
pro

INTERACTIVE
A Kodak Company

386/ix Software
Development System Guide

First printing (December 1988)

No part of this manual may be reproduced in any form or by any means without
written permission of:

INTERACTIVE Systems Corporation
2401 Colorado Avenue, 3rd Floor
Santa Monica, California 90404

© Copyright INTERACTIVE Systems Corporation 1987-1988

© Copyright AT&T Corporation 1987-1988

RESTRICTED RIGHTS:

For non-U.S. Government use:
These programs are supplied under a license. They may be used, disclosed, and/or
copied only as permitted under such license agreement. Any copy must contain
the above copyright notice and this restricted rights notice. Use, copying, and/or
disclosure of the programs is strictly prohibited unless otherwise provided in the
license agreement.

For U.S. Government use:

Use, duplication or disclosure by the Government is subject to restrictions as set
forth in subparagraph (c)(I)(ii) of the Rights in Technical Data and Computer
Software clause at 52.227-7013.

All rights reserved. Printed in the U.S.A.

386/ix is a trademark of INTERA~TIVE Systems Corporation.
VP fix is a trademark of INTERACTIVE Systems Corporation and Phoenix Tech­
nologies Ltd.
UNIX is a registered trademark of AT&T.
Hub6 is a trademark of Bell Technologies.
Intel is a registered trademark of Intel Corporation.
MS-DOS and XENIX are registered trademarks of Microsoft Corporation.

Programs described in this manual are copyrighted and their -copyright notices may
be found in heralds, by using the UNIX what program, and by reading files whose
names start with "coprisc".

386/ix Software Development System Guide

CONTENTS

How To Use the 386jix Software Development System Guide

Overview of the 386jix Software Development System

386jix Software Development System Installation Instructions

Integrating Software With the 386jix Operating System

How To Use the 386/ix
Software Development System Guide

INTRODUCTION

Welcome to the 386jix Software Development System Guide. The
instructions in this guide provide the information you need to install
the 386jix™ Software Development System extension and to write
applications or device drivers that will be integrated with the 386 jix
Operating System. It also explains how to use the documentation
that accompanies the 386jix Software Development System optional
extension.

What's Included

The 386jix Software Development System Guide includes:

• Overview of the 386/ix Software Development System
Provides an introduction to the 386jix Software Development
System and its components.

• 386/ix Software Development System Installation Instructions
Provides step-by-step instructions on how to install the 386jix
Software Development System extension.

• Integrating Software With the 386/ix Operating System
Provides information needed to write application packages and
device drivers that are to be integrated with the 386jix Operat­
ing System.

• Reader's Comment Form
Provides you with a way to tell us what you like or dislike about
this guide and to send us your ideas for making it even better.

386/ix is a trademark of INTERACTIVE Systems Corporation.
UNIX is a registered trademark of AT&T.

2 How To Use This Guide - 386jix SDS Release 2.0

Other documentation provided with the 386/ix Software Develop­
ment System includes:

• AT & T UNIX V.3.2 Programmer's Guide
Provides information needed to write and maintain programs in
the UNIX® System V /386 operating system environment.

• AT&T UNIX V.3.2 Programmer's Reference Manual
Provides manual entries of interest to programmers working in
the UNIX System V /386 operating system environment.

• AT&T UNIX V.3.2 SDS Release Notes
Provides information about the content and uses of the 386/ix
Software Development System.

• AT&T UNIX V.3.2 Integrated Software Development Guide
Provides information for independent software vendors who plan
to develop UNIX system application programs and installable
drivers to run on 386 computer systems. It supplements the
information found in "Integrating Software With the 386/ix
Operating System", in this guide and should be used in conjunc­
tion with that document.

Optional documents available to support the 386/ix Software
Development System optional extension are:

• AT&T UNIX V.3.2 Network Programmer's Guide
Provides information needed to write networking applications in
the UNIX System V /386 operating system environment.

• AT&T UNIX V.3.2 STREAMS Primer
Provides a technical overview of STREAMS for managers and
developers who are experienced with UNIX systems and net­
working or other data communication facilities.

• AT&T UNIX V.3.2 STREAMS Programmer's Guide
Provides information for programmers who plan to use
STREAMS in a UNIX System V /386 operating system
environment.

How To Use This Guide - 386jix SDS Release 2.0 3

Where to Begin

If you are installing the 386jix Software Development System ••.
First, read the overview to learn about the components of the
386/ix Software Development System. Then, read and follow
the instructions in "386/ix Software Development System Instal­
lation Instructions."

If you are new to UNIX .••
Read the first three chapters of the Programmer's Guide. Then,
refer to the chapters that are appropriate for your software
development project.

If you are an experienced UNIX programmer ..•
Depending upon your knowledge of UNIX, refer as necessary to
the Programmer's Guide and Programmer's Reference Manual
that accompanied your 386/ix Software Development System
extension.

If you want to write applications or drivers that will be
integrated with the 386jix Operating System •••

Read the Integrated Software Development Guide and
"Integrating Software With the 386/ix Operating System."

If you are writing networking applications •..
Refer to the STREAMS Primer, STREAMS Programmer's
Guide, and Network Programmer's Guide.

Conventions Used

Throughout this guide, boxed words indicate keys on your keyboard.
For example, !RETURN! refers to the key that moves the cursor to
the next line. When you are instructed to type a command, the
command must always be followed by using the !RETURN! key .

.,. Keys on your keyboard may be labeled differently than those
shown in this guide. For example, the I RETURN I key is labeled
! ENTER I on some systems. If your hardware or software
vendor supplies additional documentation with your system,
read that documentation for information on key names before
you continue with this guide.

4 How To Use This Guide - 386/ix SDS Release 2.0

When a sequence of keystrokes using the I CI'RL I key is listed, use
the IcrRLI key as you would the I SHIFT I key. Hold down the
I CI'RL I key, and while it is down, press the next key (or keys)
specified. For example, to use the sequence ICfRLI s, you would
hold down the ICTRLI key while typing the s key.

Illustrations of computer screen displays, file names, directory
names, and commands are printed in a typeface called constant
wid tho Constant width text looks like the text produced by most
typewriters. Whenever you are instructed to type anything shown in
constant width in this guide, type it exactly as It is shown.

Italics indicate the variables in a command or instruction format.
In actual use, a real name or number replaces the italicized text.
For example, the sequence rm filename shows the format for remov­
ing a file. The word filename is replaced with the name of a real
file that you would like to remove from your system. Italics are also
used for emphasis and when new terminology is introduced.

Numbers preceded by the symbol § refer to section numbers within
that document.

FOR MORE INFORMATION

The documentation included in this guide provides information
about how to install the 386/ix Software Development System. It
supplements information found in the Programmer's Guide,
Programmer's Reference Manual, Integrated Software Development
Guide, STREAMS Primer, STREAMS Programmer's Guide, and
Network Programmer's Guide. For a complete listing of all
386/ix-related documentation, refer to the "Documentation Road­
map" included in the 386/ix Operating System Guide.

Overview of the

386/ix Software Development System

INTRODUCTION

The 386jix™ Software Development System extension is designed
for programmers who plan to use the 386jix Operating System as a
software development environment. This extension consists of the C
Software Development Set and the Extended Terminal Interface.
The C Software Development Set contains the programs needed to
compile, link, and debug C programs. It also contains the Source
Code Control System (SeeS), make, yacc, lex, and other
software development tools. The Extended Terminal Interface con­
tains a set of libraries to assist the rapid development of screen
management applications.

Who Can Use the 386jix Software Development System?

Any programmer who wants to develop programs that run on the
386jix or UNIX® System V.3.2 operating systems can use the
386jix Software Development System extension. You do not need
to have extensive experience with the UNIX operating system to
develop programs to run under UNIX, but you should be familiar
with the UNIX file and directory structure, UNIX commands, and a
UNIX editor. Although many UNIX applications are written in the
C programming language, you may develop programs in other
languages, such as COBOL, FORTRAN, and Pascal, if a compatible
compiler is installed on your system.

The 386jix Software Development System is particularly useful to
those programmers who:

• Want to develop or enhance C language programs .
• Need tools for advanced programming and symbolic debugging.

386/ix is a trademark of INTERACTIVE Systems Corporation.
UNIX is a registered trademark of AT&T.

2 Overview of the 386jix Software Development System - Release 2.0

• Want to track and maintain serial versions of files and programs.
• Want to work with shared libraries.
• Want to optimize interactive, character-oriented C applications.

C SOFTWARE DEVELOPMENT SET

The C Software Development Set contains the tools and utilities
listed in the following sections. They assist in the development of
efficient C programs,' advanced programming, symbolic debugging,
and keeping a history of source code files.

C Programming Language Development Tools

• C Compiler
The C compiler supports and extends the C language. Its exten­
sions include arbitrary length names for variables and function
names, structure assignments and arguments, functions returning
structure values, enumerated data types, multiple external vari­
able declarations, assembly language escapes from C, insertion
of arbitrary strings into object modules, floating point support,
data type void, and additional preprocessor directives.

• c c Command and c pp Preprocessor
The c c command controls the phases of compilation and
automatically calls the C preprocessor, assembler, and link editor
phases. It accepts files containing C source code as input and
yields an executable module named a. ou t. It accepts source
files with assembly language code and passes them directly to
the assembler. The C preprocessor (cpp) performs file inclu­
sion and macro substitution.

• Optimizer
The optimizer is an optional component that makes compiler­
generated assembly language code more efficient. It reduces
space requirements and speeds the execution time of the result­
ing object code.

• Assembler and Assembly Language
The assembler (a s) converts assembly language code into a
relocatable object module and provides access to predefined mac­
ros. It is useful for developing applications that require close
interaction with hardware.

Overview of the 386jix Software Development System - Release 2.0 3

• Link Editor
The link editor combines relocatable object modules and
libraries to produce either an absolute, executable load module
in Common Object File Format (COFF) or a relocatable object
file for use in subsequent link edits. It performs relocation,
resolves external references, and adds symbolic debugging infor­
mation into its output file.

• Object File Manipulation Tools
These tools consist of a number of utilities for reading and mani­
pulating object files, including ar, cprs, dis, dump,
lorder, nm, size, and strip.

• Libraries
These are libraries for object files, access to system calls,
input/output, string manipulation, mathematical functions, and
memory allocation.

Advanced Programming Tools and Utilities

• Programming and Debugging Utilities
The programming and debugging utilities assist in the design
and development of applications and systems. Some of the pro­
gramming utilities include cxref, ctrace, lint, sdb,
make, lex, and yacc. Refer to the Programmer's Guide and
the Programmer's Reference Manual for more information
about these utilities.

• Productivity Utilities
Three utilities are available to enhance C program efficiency:
cscope, lprof, and prof. cscope is an interactive pro­
gram that searches a program for functions, function calls, mac­
ros, and variables, and allows you to view and edit those portions
of the code. The two profilers, lprof and prof, perform
dynamic program analysis or an analysis at runtime. They pro­
vide information about the program code in an easy-to-view for­
mat. Refer to the Programmer's Guide for more information
about these utilities.

4 Overview of the 386jix Software Development System - Release 2.0

• Source Code Control Utilities
The Source Code Control System (SeeS) is a collection of utili­
ties designed to assist in the management of large scale software
and documentation development projects. sees organizes
changes to files into a series of versions and revisions of the text,
allowing users to access the precise version that they need.
sees can restrict changes to the files to permit only users on a
specific list to modify each file. It also prevents several users
from trying to change the same version of a file at the same
time. sees logs every file change for tracking purposes.

EXTENDED TERMINAL INTERFACE

The Extended Terminal Interface is a set of libraries that aid in the
rapid development of screen management applications. The
libraries enable the programmer to incorporate screen management
and data entry capabilities into programs. It includes the following
libraries:

• Curses/Terminfo Low-Level Function Library
This includes routines for writing character-oriented screen
management applications that are independent of the type of
terminal.

• High-Level Function Libraries
These libraries include functions that create, manipulate, and
display panels, forms, and menus. They are built atop curses.

• Terminal Access Method (TAM) Transition Library
The library enables character mode applications developed for
the UNIX pe using the Terminal Access Method to run on other
processor /terminal configurations.

FOR MORE INFORMATION

For additional information on each of the individual tools and data
files in this extension, refer to the SDS Release Notes,
Programmer's Guide, and Programmer's Reference Manual
described in the "Documentation Roadmap" in the 386/ix Operating
System Guide.

386Jix Software Development System
Installation Instructions

CONTENTS

1. INSTALLING THE 386jix SOFTWARE
DEVELOPMENT SYSTEM . • . . •

2. THE 386jix SOFTWARE DEVELOPMENT SYSTEM

1

FILES . • . . . • • 4

- i -

386/ix Software Development System
Installation Instructions

1. INSTALLING THE 386jix SOFTWARE DEVELOPMENT
SYSTEM

The 386Jix™ Software Development System extension is installed
on your fixed disk and requires about 3.75 MB of space. It requires
that the Kernel Configuration and File Management subsets already
be installed on your machine.

