
XENIX* 286
DEVICE DRIVER GUIDE

*XENIX is a trademark of Microsoft Corporation.

Copyright @ 1984, Intel Corporation
Intel Corporation, 3065 Bowers Avenue, Santa Clara. California 9505' Order Number: 174393-001

XENIX* 286

DEVICE DRIVER GUIDE

Order Number: 174393-001

*XENIX is a trademark of Microsoft Corporation.

COPYright @ 1984 Intel Corporation

I Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors
that may appear in this document. Intel Corporation makes no commitment to update or to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No
other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property ofIntel Corporation. Use, duplication or disclosure is
subject to restrictions stated in Intel's software license, or as defined in ASPR 7-104.9 (a) (9),

No part of this document may be copied or reproduced in any form or by any means without prior written consent of Intel
Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

BITBUS im iRMX OpenNET

COMMputer iMDDX iSBC Plug-A-Bubble

CREDIT iMMX iSBX PROMPT

Data Pipeline Insite iSDM Promware

Genius intel iSXM QUEST
A intelBOS KEPROM QueX 1

i Intelevision Library Manager Ripplemode
I2ICE inteligent Identifier MCS RMXJ80

ICE inteligent Programming Megachassis RUPI

iCS Intellec MICROMAINFRAME Seamless
iDBP Intellink MULTIBUS SLD

iDIS iOSP MULTICHANNEL SYSTEM 2000

iLBX iPDS MULTIMODULE UPI

XENIX is a trademark of Microsoft Corporation. Microsoft is a trademark of Microsoft Corporation. UNIX is a trademark of
Bell Laboratories.

REV. REVISION mSTORY DATE

-001 Original issue 11/84

ii 10/~4,

CONTENTS
CHAPTER 1
INTRODUCTION
Prerequisites
Manual Organization
Notation

CHAPTER 2
DRIVER FUNDAMENTALS
XENIX I/O Overview

Basic I/O Model
I/O Levels
Device Types
Driver Overview

Kernel Review
What Is the Kernel?
Privilege Levels
Memory Organization
Multiple Processes
Process Control
Interrupt Handling
Locking Out Interrupts

Device Identification
Device Driver Interface
Driver Files
Driver Support Routines

Physical I/O Routines
Accessing User Memory

CHAPTER 3
SIMPLE CHARACTER DRIVERS
Character Buffering
Driver Files
Driver Constants
Data Structures
Driver Procedures

ixxxinit Procedure
ixxxopen Procedure
ixxxclose Procedure
ixxxread Procedure
ixxxwrite Procedure
ixxxioctl Procedure
ixxxenq Procedure
ixxxstart Procedure
ixxxintr Procedure

Output Summary

TABLE OF CONTENTS

PAGE

1-1
1-1
1-2

2-1
2-1
2-2
2-3
2-3
2-4
2-4
2-4
2-4
2-5
2-6
2-7
2-8
2-9

2-11
2-12
2-13
2-13
2-14

3-1
3-3
3-3
3-4
3-5
3-5
3-5
3-6
3-6
3-7
3-8
3-8
3-8
3-9

3-10

iii

Table of Contents

CONTENTS

CHAPTER 4
TERMINAL DRIVERS
tty Structure
Line Discipline Routines

ttinit
ttopen
ttclose
ttread
ttwrite
ttiocom
ttioctl
ttin
ttout
ttxput

Modem Control by Terminal Drivers
Driver Description

ixxxinit Procedure
ixxxparam Procedure
ixxxopen Procedure
ixxxclose Procedure
ixxxread Procedure
ixxxwrite Procedure
ixxxintr Procedure
ixxxproc Procedure
ixxxstart Procedure
ixxxioctl Procedure

iSBC 534 Driver
sys/h/i534.h Listing
sys/cfg/c534.c Listing
sys/io/i534.c Listing

CHAPTER 5
BLOCK DRIVERS
Block Buffering
Block Driver Overview
Driver Files
Driver Constants
Driver Data Structures

iv

ixxxinit Procedure
ixxxopen Procedure
ixxxclose Procedure
ixxxstrategy Procedure
ixxxstart Procedure
ixxxintr Procedure
ixxxread and ixxxwrite Procedures
ixxxioctl Procedure

XENIX 286 Device Drivers

PAGE

4-2
4-2
4-3
4-4
4-4
4-4
4-4
4-5
4-5
4-5
4-6
4-6
4-6
4-6
4-7
4-7
4-8
4-8
4-9
4-9
4-9

4-10
4-11
4-11
4-12
4-12
4-17
4-18

5-2
5-6
5-8
5-8

5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
5-18

XENIX 286 Device Drivers

CONTENTS

CHAPTER 6
ADDING DRIVERS TO THE CONFIGURATION
Editing the master file
Editing xenixconf
Editing the makefiles
Making aNew Kernel
Making the Device Special File
Adding Terminal Information
Executing the New Kernel
Deleting a Device Driver

APPENDIX A
MEMORY-MAPPED I/O FOR DRIVERS
Small Model Kernel
Creating the Segment Descriptor
The Peek Routines
The Poke Routines

APPENDIX B
CONVERTING DRIVERS FROM
RELEASE 1 TO RELEASE 3 OF XENIX 286
Terminal Drivers

tty Structure
Changes to Routines

Line Discipline Routines
The tty.h File

Block Device Drivers
Buff er Changes
Addressing

APPENDIX C
tty.h INCLUDE FILE

APPENDIX D
termio.h INCLUDE FILE

APPENDIX E
buf.h INCLUDE FILE

APPENDIX F
iobuf.h INCLUDE FILE

APPENDIX G
master FILE

APPENDIX H
xenixconf FILE

APPENDIX I
c.c FILE

APPENDIX J
RELATED PUBLICATIONS

INDEX

Table of Contents

PAGE

6-2
6-6
6-7
6-7
6-8
6-8
6-9
6-9

A-I
A-I
A-2
A-3

B-1
B-1
B-4
B-6
B-6
B-9
B-9
B-9

v

Table of Contents XENIX 286 Device Drivers

TABLES
TABLE TITLE

2-1 XENIX I/O Software
B-1 Changed tty Fields
B-2 New tty Fields
B-3 ixxxproc Commands
B-4 Line Discipline Routines
B-5 Input Modes Describing Basic Terminal Input Control
B-6 Output Modes Specifying System Treatment of Output
B-7 Control Modes Describing Hardware Control of the Terminal
B-8 Line Discipline Modes Used to Control Terminal Function

FIGURES
FIGURE TITLE

6-1 Device Table from sys/conf/master

vi

PAGE

2-2
B-2
B-3
B-4
B-6
B-7
B-7
B-8
B-8

PAGE

6-2

CHAPTER 1
INTRODUCTION

This manual describes how to write or modify device drivers for Intel's Release 3 of the
XENIX 286 Operating System. A device driver is a software module that controls an
input/output (I/O) device and provides a system-defined interface to the device.

Prereq u isites

This manual assumes that you, the reader, understand the C programming language and
basic programming concepts. This manual also assumes some knowledge of XENIX or
UNIX. If you are writing or modifying a specific driver, you should also understand any
hardware controlled by the driver.

Manual Organization

This manual contains these chapters:

1. Introduction: Prerequisites, manual organization, and notation.

2. Driver Fundamentals: XENIX I/O overview, device types, driver interface, driver
organization, kernel concepts, and kernel support routines.

3. Simple Character Drivers: Character buffering services and how to write a simple
character driver.

4. Terminal Drivers: Terminal support services and how to write a terminal driver.

5. Block Drivers: Block buffering, caching, and sorting services and how to write a
block driver.

6. Adding Drivers to the Configuration: How to modify the XENIX 286 system to
include your driver.

This manual contains these appendixes:

A. Memory-Mapped VO for Drivers: Procedures used for reading and writing device
registers that are mapped into the iAPX 286 main memory address space, rather
than the iAPX 286 I/O port address space.

B. Converting Drivers from Release 1 to Release 3 of XENIX 286: Hints and
guidelines for converting drivers written for Release 1 of Intel's XENIX 286
Operating System to Release 3.

1-1

Introduction XENIX 286 Device Drivers

C. tty.h Include File: definitions used by terminal drivers and other character
drivers.

D. termio.h Include File: additional definitions used by terminal drivers.

E. buf.h Include File: definition of block buffer headers used for block I/O.

F. iobuf.h Include File: definition of static headers (one per block device) that
reference lists of block buffer headers for block I/O.

G. master File: configuration file to be edited when defining a new device driver.

H. xenixconf File: configuration file to be edited when adding or removing devices in
a configuration.

I. c.c File: C program file that contains the interfaces to all device drivers in the
configura t ion.

J. Related Publications: Descriptions and ordering information for all XENIX 286
Release 3 manuals and any other publications referenced by this manual.

Notation

These notational conventions are used in this manual:

• Literal names are bolded where they occur in text, e.g., /sys/include, printf,
dey_tab, BOP.

• Syntactic categories are italicized where they occur and indicate that you must
substitute an instance of the category, e.g., filename.

• In examples of dialogue with the XENIX 286 system, characters entered by the
user are printed in bold type, e.g., cat myfile.

• In syntax descriptions, optional items are enclosed in brackets, e.g., [-n].

• Items that can be repeated one or more times are followed by an ellipsis (•••).

• Items that can be repeated zero or more times are enclosed in brackets and
followed by an ellipsis ([] •••).

• A choice between items is indicated by separating the items with vertical bars
(I).

• Names of device driver routines and some data elements must use a device­
specific prefix two to four characters in length. This prefix is represented in this
manual as ixxx, the form of the prefix that Intel uses for its own devices. For
example, the driver for Intel's iSBC® 544 board uses the prefix i544. Users writing
drivers for Intel boards are encouraged to follow this convention.

1-2

CHAPTER 2
DRIVER FUNDAMENTALS

This chapter presents background information about XENIX I/O, the XENIX kernel, and
XENIX device drivers that should be understood before reading subsequent chapters that
cover the details of particular types of drivers. This chapter contains the following
sections:

• XENIX I/O Overview (including device types and an overview of drivers)

• Kernel Review (including memory organization, process control, and interrupt
handling)

• Device Identification

• Device Driver Interface

• Driver Files

• Driver Support Routines

XENIX I/O Overview

This section provides an overview of XENIX I/O:

• The basic model of I/O used by XENIX

• The four levels of software that handle I/O in XENIX

• Device types supported by XENIX

• An overview of device drivers

Basic I/O Model

Input/output in XENIX is part of a more general model of information transfer via
streams of bytes. Such a stream may not even involve I/O devices, but may simply
connect two user processes, one writing bytes to the stream and the other reading bytes
from the stream. A stream can connect a process to a file, to a device, or via a "pipe"
to another process. I/O is normally sequential, but for file I/O, it is possible to seek to a
designated point in the file and then resume stream access.

(Note: A stream in this sense is more general than the "streams" defined by the XENIX
standard I/O library, stdio.)

2-1

Driver Fundamentals XENIX 286 Device Drivers

Most I/O sources and destinations are accessed via the XENIX hierarchical file system.
Device interfaces are represented in the file system by special files that specify the
device driver that implements I/O to or from the device. Special files are described
later in this chapter in the section "Device Identification."

More information about the XENIX I/O model is contained in the Overview of the
XENIX 286 Operating System and the XENIX 286 C Library Guide.

I/O Levels

Table 1-1 lists four types of software that provide I/O services in a XENIX system.
Applications software can invoke three of the four types; device drivers are invoked
only by the kernel and are never invoked directly by software outside of the kernel.

Name

Shell

Standard I/O
Library
stdio.h

XENIX Kernel

Device Driver

Table 2-1. XENIX I/O Software

Description

Runs as a user process,
provides a XENIX command
language for use by users
and by other programs;
I/O services implemented with
calls to standard I/O library.

A library of C definitions
used by C programs as a
standard interface to I/O;
implemented with calls to the
XENIX kernel.

The core of XENIX, the only
code that users cannot
replace as they choose;
provides basic system services
for memory management, timer
management, process control,
I/O, and system start/stop;
calls device drivers for
device-specific I/O functions.

Provides a XENIX -defined
interface to a particular device.

I/O Services

Com mand syntax for I/O:
redirection and pipes
that connect processes using
streams; also file system
services such as wildcards
in file names.

Open, read, write, close, seek
files or devices; formatted
I/O; stream I/O that interposes
additional buffering* between
program and file or device.

Implements file system; block
buff ering* and caching;
character buffering*; terminal
line editing; vectoring of
device interrupts.

Device-dependent code for
initialization, startup,
shutdown, read or write,
interrupt handling, and
device control.

*Buffering in the standard I/O library and buffering in the kernel are separate facilities.

2-2

XENIX 286 Device Drivers Driver Fundamentals

Device Types

XENIX recognizes two types of device interfaces, character and block.

A character device reads or writes sequential streams of characters and is optimized for
the transfer of a few characters with each operation. A line printer or a terminal are
examples of character devices. Chapter 3 describes a simple character driver.

A block device is presumed to contain storage, organized as a randomly addressable
array of blocks. Any block device can contain a XENIX file system. Disk drives, bubble
memories, and RAM disks are all block devices.

Any device that does not fit the model of a block device is implemented as a character
device, e.g., a driver for a local area network.

XENIX provides special support for terminal character devices. Much of the code
needed in a terminal device driver is already provided by XENIX as a set of special line
discipline routines. Chapter 4 describes terminal drivers.

The kernel provides extensive block buffering, caching, and sorting services to minimize
and optimize I/O operations for block devices. For some operations, such as a byte-by­
byte copy of a disk, this kernel support is inappropriate. To support such low-level
operations, most block devices support a character interface to the device, sometimes
called the "raw" interface, in addition to the block interface. Chapter 5 describes both
interfaces to block devices.

Driver Overview

A XENIX device driver is organized as a set of procedures to be called by the kernel.
The forms of the procedure names, the procedure parameters, the times the procedures
are called, and the purposes of the procedures are all predetermined by the interface
between the driver and the rest of the kernel. Many of the procedures are optional;
some are required.

Within the driver procedures, the driver writer often relies on calls to kernel routines
that provide needed services, such as process control, interrupt lockout, buffer
manipulation, or I/O port operations. Some of these routines are described in
subsequent sections of this chapter; others are described in Chapters 3, 4, and 5, which
deal with specific types of drivers.

The driver writer must work with three constraints in writing the driver: the kernel
interface to the driver, the kernel support routines available to the driver, and the
characteristics of the hardware being controlled. A major purpose of this manual is to
completely describe the first two design constraints; hardware-specific information is
needed to describe the third design constraint.

2-3

Driver Fundamentals XENIX 286 Device Drivers

Kernel Review

This section describes features of the XENIX 286 kernel that should be understood
before writing device drivers. These features include memory organization, support for
multiple processes, interrupt handling, and the kernel interface to device drivers.

What Is the Kernel?

The kernel is a small but central part of the total XENIX 286 Operating System. The
purpose of the kernel is to provide a standard interface between other programs and
shared machine resources. These resources include memory, processing time, and I/O
devices. User programs and other parts of XENIX access the kernel through a set of
standard system calls, defined as C function calls. XENIX command programs, such as
the shell or the text editors, are outside the kernel and call on the kernel in the same
way as any other user program.

Driver procedures and data structures are actually linked into the kernel as part of
adding drivers to the configuration. Driver code executes in kernel mode, in the kernel
address space, and with kernel privileges. The term kernel is used in two senses: (1) the
device-independent kernel code that is linked with all the drivers; (2) all kernel-mode
code, including all the drivers and the device-independent code.

Privilege Levels

Programs executing on an iAPX 286 processor have an associated privilege level. The
privilege level ranges from 0 (most privileged/most trusted) to 3 (least privileged/least
trusted). All kernel code and device driver code executes at level 0 (most privileged),
allowing access to all of memory and execution of any iAPX 286 instruction. All other
code in a XENIX 286 system executes at level 3 (least privileged), which restricts
memory access and instruction execution to protect user processes from each other and
to protect the kernel from user processes. The system call mechanism makes the
transition between user code and privileged kernel code. A process is in user mode when
it executes outside the kernel; a process is in kernel mode when it executes within the
kernel (typically when it makes a system call).

Because device driver code is privileged, it must be carefully written and checked. Bad
device driver code can corrupt user code or data, crash the system, or subvert system
protection mechanisms.

Memory Organization

Memory in an iAPX 286 system is organized as a collection of segments. A particular
process or program module may only be able to access certain segments; the segments
that a process or module can access are its address space. Each process executing in
user mode has a distinct address space, distinct from all other user processes and also
distinct from the kernel address space.

2-4

XENIX 286 Device Drivers Driver Fundamentals

Processes executing in kernel mode share a single kernel address space. However, at
most one process can execute kernel code at a particular time. The kernel address
space is also used by all interrupt handlers. Kernel code can use privileged iAPX 286
instructions to access user process address spaces in addition to accessing the kernel
address space.

Multiple Processes

XENIX supports concurrent execution of multiple processes. The kernel is responsible
for scheduling and coordinating processes. A process yields the CPU to another process
for one of two reasons, either because it must wait for some event, such as I/O, before
continuing, or because its time slice expires.

All processes in a XENIX system are handled in the same way by the kernel. There is no
difference between "system" and "user" processes. Whenever any process executes a
system call, it executes kernel code in kernel mode but retains its separate process
identity.

Each process in a XENIX system is represented in the kernel address space by two data
structures. First is an entry in the kernel's proc table, which contains information about
all processes in the system. The second structure is a u structure that contains
information the kernel needs to maintain about the process. The u structure also
contains the kernel stack segment for the process, used for local variables, saved
registers, and return addresses. Because kernel stack segments have a limited size,
driver routines should not declare arrays or structures as local variables. The file
sys/hluser.h defines the u structure.

Inactive processes may be swapped out to disk and their associated memory freed. When
a process is swapped out, its kernel stack segment and u structure are swapped out with
it. When the kernel is ready to run the process, the process is swapped into memory
again, possibly in a different location than it used previously. The proc table entry is
not swapped out or in and exists as long as the process exists.

Some information in the u structure is used by device drivers. Driver routines such as
ixxxwrite, called by a process executing kernel code, can access the u structure. The
driver interrupt routine or routines that can be called at interrupt time cannot access
the u structure; at the time the interrupt executes for a particular process, that process
may be swapped out and another process and its u structure swapped in.

The time when interrupt handling code is being executed is called interrupt time. All
other execution time in a XENIX system is called task time. All interrupt time code is
kernel-mode code (kernel or driver code). Task time code can be user-mode code,
kernel code, or driver code. Task time code is executed on behalf of the currently
running process. Kernel-mode task time code can access the process's u structure.
Interrupt time code uses the kernel stack of whatever process was interrupted, but may
be executing on behalf of an entirely different process. Code that may be called at
interrupt time should never reference the u structure or process memory.

2-5

Driver Fundamentals XENIX 286 Device Drivers

Process Control

When a process is executing in the kernel, it will not be pre-empted by any other
process. Interrupts may be handled, but control returns to the interrupted process, even
if a higher priority process has been readied. Only when a process exits the kernel or
calls sleep can it be pre-empted, either by a higher priority process or by the expiration
of its time slice.

When a device driver routine detects a situation in which the executing process must
wait for some event, the routine must suspend process execution by calling a kernel
process control routine. For example, if a process is doing input and must wait for
additional characters to be sent from a terminal, then the driver routine should suspend
the process so that other processes can run while the first process is waiting for I/O.
When the driver detects that the process should again be able to run (e.g., a line has
been received from the terminal), then the driver must "wake up" the suspended process,
which will resume execution at the point in the driver where it was suspended.

These kernel process control routines are used in writing device drivers:

sleep(id, pri)
char *id; /* unique address that the process is sleeping on;

normally the address of a data structure used only by
the process or routine that is sleeping. */

int pri; /* process priority that the process will have when it
wakes up and until it exits the kernel, when its normal
priority is restored. */

wakeup(id)
char *id; /* unique address that processes sleep on */
/*
All processes sleeping on the specified address are awakened.
The scheduler will dispatch them one at a time to resume executing
in the kernel, with the priority specified in their call to sleep.
The interrupt priority for an awakened process is splO (all interrupts
enabled).
*/

The priority specified to sleep must be in the range 0-127. Numerically lower values in
this range indicate higher priority processes. If the priority specified in calling sleep is
greater than or equal to PZERO, then the sleeping process can also be awakened by
signals. PZERO is defined in sys/h/param.h.

Because a process can normally be awakened by signals or be awakened with another
process waiting on the same address, it is good practice to recheck the condition being
waited for after the process resumes execution, e.g.:

while (/* true if need to sleep */)
sleep(&my_var, MY _PRI);

The call to wakeup the sleeping process is often in the device interrupt routine, ixxxintr,
which detects the I/O event being waited for.

2-6

XENIX 286 Device Drivers Driver Fundamentals

Interrupt Handling

In interrupt-time execution, an interrupt is handled by the kernel, which calls an
interrupt handler. All interrupt handling is done in kernel mode. The kernel provides
the special code needed to save and restore registers of the interrupted process and also
provides the code to handle the 8259A PICs (Programmable Interrupt Controllers). Each
device interrupt has two attributes: level and priority. The iAPX 286, PICs, and
MULTIBUS® system bus support up to 256 interrupt levels, from 0 to 255. The two PICs
provided on the iSBC 286/10 processor board support up to 15 interrupt levels. Seven of
these interrupt levels can be used by device controllers on other MULTIBUS boards.
Additional interrupt levels can be used by providing slave PICs on the other MULTIBUS
boards, which send a level value to the 286/10 master PIC after signaling an interrupt.
The interrupt level (sometimes called "vector") identifies the source of an interrupt and
is passed as a parameter to the appropriate device interrupt routine. The level may only
identify the type of device and possibly the board that interrupted and the interrupt
routine may have to poll devices of the type or on the board to determine which devices
need servicing.

Interrupt configuration for the iSBC 286/10 single board computer is described in Guide
to Using the iSBC 286/10 Single Board Computer. The following information is taken
from that guide and does not apply to any other 286 processor board that you may be
using. As shipped by Intel, the 286/10 interrupts are configured as follows:

Level PIC Level Source

0 MASTER 0 Clock
1 MASTER 1 INT1 from MULTIBUS system bus
2 MASTER 2 INT2 from MULTIBUS system bus
3 MASTER 3 INT3 from MULTIBUS system bus
4 MASTER 4 INT4 from MULTIBUS system bus
5 MASTER 5 INT5 from MULTIBUS system bus
6 MASTER 6 8274 serial controller (console) interrupt
7 MASTER 7 SLA VE PIC interrupt
8-63 -------- ---------
64 SLAVE 0 INT6 from MULTIBUS system bus
65 SLAVE 1 INT7 from MULTIBUS system bus
66 SLAVE 2 Jumper E145 in 286/10 interrupt matrix
67 SLAVE 3 MINTRO from iSBX bus connector J6
68 SLAVE 4 MINTR1 from iSBX bus connector J6
69 SLAVE 5 MINTRO from iSBX bus connector J5
70 SLAVE 6 MINTR1 from iSBX bus connector J5
71 SLAVE 7 Interrupt signal from the line printer interface

Note the jump in the interrupt level seen by the software ("Level" column above) when
going from the master to the slave PIC. Because potentially each master line could be
connected to a slave PIC, the level used by a slave PIC input line i is equal to i+8*(j+ 1),
where j is the number of the master PIC line to which the slave PIC is connected. For
example, if your device interrupts on MULTIBUS line INT7, then it will use interrupt
level 65 and should specify that level in the master file, as described in Chapter 6 of
this manual.

INTO from the MULTIBUS system bus is not listed above; it is connected to the 80286
Nonmaskable Interrupt (NMI) input.

2-7

Driver Fundamentals XENIX 286 Device Drivers

A transaction being handled by an interrupt routine may be on behalf of a totally
different process than the running process; the running process may not be involved in
I/O to or from the interrupting device at all. Thus the interrupt routine and routines
that can be called by the interrupt routine should not reference the u structure or
reference process memory, as such references are erroneous and can corrupt other
processes in the system.

Routines that can be called at interrupt time should not suspend the current process by
calling sleep. Again, this prohibition is because the current process may not be the
process that is being served by the interrupt-time routines.

locking Out Interrupts

XENIX uses an 8-level priority scheme for managing interrupts. The routines for
managing interrupt priorities and mutual exclusion and how they are implemented on
Intel's hardware are described in this section.

The kernel provides 11 routines for locking and unlocking interrupts: spIO, spIt, spI2,
spI3, spI4, spI5, spI6, spI1, splx, spicli, and spibuf.

A routine spin (n in the range 1-7) takes no arguments and locks out all interrupts of
priority n or lower, enabling interrupts of priority n+ 1 or higher. spin returns an int
value that is a mask to be used in restoring the previous interrupt priority. The returned
value should be saved in a local variable for use as a parameter in a matching call to
splx. The routine spiO enables all interrrupts, including priority 0 interrupts.

The routine splx takes as its argument the int mask value returned by an spin call. splx
restores the priority to which interrupts were locked out before the matching spln call.
There is no return value from splx. The mask value used should not be tampered with by
the calling routine.

The routine spicli is a synonym for the routine spI5 and locks out interrupts for all
character devices and lower priorities. Character drivers should use this routine to lock
out interrupts. (Block devices that have character interfaces do not count as character
devices here.)

The routine spibuf is a synonym for spI6 and locks out interrupts for all block devices
and lower priorities. Block drivers should use this routine to lock out interrupts.

When the kernel services an interrupt, it locks out all interrupts at the same level or
higher levels. For example, an interrupt at level 6 locks out all interrupts from level 6
or higher. The spi priority scheme maps to levels as follows: spI7 locks out all
interrupts. splbuf (spI6) locks out all but level 0 (clock) interrupts. spicli (sp15) locks
out all but level 0 and level 1 interrupts. You should not be using spI4, spI3, spI2, or
spIt, and their action is not defined in this manual. splO enables interrupts at all levels.

Note that only a block device should use interrupt level 1. Also note that the priority
mechanism is implemented entirely with the PICs; the 80286 CPU distinguishes only
between all interrupts enabled and all interrupts (except NMI and RESET) disabled.

2-8

XENIX 286 Device Drivers Driver Fundamentals

It is a programming error for driver code to ever lower the interrupt priority below its
value when the driver code is called. Driver code should only use splcli or splbuf to
raise the interrupt priority and splx to restore the interrupt priority.

The only driver code that must lock out interrupts is code that requires exclusive access
to a data structure accessed at both task time and interrupt time. For example:

int msk;

msk = splcliO; /* Lock out character interrupts and lower. */
/* Put code here to access shared data structure. */
splx(msk); /* Restore the previous interrupt state. */

Note that splx must be called on every path out of the code in which the interrupt
priority is raised. The following code illustrates a common mistake:

int msk;

msk = splcliO;

if (/* error condition */) {
u.u error = EIC;
return;

}

splx(msk);

Note that if the error return is taken, the previous interrupt priority has not been
restored.

