
• • • ..
D

IJ

IJ

IJ

I:J
[j

IJ
e
n
~

• • • .:

PARAGON™ OSF/1

C COMPILER

USER'S GUIDE

Intel~ Corporation

April 1993

Order Number: 312490-001

Copyright «)1993 by Intel Supercomputer Systems Division. Beaverton. Oregon. All rights reserved. No part of this work may be reproduced or
copied in any form or by any meana ... graphic. electronic. or mechanical including photocopying. taping. or information storage and retrieval sys­
tems ... without the express written consent of Intel Corporation. The information in this document is subject to change without notice.

lutel Corporation makes no wmanty of any kind with regard to this material. including. but not limited to. the implied wmanties of merchantability
and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this document. Intel Corporation
makes no commitment to update or to lceep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied.

Intel software products are copyrighted by and shall remain the property ofIntelCorporation. Use. duplication. or disclosure is subject to restrictions
stated in Intel's software license agreement. Use. duplication. or disclosure by the U.S. Government is subject to restrictions as set forth in subpara­
graphs (c)(1 Xii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. Intel Corporation. 2200 Mission College Boule­
vard. Santa Clara. CA 9502. For all Federal use or contracts other than DoD. Restricted Rights under FAR 52.227 -14. ALT. III shall apply.

The fonowing are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

286 iCS Intellink
287 iDBP iOSP
4-SITE iDIS iPDS
Above iLBX iPSC
BlTBUS im iRMX
COMMputer 1m iSBC
Concurrent File System iMDDX iSBX
Concurrent Workbench iMMX iSDM
CREDIT Insite iSXM
Data Pipeline int I KEPROM
Direct-Connect Module e

Library Manager
FASTPATIi int lBOS

e MAP-NET
GENIUS Intelevision MCS

I2ICE
inteligent Identifier Megacbassis

inteligent Programming
MICROMAINFRAME

i386 MULTI CHANNEL
i387 Intel MUL TIMODULE
i486 Intel386 ONCE
i487 Intel387 OpenNET
i860 Intel486 OTP
ICE Intel487 Paragon
iCEL Intel1ec PC BUBBLE

Ada is a registered trademark of the U.S. Government. Ada Joint Program Office
APSO is a service mark of Verdix Corporation
DOL is a trademark of Silicon Graphics. Inc.
Ethernet is a registered trademark of XEROX Corporation
EXAB YTE is a registered trademark of EXAB YTE Corporation
Excelan is a trademark of Excelan Corporation
EXOS is a trademark or equipment designator of Excelan Corporation
FORGE is a trademark of Applied Parallel Research. Inc.
Green Hills Software. C-386. and FORTRAN-386 are trademarks of Green Hills Software. Inc.
GV AS is a trademark of Verdix Corporation
mM and mMNS are registered trademarks of International Business Machines
Lucid and Lucid Common Lisp are trademarks of Lucid. Inc.
NFS is a trademark of Sun Microsystems
OSF. OSF/I. OSFlMotif. and Motif are trademarks of Open Software Foundation. Inc.
POI and POF77 are trademarks of The Portland Group. Inc.
ParaSoft is a trademark of ParaSoft Corporation
SOl and SiliconGraphics are registered trademarks of Silicon Graphics. Inc.
Sun Microsystems and the combination of Sun and a numeric suffix are trademarks of Sun Microsystems
The X Window System is a trademark of Massachusetts Institute of Technology
UNIX is a trademark of UNIX System Laboratories
V ADS and Verdi x are registered trademarks of Verdix Corporation
V AST2 is a registered trademark of Pscific-Sierra Research Corporation
VMS and VAX are trademarks of Digital Equipment Corporation
VP/ix is a trademark of INTERACTIVE Systems Corporation and Phoenix Technologies. Ltd.
XENIX is a trademark of Microsoft Corporation

Ii

Plug-A-Bubb1e

PROMPT

Promware

ProSolver

QUEST

QueX

Quick-Pulse Programming

Ripplemode

RMXl80

RUPI

Seamless

SLD

SugarCube

UPI

VLSiCEL

•
D

o
D

II

II

• • • • •
I:

Ir.

• • • • • • • • • • • • • • • • • • •

• • •
D

C

G

D

I~

c

IJ

.. -;
'c-l

(" .~I

IJ

(J

IJ

IJ

IJ

III

• • •

REV. REVISION HISTORY DATE
-001 Original Issue

LIMITED RIGHTS

The information contained in this document is copyrighted by and shall re­
main the property of Intel Corporation. Use, duplication or disclosure by
the U.S. Government is subject to Limited Rights as set forth in subpara­
graphs (a)(15) of the Rights in Technical Data and Computer Software
clause at 252.227-7013. Intel Corporation, 2200 MisSion College Boule­
vard, Santa Clara, CA 95052. For all Federal use or contracts other than
000 Limited Rights under FAR 52.2272-14, ALT. /II shall apply .

4193

iii

iv

D

U

n
II

II

II

I:

• • •
II

• • • • • • • • • • •
I

• • • • •
II.

•

II

II

II

D

C

III

I~

IJ

["' , ,
~

IJ

IJ

IJ

IJ

IJ

IJ

I:J

Ij

I:J

II

• • •

--~~---.. "---------------

Preface

This manual describes the Paragon TM OSF/I C compiler and driver. This manual assumes that you
are an application programmer proficient in the C language and the UNIX operating system.

Organization
Chapter I

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Appendix A

Introduces the Paragon OSFIl software development environment and shows
how to create executable files from C source code. This chapter contains
enough information to get you started creating executable files for the
Paragon OSFIl operating system.

Describes icc, the command for compiling, assembling, and linking C source
code for execution on a system nmning Paragon OSF/1.

Gives you a strategy for using the compiler's optimization features to help
maximize the single-node performance of your programs.

Tells how to use the compiler's function inliner.

Tells how to write C functions that are callable from Fortran and how to call
Fortran routines from C.

Describes the language that the C compiler accepts (ANSI C), extensions to
the standard language, and considerations for porting programs written in
original C (the language described by Kernighan and Ritchie in The C
Programming Language).

Lists the error messages generated by the compiler, indicating each
message's severity and, where appropriate, the probable cause of the error
and how to correct it.

v

Preface

AppendixB

AppendixC

Paragon™ OSFI1 C COmpiler User's Guide

Describes the internal structure of the compiler, with special emphasis on the
vectorizer and optimizer.

Contains reference manual pages for the Paragon OSF/! software
development commands.

Notational Conventions

vi

This manual uses the following notational conventions:

Bold

Italic

Identifies command names and switches, system call names, reserved words,
and other items that must be entered exactly as shown.

Identifies variables, filenames, directories, processes, user names, and writer
annotations in examples. Italic type style is also occasionally used to
emphasize a word or phrase.

Plain-Monospace
Identifies computer output (prompts and messages), examples, and values of
variables. Some examples contain annotations that describe specific parts of
the example. These annotations (which are not part of the example code or
session) appear in italic type style and flush with the right margin.

Bold-Italic-Monospace
Identifies user input (what you enter in response to some prompt).

Bold-Monospace

(}

Identifies the names of keyboard keys (which are also enclosed in angle
brackets). A dash indicates that the key preceding the dash is to be held down
while the key following the dash is pressed. For example:

<Break> <s> <ctrl-Alt-Del>

Surround optional items.

Indicate that the preceding item may be repeated.

Separates two or more items of which you may select only one.

Surround two or more items of which you must select one.

a
II

II

• • • • • • • • •
I:

• • • • • • • • • • • • • • • • • •
•

a

•
II

o
D

n
D

I~

I '" .~i

IJ

IJ

C

I:J

1:1

C
[]

IJ

IJ

IJ
I]

[J

C
[J

[J

G

• • • •

Paragon™ OSF/1 C Compiler User's Guide Preface

Applicable Documents
For more information, refer to the following manuals:

TM
Paragon OSF/1 Manuals

• Paragon™ OSFIl User's Guide

• Paragon™ OSFI1 Software Tools User's Guide

• Paragon™ OSFI1 Commands Reference Manual

• Paragon™ OSFI1 C System Calls Reference Manual

• Paragon™ OSFI1 Interactive Parallel Debugger Manual

Intel@ Manuals

• i860™ 64·Bil Microprocessor Family Programmer's Reference Manual

• Paragon™ XPIS i860™ 64·Bil Microprocessor Assembler Reference Manual

Other Manuals

• C: A Reference Manual· Harbison and Steele

• The C Programming Language· Kernighan and Ritchie

• CLASSPACK Basic Math LibrarylC User's Guide· Kuck & Associates

• OSFI1 User's Guide

• OSFIl Programmer's Reference

• OSFI1 Command Reference

vii

__________________ ~-_________________ • __ . ______ ~ _____ c ___ --_- _- _.- •

Preface Paragon'" OSFI1 C Compiler User's Guide

Comments and Assistance

viii

Intel Supercomputer Systems Division is eager to hear of your experiences with our new software
product Please call us if you need assistance, have questions, or otherwise want to comment on your
Paragon system.

U.S.AJCanada Intel Corporation
phone: 800·421·2823

email: support@ssd.intel.com

Intel Corporation Italia s.p.a.
Milanofiori Palazzo

United Kingdom Intel Corporation (UK) Ltd.
Supercomputer System Division

20090 Assago
Milano
Italy
167877203 (toll free)

France Intel Corporation
1 Rue Edison-BP303
78054 St Quentin·en-Yvelines Cedex
France
05908602 (toll free)

Japan Intel Corporation K.K.
Supercomputer Systerm Div~ion
5-6 Tokodai, Tsukuba City
Ibaraki-Ken 300-26
Japan
0298-47-8904

Pipers Way
Swindon SN3 IRJ
England
0800 212665 (toll free)
(44) 793 491056 (answered in French)
(44) 793 431062 (answered in Italian)
(44) 793 480874 (answered in German)
(44) 793 495108 (answered in English)

Germany Intel Semiconductor GmbH
Dornacher Strasse 1
8016 Feldkirchen bel Muenchen
Germany
0130813741 (toll free)

World Headquarters
Intel Corporation

Supercomputer Systems Div~ion
15201 N.W. Greenbrier Parkway

Beaverton, Oregon 97006
U.S.A.

(503) 629-7600

• • • • •
• • • • • • •
I:

• • • • • • • • • • • • • • • • • • •

II

II

D

I~

I:

IJ

c
Ij

I:J
(""i

,J

I!J
(J

IJ
[J

IJ

IJ

IJ

IJ

I:l
[J

IJ
[J

G

• • • •

Chapter 1
Getting Started

-------.. ---- -

Table of Contents

TM
The Paragon OSF/1 Software Development Environment ... 1-1

System Hardware ... 1-1

System Software .. 1-2

Software Development Environments ... 1-2

Compiler Driver .. 1-4

i860 TM Assembler ... 1-4

i860 TM Linker .. 1-5

Execution Environments ... 1-5

Running on a Single Node ... 1-5

Running on Multiple Nodes•.......•.....................•........•...•.........•.•..•....•..•............... 1-5

Debugging .. 1-6

Example Driver Command Lines .. · 1-7

Ix

Table of Contents Paragon™ OSFI1 C Compiler User's Guide

Chapter 2
The icc Driver
Invoking the Driver .. 2-1

Controlling the Driver ... 2-3

Specific Passes and Options ... 2-4

Preprocess Only ... 2-5

Preprocess and ·Compile Only ... 2-5

Preprocess, Compile, and Assemble Only ... 2-5

Add and Remove Preprocessor Macros .. 2-6

Allow C++ Comments .. 2-6

Controlling the Compilation Step .. 2-7

Specific Actions ... 2-7

location of Include Files .. 2-13

list of Include Files .. 2-13

Optimization level .. 2-13

Generating Debug Information ... 2-14

Controlling the Link Step .. 2-15

Stripping Symbols .. 2-15

Generating a Relinkable Object File .. 2-15

Producing a link Map .. 2-15

linker libraries ... 2-16

Controlling Mathematical Semantics ... 2-16

Controlling the Driver Output .. 2-17

Executable for Multiple Nodes ... 2-18

Name of Executable File .. 2-18

Verbose Mode .. 2-19

Overriding Compiler Defaults ... 2-19

x

• • • • •
• • • • • •
•
I[

• •
• • • • • • • • • • • • • • •
•
•

D

D

II

D

G

Cl

D

I~

1:1

IJ

IJ

IJ

IJ

IJ

IJ

IJ

~

IJ

IJ

IJ

[j

G

II

• • •

Paragon™ OSF/1 C Compiler User's Guide Table of Contents

Chapter 3
Optimizing Programs
Introduction .. 3-1

Optimization Procedure ... 3-1

Shortening Turnaround Time ... 3-2

Compiler Switches for Optimization .. 3-3

General Optimizations (-0) .. 3-3

Scalar Optimizations (-01, -02) .. 3-3

Software Pipelining (-03, -04) .. 3-4

Vectorization (-Mvect)· .. 3-5

How Vectorization Works .. 3-5

Controlling Vectorization (-Mvect= ...) .. 3-6

Preventing Associativity Changes (-Mvect=noassoc) .. 3-6

Getting Information About Vectorization (-Minfo=loop) .. 3-7

Non-IEEE Math (-Knoieee) .. 3-10

Non-IEEE Divides (Compiling with -Knoieee) .. 3-10

Non-IEEE Math Library (Linking with -Knoieee) .. 3-11

BLAS Library (-Ikmath) ... 3-11

In lining (-Min line) .. 3-11

Ignoring Potential Data Dependencies (-Mnodepchk) ... 3-12

Code Changes for Optimization ... 3-12

General Improvements ... 3-13

Loop Improvements ... 3-13

File 1/0 Improvements .. 3-15

xi

Table of Contents Paragon™ OSF/1 C Compiler User's Guide

Chapter 4
Using the Inliner
Complier Inllne Switch ... 4-1

Creating an Inliner Library ... , ... 4-2

Using Inliner Libraries .. 4-3

Restrictions on Inlining ... 4-4

Error Detection During Inlinlng .. 4-4

Examples .. : .. 4-5

Dhry .. 4-5

Fibo .. 4-5

Makefiles .. 4-6

Chapter 5
Interfacing Fortran and C
Calling a C Function from Fortran ... 5-1

Calling a Fortran Routine from C ... 5-3

xii

• • • • • • • • .,
•

•
n
II

D

C

G

D

G

I~

1'01
I ~j

IJ

fJ

c
~

IZ1

• • • •

Paragon OSFI1 C Compiler User's Guide Table of Contents

Chapter 6
Extensions to Standard C
Standard Language ... 6-1

Extensions .. 6-2

Implementation-Defined Behavior .. 6-5

poning Considerations .. 6-6

Appendix A
Compiler Error Messages

Appendix B
Compiler Internal Structure
Scanner and Parser .. B-3

Expander ... B-3

Optimizer and Vectorizer .. B-3

Procedure Integration .. B-3

Internal Vectorization .. B-4

Global Optimizations ... B-4

Local Optimizations ... B-4

Flexible Memory Utilization ... B-5

Scheduler and Pipeliner ... B-5

xlii

Table of Contents Paragon™ OSFI1 C Compiler User's Guide

Appendix C
Manual Pages

AR860 .. C-4

AS860 .. C-6

CPP860 ... C-8

DUMP860 .. C-11

ICC .. C-13

IFIXLIB ... C-30

LD860 .. G-31

MAC860 ... C-36

NM860 ... C-37

SIZE860 ... C-39

STRIP860 .. C-41

DV _ACOS(} ... C-42

SV_ACOS(} ... C-47

xlv

o
D

U

B

• • • • • • • ..
E

• • • • • • • • • • • • • • • • • •
•

• •
D

D

G

III

D

G

I~

IJ
[j

Ij

(j

~

[J

[J

[J

IJ

IJ

IJ

IJ

I:J

El

D

• • • •

Paragon™ OSF/1 C Compiler User's Guide Table of Contents

List of Illustrations

Figure B-1. Compiler Structure .. 8-2
Figure B-2. Parallel Activities of i860™ Microprocessor .. 8-6

xv

-----~ ----------------~--~---.-.--~----------------.-------~---------- ---------

Table of Contents Paragon'" OSFI1 C Compiler User's Guide

List of Tables

Table 1-1. Software Development Commands ... ,1-3
Table 2-1. Summary of icc Driver Switches .. 2-2
Table 5-1. Fortran Data Types for Called C Functions .. 5-2
Table 5-2. C Data Types for Called Fortran Routines ... 5-3
Table 6-1. Sizes and Alignments of Data Types ... 6-5
Table C-1. Commands Discussed in This Appendix .. C-2
Table C-2. System Calls Discussed in This Appendix .. C-3

xvi

o

•
II

•
II

II

• • • • •
Ir

K:

• • • • • • • • • • • • • • • • • • •

• •
n
n
D

c
D

n
I~

1:1

IJ

IJ

G

~

IJ

~

[J

IJ

IJ

IJ

~

[J

[J

[]

m
El

• • • •

Getting Started

This chapter introduces the Paragon N OSF/l software development environment and shows how to
create executable files from C source code.

This chapter contains enough information to get you started using the compiler driver to create
Paragon OSFIl executable files from C source code that conforms to the ANSI C standard. For
information on Paragon OSF/l extensions to the standard language, refer to Chapter 6.

TM
The Paragon OSF/1 Software Development
Environment

The Paragon OSF/l software development environment consists of an Intel supercomputer and its
supporting software.

System Hardware

An Intel supercomputer consists of an ensemble of nodes connected by a high-speed internal
network. Each node contains one or more i860N processors and 16M bytes or more of memory.
Each node's memory is directly accessible only to that node; nodes share information with other
nodes by passing messages over the network. All nodes run the Paragon OSF/l operating system.
Multiple processes can run on each node, and each process can have multiple threads (also known
as lightweight processes).

The nodes appear to the programmer and user to be a single system. For example, every process in
an Intel supercomputer has a different process ID from any other process running anywhere in the
system, no matter what node the processes are running on. In addition, all nodes share a single file
system and have equal access to the system's I/O facilities.

The nodes of the system are divided into a service partition and a compute partition. The compute
partition may be subdivided into smaller partitions.

,-,

Getting Started Paragon'"' OSF/1 C Compiler User's Guide

• Nodes in the service partition run a variety of system services, such as user shens, editors, and
compilers. Programs run in the service partition consist of single, independent processes.

• Nodes in the compute partition runparallel applications-user-written programs that consist of
groups of cooperating processes. All the processes in a single application run in the same
compute partition; they may or may not use all the processors in the partition.

See the Paragon TM OSFll User's Guide for more information about partitions and applications.

System Software

1-2

The system software for the Intel supercomputer. called the Paragon OSFll operating system. is a
complete implementation of the OSFIl operating system. It includes all the calls and commands of
OSF/l. plus extensions for parallel programming.

• For information on the standard OSF/l calls and commands. see the OSFll User's Guide.
OSFll Command Reference. and OSFIl Programmer's Reference.

• For information on the parallel extensions. see the Paragon™ OSFIl User's Guide. Paragon™
OSFIl Commands Reference Manual. and Paragon TN OSFll C System Calls Reference Manual.

Software Development Environments

The Paragon OSFIl operating system includes a complete set of commands for compiling. linking.
executing. and debugging parallel applications. These commands are available in two different
software development environments:

• The cross-development environment runs both on the Intel supercomputer and on supported
workstations.

• The native development environment runs only on the Intel supercomputer itself.

n
u
n
u
u
II

II

II

• • •
II

I:

• • • • • • • • • • • • • • • • • • •

R

•
D

D

D

II

D

I~

I:

I~

I··~
..J

IJ

I~

(j

1:1
[:J

IJ

IJ

IJ

G

D

• • • •

Paragon'"' OSF/1 C Compiler User's Guide Getting Started

Table 1-1 lists the commands in the two software development environments.

Table I-I. Software Development Commands

Name In Name in
Cross-Development Native

Environment Environment Description

ar860 ar Manages object code libraries

85860 as Assembles i860"" source code

cpp860 cpp Preprocesses C programs

dump860 dump860 Dumps object files

icc cc Compiles C programs

ifixlib lfixlib Updates inliner library directories.

Id860 Id Links object files

mac860 mac Preprocesses assembly-language programs

nm860 nm Displays symbol table (name list) information

size860 size Displays section sizes of object files

strip860 strip Strips symbol information from object files

With minor exceptions, these commands work the same in both environments and on all supported
hardware platforms. The biggest difference between the two environments is the names of the
commands, as shown in Table 1-1; where other differences exist, they are noted in Appendix C.

NOTE

This manual uses the cross-development names for these
commands. However, except where noted, all discussions of the
cross-development command names apply equally to the
corresponding native command names.

This manual gives complete information on the compiler and provides manual pages for the other
commands shown in Table 1-1. Paragon OSF/I also provides a symbolic debugger, parallel
performance analyzer, and other software tools; for information on these tools, see the Paragon ™
OSFll Software Tools User's Guide.

1-3

Getting Started

1-4

Paragon'" OSF/1 C Compiler User's Guide

Compiler Driver

The Paragon OSF/! C driver provides an interface tothe compiler, assembler, and linker that makes
it easy to produce Paragon OSFIl executable files from C source code. For example:

• It automatically sets appropriate compiler, assembler, and linker switches.

• It lets you pass switches directly to the assembler and linker. All functionality of the as860
assembler and Id860 linker is available through the driver.

• It lets you stop after the preprocessor, compiler, assembler, or linker steps.

• It lets you retain intermediate files.

The driver creates an executable file for execution on an Intel supercomputer node running the
Paragon OSF!! operating system.

The icc command invokes the C driver. For example, the following command line compiles,
assembles, and links the C source code in the file myprog.c (using the default driver switches) and
leaves an executable version of the program in the file a.out:

, icc myprog.c

Chapter 2 describes the icc driver in detail, and Appendix C contains a manual page for icc.

NOTE

You can invoke the Paragon OSF/1 assembler and linker directly
(as indicated in the next two sections). However, if you do so, you
must explicitly specify switches, libraries, and other information
that is provided automatically by the driver. Therefore, such usage
is recommended for advanced users only.

i860 TM Assembler

The as860 command invokes the i860 assembler to assemble the output of the compiler. For
example, the following command line assembles the file myprog.s and leaves the resulting object
code in the file myprog.o:

, as860 myprog.s

For more information on using the i860 assembler, refer to the as860 manual page in Appendix C.

• • • • • • • • • • •
•
II

• • • • • • • • • • • • • • • • • • .,

II

•
D

D

D

n
II

E

C

I:

I':

IJ
I i

':t.:cl

IJ

IJ

(:1

IJ

C

~

D

II

• • •

Paragon™ OSF/1 C Compiler User's Guide Getting Started

i860™ Linker

The Id860 command invokes the i860 linker to link the output of the as860 assembler. For example,
the following command line links the file myprog.o with the library mylib.a and leaves the resulting
executable in the file a.out:

% IdB60 myprog.o mylib.a

For more information on using the i860 linker, refer to the Id860 manual page in Appendix C.

Execution Environments
The Paragon OSFIl software tools can create executable files for execution on one Intel
supercomputer node or multiple Intel supercomputer nodes.

Running on a Single Node

By default, the icc driver creates a file for execution on a single Intel supercomputer node. For
example, the following command line compiles myprog.c to the Paragon OSFIl executable a.out:

, icc myprog~c

When you run the resulting executable by typing a.out on the Intel supercomputer. it runs on one
node in the service partition.

Running on Multiple Nodes

To run a program on multiple nodes. you must use calls from the library /ibnx.a. This library contains
the calls that you use to start processes on multiple nodes and communicate with processes running
on other nodes. (All of the calls in libnx.a are described in the Paragon ™ OSFll C System Calls
Reference Manual.)

The icc driver does not automatically search libnx.a. To search [ibnx.a, you can use either the -ox or
-Inx switch when linking:

• The -ox switch links in /ibnx.a and creates an executable that automatically starts itself on
multiple nodes when invoked. For example. the following command line compiles myprog.c to
the Paragon OSF/I executable a.our.

, icc -nz myprog.c

1-5

Getting Started Paragon™ OSF/1 C Compiler User's Guide

When you run the resulting executable by typing a.out on the Intel supercomputer, it runs on all
the nodes in your default partition. You can use the command line switches and environment
variables described in the Paragon ™ OSFll User's Guide to control its execution
characteristics.

For compatibility with the iPSe system, the -node switch is equivalent to -ox. For example, the
following command is equivalent to the previous command:

% icc -Dode myprog.c

However, continued support for this switch is not guaranteed.

• The -lox switch links in libnx.a but creates an executable that does not automatically start itself
on multiple nodes. For example, the following command line compiles myprog.c to the Paragon
OSF/l executable a.out:

% icc myprog.c -lD%

(Note that -lox must appear after the filenames of any source or object files that use calls from
libnx.a.) When you run the resulting executable by typing a.out on the Intel supercomputer, it
begins by running on one node in the service partition. However, it can copy itself onto multiple
nodes, load other programs onto multiple nodes, and communicate with processes running on
other nodes by making the calls described in the Paragon TM OSFll C System Calls Reference
Manual.

Debugging

1-6

To debug Paragon OSFIl programs, use the Interactive Parallel Debugger (IPO). IPO can debug any
program that runs under Paragon OSF/I.

To compile an application for debugging, use the following compile-time switches:

-00 Do not optimize code.

-Mdebug Include symbol table and line table information.

-Mframe Include stack frame traceback information.

If you do not use these switches, you can still debug the program, but debugging will be limited. For
example, if you do not specify -00 (the default is -01), access to individual source lines will be
decreased, and display or modification of variables and registers will probably have unpredictable
results. If you do not turn on stack frame traceback information with -Mframe, the information
displayed by the debugger for a stack traceback will be incomplete.

For more information on using the Interactive Parallel Debugger, refer to the Paragon™ OSFll
Interactive Parallel Debugger Manual.

