
• • •
D

D

D

n
o
n

II
I~.·

.iIiJ

I~

c
.~

IJ

IJ

• "1
oJ

(J

~

~

D

• • • •

April 1993

Order Number: 312545-001

PARAGONTM OSF/1 SOFTWARE TOOLS

USER'S GUIDE

Intel~ Corporation

Copyright «:>1993 by Intel Supercomputer Systems Division, Beaverton, Oregon. All rights reserved. No part of this work may be reproduced or
copied in any form or by any means ... graphic, electronic, or mechanical including photocopying, taping. or information storage and retrieval sys­
tems ... without the express written consent of Intel Cmporation. The information in this document is subject to change without notice.

Intel Cmporation makes no warranty of any kind with regard to this material. including, but not limited to, the implied warranties of merchantability
and fitness-for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this document. Intel Corporation
makes no commitment to update or to .keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication, or disclosure is subject to restrictions
stated in Intel's software license agreement. Use, duplication, or disclQSure by the U.S. Government is subject to restrictions as set forth in subpara­
graphs (c)(l)(ii) of the Rights in Technical Data and Computer Software clause at 252.227·7013. Intel Corporation, 2200 Mission College Boule­
vard, Santa Clara, CA 9502. For all Federal use or coillracts other than DoD, Restricted Rights under FAR 52.227-14, ALT. 111 shall apply.

The following are Itademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

286 iCS Intellink
287 iDBP iOSP
4-SITE iOIS iPDS
Above iLBX iPSC
BITBUS im iRMX
COMMputer 1m iSBC
Concurrent File System iMDDX iSBX
Concurrent Workbench iMMX iSDM
CREDIT Insite iSXM
Data Pipeline int I KEPROM
Direct-Connect Module e

Library Manager
FASTPATIi intlBOS

MAP-NET e
GENIUS Intelevision MCS

121CE

int e ligent Identifier Megachassis

inteligent Programming
MICROMAINFRAME

i386 MULTI CHANNEL
i387 Intel MULTIMODULE
i486 Intel386 ONCE
i487 Inte1387 OpenNET
i860 Intel486 OTP
ICE Intel487 Paragon
iCEL Intel1ec PC BUBBLE

Ada is a registered trademark of the U.S. Government, Ada Joint Program Office
APSO is a service mark of Verdix Corporation
DGL is a trademark of Silicon Graphics. Inc.
Ethernet is a registered trademark of XEROX Corporation
EXAB YTE is a registered trademark of EXAB YTE Corporation
Excelan is a trademark of Excelan Corporation
EXOS is a Itademark or equipment designator of Excelan Corporation
FORGE is a trademark of Applied Parallel Research, Inc.
Green Hills Software, C-386, and FORTRAN.386 are trademarks of Green Hills Software, Inc.
OV AS is a trademark of Verdix Corporation
IBM and IBMNS are registered Itademarks of International Business Machines
Lucid and Lucid Common Lisp are Itademarks of Lucid, Inc.
NFS is a trademlltk of Sun MicrQSystems
OSF, OSF/l, OSFlMotif, and Motif are trademarks of Open Software Foundation, Inc.
POI and PGF77 are trademarks of The Portland Group, Inc.
ParaSoft is a trademark of ParaSoft Corporation
SOl and SiliconGraphies lite registered trademarks of Silicon Graphics. Inc.
Sun Microsystems and the combination of Sun and a numeric suffix are trademarks of Sun Microsystems
The X Window System is a trademark of Massachusetts Institute of Technology
UNIX is a trademark of UNIX System Laboratories
VADS and Verdix are registered trademarks of Verdi x Corporation
VASn is a registered trademark of Pacific-Sierra Research Corporation
VMS and V AX are Itademarks of Digital Equipment Corporation
VP/ix is a Itademark ofINTERACTIVE Systems Corporation and Phoenix Technologies, Ltd.
XENIX is a Itademark of Microsoft Corporation

Ii

Plug-A-Bubble

PROMPT

Promware

ProSolver

QUEST

QueX

Quick-Pulse Programming

Ripplemode

RMXlSO

RUPI

Seamless

SLD

SugarCube

UPI

VLSiCEL

• • • • •
• • • • • • • • • • • • •
~

EJ

E:

•
• • • • • • • • • •

n
II

a
D

o
I~

n
D

I'D

I~

I~

IJ

IJ

12

I~

IJ

El
IJ

IJ

IJ

IJ
1"'1

..J

IJ

IJ

IJ

1:1

~

II

• • •

REV. REVISION HISTORY DATE
-001 Original Issue

LIMITED RIGHTS

The information contained in this document is copyrighted by and shall re­
main the property of Intel Corporation. Use, duplication or disclosure by
the U.S. Government is subject to Limited Rights as set forth in subpara­
graphs (a)(15) of the Rights in Technical Data and Computer Software
clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule­
vard, Santa Clara, CA 95052. For all Federal use or contracts other than
000 Limited Rights under FAR 52.2272-14, ALT. III shall apply.

4193

iii

Iv

• •
• • • • • •
• • • • • •
• • •
•
~

~

•
• • • • • • • • .1
• •

----.-.---~----

a
n
n
D

D

D

n
n
I~

IJ
[J

G

[J

IJ

I:
IJ

I:)

I~

IJ

I~

II

• • •

Preface

This manual describes the software development tools, applications, and application libraries that
run on the Paragon™ aSF/1 operating system. As additional tools become available, chapters
describing these new tools and libraries will be included in future releases of this book.

Organization
Chapter 1

Chapter 2

Chapter 3

Describes the use of the X Window System client libraries with the
Paragon™ aSFIl operating system, including special programming
techniques for node X programs and how to compile and link X applications.

Describes the use of the DGL client libraries, including how to compile and
link DGL applications, and special programming techniques.

Describes the pmake parallel make utility.

Notational Conventions
This manual uses the following notational conventions:

Bold

Italic

Identifies command names and switches, system call names, reserved words,
and other items that must be used exactly as shown.

Identifies variables, filenames, directories, processes, user names, and writer
annotations in examples. Italic type style is also occasionally used to
emphasize a word or phrase.

Plain-Monospace
Identifies computer output (prompts and messages), examples, and values of
variables.

Bold-Ita11c-MoDospace
Identifies user input (what you enter in response to some prompt).

v

Preface Paragon™ OSFI1 Software Tools User's Guide

Bold-Monospace

}

Identifies the names of keyboard keys (which are also enclosed in angle
brackets). A dash indicates that the key precewng the dash is to be held down
while the key following the dash is pressed. For example:

<Break> <$I> <Ctrl-Alt-Del>

(Brackets) Surround optional items.

(Ellipsis) Indicate that the preceding item may be repeated.

(Bar) Separates two or more items, of which you may select only one.

(Braces) Surround two or more items, of which you must select one.

Applicable Documents
For more information, refer to the following manuals.

TM
Paragon OSF/1 Manuals

• Paragon™ OSFIl User's Guide

• Paragon™ OSFIl Commands Reference Manual

• Paragon TM OSFII C System Calls Reference Manual

• Paragon™ OSFII Fortran Compiler User's Guide

Other Manuals

• OSFIl User's Guide

• Xlib Programming Manual (O'Reilly and Associates)

• X Protocol Reference Manual (O'Reilly and Associates)

• X Toolkit Intrinsics Programming Manual (O'Reilly and Associates)

• X Toolkit Intrinsics Reference Manual (O'Reilly and Associates)

• Graphics Library Programming Guide - Silicon Graphics, Inc.
(Available from SOl; SOl order number 007-1210-040)

• The GNU Make Manual

vi

•
• • • • •
• •
• • • • • • • • • • • • • •
• • • • • •
• • • •

II

o
II

o
n
I~

11

I~

I. ~I

'..j

(]

U

IJ

I i
,.1

12

• • •

Paragon™ OSFf1 Software Tools User's Guide Preface

Comments and Assistance
Intel Supercomputer Systems Division is eager to hear of your experiences with our new software
product Please call us if you need assistance, have questions, or otherwise want to comment on your
Paragon system.

U.S.AJCanada Intel Corporation
phone: 800-421-2823

email: support@Ssd.intel.com

Intel Corporation Italia s.p.a.
Milanofiori Palazw

United Kingdom Intel Corporation (UK) Ltd.
Supercomputer System Division

20090 Assago
Milano
Italy
167877203 (toll free)

France Intel Corporation
1 Rue Edison-BP303
78054 St. Quentin-en-Yvelines Cedex
France
05908602 (toll free)

Japan Intel Corporation K.K.
Supercomputer Systems Division
5-6 Tokodai, Tsukuba City
Ibaraki-Ken 300-26
Japan
0298-47-8904

Pipers Way
Swindon SN3 IRJ
England
0800 212665 (toll free)
(44) 793 491056 (answered in French)
(44) 793 431062 (answered in Italian)
(44) 793480874 (answered in German)
(44) 793 495108 (answered in English)

Germany Intel Semiconductor GmbH
Dornacher Strasse 1
8016 Feldkirchen bel Muenchen
Germany
0130813741 (toll free)

World Headquarters
Intel Corporation

Supercomputer Systems Division
15201 N.W. Greenbrier Parkway

Beaverton, Oregon 97006
U.S.A.

(503) 629-7600

vii

Preface

viii

Paragon'" OSFI1 Software Tools User'$ Guide • • • •
• •
•
• • • • • • • • • • •
• • •
• • • • • • • •
• • •

• • •
II

o
o
n
o
D

D

n
[J

IJ

I:J

G

G

IJ
."'1
LJ

(J

('" , ,
,,,,I

U.., , ,

I~

.]
e
II

• • •

Table of Contents

Chapter 1
The X Window System on the Nodes
Introduction .. 1-1

A Sample Node X Program ... 1-2

What the graph Program Does .. 1-2

Compiling, Linking, and Executing the graph Program .. 1-3

Widget Hierarchy of the graph Program ... 1-5

Programming Techniques .. 1-7

Node/Server Connection ...•........•... 1-7

Combining X Event-Driven Programming with Message Passing ... 1-7

Threads and Mutexes .. 1-7

Th reads and Mutexes in the graph Program•... 1-9

Synchronizing Window Operations with Window Mapping .. 1-10

Starting the Other Nodes on the First Expose Event ... 1-11

Associating a Function with an Expose Event .•.......•... ~•.............•.. 1-13

Responding to Window Destruction .•.....................•••.•......•... 1-14

Batching Data Points into Larger Messages for Improved Performance ... 1-14

ix

Table of Contents ParagontM OSF/1 Software Tools User's Guide

Compiling and Linking X Window System Applications ... 1-15

Basic X Window System Libraries ... 1-16

Advanced X Window System Libraries .. 1-16

Problems in Opening the Display .. 1-17

Specifying the Server to the Node Program ... 1-17

Ensuring that Supercomputer and Server Know Each Other's Address .. 1-18

Authorizing the Supercomputer to Access the Server ... 1-19

Chapter 2
USing the Distributed Graphics Library
A Sample DGL Program .. 2-2

What the graph Program Does .. 2-2

Compiling, Linking, and Executing the graph Program .. 2-3

Flow of Control in the graph Program .. 2-5

Programming Techniques .. 2-6

Connecting Nodes to the Server .. 2-6

Combining DGL Event-Driven Programming with Message Passing .. 2-6

Responding to Window Destruction ... 2-8

Batching Data Points into Larger Messages for Improved Performance ... 2-8

Compiling and Linking DGL Applications ... 2-10

Problems Opening the Display ... 2-10

Specifying the Server to the Node Program ... 2-11

Ensuring that the System and Server Know Each Other's Address .. 2-11

Authorizing the Supercomputer to Access the Server ... 2-13

Using the Network-Transparent Feature of GL ... 2-13

The gflushO Subroutine ... "' 2-13

The finish 0 Subroutine ... 2-14

Establishing a Connection .. 2-15

x

•
• • • • • • • • • • •
&

• • • • •
E-
E:

• • • • • • • • • • • •

o
II

D

II

n
I~

I~

1:1

1:1

IJ

IJ

IJ
£j

E

IJ
r· 1 . ~

I~j

IJ

IJ

IJ

IJ

IJ

IJ

IJ

D

• • •

Paragon™ OSFI1 Software Tools User's Guide Table of Contents

Limitations and Incompatibilities .. 2-15

The califuncQ Subroutine .. 2-15

Pop-up Menu Functions .. 2-16

Interrupts and Jumps ... 2-16

DGL Configuration ... 2-16

The inetd Daemon ... 2-16

The dgld Daemon .. 2-17

Error Messages .. 2-17

Connection Errors .. 2-18

Client Errors ... 2-18

Server Errors ... 2-19

Exit Status ... 2-19

Chapter 3
The Parallel Make Util ity
The makefile Description File .. 3-2

Parallel Controls ... 3-3

Using a Compute Partition ... 3-3

Using the Service Partition ... 3-5

Macro Extensions .. 3-5

Configuration File Support ... 3-6

Other Differences Between pmake and GNU make ... 3-7

xi

Table of Contents Paragon™ OSF/1 Software Tools User's Guide

List of Illustrations

Figure 1-1. The graph Program Display .. 1-3

Figure 1-2. graph Program Widget Hierarchy .. 1-5

Figure 2-1. graph Program Display ... 2-3

Figure 2-2. Flow Chart of the graph Program .. 2-5

xii

• • • • • • • • • • • • • • • • • •
E

Ir

• • • • • •
II

• •
II

• •

• • ..
II

D

D

D

n
D

~

D

IJ

I:J
[j

D
Ij

IJ

IJ

IJ
[]

[J

I)

[:J

111

IJ

II

• • •

Paragon™ OSFI1 Software Tools User's Guide Table of Contents

List of Tables

Table 1-1. Basic X Window System Libraries ... ~ 1-16

Table 1-2. Advanced X Window System Libraries ... 1-16

Table 2-1. Connection Error Values .. 2-18

Table 2-2. GL Client Exit Values ... 2-18

Table 2-3. GL Server Exit Values .. 2-20

xiii

Table of Contents Paragon™ OSF/1 Software Tools User's Guide

xiv

II

D

U

D

• • • •
• • • •
II

• • • • •
I:

• • • • • • • • •
•
II

• •

• • •
II

n
D

D

D

D

n
n
I~

IJ
FI
• ,J

• . "1
,101

I '" ,J

~

e

• • • •

The X Window System on the Nodes

Introduction
The X Window System, developed during Project Athena at the Massachusetts Institute of
Technology, is a software industry standard for graphics programming. It provides a standard
environment for application software and can control workstation displays.

A set of X Window System client libraries is included with paragon™ OSF/I. Applications using the
X Window System must be written in the C language.

This chapter describes:

• Special programming techniques for node X programs.

• How to compile and link X applications.

• What to do if your node X program cannot open the display server .

This chapter contain information specific to writing X applications for Paragon OSF/I only. It does
not describe how to write X Window System applications programs. For general information on
writing X programs, refer to the X Window System manuals by O'Reilly and Associates.

To use your workstation as a server that accesses the client libraries, the X server software must be
installed on your workstation. Most versions of the X server software have an authorization
mechanism to limit access of clients on other nodes of the network to your display. For more
information on authorization and security, refer to the X server documentation for your workstation,
the X online manual page, and "Authorizing the Supercomputer to Access the Server" on page 1-19.

The TCP/IP software on your Intel supercomputer must also be properly configured to install and
use the X software, and an entry for your X server must be included in the Intel supercomputer's
I etcl hosts file or NIS database. If no such entry exists, your system administrator must add an entry
for your server. For more information, refer to "Ensuring that Supercomputer and Server Know Each
Other's Address" on page 1-18.

1-1

The X Window System on the Nodes Paragon™ OSFI1 Software Tools User's Guide

Most of the programming techniques described in this chapter apply to programs to be run in the
compute partition. If you create an X program to run only in the service partition, you need only link
service partition applications properly, as described in "Compiling and Linking X Window System
Applications" on page 1-15. No special programming techniques are necessary unless your program
uses multiple threads; if it does, see "Threads and Mutexes" on page 1-7.

A Sample Node X Program
To help you start using X in the compute partition, a sample program called graph is in the directory
luserlsharelexamples!clxtoolkit on your Paragon system. This program demonstrates the special
programming techniques that you can use to write X applications to run on multiple nodes in the,
compute partition. A makefile is available in the same directory. Because the program is too long to
print in its entirety, this chapter explains only selected parts.

If you create an X program to run only in the service partition, no special considerations are
necessary. You need only see the system link instructions.

Compiling and running the graph program can help you verify that your Intel supercomputer and
server are properly configured. You might also wish to use it as a basis for your own X program, or
you may wish to examine the code for programming techniques.

The graph program uses the X Toolkit and the Athena Widgets. Toolkit programs are easier to write
and maintain thanXlib programs, and can offer more functionality with very little additional effort.
This chapter does not discuss the basic concepts of Toolkit and widget programming; for
information on these topics, refer to Volumes 4 and 5 of the O'Reilly and Associates manuals.

What the graph Program Does

1-2

The graph program performs the simple calculation for the value of sin(x) for 0 <= x < 21t and graphs
the result in a window as it calculates. The problem decomposition used in this example is a modified
domain decomposition. Node 0 maintains the display, and the other nodes calculate the points of the
curve. The x values from 0 to 21t are divided evenly among the calculating nodes. For example, if
the program is run on four nodes, node 1 is responsible for 0 <= x <= 21t13, node 2 is responsible for
21t13 < x <= 41t13, and node 3 is responsible for 41t13 < x < 21t.

• • • • • • • • • • • • •
II

• • • • • • • • • • • • • • • • • •

II

n ..
II

D

U
D

III

IJ

I i
"

IJ

IJ

IJ

IJ

1:1

1:1
[j

II

• • •

Paragon'M OSFI1 Software Tools User's Guide The X Window System on tile Nodes

Figure 1-1 shows the window and what the graph program displays when it is running. You can
resize the window using your window manager. If the window becomes too small to display the
graph, horiwntal and vertical scroll bars appear. The program adds two buttons to the window to
allow additional control during calculation. A restart button clears the window and restarts the
calculation from the beginning. A quit button allows you to terminate the program. In addition, your
window manager may also place a title bar and/or border on the window, which are not shown.

1.00000

0.60000

0.20000

-0.20000 /
-0.60000

-1.00000 +----r-----,,....----r-:::....4------,
0.00000 1.25600 2.51200 3.76800 5.02.coo 6.29000

Figure 1-1. The graph Program Display

Compiling, Linking, and Executing the graph Program

This section gives you step-by-step instructions for compiling and linking the graph program. To
compile this program on your workstation, you must have the icc cross-compiler.

1. Create a directory for the graph program in your current directory with the following command:

mkdir grapb

2. Copy the source code and malu!file for the graph program to your graph directory.

On the Intel supercomputer, use the following command:

cp /user/sbare/examples/c/toolkit/grapb/* grapb

1-3

---- ---------------------~--------------. ---------

The X Window System on the Nodes Paragon™ OSF/1 Software Tools User's Guide

1-4

On a workstation, use rep, ftp, or NFS to transfer the file from the supercomputer to your
workstation. For example, you could use rep, as in the following command, replacing super
with the name of your Intel supercomputer, and path with the path of the example:

rep "super:/user/share/e%amples/e/%toolki t/graph/*" graph

3. Change to the graph program directory:

cd graph

4. Use the supplied makefile to compile and link the program by entering the following:

make

5. If you compiled the program on a workstation, copy the executable to the Intel supercomputer
and then log into the Intel supercomputer, using the appropriate command for your site. For
example, if the appropriate commands are rep and rlogin, use the following commands:

rep graph super:
rlogin super

6. Set the DISPLAY environment variable to the appropriate value for your server. For example, if
your shell is csh and your server is a workstation called mysun, use the following command:

setenv DISPLAY mysun:O

7. Verify that your supercomputer is authorized to connect to your X Window System server. For
example, if you are using most-based authentication, you would execute the following
command on your workstation:-

%bost super

8. Run the graph program on at least two nodes; four or more are recommended. For example, to
run the program on eight nodes of your default partition, use the following command:

graph -sz B

The graph window appears and the graph is drawn. If the message "Error: Can't Open display"
appears instead, refer to "Problems in Opening the Display" on page 1-17.

Refer to the Paragon TM OSFI 1 User's Guide for information on controlling the execution of
parallel applications.

9. To draw the graph again, click the button labeled restart. To quit, click the quit button.

• • • • • • • • • • • •
II

• • • • • • • • • • • • • • • • • • •

a

• • •
D

D

o
D

II

D

n
I~

~

G

D

C

r:
G

rJ

[J

I:

IJ

(j

Ij

~

D

• • • •

Paragon™ OSFJ1 Software Tools User's Guide The X Window System on the Nodes

Widget Hierarchy of the graph Program

The graph program uses six types of widgets. not all of which are visible in Figure 1-1. Figure 1-2
shows how these widgets relate to each other in a widget hierarchy. Higher-level widgets. closer to
the back. are called "parents; lower-level widgets. closer to the front, are called children. Parent
widgets manage their children; child widgets provide the basic functionality of the program.

Top-level widget ---1.0;;:;;;;:;;;::;;:;;;;;;:;;;::;;:;;;;;;:;;;::;.;;;:;;;::;;;;;;:::;;;;;;:;:;;;:;;;

Paned widget ----+

Box widget -----+
Command widgets

Viewport widget ---~+

Core widget -----ffiffi!'it

Figure 1-2. graph Program Widget Hierarchy

1-5

The X Window System on the Nodes Paragon'" OSF/1 Software Tools User's Guide

The following list describes the widgets used in the program. Widgets of these types are commonly
used in X programs.

• An invisible top-level widget provides an interface between the window manager and its
children. When you resize a window using the window manager, the top-level widget transmits
the changes to its child widgets. This top-level widget has one child: a Paned widget.

• A Paned widget holds its children in a series of vertical areas called "panes." When the Paned
widget is resized, it resizes its children to display as much information as possible in the new
size. This Paned widget has two children, a Box widget and a Viewport widget.

• A Box widget holds its children in an arbitrary arrangement. The Box widget in the graph
program has two children, both Command widgets, arranged side-by-side.

• A Viewport widget provides scroll bars when necessary, and scrolls its children when you click
the mouse in the scroll bars. This Viewport widget has one child: a Core widget.

• A Command widget is a pushbutton that invokes a function when the user clicks on it. The graph
program has two Command widgets that invoke the Restart and Quit functions.

• A Core widget, akind of "vanilla" widget, does not have any functionality of its own. The graph
program uses the Core widget as a drawing surface for the graph.

In addition to its widgets, the program maintains an off-screen bitmap (a pixmap of depth 1) as a
graphics buffer. When the program draws the graph, it does not draw directly into the window.
Instead, it draws into its bitmap and then copies the bitmap into the Core widget. Thus, if the window
is obscured and then exposed, the bitmap can be copied to the widget again, without having to
recalculate the points of the graph.

• .,
• • • • •

II

n
D

U

II
I·~

.JIII

D

C

I~

(j

IJ

IJ

IJ

I"]

1:1

I~

I~

II

• • •

Paragon™ OSFI1 Software Tools User's Guide The X Window System on the Nodes

Programming Techniques
This section discusses the special programming techniques for writing X applications that run on
multiple nodes. These techniques are demonstrated in the graph program.

Node/Server Connection

For a node to have a connection to the server. the node must open its own connection with a call to
XOpenDisplayO. This can either be a direct call, or through some higher-level function such as
XtAppInitialize(».

Because each call to XOpenDisplayO uses a file descriptor in the server. it is usually better to have
one node make all of the X system calls (the distinguished node method). This node opens a
connection to the display and handles the display. Most X Window System servers have a limited
number of file descriptors. which limits the number of nodes that can open simultaneous connections
to the server. Increasing the file descriptor limit would require configuring a new system kernel and
rebuilding the X Window System server for your workstation. For more information. refer to your
workstation documentation or your system administrator.

