ..ecccveriieeeereeressesre et seses s sesssesesssssesssesesesessssssssssssssssssssssssenens A-24

r:] Xvii



Table of Contents

Extended Receive and Probe ........ccciiiviivcnninninecnncninsnnenennns
Global OPErations .....ccceeerrrerirverinieseenresssesssessessesssssseessesessresses
Controlling Application EXECULION .....cceevrerverreernnrensnessessesscssensnes
Partition Management ........cccerieiercmncnmennnese e s
Handling ErTOrS .ot sse e sesee e ses s s ssensnsens
Floating-Point CONIOl .......cvcceveeiereenvennierrecesrersereeesreeseessesssesenes
Miscellaneous Calls ......ccuveviniieriienine s seenens
iPSC® System COMPALIDIlItY .u.u.veeererieererersrsssssssessesssessessssnes
7@ ¥ LT [ OO
Reading and Writing Files in Parallel .......cccoeieiivennrnncennceennnn,
Detecting End-of-File and Moving the File Pointer .........ccovcuenie.
Flushing Fortran Buffered /O .......occveviviivmnninncninsnnesce e
Increasing the Size of @ File .ccceviiiiveniiiiiinc e,
Extended File Manipulation ...c..ccccecevevciininnmnicnnenessse e
Performing Extended ArithmeticC .....ccocvvveerivrriereninsinsneessesenenen

Appendix B
iPSC® System Compatibility

Introduction
New Features
Compilers

Commands
Cube Control COMMANGS ....cveeveenierisesresessesseseesee s sesssssasssnsenns
CFS™ COmMMANGS ..oovevreineriiseessesissssssssississs s seessessessssssssssseses
System Administration COMMANGS ...c.cveveerenrersirresseisessssnsesnns

xviii

Remote HOSt COMMEANGAS ccveeeeerieiriircereeeeeeeissessasreseresseessesseesnes
MiSCEllaneous COMMEANGS ..eueuvuseereeeerereseeereersesressnsssssessesessssssanns

---------------------------------------------------------------------------------

------------------------------------------------------------------------------

-------------------------------------------------------------------------------------

Paragon™ OSF/1 User's Guide

-
4

4

j

E



- v
i Paragon™ OSF/1 User's Guide Table of Contents

Ry
-
IH
al

|
B4
1
~

SYSIEM CAIIS ...t et s a et e ren et batans
INCIUAE FIBS vviiiiiiiiceri ittt e bbb et sbe s saaesa b b saes B-8
HOSE CalIS ..uvieieeiiiiie sttt st es e e s s s sbssab e s s sb e sa b e e s st sans s sas B-8
Byte-SWapping CallS .ccccieiciiiiiieieiriiieie ettt sesss e e s stesvae e s e be e s s as s ssesssrase s nsesasnessenessanansas B-12
FIoating-Point CONIOI CallS ...cueircieeceerireieceeeeieeiieseeesseeesaesraessessaseseesssssssseessesssnssssassnsanseesaeesssanssnns B-13

—— [ ]
£ 4 [

MiSCEHANEOUS CAIIS .uveeeiieruiiiiiiiiierisitrereiiisssseeesssseesssssresesssstesssssssssssssssssnesssssssessssssnasssesssssesssssnanses B-13

L Ly | L4 A | 4 £t £

-

—
3

B [ T

Xix



Table of Contents Paragon OSF/1 User's Guide

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 6-1.
Figure 6-2.
Figure 6-3.

XX

List of lllustrations

The Root Partition of 2 32-N0Ode SYStEM ...ccvireerivenirceniinies s 2-26
Node Numbers in Contiguous and Noncontiguous Partitions .......ceeevenvnceinniesnnssnnennns 2-30
Node Numbers in Overlapping Partitions .....ccieeininiinenniss s 2-31
An Example of Gang SCheduling ... 2-36
Using Domain Decomposition to Achieve Load BalanCing ......c.cervinneinneiiinnnenininne 6-4
The Decomposition Used for the pi EXaMPIE c.ceveeevreineeeceerree e st s snie e 6-9
The N-Queens Solution Tree for @ 4 X 4 BOard ......ccevnevmmininnnnnnnnssnes 6-15

,m: |
%

"

-

-
B

Ea

i

Ll
.



[

9

L]

k
L.

]

¢ 4 I
Lo ] [

b

i *
| S

A B

{

k|

n L B 3 I | 3

l“ﬂ
s

Paragon™ OSF/1 User's Guide Table of Contents
List of Tables

Table 2-1. Message-Passing Configuration SWItChES ......cccveeiieerirercrnencrrsrre e sses s seessseesnessssseseeses 2-22
Table 3-1. Differences Between flushmsg() and MSGCaNCEI() wovvvrrrirrnirenisiiesiense s ssesesinessessenane 3-20
Table 5-1. Synchronization in EACh 1/O MOGE .....eeviiiecvemniiiiiininrsseeseseensrsssseeesssssssesssesssssssnssssssnsses 5-31
Table 5-2. File /O Calls that SYNCRIONIZE ..uuiiveiciiicriiceeinti s s e ssaessrasssnessnssssessasssanas 5-31
Table A-1. Commands for Compiling and Linking AppliCatIONS ...c.cccuevvineeirrsiiinennniensiccsnsiesineeseseens A-1
Table A-2. Commands for RUNNING APPLICAIONS ...ccceiireiineiiesiiieeseesst et ser e e e s A-2
Table A-3. Commands for Managing Partitions ........cceeernverieninninesesnssinesese s sessessesesssssesenne A-2
Table A-4. Commands for Increasing the Size of @ File ....ccvevvviirrininiiienen e A-2
Table A-5. Miscellaneous COMMANAS ...ccoiveieiriiimieiresiisiiie et sas s e sssssss s s s sbssasesssssaesaessssness A-3
Table A-6. C Calls for Process CharacteristiCs ...t sssesssssssssssssees A-3
Table A-7. C Calls for Synchronous Send and RECEIVE .....ccveuevveeiiirierenrieeriersserseeenesessessssessanessessssesssees A-4
Table A-8. C Calls for Asynchronous Send and RECEIVE .......ccvevrvivrircerrinreeniieniensissresssssesssesonssnsssssses A-5
Table A-9. C Calls for Probing for PENdiNg MESSAGES .....ccveriiuinnissssiiniiniessesssnssessesissssssssessessasiossens A-6
Table A-10. C Calls for Getting Information About Pending or Received MesSages ..........cerrevnsurenne A-6
Table A-11. C Calls for Flushing and Canceling MESSaJES .....c.ccvvvvirinrirnininsriniisnnssssessessssssssssssssssenees A-6
Table A-12. C Calls for Treating a Message as an INtErrupt ....ocvcceevineinesineesenineseesesse s sesssesssssssenns A-7
Table A-13. C Calls for Extended Receive and Probe .......cuveivvniinenieninnesisnenesessessesssseseesseseseens A-8
Table A-14. C Calls for GIoDal OPEratioNS .....ccccviviiecieriiniirssesssinrereesersessseesseesssaesseesssssssssessssssesssasssnne A-9
Table A-15. C Calls for Controlling AppliCation EXECULION .....ccevevererrersiriirinisicissssssese s sanssssnans A-12
Table A-18. C Calls for Partition Management .........cceiiiicniniinnennenenesies s ssesssessssssssssessessesns A-13
Table A-17. C Calls for HAaNANNG EMTOrS ..uvcciviveeereveiieiinesesesesssiensesesesssesssssessessesssssessssnssessesssssessesns A-14
Table A-18. C Calls for Floating-Point CONLrOl .......c.cevvrerieircrersinciiereesieseesesssessesssesssessesssesensssessnss A-14
Table A-19. MiISCElANEOUS G CallS ..cccevireririinriieiininiineseesresseesessese s st s s srensesessesssssssssnssssnssans A-15
Table A-20. C Calls for iPSC® System COMPALIDIY ....uveererveesevreessieseseeessssesssssesssssssessesssssssssssssnss A-15
Table A-21. C Calls fOr I/O MOGES ...eccvriuiniiiiiiie sttt s st s s s ss s st s sn s A-16
Table A-22. C Calls for Reading and Writing Files in Parallel .......cceevvverveecreerennesecssscseesessesesessesnes A-17
Table A-23. C Calls for Detecting End-of-File and Moving the File POINEr ....cccevceeceverveevinenersinereennnns A-17
Table A-24. C Calls for Increasing the Size of @ File ...ccuiviiiiincii et A-18
Table A-25. C Calls for Extended File Manipulation .......cccveviieermiieseiieninisisersseesisanssesseessseessessseessseens A-18
Table A-26. C Calls for Performing Extended ArithmetiC ....cvcveeeveeieecrrieenerrce e e seese e seesans A-19

XXi



Table of Contents Paragon™ OSF/1 User's Guide
List of Tables
Table A-27. Fortran Calls for Process CharacteristiCs ......c.cinnminiisniinnnnnessssseene A-20
Table A-28. Fortran Calls for Synchronous Send and RECEIVE .....eovrverircniiinnninnecnisn e A-21
Table A-29. Fortran Calls for Asynchronous Send and RECEIVE ....uvvveeerereerrrenerenresreneisnnessessseessnensnes A-22
Table A-30. Fortran Calls for Probing for Pending MESSAgES ....cccvveirenicniinsnnmesinicnsinissnnnisessnnseens A-23
Table A-31. Fortran Calls for Getting Information About Pending or Received MesSsages .........ouuueu. A-23
Table A-32. Fortran Calls for Flushing and Canceling Messages ........ocuevvmiimeriinniinniesssisnsesnes A-24
Table A-33. Fortran Calls for Treating a Message as an INterrupt ......ccoevvviieneinnnnne s A-24
Table A-34. Fortran Calls for Extended Receive and Probe ..., A-26
Table A-35. Fortran Calls for Global Operations ......ccceeveirernininenneisissessssse s sessesiesessesses A-28
Table A-36. Fortran Calls for Controlling Application EXeCUtion ..., A-31
Table A-37. Fortran Calls for Partition Management ... s A-32
Table A-38. Fortran Calls for Handling EITOrs .....ccciiiiniccnisiiinsn i ssinssssssscsns s s snsssssassses A-34
Table A-39. Fortran Calls for Floating-Point CONtrol ...t A-34
Table A-40. Miscellaneous FOrran CallS ...t s erssnsssenes A-34
Table A-41. Fortran Calls for iPSC® System COMPALIDIItY ....vvuecveeeeseerssssesssssssessensssessssesssessssesssneens A-35
Table A-42. Fortran Calls for I/O MOGES .....ccevvmrinnisiiinsiniss i e ss s s sneenses +o. A-36
Table A-43. Fortran Calls for Reading and Writing Files in Parallel .......cocccivivvvveerrieneienenieseesseesenens A-37
Table A-44. Fortran Calls for Detecting End-of-File and Moving the File Pointer ........c.ccvveveiiiennncnens A-38
Table A-45. Fortran Calls for Flushing Buffered /O ..., A-38
Table A-46. Fortran Calls for Increasing the Size of @ Fil€ ......cccvrviiiinnnnniiincnniise s A-39
Table A-47. Fortran Calls for Extended File Manipulation .......ccecceceriecnnmnsninnsesssnsse s seessnesessessnas A-39
Table A-48. Fortran Calls for Performing Extended ArithmetiC ..o, A-40
Table B-1. Unsupported iPSC® System Byte-Swapping CallS ......ccccvmimiisinnnininiinesimenaen. B-12
Table B-2. Summary of Unsupported iPSC® System COmMmMands ......ccceveerereereesririeneesnsressmesssnseseesens B-14
Table B-3. Summary of Unsupported iPSC® System CallS ....cccccevreevriveeeerneesenreeeeese e sessveesesseeenes B-16

xXxii

("
1.
i
‘F’ Bl

-
L
a .

i

a

b

)
.

e



E 4 B 4 B 4

£}

E

El

E

%

3

4

i
{

A

b

Eo3

SO |

]

b

i

oA

A

i

-

E

&

E

[ [

b

s

Introduction

Introduction

This chapter introduces the Paragon OSF/1 operating system and the hardware it runs on.

In an Intel supercomputer, a large number of processors called nodes work concurrently on the parts
of a problem. Each node can run multiple processes, and each process can have multiple threads
(lightweight processes). The processes and threads on each node time-share the node’s processor,
using the standard OSF/1 scheduling mechanisms. Each process can be a stand-alone program (such
as a shell, compiler, or editor), or can be part of a parallel application.

A parallel application consists of a group of closely related processes that work together on a single
problem. They synchronize their actions and share information by passing messages, which are
created and controlled by special Paragon OSF/1 system calls.

The processes in an application can also share disk files; Paragon OSF/1 parallel 1/O calls insure
that access to these files is efficient and properly synchronized.

System Hardware

The Paragon OSF/1 operating system runs on several models of Intel supercomputers. These
systems all have a large number of nodes connected by a high-speed node interconnect network, and
a number of /O interfaces to communicate with the outside world.

1-1



Introduction

Nodes

Paragon™ OSF/1 User's Guide

Each node is essentially a separate computer, with one or more i860™" processors and 16M bytes or
more of memory. Nodes can run distinct programs and have distinct memory spaces. They can team
up to work on the same problem and exchange data by passing messages. An Intel supercomputer
can have up to 2000 nodes. Each node can run more than one process at the same time; these
processes can belong to the same or different applications.

The system administrator can choose to dedicate some nodes to interactive processes, such as shells
and editors, and other nodes to compute-intensive applications. The nodes used for interactive
processes are called service nodes, and the nodes used for compute-intensive applications are called
compute nodes. However, there are no physical differences between these two types of nodes.

Node Interconnect Network

The nodes are connected by a high-speed node interconnect network. Each node interfaces to this
network through special hardware that monitors the network and extracts only those messages
addressed to its attached node. Messages addressed to other nodes are passed on without interrupting
the node processor. For most applications, you can think of each node as being fully connected to all
the other nodes.

I/O Interfaces

Some nodes are equipped with a SCSI interface, Ethernet interface, or other I/O connection. These
nodes manage the system’s disk and tape drives, network connections, and other I/O facilities.
Nodes with I/O interfaces communicate with the other nodes over the node interconnect network.
However, this access is transparent: processes on nodes without I/O hardware access the I/O
facilities using standard OSF/1 system calls, just as though they were directly connected. Nodes with
1/0 interfaces are otherwise identical to nodes without 1/0 interfaces, and can run user processes.

System Software

1-2

The nodes run the Paragon OSF/1 operating system, based on the OSF/1 operating system from the
Open Software Foundation. The same operating system runs on every node. OSF/1 is a version of
the UNIX operating system that supports most industry standards; Paragon OSF/1 is an extended
version of OSF/1 with enhancements to support parallel processing.