• • • •
• • • •
• • •
I:
I[

• • • • • • • • • • • • • • •
• • • •

•
R

D

U

II

C

II

E

I~

I~I

"

I:

I:
(j

(J

.l
L.J

1'-:

U

IJ

[J

(j

e

• • • •

Paragon™ OSF/1 C Compiler User's Guide Getting Started

Example Driver Command Lines
The following example command lines show how to use the icc driver to perform typical tasks. See
Chapter 2 for complete information on using the driver and its switches.

• Compile and link for a single Intel supercomputer node. leaving the executable in a file called x:

, icc -0 % %.c

• Compile and link for multiple Intel supercomputer nodes with automatic start-up:

, icc -D% -0 % %.c

• Same as above. but include the C math library (-1m):

, icc -D% -0 % %.c -1m

• Compile source file x.c and link it together with object file y.o and library mylib.a:

, icc -0 % %.c y.o my1ib.a

• Compile and link for multiple Intel supercomputer nodes without automatic start-up:

, icc -0 % %.c -lD%

• Compile. but skip assemble and link steps (-S); leaves assembly language output in file x.s:

, icc -S %.c

• Compile and assemble, but skip link step (-c); leaves object output in file x.o:

, icc -c %.c

• Compile and assemble with optimizations:

, icc -c , icc -c , icc -c

-02 %.c
-03 %.c
-03 -Mvect %.c

(level 2 - global optimizations only)
(level 3 - adds software pipelining)

(level 3 optimizations plus vectorization)

See Chapter 3 for more information on optimization.

1-7

n.'"" .. "C~~==~,',~ ___________ · __ _

Getting Started

1-8

Paragon'IM OSF/1 C Compiler User's Guide
• •
• • •
• • • • • • • • • •
• • • •
• • • • • • • • • • •
• •

B

•
II

II

D

IJ

I~

IJ

1:1

IJ

IJ
[J

I i
<1

IJ

(J

C

C

G

• • • •

The icc Driver

This chapter describes ice. the driver for compiling. assembling. and linking C source code for
execution under the Paragon TM OSF!l operating system. On the Intel supercomputer. this driver is
also available by the name ee.

The following sections tell how to invoke iee and how to control its inputs. processing. and outputs.

Invoking the Driver
The iee driver is invoked by the following command line:

icc [switches] source file ...

where:

switches

sourceJile

Is zero or more of the switches listed in Table 2-1. Note that case is significant
in switch names.

Is the name of the file that you want to process. ice bases its processing on the
suffixes of the files it is passed:

file.c

file.s

file.o

is considered to be a C program. It is preprocessed,
compiled. and assembled. The resulting object file is
placed in the current directory.

is considered to be an i860 assembly language file. It
is assembled and the resulting object file is placed in
the current directory.

is considered to be an object file. It is passed directly
to the linker if linking is requested.

2-1

The icc Driver

-B

-c

-C

-Dname{=dej]

-E

-ES

-g

-Idirectory

-Koption

-Uibrary

-Ldirectory

-m

-M

-MJ)

-Moption

-ox

-ojile

-O[level]

-p

2-2

Paragon"" OSF/1 C Complier User's Guide

file.a is considered to be an ar library. It is passed directly to
the linker if linking is requested.

file.f or file.F is considered to bea Fortran program. It is passed to
the Fortran compiler.

All other files are taken as object files and passed to the linker (if linking is
requested) with a warning message. If a file's suffix does not match its actual
contents, unexpected results may occur.

Table 2-1. Summary of icc Driver Switches (1 of 2)

Allow C++-style comments V / to end of line).

Skip link step; compile and assemble only (to file.o for eachfile.c).

Preserve comments in preprocessed C source files (implies -E).

Define preprocessor symbol name to be dej.

Preprocess each ".c" file to stdout.

Preprocess every file to slOOut.

Synonymous with -Mdebug.

Add directory to include file search path.

Request special mathematical semantics (ieee, Ieee-enable,
ieee-strict, noieee, tralPfp, tralPa6gn).

Load liblibrary.a from library search path (passed to the linker).

Add directory to library search path (passed to the linker).

Generate a link map (passed to the linker).

Output a list of include files to stdout.

Output a list of include files to file.d.

Request special compiler actions (alpha, anno, [no]asmkeyword,
beta, [no]da6gn, [no]debug, [no]depchk, dollar, extract, fcon,
[no]frame, [no]func32, info, inHne, keepasm, [no]6st,
[no]longbranch, nostartup, nostddef, nostdinc, nostd6b,
[no]perfmon, [no]quad, [no]reentrant, safeptr, [no]signextend,
[no]single, [no]streamall, [no]strideO, vect, [no]vintr, [no]xp).

Create executable Paragon OSF/I application for multiple nodes.

Usejile as name of output file.

Set optimization level (0, I, 2, 3, 4).

Preprocess only (to jile.i for eachjile.c).

• •
• • •
•
• • • • •
E

E

• • • • • • • • • • • • • • • • • • •

II

•
D

D

D

ID

IJ

IJ

IJ

IJ

r:
c
EJ

• • • •

Paragon™ OSF/1 C Compiler User's Guide The ioe Driver

Table 2-1. Summary of icc Driver Switches (2 of 2)

-r Generate a relinkable object file (passed to the linker).

-s Strip symbol table information (passed to the linker).

-S Skip assemble and link step; compile only (tofile.s for eachfile.c).

-Uname Remove initial definition of name in preprocessor.

-v Print the entire command line for assembler, linker, etc. as each is
invoked in verbose mode.

-V Print the version banner for assembler, linker, etc. as each is invoked.

-vv Like· V, but even more verbose.

-Wpass,option[,option ...] Pass options to pass (0, a, I).

• Ypass,directory Look in directory for pass (0, a, I, S, I, L, U, Pl .

The rest of this chapter discusses these switches in more detail.

Controlling the Driver
The following switches let you control how the driver processes its inputs:

-W Pass specified options to specified tool.

-Y Look in specified directory for specified tool.

-E Skip compile, assemble, and link step; preprocess only (output to stdout).

-P Skip compile, assemble, and link step; preprocess only (output to file.i).

-S Skip assemble and link step; compile only (output tofile.s).

-c Skip link step; compile and assemble only (output tofile.o).

-D Define (create) preprocessor macro.

-U Undefine (remove) preprocessor macro.

·B Allow C++-style comments.

2-3

The ioo Driver Paragon'" OSFI1 C Compiler User's Guide

Specific Passes and Options

2-4

The following switch lets you pass options to specific passes (tools):

-Wpass,option[,option ...]

where:

pass Is one of the following:

o (zero) Compiler.

a Assembler.

Linker.

option Is a comma-delimited string that is passed as a separate argument

The following switch lets you tell the driver where to look for a specific pass:

-Ypass,directory

where pass is one of the following:

o (zero)

a

s

I

L

u

p

Search for the compiler executable in directory.

Search for the assembler executable in directory.

Search for the linker executable in directory.

Search for the start-up object files in directory.

Set the compiler's standard include directory to directory.

Set the flfSt directory in the linker's library search path to directory (passes
• YLdirectory to the linker).

Set the second directory in the linker's library search path to directory (passes
• YUdirectory to the linker).

Set the linker's entire library search path to directory (passes • VPdirectory to
the linker).

See the icc manual page in Appendix C for the defaults for these directories; see the Id860 manual
page in Appendix C for more information on the • YL •• YU. and • VP switches.

•
• • • • • • •
•
• •
It

• • • • • •
• • • • • • • • • • • • • •

o
n
D

D

G

I~

C

1'1'1'· .. ,
I!

I~

I]

(:

1""1
,J

fj

IJ

IJ
[J

(J

G

• • • •

Paragon'" OSF/1 C Compiler User's Guide The ioe Driver

Preprocess Only

By default, the driver preprocesses, compiles, assembles, and links each input file. However, the
following switches suppress the compile, assemble, and link steps:

·E

·ES

·c

• p

After preprocessing eachjile.c, send the result to standard output (stdout).

After preprocessing every input file, regardless of suffix, send the result to
stdout. No compilation, assembly, or linking is performed.

After preprocessing eachjile.c, send the result to stdout (like ·E), but do not
remove comments during preprocessing.

After preprocessing eachjile.c, send the result to a file namedjile.i .

Preprocess and Compile Only

By default, the driver preprocesses, compiles, assembles, and links each input file. However, the
following switch tells the driver to suppress the assemble and link steps and produce an assembler
source file:

-s

After compiling eachjile.c, the resulting assembler source file is sent to a file namedjile.s.

Preprocess, Compile, and Assemble Only

By default, the driver preprocesses, compiles, assembles, and links each input file. However, the
following switch tells the driver to suppress the link step:

-c

After assembling eachjile.c, the output is sent to a file namedjile.o. If you are compiling a single
Source file, you can specify a different output file name with the ·0 switch.

2-5

The icc Driver Paragon™ OSFI1 C Compiler User's Guide

Add and Remove Preprocessor Macros

The following command line switches let you predefme preprocessor macros and undefme
predefined preprocessor macros:

NOTE

ANSI C predefined macros can be defined and undefined on the
command line, but not with #deflne and #undefine directives in
the source.

-Dname[=defl Define name to be dejin the preprocessor. If de/is missing, it is assumed to
be empty. If the "=" sign is missing, then name is defined to be the string 1
(one).

-Uname Remove any initial defmition of name in the preprocessor. (See also the
nostddef option of the -M switch.)

Because all-D switches are processed before all-U switches, the -U switch overrides the -D switch.

The -U switch affects only predefined preprocessor macros, not macros defined in source files. The
following macro names are predefmed: _LINE_, _FILE_, _DATE_, _TIME_,
STOC,_J860,_i860-.:...,_PARAGON_,_OSFl_, __ PGC_,_PGC_,_COFF,
unix, MACH, CMU, and __ NODE (_NODE is only defined when compiling with -nx or -node).
Note that some of these macro names begin andtor end with two underscores.

Allow C++ Comments

By default, the driver recognizes and discards only standard C comments (J* ••• * I). The following
switch tells the driver to recognize and discard C++ comments (J / to end of line):

-B

• • • • • • • • • • •
II

I:

• • • • • • • • • • • •
• •
• • • • •

• •
n
D

G

D

D

I~

[J

IJ

IJ

Ij

I:J

IJ

I:J
[j

I]

Paragon'" OSF/1 C Compiler User's Guide The icc Driver

Controlling the Compilation Step
The following switches let you control the compilation step:

-Moption

-I

-M

-MD

-0

-g

Specific Actions

Request special compiler actions.

Add a directory to include file search path.

Output a list of include files to stdout.

Output a list of include files to file .d.

Set the optimization level.

Include symbolic debug information in the output file (synonymous with
-Mdebug).

The following command line switch lets you request specific actions from the compiler:

-Moption

where option is one of the following (an unrecognized option is passed directly to the compiler,
which often removes the need for the -WO switch):

alpha Activate alpha-release compiler features.

anno Produce annotated assembly files, where source code is intermixed with
assembly language. -Mkeepasm or -S should be used as well.

[no]asmkeyword
[Don't] allow the asm keyword in C source code (default -Masmkeyword).
The format is: asm(s).

beta

[no]dalign

[no]debug

Activate beta-release compiler features.

[Don't] align doubles in structures on double-precision boundaries (default
-Mdalign). -Mnodalign may lead to data alignment exceptions.

[Don't] generate symbolic debug information (default-Mnodebug).
-Mdebug increases the object file size.

2-7

--- --~---- ... ----------.. ~--. ~."'-.... ----.. ----~------.. ---.- .. '-'--'-'-~--- - .. -----.~--.-----~-.-... ------

The icc Driver

2-8

[no]depchk

dollar,char

ParagonlM OSF!1 C Compiler User's Guide

[Don't] check for potential data dependencies exist (default -Mdepchk). This
is especially useful in disambiguating unknown data dependencies between
pointers that cannot be resolved at compile time. For example, if two floating
point array pointers are passed to a function and the pointers never overlap
and thus never conflict, then this switch may result in better code. The
granularity of this switch is rather coarse, and hence the user must use
precaution to ensure that other necessary data dependencies are not
overridden. Do not use this switch if such data dependencies do exist.
-Mnodepchk may result in incorrect code; the -Msafeptr switch provides a
less dangerous way to accomplish the same thing.

Set the character used to replace dollar signs in names to be char. Default is
an underscore U.

extract-[option[,option ...]]

feon

[no]frame

[no]func32

Pass options to the function extractor (see the inline option for more
information). The options are:

[name:]fUnction Extract the specified function. name: must be used if
the function name contains a period.

[size:]number Extract functions containing less than approximately
number statements.

!fboth number(s) andfonction(s) are specified, then functions matching the
given name(s) or meeting the size requirements are extracted.

The -ofile switch must be used with -Mextract to tell the compiler where to
place the extracted functions. The name of the specifiedjile must contain a
period.

See Chapter 4 for more information on using the compiler's function
extractor.

Treat non-suffixed floating point constants as noat, rather than double. This
may improve the performance of single-precision code.

[Don't] include the frame pointer (default -Mnoframe). Using -Mnoframe
can improve execution time and decrease code, but makes it impossible to get
a call stack traceback when using a debugger.

[Don't] align functions on 32-byte boundaries (default -Mfunc32).
-Mfunc32 may improve cache performance for programs with Diany small
functions.

• • • • • • • •
a,

• •
.:
I:

• • • • • • • • • • • •
• • • • • •
•

•
D

II

U

D

D

n
~

It
Ij

[1

G

IJ

IJ
[J

IJ
19

.J

I]

IJ

Ij

G

II

• • •

Paragon"" OSF/1 C Compiler User's Guide The ioe Driver

info=[option[,option ...]]
Produce useful information on the standard error output. The options are:

time or stat

loop

inUne

Output compilation statistics.

Output information about loops. This includes
information about vectorization and software
pipelining.

Output information about functions extracted and
inlined.

cycles or block or size

iii

aU

Output block size in cycles. Useful for comparing
various optimization levels against each other. The
cycle count produced is the compiler's static estimate
of freeze-free cycles for the block.

Output intermediate language as comments in
assembly file.

All of the above.

inline-[option[,option ...]]

keepasm

Pass options to the function inliner. The options are:

[Ub:]library Inline functions in the specified inliner library
(produced by -Mextract). If lib: is not used, the
library name must contain a period. If no library is
specified, functions are extracted from a temporary
library created during an extract prepass.

[name:]fimction Inline the Specified function. If name: is not used, the
function name must not contain a period.

[size:]number Inline functions containing less than approximately
number statements.

levels:number Perform number levels of inlining (default 1).

If both number(s) andjUnction(s) are specified, then functions matching the
given name(s) or meeting the size requirements are inlined.

See Chapter 4 for more information on using the compiler's function inliner.

Keep the assembly file for each C source file. but continue to assemble and
link the program. This is mainly used in compiler performance analysis and
debugging.

2-9

The icc Driver

2-10

list[-name]

80list

Paragon™ OSF/1 C Compiler User's Guide

Create a source listing in the file name. If name is not specified, the listing file
has the same name as the source file except that the ".c" suffIX is replaced by
a ".1st" suffix. If name is specified, the listing file has that name; no extension
is appended.

Don't create a listing file (this is the default).

[no]longbranch [Don't] allow compiler to generate bte and btne instructions (default
-Mlongbrancb). -Mnolongbranch should be used only if an assembly error
occurs.

nostartup

nostddef

nostdinc

nostdlib

[8O]perfmon

[no]quad

[no]reentrant

Don't link the usual start-up routine (crtO.o), which contains the entry point
for the program.

Don't predefine any system-specific macros to the preprocessor when
compiling a C program. (Does not affect ANSI-standard preprocessor
macros.) The system-specific predefined macros are _1860, _1860 __ ,
PARAGON. __ OSFl_._PGC_._PGC_,_COFF,unix,MACH,
CMU, and _NODE C_ NODE is only defmed when compiling with -ox).
See also -u.

Remove the default include directory (lusr/include for ce.
$(PARAGON _ XDEV)lparagonlinc1ude for icc) from the include files search
path.

Don't link the standard libraries (libpm.o. guard.o. libc.a, iclib.a, and
libmach3.a) when linking a program.

[Don't] link the performance monitoring module (libpm.o) (default
-Mperfmon). See theParagon™ OSFll Software Tools User's Guide for
information on performance monitoring.

[Don't] force top-level objects (such as local arrays) of size greater than or
equal to 16 bytes to be quad-aligned (default -Mquad). Note that -Mquad
does not affect items within a top-level object; such items are quad-aligned
only if appropriate padding is inserted.

[Don't] generate reentrant code (default -Mreentrant). -Mreentrant
disables certain optimizations that can improve performance but may result
in code that is not reentrant. Even with -Mreentrant, the code may still not
be reentrant if it is improperly written (for example. if it declares static
variables).

a

• • • • • • • • • •
It

E

•
• • • • • • • • • • • • • • • • • •

• •
D

G

G

D

D

I]

IJ

IJ
(J

G
I:j

IJ

I:J

IJ

IJ

IJ
(J

IJ

IJ

~

U
Ij

I]

II

• • •

Paragon'" OSF/1 C Compiler User's Guide The icc Driver

safeptr-[option[,option ...]]
Override data dependence between C pointers and arrays. This is a potentially
very dangerous option since the potential exists for code to be generated that
will result in unexpected or incorrect results as is dermed by ANSI C.
However, when used properly, this option has the potential to greatly enhance
the performance of the resulting code, especially floating point oriented
loops. Combinations of the options may be used and interact appropriately.

dummy or arg C dummy arguments (pointers and arrays) are treated
with the same copyinlcopyout semantics as Fortran
dummy arguments.

auto

static

global

C local or auto variables (pointers and arrays) are
assumed to not overlap or conflict with each other and
to be independent

C static variables (pointers and arrays) are assumed to
not overlap or conflict with each other and to be
independent.

C global or extem variables (pointers and arrays) are
assumed not to overlap or conflict with each other and
are independent.

[no]signextend [Don't] sign extend when a narrowing conversion overflows (default
-Msignextend). For example, if -Msignextend is in effect and an integer
containing the value 65535 is converted to a short, the value of the short will
be -1. This option is provided for compatibility with other compilers, even
though ANSI C specifies that the result of such conversions are undefined.
-Msignextend will decrease performance on such conversions.

[no]single [Don't] suppress the ANSI-specified conversion offtoat to double when
passing arguments to a function with no prototype in scope (default
-Mnosingle).-Msingle may result in faster code when single precision is
used a lot, but is non-ANSI compliant

[no]streamall [Don't] stream all vectors to and from cache in a vector loop (default
-Mstreamall). When -Mnostreamall is in effect, the compiler chooses one
vector to come directly from or go directly to main memory, without being
streamed into or out of cache.

(no]strideO [Don't] output correct code for vectors with a stride (loop increment) of 0, no
matter what the optimization or vectorization level (default -MstrideO).

2-11

The 100 Driver

2-12

Paragon™ OSF/1 C Compiler User's Guide

vect[-option[,option ...]]

[no]vintr

[no]xp

Perform vectorization (also enables ·Mvintr). If no options are specified.
then all vector optimizations are enabled. The available options are:

cachesize:n~ber

noassoc

reoog

This sets the size of the portion of the cache used by
the vectorizer to n~ber bytes. N~ber must be a
multiple of 16. and less than the cache size of the
microprocessor (16384 for the i860 XP. 8192 for the
i860 XR). In most cases the best results occur when
n~ber is set to 4096. which is the default (for both
microprocessors).

When scalar reductions are present (for example. dot
product). and loop unrolling is turned on, the compiler
may change the order of operations so that it can
generate better code. This transformation can change
the result of the computation due to round-off error.
The use of noassoc prevents this transformation.

Recognize certain loops as simple vector loops and
call a special routine.

smanvect[:n~ber]

transform

This option allows the vectorizer to assume that the
maximum vector length is no greater than n~ber.
N~ber must be a multiple of 10. If n~ber is not
specified, the value 100 is used. This option allows the
vectorizer to avoid sbipmining in cases where it
cannot determine the maximum vector length. In
doubly-nested. non-perfectly nested loops this option
can allow invariant vector motion that would not
otherwise have been possible. InC01Tect code wiD
result if this option is used, and a vector takes on a
length greater than specified.

Perform high-level transformations such as loop
splitting and loop interchanging. This is normally not
useful without .Mvect-recog.

·Mvect with no options means .Mvect-recog,transform,cachesize:4096.

[Don't] perform recognition of vectorinbinsics (default ·Mnovintr. unless
·Mvect is used).

[Don't] use i860 XP microprocessor features (default .Mxp).

D

D

II

• • • • • • •
II

c:
II

• • • • • • • • • • • • • • • • • • •

• •
II

D

n
G

o
C

C

I!l

n

IJ

1:1

IJ

IJ

IJ

IJ

I " ~

IJ

I:
("!

;J

I:J

II

• • •

----- --------~-~

Paragon™ OSF/1 C Compiler User's Guide The icc Driver

Location of Include Files

The following command line switch lets you add a specified directory to the compiler's search path
for include files:

-:r.directory

where directory is the pathname of the directory to be added. If you use more than one ·1 switch, the
specified directories are searched in the order they were specified (left to right).

For include files surrounded by angle brackets « ... >), each·1 directory is searched, followed by the
standard include directory. For include files surrounded by double quotes (" ... "), the directory
containing the file containing the #include directive is searched, followed by the ·1 directories,
followed by the standard include directory.

List of Include Files

The following command line switches let you get a list of all the include files used by a source file:

-M
-MD

The ·M switch (with no option) makes the compiler send to the standard output a list of the
pathnames of all files directly or indirectly referenced by #include directives in each source file. The
.MJ) switch is similar, except that it stores the list of #include files for each source file (file.c) in a
correspondingfile.d. This information can be useful in writing makefiles.

Optimization Level

The following command line switch lets you set the optimization level explicitly:

-O[level]

where level is one of the following:

o

1

z

A basic block is generated for each C statement. No scheduling is done
between statements. No global optimizations are performed.

Scheduling within extended basic blocks is performed. Some register
allocation is performed. No global optimizations are performed.

All level 1 optimizations are performed. In addition, traditional scalar
optimizations such as induction recognition and loop invariant motion are
performed by the global optimizer.

2-13

The icc Driver

3

4

Paragon™ OSF/1 C Compiler User's Guide

All level 2 optimizations are performed In addition, software pipelining is
performed.

All level 3 optimizations are performed, but with more aggressive register
allocation for software pipelined loops. In addition, code for pipelined loops
is scheduled several ways, with the best way selected for the assembly file.

If -0 is used without a level, the optimization level is set to 2. If you do not use the -0 switch, the
default optimization level is I.

NOTE

When compiling an application for debugging, you will get the best
results using -00.

If you prefer optimized code to "debuggability," use -02. See Chapter 3 for information on
additional compiler optimization features.

Generating Debug Information

2-14

The following command line switch tells the compiler to include information for symbolic
debugging in the output file:

-g

The -g switch has the same effect as -Mdebug. Note that -Mnodebug is the default, so you must
specify -g or -Mdebug to generate debugging information.

The debugging information generated by -g or -Mdebug increases the object file size.

a

• • • • • • • • • •
.:

• • • • • • • • • • • • • • • • • • •
•

II

D

D

I~

C

C

n
I~

I:

1"4 , ,

'"

I:

I, -"1

~.I

IJ

I:]

IJ

IJ

IJ

r:
~

D

• • •

Paragon"" OSF/1 C Compiler User's Guide The loe Driver

Controlling the Link Step
The following switches let you control the link step (they are all passed directly to the linker):

·8 Strip symbol table information.

·r Generate a relinkable object file.

·m Produce a link map.

·L Change the default library search path.

·1 Load a specific library.

Stripping Symbols

The following command line switch strips all symbols from the output object file:

-8

This results in a smaller object file, but makes it more difficult to debug.

Generating a Relinkable Object File

The following command line switch generates a relinkable object file:

-r

When you use the ·r switch, the linker keeps internal symbol information in the resulting object file.
This lets you link the object file together with other object files later.

Producing a Link Map

The following command line switch produces a link map on the standard output:

-m

The link map lists the start address of each section in the object file. To get more information about
the object file, use the dump860 command.

2-15

The icc Driver Paragon'" OSF/1 C Compiler User's Guide

Linker Libraries

The following switch adds a directory to the head of the linker's library search path:

-Ldirectory

where directory is the parhname of a directory that the linker searches for libraries. The linker
searches directory first (before the default path and before any previously specified -L paths).

The following switch tells the linker to use a specific linker library:

-1 library

The linker loads the library Hblibrary.a from the first library directory in the library search path in
which a file of that name is encountered.

See the 1d860 manual page in Appendix C for more information on the linker's library search path.

Controlling Mathematical Semantics

2-16

The following command line switch lets you request special mathematical semantics from the
compiler and linker:

-Koption

where option is one of the following:

ieee

ieee==enable

ieee-strict

If used while linking, links in a math library that conforms with the IEEE 754
standard.

If used while compiling, tells the compiler to perform Doat and double
divides in conformance with the IEEE 754 standard.

If used while linking, has the same effects as -Kieee, and also enables floating
point traps and underflow traps. If used while compiling, has the same effects
as -Kieee.

If used while linking, has the same effects as -Kieee-enable, and also enables
inexact traps. If used while compiling, has the same effects as -Kieee.

• • • • • •
• • • •
• • • •
• • •
•
I[

• • • • • • • •
• • • • .1

II

o
n
o
IE
C

IJ

D

1:1

(~

1:1

Ij

I:J

IJ
[J

Ij

IJ

(j

~

El

• • • •

Paragon™ OSFI1 C Compiler User's Guide

noieee

trap-fp

The ioe Driver

If used while linking, produces a program that flushes denormals to 0 on
creation, which reduces underflow traps. If used together with -1m, also links
in a version of lihm.a that is not as accurate as the standard library, but offers
greater performance. This library offers little or no suppon for exceptional
data types such as INF and NaN, and will trap on such values when
encountered.

