
D
n
()

(J

I)
r:
IJ
(-.".

..d

[J

[J

'(l
, ,,.J

1--,
j

[J
' , 1J=l!1·

n
11

PARAGON™ OSF/1

USER'S GUIDE

April 1993

Order Number: 312489-001

•• " •• "." •• '. :. ::."." •• " ••••• • ••• ". ".1' :.: .' •

Intel® Corporation

Copyright ©1993 by Intel Supercomputer Systems Division, Beaverton. Oregon. All rights reserved. No part of this work may be reproduced or
copied in any form or by any means ... graphic, electronic, or mechanical including photocopying, taping. or information storage and retrieval sys­
tems ... without the express written consent of Intel Corporation. The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material. including. but not limited to. the implied warranties of merchantability
and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this document. Intel Corporation
makes no commitment to update or to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied.

Intel software products are copyrighted by and shall remain the property oflntel Corporation. Use. duplication. or disclosure is subject to restrictions
stated in Intel's software license agreement. Use. duplication. or disclosure by the U.S. Government is subject to restrictions as set forth in subpara­
graphs (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule­
vard, Santa Clara, CA 9502. For all Federal use or contracts other than DoD, Restricted Rights under FAR 52.227-14, ALT.m shall apply.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

286 iCS Intellink
287 iDBP iOSP
4-SITE iDIS iPDS
Above iLBX iPSC
BITBUS im iRMX
COMMputer 1m iSBC
Concurrent File System iMDDX iSBX
Concurrent Workbench iMMX iSDM
CREDIT Insite iSXM
Data Pipeline int 1 KEPROM
Direct-Connect Module e

Library Manager
FASTPATIi int IBOS

e MAP-NET
GENIUS Intelevision MCS

12ICE

int eligent Identifier Megachassis

inteligent Programming
MICROMAINFRAME

i386 MUL 11 CHANNEL
i387 Intel MUL 11MODULE
i486 Intel386 ONCE
i487 Intel387 OpenNET
i860 Intel486 OTP
ICE Intel487 Paragon
iCEL Intellec PC BUBBLE

Ada is a registered trademark of the U.S. Government, Ada Joint Program Office
APSO is a service mark of Verdix Corporation
DOL is a trademark of Silicon Graphics. Inc.
Ethernet is a registered trademark of XEROX Corporation
EXAB YTE is a registered trademark of EXAB YTE Corporation
Excelan is a trademark of Excelan Corporation
EXOS is a trademark or equipment designator of Excelan Corporation
FORGE is a trademark of Applied Parallel Research. Inc.
Green Hills Software, C-386, and FORTRAN~386 are trademarks of Green Hills Software, Inc.
GVAS is a trademark of Verdix Corporation
IBM and IBMNS are registered trademarks of International Business Machines
Lucid and Lucid Common Lisp are trademarks of Lucid. Inc.
NFS is a trademark of Sun Microsystems
OSF, OSF/I. OSFlMotif. and Motif are trademarks of Open Software Foundation. Inc.
POI and POF77 are trademarks of The Portland Group. Inc.
PostScript is a trademark of Adobe Systems Incorporated
ParaS oft is a trademark of ParaSoft Corporation
SOl and SiliconGraphics are registered trademarks of Silicon Graphics. Inc.
Sun Microsystems and the combination of Sun and a numeric suffix are trademarks of Sun Microsystems
The X Window System is a trademark of Massachusetts Institute of Technology
UNIX is a trademark of UNIX System Laboratories
V ADS and Verdix are registered trademarks of Verdix Corporation
V AST2 is a registered trademark of Pacific-Sierra Research Corporation
VMS and V AX are trademarks of Digital Equipment Corporation
VP/ix is a trademark of INTERACTIVE Systems Corporation and Phcenix TechnOlogies. Ltd.
XENIX is a trademark of Microsoft Corporation

ii

Plug-A-Bubble

PROMPT

Promware

ProSolver

QUEST

QueX

Quick-Pulse Programming

Ripplemode

RMX/80

RUPI

Seamless

SLD

SugarCube

UPI

VLSiCEL

D
[)
[)

(J

[
, .. -r'i

., .-

[J
rJ

.".,~~.....,..~

I)

r~ oJ

I)
()

[:
IJ
I-~

"--oJ

I~
I~ , '

-J

(I _J

1=
I:

. ...J

IJ
Ii ,,..J

C

IJ
I~
-~

r:
I:
I:
C

REV. REVISION HISTORY DATE
-001 Orillinallssue

LIMITED RIGHTS

The information contained in this document is copyrighted by and shall re­
main the property of Intel Corporation. Use, duplication or disclosure by
the U.S. Government is subject to Limited Rights as set forth in subpara­
graphs (a)(15) of the Rights in Technical Data and Computer Software
clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule­
vard, Santa Clara, CA 95052. For all Federal use or contracts other than
000 Limited Rights under FAR 52.2272-14, ALT. III shall apply.

4193

iii

iv

" "'I
il~

'" "., , ,

~ -~!,

.... i

[]

I' iIIl _

:"" -I

'" ~I

If -P,

1&.-

.----,
liJ

, ~:
L~

r-~i
ipJ

[J

Il
IJ
I)

rJ

[J

I:
I·,

. ----1

l=
~

IJ

~ .. . ,
A

Preface
: : ... : ".":" -.:::.: : : .. "

This manual tells how to use the Paragon TM OSF/I operating system on an Intel supercomputer.

This manual assumes that you are an application programmer proficient in the C or Fortran language
and the UNIX operating system. The manual provides you with enough detail to begin using your
system.

Organization
Chapter I

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Provides an overview of the Paragon OSF/I software and Intel
supercomputer hardware .

Describes the Paragon OSF/I commands mat you can enter at the shell
prompt and the Paragon OSF/I cross-development commands that run on
supponed workstations.

Describes the message-passing system calls available to programs in Paragon
OSF/l.

Describes the other general-purpose system calls available in Paragon OSF/l.

Describes the parallel 110 calls you can use for parallel access to the Intel
supercomputer's file systems.

Tells how to prepare an application for the Paragon OSFIl operating system.
The steps described are applicable to applications that are written for a
parallel computer and applications that are poned from a sequential
computer. This chapter discusses three examples: an integration, a
matrix*vector multiplication, and the N-Queens problem.

v

Preface

Appendix A

Appendix B

Paragon'" OSFI1 User's Guide

Summarizes the commands and system calls of Paragon OSFIl. The
complete syntax of each command and call is provided, along with a brief
description of each.

Describes the level of support offered by Paragon OSFI1 for the commands
and system calls of the iPSC® system.

[J

Notational Conventions

vi

This manual uses the following notational conventions:

Bold

Italic

Identifies command names and switches, system call names, reserved words,
and other items that must be used exactly as shown.

Identifies variables, filenames, directories, partitions, user names, and writer
annotations in examples. Italic type style is also occasionally used to
emphasize a word or phrase.

Plain -Monospace rr' ->;,
Identifies computer output (prompts and messages), examples, and values of ~....,

variables.
I'f ~1

Bold-Italic-Monospace ~~;
Identifies user input (what you enter in response to some prompt).

I'f -I

Bold-Monospace I
Ia.,~

Identifies the names of keyboard keys (which are also enclosed in angle
brackets). A dash indicates that the key preceding the dash is to be held down ~ I
while the key following the dash is pressed. For example: ' Wl.--J

<Break> <s> <Ctrl-Alt-Del>

(Brackets) Surround optional items.

(Ellipsis dots) Indicate that the preceding item may be repeated.

(Bar) Separates two or more items of which you may select only one.

} (Braces) Surround two or more items of which you must select one.

(I
~ i

()

(J
1_,

J

(]

(J

IJ
r~l
-.J

(
-'9

I .
- I
~

(J

(~

IJ
r I-.J

I~
1·-'-'

.--1

1. -,
-~

C

(J

U

.------------------------ --

Paragon™ OSF/1 User's Guide Preface

Applicable Documents
For more information, refer to the following manuals:

TM
Paragon Manuals

• Paragon™ OSFll Commands Reference Manual

• Paragon TM OSFIl C Compiler User's Guide

• Paragon™ OSFIl Fortran Compiler User's Guide

• Paragon™ OSFIl C System Calls Reference Manual

• Paragon™ OSFIl Fortran System Calls Reference Manual

• Paragon™ OSFIl Software Tools User's Guide

• Paragon™ OSFlllnteractive Parallel Debugger Manual

• Paragon™ XPIS i860™ 64-Bit Microprocessor Assembler Reference Manual

Other Manuals

• OSFIl User's Guide

• OSFll Programmer's Reference

• OSFll Command Reference

• Effective Fortran 77 - Michael Metcalf

• C: A Reference Manual - Harbison and Steele

• The C Programming Language - Kernighan and Ritchie

• CLASSPACK Basic Math Library User's Guide - Kuck & Associates

• CLASSPACK Basic Math LibrarylC User's Guide - Kuck & Associates

vii

Preface ParagonfM OSF/1 User's Guide

Comments and Assistance

viii

Intel Supercomputer Systems Division is eager to hear of your experiences with our products. Please
call us if you need assistance, have questions, or otherwise want to comment on your Paragon
system.

U.S.AJCanada Intel Corporation
phone: 800·421·2823

Internet: support@ssd.intel.com

Intel Corporation Italia s.p.a.
Milanofiori Palazzo

United Kingdom Intel Corporation (UK) Ltd.
Supercomputer System Division

20090 Assago
Milano
Italy
1678 77203 (toll free)

France Intel Corporation
1 Rue Edisoo-BP303
78054 St. Quentin-en-Yvelines Cedex
France
05908602 (toll free)

Japan Intel Corporation K.K.
Supercomputer Systems Division
5-6 Tokodai, Tsukuba City
Ibaraki-Ken 300·26
Japan
0298-47-8904

Pipers Way
Swindon SN3 IRJ
England
0800212665 (toll free)
(44) 793 491056 (answered in French)
(44) 793 431062 (answered in Italian)
(44) 793480874 (answered in German)
(44) 793495108 (answered in English)

Germany Intel Semiconductor GmbH
Dornacher Strasse 1
8016 Feldkircheo bel Muenchen
Gennany
0130813741 (toll free)

World Headquarters
Intel Corporation

Supercomputer Systems Division
15201 N.W. Greenbrier Parkway

Beaverton, Oregon 97006
U.S.A.

(503) 629-7600

If you have comments about the Paragon manuals, please fill out and mail the enclosed Comment
Card. You can also send your comments electronically to the following address:

techpubs@ssd.intel.com (Internet)

[J

~ ~l

, I

iL...J

l:
l:

[J

[J

I~

[J

IJ
IJ
r:
(J

[:
.Jo>

(J

1=
I""" .. ' ! ,

'J

[J

IJ
[J,~ , ,

r:
(~

C
Ii
L

r=
[J

[J

IJ

Chapter 1
Introduction

Table of Contents

Introduction .. 1-1

System Hardware ... 1-1

Nodes ... 1-2

Node Interconnect Network .. 1-2

I/O Interfaces .. 1-2

System Software ... 1-2

Paragon ™ OSF/1 Operating System ... 1-3

User Model .. 1-3

Programming Model .. 1-4

Cross-Development Facility ... 1-4

ix

--- --- -----~--- ---~----

Table of Contents Paragon™ OSF/1 User's Guide

Chapter 2
Using Paragon ™ OSF/1 Commands
Introduction .. 2-1

Terminology ... 2-1

Using Paragon TM OSF/1 Commands on the Intel® Supercomputer ... 2-2

Using Paragon TM OSF/1 Commands on Workstations ... 2-2

A Quick Example .. 2-3

Information You Need .. 2-3

Compiling, Linking, and Executing an Application ... 2-3

Compiling and Linking Applications .. 2-5

Configuring Your Environment for Cross-Development ... 2-6

Tips for Compiling and Linking ... 2-8

Using Other Switches .. 2-8

Including nx.h or fnx.h .. ;2-8

Specifying Include File and Library Pathnames ... , 2-8

Preprocessing a Fortran Program ... 2-9

Order of Switches .. 2-10

Running Applications ... 2-11

1/0 Redirection ... 2-11

Controlling the Application's Execution CharacteristiCS ... 2-12

Using the Default Partition ... 2-13

Setting Your Default Partition .. 2-13

Determ ining the Current Default Partition ... 2-14

Specifying Application Size ... 2-14

Specifying Application Priority ... 2-15

Specifying Process Type ... 2-16

Running a Program on a Subset of the Nodes .. 2-16

Running Applications Consisting of Multiple Programs ... 2-18

Running an Application in a Particular Partition .. 2-20

Specifying Message-Passing Configuration Parameters .. 2-21

x

c
l:

[J

[J

(J

U

Paragon™ OSF/1 User's Guide Table of Contents

[.' .J

I]

(J Managing Running Applications ... 2-23

(~ Managing Partitions .. 2-24
-'"

IJ
[J

IJ

1=
IJ
c
IJ

[J. !

--.J

[J

[J

[J

IJ

IJ
IJ

Special Partitions ... 2-25

The Root Partition .. 2-25

The Service Partition ... 2-27

The Compute Partition ... 2-27

Partition Path names ... 2-27

Partition Characteristics ... 2-28

Parent Partition .. 2-29

Partition Name ... 2-29

Nodes Allocated to the Partition .. 2-29

Node Numbers Within a Partition .. 2-30

Unusable Nodes .. 2-31

Owner, Group, and Protection Modes ... 2-32

Scheduling Characteristics .. 2-32

Standard Scheduling ... 2-33

Gang Scheduling .. ; .. 2-34

Making Partitions .. 2-38

Specifying the Nodes Allocated to the Partition ... 2-38

Specifying Protection Modes ... 2-40

Specifying Scheduling Characteristics .. 2-41

Removing Partitions ... 2-42

Removing Partitions Containing Running Applications ... 2-43

Removing Partitions Containing Subpartitions .. 2-43

Showing Partition Characteristics .. 2-44

Listing Subpartitions ... 2-45

Listing the Applications in a Partition ... 2-47

Changing Partition Characteristics ... 2-48

xi

Table of Contents Paragon ™ OSF/1 User's Guide D . I

[J
r-.,
l~

~'~1

" ,

Chapter 3
I ... -"'"

Using Paragon ™ OSF/1 Message-Passing System Calls "': I
il."",

Introduction , ... "'''''''''''''''''''''''' 3-1

Process Characteristics .. 3-3
D

Node Nu m bers .. , .. 3-3 I' '-:
iA...z.J

Process Types ... 3-4
I'!""

Message Characteristics ... 3-6 c... "

Message Length ... 3-6
f"r -.

Message Type .. 3-6
,

Iil..-J

Message 10 ... ".3-7

Message Order .. 3-7 C
Names of Send and Receive Calls .. 3-7 1""""'1

I
iIL-i

Synchronous Send and Receive .. 3-8
1""1

Synch ronous Send to Multiple Nodes .. 3-9 ilL...;..!

Asynchronous Send and Receive ... 3-10 r-I

Releasing Message lOs ... 3-13 L...J

Merging Message lOs , .. 3-13 rr~l

Probing for Pending Messages .. 3-15
Ia..."""

Getting Information About Pending or Received Messages .. 3-16
~"

~...;J

Flushing and Canceling Messages ... 3-17

Flushing Pending Messages .. 3-17 [=
Canceling an Asynchronous Send or Receive ... 3-19

Message Passing with Fortran Commons ... 3-20
[:

Treating a Message as an Interrupt .. 3-22
[~'
.~

Passing Inform ation to the Handler .. 3-24

Preventing Interrupts .. 3-25
(~I

...J

fJ
xii IJ

,.I

[j

()

IJ
C

C

IJ
[J

I
~l

--LJ

r=
[J

C
[Ji , I

c
[J

(l

[J

(J

IJ
[J

I]

." LJ

Paragon™ OSF/1 User's Guide Table of Contents

Extended Receive and Probe .. 3-26

Global Operations .. 3-29

Chapter 4
Using Other Paragon ™ OSF/1
System Calls
Introduction .. 4-1

Controlling Application Execution .. 4-2

Controlling Application Execution with System Calls .. .4-3

Creating an Application with nx_initveO .. 4-4

Setting an Application's Priority with nx_priO4-7

Copying a Process onto the Nodes with nx_nforkO .. 4-7

Loading a Program onto the Nodes with nx-,oadO .. .4-9

Loading a Program onto the Nodes with nx-,oadveO .. .4-10

Waiting for Application Processes with nx_waitaliO4-11

Using PIOs ... 4-12

The Controlling Process ... 4-13

Process Groups ... 4-14

Process Groups in Paragon™ OSF/1 .. 4-15

Killing Application Processes .. 4-15

An Example Controlling Process ... 4-16

Message Passing Between Controlling Process and Application Processes .. .4-17

Partition Management Calls ... 4-20

Making Partitions .. 4-20

Removing Partitions ... 4-22

Changing Partition Characteristics ... 4-24

Handling Errors ... 4-27

xiii

Table of Contents ParagonT .. OSFI1 User's Guide

Floating-Point Control .. 4-29

Detecting Not-a-Number ; .. 4-30

Controlling Floating-Point Behavior .. 4-30

Rounding Mode ... 4-30

Exception Mask and Sticky Flags .. 4-31

Fortran Exception Mask Values ... 4-32

Miscellaneous Calls .. 4-33

Temporarily Releasing Control of the Processor ... 4-33

Blinking the LED ... 4-33

Timing Execution .. 4-34

IPSC@ System Compatibility Calls4-36

Chapter 5
Using Parallel File 1/0
Introduction .. 5-1

Increasing the Size of a File ... 5-1

Using Parallel I/O Calls .. 5-2

Opening Files ... 5-3

Opening One File Per Node with "###" Filenames .. 5-3

Special Considerations for Fortran ... 5-4

Formatted Versus Unformatted liD ... 5-4

New Files ... 5-5

Unnamed Files .. 5-5

Using I/O Modes .. 5-6

M_UNIX (Mode 0) .. 5-7

M_LOG (Mode 1) ... 5-7

M_SYNC (Mode 2) ... 5-7

M_RECORD (Mode 3) .. 5-8

xiv

[-,
.~

{-,
IlJi

'-' ~.~

[J
I' -:-1

L-.J

(~

[=

i=
L

[J

[J

C

I:
rJ
IJ
IJ
I~

(I
~I

(]

r:
I~

(;
_.J

(1
_.-1

IJ
I
-~

__ I

(J

[J

~

[J

[J

U

Paragon'"' OSF/1 User's Guide Table of Contents

An 1/0 Mode Example .. 5-9

Fortran Example .. 5-10

C Example ... 5-11

Compiling and Running the Example .. 5-12

M_UNIX Output ... 5-13

M_LOG Output .. 5-14

M_SYNC Output .. 5-14

M_RECORD Output .. 5-15

Reading and Writing Files in Parallel ... 5-15

Synchronous File 1/0 .. 5-16

Asynchronous File 1/0 .. 5-18

Detecting End-of-File and Moving the File Pointer .. 5-19

Flushing Fortran Buffered 1/0 ... 5-20

Increasing the Size of a File ... 5-21

Performing Extended Arithmetic ... 5-23

Extended File Manipulation Calls .. 5-25

Closing Files in Parallel ... 5-26

Controlling Tape Devices .. 5-26

Naming Tape Devices .. 5-27

Performing Operations on Tape Devices ... 5-28

Getting Status of Tape Devices ... 5-29

Synchronization Summary .. 5-31

xv

Table of Contents Paragon™ OSFI1 User's Guide

Chapter 6
Designing a Parallel Application
Introduction .. 6-1

The Paragon TM OSF/1 Programming Model ... 6-2

Parallel Programming Techniques .. 6-2

Separating the User Interface from the Computation ... 6-3

Balancing the Load .. 6-3

Domain Decomposition ... 6-3

Control Decomposition .. 6-5

Making the Program Independent of the Number of Nodes ... 6-5

Designing Your Communication Strategy .. 6-6

Using Global Operations ... 6-6

Using Alternate Node Topologies .. 6-6

Example Application: Calculating pi .. 6-7

Example Application: Matrix*Vector Multiplication ... 6-11

Example Application: The N-Queens Problem ... 6-13

Appendix A
Summary of Commands
and System Calls

Command Summary .. A-1

Compiling and Linking Applications .. A-1

Running Applications ... A-2

Managing Partitions .. A-2

[J
lilri
1 I
U

(]"" , i I

", I

(]
f.~1
1. .. 1

Increasing the Size of a File .. A-2 I j
.J

Miscellaneous Commands .. A-3

xvi

.. ~-----------

IJ
IJ

I .,
..J

fJ

(J ,_-'.'
,J

I-I
,J

I
'~l

_.J

r:
r=
11
I]

(:
_I

I ~
IJ
IJ

IJ
I)

Paragon™ OSF/1 User's Guide Table of Contents

C System Call Summary .. A-3

Process Characteristics .. A-3

Synchronous Send and Receive ... A-4

Asynchronous Send and Receive ... A-5

Probing tor Pending Messages ... A-6

Getting Information About Pending or Received Messages ... A-6

Flushing and Canceling Messages ... A-6

Treating a Message as an Interrupt .. A-7

Extended Receive and Probe ... A-8

Global Operations ... A-9

Controlling Application Execution .. A-12

Partition Management ... A-13·

Handling Errors ... A-14·

Floating-Point Control ... A-14

Miscellaneous Calls .. A-15

iPSC® System Compatibility ... A-15

I/O Modes .. A-16

Reading and Writing Files in Parallel .. A-17

Detecting End-ot-File and Moving the File Pointer .. A-17

Increasing the Size of a File ... A-18

Extended File Manipulation ... A-18

Perform ing Extended Arith metic ... A-19

·Fortran System Call Summary ... A-20

Process Characteristics .. A-20

Synchronous Send and Receive ... A-21

Asynchronous Send and Receive ... A-22

Probing tor Pending Messages ... A-23

Getting Information About Pending or Received Messages ... A-23

Flushing and Canceling Messages ... A-24

Treating a Message as an Interrupt .. A-24

xvii

Table of Contents Paragon™ OSF/1 User's Guide

Extended Receive and Probe ... A-26

[)

(]

[J

Global Operations ... A-28 C
Controlling Application Execution .. A-31

r 1 Partition Management ... A-32 U
Handling Errors ... A-34

Floating-Point Control ... A-34

Miscellaneous Calls .. A-34

iPSC® System Compatibility ... A-35

110 Modes .. A-36

Reading and Writing Files in Parallel .. A-37

Detecting End-of-File and Moving the File POinter .. A-38

Flushing Fortran 8uffered 110 .. A-38

Increasing the Size of a File .. A-39

Extended File Manipulation ... A-39

Performing Extended Arithmetic ... A-40

Appendix B
iPSC@ System Compatibility
Introduction ... 8-1

New Features .. 8-1

Compilers ... 8-2

Commands ... 8-3

Cube Control Commands .. 8-3

CFSTM Commands .. 8-5

System Administration Commands ... 8-6

Remote Host Commands .. 8-6

Miscellaneous Commands .. 8-7

xviii

~-'-l

~~

I"f ~l
I '
1Il .. 1

~J

(J

(]

[~~

IJ
[]

(J

IJ

IJ

I ,
.0.1

r:
r:
r·~

.OJ

(-...,
.J

r~
I. -"e

' J

I I
(. ...,

.J

1=

r=
r~

I '
. ..J

[
-"'I

. ..J

IJ

Paragon™ OSF/1 User's Guide Table of Contents

System Calls .. 8-7

Include Files .. 8-8

Host Calls .. 8-8

8yte-Swapping Calls ... 8-12

Floating-Point Control Calis .. 8-13

Miscellaneous Calls .. 8-13

Summary ... 8-14

xix

Table of Contents Paragon'M OSF/1 User's Guide

List of Illustrations

Figure 2-1. The Root Partition of a 32-Node System .. 2-26

Figure 2-2. Node Numbers in Contiguous and Noncontiguous Partitions•......................... 2-30

Figure 2-3. Node Numbers in Overlapping Partitions .. 2-31

Figure 2-4. An Example of Gang Scheduling .. 2-36

Figure 6-1. Using Domain Decomposition to Achieve Load Balancing ... 6-4

Figure 6-2. The Decomposition Used for the pi Example ... ;·1 6-9

Figure 6-3. The N-Queens Solution Tree for a 4 x 4 Board ... 6-15

xx

u
[j

[J

~=
~~

[J

(J

IJ
l:

lJ
(JI

. .aI

r:

r:
I ··"",

.J

r~

I:

I~

rJ

I-~

1=
l=

[J

~

Paragon 1M OSF/1 User's Guide Table of Contents

List of Tables

Table 2-1. Message-Passing Configuration Switches ... 2-22

Table 3-1. Differences Between flushmsgO and msgcancelO ... 3-20

Table 5-1. Synchronization in Each I/O Mode ... 5-31

Table 5-2. File 1/0 Calls that Synchronize ... 5-31

Table A-1. Commands for Compiling and Linking Applications .. A-1

Table A-2. Commands for Running Applications .. A-2

Table A-3. Commands for Managing Partitions .. A-2

Table A-4. Commands for Increasing the Size of a File ... A-2

Table A-5. Miscellaneous Commands .. A-3

Table A-6. C Calls for Process Characteristics .. A-3

Table A-7. C Calls for Synchronous Send and Receive ... A-4

Table A-8. C Calls for Asynchronous Send and Receive ... A-5

Table A-9. C Calls for Probing for Pending Messages ... A-6

Table A-1 O. C Calls for Getting Information About Pending or Received Messages A-6

Table A-11. C Calls for Flushing and Canceling Messages ... A-6

Table A-12. C Calls for Treating a Message as an Interrupt .. A-7

Table A-13. C Calls for Extended Receive and Probe ... A-8

Table A-14. C Calls for Global Operations ... A-9

Table A-15. C Calls for Controlling Application Execution .. A-12

Table A-16. C Calls for Partition Management ... A-13

Table A-17. C Calls for Handling Errors ... A-14

Table A-18. C Calls for Floating-Poi nt Control ... A-14

Table A-19. Miscellaneous C Calls ... A-15

Table A-20. C Calls for i PSC® System Compatibility ... A-15

Table A-21. C Calls for 1/0 Modes .. A-16

Table A-22. C Calls for Reading and Writing Files in Parallel .. A-17

Table A-23. C Calls for Detecting End-of-File and Moving the File Pointer .. A-17

Table A-24. C Calls for Increasing the Size of a File .. A-18

Table A-25. C Calls for Extended File Manipulation ... A-18

Table A-26. C Calls for Performing Extended Arithmetic ... A-19

xxi

~.~-----~---.------------~".---.- --_._-_._._-------_.- --------~--.----.-.--------.~------.-"----

Table of Contents Paragon ™ OSF/1 User's GUide

List of Tables

Table A-27. Fortran Calls for Process Characteristics ... A-20

Table A-28. Fortran Calls for Synchronous Send and Receive .. A-21

Table A-29. Fortran Calls for Asynchronous Send and Receive .. A-22

Table A-30. Fortran Calls for Probing for Pending Messages .. A-23

Table A-31. Fortran Calls for Getting Information About Pending or Received Messages A-23

Table A-32. Fortran Calls for Flushing and Canceling Messages .. A-24

Table A-33. Fortran Calls for Treating a Message as an Interrupt ... A-24

Table A-34. Fortran Calls for Extended Receive and Probe .. A-26

Table A-35. Fortran Calls for Global Operations .. A-28

Table A-36. Fortran Calls for Controlling Application Execution ... A-31

Table A-37. Fortran Calls for Partition Management .. A-32

Table A-38. Fortran Calls for Handling Errors .. A-34

Table A-39. Fortran Calls for Floating-Point Control .. A-34

Table A-40. Miscellaneous Fortran Calls .. A-34

Table A-41. Fortran Calls for iPSC@ System Compatibility .. A-35

Table A-42. Fortran Calls for I/O Modes ... " .. A-36

Table A-43. Fortran Calls for Reading and Writing Files in Parallel ... A-37

Table A-44. Fortran Calls for Detecting End-of-File and Moving the File Pointer A-38

Table A-45. Fortran Calls for Flushing Buffered 1/0 ... A-38

Table A-46. Fortran Calls for Increasing the Size of a File ... A-39

Table A-47. Fortran Calls for Extended File Manipulation .. A-39

Table A-48. Fortran Calls for Performing Extended Arithmetic .. A-40

Table B-1. Unsupported iPSC® System Byte-Swapping Calls .. B-12

Table B-2. Summary of Unsupported iPSC® System Commands ... B-14

Table B-3. Summary of Unsupported iPSC® System Calls ... B-16

xxii

[)

[J

[J

(J

~=
l~

(]

I'r -'''1
ilL..!

(--'

..J

lJ

1-111

.~

r:
I:
I -·.~

... ,

I:
r:
1·#1

. ..J

r=
IJ
I:

1···"9

..J

(-~

(~J

I·~
. .J

I-~
. ..&1

[J

Introduction

Introduction
TItis chapter introduces the Paragon™ OSF/l operating system and the hardware it runs on.

In an Intel supercomputer, a large number of processors called nodes work concurrently on the parts
of a problem. Each node can run multiple processes, and each process can have multiple threads
(lightweight processes). The processes and threads on each node time-share the node's processor,
using the standard OSF/l scheduling mechanisms. Each process can be a stand-alone progmm (such
as a shell, compiler, or editor), or can be part of a parallel application.

A parallel application consists of a group of closely related processes that work together on a single
problem. They synchronize their actions and share information by passing messages, which are
created and controlled by special Paragon OSF/1 system calls.

The processes in an application can also share disk files; Paragon OSF/1 parallel I/O calls insure
that access to these files is efficient and properly synchronized.

System Hardware
The Paragon OSF/1 operating system runs on several models of Intel supercomputers. These
systems all have a large number of nodes connected by a high-speed node interconnect network, and
a number of I/O imerfaces to communicate with the outside world.

1-1

Introduction

Nodes

Paragon™ OSF/1 User's Guide

Each node is essentially a separate computer, with one or more i860™ processors and 16M bytes or
more of memory. Nodes can run distinct programs and have distinct memory spaces. They can team
up to work on the same problem and exchange data by passing messages. An Intel supercomputer
can have up to 2000 nodes. Each node can run more than one process at the same time; these
processes can belong to the same or different applications.

The system administrator can choose to dedicate some nodes to interactive processes, such as shells
and editors, and other nodes to compute-intensive applications. The nodes used for interactive
processes are called service nodes, and the nodes used for compute-intensive applications are called
compute nodes. However, there are no physical differences between these two types of nodes.

Node Interconnect Network

The nodes are connected by a high-speed node interconnect network. Each node interfaces to this
network through special hardware that monitors the network and extracts only those messages
addressed to its attached node. Messages addressed to other nodes are passed on without interrupting
the node processor. For most applications, you can think of each node as being fully connected to all
the other nodes.

1/0 Interfaces

Some nodes are equipped with a SCSI interface, Ethernet interface, or other I/O connection. These
nodes manage the system's disk and tape drives, network connections, and other I/O facilities.
Nodes with I/O interfaces communicate with the other nodes over the node interconnect network.
However, this access is transparent: processes on nodes without I/O hardware access the I/O
facilities using standard OSF/l system calls,just as though they were directly connected. Nodes with
I/O interfaces are otherwise identical to nodes without I/O interfaces, and can run user processes.

System Software

1-2

The nodes run the Paragon OSFll operating system, based on the OSF/l operating system from the
Open Software Foundation. The same operating system runs on every node. OSP/l is a version of
the UNIX operating system that supports most industry standards; Paragon OSFIl is an extended
version of OSPII with enhancements to support parallel processing.

The Intel supercomputer also comes with a cross-development facility, which you can use to compile
and link Paragon OSF/l programs on supported workstations.

[J

[J

[J

,.. ~i
I

liL =

'

1"1

J

(~

I:

[~
_liIiI

(]

rJ

r:

(-;
J

(J

I:
I:
(I
'J

IJ

Paragon'" OSF/1 User's Guide Introduction

Paragon ™ OSF/1 Operating System

Paragon OSFIl provides all the standard features of OSF/I, with extensions to provide a single
system image across multiple nodes. This single system image makes all the nodes appear to be one
large system. For example, all the nodes share a single file system, all the nodes have equal access
to the system's 110 devices, and process identifiers (PIDs) are unique throughout the system. A
process on one node can pipe its output to a process on another node, and the command kill pid on
any node kills the specified process, no matter which node the process is running on.

The single system image does not combine all the nodes' memory into a single address space.
Rather, each process has its own address space. The physical memory available to each process is
limited to the memory of the node on which it is running. However, because OSF/I provides virtual
memory, a process's address space can be up to 2G bytes in size; memory pages that do not fit in
physical memory are paged to disk. As in most multi-user systems, the address spaces of the
different processes on the system are completely independent. unless two or more processes make
special shared virtual memory calIs to explicitly share part of their memory.

In addition to the standard facilities ofOSF/I, the Paragon OSFIl operating system provides
message passing capability, Parallel File System™ access, and various other utilities to programs
running on the Intel supercomputer. With Paragon OSF/I calIs, your programs can perform the
following functions:

• Exchange messages with processes running on other nodes (or the same node).

• Read and write files on the Intel supercomputer's Parallel File System.

• Perform 64-bit integer arithmetic.

• Find out information about the computing environment.

• Perform global operations.

• Create and control parallel applications and partitions.

User Model

The Paragon OSF/I operating system is a complete implementation of OSF/I, and provides a full
range of services, commands, and system calls. It has its own file system, shells, compilers, editors,
network connections, and all the other features needed in a stand-alone computer system. It also
supports NFS, the Network File System, so it can share data with other systems on your network.
You can edit and compile programs, send and receive mail, read online manual pages, and do all
your other daily work on the Intel supercomputer.

1-3

Introduction Paragon'"' OSF/1 User's.Guide

You access the Intel supercomputer by logging into a separate computer (typically your UNIX
workstation) and then connecting to the Intel supercomputer over a local-area network, using a
command such as rlogin or telnet. The Intel supercomputer does not have any dedicated hardware
terminals.

You compile and link your application with the self-hosted Paragon OSFII compilers and linker.
You then execute your application on the nodes of the Intel supercomputer simply by typing the
application's name on the shell command line. Command-line switches, or arguments to system
calls in the program, determine the number of nodes on which the application executes.

When you run an application, it runs in apartition. A partition is a group of nodes with an associated
set of parameters that controls some of the run-time characteristics of the applications within it. You
can use commands or system calls to create, modify, and remove partitions. However, the operations
you are allowed to perform on your system's partitions may be restricted by the policies of your site.

The Paragon OSF!1 operating system also provides a suite of program development tools, such as a
debugger, profiler, and parallel performance analysis tools. These tools are described in the
Paragon™ OSFll Software Tools User's Guide.

Programming Model

The most common programming model used with Paragon OSFIl is the "single program, multiple
data" (SPMD) model. In this model, the same program runs on each node in the application, but each
node works on only part of the data.

• For some problems, called "perfectly parallel" problems, each node can do its work without
access to data held by other nodes.· In this case, each node operates completely independently.

• For other types of problems, each node needs data from other nodes to do its work. In this case,
the nodes can share data by passing messages. Messages can also be used to synchronize node
operations.

Because each node is an independent computer, you can also use other programming models. One
example is the "manager-worker" model,in which one "manager" program starts up several
"worker" programs on other nodes, then gathers and interprets their results.

Cross-Development Facility

1-4

Paragon OSFIl comes with a complete program development environment, including compilers,
linker, libraries, and related tools. You can perform all phases of program development on the Intel
supercomputer. In addition, the compilers, linker, and libraries for ParagonOSFIl are also available
on selected UNIX workstations. This cross-development facility lets you edit, compile, and link
Paragon OSFIl programs on your own workstation.

[J

[:
~-"'I

lL..J

[J~.'.' , :

I

IW --,

"-.~

1=

(
, ""I

...J

(J

[J

(]

I ~~·
.ciIoI

r:

("""'. '
. ,
.~

1=
IJ

1=

[J

I~J

IJ

Paragon™ OSFI1 User's Guide Introduction

Note. though. that the cross-development facility does not include a way to run a Paragon OSFII
executable that resides on your workstation's disk. You must transfer your executable files to the
Intel supercomputer for execution and debugging. You can do this by mounting your workstation's
file system onto the Intel supercomputer. or the Intel supercomputer's file system onto your
workstation. using the Network File System (NFS). You can also use commands such as rep or ftp
to copy the executable files to the Intel supercomputer. To execute files on the Intel supercomputer
once they are transferred. you can use the standard rsh or remd command.

1-5

------~-~-----

D
Introduction Paragon"" OSF/1 User's Guide

[J

1-6

IJ

1_-"1

~j

r:
I:
c
[J

(J

IJ

[-~

[J

c
c
(J

Using Paragon ™ OSF/1 Commands
.. : ". -::: .":.. :':':'" .". :": ... ' -.: .. ; .":". ". ..: :":. ".' . :" :":: . . . : : .. .

Introduction
This chapter tells you how to use Paragon OSFIl commands to perfonn the following tasks:

• Compiling and linking applications.

• Running applications.

• Managing running applications.

• Managing partitions.

The conunands discussed in this chapter are available to all users._ See the System Administrator's
Guide for your system for information on conunands that require root privilege.

Terminology

This chapter uses the following tenns:

• A parallel application, usually just called an application in this manual, is a group of
cooperating processes that runs on the nodes of the Intel supercomputer.

• A program is a file (source or executable). An application consists of one or more programs
running on one or more nodes. The tenn program is also used to refer to a non-parallel program
(an ordinary program that runs on one node).

• A partition is a named group of nodes. When you run a parallel application, you must select a
partition to run it in (if you don't, it runs in your default partition). The partition places limits
on some of the execution characteristics of the application, such as how many nodes it can use

2-1

Using Paragon™ OSF/1 Commands Paragon ™ OSFJ1 User's Guide

and how long it can use them before it is "rolled out" and another application is "rolled in." You
can allocate all of the nodes of the partition to the application, or just some of them, but this
allocation is not exclusive (other applications can run on the same nodes).

All Intel supercomputers have two special partitions called the service partition and the compute
partition. The service partition is used to run non-parallel programs such as shells and editors,
and the compute partition is used to run parallel applications. The other partitions on your
system, and what you can do with them, are determined by your site's policies.

Using Paragon TM OSF/1 Commands on the Intel@ Supercomputer

The Paragon OSPIl operating system provides all of the standard commands of OSP/I, such as cat
and Is, which work as specified by the Open Software Poundation. These commands are not
described in this chapter; see the OSFIl Command Reference for information on these commands.

Paragon OSP/I also provides several commands that are not specified by the Open Software
Poundation, such as mkpart and nnpart. These commands are described in this chapter, and
manual pages for these commands are provided in the Paragon ™ OSFll Commands Reference
Manual.

To use any of these commands, you must first log into an Intel supercomputer. Intel supercomputers
have no directly-attached terminals; you must first log into another system (typically a workstation
running some variant of the UNIX operating system) and then log into the Intel supercomputer over
the network, using a command such as rlogin or tel net. Once you have logged in, you use these
commands in the same way as commands on any other computer running OSP/I.

Using Paragon ™ OSF/1 Commands on Workstations

2-2

The Paragon OSP/I operating system also comes with several commands that run on workstations
(for example, the icc and if77 cross-compilers). These commands are described briefly in this
chapter; complete descriptions and manual pages for these commands are provided in the Paragon ™
OSFIl C Compiler User's Guide andParagon™ OSFll Fortran Compiler User's Guide.

To use these commands, you must first log into a workstation on which these commands are
supported, then configure your account as described under "Configuring Your Environment for
Cross-Development" on page 2-6. Once you have done this, you can use the Paragon OSP/I
cross-development commands in the same way as other commands on the workstation. However, if
you compile an application on a workstation you must transfer the executable file to an Intel
supercomputer to execute it. Depending on your local configuration, you may be able to use the
Network Pile System (NFS), the rep command, the ftp command, or some other technique to do this.
Ask your system administrator about how files are shared between the Intel supercomputer and other
systems on your network.

[J

D

[J

I:

IJ
[J

rJ

r~

r:

I:
[:

[J

[J

[J

c

Paragon™ OSFI1 User's Guide Using Paragon™ OSF/1 Commands

A Quick Example

Here is a quick example that shows you how to compile, link:, and execute a simple application on
an Intel supercomputer.

Information You Need

Before you begin, you will need the following information:

• The network name of your Intel supercomputer.

• The command to use to log into the Intel supercomputer, such as rlogin or telnet.

• Your user name and password on the Intel supercomputer (if necessary).

• The name of the default partition you should use to run parallel applications.

This information should be available from your system administrator.

Compiling, Linking, and Executing an Application

Once you have the necessary information, the procedure to compile, link, and execute an application
is as follows:

1. Log into the Intel supercomputer, as instructed by your system administrator.

2. Set the environment variable NX _DFLT _PART to the name of your default partition:

• If you use the C shell, use the following command:

(] % setenv NX_DFL~PART partition_name

IJ

IJ
IJ
D

• If you use the Bourne or Kom shell, use the following commands:

$ NX_DFLT_PART=partition_name
$ export NX_DFL~PART

2-3

Using Paragon™ OSFI1 Commands Paragon™ OSF/1 User's Guide

2-4

3. Type in a short program:

• If you are a Fortran programmer, type the following program into the file myapp.f,

100

program hello
include 'fnx. h '

write(*,100) mynode()
format('Hello from node', i4, '!')

end

• If you are a C programmer, type the following program into the file myapp.c:

#include <nx.h>

main()
{

printf ("Hello from node %d! \n", mynode ()) ;

4. Compile the program into an executable file:

• If you are a Fortran programmer, use the following command:

% f77 -nx -0 myapp myapp.f

• If you are a C programmer, use the following command:

% cc -nx -0 myapp myapp.c

5. Execute the resulting file, myapp, on four nodes with the following command:

% myapp -sz 4
Hello from node O!
Hello from node 3 !
Hello from node 1!
Hello from node 2!

The order in which the output lines appear may vary.

That's all there is to it! Of course, Paragon OSF/l provides many additional commands and switches
you can use to control the behavior of the compiler and the resulting application. These commands
and switches are described in the rest of this chapter.

D
D
D

[]

[J

[:

I·"
...J

[J

[J

[J

IJ
I:
r:

IJ

r:
r=
(

-~..,

---'

, , 1-='1

!J

IJ

1=

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

Compiling and Linking Applications

Command Synopsis

cc -ox [switches] source file ...

rn -ox [switches] sourcefile ...

icc -ox [switches] sourcefile ...

if77 -ox [switches] source file ...

Description

Compile a Paragon OSF/I application written
in C on an Intel supercomputer.

Compile a Paragon OSF/I application written
in Fortran on an Intel supercomputer.

Compile a Paragon OSF/! application written
in C on an Intel supercomputer or
cross-development workstation.

Compile a Paragon OSF/1 application written
in Fortran on an Intel supercomputer or
cross-development workstation.

You can compile and link applications on the Intel supercomputer itself, or on a workstation that
suppons the Paragon OSF/! cross-development environment. On the Intel supercomputer, you can
use the "native" commands cc and f77 or the "cross-development" commands icc and if77. On a
workstation, you must use the cross-development commands icc and if77. The native and
cross-development versions of each command take the same switches and work identically.

When compiling and linking an application, you should generally use the switch -ox on the
command line. The -ox switch bas three effects:

• If used while compiling a C program, it defines the preprocessor symbol __ NODE. The
program being compiled can use preprocessor statements such as #irder to control compilation
based on whether or not this symbol is defined. (This preprocessor symbol is not defined if -ox
is used while compiling a Fortran program.)

• If used while linking a C or Fortran program, it links in !ibnx.a, the library that contains all the
system calls described in this manual.

If used while linking a C or Fortran program, it links in a special start-up routine that starts up
the program on multiple nodes, as specified by standard command line switches and
environment variables.

For example, the following command line compiles and links the file myapp.c to create an
executable file called myapp (on the Intel supercomputer):

% cc -n.x -0 myapp myapp. c

2-5

Using Paragon™ OSFI1 Commands Paragon™ OSF/1 User's Guide

The following command line has the same effect (on the Intel supercomputer or a cross-development
workstation):

% icc -D.r -0 myapp myapp. C

NOTE

Do not use -nx if your application calls nx_initveO.

The Paragon OSFIl operating system provides ox_initveO and related functions to give your
application more control over the way it starts up. They let the application perform actions for itself
that are normally performed for it by -ox. If you link your application with -ox and it also calls
ox_initve() itself, the application's call to ox_initve() will fail and return -1. See "Controlling
Application Execution" on page 4-2 for more information on ox_initve() and related functions.

To link an application that calls ox _initveO, use the switch -lnx instead of -ox. The ·lox switch links
in iibnx.a, but without the special start-up routine supplied by -ox. A program linked with ·Iox can
use all the calls described in this manual, but does not automatically start itself on multiple nodes.
(Note that the ·Iox switch must appear on the compiler command line after the filenames of any
source or object files that use these calls.) Note that the preprocessor symbol __ NODE is not defined
by -lox.

A program that is not linked with -ox and does not call ox_initve() is not a parallel application. It
does not recognize the command-line switches described under "Running Applications" on page
2-11, and it always runs on one node in the service partition. (If it creates additional processes by
calling rorkO, they may run on the same node or a different node,but they will always run in the
serVice partition.)

Configuring Your Environment for Cross-Development

2-6

Before you can use the icc and if77 commands on your workstation, you must configure your
environment as follows:

• The environment variable PARAGON jWEV must be set to the pathname of the directory that
contains the Paragon OSF/l cross-development facility. If you don't know this pathname, ask
your system administrator.

• Your execution search path (PATH or path variable) must include the directory
$PARAGON _XDEV/paragonlbin.fJl.dl, where m. identifies the architecture of your
workstation (such as sun4 for a Sun-4 workstation).

• If you want to read Paragon OSFIl online manual pages on your workstation, your online
manual page search path (MANPATH variable or equivalent facility) must include the directory
$PARAGON _ XDEVlparagonlman.

I]

[J

D
(J

(]
["',: , I

.;.J

[J

I:
I:
I:

IJ

(
'W

JOI

(~

r:
r:
r:

I
"~

. --J

1=

I~

I~

I:

()'

Paragon'"' OSF/1 User's Guide Using Paragon™ OSF/1 Commands

You should put the definitions of these variables into your .cshrc or . log in file (or the equivalent
start-up file for your shell). For example, suppose the Paragon OSF/I cross-development facility is
installed in the directory lusrllocallXDEV. If you use the C shell, you would add these lines to your
.cshrc file:

setenv PARAGON_XDEV /usr/local/XDEV
set path=($path $PARAGON_XDEV/paragon/bin.'arch'
setenv MANPATH "${MANPATH}:${PARAGON_XDEV}/paragon/man"

(The curly braces in "$ {MANPATH} : $ {PARAGON_XDEV} /paragon/man" are necessary
because a colon after a variable name is special to the e shell.)

Once your environment is properly configured, you can use the icc or it77 command to compile and
link applications on your workstation. For example, the following command line compiles and links
the file myapp.fto create an executable file called myapp:

, if77 -DX -0 myapp myapp.f

The executable file, myapp, can only be executed on the Intel supercomputer. You can do this by
putting it in a directory that is shared between your workstation and the Intel supercomputer with the
Network File System (NFS), or by copying it to the Intel supercomputer with the ftp or rep
command. If you use the ftp command, the resulting file may not have execute permission; if this
happens, use the command chnwd +x myapp on the Intel supercomputer to give myapp execute
permission.

NOTE

The Paragon OSFI1 versions of the compilers are not the same as
their iPSC® system equivalents.

If you develop programs for the iPSe series of supercomputers from Intel Corporation as well for
Paragon OSF/I, you must be sure that your execution search path (PATH or path variable) is set
appropriately for your current target system. To compile a program for Paragon OSF/I, the variable
PARAGON _ XDEV must be set appropriately and your execution search path must include
$PARAGON _XDEVlparagonlbin.fJJ:.{b; to compile a program for the iPSC system, the variable
IPse _ XDEV must be set appropriately and your execution search path must include
$IP SC _ XDEVI i8601 bin.fJJ:.{b instead. Be sure that your execution search path does not include both
these directories at the same time.

2-7

Using Paragon™ OSF!1 Commands Paragon TM OSF/1 User's Guide

Tips for Compiling and Linking

2-8

The following sections give you some tips for compiling and linking Paragon OSF/l applications
(on either the Intel supercomputer or a cross-development workstation).

Using Other Switches

The cc, rn, icc, and it77 commands have a variety of switches to control their operation. For a
description of these switches and other information on these commands, see the online manual pages
for the commands or the following printed manuals:

ce, icc Paragon™ OSFI1 C Compiler User's Guide.

177, it77 Paragon™ OSFI1 Fortran Compiler User's Guide.

Including nx.h or fnx.h

As a general rule, always include the file nx.h in all Paragon OSFIl C programs. This file contains
definitions and declarations needed by the Paragon OSF/l C system calls. Although a specific
application may not need the definitions and declarations contained in m.h, the overhead involved
in including it in all programs is minor. Include it in your C programs as follows:

#include <nx.h>

For Fortran programs, the corresponding file isfiu.h. Include it in your Fortran programs as follows:

include 'fnx.h'

Specifying Include File and Library Path names

The standard include and library directories depend on whether you are using the native
development commands or the cross-development commands:

• The native development commands search for include files in the directory lusrlinclude, and
they search for libraries in the directories lusrlccsl/ib (searched first) and lusrl/ib (searched
second).

• The croSS-development commands search for include files in the directory
$PARAGON _XDEVlparagonlinclude, and they search for all libraries in the directory
$P ARAGON _ XDEV/paragonl lib-coJ!.

-----_ ..• _-. ----

[)

[J

[J

D
c
r~ ... i' U

(J

(J

(J

[J

IJ

(j

r" .. '"''

.iii

I~:

[:
c

r:
[~

(

.""9

.-'

[J

Paragon™ OSFI1 User's Guide Using Paragon™ OSF/1 Commands

Note, though, that on the Intel supercomputer the directories lusrlparagonlXDEVlparagonllib-cojf
and lusrlccsllib are identical, the directories lusrlparagonlXDEVlparagonlinclude and lusrlinclude
are identical, and the default for $PARAGON _ XDEV is lusrlparagonlXDEV, so this difference may
not be significant.

If you need to include a file that is not in the standard include directory or in the same directory as
the source file, you must use the ·1 switch on the compiler command line to identify the nonstandard
directory. For example, the following command line compiles and links an application that uses
include files in the directory lusrllocallinclude:

% icc -nz myapp.c -I/usr/local/include

If you need to link to a library that is in not in one of the standard library directories, then you must
modify the command line in one of the following ways:

• Use the ·L switch to provide the patbname of the directory in which the library is located. For
example, the following command line compiles and links an application at a site where the
Paragon OSF/llibraries are located in the directory lusrliocaillib:

% icc -nz -L/usr/local/lib myapp.c

• Specify the complete pathname of the appropriate library or libraries on the command line. For
example, the following command line compiles and links an application that depends on the
library libjft.a located in the directory lusrliocalllib:

% if77 -nz myapp.c /usr/local/lib/libfft.a

Preprocessing a Fortran Program

If your Fortran program is in a file whose filename ends with an uppercase ... P' (rather than the
standard lowercase ".n, the in7 command runs a preprocessor (like the standard C preprocessor)
on the file. This enables you to use lines like the following in a Fortran program:

#include <file.h>

#define MAX 87

2-9

Using Paragon™ OSFIt Commands Paragon 1M OSF/1 User's Guide

2-10

Order of Switches

Most cc, f'n, icc, and if77 switches are not order-sensitive. However, order is important for the ·L
and ·1 switches and for listing libraries when linking. When constructing command lines, keep the
following guidelines in mind:

• List libraries in the order in which they should be searched. The Paragon OSF/l linkers are
single-pass linkers; they cannot resolve a backward library reference (Le., a reference to a
library object that was defined in a library that has already been searched). Backward references
between objects, however, are not a problem, as all listed objects are linked unconditionally.

• The ·L switch affects only the search path of libraries that are listed after the ·L switch. For
example, the following command searches only the standard library directories for the library
libllews.a, but searches the directory .. Imylibs (as well as the standard library directories) for the
library libgx.a:

% icc -nz myprog.c -lnews -L .. /mylibs -lgz

• If you specify more than one·L switch, the named directories are searched in reverse order (the
directory specified by the first ·L switch on the command line is searched after the directory
specified by the second ·L switch on the command line). For example:

% icc -nz myprog.c -lnews -L .• /mylibs -lgz -Llocallibs -llocal

This command searches for libraries as follows:

It searches only the standard library directories for the library libllews.a.

It searches the directory .. Imylibs and then the standard library directories for the library
libgx.a.

It searches the directory locallibs, then",.Imylibs, and then the standard library directories
for the library liblocal.a.

Note that the ·L switch also affects system libraries; in fact, directories specified by ·L are
searched for system libraries before the standard library directories.

('~
, '

.JIIl

D

IJ
[

'''"I,

.' I

"'"'

I]

l:
I:

I~

r:

1=
I:
(-.."

-"oJ

I~"'·

--'-'

I:
(--.,

J

c

Paragon"" OSF/1 User's Guide Using Paragon™ OSF/1 Commands

Running Applications
Once you have compiled your application into a Paragon OSF/l executable file (and, if necessary,
copied the executable to an Intel supercomputer), yourun it by typing its name at your Paragon
OSF/I shell command prompt, as you would for any other compiled program.

For example, if myapp is a compiled application, you can execute it with the following command:

, myapp

If you get unexpected error messages such as "partition permission denied" or "exceeds partition
resources," check to be sure the environment variables NX_DFLT_PARTand NX_DFLT_SlZE are
properly defmed. See "Using the Default Partition" on page 2-13 and "Specifying Application Size"
on page 2-14 for more information on these variables; see your system administrator for information
on the proper settings for these variables at your site.

The way the application runs depends on how you linked it and on what system calls it makes:

• If myapp was linked with the -nx switch, this command runs myapp on all the nodes of your
default partition. The section "Controlling the Application' s Execution Characteristics" on page
2-12 tells you more about the default partition, and about the environment variables and
command-line switches you can use to control the execution characteristics of applications
linked with the -ox switch.

• If myapp was linked with the -lox switch, this command runs myapp on the nodes and partition
speCified by system calls within the application. The section "Controlling Application
Execution" on page 4-2 tells you how to use these system calls. If myapp does not specify the
nodes and partition in these calls, it defaults to running on all the nodes of your default partition.
If myapp does not make any of these calls, it runs on one node in the service partition.

• If myapp was linked without the -ox or -Inx switch, it is an ordinary non-parallel program, and
it runs on one node in the service partition.

I/O Redirection

You can redirect the standard input, standard output, and standard error output of an application with
the usual OSF/l techniques. For example, the following command redirects the input and output of
the application myapp:

, myapp < myfile.in > myfile.out

This command runs the application myapp with its standard input redirected from the file myfile.in
and its standard output redirected to the file myfile.out.