The duration that interrupts are locked out should always be minimized.

Device Identification

Each distinct device in a XENIX system is identified by a node in the XENIX ,file system
called a device special file. By convention, all device special files are contained in the
Idev directory of the file system. Because devices are implemented as files, all the
XENIX file protection mechanisms and file naming mechanisms can be used with
devices. The special file for a device has a name, specifies whether the device is a
block or character device, and specifies a major number and a minor number for the
device.

2-9

Driver Fundamentals XENIX 286 Device Drivers

The major number is eight bits and specifies a particular device driver. For example,
the system console and the line printer are both character devices but have different
major numbers and different drivers. The minor number designates a specific device
within the class of devices handled by a driver. For example, if a system supports four
line printers, they would use the same driver and major number, but use four different
minor numbers, such as 0, 1, 2, and 3. The minor number is not interpreted by the
kernel, only by the driver. The driver can use the minor number to encode information.
For example, terminal drivers use bit 6 of the minor number to indicate whether modem
control is enabled for a line. Hard disk drivers typically reserve some bits of the minor
number to specify disk partitions (described in Chapter 5, "Block Drivers"). In contrast,
the major number is normally ignored by a driver, and a driver should be written to be
independent of whatever major number it is assigned.

The kernel combines the major and minor numbers into a 16-bit device number. The
high byte of the device number is the major number; the low byte of the device number
is the minor number. The macros major and minor, defined in sys/hltypes.h, are used to
extract the major and minor number from a device number. Each macro takes a device
number as its single argument. For example:

#include II • .lh/types.h"

bozo{dev)

/* code file must be in a sibling directory
of sys/h */

dev t dev; /* device number, major/minor */
{ -
int maj = major{dev);
int min = minor{dev);

}

The device number type dey t is also defined in sys/hltypes.h. Also defined in the file is
the macro makedev(x,y), which returns the device number formed from the major
number x and the minor number y.

A different special device file is specified for each major/minor combination. For
example, a system with four line printers would have four corresponding special files in
the /dev directory: IpO, Ipl, Ip2, and Ip3. If a device supports both block and character
interfaces, then different special files denote the two different interfaces, though the
major and minor numbers are the same.

When a program opens a device and establishes an I/O channel to or from the device, it
specifies the name of the device special file. The kernel then determines the device
number to be used for all calls to the device driver and also whether to use the table of
character device drivers or block device drivers in making driver calls.

Chapter 6, "Adding Drivers to the Configuration," describes how to create the special
files needed by your driver.

2-10

XENIX 286 Device Drivers Driver Fundamentals

Device Driver Interface

The kernel interface to device drivers is a set of tables containing the addresses of
device-specific routines. These tables are called device switches. The tables are

• dinitsw Routines to be called at system initialization to initialize devices.

• vecintsw Device interrupt routines; the table is indexed by hardware interrupt
level (from the PIC).

• cdevsw Device routines (e.g., ixxxwrite) called in response to system calls for
character device interfaces. cdevsw is indexed by major device
number.

• bdevsw Device routines (e.g., ixxxstrategy) called in response to system calls
for block device interfaces. bdevsw is indexed by major device
number.

Note that example driver routine names and data names in this manual are of the form
ixxx ••• in accordance with Intel's naming of its own drivers (e.g., i534 for the prefix of
names associated with the iSBC 534 board).

The driver routines called through dinitsw have no parameters and have names of the
form ixxxinit. The dinitsw routines are called at system initialization time. At system
initialization, interrupts have not yet been enabled, so the ixxxinit routines must not
rely on interrupts occurring (i.e., don't use sleep, timeout, or any driver interrupt
routines).

When an interrupt occurs, vecintsw is indexed with the MULTIBUS interrupt level and
the corresponding routine is called. These routines have the form

ixxxi ntr(l evel)
int level; /* MU L TIBUS interrupt level, in range 0-255 */

cdevsw and bdevsw are each indexed by major device number and contain routines called
in response to various system calls. cdevsw is used for character device interfaces;
bdevsw is used for block device interfaces. The routines addressed by cdevsw are

ixxxopen(dev,oflag);
Called each time a device handled by the driver is opened. Does error
checking to validate the open; should enable interrupts and assign a device
status variable to indicate that the device is open.

ixxxclose(dev,oflag);
Called for the last close of a device handled by the driver. Should wait for
all pending I/O for the device to complete, disable interrupts, and assign a
device status variable to indicate that the device is closed.

ixxxread(dev);
Called to read a number of bytes from a device handled by the driver into an
area in user memory. The u structure specifies the number of bytes and the
transf er address.

2-11

Driver Fundamentals XENIX 286 Device Drivers

ixxxwrite(dev);
Called to write a number of bytes from an area in user memory to a device
handled by the driver. The u structure specifies the number of bytes and the
transf er address.

ixxxioctl(dev, cmd, arg, mode);
Called to execute some special function of a device handled by the driver,
such as formatting a disk or changing the baud rate of a terminal.

bdevsw includes the same ixxxopen and ixxxclose routines as cdevsw, and one other
routine:

ixxxstrategy(bp) ;
Called with a pointer to a buffer with data to be read or written. Checks the
request for validity, queues it, and starts the device if it is idle.

ixxxstrategy is used for both reading and writing blocks.

bdevsw also includes one data structure reference, to ixxxtab, the first static buffer
header for the block device.

More information about all these routines and their parameters is in Chapters 3, 4, and 5
for character interfaces and Chapter 5 for block interfaces.

Driver Files

Code for a device driver is typically contained in three files:

• sys/hlixxx.h is an include file that defines constants and sometimes structure
declarations used by the driver.

• sys/cfglcxxx.c is a C program file that defines data structures used by the driver,
especially configuration-dependent data structures.

• sys/io/ixxx.c is a C program file that defines driver routines required by the kernel
interface and any internal driver routines called by the required routines. This file
references the data structures defined in sys/cfg/cxxx.c as externals.

The file sys/h/ixxx.h is normally included by the other two files:

#include " . .lh/ixxx.h"

Depending on the type of driver, sys/io/cxxx.c and sys/io/ixxx.c must include other .h
files, as described in Chapters 3, 4, and 5, which describe different types of drivers.

The sys directory is normally contained in the root directory and has an absolute path
name of Isys. However, if your system has the XENIX 286 source product, then the sys
directory is contained in the lusr directory and has an absolute path name of lusrlsys.

To add a driver to your system, you must mOdify several other files, as described in
Chapter 6, "Adding Drivers to the Configuration."

2-12

XENIX 286 Device Drivers Driver Fundamentals

Driver Support Routines

This section describes several kernel routines frequently used by device drivers. Kernel
routines used only by character device drivers are described in Chapters 3 and 4. Kernel
routines used only by block device drivers are described in Chapter 5. Process control
routines are described in the section "Process Control" earlier in this chapter. Interrupt
control routines are described in the section "Locking Out Interrupts" earlier in this
chapter.

Physical 1/0 Routines

The kernel provides four functions that allow drivers to directly address iAPX 286 I/O
ports:

int in(port)
unsigned port; /* port address, in range 0-65535 */
/*
Return a 16-bit word read from I/O addresses port and port + 1.
*/

char inb(port)
unsigned port; /* port address, in range 0-65535 */
/*
Return the byte read from the I/O port.
*/

out(port, value)
unsigned port;
int value;
/*

/* port address, in range 0-65535 */
/* 16-bit val ue to be written * /

Write the 16-bit value to I/O addresses port (low byte) and
port + 1 (high byte).
*/

outb(port, val ue)
unsigned port;
char value;
/*

/* port address, in range 0-65535 */
/* byte to be written * /

Write the byte value to the I/O port.
*/

These routines use privileged iAPX 286 instructions and can be called only from kernel
or device driver code. If reading or writing a nonexistent port, these routines still
function and do not hang or fault. Writing a nonexistent port has no effect. Reading a
nonexistent port returns an indeterminate value, typically all ones (Oxff or Oxffff) or all
zeros (0).

2-13

Driver Fundamentals XENIX 286 Device Drivers

Some device drivers may use memory-mapped I/O, in which device registers are mapped
into the main memory address space of the iAPX 286, instead of being assigned
addresses in the I/O port address space of the iAPX 286. For example, this technique is
used by Intel's 188/48 device driver, which is supplied with XENIX 286. Memory-mapped
I/O is described in Appendix A, "Memory-Mapped I/O for Drivers." The example code in
Chapters 3, 4, and 5 all assumes that I/O ports are used for device registers.

Accessing User Memory

The kernel provides the routines copyin and copyout to move blocks of data from or to
user memory:

copyi n(src, dst, cnt)
faddr t src; /* far poi nter into user data segment */
cadd r-t dst; /* near pointer into kernel data segment */
unsigned cnt; /* nonzero number of bytes to transfer */
/*
Copies cnt bytes from the user data area referenced by src to
the kernel data area referenced by dst. cnt cannot be 0 (or 64K
bytes would be copied).
*/

copyout(src, dst, cnt)
caddr t src;
fadd r -t dst;
unsigned cnt;
/*

/* near pointer into kernel data segment */
/* far pointer into user data segment */
/* nonzero number of bytes to transfer */

Copies cnt bytes from the kernel data area referenced by src to the
user data area referenced by dst. cnt cannot be 0 (or 64K bytes
would be copied).

Near pointers are used for references within the kernel because the kernel (including all
driver code) is compiled using small model, which uses a single data segment. The type
faddr _tis defined in user.h and contains a segment selector in the high word and an
offset in the low word. The type caddr _tis defined in types.h and is an unsigned short
16-bit value, the offset into the kernel data segment.

In a process's u structure, u.u base has the type faddr t, references a buffer in user
memory (during a read or write system call), and can be used with copy in or copyout.
For example:

char *my _ buffer;

/* Copy bytes to be written from user memory to kernel memory */
copyin(u.u _ base, my_buffer, u.u count);

The u structure is defined in the file sys/hluser.h.

2-14

CHAPTER 3
SIMPLE CHARACTER DRIVERS

This chapter describes the elements of a simple character device driver. This driver is
for an output-only device such as a line printer. This chapter first describes character
buffering services provided by the kernel and used by the driver. It then describes the
files, constants, data structures, and procedures that make up the driver. Some example
code is included in this chapter; this code is for a hypothetical device and not for any
real device supported by XENIX.

Character Buffering

Character device drivers queue character streams for input or output using the clist
data structure declared in the file sys/hltty.h:

struct cI ist {

};

int c cc;
struct cblock
struct cblock

/* character count */
/* poi nter to fi rst * /
/* pointer to last */

The queued characters are contained in one or more blocks of type cblock (also declared
in tty.h). The clist structure references a linked list of these blocks that contain the
characters in the queue. The clist structure references the first and last blocks in the
list and contains a count of the total number of characters queued in all the blocks.

Each block contains a link to the next block in the list (NULL if no next block), an area
that can contain up to 24 queued characters, and indices to the first and last queued
characters in that area.

Driver code need not access the cblock and clist structures, except for the field c_cc
which gives the count of queued characters. The kernel routines getc and putc perform
all needed operations on these structures. The tty.h file that declares these structures
is listed in Appendix C of this manual.

The kernel maintains a single free list of blocks available for character buffering. This
free list is shared by all character drivers. When a character is added to a queue and a
new block is needed, one is obtained from the free list. When the last character is
removed from a block, that block is returned to the free list. The getc and putc
routines handle all the details of allocating and returning free blocks.

3-1

Simple Character Drivers XENIX 286 Device Drivers

The number of characters in a single driver queue should be limited by a "high-water
mark" to keep any single device from exhausting the space available for character
buffering. A task trying to write to the device is suspended if the high-water mark is
reached, to be awakened when the number of characters queued for output drops to a
"low-water mark." The goal is to keep both the task and the driver active, while
limiting use of character buffering space. The example driver in this chapter uses fixed
marks declared in the driver. Terminal drivers typically use arrays of marks, tthiwat
and ttlowat in tty.h, indexed by terminal baud rate.

The kernel routine putc adds a character to a queue:

int putc(c, q)
int c;
struct clist *q;

putc tries to add character c at the end of the queue referenced byq. putc returns 0 if
the character is successfully enqueued. If there is no space in the queue and no more
cblocks on the free list, the character is not enqueued and putc returns -1.

If -1 is returned, the recommended action is for the calling routine to call sleep,
specifying q as the address to sleep on. (This is only recommended in routines that are
never called at interrupt time; sleep should never be called at interrupt time.) When the
interrupt routine drains the queue to the low-water mark, it can call wakeup, specifying
q as the wakeup address.

The kernel routine getc removes a character from a queue:

int getc(q)
struct clist *q;

If the queue referenced by q is empty, getc returns -1; otherwise it removes and returns
the next character in the queue.

If my _ q is a queue header declared with

struct clist my _ q;

then the number of characters in the queue can be referenced as my_q.c_cc and the
queue can be initialized with this assignment:

my_q.c_cc = 0;

Note that it is not necessary to initialize the queue character pointers, which are not
used when the queue is empty.

The clist data structure is accessed at both task-time and interrupt-time. The getc and
putc routines handle all needed mutual exclusion, . ensuring that character device
interrupts are locked out when queues are manipulated.

3-2

XENIX 286 Device Drivers Simple Character Drivers

Driver Files

The driver code is contained in three files:

• sys/hlixxx.h defines constants and possibly structure declarations used by the
driver.

• sys/cfglcxxx.c defines data structures used by the driver, including configuration
structures that may be modified as part of system configuration.

• sys/io/ixxx.c defines the driver routines.

The file sys/hlixxx.h is included by the other two files:

#include II • .lh/ixxx.h"

The main driver file Isys/io/ixxx.c should also include these files:

#include II • .lh/param. h II /* for system parameters */
#include II • .lh/di r.h II 1* needed by other .h files used */
#include " . .lh/types. h II /* for system data types */
#include II • .lh/tty . h II /* for clist structure */
#include " . .lh/user.h" /* u structure and error codes */

Adding the device to the configuration also requires editing the files sys/conf/master
and sys/conf/xenixconf, as described in Chapter 6, "Adding Drivers to the
Configuration. "

Driver Constants

Driver constants typically defined in sys/hlixxx.h include

1. The number of boards (ixxx BRD) and the number of devices (ixxx HUM)
supported by the driver. The range of minor device numbers allowed is then 0 -
(ixxx _ NUM - 1).

#define
#define

ixxx BRD 2 /* number of boards */
ixxx -NUM 2*ixxx BRD /* number of devices (2 per board) */

2. The interrupt level used by the driver, e.g., ixxx _LEV.

3. Offsets from the base port address for a particular device to the individual port
addresses used by the device controller. For example:

#define
#define

ixxx DAT 0
ixxx -5T5 1

1* offset to data port * /
1* offset to status port */

3-3

Simple Character Drivers XENlX 286 Device Drivers

4. Constants that define possible state values for the device. For example:

#define
#define
#define
#define

ixxx ABS 0
ixxx-PRE
ixxx-OPN 2
ixxx-ERR 3

/* device absent status */
/* device present status */
/* device open status */
/* device error status; device must be closed

and reopened * /

5. Constants that define bit patterns used in accessing the device (hardware
dependent):

#define ixxx ONL 0001 /* onli ne bit in status port */
-#define ixxx BSY 0002 /* device busy; cleared when

interrupt acknowledged */
#define ixxx HER 0004 /* device hard error */

-#define IXXX INE 0100 /* device interrupts enabled */

6. A constant that defines the task priority to be used when returning from a call to
sleep:

#defi ne ixxx PRI TTOPRI /* task priority used on return from sleep
(defined in tty.h) */

7. High- and low-water marks for the device (if arrays declared in tty.h are not
used):

#define
#define

ixxx LOW
ixxx-HIW

48
96

/* low-water mark
/* high-water mark

*/
*/

Data Structu res

Data structures typically defined in sys/cfg/cxxx.c include

1. An array of base port addresses for the devices, e.g.:

unsigned ixxx_adr[ixxx_NUM] = {0140, 0150, 0160,0170 };

The initialization clause can be edited to change the port addresses used. The
number of port addresses listed must be greater than or equal to ixxx_NUM.

2. An array to record device status (e.g., absent, present, open, error):

int ixxx sts[ixxx NUM]; /* C initializes to zeros = all absent */

3. An array of character queue headers for the devices:

struct clist ixxx _ q[ixxx _ NUM]; /* ixxxinit must init count fields */

3-4

XENIX 286 Device Drivers Simple Character Drivers

When configuring a system and assigning port addresses, a system administrator would
edit the sys/cfglcxxx.c file to define the port addresses assigned to ixxx_adr. The
system administrator may also edit the sys/hlixxx.h file to change the number of boards.
Note that the kernel does not access any of the data structures defined in
sys/cfglcx:Ja..c. These structures are used only by the driver. They are provided in a
separate file only so that the system administrator can change the configuration
expected by the driver.

Driver Proced u res

This section describes the routines in a simple character driver; most are called by the
XENIX kernel; two are called by other driver routines. Aside from these routines, the
file sys/io/ixxx.c must include the driver constants file sys/h/ixxx.h and also declare the
data structures listed above as extern (external). For example, ixxx.c must reference
the ixxx_adr array defined in cx:Ja..c and would declare it as follows:

extern unsigned ixxx _adr[]; /* array of port addresses */

ixxxinit Procedure

ixxxinitO;

This procedure is optional but is normally provided for physical devices. It is called via
the switch dinitsw during system initialization. ixxxinit should check each possible
device handled by the driver to determine whether it is present in the system. For
example, a driver that can handle up to four printers mapped to a range of I/O ports
should check for the presence or absence of each printer. The checks can typically be
done by writing a test pattern to a device register and then reading the device register
for a response (if any). ixxxinit should write a line to the standard output for each
device checked, indicating if it was found or not found. ixxxinit should initialize the
static data structures for devices that are found, such as the output queue headers and
the device status variables. ixxxinit should also initialize hardware to a known state,
for devices that are found.

ixxxopen Procedure

ixxxopen(dev, oflag)
dev t dev; /* device number, major/minor */
int oflag; /* flags specified to open system call, NOT USED */

ixxxopen is called by the kernel via cdevsw each time a device with the major number
managed by the driver is opened. dev is the I6-bit device number. ofiag contains the
flags specified to the corresponding open system call (see open in "System Functions" in
the XENIX 286 C Library Guide). These flags are typically not used by the driver
ixxxopen routine.

3-5

Simple Character Drivers XENIX 286 Device Drivers

ixxxopen should first validate its parameters. If the minor device number is out of the
valid range, an error should be indicated. If the minor device number corresponds to a
device not physically present, an error should be indicated. If the· minor device number
corresponds to a device that is already open and concurrent access is not allowed, an
error should be indicated.

Errors can be indicated by assigning a nonzero error code to the kernel variable
u.u error. The kernel checks this variable when control returns to it from the device
driver. The file sys/h/user.h predefines many error codes. These predefined error codes
are described in the introduction to Appendix C, "System Functions," in the XENIX 286
C Library Guide. For example, to indicate a bad minor device number or one that refers
to a device not physically present, use EINV AL. To indicate that a device is already
open and cannot be concurrently opened again, use EBUSY.

If its parameters are valid, ixxxopen should enable device interrupts. (Device interrupts
should be kept disabled when a device is not being used, to prevent device state changes
from generating interrupts that the kernel and driver would have to handle.) ixxxopen
should also assign the device status variable to indicate that the device is now open. In
the case of a printer, ixxxopen may also write an initial character sequence to reset it
and place the printer in a known state. The simplest such sequence is simply a
formfeed, to place the printer at the top of form.

ixxxclose Procedure

ixxxclose(dev, oflag)
dev t dev; /* device number, major/minor */
int of lag; /* flags specified to open system call, NOT USED */

ixxxclose is called by the kernel via cdevsw only for the last close of the device denoted
by the device number dey. The kernel keeps track of the number of opens for each
device without a matching close. It calls ixxxclose only for the last close that ends all
activity on the device.· For devices that do not permit concurrent access, this is the
same as calling ixxxclose for every close operation.

ofiag contains the flags specified to the open system call that created the file
descriptor that was closed by the close system call that triggered the call to ixxxclose.
These flags are typically not used by the driver ixxxclose routine.

ixxxclose should wait until all output in the queue is transferred to the device, assign
the device status variable to indicate that the device is closed, and then disable device
interrupts before returning.

ixxxread Procedure

ixxxread(dev)
dev t dev; /* device number, major/minor */

ixxxread is not provided for write-only devices such as printers. In the cdevsw switch,
the kernel procedure nodev takes the place of ixxxread. nodev assigns the value
ENODEV to u.u error if it is called. Chapter 4, "Terminal Drivers," includes a version
of ixxxread for an example terminal driver.

3-6

XENIX 286 Device Drivers Simple Character Drivers

ixxxwrite Procedure

ixxxwrite(dev)
dev t dev; /* device number, major/minor */

ixxxwrite is called by the kernel via cdevsw when the user task makes the write system
call. The number of characters to be written is specified by the u structure field
u.u count. The kernel routine cpass is called to transfer each character from the user
task's address space. cpass also decrements u.u_count.

ixxxwrite is responsible for doing any conversion and checking required in the character
stream. For example, ixxxwrite might expand tabs, replace illegal characters with a
combination of printable characters, and translate end-of-line characters (linefeeds) to
a carriage return/linefeed pair. The complexities of enqueuing a character (checking
water marks, putting the task to sleep, etc.) should be isolated in a separate routine,
ixxxenq(unit, c).

ixxxwrite can also check to see if an I/O error has been signaled by the interrupt
handler; this is done by checking to see if the handler has set the device status to
indicate an error. If this occurs, an error code should be assigned to u.u_error and no
other action taken. ixxxwrite must do this on behalf of the interrupt routine because
the interrupt routine cannot access the u structure.

Typical code for ixxxwrite is

{
int un;
int c;

/* unit (minor number) */
/* char being transferred */

}

if «un = minor(dev)) > = ixxx NUM)
u.u error = ENODEV; -

else if (ixxx sts[un] = = ixxx ERR)
u.u error = EIO;

else
while (u.u count) {

c = cpassO;

}

/* Here is where possibly complex logic for conversion
goes, with multiple calls to ixxxenq to queue the
character(s) for output. * /

3-7

Simple Character Drivers XENIX 286 Device Drivers

ixxxioctl Procedure

One other driver routine, ixxxioctl, is called via cdevsw. This routine is not present in
the example simple character driver and is replaced in cdevsw by the kernel routine
nodev. nodev assigns the value ENODEV to u.u _error if it is called. Chapters 4 and 5
contain more information about the ixxxioctl routine.

ixxxenq Procedure

ixxxenq(unit, c)
int unit; /* unit number = minor device number that's

been validated */
int c; /* char to be enqueued */

ixxxenq is called by ixxxwrite to enqueue a character on a device's output queue. It
handles putting the task to sleep if the queue's high-water mark is reached and starting
output by calling ixxxstart if the queue was empty. Typical code for ixxxenq is

{
if (putc(c, ixxx q[unit)) = = -1 II ixxx q[unit].c cc> = ixxx HIW)

sleep(ixxx q[unit], ixxx _PRI); - - -

if ((ixxx q[unit].c cc = = 1) &&
...... (inb(ixxx ad!1unit] + ixxx STS) & ixxx BSY»
ixxxstart(unit); -

}

ixxxstart Procedure

ixxxstart(unit)
int unit; /* unit number = minor number that's been validated */

ixxxstart is called by either ixxxintr or ixxxenq to output a character from the output
queue to the device. If the number of characters in the queue falls to the low-water
mark, ixxxstart calls wakeup on the queue. ixxxstart does nothing if called for a device
with an empty queue (getc returns -1). Typical code for ixxxstart is

{
int c;

}

3-8

if «c = getc(ixxx q[unit)) > = 0)
outb(ixxx adr[unit] + ixxx DAT, c);

if (ixxx q[unit].c cc = = ixxx LOW)
wakeup(ixxx _ q[unit]); -

XENIX 286 Device Drivers Simple Character Drivers

ixxxintr Procedure

ixxxi ntr(1 evel)
int level; /* MULTIBUS interrupt level, in range 0-255 */

ixxxintr is called by the kernel for each interrupt that occurs for a device managed by
the driver. The kernel fields all interrupts, determines the MULTIBUS interrupt level,
and calls the ixxxintr procedure referenced by vecintsw[level].

ixxxintr should ignore extraneous interrupts from devices absent or not open; such
interrupts may occur due to hardware problems. However, ixxxintr should acknowledge
all interrupts as may be required by the device hardware.

ixxxintr should also check for errors. Errors should be indicated in the device status
maintained by the driver. Note that ixxxintr cannot write to the variable u.u_error to
indicate an error, as there is no guarantee that the associated task and its u structure
will be swapped into memory when ixxxintr is called. Reporting errors via the device
status requires cooperation with ixxxwrite, which must check the status and write the
error code to the u structure if needed. In the example code, the hardware is presumed
to give a simple indication of an unrecoverable "hard" error. Real drivers may have to
handle and recover from various types of "soft" errors using a retry strategy.

Finally, if the unit is open, and the unit interrupted because a previous output has
completed, and the unit did not encounter an error, ixxxintr should call ixxxstart to get
the next character (if any) from the queue and write it to the device. Typical code for
ixxxintr is

{
char sts;
int unit;

}

/* loop through devices and handle those with interrupts to
be acknowledged (ixxx BSY set in status read from device) */

for (unit = 0; unit < ixxx NUM ; unit + +) {

}

/* Reading status port acknowledges interrupt
and clears ixxx BSY for subsequent reads. */

sts = inb(ixxx adr[unit] + ixxx STS);

if ((ixxx sts[unit] = = ixxx OPN) &&
/*Ignore interrupt ifunit not open. */
(sts & ixxx BSY)) {

}

if (sts & (ixxx BSY I ixxx HER))
ixxx sts[unit] = ixxx ERR;

else
i xxxstart(unit);

3-9

Simple Character Drivers XENIX 286 Device Drivers

Output Summary

Output of data using the driver begins with a kernel call to ixxxwrite, which checks for
any I/O error reported by the interrupt routine, gets characters from the user task
address space, does any needed conversions, and calls ixxxenq with the bytes to be
output.

ixxxenq queues the characters in the clist structure and calls sleep if the queue fills to
the high-water mark. ixxxenq also calls ixxxstart if the queue was empty before the
current call to ixxxenq; this is to prime the interrupt-driven output cycle.

ixxxintr polls the devices handled by the driver, acknowledges interrupts, checks for I/O
errors, and calls ixxxstart to output the next character from the queue for each active
device. So long as a queue does not empty, each character output triggers a completion
interrupt that causes the next character to be output, a self-sustaining cycle.

ixxxstart gets a character (if any) from a queue and calls the kernel routine outb to
write the character to the device port. ixxxstart also wakes up any tasks waiting on the
output queue if the queue reaches its low-water mark.