If used while compiling, tells the compiler to perform noat and double
divides using an inline divide algorithm that offers greater performance than
the standard algorithm. This algorithm produces.results that differ· from the
results specified by the IEEE standard by no more than three units in the last
place.

If used while linking, disables kernel handling of floating point traps. Has no
effect if used while compiling.

If used while linking, disables kernel handling of alignment traps. Has no
effect if used while compiling.

-Kieee is the default. See "Non-IEEE Math (-Knoieee)" on page 3-10 for more information on the
-K switch.

Controlling the Driver Output
The following switches let you control the driver's outputs:

-ox

-0

-v

-vv

-v

Create an executable Paragon OSF/l application for multiple nodes.

Specify the name of the output file.

Print the version banner for each tool (assembler, linker, etc.) as it is invoked.

Like -V, but even more verbose.

Print the entire command line for each tool as it is invoked, and invoke each
tool in verbose mode (if it has one).

2-17

The icc Driver Paragon™ OSF/1 C Compiler User's Guide

Executable for Multiple Nodes

By default, the icc driver creates an executable for a single Intel supercomputer node. The following
command line switch creates an executable for multiple nodes:

-nx

The ·ox switch has three effects:

• If used while compiling, it dermes the preprocessor symbol __ NODE. The program being
compiled can use preprocessor statements such as #ifder to control compilation based on
whether or not this symbol is dermed.

• If used while linking, it links in libnx.a, the library that contains all the calls in the Paragon™
OSFll C System Calls Reference Manual.

• If used while linking, it links in a special start-up routine that automatically copies the program
onto multiple nodes, as specified by standard command line switches and environment
variables. See the Paragon TM OSFll User's Guide for information on these command line
switches and environment variables.

To link in lihnx.a without the special start-up routine, specify the library directl,x with the switch
·lnx. A program linked with ·lox can use all the calls described in the Paragon M OSFll C System
Calls Reference Manual, but does not automatically copy itself onto multiple nodes. A program
linked with ·lnx can use Paragon OSFIl system calls to create node processes under program con­
trol. (Note that ·Iox must appear on the icc command line qfter the filenames of any source or object
files that use these calls.)

For compatibility with the iPS~ system, the icc driver currently accepts the following command
line switch, which is synonymous with ·ox:

-node

However, support for this switch may be dropped in a future release.

Name of Executable File

2-18

By default, the executable file is named a.out (or file.o if you use the -c switch). However, the
following command line switch lets you name the file anything you like:

-ofile

where file is the desired name.

• • • • • • • • • • •
.:

•

• •
II

III

c
c
c

.-:;

1:1

IJ

~

IJ

I)

I]

I:J

Ij

I:j

~

II

• • •

Paragon™ OSF!1 C Compiler User's Guide The icc Driller

Verbose Mode

By default, the driver does its work silently. However, the following command line switch causes
the driver to display the version banner of each tool (assembler, linker, etc.) as it is invoked:

-v

The following command line switch causes the driver to identify itself in more detail than the -V
switch and display the location of the online compiler release notes. It is otherwise equivalent to -V:

-vv

The following command line switch causes the driver to display the entire command line that
invokes each tool, and to turn on verbose mode (if available) for each tool:

-v

Overriding Compiler Defaults
You can override the default switch settings for the Paragon Fortran compiler by creating a compiler
default file in your home directory or in your current working directory. This file must be named
.icfre. The default file contains compiler switches as they would appear on the command line,
delimited by spaces, tabs, or new lines. The file can contain any number of lines. The following is
an example of the contents of a default file:

-03 -Mvect
-Knoieee -Mframe -MDoperfmon

The compiler searches your current working directory first for the .icfre file. If you have default files
in both your home directory and the current working directory, the compiler uses the file in the
current working directory. If there is no default file in your current working directory, the compiler
searches for the file in your home directory .

When you invoke the compiler, the compiler driver reads the default file, if it exists, and constructs
a new command line. The command line consists of the switches in the .icfre file first., then the
switches in the command line you used to invoke the compiler. Because of this order, you should
not put arguments in the default file if they must go at the end of the command line. An example
would be directives to link to libraries. The following is the order of precedence for compiler
switches:

1. specific entries on the command line

2. entries in the .iefre file

3. default switch settings

2-19

The icc Driver

2-20

Paragon™ OSF/1 C Compiler User's Guide

For example, suppose you have the following entries in your .icfrc file:

-03 -Mvect

If you use the following command line to invoke the compiler:

icc -04 example.c

The compiler will generate the following command line:

icc -03 -Mvect -04 example.c

Because the -04 switch from the compiler invocation comes after the -03 switch from the default
file, the explicit command line switch overrides the default file switch, and the optimization level is
set to 4.

NOTE

Although you can include file names and switches such as -c in
the default file, this is not advisable because all arguments in the
default file will appear on all compiler command lines. Arguments
other than those needed to override default settings of switches
should go in a make file.

.-~~---"----,-". _._--------

• • •
• • • • • • •
• • • • • • • • • • • • • • • • • •
• • • •

D

D

D

II

I~

D

I~

I'I!' ..
C

I~

Ij

1:1 'kJ

I~

("'I : .J

~

I"J

IJ

IJ
['j

IJ

U

IJ

[J

1"1 .J

I)

Ij

~

[j

• • • •
'-~.,,-:rc. .::::_-::_,;r:~':..,,::·:::.'P' __

Optimizing Programs

Introduction
This chapter gives you a strategy for using the compiler's optimization features to help maximize
the single-node performance of your programs. It also explains what the most commonly-used
compiler optimization switches do and how they interact with each other. Finally, it gives you a few
tips for changes you can make in yoW" code to help the program run faster.

The techniques discussed in this chapter are single-node optimizations only. They make the program
run faster on each node, but do not improve the program's internode communications. See the
Paragon ™ OSFI 1 User's Guide for information on improving the performance of a multi-node
application.

Optimization Procedure
This section presents the recommended procedure for optimizing a new or ported program. The
fundamental characteristics of this procedure are adding optimizations in a controlled manner and
testing the program after each optimization.

1. Compile your program with the ·02 switch for scalar optimizations. The optimizations
performed at level 2 are considered "safe"-if your program works at all, it should continue to
work (and work faster) with -02.

2. Test the program to be sure it works as you expect

3. When the program is working, use the Paragon OSFIl performance analysis tools to determine
which parts of the code are taking the most time. (See theParagon™ OSFll Software Tools
User's Guide for information on performance analysis.)

3-1

Optimizing Programs Paragon'" OSF/1 C Compiler User's Guide

4. Inspect the time-consuming code to see if will benefit from vectorization. In general,
vectorization helps floating-point math on large vectors or in loops. It does not help integer
math, string operations, or file operations.

5. Recompile only those files that will benefit from vectorization with the -04 and -Mvect
switches.

6. Test the vectorized program to be sure it is still working and has not slowed down. (If the
program gives unexpected results or runs more slowly than it did before, try recompiling the
vectorized files with -03 -Mvect instead; if loop counts are small, try -04 without -Mvect
instead.)

7. Examine your program to see if it is "numerically stable." A program is said to be numerically
stable if it does not depend on the behavior specified by the IEEE standard for floating-point
mathematics, such as proper behavior in case a denormal, infinity, or "not-a-number" occurs
during a calculation.

8. Recompile and/or link only those files that are numerically stable with the -KllOieee switch.
(The differences between using -Knoieee when compiling and using -Knoieee when linking are
described later in this chapter.) You may get different results with -Knoieee on compile and
link, and on different source files; try a variety of combinations.

9. Test the program after each attempt to be sure it is still working and has not slowed down.

Further optimizations may be possible at this point Depending on the program, you may be able to
use additional compiler optimization switches (as described under "Compiler Switches for
Optimization" on page 3-3) and/or modify your code for greater performance (as described under
"Code Changes for Optimization" on page 3-12). Be sure to test the program after each change.

Shortening Turnaround Time

3-2

As you can see, optimizing a program can involve many "compile, link, run" cycles. You may be
able to reduce the time consumed by each run by using one or more of the following techniques:

• Use a smaller input file.

• Temporarily reduce the count in the outermost loop of the program.

• Add a call to exitO after a key subroutine.

• Extract key subroutines into a separate program for testing.

These techniques can help you to optimize your program more quickly by performing more tests per
unit time. However, when you use these techniques, be sure that the reduced data or program
fragment is representative of the whole program.

• • • • • • • • • • •
I':

•

_" ________ 0 .. __ 0

u

•
II

0

0

D

D

I~

G

I~

n
r~

r:J

IJ

G

D
('" , 'I

""
I~

IJ
Ij I "

IJ

I" J

1:1

IJ

I~

I~

Ij

H

D

• • •

Paragon"' OSF/1 C Compiler User's Guide Optimizing Programs

Compiler Switches for Optimization
The icc command has a number of switches you can use to request compiler optimizations:

-0 Performs general code optimizations.

-Mvect Performs vectorization.

-Knoieee Uses faster but less accurate floating-point math.

-Ikmath Links to an optimized BLAS library.

-Minline Replaces function calls with inline code.

-Mnodepcbk Ignores potential data dependencies.

These switches are discussed in the remainder of this section.

General Optimizations (-0)

The -0 switch performs general code optimization. The -0 can be followed by a number that
specifies the optimization level, from 0 (no optimization) to 4 (all optimizations). Each optimization
level performs all the optimizations that the levels below it perform.

If you don't use the -0 switch, you get optimization levell. If you use -0 with no number following
it, you get optimization level 2.

Programs optimized at levels above 0 cannot be debugged easily with a symbolic debugger. If you
are compiling an application for debugging, you should use the -00 switch.

Scalar Optimizations (-01, -02)

Optimization levels I and 2 perform scalar optimizations. These optimizations do not use the special
features of the i860 microprocessor, but they can improve the performance of most code and are
unlikely to break working code.

• Level 1 performs only local optimizations: those that affect only a single C statement. These
optimizations include algebraic identity removal (removal of subexpressions that do nothing,
such as a-a), and redundant load and store elimination (elimination of unnecessary memory
accesses).

• Level 2 performs global optimizations: those that can affect multiple C statements. These
optimizations include invariant code motion (moving code that is the same on each iteration of
a loop out of the loop) and global register allocation (assigning variables to registers based on
how and when they are used).

3-3

Optimizing Programs Paragon'" OSFI1 C Compiler User's Guide

3-4

Software Pipelining (-03, -04)

Optimization levels 3 and 4 make the compiled program use the i860 microprocessor's pipelining
and dual-instruction mode features. These optimizations are beneficial only for code that performs
intensive floating-point mathematics, particularly in loops. Since this type of code is also usually
vectorizable, the -03 and -04 switches are usually used together with -Mvect.

Pipelining and dual-instruction mode allow the i860 microprocessor to woIk on more than one
operation at a time.

• Pipelining means that the i860 microprocessor's floating-point unit can accept new input while
previous inputs continue to move toward the result. For example, a floating-point addition takes
three clock cycles, but the adder can accept new input every clock cycle. (The results of each
input emerge from the adder three clock cycles after the operands entered.)

Pipelining means that a sequence of similar operations can be performed in less time. However,
it takes a few cycles to prime the pipeline and a few cycles to drain it; this means that a pipeline
must have a certain minimum number of operations to be efficient.

The exposed pipeline of the i860 microprocessor allows floating-point adds and multiplies to
occur simultaneously (this is called dual-operation mode).

• Dual-instruction mode means that the i860 microprocessor's floating-point unit and integer unit
can be active at the same time. For example, the floating-point adder can perform an addition at
the same time the integer'unit is loading the operands for the next addition.

Optimization levels 3 and 4 both attempt to schedule the program's operations to make the most use
of pipelining and dual-instruction mode. This procedure is called software pipelining. For example,
if the program contains an addition and a multiplication that are near each other but do not depend
on the other's results, the compiler can schedule the two operations to occur at the same time.

• Level 3 uses a single scheduling algorithm on all candidates for software pipelining.

• Level 4 considers several scheduling algorithms for each candidate, and chooses the one that
gives the best performance (or none of them, if the non-pipelined code is faster).

In theory, the code produced by level 4 should always be faster than the code produced by level 3,
at the cost of a very small increase in compilation time. You should try-04 first, then try -03 if the
results are not satisfactory.

Keep in mind that optimization levels 3 and 4 benefit code that is floating-point intensive. Code that
spends most of its time in string handling, disk operations, or other non-floating-point operations
will generally not benefit frbm optimization levels greater than 2.

• • • • • • • • • • •
.:
.:

• • • • • • • • • • • • • • • • • • •

n
n
D

I~

D

1",.··1
11

I~

Ij

(j

IJ

IJ .. .,
;J

IJ

IJ

IJ

C

Ij

D

• • •

Paragon'" OSF/1 C Compiler User's Guide Optimizing Programs

Vectorization (-Mvect)

The -Mvect switch performs vectorization. Vectorization consists of three processes, which are
described in the next section. Vectorization is beneficial only for code that performs floating-point
calculations on long vectors, typically in loops of 10 or more iterations.

The difference between -03/-04 and -Mvect is that optimization levels 3 and 4 (by themselves)
perform pipelining on your code as written, while -Mvect attempts to rearrange your code to make
more effective pipelining possible. This is why -03/-04 and -Mvect are usually used together.
-Mvect with an optimization level less than 3 will rearrange the code, but no pipelining will be
performed; -03 or -04 without -Mvect will perform software pipelining, but will not find as many
candidates for pipelining as they would with -Mvect (However, if vector lengths are short, -04
alone may work better than -04 -Mvect)

The vectorization performed by -Mvect affects only single nodes. The compiler cannot parallelize
vectors by splitting them up among several processors; you must do that yourself.

How Vectorization Works

Vectorization consists of three processes:

• Nested loop transformation-the compiler attempts to rearrange nested loops to increase
possibilities for pipelining. For example:

for(j=O; j<1000; j++) {
for(i=O; i<3; i++) {

x[i] [j] = x[i] [j] * a[i] [j];
}

}

Given this code, the compiler may rearrange the loops so that the loop over j becomes the inner
loop, resulting in 3 vectors of length 1000 instead of 1000 vectors of length 3.

• Cache management-the compiler attempts to perform streaming (loading all the operands for
a loop into the microprocessor's data cache before beginning the loop) and stripmining
(breaking a loop into smaller chunks so that the operands for each chunk will fit into the cache).

• Vector idiom recognition-the compiler scans the code for certain common vector operations
and replaces them with calls to hand-written assembly routines that do the same thing faster. For
example, the following source code performs a dot product:

for(i=O; i<100; i++) {
s = s + a[i] * b[i];

}

The vector idiom recognizer will replace the code produced by these statements with a single
call to a hand-coded dot-product routine.

3-5

. Optimizing Programs Paragon"" OSFI1 C Compiler User's Guide

3-6

Controlling Vectorization (-Mvect= ...)

You can control the vectorizer by specifying options to -Mvect. The available options are as follows:

-Mvect-recog

-Mvect-transform

-Mvect=noassoc

-Mvect-smaIlvect[:number]

Perform vector idiom recognition and cache management

Perform nested loop transformation. transform is not
normally useful without recog.

. Do not rearrange the order of operands in scalar reductions
(such as dot product). Rearranging operands can result in
faster code, but may give different results due to round-off
error.

Assume that no vectorizable loop is iterated more than
number times. Number must be a multiple of 10; if :number
is omitted, the value 100 is used. This option improves the
performance of doubly-nested, noo-perfectly-nested loops,
but results in incorrect code if any vectorizable loop bas
more iterations than the specified number.

Use at most number bytes of the data cache for cache
management of vector operations. Number must be a
multiple of 16, and less than the cache size of the
microprocessor (16384 for the i860 XP, 8192 for the
i860XR).

-Mvect with no options means -Mvect-recog,transform,cachesize:4096.

Preventing Associativity Changes (-Mvect=noassoc)

The switch -Mvect-noassoc requires a bit more explanatioo than the others.

In most cases, the rearrangements performed by -Mvect do not affect the results of the calculations
performed by your program. One exception is that the compiler takes advantage of the associativity
of floating-point operations to produce faster code. For example, consider the following dot product:

for(i=O; i<100; i++) {
s = s + a[i] * b[i];

}

••
• • • • • • • • • • •
K

• • • • • • • • • • • • • • • • • • •

n

•
D

IJ

I]

11

n
I~

C

IJ

IJ

IJ
(;J

IJ

I~

I)

I~

D

II

• • •

- -..... -----.~ ----------

Paragon™ OSFI1 C Compiler User's Guide Optimizing Programs

The order of evaluation of this dot product is as follows:

s = ««s + (a[O]*b[O]» + (a[l]*b[l]» + (a[2]*b[2]» + ...)

However, the vector idiom recognizer takes advantage of the associativity of floating-point addition
to rearrange it as follows:

s = s + ««(a[O]*b[O]) + (a[l]*b[l]» + (a[2]*b[2]» + ...)

The rearranged equation is the same algebraically as the original, and runs faster than the original
(because it presents a more uniform series of operations for pipelining), but may give slightly
different results. You can prevent this type of rearrangement by using the switch ·Mvect-noassoc.

Getting Information About Vectorization (-Minfo:loop)

You can fmd out what the vectorizer is doing by using the switch .Minfo-loop while compiling with
·Mvect. This switch sends information about what vectorizations the compiler is performing to the
standard error OutpUL For example:

, 1cc -04 -MVect -KDo1eee -MinEo-loop -c nas.c
II SW pipelined loop wi 21 cycles and 2 columns wi cnt 7 gend for line 27
Vect: streaming data and stripmining loop at line 64. strip size = 1008.
Interchanging loop lines 125, 126
vect: streaming data and stripmining loop at line 127. strip size = 200.
vect: loop at line 122 replaced by call to __ fiI14.
II Software pipelined loop wi 8 cycles and 3 columns for line 127
II Pipe/Dual-inst 1 column 21 cycle loop gend for line 127
vect: streaming data for loop at line 164. No stripmine loop required.
II SW pipelined loop wi 5 cycles and 2 columns wi cnt 128 gend for line 164
Vect: streaming data and stripmining loop at line 392. strip size = 336.
Vect: loop at line 392 replaced by call to __ zxmy4s.
Distributing loop at line 751, 2 new loops

•
•
•

3-7

Optimizing Programs Paragon'" OSFI1 C Compiler User's Guide

Note that optimizations may not be performed in order by line number (for example, the fifth
message refers to line 122, while the fourth, sixth, and seventh messages refer to line 127). The
meanings of the messages in this example are as follows:

II SW pipelined loop wi 21 cycles and 2 columns wi cnt 7 gend for line 27

This means that the optimizer has performed software pipelining for a loop beginning at line 27 of
the source file. Each iteration of this loop takes 21 machine cycles (best-case) to execute. Two
"columns" of operations are logically scheduled into the pipelines; that is, there are two sequences
of instructions "in the pipeline" at once. The phrase "ent 7" indicates that the loop has seven
iterations, and the word "gend" is an abbreviation for "generated."

vect: streaming data and stripmining loop at line 64. strip size = 1008.

This means that the vectorizer has performed cache management by inserting a call to a built-in
routine that fills the i860 microprocessor's data cache before the beginning of the loop. Each "strip"
(that is, each chunk of data) contains 1008 data values.

The size of the strip is chosen to fill the portion of the cache used by the vectorizer. The larger the
amount of data required by each iteration of the loop, the smaller the maximum strip size for that
loop. The default for the vectorizer's portion of the cache is 4096 bytes, so in this case each iteration
of the loop probably requires four bytes of data. You can change the vectorizer's portion of the
cache, and thus the strip size, with the switch ·Mvect-cachesize:number.

Interchanging loop lines 125, 126

This means that the vectorizer has performed nested loop transformation by exchanging two lines of
code. This transformation typically gives either more iterations or unit stride in the innermost loop.

vect: streaming data and stripmining loop at line 127. strip size = 200.

This message is similar to the previous "streaming data and stripmining loop" message, discussed
earlier. This loop has a smaller strip size because it has more data (in this case, about 20 bytes of data
are probably required in each loop iteration).

vect: loop at line 122 replaced by call to __ fiI14.

This means that the vectorizer has performed vector idiom recognition by replacing an initialization
of an array in a loop with a call to an optimized routine that performs the same function more
quickly.

II Software pipelined loop wi 8 cycles and 3 columns for line 127

This message is similar to the "SW pipelined loop" message, discussed earlier, except that the
number of iterations in the loop could not be determined at compile time (as shown by the lack of a
"ent" phrase in the message). This loop has three columns, so it will be more efficient than the
two-column loop shown earlier.

•
B

II

• • • • • • • •
I:

I:

•
•
II

• • • • • • • • • • • • • • • •

• •
D

o
D

I~

D

D

II

C

D

IJ
[J

D

~

I "!'I
, I

-"J

D
[J

IJ

IJ

IJ

I~

IJ

~

e
D

D

II

• • •

Paragon™ OSF/1 C Compiler User's Guide Optimizing Programs

II Pipe/Dual-inst 1 column 21 cycle loop gend for line 127

This means that the optimizer bas made use of the i860 microprocessor's pipelioing and
dual-instruction mode to optimize a loop.

This message is similar to the previous message, except that a "Software pipelined loop" message
means that the vectorizer bas inserted loop start-up and shut-down code, while a "PipelDuaI-inst"
message means that the vectorizer is using pipelioing and dual-instruction mode within the loop but
bas not generated any start-up or shut-down code.

vect: streaming data for loop at line 164. No stripmine loop required.

This message is similar to the previous "streaming data and sttipmioing loop" messages. discussed
earlier. except that in this case it was not necessary to "stripmine" the loop by gathering data
together. For example. this might be an operation on a single amy that fits in the cache.

II SW pipe lined loop wi 5 cycles and 2 columns wi cnt 128 gend for line 164
Vect: streaming data and stripmining loop at line 392. strip size = 336.

These messages are similar to messages discussed earlier.

Vect: loop at line 392 replaced by call to __ zxmy4s.

This means that the vectorizer bas performed vector idiom recognition by replacing user code with
a call to an optimized built -in routine (in this case _ zxmy4s0. a single-precision complex multiply).
The list of these routines is not documented because it is subject to change.

Distributing loop at line 751, 2 new loops

This means that the vectorizer bas split a loop with two or more sequences of operations in it into
two separate loops. one or both of which may be vectorizable.

Optimizing. Programs Paragon TM OSF/1 C Compiler User's Guide

Non-IEEE Math (-Knoieee)

3-10

The -Knoieee switch makes the compiled program use faster but less accurate floating-point math.
This can result in a substantial improvement in perfonnance, but may give unacceptable numeric
results. If your program relies on the accuracy and exception handling provided by the IEEE 754
standard for floating-point mathematics, do not use this switch. If you do use it, be certain to check
your program's results against the expected values.

The effect of the -Knoieee switch depends on whether you use it while compiling, while linking, or
both.

• To use -Knoieee for compilation but not linking, use -Knoieee in conjunction with the -c switch
to compile a source file to a .0 file, then link the .0 file into a compiled program without
-Knoieee. For example:

, icc -c -KDoieee myprog.c
, icc myprog.o

• To use -Knoieee for linking but not compilation, compile the source file without -Knoieee,
using the -c switch to produce a .0 file, then use the -Knoieee switch while linking the .0 file
into a compiled program. For example:

, icc -c myprog.c
, icc -KDoiee~myprog.o

• To use -Knoieee for both compilation and linking, compile the source file to an executable
program with -Knoieee. For example:

, icc -KDoieee myprog.c

Non-IEEE Divides (Compiling with -Knoieee)

The i860 microprocessor does not include a hardware divide unit. By default, the compiler performs
floating-point division by calling a routine that conforms to the IEEE standard. This routine correctly
handles overflow, underflow, and other exceptional conditions.

If you use the -Knoieee switch while compiling a program, the compiler uses a faster but less
accurate division routine. This routine is substantially faster than the IEEE routine, but gives results
that may differ from the correctly rounded result by as much as three units in the last place.

The non-IEEE division routine is also implemented as inline code rather than a subroutine call,
resulting in even greater performance improvements at some increase in code size.

a
o
II

•
II
I[

• • • •
••
~

I:
.~ .,
K

• •
K'.

K

• • • • • • • • • • • •

II

•
o
II

I~

I~

D

I~

1:1

I~

['1
, "'

I~

I~

IJ

19
,..,..i·

IJ

I~

IJ

(j

I]

I~

D

D

• • •

Paragon™ OSF/1 C Compiler User's Guide Optimizing Programs

Non-IEEE Math library (Linking with -Knoieee)

By default, the standard -1m math library conforins to the IEEE standard. The routines in this library
handle out-of-range inputs in a well-dermed manner and call an exception handler when a denormal
is generated in a calculation.

If you use the -Knoieee switch while linking a program, the linker uses a different set of math and
runtime libraries:

• Using the -Knoieee switch when linking with -1m replaces the standard -1m math library with
a compatible non-IEEE version. Many of the routines in this library are faster but less accurate
than their IEEE counterparts. (The rest are identical to their IEEE counterparts.) The square root
function in particular has been very carefully optimized. However, the non-IEEE libraries may
give unexpected results in response to arguments that are out of the defined domain for the given
operation (such as the tangent of 90 degrees).

• Using the -Knoieee switch when linking also causes the compiler to link in a different
initialization routine. The non-IEEE initialization routine sets a flag that causes the
microprocessor to immediately flush all denormals to zero on creation. This can make the
program run faster, but may give erroneous results if the denormal range is necessary to the
result.

BLAS Library (-Ikmath)

The -Ikmath switch links to a highly-optimized math library. This library includes the BLAS (Basic
Linear Algebra Subroutines) levels 1,2, and 3 and some FFr (fast Fourier transform) routines. See
the CLASSPACK Basic Math LibrarylC User's Guide for complete information on this library. You
may have to re-code part of your program to use the routines in this library.

Inlining (-Minline)

The -Minline switch replaces function calls with inline code. See Chapter 4 for information on using
the inliner.

In general, inlining must be used judiciously. In1ining trades the overhead of a function call for larger
code, which can overrun the instruction cache and actually decrease performance. You should inline
only those routines that meet the following criteria:

• The routine is very small (10 lines of source code or less).