2-11

Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User's Guide

Note that, by default, all the nodes read and write their standard input, standard output, and standard
error output using PFS 110 mode O. In mode 0, all file access requests are honored on a fIrst-come,
fIrst-served basis. You can change this behavior by selecting a different 110 mode; see "Using 110
Modes" on page 5-6 for more information. The standard input, standard output. and standard error
output are line-buffered by default. This means that if all the nodes write to standard output or
standard error, the output from all the nodes is intermixed in the output, line by line; if all the nodes
read from standard input, each line of the input goes to an arbitrary node.

Controlling the Application's Execution Characteristics

2-12

Command Synopsis Description

application [-sz size] [-pri priority] Execute a Paragon OSF/} application.
[opt ptype] [-on nodes pee]
[-pn partition] [mp _switches]
[\; app2 [opt ptype] [-on nodespec]] ...

When you run an application, you can use command-line switches and environment variables to
control the way the application executes. The command-line switches can appear in any order on the
command line, and may be intermixed with application-specifIc switches and arguments. If you
specify the same command-line switch more than once in a single command, the last occurrence
overrides the earlier ones. For example, the following two commands are equivalent:

% myapp -sz 4 -sz 50 -pri 8 file.dat
% myapp -pri 8 -sz 4 file.dat -sz 50

Each of these commands runs the application myapp, with the argumentfile.dat, at priority 8 on 50
nodes of your default partition.

If the application was linked with the -ox switch, the command-line switches discussed in this
section are interpreted and removed from the command line before the application starts up. In the
previous examples, the arguments -pri 8, -sz 4, and -sz 50 are interpreted and removed by the -nx
code; myapp sees only the argumentfile.dat (if myapp is a C program arge is 2, argv{O J is "myapp ",
and argv[lJ is "fIle.daf').

NOTE

All the examples in this section assume that myapp was linked
with the -nx switch.

An application that is not linked with -nx controls its own execution with system calls, as discussed
under "Controlling Application Execution" on page 4-2. Such an application mayor may not obey
the command-line switches discussed in this section, depending on how it was programmed.

[)

D
(J

1"1

_...J

IJ

()

I,
AI

I--_l
..ioiI

[-~

_Ai

r:
I:
1_.,.,

. .JioJ

(- -~
-,

IJ
r:

1_,
d

I:
I~
I
~~

-u1

[---~
~

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

Using the Default Partition

When you run a parallel application on the Intel supercomputer, it runs in apartition. The partition
determines the maximum number of nodes used by the application and how the application is
scheduled, as described later in this chapter. An application stays in the same partition for its entire
run.

If you do not specify otherwise, the application runs in the partition specified by the environment
variableNX_DFLT]ART. If the environment variable NX_DFLT]ARTis not set, the application
runs in the compute partition, a special partition that is present on all Intel supercomputers. The
partition specified by NX _DFLT]ART (or, if this variable is not set, the compute partition) is called
your default partition.

For example, to run the application myapp in your default partition, use the following command:

% lIlyapp

This command runs the application myapp in the partition specified by the environment variable
NX _ DFLT _PART, or in the compute partition if NX _DFLT] ART is not set.

If you see an error message such as "partition not found" or "partition permission denied," ask your
system administrator what your default partition should be, then use the commands described in the
next section to set the variableNX_DFLT_PARTto that value. You can also use the -pn switch
(described under "Running an Application in a Particular Partition" on page 2-20) to run an
application in a different partition.

For more information about partitions, see "Managing Partitions" on page 2-24.

Setting Your Default Partition

The command you use to set or change your default partition depends on which shell you use.

• If you use the C shell, use the setenv command. For example, if you are a C shell user, the
following command sets your default partition to mypart:

% setenv NX_DFL~PART lIlypart

setenv is a built-in command of the shell; see csh in the OSFll Command Reference for more
information.

You can put this command in your . login or .cshrc file on the Intel supercomputer to have your
default partition set to my part each time you log in.

2-13

~~-.----.... - -_. __ .. _---- ------~- --~

Using Paragon™ OSF/1 Commands Paragon™OSF/1 User's Guide

2-14

• If you use the Bourne or Kom shell, set the variable and use the export command to make its
value available to commands other than the shell. For example, if you are a Bourne or Kom shell
user, the following commands set your default partition to my part:

$ NX_DFLT_PART=mypart
$ ezport NX~DFL~PART

You do not have to use the export command each time you set the variable. You only have to
export a variable once in each login session. export is a built-in command of the shell; see sh
or ksh in the OSFll Command Reference for more information.

You can put these commands in your .profile file on the Intel supercomputer to have your
default partition set to mypart each time you log in.

You can use an absolute or relative partition pathname as the value of NX_DFLT]ART. For
example, the following C shell commands are equivalent:

% setenv NX_DFLT_PART myor~.mypart
% setenv NX_DFL~PART .compute.myor~.mypart

See "Partition Pathnames" on page 2-27 for more information on partition pathnames.

If you use the C or Kom shell, you can create an alias to change your default partition. For example,
the following C shell command creates a "setpart" alias that sets your default partition to its
argument:

% alias setpart 'setenv NX_DFL~PART \1*'

Determining the Current Default Partition

To find out your default partition once you have set it, use the echo command. For example:

% ecbo $NX_DFLT_PART
mypart

This command works the same in any shell.

Specifying Application Size

An application's size is the number of nodes allocated to the application from the partition. The
processes of the application run only on this set of nodes, and do not exchange messages with
processes on nodes outside this set. However, this allocation is not exclusive: some or all of these
nodes may also be allocated to other applications and/or other partitions. An application keeps the
same size for its entire run.

[J

[J

~J

I~

I:

I:
[J

(
"1111

~

r:
[""""

"'"

(
"-0

. ,,[

('"""
_I

IJ

[j

IJ

I'~,

I~

r:
I

~",

_M1

IJ

C

Paragon™ OSFI1 User's Guide Using Paragon™ OSF/1 Commands

To set an application's size, use the switch -sz size, where size is any positive integer less than or
equal to the number of nodes in the partition. For example, to run the application myapp on 64 nodes
of your default partition, use the following command:

% myapp -sz 64

If you don't use the -sz switch, the application's size is specified by the environment variable
NX_DFLT_SIZE. You can use the techniques discussed for the NX_DFLT_PART variable in the
previous section to get and set the value of the NX _DFLT _SIZE variable. The value of
NX _DFLT _SIZE must be a positive integer less than or equal to the number of nodes in the partition.
If NX_DFLT_SlZE is not set, the application runs on all nodes of the partition, and its size is set to
the size of the partition .

An application can determine its size by calling numnodesO, and each process in the application can
determine its node number within the application by calling mynodeO. mynode() returns a node
number from 0 to one less than the application's size. (See "Process Characteristics" on page 3-3 for
more information on these calls.) For example, with -sz 64, numnodesO returns 64 and mynodeO
returns a number from 0 to 63 inclusive. There is no way for an application to change its size.

The nodes allocated to the application will not necessarily be contiguous (that is, they may not all be
physically next to each other). However, the node numbers within the application, as returned by
mynode(), will always be sequential from O.

Specifying Application Priority

An application's priority is an integer associated with the application that is used in determining how
much of a node' s processor time the application gets when the node is allocated to more than one
application at once. 0 is the lowest priority, and 10 is the highest.

The application's priority is only one of several factors that determine how much processor time it
gets. For example, the application' s processor time can be affected by the priorities of other
applications in the system and by the effective priority limit of the partition in which the application
runs. See "Scheduling Characteristics" on page 2-32 for more information.

To set the priority of the application, use the switch -pri priority, where priority is an integer from
o to 10 inclusive. If you don't use the -pri switch, the application's priority is set to 5.

For example, to run the application myapp with a priority of 6, use the following command:

% myapp -pri 6

An application can change its priority by calling nxyriO (see "Setting an Application's Priority
with DX_priO" on page 4-7 for more information).

2-15

Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User's Guide

2-16

Specifying Process Type

A process's process type, or ptype, is an integer associated with the process that differentiates it from
any other process in the application that is on the same node. The process's node number and process
type together form the process's "address" for messages within the application.

To set the process type. of each process in the application, use the switch -pt ptype, where ptype is
an integer from 0 to 2,147,483,647 (231 _ 1) inclusive. If you don't use the -pt switch, the process
type of each process is O.

For example, to run the application myapp with a process type of 1 for each process, use the
following command:

% myapp -pt 1

A process can find out its current process type by calling myptypeO. For example, with -pt 1,
myptypeO returns 1 on all nodes. A process can change its process type by calling setptypeO.
However, once a process has used a process type, no other process in the same application on the
same node can use that process type for the run of the application. See "Process Characteristics" on
page 3-3 for information on process types and the myptypeO and setptype() system calls.

The -pt switch is most commonly used when running multiple programs in one application, as
discussed under "Running Applications Consisting of Multiple Programs" on page 2-18. In most
other circumstances, you can use the default process type of O.

Running a Program on a Subset of the Nodes

Usually you run the same program file on all the nodes allocated to the application from the partition.
However, you can also run a program on just some of the nodes, leaving the other nodes vacant for
other programs. When you do this, the other nodes are allocated to the application, but no processes
are started on them.

To run a program on a subset of the nodes of an application, use the switch -on nodespec, where
nodespec is one of the following:

x The node whose node number is x.

x .. y The range of nodes from numbers x to y.

n The last node of the partition.

nspec[,nspec]... The specified list of nodes, where each nspec is a node specifier of the form
x, x •. y, or n. Do not put any spaces in this list.

If you don't use the -on switch, the program is run on all nodes allocated to the application.

D
C!
C

[J

[i. . ,
. ...J

[1
.-'1.1

(J

(J
(J

1)1

(."""1
.. ~

[J

r:
(J

[J

(,I
. ..J

[""I. , '
'.J

[J

I' . =:
I _--.1

[J

[J

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

NOTE

The numbers you use with -on are node numbers within the
application (which always range from 0 to one less than the size
of the application), not node numbers within the partition.

For example, to run the program myapp on the first three nodes of a 20-node application, use the
following command:

% myapp -sz 20 -on 0,1,2

This command creates an application of size 20 in your default partition and runs myapp on nodes
0, 1, and 2 of the application. Within this application, the function numnodesO returns 20, and the
function mynodeO returns a number from 0 to 19 inclusive. However, no processes are started on
nodes 3 through 19.

You can use the letter n to represent "the last node in the application." For example, the following
command creates an application of your default size in your default partition and runs myapp on the
first and last nodes of the application:

% myapp -on O,n

For example, if your NX _DFLT _SIZE variable is set to 64 (and there are at least 64 nodes in your
default partition), this would run myapp on nodes 0 and 63 of the application.

You can also use a pair of numbers separated by two periods (x .. y) to specify "nodes x through y
inclusive." For example, the following command creates an application of size 100 in your default
partition and runs the program myapp on nodes 10 through 90:

% myapp -sz 100 -on 10 .• 90

It doesn't matter whether y is greater than x or vice versa. For example, the following command also
creates an application of size 100 in your default partition and runs the program myapp on nodes 10
through 90:

% myapp -sz 100 -on 90 .. 10

These notations can be combined. For example, the following command creates an application of
your default size in your default partition and runs myapp on all nodes but node 0 of the application:

% myapp -on 1 .. n

Another example: the following command creates an application of your default size in your default
partition and runs myapp on node 1, node 3, nodes 5 through 10 inclusive, and the last node of the
application:

% myapp -on 1,3,5 •. 10,n

2-17

Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User's Guide

2-18

NOTE

Do not use -on if you just want to run a single program on a
specific number of nodes.

The -on switch is designed to be used when running multiple programs as a single application, as
discussed in the next section. You can also use the -on switch to run a "manager" program on one
or a few nodes of an application; the "manager" program can then run "worker" programs on other
nodes by calling nx_nrorkO, nxJoadO, or nxJoadve() (see "Controlling Application Execution"
on page 4-2 for information on these functions).

The -on switch is not designed to run an application on a particular number of nodes or a particular
set of nodes. If you want to run an application on a particular number of nodes, use the -sz switch.
If you want to run an application on a particular set of nodes, allocate a partition containing those
nodes and run the application on all nodes of that partition (see "Managing Partitions" on page 2-24
for information on partitions).

If you use -on when you should be using -sz, the application will be allocated more nodes than it
needs. Also, if you use -on and do not run a program on every node of the application, global
operations will hang. (The global operations described under "Global Operations" on page 3-29,
such as gdsumO, block until they are called by every node in the application. If you run a program
on only a subset of the nodes. these operations will block forever.)

Running Applications Consisting of Multiple Programs

You can run multiple program files as a single application. For example, you could run two or more
separate programs on every node (the resulting processes must have different process types, and the
processes time-share the processor while the application is active). You might also run a manager
program on one node and worker programs on the other nodes. The programs should be written to
work together; you would not usually run two arbitrary programs together in one application.

To run multiple program files as a single application, use the following syntax:

% file [switches] [\; file [-pt ptype] [-on nodespec]] ...

That is, you use two or more complete commands on one line, separated by an escaped semicolon
(backslash followed by semicolon).

NOTE

The escaped semicolon (\;) must be preceded and followed by a
space or tab. Otherwise, it will be considered part of the preceding
or following argument.

--------~~---~-~---

[1
.~

f-~
L

(J

(J

[J

l" _JIJ

IJ
[; ..
I
-~

. ..J

I '"
""

1---..
..;

1-·"

I-~

(,,..,
__ -4.J

(--.-.'"'
.... J

1=

[J

Paragon™ OSFI1 User's Guide Using Paragon™ OSFI1 Commands

The firstJile must either have been linked with -ox or must call ox _ initve() without overriding the
command line; the second and sUbsequentfiles may have been linked with or without -ox, but must
not call ox_initveO.

The command-line switches you can use with the Jiles are different:

• You can use any application switches (-sz, -pri, -pt, -00, -po, and mp 3witches) with the first
file. The effect of these switches varies according to the switch:

The -SZ, -pri, -po, and mp _switches switches you use with the [rrst file affect the entire
application.

The -pt and -00 switches you use with the first file affect the first file only.

• You can use only the -pt and -00 switches with the second and subsequent files. These switches
affect the associated file only.

If you run multiple processes on a single node, you must use the -pt switch to specify a unique
process type for each process. When two or more processes in an application run on the same node,
each must have a different process type. If you don't use the -pt switch, each process will have
process type 0, and you will receive an error message.

For example, to run the programs myapp and myapp2 as a single application, use the following
command:

% myapp \; myapp2 -pt I

This command runs the program myapp with process type ° and the program myapp2 with process
type Ion your default number of nodes in your default partition.

To run the program manager on node ° of a 20-node application and the program worker on the
remaining nodes, use the following command:

% manager -sz 20 -on 0 \; worker -on l •. n

This command creates an application of size 20 in your default partition. It then runs the program
manager on node ° of the application and the program worker on nodes 1 through 19 of the
application. All the resulting processes have process type 0, but this does not create a conflict
because manager and worker run on different nodes.

NOTE

If you forget the backslash before the semicolon, the first program
is run as an application by itself and the second program runs after
the first program finishes. This usually results in unexpected
behavior from the programs.

2-19

Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User's Guide

2·20

Running an Application in a Particular Partition

To nm an application in a partition other than your default partition, use the switch ·pn partition.
You must have execute permission for the specified partition. The partition specified by ·po
overrides the value of NX _DFLT _PART, if any. If you don't use the ·po switch, the application nms
in your default partition, as described under "Using the Default Partition" on page 2·13.

NOTE

If your default number of nodes, as specified by the environment
variable NX_DFLT_SIZE, is greater than the number of nodes in
the specified partition, you may get a "partition resources
exceeded" error.

If you see this error, use the ·sz switch or change the value of NX yFLT _SIZE to specify an
application size less than or equal to the size of the specified partition.

For example, to nm the application myapp on your default number of nodes in the partition mypart,
use the following command:

% myapp -pn mypart

You can use an absolute or relative partition pathname with ·po (see "Partition Pathnames" on page
2·27 for information on partition pathnames). For example, the following commands are equivalent:

% myapp -pn myorg.mypart
% myapp -pn .compute.myorg.mypart

For more information about partitions, see "Managing Partitions" on page 2·24.

I

C

C
[.. -"" , '

...I

~=
(I
il.cJ

IJ

1['
~J

[~

[J

[J

(
"'I

J

IJ

c
[J

I~

L~

[J

IJ
IJ

c

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

Specifying Message-Passing Configuration Parameters

You can control the values of some important message-passing configuration parameters for your
application with the following switches. which are known as the mp _switches. Although the default
values of these switches have been chosen to give good results for most applications. you may be
able to improve your application's message-passing performance by using different values.

In general. you should begin by changing only the memory _buffer parameter (-mbt'). This parameter
determines the total amount of memory allocated to message buffers in each process; the other
parameters determine how this memory is divided up. When you change the value of
memory _buffer. the defaults for the other parameters are automatically scaled to match the current
memory _buffer size. Increasing the memory _buffer can increase the efficiency of message passing.
but it also increases the memory usage of your application. which may cause paging and slow the
application down. Once you have determined the optimal memory buffer size for your application.
you can change the other parameters to fme-tune the usage of memory within the memory_buffer
and optimize message-passing performance.

The values used with the mp _switches (except -plk) are integer numbers of bytes. If the value you
specify is not a multiple of 32. it is silently rounded down to a multiple of 32.

-mbf memory_buffer

-me" memory_export

-sth send threshold

-set send count

Sets the size of each packet. If a message is larger than
packet _size. it is sent in several pieces. each packet_size
bytes long.

Sets the total amount of memory allocated to message
buffers in each process.

Sets the total amount of memory allocated to buffering
messages from other nodes. Memory in memory_buffer
outside of memory_export is used for local messages (those
sent and received within the same process).

Sets the amount of memory allocated to buffering
messages from each other node. Memory in
memory_export outside of numnodesO times
memory_each is used for buffering messages from any
sender. when needed.

Sets the threshold for sending multiple packets. If a sender
knows that it has at least send _threshold bytes of memory
free in its memory_each segment on the receiving node. it
will send multiple packets of a message right away.
Otherwise. it will send one packet and wait for an
acknowledgment that a receive has been posted.

Sets the number of bytes to send right away when the
available memory is above send_threshold.

2-21

Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User's Guide

SWitch

-pkt

-mbf

-mex

-mea

-sth :j:

-set :j:

-gth :j:

• gth give_threshold Sets the threshold for "give me more messages" message .
A receiving node tells its senders how much free memory
the sender has in its memory_each segment by
"piggy-backing" information on other messages going to
the sender. However, if there are no such messages, the
sender can get out of date and stop sending messages
because it thinks there is no free memory left for it on the
receiver. If the receiver knows that the sender thinks it has
less than give _threshold bytes of memory free, but there is
really more memory available, it sends a special message to
the sender telling it how much memory is really available.

.plk Locks the entire data area of each process into memory,
like the OSF/l system call pJockO. See the OSFll
Programmer's Reference for information on pJockO .• pJk
also conditions message-passing code to run more
efficiently by assuming that all data buffers are locked into
memory.

The default, maximum, and minimum values for these switches are shown in Table 2-1.

Table 2·1. Message-Passing Conf'Iguration Switches

Parameter Default Maximum Minimum

packet_size 17920r«memory_each / 2)- 1792 32
sizeof(XJnXg_t)'\ whichever
is less

memory_buffer IMB+ available physical 2 * (2 * full yacket _Size
(10 * fullyacket_size t) for memory * numnodesO + 2) +
local messages (10 * fullyacket_size)

for local messages

memory_export memory_buffer - memory_buffer - 2 * (numnodesO + 2) *
(10 * fullyacket_size) (10 * fullyacket_size) minimum memory_each

memory_each (10 * full yacket _size) or (memory_export 12) I 2 * full yacket _size
maximum memory_each. (numnodesO + 2)
whichever is less

send threshold memory_each / 2 memory 3ach - 1 (no minimum)

send count memory_each / 2 memory_each packet_size

give threshold packet_size memory_each / 2 packet_size

* xmsg_l is a type dermed in <mcmsglmcmsL xmsg .h> that defines the message header sent along with each
packet. The size of this type is currently 32 bytes.
t fullyacket_size = packet_size + sizeof(xmxILl).
:j: All values for this parameter are silently rounded down to the nearest multiple of packet_size.

2-22

[J

[J

[)

[J

[J

[J

[J

IJ

IJ
I:
r~

r:
I~·."I

;.1

I ~I

I~

r:

r:
I I
, .
' -".j

I .,
, "~j

IJ
I : oJ

[]

[J

IJ

Paragon TM OSF 11 User's Guide Using Paragon™ OSF/1 Commands

Managing Running Applications
You use the standard OSFIl techniques to manage running applications. For example, you use your
interrupt key (usually < Del> or < Ctrl-c >) to interrupt a running application. If you use the C
shell or Kom shell, you can use your suspend key (usually < Ctrl- z >) to suspend an application,
and the rg or bg command to resume it. See csh, sh, or ksh in the OSFll Command Reference for
more information on these techniques.

NOTE

Interrupting or suspending an application that is "rolled out" will not
take effect until the application is "rolled in" again.

Parallel applications are often gang-scheduled for better performance and more efficient use of
system resources. In gang scheduling, an application is allowed to run for a time period, called the
rollin quantum, and then is "rolled out" and another application is "rolled in" in its place. The rollin
quantum can be anything from a fraction of a second to 24 hours. If the rollin quantum is long, you
may not see any response to a <Ctrl-c> or <Ctrl-z> for a long time. See "Scheduling
Characteristics" on page 2-32 for more information on gang scheduling.

You can also use the ps command to determine the status of an application, and the kill command
to terminate it. For example:

% myapp &
[1] 7045
% ps

PID TT STAT
5841 p3 S +
7045 p3 R

% kill 7045
% ps

PID TT STAT
5841 p3 S +

[1] + Ter.minated
%

TIME COMMAND
0:02.50 -csh (csh)
0:00.30 myapp

TIME COMMAND
0:02.55 -csh (csh)

myapp

The ps command shows only processes running in the service partition. See ps and kill in the OSFll
Command Reference for more information on these commands. To show processes running in
partitions other than the service partition, use the pspart command.

The myapp process that you see in the output ofps is a special process called the controlling process
that runs in the service partition; you do not see the other application processes in the output of ps.
However, sending a signal to the controlling process with , <Ctrl-c>, <Ctrl- z >, or kill
signals all the processes in the application. See "Controlling Application Execution" on page 4-2 for
more information on the controlling process.

2-23

Using Paragon™ OSFJ1 Commands Paragon"" OSF/1 User's Guide

If the application was started from the Bourne shell (sh) or from a shell script, you will see two
processes with the name of the application in the output of ps. Of these two processes, the one with
the higher PID is the controlling process. The process with the lower PID is another special process,
called the shepherd process. This process is necessary for the application; do not kill it When the
application terminates, this process will terminate as well.

You can use the pspart command to determine the status of all the applications in a particular
partition. See "Listing the Applications in a Partition" on page 247 for information on this
command.

You can also use the Interactive Parallel Debugger (ipd) to control the execution of an application,
down to the machine instruction. See the Paragon ™ OSFll Interactive Parallel Debugger Manual
for information on ipd.

Managing Partitions

2-24

The nodes of the Intel supercomputer are divided into overlapping groups called partitions. When
you run a parallel application, you must select a partition to run it in. The partition places limits on
the execution characteristics of the application, such as which nodes it can use and how long it can
use them before it is "rolled out" and another application is "rolled in."

Depending on the policies of your site, you mayor may not have to know any more about partitions
than what has been discussed in this chapter so far.

• At some sites, the system administrator configures all the partitions; ordinary users can simply
set the NX _ DFLT _PART variable to an appropriate value (or leave it unset and use the compute
partition) and then forget all about partitions. If your site is like this, you do not have to read this
section. However, you may wish to read it to help you understand how the system works.

• At other sites, users create and configure their own partitions. If your site is like this, you should
read this section.

This section includes the following information about partitions:

• Some special partitions that every Intel supercomputer has.

• Specifying partitions with partition patllnames.

• The characteristics of a partition.

• Making partitions with the mkpart command.

• Removing partitions with the rmpart command.

• Showing the characteristics of a partition with the showpart command.

D

(]

IJ
IJ
1""1

'J

[J

[:
rJ

r:

I-~'"'

~~,

I:
r

·~

~

II--C;

""

(
~~:

. -"

I~-
"-~\

IJ
IJ
[J

r:

Paragon™ OSF/1 User's Guide USing Paragon™ OSF/1 Commands

• Listing the subpartitions of a partition with the Ispart command.

• Listing the applications in a partition with the pspart command.

• Changing the characteristics of a partition with the chpart command.

Special Partitions

Every Intel supercomputer has three special partitions:

• The root partition directly or indirectly contains all the other partitions in the system. It is the
only partition that does not have a parent partition.

• The sen'ice partition is the partition in which the users' shells and other commands run. Its
parent is the root partition.

• The compute partition is the partition in which parallel applications run. Its parent is also the
root partition.

The characteristics of these partitions are determined by the system administrator. In particular, the
system administrator sets the ownership and permissions of these partitions according to local
policies. These ownerships and permissions determine whether or not ordinary users can create
partitions for their own use, or whether they must run applications in partitions provided for them by
the system administrator.

Typically, the service partition and compute partition are the only two children of the root partition
and do not overlap. However, the system administrator can choose to configure these partitions
differently, and may also create additional child partitions of the root partition.

The Root Partition

The root partition is the basis for all other partitions. The name of the root partition is . (dot). The
root partition always uses gang scheduling (see "Gang Scheduling" on page 2-34 for more
information).

The root partition contains every usable node in the system. Depending on the underlying hardware,
there may be unusable nodes within the root partition as well.

The root partition is always rectangular in shape. It organizes all the nodes in the system into a
two-dimensional grid, or mesh. For example, Figure 2-1 shows the root partition of a 32-node system
that is configured as a 4 by 8 node mesh. The nodes are numbered from 0 to 31.

2-25

Using Paragon™ OSF/1 Commands Paragon™ OSFI1 User's Guide

2-26

®CD®00®®0
®@@@@@@@
@@@@@@@@
@@)@®@@@)@

Figure 2·1. The Root Partition or a 32·Node System

NOTE

The root partition always has a mesh structure, even if the
underlying hardware does not.

The Paragon OSFII operating system presents the same view of the system even if the node
interconnect network has a different architecture (such as a hypercube).

NOTE

The root partition is always rectangular, even if the number of
usable nodes in it is not a multiple of two numbers. (This is nottrue
of partitions other than the root partition.)

For example. a system with 31 nodes would also be a 4-by-8-node rectangle, numbered as shown in
Figure 2-1. but one of the nodes would be an unusable node. as described under "Unusable Nodes"
on page 2-31. You would not be able to start any processes or allocate any subpartitions using this
node.

D

~. --I
! ... J

I~

(J

[J

(J

[J

()

I"'~"
IIii

(' .
. _.~u

I
~· ...

"

J/j;i

[~

1=
1-"1

','

I

r~

I:
r:

Paragon™ OSFI1 User's Guide Using Paragon™ OSF/1 Commands

The Service Partition

The service partition is the partition in which the users' shells, OSP/I commands, and other
non-parallel programs run. The name of the service partition is service. The service partition always
uses standard scheduling, which means that it may not contain any subpartitions (see "Standard
Scheduling" on page 2-33 for more information).

When you log into the Intel supercomputer, a shell is started for you on a node in the service
partition; when you execute a command in this shell, the command runs on a node in the service
partition. Note that the node the command runs on is not necessarily the same node that the shell runs
on; the system starts each new process on the node that is currently the least busy. Running processes
may also be migrated to other nodes to improve load balancing.

The Compute Partition

The compute partition is the partition in which parallel applications run. The name of the compute
partition is compute. The compute partition always uses gang scheduling.

When you execute a parallel application, one process (called the controlling process) runs in the
service partition; the other processes of the application run in the compute partition, or in a
subpartition of the compute partition. You can specify which partition an application runs in when
you execute it.

Your system administrator determines whether or not you can create subpartitions in the compute
partition and whether or not you can execute applications in the compute partition itself. There may
also be other local policies that affect how you use the compute partition; for example, you may be
required to run your applications in certain subpartitions during the day and others at night.

Partition Path names

Since partitions have a hierarchical structure like directories, they also have pathnames like
directories. Like a file or directory pathname, a partition pathname identifies a partition within the
hierarchical partition structure by describing the path from a known location to the specified
partition.

Unlike file and directory pathnames, however, partition pathnames use a dot (.) instead of a slash
V) to separate the elements of the pathname. This is why the name of the root partition is . (dot).
There is also no special partition pathname for "current partition" or "parent of the current partition."
Also, you cannot use wildcards (* and ?) in partition pathnames.

2-27

--- ----.-.---~~.--~.~~-.. -~--~---.--~------------------------- -------------

Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User's Guide

There are two types of partition pathnames:

• An absolute partition pathname specifies the path from the root partition to the specified
partition. An absolute partition pathname begins with a dot (.)

• A relative partition pathname specifies the path from the compute partition to the specified
partition. A relative partition pathname does not begin with a dot.

NOTE

Relative partition pathnames are always relative to the compute
partition (there is no "current partition").

The absolute partition pathnames of the root partition, service partition, and compute partition are
. (dot), .service, and .compute respectively. Because these partitions are not subpartitions of the
compute partition, they do not have relative partition pathnames.

If the partition my part is a subpartition of the compute partition, its absolute partition pathname is
.compute.mypart and its relative partition pathname is just my part.

If subpart is a subpartition of my part, its absolute partition pathname is .compute.mypart.suhpart
and its relative partition pathname is my part. subpart.

Partition Characteristics

2-28

Each partition has the following characteristics:

• A parent partition that contains it.

• A name that identifies it.

• A set of nodes that is allocated to it.

• An owner and group and a set of protection modes, like those of a file or directory, that
determine what actions a given user is allowed to perform on it.

• A set of scheduling characteristics that determine how applications are scheduled in it.

A partition's characteristics are set when the partition is created. The mkpart command, described
under "Making Partitions" on page 2-38, lets you specify most of these characteristics on the
command line; if you don't specify otherwise, the characteristics of a new partition are set to the
same values as those of its parent partition.

[J

(J

[]

(J

1,1 ..

(J

IJ
lJ
I)

I
~

.i

1-"1

. ..1

I:
I:
r~

I~

r~

I:

I 'I
~J

1_:

I:
IJ
I~

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

You can use the showpart command, described under "Showing Partition Characteristics" on page
2-44, to determine a partition's current characteristics.

A partition's parent partition and nodes cannot be changed. You can change the other characteristics
with the chpart command, described under "Changing Partition Characteristics" on page 2-48.

Parent Partition

Each partition is contained within another partition. The containing partition is called the parent
partition, and the contained partition is called a child partition or subpartition of the parent partition.
(There is one exception to this rule: the root partition has no parent.)

You specify a partition's parent when you create it with mkpart. The parent partition determines the
set of nodes that are available to be allocated to the new partition (a partition cannot include any
nodes other than the nodes of its parent). The parent partition also determines the default
characteristics of the new partition, as mentioned earlier. A partition's parent does not change for the,
life of the partition.

Partition Name

Each partition is identified by a name. A partition's name must be unique among all the partitions
with the same parent. Partition names can be any length, but must consist of only uppercase letters
(A-Z), lowercase letters (a-z), digits (0-9), and underscores C).

You specify a partition's name when you create it with mkpart, and you can use chpart to change
an existing partition's name (you must have write permission on the partition's parent partition).

Nodes Allocated to the Partition

Each partition has a set of nodes allocated to it from its parent partition. This allocation is not
exclusive: some or all of these nodes may also be allocated to other partitions. The number of nodes
in this set is called the partition's size.

You can specify the set of nodes allocated to the partition when you create it with mkpart. You can
specify the partition's size and let the operating system select the nodes, or you can specify certain
node numbers from the parent partition. If you don't specify either, the new partition consists of all
the nodes of the parent partition.

The set of nodes allocated to a partition does not change for the life of the partition (that is, partitions
never move or change their size or shape). Depending on how you allocate the nodes, they mayor
may not be contiguous (all adjacent to each other). Figure 2-2 shows examples of contiguous and
noncontiguous partitions.

2-29

Using Paragon™ OSFI1 Commands Paragon™ OSF/1 User's Guide

2-30

00000 00000
O®CD®O
00000
00000

OO®CD®
00000
00000

00000 00000
o
o o

Contiguous Partitions

o
o

000
o

000
Noncontiguous Partitions

Figure 2·2. Node Numbers in Contiguous and Noncontiguous Partitions

Node Numbers Within a Partition

Each node in a partition has a node number within the partition: an integer from 0 to one less than
the partition's size. The nodes in a partition are typically numbered from left to right and then from
top to bottom, as shown in Figure 2·2.

NOTE

Because partitions can overlap, a single physical node can have
many logical node numbers.

~~-----~-, ---------

()

[-".,

~ I

-~I

I'~ I

~L.J

I i
~

IJ
l:

(J

(J
110

. ..oJ

I ~: ...

I~

(._""

l.,i

r~

1_""'1

J:,I

I:

I "9

-'

(,."."

_..l

[j

(]

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

For example, Figure 2-3 shows two partitions, called Partition A and Partition B, that have the same
parent partition. Partition A consists of nodes 1 through 4 of the parent partition, and Partition B
consists of nodes 4 through 8 of the parent parti tion. In this case, node 4 of the parent parti tion is also
known as node 3 of Partition A and node 0 of Partition B.

Parent Partition

Partition A Partition B

r ••
0 0 0 0 0 0 0 0 0

Partition NOde Numbers

Parent 0 1 2 3 4 5 6 7 8

A -- 0 1 2 3 - -- - -
B -- - - -- 0 1 2 3 4

Figure 2-3. Node Numbers in Overlapping Partitions

Unusable Nodes

Occasionally a node may become unusable because of a hardware or software failure. If this occurs,
the node is still allocated to any partitions to which it was allocated before it became unusable, but
no applications can be run on that node and no new partitions can include that node until the node
becomes usable again. The showpart and lspart commands indicate if there are any unusable nodes
in a partition.

For example, suppose you make a partition containing 20 nodes and later one of those nodes
becomes unusable. If you attempt to run an application or make a subpartition with all 20 nodes of
this partition while the node is unusable, the attempt will fail. (Exception: if you run an application
on "all nodes" of this partition, which occurs if you don't use the -sz switch and the environment
variable NX _ DFLT _SIZE is not defined, the application will run on 19 nodes. This is not currently
true if you attempt to make a subpartition containing "a11 nodes" of the partition, which is the
default.)

2-31

Using Paragon™ OSF/1 Commands Paragon'"' OSF/1 User's Guide

2-32

Owner, Group, and Protection Modes

Each partition has an owner, a group, and a set of protection modes, like those of a file or directory,
that determine who can perform what operations on the partition.

When you create a partition with mkpart, you become the new partition's owner; the new partition's
group is set to your current group (see newgrp in the OSFll Command Reference for more
information on groups). If you are the owner of a partition, you can use chpart to change an existing
partition's group; only the system administrator can change an existing partition's ownership.

A partition's protection modes consist of three groups of three permission bits (read, write, and
execute for owner; read, write, and execute for group; and read, write, and execute for "other"), as
described for the chmod command in the OSFll Command Reference. The read, write, and execute
permission bits have the following meanings for a partition: .

r (read)

w (write)

x (execute)

Allows listing the subpartitions and characteristics of the partition.

Allows creating and removing subpartitions in the partition and changing the
partition's characteristics.

Allows executing applications in the partition.

The system administrator (root) is not affected by these permission bits. root can do anything to any
partition at any time.

The permission bits can be expressed as a three-digit octal number (as for the chmod command) or
as a string of the form rwxrwxrwx (as used by the Is -I command, where a letter represents a bit
that is "on" and a dash (-) represents a bit that is "off'). For example, the octal number 754 is
equivalent to the string rwxr- xr- -; both grant all permissions to the owner, read and execute
permissions to the group, and read permission only to all other users.

When you create a partition with mkpart, you can specify its protection modes. If you don't specify
a partition's protection modes when you create it, they are set to the same values as those of the
parent partition. If you are the owner of a partition or the system administrator, you can use chpart
to change an existing partition's protection modes.

Scheduling Characteristics

Each partition has a set of scheduling characteristics that determine how the applications running in
the partition are scheduled (that is, how the system arbitrates between processes when there are
several processes running on a single node).

You can specify a partition's scheduling characteristics when you create it with mkpart and change
them with chpart. If you don't specify a partition's scheduling characteristics when you create it,
they are set to the same values as those of the parent partition.

[]

()

(~

IJ
, I ~

.,."

' ::;,'

~=

r:
I:

IJ
rJ
IJ

r=
[J

(J

(J

Paragon TM OSF!1 User's Guide Using Paragon™ OSF!1 Commands

A partition uses one of two different forms of scheduling: standard scheduling and gang scheduling.

• Partitions that use standard scheduling use the standard OSFIl scheduling mechanisms. This
gives good response to user input, but may result in poor performance for parallel applications
(when one process in the application becomes inactive, other processes that depend on that
process for information have to wait until it becomes active again).

• Partitions that use gang scheduling use a modified scheduling mechanism that makes all the
processes in a parallel application active at the same time. Also, where standard scheduling
swaps processes in and out frequently (typically every 100 milliseconds), gang scheduling
swaps applications in and out on the basis of the partition's rollin quantum: a time period that
can be up to 24 hours long. A long rollin quantum gives good performance for parallel
applications, because the application can run for a long time without being interrupted, but may
result in poor response to user input (when you give input to an application that is rolled out, the
application does not respond until it is rolled in again).

Standard-scheduled partitions should be used to run interactive applications and applications that are
being debugged; gang-scheduled partitions should be used to run numerically-intensive applications
that do not interact with the user.

The following sections give you more information about these two forms of scheduling.

Standard Scheduling

Standard scheduling is the same as the scheduling technique used on single-processor OSF/l
systems. Each node in a partition that uses standard scheduling is scheduled like a separate
computer; there is no anempt to coordinate related processes running on separate processors.

NOTE

A partition that uses standard scheduling may not contain
subpartitions, and may not overlap any other partitions that use
standard scheduling.

In a partition that uses standard scheduling, each process has apriority, a number from -20 (high
priority) to 20 (low priority), that is used in determining how much processor time the process gets.
Non-parallel processes in standard-scheduled partitions may be migrated by the system (moved
from one node to another within the partition while they run) to improve load balancing; processes
that are part of a parallel application do not migrate.

2-33

Using Paragon™ OSFI1 Commands Paragon™ OSFI1 User's Guide

2-34

Partitions that use standard scheduling give good interactive performance for each individual
process in the partition. However, there is no guarantee that related processes are active at the same
time. This means that a process in a parallel application running in· such a partition may find itself
waiting for a message from a process that is not active, which reduces the performance of the
application. To avoid this problem, you can use gang scheduling.

Gang Scheduling

Gang scheduling is a special scheduling technique that coordinates the scheduling of related
processes running on separate processors. In a partition that uses gang scheduling, the nodes are
scheduled so that all the processes in an application are active at the same tilDe. If there are multiple
processes per node in the active application, standard scheduling is used to schedule these processes
against each other while the application is active.

Partitions that use gang scheduling may contain subpartitions, and may overlap other partitions of
any type. Processes in partitions that use gang scheduling do not migrate.

In a partition that uses gang scheduling, not only does each process have a priority, but there is a
separate priority for the application as a whole. An application's priority is a number from 0 (low
priority) to 10 (high priority). A gang-scheduled partition also has a priority of its own, as well as
two other quantities called the effective priority limit and the rollin quantum:

• A partition's priority is the lower of the following:

The priority of the highest-priority application or subpartition in the partition.

The partition's effective priority limit.

• A partition's effective priority limit is a number from 0 to 10 that places an upper limit on the
partition's priority. It does not affect the priorities of applications or partitions within the
partition.

• A partition's rollin quantum is the amount of time each application in the partition is allowed to
be active before the system considers running another application instead. The term "rollin
quantum" comes from the application being "rolled in" when it is made active, and "rolled out"
when it is made inactive.

A gang-scheduled partition's effective priority limit and rollin quantum are set when the partition is
created, and do not vary unless you change them with the chpart command. A gang-scheduled
partition's priority may vary over time, depending on the priorities of the applications and
subpartitions in the partition.

A partition that uses standard scheduling does not have an effective priority limit or rollin quantum.
It also does not have a numeric priority; instead, its priority is "infinite" (that is, higher than the
priority of any gang-scheduled partition or application).

[. -,
•

(
.'1'1 , ,

.. -.1

(]

l:
I:
I. ~1

"'"

IJ
(J

(' .. _iOJ

[:
.. ." ['.""

(''''.
,,'

I· .. ",
-,

r~

I:
I"

. U

r-;
.-"'

(... .,
'.!;,)

I. ~:
~J

I]

['l

IJ

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

Gang scheduling is perfonned recursively, partition by partition. For each gang-scheduled partition
in the system, starting with the root partition, the operating system examines all the entities
(applications and partitions) within the partition:

I. Entities that do not overlap other entities (that is, they have no nodes in common with any other
entity in the partition) are simply scheduled to run for the partition's rollin quantum.

2. Where two or more entities overlap, the priorities of the overlapping entities are compared, and
the highest-priority entity is scheduled to run for the partition's rollin quantum.

3. If two or more entities overlap and are tied for highest priority, they are scheduled in a
round-robin fashion (each takes turns running for one full rollin quantum).

4. If an entity that is scheduled to run is a partition, the operating system examines and schedules
the entities in the partition as described above. This process continues recursively as necessary.

At the end of each partition's rollin quantum, the operating system examines and schedules the
entities in the partition again .

Note that rules 2 and 3 mean that, when applications or partitions overlap, the one with the highest
priority gets one rollin quantum after another until it completes. Entities with lower priorities get no
processor time at all until the higher-priority entity has completed. If there is a tie for highest priority,
the tied high-priority entities take turns running, but entities with lower priority get no processor time
until all the high-priority entities complete. Partitions that use standard scheduling always have the
highest priority. so if a standard-scheduled partition overlaps a gang-scheduled partition or an
application, the standard-scheduled partition always wins.

For example, Figure 2-4 shows a partition (called Partition X) that contains two applications (called
Applications A and B) and one partition (called Partition V). Partition Y is a subpartition of Partition
X, and Partition X is the parent partition of Partition Y. Partition Y contains two applications
(Applications C and D). Application A does not overlap any other entity; Application B and Partition
Y overlap. Applications C and D overlap each other within Partition Y. The priorities and effective
priority limits of these entities are shown in the figure; the rollin quanta of the two partitions are the
same.

2-35

Using Paragon™ OSF/1 Commands Paragon™ OSFI1 User's Guide

2-36

Application A (priority 3)

l'

Application B (priority 5)

n -
--

~
J~

Application 0 (priority 6)

Application C (priority 9)

Figure 2·4. An Example or Gang Scheduling

Partition X
(effective priority limit 7)

Partition Y
(effective priority limit 5)
Y is a subpartition of X

1. At the beginning of the [rrst rollin quantum, the system notices that Application A does not
overlap with anything else, so it is simply scheduled to run for this rollin quantum regardless of
its priority. However, Application B and Partition Y overlap, so the system compares their
priori ties:

• Application B has a priority of 5.

• The highest priority within Partition Y is 9. However, the partition's effective priority limit
is only 5, so Partition Y has a priority of 5.

Since Application B and Partition Y have the same priority, they will be scheduled to run in
alternation. The system arbitrarily selects Application B to run first, so in the frrst rollin
quantum Applications A and B are active and Partition Y (with Applications C and D) is
inactive.

2. At the beginning of the second rollin quantum, Application A still does not overlap anything,
so it is scheduled to run again in this rollin quantum. However, Application B has bad its turn,
so Partition Y is scheduled to run in this rollin quantum instead. This means that the entities
within Partition Y must be scheduled. Applications C and D overlap, so their priorities are

(.. ~ •

r- -,
Itl

[:

l:
IJ

(:
["'I.;

Jill

(
.~

.jjj

1.-'
.""

r:
r:
I:
(".;

~I

I'

r:
r:
f=

IJ
[J

(J

c

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands

compared. Since Application C's priority is higher. it is selected to run in this rollin quantum.
So in the second rollin quantum Applications A and C are active and Applications B and D are
inactive.

3. The third rollin quantum (and every odd-numbered rollin quantum thereafter) is scheduled like
the first; Applications A and B are active.

4. The fourth rollin quantum (and every even-numbered rollin quantum thereafter) is scheduled
like the second; Applications A and C are active.

Since Application A does not overlap any other entities. it is allowed to run in every rollin quantum
until it completes. Applications B and C run in alternate rollin quanta until one of them completes.
Since Application D has a lower priority than Application C. it does not get any processor time at all
until Application C completes. If Application B is still running when Application C completes.
Application D alternates with Application B just as Application C did.

NOTE

If the rollin quantum of a subpartition is larger than that of its parent
partition. it will take more than one actual rollin period to satisfy the
subpartition's "virtual rollin quantum."

For example. suppose the rollin quantum of Partition X in Figure 2-4 is 5 seconds and the rollin
quantum of Partition Y is 10 seconds.

1. At time 0:00. the system examines Partition X and selects Application B to run in alternation
with Partition Y. Application B is rolled in first and runs for the 5-second rollin quantum
specified by its partition (Partition X).

2. At time 0:05. Application B is rolled out and Partition Y is rolled in for the fIrSt time. The system
now examines Partition Y and selects Application C to run. Application C runs for the first 5
seconds of the lO-second rollin quantum specified by its partition (Partition V).

3. At time 0:10. Partition Y is rolled out; this pauses Application C in the middle of its rollin
quantum. Application B is rolled in. and runs for another 5-second rollin quantum.

4. At time 0: 15. Application B is rolled out and Partition Y is rolled in again. Application C now
runs for the last 5 seconds of its lO-second rollin quantum. Note that Partition Y does not
undergo scheduling at this time. Instead. it simply continues what it was doing when it was
rolled out at time 0: 10.

As discussed earlier. during this period Application A runs in every rollin quantum and Application
D does not run at all.