3-10

CHAPTER 4
TERMINAL DRIVERS

This chapter provides information about terminal drivers, a type of character device
driver that handles interactive terminals or serial communications lines.

XENIX provides more supporting routines and data structures for. terminals than for
other character device drivers. Associated with each terminal is a tty structure defined
by XENIX. Many terminal functions are handled by XENIX "line discipline" routines
that handle device-independent input, output, and control functions in standard ways.

This chapter describes the tty structure, the line discipline routines provided, and then
the components of a character driver. The final part of this chapter, "iSBC 534 Driver,"
is a listing of a terminal driver supplied as an example. This listing is only an example
and is not the same as the iSBC 534 driver supplied with your XENIX 286 system.

The following material may be useful in conjunction with this chapter:

• Appendix B of this manual, "Converting Drivers from Release 1 to Release 3 of
XENIX 286," includes tables that describe the tty fields and the input modes,
output modes, control modes, and line discipline modes used with the tty
structure.

• Appendix C of this manual, "tty.h Include File," lists the tty.h file that defines the
tty structure and other information used by terminal drivers.

• Appendix D of this manual, "termio.h Include File," lists the termio.h file that
defines the control characters, input modes, output modes, control modes, and line
discipline modes used with terminal drivers.

• The entry tty in "Devices" in the XENIX 286 Reference Manual describes the
general terminal interface and should be read in conjunction with this chapter.

• The entry termcap in "Files" in the XENIX 286 Reference Manual describes the
terminal capabilities file /etc/termcap and should be read if you are adding a new
kind of terminal to your XENIX 286 system. (Note that a new terminal device
driver may be used with an existing type of terminal and not require any
modification of the termcap file.)

• The entry ttys in "Files" in the XENIX 286 Reference Manual describes how a new
terminal device can be added to the list of devices through which users can log in
to the XENIX 286 system.

• The include file sys/hlttold.h provides definitions used for backward compatibility
with UNIX V7 terminal handling.

• The include file sys/hlioctl.h defines identifiers for ioctl command codes.

4-1

Terminal Drivers XENIX 286 Device Drivers

tty Structure

A tty structure is defined for each terminal or communication line. The structure is
defined in tty.h, which is listed in Appendix C of this manual. Each tty structure
references three character queues. These queues are implemented using the clist
structure, as described in Chapter 3, "Simple Character Drivers." The queues are the
output queue, the raw input queue, and the canonical ("cooked") input queue. Character
input is placed first in the raw input queue. The canonical input is what is normally seen
by programs reading a terminal. It contains input after processing. For example, line
editing functions such as backspace and kill-line have been handled before input is
placed in the canonical queue. Character mapping (e.g., carriage return to linefeed) and
character expansion (e.g., tab to blanks) may also occur between the two queues.
Echoing of input characters is handled from the raw input queue. Characters written by
the program are placed in the output queue. Any needed transformations (e.g., map tabs
to blanks, linefeed to carriage return, linefeed) are done before characters are placed in
the output queue. Input characters are copied to the output queue at interrupt time
immediately after being read, to provide echoing of input.

The tyroc field references the driver-specific ixxxproc routine, which is called to
perform device-dependent functions.

The t_line field is a small integer (in the range 0-127) that indexes the kernel's line
discipline table, linesw, to select the line discipline routines used by the driver.

Other fields in the tty structure contain state information and other miscellaneous
information used internally by the line discipline routines.

More information about the tty structure is contained in Appendix B, "Converting
Device Drivers from Release 1 to Release 3 of XENIX 286," Appendix C, "tty.h Include
File," and the entry tty in "Devices" in the XENIX 286 Reference Manual.

Line Discipline Routines

XENIX 286 handles most of the work of a terminal driver in a device-independent set of
"line discipline" routines. These routines are accessed indirectly, via a switch table
containing pointers to the routines. Use of the switch table enables a developer to add
routines for a different line discipline if desired.

XENIX 286 Release 3 supports one set of line discipline routines, with index 0 in the
linesw table in c.c. These routines are accessed via the t_line field in the driver's tty
structure. Consider the following example:

4-2

struct tty ixxx _ tty[ixxx _ NUM]; /* declare tty structures for driver */

int unit = minor(dev); /* dev is device number of type dev t */
struct tty *tp = &ixxx _ tty[unit];

/* Call the line discipline open routine. *!
(*linesw[tp->t_line].I_ open)(tp);

XENIX 286 Device Drivers Terminal Drivers

The following identifiers are used for offsets into a row of the linesw table:

~open
I close
I read
I-write
I ioctl
I input
I-output

the open routine
the close routine
the input routine
the output routine
the control function routine
the input routine
the output routine

Note that the final entry in the linesw table in c.c and in the corresponding line of the
master file is nulldev, a null "do-nothing" routine. This entry is for compatibility with
older drivers that may still use that entry in the switch table. c.c and master are
described in greater detail in Chapter 6, "Adding Devices to the Configuration."

A new set of line discipline routines can be added to XENIX 286 by inserting a line in
the appropriate section (which is clearly labeled) of the master file. To access the new
routines, a driver must modify the t line field in its tty structure so that it indexes the
row of linesw that specifies the new routines. The first entry in the line in master must
name a character device that is also specified in the master file. For the standard line
discipline, the device specified is tty, the general terminal interface. The next seven
entries (separated by spaces) are the names of the routines for each of the functions
listed above, open, close, etc. The final entry on the line is nulldev. For example, the
line in master for the existing line discipline routines is

tty ttopen ttclose ttread ttwrite ttioctl ttin ttout nulldev

The routines in this set are ttopen, ttclose, ttread, ttwrite, ttioctl, ttin, and ttout.
These routines and other line discipline routines are described in the following sections.
Some of the other line discipline routines are called directly by driver routines without
going through the line discipline switch linesw; this is reasonable for routines that are
unlikely to change from one line discipline to another. One of the routines described,
ttxput, is internal to the line discipline and never called by the driver, but is described
to clarify how output is handled by the line discipline routines.

ttinit

ttinit(tp)
struct tty *tp; /* tty structure for device */

ttinit is called directly (not via linesw) by the driver ixxxopen routine to initialize the
tty structure for the device. ttinit is only called by ixxxopen if the device was not
already open. ttinit is called before ttopen, as described below in the section
"ixxxopen".

4-3

Terminal Drivers

ttopen

ttopen(dev, tp)
dev t dev;
struct tty *tp;

/* device number, major/minor */
/* tty structure for device */

XENIX 286 Device Drivers

ttopen is called by the driver's ixxxopen routine. ttopen initializes the three queues and
other fields in the tty structure. ttopen is only called by ixxxopen if the device was not
already open. ttopen is called after ttinit, as described below in the section "ixxxopen".

ttclose

ttclose(tp)
struct tty *tp; /* tty structure for device */

ttclose is called by the driver's ixxxclose routine. ttclose flushes the input queues in the
tty structure, waits for any output to complete, and then assigns relevant fields in the
structure to indicate that the device is closed.

ttread

ttread(tp)
struct tty *tp; /* tty structure for device */

ttread is called by the driver's ixxxread routine and handles all aspects of the ixxxread
call (and of the read system call that triggered the call to ixxxread). ttread gets its
data from the canonical input queue (unless the terminal is in a special "raw" input
mode) and waits for more input if necessary. ttread transfers data to the calling
process using the address and count found in the process's u structure. While the calling
process can request any number of characters, at most one line is returned. If a
complete line is returned, then the last character read by the request is the newline
(ASCII linefeed).

ttwrite

ttwrite(tp)
struct tty *tp; /* tty structure for device */

ttwrite is called by the driver's ixxxwrite routine and handles all aspects of the
ixxxwrite call (and of the write system call that triggered the call to ixxxwrite). ttwrite
transfers data from the calling process using the address and count found in the
process's u structure. ttwrite calls the internal line discipline routine ttxput to place a
character in the output queue and perform any needed character expansion (e.g., add
delay characters, expand tabs). ttwrite guards the high-water mark for the output
queue and suspends the calling process by calling sleep if the mark is reached.

4-4

XENIX 286 Device Drivers Terminal Drivers

ttiocom

ttiocom(tp, cmd, addr, dev)
struct tty *tp; /* tty structure for device */
int cmd; /* command code */
faddr t addr; /* pointer to structure with command arguments */
dev t dev; /* device number, major/minor */

ttiocom is called directly (not via linesw) by ixxxioctl, which is called when an ioctl
system call is made for the device. ttiocom handles various device control functions.
ttiocom returns zero if no further driver action is required and nonzero if the driver
must reconfigure the device by calling ixxxparam. An example of a control function
that requires device reconfiguration is a change in baud rate, which normally requires
that the new rate be communicated to the device hardware. ttiocom calls the line
discipline routine ttioctl (if line discipline 0 is used) to handle line-discipline-dependent
parts of the device control functions.

The different ioctl commands and the format of the command arguments for terminals
are described in the entry tty in "Devices" in the XENIX 286 Reference Manual. The
include file sys/hlioctl.h defines the identifiers used for ioctl com mand codes.

ttioctl

ttioctl(cmd, tp, addr, dev)
int cmd; /* command code */
struct tty *tp; /* tty structure for device */
caddr t addr; /* pointer to structure with

command arguments */
dev t dev; /* device number, major/minor */

ttioctl is called (via linesw) by the ttiocom routine to handle line-discipline-dependent
parts of the I/O control functions. ttioctl is not directly called by driver routines even
though it is one of the routines listed in linesw.

ttin

ttin(c, tp)
char c;
struct tty *tp;

/* character to be input
/* tty structure for device

*/
*/

ttin is called by the driver interrupt routine when the driver receives a character from
the device. ttin places the character in the raw input queue and calls ttxput to echo
each character (if echo is enabled) by placing it in the output queue.

4-5

Terminal Drivers

ttout

ttout(tp)
struct tty *tp;

XENIX 286 Device Drivers

/* tty structu re for devi ce */

ttout is called to start output when characters are on the output queue. ttout is called
from the driver interrupt routine when handling a transmitter ready interrupt. ttout
calls ixxxproc to actually output characters.

ttxput

ttxput(c, tp)
char
struct tty

c;
*tp;

/* character to be output
/* tty structure for device

*/
*/

ttxput is not called directly by the driver but is a routine internal to the line discipline.
ttxput is called by ttwrite and also by ttin (for echoing) to place a character in the
output queue. ttxput handles any needed character expansion (e.g., expanding tabs to
spaces, inserting delay characters).

Modem Control by Terminal Drivers

Dial-in modem lines are among the devices controlled with terminal drivers. If bit 6 of
a terminal device minor number is 1, then the device is being used as a dial-in line and
the driver should provide modem control. Bits 0-5 of the minor number should contain
the normal minor number of the device. Bit 7 should be 0 and never used by the driver;
bit 7 of terminal device minor numbers is reserved for future use by Intel. For example,
consider a line that is used sometimes as a dial-out line and sometimes as a dial-in line.
The line would be accessed via one device special file as a dial-out line, with a minor
number with bit 6 clear, e.g., 17. The line would be accessed via a second device special
file as a dial-in line, with a minor number with bit 6 set, e.g., 81 = 17 + 64.

Driver Description

This section describes terminal driver routines. It does not repeat information on driver
organization or declarations covered in Chapter 3, "Simple Character Drivers." You will
want to consult the driver example, in the section "iSBC 534 driver" at the end of this
chapter, while reading this section. Each of the steps described is actually implemented
by the corresponding iSBC 534 driver routine. For example, code for the steps given for
the ixxxopen routine can be found in the i5340pen routine. With the help of the
descriptions in this section, you should be able to distinguish the general-purpose code in
the iSBC 534 driver from device-specific code. Of course, much of the code in the
driver example is device-specific, simply because the kernel line discipline routines do
much of the device-independent work of terminal handling.

4-6

XENIX 286 Device Drivers Terminal Drivers

Your reading of the example code should focus on the last file, sys/io/i534.c. The
include file, sys/hli534.h, is almost entirely device-specific definitions, except for SPL
and MINORMSK. The configuration and data structures file, sys/cfg/c534.c should be
understood; it is only a single page and easily grasped. The configuration parameters
are the number of boards allowed and an array of base port addresses for the boards.
Each board contains four lines (four devices). Data structures include an array of tty
structures (one per device), an array of base port addresses for each device, an array
indicating which boards are present, and an array that records the current baud rate for
each device.

ixxxinit Procedure

ixxxinit();

This procedure is optional but is normally provided for physical devices. It is called via
the switch dinitsw during system initialization. ixxxinit checks each possible board
handled by the driver to determine if it is present or absent. ixxxinit writes a message
to the system console for each board saying whether the board was found or not. (The
kernel's version of printf writes directly to the system console.) ixxxinit initializes a
board status variable that indicates whether the board is present or absent. For boards
that are present, ixxxinit initializes device hardware. Note that in the iSBC 534 driver,
the responsibilities of the i534init routine are partly handled by the i534check routine,
called by i534init.

ixxxparam Procedure

ixxxparam(dev)
dev t dev; /* device number, major/minor */

ixxxparam is called whenever the device hardware must be configured or reconfigured
to adapt to requested line options. ixxxparam is called from ixxxopen to configure the
line when it is opened and is called from ixxxioctl for reconfiguration. The tty structure
must be initialized (by ttinit) and have the fields t'-'proc, t_ofiag, t_iflag, t_lflag, and
t_cflag assigned to their desired values before ixxxparam is called. An example of what
ixxxparam does is communicating the requested baud rate to the hardware.

The code in i534param is almost entirely device-specific but some parts are of general
interest. If a baud rate is requested that is not valid for the device, then u.u error is
assigned the error code EINVAL and i534param returns. If a baud rate of 0 is specified
and the device is a dial-out line (bit 6 set in the minor number), then i534param turns
off Data Terminal Ready, causing the modem to hang up.

4-7

Terminal Drivers XENIX 286 Device Drivers

ixxxopen Procedure

ixxxopen(dev, oflag)
dev t dev; /* device number, major/minor */
int of lag; /* flags specified to open system call, NOT USED */

ixxxopen is called each time a device managed by the driver is opened. ixxxopen first
checks that the unit can be opened--the minor number is valid and the device is present.
Otherwise an error code is assigned to u.u _error and ixxxopen returns. If no error was
detected:

1. If this is the first open of this device (the lSOPEN bit in the tty structure is zero)
then do the following:

a. Initialize the tty structure. Fill in the t--'proc field with the address of the
ixxxproc routine. Then call ttinit with the address of the tty structure to be
initialized. Then initialize the mode flags in the structure: output modes,
input modes, line discipline modes, and control modes.

b. Call the ixxxparam routine for the device to make any necessary changes to
the device control registers as specified in the mode flags in the tty
structure.

c. If modem control is enabled for the device (bit 6 in the minor number is set),
then set up the device hardware for an incoming call and call sleep, waiting
to be awakened when the device has received a call and has Carrier Detect.

2. Otherwise (if this is not the first open), check the XCLUDE bit in the t_lflag field
of the tty structure. If this bit is set, concurrent access to the device is not
allowed except by the super-user (u.u_uid == 0). If the bit is set and the caller is
not the super-user, assign the error code EBUSY to u.u_error and return.

3. Set the CARR_ON bit in the t_state field of the tty structure (even if the device
is not using modem control).

4. Call the line discipline open routine to do device-independent open processing.

All of these steps are illustrated by the i5340pen routine.

ixxxclose Procedure

ixxxclose(dev,oflag)
dev t dev; /* device number, major/minor */
int of lag; /* flags specified to open system call, NOT USED */

ixxxclose is called on the last close of a device. ixxxclose calls the line discipline close
routine to do device-independent close processing, which includes discarding any
unconsumed input and waiting for any unwritten output to the device to complete.
ixxxclose then turns off Data Terminal Ready on the device (for modem control, if
modem control is supported) and may perform other device-dependent functions, such as
clearing the transmitter and receiver registers of the device. These steps are
illustrated by the i534close routine.

4-8

XENIX 286 Device Drivers Terminal Drivers

ixxxread Procedure

ixxxread(dev)
dev t dev; /* device number, major/minor */

This procedure is called to handle the read system call and simply calls the read routine
in the line discipline. An example is the i534read routine.

ixxxwrite Proced u re

i xxxwri te{ d ev)
dev t dev; /* device number, major/minor */

This procedure is called to handle the write system call and simply calls the write
routine in the line discipline •. An example is the i534write routine.

ixxxintr Procedure

ixxxintr{level)
int level; /* interrupt level, from PIC, in range 0-71 */

ixxxintr is called by the kernel for each interrupt from a device managed by the driver.
For the iSBC 534, the boards share a single interrupt level, requiring that the boards be
polled for their interrupt status. However, each board serializes interrupts from that
board, and the status read from the board indicates which device is associated with the
particular interrupt. i534intr polls all the boards repeatedly until a pass is made with no
interrupts found. i534intr handles three kinds of interrupts: receiver interrupts (a
character has been received), transmitter interrupts (a transmitter is ready for another
character), and modem interrupts (a dial-in line connected or was hung up).

For a receiver interrupt, i534intr reads the character received. If the device is not
open, the character is ignored and discarded. Otherwise, the device status is checked
for read errors; any read error sets one or more indicator bits in the upper bits of the
16-bit value that holds the received character. The line discipline input routine is then
called to handle enqueuing the character.

For a transmitter ready interrupt, i534intr first clears the BUSY flag in the t state field
of the device's tty structure. i534start is then called to send the next character. (Note:
Normally ixxxintr should call ixxxproc to send the next character. i534intr calls
i534start directly as an optimization.) On returning from i534start, i534intr checks to
see if any processes are waiting on the device output queue (OASLP set in the t state
field) and if the number of characters in the output queue is less than or equal to the
low-water mark for the baud rate being used. If both conditions are satisfied, the
OASLP bit is cleared in t_state and wakeup is called to rouse the sleeping process(es).

For a modem interrupt, i534intr checks a different device register. A hangup interrupt
is ignored unless the t_state field indicates that the device was open and that the
carrier was on. For a valid hangup, the SIGHUP signal is sent to all processes in the
process group associated with the device. Data Terminal Ready is then turned off to
cause the modem to hang up at its end of the line. Carrier Detect is then also turned
off. If a ring interrupt occurs, then the process sleeping (in i534open) waiting for
Carrier Detect is awakened.

4-9

Terminal Drivers XENIX 286 Device Drivers

ixxxproc Proced u re

ixxxproc(tp, cmd)
struct tty *tp; /* tty structure for device

/* command code
*/
*/ int cmd;

ixxxproc is called whenever a change must be made in the device's output. The
command codes that ixxxproc must handle are defined in tty.h. The following list gives
all the commands along with their meaning and how they are handled:

T OUTPUT

T TIME

T SUSPEND

T RESUME

T BLOCK

T UNBLOCK

T RFLUSH

T WFLUSH

T BREAK

4-10

Start output; simply call ixxxstart.

Time delay has finished; clear the TIMEOUT bit in the t_state field of
the tty structure and call ixxxstart.

Suspend output on this line (e.g., CONTROL-S received); set the
TTSTOP bit and clear the BUSY bit in the t_state field of the tty
structure. Note that the suspension takes effect immediately and
applies to characters that are already in the output queue.

Resume output on the line (e.g., CONTROL-Q received); clear the
TTSTOP bit in the t_state field of the tty structure and call ixxxstart.

Send a stop character, which should block future input (perhaps after a
lag); if the stop character is successfully queued, set the TBLOCK bit
in the t_ state field of the tty structure and call ixxxstart.

Send a start character, which should resume input (perhaps after a lag);
if the start character is successfully queued, clear the TBLOCK bit in
the t state field and call ixxxstart.

Command to flush the input queue; this command is handled by other
line discipline routines before calling ixxxproc, so do nothing and
return.

Command to flush the output queue; handle like T_RESUME, ensuring
that TTSTOP is clear and that output is started; control returns
without waiting for the queue to be emptied.

Send a "break", a sequence of zero bits lasting approximately 1/4 of a
second of real time.

XENIX 286 Device Drivers Terminal Drivers

ixxxstart Procedure

ixxxstart(tp)
struct tty *tp; /* tty structure for device */

ixxxstart is called by ixxxproc to start output for a device. i534start locks out
character interrupts until it has set the BUSY flag that guarantees that the remaining
code in the routine will not be re-entered. While interrupts are locked out, i534start
checks the BUSY, TIMEOUT, and 'ITSTOP flags in the t_state field of the tty structure.
If any of the three flags is set, i534start restores the previous interrupt priority and
returns. Otherwise, i534start sets the BUSY flag itself, restores the previous interrupt
priority, and starts output. Note the distinction between "raw" output (no
postprocessing) and cooked output (postprocessing to insert timeouts in i534start and
other processing in previous routines). The final code in i534start awakens (first) any
processes waiting for the output queue to drain and (second) any processes waiting for
the low-water mark on the output queue.

ixxxioctl Procedure

ixxxioctl(dev, cmd, addr, of lag)
dev t dev; /* device number, major/minor */
int cmd; /* command code */
faddr t addr; /* pointer to structure with command arguments */
int of lag; /* flags specified to open system call, NOT USED */

ixxxioctl is called when an ioctl system call is made for the device. The different ioctl
commands and the format of the command arguments for terminals are described in the
entry tty in "Devices" in the XENIX 286 Reference Manual. The include file
sys/hlioctl.h defines the identifiers used for ioctl command codes.

i534ioctl simply calls the line discipline routine ttiocom directly (not via linesw) to
handle all the ioctl commands. ttiocom returns zero if no further driver action is
required and nonzero if the driver must reconfigure the device. If a nonzero value is
returned by ttiocom, i534ioctl calls i534param to reconfigure the device.

4-11

Terminal Drivers XENIX 286 Device Drivers

iSBC® 534 Driver

This section lists source code for Intel's XENIX 286 terminal driver for the iSBC 534
Four Channel Communications Expansion Board. This code may not correspond to the
latest version of this driver supplied with your XENIX 286 system; this code is included
here only as an example of a terminal driver. There are three source files in the driver:
sys/hli534.h (include file), sys/cfglc534.c (data structures), and sys/io/i534.c (routines).

sys/h/iS34.h Listing

#define

#define
#define
#define
#define

/*

SPL

ISPEED
MINORMSK
MODEMMSK
DTRON

spl5

* Structures for the iSBC534
*
*

13
Ox1F
OxCO
Ox80

/* keep interrupts away */

/* initial baud rate of 9600 = = (13);300 = = (7)*/
/* reserve bit 7 ; bit 6 for modem */
/* bit 6 of the minor number sets modem op */
/* bit 8 of usart status byte; 1 if present */

* Commands used for operation and initialization of
* pic's,pit's,usarts and the ppi
*
*
*
* Written by J. Chorn December 7th 1981
*
* MODIFICATION HISTORY
* 1001 Ilk 1/25/84
* Ported to system 3 UNIX.
*
*
*
* Refer to iSBC534 Hardware Reference Manual Chapter Three I/O Address
* Assignments for further information.
*
* Device PHYSICAL port layout
* Based on Data Block Select
*
*
* Usart I/O functions:
*
*
*

4-12

Write: I/O
Read: I/O

XENIX 286 Device Drivers Terminal Drivers

*
* PIC status port functions:
*
* Write:
* Read:

ICW1,OCW2, and OCW3
Status and Poll

*
* PIC mask port functions:
*
*
*
*
*

Write:
Read:

ICW2 and OCW1 (mask)
OCW1

* structure db534:
*
* 8251 Usarts [4]
* 8259 PIC's [2]
* Board command port's
*
*/

struct db534{

};

/*

struct {
char
char

} USART[4];
struct {

char
char

} PIC[2];
char selcntr;
char seldata;
char stestmd;
char reset;

data;
cntrl;

csr;
msr;

{2 bytes wide each}
{2 bytes wide each}
{4 bytes}

/* serial 110 data port */
/* serial control port */

/* PIC status port */
/* PIC mask port */

/* Select control block */
/* Select data block */
/* Select/deselect test mode */
/* Board"Reset port */

* Refer to iSBC534 Hardware Reference Manual Chapter Three 110 Address
* Assignments for further information.
*
* Device Physical Port Layout
* Based on Control Block Select
*
*
* 8253 PIT Functions:
*
* Load/Read count
*
* 8255 PPI Functions:
*
* Write:
* PortA None
* Port B None
* Port C Data out
* Port (Control) Control commands

4-13

Terminal Drivers

*
* Read:
*
*
*
*
*
*
*

Port A Data in
Port B Data in
Port C Data status
Port (Control) None

* structure cd534:
*
*
*
*
*
*/

8253 PIT's [2]
8255 PPI Parallel port
Board command port's

struct cb534{
struct {

char
char

} PIT[2];
char porta;
char portb;
char portc;
char ppi pcr;
char selcntr;
char seldata;
char stestmd;
char reset;

};

/*

timer[3];
pcr;

{4 byte wide each}
{4 bytes}
{4 bytes}

XENIX 286 Device Drivers

/* read/load BDG[?] & BDG[? + 3] */
/* PIT control register */

/* read port a data in * /
/* read port b data in * /
/* read/write port c */
/* PPI control register */
/* select control block */
/* select data block */
/* select/deselect test mode */
/* boa rd reset * /

* Structure for base assignments of boards in the configuration
* This is used to associate the board with the base address
*/
struct i 534cfg{

int
};

/*

*

c base;

* 8253 PIT commands
*
*
*
*
*
*
*
*
*

*/

4-14

RATEMDO:

U534SPEED:

NOTE:

read/load timerO(or 4) for mode 3 (baud rate generator)

int constant of 1600 pit count in hex.

mode zero can only be used on timers 4 or 5 !! (according to
the manual) and this is garf. Program for mode 3 for two
second clock signal.

XENIX 286 Device Drivers Terminal Drivers

#define
#define

/*
* 8251
*
*/

#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define
#define

/*
* 8251
*
*/

#define
#define
#define
#define
#define
#define
#define
#define
#define

/*
* 8259
*
* ICW'S
*
* PIClCW1:
* PICICW2:
*

RATEMDO
U534SPEED

Ox36
Ox0640

USART command instructions
1001 split instructions into separate bits

S TXEN
S-DTR
S-RXEN
S-SBRK
S-ER
S-RTS
S-IR

Ox01
Ox02
Ox04
Ox08
Ox10
Ox20
Ox40

5 RXRDY
S-TXRDY
S-PERROR
S-FRERROR
S-OVERRUN

USART mode instructions

Ox02
Ox01
Ox08
Ox20
Ox10

/* transmitter enable */
/* data terminal ready */
/* receiver enable */
/* send break char * /
/* error reset * /
/* request to send */
/* internal reset */

/* receiver has data */
/* transmitter empty */
/* parity error */
/* framing error */
/* overrun */

1001 split instructions into separate bits

5 BAUDF
S-5BPC
S-6BPC
S-7BPC
S-8BPC
S-PAREN
S-PAREVEN
5-1 STOP
S-2STOP

Ox02
OxOO
Ox04
Ox08
OxOC
Ox10
Ox20
Ox40
OxCO

/* baud rate factor = 16x */
/* 5 bits per char */
/* 6 bits per char * /
/* 7 bits per char * /
/* 8 bits per char * /
/* parity enable */
/* even parity * /
/* 1 stop bit */
/* 2 stop bits * /

PIC commands

Format = 4,single pic,edge triggered.
Initialization address.
Picicw3 and picicw4 not needed.