• The routine is called in only one place in the source code, or a few widely-separated places.

• The call (or calls) to the routine occurs in a section of code that is called very often or is
otherwise time-critical.

In1ining routines that do not meet these criteria generally results in little or no improvement.

3-11

Optimizing Programs Paragon'" OSF/1 C Compiler User's Guide

Ignoring Potential Data Dependencies (-Mnodepchk)

The -Mnodepchk switch ignores potential data dependencies.

CAUTION

The -Mnodepchk switch can give incorrect or erroneous results,
and gives no improvement for many programs, but is provided for
those programmers who can make use of it.

Normally, the compiler emits code that will work properly even where data dependencies exist For
example, consider theJollowing code:

a [i] = value;
variable = a[j];

If the compiler does not know the values of the variables i and j at compile time, it normally assumes
that they may have the same value. This is a data dependency: if i has the same value as j, the second
statement depends on the first. This is only one example of data dependency; many other types of
data dependency exist. One of the most common is pointer dereferencing.

If you use the -Mnodepchk switch, the compiler assumes that DO data dependencies exist. This can
allow the compiler to generate faster code ill some cases. In this example, -Mnodepchk would allow
the compiler to execute the second statement before the fIrSt if it results in a more efficient program.
However, if any data dependencies do exist, the results will be unpredictable.

Use the -Mnodepchk switch only if you understand the program very well and are sure that DO data
dependencies exist.

Code Changes for Optimization

3-12

This section lists some changes you may be able to make in your code that will make the code more
efficient or make the jobs of the optimizer and vectorizer easier.

• • • • • • • • • • •
• • • •
II

• • • • • • •
• • •
• • •
• • •

II

D

n

I~

I ·",
iJ

I!

I~

I "i
~I

Ij

I:

I~

I i

'"
I '..,

i~ .-"
, ,

I
'~

.;;

I)

IJ
1"1
~

I]

D

• • •

Paragon™ OSF/1 C Compiler User's Guide Optimizing Programs

General Improvements

These changes can improve almost all types of code:

• Split larger programs into smaller pieces and use appropriate optimization levels on each piece.
For example, -Mvect makes vector codes faster, but can make non-vector codes slower. If a
single source file contains both vector and non-vector code, you should split it into vector and
non-vector pieces and compile the two pieces separately, with and without -Mvect.

• Keep basic blocks under 30 lines of code. A basic block is a group of program statements in
which the flow of control enters at the beginning and leaves at the end without the possibility of
branching (except at the end). Small basic blocks give the compiler more opportunities to
rearrange code for optimizations.

• A void type conversions (for example, the assignment of a double value to a Doat variable).
Type conversions are time-consuming operations that are often unnecessary. Conversions
between floating-point and integer types are particularly difficult. Examine your code and be
sure that variables that are used together are of the same type, except where different types are
needed.

Loop Improvements

These changes make it easier for the vectorizer to assemble long sequences of similar operations,
which allow the i860 microprocessor to work the most efficiently. These changes can be very
effective in improving the performance of code that uses floating-point vectors.

• Use unit stride (each iteration of a loop works on the next vector element, rather than skipping
elements). This results in efficient pipelines. This is one of the most important changes you can
make.

• Use countable loops Ooops which are iterated a loop-invariant number of times). The compiler
can create more efficient code for a loop whose iteration count is known at compile time than it
can for a loop whose iteration count is not known until the program executes (such as a loop
from 1 to n or a loop that terminates when a certain condition is true).

• Use perfectly-nested loops (loops that have no code outside the innermost loop). Here is an
example of a perfectly-nested loop:

for(k=O; i<10; k++) {

}

for(j=O; j<10; j++) {
for(i=O; i<2000; i++) {

•
all loop operations here

•
}

}

3-13

Optimizing Programs Paragon'" OSFI1 C Compiler User's Guide

3-14

Perfectly-nested loops also tenninate only at a loop-control statement; they do not have any
"early outs."

• In nested loops, make the loop with the highest iteration count in the innermost loop. This gives
the vectorizer the longest uninterrupted string of operations to worlc with.

• Keep data dependence distances short. The data dependence distance of a loop is determined
by the proximity in memory of the different data objects that are accessed in the body of a loop.
For example, a loop that accesses vector elements a[n] and a[n+5] has a data dependence
distance of 5. For best results, inner loops should have a data dependence distance of less than
8 for double vectors and less than 16 for Doat vectors.

• Avoid if statements within loops. If the compiiercan't be sure that the code that is executed on
each iteration of a loop is the same as the code in the previous iteration. it cannot set up a
pipeline. Instead of writing an if statement within a loop. write the loop within the if statement.
For example, if your code looks like this:

for(i=O; i<lOOO; i++) {

}

/* code for all conditions */
if(a > b) {

/* code for a > b */
}

Rewrite it as foUows:

if(a > b) {
for(i=O; i<lOOO; i++) {

}

/* code for all conditions */
/* code for a > b */

} else {
for(i=O; i<lOOO; i++) {

/* code for all conditions */
}

}

Note that this example assumes that the variables a and b are not changed in the loop body. If
the condition in the if statement depends on code within the loop. you cannot rearrange the loops
in this way.

• Avoid divides and type conversions within loops. Division and type conversion are operations
that cannot be performed in hardware by the i860 microprocessor, so loops containing these
operations cannot be pipelioed as effectively.

• • • • •
• • • .,
• •
II:

~

II:

•
II

• •
~

II:

• • • •
• • • • • • • •

n
II

11
1"1

oJ

I:

IJ

I]

'If! , ,oJ

I:
I:

I "'i
,;.I

IJ

IJ

Ij

I~

D

• • •

Paragon'" OSFI1 C Compiler User's Guide Optimizing Programs

File 1/0 Improvements

If your program reads and writes sizeable data files. you can obtain substantial improvements in
performance with these changes:

• Move the data files to PFS TM (parallel File System TM) file systems. Access to PFS file systems
is substantially faster than access to ordinary non-parallel file systems for large files.

• Use asynchronous I/O (ireadO. iwrite(». The asynchronous calls let your program work while
reads or writes are in progress. You can also use asynchronous I/O to perform double buffering:
reading data into a buffer. then reading into a second buffer while simultaneously processing
the data in the first buffer.

See the Paragon™ OSFll User's Guide for more information on the techniques discussed in this
section.

3-15

Optimizing Programs Paragon™ OSF/1 C Compiler User's Guide

3-16

•
II

• • • • • • • • •
a:
E

• • •
•• • • • •
• • • • • • • • .,
• •

n
n
D

D

D

n
D

D

D

I]

I~

ilJ

IJ

I~

1·'.'1'1 , ,

""

I:

'1'1 u

IJ

IJ

1:1

IJ

IJ

[j

e
D

D

• • •

Using the Inliner

This chapter describes the compiler's function inlining capability.

Function inlining is a compiler optimization under which the body of a function is expanded in place
of a call to the function. This can speed up execution by eliminating the parameter passing and
function call and return overhead. In1ining a function body also creates opportunities for other
compiler optimizations. In1ining will usually result in larger code size (although in the case of very
small functions, code size can actually decrease). Using inlining indiscriminately can result in much
larger code size and no increase in execution speed; there may even be a decrease in execution speed.

There are basically two ways to accomplish inlining:

• Automatic inlining as part of the compilation process. When you use the -Minline switch
during compilation, the compiler fIrst looks in the source flIes for functions that can be inlioed,
then replaces calls to those functions with the equivalent code automatically.

• Use of iDliner libraries. When you use the -Mextract switch during compilation, the compiler
looks for functions that can be inlined and extracts them into an inliner library. Later, when
compiling a program that calls functions in the inliner library, you use the -Minline switch and
specify the library; the compiler replaces calls to the functions in the library with the equivalent
code.

Compiler Inline Switch
To request function inlining, use the -MiDline switch:

-Minline=option[,option . .. J

4-1

Using the Inliner Paragon'" OSFI1 C Compiler User's Guide

where option is one of the following:

[name:]fimction Specifies a particular function to inline. If name: is not used, the function
name must not contain a period. Any number of names can be specified.

[size:]number Specifies an upper bound on function size to inline. Any function less than the
specified number of lines (approximately) will be inlined.

[Db:]library Specifies a library of inlined functions. If Db: is not used, the library name
must contain a period. Any number of libraries can be specified. A function
is inlined if it is found in any of the libraries.

levels: number Specifies the number oflevels of inlining to perform (default I). For example,
suppose subprogram a calls b and b calls c. If you want to completely inline
a (including the calls to b and c), you must use .Minline=a,b,c,levels:2.

You must specify at least one name, size, or library. If both function name(s) and a size limit are
specified, a function is inlined if it is named or if it satisfies the limit

InIining can be either automatic or manual. If you do not specify any inliner libraries, the compiler
performs a special pass for all source files named on the command line before any of them are
compiled. This pass extracts functions that meet the requirements for inlining and puts them in a
temporary library for use by the compilation pass.

If you specify one or more inliner libraries, the compiler does not perform an initial extract pass.
Instead, functions to be inlined are selected from the specified libraries. If neither function names
nor a size limit are specified, any function in the library meets the conditions for inlining.

Creating an Inliner Library

4-2

To create or update an inliner library, use the ·Mextract switch:'

-Mextract[=option[,option ...]]

where option is one of the following:

[name:]fUnction Extracts the specified function. name: must be used if the function name
contains a period.

[size:]number Extracts functions containing less than approximately number statements.

If you don't specify any options with ·Mextract, the compiler attempts to extract all subprograms
of a reasonable size.

When you use ·Mextract, only extraction is performed; compilation and linking are not performed.

• • • • • • • • • • •
I':

K:

• • • • • • • •
• • • • •
• • • • • •

D

D

D

II

n
Ii

n
~

I~

IJ

I]

IJ

1:1

IJ
1'1'1

Jij

IJ

IJ

17]

IJ

e
D

• • •

Paragon TM OSF /1 C Co mpiler User's Guide Using the Inliner

If the -Mextract switch is present, you must also specify a single inliner library name on the
compiler command line. For example:

This specifies the inliner library in which the extracted forms of functions are placed. The library
mayor may not already exist; it is created if it does not.

You can use the -MiDline switch at the same time as the -Mextract switch. In this case, the extracted
form of the function can have other functions inlined into it. This makes it possible to obtain more
than one level of inlining. In this situation. if no library is specified with -MiDline, processing will
consist of two extract passes. The first pass is the hidden pass implied by -Minline during which
functions are extracted into a temporary library. The second pass uses the results of the fIrSt pass but
puts its results into the library specified with the -0 switch. See examples below.

Using Inliner Libraries
An inliner library is implemented as a directory. For each element of the library. the directory
contains a file containing the encoded form of the inlinable function.

A special file named Toe serves as a directory for the library. This is a printable, ASCII file that can
be examined to fmd out information about the library contents. such as names and sizes of functions,
the source file from which they were extracted. the version number of the extractor that created the
entry, etc.

Libraries and their elements can be manipulated using ordinary system commands, for example:

• You can rename a library with my.

• You can remove an element from a library with rm, or remove an entire library with rm or.

• You can copy an element from one library to another with cp, or copy an entire library with
cp or.

• You can examine the contents of a library with Is, or determine the modification date of an
element with Is -I.

Since deleting or adding an element can cause the TOe file to become out of date, a utility program
iftxlib is provided to recreate a correct TOe file. Use it as follows:

, ifi%lib library_name

When use of the icc command causes an entry to be created or updated, the date of the most recent
change of the library directory itself is updated also. This allows a library to be listed as a
dependency in a makefile, in order to ensure that the necessary compilations are performed again
when a library is changed.

Using the Inliner Paragon™ OSFI1 C Compiler User's Guide

Restrictions on Inlining
The following C functions cannot be inlined:

. • Functions whose return type is a struct data type, or have a struct argument

• Functions containing switch statements

• Functions that reference a static variable whose definition is nested within the function

• Functions that accept a variable number of arguments

Certain functions can only be inlined into the file that contains their definition:

• Static functions

• Functions that call a static function

• Functions that reference a static variable

Error Detection During Inlining

4-4

When invoking the inliner, you should always set the diagnostics reporting switch (-Minfo=inline).

An additional feature associated with inlining is enhanced compiler error detection. For example:

• If an inlinable function is called with the wrong number of arguments, a warning message is
issued and the function is not inlined.

• If an inlinable function is called in a context which assumes that a value is returned, but the body
of the function does not contain any statements that set the return value, a severe error is issued.

• If the declaration of an external variable referenced by an inlinable function does not match the
declaration in the source file being compiled, a severe error is issued.

• • • • • • • •
• • •
K:
I[

• •
E

•
• • • • •
• • •
• • •
• • • •

o
D

D

D

II

11

n
n

•
".71
..J

I]

IJ

IJ
fj

IJ

n
II

• • •

Paragon'" OSFI1 C Compiler User's Guide Using the Inliner

Examples

Dhry

Fibo

This section contains examples of using the inliner.

Assume the program dhry consists of a single source file dhry.c. Then, the following command line
builds an executable for dhry in which Proc7 has been inlined wherever it is called:

, icc dbry.c -~n1ine-Proc7

The following command line builds an executable for dhry in which Proc7 plus any functions of
roughly three or fewer statements have been inlined (llevel only).

, icc dbry.c -~n1ine-Proc7,3

The following command line builds an executable for dhry in which all functions of roughly ten or
fewer statements are inlined. Two levels of inlining will have been performed. This means that if
function A calls function B, and B calls C, and both B and C are inlinable, then the version of B that
is inlined into A will have had C inlined into it.

, icc dbry.c -Meztrilct=lO -~n1ine=lO -0 temp.i1ib
, icc dbry.c -~n1ine-temp.i1ib
, rm -r temp.i1ib

Assumingfibo.c contains a single function fibo that calls itself recursively. Then, the following
command line creates file jibo.o in which fibo has been inlined into itself:

, icc £ibo.c -c -~n1ine=£ibo -0

Because this version ofjibo recurses only half as deeply, it should execute noticeably faster.

Using the Inliner

Makefiles

4-6

Paragon'" OSFI1 C Compiler User's Guide

The following fragment of a makefile assumes that file uti/s.c contains a number of small functions
tbat are used in the files parser.c and aUoc.c. An inliner library utils.ilib is maintained. Note that the
library must be updated whenever utils.c or one of the include files it uses is changed. In turn,
parser.c and alloc.c must be compiled again whenever the library is updated.

•
•
•

main.o: $(SRC)/main.c $(SRC)/global.h
$(CC) $ (CFLAGS) -c $(SRC)/main.c

utils.o: $(SRC)/utils.c $(SRC)/global.h $(SRC)/utils.h
$(CC) $ (CFLAGS) -c $(SRC)/utils.c

utils.ilib: $(SRC)/utils.c $(SRC)global.h $(SRC)/utils.h
$(CC) $ (CFLAGS) -Mextract=15 -0 utils.ilib

parser.o: $(SRC)/parser.c ${SRC)/global.h utils.ilib
$(CC) $ (CFLAGS) -Minline=utils.ilib -c $(SRC)/parser.c

alloc.o: ${SRC)/alloc.c $(SRC)/global.h utils.ilib
$(CC) $ (CFLAGS) -Minline=utils.ilib -c $(SRC)/alloc.c

myprog: main.o utils.o parser.o alloc.o
$(CC) -0 myprog main.o utils.o parser.o alloc.o

~~----~---~~--.-------

• • • • • • • • • • •
I::

Il

• • • • •
K

• • • •
• • • • •
• • • •

II

n
D

o
I!

It
D

I:

I~

n
11

IJ

IJ

I;]

'I~
• JiJ

(j

e
IJ
11
'.J

I]

I:]

IJ

IJ
I]

I]

n
II

• • •

Interfacing Fortran and C

This chapter describes how to use C and Fortran routines together in the same program.

Calling a C Function from Fortran
The Fortran compiler adds an underscore U at the beginning and end of every external name
(function, subroutine and common), and expects all external names to begin and end with an
underscore. However, the C compiler only adds an underscore at the beginning of each external
name. This means that to make a C function callable from Fortran, the name that you give it (in the
C source) must end with an underscore. If you want to call an existing function whose name does
not end with an underscore, you must write a "wrapper" function, whose name does end with an
underscore, which just calls the existing function.

Also, any dollar signs in a C external name are replaced with underscores (or you can choose another
replacement character by using the -Mdollar switch when you compile the program). For example,
to call the C function mySfunc _0 from Fortran, you would call it as my _funcO.

5-1

Interfacing Fortran and C Paragon"'OSFI1 C Compiler User's Guide

5-2

All Fortran arguments are passed by reference. (Temporary storage for non-addressable objects such
as literals is provided by the compiler.) Therefore. each parameter in the called C routine must be a
pointer of the appropriate type. as shown in Table 5-1.

Table 5·1. Fortran Data Types ror Called C Functions

Fortran PaSS$S C Receives

REAL·4 ftoat·

REAL·8 double·

INTEGER·4 long·

INTEGER·2 short •

INTEGER· 1 char·

LOGICAL·4 long·

LOGICAL·2 short •

LOGICAL· 1 char·

COMPLEX struct complex {ftoat realpart, imagpart;} •

COMPLEX· 16 struct dcomplex {double realpart, imagpart;} •

CHARACTER char·

In the case of a passing a CHARACTER argument, Fortran not only passes a pointer to the char
variable. but also passes the length of the CHARACTER variable, as an lnt (not as an Int .) at the
end of the argument list. Fortran CHARACTER string constants are null terminated.

If the C function being called from Fortran returns a value. then the return types correspond as
follows:

• An int C function must be declared either as INTEGER or LOGICAL in the calling Fortran
routine.

• A ftoat or double C function must be declared as DOUBLE PRECISION in the calling Fortran
routine. Since C usually promotes ftoat return values to double, REAL return values usually
cannot be returned from C.

• COMPLEX, DOUBLE COMPLEX. and CHARACTER are returned by passing the address
where the return value is to be stored as an extra fIrst parameter to the C function. The length of
a CHARACTER retum value is passed as an extra second int parameter to the C function.

If a Fortran caller calls a C function as a subroutine with alternate return parameters. the value
retumed by the C function (using return(e» is interpreted as the expression in the Fortran alternate
return statement RETURN e. The Fortran caller does a computed GOTO on the retumed value to
implement the alternate retum.

• •
II

II

III

D

lID

K

• •
K
K:

I:

.:

• • • • •
• • • • • • • • • • • • •

II

o
o
D

n
D

D
I]

D

n
I~ Jtij

I~

1"'1

"I

IJ

I:J

IJ

IJ
Ij
Ij

D

D

• • •

Paragon'" OSFI1 C Compiler User's Guide Interfacing Fortran and C

Calling a Fortran Routine from C
The Fortran compiler adds an underscore U at the beginning and end of every external name
(function. subroutine and common). while the C compiler only adds an underscore at the beginning
of each external name. This means that to call a Fortran routine or refer to a Fortran COMMON
block from C. you must append an underscore to its name. For example. to call the Fortran routine
myfuncO from C. you would call it as myfunc_O.

All Fortran parameters are passed by reference. Therefore. the corresponding argument in the C call
must be a pointer of the appropriate type, as shown in Table 5-2. For example, to pass the scalar
variable x from C to Fortran, use the argument value &x.

Table 5-2. C Data Types for Called Fortran Routines

CPasses Fortran Receives

float· REAL·4
_.

double· REAL·S

long· INTEGER·4

short • INTEGER·2

char· INTEGER· 1

long· LOGICAL·4

short • LOGICAL·2

char· LOGICAL· 1

struct complex {Ooat realpart, imagpart;} • COMPLEX·S

struct dcomplex {double realpart, imagpart;}· COMPLEX· 16

char· CHARACTER

In the case of a passing a CHARACTER argument, C must not only pass a pointer to the char
variable, but must also pass the length of the char variable, as an int (not as an Int .) at the end of
the argument list

Interfacing Fortran and C Paragon™ OSF/1 C Compiler User's Guide

If the Fortran routine being called from Cis a FUNCTION, then the return types correspond as
follows:

• An INTEGER or LOGICAL Fortran FUNCTION must be declared as int in the calling C
routine.

• A DOUBLE PRECISION Fortran function must be declared as double in the calling C
routine. Since C usually promotes float return values to double, a REAL return value may not
be accessible in C. (You can use the .Msingle switch when compiling the calling C program to
suppress the promotion of float to double.)

• COMPLEX, OOUBLECOMPLEX, and CHARACTER are returned from the called Fortran
routine by passing the address where the return value is to be stored as an extra first parameter
to the C function. The length of a CHARACTER return value is passed as an extra second lot
parameter to the C function.

The alternate return statement of Fortran, RETURN e, has no equivalent in C.

------~~--- - -- --- ---

. _._ _.- - --"

D
g'

II

II

II

B

II

• • • •
K
I(

• • • • •
II

• •
• • .,
• • • • •
• •
• ' '

D

B
D

n

I~

o
n
D

n
11

I:l

Ij

(J

II '7i
'"

I]

[J

I]

[:J

• ",'1
ill

I~

I~

D

II

• • •

Extensions to Standard C

This chapter describes the language that the Paragon T!oI OSFIl C compiler accepts (ANSI C),
extensions to the standard language, and considerations for porting programs written in Original C
(the language described by Kernighan and Ritchie in The C Programming Language).

Standard Language
The standard language is dermed in the American National Standard/or Programming Language C
(ANS X3.159-1989).

For additional information on programming in the C language, refer to the following:

• Kernighan, Brian W., and Ritchie. Dennis M., The C Programming Language, Prentice Hall,
1978.

• Harbison, Samuel P., and Steele, Guy L., C: A Reference Manual. Second Edition, Prentice
Hall,1987.

Instead of fully specifying the language accepted by the compiler, this chapter describes only those
features that differ from the C language specified in The C Programming Language. Most of the
differences (incompatibilities and extensions) are ANSI features.

6-1

Extensions to Standard C Paragon™ OSF/1 C Compiler User's Guide

Extensions

6-2

This section lists the extensions to the original C language and, in certain cases, to the ANSI
standard, supported by the Paragon OSP!I C compiler.

I. The #module identifier directive is supported. The identifier is used as the name of the module.
If no #module directive is present, the name of the input file, without the ".c" suffix, is used.

2. The #Iist and #noUst directives are supported. They enable and disable the listing of source code
in the listing file.

3. The #pragma [tokens] ANSI directive is supported. Any pragma that is not recognized is
ignored.

4. The leUr expression ANSI directive is supported. This directive is like a combination of the
#else and #ir directives.

5. The defmed ANSI operator is supported. Both of the following expressions evaluate to 1 if
name is the name of a macro, or to 0 otherwise:

defined(name)
defined name

6. The following preprocessor macros are predefmed (in addition to the ANSI-standard predefined
macros _LINE_, _FILE_, _DATE_, _TIME_, and _STDC-->:

• i860

• i860

• PARAGON -

• OSFl - -

• _PGC_

• PGC - -

• _NODE (only defined when compiling with -ox or -node)

• unix

• MACH

• CMU

Note that some of these macro names begin and/or end with two underscores.

D,

• •
II

II

III
II]

II]

• • •
&:

I:

II

• • • .;
.:
II

• • • • • • •
• • •
• •

D

D

D

II

It
G

11

II

I ""
13J

I~

12
IJ

IJ

IJ

IJ

IJ

I~

IJ

11

D

• • •

Paragon™ OSFI1 C Compiler User's Guide Extensions to Standard C .

7. The #ident directive is supported. The syntax is:

#ident "string"

For certain assemblers, this results in a Jdent directive being added to the output file.

8. The #predicate(va[ue) extension is supported inside preprocessor #ir and leUr directives. This
exists for compatibility with AT&T include files. The compiler driver passes the following
predicates to the compiler:

• #machine(paragon)

• #Hnt(off)

• #System(osfi)

• #cpu(i860)

Only these predefined predicates exist; you cannot create new predicates.

9. Identifiers may contain the dollar sign character, ($).

10. The ANSI reserved word void may be used to indicate the void data type (data type with no
values). This type is used to indicate that the value of an expression is not used, and to declare
functions that return no value. The type void * is used to indicate a universal pointer (similar to
the old use of char *. A void * pointer may be quietly converted to and from pointers of other
types.

11. Enumeration types are supported. Enumeration constants are implemented as integers. All
integer operations are allowed on enumeration types, as per the ANSI standard; thus an
enumeration constant has type int and enumeration variables are of integral type.

12. Two different structures may contain members with the same name, even when the members
have different offsets within each structure. (ANSI)

13. Structures may be assigned, passed as arguments to functions, and returned by functions.
(ANSI)

14. The ANSI types unsigned short int and unsigned char are supported. The keyword signed is
added as per the ANSI standard. A signed integer type is equivalent to the normal integer type;
characters may be specified to be signed by using this keyword. Characters are unsigned by
default. The ANSI type long double is supported; it is currently implemented the same as
double.

15. The keywords const and volatUe are supported as per the ANSI standard. Objects of type const
may not be assigned values. Objects of type volatile (objects used for device registers and
variables that may change as the result of signals) are immune to optimizations that might
change the meaning of the program.

Extensions to Standard C Paragon'" OSFI1 C Compiler User's Guide

16. ANSI function prototypes are supported. A function declaration may include specification of
the types of its parameters. Type conversions are performed as necessary to ensure that the types
of actual parameters to such a function match the types of its formal parameters, with error
messages issued when appropriate.

17. The new ANSI lexical conventions are supported:

• Any token may be continued using the "backslash-newline" (\0) conventions.

• Trigraph sequences are recognized.

• The letters "u" or "U' may be appended to an integer constant to make it unsigned.

• Theletters "f' or "F' and "1" or "L" may be appended to a floating constant to make it of
type Doat or long double, respectively.

• Two or more consecutive string literals are concatenated into one.

• The "ua:zz" (hexadecimal) and "\a" (alert) character escape sequences have been added.