2-37


~~~-.------------.--------.. ---.------------------.------------~---- ------------- ----- -- .. -----~--

Using Paragon™ OSFI1 Commands Paragon 1M OSF/1 User's Guide 

Making Partitions 

2-38 

Command Synopsis 

mkpart [-sz size I-sz hXw I-nd nodespec] 
[ -ss I [ [ -rq time] [ -epl priority] ] ] 
[ -mod mode] name 

Description 

Create a partition. 

To create a partition. use the mkpart command. You can specify either a relative or an absolute 
partition pathname for the new partition. The specified new partition must not exist; the parent 
partition of the new partition must exist and must grant you write permission. 

For example. to create a partition called mypart whose parent partition is the compute partition, you 
can use the following command: 

, mJcpart mypart 

The following command has the same effect, but uses an absolute partition pathname: 

, mJcpart .compute.mypart 

Specifying the Nodes Allocated to the Partition 

The mkpart command gives you three ways to specify which nodes are allocated to the new 
partition: 

-sz size 

-szhXw 

Creates a partition whose size (number of nodes) is size. The nodes are not 
necessarily contiguous. 

Creates a contiguous rectangular partition that is h nodes high and w nodes 
wide. (You can use an uppercase or lowercase letter X between the integers h 
and w.) 

IJ 

C 
I'r"'1 
~ I . 

I: 
IJ 
I: 
I: 
(J 

IJ 



I ~_ i 
Ali 

r: 
I: 

r~ 
(-""" 
, .~i 

( C; 
_.J 

1_.., 
-41 

I ! (
'"'1 

I' 
I'~ 

(
"'I 

.J 

[ -..,.., 

_,0 

[J 

IJ 

Paragon™ OSF/1 User's Guide 

-nd nodes pee 

- -- ------~--------

Using Paragon™ OSF/1 Commands 

Creates a partition that consists of exactly the specified nodes, where 
nodespee is one of the following: 

x 

x •• y 

hXw:n 

The node whose node number is x. 

The range of nodes from numbers x to y. 

The rectangular group of nodes that is h nodes high 
and w nodes wide and whose upper left corner is node 
number n. (You can use an uppercase or lowercase 
letter X between the integers h and w.) 

nspee[,nspee]... The specified list of nodes, where each nspee is a node 
specifier of the form x, x •• y, or hXw:n. Do not put any 
spaces in this list. 

The numbers you use with -nd are node numbers within the parent partition, 
which always range from 0 to one less than the size of the partition. 

If you don't use the -sz or -nd switch, all the nodes of the parent partition are allocated to the new 
partition (if the parent partition is the root partition and it contains unusable nodes, only the usable 
nodes are allocated). You can use at most one -sz or -nd switch in a single mkpart command. 

The following examples all create a 50-node partition called mypart whose parent partition is the 
compute partition (that is, the new partition's absolute partitionpathname is .eompute.mypart): 

• This command creates a 50-node partition with no specified shape or location: 

% mkpart -sz 50 mypart 

The nodes of the new partition are selected from the parent partition by the system, and they 
may not be contiguous. 

• This command creates a partition 10 nodes high and 5 nodes wide: 

% mkpart -sz 10%5 mypart 

The pOSition of the new partition within the parent partition is selected by the system, but the 
new partition is a contiguous rectangle . 

• This command creates a partition 10 nodes high and 5 nodes wide located in the upper left 
corner of the parent partition: 

% mkpart -nd 10X5:0 mypart 

The shape and position of the new partition are specified by the user, and the new partition is a 
contiguous rectangle. 

2-39 



Using Paragon™ OSFI1 Commands Paragon™ OSF/1 User's Guide 

2-40 

• This command creates a partition that consists of nodes 30 through 79 of the parent partition: 

, mkpart -nd 30 .• 79 mypart 

The specific nodes of the partition are specified by the user, and the new partition mayor may 
not be contiguous (its shape depends on the size and shape of the compute partition). 

• This command creates a partition that consists of node 0, nodes 3 through 16, and a 5 by 7 node 
rectangle located at node 21 of the parent partition: 

, mkpart -nd 0,3 .• 16,5X7:21 mypart 

The specific nodes of the partition are specified by the user, and the new partition is not 
contiguous (its shape depends on the size and shape of the compute partition). 

No matter how you specify the partition's size, nodes are always numbered from 0 to one less than 
the partition's size. In most cases, they are numbered from left to right and then top to bottom, as 
discussed under "Nodes Allocated to the Partition" on page 2-29. However, if you use the -od 
switch, the nodes in the new partition are numbered in the order you specified them in the -od switch. 
For example, the following command creates a partition that consists of nodes 30 through 79 of the 
compute partition: 

, mkpart -nd 79 •• 30 mypart 

In this case, node 79 of the parent partition is node 0 of the new partition; node 78 of the parent 
partition is node 1 of the new partition; and so on to node 30 of the parent partition, which is node 
49 of the new partition. 

Specifyi ng Protection Modes 

The rnkpart command gives you two ways to specify the protection modes of the new partition: 

-mod nnn 

-mod string 

Creates a partition whose protection modes are specified by the three-digit 
octal number nnn, as used by the chmod command (see chmod in the OSFIl 
Command Reference for more information). 

Creates a partition whose protection modes are specified by the 
nine-character string string. The string must have the form rwxrwxrwx, 
where a letter (r, W, or x) represents a permission granted and a dash (- ) 
represents a permission denied, as displayed by the command Is -I (see Is in 
the OSFIl Command Reference for more information). 

You can use at most one -mod switch in a single rnkpart command. If you don't use the -mod 
switch. the new partition is given the same protection modes as its parent partition. 

[~ 

(] ! 

I: 
I: 
(J 

IJ 
(] 



I.··" 
.... 

c 

[J 

(
=1 

• .:11..-' 

IJ 

IJ 

Paragon™ OSFI1 USer'S Guide Using Paragon™ OSF/1 Commands 

For example, the following conunand creates a partition that is readable, writable, and executable by 
you; readable and executable by your group, and only readable by others: 

% mkpart -mod rwxr-zr-- mypart 

The following command has the same effect, but uses an octal number: 

% mkpart -mod 754 mypart 

Specifying Scheduling Characteristics 

The mkpart command gives you three switches to specify the scheduling characteristics of the new 
partition: 

-ss 

-rq time 

-epl priority 

Creates a partition that uses standard scheduling. 

-ss cannot be used with -rq or -epl. 

Creates a partition that uses gang scheduling with a rollin quantum of time, 
where time is one of the following: 

n 

ns 

nm 

nh 

o 

n milliseconds (if n is not a multiple of 100, it is 
silently rounded up to the next multiple of 100). 

n seconds. 

n minutes. 

n hours . 

"Infinite" time: once rolled in, an application runs until 
it exits. 

No matter how you specify it, the rollin quantum must not be more than 24 
hours. 

-rq can be used with or without -epl. If you use -rq without -epl, the new 
partition has the same effective priority limit as its parent partition. 

Creates a partition that uses gang scheduling with an effective priority limit 
of priority, where priority is an integer from 0 to 10 inclusive (0 is low 
priority, 10 is high priority). 

-epl can be used with or without -rq. If you use -epl without -rq, the new 
partition has the same rollin quantum as its parent partition. 

2-41 



Using Paragon™ OSF/1 Commands Paragon"" OSF/1 User's Guide 

If you don't use the -ss, -rq, or -epJ switch, the new partition uses the same scheduling technique, 
rollin quantum, and effective priority limit as its parent partition. 

For example, the following command creates a partition that uses standard scheduling: 

% mkpart -ss mypart 

The following command creates a partition that uses gang scheduling with a rollin quantum of 10 
seconds and the same effective priority limit as its parent partition: 

% mkpart -rq lOs mypart 

The following command creates a partition that uses gang scheduling with an effective priority limit 
of 7 and the same rollin quantum as its parent partition: 

% mkpart -epl 7 mypart 

The following command creates a partition that uses gang scheduling with a rollin quantum of 5 
minutes and an effective priority limit of 6: 

% mkpart -rq 5m -epl 6 mypart 

Removing Partitions 

2-42 

Command Synopsis Description 

rmpart [ -f] [ -r ] partition Remove a partition. 

To remove an existing partition, use the rmpart command. You must have write permission on the 
parent partition of the partition to be removed. You can specify the partition to be removed with 
either a relative or an absolute partition pathname. 

For example, to remove the partition called mypart, whose parent partition is the compute partition, 
you can use the following command: 

% rmpart mypart 

The following command has the same effect, but uses an absolute partition pathname: 

% rmpart .compute.mypart 

() 

J"1 
U 

~-i 

\ 

t.l. -'..1 

rfi 
Wl.JI..I 

IJ 
IJ 

IJ 
IJ 



r·~ 

ill 

r-1'1 

. .o.i 

r~ 

r: 
r: 

I~ 

(J 
r~-.: 

AJ 

1_-, 
, '~I 

r: 
(-' 

.~I 

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands 

Removing Partitions Containing Running Applications 

If you specify a partition that contains any running applications, you see an error message and the 
partition is not removed. You can force rmpart to remove a partition that contains running 
applications with the ·f switch. When you use the ·f switch, rmpart tenninates all the applications 
running in the specified partition and then removes it. 

For example, if there are applications running in my part, use the following command to terminate 
the applications and remove the partition: 

% rmpart -£ mypart 

Removing Partitions Containing Subpartitions 

If you specify a partition that contains any subpartitions, you see an error message and the partition 
is not removed. You can force rmpart to remove a partition that contains subpartitions with the ·r 
switch. When you use the·r switch, rmpart recursively removes all the subpartitions in the 
specified partition (and their sub-subpartitions, and so on) and then removes the specified partition. 

For example, if there are subpartitions in my part, use the following command to remove my part and 
all its subpartitions: 

% rmpart -r mypart 

rmpart -r is an "all or nothing" operation. If any subpartitions cannot be removed, the command 
fails and no subpartitions are removed. 

The -r switch does not imply ·f. If my part or any of its subpartitions contains any running 
applications, you see an error message and none of the partitions are removed. You can force rmpart 
to remove a partition that contains subpartitions and running applications by using the ·r and -f 
switches together. When you use both these switches, rmpart terminates all the applications running 
in the specified partition and its subpartitions, removes all the subpartitions in the specified partition, 
and then removes the specified partition. 

2-43 



Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User's Guide 

Showing Partition Characteristics 

2-44 

Command Synopsis Description 

showpart [partition ] Show the characteristics of a partition. 

To show the characteristics of a partition, use the showpart command. You can specify the partition 
with either a relative or an absolute partition pathname. If you don't specify a partition, showpart 
shows the characteristics of your default partition (see "Using the Default Partition" on page 2·13). 
In either case, you must have read permission on the specified partition. 

For example, to show the characteristics of the partition called my part, whose parent partition is the 
compute partition, you can use the following command: 

% sbowpart mypart 
USER GROUP 
smith eng 

+---------+ 
01 
41 * * * 
81 * * * 

121 * * * 
+---------+ 

ACCESS 
777 

SIZE 
9 

RQ EPL 
15m 5 

In this case, mypart belongs to user smith in group eng. It has permissions 777 (rwxrwxrwx), a size 
of 9 nodes, a rollin quantum of 15 minutes, and an effective priority limit of 5. See "Partition 
Characteristics" on page 2·28 for information on these partition characteristics. 

The rectangular picture at the bottom of the showpart output shows the size, shape, and position of 
the specified partition within the system: 

• The large rectangle represents the root partition. In this case, the root partition is 4 nodes high 
and 4 nodes wide. 

• The numbers to the left of the rectangle show the node numbers of the nodes in the first column 
of each row. In this case, the frrst node in the top row is node 0, the first node in the second row 
is node 4, the frrst node in the third row is node 8, and the first node in the bottom row is node 12. 

• Asterisks (*) within the rectangle represent nodes that are allocated to the specified partition; 
periods (.) represent other nodes. In this case, my part consists of nodes 5-7, 9-11, and 13-15 
of the root partition. 

• If you see a dash ( - ) or an X within the rectangle, it represents an unusable node that is allocated 
to the specified partition. You cannot run any applications or allocate any partitions using this 
node. See "Unusable Nodes" on page 2·31 for more information. 

IJ 
[J 

D 

(jJ I 

(J 

(] 

IJ 
( '"1 

-"'" 

( ~~ 

"" 
I) 
IJ 



1',-,ill 

1_",,., , 
.tJ 

1-· 
.iii 

1_'.,. 
" 

... 

I: 
I: 
I

-'~ 

.. 

I~ 
19 

"J 

I: 

I~ 

r: 
1-'"1 

,.J 

I: 
[j 

c 

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands 

The following command has the same effect, but uses an absolute partition pathname: 

% sbowpart .compute.mypart 

Listing Subpartitions 

Command Synopsis Description 

Ispart [ -r ] [partition] List the subpartitions of a partition. 

To list the subpartitions of a partition with their characteristics, use the lspart command. You can 
specify the partition with either a relative or an absolute partition pathname. If you don't specify a 
partition,lspart lists the subpartitions of your default partition (see "Using the Default Partition" on 
page 2-13). In either case, you must have read permission on the specified partition. 

For example, to list the subpartitions of the partition called mypart, whose parent partition is the 
compute partition, you can use the following command: 

% lspart mypart 
USER GROUP ACCESS SIZE RQ EPL PARTITION 
chris eng 777 16 15m 3 mandelbrot 
chris eng 777 16 debug 
pat mrkt 755 4 10m 10 slalom 
smith eng 700 * * * private 

In this case, mypart has four subpartitions: mandelbrot, debug, slalom, and private. 

• mandelbrot is owned by user chris in group eng; it has permissions rwxrwxrwx, a size of 16 
nodes, a rollin quantum of 15 minutes, and an effective priority limit of 3. 

• debug is also owned by user chris in group eng; it has permissions rwxrwxrwx and a size of 
16 nodes. It has no rollin quantum or effective priority limit: this shows that it is a 
standard-scheduled partition. 

• slalom is owned by user pat in group mrkt; it has permissions rwxr- xr- x, a size of 4 nodes, 
a rollin quantum of 10 minutes, and an effective priority limit of 10. 

• private is owned by user smith in group eng; it has permissions rwx - - - - - -. Because private 
does not grant you read permission, its size, rollin quantum, and effective priority limit are 
shown as asterisks (* ). 

2-45 



Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User's Guide 

2-46 

If you see two numbers separated by a slash in the SIZE column, it indicates that one or more of the 
nodes allocated to the indicated partition is unusable. For example: 

% lspart mypart 
USER GROUP 
chris eng 

ACCESS SIZE RQ 
777 14 I 16 15m 

EPL PARTITION 
3 rnandelbrot 

This indicates that there are 16 nodes allocated to mandelbrot, but 2 of them are currently unusable. 
You cannot run any applications or allocate any partitions using unusable nodes. See "Unusable 
Nodes" on page 2-31 for more information. 

The following command has the same effect. but uses an absolute partition pathname: 

% lspart .compute.mypart 

To recursively list all of a partition's subpartitions, sub-subpartitions. and so on, use the -r switch. 
For example: 

% lspart -r mypart 
USER GROUP ACCESS SIZE RQ EPL PARTITION 

.compute.mypart: 
chris eng 777 16 15m 3 rnandelbrot 
chris eng 777 16 debug 
pat rnrkt 755 4 10m 10 slalom 
smith eng 700 * * * private 

.compute.mypart.rnandelbrot: 
chris eng 777 16 15m 10 hiJ>ri 
chris eng 777 16 15m 1 lOJ>ri 

The Ispart -r output reveals that mypart.mandelbrot has two subpartitions. hi yri and 10 yri. neither 
of whlch has any sub-subpartitions, and that slalom and debug have no sUbpartitions. No information 
is available on the subpartitions of private (if any). because private does not grant you read 
permission. 

NOTE 

If you specify a partition that has no subpartitions, Ispart produces 
no output. 

For example, since mypart.slalom has no subpartitions. an Ispart command on thls partition gives 
no output: 

% lspart mypart.slalom 
% 

To get information about mypart.slalom itself. use the showpart command. 

[) 

I) I 

(
'1'1 

, I 

,j 

IJ 

IJ 
(J 

IJ 

IJ 



r
·~ 

li<J 

r: 
r: 
I~ 

r: 
14 

"-' 

I: 
( .-

'" 

I~! 

(~ 

I: 
1-"'1 

j 

IJ 
(J 

(~ ... 
.AI 

Paragon™ OSFI1 User's Guide Using Paragon™ OSF/1 Commands 

Listing the Applications in a Partition 

% 

Command Synopsis Description 

pspart [partition] List the applications in a partition. 

To list the applications in a partition, with infonnation about the rollin/rollout status of each, use the 
pspart command. You can specify the partition with either a relative or an absolute partition 
pathname. If you don't specify a partition, pspart lists the applications in your default partition (see 
"Using the Default Partition" on page 2-13). In either case, you must have read permission on the 
specified partition. 

For example, to list the applications in the partition mypart, whose parent partition is the compute 
partition, you can use the following command: 

pspart mypart 
PGID USER SIZE PRI TIME ACTIVE TOTAL TIME COMMAND 

12345 
23456 
34567 

pat 256 5 45.00 75% 4:41.60 /home/pat/glide 
chris 67 4 7:12.30 boggle -sz 67 
smith 192 10 1:00.00 100% 2:12:03.90 myfft -sz 192 

The following command has the same effect. but uses an absolute partition pathname: 

% pspart .compute.mypart 

The columns in the output of pspart have the following meanings: 

PGID 

USER 

SIZE 

PRI 

The process group ID of the application (see "Process Groups" on page 4-14 
for more infonnation). 

The process group ID of an application is always the same as the process ID 
of the application's controlling process. This means that you can use this 
number with the kill command to kill the application; for example, given the 
pspart output above, the command kin 34567 would kill the application 
myfft. 

The login name of the user who invoked the application. 

The number of nodes allocated to the application from the partition (see 
"Specifying Application Size" on page 2-14 for more information). 

The application's priority (see "Specifying Application Priority" on page 
2-15 for more infonnation). 

2-47 



Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User's Guide 

TIME ACTIVE The amount of time the application has been active (rolled in) in the current 
rollin quantum (see "Scheduling Characteristics" on page 2-32 for more 
information). The time active is shown both in the format 
[[hours: ]minutes: ]seconds . milliseconds and as a percentage of the 
partition's rollin quantum. If the application is not active in the current rollin 
quantum. a dash ( - ) is shown for both quantities. 

In the example above. the partition mypart has a rollin quantum of one 
minute. The application Ihomelpatlglide has been active for 45 seconds. or 
75% of the rollin quantum; the application bogg Ie is not currently active; and 
the application myfft has been active for one minute. or 100% of the rollin 
quantum. 

TOTAL TIME The total amount of time the application has been rolled in since it was 
started, in the format [[hours: ]minutes: ]seconds . milliseconds. 

In the example above. the application lhomelpatlglide has been active for a 

U 
IJ 
D 

(] 

total of 4 minutes and 41.60 seconds; the application boggle has been active , J 
for a total of 7 minutes and 12.30 seconds; and the application myfft has been I. 
active for a total of 2 hours. 12 minutes. and 3.90 seconds. 

COMMAND The command line by which the application was invoked. IJ 

Changing Partition Characteristics I: 
[~ 

2-48 

Command Synopsis 

chpart [ -rq time] [ -epl priority] 
[ -run name] [ -mod mode] 
[ -g group] [ -0 owner[ • group] ] 

Description 

Change certain partition characteristics. [J 

partition I J 
To change the characteristics of a partition, use the chpart command. The permissions required I.J 
depend on the switches you use. You can specify the partition with either a relative or an absolute 
partition pathname. 

IJ 
IJ 
() 



r',''l1 
i.i 

1'-'" 
"~ 

r: 

I': 

I '''', , 

"" 

I~: 

r: 

I
"~ 

, -
I ," 

.. 6.J 

Paragon'M OSF/1 User's Guide Using Paragon™ OSF/1 Commands 

chpart can change the following partition characteristics: 

• Rollin quantum. 

• Effective priority limit. 

• Partition name. 

• Protection modes. 

• Owner and group. 

The other partition characteristics, such as size, parent partition, and scheduling type (standard or 
gang), are determined when the partition is created and cannot be changed. 

The switches of chpart, which can be used together or separately and in any order, are similar to the 
corresponding switches of rnkpart: 

-rq time 

-epJ priority 

Changes the partition's rollin quantum to time, where time is one of the 
following: 

n 

ns 

nm 

nh 

o 

n milliseconds (if n is not a multiple of 100, it is 
rounded up to the next multiple of 1(0). 

n seconds. 

n minutes. 

n hours. 

"Infinite" time: once rolled in, an application runs until 
it exits. 

-rq can be used only on a gang-scheduled partition. To use -rq, you must 
have write permission on the specified partition. 

Changes the partition's effective priority limit topriority, where priority is an 
integer from 0 to 10 inclusive. 

-epJ can be used only on a gang-scheduled partition. To use -epJ, you must 
have write permission on the specified partition. 

2-49 



Using Paragon™ OSF/1 Commands Paragon™ OSF/1 User's Guide 

2-50 

-run name 

-modnnn 

-mod string 

-ggroup 

Changes the partition's name to name, where name is a valid partition name 
(a string of any length containing only uppercase letters, lowercase letters, 
digits, and underscores). To use -run, you must have write permission on the 
parent partition of the specified partition. 

Note that -run can only change the partition's name "in place;" there is no 
way to move a partition to a different parent partition. 

Changes the partition's protection modes to the value specified by the 
three-digit octal number nnn. To use -mod, you must be the owner of the 
specified partition or the system administrator. 

Changes the partition's protection modes to the value specified by the 
nine-character string string. The string must have the form rwxrwxrwx, 
where a letter (r, w, or x) represents a permission granted and a dash ( - ) 
represents a permission denied. To use -mod, you must be the owner of the 
specified partition or the system administrator. 

Changes the partition's group to group. The group can be either a group name 
or a numeric group ID. To use -g, you must be the owner of the specified 
partition and a member of the specified new group, or you must be the system 
administrator. 

-0 owner[ • group] Changes the partition's owner to owner. If . group is specified, also changes 
the partition's group to group. The owner and group can be either user/group 
names or numeric user/group IDs. To use -0, you must be the system 
administrator. 

For example, the following command changes the rollin quantum of mypart to 20 minutes: 

% chpart -rq 20m mypart 

The following command changes the effective priority of my part to 2: 

% chpart -epl 2 mypart 

The following command changes the protection modes of mypart so that it is readable, writable, and 
executable by the owner but not by anyone else: 

% chpart -mod rwz------ mypart 

The following command has the same effect as the previous three commands combined, but uses an 
absolute partition pathname and an octal protection mode specifier: 

% chpart -epl 2 -rq 20m -mod 700 .compute.mypart 

u 

IJ 

IJ 

IJ 
IJ 
c 



I: 
I: 
I
-~ 

... 

I.J 
I~' 

I-~ 

I~ 
( "'" 
, ~ 

1_..., 
.. .J 

I: 

c 

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Commands 

The following command changes the owner of my part to smith, but does not affect its group: 

% cbpart -0 smi th mypart 

The following command changes the group of my part to support, but does not affect its ownership: 

% cbpart -g support mypart 

The following command changes the owner of my part to smith and the group to support: 

% cbpart -0 smitb.support mypart 

The following command changes the name of mypart to newpart: 

% cbpart -nm newpart mypart 

The following command also changes the name of mypart to newpart, but uses an absolute partition 
pathname: 

% cbpart -nm newpart .compute.mypart 

Note that the new name is specified as a name only, not a pathname. 

2-51 



.. -- - --------~~---~ ------_. __ .. _._---_._-- --.-.--------~-.----------. ~~~. 

Using Paragon™ OSF/1 Commands Paragon 1M OSFI1 User's Guide 

2-52 

l ' I .Ai 

u 

J-, 
l. 

1::1 U l 

I l'Ii , I 

...i 

I: 
I: 
I: 
I: 

IJ 



r: 

(~--

-' 

( i 
.oJ 

(-'" 

~~J 

r·--., 
-",I 

I x 

r~ 
I ~i 

.-1 

c 

Using Paragon ™ OSF/1 
Message-Passing System Calls 

Introduction 
Message passing is the standard means of communication among processes in Paragon OSF/I. As 
independent processor/memory pairs, the nodes do not share physical memory . If the node processes 
need to share information, they can do so by passing messages. The calls described in this chapter 
let your programs send and receive messages . 

This chapter introduces the Paragon OSF/I message-passing system calls. It includes the following 
sections: 

• Process characteristics. 

• Message characteristics. 

• Names of send and receive calls. 

• Synchronous send and receive. 

• Asynchronous send and receive. 

• Probing for pending messages. 

Getting information about pending or received messages. 

• Flushing and canceling messages. 

Message passing with Fortran commons. 

• Treating a message as an interrupt. 

• Extended receive and probe . 

Global operations. 

3-1 



·_---------------_._-",--------------

Using Paragon™ OSF/1 Message-Passing System Calls Paragon TO! OSF/1 User's Guide 

3-2 

Within each section, the calls are discussed in order of increasing complexity. That is, the "base" 
calls are discussed first, and the "extended" calls are discussed later. 

Each section includes numerous examples in both C and Fortran. A call description at the beginning 
of each section or subsection gives a language-independent synopsis (call name, parameter names, 
and brief description) of each call discussed in that section. Differences between C and Fortran are 
noted where applicable. See Appendix A for information on call and ~ameter types; see the 
Paragon™ OSFIlC System Calls Reference Manual or the ParagonT OSFI1 Fortran System Calls 
Reference Manual for complete information on each call. 

This chapter does not describe all the Paragon OSF/} system calls. For information about system 
calls that provide general services other than message passing. see Chapter 4. For information about 
the calls used with the Parallel File System™, see Chapter 5. For information about the calls used 
with Paragon OSF/I software tools. such as TCPIIP and the X Window System, see the Paragon™ 
OSFI1 Software Tools User's Guide. For information about the system calls that require root 
privileges, see the System Administrator's Guide for your system. 

Paragon OSF/I programs written in C can also issue OSF/I system calls. The Paragon OSFIl 
operating system is a complete OSF/l system and fully supports all the standard OSF/I system calls. 
See the OSFI1 Programmer's Reference for information on these calls. 

Paragon OSF/I programs written in Fortran cannot make OSFIl system calls directly, but the 
Fortran runtime library includes a number of system interface routines. These routines make a 
number of OSFIl system calls available to Fortran programs. See the Paragon ™ OSFI 1 Fortran 
Compiler User's Guide for information on these routines. 

Ii 
[

.l!/I 

. I 
-...I 

[J 

~.~ 

I: 

( ... "'1 -
IJ 
IJ 



I) 

( "'.' .iJ 

r: 
r

··~ 

.. 

I: 
r: 

I: 
(

"1'11 

j 

IJ 
~I 

[: 
[J 

(1 
.Ai 

u 
c 

Paragon .... OSF/1 User's Guide Using Paragon™ OSF/1 Message-Passing System Calls 

Process Characteristics 
Each process within an application is identified by its node 'lumber and process type. A process must 
have a valid node number and process type to send and receive messages. 

Node Numbers 

Synopsis 

mynode() 

numnodesO 

Description 

Obtain the calling process's node number. 

Obtain the number of nodes alJocated to the 
cwrrentapplication. ' 

A process's node number is an integer that identifies the node on which it is running. Node numbers 
are assigned by the system, and range from zero to one less than the number of nodes in the 
application. A process can fmd out its node Dumber by calling mynodeO;the node number does not 
change for the life of the process. A process can also fmd out the number of nodes in the application 

, by calling numnodesO; the maximum node number in the application is numnodesO - 1. 

When you run an application that was linked with the ·ox switch, the system creates one process on 
each node of the default partition (unless you specify otherwise on the application's command line). 
Each process is the same as the others except for its node number, which is different in each process. 

All message-sending system calls have a node parameter that specifies the node to which the 
message is sent. You can use any valid node number, or the special value -1 to send the message to 
all nodes in the application except the sending node itself. 

Some message-receiving system calls have a nodesel parameter that specifies the node from which 
the message was sent. A nodesel parameter can be a valid node number (to receive only messages 
from that node), or the special value -1 (to receive messages from any node). Message-receiving 
system calls that do not have a nodesel parameter always receive messages from any node. 

The node numbers used in message-passing calls are always node numbers within the application, 
not physical slot numbers or node numbers within the partition in which the application is running. 
For example, if you run an application on 30 nodes of a 64-node partition by using the switch ·sz 30, 
the node numbers within the application will always be 0 through 29. However, those nodes might 
not be nodes 0 through 29 of the partition. They might be nodes 0 through 29, or 10 through 39, or 
a completely arbitrary set of nodes. 

3-3 



.---.------------~---~------.---------.-.. --.----.~--._._------------_._- , .. _-_ ..... _------------------ ---, 

Using Paragon™QSFI1 Message-Passing System Calls Paragon™ QSFI1 User's Guide 

Process Types 

3-4 

Synopsis 

setptype(ptype) 

myptypeO 

Description 

Set the calling process's process type. 

Obtain the calling process's process type., 

A process's process type, or ptype, is an integer that distinguishes the process from other processes 
in the same application running on the same node. Process types are assigned by the user, and can 
be any integer from 0 to 2,147,483,647 (231 - 1) inclusive. A process can frod out its process type 
by calling myptypeO, and can change its process type by calling setptypeO. 

When you run an application that was linked with -nx. the system sets the process type of all 
processes in the application to 0 (unless you specify otherwise on the application's command line). 

All message-se~ding system calls have a ptype parameter that specifies the process type to which the 
message is sent. You must specify the process type,; you cannot use -1. 

Some message-receiving system calls have a ptypesel parameter that specifies the process type from 
which the message was sent. A ptypesel parameter can be a valid process type (to receive only 
messages from that process type), or the special value -1 (to receive messages from any process 
type). Message-receiving ~ystem calls that do not have a ptypesel parame'ter always receive 
messages from any process type. 

Certain system calls that involve all the nodes in the application, called global operations, require 
that every node in the application has one process with the same process type. All these processes 
must call the global operation before the application can proceed. 

Within a single application, multiple processes running on the same node must have different 
process types. However, processes on different nodes may (and usually do) have the same process 
type. Two processes running on a single node may have the same process type only if they belong 
to different applications. 

Once a process has used a process type, that process type is associated with the process for the life 
of the application. No other process on the same node in the same application can ever use that 
process type, even if the original process terminates or changes its process type. However, a process 
that has changed its process type is allowed to set its process type back to a value it has used 
previously. 

If a process changes its process type while it is running, the process type in effect when a send or 
receive system call was made determines the process type associated with the message. For example, 
suppose a process has process type 1 on node 2, but then uses setptypeO to change its process type 
to 2. A message sent to process type 1 on node 2 will arrive at node 2, but will have no process to 
receive it (it becomes a pending message). If the process later uses setptypeO to change its process 
type back to 1 ,the hext time it receives a message it will get the pending message. 

~"-~~-----------

i; 

[~ 
.ill 

(] 

(~ 
. .AI 

C i 

,--., 
IL...J 

[~ 

(~i 

."" 
r" """, 
iI.-d 

~ ~! 

~,,-I 

[J 

l: 
I'r' ~I 

~..J 

[: 
J"'1 
i"", 

l: 
I: 
(: 
(: 
(J 
(J 

C 



r: 

I·.·.~ 
.... 

I··~ 

~ 

I ·...,., 
.Ai 

1---. 
I ~, I 

I~ 

1-""1. 

j 

( -.-
_JkJ 

I~ 

[J 

ParagontM OSFI1 User's Guide Using Paragon™ OSF/1 Message-Passing System Calls 

If a process has multiple threads of control, they may have the same or different process types. When 
a thread is created, it has the same process type as the thread (process) that created it. A thread can 
change its process type by calling setptypeO. If two threads in a task have the same process type 
when a message arrives for that process type, whichever thread receives the message first gets it. See 
pthread_createO in the OSFI] Programmer's Reference for information on threads. 

NOTE 

The -pt switch (or, if not specified, the default process type of 0) 
applies only to the process type of the initial processes created by 
running the application. 

If an application creates additional processes after it starts up, and no process type is specified for 
the new process, the new process' s process type is set to the special value INV ALID _ PrYPE (a 
negative constant defined in the header file nx.h). A process whose process type is 
INVALID _ PrVPE cannot send or receive messages. It must call setptypeO to set its process type 
to a valid value before it can send or receive any messages. 

The Paragon OSF/l system calls that create node processes (ox_nforkO, DX_loadO, and 
DXJoadve()) have aptype parameter that specifies the process type of the newly-created processes. 
However, the standard OSF/l system call forkO, which creates a new process on the same node as 
the process that calls it, does not provide any way to specify the new process's process type. This 
means that the process type of a process created by forkO is set to INVALID _ PrYPE. The new 
process must call setptypeO before it can send or receive messages. The specified process type must 
be different from the parent's, and different from the process type of any other process in the same 
application on the same node. 

A process' s process type is inherited across an execO. This means that if you do a forkO followed 
by an execO, you can call setptypeO either before or after the execO. However, the setptypeO must 
follow the forkO. 

3-5 



Using Paragon™ OSF/1 Message-Passing System Calls Paragon™ OSFJ1 User's Guide 

Message Characteristics 
Messages are characterized by a length, a type, and sometimes an /D. These characteristics are set 
when the message is sent, and do not change for the life of the message. 

Message Length 

The length of a message is the number of bytes of information contained in the message. Messages 
in Paragon OSFIl can be of any length. 

All message-passing system calls have a count parameter that specifies the length of the message to 
be sent or received. The length you specify must be less than or equal to the size in bytes of the 
specified buffer. Message-sending calls read exactly that number of bytes from the buffer and send 
them as a message; message-receiving calls generate an error if a message is received that is larger 
than the specified length. 

If you program in C, when you send a message you can use the sizeof operator to determine the size 
of your message in bytes. If you program in Fortran, you will need to add up the sizes of all the data 
elements within the message; see the Paragon ™ OSFI 1 Fortran Compiler User's Guide for 
information on the default size of each data type. If you pass named common blocks as messages, 
you may also have to include the space taken up by padding within the common block, as discussed 
under "Message Passing with Fortran Commons" on page 3-20. 

You can also send and receive zero-length messages. This is useful if the message type is sufficient, 
and there is no need to supply any message content. For example, one process could tell another 
process to start or stop doing something by sending a zero-length message of type 1 to start, or a 
zero-length message of type 2 to stop. 

Message Type 

The type of a message is an integer whose meaning is determined by the programmer. 

All message-sending system calls have a type parameter that specifies the type of the message sent. 
You can use any integer from 0 to 999,999,999 (inclusive) as a message type. 

All message-receiving system calls have a typesel parameter that specifies the type (or types) of 
messages the call will receive. A typesel parameter can be an integer from 0 to 999,999,999 (to 
receive only messages of the specified type) or the special value -1 (to receive messages of any type). 

There are also special message types outside the range 0 to 999,999,999, called force types and 
typeset masks, that you can use. Sending with a force type sends a message that bypasses the usual 
flow control mechanisms; receiving with a typesel mask receives messages of a selected set of types. 
See the Paragon™ OSFll Fortran System Calls Reference Manual or Paragon™ OSFIl C System 
Calls Reference Manual for information on these special message types. 

I: 

ry""1 
l. 

I: 
(,: 

(J 

I~ 



r: 
r: 
r: 
I: 
I
'~ 

.J 

(
.~ 

j 

[J 

I: 

( '''' 
• .J 

r= 
c 
[J" 

.. 

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Message-Passing System Calls 

Message 10 

The ID of a message is an identifier used to check for the completion of asynchronous messages. 
Synchronous messages do not have IDs. 

When you send or receive a message with an asynchronous message-passing call (one that returns 
before the message is completely sent or received), the call returns an ID that you can use to check 
whether or not the send or receive is complete. See "Asynchronous Send and Receive" on page 3-10 
for more information on message IDs . 

Message Order 
Paragon OSFIl guarantees that all messages will arrive in the same order they are sent. That is, if 
one message is sent from node A to node B, then a second message is sent from node A to node B, 
the second message will never arrive before the fIrSt. 

Although the first message always arrives at the node frrst, you can elect to receive the second 
message-that is, to copy its contents into a buffer in user memory-before the first. You do this by 
specifying different message types in the send calls on node A, and specifying the second message's 
type in the first receive call on node B. 

Names of Send and Receive Calls 
You can tell what each message-passing call does by examining its name. 

The first character of the name indicates whether the call is synchronous, asynchronous, or handled: 

c 

h 

Synchronous (g>mplete) call. These calls do not return until the message is 
complete. They are discussed under "Synchronous Send and Receive" on 
page 3-8. 

Asynchronous (incomplete) call. These calls return immediately, so your 
program can do other work while the message is processed. They are 
discussed under "Asynchronous Send and Receive" on page 3-10. 

Asynchronous with interrupt handler (handled) call. Like the i ... () calls, the 
h ••• O calls return immediately. Unlike the i ... O calls, h ••• O calls indicate that 
the message is complete by calling a user-supplied interrupt handler. They are 
discussed under "Treating a Message as an Interrupt" on page 3-22. 

3-7 



•• _--.... __ •• _- •• ----~ ." •• __ •• • •• -_. -----.-.--~------.---.-.--.-.- > <--~--------------~- -- .--------------------

Using Paragon™ OSF/1 Message-Passing System Calls Paragon TM OSF/1 User's Guide 

The initial c, i, or h is followed by a verb that indicates what the call does: 

send Send a message. 

recv Receive a message. 

sendrecv Send a message and receive the reply. 

probe Probe for a pending (not yet received) message. 

Finally, the verb may be followed by an x to indicate that it is an "extended" version of the call (see 
''Treating a Message as an Interrupt" on page 3-22 and "Extended Receive and Probe" on page 
3-26). 

The synchronous calls with no additional functionality, such as csendO, are the easiest to understand 
and use. However, the asynchronous calls (such as isend()) and the calls with additional 
functionality (such as crecvxO> can offer dramatic improvements in performance when properly 
used. 

Synchronous Send and Receive 

3-8 

Synopsis 

csend(type, buf, count, node, ptype) 

crecv(typesel, buf, count) 

csendrecv(type, sbuf, scount, node,ptype, 
typesel, rbuf, rcount) 

Description 

Send a message, waiting for completion. 

Receive a message, waiting for completion. 

Send a message and post a receive for the reply. 
Wait for completion. 

The c ••• O message-passing calls perform synchronous sends and receives. 

• A synchronous send means that the program executing the send waits until the send is complete. 
This waiting is referred to as blocking. Completing the send, however, does not guarantee that 
the message has been received. It only means that the message has left the sending process and 
that the buffer can be reused. You use csendO to perform a synchronous send. 

• A synchronous receive means that the program executing the receive waits until the message 
arrives in the specified buffer. You use crecvO to perform a synchronous receive. 

• A csendrecvO is like a csendO followed by a crecvO. It returns the length of the received 
message. 

() 

[) 

IJ 
c 

l~ 

IJ 
I: 



1.-.-"'1 .. 
( '" 

-41 

r: 

[: 

r-j 
,---1 
IJ 

I
·-~ 

__ ..J 

1-1 
_...:...1 

Paragon1M OSF/1 User's Guide Using Paragon™ OSF/1 Message-Passing System Calls 

Here are two code fragments in C that perform a synchronous send and a synchronous receive. 

• Node 1 sends a message of type 0 to the process with the same process type on node 0: 

#include <nx.h> 
#define MSG TYPE 0 
#define DEST_NODE 0 
char send_buf[lOO); 

• 
• 
• 

csend(MSG_TYPE, send buf, 
sizeof(send_buf), DEST_NODE, myptype(»; 

• Node 0 receives the message: 

#include <nx.h> 
#define MSG_TYPE 0 
char recv_buf[lOO); 

crecv(MSG_TYPE, recv_buf, sizeofcrecv_buf»; 

See "Extended Receive and Probe" on page 3·26 for information on a version of the crecvO call with 
additional functionality. 

Synchronous Send to Multiple Nodes 

Synopsis 

gsendx(type, buf, count, nodes, ,1Odecount) 

Description 

Send a message to a list of nodes, waiting for 
completion. 

The gsendxO call sends a message to multiple nodes. Specifically, it performs a synchronous send 
of the message specified by the type, buf, and count arguments to the process with the same process 
type as the caller on the nodes specified by the oodes argument. The nodes argument is an array of 
integers; the nodecount argument specifies the number ofnodes in nodes. 

3-9 



Using Paragon™ OSFI1 Message-Passing System Calls Paragon tM OSF 11 User's Guide 

For example. the following code fragment in Fortran sends the data in the array x to nodes 1 and 3: 

integer*4 nodenums(2), x(lO) 

• 
nodenums(l) = 1 
nodenums(2) = 3 
call gsendx(lOO, x, 10*4, no de nums, 2) 

Asynchronous Send and Receive 

3-10 

Synopsis 

isend(type, buf, count, node. ptype) 

irecv(typesel. buf, count) 

isendrecv(type. sbuf, scount. node. ptype. 
typesel. rbuf, rcount) 

msgdone(rnid> 

msgwait(rnid) 

msgignore(rnid) 

Description 

Send a message without waiting for completion. 

Receive a message without waiting for 
completion. 

Send a message and post a receive for the reply 
without waiting for completion. 

Determine whether a send or receive operation 
has completed. . 

Wait for completion of a send or receive 
operation. 

Release a message 10 as soon as a send or receive 
operation completes. 

The i ... O message-passing calls perform asynchronous sends and receives. The msgdoneO and 
msgwaitO calls are used with the i ... O calls to determine when the message has completed; the 
msgignoreO call is used to discard a message 10 as soon as the message has completed. 

Unlike a synchronous send or receive. an asynchronous send or receive does not block. It returns a 
unique message 10. which is not reused until released. You can use this 10 to check for completion 
at a later time. 

NOTE 

The number of message IDs is limited. so you must release each 
10 after you use it. See "Releasing Message lOs" on page 3-13 for 
information on releasing message IDs. 

() 

D 
c 
u 

[] 

tri 
Ii"'] 

IJ 
IJ 
[J 

l: 



I] 

I~ 

I: 
[J 

I~"i. 
.. J 

I~ 

rJ 
IJ 
IJ 

[] 

Paragon™ OSFt1 User's Guide Using Paragon'FM OSFt1 Message-Passing System Calls 

You use isendO to perform an asynchronous send, and irecvO to perform an asynchronous receive. 
An isendrecv() is like an isendO followed by an irecvO, except that it returns only one message ID 
(for the receive). Asynchronous sends can be used together with synchronous receives, and vice 
versa. For example, a message sent by isendO could be received by crecvO. 

You must make sure that an asynchronous operation has completed before you change the contents 
of the send buffer or use the contents of the receive buffer. To check if an asynchronous opemtion 
has completed, use the msgdoneO call. It returns 1 if an asynchronous call has completed and 0 
otherwise. To block until an asynchronous operation has completed, use the msgwaitO call. Both 
msgdoneO and msgwaitO take the message ID as an input pammeter. 

The message ID belonging to an asynchronous receive is distinct from the message ID belonging to 
any companion asynchronous send. For example, if node 0 sends a message with isendO and node 
1 receives the message with irecvO, the isendO has a different message ID from the irecvO. When 
the isendO completes, this does not indicate that the corresponding irecv() has completed. 

For example, assume that your application knows that it's going to need a message up ahead. So it 
posts an asynchronous receive with irecvO. It then does work that does not require the message, 
believing that by the time it needs the message, it will have arrived. When the program comes to 
where it needs the message, it issues a msgwaitO. If the message has in fact arrived, the msgwaitO 
returns immediately. Otherwise, it blocks until the message arrives. Here is a Fortran code fragment 
that implements this technique. 

Node 1 does an asynchronous send: 

c 

include 'fnx.h' 

integer result, msg_sid 
integer MSG_TYPE, DEST_NODE 
double precision send_buf(100) 
parameter (MSG_TYPE = 1) 
parameter (DEST_NODE = 0) 

msg_sid isend(MSG_TYPE, send_buf, 
100*8, DEST_NODE, myptype(» 
• 

Free the asynchronous send ID 
call msgwait(msg_sid) 

3-11 



Using Paragon™ OSF/1 Message-Passing System Calls Paragon"" OSF/1 User's Guide 

3-12 

Node 0 does the asynchronous receive: 

include 'fnx.h' 

integer result, msg_rid 
integer MSG_TYPE 
double precision rec_buffer(100) 
parameter (MSG_TYPE ~ 1) 

• 

c Post the receive 
msg_rid ~ irecv(MSG_TYPE, rec_buffer, 100*8) 

• 
• 
• 

c Now you need the message. 
c 
c Free the asynchronous receive ID 

call msgwait(msg_rid) 

When the msgwaitO returns, the message has been received. You may have blocked on the 
msgwaitO if the message had not yet arrived. You may now assign another value to msgJid. 

See "Extended Receive and Probe" on page 3-26 for information on a version of the irecvO call with 
additional functionality. 

NOTE 

If a process changes its process type after making an 
asynchronous send or receive call, the process type that was in 
effect when the call was made determines the sender's process 
type for the message. 

For example. if a process calls irecvO while its process type is 0, then calls setptypeO to change its 
process type to 1 before the message arrives. the irecvO will still accept only messages for process 
type O. 

D 

[~1 

I 

'-~l 
1'111 I 

1 .• J 

[J 

c 
.~~~-~----~------------------------------------------



I: 
I: 
1_-

'" 

(
-"Yi 

-J&J 

I: 
[-

_~I 

r-'"1 

_oJ 

r: 
I: 
r-: 
1-"9 

---"" 

r: 
1_..., 

,J 

[-~ 

~I 

I: 
r: 

------------------------ ----- --------------------------- ~~---~--~-----------~ 

Paragon™ OSF/l User's Guide Using Paragon™ OSF!1 Message-Passing System Calls 

Releasing Message IDs 

Because Paragon aSP/l has a limited number of message IDs, you must release IDs that are no 
longer needed. There are four ways to release a message ID: 

• You can call msgwaitO. 

• You can keep calling msgdoneO until it returns 1. 

• You can call msgignore(). 

• You can call msgcancelO. See the section "Flushing and Canceling Messages" on page 3-17 for 
infornlation on msgcancelO. 

If you use msgignoreO, it tells the system to release the message ID as soon as the corresponding 
send or receive has completed. Note, though, that this leaves you with no way to determine whether 
or not the message has completed. In this case, your application must have some other means of 
synchronization to prevent the send or receive buffer from being used before the message is 
complete. 

NOTE 

Re-using a send or receive buffer before the message is complete 
can result in unexpected behavior. Do not use msgignoreO 
unless you are certain this will not occur. 

Merging Message IDs 

Synopsis Description 

msgmerge(midJ, mid2) Merge two message IDs into a single ID that can 
be used to wai t for completion of both operations. 

The msgmergeO call gives you a way to merge two or more message IDs together. It takes two 
message IDs as parameters, and returns a message ID that does not complete until both the messages 
identified by the input message IDs have completed. 

Once you have merged a message ID with msgmergeO, you should not use the input message IDs 
as arguments to msgwaitO, msgdoneO, msgcancelO, or msgignoreO. The input message IDs are 
automatically released when the merged message IDs are waited for. 

3-13 



Using Paragon™ OSF/1 Message-Passing System calls Paragon™OSFI1 User's Guide 

3-14 

For example, the following C code fragment posts two irecvOs, one for a message of type 1 and the 
other for a message of type 2, and then waits until both have completed: 

#include <nx.h> 

int midl, mid2, midg; 
char bufl[10], buf2[10]; 

midI 
mid2 

irecv(l, bufl, 10); 
irecv(2, buf2, 10); 

midg '" msgmerge(midl, mid2); 

msgwait (midg) ; 

Note that mid] and mid2 are released by the msgwaitO call on midg. 

You can use a series of msgmerge() calls to merge multiple message IDs together. To help you do 
this, you can use the value -1 as one of the message IDs; msgmergeO returns the other message ID 
unchanged. 

For example, the following Fortran code fragment uses a series ofisendO calls to send the buffer buf 
as a message of type 1 to the process with the same process type on nodes 1 through 10, then waits 
for all of the isendOs to complete: 

include 'fnx.h' 

integer i, mid 
integer buf(IOO) 

mid -1 
i = 1 

do while (i .le. 10) 
mid msgmerge(mid, isend(l, buf, 400, i, myptype(») 
i = i + 1 

end do 

call msgwait(mid) 

The message ID returned by each isendO call is merged together with the message IDs of the 
previous isendO calls into the merged message ID mid (the fIrst message ID is merged with -1, 
yielding itself). Once all the isendOs have been posted, the program uses msgwaitO on the merged 
message ID to wait for all of the isendOs to complete. 

[~ 

[] 

IJ 
n u 

[] 

( '1 
J 

[J 

[J 

IJ 
IJ 



r: 
r: 
I: 
I
·~ 

~I 

I: 

(.-' 

. .<>i 

I: 
,

.""1 

. ~j 

I ·,., 
-~ 

I-~ 
--....... 

I: 

Paragon™ OSF/1 User's Guide 

Probing for Pending Messages 

Synopsis 

cprobe(typesel) 

iprobe(typesel) 

Using Paragon™ OSF/1 Message-Passing System Calls 

Description 

Wait for a message of a selected type to arrive. 

Determine whether a message of a selected type is 
pending. 

When a message arrives for which no receive has been issued, it goes into a system buffer. It is 
referred to as a pending message: a message that is available for receipt, but not yet received. When 
you issue a receive for that message, the message is moved into the application's buffer (the buffer 
you specify in the crecvO or irecvO call). If a receive has already been issued when the message 
arrives, it goes directly into the application's buffer and bypasses the system buffer. 

The cprobeO and iprobeO calls determine whether there is a message of a given type pending in the 
system buffer. You can use a message type from 0 to 999,999,999 to probe for a message of a 
specific type; the special value -I to probe for a message of any type; or a typesel mask to probe for 
messages of a selected set oftypes (see the Paragon™ OSFIl Fortran System Calls Reference 
Manual or Paragon™ OSFll C System Calls Reference Manual for information on typesel masks). 

The cprobe() call is a blocking call. It takes a type selection parameter as input and returns when a 
message of the given type has arrived. The iprobeO call is similar to cprobeO, except that it is 
nonblocking. iprobeO returns 1 if the message is pending and 0 if it is not. 

cprobeO and iprobeO are not the only calls that probe for messages. See "Extended Receive and 
Probe" on page 3-26 for information on message-probing calls with additional functionality. 

3-15 



--------_. __ ._-------------------

Using Paragon™ OSF/1 Message-Passing System Calls Paragon™ OSFI1 User's Guide 

Getting Information About Pending or Received 
Messages 

3-16 

Synopsis 

infocount() 

infonode() 

infoptypeO 

infotypeO 

Description 

Return size in bytes of a pending or received 
message. 

Return node number of the node that sent a 
pending or received message. 

Return process type of the process that sent a 
pending or received message. 

Return message type of a pending or received 
message. 

The info ... O calls return information about received or pending messages. You can obtain the size 
of the message, its type, and the node number and process type of the sending process. 

The return value of the info ... O calls is defined only in the following cases: 

• After a crecvO, cprobeO, or rnsgwaitO. 

• After an iprobeO or rnsgdone() returns 1. 

The return value of the info ... O calls is undefined after a crecvxO, cprobexO, or iprobexO. except if 
the last parameter is the special array msginfo. See "Extended Receive and Probe" on page 3-26 for 
more information. 

Note that you must issue the info ... O call before you perform any other message-passing operation. 
Otherwise, you will get information about the most recently received or pending message instead. 

For example. the following C code receives a message of any type. then uses infotypeO to determine 
what type of message was actually received: 

#include <nx.h> 
#define BIGNUM 262144 
long buf[BIGNUM], msg_type; 

• 
• 

crecv(-l, buf, sizeof(buf»; 
msg_type = infotype(); 

[~ 

~I 
iiL..I 

[ 1 
.I ! 

IJ 
'" VI 

~jL" 

I: 
I: 
I~ 

I: 
I~ 

[~ 

c 



[
""'1 

.J 

I ~ , ,.J 

( 
.. \!1 

!ol 

(~ 

I~ 

1_-, 
.,. 

I·~· 

I : 
I -~ 

~, 

(-"", .. ' 

,~ 

Paragon™ OSFJ1 User's Guide Using Paragon™ OSFJ1 Message-Passing System Calls 

Another example: the following C code blocks until any message arrives, then allocates a buffer just 
large enough to hold the message and receives it: 

#include <nx.h> 
char *buf; 
10n9 mS9_type, ms9_len; 

cprobe ( - 1) ; 
ms9_type = infotype(); 
mS9_len = infocount(); 
buf = (char *) calloc(mS9_len, 1); 
creCv(mS9_type, buf, mS9_len); 

Between the cprobe() and the crecvO, the message is pending; it has arrived, but has not yet been 
received. Until the message is received, the contents of the message are not accessible to the 
program . 

The info ... O calls are not the only way to get information about a received or pending message. See 
"Extended Receive and Probe" on page 3-26 for information on message-receiving and 
message-probing calls that also return information about the received or pending message. 

Flushing and Canceling Messages 

Synopsis 

ftushmsg(typesel, nodesel, ptypesel) 

msgcancel(mid) 

Flushing Pending Messages 

Description 

Flush specified messages from the system. 

Cancel an asynchronous send or receive 
operation. 

If after inspecting a pending message with the Info ... O calls, you decide you don't want to receive it 
after all, you can get rid of it with ftushmsgO. The ftushmsgO call clears pending messages from 
the system buffer. ftushmsgO only flushes messages pending to be received (that is, waiting in a 
system receive buffer), not those pending to be sent (that is, waiting in a system send buffer). 

3-17 



Using Paragon'"' OSF/1 Message-Passing System Calls Paragon™ OSF/1 User's Guide 

3-18 

For example. here is a C code fragment that checks to see if a pending message has type 1 and flushes 
it if it does. Otherwise, the program receives the message and continues. 

#include <nx.h> 
long buf [100], msg_type; 

cprobe ( -1 ); 
msg_type = infotype(); 
if (msg_type == 1) { 

flushmsg(l, mynode(), myptype(»; 
} else { 

} 

• 

• 

crecv(msg_type, buf, sizeof(buf»; 

NOTE 

flushmsgO can be used to flush pending messages in other 
processes and on other nodes. 

The nushmsgO call can be issued by either the sender or the receiver. but the messages are flushed 
on the receiver. Specifically. the node number in the second parameter specifies the destination 
node. not the source node; and the process type in the third parameter specifies the process type of 
the destination process. not the source process. For example. if a process on node 1 makes the 
following call, it clears all pending messages of type 3 from the system buffer of the process with 
process type 0 on node 2: 

/* eversion */ 
flushmsg(3, 2, 0); 

c Fortran version 
call flushmsg(3, 2, 0) 

u 
c 
[.

1"j , 
I ' 

A 

LJ 

~1 
l. 

[". ~'I , I 

...J 

~' 
wL.J 

~J 

I] 

(J 

(J 
( 1 

. ...J 

(J 



[ -'II, 
. .iJ 

r: 
r: 
(-: 

I : 

I~ 
(--

1'" 

I: 
( i 

. .oiJ 

(J 

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Message-Passing System Calls 

All three parameters of nushmsgO are selection parameters. You can specify a typesel of -1 to flush 
messages of all types, a nodesel of -1 to flush messages on all nodes in the application, and/or a 
ptypesel of -1 to flush messages in processes of all process types on the specified node(s). For 
example, the following call flushes all messages waiting to be received by all processes on 
mynodeO: 

/* eversion */ 
flushmsg(-l, mynode(), -1); 

c Fortran version 
call flushmsg(-l, mynode(), -1) 

You can also use a typesel mask as the typesel parameter, to flush messages of selected types. See 
the Paragon™ OSFI] Fortran System Calls Reference Manual or Paragon™ OSFI] C System Calls 
Reference Manual for information on typesel masks. 

Canceling an Asynchronous Send or Receive 

msgcancelO cancels an asynchronous send or receive operation. For example, assume that you post 
an asynchronous receive and then detennine that you don't want the message. Issue a msgcancelO. 
When msgcancelO returns, you don't know whether the receive operation completed, but you do 
know that the application buffer that you set up for the received message is no longer in danger of 
being written into. 

Consider the following situation. The sender does an asynchronous send. The receiver has not yet 
issued a receive call. The message goes into a system buffer on the destination node. The sender then 
decides that it didn't want to send the message after all. The appropriate response is for the sender 
to issue a msgcancelO followed by a OushmsgO. 

Why both? The message is either all or partially in a system buffer on the destination node. 
msgcancelO releases the sender's message ID and gets rid of any partially-sent message, but cannot 
affect the message if it has been completely sent; OushmsgO gets rid of the message if it has been 
completely sent, but cannot affect a message that has been only partially sent. (If the message is 
received before the OushmsgO, however, it is not affected; once received. the message is in the 
memory of the receiving process and cannot be affected by system calls in the sending process.) 

3-19 



Using Paragon™ OSF/1 Message-Passing System Calls Paragon™ OSF/1 User's Guide 

Table 3-1 summarizes how nusbmsgO and msgcaneelO affect pending messages. Note that neither 
call affects non-pending messages (messages that have already been received). 

Table 3·1. Differences Between nushmsgO and msgcancelO 

Affects Affects Affects Received 
Completely·Sent Partially-Sent (Non· Pending) 

Call Pending Messages Pending Messages Messages 

nusbmsgO Yes No No 

msgcancelO No Yes No 

Message Passing with Fortran Commons 

3-20 

Because Fortran does not provide structures, users often use common blocks to send messages that 
contain data elements of different types. For example, consider the named common containing a 
double precision number and an integer. It is good Fortran practice to put the largest data element 
fIrst in the common list, as follows: 

integer i 
double precision d 
common/msg/ d, i 

To send this common block, specify the name of the fIrst common element as the buffer and the 
length of the entire common as the length. For example, to send the common block named msg, send 
the variable d with a length of 12 bytes (8 for the double precision variable plus 4 for the integer 
variable). The following csend() call sends msg to process ptype on node node. 

call csend(MSGTYPE, d, 12, node, ptype) 

If you put smaller data elements before larger data elements in common blocks, the compiler may 
have to insert padding, or "holes," between the elements of the common block to preserve data 
alignment. For example. if you defme the common block named pmsg as follows. the compiler will 
place an invisible 4-byte pad between the end of i and the beginning of d to properly align d on an 
8-byte boundary: 

integer i 
double precision d 
common/pmsg/ i, d 

[J 

[' .. ~ 

[. -, 
. ..IIIi 

(~. : 
-JJ I 

r: 

IJ 
[J 



(~ 

(J 
I : 
(-~. i 

-'Ioi 

(
~-~ 

.... 

I
-~ 

-'l:r 

r~ 
( '" 
, ---,-~, 

[J 

I "" 
., 

I~~ 

I
··-~-

.'~I 

IJ 
IJ 
c 

Paragon'" OSF/1 User's Guide Using Paragon™ OSF/1 Message-Passing System Calls 

This padding has two effects: 

• If you send this common block as a message, you must include the padding in the length of the 
message. For example, even though pmsg contains the same two variables as msg, pmsg is 4 
bytes longer than msg because of the padding between i and d. To send pmsg to process ptype 
on node node, you would use the following call: 

call csend(MSGTYPE, i, 16, node, ptype) 

• If another routine uses a different view of the same common block, you may have to add 
additional variables to the other routine's declaration of the common block to take this padding 
into account. For example, if another routine wants to view din pmsg as an array of two integers, 
it must declare pmsg as follows: 

integer i, ipad, id(2) 
common/pmsg/ i, ipad, id(2) 

The variable ipad corresponds to the 4-byte pad in the original routine's declaration of pmsg. 
Without this variable, the position of id would not correspond to the position of d in the original 
common block. This variable is necessary if pmsg is shared between these two routines, whether 
or not the two routines run on different nodes. 

When possible, you should define common blocks with the largest data element first, to avoid 
padding completely. 

3-21 



Using Paragon™ OSF/1 Message-Passing System Calls Paragon™ OSF/1 User's Guide 

Treating a Message as an Interrupt 

3-22 

Synopsis 

hsend(l)pe, buf, count, node,ptype, handler) 

hreev(typesel, buf, count, handler) 

hsendreev(type, sbuj, scount, node, ptype, 
typesel, rbuf, rcount, handler) 

masktrap(state) 

DesCription 

Send a message and set up a handler procedure to 
be called when the send completes. 

Receive a message and set up a handler procedure 
to be called when the receive completes. 

Send a message and post a receive for the reply. 
Set up a handler procedure to be called when the 
reply arrives. 

Enable or disable interrupts for message handlers. 

hsendx(type, buf, count, node, ptype, xhandler, Send a message and set up an extended handler 
hparam) procedure to be called with the value hparam 

when the reply arrives. 

The h ••• O message-passing calls perform asynchronous sends and receives. However, unlike the 1 ••• 0 
calls, the h ••• O calls let you establish a user-provided interrupt handler, which is called when the 
message is complete. 

The h ••• O receive calls let you treat incoming messages as interrupts. For example, consider a 
program that performs some action based on the type of a received message. One way to implement 
this program is to block the program at a creevO for messages of all types and then take appropriate 
action based on the value returned by infotypeO. 

Another way is to issue a number of hreevO calls. Each call attaches a function to a particular 
message type or set of types. Your program does not block. You can continue with other work; but 
when the appropriate message comes, your program automatically stops what it was doing to take 
care of the message. 

The handler function you defined must be written in C and must have four arguments of type long. 
These arguments are passed the following values when the function is called: 

1. Type of the message (as returned by infotypeO). 

2. Length of the message in bytes (as returned byinfocountO). 

3. Node number of the process that sent the message (as returned by infonode(». 

4. Process type of the process that sent the message (as returned by infoptype()). 

l~ 

[J 

~l 

~-

I"fl 
\ 
wLJ 

IJ 
I: 

IJ 



I-~ .. 

I~ 

r
-~ 

., 

I : 

IJ 
[J 
.-11\ 
U 

Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Message-Passing System Calls 

For example, here' saC code fragment that attaches the fimctions JunctO( ), Junctl (), and Junct2 ( ) to 
message types 0, I, and 2, respectively. The message types that have handlers are referred to as 
handled types. 

#include <nx.h> 

char bufO[lOO) , bufl[lOO), buf2[lOO); 
void functO(), functl(), funct2(); 

hrecv(O, bufO, sizeof(bufO) , functO); 
hrecv(l, bufl, sizeof(bufl), functl); 
hrecv(2, buf2, sizeof(buf2), funct2); 

• 
• /* Now perform other work. No blocking happens. */ 
• 

The declaration of functlO looks like this (the other functions are similar): 

void functl(long type, long count, long node, long ptype) 
{ 

} 

When a message of type 1 arrives, current processing is suspended, and functlO is called with the 
type and length of the message and the node number and process type of the sender as arguments. 
The message contents can be found in the buffer specified in the hrecvO call (in this case, bufl). 
When functlO returns, the program goes back to doing whatever it was doing when the message 
arrived. 

NOTE 

Once you have established a handler for a message type, do not 
attempt to receive a message of that type with a crecv ... O or 
irecv ... O call. 

hsendO operates the same as hrecvO, except that the handler is invoked when the send completes 
rather than when the receive completes. hsendrecvO is like an isendO followed by an hrecvO, with 
the message 10 of the isendO automatically released by msgignore(). 

3-23 



Using Paragon™ OSFl1 Message-Passing System Calis Paragon™ OSFI1 User's Guide 

Passing Information to the Handler 

3-24 

bsendxO is identical to hsendO except that it has an additional parameter, hparam, which is passed 
to the handler when it is called. The declaration of a handler for bsendxO looks like this: 

void xhandler(long type, long count, long node, long ptype, 
long hparam) 

{ 

• 
• 
• 

} 

You can use the hparam parameter to write handlers that are shared among several bsendxO calls, 
each of which uses a different value of hparam to identify itself. For example, here is a C program 
fragment that sends two messages of type 0 to the process with process type 2 on node 1, then uses 
an bsendx() handler to free each message buffer as soon as the message send completes: 

#include <nx.h> 
#include <malloc.h> 

#define NBUFS 2 

char *buf[NBUFS]i /* array of pointers to char */ 

void freemem(long type, long count, long node, long ptype, 
long hparam) 

{ 

} 

if( (hparam >= 0) && (hparam < NBUFS) ) { 
free(buf[hparam); 

} else { 
printf ( "freemem( ): invalid value: %d\n", hparam); 

} 

[~ 

[: 

I: 

IJ 

IJ 



I: 

I
···~ 

..oJ 

(-... 
( '": 

'" 

I: 
1-"'1 

; h", 

I~ 

(J 

r= 
I =, 

I : 

t-= 
I -.·~ 

. .J 

(J 

~~------- --------

Paragon™ OSF/1 User's Guide Using Paragon™ OSFI1 Message-Passing System Calls 

main(int argc, char **argv) 
{ 

/* allocate two buffers with malloc() */ 
buf[O) malloc(10000); 
buf[l) = malloc(10000); 

• 
• /* put data into the buffers */ 

/* send them */ 
hsendx(O, buf[O), sizeof(buf[O), 1, myptype(), freemem, 0); 
hsendx(O, buf[I), sizeof(buf[I), 1, myptype(), freemem, 1); 

/* Now perform other work */ 

) 

Note that you must take care that this handler is not called while the program is in the middle of a 
call to mallocO or freeO. If the handler attempts to free memory while another part of the program 
is allocating or freeing memory. mallocO's internal memory structures could become corrupted. To 
prevent this, you can use the masktrapO call, described in the following section. 

See "Extended Receive and Probe" on page 3-26 for information on a version of the hrecvO call 
with additional functionality. 

Preventing Interrupts 

If you have one or more handlers set up and you have some critical code that you do not want 
interrupted, use the masktrap() call. A masktrap(1) masks all your handlers. A masktrap(O) 
re-enables them. Any pending interrupts are honored when the mask is removed. For example: 

hrecv(6,buf,sizeof(buf),myhandler); 

• /* this code can be interrupted */ 
• /* by a message of type 6 */ 
• 

masktrap ( 1) ; 
• 
• /* critical code that must not be interrupted */ 
• 

masktrap ( 0 ) ; 
• 
• /* this code can be interrupted again */ 
• 

3-25 



Using Paragori™ OSFI1 Message-Passing System Calls Paragon™ OSFI1 User's Guide 

Extended Receive and Probe 

3-26 

Synopsis 

creevx(typesel, buf, count, nodesel, ptypesel, 
info) 

irecvx(typesel, buf, count, nodesel, ptypesel, 
info) 

hrecvx(typesel, buf, count, nodesel. ptypesel, 
xhandler, hparam) 

c:probex(typesel, nodesel, ptypesel, info) 

iprobex(typesel, nodesel, ptypesel, info) 

Description 

Receive a message of a specified type from a 
specified sending node and process type, together 
with information about the message. Wait for 
completion. 

Receive a message of a specified type from a 
specified sending node and process type, together 
with information about the message. Do not wait 
for completion. 

Receive a message of a specified type from a 
specified sending node and process type. Set up an 
extended handler procedW'e to be called with 
information about the message and the value 
hparam when the receive completes. 

Wait for a message of a specified type from a 
specified sending node and process type. Return 
information about the message. 

Determine whether a message of a specified type 
from a specified sending node and process type is 
pending. If it is, return information about the 
message. 

The extended receive and probe calls, c:recvxO, irecvx(), hrecvxO, c:probex(), and iprobex(), can 
be used to receive or probe for a message from a particular node or a particular process type, and 
return information about the message along with the message (instead of using the info ... O calls). 

creevxO, irecvxO, c:probexO. and iprobexO are like c:recvO, irecvO, c:probe(), and iprobeO, 
except that they have the following additional parameters: 

nodesel Specifies the node that sent the message. or -1 for any node. 

ptypesel Specifies the process type that sent the message, or -1 for any process type. 

n 
I 

r: 
I: I 

11 
M 

(J 

(J 



r: 
(

"""I 

... 

I: 

I~ 

[. '''' .. 
. "" 

r~ 

IJ 

Paragon™ OSF/1 User's Guide 

info 

Using Paragon™ OSF/1 Message-Passing System Calls 

An array of eight long integers that receives information about the specified 
message. The following information is stored into the first four elements of 
this array: 

• Type of the message (as returned by infotype()) . 

• Length of the message in bytes (as returned by infocountO). 

• Node number of the process that sent the message (as returned by 
infonode(». 

• Process type of the process that sent the message (as returned by 
infoptypeO ). 

The remaining four elements of the array are reserved. 

hrecvxO is like hrecvO, except that it has the same nodesel and ptypesel parameters as the other 
H.XO calls and the same hparam parameter as the hsendxO call. hrecvxO does not have an info 
parameter, because the corresponding information is passed to the handler when it is called . 

The info parameter of crecvxO, irecvxO, cprobexO, and iprobexO must be specified and must not 
be zero or null. If you do not want this information, or you want it to be available to the info ••• O calls, 
specify the special array msginfo, defmed in nx.h or jnx.h. The array msginfo is used by the non-4 
versions of these calls, and the info ••• O calls get their information from msginfo. This is why you 
cannot use the info ••• O calls after crecvxO, cprobexO, or iprobexO unless you specify msginfo as 
the last parameter of the extended receive or probe call. 

The info parameter of irecvxO does not contain valid data until the message is received (as 
determined by msgdone() or msgwaitO). The info parameter of iprobexO does not contain valid 
data unless the iprobexO returns I. 

3-27 



Using Paragon™ OSF/1 Message-Passing System Calfs ParagonTJil OSFI1 User's Guide 

3-28 

For example, the following call receives a message of type 0 from process type 2 on node I, storing 
information about the received message into the array myinfo: 

/* eversion */ 
char buf[80); 
long myinfo[8); 
crecvx(O, buf, sizeof(buf), 1, 2, myinfo); 

After this crecvxO call, the message type is in my;nfo[O J, its length is in myin!o[ 1 J, the sender's node 
number is in myinfo[2 J, and the sender's process type is in myinfo[ 3 J. 

c Fortran version 
character*80 buf 
integer*4 myinfo(8) 
call crecvx(O, buf, len(buf), 1, 2, rnyinfo) 

After this crecvxO call, the message type is in my;nfo(l ), its length is in myinfo(2), the sender's node 
number is in myinfo( 3), and the sender's process type is in myin!o( 4). 

Note that the standard crecvO call 

crecv(typesel, buf, count); 

is exactly equivalent to the following crecvxO call: 

crecvx(typesel, buf, count, -1, -1, rnsginfo); 

I! 

[) 
I" 

e 
C 

C 
!If"" 
1L--.roI 

L 
[: 
rf~ 
I 
bA.-, 

~'"1 

~~j 

[~ 
,JoiJ 

~I 
'& .. 

rr""" 
~~ 

rr --I 

Ill"", 

[~I 
'1: 

-' 

1= 
I: 
I: 
I: 
lJ 
li ,.J 

(J ! 



Paragon™ OSF/1 User's Guide Using Paragon™ OSF/1 Message-Passing System Calls 

I: 
I: Global Operations 

r: 

I '1 

,,' 

1'"'1 

-, 

[-.~l 
oJ 

(J 

I ~i 

_I 

lJ 
P: 
LJ 

IJ 

Synopsis 
gcol(x. xlen. y. ylen. ncnt) 
gcolx(x. xlens. y) 

gdhigh(x. n. work) 
gdlow(x, n. work) 

gdprod(x. n. work) 
gdsum(x. n. work) 
giand(x. n. work) 
gihigh(x. n. work) 
gilow(x. n. work) 

gior(x, n. work) 
giprod(x. n. work) 
gisum(x. n. work) 
gland(x. n. work) 
glor(x, n. work) 

gopf(x. xlen. work,function) 
gshigh(x, n, work) 
gslow(x, n, work) 
gsprod(x, n, work) 
gssum(x, n, work) 

gsyncO 

Description 
Concatenation. 
Concatenation for contributions of known length. 
Vector double precision MAX. 
Vector double precision MIN. 
Vector double precision MUL TIPL Y. 
Vector double precision SUM. 
Vector integer bitwise AND. 
Vector integer MAX. 
Vector integer MIN. 
Vector integer bitwise OR. 
Vector integer MUL TIPL Y. 
Vector integer SUM. 
Vector logical AND. 
Vector logical inclusive OR. 
Arbitrary commutative function. 
Vector real MAX. 
Vector real MIN. 
Vector real MUL TIPL Y. 
Vector real SUM. 
Global synchronization. 

The g ... O calls perform operations that use data from every node in the application. In general, when 
you make one of these calls. each node contributes a piece of data to the operation, the operation is 
performed on the whole collection of data, and then the result of the operation is returned to each 
node. 

These operations are synchronizing calls: if any node in an application makes one of these calls. it 
blocks until every node in the application has made the same call. (In the simplest case, gsyncO. this 
synchronization is the only operation performed by the call.) One process on each node in the 
