
• '. •
D

o
II
n
n
u
D

I~

1:1

I " J

IJ

C
1'''\

' ..
G

n
e
II

• • • •

October 1993

Order Number: 312887-001

Paragon ™ Graphics Libraries

User's Guide

Intel~ Corporation

Copyright ©1993 by Intel Supercomputer Systems Division, Beaverton, Oregon. All rights reserved. No part of this work may be reproduced or
copied in any fonn or by any means ... graphic, electronic, or mechanical including photocopying, taping, or infonnation storage and retrieval sys­
terns ... without the express written consent of Intel Corporation. The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied warranties of merchantability
and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors that may appear in this document. Intel Corporation
makes no commitment to update or to keep current the information contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No other circuit patent
licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication, or disclosure is subject to restrictions
stated in Intel's software license agreement. Use. duplication. or disclosure by the U.S. Govemment is subject to restrictions as set forth in subpara­
graphs (c)(I)(ii) of the Rights in Technical Data and Computer Software clause at 252.227-7013. Intel Corporation, 2200 Mission College Boule­
vard. Santa Clara. CA 95052-8119. For all Federal use or contracts other than DoD. Restricted Rights under FAR 52.227-14. ALT. ill shall apply.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

286 i386
287 i387
Concurrent File System i486
Direct-Connect Module i487

i860

APSO is a service mark of Verdix Corporation
DOL is a trademark of Silicon Graphics. Inc.
Ethernet is a registered trademark of XEROX Corporation
EXABYTE is a registered trademark of EXABYTE Corporation
Excelan is a trademark of Excelan Corporation
EXOS is a trademark or equipment designator of Excelan Corporation
FOROE is a trademark of Applied Parallel Research, Inc.

Intel
Intel386
Inte1387
Intel486
Intel487

Green Hills Software. C-386. and FORTRAN-386 are trademarks of Green Hills Software, Inc.
OV AS is a trademark of Verdix Corporation
mM and mMlVs are registered trademarks of International Business Machines
Lucid and Lucid Common Lisp are trademarks of Lucid, Inc.
NFS is a trademark of Sun Microsysterns
OpenOL is a trademark of Silicon Graphics, Inc.
OSF. OSF!I. OSFlMotif. and Motif are trademarks of Open Software Foundation. Inc.
POI and POF77 are trademarks of The Portland Group, Inc.
PostScript is a trademark of Adobe Systems Incorporated
ParaSoft is a trademark of ParaSoft Corporation
SCO and OPEN DESKTOP are registered trademarks of The Santa Cruz Operation. Inc.
SOl and SiliconGraphics are registered trademarks of Silicon Graphics. Inc.
Sun Microsysterns and the combination of Sun and a numeric suffix are trademarks of Sun Microsystems
The X Window System is a trademark of Massachusetts Institute of Technology
UNIX is a trademark of UNIX System Laboratories
V ADS and Verdix are registered trademarks of Verdix Corporation
V ASTI is a registered trademark of Pacific-Sierra Research Corporation
VMS and VAX are trademarks of Digital Equipment Corporation
VP!ix is a trademark of INTERACTIVE Systems Corporation and Phoenix Technologies. Ltd.
XENIX is a trademark of Microsoft Corporation

iPSC
Paragon
ProSolver

o
u
u

•
U

• • •
• • • • •
I:

• • •
I:

• • • • • • •
• • • • • • •

---------"._,

• • •
D

0

0

D

0

n
I~

I~

IJ
I~ '"J

IJ

C ' .,,'

~

e
0
[j

IJ

I::J

I:
Ij

[J

G

e
II

II

• • • •

Revision History Date

-001 Original Issue 10/93

WARNING
Some of the circuitry inside this system operates at hazardous energy and
electric shock voltage levels. To avoid the risk of personal injury due to
contact with an energy hazard, or risk of electric shock, do not enter any
portion of this system unless it is intended to be accessible without the use
of a tool. The areas that are considered accessible are the outer enclosure
and the area just inside the front door when all of the front panels are in­
stalled, and the front of the diagnostic station. There are no user service­
able areas inside the system. Refer any need for such access only to tech­
nical personnel that have been qualified by Intel Corporation.

CAUTION
This equipment has been tested and found to comply with the limits for a
Class A digital device, pursuant to Part 15 of the FCC Rules. These limits
are designed to provide reasonable protection against harmful interfer­
ence when the eqUipment is operated in a commercial environment. This
equipment generates, uses, and can radiate radio frequency energy and,
if not installed and used in accordance with the instruction manual, may
cause harmful interference to radio communications. Operation of this
equipment in a residential area is likely to cause harmful interference in
which case the user will be required to correct the interference at his own
expense.

LIMITED RIGHTS
The information contained in this document is copyrighted by and shall re­
main the property of Intel Corporation. Use, duplication or disclosure by the
U.S. Govemment is subject to Limited Rights as set forth in subparagraphs
(a)(15) of the Rights in Technical Data and Computer Software clause at
252.227-7013. Intel Corporation, 2200 Mission College Boulevard, Santa
Clara, CA 95052. For all Federal use or contracts other than 000 Limited
Rights under FAR 52.2272-14, ALT. III shall apply. Unpublished-rights
reserved under the copyright laws of the United States.

iii

iv

-~-------~------------~-------~---

D

a'

• .-
• • • • • • • • •

• •
a
o
l "!l ,It/I

D

D

n
G

n
Ii

IJ

I:
I~

~

Ei

o
IJ

IJ

I:J
[J

IJ

1'J

I~

III

II

• • • •

Preface

This manual tells how to use the graphics libraries available for use with the Paragon TM aSF/1
operating system on an Intel supercomputer.

This manual assumes that you are an application programmer proficient in the C or Fortran language,
the UNIX operating system, and the graphics library in question. It provides you with the
information you need to use the libraries effectively in parallel programs; however, it does not give
general information on the graphics libraries. General information is provided by third-party
manuals, which are discussed later and in each chapter.

Organization
Chapter 1

Chapter 2

Chapter 3

Tells you how to use the X Window System and the Athena widgets (which
are provided with the Paragon aSFIl base product), and the Motif widgets
(an optional product).

Tells you how to use DGL, the Distributed Graphics Library (an optional
product).

Tells you how to use OpenGL (an optional product).

v

Preface Paragon™ Graphics Libraries User's Guide

Notational Conventions

vi

This manual uses the following notational conventions:

Bold

Italic

Identifies command names and switches, system call names, reserved words,
and other items that must be used exactly as shown.

Identifies variables, filenames, directories, processes, user names, and writer
annotations in examples. Italic type style is also occasionally used to
emphasize a word or phrase.

Plain-Monospace
Identifies computer output (prompts and messages), examples, and values of
variables. Some examples contain annotations that describe specific parts of
the example. These annotations (which are not part of the example code or
session) appear in italic type style and flush with the right margin.

Bold-Italic-Monospace
Identifies user input (what you enter in response to some prompt).

Bold-MoDospace
Identifies the names of keyboard keys (which are also enclosed in angle
brackets). A dash indicates that the key preceding the dash is to be held down
while the key following the dash is pressed. For example:

<Break> <s> <Ctrl-Alt-Del>

(Brackets) Surround optional items.

(Ellipsis dots) Indicate that the preceding item may be repeated.

(Bar) Separates two or more items of which you may select only one.

(Braces) Surround two or more items of which you must select one.

• • •
• • • • •
• • • • • • • • • • • • a

• • • • • • • • • •
•

• •
D

II

Ii

n

IJ

I]
1"'1

,j

I~ .J

~

a

• • • •

Paragon™ Graphics Libraries User's Guide Preface

Applicable Documents
For more information. refer to the following manuals. See the Paragon™ System Technical
Documentation Guide for information on the complete Paragon document set and ordering
information.

TM
Paragon Manuals

• Paragon™ User's Guide

TM
• Paragon Commands Reference Manual

• Paragon TM C System Calls Reference Manual

• Paragon™ Fortran System Calls Reference Manual

• Paragon™ C Compiler User's Guide

• Paragon™ Fortran Compiler User's Guide

For information about limitations and workarounds. see the Paragon™ System Software Release
Notes for the Paragon TM XPIS System. Release notes are also located in the directory
lvoVsharelrelease_notes on your Paragon system.

Other Manuals

• OSFll User's Guide

• OSFll Command Reference

• OSFll Programmer's Reference

• X Toolkit Intrinsics Programming Manual

• X Toolkit Intrinsics Reference Manual

• Xlib Programming Manual

• Xlib Reference Manual

• Motif Programming Manual

• X Toolkit Intrinsics Programming Manual- Motif Edition

vii

Preface Paragon™ Graphics Libraries User's Guide

Comments and Assistance

viii

Intel Supercomputer Systems Division is eager to hear of your experiences with our products. Please
call us if you need assistance, have questions, or otherwise want to comment on your Paragon
system.

U.S.AJCanada Intel Corporation
Phone: 800-421-2823

Internet: support@ssd.intel.com

Intel Corporation Italla s.p.a.
Milanofiori Palazzo

United Kingdom Intel Corporation (UK) Ltd.
Supercomputer System Division

20090 Assago
Milano
Italy
167877203 (toll free)

France Intel Corporation
1 Rue Edison-BP303

Pipers Way
Swindon SN3 IRJ
England
0800212665 (toll free)

78054 St. Quentin-en-Yvelines Cedex
France

(44) 793 491056 (answered in French)
(44) 793 431062 (answered in Italian)
(44) 793 480874 (answered in German)
(44) 793 495108 (answered in English)

05908602 (toll free)

Intel Japan K.K. Germany Intel Semiconductor GmbH
Dornacher Strasse 1 Supercomputer Systems Division

5-6 Tokodai, Tsukuba City
!baraki-Ken 300-26

85622 Feldkirchen bei Muenchen
Germany

Japan 0130813741 (toll free)
0298-47-8904

World Headquarters
Intel Corporation

Supercomputer Systems Division
15201 N.W. Greenbrier Parkway

Beaverton, Oregon 97006
U.S.A.