18. Initialization of automatic aggregates is allowed as per the ANSI standard. An automatic struet
may be initialized with an arbitrary structure expression or with a brace-enclosed list of constant
expressions. Automatic arrays can only be initialized using a brace-enclosed list of constant
expressions. Initialization of a union is allowed by initializing the flI'St element of the union. As
in original C, all static variables can be initialized.

19. Both Signed and unsigned bit fields are supported as per the ANSI standard.

20. The unary + operator has been added as per the ANSI standard.

• • • • • •
II

II

•
II

E:

I:

I::
~

•
I(;

• •
II

• • • • • • • • .:
• • • •

D

D

D

II

n
I:
II

I~

I~

I~

IJ

I '" "'"

IJ

I~

I:
I~

I]

D

• • •

Paragon'" OSF/1 C Compiler User's Guide Extensions to Standard C

Implementation-Defined Behavior
The sizes and alignments of the various C data types are shown in Table 6-1:

Table 6·1. Sizes and Alignments of Data Types

Type Size Alignment

char I byte byte

short 2 bytes 2-byte

int 4 bytes 4-byte

long int 4 bytes 4-byte

ftoat 4 bytes 4-byte

double 8 bytes 8-byte

long double 8 bytes 8-byte

struct (varies) Alignment of field with largest alignment

union (varies) Alignment of member with largest alignment

array of type n ... size of type Alignment of type

The search rules for #include directives are:

• IT the pathname is enclosed in angle brackets. the compiler first searches the directories
specified with the·1 command line switch in the order specified. then the system include
directory.

• IT the pathname is enclosed in double quotes. the compiler first searches the current directory.
then follows the search rules above.

6-5

Extensions to StandardC Paragon'" OSF/1 C Compiler User's Guide

Porting Considerations

6-6

This section describes incompatibilities between original C and the version of ANSI C supported by
the Paragon OSFIl C compiler. These incompatibilities prevent programs that were legal under the
original definition from being accepted by the compiler. In all but the last two cases, the compiler
identifies the error and issues a message.

1. The compiler performs strict type-checking. In particular, the base type of a pointer expression
used to access a struct member must be a structure type that contains a member with that name.
(ANSI)

2. Identifier names may be arbitrarily long, but only the fmt 31 characters are significant (31 is
also the ANSI standard). The original definition of C allowed long names but only the fmt eight
characters were significant, implying that misspellings after the eighth character were not
errors.

3. Storage class specifiers must come before type specifiers, if both are present (for example,
static lnt, not int static). The ANSI standard considers placement of the storage class specifier
an obsolete feature.

4. If a unary operator is applied to a variable of type ftoat, or if a binary operator is applied to two
variables of type noat, the result is computed using single precision arithmetic. This is in
accordance with the ANSI standard.

5. No white space (blanks, tabs, comments, or new lines) is allowed between the characters
making up the following assignment operator tokens (ANSI):

+=
»=

-=
&=

1=
1=

«=

6. The default numeric conversion rules follow the ANSI convention of value preserving. This
means that an unsigned char or unsigned short lnt is converted to an int, rather than an
unsigned into The compiler issues no messages for this conversion.

D

o
u
o
o
n
It

• • • •
E

E

E

• • • •
•
II .' .:

• • • • •
• • • • •

II

n
II

o
I~

I:
n
I!

c

n
I:

I:
I:

I~

Ij

IJ

IJ

(j

IJ

l:l

I)

I~

II

• • •

VOOO

o~~~~· ~ ____ ~~ ___ ~ ____ o ___ ~ ________ ~ _____________ ~ __ ~~ ______ ~_~~ ___ _

Compiler Error Messages

This appendix lists the error messages generated by the Paragon™ OSFIl C compiler, indicating
each message's severity and, where appropriate, the error's probable cause and correction. In the
error messages, the dollar sign ($) represents information that is specific to each occurrence of the
message.

Each error message is numbered and preceded by one of the following letters, indicating its severity:

I Informative.

W Warning.

S Severe error.

F Fatal error.

V Variable.

Internal compiler error. $ $

This message indicates an error in the compiler. The severity may vary; if it is informative or
warning, the compiler probably generated correct object code, but there is no way to be sure.
Regardless of the severity, please report any internal error to Intel Supercomputer Systems Division
Customer Support.

FOOl Source input file name not specified

On the command line, source file name should be specified either before all the switches, or after
them.

A-1

CompHer Error Messages Paragon™ OSF/1 C Compiler User's Guide

F002 Unable to open source input file: $

Source file name misspelled, file not in current working directory, or file is read protected. Also can
be issued if include file is read protected.

F003 Unable to open listing file

Probably, user does not have write permission for the current working directory.

F004 Unable to open object file

Probably, user does not have write permission for the current working directory.

FOOS Unable to open temporary file

Compiler uses directory lusrltmp or Itmp in which to create temporary files. If neither of these
directories is available on the node on which the compiler is being used, this error will occur.

I006 <reserved message number>

F007 Source file too large to compile at this optimization level

Symbol table overflowed, or compiler working storage space exhausted. If this error occurred at
optimization level 2, reducing the optimization level to 1 may work around the problem, otherwise
splitting the source file.in two should be considered. There is no hard limit on how large a file the
compiler can handle, but as a very rough estimate, if the file is less than 2000 lines long (not counting
comments), and this error occurs, it may represent a compiler problem.

F008 Error limit exceeded

The compiler gives up after 25 severe errors.

I009 <reserved message number>

IOIO <reserved message number>

SOlI Unrecognized command line switch: $

Refer to the Icc manual page for a list of the allowed switches.

S012 Value required for command line switch: $

Certain switches require a value which immediately follows, such as ·0 2.

A-2

• • • • • • •
• • •
~

IJ

III

• • • •
• •
a:

•
•
• • • •
• • • • •

D

n
n
II

I.~

I]

IE

[J

I:]

• "'1
J

IJ

IJ

I:]

IJ

13
U
(j

I~

n

• • •

Paragon™ OSFI1 C Compiler User's Guide Compiler Error Messages

S013 Unrecognized value specified for command line switch: $

S014 Ambiguous command line switch: $

Too short an abbreviation was used for one of the switches.

1015 <reserved message number>

1016 Identifier, $, truncated to 31 chars

An identifier may be at most 31 characters in length; characters after the 31 st are ignored.

1017 <reserved message number>

1018 <reserved message number>

1019 Underflow of real or double precision constant

1020 Overflow of real or double precision constant

S021 Input source line too long

After macro expansion, a source line must not be more than 3000 characters long. It may be possible
to work around the problem by removing unneeded blank characters from certain macro definitions.

W022 Char escape does not fit in char

The value of a hex escape in a char or string constant exceeds the capacity of a char (8 bits). The
value is truncated.

W023 Integer overflow on integer constant: $

S024 Illegal character constant

A character constant was either unterminated or bad no characters.

S025 Illegal character: $

Illegal character encountered in source code. Octal representation of character is given.

A-3

Compiler Error Messages Paragon™ OSF/1 C Compiler User's Guide

S026 Unmatched double quote

S027 Illegal integer constant: $

Integer (or hexadecimal constant) is too large for 32 bit word.

S028 Illegal real or double precision constant: $

Syntax of constant with exponent is bad.

S029 Syntax error: Recovery attempted by deleting from $

The indicated input was deleted during syntax error recovery.

S030 Syntax error: Malformed $ at $

The indicated construct starting at the indicated token was found to be improperly formed during
syntax error recovery.

W031 Multi-character character constant

This error can be caused by an attempt to specify more than one character within single quotes.

S032 Syntax error: Unexpected input at $

The tokens including and following the indicated token caused a syntax error.

W033 Missing declarator for dummy argument

A declaration without a declared identifier appeared in the dummy argument declaration list

F034 Unrecoverable syntax error reading $

Note that processing of source code is terminated.

S035 Syntax error: Recovery attempted by replacing $ by $

S036 Syntax error: Recovery attempted by inserting $ before $

S037 Syntax error: Recovery attempted by deleting $

----~-

D

0

0

II
II]

D

D

E

• .:
•
II

a

•
II

•
•• •
• • • • •
• .' ••
• • • • • •

D

II

II

II

I.E

I~

IJ

n
c
(:]

IJ

I~

1'1

I:]

I]

IJ

I~

I]

I~

~ ..
• • •

Paragon'" OSF/1 C Compiler User's Guide Compiler Error Messages

S038 Illegal combination of standard data types

For example, unsigned double.

S039 Use of undeclared variable $

An undeclared variable is treated as an automatic lnt.

S040 Illegal use of symbol, $

S041 $ is not an enumeration tag

Use of an identifier as an enumeration tag before declaring it.

S042 Use of undefined struct or union, $

S043 Redefinition of symbol, $

S044 Redefinition of structure or union tag $

S045 Illegal field size

Bit field size must be in range 1 to 32 (0 allowed for unnamed fields).

W046 Non-integral array subscript is cast to int

S047 Array dimension less than or equal to zero

The number of elements declared for an array must be greater than zero.

S048 Illegal nonscalar constant

Don't know how user can cause this error.

S049 Illegal storage class specifier

S050 Semicolon missing after declaration

S051 Illegal attempt to compute sizeof a function

A-6

Compiler Error Messages Paragon™ OSF/1 C Compiler User's Guide

1052 Array dimension not specified. Extern assumed

An array defmition such as tnt a[]; is treated as the array declaration extern int a[];.

S053 Illegal use of void type

S054 Subscript operator ([]) applied to non-array

SO 55 Illegal operand of indirection operator (*)

S056 Attempt to call non-function

W057 Old-style declaration used; int assumed

A data declaration consisting of just an identifier is used (no type and storage class specified).

S058 Illegal lvalue

Expression on the left hand side of an assignment statement or operand of unary & operator is not a
legallvalue.

S059 Struct or union required on left of . or ->

S060 $ is not a member of this struct or union

S061 Sizeof dimensionless array required

An array whose dimensions were not specified is used in a context which requires a computation of
its size.

S062 Operand of - must be numeric type

S063 Operand of - must be an integer type

W064 Cast expression on LHS of assignment treated as cast type

An expression of the form (type .)p - expr was found; the left band side has been treated as if it
were .(type ")&p.

A-6

II

U

I]

C

c
C1

C

E

• • • a-.
.:
IE'

•
E
I[

.:
I[

•
II

II

• • •
II:

• • •
II

• •

D

D

D

II

I]

D

I~

I:J

IJ

IJ

G

I'J

I~

I]

I]

IJ

IJ

IJ

IJ

IJ

ld

~

Il

n

• • •

Paragon'" OSF/1 C Compiler User's Guide Compiler Error Messages

S06S Break statement not inside loop or switch statement

S066 Continue statement not inside loop

S067 Switch expression must be of integer type

S068 Case or default must be inside switch statement

S069 Dummy parameter specification not allowed here

S070 $ is not a dummy argument

S071 More than one default case for switch

S072 Initializer not allowed in this context

Initializer specified on a dummy parameter. a typedefname. or extern declaration.

S073 Too many initializers for $

The initializer for an array or structure contains too many constants.

S074 Non-constant expression in initializer

S07S Aggregate initializer used for scalar type

S076 Initializer not allowed for function

S077 Character string too long for array

When initializing an array of characters using a character string constant, the array must be large
enough for all the characters or all the characters including the null terminating character.

W078 Character constant too long

A wide character constant contains more than 1 wide character.

A-7

Compiler Error Messages Paragon'"' OSF/1 C Compiler User's Guide

W079 Enum value for $ overflows $

V080 Missing braces for array, structure, or union initialization

S081 Array of functions or function returning function not allowed

S082 Function returning array not allowed

S083 Switch case constants must be unique

1084 <reserved message number>

W08S Truncation performed for field initialization

An integer constant used to initialize a structure field is too large for the field.

S086 Division by zero

A division by zero was encountered while constant folding a constant expression.

S087 <reserved message number>

S088 Bit field cannot be the operand of sizeof or &

S089 Array name used in logical expression

S090 Scalar data type required for logical expression

S091 Integer constant expression required

S092 Illegal type conversion of constant required

W093 Type cast required for this conversion of constant

S094 Illegal type conversion required

This message is issued for a number of situations. for example. when the data types of the left and
right hand sides of an assignment statement are incompatible.

D

D

D

U

D

II

II

.: -.
• •
~

I[

I(

•
II

• •
Il

• • • •
• • •
• • • • • •

D

II

II

II

n
c
D

C

I~

G
1"1

,J

(""
'..:.:

I:
IJ

I~

I:
[~

IJ

I~

I]

IJ

IJ

IJ

~

Ij

• • • •

Paragon'" OSFI1 C Compiler User's Guide Compiler Error Messages

W095 Type cast required for this conversion

This message is issued for situations such as message 94, except that the compiler has gone ahead
and performed the necessary type conversion as if the user had specified a type cast. A typical case
is when the left and right hand sides of an assignment statement have different pointer types.

S096 Illegal function arg of type void or function

The actual argument of a function call has an illegal data type.

S097 Statement label $ has been defined more than once

The indicated name is used for more than one label within a function.

S098 Expression of type void * cannot be dereferenced

An attempt was made to apply the unary • operator to a pointer expression of type "pointer to void."

W099 Type cast required for this comparison

Comparison of pointers of different types should use a type cast. The compiler has performed the
necessary type conversion.

S100 Non-integral operand for mod, shift, or bitwise operator

S101 Illegal operand types for + operator

S102 Illegal operand types for - operator

S103 Illegal operand types for comparison operator

S104 Non-numeric operand for multiplicative operator

W105 Operands of pointer subtraction have different types

Since both operands point to types of the same size, the compiler is able to translate this expression
unambiguously.

W106 Shift count out of range

The bit count for a shift operation must be in the range 0 to 31. Note that a shift count of 32 will not
produce a result of zero on some machines.

A-9

Compiler Error Messages Paragon TM OSF /1 C Compiler User's Guide

Sl07 Struct or union $ not yet defined

Sloa Unnamed bit fields not allowed in unions

WI09 Type specification of field $ ignored

Bit fields must be int, char, or short. Bit field is given the type unsigned int.

SIlO Bit field $ too large for indicated data type

The size of.a bit field exceeds the size of the data type used to declare the field; for example,
eharnd:9.

WIll More than one storage class specified

The additional storage class specifiers are ignored.

Wl12 Duplicate type modifier

A type modifier is repeated; for example, canst const int X;.

Sl13 Label $ is referenced but never defined

Wl14 More than one type specified

More than one type specifier occurs where at least one of the specifiers is a typedef, struct/union
type, or enum type. All but the first type specifier are ignored.

Wl15 Duplicate standard type

A standard type is repeated; for example, noat noat int nt;.

Wl16 Constant value out of range for signed short or char

Note that a constant such as OxFFFF (Oxff), interpreted as a positive number, is 1 bit too large for
the signed short (char) data type. Either the type unsigned short (unsigned char) should be used
in place of signed short (char), or the equivalent negative number should be used in place of the
positive constant.

Wl17 Value missing from return statement in function $

No function value will be returned by this return statement.

A-10

II

a
II

II

B

II

• •
• •
II

I':

II:

II:

•
II:

• •
II:

E
II:

• •
•
•
•
•• • • • •
II

o
D

n
11

II

It

II

C

11
1"1

;,1

I:J

I~

I~

I~

I ".'TI
;oJ

I ,
'.d

IJ

IJ

IJ

I~

IJ

I)

I~

I~

I~

n

• • •

Paragon™ OSF/1 C Compiler User's Guide Compiler Error Messages

Wl18 Function $ does not contain a return statement

Wl19 void function $ cannot return value

The return expression is ignored.

1120 Label $ is defined but never referenced

W121 Block with auto initialization jumped into at label $

The indicated label was referenced from outside its containing block, and the containing block
initialized automatic storage. Wben such a transfer of control occurs, the automatic initialization
does not occur.

1122 Value of expression not used

This message can result from accidentally typing _. where == was intended. As another example, the
statement .p++; (which is actually equivalent to just p++;) will cause the message. Unfornmately,
uses of the standard macros gete and pule will cause this message to be issued because these macros
expand to conditional expressions whose values are typically not used by the programmer. In this
case, the message can be eliminated by casting the gete/pule expression to void.

1123 Definition of function $ is static

1124 Possible misuse of dummy array $

Address of dummy array taken, or assignment to array name.

1125 Integer value truncated to fit into unsigned short or char type

Using a negative number, or a positive number greater than 16 (8) bits as an unsigned short
(unsigned char) value can cause this message to be issued. Note that such code is nonportable.

8126 Parameters cannot follow va alist

1127 <reserved message number>

1128 <reserved message number>

W129 Floating point overflow. Check constants and constant expressions

A-11

Compiler Error Messages Paragon'" OSFI1 C Compiler User's Guide

W130 Floating point underflow. Check constants and constant expressions

W131 Integer overflow. Check floating point expressions cast to integer

S132 Floating pt. invalid oprnd. Check constants and constant expressions

S133 Divide by 0.0. Check constants and constant expressions

W134 Duplicate struct or union member $

A struct or union member was found with the same name as another member of the same struct or
union.

I135 Function $ should use prototype form of definition

A function that was declared using the prototype form was defined USing a non-prototype format.
Note that if the function is used after the definition, the prototype does not have an effect

W136 Function $ has non-prototype declaration in scope

A function is declared using the prototype form, but a declaration or defmition for the function that
does not use the prototype form is in scope.

S137 Incompatible prototype declaration for function $

A function prototype dec1aration is incompatible with a previous prototype declaration for that
function.

S138 Missing identifier for declarator in function prototype definition

A function declarator in a function prototype was missing an identifier for the formal parameter.

S139 void parameter must be the only parameter

A function prototype of the form (void, •••), (int, void), or (void, int) was encountered.

S140 Declaration for formal $ found in prototype function definition

A-12

An attempts was made to declare a formal parameter following the function header for a prototype
form function definition.

o
D

D

D

III

Cl

III

• .i
• •
IJ
[J

III

•
K

• •
III

II

.­.:
•
II

II

• • • • • •

D

D

II

II

I:

I~

I:
1"1

... 1

I~

IJ

IJ

I~

I:']

IJ

I·' ..J

IJ

IJ

IJ
1<1

.J

IJ
Ij·

I~

II

B

• •

~~- ~~ ~~ -- ---------~-~--~-~~ .~------~-~---- - ---~ ~---

Paragon'" OSF/1 C Compiler User's Guide Compiler Error Messages

S141 Wrong number of parameters to function

W142 Assignment to const object not allowed

An assignment to an object with type modifier const was attempted.

W143 Useless typedef declaration (no declarators present)

typedef declares no declarators; e.g. typeder int X; typeder int X; the second typedef would give
this message. Often occurs with non-ANSI include files (a common culprit is size_t).

V144 Syntax requires semicolon, semicolon inserted

V145 Syntax requires no comma, comma deleted

S146 void parameter cannot have a name ($)

W147 Inappropriate qualifiers with void

const void and volatile void are just treated as void.

S148 Struct/union member $ cannot be a function

W149 Unnamed struct/union member ignored

A member of struct or union with no declarators was encountered.

W150 Useless declaration

A declaration does not specify an identifier; e.g., int; extem;

W1S8 Use of escape ignored

A use of a character escape which is not one of the recognized escapes has occurred; the backslash
is ignored.

W159 No hex digits follow ignored

No hexadecimal digits follow the numeric escape \x; the backslash is ignored.

A-13

Compiler Error Messages Paragon'" OSF/1 C Compiler User's Guide

W162 Not equal test of loop control variable $ replaced with < or > test.

W19S Possible conflict ignored between $ and $

W199 Unaligned memory reference

A memory reference occurred whose address does not meet its data alignment requirement.

S201 #elif after #else

A preprocessor #elif directive was found after a #e1se directive; only #endif is allowed in this
context.

S202 #else after #else

A preprocessor #else directive was found after a #e1se directive; only #endif is allowed in this
context.

S203 #if-directives too deeply nested

Preprocessor #if directive nesting exceeded the maximum'allowed (currently 10).

S204 Actual parameters too long for $

The total length of the parameters in a macro call to the indicated macro exceeded the maximum
allowed (currently 2048). .

W20S Argument mismatch for $

The number of arguments supplied in the call to the indicated macro did not agree with the number
of parameters in the macro's definition.

F206 Can't find include file $

The indicated include file could not be opened.

S207 Definition too long for $

A-14

The length of the macro definition of the indicated macro exceeded the maximum allowed (currently
2048).

--- ------------

• •
II
II

a
II]

• • •
• •
a:
I[

• • • • •
IE

II

II .,
• • •
II

• • • • • •
.... ----~~.----.... - .. --------------------------------------

D

n
II

11
I]

I~

n
I~

I:

n
I:

.'" I:

I "" ..
IZ
C

I."'"
""

C

I!

c
n ..
• • •

Paragon™ OSFI1 C Compiler User's Guide Compiler Error Messages

S20B EOF in comment

The end of a file was encountered while processing a comment.

S209 EOF in macro call to $

The end of a file was encountered while processing a call to the indicated macro.

S210 EOF in string

The end of a file was encountered while processing a quoted string.

S211 Formal parameters too long for $

The total length of the parameters in the definition of the indicated macro exceeded the maximum
allowed (currently 2048).

S212 Identifier too long

The length of an identifier exceeded the maximum allowed (currently 2048).

S213 Unable to open dependency file $

W214 Illegal directive name

The sequence of characters following a # sign was not an identifier.

W215 Illegal macro name

A macro name was not an identifier.

S216 Illegal number $

The indicated number contained a syntax error.

F217 Line too long

The input source line length exceeded the maximum allowed (currently 2048).

W218 Missing #endif

End of file was encountered before a required #endi' directive was found.

A-15

Compiler Error Messages Paragon™ OSFI1 C Compiler User's Guide

W219 Missing argument list for $

A call of the indicated macro had no argument list.

S220 Number too long

The length of a number exceeded the maximum allowed (currently 2048).

W221 Redefinition of symbol $

The indicated macro name was redefined.

I222 Redundant definition for symbol $

A defmition for the indicated macro name was found that was the same as a previous definition.

F223 String too long

The length ofa quoted string exceeded the maximum allowed (currently 2048).

S224 Syntax error in #define, formal $ not identifier

A fornial parameter that was not an identifier was used in a macro definition.

W225 Syntax error in #define, missing blank after name or arglist

There was no space or tab between a macro name or argument list and the macro's definition.

S226 Syntax error in #if

A syntax error was found while parsing the expression following a #if or leUr directive.

S227 Syntax error in #include

The #include directive was not correctly formed.

W228 Syntax error in #line

A #line directive was not correctly formed

W229 Syntax error in #module

A #module directive was not correctly formed.

A-16

• • • • • • •
• • • •
a:
~

• • • • • • .,
• • • • • •
• • •
• • •

n
n
D

11

11

I]

l!i

n
l "i

J

1,1
.J

IJ

I~

I~

I '''', 1 .J

I~

I l
_J

IJ

I]

IJ

I:
E

n

• • •

Paragon™ OSF/1 C Compiler User's Guide Compiler Error Messages

W230 Syntax error in #undef

A #undef directive was not correctly formed.

W231 Token after #ifdef must be identifier

The #ifdef directive was not followed by an identifier.

W232 Token after #ifndef must be identifier

The #ifndef directive was not followed by an identifier.

S233 Too many actual parameters to $

The number of actual arguments to the indicated macro exceeded the maximum allowed (currently
31).

S234 Too many formal parameters to $

The number of formal arguments to the indicated macro exceeded the maximum allowed (currently
31).

F235 Too much pushback

The preprocessor ran out of space while processing a macro expansion. The macro may be recursive.

W236 Undefined directive $

The identifier following a # was not a directive name.

S237 EOF in #include directive

End of file was encountered while processing a #include directive.

S238 Unmatched #elif

A #eUf directive was encountered with no preceding #if or #eUf directive.

S239 Unmatched #else

A #else directive was enc01Dltered with no preceding #if or #elif directive.

A-17

. --~ .~-~----~.-~~

0
Compiler Error Messages Paragon'" OSF/1 C Compiler User's Guide

D

II

D

C

S240 Unmatched #endif U

A #endif directive was encountered with no preceding #if, #ifdef, or #ifndef directive. C

£
S241 Include files nested too deeply

The nesting depth of #include directives exceeded the maximum (currently 20).
.,
• S242 Unterminated macro definition for $
II

A newline was encountered in the formal parameter list for the indicated macro.
I:'

S243 Unterminated string or character constant Il
A newline with no preceding backslash was found in a quoted string. •

1244 Possible nested comment •
The characters" were found within a comment IIJ

1245 Redefining predefined macro $ • • 1246 Undefining predefined macro $
II:

W247 Can't redefine predefined macro $ &

W248 Can't undefine predefined macro $.:

• F249 terror -- $

• W250 #ident not followed by quoted string •
2251 Extraneous tokens ignored following # directive •
F252 Unexpected EOF following # directive •
W253 Unexpected # ignored in #ifexpression • • S254 Illegal number in directive •

•
A-18 • •

II

D

n
II

I~

I~

I.~

ITI

I~

I~

IJ

IJ
1''1
, ~I

I]

IJ

I]

IJ

IJ

[j

I~

Il

D

• • •

Paragon'" OSF/1 C Compiler User's Guide Compiler Error Messages

S255 Illegal token in #if expression

S256 Missing > in #include

F270 Missing -exlib option

W271 Can't inline $ - wrong number of arguments

I272 Argument of inlined function not used

S273 Inline library not specified on command line (-inlib switch)

F274 Unable to access file $/TOC

S275 Unable to open file $ for inlining

I280 Unrecognized #pragma$

Ignored jf not recognized.

W281 <reserved message number>

Messages 280-300 are reserved for #pragma handling.