The Intel supercomputer also comes with a cross-development facility, which you can use to compile
and link Paragon OSF/1 programs on supported workstations.

[
I



L |

A EooA B4 E 4

. |

g

.

b

E

R

b

- —— M- — — ‘ Ar A,‘
f-. i { b AJ

Paragon™ OSF/1 User's Guide Introduction

Paragonm OSF/1 Operating System

Paragon OSF/1 provides all the standard features of OSF/1, with extensions to provide a single
system image across multiple nodes. This single system image makes all the nodes appear to be one
large system. For example, all the nodes share a single file system, all the nodes have equal access
to the system’s I/O devices, and process identifiers (PIDs) are unique throughout the system. A
process on one node can pipe its output to a process on another node, and the command kill pid on
any node kills the specified process, no matter which node the process is running on.

The single system image does nor combine all the nodes’ memory into a single address space.
Rather, each process has its own address space. The physical memory available to each process is
limited to the memory of the node on which it is running. However, because OSF/1 provides virtual
memory, a process’s address space can be up to 2G bytes in size; memory pages that do not fit in
physical memory are paged to disk. As in most multi-user systems, the address spaces of the
different processes on the system are completely independent, unless two or more processes make
special shared virtual memory calls to explicitly share part of their memory.

In addition to the standard facilities of OSF/1, the Paragon OSF/1 operating system provides
message passing capability, Parallel File SystemTM access, and various other utilities to programs
running on the Intel supercomputer. With Paragon OSF/1 calls, your programs can perform the
following functions:

* Exchange messages with processes running on other nodes (or the same node).

* Read and write files on the Intel supercomputer’s Parallel File System.

*  Perform 64-bit integer arithmetic.

»  Find out information about the computing environment.

¢ Perform global operations.

*  Create and control parallel applications and partitions.

User Model

The Paragon OSF/1 operating system is a complete implementation of OSF/1, and provides a full
range of services, commands, and system calls. It has its own file system, shells, compilers, editors,
network connections, and all the other features needed in a stand-alone computer system. It also
supports NFS, the Network File System, so it can share data with other systems on your network.
You can edit and compile programs, send and receive mail, read online manual pages, and do all
your other daily work on the Intel supercomputer.

1-3



Introduction

Paragon™ OSF/1 User’s Guide

You access the Intel supercomputer by logging into a separate computer (typically your UNIX
workstation) and then connecting to the Intel supercomputer over a local-area network, using a
command such as rlogin or telnet. The Intel supercomputer does not have any dedicated hardware
terminals.

You compile and link your application with the self-hosted Paragon OSF/1 compilers and linker.
You then execute your application on the nodes of the Intel supercomputer simply by typing the
application’s name on the shell command line. Command-line switches, or arguments to system
calls in the program, determine the number of nodes on which the application executes.

‘When you run an application, it runs in a partition. A partition is a group of nodes with an associated
set of parameters that controls some of the run-time characteristics of the applications within it. You
can use commands or system calls to create, modify, and remove partitions. However, the operations
you are allowed to perform on your system’s partitions may be restricted by the policies of your site.

The Paragon OSF/1 operating system also provides a suite of program development tools, such as a
debuggerT,Mproﬁler, and parallel performance analysis tools. These tools are described in the
Paragon~ OSF|1 Software Tools User’s Guide.

Programming Model

The most common programming model used with Paragon OSF/1 is the “single program, multiple
data” (SPMD) model. In this model, the same program runs on each node in the application, but each
node works on only part of the data.

*  For some problems, called “perfectly paralle]” problems, each node can do its work without
access to data held by other nodes. In this case, each node operates completely independently.

*  For other types of problems, each node needs data from other nodes to do its work. In this case,
the nodes can share data by passing messages. Messages can also be used to synchronize node
operations.

Because each node is an independent computer, you can also use other programming models. One
example is the “manager-worker” model, in which one “manager” program starts up several
“worker” programs on other nodes, then gathers and interprets their results.

Cross-Development Facility

14

Paragon OSF/1 comes with a complete program development environment, including compilers,
linker, libraries, and related tools. You can perform all phases of program development on the Intel
supercomputer. In addition, the compilers, linker, and libraries for Paragon OSF/1 are also available
on selected UNIX workstations. This cross-development facility lets you edit, compile, and link
Paragon OSF/1 programs on your own workstation.




Paragon™ OSF/1 User's Guide Introduction

I

™

&l

= Note, though, that the cross-development facility does not include a way to run a Paragon OSF/1
- executable that resides on your workstation’s disk. You must transfer your executable files to the

l ‘ Intel supercomputer for execution and debugging. You can do this by mounting your workstation’s

. file system onto the Intel supercomputer, or the Intel supercomputer’s file system onto your

workstation, using the Network File System (NFS). You can also use commands such as rcp or ftp
'T to copy the executable files to the Intel supercomputer. To execute files on the Intel supercomputer

- once they are transferred, you can use the standard rsh or remd command.

—
[SE

4

£

§

L

i | 1l
3 | S

B4

|-

g B b4 b R oo | I



Introduction

16

Paragon™ OSF/1 User's Guide

»

'

™

i

e
" ]

M

-

v

T

b

l
=



b

I

B

il

Using Paragon’ OSF/1 Commands

Introduction

This chapter tells you how to use Paragon OSF/1 commands to perform the following tasks:
»  Compiling and linking applications.

*  Running applications.

¢ Managing running applications.

¢ Managing partitions.

The commands discussed in this chapter are available to all users. See the System Administrator’s
Guide for your system for information on commands that require root privilege.

Terminology
This chapter uses the following terms:

* A parallel application, usually just called an application in this manual, is a group of
cooperating processes that runs on the nodes of the Intel supercomputer.

* A program is a file (source or executable). An application consists of one or more programs
running on one or more nodes. The term program is also used to refer to a non-parallel program
(an ordinary program that runs on one node).

* A partition is a named group of nodes. When you run a parallel application, you must select a
partition to run it in (if you don’t, it runs in your default partition). The partition places limits
on some of the execution characteristics of the application, such as how many nodes it can use




Using Péragon'"" OSF/1 Commands

Paragon™ OSF/1 User’s Guide

and how long it can use them before itis “rolled out” and another application is “rolled in.” You
can allocate all of the nodes of the partition to the application, or just some of them, but this
allocation is not exclusive (other applications can run on the same nodes).

All Intel supercomputers have two special partitions called the service partition and the compute
partition. The service partition is used to run non-parallel programs such as shells and editors,
and the compute partition is used to run parallel applications. The other partitions on your
system, and what you can do with them, are determined by your site’s policies.

Using ParagonTM OSF/1 Commands on the Intel® Supercomputer

The Paragon OSF/1 operating system provides all of the standard commands of OSF/1, such as cat
and Is, which work as specified by the Open Software Foundation. These commands are not
described in this chapter; see the OSF/1 Command Reference for information on these commands.

Paragon OSF/1 also provides several commands that are not specified by the Open Software
Foundation, such as mkpart and rmpart. These commands are described in this chapter, and
manual pages for these commands are provided in the Paragon’" OSF/1 Commands Reference
Manual.

To use any of these commands, you must first log into an Intel supercomputer. Intel supercomputers
have no directly-attached terminals; you must first log into another system (typically a workstation
running some variant of the UNIX operating system) and then log into the Intel supercomputer over
the network, using a command such as rlogin or telnet. Once you have logged in, you use these
commands in the same way as commands on any other computer running OSF/1.

Using Paragon” OSF/1 Commands on Workstations

2-2

The Paragon OSF/1 operating system also comes with several commands that run on workstations
(for example, the ice and if77 cross-compilers). These commands are described briefly in this
chapter; complete descriptions and manual pages for these commands are provided in the Paragon™"
OSFI1 C Compiler User’s Guide and Paragon™ OSF/I Fortran Compiler User’s Guide.

To use these commands, you must first log into a workstation on which these commands are
supported, then configure your account as described under “Configuring Your Environment for
Cross-Development” on page 2-6. Once you have done this, you can use the Paragon OSF/1
cross-development commands in the same way as other commands on the workstation. However, if
you compile an application on a workstation you must transfer the executable file to an Intel
supercomputer to execute it. Depending on your local configuration, you may be able to use the
Network File System (NFS), the rep command, the ftp command, or some other technique to do this.
Ask your system administrator about how files are shared between the Intel supercomputer and other
systems on your network.

va
" -

i



e

il

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

A Quick Example

Here is a quick example that shows you how to compile, link, and execute a simple application on
an Intel supercomputer.

Information You Need

Before you begin, you will need the following information:

¢ The network name of your Intel supercomputer.

*  The command to use to log into the Intel supercomputer, such as rlogin or telnet.
*  Your user name and password on the Intel supercomputer (if necessary).

*  The name of the defaulr partition you should use to run parallel applications.

This information should be available from your system administrator.

Compiling, Linking, and Executing an Application

Once you have the necessary information, the procedure to compile, link, and execute an application
is as follows:

1. Log into the Intel supercomputer, as instructed by your system administrator.
2. Set the environment variable NX_DFLT PART to the name of your default partition:
*  If you use the C shell, use the following command:
% setenv NX DFLT PART partition name
* If you use the Bourne or Korn shell, use the following commands:

$ NX DFLT PART=partition name
$ export NX DFLT PART



Using Paragon™ OSF/1 Commands

3. Type in a short program:

If you are a Fortran programmer, type the following program into the file myapp.f:

100

If you are a C programmer, type the following program into the file myapp.c:

program hello
include 'fnx.h'

write(*,100) mynode()

format ('Hello from node',

end

#include <nx.h>

main()

{

printf ("Hello from node %d!\n", mynode());

}

4. Compile the program into an executable file:

5. Execute the resulting file, myapp, on four nodes with the following command:

The order in which the output lines appear may vary.

If you are a Fortran programmer, use the following command:

$ f77 -nx -o myapp myapp.f

If you are a C programmer, use the following command:

$ cc

% myapp -sz 4

Hello
Hello
Hello
Hello

from
from
from
from

node
node
node
node

-nx -o myapp myapp.cC

0!
3!
1!
2!

Paragon™ OSF/1 User's Guide

That’s all there is to it! Of course, Paragon OSF/1 provides many additional commands and switches
you can use to control the behavior of the compiler and the resulting application. These commands
and switches are described in the rest of this chapter.

2-4

ﬂ

E 4

e
B4

o
B

E]
E|

E 2 B4 B4 |
o3 S oA | S

o

N'W
.

oy
E

il

il

1

I



[
.

I

.
[ Compiling and Linking Applications

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

I,w Command Synopsis Description
cc -nx [ swirches ] sourcefile... Compile a Paragon OSF/1 application written
- in C on an Intel supercomputer.
l ad 77 -nx [ switches ] sourcefile... Compile a Paragon OSF/1 application written
in Fortran on an Intel supercomputer.
il
J icc -nx [ swirches ] sourcefile... Compile a Paragon OSF/1 application written
in C on an Intel supercomputer or
K o cross-development workstation.
A if77 -nx [ switches ] sourcefile... Compile a Paragon OSF/1 application written
* in Fortran on an Intel supercomputer or
l al cross-development workstation.
[,, ) You can compile and link applications on the Intel supercomputer itself, or on a workstation that
supports the Paragon OSF/1 cross-development environment. On the Intel supercomputer, you can
lw, use the “native’” commands cc and f77 or the “cross-development” commands icc and if77. On a
N workstation, you must use the cross-development commands icc and if77. The native and
cross-development versions of each command take the same switches and work identically.
il
l i When compiling and linking an application, you should generally use the switch -nx on the
command line. The -nx switch has three effects:
I J *  If used while compiling a C program, it defines the preprocessor symbol __NODE. The

program being compiled can use preprocessor statements such as #ifdef to control compilation
based on whether or not this symbol is defined. (This preprocessor symbol is nor defined if -nx
is used while compiling a Fortran program.)

—
S |

If used while linking a C or Fortran program, it links in /ibnx.q, the library that contains all the
system calls described in this manual.

=
Lo

If used while linking a C or Fortran program, it links in a special start-up routine that starts up
the program on multiple nodes, as specified by standard command line switches and
environment variables.

w B

For example, the following command line compiles and links the file myapp.c to create an
executable file called myapp (on the Intel supercomputer):

’W‘]
[u % cc -nx -o myapp myapp.cC

ra d



Using Paragon™ OSF/1 Commands

Paragon™ OSF/1 User's Guide

The following command line has the same effect (on the Intel supercomputer or a cross-development
workstation):

% icc -nx -o myapp myapp.c

NOTE

Do not use -nx if your application calls nx_initve().

The Paragon OSF/1 operating system provides nx_initve() and related functions to give your
application more control over the way it starts up. They let the application perform actions for itself
that are normally performed for it by -nx. If you link your application with -nx and it also calls
nx_initve() itself, the application’s call to nx_initve() will fail and return -1. See “Controlling
Application Execution” on page 4-2 for more information on nx_initve() and related functions.

To link an application that calls nx_initve(), use the switch -Inx instead of -nx. The -Inx switch links
in libnx.a, but without the special start-up routine supplied by -nx. A program linked with -Inx can
use all the calls described in this manual, but does not automatically start itself on multiple nodes.
(Note that the -Inx switch must appear on the compiler command line after the filenames of any
source or object files that use these calls.) Note that the preprocessor symbol __NODE is not defined
by -Inx.

A program that is not linked with -nx and does not call nx_initve() is not a parallel application. It
does not recognize the command-line switches described under “Running Applications” on page
2-11, and it always runs on one node in the service partition. (If it creates additional processes by
calling fork(), they may run on the same node or a different node, but they will always run in the
service partition.)

Configuring Your Environment for Cross-Development

26

Before you can use the icc and if77 commands on your workstation, you must configure your
environment as follows:

*  The environment variable PARAGON_XDEV must be set to the pathname of the directory that
contains the Paragon OSF/1 cross-development facility. If you don’t know this pathname, ask
your system administrator.

* Your execution search path (PATH or path variable) must include the directory
$PARAGON_XDEV/paragon/bin.grch, where grch identifies the architecture of your
workstation (such as sun4 for a Sun-4 workstation).

»  If you want to read Paragon OSF/1 online manual pages on your workstation, your online
manual page search path (MANPATH variable or equivalent facility) must include the directory
$PARAGON_XDEV/paragon/man.

LA
|



i
i

™
o

-

el

p——
[

S

4

4

t

L]

et

b

By
£

K|

L] il ] -
o IS B Loy

b
4

|

4

o Bl ow e B ue B e S an Bu

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

You should put the definitions of these variables into your .cshrc or .login file (or the equivalent
start-up file for your shell). For example, suppose the Paragon OSF/1 cross-development facility is
installed in the directory /usr/local/lXDEV. If you use the C shell, you would add these lines to your
.cshrc file:

setenv PARAGON XDEV /usr/local/XDEV
set path=( S$path $PARAGON XDEV/paragon/bin.‘arch’ )
setenv MANPATH "${MANPATH}:${PARAGON XDEV}/paragon/man"

(The curly braces in "$ {MANPATH} : $ { PARAGON_XDEV}/paragon/man" are necessary
because a colon after a variable name is special to the C shell.)

Once your environment is properly configured, you can use the icc or if77 command to compile and
link applications on your workstation. For example, the following command line compiles and links
the file myapp.fto create an executable file called myapp:

$ if77 -nx -o myapp myapp.f

The executable file, myapp, can only be executed on the Intel supercomputer. You can do this by
putting it in a directory that is shared between your workstation and the Intel supercomputer with the
Network File System (NFS), or by copying it to the Intel supercomputer with the ftp or rcp
command. If you use the ftp command, the resulting file may not have execute permission; if this
happens, use the command chmod +x myapp on the Intel supercomputer to give myapp execute
permission.

NOTE

The Paragon OSF/1 versions of the compilers are not the same as
their iPSC® system equivalents.

If you develop programs for the iPSC series of supercomputers from Intel Corporation as well for
Paragon OSF/1, you must be sure that your execution search path (PATH or path variable) is set
appropriately for your current target system. To compile a program for Paragon OSF/1, the variable
PARAGON_XDEV must be set appropriately and your execution search path must include
$PARAGON_XDEV/paragon/bin.grch; to compile a program for the iPSC system, the variable
IPSC_XDEV must be set appropriately and your execution search path must include
$IPSC_XDEV/i860/bin.arch instead. Be sure that your execution search path does not include both
these directories at the same time.

2-7



Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User’s Guide

Tips for Compiling and Linking

2-8

The following sections give you some tips for compiling and linking Paragon OSF/1 applications
(on either the Intel supercomputer or a cross-development workstation).

Using Other Switches

The cc, £77, ice, and if77 commands have a variety of switches to control their operation. For a
description of these switches and other information on these commands, see the online manual pages
for the commands or the following printed manuals:

cc, icc ParagonTM OSF/1 C Compiler User’s Guide.

£77, if77 ParagonTM OSF/1 Fortran Compiler User’s Guide.

Including nx.h or fnx.h
As a general rule, always include the file nx.h in all Paragon OSF/1 C programs. This file contains
definitions and declarations needed by the Paragon OSF/1 C system calls. Although a specific
application may not need the definitions and declarations contained in nx.h, the overhead involved
in including it in all programs is minor. Include it in your C programs as follows:

#include <nx.h>

For Fortran programs, the corresponding file is fix.4. Include it in your Fortran programs as follows:

include 'fnx.h'

Specifying Include File and Library Pathnames

The standard include and library directories depend on whether you are using the native
development commands or the cross-development commands:

¢ The native development commands search for include files in the directory /usr/include, and
they search for libraries in the directories /usr/ccs/lib (searched first) and /usr/lib (searched
second).

»  The cross-development commands search for include files in the directory
$PARAGON_XDEV/paragon/include, and they search for all libraries in the directory
$PARAGON_XDEVi/paragon/lib-coff.

BoA

i
L

k.

i

§
il
l ™



“
I'!
Al
lbm
o

T
il

El

—— ——
B4

}

4

'
€

- ey
£ 4 ‘

4

4

! Lo L

|

<

[N

_— peam e
Lo

e I ww Bl

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

Note, though, that on the Intel supercomputer the directories /usr/paragon/XDEV/paragon!lib-coff
and /usr/ccs/lib are identical, the directories /usr/paragon/XDEV/paragon/include and /usr/include
are identical, and the default for SPARAGON_XDEYV is /usr/paragon/XDEYV, so this difference may
not be significant.

If you need to include a file that is not in the standard include directory or in the same directory as
the source file, you must use the -I switch on the compiler command line to identify the nonstandard
directory. For example, the following command line compiles and links an application that uses
include files in the directory /usr/local/include:

$ icc -nx myapp.c -I/usr/local/include

If you need to link to a library that is in not in one of the standard library directories, then you must
modify the command line in one of the following ways:

¢ Use the -L switch to provide the pathname of the directory in which the library is located. For
example, the following command line compiles and links an application at a site where the
Paragon OSF/1 libraries are located in the directory /usr/local/lib:
$ icc -nx -L/usr/local/lib myapp.c
¢ Specify the complete pathname of the appropriate library or libraries on the command line. For
example, the following command line compiles and links an application that depends on the
library libfft.a located in the directory /usr/local/lib:

% if77 -nx myapp.c /usr/local/lib/libfft.a

Preprocessing a Fortran Program

If your Fortran program is in a file whose filename ends with an uppercase “.F”’ (rather than the
standard lowercase “.f"), the if77 command runs a preprocessor (like the standard C preprocessor)
on the file. This enables you to use lines like the following in a Fortran program:

#include <file.h>

#define MaX 87

2-9



Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User's Guide

Order of Switches

Most cc, £77, icc, and if77 switches are not order-sensitive. However, order is important for the -L
and -l switches and for listing libraries when linking. When constructing command lines, keep the
following guidelines in mind:

*  List libraries in the order in which they should be searched. The Paragon OSF/1 linkers are
single-pass linkers; they cannot resolve a backward library reference (i.e., a reference to a
library object that was defined in a library that has already been searched). Backward references
between objects, however, are not a problem, as all listed objects are linked unconditionally.

e The -L switch affects only the search path of libraries that are listed after the -L switch. For
example, the following command searches only the standard library directories for the library
libnews.a, but searches the directory ../mylibs (as well as the standard library directories) for the
library libgx.a:

% icc -nx myprog.c -lnews -L../mylibs -lgx

* If you specify more than one -L switch, the named directories are searched in reverse order (the
directory specified by the first -L switch on the command line is searched after the directory
specified by the second -L switch on the command line). For example:

$ icc -nx myprog.c -lnews -L../mylibs -l1gx -Llocallibs -llocal
This command searches for libraries as follows:

- Itsearches only the standard library directories for the library libnews.a.

- It searches the directory ../mviibs and then the standard library directories for the library
libgx.a.

- It searches the directory locallibs, then../mylibs, and then the standard library directories
for the library liblocal.a.

Note that the -L switch also affects system libraries; in fact, directories specified by -L are
searched for system libraries before the standard library directories.

2-10

M

S T

v
‘.

1
1.

)

ot

™

™
1.
l Ll

i
il



l“‘ﬂ
L

s

I‘
i

kil

—
E

&

|
4

3

3

i

4

& l

)

k.

£

i
i

L. 4

B S S S SN U SR S T S

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

Running Applications

Once you have compiled your application into a Paragon OSF/1 executable file (and, if necessary,
copied the executable to an Intel supercomputer), you run it by typing its name at your Paragon
OSF/1 shell command prompt, as you would for any other compiled program.

For example, if myapp is a compiled application, you can execute it with the following command:

% myapp

If you get unexpected error messages such as “partition permission denied” or “exceeds partition
resources,” check to be sure the environment variables NX DFLT PART and NX_DFLT SIZE are
properly defined. See “Using the Default Partition™ on page 2-13 and “Specifying Application Size”
on page 2-14 for more information on these variables; see your system administrator for information
on the proper settings for these variables at your site.

The way the application runs depends on how you linked it and on what system calls it makes:

e If myapp was linked with the -nx switch, this command runs myapp on all the nodes of your
default partition. The section “Controlling the Application’s Execution Characteristics™ on page
2-12 tells you more about the default partition, and about the environment variables and
command-line switches you can use to control the execution characteristics of applications
linked with the -nx switch.

e If myapp was linked with the -Inx switch, this command runs myapp on the nodes and partition
specified by system calls within the application. The section “Controlling Application
Execution” on page 4-2 tells you how to use these system calls. If myapp does not specify the
nodes and partition in these calls, it defaults to running on all the nodes of your default partition.
If myapp does not make any of these calls, it runs on one node in the service partition.

e If myapp was linked without the -nx or -Inx switch, it is an ordinary non-parallel program, and
it runs on one node in the service partition.

I/O Redirection

You can redirect the standard input, standard output, and standard error output of an application with
the usual OSF/1 techniques. For example, the following command redirects the input and output of
the application myapp:

% myapp < myfile.in > myfile.out

This command runs the application myapp with its standard input redirected from the file myfile.in
and its standard output redirected to the file myfile.out.



Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User's Guide

Note that, by default, all the nodes read and write their standard input, standard output, and standard
error output using PFS I/O mode 0. In mode 0, all file access requests are honored on a first-come,
first-served basis. You can change this behavior by selecting a different 1/O mode; see “Using /O
Modes” on page 5-6 for more information. The standard input, standard output. and standard error
output are line-buffered by default. This means that if all the nodes write to standard output or
standard error, the output from all the nodes is intermixed in the output, line by line; if all the nodes
read from standard input, each line of the input goes to an arbitrary node.

Controlling the Application’s Execution Characteristics

2-12

Command Synopsis Description

application [ -sz size } [ -pri priority ] Execute a Paragon OSF/1 application.
[ -pt ptype ] [ -on nodespec ]
[ -pn partition ] [ mp_switches ]
[\s app2 [ -pt prype 1 [ -on nodespec]1] ...

When you run an application, you can use command-line switches and environment variables to
control the way the application executes. The command-line switches can appear in any order on the
command line, and may be intermixed with application-specific switches and arguments. If you
specify the same command-line switch more than once in a single command, the last occurrence
overrides the earlier ones. For example, the following two commands are equivalent:

% myapp -sz 4 -sz 50 -pri 8 file.dat
% myapp -pri 8 -sz 4 file.dat -sz 50

Each of these commands runs the application myapp, with the argument file.dat, at priority 8 on 50
nodes of your default partition.

If the application was linked with the -nx switch, the command-line switches discussed in this
section are interpreted and removed from the command line before the application starts up. In the
previous examples, the arguments -pri 8, -sz 4, and -sz 50 are interpreted and removed by the -nx
code; mvapp sees only the argument file.dat (if myapp is a C program argc is 2, argv{0] is “myapp”,
and argv/[1] is “file.dat”).

NOTE

All the examples in this section assume that mygpp was linked
with the -nx switch.

An application that is not linked with -nx controls its own execution with system calls, as discussed
under “Controlling Application Execution™ on page 4-2. Such an application may or may not obey
the command-line switches discussed in this section, depending on how it was programmed.

\N"’W
W

v

m ﬁi
W

r

Y

)
bl
l ™
ﬂ ™
E)
™

e

e
i

"

w |

il



-
- Paragon™ OSF/1 User’s Guide Using Paragon™ OSF/1 Commands

b
al

4

|

Using the Default Partition

]
[ |

When you run a parallel application on the Intel supercomputer, it runs in a partition. The partition
determines the maximum number of nodes used by the application and how the application is
scheduled, as described later in this chapter. An application stays in the same partition for its entire
run.

2

3

If you do not specify otherwise, the application runs in the partition specified by the environment
variable NX_DFLT PART. If the environment variable NX_DFLT PART is not set, the application
runs in the compute partition, a special partition that is present on all Intel supercomputers. The
partition specified by NX_DFLT PART (or, if this variable is not set, the compute partition) is called
your default partition.

£

[

k]

b

For example, to run the application myapp in your default partition, use the following command:

L

% myapp

This command runs the application myapp in the partition specified by the environment variable
NX_DFLT PART, or in the compute partition if NX_DFLT PART is not set.

4

If you see an error message such as “partition not found” or “partition permission denied,” ask your .
system administrator what your default partition should be, then use the commands described in the
next section to set the variable NX_DFLT_PART to that value. You can also use the -pn switch
(described under “Running an Application in a Particular Partition™ on page 2-20) to run an
application in a different partition.

B

-3

b

|

For more information about partitions, see “Managing Partitions” on page 2-24.

i L 4 ;

Setting Your Default Partition

The command you use to set or change your default partition depends on which shell you use.

)

* If you use the C shell, use the setenv command. For example, if you are a C shell user, the
following command sets your default partition to mypart:

% setenv NX DFLT PART mypart

4

setenv is a built-in command of the shell; see csh in the OSF/1 Command Reference for more
information.

L

4

You can put this command in your .login or .cshrc file on the Intel supercomputer to have your
default partition set to mypart each time you log in.

i 3 i 3 i

b

-

2-13



Using Paragon™ OSF/1 Commands

2-14

Paragon™ OSF/1 User's Guide

* If you use the Bourne or Ko shell, set the variable and use the export command to make its
value available to commands other than the shell. For example, if you are a Bourne or Korn shell
user, the following commands set your default partition to mypart:

$ NX DFLT PART-mypart
$ export NX DFLT PART

You do not have to use the export command each time you set the variable. You only have to
export a variable once in each login session. export is a built-in command of the shell; see sh
or ksh in the OSF/1 Command Reference for more information.

You can put these commands in your .profile file on the Intel supercomputer to have your
default partition set to mypart each time you log in.

You can use an absolute or relative partition pathname as the value of NX_DFLT_PART. For
example, the following C shell commands are equivalent:

% setenv NX DFLT PART myorg.mypart
% setenv NX DFLT PART .compute.myorg.mypart

See “Partition Pathnames™ on page 2-27 for more information on partition pathnames.
If you use the C or Korn shell, you can create an alias to change your default partition. For example,
the following C shell command creates a “setpart” alias that sets your default partition to its

argument:

% alias setpart ’setenv NX DFLT PART \!#*'

Determining the Current Default Partition
To find out your default partition once you have set it, use the echo command. For example:

% echo SNX DFLT PART
mypart

This command works the same in any shell.

Specifying Application Size

An application’s size is the number of nodes allocated to the application from the partition. The
processes of the application run only on this set of nodes, and do not exchange messages with
processes on nodes outside this set. However, this allocation is not exclusive: some or all of these
nodes may also be allocated to other applications and/or other partitions. An application keeps the
same size for its entire run.

]

Ea s
-

B

B3
B

{

¥

1 | S

b

LI

3

2

4

pm el B Een A KA F 3
Foo

&

il



Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

[
i

™

al

Ll

- To set an application’s size, use the switch -sz size, where size is any positive integer less than or
equal to the number of nodes in the partition. For example, to run the application niyapp on 64 nodes
of your default partition, use the following command:

—
£ 4

% myapp -sz 64

]
B &

If you don’t use the -sz switch, the application’s size is specified by the environment variable
NX_DFLT_SIZE. You can use the techniques discussed for the NX_DFLT_PART variable in the
previous section to get and set the value of the NX_DFLT _SIZE variable. The value of

NX _DFLT_SIZE must be a positive integer less than or equal to the number of nodes in the partition.
If NX_DFLT SIZE is not set, the application runs on all nodes of the partition, and its size is set to
the size of the partition.

4

e

An application can determine its size by calling numnodes(), and each process in the application can
determine its node number within the application by calling mynode(). mynode() returns a node
number from 0 to one less than the application’s size. (See “Process Characteristics™ on page 3-3 for
more information on these calls.) For example, with -sz 64, numnodes() returns 64 and mynode()
returns a number from O to 63 inclusive. There is no way for an application to change its size.

&

& ; 3

J—
Eo4

The nodes allocated to the application will not necessarily be contiguous (that is, they may not all be
physically next to each other). However, the node numbers within the application, as returned by -
mynode(), will always be sequential from 0.

L4 S

Specifying Application Priority

ey
[

An application’s priority is an integer associated with the application that is used in determining how
much of a node’s processor time the application gets when the node is allocated to more than one
application at once. 0 is the lowest priority, and 10 is the highest.

ﬁ
I

The application’s priority is only one of several factors that determine how much processor time it
gets. For example, the application’s processor time can be affected by the priorities of other
applications in the system and by the effective prioriry limir of the partition in which the application
runs. See “Scheduling Characteristics” on page 2-32 for more information.

[ |
4

To set the pﬁority of the application, use the switch -pri priority, where priority is an integer from
0 to 10 inclusive. If you don’t use the -pri switch, the application’s priority is set to 5.

] ——
4 i

For example, to run the application myapp with a priority of 6, use the following command:

$ myapp -pri 6

L]
2 8]

An application can change its priority by calling nx_pri() (see “Setting an Application’s Priority
with nx_pri()” on page 4-7 for more information).

B
5



Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User’s Guide [j

E |

N i
Specifying Process Type .
A process’s process type, or ptype, is an integer associated with the process that differentiates it from i )

any other process in the application that is on the same node. The process’s node number and process
type together form the process’s “address™ for messages within the application.

To set the process type of each process in the application, use the switch -pt ptype, where prype is
an integer from 0 to 2,147,483,647 (23! - 1) inclusive. If you don't use the -pt switch, the process

type of each process is 0. Kﬂ
~

For example, to run the application myapp with a process type of 1 for each process, use the P
following command: b
o

% myapp -pt 1 o

A process can find out its current process type by calling myptype(). For example, with -pt 1, a-
myptype() returns 1 on all nodes. A process can change its process type by calling setptype(). .

However, once a process has used a process type, no other process in the same application on the N
same node can use that process type for the run of the application. See “Process Characteristics” on -
page 3-3 for information on process types and the myptype() and setptype() system calls.

The -pt switch is most commonly used when running multiple programs in one application, as
discussed under “Running Applications Consisting of Multiple Programs” on page 2-18. In most
other circumstances, you can use the default process type of 0.

.
. o
Running a Program on a Subset of the Nodes W
Usually you run the same program file on all the nodes allocated to the application from the partition. -
However, you can also run a program on just some of the nodes, leaving the other nodes vacant for @
other programs. When you do this, the other nodes are allocated to the application, but no processes
are started on them. l -
d .
To run a program on a subset of the nodes of an application, use the switch -on nodespec, where
nodespec is one of the following: -
il
x The node whose node number is x.
)
Xy The range of nodes from numbers x to y. >
n The last node of the partition. ﬂ —m
nspecl,nspecl... The specified list of nodes, where each nspec is a node specifier of the form -
x, X..y, or n. Do not put any spaces in this list. Im
If you don’t use the -on switch, the program is run on all nodes allocated to the application.




%

B

M
E 9

B3 [ |

4

£

A

B

E

I

I
.

[

4

i
.

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

NOTE

The numbers you use with -on are node numbers within the
application (which always range from 0 to one less than the size
of the application), not node numbers within the partition.

For example, to run the program myapp on the first three nodes of a 20-node application, use the
following command:

% myapp -sz 20 -on 0,1,2
This command creates an application of size 20 in your default partition and runs myapp on nodes
0, 1, and 2 of the application. Within this application, the function numnodes() returns 20, and the

function mynode() returns a number from 0 to 19 inclusive. However, no processes are started on
nodes 3 through 19.

You can use the letter n to represent “the last node in the application.” For example, the following
command creates an application of your default size in your default partition and runs myapp on the
first and last nodes of the application:

% myapp -on 0O,n

For example, if your NX_DFLT_SIZE variable is set to 64 (and there are at least 64 nodes in your
default partition), this would run myapp on nodes 0 and 63 of the application.

You can also use a pair of numbers separated by two periods (x..y) to specify “nodes x through y
inclusive.” For example, the following command creates an application of size 100 in your default
partition and runs the program myapp on nodes 10 through 90:

% myapp -sz 100 -on 10..90
It doesn’t matter whether y is greater than x or vice versa. For example, the following command also
creates an application of size 100 in your default partition and runs the program myapp on nodes 10
through 90:

% myapp -sz 100 -on 90..10

These notations can be combined. For example, the following command creates an application of
your default size in your default partition and runs myapp on all nodes but node 0 of the application:

% myapp -on l..n

Another example: the following command creates an application of your default size in your default
partition and runs mvapp on node 1, node 3, nodes 5 through 10 inclusive, and the last node of the
application:

% myapp -on 1,3,5..10,n

2-17




Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User's Guide
Do not use -on if you just want to run a single program on a
specific number of nodes.

2-18

The -on switch is designed to be used when running multiple programs as a single application, as
discussed in the next section. You can also use the -on switch to run a “manager’” program on one
or a few nodes of an application; the “manager’ program can then run “worker” programs on other
nodes by calling nx_nfork(), nx_load(), or nx_loadve() (see “Controlling Application Execution”
on page 4-2 for information on these functions).

The -on switch is nor designed to run an application on a particular number of nodes or a particular
set of nodes. If you want to run an application on a particular number of nodes, use the -sz switch.
If you want to run an application on a particular set of nodes, allocate a partition containing those
nodes and run the application on all nodes of that partition (see “Managing Partitions” on page 2-24
for information on partitions).

If you use -on when you should be using -sz, the application will be allocated more nodes than it
needs. Also, if you use -on and do not run a program on every node of the application, global
operations will hang. (The global operations described under “Global Operations” on page 3-29,
such as gdsum(), block until they are called by every node in the application. If you run a program
on only a subset of the nodes, these operations will block forever.)

Running Applications Consisting of Multiple Programs

You can run multiple program files as a single application. For example, you could run two or more
separate programs on every node (the resulting processes must have different process types, and the
processes time-share the processor while the application is active). You might also run a manager

program on one node and worker programs on the other nodes. The programs should be written to
work together; you would not usually run two arbitrary programs together in one application.

To run multiple program files as a single application, use the following syntax:
% file [ switches ] [ \; file [ -pt ptype ] [ -on nodespec ] ]

That is, you use two or more complete commands on one line, separated by an escaped semicolon
(backslash followed by semicolon).

NOTE

The escaped semicolon (\;) must be preceded and followed by a
space or tab. Otherwise, it will be considered part of the preceding
or following argument.

-
e

m

.

™o
1
-




—
B

[ S

|

| £ 4 Bt

4

3

]

i [T

!

1

[

i

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

The first file must either have been linked with -nx or must call nx_initve() without overriding the
command line; the second and subsequent files may have been linked with or without -nx, but must
not call nx_initve().

The command-line switches you can use with the files are different:

*  You can use any application switches (-sz, -pri, -pt, -on, -pn, and mp_swirches) with the first
file. The effect of these switches varies according to the switch:

- The -sz, -pri, -pn, and mp_switches switches you use with the first file affect the entire
application.

- The -pt and -on switches you use with the first file affect the first file only.

¢ Youcan use only the -pt and -on switches with the second and subsequent files. These switches
affect the associated file only.

If you run multiple processes on a single node, you must use the -pt switch to specify a unique
process type for each process. When two or more processes in an application run on the same node,
each must have a different process type. If you don’t use the -pt switch, each process will have
process type 0, and you will receive an error message.

For example, to run the programs myapp and mvapp2 as a single application, use the following
command:

% myapp \; myapp2 -pt 1

This command runs the program mvapp with process type 0 and the program myapp2 with process
type 1 on your default number of nodes in your default partition.

To run the program manager on node 0 of a 20-node application and the program worker on the
remaining nodes, use the following command:

% manager -sz 20 -on 0 \; worker -on 1l..n

This command creates an application of size 20 in your default partition. It then runs the program
manager on node 0 of the application and the program worker on nodes 1 through 19 of the
application. All the resulting processes have process type 0, but this does not create a conflict
because manager and worker run on different nodes.

NOTE

If you forget the backslash before the semicolon, the first program
is run as an application by itself and the second program runs after
the first program finishes. This usually results in unexpected
behavior from the programs.

2-19




Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User's Guide

2-20

Running an Application in a Particular Partition

To run an application in a partition other than your default partition, use the switch -pn partition.
You must have execute permission for the specified partition. The partition specified by -pn
overrides the value of NX_DFLT PART, if any. If you don’t use the -pn switch, the application runs
in your default partition, as described under “Using the Default Partition™ on page 2-13.

NOTE

If your default number of nodes, as specified by the environment
variable NX_DFLT_SIZE, is greater than the number of nodes in
the specified partition, you may get a “partition resources
exceeded” error.

If you see this error, use the -sz switch or change the value of NX_DFLT SIZE to specify an
application size less than or equal to the size of the specified partition.

For example, to run the application nvapp on your default number of nodes in the partition mypart,
use the following command:

% myapp -pn mypart

You can use an absolute or relative partition pathname with -pn (see “Partition Pathnames” on page
2-27 for information on partition pathnames). For example, the following commands are equivalent:

% myapp -pn myorg.mypart
$ myapp -pn .compute.myorg.mypart

For more information about partitions, see “Managing Partitions” on page 2-24.

L

b

L3

i

A ga g A KA
b

t

b



Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

Specifying Message-Passing Configuration Parameters

You can control the values of some important message-passing configuration parameters for your
application with the following switches, which are known as the mp_switches. Although the default
values of these switches have been chosen to give good results for most applications, you may be
able to improve your application’s message-passing performance by using different values.

In general, you should begin by changing only the memory_buffer parameter (-mbf). This parameter
determines the total amount of memory allocated to message buffers in each process; the other
parameters determine how this memory is divided up. When you change the value of
memory_buffer, the defaults for the other parameters are automatically scaled to match the current
memory_buffer size. Increasing the memory_buffer can increase the efficiency of message passing,
but it also increases the memory usage of your application, which may cause paging and slow the
application down. Once you have determined the optimal memory_buffer size for your application,
you can change the other parameters to fine-tune the usage of memory within the memory_buffer
and optimize message-passing performance.

The values used with the mp_switches (except -plk) are integer numbers of bytes. If the value you
specify is not a multiple of 32, it is silently rounded down to a multiple of 32.

-pkt packet_size Sets the size of each packet. If a message is larger than
packer_size, it is sent in several pieces, each packet_size
bytes long.

-mbf memory_buffer Sets the total amount of memory allocated to message
buffers in each process.

-mex memory_export Sets the total amount of memory allocated to buffering

messages from other nodes. Memory in memory_buffer
outside of memory_exportisused for local messages (those
sent and received within the same process).

-mea memory_each Sets the amount of memory allocated to buffering
messages from each other node. Memory in
memory_export outside of numnodes() times
memory_each is used for buffering messages from any
sender, when needed.

-sth send_threshold Sets the threshold for sending multiple packets. If a sender
knows that it has at least send_threshold bytes of memory
free in its memory_each segment on the receiving node, it
will send multiple packets of a message right away.
Otherwise, it will send one packet and wait for an
acknowledgment that a receive has been posted.

-sct send_count Sets the number of bytes to send right away when the
available memory is above send_threshold.

2-21




Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User's Guide

o I}
[ R

-
4

-gth give_threshold Sets the threshold for “give me more messages” message.
A receiving node tells its senders how much free memory
the sender has in its memory_each segment by
“piggy-backing” information on other messages going to
the sender. However, if there are no such messages, the
sender can get out of date and stop sending messages
because it thinks there is no free memory left for it on the
receiver. If the receiver knows that the sender thinks it has

F A

b

-
£

N
less than give_threshold bytes of memory free, but there is E N
really more memory available, it sends a special message to
the sender telling it how much memory is really available. .
e -
-plk Locks the entire data area of each process into memory,
like the OSF/1 system call plock(). See the OSF/! -
Programmer’s Reference for information on plock(). -plk L N
also conditions message-passing code to run more
efficiently by assuming that all data buffers are locked into -
memory. E ol
The default, maximum, and minimum values for these switches are shown in Table 2-1. o
Table 2-1. Message-Passing Configuration Switches .
Switch Parameter Default Maximum ’ Minimum L i
aad
-pkt packer_size 1792 or ((memory_each /2) - | 1792 : 32
sizeof(xmxg_t)"), whichever L
is less a .
-mbf memory_buffer | IMB + . available physical 2 * (2 * full_packet_size -
(10 * full_packet_size') for memory * numnodes() + 2) + [ ;
local messages (10 * full_packet_size) -
for local messages .
-mex memory_export | memory_buffer - memory_buffer - 2 * (numnodes() + 2) * & .
(10 * full_packet_size) (10 * full_packet_size) | minimum memory_each
-mea memory_each (10 * full_packet_size) or (memory_export/2)/ | 2* full_packet_size RJJ
maximum memory_each, (numnodes() + 2)
whichever is less -
-sth ¥ send_threshold | memory_each /2 memory_each - 1 (no minimum) ﬂm‘
-sct send_count memory_each /2 memory_each packet_size ¥y
-gth * give_threshold | packet_size memory_each /2 packet_size A
* xmsg_t is atype defined in <mcmsg/memsg_xmsg.h> that defines the message header sent along with each ™
packet. The size of this type is currently 32 bytes. a
t full_packet_size = packet_size + sizeof(xmxg_t).
i All values for this parameter are silently rounded down to the nearest multiple of packet_size. Rl
ad

2-22 U




ol

il

ik

i

#

— pr— pr—
b [ i

]
[

{

14

£

4

£

q

[

B4

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

Managing Running Applications

You use the standard OSF/1 techniques to manage running applications. For example, you use your
interrupt key (usually <Del> or <Ctx1l-¢>) to interrupt a running application. If you use the C
shell or Korn shell, you can use your suspend key (usually <Ctrl-z>) to suspend an application,
and the fg or bg command to resume it. See csh, sh, or ksh in the OSF/I Command Reference for
more information on these techniques.

NOTE

Interrupting or suspending an application that is “rolled out” will not
take effect until the application is “rolled in” again.

Parallel applications are often gang-scheduled for better performance and more efficient use of
system resources. In gang scheduling, an application is allowed to run for a time period, called the
rollin quantum, and then is “rolled out™ and another application is “rolled in™ in its place. The rollin
quantum can be anything from a fraction of a second to 24 hours. If the rollin quantum is long, you
may not see any response to a <Ctrl-c> or <Ctrl-z> for along time. See “Scheduling
Characteristics” on page 2-32 for more information on gang scheduling.

You can also use the ps command to determine the status of an application, and the kill command
to terminate it. For example:

% myapp &
[1] 7045
% ps
PID TT STAT TIME COMMAND
5841 p3 S + 0:02.50 -csh (csh)
7045 p3 R 0:00.30 myapp
% kill 7045
% ps
PID TT STAT TIME COMMAND
5841 p3 S + 0:02.55 -csh (csh)
[1] + Terminated myapp
%

The ps command shows only processes running in the service partition. See ps and kill in the OSF//
Command Reference for more information on these commands. To show processes running in
partitions other than the service partition, use the pspart command.

The myapp process that you see in the output of ps is a special process called the controlling process
that runs in the service partition; you do not see the other application processes in the output of ps.
However, sending a signal to the controlling process with <Del>, <Ctxl-c>, <Ctrl-z>,orkill
signals all the processes in the application. See “Controlling Application Execution™ on page 4-2 for
more information on the controlling process.

2-23



Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User's Guide

If the application was started from the Bourne shell (sh) or from a shell script, you will see two
processes with the name of the application in the output of ps. Of these two processes, the one with
the higher PID is the controlling process. The process with the lower PID is another special process,
called the shepherd process. This process is necessary for the application; do not kill it. When the
application terminates, this process will terminate as well.

You can use the pspart command to determine the status of all the applications in a particular
partition. See “Listing the Applications in a Partition” on page 2-47 for information on this
command.

You can also use the Interactive Parallel Debugger (ipd) to control the execution of an application,
down to the machine instruction. See the ParagonTM OSF/1 Interactive Parallel Debugger Manual
for information on ipd.

Managing Partitions

2-24

The nodes of the Intel supercomputer are divided into overlapping groups called partitions. When
you run a parallel application, you must select a partition to run it in. The partition places limits on
the execution characteristics of the application, such as which nodes it can use and how long it can
use them before it is “rolled out™ and another application is “rolled in.”

Depending on the policies of your site, you may or may not have to know any more about partitions
than what has been discussed in this chapter so far.

*  Atsome sites, the system administrator configures all the partitions; ordinary users can simply
set the NX_DFLT PART variable to an appropriate value (or leave it unset and use the compute
partition) and then forget all about partitions. If your site is like this, you do not have to read this
section. However, you may wish to read it to help you understand how the system works.

e Atother sites, users create and configure their own partitions. If your site is like this, you should
read this section.

This section includes the following information about partitions:
¢ Some special partitions that every Intel supercomputer has.
»  Specifying partitions with partition pathnames.

¢ The characteristics of a partition.

e Making partitions with the mkpart command.

* Removing partitions with the rmpart command.

»  Showing the characteristics of a partition with the showpart command.

v
y

1.
1"

o
o

™
)

*



£

s

[ |

K

B

B3

|
anl

i

4

B

S Y L

b

|

& i
[ |

Ml e —
i d £

4

b

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

* Listing the subpartitions of a partition with the Ispart command.
* Listing the applications in a partition with the pspart command.

¢ Changing the characteristics of a partition with the chpart command.

Special Partitions

Every Intel supercomputer has three special partitions:

¢ The root partition directly or indirectly contains all the other partitions in the system. It is the
only partition that does not have a parent partition.

*  The service partition is the partition in which the users’ shells and other commands run. Its
parent is the root partition.

e The compute partition is the partition in which parallel applications run. Its parent is also the
root partition.

The characteristics of these partitions are determined by the system administrator. In particular, the
system administrator sets the ownership and permissions of these partitions according to local
policies. These ownerships and permissions determine whether or not ordinary users can create
partitions for their own use, or whether they must run applications in partitions provided for them by
the system administrator.

Typically, the service partition and compute partition are the only two children of the root partition
and do not overlap. However, the system administrator can choose to configure these partitions
differently, and may also create additional child partitions of the root partition.

The Root Partition

The root partition is the basis for all other partitions. The name of the root partition is . (dot). The
root partition always uses gang scheduling (see “Gang Scheduling™ on page 2-34 for more
information).

The root partition contains every usable node in the system. Depending on the underlying hardware,
there may be unusable nodes within the root partition as well.

The root partition is always rectangular in shape. It organizes all the nodes in the system into a

two-dimensional grid, or mesh. For example, Figure 2-1 shows the root partition of a 32-node system
that is configured as a 4 by 8 node mesh. The nodes are numbered from 0 to 31.

2-25



-
Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User's Guide [ P

ONCNONCRCRON® ‘-
k]
@ @ @ @ v
@ @ @ v
"
(¥
Figure 2-1. The Root Partition of a 32-Node System ’1 T
NOTE

ol
The root partition always has a mesh structure, even if the L
underlying hardware does not. v

The Paragon OSF/1 operating system presents the same view of the system even if the node ‘
interconnect network has a different architecture (such as a hypercube). m ﬁ‘
el
hatl
NOTE 1
The root partition is always rectangular, even if the number of -

usable nodes in it is not a multiple of two numbers. (This is nottrue o
of partitions other than the root partition.)

I ™

P

For example, a system with 31 nodes would also be a 4-by-8-node rectangle, numbered as shown in
Figure 2-1, but one of the nodes would be an unusable node, as described under “Unusable Nodes™

™

on page 2-31. You would not be able to start any processes or allocate any subpartitions using this l N
node.

[‘7

o

i

w3l




E o [ 3 Lo t Lo L S Lo P4 L4 e 4 oo Ly oA R o4 B3 ¥ [ | L |

Paragon™ OSF/1 User's Guide ' Using Paragon™ OSF/1 Commands

The Service Partition

The service partition is the partition in which the users’ shells, OSF/1 commands, and other
non-parallel programs run. The name of the service partition is service. The service partition always
uses standard scheduling, which means that it may not contain any subpartitions (see *“Standard
Scheduling™ on page 2-33 for more information).

When you log into the Intel supercomputer, a shell is started for you on a node in the service
partition; when you execute a command in this shell, the command runs on a node in the service
partition. Note that the node the command runs on is not necessarily the same node that the shell runs
on; the system starts each new process on the node that is currently the least busy. Running processes
may also be migrated to other nodes to improve load balancing.

The Compute Partition

The compute partition is the partition in which parallel applications run. The name of the compute
partition is compute. The compute partition always uses gang scheduling.

When you execute a parallel application, one process (called the controlling process) runs in the
service partition; the other processes of the application run in the compute partition, or in a
subpartition of the compute partition. You can specify which partition an application runs in when
you execute it.

Your system administrator determines whether or not you can create subpartitions in the compute
partition and whether or not you can execute applications in the compute partition itself. There may
also be other local policies that affect how you use the compute partition; for example, you may be
required to run your applications in certain subpartitions during the day and others at night.

Partition Pathnames

Since partitions have a hierarchical structure like directories, they also have pathnames like
directories. Like a file or directory pathname, a partition pathname identifies a partition within the
hierarchical partition structure by describing the path from a known location to the specified
partition.

Unlike file and directory pathnames, however, partition pathnames use a dot (. ) instead of a slash

(/) to separate the elements of the pathname. This is why the name of the root partition is . (dot).

There is also no special partition pathname for “current partition™ or “parent of the current partition.”
Also, you cannot use wildcards (* and ?) in partition pathnames.

2-27



Using Paragon™ OSF/1 Commands

Paragon™ OSF/1 User's Guide

There are two types of partition pathnames:

*  An absolute partition pathname specifies the path from the root partition to the specified
partition. An absolute partition pathname begins with a dot (.)

*  Avrelative partition pathname specifies the path from the compute partition to the specified
partition. A relative partition pathname does not begin with a dot.

NOTE

Relative partition pathnames are always relative to the compute
partition (there is no “current partition”).

The absolute partition pathnames of the root partition, service partition, and compute partition are
. (dot), .service, and .compute respectively. Because these partitions are not subpartitions of the
compute partition, they do not have relative partition pathnames.

If the partition mypart is a subpartition of the compute partition, its absolute partition pathname is
.compute.mypart and its relative partition pathname is just mypart.

If subpart is a subpartition of miypart, its absolute partition pathname is .compute.mypart.subpart
and its relative partition pathname is mypart.subpart.

Partition Characteristics

2-28

Each partition has the following characteristics:
* A parent partition that contains it.

* A name that identifies it.

*  Aset of nodes that is allocated to it.

*  Anowner and group and a set of protection modes, like those of a file or directory, that
determine what actions a given user is allowed to perform on it.

*  Asetof scheduling characteristics that determine how applications are scheduled in it.

A partition’s characteristics are set when the partition is created. The mkpart command, described
under “Making Partitions” on page 2-38, lets you specify most of these characteristics on the
command line; if you don’t specify otherwise, the characteristics of a new partition are set to the
same values as those of its parent partition.

(= T

B 4 & 3

e

‘s

i

-

)

.
1
el
1
1
’Vlm’l
y

N

.



- Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

2-44, to determine a partition’s current characteristics.

d A partition’s parent partition and nodes cannot be changed. You can change the other characteristics
with the chpart command, described under “Changing Partition Characteristics™ on page 2-48.

Parent Partition

1‘1

l al You can use the showpart command, described under “Showing Partition Characteristics” on page

l Each partition is contained within another partition. The containing partition is called the parent
partition, and the contained partition is called a child partition or subpartition of the parent partition.

! (There is one exception to this rule: the root partition has no parent.)

You specify a partition’s parent when you create it with mkpart. The parent partition determines the

set of nodes that are available to be allocated to the new partition (a partition cannot include any

- nodes other than the nodes of its parent). The parent partition also determines the default

characteristics of the new partition, as mentioned earlier. A partition's parent does not change for the:

life of the partition.

Partition Name

- Each partition is identified by a name. A partition’s name must be unique among all the partitions
with the same parent. Partition names can be any length, but must consist of only uppercase letters
(A-2), lowercase letters (a-z), digits (0-9), and underscores (_).

an existing partition’s name (you must have write permission on the partition’s parent partition).

Nodes Allocated to the Partition

4 Each partition has a set of nodes allocated to it from its parent partition. This allocation is not
exclusive: some or all of these nodes may also be allocated to other partitions. The number of nodes
- in this set is called the partition’s size.

I | You specify a partition’s name when you create it with mkpart, and you can use chpart to change
You can specify the set of nodes allocated to the partition when you create it with mkpart. You can
- specify the partition’s size and let the operating system select the nodes, or you can specify certain
I node numbers from the parent partition. If you don’t specify either, the new partition consists of all
the nodes of the parent partition.
i The set of nodes allocated to a partition does not change for the life of the partition (that is, partitions
never move or change their size or shape). Depending on how you allocate the nodes, they may or
) may not be contiguous (all adjacent to each other). Figure 2-2 shows examples of contiguous and
N noncontiguous partitions.



Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User's Guide

O O 0O|®0O

o0 oOle olo
1O O|®|0 O

OO0 0|® ® 0

0000 OO0O0O
o0 o olelo

1O O O O|®|0

O0OO00 0000
O 000 0O[eloo

Contiguous Partitions Noncontiguous Partitions

Figure 2-2. Node Numbers in Contiguous and Noncontiguous Partitions
Node Numbers Within a Partition
Each node in a partition has a node number within the partition: an integer from O to one less than

the partition’s size. The nodes in a partition are typically numbered from left to right and then from
top to bottom, as shown in Figure 2-2.

NOTE

Because partitions can overlap, a single physical node can have
many logical node numbers.




B

B4

4

E

#

3

1

K}

£d k

3

£ ; E B

‘ i

&

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

For example, Figure 2-3 shows two partitions, called Partition A and Partition B, that have the same
parent partition. Partition A consists of nodes 1 through 4 of the parent partition, and Partition B
consists of nodes 4 through 8 of the parent partition. In this case, node 4 of the parent partition is also
known as node 3 of Partition A and node 0 of Partition B.

Parent Partition
Partition A Partition B

OO0 O 000 O OO0

Partition Node Numbers
Parent 0 1 2 3 4 5 6 7 8
A - 0 1 2 3 - - - -
B - - - - 0 1 2 3 4

Figure 2-3. Node Numbers in Overlapping Partitions

Unusable Nodes

Occasionally a node may become unusable because of a hardware or software failure. If this occurs,
the node is still allocated to any partitions to which it was allocated before it became unusable, but
no applications can be run on that node and no new partitions can include that node until the node
becomes usable again. The showpart and Ispart commands indicate if there are any unusable nodes
in a partition.

For example, suppose you make a partition containing 20 nodes and later one of those nodes
becomes unusable. If you attempt to run an application or make a subpartition with all 20 nodes of
this partition while the node is unusable, the attempt will fail. (Exception: if you run an application
on “all nodes™ of this partition, which occurs if you don’t use the -sz switch and the environment
variable NX_DFLT_SIZE is not defined, the application will run on 19 nodes. This is not currently
true if you attempt to make a subpartition containing “all nodes™ of the partition, which is the
default.)

2-31



Using Paragon™ OSF/1 Commands

2-32

Paragon™ OSF/1 User's Guide

Owner, Group, and Protection Modes

Each partition has an owner, a group, and a set of protection modes, like those of a file or directory,
that determine who can perform what operations on the partition.

When you create a partition with mkpart, you become the new partition’s owner; the new partition’s
group is set to your current group (see newgrp in the OSF/1 Command Reference for more
information on groups). If you are the owner of a partition, you can use chpart to change an existing
partition’s group; only the system administrator can change an existing partition’s ownership.

A partition’s protection modes consist of three groups of three permission bits (read, write, and
execute for owner; read, write, and execute for group; and read, write, and execute for “other™), as
described for the chmod command in the OSF/] Command Reference. The read, write, and execute
permission bits have the following meanings for a partition:

r (read) Allows listing the subpartitions and characteristics of the partition.

w (write) Allows creating and removing subpartitions in the partition and changing the
partition’s characteristics.

X (execute) Allows executing applications in the partition.

The system administrator (roor) is not affected by these permission bits. root can do anything to any
partition at any time.

The permission bits can be expressed as a three-digit octal number (as for the chmeod command) or
as a string of the form rwxrwxrwx (as used by the Is -1 command, where a letter represents a bit
that is “on’ and a dash (- ) represents a bit that is “off’). For example, the octal number 754 is
equivalent to the string rwxr-xx- -; both grant all permissions to the owner, read and execute
permissions to the group, and read permission only to all other users.

When you create a partition with mkpart, you can specify its protection modes. If you don’t specify
a partition’s protection modes when you create it, they are set to the same values as those of the
parent partition. If you are the owner of a partition or the system administrator, you can use chpart
to change an existing partition’s protection modes.

Scheduling Characteristics

Each partition has a set of scheduling characteristics that determine how the applications running in
the partition are scheduled (that is, how the system arbitrates between processes when there are
several processes running on a single node).

You can specify a partition’s scheduling characteristics when you create it with mkpart and change
them with chpart. If you don’t specify a partition’s scheduling characteristics when you create it,
they are set to the same values as those of the parent partition.

1.
)i
™

ad

1

’”l‘
o



-
& Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

W
&

——
[ ]

E

A partition uses one of two different forms of scheduling: standard scheduling and gang scheduling.

E

» Partitions that use standard scheduling use the standard OSF/1 scheduling mechanisms. This
gives good response to user input, but may result in poor performance for parallel applications
(when one process in the application becomes inactive, other processes that depend on that
process for information have to wait until it becomes active again).

B

»  Partitions that use gang scheduling use a modified scheduling mechanism that makes all the
processes in a parallel application active at the same time. Also, where standard scheduling
swaps processes in and out frequently (typically every 100 milliseconds), gang scheduling
swaps applications in and out on the basis of the partition’s rollin quantum: a time period that
can be up to 24 hours long. A long rollin quantum gives good performance for parallel
applications, because the application can run for a long time without being interrupted, but may
result in poor response to user input (when you give input to an application that is rolled out, the
application does not respond until it is rolled in again).

E]

E

s

B E 8

Standard-scheduled partitions should be used to run interactive applications and applications that are
being debugged; gang-scheduled partitions should be used to run numerically-intensive applications
that do not interact with the user.

4

¥

The following sections give you more information about these two forms of scheduling.

E

R

Standard Scheduling

E
=

Standard scheduling is the same as the scheduling technique used on single-processor OSF/1
systems. Each node in a partition that uses standard scheduling is scheduled like a separate
computer; there is no attempt to coordinate related processes running on separate processors.

g

(‘

NOTE

E]

A partition that uses standard scheduling may not contain
subpartitions, and may not overlap any other partitions that use
standard scheduling.

i3

t

In a partition that uses standard scheduling, each process has a prioritv, a number from -20 (high
priority) to 20 (low priority), that is used in determining how much processor time the process gets.
Non-parallel processes in standard-scheduled partitions may be migrated by the system (moved
from one node to another within the partition while they run) to improve load balancing; processes
that are part of a parallel application do not migrate.

|
3

S i

o

| I S |

I
e
[j | 2-33



Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User's Guide

2-34

Partitions that use standard scheduling give good interactive performance for each individual
process in the partition. However, there is no guarantee that related processes are active at the same
time. This means that a process in a parallel application running in such a partition may find itself
waiting for a message from a process that is not active, which reduces the performance of the
application. To avoid this problem, you can use gang scheduling.

Gang Scheduling

Gang scheduling is a special scheduling technique that coordinates the scheduling of related
processes running on separate processors. In a partition that uses gang scheduling, the nodes are
scheduled so that all the processes in an application are active at the same time. If there are multiple
processes per node in the active application, standard scheduling is used to schedule these processes
against each other while the application is active.

Partitions that use gang scheduling may contain subpartitions, and may overlap other partitions of
any type. Processes in partitions that use gang scheduling do not migrate.

In a partition that uses gang scheduling, not only does each process have a priority, but there is a

separate priority for the application as a whole. An application’s priority is a number from 0 (low
priority) to 10 (high priority). A gang-scheduled partition also has a priority of its own, as well as
two other quantities called the effective priority limit and the rollin quantum:

* A partition’s priority is the lower of the following:
- The priority of the highest-priority application or subpartition in the partition.
- The partition’s effective priority limit.

* A partition’s effective priority limit is a number from 0 to 10 that places an upper limit on the
partition’s priority. It does not affect the priorities of applications or partitions within the
partition.

e Apartition’s rollin quantum is the amount of time each application in the partition is allowed to
be active before the system considers running another application instead. The term “rollin
quantum” comes from the application being “rolled in”” when it is made active, and *'rolled out™
when it is made inactive.

A gang-scheduled partition’s effective priority limit and rollin quantum are set when the partition is
created, and do not vary unless you change them with the chpart command. A gang-scheduled
partition’s priority may vary over time, depending on the priorities of the applications and
subpartitions in the partition.

A partition that uses standard scheduling does not have an effective priority limit or rollin quantum.
It also does not have a numeric priority; instead, its priority is “infinite” (that is, higher than the
priority of any gang-scheduled partition or application).

-
A

"
o

ht
a



4 v 4

b

4

-4

E

4

[

4 [ to4 L

t

4

b i oo ¥

S|

| S 4

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

Gang scheduling is performed recursively, partition by partition. For each gang-scheduled partition
in the system, starting with the root partition, the operating system examines all the entities
(applications and partitions) within the partition:

1. Entities that do not overlap other entities (that is, they have no nodes in common with any other
entity in the partition) are simply scheduled to run for the partition’s rollin quantum.

2. Where two or more entities overlap, the priorities of the overlapping entities are compared, and
the highest-priority entity is scheduled to run for the partition’s rollin quantum.

3. If two or more entities overlap and are tied for highest priority, they are scheduled in a
round-robin fashion (each takes turns running for one full rollin quantum).

4. If an entity that is scheduled to run is a partition, the operating system examines and schedules
the entities in the partition as described above. This process continues recursively as necessary.

At the end of each partition’s rollin quantum, the operating system examines and schedules the
entities in the partition again.

Note that rules 2 and 3 mean that, when applications or partitions overlap, the one with the highest
priority gets one rollin quantum after another until it completes. Entities with lower priorities get no
processor time at all until the higher-priority entity has completed. If there is a tie for highest priority,
the tied high-priority entities take turns running, but entities with lower priority get no processor time
until all the high-priority entities complete. Partitions that use standard scheduling always have the
highest priority, so if a standard-scheduled partition overlaps a gang-scheduled partition or an
application, the standard-scheduled partition always wins.

For example, Figure 2-4 shows a partition (called Partition X) that contains two applications (called
Applications A and B) and one partition (called Partition Y). Partition Y is a subpartition of Partition
X, and Partition X is the parent partition of Partition Y. Partition Y contains two applications
(Applications C and D). Application A does not overlap any other entity; Application B and Partition
Y overlap. Applications C and D overlap each other within Partition Y. The priorities and effective
priority limits of these entities are shown in the figure; the rollin quanta of the two partitions are the
same.

2-35



Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User's Guide

Application A (priority 3)

Application B (priority 5)

Partition X
(effective priority limit 7)

Partition Y
(effective priority limit 5)
Y is a subpartition of X

Application D (priority 6)
Application C (priority 9)

2-36

(]

Figure 2-4. An Example of Gang Scheduling

At the beginning of the first rollin quantum, the system notices that Application A does not
overlap with anything else, so it is simply scheduled to run for this rollin quantum regardless of
its priority. However, Application B and Partition Y overlap, so the system compares their
priorities:

e Application B has a priority of 5.

*  The highest priority within Partition Y is 9. However, the partition’s effective priority limit
is only 5, so Partition Y has a priority of 5.

Since Application B and Partition Y have the same priority, they will be scheduled to run in
alternation. The system arbitrarily selects Application B to run first, so in the first rollin
quantum Applications A and B are active and Partition Y (with Applications C and D) is
inactive.

At the beginning of the second rollin quantum, Application A still does not overlap anything,
so it is scheduled to run again in this rollin quantum. However, Application B has had its turn,
so Partition Y is scheduled to run in this rollin quantum instead. This means that the entities
within Partition Y must be scheduled. Applications C and D overlap, so their priorities are

v f
p

I
"

w o
-

&

\N"’\

W o

o
W




_——
B o4

#

E

—

4

k

3

&

E

4

K b4

|

I I S IR ST S SR Y SR

} LA

[

I

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

compared. Since Application C’s priority is higher, it is selected to run in this rollin quantum.
So in the second rollin quantum Applications A and C are active and Applications B and D are
inactive.

3. The third rollin quantum (and every odd-numbered rollin quantum thereafter) is scheduled like
the first; Applications A and B are active.

4. The fourth rollin quantum (and every even-numbered rollin quantum thereafter) is scheduled
like the second; Applications A and C are active.

Since Application A does not overlap any other entities, it is allowed to run in every rollin quantum
until it completes. Applications B and C run in alternate rollin quanta until one of them completes.
Since Application D has a lower priority than Application C, it does not get any processor time at all
until Application C completes. If Application B is still running when Application C completes,
Application D alternates with Application B just as Application C did.

NOTE

Ifthe rollin quantum of a subpartition is larger than that of its parent
partition, it will take more than one actual rollin period to satisfy the
subpartition’s “virtual rollin quantum.”

For example, suppose the rollin quantum of Partition X in Figure 2-4 is 5 seconds and the rollin
quantum of Partition Y is 10 seconds.

1. Attime 0:00, the system examines Partition X and selects Application B to run in alternation
with Partition Y. Application B is rolled in first and runs for the 5-second rollin quantum
specified by its partition (Partition X).

2. Attime 0:05, Application B is rolled out and Partition Y is rolled in for the first time. The system
now examines Partition Y and selects Application C to run. Application C runs for the first 5
seconds of the 10-second rollin quantum specified by its partition (Partition Y).

3. Attime 0:10, Partition Y is rolled out; this pauses Application C in the middle of its rollin
quantum. Application B is rolled in, and runs for another 5-second rollin quantum.

4. Attime 0:15, Application B is rolled out and Partition Y is rolled in again. Application C now
runs for the last 5 seconds of its 10-second rollin quantum. Note that Partition Y does not
undergo scheduling at this time. Instead, it simply continues what it was doing when it was
rolled out at time 0:10.

As discussed earlier, during this period Application A runs in every rollin quantum and Application
D does not run at all.

2-37



Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User's Guide

Making Partitions

2-38

Command Synopsis Description

mkpart [ -sz size | -sz hXw | -nd nodespec ] Create a partition.
[-ss|[[-rq time]] -epl priority]]]
[ -mod mode ] name

To create a partition, use the mkpart command. You can specify either a relative or an absolute
partition pathname for the new partition. The specified new partition must not exist; the parent
partition of the new partition must exist and must grant you write permission.

For example, to create a partition called mypart whose parent partition is the compute partition, you
can use the following command:

% mkpart mypart
The following command has the same effect, but uses an absolute partition pathname:

% mkpart .compute.mypart

Specifying the Nodes Allocated to the Partition

The mkpart command gives you three ways to specify which nodes are allocated to the new
partition:

-SZ size Creates a partition whose size (number of nodes) is size. The nodes are not
necessarily contiguous.

-sz hXw Creates a contiguous rectangular partition that is 4 nodes high and w nodes
wide. (You can use an uppercase or lowercase letter X between the integers
and w.)

LR
W

o
o

i-

N"‘
o

-

i

™

g

™

£

IW
Al




2 B 4 kb W

[ S

3

E

L B4

i

| i

R | B b Lo C P E Lo b

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

-nd nodespec  Creates a partition that consists of exactly the specified nodes, where
nodespec is one of the following:

x The node whose node number is x.
X..y The range of nodes from numbers x to y.
hXw:n The rectangular group of nodes that is 4 nodes high

and w nodes wide and whose upper left corner is node
number n. (You can use an uppercase or lowercase
letter X between the integers # and w.)

nspec[,nspec]... The specified list of nodes, where each nspec is a node
specifier of the form x, x..y, or K Xw:n. Do not put any
spaces in this list.

The numbers you use with -nd are node numbers within the parent partition,
which always range from O to one less than the size of the partition.

If you don’t use the -sz or -nd switch, all the nodes of the parent partition are allocated to the new
partition (if the parent partition is the root partition and it contains unusable nodes, only the usable
nodes are allocated). You can use at most one -sz or -nd switch in a single mkpart command.

The following examples all create a 50-node partition called myparr whose parent partition is the
compute partition (that is, the new partition’s absolute partition pathname is .compute.mypart):

*  This command creates a 50-node partition with no specified shape or location:
% mkpart -sz 50 mypart

The nodes of the new partition are selected from the parent partition by the system, and they
may not be contiguous.

»  This command creates a partition 10 nodes high and 5 nodes wide:
$ mkpart -sz 10x5 mypart

The position of the new partition within the parent partition is selected by the system, but the
new partition is a contiguous rectangle.

»  This command creates a partition 10 nodes high and 5 nodes wide located in the upper left
corner of the parent partition:

% mkpart -nd 10X5:0 mypart

The shape and position of the new partition are specified by the user, and the new partition is a
contiguous rectangle.

2-39



"

V'

Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User's Guide

i
¥
"
*  This command creates a partition that consists of nodes 30 through 79 of the parent partition:
N M”‘*ﬂ')
$ mkpart -nd 30..79 mypart "~
The specific nodes of the partition are specified by the user, and the new partition may or may “ ‘
not be contiguous (its shape depends on the size and shape of the compute partition). ‘
¢  This command creates a partition that consists of node 0, nodes 3 through 16, and a 5 by 7 node E"’ﬂ
rectangle located at node 21 of the parent partition: d .
% mkpart -nd 0,3..16,5X7:21 mypart P
.
The specific nodes of the partition are specified by the user, and the new partition is not
contiguous (its shape depends on the size and shape of the compute partition). L
&
No matter how you specify the partition’s size, nodes are always numbered from 0 to one less than
the partition’s size. In most cases, they are numbered from left to right and then top to bottom, as o
discussed under “Nodes Allocated to the Partition” on page 2-29. However, if you use the -nd o
switch, the nodes in the new partition are numbered in the order you specified them in the -nd switch.
For example, the following command creates a partition that consists of nodes 30 through 79 of the mo
compute partition: | ui
% mkpart -nd 79..30 mypart e
In this case, node 79 of the parent partition is node 0 of the new partition; node 78 of the parent
partition is node 1 of the new partition; and so on to node 30 of the parent partition, which is node ¥y
49 of the new partition. a
N m
Specifying Protection Modes .
The mkpart command gives you two ways to specify the protection modes of the new partition: H !
-mod nnn Creates a partition whose protection modes are specified by the three-digit
octal number nnn, as used by the chmod command (see chmod in the OSF/1 l ™
Command Reference for more information). ™
-mod string Creates a partition whose protection modes are specified by the l“
nine-character string string. The string must have the form rwxrwxrwx, i
where a letter (r, w, Or x) represents a permission granted and a dash (-)
represents a permission denied, as displayed by the command Is -1 (see Is in -
the OSF/1 Command Reference for more information). P
You can use at most one -mod switch in a single mkpart command. If you don’t use the -mod ["?
switch, the new partition is given the same protection modes as its parent partition. i

L
2-40 [‘




A Eooa k4 e 4 B 4 & 4

K]

K E

Peal  —

L

Moo
| {
L i

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

For example, the following command creates a partition that is readable, writable, and executable by
you; readable and executable by your group, and only readable by others:

% mkpart -mod rwxr-xr-- mypart
The following command has the same effect, but uses an octal number:

% mkpart -mod 754 mypart

Specifying Scheduling Characteristics

The mkpart command gives you three switches to specify the scheduling characteristics of the new

partition:
=SS Creates a partition that uses standard scheduling.
-ss cannot be used with -rq or -epl.
-rq fime Creates a partition that uses gang scheduling with a rollin quantum of tine,

where time is one of the following:

n n milliseconds (if » is not a multiple of 100, it is
silently rounded up to the next multiple of 100).

ns n seconds.

nm n minutes.

nh n hours.

0 “Infinite” time: once rolled in, an application runs until
it exits.

No matter how you specify it, the rollin quantum must not be more than 24
hours.

-rq can be used with or without -epl. If you use -rq without -epl, the new
partition has the same effective priority limit as its parent partition.

-epl priority Creates a partition that uses gang scheduling with an effective priority limit
of priority, where priority is an integer from 0 to 10 inclusive (0 is low
priority, 10 is high priority).

-epl can be used with or without -rq. If you use -epl without -rq, the new
partition has the same rollin quantum as its parent partition.

2-41



Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User's Guide

If you don’t use the -ss, -rq, or -epl switch, the new partition uses the same scheduling technique,
rollin quantum, and effective priority limit as its parent partition.

For example, the following command creates a partition that uses standard scheduling:
% mkpart -ss mypart

The following command creates a partition that uses gang scheduling with a rollin quantum of 10
seconds and the same effective priority limit as its parent partition:

$ mkpart -rq 10s mypart

The following command creates a partition that uses gang scheduling with an effective priority limit
of 7 and the same rollin quantum as its parent partition:

% mkpart -epl 7 mypart

The following command creates a partition that uses gang scheduling with a rollin quantum of 5
minutes and an effective priority limit of 6:

% mkpart -rq 5m -epl 6 mypart

Removing Partitions

2-42

Command Synopsis Description

rmpart [ -f] [ -r ] partition Remove a partition.

To remove an existing partition, use the rmpart command. You must have write permission on the
parent partition of the partition to be removed. You can specify the partition to be removed with
either a relative or an absolute partition pathname.

For example, to remove the partition called mypart, whose parent partition is the compute partition,
you can use the following command:

% rmpart mypart
The following command has the same effect, but uses an absolute partition pathname:

% rmpart .compute.mypart

e B = i ol B S B o I o

oA
_d

B

B

‘-

-
l

1l

-
AJ

™l

il

l

I



i

A Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands
-
i
[ ‘ Removing Partitions Containing Running Applications
Rl
[ ﬂ‘ If you specify a partition that contains any running applications, you see an error message and the
partition is not removed. You can force rmpart to remove a partition that contains running
- applications with the -f switch. When you use the -f switch, rmpart terminates all the applications
I . running in the specified partition and then removes it.
- For example, if there are applications running in mypart, use the following command to terminate
I § the applications and remove the partition:
l - % rmpart -f mypart
I o Removing Partitions Containing Subpartitions

If you specify a partition that contains any subpartitions, you see an error message and the partition

- is not removed. You can force rmpart to remove a partition that contains subpartitions with the -r
l B switch. When you use the -r switch, rmpart recursively removes all the subpartitions in the

specified partition (and their sub-subpartitions, and so on) and then removes the specified partition.

E

For example, if there are subpartitions in mypart, use the following command to remove mypart and
all its subpartitions:

B

- |

% rmpart -r mypart

E

4

rmpart -r is an “all or nothing”™ operation. If any subpartitions cannot be removed, the command
fails and no subpartitions are removed.

B

i

The -r switch does not imply -f. If mvpart or any of its subpartitions contains any running
applications, you see an error message and none of the partitions are removed. You can force rmpart
to remove a partition that contains subpartitions and running applications by using the -r and -f
switches together. When you use both these switches, rmpart terminates all the applications running
in the specified partition and its subpartitions, removes all the subpartitions in the specified partition,
and then removes the specified partition.

k3

4

L4

L4

S |

—
b

I



Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User's Guide {]

"
. - . "
Showing Partition Characteristics

y

Command Synopsis Description 4

showpart [ partition ] Show the characteristics of a partition. I E

To show the characteristics of a partition, use the showpart command. You can specify the partition Wi

with either a relative or an absolute partition pathname. If you don’t specify a partition, showpart -

shows the characteristics of your default partition (see “Using the Default Partition” on page 2-13).

In either case, you must have read permission on the specified partition. ” B
W
For example, to show the characteristics of the partition called mypart, whose parent partition is the -
compute partition, you can use the following command: E |
s
% showpart mypart N
USER GROUP ACCESS SIZE RQ EPL H !
smith  eng 777 9 15m 5 e
Fommmmmo- +
J | il
4| * & x| d .
8] . * * * |
12] * ok x| ;' ™
oo + A
In this case, mvpart belongs to user smith in group eng. It has permissions 777 (rwxrwxrwx), a size "
of 9 nodes, a rollin quantum of 15 minutes, and an effective priority limit of 5. See “Partition i
Characteristics™ on page 2-28 for information on these partition characteristics.
™
N
The rectangular picture at the bottom of the showpart output shows the size, shape, and position of -
the specified partition within the system: .
*  The large rectangle represents the root partition. In this case, the root partition is 4 nodes high l -
and 4 nodes wide. .
}
*  The numbers to the left of the rectangle show the node numbers of the nodes in the first column i s
of each row. In this case, the first node in the top row is node 0, the first node in the second row
is node 4, the first node in the third row is node 8, and the first node in the bottom row is node 12. 1
. cistel
e Asterisks (*) within the rectangle represent nodes that are allocated to the specified partition;
periods ( . ) represent other nodes. In this case, mypart consists of nodes 5-7, 9-11, and 13-15 H !
of the root partition. *“
+  Ifyousee adash (-)or an X within the rectangle, it represents an unusable node that is allocated ™
to the specified partition. You cannot run any applications or allocate any partitions using this -

node. See “Unusable Nodes™ on page 2-31 for more information.

I
244 l] ,




BoH

B4 e oo [ |

g o [T | e 4

E]

]

t

4

3

4

£

K

b

3

I
E

£

4

T

I |

k|

i 4

kB

e Bl Bl

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

The following command has the same effect, but uses an absolute partition pathname:

% showpart .compute.mypart

Listing Subpartitions

Command Synopsis Description

Ispart [ -r ] [ partition ] List the subpartitions of a partition.

To list the subpartitions of a partition with their characteristics, use the Ispart command. You can

specify the partition with either a relative or an absolute partition pathname. If you don’t specify a
partition, Ispart lists the subpartitions of your default partition (see “Using the Default Partition” on
page 2-13). In either case, you must have read permission on the specified partition.

For example, to list the subpartitions of the partition called mypart, whose parent partition is the
compute partition, you can use the following command:

% lspart mypart

USER GROUP ACCESS SIZE RQ EPL PARTITION
chris eng 777 16 15m 3 mandelbrot
chris eng 777 16 - - debug

pat mrkt 755 4 10m 10 slalom
smith eng 700 * * * private

In this case, mypart has four subpartitions: mandelbrot, debug, slalom, and private.

e mandelbrot is owned by user chris in group eng; it has permissions rwxrwxrwx, a size of 16
nodes, a rollin quantum of 15 minutes, and an effective priority limit of 3.

*  debug is also owned by user chris in group eng; it has permissions rwxrwxrwx and a size of
16 nodes. It has no rollin quantum or effective priority limit: this shows that it is a
standard-scheduled partition.

*  slalom is owned by user pat in group mrkt; it has permissions rwxr-Xxr- X, a size of 4 nodes,
a rollin quantum of 10 minutes, and an effective priority limit of 10.

e private is owned by user smith in group eng; it has permissions rwx---- - - . Because private

does not grant you read permission, its size, rollin quantum, and effective priority limit are
shown as asterisks (*).

2-45



Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User's Guide

If you see two numbers separated by a slash in the SIZE column, it indicates that one or more of the
nodes allocated to the indicated partition is unusable. For example:

% lspart mypart
USER GROUP ACCESS SIZE RQ EPL PARTITION
chris eng 777 14 / 16 15m 3 mandelbrot
This indicates that there are 16 nodes allocated to mandelbrot, but 2 of them are currently unusable.
You cannot run any applications or allocate any partitions using unusable nodes. See “Unusable
Nodes” on page 2-31 for more information.
The following command has the same effect, but uses an absolute partition pathname:

% lspart .compute.mypart

To recursively list all of a partition’s subpartitions, sub-subpartitions, and so on, use the -r switch.
For example:

$ lspart -r mypart

USER GROUP ACCESS SIZE RQ EPL PARTITION
.compute.mypart:

chris eng 777 16 15m 3 mandelbrot

chris eng 777 16 - - debug

pat mrkt 755 4 10m 10 slalom

smith eng 700 * * * private
.compute.mypart .mandelbrot:

chris eng 777 16 15m 10 hi pri

chris eng 777 16 15m 1 lo_pri

The Ispart -r output reveals that mypart.mandelbrot has two subpartitions, hi_priand lo_pri, neither
of which has any sub-subpartitions, and that slalom and debug have no subpartitions. No information
is available on the subpartitions of private (if any), because private does not grant you read
permission.

NOTE

If you specify a partition that has no subpartitions, Ispart produces
no output.

For example, since mypart.slalom has no subpartitions, an Ispart command on this partition gives
no output:

% lspart mypart.slalom
%

To get information about mypart.slalom itself, use the showpart command.

2-46

E

4 L= ]
B

‘
§

&

A s
]

| I

Ea
L

E

d

¥

£4‘

4



(S 1

|

4

A €

; Eo4

]

.4 3

I

] & E

S ¢

-

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

Listing the Applications in a Partition

Command Synopsis Description

pspart [ partition ] List the applications in a partition.

To list the applications in a partition, with information about the rollin/rollout status of each, use the
pspart command. You can specify the partition with either a relative or an absolute partition
pathname. If you don’t specify a partition, pspart lists the applications in your default partition (see
“Using the Default Partition” on page 2-13). In either case, you must have read permission on the
specified partition.

For example, to list the applications in the partition mypart, whose parent partition is the compute
partition, you can use the following command:

% pspart mypart

PGID USER SIZE PRI TIME ACTIVE TOTAL TIME COMMAND

12345 pat 256 5 45.00 75% 4:41.60 /home/pat/glide
23456 chris 67 4 - - 7:12.30 boggle -sz 67
34567 smith 192 10 1:00.00 100% 2:12:03.90 myfft -sz 192

The following command has the same effect, but uses an absolute partition pathname:
$ pspart .compute.mypart
The columns in the output of pspart have the following meanings:

PGID The process group ID of the application (see “Process Groups™ on page 4-14
for more information).

The process group ID of an application is always the same as the process ID
of the application’s controlling process. This means that you can use this
number with the kill command to kill the application; for example, given the
pspart output above, the command kill 34567 would kill the application

myfft.
USER The login name of the user who invoked the application.
SIZE The number of nodes allocated to the application from the partition (see

“Specifying Application Size™ on page 2-14 for more information).

PRI The application’s priority (see “Specifying Application Priority”” on page
2-15 for more information).

2-47



Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User's Guide

TIME ACTIVE The amount of time the application has been active (rolled in) in the current
rollin quantum (see “Scheduling Characteristics” on page 2-32 for more
information). The time active is shown both in the format
{[hours : Iminutes : Iseconds . milliseconds and as a percentage of the
partition’s rollin quantum. If the application is not active in the current rollin
quantum, a dash (-) is shown for both quantities.

In the example above, the partition mypart has a rollin quantum of one
minute. The application /home/pat/glide has been active for 45 seconds, or
75% of the rollin quantum; the application boggle is not currently active; and
the application myfft has been active for one minute, or 100% of the rollin
quantum.

TOTAL TIME The total amount of time the application has been rolled in since it was
started, in the format [[hours : Iminutes : 1seconds . milliseconds.

In the example above, the application /home/pat/glide has been active for a
total of 4 minutes and 41.60 seconds; the application boggle has been active
for a total of 7 minutes and 12.30 seconds; and the application myfjt has been
active for a total of 2 hours, 12 minutes, and 3.90 seconds.

COMMAND The command line by which the application was invoked.

Changing Partition Characteristics

Command Synopsis Description

chpart [ -rq time ][ -epl priority ] Change certain partition characteristics.
[ -nm nante ] [ -mod mode ]
[ -g group 1 -0 owner] . group) ]
partition

To change the characteristics of a partition, use the chpart command. The permissions required
depend on the switches you use. You can specify the partition with either a relative or an absolute
partition pathname.

2-48

"

ad



[ | [T |

E

8

B4

+

E

4

&

P

&

E

(<5

a

z [

——a—
i

1 [ | [ ] [ | A
& S L4 e b

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

chpart can change the following partition characteristics:
* Rollin quantum.

¢ Effective priority limit.

¢ Partition name.

*  Protection modes.

¢ Owner and group.

The other partition characteristics, such as size, parent partition, and scheduling type (standard or
gang), are determined when the partition is created and cannot be changed.

The switches of chpart, which can be used together or separately and in any order, are similar to the
corresponding switches of mkpart:

-rq time Changes the partition’s rollin quantum to rime, where time is one of the
following:
n n milliseconds (if » is not a multiple of 100, it is

rounded up to the next multiple of 100).

ns n seconds.

nm n minutes.

nh n hours.

0 “Infinite” time: once rolled in, an application runs until
it exits,

-rq can be used only on a gang-scheduled partition. To use -rq, you must
have write permission on the specified partition.

-epl priority Changes the partition’s effective priority limit to priority, where prioritvis an
integer from 0 to 10 inclusive.

-epl can be used only on a gang-scheduled partition. To use -epl, you must
have write permission on the specified partition.

2-49



Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User’s Guide

2-50

-nm nane Changes the partition’s name to nanie, where name is a valid partition name
(a string of any length containing only uppercase letters, lowercase letters,
digits, and underscores). To use -nm, you must have write permission on the
parent partition of the specified partition.

Note that -nm can only change the partition’s name “in place;” there is no
way to move a partition to a different parent partition.

-mod nnn Changes the partition’s protection modes to the value specified by the
three-digit octal number nnn. To use -mod, you must be the owner of the
specified partition or the system administrator.

-mod string Changes the partition’s protection modes to the value specified by the
nine-character string string. The string must have the form rwxrwxrwx,
where a letter (x, w, or x) represents a permission granted and a dash (-)
represents a permission denied. To use -mod, you must be the owner of the
specified partition or the system administrator.

-g group Changes the partition’s group to group. The group can be either a group name
or a numeric group ID. To use -g, you must be the owner of the specified
partition and a member of the specified new group, or you must be the system
administrator.

-0 owner] . group] Changes the partition’s owner to owner. If . group is specified, also changes
the partition’s group to group. The owner and group can be either user/group
names or numeric user/group IDs. To use -0, you must be the system
administrator.

For example, the following command changes the rollin quantum of mypart to 20 minutes:

% chpart -rq 20m mypart

The following command changes the effective priority of myparr to 2:

% chpart -epl 2 mypart

The following command changes the protection modes of mypart so that it is readable, writable, and
executable by the owner but not by anyone else:

% chpart -mod rwx------ mypart

The following command has the same effect as the previous three commands combined, but uses an
absolute partition pathname and an octal protection mode specifier:

% chpart -epl 2 -rq 20m -mod 700 .compute.mypart

»
-

-
&

¥

&
.
i

pm

M !

el

™
1.
Ay

™

o

™

- il

bl
!

™

ke

¥




—
| S ]

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

|

E |

& The following command changes the owner of mypart to smith, but does not affect its group:
% chpart -o smith mypart
The following command changes the group of mypart to support, but does not affect its ownership:
s % chpart -g support mypart
The following command changes the owner of mypart to smith and the group to support:
% chpart -o smith.support mypart
The following command changes the name of mypart to newpart.

% chpart -nm newpart mypart

] L E k]

The following command also changes the name of mypart to newpart, but uses an absolute partition
™ pathname:

% chpart -nm newpart .compute.mypart

kAl
l o Note that the new name is specified as a name only, not a pathname.

I

>
l | 2-51
-



Using Paragon™ OSF/1 Commands

2-52

Paragon™ OSF/1 User's Guide

M
&

W

i
b o

A
A |

i

3

|

3

=a ®a3 E 3
4

b} 3

e

€ !

A« ga& B4

3

4

¥ 3 E 3

Lo B B B |
E 4

LI |

Ed ¥ 4 E_ 4



b

A

&

a4

£

@

13

1

[

]

£

4

i

¢ E 3

¢

4

oo

£

i

¥ I | L i b

Loy

I T T R

Using Paragon’ OSF/1
Message-Passing System Calls

Introduction

Message passing is the standard means of communication among processes in Paragon OSF/1. As
independent processor/memory pairs, the nodes do not share physical memory. If the node processes
need to share information, they can do so by passing messages. The calls described in this chapter
let your programs send and receive messages.

This chapter introduces the Paragon OSF/1 message-passing system calls. It includes the following
sections:

*  Process characteristics.

¢ Message characteristics.

«  Names of send and receive calls.

*  Synchronous send and receive.

*  Asynchronous send and receive.

*  Probing for pending messages.

*  Getting information about pending or received messages.
¢ Flushing and canceling messages.

¢ Message passing with Fortran commons.

»  Treating a message as an interrupt.

¢ Extended receive and probe.

*  Global operations.




Using Paragon™ OSF/1 Message-Passing System Calls Paragon™ OSF/1 User's Guide

3-2

Within each section, the calls are discussed in order of increasing complexity. That is, the “base”
calls are discussed first, and the “extended” calls are discussed later.

Each section includes numerous examples in both C and Fortran. A call description at the beginning
of each section or subsection gives a language-independent synopsis (call name, parameter names,
and brief description) of each call discussed in that section. Differences between C and Fortran are
noted where applicable. See Appendix A for information on call and parameter types; see the

Paragon™ OSF/1 C System Calls Reference Manual or the Paragon” OSF/1 Fortran System Calls

Reference Manual for complete information on each call.

This chapter does not describe all the Paragon OSF/1 system calls. For information about system
calls that provide general services other than message passing, see Chapter 4. For information about
the calls used with the Parallel File System', see Chapter 5. For information about the calls used
with Paragon OSF/1 software tools, such as TCP/IP and the X Window System, see the Paragon’
OSF/1 Software Tools User’s Guide. For information about the system calls that require root
privileges, see the System Administrator’s Guide for your system.

Paragon OSF/1 programs written in C can also issue OSF/1 system calls. The Paragon OSF/1
operating system is a complete OSF/1 system and fully supports all the standard OSF/1 system calls.
See the OSF/1 Programmer’s Reference for information on these calls.

Paragon OSF/1 programs written in Fortran cannot make OSF/1 system calls directly, but the
Fortran runtime library includes a number of system interface routines. These routines make a
number of OSF/1 system calls available to Fortran programs. See the Paragon’ OSF/1 Fortran
Compiler User’s Guide for information on these routines.

-
-
1

»
¥

i

]

4

——

]

A .
E 4

i

LS

E 1

B3

A sa B4 B4 Ea sa § 3
E o4 % 4 & 4 & 4

4

el

Im
Had

l""]
sl

-

I



T |

T |

E s

L]

E

#

E

E ]

E

4

4

4

E

|

£

B

4

i

K]

4

i

k

B

L4

k.

Paragon™ OSF/1 User's Guide _ Using Paragon™ OSF/1 Message-Passing System Calls

Process Characteristics

Each process within an application is identified by its node number and process type. A process must
have a valid node number and process type to send and receive messages.

Node Numbers

Synopsis Description

mynode() Obtain the calling process’s node number.

numnodes() Obtain the number of nodes allocated to the
current application. '

¥

A process's node number is an integer that identifies the node on which it is running. Node numbers-
are assigned by the system, and range from zero to one less than the number of nodes in the

application. A process can find out its node number by calling mynode(); the node number does not
change for the life of the process. A process can also find out the number of nodes in the application

. by calling numnodes(); the maximum node number in the application is numnodes() - 1.

When you run an application that was linked with the -nx switch, the system creates one process on
each node of the default partition (unless you specify otherwise on the application’s command line).
Each process is the same as the others except for its node number, which is different in each process.

All message-sending system calls have a node parameter that specifies the node to which the
message is sent. You can use any valid node number, or the special value -1 to send the message to
all nodes in the application except the sending node itself.

Some message-receiving system calls have a nodesel parameter that specifies the node from which
the message was sent. A nodesel parameter can be a valid node number (to receive only messages
from that node), or the special value -1 (to receive messages from any node). Message-receiving
system calls that do not have a nodesel parameter always receive messages from any node.

The node numbers used in message-passing calls are always node numbers within the application,
not physical slot numbers or node numbers within the partition in which the application is running.
For example, if you run an application on 30 nodes of a 64-node partition by using the switch -sz 30,
the node numbers within the application will always be O through 29. However, those nodes might
not be nodes 0 through 29 of the partition. They might be nodes 0 through 29, or 10 through 39, or
a completely arbitrary set of nodes.

3-3



Using Paragon™ OSF/1 Message-Passing System Calls Paragon™ OSF/1 User's Guide
Process Types

Synopsis Description

setptype(prype) Set the calling process’s process type.

myptype() Obtain the calling process’s process type.

34

A process’s process type, Or ptype, is an integer that distinguishes the process from other processes
in the same application running on the same node. Process types are assigned by the user, and can
be any integer from 0 to 2,147,483,647 (23! - 1) inclusive. A process can find out its process type
by calling myptype(), and can change its process type by calling setptype().

When you run an application that was linked with -nx, the system sets the process type of all
processes in the application to 0 (unless you specify otherwise on the application’s command line).

All message-sending system calls have a prype parameter that specifies the process type to which the
message is sent. You must specify the process type; you cannot use -1.

Some message-receiving system calls have a ptypesel parameter that specifies the process type from
which the message was sent. A prypesel parameter can be a valid process type (to receive only
messages from that process type), or the special value -1 (to receive messages from any process
type). Message-receiving system calls that do not have a prypesel parameter always receive
messages from any process type.

Certain system calls that involve all the nodes in the application,' called global operations, require
that every node in the application has one process with the same process type. All these processes
must call the global operation before the application can proceed.

Within a single application, multiple processes running on the same node must have different
process types. However, processes on different nodes may (and usually do) have the same process
type. Two processes running on a single node may have the same process type only if they belong
to different applications.

Once a process has used a process type, that process type is associated with the process for the life
of the application. No other process on the same node in the same application can ever use that
process type, even if the original process terminates or changes its process type. However, a process
that has changed its process type is allowed to set its process type back to a value it has used
previously.

If a process changes its process type while it is running, the process type in effect when a send or
receive system call was made determines the process type associated with the message. For example,
suppose a process has process type 1 on node 2, but then uses setptype() to change its process type
to 2. A message sent to process type 1 on node 2 will arrive at node 2, but will have no process to
receive it (it becomes a pending message). If the process later uses setptype() to change its process
type back to 1, the next time it receives a message it will get the pending message.

[

[WT
il

W ™
.

gwﬂ
Mm}
d .

N"“V
d.

i

ho

N*"\
"

v
A

lww
sitg)
Im
s
R
lxﬁd

ki

Y

=

S

i
-

I




l €
&
I kil
i

&

bl

p—
B4

4

«

E ]

£

4

b

i ]

A

[

A

E

4

L]

4 L4

i
b

1

I
|
[
I
[
I
I
1
1
I
!
[
|

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Message-Passing System Calls

If a process has multiple threads of control, they may have the same or different process types. When
a thread is created, it has the same process type as the thread (process) that created it. A thread can
change its process type by calling setptype(). If two threads in a task have the same process type
when a message arrives for that process type, whichever thread receives the message first gets it. See
pthread_create() in the OSF/I Programmer’s Reference for information on threads.

NOTE

The -pt switch (or, if not specified, the default process type of 0)
applies only to the process type of the initial processes created by
running the application.

If an application creates additional processes after it starts up, and no process type is specified for
the new process, the new process’s process type is set to the special value INVALID_PTYPE (a
negative constant defined in the header file nx.h). A process whose process type is
INVALID_PTYPE cannot send or receive messages. It must call setptype() to set its process type
to a valid value before it can send or receive any messages.

The Paragon OSF/1 system calls that create node processes (nx_nfork(), nx_load(), and
nx_loadve()) have a prype parameter that specifies the process type of the newly-created processes.
However, the standard OSF/1 system call fork(), which creates a new process on the same node as
the process that calls it, does not provide any way to specify the new process’s process type. This
means that the process type of a process created by fork() is set to INVALID_PTYPE. The new
process must call setptype() before it can send or receive messages. The specified process type must
be different from the parent’s, and different from the process type of any other process in the same
application on the same node.

A process's process type is inherited across an exec(). This means that if you do a fork() followed
by an exec(), you can call setptype() either before or after the exec(). However, the setptype() must
follow the fork().



Using Paragon™ OSF/1 Message-Passing System Calls

Paragon™ OSF/1 User's Guide

Message Characteristics

Messages are characterized by a length, a type, and sometimes an ID. These characteristics are set
when the message is sent, and do not change for the life of the message.

Message Length

The length of a message is the number of bytes of information contained in the message. Messages
in Paragon OSF/1 can be of any length.

All message-passing system calls have a count parameter that specifies the length of the message to
be sent or received. The length you specify must be less than or equal to the size in bytes of the
specified buffer. Message-sending calls read exactly that number of bytes from the buffer and send
them as a message; message-receiving calls generate an error if a message is received that is larger
than the specified length.

If you program in C, when you send a message you can use the sizeof operator to determine the size
of your message in bytes. If you program in Fortran, you will need to add up the sizes of all the data
elements within the message; see the Paragon' . OSF/1 Fortran Compiler User’s Guide for
information on the default size of each data type. If you pass named common blocks as messages,
you may also have to include the space taken up by padding within the common block, as discussed
under “Message Passing with Fortran Commons™ on page 3-20.

You can also send and receive zero-length messages. This is useful if the message type is sufficient,
and there is no need to supply any message content. For example, one process could tell another
process to start or stop doing something by sending a zero-length message of type 1 to start, or a
zero-length message of type 2 to stop.

Message Type

3-6

The type of a message is an integer whose meaning is determined by the programmer.

All message-sending system calls have a type parameter that specifies the type of the message sent.
You can use any integer from 0 to 999,999,999 (inclusive) as a message type.

All message-receiving system calls have a rypesel parameter that specifies the type (or types) of
messages the call will receive. A rypesel parameter can be an integer from 0 to 999,999,999 (to
receive only messages of the specified type) or the special value -1 (to receive messages of any type).

There are also special message types outside the range 0 to 999,999,999, called force types and
typesel masks, that you can use. Sending with a force type sends a message that bypasses the usual
flow control mechanisms; receiving with a typesel mask receives messages of a selected set of types.
See the Paragon’" OSF/1 Fortran System Calls Reference Manual or Paragon™ OSF/1 C Svstem
Calls Reference Manual for information on these special message types.

£

m
a
i

B4

. 3

A
BER

a ®a
b

| 2
3

kil

il

™

i
Ml

!

sl

ol

I

»
v



- Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Message-Passing System Calls

w4

G |

-

[ |

Message ID

The ID of a message is an identifier used to check for the completion of asynchronous messages.
Synchronous messages do not have IDs.

4

When you send or receive a message with an asynchronous message-passing call (one that returns
before the message is completely sent or received), the call returns an ID that you can use to check
whether or not the send or receive is complete. See “Asynchronous Send and Receive™ on page 3-10
for more information on message IDs.

3

4

E

4

} Message Order

i
A

[ |

Paragon OSF/1 guarantees that all messages will arrive in the same order they are sent. That is, if
- one message is sent from node A to node B, then a second message is sent from node A to node B,
the second message will never arrive before the first.

—
S

Although the first message always arrives at the node first, you can elect to receive the second
message—that is, to copy its contents into a buffer in user memory—before the first. You do this by
specifying different message types in the send calls on node A, and specifying the second message’s
type in the first receive call on node B.

e

I
A

k.

Names of Send and Receive Calls

You can tell what each message-passing call does by examining its name.

4

[

The first character of the name indicates whether the call is synchronous, asynchronous, or handled:

c Synchronous (complete) call. These calls do not return until the message is
= complete. They are discussed under “Synchronous Send and Receive” on
y page 3-8.

i Asynchronous (incomplete) call. These calls return immediately, so your

¢ i L J

program can do other work while the message is processed. They are
discussed under “Asynchronous Send and Receive” on page 3-10.

I h Asynchronous with interrupt handler (handled) call. Like the i...() calls, the
N h...() calls return immediately. Unlike the i...() calls, h...() calls indicate that
the message is complete by calling a user-supplied interrupt handler. They are
discussed under “Treating a Message as an Interrupt” on page 3-22.

[ |<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>