
.
Model 1

User's Manual

c. 11. G£-rrE:. L.. Model 1
User's Manual

Publication Number 29-215

INFORMATION CONTAINED IN THIS
MANUAL IS SUBJECT TO DESIGN

CHANGE OR PRODUCT IMPROVEMENT

© INTERDATA INC., 1970
All Rights Reserved

Printed in U.S.A. • September 1970

QUICK REFERENCE INDEX

To aid in quickly locating a particular chapter, the index marks on the
edge of this page are aligned with similar marks on the first page of
each chapter.

Chapter 1 INTRODUC TION •
Chapter 2 SYSTEM DESCRIPTION •
Chapter 3 INSTRUCTION FORMATS AND ADDRESSING MODES •
Chapter 4 INSTRUCTION REPERTOIRE •
Chapter 5 INPUT/OUTPUT (I/O) SYSTEM •
Chapter 6 MEMORY SYSTEM •
Chapter 7 CONTROL PANEL •
Chapter 8 PERIPHERAL DEVICES •
Chapter 9 CONFIGURATION AND INSTALLATION PLANNING •
Chapter 10 BASIC MODEL 1 PROGRAMMING •
Chapter 11 MODEL 1 SOFTWARE •

MODEL 1 USER'S MANUAL

Chapter Page

1 INTRODUCTION 1-1

1.1 General Features 1-1

1.2 Memory 1-1

1.3 Input/Output 1-1
1.3.1 Multiplexor Bus 1-1
1.3.2 Direct Memory Access Channel (DMAC) 1-2

1.4 Control Options 1-2

1.5 Peripherals 1-3
1.5.1 Digital Multiplexor 1-3
1.5.2 Intertape System 1-3
1.5.3 Mini Disc System 1-3
1.5.4 Magnetic Tapes 1-3
1.5.5 Data Communications Equipment 1-3
1.5.6 Paper Tape Equipment 1-4
1.5.7 Card Reader 1-4
1.5.8 System Modules 1-4
1.5.9 Conversion Equipment 1-4
1. 5.10 Other Interfaces 1-4

1.6 Software 1-4
1.6.1 Assembler 1-4
1.6.2 Modell Text Editor 1-5
1.6.3 Model 1 Debug 1-5
1.6.4 Modell Loader 1-5
1.6.5 Model 1 Diagnostics 1-5
1.6.6 Modell Monitor 1-5
1.6.7 Model 3, 4, 5/Modell Assembler 1-6
1.6.8 Modell Simulator 1-6

1.7 Customer Support 1-6
1.7.1 Field Service 1-6
1.7.2 Training Center 1-6
1.7.3 Systems Engineering 1-7

1.8 Interchange 1-7

2 SYSTEM DESCRIPTION 2-1

2.1 General Block Diagram Description 2-1

2.1.1 Program Status Word (PSW) 2-2
2.1.2 Page Buffer Register (PBR) 2-2
2.1.3 Page Address Register (PAR) 2-2
2.1.4 Byte Address Register (BAR) 2-2

iii

Chapter

MODEL 1 USER'S MANUAL (Cont)

Page

2.1. 5 Memory Data Register (MDR)
2.1. 6 Instruction Register(IR)
2.1. 7 Accumulator Register (AR)
2.1. 8 Interrupt Queue Register (IQR)
2. 1. 9 Interrupt Mask Register (IMR)
2. 1. 10 Serial Input/Output Port
2. 1. 11 Multiplexor I/O Bus
2.1.12 Memory Bus
2. 1. 13 Memory Modules

2-2
2-4
2-4
2-4
2-4
2-4
2-4
2-4
2-5

2.2 Interrupts 2-5
2.2.1 Introduction 2-5
2.2.2 BlockDiagram 2-6

2.2.2.1 Interrupt Queue Register (IQR) 2-6
2.2.2.2 Interrupt Mask Register (IMR) 2-7
2.2.2. 3 Interrupt Enable (E) Bit 2-7
2.2.2.4 Interrupt Service Table 2-8

2.2. 3 General Notes on Interrupts 2-9

3

4

iv

INSTRUCTION FORMATS AND ADDRESSING MODES

3. 1 Introduction

3. 2 Instruction Formats
3.2.1 A Register/Carry Format
3.2.2 Input/Output Format
3.2.3 Command Format
3.2.4 Shift/Rotate Instruction Format
3.2. 5 Immediate Format
3.2. 6 Memory Reference Format

3. 3 Addressing Modes
3.3.1 Direct Addressing Mode
3.3.2 Indirect Addressing Mode
3.3.3 Auto-Indexing

3.4 Addressing Mode Summary

INSTRUCTION REPERTOIRE

4. 1 Introduction

4.2 A Register-Carry Instructions
4. 2. 1 Add One to A AO
4.2.2 Test and Skip TS
4.2.3 Complement A CA
4.2.4 Add A to A with Carry Out AA
4.2.5 Clear Accumulator CLR

3-1

3-1

3-2
3-2
3-3
3-3
3-3
3-4
3-4

3-4
3-5
3-6
3-7

3-9

4-1

4-1

4-1
4-2
4-3
4-3
4-3
4-4

Chapter

MODEL 1 USER'S MANUAL (Cant)

Page

4.2.6 No Operation NOP
4.2.7 SetCarrySC
4.2.8 Reset Carry RC
4.2.9 Complement Carry CC

4-4
4-4
4-4
4-5

4. 3 Shift/Rotate Instructions 4-5
4. 3.1 Shift SH 4-6
4.3.2 Rotate RT 4-8

4.4 Input/Output Instructions 4-9
4.4.1 Address ADR 4-10
4.4.2 Output Command OC 4-10
4.4.3 Write Data WD 4-10
4.4.4 Write Data and Skip WDS 4-11
4.4.5 Acknowledge AK 4-12
4.4.6 Sense Status SS 4-12
4.4.7 Read Data RD 4-12
4.4. 8 Read Data and Skip RDS 4-12
4.4. 9 Write Block WB 4-13
4.4.10 Read Block RB 4-14
4.4.11 Pulsed I/O PIO PI, P2, P3 4-15

4. 5 Command Instruction 4-16
4.5.1 Command C 4-16

4. 6 Immediate Instructions 4-18
4.6.1 Load Immediate LI 4-19
4. 6. 2 And Immediate NI 4- 20
4.6. 3 OR Immediate 01 4-20
4.6.4 Exclusive OR Immediate XI 4-20
4. 6. 5 Add Immediate AI 4- 21
4.6.6 Subtract Immediate SI 4-21

4.7 Memory Reference Instructions 4-21
4.7.1 Branches 4-22

4. 7•1. 1 Branch B 4- 23
4.7.1.2 Direct In Page Zero

(Bits 6 and 7 = 00) 4- 23
4. 7 •1. 3 Direct In Current Page

(Bits 6 and 7 = 01) 4-23
4. 7. 1. 4 Indirect through Page Zero

(Bits 6 and 7 = 10) 4-23
4. 7•1. 5 Indirect through the Current

Page (Bits 6 and 7 = 11) 4-24

4. 7• 2 Branch and Link BAL
4. 7.2.1 Direct In Page Zero

(Bits 6 and 7 = 00)

4-24

4-24

v

Chapter

MODEL 1 USER'S MANUAL (Cant)

Page

4. 7• 2. 2 Direct In Current Page 4- 24
4. 7. 2. 3 Indirect through Page Zero

(Bits 6 and 7 = 10) 4-23
4.7.2.4 Indirect through the Current

Page (Bits 6 and 7 = 11) 4-25
4. 7 • 3 Arithmetic and Logical Memory

Reference Instructions 4-25
4.7.3.1 Add A 4-27
4.7.3.2 Subtract S 4-27
4.7.3.3 Exclusive ORX 4-28
4.7.3.4 OR 0 4-28
4.7.3.5 AND N 4-29
4.7.3.6 Store ST 4-29
4.7.3.7 Load L 4-29
4.7. 3. 8 Increment and Skip on

Not Zero ISN 4-30
4.7.3.9 Increment and Skip on

Zero ISZ 4-30
4.7.4 Bit Operation Memory Reference

Instructions 4-30
4.7.4.1 AND BIT NB 4-31
4.7.4.2 OR BIT OB 4-32

5 INPUT/OUTPUT (I/O) SYSTEMS 5-1

vi

5. 1 Introduction 5-1

5.2 I/O System Block Diagram Analysis 5-1
5. 2. 1 Multiplexor Channel 5-1
5.2.2 Selector Channel 5-6
5.2. 3 Universal Memory Bus Interface (UMBI) 5-11
5.2.4 Direct Memory Connection 5-11

5. 3 Input/Output Instructions 5-11
5.3.1 Introduction 5-11
5. 3.2 Address ADRS 5-13
5. 3. 3 Output Command OC 5-14
5.3.4 Write Data WD 5-15
5. 3. 5 Sense Status SS 5-17
5.3. 6 Read Data RD 5-18
5. 3. 7 Acknowledge AK 5-19
5. 3. 8 Read Data and Skip RDS 5-21
5. 3. 9 Write Data and Skip WDS 5-23
5.3.10 Read Block RB 5-24
5. 3.11 Write Block WB 5-25

MODEL 1 USER'S MANUAL (Cont)

Chapter Page

5.4 Device Controller Logic Design 5-25
5.4.1 Multiplexor Channel 5-25
5.4.2 Device Controller Address ing 5-28
5.4.3 Data and Status Input 5-30
5.4.4 Data and Command Output 5-32
5.4.5 Interrupt Control 5-32
5.4.6 Multiplexor Channel Wiring 5-37
5.4.7 Multiplexor Channel Timing 5-37

5.5 Standard I/O Board 5-39
5.5.1 Introduction 5-39
5.5.2 Communications Logic 5-39
5.5.3 Wire-Wrap Facilities 5-39

5.6 Pulsed Input/Output 5-41
5.6.1 Pulsed I/O Instruction 5-44
5.6.2 Use of the Pulsed I/O Instruction 5-45

5.7 Serial Input/Output Port 5-46
5.7.1 Operation With a Teletypewriter 5-47
5.7.2 Operation With a Device Different

From a Teletypewriter 5-48

6 MEMORY SYSTEM 6-1

6.1 Introduction 6-1

6.2 Core Memory Modules 6-2

6.3 Read-Only-Memory Module 6-3

6.4 Parity Option 6-3

6.5 Memory Bus 6-4
6.5.1 Priority On The Memory Bus 6-6
6.5.2 Interfacing to the Memory Bus 6-7
6.5.3 Memory Bus Timing 6-12

7 CONTROL PANEL 7-1

7.1 Introduction 7-1

7.2 Standard Control Panel Description 7-1
7.2.1 Indicator Lamps 7-1
7.2.2 Data Switches 7-3
7.2.3 Control Switches 7-3
7.2.4 Key Operated Security Lock 7-4

7.3 Control Panel Operating Procedures 7-4

vii

MODEL 1 USER'S MANUAL (Cant)

Chapter Page

7.4 Control Panel Programming 7-7

7.5 Auto-Control Panel 7-7

8 PERIPHERAL DEVICES 8-1

8.1 Introduction 8-1

8.2 Peripheral Devices 8-1
8.2.1 Teletypewriters 8-1
8.2.2 Paper Tape and Card Equipment 8-1
8.2.3 Magnetic Storage Systems 8-2
8.2.4 System Modules 8-3
8.2.5 Digital Input/Output Multiplexor

Equipment 8-4
8.2.6 Data Communications Equipn1ent,

Character Buffered Half Duplex
Line Adapter 8-5

8.2.7 Conversion Equipment 8-5

8.3 Teletype (With Teletype Controller) Operation
and Programming 8-7

8.3.1 Device/Controller Description 8-7
8.3.2 Power Control 8-9
8.3.3 Status and Commands 8-9
8.3.4 Device Number 8-9
8.3.5 Interrupts 8-11
8.3.6 Initialization 8-11
8.3.7 ASR-35 Features 8-11
8.3.8 Paper Tape Reader 8-11
8.3.9 Paper Tape Punch 8-13
8.3.10 Data Formats 8-14
8.3.11 Program Examples 8-15

8.4 High Speed Paper Tape Reader/Punch
Operation and Programming 8-16

8.4.1 Introduction 8-16
8.4.2 General Des cription 8-16
8.4.3 Status and Command 8-18
8.4.4 Interrupts 8-20
8.4.5 Initialization 8-20
8.4.6 Punch Power Controls 8-20
8.4.7 Mode Switching 8-21
8.4.8 Device Number 8-23

8.5 Card Reader Operation and Programming 8-23
8.5.1 General Description 8-23
8.5.2 Operator Controls 8-24

viii

Chapter

MODEL 1 USER'S MANUAL (Cont)

Page

8.5.3

8.5.4
8.5.5
8.5.6
8.5.7
8.5.8
8.5.9

8. 5. 2. 1 POWER
8.5.2.2 MOTOR Start
8.5.2.3 Read START
8. 5. 2.4 Read STOP
Status Indicator Lights
8. 5. 3.1 POWER On
8. 5. 3. 2 MOTOR On
8. 5. 3. 3 Read START
8.5. 3.4 Read STOP
8. 5. 3. 5 PICK FAIL
8. 5. 3. 6 CARD MOTION Error
8. 5. 3. 7 LIGHT CURRENT Error
8.5. 3.8 DARK CURRENT Error
Status and Command Bytes
Data Forn1at
Interrupts
Initialization
Operator Procedures
Programming

8-24
8-24
8-24
8-24
8-24
8-24
8-25
8-25
8-25
8-25
8-25
8-25
8-25
8-25
8-25
8-27
8-27
8-27
8-27

9

10

CONFIGURATION AND INSTALLATION PLANNING

9.1 Introduction

9.2 Basic Processor Chassis

9. 3 Expansion Chassis

9.4 Decorator Cover

9.5 Line Power Requirements

9. 6 Regulated Power

9. 7 Configuration Power Requirements

9.8 Configuration Constraints

9. 9 Installation

BASIC MODEL 1 PROGRAMMING

10. 1 Introduction
10.1.1 The Modell
10. 1. 2 Programmable Registers
10.1. 3 Arithmetic/Logical Unit
10. 1.4 2'S Complement Notation
10.1. 5 Hex Notation

10. 2 Addressing Techniques

9-1

9-1

9-1

9-1

9-2

9-2

9-3

9-3

9-4

9-4

10-1

10-1
10-1
10-1
10-1
10-2
10-2

10-3

ix

Chapter

MODEL 1 USER'S MANUAL (Cont)

Page

10. 3 Memory Organization

10.4 Basic Programn1ing Examples

10.5 Software and Program Usage
10. 5.1 Modell Software Summary
10. 5. 2 Model Tape Formats
10. 5. 3 Loading Procedure and Core Usage
10. 5.4 User Program Relocation in the

Modell

MODEL 1 SOFTWARE

11. 1 Modell Assembler

11

x

10.4.1
10.4.2

10.4.3

10.4.4
10.4.5
10.4.6

10.4.7
10.4.8

11.1.1
11.1.2
11.1.3

11.1.4

11.1.5

Moves
Multiple Precision Arithmetic

(Triple Precision Example)
Subroutine Linkage (Use of the

BAL Instruction)
Auto-Indexing/Auto-Skip
Condition Checks and Comparison
I/O Programming
10.4. 6.1 Parallel I/O
10.4. 6.2 Interrupt Mode
10.4.6.3 Non-Interrupt Mode
10.4. 6.4 Serial I/O
Power Fail and Restart Programming
Bit Instructions

Introduction
Assembly Listing
The Assembler Language
11.1. 3.1 Source Statements
11.1. 3. 2 Instruction Statement

Format
Machine Instruction Format
11. 1. 4. 1 Short Format Instructions
11.1.4. 2 Memory Referenced

Instructions
11. 1. 4. 3 Immediate Instructions
Pseudo-Ops
11.1.5.1 Symbol Definition
11.1. 5. 2 Data Definition
11.1.5.3 Assembler Control

Instructions
11.1.5.4 Summary of Assembler

Instructions

10-5

10-8
10-8

10-9

10-10
10-11
10-12
10-13
10-13
10-14
10-15
10-17
10-20
10-21

10-23
10-23
10-23
10-24

10-25

11-1

11-1
11-1
11-2
11-4
11-4

11-8
11-11
11-11

11-11
11-12
11-13
11-13
11-13

11-15

11-16

Chapter

MODEL 1 USER'S MANUAL (Cant)

11.1. 6 Input Format
11.1. 7 Operating Instructions for the

Model 1 Assembler
11.1.7.1 General Description
11.1.7.2 Configuration
11.1.7.3 Tape Format
11.1.7.4 Loading Procedures
11.1.7.5 Device Selection
11. 1. 7• 6 Operating Procedures
11.1.7. 7 Symbol Table Size
11.1.7.8 NO-PRINT and NO-

PUNCH Options

11. 2 Modell In-Core Loader
11.2.1 Introduction
11. 2. 2 Loader Descriptions
11.2.3 Device Definition Table

11. 3 Modell General Loader
11.3. 1 Introduction
11.3.2 Loader Features
11.3.3 Standard Loader Format
11. 3.4 Loader Tape Format
11. 3. 5 Operating Procedures

11.4 The Modell Unloader

11. 5 Hexadecimal Debug Program Description
(DBUG)

11.5.1 Introduction
11.5. 2 Terminology
11. 5. 3 Configuration
11. 5.4 Tape Format
11. 5.5 Features Available in DBUG
11.5. 6 Description of Operations

11.5. 6.1 Cell Examination and
Modific ation

11.5. 6. 2 Program Control
11.5.7 Loading Procedures

11. 6 Modell Text Editor Program Description
11. 6. 1 Introduction
11. 6.2 Program Structures

11.6. 2.1 Operating Modes
11. 6. 2. 2 Basic Unit
11. 6.2.3 Line Addressing
11. 6. 2.4 Command Formats

Page

11-17

11-17
11-17
11-18
11.18
11-18
11-18
11-19
11-20

11-20

11-21
11-21
11-21
11-23

11-24
11-24
11-24
11-25
11-27
11-27

11-28

11-28
11-28
11-28
11-30
11-30
11-30
11-30

11-30
11-32
11-34

11-35
11-35
11-35
11-35
11-36
11-36
11-36

xi

Chapter

xii

MODEL 1 USER'S MANUAL (Cont)

11. 6.2. 5 Commands
11.6.2.6 Command Examples
11.6.2.7 Errors

11.6.3 Operating Procedures
11. 6. 3.1 Loading
11. 6. 3. 2 I/O Device Selection
11. 6. 3. 3 Starting Location
11. 6. 3. 4 Tape Format
11.6.3.5 Text Buffer Size