(503) 629-7600 (Monday through Friday, 8 AM to 5 PM Pacific Time)
Fax: (503) 629-9147

If you have comments about our manuals, please fill out and mail the enclosed Comment Card. You
can also send your comments electronically to the following address:

techpubs@ssd.intel.com

•
U

• • • • • • • • • • • •
• • • • • • • • • • • • • • • • • •

• •
u
o
II

c
c
n
I~

[J

IJ

IJ

I1J

C

C

1. 9 u,

IJ

Ij

U

IJ

I:J

n
D

e

• • • •

Table of Contents

Chapter 1
Using the X Window System

Introduction .. 1-1

A Sample X Program ... 1-2

What the graph Program Does .. 1-3

Compiling, Linking, and Executing the graph Program .. 1-3

Widget Hierarchy of the graph Program ... 1-5

Programming Techniques .. 1-6

Node/Server Connection .. 1-6

Combining X Event-Driven Programming with Message Passing ... 1-7

Writing a Work Procedure ... 1-7

Installing a Work Procedure .. 1-8

Synchronizing Window Operations with Window Mapping .. 1-9

Starting the Other Nodes on the First Expose Event ... 1-9

Associating a Function with an Expose Event ... 1-11

Responding to Window Destruction .. 1-11

Batching Data Points into Larger Messages for Improved Performance ... 1-12

Compiling and Linking X Window System Applications ... 1-13

Standard X Window System Libraries .. 1-13

Motif Libraries ... 1-15

ix

Table of Contents Paragon™ Graphics Libraries User's Guide

Problems in Opening the Display .. 1-16

Specifying the Server to the Program .. 1-16

Ensuring that Supercomputer and Server Know Each Other's Address .. 1-17

Authorizing the Supercomputer to Access the Server ... 1-18

Chapter 2
Using the Distributed Graphics Library

Introduction .. 2-1

A Sample DGL Program .. 2-2

What the graph Program Does .. 2-2

Compiling, Linking, and Executing the graph Program .. 2-3

Flow of Control in the graph Program .. 2-5

Programming Techniques .. 2-6

Connecting Nodes to the Server .. 2-6

Combining DGL Event-Driven Programming with Message Passing .. 2-6

Responding to Window Destruction ... 2-8

Batching Data Points into Larger Messages for Improved Performance ... 2-8

Compiling and Linking DGL Applications ... 2-9

Problems Opening the Display ... 2-10

Specifying the Server to the Program .. 2-10

Ensuring that the System and Server Know Each Other's Address .. 2-11

Authorizing the Supercomputer to Access the Server ... 2-12

Using the Network-Transparent Feature of GL .. 2-13

The gflushO Subroutine•... 2-13

The finishO Subroutine ... 2-14

Establishing a Connection .. 2-14

x

a
D

• • • •
• • • • • • • • .,
• • • • • • • • • • • • • • • • •

• •
U

D

I~

I:

IJ .J

I i
-'-'

(J

IJ
Ij

I~

IJ

IJ

IJ

IJ

IJ
I]

IJ

IiJ

e
II

• • • •

Paragon™ Graphics Libraries User's Guide Table of Contents

Limitations and Incompatibilities .. 2-15

The callfunc() Subroutine .. 2-15

Pop-up Menu Functions .. 2-15

Interrupts and Jumps ... 2-15

DGL Configuration ... 2-16

The inetd Daemon ... 2-16

The dgld Daemon .. 2-16

Error Messages .. 2-17

Connection Errors .. 2-17

Client Errors ... 2-17

Server Errors ... 2-18

Exit Status ... 2-19

Chapter 3
Using the OpenGL Graphics System

Introduction .. 3-1

OpenGL in Paragon ™ OSF/1 .. 3-2

OpenGL Documentation .. 3-2

Linking OpenGL Programs .. 3-3

xi

Table of Contents ParagontM Graphics Libraries User's Guide

List of Illustrations

Figure 1-1. The graph Program Display .. 1-3

Figure 1-2. graph Program Widget Hierarchy ... 1-5

Figure 2-1. graph Program Display ... 2-3

Figure 2-2. Flow Chart of the graph Program ... 2-5

xii

D

a

•

• •
D

D
I]

D

n
C

C

~

I]

IJ

IJ

IJ
[J

Ij

EJ

I:J

IJ

IJ

IJ

IJ

IJ

IJ

IJ
I]

e
n

• • • •

Paragon TM Graphics Libraries User's Guide Table of Contents

Table 1-1.

Table 1-2.

Table 1-3.

Table 2-1.

Table 2-2.

Table 2-3.

List of Tables

Basic ·X Window System Libraries .. 1-13

Advanced X Window System Libraries ... 1-14

Motif Libraries ... 1-15

Connection Error Values .. 2-17

GL Client Exit Values .. 2-18

GL Server Exit Values .. 2-19

xiii

Table of Contents Paragon™ Graphics Libraries User's Guide

xiv

D

n
u
D

n
II

II
I[

• • • •
I.

II

• • • •
a
II

• • • • • • • • • • • •

• • ..
II

II

1m
D

If

n
n

I~

E
I]

IJ

IJ

IJ

I:J

C

n
e
III

• • • •

Using the X Window System

Introduction
The X Window System, developed during Project Athena at the Massachusetts Institute of
Technology, is a software industry standard for graphics programming. It provides a standard
environment for application software and can control workstation displays. Applications using the
X Window System must be written in the C language.

A set of X Window System client libraries is included with Paragon TM OSFIl. The Motif libraries, a
set of X Window System client libraries that implement the OSF Motif standard for "look and feel,"
are available as an option.

This chapter describes:

• Special programming techniques for parallel X programs.

• How to compile and link X applications.

• What to do if your X program cannot open the display server.

This chapter contains information specific to writing X applications for Paragon OSFIl only. It does
not describe how to write X Window System application programs. For general information on
writing X programs, refer to the X Window System manuals by O'Reilly and Associates.

To use your workstation as a server that accesses the client libraries, the X server software must be
installed on your workstation. Most versions of the X server software have an authorization
mechanism to limit access of clients on other nodes of the network to your display. For more
information on authorization and security, refer to the X server documentation for your workstation,
the X(l) online manual page, and "Authorizing the Supercomputer to Access the Server" on page
1-18.

1-1

-- ------------- ----------- --- -------------._.---------------------- -----

Using the X Window System Paragon Graphics Libraries User's Guide

The TCPIIP software on your Intel supercomputer must also be properly configured to install and
use the X software, and an entry for your X server must be included in the Intel supercomputer's
letclhosts file or NIS database. If no such entry exists, your system administrator must add an entry
for your server. For more information, refer to "Ensuring that Supercomputer and Server Know Each
Other's Address" on page 1-17.

Most of the programming techniques described in this chapter apply to programs to be run in the
compute partition. If you create an X program to run only in the service partition, you need only link
the program properly, as described in "Compiling and Linking X Window System Applications" on
page 1-13.

A Sample X Program

1-2

To help you start using X in the compute partition, a sample program called graph is in the directory
lusrlshare/examples/c/xtoolkit on your Paragon system. This program demonstrates the special
programming techniques that you can use to write X applications to run on multiple nodes in the
compute partition. A Makefile is available in the same directory. Because the program is too long to
print in its entirety, this chapter explains only selected parts.

If you create an X program to run only in the service partition, no special considerations are
necessary. You need only see the system link instructions.

Compiling and running the graph program can help you verify that your Intel supercomputer and
server are properly configured. You might also wish to use it as a basis for your own X program, or
you may wish to examine the code for programming techniques.

The graph program uses the X Toolkit and the Athena Widgets. Toolkit programs are easier to write
and maintain than Xlib programs, and can offer more functionality with very little additional effort.
This chapter does not discuss the basic concepts of Toolkit and widget programming; for
information on these topics, refer to Volumes 4 and 5 of the O'Reilly and Associates manuals.

A Motif version of the graph program, called mgraph, is available in lusrlshare/examples/c/motif.
The Motif version has the same program logic, but uses the optional Motif widgets rather than the
Athena widgets. The Motif widgets, which are not part of the standard Paragon OSFIl product but
are available as a separate option, can be used to give your program an industry-standard user
interface. For information on Motif, refer to the Motif Programming Manual fTOm O'Reilly and
Associates.

•
D

• • • • • •
I

•

II

n
D

D

II

I~

n
11

n

IJ

IJ
I·~

,J

1"'1
· ,j

IJ

I)

C

ITI

D

II

• • • •

Paragon TM Graphics Libraries User's Guide Using the X Window System

What the graph Program Does

The graph program performs the simple calculation for the value of sin(x) for 0 <= x < 21t and graphs
the result in a window as it calculates. The problem decomposition used in this example is a modified
domain decomposition. Node 0 maintains the display, and the other nodes calculate the points of the
curve. The x values from 0 to 21t are divided evenly among the calculating nodes. For example, if
the program is run on four nodes, node 1 is responsible for 0 <= x <= 27t13, node 2 is responsible for
27t13 < x <= 47t13, and node 3 is responsible for 47t13 < x < 21t.

Figure 1-1 shows the window and what the graph program displays when it is running. You can
resize the window using your window manager. If the window becomes too small to display the
graph, horizontal and vertical scroll bars appear. The program adds two buttons to the window to
allow additional control during calculation. A restart button clears the window and restarts the
calculation from the beginning. A quit button allows you to terminate the program. In addition, your
window manager may also place a title bar and/or border on the window, which are not shown.

:::~ /\
0.20000 _ / \

I \

\ I

\\ //
-1.00000 -+------.------,-------,-~-....::..._""'r--___,

0.00000 11.25600 12.51200 13.76800 15•02400 16.28000

-0.20000 _

-0.60000 _

Figure 1·1. The graph Program Display

Compiling, Linking, and Executing the graph Program

This section gives you step-by-step instructions for compiling and linking the graph program. To
compile this program on your workstation, you must have the icc cross-compiler.

1. Create a directory for the graph program in your current directory with the following command:

% mkdir graph

2. Copy the source code and Makefile for the graph program to your graph directory.

1-3

Using the X Window System Paragon ™ Graphics Libraries User's Guide

1-4

On the Intel supercomputer, use the following command:

% ep /usr/share/examples/e/xtoolkit/* graph

On a workstation, use rep, ftp, or NFS to transfer the file from the supercomputer to your
workstation. For example, you could use rep, as in the following command, replacing super
with the name of your Intel supercomputer:

rnysun% rep "super:/user/share/examples/e/xtoolkit/*" graph

3. Change to the graph program directory:

% cd graph

4. Use the supplied Makefile to compile and link the program by entering the following:

% make

5. If you compiled the program on a workstation, copy the executable to the Intel supercomputer
and then log into the Intel supercomputer, using the appropriate command for your site. For
example, if the appropriate commands are rep and rlogin, use the following commands:

rnysun% rep graph super:
rnysun% rlogin super

6. Set the DISPLAY environment variable to the appropriate value for your server. For example, if
your shell is csh and your server is a workstation called mysun, use the following command:

% setenv DISPLAY mysun:O

7. Verify that your supercomputer is authorized to connect to your X Window System server. For
example, if you are using most-based authentication, you would execute the following
command on your workstation:

rnysun% xhost super

8. Run the graph program on at least two nodes; four or more are recommended. For example, to
run the program on eight nodes of your default partition, use the following command:

% graph -sz 8

The graph window appears and the graph is drawn. If the message "Error: Can't Open display"
appears instead, refer to "Problems in Opening the Display" on page 1-16.

Refer to the Paragon™ User's Guide for information on controlling the execution of parallel
applications.

9. To draw the graph again, click the button labeled restart. To quit, click the quit button.

• • • • • • • • • • • •
I:

• • • • • • • • • • • • • • • • • • •

B

•
n
II

II

l~

G
I ,

Jii

n
I~

'1''9
".1

c
c

IJ

IJ

IJ

I.~

IJ
Ij

I~

.~

II

• • • •

Paragon TM Graphics Libraries User's Guide Using the X Window System

Widget Hierarchy of the graph Program

The graph program uses six types of widgets, not all of which are visible in Figure 1-1. Figure 1-2
shows how these widgets relate to each other in a widget hierarchy. Higher-level widgets, closer to
the back, are called parents; lower-level widgets, closer to the front, are called children. Parent
widgets manage their children; child widgets provide the basic functionality of the program.

Top-level widget ------1~;c;:;r::r;r::r;r::r;~~~~~0":J~~~~~0":J:71/!

