
. .'

I

XENIX* 286

USER'S GUIDE

Order Number: 174387-003

*XENIX is a trademark of Microsoft Corporation.

Copyright © 1985 Intel Corporation. All rights reserved.

Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors
that may appear in this document. Intel Corporation makes no commitment to update or to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No
other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property ofintel Corporation. Use, duplication or disclosure is
subject to restrictions stated in Intel's software license, or as defined in ASPR 7·104.9 (a) (9).

No part of this document may be copied or reproduced in any form or by any means without prior written consent of Intel
Corporation.

The following are trademarks ofIntel Corporation and its affiliates and may be used only to identify Intel products:

Above iCEL intel iPOS Megachassis QUEST
BITBUS iCS intelBOS iPSC MICROMAINFRAME QueX
COMMputer iDBP Intelevision iRMX MULTIBUS Ripplemode
CREDIT iDIS inteligent Identifier iSBC MULTICHANNEL RMXl80
Data Pipeline iLBX inteligent Programming iSBX MULTIMODlJLE RUPI
Renius im Intellec iSOM ONCE Seamless
i iMDDX Intellink iSXM OpenNET SLO
i

iMMX iOSP Library Manager
Plug-A-Bubble

UPI
I2ICE PROMPT
ICE

Insite MCS
Promware

VLSiCEL

XENIX, MS-DOS, Multiplan, and Microsoft are trademarks of Microsoft Corporation. UNIX is a trademark of Bell
Laboratories. Ethernet is a trademark of Xerox Corporation. Centronics is a trademark of Centronics Data Computer
Corporation. Chassis Trak is a trademark of General Devices Company, Inc. V AX is a trademark of Digital Equipment
Corporation. Smartmodem 1200 and Hayes are trademarks of Hayes Microcomputer Products, Inc.

REV. REVISION HISTORY DATE

-001 Original issue 11/84

-002 Revision 08/85

-003 Revision 12/85

ii 7185

CONTENTS

CHAPTER 1
INTRODUCTION
Overview
Audience
Notation
The XENIX 286 Working Environment
U sing This Manual

CHAPTER 2
TASKS
Introduction
Logging In
Logging Out
Entering and Erasing a Command Line
Changing Your Password
Manipulating Files

Creating a File
Displaying File Contents
Combining Files
Moving a File
Renaming a File
Copying a File
Deleting a File
Finding a File
Linking Files

Manipulating Directories
Listing Directory Contents
Creating a Directory
Removing a Directory
Renaming Directories
Copying Directories

Moving in the File System
Where You Are
Changing Directories

Using File and Directory Permissions
Changing Permissions
Changing Directory Search Permissions

TABLE OF CONTENTS

PAGE

1-1
1-1
1-1
1-2
1-3

2-1
2-1
2-2
2-2
2-2
2-3
2-3
2-4
2-6
2-6
2-6
2-7
2-7
2-8
2-8
2-9
2-9

2-10
2-10
2-11
2-11
2-12
2-12
2-12
2-13
2-15
2-15

iii

Table of Contents

CONTENTS

Processing Information
Comparing Files
Echoing Arguments
Sorting a File
Searching for a Pattern in a File
Counting Lines, Words, and Characters

Controlling Processes
Determning Who Is on the Syste m
Determining What Processes Are Running
Placing a Process in the Background
Killing a Process

Using the Line Printer
Sending a File to the Line Printer
Getting Line Printer Information

Communicating with Other Users
Sending mail
Receiving mail
Writing to a Terminal

Using the System Clock and Calendar
Finding Out the Date and Time
Displaying a Calendar

Using the Automatic Reminder Service
Calculating

CHAPTER 3
THE SHELL
Introduction
Basic Concepts

The Shell
Commands
How the Shell Finds Commands
Generating Argument Lists
Quoting Mechanisms

Redirecting Input and Output
Standard Input and Output
Diagnostic and Other Outputs
Command Lines and Pipelines
Command Substitution

Shell Variables
Positional Parameters
User-Defined Variables
Predefined Special Variables

The Shell State

iv

Changing Directories
The .profile File
Execution Flags

XENIX 286 User's Guide

PAGE

2-16
2-16
2-17
2-17
2-18
2-18
2-19
2-19
2-20
2-20
2-21
2-21
2-21
2-22
2-22
2-22
2-23
2-23
2-24
2-24
2-24
2-25
2-26

3-1
3-1
3-1
3-2
3-2
3-3
3-3
3-4
3-4
3-5
3-6
3-7
3-8
3-9

3-11
3-14
3-15
3-15
3-16
3-16

XENIX 286 User's Guide

CONTENTS

Com mand Environment
Invoking the Shell
Passing Arguments to Shell Procedures
Directing the Flow of Control

Using the if Statement
Using the case Statement
Conditional Looping
Looping Over a List
Loop Control
End-of-File and exit
Com mand Grouping
Input/Output Redirection and Control Commands
Transfer to Another File and Back: the Dot (.) Com mand
Interrupt Handling

Special Shell Commands
Creating and Organizing Shell Procedures
More about Execution Flags
Supporting Commands and Features

Conditional Evaluation
Echoing Arguments
Expression Evaluation
True and False
In-Line Input Documents
Input/Output Redirection Using File Descriptors
Conditional Substitution
Invocation Flags

Effective and Efficient Shell Programming
Number of Processes Generated
Number of Data Bytes Accessed
Shortening Directory Searches
Directory-Search Order and the PATH Variable
Good Ways to Set Up Directories

Shell Procedure Examples
hinuniq
copypairs
copyto
distinct!
draft
edfind
edlast
fsplit
listfields
mkfiles
null
phone
textfile
write mail

Metacharacters and Reserved Words

Table of Contents

PAGE

3-16
3-17
3-17
3-19
3-21
3-22
3-23
3-23
3-24
3-24
3-25
3-26
3-27
3-27
3-30
3-31
3-33
3-33
3-33
3-35
3-35
3-36
3-36
3-37
3-38
3-40
3-41
3-41
3-43
3-43
3-43
3-44
3-44
3-45
3-45
3-45
3-46
3-47
3-47
3-47
3-48
3-48
3-49
3-49
3-49
3-50
3-50
3-50

v

Table of Contents

CONTENTS

CHAPTER 4
ed: A LINE-ORIENTED TEXT EDITOR
Introduction
Basic Concepts

Entering and Exiting ed
Line Numbers
The Editing Buffer

Calling a File
Writing Out the Editing Buffer
Writing Out Part of a File
Changing File Name to Write Out to

Commands
Undoing Commands

Displaying Lines
Displaying Tabs and Control Characters
Interrupting ed
Escaping to the Shell

Creating and Appending Text
Deleting Lines
Searching

Searching with the Semicolon
Searching and Replacing

Substituting Text
Metacharacters

Backslash
Period
Caret
Dollar Sign
Star
Brackets
Ampersand

Performing Global Commands
Copying Lines
Moving Lines

Marking Your Spot in a File
Splitting Lines
Joining Lines
Combining Files
Inserting One File into Another

Editing Scripts
Speeding Up Editing
Summary of ed Commands

vi

XENIX 286 User's Guide

PAGE

4-1
4-1
4-1
4-2
4-2
4-2
4-2
4-3
4-3
4-4
4-4
4-4
4-6
4-6
4-6
4-7
4-7
4-8
4-9

4-11
4-12
4-13
4-13
4-14
4-14
4-15
4-15
4-16
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-22
4-23
4-23
4-24
4-26

XENIX 286 User's Guide

CONTENTS

CHAPTER 5
vi: A VISUAL TEXT EDITOR
Introduction
Demonstration
Basic Concepts

Entering vi
Specifying a Single File
Specifying a Series of Files

Calling a File without Leaving vi
Exiting vi

Leaving vi Temporarily
Line" Numbers
The Editing Buffer

Writing Out the Editing Buffer
Commands

Repeating Com mands
Undoing Commands
Performing a Series of Line-Oriented Commands

Moving in a File
Moving the Cursor
Scrolling

Inserting Text
Inserting Control Characters into Text

Deleting Text
Copying Text

Copying Text from Other Files
Copy Text from Elsewhere in the File

Moving Text
Joining and Breaking Lines

Searching
Searching and Replacing

Substituting Text
Metacharacters

Backslash
Period
Caret
Dollar Sign
Star
Brackets
Ampersand

Solving Common Problems
Summary of vi Commands

Table of Contents

PAGE

5-1
5-1
5-2
5-2
5-2
5-3
5-4
5-4
5-5
5-6
5-6
5-6
5-7
5-7
5-7
5-7
5-8
5-8
5-8
5-9
5-9

5-10
5-11
5-11
5-13
5-14
5-15
5-15
5-16
5-18
5-20
5-20
5-20
5-20
5-21
5-22
5-22
5-23
5-23
5-25

vii

Table of Contents XENIX 286 User's Guide

CONTENTS

CHAPTER 6
mail: THE XENIX MAIL SYSTEM
Introduction
Basic Concepts

Mailboxes
Modes of Operation
Getting Help
Message Format
Entering and Exiting mail
Message Headers
Command Syntax

Specifying Messages
Executing Shell Commands

Determining the Number of the Current Message
Counting the Number of Characters in a Message
Changing Working Directories
Reading Com mands from a File

Reading mail
Displaying the First Five Lines
Editing a Message
Displaying the Next Message
Listing Messages in Chronological Order
Replying to mail
Saving mail
Deleting Messages
Undeleting Messages
Forwarding mail
Printing mail

Sending mail

viii

Composing Messages
Displaying Messages
Editing Messages
Editing Headers
Adding a File to a Message
Enclosing Another Message
Saving Messages in a File
Escaping to the Shell
Escaping to mail Command Mode
Placing an Escape Character at the Beginning of a Line

Sending Network mail

PAGE

6-1
6-1
6-1
6-1
6-2
6-2
6-3
6-3
6-4
6-4
6-5
6-5
6-5
6-5
6-5
6-6
6-7
6-7
6-8
6-8
6-8
6-8
6-9
6-9
6-9

6-10
6-10
6-11
6-11
6-11
6-12
6-13
6-13
6-13
6-14
6-14
6-14
6-15

XENIX 286 User's Guide

CONTENTS

Setting Up Your mail Environment: the .mailrc File
Setting Options

askcc
dot
metoo
nosave
autoprint
chron
mchron
quiet
EDITOR
VISUAL
SHELL
escape
page
record
toplines
ignore
alias

Using Advanced Features
Command Line Options

Using mail as a Reminder Service
Handling Large Amounts of mail

Quick Reference
mail Files and Programs
Command Summary
Compose Escape Summary
Option Summary

CHAPTER 7
be: A CALCULATOR
Introduction
Invoking be and Exiting
Scaling Quantities
Basic Arithmetic Operations

Operators
Expressions
Registers

Advanced Features of be
Specifying Input and Output Bases
Using Functions
Using Subscripted Variables
Using Control Statements
Using Other Language Features

Table of Contents

PAGE

6-15
6-15
6-16
6-16
6-16
6-16
6-16
6-17
6-17
6-17
6-17
6-17
6-17
6-18
6-18
6-18
6-18
6-18
6-19
6-19
6-19
6-20
6-20
6-21
6-21
6-21
6-24
6-26

7-1
7-1
7-2
7-3
7-3
7-4
7-5
7-6
7-6
7-7
7-9
7-9

7-12

ix

Table of Contents

CONTENTS

Language Reference
Tokens
Expressions
Function Calls
Unary Operators
Exponentiation Operators
Multiplicative Operators
Additive Operators
Assignment Operators
Relational Operators
Storage Classes
Statements

APPENDIX A
RELATED PUBLICATIONS
Intel Publications

INDEX

x

XENIX 286 User's Guide

PAGE

7-13
7-13
7-14
7-15
7-16
7-16
7-16
7-17
7-17
7-17
7-18
7-18

A-I

Overview

CHAPTER 1
INTRODUCTION

This manual introduces the XENIX 286 Operating System and explains the fundamental
concepts needed to use it effectively. Unless otherwise noted, this manual discusses the
Basic System and the Bourne shell only.

The XENIX 286 system is an improved and enhanced version of the UNIX System III
from Bell Laboratories. It is intended for use in schools, corporations, laboratories, and
small office environments. XENIX is well known as a productive environment for
software development and as a text processing environment.

Audience

Because XENIX 286 is designed to be used in a variety of environments, users of the
system have a wide range of computer experience and education. Inexperienced users
should read the Overview of the XENIX 286 Operating System first and progress to more
advanced documentation. Experienced XENIX users will very likely be able to begin
using the XENIX 286 system immediately, using the reference manual and user's guides
as necessary.

Notation

These notational conventions are used in this manual:

• Literal names are bolded where they occur in text, e.g., /sys/include, printf,
dey_tab, HOP.

• Syntactic categories are italicized where they occur and indicate that you must
substitute an instance of the category, e.g., filename.

• In examples of dialogue with the XENIX 286 system, characters entered by the
user are bolded.

• In syntax descriptions, optional items are enclosed in brackets ([]).

• Items that can be repeated one or more times are followed by an ellipsis (•••).

• Items that can be repeated zero or more times are enclosed in brackets and
followed by an ellipsis ([l ...).

• A choice between items is indicated by separating the items with vertical bars
(I).

1-1

Introduction XENIX 286 User's Guide

The XENIX 286 Working Environment

An operating system efficiently organizes and controls the resources of a computer.
These resources include memory, disks, line printers, terminals, and any other peripheral
devices connected to the system. The heart of XENIX 286 is a multiuser, multitasking
operating system. A multiuser system enables several users to use a computer
simultaneously, thus providing lower cost in computing power per user. In a
multitasking system, several programs can run simultaneously, thereby increasing
productivity.

Because UNIX and XENIX have been accepted as standards for "high-end" operating
systems, a great deal of software is available for this environment. In addition, XENIX
286 is a bridge to the MS-DOS operating system. For systems that support MS-DOS,
XENIX 286 provides commands that enable you to access MS-DOS format files and
disks. The XENIX 286 system also includes several widely praised enhancements
developed at the University of California at Berkeley and a visual interface similar to
other productivity tool interfaces.

Other characteristics of the XENIX 286 system include

• A powerful command language for programming XENIX 286 commands. Unlike
other interactive command languages, the XENIX 286 shell is a full programming
language.

• Simple and consistent naming conventions. Names can be used absolutely, or
relative to any directory in the file system.

• Device-independent input and output. Each physical device, from interactive
terminals to main memory, is treated like a file, allowing uniform file and device
input and output.

• A set of related text editors, including a full screen editor.

• Flexible text processing facilities. XENIX 286 includes commands that find and
extract patterns of text from files, compare and find differences between files,
and search through and compare directories. Text formatting, typesetting, and
spelling-error-detection facilities, as well as a· facility for formatting and
typesetting complex tables and equations, are also available.

• A sophisticated desk calculator program.

• Mountable and dismountable file systems that facilitate addition of flexible disk
drives to the system.

• A complete set of flexible directory and file protections that utilizes all
combinations of read, write, and execute access for the owner of each file or
directory, as well as for groups of users.

• Facilities for creating, accessing, moving, and processing files and directories in a
simple and uniform way.

1-2

XENIX 286 User's Guide Introduction

Using This Manual

This manual is organized as follows:

Chapter 1: Introduction
This chapter gives an introduction and overview of the XENIX 286 system and this
manual.

Chapter 2: Tasks
This chapter explains how to perform basic tasks using appropriate XENIX 286
commands.

Chapter 3: The Shell
This chapter describes use of the shell command interpreter and how to write
procedures that can be executed by the shell interpreter.

Chapter 4: ed: A Line-Oriented Text Editor
This chapter explains how to use the line editor, ed.

Chapter 5: vi: A Visual Text Editor
This chapter explains how to use the screen editor, vi.

Chapter 6: mail: The XENIX Mail System
This chapter describes the XENIX 286 mail facility and explains how to send and
receive mail.

Chapter 7: be: A Calculator
This chapter explains how to use be, a sophisticated calculator program.

Appendix A: Related Publications
Lists Intel publications containing information related to the XENIX operating
system.

This manual does not attempt to give information about installing, managing, and
maintaining the system, nor does it discuss document preparation, software
development, or any of the specialized utilities available in other XENIX 286 system
products. Appendix A contains a list of manuals relating to these subjects.

1-3

CHAPTER 2
TASKS

Introduction

This chapter is designed to familiarize you with some basic XENIX com mands and to
show you how to perform such common tasks as logging in and out, manipulating files
and directories, and processing data. The XENIX 286 Reference Manual contains a
detailed entry for each of the com mands discussed in this chapter. The Overview of the
Xenix 286 Operating System contains a detailed description of the XENIX file system
discussed in this chapter.

NOTE

This chapter makes reference to a DELETE key on your terminal. If your
terminal does not have a DELETE key and you do not know which key on your
terminal corresponds to a DELETE key, get help from the system
administrator.

Logging In

Before you can log in to the system, you must be given a system account, your name
must be added to the user list, and you must be given a password and a mailbox. See
your system administrator to get an account. This section assumes your account has
already been set up.

Normally, the system sits idle and the prompt "login:" is displayed on the terminal
screen. If your screen is blank or displays "garbage," press the RETURN key.

When the login prompt appears, follow these steps:

1. Type your login name, then press RETURN. If you make a mistake, press the
BACKSPACE key to erase character by character. After you press RETURN, the
word "Password:" appears on your screen.

2. Type your password carefully, then press RETURN. The letters do not appear on
the screen as you type, and the cursor does not move. If you make a mistake,
press RETURN to restart the login procedure.

If you have typed your login name and password correctly, a prompt or a menu appears
on the screen. The prompt tells you that the XENIX system is ready to accept
commands from the keyboard. When you log in, you are placed in an area called the
login, or home, directory.

2-1

Tasks XENIX 286 User's Guide

If you make a mistake while logging in, the system displays the message

Login incorrect
login:

If you get this message, log in again. You must type all the letters of your user name
and password correctly before you can access the system.

Logging Out

The logout process depends on the system interface, called a shell in XENIX systems,
that was activated when you logged in to the system. The standard shell is the Bourne
shell. The XENIX system also has two other shells, the C shell and the Visual shell. You
might be using one of these or a custo m shell.

To log out of the system you must be in your login shell (activated when you logged in).
If your login shell is a menu shell, there should be a menu selection or key to exit or
quit. If your login shell is a prompting shell, type

exit

and press RETURN to log out. If another prompt appears after you enter exit, it means
that the current shell was not your login shell. Continue entering exit until the prompt
disappears and the login message is displayed.

Entering and Erasing a Command Line

Entering a command line consists of typing characters at a terminal, then pressing
RETURN. When you press RETURN, the computer reads the command line and
executes commands specified on that line. You may type as many command lines as you
want without waiting for them to execute, because XENIX supports type-ahead of
characters.

When entering commands, typing errors are bound to occur. To erase the errors
character by character, use the BACKSPACE key.

Changing Your Password

To prevent unauthorized users from gaining access to the system, each authorized user
must have a password. When first given an account on a XENIX system, you are
assigned a password by the system administrator. Some XENIX systems require you to
change your password at regular intervals. Whether yours does or not, it is a good idea
to change your password regularly to maintain system security.

2-2

XENIX 286 User's Guide

Use the passwd command to change your password. Follow these steps:

1. Type

passwd

and press RETURN. The following message appears:

Changi ng password for user name
Old password:

Tasks

2. Carefully type your old password and press RETURN. Your password is not echoed
on the screen. If you make a mistake, press RETURN. The message "Sorry"
appears, then the system prompt. Begin again with step 1.

3. When you have typed your old password, this message appears:

Enter new password (minimum of 5 characters)
Please use a combination of upper and lowercase letters and numbers
New password:

Type in your new password and press RETURN.

4. The message

Re-enter new password:

appears. Type your new password and press RETU RN again. If you make a
mistake, press RETURN. The message

They don't match; try agai n.
New password:

appears, and you must begin again with step 3. When you have completed the
procedure, the system prompt appears.

Manipulating Files

File manipulation (e.g., creating, displaying, combining, copying, moving, naming, and
deleting files) is one of the most important capabilities an operating system provides.
The XENIX commands that perform these functions are described in the following
sections.

Creating a File

To create a file and place text in it, use one of the text editors described in Chapters 4
and 5. After you save the file and exit the text editor, use the Ie command to see the
file name listed in the directory.

2-3

Tasks XENIX 286 User's Guide

Displaying File Contents

The more command displays the contents of a file one screen at a time and has the form

more options filename

more is useful for looking at a file when you don't want to make changes to it. For
example, to display the contents of the file memos, type

more memos

You can also invoke more with a number of options that control where the display begins
and how the file is displayed. These options include

+linenumber

+/text

-c

-r

Begins the display at the line in the file designated by linenumber.

Begins the display two lines before text, where text is a word or
number in the file. If text is two or more words, they must be enclosed
in double quotation marks.

Redraws the screen instead of scrolling.

Displays control characters, which are normally ignored by more.

For example, to begin looking at the file memo at the first occurrence of the words "net
gain" type

more + /"net gain" memo

If the file is more than one screen long, the percentage of the file that remains is
displayed on the bottom line of the screen. To look at more of the file, use the
following scrolling commands:

RETURN Scrolls down one line.

d Scrolls down one-half screen.

SPACE BAR Scrolls down one full screen.

nSPACE BAR Scrolls down n lines.

Repeats the previous command.

CONTROL-S Stops screen output until another key is pressed.

You cannot scroll backward, toward the beginning of the file.

2-4

XENIX 286 User's Guide Tasks

You can search forward for patterns in more with the slash (/) command. For example,
to search for the pattern "net gain", type

/net gain

and press RETURN. The message

... skipping

appears, XENIX displays the file from two lines before the line where "net gain" is, and
the file scrolls up from the bottom of the screen.

If you use more to look at a file and decide you want to change the file, you can invoke
the vi editor by typing

v

and pressing RETURN. The file must be large enough to require more than one screen
to display it, otherwise more exits and the editor will not open the displayed file.

See Chapter 5, "vi: A Visual Text Editor," for information on using vi.

more quits automatically when it reaches the end of a file. To exit more before the end
of a file, type

q

The commands head and tail display the first and last ten lines of a file respectively.
They are useful for checking the contents of a particular file. For example, to look at
the first ten lines of the file memo, type

head memo

You can also specify how many lines the head and tail commands display. For example,
typing

tail-4 memo

displays the last four lines of memo.

Like more, cat also displays the contents of a file, but cat scrolls to the end of the file
unless you press CONTROL-S to stop it. Press another key to continue the scrolling. If
you wish to abort the display before the end of the file, press the DELETE key. For
example, to display the contents of filel, type

cat file1

To display the contents of filel, file2, and file3, type

cat file1 file2 file3

2-5

Tasks XENIX 286 User's Guide

Combining Files

The cat command is frequently used to combine files into some other new file. The
greater-than sign (» is used to redirect the output of cat to the new file. Thus, to
combine the two files named filel and file2 in a new file named bigfile, type

cat file1 file2 > bigfile

You can also use cat to append one file to the end of another file. For example, to
append file 1 to file2, type

cat file1 > > file2

Note that after appending filel to file2, filel still exists as a separate file.

Moving a File

The mv command moves a file into another file in the same directory, or into a file in
another directory. For example, to move a file named text to a new file named book,
type

mv text book

After this move is completed, no file named text exists in the working directory,
because the file has been renamed book.

To move a file into another directory, give the name of the destination directory as the
final name in the mv command. For instance, to move filel and file2 into the directory
named /tmp, type

mv file1 file2 Itmp

The moved files are no longer in your working directory but are now in the directory
/tmp.

The mv command always checks to see if the last argument is the name of a directory
and, if so, all files designated are moved into that directory.

Renaming a File

To rename a file, simply move it to a file with the new name; the old name of the file is
automatically removed. Thus, to rename the file anon to johndoe, type

mv anon johndoe

2-6

XENIX 286 User's Guide Tasks

Copying a File

The cp command is used for copying and has two forms: one to copy files into a
directory and one to copy a file to another file. Thus, to copy three files into an
existing directory named filedir, type

cp file1 file2 file3 filedir

The original versions of the three files still reside in the working directory, and the file
names are identical in the two directories. Like my, cp always checks to see if the last
argument in the command line is the name of a directory and, if so, all designated files
are copied into that directory.

To create two copies of a file in your working directory, you must rename the copy. To
do this, cp can be invoked as follows:

cp file filecopy

After the above command has executed, two files with identical contents reside in the
working directory. To learn how to copy directories, see "Copying a Directory" later in
this chapter.

Deleting a File

To delete or remove files from your working directory, type

rm filename

Using the command

rm -i filename

causes XENIX to display the file name and wait for a yes or no response. To remove it,
type

y

for "yes" and press RETURN. To leave it, type

n

for "no" and press RETURN. This command is useful when cleaning up a directory that
contains many files.

2-7

Tasks XENIX 286 User's Guide

Finding a File

The find command searches for a specified file and is useful for locating files with
identical names or for finding a file when you don't know which directory it is in. The
command has the form

find pathname -name filename -print

where pathname is the path name of the directory you want to search and filename is
the name of the file you are searching for. find searches recursively, that is, it starts at
the named directory and searches downward through all files and subdirectories under
the directory specified in pathname.

The -name option indicates that you are searching for a file with a specific file name.
(Other search conditions used with find are described in the XENIX 286 Reference
Manual.)

The -print option displays the path names of all files that match filename. By using the
output redirection symbol (», you can direct the output of find to a file rather than to
the screen.

For example, the following com mand finds every file named memo in the directory
lusr/joe and all its subdirectories:

find lusr/joe -name memo -print

The output might look like this:

lusr/joe/memo
lusr/joe/accounts/memo
lusr/joe/meeti ngs/memo
lusr/joe/mail/memo

Linking Files

The In command links two files in different directories so that when a file is changed in
one directory, it is also changed in the other directory. This can be useful if several
users need to share information, or if you want a file to appear in more than one
directory. This command has the form

In file newfile

where file is the original file, and newfile is the new, linked file. For example, the
following command links memos in lusr/joe to joememos in usr/mary:

In lusr/joe/memos lusr/mary/joememos

Whenever usr/joe/memos is updated, the file lusr/mary/joememos is also changed.

When you link files, a file name is associated with an inode. An inode is a number that
specifies a unique set of data on the disk. One or more file names may be associated
with this data. Thus, the above command assures that the files lusr/joe/memos and
lusr/mary/joememos have identical contents.

2-8

XENIX 286 User's Guide Tasks

Three rules to remember about linking files:

1. Linking large sets of files to other parallel files can save disk space.

2. Linking files used by more than one person is risky, because anyone can alter the
file and thus affect the contents of all files linked to it.

3. Removing a file from a directory does not remove other links to the file. Thus the
file is not truly deleted from the system. For example, if you delete a file that has
four links, three links remain. For more information about linking files, see In in
the XENIX 286 Reference Manual.

Manipulating Directories

Because of the hierarchical organizaLion of its file system, XENIX has many directories
and subdirectories. The file system contains directories for each user. Within your user
directory you can create, delete, and copy directories. Commands that facilitate
directory manipulation are described in the following sections. The Overview of the
Xenix 286 Operating System contains a detailed description of the XENIX file system.

Listing Directory Contents

You can list the contents of a directory with the Ie command. This command sorts and
lists the names of files and subdirectories in a given directory in columns. If no
directory name is given, Ie lists the contents of the working directory. The Ie command
has the form

Ie options directorynam e

For example, to list the contents of the directory work, type

Ie work

Your output might look like this:

accounts meetings notes mail memos todo

The following options control the sort order and the information displayed by Ie:

-a Lists all files in the directory, including the "hidden" files (file names that begin
with a dot, such as .profile and .mailre).

-r Lists names in reverse alphabetical order.

-t Lists names in order of last modification, the latest (most recently modified) first.
When used with the -r option, lists the oldest first.

-R Lists all files and directories in the current directory, plus each file and directory
below the current one. The "R" stands for "recursive."

-F Marks directories with a slash{/} and executable files with an asterisk (*).

2-9

Tasks XENIX 286 User's Guide

-1 Gives an expanded listing of a directory, producing an output that looks similar to
the following:

total 501
drwxr-x--- 2 boris grp1 272 Apr 5 14:33 dir1
drwxr-x--- 2 enid grp1 272 Apr 5 14:33 dir2
drwxr-x--- 2 iris grp1 592 Apr 6 11:12 dir3
-rw-r----- 1 olaf grp2 282 Apr 7 15:11 file1
-rw-r----- 1 olaf grp2 72 Apr 7 13:50 file2
-rw-r----- 1 olaf grp2 1403 Apr 1 13:22 file3

Reading from left to right, the information given for each file or directory
includes

• Permissions

• Number of links

• Owner

• Group

• Size in bytes

• Date and time of last modification

• File or directory name

The information in this listing and how to change permIssIons are discussed in the
section "Using File and Directory Permissions" later in this chapter.

Creating a Directory

To create a subdirectory in your working directory, use the mkdir command. For
example, to create a new directory named phonenumbers, type

mkdir phonenumbers

After this command has been executed, a new empty directory will exist in your working
directory.

Removing a Directory

To remove a directory located in your working directory, use the rmdir command. For
instance, to remove the directory named phonenumbers from the current directory, type

rmdir phonenumbers

The directory phonenumbers must be empty before it can be removed; this prevents
accidental deletions of files and directories.

2-10

XENIX 286 User's Guide Tasks

Renaming Directories

The mv command is used to rename directories. To rename the directory little.dirin
your current directory to big.dir, type

mv little.dir big.dir

This is a simple renaming operation; no files are moved. The directory big.dir must not
already exist or XENIX will give you an error message.

Copying Directories

The copy command copies directories.

CAUTION

Do not attempt to copy the root, or /, directory because you are requesting
that the entire file system be copied and it is unlikely that there is enough
disk space for two copies of the entire file system.

This command has the form

copy options olddirectory newdirectory

To copy all the files in the directory lusr/joe/memos into lusr/joe/notes, enter

copy /usr/joe/memos /usr/joe/notes

The copy command has the following options:

-1 Links the copied files to the original.

-m Gives the copied files the same modification dates as the original files.

-r Copies all the files and subdirectories under the named directory (recursively).

To copy all the files and subdirectories in the directory lusr/joe/accts/30days into
lusr/joe/accts/overdue, enter

copy -r /usr/joe/accts/30days /usr/joe/accts/overdue

and the directory 30days becomes the directory.

2-11

Tasks XENIX 286 User's Guide

Moving in the File System

When using the XENIX system, it helps to imagine a large tree structure of files and
directories. Each directory should be thought of as a place that you can move into or
out of. At all times you are "some place" in the tree structure. This place is called
your working or current directory. The commands used to find out where you are and to
move around in the tree structure are discussed in the following sections. The Overview
of the Xenix 286 Operating System contains a detailed description of the XENIX file
system.

Where You Are

All commands are executed relative to the working directory. You can find out the
name of this directory by using the pwd command, which stands for "print working
directory." For instance, if your working directory is /usr/joe, when you type

pwd

you will get the output

/usr/joe

You should always think of yourself as residing "in" your working directory.

Changing Directories

To move to any other directory in the system, use the cd ("change directory") com mand
and specify that directory as an argument to cd. For example, the command

cd /usr

moves you to the /usr directory.

To ascend the directory tree structure one level, type

cd ..

For example, if you are in the directory /usr/joe/work and issue the above com mand,
you would move from /usr/joe/work to /usr/joe. Similarly, the command·

cd .. I ..

moves you from /usr/joe/work to /usr, ascending two levels in the structure.

To return to your home directory from anywhere, type

cd

2-12

XENIX 286 User's Guide Tasks

Using File and Directory Permissions

The XENIX system enables the owner to restrict access to files and directories, limiting
who can read, write, and execute files owned by him or her. To determine the
permissions associated with a given file or directory, use the 1 command. The output
from the 1 command should look something like this:

total 501
drwxr-x--- 2 boris grp1 272 Apr 5 14:33 dir1
drwxr-x--- 2 enid grp1 272 Apr 5 14:33 dir2
drwxr-x--- 2 iris grp1 592 Apr 6 11:12 dir3
-rw-r----- 1 olaf grp2 282 Apr 7 15:11 file1
-rw-r----- 1 olaf grp2 72 Apr 7 13:50 file2
-rw-r----- 1 olaf grp2 1403 Apr 1 13:22 file3

Permissions are indicated by the first ten characters of the output. The permissions for
the first file in the above list are

drwxr-x---

The first character indicates the type of file and must be one of the following:

Indicates an ordinary file.

d Indicates a directory.

c Indicates a character special device such as a line printer or terminal.

b Indicates a block special device such as a hard or flexible disk.

n Indicates a name special file (i.e., a semaphore used for controlling access to some
resource).

s Indicates a shared data file.

p Indicates a named pipe.

From left to right, the next nine characters are interpreted as three sets of three
permissions each. Each set of three indicates the following permissions:

• Owner permissions

• Group permissions

• All other user permissions

2-13

Tasks XENIX 286 User's Guide

Within each set, the three characters indicate permIssIon to read, write, and execute
the file as a command respectively. For a directory, "execute" permission means
permission to search the directory for files or subdirectories.

Ordinary file permissions have the following meanings:

r read permission

w write permission

x execute permission

no permission

For directories, permissions have the following meanings:

r Files may be listed in the directory; the directory must have execute permission.

w Files may be created or deleted in the directory; as with "r", the directory itself
must also have execute permission.

x The directory may be searched. A directory must have execute permission before
you can move to it, access a file within it, or list the files in it.

The following are some typical directory permission combinations:

d---------

drwx------

drwxr-x---

drwx--x--x

No access at all. This mode denies directory access to all users except
root (a special account controlled by the system administrator.

Allows access by the owner to use Ic, create files, delete files, access
files (subject to file permissions), and use cd. This is the typical
permission for the owner of a directory.

Allows access by members of the group to use Ic and access files
subject to file permissions. Group members can use cd to move to this
directory but cannot create or delete files in it. This is the typical
permission an owner gives to others who need access to files in his
directory.

With these permission settings, users other than the owner cannot use
Ic but can use cd to change to the directory. Other users can only
access a file within this directory by its exact name; they cannot
search for a file by using metacharacters. Files cannot be created or
deleted in the directory by anyone except the owner. This mode is
rarely used, but it can be useful if you want to give someone access to
a specific file in a directory without permitting access to other files in
the same directory.

This chapter discusses ordinary files, executable files, and directories only. For
information about other types of files, see Is in the XENIX 286 Reference Manual.

2-14

XENIX 286 User's Guide Tasks

Changing Permissions

The chmod command changes the read, write, execute, and search permissions of a file
or directory. This command is useful if you have created a file in one mode, but want to
give others permission to read, write, or execute it. The chmod command has the form

chmod instruction filename

The instruction segment of the command indicates which permIssIons you want to
change for which class of users. There are three classes of users, and they are indicated
as follows:

u User, the owner of the file or directory

g Group, the group the owner of the file belongs to

o Other, all users of the system

All three classes of users may be designated by using the character "a" for "all".

For example, assume filel exists with the following permissions:

-rw-r-----

The owner of this file has read and write permission, group members have read
permission, and all others have no access.
To give filel execute permission for all classes of users, type

chmod a+x filel

In the instruction segment of the command (a+x), the "a" stands for "all classes of users"
and the "x" stands for execute permission. The resulting permissions are

-rwxr-x--x

To remove the owner's write and execute permissions and the group's execute permission
on the above file, type

chmod ug-wx file1

Changing Directory Search Permissions

Directories also have an "x" (execute) permission. Since directories cannot be executed
however, this attribute signifies search permission. If execute permission is denied to a
user, then that user cannot even list the names of the files in the directory.