1. To begin the installation, use the System Administration com­
mand, sysadm, or log in as sysadm to access the Main
Menu. Your screen will look similar to this:

SYSTEM ADMINISTRATION

1 diskmgmt disk management menu
2 filemqmt file management menu
3 machinemgmt machine management menu
4 packagemgmt package management menu
5 softwaremgmt software management menu
6 syssetup system setup menu
7 ttymgmt tty management menu
8 usermgmt user management menu

Enter a number, a name, the initial part of a name, or
? or <number>? for HELP, q to QUIT:

2. Type 5 to access the Software Management menu. Your
screen will then look similar to this:

386/ix is a trademark of INTERACTIVE Systems Corporation.
UNIX is a registered trademark of AT&T.
Intel is a registered trademark of Intel Corporation.
XENIX is a registered trademark of Microsoft Corporation.

2 386jix Software Development System Installation Instructions

1 installpkg
2 listpkg
3 removepkg
4 runpkg

SOfTWARE MANAGE~ENT

install new software package ont9 built-in disk
list packages already installed
remove previously installed package from built-in disk
run software package without installing it

Enter a number, a name, the initial part of a name, or
? or <number>? for HELP, A to GO BACK, q to QUIT:

3. Select option 1, installpkg. The system prompts you to
insert the first diskette into the diskette drive. The screen will
look similar to this:

Insert the removable medium for the package you want to
install into the diskette drive.
Press <RETURN> when ready. Type q to quit.

4. Insert the first 386jix Software Development System diskette
into the diskette drive. The system asks you to confirm that
this is the package you want to install. Use I RETURN I to start
the installation process.

Install the Software Development System-Version 1.3 package? (y):
Installing the Software Development System.
Copyright (c) 1987 AT&T
All Rights Reserved
The following files are being installed:
/bin/as
/bin/cc

/lib/.libPW. a
/usr/options/sd.name
1790 blocks
Floppy diskette number 1 is complete
Remove floppy and insert floppy number 2
Type <return> when ready:

5. Remove the first diskette and insert the second one. Then use
IRETURNI to continue.

The following files are being installed:
/lib/libc. a
/lib/libc_s.a

/usr/bin/delta
/usr/options/sd.name
1895 blocks
Floppy diskette number 2 is complete
Remove floppy and insert floppy number 3
Type <return> when ready:

386jix Software Development System Installation Instructions 3

6. Repeat this process until all the diskettes have been inserted
and installed. The final screen wi11look similar to this:

The following files are being installed:
lusr/lib/libns.a
lusr/lib/libc.a

lusr/lib/yaccpar
lusr/options/sd.name
1684 blocks
Floppy diskette number 4 is complete
Installation of the Software Development System-Version 1.3
is complete.
You may now remove the medium from the diskette drive.

(The names of some of the files have been omitted for the
sake of brevity.)

The 386jix Software Development System is now installed on
your fixed disk.

4 386jix Software Development System Installation Instructions

2. THE 386jix SOFTWARE DEVELOPMENT SYSTEM FILES

The following is a complete list of the files delivered with the 386jix
Software Development System. The program and command files
are described; additional files are listed at the end.

/bin/as
The assembler.

/bin/cc
A program that provides the interface to the C Compilation
System.

/bin/conv
The common object file program that converts byte order.

/bin/convert
A program that converts 5.0 archive files to 5.2 archive file
format.

/bin/cprs
A program that reduces the size of a common object file by
removing duplicate structure and union descriptors.

/bin/dis
The object code disassembler.

/bin/dump
A program that dumps selected parts of each of its object file
components.

/bin/gencc
A program that allows the user to interactively create a new
c c front-end.

/bin/ld
, The link editor for common object files.

/bin/list
A program that produces a' C source listing with line number
information from a common object file.

/bin/lorder
A program that finds the ordering relationship for an object
library.

/bin/make
A program used to maintain, update, and regenerate groups of
programs.

386jix Software Development System Installation Instructions 5

/bin/nm
A program that prints the symbol table of each common object
file.

/bin/size
A program that produces section size information in bytes for
each loaded section in the common object files.

/bin/strip
The command file that removes the symbol and line number
information from a common object file.

/etc/install
A program used to install a file in a specific place within a file
system.

/lib/comp
The C compiler.

/lib/cpp
The C language preprocessor.

/lib/crtO.o
A start-up file provided for backwards compatibility.

/lib/crt1.o
Runtime start-up file.

/lib/crtn.o
Runtime start-up file.

/lib/libPW.a
The PW library.

/lib/libc.a
The standard library.

/lib/libc s.a
The shared standard library.

/lib/libld.a
The common object file access routines library.

/lib/libm.a
The math library.

/lib/libm1167.a
The math library for Weitek 1167 chips.

6 386/ix Software Development System Installation Instructions

/lib/mcrtO.o
Runtime start-up files with profiling code.

/lib/mcrt1.o
Runtime start-up files with profiling code.

/lib/optim
The optimizer.

/usr/bin/admin
A program used to create new sees files and to change the
parameters of existing ones.

/usr/bin/as386.sed
A sed script that converts an Intel® ASM386 assembler source
file to a source file acceptable to the UNIX® system as
assembler.

/usr/bin/cb
A program that reads C programs and writes them to the stan­
dard output with spacing and indentation that display the struc­
ture of the code.

/usr/bin/ccoff
A command file that converts a eOFF file by byte-swapping all
multi-byte integers in the file.

/usr/bin/cdc
A program used to change the delta comment of a named
sees file.

/usr/bin/cflow
A program that analyzes a collection of C, yacc, lex, assem­
bler, and object files, and attempts to build a graph charting
the external references.

/usr/bin/comb
A program used to generate a shell procedure that will recon­
struct given sees files.

/usr/bin/ctrace
The C program debugger, which allows you to follow the exe­
cution of a C program, statement by statement.

/usr/bin/cxref
A program that analyzes a collection of C files and· builds a
cross-reference table.

386/ix Software Development System Installation Instructions 7

/usr/bin/delta
A program used to make permanent changes in the named
sees file.

/usr/bin/get
A program used to generate an AS ell text file from a named
sees file.

/usr/bin/help
The he 1 p command file.

/usr/bin/lex
A program used to generate programs to be used in simple lexi­
cal analyses of text.

/usr/bin/lint
A program used to check C programs for features that are
bugs, nonportable, or wasteful.

/usr/bin/m4
A macro processor intended as a front end for C and other
languages.

/usr/bin/mcs
A program used to manipulate the comment section of an
object file.

/usr/bin/omf
A program used to convert an object module from eOFF for­
mat to XENIX® OMF format.

/usr/bin/prof
A program used to interpret and display the profile data pro­
duced by the moni tor function.

/usr/bin/prs
A program used to print all or part(s) of an sees file to the
standard output in a user-supplied format.

/usr/bin/regcmp
A program used to compile the regular expressions in a given
file and place them in an output file.

/usr/bin/rmdel
A program used to remove the most recent delta to a named
sees file.

8 386jix Software Development System Installation Instructions

/usr/bin/sact
A program used to inform the user of any impending changes
to a given sees file.

/usr/bin/sccsdiff
A program used to compare two versions of a given sees file
and generate the differences between them.

/usr/bin/sdb
The symbolic debugger used with C and F77 programs.

/usr/bin/tsort
A program that prints to the standard output a totally ordered
list of items consistent with a partial ordering of items men­
tioned in the given input file.

/usr/bin/unget
A program that nullifies the effect of the get progr~m used
prior to creating an intended new delta to a given sees file.

/usr/bin/val
A program used to determine whether or not a given sees file
meets the characteristics specified by the user.

lusr/bin/vc
A program used to copy lines from the standard input to the
standard output. User-declared keywords may be replaced by
their string value when they appear in plain text and/or control
statements.

/usr/bin/what
A program used to identify the given sees file{s}.

/usr/bin/yacc
A compiler-compiler that generates an 1 r parsing algorithm
from a context-free grammar.

Include files:

/usr/include/a.out.h

/usr/include/agent.h

/usr/include/alarm.h

/usr/include/aouthdr.h

/usr/include/ar.h

386jix Software Development System Installation Instructions

/usr/include/assert.h

/usr/include/core.h

/usr/include/ctype.h

/usr/include/dial.h

/usr/include/dirent.h

/usr/include/dumprestor.h

/usr/include/errno.h

/usr/include/execargs.h

/usr/include/fatal.h

/usr/include/fcntl.h

/usr/include/filehdr.h

/usr/include/ftw.h

/usr/include/grp.h

/usr/include/ieeefp.h

/usr/include/ldfcn.h

/usr/include/limits.h

/usr/include/linenum.h

/usr/include/macros.h

/usr/include/malloc.h

/usr/include/math.h

/usr/include/math.h3b5x

/usr/include/memory.h

/usr/include/mnttab.h

/usr/include/mon.h

/usr/include/nan.h

/usr/include/nlist.h

/usr/include/nsaddr.h

/usr/include/nserve.h

9

10 386/ix Software Development System Installation Instructions

/usr/include/pn.h

/usr/include/poll.h

/usr/include/prof.h

/usr/include/pwd.h

/usr/include/regexp.h

/usr/include/reloc.h

/usr/include/rje.h

/usr/include/schhdr.h

/usr/include/search.h

/usr/include/setjmp.h

/usr/include/sgtty.h

/usr/include/signal.h

/usr/include/stand.h

/usr/include/stdio.h

/usr/include/storclass.h

/usr/include/string.h

/usr/include/stropts.h

/usr/include/strselect.h

/usr/include/symbol.h

/usr/include/syms.h

/usr/include/sys

/usr/include/termio.h

/usr/include/time.h

/usr/include/tiuser.h

/usr/include/tp_defs.h

/usr/include/ttysrv.h

/usr/include/unistd.h

/usr/include/ustat.h

386/ix Software Development System Installation Instructions 11

lusr/include/utmp.h

lusr/include/values.h

lusr/include/values.h3b5x

lusr/include/varargs.h

Data files and tools:

lusr/bin/ctc

lusr/bin/ctcr

lusr/lib/ctrace/runtime.c

lusr/lib/dag

lusr/lib/flip

lusr/lib/help/ad

lusr/lib/help/bd

lusr/lib/help/cb

lusr/lib/help/cm

lusr/lib/help/cmds

lusr/lib/help/co

lusr/lib/help/de

lusr/lib/help/default

lusr/lib/help/ge

lusr/lib/help/he

lusr/lib/help/lib

lusr/lib/help/lib/help

lusr/lib/help/lib/help2

lusr/lib/help/prs

lusr/lib/help/rc

lusr/lib/help/un

lusr/lib/help/ut

lusr/lib/help/vc

12 386jix Software Development System Installation Instructions

/usr/lib/lex/ncform

/usr/lib/lex/nrform

/usr/lib/libcrypt.a

/usr/lib/libg.a

/usr/lib/libgen.a

/usr/lib/libl.a

/usr/lib/libmalloc.a

/usr/lib/libns.a

/usr/lib/libp/libc.a

/usr/lib/libp/libm.a

/usr/lib/libp/libm1167.a

/usr/lib/libp/libmalloc.a

/usr/lib/libsln.a

/usr/lib/liby.a

/usr/lib/lint1

/usr/lib/lint2

/usr/lib/llib-lc

/usr/lib/llib-lc.ln

/usr/lib/llib-lm

/usr/lib/llib-lm.ln

/usr/lib/llib-lmalloc.l

/usr/lib/llib-port

/usr/lib/llib-port.ln

/usr/lib/lpfx

/usr/lib/nmf

/usr/lib/xcpp

/usr/lib/xpass

/usr/lib/yaccpar

III, ',"[[,' C
a..J

."

,

'-1,' &:

IJ .:

Integrating Software With the
386 fix Operating System

CONTENTS

1. INTRODUCTION.
1.1 Before You Begin . . • •
1.2 Overview of This Document

2. INTEGRATING APPLICATIONS WITH THE 386jix
OPERATING SYSTEM • • .
2.1 Utilities for Installing Software on 386 jix
2.2 The Content and Form of 386jix Subsets • • •
2.3 Creating an Installable Subset . . . • . .

2.3.1 Before You Begin •
2.3.2 Using the Tools to Build the Files for a 386jix

Subset • •.••
2.3.3 What the Tools Have Done

Automatically . . . • . . • . . . •
2.3.4 Creating the Master Diskettes

3. INTEGRATING DEVICE DRIVERS WITH 386jix
SUBSETS •••
3.1 386jix and the UNIX Kernel . . . •
3.2 The kconf i g Utility • • . • .