application must make the call. and all the processes that make the call must have the same process 
type. 

The global operations are implemented using dynamic algorithm selection for maximum 
performance. The system considers several ways of exchanging the needed information between the 
nodes. and selects the one that minimizes the time required to perform the global operation given the 
size and shape of the application. 

3-29 



-- -------------- --------------------

Using Paragon™ OSFn Message-Passing System Calls Paragon .... OSF/1 User's Guide 

3-30 

Each global operation's name begins with g and ends with the name of the operation. Some 
operations have several versions, which operate on different data types; for these calls, the data type 
is indicated by the second letter of the call's name (l for logical, i for integer, s for single-precision 
floating point, or d for double-precision floating point). For example, gdsumO performs a &lobal 
double-precision IIIID. 

To illustrate the use of a global operation, consider the gdsumO call. This call is used by the 1t 

example discussed under "Example Application: Calculating pi" on page 6-7. This example 
evaluates 1t by calculating a definite integral. The integral is partitioned among the nodes of a cube. 
The answer, then, is the sum of the answers from each of the participating nodes. Here's a code 
fragment from the Fortran version of the example: 

double precision pi,tmp 

• 

call gdsum(pi,l,tmp) 

Before this gdsumO call, this node's part of the total integral is stored in the variable pi. gdsumO is 
designed to operate on a vector, so the second parameter specifies the size of the vector; in this case, 
itis a "vector" of size 1 (a single variable). The third parameter, tmp, is a temporary area used in the 
calculation. After this gdsumO call, the sum of all the nodes' pi's is stored in every node's pi. 

--~----.~---~------ --

[J 

[J 

[J 

(J 

IJ 
IJ 
IJ 
[J 



[: 
Ail 

(
_._"'1 

.. : 

1--"1 

~.i 

rJ 
r~ 

r~ 

[J 

I~ 

r: 
1-'9 
I 

J 

1_-" 
., .... 1' 

(' 

1-= 

r~ 

() 

[] 

----------~~-~--~--~~--

Using Other Paragon ™ OSF/1 
System Calls 

Introduction 
Paragon OSFIl system calls are available to all programs running on the Intel supercomputer. These 
system calls provide a variety of specialized functions that let processes running on different nodes 
share data and coordinate their activities. 

This chapter introduces the Paragon OSFIl system calls that perform general services other than 
message passing. It includes the following sections, each of which describes a group of related calls: 

• Controlling application execution. 

• Managing partitions. 

• Handling errors. 

• Floating-point control. 

• Miscellaneous calls. 

• iPSC® System compatibility calls. 

Within each section, the calls are discussed in order of increasing complexity. That is, the "base" 
calls are discussed first, and the "extended" calls are discussed later. 

Each section includes numerous examples in both C and Fortran. A call description at the beginning 
of each section or subsection gives a language-independent synopsis (call name, parameter names, 
and brief description) of each call discussed in that section. Differences between C and Fortran are 
noted where applicable. See Appendix A for information on call and parameter types; see the 
Paragon™ OSFIl C System Calls Reference Manual or the Paragon™ OSFIl Fortran System Calls 
Reference Manual for complete information on each call. 

4-1 



Using Other Paragon™ OSF/1 System Calls Paragon™ OSF/1 User's Guide 

This chapter does not describe all the Paragon OSF/l system calls. For information about system 
calls that perform message passing, see Chapter 3. For information about the calls used with the 
Parallel File System TM, see Chapter 5. For information about the calls used with Paragon OSF/l 
software tools. such as TCPIIP and the X Window System, see theParagon™ OSFll Software Tools 

. User's Guide. For information about the system calls that require root privileges, see the System 
Administrator's Guide for your system. 

Paragon OSFIl programs written in C can also issue OSF/l system calls. The Paragon OSF/l 
operating system is a complete OSF/l system and fully supports all the standard OSF/l system calls. 
See the OSFll Programmer's Reference for information on these calls. 

Paragon OSF/l programs written in Fortran cannot make OSFI1 system calls directly, but the 
Fortran runtime library includes a number of system interface routines. These routines make a 
number ofOSF/l system calls available to Fortran programs. See the Paragon™ OSFIl Fortran 
Compiler User's Guide for information on these routines. 

Controlling Application Execution 

4-2 

The simplest way to control the wayan application executes is to use the command-line switch -ox 
when you link the application. When you execute a program that was linked with -ox, the program 
is automatically copied onto the specified number of nodes in the specified partition, runs, and then 
when all the nodes have fmished you get your prompt back. 

The code linked in by -ox reads the command line and environment variables, then performs the 
following actions for you (see "Controlling the Application's Execution Characteristics" on page 
2-12 for more information): 

• Creates anew, empty application in the partition specified by -pn (default $NX _DFLT J' ART, 
or .compute if $NX_DFLT J'ARTisnot set) of the size specified by -sz (default 
$NX _DFLT _SIZE, or all nodes of the partition if $NX _DFLT _SIZE is not set). 

• Sets the application's priority to the value specified by -pri (default 5). 

• Loads and starts your program(s) on the nodes specified by -00 (default all nodes of the 
application) with the process type specified by -pt (default 0). 

You can perform these actions yourself, using the calls described in this section. 

;~ 

U 

U 
I~ .AI 

D 
[J ..J 

~ 

(J 
rf -W-l , , 

~ "" 

. I rr~l 

IIl~J 

[~ • I 
. ...J 

rf1 aJio.l 

[] 
~~1 

"J 

('"' , I 
• I 

I 

...I 

IJ 
(] 
(~ J 

IJ 
lJ 
[J 

IJ 



1-"1.' 
;,i 

I : 

r: 
1_'"' 

... 

r: 
r~ 

I~ 
I e, 
: . -j 

IJ 

I: 

1_"" 
---"" 

£: 

Paragon™ OSF/1 User's Guide Using Other Paragon'IM OSFI1 System Calls 

Controlling Application Execution with System Calls 

Synopsis Description 

ox_initve(partitiorz. size, account, argc, argv) Create a new application. 

ox"pri(pgroup. priority) Set the priority of an application. 

ox _ nfork(rzode Jist. rzumrzodes. ptype. pid _list) Copy the current process onto some or all nodes of 
an application. 

ox _Ioad(rzode _list. numrzodes. ptype, pid Jist. 
pathrzame) 

ox _Ioadve(node _list. numnodes. ptype. 
pidJist, pathname. argv. erzvp) 

Execute a stored program on some or all nodes of 
an application. 

Execute a stored program on some or all nodes of 
an application. with specified argument list and 
environment. 

Wait for all application processes. 

The ox _ ••• 0 system calls perform the same actions as those of the code linked in by -ox, but under 
program control instead of command-line control. (The ••• ve suffix on some of these calls indicates 
that they take an argument list like that of the standard OSF/I call execveO.) Using these calls is 
more complicated than using -ox, but gives your program more flexibility and control. 

NOTE 

If you use nx_initveO. you should not link the program using -nx; 
instead, use the switch -Inx. 

The switch -lox links in the library libm.a. which contains all the calls discussed in this manual. but 
does not link in the automatic start-up code linked in by -ox. 

4-3 



Using Other Paragon™ OSFI1 System Calls Paragon™ OSF/1 User's Guide 

4-4 

Creating an Application with nxjnitveO 

ox _ initve() creates anew, empty application. The process that calls ox _ initve() becomes the new 
application's controlling process; see "The Controlling Process" on page 4-13 for information on 
what this means. 

The partition and size of the new application can be specified by parameters or by the command line; 
the priority and mp _switches are specified by the command line. If command-line switches are not 
used or the command line is ignored by specifying zero for argc, the application's execution 
characteristics default as discussed under "Controlling the Application's Execution Characteristics" 
on page 2-12. 

ox _ initve() just allocates (nonexclusively) the specified number of nodes from the partition; it does 
not start any processes. You must call nx _ nforkO, nxJoadO, or nx Joadve() to start processes in 
the new application. The nodes allocated to the application are automatically deallocated when all 
the processes in the application have terminated. 

Another effect of ox JnitveO is to make sure that the calling process is a process group leader. If 
the calling process is not already a process group leader, nx_initveO creates a new process group, 
removes the calling process from its current process group, and makes the calling process the new 
process group's leader. If you're not familiar with these terms, see "Process Groups" on page 4-14. 

Finally, nx JnitveO also initializes the data structures required by all the other calls described in this 
manual. In an application linked with .m, the code linked in by ·nx performs this initialization 
before the application starts up, so you can use these other calls anywhere in the application. In an 
application linked with .lnx, however, you must call nx _initveO before you can use any of the other 
calls described in this manual. If called before nx JnitveO, these other calls will fail; the way they 
fail depends on the call (as described under "Handling Errors" on page 4-27). For example, if you 
call csendO before calling nx _ initve(), the csendO prints an error message and terminates the 
calling process. 

The parameters of nxJnitveO have the following meanings: 

partition The relative or absolute partition pathname of the partition to run the 
application in. or a null string ("" or NULL in C, "" in Fortran) to use the 
default partition (the partition specified by $NX _DFLT _PART, or . compute if 
$NX _ DFLT _PART is not set). The specified partition must exist and must 
give execute permission to the calling process. 

If the user specifIeS a partition with the ·pn switch on the coliunand line, it 
overrides the value of the partition parameter (unless the argc parameter is 0, 
as described later in this section). 

See "Partition Pathnames" on page 2-27 for more information on partition 
pathnames; see "Owner, Group, and Protection Modes" on page 2-32 for 
more information on partition permissions. 

[) 

[J 
[J 

LI 

~l 
I ~, I a .. 1 

I" " 
~ . .07.d 

IJ 

(J 

[J 



Paragon™ OSF/1 User's Guide 

I
'~ 

... 

[

";0' 

.,. size 

I: 
( . ...,. 

,d 

I: accow2t 

r "", 
,.' 

argc 

1'= 

I~ 
argv 

I: "" 
"' 

I: 
I: 

Using Other Paragon™ OSF/1 System Calls 

The size of the application (number of nodes to run the application on), or ° 
to use the default size (the size specified by $NX _ DFLT _SIZE, or all nodes of 
the partition if $NX_DFLT_SIZE is not set). 

If the user specifies a size with the -sz switch on the command line, it 
overrides the value of the size parameter (unless the argc parameter is 0, as 
described later in this section). 

In the future, this parameter will be used for accounting information. For now, 
it must be a null string (" " or NULL in C, "" in Fortran). 

In C, a pointer to an integer whose value is the number of arguments on the 
command line (counting the application name). If the value of this integer is 
0, the command line is ignored. You can use a pointer to the argc parameter 
of mainO, or you can construct the command line yourself. 

In Fortran, this parameter is any nonzero value to search the command line, 
or ° to ignore the command line. 

In C, a pointer to the command-line arguments, which may include arguments 
that specify application characteristics. You can use the argv parameter of 
mainO, or you can construct the command line yourself. 

In Fortran, nx_initve() gets the command line directly from the system, 
because Fortran programs don't have an argv parameter. This parameter is 
ignored; it should always be 0. 

In either language, if any of the command-line arguments -sz size, 
-pri priority, -pn partition, -pkt packet_size, -mbr memory_buffer, 
-mex memory_export, -mea memory_each, -sth send_threshold, 
-set send_count, -gth give _threshold, or -plk is found in the command line: 

• The appropriate application characteristic is set as specified by the 
argument. 

• The argument is removed from argv. 

• The variable pointed to by argc is decremented appropriately. 

Any remaining arguments are moved to the beginning of argv for your 
program's use. 

Note that the arguments -pt type, -on nodelist, and \; application are not 
recognized by ox JnitveO. If you want your application to have the same user 
interface as an application linked with -ox, you must examine the argument 
list for these arguments and pass the appropriate values to ox JoadO or 
ox JoadveO yourself. 

4-5 



Using Other Paragon'" OSFI1 System Calls Paragon™ OSF/1 User's Guide 

4-6 

ox Jnitve() returns the number of nodes in the application, or -1 if any error occurs. 

For example, the following C call creates an application whose characteristics (partition, number of 
nodes, and so on) are determined by the user through command-line switches. If the user runs this 
program with no command-line switches, it runs on all nodes of the user's default partition. 

#include <nx.h> 

main(int argc, char *argv[]) { 
int n; 

n = nx_initve("", 0, "", &argc, argv); 

After this call, the variable n contains the number of nodes in the new application, or -1 if any error 
occurred. The variable argc contains the count of arguments that were not recognized and removed 
by ox Jnitve(), and the array argv contains pointers to those arguments. 

The following Fortran call creates an application on 50 nodes of the partition my part. ignoring any 
command-line switches provided by the user: 

include 'fnx.h' 
integer n 

n = nx_initve("roypart", 50, "", 0, 0) 

After this call, the variable n contains the number of nodes in the new application, or -1 if any error 
occurred. 

The following restrictions apply to oxJnitve(): 

• A single process cannot call oxJnitve() more than once. 

• An application that calls nx_initveO cannot be linked with -ox. You must use -lox instead. 

• If your application uses any signal handlers, you must set them up after the call to oxJnitve(). 
See signalO in the OSFll Programmer's Reference for more information on signal handlers. 

The reason you cannot use -nx when you link an application that calls nx_initveO is that the code 
linked in by -ox calls nx _initveO itself, and nx JnitveO can only be called once in an application. 
If you do use -ox when you link, your application's call to ox Jnitve() (actually the second call to 
ox _ inltve(» fails and returns -1. 

IJ 
() 

[J 

I'f ~! 
r. ... , 

[J 

(J 

I~ 

IJ 
IJ I 

U' 
-- ------ ------ ---~---------

.----~ ------~-----~- - -------



I -.·~ .. 
I '" 

.oJ 

I~ 

I~ 

IJ 

(~ 

I.J 
I "" 

-, 

I
-~"· 

."./ 

I : 

IJ 

Paragon™ OSFI1 User's Guide Using Other Paragon™ OSF/1 System Calls 

Setting an Application's Priority with nX.J)riO 

ox .JJriO sets the specified application's priority to the specified value. If you don't call ox .JJriO and 
the user doesn't use the -pri switch, the default priority is 5. The parameters ofox.JJriO have the 
following meanings: 

pgroup 

priority 

The process group 1D of the application (see "Process Groups" on page 4-14 
for more information), or 0 to specify the application of the calling process. 
If the specified process group ID is not the process group ID of the calling 
process, the calling process's user ID must either be root or the same user ID 
as the specified application. 

The new priority, an integer from 0 to 10 inclusive. 0 is the lowest priority, 
10 is the highest. 

ox .JJriO returns 0, or -I if any error occurs. 

For example, the following Fortran call sets the priority of the calling application to 7: 

include 'fnx.h' 
integer n 

n = nx-pri(O, 7) 

The following C call sets the priority of the application with process group ID 738423 to 0: 

#include <nx.h> 
int n; 

n = nx-pri(738423, 0); 

In each of these examples. the variable n is assigned 0, or -I if any error occurred. 

Copying a Process onto the Nodes with nx_nfork(} 

ox _ nforkO copies the process that calls it onto the specified set of nodes with the specified process 
type. It creates one child process on each specified node. ox _nforkO is similar to the standard OSFIl 
call rorkO except that it can fork processes onto multiple nodes and specifies the process type for 
the child processes. The parameters of ox _ nforkO have the following meanings: 

node list 

numnodes 

An array of integers. each of which specifies a node number within the 
application (no node number may appear more than once in this array). The 
calling process is copied onto each of the specified nodes. 

The number of node numbers in node _list. or -1 to use all the nodes in the 
application (in which case node _list is ignored). 

4-7 



---------------"--"----------

Using Other Paragon™ OSF/' System Calls Paragon" OSF/1 User's Guide 

ptype The process type for each child process. 

pid _list An array of integers, into which are stored the OSF/l process identifiers 
(PIDs) of the child processes. See "Using PIDs" on page 4-12 for more 
information. 

DX _ nfork() rewms the number of child processes created to the parent process and 0 to each child 
process, or -1 if any error occurs. 

For example. the following C calls create an application whose characteristics are specified by the 
user, then copy the calling process onto all nodes of the application. The process type of each child 
process is set to O. 

#include <nx.h> 
#include <sys/types.h> 

main(int argc, char *argv[]) { 
int ni 
pid_t pids[2000]i 

n = nx_initve("", 0, "", &argc, argv); 
n = nx_nfork(NULL, -1, 0, pids); 

Note that the node _list argument is ignored when the numnodes argument is -1, so you can specify 
a NULL pointer in this case (in Fortran, you can use the value 0). After the call to DX_nforkO, the 
variable n contains the number of child processes created, or -1 if any error occurred; the first n 
elements of the array pids contains the PIDs of the child processes. If more than 2000 child processes 
are created, unexpected results will occur. 

The following Fortran calls create an application with 100 nodes and copy the calling process onto 
the fust 50 nodes of the application (nodes 0 through 49). The process type of each child process is 
set to O. 

include 'fnx.h' 
integer n 
integer nodes(50), pids(50) 

n = nx_initve ("mypart", 100, "", 0, 0) 

IJ 
() 

[) 

[J 

~i 

[~ 

I, "l 

" j 

IJ 
do 2, i = 1, 50 IJ 

4-8 

nodes(i) = i - 1 
2 continue 

n = nx_nfork(nodes, 50, 0, pids) 

After the call to DX nforkO, the variable n contains 50, or -1 if any error occurred; the array pids 
contains the PIDs of the child processes. 

~- ~- ~-----------------

IJ 
IJ 
IJ 



I'~' 

~ 

r
-~ 

iIOJ 

1_-'''''. 
,0.:. 

I: 
( --." 

,-

(~ 

I: 
r: 
r,-~_' 

", 

(~ 

I~ 

I: 
IJ 

Paragon™ OSF/1 User's Guide Using Other Paragon™ OSF/1 System Calls 

Loading a Program onto the Nodes with nxJoadO 

IlX _loadO executes the specified file on the specified set of nodes with the specified process type. 
Like IlX _nforkO, IlX JoadO creates one child process on each specified node. The parameters of 
IlX }oadO have the following meanings: 

node list An array of integers, each of which specifies a node number within the 
application (no node number may appear more than once in this array). The 
specified file is loaded onto each of the specified nodes. 

numnodes The number of node numbers in node _list, or -1 to use all the nodes in the 
application (in which case node _list is ignored). 

ptype 

pidJist 

pathname 

The process type for each child process. 

An array of integers, into which are stored the OSFIl process identifiers 
(PIDs) of the child processes. See "Using PIDs" on page 4-12 for more 
information. 

The relative or absolute pathname of the file to load. 

IlX _loadO returns the number of child processes created, or -1 if any error occurs. 

For example, the following Fortran calls create an application whose characteristics are specified by 
the user, then load and start the program myprog on all nodes of the application. The process type of 
each child process is set to O. 

include 'fnx.h' 
integer n 
integer pids(2000) 

n = nx_initve("", 0, "" 1, 0) 
n = nx_load(O, -1, 0, pids, "myprog") 

After the call to IlX JoadO, the variable n contains the number of child processes created, or -1 if any 
error occurred; the first n elements of the array pids contains the PIDs of the child processes. If more 
than 2000 child processes are created, unexpected results will occur. 

4-9 



Using Other Paragon™ OSF/1 System Cells Paragon'" OSF/1 User's Guide 

4-10 

The following C calls create an application with 10 nodes in the partition mypart, then load and start 
the program .. Ibinlmyprog on nodes 1, 5, and 7 of the application. The process type of each child 
process is set to 1. 

#include <nx.h> 
#include <sys/types.h> 
int n, i; 
int nodes [3] ; 
pid t pids[3]; 

i = 0; 
n = nx_initve("mypart", 10, "" &i, NULL); 

nodes[O] = 1; 
nodes [1] = 5; 
nodes [2] = 7; 

n = nx_load( nodes, 3, 1, pids, " .. /bin/myprog") ; 

After the call to ruUoadO, the variable n contains 3, or -1 if any error OCClDTed; the array pids 
contains the PIDs of the child processes. 

Loading a Program onto the Nodes with nxJoadveO 

ox JoadveO is just like ox _loadO except that it also lets you specify the argument list and 
environment variables for the new processes (in C). oxJoadve() has the following additional 
parameters: 

argv 

envp 

In C. this parameter contains the command line for the child process (you can 
use the argv parameter of malnO or construct the command line yourself). 

In C, this parameter contains the environment variables for the child process 
(you can use the envp parameter of mainO or construct the environment 
yourself). 

In Fortran, you must specify the value 0 for the argv and envp parameters (or use mJoadO instead). 
This is necessary because these parameters are pointers to arrays of strings, which have no 
equivalent in Fortran. 

ox JoadveO returns the number of child processes created, or -1 if any error occurs. If an error 
occurs, the value 0 is also stored into the pid _list for each process that was not successfully started. 

I ~ 

[) 
~ , 'i 

[) 

[~ M 

,--"'1 
i~ 

I!~ 
~ .... 

L 
f~ 
iJ 
~~1 

~= 
l: 
~i ~...J 

Mr"'" 
il..J 
rr -l . , 

ilcJ 

[: 
IJ 
I: 
(~ 

,"" 

I~ 

IJ 
I.J 
I~ ., 

.MJ 



I: 

r: 

[J 

" i 1_,"'. 
I ~1 

Ij 
['"! 

I: 
[J 

[J 

[" J 

Paragon™ OSFI1 User's Guide Using Other Paragon '1M OSF/1 System Calls 

For example, the following C calls create an application as specified by the user (default all nodes 
of the default partition), then set the value of the environment variable HOME to /tmp, then load and 
start the program myprog on all nodes of the application with process type 0: 

#include <nx.h> 
#include <stdlib.h> 
#include <sys/types.h> 
extern char **environ; 

main(int argc, char *argv[]) { 
int n; 
pid_t pids[2000]; 

n = nx_initve (NULL , 0, NULL, &argc, argv); 
putenv( "HOME=/tmp"); 
n = nx_loadve(NULL, -1, 0, pids, "myprog", argv, environ); 

The argument list of myprog consists of any command-line arguments to the calling program that 
were not recognized and removed by ox _initveO, and the environment of myprog is the same as the 
user's environment except for the value of HOME. 

Waiting for Application Processes with nx_waitaliO 

ox_nforkO, oxJoadO, and n"JoadveO return immediately to the calling process. To wait for the 
processes created by ox _ nrorkO, ox Joad(), or ox _loadveO to complete, call ox _ waitaUO. 
ox _ waitallO simply blocks until all the cmld processes of the calling process have terminated. It 
returns 0, or -1 if any error occurs. 

For example, the following Fortran calls create a new application as specified by the user, run the 
program myprog on all nodes of the application, and wait until all the node processes have 
completed: 

include 'fnx.h' 
integer n 
integer pids(2000) 

n = nx_initve("", 0, "" 1,0) 
n = nx_load( 0, -1, 0, pids, "myprog") 
n = nx_waitall() 

4-11 



Using Other Paragon™ OSF/1 System Calls Par.gon'" OSFI1 User's Guide 

4-12 

Using pros 

Thepid_list argument ofDX_nforkO, DX_loadO, and nxJoadveO receives the OSF/l process 
identifiers (PIDs) of the child processes created by the call. The specified array must be large enough 
to hold all the PIDs-that is, it must have at least as many elements as the maximum number of 
processes that could be created by the call. If more child processes are created than the number of 
elements in the pid _list, unexpected results will occur (the program will probably crash). 

In the typical case where you create one process per node of the application, you can use the value 
returned by ox JnitveO to determine the number of nodes in the application, then use maUoc() or an 
equivalent call to dynamically allocate a pid Jist with the same number of elements. For example, 
the following example allocates the appropriate number of elements to the array pids based on the 
application size specified by the user in argv: 

#include <nx.h> 
#include <stdio.h> 
#include <malloc.h> 

main(int argc, char **argv) { 
int nnodesi 
long *pidsi 

nnodes = nx_initve(NULL, 0, NULL, &argc, argv)i 
pids = (long *)calloc(nnodes, sizeof(long»i 
nx_nfork(NULL, -1, 0, pids)i 

If you don't use dynamic allocation, you should give the pid _list as many elements as the number of 
nodes on the largest system on which the application will be run. For portability to very large Intel 
supercomputers, this array should have at least 1000 elements (and possibly more in the future). 

Each element in the pid Jist receives the PID of the process on the node specified by the 
corresponding element of the node _list. If numnodes is -1, the PID of the process on node 0 is stored 
into the first element of pid Jist, the PID of the process on node 1 is stored into the second element 
of pid _list, and so on. If one or more processes were not successfully started, the value 0 is stored 
into the corresponding element of the pid Jist. 

NOTE 

The PIDs stored into the pid_list are OSF/1 PIDs, not Paragon 
OSF/1 process types. 

[~ 

IJ 
~: 

(J 

[. ~ .. , , . r 

i ,..j 

I: 

I: 

I , , .J. 



r: 
[: 

r: 

I: 
[J 

[J 
1_,., 

-""'~ 

r 
I· -~. 

,0 

I: 

I: 
rJ 
1""'1 

-'iii 

C 
C 

------------',' 

Paragon 1M OSF 11 User's Guide Using Other Paragon™ OSFI1 System Calls 

OSP/! PIDs are unique throughout the system; they are used with standard OSP/! system calls such 
as kino. (Note that kil10 and other system interface routines are supported by the Portran runtime 
library; see the Paragon ™ OSFll Fortran Compiler User's Guide forinformation on these routines.) 
Paragon OSP/! process types are unique only within a single application and a single node; they are 
used with Paragon OSP/! message-passing calls such as csendO. 

Por example, the following C calls create an application as specified by the user, run the program 
myprog on all nodes of the application with process type 0, and then send the signal SIGKILL to 
all the node processes: 

#include <nx.h> 
#include <signal.h> 
#include <sys/types.h> 

main(int argc, char *argv[) { 
int n, i; 
pid_t pids(2000); 

n = nx_initve(NULL, 0, NULL, &argc, argv); 
n = nx_load(NULL, -1, 0, pids, tlmyprogtl); 

for(i=O; i<n; i++) { 
kill(pids[i) , SIGKILL); 

} 

The Controlling Process 

By calling nxJnitve(), a process creates a new application. The process that called oxJnitveO 
becomes the new application's controlling process. Each application has exactly one controlling 
process, and each process controls at most one application. 

The controlling process is a special process that creates and controls the application: 

• The controlling process can create new processes in the application, using the Paragon OSPII 
function ox _ nforkO, ox _loadO. or ox _loadve(). 

• The controlling process can wait for an application process to complete, using ox _ waitallO or 
the standard OSP/l function waitO or waitpidO. 

• The controlling process can send a signal to an application process, or terminate it. using the 
standard OSP/! function kino. In particular, the controlling process can send a signal to all the 
processes in the application (including itself) by using klll(O, signal). 

You can terminate the entire application by terminating the controlling process, using the kill 
command or your interrupt key (normally < Ctr1-c > or < Del». The controlling process always 
runs in the service partition; the application processes run in the partition specified by the 

4-13 



-------~-~ 

Using Other ParagonN OSFI1 System Calls Paragon'" OSF/1 User's Guide 

4-14 

nx _ initve(). If the application processes are running in a gang-scbeduled partition, the controlling 
process is rolled in and out along with its application (that is, wben the application is rolled out, the 
controlling process gets no processor time; when the application is rolled in, the controlling process 
gets its normal share of the service partition's processor time). 

In OSP/} terms, the controlling process is a parent process and the processes created by nx _nforkO, 
nx _loadO, or nx _Ioadve() are its child processes. (In this respect, nx _ nforkO is similar to rorkO. 
nx_loadO is similar to a rorkO followed by an execvO with a null argument list, and nx)oadveO 
is similar to a rorkO followed by an execveO). The controlling process and the application processes 
all belong to the same process group, and the controlling process is the process group leader of the. 
group. No process outside the application belongs to this process group. 

The controlling process does not usually do beavy computational work, because it runs in the service 
partition along with users' shells and other interactive processes. Since it is scheduled interactively, 
the controlling process will not give asmucb througbput as application processes running in 
gang-scheduled compute partitions. 

See the OSFIl Programmer's Reference for information on waltO, waltpidO, klll(), rorkO, and 
execveO. 

Process Groups 

Process groups are a standard OSP/} concept, not 1.Ulique to Paragon OSP/I. A process group is a 
set of related processes. You can send a signal to all the processes in a group at once with 1dI10, and 
you can wait for any process in a group with waitpldO. The processes in a process group also share 
access to a terminal, called the controlling terminal of the group. Each process belongs to exactly 
one process group. 

The processes in a process group are all children (or grandchildren, and so on) of the oldest process 
in the group, called the process group leader. The process group leader's process ID (PID) is used 
to identify the group, and is also called the process group ID of the wbole group. (Note that this is 
the process group leader's OSP/} PID, not its process type.) A process can determine its process 
group ID by calling getpgrpO. 

Normally, a process belongs to the same process group as its parent process. However, a process can 
leave its parent's process group and start a new process group of its own by making such calls as 
setpgidO, setpgrpO, or setsidO. These calls create a new process group, then remove the calling 
process from its current group and place it in the new group. The calling process becomes the new 
group's process group leader, and the caller's PID becomes the new group's process group ID. After 
that, any processes created by the process group leader belong to the new process group. See the 
OSFIl Programmer's Reference for information on setpgidO and getpgrpO. 

.-""1 
I~ . a./ioJ 

I: 

I: 
IJ 
IJ 



I-! 
I-·.~ 

• 

r: 
1--

.;,i 

I: 
r~: 

r-"i 

[J 

1= 

I~ 
I····~ 

"" 

l:
~ 

I 
I 

Paragon"" OSF/1 User's Guide Using Other Paragon™ OSF/1 System Calls 

Process Groups in Paragon ™ OSF!1 

In Paragon aSF!I, process groups work the same as they do in standard aSF/I. In addition, 
ox Jnltve() makes sure that the calling process is a process group leader. If the calling process is not 
already a process group leader, nx JnltveO has the same effect as setpgidO: it creates a new process 
group and makes the calling process the new group's process group leader. Because all the processes 
in the application are created by the controlling process, all the processes in an application are 
members of the same process group, and no other process in the system is a member of that process 
group. This means that the application's process group ID uniquely identifies the application, which 
is why you use a process group ID to identify the application in ox"priO. 

This also means that if a process in an application leaves the application's process group by calling 
ox Jnitve() (or setpgidO, setpgrpO, or setsidO), it leaves the application. When a process leaves an 
application, it is moved from the application's partition to the service partition, and can no longer 
exchange messages with the other processes in the application. 

Killing Application Processes 

You can take advantage of the fact that all the processes in the application are members of the same 
process group by using aSF!1 system calls that affect process groups. For example, specifying a 
process ID of 0 (zero) to )dUO sends the specified signal to all the members of the calling process's 
process group, so the following call kills the entire application (including the calling process): 

kill(O, SIGKILL); 

This call differs from the example discussed under "Using PIDs" on page 4-12 in that it also kills 
the calling process. 

4-15 



Using Other Paragon™ OSFI1 System Calls Paragon'" OSF!1 User's Guide 

4-16 

An Example Controlling Process 
The following C program (which must be linked with -lox, not -nx) copies itself onto eight nodes of 
the partition my part with a process type of 0 and a priority of7. The eight application processes print 
"Hello from node n" and then exit. The controlling process waits for the application processes to 
fmish, then prints "Hello from controlling process" before exiting itself. Note that this program is 
executed by both the controlling process and the application processes. 

#include <nx.h> 
#include <sys/types.h> 
#include <stdio.h> 
#define NUMNODES 8 

main(int argc, char **argv) { 
int n, i; 

} 

pid_t pids[NUMNODES); 

/* create application */ 
n = nx_initve( "mypart", NUMNODES, NULL, &argc, argv); 
if (n == -1) { 

} 

/* nx_initve() failed */ 
perror( "nx_initve"); 
exit(1) ; 

/* set application priority to 7 */ 
nx~ri(O, 7); /* pgroup 0 specifies calling application */ 

/* fork child processes onto all nodes of application */ 
n = nx_nfork(NULL, -1, 0, pids); 
if (n == -1) { 

/* nx_nfork() failed */ 
perror( "nx_nfork"); 
exit( 1) ; 

} else if(n == 0) { 
/* child process: print "Hello" and exit */ 
printf ( "Hello from node %d! \n", mynode ( ) ) ; 
exit(O); 

} else { 

} 

/* parent (controlling process) : wait for all children * / 
nx_waitall( ); 
/* now print "Hello" and exit */ 
printf ("Hello from controlling process !\n") ; 
.exit( 0); 

IJ 

(] 

(.,., 
': I 

... .AJ 

~"1 
[,i •• 

IJ 

IJ 



Paragon™ OSF/1 User's Guide Using Other Paragon™ OSF/1 System Calls 

I: 
I~ Message Passing Between Controlling Process and Application Processes 

('''', , 
~I 

r~ 

I~ 

(~ 

I: 

r= 
1_; 

,J 

(J 

IJ 

Description Synopsis 

myhostO Obtain the controlling process's node number. 

A controlling process can exchange messages with its child processes using the Paragon OSF/l 
message-passing calls described in Chapter 3. 

• The controlling process's node number is equal to numnodesO. (The maximum node number 
within the application is numnodesO -1.) The controlling process's node number is also 
returned by myhostO in any process in the application. In the controlling process, myhostO, 
mynode(), and numnodesO all return the same number. 

• The controlling process's process type is initially INVALID _PI'YPE, but you can change it to 
a valid value by calling setptype(). For best performance, you should not call setptype() until 
after you have created all application processes with ox_nforkO, nxJoadO, or oxJoadveO. 
and you should not call setptypeO at all unless you need to exchange messages with application 
processes. 

Although the controlling process can exchange messages with the application processes, it does not 
participate in global operations: 

• The controlling process may not make any of the calls described under "Global Operations" on 
page 3-29. 

• The controlling process does not participate when the application processes make any of the 
calls described under "Global Operations" on page 3-29. 

• The controlling process does not get messages sent to node number -1 (all nodes). 

A send to node -1 (all nodes) sends the message to all the nodes in the application (except the calling 
process's node), but not the controlling process. This applies whether the message is sent by a node 
process or by the controlling process itself. On the other hand, an extended receive that specifies 
node -1 (any node) as the sending node will match a message from the controlling process. 

4-17 



Using Other Paragon'llil OSF!1 System Calls Paragon'" OSF!1 User's Guide 

Hereis an application, written in Fortran, that demonslrates message-passing between the 
controlling process and the application processes. This application multiplies two numbers (in a very 
inefficient way). It consists of two programs, control.! and app.j. You must link controlfwith -lox, 
not .. ox; app.j can be linked with either -lox or -ox. 

The controlling process (control./) requests a number of nodes and an integer value from the user. It 
creates an application of the specified number of nodes on the partition mypart and loads the 
program app onto each node. It then sends the user's integer value to each node as a message (note 
that the node number -1 sends to all nodes, not including the controlling process) and waits for a 
return message with the result. When the result is received, the controlling process prints its value 
and then exits. 

include 'fnx.h' 

integer 
integer 
integer 
parameter 
integer 
integer 
parameter 
parameter 

num_nodes, n, i 
nodes(128), pids(128) 
appytype 
(appytype 0: 0) 
data, result 
result_type, data_type 
(result_type = 1) 
(data_type 0: 2) 

c get number of nodes (limited to size of "nodes" and "pids" arrays) 
1 print *, "Enter number of nodes (must not be greater than 128)" 

read(*,*) num_nodes 
if(num_nodes .gt. 128) goto 1 

c create application of specified size 
n = nx_initve( "mypart", num_nodes, 
if(n .eq. -1) then 

print *, "nx initve failed" 
stop 

end if 

c fill in node array for nx_Ioad() 
do 2, i = 1, num_nodes 

nodes(i) = i - 1 
2 continue 

It" , 0, 0) 

c load program "app" onto the nodes of the application 

4-18 

n = nx_Ioad(nodes, num_nodes, appytype, pids, "app") 
if(n .eq. -1) then 

print *, "nx load failed" 
stop 

end if 

(J 

IJ 
(J 

IJ 

(' .J 



I: 

r: 

r: 
I -~ 

J 

r· -, , , 

-J 

(-, 
. _..J 

Paragon™ OSF/1 User's Guide Using Other Paragon™ OSFI1 System calls 

c get an integer from the user 
print *, "Enter value to be summed" 
read(*,*) data 

c set my process type 
call setptype(app-ptype) 

c send it to all the nodes 
call csend(data_type, data, 4, -1, app-ptype) 

c receive the result 
call crecv(result_type, result, 4) 

c print the result 
print *, "The sum of ",data," over ",num_nodes," nodes is ",result 

end 

The application process (app.j) waits for a message and performs a gisumO on the value received. 
(Note that the controlling process does not participate in the gisumO.) The process on node 0 sends 
the result to the controlling process, then all the application processes exit 

include 'fnx.h' 

integer 
integer 
parameter 
parameter 

val, work 
result_type, data_type 
(result_type = 1) 
(data_type = 2) 

c get an integer from the controlling process 
call crecv(data_type, val, 4) 

c sum it over all nodes 
call gisum(val, I, work) 

c if I'm node 0, send the result back to the controlling process 
if(mynode() .eq. 0) call csend(result_type, val, 4, myhost(), 0) 

end 

4-19 



Using Other Paragon™ OSFI1 System Calls Paragon™ 0$1=/1 User's Guide 

Partition Management Calls 
Paragon OSFIl provides system calls that let you create and remove partitions and change their 
characteristics, like the mkpart, tmpart, and cbpart commands described in Chapter 2. See 
"Managing Partitions" on page 2·24 for introductory information on partitions. 

Making Partitions 

4·20 

Synopsis Description 

DX_mkpart(partition, size, type) Create a partition with a particular number of 
nodes. 

DX_mkpartJect(partition, rows, cols, type) Create a partition with a particular height and 
width. 

DX _ mkpart_ map (partition, numnodes, 
node_list, type) 

Create a partition with a specific set of nodes. 

To create a partition, use DX_mkpartO, DX_mkpartJectO, or DX_mkpart_mapO. These calls all 
create a partition, but they use different methods to specify the nodes allocated to the new partition: 

• DX _ mkpartO works like the mkpart command's -sz size switch. 

• DX_mkpartJeetOworks like the mkpart command's -sz hXw switch. 

• DX_mkpart_mapO works like the mkpart command's -nd nodes pee switch (except that only 
node numbers can be specified). 

See "Specifying the Nodes Allocated to the Partition" on page 2·38 for more information on these 
switches. 

These calls have the following parameters: 

partition The new partition's relative or absolute pathname. The specified new 
partition must not exist; the parent partition of the specified new partition 
must exist and must give write permission to the calling process. See 
"Partition Pathnames" on page 2·27 for more information on partition 
pathnames; see "Owner, Group, and Protection Modes" on page 2·32 for 
more information on partition permiSSions. 

[) 

[~." 
J 

[J"'. I 
~ 

I), 

[J 

1"'1. 
" ,. 

'~l i ... J 

(J 

IJ 
(J 

1"'1 

j 

IJ 
(J 

() , 



I""'. ' .. iiJ 

1_".>11 

.lIoJ 

r: 

r: 
r~ 

1"9 

.. J 

I·''''. " 
,MJ 

I~ 

('''''' 
ilL; 

r=, 
I~ 

1= 
1_., 

,,J 

I~ 
I~': 

~ 

I: 

Paragon™ OSF/1 User's Guide Using Other Paragon™ OSF/1 System Calls 

size The number of nodes of the new partition, or -1 to specify "all the nodes of 
the parent partition." If you specify a size smaller than that of the parent 
partition, the nodes are selected by the system (and are not necessarily 
contiguous). 

rows and cols The height and width of the new partition. The new partition is a rectangle 
with the specified number of rows and columns, but its location within the 
parent partition is selected by the system. 

numnodes and node list 

type 

The exact node numbers within the parent partition for the new partition. The 
node _list parameter is an array of node numbers; the numnodes parameter 
specifies the number of elements in node_list. 

The new partition's scheduling type: NX _ STD to specify standard 
scheduling, or NX _GANG to specify gang scheduling. The names NX_ STD 
and NX_GANG are defined in nx.h andfnx.h. See "Scheduling 
Characteristics" on page 2-32 for more information on standard and gang 
scheduling. 

ox _ mkpartO, ox _ mkpart JectO, and ox _mkpart _ mapO return the number of nodes in the new 
partition, or -1 if any error occurs. 

The new partition's owner and group are set to the owner and group of the calling process. All other 
partition characteristics not specified in the call (such as protection modes and rollin quantum) are 
set to the same values as the parent partition. Once the partition is created, you can use the 
ox_chpart ... O calls to set these characteristics to different values. as discussed tmder "Changing 
Partition Characteristics" on page 4-24. 

For example. the following Fortran call creates a new gang-scheduled partition called newpart 
whose parent partition is the compute partition (using a relative partition pathoame) and which 
consists of all the nodes in the compute partition: 

include 'fnx.h' 
integer n 

n = nx_mkpart("newpart", -1, NX_GANG) 

The following C call creates a new gang-scheduled partition called mypart whose parent partition is 
the compute partition (using an absolute partition patbname) and which bas 54 nodes: 

#include <nx.h> 
int ni 

n = nx mkpart(" .compute.mypart", 54, NX_GANG) i 

4-21 



Using Other Paragon™ OSF/1 System Calls Paragon™ OSFI1 User's Guide 

The following C call creates a new gang-scheduled panition called reef whose parent partition is . 
mypart and which is 3 nodes high and 4 nodes wide: 

#include <nx.h> 
int n; 

n = nx _ mkpart _ rect ( " . compute. mypart . rect" , 3, 4, NX _GANG) ; 

The following C call creates a new gang-scheduled panition called corners whose parent partition 
is reef and which consists of the four nodes at the corners of reef: 

#include <nx.h> 
long nodes [ 4] ; 
int n; 

nodes[O] = 0; 
nodes [1] 3; 
nodes[2J = 8; 
nodes [3] 11; 
n = nx_mkpart_map(".compute.mypart.rect.comers", 4, 

. nodes, NX_GANG); 

In each of these examples, the variable n is assigned the number of nodes in the new partition, or -I 
if any error occurred. 

Removing Partitions 

4-22 

Synopsis Description 

ox Jrnpart(partition, force, recursive) Remove a partition. 

To remove a panition, use ox _ rmpartO. The parameters of ox _ rmpartO have the following 
meanings: 

partition 

force 

The relative or absolute pathname of the partition to be removed. The parent 
panition of the specified partition must give write permission to the calling 
process. See "Panition Pathnames" on page 2-27 for more information on 
partition pathnames; see "Owner, Group, and Protection Modes" on page 
2-32 for more information on partition permissions. 

Specifies whether to remove the partition if it contains running applications: 
ifforce is 0, the partition will not be removed if it contains any applications; 
jf force is any value other than O. the partition will be removed even if it 
contains applications. 

[] 

(] 

I~ .. jJ 

[j 

(J 

(J 

(J 

(: 
-..,J 



r: 

I: 
I : 

I: 
r·--"".· 

",I 

I: 
I: 

I: 
I: 

Paragon™ OSF/1 User's Guide Using Other Paragon '1M OSF 11 System Calls 

recursive Specifies whether to remove the partition if it contains sUbpartitions: if 
recursive is 0, the partition will not be removed if it contains any 
subpartitions; if recursive is any value other than 0, the partition will be 
removed along with all its subpartitions, sub-subpartitions, and so on. This is 
an "all or nothing" operation: if any subpartitions cannot be removed, the call 
fails and no subpartitions are removed. 

If the partition contains both subpartitions and applications, or contains subpartitions that contain 
applications, you must set both/orce and recursive to a nonzero value to remove it. 

ox ]mpartO returns ° for success, or -1 if any error occurs. 

For example. the following Fortran call removes the partition called newpart whose parent partition 
is the compute partition (using a relative partition pathname), but only if it does not contain any 
running applications or sUbpartitions: 

include 'fnx.h' 
integer n 

n = nx_rmpart ("newpart ", 0, 0) 

After this call, the variable n contains ° if the partition was removed. or -1 if it was not removed for 
any reason (for example, if the partition contained applications or subpartitions). 

The following C call removes the partition called mypart whose parent partition is the compute 
partition (using an absolute partition pathname), even if it contains running applications; however. 
it does not remove my part if the partition contains sUbpartitions: 

#include <nx.h> 
int n; 

n = nx_rmpart(".compute.mypart", 1, 0); 

After this call. the variable n contains ° if the partition was removed, or -1 if it was not removed for 
any reason (for example. if the partition contained sUbpartitions. or if the partition does not exist). 

4-23 



Using Other Paragon"" OSF/1 System Calls ParagontM OSF/1 User's Guide 

Changing Partition Characteristics 

4-24 

Synopsis Description 

DX _ chpart _ name(partition, name) 

DX _ chpart _ mod(partition, mode) 

DX _ chpart _ epl(partition, priority) 

Change a partition's name. 

Change a partition' s protection modes. 

Change a partition's effective priority limit. 

Change a partition's rollin quantum. 

Change a partition' s owner and group. DX_chpart_owner(partition, owner, group) 

Tochange a partition's characteristics, use ox_chpart_nameO, DX_chpart_modO, 
DX _ chpart _ eplO, ox _ chpart ]qO, or DX _ chpart_ ownerO. Each of these calls changes one 
characteristic, and leaves the other characteristics unchanged. These calls have the following 
parameters: 

partition The relative or absolute pathname of the partition to change. The specified 
partition must exist; the permissions required depend on the operation. See 
"Partition Pathnames" on page 2·27 for more information on partition 
pathnames. 

name (ox_chpart_name() only) 
The new name for the partition, expressed as a sUing of any length containing 
only uppercase letters, lowercase letters, digits, and underscores. Note that 
ox _ chpart _ nameO can only change the partition's name "in place;" there is 
no way to move a partition to a different parent partition. 

The calling process must have write permission on the parent partition of the 
specified partition to use DX_chpart_nameO. 

mode (ox_chpart_modO only) 
The new protection modes of the partition, expressed as an octal number. See 
chmodO in the OSFll Programmer's Reference for more information on 
specifying protection modes; see "Owner, Group, and Protection Modes" on 
page 2·32 for more information on protection modes for partitions. 

The calling process must be the owner of the partition or the system 
administrator to use DX_chpart_modO. 

I ~ 
I)' : . I 

I 

[] 

D 
[J 

If 11i 
IAllii 

IJ 

IJ 
I '"I ..J 

I. ' .J 
lJ 
IJ 
1.""1 

AJ I 



( -: 
_"A 

I~ 

I: 
r: 
(~ 

r 
r: 
I~ 
I--~ 

(""" 

1-: 
I-~ 

1= 

I~ 

1= 

~~--------------------- -

Paragon'"' OSF/1 User's Guide Using Other Paragon™ OSF/1 System Calls 

priority (ox_chpart_epIO only) 
The new effective priority limit for the partition, expressed as an integer from 
o to 10 inclusive. See "Scheduling Characteristics" on page 2-32 for more 
information on effective priority limits. 

The calling process must have write permission for the partition to use 
ox _ chpart _ eplO. 

rollin_quantum (nx_chpart]qO only) 
The new rollin quantum for the partition, expressed as an integer number of 
milliseconds, or 0 to specify an "infinite" rollin quantum. The specified value 
must not be greater than 86,400,000 milliseconds (24 hours). If it is not a 
multiple of 100, it is silently rounded up to the next multiple of 100. See 
"Scheduling Characteristics" on page 2-32 for more information on rollin 
quanta. 

The calling process must have write permission for the partition to use 
ox_chpart]qO. 

owner and group (ox_chpart_ownerO only) 
The new user and group for the partition, expressed as a numeric user ID 
(UID) and group ID (GID). You can also specify -I, meaning "leave 
owner/group unchanged," for either or both. See "Owner, Group, and 
Protection Modes" on page 2-32 for more information on partition 
ownership. 

The permissions required for ox _ chpart _owner() depend on the operation. 
To change the partition's ownership, the calling process must be the system 
administrator. To change the partition's group. the calling process must either 
be the system administrator or must be the partition's owner and changing the 
group to a group that the calling process belongs to, 

ox _ chpart _ nameO. ox _ chpart _modO. ox _ chpart _ eplO. nx _ chpart ]qO. and 
ox _ chpart _ ownerO return 0 for success, or -1 if any error occurs. 

4-25 



Using Other Paragon'IM OSFI1 System Calls Paragon'" OSF/1 User's Guide 

4-26 

For example, the following Fortran call changes the name of mypart to new part: 

include 'fnx.h' 
integer n 

n = nx _ chpart _name ( "mypart ", "newpart " ) 

The following C call has the same effect, but uses an absolute partition pathname: 

#include <nx.h> 
int ni 

n = nx_chpart_name(".compute.mypart", "newpart")i 

Note that the second parameter of ox chpart nameO is always a partition name, never a partition 
pathname. There is no way to move a-partition from one parent partition to another. 

The following C call sets the permissions of my part to rwxr- x - - - (750 octal): 

#include <nx.h> 
int ni 

n = nx_chpart_mod( "mypart" , 0750) i 

The following Fortran call has the same effect, but uses an absolute partition patbname: 

include 'fnx.h' 
integer n 

n = nx_chpart_mod(".compute.mypart", '750'0) 

The following C call sets mypart's effective priority limit to 7: 

#include <nx.h> 
int ni 

n = nx_chpart_epl ("mypart", 7); 

The following Fortran call sets mypart's rollin quantum to 10 minutes (600,000 microseconds): 

include 'fnx.h' 
integer n 

n = nx_chpart_rq("mypart", 600000) i 

( l'I 
, I 

Jij 

[J 

IJ 
-1 i,~ I 

• .-.1 

IJ 
lJ 
I] 

IJ 
(J 

I~I 
--J 



I'.·· .. 

I: 
r: 

(-"'" 

.>.J 

r~i 

( "". 
J-j 

I: • OW 

1'-' 
.4J 

I
-~ 

, ."_J 

I~-: 

r: 
(: 
I ""; 

--"Ii 

IJ 
,-"iIi 
L 

Paragon™ OSF/1 User's Guide Using Other Paragon'IM OSFI1 System Calls 

The following C calls set mypart's owner to fred and its group to devel (see the OSFll 
Programmer's Reference for infonnation on getpwnamO and getgrnamO, which get the numeric 
user and group IDs based on their names): 

#include <stdio.h> 
#include <pwd.h> 
#include <grp.h> 
#include <nx.h> 

struct passwd *useri 
struct group *groupi 
int ni 

user = getpwnam (" fred" ) i 
group = getgrnam (" devel " ) i 
n = nx_chpart_owner( "mypart", user->pw_uid, group->gr_gid) i 

In each of these examples, the variable n is assigned 0 if the call succeeded, or -1 if any error 
occurred . 

Handling Errors 

Description SynopsiS 

_caUO Special version of call that returns error value to 
caller (C only). 

ox JleI'ror(string) Print an error message corresponding to the 
current value of errno. 

When an error occurs in a standard OSP/l system call, the call indicates the error in one of two ways, 
depending on the error. Por most errors, the call returns -1 and sets the variable errno to a value that 
describes the error; for certain severe errors (such as a segmentation violation caused by an invalid 
pointer parameter), the call sends a signal to the calling process. 

When an error occurs in a Paragon OSP/l system call whose name begins with nx_, it uses the same 
two techniques as a standard OSP/} system call. However, when an error occurs in a Paragon OSPIl 
system call that is not a standard OSP/} system call and whose name does not begin with ox_, the 
error is handled differently: the system prints a message on the terminal and terminates the calling' 
process. If you program in C, you can get the same behavior as the ox_calls by calling the 
underscore version of the call. (Fortran does not have underscore versions.) 

4-27 



Using Other Paragon™ OSFI1 System Calls Paragon .... OSF/1 User's Guide 

4-28 

The underscore version of a Paragon OSP/I system call is the same as the standard version except 
that it has an underscore added to the beginning of its name. For example, _ crecvO is the underscore 
version of crecvO. The underscore version returns -I if the call encounters an error and 0 or a 
positive value if the call is successful. 

If an error occurs, the underscore version also sets the system variable errno to indicate the cause of 
the error. The include file errno.h declares errno for you and defines constants for the possible errno 
values. For example, if crecvO receives a message that is larger than the size specified by its len 
parameter, an error message appears and the application terminates. If you use _ crecvO instead, this 
does not occur; instead, the call to _ crecvO returns -I and the variable errno is set to the value 
EQMSGLONG. 

There is a standard error message for each value of errno, which you can print out by calling 
DXyerrorO. nxyerror() prints its argument (any string), the current node number and process 
type, and the error message associated with the current value of errno to the standard error output in 
the following format: 

(node n, ptype p) string: error_message 

Suppose you have a program where the user can specify the size of a certain buffer with a 
command-line argument. If a message is received that is too long for this buffer, you would like to 
be able to tell the user what happened and suggest that they increase the buffer size. The following 
example uses the underscore version of crecvO to do this: 

#include <nx.h> 
#include <errno.h> 

char *transbufi 
int transbuf_sizei 

if(_crecv(l, transbuf, transbuf_size) == -1) { 

} 

if(errno == EQMSGLONG) { 

} 

/* received message too long for buffer */ 
printf("Message exceeded transit buffer sizel\n")i 
printf ("Use -t to specify a larger transit buffer. \n") ; 
exit( 1) i 

else { 
/* some other error, print a standard error 

message and exit*/ 
nX.J>error( "crecv") ; 
exit( 1); 

(] 

[J 

IJ 
I: 

(J 

IJ ' 
.-1"1 ' LJ' 



I: Paragon™ OSF/1 User's Guide Using Other Paragon™ OSFI1 System Calls 

(: 
r: Floating-Point Control 

(: 

r~ 

I ~ 
r..., 
i ' 

-'<.! 

I ", 

1_-

I ·.~ 
--.J 

fJ 

Synopsis 

isnan(dsrc) 

isnand(dsrc) 

isnanf(fsrc) 

fpgetroundO 

fpgetmaskO 

fpsetmask(mask) 

fpgetstickyO 

fpsetsticky(sticky) 

Description 

Determine if a double value is Not-a-Number 
(C only). 

Determine if a double value is Not-a-Number 
(C only). 

Determine if a Boat value is Not-a-Number 
(C only). 

Get the floating-point rounding mode for the 
calling process (C only). 

Set the floating-point rounding mode for the 
calling process (C only). 

Get the floating-point exception mask for the 
calling process (C only). 

Set the floating-point exception mask for the 
calling process. 

Get the floating-point exception sticky flags for 
the calling process (C only). 

Set the floating-point exception sticky flags for 
the calling process (C only). 

Paragon OSF/I supports a series of floating-point control calls compatible with those of UNIX 
System V. 

NOTE 

Only fpsetmaskO is available to Fortran programs. The other 
floating-point control calls are available only to C programs. 

4-29 



Using Other Paragon1M OSF/1 System Calls Paragon'" OSFI1 User's Guide 

Detecting Not-a-Number 

The calls isnanO, isnand(), and isnanf() are used to determine wbether a floating-point value is an 
IEEE NaN, or "Not-a-Number." This value can be generated as a result of certain floating-point 
mathematical operations and systeJll calls, when the operands are invalid or out of range. isnanO and 
isnandO take an argument of type double, and isnanro takes an argument of type Boat. (isnanO 
and isnandO are identical except for the name.) All three calls return 1 if the argument is a NaN, and 
o otherwise. 

NOTE 

These calls never generate an exception, even if the argument is 
a NaN. 

Controlling Floating-Point Behavior 

4-30 

The calls fpgetroundO, rpsetroundO, fpgetmaskO, rpsetmaskO, rpgetstickyO. and fpsetstiekyO 
get and set the i860 microprocessor's floating-point control registers. The values of these registers 
are part of the process, and are saved and restored when the process is swapped in and out. 

The get calls simply return the current value of the specified register for the calling process; the set 
calls set the register to the specified value for the calling process and return its previous value. 

Rounding Mode 

rpgetroundO and rpsetroundO get and set the i860 microprocessor' sjloating-point rounding mode, 
which determines what happens when a floating-point value generated in a calculation cannot be 
represented exactly. 

The i860 microprocessor has four rounding modes: 

Round to nearest representable number (if two representable numbers are 
equidistant. round to the even one). 

Round toward minus infinity. 

Round toward plus infmity. 

Round toward zero (truncate). 

These symbolic names are the values of the enum type fp _rod, which is declared in <ieeeJp.h>. 
The argument of fpsetroundO and the rerum values of rpsetroundO and t'pgetroundO are ·of this 
type. 

I U··: , , 
I 
I 

[ ".' • 

f-", i IJlO 

[ 1 
~! 

lJ 

IJ 
IJ 
l~ 



r: 
r~ 
( ~'" 

"'" 

I: 
(~ 

I .'l 

~J 

r= 
r: 
I: 

IJ 
I).; I 

,'.I 

Paragon™ OSF/1 User's Guide Using Other Paragon™ OSFI1 System Calls 

NOTE 

When you convert a floating-point value to an integer type in C, it 
always truncates. The processor's rounding mode is ignored. 

Exception Mask and Sticky Flags 

fpgetstickyO and rpsetstickyO get and set the i860 microprocessor'sfloating-point exception sticky 
flags, and rpgetmaskO and rpsetmaskO get and set the floating-point exception mask. 

The i860 microprocessor defines five floating-point exceptions: 

FP X INV Invalid operation exception. 

FP X DZ Divide-by-zero exception. 

Overflow exception. 

Underflow exception. 

Imprecise (loss of precision) exception. 

These symbolic names are the values of the enum type fp _except, which is declared in <ieeefp.h>. 
The arguments of rpsetstickyO and t'psetmaskO and the return values of rpgetstickyO, 
rpsetstickyO, fpgetmaskO, and rpsetmaskO are of this type. 

The i860 microprocessor has five exception sticky flags and five exception mask bits corresponding 
to the five exception types. When a floating-point exception occurs, the corresponding exception 
sticky flag is set to 1. The corresponding exception mask bit is then examined; if it is set to I, the 
exception is trapped and the appropriate trap handler is called. 

NOTE 

After an exception, you must clear the corresponding sticky flag to 
recover from the trap and proceed. 

If the sticky flag is not cleared before the next floating-point exception occurs, an incorrect exception 
type may be signaled. For the same reason, when you call rpsetmaskO, you must be sure that the 
sticky flag corresponding to each exception being enabled is cleared. 

4-31 



Using Other Paragon™ OSF/1 System Calls Paragon'" OSF/1 User's Guide 

4-32 

NOTE 

fpsetstickyO and fpsetmaskO set the sticky flags and exception 
mask to the specified values. Any bits not set in the call's 
argument are cleared. 

To set or clear a particular mask or sticky flag, get the current mask or sticky flags, modify it, and 
then call fpsetstickyO or fpsetmaskO with the modified mask or sticky flags. 

Fortran Exception Mask Values 

Only the fpsetmaskO call is supported in Fortran. You use the following numeric values with 
fpsetmaskO: 

o No exceptions. 

1 Invalid operation exception. 

2 Divide-by-zero exception. 

4 Overflow exception. 

8 Underflow exception. 

16 Imprecise (loss of precision) exception. 

The argument and return value of fpsetmaskO are integers whose values are the sum of some, none, 
of all of these values. 

.(] 

Il"l 
U l 

(~ , ~ I 

(J 

I: 
I: 
I: 

IJ 
IJ 
l~ I 

, 

( ' I .Ai. 

I 



c 
r: 
I: 

Paragon™ OSF/1 User's Guide Using Other Paragon™ OSF/1 System Calls 

I: Miscellaneous Calls 

r: 
r: 

I ~: 

r~ 

IJ 

1= 

I : 

[ '" 
_.J 

1= 
r: 

Synopsis 

flickO 

led (state) 

dclockO 

Description 

Temporarily relinquish the CPU to another 
process. 

Turn the node's green LED on or off. 

Return time in seconds since booting the node. 

Temporarily Releasing Control of the Processor 

The DickO call temporarily releases control of the node processor to another process in the same 
application. If there are no other processes in the same application when a process calls DickO. 
control returns to the Paragon OSF/l operating system. For example, if your node program has set 
up a number of hrecvO' s and has nothing else to do, it should issue flickO. The operating system 
can then more efficiently respond to an incoming message and wake up your process. 

flickO does not have any effect on rollin and rollout of the application (see "Gang Scheduling" on 
page 2-34 for information on rollin and rollout). 

Blinking the LED 

The Intel supercomputer has a number of light-emitting diodes (LEDs) on its front panel that 
indicate the processor and message-passing status of all the nodes in the system. Among these LEDs. 
one green LED for each node is user-programmable. You can use the ledO call to tum this LED on 
and off. 

The following call turns the green LED on: 

/* eversion */ 
led( 1); 

c Fortran version 
call 1ed( 1) 

4-33 



Using Other Paragon'IM OSF/1 System Calls Paragon™ OSF/1 User's Guide 

The following call turns the green LED off: 

/* eversion */ 
led(O); 

c Fortran version 
call led(O) 

Timing Execution 

4-34 

dclockO returns the time in seconds since the node was last booted, as a double precision number. 

Use dclockO to return a relative value that you can use to measure execution time. To time an 
interval in your program, first obtain an initial value. Then obtain a final value and take the 
difference. The actual values returned by the two dclockO calls are not important 

NOTE 

Do not use dClockO to synchronize processes. Each node has its 
own counter, which differs from the counters on other nodes. 

IJ 

(~.' . 
. .lIM! 

[J 

IJ 
[J 

IJ 
IJ 
I: 
[J 

IJ 
(:J 



I ··~ 

~ 

r: 
I: 

r~1 

I: 

( ... ""'1 

_.:J 

r-"'1 

-,,-

IJ 

Paragon™ OSFI1 User's Guide Using Other Paragon™ OSF/1 System Calls 

Here is an example that shows how to use dclockO to time the execution of an iteration loop: 

1* eversion *1 
double start_time, end time, diff_time; 
start_time = dclock(); 
for(i=O;i<imax;i++) { 

• 
• 

} 

end_time dclock(); 
diff time = end time - start_time; 
printf( "Timing = %e\n", diff_time); 

c Fortran version 

100 

10 

double precision start time, end_time, diff time 
start_time = dclock() 
do 100 i=l, imax 

• 
• 
• 

continue 
end time = dclock() 
diff time = end time - start time 
write(*, 10) diff_time 
format('diff_time =' D15.9) 

4-35 



Using Other Paragon™ OSFI1 System Calls Paragon™ OSFI1 User's Guide 

iPSC@ System Compatibility Calls 

Synopsis 

ginv(J) 

gray(J) 

hwclock(hwtime) 

infopidO 

kiUcube(node. ptype) 

kiUproc(node, ptype) 

load(filename, node, ptype) 

mclockO 

mypidO 

nodedimO 

restrictvoJ(fileID, nvol, vollist) 

waitall(node. pid) 

Description 

Return the position of an element in the 
binary-reflected gray code sequence. Inverse of 
grayO. 

Return the binary-reflected gray code for an 
integer. 

Place the current value of the hardware counter 
into a 64-bit unsigned integer variable. 

Return the process type of the process that sent a 
pending or received message. 

Terminate and clear node process(es). 

Terminate a node process. 

Load a node process. 

Return the time in milliseconds. 

Return the process type of the calling process. 

Return the dimension of the current application 
(the number of nodes allocated to the application 
is 2dimension). 

Return 0 (does nothing; provided for 
compatibility only). 

Wait for node process(es) to complete. 

The calls ginvO. grayO. hwclockO. infopidO. kUlcubeO, kiUprocO. loadO, mclockO. mypidO. 
nodedimO. restrictvolO. and waitaUO are provided for compatibility with the iPSC series of 
supercomputers from Intel Corporation. 

These calls should not be used in new Paragon OSF/I programs. They either provide the same 
functionality as Paragon OSF/l calls (for example, mypidO is identical to myptypeO but uses the 
iPSC system terminology), or provide functionality that is not needed in Paragon OSF/l (for 
example. grayO is not useful in a JIl,acbine without abypercube architecture). 

I; 
i ' [ 1'1 
~ 

[: 

~! 

(J 

[J 

[~ 

(J 

IJ 
IJ 



I.·.·~ 

iii 

r: 

r: 
(

""1 

,&'1 

(-~ 

r o

' 

1--1 

•• "J 

I
-~I 

.OJ 

r
~: 

. .J 

I " I., 

I~ 
I
~l 

~, 

f '" 
~-, 

I-~ 

I: 

Paragon™ OSFI1 USer'S Guide Using Other Paragon™ OSFI1 System Calls 

These calls work the same as the corresponding calls on the iPSe system, with the following 
exceptions: 

• The only valid use of killcubeO is kiUcube(·I,.I). 

• The only valid use of killprocO is kUlproc(.I,·I). 

• loadO must be preceded by n,,_initveO (it is equivalent to nxJoadO but does not let you 
specify a list of nodes or fmd out the PIDs of the loaded processes). 

• If numnodesO is not a power of 2, nodedimO rounds it up to the next power of 2 and returns 
the dimension of a cube of that size. For example, if numnodesO is 7, nodedimO returns 3; if 
numnodesO is 9, nodedimO returns 4. 

• restrictvolO does nothing. It always returns 0 (indicating success). 

• The only valid use of waitaUO is waitall( .1,.1) . 

See your iPSe system documentation for more information on these calls. 

4-37 



Using Other Paragon™ OSF/1 System Calls Paragon™ OSFI1 User's Guide 

4-38 

.() 

1-., .... 
. .1 

(J 

[J 

I] I 

lJ 

[J 

[J 

1"""1 
, I 

... 1 

IJ 
IJ 
I] 

IJ 
(J 

IJ 



r: 

r: 
I:: 
I
-~ 

: 

( -'" 

, "",J 

1_"" 
_.;/ro.1 

[~ 

I ~, , 
.. ,.1 

1= 
r~ 

IJ 

r: 
r~ 

[: 
I~.·'i 

.1ii! 

Using Parallel File I/O 

Introduction 
The ParagonN OSF/l operating system supports many of the Concurrent File SystemN (CFS™) 
commands and calls provided by the iPSC® system. These commands and calls let you control 
access to files from multiple nodes. 

NOTE 

Only the standard, non-parallel UNIX File System (UFS) and 
Network File System (NFS) are currently supported. Parallel files 
will be provided in a future release. 

The maximum length of a pathname in Paragon OSFIl is 1024 characters; the maximum length of 
a single filename depends on the type of the file system containing the file (or directory). In a UFS 
file system, the maximum length of a filename is 255 characters; in an NFS file system, the 
maximum length of a filename depends on the type of the corresponding remote file system. 

Increasing the Size of a File 
Command Synopsis 

Isize [ ·a ] size file [file ... ] 

Description 

Change the size of a file or files. 

In general, you use standard OSF/l commands such as Is, cat, cp, and mv to manipulate files in the 
file system. See the OSFll Command Reference for information on these commands. In addition to 
these commands, Paragon OSFIl provides the Isize command. 

5-1 



Using Parallel File I/O Paragon™ OSF/1 User's Guide 

The Isize command changes the amount of disk space allocated to each specified file. You can use 
this command to allocate all the space you will need for a large file before you run the application 
that writes to the file. This makes sure that there is enough room in the file system for the file, and 
can also increase file YO performance. 

The Isize command has two forms: 

Isize sizejile [jile ... ] Sets the size of the jile(s) to size bytes. 

Isize -8 size jile [jile ... ] Increases the size of the jile(s) by size bytes. 

If the specifiedjile does not exist, it is created with the specified size. The size can be a simple integer 
to represent a number of bytes, or an integer followed by the letter k, m, or g to represent a number 
of kilobytes (1024 bytes), megabytes (l024K bytes), or gigabytes (1024M bytes). 

Por example, the following command sets the size of the file mydat to 5M bytes: 

, lsize 5111 lIIydat 

The following command increases the size of the file mydat by 200K bytes: 

, lsize -a 200k mydat 

The additional space is allocated to the file from the file system, but it is not initialized (it contains 
whatever happens to be in those disk blocks from the last time they were used). 

Isize will not decrease the size of a file. If the specified size is smaller than the file's current size, the 
command has no effect. 

Using Parallel 110 Calls 

5-2 

The rest of this chapter discusses the Paragon OSPIl parallel 110 calls you can use in parallel 
applications. These calls are part of the library [ibm. a, which is automaticaJJy searched when you 
link an application with the -ox switch. You can also use the switch -lox to search lihnx.a without 
using -ox. See "Compiling and Linking Applications" on page 2-5 for more information on these 
switches. 

NOTE 

The parameter filelD in the system call synopses in this chapter is 
an integer that represents an open file: a unit in Fortran, or a file 
descriptor In C. 

(J 

I:J 

IJ 
lJ 
(] 

IJ 
(~ 

I) 



I
··~ 

Ali 

r: 
r: 
I

'~ 

... 

I : 

r:: 
I~ 

I ... , 
I "C 

I "".' 
w 

I~ 

r~ 

r: 
I. "" 

.4' 

1-.. 
. M 

I',., 
.,~ 

Paragon'" OSF/1 User's Guide Using Parallel File I/O 

A call description at the beginning of each section or subsection gives a language-independent 
synopsis (call name. parameter names. and brief description) of each call discussed in that section. 
Differences between C and Fortran are noted where applicable. See Appendix A for information on 
call and ~eter types; see the Paragon ™ OSFll C System Calls Reference Manual or the 
Paragon M OSFll Fortran System Calls Reference Manual for complete information on each call. 

Opening Files 
Before you can use a file. you must open it, using standard OSFIl system calls or Fortran routines. 
For example. to open the file lusrldatlmydata for read and write access: 

/* eversion */ 
fd open("/usr/dat/mydata",OCREAT O_RDWR,0644); 

c Fortran version 
open(unit=10, file '/usr/dat/mydata', 

x status = 'new', form='unformatted') 

NOTE 

In Fortran, you must open the file with forrn='unforrnatted' in 
order to use any parallel 1/0 calls on the file. 

See "Special Considerations for Fortran" on page 5-4 for more information. 

Opening One File Per Node with "###" Filenames 

If you open a file with three or more # symbols in its filename. the series of # symbols is replaced 
by the node number (within the application) of the node that opens the file. The node number is 
padded with zeros to the length of the sequence of # symbols. 

For example. assume that you have the same program running on all the nodes of your application. 
and each node opens a file calledfile###. The result is that each node opens a separate file. Node 0 
opensjileOOO. node I opensjileOO1, node 2 opensjileOO2. and so on. If an application opensjile### 
for reading, the specified files (fileOOO.jileOO1.fileOO2. and so on) must exist. 

Filenames containing a sequence of one or two # symbols are not affected. For example. the file 
file## is a single file that is accessible by each node. 

5-3 



Using Parallel File I/O Paragon'" OSF/1 User's Guide 

If the number of digits in a node number exceeds the number of 41 symbols in the filename, the 
filename is extended, but only when necessary. For example, opening data.### in every node of an 
application running on 2000 nodes opens files data.OOO, OOta.OO1, data.OO2 ... OOta.998, data.999, 
data.1OOO, data.1OO1 ... data. 1 998, and data.1999. 

There is nothing special about files created in this way; each file created is a single ordinary file. For 
example, suppose an application creates ###myfile, writes into it, and then closes the file. This 
creates a series of files called OOOmyfile, OOlmyfiie, 002myfile, and so on. Each of these files is an 
ordinary file; for example, you can delete one without affecting the others, and there' s nothing to 
prevent node 1 from opening 005myfile. 

Special Considerations for Fortran 

5-4 

This section describes the special considerations that apply when opening files in Fortran. 

Formatted Versus Unformatted 1/0 

If you call openO with form .. 'formatted' (the default): 

• You must use only Fortran 110 statements to access the file. You cannot use any of the parallel 
110 calls described in this chapter on the file. 

• Only one node may perform 110 to the file. If you perform formatted 110 to the same file from 
multiple nodes, the results are undefined. 

If you open a file with form"" 'unformatted' , you can use either Fortran 110 statements or parallel 
110 calls to access the file. However, you must pick either one or the other: mixing Fortran 110 and 
parallel 110 to the same file can give unexpected results. 

Intel Supercomputer Systems Division recommends that you use form-'unformatted', and use 
parallel 110 calls for all file 110. This will give you the best 110 performance. 

If compatibility with other programs that use formatted 110 is required. you can perform formatted 
110 to an internal file or a string and then use cwrite() to write the data to a file. However. if you use 
a string you must add a newline (ASCII character 10) to the end of the string using the function 
charO, since neither formatted 110 to a string nor cwriteO will add these for you. For example: 

26 

include 'fnx.h' 
character*20msgbuffer 

write (msgbuffer, 26) answer, char(lO) 
format('The answer is: " i4, al) 
call cwrite(lO, msgbuffer, 20) 

[] 

[J 

I) 

(J 

IJ 
IJ 
IJ 
IJ 
1'1'1: ' 

.... 

IJ 



I' .. ·· 
iii 

I: 
r-' 

, .. 1: 

1-' 

IJ 
I: 

( " 

."'..1 

I ~I 

. cJ 

I ,'", 
. d 

['~ 

( '.1 
,JOJ 

I) 

Paragon™ OSF/1 User's Guide Using Parallel File I/O 

Alternatively, you can write a small program that translates your data files from unformatted to 
formatted and vice versa, and run it only when you need to share data with other programs. 

New Files 

If you call openO with status= 'new', the result depends on whether or not the program is running 
on multiple nodes: 

• If the program is running on one node (numnodesO is I or undefined), the openO fails if the 
file exists, as specified by the ANSI standard. 

• If the program is running on multiple nodes (numnodesO is greater than 1), the file is truncated 
if it exists, as though you had specified status='unknown'. 

This change makes it possible to specify status='new' when multiple nodes are opening a file that 
does not yet exist; with the standard Fortran semantics for statUS-'new', the first node to execute 
the openO statement would create the file, and the other nodes would fail because the file already 
exists. You can use the system call statO to determine if a file exists before you open it. 

Unnamed Files 

If you call openO with no filename, the result depends on whether or not you specified 
status- 'scratch': 

• If you did not specify status='scratch', the file is created in the current working directory with 
the filename fort.11!l!l, where 11!l!l is the unit number. The file remains after the program 
terminates. 

• If you specified status-'scratch', the file is created in the directory lusrltmp with the filename 
FTNxxxxxxxx.!J!l, where xxxxxxxx is the OSFIl process ID of the creating process and!J!l is the 
unit number. The file does not remain after the program terminates, whether it terminated 
normally or abnormally . 