In the graph program. only node 0 makes X calls. The other nodes only calculate; they pass the
results of their calculations to node 0 as messages. Node 0 graphs the contents of each message it
receives. In the graph program. node 0 does not calculate; it only handles the display. This design is
simpler to program. but requires the use of two or more nodes. You could. in another program.
decide to have this node calculate as well. The choice depends upon the relative importance of
speedy calculation and good graphics performance for your application.

Combining X Event-Driven Programming with Message Passing

X programs are built around a "main event loop;' which repeatedly retrieves and manipulates an X
event The problem with using a loop like this in a message-passing node program is that the
program blocks while waiting for the next event, becauseXNextEventO does not return until there
is an event Thus. when no X events are coming in. the node is blocked and cannot calculate or deal
with messages from other nodes. To avoid this problem, you can use threads.

Threads and Mutexes

In Paragon OSFIl. a process consists of a set of resources such as memory objects and open files.
and one or more threads. A thread. short for thread of control. is also called a lightweight process.
A thread consists of an instruction pointer and a stack. For example. a process created by a call to
forkO contains one thread. The standard OSFlllibrary call pthread_createO creates additional
threads.

1-7

The X Window System on the Nodes Paragon™ OSFI1 Software Tools User's Guide

1-8

When more than one thread is in a single process, each thread executes independently, but they share
resources. Por example, all the threads in a single process share memory; when one thread writes to
a variable in memory, it modifies the value of that variable for all threads. All the threads in a process
run on the same node.

Because threads share memory, you must carefully coordinate access to shared areas of memory. Por
example, if two threads write to the same area of memory at the same time, the results may be
indeterminate. To prevent this problem, you can use amutex (short for multiple exclusion) variable.

A mutex is a variable of type pthread _ mutex _ t (defined in pthread.h). A mutex has two states:
locked and unlocked. The call pthread _ mutex JnitO initializes a mutex and should be called before
the pthread_create()so that the two threads can share the mutex. The call pthread_mutex_loekO
attempts to lock a mutex. If it is already locked, the call blocks \Ultil the mutex becomes unlocked.
The call ptbread_mutex_unlockO unlocks a mutex. By surro\Ulding writes to shared variables with
ptbread _ mutexJockO and pthread _ mutex _unlockO, you can make sure that only one thread
writes to the variable at the same time.

NOTE

In programs where multiple threads make X calls, you must
surround all X calls in all threads with pthread_mutex_lockO and
pthread_mutex_unlockO·

ThiS is required because the X library is not reentrant; that is, it is
not written to be executed by multiple threads simultaneously. If
two threads make calls to the X library simultaneously, even if they
are different calls, internal static variables used by the X library
could take on indeterminate values. This could result in
hard-to-diagnose X errors.

Threads and mutexes are a standard part of OSP!1 and are not unique to Paragon OSP!I. Por more
information on threads and mutexes, refer to pthread _create() and ptbread _ mutex _ initO in the
OSFll Programmer's Reference.

•

n

• •
II

D

IE
o
D

II

G

I]

1::1

1:1
(j

II

D

Paragon™ OSFI1 Software Tools User's Guide The X Window System on the Nodes

Threads and Mutexes in the graph Program

The graph program begins by having node 0 set up all the widgets, windows, and other X structures
it will need. As part of this step, it initializes a mutex with the default attributes:

#include <pthread.h>
pthread_mutex_t mutex; /* mutual-exclusion semaphore */

•
•

/* create a mutex to control access to the X server */
pthread_mutex_init(&mutex, pthread_mutexattr_default);

The variable mutex is declared as a global variable so that all the functions in the program can use
the same mutex. The special value pthread _ mutexaUr _default is dermed in pthread.h and
specifies the default attributes for a mutex.

After setting up all the X objects, the graph program creates a thread to handle X events:

pthread t thread;
•
•
•

/* create a thread to handle X events */
pthread_create(&thread, pthread_attr_default,

(void *(*) (»XtAppMainLOop,
(void *)app_context);

The first two arguments of pthread _ createO specify the thread and its attributes, as is the case for
pthread _ mutex JnitO. The third and fourth arguments specify the function that the thread should
begin executing and the arguments of that function. In this example, it calls the standard X toolkit
function XtAppMainLoopO with the argument app _context. This function never retwns; it loops
forever, handling any X events that arise.

1-9

The X Window System on the Nodes Paragon™ OSF/1 Software Tools User's Guide

While the thread created by this call to pthread_create() is handling the X events, the program's
original thread of control also enters an infInite loop. This loop repeatedly waits for a message from
another node that contains a series of data points, draws those points into an off-screen bitmap, and
then copies the bitmap to the screen by calling RedrawPictureO:

1* infinite loop for messages *1
while(l) {

}

crecv(DATA, &points, sizeof(points»;

pthread_mutex_lock(&mutex);
XDrawPoints(XtDisplay(bitmap), picture, draw_gc,

points. points, points.npoints,
CoordModeOrigin);

pthread_mutex_unlock(&mutex);

RedrawPicture(bitmap, NULL, NULL, NULL);

The XDrawPointsO call is surrounded by ptbread _ mutex JockO and ptbread _ mutex _unlockO
calls 00 the mutex named mutex. The same pair of calls surrounds each X call in the program, except
for those that precede the pthread _ createO. This prevents either thread from making any X call if
the other thread is in the process of making an X call.

The function RedrawPicture() is not surrOlmded by lock and unlock calls because it is a
user-provided function, nQt a standard X Toolkit function. However, X calls within
RedrawPictureO are surrounded by lock and unlock calls. The code for RedrawPictureO is shown
in "Starting the Other Nodes on the First Expose Event" on page 1-11.

Avoid locking a mutex before calling a user-provided function that locks the same mutex. If the
mutex is locked before the call, the lock within the call waits for the mutex to unlock. Because the
thread is waiting for itself, the mutex will never unlock, hanging the process.

Synchronizing Window Operations with Window Mapping

1-10

X programs should wait until the window bas actually appeared before manipulating it The function
XMapWindowO and similar functions do not necessarily cause the window to appear immediately;
they merely request that the window be mapped. Depending on the window manager, the window
may not appear for a while.

You can have the program wait until the first Expose event is received from the window, or you can
insert a call to XSyncO after the XMapWindowO. Attempting to perform certain operatioos on a
window that bas not yet appeared can result in X errors.

•
• • • • • •
• • • • • • • • a

• •
• • •
•
•
• • • •
• • .i
• •

o
II

D

D

n
I:

n

IJ

IJ
(J

IJ

IJ

IJ

IJ

I] .,
IJ

II

• • •

Paragon TM OSFI1 SOftware Tools User's Guide The X Window System on the Nodes

In node programs, ensuring that the window has appeared before any node attempts to use it can be
a special problem. It would be simplest to have the X node (the node with the connection to the
display) immediately display the results of each message received. If, however, the calculating
nodes, which mayor may not include the X node, begin sending data to the X node as soon as they
start up, the X node may receive data to draw before the window is available. You can deal with this
problem in several ways, such as:

• Have the calculating nodes begin calculating as soon as they are loaded, sending the results to
the X node as soon as they are available. The X node buffers the data from the calculating nodes
as the data is received, then draws the contents of the window all at once after the fIrSt event is
received. This requires more buffering on the X node.

• Have the calculating nodes wait to calculate until they receive a "go-ahead" message from the
X node. The X node sends this message when it receives the first event. The "go-ahead"
message may include data the node needs to begin calculation. This technique can be used in a
manager-worker problem decomposition to make the X node the manager.

• Have the calculating nodes begin calculating as soon as they are loaded, buffering any results
generated. The X node sends a "go-ahead" message to the calculating nodes when the first event
is received, and the other nodes send a return message with the buffered data when they receive
the "go-ahead." This technique requires more buffering on the calculating nodes.

In the graph program, the computing nodes begin calculating only when the X node tells them to
start, sending a "go-ahead" message when the first Expose event is received.

Starting the Other Nodes on the First Expose Event

The RedrawPictureO function in the graph program is called in response to an Expose event.
Following is the RedrawPictureO function code:

1-11

The X Window System on the Nodes Paragon™ OSFI1 Software Tools User's Guide

1-12

static void
RedrawPicture(w, event, params, num-params)
Widget Wj
XExposeEvent *eventj
String *paramsj
Cardinal *num-paramsj

/* ignored */
/* ignored */
/* ignored */

{

}

static int started = OJ

pthread_mutex_lock(&mutex)j
if (DefaultDepthOfScreen(xtScreen(w» == 1) {

XCopyArea(XtDisplay(bitmap), picture, XtWindow(bitmap),
copy_gc, 0, 0, PIXMAPWIDTH, PIXMAPHEIGHT,
0, O)j

} else {

}

XCopyPlane(XtDisplay(bitmap), picture,
XtWindow(bitmap),copy_gc, 0, 0,
PIXMAPWIDTH, PIXMAPHEIGHT, 0, 0, 1)j

pthread~utex_unlock(&mutex);

if (I started) {
StartNodes () j
started = 1j

}

The RedrawPictureO function is an action procedure. a function that is called by a widget in
response to an event All action procedures have the same four parameters as shown. In this example,
this action procedure uses only the fIrSt parameter. and performs two tasks:

1. Copies the program.'s off-screen bitmap to the Core widget, using XCopyAreaO if the screen
is monochrome and XCopyPlane() if the screen is color or grayscale. XCopyPlaneO is slower
than XCopy AreaO, but is necessary when a monochrome bitmap is copied to a color or
grayscale screen.

The entire if test is surrounded by pthread _ mutex JockO and ptbread _ mutex _ unlockO calls
to prevent the two threads in the program from making any X calls at the same time. The if test
contains the X calls DefaultDeptbOfScreenO, XCopyAreaO, and XCopyPlaneO.

2. On the fIrst call, the function sends a "go-ahead" message to the other nodes to indicate that the
window has been exposed and the other nodes can start sending data. This message prevents the
program from trying to draw in the window before the window exists.

The function StartNodesO, called in the RedrawPictureO function, sends an empty message of
type START (an arbitrary constant defined earlier in the program) to the other nodes:

•

• •
II

D

D

I~

n
I:
c

• "'!\I." ;,1 .""':
.J

I]

IJ
(J

IJ

(~

IJ

1:1

IJ

IJ

I:J

II

• • •

Paragon™ OSFI1 Software Tools User's Guide The X Window System on the Nodes

static void
startNodes ()
{

csend(START, NULL, 0, -1, 0);
}

In a real application, this would be a good place to send each node its initial data .

Associating a Function with an Expose Event

The following code creates the widget and makes it call the function RedrawPicture() when it
receives an Expose event.

/* translation table for bitmap core widget */
String trans = "<Expose>: RedrawPicture()";

•
•
•

/* create Core widget for drawing into */
bitmap = xtVaCreateManagedWidget("bitmap",

widgetClass, viewport,
XtNtranslations, xtParseTranslationTable(trans) ,
XtNwidth, PIXMAPWIDTH,
XtNheight, PIXMAPHEIGHT,
NULL) ;

This code is fairly complicated, because a widget of class widgetClass (a Core widget) does not
have any pre-defined action procedures. Y Oll have to create a string called a "translation table" that
associates event types with function names, and then use XtParseTranslationTable() to convert the
translation table to a form that the Toolkit can interpret. The translation table in this example
contains only one line, which makes the widget call the function RedrawPicture() whenever it
receives an Expose event.

Within this section of code, the following lines in the call to XtVaCreateManagedWidgetO set the
widget's width resource to PIXMAPWIDTH and its height resource to PIXMAPHEIGIIT:

xtNwidth, PIXMAPWIDTH,
XtNheight, PIXMAPHEIGHT,

PIXMAPWIDTH and PIXMAPHEIGIIT are the size of the pixmap, defmed earlier in the
program. These lines are necessary because the default size of the Core widget is 0 by 0 pixels.