3.2.1 kconfig and Related AT&T
Utilities • • . • • . . •

3.3 Making a Device Driver Usable on the 386jix Operat­
ing System • • • . . . •

3.4 The Environment of a 386jix Device Driver . • .
3.5 Preparing Your Driver for Installation . . . • •

3.5.1 Sample Master, System, Ini t, and Node

1
1
2

4
4
5
7
7

7

10
11

13
13
13

13

14
14
15

Files 17
3.6 Preparing Your Driver Using insdriver ... 18
3.7 Using the Tools to Build a 386jix Subset Containing

Device Drivers • • . . . 19
3.7.1 What the Tools Do for You. . • . . • • 21

4. UPDATING 386jix DEVICE DRIVERS FROM
RELEASE 1.0.6. . . . • •
4.1 Comparing 386 jix Releases 2.0 and 1.0.6
4.2 Converting Drivers from 1.0.6 to 2.0

- 1 -

21
21
22

Appendix A: USING DISKETTES WITH 386jix

1. DEVICES, DEVICE SPECIAL FILES, AND
DISKETTES. • . • • • • • • • .

2. MAKING A DEVICE SPECIAL FILE • •

3. COPYING FILES ONTO A DISKETTE

4. MOUNTING DISKETTE FILES . •

Appendix B: SAMPLE SHELL SCRIPTS . . • •

1. install

2. uninstall

3. dependenc i e s

4. postinstall

Appendix C: BUILDING A SUBSET WITHOUT
THE TOOLS •••••••••••

1. BUILDING A SUBSET WITHOUT
DRIVERS ••••••..•

2. BUILDING A SUBSET WITH DRIVERS .

Appendix D: RELATED MANUAL ENTRIES

- ii -

24

24

25

26

27

29

29

35

37

37

39

39

40

43

Integrating Software With the
386/ix Operating System

1. INTRODUCTION

Using subsets as a standard distribution medium offers a consistent
way of installing software products, whether they are composed of a
few simple files or the programs that make up a set of complicated
device drivers. This document provides guidelines for building
386/ix™ subsets with the Software Integration Tools that accom­
pany your 386/ix Software Development System. It explains a
variety of procedures, from the simple, such as storing a few files on
a diskette, to the complex, such as making a device driver into an
installable package. An overview of the various phases of device
driver module development, culminating with the module's interface
with the 386/ix kernel, is also given. This document is meant to
provide 386/ix-specific information that complements the more gen­
eral information in the Integrated Software Development Guide,
which also accompanies the 386/ix Software Development System.

Although this information is intended for Independent Software
Vendors (ISVs) and Independent Hardware Vendors (IHVs) who
want to make sure that their application or device driver can easily
be installed on the 386/ix Operating System, programmers may also
find this information to be useful. Documentation updates for driver
subsets will be provided as appropriate with future releases of the
386/ix Operating System. Please check your documentation before
installing drivers on new releases.

1.1 Before You Begin

This document assumes that you have already installed the 386/ix
Operating System on your computer and that you are familiar with

386fix is a trademark of INTERACTIVE Systems Corporation.
VP fix is a trademark of INTERACTIVE Systems Corporation and Phoenix
Technologies Ltd.
UNIX is a registered trademark of AT&T.
Hub6 is a trademark of Bell Technologies.
MS-DOS and XENIX are registered trademarks of Microsoft Corporation.

2 Integrating Software With the 386jix Operating System - Release 2.0

the general principles of computer operation. If you have never
used a UNIX® operating system before, you should read the "UNIX
Primer" that accompanied your 386jix Operating System and
Appendix A of this document.

1.2 Overview of This Document

This document is divided into eight major sections:

1. INTRODUCTION
This section provides a general overview of this
document.

2. INTEGRATING APPLICATIONS WITH THE 386jix
OPERATING SYSTEM
This section describes the structure of a 386jix subset,
how they may be installed on the 386jix Operating Sys­
tem, and how to use the Software Integration Tools to
make your own subsets so that your customers or co­
workers can easily install your software on the 386jix
Operating System. It also describes what the tools do.

3. INTEGRATING DEVICE DRIVERS WITH 386jix SUBSETS
This section discusses the special case of software that
contains device drivers. It explains how to make 386jix
subsets that will automatically install the driver modules
in the appropriate directories on· the fixed disk, so they
can be installed using the 386jix Operating System
kconf ig utility. Additional information about install­
able device drivers can be found in the Integrated
Software Development Guide that accompanies your
386 jix Software Development System extension.

4. UPDATING 386jix DEVICE DRIVERS FROM RELEASE 1.0.6
This section discusses the differences between 386jix
Operating System Release 1.0.6 and Release 2.0 as they
apply to device driver modules and their location on the
system. It describes the actions necessary to make a
driver object that works with Release 1.0.6 work with
Release 2.0 of the 386jix Operating System.

5. APPENDIX A: USING DISKETTES WITH THE 386jix
OPERATING SYSTEM
For your convenience, this section describes how to use
diskettes with the 386jix Operating System. It lists the
special file names used for various types of diskettes and

Integrating Software With the 386jix Operating System - Release 2.0 3

illustrates the use of some standard UNIX utilities that
may be useful when integrating your software.

6. APPENDIX B: SAMPLE SHELL SCRIPTS
For your convenience, this section provides sample shell
scripts to use in constructing subsets.

7. APPENDIX C: BUILDING A SUBSET WITHOUT THE
TOOLS
This section describes how to make your own 386jix
subsets without using the tools that accompany the
386 jix Software Development System.

8. APPENDIX D: RELATED MANUAL ENTRIES
386jix manual entries that are of interest when integrat­
ing software with the 386 jix Operating System are
included for your convenience.

4 Integrating Software With the 386/ix Operating System - Release 2.0

2. INTEGRATING APPLICATIONS WITH THE 386/ix
OPERATING SYSTEM

INTERACTIVE delivers a special set of tools to help make it easy
for you to integrate your applications with the 386jix Operating
System. Integrating your application using the tools will make it
easy for your customers to install your application on 386jix
systems.

These tools are delivered with the 386jix Software Development
System on the diskette labelled Software Integration Tools. This
section describes the utilities available with 386jix for installing
software, describes the content and form of a typical 386jix subset,
and explains how to use INTERACTIVE's special tool kit to make
your applications easily installable. It also explains the tasks that
are performed automatically by the tools.

2.1 Utilities for InstaUing Software on 386/ix

Applications and utilities available for the 386 jix Operating System
are usually distributed on diskettes or tape. Several utilities are
currently available on the 386jix Operating System to load or
unload software from the distribution media. Some are standard
UNIX utilities, such as epio and tar, provided with every UNIX
implementation. You must know how to use UNIX commands and
device naming conventions to use these utilities.

Other value-a<ided utilities for loading and unloading software that
have been developed to help make the 386 jix Operating System
easier to understand and use are currently available on the 386 jix
Operating System. The value-added utilities supplied with the
386jix Operating System are:

• sysadm
386jix subsets are distributed on diskettes as UNIX file systems
that can be mounted using the sysadm utility. sysadm is the
name of a UNIX command as well as a set of utilities developed
by AT&T for UNIX System V Release 3.0. It provides a con­
sistent menu-driven interface for the UNIX system administra­
tor. The procedures for adding users, hooking up a terminal, or
installing an application are all performed similarly. The 386jix
Operating System contains an adapted and enhanced version of
the sysadm utility that makes it convenient to add most
enhancements to standard UNIX. Although AT&T no longer
supports the sysadm utility for UNIX System V j386 Release

Integrating Software With the 386/ix Operating System - Release 2.0 5

3.2, on which 386 jix Release 2.0 is based, INTERACTIVE con­
tinues to support it. It is strongly recommended that you use
INTERACTIVE's tools to integrate your software with the
386jix Operating System. Applications integrated with these
tools are much easier for customers to install .

• installpkg
Instead of the sysadm utility, AT&T's UNIX System V j386
Release 3.2 now uses a utility called installpkg. If you
have software packaged for such a system, you will also be able
to install it using sysadm .

• custom
Release 2.0 is the first release of the 386jix Operating System
based on the version of UNIX that offers XENIX® binary compa­
tibility. Most XENIX applications that are commercially avail­
able are supplied on diskettes that need to be installed using a
utility called custom. This program is supplied with the
386jix Operating System for compatibility with XENIX applica­
tions. The installpkg option of the 386jix sysadm utility
has been enhanced to recognize diskettes that use custom, and
it automatically calls custom when needed.

To insure that the installation procedure for your application is con­
sistent with the 386jix Operating System and to make it easy for
your customers to install your package, follow the instructions in
this section to make your application installable using sysadm.
INTERACTIVE delivers the custom and installpkg com­
mands only to allow you to install existing applications that use
these formats.

2.2 The Content and Form of 386/ix Subsets

INTERACTIVE delivers the 386jix Operating System in packaged
subsets on one or more diskettes. More than one subset can be put
on one diskette, if desired. Tools and utilities are grouped together
and packaged as separately installable subsets, so that users may
install only the portions of the operating system that are relevant to
their needs. Only two subsets are required to create a runtime
operating system, Boot and Core. The remainder are optional.

You should be familiar with the format used for all 386 jix subsets
so that you can check the software integration process to be sure it
has proceeded properly. The contents of a 386jix subset are stored
on one or more diskettes in file systems labelled ins taIL Each

6 Integrating Software With the 386jix Operating System,- Release 2.0

file system contains at least two top-level directories, named
install and packagename. The term packagename stands for a
two-letter mnemonic for the name of the application package. For
example, the Kernel Configuration subset is called kc. (You will
be instructed to name and create this directory for your application
in the correct location during the subset integration process. We
require that you use a five-letter mnemonic to avoid conflicting
names. For example, a word processing package might be called
words. The other" directories will automatically be put in place by
the Software Integration Tools .

• The install directory
The ins tall directory must contain two shell scripts named
INSTALL and UNINSTALL. These scripts are automatically
called by the 386jix Operating System when the installpkg
or removepkg option of the sysadm utility is run. When
you use the tools provided, these shell scripts will be automati­
cally copied into the appropriate directory. If you do not use the
tools diskette to integrate your application, you will have to
manually type in the scripts given in Appendix B.

• The packagename directory
The other directory must have the same name as the subset, a
five-letter mnemonic. Several such directories can be present at
this level if more than one subset fits on a single diskette. Each
directory should contain three subdirectories: new, install,
and driver. A description of the contents of each of these
subdirectories follows:

• packagename/new
This directory is the top-level directory for the instal1ed
software. When files are copied to the fixed disk, they will
be installed in a directory hierarchy that exactly matches the
hierarchy under this directory. For example, applications
that install a command in /b i n will store the command on
the diskette in packagename/new/bin.

• packagename/install
This directory contains all the information about the subset,
for example, the sequence number of the diskette. It can
also contain some optional shell scripts to perform tasks that
are typical for your software installation, either before or
after loading the files on the fixed disk.

Integrating Software With the 386/ix Operating System - Release 2.0 7

• packagename/driver
If the package contains device drivers, a directory for each
driver present, containing the driver object and configuration
files, will be found in this directory. Otherwise, this directory
is empty. See §3 for more information about integrating de­
vice drivers.

2.3 Creating an Installable Subset

This section describes how you can prepare your application so that
it can be installed as an optional 386jix subset. Using this pro­
cedure will insure that your applications will be installed in a
manner that is consistent with other 386jix applications, making
installation easier for the end user.

2.3.1 Before You Begin

Before you can create an optionally installable subset, the following
conditions must be met:

• All the files that are part of your package must be installed on
your system, either in the final location where the subset will
reside on the user's system or in a special directory that acts as
the top of your binary tree. Refer to Appendix A if you do not
know how to transfer your files onto a 386jix system.

• The 386jix Software Development System must be installed on
the system where you create the subsets (so that the UNIX
make utility can be accessed).

• The INTERACTIVE Software Integration Tools subset must be
installed on the system.

• You must be logged in to the system as root.

2.3.2 Using the Tools to Build the Files for a 386/ix Subset

1. To build your subset, after logging in as root, change to the
directory / us r / sub set s and type in the command
setpath:

cd lusrlsubsets
.. /setpath

This calls a shell script that causes the directory containing
the tools to be specified in your PATH shell variable.

2. Change to the subdirectory of /usr/subsets named
scripts and create a directory with a five-letter name for

8 Integrating Software With the 386jix Operating System - Release 2.0

your subset, e.g., mysub, in which you will store all the infor­
mation about the subset you supply:

cd scripts
mkdir mysub

.,. . Note that you must use a five letter name. The integra­
tion will fail if you do not follow this convention.