For compatibility with the iPSe system, if you specified status- 'scratch' and the directory specified 
by the variable CFS MOUNT exists (or, if CFS MOUNT is not defmed, if the directory Icfs exists), 
the file FTNxxxxxxiX.!J!lis created in $CFS_MOUNT(or Icfs) instead of lusrltmp . 

5-5 



Using Parallel File 110 Paragon™ OSF/1 User's Guide 

Using 1/0 Modes 

Synopsis Description 

setiomode(fileID. iomode) 

iomode(fileJD) 

Set the JlO mode for a file. 

Return the cWTent 110 mode for a file. 

A parallel application can access a file in one of four JlO modes. Use setiomodeO to change an open 
file's JlO mode. and iomode() to determine an open file's current mode. 

setiomode() is aglobal synchronizing call. When a node calls setiomode(). it blocks until all the 
other nodes in the application call setiomodeO with the same arguments. setiomode() must be called 
by all the nodes in the application. even those that do not actually perform any JlO (this means that 
all nodes must open the file). Also, setiomodeO can only be used on an ordinary file. not a directory 
or a device special file. 

A file's JlO mode actually belongs to the file descriptor or unit through which the file is accessed. 
not to the file itself. The JlO mode is not stored with the file. and different programs can access the 
same file with different JlO modes (even at the same time). 

There are four JIO modes. each of which has a name and a number: 

M _ UNIX (0) In this mode. each node has its own file pointer and file operations are 
performed on a first-come. first-served basis. All files open in this mode (but 
you can change it with setiomodeO after opening the file). 

M _LOG (1) In this mode. all nodes share the same file pointer and file operations are 
performed on a flfSt-come. first-served basis. 

M_SYNC (2) In this mode, all nodes share the same file pointer and file operations are 
performed in order by node number. Records may be of variable length. 

M_RECORD(3) 
In this mode, each node has its own file pointer and file operations are 
performed on a first-come. first-served basis. However, records are stored in 
the file in order by node number. Records must be of a fixed length. 

The names M_ UNIX, M_LOG, M_SYNC, and M_RECORD are constants defined in the header 
files nx.h (for C) and fnx.h (for Fortran). You can use either these names or the corresponding 
numbers in your programs (using the names is recommended). 

The JlO mode you choose for a file determines which, if any, parallel JlO calls become synchronizing 
operations (that is. each node blOCKS until all nodes have made the call). The synchronizing 
operations for each mode are described in the following sections and are summarized under 
"Synchronization Summary" on page 5-31. 

.[~ 

[, .' .J 

~, 

ii..J 

11"' 11 i 
a..J 

f'"1 Ii -~1 

IJ 
IJ 
I i ... 

1:J 



I-? .. 
r: 
r: 
1-· 

.... 

I: 
I .. 

. <. 

1_..,., 
,,6 

r~ 

I :' 
I-.~ 

=' 

I: 

I, 
I~ 

I"" 
(-~. 

I: 
1_: 

.- ------_._-----

Paragon™ OSF/1 User's Guide Using Parallel File I/O 

In mode M _ UNIX (number 0), each node maintains its own file pointer. File access requests are 
honored on a first-come, first-served basis. If two nodes write to the same place in the file, the second 
node overwrites the data written by the fll'St node. Because the nodes do not have to communicate 
(to maintain common file information), this mode offers the greatest I/O performance. This mode is 
the default. 

Use this mode in applications where each node performs I/O on disjoint segments of the file, or 
where I/O accesses are synchronized by other means (such as message-passing inherent to the 
application). 

In mode M _LOG (number 1), all nodes share a single file pointer. File accesses are performed on a 
fust-come, fll'St-served basis. Whenever any node reads, writes, or moves the pointer, it affects the 
pointer position for all nodes. This may change the results of subsequent reads, writes, or moves by 
other nodes. This mode is useful for parallel log files. 

Closing a file in this mode is a synchronizing operation. When a node closes a file, the operation 
blocks until all the other nodes also close the file. 

In mode M_SYNC (number 2), all nodes share a single file pointer and the nodes access the file in 
a synchronized round-robin fashion. 

• All nodes share a single file pointer, as for M_LOG. 

• All the nodes in the application must open the file, and all must perform the same operations on 
the file in the same order. Reads and writes can be of variable sizes. 

• All file operations are synchronizing. 

ClOSing a file is a synchronizing operation, as for M_LOG. In addition, reading, writing, 
seeking (using IseekO) and detecting end-of-file (using iseof()) become synchronizing 
operations-tbey block until all nodes have called them. For example, when a node reads from 
a file with the parallel I/O call creadO, the node blocks and the read request is not honored until 
all other nodes have called creadO. 

5-7 



---.-------~-----------------. 

Using Parallel File 110 Paragon™ OSFI1 .User's Guide 

I] 

• All reads and writes to the file are performed in order by node number. '1 tAl 
For example, suppose node 3 in an application running on four nodes writes to a file with the 
parallel I/O call cwrite() before any of the other nodes. The node blocks until all the other nodes l: 
have called cwriteO. When all nodes have called cwrite(), the data from node 0 is written to the 
file flrst, followed by the data from node 1, then the data from node 2, and flnallythe data from 
node 3. (" i 

• The only valid use for IseekO is for all nodes to seek to the same position in the file. If nodes 
attempt to seek to different positions, an error occurs. 

M_RECORD (Mode 3) 

5-8 

Mode M_RECORD (number 3) gives results that are similar to M_SYNC, but it operates more 
efflciently. However, M_RECORD requires a flxed record size. 

• Each node has its own file pointer, as for M _ UNIX. 

• All the nodes in the application must open the file. and all must perform the same operations on 
the file in the same order. as for M_SYNC. 

• Corresponding reads and writes must be of the same size on all nodes. 

When a node reads or writes to the file for the nth time. it must read or write the same number 
of bytes as the nth read or write by every other node. For example. if node 0 writes 100 bytes to 
the file with its flrst call to cwriteO and 50 bytes with its second call to cwriteO, then all nodes 
must write 100 bytes with their flrst call to cwriteO and 50 bytes with their second call to 
cwrite(). 

NOTE 

No verification is performed. You must make sure that all the 
nodes in the application make the same calls and read and write 
the same number of bytes. 

If different nodes read different amounts of data. incorrect data will be read. If different nodes 
write different amounts of data, the output of different nodes will overwrite each other and/or 
leave areas of the file with uninitialized data. 

(" i J 

(J 

L~ 

IJ 
IJ 
IJ 
(J 

I~ 



I
·~ 

iij 

rJ 
I

·~ 

.JiI 

I: 

I ~I 

(
~'"1 

-'-I 

1-: 
.JJ 

I ~., 
. .J 

I~ 

r: 
IJ 
I] 

Paragon™ OSFI1 User's Guide Using Parallel File I/O 

• All reads and writes appear to be performed in order by node number. 

Because reads and writes are of a known length, each node can determine where in the file it 
should be reading from or writing to independently of the other nodes. The results of reading or 
writing a file with M _RECORD are the same as M _SYNC, but M _RECORD is more efficient 
because no synchronization is required. 

For example, suppose node 2 in an application running on four nodes writes a lO-byte record. 
Node 2's file pointer is f11'st moved forward by 20 bytes to leave room for the records from nodes 
o and 1. Next, node 2's record is written to the file (which advances the file pointer by 10 bytes). 
Finally, node 2's file pointer is moved forward by 10 bytes to leave room for node 3's record. 
The other nodes can fill in their "slots" at any time (earlier or later); no synchronization or 
communication between nodes is required. 

• Closing a file is a synchronizing operation, as for M _LOG and M _SYNC. 

• As for M _SYNC, lseekO becomes a synchronizing call, and the only valid use for IseekO is for 
all nodes to seek to the same position in the file. If nodes attempt to seek to different positions, 
an error occurs . 

An 1/0 Mode Example 

This section provides a small example program (in Fortran and C) that you can compile and execute 
to illustrate the differences between the various 110 modes. The source for this program can be found 
on the Intel supercomputer in lusrlsharelexampleslfortranliomodesliomodes.f(Fortran version) or 
lusrlsharelexampleslcliomodesliomodes.c (C version). 

The example program works as follows: node 0 gets an 110 mode from the user (specified as a 
number), creates a file called mydat in the current directory, then sends the 110 mode to the other 
nodes. The other nodes wait until they receive the mode, then open the file that node 0 created. 

Each node then writes 10 records to the file. Each record contains the time in seconds since the file 
was opened, to four decimal places, and the message "Hello from node x." Node 0 waits one second 
before each write to the file; the other nodes write as fast as they can (this demonstrates how writes 
to the file are differently synchronized in the different modes). When each node fmishes writing, it 
writes a "done writing" message to the screen. Then it closes the file and writes a "finished" message 
to the screen (the two messages show that, in some modes, c1oseO is a synchronizing operation). 

5-9 



Using Parallel File 1/0 Paragon™ OSF/l User's Guide 

Fortran Example 

11 

13 

c 

101 

5-10 

program iomodes 

include 'fnx.h' 

integer nunit, fail, mode, iam 
double precision start, now, loop_time, loop_start 
character*16 msg 
character*29 rnsgbuffer 

msg = 'Hello from node ' 
nunit = 12 
iam = mynode ( ) 

if(iam .eg. 0) then 
print *, 'Enter IIO mode (0, 1, 2, or 3):' 
read(*, 11) mode 
format (i1) 
open(unit = nunit, file = 'mydat', iostat = fail, 

x form = 'unformatted', status = 'new') 
if(fail .ne. 0) then 

print*, 'Could not open mydat' 
call killcube(-l, -1) 

endif 
call csend(l, mode, 4, -1, myptype()) 

else 
call crecv(l, mode, 4) 
open(unit nunit,file = 'mydat', 

x form = 'unformatted') 
endif 

call setiomode(nunit, mode) 
print 13, iam, iomode(nunit) 
format('Node " i4, , using mode' il) 

start = dclock() 
do 100 i = 1, 10 

*** if node 0, do nothing for 1.0 seconds *** 
if(iarn .eg. 0) then 

loop_start = dclock() 
loop_time = dclock() - loop_start 
if (loop_time .It. 1.0) goto 101 

endif 

( ',1!!1: 

-'" 

[--'i , ,;" 

." ~: !~ , 

Ii"", 

, 
I ___ ~ 

!" ", 
IIi~J 

~ 
iIl.i 

1''' 
It.., 

~ -, 

*..J 

I: 
I: 

I: 
I',~ 

.... 



I~.·· L 

I~ 

r: 
( ..... ' 

iO;, 

(: 

r: 
r: 

I 

r: 

Paragon'" OSF/1 User's Guide Using Parallel File 110 

c 
102 

14 

100 

15 

16 

*** all nodes now write a record to the file *** 
now = dclock() - start 
write (msgbuffer, 14) now, msg, iam, char(lO) 
format(f7.4, a17, i4, a1) 
call cwrite(nunit, msgbuffer, 29) 

continue 

print 15, iam 
format('Node " i3, ' done writing') 
close(nunit) 
print 16, iam 
format('Node' i3, ' finished') 
end 

C Example 

#include <fcntl.h> 
#include <stdio.h> 
#include <nx.h> 

main( ) 
{ 

int 
double 
double 
long 
char 

i, fd; 
start, now; 
loop_start, loop_cur; 
mode, iam; 
instring[40) , msg[40); 

iam = mynode ( ) ; 

if (iam == 0) { 
printf ( "Enter I/O mode ( 0, 1, 2, or 3): \n" ) ; 
gets ( instring) ; 
sscanf(instring, "%ld" , &mode); 
fd = open( "mydat" , 0 WRONLY I O_CREAT 

0666); 
if(fd == -1) { 

perror( "mydat") ; 
kill (0, 9); 

csend(l, &mode, sizeof(mode), -1, myptype(»; 
} else { 

crecv(l, &mode, sizeof(mode»; 
fd = open( "mydat" , O_WRONLY, 0666); 

} 

5-11 



Using Parallel File I/O Paragon™ OSFI1 User's Guide 

5-12 

} 

setiomode(fd, mode); 
printf("Node %d using mode %d\n", iam, iomode(fd»; 

start = dclock(); 
for(i=O;i<10;i++) { 

} 

if ( iam==O) { 
loop_start = dclock(); 
loop_cur = loop_start; 
while(loop~cur - loop_start < 1.0) { 

loop_cur = dclock(); 
} 

now dclock() - start; 
sprintf (msg, "%7. 4f Hello from node %4ld\n", now, iam); 
cwrite(fd, msg, strlen(msg»; 

printf ("Node %d done writing\n", iam); 
close(fd) ; 
printf ("Node %d finished\n", iam); 

Compiling and Running the Example 

To compile this program to a parallel application, use the following ir17 or icc command: 

% if77 -n% iomodes.f -0 iomodes 

or 

% icc -n% iomodes.c -0 iomodes 

When you run the resulting application, you may find the output easier to understand if you run the 
example on four or fewer nodes. Use the ·sz switch to determine the number of nodes on which the 
application runs (see "Controlling the Application's Execution Characteristics," on page 2-12 for 
information on ·sz and other application switches). 

r: 
(] 

I "', ' ' , ' 
"JIIoj 

I.",", 
.<oJ 

IJ 
I: 

( ", , 

Ai 

I: 



r: 

I··.·'" 
.1IJ 

r: 

I: 

r: 

1_-" 
. ...J 

(.-.-
~ 

I
·~i 

.-' 

(
-"'1 

.. d 

rJ 
["': 

Jl!J 

C 

Paragon'" OSF/1 User's Guide Using Parallel File 1/0 

For example. to run the application on two nodes of your default partition with 110 mode I 
(M_LOG): 

% iOlllodes -sz 2 
Enter I/O mode (0, 1, 2, or 3): 
1 
Node 0 using mode 1 
Node 1 using mode 1 
Node 1 done writing 
Node 0 done writing 
Node 1 finished 
Node 0 finished 
% 

The following example outputs came from the C version of the example. run on two nodes. 

In mode M _UNIX (0), each node has its own file pointer. Node 1 finishes right away. Node 0 waits 
before each write and overwrites the message from node 1. As a result, the file contains only the 
writes from node O . 

1.0000 Hello from node 0 
2.0087 Hello from node 0 

• 
9.0711 Hello from node 0 

10.0797 Hello from node o 

5-13 



Using Parallel File I/O Paragon"" OSFI1 User's Guide 

5·14 

In mode M _LOG (1). the nodes share a common file pointer. but there is no synchronization. As in .-"'1 
mode M _ UNIX. node 1 finishes right away; but this time. node 0 appends its data to the file rather Ii Mol 

than overwriting the data from node 1. 

0.0000 Hello from node 
0.0382 Hello from node 

0.0990 Hello from node 
0.1076 Hello from node 
1. 0000 Hello from node 
2.0086 Hello from node 

• 

• 
9.0712 Hello from node 

10.0804 Hello from node 

1 
1 

1 
1 
o 
o 

o 
o 

If the output file were large enough so that node 0 started before node 1 finished. the output of the 
two nodes would be interleaved in the middle of the file. 

In mode M_SYNC (2), the nodes share a common file pointer. and there is synchronization. Nodes 
1 and 0 fmisb at around the same time. Because node 1 waits for node 0 on each write. the writes are 
interleaved within the file. 

1. 0000 
0.0000 
2.0278 
1.1105 

9.2262 
8.1641 

10.2535 
9.1914 

Hello 
Hello 
Hello 
Hello 

• 
• 
• 

Hello 
Hello 
Hello 
Hello 

from node 
from node 
from node 
from node 

from node 
from node 
from node 
from node 

o 
1 
o 
1 

o 
1 
o 
1 

Note that node O' s records appear earlier in the file than node l's, but the time value shown for each 
record from node 0 is later than for the corresponding record from node I. TID s is because the value 
shown is the time at which cwriteO was called, but node l's record was not actually written to the 
file until node 0 had written its record. 

IJ 
(J 

I: 
(J 

IJ 



I: 
I-I! 

.C.IIO 

r: 
r: 
I: 

lJ 

I".. 
-~ 

I i 
~, 

I~ 

1_'" 
~: 

Paragon™ OSF/1 User's Guide Using Parallel File 1/0 

In this case, node 1 called cwriteO for the first time immediately after opening the file, at time 0, but 
the cwrite() blocked and the record was not written to the file until after node 0 called cwrite() for 
the first time, at time 1.0000 (1.0000 seconds after the file was opened). Node 1 then called cwriteO 
for the second time, at time 1.1105, but that cwrite() again blocked until after node 0 called cwriteO 
again at time 2.0278, and so on. 

M_RECORD Output 

In mode M _RECORD (3), the nodes access the file in round-robin fashion, but there is no lock-step 
synchronization. Node 1 fmisbes fll'st. Then, node 0 goes into the file and fills in its data in the 
correct places. Because the records are of a fixed length, node 0 bas no trouble doing this. The result 
is that the records are in the same order as in mode M_SYNC, but node 1 did not spend any time 
waiting for node O. 

1. 0000 Hello 
0.0000 Hello 
2.0208 Hello 
0.0505 Hello 

• 
• 
• 

9.1637 Hello 
0.1955 Hello 

10.1841 Hello 
0.2158 Hello 

from node 
from node 
from node 
from node 

from node 
from node 
from node 
from node 

o 
1 
o 
1 

o 
1 
o 
1 

Note that node 1 fmisbed in only 0.2158 seconds, without having to wait for node O. 

Reading and Writing Files in Parallel 
You can read and write files with the familiar OSF/I system calls and Fortran routines. For example, 
bere is a Fortran code fragment that opens a file wbose pathname is lusrldatlmydata and reads some 
data into an array called array using the Fortran read statement: 

open(unit=10, file='/usr/dat/mydata', form='unformatted') 
read 10, (array(j), j=l, n) 

In addition to the usual 110 facilities, the Paragon OSF/I operating system offers a series of parallel 
110 calls, which are discussed in the following pages. 

Like the message-passing calls, the parallel 110 calls offer you the cboice of synchronous or 
asynchronous 110. The synchronous calls begin with c (for "complete") and do not return until the 
operation is complete. The asynchronous calls begin with i (for "incomplete") and return 
immediately; you use the call iodoneO or iowaitO to determine wben the operation is complete. 

5-15 



- -~--------------

Using Parallel File I/O Paragon'M OSF!1 User's Guide 

If you program in Fortran, you should use the parallel 110 calls rather than Fortran 110 whenever you 
can. These calls offet better performance than the Fortran 110 routines. and you can test for the end 
of a file with iseofO. (This does not apply to C programmers; the usual C 110 calls are as efficient as 
their parallel 110 counterparts.) However. if you use paralIel 110 calls on a file. you must not use 
Fortran file 110 routines on the same file (for example. you must not mix write and cwriteO on the 
same file). 

NOTE 

Be careful when using parallel 1/0 to NFS files. 

The Intel supercomputer's disk 110 hardware and software are designed to suppon simultaneous 
access by large numbers of nodes. However. a remote NFS server may not be configured to suppon 
this level of access. If you perform large parallel 110 operations from large numbers of nodes to a 
file that is NFS-mounted from another computer. you may overload the network or the NFS server, 
resulting in poor performance or unexpected results. 

Synchronous File I/O 

5-16 

Synopsis 

cread(jileID. buffer. nbytes) 

cwrite(fileID. buffer. "bytes) 

Description 

Read from a file. waiting for completion. 

Write to a file. waiting for completion. 

The calls creadO and cwrite() perform synchronous file 110. They are equivalent to the standard 
OSF/I calls readO and wrlteO. except that they follow the same naming and error-handling 
conventions as the Paragon OSF/I message-passing calls (see "Names of Send and Receive Calls" 
on page 3-7 for information on the Paragon OSF/I system call naming conventions; see "Handling 
Errors" on page 4-27 for information on the Paragon OSF/I error-handling conventions). Unlike 
their standard OSFIl equivalents, these calls are available to Fortran programs (as well as C). 

For example, here is a C code fragment that writes the message "Hello from node x" to the file 
lusrldatlhello: 

fd = open( "/usr/dat/hello" , O_RDWR, 0644); 
• 

sprintf (buffer, "Hello from node %d\n", iam); 
cwrite(fd, buffer, strlen(buffer»; 

[J 

[J 

[J 

[J 

[J 

(J 

IJ 
(J 

[
"1 

, I 

A.i 

IJ 
IJ 
[J 



[
111. 

.~ 

( .
... 11' 

A.J 

r: 

rJ 
r: 

I· '1 

.J 

(,: 

I: 

I] 

Paragon TM OSF/1 User's Guide Using Parallel File 1/0 

Here is a slightly more complicated example: a Fortran code fragment that opens a file whose 
pathname is lusrldatlmydata, seeks to a location, and reads some data using the synchronous call 
creadO. The data represents a matrix stored in rows of n four-byte elements. Each node reads m rows 
and performs a calculation with each row (calling the Basic Linear Algebra Subroutines routine 
sdotO to get the dot product of two vectors). Because each node seeks to a different place in the file, 
you must use I/O mode M_UNIX (the default). 

open(unit=lO, file= 'jusrjdatjmydata , , form-'unformatted') 
Iseek(10, 4*mynode()*n*m, 0) 

do 10 i 1, m 
call cread(lO, arow, n*4) 
y(i) sdot(n, arow, 1, xtotal, 1) 

10 continue 

Note that when you open a file in Fortran, you must open it as sequential and unformatted to be able 
to use creadO and cwriteO. (Sequential is the default access, but you must specify 
form .. 'unforrnatted' .) 

NOTE 

Unlike their OSF/1 equivalents, these calls do not return the 
number of bytes read or written. 

If any error occurs, these calls print an error message and terminate the calling process. Reading past 
the end of a file is considered an error, so you must be certain you know how many bytes remain in 
the file before you read from it. You can use iseofO, to detect end-of-file, after each creadO. You 
can also use the following call to determine the length of a file: 

length = lseek(unit, 0, SEEK_END) 

This call sets the file pointer to the end of the file and returns the current position of the file pointer 
(that is, the file's length). You can then use Iseek(unit, 0, SEEK_SET) to return the file pointer to 
the beginning of the file. 

If you need to detect errors in reading and writing, you must program in C and use either the standard 
OSF/! calls (readO and writeO, described in the OSFll Programmer's Reference) or the underscore 
versions of the parallel I/O calls C creadO and _ cwrite(), described under "Handling Errors" on 
page 4-27). 

5-17 



Using Parallel File I/O Paragon'" OSF/1 User's Guide 

Asynchronous File 1/0 

5·18 

Synopsis Description 

iread(fi/eJD, buffer, nbytes) Asynchronous read from a file. (Do not wait for 
completion.) 

iwrite(fi/eJD, buffer, nbytes) Asynchronous write to a file. (Do not wait for 
completion.) 

iodone(id) 

iowait(id) 

Determine whether an asynchronous 110 
operation is complete. If complete, release the 
110 ID. 

Wait for completion of an asynchronous 110 
operation and release the 110 ID. 

The calls lreadO and iwrite() perform asynchronous file 110. 

NOTE 

The asynchronous calls currently work the same as the 
synchronous calls; they do not return until the specified 1/0 
operation has completed. True asynchronous operation will be 
provided in a future release. 

The asynchronous 110 calls return an 110 ID much like the message ID returned by the asynchronous 
message passing calls. You can pass this 110 ID to iodone() or iowaltO to determine when the 
asynchronous file 110 operation bas completed. 

NOTE 

The number of 1/0 IDs is limited, so you must use lodoneO or 
iowaitO to release each 10 after you use it. 

[) 

(j 

[) 

[J 

[J 

I~ 

[J 

[J 

[J 
~"'I 

'.oJ 
IJ 
( i 

J 

IJ 
IJ 



1-: 
r-: 
I: 
r: 
r: 
I ' ... 

.,' 

r
~>·! 

"-

[--
I, M 

I', -'" 
'" 

r: 
1"-" 

~,I 

1= 
I"' 
I~ 

rJ 

I: 
IJ 
r' '"': 

A,j 

Paragon TM OSF/1 User's Guide USing Parallel File I/O 

To check if an asynchronous 110 operation has completed, use the iodoneO call. It returns 1 if the 
asynchronous operation has completed and 0 otherwise. You can also decide to block on the 
completion of an asynchronous call. Use the iowaitO call for this. Both iodone() and iowaitO take 
the 110 ID as an input parameter. For example (in Fortran): 

c write to a file 
ioid iwrite(12, sbuf, size) 

• 
c Do some calculation ... 

c 
• 

Wait until the write completes 
call iowait(ioid) 

The number of available 110 IDs is limited; be sure to release IDs that are no longer needed. There 
are two ways to release an 110 ID: you can issue an iowaitO, as shown in the previous example, or 
you can keep issuing iodoneOs until an iodone() returns 1. 

Detecting End-of-File and Moving the File Pointer 

Synopsis 

iseof(fileID) 

lseek(fileID, offset, whence) 

Description 

Test for end-of-file. 

Move the read/write file pointer. 

The calls iseofO and lseekO are provided for both C and Fortran programmers. If you use parallel 
110 calls to perform file 110 in a Fortran program, you must use iseofO and lseekO instead of the 
equivalent Fortran features. 

The iseofO call returns I if the given file is at the end of the file and 0 otherwise. For example, the 
following Fortran code reads characters from the file open on unit 12, writing each one to the screen, 
until it reaches the end of the file: 

do while(iseof(12) .eg. 0) 
call cread(12, char, 1) 
print 300, iam, char 

300 format ( I Node I i3, I read: a1) , , 
end do 

5-19 



Using Parallel File I/O Paragon™ OSFI1 User's Guide 

The lseekO call moves the file pointer to offset bytes from the point specified by whence. which can 
be either a name or a number: 

• If whence is SEEK_SET, IseekO moves the pointer to offset bytes from the beginning of the 
file. 

• If whence is SEEK _CUR, IseekO moves the pointer forward offset bytes from its current 
position. 

• If whence is SEEK_END, IseekO moves the pointer to offset bytes after the end of the file. 

The names SEEK_SET, SEEK_CUR, and SEEK_END are constants defined in the header files 
unistd.h (for C) andfnx.h (for Fortran). For compatibility with the iPSC system, the numeric values 
0, 1. and 2 are also accepted (but using the symbolic names is recommended). 

IseekO returns the new position of the file pointer (measured in bytes from the beginning of the file). 

For example, the following C call moves the file pointer of the file open on file descriptor jd to the 
beginning of the file: 

#include <unistd.h> 

newpos c lseek(fd, 0, SEEK_SET); 

The following Fortran call moves the file pointer of the file open on unit 12 forward 500 bytes: 

include 'fnx.h' 

newpos = lseek(l2, 500, SEEK_CUR) 

Flushing Fortran Buffered 1/0 

5-20 

Synopsis 

forceflushO 

torflush(unit) 

Description 

Cause all buffered 110 to be flushed if an 
exception occurs. 

Flush all buffered 110 on a particular unit. 

The subroutines torceftushO and forDushO let Fortran programmers make sure that buffered 110 
actually goes to the associated file or device. 

Fortran 110 to files and devices other than the user's terminal is buffered-that is. when you write to 
a file. the data is stored in a memory buffer, and only written to the corresponding file or device when 
the buffer is full. However. if another node is waiting for some data to appear in a file, you might 

() 

[] 

r.! .... 

lj 

I .. -';~1 

".J 

IJ 
11 1 

.J 

IJ 



r: 
(

O,,! 

"" 

I: 
r: 
(

--<OJ 

-'" 

(--"" 

.. ' 

I: 
I ~~ 
1-' 

I: 
r: 

Paragon"" OSF/1 User's Guide Using Parallel File I/O 

want to force the contents of a unit's buffer to be written immediately. You can do this by calling 
rorflushO on the unit. For example, to flush all buffered 110 on unit 9 to the corresponding file or 
device: 

call forflush(9) 

Another possible problem with buffered 110 is that if the program is interrupted by an exception, 
buffered data that bas not yet been written to the file is lost. The subroutine rorceftushO establishes 
a signal handler that flushes all buffered 110 in case of an exception. You call it as follows: 

call forceflush 

Note that you must ~ rorceftushO before the exception occurs. You can use fpsetmaskO 
(described under "Floating-Point Control" on page 4-29) to control whether or not an exception 
occurs in case of cenain floating-point errors. -

Fortran 110 to the user's terminal is not buffered. You can avoid buffering to files and devices by 
using parallel file 110 calls such as cwrite() and iwrite() instead of Fortran 110. These calls do not 
buffer 110 into the Fortran 110 memory buffer; when the call returns, you can be sure the data bas 
been sent to the specified file or device. (However, there is some buffering within the operating 
system, which cannot be avoided.) 

Increasing the Size of a File 

Synopsis Description 

Isize(fi/eJD, offset, whence) Increase size of a file. 

You can allocate more space to a file with IsizeO. The Isize() call sets the file's size as specified by 
offset and whence: 

• If whence is SIZE_SET, Isize() sets the file's size to offset bytes. 

• If whence is SIZE_CUR, Isize() sets the file's size to the current file pointer position plus offset 
bytes. 

• If whence is SIZE_END, lsize() increases the file's size by offset bytes. 

The names SIZE_SET , SIZE_CUR, and SIZE_END are constants defined in the header files nx.h 
(for C) and jnx.h (for Fortran). For compatibility with the iPSC system, the numeric values 0, 1, and 
2 are also accepted (but using the symbolic names is recommended). 

5-21 



Using Parallel File I/O Paragon"" OSF!1 User's Guide 

5-22 

For example, the following Fortran call increases the size of the file open on unit] to one million 
bytes: 

include 'fnx.h' 

size = lsize(unit1, 1000000, SIZE_SET) 

The following C call increases the size of the file open on file descriptor jd by 5()(),OOO bytes: 

#include <unistd.h> 
#include <nx.h> 
int size, fd; 

size = lsize(fd, 500000, SIZE_CUR) 

The additional space is allocated to the file from the file system, but it is not initialized (it contains 
whatever happens to be in those disk blocks from the last time they were used). 

Isize() will not decrease the size of a file. If the size specified by offset and whence is smaller than 
the file's cUtTent size, the call bas no effect. 

The major use of this call is to ensure that enough disk space is available before you begin a lengthy 
calculation. Pre-allocating disk space can also improve disk performance. 

(~ 
.. ~ 

lJ 

I : ....J 

lJ 

11"': 
.. .,J 

I~ 

IJ 



I '~ 
'.a 

Paragon™ OSF/1 User's Guide Using Parallel File 110 

r: 
r: Performing Extended Arithmetic 

r: 

I: 
1-: 
I '.",., 

-~~ 

(: 
(] 

Synopsis Description 

eadd(el, e2) (C) Add two extended numbers. 
eadd(el, e2, eresult) (Fortran) 

ecmp(el, e2) Compare two extended numbers. 

ediv(e, n) (C) Divide extended number by integer. 
ediv(e, n, result) (Fortran) 

emod(e, n) (C) Give extended number modulo an integer 
emod(e, n, result) (Fortran) (remainder when e is divided by n). 

emul(e, n) (C) Multiply extended number by integer. 
emul(e, n, eresult) (Fortran) 

esub(el, e2) (C) Subtract two extended numbers. 
esub(el, e2, eresult) (Fortran) 

etos(e, s) Convert extended number to string. 

stoe(s) (C) Convert string to extended number. 
stoe(s, e) (Fortran) 

The extended arithmetic calls manipulate 64-bit integers, also called extended numbers. You use 
these calls to manipulate the parameters used by some parallel 110 calls (described in the following 
section). 

Extended numbers are unsigned 64-bit integers with values from 0 to 264 - 1 (approximately 
1.8 x 1019). 

• In Fortran, extended numbers are stored in a two-element array of type integer"'4. 

• In C, extended numbers are stored in a variable of type esize _t, a structure type dermed in the 
header file <sys/ estat.h>. (For compatibility with the iPSC system, there is also a header file 
<estat.h> that simply includes <syslestat.h>. 

You should always use extended arithmetic calls to operate on an extended number, rather than 
access its internal structure. 

5-23 



------ .--.. -~. ~.~. ~'-------".--. 

Using Parallel File 1/0 Paragon™ OSFI1 User's Guide 

Some of these calls return extended numbers. The C versions of these calls return a value of type 
esize _I. However. Fortran does not allow functions to return arrays. so the Fortran versions of these 
calls are subroutines with an additional parameter: the result of the operation on the first two 
parameters is stored into the third parameter. For example. the following call adds the extended 

. numbers eJ and e2 and stores the result in e _swn: 

/* eversion */ 
#include <sys/estat.h> 
esize tel, e2, e_sum; 
e sum = eadd(el, e2); 

c Fortran version 
integer el(2), e2(2), e_sum(2) 
call eadd(el, e2, e_sum); 

If you want to add an ordinary integer to an extended number. you must create your own extended 
number from the desired integer value. To create an extended number. use stoe(). This call takes a 
string whose value is a number, and returns the corresponding numeric value as an extended number. 
For example, the following code fragment adds I to the value of the extended number eJ. It does this 
by converting the string "I" to an extended number with stoe(), storing the resulting extended 
number in e2, and then adding e2 to el (note that in Fortran the string must be declared to be one 
character larger than the actual string being converted): 

/* eversion */ 
#include <sys/estat.h> 
esize_t el, e2, e_sum; 
char *one = "1"; 

e2 = stoe(one); 
e sum = eadd(e1, e2); 

c Fortran version 
character*2 one 
parameter (one ='1') 
integer el(2), e2(2), e_sum(2) 

call stoe(one, e2) 
call eadd(el, e2, e_sum) 

The other extended arithmetic calls allow you to subtract, multiply. divide, and find the remainder 
after division of extended numbers. When you useedivO or emodO. the divisor and answer must be 
4-byte integers, not extended numbers. Similarly, when you use emulO. the second argument must 
be a 4-byte integer, not an extended number. 

You can also compare two extended numbers; ecmpO returns -I, 0, or I. depending on whether the 
fll'St extended number is less than, equal to. or greater than the second. 

(J 

l~ 

(J 

[J 

r: 
Ii 
,,~ 

1 . ...J 

IJ 
IJ 
I : . ....1 

IJ 
IJ 
I] 
I, I .. 



r: Paragon™ OSF/1 User's Guide Using Parallel File I/O 

1--: Extended File Manipulation Calls 

r: 

(" 

I,"" 
-, 

( -1 
• J 

I: 
I ~, 

,-
1"1 

_J 

I~ 

r: 
I: 
[J 

Synopsis 

eseek(fildes, offset, whence) 
eseek(unit, offset, whence, newpos) 

esizeifildes, offset, whence) 
esize(unit, offset, whence, new size) 

Description 

(C) Move file pointer in extended file. 
(Fortran) 

(C) Increase size of extended file. 
(Fortran) 

estat(path, buffer) 

festatifildes, buffer) 

(Conly) 

(C only) 

Get status of extended file from pathname. 

Get status of open extended file from file 
descriptor. 

The e ••• O calls perform standard OSFIl file operations, but have parameters that are extended 
numbers (a data type capable of representing integers greater than 2G - 1). You must use the calls : . 
described under "Performing Extended Arithmetic" on page 5-23 to operate on extended numbers. -

• The call eseekO is like lseekO (discussed under "Detecting End-of-File and Moving the File 
Pointer" on page 5-19), except that the offset parameter is an extended number. The C version 
of this call is a function that returns the new position as an extended number; the Fortran version 
is a subroutine that stores the new position in its fourth parameter. 

• The call esizeO is like IsizeO (discussed under "Increasing the Size of a File" on page 5-21), 
except that the offset parameter is an extended number. The C version of this call is a function 
that returns the new size as an extended number; the Fortran version is a subroutine that stores 
the new size in its fourth parameter. 

• The calls estatO and festatO are like the standard OSFIl calls statO and fstatO (described in 
the OSFI] Programmer's Reference), except that they use a structure called estat, dermed in 
<syslestat.h>, which is the same as the OSF!1 stat structure except that the file size is an 
extended number. These calls are available only in C, not in Fortran. 

NOTE 

Although Paragon OSF/1 provides these calls for compatibility 
with the iPSe system, it does not currently support files larger than 
2G -1 bytes in size. Files larger than 2G -1 bytes will be 
supported in a future release. 

5-25 



Using Parallel File \/0 Paragon'M OSFI1 User's Guide 

[) 

Closing Files in Parallel [~ 
Use the standard OSF/I system calls or Fortran routines to close files. For example. to close the file , "'! 

open on file descriptor fd (C) or unit 10 (Fortran): i.~ 

/* eversion */ 11J ! 

close(fd); J 

c Fortran version 
close(unit=lO) 

NOTE 

If the I/O mode of the file being closed is anything other than 
M_UNIX. closing the file is a synchronizing operation. 

See "Using 110 Modes" on page 5-6 for more information. 

~=: 

~J 

Controlling Tape Devices 

I~ 

(J 

5-26 

Synopsis Description 

ioctl(fd. request. argp) Perform an operation on an open tape or other 
device. 

You can use standard OSF/I 110 calls or parallel 110 calls to open. read. and write tape devices. To 
control tape devices. use the standard OSFIl system call iocdO. The header file <syslmtio.h> 
defines the tape-specifJC structures and constants you need. 

NOTE 

Only one node at a time can open a tape device. and it must use 
1/0 mode M_UNIX (0). 

[J 

IJ 
I:] 

IJ 
IJ 
IJ 
IJ 
[~ 



( -"'" 
,JI<I 

I: 
r~ 

rJ 

I: 
I '~ 

(--

I'-".~ 
~J 

IJ 
( '-"" .J 

Paragon™ OSF/1 User's Guide Using Parallel File 1/0 

<syslmtio.h> dermes two constants you can use as the second argument of ioctIO: 

MTIOCTOP Perform operation on tape. 

MTIOCGET Get status of tape. 

The rest of this section explains the details of using these constants. 

Naming Tape Devices 

The Paragon OSF/l operating system uses the following conventions for naming tape devices: 

Idevltape!i. 

Idevlntape!i.. 

Idevlrtape!i. 

I devlnrtape!i. 

I devI3480tape!i.. 

I devl n3480tape!i. 

I devlr3480tape!i. 

Idevlnr3480tape!i.. 

Cartridge tape, rewinds automatically when closed. 

Cartridge tape, does not rewind automatically when closed. 

Raw cartridge tape, rewinds automatically when closed. 

Raw cartridge tape, does not rewind automatically when 
closed. 

3480 tape, rewinds automatically when closed. 

3480 tape, does not rewind automatically when closed. 

Raw 3480 tape, rewinds automatically when closed. 

Raw 3480 tape, does not rewind automatically when 
closed. 

In each case, !i.is the number of the corresponding physical tape device. The first device of each type 
on the system is number 0, the second is number 1, and so on. So, for example, to use the rust 
cartridge tape device with normal (block buffered) access and have it rewind automatically when 
closed, use the pathname ldev/tapeO. To use the same device with raw (unbuffered) access and have 
it not rewind automatically when closed, use the pathname Idev/nrtapeO. 

5-27 



Using Parallel File 110 Paragon™ OSF/1 User's Guide 

Performing Operati.ons on Tape Devices 

5-28 

When you caIIioctiO with MTIOCTOP as its second argument, you must use a structure of type 
mtop as the third argument. The mtop structure is dermed as follows: 

structmtop { 
short mt_op; /* operation to perform */ 
short fill; /* ignored */ 
long mt_count; /* how many operations to perform */ 

} ; 

This structure tells ioctlO what operation to perform. The valid values of the mt _ op field include the 
following constants: 

MTWEOF 

MTFSF 

MTBSF 

MTFSR 

MTBSR 

MTREW 

MTOFFL 

MTNOP 

MTRETEN 

MTERASE 

MTEOM 

Write mt _count end-of-file marks. 

Space the tape forward by mt _count files. 

Space the tape backward by mt _count files. 

Space the tape forward by mt _count records. 

Space the tape backward by mt_ count records. 

Rewind the tape. If the tape has been written to, writes two end-of-file marks 
before rewinding. (Two end-of-file marks indicate the end of data.) 

Rewind the tape and put the drive offline. If the tape bas been written to, 
writes two end-of-fIle marks before rewinding. 

No operation, sets status only. 

Retension the tape. 

Erase the entire tape. 

Position the tape at end of media (SCSI only). 

Closing the tape device after writing to it also writes an end-of-fIle mark (or two end-of-file marks 
if the tape was opened in variable-block mode or the tape mode "rewind" is set). If the tape was 
opened in variable-block mode, the tape bead is then positioned between the two end-of-file marks, 
so that any subsequent write will overwrite the second one. 

[~ 

[J 

(J 

I. ~ I 
.1t.I 

IJ 

I'!f ~1 
I' 

Ii .. ~ 

IJ 
(J 

IJ 
IJ 



r: 
r

-~ 

~I 

(~ 

I: 

I, "'-
-0 

(: 
(-

.iLci 

I '"' 
.. '"' 

I~ 

1--"" 
.-" 

r: 
r--'!I 

.,;.j 

Paragon™ OSF/1 User's Guide Using Parallel File 1/0 

For example, the following C program rewinds the tape on the device connected to /dev/tapeO: 

#include <fcntl.h> 
#include <errno.h> 
#include <sys/mtio.h> 

main() { 
int fd; 

} 

struct mtop s; 

fd = open("/dev/tapeO", O_RDONLY, 0666); 
if(fd == -1) { 

} 

perror( "opening /dev/tapeO"); 
exit (1) ; 

s.mt_op = MTREW; 
s.mt_count = 1; 
if (ioctl(fd, MTIOCTOP, &s) == -1) { 

perror ( "rewinding tape"); 
exit (2) ; 

} 

Getting Status of Tape Devices 

When you call ioctlO with MTIOCGET as its second argument, you must provide a structure of 
type mtget as the third argument. The mtget structure is defined as follows: 

struct mtget { 

} ; 

short mt_type; /* type of magtape device */ 
short mt_dsreg; /* "drive status" register */ 
short mt_erreg; /* "error" register */ 
short mt_resid; /* residual count */ 

ioctJO fills in the elements of this structure with information about the device. The value of the 
muype field is always OXOC (indicating a generic SCSI device). The values of the mt_dsreg and 
mt_erreg fields are device-dependent. 

5-29 



Using Parallel File VO Paragon'M OSFft User's Guide 

For example, the following C program prints the status of the device connected to ldev/tapeO: 

5-30 

#include <fcntl.h> 
#include <errno.h> 
#include <sys/mtio.h> 

main() { 
int fd; 

} 

struct mtget s; 

fd = open(l/dev/tapeO", O_RDONLY, 0666); 
if(fd == ~1) { 

} 

perror("opening /dev/tapeO"); 
exit( 1) ; 

if (iootl(fd, MTIOCGET, &s) == -1) { 
perror( "getting status of tape"); 
exit(2) ; 

} 

printf ( "mt _type = Ox%x\n", s. mt _type) ; 
printf ("mt_dsreg = Ox%x\n", s .mt_dsreg); 
printf ( "mt _ erreg = Ox%x\n", s. mt _ erreg) ; 
printf ("mt_resid 0= Ox%x\n", s .mt_resid); 

I 

[
.'tII I 
JI 

(J 

~"l 

~J>J 

I: 
I: 
IJ 

(~ I 

1-, 
..J 

IJ 



('" 
. JO, 

r: 
I·""., 

"'. 

r: 

1'-' 
_.lJ.J 

I: 

r= 
I··...,.··. ~, 

I J 
(J 

ParagonT .. OSF/1 User's Guide Using Parallel File I/O 

Synchronization Summary 
Table 5-1 lists the I/O modes and summarizes the I/O calls that are synchronizing calls in each one. 
Table 5-2 lists the most commonly-used I/O calls and summarizes the I/O modes that cause them to 
become synchronizing calls. 

Table 5-1. Synchronization in Each VO Mode 

I/O Mode 110 Calls that Synchronize 

M UNIX setiomodeO 

M_LOG setiomodeO and close() 

M_SYNC All 

M_RECORD setiomodeO. IseekO. eseekO. and closeO 

Table 5-2. File VO Calls that Synchronize 

Call I/O Modes Causing the Call to Synchronize 

cIoseO M_LOG. M_SYNC. and M_RECORD 

creadO M SYNC 

cwriteO M_SYNC 

eseekO M_SYNC and M_RECORD 

ireadO M SYNC 

iseofO M SYNC 

iwrite() M SYNC 

IseekO M_SYNC and M_RECORD 

setiomodeO All 

5-31 



I; 
Using Parallel File I/O Paragon 1M OSFl1 User's Guide () 

[J 

(J 

[J 

l: 
~ 
I~ , I 

JIOI 

,,"1'1 

!.I. _" 

rf"'l 
~..J 

~~ I 

."" 

[J 
[i 

k' 
iII....J 

rr~ 

~~ 

I: 
I: 
IJ 
IJ 
IJ 
IJ : 

IJ 
5-32 IJ 



I·~ 
/Ii 

I
···~ 

.. 
r
~ 

--* 

I
~~ 

.JtJ 

(-.. , 
( -.'" 

ill 

(J 

1_--1 

• J 

1--' 

I: 

1-""1 

~' 

I: 

Designing a Parallel Application 

Introduction 
This chapter describes some general design guidelines to follow when writing parallel applications. 
However. the best way to become skilled in parallel programming is to do it. With that in mind. this 
chapter presents three examples of parallel applications. Each example is intended to illustrate a 
different aspect of parallel design technique. 

• The first example is a nearly-perfectly-parallel application that evaluates a defmite integral to 
calculate 1t. This example illustrates how a sequential application can be ported to a parallel 
system with minimal effort. Much of the sequential algorithm can be maintained. The parallel 
design consists of separating the user interface from the core computation and then distributing 
that core computation onto the nodes. 

• The next example is the multiplication of a matrix by a vector. In addition to the numerical 
technique. this example illustrates the use of parallel file 110 by assuming a matrix that is too 
large to reside entirely in memory. 

• The third example solves a classic computer science problem called the N-Queens problem . 
Given a chess board with N x N grid locations. where can you place N queens so that no queen 
is under attack? This example illustrates a technique called control decomposition. This 
technique also appears in more complicated real-world applications such as electronic design 
rule checking. 

6-1 



Designing a Parallel Application Paragon™ OSF/1 User's Guide 

The Paragon ™ OSF/1 Programming Model 
As described in Chapter I, the Intel supercomputer is a distributed-memory parallel computer with 
a high-speed interconnect network. The following characteristics of the system should be kept in 
mind when designing or porting applications: 

• The system is made up of an ensemble of processor/memory pairs called nodes. The nodes do 
not share memory. They present a single system image (for example, a process running on one 
node can send a signal to a process running on another node), but the nodes operate 
independently of each other. 

• All the nodes are fully connected. They communicate with each other and the host by passing 
messages. 

• Each node executes its own program. In many applications, it turns out that each node executes 
the same program on a different set of input data. There may be some conditional code that 
identifies one or more nodes that perform special actions. 

These characteristics influence the design of parallel applications, as described in the remainder of 
this chapter. 

Parallel Programming Techniques 

6-2 

Parallel applications have varying degrees of parallelism. A perfectly-parallel application is one that 
requires no internode communication. In a perfectly-parallel application, if you double the number 
of nodes, you halve the computation time. 

Most applications involve a mix of computation and internode communication; in these applications, 
increasing the number of nodes reduces the computation time, but can never yield a "perfect" 
speedup. The more time a program spends communicating instead of computing, the less speedup 
you get by adding nodes. 

In order to get the best possible speed from a parallel program, you must design it so that each node 
spends as much time as possible computing, and as little time as possible communicating (or waiting 
for communication). Here are some techniques that can help you to do this: 

• Separate the user interface from the computational parts of the code. 

• Distribute the computation among the nodes so that their computational load is evenly balanced. 

• Write your application so that you can run it on more nodes, thus improving performance, 
without having to recode. 

• Design your internode communication such that the nodes spend as little time in communication 
(or waiting for communication) as possible. 

The following sections tell you more about these techniques. 

------ ._------------

IJ 

[J 

(. l"1 
: I .,. 

IJ 
IJ 
[J 

11 
...J 

IJ 
IJ 
lJ 
I) 



r: 
r: 
rJ 

Ij 

I: 
rJ 
I

----~I 

I ' 

,.J 

I
~ 

.... cI 

( --'" 

"" 

r''''', 
• 

I ~,'~ 
""" 

r: 
(J 

Paragon™ OSF/1 User's Guide Designing a Parallel Application 

Separating the User Interface from the Computation 

To have each node do as much computation, and as little non-computational work, as possible, you 
should anal yre the algorithm and separate the user interface from the computational kernel. You can 
designate one of the nodes to handle the user interface, or put the user interface in the application's 
controlling process (see "The Controlling Process" on page 4-13 for information on this process). 
In either case, the part of the program that handles the user interface and the part of the program that 
does the computation communicate by passing messages. 

In the 1t example, node 0 requests the number of integration intervals from the user. It then sends that 
number to the other nodes, and all the nodes do the calculation. 

Balancing the Load 

You should keep all the nodes busy and have them finish at the same time, because if some nodes 
have to wait for others to finish, they're wasting cycles doing nothing. Analyze your application and 
distribute the computation among the nodes so that their computational load is evenly balanced. 

The process of distributing a problem among the nodes is referred to as problem decomposition, or 
just decomposition. There are two kinds of decomposition: domain decomposition and control 
decompositioll. 

Domain Decomposition 

In domain decomposition, the input data (the domain) is partitioned and assigned to different 
processors. How you divide and distribute the data among the nodes can have a significant effect on 
the efficiency of your application. 

For example, consider an application that performs image enhancement (see Figure 6-1). Because 
some parts of the image may be more detailed than others, they will require more processing. The 
shaded portion of Figure 6-1 shows the work done by node O. If you divide the image sequentially 
among the nodes, as shown in the top half of Figure 6-1, some nodes may get a partition that requires 
a lot of work and other nodes may get a partition that requires little or no work. In the top half of 
Figure 6-1, node 0 gets a lot of work and node 7 gets no work at all. This is inefficient. 

You can often achieve better load balancing by dividing the image into smaller partitions and then 
distributing the partitions sequentially among the nodes, as shown in the bottom half of Figure 6-1 . 
This is analogous to dealing out the partitions like cards in a deck; it spreads out the work more 
evenly among the nodes. As the bottom half of Figure 6-1 shows, each node gets some slices that 
require a lot of work, some slices that require a modemte amount of work, and some slices that 
require no work. This is more balanced and efficient for this type of problem, and may be appropriate 
for your problem as well. 



------------------.-.. ----~. --" --.-~---------.---------.------

Designing a Parallel Application Paragon™ OSF/1 User's Guide 

6-4 

Poor load balancing: Nodes 0 through 3 get most of the work. 
Nodes 4 through 7 have little or nothing to do. 

o 2 3 4 5 6 7 

Good load balancing: The partitions in the domain are dealt out to 
the nodes like cards from a deck. Now, each node has 
approximately the same amount of work. 

1 1 1 1 1 1 1 1 
2 2 2 2 2 2 2 2 

3 3 3 3 3 3 3 3 
4 4 4 4 4 4 4 4 

5 5 5 5 5 5 5 5 
6 6 6 6 6 6 6 6 

7 7 7 7 7 7 7 7 

Figure 6-1. Using Domain Decomposition to Achieve Load Balancing 

I) 

[~ I 

_.JI 

() 

[J 

I ~I 

".J 

IJ 

IJ 
I: 

IJ 
IJ 



r: 

I: 
r: 
I

··~ 

~, 

I: 

I .. 
"" 

I: 
I
-~ 

. .;J 

1"'1\ 
~ 

Paragon™ OSF/1 User's Guide Designing a Parallel Application 

Control Decomposition 

Control decomposition, on the other hand, divides the tasks to be performed rather than the data. For 
many problems, this is a more natural decomposition. 

For example, consider a tree-search used in a game-playing algorithm. Assume that you're at some 
mid-level of the tree. You could approach the problem as a domain decomposition and divide the 
current branches among the nodes. Each node would then follow its branch down to the leaves and 
then return the leaves as an answer. The leaves in this case are the possible moves. Depending on 
the current state of the game, some of the branches may be quite involved and require a great deal 
of processing. Other branches may be simple. The result is that some nodes finish before others. This 
is a poor problem decomposition. 

Approaching this problem as a control decomposition achieves better load balancing. In a control 
decomposition, you think of the branches not as data partitions but rather as tasks that need to be 
performed. 

To manage these tasks, you have to introduce a little bureaucracy. Assign one node as a manager 
node. This manager node then gives tasks to idle nodes. When the node fInishes a task, it reports its 
answer and requests another task. It's this "reporting for duty" that characterizes a control 
decomposition. 

The manager node must, of course, do some initial setup. For example, it may follow the tree down 
until the number of branches exceeds the number of available nodes by some predetermined factor. 

This method produces the best results when the tasks assigned near the end of the problem are about 
the same size. For example, if one of the last tasks assigned was a very long task, the other nodes 
may be idle while that last node finishes. 

The N-Queens example (presented later in this chapter) shows control decomposition. 

Making the Program Independent of the Number of Nodes 

You should write your application so that you can run it on more nodes, thus improving 
performance, without having to recode. 

This method also turns out to be the most natural one to use when porting an existing sequential 
application. After you've separated the user interface from the core computation, you still have a 
sequential algorithm, but you can think of it as the special case of an application that runs on one 
node. Once you have done this, you can parallelize the computation part for an arbitrary number of 
nodes. 

The 1t example illustrates this technique. The number of nodes appears only as the variable nodes. 

6-5 



..•. -.~------------------ ---~-~.--.---, .. - . 

Designing a Parallel Application Paragon™ OSF/1 User's Guide 

Designing Your Communication Strategy 

Your should design your internode communication such that the nodes spend as little time in 
communication as possible. This may involve running some tests to determine an optimal message 
length. Often, you can decrease the number of messages by increasing the size of each message. You 
may also be able to improve communication performance by using asynchronous message-passing 
calls, as described under "Asynchronous Send and Receive" on page 3-10. 

Using Global Operations 

You should use the global operations, described under "Global Operations" on page 3-29, when 
possible. That section described a simple example of a global sum. Using gdsumO results in a 
significant improvement over having one node perform the global sum by explicitly collecting all 
the partial sums. Also, after the execution of the gdsumO, the global sum is available on each node. 

The matrix*vector example in this chapter uses another global operation called gcolxO. In that 
example, a large vector is distributed over the nodes. gcolxO collects the components from each 
node and constructs the complete vector on each node. As with gdsumO, the answer is available on 
each node. 

Using Alternate Node Topologies 

The nodes in the Intel supercomputer are connected in either a hypercube or a mesh network. 
However, because of the specialized message-passing hardware in both architectures, 
communication with distant nodes is nearly as fast as communication with neighboring nodes. This 
means that you do not have to structure your application's communications as a hypercube or mesh; 
you can choose an alternate topology that makes more sense for your program. This can make your 
program easier to write and understand, at a tiny cost in performance. 

When you use an alternate node topology, you embed your node topology (a virtual topology) into 
the nodes' actual network topology (the physical topology). One example of a virtual topology is the 
ring. This topology is useful in certain types of many-body calculations. The technique consists of 
partitioning the particles into groups and assigning each group to a different node. A node then 
calculates the state of its group. This state information is then passed to another node which 

I] 

[J 

(J 

IJ 

lJ 
IJ 

I) 

I)' 



(
-111 

aJ 

I · .. 
~ 

r: 
I: 

I~ 

(--
.... 

I· ~; 
-'", 

I~ 

I : 
I
~: 

~ 

I
"~ 

~> 

1"''''1 

~ 

I: 

c 

Paragon™ OSF/1 User's Guide Designing a Parallel Application 

calculates the state of its own particles and takes into account the state received from the previous 
node. The state information moves from node to node around a ring. You can implement a ring 
topology by writing a function like this one: 

succ(int n) 
{ 

} 

int maxnode; 
maxnode = numnodes() - 1; 

if ( (n >= 0) && (n < maxnode» 
return(n+l) ; 

else if (n == maxnode) 
return(O); 

else 
return ( -1); 

Given a valid node ID (n), this function returns the node ID of the successor of node n in a ring 
embedded in a partition with numnodesO nodes. Else it returns -1. (The predecessor function is 
similar.) A node can send a message to process type 0 on its successor node with the following 
csendO call: 

csend(MSGTYPE, buf, sizeof(buf), succ(mynode(», 0); 

Example Application: Calculating pi 
This application uses an n-point quadrature rule to evaluate the following defmite integral: 

1 

7[-J 4 dx 
- 0 (1 +i) 

Admittedly, using the power of an Intel supercomputer for such a simple application is overkill, but 
the application demonstrates concepts that are just as valid for more challenging problems. 

6-7 



-------------.--~~~ 

Designing a Parallel Application Paragon 1M OSFI1 User's Guide 

6-8 

Here is.a sequential program (written in Fortran) that evaluates the above integral. The source for 
this program is available on the Intel supercomputer in lusrlsharelexamplesl!ortranlpilpiserial.j. 
Note that the user interface consists only of a read statement that solicits the number of intervals. 

program piserial 
double precision h,sum,x,pi,f,a 
integer n 

c Define the function 
f(a) = 4.0dO/(1.dO + a*a) 

c Input the number of intervals. 
1 print *,' Enter number of intervals:' 

read(S,*,end=100) n 

c Calculate the scaling factor 
h = l.dO/n 

c Integrate. The value of x used to calculate the slice is 
c the value at the midpoint of the integration slice. 

sum = O.dO 
do 10 i = 1,n 

x = h * (dble(i) - O.SdO) 
sum = sum + f(x) 

10 continue 
pi = h * sum 

c Output the answer 

c 

print *,' The value of pi for' ,n,' intervals is',pi 
goto 1 

c Terminate 
100 stop 

end 

In the parallel version of this program, each node performs a portion of the integration. The 
decomposition is a domain decomposition that "deals out" the work, as illustrated in Figure 6-2. For 
example, if you choose 16 nodes and 512 points, each node gets 32 points. The first point goes to 
node 0, the second point goes to node I, and so on through the 16th point, which goes to node 15. 
The 17th point goes to node 0, the 18th point goes to node 1, and so on until all the points have been 
dealt out. (It is not strictly necessary to deal out the work in this way, because the integration work 
is evenly balanced. However, since the data is calculated by each node, it is just as easy to deal out 
as not, and this example deals out the data to give you an example of this technique.) 

[) 

[) 

[~ 

IJ 
~J 

IJ 
IJ 
IJ 
IJ 
IJ 

l~ 



n 
1_8 

r~ .Ji 

r: 
1--.. 

.:Iii 

( --. 
.. 

I: 
1_.,." 

"", 

r~ 

r: 
I~ 

r: 
I: 
" r

--~ 

I: 
I: 
I-~ 

I
--~ 

.~ 

r~ 
;:.J 

1_-' .... 

[~ 

~ 

Paragon™ OSFI1 User's Guide 

4 
f(x) = 

1 + x2 

Node Numbers 

X Values 

Designing a Parallel Application 

o 1 

I~ 

o 1 2 3 4 5 6 7 8 9 10 1112131415 0 1 2 3 4 5 ... . .. 1415 

o 0.03125 
~, __________ ~ r-__________ ~J 

y 
For 512 points you have 32 

groups of 16. 

Figure 6·2. The Decomposition Used for the pi Example 

... 1 

6-9 



-------------- --------~------~------------

Designing a Parallel Application Paragon TM OSF/1 User's Guide 

6-10 

Here is the parallel version of the program. The source for this program is available on the Intel 
supercomputer in /usr/share/examples/Jortran/pi/pinode.f, differences from the serial version are 
shown here in boldface. 

program pinode 
include 'fnx.h' 
double precision h,sum,x,pi,f,a,tmp 
integer n 
integer nodes, iam, intsiz 

data intsiz / 4 / 

c Define the function 
f(a) = 4.0dO/(I.dO + a*a) 

c Do some bookkeeping 
iam "" mynode ( ) 
nodes - numnodes() 

1 
c 

if(iam .eq. 0) then 
Input the number of intervals. 
print *,' Enter number of intervals:' 
read(S,*,end=IOO) n 
call csend(300,n,intsiz,-1,0) 

else 
call crecv(300,n,intsiz) 

endif 

c Calculate the scaling factor 
h = l.dO/n 

c Integrate. The value of x used to calculate the slice is 
c the value at the midpoint of the integration slice. 

sum = O.dO 
do 10 i = iam+l,n,nodes 

x = h * (dble(i) - O.SdO) 
sum = sum + f(x) 

10 continue 
pi = h * sum 
call gdsum(pi,l,tmp) 

if(iam .eq. ° )then 
c Output the answer 

c 

print *,' The value of pi for' ,n,' intervals is',pi 
endif 

goto 1 

[) 

l~ 

II 

IJ 

lJ 
IJ 
1_ : .... 

IJ 
IJ 
(] 



I: 
r: 
r: 
I: 
(

~''II' 

.m 

I~ 
I···~ 

I
~ 

-, 

I <f", 

,.' 

I.~ 
-'" 

r: 

I·.·~ 
;aI 

Paragon™ OSF/1 User's Guide Designing a Parallel Application 

c Terminate all nodes 
100 i = kill(O, 9) 

end 

Note that the parallel version is not much longer than the sequential version. Note also that the 
decomposition takes place entirely in the do statement. The sequential version is: 

do 10 i = 1,n 

while the parallel version is: 

do 10 i = iam+l,n,nodes 

If you run the application on more nodes, you don't have to change one line of the node program! 

In the parallel version, only node 0 interacts with the user. The other nodes do only calculation. If 
the print and read statements were not surrounded with if(iam .eq. O)then ... endif statements, then 
when you ran the program on 100 nodes you would have to input the number of intervals 100 times 
and see the answer 100 times! 

Example Application: Matrix*Vector Multiplication 
The following example computes the matrix-vector product y = Ax, where A is an n x n matrix and 
x and y are vectors with n components. In addition to the numerical technique, this example 
illustrates the use of the parallel file 110 calls. 

The matrix A is assumed to be too large to fit in the node's memory, requiring an "out-of-core" 
multiplication. For simplicity, n, the number of rows in the matrix, is assumed to be divisible by p, 
the number of nodes in the application. The number of rows per node, nIp, is referred to as m. 

The problem decomposition is again a domain decomposition. Each node collects all of x, but then 
takes only a portion of A (specifically m rows) to form its portion of the product vector. There is no 
attempt to "deal out" the rows of A. 

The vector x is initially divided among the nodes. (This example assumes that each node has 
obtained its portion of x before this routine is called.) Each node contains m components of x. Node 
o has components 1 through m; node 1 has components m + 1 through 2*m, etc. (In general, node Z 
has components (Z-I)*m through Z*m.) The answer, the vector y, will be stored in the same way. 

The matrix A, which is too large to fit in a single node's memory, is also divided among the nodes. 
It is initially stored in a file called matrix. The elements of the matrix are stored in the file by rows, 
as follows: 

A(1,I), A(1,2), ... A(1,n), A(2,1), A(2,2), ... A(2,n), ... A(n,l), A(n,2), ... A(n,n) 

6-11 



--- ------ -.--~-----.-------------.-----------.. ----~~---- --------------

Designing a Parallel Application Paragon™ OSF/1 User's Guide 

6-12 

Each row of the matrix A has n elements of length REALSlZE bytes, and so each row takes up 
n* REALSlZE bytes in the file. Each node is responsible for m rows in the matrix; it reads its portion 
of the matrix from the file by fIrst moving the file pointer to mynodeO*m*n* REALSlZE bytes from 
the beginning of the file, then reading m rows of n* REALSlZE bytes each beginning at that point. 

Here is the code that collects x, reads the node's portion of A, and performs the multiplication: 

c 

subroutine matvmul(m, n, x, y, xtotal, arow) 
integer REALSIZE 
parameter(REALSIZE = 4) 
integer ncnt, fileptr, xlens(128) 
integer m, n 
real x(m), y(m), xtotal(n), arow(n) 

c m is nip where n is the dimension of A 
c and p is numnodes() 
c 
c Collect all of x on each node. 

do 3 i = 1, numnodes() 
xlens(i) m*REALSIZE 

3 continue 
call gcolx(x, xlens, xtotal) 

c 
c Open the file and seek to the appropriate location 

open(unit=lO, file = 'matrix', 
+ form = 'unformatted') 
fileptr = Iseek(10, mynode()*m*n*REALSIZE, 0) 

c 
c Read the rows and use the BLAS call sdot() to do 
c the mUltiplication. 

do 10 i = 1, m 
call cread(10, arow, n*REALSIZE) 
y(i) = sdot(n, arow, 1, xtotal, 1) 

10 continue 

• 

This subroutine takes the following parameters: 

m 

n 

x 

The size of each node' s portion of the matrix A and the vector x (nIp). 

The number of rows and columns in the entire matrix A and the number of 
elements in the entire vector x. 

This node's portion of the vector x (m elements). 

Ii 
IJ 
","1 

~ "' 

IJ 
IJ 
(J 

11 
J 

(J 

(J 

I~ 



1-."' 
II 

rll 
:.til 

r: 
(: 
r: 
r

·~ 

.iiIII:! 

1_,.. 
Ai 

I: 
I ~~."" 

.J 

I: 
r: 

I " 
.tiJ 

I-~. 
1!J 

I~ 

U 

Paragon™ OSF/1 User's Guide Designing a Parallel Application 

y This node's portion of the result vector y (m elements). 

xtotal A temporary array used to hold the entire vector x (n elements). 

arow A temporary array used to hold one row of the matrix A (n elements). 

The subroutine first calls gcolxO to collect the nodes' portions of x together into the array xtotal.1t 
then opens the file containing A, moves the file pointer to the beginning of the section of the file that 
belongs to this node, and then reads m rows from the file. After reading each row, it uses the BLAS 
(Basic Linear Algebra Subroutines) routine sdotO to perform the dot product between the current 
row and the vector x, storing the result (a scalar) into the appropriate element of the vector y. 

NOTE 

You must use the -Ikmath switch on the 1m command line to link 
in the library that contains sdotO. 

See the Paragon ™ OSFIl Fortran System Calls Reference Manual for more information on gcolxO; 
see Chapter 5 for information about parallel file 110; see the CLASSPACK Basic Math Library 
User's Guide or CLASSP ACK Basic Math LibrarylC User's Guide for more information on sdotO. 

Example Application: The N-Queens Problem 
This application collects all the board configurations that solve the N-Queens problem. This problem 
is: "Given an N x N chess board, where can you place N queens so that no queen can capture any 
otherT In chess, queens attack in straight lines along the X, Y, and diagonal directions. 

The N -Queens problem is typical of problems for which there is no analytical solution. Instead, there 
exists a large set of candidate solutions. You test each solution and accept those that pass. 

The difficulty lies in the enormous size of the candidate set. For example, an 8 x 8 chess board has 
64 squares. The total number of possible positions for 8 queens can be represented as the 
combination of n=64 things taken m=8 at a time. The formula for the number of combinations is: 

n! I ( m!* (n-m)! ) 

which evaluates to 232 possibilities. Even on a state-of-the-art sequential computer, it would take 
several hours to check every one of those combinations. 

Even before you begin thinking about an algorithm, however, you can eliminate a large number of 
possibilities. For example, any solution that has more than one queen in the same column is invalid. 
This reduces the number of possibilities to 88 or 224. 

6-13 



Designing a Parallel Application Paragon ™ OSF 11 User's Guide 

6-14 

This section shows how to use an Intel supercomputer to evaluate those 224 possibilities. You can 
arrange the possibilities into a tree. The technique involves following a tree down until it either 
reaches a dead end (an invalid state) or until it reaches a leaf (a valid solution). Figure 6-3 illustrates 
such a tree. To make the figure simpler, the chess board is shown as 4 x 4. Instead of 224 possibilities, 
you have 28. 

The root of the tree (the zero level) is the null board - no queens present. The next level (the first 
level) consists of states where a queen is in each of the positions that make up the first column. In 
Figure 6-3, there are four of those. In an 8 x 8 board, there would be eight. 

The next level (the second level) consists of states with two queens on the board, one in the first 
column and one in the second. In Figure 6-3, there are four of those under each second level state. 
Notice, however, that some states are already invalid. There is no need to follow the tree any further 
down this branch. In Figure 6-3, the two leftmost states in the second level are invalid. The second 
state in the first level has three dead ends in its second level. 

You can see how the algorithm is going. Some paths are going to finish early because they reach 
dead ends. Others are going to take longer and reach the solutions at the leaves. This is a problem 
for control decomposition. 

Manager/worker decomposition (a type of control decomposition) is a useful way of achieving 
balanced computational loads when the application consists of a large number of tasks that are of 
varying length. Because there is no way of determining up front what the length of the task is, the 
method consists of dividing the application into a large number of tasks (more than the number of 
nodes) and then assigning tasks to individual nodes as the node becomes available. 

One way of generating the task is for the manager node to follow the tree down until the number of 
states is larger than the number of available nodes. As a further enhancement, the manager node may 
even enlist the aid of the other nodes when doing this initial processing. 

Then, the manager node assigns a state to a node. The node follows that state down the tree and 
collects all the possible solutions. When the node finishes, it reports its solutions, if any, and requests 
more work. In the case of a 4 x 4 board, the tree is shallow and there are only two solutions. An 
8 x 8 board results in 92 solutions. 

The directory lusrlsharelexampleslclnqueens contains a C version of the 8 x 8 8-Queens problem. 
The example is written in C because the N-Queens algorithm makes use of recursion. 

In this example, a task is represented as a partially-filled board (only the first few columns contain 
queens) given to one of the nodes. The example as described here runs on four nodes. Node 0 is the 
manager, and nodes I through 3 are the workers. The manager is assigned a certain number of 
columns (in this example, two) and creates partial boards by placing queens on the board, one for 
each column it is assigned. When the manager controls two columns of an 8 x 8 board, it creates 64 
partial boards. 

l~ 

[J 

1"1 , , 

~ 

(
r'l 

", : 

'M 

IJ 

I~ 

IJ 
IJ 
I: 
(' . .aJ 

I) 



I: 
(: 
r: 
(: 
r: 
I "" 

~, 

I: 
1·-., 

~: 

, . 1-'9 

I ~ 

[ . .,... ' 
J<J 

.-------~~~-----~-

Paragon™ OSF/1 User's Guide Designing a Parallel Application 

~ 
11.1 

IQ 
la 

.'f1 ,"val . 'fl Inval inval~ 

'1.1 11.1 11.1 11.1 

IQ la 
11.1 11.1 11.1 

invalid invalid A~ .-(! in~ .-(! .'f1 A~ 
invalid 

,"val Inval Inva I invalid 

,1.1 11.1 11.1 
11.1 

'Q 
11.1 11.1 11.1 

/7~ .~ .-(! /7~ 
invalid ,"va Id ,"val ,"va Id 

The only invalid states shown as 
leaves are those for the leftmost 
state of the second level. 

Q = Queen position 1.1 la 
11.1 

IQ .I.! 
IQ 

Figure 6·3. The N·Queens Solution Tree for a 4 x 4 Board 

6-15 



~-'-- -.---------- --- ... -~.----.. --.----------------.---.--.---------------~------------.-.------.-------.-

Designing a Parallel Application Paragon™ OSFI1 User's Guide 

6-16 

Also, in this example, the manager does not create the boards intelligently. For example, the 
manager will create a board with two queens in the same row. If a worker gets a partial board that 
contains invalid queens (such as two queens in the same row), the worker immediately throws the 
board away and requests another. 

The manager creates boards by counting in a radix equal to the number of rows in the board. Each 
digit in the resulting number represents a column with the least significant digit being column O. The 
value of the digit is the row position of the queen. Hence, 00 represents two queens in row 0, and 01 
represents one queen in row 0 of column 0 and another queen in row 1 of column 1. 

The workers signal their availability by sending a "ready" message to the manager. This is a zero 
length message of type READY. When the manager receives a READY message, it determines who 
sent it, then sends a partial board to that node as a message of type TASK. The manager keeps dOing 
this until it has no more partial tasks to assign. Finally, the manager waits until all workers are idle 
(that is, it receives a READY message from every worker) and then sends a final message with the 
special value FINISHED to all workers. 

Here are the key lines that implement the manager control. 

/* This is the manager part */ 
if (!iam) { /* If I am node 0 */ 

printf ("\n\n\n") ; 
printf ("\nSTARTING \n"); 

/* Manager keeps a count of how many workers are available 
and sends out boards to a worker when the worker identifies 
itself as READY. The manager uses the routine get_board() to get 
a new board. There are no more new boards when this routine 
returns DONE. */ 

while ( get_board(board) != DONE) { 
CreCv(READY,NULL,O); 

} 

nodenbr = infonode(); 
msgcount++; /* Count how many nodes are ready */ 
csend(TASK,board,sizeof(twoD),nodenbr,O); 
msgcount--; /* When a node gets a task, it is no longer 

ready for another. Hence, decrease 
msgcount */ 

/* wait for all workers to be free (the msgcount must be equal 
to the number of worker nodes) */ 

while(msgcount != nodes-l) { 
crecv(READY,NULL,O); 
msgcount++; 

} 

iJ 

If 
j' 

IiIL.J 

IJ 
(J 



I: 

r: 

(
-"'!II 

.... 

r= 
I: 
I~ 

I: 

Paragon™ OSF/1 User's Guide Designing a Parallel Application 

/* Send the FINISHED message to all nodes and then say goodbye */ 

board[O] [0] = FINISHED; 
csend(TASK,board,sizeof(twoD),-l,O); 
goodbye ( ); 

The manager does not know if a worker has found a solution or not, and the workers do not know 
how many initial boards there are. When a worker receives a partial board, it first checks for the 
special value FINISHED, and calls goodbye() if it fmds this value. (The goodbye() routine prints 
a summary message in the output file, closes the file, and exits.) Next, the worker checks that the 
queens already on the board are valid. If they are, the worker finds all the solutions that exist with 
that partial board by recursively calling move_to _ rightO. When the worker finds a solution, it writes 
the solution to a file called queens. out. This file was opened by all nodes in mode M_LOG (1), 
which is the mode in which all nodes have a common file pointer and access the file on a first-come 
rust-served basis. 

Here are the key lines that implement the worker control. 

else ( 
/* This is the worker part. */ 

/* Each node enters an infinite loop where it receives a partial 
board and checks whether tt.at partial board contains valid 
queens. If the board contains a FINISHED message, the node 
cleans up and exits by calling goodbye(). If the board contains 
invalid queens, the node considers itself done with the task. 
Otherwise, it tries to place a queen in the next column by calling 
move_to_right(). This routine will find all possible solutions 
given the initial board. */ 

for( ; ;) ( 

} 

csend(READY,O,O,O,O); 
crecv(TASK,board,sizeof(board»; 
if(board[O] [0] == FINISHED) ( 

goodbye () ; 
} 

if ( chk_board(board) ) { 
move_to_right(board,O, MeaLS); 

} 

} /* end of else */ 

There are many opportunities for optimizing this algorithm. For example, you could write the 
manager in such a way that it only gave workers boards that had the potential of containing one or 
more solutions. In addition, the manager could mark positions on the board that are invalid due to 
the presence of the initial queens, and the worker would not have to check those. 

6-17 



-----------------.--~~~~~~~- _._------_. - --

Designing a Parallel Application Paragon™ OSF/1 Users_Guide 

6-18 

-, 

The file queens. out contains copies of all the 92 solutions for the 8-Queens problem. Each board is 
preceded by a header that identifies the node that found the solution and the number of solutions 
found so far by the node. Finally, the total number of solutions is printed. The tail of the file looks 
as follows: 

• 

Node 1 found solution 30 

0 1 2 3 4 5 6 7 
0 - - - Q -
1 - - Q 
2 - - - - - - - Q 
3 - - Q - - - - -
4 Q -
5 - - - Q -
6 - - Q -
7 - Q -

Node 2 found solution 31 

0 1 2 3 4 5 6 7 
0 - - Q -
1 - - - - - - Q -
2 - - - Q 
3 Q 
4 - - Q -
5 - - - - - Q 
6 - - - Q 
7 - Q -

Node 3 found solution 31 

0 1 2 3 4 5 6 7 
0 - - - - Q -

1 - - Q - - - - -
2 - - - - - Q 
3 - - - Q -
4 - - - Q -
5 Q -
6 - - - - - Q - -
7 - Q 

Total solutions 92 

If you want to investigate another manager/worker application, look at the triangle program in 
lusrlsharelexampleslcltriangle. Its operation is described in a README file. 

IJ 

[~ 

[J 

I TI 

-~ 

[J 

~I 
IiL..i 

IJ 
IJ 
( 1 

-"" 

I : . ..d 

(J 

IJ 



I··~ 

• 

r-,.' 
-~ 

(-: 

1···."1'· 

...... 

1_-
. -_. 

I: 
IJ 

I: 

~ 
(

"'1 

-,o 

c 
IJ 
[) 

Summary of Commands 
and System Calls 

This appendix summarizes the commands and system calls of Paragon TM aSF/I. The complete 
syntax of each command and call is provided, along with a brief description of each. The C and 
Fortran versions of the calls are discussed in separate sections. 

This appendix discusses only the commands and calls that are specific to Paragon aSF/I. For 
information on the standard commands and calls of aSFIl, see the OSFll Command Reference and 
OSFll Programmer's Reference. 

Command Summary 
This section summarizes the commands discussed in Chapters 2 and 5. See the Paragon™ OSFll 
Commands Reference Manual for more information on these commands. 

Compiling and Linking Applications 
Table A-1. Commands for Compiling and Linking Applications 

Command Synopsis Description 

cc -nx [ switches] source file ... Compile a Paragon aSF/1 application written 
in C on an Intel supercomputer. 

r77 -ox [ switches] source file ... Compile a Paragon aSF/1 application written 
in Fortran on an Intel supercomputer. 

icc -ox [switches] source file ... Compile a Paragon aSF/1 application written 
in C on an Intel supercomputer or 
cross-development workstation. 

if77 -nx [switches] source file ... Compile a Paragon aSF/1 application written 
in Fortran on an Intel supercomputer or 
cross-development workstation. 

A-1 