2-15

Tasks XENIX 286 User's Guide

For example, the directory dirl has the following permissions:

drwxr-xr-x

To change permissions so that the group of "other" users can't examine dirl, type

chmod o-rx dir1

The new attributes for dirl are now

drwxr-x---

Processing Information

The following sections describe a number of XENIX utilities available for processing
data.

Comparing Files

To compare two text files, use the diff command to print out those lines that differ
between specified files. For example, suppose that a file named men has the contents

Now is the time for all good men to
Come to the aid of their party.

and that a file named women has the following contents:

Now is the time for all good women to
Come to the aid of their party.

The command

diff men women

produces the following results:

1c1
< Now is the time for all good men to

> Now is the ti me for all good women to

The lcl means that line 1 in the file men and line 1 in the file women must be changed
to make the files the same. The second and fourth lines of the diff output are the lines
that are different in the two files. The < indicates the line in the file men that is
different from any line in the file women. The > indicates the line in the file women
that is different from any line in the file men. The --- separates the lines from the file
men from the lines from the file women.

2-16

XENIX 286 User's Guide Tasks

Echoing Arguments

The echo command echoes arguments to the standard output. For example, typing

echo hello

produces

hello

on the screen. To output several lines of text, surround the echoed argument in double
quotation marks and press RETURN between lines. A secondary prompt (» will appear
until you type the final double quotation mark. For example, type

echo "Now is the time
For all good men
To come to the
Aid of their party."

This produces the output

Now is the time
For all good men
To come to the
Aid of thei r party_

Sorting a File

One of the most useful file processing commands is sort. By default, sort sorts the lines
of a file according to the ASCII collating sequence (i.e., it alphabetizes them). For
example, to sort a file named phonelist, type

sort phonelist

In the above case, the sorted contents of the file are displayed on the screen. To create
a sorted version of phonelist named phonesort, type

sort phonelist > phonesort
Note that sort is useful for sorting the output from other commands. For example, to
sort the output from execution of a who command, type

who I sort > whosort

This command takes the output from who, sorts it, and then sends the sorted output to
the file whosort.

2-17

Tasks XENIX 286 User's Guide

Searching for a Pattern in a File

The grep (global search for regular expressions and print) command selects and extracts
lines from a file, printing only those lines that match a given pattern. For example, to
print out all lines in a file containing the word "tty38", type

grep 'tty38' filename

where filename is the name of the file that you want searched.

In general, you should always enclose the pattern you are searching for in single
quotation marks (') so that special characters are not expanded unexpectedly by the
shell.

As another example, assume that you have a file named phonelist that contains a name
followed by a phone number on each line. Assume also that there are several thousand
lines in this list. You can use grep to find the phone number of someone named Joe,
whose phone number prefix is 822, as follows:

grep 'joe' phonelist I grep '822-' > joes.number

grep finds all occurrences of lines containing the word "joe" in the file phonelist. The
output from this command is then filtered through another grep command, which
searches for an "822-" prefix, thus removing any unwanted Joes. Finally, assuming that
a unique phone number for Joe exists with the "822-" prefix, that name and number are
placed in the file joes.number.

For more information about grep, its related forms fgrep and egrep, and the types of
patterns (regular expressions) it can be used to search for, see grep in the XENIX 286
Reference Manual.

Counting Lines, Words, and Characters

we ("word count") is a command for counting lines, words, and characte~s in a file; all
three counts are reported by default. For example, to count the number/of lines, words,
and characters in the file textfile, type

we textfile

Typical output describing lines, words, and characters might be

4432 18188 97808 textfile

2-18

XENIX 286 User's Guide Tasks

To specify a count of characters, words, or lines only, you must use an appropriate
option. To illustrate, examine the following three commands and the output produced
by each:

we -e textfile
97808 textfile

we -w textfile
18188 textfile

we -I textfile
4432 textfile

The first example prints out the number of characters in textfile, the second prints out
the number of words, and the third prints out the number of lines.

Controlling Processes

In XENIX, several processes can run at the same time. For example, you may run the
sort program on a file in the "background" and edit another file in the "foreground"
while the sort program is running. Foreground processes are processes that you directly
control from the keyboard. Processes you can initiate but otherwise have little control
over are called background processes. At anyone time you can have only one
foreground process executing, but multiple background processes may execute
simultaneously. Background processes may be run at any time; you must be logged in to
initiate a background process, but once the process has started running you may log out.

Occasionally, you may need to know who is on the system or what processes are running
before you can perform a task; this section includes procedures to determine this
information.

Determining Who Is on the System

The who command lists the names, terminal line numbers, and login times of all users
currently logged on to the system. For example, type

who

The who command produces output similar to the following:

arnold tty02 Apr 7 10:02
daphne tty21 Apr 7 07:47
elliot tty23 Apr714:21
ellen tty25 Apr 7 08:36
gus tty26 Apr 7 09: 55
adrian tty28 Apr 7 14:21

2-19

Tasks XENIX 286 User's Guide

Determining What Processes Are Running

Because commands can be placed in the background for processing, it is not always
obvious which processes you are responsible for. The ps command stands for "process
status" and displays information about currently running processes associated with your
terminal. For instance, the output from a ps command might look like this:

PID
3459
4831
5185

TTY
c3
c3
c3

TIME
0:15
1 :52
0:00

CMD
-sh
cc program.s
ps

The PID column gives a unique Process IDentification number that can be used to kill a
particular process. The TTY column shows the terminal that the process is associated
with. The TIME column shows the cumulative execution time for the process.

To find out all the processes running on the system, use the -e option:

ps -e

To find out about the processes running on another terminal, use the -t option and
specify the terminal. For example, to find out what processes are associated with
terminal c3, type

ps -te3

Placing a Process in the Background

Normally, commands sent from the keyboard are executed in strict sequence; one
command must finish executing before the next can begin. These are called foreground
processes. A background process, in contrast, need not finish executing before you give
the next command. Background commands are especially useful for commands that may
take a long time to complete.

To place a process in the background, type an ampersand (&) at the end of the command.
For example, to count the number of words in several large files while simultaneously
continuing with whatever else you have to do, type

we file1 file2 file3 >eount&

The number of the process is displayed on the screen and output is collected in the file
count. If output were not put in count, it would appear on the screen at unpredictable
times as you worked.

When processes are placed in the background, you have no control of them as they
execute. For instance, pressing the DELETE key does not abort a background process.
Instead, you must use the kill com mand described in the following section.

2-20

XENIX 286 User's Guide Tasks

Killing a Process

To stop execution of a foreground process, press the DELETE key. This kills whatever
foreground command is currently running. By using the ps command, you can determine
the PID number of all foreground and background processes that you have running and
then selectively kill any processe that you by using the the kill command and the process
identification number (PID). To use the kill command in this way, first invoke the ps
command and determine PID numbers. Select the processes you wish to kill, note the
PID number, and issue the kill command by using the following format:

kill PIO

If a subsequent ps shows that the process is still alive, use the -9 option in the following
format for a sure kill:

kill -9 PIO

Killing a process associated with the vi editor may leave the terminal in a strange mode.
Also, temporary files normally created when a command starts and deleted when the
command finishes may be left in the directory after a kill com mand. Temporary files
are normally kept in the directory Itmp. This directory should be checked periodically
and old files deleted.

Using the Line Printer

The following sections describe the commands to help you use a line printer effectively
and efficiently.

Sending a File to the Line Printer

One of the most common operations that you will want to perform is printing files on
the line printer. The most straightforward method for doing this is to type

I pr filename

for a single file, or

Ipr filename1 filename2 filename3

for multiple files. Other com mon uses of Ipr involve pipes. For example, to paginate
and print a file of raw text, type

pr textfile I Ipr

The pr (print to screen) and Ipr (print to line printer) com mands are very often used
together. As another example, to sort, paginate, and print a file, type

sort datafile I pr I Ipr

2-21

Tasks XENIX 286 User's Guide

Getting Line Printer Information

At times it may be necessary to know the status of your print requests. You can view
this information by using the Ipq command. Type

Ipq

and press RETURN.

Communicating with Other Users

Because XENIX supports multiple users, communicating with other users is easy and
convenient. The various communications facilities are described in the following
sections.

Sending mail

The XENIX mail program is a system wide facility that enables system users to send and
receive mail. To send mail to another user on the syste m, type

mail username

where username is the name of any system user. You may be asked to enter a subject
for the message. If so type a brief (less than one line) subject and press RETURN.
Enter the text of the message you want to send. Terminate text entry and send the
message by typing a CONTROL-D on a blank line at the end of the message.

A complete mail session might go like this:

mail joe
There will be a meeting at 2:00 today to review recent developments with the new system.
CONTROl-O

Note that your XENIX system might ask for a subject before you enter the message.

For practice, send mail to yourself. (This isn't as strange as it might sound--mail to
yourself is a handy reminder mechanism.) You can also send a previously prepared
letter, and you can send mail to a number of people all at once. For more details, see
Chapter 6, .. mail: The XENIX Mail System," and the mail entry in the XENIX 286
Reference Manual.

2-22

XENIX 286 User's Guide Tasks

Receiving mail

When you log in, you may sometimes get the message

you have mail

To read your mail, type

mail

A heading for each message is then displayed. To read the messages, press RETURN.
The system displays one message at a time; the most recent message is displayed first.
After reading each message, press RETURN again to read the next message.

After each message is displayed, mail waits for you to tell it what to do with the
message. The two basic responses are d, which deletes the message, and RETURN,
which stores the message in your mbox file or in your system mailbox, depending on how
you exit mail. To exit mail, type q for "quit", exit, or CONTROL-D. Other responses
are described in Chapter 6 of this manual and in the XENIX 286 Reference Manual under
mail.

Writing to a Terminal

To write directly to another user's terminal, use the write command. For example, to
write to Joe's terminal, type

write joe

and press RETURN. If you get the reponse "permission denied", it means that joe has
used the mesg com mand to deny other users access to his terminal. Otherwise, after
you have executed the command by pressing RETURN, each subsequent line that you
type is displayed both on your screen and on Joe's. When the message appears on Joe's
screen, it is mixed with any other text or files currently being displayed, but the
message does not affect the file itself. To terminate writing to Joe, enter a
CONTROL-D alone on a line. The procedure for a two-way write is for each party to
end each message with a distinctive signal, normally (0) for "over"; when a conversation
is about to be terminated, use the signal (00) for "over and out".

2-23

Tasks XENIX 286 User's Guide

Using the System Clock and Calendar

Several XENIX commands will tell you the date and time or display a calendar for any
month or year you choose. The following sections explain these commands.

Finding Out the Date and Time

To display the time and date, type

date

Displaying a Calendar

The cal command displays the calendar of any month or year you specify and has the
form

cal month year

For example, to display a calendar for March 1952, type

cal 3 1952

The month may be expressed as a digit or as a month name. If you decide to use the
specific name rather than a digit, you may abbreviate the month, using standard three­
letter abbreviations. To display the calendar for an entire year, leave out the month.
The year must be expressed in full; the command cal 84 displays the calendar for the
year 84, not 1984.

2-24

XENIX 286 User's Guide Tasks

Using the Automatic Reminder Service

An automatic reminder service is available for all XENIX system users. You can use the
service by creating a file named calendar in your home or login directory. Each line in
the file should have the following form:

date text

Where date must be some form of month followed by day (e.g. Sep 7, Sept. 7, September
7, 9/7) and text can be any combination of characters. A typical calendar file might look
like this:

8/16 Status Reports Due Today
9/20 Review meeting at 2:00 in conference room 200
9/1 Karen's birthday
10/3 License renewal
8/22 Pack camping gear for this weekend
9/16 Trip and expense reports are due

Each day your calendar file is examined and all of the lines whose dates match the
current system date are placed in a message and mailed to you.

If you want to display the lines in your calendar file whose dates match the current
system date, type

calendar

and press RETURN.

2-25

Tasks XENIX 286 User's Guide

Calculating

The be command invokes an interactive desk calculator that can be used as if it were a
hand-held calculator. A practice session with be is shown below. While be does allow
you to enter comments in the form 1* text *1, it is not necessary to type them in if you
are going to try the operations shown below. If you make a mistake typing something
while in be, use the BACKSPACE key to erase character by character.

!* This is a comment. bc will not attempt to process anything enclosed like this comment. */
/* Be sure to enter "scale = 0", otherwise the results will differ from those shown here. */

scale = 0
123.456789 + 987.654321 /* Add and output */
1111.111110
9.0000000 - 9.0000001 /* Subtract and output */
-.0000001
64/8 /* Divide and output */
8
1.12345678934 * 2.3 /* Multiply and output; note precision */
2.58395061548
19%4 /* Find remainder */
3
3"4 /* Exponentiation */
81
2/1 *2 /* Note precedence * /
4
2/(1 *2) /* Note precedence again */
1
x = 46.5 /* Assign value to x */
Y = 52.5 /* Assign value to y */
x + Y + 1.0000 /* Add and output * /
100.0000
obase = 16 /* Set hex output base * /
15 /* Convert to hex */
F
16 /* Convert to hex */
10
64 /* Convert to hex */
40
255 !* Convert to hex */
FF
256 /* Convert to hex */
100
512 !* Convert to hex */
200
quit /* Must type whole word */

For more information, see Chapter 7, "be: A Calculator."

2-26

Introduction

CHAPTER 3
THE SHELL

When first logging into XENIX, you communicate with the shell command interpreter,
she This interpreter is a XENIX program that supports a very powerful command
language. Each invocation of this interpreter is called a shell, and each shell has one
function: to read and execute commands from the user.

Because the shell provides users with a high-level language to communicate with the
operating system, XENIX can perform complex tasks not possible with less sophisticated
operating systems. Commands that would normally be written in a traditional
program ming language can be written with just a few lines in a shell procedure. In other
operating systems, commands are executed in strict sequence. With XENIX and the
shell, commands can be

• Combined to form new commands

• Passed positional parameters

• Added or renamed by the user

• Executed within loops or executed conditionally

• Created for local execution without conflict with other user commands

• Executed in the background without interrupting a session at a terminal

Furthermore, commands can "redirect" command input from one source to another and
redirect command output to a file, terminal, printer, or another command. This
provides flexibility in tailoring a task for a particular purpose.

Basic Concepts

The shell itself (that is, the program that reads your commands when you log in or that
is invoked with the sh command) is a program written in the C language; it is not part of
the operating system proper, but an ordinary user program.

The Shell

In XENIX, a process is an executing task complete with instructions, data, input, and
output. All processes have lives of their own and may even start (or "fork") new
processes. Thus, at any given moment several processes may be executing, some of
which are "children" of other "parent" processes.

3-1

The Shell XENIX 286 User's Guide

Users log in to the operating system and are assigned a shell from which they execute.
This shell is a personal copy of the shell command interpreter that is reading commands
from the keyboard; in this context, the shell is simply another process.

In XENIX, files may be created in one phase and then processed in the "background,"
enabling the user to continue working while programs run.

Commands

The most common way of using the shell is by typing simple commands at the keyboard.
A "simple command" is any sequence of arguments separated by spaces or tabs. The
first argument (numbered zero) specifies the name of the com mand to be executed. Any
remaining arguments, with a few exceptions, are passed as arguments to that command.
For example, the following command line might be typed to print the files allan, barry,
and calvin:

$Ipr allan barry calvin

The dollar sign ($) is the standard Bourne shell prompt. The Bourne shell presents you
with its prompt when it is waiting for input. Do not type the $. Note that in this
chapter, user input (what you type) is shown in bold. Output from the computer is in
regular type.

If the first argument of a command (in the above example, Ipr) names an executable file
(as indicated by an appropriate set of permission bits associated with that file) and is
actually a compiled program, the shell as parent creates a child process that
immediately executes that program. If the file is marked as being executable but is not
a compiled program, it is assumed to be a shell procedure, that is, a file of ordinary text
containing shell command lines. In this case, the shell spawns another instance of itself
(a subshell) to read the file and execute the com mands inside it.

From the user's viewpoint, compiled programs and shell procedures are invoked in
exactly the same way. The shell determines which implementation has been used,
rather than requiring the user to do so. This provides uniformity of invocation.

How the Shell Finds Commands

The shell normally searches for commands in three distinct locations in the file system:
command name, /bin/command name, and /usr/bin/command name. First, the shell
attempts to use the command name as given; if this fails, it prepends the string Ibin to
the command name; and if this fails, it prep ends lusr/bin to the command name. The
effect is to search, in order, the current directory, then the directory Ibin, and finally,
the directory lusr/bin.

For example, the pr command is actually the file Ibin/pr. A more complex path name
may be given, either to locate a file relative to the user's current directory or to access
a command with an absolute path name. If a given command name begins with a slash
(for example, Ibin/sort or Icmd), the prepending is not performed. Instead, a single
attempt is made to execute the command as named.

This mechanism gives the user a convenient way to execute public commands and
commands in or near the current directory, as well as the ability to execute any

3-2

XENIX 286 User's Guide The Shell

accessible com mand, regardless of its location in the file structure. Because the
current directory is usually searched first, anyone can possess a private version of a
public command without affecting other users. Similarly, the creation of a new public
command does not affect a user who already has a private command with the same
name. The particular sequence of directories searched may be changed by resetting the
shell PATH variable. (Shell variables are discussed later in this chapter.)

Generating Argument Lists

The arguments to commands are very often file names. Sometimes, these file names
are similar, but not identical. To take advantage of this similarity in names, the shell
enables the user to specify patterns that match the file names in a directory. If a
pattern is matched by one or more file names in a directory, then those file names are
automatically generated by the shell as arguments to the command.

Most characters in such a pattern match themselves, but there are also XENIX special
characters (metacharacters) that may be included in a pattern. These metacharacters
are the following.

* Matches any string regardless of length or content.

? Matches any single character.

[] Matches any of the enclosed characters or range of characters.

Here are some examples of metacharacter usage.

*
temp
[a-f]*
*.c
/usr/bin/?

Matches all names in the current directory
Matches all names containing temp
Matches all names beginning with a through f
Matches all names ending in .c
Matches all single-character names in /usr/bin

This pattern-matching capability saves typing and, more importantly, makes it possible
to organize information in large collections of files named in a structured fashion, using
common characters or extensions to identify related files.

Pattern-matching has some restrictions. If the first character of a file name is a period
(.), it can be matched only by an argument that literally begins with a period. If a
pattern does not match any file names, then the pattern itself is printed out as the
result of the match.

Note that directory names should not contain any of the following characters: * ? []. If
these characters are used, then infinite recursion may occur during pattern matching
attempts.

Quoting Mechanisms

The characters <, >, *, ?, [, and] have special meanings to the shell. Removing the
special meaning of these characters requires some form of quoting. This is done by
using single quotation marks (') or double quotation marks (It) to surround a string. A
backslash (\) before a single character also provides this function.

3-3

The Shell XENIX 286 User's Guide

All characters within single quotation marks are taken literally. Thus,

$ echostuff = 'echo $1 $*; Is * I wc'
$ echo $echostuff
echo $? $*; Is * I wc

The specified string is assigned to the variable echostuff, but it does not result in any
other commands being executed.

Within double quotation marks, the special meaning of certain characters does persist,
while all other characters are taken literally. The characters that retain their special
meaning are the dollar sign ($), the backslash (\), the single quotation mark ('), and the
double quotation mark (") itself. Thus, within double quotation marks, variables are
expanded and command substitution takes place (both topics are discussed in later
sections). However, any commands in a command sUbstitution are unaffected by double
quotation marks, so that characters such as star (*) retain their special meaning.

To hide the special meaning of the dollar sign and single and double quotation marks
within double quotation marks, precede these characters with a backslash (\). Outside
of double quotation marks, preceding a character with a backslash is equivalent to
placing single quotation marks around that character. A backslash followed by a
RETURN causes that RETURN to be ignored and is equivalent to a space. The
backslash-RETURN pair is therefore useful in allowing continuation of long command
lines.

Redirecting Input and Output

In general, most commands cannot determine whether their input or output is coming
from or going to a terminal or a file. Thus, a command can be used conveniently either
at a terminal or in a pipeline. A few commands vary their actions depending on the
nature of their input or output, either for efficiency or to avoid useless actions (such as
attempting random access I/O on a terminal or a pipe).

Standard Input and Output

When a command begins execution, it usually expects that three files are already open:
a "standard input", a "standard output", and a "diagnostic output" (also called "standard
error"). A number called a file descriptor is associated with each of these files. By
convention, file descriptor 0 is associated with the standard input, file descriptor 1 with
the standard output, and file descriptor 2 with the diagnostic output. A child process
normally inherits these files from its parent; all three files are initially connected to the
terminal (0 to the keyboard, 1 and 2 to the screen). The shell enables the files to be
redirected elsewhere before control is passed to an invoked com mand.

An argument to the shell of the form <file or >file opens the specified file as the
standard input or output (in the case of output, destroying the previous contents of file,
if any). An argument of the form »file directs the standard output to the end of file,
thus providing a way to append data to the file without destroying its existing contents.
In either case, the shell creates file if it did not already exist.

3-4

XENIX 286 User's Guide The Shell

Thus,

>output

alone on a line creates a zero-length file. The following appends to file log the list of
users who are currently logged on.

$who »Iog

Such redirection arguments are only subject to variable and command substitution;
neither blank interpretation nor pattern matching of file names occurs after these
substitutions. This means that

$ echo 'this is a test' > * .gal

produces a one-line file named *.gal. Similarly, an error message is produced by the
following command, unless you have a file with the name ?

$ cat <1

Note that special characters are not expanded in redirection arguments, because
redirection arguments are scanned by the shell before pattern recognition and expansion
takes place.

Diagnostic and Other Outputs

Diagnostic output from XENIX com mands is normally directed to the file associated
with file descriptor 2. (You may often need an error output file different from standard
output so that error messages are not lost down pipelines.) You can redirect this error
output to a file by immediately prepending the number of the file descriptor (2 in this
case) to either output redirection symbol (> or > >). The following line appends error
messages from the cc command to the file named ERRORS.

$ cc testfile.c 2> >ERRORS

Note that the file descriptor number must be prepended to the redirection symbol
without any intervening spaces or tabs; otherwise, the number will be passed as an
argument to the command.

This method may be generalized to allow redirection of output associated with any of
the first ten file descriptors (numbered 0-9). For instance, if cmd puts output on file
descriptor 9, then the following line will direct that output to the file savedata. (cmd is
used in a generic sense here; there is no shell command called cmd.)

$ cmd 9> savedata

A command often generates standard output and error output and might even have some
other output, perhaps a data file. In this case, one can redirect independently all the
different outputs. Suppose, for example, that cmd directs its standard output to file
descriptor 1 and its error output to file descriptor 2 and builds a data file on file
descriptor 9. The following would direct each of these three outputs to a different file.

$ cmd >standard 2>error 9>data

3-5

The Shell XENIX 286 User's Guide

Command Lines and Pipelines

A sequence of commands separated by the vertical bar (I) makes up a pipeline. In a
pipeline consisting of more than one command, each command is run as a separate
process connected to its neighbors by pipes; that is, the output of each command (except
the last one) becomes the input of the next command in line.

A "filter" is a command that reads its standard input, transforms it in some way, then
writes it as its standard output. A pipeline normally consists of a series of filters.
Although the processes in a pipeline can execute in parallel, each program needs to read
the output of its predecessor. For example, many commands operate on individual lines
of text, reading a line, processing it, writing it out, and looping back for more input.
Some must read large amounts of data before producing output; sort is an example of
the extreme case that requires all input to be read before any output is produced.

The following is an example of a typical pipeline.

$ nroff -mm text I col I Ipr

nroff is a text formatter available in the XENIX 286 Extended System that allows
reverse line motions within its output; col converts these motions to a form that can be
printed on a terminal lacking reverse-motion capability, and Ipr does the actual printing.

The flag -mm indicates one of the commonly used formatting options, and text is the
name of the file to be formatted. The nroff program provides a set of primitive
commands as well as the capability of writing macros (sequences of primitive commands
that can be called as a unit). The XENIX operating system provides a library of such
macros. The flag -mm tells nroff to use the mm macro package. Another macro
package is ms, and you could invoke nroff with this macro package by issuing the
command,

$ nroff -ms text I col I Ipr

The following examples illustrate some effects obtainable by combining commands.

who

who »log

who I we -1

who I pr

who I sort

who I grep bob

3-6

Prints the list of logged-in users on the screen.

Appends the list of logged-in users to the end of file log.

Prints the number of logged-in users.

Prints a paginated list of logged-in users.

Prints an alphabetized list of logged-in users.

Prints the list of logged-in users whose user names contain the
string "bob". Note that the string consists of the following three
letters: bob. The string does not include the double quotes. The
convention followed by most XENIX documentation is to set off a
string with double quotes.

XENIX 286 User's Guide The Shell

who I grep bob I sort I pr
Prints an alphabetized, paginated list of logged-in users whose
login names contain the string "bob".

{ date; who I we -1 ; } »log
Appends (to file log) the current date followed by the count of
logged-in users. Be sure to place a space after the left brace and
a semicolon before the right brace or the XENIX operating
system could misinterpret the command line.

who I sed 'sl .*11' I sort I uniq -d
Prints only the login names of all users who are logged in more
than once. Note the use of sed as a filter to remove characters
trailing the login name from each line. (The ". *" in the sed
command is preceded by a space.)

sed is the XENIX stream editor. It reads files and performs
certain specified editor commands on each line of those files. In
this example, the standard output of the com mand who is piped
into sed. sed then runs the editing script 'sl .*11' on that output.
This script saves only the first word of each line of who's output,
so that the input to sort is a file consisting of user names, one to
a line. The program sort then arranges those lines in ASCII order
and provides its output as input to the program uniq. With the -d
option, this program saves only those lines that are repeated.
The result is that you have a list of only those users that are
logged in more than once.

The who command does not by itself provide options to yield all these results--they are
obtained by combining who with other commands. Note that who just serves as the data
source in these examples. As an exercise, replace who I with </ete/passwd in the above
examples to see how a file can be used as a data source in the same way. Notice that
redirection arguments may appear anywhere on the command line, even at the start.
This means that

$ < infile >outfile sortlpr

is the same as

$ sort Ipr < infile >outfile

Command Substitution

Any command can be placed within back quotation marks (sometimes called grave
accents, not to be confused with single quotes) so that the output of the command
replaces the backquoted command line itself. This concept is known as command
substitution. The command or commands enclosed within back quotation marks are first
executed by the shell and then their output replaces the whole expression, back
quotation marks and all. This feature is often used to assign shell variables. (Shell

3-7

The Shell XENIX 286 User's Guide

variables are described in the next section.} For example, to assign the output of the
date command to the shell variable today, type

$ today = . date'

The result is that the shell variable today has a value such as "Tue Nov 27 16:01:09 EST
1982". To display today, use the echo command.

$ echo $today
Tue Aug 14 16:01 :09 PDT 1985

Any command that writes to the standard output can be enclosed in back quotation
marks. Back quotation marks may be nested, but the inside sets must be escaped with
backslashes. For example,

$ logmsg = . echo Your login directory is \. pwd\' .
$ echo $Iogmesg
Your login directory is/usr/vrs

Shell variables can also be given values indirectly by using the read and line commands.
The read command takes a line from the standard input (usually your terminal) and
assigns consecutive words on that line to any variables named.

For example,

$ read first in it last

takes an input line of the form

G. A. Snyder

and has the same effect as typing

$ first = G. init = A. last = Snyder

The read command assigns any excess "words" to the last variable.

The line command reads a line of input from the standard input and then echoes it to the
standard output.

Shell Variables

The shell has several mechanisms for creating variables. A variable is a name
representing a string value. Certain variables are referred to as positional parameters;
these are the variables set only on the command line. Other shell variables are simply
names to which the user or the shell itself may assign string values.

3-8

XENIX 286 User's Guide The Shell

Positional Parameters

When a shell procedure is invoked, the shell implicitly creates positional parameters.
The name of the shell procedure itself is in position zero on the command line and is
assigned to the positional parameter $0. The first command argument is called $1, and
so on. Within a shell script, the shift command may be used to access arguments in
positions numbered higher than nine. For example, the following shell script might be
used to cycle through command line switches and then process all succeeding files.

If you are unclear about how to enter and run a shell script, read the following indented
text.

Before runing this example, here are some basics on how to create an executable
shell script. To create a shell script, invoke a text editor such as vi. Call the file
you are creating whatever you want. This example assumes the name myfile.
Enter the com mand,

$ vi myfile

The screen clears and tildes appear on the left. Press the i key for insert. The i
does not appear on the screen, but you are now in insert mode. Type the file, just
as you would on a typewriter. See Chapter 5 for a discussion of vi editing
commands. Use those editing commands to correct any typing errors you might
make. Press the ESC key to exit insert mode and reenter command mode. Then,
type a colon; a colon appears on the last line of your screen. Type x for exit and
follow it with a RETURN.

Your script now exists in the file called myfile. To make it executable, enter the
command,

$ chmod u + x myfile

The command chmod stands for change mode. The u stands for user (that's you),
and the +x means that you are adding execution mode. Do not type spaces
between the three characters, u+x.

The example shell script looks as follows.

while test $#! = 0
do

done

case $1 in
-a) echo -a ; shift ;;
-b) echo -b; shift ;;
-c) echo -c ; shift ;;
-*) echo bad option ; exit 1 ;;
*) echo process the rest of the command; shift ;;
esac

3-9

The Shell XENIX 286 User's Guide

Here's what the shell script does. First, it tests whether the number of arguments is
zero. The number of arguments is represented by $#. The symbol != means "not equal."
While the number of arguments is not zero, the statements within the do-done
delimiters are executed.

In this example, there is only one statement within the do-done delimiters, a case
statement. The case statement begins with the word case and ends with the word esac
(case spelled backwards). If the first argument (represented as $1) is -a, then the shell
script writes -a to the screen. (In a more realistic example, you would probably want to
do something more involved with that option.) The shift statement shifts the numbering
of the arguments. $1 goes away and $2 becomes $1, $3 becomes $2, etc. As long as
there are arguments, the case statement is executed.

The * stands for any character or characters, including no characters. For example, if
the argument were -d, the shell script would write "bad option" to the screen and exit.
Options are identified by the minus sign. If the argument were def, the shell script
would write "process the rest of the command" to the screen and shift. When the script
shifts beyond the last argument, $# becomes zero, and the script terminates. Here's
how the screen looks if you run this script in a test case.

$ myfile -a -b def
-a
-b
process the rest of the command
$

One can explicitly force values into the positional parameters by using the set
command. For example,

$ set abc def ghi
$ echo $*
abc def ghi

assigns the string "abc" to $1 (the first positional parameter), the string "def" to $2, and
the string "ghi" to $3. Note that $0 may not be assigned a value in this way--it always
refers to the name of the shell procedure, or in the login shell, to the name of the shell.
The echo command displays those $ variables; $* means display all of them.

Using the set command requires some background understanding. For example, if you
issue the command,

$ set -a -b def
-a: bad opti on(s)

you get an error message. That's because the set command sees the minus sign in front
of the a and tries to interpret the a as one of its own options. The set command has no
such option, and an error message results. Read the set section under the sh entry in
the XENIX 286 Reference Manual to find out about valid set options. To prevent set
from interpreting the -a as an option, add another minus sign, separated by spaces.

3-10

$ set - -a -b def
$ echo $*
-a -b def

XENIX 286 User's Guide The Shell

Now you might think that if you invoke myfile without any options, you should get the
same result as before. You set the dollar variables with set rather than providing them
as arguments to myfile. The result should be the same. That's not what happens,
though. If you execute myfile, the Bourne prompt returns with no action. $# was 0;
your myfile did not see any positional variables. The reason why is key to understanding
how shell scripts work.

When you execute myfile, it runs as a shell underneath the present shell. Those dollar
variables set with the set command are not exported to myfiles's shell. Try the
following.

$ set - -a -b def
$ echo $*
-a -b def
$ sh
$ echo $*

$ exit
$ echo $*
-a -b def

The sh command spawns a new Bourne shell. The positional variables are not defined in
this spawned shell. Hence, you see nothing when you execute echo $*. You can return
to the spawning shell with the exit com mand. (A CONTROL-D works just as well.)
Note that your positional parameters are still defined.

When you execute a shell script, it runs in a spawned shell. It does not get the
positional parameters you set with a set command executed in the spawning shell.

User-Defined Variables

The shell also recognizes alphanumeric variables to which string values may be assigned.
A simple assignment has the syntax,

name=string

Thereafter, $name will yield the value string. A name is a sequence of letters, digits, or
underscores that begins with a letter or an underscore. No spaces surround the equal
sign (=) in an assignment statement. Positional parameters may not appear on the left
side of an assignment and can only be set as described in the previous section.

More than one assignment may appear in an assignment statement, but note that the
shell performs the assignments from right to left. Thus, the following command line
results in the variable A acquiring the value abc.

$ A = $B B = abc

3-11

The Shell XENIX 286 User's Guide

The following are examples of simple assignments. Double quotation marks around the
right-hand side allow spaces, tabs, semicolons, and RETURNs to be included in a string,
while also allowing variable sUbstitution (also known as "parameter substitution") to
occur. This means that references to positional parameters and other variable names
prefixed by a dollar sign are replaced by the corresponding values, if any. Single
quotation marks inhibit variable sUbstitution.

$ MAIL = lusr/mail/gas
$ echovar = "echo $1 $2 $3 $4"
$ stars = *****
$ asterisks = 'stars'

In the previous example, the variable echovar has as its value the string consisting of
the values of the first four positional parameters, separated by spaces, plus the string
"echo". No quotation marks are needed around the string of asterisks being assigned to
stars because pattern matching (expansion of star, question mark, and brackets) does not
apply in this context. Note that the value of asterisks is the literal string "stars", not
the string "*****", because the single quotation marks inhibit substitution.

In assignments, spaces are not reinterpreted after variable substitution, so that the
following example results in $first and $second having the same value.

$ first ='a string with embedded spaces'
$ second = $fi rst

In accessing the values of variables, you may enclose the variable name in braces { •.• l to
delimit the variable name from any following string. In particular, if the character
immediately following the name is a letter, digit, or underscore, then the braces are
required. For example, examine the following input.

$ a = 'This is a string'
$ echo "${a}ent test of variables."

Here, the echo command prints

This is a stringent test of variables.

If no braces were used, the shell would substitute a null value for $aent and print

test of variables.

The following variables are maintained by the shell. Some of them are set by the shell,
and all of them can be reset by the user.

3-12

XENIX 286 User's Guide The Shell

HOME

IFS

MAIL

PATH

Initialized by the login program to the name of the user's login directory,
that is, the directory that becomes the current directory upon completion of
a login; cd without arguments switches to the $HOME directory. Using this
variable helps keep full path names out of shell procedures. This is
beneficial when path names are changed, either to balance disk loads or to
reflect administrative changes.

The variable that specifies which characters are internal field separators.
These are the characters the shell uses during blank interpretation. (If you
want to parse some delimiter-separated data easily, you can set IFS to
include that delimiter.) The shell initially sets IFS to include the blank, tab,
and RETURN characters.