3. Change your directory to mysub and create four files with
the names FILES, NAME, VERSION, and copyright.
The contents of these files are described below:

• FILES
FILES should contain a list of all the files that are part of
your package, listed with full path names and sorted in
reverse alphabetical order. Linked file names should
appear as required; they will automatically be linked
correctly.

• NAME
NAME should contain a one-line description of the subset,
for example:

HYSOFT software for cemetary management

• VERSION
VERSION should contain the latest version number of the
package, for example:

1.3

• copyright
copyright should contain a script that echoes copy­
right information, for example:

echo Copyright HYSUB software company 1989

The following files in /usr/subsets/scripts/mysub '
are optional; create them if needed:

• setup
This file can be used for any necessary installation tasks
other than linking files Oinks are automated). This file is
automatically executed after the files are copied.

• unsetup
This ~le is used to do any necessary removal tasks other
than removing links Oink removal is automated).

Integrating Software With the 386/ix Operating System - Release 2.0 9

• preinstall
This file is executed before the files are copied. It can be
used, for example, to save any files that are going to be
overwritten.

• postinstall
This file is executed after the files are copied and the
setup file has been executed (if present).

• dependencies
Some subsets depend on the presence of others. This file is
used to check for the presence of subsets required for the
current installation.

4. After you have created the necessary files in the mys ub
directory, you must set two shell variables at the system
prompt: ROOT and FLOP. ROOT should be assigned the path
name of the top-level directory of your software on the com­
puter where you make the subsets. FLOP is used to specify
the type of diskettes (5JA" or 3~") you will use. For example,
you might use the following command line:

ROOT=/distrib ; export ROOT ; FLOP=3 ; export FLOP

The defaults are / (the root directory) and 5, for 5JA" 1.2 MB
diskettes. Type FLOP= 3 if you are using l.44 MB 3~"
diskettes.

5. Change to the /usr/subsets/scripts directory and
type the following command:

mkmkfiles mysub

This creates a file called make f i 1 e in the mys ub directory.

6. Change to the mysub directory. You will now use the make
command to make your installable subset. The make com­
mand has several arguments. If you use the argument
floppy, then the entire procedure will be performed; if you
use the argument proto, the entire procedure except the
actual making of the diskettes will be performed. In practice,
we recommend that you make sure all necessary files are
created before you actually make the diskettes. Type make
proto.

cd mysub
make proto

10 Integrating Software With the 386/ix Operating System - Release 2;0

The tools on the tools diskette are now invoked to create the
files needed to build your application diskette(s). After a
period of time (which will vary greatly depending on the com­
plexity of your software), the necessary prototype files will be
created in this directory.

2.3.3 What the Tools Have Done Automatically

The Software Integration Tools automate software integration with
the 386 jix Operating System. After you have used the command
make proto to create the prototype files· for your subset, you may
want to look at the files created in the directory. The tools have
performed the following tasks:

• Built a file list.
Using the FILES file you have created, the $ROOT directory is
examined to verify that all files are present. For all the links
that are found, the appropriate link commands are stored in a
file named 1 ink and the necessary rm commands in a file
named unl ink. All real files are listed in the file
FILELIST. mysub.

• Made a subset. name file.
A file that becomes part of the subset and is stored as
lusr/optionslpackagename.name (in our example,
lusr/options/mysub.name) is created using the infor­
mation in the files NAME and VERSION. This file is used by
sysadm to verify whether a subset has already been installed
and whether or not it is the same release.

• Modified comment sections.
386jix executables are COFF (common object file formats) files.
One section of such a file is called the comment section,
and its contents can be examined using the what utility. In
older versions of UNIX one could only handle this by defining
strings in the source program that were used for no purpose
other than displaying them when a wha t command was run on
the executable.

Now there isa utility, called mc s, that allows you to modify the
comment section of a program without recompiling. The 386jix
tools automatically remove the comment sections of all execut­
able programs in the subset and add one line in the format:

mysub:file 386/ix 2.0 - Version 1.7

Integrating Software With the 386jix Operating System - Release 2.0 11

where 1.7 is the version number specified in the VERSION
file, f i 1 e is the name of the file, and my s ub is the name of
the subset.

• Determined the number of diskettes needed.
The next step is to determine how many diskettes will be needed.
The sizes of all the files in the subsets are examined, and the list
of files is split into groups that will fit on one diskette. The file
NBRDISKS is created, as well as files called FILE. nand
SIZE. n for each diskette, where n is the diskette number.

• Built a list of files to be removed.
When a user decides to uninstall a package, the UNINSTALL
program needs to know which files are to be removed. To do
this, a file called Rl i st. mysub is created.

• Created prototypes.
For each diskette needed, a directory called dis k • n is created.
All the files that need to go on the diskette, as well as a file
called proto. n, are automatically copied into this directory.
proto. n is a prototype file that can be passed as an argument
to the mkf s command when a file system is made. For a
description of the layout of such a prototype file, refer to
mkfs(1M} in the User's/System Administrator's Reference
Manual. If a subset contains many small files, the number of
inodes to be specified for the mkf s command is also adjusted.

2.3.4 Creating the Master Diskettes

1. Now that all the necessary files are in position, make sure you
are in the mysub directory and type the command
make floppy to make the master diskette(s). The system
will automatically prompt you to insert the necessary diskette
or diskettes.

2.

make floppy

The mkf s utility then automatically organizes the diskette as
a 386/ix file system. You can abort the procedure at this
point by typing s and using IRETURN.I

12 Integrating Software With the 386/ix Operating System - Release 2.0

(DEL) if wrong

Ignore this message. mk f s will wait for about 10 seconds
and then continue.

3. After making the file system, all necessary files will be copied
to the diskette. If your software does not fit onto one diskette,
you will be prompted for a second, a third, and so on .

.,. Note that when you type make floppy, a dummy file named
floppy is created in your working directory. To make addi­
tional master copies of your software, remove the floppy file,
then type make floppy again.

The diskette or diskettes you have just created are the masters for
your new subset. File links will have been created automatically,
and your diskettes can be installed using the sysadm utility. Test
your new subset to verify that all software has been installed and
setup has been completed.

Integrating Software With the 386jix Operating System - Release 2.0 13

3. INTEGRATING DEVICE DRIVERS WITH 386jix SUBSETS

3.1 386jix and the UNIX Kernel

Many UNIX implementations come with a single UNIX kernel that
cannot be modified. While this may be reasonable for a mainframe
computer, it is completely unworkable for PC-based UNIX systems.
Configurations range from 2 MB to 16 or more MB of physical
memory, and several peripherals can be installed that require a de­
vice driver to be added to the kernel. Users with PC-based
machines need to be able to change tunable parameters and add or
remove drivers in order to build a UNIX kernel that fits their
configuration and needs.

Because the 386jix Operating System contains the objects of the
UNIX kernel and its related device drivers, it can be reconfigured by
users to suit their individual requirements. On some PC-based
UNIX systems, the 386 jix Software Development System must be
installed in order to build a new kernel. This is not true of 386/ix.
The user can build a new kernel with only the basic 386/ix Operat­
ing System installed.

3.2 The kconf ig Utility

kconf ig is one of INTERACTIVE's major enhancements to the
386/ix Operating System. It is an easy-to-use menu-driven inter­
face distributed as part of the basic 386/ix Operating System. In
conjunction with the utilities provided in the Kernel Configuration
subset, this tool allows even a naive UNIX user to configure, build,
and install a customized 386/ix kernel. We urge you to make sure
that your driver(s) can be installed using this program and that your
documentation explicitly states that the 386/ix Software Develop­
ment System does not need to be installed to add a driver to the
386/ix kernel. Only the Kernel Configuration subset is required.
Refer to the 386/ix manual entry kconfig(1) in Appendix D for
more information about this utility.

3.2.1 kconfig and Related AT&T Utilities

For the sake of compatibility, 386/ix Release 2.0 uses the AT&T
UNIX System V /386 Release 3.2 utilities and file formats for instal­
ling drivers. These utilities are transparent to the user, since they
are automatically called by kconf ig. The name of each AT&T
utility begins with the letters "id," so they are sometimes referred to
as the id utilities (installable drivers). These utilities and their
interface are described in the Integrated Software Development

14 Integrating Software With the 386/ix Operating System - Release 2.0

Guide that is delivered with the 386/ix Software Development Sys­
tem. It contains information about how to write a UNIX device
driver and how to use the id commands. It does not refer to
kconf igor other INTERACTIVE enhancements, however, so we
advise you to use that document in conjunction with the information
presented here.

3.3 Making a Device Driver Usable on the 386jix Operating System

Once a device driver (and its related software) has been developed
and tested, it must go through three steps before it is actually opera­
tional and can be used with the peripheral for which it is intended.
It must be:

• Packaged for distribution, that is, made into a 386jix subset.

• Installed on the customer's system and prepared for installation
by the customer.

• Configured into the kernel and the new kernel successfully
installed.

The following sections illustrate the components necessary for gen­
erating a valid driver package and the additional tasks that need to
be performed to build a 386jix subset that contains one or more
device drivers. For more details, refer to the Integrated Software
Development Guide.

3.4 The Environment of a 386/ix Device Driver

A device driver is not a standalone piece of software. For example,
as discussed in Appendix· A, a diskette driver requires a number of
special files that serve as the link between the kernel and the file
system. When a utility attempts to access a file that is a special file,
the system will determine which driver code needs to be executed by
examining the major device number of this special file.

For some drivers, especially those that involve terminals, such as the
serial port driver or any multiport board driver, additional
configuration procedures are necessary to make them work. Entries
need to be. added to a system file, called /etc/ini ttab, so that
a logger is activated on these particular ports as soon as the system
enters multi-user mode (init levels 2 or higher). For example, the
typical /etc/ini ttab entry below would activate a terminal
connected to the first port of a Hub6™ card, for which
/dev/tty4a is the name of the special file.

Integrating Software With the 386jix Operating System - Release 2.0 15

4a:23:respawn:/etc/getty tty4a 9600

On the 386 j ix Operating System, / etc / in itt a b entries are
modified using sysadm ttymgmt.

Previous releases of 386jix required that:

• All special files had to be present on the system, even if the asso­
ciated drivers were not in use.

• All loaded drivers had major device numbers that were pre­
assigned by their developer.

• All possible entries were listed in the / etc / i nit tab file.

These requirements caused various problems. For example, two
independent vendors could develop drivers with the same pre­
assigned major device number. This was not a problem unless a
user attempted to configure both drivers into the same kernel. Some
vendors developed smart scripts to examine the entire system before
assigning the major device number. In Release 2.0 of the 386jix
Operating System, this is no longer necessary; the i d utilities
automatically assign an unused major device number.

Different drivers can now use the same names for special files
without causing any system problems. Beginning with Release 2.0
of the 386jix Operating System, all special files are recreated when­
ever a new kernel is installed, and the unnecessary ones are
removed. The / etc / in itt a b file is recreated containing only
the entries related to the installed drivers. Thus, the number of pos­
sible conflicts between different device drivers has been reduced
tremendously.

-- Note that some hardware-related limitations still exist.
Features such as interrupt vectors still need to be pre-assigned
and, in the case of a conflict, manually changed.

3.5 Preparing Your Driver for Installation

To take advantage of the features of the new device driver environ­
ment, a driver needs to be prepared for installation. i nsdr i ver
is the 386 jix utility that handles this process. One of the tasks it
performs is to add a one-line description of a driver to the file where
such information is stored. All loaded driver modules are subse­
quently advertised in the kconf ig menus with this one-line
description of their function. Refer to the insdriver(1) manual

16 Integrating Software With the 386jix Operating System - Release 2.0

entry in Appendix D for more information about the insdriver
utility and its function.

To properly prepare your driver for .installation, you must have the
following files (some of which are optional) in a single directory.
An example will be given later.

• Driver.o •
This is the driver module that is to be configured into the kernel.
In previous releases of the 386/ix Operating System, these
modules had the same name as the driver, for example, hub. o.
Now each driver module always has the same name,
Dri ver. o.

• Master
This file contains on-line information about the driver. The
driver name, the functions it contains, and so on, are specified in
it. Refer to mdevice(4) in the Programmer's Reference Manual
for details about this file. The block and/or character device
major number specified should be listed as zero.

• System
This . one-line file contains the name of the driver, which should
match the one in the Ma s t e r file, an N or Y to indicate
whether or not the driver should be installed (note that it should
always be N at this point), and some hardware-specific charac­
teristics. Refer to sdevice(4) in the Programmer's Reference
Manual for details about this file.

• Space. c (optional)
This optional source file contains driver-specific declarations of
data structures.

• Node (optional)
This file specifies the special files the driver will need to operate,
one line for each. The format of such a line is:

drivername devicename X minor

x is replaced by a c for character special files or a b for block
special files. Note that the major device number need not be
specified. It still needs to be assigned at this point. Making
consistent use of the driver name is the important point here.