4-15

Terminal Drivers

* OCW's
*
* MASKINT:
*
* GETINT:
*
* GOODINT:
*
*
* TIMERGO:
*
*/

#define
#define
#define
#define
#define
#define

4-16

PIClCW1
PICICW2
MASKINT
GETINT
GOODINT
TIMERGO

XENIX 286 Device Drivers

Set 8259 to mask all interrupt levels.

Set 8259 for polled mode
read requesting device on next rd pulse.
Mask to check bit 7 ;produce from the 'getint' command.
Bit 7 set = = valid interrupt at this pic.

Pic mask which allows bdg5 timer interrupts

Ox16
0
OxFF
OxOC
Ox80
OxFD

XENIX 286 Device Drivers

sys/cfg/c534.c Listing

/*
* c534.c
* iSBC 534 Specific Configuration file.
*
* This split out from c.c to avoid name-clashing with other device­
* specific configuration files.
*/

#include II • .Ih/param.h"
#include II • .Ih/tty.h"
#include II • .Ih/i534.h"

/*

/* this include types.h */

* N534 must be modified if the configuration
* changes the number of isbc534 boards in the system.
* 1001 moved this here from i534.h to consolidate configuration
* options to the appropriate place.
*/
#define NUM534 2 /* Number of isbc534's in configuration */
int N534 = NUM534;

/*
* 1001 moved these declarations to here from i534.c
*/
struct tty i534tty[NUM534*4];
short i534addr[NUM534*4];
int i534alive[NUM534];
int i534speed[NUM534*4];

/*

/* 4 USARTs per 534 */
/* parallel to tty struct */
/* does it live ?? */
/* cu rrent speed of tty * /

* This table gives the interrupt level and board-base I/O address
* for each possible iSBC 534 controller. The driver procedure entry­
* points are configured in c.c
* To reconfigure for a different number of 534's, you must add or
* delete the appropriate addresses in the structure below.
*/

struct i534cfg i534dg[NUM534] = {
Ox30, /* first board base addr = Ox30 */
Ox40

};

Terminal Drivers

4-17

Terminal Drivers XENIX 286 Device Drivers

sys/io/iS34.c Listing

/*
* isbc534 device driver.
*
* This is the set of procedures that make up the isbc534 device driver.
* The procedures provided include i5340pen, i534close, i534intr, i534proc,
* i534ioctl, i534read, and i534write which are the interfaces between
* xenix and the hardware. The subroutines used are i534init, i534param,
* i534start, which are used to program the hardware. The isbc534 hardware
* consists of 4 usarts, 2 pic's, 2 pit's and a ppi.
* The ppi is not supported by this driver.
*
* Multiple isbc534 minor number structure:
* bits 0-4:
* Minor #:
* 0-3 usarts
* 4-7 usarts
*

Board:
1st Board lowest intr level
2nd Board next lowest intr level

* 12-15usarts 4th Board last intr level
*
* NOTES:
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

The base address of the board MUST be non-zero!!!
The isbc86/12 board must have the fail safe timer
installed.(default)

The isbc534 REQUIRES a HARDWARE MODIFICATION for MODEM SUPPORT
The isbc534 requires a default jumper removed from

pin 105-106
and add a jumper from

pin 105-104
This modification cascades timer bdg4 to bdg5 to allow a
2 second timer used in detecting carrier from a modem.
The carrier loss signal is generated via a separate
interrupt.

The above modification is ONLY NEEDED FOR MODEM SUPPORT but should
be done for consistency.

Debug switches are: DEBUG for isbc534 support.
i534debug: output control

o = = synchronous routi ne traci ng
1 = = interrupt tracing
2 = = all output

* Written by Jim Chorn
* on 12/29/81
*

4-18

XENIX 286 Device Drivers Terminal Drivers

* History:
*
*
*
*
*
*
*
*
*
*
*
*
*

modified 1/15/82 for multi pie board support.
modified 1/29/82 for console support.
modified 3/29/82 for addition of modem support

mods affect i5340pen,i534c1ose,i534intr.
modified 4/22/82 moved console support out to support isbx351
modified 6/22/82 added OR tie'ng of 534's on the same interrupt

level.
Changed the modem support bit to OxCO meaning configure
the line for detection of aquisition AND loss of carrier
detect signal. Bit Ox40 means detection of aquisition and
bit Ox80 means detection of loss of carrier detect signal.
The detection of aquisition of carrier without detection of
loss of carrier is meaningless and is not mentioned in the
manual entry.

* 6/28/83 plb 1000
* added fix to race condition
* 1/27/84 Ilk 1001
* ported to system 3 unix
* 2/6184 Ilk 1002
* attem pt to set line speed to 0 vi a stty now retu rns error
*
*1

1* system configuration *1
/* system directory structures */
/* needed for user.h *1
/* user structures (system) */
/* device structures (system) */
1* ioctl commands */
/* some pic commands from system */
/* baud rates *1

#include " . .lh/param.h"
#include II • .lh/conf.h"
#include " . .lh/dir.h"
#include II • .lh/a.out.h"
#include II • .lh/user.h"
#include " . .lh/tty.h"
#include II • .lh/ioctl.h"
#include " . .lh/i8259.h"
#include " . .lh/usart.h"
#include II • .lh/i534.h" 1* hardware structure and local commands */

#ifdef DEBUG
int i534debug = 0;
#endif

int N534;
struct tty i534tty[];
short i 534addr[];

/* debug output control * /

1* number of boards configured in *1
/* 4 USARTs per 534 */

1* device addrs for each tty struct *1

extern
extern
extern
extern
extern
int

struct i534cfg i534cfg[]; /* board software addresses von conf*1
/* does it live 11 */ int i534alive[];

i534wakeup; /* wakeup variable for modems *1

4-19

Terminal Drivers

/*
* This procedure verifies that a isbc534 board is presently
* configured by putting the board into test mode and
* then checking if the board actually is in test mode.
* This test mode check is a one bit test. If the board configured is not
* present an array variable for each board called i534alive is set to

XENIX 286 Device ,Drivers

* false.
*1001

*
changed the name of this routi ne from i 534probe to i 534check
to avoid conflict with i534proc

*
* TITLE: i534check
*
* CALL: i534checkO;
*
* INTERFACES: i534init
*
* CALLS: none
*
* History:
*
*/

i534checkO
{

register
register struct
struct db534
int

board;
i 534cfg * cf;
DBbase; / set up the i/o boards base address */
alive;

for (board = 0; board < N534; board + +){
cf = &i 534cfg[board];

}
}

4-20

if{cf- >c base! = 0) {

}

alive = 1; /* assume it lives */
DBbase = (struct db534 *) cf->c base;
outb{&DBbase->stestmd,1); 7*select test mode */
if{(inb{&DBbase->stestmd) & 1) = = 0)
/* is test mode selected? */

alive = 0; /* trash base addr for intrO */
outb{&DBbase- >stestmd, Oxff);
if{{inb{&DBbase->stestmd) & 1) = = 0)

alive = 0;
outb{&DBbase->stestmd, 0); /* deselect test mode */
printf{"iSBC 534 Based %x board %d %s.\n",

cf- >c base, board,
alive f"found" : "NOT found");

i534alive[board] = alive;

XENIX 286 Device Drivers

/*
* This procedure initializes the isbc534 when the call to dinit is
* made. This procedure is done ONCE ONLY in the following sequence:
* initialize the isbc534 structures to point at the board,
* reset the board,
* initialize and mask the on-board pic's.
* After this has been accomplished there is no reason to reinitialize these
* functions on the isbc534 except when hardware failure occurs.
* NOTE: The baud rate clocks are not programmed here; this
* is done on device open and ioctl in the call to i534param.
* Same is true for the usart initialization.
*
* TITLE: i534init
*
* CALL: i534initO;
*
* INTERFACES: dinit
*
* CALLS:
*
* History:
*
*
*
*
*/

i534initO
{

i 534check, outb

1/11/82 Shortened the delay time from 100 to 10 to speed things
upa bit.

1/15/82 Added probing for boards.
1001 moved init of PIT's and usarts to open routine

register struct db534 *DBbase; /* set up i/o boards base addr */
register i nt board;
inti;

#ifdef DEBUG

#endif

if(i 534debug = = 0 II i 534debug = = 2)
printf("i534init, ");

i534checkO;
for(board = 0; board < N534; board + +) {

if(i534alive[board] = = 0)
continue; /* Board not there! */

DB base = (struct db534 *) i534cfg[board].c base;
outb(&DBbase-> reset, 0); -
outb(&DBbase->seldata,O);

Terminal Drivers

4-21

Terminal Drivers

for(i=0;i<4;i+ +) {
1* do the mystical hlw reset Ox80,0 *1
outb(&DBbase->USART[i).cntrl,Ox80);
ddelay(10);
outb(&DBbase- > USART[i).cntrl,O);
ddel ay(10);

XENIX 286 Device Drivers

1* 1001: now do the reset mentioned on the 8251

}
}

1*

data sheet *1
outb(&DBbase- > USART[i) .cntrl,O);
ddelay(10);
outb(&DBbase- > USART[i).cntrl,O);
ddelay(10);
outb(&DBbase- > USART[i).cntrl,O);

}
outb(&DBbase- > PIC[O].csr,
outb(&DBbase- > PIC[O].msr,
outb(&DBbase->PIC[1).csr,
outb(&DBbase- > PIC[1].msr,
outb(&DBbase- > PIC[O].msr,
outb(&DBbase- > PIC[1].msr,

PICICW1);
PICICW2);
PIClCW1);
PIClCW2);
MASKINT);
MASKINT);

* This procedure sets up a usart timer for a load operation and

1* mask all intrs *1

* programs the parameters of the line. The code depends on having the
* tty structure filled out before a call is made
* to i534param. This is the sequence of events;
* check for valid speed
* program timer (using i53tprog)
* program for the desired paramters
* This procedure will program bdgO to bdg4 as a baud rate generator.
*
*
* TITLE: i534param
*
* CALL: i534param(dev);
*
* INTERFACES: i5340pen
*
* CALLS:
*
* History:
*
*
*
*
*
* 1001
*
*

4-22

i53tprog

1/20/82

1/29/82
4/7182
4/22/82

Ilk 1/27/84

removed bdg4, bdg5 programing options.
These timers aren't used.
added console programming
added i53tprog to handle pit programming
removed console programming

added support for parameter change

XENIX 286 Device Drivers Terminal Drivers

*/

#define MAXBAUDS 15
int i534baud[] = {

/* maximum indexes into i534baud[] */

};

US BO,
US-S150,
0,
o

US B50,
US-B200,
US-B2400,

US B75,
US-B300,
US-B4800,

US B110,
US-BGOO,
US-S9GOO,

extern int i534speed[]; /* track record of baud rate * /

i534param(dev)
int dev;
{

struct cb534 *CBbase;
struct db534 *DBbase;
register struct tty *tp;
register s;
int port;
int picport;
int mask;
int f;
mode;
int unit, speed;
short taddr;

/* set up the i/o boards base address */
/* set up the i/o boards base address */

/* speed, mutex, etc */
/* usart and pit control ports */
/* pi c control port * /
/* intr mask for pic */
/* control mode flag from tty struct */
/* mode to program 8251,8253 into */

unit = dev & MINORMSK; /* unit = board number */
#ifdef DEBUG

if(i 534debug = = 0 II i 534debug = = 2)
printf(lf i534param unit = %d, If ,unit);

#endif
tp = (struct tty *) &i 534tty[unit];
taddr = i 534addr[unit];
DB base = (struct db534 *) (i534cfg[unit > > 2].c base);

/* beginning of block */ -
CBbase = (struct cb534 *) (i534cfg[unit > > 2].c base);

/* beginning of block */ -

0,
US B1200,

0,

4-23

Terminal Drivers XENIX 286 Device Drivers

4-24

s = (int)tp->t cflag & CBAUD; /* s <- new requested speed */
if(s = = 0) {- /* hangup signal via stty */

}

if (minor(dev) & MODEMMSK) {

}

/*
* flick dtr off to cause hardware
* hang up on modem
*/

while «inb(&DBbase- > USART[taddr&03].cntrl) &
S TXRDY) = = 0)

; /* wait for txrdy */
outb(&DBbase- > USART[taddr&03].cntrl, S ER);

/* dtr off */ -

else { /* not a modem--illegal speed */
u.u error = EINVAL; /* 1002 */
return;

}

if(s ! = i534speed[unit]) { 1* change speed? */

}

i534speed[unit] = s;
speed = i 534baud [s];
if «s > MAXBAU DS) II «s ! = 0) && (speed = = 0») {

u.u error = EINVAL; 1* invalid baud rate */
return;

}
unit % = 4; /* which usart? */
if (unit = = 3){

}else{

}

port = (int) &CBbase->PIT[1].timer[0];
mode = RATEMDO;

port = (int) &CBbase->PIT[O].timer[unit];
mode = RATEMDO I (unit < <6);

s = SPLO;
outb(&CBbase->selcntr,1);
i53tprog(port,(portIOx03),mode,speed);
outb(&CB base- > seldata, 1);
splx(s);

XENIX 286 Device Drivers Terminal Drivers

else
unit % = 4; /* unit = = port num of board */

/*
*1001
* set parameters of line
* first, set up the mode variable from the tty structure info.
* then reset the usart and program the new mode.
*/
f = tp-> t cflag;
mode = S BAUDF I «f&CSTOPB)? S 2STOP: S 1STOP);
if (f & PARENB) --

mode 1= (S _PAREN I «f&PARODD)? 0 : S _PAREVEN»;

switch«f> >4) & Ox03)
{
case 0: break;
case 1: mode I = S 6BPC;

break; -
case 2: mode I = S 7BPC;

break; -
case 3: mode I = S 8BPC;

break; -
}

/*
* initialize the usart
*/

/* bits per char * /

/* 5 bpc */
/* 6bpc */

/* 7 bpc */

/* 8 bpc */

port = (int) &DBbase->USART[unit].cntrl;
picport = (int) &DBbase->PIC[O].msr; /* pic port for OCW1 */
s = SPLO;
/* disable PIC interrupts */

/* usart port */

mask = inb(picport) I (3 < < (unit * 2»;
outb(pi cport, mask);
outb(port, 5 I R);

/* RxRDY, TxRDY off */
/* software reset *'/

outb(port, mode);
/*
* turn usart (dtr) on
* do not enable receiver if not CREAD
*/
outb(port, 5 RTSIS ERIS DTRls TXENI

/* serial mode cmd to usart */

- «tp->t_ cflag &CREAD)? 5_ RXEN : 0»;

/* now enable PIC interrupts */
mask & = (-(3 < < unit * 2»;
outb(picport, mask);
splx(s) ;

#ifdef DEBUG
if(iS34debug = = 0 II iS34debug = = 2)

#endif
}

printf("P: mode = %x,mask = %x\n" ,mode,mask);

4-25

Terminal Drivers

1*
* This procedure programs an 8253 PIT for operation as a baud rate
* generator.
*
* TITLE: i53tprog
*

XENIX 286 Device Drivers

* CALL: i53tprog(timer _port,timer _ control_port,mode,speed);
*
* CALLS: outb
*
*1

i53tprog(timer,pcr,mode,speed)
register int speed,timer;
int mode,pcr;

{

}

1*

outb(pcr,mode);
outb(timer, speed);
outb(timer, (speed> >8»;

1* prog mode *1
1* prog speed *1

* This procedure opens one of the 41ines on the isbc534 board for
* exclusive use by a user. The file structure is initialized
* and control is passed to the tty line discipline read routine,
* which does the actual open.
* Not supported is the fifth device which is the parallel port.
*
*
* TITLE:
*
* CALL:
*
* INTERFACES:
*
* CALLS:

*
* History: 1/15/82:
*
*
*/

4-26

i5340pen

i5340pen(dev, flag);

xenix
"

i534param, ttinit, tty open through
lineswitch,inb,outb,sleep

Modifed code for multiple i534's to:index a
configuration table to get the board base address.

XENIX 286 Device Drivers Terminal Drivers

inti534procO;

i5340pen(dev)
int dev;
{

struct db534 *DBbase; /* set up the i/o boards base address */
register struct tty *tp;
register int unit;

unit = dev & MINORMSK;
if (unit> = (N534*4» {

u.u error = ENXIO;
return;

}
if (i534alive[unitl4] = = 0) {

u.u error = ENXIO;
return;

}

/* unit <- board num */
/* illegal device */

/* Board not there! */

DBbase = (struct db534 *)i534cfg[unit> >2].c base;
tp = (struct tty *) &i534tty[unit]; -

#ifdef DEBUG
if(i534debug = = 0 II i534debug = = 2)

#endif
printf("i5340pen unit = %d,state = %x\n ",unit,tp->t_state);

i534addr[unit] = unit; /* board and unit number */
tp->t proc = i534proc;
unit % = 4; /* unit <- port num */
if «tp->t state & ISOPEN) = = 0) {

}

/* 1001 : next few lines conform to new tty stuff * /
ttinit(tp);
tp->t oflag = OPOSTIONLCR;
tp->t-iflag = ICRNLIISTRIPIIXON;
tp->t-Iflag = ECHOIiCANONIISIG;
tp->t=cflag = B9600IcssICREAD;

i534param(dev);

/* output modes * /
/* input modes * /

/* load parameters */

if(dev & MODEMMSK) {
while((inb(&DBbase->USART[unit].cntrl) & OTRON) = = 0)

sleep«caddr t)&i534wakeup,TTIPRI);
outb(&DBbase- > PIC[1].msr ,((inb(&DBbase- >

PIC[1].msr» &(-(Ox10< < unit» &TIMERGO»;
/*unmask carrier/detect */

}

if «tp->t Iflag & XCLU DE) && (u.u uid! = 0» {
u.u- error = EBUSY;
return;

}
tp->t state I = CARR ON;
(*linesw[tp->t_line].I_ open)(tp);

4-27

Terminal Drivers

#ifdef DEBUG

#endif
}

/*

if (i534debug = = 0 II i534debug = = 2)
printf("O:usart %d status = %x\n" ,unit,

inb(&DBbase- > USART[unit].cntrl»;

XENIX 286 Device Drivers

* This procedure performs the close operation on one of the devices of the
* isbc534. A close masks the device on board; reinstalls the flags that
* state the device is closed; calls ttyclose to do the operation.
* Not implemented yet is device 4 which is the parallel port; it is
* unknown device at this minute.
*
* TITLE: i534c1ose
*
* CALL: i534c1ose(dev, flag);
*
* INTERFACES: xenix
*
* CALLS: tty close thru line discipline
*
* History:
*
*/

i534c1ose(dev)
int dev;
{

struct db534 *DBbase; /* set up the i/o boards base address */
register struct tty *tp;
register int unit;
int mask;
int s;

unit = dev & MINORMSK;
#ifdef DEBUG

if(i 534debug = = 0 II i 534debug = = 2)
printf(" i534c1ose unit = %d, ",unit);

#endif
tp = (struct tty *) &i 534tty[unit];
DB base = (struct db534 *) i534cfg[unit> >2].c_ base;

4-28

XENIX 286 Device Drivers Terminal Drivers

}

/*

if (unit < N534*4) {
unit % = 4;

}

if(tp->t cflag & HUPCL) {
/*Turn off dtr

}

* carrier will be turned off when intr
* from dsr comes in
*/
while ((inb(&OBbase- > USART[unit].cntrl) &

S TXRDY) = = 0)
/* wait for txrdy * /

outb(&DBbase- > USART[unit].cntrl, S ER);/* dtr off */

(*Iinesw[tp->t line].1 close)(tp);
s = SPLO; - -
mask = inb(&DBbase->PIC[O).msr) I (3 < < (unit * 2»;
outb(&DBbase->PIC[O].msr, mask); /* RxRDY, TxRDY off */
splx(s);

i534addr[dev&MINORMSK) = (short) 0;

* This procedure interfaces the read request with the system read operation
* to obtain a byte from the usart. The usart's character is read after an
* interrupt so this procedure calls the system to wait for the interrupt
* procedure to pass the character on to the input character queue.
*
* TITLE: i534read
*
* CALL: i 534read (d ev)
*
* INTERFACES: xenix
*
* CALLS: ttread
*
* History:
*
*/

i534read(dev)
int dev;
{

register struct tty *tp;
register int unit;

unit = dev & MINORMSK;
#ifdef DEBUG

#endif

}

if(i534debug = = 0 II i534debug = = 2)
printf("i534read unit = %d, ",unit%4);

tp = (struct tty *) &i534tty[unit];
(*linesw[tp->t_line).I_read)(tp);

4-29

Terminal Drivers

/*
* This procedure is the complement of the i534read routine. A call is
* made to the line discipline write routine, which watches the output
* queue for characters and passes
* the characters from the output queue to the device.
*
* TITLE: i534write
*
* CALL: i 534write(dev);
*
* INTERFACES: xenix
*
* CALLS: ttwrite
*
* History:
*
*/

i534write(dev)
int dev;
{

register struct tty *tp;
register int unit;

unit = dev & MINORMSK;
#ifdef DEBUG

#endif

}

/*

if(i 534debug = = 0 \I i 534debug = = 2)
printf(" i534write unit = %d, II ,unit%4);

tp = (struct tty *) &i534tty[unit];
(*Iinesw[tp- >t_line].I_ write)(tp);

* This procedure is called by xenix with interrupts off (SPL) when the

XENIX 286 Device Drivers

* isbc534 interrupts. The interrupt process polls the 8259's on the isbc534
* to find out which device interrupted. If the device is a usart receiving
* it gets the character, then sends the character to the tty line
* discipline input routine, or restarts output by
* calling i534start depending on which interrupt was set off. The carrier
* detect, ring indicator, present next digit and pit interrupt signals are
* not implemented yet. The present next digit signal comes from the
* external source on line 4.
*

4-30

XENIX 286 Device Drivers Terminal Drivers

* NOTE
*
*
*
*
*
*
*
* TITLE:
*
* CALL:
*

: all carrier detect signals both interrupt and latch on the 8255
ppi. Refer to the HIW manual for possi ble uses of these signals
(ie ACU I printer applications).
The rxrdy/txrdy lines from the older usarts (8251A1s2657 & older)
cause giltches on the pic interrupt lines. This is a problem with
the usart. If possible replace usart with a newer version.

i534intr

i 534i ntr(l evel);

* INTERFACES: xenix
*
* CALLS:
*
* History:
*
*
*
*
*
*/

I.d. input routine, i534start

1/13/82:

1115/82 :

Condensed the usart Rxrdy/txrdy i ntr switch to
run more efficiently using an if .. ; Added the
unset of busy flag which gets set in i534start.
changed variable type to level which was incorrect.
added multiple isbc534 support.

int wakeupO;

i 534i ntr(l evel)
int level;

{
struct db534 *DBbase; /* set up the i/o boards base address */
register struct tty *tp;
char c;
register i nt status;
int mask; /* mask from PIC */
int gotone,board;
short taddr;

#ifdef DEBUG

#endif

if(i534debug> = 1)
printf("i534intr, ");

4-31

Terminal Drivers

do{
gotone = 0;
for(board = 0;board<N534;board + +) {

if(i534alive[board]) {
DBbase = (struct db534 *) i534cfg[board].c base;
outb(&DBbase->PIC[O].csr, GETINT); -
status = inb(&DBbase- > PIC[O].csr);

XENIX 286 Device Drivers

if «status & GOODINT) = = GOODINT){/* check bit 7 for intr *1
gotone + +;
outb(&DBbase->PIC[O].csr, PIC EOI);
status & = Ox07; /* status <- port num/rx tx */

#ifdef DEBUG
if(i534debug> = 1)

printf("lstatus = %x, ",status);
#endif

tp = (struct tty *) (&i534tty[board*4] + (status> > 1»;
if «status & OxO 1) = = O){ /* Rxrdy i ntr *1

c = inb(&DBbase-> USART[status > > 1].data);

/* check for error *1
status = inb(&DBbase- > USART[status > > 1].cntrl);

#ifdef DEBUG
if(i534debug> = 1)

printf("lc = %c status = %x, ",c,status);
#endif

#ifdef DEBUG

if (status & S PERROR)
c 1= PERROR;

if (status & S FRERROR)
c 1 = FRERROR;

if (status & S OVERRUN)
c 1 = OVERRUN;

(*Iinesw[tp->t line].! input)(tp,c,O);
}else { - - /* Txrdy intr */

if(i534debug> = 1)
printf("ltxrdy, ");

#endif
tp->t state & = -BUSY; 1* the character is out *1
/* the next call should really go thru i534procO */
i534start(tp); /* do the next one */
if«tp->t state & OASLP) && (tp->t outq.c cc < =

- ttlowat[tp->t cflag& CBAUD]) {
tp->t state & = -OASLP; -

}
wakeup«caddr _ t)&tp->t_ outq);

}
}

4-32

XENIX 286 Device Drivers

outb(&DBbase->PIC[1].csr, GETINT);
status = inb(&DBbase->PIC[1].csr);
if «status & GOODINT) = = GOODINT) {
/* check bit 7 for i ntr * /

gotone + +;
outb(&DBbase->PIC[1].csr, PIC EOI);

Terminal Drivers

status & = Ox07; - /* mask off garbage bits */

}

if (status> = 4) /* carrier detect */
tp = (struct tty *)(&i534tty[board*4] + (status-4»;

switch(status)
case 0:

break;
case 1 :

break;

{/* switch on interrupt */
/* pit 1 cntr 4 */

/* pit 1 cntr 5 */

case 2 : /* ring ind all */
wakeup«caddr t)&i534wakeup);
break; -

case 3 : /* present next * /
break;

case 4 : /* port 0 detect* /
case 5 : /* port 1 detect* /
case 6 : /* port 2 d etect* /
case 7 : /* port 3 detect* /

if«tp->t state & (CARR ONIISOPEN))

}

= -;- (CARR ONIISOPEN)) {
signal(tp->t pgrp,SIGHUP);
tp->t state& = -CARR ON;
/* - -

* flick dtr off to cause hardware
* hang up on modem
*/
taddr = i534addr[tp-i534tty];
mask = inb(&DBbase->PIC[1].msr) I (1 < <status);
outb(&DBbase-> PIC[1].msr, mask);