C/o..y Arc.he.r

Page
11-37
11-41
11-42
11-43
11-43
11-43
11-44
11-44
11-44

Figure

2-1
2-2

2-3

3-1
3-2
3-3
3-4
3-5
3-6

4-1
4-2
4-3
4-4
4-5
4-6
4-7
4-8
4-9
4-10

5-1
5-2
5-3
5-4
5-5
5-6
5-7

5-8

5-9
5-10

5-11

5-12
5-13
5-14
5-15
5-16
5-17
5-18
5-19

ILLUSTRATIONS

Modell Block Diagram
Modell Interrupt Lines and Associated Hardware
Interrupt Service Table

Skip Examples
Pages in the Memory System
Flow Chart - Direct Addressing Mode
Flow Chart - Indirect Addressing Mode
Auto Indexing
Flow Chart - Addressing Modes/Auto Indexing

Flow Chart - A Register/Carry Instruction
Shift/Rotate Instruction
Example of Shift Instruction
Exa~ple of Rotate Instruction
Write Data and Skip Flow Chart
Write Block Flow Chart
Pulsed I/O Timing
Example of Command Instruction
Immediate Instructions Flow Chart
Arithmetic and Logical Memory Reference

Instructions, Flow Chart

Systems Interface, Block Diagram
Multiplexor Channel, Block Diagram
Selector Channel, Block Diagram
Selector Channel, Flow Chart
Universal Memory Bus Interface, Block Diagram
Device Controller Logic for the Address Instruction
Device Controller Logic for the Output Command

Instruction
Device Controller Logic for the Write Data

Instruction
Device Controller Logic for Sense Status Instruction
Device Controller Logic for the Read Data

Instruction
Device Controller Logic for the Acknowledge

Interrupt Instruction
Device Controller Logic
Device Controller Logic
I/O Bus Communication Circuits, Logic Diagram
Multiplexor Channel Bus Buffers
Device Addressing, Logic Diagram
Data and Status Input, Logic Diagram
Data and Command Output, Logic Diagram
Interrupt Control, Logic Diagram

Page

2-3
2-7
2-8

3-2
3-5
3-6
3-7
3-8
3-9

4-2
4-5
4-6
4-8

4-11
4-14
4-15
4-16
4-19

4-26

5-4
5-5
5-7
5-9

5-12
5-13

5-15

5-16
5-17

5-19

5-20
5-22
5-24
5-27
5-28
5-29
5-31
5-33
5-34

xiii

ILLUSTRATIONS (Cont)

Figure Page

5-20 Typical Universal Expansion Slot Wiring 5-36
5-21 Multiplexor Channel Timing 5-38
5-22 Standard I/O Board Layout 5-40
5-23 Standard I/O Board Field Layout 5-40
5-24 Standard I/O Board Schematic (Sheet 1 of 2) 5-42
5-24. Standard I/O Board Schematic (Sheet 2 of 2) 5-43

6-1 Modell Memory System 6-1
6-2 Core Memory Module 6-3
6-3 ROM Module 2048 by Eight-Bit 6-4
6-4 Model 1 Memory System Diagram 6-5
6-5 Example of Memory Bus Priorities 6-7
6-6 Model 1 Memory Bus Timing 6-9
6-7 Daisy-Chain Select Request Circuits 6-10

7-1 Model 1 Control Panel 7-2

8-1 Teletype Keyboard Layout 8-9
8-2 Punch Power 8-21
8-3 Data Byte Format 8-27

9-1 Modell Outline Drawing 9-2

10-1 Interrupt Service Table 10-14

11-1 Tape Format 11-26
11-2 End Record 11-26
11-3 ASR 33 Teletype Keyboard Layout 11-29

xiv

TABLES

Table Page

8-1 Teletype/ASCII/HEX Conversion Table 8-8
8-2 Teletype Status and Comrrland Byte Data Hex

Address 02 8-10
8-3 35 ASR Operating Modes 8-12
8-4 Reader and Punch Characteristics 8-16
8-5 Reader/Punch Status and Command Byte Forn1at 8-18
8-6 Sample Program for Combination Reader/Punch 8-22
8-7 Card Reader Status and Command Byte Data

(Hex Address 04) 8-26
8-8 Card Reader Sample Subroutine 8-28
8-9 ASCII to Card Code Conversion 8-29

9-1 Expansion Modules Power Requirements 9-3

10-1 Examples of Fixed-Point Number Representation 10-2
10-2 Hexadecimal, Binary, and Decimal Cross-Reference 10-3
10-3 Table of Commonly Used Addresses 10-6
10-4 Subroutine Coding Example 10-10
10-5 Tape Format Summary 10-24

11-1 Typical Source Program 11-1
11-2 Typical Symbol Table 11-2
11-3 Typical Assembly Listing 11-3
11-4 Summary of Instructions 11-6
11-5 In-Core Loader, Serial I/O Version 11-22
11-6 In-Core Loader, Multiplexed I/O Version 11-23
11-7 Device Definition Table Entries 11-24
11-8 Valid Loader Characters 11-25
11-9 Index of Directives 11-29
11-10 Command Repertoire 11-37
11-11 Editor Responses, Controls, and Addresses 11-45

xv/xvi

•

CHAPTER 1

INTRODUCTION

1.1 GENERAL FEATURES

The INTERDATA Modell Processor is a physically small, high speed,
application-oriented, modular processor de~igned to provide maximum
computing power at minimum cost to the user. Modular construction
is used for ease of maintenance and to facilitate system configuration
expansion to meet the future needs of the user. The Model 1 Proces­
sor is excellent for applications in diverse fields such as industrial
monitoring and control, process control, data collection and data
communications.

The Model 1 Processor contains four hardware priority External Inter­
rupt lines as standard items. Four additional External Interrupt Lines
are available as an option. All interrupt lines are individually maskable.
The Processor uses eight and sixteen-bit instructions for efficient coding
and optimum core utilization. Many of the instructions contain test and
skip options for effective loop control. Powerful bit manipulating in­
structions efficiently handle bit processing. A powerful auto-indexing
feature enables the system to use any core location as an index register.

A Power Fail Safe option is provided to prevent data or program loss
as a result of failures in the primary power source. Also at user
option, the program can continue, halt, or execute a recovery routine
when power has been restored.

1.2 MEMORY

The memory system uses highly reliable 2, 048 byte core modules and
is expandable to 16,384 bytes, with Parity as an option. The cycle
time is one microsecond. Plug-compatible 2, 048 byte, Read-Only­
Memory modules may be intermixed with core modules for ultra­
reliable, inexpensive, nonvolatile program storage. The memory
system is organized into 256 byte pages. Two pages, the Current
Page and Page Zero, are directly addressable by the primary instruc­
tion word. All remaining pages are addressed indirectly.

1.3 INPUT/OUTPUT

1.3.1 Multiplexor Bus

There are several ways for handling Input/Output transfers between
the Modell Processor and up to 256 devices. The instruction set
includes eight instructions for Input/Output in addition to Read Block,
Write Block, and the Pulsed I/O instruction. The Read Block and
Write Block instructions can transfer data at speeds up to 500, 000

1-1

bytes per second. The Pulsed I/O instruction can specify any combi­
nation of three control pulses, thus providing a convenient and econonl­
ical way for special interface design.

There is a serial I/O port on the standard Model 1 Processor which
handles bit serial data streams such as those from Teletypewriters.
The serial I/O port is interrupt driven and does not lock up the Proc­
essor when it is in use. The Processor uses the standard one mil­
lisecond real time clock to control the serial I/O port on Input or Out­
put and to support other application oriented software.

The I/O Bus of the Model 1 Processor is hardware plug compatible
with the I/O Bus of other INTERDATA Processors.

1.3.2 Direct Memory Access Channel (DMAC)

The Model 1 has a built-in Direct Memory Access port which accepts
up to four DMA Channels. This port operates on a cycle-steal basis,
allowing simultaneous I/O transfer. The maximum transfer rate is
1, 000, 000 bytes per second.

The customer can interface his own devices directly to this port or
use one of the following INTERDATA devices:

1. Selector Channel
Emulates the standard INTERDATA Multiplexor Bus for block
transfers between memory and up to 25 standard INTERDATA
devices.

2. Universal Direct Memory Access Interface
Provides all of the front end logic to the memory bus, and
provides wire-wrap IC locations (59) to simplify interfacing
customer-designed devices to the memory bus.

1.4 CONTROL OPTIONS

The Modell is available with two basic Control Panel options. The
Standard Control Panel contains the normal control switches, data
entry switches, Accumulator, Location Counter, Carry Bit, Enable
Bit, WAIT, and Power Displays and a key-lock switch for power off
and locked control.

The Auto Control Panel contains only a key-lock switch. The only
control the operator can initiate is to turn on the power and restart the
resident program, or reload a new program from a Teletype over the
serial I/O port. This, in combination with the read only memory
module, is an ideal, economical configuration for dedicated "Black
Box" configurations.

1-2

1.5 PERIPHERALS

A complete line of peripherals is available with the Model 1. All
system modules and device controllers that were designed for the
Models 2, 3, 4, and 5 are plug and hardware compatible with the
Model 1 Processor. These modules and device controllers are total
designs, to handle not only conversions, buffering, timing, device
commands and status, but also interrupts that can be enabled or dis­
abled by the program. This broad line of peripherals includes control­
lers that INTERDATA developed and optimized for applications, such
as the Digital Multiplexor for industrial monitoring and control. The
following is an example of what is available for the Model 1. Chapter
8 covers some of these in more detail.

1.5.1 Digital Multiplexor

This prOVides a very economical set of modular building blocks to
monitor 2048 and control 2048 lines with a single controller. Input
or output modules of 128 lines can be intermixed for a total of 4096
lines per controller. The Digital Multiplexor utilizes a biased core
technique to insure absolute DC isolation from the sense contact, an
excellent common mode transient response and DC offset capability.
These features make the unit particularly suitable for use in noisy
environments.

1.5.2 Intertape System

The Intertape System provides a reliable and inexpensive sur~titute

for paper tape input/output equipment. The transfer rate is 300
characters per second, with up to 250K bytes of storage per cassette,
or 500K bytes total.

1.5.3 Mini Disc System

This is a rugged, reliable, and inexpensive mass storage system with
51,200 bytes of storage per disc. Up to two discs can be operated on
each controller. Average access time is 8.5 milliseconds and the
transfer rate is 60,000 bytes per second. The unit operates over a
wide temperature range.

1.5.4 Magnetic Tapes

IAI' IBM conlpatible seven and nine track tape transports are available for
the Modell with 25 ips speed and densities of 556 and 800 bpi.

1.5.5 Data Communications Equipment

Character buffered adapters are available with various options to Bell
103, 201, 202, 301 Data Sets and the 801 Automatic Dialer to provide
a broad capability for remote applications with synchronous or
asynchronous communications requirements.

1-3

1.5.6 Paper Tape Equipment

A 300 character per second Reader and 60 character per second
Punch are offered for the Modell, individually, or as a complete
package. Fan-fold tape is featured as the software media.

1.5.7 Card Reader

A 200 cards per minute reader is provided for card oriented input
systems.

1.5.8 System Modules

These modules provide the user with a group of general interfaces to
reduce or eliminate design effort. As an example, modules are pro­
vided to handle eight-bit or sixteen-bit parallel input or output, manual
data entry, and decimal indicators in four or eight decades.

1.5.9 Conversion Equipment

A line of analog-to-digital and digital-to-analog converters and analog
multiplexors is available from eight-bit to twelve-bit, ±10 volt range.

1.5.10 Other Interfaces

Many other special interfaces are available which are not listed here
or on the price list. Consult a sales office for further information.

1.6 SOFTWARE

The Modell is supported with a total programming package to ease
the programmer's task. Basic sofhvare programs are the Assember,
Editor, Debug, Loader, Unloader, and Diagnostic packages. INTER­
DATA also provides a Monitor that provides I/O support and operator
services. INTERDATA has not forgotten its present users, however.
For their convenience, a Model 1 Simulator and Assembler can be
run on Models 3, 4 and 5.

1.6.1 Assembler

The Model 1 Assembler allows the user to write efficient and time­
saving symbolic programs, which are translated by the Assembler
into Model 1 machine language. The Assembler accepts a source
deck or tape consisting of user-coded instructions, and outputs a
source listing and a binary program object tape which can be loaded
and executed by the Model 1 Loader.

The Assembler is designated to operate with a minimum of 4K bytes
of memory. Assemblies are completed with two passes of the source
medium through the resident assen1bler. The assembler can be

1-4

adapted to any configuration of I/O devices to optimize assembly
speed. In addition to op-code mnemonics, the assembler has the
capability of accepting up to six characters in user symbols. It can
also decode instruction modifier mnemonics and has a flexible constant
definition format.

1.6.2 Model 1 Text Editor

The Model 1 Text Editor is a support program for the Assembler used
in the preparation and update of source program tapes. It is an inter­
active, Teletype-controlled program, but can use the high speed
paper tape devices for input and output. The functions include adding,
modifying, deleting, and copying of paper tape records. Tapes can
be punched in assembly format or non-edited format for use as input
for user programs. The Text Editor keyboard commands easily
facilitate error correction and record or character manipulation.

1.6.3 Model 1 Debug

Modell Debug is an interactive hexadecimal debugging aid that con­
tains many valuable program testing features. Among these are the
display and modification of memory locations, and the accumulator.
Also included is a breakpoint feature which allows the user to set,
reset, and recognize breakpoints throughout his logic and enter his
program at any point.

1.6.4 Model 1 Loader

The Modell Loader is a page-relocatable re-entrant program which
loads absolute object tapes output from the Assembler. The Loader
itself is loaded by a bootstrap loader in core. The Modell Loader
performs a checksum on the data it loads and automatically transfers
to the start of the user program.

1.6.5 Model 1 Diagnostics

The Model 1 Processor and Memory Tests are diagnostics which check
the execution and validity of all Model 1 machine instructions including
modifiers, and core memory with worst case patterns. Error mes­
sages result from any hardware discrepancies. The program repeats
execution until halted or until an error is discovered. Test programs
are also provided for the peripheral devices to validate the controller's
and device's operational status.

1.6.6 Model 1 Monitor

The Model 1 Monitor provides the user with a convenient means of
performing I/O operations with peripheral devices. The Modell
Monitor is modularly constructed such that additional r/o drivers
can be added to the system. Communication between the user and
the Monitor is accomplished via a Teletypewriter.

1-5

1.6.7 Model 3, 4, 5/Model 1 Assembler

This program assembles Model 1 symbolic code into Modell object
code as was described for the Model 1 Assembler. This software
however runs on the INTERDATA Model 3, 4 and 5 with 8K bytes of
memory for the convenience of these users.

1.6.8 Model 1 Simulator

This interactive software package enables the user to execute and
test Modell object programs on ae INTERDATA Model 3, 4 or 5
Processor with 8K bytes of memory. This program is also provided
for the convenience of these users.

1.7 CUSTOMER SUPPORT

INTERDATA provides training courses on a year-round basis at
several levels: system planning seminars, maintenance, and prograrn­
ming. If desired, special courses are presented at the customer's own
facility •

1.7.1 Field Service

INTERDATA maintains Field Service Engineers across the country
with headquarters in each of the regional sales offices. All of the
INTERDATA field service personnel are factory trained and have
experience with dozens of installations.

At the INTERDATA factory, back-up service is available, and a re­
pair depot is maintained for logic boards and memory packages. In
the field, maintenance personnel are equipped with complete sets of
spares and with specialized diagnostic equipment. Working behind all
this, is the factory Quality Control team which maintains exacting
standards for production and final checkout. A customer's system is
given hours of running tests and then, finally, "baked" in a heat
chamber for a number of additional hours before the system is
certified and shipped.

1.7.2 Training Center

INTERDATA takes customer training very seriously. A group of
professional instructors is maintained for this purpose. The people
on the training staff have all had prior experience in the training of
computer personnel in military and civilian schools. Hundreds of
customer engineers have already been successfully trained by this
staff.

1-6

1.7.3 Systems Engineering

In many instances where the needs of the application go beyond stand­
ard hardware and software, customers have looked to INTERDATA
for special assistance. An experienced team is organized to furnish
this support, whether it be a contract for special hardware, or a
special software package. The application team is made up of com­
munications experts, programmers, analog specialists, and control
specialists. They are an elite group in terms of capability and ex­
perience. Where a problem requires a special interface, the solution
can often be built quickly and at nominal expense from off-the-shelf
modules.

1.8 INTERCHANGE

INTERCHANGE, the INTERDATA users' group, is an active and
growing association. By sharing software and special interfaces,
customers gain a valuable "second level" of support.

1-7/1-8

CHAPTER 2

SYSTEM DESCRIPTION

2.1 GENERAL BLOCK DIAGRAM DESCRIPTION

The Modell Processor is an eight-bit byte-oriented digital computer
useful in a wide variety of applications such as industrial control,
data collection, communications, and general purpose computing.
The Processor is modularly constructed using the latest in Medium
Scale Integrated circuitry (MSI) and state of the art computer
technology.

The Modell provides the user with more computing power per
dollar than any machine available today. The Processor uses eight
and sixteen-bit instructions for efficient coding and optimum core
utilization. Many instructions have built-in test and skip capability
for effective byte handling and loop control.

The Processor is designed around highly reliable 2048 by eight-bit
byte core memory modules or plug compatible 2048 by eight-bit byte
Read-Only-Memory modules. Both kinds of memory modules may be
intermixed for up to 16,384 bytes of storage.

The memory system is organized into 64 pages containing 256 eight­
bit bytes each. Two pages, Page Zero and the Current Page, are
directly addressable by the Primary Instruction Word. All remain­
ing pages are addressed indirectly. A powerful Auto Indexing feature
enables the system to use up to 8,192 Index Registers located in core
memory.

A Direct Memory Access Port is built into the Modell memory
system. Up to four Direct Memory Access (DMA) Channels may be
multiplexed to the port. The DMA Channels cycle-steal memory
from the Processor at a maximum throughput rate of 1,000,000 bytes
per second. Two kinds of DMA Channels are available; A Selector
Channel for use with standard INTERDATA peripheral device con­
trollers and a Universal Direct Memory Access Channel for appli­
cations involving custom channel design.

Input/Output operations between the Modell and the peripheral de­
vice controllers ordinarily occur over t1'.e Multiplexor Bus. Up to
256 device controllers may be connected to this bus. The Processor
includes eight Input/Output Instructions plus Read Block and Write
Block Instructions for high speed data transfer over the Multiplexor
Bus. The Multiplexor Bus is fully hardware plug compatible with all
peripheral device controllers developed and field proven on the
existing line of INTERDATA Processors.

2-1

•

A Bit Serial I/O Port is standard on the Model 1 Processor. This
provides a very economical method for interfacing to bit serial type
devices such as Teletypewriters. The serial I/O port is interrupt­
driven using the built-in 1. 0 millisecond clock for controlling the port.