The path name of a file where your mail is deposited. If MAIL is set, then
the shell checks to see if anything has been added to the file it names and
announces the arrival of new mail each time you return to com mand level
(for example, by leaving the editor). MAIL must be set by the user and
"exported". (The export command is discussed later in this chapter.) (The
presence of mail in the standard mail file is also announced at login,
regardless of whether MAIL is set.)

The variable that specifies the search path used by the shell when looking for
commands. Its value is an ordered list of directory path names separated by
colons. The shell initializes PATH to the list :/bin:/usr/bin where a null
argument appears in front of the first colon. A null anywhere in the path list
represents the current directory. On some systems, a search of the current
directory is not the default, and the PATH variable is initialized instead to
/bin:/usr/bin. If you wish to search your current directory last, rather than
first, use

P A TH=/bin:/usr/bin::

Here, the two colons together represent a colon followed by a null, followed
by a colon, thus naming the current directory. You could possess a personal
directory of com mands (for example, $HOME/bin) and cause it to be
searched before the other three directories by using

PATH=$HOME/bin::/bin:/usr/bin

PATH is normally set in your .profile file.

PSI The variable that specifies what string is to be used as the primary prompt
string. If the shell is interactive, it prompts with the value of PSI when it
expects input. The default value of PSI is "$ "(a dollar sign followed by a
blank).

3-13

The Shell XENIX 286 User's Guide

PS2 The variable that specifies the secondary prompt string. If the shell expects
more input when it encounters a RETURN in its input, it prompts with the
value of PS2. The default value for this variable is "> " (a greater-than
symbol followed by a space).

In general, you should be sure to export all of the above variables so that their values
are passed to all shells spawned from your login file. Use export at the end of your
.profile file. An example of an export statement follows.

export HOME IFS MAIL PATH PS1 PS2

Remember that, unless you export them, shell variables are not recognized in spawned
shells. The export statement ensures that the specified variables are recognized in all
spawned shells. XENIX programmers would say that the variables are "exported" to the
spawned shells. Use the set command to view variables in the current shell. Use the
env command to view variables that are exported.

Predefined Special Variables

Several variables have special meanings and are set only by the shell.

$# Records the number of arguments passed to the shell, not counting the name of
the shell procedure itself. For instance, $# yields the number of the highest set
positional parameter. Thus

sh cmd abc

automatically sets $# to 3. One of its primary uses is in checking for the presence
of the required number of arguments.

if test $# -It 2
then

echo 'two or more args required'; exit
fi

$? Contains the exit status of the last command executed (also referred to as "return
code", "exit code", or "value"). Its value is a decimal string. Most XENIX
commands return zero to indicate successful completion. The shell itself returns
the current value of $? as its exit status.

$$ The process number of the current process. Because process numbers are unique
among all existing processes, this string is often used to generate unique names for
temporary files. XENIX provides no mechanism for the automatic creation and
deletion of temporary files; a file exists until explicitly removed. Temporary files
are generally undesirable objects; the XENIX pipe mechanism is far superior for
many applications. However, the need for uniquely-named temporary files does
occasionally occur.

3-14

The following example illustrates the recommended practice - of creating
temporary files; note that the directories /tmp and /usr/tmp are cleared out if the
system is rebooted. A # indicates that what follows on that line is a comment.

XENIX 286 User's Guide The Shell

use current process id
to form unique temp file
temp = lusr/tmp/$$
Is >$temp
commands here, some of which use $temp
rm $temp
clean up at end

$! The process number of the last process run in the background (using the ampersand
(&». This is a string containing from one to five digits.

$- A string consisting of names of execution flags currently turned on in the shell.
For example, $- might have the value xv if you are tracing your output.

The Shell State

The state of a given instance of the shell includes the values of positional parameters,
user-defined variables, environment variables, modes of execution, and the current
working directory.

The state of a shell may be altered in various ways. These include changing the working
directory with the cd command, setting several flags, and reading commands from the
special file, .profile, in your login directory.

Changing Directories

The cd command changes the current directory to the one specified as its argument.
This can and should be used to change to a convenient place in the directory structure.
Note that cd is often placed within parentheses to cause a subshell to change to a
different directory and execute some commands without affecting the original shell.

For example, the first command below copies the file /etc/passwd to
/usr/username/passwd; the second command changes directory to /etc and then copies
the file. username represents your login directory. For the sake of this example,
assume that your username (hence your login directory) is called vrs. People often use
their initials--first, middle, and last.

$ ep lete/passwd lusr/vrs/passwd
$ (cd lete ; cp passwd lusr/vrs/passwd)

Note the use of parentheses. Both commands have the same effect. Note, however,
that the second line is executed as a separate shell. When it is done, you are still in
your original directory.

3-15

The Shell XENIX 286 User's Guide

The .profile File

The file named .profile is read each time you log in to XENIX. It is normally used to
execute special one-time-only commands and to set and export variables to all later
shells. Only after commands are read and executed from .profile does the shell read
commands from the standard input--usually the keyboard.

Execution Flags

The set command enables you to alter the behavior of the shell by setting certain shell
flags. In particular, the -x and -v flags may be useful when invoking the shell as a
command from the terminal. The flags -x and -v may be set by typing

set -xv

The same flags may be turned off by typing

set + xv

These two flags have the following meanings.

-v Input lines are printed as they are read by the shell. This flag is particularly
useful for isolating syntax errors. The commands on each input line are executed
after that input line is printed.

-x Com mands and their argu ments are printed as they are executed. (Shell control
commands, such as for and while, are not printed, however.) Note that -x causes a
trace of only those com mands actually executed, whereas -v prints each line of
input until a syntax error is detected.

The set command is also used to set these and other flags within shell procedures.

Command Environment

All variables and their associated values known to a command at the beginning of its
execution make up its environment. This environment includes variables that the
command inherits from its parent process and variables specified as keyword parameters
on the command line that invokes the command.

The variables that a shell passes to its child processes are those that have been named
as arguments to the export command. The export command places the named variables
in the environments of both the shell and all its future child processes.

Keyword parameters are variable-value pairs that appear in the form of assignments,
normally before the procedure name on a command line. Such variables are only placed
in the environment of the procedure being invoked.

For example, consider the following shell script. The shell variables a and bare
defined on the same line where keycommand is invoked. The variables are defined in
keycommand 's environment, not the shell's.

3-16

XENIX 286 User's Guide

keycommand,
echo $a $b
$ a = key1 b = key2 keycommand
key1 key2

The Shell

If you issue the set command, you will not see a and b listed as a shell variable, and you
cannot display them with the echo command. Keyword parameters are not counted as
arguments to the procedure and do not affect $#.

A procedure may access the value of any variable in its environment. However, if
changes are made to the value of a variable, these changes are not reflected in the
environment; they are local to the procedure in question. In order for these changes to
be placed in the environment that the procedure passes to its child processes, the
variable must be named as an argument to the export command within that procedure.
To obtain a list of variables that have been made exportable from the current shell, type
export. You will also get a list of variables that have been made read-only. To get a
list of name-value pairs in the current environment, type either prioteov or eov.

Invoking the Shell

The shell is a command and may be invoked in the same way as any other command. Use
the following syntax, depending on your application:

sh process [argument •••]
A new instance of the shell is explicitly invoked to read process. Arguments, if
any, can be manipulated.

sh -v process [argum ent. ••]
This is equivalent to putting set -vat the beginning of process. It can be used in
the same way for the -x, -e, -u, and -0 flags. Refer to the sh entry in the XENIX
286 Reference Manual for an explanation of these flags.

process [argument ••.]
If process is an executable file and is not a compiled executable program, the
effect is similar to that of

sh process argument

An advantage of this form is that variables that have been exported in the shell
will still be exported from process when this form is used (because the shell only
forks to read commands from process). Thus any changes made within process to
the values of exported variables will be passed on to subsequent commands invoked
from process.

Passing Arguments to Shell Procedures

When a command line is scanned, any character sequence of the form $n is replaced by
the nth argument to the shell, counting the name of the shell procedure itself as $0. This
notation permits direct reference to the procedure name and to as many as nine

3-17

The Shell XENIX 286 User's Guide

positional parameters. Additional arguments can be processed using the shift command
or by using a for loop.

The shift command shifts positional parameters to the left; that is, the value of $1 is
thrown away, $2. replaces $1, $3 replaces $2, and so on. The highest-numbered
positional parame'ter becomes unset ($0 is never shifted). For example, in the shell
procedure ripple below, echo writes its argu ments to the standard output. Lines that
begin with a number sign (#) are comments.

ripple command
while test $# ! = 0

done

do echo $1 $2 $3 $4 $5 $6 $7 $8 $9
shift

If the procedure were invoked with

ripple abc

it would print

abc
b c
c

The special shell variable "star" ($*) causes substitution of all positional parameters
except $0. Thus, the echo line in the ripple example above could be written more
co m pactly as

echo $*

These two echo com mands are not equivalent: the first prints at most nine positional
parameters; the second prints all of the current positional parameters. The shell star
variable ($*) is more concise and less error-prone. One obvious application is in passing
an arbitrary number of arguments to a command from within a shell script. For
example,

wc $*

counts the words of each of the files named on the command line.

It is important to understand the sequence of actions used by the shell in scanning
command lines and substituting arguments. The shell first reads input up to a RETURN
or semicolon, and then parses that much of the input. Variables are replaced by their
values and then command SUbstitution (via back quotation marks) is attempted. I/O
redirection arguments are detected, acted upon, and deleted from the command line.
Next, the shell scans the resulting command line for internal field separators, that is,
for any characters specified by IFS to break the command line into distinct arguments;
explicit null arguments (specified by"" or ") are retained, while implicit null arguments
resulting from evaluation of variables that are null or not set are removed. Then, file
name generation occurs with all metacharacters being expanded. The resulting
command line is then executed by the shell.

3-18

XENIX 286 User's Guide The Shell

Sometimes command lines are built inside a shell procedure. In this case, it is useful to
have the shell rescan the com mand line after all the initial substitutions and expansions
have been performed. The eval command is available for this purpose. eval takes a
command line as its argument and simply rescans the line, performing any variable or
command substitutions specified. For example,

$ command = who output = ' wc -I'
$ eval $command $output

results in the execution of the com mand line,

$who I wc -I

The first word of a line is always evaluated. You want the shell to rescan the line to
evaluate the variable $output as well. If you leave out the eval, just the who will be
executed. That's because who accepts an unevaluated $output. If you enter who
followed by any text string, you get login information about yourself. Try it.

$who junk morejunk
vrs ttyc2 Aug 15 10:25

The output of eval cannot be redirected. However, uses of eva! can be nested, so that a
command line can be evaluated several times.

Directing the Flow of Control

The shell provides several com mands that implement a variety of control structures
useful in controlling shell procedures. Before describing these structures, a few terms
need to be defined.

A simple command is any single irreducible command specified by the name of an
executable file. I/O redirection arguments can appear in a simple command line and are
passed to the shell, not to the command.

A command is a simple command or any of the shell control commands described below.

A pipeline is a sequence of one or more commands separated by vertical bars (I). In a
pipeline, the standard output of each command is connected (by a pipe) to the standard
input of the next command. Each command in a pipeline is run separately; the shell
waits for the last command to finish. The exit status of a pipeline is nonzero if the exit
status of either the first or last process in the pipeline is nonzero.

A command list is a sequence of one or more pipelines separated by a semicolon (;), an
ampersand (&), an "and-if" symbol (&&), or an "or-if" (II) symbol, and optionally
terminated by a semicolon or an ampersand. A semicolon causes sequential execution of
the previous pipeline, making the shell wait for the pipeline to finish before reading the
next pipeline. On the other hand, the ampersand (&) causes asynchronous background
execution of the preceding pipeline, allowing sequential and background execution. A
background pipeline continues execution until it terminates.

3-19

The Shell XENIX 286 User's Guide

Other uses of the ampersand include off-line printing and background compilation. For
example, if you type

nohup cc prag.c&

you may continue working while the C compiler runs in the background. A command
line ending with an ampersand is immune to interrupts or quits that you might generate
by sending the interrupt or quit signals. The interrupt signal is usually sent by typing
the DEL or BREAK key. The quit signal is usually sent by typing a CONTROL-\.

CONTROL-D will log you out and abort the command. To prevent this from happening,
use the nohup command to make the command immune to hangups and logouts. If the
preceding example did not contain nohup and if you log out while cc is still executing,
cc will be killed and your output will disappear.

The ampersand operator should be used with restraint, especially on heavily-loaded
systems. The work of other users will be slowed down if you run a large number of
background processes.

The and-if and or-if (&& and II) operators cause conditional execution of pipelines. Both
of these are of equal precedence when evaluating command lines (but both are lower
than the ampersand (&) and the vertical bar (I». In the command line,

$ cmd1 I I cmd2

the first command, cmdl, is executed and its exit status examined. Only if cmdl fails
(that is, has a nonzero exit status) is cmd2 executed.

The and-if operator (&&) yields a complementary test. For example, in the command
line,

$ cmd1 && cmd2

the second command is executed only if the first succeeds (and has a zero exit status).
In the sequence below, each command is executed in order until one fails.

$ cmd1 && cmd2 && cmd3 && ... && cmdn

A simple command in a pipeline may be replaced by a command list enclosed in either
parentheses or braces. The output of all the commands so enclosed is combined into one
stream that becomes the input to the next command in the pipeline. The following line
formats and prints two separate documents.

$ { nraff -mm text1; nroff -mm text2; } I Ipr

Note that a space is needed after the left brace and that a semicolon must appear
bef ore the right brace.

3-20

XENIX 286 User's Guide The Shell

Using the if Statement

The shell provides structured conditional capability with the if command. The simplest
if command has the following form.

if command-list
then command-list
fi

The word fi indicates the end of the if statement. (fi is if spelled backwards.) The
example cmd1 II cmd2 in the previous section can be rewritten using an if statement as
follows.

if

then
fi

cmd1
test $? ! = 0
cmd2

The command list following the if is executed, and if the last command in the list has a
zero exit status, then the command list that follows then is executed.

To cause an alternative set of com mands to be executed when there is a nonzero exit
status, an else clause can be given with the following structure.

if command-list
then command-list
else command-list
fi

Multiple tests can be achieved in an if command by using the elif (else-if) clause,
although the case statement is better for large numbers of tests. For example,

if
then
elif
then
else
fi

test -f "$1" # is $1 a file?
pr $1
test -d "$1" # else, is $1 a directory?
(cd $1; pr *)
echo $1 is neither a file nor a directory

The previous example is executed as follows: if the value of the first positional
parameter is a file name (-f), then print that file; if not, then check to see if it is the
name of a directory (-d). If so, change to that directory (cd) and print all the files there
(pr *). Otherwise, echo the error message.

if commands may be nested (but be sure to end each one with a fi). The RETURNs in
the above examples of if may be replaced by semicolons.

The exit status of the if command is the exit status of the last command executed in
any then clause or else clause. If no such command was executed, if returns a zero exit
status.

3-21

The Shell XENIX 286 User's Guide

Note that an alternative notation for the test command uses brackets to enclose the
expression being tested. For example, the previous example might have been written as
follows.

if
then
elif
then
else
fi

[-f "$1"] # is $1 a file?
pr $1
[-d "$1"] # else, is $1 a directory?
(cd $1; pr *)
echo $1 is neither a file nor a directory

Note that a space after the left bracket and one before the right bracket are essential
in this form of the syntax.

Using the case Statement

A multiple test conditional is provided by the case command. The basic format of the
case statement is

case string in
pattern) command-list ;;

pattern) command-list ;;
esac

The shell tries to match string against each pattern in turn, using the same pattern­
matching conventions as in file name generation. If a match is found, the command list
following the matched pattern is executed; the double semicolon (;;) serves as a break
out of the case and is required after each command list except the last. Note that only
one pattern is ever matched, and that matches are attempted in order, so that if a star
(*) is the first pattern in a case, no other patterns are looked at.

More than one pattern may be associated with a given command list by specifying
alternative patterns separated by vertical bars (I). For example,

case $i in

esac

*.c)
*.h I *.sh)
*)

cc $i;;
: do nothing;;
echo n$i of unknown type";;

No action is taken for the second set of patterns because the null, colon (:) command is
specified. The star (*) is used as a default pattern, because it matches any word.

The exit status of case is the exit status of the last command executed in the case
command. If no commands are executed, then case has a zero exit status.

3-22

XENIX 286 User's Guide The Shell

Conditional Looping

A while command has the general form

while command-list do command-list done

The commands in the first command-list are executed, and if the exit status of the last
command in that list is zero, then the commands in the second command-list are
executed. This sequence is repeated as long as the exit status of the first command-list
is zero. A loop can be executed as long as the first command-list returns a nonzero exit
status by replacing while with until.

Any RETURN in the above example may be replaced by a semicolon. The exit status of
a while {or until} command is the exit status of the last command executed in the second
command-list. If no such command is executed, while {or until} has a zero exit status.

Looping Over a List

Often, one wishes to perform some set of operations for each file in a set of files, or
execute some command once for each of several arguments. The for command can be
used to accomplish this. The for command has the format

for variable in word-list do command-list done

Here word-list is a list of strings separated by blanks. The commands in the command­
list are executed once for each word in the word-list. The variable takes on as its value
each word from the word list, in turn. The word-list is fixed after it is evaluated the
first time. For example, the following for loop causes each of the C source files xec.c,
cmd.c, and word.c in the current directory to be compared with a file of the same name
in the directory /usr/src/cmd/sh:

for CFI LE in xec cmd word
do diff ${CFILE}.c /usr/src/cmd/sh/${CFILE}.c
done

The first occurrence of CFILE immediately after the word for has no preceding dollar
sign, because the name of the variable is wanted and not its value.

You can omit the in word-list part of a for command; this causes the current set of
positional parameters to be used in place of word-list. This is useful when writing a
command that performs the same set of commands for each of an unknown number of
arguments. Create a file named echo2 that contains the following shell script.

for word
do echo $word$word
done

Give echo2 execute status and execute it.

3-23

The Shell

$ chmod + x ech02
$ ech02 ma pa bo fi yo no
mama
papa
bobo
fifi
yoyo
nono

Loop Control

XENIX 286 User's Guide

The break command can be used to terminate execution of a while or a for loop.
continue requests the execution of the next iteration of the loop. These commands are
effective only when they appear between do and done.

The break command terminates execution of the smallest (that is, innermost) enclosing
loop, causing execution to resume after the nearest following unmatched done. Exit
from n levels is obtained by break n.

The continue command causes execution to resume at the nearest enclosing for, while,
or until statement, that is, the one that begins the innermost loop containing the
continue. You can also specify an argument n to continue, and execution will resume at
the nth enclosing loop.

This procedure is interactive.
"Break" and "continue" commands are used
to allow the user to control data entry.
while true #Ioop forever
do

done

echo Please enter data
read response
case "$response" in
"done") break;;

"")continue ;;
*} echo $response ;;

esac

no more data
just a carriage return, keep on goi'ng
process the data here

End-of-File and exit

When the shell reaches the end-of-file in a shell procedure, it terminates execution,
returning to its parent the exit status of the last command executed prior to the
end-of-file. The top-level shell is terminated by typing a CONTROL-D, which is the
same as logging out.

The exit command simply reads to the end-of-file and returns, setting the exit status to
the value of its argument, if any. Thus, a procedure can be terminated normally by
placing "exit 0" at the end of the file.

3-24

XENIX 286 User's Guide The Shell

Command Grouping

Two operators are used for grouping commands in the shell: parentheses and braces.
Parentheses cause the shell to create a subshell that reads the enclosed commands.
Both the right and left parentheses are recognized wherever they appear in a command
line--they can appear as literal parentheses only when enclosed in quotation marks. For
example, if you attempt to define a shell variable called var as garble(stuff), you get an
error message.

$ var = garble(stuff)
syntax error: '(' unexpected

You must quote the parentheses. In the XENIX operating system, preceding a character
with a backslash has the same effect as enclosing it in single quotes. The following
command lines have the same result.

$ var = garble'('stuff')'
$ var = 'garble(stuff)'
$ var = garble\(stuff\)

This capability of creating a subshell by grouping commands is useful when performing
operations without affecting the values of variables in the current shell, or when
temporarily changing the working directory and executing commands in the new
directory without having to return to the current directory.

The current environment is passed to the subshell and variables exported in the current
shell are also exported in the subshell. Thus

and

$ CURRENTDIR = 'pwd'; cd /usr/docs/otherdir
$ nohup nroff doc.n Ilpr& ; cd $CURRENTDIR

$ (cd /usr/docs/otherdir; nohup nroff doc.n Ilpr&)

accomplish the same result: a copy of /usr/docs/otherdir/doc.n is formatted and sent to
the line printer.

Interpret the above commands this way. The first example sets the shell variable
CURRENTDIR to the value of the pwd command (pwd stands for print-working­
directory). Those are backquotes around the pwd, just like those enclosing the date
command in a previous example. The semicolon separates two commands on the same
line. The cd com mand changes the working directory to /usr/docs/otherdir. The cd
command will not create that directory; it must already exist for you to change to it.

The next line invokes the nroff program on the file doc.n. Note that, in this case, no
macro package is used. A previous nroff example using a macro package employed the
flag -mm. The output of nroff is by default the terminal screen. The I Ipr pipes the
output to the line printer instead. (The I is the pipe symbol.) The ampersand puts the
process in the background. That means you can enter additional shell commands before

3-25

The Shell XENIX 286 User's Guide

the nroff process has finished. This is often convenient because your terminal does not
"go away" on you. The nohup option ensures that the process does not die if you log out.
Finally, the second cd returns to your original working directory, whose pathname you
saved in the shell variable CURRENTDIR.

The second example accomplishes the same result. Enclosing a series of com mands in
parentheses ensures that they are executed in a subshell spawned from the invoking
shell. There is no need to save the pathname of the original shell. The second example
automatically returns you to your original working directory. In the second example,
blanks or RETURNs surrounding the parentheses are allowed but not necessary. When
entering a command line at the terminal, the shell will prompt with the value of the
shell variable PS2 if an end parenthesis is expected. PS2 is your secondary prompt,
defined in your .profile file.

Braces ({ }) may also be used to group commands together. 80th the left and the right
brace are recognized only if they appear as the first (unquoted) word of a command. The
opening brace may be followed by a RETURN (in which case the shell prompts for more
input). Unlike parentheses, no subshell is created for braces: the enclosed co m mands
are simply read by the shell. The braces are convenient when you wish to use the
(sequential) output of several commands as input to one command. Refer to the sh
entry in the XENIX 286 Reference Manual for more information. Pay special attention
to the "Notes" section.

The exit status of a set of com mands grouped by either parentheses or braces is the exit
status of the last enclosed executed command.

Input/Output Redirection and Control Commands

The shell normally does not fork and create a new shell when it recognizes the control
commands (other than parentheses) described above. However, each command in a
pipeline is run as a separate process to direct input to or output from each command.
Also, when redirection of input or output is specified explicitly to a control com mand, a
separate process is spawned to execute that command. Thus, when if, while, until, case,
and for are used in a pipeline consisting of more than one com mand, the shell forks and
a subshell runs the control command. This has two implications:

• Any changes made to variables within the control command are not effective once
that control command finishes (this is similar to the effect of using parentheses to
group com mands).

• Control commands run slightly slower when redirected, because of the additional
overhead of creating a shell for the control command.

3-26

XENIX 286 User's Guide The Shell

Transfer to Another File and Back: the Dot (.) Command

A command line of the form

• process

causes the shell to read commands from process without spawning a new shell. Changes
made to variables in process are in effect after the dot com mand finishes. This is a good
way to gather a number of shell variable initializations into one file. A common use of
this command is to reinitialize your login shell by reading the .profile file with

$. .profile

Interrupt Handling

Shell procedures can use the trap com mand to disable a signal (cause it to be ignored),
or redefine its action. The XENIX operating system provides a mechanism called signals
to communicate with running processes. You have already come across the interrupt
and quit signals. Typically you can send an interrupt signal by pressing the DEL key on
your terminal. A signal is identified by a number. The number of the interrupt signal is
2. The form of the trap command is

trap argument signal-list

Here argument is a string to be interpreted as a com mand list and signal-list consists of
one or more signal numbers. The commands in argument are scanned at least once,
when the shell first encounters the trap command. Because of this, it is usually wise to
use single rather than double quotation marks to surround these com mands. Single
quotation marks inhibit immediate com mand and variable substitution. This becomes
important, for instance, when one wishes to remove temporary files and the names of
those files have not yet been determined when the trap command is first read by the
shell. The following procedure will print the name of the current directory in the file
errdirect when it is interrupted, thus giving the user information as to how much of the
job was done.

trap 'echo 'pwd' >errdirect' 2 3 15
for i in fbin /usrfbin
do

cd $i
Is -I # commands to be executed in directory $i here

done

For the above shell script to work correctly the directories listed in the for statement
must exist and be accessible. The command Is -1 is included so that the shell script puts
output on the screen.

Beware that the same procedure with double quotation marks causes the shell to print
the name of the directory from which the procedure was first executed.

(trap "echo 'pwd' >errdirect" 2 3 15)

3-27

The Shell XENIX 286 User's Guide

A me mory allocation signal (signal 11) can never be trapped, because the shell itself
needs to catch it to deal with memory allocation. Zero is interpreted by the trap
command as a signal generated by exiting from a shell. This occurs either with an exit
command, or by "falling through" to the end of a procedure. If argument is not
specified, then the action taken upon receipt of any of the signals in the signal list is
reset to the default system action. If argument is an explicit null string (" or ""), then
the signals in the signal list are ignored by the shell.

The trap command is most frequently used to ensure that temporary files are removed
upon termination of a procedure. Consider the following example, first without a trap
command. Be sure to create a directory called temp in your home directory. Use the
mkdir command. (It stands for make directory.)

$ mkdir tmp

Then, construct an executable file with the following two lines. The first line sets a
shell variable to a pathname for a file under tmp. $HOME is a shell variable defined in
.profile and contains the path name of your login directory. $$ is the symbol for the
shell process id number. This number is a convenient one to use when you want a name
that stands a reasonable chance of being unique.

temp = $HOME/tmp/$$
Is > $temp #commands that use $temp here

The result of this script is that you create a file in tmp that contains the names of the
files in your working directory. The file's name is some number, the process id that the
script got when it ran.

Now, assume that you want to delete that temporary file (it's not temporary unless you
delete it) when you complete the script under certain conditions, namely receiving one
of a list of signals. Edit the script to look as follows.

temp = $HOME/tmp/$$
trap 'rm $temp; trap 0; exit' 0 1 2 3 15
Is > $temp # commands that use $temp here

In this example, whenever signal 1 (hangup), 2 (interrupt), 3 (quit), or 15 (kill) is received
by the shell procedure, or whenever the shell procedure is about to exit, the commands
enclosed between the single quotation marks are executed. The exit command must be
included, or else the shell continues reading com mands where it left off when the signal
was received. The trap 0 in the above procedure turns off the original traps 1, 2, 3, and
15 on exits from the shell, so that the exit command does not reactivate the execution
of the trap commands. When you execute the modified version of the script and look in
the directory tmp, you will not find a new file created.

Sometimes the shell continues reading commands after executing trap commands. The
following procedure takes each directory in the current directory, changes to that
directory, prompts with its name, and executes com mands typed at the terminal until an
end-of-file (CONTROL-D) or an interrupt is received. An end-of-file causes the read
command to return a nonzero exit status, and thus the while loop terminates and the
next directory cycle is initiated. An interrupt is ignored while executing the requested
commands but causes termination of the procedure when it is waiting for input.

3-28

XENIX 286 User's Guide

d = 'pwd'
for i in *
do

done

if test -d $d/$i
then cd $d/$i

while

do
fi

echo n$i: n

trap exit 2
read x
trap : 2; eval $x; done

The Shell

Here's an example of the use of the above shell script. Assume that it is in an
executable file called scan. Assume that you execute scan from your login directory,
/usr/ted, and that this directory contains the directories, bin, dir1, and junk. The
directory bin contains one file called s1, and the directory called junk is empty.

$scan
bin:
pwd
/usr/ted/bi n
bin:
Is -I
total 0
-rw-r--r-- 1 ted xeni x
bin:
enter a CONTROL-O
dir1 :
enter a CONTROL-O
junk:
Is -I
total 0
junk:
enter a CONTROL-O
$

40 Aug 13 17:01 51

Several traps may be in effect at the same time: if multiple signals are received
simultaneously, they are serviced in numerically ascending order. To determine which
traps are currently set, type trap with no arguments. For example,

$ trap 'echo hello' 2 15
$ trap
2: echo hello
15: echo hello

When a signal (other than 11) is received by the shell, it is passed on to whatever child
processes are currently executing. When these (synchronous) processes terminate,
normally or abnormally, the shell polls any traps that are set and executes the
appropriate trap commands. This process is straightforward, except in the case of traps
set at the command (outermost, or login) level. In this case, it is possible that no child
process is running, so before the shell polls the traps, it waits for the termination of the
first process spawned after the signal was received.

3-29

The Shell XENIX 286 User's Guide

When a signal is redefined in a shell script, this does not redefine the signal for
programs invoked by that script; the signal is merely passed along. A disabled signal is
not passed.

For internal commands, the shell normally polls traps on completion of the command.
An exception to this rule is made for the read command, for which traps are serviced
immediately, so that read can be interrupted while waiting for input.

Special Shell Commands

The shell contains several internal special commands, some of which have already been
mentioned. The shell does not fork to execute these commands, so no additional
processes are spawned. These commands should be used whenever possible, because
they are, in general, faster and more efficient than other XENIX commands. The
trade-off for this efficiency is that redirection of input and output is not allowed for
most of these special commands.

Several of the special commands have already been described because they affect the
flow of control. They are dot (.), break, continue, exit, and trap. The set command is
also a special command. Descriptions of the remaining special commands are given
here.

cd argument

exec argum en t ...

3-30

The null command. This command does nothing and can be used
to insert com ments in shell procedures. Its exit status is zero
(true). Its utility as a comment character has largely been
supplanted by the number sign (#), which can be used to insert
com ments to the end-of-line. Note that any arguments to the
null command are parsed for syntactic correctness; when in
doubt, quote such arguments. Parameter substitution takes
place, just as in other com mands.

Make argument the current directory. If argument is not a valid
directory, or the user is not authorized to access it, a nonzero
exit status is returned. Specifying cd with no argument is
equivalent to typing cd $HOME, which takes you to your home
directory.

If argument is a com mand, then the shell executes the command
without forking and returning to the current shell. This is
effectively a "goto" and no new process is created. Input and
output redirection arguments are allowed on the command line. If
only input and output redirection arguments appear, then the
input and output of the shell itself are modified accordingly.

XENIX 286 User's Guide The Shell

newgrp argument .••

read variable •••

readonly variable •••

times

umask nnn

ulimit nnn

wait

eva! argument

The newgrp command is executed, replacing the shell. newgrp in
turn creates a new shell. Note that only environment variables
will be known in the shell created by the newgrp command. Any
exported variables will no longer be marked as such.

One line (up to a RETURN) is read from the standard input and
the first word is assigned to the first variable, the second word to
the second variable, and so on. All words left over are assigned
to the last variable. The exit status of read is zero unless an
end-of-file is read.

The specified variables are made read-only so that no subsequent
assignments may be made to them. If no arguments are given, a
list of all readonly and of all exported variables is given.

The accumulated user and system times for processes run from
the current shell are printed.

The user file creation mask is set to nnn. If nnn is omitted, then
the current value of the mask is printed. This bit-mask is used to
set the default permissions when creating files. For example, an
octal umask of 137 corresponds to the following bit-mask and
permission settings for a newly created file.

User

octal
bit-mask
permissions

user

1
001
rw-

group

3
011
r--

other

7
111

See umask in the XENIX 286 Reference Manual for information
on the value of nnn.

The process file size limit is set to nnn; the value of nnn is in
units of 512K-byte blocks.

The shell waits for all currently active child processes to
terminate. The exit status of wait is always zero.

Arguments are read as input to the shell and the resulting
com mand(s) executed.

Creating and Organizing Shell Procedures

A shell procedure can be created in two simple steps. The first is building an ordinary
text file. The second is changing the mode of the file to make it executable, thus
permitting it to be invoked by

process argum ent

rather than

sh process argument

3-31

The Shell XENIX 286 User's Guide

The second step may be omitted for a procedure to be used once or twice and then
discarded, but is recommended for frequently-used ones. To set up a simple procedure,
first create a file named mailall with the following contents:

LETTER = $1
shift
for i in $*
do mail $i <$LETTER
done

Next, type

$ chmod + x mailall

The new command might then be invoked from within the current directory by typing

$ mailall letter joe bob

Here letter is the name of the file containing the message you want to send, and joe and
bob are people you want to send the message to. Note that shell procedures must
always be at least readable, so that the shell itself can read commands from the file.

If mailall were thus created in a directory whose name appears in the user's PATH
variable, the user could change working directories and still use the mailall command.

Shell procedures may be created dynamically. A procedure may generate a file of
. commands, invoke another instance of the shell to execute that file, and then remove it.

An alternative approach is that of using the dot command (.) to make the current shell
read commands from the new file, allowing use of existing shell variables and avoiding
the spawning of an additional process for another shell.

Many users prefer writing shell procedures to writing C programs. This is true for
several reasons.

• A shell procedure is easy to create and maintain because it is only a file of
ordinary text.

• A shell procedure has no corresponding object program that must be generated and
maintained.

• A shell procedure is easy to create quickly, use a few times, and then remove.

• Because shell procedures are usually short in length, written in a high-level
programming language, and kept only in their source-language form, they are
generally easy to find, understand, and mOdify.

By convention, directories containing commands and shell procedures are named bin.
The name bin is derived from the word "binary" and is used because compiled and
executable programs are often called "binaries" to distinguish them from source files.
Most groups of users sharing common interests have one or more bin directories set up
to hold com mon procedures. Some users have their PATH variable list several
directories.

3-32

XENIX 286 User's Guide The Shell

More about Execution Flags

Several execution flags available in the shell can be useful in shell procedures.

-e This flag causes the shell to exit immediately if any command that it executes
exits with a nonzero exit status. This flag is useful for shell procedures composed
of simple command lines; it is not intended for use in conjunction with other
conditional constructs.

-u This flag causes unset variables to be considered errors when substituting variable
values. This flag can be used to effect a global check on variables, rather than
using conditional sUbstitution to check each variable.

-t This flag causes the shell to exit after reading and executing the commands on the
remainder of the current input line. This flag is typically used by C programs that
call the shell to execute a single com mand.

-0 This is a "don't execute" flag. On occasion, you may want to check a procedure
for syntax errors but not execute the commands in the procedure. Using set -nv at
the beginning of a file will accomplish this.

-k This flag causes all arguments of the form variable=value to be treated as keyword
parameters. When this flag is not set, only such arguments that appear before the
command name are treated as keyword parameters.

Supporting Commands and Features

Shell procedures can make use of any XENIX com mand. The com mands described in this
section are either used frequently in shell procedures or explicitly designed for such use.

Conditional Evaluation

The test command evaluates the expression specified by its arguments and, if the
expression is true, test returns a zero exit status. Otherwise, a nonzero (false) exit
status is returned. test also returns a nonzero exit status if it has no arguments. Often
it is convenient to use the test command as the first command in the command list
following an if or a while. Shell variables used in test expressions should be enclosed in
double quotation marks if they are possibly null or not set.

The square brackets may be used as an alias to test, so that

[expression]

has the same effect as

test expression

The spaces before and after the expression in brackets are essential.

3-33

The Shell XENIX 286 User's Guide

The following is a partial list of the options that can be used to construct a conditional
expression; the XENIX 286 Reference Manual contains a complete list of the conditional
evaluation options.

-r file

-w file

-x file

-s file

-d file

-f file

-z s1

-n s1

-t fildes

s1 = s2

s1 !=s2

s1

n1 -eq n2

True if the named file exists and is readable by the user.

True if the named file exists and is writeable by the user.

True if the named file exists and is executable by the user.

True if the named file exists and has a size greater than zero.

True if the named file is a directory.

True if the named file is an ordinary file.

True if the length of string s1 is zero.

True if the length of string s1 is nonzero.

True if the open file whose file descriptor number is fildes is associated
with a terminal device. If fildes is not specified, file descriptor 1 is
used by default.

True if strings s1 and s2 are identical.

True if strings s1 and s2 are not identical.

True if s1 is not the null string.

True if the integers n1 and n2 are algebraically equal; other algebraic
comparisons are indicated by -De (not equal), -gt (greater than), -ge
(greater than or equal to), -It (less than), and -Ie (less than or equal to).

The above options may be combined with the following operators.

-a

-0

()

Unary negation operator.

Binary logical AND operator.

Binary logical OR operator; it has lower precedence than the logical
AND operator (-a).

Parentheses for grouping; they must be escaped to remove their
significance to the shell. In the absence of parentheses, evaluation
proceeds from left to right.

Note that all options, operators, file names, etc. are separate arguments to test.

3-34

XENIX 286 User's Guide The Shell

Echoing Arguments

The echo command has the following syntax.

echo [options] [arguments]

echo copies its arguments to the standard output, each followed by a single space,
except for the last argument, which is normally followed by a RETURN. Often it is
used to prompt the user for input, to issue diagnostics in shell procedures, or to add a
few lines to an output stream in the middle of a pipeline. Another use is to verify the
argument list generation process before issuing a command that may cause an error or
syste m crash.

The command Is is often replaced by echo * because the latter is faster and prints fewer
lines of output.

The -n option to echo removes the RETURN from the end of the echoed line. The
following two commands prompt for input and enable typing on the same line.

echo -n 'enter name:'
read name

The echo command also recognizes several escape sequences described in echo in the
XENIX 286 Reference Manual.

Expression Evaluation

The expr command provides arithmetic and logical operations on integers and some
pattern-matching facilities on its arguments. It evaluates a single expression and writes
the result on the standard output; expr can be used inside backquotes to set a variable.
The most common uses of expr are counting iterations of a loop and in using its pattern­
matching capability to pick apart strings. Some typical examples follow. Create an
executable file with the following lines in it. You can name the file anything you want,
but this example assumes that you named it expeval.

a = 2 # define the variable a
echo a = $a
A = 'expr $a + l' # add one to a and call the answer A
echo A = $A
substring = 'expr "$1" : ' .. \{. *\) , ,

echo $substring
c='expr "$1"
echo c = $c

,*, "

put third thru last characters of $1
into substring

obtain length of $1

Now, execute the script expeval with the argument 123456. The output looks as follows.

$ expeval123456
a=2
A=3
su bstri ng = 3456
(=6

3-35

The Shell XENIX 286 User's Guide

True and False

The true and false commands perform the functions of exiting with zero and nonzero
exit status respectively. The true and false commands are often used to implement
unconditional loops. For example, you might type

while true
do echo forever
done

This will echo "forever" on the screen until the shell receives an interrupt signal. With
most systems, you can provide an interrupt signal by pressing the DEL key.

In-Line Input Documents

Upon seeing a com mand line of the form,

command < < eofstring

where eofstring is any arbitrary string, the shell will take the subsequent lines as the
standard input to command until a line is read consisting only of eofstring. (By
appending a minus sign to the input redirection symbol «<-), leading tabs are deleted
from each line of the input document before the shell passes the line to command.)

The shell creates a temporary file containing the input document and performs variable
and command substitution on its contents before passing it to the command. Pattern­
matching on file names is performed on the arguments of command lines in command
sUbstitutions. To prohibit all substitutions, you may quote any character of eofstring.
Remember from the example in the section called "Command Grouping" that quoting a
character (enclosing it in single quotes) is equivalent to preceding it with a \.

command < < \eofstring

Here is an example of how the backslash in eofstring may be useful. Notice that after
the cat command and before you enter eofstring, you see your secondary prompt. You
can define your secondary prompt by setting PS2 in your .profile, but be aware that your
new PS2 does not take effect until you log in again or until you source .profile with the
dot (.) command, as follows: •• profile. This example assumes that your secondary
prompt is >.

$ a = value
$ cat < <\xx
> hello
> $a
> xx
hello
$a
$

Without the backslash, you get the value of $a, not the string $a. By the way, you could
have entered cat «x\x as well as cat «\xx.

3-36

XENIX 286 User's Guide

$ a = value
$ cat < <xx
> hello
> $a
> xx
hello
value
$

The Shell

The in-line input document feature is especially useful for small amounts of input data,
where it is more convenient to place the data in the shell procedure than to keep it in a
separate file. For instance, you could type

$ cat < <-xx

xx

This message will be printed on the
terminal with leading tabs removed

This in-line input document feature is most useful in shell procedures. Note that in-line
input documents may not appear within backquotes.

Input/Output Redirection Using File Descriptors

We mentioned above that a command occasionally directs output to some file associated
with a file descriptor other than 1 or 2. In languages such as C, you can associate
output with any file descriptor by using the write system call (see the XENIX 286 C
Library Guide). The shell provides its own mechanism for creating an output file
associated with a particular file descriptor. By typing

fd1 >&fd2

where fdl and fd2 are valid file descriptors, you can direct output normally associated
with file descriptor fdl to the file associated with fd2. The default value for fdl and
fd2 is 1. If, at run time, no file is associated with fd2, then the redirection is void. The
most com mon use of this mechanism is that of directing standard error output to the
same file as standard output.

Consider the following. If you try to delete a nonexistent file, you get an error message
sent to file descriptor 2. By default, this message appears on the screen. For example,

$ rm baloney
rm: baloney non-existent

Assume that you want to redirect that error message to a file instead. Then, issue the
command as

$ rm baloney 2> errfile

3-37

The Shell XENIX 286 User's Guide

The file errfile is created and it contains the error message. You can display this file
with the cat command. Now assume that you've redirected file descriptor 1 to a file
called otherfile and you want to redirect file descriptor 2 to that same file. Issue the
command as follows.

$ rm baloney 1 >otherfile 2>&1

The order here is significant: first, file descriptor 1 is associated with otherfile; then,
file descriptor 2 is associated with the same file as is currently associated with file
descriptor 1. If the order of the redirections were reversed, standard error output would
go to the terminal, and standard output would go to otherfile, because at the time of the
error output redirection, file descriptor 1 would still have been associated with the
terminal.

This mechanism can also redirect standard input. You could type

fda < &fdb

to cause both file descriptors fda and fdb to be associated with the same input file. If
fda or fdb is not specified, file descriptor 0 is assumed. Such input redirection is useful
for a command that uses two or more input sources.

Conditional Substitution

Normally, the shell replaces occurrences of $variable by the string. value assigned to
variable, if any. However, a special notation allows conditional substitution, dependent
on whether the variable is set or not null. By definition, a variable is set if it has ever
been assigned a value. The value of a variable can be the null string, which may be
assigned to a variable in anyone of the following ways.

A=
bcd=""
efg="
set " ""

The first three examples assign null to each of the corresponding shell variables. The
last example sets the first and second positional parameters to null. The following
conditional expressions depend on whether a variable is set and not null. Note that the
meaning of braces in these expressions differs from their meaning when used in grouping
shell commands. "Parameter" as used in the following definitions refers to either a digit
or a variable name.

${variable:-string}

${variable:=string}

3-38

If variable is set and is not null, then substitute the value
$variable in place of this expression. Otherwise, replace the
expression with string. Note that the value of variable is not
changed by the evaluation of this expression.

If variable is set and is not null, then substitute the value
$variable in place of this expression. Otherwise, set variable to
string, and then substitute the value $variable in place of this
expression. Positional parameters may not be assigned values in
this fashion.

XENIX 286 User's Guide The Shell

${variable:+string} If variable is set and is not null, then substitute string for this
expression. Otherwise, sUbstitute the null string. Note that the
value of variable is not altered by the evaluation of this
expression.

${variable:? string} If variable is set and is not null, then sUbstitute the value of
variable for the expression. Otherwise, print a message of the
form

variable: string

and exit from the current shell. (If the shell is the login shell, it
is not exited.) If string is omitted in this form, then the message

variable: parameter null or not set

is printed instead.

These expressions may also be used without the colon. In this variation, the shell does
not check whether the variable is null or not; it only checks whether the variable has
ever been set.

The following shell script illustrates the above rules for conditional substitution. The
part of the line after the # is a comment that explains what happens on that line.

echo 'testing ${variable:-string}'
echo d = $d #you see that d is null
echo ${d:-hel/o} #you see hello
echo d = $d #note that the value of d is not changed
d = '1 am set and not null' #setting d
echo ${d:-hello} #you see d's value
d = " #then set d back to null

echo 'testing ${ variable: = string}'
echo d = $d #you see that d is null
echo ${d: = hello} #you see hello
echo d = $d #note that the value of d is changed
d = " #then set d back to null

echo 'testing ${ variable: + string}'
d = '1 am set and not null'
echo ${d: + hello}
echo d = $d
d="

#you see hello
#note that d is unchanged
#then set d back to null

echo 'testing ${variable:?string}'
echo d = $d #you see that d is null
echo ${d:?messagestring} #you see the message string

3-39

The Shell XENIX 286 User's Guide

The two examples below further illustrate the use of this facility.

• This example performs an explicit assignment to the PATH variable.

tIp ATH"=${P ATH:-':/bin:/usr/bin'}

If PATH has ever been set and is not null, then keep its current value; otherwise,
set it to the string ":/bin:/usr/bin".

• This example automatically assigns the HOME variable a value.

cd ${HOME:='/usr/gas'}

If HOME is set and is not null, then change directory to it; otherwise, set HOME to
the given value and change directory to it.

Invocation Flags

Four flags may be specified on the command line when invoking the shell and may not be
turned on with the set command.

-i If this flag is specified or if the shell's input and output are both attached to a
terminal, the shell is interactive. In such a shell, INTERRUPT (signal 2) is caught
and ignored, and TERMINATE (signal 15) and QUIT (signal 3) are ignored.

-s If this flag is specified or if no input/output redirection arguments are given, the
shell reads commands from standard input. Shell output is written to file
descriptor 2. Your login shell has the -s flag turned on.

-c When this flag is turned on, the shell reads com mands from the first string
following the flag. Remaining arguments are ignored. Double quotation marks
should be used to enclose a multiword string for variable substitution.

3-40

XENIX 286 User's Guide The Shell

Effective and Efficient Shell Programming

This section outlines strategies for writing efficient shell procedures, ones that do not
waste resources in accomplishing their purposes. The primary reason for choosing a
shell procedure to perform a specific function is to achieve a desired result at a
minimum human cost. Emphasis should always be placed on simplicity, clarity, and
readability, but efficiency can also be gained through awareness of a few design
strategies. In many cases, an effective redesign of an existing procedure improves its
efficiency by reducing its size, and often increases its comprehensibility. In any case,
you should not worry about optim izing shell procedures unless they are intolerably slow
or are known to consume an inordinate amount of a system's resources.

The same kind of iteration cycle should be applied to shell procedures as to other
programs: write code, measure it, and optimize only the few important parts. You
should become familiar with the time command, which can be used to measure both
entire procedures and parts thereof. Its use is strongly recommended; human intuition is
unreliable when used to estimate timings of programs, even when the style of
programming is a familiar one. Each timing test should be run several times, because
the results are easily disturbed by variations in system load.

Number of Processes Generated

When large numbers of short commands are executed, the actual execution time of the
commands may be dominated by the overhead of creating processes. The procedures
that incur significant amounts of such overhead are those that perform much looping
and those that generate command sequences to be interpreted by another shell.

If you are worried about efficiency, you should know which commands are built into the
shell and which are not. Here is the alphabetical list of built-in commands.

break
export
shift
while

case
for
test

cd
if
times

continue
newgrp
trap
D

eval
read
umask

exec
readonly
until

exit
set
wait

Parentheses are built into the shell, but com mands enclosed within them are executed as
a child process, i.e., the shell does a fork, but no exec. Any command not in the above
list requires both fork and exec.

3-41

The Shell XENIX 286 User's Guide

You should always have an estimate of the number of processes generated by a shell
procedure. In the bulk of observed procedures, the number of processes created (not
necessarily simultaneously) can be described by

processes = (k*n) + c

where k and c are constants, and n may be the number of procedure arguments, the
number of lines in some input file, the number of entries in some directory, or some
other obvious quantity. Efficiency improvements are most commonly gained by
reducing the value of k, sometimes to zero.

Any procedure whose complexity measure includes n2 terms or higher powers of n is
likely to be intolerably expensive.

As an example, here is an analysis of a procedure named split, whose text is given
below.

split
trap 'rm temp$$; trap 0; exit' 0 1 2 3 15
start1 = 0 start2 = 0
b = '[A-Za-z]'
eat > temp$$

if test -s "$1"
then start1 = 'we -I < $1'
fi
if test -s "$2"
then start2 = 'we -I < $2'
fi
grep U$b" temp$$ > > $1

read stdin into temp file
save original lengths of $1, $2

lines with letters onto $1
grep -v "$b" temp$$ I grep '[0-9]' > > $2

total = "'we -I < temp$$'"
end1 = II' we -I < $1'"
end2 = "'we -I < $2'"

lines with only numbers onto $2

lost = ", expr $total - \(nd1 - tart1\) \ -\(nd2 - tart2\)' "
eeho "$total read, $Iost thrown away"

For each iteration of the loop, there is one expr plus either an echo or another expr. One
additional echo is executed at the end. If n is the number of lines of input, the number
of processes is 2 *n+ 1.

Some types of procedures should not be written using the shell. For example, if one or
more processes are generated for each character in some file, it is a good indication
that the procedure should be rewritten in C. Shell procedures should not be used to scan
or build files a character at a time.

3-42

XENIX 286 User's Guide The Shell

Number of Data Bytes Accessed

Whenever you can, reduce the number of processes running; XENIX is more efficient
when it spends time passing data rather than creating many small processes. Some
filters shrink output, others increase it. Put the "shrinkers" first when the order is
irrelevant. For instance, the second example below is faster because the input to sort
will be much smaller.

sort file I grep pattern
grep pattern file I sort

Shortening. Directory Searches

Directory searching can consume a great deal of time, especially in those applications
that use deep directory structures and long path names. Judicious use of cd, the change
directory command, can help shorten long path names and thus reduce the number of
directory searches needed. As an exercise, try the following commands.

Is -I lusr/bin/* >/dev/null
cd lusr/bin; Is -I * >/dev/null

The second command will run faster because of the fewer directory searches.

Directory-Search Order and the PATH Variable

The PATH variable is a convenient mechanism for allowing organization and sharing of
procedures. However, it must be used in a sensible fashion, or the result may be a great
increase in syste m overhead.

The process of finding a command involves reading every directory included in every
path name that precedes the needed path name in the current PATH variable. As an
example, consider the effect of invoking nroff (i.e., /usr/bin/nroff) when the value of
PATH is :/bin:/usr/bin. The sequence of directories read is

/
/bin
/
/usr
/usr/bin

The vast majority of command executions are of commands found in /bin and, to a
somewhat lesser extent, in /usr/bin. Careless PATH setup may lead to a great deal of
unnecessary searching. The following four examples are ordered from worst to best
with respect to the efficiency of command searches.

:/usr/john/bin:/usr/localbin:/bin:/usr/bin
:/bin:/usr/john/bin:/usr/localbin:/usr/bin
:/bin:/usr/bin:/usr/john/bin:/usr/localbin
/bin: :/usr Ibin:/ usr /j ohn/bin:/usr /localbin

3-43

The Shell XENIX 286 User's Guide

The first example should be avoided. The others are acceptable and the choice among
the m is dictated by the rate of change in the set of com mands kept in Ibin and /usr/bin.

A procedure that is expensive because it invokes many short-lived commands may often
be speeded up by setting the PATH variable inside the procedure so that the fewest
possible directories are searched in an optimum order.

Good Ways to Set Up Directories

Avoid excessively large directories. You should be aware of several special sizes. A
directory that contains entries for up to 30 files (plus the required. and ••) fits in a
single disk block and can be searched very efficiently. One that has up to 286 entries is
still a small directory; anything larger is usually cumbersome when used as a working
directory. It is especially important to keep login directories small, preferably one
block at most. Note that, as a rule, directories never shrink. This is very important to
understand, because if your directory ever exceeds either the 30 or 286 thresholds,
searches will be inefficient; furthermore, even if you delete files so that the number of
files is less than either threshold, the system will still continue to treat the directory
inefficiently because the directory is still the same size.

Shell Procedure Examples

The power of the XENIX shell command language is most readily seen by examining how
XENIX's many labor-saving utilities can be combined to perform powerful and useful
commands with· very little programming effort. This section gives examples of
procedures that do just that. By studying these examples, you will gain insight into the
techniques and shortcuts that can be used in programming shell procedures (also called
"scripts"). Note the use of the number sign (#) to introduce comments into shell
procedures.

Carry out the following steps for each procedure.

• Place the procedure in a file with the indicated name.

• Give the file execute permission with the chmod command.

CD Move the file to a directory where commands are kept, such as your own bin
directory.

3-44

Make sure that the path of the bin directory is specified in the PATH variable
found in .profile.

Execute the named command.

XENIX 286 User's Guide The Shell

binuniq

Is fbin fusrfbin I sort I uniq -d

This procedure determines which files are in both /bin and fusrfbin. The files in fbin
will override those in fusr/bin during most searches, and duplicates need to be deleted.
If the /usrfbin file is obsolete, then space is being wasted; if the fbin file is outdated by
a corresponding entry in /usrfbin then the wrong version is being run and, again, space is
being wasted. This is also a good demonstration of sort I uniq to find matches and
duplications.

(opypairs

Usage: copypairs file1 file2 ...
Copies file1 to file2. file3 to file4.
while test "$2" ! =
do

done

cp $1 $2
shift; shift

if test "$1" ! =
then echo "$0:

fi
odd number of arguments"

This procedure illustrates the use of a while loop to process a list of related positional
parameters. Here a while loop is much better than a for loop, because you can adjust
the positional parameters with the shift command to handle related arguments.

(Opyto

Usage: copy to dir file ...
Copies argument files to "dir".
making sure that at least
two arguments exist. that "dir" is a directory.
and that each additional argument
is a readable file.
if test $# -It 2

then echo "$0: usage: copy to directory file
elif test ! -d $1

then echo "$0: $1 is not a directory";
else dir = $1; shift

done
fi

for eachfile
do cp $eachfile $dir

This procedure uses an if command with several parts to screen out improper usage. The
for loop at the end of the procedure loops over all of the arguments to copy to but the
first; the original $1 is shifted off.

3-45

The Shell XENIX 286 User's Guide

distinct1

Usage: distind1
Reads standard input and reports list of
alphanumeric strings that differ only in case,
giving lowercase form of each.
tr -cs ' A-Za-zO-9' , 12'lsort -u 1\
tr 'A-Z' 'a-z' 1 sort 1 uniq -d

This procedure is an example of the kind of process created by the left-to-right
construction of a long pipeline. Note the use of the backslash at the end of the first
non-comment program line as the line continuation character.

It may not be immediately obvious how this command works. You may wish to consult
tr, sort, and uniq in the XENIX 286 Reference Manual if you are completely unfamiliar
with these commands.

The tr command translates all characters except letters and digits into RETURN
characters, and then produces repeated RETURN characters. This leaves each string (in
this case, any contiguous sequence of letters and digits) on a separate line. The sort
command sorts the lines and emits only one line from any sequence of one or more
repeated lines. The next tr converts everything to lowercase, so that identifiers
differing only in case become identical. The output is sorted again to bring such
duplicates together. The "uniq -d" prints (once) only those lines that occur more than
once, yielding the desired list.

The process of building such a pipeline relies on the _fact that pipes and files can usually
be interchanged. The first line below is equivalent to the last two lines, assuming that
sufficient disk space is available.

cmd1 1 cmd2 1 cmd3

cmd1 > temp1; < temp1 cmd2 > temp2; < temp2 cmd3
rm temp[123]

Starting with a file of test data on the standard input and working from left to right,
each command is executed, taking its input from the previous file and putting its output
in the next file. The final output is then examined to make sure that it contains the
expected result. The goal is to create a series of transformations that will convert the
input to the desired output.

Although pipelines can give a concise notation for complex processes, you should
exercise some restraint, since such practice often yields incomprehensible code.

3-46

XENIX 286 User's Guide The Shell

draft

Usage: draft file(s)
Print manual pages for Diablo printer.
for in $*

do nroff -man I Ipr
done

Users often write this kind of procedure for convenience in dealing with commands
requiring distinct flags that cannot be given default values reasonable for all (or even
most) users.

edfind

Usage: edfind file arg
Finds the last occurrence in "file" of a line
whose beginning matches "arg", then prints
3 lines (the one before, the line itself,
and the one after)
ed - $1 < <-EOF

?"$2?
-, + P
q

EOF

This illustrates the practice of using ed in-line input scripts into which the shell can
sUbstitute the values of variables.

edlast

Usage: edlast file
Prints the last line of file,
then deletes that line.
ed -$1 < <-\!

$p
$d
w
q

echo done

This procedure illustrates taking input from within the file itself up to the exclamation
point (!). Variable sUbstitution is prohibited within the input text because of the
backslash.

3-47

The Shell XENIX 2 86 User's Guide

fsplit

Usage: fsplit file1 file2
Reads standard input and divides it into 3 parts
by appending any line containing at least one letter
to file1, appending any line containing digits but
no letters to file2, and by throwing the rest away.
count = 0 gone = 0
while read next
do

count = '" expr $count + l' "
case "$next" in
[A-Za-z])

echo "$next" » $1 ..
"

[0-9])
echo "$next" » $2 ..

"
*)

gone = II' expr $gone + l' II
esac

done
echo "$count lines read, $gone thrown away"

Each iteration of the loop reads a line from the input and analyzes it. The loop
terminates only when read encounters an end-of-file. Note the use of the expr
command.

Don't use the shell to read a line at a time unless you must--it can be an extremely slow
process.

listfields

grep $* I tr ":" "\012"

This procedure lists lines containing any desired entry given to it as an argument. It
places any field that begins with a colon on a new line. Thus, if given the input,

joe newman: 13509 NE 78th St:

listfields produces

joe newman
13509 N E 78th St
Redmond, Wa 98062

Redmond, Wa 98062

In the command line, note the use of the tr command to convert colons tolinefeeds.

3-48

XENIX 286 User's Guide

mkfiles

Usage: mkfiles pref [quantity]
makes "quantity" files. named pref1, pref2. . ..
default is 5 as determined on following line.
quantity = ${2-5}
i = 1
while test "4i" = Ie "$quantity "
do

>1i
i = '" expr $i + 1"

done

The Shell

The mkfile procedure uses output redirection to create zero-length files. The expr
command counts iterations of the while loop.

null

Usage: null files
create each of the named files as an empty file.
for each file
do

>$eachfile
done

This procedure uses the fact that output redirection creates the empty file if a file does
not already exist.

phone

Usage: phone initials
Prints the phone numbers of the
people with the given initials.
echo 'inits ext home'
grep ""$1" «-END

jfk 1234 999-2345
Ibj 2234 583-2245
hst 3342 988-1010
jqa 4567 555-1234

END

This procedure is an example of using an in-line input script to maintain a small data
base.

3-49

The Shell XENIX 286 User's Guide

textfile

To determine which files in a directory contain only text, textfile filters argument lists
to other commands. For example, the following command line will print all the text,
files in the current directory.

pr 'textfile *' I lpr

This procedure also uses an -s flag that silently tests whether any of the files in the
argument list are text files.

writemail

Usage: writemail message user
If user is logged in,
writes message to terminal;
otherwise, mails it to user.
echo n$1" I { write n$2n II mail n$2n;}

This procedure illustrates the use of command grouping. The message specified by $1 is
piped to both the write command and, if write fails, to the mail command.

Metacharacters and Reserved Words

Syntactic

Pipe symbol

&.&. And-if symbol

II Or-if symbol

; Com mand separator

;; Case delimiter

&. Background co m mands

() Command grouping

< Input redirection

« Input from a document

> Output creation

< Output append

Comment to end-of-line

3-50

XENIX 286 User's Guide The Shell

Patterns

*
?

[••• J

Substitution

${ ••• }

Quoting

\fP

, , ...
" " ...

Reserved words

{ }
case
elif
else
do
done
esac
fi
for
if
in
then
until
while

Match any character(s) including none

Match any single character

Match any of enclosed characters

Substitute shell variable

Substitute command output

Quote next character as literal with no special meaning

Quote enclosed characters except the back quotation marks (')

Quote enclosed characters except $, "

3-51

Introduction

CHAPTER 4
ed: A LINE-ORIENTED TEXT EDITOR

ed is a general-purpose, full-screen, line-oriented editor used to create and modify text.
Rather than entering a stream of revisions to be made as in sed, or moving the through
the file as in vi, editing in ed is done by specifying a line number to be edited and then
making the revisions to that line.

Basic Concepts

This section introduces the basic concepts of ed.

Entering and Exiting ed

To invoke ed, type

ed filename

where filename is the name of a new or existing file. When you enter ed, it prompts you
for commands with an asterisk (*). To create or append text, see "Creating and
Appending Text" later in this chapter.

To exit the editor, type

q

If you try to exit the editor without saving any changes to a file, ed returns the
following warning, telling you that the changes have been made and the file hasn't been
saved:

warning: expecting 'w'

If you still want to exit without saving the changes, type another q. In most cases you
will want to exit by typing

w
q

The w command (discussed in detail later in this chapter) saves the changes and enables
you to type q to quit ed.

4-1

ed XENIX 286 User's Guide

Line Numbers

Any time a command changes the number of lines in the editing buffer, ed renumbers
the lines. At all times, every line in the editing buffer has a line number. Many editing
commands will take either single line numbers or line number ranges as prefixing
arguments. These arguments normally specify the lines in the editing buffer to be
affected by the given command. The current line can be specified with a special line
number called "dot" and is represented by a period (.). You can determine the actual
line number of the current line by entering

The Editing Buffer

Each time you invoke ed, an area in the memory of the computer is allocated where you
will perform all editing operations. This area is called the "editing buffer." When you
edit a file, a copy of the original is placed in the editing buffer, where you will work on
it. Only when you write out the buffer (using the w command) do you change the
original file.

Calling a File

The edit command (e) places the entire contents of a file into the editing buffer. During
a single ed session you may need to edit a number of files; e enables you to read files
into the buffer without exiting ed. Once you enter ed, you can edit a file, write out the
buffer by using w, and read in the next file to edit by entering the command

e filename

The specified file is read into the buffer and ed displays the nu m ber of characters in the
file. Any data in the buffer is deleted before the new file is read in.

If you use e to read a file into the buffer, you don't need to use a file name after a
subsequent w command; ed remembers the last file name used in an e command, so w
automatically writes to this file.

Writing Out the Editing Buffer

You will probably want to save your text for later use. To write out the contents of the
buffer into a file, use the write (w) command followed by the name of the file you want
to write to. This copies the contents of the buffer to the specified file, destroying any
previous contents of the file. Leave a space between wand the file name. For
example, to save the buffer in a file named text, type

w text

ed responds by printing the number of characters in the text. (Blanks and the RETURN
character at the end of each line are included in the character count.) Writing out a file
makes a copy of the t.ext in the editing buffer--the buffer's contents are not disturbed,
so you can continue editing it. When. you invoke ed by using a filename argument, a w
command by itself writes the buffer out to filename.

4-2

XENIX 286 User's Guide ed

ed always works on a copy of a file, not the file itself. The contents of a file remain
unchanged until you write out the editing buffer. Writing out the editing buffer
occasionally as you work is an excellent safety measure; if the system crashes all the
text in the buffer is lost, but any text written out is usually safe.

Writing Out Part of a File

During an editing session you may need to write out only part of the editing buffer. For
example, you may want to split a table out into a separate file so it can be formatted
and tested separately. Suppose that in the file being edited we have

.TS
[text for table]
.TE

which is the way a table is set up for the tbl program. To isolate the table in a separate
file called table, find the start of the table (the fl. TS" line) and then write out the text
of the table.

First type

r.TSI

This prints out the line

.TS

Next, type

.,r.TE/w table

which means "write out from the current line (.) to the line beginning with. TE and put it
in the file called table."

If you are confident, you can do it all at once with

r.TS/;r .TE/w table

By using the w command, you can write out a group of lines instead of the whole file. In
fact, you can even write out a single line; just give one line number instead of two.

Changing File Name to Write Out to

The ed file command (f) enables you to determine the name of the last file written to
and specify a new file name for the editing buffer to write to. Check the name of the
last file written to by entering f at the ed prompt (*).

To change the file name that the editing buffer should write to, enter f in the following
format:

f newfilename

4-3

ed XENIX 286 User's Guide

Changing the file name can be very useful for documents such as contracts, where
certain parts of the text may change but the original file serves as a master form and
the new file is a record of the individual transaction. You would invoke ed and specify
the original file name, use f to specify a new file name, edit the contents of the buffer,
and write out the revised text to the new file name. If you needed to make changes to
the copy of the individual transaction, you could use the same process, ensuring that a
record of each change would be saved.

Commands

ed prompts for commands with an asterisk (*). Enter commands by typing them at the
keyboard and then pressing RETURN. Most commands are single characters that can be
preceded by a line number or a line number range. By default, most commands operate
on the current line (.). Many commands take file name or string arguments used by the
command when it is executed.

Undoing Commands

Occasionally you will make a substitution in a line only to realize too late that it was a
mistake. The undo (u) command enables you to "undo" the most recent command. Thus,
the last line that was substituted can be restored to its previous state by typing

u

This command does not work when global commands are used in combination with the
sUbstitution command.

Displaying lines

The print (p) command displays the contents of the editing buffer. By using line
numbers, you can display the entire buffer or just portions of it. The p command format
is

beginning line number, ending line numberp

Suppose you want to print the entire buffer; you could use "1,3p" as above if you know
there are exactly three lines in the buffer. Since it is unlikely that you know how many
lines are in the buffer, ed provides a shorthand symbol for the line number of the last
line in the buffer--the dollar sign ($). Use it this way:

1,$p

This will print the entire buffer (from line 1 to the last line). If you want to stop the
printing before it is finished, press the DELETE key. ed then displays

?
interrupt

and waits for the next command.

4-4

XENIX 286 User's Guide ed

To print the last line in the buffer, type

$p

You can print any single line, including the current line (.), by typing the line number
followed by p. Typing

2p

displays the second line of the buffer. In fact, you can abbreviate even further by
deleting the p from the command line; at the command

ed prints the current line. You can delete the p only when you are specifying a single
line. If you want to display multiple lines, you must include the p. The current line may
also be displayed by entering

p

The next step is to use address arithmetic to combine the line numbers like dot (.) and
dollar sign ($) with plus (+) and minus (-). The command

$-1

literally means "print the last line of the buffer ($) minus one (-1)"; in other words, the
next to the last line in the buffer. For example, to view the last six lines of the buffer
when you don't know how many lines are in the buffer, type

$-S,$p

If the file has less than six lines you'll get an error message. Entering the com mand

.-3,. + 3p

prints seven lines: the three lines before the current line, the current line, and the
three lines after the current line.

You can also use plus and minus as line numbers by themselves. For example, entering

is a command to move back one line in the file. In fact, you can string several minus
signs together to move back that many lines. Typing

moves back three lines, as does

-3

4-5

ed XENIX 286 User's Guide

Displaying Tabs and Control Characters

ed provides two commands for printing the contents of the text you are editing: p
(described in the previous section) and 1 (list).

The I command makes visible those characters normally invisible, such as tabs.. If you
list a line that contains tabs, 1 prints each tab as ">". This makes it much easier to
correct extra spaces adjacent to tabs.

The 1 command also Jlfolds" long lines for printing. Any line that exceeds 72 characters
is printed on multiple lines; each printed line except the last is terminated by a
backslash (\), so you can tell it was folded. This is useful for printing lines longer than
the width of the screen.

Occasionally the 1 command will print a string of numbers preceded by a backslash, such
as \7 or \16. These combinations are used to make visible those characters that
normally don't print, like form feed, vertical tab, or bell. Each backslash-number
combination represents a single ASCII character. (Note that numbers are octal and not
decimal.) Such characters may cause unpredictable behavior when printed on some
terminals. Since they are rarely used, their presence usually indicates an error.

Interrupting ed

If you press the DELETE key while ed is executing a command, your file is restored (as
much as possible) to what it was before the command began. However, some changes
are irrevocable. If you are reading in or writing out a file, making substitutions, or
deleting lines, these functions will be stopped in some unpredictable state, so it is
unwise to stop them. Dot mayor may not be changed.

When using the print command, dot is not changed until the printing is done. If you print
to a certain line and press DELETE to stop printing, dot will not be set to that line; it is
left where it was when the p command was started.

Escaping to the Shell

Sometimes you may need to temporarily escape from the editor to execute a XENIX
command. The shell escape command (!) provides a way to do this.

If you type

!command

where command is a shell command, your current editing state is suspended, and the
specified XENIX command is executed. When the command finishes, ed will signal you
by printing another exclamation point (!); at that point you can resume editing.

4-6

XENIX 286 User's Guide ed

Creating and Appending Text

Suppose that you want to create some text starting from scratch. This section shows
you how to create text in a file. Later we'll talk about how to edit existing files.

When you first invoke ed, it is like working with a blank piece of paper--there is no text
or information present. These must be supplied by the person using ed, usually by typing
in the text or by reading it in from a file. We will start by typing in so me text and
discuss how to read files later.

The first command we will discuss is append (a), entered as the letter "a" on a line by
itself. It means "append (or add) text lines to the buffer as they are typed in."
Appending is like writing new material on a piece of paper.

To enter lines of text into the buffer, just type an "a" at the ed prompt (*), followed by
a RETURN, followed by the lines of text you want, like this:

a
Now is the time
for all good men
to come to the aid of their party.

To stop appending text, enter a period (.) or CONTROL-D on a blank line. If ed seems
to be ignoring you, type an extra line with just a period on it.

After appending is completed, the buffer contains the following three lines:

Now is the time
for all good men
to come to the aid of their party.

The a and. aren't there, because they are not text.

To add more text to what you already have, type another a command and continue
typing your text.

If you make a mistake while entering a command or use an incorrect command, ed
displays an error message preceded by a question mark.

Deleting Lines

The delete command (d) deletes lines of text from the buffer. The lines to be deleted
are specified for d the same way as for p. Thus, entering the command

2,$d

deletes lines 2 through the end. You can delete a single line by entering the line number
to be deleted, followed by d.

4-7

ed XENIX 286 User's Guide

Searching

The search com mand (/ /) enables you to search through a file for a particular string; its
syntax is

/pattern/

This is also called a "context search expression." The slash and question mark are the
only characters you can use to delimit a context search. In their simplest form, all
context search expressions are like this--a string of characters surrounded by slashes.
Context searches are interchangeable with line numbers, so they can be used to find and
print a desired line.

Searching is useful for finding a single occurrence of a pattern when you don't know
what line it is on. Use the search command to find the pattern you need and then you
can make the necessary editing changes.

For example, the command

/their/

will locate the "next occurrence" of the characters between the slashes (i.e., "their").
Note that you do not need to type the final slash. The above search command is the
same as typing

/their

"Next occurrence" means that ed starts looking for the string at line ".+1", searches to
the end of the buffer, then continues at line 1 and searches to line dot. (That is, the
search "wraps around" from $ to 1.) If the given string of characters can't be found in
any line, ed prints the error message

?
search string not found

The search com mand sets dot to the line where the pattern is found and prints the line
for verification.

You can also search a file in reverse by using question marks instead of slashes. For
example

?thing?

searches backward in the file for the word "thing" as does

?thing

This is especially handy when you realize that the string you want is prior to the current
line.

4-8

XENIX 286 User's Guide

Suppose the buffer contains the three lines

N ow is the time
for all good men
to come to the aid of their party.

The ed com mands

INow/+l

Igoodl

Iparty/-l

ed

are all context search expressions, and they all refer to the same line (line 2). The basic
rule is that a context search expression is the same as a line number, so it can be used
wherever a line number is needed.

Suppose you search for the pattern "the", and when the line is printed you discover that
it isn't the "the" you wanted; you must repeat the search. However, you don't have to
retype the search, because the construction

II

is a shorthand expression for "the previous pattern that was searched for". This can be
repeated as many times as necessary. You can also go backward, since

??

searches for the same pattern, but in the reverse direction.

Searching with the Semicolon

Searches with 1 .. ,/ and ? ••• ? start at the current line and move forward or backward
respectively, until they either find the pattern or return to the current line. Sometimes
this is not what you want. Suppose, for example, that the buffer contains lines like this:

ab

be

4-9

ed XENIX 286 User's Guide

Starting at line 1, you would expect the command

la/,/b/p

to print all the lines from the "ab" to the "be" inclusive. This is not what happens. Both
searches (for "a" and for "b") start from the same point, and thus they both find the line
that contains "ab". As a result, a single line is printed. If there had been a line with a
"b" in it before the "ab" line, the print command would return an error since the second
line number would be less than the first and you can't print lines in reverse order.

This happens because the comma separator for line numbers doesn't set dot as each
address is processed; each search starts from the same place. In ed, the semicolon (;)
may be used just like the comma, except the semicolon forces dot to be set at the time
the semicolon is encountered, as the line numbers are being evaluated. In effect, the
semicolon "moves" dot. Thus, in our example above, the command

la/;/b/p

prints the range of lines from "ab" to "be", because after "a" is found, dot is set to that
line, and then lib" is searched for starting at dot + 1.

Suppose you want to find the second occurrence of "thing". You could type

Ithingl

to find the first occurrence, then type

/I

to find the second. However, you could find just the second by typing

Ithing/;1I

This says "find the first occurrence of 'thing', set dot to that line, then find the next
occurrence and print only that."

Closely related is searching for the second-to-Iast occurrence of a pattern, as in

?thing?;??

To find the first occurrence of a pattern in a file, starting at an arbitrary place within
the file, use the command

O;/thingl

which starts the search at line 1. This is one of the few places where 0 is a legal line
number.

4-10

XENIX 286 User's Guide ed

Searching and Replacing

This section discusses the change (c) command, used to change or replace one or more
lines, and the insert (i) command, used for inserting one or more lines.

The c command is used to replace a number of lines with different lines that you type at
the terminal. For example, to change lines ".+1" through "$" to something else, type

. + 1,$c
type the lines of text you want here

The lines you type between the c command and the period will replace the originally
addressed lines. This is useful in replacing a line or several lines that have errors in
them.

If only one line is specified in the c com mand, then only that line is replaced. (You can
type in any number of replacement lines.) Notice the use of a period to end the input.
This works just like the period in the append command and must appear by itself on a
new line. If no line number is given, the current line specified by dot is replaced. The
value of dot is set to the last line you typed in.

The insert (i) command is similar to the append command. The syntax for the insert
command is

i
text to be inserted

The search command can be used in conjunction with i to locate the place to insert text.
For example

/string/i
text to be inserted

searches for the line containing the specified string and inserts the given text ahead of
that line. If no line number is specified, the current line is used and dot is then set to
the last line inserted.

4-11

ed XENIX 286 User's Guide

Substituting Text

One of the most important ed commands is the substitute (s) command. This command
is used to change phrases, words, or letters and correct spelling mistakes and typing
errors.

The syntax for the sUbstitute com mand is

starting-line,ending-lines/pattern/replacement/

pattern is replaced by replacement, in all the lines between starting-line and
ending-line. Only the first occurrence on each line is changed, however. Changing
every occurrence is discussed later in this section. The rules for line numbers are the
same as those for p, except that dot is set to the last line changed. If no sUbstitution
takes place, dot is not changed and the following error message is returned:

?
no match

Suppose, because of a typing error, line 4 reads

Now is th time

Use s to correct the misspelling of "the" by entering

4s/th/thel

This substitutes the characters "the" for the characters "th" in line 4. If no line numbers
are given, the s command assumes you mean "make the substitution on the current line."
This leads to the very common sequence

s/something/something else/p

which makes a correction on the current line, then prints it to make sure the correction
worked. If it didn't, you can try again. (With few exceptions, p can follow any
command; no other multiple command lines are legal.)

You can also type

slstringll

which means "change the first string of characters to nothing" or, in other words,
remove them. This is useful for deleting extra words in a line or removing extra letters
from words. For instance, if you had

Nowww is the ti me

you could type

s/wwllp

to produce

Now is the time

4-12

XENIX 286 User's Guide ed

Note that two adjacent slashes mean "no characters", not a space.

You can also use / / as the left side of a substitute com mand, to mean "the most recent
pattern." For example, if you type

/country!

ed prints the line containing "country." If you now type

s/lcontinent!p

this changes "country" to "continent".

So far, the sUbstitution patterns demonstrated have only changed the first occurrence in
each line. To change all occurrences of a pattern, you must add a g (for global) to the
end of the substitution command. The section "Performing Global Commands" later in
this chapter discusses the use of global commands in detail.

Metacharacters

Metacharacters are a set of special characters used to describe patterns of text in
search and sUbstitute commands. These patterns are called "regular expressions" and
occur in several other important XENIX commands and utilities, including grep and sed
(see the XENIX 286 Reference Manual). A complete list of the metacharacters follows:

\ $ * [] &

The following sections describe how to use these metacharacters in search and
substitute com mands.

Backslash

The backslash (\) turns off any special meaning that the following character has. As an
example, the sequence

\.

in a search or substitute command changes the meaning of the period from "match any
single character" to a literal period. When you are adding text with a, i, or c, the
backslash has no special meaning.

4-13

ed XENIX 286 User's Guide

Period

When used in a search or on the left-side expression of a substitute command, the period
stands for any single character (this is frequently called a "wildcard" character). For
example, the search command

Ix.yl

finds any line where "x" and "y" occur separated by any single character, as in

x+y
x-y
xy
xzy

If you use a period in the right-side expression of a substitute command, the period
assumes its literal meaning.

Caret

The caret (") signifies the beginning of a line; the first character of every line is a caret
(although it is invisible). To search for or substitute an expression at the beginning of a
line, precede the expression with a caret. The search and SUbstitute commands have the
following formats when using the caret:

I" expressionl

sr expressionlexpressionl

For example, suppose you are looking for a line that begins with "the". If you simply
type

Ithel

you will probably find several lines containing "the" before arriving at the one you want.
But with

f"thel

you narrow the search context to "the" at the beginning of a line only, and thus arrive at
the desired line more quickly.

The caret (") also enables you to insert characters at the beginning of a line. For
example

sl"l I

places a space at the beginning of the current line.

4-14

XENIX 286 User's Guide ed

Dollar Sign

The dollar sign ($) signifies the end of a line; the last character of every line is a dollar
sign (although it is invisible). To search for or substitute an expression at the end of a
line, follow the expression with a dollar sign. The search and sUbstitute commands have
the following formats when using the dollar sign:

/expression$/

sl expression$/ expression/

For example, suppose you are looking for a line that ends with "the". If you simply type

Ithel

you will probably find several lines containing "the" before arriving at the one you want.
But with

Ithe$1

you narrow the search context to "the" at the end of a iine only, and thus arrive at the
desired line more quickly.

The dollar sign ($) also enables you to insert characters at the end of a line. For
example, this places a period at the end of the current line:

5/$1.1

Star

The star is useful for finding numerous occurrences of a single character. Literally, it
means "find any number of consecutive occurrences, including zero, of the character
that preceded the star followed by any designated text." For example, the command

/n*o

finds any number of occurrences of the letter "n" (including zero occurrences) followed
by the letter "0." When using the star in substitution command lines, be very careful; if
you specify the star with the wrong context, the file may be incorrectly changed.

Suppose that the line you want to edit is

text x •••••••••••••••••• y text

If you type

sIx. *y/x y/

the result is unpredictable. If no other x's or y's occur on the line, the substitution can
work, but not necessarily. The period matches any single character, so ft. *" matches as
many single characters as possible, and unless you are careful, it can remove more of
the line than you expected.

4-15

ed XENIX 286 User's Guide

Brackets

Brackets are used in search and sUbstitution commands to specify a "character class". A
set of characters enclosed in square brackets matches any single character in the range
designated. For example, the search pattern

l[a-z]1

finds any lowercase letter. The search pattern

l[aA]pplel

finds all occurrences of "apple" and "Apple".

The pattern "[0123456789]*" matches zero or more digits (an entire number), so

1,$sl" [0 123456789] * /I

deletes all digits from the beginning of all lines. Any characters may appear within a
character class, and only three special characters C',], and -) appear inside the
brackets; even the backslash doesn't have a special meaning. To search for any special
characters, for example, type

1[.\$ A []I

Digits can be abbreviated as [0-9]; similarly, [a-z] stands for the lowercase letters, and
[A-Z] for uppercase.

Ampersand

The ampersand (&) can be used on the right side of a substitute command to signify the
string of text found on the left side of a substitute command. Using the ampersand
eliminates repeating the string on both sides of the command and is extremely useful
when adding text within a line. The syntax of the ampersand command is

s/string/& new string/

For instance, if you are editing the line

Now is the times

and want to change it to read

Now is the best of times

you would enter the command

s/thel& best ofl

Here, the ampersand stands for "the", so that "the" is changed to "the best of".

The ampersand may be used more than once within the same command line; it always
signifies the string on the left side of the substitution.

4-16

XENIX 286 User's Guide ed

Performing Global Commands

The global commands g and v are used to execute one or more editing commands on all
lines that either contain (g) or don't contain (v) a specified pattern.

For example, the command

g/XENIX/p

prints all lines that contain the word "XENIX". The pattern that goes between the
slashes can be anything that could be used in a line search or in a substitute command;
exactly the same rules and limitations apply.

For example

g/"[O-9]/p

prints all lines in a file that begin with a number (numbered lists for instance).

The v command is identical to g, except that it operates on those lines that do not
contain an occurrence of the pattern. For example, this prints all lines that don't begin
with a number.

v/"[O-9]/p

Any command can follow g or v. The following command deletes all lines beginning with
a number:

g/"[O-9]/d

The following command deletes all empty lines:

g/"$/d

One of the most useful commands that may be used in combination with the global
command is the substitute command. For example, you could change the first
occurrence of "Xenix" on every line to "XENIX" by typing

g/Xenix/s//XENIX/

If you wanted to change every occurrence of "Xenix" to XENIX", you would type

g/Xenix/s//XENIX/g

The command that follows a g or v command functions the same as a command on a line
by itself. For example

g/"$/+

prints the line that follows each blank line (usually the first line in a paragraph). Plus
(+) means "one line past dot".

4-17

ed XENIX 286 User's Guide

The command

g/AItem 2/+,/Altem 8/-p

prints all lines that corne just after the line beginning with "Item 2" and just before the
line beginning with "Item 8". Minus (-) means one line before dot.

The g and v commands can also be preceded by line numbers, in which case the lines
searched are only those in the range specified. For example, this prints all lines
between 1 and 10 that have the word "Item":

1, 1 o g/ltem/p

You can give more than one command under the control of a global command. For
example, the following command will find all lines that contain "thing" and change the
first occurrence of "a" on the line to "b" and the first occurrence of "x" on the line to
"y":

g/thing/s/x/y/\
s/alb/

The backslash (\) signals the g command that the commands continue on the next line;
the g command terminates on the first line not ending with a backslash.

You can also execute a, c, and i commands as part of a global command. As with other
multiline constructions, add a backslash at the end of each line except the last. Thus, to
add two lines of ten asterisks before each line beginning with "Item", type

g/AItem/i\
**********\

There is no need for a final line containing a period (.) to terminate the i command,
unless further commands are to be executed under the global command.

Copying lines

ed provides a command, t (for transfer), for copying a group of one or more lines. This
is often easier than writing and reading. The syntax for t is

starting-line, ending-linetdestination-line

The t command duplicates the specified lines after the destination-line. Thus

1,t

duplicates the entire contents of the buffer that you are editing and places the
duplication after the last line.

4-18

XENIX 286 User's Guide ed

One use for t is to create a series of lines that differ only slightly. For example, type

a
Now is the time for all good men to come to the aid of their party.

t.
s/men/women/
t.
s/Now is/Yesterday was/

Your file will look like this:

[make a copy]
[change it]
[make second copy]
[change it]

Now is the time for all good men to come to the aid of their party.
Now is the time for all good women to come to the aid of their party.
Yesterday was the time for all good women to come to the aid of their party.

Moving Lines

The move (m) command enables you to move a group of lines from one place to another
in the buffer. The m command syntax is

start-line,end-linemdestination-line

When specifying the destination, remember that the text is moved to the line after the
destination-line.

Suppose you want to move the first three lines of the buffer to the end. The following
move command does it in a single step:

1,3m$

The lines to be moved can also be specified by context searches. Suppose the buffer
contained the following text:

First paragraph
end of first paragraph.
Second paragraph
end of second paragraph.

You could reverse the two paragraphs by using the following command:

/Second/,/end of second/m/First/-1

Notice the -1. Because moved text is placed after the destination line, to place text
before a line you must specify the destination line minus one. This is useful for moving
text to the beginning of a file.

4-19

ed XENIX 286 User's Guide

Dot is set to the last line moved. Your file will now look like this:

Second paragraph
end of second paragraph.
First paragraph
end of first paragraph.

As another example of a frequent operation, you can reverse the order of two adjacent
lines by moving the first line after the second line. If you are positioned on the first
line, the command

m+

moves dot to one line after the current line. If you are on the second line, the command

m--

moves dot to one line before the current line.

The m command is more succinct than writing, deleting, and rereading. The main
difficulty with the m command is that if you use patterns to specify both the lines you
are moving and the target, you have to take care to specify them properly, or you may
not move the lines you want. Doing the job one step at a time makes it easier to verify
at each step that you accomplished what you wanted. It is also a good idea to write out
the buffer before doing anything complicated; then if you make a mistake, it's easy to
back up to where you were.

Marking Your Spot in a File

The mark command (k) enables you to "mark" a line with a name and later reference the
line by its mark name, regardless of its line number. This can be handy for moving lines
and keeping track of them as they move. For example, typing

kx

marks the current line with the name "x". If a line number precedes the k, that line is
marked. (The mark name must be a single lowercase letter.) You can refer to the
marked line with the notation

'x

For example, find the first line of the block to be moved and mark it with

ka

Then find the last line and mark it with

kb

Go to the place where the text is to be inserted and type

'a,'bm.

4-20

XENIX 286 User's Guide ed

Splitting Lines

ed provides a facility for splitting a single line into two or more shorter lines by
"substituting in a carriage return." For example, suppose a line has become
unmanageably long because of editing. If it looks like

text xy text

you can break it between the "x" and the "y" by going to the line and typing:

s/xy/x\
yl

This is actually a single command, although it is typed on two lines. Because the
backslash (\) turns off special meanings, a backslash at the end of a line makes the
carriage return there no longer special.

You can, in fact, make a single line into several lines with this same mechanism. As an
example, consider italicizing the word "very" in a long line by putting "very" on a
separate line and preceding it with the formatting command ".1". Assume the line in
question looks like this:

text a very big text

The command

sl very 1\
.1\
very\
I

converts the line into four shorter lines, preceding the word "very" with the line ".1" and
eliminating the spaces around the "very" at the same time.

When a new line is substituted in a string, dot is left at the last line created.

4-21

ed XENIX 286 User's Guide

Joining Lines

Lines may be joined together with the j command. Alone, j joins the lines signified by
dot and dot + 1. For example, suppose you have these two lines (with a space at the end
of the first line)

Now is
the time

and you have just edited line 1, so dot is set to the first line. The command j, on a line
by itself, joins the two lines together to produce

Now is the time

Any contiguous set of lines can be joined by specifying the starting and ending line
numbers. For example

1,$jp

joins all the lines in a file into one big line and prints it.

Combining Files

The read command (r), like the edit command (e), enables you to read files into the
editing buffer. However, there is a major difference between rand e; r appends the
file to the buffer contents while e clears the buffer out before reading in the file. This
factor makes r a useful tool for combining files. When the file is written out, it is
written to the original file in the buffer.

One use of r would be composing a form letter. You could store a number of standard
clauses or paragraphs in separate files and as you compose the letter, use r to read in
the appropriate clauses and paragraphs and chain them together.

4-22

XENIX 286 User's Guide ed

Inserting One File into Another

Suppose you have a file called memo, and you want the file called table to be inserted
just after a reference to Table 1. In memo is a line that says

Table 1 shows that •••

and the data contained in table has to go there.

To put table into the correct place in the file, you must edit memo, find "Table 1", and
add the file table right there:

ed memo
/Table 1/
response from ed
.r table

The critical line is the last one. The r command reads a file; here you asked for it to be
read in right after line dot. An r command without any address adds lines at the end, so
it is the same as "$r".

Editing Scripts

If a fairly complicated set of editing operations is to be done on a set of files, create a
"script" (a file that contains the operations you want to perform) then apply this script
to each file in turn. For example, suppose you want to change every "Xenix" to
"XENIX" and every "USA" to "America" in a large number of files. Put the following
lines into the file script:

g/Xenix/s/ /XENIX/g
g/USA/s/ / America/g
w
q

N ow you can type

ed - filel <script
ed - file2 <script

This causes ed to take its commands from the prepared file script. (In the example, " ... "
represents additional ed command lines.) Notice that the whole job has to be planned in
advance, and that by using the XENIX shell command interpreter, you can cycle through
a set of files automatically. The dash (-) suppresses unwanted messages from ed.

When preparing editing scripts, you may need to place a period as the only character on
a line to indicate termination of input from an a or i command. This is difficult to do in
ed, because the period you type will terminate input rather than be inserted in the file.
Using a backslash to escape the period won't work either. One solution is to create the
script using a character such as the at sign (@) to indicate end of input. Then, later, use
the following com mand to replace the at sign with a period:

g/A f!$/s/ /./g

4-23

ed XENIX 286 User's Guide

Speeding Up Editing

One of the most effective ways to speed up editing is to enter com mands without
specifying line numbers. To do this, you must be able to determine what line a
command will affect and what the current line will be after the command executes. If
you can edit without specifying unnecessary line numbers, you can save a lot of typing.

For example, if you issue a search command like

Ithingl

you are left pointing at the next line that contains "thing". Then no address is required
with commands like s to make a substitution on that line, or p to print it, or 1 to list it,
or d to delete it, or a to append text after it, or c to change it, or i to insert text before
it.

What happens if there is no occurrence of "thing"? Dot is unchanged. This is also true
if the cursor was on the only occurrence of "thing" when you issued the command. The
same rules hold for searches that use ? ••• ?; the only difference is the direction of the
search.

The delete com mand, d, leaves dot pointing at the line that followed the last deleted
line. When the line dollar ($) is deleted, however, dot points at the new line $.

The line-changing commands a, c, and i, by default, all affect the current line. If you
give no line number with them, a appends text after the current line, c changes the
current line, and i inserts text before the current line.

The a, c, and i commands behave identically in one respect--when you stop appending,
changing, or inserting, dot points at the last line entered. For example, you can type

a
text
botch

s/botch/correctl
a
more text

(minor error)

(fix botched line)

without specifying any line number for the substitute command or for the second append
command. Or you can type

4-24

a
text
horrible botch

c
fixed up line

(major error)

(replace entire line)

XENIX 286 User's Guide ed

The r command reads a file into the text being edited, at the end if you give no address,
or after the specified line if you do. In either case, dot points at the last line read in.
Remember that you can even type

Or filename

to read a file in at the beginning of the text. (You can also type Oa or Ii to start adding
text at the beginning.)

The w com mand writes out the entire file. If you precede the com mand by one line
number, that line is written out. If you precede it by a range of line numbers, that
range of lines is written out. The w command does not change dot; the current line
remains the same, regardless of the lines written out.

(Since the w command is so easy to use, you should save what you are editing regularly
just in case the system crashes, or in case you accidentally delete what you're editing.)

The general rule is simple; you are left on the last line changed. If there were no
changes, then dot is unchanged. To illustrate, suppose that there are three lines in the
buffer, and the line given by dot is the middle one:

x1
x2
x3

Then the com mand

-, + slxlylp

prints the third line, which is the last one changed. But if the three lines had been

x1
y2
y3

and the same command had been issued while dot pointed at the second line, only the
first line would be changed and printed, and that is where dot would be set.

4-25

ed XENIX 286 User's Guide

Summary of ed Commands

The following is a list of all ed commands. The general form of ed commands is the
command name, preceded by one or two optional line numbers and, in the case of e, f, r,
and w, followed by a file name. Only one command is allowed per line, but a p command
may follow any other command (except e, f, r, w, and q).

a Appends lines to the buffer after line dot, unless a different line is specified.
Appending continues until a period is typed on a new line. The value of dot is set
to the last line appended.

c Changes the specified lines to the new text that follows. The new lines are
terminated by a period on a new line, as with a. If no lines are specified, replaces
line dot. Dot is set to the last line changed.

d Deletes the lines specified. If none are specified, deletes line dot. Dot is set to
the first undeleted line following the deleted lines unless dollar ($) is deleted, in
which case dot is set to dollar.

e Edits a new file. Any previous contents of the buffer are deleted, so be sure to
issue a w command first.

f Prints the remembered file name. If a name follows f, then the remembered name
is set to that name.

g Global search--the command g/string/commands executes commands on those
lines that contain string, which can be any context search expression.

i Inserts lines before specified line (or dot) until a single period is typed on a new
line. Dot is set to the last line inserted.

1 Lists lines, making nonprinting characters and tabs visible. (Similar to p.)

m Moves lines specified to after the line named after m. Dot is set to the last line
moved.

p Prints specified lines. If none are specified, prints the line specified by dot. A
single line number is equivalent to a line-numberp command. A single RETURN
prints".+ 1", the next line.

q Quits ed. Your work is not saved unless you first give a w command. Give q twice
in a row to abort edit.

r Reads a file into the buffer at the end unless specified elsewhere. Dot is set to the
last line read.

s Substitute--the command s/stringl/string2/ substitutes the pattern matched by
string 1 with the string specified by string2 in the specified lines. If no lines are
specified, the substitution takes place only on the line specified by dot. Dot is set
to the last line in which a substitution took place, which means that if no
SUbstitution takes place, dot remains unchanged. The s command changes only the
first occurrence of stringl on a line; to change multiple occurrences on a line,
type a g after the final slash.

4-26

XENIX 286 User's Guide ed

t Transfers specified lines to the line named after t. Dot is set to· the last line
moved.

u

v

w

.-

Undoes the last append, change, delete, insert, move, sUbstitute (except global), or
transfer command.

Reverse of the g command, the command v/string/commands executes commands
on those lines that do not contain string.

Writes out the editing buffer to a file. Dot remains unchanged.

Prints value of dot. (An equal sign by itself prints the value of $.)

!command
Causes command to be executed as a XENIX command.

/string/
Context search. Searches for the next line containing string and prints the line.
Dot is set to the line where string was found. The search starts at .+1, wraps
around from $ to 1, and continues to dot, if necessary.

?string?
Context search in reverse direction. Starts search at .-1 , scans to 1, and wraps
around to $.

4-27

Introduction

CHAPTER 5
vi: A VISUAL TEXT EDITOR

vi (which stands for "visual") combines line-oriented and screen-oriented features into a
powerful set of text editing operations that will satisfy any text editing need. Many of
the commands used in ed are part of the vi command set because vi is a superset of ed.
If you have already learned ed, you are well on your way to learning vi.

Begin by learning the features you will use most often. If you are an experienced user
of vi, you may choose to refer to the vi entry in the XENIX 286 Reference Manual; more
advanced features are covered there.

Demonstration

This section of the chapter walks you through creating a file when you invoke vi,
entering text into the file, and exiting vi.

To enter vi and create a file named temp, type

vi temp

Your screen will look like this:

Note that only twelve lines are shown to save space. The tildes (....) will fill the editing
window on your screen.

The top line of the display is where you will begin to enter text into the file; tildes
indicate lines on the screen only, not actual lines in the file.

5-1

vi XENIX 286 User's Guide

To begin, create some text in the file by using the i (insert) command. To do this, press

Like most vi commands, i doesn't appear on the screen. The command switches you
from command mode to insert mode. Type in the following text:

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

If you make a mistake while typing, simply use the BACKSPACE key to erase the error.
When you finish typing in this text, press the ESCAPE key. To exit vi, press and hold
the SHIFT key and press "ZZ".

Basic Concepts

This section introduces the basic concepts of vi that you will need to use the editor
effectively and efficiently. Here you will learn about the editing buffer, how to enter
editor commands, the syntax of vi commands, and the importance of line numbers.

Entering vi

You can enter vi in several ways, depending on what you are planning to do. This section
describes the different methods of entering vi.

Specifying a Single File

The most common way to enter vi is to type "vi" and the name of the file you wish to
edit:

vi filename

If filename does not already exist, a new, empty file with the specified name is created.

You can also enter the editor at a particular place in a file. For example, if you wish to
start editing a file at line 100, type

vi + 100 filename

The cursor is placed at line 100 of filename.

If you wish to begin editing at the first occurrence of a particular word, type

vi + Iword filename

5-2

XENIX 286 User's Guide vi

The cursor is placed at the beginning of the line containing word. For example, to begin
editing the file temp at the the first occurrence of "contain", type

vi + /contain temp

Specifying a Series of Files

If you have many files to edit in one session, you can invoke vi and specify more than
one file name. In this way you can edit multiple files without leaving the editor to call
each file. The command syntax for entering vi with multiple files is

vi file1 file2 file3 file4 fileS file6

Typing out many file names is tedious, and you may make a mistake. If you mistype a
file name, you must either backspace and correct the typing error, or kill the whole line
and retype it. A more convenient method is to invoke vi and use the metacharacters as
abbreviations. To invoke vi on the above files without typing each name, type

vi file[O-9]

This invokes vi on all files that begin with the letters "file" followed by a single digit.
You could also use the metacharaters • and *, which would call any files beginning with
"file" followed by a single character and any characters, respectively. You can plan
your file names to save time in later editing. For example, if you are writing a
document that consists of many files, it would be wise to give each file the same file
name extension, such as ".s". Then you can invoke vi on the entire document:

vi *.s

You can also invoke vi on a selected range of files:

vi [3-5]*.s

or

vi [a-h).txt

When you invoke vi and specify more than one file name, you will see the following
message when the first file is displayed on the screen:

x files to edit

where x is the number of files to be edited.

After you have finished editing a file, save it with the write command (:w), then go to
the next file with the next command:

:n

The next file appears, ready to edit. You need not specify a file name; the files are
invoked in alphabetical order (or numerical, if the file names begin with numbers).

If you forget what files you specified when you invoked vi, type :args and vi displays the
names of the files with the current file enclosed in brackets. You can determine the
name of the file you are currently editing by typing :file, :f, or CONTROL-G.

5-3

vi XENIX 286 User's Guide

To edit a file out of order, such as file4 after file2, type

:e file4

instead of the next command. Type

:n

after you finish editing file4 and you will go back to file3.

If you wish to start again from the beginning of the list, type

:rew

To discard all the changes you made and start again at the beginning, type

:rew!

Calling a File without Leaving vi

Occasionally you may find that changes you have made to one file affect another, so you
need to edit the second file. Rather than exiting vi and re-entering, the :e command
enables you to call the second file from within vi. The syntax of :e is

:e filename

Before calling the second file to the screen, be sure to save the original file because the
editing buffer will be cleared before reading in the second file.

Exiting vi

There are several ways to exit the editor and save any changes you may have made to
the file. One way is to type

:x

and press RETURN. This command replaces the old copy of the file with the new one
you have just edited, quits the editor, and returns you to the XENIX shell.

Similar:ly, if you type

zz

the same thing happens, except the old copy of the file is written out only if you have
made any changes. Note that the ZZ command is not preceded by a colon and is not
echoed on the screen.

5-4

XENIX 286 User's Guide vi

To leave the editor without saving any changes made to the file, type

:q!

The exclamation point tells vi to quit unconditionally. If you leave out the exclamation
point, as in

:q

vi will not let you quit. You will see the error message

No write since last change (:quit! overrides)

This message tells you to use :q! to leave the editor without saving your file.

Leaving vi Temporarily

While in vi, you may find it necessary to execute a XENIX com mand or a sequence of
XENIX commands. Entering the command from vi and preceding it with an exclamation
point (!) enables you to do this. The syntax for executing XENIX commands from vi is

:!command

For example, to determine the date, enter the command

:!date

XENIX responds with the current date and time and the message

[Hit return to continue]

Press RETURN to return to vi and the file you are editing.

To issue a series of XENIX commands, enter the command

:!sh

XENIX places you in the shell and displays the shell prompt (%) and the message

[Hit return to conti nue]

Issue any XENIX commands necessary and then enter CONTROL-D to exit the shell; the
message

[Hit return to continue]

is again displayed. Press RETURN to get back to vi and the file you are editing.

It is a good idea to save your file before executing any XENIX com mands, just in case
something goes wrong.

5-5

vi XENIX 286 User's Guide

Line Numbers

As stated earlier, vi is a combination line-oriented and screen-oriented text editor.
Many editing commands will take either single line numbers or line number ranges as
prefixing arguments. These arguments normally specify the lines in the editing buffer to
be affected by the given command. Any time a command changes the number of lines in
the editing buffer, vi renumbers the lines. At all times, every line in the editing buffer
has a line number. In vi, the current line, word, or character is the line, word, or
character where the cursor is positioned. You can determine the actual line number of
the current line by entering

:nu

vi will print the current line number and then display the line.

vi also enables you to turn on a function that displays the line number next to each line.
To turn on the number function, type

:set number

To turn off this function, type

:set nonumber

The Editing Buffer

Each time you invoke vi, an area in the memory of the computer is allocated where you
will perform all editing operations. This area is called the "editing buffer." When you
edit a file, a copy of the original is placed in the editing buffer, where you will work on
it. Only when you write out the buffer do you change the original file.

Writing Out the Editing Buffer

You will probably want to save your text for later use. To write out the contents of the
buffer into a file, use the write (:w) command followed by the name of the file you want
to write to. This copies the contents of the buffer to the specified file, destroying any
previous contents of the file. For example, to save the buffer in a file named text, type

:w text

Leave a space between :w and the file name. vi responds by displaying the file name,
number of lines, and number of characters. (Blanks and the RETURN character at the
end of each line are included in the character count.) Writing out a file makes a copy of
the text in the editing buffer--the buffer's contents are not disturbed, so you can
continue editing it. When you invoke vi by using a filename argument, a :w command by
itself writes the buffer out to filename.

Writing out the editing buffer occasionally as you work is an excellent safety measure;
if the system crashes all the text in the buffer is lost, but any text written out is safe.

5-6

XENIX 286 User's Guide vi

Commands

Enter commands by typing them at the keyboard and then pressing RETURN. Most
commands are single characters, although some require a preceding colon to signify a
special operation such as writing out the buffer. Unless otherwise specified, vi
commands operate on the line where the cursor is positioned; this is called the "current
line." Many commands take file names or string arguments that are used by the
command when it is executed.

Repeating Commands

The repeat command (.) enables you to repeat the last executed screen-oriented vi
command. Cursor movement does not affect the repeat command, so you may repeat a
command as many times and in as many places in a file as you wish.

Undoing Commands

Any editing command can be negated with the undo (u) command. If you have deleted a
line and then decide you wish to keep it, press u and the line reappears. Use the
following line as an example:

Text contains lines.

Place the cursor over the c in "contains", then delete the word with the dw command.
Your screen should look like this:

Text lines.

Press u to undo the dw command. The word "contains" reappears:

Text contains lines.

If you press u again, "contains" is deleted again:

Text lines.

Note that u negates only the previous command. For example, if you make a global
search and replace, then delete a few characters, pressing u will undo the last character
deletion but not the global search and replace.

Performing a Series of Line-Oriented Commands

If you have several line-oriented commands to perform, you can place yourself
temporarily in line-oriented mode by typing

Q

while you are in vi. A colon prompt appears on the status line.

Commands executed in this mode cannot be undone with the u command, nor do they
appear on the screen until you re-enter normal vi mode. To re-enter vi, type

VI

5-7

vi XENIX 286 User's Guide

Moving in a File

vi provides two methods of moving around in file: moving the cursor and scrolling. The
following sections describe these methods.

Moving the Cursor

When editing a file, the cursor shows your position in the file. You can move the cursor
in two ways: use the keyboard direction arrows or enter com mands that tell the cursor
where to move to. The direction arrows move the cursor one character at a time. The
cursor control commands enable you to move the cursor to a specific location. The
cursor control commands are

h

SPACE BAR

b

w

k

j

RETURN

}

{

CONTROL-W

Scrolling

Moves cursor 1 space left

Moves cursor 1 space right

Moves cursor 1 space right

Moves cursor 1 word left

Moves cursor 1 word right

Moves cursor 1 line up

Moves cursor 1 line down

Moves cursor 1 line down

Moves cursor to end of sentence

Moves cursor to beginning of sentence

Moves cursor to beginning of paragraph

Moves cursor to end of paragraph

Moves cursor to first character of insertion

The following commands move the file so .different parts are displayed on the screen.
The cursor is placed on the first letter of the last line scrolled.

CONTROL-U

CONTROL-B

CONTROL-D

CONTROL-F

z + RETURN

5-8

Scrolls up one-half screen

Scrolls up a full screen

Scrolls down one-half screen

Scrolls down a full screen

Scrolls the current line to the top of the screen

XENIX 286 User's Guide vi

To place a specific line at the top of the screen, precede the "z" with the line number,
as in

33z

Press RETURN, and line 33 scrolls to the top of the screen.

Inserting Text

vi has six commands that enable you to insert text into a file. Any time you place text
in a file, whether it is a new, empty file or an existing file, you will use one of these six
commands:

a Begins text insertion after the cursor

A Begins text insertion after the last character on a line

i Begins text insertion before the cursor

I Begins text insertion before the first character on a line

o Begins text insertion on next line down

o Begins text insertion on the line above

All insert commands are terminated by pressing the ESCAPE key.

While most of the commands are self-explanatory, the 0 and 0 commands can be
confusing and require more explanation. 0 and 0 are line editing commands and are
used to insert lines of text rather than just a word or character. Regardless of where
the cursor is on the current line when you enter one of the "0" commands, a blank line is
inserted between the current line and either the line above or below. When the blank
line appears on the screen, begin entering the new text. When you are finished entering
text, press ESCAPE. At the end of the text, do not press RETURN unless you want a
blank line to appear in the text.

Occasionally while you are editing a file, you may find that you need to repeat some
text frequently. Typing the same text repeatedly is tedious, time-consuming, and
error-prone. vi has a feature that enables you to repeat the last insertion, to a
maximum of 128 characters. To repeat the last text insertion, follow these steps:

1. Position the cursor at the next location where the text is to be inserted.

2. Type i to enter insert mode.

3. Enter CONTROL-@.

Inserting Control Characters into Text

Many control characters have special meaning in vi, even when typed in insert mode. To
remove their special significance, press CONTROL-V before typing the control
character. CONTROL-J, CONTROL-Q, and CONTROL-S cannot be inserted as text.
(CONTROL-J is a carriage return and CONTROL-Q and CONTROL-S are meaningful to
the operating system and are trapped before they are interpreted by vi.)

5-9

vi XENIX 286 User's Guide

Deleting Text

You can delete characters, words, or lines from a file by using the following delete
commands:

x Deletes a single character at the cursor position

nx Deletes forward from the current cursor position, n number of characters

X Deletes the character immediately preceding the current cursor position

nX Deletes backward from the current cursor position, n number of characters

dw Deletes the single word where the cursor is positioned

dO Deletes all text from the cursor position to the beginning of the current line

d$ Deletes all text from the cursor position to the end of the current line

D Deletes all text from the cursor position to the end of the current line

ndw Deletes forward from the current cursor position, n number of words

dd Deletes the current line

ndd Deletes forward from the current cursor position, n number of lines

The x and X commands delete a specified number of characters. The x command
deletes the character above the cursor; the X command deletes the character
immediately before the cursor. If no number is given, one character is deleted. For
example, to delete three characters following the cursor (including the character above
the cursor), type

3x

To delete three characters preceding the cursor, type

3X

The dw command deletes a specified number of words. If no number is given, one word is
deleted. A word is interpreted as numbers and letters separated by white space. When a
word is deleted, the space after it is also deleted. To delete three words, type

3dw

The d$ and D commands delete all text following the cursor on the current line,
including the character the cursor is resting on. The dd command deletes a specified
number of lines and closes up the space. If no number is given, only the current line is
deleted. To delete three lines, type

3dd

Another way to delete several lines is to use a line-oriented command. To use this
command, you need to know the line numbers of the text you wish to delete.

5-10

XENIX 286 User's Guide vi

To delete lines 200 through 250, type

:200,250d

Press RETURN. When the command finishes, the message

50 lines

appears on the vi status line, indicating how many lines were deleted.

You can remove lines without displaying line numbers by using shorthand addresses. For
example, to remove all lines from the current line (the line the cursor rests on) to the
end of the file, type

:.,$d

The dot (.) represents the current line, and the dollar sign stands for the last line in the
file. To delete the current line and 3 lines following it, type

:., + 3d

To delete the current line and 3 lines preceding it, type

:.,-3d

For more information on using addresses in line-oriented commands, see vi in the XENIX
286 Reference Manual.

If you wish to delete all of the text you just typed, press CONTROL-U while you are in
insert mode. The cursor returns to the beginning of the insertion. The text of the
original insertion is still displayed, and any text you type replaces it. When you press
ESCAPE, any text remaining from the original insertion disappears.

Copying Text

Commands in vi enable you to copy text from other files and from the file you are
editing and place it in a designated loaction within the current file. The next two
sections describe these procedures.

Copying Text from Other Files

To insert the contents of another file into the file you are currently editing, use the
read command. Move the cursor to the line immediately above the place you want the
new material to appear, then type

:r filename

where filename is the file containing the material to be inserted. The text of filename
appears on the line below the cursor, and the cursor moves to the first character of the
new text. This text is a copy; the original filename still exists.

5-11

vi XENIX 286 User's Guide

A derivative of the :r command enables you to execute a XENIX command and place the
result into the editing buffer at a designated location. Position the cursor anywhere on
the line above the position where you want the result placed and type

:r!command

Inserting lines from another file is more complicated. The selected lines are copied from
the source file into a buffer and then inserted into the destination file. To select the
lines to be copied, save your original file with the write command (:w), but do not exit
vi.

Type

:e filename

where filename is the file that contains the text you want to copy.

Move the cursor to the first line you wish to select.

Type

mk

This "marks" the first line of text to be copied into the destination file with the letter
"k" .

Move the cursor to the last line of the selected text and type

"ay'k

The lines from your first "mark" to the cursor are placed into buffer a. They will
remain in buffer a until you replace them with other lines or exit the editor.

Type

:e#

to return to your destination file. Move the cursor to the line above the place you want
the new text to appear, then type

"ap

This inserts a copy of the lines in buffer a into the destination file and places the cursor
on the first letter of this new text. Buffer a still contains the original lines.

You may have a maximum of 26 buffers, named with the single lowercase letters a-z. To
name and select different buffers, replace the a in the above examples with whatever
letter you wish.

5-12

XENIX 286 User's Guide vi

Copying Text from Elsewhere in the File

To copy text from one place in a file to another place in the same file, use the copy (co)
command. co is a line-oriented command, and to use it you must know the line numbers
of the text to be copied and the destination. The "Basic Concepts" section of this
chapter describes how to determine line numbers in vi. The syntax of the co command
is

:beginning-line, ending-line co destination-line

where beginning-line is the line number of the first line of text you want copied, ending­
line is the line number of the last line of text you want copied, and destination-line is
the line number of the line of text that precedes the location where you want the text
copied to. You may specify either a single line number or a range of line numbers for
the beginning and ending line numbers. If you specify a range of line numbers, the
numbers must be separated by a comma.

For example, to copy lines 10, 11, 12, 13, and 14 of a file to a position between lines 30
and 31, use the following command

:10, 14 co 30

If you have text that is to be inserted several times in different places, you can save it
in a buffer and insert it whenever it is needed. For example, to repeat the first line of
the following text after the last line

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

move the cursor over the "F" in "Files". Type the following line, which will not be
echoed on your screen:

"ayy

This places a copy of the first line into buffer a. Move the cursor over the "w" in
"Words".

Type the following line:

"ap

This inserts a copy of the line in buffer a into the file and places the cursor on the first
letter of the new text. The buffer still contains the original copy of the line.

Your screen looks like this:

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.

5-13

vi XENIX 286 User's Guide

If you wish to copy several consecutive lines, indicate the number of lines you wish to
copy after the name of the buffer. For example, to place three lines of a file into the
buff er a, type

"a3yy

Moving Text

To move a block of text from one place in a file to another, use the move (m) command.
The m command is a line-oriented command, which means you must know the line
numbers of file to use this command. The syntax of the m command is

:beginning-line, ending-line m destination-line

For example, to move lines 10, 11, 12, 13, and 14 of a file to a position between lines 30
and 31, use the following com mand

:10, 14 m 30

vi also enables you to remove text from a file, store the text in a special buffer called a
"delete buffer," and reinsert the text at any number of locations in the file. There are a
total of nine delete buffers. The nine most recent text deletions are stored in the
delete buffers, with the most recent being stored in buffer 1 and the least recent stored
in buffer 9.

In other words, the first deletion in an editing session goes into buffer 1. The second
deletion goes into buffer 1 and pushes the original contents of buffer 1 into buffer 2; the
third deletion goes into buffer 1, pushing the contents of buffer 2 into buffer 3 and the
contents of buffer 1 into buffer 2; and so on until all nine buffers are used. When a
tenth deletion is made, the deleted text is placed in buffer 1, the contents of the
remaining buffers are shifted, and the original contents of buffer 9 are deleted.

Text remains in the delete buffers until it is pushed off the stack or until you exit the
editor, making it possible to delete text from one file, change files without leaving the
editor, and place the deleted text in another file.

Using the following text as an example

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

delete the first line by typing

dd

Move the cursor to the second line and delete it, then move the cursor to the last line of
text, and type

"1p

5-14

XENIX 286 User's Guide

The line from the second deletion appears:

Text contains lines.
Characters form words.
Words form text.
Li nes contai n characters.

Now type

"2p

The line from the first deletion appears:

Text contains lines.
Characters form words.
Words form text.
Li nes contai n characters.
Files contain text.

vi

Inserting text from a delete buffer does not remove the text from the buffer. Since the
text remains in a buffer until it is either pushed off the stack or until you quit the
editor, you may use it as many times as you wish. You can also place text in named
buffers.

Joining and Breaking Lines

To join two lines press

J

while the cursor is on the first of the two lines you wish to join. Notice that this is an
uppercase J.

To break one line into two lines, position the cursor on the space preceding the first
letter of what will be the second line, press

r

then press RETURN.

Searching

You can search forward and backward for patterns in vi. The syntax for searching
forward is

/pattern

and the syntax for searching backward is

?pattern

5-15

vi XENIX 286 User's Guide

If the specified pattern exists, the cursor moves to the first character of the pattern.
For example, to search forward in the file for the word "account", type

laccount

The cursor is placed on the first character of the pattern. To place the cursor at the
beginning of the line above "account", for example, type

laccountl-

To place the cursor at the beginning of the line two lines above the line that contains
"account", type

laccountl-2

To place the cursor two lines below "account", type

laccountl + 2

To search backward through a file, use? instead of / to start the search. For example,
to find all occurrences of "account" above the cursor, type

?account

To search for a pattern containing any of the metacharacters (. * [] $ \ and "), each
metacharacter must be preceded by a backslash. For example, to find the pattern
"U.S.A.", type

IU\. S\.A \./

You can continue to search for a pattern by pressing

n

The pattern is unaffected by intervening vi commands, and you can use n to search for
the pattern until you type in a new pattern or quit the editor.

vi searches for exactly what you type. For instance, if the pattern you are searching for
begins with an uppercase letter, vi ignores all occurrences of the pattern that begin with
a lowercase letter.

By default, searches "wrap around" the file. That is, if a search starts in the middle of a
file, when vi reaches the end of the file it will "wrap around" to the beginning and
continue until it returns to where the search began. Searches will be completed faster
if you specify forward or backward searches, depending on where you think the pattern
is.

Searching and Replacing

The search and replace commands enable you to perform complex changes to a file in a
single command. Learning how to use these commands is a must for the serious vi user.

The syntax of a search and replace command is

g/patternl/s/[pattern2]/[options]

5-16

XENIX 286 User's Guide vi

Brackets indicate optional parts of the command line. The g tells the computer to
execute the replacement on every line in the file. Otherwise the replacement would
occur only on the current line. The options are explained in the following sections.

To explain these commands we will use the following file:

Files contain text.
Text contains lines.
Li nes contai n characters.
Characters form words.
Words form text.

To replace the word "contain" with the word "are" throughout the file, type the
following command:

:g/contain lsI/are Ig

This command says "find every occurrence of the pattern 'contain' on each line in the
file and substitute for that pattern the word 'are' everywhere it occurs." Note that a
space is included in the search pattern for "contain"; without the space "contains" would
become "ares".

After the com mand executes, the screen should look like this:

Files are text.
Text contains lines.
Lines are characters.
Characters form words.
Words form text.

To replace "contain" with "are" throughout the file and print every line changed, use the
p command:

:g/contain lsI/are Igp

After the command executes, each line in which "contain" was replaced by "are" is
printed on the lower part of the screen. To remove these lines, redraw the screen by
pressing CONTROL-L.

Sometimes you may not want to replace every instance of a given pattern. The c option
displays every occurrence of pattern and waits for you to confirm that you want to
make the substitution. If you press y the SUbstitution takes place; if you press RETURN
the next instance of pattern is displayed.

To run this command on the example file, type

:g/contain/sl/are/gc

vi responds with the following display:

Text contains lines.

5-17

vi XENIX 286 User's Guide

Press "y", then RETURN. The line with the next occurrence of "contain" appears. vi
always displays the whole line, but the pattern being searched for is underscored with
carets. If you do not want the pattern to be replaced, enter "n" or RETURN.

Substituting Text

When using vi, you may sUbstitute by using the following commands:

r

R

nsstring

nStext

cw

ncw

C

cc

ncc

Begins text insertion on current character, replaces one character only

Begins text insertion on current character, replaces until ESCAPE

Replaces n characters, from the cursor forward, with string

Replaces n lines, from the cursor forward, with text

Changes 1 word

Changes n words

Replaces text from the cursor to the end of the line

Changes current line

Changes n lines

The r command replaces the character under the cursor with the next character typed.
To replace the character under the cursor with a "b", for example, type

rb

If a number is given before r, that number of characters is replaced with the next
character typed. For example, to replace the character above the cursor, plus the next
three characters, with the letter "b", type

4rb

Note that you now have four "b's" in a row.

The s command replaces a specified number of characters, beginning with the character
under the cursor, with text you type in. For example, to substitute xyz for the cursor
and two characters following it, type

3sxyz

The S command deletes a specified number of lines and replaces them with text you
type in. You may type in as many new lines of text as you wish; S affects only how
many lines are deleted. If no number is given, one line is deleted. For example, to delete
four lines, including the current line, type

45

This differs from the R command. The S command deletes the entire current line; the R
command deletes text from the cursor onward.

5-18

XENIX 286 User's Guide vi

The cw command replaces a word with text you type in. For example, to replace the
word "bear" with the word "fox", move the cursor over the "b" in "bear". Enter

cw

A dollar sign appears after the "r" in "bear", marking the end of the text that is being
replaced. Type

fox

The rest of "bear" disappears and only "fox" remains.

The C command replaces text from the cursor to the end of the line. For example, to
replace the text of the sentence

Who's afraid of the big bad wolf?

from "big" to the end, move the cursor over the "b" in "big" and type

c

A dollar sign ($) replaces the question mark (?) at the end of the line. Type the
following:

little lamb?

Press ESCAPE. The result is

Who's afraid of the little lamb?

The cc command deletes a specified number of lines, regardless of the location of the
cursor, and replaces them with text you type in. If no number is given, the current line
is deleted.

If a word occurs several times on one line, it is often convenient to use a line-oriented
command to replace it. For example, to replace the word "removing" with "deleting" in
the sentence

In vi, removing a line is as easy as removing a letter.

move the cursor to the beginning of the line and type

: s/removi ng/del eti ng/g

This line-oriented com mand means "substitute (s) the word 'deleting' for the word
'removing', everywhere 'removing' occurs on the current line (g)". If you don't include a
g at the end of the command line, only the first occurrence of "removing" is changed.

5-19

vi XENIX 286 User's Guide

Metacharacters

Metacharacters are a set of special characters used to describe text patterns in search
and substitute commands. These patterns are called "regular expressions" and occur in
several other important XENIX commands and utilities, including grep and sed (see the
XENIX 286 Reference Manual). A complete list of the metacharacters follows:

\ $ * [] &

The following sections describe how to use these metacharacters in search and
substitute commands.

Backslash

The backslash (\) turns off any special meaning that the following character has. As an
example, the sequence

\.

in a search or SUbstitute command changes the meaning of the period from "match any
single character" to a literal period. When you are adding text with a, i, or c, the
backslash has no special meaning.

Period

When used in a search or on the left-side expression of a substitute command, the period
stands for any single character (this is frequently called a "wildcard" character). For
example, the search command

/x.y/

finds any line where "x" and "y" occur separated by any single character, as in

x+y
x-y
xy
xzy

If you use a period in the right-side expression of a substitute com mand, the period
assumes its literal meaning.

Caret

The caret (A) signifies the beginning of a line; the first character of every line is a caret
(although it is invisible). To search for or substitute an expression at the beginning of a
line, precede the expression with a caret. The search and SUbstitute commands have the
following formats when using the caret:

/A expression/

s/" expression/expression/

5-20

XENIX 286 User's Guide vi

For example, suppose you are looking for a line that begins with "the". If you simply
type

Ithel

you will probably find several lines containing "the" before arriving at the one you want.
But with

rthel

you narrow the search context to "the" at the beginning of a line only, and thus arrive at
the desired line more quickly.

The caret (") also enables you to insert characters at the beginning of a line. For
example

sri I

places a space at the beginning of the current line.

Dollar Sign

The dollar sign ($) signifies the end of a line; the last character of every line is a dollar
sign (although it is invisible). To search for or substitute an expression at the end of a
line, follow the expression with a dollar sign. The search and SUbstitute commands have
the following formats when using the dollar sign:

/ expression $/

s/ expression$/ expression/

For example, suppose you are looking for a line that ends with "the". If you simply type

Ithel

you will probably find several lines containing "the" before arriving at the one you want.
But with

Ithe$1

you narrow the search context to "the" at the end of a line only, and thus arrive at the
desired line more quickly.

The dollar sign ($) also enables you to insert characters at the end of a line. For
example

s/$l./

places a period at the end of the current line.

5-21

vi XENIX 286 User's Guide

Star

The star is useful for finding numerous occurrences of a single character. Literally, it
means "find any number of consecutive occurrences, including zero, of the character
that preceded the star followed by any designated text." For example, the command

/n*o

finds any number of occurrences of the letter "n" (including zero occurrences) followed
by the letter "0." When using the star in sUbstitution command lines, be very careful; if
you specify the star with the wrong context, the file may be incorrectly changed.

Suppose that the line you want to edit is

text x ytext

If you type

s/x.*y/x y/

the result is unpredictable. If no other XiS or y's occur on the line, the substitution will
work, but not necessarily. The period matches any single character, so ". *" matches as
many single characters as possible, and unless you are careful, it can remove more of
the line than you expected.

Brackets

Brackets are used in search and substitution commands to specify a "character class". A
set of characters enclosed in square brackets matches any single character in the range
designated. For example, the search pattern

l[a-z]1

finds any lowercase letter. The search pattern

l[aA]pplel

finds all occurrences of "apple" and "Apple".

The pattern "[0123456789]*" matches zero or more digits (an entire number), so

1,$st' [0 123456789] * /I

deletes all digits from the beginning of all lines. Any characters may appear within a
character class, and only three special characters (",], and -) appear inside the
brackets; even the backslash doesn't have a special meaning. To search for any special
characters, for example, type

I[.\$A[]I

Digits can be abbreviated as [0-9]; similarly, [a-z] stands for the lowercase letters, and
[A-Z] for uppercase.

5-22

XENIX 286 User's Guide vi

Ampersand

The ampersand (&) can be used on the right side of a substitute command to signify the
string of text found on the left side of a substitute command. Using the ampersand
eliminates repeating the string on both sides of the command and is extremely useful
when adding text within a line. The syntax of the ampersand command is

s/ string/ & new string/

For instance, if you are editing the line

Now is the times

and want to change it to read

Now is the best of times

you would enter the command

s/the/& best off

Here, the ampersand stands for "the", so that "the" is changed to "the best of".

The ampersand may be used more than once within the same command line; it always
signifies the string on the left side of the sUbstitution.

Solving Common Problems

The following is a list of common problems that you may encounter when using vi, along
with the probable solution.

• I donlt know which mode 11m in.

Press ESCAPE until the bell rings. When the bell rings you are in com mand mode.

• I canlt get out of a subshell.

Press CONTROL-D to exit any subshell. If you have created more than one
subshell (not a good idea, usually), keep pressing CONTROL-D until you see the
message:

[Hit return to continue]

• I made an inadvertent deletion (or insertion).

Press u to undo the last delete or insert command.

• There are extra characters on my screen.

Press CONTROL-L to redraw the screen.

5-23

vi XENIX 286 User's Guide

• When I type, nothing happens.

vi has crashed and you are now in the shell with your terminal characteristics set
incorrectly. To reset the keyboard, type

stty sane

then press CONTROL-J or LINEFEED. Pressing CONTROL-J instead of RETURN
is important here, since the RETURN key may not work as a newline character. To
make sure that other terminal characteristics have not been altered, log off, turn
your terminal off, turn your terminal back on, and then log back in. This should
guarantee that terminal characteristics are back to normal. This procedure may
vary somewhat depending on the terminal.

• The system crashed while I was editing.

Normally, vi will inform you (by sending you mail) that your file has been saved
before a crash. The file can be recovered by typing

vi -r filename

If vi was unable to save the file before the crash, the file is irretrievably lost.

• I keep getting a colon on the status line when I press RETURN.

You are in line-oriented command mode. Return to normal vi command mode by
typing

vi

• I get the error message "Unknown terminal type [Using open mode]" when I invoke
vi.

Your terminal type is not set correctly. Press ESCAPE, then type

:wq

and press RETURN.

5-24

XENIX 286 User's Guide

Summary of vi Commands

vi filename

vi +n filename

vi + filenam e

vi +/pattern filename

vi -r filename

h

1

SPACE BAR

b

w

k

RETURN

)

(

{

}

CONTROL-W

CONTROL-U

CONTROL-D

CONTROL-F

CONTROL-B

I

a

Enters vi and starts edit of filename at line 1

Enters vi and starts edit of filename at line n

Enters vi and starts edit of filename at last line

Enters vi and starts edit of filename at pattern

Recovers filename after a system crash

Moves cursor 1 space left

Moves cursor 1 space right

Moves cursor 1 space right

Moves cursor 1 word left

Moves cursor 1 word right

Moves cursor 1 line up

Moves cursor 1 line down

Moves cursor 1 line down

Moves cursor to end of sentence

Moves cursor to beginning of sentence

Moves cursor to beginning of paragraph

Moves cursor to end of paragraph

Moves cursor to first character of insertion

Scrolls up one-half screen

Scrolls down one-half screen

Scrolls down one screen

Scrolls up one screen

Begins text insertion before the cursor

Begins text insertion before first character on the line

Begins text insertion after the cursor

vi

5-25

vi

A

o

o

r

R

dw

dO

d$

ndw

dd

ndd

cw

ncw

cc

ncc

/pattern

?pattern

/[tT]ext/

n

:s/x/y/g

: l,$s/file/directory

:g/one/s/ /l/g

5-26

XENIX 286 User's Guide

Begins text insertion after last character on the line

Begins text insertion on next line down

Begins text insertion on the line above

Begins text insertion on current character, replaces one
character only

Begins text insertion on current character, replaces until
ESCAPE

Deletes a word

Deletes to beginning of line

Deletes to end of line

Deletes n words

Deletes the current line

Deletes n lines

Changes 1 word

Changes n words

Changes current line

Changes n lines

Finds the next occurrence of pattern, including the pattern found
within other words

Finds the previous occurrence of pattern, including the pattern
found within other words

Finds next line that starts with pattern, including words beginning
with that pattern

Finds the next occurrence of "text" or "Text"

Repeats the most recent search, in the same direction

All occurrences of "x" become "yn on the current line

Replaces file with directory from line 1 to the end; filename
becomes directoryname

Replaces every occurrence of "one" with 1 (one becomes 1,
oneself becomes lself, someone becomes somel)

XENIX 286 User's Guide vi

*

$

[]

:w

:x

:q!

:!command

:!sh

!!command

:e file

:nu

:file

:f

Matches any number of consecutive occurrences (including 0) of
the character preceding it

Matches beginning of line special character

Matches end-of-line special character

Matches any single character

Matches a range of characters

Writes out the file

Writes out the file, quits vi

Quits vi without saving changes

Executes command

Forks a new shell

Executes command and places output on current line

Edits file (save current file with :w first)

Displays the current line

Displays the name of the current file

Displays the name of the current file

5-27

Introduction

CHAPTER 6
mail: THE XENIX MAIL SYSTEM

The XENIX mail system is a versatile communication facility that enables XENIX users
to compose, send, receive, forward, and reply to mail. Users can also create
distribution groups and send copies of messages to multiple users. These functions are
integrated into XENIX so that all users can quickly and easily communicate with each
other.

This chapter is organized to satisfy the needs of both the beginning and the advanced
user. The first sections discuss basic concepts, tasks, and commands. Later sections
discuss advanced topics and provide quick reference to the mail program's many
functions.

Basic Concepts

This section introduces the basic concepts of mail that you will need to use mail
effectively and efficiently. Here you will learn about getting help, using mailboxes,
writing messages, entering and exiting mail, and performing simple functions.

Mailboxes

Think of the mail system as a small-scale postal system. The "post office" is called the
"system mailbox" in XENIX. The system mailbox contains a file for each user in the
directory /usr/spooVmail. Your personal mailbox, or "user mailbox," is the file mbox
located in your home directory. Mail sent to you is held in the system mailbox until the
next time you log in; when you log in, the system notifies you that you have mail. After
reading your mail, it is saved in your user mailbox (mbox) if you do not delete it. Note
that the u~er mailbox differs from a real mailbox in several respects:

• The user mailbox is not the place where mail is initially routed--that place is the
system mailbox in the directory /usr/spooVrnail.

• Mail is not picked up from your user mailbox; it is picked up from the system
mailbox.

Modes of Operation

XENIX mail has three modes of operation: reading mail (command mode), sending mail
(compose mode), and editing messages (edit mode).

6-1

mail XENIX 286 User's Guide

Com mand mode is the mode you enter when there is mail waiting to be read. It is
accessed by using the mail command with no user name. From command mode you read
mail, execute shell commands, change mail options, and send mail to other users. You
can access both compose mode and edit mode from command mode.

If you invoke mail with a user name, you are placed in the mail compose mode when
mail comes up. Compose mode enables you to write messages. Special commands
within compose mode enable you to save portions of messages being composed, display
messages being composed, and even read in other files. You can access edit mode from
compose mode.

You can enter edit mode from either compose mode or command mode. In edit mode,
you edit the body of a message, using the full capabilities of one of the text editors. To
enter edit mode from command mode, use either the e (edit) command to enter ed, or
the v (visual) command to enter vi. To enter edit mode from compose mode, use the
commands e (ed) or v (vi).

Getting Help

The help (?) command displays a brief summary of all mail commands, so if you ever get
stuck while in command mode, type

?

or

help

To get help while you are in compose mode, use ? Edit mode has no help facility.

Message Format

In mail, the message is the basic unit of exchange between users. Messages consist of
two parts: a heading and a body. The heading contains the following fields:

To:

Subject:

Cc:

Bcc:

Return-receipt-to:

This field is mandatory and contains the names of the users you're
sending mail to.

This optional field contains text describing the message.

The optional carbon copy field contains the names of those users
who will receive copies of a message. Message recipients see
these names in the received message.

The optional blind carbon copy field contains the names of users
who will receive copies of a message. Recipients do not see
these names in the received messages.

This optional field contains the names of those users who will
receive an automatic acknowledgement of the message.

The body of a message contains text exclusive of the heading and can be empty.

6-2

XENIX 286 User's Guide mail

Entering and Exiting mail

You can enter mail in two ways. If you have mail waiting to be read, just type

mail

and press RETURN to enter the mail system in command mode and read your messages.
If you don't have any mail waiting, the system displays the message

No messages.

and returns to the shell.

The second way to enter mail is to use the syntax

mail usernam e

where username is the name of a user that you want to send mail to (this can even be
yourself). This method gets you into the mail system in compose mode.

To leave mail from command mode, you have a choice of three commands: x (for exit), q
(for quit), and CONTROL-D, which functions the same as q.

When you exit mail by using x, the system returns to the shell without making any
changes to the system or user mailbox; no messages are saved or deleted. The next time
you log in, you will have the same messages waiting as well as any new messages that
have been received.

Exiting mail with q or CONTROL-D will alter the system and user mailboxes. Deleted
messages are discarded and saved messages are stored in their designated files.

To leave mail from compose mode, use CONTROL-D at the start of a new line. The
message is sent to the user(s) specified when you entered mail.

Message Headers

When you enter mail without a user name and there is mail waiting, a list of numbered
message headers is displayed. A header is a single line of text containing descriptive
information about a message. (Note that the word "heading" describes the first part of
a message, and "header" describes mail's one-line description of a message.) The header
information includes

• The message number

• The sender's name

• The date sent

• The number of lines and characters

• The subject (if the message contains a Subject: field)

6-3

mail XENIX 286 User's Guide

Message headers are displayed in "windows" with the headers command. A header
window contains no more than 18 headers. If fewer than 18 messages are in the
mailbox, all are displayed in one header window. If there are more than 18 messages,
then the list is divided into an appropriate number of windows. You can move forward
and backward one window at a time with the headers + and headers - commands.

Command Syntax

Each mail command has its own syntax. Some commands take no arguments, some take
only one, and others take several arguments. The more flexible commands, such as
print, accept combinations of lists of message numbers (message-lists) and user names.
For these commands, mail first gathers all message numbers and ranges from the
message headers, then finds all messages from any specified user names. The full
message-list is the intersection of these two sets of messages. Thus, the message-list
"4-15 miller" matches all messages numbered from 4 to 15 that are from "miller."

Each mail command is typed on a line by itself, and any arguments follow the command
word. The command need not be typed in its entirety--the first command that matches
the typed prefix is used. For example, you can type "h" instead of "headers" for the
headers command.

After the command itself is typed, one or more spaces should be entered to separate the
command from its arguments. If a mail command does not take arguments, any
arguments you give are ignored and no error occurs. If no message-list is specified for a
command that requires a message-list argument, the mail command uses the number of
the last message displayed as the message-list argument. If that message does not
satisfy the requirements of the command, the search proceeds forward. If there are no
messages forward of the current message, the search proceeds backward, and if there
are no good messages at all, mail types

No applicable messages

Specifying Messages

Commands such as print and delete can be given a message-list argument to apply to
several messages at once. Thus delete 2 3 deletes messages 2 and 3, while delete 1-5
deletes messages 1 through 5. A star (*) addresses all messages, and a dollar sign ($)
addresses the most recent (highest numbered) message. The top (t) command prints the
first five lines of a message; hence, you can type

top *

to print the first five lines of every message. Message-lists can contain combinations of
lists, ranges, and names. For example, the following command prints out all messages
from Tom or Bob and with the header numbers 2, 4, 10, 11, or 12:

p tom bob 2 4 10-12

6-4

XENIX 286 User's Guide mail

Executing Shell Commands

To execute a shell command from command mode, precede the command with an
exclamation point. For example

!date

prints out the current date without leaving mail. You can also execute shell commands
from compose mode with the syntax

-!command

Determining the Number of the Current Message

The number command (=) prints out the header number of the current message. It takes
no arguments.

Counting the Number of Characters in a Message

The size (si) command prints out the number of characters in each message in a
message-list. For example, the command

si 1-4

might print out

4: 234
3: 1000
2: 23
1: 456

Changing Working Directories

The cd command changes the working directory to the name of the directory given as
an argument. If no argument is given, the directory is changed to your home directory.
This command works just like the normal XENIX cd command. {Note that exiting mail
returns you to the directory from which you entered mail; thus the mail cd command
works only within mail.} You may want to place a cd command in your .mailrc file so
that you always begin executing mail from within the same directory.

Reading Commands from a File

The source (so) command reads in mail commands from the specified file. This enables
you to write a file to perform routine mail functions, run the file while you are away
from your work area, and review your messages at any time. The syntax for the so
command is

so filename

6-5

mail XENIX 286 User's Guide

Reading mail

To read messages sent to you, type

mail

mail then brings your mail from the system mailbox and prints out a one-line header for
each message. The most recent message is the first message listed and may be printed
by entering

p

You can move forward one message by pressing RETURN or by typing "+". To move
forward n messages, use +n. You can move backward one message with the - command
or move backward n messages with -n. You can also move to any message and display it
by typing its number.

If new messages arrive while you are in mail, the following message appears:

New mail has arrived -- type 'restart' to read.

Type

restart

and the headers of the new messages are displayed.

Suppose you have a header-list that looks like this:

3 john
2 sam

tom

Wed Sep 21 09:21 26/782 "Notice"
Tue Sep 20 22:55 6/83 "Meeting"
Mon Sep 19 1:23 6/84 "Invite"

and you want to read the second message, type

2

and press RETURN. This causes mail to respond with

From sam Tue Sep 20 22:55 1983
To: john
Subject: Meeting

(text of message)

To look at message 3, type

or to look at message 1, type

+

6-6

XENIX 286 User's Guide mail

The commands + and - execute relative to the last message referred to, which in our
example was 2. For large numbers of messages, you can skip forward and backward by
the number of messages specified as an argument to + and -. For example, typing

+3

skips forward three messages. If you type

p*

then all messages are displayed, since the star (*) matches all messages.

Pressing RETURN prints out the next message in the header-list. You can can always
go to a message and print it by giving its message number or one of the special
characters, dot (.), caret ("), or dollar sign ($). In the example where message 2 is the
current message, the command

prints the current message. The command

prints message 1. The command

$

prints message 3.

Displaying the First Five Lines

The top (t) command prints the first five lines of each specified message. Message
numbers may be specified individually, collectively, or as a range. For example

top 2-12

prints out the first five lines of each of the messages 2 through 12. In the example

top 2,4,6,8

the first five lines of messages 2, 4, 6, and 8 are displayed.

Editing a Message

To edit individual messages using the text editor ed, use the edit (e) command. It takes
a message-list and processes each message in turn by writing it to a temporary buffer.
The editor ed is then automatically invoked so that you can edit the temporary file.
When you finish editing the message, write the message out, then quit the editor. The
mail system then reads the message back into the message buffer and removes the
temporary file.

6-7

mail XENIX 286 User's Guide

It is often useful to be able to invoke either a line or visual editor, depending on the
type of terminal you are using. To invoke vi, you can use the visual (v) command. The
operation of the visual command is otherwise identical to that of the edit command.

Displaying the Next Message

The autoprint switch (see description automatically prints the next message in the list
when you delete the current message. Also, the restored message is displayed
automatically after execution of an undelete command.

Listing Messages in Chronological Order

The chron switch causes messages to be listed in chronological order. By default,
messages are listed with the most recent first. Set chron when you want to read a
series of messages in the order they were received.

The mchron switch also prints messages in chronological order but lists the m in the
opposite order, i.e., highest-numbered (most recent) first. This is useful if you keep a
large number of messages in your mailbox and you wish to list the headers of the most
recently received mail first but read the messages themselves in chronological order.

Replying to mail

Often you want to deal with a message by responding to its author right away. The
reply (r) command is useful for this purpose: it takes a message-list and sends mail to
the author of each message. The original message's subject field is copied as the reply's
subject. Each message is composed in compose mode and messages are terminated by
pressing CONTROL-D.

The Reply (R) com mand works the same as r, except that copies of the reply are also
sent to everyone shown in the original message's To: and Cc: fields.

Saving mail

The save (s) command enables you to save messages in files other than mbox. By using
save, you can organize your mail by putting messages in appropriate files. The save
command writes out each message to the file given as the last argument on the
command line. For example, the following command appends messages 1-5 to the file
letters:

s 1-5 letters

The file letters is created if it does not already exist. Each saved message is marked
with a star (*).

save writes out the entire message, including the To:, Subject:, and Cc: fields. In
comparison, the write command (discussed below) writes out only the bodies of the
specified messages.

6-8

XENIX 286 User's Guide mail

The write (w) command writes out the body of each message to the file given as the last
argument on the command line. Each written message is marked with a star (*). The
syntax is similar to that of the save command. For example

w 3-17 john elliot book

writes out the bodies of all messages from John and Elliot in the number range 3-17.
They are catenated to the end of the file named book.