• In i t (optional)
This file should contain all /etc/ini ttab entries required
for this driver to work properly.

Integrating Software With the 386/ix Operating System - Release 2.0 17

3.5.1 Sample Master, System, Ini t, and Node Files

Refer to mdevice(4) and sdevice(4) in the Programmer's Reference
Manual for the proper description of the meanings of all fields in
these files.

• Master
taco Iocrwi iHct taco 0 o 6 24 -1

The driver's name is taco, it has an ini t, open, close,
read, wr i te, and ioctl routine, is for hardware and
installable, is a terminal device, and uses character special files.
The major device number is set to O. The driver assumes a
minimum of 6 subsystems and a maximum of 24 and does not
use DMA.

• System
taco N 6 7 2 3 302 308 0 o

The driver named taco is not installed by default, uses 6 sub­
devices, runs at ipl level 7, requires a sharable interrupt line,
uses interrupt vector 3, and has 302 and 308 as start and end
I/O addresses.

• Init

•

tacoO:23:off:/etc/getty ttytO 9600
taco1:23:off:/etc/getty ttyt1 9600
taco2:23:off:/etc/getty ttyt2 9600
taco3:23:off:/etc/getty ttyt3 9600
taco4:23:off:/etc/getty ttyt4 9600
taco5:23:off:/etc/getty ttyt5 9600

These are the entries that are added to the newly created
/ etc / in itt a b file when a kernel containing this driver is
installed. sysadm ttymgmt is used to activate the getty
commands.

Node
taco ttytO c 0
taco ttyt1 c 1
taco ttyt2 c 2
taco ttyt3 c 3
taco ttyt4 c 4
taco ttyt5 c 5

These nodes will be created in /dev using the minor device
numbers specified and the major device number that was
assigned automatically. Subdirectories of Idev can be specified
if needed.

18 Integrating Software With the 386/ix Operating System - Release 2.0

3.6 Preparing Your Driver Using ins d rive r

1. After all the files are in place, make sure you are in the same
directory as the files and type ins d r i ve r. Your screen will
look similar to this:

Directory Containing Driver Files:

2. Answer • for the current directory, followed by I RETURN I.
Your screen will then look similar to this:

Driver Name:

3. Release 2.0 device driver modules are located in subdirectories
of the directory / etc/ conf /pack. d. In the future,
INTERACTIVE may assign names for these directories to
third-party software developers, to avoid naming conflicts. At
present we recommend using names of four or five characters
rather than three characters. Type in the driver name and use
1 RETURN I. Your screen will then look similar to this:

Configuration Directory (/etc/conf):

4. Use I RETURN I. Your screen will then look similar to this:
Enter a one line driver description:

5. Enter a comprehensive description of what the driver is meant
to be used for, followed by IRETURNI. Your screen will then
look similar to this:

Do you want to Configure/Build a Kernel [y , n 1 :

6. If you have no more drivers to prepare, type y; otherwise, type
n.

At this point, the insdri ver program does the following:

• Adds the one-line description you specified to the file
/etc/conf/kconfig.d/description.

• Moves the Node file to /etc/conf/node. d, giving it the
name of your driver.

• Moves the Ini t file to /etc/conf/ini t. d, giving it, the
name of your driver.

• Edits the file /etc/conf/cf . d/mdevice to add informa­
tion about your driver, including a major device number,

• Edits the file /etc/conf/cf. d/sdevice to add informa­
tion about your driver.

Integrating Software With the 386jix Operating System - Release 2.0 19

The driver is now ready for integration into the kernel. Release 2.0
of the 386jix Operating System uses an entire directory
(/etc/ conf / cf . d) to describe the kernel configuration, rather
than a single file (/etc/atconf/systems/system. std),
as in previous releases. When configuring the kernel using
kconf ig, backup copies of all these files are made in a subdirec­
tory named OLD, and subsequently all files are modified according
to the choices you specified while using the kconf i g menu.
When a new kernel is installed, the following actions are taken
automatically:

• The new kernel IS moved to /unix, the current one to
/OLD. unix.

• A new / etc / i nit tab file is created, by appending all files
that reside in /etc/conf/ini t. d to the contents of
/etc/conf/cf .d/init.base, except for those files that
have the same name as a driver that is not configured.

• For all files found in / etc/ conf /node . d, the special files
decribed there are removed for all drivers not configured, and
recreated for those that are.

As a result, a minimum size / etc / in itt a b file and only those
special files that are actually used by the kernel are stored on your
386jix system.

3.7 Using the Tools to Build a 386/ix Subset Containing Device
Drivers

The same tools that were described in an earlier section can be used
to make a 386 jix subset that also contains one or more device
drivers. This section explains the additional tasks that need to be
performed to do this.

1. Create a directory with a five-letter name in
/usr/subsets/scripts exactly as described before:

$ cd lusrlsubsets
S .. /setpath
$ cd scripts
$ mkdir mysub

2. Determine at this point what the value of the ROOT variable
will be. Create a directory named $ROOT / etc/ dr i vers
(unless it already exists) and a subdirectory for each device
driver that goes into the subset. In each of these directories,
the files Driver. 0, Master, and System and other

\

20 Integrating Software With the 386/ix Operating SYJtem - Release 2.0

optional files belonging to that driver should be stored. The
tools will understand that these files are driver files because of
their special location.

3. Now create all necessary files (as mentioned in §2.3.3) and
make sure that in FILES you list the location of all driver
files and directories as /etc/drivers (i.e., do not use the
prefix $ROOT).

4. Add to the now mandatory setup file a script that will add a
line to /etc/conf/kconfig.d/description for
each driver in the subset. A typical description line is:

name - name description of driver

A sample setup script that will do this is included in Appendix
B.

You should also include a script in your driver that instructs
the user to make a new kernel using the kconf i g utility
when your driver software is loaded. Every subset containing
drivers should contain a setup or post install shell
script that:

• Adds a description to the description file.
The first time the package is installed, a description of the
driver should be added to
/etc/conf/kconfig.d/description. If it is a
new release, the description should either be replaced or
left unchanged. Use the grep command to find out.
(Refer to the grep(l) manual entry in the User's/System
Administrator's Reference Manual for information about
the gr e p command.)

• Calls kconfig.
When the software is loaded onto the fixed disk, either
query the user or call the kconf i g utility immediately.

It is possible to automate the user's interaction with
kconf ig, although this is optional. A sample
post install file may be found on the tools diskette
and in Appendix B.

5. Perform all other steps required to create a regular 386/ix
subset, as described in §2.3.3.

Integrating Software With the 386/ix Operating System - Release 2.0 21

3.7.1 What the Tools Do for You

The Software Integration Tools perform the following:

• They examine the FILES file and will, for each directory listed
in /etc/drivers, store it on the diskette as a subdirectory
of packagename/driver, instead of packagename/new.
When the subset is installed, the i dins ta 11 (not
i nsdr i ver) command will be automatically executed and the
driver modules installed in the correct places ready for kernel
configuration, and a major device number will be assigned for
each of them. The script in the setup file is required to prop­
erly interface with the kconf i g utility.

• They generate a file called dr i vers and store it as
packagename/install/drivers. This contains a list of
all the driver directories, so sysadm will remove them using
the idinstall utility, when needed.

4. UPDATING 386jix DEVICE DRIVERS FROM RELEASE
1.0.6

4.1 Comparing 386jix Releases 2.0 and 1.0.6

Release 2.0 of the 386/ix Operating System is upwardly compatible
with respect to 386/ix Release 1.0.6. This means that all utilities
and applications that run on 1.0.6 will run on 2.0 without recompil­
ing. Release 2.0 allows you to run existing XENIX binaries as well.
If you are also using the VP /ixTM package, you have a system that
can run:

• MS-DOS® executables

• XENIX executables

• UNIX SYSTEM V /286 executables

• UNIX SYSTEM V /386 executables, regardless of whether they
are built on a V.3.0 (386/ix 1.0.6), V.3.1, or V.3.2 system

The UNIX kernel, however, has undergone many changes and con­
tains many enhancements. A device driver, when installed, is part
of the kernel and needs to reside with this new kernel. Therefore,
many existing device drivers will need to be recompiled, and for
some of them the source code will need to be slightly modified. The
tty structure, for example, has been modified, and as a result all
drivers for multiport cards will at lease need to be recompiled.

22 Integrating Software With the 386jix Operating System.,.... Release 2.0

One could take an existing 386jix 1.0.6 driver object, create the
appropriate Master and System files for it, and subsequently
succesfully generate and boot a 2.0 kernel with it. Even then, how­
ever, the driver might not work properly.

The following section describes guidelines for converting these
drivers. These guidelines are intended for driver developers, not
customers who have a driver object from a third-party vendor.

",. We recommend that end-user customers contact hardware ven­
dors directly for updated versions of drivers that are not bun­
dled with the 386jix Operating System.

4.2 Converting Drivers from 1.0.6 to 2.0

Your 1.0.6 device driver modules reside either on your fixed disk or
in a 386jix 1.0.6 subset in subdirectory name of
/etc/atconf/modules. These files typically include name.o,
config, and space. c. This section describes what you need to
do to convert your 1.0.6 driver files to 2.0 driver files.

1. Create a directory somewhere on the system and move name.o
to that directory and call it Dr i ver. o. If space. c is
present, move this file also and name it Space. c.

2. Create the new Master and System files there and edit
them so that name begins in the first column of the first field
and N is second field in the System file. Each file should
contain one line, with different fields separated by spaces or
tabs.

3. Examine the contents of the conf ig and original space. c
files. Here are some typical occurrences in these files and the
corresponding information needed in the Master and Sys­
tem files:

• block(69)
This is a block device. Add a letter b to the third field of
the Master file and make sure the letters i and H
appear there. Put a zero (0), not 69 as the fifth field .

• character(69)
This is a character device. Add a letter c to the third field
of the Ma s t e r file and make sure the letters i and H
appear there. Put a zero (0), not 69 as the sixth field.

Integrating Software With the 386/ix Operating System - Release 2.0 23

• pref ix = nam
This is the prefix beginning all driver routine names. List
it as the fourth field of the Ma s t e r file.

• intvec = 3
This is the interrupt vector used by the driver. Make it
the sixth field of the System file.

• intpri = SPL 5
This is the ipl level expected by the driver. Make it the
fourth field of the System file.

• functions = open, close ...
These are the routines the driver supports. For each of
them, add a letter in the second field of the Ma s t e r file,
according to the following rule: 0 for open, c for close, r
for read, and so on, as described in mdevice(4) in the
Programmer's Reference Manual.

• Other
Other characteristics, such as DMA channel and starting
address, may appear. Fill out the appropriate fields; other­
wise use 0 (-1 for DMA channel). Note that if a starting
address is specified, an ending address should be specified
as well.

4. Now run insdriver as specified in §3.6 and build a new
kernel to test the behavior of the driver. Whether it will work
depends on whether or not some of the driver characteristics
were hard coded in the original module. Refer to your
hardware documentation for additional information on starting
addresses, DMA channels, and so on, if your first attempt is
not successful.

24 Integrating Software With the 386jix Operating System - Release 2.0

Appendix A: USING DISKETTES WITH 386jix

Diskettes are the easiest medium for quickly storing files and mov­
ing them from place to place on the 386 jix Operating System. You
may want to use diskettes to move files you already have on another
computer system onto the 386jix system before you begin to
integrate your appllcation or driver. This appendix is provided as a
convenience for developers who are new to UNIX systems. It pro­
vides a quick overview of the UNIX-specific utilities and information
you need to use diskettes with the 386jix Operating System.

Refer to section 8.3, "Device Naming Conventions," and section
11.12, "Adding a Second Diskette Drive," in "386jix Maintenance
Procedures" for more information on the topics covered in this
appendix. For additional information about UNIX operating sys­
tems in general, refer to the "UNIX Primer" that accompanied your
386jix Operating System, and the User's Guide and User'sjSystem
Administrator's Reference Manual.

1. DEVICES, DEVICE SPECIAL FILES, AND DISKETTES

Devices may be treated by UNIX systems as either block devices or
character devices. Block devices, such as fixed disks, process infor­
mation in blocks. Character devices, such as terminals, process
information one character at a time.

The 386jix Operating System supports several diskette formats and
can treat a diskette as either a block device or a character device.
The two most commonly used diskette sizes are 51A" diskettes and
3V2" diskettes. Different densities are also available, ranging from
360K to 1.44 MB.