~~~~ ~--~-.. - -"-- ..... _---_ ... _-_._. - -.-.-- .. -----.-----~.-~-~-------~-.---.----,--... -------.----------~----------- ---- --- ---

Summary of Commands and System Calls Paragon™ OSF/1 User's Guide

Running Applications

Table A-2. Commands for Running Applications

Command Synopsis Description

application [-sz size] [-pri priority] Execute a Paragon OSP/I application.
[-pt ptype] [-on nodespec]
[-pn partition] [-mbf memory_buffer]
[-mex memory_export]
[-mea memory_each]
[-pktpacket_size]
[-sth send_threshold] [-sct send_count]
[-gth give_threshold] [-plk]
[application_args] [\;file [-pt ptype]
[-on nodespec] [application_args]] ...

Managing Partitions

Table A-3. Commands for Managing Partitions

Command Synopsis Description

mkpart [-sz size I -sz hXw I -nd nodespec] Create a partition.
[-ss I [[-rq time] [-epl priority]]]
[-mod mode] partition

rmpart [-f] [-r] partition Remove a partition.

showpart [partition] Show the characteristics of a partition.

lspart [-r] [partition] List the subpartitions of a partition.

pspart [partition] List the applications in a partition.

chpart [-epl priority] [-g group] Change certain partition characteristics.
[-mod mode] [-nm name]
[-0 owner[• group]] [-rq time] partition

Increasing the Size of a File

Table A-4. Commands for Increasing the Size of a File

Command Synopsis Description

lsize [-a] size file ... Change the size of a file or files.

A-2

[]

Ij

Ii
lJJ

IJ
IJ
IJ
IJ
IJ

r:
r:

r:

(
: -"1

-~

I~

r:
IJ
C

Paragon™ OSFI1 User's Guide Summary of Commands and System Calls

Miscellaneous Commands

Note: the commands shown in Table A-5 are not documented in this manual.

Table A-5. Miscellaneous Commands

Command Synopsis Description

fsplit [filename] Split one file containing several Fortran
program units into several files containing one
program unit each. (See the Paragon TM OSFll
Commands Reference Manual for more
information.)

pmake [-bcdeFikmnNpqrsStuUvw] Parallel make utility that maintains up-to-date
[-C dir] [-ffile] [-J dir] [-j [jobs]] versions of target files and performs shell
[-I [load]] [-0 file] [-P partition] programs in parallel. (See the Paragon™
[-W file] [macro_definition ...] OSFIl Software Tools User's Guide for more
[target ...] information.)

sat [-bchxV] [-d dir] [-I log] [-m mins] Run the Paragon system acceptance test. (See
[-0 output] [-p partition] [-r reps] the System Administrator's Guide for your
[test ...] system for more information.)

C System Call Summary
This section summarizes the C versions of the system calls discussed in Chapters 3, 4, and 5. See the
Paragon ™ OSFll C System Calls Reference Manual for more information on these calls.

Process Characteristics
Table A-6. C Calls for Process Characteristics

Synopsis Description

long mynode(void); Obtain the calling process's node number.

long numnodes(void); Obtain the number of nodes allocated to the
current application.

void setptype(Set the calling process's process type.
long ptype);

long myptype(void); Obtain the calling process's process type.

long myhost(void); Obtain the controlling process's node number.