/* carrier detect off */
while ((inb(&DBbase- > USART[taddr&03].cntrl) &

5 TXRDY) = = 0)
; /* wait for txrdy * /

outb(&DBbase- > USART[taddr&03].cntrl, 5 ER);

break;

} /* end switch * /
} /* end if goodint */

} /* end if alive */
} /* end for */
} while(gotone);

4-33

Terminal Drivers

/*
* This procedure handles I/O functions. It is called at both
* task time by the line discipline routines, and at interrupt time
* by i534intrO. (NOTE: at this time, i534intrO calls i534startO
* directly. It does not pass through this routine, since this routine
* does nothing to start output before calling i534startO. This is
* done this way in the interest of efficiency.
* i534proc handles any device dependent functions required

XENIX 286 Device Drivers

* upon suspending, resuming, blocking, or unblocking output; flushing
* the input or output queues; timing out; sending break characters,
* or starti ng output.
*
* TITLE: i534proc
*
* CALL: i534proc(tp,cmd)
*
* INTERFACES: xenix (line discipline routines), i534intr
*
* CALLS: i534start
*
* change history:
* Ilk 1001
* Added this routine.
*
*/
int i534brkO;

i534proc(tp,cmd)
register struct tty *tp;
int cmd;
{

register i nt port;
struct db534 *DBbase;
short taddr;

/* i/o board base add r * /

#ifdef DEBUG

#endif

4-34

if(i534debug > = 1);
printf("i534proc cmd = %d",cmd);

taddr = i534addr[tp-i534tty];
switch(cmd) {
case T RFLUSH: /* flush input queue */

return;
case T WFLUSH: /* flush output queue */
case T-RESUME: /* resume output */

tp- >t state & = - TTSTOP;
i534start(tp); /* start output */
return;

case T SUSPEND: /* suspend output */
tp- >t state I = TTSTOP;
tp->t state & = -BUSY; /* output no longer in progress */
return;

XENIX 286 Device Drivers

}

/*

case T BLOCK: /* send stop char */
11 (putc(CSTOP, &tp->t outq) = = 0) {

tp->t state I = TBLOCK;
i534start(tp);

}
return;

case T UNBLOCK: /* send start char */
11 (putc(CSTART, &tp->t outq) = = 0) {

tp->t state &= -TBLOCK;
i534start(tp) ;

}
return;

case T TIME:
Tp->t state & = -TIMEOUT;
i534start(tp) ;
return;

/* time out */

case T BREAK: /* send null for .25 sec */
OBbase = (struct db534 *) i534cfg[taddr > > 2].c base;
port = (int) &DBbase-> USART[taddr & 03].cntrl;-

while «inb(port) & S _ TXRDY) = = 0)

/* disable receiver, send break */
outb(port, S SBRKIS TXEN);
timeout(i534brk, tp, HZl4);
sleep«caddr _ t)&tp- >t_state);
return;

case T OUTPUT:
1534start(tp) ;

}; /* end switch * /

/* wait for txrdy * /

/* start output * /

* This procedure starts output on a usart if needed. i534start gets a
* character from the character queue, outputs the character to the usart,
* and sets the BUSY flag. The busy flag gets unset when the character
* has been transmitted by i534intrO.
*
* TITLE: i534start
*
* CALL: i534start(tp)
*
* INTERFACES: i534proc
*
* CALLS: timeout, wakeup, getc, outb, SPL
*

Terminal Drivers

4-35

Terminal Drivers XENIX 286 Device Drivers

* History:
*
*
*
*
*
*
*
*/
i nt ttrstrtO;

i534start(tp)

1000

1001

1113/82: Removed the hardware probing for txrdy and added
a set of the busy flag which gets unset on txrdy
interrupt.

plb 6/28/83
removed race condition
Ilk 1/29/84
sys 3 port

register struct tty *tp;
{

register int c;
int s;
int cntrlport, data port;
struct db534 *DBbase;
short taddr;

taddr = i534addr[tp-i534tty];

/* control and data ports for usart * /
1* i/o board base addr */

DB base = (struct db534 *) i534cfg[taddr > > 2].c base;
cntrlport = (int) &DBbase- > USART[taddr & 03].cntrl;
dataport = (int) &DBbase- > USART[taddr & 03].data;

#ifdef DEBUG

#endif

4-36

if(i534debug > = 1) {

}

printf("\ni534start: unit = %x", taddr);
pri ntf(" ttstate = % x II ,tp- > t state) ;
printf("ustatus = %x\", inb(cntrlport»;

s = SPLO;
if (tp->t state&(TIMEOUTIBUSyITTSTOP» { 1* 1001: added TTSTOP *1

splx(s);
return;

}
tp->t state I = BUSY; 1* 1000 *1
splx(s);
if «c = getc(&tp- >t outq» > = 0) {

if «tp- >t oftag & OPOST) = = 0) {

}

whITe ((inb(cntrlport) & S TXRDY) = = 0)
1* wait for txrdy *1

outb(dataport, c);

XENIX 286 Device Drivers Terminal Drivers

}
else

else { /* cooked 1001 */
if (c = = 0200) {

}

if«c = getc(&tp- >t outq» < 0) return;
if(c>0200){ -

}

tp->t state I = TIMEOUT;
tp->t-state & = -BUSY;
timeout(ttrstrt, (caddr _ t)tp, (c&0177»;
return;

while «inb(cntrlport) & S _ TXRDY) = = 0)
/* wait for txrdy * /

outb(dataport, c);
} /* else cooked mode */

tp->t_state & = -BUSY; /* 1000 */

if(tp- >t state& TTIOW && tp- >t outq.c cc = = 0) {
tp->t state & = -TTIOW;- -

}
wakeup«caddr _ t)&tp->t_ of lag);

if(tp->t state&OASLP&&tp->t outq.c cc< = ttlowat[tp->t cflag&CBAUD]) {
tp- >t state & = -OASLP; -

}
wakeup«caddr _ t)&tp- >t_ outq);

}

/*
* This procedure releases the transmitter output.
* It is used by the TCSBRK ioctl command. After .25 sec
* timeout (see case BREAK in i534proc), this procedure is called.
*
* TITLE: i534brk
*
* CALL: i 534brk(add r)
*
* INTERFACES: timeout (through i534proc)
*
* CALLS: wakeup
*
* change history:
* Ilk 1001
* Added this routi ne.
*
*/

4-37

Terminal Drivers XENIX 286 Device Drivers

i534brk(tp)
register struct tty *tp;
{

register int port;
struct db534 *DBbase;
short taddr;

/* i/o board base addr */

}

/*

taddr = i534addr[tp-i534tty];
DBbase = (struct db534 *) i534cfg[taddr > > 2].c base;
port = (int) &DBbase- > USART[taddr & 03].cntrl; -

/* enable receiver, if supposed to */
outb(port,S RTSIS ERIS DTRls TXENI«tp->t cflag&CREAD)? S RXEN:O»;
wakeup«caddr _ t)&tp- >t_state); -

* This procedure handles the ioctl system calls for such things as baud
* rate changes and various hardware control changes from the initial set
* up. Currently only baud rate changes are supported.
*
* TITLE: i534ioctl
*
* CALL: i534ioctl(dev, cmd, arg, flag)
*
* INTERFACES: ioctl
*
* CALLS: i534param, ttiocom
*
* History:
* 1001 added new ioctl commands
*
*/

i534ioctl(dev, cmd, arg, flag)
int dev;
int cmd, flag;
faddr _ t arg;
{

}

4-38

register struct tty *tp;
register int unit;

unit = dev & MINORMSK;
tp = (struct tty *) &i534tty[unit];
if (ttiocom(tp,cmd, arg, dev» {

i534param(dev);
}

/* do it */

CHAPTER 5
BLOCK DRIVERS

This chapter describes the elements of XENIX 286 block device drivers. A block device
is organized as an array of blocks, each block containing BSIZE bytes. The blocks must
be randomly accessible in a reasonable time; for example, the kernel might reference
block 3, then block 789, and then block 50, and each access should take only a fraction
of a second even though the blocks are scattered on the device.

Magnetic disk drives, bubble memories, and RAM disks all qualify as randomly
accessible block devices. A RAM disk is simply an area of RAM semiconductor memory
that is set aside to simulate a disk drive. The advantage of a RAM disk is that it can be
accessed much more rapidly than a magnetic disk; however, the contents of a RAM disk
are lost if system power is lost. Some of the advantages of a RAM disk can also be
achieved by simply increasing the number of block buffers in the XENIX system. Tape
drives do not qualify as block devices, because data on tapes must be accessed
sequentially, and simulating random access in software would result in unacceptably
poor performance.

A block device may contain one or more XENIX file systems. A file system is a
hierarchy of directories and files starting at the superblock on the device. All
manipulation of file system structures is done by kernel code; a block device driver
simply reads and writes physical blocks without knowledge of the structure of the file
system. The kernel also manages the allocation and deallocation of free space on the
device; the block device driver simply reads and writes physical blocks as requested by
the kernel.

This chapter begins by describing how blocks are buffered by the kernel and the driver,
and then gives a more detailed overview of block drivers. The remainder of the chapter
describes a hypothetical hard disk driver. In the hypothetical driver and in actual hard
disk drivers, each physical disk is divided into a number of partitions. Each partition has
a distinct minor device number and a distinct device special file and is a distinct logical
device. Each partition can contain a XENIX file system and be opened, closed, and
accessed independent of the other partitions. Thus when discussing block devices,
device can mean either a logical device (such as a disk partition) or an entire physical
device that may contain several partitions.

5-1

Block Drivers XENIX 286 Device Drivers

Block Buffering

This section describes how the kernel and block device drivers buffer blocks to be
transferred between a block device and user memory. The functionality described is
provided almost entirely by the kernel and you can write a driver without understanding
most of the material in this section. However, this section will help you understand the
buf and iobuf data structures used by block drivers and how the kernel attempts to
minimize and optimize disk accesses.

The kernel maintains a global pool of block buffers, each BSIZE bytes, that it uses as
needed. Each buffer is referenced by a buffer header that contains information about
the buffer and what it is used for. The buffer header is defined by the data type struct
buf in the include file buf.h, which is listed in Appendix E of this manual.

Each block device capable of operating concurrently has a separate device-specific
header of type struct iobuf. This header references the buffers being used for the
device. The device-specific header is defined in the include file iobuf.h, which is listed
in Appendix F of this manual.

There are three lists that a block buffer can be on; a buffer is always on one of these
lists and may be on two simultaneously:

1. The kernel's free list contains all block buffers available for allocation or reuse.
The free list is circular and doubly linked. The av forw pointer in the buffer
header points to the next buffer header on the free list. The av_back pointer in
the buffer header points to the previous buffer header on the free list. The buffer
is on the free list whenever the B_BUSY flag in the b_flags word of the buffer
header is clear (0). The kernel handles the free list; the driver never needs to
manipulate it. There is only one systemwide free list and all available block
buffers are on it.

2. The driver's active list contains all block buffers for which the driver has been
called to perform a read or a write, but for which I/O has not been completed. The
head of the active list is the device-specific header of type struct iobuf. The
active list is circular and doubly linked. The av_forw pointer in the buffer header
points to the next buffer header on the active list. The av_back pointer in the
buffer header points to the previous buffer header on the active list. The b actf
and b _ actl pointers in the device-specific header reference the first and-last
buffer headers in the active list respectively. If the active list is empty, then
b actf and b actl should each contain the address of the device-specific header
(i-:-e., the header points to itself if the list is empty). The buffer is on the active
list whenever the B_BUSY flag in the b_flags word of the buffer header is set (1).
The driver handles the active list, calling the kernel disksort routine to insert a
buffer in the list. Driver code must initialize the active list and remove buffers
when I/O is completed. Note that there are multiple active lists, one for each
distinct I6-bit block device number.

5-2

XENIX 286 Device Drivers Block Drivers

3. The device-specific device list contains all block buffers that contain current valid
copies of blocks on the associated device. The device lists act as a cache, so that
disk blocks mirrored in the device lists need not be read from disk. Also, disk
blocks being written can be put on both the device list and the free list but not
actually transferred until a shortage of blocks causes the written blocks to be
needed elsewhere. The head of a device list is the device-specific header of type
struct iobuf. Each device list is circular and doubly linked. The b forw pointer in
the buffer header points to the next buffer header on the device liSt. The b_back
pointer in the buffer header points to the previous buffer header on the device list.
The b_forw and b_back pointers in the device-specific header reference the first
and last buffer headers in the device list respectively. If the device list is empty,
then b forw and b back should each contain the address of the header (i.e., the
header-points to itself if the list is empty). A buffer is on a device list whenever
the B_DONE flag in the b_flags word of the buffer header is set (1). The kernel
handles the device lists; driver code does not need to manipulate these lists. Note
that there are multiple device lists, one for each distinct 16-bit block device
number.

The purpose of the device lists is to allow the kernel to access frequently
referenced information on block devices without having to actually access the
device. If the kernel needs to read block b on device d, it first searches the device
list for the device; if block b is found, the kernel does not issue a read request to
the device driver. The kernel uses an auxiliary hash table to reduce the time
required for searches. The hashing and searching are done entirely by the kernel
and do not affect the driver.

A block buffer is usually on the free list and a device list at the same time. Block
buffers on the free list are ordered using the Least Recently Used algorithm. When a
block that contains valid device data is read, it is put at the end of the free list. Block
buffers to be allocated are removed from the front of the free list and will either be
block buffers that do not contain valid device data (are not on a device list) or those
block buffers with data that has not been referenced for the longest time. Because of
this algorithm, frequently read blocks, such as those that contain directory information,
are normally in main memory, reducing disk accesses.

A block buffer can also be on an active list and a device list at the same time. When a
block is being written, it is placed on the device list and then goes on the active list
until it is successfully written. This is understandable because the block buffer contains
valid data even befo~e-the write operation completes.

A block buffer is on the free list and no other list if it contains no cached data and is
not being used for a read or a write. A block buffer is on an active list and no other list
if it is being used to read in a block of data. A block buffer is never on a device list and
no other list; a block buffer on a device list is always also on either the free list or an
active list. Finally, a block buffer is never on the free list and an active list at the
same time.

When a block is written, the kernel must also check the cache formed by the collected
device lists, to invalidate any previous copy of that block that is in the cache. This
ensures that the cache contains only the most recent version of any block.

5-3

Block Drivers XENIX 286 Device Drivers

The buffer header data structure, of type struct buf, contains the following fields:

flag word containing the following flags:

BREAD set (1) if block is to be read, clear (0) if block is to be written.

B DONE set (1) if block is on device list (in cache).

B ERROR set (1) by driver if transfer failed.

B BUSY set (1) by kernel if the driver has been called with the buffer; the
driver must call disksort to insert the buffer in the active list;
the driver must handle I/O transfers and then unlink the buffer
from the active list; the driver must then call the kernel routine
iodone for the buffer; iodone clears B BUSY and places the
buff er on the free list and on the deviCe list unless an error
occurred.

b forw

b back

av forw

av back

b dey

b bcount

bjladdr

b blkno

b error

5-4

There are other flags used only by the kernel that do not need to be
understood to write a driver. All the flag names are defined as integer
constants that are the bit masks used to test, set, or clear the actual flags.
For example bp->b _ flags&B _READ can be used to test the read flag; bp­
b> _nags 1= B _READ can be used to set the read flag; bp->b _flags &=
-B _READ can be used to clear the read flag. The include file buf.h also
defines the value 0 as the so-called "pseudo-flag" B _ WRITE. Be careful when
using B _WRITE in programs, as it is not a bit mask and cannot be used to
test, set, or clear a flag in the same way as the other constants.

the forward pointer for the device list (cache), used if B DONE is set.

the backward pointer for the device list (cache), used if B _DONE is set.

the forward pointer for the free list (available list) if B BUSY is clear, else
the forward pointer for the active list (pending transfers)if B_BUSY is set.

the backward pointer for the free list (available list) if B BUSY is clear, else
the backward pointer for the active list (pending transfers) if B BUSY is set.

the device number, major and minor.

number of bytes to be transferred, always an exact multiple of BSIZE for
block devices.

physical address in main memory of the buffer associated with this header.

block number on device.

error code to be returned in u.u error if iodone is called on the block with
B ERROR set.

XENIX 286 Device Drivers Block Drivers

b resid number of bytes not transferred when an error was encountered.

cylinder number, computed by driver and used by disksort routine to order
requests in the active list.

The device-specific header, of type struct iobuf, contains the following fields:

NOT USED.

b forw the head forward pointer for the device list (cache) for this device.

b back the head backward pointer for the device list (cache) for this device.

b actf the head forward pointer for the active list (pending transfers).

bact! the head backward pointer for the active list (pending transfers).

b dev device number.

The remaining fields of iobuf, not referenced by the kernel at all, are really private to
the device driver and may be used or ignored as desired by the driver writer:

b active busy flag.

b errcnt error count (for soft error retry and recovery).

io addr device register address for memory-mapped device registers.

io s1, io s2
- - "space for drivers to leave things." The driver writer should define

appropriate driver variables as needed and not use these fields. They are
defined only for compatibility with existing drivers.

5-5

Block Drivers XENIX 286 Device Drivers

Block Driver Overview

This section provides an overview of a block driver, based on an understanding of the
kernel's buffering system and how it works.

A block device driver normally supports both a block interface to the device and a
character interface to the device. The character interface is also known as the "raw"
interface. The character interface is invoked by opening a device special file that
specifies that it is a character device with the major number of the block device driver.
Because a character device has been opened, the kernel calls the driver via the switch
table cdevsw, calling the routines ixxxopen, ixxxclose, ixxxread, ixxxwrite, and ixxxioctl
as needed. The character interface is provided for two reasons. First, reading and
writing via the character interface bypasses the block buffering system, which is more
efficient for some applications, such as copying an entire disk. Second, the character
interface provides the ixxxioctl routine, used for disk formatting. Because this routine
is provided in the character interface, it is not part of the block interface. Though
called the "character" interface, the buffers used for reading and writing must have a
size equal to an integer multiple of the system buffer size BSIZE.

The block interface to a device is normally invoked by accessing a file or directory in a
file system on the device. A kernel variable root specifies the device number to use for
the root directory, which is the beginning of a chain that leads to any mounted file
system and block device. The major device number for the device containing the
desired file or directory is used to index the block device switch table bdevsw, which for
each block major number contains the routines ixxxopen, ixxxclose, and ixxxstrategy,
and also the data structure ixxxtab, the device-specific header for lists of buffers. The
header ixxxtab is of type struct iobuf. Accessing a file or directory always uses the
block interface to a device, never the character interface.

The block interface to a device can also be invoked by opening the device special file
for the device in the directory /dev. The device special file specifies that the device is
a block device and specifies major and minor device numbers. The minor number can
distinguish multiple drives, partitions in a partitioned device, or type of media if
different types are supported. Note that the character and block interfaces to a device
have separate device special files with distinct names but with the same major and
minor numbers. To open a device special file directly, a user or program must normally
have super-user privileges if it previously contained a file system, or else be the owner
of the special file. When either device special file for a block device is opened directly,
the resulting file descriptor corresponds to a file that contains all the bytes of the
corresponding disk or partition. Reading or writing this file reads or overwrites bytes
of the disk or partition, without regard to directory structure, allocated or free blocks,
or file allocations. Writing to this "file" can corrupt or destroy information in the
target partition or disk.

5-6

XENIX 286 Device Drivers Block Drivers

A block device driver contains the following routines and data structure referenced by
the kernel, for both the block and character interfaces:

ixxxinitO

ixxxopen(dev, of lag)

ixxxclose(dev, of lag)

ixxxstrategy(bp)

ixxxintr(level)

ixxxread(dev)

ixxxwrite(dev)

ixxxioctl(dev, cmd,
cmdarg, ofiag)

struct iobuf ixxxtab

Called at system startup to determine which devices
managed by the driver are present and to initialize the
devices and associated data structures.

Called when the device is mounted. (The root device is
mounted by the kernel at system startup, resulting in an
ixxxopen call.) Also called if a device special file for the
device is opened directly.

Called when the device is unmounted. (The kernel does not
allow the root device to be unmounted.) Also called when a
device special file for the device that was opened directly
is closed.

Called with a buffer header containing a read or write
request for a device managed by the driver. Inserts the
request into the device's active list sorted by cylinder
number. Ensures that I/O is ongoing or started.

Called when a device managed by the driver interrupts the
CPU. Determines which device sent the interrupt.
Acknowledges the interrupt and reads device status to
check for errors. Calls iodone to return the associated
buffer to the kernel. Starts the next I/O request, if any.

Character interface routine. Called to transfer data
directly from the device to user memory. Calls the kernel
routine physio, which calls ixxxstrategy.

Character interface routine. Called to transfer data
directly from user memory to the device. Calls the kernel
routine physio, which calls ixxxstrategy.

Character interface routine. Called for special device
functions, such as formatting a disk.

Device-specific header for active list and device list of
buffer headers.

5-7

Block Drivers XENIX 286 Device Drivers

Driver Files

The driver code is contained in three files:

• sys/hlixxx.h defines constants used by the driver.

• sys/cfg/cxxx.c defines data structures used by the driver.

• sys/io/ixxx.c defines the driver routines.

The file sys/hlixxx.h is included by the other two files:

#include II • .lh/ixxx.h"

The main driver file sys/io/ixxx.c should also include these files:

#include " . .lh/buf.h"
#include " . .lh/iobuf.h
#include II • .lh/param.h"
#include II • .lh/user.h"

/* for buf data structure */
/* for iobuf data structure */
/* for BSIZE - buffer size */
/* for u structure and error codes * /

Adding the device to the configuration also requires editing the files sys/conf/master
and sys/conf/xenixconf, as described in Chapter 6, "Adding Drivers to the
Configuration. "

The following sections describe these files in more detail and include some example
code for a hypothetical hard disk driver.

Driver Constants

These constants are defined in the example sys/hlixxx.h:

5-8

#define ixxx NUM
#define ixxx-NP

#define ixxx CPO
#define ixxx-TPC
#define ixxx -SPT
#defi ne i xxx-bPS
#define ixxx -SPC

4
8

600
4

10
512

/* number of drives supported by driver */
/* max # of partitions per drive */

/* cylinders per drive
/* tracks per cylinder
/* sectors per track
/* bytes per sector

*/
*/
*/
*/

(ixxx SPT*ixxx TPC)
- /* sectors per cylinder */

#define ixxx BPC ((ixxx SPC * ixxx bPS)/BSIZE)
- /* blocks per cylinder (calculation

must not overflow and must have no
remai nder) * /

/* There must be an integer number of sectors per block and an integer
number of blocks per cylinder. */

XENIX 286 Device Drivers Block Drivers

/* register offsets */
#define RCMD 0 /* offset of 8-bit command register
#define RSTAT 1 /* offset of 8-bit status register
#define RCYL 2 /* offset of 16-bit cyl i nder register
#define RTRK 4 /* offset of 8-bit track register
#define RSEC 5 /* offset of 8-bit sector register
#define RADRL 6 /* offset of 16-bit register contai ni ng

low 16-bits of transfer address in
physical memory

#define RADRH 8 /* offset of 8-bit register containing
high 8-bits of transfer address in
physical memory

#defi ne RSCNT 9 /* 8-bit number of sectors to transfer

/* command codes */
#define CRESET 0 /* Reset device and controller.
#define CENINT 1 /* Enable device interrrupts.
#define CDISINT 2 /* Disable device interrupts.
#defi ne CREAD 3 /* Read contiguous sectors from device.
#defi ne CWRITE 4 /* Write contiguous sectors to device.
#define CFORMAT 5 /* Format the media in the device.

/* status register bit masks */
#defi ne SI NT 1 /* This drive interrupted.
#define SERR 2 /* An error in the last operation.
#define SBUSY 4 /* The drive is busy and cannot accept

a command (except CRESET, which is
always accepted).

#define SENA 8 !* Drive interrupts are enabled.

/* device minor number format is xxxddppp, xxx = not used, should be 0
dd = drive number, ppp = partition number */

#define drive(dev) «dev&037) > > 3)
#define part(dev) (dev & 07)

1* ioctl command code for formatting a drive */
#define IOC FMT 0

/* status values used in device status array */

*/
*/
*/
*/
*/

*/

*/
*/

*/
*/
*/
*/
*/
*/

*/
*/

*/
*/

#define ABSENT 0 !* Drive is not in the system. */
#define PRESENT 1 /* Drive is present but not open. */
#define OPEN 2 1* Drive is present and open. */
#define LOCKED 3 /* Drive should not be accessed (e.g.,

it is bei ng formatted). */
/* ABSENT applies to an entire drive and only need to be

assigned in the ixxx sts element for partition 0 to take effect,
e.g.: ixxx_sts[dr][OT= ABSENT; */

5-9

Block Drivers XENIX 286 Device Drivers

Driver Data Structu res

These data structures are defined in the example sys/cfg/cxxx.c:

5-10

/* base addresses for controller registers in port address space */
unsigned ixxx _ adr[ixxx _ NUM] = { Ox8000, Ox8020, Ox8040, Ox8060 };

/* partition sizes for the first hard disk drive, which holds the
root file system, swap space, and user files. */

#define ROOTSZ 200 /* # of cylinders in root partition */
#define SWAPSZ 100 /* # of cylinders in swap partition */
#define USERSZ (ixxx CPO - (ROOTSZ + SWAPSZ»

/* # of cylinders in user partition */

/* partition sizes for subsequent hard disks; each disk is divided
into two "extra" partitions. */

#define EX1SZ 300 /* # of cylinders in extra partition */
#defi ne EX2SZ (i xxx CPD - EX 1 SZ)

/* # of cylinders in extra partition 2 */

struct partitn {
unsigned cyl;
unsigned len;

/* starting cylinder of partition
/* # of blocks in partition

}

/* partition table */
struct partitn ixxx par[ixxx NUM][ixxx NP] = {

}

0, ixxx CPO*ixxx BPC,- /* entire disk
0, ROOTSZ*ixxx BPC, /* root partition
ROOTSZ, SWAPSZ*ixxx BPC, /* swap partition
(ROOTSZ + SWAPSZ), USERSZ*ixxx BPC,/* user partition
0,0,0,0,0,0,0,0, /*partitions 4 .. 7 not used

0, ixxx CPO*ixxx BPC,
0, EX1SZ*ixxx BPC,
EX 1 SZ, EX2SZ*ixxx BPC,
0,0,0,0,0,0,0,0,0,0,

0, ixxx CPO*ixxx BPC,
0, EX 1 SZ*ixxx BPC,
EX 1 SZ, EX2SZ*ixxx BPC,
0,0,0,0,0,0,0,0,0,0,

0, ixxx CPO*ixxx BPC,
0, EX1SZ*ixxx BPC,
EX1SZ, EX2SZ*ixxx BPC,
0,0,0,0,0,0,0,0,0,0

/* entire disk
/* extra partition
/* extra partition
/* partitions 3 .. 7 not used

/* entire disk
/* extra partition
/* extra partition
/* partitions 3 .. 7 not used

/* entire disk
/* extra partition
/* extra partition
/* partitions 3 .. 7 not used

/* device headers for lists of active buffers and cached buffers. */
struct iobuf ixxxtab[ixxx NUM];

*/
*/

*/
*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

*/
*/
*/
*/

XENIX 286 Device Drivers

/* buffer headers for raw transfers */
struct buf ixxx raw[ixxx NUM];

/* status for each drive and partition */
unsigned ixxx _sts[ixxx _ NUM][ixxx_ NP];

ixxxinit Procedure

ixxxinitO;
{
int dr;
int pa;

/* drive index */
/* partition index */

/* loop through drives */

}

for (dr = 0; dr < ixxx NUM; dr + +) {

}

/* Check to see if drive is present. */
out(ixxx adr[dr] + RCYL, Ox5aa5);
if (in(ixxx adr[dr] + RCYL) ! = Ox5aa5) {

/* Drive is not present. */

else {

}

printf("ixxx drive %d ABSENT\n", dr);
ixxx sts[dr][O] = ABSENT;
}

/* Drive is present. */
printf("ixxx drive %d PRESENnn", dr);
for (pa = 0; pa < ixxx NP; pa + +) {

}
ixxx _sts[dr][pa) = PRESENT;

/* Reset the drive. */
outb(ixxx adr[dr] + RCMD, CRESET);

/* Initialize the active list for the drive. */
ixxxtab[dr).b actf = &ixxxtab[dr);
ixxxtab[dr).b -actl = &ixxxtab[dr);

Block Drivers

This procedure is called via the switch dinitsw during system initialization. ixxxinit
checks for the presence of each possible device handled by the driver. This checking is
done by writing a test pattern to a device register that will store it and then reading the
register. If the pattern is read back, the device is present. In the example procedure,
the cylinder number register is used for the test. The pattern Ox5aa5 is chosen to
include both zero bits and one bits, as an absent device is most likely to be read as all
zero bits or all one bits. ixxxinit should call printf with a message for each device
checked, indicating if it is absent or present. (The kernel version of printf writes its
output directly on the system console device, shutting off interrupts to do so; it should
be used sparingly or just for debugging.) For each drive present, ixxxinit resets it to
place it in a known state and also initializes the drive's ixxxtab header.