All devices on the 386jix Operating System, including diskettes, are
associated with a special file. All special files that refer to block
devices are stored in the directory /dev/dsk. All special files
that refer to character devices are stored in the directory
/ dev /rdsk. Each different diskette configuration that is sup­
ported on your system must be represented on the 386jix Operating
System by its own corresponding special file. A number of these
special files are supplied with the 386jix Operating System. Special
file names for diskettes are rather cryptic in the UNIX system; for
example, the special file name for a 51A ", 1.2 MB diskette is
fOq15dt. The names are based on the following factors:

Integrating Software With the 386jix Operating System - Release 2.0 25

• Position of the diskette drive (first - f 0 or second - f 1)

• Size of the diskette (51.4" - 9 or 15 sectors per track or 3W' -
9 or 18)

• Density of the diskette (single or double -d or quad - q)

• Use of the whole diskette (dt) or skip the first cylinder, as on
the Boot diskette (d)

For the sake of convenience, you can link a more comprehensible
name, such as Idev/floppy to a special file, using the UNIX
In command. For example, you could log in as root and type:

In Idev/rdsk/fOq15dt Idev/floppy

From then on you can simply use Idev/floppy in command
lines requiring your diskette device special file name. This is easier
to remember and simplifies typing.

2. MAKING A DEVICE SPECIAL FILE

The 386jix Operating System is delivered with device special files
for the most commonly used diskettes already in the proper direc­
tories. However, if the type of diskette that you want to use does
not have the appropriate device special file already on your system,
you can create the necessary file using the UNIX mknod command.
The general form of the command is shown in the following table:

Command
Name

mknod

File Name

name

For example, the command

Type of
Device

c

mknod Idev/rdsk/f1q18d b 1 81

Major Device
Number

1

Minor Device
Number

minor no.

makes a device special file called Idev/rdsk/f1q18d that will
be treated as a block device, has the major device number 1 and a
minor device number of 8 1. (The major device number for diskette
drives is always 1 on the 386jix Operating System.) Use the letter
c instead of the letter b and place the file in /dev/dsk rather
than Idev/rdsk if you want the device to be treated as a charac­
ter device.

The following table lists some of the minor device numbers you can
use and the meaning of each. The file names are those used in the

26 Integrating Software With the 386jix Operating System - Release 2.0

386/ix Operating System. (Names ending in dt indicate the names
used for the entire diskette; those ending in d indicate the same type
of diskette minus the first cylinder.)

Device Name Minor Description
fOd9dt 16 360K, 51/4" disk, first diskette drive
fOd9d 20
fOq9dt 96 720K, 31/2" disk, first diskette drive
fOq9d 100
fOq15d 0 1.2MB, 51/4" disk, first diskette drive
fOq15d 4
fOq18d 80 1.44MB, 31/4" disk, first diskette drive
fOq18d 84
fld9dt 17 360K, 51/4" disk, second diskette drive
fld9d 21
flq9dt 97 720K, 31/2" disk, second diskette drive
flq9d 10
flq15d 1 1.2MB, 51/4" disk, second diskette drive
flq15d 5
flq18d 81 1.44MB, 31/4" disk, second diskette drive
flq18d 85

3. COPYING FILES ONTO A DISKEITE

Once you have verified that the appropriate device special file is
present for the type of diskette you want to use or you have created
the appropriate file. you are ready to copy your files onto a 386/ix
diskette. The UNIX e pi ° and tar commands can be used in
combination with the appropriate device special file to copy your
files onto a 386/ix diskette. (Remember that if you are using a
diskette for the first time, it must be formatted;)

Either of. the following commands can be used to copy all the files
that are found in the current directory onto a diskette:

Is : epio ~oBevdu > /dev/rdsk/fOq1Sdt

or
tar evf /dev/rdsk/fOq1Sdt .

If the files to be saved will require more than one diskette, use
epio rather than tar. With epio, you can change diskettes
without having to interrupt the program. Refer to the cpio(1) and

Integrating Software With the 386/ix Operating System - Release 2.0 27

tar(1) manual entries in the User's/System Administrator's Refer­
ence Manual for more information about these utilities.

4. MOUNTING DISKETTE FILES

As mentioned previously, / d e v / r d skis a directory containing
various special files representing character devices. /dev/dsk
contains the equivalent block devices for diskettes. You will need
these special files when you want to use diskettes as mountable file
systems. (386/ix subsets are mountable file systems.) 386/ix sub­
sets are initialized using the mkf s utility and from then on can be
mounted using the mount command:

mount /dev/dsk/fOq15dt /mnt

After mounting, all files on the diskette can be examined by explor­
ing the directory /mn t (any directory name could be used as a
mounting point). Although the use of diskettes in this fashion may
cause some overhead, it is probably the most convenient way to add
files to diskettes that already contain some files.

Integrating Software With the 386/ix Operating System - Release 2.0 29

Appendix B: SAMPLE SHELL SCRIPTS

1. install

Copyrighted as an unpublished work.
(c) Copyright 1987 INTERACTIVE Systems Corporation
All rights reserved.

RESTRICTED RIGHTS

These programs are supplied under a license. They may be
used disclosed, and/or copied only as permitted under such
license agreement. Any copy must contain the above copyright
notice and this restricted rights notice. Use, copying,
and/or disclosure of the programs is strictly prohibited
unless otherwise provided in the license agreement.

set -v
#ident "@(#)INSTALL.sh 2.5 - 88/10/06"

find mount device

if test -b "S1"
then

elif
then

elif
then

else

mntdev=$1
test -b /dev/diskette

mntdev=/dev/diskette
test -b /dev/install

mntdev=/dev/install

echo "**ERROR** Can't find mount device"
exit

fi
mntname="S(2:-/install)"

Get the packages on this diskette

INSDIR=/usr/lib/installed
INSPATH=/install
CONF=/etc/conf
cwd='pwd'
cd SINSPATH
set 'Is -d ?????'
cd Scwd
nbrpkgs=S#
pkgs="S*"
for pkg in Spkgs
do

NAMEFILE=/install/Spkg/install/Spkg.name
PKGNAME='cat SNAMEFILE'
echo Install the S(PKGNAME:-Spkg)? Hey): \c"
read resp
["Sresp" = "n" -0 "Sresp" = "N" 1 && continue
INSPATH=/install/Spkg/new
DRIVER=/install/Spkg/driver
export PKGNAME
LAST='cat /install/Spkg/install/NBRDISKS'
echo 'Installing the $(PKGNAME)."
[-x /install/$pkg/install/copyright 1 \

30 Integrating Software With the 386jix Operating System - Release 2.0

&& /bin/sh /install/$pkg/install/copyright

expect=1
while ["$expect" -le "$LAST" 1
do

if ["$expect" -gt 1 1
then

else

fi

cd /
/etc/umount Smntdev 2>/dev/null
echo "Remove floppy and insert floppy"
~cho "number sexpect"
echo "Type <return> when ready: \c"
read answer
/etc/mount Smntdev Smntname -r 2>/dev/null

if ["Sexpect" -eq 1 -a \
-r /usr/options/Spkg.name

then

fi

echo '**WARNING** The \
'cat /usr/options/Spkg.name'\
is already installed"

answer=""
while ["Sanswer' 1= y -a "answer" 1= n
do

done

echo 'Type 'y' to overwrite the \c'
echo 'S{PKGNAME} or 'n' quit: \c"
read answer

case Sanswer in
y) "

esac

n) cd /
/etc/umount Smntdev 2>/dev/null
exi t 1;;

Check to make sure that this floppy belongs to the
package

while [1 -s SNAMEFILE -0 'S{PKGNAME}" \
1= "'cat SNAMEFILE'" 1

do

done

echo "**ERROR** Floppy does not belong to"
echo "the S{PKGNAME}"
cd /
/etc/umount Smntdev 2>/dev/null
echo "Remove floppy and insert correct floppy"
echo 'Type <return> when ready: \c'
read answer
/etc/mount Smntdev Smntname -r 2>/dev/null

Integrating Software With the 386jix Operating System - Release 2.0 31

Check to make sure this is the correct floppy of the
set

answer=""
while "'cat linstall/$pkg/install/ORDER'"\

do
1= "Sexpect" -a "Sanswer" 1= y]

echo "**WARNING** Floppy out of sequence"
diskette number Sexpect"
-a ".answer" 1= n]

echo "Expecting floppy
while ["Sanswer" 1= y
do

done

echo "Type 'y' to continue or \c"
echo "'n' to try another floppy: \c"
read answer

case $answer in
n) cd I

letc/umount Smntdev 2>/dev/null
echo "Remove floppy and insert correct floppy"
echo "Type <return> when ready: \c"
read answer
answer=" "
letc/mount Smntdev Smntname -r 2>/dev/null ..

y) expect='cat linstall/Spkg/install/ORDER'

esac
done

Verify dependencies loaded

Verify that there is space for the package.

if ["Sexpect" -eq 1 -a -x \

linstall/Spkg/install/dependencies
then

fi

if Ibin/sh linstall/Spkg/install/dependencies
then
else

exit 1
fi

if letc/mount
then

grep lusr >/dev/null 2>&1

USRneeds='expr "\'du -s S{INSPATH}/usr\'"\
: "\([0-9]*\).*"'

USRspace='expr "\'df lusr 2>/dev/null\'"\
: '.*: *\([0-9]*\)"

32 Integrating Software With the 386/ix Operating System - Release 2.0

if

then

fi

["SUSRspace" -It "SUSRneeds" 1

echo "**ERROR**"
echo "S{PKGNAME} cannot be installed
echo "Not enough space on the hard disk."
echo "There are SUSRspace blocks available"
echo "on the /usr file system --"
echo "SUSRneeds blocks are needed."
exit

else
USRneeds=O

fi
if expr 'ls -a S{DRIVER} : wc -1' \> 2 >/dev/nu11
then

ROOTneeds='expr "\'du -s S{DRIVE}\'" \
: "\([0-91*\).*"'
drexist=1

else
ROOTneeds=O
drexist=O

fi
ROOTneeds='expr "\'du -s S{INSPATH}\'" \

: "\([0-91*\).*"'
ROOTneeds='expr S{ROOTneeds) - S{USRneeds}'

ROOTspace='expr "\'df / 2>/dev/nu11\'" \
: '.*: *\([0-91*\)"

if

then

fi

["S{ROOTspace:-2000}" -It ".SROOTneeds" 1

echo "**ERROR** S{PKGNAME} cannot be installed
echo "Not enough space on the hard disk."
echo "There are SROOTspace blocks available"
echo "on the / (root) file system --"
echo "'ROOTneeds blocks are needed."
exit

Do special work before files are copied in.
trap "trap 1 2 3 9 15; rm -f /tmp/*SS; exit 1" 1 2 3

if ["Sexpect" -eq 1 1
then

fi

cp /insta11/Spkg/insta11/R1ist.Spkg /tmp/Fi1esS$
cp /insta11/Spkg/insta11/Remove /tmp/RemoveSS
if [-f /insta11/Spkg/insta11/preinsta11 1
then /bin/sh /insta11/Spkg/insta11/preinsta11
fi

if ["Sdrexist" = 1 1
then

cd S{DRIVER}
echo "Installing driver(s): please wait"
for dir in 'ls'
do

cd Sdir
S{CONF}/bin/idcheck -p Sdir > /dev/nu11 2>&1
if [I? 1= 0 1
then

Integrating Software With the 386jix Operating System - Release 2.0 33

done
fi

else

fi

if [-d S{CONF}/pack.d/Sdir 1
then

.{CONF}/bin/idinstall -u -k 'dir
else

S{CONF}/bin/idinstall -a -k Sdir
fi

S{CONF}/bin/idinstall -a -k Sdir \
>/dev/null 2>&1

if [S? 1= 0 1
then

fi
cd

echo "\n\tThe installation cannot be"
echo "completed due to an error in the"
echo "'Sdir' driver installation."
exit

if expr 'ls -a S{INSPATH}
then

wc -1' \> 2 >/dev/null

fi

cd S{INSPATH}
echo "The following files are being installed:"
find • -print l cpio -pduvm I

Do special work after files are copied in.

done

cd linstall/Spkg/install
if [-f link 1
then

.. /link
fi
if [-f setup
then

. ./setup
fi
echo "Floppy diskette number Sexpect is complete"
expect='expr Sexpect + l'

Do special work after files are copied in.
cd linstall/Spkg/install
if [-f post install]
then

. ./postinstall
fi

if [1 -d lusr/options
then

fi

mkdir lusr/options
chmod 755 lusr/options

echo "SPKGNAME" >/usr/options/Spkg.name
chmod 744 /usr/options/Spkg.name

if [1 -d S{INSDIR} 1
then

mkdir S{INSDIR}
chmod 755 S{INSDIR}

fi
if [1 -d S{INSDIR}/Flles

34 Integrating Software With the 386jix Operating System - Release 2.0

done
exit

then

fi

mkdir ${INSDIR}/Files
chmod 755 S{INSDIR}/Files

mv Itmp/Files$$ ${INSDIR}/Files/Spkg.name

if [I -d ${INSDIR}/Remove 1
then

fi

mkdir ${INSDIR}/Remove
chmod 755 ${INSDIR]/Remove

mv Itmp/Remove$$ $ {INSDIR}/Removel$pkg.name
echo "Installation of the $ {PKGNAME} is complete."
cd $cwd

Integrating Software With the 386jix Operating System - Release 2.0 35

2. uninstall

Copyrighted as an unpublished work.
(c) Copyright 1987 INTERACTIVE Systems Corporation
All rights reserved.