A-19

Compiler Error Messages _ Paragon TM OSF/1 C Compiler User's Guide

A~O

• • • •
IE

D

• • • • •
I::

I:

EJ

•
K1

• •
II

II
K

• • • • •
• • •
-­• •

II

n
D

n
I~

1''01;
, I

'"

IJ

[J

IJ

IJ

IJ

IJ

1:1

I~

Ij
n

• • •

Compiler Internal Structure

This appendix describes the internal structure of the compilers as shown in Figure B-1:

• Scanner and Parser

• Expander

• Optimizer and Vectorizer

• Scheduler and Pipeliner

The front-end of the compiler translates the program into an internal representation called
Intermediate Language Macros (ILMs). The n...Ms are grouped into basic blocks during the
translation phase. A basic block represents a sequence of language statements in which the flow of
control enters at the beginning and leaves at the end, without the possibility of branching except at
the end.

While the source code is translated and grouped into basic blocks, function inlining may occur. Once
the translation is complete, optimizations are applied. Depending on the switches selected by the
user, a hierarchy of optimizations may be applied: global optimizations, local optimizations,
vectorization, and software pipelining.

B-1

Compiler Internal structure

C Source

Figure B·1. Compiler Structure

B-2

Paragon'" OSF!1 C Compiler User's Guide

Intermediate
Language
Macros

ILM

Intermediate
Language

Instructions

III

Optimized
Intermediate
Language

Instructions

o
D

D

D

D

III

It

.:

•
II

~

£:

l.:

E

•
E

• •
II:

II

K

II

• • • • • • • • • •

o
n
D

II

11

II

n

1'1
. ..1

I:]

1"'1
: D

Ij

IJ
I~'

I:
IJ

IJ
81
ILd

IJ
1'1

J

D

• • •

Paragon'" OSF/1 C Compiler User's Guide Compiler Internal Structure

Scanner and Parser
The compiler has a Scanner and Parser that performs syntax and semantic analysis of its respective
source language input The Scanner and Parser create a set of ll.Ms and a symbol table and various
data structures referring back to the original source code for diagnostics and symbolic debugging.
They perform error detection and recovery using an advanced multiple parse stack technology.

Expander
The Expander expands the macros in the ll.M set along with the semantic analysis information and
generates a set of Intermediate Language Instructions (ILls) and associated data structures including
extended basic block tables and information about referenced variables. The Expander also performs
certain optimizations, such as constant folding, elimination of identity expressions, and branch
folding. The ILl data structure is a directed graph, instead of a tree structure, which simplifies
common subexpression elimination.

Optimizer and Vectorizer
The internal, integrated OptimizerN ectorizer provides both a faster compile time and more efficient
code generation than traditional source-to-source preprocessors. The OptimizerN ectorizer uses
advanced optimizations to achieve superior performance. Among these techniques are:

• Procedure Integration

• Internal Vectorization

• Global Optimization

• Local Optimization

• Flexible memory utilization schemes

Procedure Integration

Procedure Integration, also known as function inlining, allows a function to be executed as a part of
the originating program instead of having parameters passed and making a call. This results in
removing the call overhead and allowing the function to be optimized along with the rest of the
program.

---------------------------------- _._--_ .•. _--_._ .. -

Compiler Internal Structure Paragon'M OSFI1 C Compiler User's Guide

Internal Vectorization

The internal vectorizer is oriented to the Intel i860™ microprocessor, which involves
transformations that create better opportunities for software pipelining. Recognition of vector forms
is only performed when the hand-coded vector library calls will outperform the scheduler. Having
an internal vectorizer and software pipeliner allows the compiler to make more precise and informed
decisions on code generation opportunities. Other advantages of an internal vectorizer over a
source-to-source vectorizer include enhanced debugging capabilities as well as a significant increase
in compilation speeds.

Global Optimizations

Global optimizations are those that optimize code over all basic blocks created for a function.
Control flow analysis and data flow analysis are performed over a flow graph. where each node of
the graph is a basic block. All loops (not just loops created by the language's loop constructs) are
detected, and loop optimizations are performed on each loop. These include:

• Invariant Code Motion

• Induction Variable Elimination

• Global Register Allocation

Dead Store Elimination
,

•

• Copy Propagation

Local Optimizations

Local optimizations are performed on an extended basic block. Most of the local optimizations are
performed by the code generating phase of the multiple functional units. This technique allows
computations from more than one statement to utilize the functional units in parallel, thus providing
a fme-grain parallelism that is completely transparent to the program. For loops containing if
statements (multiple blocks) that are software pipelinable, the compiler provides fine-grain
parallelism across multiple blocks. Local optimizations provided by the compilers include:

• Common Subexpression Elimination

• Constant Folding

• Algebraic Identities Removal

• Redundant Load and Store Elimination

• Strength Reduction

a
B

II

II

C

C

IE

E:

•
.:
I:J

I:

IJ

I:

a
I:

• • ..
•
I(

II

•
.:
K

II:

.:

• • • • •

D

n
D

n

I~

•
. "'1

, .. ,J

I~

1:1

IJ
I)

IJ

IJ

D

• • • •

Paragon™ OSFI1 C Compiler User's Guide Compiler Internal Structure

• Scratch Register Allocation

• Register Aliasing

The types of code transformations performed on loops include:

• Invariant If statement removal

• Loop interchange when advantageous

• Loop invariant vector recognition within nested loops

• Loop fusion

• Common idiom recognition

Flexible Memory Utilization

Support is provided for architectures having an integral data caching scheme. Some techniques
provided are:

• Streaming of vectors into cache

• Streaming of invariant vectors into cache and their reuse

• Explicit bypassing of cache for accessing array elements within loops

• Dual and quad loads and stores from and to memory

• Mixing access of arrays from both cache and memory within a loop

Scheduler and Pipeliner
The i860 microprocessor supports parallel activities two ways:

Dual Instruction Mode
The "core" unit and the floating-point sections can operate independently and
in parallel with each other. An example would be a load occurring at the same
time that a floating-point add occurs. The compilers test for situations where
dual instructions are advantageous and schedules instructions accordingly.

~~- ------------~--~------------~------------

Compiler Internal Structure Paragon'" OSF/1 C Compiler User's Guide

Dual Operation Mode
The floating-point units for some instructions can initiate floating-point adds
and multiplies at the same time. In dual operation mode, the two
floating-point arithmetic units can operate independently each providing
results at the clock rate of the machine. See Figure B-2.

DUAL INSTRUCTION -.1

CORE OPERATION DUAL OPERATION

Core
Unit

s+b

Figure B-2. Parallel Activities ofi860™ Microprocessor

x*y

The Optimized Intermediate Language Instruction set becomes the input for the Scheduler and
Pipellner, which takes advantage of the i860 microprocessor's dual instruction and operations
modes. These unique machine characteristics permit parallel scheduling to multiple functional units
and software pipelining.

• Parallel scheduling takes advantage of fine-grain parallelism occurrences in the code and
schedules to multiple functional units when possible.

• Software pipelining schedules code so that operations from several iterations of a loop are
overlapped. This allows multiple iteratiqns of a loop to be executed during the same instruction.
Software pipelining relies on information provided by the global optimizer and vectorizer. This
information includes loops that are pipelinable, data dependence information, recurrences, and
array references.

The output of the Scheduler and Pipellner is a list of assembly language instructions that is passed
to an assembler to.create the fmal object file.

~.

II

II:

• • • • • • • • •

D

n
II

II

IJ

I~

II

I~

C

111

n

IJ

I~

I~

C

I~

I:

I~

I~

1"'1. J

n
II

• • •

Manual Pages

This appendix contains manual pages for compiler-related commands and system calls.

• See the OSFll Command Reference and OSFll Programmer's Reference for manual pages for
the standard commands and system calls of OSF/l.

• See the Paragon TN OSFll Commands Reference Manual and the Paragon TM OSFll C System
Calls Reference Manual for manual pages for parallel commands and system calls unique to
Paragon OSF/l.

The manual pages in this appendix are also available on-line, using the man command.

0-1

Manual Pages

0-2

Paragon'" OSF/1 C Complier User's Guide

Table C-llists the commands described in this appendix.

Table C·I. Commands Discussed in This Appendix

Manual Page Commands Description

ar860 ar860 (cross) Manages object code libraries.
ar (native)

as860 as860 (cross) Assembles i860™ source code.
as (native)

cpp860 cpp860 (cross) Preprocesses C programs.
cpp (native)

dump860 dump860 (cross and native) Dumps object files.

icc icc (cross) Compiles C programs.
cc (native)

ifixlib ifixlib (cross and native) Updates inliner library directories.

Id860 Id860 (cross) Links object files.
Id (native)

mac860 mac860 (cross) Preprocesses assembly-language programs.
mac (native)

nm860 nm860 (cross) Displays symbol table (name list)
nm (native) information.

size860 size860 (cross) Displays section sizes of object files.
size (native)

strip860 strip860 (cross) Strips symbol information from object files.
strip (native)

Except for their names, the cross-development and native versions of each command work the same
(with minor exceptions). These commands are available by their cross-development names on the
Intel supercomputer and on supported workstations; they are available by their native names on the
Intel supercomputer only.

•
II

III

II
II]

G

• • •
III

El
[]

IJ

• •
III
II

•
IJ

IE
IJ

II

• • • • •
• • • • •

II

n
II

u
Ii

I~

I!

(~

('1'1
.. !

.IJ

IJ
1·1"1

.~:

IJ

I~

I~

I:
I:

r~

I:

IJ

I~

I]

n
II

• •

Paragon™ OSF/1 C Compiler User's Guide Manual Pages

Table C-2 lists the system calls described in this appendix.

Table C-2. System Calls Discussed in This Appendix

Manual Page System calls Description

dv_acosO dv_acosO. dv_asinO. Double-precision vector intrinsics.
dv _atanO. dv _atan20 •
dv_cosO. dv_divO.
dv_expO. dv_logO.
dv J)OwO. dv JecpO.
dv_rsqrtO. dv_sinO.
dv _sqrtO. dv _tanO

sv_acosO sv_acosO. sv_asinO. Single-precision vector intrinsics.
sv _atanO. sv _atan20.
sv _cosO. sv _ divOt
sv _expO. sv _logO.
sv..,powO. sv _ recp().
sv_rsqrtO. sv_sinO.
sv_sqrtO. sv_tanO

Manual Pages Paragon" OSF/1 C Compiler User's Guide

AR860 AR860

ar860, ar: Creates and maintains archives for the Paragon OSF/! operating system.

Cross-Development Syntax

ar860 [-V] key [options] libname [filename ...]

Native Syntax

Arguments

ar [-V] key [options] libname [filename ...]

libname The name of the archive.

filename The name of the target file.

You must specify one, and only one, key from the following list:

d

e

p

q

r[u]

t

"

Delete filename from the archive.

Display the symbol tables of COFF objects in the archive.

Display the archive version offilename (may result in binary data being sent to
standard output).

Quickly add the file filename to the archive libname by appending the file(s) to the
end of the archive without checking to see if they duplicate existing files in the
archive. If libname does not exist, then create it (unless the c option is specified).
If filename does not appear in the archive, then add it

Replace the file filename in the archive libname. If the optional u is specified, then
''update'' the archive (i.e., replace the archive version only iffilename is newer).
If libname does not exist, then create it (unless the c optioo is specified). If
filename does not appear in the archive, then add it

Display the archive table of contents.

Extractfilename from the archive. If no file is named, extract all files.

The key argument may be preceded by a dash. For example, ar860 ·t me-a and ar860 t me.a are
equivalent.

• • • • • • • • -. •
II]

IJ

IJ

EJ

II

II .1
•
II

III .' • • • .' • • • • • • •

D

D

n
D

11

11

II

I.:

I~
.I:J

I~

c
I~

I:

I~

[J

I]

IJ

~

11

n

• • •

Paragon™ OSFI1 C Complier User's Guide Manual Pages

AR860 (cont.) AR860 (cont.)

Description

See Also

You may specify the following options in any order:

c

v

If libname does not already exist, do not create it (overrides -r key).

Use the current working directory for temporary files.

Verbose mode. For -r, display the names of the archive members as they are
replaced (or added). For -d, display the names of the archive members as they are
deleted. For -t, display the file mode, the uid, the gid, the size, and the timestamp
of the specified files. For -x, display the names of the files as they are extracted.

No space may appear between the key and any options.

You must specify the following argument, if used, before the key:

-v Display the tool banner (tool name, version, etc.).

No space may appear between -V and the following key, and the key may not be preceded by a dash.
The dash preceding the V is optional. For example, ar860 -Vt file.a and ar860 Vt rde.a are
equivalent.

Use ar860 to manage archives for the Paragon OSFIl operating system.

as860, dump860, icc, if77,ld860, nm860, size860, strip860

Manual. Pages Paragon'M OSFI1 C Compiler User's Guide

AS860 AS860

as860, as: Assembles i860 code for the Paragon OSFIl· operating system.

Cross-Development Syntax
as860 [switches] [filename]

Native Syntax

Arguments

as [switches] [filename]

filename The name of the i860 assembly language file. If no file is specified, as860 reads
from standard input.

You may specify the following switches in any order:

-a

-I[lisgile]

-L

-oobifile

-R

-v

-x

Do not automatically import symbols that are referenced but otherwise undefmed.
Issues an error message for each occurrence.

Write source listing in the file lisgile, a file in the current working directory. If you
omitlisgile, the listing goes to standard output.

Preserve text symbols starting with ".L" in the debug section.

Put the output object file in obifile. If you omit this switch, the default object file
name is produced by stripping any directory prefixes fromfilename, stripping any
of the suffixes ".DIO", ".s", ".mac", or ".860", and appending .0. An existing file
with the same name is silently overwritten.

Suppress all .data directives. Code and data are both assembled into the .text
section.

Display the tool banner (tool name, version, etc.).

Enable additional checks of the source file to find illegal sequences of
instructions.

..
• • • • • • • • • •
I(

~

• •
E1

• •
I[

• ..
• • • • • • • • • • •

n
n
n
D

I~

I:
I~

I~

1'!!1
, iii

I ""' , ~'

1'1
...J

IJ

IJ
I]
~
•. ..l

[j

n
D

• • •

Paragon'" OSF/1 C Complier User's Guide Manual Pages

AS860 (cont.) AS860 (cont.)

Description

Use as860 to assemble the named file.

You can ensure that the proper switches are passed to as860 by accessing as860 using the compiler
drivers (icc or if77).

Not all illegal sequences are detected when the -x switch is used.

See Also

ar860, dump860, icc, in7, Id860, nm860, size860, strip860

0-7

Manual Pages Paragon™ OSFI1 C Compiler User's Guide

CPP860 CPP860

epp860, cpp: C language preprocessor for the Paragon aSFIl operating system.

Cross-Development Syntax

epp860 [switches] [input..file [output..file]]

Native Syntax

Description

Arguments

epp [switches] [input..file [output..file]]

The cpp860 command invokes the Paragon aSF/I C compiler to preprocess C language source files.

NOTE

ANSI C predefined macros can be defined and undefined on the
command line, but not with #define and #undefine directives in
the sou rce file.

inputJile Input file to be preprocessed (default standard input).

outputJile Output file after preprocessing (default standard output).

You may specify the following switches in any order:

-B Allows C++-style comments V / to end of line) in source code.

-C Preserves comments in preprocessed C source files.

-Dname[=deJ) Defines name to be defin the preprocessor. If defis Iilissing, it is assumed to be
empty. If the = sign is also missing, then name is defmed to be the string 1.

The normal predefined macros are _1860, _1860_, _PARAGON_,
OSFl, _PGC_, _PGC_, _COFF, unix, MACH, and CMU.

II

•
III

II

•
II

E

K

• • •
I:

~.

IE

II

I:J

• •
I:

ItJ

E

E

II

• • • • • • • • •

D

n
n
u
I~

n
I'~ ..

I~

Ij

IJ

IJ

u
n

• • •

Paragon™ OSFI1 C Compiler User's Guide Manual Pages

CPP860 (cont.) CPP860(com.)

Flies

-Idirectory

-M

-MD

-p

-Uname

-v

Jik.c

Jik.d

Jik.i

Adds directory to the compiler's search path for include files. For include files
surrounded by angle brackets « ... », each -I directory is searched followed by the
default location. For include files surrounded by double quotes (" ... "), the
directory containing the file containing the #include directive is searched,
followed by the -I directories, followed by the default location.

Outputs a list of include files to stdout (used for makefile construction).

Outputs a list of include files to flle.d (used for makeflle construction).

Preprocesses each file and leaves the output in a file namedflle.i for each file
namedflle.c.

Remove any initial defInition of name in the preprocessor. Since all -D switches
are processed before all -U switches, the -U switch can be used to override the -D
switch.

Display the tool banner (tool name, version, etc.).

C source file.

List of include files produced by -MD.

C source file after preprocessing.

The following files and directories are used in the cross-<!evelopment environment (cpp860).
PARAGON _ XDEV is an environment variable that can be set to the root of the compiler installation
directory. If PARAGON _ XDEV is not set, the default is lusrlparagonlXDEV.

$(PARAGON_XDEV)lparagonibin.fI!d

$(PARAGON_XDEV)lparagonibin.fl!dlic

$(PARAGON_XDEV)lparagoniinclude

Directory containing executables for system fI!d
<m:d1 identifIes the architecture of the system, e.g.
sgi or 5un4).

Ccompiler.

Standard include directory.

Manual Pages Paragon'" OSF/1 C Compiler User's Guide

CPP860 (cont.) . CPP860(conr.)

The following files and directories are used in the native environment (cpp):

·Iusrlccslbin

lusrlccslbinlic

lusrlinclude

0-10

Directory containing executables.

Ccompiler.

Standard include directory.

• • • • • • • • • •
E

I:

~

KJ

•
II]

II]

•
£j

IR1 -a:;

E
E

• • • • • • • • •

II

n
II

I;

I~

1:1

n
11

n
I~

1"1
~I

IJ

IJ

IJ
1'1

. ..1

Ij

I] ."' .J

Ij

I~

~

D

• • •

Paragon™ OSF/1 C Compiler User's Guide Manual Pages

DUMP860 DUMP860

Dumps parts of a Paragon OSF/l operating system object file.

Syntax

Arguments

dump860 [switches] filename

filename The name of the Paragon OSF/l object file.

You may specify the following switches in any order:

·8

·c

·dnumber

+dnumber

·r

• g

·h

·1

·nname

·0

• p

·r

·s

Display archive headers.

Dump the string table.

Dump section headers starting at section number. Only effective if the ·h switch
is also specified. Sections are numbered starting at 1. If the +d switch is not
specified, then only the single section header is dumped.

Dump section headers ending at section number. Only effective if the ·h switch is
used.

Display file headers.

Display the archive symbol table .

Dump section headers.

Dump line numbers.

Dump only sections named name. Only effective if the ·h switch is used.

Dump (in formatted hexadecimal) optional headers.

Do not display headers .

Dump relocation data.

Dump section data.

0-11

Manual Pages Paragon 1M OSF/1 C Compiler User's Guide

DUMP860 (cont.) DUMP860 (cont.)

Description

See Also

0-12

-t [number]

+tnumber

-u

-v

-v

Dump symbol table, starting at symbol index number. If the +t switch is not used,
then only the single symbol is displayed.

Dump symbol.table, through symbol index number. If -t was not specified, the
start index is zero.

Underline mode. Only works on devices supporting backspace.

Verbose mode. Display some headers and information in an easier-to-comprehend
form.

Display the tool banner (tool name, version, etc.).

-z name,number Dump line numbers for function name, starting at line number.

+znumber Dump line numbers for function name (specified by -z), ending at line monber.

Use dump860 to dump (in formatted hexadecimal) parts of the named object file.

ar860, as860, ice, ifT7, Id860, nm860, size860, strip860

o
D

II

D

CJ

C
II]

£]

•
E

I:J
(J

~

EJ

•
III
I[

[J

EJ

I:J

E
II]

•
II

E

• • • • • •

n
n
D

II

I!

I:
II

I~

IJ

IJ
f:j

1:1

IJ

1:1

Ij

D

D

• • •

Paragon'M OSFI1 C Compiler User's Guide Manual Pages

ICC ICC

iee, cc: Driver for compiling, assembling, and linking C programs for the Paragon OSF/I opemting system.

Cross-Development Syntax

icc [switches] sourcefile ...

Native Syntax

Description

cc [switches] source file ...

The iee command invokes the Paragon OSF!1 C compiler, assembler, and linker with switches
derived from icc's command line arguments.

iee bases its processing on the suffixes of the files it is passed:

file.c is a C program. It is preprocessed, compiled, and assembled. The resulting
obje~file is placed in the current directory.

file.s is an i860 assembly language file. It is assembled and the resulting object file
is placed in the current directory.

fiie.o is an object file. It is passed directly to the linker if linking is requested.

file.a is an ar libmry. It is passed directly to the linker if linking is requested.

file.f or file.F is a Fortmn progmm. It is passed to the Fortmn compiler.

All other files are taken as object files and passed to the linker (if linking is requested) with a warning
message. If a file's suffix does not match its actual contents, unexpected results may occur.

If a single C program is compiled and linked with one iee command, then the intermediate object
and assembly files are deleted.

NOTE

ANSI C predefined macros can be defined and undefined on the
command line, but not with 'define and 'undefinedirectives in
the sou ree file.

0-13

Manual Pages

ICC (cont.)

Switches

0-14

Paragon™ OSF/1 C Compiler User's Guide

ICC (cont.)

·B Allows C++-style comments V / to end of line) in source code.

·c Skips link step; compiles and assembles only. Leaves the output from the
assemble step in a file named file. 0 for each file named file.c (unless you also
use the -0 switch).

·c Preserves comments in preprocessed C source files. Also enables ·E.

·Dname[=dej] Defines name to be defin the preprocessor. If defis missing, it is assumed to
be empty. If the = sign is also missing, then name is defmed to be the string 1.

·E Preprocesses each ., .c" file and sends the result to stdout. No compilation,
assembly, or linking is performed.

·ES Preprocesses every file and sends the result to stdout. No compilation,
assembly, or linking is performed.

• g

.ldirectory

·Koption

Synonymous with .Mdebug .

Adds directory to the compiler's search path for include files. If you use more
than one -1 switch, the specified directories are searched in the order they
were specified (left to right).For include files surrounded by angle brackets
(< •.. >), each -1 directory is searched followed by the default location. For
include files surrounded by double quotes (" ... "), the directory containing the
file containing the #include directive is searched, followed by the -1
directories, followed by the default location.

Requests special mathematical semantics. The option values are:

ieee (default) If used while linking, links in a math library that
conforms with the IEEE 754 standard.

ieee-enable

If used while compiling, tells the compiler to perform
Ooat and double divides in conformance with the
IEEE 754 standard.

If used while linking, has the same effects as ·Kieee,
and also enables floating point traps and underflow
traps. If used while compiling, has the same effects as
·Kieee.

D

D

D

D

D

III

C

• •
El

I:

IJ

II

•
G

111

•
E

aJ
E,

II

• • •
E

II

• • • • •

n
D

D
I)

C

1:1

IJ
(]

IJ
(]

IJ

IJ

IJ

Ij
I)

G

D

• • •

Paragon'" OSF/1 C Compiler User's Guide

ICC (cont.)

.Uihrary

·Ldirectory

·m

ieee-strict

noieee

trap-fp

trap=align

Manual Pages

ICC (cont.)

If used while linking. has the same effects as
·Kieee=enable. and also enables inexact traps. If used
while compiling. has the same effects as ·Kieee.

If used while linking. produces a program that flushes
denormals to 0 on creation, which reduces underflow
traps. If used together with ·Im, also links in a version
of lihm.a that is not as accwate as the standard library.
but offers greater performance. This library offers little
or no suppon for exceptional data types such as INF
and NaN. and will trap on such values when
encountered.

If used while compiling. tells the compiler to perform
ftoat and double divides using an inline divide
algorithm that offers greater performance than the
standard algorithm. This algorithm produces results
that differ from the results specified by the IEEE
standard by no more than three units in the last place.

If used while linking. disableS kernel handling of
floating point traps. Has no effect if used while
compiling.

If used while linking. disables kernel handling of
alignment traps. Has no effect if used while compiling.

Load the library liblihrary.a. The library is loaded from the first library
directory in the library search path (see the ·L switch) in which a file of that
name is encountered. (Passed to the linker.)

Adds directory to beginning of the library search path. Also see the nostdlib
and nostartup options of the ·M switch. (passed to the linker; see the 1d860
manual page for more information on the library search path.)

Produces a link map. (Passed to the linker.)

0-15

Manual Pages

ICC (cont.)

-M

-MD

-Moption

0-16

Paragon'" OSFI1 C Compiler User's Guide

ICC (cont.)

Outputs a list of include files to the standard output (used for makefile
construction).

Outputs a list of include files to file.d (used for makefile construction).

Requests specific actions from the compiler. The option values are as follows
(an unrecognized -M option is passed directly to the compiler):

alpha

anno

[no]as~ey1Vo~

beta

(no]daHgn

[no]debug

[no]depchk

Activate alpha-release compiler features.

Produce annotated assembly files, where source code
is intermixed with assembly language. -Mkeepasm or
-S should be used as well.

[Don't] allow the asm keyword in C source code
(default-Mas~eY1Vord). The format is: asm("text")

Activate beta-release compiler features.

[Don't] align doubles in structures on
double-precision boundaries (default -MdaHgo).
-Mnodalign may lead to data alignment exceptions.

[Don't] genemte symbolic debug information (default
-Mnodebug).

[Don't]check for potential data dependencies (default
-Mdepcbk). This is especially useful in
disambiguating unknown data dependencies between
pointers that cannot be resolved at compile time. For
example, if two floating point array pointers are passed
to a function and the pointers never overlap and thus
never conflict, then this switch may result in better
code. The granularity of this switch is rather coarse,
and hence the user must use precaution to ensure that
other necessary data dependencies are not ovenidden.
Do not use this switch if such data dependencies do
exist. -Mnodepchk may result in incorrect code; the
-Msafeptr switch provides a less dangerous way to
accomplish the same thing.