Paned widget ------+

Box widget -------+

Command widgets

Viewport widget ----+

Core widget -----+

Figure 1-2. graph Program Widget Hierarchy

The following list describes the widgets used in the program. Widgets of these types are commonly
used in X programs.

• An invisible top-level widget provides an interface between the window manager and its
children. When you resize a window using the window manager, the top-level widget transmits
the changes to its child widgets. This top-level widget has one child: a Paned widget.

• A Paned widget holds its children in a series of vertical areas called ''panes.'' When the Paned
widget is resized, it resizes its children to display as much information as possible in the new
size. This Paned widget has two children, a Box widget and a Viewport widget.

• A Box widget holds its children in an arbitrary arrangement. The Box widget in the graph
program has two children, both Command widgets, arranged side-by-side.

1-5

Using the X Window System Paragon™ Graphics Libraries User's Guide

• A Viewport widget provides scroll bars when necessary, and scrolls its children when you click
the mouse in the scroll bars. This Viewport widget has one child: a Core widget.

• A Command widget is a pushbutton that invokes a function when the user clicks on it. The graph
program has two Command widgets that invoke the Restart and Quit functions.

• A Core widget, a kind of "vanilla" widget, does not have any functionality of its own. The graph
program uses the Core widget as a drawing surface for the graph.

In addition to its widgets, the program maintains an off-screen bitmap (a pixmap of depth 1) as a
graphics buffer. When the program draws the graph, it does not draw directly into the window.
Instead, it draws into its bitmap and then copies the bitmap into the Core widget. Thus, if the window
is obscured and then exposed, the bitmap can be copied to the widget again, without having to
recalculate the points of the graph.

Programming Techniques
This section discusses the special programming techniques for writing X applications that run on
multiple nodes. These techniques are demonstrated in the graph program.

Node/Server Connection

1-6

For a node to have a connection to the server, the node must open its own connection with a call to
XOpenDisplayO. This can either be a direct call, or through some higher-level function such as
XtAppInitializeO.

Because each call to XOpenDisplayO uses a file descriptor in the server, it is usually better to have
one node make all of the X system calls (the distinguished node method). This node opens a
connection to the display and handles the display. Most X Window System servers have a limited
number of file descriptors, which limits the number of nodes that can open simultaneous connections
to the server. Increasing the file descriptor limit would require configuring a new system kernel and
rebuilding the X Window System server for your workstation. For more information, refer to your
workstation documentation or your system administrator.

In the graph program, only node 0 makes X calls. The other nodes only calculate; they pass the
results of their calculations to node 0 as messages. Node 0 graphs the contents of each message it
receives. In the graph program, node 0 does not calculate; it only handles the display. This design is
simpler to program, but requires the use of two or more nodes. You could, in another program,
decide to have this node calculate as well. The choice depends upon the relative importance of
speedy calculation and good graphics performance for your application.

• • • • • • • • • • • • • • • • • •
I
I,

• • • • • • • • • • • •

• • o
D

II

I!

n
n
n
I~

n
r:
IJ

Il
I)

IJ

IJ
Ij

IJ
1"l'1

.111

Ij
o
o

• • • •

Paragon™ Graphics Libraries User's Guide Using the X Window System

Combining X Event-Driven Programming with Message Passing

X programs are built around a "main event loop," which repeatedly retrieves and manipulates X
events. This loop is often coded as either an infinite loop that calls XNextEventO (which blocks
until an event is received) or as a single call to XtAppMainLoopO (which never returns).

The problem with using a loop like this in a message-passing node program is that the program
blocks while waiting for the next event. Thus, when no X events are coming in, the node cannot
calculate or deal with messages from other nodes. One way to avoid this problem is to use an X
Toolkit work procedure to handle messages.

Writing a Work Procedure

A work procedure is a user-supplied function that is called by the X Toolkit whenever it is idle
waiting for an event. This function must return quickly to prevent the program's user interface
response time from degrading; typically, response delays of more than a tenth of a second are
considered unacceptable. However, a tenth of a second is enough time to receive a message and
graph its contents.

A work procedure must be a function of type Boolean; its return status indicates whether or not it
should be removed after it returns. A return status of False means that the work procedure should be
called again the next time the Toolkit is idle, while a return status of True means that the work
procedure has finished doing its job and does not need to be called again.

The graph program uses a work procedure called HandieMessagesO, which looks like this:

/* global variables */
struct {

int npoints;
XPoint points [NPOINTS] ;

} points; /* data points */
long msgid; /* message ID for incoming message */

Boolean
HandleMessages()
{

if(msgdone(msgid)) {
XDrawpoints(XtDisplay(bitmap), picture, draw_gc,

points.points, points.npoints,
CoordModeOrigin);

RedrawPicture(bitmap, NULL, NULL, NULL);

msgid = irecv(DATA, &points, sizeof(points));

return (False) ;

1-7

Using the X Window System Paragon™ Graphics Libraries User's Guide

1-8

HandleMessagesO uses the global variable msgid, which holds the message ill of an irecvO, and
the global structure points, which holds the message when it is received. When this function is
called, it tests to see if the irecvO has completed.

• If the receive has completed, the function graphs the values in the message in the internal bitmap
called picture, copies picture to the screen by calling the user-provided function
RedrawPictureO (which will be discussed later in this chapter), posts another irecvO to receive
the next message, then returns False.

• If the receive has not completed, the function simply returns False.

Note that HandieMessagesO uses the non-blocking call irecvO rather than a blocking crecvO.
Making any blocking call within a work procedure can cause your program's window to appear to
hang.

Installing a Work Procedure

You install a work procedure by calling XtAppAddWorkProcO. This call takes three arguments:
the application context of the calling application, a pointer to the work procedure function, and an
argument to be passed to the work procedure when it is called.

The graph program uses the following code to initialize msgid, install HandieMessagesO as a work
procedure, and begin the program's main event loop:

/* prepare to receive first message */
msgid = irecv(DATA, &points, sizeof(points»i

/* arrange for messages to be handled while idle */
(void)XtAppAddWorkProc(app_context,

(XtWorkProc) HandleMessages,
(XtPointer) NULL) i

/* infinite loop for X events and messages */
XtAppMainLoop(app_context)i

The call to XtAppMainLoopO never returns. However, because the program has registered
HandleMessagesO as a work procedure, it can handle messages whenever it is not busy dealing with
X events.

• • • • • • • •
• • • •
a

• • • • •
a
• • • • • • • • • • • • •

D

D

o
D

n
.~

11

n
c
Ij

I~

I:
IJ
I ",

.:..J

I~

IJ
I:]

IJ

IJ

IJ
I~

I~

G

• • • •

Paragon™ Graphics Libraries User's Guide Using the X Window System

Synchronizing Window Operations with Window Mapping

X programs should wait until the window has actually appeared before manipulating it. The function
XMapWindowO and similar functions do not necessarily cause the window to appear immediately;
they merely request that the window be mapped. Depending on the window manager, the window
may not appear for a while.

You can have the program wait until the first Expose event is received from the window, or you can
insert a call to XSyncO after the XMapWindowO. Attempting to perform certain operations on a
window that has not yet appeared can result in X errors.

In node programs, ensuring that the window has appeared before any node attempts to use it can be
a special problem. It would be simplest to have the X node (the node with the connection to the
display) immediately display the results of each message received. If, however, the calculating
nodes, which mayor may not include the X node, begin sending data to the X node as soon as they
start up, the X node may receive data to draw before the window is available. You can deal with this
problem in several ways, such as:

Have the calculating nodes begin calculating as soon as they are loaded, sending the results to
the X node as soon as they are available. The X node buffers the data from the calculating nodes
as the data is received, then draws the contents of the window all at once after the first event is
received. This requires more buffering on the X node.

Have the calculating nodes wait to calculate until they receive a "go-ahead" message from the
X node. The X node sends this message when it receives the first event. The "go-ahead"
message may include data the node needs to begin calculation. This technique can be used in a
manager-worker problem decomposition to make the X node the manager.

• Have the calculating nodes begin calculating as soon as they are loaded, buffering any results
generated. The X node sends a "go-ahead" message to the calculating nodes when the first event
is received, and the other nodes send a return message with the buffered data when they receive
the "go-ahead." This technique requires more buffering on the calculating nodes.

In the graph program, the computing nodes begin calculating only when the X node tells them to
start, sending a "go-ahead" message when the first Expose event is received.

Starting the Other Nodes on the First Expose Event

The RedrawPictureO function in the graph program is called in response to an Expose event.
Following is the RedrawPictureO function code:

static void
RedrawPicture(w, event, params, num-params)
Widget Wi
XExposeEvent *eventi
String *paramsi

/* ignored */
/* ignored */

1-9

Using the X Window System Paragon™ Graphics Libraries User's Guide

1-10

Cardinal *num-params;
{

/* ignored */

static int started = 0;

if (DefaultDepthOfScreen(XtScreen(w)) == 1) {
XCopyArea(XtDisplay(bitmap), picture, XtWindow(bitmap),

copy_ge, 0, 0, PIXMAPWIDTH, PIXMAPHEIGHT,

}

0, 0);
else {

XCopyPlane(XtDisplay(bitmap), picture,
XtWindow(bitmap),copy_ge, 0, 0,
PIXMAPWIDTH, PIXMAPHEIGHT, 0, 0, 1);

if (! started) {
StartNodes();
started = 1;

}

The RedrawPictureO function is an action procedure, a function that is called by a widget in
response to an event. All action procedures have the same four parameters as shown. In this example,
this action procedure uses only the fIrst parameter, and performs two tasks:

1. Copies the program's off-screen bitmap to the Core widget, using XCopyAreaO if the screen
is monochrome and XCopyPlaneO if the screen is color or grayscale. XCopyPlaneO is slower
than XCopyAreaO, but is necessary when a monochrome bitmap is copied to a color or
grayscale screen.

2. On the fIrst call, the function sends a "go-ahead" message to the other nodes to indicate that the
window has been exposed and the other nodes can start sending data. This message prevents the
program from trying to draw in the window before the window exists.

The function StartNodesO, called in the RedrawPictureO function, sends an empty message of
type START (an arbitrary constant defmed earlier in the program) to the other nodes:

static void
StartNodes ()
{

csend(START, NULL, 0, -1, 0);
}

In a real application, this would be a good place to send each node its initial data.

------------- ------------- ... __ ._----_._-----_ ...

•

B

•
o
D

n
I~

D

G

o
Iw
IJ

IJ

IJ

IJ

I~

D

.1]

I]

IJ

I:J
Ij

(j

I]

G

n

• • • •

Paragon™ Graphics Libraries User's Guide Using the X Window System

Associating a Function with an Expose Event

The following code creates the widget and makes it call the function RedrawPictureO when it
receives an Expose event.

/* translation table for bitmap core widget */
String trans = "<Expose>: Redrawpicture()";

/* create Core widget for drawing into */
bitmap = XtVaCreateManagedWidget ("bitmap",

widgetClass, viewport,
XtNtranslations, XtParseTranslationTable(trans),
XtNwidth, PIXMAPWIDTH,
XtNheight, PIXMAPHEIGHT,
NULL) ;

This code is fairly complicated, because a widget of class widgetClass (a Core widget) does not
have any pre-defined action procedures. You have to create a string called a "translation table" that
associates event types with function names, and then use XtParseTranslationTableO to convert the
translation table to a form that the Toolkit can interpret. The translation table in this example
contains only one line, which makes the widget call the function RedrawPictureO whenever it
receives an Expose event.