RESTRICTED RIGHTS

These programs are supplied under a license. They may be
used disclosed, and/or copied only as permitted under such
license agreement. Any copy must contain the above copyright
notice and this restricted rights notice. Use, copying,
and/or disclosure of the programs is strictly prohibited
unless otherwise provided in the license agreement.

#ident

"@(#)UNINSTALL.sh 2.2 - 88/09/02"

Get the packages on this diskette

CONF=/etc/conf
INSPATH=/install
ERROR="An error was encountered during removing the driver,"
ERROR2="package removal failed"
cwd='pwd'
cd SINSPATH
set 'Is -d ?????'
cd $cwd
nbrpkgs=S#
if ["Snbrpkgs" -eq "1" 1
then

pkgs=$1
else

pkgs="S*"
fi
for pkg in $pkgs
do

PKGNAME='cut -f1 -d'-' /install/$pkg/install/Spkg.name'
FREL='cut -f2 -d'-' /install/Spkg/install/Spkg.name'
if [-s lusr/options/Spkg.name 1
then

HREL='cut -f2 -d'-' /usr/options/$pkg.name'
else

HREL=SFREL
fi

if ["$FREL" 1= "$HREL"
then

fi

echo "\nThe Version of $PKGNAME on the hard disk"
echo "is $HREL, which is different than the"
echo "Version on this floppy (SFREL)"
echo "The wrong files may be removed."

echo Remove the S{PKGNAME:-Spkg} package? "(y): \c"
read resp
["'resp" = On" -0 "Sresp" = "N" 1 && continue

Remove drivers before unsetup calls kconfig

if -f /install/Spkg/install/drivers
then

36 Integrating Software With the 386jix Operating System - Release 2.0

echo "The following driver(s) is being removed:"
cat /install/Spkg/install/drivers : while read dname
do

echo "\tSdname"
S{CONF}/bin/idcheck -p Sdname >/dev/null 2>&1
if [S? 1 = 0 1
then

if [-f ${CONF}/pack.d/Sdname/stubs.c
then

S{CONF}/bin/idinstall -gs $dname : \
sed -e 's/Y/N/' >System

fi

done
fi

else

fi

${CONF}/bin/idinstall -eus Sdname

S{CONF}/bin/idinstall -dopnirhclz\
Sdname >/dev/null 2>&1

S{CONF}/bin/idinstall -d Sdname\
>/dev/null 2>&1

if $? 1= 0 1
then

fi

echo $ERROR
echo SERROR2
exit 1

Remove linked files and invoke unsetup file

[-f /install/Spkg/install/unlink 1 \

&& /bin/sh /install/Spkg/install/unlink
-f /install/Spkg/install/unsetup] \
&& /bin/sh /install/Spkg/install/unsetup

Remove the files found in the Rlist file from the hard
disk.

done

echo "The following files are being removed:"
for i in 'cat /install/Spkg/install/Rlist.Spkg'
do

echo Si
rm -fr Si

done

echo "The S{PKGNAME} has been removed."

Integrating Software With the 386jix Operating System - Release 2.0 37

3. dependenc i e s
Check that the XXYZZ has already been installed.

if
test

then
echo
echo
exit

fi

1 -s lusr/options/xxyzz.name

"**ERROR** S{PKGNAME) cannot be installed
"It requires the XXYZZ Package to be installed first."
1

4. postinstall
Shell script to install driver description
and then call kconfig

if fgrep "MYSUB description" \
letc/conf/kconfig.d/description > Idev/null 2>&1

then
echo Driver information is already there
letc/kconfig
else
cat «-\1 ed -s letc/conf/kconfig.d/description
Sa
taco

w
q
1
letc/kconfig
fi

taco MYSUB description

Integrating Software With the 386jix Operating System - Release 2.0 39

Appendix C: BUILDING A SUBSET WITHOUT THE TOOLS

1. BUILDING A SUBSET WITHOUT DRIVERS

The tools on the Software Integration Tools subset diskette are not
required to make a 386jix install able subset. However, if you do
not use the tools, you must perform most of the process manually.
The necessary steps for a subset consisting of only one diskette are
described here.

This section assumes that you have read and understood the con­
cepts in §1 and 2, "INTRODUCTION" and "INTEGRATING
APPLICATIONS WITH THE 386jix OPERATING SYSTEM."

1. Create a file system on the diskette using the mkf s utility:
letc/mkfs Idev/dsk/fOq15dt 2300:250 2 30

Use the device name fOq15dt for 51~" diskettes; for 3W'
diskettes, use the device name f 0 q 18d t rather than
fOq15dt.

2. Label the diskette:
letc/labelit Idev/dsk/fOq15dt install mysub.1

where mysub is the name of the package and . 1 indicates
that it is the first diskette.

3. Mount the diskette by typing:
mount Idev/dsk/fOq15dt linstall

4. Create the appropriate directories:
mkdir linstall/install
mkdir linstall/mysub
mkdir linstall/mysub/driver
mkdir linstall/mysub/install
mkdir linstall/mysub/new

5. Copy the INSTALL and UN INSTALL scripts to the
lin s t a 11 lin s t a 11 directory. If you copy these scripts
from another 386jix subset rather than typing them in manu"
ally, make sure you replace all instances of ?? by ????? in
these scripts.

6. In the directory linstall/mysub/install, create the
following files with the following contents:

• NBRDISKS
This contains the number of diskettes in the subset, typi­
cally 1.

40 Integrating Software With the 386jix Operating System - Release 2.0

• ORDER
This contains the number of this diskette in the subset,
typically 1.

• Rlist.mysub
This contains a list of files that need to be removed when
the package is removed.

• mysub. name
This contains a one-line description of the subset and its
version number.

• copyright
This contains a shell script that will produce copyright
information.

The optional files mentioned in §2.3.3, such as
postinstall and setup, can be installed in this direc­
tory as well.

7. Now copy the software tree of the subset to
/install/mysub/new, and on the last diskette, you
should copy the file called mysub. name to
/install/mysub/new/usr/options.

8. Unmount the diskette by typing:
cd / ; umount /install

2. BUILDING A SUBSET WITH DRIVERS

This section assumes that you have read and understood the con­
cepts in the rest of this document. To make a 386jix subset that
contains device drivers without using the tools, follow the steps men­
tioned in §3. 7, without unmounting the diskette, and in addition,
execute the following steps:

1. Make sure you· have separate directories for all the drivers
belonging to the subset, each containing at least a
Dr i ver. 0, Master, and System file.

2. After having copied the software tree, WITH THE EXCEP­
TION OF THE DRIVER MODULES, copy all driver module
directories to /install/mysub/driver, not to
/install/mysub/new.

Integrating Software With the 386/ix Operating System - Release 2.0 41

3. Create a file containing the names of each driver
directory, one per line, and copy it to
/install/mysub/install/drivers.

4. Unmount the diskette by typing:
cd / ; umount /install

Integrating Software With the 386jix Operating System - Release 2.0 43

Appendix D: RELATED MANUAL ENTRIES

This appendix contains 386 fix Operating System manual entries of
interest when using this document.

idinstall (1M) idinstall (1M)

NAME
idinstall - add, delete, update, or get device driver configuration data

SYNOPSIS
/etc/conf/bin/idinstall -[adug] [-e] -[msoptnirhcl] -Rdir
dev-Dame

DESCRIPTION

386/ix

The idinstall command is called by a Driver Software Package (DSP)
Install script or Remove script to Add (-a), Delete (-d), l'lJJate
(-u), or Get (-g) device driver configuration data. Idinstall expects
to find driver component files in the current directory. When com­
ponents are installed or updated, they are moved or appended to files
in the /etc/conf directory and then deleted from the current directory
unless the -k flag is used. The options for the command are as
follows:
Action Specifiers:

-a Add the DSP components
-d Remove the DSP components
-u Update the DSP components
-g Get the DSP components (print to std out, except Master)

Component Specifiers (if no component is specified, the default is all
options except for the -g option, where a single component must be
specified explicitly):

-m Master component
-s System component
-0 Driver.o component
-p Space.c component
-t Stubs.c component
-n Node (special file) component
-i Inittab component
-r Device Initialization (rc) component
-h Device shutdown (sd) component
-c Mfsys component: file system type config (Master) data
-I Sfsys component: file system type local (System) data
-z Define component: list of preprocessor symbols needed to

compile this module
Miscellaneous:

-e Disable free disk space check
-k Keep files (do not remove from current directory) upon add

or update.
In the simplest case of installing a new DSP, the command syntax used
by the DSP's Install script should be:

idinstall -a dev---Ilame

- 1 - Release 2.0

idinstall (1 M) idinstall (1 M)

In this case the command will require and install a Driver.o,
Master and System entry, and optionally install the Space.c,
Stubs.c, Node, Init, Rc, Shutdown, Mfsys, and Sfsys com­
ponents if those modules are present in the current directory.

The Driver.o, Space.c, and Stubs.c files are moved to a directory in
/etc/conf/pack.d. The dev-.name is passed as an argument, which is
used as the directory name. The remaining components are stored in
the corresponding directories under /etc/conf in a file whose name is
dev-Dame. For example, the Node file would be moved to
/ etc/ conf /node.d/ dev-Dame.
The idinstall -m usage provides an interface to the idmaster com­
mand which will add, delete, and update mdevice file entries using a
Master file from the local directory. An interface is provided here so
that driver writers have a consistent interface to install any nsp
component.
As stated above, driver writers will generally use only the idinstall -a
dey_name form of the command. Other options of idinstall are pro­
vided to allow an update nsp (i.e., one that replaces an existing device
driver component) to be installed, and to support installation of multi­
ple controller boards of the same type.
If the call to idinstall uses the -u (update) option, it will:

Overlay the files of the old nsp with the files of the new nsp.
Invoke the idmaster command with the "update" option if a
Master module is part of the new nsp.

Idinstall also does a verification that enough free disk space is avail­
able to start the reconfiguration process. This is done by calling the
ids pace command. Idinstall will fail if insufficient space exists,and
exit with a non-zero return code. The -e option bypasses this check.
Idinstall makes a record of the last device installed in a file
(jetc/.lasLdev-.add) and saves all removed files from the last delete
operation in a directory (jetc/.lasLdev_del). These files are recovered
by /etc/conf/bin/idmkenv whenever it is determined that a system
reconfiguration was aborted due to a power failure or unexpected sys­
tem reboot.

ERROR MESSAGES
An exit value of zero indicates success. If an error was encountered,
idinstall will exit with a non-zero value and report an error message.
All error messages are designed to be self-explanatory. Typical error
messages that can be generated by idinstall are as follows:

Device package already exists.
Cannot make the driver package directory.
Cannot remove driver package directory.
Local directory does not contain a Driver object (Driver.o) file.
Local directory does not contain a Master file.
Local directory does not contain a System file.
Cannot remove driver entry.

SEE ALSO
idspace(IM), idcheck(lM);
mdevice(4), sdevice(4) in the Programmer's Reference Manual.

386/ix - 2- Release 2.0

idmkinit{ 1M) (Addendum) idmkinit (1 M)

NAME
idmkinit - read files containing specifications, 386/ix addendum

ENHANCED FUNCTIONALITY
Files in /etc/conf/init.d that have the same name as a DSP driver will
only be included in /etc/inittab if the driver is configured. All of the
other files in /etc/conf/init.d will always be included.

EXAMPLE

386/ix

/etcjconfjinit.djfoo will always be included in jetcjinittab, providing
there is no driver named foo.
jetcjconfjinit.djasy will only be included in jetcjinittab if asy is
configured in the sdevice file.