--- ~---~~-~---

a

•
II

•
II

II:

II:

1:1

•
E

EJ

IJ

•
.:
II

• • • • •

n
n
D

II

IE
C

n
I~

II

e
I)

IJ

IJ

I~ I'"
I~

1'''1
. J

. "" ...

I~

IJ

[j

IJ

I]

~

1:1

11

II

• • •

Paragon™ OSF/1 C Compiler User's Guide

ICC (cont.)

dollar,char

Manual Pages

ICC (cont.)

Set the character used to replace dollar signs in names
to be char. Default is an underscore u.

extract=[option[,option ...]]

fcon

[no]frame

[no]func32

Pass options to the function extractor (see the inline
option for more information). The options are:

[name:]fUnction-Extract the specified function.
name: must be used if the function name contains a
period.

[size:]number-Extract functions containing less than
approximately number statements.

If both number(s) and/unction(s) are specified, then
functions matching the given name(s) or meeting the
size requirements are extracted.

The -oflle switch must be used with -Mextract to tell
the compiler where to place the extracted functions .
The name of the specifiedflle must contain a period.

Treat non-suffixed floating point constants as ftoat,
rather than double. This may improve the
performance of single-precision code .

[Don't] include the frame pointer (default
-Mnoframe). -Mnoframe can improve execution
time and decrease code, but makes it impossible to get
a call stack traceback when using a debugger.

[Don't] align functions on 32-byte boundaries (default
-Mrunc32). -Mrunc32 may improve cache
performance for programs with many small functions.

0-17

Manual Pages

ICC (cont.)

0-18

-~~~.,.-~-----.. --.-----.-.--

Paragon TM OSF/1 C Compiler User's Guide

ICC (cont.)

info-[option[,option ...]]
Produce useful information on the standard error
output. The options are:

time or stat-Output compilation statistics.

loop-Output information about loops. This includes
information about vectorization and software
pipelining.

inline-Output information about functions extracted
and inlined.

cycles or block or size-Output block size in cycles.
Useful for comparing various optimization levels
against each other. The cycle count produced is the
compiler's static estimate of freeze-free cycles for the
block.

i1i-Output intermediate language as comments in
assembly file.

aU-All of the above.

D

D

o
D

D

II

•
E

• •
IJ

IJ

II!
II]

•
EJ

• •
II:

•
IE

• • • • • • • • • • •

n
D

II

II

I~ iii

n
1-:1

.. .,
: hll

I.::
I~

IJ

I~

I.')

I:
I::
• "1

,; .. 1

1"1
..oJ

I ",
,;1.1

Ij

IJ

II

• • •

Paragon'" OSFI1 C Compiler User's Guide

ICC (cont.)

Manual Pages

ICC (cont.)

inHne-[option[,option ...]]

keepasm

Ilst[-name]

nollst

Pass options to the function inliner. The options are:

[Db:]library-Inline functions in the specified inliner
library (produced by ·Mextract). If Db: is not used,
the library name must contain a period. If no library is
specified, functions are extracted from a temporary
library created during an extract prepass .

[name:]fitnction-In1ine the specified function. If
name: is not used, the function name must not contain
a period.

[size:]number-Inline functions containing less than
approximately number statements.

levels:number-Perform number levels of inlining
(default I).

If both number(s) andjimction(s) are specified, then
functions matching the given name(s) or meeting the
size requirements are inlined.

Keep the assembly file for each C source file, but
continue to assemble and link the program. This is
mainly for use in compiler performance analysis and
debugging .

Create a source listing in the file name. If name is not
specified, the listing file has the same name as the
source file except that the ".c" suffix is replaced by a
".1st" suffix. If name is specified, the listing file has
that name; no extension is appended.

Don't create a listing file (this is the default).

[no]longbranch [Don't] allow compiler to generate bte and btne
instructions (default .MIongbranch) .

nostartup

• Mnolongbranch should be used only if an assembly
error occurs.

Don't link the usual start-up routine (crtO.o), which
contains the entry point for the program.

0.19

Manual Pages

ICC (cont.)

nostddef

nostdinc

nostdlib

[no)perfmon

[no)quad

[no]reentrant

0-20

Paragon™ OSF/1 C Compiler User's Guide

ICC (cont.)

Don't predefIne any system-specifIc macros to the
preprocessor when compiling a C program. (Does not
affect ANSI-standard preprocessor macros.) The
system-specifIc predefIned macros are _1860,
1860, _PARAGON_, _OSFl_,
PGC, _PGC_, _COFF, unix, MACH, CMU,
and _NODE LNODE is only defIned when
compiling with -ox). See also -U.

Remove the default include directory (/usrlinclude for
ce, $(PARAGON_XDEV)lparagonlinclude for icc)
from the include fIles search path.

Don't link the standard libraries (libpm.o, guard.o,
libc.a, iclib.a, and libmach3.a) when linking a
program.

[Don't] link the performance monitoring module
(Ubpm.o) (default -Mperfmon). See the Paragon™
OSFll Software Tools User's Guide for information
on performance monitoring.

[Don't] force top-level objects (such as local arrays) of
size greater than or equal to 16 bytes to be
quad-aligned (default -Mquad). Note that -Mquad
does not affect items within a top-level object; such
items are quad-aligned only if appropriate padding is
inserted.

[Don't] generate reentrant code (default
-Mreentrant). -Mreentrant disables certain
optimizations that can improve performance but may
result in code that is not reentrant. Even with
-Mreentrant, the code may still not be reentrant if it is
improperly written (e.g., declares static variables).

o
D

o
III
I]

I::J

C

• •
EJ

I:

I:

BJ

III

III

IE

•
IJ

•
IE
II

• • •
K

• • • • • •

D

U

n
D

c

C

G

I~

1.=

IJ

IJ

C

II

• • • •

Paragon™ OSFI1 C Compiler User's Guide

ICC (cont.)

Manual Pages

ICC (cont.)

safeptr- [option [,option ...]]
Override data dependence between C pointers and
arrays. This is a potentially very dangerous option
since the potential exists for code to be generated that
wiD result in unexpected or incorrect results as is
defined by ANSI C. However, when used properly,
this option has the potential to greatly enhance the
performance of the resulting code, especially floating
point oriented loops. Combinations of the options may
be used and interact appropriately.

dummy or arg-C dummy arguments (pointers and
arrays) are treated with the same copyinlcopyout
semantics as Fortran dummy arguments.

auto-C local or auto variables (pointers and arrays)
are assumed not to overlap or conflict with each other
and are independent.

static-C static variables (pointers and arrays) are
assumed to not overlap or conflict with each other and
to be independent

global-C global or extem variables (pointers and
arrays) are assumed to not overlap or conflict with
each other and to be independent.

[no]signextend [Don't] sign extend when a narrowing conversion
overflows (default-Msignextend). For example, if
-Msignextend is in effect and an integer containing
the value 65535 is converted to a short, the value of
the short wiD be -1. This option is provided for
compatibility with other compilers, even though ANSI
C specifies that the result of such conversions are
undefmed. -Msignextend will decrease performance
on such conversions.

[no]single [Don't] suppress the ANSI-specified conversion of
Boat to double when passing arguments to a function
with no prototype in scope (default -Mnosingle).
-Msingle may result in faster code when single
precision is used a lot. but is non-ANSI compliant

0-21

0
Manual Pages Paragon™ OSF/1C Compiler User's Guide D

D

U

D

ICC (cont.) ICC (cont.)
I]

C1
[no]streamalJ [Don't] stream all vectors to and from cache ina vector

I!l loop (default ·MstreamalJ). When ·MnostreamaU is
in effect, the compiler chooses one vector to come .' directly from or go directly to main memory, without
being streamed into or out of cache.

I:]
[no]strideO [Don't] produce correct code for vectors with a stride

(loop increment) of 0, no matter what the optimization I:J
or vectorization level (default ·MstrideO). r=

IJ

G

II

G

I!l

•
IJ

•
KJ

II

• • •
I(

• • • • • 0-22

•

o
n
II

II

c
11

o
I:
C

I~

I~

I:
I '" .JtJ

I:

[J

IJ

• • • •

Paragon™ OSF/1 C Compiler User's Guide

ICC (cont.)

Manual Pages

ICC (cont.)

vect[=option[,option ...]]

[no]vintr

Perform vectorization (also enables ·Mvintr). If no
options are specified, then all vector optimizations are
enabled. The available options are:

cachesize:number-This sets the size of the portion of
the cache used by the vectorizer to number bytes.
Number must be a multiple of 16, and less than the
cache size of the microprocessor (16384 for the
i860 XP, 8192 for the i860 XR). In most cases the best
results occur when number is set to 4096, which is the
default (for both microprocessors).

noassoc-When scalar reductions are present (for
example, dot product), and loop unrolling is turned on,
the compiler may change the order of operations so
that it can generate better code. This transformation
can change the result of the computation due to
round-off error. The use of noassoc prevents this
transformation.

recog-Recognize certain loops as simple vector
loops and call a special routine.

smaUvect[:number]-This option allows the
vectorizer to assume that the maximum vector length
is no greater than number. Number must be a multiple
of 10. If number is not specified, the value 100 is used.
This option allows the vectorizer to avoid stripmining
in cases where it cannot determine the maximum
vector length. In doubly-nested, non-perfectly nested
loops, this option can allow invariant vector motion
that would not otherwise have been possible. Incorrect
code wiD result if this option is used, and a vector takes
on a length greater than specified.

transform-Perform high-level transformations such
as loop splitting and loop interchanging. This is
normally not useful without .Mvect-recog.

·Mvect with no options means
.Mvect-recog,transform,cachesize:4096.

[Don't] perform recognition of vector intrinsics
(default ·Mnovintr, unless ·Mvect is used).

0-23

NlanualPages

ICC (cont.)

-ox

-ofile

C-24

[no]xp

Paragon'· OSFI1 C Compiler User's Guide

ICC (cont.)

[Don't] use i860 XP microprocessor features (default
-Mxp).

Creates an executable Paragon OSPII application for multiple nodes.

• Using -ox while compiling defmes the preprocessor symbol_NODE.

• Using -ox while linking creates an application that automatically copies
itself into multiple nodes. It also links in libnx.a, the library that contains
the calls in theParagon™ OSFIl C System Calls Reference Manual. You
can control the execution of an application linked with ·nx by using
command-line switches and environment variables, as described in the
Paragon™ OSF/l User's Guide.

To link in lihnx.a without creating an application that automatically copies
itself into multiple nodes, use -lox instead. An application linked with -lox
can use Paragon OSP/! system calls to create node processes under program
control.

·node is currently accepted as a synonym for -ox, but this support may be
dropped in a future release.

Uses file for the output file. instead of the default a.out (or file.o if used with
the -c switch).

-----------------------------'-----------~

D

D

D

D

D

IE

•
IE .:
•
I!l
[J

[J

Cl

IlJ

I:J
II]

•
I:l

EJ

EJ

II:

• •
IE
.:

• • • • -,
II

D

n
n
II

It

It
n

r:
IJ

IJ

n
'1" JiJ

Jj

I~

1:1

IJ
(J

IJ

I~

Ij

D

II

• • •

Paragon™ OSF/1 C Compiler User's Guide

ICC (cont.)

-O[level]

-p

-r

-s

-s

Manual Pages

ICC (cont.)

Set the optimization level:

o

1

2

3

4

A basic block is generated for each C statement. No
scheduling is done between statements. No global
optimizations are performed.

Scheduling within extended basic blocks is performed.
Some register allocation is performed. No global
optimizations are performed.

All level I optimizations are performed. In addition,
traditional scalar optimizations such as induction
recognition and loop invariant motion are performed
by the global optimizer.

All level 2 optimizations are performed. In addition,
software pipe lining is performed.

All level 3 optimizations are performed, but with more
aggressive register allocation for software pipelined
loops. In addition, code for pipelined loops is
scheduled several ways, with the best way selected for
the assembly file.

If a level is not supplied with ·0, the optimization level is set to 2. If -0 is not
specified, the default level is I. Setting optimization to levels higher than 0
may reduce the effectiveness of symbolic debuggers.

Preprocesses each file and leaves the output in a file namedfile.i for each file
namedfile.c.

Generates a relinkable object file. (passed to the linker.)

Strips symbol table information. (passed to the linker.)

Skips the link and assemble step. Leaves the output from the compile step in
a file namedfile.s for each file namedfile.c.

0-25

Manual Pages

ICC (cont.)

0-26

-Uname

-v

-v

-vv

Paragon'" OSF/1 C Compiler User's Guide

ICC (cont.)

Removes any initial definition of name in the preprocessor. (See also the
nostddef option of the -M switch.) Since all-D switches are processed before
all -U switches, the -U switch can be used to override the -D switch.

The following macro names are predefmed: _LINE_, _Fll..E __ ,
DATE, _TIME....:." _STDC_, _1860, _1860_,
_PARAGON __ , __ OSFl_,_PGC_,_PGC_,_COFF,unix,MACH,
CMU, and _NODE <-_NODE is only defmed when compiling with -nx or
-node). Note that some of these macro names begin and/or end with two
underscores.

Prints the entire command line for each tool as it is invoked, and invokes each
tool in verbose mode (if it has one).

Prints the version banner for each tool (assembler, linker, etc.) as it is
invoked.

Like -V, but even more verbose. Also displays the location of the online
compiler release notes.

-Wpass,option[,option ...]
Passes the specified options to the specified pass:

o (zero) Compiler.

a Assembler.

Linker.

Each comma-delimited string is passed as a separate argument

D

D

U

o
D

D

D

EJ

III

II

D

r:
(J

D
II]

• •
IE

• •
.:

• • •
E

E

• • • • •

II

n
n
II

I~

IJ

IJ

IJ

1.1
~I

IJ

IJ

IJ

c
I]

I~

II

• • •

Paragon'" OSF/1 C Compiler User's Guide

ICC (cont.)

-Ypass,directory

Files

a.out

Jjk.a

Jjk.c

Jjk.d

Jjk.i

Jjk.lst

Jjk.o

Jjk.s

Manual Pages

ICC (cont.)

Looks for the specified pass in the specified directory (rather than in the
default location), where pass is one of the following:

o (zero)

a

s

I

L

u

p

Compiler executable file.

Assembler executable file.

Linker executable file.

Startup object files.

Standard include files.

Standard libraries (passes -YLdirectory to the linker).

Secondary libraries (passes -YUdirectory to the
linker).

All libraries (passes -VPdirectory to the linker).

See the 1d860 manual page for more information on the -YL. -YU. and -VP
switches.

Executable output file.

Library of object files.

C source file.

List of include files produced by -MD.

C source file after preprocessing.

Listing file produced by -Mlist.

Object file.

Assembler source file.

0-27

Manual Pages Paragon'" OSF/1 C Compiler User's Guide

ICC (cont.) ICC (cont.)

0-28

The following files and directories are used in the cross-development environment (icc).
PARAGON jIDEV is an environment variable that can be set to the root of the compiler installation

. directory. If PARAGON _ XDEV is not set, the default is lusrlparagonlXDEV .

. $(PARAGON_XDEV)lparagonlbin.Q!{}J,

$(PARAGON_XDEV)/paragonlbin.Q!{}J,/icc

$(P ARAGON _ XDEV)lparagonl bin.Q!{}J,/ic

Directory containing executables for system fI!.dl
(m:d! identifies the architecture of the system, e.g.
sgi or 8un4).

C compiler driver.

Ccompiler.

$(PARAGONjWEV)lparagonlbin.Q!{}J,/as860 Intel (COFF) assembler.

$(PARAGON_XDEV)lparagonlbin.Q!{}J,/ld860 Intel (COFF) linker.

$(P ARAGON _ XDEV)lparagonlinclude Standard include directory.

$(PARAGON _XDEV)/paragonllib-cof! Standard library directory.

$(PARAGON _XDEV)lparagonllib-cofjlcrtO.o C start-up routine.

$(PARAGON_XDEV)lparagonllib-cofjllibpm.o Performance monitoring module.

$(PARAGON _XDEV)lparagonllib-cofjlguard.o Barrier between user and system code.

$(PARAGON_XDEV)lparagonllib-cofjllibc.a Standard C library.

$(PARAGON _ XDEV)lparagonllib-cofjliclib.a C built-in intrinsic library.

$(PARAGON_XDEV)lparagonllib-cofjllibmach3.a
Mach operating system library.

$(PARAGON_XDEV)lparagonllib-cofjlnoieee Library directory used when linking with
-Knoieee (contains non-IEEE version of libm.a).

$(PARAGON _ XDEV)lparagonllib-cofjloptionslautoinit.o
Routine linked in when -ox is used.

D

D

o
D

I.ll

•
ED

III
II]

E

E
II]

•
.:

• • • • • •

D

D

n
II

n
I~

D

I !' , ..

I:
11

I~

I:]

I:J

I~

D

1:1

IJ

I " J

I'J

IJ

IJ

IJ

IJ

I~

1:1

Ij

G

II

• • •

Paragon™ OSF/1 C Compiler User's Guide Manual Pages

ICC (eont.)

Diagnostics

See Also

ICC (eont.)

The following files and directories are used in the native environment (cc):

I usrl eesl bin

lusrleeslbinlee

lusrleeslbinlie

lusrleeslbinlas

lusrleeslbinlld

lusrlinclude

lusrllib

lusrlliblcrtO.o

lusrllibllibpm.o

lusrllibl guard.o

lusrllibllibe.a

I usrllibl iclib.a

I usrlliblllibmach3.a

lusrlliblnoieee

lusrllibloptionsl autoinit.o

Directory containing executables.

C compiler driver.

Ccompiler.

Assembler.

Linker.

Standard include directory.

Standard library directory.

C start-up routine.

Performance monitoring module.

Barrier between user and system code.

Standard C library.

C built-in intrinsic library.

Mach operating system library.

Library directory used when linking with
-Knoieee (contains non-IEEE version of libm.a).

Routine linked in when -ox is used.

The compiler produces information and error messages as it translates the input program. The linker
and assembler may generate their own error messages.

ar860, as860, dump860, if77, irlXlib, Id860, nm860, size860, strip860

0.29

---- ------------ ----------- -----

Manual Pages Paragon"'OSF/1 C Compiler User's Guide

IFIXLIB IFIXLIB

Update an inliner library directory.

Syn1ax

Arguments

Description

See Also

0-30

ifixlib library_name

library_name The name of an inliner library.

An inliner library is implemented as a directory. For each element of the library. the directory
contains a file containing the encoded form of the inlinable function. A special file named TOe
serves as a directory for the library. This is a printable ASCII file that can be examined for
information about the library contents. When an element is added to or removed from the library.
the TOe file becomes out of date. The ifixlib command updates the TOe file for the specified inliner
library.

icc. if77

II

n
D

D

G

C

D

II

n
u
D

I~

n

• . 1'1
~I

IJ

G

G

I:
IJ
I ,

"I

IJ

IJ

IJ
[J

I~

(j

I]

G

D

• • •

~~-~-------" .. -.- "---_.--_.-.

Paragon'" OSF/1 C Compiler User's Guide Manual Pages

LD860 LD860

Id860, ld: Link editor for Paragon OSP/I operating system object files.

Cross-Development Syntax
Id860 [switches] filename ...

Native Syntax

Arguments

Id [switches] filename ...

filename The name of the Paragon OSPII object file or library.

You may specify the following switches in any order:

·B integer

-contig

·d integer

.Dinteger

-esymbol

.ffilelist

·k

Specify the address to use for the base of the .bss section for all following object
modules. This switch may be used multiple times, and affects only objects that
appear after the switch in the command line.

Porce the .data section to foll()w the .text section, with the .data section
beginning at the next logical page boundary. Overrides ·d.

Specify the address at which the .data section is to be loaded. The default is
Ox4001000.

Specify the length of the .data section to be integer bytes. The .data section is
padded with zero to the specified length, which may not be less than the summed
length derived from the object modules.

Specify symbol as the entry-point. The default entry-point is start.

Read in a list of files to be linked from file filelist. Names in the file can be
separated by a comma, a space, a tab, or a linefeed. This switch may be used
multiple times.

Start the .text and .data sections exactly at the addresses specified by the • T and
-d switches (or at the defaults if the switches are not given) without performing
the normal modifications to those addresses to make the file pageable.

0-31

I

Manual Pages

LD860 (cont.)

-Uibrary

-Ldirectory

-m

-oobifile

-p

-p integer

-rOO

Paragon™ OSFI1 C Compiler User's Guide

LD860 (cont.)

Load the library Iiblibrary.a. The library is loaded from the first library directory
in the library search path in which a file of that name is encountered.

Add directory to the beginning of the library search path.

Generate a link map (listing of modules and addresses).

Put the output object file in obifile. If this switch is not specified, the default object
file name is a.out. If a file with the same name already exists, it is silently replaced.

Align the .data section of the following module on a logical page boundary.
(Other switches may appear between -p and the filename.) This switch may be
repeated as necessary, and applies only to the next object file.

Set the logical page size to integer bytes (default 65536). The value of integer
must be a power of two multiple of 4096 bytes.

Retain relocation entries in the output object file to allow incremental linking. The
output object file produced with -r can be used as an input object file in another
link. When -r is used, -0 must also be specified.

-s Strip all symbols from the output object file.

-t Display the name of each object file or library as it is processed.

-T integer Specify the address at which the .text section is to be loaded The default is
OxlOOO. If used without -d, implies -contig.

-u symbol Initialize the symbol table with symbol. The linker considers symbol to be
undefined.

-V Display the tool banner (tool name, version, etc.).

-yfile Load the library file. The library is loaded from the fIrSt library directory in the
library search path in which a file of that name is encountered. (-y is like -I, but
uses the specified filename without modifications.)

-YLdirectory Replace the standard library directory (the first directory in the library search path)
with directory.

-YUdirectory Replace the secondary library directory (the second directory in the library search
path) with directory.

-VPdirectory Replace the entire library search path with directory.

D

D

D

II
I]

G

II

If .,
•
I!]

r:
I:
I:]

C

C

IlJ

If

I::

E

I::

.:

•
£

II:

..:
II

• • •
II

•

II

D

D

IJ

n
11

n

D

IJ

I~

IJ

I!
.,
.JiiIi

D

• • •

Paragon'"' OSF/1 C Compiler User's Guide Manual Pages

LD860 (cont.) LD860 (cont.)

Description

Use Id860 to link-edit the named file(s).

Object files and libraries are processed in the order specified.

Libraries are searched for unsatisfied externals when they are processed, and are not reopened to
satisfy any symbols that might not have been satisfied.

The library search path used by the ·1 switch is the value of the PARAGON j.P ATH environment
variable (a colon-separated list of directories) as modified by any ·L, • YL, • yu, or • yP switches to
the left of the ·1 switch. The effect of the ·L, • YL, • yu, and • yP switches is cumulative. If
PARAGON _ I.P ATH is not dermed, the default is $P ARAGON _ XDEVlparagonllih-coJf. The default
value of PARAGON _XDEV is /usrlparagonIXDEV.

In the native environment, both Id and Id860 use the variableLP ATH as well as PARAGON _ I.P ATH.
If neither I.PATH nor PARAGON _I.PATH is defined, the default library search path is /usrllib.
However, if both I.P ATH and PARAGON _ I.P ATH are defined, the value of PARAGON _ I.P ATH is
used.

The ·r switch requires the ·0 switch.

If the ·r and the ·s switches are used together, the ·s switch is ignored.

If the ·r and the ·e switches are used together, the -e switch is ignored.

If the ·f switch is used, the ·B and .p switches are applied as if the object file names appeared in
place of the ·f switch.

Manual Pages Paragon'" OSF/1 C Compiler User's Guide

LD860 (cont.) LD860 (cont.)

The ·d (data start address) and • T (text start address) switches interact as follows:

. • If neither the ·d nor the • T switch is used, the data and text start addresses default

• If the ·d switch is used without· T (that is, if a data start address is specified, but no text start
address is specified), then the data start address specified is used, and the text start address
defaults.

• If the • T switch is used without ·d (that is, if a text start address is specified, but no data start
address is specified), then the specified text start address is used, and the data section starts on
the next logical page boundary following the end of the text section.

• If both the -d and·T switches are used, the specified data and text start addresses are used.

NOTE

Specifying addresses for the text and data sections different from
the defaults may preclude the usage of profiling and performance
monitoring tools. These tools require a gap between the text and
data sections that is at least as long as the text section.

The profiling tools cannot be used on executables with a text
section larger than 32 Mb. although such applications can be
executed.

Special Symbols

0-34

The following symbols have special meanings to Id860:

The next available address after the end of the output section .text.

The next available address after the end of the output section .data.

_end The next available address after the end of the output section .bss.·

Programs should not use any of these as external symbols.

The symbols described above are those actually seen by Id860. Note that C and several other
languages prepend an underscore U to external symbols defined by the programmer. This means
that, for example, you cannot use end as an external symbol. If you use any of these names, you must
limit its scope by using the static keyword in the declaration or declare the symbol to be local to the
function in which it is used. If this is not possible, you will have to use another name.

n
D

D

D
II]

CJ

l:l

I:J

• •
I:J
(J

[J

IJ

f.J

l:

G
IE]

I:

I:

-=
K

• • •
II:

• • • • • •

n
D

.'1

II

I.:

I··~

, ~

I ",
I ~

I~

1"'1
, ,.J

I:
(J

IJ

D

• • •

Paragon™ OSFI1 C Compiler User's Guide Manual Pages

LD860 (cont.) LD860 (cont.)

See Also

81'860, as860, dump860, icc, if77, nm860, size860, strip860

Manual Pages Paragon™ OSF/1 C Compiler User's Guide

MAC860 MAC860

mac86O, mac: Macro preprocessor for the Paragon OSPII operating system.

Cross-Development Syntax
mac860 [switches] source file

Native Syntax

Arguments

Description

See Also

c-36

mac [switches] sourcefile

sourcefile Source file containing assembler and macro preprocessor commands.

You may specify the following switches in any order:

-lincfile

-oobifile

-v

-y

Defines sym as a local symbol with the value val in the macro preprocessor.

Includes the file incfile before the first statement of source file. You can use at
most one -I switch in a single mac860 command.

Sets the output file name to obifile (the default is the name of the sourcefile with
any .s suffix removed and .mac appended).

Displays the tool banner (tool name, version, etc.).

Makes the macro preprocessor output special directives that the assembler can use
for better reporting of line numbers in the source file when errors are detected.

The mac860 command preprocesses the specified source file with the Paragon OSPII macro
preprocessor and produces a source file ready to be assembled with as86O.

as86O, ar860, dump86O, Id86O, nm86O, size86O, strip860

• •
o
a
o
III

II

• •
rl
IhI

r:
[J

EJ

C

C

III

•
I[

Kl

El

E

II
II]

•
K

II:

• • • •
II.

II

D

n
Il

II

I:
It

C
I~

'"

I~
, ""

IJ
1_,
, . .1

I:
I~

I:
.C, Li

I)

IJ

D

• • •

_____ 00_ _ _______________ 0

Paragon™ OSF/1 C Compiler User's Guide Manual Pages

NM860 NM860

nm860, run: Displays symbol table information for Paragon OSF/l operating system object files.

Cross-Development Syntax
nm860 [switches] filename ...

Native Syntax
nm [switches] filename ...

Arguments

filename The name of the Paragon OSFIl object file or library .

You may specify the following switches in any order:

-d Display numbers in decimal.

-e Display external relocatable symbols only.

-r Display all symbols, including redundant symbols. Overrides -e.

-h Suppress headers.

-0 Sort symbols by name.

-0 Display numbers in octal.

-p Use short form output. (See "Description" section.)

-r Prepend the current file name to symbols.

-T Truncate symbol names to 19 characters, plus an asterisk to indicate truncation.

-u Display a list of undefined symbols.

-v Sort symbols by value.

-v Display the tool banner (tool name, version, etc.).

-x Display numbers in hexadecimal (default).

c-37

Manual Pages Paragon™ OSF/1 C Compiler User's Guide

NM860 (cont.) NM860 (cont.)

Description

See Also

Use nm860 to display the symbol tables of the named file(s).

For each symbol in the output of the -p switch, one of the following characters identifies its type:

a Absolute

b BSS section symbol

c Common symbol

d Data section symbol

f File tag

r Register symbol

s Other symbol

t Text section symbol

u Undefmed

In addition, the characters associated with local symbols appear in lowercase and the characters
associated with external symbols appear in uppercase.

When using the -v or -n switches (sort by value or name, respectively), the scoping information is
jumbled, so it is advisable to use the -e (externals only) switch.

as860, ar860, dump860, icc, if77, Id860, size860, strip860

D

D

o
o
G

EJ

C

EJ

II

•
III
r:
E:

IJ

C1
[J

G

E

KJ

K1

I'J

KJ

• • •
.:

• • • • • •

II

D

n
I~

C

11

I~

I~

IJ

1-:1 .""
- .,

I~ , .J:ii1

I:
C
1'1

d

IJ

IJ

IJ

I~

Ij

Ij

I:l

• • • •

------------- --"--

Paragon™ OSFI1 C Compiler User's Guide Manual Pages

SIZE860 SIZE860

size860, size: Displays section sizes of Paragon OSF/! operating system object files.

Cross-Development Syntax
size860 [switches] filenames

Native Syntax

Arguments

Description

size [switches] filenames

filename The name of the Paragon OSFIl object file.

You may specify the following switches in any order:

-d Display sizes in decimal (default).

-f Full output

-n Display the sizes of non-loading sections, as well.

-0 Display sizes in octal.

-v Display the tool banner (tool name, version, etc.).

-x Display sizes in hexadecimal.

Use size860 to display the section sizes of the named files.

Note that the total size of an executable object may be greater than or less than the total of the sizes
of all the compiled objects that make up the executable. This is because the true size of the BSS
section is not known until after a set of objects is loaded, and because padding is done by 1d860 on
other sections.

0-39

Manual Pages Paragon'" OSF/1 C Compiler User's Guide

SIZE860 (cont.) SIZE860 (cont.)

See Also

as860, ar860, dump860, icc, if17, Id860, nm860, strip860

0-40

• • • • •
II]

IE

KJ

Ii

•
E
[J

[J

£]

I!J
(:J

G

El

KJ

E

If
I[..
• •
II

• • • • •
o

II

D

U

II

11
I l!'

.ii1

11

I!

... _ _--_._---------------

Paragon™ OSFI1 C Compiler User's Guide Manual Pages

STRIP860 STRIP860

strip860, strip: Strips symbol information from Paragon asP/! operating system object files.

Cross-Development Syntax
strip860 [switches] filename ...

Native Syntax
strip [switches] filename ...

IJ Arguments

I~

~

I~

D

IJ

[J

1:1
I~l

J

Ij

I~

II

• • •

Description

See Also

filename The name of the target Paragon aSP!! object file.

You may specify the following switches in any order:

-I Strip line number information only.

-r Do not strip static, external, or relocation information.

-v Display the tool banner (tool name, version, etc.).

Use strip860 to strip symbol information from object files.

The default is to strip all symbols. This is generally only acceptable for executables.

as860, ar860, dump860, icc, ir17, 1d860, nm86O, size860

0-41

Manual Pages Paragon'" OSF/1 C Compiler User's Guide

DV_ACOSO DV_ACOSO

dv _acosO. dv _ asinO. dv _atanO. dv _ atanlO. dv _cosO. dv _ divO. dv _expO. dv JogO. dv..,POwO. dv _ recpO.
dv _ rsqrtO. dv _sinO. dv _ sqrtO. dv _ tanO: Perform mathematical operations on double vectors.

Synopsis
void dv _8COS(

int n.
double *x.
int inex,
double *z,
int inez);

void dv _8sin(
intn,
double *x.
int incx,
double *z,
int inez);

void dv _ 8tan(
int n,
double *x,
int incx,
double *z,
int inez);

void dv _8tan2(
int n,
double *x,
int inex,
double *y,
int incy,
double *z,
int inez);

D

D

D

D

D

G

C
I]

II

• ..:.
t:
£

E

E
£]

•
E]

&l

KJ

E

II

• •
I[

.:

• • • • •

II

D

U

n
D

n
D
I:']

e
I:J
[' : !C..I

Ij

1:1
("l

~l

I ·...,
~I

I
~I

: i ...

IJ
('''1
~

IJ

IJ

I:J

G

n

• • •

Paragon™ OSF/1 C Compiler User's Guide

DV_ACOSO (cont.)

void dv _cos(
int n.
double *x.
int inex.
double *z.
int inez);

void dv _dive
int n.
double *x.
int incx.
double *y.
int incy.
double *z.
int inez);

void dv _ exp(
int n.
double *x.
int inex.
double *z.
int inez);

voiddv)og(
int n •
double *x.
int inex.
double *z.
int inez);

void dv jlow(
int n.
double *x.
int incx.
double *y.
int incy.
double *z.
int inez);

.-.... - •.... -.------.--

Manual Pages

DV _ACOS() (cont.)

Manual Pages

DV _A COSO (cont.)

c-44

void dv _ recp(
int n,
double alpha,
double *x,
int incx,
double *z,
int inez);

void dv _rsqrt(
int n,
double*x,
int incx,
double *z,
int inez);

void dv _sine
int n,
double *x,
int incx,
double *z,
int inez);

void dv _sqrt(
int n,
double *x,
int incx,
double *z,
int inez);

void dv _ tan(
int n,
double *x,
int incx,
double *z,
int inez);

Paragon™ OSF/1 C Compiler User's Guide

DV _ACOS() (cont.)

11

U

II

I~

II

I~

l.J

I:

II.

II:

I:

I:
I:

II

C

Ii

It

•
II ..
•• • •
K

•
I:

•
.:

• • •
II

D

D

o
11

G

I~

D

I~

I~

I~

I]
111
, .c;;j

IJ

Ij

I)

IJ
I ·,

.J

1'"1
. .1

IJ

IJ

IJ

I:J
I]

[J

IJ
Ij

II

• • •

Paragon™ OSFI1 C Compiler User's Guide Manual Pages

DV_ACOSO (cont.) DV _ACOS() (cont.)

Description of Parameters

Discussion

n The number of elements in the vectors x, y, and z.

x, y Input (argument) vectors.

z Output (result) vector.

incx, incy, incz The strides (increments) of vectors x, y, and z, respectively (may be zero).

alpha A scalar multiplier for dv]ecp.

These functions, called the vector intrinsics, perform the following mathematical operations on
arrays (vectors) very efficiently. You can specify the number of vector elements and the strides of
each input vector and the result vector.

dv_expO

dvJogO

dv"'powO

dv]ecpO

Vector arccosine (z[l1 = acos(x[i])).

Vector arcsine (z[i] = asin(x[i])).

Vector arctangent (z[i] = atan(x[zl».

Vector arctangent from two arguments (z[i] = atan2(x[Z1, y[i])).

Vector cosine (z[zl = cos(x[i])).

Non-IEEE vector divide (z[l1 = Y[ll/x[i]).

Vector exponential (z[l1 = exp(x[ll».

Vector natural log (z[ll = Jog(x[i])).

Vector power (z[i] = x[i]Y[I1).

Non-IEEE reciprocal times a scalar (z[i] = alpha/x[i]).

Non-IEEE vector reciprocal square root (z[,l = lIsqrt(x[i])).

Vector sine (z[Zl = sin(x[i])).

Manual Pages Paragon™ OSFI1 C Compiler User's Guide

DV _ACOSO (cont.) DV _ACOSO (cont.)

Example

See Also

c-46

Non-IEEE vector square root (z[ll = sqrt(x[i])).

Vector tangent (z[i] = tan(x[ll)).

NOTE

To use these calls, you must link your program with the switch
-Iveet.

The following call to dv _cosO performs a double-precision vector cosine of the first n elements of
the double vector x with stride incx, storing the results in the double vector z with stride incz:

dv_eos(n, x, inex, z, inez);

It is similar in effect to the following code (the actual code for dv _cosO is written in assembler):

ix = 0;
iz = 0;
if(inex < 0)

ix = (-n+l)*inex;
if(inez < 0)

iz = (-n+l)*inez;
for(i=O; i<n; i++) {

z[iz] = eos(x[ix]);
ix = ix + inex;
iz = iz + inez;

}

D

o
G

c
C

I:J

C

r:
II

II

IJ

l=-:

r:::
[J

l:J

C

.:

.-
• • •
II

• • • • • • • • •
n

n
D

II

D

D

D

D

D

II

n
n
~

IJ

IJ

[J

IJ
1'~1

~I

I]

IJ

Id

IJ
Ij

[j

I]

• • • •

Paragon™ OSFI1 C Compiler User's Guide Manual Pages

SV_ACOSO SV-.ACOSO

sv _ acosO. sv _ asinO. sv _ atanO. sv _ atanZO. sv _cosO. sv _ divOt sv _expO. sv _logO. sv...,POwO. SV]ecpO. sv _ rsqrtO.
sv _sinO. sv _ sqrtO. sv _ tanO: Perform mathematical operations on noat vectors.

Synopsis
void sv _ aeos(

int n,
float *x,
int incx,
float *z,
int inez);

void sv _ asin(
int n,
float *x,
int incx,
float *z,
int inez);

void sv _atan(
int n,
float *x,
int incx,
float *z,
int inez);

void sv _atan2(
int n,
float *x,
int inex,
float *y,
int incy,
float *z,
int inez);

0-47

Manual Pages

SV_ACOSO (cont.)

void sv _ cos(
intn,
float *x,
int inex,
float *z,
int inez);

void sv _ div(
int n,
float *x,
int incx,
float *y,
int incy,
float *z,
int inez);

void sv _ exp(
int n,
float *x,
int incx,
float *z,
int inez);

void sv_log(
int n,
float *x,
int inex,
float *z,
int inez);

void sv..p0w(
int n,
float *x,
int inex,
float *y,
int incy,
float *z,
int inez);

II
Paragon'" OSF/1 C Compiler User's Guide It

I~

IJ

SV _ACOS() (cont.)
lJ

I:

II

•
II

n
II

11

D

n
n
n
c
D

U

) '''' · ,l;

C

D

• • • •

Paragon™ OSF/1 C Compiler User's Guide

SV -"COSO (cont.)

void sv _ recp(
int n,
float alpha,
float *x,
int inex,
float *z,
int inez);

void sv _ rsqrt(
int n,
float *x,
int incx,
float *z,
int inez);

void sv _ sine
int n,
float *x,
int inex,
float *z,
int inez);

void sv _ sqrt(
int n,
float *x,
int incx,
float *z,
int inez);

void sv _ tan(
int n,
float *x,
int inex,
float *z,
int inez);

Manual Pages

SV _ACOS() (cont.)

cr49

Manual Pages Paragon'" OSFI1 C Compiler User's Guide

SV -.A COSO (cont.) SV _ACOS() (cont.)

Description of Parameters

Discussion

n The number of elements in the vectors x, y, and z.

x, y Input (argument) vectors.

z Output (result) vector.

incx, incy, incz The strides (increments) of vectors x, y, and z, respectively (may be zero).

alpha A scalar multiplier for sv Jeep.

These functions, called the vector intrinsics, perform the following mathematical operations on
arrays (vectors) very efficiently. You can specify the number of vector elements and the strides of
each input vector and the result vector.

SVJ»OwO

Vector arccosine (z[l1 = aeos(x[i))).

Vector arcsine (z[i] = asin(x[i])).

Vector arctangent (z[l1 = atan(x[rl».

Vector arctangent from two arguments (z[i] = atan2(x[ll, y[ll)).

Vector cosine (z[l1 = cos(x[i])).

Non-IEEE vector divide (z[,l = y[l1/x[i]).

Vector exponential (z[l1 = exp(x[i]).

Vector natural log (z[,l = log(x[i]).

Vector power (zhl = x[i]Y[r]).

Non-IEEE reciprocal times a scalar (z[i] = alpha/x[ll).

Non-IEEE vector reciprocal square root (z[i] = lIsqrt(xhl)).

Vector sine (z[,l = sin(x[i])).

-.-------

IJ

IE

C

D

C

C

r:
I::

II
C
[J

I::

1:=

I:J

II

II:

• •
II:

II

K

• •
IE .' a
.:

• • • •
•

11

o
o

II

c

I:
C

IJ

I~

I:J

IJ

IJ

I]

• • • •

----.------~------.--------------~

Paragon™ OSFI1 C Compiler User's Guide Manual Pages

SV _ACOSO (cont.) SV _ACOS() (cont.)

Example

See Also

Non-IEEE vector square root (Z[i] = sqrt(x[i])).

Vector tangent (z[i] = tan(x[1l)).

NOTE

To use these calls, you must link your program with the switch
-Iveet.

The following call to sv _cosO perfonns a single-precision vector cosine of the first n elements of the
Doat vector x with stride incx, storing the results in the Doat vector z with stride inez:

sv_eos(n, x, inex, z, inez);

It is similar in effect to the following code (the actual code for sv _cosO is written in assembler):

ix = 0;
iz = 0;
if(inex < 0)

ix = (-n+l)*inex;
if(inez < 0)

iz = (-n+l)*inez;
for(i=O; i<n; i++) {

z[iz) = eos(x[ix);
ix ix + inex;
iz = iz + inez;

}

Manual Pages Paragon'" OSFI1 C Compiler User's Guide

c-52

D

o
u
o
III
I]

G

C

II
8]

r:J

r:
~

KJ

II

II:

E
II]

I:
[J

[J

IE

• • • • • .,
• • • •

II

D

D

I~

11

D

n
C

D

."1
LJ

Ll
(J

IJ

IJ

IJ

I :
,~

• • • •

. -. -- .. ------~~-~---- .. -----... ---... --.-----~------------

A
alert character escape sequence 6-4

alignments of data types 6-5

ANSIC
differences from original C 6-6
language (standard) 6-1

applications 1-2

ar manual page C-4

ar860 manual page C-4

as man ual page C-6

as860 assembler
manual page C-6
overview 1-4

assembler (as860) 1-4

assignment operator tokens 6-6

automatic aggregates, initialization of 6-4

B
B switch (driver) 2-6

behavior, implementation-defined 6-5

binary operators and variables of type float 6-6

bit fields (signed and unsigned) 6-4

Index

c
C driver 1-4

manual page C-13

C extensions
#elif directive 6-2
#ident directive 6-3
#list directive 6-2
#module directive 6-2
#nolist directive 6-2
#pragma directive 6-2
#predicate 6-3
alert character escape sequence 6-4
automatic aggregates, initialization of 6-4
bit fields (signed and unsigned) 6-4
concatenating string literals 6-4
con st data type 6-3
defined operator 6-2
dollar sign in identifiers 6-3
enumeration types 6-3
float constants 6-4
function prototypes 6-4
functions and structures 6-3
hexadecimal character escape sequence 6-4
lexical conventions 6-4
long double

constants 6-4
data type 6-3

overloading structure member names 6-3
predefined macros 6-2
signed data type 6-3
structures and functions 6-3
token continuation 6-4

Inclex-1

Index

trigraph sequences 6-4
unary + operator 6-4
unsigned char data type 6-3
unsigned integer constants 6-4
unsigned short int data type 6-3
void data type 6-3
volatile data type 6-3

C identifiers, length of 6-6

Clanguage
extensions to 6-2
standard 6-1

C porting considerations 6-6

C switch (driver) 2-5

c switch (driver) 2-5

C: A Reference Manual, Second Edition, Prentice
Hall, 19876-1

cc manual page C-13

checking, type 6-6

compute partition 1-1

concatenating string literals 6-4

const data type 6-3

controlling the icc driver 2-3

conversion rules (numeric) 6-6

cpp manual page C-8

cpp860 manual page C-8

cross-development environment 1-2

D
o switch (driver) 2-6

data types, sizes and alignments of 6-5

debugging 1-6

defined operator 6-2

development environments 1-2

Index-2

Paragon™ OSFI1 C Compiler User's Guide

differences between original C and ANSI C 6-6

dollar sign in C identifiers 6-3

driver
command lines, example 1-7
controlling 2-3
icc v, 1-4,2-1
overview 1-4

driver switches
B 2-6
C2-5
c 2-5
02-6
E 2-5
ES2-5
g 2-14
12-13
icc (table) 2-2
K 2-16
L 2-16
12-16
Inx 1-5,2-18
M2-7
m 2-15
MO 2-13
node 1-6,2-18
nx1-5,2-18
02-13
02-18
P 2-5
r 2-15
S 2-5
s 2-15
U2-6
V 2-19
v 2-19
VV 2-19
W2-4
Y2-4

dump860 manual page C-11

dv_acos C-42

dv_asin C-42

D

I~

I:
I T,

'*",;

E:

• •
I:

II ..
• • • • • • • • • •
G

D
Paragon™ OSF/1 C Compiler User's Guide Index

II

D

D

n
D dv_atan C-42 G

IJ dv_atan2 C-42 g switch (driver) 2-14

D
dv_cos C-42 getting started 1-1

dv_divC-42

II dv_exp C-42 H

Il dvJog C-42 Harbison, Samuel P. 6-1

D
dv-pow C-42 hardware,system 1-1

dv_recp C-42 hexadecimal character escape sequence 6-4

E dv_rsqrt C-42

I: dv_sin C-42

(j
dv_sqrt C-42 I switch (driver) 2-13
dv_tan C-42 i860

C assembler invocation command 1-4
linker invocation command 1-5

C E
icc driver v, 1-4

E
E switch (driver) 2-5 controlling 2-3

#elif directive 6-2 invocation command 1-4, 2-1
switches (table) 2-2

D enumeration types 6-3
icc manual page C-13

I"~ environment
#ident directive 6-3 execution 1-5

I: software development 1-1, 1-2 identifiers,length of 6-6

ES switch (driver) 2-5 ifixlib 4-3
IJ example driver command lines 1-7 ifixlib manual page C-30

I: execution environments 1-5 implementation-defined behavior 6-5

I) extensions to C language 6-2 #include, search rules for 6-5

IJ
invoking

F i860 assembler 1-4
i860 linker 1-5

I: float icc driver 1-4,2-1

I]
constants 6-4
variables and unaryJbinary operators 6-6

C function prototypes 6-4 K

functions and structures 6-3 K switch (driver) 2-16
e Kernighan, Brian W. 6-1

• • • Index-3

•

Index

L
L switch (driver) 2-16

I switch (driver) 2-16

Id manual pageC-31

Id860 linker
manual page C-31
overview 1-5

length of C identifiers 6-6

lexical conventions 6-4

libnx.a 1-5

linker (ld860) 1-5

#list directive 6-2

Inx switch (driver) 1-5, 2-18

long double

M

constants 6-4
data type 6-3

M switch (driver) 2-7

m switch (driver) 2-15

mac manual page C-36

mac860 manual page C-36

macros, predefined 6-2

manual, organization of v

MD switch (driver) 2-13

#module directive 6-2

N
native development environment 1-2

nm manual page C-37

nm860 manual page C-37

Index4

Paragon™ OSFI1 C Compiler User's Guide

node switch (driver) 1-6,2-18

nodes 1-1

#nolist directive 6-2

numeric conversion rules 6-6

nx switch (driver) 1-5,2-18

o
o switch (driver) 2-13

o switch (driver) 2-18

organization of manual v

original C, differences from ANSI C 6-6

overloading structure member names 6-3

overview

p

assembler (as860) 1-4
driver (icc) 1-4
linker (ld860) 1-5

P switch (driver) 2-5

parallel applications 1-2

parallel software development environment 1-1

partitions 1-1

placement of storage class and type specifiers 6-6

porting considerations, C 6-6

#pragma directive 6-2

#predicate 6-3

preprocessor macros, predefined 6-2

programming language C 6-1

D

o
C

D

C

C

II

I:

• •
I:

I:

&:

E:

K

.:
I[

•
I:

•
II'

• • • • •
• • • • •
II

II

II Paragon™ OSF/1 C Compiler User's Guide Index

II

n
n
D

R sv_exp C-47

D r switch (driver) 2-15 sv_log C-47

~ Ritchie, Dennis M. 6-1 sVJ>0wC-47

;D
running a program sv_recp C-47

on a single node 1-5 sv_rsqrt C-47
on multiple nodes 1-5

0 sv_sin C-47

D s sv_sqrt C-47

J] S switch (driver) 2-5
sv_tan C-47

s switch (driver) 2-15
switches (driver)

[J 82-6
search rules for #include 6-5 C2-5

D c 2-5
service partition 1-1 02-6

III signed data type 6-3 E2-5
ES2-5

D
size manual page C-39 g 2-14
size860 manual page C-39 12-13

:G icc (table) 2-2 , sizes of data types 6-5 K 2-16

D software l2-16
development environment 1-1 12-16

IJ software development environments 1-2
Inx 1-5,2-18
M2-7

[J software, system 1-2 m 2-15
MD 2-13

lJ
Standard C language 6-1 node 1-6,2-18
Steele, Guy l. 6-1 nx 1-5,2-18

IJ 02-13
storage class and type specifiers, placement of 6-6 02-18

EJ string literals, concatenating 6-4 P 2-5
r 2-15

IJ
strip manual page C-41 S2-5
strip860 manual page C-41 s 2-15

[J U 2-6
structures and functions 6-3 V2-19

I] sv_acos C-47 v 2-19
VV 2~19

C
sv_asin C-47 W2-4
sv_atan C-47 Y2-4

~ sv_atan2 C-47 system hardware 1-1

• sv_cosC-47 system software 1-2

• sv_divC-47

• Index-5 •

Index

T
Thee Programming Language, PrenticeHall, 1978

6-1

token continuation 6-4

tokens, assignment operators 6-6

trigraph sequences 6-4

type checking 6-6

type specifiers and storage class, placement of 6-6

types, sizes and alignments of 6-5

u
U switch (driver) 2-6

unary + operator 6-4

unary operators and variables of type float 6-6

unsigned char data type 6-3

unsigned integer constants 6-4

unsigned short int data type 6-3

updating library directories 4-3

Index~

.~~~- ._--_._-----_ _._--_._--_._-------_._-

Paragon"" OSFI1 C Compiler User's Guide

v
V switch (driver) 2-19

v switch (driver) 2-19

value preserving, ANSI convention for 6-6

variables of type float and unarylbinary operators
6-6

variables, sizes and alignments of 6-5

void data type 6-3

volatile data type 6-3

VV switch (driver) 2-19

w
W switch (driver) 2-4

y

Y switch (driver) 2-4

D

II

It
G

C

l:

II

I:
II]

:J

•
II

D

D

D

D

11

II

• • • • • • • • • • • •
Ij

I]

•
E

• • • • • • •

WE WOULD LIKE YOUR COMMENTS

We are trying to produce the best documentation to meet your needs. Please take a few moments to help us
out by providing the information requested below. Our Internet address is techpubs@ssd.intel.com

Manual Title: _________________________ _

Your Comments

Please describe any information that you feel should be added to this document (please indicate
where the information can be found): ___________________ _

Please describe any areas of this document that you feel need improvement (please specify chapter
number/name, page number, and location on page): ______________ _

Please describe any errors you found (please specify chapter number/name, page number, and
location on page): __________________________ _

Other comments: -----------------------------

Information About You

What is your job title? _________________________ _

How did you use this document? _____________________ _

If you would like a response from us, please provide the following information:

Name ______________________________ __

Title ______________________________ _

Company ___________ _ Department/Mail Station _______ _

Address ------------------------------
City __________ _ State ------ ZIP Code --------
Country ____________ _ Phone ()----------~---

312784-001

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 42 BEAVERTON,OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Supercomputer Systems Division

Technical Publications, MS: C01-01

15201 N.W. Greenbrier Parkway

Beaverton, OR 97006

11.1 •• I .. .III ... II II" I •• 1.1

Please fold here and close the card with tape. Do not staple.

If you are in the United States and are sending only this card, postage is prepaid.

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

If you are sending additional material or if you are outside the United States, please place this
card and any additional material in an envelope. Send the envelope to the address printed on
this form, adding "United States of America" if you are outside the United States.