The Model 1 Processor features four hardware priority interrupt
lines; four additional lines are available optionally. Each interrupt
line is individually maskable and all interrupt lines are collectively
enabled by a master Interrupt Enable Bit.

The Model 1 Processor is presented in this chapter in block diagram
form. A general block diagram of the Processor is shown in Figure
2-1. The Processor's nine hardware registers are interconnected
internally via eight-bit parallel data paths. The major elements of the
Processor are described in the following paragraphs.

2.1.1 Program Status Word (PSW)

The Program Status Word is continually displayed on the standard
Model 1 Control Panel. The program status word is a sixteen bit
register. The fourteen least significant bits of this register form the
Program Location Counter, LOC 2:15, which contains the memory
location (address) of the next program instruction to be executed. Bit
1 corresponds to the master Interrupt Enable (E) Bit which, when set
by the program, allows the Processor to respond to external interrupts.
Bit 0 corresponds to the Carry (C) Bit, which is used during Arithmetic
Instructions, Shift and Rotate Instructions, and certain Bit and Control
operations.

2.1.2 Page Buffer Register (PBR)

The six-bit Page Buffer Register is used for temporary storage of the
memory page address on indirect memory reference instructions.

2.1.3 Page Address Register (PAR)

The six-bit Page Address Register identifies one of 64 memory pages
in the memory system.

2.1.4 Byte Address Register (BAR)

The eight-bit Byte Address R~..:i ster identifies one of 256 bytes within
a memory page. Note that the PAR together .with the BAR form an
effective fourteen-bit Memory Address Register for accessing up to
16,384 bytes of storage.

2.1.5 Memory Data Register (MDR)

The eight-bit Memory Data Register buffers data from the addressed
memory location on all memory operations. It also contains the
second operand on all Arithmetic and Logical Instructions.

2-2

1 ms CLOCK

POWER FAIL

TE LETYPEWRITE R

INTERRUPT QUEUE
REGISTER

SERIAL
.. INPUT/OUTPUT

PORT

PARITY FAIL

I/O ATN

UP TO 8
MEMORY
MODULES

UP TO 4
DIRECT

MEMORY
ACCESS

CHANNELS

MULTIPLEXOR I/O BUS

Figure 2-1. Modell Block Diagram

2-3

2.1.6 Instruction Register (IR)

The eight-bit Instruction Register contains the current Program In­
struction being executed.

2.1.7 Accumulator Register (AR)

The eight-bit Accumulator contains the first operand on all Arithme­
tic and Logical Instructions and receives the result of such instruc­
tions. All bytes transferred over the Multiplexor Bus are transferred
through AR.

2.1.8 Interrupt Queue Register (lOR)

The Interrupt Queue Register stores the event of an active condition
on any of the four standard and the four optional external interrupt
lines.

2.1.9 Interrupt Mask Register (IMR)

The Interrupt Mask Register selectively enables individual interrupt
lines under program control. Bits 0 to 7 of the mask register refer
to interrupt lines 0 to 7 respectively. Line 0 is top in priority, line
7 is bottom in priority.

2.1.10 Serial Input/Output Port

The Serial Input/Output Port is an economical method of interfacing
to a bit serial data stream such as that associated with a Teletype­
writer. Data is transferred from/to the port through the Carry Bit
under the control of the program. The Serial I/O Port may be in­
terrupt-driven and therefore does not require 100% dedicated Proc­
essor support.

2.1.11 Multiplexor I/O Bus

The Multiplexor Bus is a byte-oriented Input/Output Bus which can
interface up to 256 peripheral device controllers. Data transfer over
the Multiplexor Bus is done on a request/response basis, through
the Accumulator. The Modell Multiplexor Bus is fully hardware
plug compatible with all INTERDATA Peripherals.

2.1.12 Memory Bus

The Processor communicates with the Modell memory system over
the common System Memory Bus. lTp to four Direct Memory Access
Channels (either Selector Channels or Universal Direct Memory
Access Channels) may cycle steal from the Processor over the System
Memory Bus. When a Direct Memory Access Channel is actively
using memory, the Processor is stopped. The maximum data rate
through the Direct Memory Access Channel is 1,000, 000 bytes per

2-4

second. Control for serving DMA Channel memory requests is built
into the Processor.

2.1.13 Memory Modules

Three kinds of memory modules may be installed into the Model 1
Memory System:

Core Memory Modules - 2048 by eight-bit, 1. 0 microsecond,
random access modules, complete on a single standard
sized INTERDA TA circuit board.

Parity Core Memory Modules - 2048 by nine bit, 1. 0 usec,
random access modules, complete on a single standard sized
INTERDATA circuit board, where the ninth bit corresponds
to the parity bit.

Read-Only-Memory Modules - 2048 by eight-bit, 1.0 micro­
second, random access Read-only-Modules, fully plug com­
patible with the Model 1 core memory modules above.

All three kinds of memory modules may be intermixed in any way
(as long as the first module is a core memory) in a Modell system
for a total of 16,384 bytes of storage (eight modules).

2.2 INTERRUPTS

2.2.1 Introduction

In very general terms, an interrupt is defined as an event which,
when recognized by the Processor, causes the Processor to stop ex­
ecuting the current program and to begin executing a new program.
This is done by saving the current PROGRAM STATUS WORD at a
predetermined fixed memory address and then causing the PROGRAM
STATUS WORD to be set to the starting location of the new program.
When this is done, the Processor is said to have honored the inter­
rupt. The new program will "service" the interrupt. When the in­
terrupt has been serviced, the old program can be continued by
restoring the PROGRAM STATUS WORD to the value previously saved
at the fixed address. Note that the PSW includes the Carry Bit, the
Interrupt Enable Bit, and the Location Counter.

Interrupts can be classified into one of two broad catagories: 1) In­
ternal Interrupts are those events which are generated within the
Processor; and 2) External Interrupts are those events which occur
outside the Processor.

The Modell Processor has three sources of internal interrupts:
1) the Power Fail Interrupt interrupts the Processor if the CLEAR
Switch on the Control Panel is depressed, the POWER Switch on the

2-5

Control Panel is turned OFF, or if a Primary Power Failure is de­
tected by the Power Fail Safe option, 2) the one millisecond clock can
interrupt the Processor once every millisecond, and 3) the Parity
Fail Interrupt interrupts the Processor if a parity failure occurs.

External Interrupts can come from a wide variety of sources. One of
these sources is the ATTENTION (A TN) line associated with the
standard INTERDATA Multiplexor Bus (I/O Bus.) See Chapter 5
covering the I/O system.

The ATN Interrupt is generated by most standard INTERDATA pe­
ripheral device controllers when conditions in the controller require
that the Processor be interrupted. The other Interrupt Lines may be
connected to any equipment source the system designer chooses (i. e.
relay contacts, switch contacts, signals from customer designed
circuits, or even standard INTERDATA equipment whose interrupt
line (ATN) is disconnected from the Multiplexor Bus and reconnected
to a unique Interrupt Line).

An Interrupt Line is defined as a physical point which, when activated
by some interrupt source, causes the Processor to save the old PSW
at an address unique to that line. Thus, the event of an interrupt on
one line causes the Processor to be directed to a new program dif­
ferent from that corresponding to an interrupt on a second interrupt
line. The Modell Processor has four interrupt lines as standard
equipment. Four additional interrupt lines may be added as an option.

A priority is assigned to each interrupt line in the Processor. The
notion of priority implies that the highest priority line takes precedence
over all lower priority lines. Thus, the Processor will not recognize
a low priority interrupt line so long as a higher priority line is active,
and enabled.

2.2.2 Block Diagram

The block diagram in Figure 2-2 illustrates the hardware associated
with the Interrupt Lines in the Modell Processor. Interrupt Line 0
is highest in priority, and Interrupt Line 7 is lowest in priority. The
following paragraphs describe the major functions shown on Figure
2-2.

2. 2. 2. 1 Interrupt Queue Register (IQR)

The IQR stores the event of an interrupt on any of the eight interrupt
lines. The active input to the IQR may be either a negative-going
edge or a low level (all inputs are standard DTL logic levels).
Edge sensitive inputs are useful when the driVing source supplies a
short pulse or when the source is a "bouncy" metallic contact. Level

2-6

8 INTERRUPT LINES
(4 STANDARD-4 OPTIONAL)

FROM
PROCESSOR

TO INTERRUPT SERVICE TABLE
NOTES:
- INTERRUPT LINE "0" IS TOP PRIORITY; INTERRUPT LINE "7" IS LOWEST PRIORITY.

THE HIGHEST PRIORITY "IOR" BIT WHICH IS ENABLED BY THE CORRESPONDING BIT IN
THE "IMR" IS HONORED FIRST.
"E" IS RESET WHEN ANY INTERRUPT LINE IS HONORED.
INPUTS TO THE INTERRUPT ~UEUE REGISTER MAY BE EDGE OR LEVEL SENSITIVE: THE
SKETCH BELOW SHOWS A TYPICAL BIT IN THE "IOR" ARRANGED FOR NEGATIVE EDGE
SENSITIVITY. THE "IOR" BIT IS SET BY A NEGATIVE TRANSITION ON THE INTERRUPT
LINE. IT IS AUTOMATICALLY RESET WHEN THE PROCESSOR HONORS THAT LINE.

INTERRUPT >-----1.........
L1I\IE

RESET
lOR BIT

SYSTEM
INITIALIZE

- ANY BIT IN THE "IOR" MAY BE CONVERTED TO A LEVEL SENSITIVE BIT BY SHORTING
CAPACITOR Cl, AND BY CONNECTING POINT P TO POINT A.

- CONVERSION FROM EDGE TO LEVEL SENSITIVE INPUTS IS EASILY DONE BY THE USER.
- INTERRUPT LINE 0, RESERVED FOR THE POWER FAIL, CLEAR, POWER OFF INTERRUPT IS

NOT MASKED BY THE "E" BIT, BUT IT IS MASKABLE BY BIT 0 OF THE "IMR".

Figure 2-2. Modell Interrupt Lines and Associated Hardware

sensitive inputs are useful when more than one source OR ties onto a
given line.

2. 2. 2. 2 Interrupt Mask Register (IMR)

The IMR contains a mask which individually enables or disables each
bit in the IQR. The IMR is loaded from the accumulator under pro­
gram command.

2. 2. 2. 3 Interrupt Enable (E) Bit

The E Bit is a master interrupt Enable/Disable Bit. When E is reset,
the Processor ignores all interrupts (except Line 0 which is the Power
Fail, Power ON/OFF, and CLEAR line) regardless of the state of
IQR or IMR. When E is set, the Processor will respond to the highest

2-7

priority interrupt line which is both active and enabled by its corres­
ponding Mask Bit. When the Processor honors an interrupt, the
current PSW is saved, the E Bit is unconditionally reset, and remains
so until the program commands it set.

8 BYTES

FIRST
II\lSTRUCTION
OF THE
INTERRUPT

SERVICE

ROUTINE

} 8BYTES

} 8 BYTES

} 8 BYTES

EVEN ODD
ADDRESS ADDRESS

C I E I LOCATION COUNT

C I E I LOCATI ON COUNT

I I
I

'"'"
I

I I
I 1'(I
I I
I

C lEI LOCATI ON COUNT

C I E I LOCATI ON COUNT

X'120'

X'l18'

X'128'

X'108'

4 --

2 -- X'l10'

5

3 --

o

1-{

6 -{ X'130'

-{

X'138'

NOTE

7

MEMORY LOCATIONS BEYOND X'120' ARE AVAILABLE WITHOUT RESTRICTION
IF THE PROCESSOR DOES NOT HAVE THE OPTIONAL 4 INTERRUPT LINES (4:7)

- THE FIRST INSTRUCTION OF THE NEW PROGRAM CORRESPONDING TO INTERRUPT
LINE 0 WOULD BE AT LOCATION X'102'

Note: The E Bit does not affect Interrupt Line 0 which is re­
served for the Power Fail Interrupt. Bit 0 of IMR does affect
the Power Fail Interrupt.

2. 2. 2. 4 Interrupt Service Table

Associated with each interrupt line is an eight-byte set of consecutive
core menl0ry locations in Page One of the memory system (See
Figure 2-3). Accordingly, 32 bytes of core are reserved for a Proc­
essor with four interrupt lines, and 64 bytes are reserved for a
Processor with eight interrupt lines. These reserved core addresses
are referred to as the Interrupt Service Table.
INTERRUPT MEMORY

LI NE ADDRESS

X'100'

Figure 2-3. Interrupt Service Table
The Interrupt Service Table is subdivided into four or eight sets of
eight bytes of storage each; one set for each interrupt line. As

2-8

indicated in Figure 2-3, memory addresses X'IOO' through X'I07'
are reserved for Interrupt Line 0; and so on.

When the Processor honors an interrupt line, it stores the old Pro­
gran1 status Word (the old LOCATION COUNT plus the Carry Bit and
the Enable Bit) in the first two bytes of the eight-byte set associated
with that interrupt line. The Processor then begins executing pro­
gram instructions starting at the third byte in that eight-byte set.
Service programs longer than six bytes must branch to some memory
area outside the Service Table region.

When the new program has finished servicing the interrupt, it per­
forms a program Branch Instruction, indirectly through the first two
bytes of the eight-byte set, which restores the old Program Status
Word.

2.2.3 General Notes on Interrupts

The four standard interrupt lines plus the four optional interrupt lines
in the Processor may be connected, at the user's option, in a wide
variety of ways. However, for purposes of standardization, the first
three interrupt lines are factory connected as follows:

Interrupt Line 0 - Connected to the Control Panel POWER OFF
and CLEAR Switches and to the optional
Power Fail Detect circuit. Note that these
internal interrupts require program support
as described in Chapter 10 of this u1anual.
This line is not masked by the Enable (E) Bit,
it is masked by Bit 0 in the IMR.

Interrupt Line 1 - Connected to the Processor's built-in one
millisecond clock.

Interrupt Line 2 - Connected to the standard Multiplexor Bus
Attention (A TN) Line. The ATN Line is a
common interrupt line for up to 256 device
controllers on the Multiplexor Bus. The
program responds to an interrupt on this line
by executing an Aclmowledge Interrupt
Instruction. The interrupting device control­
ler's device number is placed in the accumu­
lator as a result of the Aclmowledge Interrupt
Instruction.

Interrupt Line 3 - Reserved for Parity Option if the System has
that option. Otherwise it is available to the
user.

2-9

Interrupt Line 4

These lines are available to the user.

Interrupt Line 7 -

The user may conveniently interchange the first four interrupt lines
with any other lines to re-establish priorities if he chooses to do so.
He must be aware that Line Zero is not under control of the Interrupt
Enable (E) Bit.

2-10

CHAPTER 3

INSTRUCTION FORMATS AND
ADDRESSING MODES

3.1 INTRODUCTION

A program is a set of instructions which directs the Processor to
perform sonle task. Ordinarily program instructions are stored in
sequential memory locations. The Processor reads each instruction
from the memory, executes that instruction, then reads the next in­
struction in sequence, executes it, and so on.

Modell Instructions fall into two broad catagories designated Short
Form Instructions and Long Form Instructions. A Short Form Instruc-.
tion is eight bits (one byte) long and is stored in one nlemory location.
A Long Form Instruction is sixteen bits (two bytes) long and is stored
in two adjacent memory locations.

(one byte)

Short Form 1...° 7.-1

(two bytes)

Long Form 1_o 7.....&.1_8 15_1

The Location Counter contains the memory location of the next pro­
gram instruction to be executed. The Location Counter is incremented
each time an instruction is read from memory. It is incremented
once for Short Form Instructions, it is incremented twice for Long
Form Instructions.

Nearly all instructions have built-in test and skip capability allowing
the program to skip over the next instruction in sequence when certain
specified conditions are true.

If the instruction is a Short Form Instruction, the Skip conditions are
tested before the instruction is executed. If the instruction is a Long
Form Instruction, the Skip conditions are tested after the instruction
is executed.

In any case, the next instruction could be either a Short or a Long
Form Instruction. When a skip is taken, the Processor always
assumes that the next instruction is in the Long Form and according­
ly, it increments the Location Counter two additional times. Figure
3-1 illustrates this action.

3-1

LOCATION COUNTE R PROGRAM INSTRUCTIONS

X'200'

X'201'

SKIP
X'202' TAKEN

X'204'

X'205'

X'20T
SKIP

TAKEN

X'208'

X'209'

Figure 3-1. Skip Examples

3.2 INSTRUCTION FORMATS

Six Instruction Formats are defined for the Modell Processor. Two
Instruction Formats are Short Form eight-bit instructions. The re­
maining four Instruction Formats are Long Form sixteen-bit instruc­
tions. The individual instructions are described in detail in Chapter 4.

3.2.1 A Register/Carry Format

These instructions are eight-bit Short Form Instructions which operate
on either the Accumulator or on the Carry Bit, according to the
Operation Code (Op-Code).

01 2 4567

~ OP-CODE 'ITTI
~
Skip Conditions

Instructions in this format can specify skip conditions which are
tested before the instruction is executed.

3-2

3.2.2 Input/Output Format

These instructions are eight-bit Short Form Instructions which trans­
fer eight-bit bytes between the Multiplexor Bus and the Accumulator.

o

I0 0

347

o 0 lOP-CODE

Communication and data transfers over the Multiplexor Bus are re­
quest/response in nature. The Op-Code defines the direction of data
flow. There are four basic Output I/O Instructions and four basic
Input I/O Instructions in this format. The final instruction in this
format is the Pulsed I/O Instruction which provides a convenient and
economical method of transferring eight-bit bytes of data to/from the
Accumulator and custom designed circuits. Instructions in the Input/
Output format cannot specify skip conditions although two instructions
include an implied test and skip.

3.2.3 Command Format

These are sixteen-bit Long Form Instructions which allow the system
programmer to set up a wide variety of internal Processor conditions.

o 5 6 7 8 15

~I""""-O-P---CO-D-E--rn CONDITION I
~"""'---_----.I

Skip
Conditions

The eight-bit CONDITION field identifies the particular combination of
Command Functions to be performed. Instructions in this format can
specify two Skip conditions which are tested after the instruction is
executed.

3.2.4 Shift/Rotate Instruction Format

These instructions are sixteen-bit, Long Form Instructions which
cause the Accumulator to be shifted or rotated to the right the number
of bit positions specified in the CNT field. These instructions include
full Carry In and Carry Out control and may specify two Skip conditions
which are tested after the instructions is executed.

o 2

OP-CODE

5 6 7 8 9 10 11 12 13

Skip
Conditions

15

3-3

3.2.5 Immediate Format

These are sixteen-bit Long Form Instructions which operate on the
Accumulator with an eight-bit data byte which is part of the Instruction
Word.

o 2 4 567 8 15

DATA

Immediate operations include ADD, SUBTRACT, AND, OR,
EXCLUSIVE-OR, and LOAD. The result of the operation is placed
in the Accumulator unless the N Bit is set. In this case, the Accumu­
lator is not modified, but the instruction is otherwise executed, the
results are tested, and a Skip is taken if any specified condition is
true.