Within this section of code, the following lines in the call to XtVaCreateManagedWidgetO set the
widget's width resource to PIXMAPWIDTH and its height resource to PIXMAPHEIGHT:

XtNwidth, PIXMAPWIDTH,
XtNheight, PIXMAPHEIGHT,

PIXMAPWIDTH and PIXMAPHEIGHT are the size of the pixmap, defined earlier in the
program. These lines are necessary because the default size of the Core widget is 0 by 0 pixels.

Responding to Window Destruction

If the user destroys the application window using the window manager's "Kill Window" function,
the default window destruction procedures terminate the X node, but do not terminate the calculating
nodes.

To ensure that the destruction of the application window does not become a problem, you can install
an I/O error handler that kills the other node processes by calling kill(O, SIGKILL). The proper way
to install this error handler depends upon the toolkit (if any) and the window manager you are using,
There is no error handler in the graph program. For more information on handling window
destruction, refer to the documentation for your toolkit and window manager.

1-11

Using the X Window System Paragon TM Graphics Libraries User's Guide

Batching Data Points into Larger Messages for Improved Performance

1-12

Graphics performance usually suffers when you draw only one point at a time. The performance of
a message-passing program also suffers when you spend a lot of time passing messages. You can
improve both kinds of performance by batching your data points into larger messages.

The following is the code that collects the data into messages in the graph program:

struct {
int npoints;
xPoint points[NPOINTS];

points; /* data points */

double x, y, unit, start, end;
int i = 0;

•
for(x = start; x < end; x += STEP) {

y = sin (x) ;
ProbToScreen(x, y, &(points.points[i]));
i++;
if(i >= NPOINTS) {

points.npoints = i;
csend(DATA, &points, sizeof(points) ,

0, 0);

i = 0;

if(i != 0) {

points.npoints = i;
csend(DATA, &points, sizeof(points) , 0, 0);

The user-provided function ProbToScreenO transforms problem coordinates (the units used in the
calculation) to screen coordinates (pixels). The first two parameters are the X and Y problem
coordinates of a point, and the third parameter is a pointer to the XPoint structure in which it stores
the corresponding screen coordinates.

• • • • • • • • • • • • •
.:

• • • • • • • • • • • • • • • • • •

II

•
o
o

I "!
.-l

[J

I]

IJ

I)

()

IJ

I)

e
c
II

• • •

Paragon™ Graphics Libraries User's Guide Using the X Window System

Compiling and Linking X Window System Applications
To compile and link an X Window System application for the compute partition, use the icc
command with the -ox or -lox switch and one or more of the -I switches shown in Table 1-1, Table
1-2, and Table 1-3. Other compiler switches may be used as well. For information on the switches
that the compiler accepts, refer to the Paragon TM C Compiler User's Guide.

Standard X Window System Libraries

Nine X client libraries are included with Paragon OSFI1: five basic libraries and four advanced
libraries.

The five basic libraries (Xlib, Xaw, Xmu, Xt, and oldX) are documented in the X Window System
manuals by O'Reilly and Associates. These libraries and the volumes in which they are documented
are listed in Table 1-1. The Xlib library is the only one whose name on the system is different from
the standard library name.

Table 1-1. Basic X Window System Libraries

Library Link
Name Description Documentation Switch

Xlib Core X Window System Xlib Programming Manual -IXll
library Xlib Reference Manual

Xaw Athena widget set X Toolkit Intrinsics Programming Manual -IXaw
X Toolkit Intrinsics Reference Manual

Xmu MIT miscellaneous Xlib Reference Manual -IXmu
utilities

Xt Toolkit intrinsics layer X Toolkit Intrinsics Programming Manual -lXt
X Toolkit Intrinsics Reference Manual

oltiX XIO compatibility Xlib Reference Manual -loldX
library

1-13

Using the X Window System Paragon™ Graphics Libraries User's Guide

1-14

The other four supplied libraries (Xau, Xdmcp, Xext, and Xinput) are typically used for advanced X
Window System programming. Documentation for these libraries is supplied in troiT format and is
located in the directory /usrllih/Xll/doc on the Intel supercomputer. Specific directories for these
documents within /usrllih/xll/doc are shown in Table 1-2.

Table 1-2. Advanced X Window System Libraries

Library Link
Name Description Documentation Switch

Xau X authorization protocol troff documentation in -IXau
/usrllih/Xll/doc/Xau

Xdmcp X display manager control troff documentation in -IXdmcp
protocol /usrllih/xll/doc/Xdmcp

Xext Miscellaneous X extensions troff documentation in -lXext
/usrllih/xll/doc/Xext

Xi X input extension troff documentation in -lXi
/usrllih/xll/doc/Xinput

Some of these libraries depend on other libraries. You must specify them in the following order on
the command line:

-lXaw -lXmu -lXt -lXext -lXl1

If you use any library in this list, you must also include the libraries to its right. If you use any X
libraries other than those on this list, place them to the left of this list.

For example, to compile and link: a program that uses the Athena widgets (Xaw) for the compute
partition, use a command line like the following:

% icc -nx filename -lXaw -lXmu -lXt -lXext -lXll

To compile the same program for the service partition, use the same command line without the -nx
switch.

• • • •
• • • • • • •
\I

•

• •
D

D

n
D

II

n
C1

I]

IJ
• "'1
: ,j

I~

n
1:1

1:1

IJ

o

• • • •

Paragon™ Graphics Libraries User's Guide Using the X Window System

Motif Libraries

The Motif widget set is an optional product. It is supplied in three libraries and documented in two
volumes of the X Window System manuals by O'Reilly and Associates, as shown in Table 1-3.

Table 1-3. Motif Libraries

Library Link
Name Description Documentation Switch

Xm Motif widget set Motif Programming Manual and -IXm
X Toolkit lntrinsics Programming
Manual- Motif Edition

Mrm Motif resource manager Motif Programming Manual -IMrm
utilities

UiZ User Interface Language Motif Programming Manual -lUil
compiler functions

The Motif libraries depend on other libraries. You must specify them in the following order on the
command line:

-luil -lMrm -lxm -lXt -lXext -lXll -lPW

If you use any library in this list, you must also include the libraries to its right. If you use any X
libraries other than those on this list, place them to the left of this list.

NOTE

The Motif libraries depend on the Programmer's Workbench
library, -IPW. This library contains miscellaneous utility functions.

For example, to compile and link a program that uses the Motif widgets (but not the Motif resource
manager utilities or UIL) for the compute partition, you could use a command line like the following:

% icc -llX filename -lXlll -lxt -lXext -lXll -lPW

To compile the same program for the service partition, use the same command line without the -nx
switch.

1-15

Using the X Window System Paragon™ Graphics Libraries User's Guide

Problems in Opening the Display
This section describes what to do if you see the following message when you try to run an X program
on the Intel supercomputer:

Error: Can't Open display

This message indicates that the program has failed to open a connection with the server over the
network. Three of the most common causes of this message are:

• You have not told the program which server to use.

• The Intel supercomputer and the server do not know each other's IP address.

• The Intel supercomputer is not authorized to access the server.

The following subsections describe these problems and their solutions.

Specifying the Server to the Program

1-16

There is no X Window System server on the Intel supercomputer. Therefore, you must always
specify the display when you run an X program. The default value unix:O will not work on the Intel
supercomputer.

You can specify the display with the -display command-line argument or by setting the DISPLAY
environment variable on the Intel supercomputer to the appropriate value for your server. Use the
following command on the Intel supercomputer to check the value of your DISPLAY variable:

% ec.ho $DISPLAY

The correct value is usually the name of the server computer followed by ":0". For example, suppose
your X server is a workstation called mysun. Before running a program that makes X client calls on
the Intel supercomputer, issue the following command (if you use a shell other than esh, use the
appropriate commands for your shell instead):

% setenv DISPLAY ~sun:O

To have the DISPLAY variable set automatically every time you log in, put the appropriate setenv
command in your .cshrc or .login file on the Intel supercomputer, entering a line like the following:

setenv DISPLAY mysun:O

This line ensures that all programs started on the Intel supercomputer use mysun as the X server. If
your X server has more than one display, you may use the following form:

setenv DISPLAY mysun:O.O

--.. -'~---'.'-'- _._- ------ .. ~-.--.. -.-~.- ~~~~~~~~~

• • • • • • • •
• • • • • • • • • • a
• • • • • • • •
• • • • •

D

II

o
D

H

C
11!1

tl1

I~'!

, ,.I

IJ

1"1 , J

I;:]

I~

IJ

IJ

IJ

IJ

IJ

IJ

IJ

I]

1:1

ID
B

• • •

Paragon™ Graphics Libraries User's Guide Using the X Window System

Ensuring that Supercomputer and Server Know Each Other's Address

If you have specified the server to the X program but you still get the "Can't Open display" error
message, you must make sure that the Intel supercomputer and the server know each other's network
address.

1. Use the ping command on the Intel supercomputer to check that it knows the address of the
server. You need to use the full patbname for the ping command, as in this example:

% /sbin/ping ~sun
PING mysun.myco.com (012.34.567.890): 56 data bytes
64 bytes from 012.34.567.890: icmp_seq=O ttl=255 time=10 ms
64 bytes from 012.34.567.890: icmp_seq=l ttl=255 time=O ms
64 bytes from 012.34.567.890: icmp_seq=2 ttl=255 time=O ms
<Ctrl-c>

----mysun.myco.com PING Statistics----
3 packets transmitted, 3 packets received, 0% packet loss
round-trip (ms) min/avg/max = 0/3/10 ms
%

The above output indicates that the Intel supercomputer knows the address of mysun. The
following output indicates that it does not know the address:

ping: unknown host mysun

If you see this message, ask your system administrator to add the server's name and address to
the Intel supercomputers letclhosts file, or your site's NIS database. If this is not possible, you
can use the server's Internet Protocol (lP) address instead of its name when specifying the
display. For example:

% setenv DISPLAY 123.45.678.90:0

If the ping command hangs, it may indicate that the specified name is in the letc/hosts file but
the address is wrong; the system administrator can check this.

2. If the Intel supercomputer knows the server's address, check whether the server knows the Intel
supercomputer's address. To check this, you must know the Intel supercomputer's hostname. If
you do not know this name, use the hostname command on the Intel supercomputer. For
example:

% bostname
super

1-17

Using the X Window System Paragon™ Graphics Libraries User's Guide

3. Once you know the hostname, use ping or the equivalent command on the server to check that
the server knows the Intel supercomputer's address. On a Sun system, ping is not in the default
execution path for users other than root, so you must specify its full pathname. For example:

mysun% /usr/etc/ping super
super is alive
mysun%

The output above indicates that mysun knows the address of super. The following output
indicates that it does not know the address:

ping: unknown host super

If you see this message, your system or network administrator needs to add the Intel
supercomputer's name and address to the server's /etc/hosts file or NIS database.