- I - Release 2.0

insdriver{ 1) insdriver (1)

NAME
insdriver - install kernel driver files

SYNOPSIS
insdriver [-r rooLdirectory] [-d driver_directory]
[-n driver-Ilame]

DESCRIPTION
The insdriver command creates the kernel module directory, copies the
driver files into it, and optionally, executes jetejkeonfig to configure
and build a kernel.
By default, the configuration directory is jetejeonf; this may be over­
ridden by setting the environment variable SROOT, or by using the -r
option on the command line. Setting SROOT will cause the
configuration directory to become SROOTjetejeonf. The SCONF
environment variable is no longer used by insdriver, inskern, or kconfig
(see inskern(1) and kconfig(l). This requires that the directory
jetejeonf exist in $ROOT.
For a description of the configuration directory and kernel module
files, see chapter 3 of the Integrated Software Development Guide.
The driver directory is the directory currently containing the driver
files. If not supplied on the command line, insdriver queries for the
driver directory.
If the driver name is not supplied on the command line, insdriver
queries for the name. This name must be the name of the driver
object file (.0 file) and is the name that will be used in the system file
modules list.
Insdriver queries for a one-line description of the driver. This descrip­
tion is entered in $CONF jmodulesjdeseription for use by the kconfig
command.
After the files in the
$CONF jmodulesj driver -'lame
ins driver queries for kernel
jete jkeonfig.

driver directory are copied to
and the description file is updated,
build and, on verification, executes

EXAMPLES

FILES

insdriver -c jtmpjtstconf -d mousedir -n mouse
The driver files in the directory mousedir will be copied to
jtmp jtsteonfjmodulesjmouse.

$CONF /modules/description
SEE ALSO

386jix

inskern(1), kconfig(1), mkunix(1 M),
Integrated Software Development Guide.

- 1 - Release 2.0

kconfig(1) kconfig(1)

NAME
kconfig - configure, build, and install a kernel

SYNOPSIS
kconfig [-r rooLdirectory]

DESCRIPTION
The kconfig command provides a menu interface to configure, build, or
install a kernel.
By default, the root of the directory tree in which the configuration
takes place is /ete/eonf; this may be overridden by setting the environ­
ment variable SROOT or by using the -r option on the command line.
This root will be referred to as SROOT throughout this manual entry.
System files are contained in SROOT/ete/eonf/cf.d. The kconfig com­
mand performs all modifications to the system files via menu choices.
The possible responses to kconfig menus are:

a number corresponding to the menu item choice
an m, to return to the previous menu
a q, to quit and exit the program

Each of the above must be followed by I"::IRE=TU=R=-=N-:"II.

Where a kconfig query ends with text within parentheses, that text is
the default. Using I RETURN I will select the default. Otherwise, enter
the requested information, followed by IRETURNI.

Menus

386/ix

If the SROOT directory has not been specified, kconfig will query for
the needed information before the first menu appears.
Top Level Menu

MAIN MENU

1) CONFIGURE KERNEL
2) BUILD A KERNEL
3) INSTALL A KERNEL

Enter Choice [1-3,q]:

Choice 1 will cause the Kernel Configuration Menu to be displayed
(see Kernel Configuration Menu below).
Choice 2 will build the kernel by executing
SROOT/ete/eonf/bin/idbuild. The kernel will be built as configured in
choice 1. If the kernel build is successful, kconfig will query for kernel
installation. If the kernel is to be installed, /ete/inskern will be exe­
cuted (see inskern(1)).
Choice 3 will put up the Install Kernel Menu, which is used to install
a previously built kernel (see Install Kernel Menu below).
Install Kernel Menu
Before displaying the menu, kconfig prints a notice that a system shut­
down is required to install a kernel (see shutdown(1M». This menu
displays all kernels contained in the SROOTjetejeonfjkeonfig.d. direc­
tory. For example:

- 1 - Release ~.O

kconfig(1) kconfig(1)

386/ix

CHOOSE THE KERNEL TO INSTALL

1) unix.1
2) unix.2

Enter Choice [1-2,m,q]:

The number chosen indicates which kernel will be installed. After ver­
ifying the choice, kconfig queries for the shutdown grace period and
executes /etc/inskem to install the kernel.
Kernel Configuration Menu

The kernel configuration menu presents menu choices for modifying
system file(s). After returning from the Configuration Menu, if
modifications were made, kconfig asks whether to save the modified
system file(s).

CONFIGURATION MENU

1) ADD DRIVER
2) REMOVE DRIVER
3) ADD FACILITY
4) REMOVE FACILITY
5) ADD DEFAULT PARAMETERS FOR MEMORY SIZE
6) ADD TUNABLE PARAMETERS
7) CONFIGURE HIGH PERFORMANCE DISK DRIVER

Enter Choice [1-7,m,q]:

Choice 1 puts up the Add Driver Menu, which is used to include ker­
nel device driver modules in the set of configured modules (see Add
Driver Menu below). .
Choice 2 puts up the Remove Driver Menu, which is used to remove
kernel device driver modules from the set of configured modules (see
Remove Driver Menu below).
Choice 3 puts up the Add Facility Menu, which is used to include
groups of kernel modules in the set of configured modules (see Add
Facility Menu below).
Choice 4 puts up the Remove Facility Menu, which is used to remove
groups of kernel modules from the set of configured modules (see
Remove Facility Menu below).
Choice S puts up the Add Default Parameters Menu. This menu is
used to set predefined tunable parameters based on system memory
size (see Add Default Parameters Menu below).
Choice 6 adds user-entered tunable parameters to the stune snstem file.
Kconfig queries for the parameter name and value. Using _RETURN I
terminates the additions. If this is a new parameter (one that is not
already in the system file SROOT/cf.d/mtune), kconfig will query for
minimum, maximum, and default values.
Choice 7 presents a series of inquiries and menus used to configure the
High Performance Disk Driver (see "Configure High Performance
Disk Driver" below).

- 2 - Release 2.0

kconfig(1) kconfig(1)

386/ix

Add Driver Menu

This menu lists known drivers that are currently able to be configured
in the sdevice system file. The menu items are examples only and will
vary according to the sdevice file contents.

CHOOSE A DRIVER TO ADD TO THE CURRENT CONFIGURATION

1) tty line discipline 0
2) Mouse driver

Enter Choice [1-2.m.q]:

After verifying the choice, kconfig includes the corresponding kernel
driver module in the sdevice system file. It does this by setting the
second field to Y for that entry.
Remove Driver Menu

This menu lists drivers that can be removed from the sdevice system
file. These drivers are modules currently included in the sdevice file
(entries having the second field set to V). The menu items are exam­
ples only and will vary according to the sdevice file contents.

CHOOSE A DRIVER TO REMOVE FROM THE CURRENT CONFIGURATION

1) AT serial I/O Driver
2) AT floppy disk driver
3) AT hard disk diskdriver
4) AT Line Printer Driver
5) AT Wangtek cartridge tape driver
6) AT Bell Technologies Hub board
7) Shell Layers Driver

Enter Choice [1-7,m,q]:

After verifying the choice, kconfig removes the corresponding kernel
driver module from the system file by setting the second field to N for
that entry.
Add Facility Menu

This menu lists kernel facilities whose modules are not in the set of
currently configured modules. The menu items are examples only and
will vary according to the contents of this file.

CHOOSE A FACILITY TO ADD TO THE CURRENT CONFIGURATION

1) Kernel Debugger
2) Unix Kernel Profiler
3) SunRiver Fiber Optic Station
4) 386/ix TCP/IP

Enter Choice [1-2,m,q]:

After verifying the choice, kconfig adds the corresponding group of
kernel modules to the sdevice file by setting the second field to Y for
that entry.
Remove Facility Menu

This menu lists kernel facilities whose modules are in the current
sdevice file. The menu items are examples only and will vary accord­
ing to the system file contents.

- 3 - Release 2.0

kconfig(l) kconfig(1)

386/ix

CHOOSE A FACILITY TO REMOVE FROM THE CURRENT CONFIGURATION

1) MS-DOS File System Service
2) Inter Process Communication
3) Shared Memory

Enter Choice [1-3,m,q]:

After verifying the choice, kconfig removes the corresponding
group of kernel modules from the system file.

Add Default Parameters Menu
This menu lists the available predefined tunable parameter sets that
are based on memory size. The actual list may differ from the one
shown here.

CHOOSE THE CLOSEST MEMORY SIZE

1) 2MB
2) 4MB
3) 8MB
4) 16MB

Enter Choice [1-4,m,q]:

The standard kernel supplied with the system is optimized for a system
with only 2 MB of RAM. Although all memory that is located when
386jix boots will be used, performance will increase if memory can be
dedicated to system buffers and other kernel structures. This option
allows you to tune the kernel to make more efficient use of different
amounts of system memory. If the amount of memory you have
installed falls between the available choices, choose the next lowest
option. The 386jix Operating System will operate unreliably if the
system does not have as much memory as the kernel expects.
Configure High Performance Disk Driver
This section summarizes the inquiries and menus that will be
presented. See section 11.3 of "386jix Maintenance Procedures" for a
complete discussion of the configuration restrictions and related infor­
mation, as well as a more in-depth step-by-step presentation of the
configuration process.
Step 1.
The initial series of inquiries and menus concern the fixed disk con­
troller configuration. The following is the decision path for the top­
level questions:
Is there a standard AT controller? (ST-S06, RLL, ESDI) (y):

If yes: Do you have a secondary AT controller? (y):
If no: Do you have a SCSI host controller? (y):

If no: Do you have a SCSI host controller? (y):

The following are the menus and inquiries that will be presented if the
response is y to either question regarding a SCSI host controller:

- 4 - Release 2.0

kconfig(1) kconfig(1)

386/ix

SCSI CONTROLLER SUPPORTED

1) FUTURE DOMAIN
2) ADAPTEC

Enter Choice [1-2,q]:

If the choice from the previous menu was 2, the following menu will be
displayed (note that the actual menu may not contain all of these
choices; refer to the discussion in section 11.3.1 of "386jix Mainte­
nance Procedures"):
INTERRUPT VECTOR CONTROLLER SETTING

1) INTERRUPT VECTOR 5
2) INTERRUPT VECTOR 11
3) INTERRUPT VECTOR 14
4) INTERRUPT VECTOR 15

Enter Choice [1-4,q]:

The following question will be asked (for both types of SCSI
controllers):
Is there a SCSI tape drive? (y):

Step 2.
The next series of questions and menus concern configuration of a
RAM disk:
Do you want a RAM disk? (y) :

If the response is y, the following menu will be displayed:
RAM DISK SIZE (in 4K blocks)

1 256 (1 MB) 10) 1408 (5.5 MB)
2 384 (1 .5 MB) 11) 1536 (6 MB)
3 512 (2 MB) 12) 1664 (6.5 MB)
4 640 (2.5 MB) 13) 1792 (7 MB)
5 768 (3 MB) 14) 1920 (7.5 MB)
6 896 (3.5 MB) 15) 2048 (8 MB)
7 1024 (4 MB) 16) 2176 (8.5 MB)
8 1152 (4.5 MB) 17) other
9 1280 (5 MB)

Enter Choice [1-17,q]:

If the choice from the previous menu was 17, the following will be
displayed:
Specify the size in 4K blocks (do NOT specify in MB):

Step 3.
The selected configuration will be presented for verification. The
configuration shown below is an example only.

- 5 - Release 2.0

kconfig(1) kconfig(1)

The configuration selected is as follows:

Primary:
Standard AT controller
Number of disk drives:
Interrupt vector:

Secondary:
SCSI controller, Future Domain

2 (maximum supported)
14

Number of disk drives: 4 (maximum supported)
Interrupt vector: 5
SCSI tape drive

RAM disk: 256 4K blocks

The following question will then be asked:
IS THIS THE DESIRED CONFIGURATION (y):

If the response is y, the following will be displayed:
High Performance Disk Driver configured.

If the response is n, there is an opportunity to configure it again:
DO YOU WANT TO START OVER (y):

will be displayed.
Description File

386/ix

The kernel module descriptions and group designations used by the
configuration menus are obtained from the file
SROOTjetcjconfjkconfig.djdescription. This file lists the kernel
module names and description and the group designations.
Description file format

module
name

Example

group
name

description

asy io AT serial I/O Driver
hub io AT Bell Technologies Hub board
lp io AT Line Printer Driver
sxt io Shell Layers Driver
wt io AT Wangtek cartridge tape driver

ipc Inter Process Communication
ipc ipc ipc common routines
msg ipc ipc message facility
sem ipc ipcsemaphore facility
The module name is the name of the system file entry. The group
name is the group for that module; group name io designates I/O
drivers. A ""-" in the module name designates the description used on
the menus for the designated group.
For example, the group name ipc designates a kernel facility. The
description field on the line with module name ""-" and group name
ipc is the description used on the Add or Remove Facilities Menus.
The lines with module names and group ipc designate the module list
for that group. In this case, adding or removing the facility Inter Pro­
cess Communication would add or remove the modules ipc, msg, and
sem.

- 6 - Release 2.0

kconfig(1) kconfig(1)

Note that the "-" columns in the above example must be present.
These fields are reserved for future function information.

FILES
$ROOT / etc / conf /kconfig.d

SEE ALSO
inskern(1), shutdown(1 M),
"386/ix Maintenance Procedures."

WARNINGS
The kconfig command can be executed only by user root. To install a
kernel, kconfig should be executed from the / (root) directory.

386/ix - 7 - Release 2.0

INTERACTIVE
• • • • • • • • • • • • • •
A Kodak Company