3.2.6 Memory Reference Format

These are sixteen-bit Long Form Instructions which generally operate
on the Accumulator with an eight-bit data byte which is contained in
memory.

o 1 2 5 6 7 8 15

[E]~-o-P---C-O-DE-~CB-----A-D-D-R-E-SS----"""I

·~ ~~~,~:6~ BIT

The Instruction Word contains an eight-bit A.ddress field plus two bits
to identify one of four Addressing Modes; Direct in Page Zero, Direct
in Current Page, Indirect through Page Zero, and Indirect through the
Current Page. Indirect memory reference instructions may specify
a powerful Auto-Indexing feature using any adjacent pair of bytes in
core as an index register.

3.3 ADDRESSING MODES

A fully expanded Modell Memory System includes 16, 384 eight-bit
bytes of storage. The memory is divided into 64 equal sized segments
called Pages. Each Page contains 256 bytes of storage. See Figure
3-2.

Any unique eight-bit memory location is defined by a fourteen-bit
memory address; six bits for the Page Address and eight bits for the
Byte Address within that Page.

8 15

PAGE ADDRESS BYTE ADDRESS I-_--.1- _
MEMORY ADDRESS

3-4

FULL EXPAI\IDED
MEMORY SYSTEM

PAGE 0

PAGE 1

PAGE 62

PAGE 63

f 256 BYTES

f 256 BYTES

o

Figure 3. 2. Pages in the Memory System

3.3.1 Direct Addressing Mode

Memory Reference Instructions have the following general forulo

3 6 7 8 15

G]1"""""-O-P---C-O-OE---"nP -----A-OO-R-E-S-S---~

PAGE BIT
IN 01 RECT BIT

When the I Bit (Bit 6) is reset, the Addressing Mode is designated
DIRECT. The eight-bit Address Field corresponds directly to the
Byte Address of the instruction's operand. When the Page Bit (Bit 7)
is reset, the Addressing Mode is DIRECT in PAGE ZEROo When the
Page Bit is set, the Addressing Mode is DIRECT in the CURRENT
PAGE. Thus, Memory Reference Instructions can directly address
up to 512 bytes (256 bytes each in PAGE ZERO and the CURRENT
PA.GE). See Figure 3-3.

3-5

NO

IS
THE PAGE ~__N_O
BIT RESET

Figure 3-3. Flow Chart - Direct Addressing Mode

3.3.2 Indirect Addressing Mode

Memory Reference Instructions have the following general form:

o 1 2 5 6 7 8 15

rn~_o_p_-_C_O_DE_"""TIP-----A-D-D-RE-S-S----~l

P (PAGE)
I (INDIRECT) = 1

When the I Bit (Bit 6) is set, the Addressing Mode is designated
INDIRECT. The eight-bit Address Field identifies the first byte of
a two byte pointer which contains the effective address of the operand.
The pointer is any two consecutive byte pair in either PAGE
ZERO or the CURRENT PAGE as indicated by the P Bit (Bit 7).
When the P Bit is reset, the Pointer lies in PAGE ZERO.
When the P Bit is set, the Pointer lies in the CURRENT PAGE. In­
direct Memory Reference Instructions may operate on data anywhere
in core. See Figure 3-4.

3-6

FETCH THE EFFECTIVE
OPERAND ADDRESS
FROM POINTER IN

PAGE ZERO

IS
THE PAGE
BIT RESET

YES

NO

FETCH THE EFFECTIVE
OPERAND ADDRESS
FROM POINTER IN

CURRENT PAGE

Figure 3-4. Flow Chart - Indirect Addressing Mode

3.3.3 Auto-Indexing

Auto-Indexing is a very powerful feature which is useful for efficient
program looping and loop control. Indirect Memory Reference In­
structions may get the Auto-Index function when the AU Bit in the
pointer is set. When the AU Bit is set, the Processor increments the
Byte Address of the Pointer, before it is used, every time the Indirect
Instruction is executed. See Figure 3-5.

Note: Only the Byte Address of the pointer is incremented.

First Byte Second Byte
0 8 15

PAGE ADDRESS BYTE ADDRESS

Skip until page Boundary
Auto-Index POINTER FORMAT

Note: SK = 1 is ignored if AU = 0

3-7

YES

YES
IS

BIT 0 OF
POINTER

SET

NO

SK
BIT
SET

YES

NO

3-8

IS

ERO~~~E YES
ADDRESS >----------~

, FF'

NO

EXECUTE INSTRUCTION
SKIP NEXT

INSTRUCTION

Figure 3-5. Auto Indexing

Associated with the Auto-Index function is a conditional Skip on Page
Boundary feature which is specified by setting the SK Bit. If the SK
bit is set, the Processor skips after executing the instruction unless
the resultant Byte Address in the Pointer, after incementing, equals
all ONES ('FF').

3.4 ADDRESSING MODE SUMMARY

The flow chart in Figure 3-6 summarizes the types of Addressing
Modes and Auto-Indexing in the Model 1.

YES IS
INDIRECT BIT

RESET

NO

SKIP NEXT
INSTRUCTION

NO

NO

IS
POINTER YES

BYTE ADDRESS ~---....
EQUAL TO

'FF'

Figure 3-6. Flow Chart - Addressing Modes/Auto Indexing

3-9/3-10

CHAPTER 4

INSTRUCTION REPERTOIRE

4.1 INTRODUCTION

The Instruction Repertoire has been grouped by class in this chapter.
For each class of instructions a general description of the class is
given, followed by an explanation of each instruction belonging to that
class. For individual instruction descriptions the following format
is used.

1) The name of the instruction followed by its mnemonic op­
code.

EX: ADD ONE TO A AO

2) The instruction bit format.

EX:

o 3 4 6

NM
NC

----NZ

•
3) A description of the instruction operation

4) An explanation of resulting effects to the accumulator or
carry.

5) A diagramatic representation of the instruction

EX: Accumulator ...-Accumulator + One

6) Programming notes or examples to provide additional
pertinent or clarifying information.

4.2 A REGISTER/CARRY INSTRUCTIONS

The A Register/Carry Instructions are Short Form eight-bit Instruc­
tions which operate on either the Accumulator or the Carry Bit.
Three valid modifiers may specify conditions on A Register operations:

NZ - Skip if A is not ZERO
NC - Skip if Carry is not set
NM - Skip if A is not minus

Only one valid modifier may be specified on Carry Bit operations.

NC - Skip if Carry is not set

4-1

Skip conditions are tested before the A Register/Carry Instruction
is perforn1ed. Thus, the skip conditions tested reflect the result of
the previous instruction (or series of instructions) See Figure 4-1.

YES
ANY

SPEC­
IFIED SKIP
CONDITION

TRUE

NO

Figure 4-1. Flow Chart - A Register/Carry Instructions

4.2.1 Add One to A AO

o 3 4 6

I\lM
NC

----NZ

The specified skip conditions are tested, the value ONE is added to
the Accumulator, and the next program instruction is skipped if any
specified skip condition \vas true.

Carry Bit will reflect the result of the Carry Out fron1 Bit 0 of the
Acclllnulator.

Accumulator

4-2

ACcuDlulator + ONE

4.2.2 TEST and SKIP TS

o 2 3 6

I\IM
NC

'-----NZ

The specified Skip conditions are tested and the next program in­
struction is skipped if any specified Skip condition is true.

The Carry Bit is not changed. The Accumulator is not changed.

4.2.3 Complement A CA

o 3 4 6

NM
NC

----NZ

The specified Skip conditions are tested, the A Register is replaced
by the ONE's complement of A, and the next program instruction is
skipped if any of the specified Skip conditions were true.

The Carry Bit is not changed.
Accumulator~ONE'sComplement of Accumulator.

4.2.4 Add A To A With Carry Out AA

o 6

NM
I\lC

---------NZ

The specified Skip conditions are tested, the A Register is added to
itself, and the next program instruction is skipped if any of the
specified Skip conditions were true.

NOTE

This instruction is effectively a Shift A left
one position, with Carry Out.

Carry Bit will reflect the result of the Carry Out from Bit 0 of the
Accumulator.

Accumulator~--- Accumulator -l- Accumulator

4-3

4.2.5 Clear Accumulator

o 3 4

CLR

6

I\lM
NC

'-----I\lZ

The Skip conditions are tested, the A Register is reset to all ZEROs,
and the next instruction is skipped if any specified Skip condition was
true.

The Carry Bit is not changed. Acculnulator~""---- ZEROs

4.2.6 No Operation NOP

012.. 34:' 67

Nothing is altered or executed by this instruction.

Carry Bit is not changed. Accumulator is not changed.

4.2.7 Set Carry SC

a 6

NC

The specified Skip condition is tested, the Carry Flag is uncondition­
ally set, and the next program instruction is skipped if the specified
condition was true.

Carry Bit1----- ONE. Accumulator is not changed.

4.2.8 Reset Carry RC

o 6

The specified Skip condition is tested, the Carry Flag is uncondition­
ally reset, and the next program instruction is skipped if the specified
condition was true.

Carry Bit~ ZERO. Accumulator is not changed.

4-4

4.2.9 Complement Carry CC

o 3 4 6

The specified Skip condition is tested, the Carry Flag is uncondition­
ally complemented, and the next program instruction is skipped if the
specified condition was true.

Carry Bit10--- Complemented Carry Bit. Accumulator is not
changed.

4.3 SHIFT/ROTATE INSTRUCTIONS

The Shift/Rotate Instructions are Long Form sixteen-bit instructions
which logically shift or logically rotate the Accumulator the specified
number of bit positions with full Carry In and Carry Out control. The
direction of the Shift or Rotate is always right. The number of bit
positions specified by these instructions may lie anywhere in the range
from one to eight.

Two Skip conditions may be specified on Shift/Rotate Instructions:

NC - Skip if the Carry Bit result is not set.
NM - Skip if the Accumulator result is not negative.

The Skip conditions are tested at the end of the instruction execution.
If any specified Skip condition is true, the next program instruction
is skipped. Otherwise the next program instruction is executed. See
Figure 4-2.

Figure 4-2. Shift/Rotate Instruction

4-5

4.3.1 Shift SH

o 1 '2 3 4 5 6 7 8 9 10 11 12 13 14 15

Count
Carry Out
Carry In

The Accumulator is logically shifted right the number of bit positions
specified by the Count Field. The Count Field must specify the ONEs
complen1ent of the number of shift positions desired, from one to
eight. (The ONEs complement operation is done by the Modell As­
sembler.) If Carry Out (CO) is specified, the bit shifted out of A7 is
placed in the Carry Bit. If Carry In (CI) is specified, the Carry Bit is
shifted into AG. If any specified Skip condition is true at the end of the
instruction, the next program instruction is skipped. See Figure 4-3.

0 7
COUNT

~ r ACCUMULATOR ~STI\J 13 14 15

(UNCHANGE D) SHIFT
1 1 1 0 ZEROS
2 - 1 0 1
3 - 1 0 0
4 - 0 1 1
5 - 0 1 0
6 - 0 0 1 0 7
7 - 0 0 0

~ -I ~ST8 - 1 1 1

(UI\JCHANGED) SHIFT, CARRY IN

LtiJl 7~
0

~ SHIFT, CARRY OUT
LOST ZEROS

4iJ P0

-I
SHIFT, CARRY IN & CARRY OUT

Figure 4-3. Example of Shift Instruction

4-6

Example: If

C ACJ=
and we execute at location 202

SH 5, CI, CO, NC

The instruction takes the form (One's Comp of 5 = 010)

\ 0

000

the result is,

6 8 9 10 11 12 13 14 15

~
L- Count

L...- Carry Out

"-------- Carry In

C A0=
and the program skips from address 204 to 206.

Example: If above were

202 SH 5, CI, NC

the result is
C

GJ
A

and the program does not skip.

If above were

202 SH 5, CO, NC

the result is
c

G
and the program does skip.

A

4-7

4.3.2 Rotate RT
o 1 2 5 6 7 8 9 10 11 12 13 14 15

~r---o-0---0- 0 1 0

I\lM ~count
I\lC Carry Out

The Accumulator is logically rotated right the number of bit positions
indicated by the Count Field. The Count Field must specify the ONEs
complement of the number of bit positions, from one to eight. The
bit rotated out of A7 is placed in AD. If Carry Out (CO) is specified,
the bit rotated out of A7 is placed in both the Carry Bit and in AD. If
any of the specified Skip conditions are true at the end of the instruc­
tion, the next program instruction is skipped. See Figure 4-4.