The mbox (mb) command marks each message specified in a message-list so that they
are saved in the user mailbox when a quit command is executed. Message headers are
marked with an "M" to show that they are to be saved in mbox.

The hold (ho) command takes a message-list and marks each message so that it is saved
in your system mailbox instead of deleted or saved in mbox when you quit.

Deleting Messages

Unless you indicate otherwise, each message you receive is automatically saved in the
system mailbox when you quit mail. Often, however, you don't want to save messages
you have received. To delete messages, use the delete (d) command. For example

delete 1

prevents mail from retaining message 1 in the system mailbox. The message and its
number disappear; the remaining messages in the queue are not renumbered.

The dp command deletes the current message and prints the next message. It is useful
for quickly reading and disposing of mail. Using dp is the same as using the d command
with the autoprint option set.

Undeleting Messages

The undelete (u) com mand causes a message previously deleted with d or dp to reappear.
For example, to undelete message 3, type

u3

You cannot undelete messages from previous mail sessions; they are unrecoverable.

Forwarding mail

To forward a copy of the current message to another user, use the forward (f) command.
The syntax of the f command is

f usernames

6-9

mail XENIX 286 User's Guide

For example, to forward the current message to John, type

f john

John will receive the forwarded message, along with a heading showing that you are the
one who forwarded it. Inside the new message, the forwarded message is indented one
tab stop. An optional message number can also be given. For example

f 2 john bill

forwards message 2 to john and bill.

The Forward (F) command works the same as the f command, except that the forwarded
message is not indented.

Printing mail

The Ipr (1) command paginates and prints out messages to the line printer. It takes a
message-list as Its argument, then paginates and prints out each message. For example

I doug

prints out each message from Doug.

Sending mail

To send a message, invoke mail with the names of the people and groups you want to
receive the message. N ext, type in your message. When you are finished, press
CONTROL-D on a blank line. The message is automatically sent to the specified
people. The section "Composing Messages" that follows describes some mail features
that help you compose messages.

If you have a file named letter that contains a written message, you can send it to Sam,
Bob, and John by typing

mail sam bob john < letter

Be very careful when mailing a file with the input redirection symbol «). If you
accidentally type the output redirection symbol (», you will overwrite the file,
destroying its contents.

To send mail from command mode, use the mail (m)command.This sends mail in the
manner described for the reply command, except that you supply a list of recipients
either as an argument or by entering them in the To: field. Note that the mail command
is in most ways identical to typing mail usernames at the XENIX command level.

If mail cannot be delivered to a specified address, you will either be notified
immediately, in which case a copy of the undeliverable message is appended to the file
dead.letter in your home directory, or be notified via return mail, in which case a copy
is included in the return mail message.

6-10

XENIX 286 User's Guide mail

Composing Messages

To compose messages, you must enter mail compose mode. Do this from XENIX
command level by typing

mai I username

where username is the name of a user to whom you want to send mail. From mail
command mode, you can enter compose mode with the mail, reply, or Reply commands.
Once in compose mode, the text that you type is appended one line at a time to the body
of the message you are sending. Normal line editing functions are available when
entering text, including CONTROL-U to kill a line and BACKSPACE to back up one
character. Note that entering two interrupts in a row (i.e., pressing INTERR UPT twice)
aborts your composition.

In compose mode, mail treats lines beginning with the tilde (-) in a special way. This
character introduces compose mode commands called compose escapes; compose
escapes enable you to enter commands and perform functions while composing
messages.

For example, typing

-m

by itself on a line places a copy of the most recently printed message inside the message
you are composing. The copy is shifted right one tab stop. Other compose escapes set
up heading fields, add and delete recipients to the message, enable you to escape to an
editor, enable you to revise the message body, or run XENIX commands. For a list of the
available compose escapes when in compose mode, type

-?

The following sections contain more detail about the compose escapes.

Displaying Messages

To display the text of a message you are composing, type

-p

This prints a line of dashes and the heading and body of the message so far.

Editing Messages

If you are dissatisfied with a message as it stands, you can edit the message by invoking
ed with the editor escape, -e. This causes the message to be copied into a temporary
buffer so that you can edit it. Similarly, the -v escape causes the message to be copied
into a temporary buffer so that you can edit it with vi. After modifying the message to
your satisfaction, write it out and quit the editor. mail responds by displaying

(continue)

after which you may continue composing your message.

6-11

mail XENIX 286 User's Guide

Editing Headers

To add additional names to the list of message recipients, type

..... t name 1 name2 ...

naming as many additional recipients as you wish. Note that users originally on the
recipient list will still receive the message: you cannot remove anyone from the
recipient list with -t. To remove a recipient, use the -h command, discussed later in
this section.

You can replace or add a subject field by using the -s escape:

~s line-of-text

This replaces any previous subject with line-or-text. The subject, if given, appears near
the top of the message, prefixed with the heading Subject:. You can look at the message
by typing -p, which prints out all heading fields and the body of the message.

You may occasionally prefer to list certain people as recipients of carbon copies of a
message rather than direct recipients. The escape

..... c name 1 name2 ...

adds the named people to the Cc: list.

Similarly, the escape

..... b name 1 name2

adds the named people to the Bcc: (Blind carbon copy) list. The people on this list
receive a copy of the message but their names do not appear in the header or message.

The escape

..... R

adds or changes the person or persons named in the Return-receipt-to: field.

If you wish to edit any header fields in ways not possible with the -t, -s, -c, and - R
escapes, you can use

..... h

The escape -h prints To: followed by the current list of recipients and leaves the cursor
at the end of the line. If you enter ordinary characters, they are appended to the end of
the current list of recipients. You can also use the normal XENIX command line editing
characters to edit these fields, so you can erase existing heading text by backspacing
over it. Press RETURN to advance through the fields. Each of these fields can be
edited in the same way. A final RETURN appends text to the end of the message body.
You can use -p to print the current text of the heading fields along with the body of the
message.

6-12

XENIX 286 User's Guide mail

Adding a File to a Message

You may want to include the contents of some file in your message. The escape

-r filename

appends the named file to your current message. The system returns an error message
if the file doesn't exist or can't be read. If the read is successful, mail prints the
number of lines and characters appended to your message.

As a special case of -r, the escape

-d

reads in the file dead.letter from your home directory. This is often useful because mail
copies the text of your message buffer to dead.letter whenever you abort the creation
of a message by either typing two consecutive interrupts or entering a -q escape.

Enclosing Another Message

If you are sending mail from within mail's command mode, you can insert a message sent
to you into the message you are currently composing. For example, you might type

-m 4

This reads message 4 into the message you are composing, shifted right one tab stop.

The escape

-M 4

performs the same function, but with no right shift. You can name any nondeleted
message or list of messages.

Saving Messages in a File

To save the current text of a message body in a file, use

-w filename

The mail system writes out the message body to the specified file, then prints the
number of lines and characters written to the file. The -w escape does not write the
message heading to the file.

6-13

mail XENIX 286 User's Guide

Escaping to the Shell

To temporarily escape to the shell, use the escape

-!command

This executes command and returns you to mail compose mode without altering your
message. To filter the body of your message through a shell command, use

-Icommand

This pipes your message through the command and uses the output as the new text of
your message. This escape is particularly useful with the fmt com mand that performs
simple formatting operations on the text of your message. If the command produces no
output, mail assumes that something is wrong, retains the old version, and prints

(continue)

Escaping to mail Command Mode

To temporarily escape to mail command mode, use either of the following escapes:

-: mail-command

...... mail-command

You can then execute any mail command. Note that this escape does not work if you
enter compose mode from the XENIX shell. You will receive the message

May not execute cmd while composing

Placing an Escape Character at the Beginning of a Line

If you wish to send a message that contains a line beginning with an escape character
(e.g., tilde), you must type the escape character twice. For example, typing

--This line begins with a tilde.

appends

-This line begins with a tilde.

to your message.

6-14

XENIX 286 User's Guide mail

Sending Network mail

Mail can be sent between XENIX machines connected with Micnet by specifying a
machine name and the user name on that machine, separated by a colon:

machine:user

If appropriate gateways are known to the system, you can send mail to sites within the
uucp network using the syntax

machine!user

(Be sure to escape the exclamation point by preceding it with a backslash (\) when giving
it on a csh command line.) mail may also interpret other characters in the mail path
when dealing with other networks. In most cases, aliases should be set up so that
specifying machine names is unnecessary. For more information about sending network
mail, see the XENIX 286 Communications Guide.

Setting Up Your mail Environment: the .mailrc File

Whenever mail is invoked, it first reads the file /usr/lib/maiVmailrc then the file
.mailrc in the user's home directory. Systemwide aliases are defined in
/usr/lib/maiVmailrc. Personal aliases and set options are defined in .mailrc. The
following is a sample .mailrc file:

pound sign introduces com ments
personal aliases office and cohorts are defined below
alias office bill steve karen
alias cohorts john mary bob beth mike
set dot lets messages be terminated by period on new line
set askcc says to prompt for Cc: list after composing message
set dot askcc
cd changes directory to different current directory
cd

Setting Options

mail has several options that can be specified from mail com mand mode or in the file
.mailrc in your home directory.

When you use the mail command mode to set and unset mail options, the settings that
you specify during a session are in effect only during that session. If you want to change
options permanently, you must edit the .mailrc file.

The command

set?

prints out a list of the available options.

6-15

mail XENIX 286 User's Guide

mail switch and string options are set with the commands set and unset. A switch
option is either on or off (set or unset). String options are strings of characters assigned
values with the syntax option=string. Multiple options may be specified on a line. It is
most useful to place set and unset commands in the file .mailrc in your home directory,
where they become your own personal default options when you invoke mail. For
example, you might have a set command that looks like this:

set dot metoo toplines = 10 SHEll = lusr/bin/sh

The options dot and metoD are switch options; toplines and SHELL are string options.
The following sections describe the options available for the mail system.

askcc

The askcc switch causes prompting for additional carbon copy recipients when you finish
composing a message. Press RETURN to accept the current list. Pressing the
INTERRUPT key prints

interrupt (conti nue)

to continue editing the message.

dot

The dot switch enables you to use a period (.) as an end-of-transmission character, as
well as CONTROL-D. This option is available for those who are used to this convention
when editing with ed.

mete~

When you use an alias to send a message to a group and the alias contains your name,
you usually do not receive a copy of the message. Setting the mete~ option causes the
sender to receive a copy of the message.

nosave

By default, when you abort a message you are composing, it is saved in dead.letter in
your home directory. Setting the nos ave option prevents aborted messages from being
saved.

autoprint

Setting the autoprint option causes the delete com mand to behave like dp. After
deleting (or undeleting) a message, the next message in the list is automatically
displayed.

6-16

XENIX 286 User's Guide mail

chron

The chron switch causes messages to be listed in chronological order. By default,
messages are listed with the most recent first. Set chron when you want to read a list
of messages in the order they were received.

mchron

Setting mchron displays messages in chronological order but lists them in the opposite
order, i.e., most recent first. This is useful if you keep a large number of messages in
your mailbox and wish to list the headers of the messages most recently received but
read them in chronological order.

quiet

The quiet switch suppresses the printing of "<n> messages:" before the header list and
suppresses printing of the version header when mail is first invoked.

EDITOR

The EDITOR string contains the path name of the text editor to use in the edit
command and -e escape. If not defined, then ed is used. For example

set EDITOR = fbi nfed

escapes to ed.

VISUAL

The VISUAL string contains the path name of the text editor used in the visual com mand
and -v escape. By default vi is the editor used. For example

set VISUAL = fbinfvi

escapes to vi.

SHELL

The SHELL string contains the name of the shell to use in the! command and the -,
escape. A default shell (sh) is used if this option is not defined. For example

set SH ELL = fbi nlsh

escapes to the Bourne shell (sh).

6-17

mail XENIX 286 User's Guide

escape

The escape string defines the character to use in place of the tilde (-) to denote
compose escapes. For example, typing

set escape = *

causes the asterisk to become the new compose escape character.

page

The page string causes messages to be displayed in pages of size n lines. For example,
to set the page length to 10 lines, type

set page = 10

You are prompted with a question mark between pages. Pressing RETURN causes the
next page of the current message to be printed. By default this paging feature is turned
off.

record

The record string sets the path name of the file used to record all outgoing mail. If not
defined, then outgoing mail is not copied and saved. For example

set record = lusr/john/recordfile

causes all outgoing mail to be automatically appended to the file /usr/john/recordfile.

toplines

The toplines string sets the number of lines of a message to be printed out with the top
command. By default, this value is 5. For example

set toplines=10

causes 10 lines of each message to be printed out when the top command is used.

ignore

The ignore switch causes interrupt signals from your terminal to be ignored and echoed
as at signs (@). This switch is used when using mail over telephone lines.

6-18

XENIX 286 User's Guide mail

alias

The alias (a) command links a group of names with the single name given by the first
argument, thus creating a mailing list. For example, you could type

alias beatles john paul george ringo

so that whenever you used the name "beatles" in a destination address (as in mail
beatles), any mail would be sent to John, Paul, George, and Ringo. With no arguments,
alias prints out all currently-defined aliases. With one argument, it prints out the users
defined by the given alias.

You will probably want to define aliases in the .mailrc file so that you don't have to
redefine them each time you invoke mail.

Using Advanced Features

This section discusses advanced features of mail useful to those users already familiar
with the XENIX mail system.

Command Line Options

One very useful command line option is the -s "subject" switch. With this switch, you
can specify a subject on the com mand line. For example, you could send a file named
letter with the subject line, "Important Meeting at 12:00", by typing the following:

mail -s "Important Meeting at 12:00" john bob mike < letter

To include other header fields in your message, you can use the following options:

- R Makes the mail session "read-only", preventing alteration of the mail being read.

-b Adds the blind carbon copy field to the message header.

-c Adds the carbon copy field to the message header.

-r Adds the return-receipt to field to the message header.

-u Reads in user's mail.

The XENIX mail system also enables you to edit files of messages by using the -f switch
on the command line. For example

mail -f filename

causes mail to edit filename, and

mail -f

causes mail to read mbox in your home directory. All the mail commands except hold
are available to edit the messages. When you type the quit command, mail writes the
updated file back.

6-19

mail XENIX 286 User's Guide

Using mail as a Reminder Service

Besides sending and receiving mail, you can use mail as a reminder service. Several
XENIX com mands have this idea built in to them. For example, the XENIX lpr
command's -m switch causes mail to be sent to the user after files have been printed on
the line printer. XENIX automatically examines the file named "calendar" in each user's
home directory and looks for lines containing either today or tomorrow's date. These
lines are sent by mail as a reminder of important events.

When programming in the shell command language, you can use mail to signal job
completion. For example, you might place the following line in a shell procedure:

biglongjob echo "biglongjob done" I mail self

You can also create a logfile that you want to mail to yourself. For example, you might
have a shell procedure that looks like this:

dosomething > logfilemail self < logfile

Handling Large Amounts of mail

Eventually, you will face the problem of dealing with an accumulation of messages in
your user mailbox. You can employ a number of strategies to handle this. If your
mailbox file becomes large, periodically examine its contents to decide whether
messages are still relevant. For long messages, consider using summaries.

Even the above measures are usually not enough to organize the many messages you are
likely to receive. One effective approach is to save mail in files organized by sender, by
topic, or by a combination of the two. Create these files in a separate mail directory;
you can access these mailbox files with the mail -f filename switch.

6-20

XENIX 286 User's Guide mail

Quick Reference

The following sections provide quick reference to the available mail files, programs,
commands, compose escapes, and options.

mail Files and Programs

The following is a list of the programs and files that make up the XENIX mail system:

/usr/bin/ mail

/usr/lib/maiVmailrc

/usr/spooVmaiV*

/usr/name/mbox

/usr/name/. mailrc

/usr/lib/ maiV mailhelp.cmd

/usr/lib/ maiV mailhelp.esc

/usr/lib/ maiV mailhelp.set

/usr/lib/ maiV aliases

/usr/lib/ maiV aliashash

Mail program

Mail system initialization file

System mailbox files

User mailbox

User mail initialization file

Mail command help file

Mail compose escape help file

Mail option help file

Systemwide aliases

Program to produce the /usr/lib/main/alias.hash
file from the /usr/lib/maiValiases file.

A systemwide distribution list is kept in /usr/lib/maiValiases. A system administrator is
usually in charge of this list. These aliases are specified in a much different syntax
from .mailrc and are expanded when mail is sent. You will normally need special
permission to change system wide aliases.

Command Summary

Given below are the name and syntax for each command, its abbreviated form (in
brackets), and a short description. Many com mands have optional arguments; most can
be executed without any arguments at all. In particular, commands that take a
message-list argument will default to the current message if no message-list is given. In
the following descriptions, italics indicate arguments to commands or compose escapes.
The vertical bar indicates selection and is used to separate the arguments from which
you may select. All other text should be read literally.

6-21

mail

RETURN

+n

-n

$

=
?

!sheZZ cmd

Alias

alias name users

cd directorynam e

delete mesg-list

dp mesg-list

echo

edit mesg-list

exit[!]

file

XENIX 286 User's Guide

Prints the next message.

[+] With no n argument, goes to the next message and prints it. If
given a numeric argument n, goes to the nth message and prints
it.

[-] With no n argument, goes to the previous message and prints
it. If given a numeric argument n, goes to the nth previous
message and prints it.

Prints the first message.

Prints the last message.

Prints the message number of the current message.

Prints the summary
lusr/libl mail/ mailhelp.cmd.

of mail commands in

Executes the shell command that follows. No space is needed
after the exclamation point.

Prints systemwide aliases for users.

[a] Uses name as an alias for the group of users. With no name
arguments, prints all currently defined aliases. With one
argument, prints the users aliased by the given name argument.

[c] Changes the user's working directory to the specified
directory. If no directory is given, then changes to the user's
home directory.

[d] Deletes each message in the given message-list.

Deletes the current message and prints the next message.

Expands shell metacharacters.

[e] Takes the given message-list and points the text editor at
each message in turn. On return to command mode, the edited
message is read back in. See also the visual command.

[x] Immediately returns to the shell without modifying the system
mailbox, the user mailbox, or a file specified with the -f switch.

[fi] Prints the name of the mailbox file.

forward mesg-num user-list
[f] Takes a user-list argument and forwards the current message
to each name. The message sent to each is indented and shows
that the sender has passed it on. The mesg-num argument is
optional and is used to forward the numbered message instead of
the default message.

Forward mesg-num user-list
[F] Same as forward except that the message is not indented.

6-22

XENIX 286 User's Guide mail

headers +n I -n I mesg-list

hold mesg-list

list

lpr m esg-list

mail user-list

mbox mesg-list

[h] With no argument, lists the current range of headers, which is
an I8-message group. If a plus (+) argument is given, then the
next I8-message group is printed, and if a minus (-) argument is
given, the previous I8-message group is printed. Both plus and
minus accept an optional numeric argument indicating the
number of header windows to move forward or backward. If a
message-list is given, then the message header for each message
in the list is printed.

[ho] Takes a message-list and marks each message to be saved in
the user's system mailbox instead of in mbox.

Prints list of mail commands.

[1] Prints each of the messages in the required message-list on the
line printer. Messages are piped through pr before being printed.

[m] Takes an optional user-list argument and sends mail to each
name after entering compose mode.

[mb] Marks messages given in the message-list argument to be
saved in the user mailbox when a quit is executed. Message
headers contain an initial letter "M" to show that they are to be
saved.

move mesg-list mesg-num

print mesg-list

quit

reply m esg-list

Reply mesg-list

Places the messages specified in mesg-list after the message
specified in mesg-num. If mesg-num is 0, mesg-list moves to the
top of the mailbox.

[p] Takes a message-list and prints each message on the user's
terminal.

[q] Terminates the mail session, retaining all nondeleted, unsaved
messages in the system mailbox. Examined messages are saved in
the user mailbox, deleted messages are discarded, and all
messages marked with the hold command are retained in the
system mailbox. If executing a quit while editing a mailbox file
with the -f flag, the mailbox file is rewritten and the user returns
to the shell.

[r] Takes a message-list and sends mail to each message author
just like the mail command.

[R] Identical to the reply command except that replies are .also
sent to other users in the To: and those named in the Cc: field.

save mesg-list filename
[s] Takes an optional message-list and a file name and appends
each message in turn to the end of the file. The default message
is the current message.

6-23

mail

set

set option-list

shell

size m esg-list

source file

top

string string mesg-list

undelete m esg-Zist

unset options

visual m esg-list

XENIX 286 User's Guide

[se] Prints list of available options.

[se] With no arguments, prints all variable values. Otherwise,
sets option. Arguments are of the form option=vaZue, if the
option is a string option, or just option, if the option is a switch.
Multiple options may be set on one line.

[sh] Invokes an interactive version of the shell.

[si] Takes a message-list and prints the size in characters of each
message.

[so] Reads and executes mail com mands from the given file.

[t] Takes a message-list and prints the top five lines. The number
of lines printed is set by the variable toplines.

Searches for string in mesg-Zist. Ignores case in search.

[u] Takes a message-list and marks each one as not being deleted.
Each message in the list must have been previously deleted.

runs] Takes a list of option names and discards their remembered
values; this is the opposite of set.

[v] Takes a message-list and invokes the vi editor on each one.

write mesg-list filename
[w] Writes the message bodies of messages given by the message­
list to the file given by file name.

Compose Escape Summary

The compose escapes listed below are used when composing messages to perform special
functions. They are only recognized at the beginning of lines. The escape character can
be set with the escape string option. Abbreviations for each escape are in brackets.

--string

-?

-!command

-Icommand

6-24

Inserts string in a message, prefaced by a single tilde (-).

Displays help screen for compose escapes.

Terminates text entry and mails message.

Executes a shell command, then returns to compose mode.

Pipes the message body through the command as a filter.
Replaces the message body with the output of the filter. If the
command gives no output or terminates abnormally, retains the
original message body.

XENIX 286 User's Guide mail

.... mail-command Executes a mail com mand, then returns to compose mode .

.... :mail-command Executes a mail command, then returns to compose mode .

.... ali as [.... a] Prints list of private aliases •

.... alias aliasname [.... a] Prints names included in private aliasname •

.... alias aliasname users
- [.... a] Adds users to private aliasname list.

.... Alias

.... Alias users

.... bcc name ..•

-cc name ...

-dead

-editor

-headers

.... message m esg-list

.... Message mesg-list

.... print

.... quit

.... read filename

.... Return nam e •..

.... shell

.... subject string

-to name ...

-visual

.... write filename

[.... A] Prints list of systemwide aliases .

[.... A] Prints systemwide aliases for users .

[-b] Adds the given name(s) to the Bee: field .

[-c] Adds the given name(s) to the Ce: field.

[.... d] Reads the file dead.letter from your home directory into the
message.

[-e] Invokes the line editor on the message being sent. Exiting
the editor returns the user to compose mode.

[-h] Edits the message heading fields by printing each one in turn
and allowing the user to modify each field •

[-m] Reads the named messages into the message being sent,
shifted right one tab. If no messages are specified, reads the
current message .

[-M] Same as -message except with no right shift.

[-p] Prints the message buffer prefaced by the message heading .

[-q] Aborts the message being sent and copies the message to
dead.letter in your home directory if the save option is set •

[-r] Reads the named file into the message.

[-R] Adds the given name(s) to the Return-receipt-to: field .

[-sh] Invokes the Bourne shell .

[-s] Causes the named string to become the current subject field •

[-t] Adds the given name(s) to the To: field.

[-v] Invokes the vi editor to edit the message buffer. Exiting the
editor returns the user to compose mode.

[-w] Writes the message body to the named file •

6-25

mail XENIX 286 User's Guide

Option Summary

Options are controlled with the set and unset com mands. An option is either a switch or
a string. A switch is either on or off, while a string option has a value that is a path
name, a number, or a single character. Options are summarized below.

askcc

autoprint

chron

dot

EDITOR=

escape char

ignore

mchron

metoo

nosave

page=n

quiet

record=

SHELL=

toplines=

VISUAL=

6-26

Causes prompting for additional carbon copy recipients at the end of
each message. Pressing RETURN retains the current list.

Causes the delete command to behave like dp. After deleting (or
undeleting) a message, the next one is printed automatically.

Causes messages to be listed in chronological order.

Causes a single period on a blank line to act as the end-of-transmission
character; CONTROL-D also works.

Path name of the text editor to use in the edit command and -e escape.
If not defined, then ed is used.

Sets char as the character to use as compose escape character.

Causes interrupt signals from the terminal to be ignored and echoed as
at signs (@).

Causes messages to be listed in numerical order (most recently
received first) but displayed in chronological order.

Causes senders name to be included in alias expansions.

Prevents saving of the message buffer in the file dead. letter in the
home directory, after two interrupts or a -q escape.

Specifies number of lines per page (n) when displaying messages.

Suppresses the printing of the version when mail is first invoked.

Sets the path name of the file used to record all outgoing mail. If not
defined, then outgoing mail is not copied.

Path name of the shell to use in the! command and the -! escape. The
Bourne shell is used if this option is not defined.

Sets the number of lines of a message to be printed with the top
command. Default is five lines.

Path name of the text editor to use in the visual command and -v
escape. The default is for the vi editor.

Introduction

CHAPTER 7
be: A CALCULATOR

be is a program that can be used as an arbitrary precision arithmetic calculator. be's
output is interpreted and executed by a collection of routines that can input, output, and
perform calculations on indefinitely large integers and on scaled fixed-point numbers.
Although you can write substantial programs with be, it is often used as an interactive
tool for performing calculator-like computations. The language supports a complete set
of control structures and functions that can be defined and saved for later execution.

The syntax of be has been deliberately selected to be compatible with the C language. A
small collection of library functions is also available, including sine, cosine, arctangent,
log, exponential, and Bessel functions of integer order.

Common uses for be are

• Computation with large integers.

• Computations accurate to many decimal places.

• Conversions of numbers from one base to another base.

A scaling provision enables use of decimal point notation. Provision is also made for
input and output in bases other than decimal. Numbers can be converted from decimal
to octal simply by setting the output base equal to 8.

The actual limit on the number of digits handled depends on the amount of storage
available on the machine, so manipulation of numbers with many hundreds of digits is
possible.

Invoking bc and Exiting

To invoke the be calculator, type

be

and press RETURN. You can perform calculations as described in this chapter.

When you are ready to exit from be, press CONTROL-D until the command prompt
appears ($ is the default for the standard Bourne shell).

7-1

be XENIX 286 User's Guide

Scaling Quantities

Before you begin to do calculations, you need to understand how be deals with the
number of decimal places. Numbers can have up to 99 decimal digits after the decimal
point and the fractional part is retained in further computations. The number of digits
after the decimal point is referred to as its scale.

A special internal quantity called seale is used to determine the scale of calculated
quantities (as opposed to input quantities). The contents of scale can be no greater than
99 and no less than O. To check scale, type

scale

and press RETURN. To see how scale affects output, consider this example:

scale=O
64/8

In this example, scale is set to 0, then 64 is divided by 8. The output has no decimal
places and is displayed as

8

For comparison, consider this example:

scale=5
64/8

In this example, scale is set to 5, then 64 is divided by 8. The output has five decimal
places and is displayed as

8.00000

When two numbers are combined by means of one of the arithmetic operations, the
result has a scale determined by the following rules:

Addition, subtraction

Multiplication

Division

Modulo

7-2

The scale of the result is the larger of the scales of the two
operands; the result is never truncated.

The scale of the result is never less than the maximum of
the two scales of the operands, never more than the sum of
the scales of the operands. Subject to these two
restrictions, the scale of the result is set as close to the
contents of scale as possible.

The scale of a quotient is the contents of the internal
quantity, scale.

The scale of a remainder is the scale of the result of

a-a/b*b

XENIX 286 User's Guide be

Exponentiation The result of an exponentiation is scaled as if the implied
multiplications were performed. An exponent must be an
integer or you get a warning message and the exponent is
treated as 1.

Square Root The scale of a square root is set to the maximum of the
scale of the argument and the contents of scale.

Basic Arithmetic Operations

This section discusses basic arithmetic operations.

Operators

The following operators are used in making calculations:

OQerator Meaning ExamQle Result
(with seale=O)

+ addition 142857 + 285714 428571
subtraction 4765 - 325 4440

* multiplication 125 * 2 250
/ division 5000/5 1000
% modulo [a%b is a-a/b*b] 15%7 1

exponentiation 2"4 16

Division produces a result truncated toward zero in the specified scale. Division by zero
produces a warning message and a result of o.

There is also a built-in square root function whose result is truncated to match scale. [n
this example, scale is 0, and the lines

seale=O
sqrt(191)

produce the output

13

In this example, scale is 4, and the lines

seale=4
sqrt(191)

produce the output

13.8202

7-3

be XENIX 286 User's Guide

Expressions

The simplest kind of statement is an arithmetic expression on a line by itself. For
instance, if you type

142857 + 285714

and press RETURN, be responds immediately with the line

428571

Any term in an expression can be prefixed with a minus sign to indicate that it is to be
negated (this is the "unary" minus sign). For example, the expression

7 +-3

is interpreted to mean that -3 is to be added to 7.

More complex expressions with several operators and with parentheses are interpreted
just as in FORTRAN, with exponentiation C) being performed first, then multiplication
(*), division (/), modulo (%), and finally, addition (+) and subtraction (-). The contents of
parentheses are evaluated before expressions outside the parentheses. All of the above
operations are performed from left to right, except exponentiation, which is performed
from right to left. be shares with FORTRAN and C the convention that a/b*c is
equivalent to (a/b)*c. Thus the two expressions

a"b"e

a"(b"e)

are equivalent, as are the two expressions

a*b*e

(a*b)*e

All of the internal operations are actually carried out in terms of integers, with digits
being discarded when necessary. In every case where digits are discarded, truncation is
performed without rounding.

The internal quantity scale can be used in expressions just like other variables. The line

scale = seale + 1

increases the value of scale by one.

7-4

XENIX 286 User's Guide be

Registers

You may use 26 internal storage registers to hold numbers. The name of a register must
be a single lowercase letter, a-z.

This statement gives a register named "x" a value of 10:

x = 10

The result is not displayed on the screen, but you can see it by giving the register's
name; in this case

x

causes this to appear:

10

You can also assign the value of an expression to a register. In this example, a register
named "k" is given a value of 5, then 10 is added to the register:

k=5
k=k+5

In these lines, the value of the expression on the right of the equals sign is computed and
stored in the register named on the left of the equals sign. Again, the result is not
displayed, but you can see the register's contents by giving the register's name.

Registers may also be referred to as simple variables.

7-5

be XENIX 286 User's Guide

Advanced Features of bc

Specifying Input and Output Bases

be has special internal quantities called ibase (input base) and obase (output base). ibase
(base can be used in its place and means the same thing) is initially set to 10 and
determines the base used for interpreting numbers read by be. For example,

ibase = 8
11

produces

9

be will now do octal-to-deci mal conversions. However, recognize that you can't change
the input base back to deci mal by typing

ibase = 10

because the number 10 is interpreted as octal. For those who deal in hexadecimal
notation, the characters A-F are permitted in numbers no matter what base is in effect
and are interpreted as digits having values 10-15 respectively. These characters must
be uppercase and not lowercase. Thus, the statement

ibase = A

changes the base back to decimal, regardless of the current input base. Negative and
large positive input bases can be used; however, no mechanism has been provided for the
input of arbitrary numbers in bases less than 1 and greater than 16.

obase is used as the base for output numbers. The value of obase is initially set to
decimal 10. The lines

obase = 16
1000

produce

3E8

This is interpreted as a three-digit hexadecimal number.

7-6

XENIX 286 User's Guide be

Very large output bases may be used. In this case, each digit is expressed as a decimal
number and the decimal numbers are separated by a space. For example, large numbers
can be output in groups of five digits by setting obase to 100000. Even strange output
bases, such as negative bases, 1, and 0, are handled correctly.

Very large numbers are automatically split across lines with 70 characters per line. A
split line that continues on the next line ends with a backslash (\). Decimal output
conversion is fast, but output of very large numbers (i.e., more than 100 digits) with
other bases is rather slow.

The internal quantities ibase and obase can be used in expressions just like other
variables. Remember that ibase and obase do not affect the course of internal
computation or the evaluation of expressions; they affect only input and output
conversion.

Any fractional part of ibase or obase is truncated. For example, if you specify
ibase=3.5, then ask for ibase, the response is 3.

The value of seale retains its meaning as a number of decimal digits to be retained in
internal computation even when ibase or obase is not equal to 10. The internal
computations (which are still conducted in decimal, regardless of the input and output
bases) are performed to the specified number of decimal digits, never hexadecimal or
octal or any other kind of digits.

Using Functions

You can define 26 functions, named a-z, and you can use the same name for a function
and a register. For example, you can have a function named "m" and a register named
"m".

The line

define a(x){

begins the definition of a function named "a" with one argument. This line must be
followed by one or more statements, which make up the body of the function, ending
with a right brace (}). A function returns control when a return statement is executed
or when the end of the function is reached. The return statement can take either of the
two forms

return

return(expression}

In the first form, the returned value of the function is 0; in the second, it is the value of
the expression in parentheses. For example, this statement returns the value of "r+4":

return(r+4}

7-7

be XENIX 286 User's Guide

Variables used in functions can be declared as automatic by a statement of the form

auto x,y,z

Functions may contain only one auto statement, and it must be the first statement in
the definition. These automatic variables are allocated space and initialized to zero on
entry to the function and thrown away on return. The values of any variables with the
same names outside the function are not disturbed. Functions can be called recursively,
and the automatic variables at each call level are protected. The parameters named in
a function definition are treated in the same way as the automatic variables of that
function, except that they are given a value on entry to the function.

This example defines a function named "a":

define a(x,y){

}

auto z
z = x*y
return(z)

The value of this function, when called, will be the product of its two arguments, "x"
and "y".

To call a function, give its name followed by a string of arguments enclosed in
parentheses and separated by commas. The result is unpredictable if the wrong number
of arguments is used. For example, if function "a" is defined as shown above, then the
line

a(7,3.14)

would produce

21.98

Similarly, the line

x = a(a(3,4),5)

would cause the value of "x" to become 60.

Functions can require no arguments but still perform some useful operation or return a
useful result. Such functions are defined and called using parentheses with nothing
between them. For example, if you have defined a function named "b" with no
arguments, you would call it with

b ()

7-8

XENIX 286 User's Guide be

Using Subscripted Variables

A single lowercase variable name followed by an expression in brackets is called a
subscripted variable and indicates an array element. The variable name is the name of
the array, and the expression in brackets is called the subscript. Only one-dimensional
arrays can be used in be. The names of arrays can be the same as the names of simple
variables and function names. Any fractional part of a subscript is discarded before use.
Subscripts must be greater than or equal to zero and less than or equal to 2047.

Subscripted variables can be freely used in expressions, in function calls, and in return
statements.

An array name can be used as an argument to a function, as in

f(a[])

Array names can also be declared as automatic in a function definition with the use of
empty brackets:

define f(a[])
auto b[]

When an array name is so used, the entire contents of the array are copied for the use of
the function, then thrown away on exit from the function. Array names that refer to
whole arrays cannot be used in any other context.