1-13

The X Window System on the Nodes Paragon™ OSF/1 Software Tools User's Guide

Responding to Window Destruction

If the user destroys the application window using the window manager's Kill Window function, the
default window destruction procedures terminate the X node, but do not terminate the calculating
nodes.

To ensure that the destruction of the application window does not become a problem, you can install
an YO error handler that kills the other node processes by calling kiU(O, SIGKILL). The proper way
to install this error handler depends upon the toolkit (if any) and the window manager you are using,
There is no error handler in the graph program. For more information on handling window
destruction, refer to the documentation for your toolkit and window manager.

Batching Data Points into Larger Messages for Improved Performance

1-14

Graphics performance usually suffers when you draw only one point at a time. The performance of
a message-passing program also suffers when you spend a lot of time passing messages. You can
improve both kinds of performance by batching your data points into larger messages.

The follOwing is the code that collects the data into messages in the graph program:

struot {
int npoints;
XPoint points[NPOINTS];

} points; /* data points */
•

•
double x, y, unit, start, end;
int i = 0;

•
•
•

for(x = start; x < end; x += STEP) {
Y = sin(x);

}

probToSoreen(x, y, &(points.points[i));
i++;
if(i >= NPOINTS) {

points.npoints i;

}

osend(DATA, &points, sizeof(points) ,
0, 0);

i = 0;

if(i != 0) {

• •
• • • • • • • • • •
E:

It

• • • •
E

~

II

• • • • •
• • • • • •

II

• •
II

o
D

D

D

D

D

n
I:J

I~

IJ

CI

IJ

[J

~

Ij

Ij

D

• • • •

Paragon™ OSF/1 Software Tools User's Guide The X Window System on the Nodes

points.npoints = i;
csend(DATA, &points, sizeof(points), 0, 0);

}

. The user-provided function ProbToScreen() transforms problem coordinates (the units used in the
calculation) to screen coordinates (pixels). The fmt two parameters are the X and Y problem
coordinates of a point, and the third parameter is a pointer to the XPoint structure in which it stores
the corresponding screen coordinates.

Compiling and Linking X Window System Applications
To compile and link an X Window System application for the nodes, use the icc command with the
-ox or -lox switch and one or more of the -I switches shown in Table I-I and Table 1-2. Other
compiler switches may be used as well. For information on the switches that the compiler accepts,
refer to the Paragon™ OSFll C Compiler User's Guide.

Some X libraries depend on other libraries. You must specify them in the following order on the
command line:

-lxaw -lXmu -lxt -lXext -lXll

If you use any library in this list, you must also include the libraries to its right. If you use any X
libraries other than those on this list, place them to the left of this list.

For example, to compile and link a program that uses the Athena widgets (Xaw), use a command line
like the following:

icc -DZ filename -lXaw -lXmu -lxt -lXezt -lXll

To compile the same program for a service node, use the same command line without the -ox switch.

1-15

The X Window System on the Nodes Paragon'" OSF/1 Software Tools User's Guide

Basic X Window System Libraries

Nine X client libraries are provided: five basic libraries and four advanced libraries. The five basic
libraries (Xlib, Xaw, Xmu, XI, and oldX) are documented in the X Window System manuals by
O'Reilly and Associates. These libraries and the volumes in which they are documented are listed
in Table 1-1. The Xlib library is the only one whose name on the system is different from the standard
library name.

Table 1-1. Basic X Window System Libraries

Library Name Function and Documentation Link SWitch

Xlib Core X Window System library -IX 11
(Volumes 1 and 2 of the O'Reilly manuals)

Xaw Athena widget set -lXaw
(Volumes 4 and 5 of the O'Reilly manuals)

Xmu MIT miscellaneous utilities -lXmu
(Volume 2 of the O'Reilly manuals)

Xt . Toolkit intrinsics layer -lXt
(Volumes 4 and 5 of the O'Reilly manuals)

oldX XI0 compatibility library -loldX
(Volume 2 of the O'Reilly manuals)

Advanced X Window System Libraries

1-16

The other four supplied libraries (Xau, Xdmcp, Xexl, and Xinput) are typically used for advanced X
Window System programming. Documentation for these libraries is supplied in troff format and is
located in the directory lusrlliblXllldoc on the Intel supercomputer. Specific directories for these
documents within lusrlliblXllldoc are shown in Table 1-2.

Table 1-2. Advanced X Window System Libraries

Library Name Function and Documentation Link SWitch

Xau X authorization protocol -lXau
(troff documentation in lusrlliblXllldoclXau)

Xdmcp X display manager control protocol -lXdmcp
(troff documentation in I usrlliblXlll doc/Xdmcp)

Xext Miscellaneous X extensions -lXext
(troff documentation in lusrlliblXllldoclXext)

Xi X input extension -lXi
(troff documentation in lusrlliblXllldoclXinput)

• • •
• • • • • • • • •
II

• ..
• • •
II

• • • • • • .' • • • .:
• •

• • ..
D
I)

Paragon™ OSFI1 Software Tools User's Guide The X Window System on the Nodes

Problems in Opening the Display
This section describes what to do if you see the following message when you try to run an X program
on the Intel supercomputer:

Error: Can't Open display

This message indicates that the node program has failed to open a connection with the server over
the network. 1bree of the most common causes of this message are:

• You have not told the node program which server to use.

• The Intel supercomputer and the server do not know each other's IP address.

• The Intel supercomputer is not authorized to access the server.

The following subsections describe these problems and their solutions.

Specifying the Server to the Node Program

There is no X Window System server on the Intel supercomputer. Therefore, you must always
specify the display when you run an X program. The default value unix:O will not work on the Intel
supercomputer.

You can specify the display with the -display command-line argument or by setting the DISPLAY
environment variable on the Intel supercomputer to the appropriate value for your server. Use the
following command on the Intel supercomputer to check the value of your DISPLAY variable (if you
use a shell other than csh, use the appropriate commands):

echo $DISPLAY

The correct value is usually the name of the server computer followed by ":0". For example, suppose
your X server is a worlcstation called mysun. Before loading a node program that makes X client
calls, issue the following command:

setenv DISPLAY lIIysun: 0

1-17

---- --- -------------------------"---~-~ ----------------------- - -- --------- ------ --------- -

The X Window System on the Nodes Paragon'" OSF/1 Software Tools User's Guide

To have the DISPLAY variable set automatically every time you log in, put the appropriate setenv
command in your .cshrc or .login file on the Intel supercomputer, entering a line like the following:

setenv DISPLAY mysun:O

This line ensures that all programs started from the Intel supercomputer, including node programs,
use mysun as the X server. If your X server has more than one display, you may use the following
form:

setenv DISPLAY mysun:O.O

Ensuring that Supercomputer and Server Know Each Other's Address

1-18

If you have specified the server to the X program but you still get the Can I t Open display
error message, you must make sure that the Intel supercomputer and the server know each other's
network address.

1. Use the ping command on the Intel supercomputer to check that it knows the address of the
server. You need to use the full pathname for the ping command, as in this example:

/sbin/ping mysun
PING mysun.myco.com (012.34.567.890): 56 data bytes
64 bytes from 012.34.567.890: icmp_seq=O ttl=255 time=10 ms
64 bytes from 012.34.567.890: icmp_seq=l ttl=255 time=O ms
64 bytes from 012.34.567.890: icmp_seq=2 ttl=255 time=O ms
<Ctr1-c>

----mysun.myco.com PING Statistics----
3 packets transmitted, 3 packets received, 0% packet loss
round-trip (ms) min/avg/max = 0/3/10 ms

The above output indicates that the Intel supercomputer knows the address of mysun. The
following output indicates that it does not know the address:

ping: unknown host mysun

If you see this message, ask your system administrator to add the server's name and address to
the Intel supercomputers I etcl hosts file, or your site's NIS database. If the ping command hangs,
it may indicate that the specified name is in the fetclhosts file but the address is wrong; the
system administrator can check this.

• • •
•• • • • • • • •
I:

IE

II:

• • • •
II

• • • • • • • • • • • • .'

II

II

D

II

n

D

II

n
r:J

c

IJ

IJ
I ,

.~

I~

II

• • •

Paragon™ OSFI1 Software Tools User's Guide The X Window System on the Nodes

2. If the Intel supercomputer knows the server's address, check whether the server knows the Intel
supercomputer's address. To check this, you must know the Intel supercomputer's hostname. If
you do not know this name, use the hostname command on the Intel supercomputer. For
example:

hostDame
super

3. Once you know the hostname, use ping or the equivalent command on the server to check that
the server knows the Intel supercomputer's address. On a Sun system, ping is not in the default
execution path for users other than root, SO you must specify its full pathname. For example:

mysun% /usr/etc/ping super
super is alive
mysun%

The output above indicates that mysun knows the address of super. The following output
indicates that it does not know the address:

ping: unknown host super

If you see this message, your system or network administrator needs to add the Intel
supercomputer's name and address to the server's fetefhosts file or NIS database.

Authorizing the Supercomputer to Access the Server

If the Intel supercomputer knows the address of the server, but the server does not authorize access
by the Intel supercomputer, the following messages may appear:

Xlib: connection to "mysun:O.O" refused by server
Xlib: Client is not authorized to connect to Server
Error: Can't Open display

The following steps describe how to fix this problem for xhost authorization, the most common
authorization system. Consult your system administrator if your system uses a different kind of
authorization.

1. Determine the Intel supercomputer's hostname. as explained in the previous section.

2. Once you know the hostname, use the xhost command on the server to allow access to that
name:

mysun% %bast super
super being added to access control list
mysun%

The X Window System on the Nodes Paragon™ OSF/1 Software Tools User's Guide

1-20

3. To list the authorized hosts, issue the xhost.command with no arguments:

mysun% DOS't

access control enabled (only the following hosts are allowed)
super
bear
wolf
localhost
mysun%

The effect of the most command lasts only as long as the X server software is running, so you might
want to add this most command to your .xinitrc file on the server.

• • • • • • • •
• • • •
II

•
•
.:

•
II

II:

.:

• • • • • • •
• • • • .:

II

D

n
II

11

Ij

I"~

I:]
r1
.~

I "" ~

[1

IJ

IJ

I]

IJ

Ij

II

• • •

Using the Distributed Graphics Library

The Distributed Graphics Library (DGL) is a software library of subroutines developed by Silicon
Graphics, Inc. (SOl) for two-dimensional and three-dimensional graphical programming. It can
control the displays of workstations, and it provides a standard environment for application software.

A set of DOL client libraries is offered as an option under the Paragon OSF/1 operating system.
These libraries run either in service or compute partition of the Intel supercomputer. Applications
using DOL may be written in either Fortran or C.

This chapter describes:

• Special programming techniques for node DOL programs

• How to compile and link DOL applications

• Where nocle DOL programs look for resources

• What to do if your nocle DOL program cannot open the display server.

This chapter only includes information specific to writing DOL applications for Paragon OSFIl. It
does not describe how to write DOL applications programs. For information on writing DOL
programs, refer to the SOl Graphics Library Programming Guide.

To use your workstation as a server with access to the Paragon OSFIl DOL client libraries, the DOL
daemon, lusrletcldgld, must be activated on your workstation. For information on how to do this,
refer to "Using the Network-Transparent Feature of OL" on page 2-13.

An entry for your DOL server must be included in the Intel supercomputer's I etcl hosts file or NIS
database. Ifno such entry exists, your system administrator must add an entry for your server. Refer
to "Ensuring that the System and Server Know Each Other's Address" on page 2-11 for more
information.

2-1

Using theOistributeci Graphics Library Paragon'" OSF/1 Software Tools User's Guide

Most of the programming techniques and considerations described in this chapter apply to programs
to be run in the compute partition. If you create a DOL program to run only in the service partition,
no special programming techniques are necessary . You need only link service partition applications
properly, as described in "Compiling and Linking DOL Applications" on page 2-10. ,

A Sample DGL Program

NOTE

The sample program described in this chapter is not yet available
on the system. The description of how to use it is included in this
release for informational purposes. An example will be available
on line in a future software release.