CARRY OUT

ROTATE

ROTATE

___7~

~__7~
ACCUMULATOR f---.I

Count ~o
N 13 14 15 0

(UNCHANGED)
1 1 1 0
2 1 0 1
3 1 0 0
4 0 1 1
5 0 1 0
6 0 0 1
7 0 0 0
8 1 1 1 C&ly

LOST

Figure 4-4. Example of Rotate Instruction

4-8

Example: If
C A

8=
and we execute at location 202

RT 3, CO, NM

the instruction takes the form One's Comp of 3 = 100

o 1 :, 6 7 8 9 10 11 12 13 14 15

~....._o_o o_

~~~ L=S- Count
NC Carry Out

the result is

C A0=
and the instruction at 204 is skipped.

Example: If above were

202 RT 3, NM

the result is
c

~
A

and the instruction at 204 is skipped.

4.4 INPUT/OUTPUT INSTRUCTIONS

Input/Output (I/O) Instructions fall into three categories; Normal I/O In­
structions, Pulsed I/O Instructions, and Block I/O Instructions. Normal
I/O and Pulsed I/O Instructions are Short Form (eight-bit) Instructions and
all data transferred resides in the Accumulator. Block 1/a Instructions
are Long Form (sixteen-bit) Memory Reference Instructions and all data
transferred by them resides in a Memory Page.

The Normal I/O Instructions operate with any standard INTERDATA
device controller. The Block I/O Instructions operate with all INTER­
DA TA Controlle rs capable of operating in a Block Mode. The Pulsed
I/O Instruction is intended for custom designs and is not generally
appropriate for standard INTERDATA Controllers.

4-9



Normal I/O and Pulsed I/O Instructions transfer data to/from device
controllers and the Accumulator. Block I/O Instructions transfer
data to/from device controllers and memory.

The Pulsed I/O Instruction never changes the Carry Bit. Ordinarily,
the Normal and Block I/O Instructions do not affect the Carry Bit
either. There is an exception to this however. If the addressed de­
vice controller fails to respond within approximately 35 microseconds
to any Normal or Block I/O Instruction, the instruction will be aborted,
the Carry Bit is unconditionally set, and the next instruction is exe­
cuted.

Detailed descriptions of the Multiplexor Bus are given in Chapter 5.

4.4.1 Address ADR

01234567=
The device controller whose address corresponds to the content of the
Accumulator is addressed. The Address flip-flop of all other de­
vice controllers is reset.

The Carry Bit is not changed unless the device does not respond with­
in the time out period. The Accumulator is not changed.
Device Controller...-..Accumulator (Address)

4.4.2 Output Command OC

01 34567

The currently addressed device controller receives an eight-bit com­
mand byte from the Accumulator.

The Carry Bit is not changed unless the device does not respond with­
in the time-out period. The Accumulator is not changed.
Addressed Device Controller.....--Accumulator (Command Byte)

4.4.3 Write Data WD

01') 34567

The currently addressed device controller receives an eight-bit data
byte fron1 the Accumulator.

The Carry Bit is not changed unless the device does not respond.
The Accumulator is not changed.
.Addressed Device~Accumulator(Data Byte)

4-10



4.4.4 Write Data and Skip WDS
01234567=

The status of the currently addressed device controller is sensed and
tested.

If the transfer can be made:

When the device is ready, an eight-bit data byte is transferred to the
device from the Accumulator. The next program instruction is skip­
ped on the successful execution of this instruction. See Figure 4-5.

The Carry Bit is not changed unless the device does not respond within
the time-out period. The Accumulator is not changed.
Addressed Device.--Accumulator (Data Byte)

If the transfer cannot be made:

If any of bits 5, 6, or 7, of the device status is true, the instruction
is aborted, the offending status byte is loaded to the Accumulator,
and the next program instruction is not skipped.

The Carry Bit is not changed unless the device does not respond.
The Accumulator...- Status Byte.

NO

Figure 4-5. Write Data and Skip Flow Chart

4-11



4.4.5 Acknowledge AK
01234567=

This instruction is issued in response to an I/O Interrupt, ATN, over
the Multiplexor Bus. The device address corresponding to the inter­
rupting device is placed in the Accumulator, and ATN for that device
is reset.

The Carry Bit is not changed unless no device responds.
Accumulator.-- Device Address.

4.4.6 Sense Status SS
01'234567

~

An eight-bit status byte from the currently addressed device con­
troller is placed in the Accumulator.

The Carry Bit is not changed unless the device does not respond.
Accumulator.--.Status Byte.

4.4.7 Read Data RD
01234567

An eight-bit Data Byte from the currently addressed device controller
is placed in the Accumulator.

The Carry Bit is not changed unless the device does not respond.
Accumulator......-- Data Byte.

4.4.8 Read Data and Skip RDS
01234567

The Status of the currently addressed device controller is sensed and
tested.

If the transfer can be made:

When the device is ready, an eight-bit data byte is transferred from
the device to the Accumulator. The next program instruction is
skipped on the successful execution of this instruction.

The Carry Bit is not changed unless the device does not respond.
Accumulator.....- Data Byte.

4-12



If the transfer cannot be made:

If any of bits 5, 6, or 7, of the device status is true and the instruc­
tion is aborted, the offending status byte is loaded to the Accumulator,
and the next progran1 instruction is not skipped.

The Carry Bit is not changed unless the device does not respond.
Accumulator..- Status Byte.

4.4.9 Write Block WB
o 1 2 3 4 5 6 7 8 15

1 0 a a a I P ~----A-D-D-R-ES-S----eoIIIIIl

Page Bit
Indirect Bit

A block of data bytes is transferred to the addressed device con­
troller from memory beginning at the first effective memory address
and continuing sequentially to the last data byte in that Page. The in­
struction then terminates. On the successful transfer of the complete
block of data, the next program instruction is skipped. See Figure 4-6.

The Carry Bit is not changed unless the device does not respond.
Accumulator.....- undefined.
Addressed Device~Memory (Data Block)

If at any time during the block transfer the device responds with an
unusual status, the instruction is aborted, the offending status byte is
loaded to the Accumulator, and the next instruction is not skipped.

The Carry Bit is not changed. Accunlulator.....-- Status Byte.

4-13



NO

END
________N_O-<. OF MEMORY

PAGE

EXECUTE I\IEXT
INSTRUCTION

Figure 4-6. Write Block Flow Chart

4.4.10 Read Block RB
o 1 2 3 4 5 6 7 8 15

~----A-D-D-R-E-SS-----I

~PAGEBIT
INDIRECT BIT

A block of data bytes is transferred from the addressed device con­
troller to memory beginning at the first effective men10ry address
and continuing sequentially to the last memory address in that Page.
The instruction then terminates. On the successful transfer of the
complete block of data, the next program instruction is skipped.

The Carry Bit is not changed unless the device does not respondo
Accumulator......- undefined.
Memory~AddressedDevice (Data Block)

If at any time during the block transfer the device responds with an
unusual status, the instruction is aborted, the offending status byte is
loaded to the Accumulator and the next instruction is not skipped.

The Carry Bit is not changed. Accumulator~Status Byte.

4-14



4.4.11 Pulsed I/O PIO P1, P2, P3

o 3 6

P3
L...-__ P2

r....-----P1

This instruction outputs a control level designated PIO, a fixed con­
trol pulse designated PO, and any combination of three pulses des ig­
nated PI, P2, and P3 as specified by the instruction word. The
Accumulator is output to the custom interface except for the interval
covered by PO. If P3 is specified the Accumulator is loaded from the
custom interface on the trailing edge of P3. PIO and PO are always
present during the pulsed 11o instruction.

The Carry Bit is not changed.

Device ......-- Accumulator

Accumulator ~"---DataByte (if P3 is specified)
......--Unchanged (if P3 is not specified)

This instruction is intended for custom interface designs. It will not
operate with any standard INTERDATA Controllers. Reference is
made to Chapter 5 for a detailed explanation of application for this
instruction.

PIO I I
PO I
P1 ----,
P2

P3

}{

ACCUMULATOR
ACCUMULATOR AVAIL- LOADED FROM
ABLE TO CUSTOM DE- DEVICE ON THIS
VICE EDGE IF P3

IS SPECIFIED.

Figure 4-7. Pulsed I/O Timing

4-15



4.5 COMMAND INSTRUCTION

The Command Instruction is a Long Form sixteen-bit instruction which
is used to set up and control a number of internal machine modes or
functions. Two valid modifiers may specify skip conditions on Com­
mand Instructions;

NC - Skip if carry not set
NM - Skip if accumulator not minus

The skip conditions are tested after the instruction is executed. If
any specified skip condition is true the next program instruction is
skipped.

YES

ANY
SPEC­

IFIED SKIP
CONDITION

TRUE

NO

FETCH NEXT
INSTRUCTION

Figure 4-8. Example of Command Instruction

The Command Instruction is not interruptable. It follows that at least
one instruction following a Command instruction is always executed
before interrupts are recognized regardless of the Master Interrupt
Enable Bit or the Individual Interrupt Mask Bits.

4.5.1 Command C

o 2 3 4 5 6

NC
NM

OUTPUT SERIAL I/O
LOAD ACCUMULATOR

FROM CONSOLE

8 9 10 11 12 13 14 15

POW
WAIT

RESET ENABLE
SET ENABLE

INPUT SERIAL I/O
LOAD MASK FROM A

The conlmand functions specified are executed, the skip conditions
are tested, and the next program instruction is skipped if any specified
skip condition is true.

4-16



The Carry Bit mayor may not be changed depending on the specified
comn1and function(s).

The Accumulator mayor may not be changed depending on the speci­
fied command functions(s).

BIT 08: Output Serial I/O

The Carry Bit is output to the Serial I/O Port output buffer.
Carry is not changed.

BIT 09: Load A

The Accumulator is loaded from the 8 Data Switches (08:15)
on the Standard Control Panel.

BIT 10: Load Mask

The Interrupt Mask Register is loaded from the Accumula­
tor. The Accumulator is not changed.

BIT 11: Input Serial I/O

The Carry Bit is loaded from the Serial I/O Port.

BIT 12: Set Enable

The Master Interrupt Enable Bit is set.

BIT 13: Reset Enable

The Master Interrupt Enable Bit is reset.

BIT 14: Wait

The Processor is placed in a WAIT state. Program exe­
cution is halted. The Processor remains in the WAIT state
until an interrupt is honored or until the Processor is re­
started from the Control Panel. In either case the WAIT
flip-flop is reset. If an interrupt occurs with the Processor
in the WAIT state, the instruction following the Command
Instruction is executed before the interrupt operation takes
place.

BIT 15: POW

The POW Command causes the Processor to initialize
itself in an orderly fashion. This command is issued by
the program in the event of a POWER FAIL Interrupt. (The
POWER FAIL Interrupt occurs as a result of:

a. Depressing the CLEAR Switch in the Control Panel

b. Switch power OFF from the Control Panel

c. A Primary Power Fail condition if the Power Fail Safe
option exists.

4-17



The instruction at Location 0000 is executed when power is
restored.

NOTE

The following Command Functions are mutually exclusive and
may not be cornbined in any single Command Instruction:

a) SET ENABLE AND RESET ENABLE

b) LOAD MASK AND LOAD A

c) INPUT SERIAL I/O AND OUTPUT SERIAL I/O.

4.6 IMMEDIATE INSTRUCTIONS

Immediate Instructions are Long Form sixteen-bit instructions where
the second operand is part of the primary instruction word. The first
operand on Logical or Arithmetic operations is contained in the Ac­
cumulator. The result of the Immediate operation is ordinarily placed
in the Accumulator. Three valid modifiers may specify skip conditions
on Immediate operations:

NM - Skip if the result is not minus
NZ - Skip if the result is not zero (valid only on Logical

Operations)
NC - Skip if the Carry result is not set (valid only in Arithmetic).

The skip conditions are tested after the Immediate Operation is per­
formed. If any specified skip condition is true the next program in­
struction is skipped.

A fourth valid modifier is recognized in Immediate Instructions which
prevents the result from being loaded into the Accumulator or the
Carry Bit. The operation is otherwise carried out so that the skip
conditions may be tested. See Figure 4.9.

N - Do not save the result. (The Accumulator and the Carry Bit
are not modified. The instruction is otherwise executed and
the results tested for specified skip conditions).

4-18



Figure 4-9. Immediate Instructions Flow Chart

4.6.1 Load Immediate LI

o 1 2 3 4 5 6 7 8 15

-~-N~----D-A-T-A-----I

The data byte in the eight-bit DATA field is placed in the Accumulator
provided N is reset. If any specified skip conditions are true, the next
program instruction is skipped.

The Carry Bit is not changed.

Accumulator +----DATA field (N reset)

4-19



4.6.2 AND Immediate NI

o 1 2 3 4 5 b 7 8 15

-~-~---D-A-T-A-----I

N

The Accumulator is logically ANDed with the DATA field, the result is
placed in the Accumulator provided N is reset. If any specified skip
condition is true the next program instruction is skipped.

The Carry Bit is not changed.

Accumulator~ Accumulator ANDed with DATA field (N Reset)

4.6.3 OR Immediate 01
o 3 4 5 6 8 15

NM
NZ

"'------ N

DATA

The Accumulator is logically ORed with the eight-bit DATA field, the
result is placed in the Accumulator provided N is reset. If any speci­
fied skip condition is true the next program instruction is skipped.

The Carry Bit is not changed.

Accumulator .......-----Accumulator ORed with DATA field (N reset)

4.6.4 Exclusive-OR Immediate XI
o 1 2 3 4 5 6 7 8 15

-~-~---D-A-T-A----~I

The Accumulator is Exclusive ORed with the eight-bit DATA field, the
result is placed in the Accumulator provided N is reset. If any speci­
fied skip condition is true the next program instruction is skipped.

The Carry Bit is not changed.

Accumulator..-- Accumulator Exclusive ORed with DATA field
(N reset)

4-20



4.6.5 Add Immediate AI
o 1 2 3 4 5 6 7 8 15

_~~ D_A_T_A I

The eight-bit DATA field is added to the Accumulator, the result
is placed in the Accumulator provided N is reset. If any specified
skip condition is true the next program instruction is skipped.

The Carry Bit ...--The Carry Out of the most significant bit of the
Accumulator as a result of the addition
(N is reset).

Accumulator ...- Accumulator plus DATA field (N Reset).

The Carry Bit and the Accumulator are unchanged if N is set.

4.6.6 Subtract Immediate SI
o 1 2 3 4 5 6 7 8 15

-~-~---D-A-TA-----~l

The eight bit DATA field is subtracted from the Accumulator,
the result is placed in the Accumulator provided N is reset.
If any specified skip condition is true the next program in­
struction is skipped.

The Carry Bit...- Borrow

The Accumulator ......Accumulator minus the DATA field (N Reset)

The Carry Bit and the Accumulator are unchanged if N is set.

4.7 MEMORY REFERENCE INSTRUCTIONS

Memory Reference Instructions operate in a Page Memory environ­
ment. Four separate Addressing Modes are defined: Direct in Page
Zero, Direct in the Current Page, Indirect through Page Zero, and
Indirect through the Current Page. The Addressing Modes are dis­
cussed in detail in Chapter 3. Similarly, a very powerful Auto-Index
feature associated with most Memory Reference Instructions is dis­
cussed in Chapter 3.

4-21



NOTE

If a Memory Reference Instruction resides on
a page boundary then the current page corre­
sponds to the page number of the second byte
(the address field) of the instruction word. .

Memory Reference Instructions fall into four categories: Branches,
Arithmetic and Logical, Bit Operations, and Block I/O Instructions.
Any Memory Reference Instruction may operate in any Addressing
Mode.

4.7.1 Branches

Branch Instructions are used to direct the program to a new location
when certain conditions are met. Branch and Link Instructions are
used to direct the program to a new location also. In addition, how­
ever, the Branch and Link Instruction stores the Old PSW (Location
Count plus the Carry Bit and the Interrupt Enable Bit) in memory for
future use by the program.

L....-__ Page Bit
""------ Indirect Bit

Condition
Bits

Branch Instructions take on the general form:
o 3 4 5 6 8 15

OP-CODE ADDRESS

where Bits 4 and 5 are encoded to specify a unique Branch condition.

Bit 4 Bit 5 Valid Modifier Description

0 0 Unconditional.

0 1 NZ Not Zero - The Branch is taken
if the Accumulator is not ZERO.

1 0 NC Not Carry - The Branch is taken
if the Carry Bit is not set.

1 1 NM Not Minus - The Branch is
taken if the Accumulator is not
Minus.

If the specified Branch condition is not met, the operation is aborted
and the next program instruction is executed.

4-22



4.7.1.1 Branch B

o 2 3 4 5 6 8 15

Unconditional 00~
NZ 01

NC 10
NM ·11

ADDRESS

L-__ PAGE

------INDIRECT

The specified Branch condition is tested. If the condition is not true,
the operation is aborted and the next program instruction is executed.
If the condition is true, the Branch is taken depending on the Address­
ing Mode as follows:

4. 7.1.2 Direct in Page Zero (Bits 6 and 7 = 00)

The Location Counter's byte address is replaced by the eight-bit
Address Field of the instruction. The Location Counter's Page Address
is set to zero. The Carry Bit, the Enable Bit, and the Accumulator
are not changed.

4. 7.1. 3 Direct in Current Page (Bits 6 and 7 = 01)

The Location Counter's byte address is replaced by the eight-bit
Address Field of the instruction. The Location Counter's Page
Address is unchanged.

The Carry Bit is not changed. The Accumulator is not changed.

4.7.1.4 Indirect Through Page Zero (Bits 6 and 7 = 10)

The Location Counter is replaced by the two-byte address word in
Page Zero. Bit 0 of the Address Word replaces the Carry Bit and
Bit 1 of the address word replaces the Interrupt Enable Bit.

Carry .....!------- Bit 0 of the address word.

Accumulator......-- Unchanged

Enable .....1------ Bit 1 of the address word.

4-23



4.7.1.5 Indirect Through the Current Page (Bits 6 and 7 == 11)

The Location Counter is replaced by the two-byte address word in the
Current Page. The Carry Bit is replaced by Bit 0 of the address
word. The Interrupt Enable Bit is replaced by Bit 1 of the address
word.

Carry ......I------Bit 0 of the address word.

Accumulator"""- Unchanged.

Enable ......~----Bit 1 of the address word.

NOTE

Auto Indexing is not available on Branch Instructions.

4.7.2 Branch and Link BAL
o 2 3 6 8 15

Unconditional
NZ ­
NC ­
NZ -

ADDRESS

Page Bit
1....---- Indirect Bit

The specified Branch condition is tested. If the condition is not true,
the operation is aborted and the next instruction is executed. If the
Branch condition is true, the Branch and Link operation is performed
depending on the Addressing Mode as described in the following para­
graphs.

4.7.2.1 Direct in Page Zero (Bits 6 and 7 == 00)

The Location Counter (corresponding to the next program instruction),
the Carry Bit, and the Interrupt Enable Bit are stored in the two-byte
memory word in Page Zero indicated by the Address field of the in­
struction. The Location Counter's byte address is replaced by the
Address field plus two. The Location Counter's Page Address is re­
set to zero.

The Carry Bit, Enable Bit and the Accumulator are not changed.

4. 7. 2. 2 Direct In Current Page

The Location Counter (corresponding to the next program instruction),
the Carry Bit, and the Interrupt Enable Bit, are stored in the two-byte
memory word in the Current Page indicated by the eight-bit Address
field. The Location Counter's byte address is replaced by Address
plus two. The Location Counter's Page Address is not changed.

The Carry Bit, Enable Bit and the Accumulator are not changed.

4-24



4.7.2.3 Indirect Through Page Zero (Bits 6 and 7 = 10)

The Location Counter (corresponding to the next program instruction),
the Carry Bit, and the Interrupt Enable Bit, are stored in the two-byte
memory word specified by the address word. (This effective address
word itself is in Page Zero at Address and Address plus 1.) The
Processor starts executing the instruction at the effective Address
plus 2.

The Carry Bit, Enable Bit and the Accumulator are not changed.

4.7.2.4 Indirect Through the Current Page (Bits 6 and 7 = 11)

The Location Counter (corresponding to the next program instruction),