5-11

Block Drivers XENIX 286 Device Drivers

ixxxopen Procedure

ixxxopen(dev, oflag)
dev t dev; /* device number, major/minor */
int of lag; /* open mode flags, NOT USED */
{
int dr = drive(dev); /* drive number */
int pa = part(dev); /* partition number */

if (dr> = ixxx NUM II ixxx sts[dr][O] = = ABSENT)
u.u error = ENXIO; /*" No such device or address" */

if (ixxx sts[dr][O] = = LOCKED)
u.u error = EBUSY; /* "Mount device busy" */

else {
ixxx sts[dr][pa] = OPEN;
outb(ixxx adr[dr] + RCMD, CENINT);

}
}

ixxxopen is called by the kernel via bdevsw when the device dey is mounted (either by
the mount system call or at system initialization for the root, pipe, or swap devices).
ixxxopen can also be called via cdevsw or bdevsw if the device special file for dey is
opened with the open system call. Note that ixxxopen is not called if a file on the
device is opened.

ixxxopen first checks its parameters, ensuring that the drive number is valid and that
the device is neither absent nor locked. Errors are indicated by assigning an error code
to u.u _error. If no errors are encountered, ixxxopen assigns the device status as OPEN
and enables device interrupts.

Note that because the kernel always calls ixxxopen for a device before calling other
driver routines, ixxxopen is the only routine that must validate the device number and
check for device ABSENT status.

For devices that use different types of media (e.g., either single density or double
density flexible disks), the media type can be encoded in the minor number, and
ixxxopen can determine media type and configure the device controller and driver tables
accordingly.

5-12

XENIX 286 Device Drivers Block Drivers

ixxxclose Proced u re

ixxxclose(dev, oflag)
dev t dev; /* device number, major/minor */
int of lag; /* open mode flags, NOT USED */
{
int dr = drive(dev); /* drive number */
int pa = part(dev); /* partition number */

if (ixxx sts[dr][O] = = LOCKED)
u.u error = EBUSY; /*" Mount device busy" */

else {
ixxx _sts[dr][pa] = PRESENT;

}
}

ixxxclose is called by the kernel via bdevsw when the device dey is unmounted (with the
umount system call) or at system shutdown. ixxxclose can also be called via bdevsw or
cdevsw if a device special file for dey was opened directly and then closed with the
close system call. Note that ixxxclose is not called if a file on the device is closed.

If the device is locked, ixxxclose indicates an error by assigning a code to u.u error.
Otherwise, ixxxclose simply updates the device status and returns.

5-13

Block Drivers XENIX 286 Device Drivers

ixxxstrategy Procedure

ixxxstrategy(bp)
register struct buf *bp;
{
int dr = drive(bp->bdev); /* drive number */
int pa = part(bp->bdev); /* partition number */
int bl = bp->b_blkno + (bp->b bcount+BMASK»>BSHIFT);

/* lastblock number */
int msk; /* for saving interrupt mask */

}

if (bp->b blkno > = ixxx par[dr)[pa].len II
(bl >;- ixxx par[dr][pJlen && -(bp->b flags & BREAD» {
/* Indicate error. */ -
bp->b flags 1= B ERROR;
bp->b -error = ENXIO; /* code to assign to u.u error */
iodone(bp); -
}

else {

}

if (bl > = ixxx par[dr][pa].len) {
bp- > b resid = op- > b count - BSIZE*

- (ixxx par[dr'][pa].len - bp->b blkno + 1);

}
bp- > b _ count - = -bp- > b _resid; -

bp->b cylin = ixxx_par[dr][pa].cyl + bp->b_ blkno/ixxx_BPC;
msk = splbufO;
disksort{&ixxxtab[dr], bp);
if (!ixxxtab[dr].b active)

i xxxsta rt{ dr);
splx{msk);

This procedure is called by the kernel via bdevsw or from physio when a block must be
physically read from or written to a device managed by the driver. ixxxstrategy first
checks block number within partition and last block requested within partition (if a
write). A block out of bounds error is handled by setting the B _ERROR bit in the
b_fiags field of the buffer header and calling iodone.

If the request is a read request and extends beyond the last block of the partition, then
the request is truncated to fit.

For valid requests, the cylinder number is computed and stored in the buffer header for
use by the disksort routine. splbuf and splx are used to guarantee exclusive access to
the active list for calling disksort and ixxxstart. disksort sorts the request into the
active list based on cylinder number, to reduce disk head movement. ixxxstart needs to
be called to start I/O if there is no I/O active for the drive. When there is an active
transfer, the completion interrupt will call ixxxintr, which will start the next transfer.
Only when there is not an active transfer (not an interrupt yet to happen) for the drive
is ixxxstart called to "prime the pump" of the interrupt-driven cycle. Note that both
disksort and ixxxstart must be called with interrupts locked out (to at least the level of
splbuf).

5-14

XENIX 286 Device Drivers Block Drivers

Finally, note that ixxxstrategy can be called to transfer multiple blocks, not just single
blocks. Examples of multiple block transfers are program loading, process swapping,
and some uses of the raw interface.

ixxxstart Procedure

ixxx start(dr)
int dr; /* validated drive number */
{
register struct buf *bp = ixxxtab[dr].b actf; -
register unsigned sec;
register unsigned adr;
register int pa;

if (bp ! = &ixxxtab[drD {

else

}

/* active list not empty */
pa = part(bp->b dev);
sec = (unsigned) bp->b blkno*(unsigned)(BSIZE/ixxx bPS);
adr = ixxx adr[dr]; - -
out(adr + RCYL, ixxx par[dr][pa].cyl + seC/ixxx SPC);
sec % = ixxx SPC; - -
outb(adr + RTRK, sec/ixxx SPT);
outb(adr + RSEC, sec%ixxx SPT);
outb(adr + RSCNT, bp->b bcountlixxx bPS);
out(adr + RADRL, bp->b -paddr & Oxffif);
outb(adr + RADRH, bp->b paddr> > 16);
outb(adr + RCMD, «bp->b- flags&B READ)?CREAD:CWRITE);
ixxxtab[dr].b active = 1; - -
}

/* active list empty *1
ixxxtab[dr].b active = 0;

ixxxstart is called from ixxxstrategy (process-time) and from ixxxintr (interrupt-time)
to start the next disk transfer (if any) for a drive. Interrupts must be locked out when
ixxxstart is called. ixxxstart maintains the flag b_active in the ixxxtab[dr] header;
b active is set (1) if the device controller has been sent a transfer and a completion
interrupt can be expected. b active is clear (0) if no transfer is outstanding and no
completion interrupt can be expected. If b active is 0, ixxxstrategy must call ixxxstart
to start I/O. -

Note that ixxxstart does no validation of the requested block number and byte count;
these values are validated by ixxxstrategy.

5-15

Block Drivers

ixxxintr Procedure

ixxxi ntr(l eve!)
int level; /* interrupt level from 8259A Programmable

{
register int dr;
register int sts;

Interrupt Controller (PIC), NOT USED */

register struct buf *bp;

}

for (dr = 0; dr < ixxx NUM; dr + +) {
if (ixxxtab[dr).b active &&

}
}

«st5 = inb(ixxx adr[dr] + RSTAT) & SINT» {
bp = ixxxtab[dr}.b actf;
if (sts & SERR) { -

}

bp->b flags 1= B ERROR;
deverr(&ixxxtab[dr],bp, 5tS, 0);

ixxxtab[dr].b actf = bp->av forw;
if (ixxxtab[dr[b actl = = bp)

ixxxtab[dr].b actl = bp- >av back;
bp->b resid = 0; -
ixxx start(dr);
iodone(bp);

XENIX 286 Device Drivers

ixxxintr is called by the kernel for each interrupt that occurs for a device managed by
the driver. This example driver presumes that all devices managed by the driver use the
same interrupt level, requiring ixxxintr to poll for interrupts. The for loop is for polling
each device. The major if statement ignores interrupts unless the device status
indicates that the drive interrupted and the b active field of ixxxtab[dr] indicates that
an interrupt is expected. -

If an interrupt is handled, an error indication in the drive status causes the B ERROR
flag in the buffer header to be set and deverr to be called to report the error. (An
actual driver might include more sophisticated error handling, such as retry for soft
errors.)

For any transaction, whether it ended with or without error, the buffer header for the
transaction is removed from the device's doubly-linked active list. ixxxstart is called to
start the next transaction in the active list (if any). iodone is then called to dispose of
the buffer for the transaction just completed. iodone handles copying any read data to
the calling process's address space, placing the buffer on the device list and the free
list, and updating the buffer state flags.

5-16

XENIX 286 Device Drivers

ixxxread and ixxxwrite Procedures

ixxxread(dev)
dev t dev;
{ -

/* device number, major/minor */

}
physio(ixxxstrategy, &ixxx _raw[drive(dev)),

ixxxwrite(dev)
dev t dev;
{ -

/* device number, major/minor */

}
physio(ixxxstrategy, &ixxx _raw[drive(dev)),

Block Drivers

dev, BREAD);

dev, B WRITE);

These procedures are called in response to read and write system calls on a file
descriptor that has been opened for "raw" character I/O to the device special file. These
procedures are never called when reading or writing ordinary files; file system I/O
always uses the block I/O interface.

When a block device special file is opened directly, either in block or character mode,
the "file" opened is the sequence of all the physical bytes on the device or in the disk
partition. Reading and writing a block device at this level ignores all the structures
placed on the disk by the file system: super-blocks, inodes, directories, etc. There are
obvious dangers in writing a block device at this level. Normally only the super-user can
open a device special file and use these facilities.

Such low-level I/O to a block device is used for copying disks (as byte-for-byte images
vs. individually copying files) and may be useful for other system functions, such as
backing up devices or troubleshooting block devices. A separatE' interface is provided to
this low-level I/O for efficiency reasons. It is desirable to bypass the kernel's complex
(and normally desirable) block buffering algorithms when an entire disk is being copied.

Instead of copying data from disk to kernel buffer and then to user space and then to
another kernel buffer and finally to the destination device, with all the buffer
manipulation code as well, raw I/O copies one or multiple buffers directly to an area of
user memory (ixxxread); raw I/O can then be used to copy the blocks directly to the
destination device (ixxxwrite).

For raw I/O, an area of user memory that is an integer multiple of BSIZE bytes in size
must be set aside as a buffer for the blocks being read. This area is specified as the
source and destination for the read and write system calls. For raw I/O, the byte count
specified to these system calls must be an integer multiple of BSIZE bytes.

The physio routine called by both ixxxread and ixxxwrite works as follows:

1. The buffer header that is its second argument is used as a buffer header to "fool"
the block driver routines. physio assigns fields in this header to reference the area
of user memory to be used as the source or destination of the transfer. (The
address and count are available to physio in the u structure.)

5-17

Block Drivers XENIX 286 Device Drivers

2. physio then calls the driver's own strategy routine, its first argument, to do the
transfer directly to or from user memory. To the strategy routine, the request
appears in a buffer header like any other buffer header. Thus the driver calls
physio for raw I/O and is then called by physio. The other two arguments to physio
are the device number and a flag indicating whether the operation is a read or a
write.

3. physio also locks the calling process into its present memory location and prevents
the calling process from being swapped. This is to ensure that the buffer in user
memory is there when the driver does the transfer.

ixxxioctl Procedure

ixxxioctl(dev, cmd, cmdarg, of lag);
dev t dev; /* device number, major/minor */
int cmd; /* command code */
int *cmdarg; /* pointer to arguments in user memory */
int of lag; /* open flags forthe device, NOT USED */
/*

ixxxioctl is called in response to an ioctl system call for a device. Note that this system
call is only available via the raw, character interface to a block device. Typically the
only command code defined for a block device is for formatting, e.g., formatting a track
of the device based on a table given as the cmdarg parameter. The code for such
formatting is device-dependent. Handling a formatting request may involve the
ixxxstrategy, ixxxst art , and ixxxintr routines if the request is inserted into the normal
stream of requests for the device.

5-18

CHAPTER 6
ADDING DRIVERS

TO THE CONFIGURATION

This chapter describes how to add a new device driver to XENIX:

1. Edit a master file to add information about your driver.

2. Edit a xenixconf file to add information about your driver.

3. Edit two makefile files to add information about your driver.

4. Use the make command to create a new XENIX kernel.

5. Edit Idev/makefile to add mknod commands for your device; then execute make to
create the device special files for your device.

6. Restart your system using the new kernel, with the device hardware installed in
your system.

The last section of this chapter describes how to delete a device driver from your
XENIX system.

Readers of this chapter should also read the XENIX 286 Installation and Configuration
Guide, which contains more information about configuration, including device driver
configuration.

This chapter assumes that you have written your driver, as described in Chapters 1-5, in
three files:

• sys/hlixxx.h defines constants used by the driver.

• sys/cfg/cxxx.c defines configuration data structures used by the driver.

• sys/io/ixxx.c defines the driver routines and any driver data structures that are
independent of system configuration.

The location of the sys directory in your system depends on whether or not you have
purchased XENIX 286 source code. In systems without source code, sys is contained in
the root directory and has an absolute path name of Isys. In systems with source code,
sys is contained in the usr directory and has an absolute path name of lusrlsys.

You must be logged in as the super-user to perform many of the tasks described in this
chapter. When you restart the system with the new kernel, there should be no other
users on the system.

6-1

Adding Drivers to the Configuration XENIX 286 Device Drivers

Editing the master File

You must add one line of information about your device driver to the file
sys/conf/master. This is a text file and can be changed with any of the editors.

The file begins with comment lines, indicated by asterisks (*) in column 1. The table of
devices in the configuration follows the initial comments and is shown in Figure 6-1. A
sample master listing is in Appendix G of this manual.

There are 14 fields in the line that describes a device, but some fields are unused for
particular devices. To fill in the line, you must know the answers to these questions:

1. What is the name of your device? What is the prefix used for your driver routines,
if different from the device name?

2. Does your device support a block interface? If it does, then what major number do
you want to use for the block interface?

3. Does your device support a character interface? If it does, then what major
number do you want to use for the character interface?

4. Does your device use interrupts? If so, what interrupt level(s) does it use?

5. What standard driver routines are not present in your driver and should be replaced
by nodev or nulldev in the cdevsw or bdevsw tables?

6. What is the maximum number of boards handled by your driver?

* The following devices are those that can be specified in the system
* description file. The name specified must agree with the name shown.
*
* The first twelve entries in both the "bdevsw" and the "cdevsw" are
* reserved for use as block devices. The last four of these entries
* are reserved for additional Intel devices and customer block devices.
* All block devices have the same "bdevsw" and "cdevsw" number.
* The" cmaj" number 1 is reserved for use by the memory driver.
*
*name vsiz msk typ hndlr na bmaj cmaj # na vec1
* 1 2 3 4 5 6 7 8 9 10 11

vec2
12

vec3 vec4
13 14

*---
i215 1 0137 014 i215 0 0 0 2 -1 0005 0 0 Oa
i216 1 0137 014 i216 0 2 2 2 -1 0005 0 0 Oa
i214 1 0137 014 i214 0 3 3 2 -1 0005 0 0 Oa
i208 1 0137 014 i208 0 4 4 2 -1 0003 0 0 Oa
ramd 0 0136 054 ramd 0 5 5 1 -1 0 0 0 Oa
xlog 1 0137 014 xlog 0 6 6 2 -1 0005 0 0 Oa

Figure 6-1. Device Table from sys/conf/master

6-2

XENIX 286 Device Drivers Adding Drivers to the Configuration

*
* The next twelve entries in the "cdevsw" are reserved for character
* devices. The" cmaj" number 12 is reserved for use by the tty driver.
*
Ip 0132 004 Ip 0 0 13 1 -1 0107 0 0 Oa
i74 0137 004 i74 0 0 14 1 -1 0006 0 0 Oa
i188 0137 004 i188 0 0 15 2 -1 0003 0002 0 Oa
i552 0137 004 i552 0 0 16 1 -1 0004 0 0 Oa
i278 0137 004 i278 0 0 17 1 -1 0003 0 0 Oa
i544 0137 004 i544 0 0 18 4 -1 0003 0 0 Oa
i534 0137 004 i534 0 0 19 4 -1 0003 0 0 Oa
*
* These are Intel devices that use an interrupt vector but do not
* have any "bdevsw" or "cdevsw" entry.
*
debug 0 0 dbg 0 0 0 1 -1 0001 0 0 Oa
slave7 0 0 sl 0 0 0 1 -1 0007 0 0 Oa
*
* The following devices must not be specified in the system description
* file (xenixconf). These are pseudo drivers and the clock driver.
*
memory 0 06 0324 mm 0 -1 1 0 0 0 0 Oa
tty 0 027 0324 sy 0 -1 12 0 0 0 0 Oa
clock 1 000 0321 0 -1 -1 0 0 0 0 Oa
$$$

Figure 6-l. Device Table from sys/conf/master (Continued)

Field 1, name, is the name of the device. The name begins in column 1 and is from 1 to
8 characters long. This name must be the same as the name used to identify the device
in the xenixconf file. Intel devices are customarily identified as ixxx, e.g., i534 for the
iSBC 534 board. If limited to 4 characters, Field 1 can be identical to Field 5, hndler.

Field 2, vsiz, is the number of interrupt levels used by the device driver. Typically,
each board uses a separate interrupt level. This number should be less than or equal to
the number of interrupt levels specified in Fields 11 to 14 (4 levels maximum). Some
drivers, such as that for the i544, use only a single interrupt level even if multiple
boards are present; such a driver must poll the boards to determine the source of each
interrupt. If a device does not use interrupts, then Field 2 is o. A "virtual" device such
as a RAM disk is an example of a device that does not use interrupts.

Field 3, msk, is an octal bit mask indicating which standard driver routines are present:

0100 init routine present
0020 open routine present (else replace with nulldev)
0010 close routine present (else replace with nulldev)
0004 read routine present (else replace with nodev)
0002 write routine present (else replace with nodev)
0001 ioctl routine present (else replace with nodev)

6-3

Adding Drivers to the Configuration XENIX 286 Device Drivers

Note that neither the intr routine nor the strategy routine of block drivers is listed. The
intr routine must be provided for all drivers that use interrupts. The strategy routine is
mandatory for all block drivers. You can form the bit mask for your device by taking
the mask values for all the routines present in your driver and ORing them. For
example, for a line printer driver that provided all routines except read and ioctl, the
mask value would be 0132. The kernel routine nodev replaces missing read, write, or
ioctl routines. nodev indicates an error if it is called. The kernel routine nulldev
replaces missing open or close routines in the cdevsw or bdevsw tables. nulldev does
nothing when called, simply returning to its caller.

Field 4, typ, is an octal bit mask indicating device type and some miscellaneous
information:

0200 Only one specification of the device is allowed; i.e., only one line
in master's device table can refer to the device.

0040 The device does not use interrupts.

0020 The device is required in the configuration. A required device is
always included by the config program and must not be specified
in the xenixconf file.

0010 The device provides a block interface.

0004 The device provides a character interface.

You can form the bit mask to specify for your device by taking all the mask values that
apply to your driver and ORing them. Terminals and simple character devices have type
004. Disks, which normally support a "raw" character interface as well as a block
interface, have type 014. A RAM disk might not need a character interface and could
have type 010.

Field 5, hndlr, is the value that is prefixed to the standard routine names to produce the
routine names used in your driver. For example, if Ip is the value of the hndlr field for
your device, your routine names must be Ipinit, lpopen, etc. The prefix- can be from 1 to
4 characters in length. The prefix must begin with a letter, and the characters in the
prefix must be limited to those allowed in C identifiers. The prefix is used to generate
the routine names in the switch tables dinitsw, cdevsw, bdevsw, and vecintsw. You can
reduce confusion if your prefix is the same as the device name in Field 1.

Field 6, na, is not used and should be O.

Field 7, bmaj, is the major number used for the device's block interface. If the device
does not have a block interface, the field is unused and typically 0 or -1. A major
number of zero is allowed.

Field 8, cmaj, is the major number used for the device's character interface. If the
device does not have a character interface, the field is unused and typically 0 or -1. A
major number of zero is allowed.

For devices with both block and character interfaces, the same major number is
typically used for both interfaces. While the block and character major numbers for a
device can be different, it is recommended that they be the same.

6-4

XENIX 286 Device Drivers Adding Drivers to the Configuration

Field 9, f, is the maximum number of boards supported by the device driver that may be
present in the system.

Field 10, na, is not used and should be -1.

Fields 11, 12, 13, and 14 together contain up to four octal interrupt levels used by the
driver. Unused interrupt levels should be zero; zero is not allowed as a valid interrupt
level. Levels should be in the range 1-0377 octal (1-255 decimal). The levels specified
must not conflict with those used by other devices and must be the same as those
actually used by the hardware. If only one level is specified, use Field 11; if two levels
are specified, use Fields 11 and 12, etc.

The letter a immediately follows field 14 because the config program does not allow a
newline to immediately follow the field list. Any other character can be used, but 'a' is
traditional.

The device table is organized as follows:

1. All block devices

2. All character devices

3. Special devices (e.g., debug) that use only an interrupt level and have no bdevsw or
cdevsw entry

4. Pseudo devices that must not be specified in the xenixconf file (e.g., tty)

The line containing $$$ terminates the device table. Subsequent sections of master give
the line discipline table (for terminals), the alias table, and the tunable parameters
table. All these are included in the master listing in Appendix G.

There is a tradeoff in choosing a major number for your device. If you choose a small
major number, close to the numbers now being used by Intel, you may conflict with
future Intel usage as Intel supports more devices. Of course, such a conflict is very easy
to resolve, since your driver code should not depend on the major number in any way and
only your master entries would need to be revised. If you choose a large major number,
you expand the size of the switch table{s), wasting memory with null entries in those
tables. Major numbers 7, 8, 9, 10, and 11 are available (in Release 3 of XENIX 286) for
customer block devices or future Intel devices. Major numbers 20 and above are
available (in Release 3 of XENIX 286) for any customer device or future Intel devices.

The name, prefix, major numbers, and interrupt levels for your device should be distinct
from those used by other devices. The only exception to this rule is that a conflict
between two devices is allowed if only one of them is ever included in the configuration
via the xenixconf file. For example, the i534 driver and the i544 driver use the same
interrupt level, thus only one of them may be included in your XENIX configuration
(unless you modify the master file to place one of these devices at a different interrupt
level and mOdify the hardware jumpers accordingly).

6-5

Adding Drivers to the Configuration XENIX 286 Device Drivers

Editing xenixconf

You must add one line about your driver to the file sys/conf/xenixconf. This is a text
file and can be edited with any XENIX editor. xenixconf specifies exactly which of the
devices described in master are to be included in the new kernel that you are building.
master must be changed only when adding a new driver or changing an interrupt level.
xenixconf is changed when you add or remove devices. xenixconf begins with a block of
comments, which have asterisks (*) in column 1. The device list follows the comment
block, e.g.:

* Devices
*
i21S 1
iS34 0
iS44 0
i188 1
i74 1
Ip 1
ramd 0
debug 0
root i21S
pipe i21S 1
swap i21S 2 1188

Each device entry consists of a device name and an include flag. The flag is 1 if the
driver should be included in the system (i.e., there is hardware for it to support).
Otherwise, the flag is O. If the flag is 0, then the named driver is not included in the
configuration, regardless of any entry in master. For example, in the configuration
specified above, the i534, i544, ramd, and debug devices are not included. Note that if a
device defined in master is not listed at all in xenixconf, that is equivalent to listing the
device with a flag value of o.

Entries in the xenixconf device list are in no particular order; you can insert your device
at any point.

The lines with the names root, pipe, and swap are not new devices. These lines appear
at the end of the device list and name devices used for system purposes. In the
configuration specified above, the root file system uses the i215 device, which is also
used for swap space and pipe space.

A sample xenixconf listing is in Appendix H of this manual.

6-6

XENIX 286 Device Drivers Adding Drivers to the Configuration

Editing the makefiles

The next editing task in adding a driver to the configuration is the reVISIon of two
makefiles: sys/cfglmakefile and sys/io/makefile. Both are text files and can be
changed with any of the editors. Both are less than a page long and must be changed in
only one place. In both files, the changes are made in the line that begins OBJS= ; you
need to delete old object file names and add the name of an object file to each list.

In sys/cfg/makefile, delete the names of any object modules for which there is not a
corresponding source file in sys/cfg; these object modules have already been generated
and added to lib_ioc. Then add the name of the object file for your driver's
configuration data structures: cxxx.o.

In sys/io/makefile, delete the names of any object modules for which there is not a
corresponding source file in sys/io; these object modules have already been generated
and added to lib io. Then add the name of the object file for your main driver code:
ixxx.o.

Note that simple file names, not path names, are used. Names in the lists are separated
by spaces. If the list extends across more than one line, all lines but the last must end
with a backslash (\) immediately followed by the newline character. The object files
named in the list may not exist yet; the purpose of makefiles is to automate the process
of producing such derived files as needed. Makefiles and the make program are
described in the chapter "make: Program Maintainer" in the XENIX 286 Programmer's
Guide.

Making a New Kernel

To make a new XENIX kernel, follow these steps:

1. Change your directory to sys/cfg and execute the make command (with no
arguments). This compiles new or changed driver configuration files and adds
them to the library of driver configuration structures, sys/cfg/lib_ioc.

2. Change your directory to sys/io and execute the make command (with no
arguments). This compiles new or changed driver code and adds the resulting
object files to the library of driver object modules, sys/io/lib_io.

3. Change your directory to sys/conf and execute the command

make xenix

This make command calls the config program that constructs the C program file
c.c using the information in master and xenixconf. c.c is compiled and linked with
the other files and libraries in the kernel. The new bootable kernel is placed in the
file sys/conf/xenix. c.c contains the device switch tables, dinitsw, cdevsw,
bdevsw, and vecintsw. A sample c.c listing is in Appendix I of this manual.

6-7

Adding Drivers to the Configuration XENIX 286 Device Drivers

The new kernel must be placed in the root directory, I, before it can be used. You
should not overwrite your present kernel, Ixenix, because you do not know whether the
new kernel will work or not. You should use a new file name, such as Ixenix. test, when
you move your new kernel to the root directory.

Making the Device Special File

For programs or commands to access your device, one or more special files must exist
for it in the Idey directory. A special file can be created with the mknod command,
with the form

/etc/mknod name c major minor

or

/etc/mknod name b major minor

where name is the new file name. c is specified for character interfaces; b is specified
for block interfaces. A single special file can support either a character or block
interface, but not both. For devices with both interfaces, two special files are needed
to access the different interfaces. Finally, the major number of the device and the
minor number of the new special file are specified. Note that a separate special file
must be created for each minor number. The major and minor numbers may be specified
in either decimal or octal. For example, to create special files for two line printers:

/etc/mknod /dev/lpO c 7 0
/etc/mknod /dev/lp1 c 7 1

While there are no formal naming conventions for device special files, you may want to
consult the existing nodes in Idey and name your files in the same way. For example,
nodes for raw (character) interfaces to block devices begin with 'r'; nodes for partitions
on block devices have names such as 'wO' (entire disk), 'wOa', 'wOb', and 'wOc' (partitions
for parts of the disk).

You should edit the file Idey/makefile and add the mknod commands for your device.
Then make Idey your directory and run make. This will execute any needed mknod
commands to create device special files. Only the super-user can create device special
files.

Adding Terminal Information

If you are adding a terminal device driver to your system, you may have to add
information to two system files: letc/ttytype and letc/ttys. Refer to the section
"Adding a Terminal" in the chapter "Tailoring the Environment" in the XENIX 286
System Administrator's Guide for more information on this subject. If a new type of
terminal is being connected to your driver, then you may have to add information to the
file letc/termcap, described in "Files" in the XENIX 286 Reference Manual.

6-8

XENIX 286 Device Drivers Adding Drivers to the Configuration

Executing the New Kernel

Before booting the new kernel, be certain that any hardware required by your driver is
properly installed. You can then boot your new kernel, as described in the XENIX 286
Installation and Configuration Guide.

Deleting a Device Driver

To delete a driver from your system, follow these steps:

1. Change the include flag for the driver in xenixconf to O.

2. Make a new kernel, as described in this chapter.

3. Delete any device special files that refer to the driver {using the rm command}.
{This step is not mandatory; you can leave the special files in Idev if they may be
used again in the future.}

4. Reboot your system with the new kernel.

The driver will not be present in the new kernel. However, the driver source and object
code will still be present and maintained by the makefiles. If you delete the three
driver files, you should also remove references to the driver in sys/cfg/makefile and
sys/io/makefile. If you delete the device special files for the driver, then you should
remove the corresponding mknod commands in Idev/makefile.

6-9

APPENDIX A
MEMORY-MAPPED 1/0 FOR DRIVERS

This appendix describes how device drivers can read and write device registers that are
mapped into the memory address space outside of the kernel data segment. This is an
alternative to mapping device registers into the I/O port address space, which supports
216 port addresses. The memory address space can be used to allow more efficient
control of device registers with a greater variety of iAPX 286 instructions. For
example, instructions to increment a memory location or to move a block of bytes or
words can be applied directly to 'device registers mapped into memory. Memory­
mapped I/O is used by some Intel-supplied drivers, including the iSBC 544 and iSBC
188/48 drivers.

Small Model Kernel

The XENIX 286 kernel (which includes all device driver code) is implemented as a small
model program with a single data segment. The single kernel data segment increases
speed and reduces storage requirements in the kernel, because data pointers in the
kernel are simply 16-bit offsets.

There is not enough space in the kernel data segment for memory-mapped I/O devices,
so separate segments must be created to frame the device registers and to be used when
accessing the device. After such a segment is created, the peek and poke routines
described in this appendix can be used to access the device registers.

Creating the Segment Descriptor

An available descriptor in the iAPX 286 Global Descriptor Table (GDT) is allocated by
calling dscralloc, which returns the selector for the descriptor. The descriptor must
then be initialized by calling mmudescr with parameters that specify the selector, the
segment's physical base address, the segment's length, and access rights for the
segment.

unsigned dscrallocO;
/*
Allocates an available descriptor in the Global Descriptor Table for
the use of the caller. Returns the selector for the allocated
descriptor. Does NOT initialize the descriptor.
*/

If no more descriptors are available, a major kernel error results. The total number of
descriptors available in the G DT is a configuration option.

A-I

Memory-Mapped I/O XENIX 286 Device Drivers

mmudescr(selector, paddr, ceil, access)
unsigned
long
unsigned
int

selector;
paddr;
ceil;
access;

/* selector for descriptor being overwritten */
/* contains 24-bit physical base address */
/* segment length minus one */
/* low byte of access is used as access

rights byte of the descriptor. */

In calling mmudescr, use an access value of Ox92. Bit 7 is set to indicate that the
segment is present. Bits 6 and 5 are clear to indicate maximum privilege level (0),
appropriate to a segment being accessed from kernel code. Bit 4 is set to indicate a
segment descriptor. Bit 3 is clear to indicate a data descriptor (versus a code
descriptor). Bit 2 is clear to indicate that any expansion of the segment will be up, not
down (not applicable in this case). Bit 1 is set to indicate that the segment is writable.
Bit 0 is clear indicating that the segment has not yet been accessed.

The following code illustrates the creation of a segment to frame a device that maps
16K bytes of memory starting at physical address OxfeOOOO:

unsigned selector = dscrallocO;
mmudescr(selector, OxfeOOOO, Ox3fff, Ox92);

The Peek Routines

The following peek routines are part of the XENIX 286 kernel:

A-2

peek(offset, selector, count, addr)
unsigned offset; /* offset into source data segment */
unsigned selector; /* segment selector for source data segment */
unsigned count; /* number of bytes to transfer (0-65535) */
char *addr; /* destination address in kernel data segment

(short pointer, offset only) */
/*
Copies count bytes beginning at offset in the data segment specified
by selector, to an area of the same size beginning at addr in the
kernel data segment. count can be 0, in which case no bytes are
copied.
*/

int peekb(offset, selector)
unsigned offset; /* offset into source data segment */
unsigned selector; /* segment selector for source data segment */
/*
Reads one byte at the specified offset in the specified data segment.
The value read is returned as an int value in the range 0-255.
*/

XENIX 286 Device Drivers Memory-Mapped I/O

int peekw(offset, selector)
unsigned offset; /* offset into source data segment */
unsigned selector; /* segment selector for source data segment */
/*
Reads one word (two bytes) at the specified offset in the specified
data segment. The value read is returned as an into
*/

For single bytes or words, the peekb or peekw routines should be used instead of peek.

The Poke Routines

The following poke routines are part of the XENIX 286 kernel:

poke(offset, selector, count, addr)
unsigned offset; /* offset into destination data segment */
unsigned selector; /* segment selector for destination segment */
unsigned count; /* number of bytes to transfer (0-65535) */
char *addr; /* source addr~s in kernel data segment

(short pointer, offset only) */
/*
Copies count bytes beginning at addr in the kernel data segment, to
an area beginning at offset in the data segment specified by selector.
count can be 0, in which case no bytes are copied.
*/

pokeb(offset, selector, value)
unsigned offset; /* offset into destination data segment */
unsigned selector; /* segment selector for destination segment */
int value; /* int with low byte to be poked */
/*
Writes the low byte of value (value & Oxff) at the specified offset
in the specified data segment.
*/

pokew(offset, selector, val ue)
unsigned offset; /* offset into destination data segment */
unsigned selector; /* segment selector for destination segment */
int value; /* int (word) value to be poked */
/*
Writes the word value at the specified offset in the specified
data segment.
*/

For single bytes or words, the pokeb or pokew routines should be used instead of poke.

A-3

APPENDIX B
CONVERTING DRIVERS FROM

RELEASE 1 TO RELEASE 3 OF XENIX 286

This appendix describes how changes in the device driver interface affect the conversion
of drivers. The changes made to the device driver interface in XENIX Release 3
represent improvements over the Release 1 version. Relatively few changes are
required to convert a block driver from Release 1 to Release 3. While significant
changes have been made to character devices (particularly terminal drivers), conversion
should not require a major rewrite of the code.

The changes in character device drivers are primarily the result of the more
sophisticated controllers available on the market. New hardware and better firm ware
have reduced the workload of the machine-dependent line discipline routines. They are,
therefore, simplified under Release 3. In general, as a device increases in functionality,
the driver-device interface becomes more complex: the device requires more
information, and the driver must provide it. Consequently, the driver routines in
Release 3 are expanded, and the tty structure has been altered to hold more
information.

Block device driver changes are fairly minor and result from the fact that XENIX
Release 3 supports large model programs. The changes that are included affect the
static buffer header associated with each device (a cosmetic upgrade) and the way in
which the driver addresses memory.

Terminal Drivers

tty Structure

Significant changes have been made in this area. Many fields previously present in the
product have been eliminated or replaced; new fields have been added.

Table B-1 shows fields that have changed in the tty structure. Note that some have
been replaced by new fields in the Release 3 version, while others have been eliminated.

Table B-2 shows the Release 3 fields that did not exist in the Release 1 tty structure.
Some of these new fields contain information that was previously contained in a
different Release 1 field. Others are entirely new; they have no Release 1 counterpart
and contain no Release 1 information. The tty structure is defined in the include file
tty.h, which is listed in Appendix C of this manual.

An example of an actual Release 3 terminal driver appears in Chapter 4, "Terminal
Drivers." Studying the example code in Chapter 4 may help you to understand the points
made about converting terminal drivers in this appendix.

B-1

Converting Drivers

Release 1 Field

int (*t _ oproc)

Oint (*t iproc)O

struct chan *t chan

caddr t t addr

dey t t dey

short t 2state

char t erase

char t kill

char t _ ispeed

union t un

B-2

XENIX 286 Device Drivers

Table B-1. Changed tty Fields

Comment

Pointer routine to
start output

Pointer routine to
start input

Destination
channel for
multiplexed files

Auxiliary line
discipline pointer

Device address

Device nu m ber

octl models

Driver-specific
state

Erase character

Kill character

Input speed

Output speed

Extended ioctl
control structures

Release 3 Field Comment

int (*tJ)roc)O Pointer to new routine
that starts input and
output, and changes
the tty structure if
necessary. The driver
writer must write this
new routine.

(eliminated)

(eliminated)

short t addr

(eliminated)

(eliminated)

(eliminated)

(eliminated)

(eliminated)

(eliminated)

(eliminated)

(eliminated)

Multiplexed files not
supported.

No longer needed.

Device number.

t addr field used.

Replaced by several
fields.

Now bit-mapped in
char control array
field.

Now bit-mapped in
char control array
field.

Both speed fields are
replaced by a single
bit-mapped speed in
the new control mode
field.

Information encoded
in new mode fields.

XENIX 286 Device Drivers

New Field

ushort t _ illag

ushort t _ ollag

chart trow

Converting Drivers

Table B-2. New tty Fields

Comment

Input modes; values for this field are located in the new
file termio.h. Release 1 drivers were concerned with
very few input modes; most were not an option. This is
an expanded capability of Release 3.

Output modes; values for this field are also located in
the new file termio.h. In Release 1, both input and
output mode values were default (assumed) or ignored
in the line discipline routines. However, some
controllers need this information, and these fields allow
a user to set the modes.

Control modes; values for this field are also located in
the new file termio.h. This field serves the same
purpose that the tc structure together with the ttiocb
structure served in Release 1: it changes the tty
characteristics (e.g., baud rate).

Line discipline modes; new to Release 3. These modes
are used by the line discipline routines. Bits for this
field are defined in termio.h.

External protocol modes; new to Release 3. These
allow different protocols. Bits for this field are defined
in termio.h.

Current row; it may be useful to some drivers to know
which line a user is on if the last line has been reached.

Pointer to multidrop channels.

B-3

Converting Drivers XENIX 286 Device Drivers

Changes to Routines

Under Release 1, the routines required to interface with the XENIX kernel included

ixxxinit
ixxxopen
ixxxclose
ixxxstart
ixxxread
ixxxwrite
ixxxintr
ixxxioctl

The ixxxstart routine is no longer a required interface routine; it is now an optional
internal routine. Replacing and expanding considerably on the function of ixxxstart is
ixxxproc~ It isa required routine, and a field in the tty structure (tp->t~roc) holds a
pointer to it. Several line discipline routines including ttyclose, ttyflush, canon, ttrstrt,
ttyread, and ttywrite call ixxxproc to effect some change on the output.

The parameters to ixxxproc include tp and cmd. tp is a pointer to the tty structure;
ixxxstart takes tp as its only parameter. Thus, with this parameter alone, ixxxproc
could accomplish what ixxxstart does. However, the expanded capability of ixxxproc is
reflected in its second argument, cmd, which dictates what action--if any--ixxxproc
should take. The commands that must be haildled and their meanings are listed in Table
B-3.

Command

T TIME

T WFLUSH

T RESUME

T OUTPUT

T SUSPEND

T BLOCK

T UNBLOCK

T RFLUSH

T BREAK

B-4

Table B-3. ixxxproc Commands

Function

Time delay for outputting a break has finished.

Flush output queue.

Output was stopped or someone is waiting for the output
queue to drain.

Start output.

Stop output on this line.

Block input.

Start input.

Someone is waiting to flush the input queue.

Send a break.

XENIX 286 Device Drivers Converting Drivers

In Release 1, these functions were handled as machine-independent features. Since they
are truly machine-dependent, they are now included as a user-written routine. In
converting a Release 1 driver to Release 3, ixxxstart may be made a routine internal to
ixxxproc, and code to handle the other commands listed in Table B-3 would have to be
written.

The new ixxxproe procedure is now called with two argu ments:

tp /* pointer to tty structure */
cmd /* user command to change output */

An example of code for an ixxxproc procedure is contained in Chapter 4, "Terminal
Drivers."

In Release 3, ixxxioetl is called by the kernel with the first two arguments swapped:

ixxxioctl(cmdarg, dev, addr, flag)

That is, in Release 1, ixxxioctl was called in this order:

ixxxioctl(dev, cmdarg, addr, flag)

Note that the cmdarg argument is a long type under Release 3. Formerly, it was an int.

In addition to the file tty.e, which under Release 1 contained all the line discipline
routines, there now exists a file ttO.c. Some of the line discipline routines are located
in tty.e, and the others are located in ttO.c. (This information is useful only to source
code customers.)

Another new Release 3 file is ttold.h. It contains all the Release 1 structure definitions
that Release 3 requires in order to maintain UNIX Version 7 compatibility. These
definitions include the ioctl user structures, so that user programs written under
Release 1 will be source-compatible under Release 3. If the ttold.h file is included in a
Release 3 driver and all other Release 3 changes have been made, then user programs
should be compatible.

B-5

Converting Drivers XENIX 286 Device Drivers

Line Discipline Routines

The line discipline routines (those accessible by the driver) in Release 1 have been
replaced by a new set of routines in Release 3, as Table 8-4 indicates. Some of the
names have remained the same, and the functionality has changed only in that the new
driver routine ixxxproc does most of the work these routines did in Release 1. These
Release 3 routines are listed in the linesw table. (Note that the arrangement of routines
in Table 8-4 does not indicate a correspondence between all pairs of routines. E.g.,
I_rend does not correspond to I_input.)

The tty.h File

Release 1

I_open

I close

I read

I write

I ioctl

I rint

I rend

I meta

I modem

Table 8-4. Line Discipline Routines

Release 3

I_open

I close

I read

I write

I ioctl

I_output

I_input

I mdmint

The most obvious change to tty.h is that much of its information has been expanded and
moved into two new files, ttold.h and termio.h. The ttold.h file contains structures as
defined under XENIX 286 Release 1; it allows compatibility with UNIX Version 7. The
termio.h file contains the bit values defined for the four new mode fields located in the
tty structure:

input modes
output modes
control modes
line disciplines

(tp->t ifiag)
(tp->t=ofiag)
(tp->t _ cfiag)
(tp->t _lflag)

Several fields contained in the tty structure under Release 1 have been eliminated and
replaced by these four mode fields. The values for the new mode fields encode much
more information than the Release 1 fields, reflecting the fact that the driver is
handling more than it did in the previous release.

The Release 1 fields that have been replaced include t_flags, t_state, t_2state, t_erase,
t_ kill, t _char, t _ ispeed, and t _ ospeed.

8-6

XENIX 286 Device Drivers Converting Drivers

A comparison between the Release 1 structure fields and the bit values for the Release
3 tty structure fields reveals that all Release 1 information is still present under
Release 3. The form has simply changed as a result of the need to keep track of more
information. The values for the new Release 3 mode fields are displayed in Tables B-5,
B-6, B-7, and B-8. These values are defined in termio.h, which is listed in Appendix D of
this manual.

Table B-5. Input Modes Describing Basic Terminal Input Control

Input Modes Octal Values Comments

IGNBRK 0000001 Ignores break condition.

BRKINT 0000002 Signals interrupt on break.

IGNPAR 0000004 Ignores characters with parity errors.

PARMRK 0000010 Marks parity errors.

INPCK 0000020 Enables input parity check.

1ST RIP 0000040 Strips characters.

INLCR 0000100 Maps newline to carriage return on input.

IGNCR 0000200 Ignores carriage return.

ICRNL 0000400 Maps carriage return to newline on input.

IUCLC 0001000 Maps uppercase to lowercase on input.

IXON 0002000 Enables start/stop output control.

IXANY 0004000 Enables any character to restart output.

IXOFF 0010000 Enables start/stop input control.

Table B-6. Output Modes Specifying System Treatment of Output

Output Modes Octal Values Comments

OPOST 0000001 Postprocesses output.

OLCUC 0000002 Maps lowercase to uppercase on output.

ONLCR 0000004 Maps newline to carriage return-newline on output.

OCRNL 0000010 Maps carriage return to newline on output.

ONOCR 0000020 No carriage return output at column O.

ONLRHT 0000040 Newline performs carriage return function.

OFILL 0000100 Uses fill characters for delay.

OFDHL 0000200 Fill is DEL, else NUL.

NLDLY 0000400 Selects newline delays.

CRDLY 0003000 Selects carriage return delays.

TABDLY 0014000 Selects horizontal tab delays.
BSDLY 0020000 Selects backspace delays.

VTDLY 0040000 Selects vertical tab delays.

FFDLY 0100000 Selects formfeed delays.

B-7

Converting Drivers XENIX 286 Device Drivers

8-8

Table 8-7. Control Modes Describing Hardware Control of the Terminal

Control Modes Octal Values Comments

CBAUD 0000017 8aud rate:
BO 0 Hang up
B50 0000001 50 baud
B75 0000002 75 baud
B110 0000003 110 baud
B134 0000004 134.5 baud
B150 0000005 150 baud
B200 0000006 200 baud
B300 0000007 300 baud
B600 0000010 600 baud
B1200 0000011 1200 baud
B1800 0000012 1800 baud
B2400 0000013 2400 baud
B4800 0000014 4800 baud
B9600 0000015 9600 baud
EXTA 0000016 External A
EXTB 0000017 External 8

CSIZE 0000060 Character size:
CS5 0 5 bits
CS6 0000020 6 bits
CS7 0000040 7 bits
CS8 0000060 8 bits
CSTOPB 0000100 Sends 2 stop bits, else 1
CREAD 0000200 Enables receiver
PARENB 0000400 Parity enable
PARODD 0001000 Odd parity, else even
HUPCL 0002000 Hangs up on last close
CLOCAL 0004000 Local line, else dial-up

Table 8-8. Line Discipline Modes Used to Control Terminal Function

Line Discipline
Modes

ISIG
ICANON
XCASE
ECHO
ECHOE

ECHOK
ECHONL
NOFLSH

Octal Values

0000001
0000002
0000004
0000010
0000020

0000040
0000100
0000200

Comments

Enables signals
Canonical input (erase and kill processing)
Canonical upper/lower presentation
Enables echo
Echoes erase character as
backspace-space-backspace
Echoes newline after kill character
Echoes newline
Disables flush after interrupt or quit

XENIX 286 Device Drivers Converting Drivers

Within termio.h is one defined structure called termio. It is the ioctl control packet;
that is, it contains all information needed by the ioctl routine. That information
includes all the mode information listed in the four preceding tables plus information on
which set of line routines to use, the external protocol modes, and settings for control
characters that were located in the Release 1 tty structure (erase, kill, etc.).

Block Device Drivers

Buffer Changes

In Release 1, the buffer header was defined in the file buf.h, and all buffer headers,
including the static buffer header for each device, were of this format. The static
buffer header did not use most of the fields as defined in buf.h because most of them
dealt with I/O request information. (The static buffer header merely acts as a queue
header.)

In Release 3, defining a new format for the static buffer header distinguishes the static
buffer header from a regular buffer header used to make I/O requests. The new format
is defined in iobuf.h and has fields appropriate to a queue header. In block drivers, then,
the static buffer header is declared as iobuf rather than buf. (In Release 1, the static
buffer header was usually declared by the name bufh.) iobuf.h is listed in Appendix F of
this manual and is also described in Chapter 5, "Block Drivers."

Addressing

In Release 1, the buffer header as defined in buf.h contained several fields used to
address the device. These fields included a union of caddr t b addr and char b xmem.
In Release 3, these fields have been replaced with p addr, a single field representing a
24-bit physical address. Addressing is now much-simpler. Wherever the routine
physaddr was used in Release 1 to put together a physical address, bp->p _ addr can be
used directly.

The cmdarg argument in the ioctl routine was a short pointer in Release 1 (where short
means 16-bit offset only). Because Release 3 is large-model (and has many data
segments), this argument is now a long pointer. Recall that cmdarg is a pointer to a
structure in space. Under Release 1, the system routines fuword and fubyte were used
to access the fields in the structure. With Release 3, the system routine copyin can be
used to make a local copy of the structure, which is more efficient for accessing fields.
eopyin is described in Chapter 2, "Driver Fundamentals."

B-9

APPENDIX C
tty.h INCLUDE FILE

This appendix lists the tty.h include file used by character drivers, including terminal
drivers. Note that tty.h includes the include file termio.h, which is Appendix D of this
manual.

/*
* THIS FILE CONTAINS CODE WHICH IS DESIGNED TO BE
* PORTABLE BETWEEN DIFFERENT MACHINE ARCHITECTURES
* AND CONFIGURATIONS. IT SHOULD NOT REQUIRE ANY
* MODIFICATIONS WHEN ADAPTING XENIX TO NEW HARDWARE.
*/

#include "termio.h"

/*
* A clist structure is the head of a linked list queue of characters.
* The routines getc* and putc* manipulate these structures.
*/

struct clist {

};

/*

int
struct
struct

c cc;
cblock
cblock

/* character count */
/* poi nter to fi rst * /
/* pointer to last */

* A tty structure is needed for each UNIX character device that
* is used for normal terminal 10.
*/

struct tty {
struct clist t rawq; /* raw input queue * / -
struct clist t canq; /* canonical queue */
struct clist t outq; /* output queue */
struct cblock *1 buf; /* buffer pointer */
int (*t proc)(); /* routine for device functions */
ushort t iflag; /* input modes */
ushort t oflag; /* output modes * /
ushort t cflag; /* control modes */
ushort t Iflag; /* line discipline modes */
ushort t xflag; /* external protocol modes */
short t state; /* internal state */

-
short t pgrp; /* process group name */
char t line; /* linediscipline */
char t delct; /* delimiter count */
char t col; /* current column */
char t row; /* cu rrent row * /

C-l

tty.h Include File

};
/*

uchar t
short
struct

t cc[NCC + 2];
t-addr;
tty *t chan;

* The structure of a clist block
*/
#define CLSIZE 24
struct cblock {

struct cblock *c next;
char c first; -

-char c last; -char (data[CLSIZE];
}; -

extern struct cblock cfree[];
extern struct cblock *getcbO;
extern struct cblock *getcfO;
extern struct clist ttnulq;

struct chead {
struct cblock *c next;
int (size;

};
extern struct chead cfreelist;

struct inter {
int cnt;

};

XENIX 286 Device Drivers

/* settable control chars */
/* v7 compatibility */
/* multi-drop channels, pointer to */

/* control characters */ /* pick up from termio.h */

/* default control chars */ /* pick up from termio.h */

#define TTIPRI 28
#defi ne TTOPRI 29

/* limits */
extern
#define
#define
#define

int
TTYHOG
TTXOLO
TTXOHI

/* input modes * /

/* output modes * /

/* control modes */

ttlowat[], tthiwat[];
256
60
180

/* line discipline 0 modes */

/* default speed */

C-2

/* pick up from termio.h */

/* pick up from termio.h */

/* pick up from termio.h */

/* pick up from termio.h */

/* pick up from termio.h */

XENIX 286 Device Drivers

/* Hardware bits */
#define DONE 0200
#define IENABLE 0100
#define OVERRUN 040000
#define FRERRO 020000
#define PERROR 010000

/* Internal state */
#define TIMEOUT 01
#define WOPEN 02
#define ISOPEN 04
#define TBLOCK 010
#define CARR ON 020 -#define BUSY 040
#define OASLP 0100
#define IASLP 0200
#define TTSTOP 0400
#define EXTPROC 01000
#define TACT 02000
#define ESC 04000
#define RTO 010000
#define TIIOW 020000
#define TTXON 040000
#define TIXOFF 0100000

/* I output status * /
#define CPRES 1

/* device commands */
#define T OUTPUT 0
#define T-TIME 1
#define T-SUSPEND 2
#define T-RESUME 3
#define T-BLOCK 4
#define T-UNBLOCK 5
#defi ne T-RFLUSH 6
#define T-WFLUSH 7
#define T-BREAK 8

tty.h Include File

/* Delay timeout in progress */
/* Waiting for open to complete */
/* Device is open */

/* Software copy of carrier-present * /
/* Output in progress */
/* Wakeup when output done */
/* Wakeup when input done */
/* Output stopped by ctl-s */
/* External processing */

/* Last char escape */

C-3

APPENDIX D
termio.h INCLUDE FILE

This appendix lists the termio.h include file used by terminal drivers. termio.h is
included by the include file tty.h, and terminal drivers can just include tty.h and will
still include all the definitions in termio.h. tty.h is listed in Appendix C of this manual.

/*
* THIS FILE CONTAINS CODE WHICH IS DESIGNED TO BE
* PORTABLE BETWEEN DIFFERENT MACHINE ARCHITECTURES
* AND CONFIGURATIONS. ITSHOULD NOT REQUIRE ANY
* MODIFICATIONS WHEN ADAPTING XENIX TO NEW HARDWARE.
*/

/*
* Modification history
* 1001 4/30/84 comment
*
*
*
*/

#define NCC

/* control characters * /
#define VINTR
#define VQUIT
#define VERASE
#define VKILL
#define VEOF
#define VEOL
#define VMIN
#define VTIME
#define VCEOF
#define VCEOL

#define CNUL
#define CDEL
/* default control chars */
#defi ne CESC
#define ClNTR
#define CQUIT
#define CERASE
#define CKILL
#define CEOF
#defi ne CST ART
#defi ne CSTOP

8

o
1
2
3
4
5
4
5
NCC

Added definitions for baud rates higher than
9600 baud. Also added definitions for extra flag
field.

(NCC + 1)
/* RESERVED true EOF char (V7 compatability) */
/* RESERVED true EOL char */

o
0377

'\\'
0177
034
'\010'
'\025'
04
021
023

/* DEL */
/* FS, cntll */
/* backsp */
/* cntl u */
/* cntl d */
/* cntl q */
/* cntl s */

D-l

termio.h Include File XENIX 286 Device Drivers

/* input modes * /
#define IGNBRK 0000001
#define BRKINT 0000002
#define IGNPAR 0000004
#define PARMRK 0000010
#define INPCK 0000020
#define ISTRIP 0000040
#define INLCR 0000100
#define IGNCR 0000200
#define ICRNL 0000400
#define IUCLC 0001000
#define IXON 0002000
#define IXANY 0004000
#define IXOFF 0010000

/* output modes * /
#define OPOST 0000001
#define OLCUC 0000002
#define ONLCR 0000004
#define OCRNL 0000010
#define ONOCR 0000020
#define ONLRET 0000040
#define OFILL 0000100
#define OFDEL 0000200
#define NLDLY 0000400
#define NLO 0
#define NL 1 0000400
#define CRDLY 0003000
#define CRO 0
#define CR1 0001000
#define CR2 0002000
#define CR3 0003000
#define TABDLY 0014000
#define TABO 0
#define TAB 1 0004000
#define TAB2 0010000
#define TAB3 0014000
#define BSDLY 0020000
#define BSO 0
#define BS1 0020000
#define VTDLY 0040000
#define VTO 0
#define VT1 0040000
#define FFDLY 0100000
#define FFO 0
#define FF1 0100000

D-2

XENIX 286 Device Drivers

/* control modes * /
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

CBAUD
EXBAUD
BO
B50
B75
B110
B134
B150
B200
B300
B600
81200
81800
B2400
B4800
B9600
B19200
B38400
B51800
B76800
EXTA
EXTB
CSIZE
CS5
CS6
CS7
CS8
CSTOPB
CREAD
PARENB
PARODD
HUPCL
CLOCAL

0000017
0070000
o
0000001
0000002
0000003
0000004
0000005
0000006
0000007
0000010
0000011
0000012
0000013
0000014
0000015
0000016
0000017
0010017
0020017
0000016
0000017
0000060
o
0000020
0000040
0000060
0000100
0000200
0000400
0001000
0002000
0004000

/* line discipline 0 modes */
#define ISIG 0000001
#define ICANON 0000002
#define XCASE 0000004
#define ECHO 0000010
#define ECHOE 0000020
#define ECHOK 0000040
#define ECHONL 0000100
#define NOFLSH 0000200
#define XCLUDE 0100000

termio.h Include File

/* *V7* exclusive use */

D-3

termio.h Include File

/* external protocol modes * /
#define XLSIG 0000177
#defi ne RS232 0000000
#define RS422 0000001
#defi ne RS485 0000002
#define XHDLC 0001000
#define XSDLC 0002000
#define XBISC 0004000
#define X25 0010000
#defi ne XMTDP 0020000

#define SSPEED 13

/*
* loctl control packet
*/
struct termio {

unsigned short
unsigned short
unsigned short
unsigned short
char
uchar t

};

D-4

/* type of line signaling */
/* RS 2321ine */
/* RS 422 line */
/* RS 485 line */
/* hd I c packet protocol * /
/* sdlc packet protocol */
/* bi-sync protocol * /
/* CCITT x.25 packet protocol */
/* multidrop device */

XENIX 286 Device Drivers

/* default speed: 7 = 300, 13 = 9600 baud */

c iflag;
c-oflag;
c-cflag;
c-Iflag;
c-line;
c-cc[NCC];

/* input modes */
/* output modes * /
/* control modes */
/* line discipline modes */
/* line discipline */
/* control chars */

APPENDIX E
buf.h INCLUDE FILE

This appendix lists the buf.h include file, which is included by block drivers. Chapter 5,
"Block Drivers", contains a more detailed description of the buf data structure.

/*
* THIS FILE CONTAINS CODE WHICH IS DESIGNED TO BE
* PORTABLE BETWEEN DIFFERENT MACHINE ARCHITECTURES
* AND CONFIGURATIONS. IT SHOULD NOT REQUIRE ANY
* MODIFICATIONS WHEN ADAPTING XENIX TO NEW HARDWARE.
*/

/*
* Each buffer in the pool is usually doubly linked into 2 lists:
* the device with which it is currently associated (always)
* and also on a list of blocks available for allocation
* for other use (usually).
* The latter list is kept in last-used order, and the two
* lists are doubly linked to make it easy to remove
* a buffer from one list when it was found by
* looking through the other.
* A buffer is on the available list, and is liable
* to be reassigned to another disk block, if and only
* if it is not marked BUSY. When a buffer is busy, the
* available-list pointers can be used for other purposes.
* Most drivers use the forward ptr as a link in their I/O active queue.
* A buffer header contains all the information required to perform I/O.
* Most of the routines which manipulate these things are in bio.c.
*/
struct buf
{

int
struct
struct
struct
struct
dev t
unsigned
paddr t

#define paddr(X)
daddr t
char
unsigned
*/
ushort
queue */

};

b flags;
buf*b forw;

-buf*b back;
buf*av forw; -buf*av back;
b dev; -b bcount;
b-paddr;
-

X->b paddr
-

b blkno; -b error;
intb resid;

b cylin;
-

/* see defines below */
/* headed by d _tab of conf.c */
/* " */
/* position on free list, */
/* if not BUSY* /
/* major + minor device name */
/* transfer count */
1* physical address */

/* block # on device */
/* retu rned after I/O * /
/* words not transferred after error

/* cylinder number for disk i/o

E-l

buf.h Include File

extern
extern
extern
extern
extern
extern

struct buf buf[];
struct buf bfreelist;
struct buf *Ip p;
int Ip count;
int Ip - wmark;
char sabuf[][BSIZE];

BUFMAPOUT
bigetlO;

XENIX 286 Device Drivers

/* The buffer pool itself */
/* head of available list */
/* Low priority pointer */
/* Number of low priority buffers */
/* Low priority water mark */

#ifdef
long
#else
#define
#define
#define
#define
#define
#define
#endif

bigetc(bp,cp) (*(char *) (bp->b paddr + cp»
biget(bp,cp) (*(i nt *) (bp- > b paddr + cp»
bigetl(bp,cp) (*(Iong *) (bp->b paddr + cp»
bi putc(bp,cp,c) (*(char *) (bp- > b paddr + cp) = c)
biput(bp,cp,c) (*(int *) (bp- > b paddr + cp) = c)
biputl(bp,cp,c) (*(Iong *) (bp- > b _paddr + cp) = c)

paddr _ t bufbase;

/*
* These flags are kept in b flags.
*/ -

#define B WRITE 0
#define B-READ 01
#define B-DONE 02
#define B-ERROR 04
#define B-BUSY 010

#ifdef DHISTO
/*

/* non-read pseudo-flag * /
/* read when I/O occurs * /
/* transaction finished */
/* transaction aborted */
/* not on av forw/back list */

* We are running out of bits in the buffer flags. There is only one
* bit flag left which is 040000. Since B MAP and B PHYS are not used
* I stold them for the DHISTO program-:-B PHYS was set in mdep/physio
* but never tested. -
*/
#define
#define
#define

#else

#define
#define
#endif

E-2

B BMISS
B-USERB
DH MAX

020
040
8192

020
040

/* Signifies a buffer miss, i.e went to disk */
/* Signifies a user buffer */
/* Maximum number of dhisto device data points */

/* Physical 10 potentially using UNIBUS map */
/* This block has the UNIBUS map allocated */

XENIX 286 Device Drivers buf.h Include File

#define
#define
#define
#define
#define
#define
#define
#define
#define

/*

B WANTED 0100
B-AGE 0200
B-ASYNC 0400
B-DELWRI 01000
B -OPE N 02000
B-STALE 04000
B-CYLIN 010000
B-LOWPRI 020000
B-UAREA 0100000

/* issue wakeup when BUSY goes off */
/* delayed write for correct aging */
/* don't wait for I/O completion */
/* don't write till block leaves available list */
/* open routine called */

/* buffer contains acyl grp header */
/* Buffer contains low priority data */
/* add u-area to a swap operation */

* Fast access to buffers in cache by hashing.
*/

#define bhash(d,b) «(struct buf *)&hbuf[((i nt)d + (i nt)b)&v. v hmask])

struct hbuf
{

int b flags;
stru ct blrl * b forw;
struct buf *b -back;

};

extern struct hbuf hbuf[];

E-3

APPENDIX F
iobuf.h INCLUDE FILE

This appendix lists the iobuf.h include file, which is included by block drivers. Chapter
5, "Block Drivers", describes the iobuf data structure in more detail.

/*
* THIS FILE CONTAINS CODE WHICH IS DESIGNED TO BE
* PORTABLE BETWEEN DIFFERENT MACHINE ARCHITECTURES
* AND CONFIGURATIONS. IT SHOULD NOT REQUIRE ANY
* MODIFICATIONS WHEN ADAPTING XENIX TO NEW HARDWARE.
*/

/*
* Each block device has a iobuf, which contains private state stuff
* and 21ist heads: the b forw/b back list, which is doubly linked
* and has all the bufferscurrently associated with that major
* device; and the d actf/d actllist, which is private to the
* device but in factTs alwayS-used for the head and tail
* of the I/O queue for the device.
* Various routines in bio.c look at b forw/b back
* (notice they are the same as in thefiuf structure)
* but the rest is private to each device driver.
*/
struct iobuf
{

};

#define
#define

#define
#define
#define

int b flags; /* see buf.h * /
struct bUf *b forw; /* first buffer for this dev */ -struct buf *b back; /* last buffer for this dev */
struct buf *b - actf; /* head of I/O queue */
struct buf *b - actl; 1* tail of I/O queue */ -dev t b dev; /* major + minor device name */
char b-active; /* busy flag * / -char b errcnt; /* error count (for recovery) */ -physadr io addr; /* csr address */ -int io s1; /* space for drivers to leave things -*/
int io s2; /* space for drivers to leave things

*/

tabinit(dv,stat) {O,O,O,O,O,makedev(dv,O),O,O,O,O,O,stat,O,O}
NDEVREG (sizeof(struct device)/sizeof(int»

B ONCE 01
B-TAPE 02
B-TIME 04

/* flag for once only driver operations */
/* this is a magtape (no bdwrite) */
/* for timeout use */

F-l

APPENDIX G
master FILE

This appendix lists an example of the master file, which you must edit to specify the
configuration of your XENIX 286 system. Note that the master file that you receive
with your XENIX system may be different. Chapter 6, "Adding Drivers to the
Configuration", contains more information about the master file.

* The following devices are those that can be specified in the system
* description file. The name specified must agree with the name shown.
*
* The first twelve entries in both the "bdevsw" and the "cdevsw" are
* reserved for use as block devices. The last four of these entries
* are reserved for additional Intel devices and customer block devices.
* All block devices have the same "bdevsw" and "cdevsw" number.
* The" cmaj" number 1 is reserved for use by the memory driver.
*
*name vsiz msk typ hndlr na bmaj cmaj # na vecl vec2 vec3 vec4
* 1 2 3 4 5 6 7 8 9 10 11 12 13 14
*---
i215 1 0137 014 i215 0 0 0 2 -1 0005 0 0 Oa
i216 1 0137 014 i216 0 2 2 2 -1 0005 0 0 Oa
i214 1 0137 014 i214 0 3 3 2 -1 0005 0 0 Oa
i208 1 0137 014 i208 0 4 4 2 -1 0003 0 0 Oa
ramd 0 0136 054 ramd 0 5 5 1 -1 0 0 0 Oa
xlog 1 0137 014 xlog 0 6 6 2 -1 0005 0 0 Oa
*
* The next twelve entries in the "cdevsw" are reserved for character
* devices. The" cmaj" number 12 is reserved for use by the tty driver.
*
Ip 0132 004 Ip 0 0 13 1 -1 0107 0 0 Oa
i74 0137 004 i74 0 0 14 1 -1 0006 0 0 Oa
i188 0137 004 i188 0 0 15 2 -1 0003 0002 0 Oa
i552 0137 004 i552 0 0 16 1 -1 0004 0 0 Oa
i278 0137 004 i278 0 0 17 1 -1 0003 0 0 Oa
i544 0137 004 i544 0 0 18 4 -1 0003 0 0 Oa
i534 0137 004 i534 0 0 19 4 -1 0003 0 0 Oa
*
* These are Intel devices that use an interrupt vector but do not
* have any "bdevsw" or "cdevsw" entry.
*
debug 0 0 dbg 0 0 0 -1 0001 0 0 Oa
slave7 0 0 sl 0 0 0 -1 0007 0 0 Oa
*
* The following devices must not be specified in the system description
* file (xenixconf). These are pseudo drivers and the clock driver.
*
memory 0 06 0324 mm 0 -1 1 0 0 0 0 Oa
tty 0 027 0324 sy 0 -1 12 0 0 0 0 Oa
clock 1 000 0321 0 -1 -1 0 0 0 0 Oa

G-l

master File XENIX 286 Device Drivers

$$$
*
* The following are the line discipline table entries.
*
tty ttopen ttclose ttread ttwrite ttioctl ttin ttout nulldev

$$$$$
*
* The following entries form the alias table.
*
i215 disk
i188 serial
sm sim
$$$
*
* The following entries form the tunable parameter table.
*
buffers NBUF 0
sabufs NSABU F 20
hashbuf NHBUF 128
inodes NINODE 100
files NFllE 100
mounts NMOU NT 6
coremap CMAPSIZ (NPROC*2)
swapmap SMAPSIZ (NPROC*2)
calls NCAll 25
procs NPROC 50
texts NTEXT 40
clists NCLIST 120
locks NFlOCKS 50
maxproc MAXUPRC 1 5
timezone TIMEZONE (8*60)
pages NCOREl 0
daylight DSTFlAG 1
cmask CMASK 0
maxprocmem MAXM EM 0
shdata NSDSEGS 25
maxbuf MAXBU F 192

G-2

APPENDIX H
xenixconf FILE

This appendix lists an example of the xenixconf file, which you edit to specify the
configuration of your XENIX 286 system. Note that the xenixconf file that you receive
with your XENIX system may be different. Chapter 6, "Adding Drivers to the
Configuration", contains more information about the xenixconf file.

* THIS FILE CONTAINS CODE WHICH IS SPECIFIC TO THE
* INTEL 286/310 COMPUTER AND MAY REQUIRE MODIFICATION
* WHEN ADAPTING XENIX TO NEW HARDWARE.

*
*
*
*
i21S
iS34
iS44
i188
i74
Ip
ramd
debug
root
pipe
swap
*
*
*
timezone
daylight
cmask

Devices

1
o
o
o

i21S 1
i21S 1
i21S 2 1 4104

Local parameters

o

(8*60)
1

H-l

APPENDIX I
c.c FILE

This appendix lists an example of the c.c source file, which specifies your XENIX 286
system configuration, and which is derived from master and xenixconf by running the
program config. Note that the c.c file on your XENIX system may be different. More
information about c.c is contained in Chapter 6, "Adding Drivers to the Configuration."

/*
* Configuration information
*/

#define NBUF 0
#define NSABUF 20
#define NHBUF 128
#define NINODE 100
#define NFILE 100
#define NMOUNT 6
#define CMAPSIZ (NPROC*2)
#define SMAPSIZ (NPROC*2)
#define NCALL 25
#define NPROC 50
#define NTEXT 40
#define NCLIST 120
#define NFLOCKS 50
#define MAXUPRC 15
#define TIMEZONE (8*60)
#define NCOREL 0
#define DSTFLAG 1
#define CMASK 0
#define MAXMEM 0
#define NSDSEGS 25
#define MAXBUF 192

#include II • .lh/param.h"
#include " . .lh/conf.h"
#include II • .lh/iobuf.h II

extern nodevO, nulldevO, novecO;

int clockO;
int dbgintrO;
int i215intrO;
int i74intrO;
int IpintrO;

1-1

c.c File XENIX 286 Device Drivers

int (*veci ntsw[])O =
{

clock,
dbgintr,
novec,
novec,
novec,
i215intr,
i74intr,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,

1-2

XENIX 286 Device Drivers

};

extern
extern

extern
extern
extern
extern

extern
extern

struct
{
/* 0*/
/* 1 */
/* 2*/
/* 3*/
/* 4*/
/* 5*/
};

novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
Ipintr,
novec,

struct iobuf i215tab;
i2150penO, i215c1oseO, i215initO, i215readO, i215writeO,
i215ioctlO, i215strategyO;
i74openO, i74c1oseO, i74initO, i74readO, i74writeO, i74ioctlO;
IpopenO, IpcloseO, IpinitO, IpwriteO;
struct iobuf ramdtab;
ramdopenO, ramdcloseO, ramdinitO, ramdreadO, ramdwriteO,
ramdstrategyO;
mmreadO, mmwriteO;
syopenO, syreadO, sywriteO, syioctlO;

bdevsw bdevsw[] =

i2150pen,
nodev,
nodev,
nodev,
nodev,
ramdopen,

i215c1ose,
nodev,
nodev,
nodev,
nodev,
ramdclose,

i215strategy,
nodev,
nodev,
nodev,
nodev,
ramdstrategy,

&i215tab,
0,
0,
0,
0,
&ramdtab,

c.c File

1-3

c.c File XENIX 286 Device Drivers

struct cdevsw cdevsw[] =
{
/* 0*/
/* 1 */
/* 2*/
/* 3*/
/* 4*/
/* 5*/
/* 6*/
/* 7*/
/* 8*/
/* 9*/
/* 1 0*/
/* 11 */
/* 12*/
/* 13*/
/* 14*/
};

int
int

dey t -dey t
-dey t

daddr t
int

int
{

};

int

struct
{
/*0*/

};

int

#include

1-4

i2150pen,
nulldev,
nodev,
nodev,
nodev,
ramdopen,
nodev,
nodev,
nodev,
nodev,
nodev,
nodev,
syopen,
Ipopen,
i74open,

bdevcnt =
cdevcnt =

rootdev =
pipedev =
swapdev =
swplo= 1 -,
nswap = 4104;

(*dinitsw[])O =

i215init,
i74init,
Ipinit,
ramdinit,
(i nt (*)0)0

i215c1ose, i215read,
nulldev, mmread,
nodev, nodev,
nodev, nodev,
nodev, nodev,
ramdclose, ramdread,
nodev, nodev,
nodev, nodev,
nodev, nodev,
nodev, nodev,
nodev, nodev,
nodev, nodev,
nulldev, syread,
Ipclose, nodev,
i74c1ose, i74read,

6-,
15;

makedev(O, 1);
makedev(O,1) ;
makedev(O,2);

i215write,
mmwrite,
nodev,
nodev,
nodev,
ramdwrite,
nodev,
nodev,
nodev,
nodev,
nodev,
nodev,
sywrite,
Ipwrite,
i74write,

ttopenO, ttcloseO, ttreadO, ttwriteO, ttioctlO, ttinO,
ttoutO;

linesw linesw[] =

ttopen, ttclose, ttread, ttwrite, ttioctl, ttin, ttout, nulldev,
o

linecnt = 1;

" _ .Ih/space. h"

i215ioctl,
nodev,
nodev,
nodev,
nodev,
nodev,
nodev,
nodev,
nodev,
nodev,
nodev,
nodev,
syioctl,
nodev,
i74ioctl,

APPENDIX J
RELATED PUBLICATIONS

Copies of the following publications can be ordered from

Literature Department
Intel Corporation
3065 Bowers Avenue
Santa Clara, CA 95051

Guide to Using the iSBC 286/10 Single Board Computer, Order Number 146271 -- board
options for interrupt and I/O configuration.

Overview of the XENIX 286 Operating System, Order Number 174385 -- XENIX history,
XENIX uses, basic XENIX concepts, and an overview of other XENIX manuals.

XENIX 286 Installation and Configuration Guide, Order Number 174386 -- how to install
XENIX on your hardware and tailor the XENIX configuration to your needs.

XENIX 286 User's Guide, Order Number 174387 -- a tutorial on the most-used parts of
XENIX, including terminal conventions, the file system, the screen editor, and the shell.

XENIX 286 Visual Shell User's Guide, Order Number 174388 -- a XENIX command
interface ("shell") that replaces the standard command syntax with a menu-driven
command interpreter.

XENIX 286 System Administrator's Guide, Order Number 174389 -- how to perform
system administrator tasks such as adding and removing users, backing up file systems,
and troubleshooting system problems.

XENIX 286 Communications Guide, Order Number 174461 -- installing, using, and
administering XENIX networking software.

XENIX 286 Reference Manual, Order Number 174390 -- all commands in the XENIX 286
Basic System.

XENIX 286 Programmer's Guide, Order Number 174391 -- XENIX 286 Extended System
commands used for developing and maintaining programs.

XENIX 286 C Library Guide, Order Number 174542 -- standard subroutines used in
programming with XENIX 286, including all system calls.

XENIX 286 Device Driver Guide, Order Number 174393 -- (this manual) how to write
device drivers for XENIX 286 and add them to your system.

XENIX 286 Text Formatting Guide, Order Number 174541 -- XENIX 286 Extended
System commands used for text processing and formatting.

C is described in The C Programming Language by Brian W. Kernighan and Dennis M.
Ritchie. One copy is supplied with Intel's XENIX product. Additional copies can be
ordered from the publisher, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632.

J-1

INDEX I intel@ II
~--~

bdevsw, 2-11, 1-3
buf structure, 5-2, E-l

cblock, 3-1
cdevsw, 2-11, 1-4
clist, 3-1
copyin, 2-14
copyout, 2-14

device number, 2-10
dinitsw, 2-11

getc, 3-2

in, 2-13
inb, 2-13
interrupt handling, 2-7
iobuf structure, 5-5, F-l
iSBC 534 driver, 4-12
ixxxclose, 2-11, 3-5, 4-8, 5-13
ixxxinit, 2-11, 3-6, 4-7, 5-11
ixxxintr, 2-11, 3-9, 4-9, 5-16
ixxxioctl, 2-12, 4-11, 5-18
ixxxopen, 2-11, 3-5, 4-8, 5-12
ixxxparam, 4-7
ixxxproc, 4-10
ixxxread, 2-11, 3-6, 4-9, 5-17
ixxxstart, 3-8, 4-11, 5-15
ixxxstrategy, 2-12, 5-14
ixxxwrite, 2-12, 3-7, 4-9, 5-17

line discipline routines, 4-2

major macro, 2-10
makefiles, 6-7
master, 6-2, G-l
memory-mapped 110, A-I
minor macro, 2-10 .

out, 2-13
outb, 2-13

peek routines, A-2
poke routines, A-3
proc table entry, 2-5
putc, 3-2
sleep, 2-6
spl routines, 2-8

ttclose, 4-4
ttin, 4-5
ttinit, 4-3
ttiocom, 4-5
ttioctl, 4-5
ttopen, 4-4
ttout, 4-6
ttread, 4-4
ttwrite, 4-4
tty structure, 4-2, B-1, C-l

u structure, 2-5, 2-14

vecintsw, 2-11, 1-2

wakeup, 2-6

xenixconf, 6-6, H-l

Index-l

REQUEST FOR READER'S COMMENTS

XENIX 286
Device Driver Guide

174393-001

Intel's Technical Publications Departments attempt to provide publications that meet the needs of all
Intel product users. This form lets you participate directly in the publication process. Your comments
will help us correct and improve our publications. Please take a few minutes to respond.

Please restrict your comments to the usability, accuracy, organization, and completeness of this
publication. If you have any comments on the product that this publication describes, please contact
your Intel representative. If you wish to order publications, contact the Literature Department (see
page ii of this manual).

1. Please describe any errors you found in this publication (include page number).

2. Does this publication cover the information you expected or required? Please make suggestions
for improvement.

3. Is this the right type of publication for your needs? Is it at the right level? What other types of
publications are needed?

4. Did you have any difficulty understanding descriptions or wording? Where?

5. Please rate this publication on a scale of 1 to 5 (5 being the best rating).

NAME __ ___ DATE

TITLE

COMPANY NAME/DEPARTMENT ---
ADDRESS --
CITY STATE ZIP CODE -------------------------- ---------------------

(COUNTRY)

Please check here if you require a wr,tten reply D

WE'D LIKE YOUR COMMENTS ...

This document is one of a series describing Intel products. Your comments on the back of this form
will help us produce better manuals. Each reply will be carefully reviewed by the responsible person.
All comments and suggestions become the property of Intel Corporation.

BUSINESS REPLY MAil
FI RST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAGE WILL BE PAID BY ADDRESSEE

Intel Corporation
5200 N.E. Elam Young Parkway
Hillsboro, Oregon 97123

ISO-N TECHNICAL PUBLICATIONS HF2-1-830

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

inter
INTEL CORPORATION, 3065 Bowers Avenue, Santa Clara, California 95051 (408) 987-8080

Printed in U.s.A.

SOFTWARE

04 71/7K/0685/WCPI AD