Authorizing the Supercomputer to Access the Server

1-18

If the Intel supercomputer knows the address of the server, but the server does not authorize access
by the Intel supercomputer, the following messages may appear:

Xlib: connection to "mysun:O.O" refused by server
Xlib: Client is not authorized to connect to Server
Error: Can't Open display

The following steps describe how to fix this problem for :most authorization, the most common
authorization system. Consult your system administrator if your system uses a different kind of
authorization.

1. Determine the Intel supercomputer's hostname, as explained in the previous section.

2. Once you know the hostname, use the :most command on the server to allow access to that
name:

mysun% xllost super
super being added to access control list
mysun%

You can also use the server's Internet Protocol (lP) address instead of its name. For example:

mysun% xllost 123.45.678.91

--.--------.--.----------~---------------

• • • • • • • •
•

II

II

o
n
n
D

11

I~

I~

IJ
I ''':

j

I· ..,
J

I1l
I]

IJ

IJ

IJ

1:1

IJ

IJ

n

• • • •

----------- ---~.------------

Paragon™ Graphics Libraries User's Guide Using the X Window System

3. To list the authorized hosts, issue the most command with no arguments:

mysun% xllost
access control enabled (only the following hosts are allowed)
super
bear
wolf
localhost
mysun%

The effect of the most command lasts only as long as the X server software is running, so you might
want to add this xhost command to your .xinitrc file on the server.

1-19

Using the X Window System Paragon TM Graphics Libraries User's Guide

1-20

------- --------- ---------

• • •
•
• • • • • •
• • •
.:

• • • • • •
-­• • • • • • • • • • •

B

•
n
n
n
c
n
n
r:
c

IJ

Ij

IJ

Ij

I~

IJ

•
'-1

, ,
..J

IJ
[J

IJ

IJ

IJ

[j

11

• • • •

Using the Distributed Graphics
Library

Introduction
The Distributed Graphics Library (DGL) is a software library of subroutines developed by Silicon
Graphics, Inc. (SGI) for two-dimensional and three-dimensional graphical programming. It can
control the displays of workstations, and it provides a standard environment for application software.

A set of DGL client libraries is offered as an option under the Paragon TM aSFIl operating system.
These libraries run either in the service or compute partition of the Intel supercomputer. Applications
using DGL may be written in either Fortran or C.

This chapter describes:

• Special programming techniques for parallel DGL programs.

• How to compile and link DGL applications.

• What to do if your DGL program cannot open the display server .

This chapter only includes information specific to writing DGL applications for Paragon aSF/i. It
does not describe how to write DGL application programs. For information on writing DGL
programs, refer to the SGI Graphics Library Programming Guide.

To use your workstation as a server with access to the Paragon aSFIl DGL client libraries, the DGL
daemon,lusrletddgld, must be activated on your workstation. For information on how to do this,
refer to "Using the Network-Transparent Feature of GL" on page 2-13.

An entry for your DGL server must be included in the Intel supercomputer's letclhosts file or NIS
database. If no such entry exists, your system administrator must add an entry for your server. Refer
to ''Ensuring that the System and Server Know Each Other's Address" on page 2-11 for more
information.

2-1

Using the Distributed Graphics Library Paragon™ Graphics Libraries User's Guide

Most of the programming techniques and considerations described in this chapter apply to programs
to be run in the compute partition. If you create a DOL program to run only in the service partition,
no special programming techniques are necessary. You need only link: the program properly, as
described in "Compiling and Linking DGL Applications" on page 2-9.

A Sample DGLProgram
To help you start using DGL in the compute partition, a sample program called graph is in the
directories /usr/share/examples/fortranldgl and /usr/share/examples/c/dgl on your Paragon system.
(The versions in the two directories are identical in operation, but one is written in Fortran and the
other in C.) The graph program demonstrates the special programming techniques that you can use
to write DGL applications to run on multiple nodes in the compute partition. A Makefile is available
in the same directory. Because the program is too long to print in its entirety, this chapter explains
only selected parts.

If you create a DGL program to run only in the service partition, no special considerations are
necessary. You need only see the system link: instructions.

Compiling and running the graph program can help you verify that your Intel supercomputer and
server are properly configured.You might also wish to use it as a basis for your own DGL program,
or you may wish to examine the code for programming techniques.

What the graph Program Does

2-2

The graph program performs a simple calculation for the value of sin(x) for 0 S x < 27t and graphs
the result in a window as it is calculated. You can resize the window, using your window manager.
The graphed image remains proportional to the size of your window, growing as the window
enlarges, shrinking as the window gets smaller. A pop-up menu, accessible by pressing the
right-hand mouse button while the pointer is in the window, has two items: Restart, which clears
the window and restarts the calculation from the beginning, and Quit, which terminates the program.

The problem decomposition used in this example is a modified domain decomposition. Node 0
maintains the display, and the other nodes calculate the points of the curve. The x values from 0 to
27t are divided evenly among the calculating nodes. For example, if the program is run on four nodes,
node 1 is responsible for 0 S x;5; 21t13, node 2 is responsible for 2TC/3 < x S 4TC/3, and node 3 is
responsible for 4TC/3 < x < 27t.

-------------_._- ---.-.-------------

•
D

• • • • • • • • • • • • • • • ..
• • • • • • • • • • • • • •

II

D

D

n
D

D

D

D

n
D

~

IJ
("'1

~I

IJ
[J

C

C

G

IJ

IJ

IJ
[J

Ij

1:1
(j

e
e
D

• • • •

----,------------------------~-~--~,------------

Paragon™ Graphics Libraries User's Guide Using the Distributed Graphics Library

Figure 2-1 shows what the graph program looks like when running.

Figure 2-1. graph Program Display

Compiling, Linking, and Executing the graph Program

This section describes how to compile and link the C or Fortran language version of the graph
program. Your Intel supercomputer system software must include the DGL option. To compile these
programs on your workstation, you must have the icc and/or in, cross-compiler.

1. Create a directory for the graph program in your current directory with the following command:

% mkdir grapb

2. Copy the source code and Makefile for the graph program to your graph directory.

On the Intel supercomputer, use one of the following commands:

% ep /usr/share/ex~les/fortran/dgl/* grapb
or

% ep /usr/sbare/ex~les/e/dgl/* graph

On a workstation, use either rep or rtp to transfer the file from the supercomputer to your
workstation. For example, you could use rep, as in the following command, replacing super
with the name of your Intel supercomputer:

mysgi% rep "super: /usr/share/ex~les/fortran/dgl/*" grapb
or

mysgi% rep "super: /usr/sbare/examples/e/dgl/*" grapb

2-3

Using the Distributed Graphics Library Paragon™ Graphics Libraries User's Guide

2-4

3. Use the following command to change to the graph program directory:

% cd graph

4. Use the following command to compile and link the program:

% make

5. If you compiled the program on a workstation, copy the executable to the Intel supercomputer
and then log into the Intel supercomputer, using the appropriate command for your site. For
example, if the appropriate commands are rep and rlogin, use commands like the following:

mysgi% rcp graph super:
mysgi% rlogin super

6. When the program has been compiled and linked, set the DGLSERVER environment variable to
the appropriate value for your server. For example, if your shell is csh and your server is a
workstation called mysgi, use the following command:

% setenv DGLSBRVER mysgi

7. Run the program on at least two nodes; four or more are recommended. For example, to run the
program on eight nodes of your default partition, you would use the following command:

% graph -sz 8

The graph window appears and the graph is drawn. If you see an error message instead, refer to
"Problems Opening the Display" on page 2-10.

For information on controlling the execution of parallel applications, refer to the Paragon TM

User's Guide.

8. To draw the graph again, select Restart from the pop-up menu if you want to draw the graph
again. To quit, select Quit from the menu.

~-~-~-------~- -- ---~,----~-------------

II

D

D

•
II

n
• • • • •
~

I:

• • • • •
~

• • • • • • • • • • • • •

• •
D

D
11!'I··

.iiJ

III
I]

C

•
"'1
J

IJ

IJ
I ,

. .:J

IJ

[J

IJ

1:1

IJ

IJ
c
t;j

II

• • • •

~~~-~~~~~--.~~~~ ~-~~ ..... ~ .. ~ .. ~ ~.~ .. ~--~~~~~.~-~~ ... -~-~.~ . ----~ 

Paragon TN Graphics Libraries User's Guide Using the Distributed Graphics Library 

Flow of Control in the graph Program 

Figure 2-2 shows a flow chart for the graph program. 

START 

Initialize DGL 
environment 

No 

No 

Yes 

Yes 

Wait for message; 
Calculate a set of 

data points 

Send a message to 
node 0 

Process DGL event 

Draw the data from 
the message 

Figure 2-2. Flow Chart of the graph Program 

2-5 



Using the Distributed Graphics Library Paragon™ Graphics Libraries User's Guide 

Node 0 sets up the display window, pop-up menus, and other user interface elements, then loops 
while awaiting a DGL event or a message. When this node receives an event, the event is processed. 
When this node receives a message, it graphs the data found in the message. 

Nodes other than node 0 just calculate the points of the graph and send them to node 0 as messages. 

Programming Techniques 
This section discusses the special programming techniques for writing DGL applications that run on 
multiple nodes. These techniques are demonstrated in the graph program. 

Connecting Nodes to the Server 

In the graph program, only node 0 makes DGL calls. The other nodes only calculate; they pass the 
results of their calculations to node 0 as messages. Node 0 graphs the contents of each message it 
receives. 

If you have a single node handle the display, you may to have this node calculate as well, depending 
on the relative importance of speedy calculation and good graphics performance for your 
application. In the graph program, node 0 does not calculate; it only handles the display. Using node 
o strictly to handle the display and not to calculate is simpler to program, but produces no results 
unless run on two or more compute nodes. 

Combining DGL Event-Driven Programming with Message Passing 

2-6 

DGL programs are built around a "main event loop", which repeatedly receives and then 
manipulates a DGL event. The problem with using a such loop in a message-passing node program 
is that the program blocks while waiting for the next event (qreadO does not return until there is an 
event). Therefore, when no DGL events are coming in, the node is blocked; it cannot calculate or 
handle messages from other nodes. 

By using a non-blocking call in your main event loop, you can let the loop proceed rather than block 
if there is no DGL event pending. To do this, you can call qtestO instead of qreadO. 

Similarly, you should use non-blocking message calls, such as irecvO, so neither the 
message-handling part of the program nor the DGL event-handling part blocks the other. 

In the C version of the graph program, the main event loop looks like the following, with a call to 
qtestO instead of the usual call to qreadO: 

/* prepare to receive first message */ 
msgid = irecv(DATA, &points, sizeof(points)); 

a 

• • 
• • 
• • • 
• • • • • • • • • • • • 
.: 

• • • • • • • • • • • 



B 

• 
D 

D 

D 

o 
D 

n 
I~ 

I~ 

IJ 

IJ 
1:"1 

.c>J 

IJ 
C 

e 
G 
(J 

IJ 

IJ 

IJ 
( "1 
. J) 

IJ 

I: 
(j 

I~ 

G 

II 

n 

• • 

Paragon™ Graphics Libraries User's Guide Using the Distributed Graphics Library 

/* start the nodes */ 
csend(START, NULL, 0, -1, 0); 

/* infinite loop for DGL events and messages */ 
while (1) { 

if(qtest() != 0) 
HandleDGLEvent(); 

if(msgdone(msgid)) { 
int i; 

/* insert the new line segments in the object */ 
edi tobj (Wave) ; 
bgnline () ; 
for(i=O; i<points.npoints; i++) 

v2f(points.points[i]); 
endline() ; 
closeobj (); 

/* draw the new data */ 
callobj ( Wave ); 

msgid = irecv(DATA, &points,. sizeof(points)); 

The main event loop of the Fortran version of graph looks like this: 

c 
C prepare to receive first message 
C 

msgid = irecv(DATA, msgbuf, 4*MSGSZ) 
C 

C start the nodes 
C 

call csend(BEGIN, points, 0, -1, 0) 
C 

C infinite loop for DGL events and messages 
C 

1000 if( qtest() .NE. 0) then 
call dglevt(wave, mymenu) 

else if( msgdone(msgid) .NE. 0) then 
call msgevt(wave, npoints, vector) 
msgid = irecv(DATA, msgbuf, 4*MSGSZ) 

endif 
goto 1000 

2-7 



Using the Distributed Graphics Library Paragon™ Graphics Libraries User's Guide 

Responding to Window Destruction 

If the user destroys your application's window with the window manager's "Kill Window" function, 
the default window destruction procedures terminate the DGL node. However, this does not 
terminate the calculating nodes. 

The effect of this problem depends on your application. If this is a problem for your application, you 
should add cases to your DGL event loop that catch WINQUIT and WINSHUT events and, if 
found, call kill(O, SIGKILL) to terminate the compute nodes. 

Batching Data Points into Larger Messages for Improved Performance 

Graphics performance usually suffers when you draw only one point at a time. The performance of 
a message-passing program also suffers when you spend a lot of time passing messages. You can 
improve both kinds of performance by batching your data points into larger messages. 

The C code that collects the data into messages in the graph program looks like this: 

struct { 
int npoints; 
float points [NPOINTS] [2J; 

points; /* data points */ 

Coord x, unit, start, end; 

• • • • • • • • • • • • 
II 

• • • • 
IE 

& 
int i; • 

2-8 

for(x = start; x < end; x += STEP) 
points.points[iJ [OJ x; 
points.points[iJ [1] sin(x); 
i++; 
if(i >= NPOINTS) { 

points.npoints = i; 

} 

csend(DATA, &points, sizeof(points) , 
0, 0); 

i = 0; 

if(i != 0) { 

points.npoints = i; 
csend(DATA, &points, sizeof(points) , 0, 0); 

• • • • • • • • • • • • 



D 

II 
o 
D 

11 

1-:: 

[J 

IJ 
11 

,.I 

1:1 

IJ 
[] 

IJ 
I] 

n 
~ 

D .. 
• • 

Paragon™ Graphics Libraries User's Guide Using the Distributed Graphics Library 

The Fortran code that collects the data into messages in the graph program looks like this: 

2000 

integer*4 npoints 
real*4 vector(2,100) 
real*4 msgbuf(201) 
equivalence(npoints,msgbuf(l)) 
equivalence(vector(l,l), msgbuf(2)) 

real*4 x, start, end 
integer*4 i 

i = 1 
DO 2000 x = start, end, STEP 

vector(l,i) = x 
vector(2,i) = sin(x) 
i = i + 1 
if(i .GT. NPTS ) then 

npoints = i - 1 
call csend(DATA, msgbuf, 4*MSGSZ, 0, 0) 
i = 1 

endif 
continue 

if(i .NE. 1) then 
npoints = i - 1 
size = 4 * ( (2 * npoints) + 1) 
csend(DATA, msgbuf, size, 0, 0) 

endif 

Compiling and Linking DGL Applications 
To compile and link a DGL application for the compute partition, use the icc command or th~ it77 
command with the -nx switch, the -ldgl (for both C and Fortran) and -lfgl (for Fortran only) 
switches. The -nx switch compiles the code to be executed in the compute partition. The node 
TCPIIP library required for all DGL programs is included automatically, with no extra switches 
required in the compile command line. 

• To compile and link a C program for the compute partition, use a command line like the 
following: 

icc -nx filename -ldgl 

2-9 



Using the Distributed Graphics library Paragon ™ Graphics Libraries User's Guide 

• To compile and link a Fortran program for the compute partition, use a command line like the 
following: 

1f77 -DX filename -lfgl -ldgl 

• To link for the service partition, use the same command lines as above, but without the -ox 
switch. 

Problems Opening the Display 
This section describes what to do if you see an error message when you try to run a DGL program 
on an Intel supercomputer. When a program has failed to open a connection with the server over the 
network, one of the following three problems is likely to be the cause. Error messages that usually 
indicate one of these problems are also shown. 

• You have not told the program which server to use. 

libdgl error (pipe_init): DGLLOCAL not supported 
libdgl error (default init): default dglopen returned -238436736 

• The Intel supercomputer and the server do not know each other's Internet address. 

libdgl error (*gethostbyname): can't get addr for name 
libdgl error (write): value 

• The Intel supercomputer is not authorized to access the server. 

libdgl error (login): dgl server access denied -
Cannot open link to DGL server mysgi 

The following subsections describe these problems and their solutions. 

Specifying the Server to the Program 

2-10 

There is no DGL server on the Intel supercomputer, and no default server value for the Intel 
supercomputer. As a result, you must always specify the display when you run a DGL program. 

You specify the display by setting the DGLSERVER or REMOTEHOSTenvironment variable on the 
Intel supercomputer to the appropriate value for your server. If both variables are set, the value of 
DGLSERVER is used. You can use the following command on the Intel supercomputer to check the 
value of your DGLSERVER variable: 

% ecb.o $DGLSERVER 

• • • • • • • • • • • a 
& 

a 
II 

• 
R 

I: 
& 

• 
K 

• • • • 
I( 

• • • • • • 



• 
a 
II 

n 
n 
n 

1:1 
Ij 

( "i 
.J 

1-'"1 
:j 

I] 

IJ 

IJ 

I) 

Ij 

~ 

II 

• • • 

------------------- -------------------------~ 

Paragon™ Graphics Libraries User's Guide Using the Distributed Graphics Library 

The correct value is usually the name of the server computer. For example, suppose your DGL server 
is a workstation called mysgi. Before running a program that makes DGL client calls, issue the 
following command (if you use a shell other than csh, use the appropriate commands for your shell 
instead): 

% setenv DGLSERVER mysgi 

To set the REMOTEHOSTvariable automatically every time you log in, put the appropriate setenv 
command in your .cshrc or .login file on the service partition. For example: 

setenv REMOTEHOST mysgi 

For more information, refer to ''Establishing a Connection" on page 2-14. 

Ensuring that the System and Server Know Each Other's Address 

If you have specified the server to the DGL program, but the Intel supercomputer and the server do 
not know one another's addresses, you may still get one of the following error messages: 

libdgl error (*gethostbyname): can't get addr for name 
libdgl error (write): value 

To ensure that the Intel supercomputer and the server know each other's network address, perform 
these steps: 

1. Use the ping command on the Intel supercomputer to check that it knows the address of the 
server. For example: 

% /sbin/ping mysgi 
PING mysgi.myco.com (012.34.567.890): 56 data bytes 
64 bytes from 012.34.567.890: icmp_seq=O ttl=255 time=10 ms 
64 bytes from 012.34.567.890: icmp_seq=l ttl=255 time=O ms 
64 bytes from 012.34.567.890: icmp_seq=2 ttl=255 time=O ms 
<Ctrl-c> 

----mysgi.myco.com PING Statistics----
3 packets transmitted, 3 packets received, 0% packet loss 
round-trip (ms) min/avg/max = 0/3/10 ms 
% 

The output above indicates that the Intel supercomputer knows the address of mysgi. The 
following output indicates that it does not know the address: 

ping: unknown host mysgi 

2-11 



Using the Distributed Graphics Ubrary Paragon ™ Graphics Ubraries User's Guide 

If you see this message, ask your system administrator to add the server's name and address to 
the Intel supercomputers letclhosts file, or your site's NIS database. 

If the ping command hangs, it may indicate that the specified name is in the letclhosts file but 
the address is wrong; the system administrator can check this. 

2. If the Intel supercomputer knows the server's address, check to see that the server knows the 
supercomputer's address. Use the ping command on the SGI workstation to verify this, as in the 
following example, which assumes the name of the Intel supercomputer to be super: 

mysgi% /usr/etc/ping super 
PING super (012.34.567.891): 56 data bytes 
64 bytes from 012.34.567.891: icmp_seq=O ttl=255 time=10 ms 
64 bytes from 012.34.567.891: icmp_seq=l ttl=255 time=O ms 
64 bytes from 012.34.567.891: icmp_seq=2 ttl=255 time=O ms 
<Del> 

----super PING Statistics----
3 packets transmitted, 3 packets received, 0% packet loss 
round-trip (ms) min/avg/max = 0/2/10 
mysgi% 

The output above indicates that mysgi knows the address of super. The following output 
indicates that it does not know the address: 

/usr/etc/ping: super: Unknown host 

If you see this message, have your system or network administrator add the Intel 
supercomputer's name and address to the server's letclhosts file or NIS database. 

Authorizing the Supercomputer to Access the Server 

2-12 

If you see the following messages when you try to run a DGL program, it means that the Intel 
supercomputer knows the server's address, but the server does not authorize the Intel supercomputer 
to access it: 

libdgl error (login): dgl server access denied -
Cannot open link to DGL server mysgi 

This error means that you are not able to. rlogin from the Intel supercomputer to the SGI workstation 
without being prompted for a password. If you see this error, add the Intel supercomputer's name to 
the file . roosts in your home directory on the SGI workstation. For example, if the name of the Intel 
supercomputer is super: 

mysgi% cat » -/.rbosts 
super 

.. ------~-------~---- .---~-~-----------

• • • • • • • • • • • .-
~ 

a: 

• 
I: 

• • 
I: 

• • • • • 
I 

• • • • • • • 



• 
a 
n 
o 

IJ 

IJ 
I~ 

I: 

I) 

IJ 

IJ 
fj 

IJ 

~ 

Ij 
n 
o 

• • • • 

Paragon™ Graphics Libraries User's Guide Using the Distributed Graphics Library 

<Ctrl-d> 
mysgi% 

Once you have done this, you should be able to log into the SGI workstation from the Intel 
supercomputer without having to supply a password. If this is not the case, see your system 
administrator for assistance. 

Using the Network-Transparent Feature of GL 

NOTE 

Most of the information in this section appears as Chapter 19 in 
the Graphics Library Programming Guide from Silicon Graphics, 
Inc. (Document Number 007-1210-040) 

Writing a network-transparent GL program is no different than writing a standalone GL program, 
except for optimizing performance. Graphics calls are buffered from the client to the server, so you 
must flush the buffer periodically. The subroutine gtlushO flushes the client buffer so the server can 
receive GL calls. 

The gflushO Subroutine 

The DGL client buffers calls to GL subroutines for efficient block transfer to the graphics server. 
The subroutine gtlushO explicitly flushes the communication buffers and delivers all the 
untransmitted graphics data that is in the buffer to the graphics server. 

GL subroutines that return data implicitly flush the communication buffers. In most programs, the 
implicit flushing that is performed by subroutines that return data is usually sufficient. 

NOTE 

All programs that are run over the network must call gflushO if the 
last command is a drawing command. No drawing is guaranteed 
to happen until gflushO is called. 

2-13 



Using the Distributed Graphics Library Paragon™ Graphics Ubraries User's Guide 

The following example outlines a typical use of gflushO: 

A program calls some Graphics Library subroutines that are buffered and not flushed. The 
program then either computes or blocks for a while, waiting for non-graphic I/O. The gflushO 
subroutine must be called if the results of the buffered GL subroutines are to be seen on the host 
display before and during the pause. 

Another reason for using gflushO is to reduce graphics "jerkiness." If the client is computing data 
and then sending that data to the graphics server without implicit or explicit flushes, the data will 
arrive at the graphics server in large batches. The server may process this data very quickly and then 
wait for the next large batch of data. The rapid processing of GL subroutines followed by a pause 
results in an undesirable '~erky" appearance. In these cases it is probably best to call gflushO 
periodically. For example, a logical place to call gflushO is after every swapbutTersO call. 

NOTE 

Performing too many flushes can adversely affect performance. 

The finishO Subroutine 

The fmishO subroutine is useful when there are large network and pipeline delays. The finishO 
subroutine blocks the client process until all previous subroutines execute. First; the communication 
buffers on the client machine are flushed. On the graphics server, all unsent subroutines are forced 
down the Geometry Pipeline to the bitplanes, then a final token is sent and the client process blocks 
until the token goes through the pipeline and an acknowledgment is sent to the graphics server and 
forwarded to the client process. 

The following example illustrates a typical use of finish: 

A client calls GL subroutines to display an image. The subroutines all fit into the server's 
network buffers and the image takes 30 seconds to render. The client wants to wait until the 
image is completely displayed on the server's monitor before a message can be displayed on the 
client's terminal. The gflushO subroutine flushes the buffers, but does not wait for the server to 
process the buffers. The fmishO subroutine flushes the buffers and waits not only for the server 
to process all the graphics subroutines, but for the Geometry Pipeline to finish as well. 

Establishing a Connection 

2-14 

The DGL server is initialized by the routine dglopenO. If dglopenO is not called by the program, 
the DGL library attempts to open a default connection by calling dglopenO with a default server 
name and connection type. If either of the following environment variables are defined, the server 
name is the value of the defined variable highest in the following list: 

• DGLSERVER 

• REMOTEHOST 

• • • 
• • • • • • • • • 
I: 
&: .. 
• • • • • • • • • • • • • • • • • 



• • o 
D 

U 
III 
I~ 

Cl 

n 
I~ 

13 

IJ 

I.: 
,1""1 

-,-"J 

IJ 
• 1 

"'" 

I] 

IJ 

Ij 

[J 

I~ 

D 

D 

• • • 

Paragon™ Graphics Libraries User's Guide Using the Distributed Graphics Library 

If the value of REMOTEHOST is used for the server name, then the environment variable 
REMOTEHOSTUSER is checked. If REMOTEHOSTUSER is defined, the server name is set to 
REMOTEHOSTUSER@REMOTEHOST. If neither of the environment variables above are defined, 
then the server name is set to the client's hostname. 

The value for the connection type comes from the following ordered list: 

1. DGLTYPE (if defined) 

2. DGLSOCKET (if an environment variable is used for the server name) 

3. DGUOCAL 

The environment variable DGLTYPE can be set to either the symbolic or numeric value of the 
connection type, for example, DGLSOCKET or 2. 

Limitations and Incompatibilities 

The network-transparent GL had a few limitations and incompatibilities with the previous releases 
of the GL, which was used strictly for local imaging. These limitations may prevent a GL application 
from executing properly when remote connections are used. 

The callfunc() Subroutine 

The callfuncO subroutine does not function in a GL program that is run remotely. Any references to 
callfuncO will result in a runtime error when loading the program. 

Pop-up Menu Functions 

A maximum of 16 unique callback functions are supported. Freeing pop-up menus does not free up 
callback functions. If you use too many callback functions, you get the following client error: 

dgl error (pup): too many callbacks 

Interrupts and Jumps 

You cannot interrupt the execution of a remotely called GL subroutine before calling another 
subroutine. This typically happens when you set an alarm or timer interrupt to go off and then block 
the program with a qreadO call. If the signal handler does not return to the qreadO, unpredictable 
results are likely; for example, it could do a longjumpO to some non-local location. 

2-15 



Using the Distributed Graphics Library Paragon TM Graphics Libraries User's Guide 

DGL Configuration 

2-16 

The DOL protocol software consists of two parts: a client library and a graphics server daemon. The 
graphics server daemon is lusrletcldgld. The DOL protocol gets an Internet port number from 
letclservices, which is set up during installation of DOL to have an entry for sgi-dgl (see the 
servicesO online manual page). 

The inetd Daemon 

The graphics server daemon for TCP socket connections is automatically started by inetd. This 
command reads its configuration file to determine which server programs correspond to which 
sockets. The standard configuration file, lusrletclinetd.conf, has an entry for sgi-dgl. When a request 
for a connection is made the following sequence occurs: 

1. The service sgi-dgl is looked up inletclservices to get a port number. If the service is not found, 
an error occurs. 

2. The server's name is looked up in letclhosts to get an Internet address. If the host is not found, 
an error occurs. 

3. An Internet stream socket is created and some of its options are set. 

4. A connection to the server machine is attempted with a small timeout allowance. If the 
connection is refused, the timeout is doubled and the connection retried. If after several tries the. 
connection is still refused, an error occurs. 

5. A successful connection is made and the server's Internet daemon invokes a copy of the DOL 
graphics server. The graphics server process inherits the socket for communicating with the 
DOL client program. 

6. The graphics server uses the ruserokO call to verify the login. The user ID on the server must 
be the equivalent (in the sense of rlogin) to the user ID running the DOL client program or 
permission is denied. 

7. The server process's group and user IDs are changed according to the entry in letclpasswd. 

The dgld Daemon 

The dgld daemon is the server for remote graphics clients. The server provides both a subprocess 
facility and a networked graphics facility. The dgld daemon is started by inetd when a remote 
request is received. 

TCP socket connections are serviced by the Internet server daemon inetd. inetd listens for 
connections on the port indicated in the sgi-dgl service specification. When a connection is found, 
inetd starts dgld as specified by the file lusrletclinetd.conf and gives it the socket. 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 



• • a 
D 

o 
D 
o 
II 

o 
11 

n 
I:;] 

G 

C 
•

• 1'1.' 

jJ 

e 
n 
IJ 

• • • • 

Paragon TM Graphics Libraries User's Guide Using the Distributed Graphics Library 

Error Messages 

Error messages are output to a message file. The message file defaults to stderr. Error messages have 
the following format: 

pgm-name error (routine-name): error-text 

where: 

pgm-name Either dg 1 for client errors or dg 1 d for server errors. 

routine-name The name of the system service or internal routine that failed or detected the 
error. 

error-text An explanation of the error. 

Connection Errors 

Table 2-1 lists the internally generated error values that are reported when a connection fails. 

Table 2-1. Connection Error Values 

Error Value Explanation 

ENODEV Type is not a valid connection type. 

EACCESS Login incorrect or permission denied. 

EMFILE Too many graphics connections are currently open. 

ENOPROTOOPT DGL service not found in fetclservices. 

ENPROTONOSUPPORT DGL version mismatch. 

ERANGE Invalid or unrecognizable number representation. 

ESRCH Window manager is not running on the graphics server. 

Client Errors 

Client error messages are printed to stderr. For example, if NIS is not enabled and fetclhosts does 
not include an entry for the server host hostname, the following error message is printed when a 
connection is requested: 

dgl error (gethostbyname): can't get name for hostname 

2-17 



Using the Distributed Graphics Library Paragon™ Graphics Libraries User's Guide 

2-18 

If the client detects a condition that is fatal, it makes an exitO call, with an errno value as its 
parameter that best indicates the condition. If a system call or service returns an error number (errno 
or h_errno), this number is used as the exit number. 

Table 2-2 lists all exit values that are internally generated (not the result of a failed system call or 
service). 

Table 2-2. GL Client Exit Values 

Exit Value Explanation 

ENOMEM Out of memory. 

EIO Read or write error. 

The EIO value is sometimes accompanied by the following message: 

dgl error (comm): read returned 0 

This means that the communication with the server has been interrupted or was not successfully 
established. The configuration of the server machine should be checked (see ''DGL Configuration" 
on page 2-16). 

Server Errors 

Server error messages are printed to stderr by default. For example, if /etc/hosts does not include an 