the Carry Bit, and the Interrupt Enable Bit are stored in the two-byte
memory word specified by the address word. (This effective address
word is in the Current Page at Address and Address plus 1.) The
Processor starts executing the instruction at the effective Address
plus 2.

The Carry Bit, Enable Bit and the Accumulator are not changed.

NOTE

Auto Indexing is not available on Branch and Link Instructions.

4.7.3 Arithmetic and Logical Memory Reference Instructions

Arithmetic and Logical Memory Reference Instructions operate on
the Accumulator with a data byte from memory. Any of four Address­
ing Modes; Direct in Page Zero, Direct in Current Page, Indirect
through Page Zero, or Indirect through the Current Page, may be
specified by the instruction word. Auto-Indexing may be specified on
all Indirect Memory Referenced Instructions except Branches. (See
Chapter 3 for details on Addressing Modes and Auto-Indexing. )

One valid modifier is associated with Arithmetic and Logical Memory
Reference Instructions. The modifier takes on a different meaning
depending on the operation code as follows: If the operation is ADD or
SUBTRACT,

N = Skip on No Carry and don't load result into Accunlulator

The operation is performed and the Carry Result is tested. If the
Carry result is a ONE, the next instruction is executed. If the Carry
Result is a ZERO, the next instruction is skipped. In any case, the
Carry Bit and the Accumulator are not changed.

4-25



If the operation is AND, OR, Exclusive OR

N = Skip if the Logical Result is not ZERO and don't load result
into Accumulator.

The operation is performed and the logical result is tested. If the
result is ZERO, the next instruction is fetched. If the result is not
ZERO, the next instruction is skipped. In either case the Carry Bit
and the Accumulator are not changed. See Figure 4-10.

YES

YES
N!SETN!SET

NO

YES

c=o

Figure 4-10. Arithmetic and Logical Memory
Reference Instructions Flow Chart

4-26



4.7.3.1 Add A
o 3 4 5 6 8 15

Page Bit
Indirect Bit

10----- N

ADDRESS

If N = 0, the second operand is Added to the Accumulator, the result
is placed in the Accumulator, and the next instruction is fetched.

Carry Bit..-The Carry Out resulting from the ADD Operation.

Accumulator ...... Accumulator plus the second operand.

If N = 1, the Carry result of the Add operation is tested. If the Carry
result is ZERO, the next program instruction is skipped. If the
Carry result is ONE, the next program instruction is not skipped.
In either case, the Carry Bit and the Accumulator are not changed.

Carry Bit is not changed. Accumulator is 110t changed.

4.7.3.2 Subtract S
o 3 4 5 6 8 15

ADDRESS

Page Bit
Indirect Bit

N

If N = 0, the second operand is subtracted from the Accumulator.
The result is placed in the Accumulator, and the next instruction is
fetched.

Carry Bit"""'--The Carry (Borrow) resulting from the Subtract
operation.

Accumulator"'-Accumulator minus the second operand.

If N = 1, the Carry result of the Subtract operation is tested. If the
Carry result is ZERO, the next program instruction is skipped. If
the Carry result is ONE, the next program instruction is not skipped.
In either case, the Carry Bit and the Accumulator are not changed.

Carry Bit is not changed. Accumulator is not changed.

4-27



4.7.3.3 Exclusive-OR X
o 6 8 15

ADDRESS

Page Bit
1....- Indirect Bit

L....-----N

If N = 0, the second operand is Exclusive ORed with the Accumulator,
the result of the operation is placed in the Accumulator.

Carry Bit is not changed.

Accumulator..-- Accumulator Exclusive ORed \vith the Second Operand

If N = 1, the logical result of the operation is tested. If the result
is ZERO, the next instruction is not skipped. If the result is not
ZERO, the next instruction is skipped. In either case the Accumulator
is not changed.

Carry Bit is not changed. Accumulator is not changed.

4.7.3.4 OR 0
o 4 5 6 8 15

ADDRESS

Page Bit
Indirect Bit

L..- N

If N = 0, the second operand is logically ORed with the Accumulator,
the result is placed in the Accumulator.

The Carry Bit is not changed.

Accumulator ....-Accumulator ORed with the Second Operand

If N = 1, the logical result of the operation is tested. If the result is
not ZERO, the next instruction is skipped. If the result is ZERO, the
next instruction is not skipped. In either case the Accumulator is not
changed.

Carry Bit is not changed. Accumulator is not changed.

4-28



4.7.3.5 AND N
o 3 4 5 6 8 15

Page Bit
Indirect Bit

'----- N

AODRESS

If N = 0, the second operand is logically ANDed with the Accumulator
and the result is placed in the Accumulator.

The Carry Bit is not changed.

Accumulator~ Accumulator ANDed with the Second Operand

If N = 1, the logical result of the operation is tested. If the result is
not ZERO, the next instruction is skipped. If the result is ZERO, the
next instruction is not skipped. In either case the Accumulator is not
changed.

Carry Bit is not changed. Accumulator is not changed.

4.7.3.6 Store ST
o 1 2 3 4 5 6 7 8 15

1 0 0 1 0 ----A-O-O-R-ES-S-----I

Page Bit
Indirect Bit

The Accumulator is stored at the effective memory address.

The Carry Bit is not changed. The Accumulator is not changed.

Effective Address .....- Accumulator

4.7.3.7 Load L
o 3 4 5 6 8 15

1 0 0 1 0 ----A-O-O-R-ES-S-----,

Page Bit
Indirect Bit

The Accumulator is loaded from the effective address.

The Carry Bit is not changed.

Accumulator ........ Data Byte from effective address.

4-29



4.7.3.8 Increment and Skip on Not Zero ISN
01 '} 345678

ADDRESS

Page Bit
Indirect Bit

15

The content of the effective address is incremented. If the increment­
ed value does not equal X'OO', the next two-byte instruction is skipped.

The Carry Bit is not changed. The Accumulator is not changed.

4.7.3.9 Increment and Skip on Zero ISZ
o 1 '} 3 4 5 6 7 8 15

=----A-O-O-R-E-S-S----I

~pageBit
Indirect Bit

The contents of the effective address is incremented. If the incre­
mented value equals X' 00', the next two-byte instruction is skipped.

The Carry Bit is not changed. The Accumulator is not changed.

4.7.4 Bit Operation Memory Reference Instruction

The Bit Operation instructions are effective for evaluating Boolean
expressions where the state of the variables in the expression is
represented by individual bits in memory.

Bit Operation instructions involve two single bit operands which may
be ORed or ANDed with the result placed in the Carry Bit. The first
bit operand is the Carry Bit:

First Bit Operand = Carry Bit

The second bit operand is derived from the Accumulator and the
addressed memory location as follows:

Second Bit Operand = A
O

• M
O

+ Al . M
I

+ •

where An is bit n of the Accumulator and
where Mn is bit n of the Addressed Memory Location

4-30



Example: If
Accumulator
Memory Data

then
Second Bit Operand

10100001
10010111

1· 1+0·0+1-0+0·1+0·0+0·1+0-1+1·1
1+0+0+0+0+0+0+1
1

Two valid modifiers are associated with the Bit Operation instructions:

BN - Bit Not. The second bit operand is complemented before
it is used.

CN - Carry Not. The Carry Bit (first bit operand) is comple­
mented before it is used.

4.7.4.1 AND BIT NB
o 1 2 3 4 5 6 7 8 15

1 0 ~~o ----A-O-O-R-E-SS-----,

Page Bit
Indirect Bit

The Second operand (or its complement if BN=l) is ANDed with the
Carry Bit (or its complement if CN=l). The result is loaded into the
Carry Bit.

Accumulator ....-.. Unchanged

Carry Bit ~.--- Carry Bit • Second Operand subject to modifiers

Example:

Suppose the Accumulator
and the Carry Bit
and we execute

NB BYTE
where the contents of BYTE

Then, the first operand (Carry Bit)

11001011
1

10110001

1

The second operand, derived by computing
A

O
· MO+A

1
· M1+. • • A

7
M

7
1

And the result loaded to the Carry Bit = 0
The Accumulator is not changed.

4-31



Example:

Suppose the Accumulator
and the Carry Bit
and we execute

NB CN, BYTE
where the contents of BYTE

Then, the first operand (Carry Bit
inverted)

The second operand, (as above)

And the result loaded to the
Carry Bit
The Accumulator is not changed.

4.7.4.2 OR BIT OB

11001011
1

10110001

o

1

o

o 1 2 3 4 5 f) 7 8 15

1 0 1 ----A-D-O-RE-S-S-----I

BN Page Bit
eN Indirect Bit

The second bit operand (or its complement if BN=l) is ORed with
the Carry Bit (or its complement if CN=l). The result is loaded in
the Carry Bit.

Accumulator ~Unchanged

Carry Bit 44--- Carry + Second Operand subject to modifiers

Example:

Suppose the Accumulator
and the Carry Bit
and we execute

OB BN,CN BYTE
where the contents of BYTE

Then, the first operand (Carry
Bit inverted)

and the second bit operand is

and the result loaded to the Carry
Bit
The Accumulator is not changed.

4-32

10111010
o

01000101

1

1

1



CHAPTER 5

INPUT/OUTPUT (I/O) SYSTEMS

5.1 INTRODUCTION

This chapter describes the Modell I/O System. There are several
methods of communication between the INTERDATA Processor and
peripheral devices. The methods vary in speed, sophistication, and
the amount of attention required by the Processor. Thus, the Systems
Interface may be tailored to communicate efficiently with all types of
peripheral devices.

There are two primary purposes for this chapter: to familiarize the
reader with the INTERDATA Systems Interface, and to provide the
data required to effectively interface peripheral equipment to INTER­
DATA Modell Digital Systems. A functional description of each I/O
sub-system is provided later in this chapter, followed by a physical
description of the layout and interconnection of a typical systemo The
coding and sequence of operation of all I/O Instructions, the considerations
and specifications in designing device controllers, and a General
Purpose Interface Controller available from INTERDATA to facilitate •
custom interface design are described.

5.2 I/O SYSTEM BLOCK DIAGRAM ANALYSIS

Figure 5-1 is a block diagram of an INTERDATA Digital System em­
phasiZing the Systems Interface capability. Note that there are four
separate methods of communicating with peripheral devices or systems:

1. The Multiplexor Channel

2. A Selector Channel

3. Universal Memory Bus Interface (UMBI)

4. Direct Memory Access

Each of the four methods communicates via a bus with device controllers.
The Systems Interface can communicate with up to 256 devices. The
following paragraphs describe each of the interface methods.

5.2.1 Multiplexor Channel

Figure 5-2 is a block diagram of the Multiplexor Channel. The Multi­
plexor Channel is a byte oriented I/O system which communicates
directly with up to 256 peripheral devices. The Multiplexor Bus con­
sists of 27 lines; eight data input, eight data output, eight control lines,
two test lines, and an Initialize line. The two test input lines from the
device controllers are Sync (SYN) and Attention (ATN). The final line
is System Clear (SC LR) to all device controllers.

5-1



The lines in the Multiplexor Bus are listed below:

Data Available Lines DALOO:07 (Processor----'Device) 8 Lines

Data Request Lines DRLOO:08 (Processor~Device) 8 Lines

Control Lines

Test Lines

Initalize

SR (Processor ----.Device) 1

DR (Processor~Device) 1

CMD (Processor----'Device) 1

DA (Processor~Device) 1

ADRS (Processor --+-Device) 1

ACK (Processor----'Device) 1

CL06 (Processor----.Device) 1

CL07 (Processor~Device) 1

{ ATN (Processor~Device) 1

SYN (Processor ~Device) 1

SCLRO (Processor~Device) 1

The following general definitions apply:

Data Available Lines DALOO:07: The Data Available Lines are
used to transfer one byte of Address, Command, or Data from
the Processor for the Device when accompanied by the appro­
priate control line (ADRS, CMD, or DA respectively).

Data Request Lines DRLOO:07: The Data Request Lines are used
to transfer one byte of Address, status, or Data from the Device
to the Processor when the Processor issues the appropriate
control line (ACK, SR, or DR respectively).

Control Lines

5-2

SR: Status Request.

DR: Data Request.

The device controller must pre­
sent device status to the DRL
lines, followed by a SYN.

The device controller presents
data on the DRL lines, followed
by a SYN.



ACK: Acknowledge.

DA: Data Available.

CMD: Command.

ADRS: Address.

ATN: Attention.

SYN:

SCLR: System Clear.

Device controller presents it's
device address on the DRL line,
followed by a SYN.

The Processor presents data on
the DAL lines, for transfer to the
device, and then issues aDA.

The Processor presents a com­
mand on the DA L lines, and
aCMD.

The Processor presents an ad­
dress to the DAL lines, and
issues an ADRS.

Any device desiring to interrupt
the Processor will activate the
ATN line and will hold this line
until an ACK is received from the
Processor. Then the device
controller presents the device
dress to the DRL line, followed
by a SYN.

This signal is generated by the
device to inform the Processor
that it has properly responded to
a control signal. Any Processor
control signal, except SCLR,
must be followed by a SYN signal
before the Processor will n-r,,,,n£lorl

This provides a reliable
REQUEST/RESPONSE mode of
operation.

This is a metalic contact to
ground that occurs during power
fail, power up, or initializing the
machine.

NOTE

All lines, except ACK, are connected in parallel to all de­
vices. The ACK line is connected in series with all devices.
The ACK signal, generated by the Processor, is sent to the
first device on the bus. If it has an interrupt pending (i. e.
it has generated an ATN), it will not pass the ACK signal
on to the next device and will respond as in definition of ACK.
If there is no interrupt pending, ACK is passed to the
next device.



r- M_E_M_O_R"'""Y BUS (BYTE)

PROCESSOR

MULTI PLE XOR
CHANNEL

SELECTOR BUS (BYTE)

Figure 5-1. Systems Interface, Block Diagram

There are two modes of communicating over the Multiplexor Bus;
asynchronous and pulsed. Asynchronous mode is used in virtually all
standard INTERDATA device controllers. The pulsed mode is very
useful for custom controller designs described later in the chapter.

A typical sequence of operations over the Multiplexor Channel is:

1. The Processor addresses a device controller over the eight
System Data Lines. The address appears on the bus to all
device controllers, and the Processor activates a Control

5-4



MEMORY BUS

.,~

r--i..J--...,
I PROCESSOR I

r-- --.,
I DEVICE 256 IL ----I

Figure 5-2. Multiplexor Channel, Block Diagram

Line which specifies that the Data Lines provide an address
(rather than data).

2. The device controllers use the Control Line to enable address
decoders. Each device controller decodes its own address.
Assuming that the Data Lines are providing the address of one
of the device controllers tied to the Multiplexor Channel, the
device controller decodes its address and 1 esponds by sending
the SYN signal back to the Multiplexor Channel. That device
is now in the addressed (on-line) state, and will respond to
subsequent activity on the Multiplexor Bus.

3. The Processor may now change the Control and Data Lines.
The device controller remains addressed until another device
controller is addressed or until a System Clear (SC LR) signal
is received.

4. If the next operation is an output operation, the Processor
provides the byte of data on the Data Lines, followed by a
Control Line indicating an output operation. The device con­
troller responds with the SYN signal when it has accepted
the byte.

5-5



5. If the next operation is an input operation, the Processor
raises a Control Line which requests a byte of data. The
device controller sends a byte to the Processor via the Data
Lines. The SYN signal is sent to indicate that the data is
ready.

The sequence provided here is simplified. The entire sequence for
each type of instruction is listed later in the chapter. The final line
to be introduced here is the Attention (ATN) line. The Attention line
provides a means of interrupting the Processor through one of the
priority interrupt lines built into the Processor. Each controller P'lS

an interrupt Queue flip-flop which may be set by conditions within
either the device or the device controller. The output from the Queue
flip-flop is sent to the Multiplexor Channel as ATN. A.TN may be
initiated by any device controller, at any time, whether it is addressed
or not. The program initiates a hardware scan cycle to determine
which device controller caused the ATN signal. The highest priority
interrupting device automatically returns its device number to the
Processor. This interrupt feature is described in more detail later
in this chapter.

5.2.2 Selector Channel

The optional Selector Channel provides block data transfer between one
of up to 25 I/O devices, and memory. Once initiated, the transfer is
independent of the Processor. The Processor specifies the device
address, the type of operation (Read or Write), the starting address
in memory, and the number of bytes to transfer. The Selector Chan­
nel then completes the transfer, cycle stealing from the Processor,
without further direction by the Processor. Upon completion of the
transfer, or termination of the transfer due to a fault, the Selector
Channel Busy condition is dropped and the Processor is notified via
an interrupt.

Figure 5-3 is a Block Diagram of the Selector Channel. Address lines
to, and data lines to and from, the Memory Bus are shown on the
right side. The Memory Bus Control Logic (one of several arbitrary
functional groupings used only for purposes of this block diagram)
gates an address to the Memory Bus and data to or from the bus depend­
ing upon the direction of transfer. The Selector Channel Data Register
(DR) stores the eight-bit data byte to/from memory. The transfer
Control Logic gates the data between the Selector Bus (shown on the
bottom) and the Data Register in eight-bit bytes. The address circuits
are shown in the upper right area. The Byte Count Register (BC) is
loaded in two bytes from the Multiplexor Bus. The Address Register
(AR) is loaded with the starting address in two bytes. After each byte
of data transfers to/from memory, the BC is decremented and its
contents checked against zero. When BC = 0, a terminate signal is

5-6



BYTE COUNT
REGISTER

I BC
(14 BIT)

M
E
M
o
R

... ~ Y

ZERO
DETECT

B
MEMORY ~ U

BUS ~S
CONTROL

LOGIC

AR
(14 BIT)

ADDRESS
REGISTER

r-------L.1----.1 ........

DECREMENT 1 -1

./

f
INCREMENT

DATA
REGISTER

~

~

~ DR
(8 BIT)

}
/

0--

L- ,

I
L... __~

'~
r- __ J

1 I

I
I 8

~ TRANSFER
CONTROL
LOGIC

{'v-- ~S:..=E.=.L=..:EC:::....:T~O::....:..R.:....=_BU:::.:S:::.__ __t/

M MULTIPLEXOR
U INPUT CONTROLi LOGIC

I
P jL--~---,
~~ I ~ ~
X I 0- _ ,6
0 1 ,

RH~ __~ o-_ .........,f-8 -+-....,8,..L

B I .- ,6 :~,._
U 0- - -.-+e---+------_+_~

S - i 0-----~8

I 8 LCOMMAND
AND SENSE ­

LOGIC

Figure 5-3. Selector Channel, Block Diagram

sent to the Transfer Control Logic. If BCf 0, the next byte transfer
is initiated to/from the next sequential memory address.

The Multiplexor Bus is shown on the left side of Figure 5-3. Note that
the Multiplexor Bus may be gated to anyone of the six places. The
gates are functionally represented by a six position rotary switch.
With the gating as shown, and assuming the Transfer Control Logic
is also as shown, the Multiplexor Bus is gated directly to the Selector
Bus. This is the condition which exists when the Selector Channel has

5-7



not been addressed. Thus, all devices on the Selector Channel may
be used via the Multiplexor Channel if the Selector Channel is not in
use. (Of course, the device must be capable of operating within the
Multiplexor Channel timing constraints.) Four of the remaining five
points onto which the Multiplexor Bus may be gated, are the Upper
and Lower halfs of BC and AR. The sixth point is designated Command
and Sense Logic. Commands from the Processor are decoded in this
block to produce control signals for the Transfer Control Logic and
the Multiplexor Input Control Logic.

The following is a typical sequence of operation for a Selector Channel
I/O Operation. Figure 5-4 is a flow chart of Selector Channel opera­
tion. Circled nUlTLbers on Figure 5-4 refer to steps in the following
sequence:

1. The device controller is addressed and the appropriate com­
mand sent to it (for example, Read Tape Forward).

2. The Selector Channel AR and BC are loaded via four byte
transfers from the Multiplexor Channel. The BC may be odd
or even.

NOTE

Steps 1 and 2 may be reversed.