A-3

Summary of Commands and System Calls Paragon™ OSFI1 User's Guide

[~

Synchronous Send and Receive
Table A-7. C CaDs for Synchronous Send and Receive

Synopsis Description

voidcsend(Send a message, waiting for completion.
long type, I~
char *buf,
long count,
long node,
long ptype);

void crecv(Receive a message, waiting for completion.
long typesel,
char *buf,
long count);

[
~-1

, ,_I
..... J

long csendrecv(Send a message and post a receive for the
long type, reply. Wait for completion.
char *sbuf,
long scount,
long node,
longptype, ~J
long typesel,
char *rbuf,
long rcount);

void gsendx(Send a message to a list of nodes, waiting for
long type, completion.
char *buf,
long count,
long nodes[J,
long nodecount);

IJ
I:
IJ

A-4

r:

I:
r:
r:
1""

~I

I
·~

kl

r·'"
, -,.1

I ~~
,'"

1'"1

Ai

I~

I:
1",
I~'

r:
1"'1

'".,

r=
I:
r:
r:

Paragon'M OSF/1 User's Guide Summary of Commands and System Calls

Asynchronous Send and Receive
Table A·8. C Calls for Asynchronous Send and Receive

Synopsis Description

long isend(Send a message without waiting for
long type, completion.
char *buf,
long count,
long node,
long ptype);

long irecv(Receive a message without waiting for
long typeset, completion.
char *buf,
long count);

long isendrecv(Send a message and post a receive for the reply
long type, without waiting for completion.
char *sbuf,
long scount,
long node,
longptype,
long typeset,
char *rbuf,
long rcount);

long msgdone(Determine whether a send or receive operation
long mid); has completed.

void msgwait(Wait for completion of a send or receive
long mid); operation.

void msgignore(Release a message ID as soon as a send or
long mid); receive operation completes.

long msgmerge(Merge two message IDs into a single ID that
long midI, can be used to wait for completion of both
long mid2); operations.

A-5

Summary of Commands and System Calls Paragon™ OSF/1 User's Guide

Probing for Pending Messages
Table A·9. C Calls for Probing for Pending Messages

Synopsis Description

void cprobe(Wait for a message of a selected type to arrive.
long typeseT);

long iprobe(Determine whether a message of a selected
long typeseT); type is pending.

Getting Information About Pending or Received Messages
Table A·tO. C Calls for Getting Information About Pending or Received Messages

Synopsis Description

long infocount(void); Return size in bytes of a pending or received
message.

long infonode(void); Return node number of the node that sent a
pending or received message.

long infoptype(void); Return process type of the process that sent a
pending or received message.

long infotype(void); Return message type of a pending or received
message.

Flushing and Canceling Messages
Table A·H. C Calls for Flushing and Canceling Messages

Synopsis Description

void flushmsg(Flush specified messages from the system.
long typeseT,
long nodesel,
long ptypesel);

void msgcancel(Cancel an asynchronous send or receive
long mid); operation.

._-_._. ------------------

(]

(
-<]

, "

I •

IJ
lJ

IJ
IJ
IJ

1',"111

,.ii

I:
r:

r:
I:

r=
r:
I ~,

"'"

1
"~1

oW

I' ~,
-,

r:

r:
I~

I~

(~
.Ai

Paragon™ OSF/1 User's Guide Summary of Commands and System Calls

Treating a Message as an Interrupt
Table A·12. C Calls for Treating a Message as an Interrupt

Synopsis Description

void hsend(Send a message and set up a handler procedure
long type, to be called when the send completes.
char *buf,
long count,
long node,
longptype,
void (*handler) 0);

void hrecv(Receive a message and set up a handler
long typesel, procedure to be called when the receive
char *buf, completes.
long count,
void (*handler) 0);

void hsendrecv(Send a message and post a receive for the
long type, reply. Set up a handler procedure to be called
char *sbuf, when the reply arrives.
long scount,
long node,
longptype,
long typesel,
char *rbuf,
long rcount,
void (*handler) 0);

long masktrap(Enable or disable interrupts for message
long state); handlers.

void hsendx(Send a message and set up an extended handler
long type, procedure to be called with the value hparam
char *buf, when the reply arrives.
long count,
long node,
longptype,
void (*xhandler) 0,
long hparam);

A-7

Summary of Commands and System Calls Paragon no OSF/1 User's Guide

(]

Extended Receive and Probe
Table A·I3. C Calls for Extended Receive and Probe

Synopsis Description

void crecvx(Receive a message of a specified type from a 171
111

long typesel, specified sending node and process type,
char *buf, together with information about the message.
long count, Wait for completion.
long nodesel,
long ptypesel.
long info[]);

long irecvx(Receive a message of a specified type from a
long typesel, specified sending node and process type.
char *buf, together with information about the message.
long count, Do not wait for completion.
long nodesel.
long ptypesel.
long info[]);

void hrecvx(Receive a message of a specified type from a
long typesel. specified sending node and process type. Set
char *buf, up an extended handler procedure to be called
long count. with information about the message and the ~J
long nodesel. value hparam when the receive completes.
long ptypesel.
void (*xhandter) O.
long hparam);

void cprobex(Wait for a message of a specified type from a
long typesel. specified sending node and process type.
long nodesel. Return information about the message.
long pt),pesel,
long info£)); IJ

long iprobex(Determine whether a message of a specified
long typeset. type from a specified sending node and process IJ
long nodesel. type is pending. If it is. return information
long ptypesel. about the message.
long info£)); IJ

I ;
. ..;

IJ
IJ

A-8

["'"
&; Paragon™ OSF/1 User's Guide Summary of Commands and System Calls

I:

Global Operations

I: Table A·14. C Calls for Global Operations (1 of 3)

Synopsis Description
(-..,
~

void gcol(Concatenation.
char x[],

I
·~·

.'.::.,J

longxlen,
chary[],
longylen,

(. -.",

-"'

long *ncnt);

void gcolx(Concatenation for contributions of known
char x[], length.
long xlens[],
char y[]);

void gdhigh(Vector double precision MAX.
doublex[],
long n,
double work[]);

void gdlow(Vector double precision MIN. I:
double x[],
long n,
double work[]); I:

void gdprod(Vector double precision MUL TIPL Y.
doublex[],
long n,
double work[]);

voidgdsum(Vector double precision SUM.
doublex[],
long n,
double work[]);

vOidgiand(Vector integer bitwise AND.
long x[], (~
long n,
long work[]);

void gihigh(Vector integer MAX.
longx[],
long n,
long work[]);

(: A-9

· ----'~--~--,---- --.-.. ---.----------------~---~ --- .

Summary of Commands and System Calls Paragon™ OSF/1 User's Guide

Table A·l4. C Calls for Global Operations (2 of 3)

Synopsis Description

void gilow(Vector integer MIN.
long x[],
long n,
long work[]);

void gior(Vector integer bitwise OR.
long x[],
long n,
long work[]);

void giprod(Vector integer MUL TIPL Y.
long x[],
long n,
long work[]);

voidgisum(Vector integer SUM.
longx[],
long n,
long work[]);

voidgland(Vector logical AND.
long x[],
long n,
long work[]);

voidglor(Vector logical inclusive OR.
longx[],
long n,
long work[]);

voidgopf(Arbitrary commutative function.
char x[],
longxlen,
char work[],
long (*junction)O);

void gshigh(Vector real MAX.
floatx[],
long n,
float work[]);

voidgslow(Vector real MIN.
floatx[],
long n,
float work[]);

A-10

(j

IJ
[J

I~
r~
1il . ..J

[J

[J

(J

IJ
11

. ..1

IJ
IJ

,:
r:
(

~'\O

,<OJ

1'·-"",
.oJ

I'"

IJ
I:

r·~

r-
'~

I:

Paragon™ OSF/1 User's Guide Summary of Commands and System Calls

Table A·14. C Calls for Global Operations (3 of 3)

Synopsis Description

void gsprod(Vector real MUL TIPL Y.
floatx[],
long n,
float work[]);

voidgssum(Vector real SUM.
float x[],
long n,
float work[]);

void gsync(void); Global synchronization.

A-11

Summary of Commands and System Calls Paragon™ OSF/1 User's Guide

Controlling Application Execution
Table A·IS. C Calls for Controlling Application Execution

Synopsis Description

long nx _initve(Create a new application.
char *partition,
long size,
char *accoW1t,
long *argc,
char *argv(]);

long nx -pri(Set the priority of an application.
long pgroup,
long priority);

long nx _nfork(Copy the current process onto some or ail
long node_Ust[], nodes of an application.
long numnodes,
longptype,
long pid _list[]);

long nx)oad(Execute a stored program on some or ail nodes
long node _list[], of an application.
long numnodes,
longptype,
long pid)ist[],
char *pathname);

long nx)oadve(Execute a stored program on some or ail nodes
long node_list[], of an application, with specified argument list
long numnodes, and environment.
longptype,
long pid)ist[],
char *pathname,
char * argv[],
char *envp(]);

long nx _ waitall(void); Wait for ail application processes.

A-12

[111
. ..J

(j

~i
Il..liil

IJ

I
~l

, I
...J

I]

IJ
IJ
(J

IJ

- "--------------------~---"~~--~~-

1-· _A Paragon™ OSF/1 User's Guide Summary of Commands and System Calls

r~ ..
(

-"'!PI

'"
I

--~

--"" Partition Management
Table A·16. C CaDs tor Partition Management

Synopsis Description

(-""
.. , long ox _ mkpart(Create a partition with a particular number of

char *partition, nodes.
long size,
long type); I:

long ox _ mkpart Ject(Create a partition with a particular height and
char *partition, width.
long rows,

(--
.... :

long co/s,
long type);

long ox_mkpart_map(Create a partition with a specific set of nodes.

(--
, ,j

char *partition,
long numnodes,
long node_list[],

I:
long type);

long ox Jmpart(Remove a partition. r:
char *partitioll,
long force,
long recursive);

long ox _ cbpart _ name(Change a partition's name.
char *partition,
char *name);

long ox_cbpart_mod(Change a partition's protection modes.
char *partition,

I ~-

long mode);

long ox _ cbpart _ epl(Change a partition's effective priority limit. 1---
-.,

char *partition,
long priority);

long ox_cbpartJq(Change a partition's rollin quantum.
char *partition,
long rollin_quantum);

long ox _ cbpart _ owner(Change a partition's owner and group.
char *partition,
long owner,

I
-~

,D

long group);

I"_-~

""

(
""I

ctti

I: A·13

"--"-------- --"""-"-------""--"---"-----"---"------"--~---.~-~~~------------

Summary of Commands and System Calls Paragon™ OSF/1 User's Guide

Handling Errors
Table A-17. C Calls for Handling Errors

Synopsis Description

_call(...); Special version of call that returns error value
to caller.

void nXJ)error(Print an error message corresponding to the
char * string); current value of errno.

Floating-Point Control
Table A-1S. C Calls for Floating-Point Control

Synopsis Description

int isnan(Determine if a double value is Not-a-Number.
double dsrc);

int isnand(Determine if a double value is Not-a-Number.
double dsrc);

int isnanf(Determine if a ftoat value is Not-a-Number.
floatjsrc);

fp_md fpgetround(void); Get the floating-point rounding mode for the
calling process.

fp_md fpsetround(Set the floating-point rounding mode for the
fp_md rnd_dir); calling process.

fp_except fpgetmask(void); Get the floating-point exception mask for the
calling process.

fp_except fpsetmask(Set the floating-point exception mask for the
fp_except mask); calling process.

fp_except fpgetsticky(void); Get the floating-point exception sticky flags
for the calling process.

fp_except fpsetsticky(Set the floating-point exception sticky flags for
fp_except sticky); the calling process.

A-14

-"--""-"------------------

(""'I
jjJ

I~

I:

IJ
(]

IJ
IJ
IJ
IJ

I:

I
-~

'OJ

1"-'"
'"'

(~

(~

(
0""

~,~

I:
(:

1-'"
I ~,

\ • ..I.J

(~

I "d

r:
1_."

"

Paragon™ OSF/1 User's Guide Summary of Commands and System Calls

Miscellaneous Calls
Table A-19. Miscellaneous C CaDs

Synopsis Description

void flick(void); Temporarily relinquish the CPU to another
process.

void led(Turn the node' s green LED on or off.
long state);

double dclock(void); Return time in seconds since booting the node.

iPSC@ System Compatibility
Table A-20. C CaDs for iPSC@ System Compatibility (1 of 2)

Synopsis Description

long ginv(Return the position of an element in the
longj); binary-reflected gray code sequence. Inverse

ofgrayO.

long gray(Return the binary-reflected gray code for an
longj); integer.

void hwclock(Place the current value of the hardware counter
esize_t *hwtime); into a 64-bit unsigned integer variable.

long infopid(void); Return the process type of the process that sent
a pending or received message.

void kUlcube(Terminate and clear node process(es).
long node,
long ptype);

void killproc(Terminate a node process.
long node,
long ptype);

void load(Load a node process.
char *.filename,
long node,
long ptype);

unsigned long mclock(void); Return the time in milliseconds.

long mypid(void); Return the process type of the calling process.

A-15

~~-~--=--,-- ----

Summary {)f Commands and System Calls Paragon™ OSF/1 User's Guide

Table A·20. C CaDs for iPSC(f; System Compatibility (2 of 2)

Synopsis Description

long nodedim(void); Return the dimension of the current application
(the number of ~~es llliocated to the
application is 2 lmenslon).

long restrictvol(Return 0 (does nothing; provided for
longjildes, compatibility only).
long nvol,
long vollist[]);

void waitaU(Wait for node process(es) to complete.
long node,
longpid);

110 Modes
Table A·21. C Calls for YO Modes

Synopsis Description

void setiomode(Set the 110 mode for a file.
intfildes,
int iomode);

long iomode(Return the current 110 mode for a file.
intjildes);

A-16

(,
-11)

'.aj

(~" ,AI

(1""'1

, --

If' IIl.,J

III
ft--.J

IJ

[J

IJ
()

(',"'",
"

.r.J

I:
r:
r:
r:
,:

I::

Paragon™ OSF/1 User's Guide Summary of Commands and System Calls

Reading and Writing Files in Parallel
Table A·22. C CaDs for Reading and Writing Files in Parallel

Synopsis Description

void cread(Read from a file, waiting for completion.
intfildes,
char *buffer,
unsigned int nbytes)~

void cwrite(Write to a file, waiting for completion.
intfildes,
char *buffer,
unsigned int nbytes);

long iread(Asynchronous read from a file. (Do not wait
intfildes, for completion.)
char *buffer,
unsigned int nbytes);

long iwrite(Asynchronous write to a file. (Do not wait for
intfildes, completion.)
char *buffer,
unsigned int nbytes);

long iodone(Determine whether an asynchronous 110
long id); operation is complete. If complete, release the

110 ID.

void iowait(Wait for completion of an asynchronous 110
long id); operation and release the 110 ID.

r~ Detecting End-of-File and Moving the File POinter

(',~ ..
n
1_.11

r:

Table A·23. C Calls for Detecting End·or·File and Moving the File Pointer

Synopsis Description

long iseof(Test for end-of-file.
intfildes);

ofUlseek(Move the read/write file pointer.
intfildes,
ofUoffset,
int whence);

A-17

Summary of Commands and System Calls Paragon'" OSFI1 User's Guide

Increasing the Size of a File
Table A-24. C CaDs for Increasing the Size of a File

Synopsis Description

long Isize(Increase size of a file.
intfildes,
ofet offset,
int whence);

Extended File Manipulation
Table A-25. C Calls for Extended File Manipulation

Synopsis Description

esize_t eseek(Move file pointer in extended file.
intfildes,
esize_t offset,
int whence);

esize_t esize(Increase size of extended file.
intfildes,
esize_t offset,
int whence);

long estat(Get status of extended file from patbname.
char *path,
struct estat *buffer);

long festat(Get status of open extended file from file
intfildes, descriptor or unit.
struct estat *buffer);

A-18

I]

(J

IJ

IJ
IJ

IJ
IJ
IJ

I:
r:

Ie:,

I:

I e.""
I ~.,I

I.'"
eJ

Paragon'" OSF/1 User's Guide Summary of Commands and System Calls

Performing Extended Arithmetic
Table A-26. C Calls for Performing Extended Arithmetic

Synopsis Description

esize_t eadd(Add two extended numbers.
esize_t el,
esize_t e2);

long ecmp(Compare two extended numbers.
esize_t el,
esize_t e2);

long ediv(Divide extended number by integer.
esize_t e,
long n);

long emod(Give extended number modulo an integer
esize_t e, (remainder when e is divided by n).
long n);

esize_t emul(Multiply extended number by integer.
esize_t e,
long n);

esize_t esub(Subtract two extended numbers.
esize_t el,
esize_t e2);

void etos(Convert extended number to string.
esize_t e,
char *s);

esize_t sloe(Convert string to extended number.
char *s);

A-19

Summary of Commands and System Calls Paragon"· OSFI1 User's Guide

Fortran System Call Summary
This section summarizes the Fortran versions of the system calls discussed in Chapters 3, 4, and 5.
See the Paragon™ OSFll Fortran System Calls Reference Manual for more information on these
calls.

Process Characteristics
Table A·27. Fortran Calls for Process Characteristics

Synopsis Description

INTEGER FUNCTION MYNODEO Obtain the calling process's node number.

INTEGER FUNCTION NUMNODESO Obtain the number of nodes allocated to the
current application.

SUBROUTINE SETYfVPE(ptype) Set the calling process's process type.

INTEGER ptype

INTEGER FUNCTION MYPfVPE() Obtain the calling process's process type.

INTEGER FUNCTION MYHOSTO Obtain the controlling process's node number.

A-20

[~

[J

IJ

IJ
[J

~ "l , I

J

(J

I]
lJ,

IJ
IJ
IJ

(
4p"

...

r:
I~
1..-

...

I
'·~'

.• J

r:
r:
I:

I~

r~

I:

Paragon'" OSFJ1 User's Guide Summary of Commands and System Calls

Synchronous Send and Receive
Table A-28. Fortran Calls for Synchronous Send and Receive

Synopsis Description

SUBROUTINE CSEND(type, buf, count, Send a message, waiting for completion.
node, ptype)

IN1EGER type
IN1EGER buft.*)
IN1EGER count
IN1EGER node
IN1EGER ptype

SUBROUTINE CRECV(typesel, buf, count) Receive a message, waiting for completion.

IN1EGER typesel
IN1EGER buj(*)
IN1EGER count

IN1EGER FUNCTION CSENDRECV(type, Send a message and post a receive for the
sbuf, scount, node, ptype, typesel, rbuf, reply. Wait for completion.
rcount)

IN1EGER type
IN1EGER sbuf(*)
IN1EGER scount
INTEGER node
IN1EGER ptype
INTEGER typeset
IN1EGER rbuj(*)
IN1EGER rcount

SUBROUTINE GSENDX(type, buf, count, Send a message to a list of nodes, waiting for
nodes, nodecounO completion.

IN1EGER type
IN1EGER buj(*)
INTEGER count
IN1EGER nodes(*)
IN1EGER nodecount

A-21

------_._--- ----------~------------~~------

Summary of Commands and System Calls Paragon'" OSF/1 User's Guide
[~

[]

Asynchronous,Send and Receive
Table A·29. Fortran CaDs for Asynchronous Send and Receive (1 of 2) (J

Synopsis Description

INTEGER FUNCTION ISEND(type. buf, Send a message without waiting for
count. node. ptype) completion.

INTEGER type IJ
INTEGER buft*)
INTEGER count
INTEGER node
INTEGER ptype

INTEGER FUNCTION lRECV(typesel, buf, Receive a message without waiting for
count) completion.

INTEGER typesel
INTEGER buft*)

(
,111'1

aJ

INTEGER count

INTEGER FUNCTION ISENDRECV(type. Send a message and post a receive for the reply
~' "',1, ' I

·AI

sbuf, scount. node. ptype. typeset. rbuf, without waiting for completion.
rcount)

INTEGER type
INTEGER sbuft*)
INTEGER scount
INTEGER node
INTEGER ptype
INTEGER typesel
INTEGER rbuft*)
INTEGER rcount IJ
INTEGER FUNCTION MSGDONE(mid) Determine whether a send or receive operation

has completed.
INTEGER mid IJ
SUBROUTINE MSGW AIT(mid) Wait for completion of a send or receive

operation.
INTEGER mid l:

IJ

IJ
A-22

Paragon™ OSF/1 User's Guide Summary of Commands and System Calls

I:

Table A·29. Fortran CaUs for Asynchronous Send and Receive (2 of 2)

Synopsis Description

SUBROUTINE MSGIGNORE(mid) Release a message ID as soon as a send or
receive operation completes.

INTEGER mid

INTEGER FUNCTION MSGMERGE(midi, Merge two message IDs into a single ID that

I: mid2) can be used to wait for completion of both
operations.

INTEGER midi
INTEGER mid2

Probing for Pending Messages
Table A·30. Fortran Calls for Probing for Pending Messages

rJ Synopsis Description

SUBROUTINE CPROBE(typesel) Wait for a message of a selected type to arrive.

INTEGER typeset
I··~

.><J

INTEGER FUNCTION IPROBE(typesel) Determine whether a message of a selected
type is pending.

INTEGER typeseT

Getting Information About Pending or Received Messages
Table A·31. Fortran Calls for Getting Information About Pending or Received Messages

(
"1

L.J
Synopsis Description

INTEGER FUNCTION INFOCOUNTO Return size in bytes of a pending or received
message.

INTEGER FUNCTION INFONODEO Return node number of the node that sent a I~
pending or received message.

INTEGER FUNCTION INFOPTYPEO Return process type of the process that sent a
pending or received message.

INTEGER FUNCTION INFOTYPEO Return message type of a pending or received
message.

A-23

---------------------~~- - ---------------

Summary of Commands and System Calls Paragon™ OSF/1 User's Guide

Flushing and Canceling Messages
Table A·32. Fortran CaUs for Flushing and Canceling Messages

Synopsis Description

SUBROUTINE FLUSHMSG(typesel, Flush specified messages from the system.
nodesel, ptypesel)

INTEGER typesel
INTEGER nodesel
INTEGER ptypesel

SUBROUTINE MSGCANCEL(mid) Cancel an asynchronous send or receive
operation.

INTEGER mid

Treating a Message as an Interrupt
Table A·33. Fortran Calls for Treating a Message as an Interrupt (1 of 2)

Synopsis Description

SUBROUTINE HSEND(type, buf, count, Send a message and set up a handler procedure
node, ptype, handler) to be called when the send completes.

INTEGER type
INTEGER buft*)
INTEGER count
INTEGER node
INTEGER ptype
EXTERNAL handler

SUBROUTINE HRECV (typesel, buf, count, Receive a message and set up a handler
handler) procedure to be called when the receive

completes.
INTEGER typesel
INTEGER buft*)
INTEGER count
EXTERNAL htmdler

A-24

u
()

[j

(J

[j

(~ i

I:

~~I

~ ,oJ

(~ ,

[J

~J

IJ
IJ

IJ
IJ
IJ
I:

Paragon™ OSF/1 User's Guide Summary of Commands and System Calls

1··1'1.·

'"
I~:

I: Table A-33. Fortran Calls for Treating a Message as an Interrupt (2 of 2)

Synopsis Description

SUBROUTINE HSENDRECV(type, sbuf, Send a message and post a receive for the
scount, node, ptype, typesel, rbuf, rcount, reply. Set up a handler procedure to be called
handler) when the reply arrives.

INTEGER type
INTEGER sbuj(*)
INTEGER scount

1-..
~,

INTEGER node
INTEGER ptype
INTEGER typesel
INTEGER rbuj(*)
INTEGER rcount
EXTERNAL handler

INTEGER FUNCTION MASKTRAP(state) Enable or disable interrupts for message
handlers.

I · ...
~J

INTEGER state

I·~·
.., SUBROUTINE HSENDX(type, buf, count, Send a message and set up an extended handler

node, ptype, xhandler, hparam) procedure to be called with the value hparam
when the reply arrives.

INTEGER type
INTEGER buj(*)
INTEGER count
INTEGER node
INTEGER ptype
EXTERNAL xhandler
INTEGER hparam

(.. -
. --,

I ~

I:

I·~ ... A-25

Summary of Commands and System Calls Paragon™ OSF/1 User's Guide

Extended Receive and Probe
Table A·34. Fortran Calls ror Extended Receive and Probe (l or Z)

Synopsis Description

SUBROUTINE CRECVX(typesel. buf, count. Receive a message of a specified type from a
nodesel. ptypesel. info) specified sending node and process type.

together with information about the message.
INTEGER typesel Wait for completion.
INTEGER bu.ft*)
INTEGER count
INTEGER nodesel
INTEGER ptypesel
INTEGER info(8)

INTEGER FUNCTION IRECVX(typesel. Receive a message of a specified type from a
buf, count. nodesel.ptypesel. info) specified sending node and process type.

together with information about the message.
INTEGER typesel Do not wait for completion.
INTEGER bu.ft*)
INTEGER count
INTEGER nodesel
INTEGER ptypesel
INTEGER info(8)

SUBROUTINE HRECVX(typesel. buf, count. Receive a message of a specified type from a
nodesel. ptypesel. xhandler. hparam) specified sending node and process type. Set

up an extended handler procedure to be called
INTEGER typesel with information about the message and the
INTEGER bu.ft*) value hparam when the receive completes.
INTEGER count
INTEGER nodesel
INTEGER ptypesel
EXTERNAL xhandler
INTEGER hparam

A-26

IJ

lj

lJ
IJ
(J
I "'",

.J

IJ
I ·.,.,

.A/

I~

r:
(:
1."!I1

"'"

I :
1--..

.~-,

·1 <~
~J

I:
r:
I:
I"

I "
. .J

r~

(~

I
-~

_JiJ

I
'~

.4;1

Paragon'" OSFI1 User's Guide Summary of Commands and System Calls

Table A-34. Fortran Calls for Extended Receive and Probe (2 of 2)

Synopsis Description

SUBROUTINE CPROBEX(typesel, nodesel, Wait for a message of a specified type from a
ptypesel, info) specified sending node and process type.

Return information about the message.
INTEGER typesel
INTEGER nodesel
INTEGER ptypesel
INTEGER info(8)

INTEGER FUNCTION IPROBEX(typesel, Determine whether a message of a specified
nodesel, ptypesel, info) type from a specified sending node and process

type is pending. If it is, return information
INTEGER typesel about the message.
INTEGER nodesel
INTEGER ptypesel
INTEGER info(8)

A-27

------.---.------------.--.------.--.---~--------------~----------------- ----------------_._--

Summary of Commands and System Calls Paragon'" OSFI1 User's Guide

Global Operations
Table A·35. Fortran CaDs ror Global Operations (1 or 3)

Synopsis Description

SUBROUTINE GCOL(x, xlen, y, ylen, nent) Concatenation.

IN1EGER x(*)
IN1EGER xlen
IN1EGER y(*)
IN1EGER ylen
IN1EGER nent

SUBROUTINE GCOLX(x, xlens, y) Concatenation for conUibutions of known
length.

IN1EGER x(*)
IN1EGER xlens(*)
IN1EGER y(*)

SUBROUTINE GDmGH(x, n, work) Vector double preCision MAX.

DOUBLE PRECISION x(*)
IN1EGERn
DOUBLE PRECISION work(*)

SUBROUTINE GDWW(x, n, work) Vector double precision MIN.

DOUBLE PRECISION x(*)
IN1EGERn
DOUBLE PRECISION work(*)

SUBROUTINE GDPROD(x, n, work) Vector double precision MUL TIPL Y.

DOUBLE PRECISION x(*)
IN1EGERn
DOUBLE PRECISION work(*)

SUBROUTINE GDSUM(x, n, work) Vector double precision SUM.

DOUBLE PRECISION x(*)
IN1EGERn
DOUBLE PRECISION work(*)

SUBROUTINE GIAND(x, n, work) Vector integer bitwise AND.

IN1EGER x(*)
IN1EGERn
IN1EGER work(*)

A-28

--------------------~~-~-

IJ

I]

IJ
(J

[J

IJ
(' .J
IJ
IJ
IJ
IJ
o

r~

I~

I"

r:
I:
I~

I:

Paragon 1M OSF 11 User's Guide Summary of Commands and System Calls

Table A·35. Fortran CaDs for Global Operations (2 of 3)

Synopsis Description

SUBROUTINE GllllGH(x, n, work) Vector integer MAX.

INTEGER x(*)
INTEGERn
INTEGER work(*)

SUBROUTINE GILOW(x, n, work) Vector integer MIN.

INTEGER x(*)
INTEGERn
INTEGER work(*)

SUBROUTINE GIOR(x, n, work) Vector integer bitwise OR.

INTEGER x(*)
INTEGERn
INTEGER work(*)

SUBROUTINE GIPROD(x, n, work) Vector integer MUL TIPL Y.

INTEGER x(*)
INTEGERn
INTEGER work(*)

SUBROUTINE GISUM(x, n, work) Vector integer SUM.

INTEGERx(*)
INTEGERn
INTEGER work(*)

SUBROUTINE GLAND(x, n, work) Vector logical AND.

LOGICAL x(*)
INTEGERn
LOGICAL work(*)

SUBROUTINE GLOR(x, n, work) Vector logical inclusive OR.

LOGICAL x(*)
INTEGERn
LOGICAL work(*)

A·29

Summary of Commands and System Calls Paragon™ OSF/1 User's Guide

Table A·3S. Fortran CaDs for Global Operations (3 of 3)

Synopsis Description

SUBROUTINE GOPF(x, xlen, work, Arbitrary commutative function.
junction)

INTEGER x(*)
INTEGER xlen
INTEGER work(*)
EXTERNAL function

SUBROUTINE GSmGH(x, n, work) Vector real MAX.

REALx(*)
INTEGERn
REAL work(*)

SUBROUTINE GSLOW(x, n, work) Vector real MIN.

REALx(*)
INTEGERn
REAL work(*)

SUBROUTINE GSPROD(x, n, work) Vector real MUL TIPL Y.

REALx(*)
IN1EGERn
REAL work(*)

SUBROUTINE GSSUM(x, n, work) Vector real SUM.

REALx(*)
INTEGERn
REAL work(*)

SUBROUTINE GSYNCO Global synchronization.

A-30

IJ
,~

I . .!

I]

(J

IJ
IJ
I ,

J

(J

(-.'"
Jill

I ·· ..
JoJ

I:

r::
I ~<

",.1

r-

, .. ,'

".'

1_--,
.J

I ~:

I~~

I:
I:

r:

Paragon ™ OSF /1 User's Guide Summary of Commands and System Calls

Controlling Application Execution
Table A·36. Fortran Calls for Controlling Application Execution (1 of 2)

Synopsis Description

INTEGER FUNCTION Create a new application.
NX_INITVE(partition, size, account,
argc, argv)

CHARACTER partition*(*)
INTEGER size
CHARACTER account*(*)
INTEGER arge
INTEGER argv

INTEGER FUNCTION NX_PRI(pgroup, Set the priority of an application.
priority)

INTEGER pgroup
INTEGER priority

INTEGER FUNCTION Copy the current process onto some or all
NX_NFORK(node_list, nwnnodes, nodes of an application.
ptype, pid _list)

INTEGER node _list(*)
INTEGER numnodes
INTEGER ptype
INTEGER pid _list(*)

INTEGER FUNCTION Execute a stored program on some or all nodes
NX _ LOAD(node _list, nwnnodes, ptype, of an application.
pid _list, pathname)

INTEGER node _list(*)
INTEGER numnodes
INTEGER ptype
INTEGER pid Jist(*)
CHARACTER pathname*(*)

A-31

Summary of Commands and System Calls Paragon™ OSF/1 User's Guide

Table A-36. Fortran CaDs for ControDing Application Execution (2 of 2)

Synopsis Description

INTEGER FUNCTION Execute a stored program on some or all nodes
NX _ LOADVE(node _list, numnodes, of an application, with specified argument list
ptype, pid _list, pathname, arg\', envp) and environment.

INTEGER node _lis1(*)
INTEGER numnodes
INTEGER ptype
INTEGER pid _lis1(*)
CHARAC1ER pathname*(*)
INTEGER argv
INTEGER envp

SUBROUTINE NX _WAIT ALL() Wait for all application processes.

Partition Management
Table A-37. Fortran CaDs for Partition Management (1 of 2)

Synopsis Description

INTEGER FUNCTION Create a partition with a particular number of
NX_MKPART(partition, size, type) nodes.

CHARAC1ER partition*(*)
INTEGER size
INTEGER type

INTEGER FUNCTION Create a partition with a particular height and
NXJ\1KPART_RECT(partition, rows, width.
cols, type)

CHARAC1ER partition*(*)
INTEGER rows
INTEGER cols
INTEGER type

INTEGER FUNCTION Create a partition with a specific set of nodes.
NX _MKPART _ MAP(partition,
numnodes, node _list, type)

CHARAC1ER partition*(*)
INTEGER numnodes
INTEGER node _lis1(*)
INTEGER type

A-32

(~.
. I

...J

/Yi
\l-AJ

It' .J

IJ
IJ
IJ
lJ
(J

I~

(',''''
""

1,-
. j

r-
I""';

,.>il

I:
1=

I ~'

r-
,~

I :
(","', '

:v

I':
(

0"'1

.td

r:

Paragon™ OSF/1 User's Guide Summary of Commands and System Calls

Table A·37. Fortran Calls for Partition Management (2 of 2)

Synopsis Description

INTEGER FUNCTION Remove a partition.
NX _ RMPART(pathname, force,
recursive)

CHARACTER partition*(*)
INTEGER force
INTEGER recursive

INTEGER FUNCTION Change a partition's name.
NX_CIIPART_NAME(partition, name)

CHARACTER partition*(*)
CHARACTER name*(*)

INTEGER FUNCTION Change a partition's protection modes.
NX_CIIPART_MOD(partition, mode)

CHARACTER partition*(*)
INTEGER mode

INTEGER FUNCTION Change a partition's effective priority limit.
NX _ClIP ART _EPLCpartition. priority)

CHARACTER partition*(*)
INTEGER priority

INTEGER FUNCTION Change a partition's rollin quantum.
NX_CIIPART_RQ(partition,
rollin _quantum)

CHARACTER partition*(*)
INTEGER rollin_quantum

INTEGER FUNCTION Change a partition's owner and group.
NX _ClIP ART _ OWNER (partition,
owner, group)

CHARACTER partition*(*)
INTEGER owner
INTEGER group

A-33

""'-"- _.- - .. ~-.---.. --- ---_ .. _--- ... --- _ .. _-

Summary of Commands and System Calls Paragon™ OSF/1 User's Guide

Handling Errors
Table A·38. Fortran Calls for Handling Errors

Synopsis Description

SUBROUTINE NX_PERROR(string) Print an error message corresponcling to the
current value of errno.

CHARACTER string*(*)

Floating-Point Control
Table A·39. Fortran Calls for Floating·Point Control

Synopsis Description

INTEGER FUNCTION FPSETMASK(mask) Set the floating·point exception mask for the
calling process.

INTEGER mask

Miscellaneous Calls
Table A·40. Miscellaneous Fortran Calls

Synopsis Description

SUBROUTINE FLICKO Temporarily relinquish the CPU to another
process.

SUBROUTINE LED(state) Turn the node' s green LED on or off.

INTEGER state

DOUBLE PRECISION FUNCTION Return time in seconds since booting the node.
DCLOCKO

A-34

If "1,
~

r:

IJ
(:

oJioJ

I· ~ .J

I:
IJ

[--
.... ~

I:
r:
r··

'"

I ··"',
~,

1-=
, .J;"I

1-

--~
I~

I~

r:

Paragon™ OSFI1 User's Guide Summary of Commands and System Calls

iPSC@ System Compatibility

Table A·41. Fortran Calls ror iPSC@ System Compatibility (lor 2)

Synopsis Description

INTEGER FUNCTION GINV(graycode) Return the position of an element in the
binary-reflected gray code sequence. Inverse

INTEGER graycode ofgrayO.

INTEGER FUNCTION GRAY(position) Return the binary-reflected gray code for an
integer.

INTEGER position

SUBROUTINE HWCLOCK(hwtime) Place the current value of the hardware counter
into a 64-bit unsigned integer variable.

INTEGER hwtime(2)

INTEGER FUNCTION INFOPIDO Return the process type of the process that sent
a pending or received message.

SUBROUTINE KILLCUBE(node, pid) Terminate and clear node process(es).

INTEGER node
INTEGERpid

SUBROUTINE KILLPROC(node, pid) Terminate a node process.

INTEGER node
INTEGERpid

SUBROUTINE LOADifilename, node, pid) Load a node process.

CHARACTERjilename*(*)
INTEGER node
INTEGERpid

INTEGER FUNCTION MCLOCKO Return the time in milliseconds.

INTEGER FUNCTION MYPIDO Return the process type of the calling process.

INTEGER FUNCTION NODEDIMO Return the dimension of the current application
(the number of nodes allocated to the
application is 2dimension).

A-35

Summary of Commands and System Calls Paragon TM OSF/1 User's Guide

Table A-41. Fortran Calls for iPSC@ System Compatibility (2 of 2) (J
Synopsis Description

INTEGER FUNCTION Return 0 (does nothing; provided for
RESTRICTVOL(unit, nvol, vollist) compatibility only).

INTEGER unit Ii]
INTEGER nvol
INTEGER vollist(*) IJ
SUBROUTINE WAIT ALL(node, pid) Wait for node process(es) to complete.

INTEGER node
INTEGERpid

[J
1/0 Modes

Table A-42. Fortran Calls for VO Modes

Synopsis Description

SUBROUTINE SETIOMODE(unit, iomode) Set the I/O mode for a file.
(J

INTEGER unit
INTEGER iomode

INTEGER FUNCTION IOMODE(unit) Return the current I/O mode for a file.

INTEGER unit

IJ
IJ
u
IJ

A-36 (~

[',-

AI

r:
1'-"

, ..
r'.,.,' ..

r:

[:
I
--~

. '

("

r:

I:

I~

I ..

Paragon™ OSF/1 User's Guide Summary of Commands and System Calls

Reading and Writing Files in Parallel
Table A·43. Fortran Calls for Reading and Writing Files in Parallel

Synopsis Description

SUBROUTINE CREAD(unit, buffer, nbytes) Read from a file, waiting for completion.

INTEGER unit
INTEGER buffer(*)
INTEGER nbytes

SUBROUTINE CWRITE(unit, buffer, Write to a file, waiting for completion .
nbytes)

INTEGER unit
INTEGER buffer(*)
INTEGER nbytes

INTEGER FUNCTION lREAD(unit, buffer, Asynchronous read from a file. (Do not wait
nbytes) for completion.)

INTEGER unit
INTEGER buffer(*)
INTEGER nbytes

INTEGER FUNCTION IWRITE(unit, buffer, Asynchronous write to a file. (Do not wait for
nbytes) completion.)

INTEGER unit
INTEGER buffer(*)
INTEGER nbytes

INTEGER FUNCTION 10OONE(iti) Determine whether an asynchronous 110
operation is complete. If complete, release the

INTEGERid 110 ID.

SUBROUTINE lOW AITUd) Wait for completion of an asynchronous 110
operation and release the 110 ID.

INTEGERid

A-37

Summary of Commands and System Calls Paragon™ OSF/1 User's Guide

Detecting End-ot-File and Moving the File Pointer
Table A-44. Fortran Calls for Detecting End-of-File and Moving the File Pointer

Synopsis Description

IN1EGER FUNCTION ISEOF(unit) Test for end-of-file.

IN1EGER unit

IN1EGER FUNCTION LSEEK(unit. offset. Move the read/write file pointer.
whence)

IN1EGER unit
IN1EGER offset
IN1EGER whence

~Iushing Fortran Butfered 1/0

Table A-45. Fortran Calls for Flushing Buffered 110

SynopsiS Description

SUBROUTINE FORCEFLUSHO Cause all buffered 110 to be flushed if an
exception occurs.

SUBROUTINE FORFLUSH(unit) Flush all buffered 110 on a particular unit.

IN1EGER unit

A-38

()

IJ

IJ
IJ
l~
(""I

, I

,J

I ,
'~

~J

(J
(I

J

IJ
IJ

IJ

I:
r:
r:
I:
r:

r-'"
~.,,:

(;

1-:

I~

r:
r:

Paragon'" OSF/1 User's Guide Summary of Commands and System Calls

Increasing the Size of a File
Table A-46. Fortran Calls for Increasing the Size of a File

Synopsis Description

IN1EGER FUNCTION LSIZE(unit, offset, Increase size of a file.
whence)

IN1EGER unit
IN1EGER offset
IN1EGER whence

Extended File Manipulation
Table A-47. Fortran Calls for Extended File Manipulation

Synopsis Description

SUBROUTINE ESEEK(unit, offset, whence, Move file pointer in extended file.
newpos)

IN1EGER unit
IN1EGER offset(2)
INTEGER whence
IN1EGER newpos(2)

SUBROUTINE ESIZE(unit, offset. whence, Increase size of extended file.
newsize)

IN1EGER unit
IN1EGER offset(2)
IN1EGER whence
IN1EGER newsize(2)

A-39

Summary of Commands and System Calls Paragon™ OSF/1 User's Guide

Performing Extended Arithmetic
Table A-48. Fortran Calls for Performing Extended Arithmetic

Synopsis Description

SUBROUTINE EADD(ei, e2, eresult) Add two extended numbers.

INTEGER el(2)
INTEGER e2(2)
INTEGER eresult(2)

INTEGER FUNCTION ECMP(ei, e2) Compare two extended numbers.

INTEGER ei (2)
INTEGER e2(2)

SUBROUTINE EDIV(e, n, result) Divide extended number by integer.

INTEGER e(2)
INTEGERn
INTEGER result

SUBROUTINE EMOD(e, n, result) Give extended number modulo an integer
(remainder when e is divided by n).

INTEGER e(2)
INTEGERn
INTEGER result

SUBROUTINE EMUL(e, n, eresult) Multiply extended number by integer.

INTEGER e(2)
INTEGERn
INTEGER eresult(2)

SUBROUTINE ESUB(ei, e2, eresult) Subtract two extended numbers.

INTEGER ei(2)
INTEGER e2(2)
INTEGER eresult(2)

SUBROUTINE ETOS(e, s) Convert extended number to string.

INTEGER e(2)
CHARACTER s(*)

SUBROUTINE STOE(s, e) Convert string to extended number.

CHARACTER s(*)
INTEGER e(2)

A-40

[)

[J

IJ
Ii
IJ

IJ

IJ
IJ
IJ
IJ

IJ

I:
r:

I:

I -:
r~'

I ,.·
,"

(,'
r~

I

I~

I ·~.'

• .J

1-:

r:

iPSC® System Compatibility

Introduction
This appendix gives you information you can use to port programs to Paragon™ aSF!1 from the
iPSC® series of supercomputers from Intel Supercomputer Systems Division.

This appendix lists the differences between iPSC system commands and system calls and those of
Paragon TM aSF!I, and suggests alternatives that you can use for commands and calls that are not
supported. Commands and calls that are not listed here should work the same in Paragon aSFIl as
they do in the iPSC system.

New Features

NOTE

There is no longer an SRM. All software development is done
either on remote workstations or on the Intel supercomputer itself.
Parallel applications are run only on the Intel supercomputer.

Paragon aSFII offers the following features that were not available on the iPSC system. You can
use these features to improve the performance and readability of your programs.

• You can use the complete set of aSF!1 commands on the Intel supercomputer, as discussed in
Chapter 2.

• You can execute an application on multiple nodes just by typing its name on the command line,
using command-line switches to control its execution, as discussed under "Running
Applications" on page 2-11.

8-1

iPSC® System Compatibility Paragon™ OSF11 User's Guide

• You can control the values of some important message-passing configuration parameters, as
discussed under "Specifying Message-Passing COnfiguration Parameters" on page 2-21.

• You can allocate groups of nodes of any size and shape, and control the scheduling
characteristics of applications that run in them, as discussed under "Managing Partitions" on
page 2-24 and "Partition Management Calls" on page 4-20.

• You can tell the system to discard an asynchronous message ID as soon as the send or receive
completes with rmgignoreO, as discussed under "Asynchronous Send and Receive" on page
3-10.

• You can merge together a number of asynchronous message-passing requests and wait for all
of them to complete in a single call with msgmerge(), as discussed under "Merging Message
IDs" on page 3-13.

• You can pass a parameter to a message interrupt handler with hsendxO, as discussed under
"Treating a Message as an Interrupt" on page 3-22.

• You can receive or probe for a message based on its sender, and receive information about a
message along with the message, with the ••• xO calls, as discussed under "Extended Receive and
Probe" on page 3-26.

• You can use system calls to control the execution characteristics of parallel programs, as
discussed under "Controlling Application Execution" on page 4-2.

Compilers

B-2

The Paragon OSFII compilers work the same as the iPSC system compilers, with the following
exceptions:

• The compilers, linker, and other tools are now available on the Intel supercomputer as well as
on workstations. They can be called by the standard names (cc, r17, Id, and so on) as well as the
names used in cross-development (icc, if77, Id860, and so on).

• The environment variable that specifies the root of the compiler directory tree is called
PARAGON XDEV rather than IPSe XDEV. The default for this variable is now - -
lusrlparagonlXDEVrather than lusrlipsclXDEV.

• The compiler files are now found in the directory $P ARAGON JillEVlparagon rather than
$IPSe _XDEVli860. For example, your execution search path (path or PATH environment
variable) should include the directory $PARAGON .JWEVlparagonlbin.m. (where m.
identifies the architecture of the system, such as paragon or 8un4) rather than
$IPSe _ XDEV/i860Ibin.m. or $IP se _ XDEV/i860Ibin.

• The -p switch is now ignored. See the Paragon TM OSF/l Software Tools User's Guide for
information on profiling.

..... _ _ _-----------_.

(]

Ii
I)

[J

~":
Il..d

, I ~ 'l
i' ...J

IJ
IJ
IJ
11
~

IJ
IJ

,."""
~

I:

I ~'

I ,~

...... '.

I ~

c

Paragon'" OSFI1 User's Guide iPSC® System Compatibility

• The default for quad-alignment has been changed from -Mnoquad to -Mquad. This change
results in up to four times better performance for some code.

• The new switch -nx bas been added. This switch generates a program that automatically starts
itself on multiple nodes, as discussed under "Compiling and Linking Applications" on page 2-5.
The switch -node is currently accepted as a synonym for -ox, but this support may be dropped
in a future release.

• You can now have a file called .icfrc in your home directory that defines the default compiler
switches for you.

See the Paragon™ OSFI} Fortran Compiler User's Guide or Paragon™ OSFI} C Compiler User's
Guide for more information on the Paragon aSFIl compilers.

NOTE

You cannot use the Paragon OSF/1 cross-compilers to produce
programs for the iPSe system, and you cannot use the iPSe
system cross-compilers to produce programs for Paragon OSF/1.

If you develop programs for the iPSe system as well for Paragon aSF/I, you must be sure that your
execution search path (PATH or path variable) is set appropriately for your current target system. To
compile a program for Paragon aSF/I, the variable PARAGON _ XDEV must be set appropriately
and your execution search path must include $PARAGON _XDEVlparagonlbin.llah.; to compile a
program for the iPSe system, the variable IPSC _ XDEV must be set appropriately and your execution
search path must include $IP SC _ XDEVli8601 bin.llah. instead. Be sure that your execution search
path does not include both these directories at the same time.

Commands
In general, all of the standard commands of UNIX System V are supported by Paragon aSFIl, but
none of the iPSC-system-specific commands are supported. However, many of these commands are
not needed in Paragon aSF!I, or have equivalent standard commands in aSF/I.

Cube Control Commands

The usage model of Paragon aSF!1 is different from that of the iPSe system. Instead of allocating
a cube with a certain number of nodes, loading a program onto the cube, and then releasing the cube,
you run a parallel application simply by typing its name on the Paragon aSF/1 command line. You
can use command-line arguments to control its execution characteristics (such as the number of

iPSC® System Compatibility Paragon™ OSFI1 User's Guide

B-4

nodes on whichit runs), and you can use standard OSF/I process control commands such as kill to
control the program. (See Chapter 2 for more information on running and controlling applications in
Paragon OSF/I.)

For this reason, the following iPSC system commands, which create and control cubes, are not
supported in Paragon OSFI1:

archcube

attachcube

cubeinfo

getcube

kiUcube

load

newserver

relcube

This command is not needed in Paragon OSFIl because all nodes currently
have the same architecture.

This command is not needed in Paragon OSFIl because you do not have to
attach to a cube before you can use it.

Use the Ispart command to list the available partitions. See "Listing
Subpartitions" on page 2-45 for more information.

Use the -sz switch on the application command line to specify the number of
nodes allocated to the application. See "Specifying Application Size" on page
2-14 for more information.

The mkpart command is similar to getcube in that it allocates a partition (a
group of nodes). However, partitions are not the same as cubes: partitions can
overlap, and a partition can be used by several applications at once.
Depending on the poliCies of your site, you mayor may not be allowed to
allocate partitions. See "Making Partitions" on page 2-38 for more
information.

Use the OSF/I kill command to kill a running application, or press your
interrupt key « ctrl-c > or < Del>). See "Managing Running
Applications" on page 2-23 for more information.

Type an application's filename on the command line to run it on multiple
nodes. See "Running Applications" on page 2-11 for more information.

This command is not needed in Paragon OSF/l because you can use the usual
OSF/11l0 redirection characters to redirect an application's output. See "110
Redirection" on page 2-11 for more information.

This command is not needed in Paragon OSF/l because you do not have to
release a cube once you have used it. The nodes allocated to an application
are automatically released when all the processes in the application have
terminated.

The rmpart command is similar to relcube in that it deallocates a partition
(a group of nodes). However, partitions are not the same as cubes: partitions
can overlap, and a partition can be used by several applications at once.

(' .AJ

(J

[1'1.1
AI

IfJ \l

~J

IJ
IJ
IJ
(J

(J

('-" ..
r'~

It;

r:
r:
r:
(:
(-'"

~,

I ','.'
"

I~

I':

I~

r""
r''''. 0<,

[:'
,Jiu

r:

Paragon™ OSF/1 User's Guide

startcube

syslog

waitcube

TM

CFS Commands

iPSC® System Compatibility

Depending on the policies of your site, you mayor may not be allowed to
remove partitions. See "Removing Partitions" on page 2-42 for more
information.

This command has no equivalent in Paragon OSF/l. There is no way to load
an application into the nodes' memory without starting it.

This command is not needed in Paragon OSF/I because you can use the usual
OSF/I110 redirection characters to redirect an application's output. The
standard 110 of a node process is connected to the same files or devices as the
standard 110 of its controlling process. See "110 Redirection" on page 2-11
for more information.

This command is not needed in Paragon OSFIl because, by default, your
command prompt does not return until the application has completed. Also,
you can redirect the output of any program with the usual OSF/l 110
redirection characters (see "110 Redirection" on page 2-11 for more
information).

The following iPSC system commands, which control the Concurrent File Sy-stem™ and the SRM
tape drive, are not supported in Paragon OSF/l:

cptape

showvol

star

stream

tapemode

Use the cpio command instead. See cpio in the OSFll Command Reference
for more information.

Use the mount command to get a listing of the currently-mounted file
systems. See mount in the OSFll Command Reference for more information.

Use the tar command instead. See tar in the OSFll Command Reference for
more information.

This command is not needed in Paragon OSF/I because there is no streaming
tape drive.

This command currently has no equivalent in Paragon OSFIl. There is no
way to display or change the operating mode of the system's tape drives.

-_ .. --~-~ •.. -------

iPSC® System Compatibility Paragon ™ OSF/1 User's Guide

System Administration Commands

The following iPSe system commands, which are used for system administration, are not supported
in Paragon OSP/I:

cbackup

cfschk

crestore

makewhatis

mkcfs

mkdev

Use the dump command instead. See dump in the OSFll System and
Network Administrator's Reference for more information.

Use the fsck command instead. See fsck in the OSFll System and Network
Administrator's Reference for more information.

Use the rdump command instead. See rdump in the OSFIl System and
Network Administrator's Reference for more information.

Use the catman command instead. See catman in the OSFll Command
Reference for more information.

Use the newts command instead. See newts in the OSFll System and
Network Administrator's Reference for more information.

Use the mknod command instead. See mknod in the OSFIl System and
Network Administrator's Reference for more information.

plogon and plogoft'
These commands currently have no equivalent in Paragon OSP/I. There is
currently no way to log creation and deletion of partitions or running of
applications. However, you can use the syslogd daemon to log other system
activity. See syslogd in the OSFIl System andNetworkAdministrator's
Reference for more information.

Remote Host Commands

The following iPSe system commands, which are used for program development on remote hosts,
are not supported in Paragon OSP/I:

rr77

rec

rid

Use the if77 command instead. See the Paragon™ OSFIl Fortran Compiler
User's Guide for more information.

Use the icc command instead. See theParagon™ OSFIl C Compiler User's
Guide for more information.

Use the Id860 command instead. See theParagon™ OSFIl Fortran Compiler
User's Guide or Paragon™ OSFIl C Compiler User's Guide for more
information.

(1
. .-1

(]

[J

(J

IJ
IJ
IJ

(' . .J

IJ
IJ

r:
(

-l'!

+!

I ·'" . "

I
1--

I:

Paragon™ OSF/1 User's Guide

ras

rar

iPSC® System Compatibility

Use the as860 command instead. See the Paragon TM OSFll Fortran Compiler
User's Guide or Paragon ™ OSFll C Compiler User's Guide for more
information .

Use the ar860 command instead. See the Paragon™ OSFIl Fortran
Compiler User's Guide or Paragon™ OSFIl C Compiler User's Guide for
more information.

Miscellaneous Commands

The following iPSC system commands are not supported in Paragon OSP/I:

less Use the more command instead. See more in the OSFll Command Reference
for more information.

manpath Use the MANPATH environment variable instead. See man in the OSFll
Command Reference for more information.

nsh Use the rlogin or telnel command to log into the Intel supercomputer from
your workstation. See rlogin or telnel in your workstation's documentation
for more information.

rebootcube This command has no equivalent in Paragon OSP/I. There is no way for
ordinary users to reboot the system.

System Calls
In general, all of the standard system calls of UNIX System V and most of the iPSC-system-specific
system calls are supported by Paragon OSP/I. This section suggests alternatives for the unsupported
calls.

NOTE

Some iPSC calls are provided for backward compatibility only, and
are not intended for use in new programs. These calls are not
documented in the ParagonTAf OSFI1 C System Calls Reference
Manual or Paragon TAf OSFI1 Fortran System Calls Reference
Manual; see "iPSC® System Compatibility Calls" on page 4-36 for
a list of these calls.

B·7

iPSC® System Compatibility Paragon™ OSF/1 User's Guide

Include Files

Host Calls

8-8

Paragon OSPIl does not support the iPSC system include files <cube.h> or </cube.h>. You should
replace any reference to <cube.h> with <nx.h>, and any reference to <fcube.h> with <jnx.h>.

Applications in Paragon OSP/l do not usually have host programs. The usual programming model
in Paragon OSP/l is to write a single program (which corresponds to a "node program" in the iPSC
system),link it with -nx, and execute the program on a group of nodes by typing its name (see
"Running Applications" on page 2-11 for more information). You may be able to eliminate all
references to the following unsupported calls by rewriting your program to use this programming
model. If your application requires a separate host program, you can rewrite your host program into
a controlling process (see "Controlling Application Execution" on page 4-2 for more information).