entry for the client host, the following error messages appear: 

dgl error (gethostbyaddr): can't get name for 59000002 
dgl error (comm_init): fatal error 1 

The standard inetd.conffile runs the graphics server with the I and M options. The I option informs 
the graphics server that it was invoked from inetd and enables output of all error messages to the 
system log file maintained by syslogd. The M option disables all message output to stderr. 

If the DGL server is not working properly, check the system log file (SYSLOG) for error messages 
(see your system administrator for its location). Each entry in the SYSLOG file includes the date and 
time of the entry, identifies the program as dgld, and includes the process identification number 
(PID) for the server process. The rest of the error message is the text of the error message. 

• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 



• • 
D 

D 

n 
n 
D 

D 

D 

D 

n 

I~ 

o 
[J 

[J 

(j 

I) 

n 
D 

• • • • 

Paragon™ Graphics Libraries User's Guide Using the Distributed Graphics Library 

Exit Status 

When the dgld graphics server exits, the exit status indicates the reason for the exit. A normal exit 
has an exit status of zero. A normal exit occurs when either the client calls dgicloseO or when zero 
bytes are read from the graphics connection. The latter case can occur when the client program exits 
without calling dgicloseO or terminates abnormally. 

A non-zero exit status implies an abnormal exit. If the graphics server program detects a condition 
that is fatal, it exits with an ermo value that best indicates the condition. If a system call or service 
returned an error number (ermo or h3rmo), this number is used as the exit number. 

Table 2-3 lists all exit values that are internally generated (not the result of a failed system call or 
service). 

Table 2-3. GL Server Exit Values 

Exit Value Explanation 

0 Normal exit 

ENODEV Invalid communication connection type 

ENOMEM Out of memory 

EINVAL Invalid command line argument 

ETIMEDOUT Connection timed out 

EACCESS Login incorrect or permission denied 

BIO Read or write error 

ENOENT Invalid GL routine number 

ENOPROTOOPf DGLfTCP service not found in letclservices 

ERANGE Invalid or unrecognizable number representation 

2-19 



Using the Distributed Graphics Library Paragon™ Graphics Libraries User's Guide 

2-20 

• • • • • • • • • 
• • 
I' 

• • 
• • • • • • • • 
• • • • • 
• • • • • 



• • o 
o 
IE 

o 
I~ 

III 

I~ 

IJ 

I~ 

IJ 

IJ 

o 
n 
Ei 

• • • • 

__ " ___ " ______ ~ _____________________ " _______ ~ ____ c_" ___________ _ 

Using the OpenGL Graphics System 

Introduction 
The OpenGL graphics system is a hardware-independent library of graphical commands. You use 
OpenGL library calls in your program (an OpenGL client), to create images of three-dimensional 
objects on a display attached to a separate computer (an OpenGL server). OpenGL provides colors, 
textures, materials, lighting, shading, and atmospheric effects that you can use to produce 
photorealistic images. 

However, OpenGL is not a window system: it is only a system for drawing. OpenGL must be used 
in conjunction with a window system, such as the X Window System (described in Chapter 1). The 
window system is used to control windows, buttons, scroll bars, and other user interface elements, 
and OpenGL is used to control the rendering of images within a window. 

This chapter describes: 

• How OpenGL is implemented in Paragon TM OSFIl. 

• Where to look for documentation on OpenGL. 

• How to link OpenGL programs. 

This chapter contains information specific to OpenGL in Paragon OSF/I only. It does not describe 
how to write OpenGL programs. 

3-1 



Using the OpenGL Graphics System Paragon™ Graphics Ubraries User's Guide 

OpenGL in Paragon™ OSF/1 
OpenGL in Paragon OSFIl is an extra-cost optional product (the OpenGL software is provided on 
the same tape as the optional DGL software described in Chapter 2). 

The Paragon OSFIl implementation of OpenGL is a library of X Window System calls. These calls 
can only be used with an X server that supports the OpenGL extension (you can use the call 
glXQueryExtensionO in your OpenGL programs to determine whether or not the 
currently-connected server supports this extension). The server is not provided with Paragon OSF!I; 
it must be obtained from a third party. 

Applications using OpenGL must be written in the C language. OpenGL programs can run either in 
the service partition or the compute partition. 

NOTE 

Because OpenGL is provided as an extension to X, all the 
techniques described for writing and executing parallel X 
programs in Chapter 1 apply to OpenGL as well. 

For example, if your OpenGL program has problems opening a connection with the server, see 
"Problems in Opening the Display" on page 1-16. 

For an introduction to using OpenGL with X, see the manpage glXIntro(3). 

OpenGL Documentation 

3-2 

Online manual pages for all the calls in the OpenGL libraries are provided on your Paragon XP!S 
system. For printed documentation and tutorials, see the OpenGL documentation provided with your 
server. The following books, which discuss OpenGL in a server-independent fashion, are also 
available at many technical bookstores: 

• OpenGL Programming Guide, ISBN 0-201-63274-8. 

• OpenGLReference Manual, ISBN 0-201-63276-4. 

Both these books were written by the OpenGL Architecture Review Board (Jackie Neider, Tom 
Davis, and Mason Woo) and published by Addison-Wesley Publishing Company. 

D 

a 
• • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 



• • • • 
D 

D 
o 
D 

D 

U 

o 
r: • .;.1 

IJ 

n 
[J 

~ 

G 

n 
n 

• • • • 

Paragon™ Graphics Libraries User's Guide Using the OpenGL Graphics System 

Linking OpenGL Programs 
When linking an OpenGL program, use the following switches (in the following order): 

[ -lGLU] -lGL [other X libraries] -lXext -lXll 

The -IGL switch links to the OpenGL library (calls whose names begin with gl or gIx); the optional 
-IGLU switch links to the OpenGL Utility library (calls whose names begin with gIu). Other 
compiler switches may be used as well. For information on the switches that the compiler accepts, 
refer to the Paragon™ C Compiler User's Guide. 

For example, to compile and link an OpenGL program that uses the Athena widgets (-IXaw -IXmu) 
for execution in the compute partition (-ox), use a command line like the following: 

% icc -nx filename -lGL -lXaw -lXmu -lXt -lXext -lXll 

To compile the same program for execution in the service partition, use the same command line 
without the -nx switch. 

3-3 



n 
Using the OpenGL Graphics System Paragon™ Graphics Libraries User's Guide 

D 

• • • • • • • • • 
E ., 
II 

& 

I: 

• 
I: 

I: 

• • • • • • • • • • • • 3-4 

• 
~--------.----.---



• • • 
D 

D 

o 
D 

o 
D 

D 

n 
IJ 

IJ 

IJ 
Ij 

EJ 

~ 

I] 

IJ 

IJ 

IJ 
[J 

[j 

[] 

~ 

Ij 

e 
a 

• • • • 

Symbols 

.xinitrc file 1-19 

letclhosts file 1-2, 1-17, 2-1, 2-12 

A 

action procedures 1-10 

Athena project 1-1 

Athena widgets 1-2 

authorization 
DGL 2-12 
X Window System 1-1, 1-18 

B 
bitmaps 1-6 

c 
C programs 

DGL 2-1 
OpenGL3-2 
X Window System 1-1 

calculating nodes 1-9 

califuncO subroutine 2-15 

"Can't Open display" error message 1-16 

Index 

child widgets 1-5 

client programs 
DGL 2-1 
OpenGL 3-1 
X Window System 1-1 

combining event-driven programming with 
message passing 1-7, 2-6 

compiling and linking 
DGL programs 2-9 
OpenGL programs 3-3 
X programs 1-13 

connecting to an X server 1-6 

connection sequence 2-16 

o 
destruction of a window 1-11, 2-8 

DGL 2-1 
compiling and linking 2-9 
problems opening the display 2-10 
programming techniques 2-6 
sample program 2-2 
using the network-transparent feature 2-13 

dgld daemon 2-16 

dglopenO subroutine 2-14 

DGLSERVER environment variable 2-10, 2-14 

DGL TYPE environment variable 2-15 

Index-1 



Index 

display (DGL) 2-1 
opening 2-1 ° 

display (X) 1-6 
opening 1-16 

-display argument 1-16 

DISPLAY environment variable 1-16 

distinguished node method 1-6 

Distributed Graphics Library, see DGL 

domain decomposition 1-3, 2-2 

E 
environment variables 

DGLSERVER 2-10,2-14 
DGL TYPE 2-15 
DISPLAY 1-16 
REMOTEHOST 2-10,2-14 
REMOTEHOSTUSER 2-15 

errors, DGL 2-17-2-19 
client 2-17 
connection 2-17 
server 2-18 

establishing a connection 2-14-2-15 

tetc/hosts file 1-2, 1-17, 2-1, 2-12 

event-driven programming 1-7, 2-6 

examples 
graph (DGL) 2-2 
graph (X) 1-2 
mgraph 1-2 

exit status 2-19 

Expose event 1-9 

F 

finishO subroutine 2-14 

flushing the communication buffers 2-13 

Index-2 

Paragon TMGraphlcs Libraries User's Guide 

Fortran programs, DGL 2-1 

G 
gflushO subroutine 2-13 

gl*O and glx*() system calls 3-3 

glu*() system calls 3-3 

gIXlntro(3) man page 3-2 

glXQueryExtensionO system call 3-2 

go-ahead message 1-9 

graph example 
DGL2-2 
X Window System 1-2 

graphics 1-1, 2-1 

H 
HandleMessagesO function 1-7 

hierarchy of widgets 1-5 

hosts file 1-2, 1-17,2-1,2-12 

I/O error handler 1-11 

inetd daemon 2-16 

interface configuration 2-16 

Internet addresses 1-17, 2-11 

interrupts and jumps 2-15 

irecvO system call, in DGL programs 2-6 

K 
killing windows 1-11, 2-8 

o 
o 
U 

II 

D 

II 

• 
I[ 

• • • 
I: 

& .. 
• 
II 

• • 
I: 

• • • • • • • • • • • • • 



• • • • 
II 

II 

n 
D 

D 

n 
G 

I:l 
(:J 

(J 

E 

• 
D 

ID 
[J 

[J 

IJ 

IJ 

~ 

IJ 
I] 

~ 

n 
II 

• • • • 

Paragon TMGraphics Libraries User's Guide 

L 
libraries 

DGL 2-1 
Motif 1-1, 1-15 
OpenGL 3-3 
X Window System 1-1, 1-13 

limitations and incompatibilities, DGL 2-15 

linking 

M 

DGL programs 2-9 
OpenGL programs 3-3 
X programs 1-13 

main event loop 1-7, 2-6 

Massachusetts Institute of Technology 1-1 

messages 
and DGL events 2-6 
and X events 1-7 

mgraph example 1-2 

Motif 1-1 

N 

libraries 1-15 
widgets 1-2 

network addresses 1-17, 2-11 

o 
OpenGL 3-1 

compiling and linking 3-3 
described 3-1 
documentation 3-2 
implementation 3-2 
servers 3-1 

opening the X display 1-16 

OSF/Motif, see Motif 

p 

parent widgets 1-5 

ping command 1-17, 2-11 

pixmaps 1-6 

popup menu functions, DGL 2-15 

problems opening the display 2-10 

programming techniques 
DGL2-6 
X Window System 1-6 

Project Athena 1-1 

Q 

qread() system call 2-6 

qtest() system call 2-6 

/ 

R 

RedrawPictureO function 1-9 

Index 

REMOTE HOST environment variable 2-10, 2-14 

REMOTEHOSTUSER environment variable 2-15 

s 
server 

DGL 2-1,2-16 
OpenGL 3-1 
X Window System 1-1 

server exit values 2-19 

Silicon Graphics, Inc. (SGI) 2-1 

StartNodes() function 1-10 

synchronizing operations with window mapping 
DGL2-8 
X Window System 1-9 

Index-3 

-------------------------.' ". """,-"<,,,,,,._, ---



. Index 

T 
TCP/IP, and X 1-2 

techniques for parallel programming 
DGL 2-6 
X Window System 1-6 

Toolkit programs (X Window System) 1-2 

u 
unix:O X server 1-16 

"unknown host" message 1-18, 2-,12 

v 
variables 

W 

DGLSERVER 2-10,2-14 
DGL TYPE 2-15 
DISPLAY 1-16 
REMOTEHOST 2-10,2-14 
REMOTEHOSTUSER 2-15 

widgets (X Window System) 1-2 

window manager 1-3 

windows 1-1 

work procedures 1-7 

workstations 

x 

OpenGL 3-1 
SG12-1 
X Window System 1-1 

X Toolkit 1-2 
action procedures 1-10 
example program 1-2 
work procedures 1-7 

Index-4 

Paragon TMGraphics Libraries User's Guide 

X Window System 1-1 
and TCPIIP 1-2 
Athena widgets 1-2 
compiling and linking 1-13 
connecting to the server 1-6 
events and messages 1-7 
example program 1-2 
libraries 1-13 
Motif libraries 1-15 
Motif widgets 1-2 
OpenGL extension 3-2 
problems opening the display 1-16 
programming techniques 1-6 
servers 1-1 
specifying the server 1-16 
Toolkit 1-2 

XCopyAreaO system call 1-10 

XCopyPlaneO system call 1-10 

xhost command 1-18 

.xinitrc file 1-19 

Xlib 1-2 

XMapWindowO system call 1-9 

XNextEventO system call 1-7 

XOpenDisplayO system call 1-6 

XSyncO system call 1-9 

XtAppAddWorkProc() system call 1-8 

XtApplnitialize() system call 1-6 

XtAppMainLoopO system call 1-7 

XtParseTranslationTable() system call 1-11 

XtVaCreateManagedWidgetO system call 1-11 

II 

II 

n 
II 
U 

n 
II 

II 

• • • 
Ir 
E: 

II 
I[ 

I! 

• • 
I: 

I: 

• • • • • • 
I: 

• • • • • 