What the graph Program Does

2·2

The graph program perfonns a simple calculation for the value of sin(x) for 0 S x < 27t and graphs
the result in a window as it is calculated. You can resize the window, using your window manager.
The graphed image remains proportional to the size of your window, growing as the window
enlarges, shrinking as the window gets smaller. A restart button, when selected, clears the screen
and restarts the calculation from the beginning. A quit button allows you to terminate the program.

The problem decomposition used in this example is a modified domain decomposition. Node 0
maintains the display, and the other nodes calculate the points of the curve. The x values from 0 to
27t are divided evenly among the calculating nodes. For example, if the program is run on four nodes,
node I is responsible for 0 S x S 21c/3, node 2 is responsible for 21t13 < x S 41t13, and node 3 is
responsible for 41t13 < x < 27t.

• • • • • • • • • • • •
I:

• • • •
• • • • • • • • • •
• • • • •

n
u
D

D

II

D

I:

IJ

I~

IJ

I~

I~

1m
I~

D

• • •

Paragon™ OSF/1 Software Tools User's Guide Using the Distributed Graphics Library

Figure 2-1 shows what the graph program looks like when running. (Your window manager might
also place a header and/or border on the window, which are not shown here.)

1.00000 _

1\ 0.60000 _

0.20000 _
I \

\ ; \ -0.20000 _

\
I

/ -0.60000 _

-1.00000

0.00000 11•25600 12•51200 13•76800 15•02400 16•28000

Figure 2·1. graph Program Display

Compiling, Linking, and Executing the graph Program

This section describes how to compile and link the C or Fortran language versions of the graph
program. Your Intel supercomputer system software must include the DGL option. To compile these
programs on your workstation, you must have the icc and/or i(77 cross-compiler.

NOTE

Because the C and Fortran versions of this program are not yet
available on line, these instructions list the variable path in place
of an actual path. When available, these programs and their
makefiles will reside in separate directories.

1. Create a directory for the graph program in your current directory with the following command:

mkdir grapb

2. Copy the source code and makefile for the graph program to your graph directory.

On the Intel supercomputer, use the following command:

cp path/grapb/* grapb

2-3

Using the Distributed Graphics Library Paragon™ OSF/' Software Tools User's Guide

2-4

On a workstation, use either rep or ftp to transfer the file from the supercomputer to your
workstation. For example, you could use rep, as in the following command, replacing super
with the name of your Intel supercomputer:

rep "super: path/!1rapb/*" !1rapb

3. Use the following command to change to the graph program directory:

ed !1rapb

4. Use the following command to compile and link the program:

make

5. If you compiled the program on a workstation, copy the executable to the Intel supercomputer
and then log into the Intel supercomputer, using the appropriate command for your site. For
example, if the appropriate commands are rep and rlogin, use commands like the following:

rep !1rapb super:
rlo!1in super

6. When the program has been compiled and linked, set the DGLSERVER environment variable to
the appropriate value for your server. For example, if your shell is csh and your server is a
workstation called mysgi, use the following command:

setenv DGLSERVER mys!1i

7. Run the program on at least two nodes; four or more are recommended. For example, to run the
program on eight nodes of your default partition, you would use the following command:

!1rapb -sz 8

The graph window appears and the graph is drawn. If the message "Error: Can't Open display"
appears instead, refer to "Problems Opening the Display" on page 2-10.

For information on controlling the execution of parallel applications, refer to the Paragon ™
OSFIl User's Guide.

8. Click the button labeled restart if you want to draw the graph again. If you want to quit, click
the quit button. These buttons are not shown in Figure 2-1, but appear on your display.

•
•
• • • • • •
• • • • ..
K

•
Il

•
•
II

• • • • • • • •
• • • • •

D

•
D

D

I)
I~

II

r~

1%
I~

I]
I ""

.~

D

D
1'1"!

<IJ

14. ' ,J

I:
IJ

I]

IJ

I:
1-:111,

]

~

D

• • •

-..... ~~~~-~. ---- -~-' ---~--- --- . -- -'-~~-~--------~~~~-

Paragon™ OSF/1 Software Tools User's Guide Using the Distributed Graphics Library

Flow of Control in the graph Program

Figure 2-2 shows a flow chart for the graph program.

START

Initialize DGL
environment

N

N

y

y

Wait for message;
Calculate a set of

data pOints

Send a message to
node 0

Process DGL event

Draw the data from
the message

Figure 2-2. Flow Chart of the graph Program -

2-5

Using the Distributed Graphics Library Paragon™ OSFI1 Software Tools User's Guide

Node 0 sets up the display window and all of the pop-up menus, and then loops while awaiting a
DOL event or a message. When thisnode receives an event, the event is processed. When this node
receives a message, it graphs the data found in the message.

Nodes other than node 0 just calculate the points of the grapb and send them to node 0 as messages.

Programming Techniques
This section discusses the special programming techniques for writing DOL applications that run on
multiple nodes. These techniques are demonstrated in the graph program.

Connecting Nodes to the Server

In the graph program, only node 0 makes DOL calls. The other nodes only calculate; they pass the
results of their calculations to node 0 as messages. Node 0 graphs the contents of each message it
receives.

If you have a single node handle the display, you may to have this node calculate as well, depending
on the relative importance of speedy calculation and good graphics performance for your
application. In the graph program, node 0 does not calculate; it only handles the display. Using node
o strictly to handle the display and not to calculate is simpler to program, but produces no results
unless run on two or more compute nodes.

Combining DGL Event-Driven Programming with Message Passing

2..a

DOL programs are built around a "main event loop", which repeatedly receives and then
manipUlates a DOL event. The problem with using a such loop in a message-passing node program
is that the program blocks while waiting for the next event (qreadO does not return until there is an
event). Therefore, when no DOL events are cOming in, the node is blocked; it cannot calculate or
handle messages from other nodes.

By using a non-blocking call in your main event loop, you can let the loop proceed rather than block
if there is no DOL event pending. In a DOL program, you would call qtestO instead of qreadO.

Similarly, you should use non-blocking message calls, such as irecvO, so neither the
message-handling part of the program nor the DOL event-handling part blocks the other.

• • • • • • • • • • • •
a:
E

•
II

• •
II

• • • • • • • • • • • • •

II

a
n
D

D

I~

1"1 , ~,J

(""
1'1.:

I~

1-:::

I:

IJ

I'D
Ij

I~

n

• • •

Paragon™ OSF/1 Software Tools User's Guide Using the Distributed Graphics Library

In the C version of the graph program. the main event loop looks like the following, with the call of
qtestO instead of the usual call to qreadO:

/* prepare to receive first message */
msgid = irecv(DATA, &points, sizeof(points»;

/* start the nodes *1
csend(START, NULL, 0, -1, 0);

/* infinite loop for DGL events and messages *1
while(l) {

}

if(qtest() != 0)
HandleDGLEvent();

if(msgdone(msgid» {

}

int i;

/* insert the new line segments in the object *1
editobj(Wave);
bgnline() ;
for(i=O; i<points.npoints; i++)

v2f(points.points[i]);
endline() ;
closeobj();

1* draw the new data */
callobj(Wave);

msgid = irecv(DATA, &points, sizeof(points»;

The main event loop of the Fortran version of graph looks like this:

c
C prepare to receive first message
c

msgid = irecv(DATA, msgbuf, 4*MSGSZ)
c
C start the nodes
C

call csend(BEGIN, points, 0, -1, 0)
c
C infinite loop for DGL events and messages
C
1000 if(qtest() .NE. 0) then

call dglevt(wave, mymenu)
else if(msgdone(msgid) .NE. 0) then

call msgevt(wave, npoints, vector)

2-7

~---"-----"--------.--~--- -.~--.-~------~--.~---.---.--~--.----.--.-----.~-~.

Using the Distributed Graphics Library Paragon™ OSF/1 Software Tools User's Guide

MSgid = irecv(DATA, MSgbuf, 4*MSGSZ)
endif
goto 1000

Responding to Window Destruction

If the user destroys your application's window with the window manager's "Kill Window" function,
the default window destruction procedures terminate the DOL node. However, this does not
terminate the calculating nodes.

The effect of this problem depends on your application. If this is a problem for your application, you
should add cases to your DGL event loop that catch WINQUIT and WINSHUT events and, if
found, call klll(O, SIGKILL» to terminate the compute nodes.

Batching Data Points into Larger Messages for Improved Performance

2-8

Graphics perfonnance usually suffers when you draw only one point at a time. The perfonnance of
a message-passing program also suffers when you spend a lot of time passing messages. You can
improve both kinds of perfonnance by hatching your data points into larger messages.

The C code that collects the data into messages in the graph program looks like this:

struct {
int npoints;
float points [NPOINTS] [2];

} points; 1* data points *1

Coord x, unit, start, end;
int i;

for(x = start; x < end; x += STEP) {
points.points[i] [0] x;
pOints.points[i] [1] = sin(x);
i++;

}

if(i >= NPOINTS) {
points.npoints = i;

}

csend (DATA , &points, sizeof(points),
0, 0);

i = 0;

• •
• • • • • •
• • •
.:
I:
~

E

E:

• • • •
K

• •
• • • • • • • • •

U

II

a
D

II

n
11

n
IE
n
n
IJ

I~

IJ

D

IJ

G

n

• • •

Paragon™ OSF/1 Software Tools User's Guide Using the Distributed Graphics Library

if(i != 0) {
points.npoints i;
csend(DATA, &points, sizeof(points), 0, 0);

The Fortran code that collects the data into messages in the graph program looks like this:

2000

integer*4 npoints
real*4 vector(2,100)
real*4 msgbuf(201)
equivalence(npoints,msgbuf(l»
equivalence(vector(l,l), msgbuf(2»

real*4 x, start, end
integer*4 i

i = 1
DO 2000 x = start, end, STEP

vector(1, i) x
vector(2,i) = sin(x)
i = i + 1
if(i .GT. NPTS) then

npoints = i - 1
call csend(DATA, msgbuf, 4*MSGSZ, 0, 0)
i = 1

endif
continue

if(i .NE. 1) then
npoints = i - 1
size = 4 * ((2 * npoints) + 1)
csend(DATA, msgbuf, size, 0, 0)

endif

2-9

~-~.--.--.---.--.-----~---~~-"~~~~

Using the Distributed Graphics Library Paragon"" OSF/1 Software Tools User's Guide

Compiling and Linking DGL Applications
To compile and link a DOL application for compute nodes, use the icc command or the it'77
command with the -ox switch, the -Idgl (for both C and Fortran) and -lfgl (for Fortran only)
switches. The -ox switch compiles the code to be executed on compute nodes. The node TCPIIP
library required for all DOL programs is included automatically, with no extra switches required in
the compile command line.

• To compile and link a C program for the compute partition, use a command line like the
following:

icc -nz filename -ldgl

• To compile and link a Fortran program for the compute partition, use a command line like the
following:

if77 -nz filename -lfgl -ldgl

• To link for the service partition, use the same command lines as above, but without the -ox
switch.

Problems Opening the Display

2-10

This section describes what to do if you see an error message when you try to run a DOL program
on an Intel supercomputer. When a node program has failed to open a connection with the server
over the network, one of the following three problems is likely to be the cause. Error messages that
usually indicate. one of these problems are also shown.

• You have not told the node program which server to use.

libdgl error (pipe_init): DGLLOCAL not supported
libdgl error (default init): default dglopen returned -238436736

• The Intel supercomputer and the server do not know each other's Internet address.

libdgl error (*gethostbyname): can't get addr for name
libdgl error (write): value

• The Intel supercomputer is not authorized to access the server.

libdgl error (login): dgl server access denied -
cannot open link to DGL server mysgi

• • • • • • • • • • •
II

I:

11:.