For this reason, the -host switch to the cc and rn commands is not supported (there is no separate
host library; host programs use the same library as node programs). Also, the following iPSC system
calls, which are used in host programs, are not supported in Paragon OSPIl:

attachcube() This call currently has no equivalent in Paragon OSF/I. Unlike a host
program, a controlling process cannot be associated with more than one
application. Consider re-writing your host program as two or more separate
programs, each of which creates one application and communicates with the
other host program(s) using pipes, signals, or some other OSP/I interprocess
communication method. See "Controlling Application Execution" on page
4-2 for information on creating and controlling applications using system
calls.

cubeinfo() This call currently has no equivalent in Paragon OSP/l. However, because
allocation of nodes in Paragon OSP/l is not exclusive, it is not usually
necessary for programs to know how other users have allocated nodes. To get
information on your own application (equivalent to the "current cube"), you
can use calls such as numnodesO.

getcubeO Use rue _initveO instead. See "Controlling Application Execution" on page
4-2 for information on rue _initve().

kiUcube() This call is supported, but can only be used to kill and flush all processes on
all nodes (kUlcube(-l,-l».

You can use killO to kill a single process, as discussed for kiUprocO below,
and then use ftushmsgO to flush messages related to that process. See
"Plushing and Canceling Messages" on page 3-17 for information on
ftushmsgO.

[J

(J

~l
I .. ~ .. 1

•. .OJ

IJ
IJ
IJ
IJ
IJ
IJ

I T

•• Paragon™ OSF/1 User's Guide

r·~.
'Ii!

(--:

I ''''
- kiUprocO

I~
I ~, , '

kiUsyslogO

(.,

I:
I,'"

..:!::::

r:

iPSC® System Compatibility

This call is supported. but can only be used to kill alI processes on all nodes
(kiUproc(-1,-1».

You can use killO to kill a single process. given its aSF/1 process ID. killO
is supported in both C and Fortran. To determine the aSF/l process ID of a
process created by ox _ nforkO. ox JoadO. or ox Joadve(). use the values
stored into the pid _array argument. These calIs store the aSF/l PIDs of the
processes created into the elements of this array. as discussed under "Using
PIDs" on page 4-12.

For example. to kill the process on node number node:

#include <signal.h>

n = nx_nfork(NULL, -1, ptype, pid_array);

kill (pid_array[nodeJ, SIGKILL);

Note that process types (ptype in this example) in Paragon aSF/l are
equivalent to NX PIDs in the iPSC system. PIDs (pid _array in this example)
in Paragon aSF/l are standard UNIX process IDs.

See the OSF/] Programmer's Reference for information on kilIO; see
"Controlling Application Execution" on page 4-2 for information on
ox_nforkO, oxJoadO, and oxJoadveO.

Use freopenO instead, to close the standard output and standard error output
and reopen them to Idevltty. See freopenO in the OSFI] Programmer's
Reference for more information.

freopenO is not currently supported for Fortran programs. However, it is
supported for C programs. You can write a C "wrapper" function. as follows:

#inc1ude <stdio.h>

void killsyslog_() {
freopen("/dev/tty", "w", stdout);
freopen("/dev/tty", "w", stderr);

}

Note the underscore at the end of the function name. Once you have compiled
this function and linked it into your Fortran program, you can call kiUsyslogO
as described in the iPSC system documentation.

iPSC® System Compatibility

newserverO

relcubeO

setpidO

setsyslogO

waitall{)

8-10

Paragon™ OSF/1 User's Guide

This call is not necessary in Paragon OSP/I. The standard 110 of a controlling
process (host process) is connected to the same files or devices as the standard
110 of its node processes.

This call is not necessary in Paragon OSP/l. The nodes allocated to an
application are automatically released when all the processes in the
application have terminated.

Use setptype() instead. "Process Characteristics" on page 3-3 for information
on setptype(), and "Message Passing Between Controlling Process and
Application Processes" on page 4-17 for information on using setptype{) in
a controlling process.

This call is not necessary in Paragon OSP/I. The standard 110 of a controlling
process (host process) is connected to the same files or devices as the standard
110 of its node processes.

This call is supported, but can only be used to wait for all processes on all
nodes (waitall(-1,-l».

To wait for a single node process (waitaU{node,pid), use the OSP/l system
call waitpidO to wait for the process with a particular OSP/l process ID. To
determine the PID of a process created by nx _ nforkO, nx JoadO, or
nx _loadveO, use the values stored into the pid _array argument These calls
store the OSPII PIDs of the processes created into the elements of this array,
as discussed under "Using PIDs" on page 4-12.

Por example, to wait for the process on node number node:

n = nx_nfork(NULL, -1, ptype, pid_array);

•
waitpid(pid_array[node] , &status, 0);

Note that process types (ptype in this example) in Paragon OSP/l are
equivalent to NX PIDs in the iPSC system. PIDs (pid _array in this example)
in Paragon OSP/l are standard UNIX process IDs.

See the OSFll Programmer's Reference for information on waitO and
waitpidO; see "Controlling Application Execution" on page 4-2 for
information on nx_nforkO, nxJoadO, and nxJoadveO.

[J

I:
IJ

rf"1
1Il.J

(J

IJ
(~

.AI

(J

c

I:

r:
I:
l:
r:
I:
I'·

1--'

I~:

r~

I
-~

~

r:

Paragon™ OSF/1 User's Guide

waitoneO

iPSC® System Compatibility

waitO is supported in both C and Fortran, but waitpidO is not currently
supported in Fortran. You can make waitpidO callable from Fortran by
writing a C "wrapper" function, as follows:

#include <sys/types.h>
#include <sys/wait.h>

int waitpid_(int *process_id,

}

int *status_location,
int *options) {

return«int)waitpid«pid_t)*process_id,
status_location,
*options) ;

Note the underscore at the end of the function name. Once you have compiled
this file and linked it into your Fortran program, you can call waitpidO as
described in the OSFll Programmer's Reference. The wrapper function
waitpidO takes three integer·4 parameters and returns an integer·4 value.

To wait for the first node process in the entire application to complete
(waitone(-l, -I, cnode, epid, eeode», use the OSF/l system call waitO. For
example:

n = nx_nfork(nodes, NUMNODES, ptype, pids);

pid wait(&status);

After this call, the status of the first process to complete is stored in status and
its OSFIl process ID is stored in pid. To determine the process's node
number, look for the value ofpidin the pids array returned by RX_nforkO,
RX_loadO, or RX_loadve().

To wait for a single node process (waitone(node, pid, enode, cpid, eeode»,
use the same technique described for waitaU(node, pid):

n = nx_nfork(NULL, -1, ptype, pid_array);

pid waitpid(pid_array[node] , &status, 0);

In this case, the status of the process is stored in status and its OSF/l process
ID is stored in pid. To determine the process's node number, look for the
value of pid in pid _array as described above.

8-11

iPSC@ System Compatibility Paragon™ OSFI1 User's Guide

See the OSFll Programmer's Reference for information on waitO and
waitpidO; see "Controlling Application Execution" on page 4-2 for
information on ox _ nforkO, nx joadO, and ox joadve(). waitO is supported
in both C and Fortran, but waitpidO is not; to call waitpidO from Fortran, use
the technique discussed previously under waitallO.

Byte-Swapping Calls

createstrucO
CTOHCO
CTOHD()

8-12

The calls listed in Table B-1, which swap bytes between the format used on the cube and the format
used on some remote hosts, are not supported in the current release of Paragon OSF/I.

Table B-1. Unsupported iPSC® System Byte-Swapping Calls

CTOHFO HTOCCO HTOCLO
CTOHLO HTOCD() HTOCSO
CTOHSO HTOCFO relstrucO

You can use the standard OSF/l system calls btonIO, btonsO, ntoblO, and ntobsO to swap bytes
between the standard format for your machine and the Internet network format. See btonIO, btonsO,
ntoblO, and ntohsO in the OSFIl Programmer's Reference for more information.

btonIO, btonsO, ntoblO, and ntobsO are not currently supported for Fortran programs. However,
they are supported for C programs. You can make them callable from Fortran by writing C
"wrapper" functions, as follows:

#include <netinet/in.h>

long htonl_(long *hostlong) {
return«long)htonl«unsigned long)*hostlong);

}

short htons_(short *hostshort) {
return«short)htons«unsigned short)*hostshort);

}

long ntohl_(long *netlong) {
return«long)ntohl«unsigned long)*netlong);

}

short ntohs_(short *netshort) {
return«short)ntohs«unsigned short)*netshort);

}

I:
lJ

1" -l

IlJ

(. "I
.JJ

(i
...,j

I:
IJ

IJ

r:
1·-.

~

r:

I ~,

[

.-M

-,,-,

I~

I "

[~

1°'
I~

I:'
I:
r:

Paragon 1M OSF 11 User's Guide iPSC® System Compatibility

Note the underscore at the end of each function name. Once you have compiled this file and linked
it into your Fortran program. you can call htonlO. htonsO. ntohlO, and ntohsO as described in the
OSFll Programmer's Reference. The wrapper functions htonlO and ntohlO take an integer*4
parameter and return an integer*4 value; the wrapper functions htonsO and ntohsO take an
integer*2 parameter and return an integer*2 value.

Floating-Point Control Calls

The Paragon OSFIl C system calls fpgetstickyO and fpsetstickyO. which get and set the i860
microprocessor'sjloating-poinr exception stickyjlags. and fpgetmaskO and fpsetmaskO. which get
and set the floating-point exception mask, do not support the exception value FP _ X _ DNML. which
represents a denormalization exception in the iPSe system.

The Paragon OSF/I Fortran system call fpsetmaskO also does not support the denormalization
exception, and uses different numeric values to represent the various exceptions than the
corresponding iPSC system call. See "Floating-Point Control" on page 4-29 for the correct values
for Paragon OSF/I.

Miscellaneous Calls

The following iPSC system calls are not supported in Paragon OSF/I:

getiphostsO

gixorO

glxorO

handlerO

This call currently has no equivalent in Paragon OSF/I. However. because the
OSF/I operating system automatically routes network traffic using all
available Ethernet ports. it is not usually necessary to know the network
names of the available ports.

This call is not supported in Paragon OSFIl. The exclusive OR operator is not
associative. and gives unpredictable results when used on more than two
nodes.

This call is not supported in Paragon OSF/I. The exclusive OR operator is not
associative. and gives unpredictable results when used on more than two
nodes.

Use the signalO system call instead (signalO is supported for both e and
Fortran). See signalO in the OSFll Programmer's Reference for information
on signal handling; see signalO in the Paragon™ OSFll Fortran Compiler
User's Guide for information on the Fortran interface to signalO.

8-13

----,--.-~~~ .. "---,~-. ---' _.

iPSC® System Compatibility Paragon™ OSF/1 User's Guide

plogonO and plogotTO

setiphostO

These calls currently have no equivalent in Paragon OSFIl. There is currently
no way to automatically log creation and deletion of partitions or running of
applications. However, you can use the syslogO call to log activities under
program control. See syslogO in the OSFIl Programmer's Reference for
more information.

This call is not necessary in Paragon OSFIl. The OSF!1 operating system
automatically routes network traffic using all available Ethernet ports; itis not
necessary to select one port to perform network operations.

Summary
Table B-2 summarizes the Paragon OSF!! equivalents for the unsupported iPSe system commands.

Table B·2. Summary of Unsupported iPSC~ System Commands (1 of 2)

IPSC® System Command Paragon TM OSF!1 Equivalent

archcube (none)

attachcube (none)

cbackup dump

cfschk fsck

cptape cpio

crestore rdump

cubeinfo Ispart

getcube ·sz switch on application command line

kiUcube kill

less more

load Application's filename

makewhatis catman

manpatb MANPATH environment variable

mkcfs newfs

mkdev mknod

newserver 110 redirection characters

nsh rlogin or telnet

plogotT (none)

8-14

[~

~', 1 I (
""'I

,.11 .

IJ

IJ
(J

()

[.
'11

.Jo

r:

r:
[~

(''''
.'

I~

I~'

I '."
.'

r=
1"""1

." '

r:

Paragon™ OSF/1 User's Guide iPSC® System Compatibility

Table B-2. Summary of Unsupported iPSC@ System Commands (2 of 2)

iPSc® System Command paragon™ OSF/1 Equivalent

plogon (none)

rar ar860

ras as860

rec icc

rebootcube (none)

relcube (none)

rf77 if77

rid Id860

showvol , showfs

star tar

startcube (none)

stream (none)

syslog 110 redirection characters

tapemode (none)

waitcube (none)

8-15

iPSC® System Compatibility Paragon™ OSF/1 User's Guide

Table B-3 summarizes the Paragon OSP/! equivalents for the unsupported iPSe system calls.

Table B-3. Summary of Unsupported iPSC(!) System Calls

IPSC® System call Paragon TM OSF/1 Equivalent

attachcube() (none)

cubeinfoO (none)

fpgetstickyO, fpsetstickyO, fpgetmaskO, Supported, except for FP _ X _ DNML, but
fpsetmaskO Fortran mask values are different.

getcubeO ox _ initve()

getiphostsO (none)

gixorO (none)

glxorO (none)

handlerO signalO

kiUcubeO Use kiUcube(-l,-l) to kill and flush all
processes; use kiUO followed by ftushmsgO to
kill and flush one process

killsyslogO (none)

killprocO Use killproc(-l,-l) to kill all processes; use
killO to kill one process

newserverO freopenO

plogotTO (none)

plogonO (none)

relcubeO (none)

setiphostO (none)

setpidO setptypeO

setsyslogO (none)

waitallO Use waitall(-l,-l) to wait for all processes; use
waitOor waitpidO to wait for one process

waitoneO waitO or waitpidO

Byte-swapping calls htonlO; htonsO, ntohlO, and ntohsO

8-16

--~ ---------'------------------------------

IJ
IJ

(lI"!
.oJ

IJ

~I
Ii.-I

IJ
IJ
IJ
IJ
lJ

~

I:
r':
(. -~'

.. 1oJ

r:
I·

il

I :
11'

.• .1

I-~'

I:
r:
r:
1~1

I:
I ''"

,J

I -~
.J!;

I:

Symbols
in filenames 5-3

. (dot) in partition path names 2-27

. (root) partition 2-25

.compute partition 2-28

.F extension 2-9

.service partition 2-28

lets directory 5-5

IdevltapeO device 5-29

lusr/ccsllib directory 2-8

lusr/include directory 2-8

lusr/lib directory 2-8

lusr/paragonlXDEV directory 2-9

lusrltmp directory 5-5

\;file (second program in an application) 2-18

__ NODE preprocessor symbol 2-5

_cread{) system call 5-17

_crecv{) system call 4-28

_cwriteO system call 5-17

............ -- -.-.------.~~~

Index

-1
as error return 4-27
as message type 3-6
as node number 3-3,4-17
as process type 3-4
as sending node number 3-26
as sending process type 3-26

64-bit integers 5-23

A
absolute partition pathname 2-28

access methods 5-6
synchronization of 5-31

active and inactive applications 2-34

address space 1-3

allocating nodes to a partition 2-29, 2-38

allocating nodes to an application 2-14, 4-4

allocating space to a file 5-1, 5-21

alternate node topologies 6-6

anonymous files 5-5

applicable documents vii

"application" command 2-12, A-2

Index-1

Index

applications 1-1 , 2-1
active and inactive 2-34
allocating nodes to an application 4-4
Bourne shell 2-24
compiling and linking 2-5
compiling, linking, and executing 2-3
contiguous nodes 2-15
control decomposition 6-5
controlling execution characteristics 2-12
contrOlling process 2-23, 2-27, 4-4, 4-13
controlling with system calls 4-2
creating and contrOlling 4-4
debugging 2-33
decomposition 6-3
default partition 2-13
designing 6-1
designing a communication strategy 6-6
domain decomposition 6-3
error handling 4-27
error messages 2-11
executing 2-11
-gth switch 2-22
1/0 redirection 2-11
independent of number of nodes 6-5
interactive 2-33
killing application processes 4-15
listing the applications in a partition 2-47
-Inx compiler switch 2-11

. load balancing 6-3
managing running applications 2-23
matrix*vector example 6-11
-mbf switch 2-21
-mea switch 2-21
message buffers 3-15
message passing with controlling process 4-17
-mex SWitch 2-21
node numbers 3-3
nqueens example 6-13
-nx compiler switch 2-11
-on switch 2-16
order of switches 2-12
overlapping 2-35
partition of 2-13
perfectly-parallel 6-2
pi example 6-7

Index-2

, -pkt switch 2-21
-plk switch 2-22
-pn switch 2-20
-pri switch 2-15

Paragon™ OSF/1 User's Guide'

priority of 2-15,2-34,4-7
process type of 2-16, 3-4
-pt switch 2-16, 3-5
removing partitions containing 2-43
running in a particular partition 2-20
running multiple programs 2-18
running on a subset of the nodes 2-16
-set switch 2-21
separating the user interface from the

computation 6-3
shell scripts 2-24
size of 2-14
-sth switch 2-21
-sz switch 2-15, 3-3
waiting for application processes 4-11

arbitration between processes 2-32

archcube command B-4

architecture of your workstation 2-6

argc and argv parameters 4-5, 4-10

arith metic, extended 5-23

asynchronous file I/O calls 5-18

asynchronous message-passing calls 3-7,3-10
canceling 3-19
with interrupt handler 3-7

attachcube command B-4

attachcubeO system call B-8

B
backward compatibility calls B-7

backward library references 2-10

bad nodes 2-31

balancing the load among the nodes 6-3

Basic Linear Algebra Subroutines (BLAS) 6-13

[)

()

Il
IJ
IJ

IJ

[J

IJ
(:

ai

IJ
IJ
()

"--.--~-----------------~--------------~--

r: Paragon™ OSFI1 User's Guide Index

r:
r:
r'" .. AiI bg command 2-23 Icts directory 5-5

blinking node LEOs 4-33 eFS_MOUNT environment variable 5-5
r~ ~J blocking 3-8, 5-31 cfschk command 8-6

on child processes 4-11 changing partition characteristics 2-48, 4-24
r~ bold text vi changing process type 3-4 . ~.

Bourne shell (sh) 2-24 characteristics of a partition 2-28 I: brackets, in syntax descriptions vi default 2-28

broadcast 3-9 characteristics of processes 3-3

r~ buffering chess example 6-13
of Fortran 110 5-20 child partitions 2-29, 2-33

I~
of messages 3-15 creating 2-38 of standard 110 2-12 listing 2-45

bureaucracy in node programs 6-5 removing 2-42

I: bytes read or written 5-17
removing partitions containing 2-43

child processes 4-7,4-9,4-11 byte-swapping calls B-12
chpart command 2-29, 2-48, A-2 I·~

~, close() system call 5-26
C synchronization 5-31

I: e preprocessor on a Fortran program 2-9 closing parallel files 5-7, 5-26
e programs commands 2-1

I~I error handling 4-27 compiling and linking applications 2-5
file descriptors 5-2 cross-development 2-5
including nx.h 2-8 executing applications 2-11

,-"1 canceling messages 3-19 iPSe system compatibility B-3
managing partitions 2-24

cat command 5-1 managing running applications 2-23

r~ cbackup command B-6 native 2-5
on the Intel supercomputer 2-2

cc command 2-4, 2-5 on workstations 2-2

I: -host SWitch 8-8 summary A-1
-I switch 2-9
-L switch 2-9, 2-1 0 commons in message passing 3-20

r~
-Mquad SWitch 8-3 compatibility with the iPSe system B-1
-node switch B-3
-nx switch 2-5, B-3 compiler switches 2-5, 2-8,2-10, B-2, B-3

(~ order of switches 2-10 compilers, iPSe system 2-7
,1>1 -p switch B-2 compatibility with B-2

I:
CFS 5-1, B-5

[J

l: Index-3

Index

compiling and linking applications 1-4, 2-5
-host switch 8-8
-Inx switch 2-6
-Mquad switch B-3
-node switch B-3
-nx switch 2-5, B-3
-p switch B-2
quick example 2-3
specifying include file path names 2-8
specifying library path names 2-8
tips 2-8

complete (synchronous) system calls
file 1/05-15
message passing 3-7

computational kernel of an application 6-3

compute nodes 1-2

compute partition 2-2, 2-27, 2-28

Concurrent File System 5-1, B-5

configuring your environment
for cross-development 2-6
for online manual pages 2-6

contiguous nodes 2-15

contiguous partitions 2-30

control decomposition 6-5
example 6-14

controlling application execution with system calls
4-2

controlling node LEOs 4-33

controlling process 2-23,2-27,2-47,4-4,4-13
global operations 4-17
message passing 4-17
node number of 4-17
process type of 4-17

controlling tape devices 5-26

controlling the application's execution
characteristics 2-12

copying processes onto nodes 4-7

Index-4

count parameter 3-6

Courier font vi

cp command 5-1

Paragon™ OSFI1 User's Guide

cprobe(} system call 3-15, A-6

cprobex(} system call 3-16, 3-26, A-8

cptape command 8-5

cread(} system call 5-7, 5-16, A-17
synchronization 5-31

createstrucO system call 8-12

creating an application 4-4

creating partitions 2-38, 4-20

crecv(} system call 3-8, A-4

crecvx(} system call 3-16, 3-26, A-8

crestore command B-6

critical code 3-25

cross-compilers 2-2

cross-development facility 1-4
commands 2-5
configuring your environment 2-6

csend () system call 3-8, A-4

csendrecv(} system call 3-8, A-4

CTOH ... (} system calls B-12

<Ctrl-c> key 2-23

<Ctrl-z> key 2-23

cube control commands B-3

cube.h file B-8

cubeinfo command B-4

cubeinfo(} system call B-8

current partition 2-28

cwrite(} system call 5-8, 5-16, 5-21, A-17
synchronization 5-31

~
l.-Ai

IJ
[J

I:

l~

IJ

I]

[J

I.:
J

IJ
IJ

I;:
r-t!!

..
I

-~

'"

r:
I:
(~

1_-.,
~I

1·<>

, ._t.1

I"

r:
r:

Paragon™ OSFI1 User's Guide

D
dclockO system call 4-33, 4-34, A-15

dead nodes 2-31

dealing out data to the nodes 6-3

debugging applications 2-33

decomposition 6-3
control decomposition 6-5
domain decomposition 6-3

default application size 2-15

default characteristics of a partition 2-28

default partition 2-1 , 2-13
determining 2-14
listing applications in 2-47
listing subpartitions of 2-45
setting 2-13
showing characteristiCS of 2-44

 key 2-23

designing a communication strategy 6-6

designing a parallel application 6-1

destroying partitions 2-42, 4-22

detecting end-of-file 5-19

determining your default partition 2-14

/devltapeO device 5-29

. differences between iPSC and Paragon B-1

disk space allocated to a file 5-2, 5-21

distributed memory 6-2

distributing computation among the nodes 6-3

distributing data among the nodes 6-3

documents, related vii

domain decomposition 6-3
example 6-8

dot (.) in partition path names 2-27

dot (.) partition (root partition) 2-25

dynamic algorithm selection 3-29

E

eaddO system call 5-23, A-19

ecmpO system call 5-23, 5-24, A-19

edivO system call 5-23, 5-24, A-19

effective priority limit 2-34, 2-41, 2-49

ellipses (...), in syntax descriptions vi

emodO system call 5-23, 5-24, A-19

emulO system call 5-23, A-19

end-of-file 5-19

environment variables
CFS_MOUNT 5-5
for compiling and linking 2-6
for online manual pages 2-6
IPSC_XDEV B-2
MANPATH 2-6
NX_DFLT_PART 2-3,2-11,2-13
NX_DFL T _SIZE 2-11, 2-15, 2-20
of child processes 4-10
PARAGON XDEV 2-6 2-9
PATH 2-6 - ,

envp parameter 4-1 0

ermo variable 4-28

error handling 4-27
in parallel file I/O calls 5-17

error messages 2-11

eseekO system call 5-25, A-18
synchronization 5-31

esizeO system call 5-25, A-18

esize_t structure 5-23

estat structure 5-25

estatO system call 5-25, A-18

estat.h file 5-23

Index

Index-5

Index

esubO system call 5-23, A-19

Ethernet interface 1-2

etosO system call 5-23, A-19

example of compiling and linking 2-3

examples
iomodes5-9
matrix*vector 6-11
nqueens 6-13
pi 6-7
triangle 6-18

"exceeds partition resou rces" error 2-11

exception mask 4-31

exceptions 5-21

execO system call 3-5

execute (x) permission on a partition 2-32

executing applications 2-3, 2-11
after cross-compilation 1-5
contrOlling 2-12

execution search path 2-6

execution timing 4-34

extended arithmetic 5-23

extended file manipulation calls 5-25

extended receive and probe 3-26

F
.F extension 2-9

f77 command 2-4, 2-5
'-host switch 8-8
-I switch 2-9
-Lswitch 2-9, 2-10
-Mquad switch B-3
-node switch B-3
-nx switch 2-5, B-3
order of switches 2-10
-p switch B-2

Index-6

Paragon™OSF/1 User's Guide

fcube.h file 8-8

festat() system call 5-25, A-18

fg command 2-23

file 110, parallel (see also "parallel file "0") 5-1

file pointers 5-7

file systems 5-1

filelO parameter 5-2

filenames, length of 5-1

files
file descriptors 5-2
file pOinters 5-7

moving 5-19
size of 5-1 , 5-21

fixed-size records 5-8

flick() system call 4-33, A-15

floating-point control calls 4-29

flushing Fortran buffered I/O 5-20

flushing messages 3-17

flushmsg() system call 3-17, A-6
with msgcancelO 3-19

fnx.h file 2-8

force types 3-6

forceflush 0 system call 5-20

forflush 0 system call 5-20

forkO system call 2-6, 3-5, 4-7

forking processes onto nodes 4-7

form="formatted" parameter 5-4

form="unformatted" parameter 5-4

form atted files 5-4

fort.nnn files 5-5

I~

(l,' , .I

I:
I~

(J

IJ

~J

~'~

IJ

(J

IJ
IJ
(J

,,'"_ .. _ .. _--------- -".-----~-.-- -~ .. _---._" - ~ .. " .. -----~--- _ ------ ~-----.--.

I: Paragon'M OSF/1 User's Guide Index

r-'~
~,

I:
I: Fortran programs giand() system call 3-29, A-9

error handling 4-27 gihigh () system call 3-29, A-9
I~ file I/O on parallel files 5-16

gilow() system call 3-29, A-1 0 flushing buffered I/O 5-20
including fnx.h 2-8 ginv() system call 4-36, A-15, A-35

r~ message passing with Fortran commons 3-20
opening new files 5-5 giorO system call 3-29, A-10 ..
opening parallel files 5-4 giprod(} system call 3-29, A-10

r~1 parallel file 1/0 calls 5-16
gisumO system call 3-29, A-10 preprocessing 2-9

sequential files 5-17 give_threshold ipc_option 2-22 I ", unformatted files 5-17
gixorO system call 8-13 units 5-2

fpgetmask() system call 4-29, A-14 glandO system call 3-29, A-10 r-' fpgetroundO system call 4-29, A-14 global operations 3-4,3-29,5-6,5-31,6-6
and controlling process 4-17 fpgetstickyO system call 4-29, A-14 with -on switch 2-18 I "

.. .'-: fpsetmask() system call 4-29, 5-21, A-14 glor() system call 3-29, A-10

I~
fpsetroundO system call 4-29. A-14 glxor() system call 8-13
fpsetsticky() system call 4-29, A-14 gopfO system call 3-29, A-10

(- fsplit command A-3 grayO system call 4-36, A-15, A-35

' .. ' FTNxxxxxxxx.nn files 5-5 group of a partition 2-32, 2-50
ftp command 1-5,2-7 groups of processes 4-14 I ~,

gsendx() system call 3-9, A-4
G gshighO system call 3-29, A-10 I., gang scheduling 2-34, 2-41 gslowO system call 3-29, A-10

r~
gcolO system call 3-29. A-9 gsprodO system call 3-29, A-11
gcolx() system call 3-29, 6-6, 6-13, A-9 gssum() system call 3-29, A-11

1_-
gdhighO system call 3-29, A-9 gsync() system call 3-29, A-11
gdlow() system call 3-29, A-9 -gth switch 2-22

I~
gdprod() system call 3-29, A-9

gdsum() system call 3-29, 3-30, 6-6, A-9 H

1--" getcube command 8-4 handled message-passing calls 3-7
getcube() system call 8-8 handled types 3-23

r: getiphostsO system call 8-13 handlerO system call 8-13

(J
Index-7 I' .. 41

Index

handling errors 4-27

hardware 1-1

hardware failures 2-31

"hello, world" program 2-4

hierarchical partition structure 2-27

host calls 8-8

-host switch 8-8

hparam parameter 3-24

hrecv(} system call 3-22, A-7

hrecvx(} system call 3-26, A-8

hsend(} system call 3-22, 3-23, A-7

hsendrecv(} system call 3-22, 3-23, A-7

hsendxO system call 3-22, 3-24, A-7

HTOC ... () system callsB-12

hwclock(} system call 4-36, A-15, A-35

I/O IDs 5-18

I/O interfaces 1-2

1/0 modes 5-6
example 5-9
M_LOG5-7
M_RECORO 5-8
M_SYNC5-7
M_UNIX5-7
standard 1/0 2-12
synchronization of 5-31

I/O performance 5-7

1/0 redirection 2-11

1/0 to parallel files 5-15

1/0, parallel (see also "parallel file 1/0") 5-1

i860 microprocessor 1-2
floating-point control registers 4-30

Index-8

Paragon 1M OSF/1. User's Guide .

icc command 2-5
environment variables 2-6
-I switch 2-9
-L switch 2-9, 2-10
-Mquad switch B-3
-node switch 8-3
-nx switch 2-5, B-3
order of switches 2-10
-p switch 8-2

10 of a message 3-7

IEEE NaN 4-30

if77 command 2-5
environment variables 2-6
-I switch 2-9
-L switch 2-9, 2-10
-Ikmath switch 6-13
-Mquad switch 8-3
-node switch 8-3
-nx switch 2-5, B-3
order of switches 2-10
-p switch 8-2

image enhancement 6-3

inactive applications 2-34

include directories 2-8

include files
cube.h 8-8
estat.h 5-23
fcube.h 8-8
fnx.h 2-8
mtio.h 5-26
nx.h 2-8

incomplete (asynchronous) system calls
file I/O 5-15
message passing 3-7

increasing the size of a file 5-1,5-21

info parameter 3-27

infocountO system call 3-16, A-6

infonodeO system call 3-16, A-6

IJ
IJ
[J

I]

IJ

I~
rfl
It. Ad

['1
ilLJ

IJ
I-.l

AJ

lJ

IJ
IJ
I:
C

(--..

",

r:
r~

I:
(~

I ~:
(~

I :
I:
I~
I~

I ""

r
(_.,

I ~"
.'

I~

I:
r

·~

_ .~..Ji

("'<Ill .. :

Paragon'" OSFI1 User's Guide

infopid() system call 4-36, A-15, A-35

infoptypeO system call 3-16, A-6

information about messages 3-16

infotypeO system call 3-16, A-6

Intel supercomputer
hardware 1-1
software 1-2
using commands on 2-2

interactive applications 2-33

interconnect network 1-2

interfaces 1-2

interrupt key 2-23

interrupts
preventing 3-25
treating messages as interrupts 3-22

INVALlO_PTYPE constant 3-5

ioctl() system call 5-26

iodoneO system call 5-15, 5-18, 5-19, A-17

iomode() system call 5-6, A-16

iowait() system call 5-15, 5-18, 5-19, A-17

iprobeO system call 3-15, A-6

iprobexO system call 3-16, 3-26, A-8

iPSC system
CFS compatibility 5-1
commands 8-3
compatibility calls 4-36
compatibility with 8-1
compilers 2-7,8-2
IPSC_XOEV environment variable 8-2
system calls 8-7

iread 0 system call 5-18, A-17
synchronization 5-31

irecvO system call 3-10, A-5

irecvxO system call 3-26, A-8

isendO system call 3-10, A-5

isendrecvO system call 3-10, A-5

Index

iseofO system call 5-7, 5-16, 5-17, 5-19, A-17
synchronization 5-31

isnanO system call 4-29, A-14

isnandO system call 4-29, A-14

isnanfO system call 4-29, A-14

italic text vi

iwriteO system call 5-18, 5-21 , A-17
synchronization 5-31

K
kernel of an application 6-3

kill command 1-3,2-23,2-47

kiliO system call 4-13, 4-15

killcube command 8-4

kilicubeO system call 4-36, A-15, A-35, 8-8

killing application processes 4-15

kiliprocO system call 4-36, A-15, A-35, 8-9

killsyslogO system call 8-9

L
ledO system call 4-33, A-15

LEOs 4-33

length of a filename or pathname 5-1

length of a message 3-6, 3-16

less command B-7

lib-coff directory 2-8

Iibnx.a library 2-5

Index-9

Index

libraries
BLAS 6-13
command-line switches 2-10
libkmath.a 6-13
Iibnx.a2-5
search path for 2-10
specifying 2-8

life of a process type 3-4

lightweight processes 1-1, 3-5

link switches 2-1 0

linking an application 2-3
single-pass linker 2-1 0
specifying library pathnames 2-8

listing partitions 2-45

listing the applications in a partition 2-47

-Ikmath switch 6-13

-Inx switch 2-6
effect on execution 2-11

load balancing 2-32, 2-33, 6-3

load command B-4

load() system call 4-36, A-15, A-35

loading processes onto nodes 4-9

locking data into memory 2-22

logical node numbers 2-30

Is command 5-1

IseekO system call 5-7, 5-9,5-17,5-19, A-17
synchronization 5-31

Isize command 5-1, A-2

IsizeO system call 5-21 , A-1 8

Ispart command 2-31,2-45, A-2

M
M_LOG I/O mode 5-7

Index-10

Paragon'" OSF/1 User's Guide

M_RECORD I/O mode 5-8

M_SYNC 110 mode 5-7

M_UNIX liD mode 5-7

magnetic tapes, controlling 5-27

makewhatis command 8-6

making partitions 2-38,4-20

making the program independent of the number of
nodes 6-5

manager-worker decomposition 6-5,6-14

managing partitions 2-24
with system calls 4-20

managing running applications 2-23

manpath command 8-7

MAN PATH environment variable 2-6

manual pages, configuring your environment for 2-6

masktrap(} system call 3-22, 3-25, A-7

matrix·vector example 6-11

maximum length of a filename or pathname 5-1

-mbf switch 2-21

mclock(} system call 4-36, A-15, A-35

-mea switch 2-21

memory
allocated to message buffers 2-21
distributed 6-2
locking data into memory 2-22
of nodes 1-2
physical 1-3
virtual 1-3

memory_buffer ipc_option 2-21

memory-each ipc_option 2-21

memory_export ipc_option 2-21

merging message IDs 3-13

message handlers 3-24

I]

I ,
'J

~',l , i
4J

[
, Ti , ,

'~

~J

IJ
(]

IJ
IJ
IJ

, .. ~--.--.- ,"'~----.

r: Paragon"" OSFI1 User's Guide Index

I· m,

I~

I· .~
message-passing system calls 3-1 modes for 1/0 5-6

I" messages 1-1 , 6-2 synchronization of 5-31

'" as interrupts 3-22 modes of a partition 2-32, 2-40, 2-50
asynchronous calls 3-10 monospace text vi

['" buffers 3-15
"- canceli ng messages 3-19 m ovin g the file pOinter 5-19

configuration options 2-21 mp_switches 2-21
r~ designing a communication strategy 6-6

.... , exchanging with controlling process 4-17 -Mquad switch B-3
flushing messages 3-17 msgcancelO system call 3-13, 3-17, A-6 I co, force types 3-6
getting information about 3-16 with flushmsgO 3-19

t.,'

handled types 3-23 msgdoneO system call 3-10, A-5

I~
memory allocated to message buffers 2-21 msgignoreO system call 3-10, A-5 merging message IDs 3-13
message characteristics 3-6 msginfo array 3-16, 3-27

I·~ message 103-7
message IDs 3-10 msgmergeO system call 3-13, A-5

",'

message length 3-6, 3-16 msgwaitO system call 3-10, A-5

I~ message order 3-7
. ,.' message passing with Fortran commons 3-20 MT operations 5-27

message type 3-6, 3-16 mtio.h file 5-26

I",
names of message-passing calls 3-7 multiple nodes 3-9 pending messages 3-15
releasing message IDs 3-13 multiple programs in an application 2-18

I'~' synchronous calls 3-8 mv command 5-1 typesel masks 3-6
zero-length messages 3-6 myapp (any application) command 2-11

I~ -mex switch 2-21 myapp.c 2-4

migration of processes 2-33 myapp.f 2-4

I~ miscellaneous system calls 4-33 myhostO system call 4-17, A-3

mkcfs command 8-6 mynodeO system call 2-15, 3-3, A-3 r- mkdev command 8-6 mypidO system call 4-36, A-15, A-35
-,

mkpart command 2-28, 2-38, A-2 myptypeO system call 2-16, 3-4, A-3

14

'

-epl switch 2-41
~.4- i

-mod switch 2-40
-nd switch 2-39 N

I~'
-rq switch 2-41

name of a partition 2-29, 2-50 -ss switch 2-41
~

-sz switch 2-38 named commons in message passing 3-20

r: names of message-passing calls 3-7

r:
["?

,AI
Index-11

Index

NaN (Not-a-Number) 4-30

native commands 2-5

new features in Paragon OSF/1 8-1

new files 5-5

newserver command 8-4

newserverO system call 8-10

NFS (Network File System) 1-5,2-7,5-1
parallel 1/0 to 5-16

node interconnect network 1-2

node numbers 3-3
in filenames 5-3
in overlapping partitions 2-31
logical 2-30
of a received or pending message 3-16
of controlling process 4-17
physical 2-30
within a partition 2-30

node parameter 3-3

__ NODE preprocessor symbol 2-5

-node SWitch 8-3

nodedim 0 system call 4-36, A-16, A-35

Index-12

Paragon™ OSF!1 User's Guide

nodes 1-1,1-2,6-2
allocated to a partition 2-29,2-38
allocated to an application 2-14, 4-4
compute nodes 1-2
contiguous 2-15
copying processes onto nodes 4-7
designing a communication strategy 6-6
load balancing 6-3
loading processes onto nodes 4-9
making programs independent of number of

nodes 6-5
node LEOs 4-33
node numbers 3-3
node topologies 6-6
operating system 1-3
partitions 2-24
running application processes on a subset 2-16
service nodes 1-2
unusable nodes 2-31

nodesel parameter 3-3

nodespecs 2-16, 2-39

noncontiguous nodes 2-15

noncontiguous partitions 2-30

non-parallel programs 2-11,2-27

Not-a-Number (NaN) 4-30

notational conventions used in the manual vi

nqueens example 6-13

nsh command 8-7

number of bytes read or written 5-17

numbers, extended 5-23

numnodesO system call 2-15, 3-3, A-3

-nx switch 2-5, B-3
actions performed by 4-2
and nx_initveO 4-3
command-line switches 2-12
effect on execution 2-11

nx.h file 2-8

r:
r:
(1

.J.!

(J

(J

[I
.J

1-:
I:
r:
I::

1_,

I:
I~'

r
~-T'

.. L'

I-
I ~~.'

",

Paragon'" OSF/1 User's Guide

nx_ ... () system calls, error handling of 4-27

nx_chparCeplO system call 4-24, A-13

nx_chparCmodO system call 4-24, A-13

nx_chparCnameO system call 4-24, A-13

nx_chparCownerO system call 4-24, A-13

nx_chparCrqO system call 4-24, A-13

NX_DFLT_PART environment variable 2-3,2-11,
2-13

NX_DFL T _SIZE environment variable 2-11 , 2-15,
2-20

nx_initveO system call 4-3, 4-4, 4-13, A-12
linking 2-6

nx-,oadO system call 2-18, 3-5, 4-3, 4-9, 4-12, A-12

nx-,oadveO system call 2-18, 3-5, 4-3, 4-10, 4-12,
A-12

nx_mkpartO system call 4-20, A-13

nx_mkpart_mapO system call 4-20, A-13

nx_mkpart_rectO system call 4-20, A-13

nx_nforkO system call 2-18, 3-5, 4-3, 4-7, 4-12,
A-12

nx_perrorO system call 4-27, A-14

nx-priO system call 4-3, 4-7, A-12

nx_rmpartO system call 4-22, A-13

nx_waitaliO system call 4-3, 4-11, A-12

I': 0

I ~.,
~ ..."

[
'''II!

~.JoJ

-on switch 2-16

open 0 system call 5-3

opening parallel files 5-3
in filenames 5-3
special considerations for Fortran 5-4

operating system 1-3

order of application switches 2-12

order of compiler switches 2-10

order of messages 3-7

organization of the manual v

OSF/1 operating system 1-2
com m ands 2-2

OSF/1 PIDs 4-12

other system calls 4-1

overlapping partitions or applications 2-35

owner of a partition 2-32, 2-50

p

-p switch B-2

packeCsize ipc_option 2-21

padding in common blocks 3-20

Paragon OSF/1 operating system 1-3
commands 2-1
message-passing system calls 3-1
new features B-1
other system calls 4-1
parallel file I/O 5-1
programming model 6-2

Index

PARAGON_XDEV environment variable 2-6,2-9

$PARAGON_XDEV/paragon directory 2-8

parallel applications 1-1, 2-1

Index-13

Index

parallel file I/O 5-1
in filenames 5-3
asynchronous I/O calls 5-18
closing files 5-26
detecting end-of-file 5-19
error handling 5-17
file pOinters 5-7
flushing Fortran buffered 1/0 5-20
formatted vs. unformatted 1/05-4
1/0 modes 5-6
1/0 performance 5-7
in Fortran programs 5-16
increasing the size of a file 5-1 , 5-21
manipulating extended files 5-25
moving the file pOinter 5-19
new files 5-5
opening files 5-3
reading and writing files 5-15
special considerations for Fortran 5-4
synchronizing calls 5-6
synchronizing operations 5-31
synchronous I/O calls 5-16
system calls 5-2
tapes, controlling 5-26
to NFS files 5-16
to the user's terminal 5-21
unnamed files 5-5

parallel files 5-1

parallel programming techniques 6-2

parent partition 2-29

"partition permission denied" error 2-11

Index-14

Paragon'" OSF/1 User's Guide

partitions 1-4, 2-1 , 2-24
allocating nodes to applications 2-14
changing partition characteristics 2-48, 4-24
characteristics 2-28
child partitions 2-29, 2-33
compute partition 2-2,2-27,2-28
contiguous and noncontiguous 2-30
cu rrent 2-28
default characteristics 2-28
default partition 2-1, 2-13

determining 2-14
setting 2-13

dot (.) partition (root partition) 2-25
effective priority limit 2-34, 2-41,2-49
error messages 2-13
execute (x) perm ission 2-32
gang-scheduled 2-34, 2-41
hierarchical structure 2-27
listing 2-45
listing the applications in a partition 2-47
making partitions 2-38, 4-20
managing 2-24
managing with system calls 4-20
name of a partition 2-29,2-50
nodes 2-29
nodes allocated to a partition 2-38
overlapping 2-35
owner and group 2-32, 2-50
parent partition 2-29
path names 2-27
permission bits 2-32, 2-40, 2-50
priority 2-34
protection modes 2-32, 2-40, 2-50
read (r) permission 2-32
removing partitions 2-42, 4-22
rollin quantum 2-33,2-34,2-41,2-49
root partition 2-25, 2-29

shape of 2-25
running applications in 2-20
scheduling characteristics 2-32, 2-41
service partition 2-2, 2-23,2-27
showing partition characteristics 2-44
special 2-25
standard-scheduled 2-33, 2-41
subpartitions 2-29, 2-33

(.~.' Ai

l~ I

(J

if "'\
l~

r'ri
Ill~

[J

lJ

[J

IJ

I:
r:
r:
I:
r:
I~

I':
(~I

,I

I
~-.."

_J

I~
1""

.,

I~'

I~;

r!
L

Paragon OSF/1 User's Guide

unusable nodes 2-31
write (w) perm ission 2-32

passing information to the handler 3-24

PATH environment variable 2-6

path names of partitions 2-27

pathnames, length of 5-1

pending messages 3-15
flushing 3-17
getting information about 3-16

perfectly-parallel applications 1-4, 6-2

performing extended arithmetic 5-23

permissions of a partition 2-32,2-40,2-50

physical memory 1-3

physical nodes 2-30

physical topology 6-6

pi example 6-7

PIOs (process IDs) 4-12
contrasted with process types 4-12

-pkt switch 2-21

-plk switch 2-22

plockO system call 2-22

plogon and plogoff commands 8-6

plogonO and plogoffO system calls 8-14

pmake command A-3

-pn switch 2-20

porting iPSe programs 8-1

porting serial codes 6-5

preallocating disk space 5-22

preprocessing a Fortran program 2-9

preprocessor symbol __ NOOE 2-5

preventing interrupts 3-25

-pri switch 2-15

priority

Index

effective priority limit of a partition 2-34, 2-41,
2-49

of a partition 2-34
of a process 2-33
of an application 2-15, 2-34,4-7

probing for pending messages 3-15
extended 3-26

problem decomposition 6-3

process group IDs 2-47

process group leaders 4-4, 4-14

process IDs (PIOs) 4-12

process types 3-4
changing 3-4
contrasted with OSF/1 PIOs 4-12
INVALID _PTYPE 3-5
life of 3-4
of a received or pending message 3-16
of an application 2-16
of controllin g process 4-17

processes
arbitration between 2-32
characteristics 3-3
child processes 4-7,4-9,4-11
controlling process 2-23, 2-27, 2-47, 4-4, 4-13
copying processes onto nodes 4-7
lightweight processes 1-1 , 3-5
loading processes onto nodes 4-9
migration 2-33
PIOs (process IDs) 4-12
priority of 2-33
process groups 4-14
process types 3-4
threads 1-1, 3-5
waiting for application processes 4-11

processor time 2-15

processors 1-1

profiling 8-2

Index-15

Index

program development tools 1-4

programming model 1-4, 6-2

programming techniques 6-2

programs, non-parallel 2-1 , 2-27

protection modes of a partition 2-32, 2-40,2-50

ps command 2-23

pspart command 2-47, A-2

-pt switch 2-16, 3-5

pthread_createO system call 3-5

ptype (see also "process type") 2-16

ptype param eter 3-4

ptypesel parameter 3-4

Q

quad-align ment 8-3

queens example 6-13

quick example 2-3

R
rar command 8-7

ras command 8-7

rcc com m and 8-6

rcmd command 1-5

rcp command 1-5,2-7

read (r) permission on a partition 2-32

read statement 5-15

readO system call 5-16, 5-17

reading files in parallel 5-15

rebootcube command 8-7

Index-16

Paragon™ OSF/1 User's Guide

receiving messages 3-8
extended 3-26

record size 5-8

recursively listing subpartitions 2-46

recursively removing subpartitions 2-43

redirecting 1/0 2-11

related documents vii

relative partition path name 2-28

relcube command 8-4

relcubeO system call 8-10

releasing control of the processor 4-33

releasing 1/0 IDs 5-19

releasing message IDs 3-13

relstrucO system call 8-12

remote host commands 8-6

removing partitions 2-42, 4-22

restrictvolO system call 4-36, A-16, A-36

rewinding a tape 5-29

rf77 command 8-6

ring topology 6-6

rid command 8-6

rlogin command 1-4

rmpart command 2-42, A-2
-f switch 2-43
-r switch 2-43

rollin and rollout 2-2, 4-33

rollin quantum 2-33, 2-34
of a partition 2-41 , 2-49
virtual 2-37

root account 2-25, 2-32, 2-50

root partition 2-25, 2-29
shape of 2-25

IJ

('."".'. I' ,
1iJ

I:

.. '1'1

iil~

~~

1l..J

~

,~

I, e,.

" ""

l:
l:
[:

[11',
,.. Paragon™ OSF/1 User's Guide

I':
I:

r:

r:
('-'

L'

I~

r-~

,.,j

I~

r~

[~

1=

D

rounding mode 4-30

rsh command 1-5

running a program on a subset of the nodes 2-16

running applications 2-11

s

consisting of multiple programs 2-18
in a particular partition 2-20
removing partitions containing 2-43

sat command A-3

scheduling characteristics of a partition 2-32. 2-41

scheduling mechanisms 1-1

scratch files 5-5

'SCSI interface 1-2

-sct switch 2-21

sdotO 8LAS function 6-13

search path 2-6

search path for libraries 2-10

seeking on a file 5-20

send_count ipc_option 2-21

send_threshold ipc_option 2-21

sending messages 3-8

sending to multiple nodes 3-9

separating the user interface from the computation
6-3

sequential files 5-17

serial codes. porting 6-5

service nodes 1-2

service partition 2-2. 2-11. 2-23.2-27

setiomodeO system call 5-6. A-16
synchronization 5-31

setiphost() system call 8-14

setpart alias 2-14

setpid 0 system call 8-10

setptypeO system call 2-16. 3-4. A-3
in controlling process 4-17

setsyslogO system call 8-10

setting your default partition 2-13

sh command 2-24

shape of the root partition 2-25

shell 2-27

shell scripts 2-24

shepherd process 2-24

Index

showing partition characteristics 2-44

showpart command 2-29. 2-31. 2-44. 2-46. A-2

showvol command 8-5

single program multiple data (SPMD) programming
model 1-4. 6-2

single system image 1-3, 6-2

64-bit integers 5-23

size
of a file 5-1. 5-21
of a message 3-6
of a packet 2-21
of a partition 2-38
of an application 2-14

sizeof operator 3-6

software failures 2-31

special partitions 2-25

specifyin g application priority 2-15

specifying application size 2-14

specifying message-passing configuration options
2-21

specifying nodes allocated to a partition 2-38

specifying process type 2-16

Index-17

Index

speedup of a parallel program 6-2

SRM 8-1

standard include directory 2-9

standard input and output, redirecting 2-11

standard scheduling 2-33, 2-41

star com mand 8-5

startcube command 8-5

start-up routine 2-5

status of a tape device 5-29

status="new" parameter 5-5

status="scratch" parameter 5-5

-sth switch 2-21

sticky flags 4-31

stoe() system call 5-23, 5-24, A-19

stream command 8-5

subpartitions 2-29, 2-33
creating 2-38
listing 2-45
removing 2-42
removing partitions containing 2-43

succ() function 6-7

summaries of commands and system calls A-1

supercomputer
hardware 1-1
software 1-2
using commands on 2-2

suspend key 2-23

SVR3.28-7

Index-18

switches
compiler 2-8
-gth switch 2-22
-host switch 8-8
in nx_initveO 4-5
-mbf switch 2-21
-mea switch 2-21
-mex switch 2-21
mp_switches 2-21
-Mquad SWitch 8-3
-node switch 8-3

Paragon™ OSF/1 User's Guide

-nx switch 2-5, 2-12, 8-3
-on switch 2-16
order of SWitches 2-12
-p switch 8-2
-pkt switch 2-21
-plk switch 2-22
-pn switch 2-20
-pri switch 2-15
-pt switch 2-16, 3-5
-sct switch 2-21
-sth switch 2-21
-sz switch 2-15,3-3

synchronizing calls 5-6

synchronizing operations 5-26
summary 5-31

synchronous file 1/0 calls 5-16

synchronous message-passing calls 3-7,3-8

syslestat.h file 5-23

syslog command 8-5

system administrator 2-25, 2-32, 2-50

system buffers 3-15
flushing 3-17

[J

[J

[J

(
""'I I

~

I:
r:
I ''l''

'"

[~

I,"'"
,~

I'"
[

''''I

_ .J

l:
[' ~

'"

("

1_,"
"

I
-~'!

---,

r=
[J

U

D

Paragon'" OSF/1 User's Guide

system calls
asynchronous file 1/0 calls 5-18
asynchronous message-passing calls 3-10
backward compatibility 4-36, 8-7
canceling messages 3-19
closing files in parallel 5-26
controlling application execution 4-2
controlling LEOs 4-33
controlling tape devices 5-26
detecting end-of-file 5-19
error handling 4-27

in parallel file 110 calls 5-17
extended arithmetic 5-23
floating-point control 4-29
flushing Fortran buffered 110 5-20
flushing messages 3-17
global operations 3-29, 6-6
1/0 modes 5-6
1/0 to parallel files 5-15
increasing the size of a file 5-21
information about messages 3-16
iPSe system compatibility 4-36,8-7
manipulating extended files 5-25
message buffers 3-15
message passing with Fortran commons 3-20
message-passing 3-1
miscellaneous 4-33
moving the file pOinter 5-19
names of message-passing calls 3-7
opening files in parallel 5-3
other system calls 4-1
parallel file 1/0 5-2
parallel file 1/0 synchronization 5-31
partition management 4-20
reading and writing files in parallel 5-15
summary of e system calls A-3
summary of Fortran system calls A-20
synchronization 5-31
synchronous file 1/0 calls 5-16
synchronous message-passing calls 3-8
timing 4-34
treating messages as interrupts 3-22
underscore versions 4-27

system hardware 1-1

system software 1-2

System V UNIX 8-7

-sz switch 2-15, 3-3

T
tape devices, controlling 5-26

tapemode command 8-5

task decomposition 6-5

techniques for parallel programming 6-2

telnet command 1-4

Index

temporarily releasing control of the processor 4-33

terminal 110 5-21

terminology 2-1

threads (lightweight processes) 1-1, 3-5

timing execution 4-34

tips for compiling and linking 2-8

tools for program development 1-4

topics in this manual v

topologies 6-6

treating a message as an interrupt 3-22

tree search 6-5

triangle example 6-18

type of a message 3-6, 3-16

type parameter 3-6

typesel masks 3-6

typesel parameter 3-6

U
UFS file system 5-1

underscore versions of system calls 4-27

Index-19

Index

unformatted files 5-4, 5-17

units (Fortran 1/0) 5-2

UNIX System V 8-7

unnamed files 5-5

unusable nodes 2-31

uppercase.F extension 2-9

user interface of an application 6-3

user model 1-3
differences from iPSC system 8-3

using Paragon OSF/1 commands
on the Intel supercomputer 2-2
on workstations 2-2

using PIDs 4-12

using the default partition 2-13

lusr/ccsllib directory 2-8

lusr/include directory 2-8

lusr/lib directory 2-8

lusr/paragonlXDEV directory 2-9

lusr/tmp directory 5-5

v
variables

CFS_MOUNT 5-5
errno 4-28
IPSC_XDEV 8-2
MANPATH 2-6
NX_DFLT_PART 2-11,2-13
NX_DFL T _SIZE 2-11, 2-15, 2-20
PARAGON_XDEV 2-6, 2-9
PATH 2-6

vector multiplication 6-11

vector operations 3-29

virtual memory 1-3

virtual rollin quantum 2-37

Index-20

Paragon™ OSF/1 User's Guide

virtual topology 6-6

W
waitallO system call 4-36, A-16, A-36, 8-10

waitcube command 8-5

waiting for application processes 4-11

waitoneO system call 8-11

wildcards in partition path names 2-27

workstations
architecture of 2-6
using commands on 2-2

workstations, working at 1-4

write (w) permission on a partition 2-32

write statement 5-16

writeO system call 5-16, 5-17

writing files in parallel 5-15

x
x (execute) permission on a partition 2-32

Z
zero-length messages 3-6

(J

J"'1
IA~

[
-"'1

- ••• 1

[J

[J

r:

