XENIX* 286 User's Guide

Order Number: 174387-003

XENIX* 286
USER’S GUIDE

Order Number: 174387-003

*XENIX is a trademark of Microsoft Corporation.

Copyright © 1985 Intel Corporation. All rights reserved.
Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors
that may appear in this document. Intel Corporation makes no commitment to update or to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No
other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property of Intel Corporation. Use, duplication or disclosure is
subject to restrictions stated in Intel’s software license, or as defined in ASPR 7-104.9 (a)(9).

No part of this document may be copied or reproduced in any form or by any means without prior written consent of Intel
Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

Above iCEL intgl iPDS Megachassis QUEST
BITBUS iCS intglBOS iPSC MICROMAINFRAME QueX
COMMputer iDBP Intelevision iRMX MULTIBUS Ripplemode
CREDIT iDIS inteligent Identifier iSBC MULTICHANNEL RMX/80
Data Pipeline j[,BX inteligent Programming iSBX MULTIMODULE RUPI
Senius im Intellec iSDM ONCE Seamless
i iMDDX Intellink iISXM OpenNET SLD
;2ICE iMMX iOSP Library Manager ggg;\éﬁubble UPI

Insite MCS VLSiCEL
ICE Promware

XENIX, MS-DOS, Multiplan, and Microsoft are trademarks of Microsoft Corporation. UNIX is a trademark of Bell
Laboratories. Ethernet is a trademark of Xerox Corporation. Centronics is a trademark of Centronics Data Computer
Corporation. Chassis Trak is a trademark of General Devices Company, Inc. VAX is a trademark of Digital Equipment
Corporation. Smartmodem 1200 and Hayes are trademarks of Hayes Microcomputer Products, Inc.

REV. REVISION HISTORY DATE
-001 Original issue 11/84
-002 Revision 08/85
-003 Revision 12/85

ii 7185

intel®

TABLE OF CONTENTS

CONTENTS

CHAPTER 1

INTRODUCTION

Overview

Audience

Notation

The XENIX 286 Working Environment
Using This Manual

CHAPTER 2
TASKS
Introduction
Logging In
Logging Out
Entering and Erasing a Command Line
Changing Your Password
Manipulating Files
Creating a File
Displaying File Contents
Combining Files
Moving a File
Renaming a File
Copying a File
Deleting a File
Finding a File
Linking Files
Manipulating Directories
Listing Directory Contents
Creating a Directory
Removing a Directory
Renaming Directories
Copying Directories
Moving in the File System
Where You Are
Changing Directories
Using File and Directory Permissions
Changing Permissions

Changing Directory Search Permissions

| LI I N B |

I [

A WNNNPFERFEFOOOWDOWRRI-IOOOO O & WL NN M -

[I N |

DN DD DN NN NNN
|
ok ok paed ek ek ek e b ok

iii

Table of Contents

CONTENTS

Processing Information
Comparing Files
Echoing Arguments
Sorting a File
Searching for a Pattern in a File

Counting Lines, Words, and Characters

Controlling Processes
Determning Who Is on the System

Determining What Processes Are Running
Placing a Process in the Background

Killing a Process
Using the Line Printer
Sending a File to the Line Printer
Getting Line Printer Information
Communicating with Other Users
Sending mail
Receiving mail
Writing to a Terminal
Using the System Clock and Calendar
Finding Out the Date and Time
Displaying a Calendar
Using the Automatic Reminder Service
Caleculating

CHAPTER 3
THE SHELL
Introduction
Basie Concepts
The Shell
Commands
How the Shell Finds Commands
Generating Argument Lists
Quoting Mechanisms
Redirecting Input and Output
Standard Input and Output
Diagnostic and Other Outputs
Command Lines and Pipelines
Command Substitution
Shell Variables
Positional Parameters
User-Defined Variables
Predefined Special Variables
The Shell State
Changing Directories
The .profile File
Execution Flags

iv

XENIX 286 User's Guide

PAGE

b
Pt

DN DN DN DN NN
U L R e e |
—

| TR R JN T N)

|
BB D DD DD DN DN BN DN DN DN DI B BN DN bt bt b et e

AP P WWNNNH R OOWWN-I~I0nD

NNNNNNNNL}?NNNNNNNN

|

wwwwwwc:awwwwwmw

o
e e e e

|
AT U e b= D00 =T U W 0OWN DN =

WC&CT?C&OOOO

XENIX 286 User's Guide

CONTENTS

Command Environment
Invoking the Shell
Passing Arguments to Shell Procedures
Directing the Flow of Control
Using the if Statement
Using the case Statement
Conditional Looping
Looping Over a List
Loop Control
End-of-File and exit
Command Grouping
Input/Output Redirection and Control Commands
Transfer to Another File and Back: the Dot (.) Command
Interrupt Handling
Special Shell Commands
Creating and Organizing Shell Procedures
More about Execution Flags
Supporting Commands and Features
Conditional Evaluation
Echoing Arguments
Expression Evaluation
True and False
In-Line Input Documents
Input/Output Redirection Using File Descriptors
Conditional Substitution
Invocation Flags
Effective and Efficient Shell Programming
Number of Processes Generated
Number of Data Bytes Accessed
Shortening Directory Searches
Directory-Search Order and the PATH Variable
Good Ways to Set Up Directories
Shell Procedure Examples
binuniq
copypairs
copyto
distinet1
draft
edfind
edlast
fsplit
listfields
mkfiles
null
phone
textfile
writemail
Metacharacters and Reserved Words

Table of Contents

PAGE

[
CLOWWOLWWOWLWDRNDNDNDDNDDNDDNDN = e

OO0 WWWWWOONN~ITSHXNUTNEPRWWWHMHFODOITOOOUTUNWWWHFROI~IOWUHE R WWNMEWO=I=-ON

| | i | | | [|

[[[Y I B |

wwwwwwwwwwcowwoowoawwr.owwwwwc:awmwwwwwwwwwwwwwwwwwwwww

[}
L N I el ol ot i el i e i ol d T N S I R SCR JU R L)

Table of Contents

CONTENTS

CHAPTER 4
ed: A LINE-ORIENTED TEXT EDITOR
Introduction
Basie Concepts
Entering and Exiting ed
Line Numbers
The Editing Buffer
Calling a File
Writing Out the Editing Buffer
Writing Out Part of a File
Changing File Name to Write Out to
Commands
Undoing Commands
Displaying Lines
Displaying Tabs and Control Characters
Interrupting ed :
Escaping to the Shell
Creating and Appending Text
Deleting Lines
Searching
Searching with the Semicolon
Searching and Replacing
Substituting Text
Metacharacters
Backslash
Period
Caret
Dollar Sign
Star
Brackets
Ampersand
Performing Global Commands
Copying Lines
Moving Lines
Marking Your Spot in a File
Splitting Lines
Joining Lines
Combining Files
Inserting One File into Another
Editing Scripts
Speeding Up Editing
Summary of ed Commands

vi

XENIX 286 User's Guide

PAGE

1 o
CO DI DI DO DN = = =

e A A A N L T TSR RUIRIR

AP WWNNFRPR OO UTU R P WWNEFEHOOI~JNDOO P W

R B R R
DO DD DI DD D BN DN DN bt bt b b et e et b e e ek ek

|

XENIX 286 User's Guide

CONTENTS

CHAPTER 5
vi: A VISUAL TEXT EDITOR
Introduection
Demonstration
Basic Concepts
Entering vi
Specifying a Single File
Specifying a Series of Files
Calling a File without Leaving vi
Exiting vi
Leaving vi Temporarily
Line Numbers
The Editing Buffer
Writing Out the Editing Buffer
Commands
Repeating Commands
Undoing Commands
Performing a Series of Line-Oriented Commands
Moving in a File
Moving the Cursor
Scrolling
Inserting Text
Inserting Control Characters into Text
Deleting Text
Copying Text
Copying Text from Other Files
Copy Text from Elsewhere in the File
Moving Text
Joining and Breaking Lines
Searching
Searching and Replacing
Substituting Text
Metacharacters
Backslash
Period
Caret
Dollar Sign
Star
Brackets
Ampersand
Solving Common Problems
Summary of vi Commands

Table of Contents

PAGE

L T T P A |

mmmmmmmmwmc;nmmmmmcnmmmm

o [| I B}
[
QWWNNFEFOOOOORNUIU A WHMFOWWOWWOOMW=N-~I~IDN OO Ul i i KN DN - =

1

USSR

1
DO DO DD BN DD DN DD DD DN DN b b et ek et e e s

mmcnmcnmcncnmcincnmmmcnwmcnm

vii

Table of Contents

CONTENTS

CHAPTER 6

mail: THE XENIX MAIL SYSTEM
Introduction

Basic Concepts

Mailboxes
Modes of Operation
Getting Help
Message Format
Entering and Exiting mail
Message Headers
Command Syntax
Specifying Messages
Executing Shell Commands
Determining the Number of the Current Message
Counting the Number of Characters in a Message
Changing Working Directories
Reading Commands from a File

Reading mail

Displaying the First Five Lines

Editing a Message

Displaying the Next Message

Listing Messages in Chronological Order
Replying to mail

Saving mail

Deleting Messages

Undeleting Messages

Forwarding mail

Printing mail

Sending mail

viii

Composing Messages
Displaying Messages
Editing Messages
Editing Headers
Adding a File to a Message
Enclosing Another Message
Saving Messages in a File
Escaping to the Shell
Escaping to mail Command Mode

Placing an Escape Character at the Beginning of a Line

Sénding Network mail

XENIX 286 User's Guide

PAGE

O
13 TN U AN Y A SRRy

Lillloosonsonacrnssoaasnapaney
PP WLWWNEHEEMEFEREOODOLWLORXOI-gOTTTgu,

0703030)030’0'3030307030703
P pt ek e ek ket ek pd ek ek ek b

XENIX 286 User's Guide

CONTENTS

Setting Up Your mail Environment: the .mailre File
Setting Options
askece
dot
metoo
nosave
autoprint
chron
mchron
quiet
EDITOR
VISUAL
SHELL
escape
page
record
toplines
ignore
alias
Using Advanced Features
Command Line Options
Using mail as a Reminder Service
Handling Large Amounts of mail
Quick Reference
mail Files and Programs
Command Summary
Compose Escape Summary
Option Summary

CHAPTER 7

be: A CALCULATOR

Introduction

Invoking be and Exiting

Scaling Quantities

Basic Arithmetiec Operations
Operators
Expressions
Registers

Advanced Features of be
Specifying Input and Output Bases
Using Functions
Using Subscripted Variables
Using Control Statements
Using Other Language Features

Table of Contents

PAGE

L IR A S Y R N A N N R |

UL LU A R D B |

DO DO DD DD DD DN DD b et b e i ek et ek bk e e b b e bk e b ek ek
(o2 o N =N =N Jo e RJo N e lie s Bv o e e « BE N BN BEN BE-N BES BEN B e Pl er Mo r e r lor WS 1 IS]

L D T . |

R R R R B R R
NOW-TID 0 U W WD —

N
[y

ix

Table of Contents

CONTENTS

Language Reference
Tokens
Expressions
Funetion Calls
Unary Operators
Exponentiation Operators
Multiplicative Operators
Additive Operators
Assignment Operators
Relational Operators
Storage Classes
Statements

APPENDIX A

RELATED PUBLICATIONS
Intel Publications

INDEX

XENIX 286 User's Guide

o
>
Q
=

| I Y N |

AR R R R R R R R R
bt ek ped ek et ek pmd fed ek ek ek
0O~ ~I~IDH DD DWW

L CHAPTER 1
intel INTRODUCTION

Overview

This manual introduces the XENIX 286 Operating System and explains the fundamental
concepts needed to use it effectively. Unless otherwise noted, this manual discusses the
Basic System and the Bourne shell only.

The XENIX 286 system is an improved and enhanced version of the UNIX System III
from Bell Laboratories. It is intended for use in schools, corporations, laboratories, and
small office environments. XENIX is well known as a productive environment for
software development and as a text processing environment.

Audience

Because XENIX 286 is designed to be used in a variety of environments, users of the
system have a wide range of computer experience and education. Inexperienced users
should read the Overview of the XENIX 286 Operating System first and progress to more
advanced documentation. Experienced XENIX users will very likely be able to begin
using the XENIX 286 system immediately, using the reference manual and user's guides
as necessary.

Notation
These notational conventions are used in this manual:

° Literal names are bolded where they occur in text, e.g., /sys/include, printf,
dev_tab, EOF.

L Syntactic categories are italicized where they occur and indicate that you must
substitute an instance of the category, e.g., filename.

° In examples of dialogue with the XENIX 286 system, characters entered by the
user are bolded.

° In syntax descriptions, optional items are enclosed in brackets ([]).
o Items that can be repeated one or more times are followed by an ellipsis (...).
o Items that can be repeated zero or more times are enclosed in brackets and

followed by an ellipsis ([]...).

° A choice between items is indicated by separating the items with vertical bars

(0.

1-1

Introduction XENIX 286 User's Guide

The XENIX 286 Working Environment

An operating system efficiently organizes and controls the resources of a computer.
These resources include memory, disks, line printers, terminals, and any other peripheral
devices connected to the system. The heart of XENIX 286 is a multiuser, multitasking
operating system. A multiuser system enables several users to use a computer
simultaneously, thus providing lower cost in computing power per user. In a
multitasking system, several programs can run simultaneously, thereby increasing
produectivity.

Because UNIX and XENIX have been accepted as standards for "high-end" operating
systems, a great deal of software is available for this environment. In addition, XENIX
286 is a bridge to the MS-DOS operating system. For systems that support MS-DOS,
XENIX 286 provides commands that enable you to access MS-DOS format files and
disks. The XENIX 286 system also includes several widely praised enhancements
developed at the University of California at Berkeley and a visual interface similar to
other productivity tool interfaces.

Other characteristics of the XENIX 286 system include

o A powerful command language for programming XENIX 286 commands. Unlike
other interactive command languages, the XENIX 286 shell is a full programming
language.

o Simple and consistent naming conventions. Names can be used absolutely, or

relative to any directory in the file system.

° Device-independent input and output. Each physical device, from interactive
terminals to main memory, is treated like a file, allowing uniform file and device
input and output.

] A set of related text editors, including a full screen editor.

] Flexible text processing facilities. XENIX 286 includes commands that find and
extract patterns of text from files, compare and find differences between files,
and search through and compare directories. Text formatting, typesetting, and
spelling-error-detection facilities, as well as a faecility for formatting and
typesetting complex tables and equations, are also available.

° A sophisticated desk calculator program.

. Mountable and dismountable file systems that facilitate addition of flexible disk
drives to the system.

L A complete set of flexible directory and file protections that utilizes all
combinations of read, write, and execute access for the owner of each file or
directory, as well as for groups of users.

° Facilities for creating, accessing, moving, and processing files and directories in a
simple and uniform way.

1-2

XENIX 286 User's Guide Introduction

Using This Manual
This manual is organized as follows:

Chapter 1: Introduction
This chapter gives an introduction and overview of the XENIX 286 system and this

manual.

Chapter 2: Tasks
This chapter explains how to perform basic tasks using appropriate XENIX 286

commands.

Chapter 3: The Shell
This chapter describes use of the shell command interpreter and how to write
procedures that can be executed by the shell interpreter.

Chapter 4: ed: A Line-Oriented Text Editor
This chapter explains how to use the line editor, ed.

Chapter 5: vi: A Visual Text Editor
This chapter explains how to use the screen editor, vi.

Chapter 6: mail: The XENIX Mail System
This chapter describes the XENIX 286 mail facility and explains how to send and
receive mail.

Chapter 7: be: A Calculator
This chapter explains how to use be, a sophisticated calculator program.

Appendix A: Related Publications
Lists Intel publications containing information related to the XENIX operating
system.

This manual does not attempt to give information about installing, managing, and
maintaining the system, nor does it disecuss document preparation, software
development, or any of the specialized utilities available in other XENIX 286 system
products. Appendix A contains a list of manuals relating to these subjects.

1-3

. CHAPTER 2
intel’ TASKS

Introduction

This chapter is designed to familiarize you with some basic XENIX commands and to
show you how to perform such common tasks as logging in and out, manipulating files
and directories, and processing data. The XENIX 286 Reference Manual contains a
detailed entry for each of the commands discussed in this chapter. The Overview of the
Xenix 286 Operating System contains a detailed description of the XENIX file system
discussed in this chapter.

NOTE

This chapter makes reference to a DELETE key on your terminal. If your
terminal does not have a DELETE key and you do not know which key on your
terminal corresponds to a DELETE key, get help from the system
administrator.

Logging In

Before you can log in to the system, you must be given a system account, your name
must be added to the user list, and you must be given a password and a mailbox. See
your system administrator to get an account. This section assumes your account has
already been set up.

Normally, the system sits idle and the prompt "login:" is displayed on the terminal
sereen. If your screen is blank or displays "garbage," press the RETURN key.

When the login prompt appears, follow these steps:

1. Type your login name, then press RETURN. If you make a mistake, press the
BACKSPACE key to erase character by character. After you press RETURN, the
word "Password:" appears on your screen.

2. Type your password carefully, then press RETURN. The letters do not appear on
the screen as you type, and the cursor does not move. If you make a mistake,
press RETURN to restart the login procedure.

If you have typed your login name and password correctly, a prompt or a menu appears
on the screen. The prompt tells you that the XENIX system is ready to accept
commands from the keyboard. When you log in, you are placed in an area called the
login, or home, directory.

2-1

Tasks XENIX 286 User's Guide

If you make a mistake while logging in, the system displays the message

Loginincorrect
login:

If you get this message, log in again. You must type all the letters of your user name
and password correctly before you can access the system.

Logging Out

The logout process depends on the system interface, called a shell in XENIX systems,
that was activated when you logged in to the system. The standard shell is the Bourne
shell. The XENIX system also has two other shells, the C shell and the Visual shell. You
might be using one of these or a custom shell.

To log out of the system you must be in your login shell (activated when you logged in).
If your login shell is a menu shell, there should be a menu selection or key to exit or
quit. If your login shell is a prompting shell, type

exit

and press RETURN to log out. If another prompt appears after you enter exit, it means
that the current shell was not your login shell. Continue entering exit until the prompt
disappears and the login message is displayed.

Entering and Erasing a Command Line

Entering a command line consists of typing characters at a terminal, then pressing
RETURN. When you press RETURN, the computer reads the command line and
executes commands specified on that line. You may type as many command lines as you
want without waiting for them to execute, because XENIX supports type-ahead of
characters.

When entering commands, typing errors are bound to occur. To erase the errors
character by character, use the BACKSPACE key.

Changing Your Password

To prevent unauthorized users from gaining access to the system, each authorized user
must have a password. When first given an account on a XENIX system, you are
assigned a password by the system administrator. Some XENIX systems require you to
change your password at regular intervals. Whether yours does or not, it is a good idea
to change your password regularly to maintain system security.

2-2

XENIX 286 User's Guide Tasks

Use the passwd command to change your password. Follow these steps:
1. Type
passwd
and press RETURN. The following message appears:

Changing password for user name
Old password:

2. Carefully type your old password and press RETURN. Your password is not echoed
on the screen. If you make a mistake, press RETURN. The message "Sorry"
appears, then the system prompt. Begin again with step 1.

3. When you have typed your old password, this message appears:

Enter new password (minimum of 5 characters)
Please use a combination of upper and lowercase letters and numbers
New password:
Type in your new password and press RETURN.
4. The message

Re-enter new password:

appears. Type your new password and press RETURN again. If you make a
mistake, press RETURN. The message

They don’t match; try again.
New password:

appears, and you must begin again with step 3. When you have completed the
procedure, the system prompt appears.

Manipulating Files

File manipulation (e.g., creating, displaying, combining, copying, moving, naming, and
deleting files) is one of the most important capabilities an operating system provides.
The XENIX commands that perform these functions are described in the following
sections.

Creating a File
To create a file and place text in it, use one of the text editors described in Chapters 4

and 5. After you save the file and exit the text editor, use the le command to see the
file name listed in the directory.

2-3

Tasks XENIX 286 User's Guide

Displaying File Contents
The more command displays the contents of a file one sereen at a time and has the form
more options filename

more is useful for looking at a file when you don't want to make changes to it. For
example, to display the contents of the file memos, type

more memaos

You can also invoke more with a number of options that control where the display begins
and how the file is displayed. These options include

+linenumber Begins the display at the line in the file designated by linenumber.

+/text Begins the display two lines before text, where text is a word or
number in the file. If text is two or more words, they must be enclosed
in double quotation marks.

-e Redraws the scereen instead of serolling.

-r Displays control characters, which are normally ignored by more.

For example, to begin looking at the file memo at the first occurrence of the words "net
gain" type

more +/"netgain” memo
If the file is more than one screen long, the percentage of the file that remains is

displayed on the bottom line of the screen. To look at more of the file, use the
following scrolling commands:

RETURN Serolls down one line.

d Serolls down one-half sereen.

SPACE BAR Serolls down one full screen.

nSPACE BAR Serolls down n lines.

. Repeats the previous command.

CONTROL-S Stops screen output until another key is pressed.

You cannot scroll backward, toward the beginning of the file.

2-4

XENIX 286 User's Guide Tasks

You can search forward for patterns in more with the slash (/) command. For example,
to search for the pattern "net gain", type

/net gain
and press RETURN. The message

...skipping

appears, XENIX displays the file from two lines before the line where "net gain" is, and
the file serolls up from the bottom of the screen.

If you use more to look at a file and decide you want to change the file, you can invoke
the vi editor by typing

v

and pressing RETURN. The file must be large enough to require more than one screen
to display it, otherwise more exits and the editor will not open the displayed file.

See Chapter 5, "vi: A Visual Text Editor," for information on using vi.

more quits automatically when it reaches the end of a file. To exit more before the end
of a file, type

q

The commands head and tail display the first and last ten lines of a file respectively.
They are useful for checking the contents of a particular file. For example, to look at
the first ten lines of the file memo, type

head memo

You can also specify how many lines the head and tail commands display. For example,
typing

tail -4 memo
displays the last four lines of memo.

Like more, eat also displays the contents of a file, but eat scrolls to the end of the file
unless you press CONTROL-S to stop it. Press another key to continue the serolling. If
you wish to abort the display before the end of the file, press the DELETE key. For
example, to display the contents of filel, type

cat file1
To display the contents of filel, file2, and file3, type

cat file1 file2 file3

2-5

Tasks XENIX 286 User's Guide

Combining Files

The cat command is frequently used to combine files into some other new file. The
greater-than sign (>) is used to redirect the output of cat to the new file. Thus, to
combine the two files named filel and file2 in a new file named bigfile, type

cat file1 file2 > bigfile

You can also use cat to append one file to the end of another file. For example, to
append filel to file2, type

cat file1 > > file2

Note that after appending filel to file2, filel still exists as a separate file.

Moving a File

The mv command moves a file into another file in the same directory, or into a file in
another directory. For example, to move a file named text to a new file named book,

type
mv text book

After this move is completed, no file named text exists in the working directory,
because the file has been renamed book.

To move a file into another directory, give the name of the destination directory as the
final name in the mv command. For instance, to move filel and file2 into the directory
named /tmp, type

mv file1 file2 /tmp

The moved files are no longer in your working directory but are now in the directory
/tmp.

The mv command always checks to see if the last argument is the name of a directory
and, if so, all files designated are moved into that directory.
Renaming a File

To rename a file, simply move it to a file with the new name; the old name of the file is
automatically removed. Thus, to rename the file anon to johndoe, type

mv anon johndoe

2-6

XENIX 286 User's Guide Tasks

Copying a File
The ep command is used for copying and has two forms: one to copy files into a
directory and one to copy a file to another file. Thus, to copy three files into an
existing directory named filedir, type

cp file1 file2 file3 filedir
The original versions of the three files still reside in the working directory, and the file
names are identical in the two directories. Like mv, cp always checks to see if the last
argument in the command line is the name of a directory and, if so, all designated files
are copied into that directory.

To create two copies of a file in your working directory, you must rename the copy. To
do this, ep can be invoked as follows:

cp file filecopy
After the above command has executed, two files with identical contents reside in the
working directory. To learn how to copy directories, see "Copying a Directory" later in
this chapter.
Deleting a File
To delete or remove files from your working directory, type

rm filename
Using the command

rm -i filename

causes XENIX to display the file name and wait for a yes or no response. To remove it,
type

y
for "yes" and press RETURN. To leave it, type
n

for "no" and press RETURN. This command is useful when cleaning up a directory that
contains many files.

2-7

Tasks XENIX 286 User's Guide

Finding a File

The find command searches for a specified file and is useful for locating files with
identical names or for finding a file when you don't know which directory it is in. The
command has the form

find pathname -name filename -print

where pathname is the path name of the directory you want to search and filename is
the name of the file you are searching for. find searches recursively, that is, it starts at
the named directory and searches downward through all files and subdirectories under
the directory specified in pathname.

The -name option indicates that you are searching for a file with a specific file name.
(Other search conditions used with find are deseribed in the XENIX 286 Reference
Manual.)

The -print option displays the path names of all files that match filename. By using the
output redirection symbol (>), you can direct the output of find to a file rather than to
the screen.

For example, the following command finds every file named memo in the directory
/usr/joe and all its subdirectories:

find /usr/joe -name memo -print
The output might look like this:

/usr/joe/memo

/usr/joe/accounts/memo

/usr/joe/meetings/memo

/usr/joe/mail/memo
Linking Files
The In command links two files in different directories so that when a file is changed in
one directory, it is also changed in the other directory. This can be useful if several
users need to share information, or if you want a file to appear in more than one
directory. This command has the form

In file newfile

where file is the original file, and newfile is the new, linked file. For example, the
following command links memos in /usr/joe to joememos in usr/mary:

In /usr/joe/memos /usr/mary/joememos
Whenever usr/joe/memos is updated, the file /usr/mary/joememos is also changed.
When you link files, a file name is associated with an inode. An inode is a number that
specifies a unique set of data on the disk. One or more file names may be associated

with this data. Thus, the above command assures that the files /usr/joe/memos and
/usr/mary/joememos have identical contents.

2-8

XENIX 286 User's Guide Tasks

Three rules to remember about linking files:
1. Linking large sets of files to other parallel files can save disk space.

2. Linking files used by more than one person is risky, because anyone can alter the
file and thus affect the contents of all files linked to it.

3. Removing a file from a directory does not remove other links to the file. Thus the
file is not truly deleted from the system. For example, if you delete a file that has

four links, three links remain. For more information about linking files, see In in
the XENIX 286 Reference Manual.

Manipulating Directories
Because of the hierarchical organiza.ion of its file system, XENIX has many directories
and subdirectories. The file system contains directories for each user. Within your user
directory you can create, delete, and copy directories. Commands that facilitate
directory manipulation are described in the following sections. The Overview of the
Xenix 286 Operating System contains a detailed description of the XENIX file system.
Listing Directory Contents
You can list the contents of a directory with the le command. This command sorts and
lists the names of files and subdirectories in a given directory in columns. If no
directory name is given, le lists the contents of the working directory. The le command
has the form

le options directoryname
For example, to list the contents of the directory work, type

lc work
Your output might look like this:

accounts meetings notes mail memos todo

The following options control the sort order and the information displayed by le:

-a Lists all files in the directory, including the "hidden" files (file names that begin
with a dot, such as .profile and .mailre).

-r Lists names in reverse alphabetical order.

-t Lists names in order of last modification, the latest (most recently modified) first.
When used with the -r option, lists the oldest first.

-R Lists all files and directories in the current directory, plus each file and directory
below the current one. The "R" stands for "recursive."

-F Marks directories with a slash(/) and executable files with an asterisk (¥*).

2-9

Tasks XENIX 286 User's Guide

-1 Gives an expanded listing of a directory, producing an output that looks similar to
the following:

total 501

drwxr-x--- 2 boris grpl 272 Apr 5 14:33 dirl
drwxr-x--- 2 enid - grpl 272 Apr 5 14:33 dir2
drwxr-x--- 2 iris grpl 592 Apr 6 11:12 dir3
-rw-r----- 1 olaf grp2 282 Apr 7 15:11 filel
-rw-r----- 1 olaf grp?2 72 Apr 7 13:50 file2
-rW-r---—- 1 olaf grp2 1403 Apr 1 13:22 file3
Reading from left to right, the information given for each file or directory
includes '

° Permissions

° Number of links

° Owner

® Group

® Size in bytes

° Date and time of last modification

° File or directory name

The information in this listing and how to change permissions are discussed in the
section "Using File and Directory Permissions" later in this chapter.
Creating a Directory

To create a subdirectory in your working directory, use the mkdir command. For
example, to create a new directory named phonenumbers, type

mkdir phonenumbers
After this command has been executed, a new empty directory will exist in your working
directory.
Removing a Directory

To remove a directory located in your working directory, use the rmdir command. For
instance, to remove the directory named phonenumbers from the current directory, type

rmdir phonenumbers

The directory phonenumbers must be empty before it can be removed; this prevents
accidental deletions of files and directories.

2-10

XENIX 286 User's Guide Tasks

Renaming Directories

The mv command is used to rename directories. To rename the directory little.dir .in
your current directory to big.dir, type

mv little.dir big.dir
This is a simple renaming operation; no files are moved. The directory big.dir must not
already exist or XENIX will give you an error message.
Copying Directories

The ecopy command copies directories.

CAUTION

Do not attempt to copy the root, or /, directory because you are requesting
that the entire file system be copied and it is unlikely that there is enough
disk space for two copies of the entire file system.

This command has the form
copy options olddirectory newdirectory
To copy all the files in the directory /usr/joe/memos into /usr/joe/notes, enter
copy /usr/joe/memos /usr/joe/notes
The eopy command has the following options:
-1 Links the copied files to the original.
-m Gives the copied files the same modification dates as the original files.
-r Copies all the files and subdirectories under the named directory (recursively).

To copy all the files and subdirectories in the directory /usr/joe/acects/30days into
/usr/joe/acets/overdue, enter

copy -r /usr/joe/accts/30days /usr/joe/accts/overdue

and the directory 30days becomes the directory.

2-11

Tasks XENIX 286 User's Guide

Moving in the File System
When using the XENIX system, it helps to imagine a large tree structure of files and
directories. Each directory should be thought of as a place that you can move into or
out of. At all times you are "some place" in the tree structure. This place is called
your working or current directory. The commands used to find out where you are and to
move around in the tree structure are discussed in the following sections. The Overview
of the Xenix 286 Operating System contains a detailed description of the XENIX file
system.
Where You Are
All commands are executed relative to the working directory. You can find out the
name of this directory by using the pwd command, which stands for "print working
directory." For instance, if your working directory is /usr/joe, when you type

pwd
you will get the output

lusr/joe

You should always think of yourself as residing "in" your working directory.

Changing Directories

To move to any other directory in the system, use the ed ("change directory") command
and specify that directory as an argument to ed. For example, the command

cd /usr

moves you to the /usr directory.

To ascend the directory tree structure one level, type
cd ..

For example, if you are in the directory /usr/joe/work and issue the above command,
you would move from /usr/joe/work to /usr/joe. Similarly, the command

cd ...
moves you from /usr/joe/work to /usr, ascending two levels in the structure.
To return to your home directory from anywhere, type

cd

2-12

XENIX 286 User's Guide Tasks

Using File and Directory Permissions

The XENIX system enables the owner to restrict access to files and directories, limiting
who can read, write, and execute files owned by him or her. To determine the
permissions associated with a given file or directory, use the 1 command. The output
from the 1 command should look something like this:

total 501

drwxr-x--- 2 boris grpl 272 Apr 5 14:33 dirl
drwxr-x-—- 2 enid grpl 272 Apr 5 14:33 dir2
drwxr-x--—- 2 iris grpl 592 Apr 6 11:12 dir3
-rW-pr---—— 1 olaf grp2 282 Apr 7 15:11 filel
~PW-r-———- 1 olaf grp2 72 Apr 7 13:50 file2
-rw-r----- 1 olaf grp2 1403 Apr 1 13:22 file3

Permissions are indicated by the first ten characters of the output. The permissions for
the first file in the above list are

drwxr-x-—-
The first character indicates the type of file and must be one of the following:

- Indicates an ordinary file.

d Indicates a directory.

c Indicates a character special device such as a line printer or terminal.

b Indicates a block special device such as a hard or flexible disk.

n Indicates a name special file (i.e., a semaphore used for controlling access to some
resource).

S Indicates a shared data file.

p Indicates a named pipe.

From left to right, the next nine characters are interpreted as three sets of three
permissions each. Each set of three indicates the following permissions:

° Owner permissions
. Group permissions
° All other user permissions

2-13

Tasks

XENIX 286 User's Guide

Within each set, the three characters indicate permission to read, write, and execute
the file as a command respectively. For a directory, "execute" permission means
permission to search the directory for files or subdirectories.

Ordinary file permissions have the following meanings:

r read permission
w write permission
X execute permission

- no permission

For directories, permissions have the following meanings:

r Files may be listed in the directory; the directory must have execute permission.

w Files may be created or deleted in the directory; as with "r", the directory itself
must also have execute permission.

X The directory may be searched. A directory must have execute permission before
you can move to it, access a file within it, or list the files in it.

The following are some typical directory permission combinations:

drwxr-x---

drwx--x--Xx

No access at all. This mode denies directory access to all users except
root (a special account controlled by the system administrator.

Allows access by the owner to use le, create files, delete files, access
files (subject to file permissions), and use ed. This is the typical
permission for the owner of a directory.

Allows access by members of the group to use le and access files
subject to file permissions. Group members can use ed to move to this
directory but cannot create or delete files in it. This is the typical
permission an owner gives to others who need access to files in his
directory.

With these permission settings, users other than the owner cannot use
le but can use ed to change to the directory. Other users can only
access a file within this directory by its exact name; they cannot
search for a file by using metacharacters. Files cannot be created or
deleted in the directory by anyone except the owner. This mode is
rarely used, but it can be useful if you want to give someone access to
a specific file in a directory without permitting access to other files in
the same directory.

This chapter discusses ordinary files, executable files, and directories only. For
information about other types of files, see Is in the XENIX 286 Reference Manual.

2-14

XENIX 286 User's Guide Tasks

Changing Permissions

The chmod command changes the read, write, execute, and search permissions of a file
or directory. This command is useful if you have created a file in one mode, but want to
give others permission to read, write, or execute it. The echmod command has the form

chmod instruction filename

The instruction segment of the command indicates which permissions you want to
change for which class of users. There are three classes of users, and they are indicated
as follows:

u User, the owner of the file or directory
g Group, the group the owner of the file belongs to
o Other, all users of the system
All three classes of users may be designated by using the character "a" for "all".
For example, assume filel exists with the following permissions:
-TW-r--———-

The owner of this file has read and write permission, group members have read
permission, and all others have no access.
To give filel execute permission for all classes of users, type

chmod a+x filel

In the instruction segment of the command (a+x), the "a" stands for "all classes of users"
and the "x" stands for execute permission. The resulting permissions are

“TWXr-X--X

To remove the owner's write and execute permissions and the group's execute permission
on the above file, type

chmod ug-wx file1

Changing Directory Search Permissions
Directories also have an "x" (execute) permission. Sinece directories cannot be executed

however, this attribute signifies search permission. If execute permission is denied to a
user, then that user cannot even list the names of the files in the directory.

2-15

Tasks XENIX 286 User's Guide

For example, the directory dirl has the following permissions:
drwxr-xr-x

To change permissions so that the group of "other" users can't examine dirl, type
chmod o-rx dir1

The new attributes for dirl are now

drwxr-x--—-

Processing Information

The following sections deseribe a number of XENIX utilities available for processing
data.

Comparing Files

To compare two text files, use the diff command to print out those lines that differ
between specified files. For example, suppose that a file named men has the contents

Now is the time for all good men to
Come to the aid of their party.

and that a file named women has the following contents:

Now is the time for all good women to
Come to the aid of their party.

The command
diff men women
produces the following results:

1c1
< Now is the time for all good men to

> Now is the time for all good women to

The 1cl means that line 1 in the file men and line 1 in the file women must be changed
to make the files the same. The second and fourth lines of the diff output are the lines
that are different in the two files. The < indicates the line in the file men that is
different from any line in the file women. The > indicates the line in the file women
that is different from any line in the file men. The --- separates the lines from the file
men from the lines from the file women.

2-16

XENIX 286 User's Guide Tasks

Echoing Arguments
The echo command echoes arguments to the standard output. For example, typing

echo hello
produces

hello
on the screen. To output several lines of text, surround the echoed argument in double
quotation marks and press RETURN between lines. A secondary prompt (>) will appear
until you type the final double quotation mark. For example, type

echo "Now is the time

For all good men

To come to the

Aid of their party.”
This produces the output

Now is the time

For all good men

To come to the

Aid of their party.
Sorting a File
One of the most useful file processing commands is sort. By default, sort sorts the lines
of a file according to the ASCII collating sequence (i.e., it alphabetizes them). For
example, to sort a file named phonelist, type

sort phonelist

In the above case, the sorted contents of the file are displayed on the sereen. To create
a sorted version of phonelist named phonesort, type

sort phonelist >phonesort
Note that sort is useful for sorting the output from other commands. For example, to
sort the output from execution of a who command, type

who | sort >whosort

This command takes the output from who, sorts it, and then sends the sorted output to
the file whosort.

2-17

Tasks XENIX 286 User's Guide

Searching for a Pattern in a File

The grep (global search for regular expressions and print) command selects and extracts
lines from a file, printing only those lines that match a given pattern. For example, to
print out all lines in a file containing the word "tty38", type

grep ‘tty38' filename
where filename is the name of the file that you want searched.
In general, you should always enclose the pattern you are searching for in single
quotation marks (') so that special characters are not expanded unexpectedly by the
shell.
As another example, assume that you have a file named phonelist that contains a name
followed by a phone number on each line. Assume also that there are several thousand
lines in this list. You can use grep to find the phone number of someone named Joe,
whose phone number prefix is 822, as follows:

grep ‘joe’ phonelist | grep ‘822-" >joes.number
grep finds all occurrences of lines containing the word "joe" in the file phonelist. The
output from this command is then filtered through another grep command, which
searches for an "822-" prefix, thus removing any unwanted Joes. Finally, assuming that
a unique phone number for Joe exists with the "822-" prefix, that name and number are
placed in the file joes.number.
For more information about grep, its related forms fgrep and egrep, and the types of

patterns (regular expressions) it can be used to search for, see grep in the XENIX 286
Reference Manual.

Counting Lines, Words, and Characters
we ("word count") is a command for counting lines, words, and characters in a file; all
three counts are reported by default. For example, to count the numberof lines, words,
and characters in the file textfile, type

wc textfile

Typical output describing lines, words, and characters might be

4432 18188 97808 textfile

2-18

XENIX 286 User's Guide Tasks

To specify a count of characters, words, or lines only, you must use an appropriate
option. To illustrate, examine the following three commands and the output produced
by each:

wc -¢ textfile
97808 textfile

wc -w textfile
18188 textfile

wec -l textfile
4432 textfile

The first example prints out the number of characters in textfile, the second prints out
the number of words, and the third prints out the number of lines.

Controlling Processes

In XENIX, several processes can run at the same time. For example, you may run the
sort program on a file in the "background" and edit another file in the "foreground"
while the sort program is running. Foreground processes are processes that you directly
control from the keyboard. Processes you can initiate but otherwise have little control
over are called background processes. At any one time you can have only one
foreground process executing, but multiple background processes may execute
simultaneously. Background processes may be run at any time; you must be logged in to
initiate a background process, but once the process has started running you may log out.

Occasionally, you may need to know who is on the system or what processes are running
before you can perform a task; this section includes procedures to determine this
information.

Determining Who Is on the System

The who command lists the names, terminal line numbers, and login times of all users
currently logged on to the system. For example, type

who

The who command produces output similar to the following:

arnold tty02 Apr710:02
daphne tty21 Apr707:47
elliot tty23 Apr714:21
ellen tty25 Apr708:36
gus tty26 Apr709:55
adrian tty28 Apr714:21

2-19

Tasks XENIX 286 User's Guide

Determining What Processes Are Running

Because commands can be placed in the background for processing, it is not always
obvious which processes you are responsible for. The ps command stands for "process
status" and displays information about currently running processes associated with your
terminal. For instance, the output from a ps command might look like this:

PID TTY TIME CMmD

3459 c3 0:15 -sh
4831 c3 1:52 cc program.s
5185 c3 0:00 ps

The PID column gives a unique Process IDentification number that can be used to kill a
particular process. The TTY column shows the terminal that the process is associated
with. The TIME column shows the cumulative execution time for the process.

To find out all the processes running on the system, use the -e option:
ps -e

To find out about the processes running on another terminal, use the -t option and
specify the terminal. For example, to find out what processes are associated with
terminal e3, type

ps -tc3

Placing a Process in the Background

Normally, commands sent from the keyboard are executed in strict sequence; one
command must finish executing before the next can begin. These are called foreground
processes. A background process, in contrast, need not finish executing before you give
the next command. Background commands are especially useful for commands that may
take a long time to complete.

To place a process in the background, type an ampersand (&) at the end of the command.
For example, to count the number of words in several large files while simultaneously
continuing with whatever else you have to do, type

wce file1 file2 file3 >count&
The number of the process is displayed on the screen and output is collected in the file
count. If output were not put in count, it would appear on the screen at unpredictable
times as you worked.
When processes are placed in the background, you have no control of them as they

execute. For instance, pressing the DELETE key does not abort a background process.
Instead, you must use the kill command described in the following section.

2-20

XENIX 286 User's Guide Tasks

Killing a Process

To stop execution of a foreground process, press the DELETE key. This kills whatever
foreground command is currently running. By using the ps command, you can determine
the PID number of all foreground and background processes that you have running and
then selectively kill any processe that you by using the the kill command and the process
identification number (PID). To use the kill command in this way, first invoke the ps
command and determine PID numbers. Select the processes you wish to kill, note the
PID number, and issue the kill command by using the following format:

kill PID

If a subsequent ps shows that the process is still alive, use the -9 option in the following
format for a sure kill:

kill -9 pPID
Killing a process associated with the vi editor may leave the terminal in a strange mode.
Also, temporary files normally created when a command starts and deleted when the
command finishes may be left in the directory after a kill command. Temporary files

are normally kept in the directory /tmp. This directory should be checked periodically
and old files deleted.

Using the Line Printer

The following sections deseribe the commands to help you use a line printer effectively
and efficiently.

Sending a File to the Line Printer

One of the most common operations that you will want to perform is printing files on
the line printer. The most straightforward method for doing this is to type

lpr filename
for a single file, or
Ipr filename1 filename2 filename3

for multiple files. Other common uses of lpr involve pipes. For example, to paginate
and print a file of raw text, type

pr textfile | lpr

The pr (print to screen) and lpr (print to line printer) commands are very often used
together. As another example, to sort, paginate, and print a file, type

sort datafile | pr | Ipr

2-21

Tasks XENIX 286 User's Guide

Getting Line Printer Information

At times it may be necessary to know the status of your print requests. You can view
this information by using the lpgq command. Type

lpq
and press RETURN.

Communicating with Other Users

Because XENIX supports multiple users, communicating with other users is easy and
convenient. The various communications facilities are deseribed in the following
sections.

Sending mail

The XENIX mail program is a systemwide facility that enables system users to send and
receive mail. To send mail to another user on the system, type

mail username
where username is the name of any system user. You may be asked to enter a subject
for the message. If so type a brief (less than one line) subject and press RETURN.
Enter the text of the message you want to send. Terminate text entry and send the
message by typing a CONTROL-D on a blank line at the end of the message.

A complete mail session might go like this:

mail joe
There will be a meeting at 2:00 today to review recent developments with the new system.
CONTROL-D

Note that your XENIX system might ask for a subject before you enter the message.

For practice, send mail to yourself. (This isn't as strange as it might sound--mail to
yourself is a handy reminder mechanism.) You can also send a previously prepared
letter, and you can send mail to a number of people all at once. For more details, see
Chapter 6, "mail: The XENIX Mail System," and the mail entry in the XENIX 286
Reference Manual.

2-22

XENIX 286 User's Guide Tasks

Receiving mail

When you log in, you may sometimes get the message
you have mail

To read your mail, type
mail

A heading for each message is then displayed. To read the messages, press RETURN.
The system displays one message at a time; the most recent message is displayed first.
After reading each message, press RETURN again to read the next message.

After each message is displayed, mail waits for you to tell it what to do with the
message. The two basic responses are d, which deletes the message, and RETURN,
which stores the message in your mbox file or in your system mailbox, depending on how
you exit mail. To exit mail, type q for "quit", exit, or CONTROL-D. Other responses
are described in Chapter 6 of this manual and in the XENIX 286 Reference Manual under
mail.

Writing to a Terminal

To write directly to another user's terminal, use the write command. For example, to
write to Joe's terminal, type

write joe

and press RETURN. If you get the reponse "permission denied", it means that joe has
used the mesg command to deny other users access to his terminal. Otherwise, after
you have executed the command by pressing RETURN, each subsequent line that you
type is displayed both on your sereen and on Joe's. When the message appears on Joe's
screen, it is mixed with any other text or files currently being displayed, but the
message does not affect the file itself. To terminate writing to Joe, enter a
CONTROL-D alone on a line. The procedure for a two-way write is for each party to
end each message with a distinctive signal, normally (o) for "over"; when a conversation
is about to be terminated, use the signal (oo) for "over and out".

2-23

Tasks XENIX 286 User's Guide

Using the System Clock and Calendar

Several XENIX commands will tell you the date and time or display a calendar for any
month or year you choose. The following sections explain these commands.

Finding Out the Date and Time

To display the time and date, type

date

Displaying a Calendar

The cal command displays the calendar of any month or year you specify and has the
form

cal month year
For example, to display a calendar for March 1952, type

cal 3 1952
The month may be expressed as a digit or as a month name. If you decide to use the
specific name rather than a digit, you may abbreviate the month, using standard three-
letter abbreviations. To display the calendar for an entire year, leave out the month.

The year must be expressed in full; the command cal 84 displays the calendar for the
year 84, not 1984.

2-24

XENIX 286 User's Guide Tasks

Using the Automatic Reminder Service

An automatie reminder service is available for all XENIX system users. You can use the
service by creating a file named calendar in your home or login directory. Each line in
the file should have the following form:

date text

Where date must be some form of month followed by day (e.g. Sep 7, Sept. 7, September
7, 9/7) and text can be any combination of characters. A typical calendar file might look
like this:

8/16 Status Reports Due Today

9/20 Review meeting at 2:00 in conference room 200
9/1 Karen's birthday

10/3 License renewal

8/22 Pack camping gear for this weekend

9/16 Trip and expense reports are due

Each day your calendar file is examined and all of the lines whose dates match the
current system date are placed in a message and mailed to you.

If you want to display the lines in your calendar file whose dates match the current
system date, type

calendar

and press RETURN.

2-25

Tasks XENIX 286 User's Guide

Calculating

The be command invokes an interactive desk calculator that can be used as if it were a
hand-held calculator. A practice session with be is shown below. While be does allow
you to enter comments in the form /* text */, it is not necessary to type them in if you
are going to try the operations shown below. If you make a mistake typing something
while in be, use the BACKSPACE key to erase character by character.

/* This is a comment. bcwill not attempt to process anything enclosed like this comment. */
/* Be sure to enter “scale = 0", otherwise the results will differ from those shown here. */

scale=0

123.456789 + 987.654321 /* Add and output */

1111.111110

9.0000000 - 9.0000001 /* Subtract and output */

-.0000001

64/8 /* Divide and output */

8

1.12345678934 * 2.3 /* Multiply and output; note precision */
2.58395061548

19%4 /* Find remainder */

3

3"4 /* Exponentiation */
81

2/1*2 /* Note precedence */
4

2/(1*2) /* Note precedence again */
1
X 46.5 /* Assign value to x */

y 52.5 /* Assign value to y */

X y + 1.0000 /* Add and output */
100.0000

obase=16 /* Set hex output base */

15 /* Convert to hex */

+ 1

F

16 /* Convert to hex */
10

64 /* Convert to hex */
40

255 /* Convert to hex */
FF

256 /* Convert to hex */
100

512 /* Convert to hex */
200

quit /* Must type whole word */

For more information, see Chapter 7, "be: A Calculator."

2-26

. CHAPTER 3
intel THE SHELL

Introduction

When first logging into XENIX, you communicate with the shell command interpreter,
sh. This interpreter is a XENIX program that supports a very powerful command
language. Each invocation of this interpreter is called a shell, and each shell has one
function: to read and execute commands from the user.

Because the shell provides users with a high-level language to communicate with the
operating system, XENIX can perform complex tasks not possible with less sophisticated
operating systems. Commands that would normally be written in a traditional
programming language can be written with just a few lines in a shell procedure. In other
operating systems, commands are executed in strict sequence. With XENIX and the
shell, commands can be

° Combined to form new commands

° Passed positional parameters

° Added or renamed by the user

° Executed within loops or executed conditionally

° Created for local execution without confliet with other user commands
° Executed in the background without interrupting a session at a terminal

Furthermore, commands can "redirect" command input from one source to another and
redirect command output to a file, terminal, printer, or another command. This
provides flexibility in tailoring a task for a particular purpose.

Basic Concepts

The shell itself (that is, the program that reads your commands when you log in or that
is invoked with the sh command) is a program written in the C language; it is not part of
the operating system proper, but an ordinary user program.

The Shell

In XENIX, a process is an executing task complete with instructions, data, input, and
output. All processes have lives of their own and may even start (or "fork") new
processes. Thus, at any given moment several processes may be executing, some of
which are "children" of other "parent" processes.

3-1

The Shell XENIX 286 User's Guide

Users log in to the operating system and are assigned a shell from which they execute.
This shell is a personal copy of the shell command interpreter that is reading commands
from the keyboard; in this context, the shell is simply another process.

In XENIX, files may be created in one phase and then processed in the "background,"
enabling the user to continue working while programs run.

Commands

The most common way of using the shell is by typing simple commands at the keyboard.
A "simple command" is any sequence of arguments separated by spaces or tabs. The
first argument (numbered zero) specifies the name of the command to be executed. Any
remaining arguments, with a few exceptions, are passed as arguments to that command.
For example, the following command line might be typed to print the files allan, barry,
and calvin:

$lpr allan barry calvin

The dollar sign ($) is the standard Bourne shell prompt. The Bourne shell presents you
with its prompt when it is waiting for input. Do not type the $. Note that in this
chapter, user input (what you type) is shown in bold. Output from the computer is in
regular type.

If the first argument of a command (in the above example, Ipr) names an executable file
(as indicated by an appropriate set of permission bits associated with that file) and is
actually a compiled program, the shell as parent creates a child process that
immediately executes that program. If the file is marked as being executable but is not
a compiled program, it is assumed to be a shell procedure, that is, a file of ordinary text
containing shell command lines. In this case, the shell spawns another instance of itself
(a subshell) to read the file and execute the commands inside it.

From the user's viewpoint, compiled programs and shell procedures are invoked in
exactly the same way. The shell determines which implementation has been used,
rather than requiring the user to do so. This provides uniformity of invoeation.

How the Shell Finds Commands

The shell normally searches for commands in three distinct locations in the file system:
command_name, /bin/command_name, and /usr/bin/command_name. First, the shell
attempts to use the command name as given; if this fails, it prepends the string /bin to
the command name; and if this fails, it prepends /usr/bin to the command name. The
effect is to search, in order, the current directory, then the directory /bin, and finally,
the directory /usr/bin.

For example, the pr command is actually the file /bin/pr. A more complex path name
may be given, either to locate a file relative to the user's current directory or to access
a command with an absolute path name. If a given command name begins with a slash
(for example, /bin/sort or /emd), the prepending is not performed. Instead, a single
attempt is made to execute the command as named.

This mechanism gives the user a convenient way to execute public commands and
commands in or near the current directory, as well as the ability to execute any

3-2

XENIX 286 User's Guide The Shell

accessible command, regardless of its location in the file structure. Because the
current directory is usually searched first, anyone can possess a private version of a
public command without affecting other users. Similarly, the creation of a new public
command does not affect a user who already has a private command with the same
name. The particular sequence of directories searched may be changed by resetting the
shell PATH variable. (Shell variables are discussed later in this chapter.)

Generating Argument Lists
The arguments to commands are very often file names. Sometimes, these file names
are similar, but not identical. To take advantage of this similarity in names, the shell
enables the user to specify patterns that match the file names in a directory. If a
pattern is matched by one or more file names in a directory, then those file names are
automatically generated by the shell as arguments to the command.
Most characters in such a pattern match themselves, but there are also XENIX special
characters (metacharacters) that may be included in a pattern. These metacharacters
are the following.

* Matches any string regardless of length or content.

? Matches any single character.

[1 Matches any of the enclosed characters or range of characters.

Here are some examples of metacharacter usage.

* Matches all names in the current directory
temp Matches all names containing temp

[a-f]* Matches all names beginning with a through f
*.c Matches all names ending in .e

/usr/bin/? Matches all single-character names in /usr/bin

This pattern-matching capability saves typing and, more importantly, makes it possible
to organize information in large collections of files named in a structured fashion, using
common characters or extensions to identify related files.

Pattern-matching has some restrictions. If the first character of a file name is a period
(.), it can be matched only by an argument that literally begins with a period. If a
pattern does not match any file names, then the pattern itself is printed out as the
result of the match.

Note that directory names should not contain any of the following characters: * ? []. If
these characters are used, then infinite recursion may occur during pattern matching
attempts.

Quoting Mechanisms

The characters <, >, *, ?, [, and] have special meanings to the shell. Removing the
special meaning of these characters requires some form of quoting. This is done by
using single quotation marks (') or double quotation marks (") to surround a string. A
backslash (\) before a single character also provides this function.

3-3

The Shell XENIX 286 User's Guide

All characters within single quotation marks are taken literally. Thus,

$ echostuff = ‘echo $? $*; Is * | wc’
$ echo $echostuff
echo $? $*;1s * | we

The specified string is assigned to the variable echostuff, but it does not result in any
other commands being executed.

Within double quotation marks, the special meaning of certain characters does persist,
while all other characters are taken literally. The characters that retain their special
meaning are the dollar sign ($), the backslash (\), the single quotation mark ('), and the
double quotation mark (") itself. Thus, within double quotation marks, variables are
expanded and command substitution takes place (both topics are discussed in later
sections). However, any commands in a command substitution are unaffected by double
quotation marks, so that eharacters such as star (*) retain their special meaning.

To hide the special meaning of the dollar sign and single and double quotation marks
within double quotation marks, precede these characters with a backslash (\). Outside
of double quotation marks, preceding a character with a backslash is equivalent to
placing single quotation marks around that character. A backslash followed by a
RETURN causes that RETURN to be ignored and is equivalent to a space. The
backslash-RETURN pair is therefore useful in allowing continuation of long command
lines.

Redirecting Input and Output

In general, most commands cannot determine whether their input or output is coming
from or going to a terminal or a file. Thus, a command can be used conveniently either
at a terminal or in a pipeline. A few commands vary their actions depending on the
nature of their input or output, either for efficiency or to avoid useless actions (such as
attempting random access I/O on a terminal or a pipe).

Standard Input and Output

When a command begins execution, it usually expects that three files are already open:
a "standard input", a "standard output", and a "diagnostic output" (also called "standard
error"). A number called a file descriptor is associated with each of these files. By
convention, file deseriptor 0 is associated with the standard input, file descriptor 1 with
the standard output, and file descriptor 2 with the diagnostic output. A child process
normally inherits these files from its parent; all three files are initially connected to the
terminal (0 to the keyboard, 1 and 2 to the screen). The shell enables the files to be
redirected elsewhere before control is passed to an invoked command.

An argument to the shell of the form <file or >file opens the specified file as the
standard input or output (in the case of output, destroying the previous contents of file,
if any). An argument of the form >>file directs the standard output to the end of file,
thus providing a way to append data to the file without destroying its existing contents.
In either case, the shell creates file if it did not already exist.

3-4

XENIX 286 User's Guide The Shell

Thus,
>output

alone on a line creates a zero-length file. The following appends to file log the list of
users who are currently logged on.

$who >>log

Such redirection arguments are only subject to variable and command substitution;
neither blank interpretation nor pattern matehing of file names occurs after these
substitutions. This means that

$ echo 'this is a test’” >*.gal

produces a one-line file named *.gal. Similarly, an error message is produced by the
following command, unless you have a file with the name ?.

$cat <?

Note that special characters are not expanded in redirection arguments, because
redirection arguments are scanned by the shell before pattern recognition and expansion
takes place.

Diagnostic and Other Outputs

Diagnostic output from XENIX commands is normally directed to the file associated
with file descriptor 2. (You may often need an error output file different from standard
output so that error messages are not lost down pipelines.) You can redirect this error
output to a file by immediately prepending the number of the file descriptor (2 in this
case) to either output redirection symbol (> or >>). The following line appends error
messages from the ee command to the file named ERRORS.

$ cc testfile.c 2> >ERRORS

Note that the file descriptor number must be prepended to the redirection symbol
without any intervening spaces or tabs; otherwise, the number will be passed as an
argument to the command.

This method may be generalized to allow redirection of output associated with any of
the first ten file descriptors (numbered 0-9). For instance, if emd puts output on file
descriptor 9, then the following line will direct that output to the file savedata. (emd is
used in a generic sense here; there is no shell command called emd.)

$ecmd 9>savedata
A command often generates standard output and error output and might even have some
other output, perhaps a data file. In this case, one can redirect independently all the
different outputs. Suppose, for example, that emd directs its standard output to file
descriptor 1 and its error output to file descriptor 2 and builds a data file on file
descriptor 9. The following would direect each of these three outputs to a different file.

$cmd >standard 2>error 9>data

3-5

The Shell XENIX 286 User's Guide

Command Lines and Pipelines

A sequence of commands separated by the vertical bar (|) makes up a pipeline. In a
pipeline consisting of more than one command, each command is run as a separate
process connected to its neighbors by pipes; that is, the output of each command (except
the last one) becomes the input of the next command in line.

A "filter" is a command that reads its standard input, transforms it in some way, then
writes it as its standard output. A pipeline normally consists of a series of filters.
Although the processes in a pipeline can execute in parallel, each program needs to read
the output of its predecessor. For example, many commands operate on individual lines
of text, reading a line, processing it, writing it out, and looping back for more input.
Some must read large amounts of data before producing output; sort is an example of
the extreme case that requires all input to be read before any output is produced.

The following is an example of a typical pipeline.
$ nroff -mm text | col | lpr

nroff is a text formatter available in the XENIX 286 Extended System that allows
reverse line motions within its output; col converts these motions to a form that can be
printed on a terminal lacking reverse-motion capability, and 1pr does the actual printing.

The flag -mm indicates one of the commonly used formatting options, and text is the
name of the file to be formatted. The nroff program provides a set of primitive
commands as well as the capability of writing macros (sequences of primitive commands
that can be called as a unit). The XENIX operating system provides a library of such
macros. The flag -mm tells nroff to use the mm macro package. Another maecro
package is ms, and you could invoke nroff with this maecro package by issuing the
command,

$ nroff -ms text | col | lpr

The following examples illustrate some effects obtainable by combining commands.

who Prints the list of logged-in users on the screen.

who >>log Appends the list of logged-in users to the end of file log.

who | we -1 Prints the number of logged-in users.

who | pr Prints a paginated list of logged-in users.

who | sort Prints an alphabetized list of logged-in users.

who | grep bob Prints the list of logged-in users whose user names contain the

string "bob". Note that the string consists of the following three
letters: bob. The string does not include the double quotes. The
convention followed by most XENIX documentation is to set off a
string with double quotes.

XENIX 286 User's Guide The Shell

who | grep bob | sort | pr
Prints an alphabetized, paginated list of logged-in users whose
login names contain the string "bob".

{ date; who | we -1; } >>log
Appends (to file log) the current date followed by the count of
logged-in users. Be sure to place a space after the left brace and
a semicolon before the right brace or the XENIX operating
system could misinterpret the command line.

who | sed 's/ .*//'| sort | uniq -d
Prints only the login names of all users who are logged in more
than once. Note the use of sed as a filter to remove characters
trailing the login name from each line. (The ".*" in the sed
command is preceded by a space.)

sed is the XENIX stream editor. It reads files and performs
certain specified editor commands on each line of those files. In
this example, the standard output of the command who is piped
into sed. sed then runs the editing seript 's/ .*//' on that output.
This script saves only the first word of each line of who's output,
so that the input to sort is a file consisting of user names, one to
a line. The program sort then arranges those lines in ASCII order
and provides its output as input to the program uniq. With the -d
option, this program saves only those lines that are repeated.
The result is that you have a list of only those users that are
logged in more than once.

The who command does not by itself provide options to yield all these results--they are
obtained by combining who with other commands. Note that who just serves as the data
source in these examples. As an exercise, replace who | with </ete/passwd in the above
examples to see how a file can be used as a data source in the same way. Notice that
redirection arguments may appear anywhere on the command line, even at the start.
This means that

$ <infile >outfile sort|pr
is the same as

$sort [pr <infile >outfile

Command Substitution

Any command can be placed within back quotation marks (sometimes called grave
accents, not to be confused with single quotes) so that the output of the command
replaces the backquoted command line itself. This concept is known as command
substitution. The command or commands enclosed within back quotation marks are first
executed by the shell and then their output replaces the whole expression, back
quotation marks and all. This feature is often used to assign shell variables. (Shell

3-7

The Shell XENIX 286 User's Guide

variables are described in the next section.) For example, to assign the output of the
date command to the shell variable today, type

$ today = “date’

The result is that the shell variable today has a value such as "Tue Nov 27 16:01:09 EST
1982". To display today, use the echo command.

$ echo $today
Tue Aug 14 16:01:09 PDT 1985

Any command that writes to the standard output can be enclosed in back quotation
marks. Back quotation marks may be nested, but the inside sets must be escaped with
backslashes. For example,

$logmsg = "echo Your login directory is \'pwd\"’

$ echo $logmesg

Your login directory is /usr/vrs
Shell variables can also be given values indirectly by using the read and line commands.
The read command takes a line from the standard input (usually your terminal) and
assigns consecutive words on that line to any variables named.
For example,

$ read first init last
takes an input line of the form

G. A. Snyder
and has the same effect as typing

$ first=G. init=A. last=Snyder

The read command assigns any excess "words" to the last variable.

The line command reads a line of input from the standard input and then echoes it to the
standard output.

Shell Variables

The shell has several mechanisms for creating variables. A variable is a name
representing a string value. Certain variables are referred to as positional parameters;
these are the variables set only on the command line. Other shell variables are simply
names to which the user or the shell itself may assign string values.

XENIX 286 User's Guide The Shell

Positional Parameters

When a shell procedure is invoked, the shell implicitly creates positional parameters.
The name of the shell procedure itself is in position zero on the command line and is
assigned to the positional parameter $0. The first command argument is called $1, and
so on. Within a shell seript, the shift command may be used to access arguments in
positions numbered higher than nine. For example, the following shell seript might be
used to cycle through command line switches and then process all succeeding files.

If you are unclear about how to enter and run a shell script, read the following indented
text.

Before runing this example, here are some basics on how to create an executable
shell script. To create a shell seript, invoke a text editor such as vi. Call the file
you are creating whatever you want. This example assumes the name myfile.
Enter the command,

$ vi myfile

The screen clears and tildes appear on the left. Press the i key for insert. The i
does not appear on the screen, but you are now in insert mode. Type the file, just
as you would on a typewriter. See Chapter 5 for a discussion of vi editing
commands. Use those editing commands to correet any typing errors you might
make. Press the ESC key to exit insert mode and reenter command mode. Then,
type a colon; a colon appears on the last line of your screen. Type x for exit and
follow it with a RETURN.

Your seript now exists in the file called myfile. To make it executable, enter the
command,

$ chmod u +x myfile
The command chmod stands for change mode. The u stands for user (that's you),
and the +x means that you are adding execution mode. Do not type spaces
between the three characters, u+x.

The example shell seript looks as follows.

while test $#!= 0

do
case %1 in
-a) echo-a ; shift ;;
-b) echo-b ; shift ;;
-¢) echo-c ; shift ;;
-*) echo bad option ; exit 1 ;;
*) echo process the rest of the command; shift ;;
esac
done

3-9

The Shell XENIX 286 User's Guide

Here's what the shell sceript does. First, it tests whether the number of arguments is
zero. The number of arguments is represented by $#. The symbol != means "not equal."
While the number of arguments is not zero, the statements within the do-done
delimiters are executed.

In this example, there is only one statement within the do-done delimiters, a case
statement. The case statement begins with the word case and ends with the word esae
(case spelled backwards). If the first argument (represented as $1) is -a, then the shell
seript writes -a to the screen. (In a more realistic example, you would probably want to
do something more involved with that option.) The shift statement shifts the numbering
of the arguments. $1 goes away and $2 becomes $1, $3 becomes $2, etec. As long as
there are arguments, the case statement is executed.

The * stands for any character or characters, including no characters. For example, if
the argument were -d, the shell seript would write "bad option" to the screen and exit.
Options are identified by the minus sign. [f the argument were def, the shell script
would write "process the rest of the command" to the sereen and shift. When the seript
shifts beyond the last argument, $# becomes zero, and the script terminates. Here's
how the sereen looks if you run this seript in a test case.

$ myfile -a-b def

-a

-b

process the rest of the command

$

One can explicitly force values into the positional parameters by using the set
command. For example,

$set abc def ghi
$ echo $*
abc def ghi

assigns the string "abe" to $1 (the first positional parameter), the string "def" to $2, and
the string "ghi" to $3. Note that $0 may not be assigned a value in this way--it always
refers to the name of the shell procedure, or in the login shell, to the name of the shell.
The eecho command displays those $ variables; $* means display all of them.

Using the set command requires some background understanding. For example, if you
issue the command,

$set -a-bdef
-a: bad option(s)

you get an error message. That's because the set command sees the minus sign in front
of the a and tries to interpret the a as one of its own options. The set command has no
such option, and an error message results. Read the set section under the sh entry in
the XENIX 286 Reference Manual to find out about valid set options. To prevent set
from interpreting the -a as an option, add another minus sign, separated by spaces.

$set - -a-bdef

$ echo $*
-a-bdef

3-10

XENIX 286 User's Guide The Shell

Now you might think that if you invoke myfile without any options, you should get the
same result as before. You set the dollar variables with set rather than providing them
as arguments to myfile. The result should be the same. That's not what happens,
though. If you execute myfile, the Bourne prompt returns with no action. $# was 0;
your myfile did not see any positional variables. The reason why is key to understanding
how shell seripts work.

When you execute myfile, it runs as a shell underneath the present shell. Those dollar
variables set with the set command are not exported to myfiles's shell. Try the
following.

$set - -a-bdef
$ echo $*

-a-b def

$sh

$ echo $*

$ exit
$ echo $*
-a-b def

The sh command spawns a new Bourne shell. The positional variables are not defined in
this spawned shell. Hence, you see nothing when you execute echo $*. You can return
to the spawning shell with the exit command. (A CONTROL-D works just as well.)
Note that your positional parameters are still defined.

When you execute a shell script, it runs in a spawned shell. It does not get the
positional parameters you set with a set command executed in the spawning shell.

User-Defined Variables

The shell also recognizes alphanumeric variables to which string values may be assigned.
A simple assignment has the syntax,

name=string
Thereafter, $name will yield the value string. A name is a sequence of letters, digits, or
underscores that begins with a letter or an underscore. No spaces surround the equal
sign (=) in an assignment statement. Positional parameters may not appear on the left

side of an assignment and can only be set as described in the previous section.

More than one assignment may appear in an assignment statement, but note that the
shell performs the assignments from right to left. Thus, the following command line
results in the variable A acquiring the value abe.

$A=%B B=abc

3-11

The Shell XENIX 286 User's Guide

The following are examples of simple assignments. Double quotation marks around the
right-hand side allow spaces, tabs, semicolons, and RETURNSs to be included in a string,
while also allowing variable substitution (also known as "parameter substitution") to
occur. This means that references to positional parameters and other variable names
prefixed by a dollar sign are replaced by the corresponding values, if any. Single
quotation marks inhibit variable substitution.

$ MAIL = /usr/mail/gas

$ echovar="echo $1 $2 $3 $4"
$ StarS - * %k kkk

$ asterisks = ‘stars’

In the previous example, the variable echovar has as its value the string consisting of
the values of the first four positional parameters, separated by spaces, plus the string
"echo". No quotation marks are needed around the string of asterisks being assigned to
stars because pattern matching (expansion of star, question mark, and brackets) does not
apply in this context. Note that the value of asterisks is the literal string "stars", not
the string "*****" hecause the single quotation marks inhibit substitution.

In assignments, spaces are not reinterpreted after variable substitution, so that the
following example results in $first and $second having the same value.

$ first="a string with embedded spaces’
$ second = $first

In accessing the values of variables, you may enclose the variable name in braces {...} to
delimit the variable name from any following string. In particular, if the character
immediately following the name is a letter, digit, or underscore, then the braces are
required. For example, examine the following input.

$a="This is a string’
$ echo "${a}ent test of variables."

Here, the echo command prints
This is a stringent test of variables.

If no braces were used, the shell would substitute a null value for $aent and print
test of variables.

The following variables are maintained by the shell. Some of them are set by the shell,
and all of them can be reset by the user.

3-12

XENIX 286 User's Guide The Shell

HOME

IFS

MAIL

PATH

PS1

Initialized by the login program to the name of the user's login directory,
that is, the directory that becomes the current directory upon completion of
a login; ed without arguments switches to the $HOME directory. Using this
variable helps keep full path names out of shell procedures. This is
beneficial when path names are changed, either to balance disk loads or to
reflect administrative changes.

The variable that specifies which characters are internal field separators.
These are the characters the shell uses during blank interpretation. (If you
want to parse some delimiter-separated data easily, you can set IFS to
include that delimiter.) The shell initially sets [FS to include the blank, tab,
and RETURN characters.

The path name of a file where your mail is deposited. If MAIL is set, then
the shell checks to see if anything has been added to the file it names and
announces the arrival of new mail each time you return to command level
(for example, by leaving the editor). MAIL must be set by the user and
"exported". (The export command is discussed later in this chapter.) (The
presence of mail in the standard mail file is also announced at login,
regardless of whether MAIL is set.)

The variable that specifies the search path used by the shell when looking for
commands. Its value is an ordered list of directory path names separated by
colons. The shell initializes PATH to the list :/bin:/usr/bin where a null
argument appears in front of the first colon. A null anywhere in the path list
represents the current directory. On some systems, a search of the current
directory is not the default, and the PATH variable is initialized instead to
/bin:/usr/bin. If you wish to search your current directory last, rather than
first, use

PATH=/bin:/usr/bin::

Here, the two colons together represent a colon followed by a null, followed
by a colon, thus naming the current directory. You could possess a personal
directory of commands (for example, $HOME/bin) and cause it to be
searched before the other three directories by using

PATH=$HOME/bin::/bin:/usr/bin
PATH is normally set in your .profile file.
The variable that specifies what string is to be used as the primary prompt
string. If the shell is interactive, it prompts with the value of PS1 when it

expects input. The default value of PS1 is "$§ " (a dollar sign followed by a
blank).

3-13

The Shell XENIX 286 User's Guide

PS2 The variable that specifies the secondary prompt string. If the shell expects
more input when it encounters a RETURN in its input, it prompts with the
value of PS2. The default value for this variable is "> " (a greater-than
symbol followed by a space).

In general, you should be sure to export all of the above variables so that their values
are passed to all shells spawned from your login file. Use export at the end of your
.profile file. An example of an export statement follows.

export HOME IFS MAIL PATH PS1 PS2

Remember that, unless you export them, shell variables are not recognized in spawned
shells. The export statement ensures that the specified variables are recognized in all
spawned shells. XENIX programmers would say that the variables are "exported" to the
spawned shells. Use the set command to view variables in the current shell. Use the
env command to view variables that are exported.

Predefined Special Variables
Several variables have special meanings and are set only by the shell.

$# Records the number of arguments passed to the shell, not counting the name of
the shell procedure itself. For instance, $# yields the number of the highest set
positional parameter. Thus

sh emd a b ¢

automatically sets $# to 3. One of its primary uses is in checking for the presence
of the required number of arguments.

if test $# -lt 2
then

echo ‘two or more args required’; exit
fi

$? Contains the exit status of the last command executed (also referred to as "return
code", "exit code", or "value"). Its value is a decimal string. Most XENIX
commands return zero to indicate successful completion. The shell itself returns
the current value of $? as its exit status.

$$ The process number of the current process. Because process numbers are unique
among all existing processes, this string is often used to generate unique names for
temporary files. XENIX provides no mechanism for the automatic creation and
deletion of temporary files; a file exists until explicitly removed. Temporary files
are generally undesirable objects; the XENIX pipe mechanism is far superior for
many applications. However, the need for uniquely-named temporary files does
occasionally occur. -
The following example illustrates the recommended practice of creating
temporary files; note that the directories /tmp and /usr/tmp are cleared out if the
system is rebooted. A # indicates that what follows on that line is a comment.

3-14

XENIX 286 User's Guide The Shell

use current process id

to form unique temp file

temp = /usritmp/$$

Is >%$temp

commands here, some of which use $temp
rm $temp

clean up at end

$! The process number of the last process run in the background (using the ampersand
(&)). This is a string containing from one to five digits.

$- A string consisting of names of execution flags currently turned on in the shell.
For example, $- might have the value xv if you are tracing your output.

The Shell State

The state of a given instance of the shell includes the values of positional parameters,
user-defined variables, environment variables, modes of execution, and the current
working directory.

The state of a shell may be altered in various ways. These include changing the working
directory with the ed command, setting several flags, and reading commands from the
special file, .profile, in your login directory.

Changing Directories

The ed command changes the current directory to the one specified as its argument.
This can and should be used to change to a convenient place in the directory structure.
Note that ed is often placed within parentheses to cause a subshell to change to a
different directory and execute some commands without affecting the original shell.

For example, the first command below copies the file /ete/passwd to
/usr/username/passwd; the second command changes directory to /ete and then copies
the file. username represents your login directory. For the sake of this example,
assume that your username (hence your login directory) is called vrs. People often use
their initials--first, middle, and last.

$ cp /etc/passwd /usr/vrs/passwd
$(cd /etc ; cp passwd /usr/vrs/passwd)

Note the use of parentheses. Both commands have the same effect. Note, however,

that the second line is executed as a separate shell. When it is done, you are still in
your original directory.

3-15

The Shell XENIX 286 User's Guide

The .profile File

The file named .profile is read each time you log in to XENIX. It is normally used to
execute special one-time-only commands and to set and export variables to all later
shells. Only after commands are read and executed from .profile does the shell read
commands from the standard input--usually the keyboard.

Execution Flags

The set command enables you to alter the behavior of the shell by setting certain shell
flags. In particular, the -x and -v flags may be useful when invoking the shell as a
command from the terminal. The flags -x and -v may be set by typing

set -xv

The same flags may be turned off by typing
set +xv

These two flags have the following meanings.

-v Input lines are printed as they are read by the shell. This flag is particularly
useful for isolating syntax errors. The commands on each input line are executed
after that input line is printed.

-X Commands and their arguments are printed as they are executed. (Shell control
commands, such as for and while, are not printed, however.) Note that -x causes a
trace of only those commands actually executed, whereas -v prints each line of
input until a syntax error is detected.

The set command is also used to set these and other flags within shell procedures.

Command Environment

All variables and their associated values known to a command at the beginning of its
execution make up its environment. This environment includes variables that the
command inherits from its parent process and variables specified as keyword parameters
on the command line that invokes the command.

The variables that a shell passes to its child processes are those that have been named
as arguments to the export command. The export command places the named variables
in the environments of both the shell and all its future child processes.

Keyword parameters are variable-value pairs that appear in the form of assignments,
normally before the procedure name on a command line. Such variables are only placed
in the environment of the procedure being invoked.

For example, consider the following shell seript. The shell variables a and b are

defined on the same line where keycommand is invoked. The variables are defined in
keycommand 's environment, not the shell's.

3-16

XENIX 286 User's Guide The Shell

keycommand,

echo $a $b

$a=keyl b=key2 keycommand
keyl key2

If you issue the set command, you will not see a and b listed as a shell variable, and you
cannot display them with the echo command. Keyword parameters are not counted as
arguments to the procedure and do not affect $#.

A procedure may access the value of any variable in its environment. However, if
changes are made to the value of a variable, these changes are not reflected in the
environment; they are local to the procedure in question. In order for these changes to
be placed in the environment that the procedure passes to its child processes, the
variable must be named as an argument to the export command within that procedure.
To obtain a list of variables that have been made exportable from the current shell, type
export. You will also get a list of variables that have been made read-only. To get a
list of name-value pairs in the current environment, type either printenv or env.

Invoking the Shell

The shell is a command and may be invoked in the same way as any other command. Use
the following syntax, depending on your application:

sh process [argument...]
A new instance of the shell is explicitly invoked to read process. Arguments, if
any, can be manipulated.

sh -v process [argument...]
This is equivalent to putting set -v at the beginning of process. It can be used in
the same way for the -x, -e, -u, and -n flags. Refer to the sh entry in the XENIX
286 Reference Manual for an explanation of these flags.

process [argument...]
If process is an executable file and is not a compiled executable program, the
effect is similar to that of

sh process argument

An advantage of this form is that variables that have been exported in the shell
will still be exported from process when this form is used (because the shell only
forks to read commands from process). Thus any changes made within process to
the values of exported variables will be passed on to subsequent commands invoked
from process.

Passing Arguments to Shell Procedures
When a command line is scanned, any character sequence of the form $n is replaced by

the nth argument to the shell, counting the name of the shell procedure itself as $0. This
notation permits direct reference to the procedure name and to as many as nine

3-17

The Shell XENIX 286 User's Guide

positional parameters. Additional arguments can be processed using the shift command
or by using a for loop.

The shift command shifts positional parameters to the left; that is, the value of $1 is
thrown away, $2 replaces $1, $3 replaces $2, and so on. The highest-numbered
positional parameter becomes unset ($0 is never shifted). For example, in the shell
procedure ripple below, echo writes its arguments to the standard output. Lines that
begin with a number sign (#) are comments.

ripple command
while test $# 1= 0
do echo $1 $2 %3 $4 $5 $6 $7 %8 $9
shift
done
If the procedure were invoked with
ripple a b ¢

it would print

b ¢
4

N oo

The special shell variable "star" ($*) causes substitution of all positional parameters
except $0. Thus, the echo line in the ripple example above could be written more
compactly as

echo $*

These two echo commands are not equivalent: the first prints at most nine positional
parameters; the second prints all of the current positional parameters. The shell star
variable ($*) is more concise and less error-prone. One obvious application is in passing
an arbitrary number of arguments to a command from within a shell seript. For
example, '

we $*
counts the words of each of the files named on the command line.

It is important to understand the sequence of actions used by the shell in scanning
command lines and substituting arguments. The shell first reads input up to a RETURN
or semicolon, and then parses that much of the input. Variables are replaced by their
values and then command substitution (via back quotation marks) is attempted. I/0O
redirection arguments are detected, acted upon, and deleted from the command line.
Next, the shell secans the resulting command line for internal field separators, that is,
for any characters specified by IFS to break the command line into distinct arguments;
explieit null arguments (specified by " or ") are retained, while implicit null arguments
resulting from evaluation of variables that are null or not set are removed. Then, file
name generation occurs with all metacharacters being expanded. The resulting
command line is then executed by the shell.

3-18

XENIX 286 User's Guide The Shell

Sometimes command lines are built inside a shell procedure. In this case, it is useful to
have the shell rescan the command line after all the initial substitutions and expansions
have been performed. The eval command is available for this purpose. eval takes a
command line as its argument and simply rescans the line, performing any variable or
command substitutions specified. For example,

$ command =who output="' | wc -I'
$eval $command $output

results in the execution of the command line,
$who | wc -l

The first word of a line is always evaluated. You want the shell to rescan the line to
evaluate the variable $output as well. If you leave out the eval, just the who will be
executed. That's because who accepts an unevaluated $output. If you enter who
followed by any text string, you get login information about yourself. Try it.

$who junk morejunk
vrs ttye2 Aug 15 10:25

The output of eval cannot be redirected. However, uses of eval can be nested, so that a
command line can be evaluated several times.

Directing the Flow of Control

The shell provides several commands that implement a variety of control structures
useful in controlling shell procedures. Before describing these structures, a few terms
need to be defined.

A simple command is any single irreducible command specified by the name of an
executable file. 1/O redirection arguments can appear in a simple command line and are
passed to the shell, not to the command.

A command is a simple command or any of the shell control commands deseribed below.

A pipeline is a sequence of one or more commands separated by vertical bars (|). In a
pipeline, the standard output of each command is connected (by a pipe) to the standard
input of the next command. Each command in a pipeline is run separately; the shell
waits for the last command to finish. The exit status of a pipeline is nonzero if the exit
status of either the first or last process in the pipeline is nonzero.

A command list is a sequence of one or more pipelines separated by a semicolon (;), an
ampersand (&), an "and-if" symbol (&&), or an "or-if" (||) symbol, and optionally
terminated by a semicolon or an ampersand. A semicolon causes sequential execution of
the previous pipeline, making the shell wait for the pipeline to finish before reading the
next pipeline. On the other hand, the ampersand (&) causes asynchronous background
execution of the preceding pipeline, allowing sequential and background execution. A
background pipeline continues execution until it terminates.

3-19

The Shell XENIX 286 User's Guide

Other uses of the ampersand include off-line printing and background compilation. For
example, if you type

nohup cc prog.c&

_ you may continue working while the C compiler runs in the background. A command
line ending with an ampersand is immune to interrupts or quits that you might generate
by sending the interrupt or quit signals. The interrupt signal is usually sent by typing
the DEL or BREAK key. The quit signal is usually sent by typing a CONTROL-\.

CONTROL-D will log you out and abort the command. To prevent this from happening,
use the nohup command to make the command immune to hangups and logouts. If the
preceding example did not contain nohup and if you log out while ee is still executing,
ce will be killed and your output will disappear.

The ampersand operator should be used with restraint, especially on heavily-loaded
systems. The work of other users will be slowed down if you run a large number of
background processes.
The and-if and or-if (&& and ||) operators cause conditional execution of pipelines. Both
of these are of equal precedence when evaluating command lines (but both are lower
than the ampersand (&) and the vertical bar (])). In the command line,

$emd1 || emd2

the first command, emdl, is executed and its exit status examined. Only if emdl fails
(that is, has a nonzero exit status) is emd2 executed.

The and-if operator (&&) yields a complementary test. For example, in the command
line,

$ecmd1 && cmd2

the second command is executed only if the first succeeds (and has a zero exit status).
In the sequence below, each command is executed in order until one fails.

$cmd1 && cmd2 && cmd3 && ... && cmdn
A simple command in a pipeline may be replaced by a command list enclosed in either
parentheses or braces. The output of all the commands so enclosed is combined into one
stream that becomes the input to the next command in the pipeline. The following line
formats and prints two separate documents.

${ nroff -mm text1; nroff -mm text2; } | lpr

Note that a space is needed after the left brace and that a semicolon must appear
before the right brace.

3-20

XENIX 286 User's Guide The Shell

Using the if Statement

The shell provides structured conditional capability with the if command. The simplest
if command has the following form.

if command-list
then command-list

fi
The word fi indicates the end of the if statement. (fi is if spelled backwards.) The
example cmd1 || e¢md2 in the previous section can be rewritten using an if statement as
follows.

if cmd1

test $? !'= 0
then cmd2
fi

The command list following the if is executed, and if the last command in the list has a
zero exit status, then the command list that follows then is executed.

To cause an alternative set of commands to be executed when there is a nonzero exit
status, an else clause can be given with the following structure.

if command-list
then command-list
else command-list
fi

Multiple tests can be achieved in an if command by using the elif (else-if) clause,
although the case statement is better for large numbers of tests. For example,

if test -f "$1" #is $1 a file?

then pr $1

elif test -d "$1" # else, is $1 a directory?
then (cd $1; pr *)

else echo $1 is neither a file nor a directory

fi

The previous example is executed as follows: if the value of the first positional
parameter is a file name (-f), then print that file; if not, then check to see if it is the
name of a directory (-d). If so, change to that directory (ed) and print all the files there
(pr *). Otherwise, echo the error message.

if commands may be nested (but be sure to end each one with a fi). The RETURNS in
the above examples of if may be replaced by semicolons.

The exit status of the if command is the exit status of the last command executed in
any then clause or else clause. If no such command was executed, if returns a zero exit
status.

3-21

The Shell XENIX 286 User's Guide

Note that an alternative notation for the test command uses brackets to enclose the
expression being tested. For example, the previous example might have been written as
follows.

if [-f "$1"] #is $1 a file?

then pr $1

elif [-d "$1"] #else, is $1 a directory?
then (cd $1; pr *)

else echo $1 is neither a file nor a directory

fi

Note that a space after the left bracket and one before the right bracket are essential
in this form of the syntax.

Using the case Statement

A multiple test conditional is provided by the case command. The basic format of the
case statement is

case string in
pattern) command-list 33
pattern) command-list ;;
esac

The shell tries to match string against each pattern in turn, using the same pattern-
matching conventions as in file name generation. If a match is found, the command list
following the mateched pattern is executed; the double semicolon (;;) serves as a break
out of the case and is required after each command list except the last. Note that only
one pattern is ever matched, and that matches are attempted in order, so that if a star
(*) is the first pattern in a ease, no other patterns are looked at.

More than one pattern may be associated with a given command list by specifying
alternative patterns separated by vertical bars (]). For example,

case $i in

*) cc $i;;

*.h | *.sh) : do nothing;;

*) echo "$i of unknown type";;
esac

No action is taken for the second set of patterns because the null, colon (:) command is
specified. The star (*) is used as a default pattern, because it matches any word.

The exit status of ecase is the exit status of the last command executed in the case
command. If no commands are executed, then case has a zero exit status.

3-22

XENIX 286 User's Guide The Shell

ConditionalLooping
A while command has the general form
while command-list do command-list done

The commands in the first command-list are executed, and if the exit status of the last
command in that list is zero, then the ecommands in the second command-list are
executed. This sequence is repeated as long as the exit status of the first command-list
is zero. A loop can be executed as long as the first command-list returns a nonzero exit
status by replacing while with until.

Any RETURN in the above example may be replaced by a semicolon. The exit status of
a while (or until) command is the exit status of the last command executed in the second
command-list. If no such command is executed, while (or until) has a zero exit status.

Looping Over a List

Often, one wishes to perform some set of operations for each file in a set of files, or
execute some command once for each of several arguments. The for command can be
used to accomplish this. The for command has the format

for variable in word-list do command-list done

Here word-list is a list of strings separated by blanks. The ecommands in the command-
list are executed once for each word in the word-list. The variable takes on as its value
each word from the word list, in turn. The word-list is fixed after it is evaluated the
first time. For example, the following for loop causes each of the C source files xec.e,
emd.c, and word.c in the current directory to be compared with a file of the same name
in the directory /usr/sre¢/emd/sh:

for CFILE in xec cmd word
do diff ${CFILE}.c /usr/src/emd/sh/${CFILE}.c
done

The first occurrence of CFILE immediately after the word for has no preceding dollar
sign, because the name of the variable is wanted and not its value.

You can omit the in word-list part of a for command; this causes the current set of
positional parameters to be used in place of word-list. This is useful when writing a
command that performs the same set of commands for each of an unknown number of
arguments. Create a file named echo2 that contains the following shell seript.

for word
do echo $word$word
done

Give echo2 execute status and execute it.

3-23

The Shell XENIX 286 User's Guide

$ chmod + x echo2

$ echo2 ma pa bo fi yo no
mama

papa

bobo

fifi

yoyo

nono

Loop Control

The break command can be used to terminate execution of a while or a for loop.
continue requests the execution of the next iteration of the loop. These commands are
effective only when they appear between do and done.

The break command terminates execution of the smallest (that is, innermost) enclosing
loop, causing execution to resume after the nearest following unmatched done. Exit
from n levels is obtained by break n.

The continue command causes execution to resume at the nearest enclosing for, while,
or until statement, that is, the one that begins the innermost loop containing the
continue. You can also specify an argument n to continue, and execution will resume at
the nth enclosing loop.

This procedure is interactive.

"Break" and "continue” commands are used
to allow the user to control data entry.
while true #loop forever

do
echo Please enter data
read response
case "$response” in
"done") break;; # no more data .
"")continue ;; # just a carriage return, keep on going
*) echo $response ;; # process the data here
esac
done

End-of-File and exit

When the shell reaches the end-of-file in a shell procedure, it terminates execution,
returning to its parent the exit status of the last command executed prior to the
end-of-file. The top-level shell is terminated by typing a CONTROL-D, which is the
same as logging out.

The exit command simply reads to the end-of-file and returns, setting the exit status to

the value of its argument, if any. Thus, a procedure can be terminated normally by
placing "exit 0" at the end of the file.

3-24

XENIX 286 User's Guide The Shell

Command Grouping

Two operators are used for grouping commands in the shell: parentheses and braces.
Parentheses cause the shell to create a subshell that reads the enclosed commands.
Both the right and left parentheses are recognized wherever they appear in a command
line--they can appear as literal parentheses only when enclosed in quotation marks. For
example, if you attempt to define a shell variable called var as garble(stuff), you get an
error message.

$ var = garble(stuff)
syntax error: ‘(" unexpected

You must quote the parentheses. In the XENIX operating system, preceding a character
with a backslash has the same effect as enclosing it in single quotes. The following
command lines have the same result.

$ var = garble’('stuff’)’
$ var ='garble(stuff)’
$ var = garble\(stuff\)

This capability of creating a subshell by grouping commands is useful when performing
operations without affecting the values of variables in the current shell, or when
temporarily changing the working directory and executing commands in the new
directory without having to return to the current directory.

The current environment is passed to the subshell and variables exported in the current
shell are also exported in the subshell. Thus

$ CURRENTDIR = "pwd"; cd /usr/docs/otherdir
$ nohup nroff doc.n | Ipr& ; cd $CURRENTDIR

and
$ (cd /usr/docs/otherdir; nohup nroff doc.n | Ipr&)

accomplish the same result: a copy of /usr/does/otherdir/doc.n is formatted and sent to
the line printer.

Interpret the above commands this way. The first example sets the shell variable
CURRENTDIR to the value of the pwd command (pwd stands for print-working-
directory). Those are backquotes around the pwd, just like those enclosing the date
command in a previous example. The semicolon separates two commands on the same
line. The ed command changes the working directory to /usr/does/otherdir. The ed
command will not create that directory; it must already exist for you to change to it.

The next line invokes the nroff program on the file doe.n. Note that, in this case, no
macro package is used. A previous nroff example using a macro package employed the
flag -mm. The output of nroff is by default the terminal sereen. The | lpr pipes the
output to the line printer instead. (The | is the pipe symbol.) The ampersand puts the
process in the background. That means you can enter additional shell commands before

3-25

The Shell XENIX 286 User's Guide

the nroff process has finished. This is often convenient because your terminal does not
"go away" on you. The nohup option ensures that the process does not die if you log out.
Finally, the second ed returns to your original working directory, whose pathname you
saved in the shell variable CURRENTDIR.

The second example accomplishes the same result. Enclosing a series of commands in
parentheses ensures that they are executed in a subshell spawned from the invoking
shell. There is no need to save the pathname of the original shell. The second example
automatieally returns you to your original working directory. In the second example,
blanks or RETURNSs surrounding the parentheses are allowed but not necessary. When
entering a command line at the terminal, the shell will prompt with the value of the
shell variable PS2 if an end parenthesis is expected. PS2 is your secondary prompt,
defined in your .profile file.

Braces ({ }) may also be used to group commands together. Both the left and the right
brace are recognized only if they appear as the first (unquoted) word of a command. The
opening brace may be followed by a RETURN (in which case the shell prompts for more
input). Unlike parentheses, no subshell is ereated for braces: the enclosed commands
are simply read by the shell. The braces are convenient when you wish to use the
(sequential) output of several commands as input to one command. Refer to the sh
entry in the XENIX 286 Reference Manual for more information. Pay special attention
to the "Notes" section.

The exit status of a set of commands grouped by either parentheses or braces is the exit
status of the last enclosed executed command.

Input/Output Redirection and Control Commands

The shell normally does not fork and create a new shell when it recognizes the control
commands (other than parentheses) described above. However, each command in a
pipeline is run as a separate process to direct input to or output from each command.
Also, when redirection of input or output is specified explicitly to a control command, a
separate process is spawned to execute that command. Thus, when if, while, until, case,
and for are used in a pipeline consisting of more than one command, the shell forks and
a subshell runs the control command. This has two implications:

° Any changes made to variables within the control command are not effective once
that control command finishes (this is similar to the effect of using parentheses to
group commands).

o Control commands run slightly slower when redirected, because of the additional
overhead of creating a shell for the control command.

3-26

XENIX 286 User's Guide The Shell

Transfer to Another File and Back: the Dot (.) Command
A command line of the form
. process

causes the shell to read commands from process without spawning a new shell. Changes
made to variables in process are in effect after the dot command finishes. This is a good
way to gather a number of shell variable initializations into one file. A common use of
this command is to reinitialize your login shell by reading the .profile file with

$. .profile

Interrupt Handling

Shell procedures can use the trap command to disable a signal (cause it to be ignored),
or redefine its action. The XENIX operating system provides a mechanism called signals
to communicate with running processes. You have already come across the interrupt
and quit signals. Typically you can send an interrupt signal by pressing the DEL key on
your terminal. A signal is identified by a number. The number of the interrupt signal is
2. The form of the trap command is

trap argument signal-list

Here argument is a string to be interpreted as a command list and signal-list consists of
one or more signal numbers. The commands in argument are scanned at least once,
when the shell first encounters the trap command. Because of this, it is usually wise to
use single rather than double quotation marks to surround these commands. Single
quotation marks inhibit immediate command and variable substitution. This becomes
important, for instance, when one wishes to remove temporary files and the names of
those files have not yet been determined when the trap command is first read by the
shell. The following procedure will print the name of the current directory in the file
errdirect when it is interrupted, thus giving the user information as to how much of the
job was done.

trap ‘echo ‘pwd’ >errdirect’ 2 3 15
for i in /bin /usr/bin
do
cd Si
Is -l # commands to be executed in directory $i here
done

For the above shell script to work correctly the directories listed in the for statement
must exist and be accessible. The command lIs -1 is included so that the shell seript puts
output on the screen.

Beware that the same procedure with double quotation marks causes the shell to print
the name of the directory from which the procedure was first executed.

(trap "echo “pwd’ >errdirect" 2 3 15)

3-27

The Shell XENIX 286 User's Guide

A memory allocation signal (signal 11) can never be trapped, because the shell itself
needs to catch it to deal with memory allocation. Zero is interpreted by the trap
command as a signal generated by exiting from a shell. This occurs either with an exit
command, or by "falling through" to the end of a procedure. If argument is not
specified, then the action taken upon receipt of any of the signals in the signal list is
reset to the default system action. If argument is an explicit null string (" or ""), then
the signals in the signal list are ignored by the shell.

The trap command is most frequently used to ensure that temporary files are removed
upon termination of a procedure. Consider the following example, first without a trap
command. Be sure to create a directory called temp in your home directory. Use the
mkdir command. (It stands for make directory.)

$ mkdir tmp

Then, construct an executable file with the following two lines. The first line sets a
shell variable to a pathname for a file under tmp. $HOME is a shell variable defined in
.profile and contains the path name of your login directory. $$ is the symbol for the
shell process id number. This number is a convenient one to use when you want a name
that stands a reasonablie chance of being unique.

temp = SHOME/tmp/$$
Is > $temp #commands that use $temp here

The result of this secript is that you create a file in tmp that contains the names of the
files in your working directory. The file's name is some number, the process id that the
seript got when it ran.

Now, assume that you want to delete that temporary file (it's not temporary unless you
delete it) when you complete the seript under certain conditions, namely receiving one
of a list of signals. Edit the seript to look as follows.

temp = $HOME/tmp/$$
trap ‘rm S$temp; trap 0; exit" 0 1 2 3 15
Is > S$temp # commands that use $temp here

In this example, whenever signal 1 (hangup), 2 (interrupt), 3 (quit), or 15 (kill) is received
by the shell procedure, or whenever the shell procedure is about to exit, the commands
enclosed between the single quotation marks are executed. The exit command must be
included, or else the shell continues reading commands where it left off when the signal
was received. The trap 0 in the above procedure turns off the original traps 1, 2, 3, and
15 on exits from the shell, so that the exit command does not reactivate the execution
“of the trap commands. When you execute the modified version of the script and look in
the directory tmp, you will not find a new file created.

Sometimes the shell continues reading commands after executing trap commands. The
following procedure takes each directory in the current directory, changes to that
directory, prompts with its name, and executes commands typed at the terminal until an
end-of-file (CONTROL-D) or an interrupt is received. An end-of-file causes the read
command to return a nonzero exit status, and thus the while loop terminates and the
next directory cyecle is initiated. An interrupt is ignored while executing the requested
commands but causes termination of the procedure when it is waiting for input.

3-28

XENIX 286 User's Guide The Shell

d="pwd’
for i in *
do if test -d $d/$i
then cd $d/$i
while echo "$i:"
trap exit 2
read x
do trap : 2; eval $x; done
fi
done

Here's an example of the use of the above shell seript. Assume that it is in an
executable file called scan. Assume that you execute scan from your login directory,
/usr/ted, and that this directory contains the directories, bin, dirl, and junk. The
directory bin contains one file called sl1, and the directory called junk is empty.

$scan

bin:

pwd

/usr/ted/bin

bin:

Is -

total 0

-rW-r--r-- 1 ted xenix 40 Aug 1317:01 st
bin:

enter a CONTROL-D
dirt:

enter a CONTROL-D
junk:

Is -1

total 0

junk:

enter a CONTROL-D
$

Several traps may be in effect at the same time: if multiple signals are received
simultaneously, they are serviced in numerically ascending order. To determine which
traps are currently set, type trap with no arguments. For example,

$ trap ‘echo hello’ 2 15
$ trap

2: echo hello

15: echo hello

When a signal (other than 11) is received by the shell, it is passed on to whatever child
processes are currently executing., When these (synchronous) processes terminate,
normally or abnormally, the shell polls any traps that are set and executes the
appropriate trap commands. This process is straightforward, except in the case of traps
set at the command (outermost, or login) level. I[n this case, it is possible that no child
process is running, so before the shell polls the traps, it waits for the termination of the
first process spawned after the signal was received.

3-29

The Shell XENIX 286 User's Guide

When a signal is redefined in a shell secript, this does not redefine the signal for
programs invoked by that script; the signal is merely passed along. A disabled signal is
not passed.

For internal commands, the shell normally polls traps on completion of the command.
An exception to this rule is made for the read command, for which traps are serviced
immediately, so that read can be interrupted while waiting for input.

Special Shell Commands

The shell contains several internal special commands, some of which have already been
mentioned. The shell does not fork to execute these commands, so no additional
processes are spawned. These commands should be used whenever possible, because
they are, in general, faster and more efficient than other XENIX commands. The
trade-off for this efficiency is that redirection of input and output is not allowed for
most of these special commands.

Several of the special commands have already been described because they affect the
flow of control. They are dot (.), break, continue, exit, and trap. The set command is
also a special command. Desecriptions of the remaining special commands are given
here.

: The null command. This command does nothing and can be used
to insert comments in shell procedures. Its exit status is zero
(true). Its utility as a comment character has largely been
supplanted by the number sign (#), which can be used to insert
comments to the end-of-line. Note that any arguments to the
null command are parsed for syntactic correctness; when in
doubt, quote such arguments. Parameter substitution takes
place, just as in other commands.

ed argument Make argument the current directory. If argument is not a valid
directory, or the user is not authorized to access it, a nonzero
exit status is returned. Specifying ed with no argument is
equivalent to typing ed $HOME, which takes you to your home
directory.

exec argument ... If argument is a command, then the shell executes the command
without forking and returning to the current shell. This is
effectively a "goto" and no new process is created. Input and
output redirection arguments are allowed on the command line. If
only input and output redirection arguments appear, then the
input and output of the shell itself are modified accordingly.

3-30

XENIX 286 User's Guide

newgrp argument...

read variable...

readonly variable...

times

umask nnn

ulimit nnn

wait

eval argument

The Shell

The newgrp command is executed, replacing the shell. newgrp in
turn creates a new shell. Note that only environment variables
will be known in the shell created by the newgrp command. Any
exported variables will no longer be marked as such.

One line (up to a RETURN) is read from the standard input and
the first word is assigned to the first variable, the second word to
the second variable, and so on. All words left over are assigned
to the last variable. The exit status of read is zero unless an
end-of-file is read.

The specified variables are made read-only so that no subsequent
assignments may be made to them. If no arguments are given, a
list of all readonly and of all exported variables is given.

The accumulated user and system times for processes run from
the current shell are printed.

The user file creation mask is set to nnn. If nnn is omitted, then
the current value of the mask is printed. This bit-mask is used to
set the default permissions when creating files. For example, an
octal umask of 137 corresponds to the following bit-mask and
permission settings for a newly created file.

User user group other
octal 1 3 7
bit-mask 001 011 111
permissions rw- r-- -

See umask in the XENIX 286 Reference Manual for information
on the value of nnn.

The process file size limit is set to nnn; the value of nnn is in
units of 512K-byte blocks.

The shell waits for all currently active child processes to
terminate. The exit status of wait is always zero.

Arguments are read as input to the shell and the resulting
command(s) executed.

Creating and Organizing Shell Procedures

A shell procedure can be created in two simple steps.
The second is changing the mode of the file to make it executable, thus

text file.

The first is building an ordinary

permitting it to be invoked by
process argument
rather than

sh process argument

3-31

The Shell XENIX 286 User's Guide

The second step may be omitted for a procedure to be used once or twice and then
discarded, but is recommended for frequently-used ones. To set up a simple procedure,
first create a file named mailall with the following contents:

LETTER = $1
shift
for i in $*
do mail $i <S$LETTER
done
Next, type

$chmod +x mailall
The new command might then be invoked from within the current directory by typing
$ mailall letter joe bob

Here letter is the name of the file containing the message you want to send, and joe and
bob are people you want to send the message to. Note that shell procedures must
always be at least readable, so that the shell itself can read commands from the file.

If mailall were thus created in a directory whose name appears in the user's PATH
variable, the user could change working directories and still use the mailall command.

Shell procedures may be created dynamically. A procedure may generate a file of

- commands, invoke another instance of the shell to execute that file, and then remove it.
An alternative approach is that of using the dot command (.) to make the current shell
read commands from the new file, allowing use of existing shell variables and avoiding
the spawning of an additional process for another shell.

Many users prefer writing shell procedures to writing C programs. This is true for
several reasons.

° A shell procedure is easy to create and maintain because it is only a file of
ordinary text.

° A shell procedure has no corresponding object program that must be generated and
maintained.

] A shell procedure is easy to create quickly, use a few times, and then remove.

° Because shell procedures are usually short in length, written in a high-level

programming language, and kept only in their source-language form, they are
generally easy to find, understand, and modify.

By convention, directories containing commands and shell procedures are named bin.
The name bin is derived from the word "binary" and is used because compiled and
executable programs are often called "binaries" to distinguish them from source files.
Most groups of users sharing common interests have one or more bin directories set up
to hold common procedures. Some users have their PATH variable list several
directories.

3-32

XENIX 286 User's Guide The Shell

More about Execution Flags
Several execution flags available in the shell can be useful in shell procedures.

-e This flag causes the shell to exit immediately if any command that it executes
exits with a nonzero exit status. This flag is useful for shell procedures composed
of simple command lines; it is not