II

• • •
II

II

•
&

• • • • • • • • • •

o
II

II

n

" I !! ..
II

I~

I~

IJ

rJ
IJ
('I

.J

[J

I~

II

• • •

ParagonT .. OSFI1 Software Tools User's Guide Using the Distributed Graphics Library

The following subsections describe these problems and their solutions.

Specifying the Server to the Node Program

There is no DGL server on the Intel supercomputer. and no default server value for the Intel
supercomputer. As a result. you must always specify the display when you run a DGL program

You specify the display by setting the DGLSERVER environment variable on the service node to the
appropriate value for your server. (Environment variables are automatically copied from the service
node shell to the node program.) Use the following command on the service node to check the value
of your DGLSERVER variable:

echo $DGLSERVER

The correct value is usually the name of the server computer. For example. suppose your DGL server
is a workstation called mysgi. Before loading a node program that makes DGL client calls. issue the
following command:

getenv DGLSERVER mys~i

To set the REMOTEHOST variable automatically every time you log in. put the appropriate setenv
command in your .cshrc or .login file on the service partition. For example:

setenv REMOTEHOST mysgi

For more information. refer to "Establishing a Connection" on page 2-15.

Ensuring that the System and Server Know Each Other's Address

If you have specified the server to the DGL program, but the Intel supercomputer and the server do
not know one another's addresses. you may still get one of the following error messages:

libdgl error (*gethostbyname): can't get addr for
libdgl error (write):

2-11

Using the Distributed Graphics Library Paragon'" OSF/1 Software Tools User's Guide

2-12

To ensure that the Intel supercomputer and the server know each other's network address, perform
these steps:

1. Use the ping command on the Intel supercomputer to check that it knows the address of the
server. For example:

/sbin/ping mysgi
PING mysgi.myco.com (012.34.567.890): 56 data bytes
64 bytes from 012.34.567.890: icmp_seq=O ttl=255 time=10 ms
64 bytes from 012.34.567.890: icmp_seq=1 ttl=255 time=O ms
64 bytes from 012.34.567.890: icmp_seq=2 ttl=255 time=O ms
<ctrl-c>

----mysgi.myco.com PING Statistics----
3 packets transmitted, 3 packets received, 0% packet loss
round-trip (ms) min/avg/max = 0/3/10 ms

The output above indicates that the Intel supercomputer knows the address of mysgi. The
following output indicates that it does not know the address:

ping: unknown host mysgi

If you see this message, ask your system administrator to add the server's name and address to
the Intel supercomputers letc/hosts file, or your site's NIS database.

If the ping command hangs, it may indicate that the specified name is in the I etel hosts file but
the address is wrong; the system administrator can check this.

2. If the Intel supercomputer knows the server's address, check to see that the server knows the
supercomputer's address. Use the ping command on the SGI workstation to verify this, as in the
following example, which assumes the name of the Intel supercomputer to be super:

mysgi% /usr/etc/ping super
super is alive
mysgi%

The preceding output above indicates that mysgi knows the address of super. The following
output indicates that it does not know the address:

ping: unknown host super

If you see this message, have your system or network administrator add the Intel supercomputer
system's name and address to the server's lelelhosts file or NIS database.

•
•
•
• •
• • • • • •
I(

I:

E:

.:

• • •
K

II

• •
• • •
• • • • • • •

U

II

II

II

11
I]

D

11

n
I~

n
IJ
I "1

J
·

,~,

~

IJ
[J

[1
'\:./

IJ

IJ

IJ

IJ

U

I'
I~

II

• • •

Paragon™ OSF/1 Software Tools User's Guide Using the Distributed Graphics Library

Authorizing the Supercomputer to Access the Server

If you see the following messages when you try to run a DGL program, it means that the Intel
supercomputer system knows the server's address, but the server does not authorize the Intel
supercomputer system to access it:

libdgl error (login): dgl server access denied -
Cannot open link to DGL server mysgi

Use the appropriate command on the server to allow access. The procedure for doing this is
described in the next section.

Using the Network-Transparent Feature of GL

NOTE

Most of the information in this section appears as Chapter 19 in
the Graphics Library Programming Guide from Silicon Graphics,
Inc. (Document Number 007-1210-040)

Writing a network-transparent GL program is no different than writing a standalone GL program,
except for optimizing performance. Graphics calls are buffered from the client to the server, so you
must flush the buffer periodically. The subroutine gftushO flushes the client buffer so the server can
receive GL calls.

The gflushO Subroutine

The DGL client buffers calls to GL subroutines for efficient block transfer to the graphics server.
The subroutine gnushO explicitly flushes the communication buffers and delivers all the
untransmitted graphiCS data that is in the buffer to the graphics server.

GL subroutines that return data implicitly flush the communication buffers. In most programs, the
implicit flushing that is performed by subroutines that return data is usually sufficient.

NOTE

All programs that are run over the network must call gflushO if the
last command is a drawing command. No drawing is guaranteed
to happen until gflushO is called.

2-13

Using the Distributed Graphics Library Paragon™ OSF/1 Software Tools User's Guide

The following example outlines a typical use of gflushO:

A program calls some GraphiCS Library subroutines that are buffered and not flushed. The
program then either computes or blocks for a while, waiting for non-graphic I/O. ThegfJuShO
subroutine must be called if the results of the buffered GL subroutines are to be seen on the host
display before and during the pause.

Another reason for using gfIushO is to reduce graphics 'jerkiness." If the client is computing data
and then sending that data to the graphics server without impliCit or explicit flushes, the data will
arrive at the graphics server in large batches. The server may process this data very quickly and then
wait for the next large batch of data. The rapid processing of GL subroutines followed by a pause
results in an undesirable "jerky" appearance. In these cases it is probably best to call gfIushO
periodically. For example, a logical place to cali gflushO is after every swapbuft'ers() call.

NOTE

Performing too many flushes can adversely affect performance.

The finishO Subroutine

The finishO subroutine is useful when there are large network and pipeline delays. The finishO
subroutine blocks the client process until all previous subroutines execute. First, the communication
buffers on the client machine are flushed. On the graphics server, all unsent subroutines are forced
down the Geometry Pipeline to the bitplanes, then a final token is sent and the client process blocks
until the token goes through the pipeline and an acknowledgment is sent to the graphics server and
forwarded to the client process.

The following example illustrates a typical use of finish:

A client calls GL subroutines to display an image. The subroutines all fit into the server's
network buffers and the image takes 30 seconds to render. The client wants to wait until the
image is completely displayed on the server's monitor before a message can be displayed on the
client's terminal. The gflushO subroutine flushes the buffers, but does not wait for the server to
process the buffers. The fmishO subroutine flushes the buffers and waits not only for the server
to process all the graphics subroutines, but for the Geometry Pipeline to finish as well.

•
•
• • • •
•
•
•
• •
K

II

II:

E

K:

• • • •
II

• • • •
• • • • • • •

.. _ .. _ .. _---_. __ .. -

D ..
D

D

D

D

D

n
D

I~

I';

IJ
I]

IJ

ITI

n
1111 ~

I'" OJ

(]

IJ

I]

IJ
I]

I]

~

I)

Ij

G

D

• • •

Paragon™ OSFI1 Software Tools User's Guide Using the Distributed Graphics Library

Establishing a Connection

The DOL server is initialized by the routine dglopenO. If dglopenO is not called by the program,
the DOL library attempts to open a default connection by calling dgiopenO with a default server
name and connection type. If either of the following environment variables are defmed, the server
name is the value of the defmed variable highest in the following list:

DGLSERVER

REMOTEHOST

If the value of REMOTEHOST is used for the server name, then the environment variable
REMOTEHOSTUSER is checked. If REMOTEHOSTUSER is defined, the server name is set to
REMOTEHOSTUSER@REMOTEHOST. If neither of the environment variables above are defmed,
then the server name is set to the client's hostname.

The value for the connection type comes from the following ordered list:

1. DGLTYPE (if defmed)

2. DGLSOCKET (if an environment variable is used for the server name)

3. DGILOCAL

The environment variable DGLTYP E can be set to either the symbolic or numeric value of the
connection type, for example, DGLSOCKET or 2.

Limitations and Incompatibilities

The network-transparent GL had a few limitations and incompatibilities with the previous releases
of the GL, which was used strictly for local imaging. These limitations may prevent a GL application
from executing properly when remote connections are used.

The callfunc() Subroutine

The caUfunc() subroutine does not function in a GL program that is run remotely. Any references to
callfuncO will result in a runtime error when loading the program.

2-15

----" "-"""~--""-- "-~~"---"""------"-------"---""---"-"-"-"

Using the Distributed Graphics Library Paragon™ OSFI1 Software Tools User's Guide

Pop-up Menu Functions

A maximum of 16 unique callback functions are supported. Freeing pop-up menus does not free up
callback functions. If you use too many callback functions, you get the following client error:

dgl error (pup): too many callbacks

Interrupts and Jumps

You cannot interrupt the execution of a remotely called GL subroutine before calling another
subroutine. This typically happens when you set an alarm or timer interrupt to go off and then block
the program with a qreadO call. If the signal handler does not return to the qreadO, unpredictable
results are likely; for example, it could do a longjumpO to some non-local location.

DGL Configuration

2-16

The DGL protocol software consists of two parts: a client library and a graphics server daemon. The
graphics server daemon is /usr/etcldgld. The DGL protocol gets an Internet port number from
/etc/services, which is set up during installation ofDGL to have an entry for sgi-dgl (see the
servicesO online manual page).

The inetd Daemon

The graphics server daemon for TCP socket connections is automatically started by meld. This
command reads its configuration file to determine which server programs correspond to which
sockets. The standard configuration file, /usr/ etclinetd.conf, has an entry for sgi-dg1. When a request
for a connection is made the following sequence occurs:

1. The service sg i -dg 1 is looked up in / etcl services to get a port number. If the service is not found,
an error occurs.

2. The server's name is looked up in /etclhosts to get an Internet address. If the host is not found,
an error occurs.

3. An Internet stream socket is created and some of its options are set.

4. A connection to the server machine is attempted with a small timeout allowance. If the
connection is refused, the timeout is doubled and the connection retried. If after several tries the
connection is still refused, an error occurs.

5. A successful connection is made and the server's Internet daemon invokes a copy of the DGL
graphics server. The graphics server process inherits the socket for communicating with the
DGL client program.

• • • • • • • • • • .-
r:­
E:

I:
K]

E:

•
II:

I:

I:

.:
K

• • • •
II

• • • • •

n
II

D

o

• . '!Il
....

n
I~

I .. '1.)J

1"'1
I j

'I' I Jj

I·~
I l1j

IJ
I 'i

""

IJ

IJ

IJ

I~

n

• • •

Paragon™ OSFI1 Software Tools User's Guide Using the Distributed Graphics Library

6. The graphics server uses the ruserokO call to verify the login. The user ID on the server must
be the equivalent (in the sense of r1ogin) to the user ID running the DGL client program or
permission is denied.

7. The server process's group and user IDs are changed according to the entry in I etc! passwd.

The dgld Daemon

The dgld daemon is the server for remote graphics clients. The server provides both a subprocess
facility and a networked graphics facility. The dgld daemon is started by inetd when a remote
request is received.

TCP socket connections are serviced by the Internet server daemon inetd. inetd listens for
connections on the port indicated in the sgi-dgl service specification. When a connection is found,
inetd starts dgld as specified by the file lusrletc!inetd.confand gives it the socket.

Error Messages

Error messages are output to a message file. The message file defaults to stderr. Error messages have
the following format:

pgm-name error (routine-name): error-text

where:

pgm-name Either dgl for client errors or dgld for server errors.

routine-name The name of the system service or internal routine that failed or detected the
error.

error-text An explanation of the error.

2-17

-~----.~---~-------.-~--------~---.----.. ----------" .. ----~----:..----,.--------.--~--.-'-~-"-.~~-,~--~------.---.--"-----------,----- .

Using the Distributed Graphics Library Paragon™ OSFI1 Software Tools User'~ Guide

2-18

Connection Errors

Table 2-1 lists the internally generated error values that are reported when a connection fails.