3. A command which specifies if this is an input operation
(information received from the device) is sent to the Selector
Channel from the Multiplexor Channel. (The Selector Channel
is initialized and returns to the output state (information to
the device) on completion of transfer).

4. A GO Command which starts the transfer operation is sent
from the Multiplexor Channel to the Selector Channel.

NOTE

The Processor is no\v free to continue its program while
the block I/O transfer is performed by the Selector Chan­
nel on a cycle-stealing basis. Steps 5 through 8 apply
solely to Read operations (memory to device). Steps 9
through 12 apply to Write operations (device to memory).

5. If this is a Read operation, the Selector Channel requests
memory service via the built-in memory port in the Proces­
sor. When service is granted, the Selector Channel fetches
a byte from memory.

6. When memory data becomes available, it is gated to the DR.

7. The Status Byte from the device is examined. If the device
Busy Bit (Bit 4) is true, the Selector Channel waits for it to
become false. If any of the status Bits 5, 6, or 7 are true, the
transfer is terminated.

5-8



START

ADDRESS DEVICE
CONTROLLER

® ACCESS HS MEM.
BUS® LOAD BYTE IN DR

LOAD AR AND BC

OPER. CMD.

GO CMD.

@ RESET BUSY

@ SET ATN

END

@ ACCESS HS MEMORY
BUS

@ WRITE BYTE FROM DR

Figure 5-4. Selector Channel, Flow Chart

8. A byte is transferred from the DR to the device when the de­
vice is not busy. If the BC is zero, the transfer is terminated.
The AR is incremented and if there is a carry (AR=O) the
transfer is terminated.

9. If this is a Write Operation, the Status Byte is input from the
device. If the Busy is true, the Selector Channel waits for
it to become false. If any of the other three bits in the status
code are true, the transfer sequence is terminated. If all bits
are false, the sequence continues.

5-9



10. A byte is transferred from the device to the DR.

11. The Selector Channel requests memory service.

12. The byte in DR is written into the addressed memory location
when granted memory.

The AR is incremented and BC is decremented. If there is a
Carry from AR or BC is zero, the transfer is terminated,
otherwise the sequence returns to Step 9.

Steps 13 through 15 describe the termination sequence. Any
of the following conditions will cause termination:

a. BC equals ZERO

b. AR increments to ZERO (carry out of AR).

c. A status failure from the device (EX, EOM, or DU).

d. A Stop Command from the Processor.

NOTE

If the Selector Channel is in a memory cycle when the Stop
Command is received from the Processor, execution of
Stop Command will be delayed until the completion of the
memory cycle.

13. Reset the Selector Channel Busy indication.

14. Set the Selector Channel Attention flip-flop to generate an in­
terrupt to the Processor.

15. After the Processor acknowledges the interrupt and addresses
the Selector Channel, it will send a Status Request to the
Selector Channel which will check the status code of the
Selector Channel. If the transfer terminated with BC not
ZERO, Bit 6 will be set. The contents of BC may be read by
issuing two Data Requests 'which return the most, and then the
least, significant bytes respectively.

The Selector ChaIll1el is complete on one mother-board which is mounted
in a Universal Expansion Slot. Every Universal Expansion Slot is
wired uniformly to accommodate either a memory module, a s~andard

INTERDATA device controller, or a Selector Channel, or a Universal
Memory Bus Interface, or a customer designed Direct Memory Con­
nection. Column 0 of both the top and bottom connector (fields 1 and 0)
are reserved for use by the memory systen1. Columns 1 and 2 of the
bottom connector are reserved for the standard Multiplexor Bus wiring.
The same two columns on the top connector are wired with a con­
venient stitch pattern useful for interconnecting two adjacent mother­
boards. Ordinarily, any standard INTERDATA device controller may

5-10



be plugged into any Universal Expansion Slot without a need to modify
the back panel wiring. Core memory modules and ROM 1110dules re­
quire no back panel wiring changes.

5.2.3 Universal Memory Bus Interface (UMBI)

The optional Universal Memory Bus Interface (UMBI) permits an eight­
bit data transfer between memory and an external deviee, without trans­
ferring the data through the Processor. The UMBI is not a stand-alone
circuit, but should be considered part of a special device controller
for communicating with the memory. It contains standard gating and
control circuits made up of IC logic mounted directly on the mother­
board. The remainder of the board is available for the user's designed
circuit. It has space for dual in line IC' s and discrete axial lead com­
ponents of the 1/4 watt resistor size. Wire wrap pins provide for
interconnections. The back panel connector (Connector 1, top) provides
access to the standard expansion slot stitch pattern if required to
communicate with other boards.

NOTE

The UMBI has access to both the Multiplexor Bus and the
Memory Bus on one card.

As shown in Figure 5-5, the customer designed portion of the control­
ler provides fourteen bits of address, provides eight bits of data for
a Memory Write operation, and receives eight bits of data on a Memory
Read operation. Control is exercised by means of the Start pulse
(STARTO), the Memory Write Line (WI), and the Initialize signal
(CLRI). The UMBI provides the customer circuit with a positive pulse
(DRl) which may be used to strobe the DAXXI lines when a byte is
available from memory. The Control Lines, BSYO and SELO, indicate
when the Data and Address Registers may be modified.

A typical controller would be made up of the UMBI for Memory Bus
and Multiplexor Bus access circuits plus any number of wire-wrapped
IC boards the particular application reqUires. Interconnections are
made with the Back Panel stitch pattern and with cables if necessary.

5.2.4 Direct Memory Connection

The user may connect directly to the Memory Bus without the use of
the UMBI. The timing and interface rules for the bus must be adhered
to. This can be useful if special requirements, such as incrementing
data registers, are desired. See Chapter 6 for more detail.

5.3 INPUT/OUTPUT INSTRUCTIONS

5.3.1 Introduction

This section describes the Modell Input/Output (I/O) instructions
which operate in the Asynchromous Mode. Each instruction is imple­
mented by a sequence of request/response type operations generated
automatically by the hardware.

5-11



DWOl - DW71 MSOOO 070 t"'"

I

ISTER
rl REGISTER I

M
DAOOl - 071 I MOOOO - MD070 E

AD020 -AD151 'M
MA020 - MA 150 0

~
ISTER R

Y

BSTART (STARTO)
UWRITE (Wl) REOUEST (REOO)
S

CLEAR (CLRO) MEMORY DATA

BUSY (BSYO) CONTROL AVAI LABLE (MDAVO)
CIRCUITS

SELECTED (SELO) ENABLE (ENO)
DATA (DRI) WRITE (WO) "lIli ......

TO USERS
CONTROL

FROM USERS
CONTROL

FROM USERS
DATA REGISTER

TO USERS DATA REG

FROM

USERS ADDRESS REG

900 'Ylsec

, .... USER CONTROLLED LINE
100 'Ylsec PULSE TO REQUEST ONE MEMORY CYCLE

STARTO

BSYO

END

SELD

REOO

DAXXI

MDAVO

ORl 560 'Ylsec

Wl USER CONTROLLED LINE I
IF WRITING TO MEMORY ri---~__--------.

MAY REMAIN HIGH

I I
AD XX 1 ~-M-E-M-O-R-Y-A-D-D-R-E-S-S-A-N-D-D-A-T-A-M-U-S-T---'I ;

----------- BE SETTLED DURING THIS INTERVAL ~I---

I MEMORY DATA L-
---------------------- AVAI lABlE

DURING THIS
INTERVAL

Figure 5-5. Universal Memory Bus Interface, Block Diagram

5-12



5.3.2 Address ADRS

o 7

=:G

The device controller logic for the Address Instruction is shown in
Figure 5-6.

DALOO:07 (ACCUMULATOR ---+ DEVICE)

ADRS ..

SYN •

00

DAL G1

07

ADRS

SYN

0-......----1 S

ADDRESS

10---+---1 R 0 t-------

SCLRO

Figure 5-6. Device Controller Logic For The Address Instruction

1. The Processor places the Accumulator, which contains the
device number, on the eight Data Available Lines (DALOO:07)

2. The Processor activates the Address (ADRS) control line.

3. The device controller which decodes its address via Gate Gl
sets its Address flip-flop through Gate G2 (Since the address
decoded at Gate Gl is unique to each device controller the
Address flip-flop for all other device controllers is reset by
this instruction).

4. The output from Gate G2, via OR Gate G4, also raises the
Synchronization (SYN) response from the device controller
to the Processor. This indicates that the device controller
has recognized the Address Instruction.

5-13



5. When the Processor receives the SYN signal, it first removes
the Address Control line and then the device number. The
device in turn removes the SYN signal, and the instruction is
completed.

NOTE

Only one device controller may have its Address Flip-flop
set at any time. The device controller will remain addres­
sed until a different address or until a System Clear (SCLRO)
signal is generated. Once a device controller is addressed
it responds to all Input/Output instructions on the Multi­
plexor Bus. The user should keep this in nlind when re­
sponding to interrupts.

NOTE

A time out feature is provided in the Processor to prevent
locking up the computer, waiting for SYN, because of a
malfunctioning device or a nonexistent device. The time out
signal (referred to as False Sync) is generated if the device
does not respond with SYN in approximately 30 ± 10 micro­
seconds, if a False SYN occurs, the Processor aborts the
instruction and unconditionally sets the Carry Bit.

NOTE

The Processor guarantees the width of the ADRS Control line
to be 350 nanoseconds minimum. The designer must design
the controller such that when some other device is addressed,
the previously addressed device will clear its ADRS flip­
flop within the 350 ns period.

5.3.3 Output Command OC
o 7

=
DALOO:07 (ACCUMULATOR -. DEVICE)

CMD ---------.......

SYN ••---------

Figure 5-7 provides the device controller logic for the output Com­
mand Instruction.

1. The Processor outputs the Accumulator which contains the
Command Byte on the eight Data Available lines.

2. The Processor activates the Output Command (CMD) control
line.

5-14



MULTIPLEXOR
BUS

{OO
DAL

07

ADRS

CMD

SYN G4

1--------~__-----_+___1S

T FlO
"X>---+--t R 0

'--'--------.....-------+----tS
T Fll

Y>--+-"""",R 0

-------------I.....-------+----4S 1
T F17

XJ----tR 0

DEVICE CONTROLLER

o

7

COMMAND
REGISTER

Figure 5-7. Device Controller Logic for the Output
Command Instruction

3. The addressed device controller receives the eight bit Com­
mand Byte and loads it into the Command Register (FIO-F17)
using the output from Gate G8. The output from gate G8 also
sends a SYN back to the Processor through Gate G4.

4. When the Processor receives the SYN signal it removes the
CMD control line and the Command Byte, the device in turn
removes the SYN signal and the instruction is complete.

5.3.4 Write Data WD

o 7

SYN ..~----------

DALOO:07 (ACCUMULATOR --.. DEVICE)

DA •

5-15



Figure 5-8 provides the device controller logic for the Write Data
Instruction.

DAL{OO
07

ADRS

DA

SYN G4

S
0

T F2

R 0

S

T F3

R 0 DATA

REGISTER

S
7

T F9
R 0

MULTI PLE XOR
BUS DEVICE CONTROLLER

Figure 5-8. Device Controller Logic for the Write
Data Instruction

1. The Processor outputs the Accumulator which contains the
eight bit Data Byte on the Data Available lines.

2. The Processor activates the Data Available (DA) control line.

3. The currently addressed device controller receives the eight
bit Data Byte and loads it into the device controller Data
Register (F2 through F9), using the output from Gate G6.

4. The G6 output is also used to return SYN to the Processor
through Gate G4.

5. When the Processor receives the SYN signal it removes the
DA control line and the Data byte, the device in turn removes
the SYN line and the instruction is complete.

5-16



5.3.5 Sense Status SS
o

=
SYN ....~--------

DRLO:7 (ACCUMULATOR 4-- DEVICE)

SA •

The Sense Status instruction transfers an eight bit status Byte from the
addressed device controller to the Processor. status bits take on
different meanings for different device controllers. In general, how­
ever, data may only be transferred between the Processor and the
device when the status of that device is all zeros. Figure 5-9 provides
the Device Controller Logic for the Sense Status Instruction.

DALOO

DALOl

DAL02

DAL03

DAL04

DAL05

DAL06

DAL07

ADRS

SYN

SR

G4

STATUS

BYTE

DRLOO ---------------f

DRLOl ----------------f

DRL02 ---------------f

DRL03 ---------------f

DRL04 ---------------1

DRL05 -----------------i

DRL06 ---------------f

DRL07 --------------""'\

BSY

EX

DU



1. The Processor actuates the Status Request (SR) control line.

2. The currently addressed device controller places an eight­
bit Status Byte on the Data Request Line DRLOO:07 via Gates
GIS through G25 when enabled by gate G7.

3. The output from G7 also sends SYN to the Processor through
Gate G-4.

4. When the Processor receives SYN it loads the Status Byte
from the Data Request Line into the Accumulator. The
Processor then releases the SR control line.

5. When the Processor releases the SR control line, the device
controller should remove the Status Byte from DRLOO-07 and
it should also release SYN, and the instruction is complete.

5.3.6 Read Data RD

o 7

~

ORLO:7 (ACCUMULATOR ......-OEVICE)

SYN "'4~---------

DR •

Figure 5-10 provides the device controller logic for the Read Data
Instruction.

5-18

1.

2.

4.

5.

The Processor activates the Data Request (DR) control line.

The currently addressed device controller places an eight
bit Data Byte on DRLOO:07 via Gates GI0-G17 when enabled
by Gate G5.

The output from gate G5 also causes the device controller to
send SYN to the Processor via Gate 4.

When the Processor receives SYN it loads the Data Byte from
the Data Request Lines to the Accumulator. The Processor
then releases the DR control line.

When the Processor releases the DR Controlline, the device
~ontroller removes the Data Byte from DRLOO-07 d
l1ne~ and the instruction' an 8~~r

18 complete. ~ f



DAL JXl------n

lo1---~
ADRS -----------4II1-t

DR ---------------it-------

SYN---------c: G4 \-- ___

DATA IN

7

o

DEVICE CONTROLLER

DRLOl -----------...r---------~
I
I
I
I
I
I
I

DRL07 -------------"---------\
MULTIPLEXOR

BUS

DRLOO ---------------------4

Figure 5-10. Device Controller Logic for the
Read Data Instruction

5.3.7 Acknowledge AK
o 7

~

RACK (PROCESSOR -. DEVICE)

ATN (PROCESSOR ...- DEVICE)

DRLO:7

SYN

(ACCUMULATOR~ DEVICE)

This instruction is used to identify which of up to 256 device controllers
interrupted the Processor over the common Attention (ATN) Line.

Figure 5-11 provides the device controller logic for the Acknowledge
Interrupt Instruction.

5-19



r-----------~~------!---ENABLE

S~--

F18 T .......- .......

r-~------+_--.......f.O R

RACK ~------.II

DEVICE CONTROLLER

SYN ~--....o('

DRLOO ----....0('

DRLOl

SR ~--------------~

MULTIPLEXOR BUS

Figure 5-11. Device Controller Logic for the Acknowledge
Interrupt Instruction

1. The device controller wishing to interrupt the Processor
raises the ATN line by setting flip-flop F18.

2. The program responds by issuing an Acknowledge Instruction.

3. The Processor raises the Acknowledge (ACK) control line.

5-20



NOTE:

The ACK line is received by the first device controller in the
priority daisy chain as Received Acknowledge (RACK). If
FI8 is not set, the RACK signal is sent on to the next device
controller as transmit Acknowledge (TACK) where it is
received as RACK, and so on. The ACK line is passed on
from device controller to device controller, in order of
their priority, until it finds one with the Interrupt flip-flop
(FI8) set. The Zero output of FI8 prevents the RACK pulse
from being sent on as TACK.

4. The FI8 high output and RACK are ANDed to enable the
Device Number from the device to the DRLOOO through
DRL070 lines, and to send SYN to the Processor to indicate
that the device number is on the lines. The ATN flip-flop
is also reset.

5. The processor gates the device number into the Accumulator.

6. The Processor then lowers the ACK line which, in turn,
causes the device controller to lower the SYN line.

5.3.8 Read Data and Skip RDS
o 7=

SR -----..

DRLOO:07 ......-

SYN -Jl::---
DR--~

The Read Data and Skip instruction is a combined Sense Status and a
Read Data instruction where the Processor tests the device status and,
when the device is ready, reads a data byte from the device. See
Figure 5-12.

1. The Processor raises the Sense Status (SR) control line. The
Status Byte from the currently addressed device controller is
returned to the Processor on the DRL line in a fashion similar
to that described in the Sense Status instruction.

2. The Processor tests the least significant four bits of the
returned Status Byte.

2a. If any of Bits 5, 6, and 7, (Examine, End of Medium or
Device Unavailable), is true, the Processor loads the
Accumulator with the Status Byte, and executes the next
instruction.

5-21



BSY 4}EX 5

EOM 6 STATUS

DU 7

DRL07 :-----{

ADRS I

DALOO I

I S
r

DAL07
I R 0
I
I
I
I

SYN

SR

DR

DRLOO

MULTIPLEXOR BUS

Figure 5-12. Device Controller Logic
(Read Data Skip or Read Block Instruction)

2b. If only Busy is true, the Processor maintains the
SR control line active until the Busy Bit becomes
false and continues to Step 3.

3. When the device releases the SYN line for the Sense Status
portion of the instruction, the Processor activates the Data
Request (DR) Control Line.

4. A data byte is transferred to the Accumulator in a fashion
identical to that described for RD.

5. On successful execution of this instruction, the next program
instruction is skipped.

5-22



5.3.9 Write Data and Skip WDS

55 ----..

DRLOO:07

SYN ...---

DALOO:07~

DA-----..

The WDS instruction is a combined Sense status and Write Data in­
struction where the Processor tests the device status and, when the
device is ready, sends a data byte to the device. See Figure 5-13.

1. The Processor raises the Sense Status (SR) control lineQ The
Status Byte from the currently addressed device controller is
returned to the Processor on the DRL line in a fashion similar
to that described in the Sense Status instruction.

2. The Processor tests the least significant four bits of the
returned Status Byte.

2a. If any of bits 5, 6, and 7, (Examine, End of Medium, or
Device Unavailable), is true, the Processor loads the
Accumulator with the Status Byte, and executes the next
instructionQ

2b. If only Busy is true, the Processor maintains the
SR control line until all status bits are false and
continues to Step 3.

3. When the device releases the SYN line for the Sense Status
portion of the instruction, the Processor places the Accumu­
lator on DALO:7 and raises the Data Available (DA) control
line.

4. The device controller receives the Data Byte as described
in the WD instruction.

5. A successful execution of this instruction results in the
next program instruction being skipped.

5-23



SYN

SR

DRLaa ~} STATUS DATA
i II 7 ACCEPTED
I

DRLa7

DA DATA AVAILABLE

I rI
S

T

I R

I DATA
OUT

I
I

fI S

I
T

R

I
I

rDALaa
I
I I S
I
I I

DALb7 R

I
ADRS

I
MULTIPLEXOR

BUS

Figure 13. Device Controller Logic
(Write Data and Skip and Write Block Instruction)

5.3.10 Read Block RB

o 7 8 15

1 a a a 1 I P ----A-D-D-R-E-SS----']

Page Bit
Indlrect Bit

The Read Block instruction is an extension of the Read Data Skip in­
struction where a block of up to 256 data bytes is read from the device
to memory.

5-24



The steps in this instruction are the same as RDS except the operation
is repeated until the end of a memory page is reached.

5.3.11 Write Block WB

o 7 8 15

1 0 0 0 0 I P ----A-O-D-RE-S-S------I

Page Bit
Indlrect Bit

The Write Block instruction is an extension of the Read Data Skip in­
struction where a block of up to 256 data bytes is read from the device
to memory.

The steps in this instruction are the same as RDS except the operation
is repeated until the end of a memory page is reached.

5.4 DEVICE CONTROLLER LOGIC DESIGN

This section describes the procedure to follow in designing I/O device
controllers. While it would be impossible to describe all possible
controllers, representative circuits are described in enough detail
to permit design of most controllers. Note that a General Purpose
Interface Controller which simplifies device controller design is de­