Using Control Statements

The if, while, and for statements are used to alter the flow within programs or to cause
iteration. The range of each of these statements is a following statement or compound
statement (a collection of statements enclosed in braces). They are written as follows:

if (relation) statement
while (relation) statement
for (expressionl; relation; expression2) statement

if (relation) {statem ents}
while (relation) {statements}
for (expressionl; relation; expression2) {statements}

7-9

be XENIX 286 User's Guide

A relation in one of the control statements is an expression of the form

expressionl rel-op expression2

where the two expressions are related by one of the six relational operators:

< > <= >= == !=

Note that a double equal sign (==) stands for "equal to" and an exclamation-equal sign
(!=) stands for "not equal to". The meaning of the remaining relational operators is their
normal arithmetic and logical meaning.

The if statement causes execution of its range only if the relation is true. Then control
passes to the next statement in the sequence.

The while statement causes execution of its range repeatedly as long as the relation is
true. The relation is tested before each execution of its range, and if the relation is
false, control passes to the next statement beyond the range of the while statement.

The for statement begins by executing expressionl. Then the relation is tested and, if
true, the statements in the range of the for are executed. Then expression2 is executed.
The relation is tested, and so on. The typical use of the for statement is for a
controlled iteration, as in the statement

for(i=l; i<=10; i=i+ 1) i

which will print the integers from 1 to 10.

7-10

XENIX 286 User's Guide

The following examples illustrate the use of the control statements.

define f(n}{

}

auto i, x
x=1
for(i=1; i<=n; i=i+ 1) x=x*i
return(x)

The line f(5) produces 120, which is the factorial of 5.

be

The following is the definition of a function that computes values of the binomial
coefficient ("m" and "n" are assumed to be positive integers):

define b(n, m}{
auto x, j
x=1

}

forG=1; j<=m; j=j+ 1) x=x*(n-j+ 1)/j
return(x)

The following function computes values of the exponential function by summing the
appropriate series without regard to possible truncation errors:

scale = 20
define e(x}{

}

auto a, b, c, d, n
a=1
b=1
e=1
d=O
n=1
while(1==1}{

}

a = a*x
. b = b*n
c = c + alb
n=n+1
if(e==d) return(c)
d=c

With function "e" defined as shown, the line e(O) produces

1.00000000000000000000

and the line e(1) produces

2.71828182845904523526

7-11

be XENIX 286 User's Guide

Using Other Language Features

Some important language features are listed below.

• Statements are usually typed one to a line, but you can type several statements on
a line if they are separated by semicolons.

• If an assignment statement is in parentheses, it has a value and can be used
anywhere an expression can. For example, the line

(x=y+17)

not only makes the indicated assignment, but also prints the resulting value.

The following uses the value of an assignment statement even when it is not in
parentheses:

x = a[i=i+ 1]

This causes a value to be assigned to "x", and also increments "i" before it is used
as a subscript. (Note: nothing is displayed if you just type this line by itself, since
it is a partial example.)

• The following constructions can be used in bc:

Construction

x=y=z
x=+y
x=-y
x=*y
x=/y
x=%y
x="y
x++
x-­
++x
--x

Equivalent

x=(y=z)
x=x+y
x=x-y
x=x*y
x=x/y
x=x%y
x=x"y
(x=x+ 1)-1
(x=x-1)+ 1
x=x+1
x=x-1

Even if you don't intend to use these constructions, if you type one inadvertently,
something legal but unexpected may happen. Be aware that in some of these
constructions spaces are significant. For example, in the constructions "x=-y" and
"x= -y", the first replaces "x" by "x-y" and the second by "-y".

• The comment convention is identical to the C comment convention. Comments
begin with "1*" and end with "*1". They may span lines.

7-12

XENIX 286 User's Guide be

• When you invoke be, you can load a library of math functions by using the -1 option
as follows:

be -1

This library sets scale to 20 by default. The library functions are

sex)
e(x)
a(x)
lex)
e(x)
j(n,x)

• If you type

Compute the sine of x (x is input in radians).
Compute the cosine of x (x is input in radians).
Compute the arctangent of x (x is input in radians).
Compute the natural logarithm of x.
Compute the exponent of x (eX).
Compute the Bessel function of nand x.

be filename

be will read and execute the named file or files before accepting commands from
the keyboard. In this way, you can load your own programs and function
definitions.

language Reference

This section is a comprehensive reference to the be language. It contains a more concise
description of the features mentioned in earlier sections.

Tokens

Tokens are keywords, identifiers, constants,
separators can be blanks, tabs, or comments.
separate statements.

operators, and separators. Token
Newline characters or semicolons

Comments

Identifiers

Comments are introduced by /* and are terminated by */. They
may span lines.

There are three kinds of identifiers: ordinary identifiers, array
identifiers, and function identifiers. All three types consist of
single lowercase letters. Array identifiers are followed by square
brackets, enclosing an optional expression describing a subscript.
Arrays are singly dimensioned and can contain up to 2048
elements. Indexing begins at 0 so an array can be indexed from 0
to 2047. Subscripts are truncated to integers. Function
identifiers are followed by parentheses, enclosing optional
arguments. The three types of identifiers do not conflict; a
program can have a variable named "x", an array named "x", and
a function named "x", all of which are separate and distinct.

7-13

be

Keywords

Constants

Expressions

XENIX 286 User's Guide

The following are reserved keywords:

ibase if
obase break
scale define
sqrt auto
length return
while quit
for base

Constants are arbitrarily long numbers with an optional decimal
point. The hexadecimal digits A - F are also recognized as digits
with decimal values 10-15 respectively.

All expressions can be evaluated to a value. The value of an expression is always
printed unless the main operator is an assignment. The order in which they are
evaluated is as follows:

Function calls
Unary operators
Exponentiation operators
Multiplicative operators
Additive operators
Assignment operators
Relational operators

There are several types of expressions:

named expressions

identifiers

array-name [expression]

scale, ibase, and obase

7-14

Named expressions are places where values are stored.
Simply stated, named expressions are legal on the left side
of an assignment. The value of a named expression is the
value stored in the place named.

Simple identifiers are named expressions. They have an
initial value of zero.

Array elements are named expressions. They have an initial
value of zero.

The internal registers seale, ibase, and obase are all named
expressions. scale is the number of digits after the decimal
point to be retained in arithmetic operations. ibase and
obase are the input and output number radixes respectively.
Both ibase and obase have initial values of 10.

XENIX 286 User's Guide be

constants Constants are primitive expressions that evaluate to
themselves.

parenthetic expressions An expression surrounded by parentheses is a parenthetic
expression. The parentheses may be used to alter normal
operator precedence.

function calls Function calls are expressions that return values.

Function Calls

A function call consists of a function name followed by parentheses containing a
comma-separated list of expressions, which are the function arguments. The syntax is
as follows

function-name ([expression [, expression •••]])

A whole array passed as an argument is specified by the array name followed by empty
square brackets. All function arguments are passed by value. As a result, changes made
to the formal parameters have no effect on the actual arguments. If the function
terminates by executing a return statement, the value of the function is the value of the
expression in the parentheses of the return statement, or 0 if no expression is provided
or if there is no return statement. Three built-in functions are listed below:

sqrt(expr)

length(expr)

scale(expr)

The result is the square root of the expression and is truncated in the
least significant decimal place. The scale of the result is the scale of
the expression or the value of scale, whichever is larger.

The result is the total number of significant decimal digits in the
expression. The scale of the result is zero.

The result is the scale of the expression. The scale of the result is
zero.

7-15

be XENIX 286 User's Guide

Unary Operators

The unary operators bind right to left.

-expr

++named_expr

--nam ed_ expr

nam ed _ expr++

nam ed_ expr--

The result is the negative of the expression.

The named expression is incremented by one. The result is the value
of the named expression after incrementing.

The named expression is decremented by one. The result is the value
of the named expression after decrementing.

The named expression is incremented by one. The result is the value
of the named expression before incrementing.

The named expression is decremented by one. The result is the value
of the named expression before decrementing.

Exponentiation Operators

expr"expr The exponentiation operator binds right to left. The result is the first
expression raised to the power of the second expression. The second
expression must be an integer. If "a" is the scale of the left expression
and "b" is the absolute value of the right expression, then the scale of
the result is

m in(a *b, max(scale, a»

Multiplicative Operators

The multiplicative operators (*, /, and %) bind from left to right.

expr*expr

expr/expr

expr%expr

7-16

The result is the product of the two expressions. If "a" and "b" are the
scales of the two expressions, then the scale of the result is

min(a+b, max(scale,a,b»

The result is the quotient of the two expressions. The scale of the
result is the value of scale.

The modulo operator (%) produces the remainder of the division of the
two expressions. More precisely,

a%b is a-a/b*b

The scale of the result is the sum of the scale of the divisor and the
value of scale.

XENIX 286 User's Guide be

Additive Operators

The additive operators bind left to right.

expr+expr The result is the sum of the two expressions. The scale of the result is
the maximum of the scales of the expressions.

expr-expr The result is the difference of the two expressions. The scale of the
result is the maximum of the scales of the expressions.

Assignment Operators

The assignment operators listed below assign values to the named expression on the left
side.

named _ expr=expr

named _ expr=+expr

named_ expr=-expr

named _ expr=*expr

named _ expr=/expr

named_ expr=%expr

nam ed _ expr= A expr

Relational Operators

This expression results in assigning the value of the expression on
the right to the named expression on the left.

The result of this expression is equivalent to
nam ed _ expr=nam ed_ expr+expr.

The result of this expression is equivalent to
nam ed _ expr=nam ed _ expr-expr.

The result of this expression is equivalent to
nam ed _ expr=nam ed _ expr* expr.

The result of this expression is equivalent to
nam ed _ expr=nam ed _ expr / expr.

The result of this expression is equivalent to
named _ expr=named _ expr%expr.

The result of this expression is equivalent to
nam ed _ expr=nam ed _ expr A expr.

Unlike all other operators, the relational operators are only valid as the object of an if
or while statement, or inside a for statement. These operators are listed below:

expr<expr The first expression is less than the second.

expr>expr The first expression is greater than the second.

expr<=expr The first expression is less than or equal to the second.

expr>=expr The first expression is greater than or equal to the second.

expr==expr The first expression is equal to the second.

expr!=expr The first expression is not equal to the second.

7-17

be XENIX 286 User's Guide

Storage Classes

be has only two storage classes: global and automatic (local). Only identifiers local to a
function need to be declared with the auto command. The arguments to a function are
local to the function. All other identifiers are assumed to be global and available to all
functions.

All identifiers, global and local, have initial values of zero. Identifiers declared as auto
are allocated on entry to the function and released on returning from the function.
Therefore, they do not retain values between function calls. Note that auto arrays are
specified by the array name, followed by empty square brackets.

Automatic variables in be do not work the same way as in C. On entry to a function,
the old values of the names that appear as parameters and as automatic variables are
pushed onto a stack. Until return is made from the function, reference to these names
refers only to the new values.

Statements

Statements must be separated by a semicolon or a newline. Except where altered by
control statements, execution is sequential. There are four types of statements:
expression statements, compound statements, quoted string statements, and built-in
statements. Built-in statements include auto, break, define, for, if, quit, return, and
while. Each kind of statement is discussed below:

Expression statements

Compound statements

Quoted string statements

Built-in statements

auto

7-18

When a statement is an expression, unless the main
operator is an assignment, the value of the expression is
printed, followed by a newline character.

Statements can be grouped together and used when one
statement is expected by surrounding them with curly
braces ({ }).

For example

"string"

prints the string inside the quotation marks. A carriage
return is allowed within the quotation marks.

The syntax for each built-in statement is given below:

The auto statement causes the values of the identifiers
to be pushed down. The identifiers can be ordinary
identifiers or array identifiers. Array identifiers are
specified by following the array name by empty square
brackets. The auto statement must be the first
statement in a function definition. Syntax of the auto
statement is

auto identifier [, identifier]

XENIX 286 User's Guide

break

define

for

if

quit

return

while

be

The break statement causes termination of a for or
while statement. Syntax for the break statement is

break

The define statement defines a function; parameters to
the function can be ordinary identifiers or array names.
Array names must be followed by empty square
brackets. The syntax of the define statement is

define ([parameter [, parameter •••]]) {statements}

The for statement is the same as

first-expression
while (relation) {

statement
last-expression

}

All three expressions must be present. Syntax of the for
statement is

for (expression; relation; expression) statement

The if statement is executed if the relation is true. The
syntax is

if (relation) statement

The quit statement stops execution of a be program and
returns control to XENIX when first encountered.
Because it is not treated as an executable statement, it
cannot be used in a function definition or in an if, for, or
while statement. Note that entering a CONTROL-D is
the same as typing quit. The syntax of the quit
statement is

quit

The return statement terminates a function, pops its
auto variables off the stack, and specifies the result of
the function. The result of the function is the result of
the expression in parentheses. The first form is
equivalent to return(O). The syntax of the return
statement is

return(expr)

The while statement is executed while the relation is
true. The test occurs before each execution of the
statement. The syntax of the while statement is

while (relation) statement

7-19

Intel Publications

APPENDIX A
RELATED PUBLICATIONS

Copies of the following publications can be ordered from

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

XENIX R. 3.4 Reference Library: Basic System

Overview of the XENIX 286 Operating System, Order Number 174385 -- XENIX history,
XENIX uses, basic XENIX concepts, and an overview of other XENIX manuals.

XENIX 286 User's Guide, Order Number 174387 -- a brief survey of common commands
plus full chapters on the ed text editor, the vi text editor, electronic mail, the Bourne
shell (sh), and the be calculator.

XENIX 286 Visual Shell User's Guide, Order Number 174388 -- a XENIX command
interface ("shell") that replaces the standard command syntax with a menu-driven
command interpreter.

XENIX 286 Installation and Configuration Guide, Order Number 174386 -- how to install
XENIX on your hardware and tailor the XENIX configuration to your needs.

XENIX 286 System Administrator's Guide, Order Number 174389 -- how to perform
system administrator chores such as adding and removing users, backing up file systems,
and troubleshooting system problems.

XENIX 286 Communications Guide, Order Number 174461 -- installing, using, and
administering XENIX networking software.

XENIX 286 Reference Manual, Order Number 174390 -- all commands in the XENIX 286
Basic System.

A-I

Related Publications XENIX 286 User's Guide

XENIX R. 3.4 Reference Library: Extended System

XENIX 286 Programmer's Guide, Order Number 174391 -- XENIX 286 Extended System
commands used for developing and maintaining programs.

XENIX 286 C Library Guide, Order Number 174542 -- standard subroutines used in
programming with XENIX 286, including all system calls.

XENIX 286 Device Driver Guide, Order Number 174393 -- how to write device drivers
for XENIX 286 and add them to your system.

XENIX 286 Text Formatting Guide, Order Number 174541 -- XENIX 286 Extended
System commands used for text formatting.

Other XENIX Publications

XENIX Networking Software Installation and Configuration Guide, Order Number
135146 -- installing, configuring, and administering the XENIX OpenNETTM network.

XENIX Networking Software User's Guide, Order Number 135147 -- user's and
programmer's reference to the XENIX OpenNETTM network.

A-2

A, vi command, 5-9, 5-26
a,

ed command, 4-7, 4-26
vi command, 5-9, 5-25

Aborting a command, 3-20
alias, in mail, 6-19, 6-22
Append,

data, 3-5
file,

using eat, 2-6
in ed, 4-22 thru 4-23
in vi, 5-11

text,
in ed, 4-7, 4-26
in vi, 5-9, 5-11, 5-25

:args, vi command, 5-3
Argument, passing, 3-17
askee, in mail, 6-16, 6-26
Assignment statements, 3-11, 7-12
auto, in be, 7-8
autoprint, in mail, 6-8 thru 6-9, 6-16,

6-26

Background processes, 2-19 thru 2-21,
3-2

be, 2 - 26, 7 - 1 t hru 7 -19
arithmetic operations, 7-3 thru 7-5
exiting, 7-1
expressions, 7-14
functions, 7-7 thru 7-8,7-13,7-15
ibase (input base), 7-6 thru 7-7
invoking, 7-1
operators, 7-14, 7-16 thru 7-17
obase (output base), 7-6 thru 7-7
scaling, 7-2
statements, 7-7 thru 7-11,7-18
storage classes, 7 -18
subscripted variables, 7-9
tokens, 7-13

Bee:, in mail, 6-2, 6-25
Ibin, 3-2
Bourne shell, 1-1, 2-2, 3-1 thru 3-51

INDEX

break, 3-24
Breaking lines,

in ed, 4-21
in vi, 5-15

e, ed command, 4-11, 4-26
C, vi command, 5-18 thru 5-19
eal, 2-24
calendar, 2-25
ease, 3-21 thru 3-22
eat, 2-5 thru 2-6
Ce:, in mail, 6-2, 6-25
ee, vi command, 5-18 thru 5-19
ed, 2-12, 3-15, 3-30, 6-5
Change,

directory, 2-12, 3-15, 6-5
password, 2-2

Child processes, 3-1, thru 3-2,
3-16, 3-29

ehmod, 2-15 thru 2-16
ehron, mail command, 6-8, 6-17, 6-26
co, vi command, 5-13
Combining files, 2-6, 4-22
Com mand Line, 3-6, 3-18 thru 3-19

entering, 2-2
erasing, 2-2
options, in mail, 6-19, 6-26
substitution, 3-7

Command{s),3-19
aborting, 3-20
arguments, 3-3
ed, summary of, 4-26 thru 4-27
grouping of, 3-25 thru 3-26
shell, 3-1 thru 3-51
vi, summary of, 5-25 thru 5-27

Comments, in be, 2-26, 7-12
Comparing files, 2-16
Conditional,

evaluation, 3-33 thru 3-34
looping, 3-23
statements, 3-21 thru 3-22
substitutions, 3-38 thru 3-40

Index-l

Index

Constructions, 7-12
continue, 3-24
Control-D, 3-20, 3-24, 6-3, 7-1
Control-G, vi command, 5-3
Control-S, 2-5
copy, 2-11
Copy,

file, 2-7
directory, 2-11
lines, in ed, 4-18 thru 4-19
text, in vi, 5-11 thru 5-14

Count,
characters, 2-18
lines, 2-18
words, 2-18

ep, 2-7
Create,

directory, 2-10
file, 2-3, 3-14

in ed, 4-1
in vi, 5-1

ew, vi command, 5-18 thru 5-19, 5-26

D, vi command, 5-10
d, mail command, 6-4, 6-9, 6-22
date, 2-24
dO, vi command, 5-10, 5-26
d$, vi command, 5-10, 5-26
dd, vi command, 5-10, 5-26
dead.letter, in mail, 6-10, 6-25 thru

6-26
define, be com mand, 7-7, 7-11
Delete,

directory, 2-10
file, 2-7, 2-9, 3-28
lines, in ed, 4-7
text, in vi, 5-10 thru 5-11

Diagnostic output, 3-4 thru 3-5
diff, 2-16
Directory,

changing, 2-12, 3-15, 6-5
copying, 2-11
current, 2-12
creating, 2-10
deleting, 2-10
listing, 2-9
login, 2-1, 2-25
permissions, 2-13
renaming, 2-11

Index-2

XENIX 286 User's Guide

removing, 2-10
searching, 3-43 thru 3-44
setting up, 3-44
working, 2-12

Displaying a file, 2-4 thru 2-5
do, 3-23 thru 3-24
done, 3-23 thru 3-24
• (dot), 3-27, 3-30, 3-32

in ed, 4-2, 4-27
in mail, 6-16, 6-26
in vi, 5-7, 5-27

dp, mail command, 6-9, 6-22
dw, vi com mand, 5-7, 5-10, 5-26

e, ed command, 4-2, 4-22, 4-26
:e, vi command, 5-4, 5-27
ed, 4-1 thru 4-27

appending text, 4-7, 4-26
calling files, 4-2, 4-26
combining files, 4-22, 4-26
command summary, 4-26 thru 4-27
copying lines, 4-18 thru 4-19,4-27
creating text, 4-7, 4-26
displaying lines, 4-4 thru 4-5, 4-26
displaying tabs and control

characters, 4-6
deleting lines, 4-7, 4-26
entering, 4-1
escaping to the shell, 4-6
exiting, 4-1, 4-6, 4-26
global commands, 4-17, 4-26 thru

4-27
interrupting, 4-6
joining lines, 4-22
marking your spot, 4-20
merging files, 4-22 thru 4-23
metacharacters, 4-13 thru 4-16
moving lines, 4-19 thru 4-20, 4-26
replacing text, 4-11 thru 4-13
saving changes, 4-1 thru 4-3, 4-27
searching, 4-8 thru 4-11, 4-26 thru

4-27
splitting lines, 4-21
undoing commands, 4-4, 4-27
use,

with mail, 6-7, 6-17, 6-22, 6-25
thru 6-26

with vi, 6-8, 6-17, 6-24 thru 6-26
EDITOR, in mail, 6-17, 6-26

XENIX 286 User's Guide

Editors,
visual, vi, 5-1 thru 5-27
line oriented, ed, 4-1 thru 4-27

echo, 2-17,3-35
elif, 3-21
else, 3-21
End-of-file, 3-24
Entering a command line, 2-2
env, 3-14, 3-17
Erasing a command line, 2-2
escape, in mail, 6-18, 6-26
eval, 3-19,3-31
exec, 3-30, 3-41
expressions, in bc, 7-14 thru 7-15
exit, 3-11, 3-24
export, 3-14, 3-16 thru 3-17
expr, 3-35

f, mail command, 6-9 thru 6-10, 6-22
:f, vi command, 5-3, 5-27
false, 3-36
fi, 3-21
:file, vi command, 5-3, 5-27
File(s),

appending,
in ed, 4-22 thru 4-23
in vi, 5-11
through redirection, 3-4 thru 3-5

calling from ed, 4-2, 4-26
combining, 2-6, 4-22, 4-26
comparing, 2-16
copying, 2-7
creating, 2-3,3-14,4-1,5-1
deleting, 2-7, 3-28
descriptors, 3-4 thru 3-5, 3-37
displaying, 2~4
editing, 2-5, 4-1 thru 4-27, 5-1

thru 5-27
finding, 2-8
in mail, 6-21
linking, 2-8 thru 2-9
merging,

in ed, 4-22
in vi, 5-11

moving, 2-6
permissions, 2-13
renaming, 2-6
removing, 2-7, 3-28

saving,
fro m ed, 4-2 thru 4-4
from vi 5-6, 5-27

sorting 2-17
structure, 2-12
temporary, 3-14, 3-28

Filter, 3-6
find, 2-8
Finding a file, 2-8
Flags, 3-33, 3-40
for, 3-23, 7-9
Foreground processes, 2-19
fork, 3-41
Functions, in bc, 7-7, 7-15

Index

g, ed command, 4-17 thru 4-18,4-26
g,:g, vi command, 5-16 thru 5-17,5-19,

5-26
global,

search, 2-18
commands, in ed, 4-1, 4-18, 4-26
com mands in vi, 5-16 thru 5-17,

5-19,5-26
grep, 2-18

head, 2-5
ho, mail command, 6-23
HOME, 3-13

I, vi command, 5-9, 5-25
i,

ed command, 4-11, 4-26
vi command, 5-9, 5-25

ibase (input base), 7-6 thru 7-7
if, 3-21,3-33, 7-10
IFS, 3-13, 3-18
ignore, in mail, 6-18, 6-26
in, 3-23
Inode, 2-8
Input,

redirecting, 3-4, 3-26, 3-37
standard, 3-4

Inserting text,
in ed, 4-7, 4-11, 4-26
in vi, 5-9, 5-25

Interrupt handling, 3-27

Index-3

Index

J, vi command, 5-15
j, ed command, 4-22
Joining lines,

in ed, 4-22
in vi, 5-15

k, ed command, 4-20
kill, 2-20 thru 2-21
Killing processes, 2-20 thru 2-21

1, ed command, 4-6, 4-26
1, mail command, 6-10, 6-23
Ie, 2-3, 2-9
Line numbers, in ed, 4-2, 4-27
Line printer, 2-21 thru 2-22
Linking files, 2-8 thru 2-9
Listing a directory, 2-9
In, 2-8 thru 2-9
Logging in, 2-1
Logging out, 2-2, 3-20
Login directory, 2-1
Looping, 3-23 thru 3-24, 3-35
Ipq, 2-22
Ipr, 2-21

m,
ed command, 4-19 thru 4-20,4-26
vi command, 5-14

MAIL, 3-13
mail, 2-22 thru 2-23, 6-1 thru 6-26

com mand line options, 6-19
commands, 6-21 thru 6-24
composing, 6-11 thru 6-14
deleting, 6-9, 6-22
editing headers, 6-12
editing messages, 6-7 thru 6-8, 6-11,

6-17, 6-22, 6-24, 6-26
environment, 6-15 thru 6-19
entering, 6-3
exiting, 6-3
files, 6-21
forwarding, 6-9, 6-22
help, 6-2
message format, 6-2
message headers, 6-3 thru 6-4
modes, 6-1 thru 6-2
options, 6-15 thru 6-19, 6-26
reading, 6-6 thru 6-10

Index-4

XENIX 286 User's Guide

receiving, 2-23
reminder service, 6-20
replying, 6-8, 6-23
saving, 6-8, 6-23
sending, 2-22, 6-10 thru 6-15
writing, 2-23, 6-11

Mailboxes, 6-1
• mailre, 2-9, 6-15
Marking a spot in a file,

in ed, 4-20
in vi, 5-12

mbox, 6-1
mesg, 2-23
Messages,

sending, 2-22
receiving, 2-23
writing, 2-23

Metacharacters, 3-3 thru 3-4,
3-50 thru 3-51
in ed, 4-13 thru 4-16
in vi, 5-20 thru 5-24

mk, vi command 5-12
mkdir, 2-10
more, 2-4
Move,

file, 2-6
lines, in ed, 4-19 thru 4-20,4-26
text, in vi, 5-14 thru 5-15

mv, 2-6, 2-11

n, vi command 5-16, 5-26
:n, vi command, 5-3 thru 5-4
newgrp, 3-31
nohup, 3-20
nosave, in mail, 6-16, 6-26
:nu, vi command, 5-6, 5-27

0, vi command, 5-9, 5-26
0, vi command, 5-9, 5-26
obase (output base), 7-6 thru 7-7
Operators, in be, 7-3, 7-15 thru 7-17
Output,

diagnostic, 3-4 thru 3-5
redirecting, 3-4, 3-26, 3-37
standard, 3-4

XENIX 286 User's Guide

p,
in ed, 4-4, 4-26
in mail, 6-4, 6-6, 6-23

page, in mail, 6-18, 6-26
Parent processes, 3-1 thru 3-2
Parameters,

keyword, 3-16 thru 3-17
positional, 3-8 thru 3-11

password, 2-2 thru 2-3
PATH, 3-13, 3-43
Pattern-matching, 2-5, 2-16, 2-18,

3-3, 3-35 thru 3-36
in ed, 4-8 thru 4-11
in vi, 5-15 thru 5-18

Permission, 2-10, 2-23
changing, 2-10, 2-15 thru 2-16

Pipeline, 3-4, 3-6, 3-19, 3-46
Positional parameters, 3-8 thru 3-11
pr, 2-21
printenv, 3-1 7
Print,

files, 2-21
lines, from ed, 4-4 thru 4-5

.profile, 2-9, 3-14 thru 3-16
Processes, 2-19 thru 2-21,3-14 thru

3-15, 3-41 thru 3-42
child, 3-1 thru 3-2, 3-16, 3-29
killing, 2-20 thru 2-21
parent, 3-1 thru 3-2

ps, 2-20
PSI, 3-13
PS2, 3-14
pwd, 2-12

Q, vi command, 5-7
q,

ed command, 4-1, 4-26
mail command, 6-3, 6-23

:q, vi command, 5-5, 5-27
quiet, in mail, 6-17, 6-26

R,

r,

mail command 6-8, 6-23
vi command 5-18, 5-26

ed command, 4-22 thru 4-23, 4-26
mail com mand, 6-8, 6-23
vi command, 5-18, 5-26

:r, vi command, 5-11 thru 5-12
read, 3-30 thru 3-31
Reading files,

in ed, 4-22 thru 4-23, 4-26
in vi, 5-11 thru 5-12,5-27

readonly, 3-31
record, in mail, 6-18, 6-26
Redirecting,

input, 3-4, 3-26, 3-37
output, 3-4 thru 3-5, 3-26, 3-37

Registers, in bc, 7-5
Reminder service, 6-20
Remove,

directory, 2-10
file, 2-7, 2-9, 3-28

Rename,
directory, 2-11
file, 2-6

Renumber lines, in ed, 4-2
Replace text, in ed, 4-12 thru 4-13
Reserved words, 3-51

Index

restart, mail command, 6-6
Return-receipt-to:, in mail, 6-2, 6-25
:rew, vi command, 5-4, 5-27
rm, 2-7, 3-28
rmdir, 2-10

S, vi command, 5-18
s,

ed command, 4-12, 4-26
mail command, 6-8, 6-23
vi command, 5-16 thru 5-18

Saving edits,
in ed, 4-1 thru 4-3
in vi, 5-6

scale, in be, 7-2, 7-14
Searching,

for patterns, 2-5, 2-16, 2-18, 3-3,
3-35 thru 3-36

in ed, 4-8 thru 4-11
in vi, 5-15 thru 5-18

set, 3-10 thru 3-11,3-16,3-17
mail command, 6-15, 6-24

:set, vi command, 5-6

Index-5

Index

sh, 3 - 1, 3 -11, 3 -1 7, 6 -24
SHELL, in mail, 6-17, 6-26
Shell, 3-1 thru 3-51

built-in commands, 3-30 thru 3-31
com mand interpreter, 3-1
commands, 3-2 thru 3-51
invoking, 3-17
passing arguments to, 3-17 thru 3-19
procedures, 3-31 thru 3-50
programming strategies, 3-41 thru

3-44
scripts, 3-9 thru 3-11
special commands, 3-30 thru 3-31
state, 3-15
variables, 3-8 thru 3-15

shift, 3-18
si, mail command, 6-5, 6-24
so, mail command, 6-5, 6-24
sort, 2-17, 3-45
Sorting a file, 2-17
Splitting lines

in ed, 4-21
in vi, 5-15

Square root, in bc, 7-3
Standard error, 3-4
Standard input, 3-4
Standard output, 3-4
Statements, in be, 7-7 thru 7-11,

7-18
Subscripted variables, 7-9
Subshell, creating, 3-11, 3-17, 3-25
Substituting text, in vi, 5-18 thru 5-19,

5-26

t,
ed command, 4-18, 4-27
mail command, 6-4, 6-7, 6-24

tail, 2-5
Temporary files, 2-21, 3-28, 3-36
test, 3-33
then, 3-21
time, 3-41
times, 3-31
/tmp, 2-21
To:, in mail, 6-2
Tokens, in be 7-13 thru 7-14
Toplines, in mail, 6-18, 6-26
tr, 3-46
trap, 3-27

Index-6

XENIX 286 User's Guide

Traps, 3-27 thru 3-30
true, 3-36

u, 4-4, 4-27, 5-7
ulimit, 3-31
umask, 3-31
undelete, mail command, 6-9, 6-24
undo, 4-4, 4-27, 5-7
Undoing commands,

in vi, 5-7
in ed, 4-4, 4-27

uniq, 3-45
until, 3-23 thru 3-24
/usr/bin, 3-2

v, in more, 2-5
v, ed command, 4-17 thru 4-18
Variables,

predefined special, 3-14 thru 3-15
shell, 3-8 thru 3-15
user-defined, 3-11 thru 3-14

vi, 2-5, 5-1 thru 5-27
breaking lines, 5-15
commands, 5-7

repeating, 5-7
sequence of, 5-7
summary, 5-25 thru 5-27
undoing, 5-7

copying text, 5-11 thru 5-14
creating files, 5-1 thru 5-2
deleting words, 5-10, 5-26
deleting text 5-10, 5-26
entering, 5-2 thru 5-3
exiting, 5-4, 5-27
inserting text, 5-9, 5-25 thru 5-26
joining lines, 5-15
marking, 5-12
metacharacters, 5-20 thru 5-24
moving in, 5-8 thru 5-9, 5-25
moving text, 5-14 thru 5-15
replacing text, 5-18
saving edits, 5-6, 5-27
searching, 5-15 thru 5-18
substituting text, 5-18
VISUAL, in mail, 6-17, 6-26

XENIX 286 User's Guide

w,
ed command, 4-1 thru 4-3, 4-27
mail command, 6-9, 6-24

:w, vi command, 5-3, 5-6, 5-27
wait, 3-31
we, 2-18 thru 2-20
while, 3-23 thru 3-24, 3-33, 7-9

thru 7-10
who, 2-19
Working directory, 2-12
write, 2-23

X, vi command, 5-10
x,

mail command, 6-3, 6-22
vi command, 5-10

:x, vi command, 5-4

ZZ, vi command, 5-2, 5-4

_, 3-27, 3-30, 3-32
in ed, 4-2, 4-27

? . ,
in mail, 6-16, 6-26
in vi, 5-7, 5-27

in ed , 4-8
in mail, 6-2
in shell, 3-3
in vi, 5-15 thru 5-16, 5-26

??, ed command, 4-9 thru 4-10,4-27 , .,
in ed, 4-6, 4-27
in mail, 6-5, 6-24
in vi, 5-5, 5-27

:, 3-30
;, 3-19
" 3-3 thru 3-4
", 3-3 thru 3-4
I, 3-6
>, 2-6, 3-4
», 2-6, 3-4
=, in mail, 6-5, 6-22
/t,3-18
/,

in ed, 4-8 thru 4-11, 4-27
in more, 2-5
in vi, 5-15 thru 5-16,5-26

Index

II, ed command, 4-8 thru 4-11, 4-13,
4-27

*, 3-3, 3-10
[], 3-3
$, 3-2
$/t,3-14
$?, 3-14
$!, 3-15
$-, 3-15
$*, 3-18
$$, 3-14
&., 2-20, 3-19
&.&., 3-19
II, 3-19
-, in mail, 6-11, 6-24

Index-7

REQUEST FOR READER'S COMMENTS

XENIX
User's GL
174387-

Intel's Technical Publications Departments attempt to provide publications that meet the needs of '
Intel product users. This form lets you participate directly in the publication process. Your commer

. will help us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, organization, and completeness of tt
publication. If you have any comments on the product that this publication describes, please conte
your Intel representative. If you wish to order publications, contact the Literature Department.

1. Please describe any errors you found in this publication (include page number) ..

2. Does this publication cover the information you expected or required? Please make suggestio
for improvement.

3. Is this the right type of publ ication for your needs? Is it at the right level? What other types
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME ___ DATE

TITLE
COMPANY NAM~DEPARTMENT __ ~

ADDRESS ---
CITY STATE ------------------------- _________________ ZIP CODE

(COUNTRY)

Please check here if you require a written reply. 0

'E'O LIKE YOUR COMMENTS ...

lis document is one of a series describing Intel products. Your comments on the back of this form will
!Ip us produce better manuals. Each reply will be carefully reviewed by the responsible person. All
Imments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation .
OMS Technical Publications, MS: HF2-52
5200 N.E. Elam Young Parkway
Hillsboro, Oregon 97124-9987

11.1111 ••• 111.11 •• 1.1.1 •• 11.1 •• 1.1 •• 1 •• 1.1 ••• 1.11.11

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