Table 2-1. Connection Error Values

Error Value Explanation

ENODEV Type is not a valid connection type.

EACCESS Login incorrect or permission denied.

EMFILE Too many graphics connections are currently open.

ENOPROTOOPT DOL service not found in f etc! services.

ENPROTONOSUPPORT DOL version mismatch.

ERANGE Invalid or unrecognizable number representation.

ESRCH Window manager is not running on the graphics server.

Client Errors

Client error messages are printed to stderr. For example, ifNIS is not enabled and fetc!hosts does
not include an entry for the server hostfoobar, the following error message is printed when a
connection is requested:

dgl error (gethostbyname): can't get name for hostname

If the client detects a condition that is fatal, it makes an exitO call, with an errno value as its
parameter that best indicates the condition. If a system call or service returns an error number (errno
or h_errno), this number is used as the exit number.

Table 2-2lists all exit values that are internally generated (not the result of a failed system call or
service).

Table Z-2. GL Client Exit Values

Exit Value Explanation

ENOMEM Out of memory.

EIO Read or write error.

•
•• • • • • • • • • • •
II

K

• • •
•
I:

• • • • • • • • • • • • •

n
n
n
D

I!

IJ

1-:']

(:]

IJ

IJ

IJ

(]

D

• • •

Paragon'" OSF/1 Software Tools User's Guide Using the Distributed Graphics Library

The EIO value is sometimes accompanied by the following message:

dgl error (comm): read returned 0

This means that the communication with the server has been interrupted or was not successfully
established. The configuration of the server machine should be checked (see "OOL Configuration"
on page 2-16).

Server Errors

Server error messages are printed to stderr by default. For example, if I etc/hosts does not include an
entry for the client host, the following error messages appear:

dgl error (gethostbyaddr): can't get name for 59000002
dgl error (comm_init): fatal error 1

The standard inetd.conffile runs the graphics server with the I and M options. The I option informs
the graphiCS server that it was invoked from inetel and enables output of all error messages to the '
system log file maintained by syslogd. The M option wsables all message output to stderr.

If the DGL server is not working properly, check the system log file (SYSWG) for error messages
(see your system administrator for its location). Each entry in the SYSWG file includes the date and
time of the entry, identifies the program as dgld, and includes the process identification number
(PID) for the server process. The rest of the error message is the text of the error message.

Exit Status

When the dgld graphics server exits, the exit status inwcates the reason for the exit. A normal exit
has an exit status of zero. A normal exit occurs when either the client calls dglclose() or when zero
bytes are read from the graphiCS connection. The latter case can occur when the client program exits
without calling dgicloseO or terminates abnormally.

A non-zero exit status implies an abnormal exit. If the graphics server program detects a conwtion
that is fatal, it exits with an errno value that best inwcates the conwtion. If a system call or service
returned an error number (ermo or h_errno), this number is used as the exit number.

2-19

Using the Distributed Graphics Library Paragon™ OSF/1 Software Tools User's Guide

2-20

Table 2-3 lists all exit values that are intemally generated (not the result of a failed system call or
service).

Table 2·3. GL Server Exit Values

Exit Value Explanation

0 Normal exit

ENODEV Invalid communication connection type

ENOMEM Out of memory

EINVAL Invalid command line argument

ETIMEDOUT Connection timed out

EACCESS Login incorrect or permission denied

EIO Read or write error

ENOENT Invalid GL routine number

ENOPROTOOPT DGLrrcp service not found in fetc/services

ERANGE Invalid or unrecognizable number
representation

• • • • • • • • • • • •
.:
8:

• • • •
• • •
• • • • • • • • • • •

a
D

D

o
II

1"'1
•• 1

I ":
~I

u
n
D

IJ

IJ

IJ
I-~I

i.1

D

• • •

-- - ,-- - - - --------_._--- ._._---"._----_. __ ._--_._,--, ---" ",,,.,, .. ,',,.,,"-,, -""---~---.~-~~-

The Parallel Make Utility

The parallel make utility pmake for Paragon aSP!! brings the advantages of parallel processing to
a traditionally time-consuming part of program development-building and updating programs that
consist of multiple source files. The pmake utility is based on GNU make, the make utility written
by Richard Stallman and Roland McGrath. The pmake utility, in addition to the features of GNU
make, gives you control over parallel execution in the compute partition of the Intel supercomputer,
and many other features designed to improve compatibility with other make utilities.

NOTE

pmake is an extension of GNU make and is distributed under the
terms of the GNU General Public License. As such, Intel will
provide a complete, machine-readable copy of the pmake source
code upon request. For more information, contact Intel's
Customer Service Response Center, as described in the section
"Comments and Assistance" in the Preface of this book.

Most computer applications consist of numerous source modules, each of which may refer to one or
more include files. Whenever any of these files is changed during the development process, the
following must occur:

• Each changed file must be recompiled.

• All files that depend upon the changed file must be updated.

• All of the files must be relinked to update the application.

The purpose of a make utility is to make this process as automatic and as efficient as possible.
Generally, the utility is used to recompile large programs, but it can be used for any task where some
files must be updated automatically whenever the files that they depend upon change.

3-1

The Parallel Make Utility Paragon™ OSF/1 Software Tools User's Guide

This chapter provides an overview of the makefile description file and describes differences between
pmake and GNU make. For detailed information on GNU make, refer to GNU Make. A Program
for Redirecting Compilation.

The makefile Description File

3-2

To use pmake, you need a makefile, also called a description file. A makefile can contain four types
of statements:

• Rules

• Variable definitions

• Directives

• Comments

The rules define when and how to update files (called targets of the rules). Rules usually have a
single target. A rule lists any files that the targets depend upon, called dependencies of the target,
and commands to be used to create or update the targets. When you have defined your makefile,
building or rebuilding your application requires only that you enter a single command line, using the
pmake command.

Rather than simply executing all of the rules in a given makefile each time, pmake can also
determine which source files have been changed since the last update. This allows pmake to update
only those files and any files that depend upon the changed files, saving computer time when only a
few of the files of an application must be updated. This also saves the time of the programmer, who
does not need to keep track of all of the details to ensure that a build is done correctly each time.

You can define variables in a makefile. A variable definition in a makefile assigns a text string to a
variable, allowing you to use that variable name in place of the complete text string. For example,
you could define a variable to be a list of all of the object files.

Directives are special commands. Available directives include directives that read another makefile
and conditional directives that determine whether parts of the makefile are read based on the value
of variables.

Comments are allowed in makefiles. A "#" in a line starts a comment; that character and subsequent
characters in the line are ignored. You can continue a comment across multiple lines if the last
character in a comment line is a backslash (\). A comment cannot be placed within a define directive.
and within some commands where the shell determines what a comment is. Comments can be in all
other makefile lines.

For complete information on makefile statements and how to construct and use a make file, refer to
the GNU Make manual.

• • • • • • •
• • • •
K

II:

E

•
K

• •
II

• • • • • •
.:

• • • • • •

o
n
n
n
11

C

D

11

I:

I~

[J:
~,

I~

I:

IJ

I:

I~

C

II

• • •

Paragon ™ OSFI1 Software Tools User's Guide The Parallel Make Utility

The pmake utility, while based mainly on GNU make, offers some differences. This chapter
describes these differences, which include an additional parallel execution control, some extensions
to macro defmition, support of a configuration file, and others. For more information on pmake, see
the pmake manual page, either using the online man command, or in the Paragon™ OSFIl
Commands Reference Manual.

Parallel Controls
The pmake utility is designed to update multiple target files in parallel. Parallel execution can occur
in either the service partition or the compute partition. You request parallel execution by using either
the .j or·P switch. You can also use both switches together. The·P switch specifies the partition
in which pmake runs jobs. The default is the service partition.

Using a Compute Partition

When you use the·P switch to specify one of the compute partitions on the Intel supercomputer, the
pmake process calls ox _initve() to become a gang-scheduled parallel application. Then the pmake
process, running in the service partition, acts as the controlling process, sending commands out in
parallel to nodes in the compute partition as the nodes become available.

The .j switch allows you to specify the maximum number of jobs that can run in parallel. If you do
not use the .j switch, the maximum number of jobs defaults to the number of nodes in the partition,
or one node if pmake is running in the service partition. If you use the .j switch followed by the
optional jobs argument, pmake runs up to the number of jobs specified in parallel. The number of
jobs pmake can run in parallel is not limited to the number of nodes in the partition, because multiple
jobs can run on a node. If you use the .j switch without the jobs argument, the maximum number of
jobs pmake can run in parallel is unlimited.

The following examples illustrate the use of the .j and·P switches with the pmake command. The
fJ1'St example runs N jobs in parallel in the compute partition, where N is the number of nodes in the
partition.

pmake .P.compute

The next example runs up to ten jobs in parallel in the compute partition. If there are more than ten
nodes in the compute partition, only the fJ1'St ten are used. If there are less than ten nodes, some nodes
will run multiple commands at once.

pmake .P.oompute .jl0

The next example runs as many jobs as possible in the compute partition. If there are twenty
commands that can be run in parallel and only five nodes in the compute partition, each node will
run four commands.pmake -P.compute -j

pmake .P.compute·j

3-3

The Parallel Make Utility Paragon OSF/1 Software Tools User's Guide

3-4

The pmake utility relies on the dependencies defined in the makefile to determine the files that can
be updated in parallel. These dependency definitions prevent two files, one of which is dependent
upon another, from being updated simultaneously. All commands that update a single file are
assumed to be sequential. and are run in the order in which they appear in the makefile.

For example, if file2 is dependent uponfilel, all commands that update filel are run sequentially
before commands updatingfile2 are executed. If there is no dependency betweenfile2 andfilel,
commands updatingfile2 may be run in parallel with commands updatingfilel. It is, therefore, quite
important to ensure that your makefile clearly defines all dependencies.

Another important consideration concerns the use of the .p switch with recursive makes. Specifying
the .p switch causes pmake to become a gang-scheduled parallel appUcation. Therefore, any use of
the .p switch in subsequent recursive invocations of pmake is ignored, because it is already
gang-SCheduled. Therefore, you need to use the .p switch at a level where it can do the most good.

For example, if you make the files in two directories, one with many files and another with a few
files, you would do better to invoke parallelism in updating the large directory, rather than at the
upper level, where the paralleUsm would be wasted. Suppose you entered the following pmake
invocation:

pmake .j2 .P.compute

Used on the following makefile, the previous command would update the two targets big and little
simultaneously.

all: big little

big:
cd bigdiri $ (MAKE)

little:
cd littlediri $ (MAKE)

The target little would be updated quickly, while big, which involves many compiles, might take
several hours to build, and the benefits of parallelism would be lost In this case, it would be better
to invoke the top-level pmake without the .j and .p switches and to use the switches at the second
level:

all: big little

big:
cd bigdiri $ (MAKE) -j8 -P.compute

little:
cd littledir; $ (MAKE) -j2 -p.compute

• • •
•
• • • ..
• • ..
.­
.:
K

• • • • • • •
• •
• • • • • • • •
•

n
a
D

D

D

I~

11

n
I~

I~

I~

1:.1

IJ

[]

1"1
.J

IJ
11

;,J

IJ

IJ

IJ

IJ

Ij

~

II

• • •

Paragon™ OSF/1 Software Tools User's Guide The Parallel Make Utility

Using the Service Partition

If you do not use the -P switch, pmake runs and executes all makefile commands in the service
partition. In the service partition, pmake uses the forkO call to start commands simultaneously, and

. relies on process migration and load balancing to ensure parallel execution. Using the -j switch
allows you to specify the number of jobs that pmake can run in parallel. If you do not use the -j
switch, pmake runs as a single process on one node of the service partition.

Another parallel switch, -I, allows you to restrict pmake from executing multiple commands in
parallel when the system load average gets too high. The load argument to the -I switch allows you
to specify a load average beyond which pmake will limit jobs. In this way, you can ensure that the
system is not excessively slowed down. The pmake utility always allows one command to execute,
even if the load average is over the specified limit. However, if the load average is over the limit
and one or more commands are already executing, pmake will not start any more commands.
Specifying the -I switch with no load value removes all previous load limits. The -I switch is most
useful when running in the service partition, where there is more likely to be contention for system
time.

Macro Extensions
The prnake utility provides the special macro $$@ and three macro references (pattern replacement
references using regular expressions, C-shell-style modifiers, and conditional expressions) in
addition to the macro capabilities of GNU make.

• The macro $$@ provides compatibility with System V make,. This macro is used on the
dependency line of a rule and is interpreted as the current target (the one currently being
processed).

• You can use a pattern replacement reference that causes a replacement string to be substituted
for a regular expression within the macro expansion. This has the form:

$(MACROlreg-expressionJreplacement)

where reg-expression is a regular expression, (as described in the online manual page regexp(»,
and replacement is the replacement string. The syntax also allows you to use semicolons in
place of slashes.

• You can use modifiers similar to the C-shell file name modifiers in variable expressions with
the form:

$(MACRO:X)

In this reference, X may be t (tail), h (head), r (root) or e (extension).

3-5

The Parallel Make Utility . Paragon™ OSF/1 Software Tools User's Guide

• You can derme conditional variables using C-style colon expressions as follows:

$(MACRO?valuei :value2)

An expression of this form evaluates to valuei if MACRO is dermed and value2 if it is not.

Configuration File Support
The pmake utility supports the use of a configurationfile. This file, if it exists, must be named
M akeconf, prnake searches for it backwards from the current directory to the root directory. Only
the first Makeconjfile found in the path is evaluated, so an empty Malreconjfile in a searched
directory terminates the search. Although pmake searches for a Makeconffile by default, and does
not return an error if no Malreconjis found, you can explicitly disable all Makeconjprocessing by
using the ·N switch.

On rmding a Makeconffile, pmake evaluates it as though its contents were at the top of the makefile.
Although you can derme any global variables or other global information in a Makeconjfile, the file
is most useful when your software project is organized into completely separate source and object
directory trees.

To support separate source and object directory trees, the Malreconffile can define the variable
OBJECTDIR to be the root of the object directory tree. This can be defined either as an absolute path,
or a path relative to the location of Malreconj. There is special processing for the OBJECTDIR
definition. Before running any commands, pmake goes to the object directory and modifies its
search path to include the path back to the corresponding source directory. For example, suppose a
directory named $SRC is your root source directory, and that this directory has a Makeconffile
containing the following absolute path OBJECTDlR dermition:

OBJECTDIR=/topdir/objdir

In this case, invoking pmake from within the directory $SRCIsubdir causes pmake to create the
directory Itopdirlobjdirlsubdir (if it does not exist), and to use that as the object directory. This
ensures that the object directory structure is the same as the source directory structure.

You can also specify the OBJECTDIR definition as a pathname relative to the directory containing
the M alreconj directory, and the directory structure will be created correctly.

Then, after determining and setting the path for the object directory, pmake executes makefile
commands, reading from the source directory, and creating or modifying files in the object directory.

• • • • • • • •
• •
• •
I:

.:

.-
• •
.:
11::
II]

.:

• • • • • • • • • • •

n
II

n
D

II

I]

I~

I~

IE
IJ
[J

IJ

IJ

I]

I)

U

rJ

IJ

U
(j

~

• • • •

Paragon™ OSFI1 Software Tools User's Guide The Parallel Make Utility

By default. pmake looks for source files in the directory containing the make/ile. You may.
however. specify a different source directory by defining the SOURCEDIR variable in the Makeconf
file. This definition has the following fonn:

SOURCEDIR-pathl[:path2] ... [:pathn]

As with the OBJECTDIR definition. you can defme the SOURCEDIR path(s) either as absolute or
relative paths. As the syntax shows. you can also specify additional source directory trees to be
searched. You can asSign these alternate source root paths as a colon-separated list to the
SOURCEDIR variable in the Makeconffile. This assignment pennits you to work with source files
stored in various trees. These paths can also be specified either as absolute paths or as paths relative
to the location of the MakeconJfile.

Other Differences Between pmake and GNU make
There are other minor differences between pmake and GNU make. These are mainly enhancements
to improve compatibility with other make programs.

The pmake utility supports the following command line switches not supported by GNU make:

• The -c switch. which causes pmake not to try to find and check out a corresponding SCCS or
RCS file when a file does not exist.

Note

Paragon OSF/1 currently supports only sees. but if you have
ported ReS to your Intel supercomputer. pmake supports the
ReS structure.

• The -m switch. which causes pmake to search machine-specific subdirectories automatically.

• The -N switch. which disables all Makeconfprocessing. as described in "Configuration File
Support" on page 3-6.

• The -P switch. described in "Parallel Controls" on page 3-3. which specifies that pmake
commands run in a compute partition.

• The -u switch, which causes pmake not to unlink files automatically checked out from SCCS
or RCS. This switch can be useful when an error occurs where an intermediate source file must
be made to make an object file. Use the -u switch to see the contents of the intermediate source
file. rather than allowing pmake to remove it.

3-7

The Parallel Make Utility Paragon™ OSF/1 Software Tools User's Guide

The pmake utility also provides the two special targets for specifying entry and exit code: .INIT and
.EXIT. If you define .INIT in your make file, this target and its dependenCies are built before any
other targets are processed. Defining .EXIT causes this target and its dependencies to be processed
after all other targets are built

Unlike many make facilities, GNU make automatically exports all variables (macros) from the
makefile to the environment In contrast. the pmake utility does not, but does allow you to export
variables explicitly by using the special target .EXPORT. Variables listed as dependencies of this
target are expanded and exported to the environment in which pmake runs its commands.

In addition to the standard GNU make include statement, pmake adds another include statement
with the following form:

-include filename

The standard form of the include statement includes and processes the named file. and returns an
error if the file is not found. The form of the include with the added dash prefix, includes and
processes the named file as does the other version, but does not return an error if the file is not found.

The pmake utility adds some environment variables to those provided by GNU make. The syntax
for allpmake switches, environment variables, macros, pseudotarget names, and conditional
expressions, both extensions and those standard in GNU make, are listed in the pmake manual page
(online or in the Paragon™ OSFIl Commands Reference Manual).

•
• • • • • • • • • • • •
.:
II

E

• •
.:

•
a

• • • • • • •
• • • •

• ..
o
D

o
n
o
o
D

D

n
I~

D

D

e
D

G

G

fj

I]

[j

Ij

~

I:l

I!l

C

~

D

• • • •

Symbols
.xinitrc file 1-20

letclhosts file on the SRM 1-1, 1-18,2-1,2-12

A
Athena project 1-1

Athena Widgets 1-2

authorization 2-13

authorization (X windows) 1-1,1-19

B
bitmaps 1-6

c
C programs

DGL 2-1
X Window System 1-1

calculating nodes 1-11

callfunc 2-15

"Can't Open display" error message 1-17

child widgets 1-5

client programs 2-1

client programs (X windows) 1-1

Index

combining event-driven programming with
message passing 1-7,2-6

comments in makefiles 3-2

compiling and linking
node X programs 1-15

configuration file 3-6

connecting to an X server 1-7

connection sequence 2-16

D
description file 3-2

destruction of a window 1-14, 2-8

dgld 2-17

dglopen 2-15

DGLSERVER environment variable 2-11 , 2-15

directives in makefiles 3-2

display
opening 2-10

display (X windows) 1-7
opening 1-17

-display argument 1-17

DISPLAY environment variable 1-17

distinguished node method 1-7

domain decomposition 1-2, 2-2

Index-1

Index

E
environment variables

DGLSERVER 2-11
DISPLAY 1-17

error messages 2-17-2-20

Errors
client 2-18
connection 2-18
server 2-19

establishing a connection 2-15

letclhosts file on the SRM 1-1, 1-18, 2-1, 2-12

event-driven programming 1-7,2-6

examples
graph 1-2
xtoolkit 1-2

exit status 2-19

Expose event 1-10

F
finish 2-14

flushing the communication buffers 2-13

Fortran
compiling and linking 2-10

G
gflush 2-13

go-ahead message 1-11

graph example 1-2

graphics 1-1,2-1

H
hierarchy of widgets 1-5

hosts file on theSRM 1-1,1-18,2-1,2-12

Index-2

Paragon™ OSF/1 Software Tools User's Guide

1/0 error handler 1-14

inetd 2-16,2-17

interface configuration 2-16

Internet addresses 2-12
X Window System 1-18

interupts and jumps 2-16

irecvO system call
in DGL programs 2-6

K
killing windows 1-14,2-8

L
libraries

DGL 2-1
X Window System 1-1, 1-16

lightweight process 1-7

Limitations and Incompatibilities 2-15

linking
node X programs 1-15

M
main event loop 1-7,2-6

Makeconf 3-6

makefile 3-2
dependencies 3-2
parallel execution 3-3
rules 3-2

Massachusetts Institute of Technology 1-1

messages
and DGL events 2-6
and X events 1-7

• • • • • • • • • • •
I[

r-
t::

.:
II:

• • • •
E

•
E

II

It

E

K

• •
II

• •

• •
D

D

D

D

D

D

D

D

D

C

e
D
I)

Id

IJ

IJ

IJ
I;J

IJ

IJ
I]

~

(j

G

• • • •

Paragon™ OSF/1 Software Tools User's Guide

N
network addresses 1-18, 2-12

node programs
X node 1-11
X Window System 1-1

nodes
X node 1-11

o
opening the X display 1-17

p

parallel make 3-1

parent widgets 1-5

ping command 1-18,2-12

pixmaps 1-6

pmake 3-1
configuration file support 3-6
load control 3-5
OBJECTDIR variable 3-6
options not in GNU make 3-7
separate object and source trees 3-6
SOURCEDIR variable 3-7
specifying a partition 3-3
specifying mutliple source trees 3-7
targets not in GNU make 3-8

popup menu functions 2-16

problems opening the display 2-10

programming techniques 1-7

Project Athena 1-1

....... ".~----~---~---.--.-----.-~--

Q

qreadO system call 2-6

qtestO system call 2-6

R
RedrawPictureO function 1-11

Index

REMOTEHOST environment variable 2-15

REMOTEHOSTUSER environment variable 2-15

s
server (X windows) 1-1

server exit values 2-20

server for remote graphics clients. see dgld 2-17

shadow sources with pmake 3-6

StartNodesO function 1-12

synchronizing DGL operations with window
mapping 2-8

synchronizing X operations with window mapping
1-10

T
TCP/IP

and X windows 1-1

techniques for X programs 1-7

thread 1-7

Toolkit programs (X windows) 1-2

Index-3

----~. --------------

Index

u
unix:O X server 1-17

"unknown host" message 1-19,2-12

v
variable definitions in makefiles 3-2

variables
DGLSERVER 2-11
DISPLAY 1-17

W
widgets (X windows) 1-2

window manager 1-3, 2-3

windows 1-1

workstations
SG12-1
X Window System 1-1

x
X node 1-11

X Window System 1-1
and TCP/IP 1-1
Athena Widgets 1-2
compiling and linking 1-15
connecting to the server 1-7
events and messages 1-7
example program 1-2
libraries 1-16
problems opening the display 1-17
programming techniques 1-7
servers 1-1
specifying the server 1-17
Toolkit 1-2

Index4

Paragon- OSF/1 Software Tools User's Guide

XCopyAreaO system call 1-12

XCopyPlaneO system call 1-12

xhost command 1-19

.xinitrc file 1-20

Xlib 1-2

XMapWindowO system call 1-1 0

XNextEventO system call 1-7

XOpenDisplayO system call 1-7

XSyncO system call 1-10

XtApplnitializeO system call 1-7

xtoolkit example 1-2

XtParseTranslationTableO system call 1-13

XtVaCreateManagedWidgetO system call 1-13

•
D

• • • • • • • • • •
II

.:

• • • •
• • • ..
• • •
K

.:

• • • • •