scribed in a later section.

5.4.1 Multiplexor Channel

The I/O Bus system (either Multiplexor or Selector Channel Bus) con­
sists of 27 shared, unidirectional leads which may be divided into four
groups:

1. Data Available Lines (DALs) form a group of eight lines from
the Processor and carry Address, Command, or Data Bytes
to the device controller.

2. Data Request Lines (DRLs) form a group of eight lines which
carry status, device address, or data bytes from the device
controller to the Processor. In the Processor, the lines
are gated into the A Register.

3. Control Lines (CLs) form a group of eight lines from the
Processor. Control Lines are raised on a one-out-of-eight
basis. These lines define the use and intent of the DALs and
DRLs. One of these lines, CL050, carries the Interrupt
A.cknowledge (ACK) signal and is not a shared line, but
breaks up into a series of short lines to form the daisy-chain
priority system. The device controller closest to the Proc­
essor has the highest priority since the ACK signal must pass
through it first.

5-25



4. System Synchronize (SYNC), Interrupt Attention (ATN), and
System Clear (SC LR) lines form the last group. The SYN
and ATN lines carry signals to the Processor where they
are used in the timing and control of the I/O Bus system. A
SYN signal indicates that the device controller circuit has
received a signal on one of the control Lines. The A.TN line
is raised when any of the device controller circuits eause an
interrupt. Access to the ATN line is under control of an
Enable (EBL) flip-flop in each device controller. The SCLRO
line provides a relay contact closure to ground which is used
to set up initial or preferred states in each device controller.

All buses are of the false type, i. e. zero active. The device controller
circuits used to communicate with the I/O Bus system are shown in
Figure 5-14. In a typical case, the DALs and Control Lines are buf­
fered by standard gates to drive the Address, Command, Control, and
ATN/ACK circuits. The signals back to the Processor on the DRLs
are gated by open collector power gates whose outputs are OB. tied
within the device controller and on the bus. The load resistors for the
DRLs are located in the Processor. The paragraphs which follow list
the conditions affecting bus usage, and provide a set of design rules.
Standard circuits for ATN/A.CK and address decoding are also shown.

The System Interface uses Diode-Transistor Logic (DTL) pu\ver gates
for bus drivers on the I/O Bus system. On the DAL and Control Lines,
the line drivers located in the Processor are capable of handling 25
DTL loads in addition to a lK pullup resistor. The ATNO, S"YNO, and
DRL Bus Lines are driven by power gates distributed throughout the
device controller boards.

On each line, the gate collectors are OR tied and share a cornmon load
resistor (located in the Processor) as shown in Figure 5-14. The
value of the load resistor, and the number of OR ties, is determined
by the total OFF leakage current of the power gates, considered with
the maximum ON current of a single gate whose saturation voltage is
still below the logical ZERO level.

Calculations for the bus load resistor in Figure 5-14 and for the allow­
able fan-in, show that for worst case conditions and a 0.7 volt noise
margin, the fan-in is about 50 gates. The basic rules for device
controllers tying to the I/O Buses are:

1. Only one DTL load should be placed on each device controller
input line from an I/O Bus (DAL Control Lines, and SCLRO
line).

2. Not more than two DTL power gates should be OR tied to a
device controller output line to an I/O Bus (ATN, S'~N, and
DRLs).

5-26



~IPROCESSQR---,

+5 II 1K 8 DAL'~

I ~
I T,
SA

Iv
Is L
TI

IE N

1
M

~
I
I +5

I
I g
I N

T
Is R

IV 0
S L ACKO

IT
I
E L
MI

I ~
I S

I
I
I SCLRO

: ~ INITIALIZE I
L --.J

MULTIPLEXOR
CHANNEL

BUS

r----

I AL'S
ADBKO I

I OR
ATSVNO I

I P I
I I
I I
I I·
I ADBK/ATSYN I
I :
I IL J

Figure 5-14. I/O Bus Communication Circuits, Logic Diagram

5-27



The previous two rules give the Processor a Basic r/o drive capability
of 25 device controllers. Additional buffering of the Multiplexor Bus
may be achieved, if required, as shown in Figure 5-15.

--.....,
I
I
I
I

I DEVICE I I DEVICE I
LCONTROLLE~J ~~O~R.::J

I 1~~O I
,:1

L --::..J

r --lr
I P II
I II
I II I
I DEVICE I I DEVICE I

CONTROLLE R 26 CONTROLLE R 50 I
L .J L ---l

I n I
I BUS BUFFER +5 IL .J

TO / FROM
ADDITIONAL

DEVICE
CONTROLLERS

Figure 5-15. Multiplexor Channel Bus Buffers

5.4.2 Device Controller Addressing

Refer to Figure 5-16 during the following description. The dotted lines
around the groups of logic functions represent INTERDATA. standard
logic. Further details on the logic packs may be found in the INTER­
DATA Logic Module Handbook, Publication Number 29-005. The
designer may use his own logic packs provided they are level compat­
ible with INTERDATA. logic as described in the aformentioned publica­
tion. When a device controller is addressed, the eight-bit address

5-28



~u-;;;; - - .. r DEViCE-l
I I NUMBER I

I DAL01 I SELECTION

DALOOO~II.-: : DALOO I ~:> :
:

DAL11 1 ...... I
DAL010~ :DAL10 I ~__;:rr-~I- ......

I : DAL21 I ...... I
DAL020---l...ol'"6 : DAL20 I ~,::. I

1 : DAL31 1 ...... I
DAL030~ DAL30 I ~,,::

L ...J L .J

r - - --..., r - --.,I DAL41... I

DAL040 ---l...ol'"6 : DAL40 I ~,:: I
I : DAL51 I ...... I

DAL050~ : DAL50 ,I ~,,; I

:

DAL61 ... I
DAL060 I 1"""\_~ DAL60 I :'>0---1--
~IDAL711 1

I f'-. ~ I DAL70 I o::,-y)---:1:---......
DAL070~ 0L ~ L __ ---J

~D;S ~EC~D;-R l
I I

I
I
I

DD1

ADRS 0

SYN 0

r>-~~ DENBI
I
I
I4-ADRS FLIP-FLOP___ .J

r - - - - - ADSY 0

I
I I
L -I

Figure 5-16. Device Addressing, Logic Diagram

5-29



code is placed on the Data Available Lines (DALOOO through Di\L070).
The two buffers provide the true and .false DAL lines. The A.ddress
Decoder circuit is hard-wired on each controller with its assigned
address code, and the eight coded outputs are applied to an eight input
gate. Thus, the Decoded Device output (DDl) goes true. The A.ddress
control line, A.DRSI then strobes the DDI line into the ADRS flip-flop.

The Synchronize signal is returned to the Processor, during the
presence of ADRSl, via the Address Sync line, ADSYO. Notiee that
an OR gate is used here for returning the other device Command Sync
lines. The set output from the Address flip-flop, called Deviee ENable
(DENBl), is used to gate all other I/O control lines to the device
controller. When another device is addressed, the decoded device
line, DDl, is low, causing the ADRSI strobe line to reset the Address
flip-flop, and disabling the controller. Thus, only one device control­
ler may be addressed at any time. During the address cycle, only the
device that was addressed returns a Sync.

NOTE

The designer must design the Controller such that when some
other device is addressed, the previously addressed Controller
will clear its address flip-flop within 350 nanoseconds.
Otherwise the system could have two devices addressed
simultaneously.

The device controller logic must delay sync until it has reacted to the
Multiplexor Bus Control Line, however, unnecessarily long delays
serve only to reduce the system throughput.

5.4.3 Data and Status Input

Figure 5-17 shows how a byte of data and status may be read into the
Processor. When the device is addressed, DENBI is high, enabling
the Status Request (SR) or Data Request (DR) control line. The SR or
DR in turn, enables the Status or Data Bytes onto the Data Request
Lines (DRLOOO through DRL070). Open collector power gates are used
for OR typing multiple data sources onto the DRL lines. A system
requirement is that the addressed controller must respond to all con­
trol lines with a SYNC. The device controller logic should place a
high on BSYI until the data is ready and settled on the Data B~equest

Lines (DROIO through DR070). The Processor may now be synchronized
to the device data rate by testing the device status until the Etusy Bit
is low. Then, when the Busy Bit is low, the program may transfer
data. Device synchronization can also be achieved by generating an
interrupt when the data is ready.

The End Of Medium (EOM) Bit is normally placed high at the termina­
tion of the device medium, such as End of Card. The Device Unavail­
able (DU) Bit typically signifies that device power is not turned on.

5-30



·----1
I I

r------+----<l~ ,-.JS:==1========::::::;--...,
L J

SRO .....-------1 ~---+-___1

SRSYO

Figure 5-17. Data and Status Input, Logic Diagram

5-31



The Examine Status (EX) Bit is used to signify other appropriate de­
vice conditions. In this case, the user assigns SOl through 831 to
appropriate conditions, such as Parity Error, etc.

It is appropriate to note here that the Busy Status is unconditionally
defined such that data cannot be transferred unless Busy is false. The
remaining Status Bits are defined as required by the device eontroller.
Not all device controllers require all eight Status Bits.

Device controllers must be designed such that the Processor or the
Selector Channel maintains the Status Request line once the current
status of the device is presented. Specifically, if the status changes
while the Status Request line is true, the status byte returned to the
Processor or Selector Channel should also change.

5.4.4 Data and Command Output

Figure 5-18 shows how a byte of data and command ll1ay be output from
the Processor. The buffered true and false Data Available Lines,
DAL001 through DA.L071 and DALOOO through DAL070 from Figure 5-16
feed to the set and reset inputs of the data Register. When the device
is addressed, DENBI is high, enabling the control line DAG1 to strobe
the data condition into the J-K flip-flop Data Register. The DASYO
line also returns ~he Sync signal to the Processor.

The Command Lines are shown on Figure 5-18 as being used in the
Toggle Mode. For example, a high on Bit 0 (DALOOI) sets a control
relay when CMGI goes high. A high on Bit 1 (DALOI1) resets the
relay. Bits 6 and 7 are shown operating an indicator. Other pairs of
bits may be used to enable/disable interrupts, etc.

Again, note that definition of the Command Bits is a function of the
device controller only. Not all device controllers require eight sepa­
rate commands. However, up to 256 commands are possible.

5.4.5 Interrupt Control

Figure 5-19 shows a complete general purpose interrupt and interrupt
acknowledge logic system. When an interrupt is generated, the
Queue flip-flop is DC set via a differentiated negative going pulse. The
output from the Queue flip-flop generates an Attention signal (ATNO)
to the Processor. ATNO is connected to one of the four standard prior­
ity interrupt lines in the Processor. The Processor responds with an
Acknowledge Interrupt signal which is received by the controller as
Receive Acknowledge (RACK). Since the queue flip-flop was set prior
to receiving the RACK, the Gate GI output disables G9, holding the G9
output high. The high output from G9 stops TACKO from sending the
Acknowledge to the next device. Thus, RA.CK1 and the G2 output
generate ATSYO via G3. ATSYO sends a SYNC back to the ])rocessor,
and also forces all inputs (DALOOO through DAL070) to zero. This

5-32



DALOl

DALll

DAL6l

DAL7l

,......-----+---+----------- DENBl (FIG. 3.3)

+

~---(.>o--- +

DALOl

DALOO

DAL7l

DATA OUT

loo--__D_A_L7_0 ----( K 0

MULTIPLEXOR
BUS

Figure 5-18. Data and Command Output, Logic Diagram

5-33



ENABL
DISABL

1K

+5

ADRS
STRAP ~""'-+-I
BOA RD Uo---4I.......

(2)

DEVICE
NUMBER

0--__- .....--_1------------ ACKNOWLEDGESYI\lO

+5

ATNO ----<I

DALOOO -----+--1,
I
I
I
I

DAL070 ------...-4

DRLOOO ------+-0
I
I
I
I

DRL070 -----~DI

IL. .J

NOTE: THE FOLLOWING RACKO/TACKO CIRCUIT
MAY BE SUBSTITUTED FOR THE ONE SHOWN

Figure 5-19. Interrupt Control, Logic Diagram

5-34



causes the device number wired in by the address strap board to appear
on the inputs of GIO through Gl7. Thus, the ATSYl output from G4
enables the device number onto DRLOOO through DRL070.

Capacitor C2 removes a 30 nanosecond false pulse which appears if
the Queue flip-flop is set at the same instant that RACKO is received
in response to another device interrupt. This pulse might otherwise
reset the Queue flip-flop before the interrupt is serviced. Note that
an alternative method to prevent the occurrence of the false pulse is
indicated in the note on Figure 5-19. Here C2 is not required. The
output from G4 also raises the Acknowledge signal to the device. On
receiving the SYNO, the Processor lowers RACKI, causing the output
of G4 to drop. This in turn causes the Queue flip-flop to reset.

NOTE

If the interrupt has not set the Queue flip-flop, the RACKl
signal passes through G2 to TACKO, and on to the next device.

If RACKI is high in response to another device, the output
from G2 is low, thus disabling the interrupt from affecting
GI. However, the interrupt remains in the Queue flip-flop,
and is serviced after completion of the previous interrupt
service.

The ENABFFO and ARMFFO lines provide control over the Interrupt
Queue flop-flip and the ATNO line to the Processor. Normally, two
bits of a command byte (Bits 0 and 1) are decoded such that, with Bit
o true and Bit 1 false, the queue flip-flop is disabled. That is, the
flip-flop may be set, however, its output is held low. G6, whose
input is ENABFFO from the false side of the ENABLE latch, provides
the function. The command byte, with Bit 0 false and Bit 1 true, is
decoded (ENABL goes false) and sets the ENABLE latch which allows
new interrupts or a queued interrupt to be recognized. Bits 0 and 1,
both true, are decoded to drive DISARM false which sets the DISARM
latch. The false side of the latch is used to clear the Queue flip-flop
and to prevent the Interrupt line from setting it. The DISARM latch
is cleared whenever the ENABLE or DISABLE commands are recog­
nized. Encoded commands ENABLE/DISABLE/DISARM thus provide
interrupt masking or inhibiting within the device controller.

As described previously, the Control Line, CL050, from the Proc­
essor carries the Interrupt Acknowledge (ACK) signal. This line
breaks up into a series of short lines to form the daisy-chain priority
system. The ACK signal must pass through every controller that is
equipped with Interrupt Control circuits. This includes all device
controllers except a few special cases.

Back Panel wiring for interrupt control is shown in Figure 5-20. At
a given position, the Received ACK (RACKO) appears at Pin 114-0 and

5-35



FIELD 1

P16 P5 GNO P16 P5 GNq_
N16 A2 __

~_L-. N16 A3 133
WTO r WTO-t---A2--r--. 132

MOOOO C2 D2 MDOOO C3 /)3
010

I
010 C2 /)2

020 E2 F2 020 E3 1=3
030 030 E2 F2
040 G2 H2 I 040 G3 H3
050 050 G2 H2
060 12 J2 I 060 13 J3
070 070 12 J2
080 K2 L2

I
080 K3 L3

M5080 M5080 K2 L2
070 M2 N2 070 M3 N3
060

I
060 M2 N2

050 02 P2 050 03 P3
040

~
040 02 P2

030 02 R2 030 03 R3
020 LL 020 02 R2
010 52 ____

'--- T2 - 010 53 T3
000 -r--- OOU- r-=:; 52 --I-- T2

TEMPB U2 V2 TEMPB V2 U3 - r---+
TEMPA P5 GND TEMPA P5 GND

o 2

FIELD 0

REOO P5 GND REQO P5 GND
ENO EXB2. I-- EXD2 .. - ENO EXB3 EXD3

ACTO - I-- ACTO--=' :::EXB2 - r-- E.XD2
TACO EXA2.~EXC2 .. :-.- TACO EXA3 EXC3

MA150 - I-MA 15(f=:~EXA2- r.. E.XC2
140 SCLRO SPRC 140 SCLRO SPRC
130 SPRA SPRB 130 SPRA SPRS
120 5YNO ATNO 120 SYNO J~TNO

110 RACKO ~TACKO 110 RACKO ~T.ACKO

100 SRO CL070 100 SRO CL070
090 DRO CL060 090 DRO CL060
080 DAO 080 DAO
070 ADRSO CMDO 070 ADRSO CMDO
60 DRL030 DRL070 60 DRL030 DHL070
50 020 060 50 020 060
40 010 050 40 010 050
30 000 040 30 000 040
20 DAL030 DAL070 20 DAL030 DAL070

PARO 020 060 PARO 020 060
LRO 010 050 LRO 010 050
ERO 000 040 ERO 000 040

INHO P16 N16 INHO P16 N16
WO P5 GND WO P5 GND

Figure 5-20. Typical Universal Expansion Slot 'Wiring

the transmitted ACK (TACKO) at Pin 2140. The daisy-chain bus is
formed by a series of isolated lines which connect Ternlinal 214-0
of a given position to Terminal 114-0 of the next position (lower
priority). On unequipped positions, a jumper shorts 114-0 and 214-0
of the same connector to complete the bus. Back Panels are wired
with jumpers on all positions. Whenever a card chassis position is
equipped with a controller, the jumper from 114-0 to 214-0 must be
removed from the Back Panel at that position.

5-36



For controllers that occupy several positions, the jumper is removed
only at the position where the controller board has ATN/ ACK circuits.

5.4.6 Multiplexor Channel Wiring

Wiring for the Multiplexor Channel and the Selector Challllel is identi­
cal. The bus connections are via the bottom connector (Field 0) and
are shown on Figure 5-20. Note that the top four rows of pins are
stitched for use in communicating between mother-boards in the same
device controller .

The top connector (Field 1) is stitched as shown. The Field 1 connector
is used solely for communication between mother-boards.

5.4.7 Multiplexor Channel Timing

Both the Input and Output operations on the Multiplexor Channel make
use of "request-response" signaling. This allows the system to run
at its maximum speed whenever possible, but permits a graceful
slowdown if the characteristics of a particular device controller re­
require signals of longer duration. Device controler designs should
keep Multiplexor Channel usage as fast as possible consistent with
practical circuit margins. Doing this assumes the greatest computer
throughput when a system is configured with a nurrlber of peripheral
devices.

Typical operations are shown on Figure 5-21\ for Input and Output. On
the Output operation, the Processor places a signal on the Data Avail­
able Lines followed by an appropriate Control Line signal. This stag­
ger (Tl) will vary depending upon which model Processor is in use,
but it is guaranteed to be at least 100 nanoseconds. When the device
controller has received the Output Byte, the SYN signal is returned to
the Processor which then terminates the Control Line signal. Realiz­
ing that T5 is 100 nanoseconds minimum, the SYN delay T2 should be
only long enough to guarantee proper reception of the Output Byte.
The Control Line/DAL removal time (T3) is important where single­
rail to double-rail operation is used - e. g. the ADRS flip-flop on
Figure 5-16. A minimum of 100 nanoseconds is guaranteed for T3.
For SYN generation as per Figure 5-16 and 5-19, the Control Line
signal is DC coupled through the gates to form the SYN signal. The
SYN removal time (T4) will be the delay through four DTL gates. This
delay should not be unnecessarily extended since the Processor will
not consider the Input/Output operation complete until SYNO falls.

Device controllers must be assigned to accept a minimum control
pulse width (particularly ADRS) of 300ns.

It should be emphasized that the times shown on Figure 5-21 are de­
fined for signals on the Multiplexor Channel. Within a given controller,
one signal may flow through more gates than another signal and these
delays must be considered.

5-37



DALOO-07
PRQCESSOR --+ DEVICE

ADRS, DA OR CMD ~
T6 -

CONTROL LINES

I

SYNC DEVICE ....... PROCESSOR I I
l_ ~.J._~

T1 T5
T3 100 ns MINIMUM T1

:.- T3
T5 ~

~......
T2

....--..... - T4 -T2
T4

SEE TEXT

T6 350 MINIMUM FOR ADRS. ALL
OTHERS HAVE NO MINIMUM
BUT DROP AFTER SYNC IS
RETURNED.

DR,SR OR ACK
CONTROL LINES

DR LOO-07
DEVICE TO PROCESSOR

a. OUTPUT

I

1- _ -t--.-----
SYN
DEVICE TO PROCESSOR

T1 }T2
T3

T4

SEE TEXT

100 ns MINIMUM b. INPUT

T4

I

1- __ t--'-----
T3

Figure 5-21. Multiplexor Channel Timing

For the Input operation, the Processor places a signal on a Control
Line. The currently addressed device controller should gate signals
to the DRLs as soon as possible to keep Tl at a minimurrl. The SYN
delay (T2) must guarantee that the Input Byte is on the DllLs consider­
ing the slowest data gates and the fastest SYN gates. The Processor
will remove the Control Line signal when SYN is received with a mini­
mum delay (T4) of 100 nanoseconds. With SYN and the byte gate DC
coupled to the Control Line, the removal delay (T3) will be the sum of
the corresponding gate delays. The Processor considers the opera­
tion complete when SYN falls.

When the Control signal is ACK, the delay Tl will include the cumula­
tive G8/G9 delays (See Figure 5-21) for all the controllers between the
responding controller and the Processor. This will be less than the
Processor Time out even with the maximum limit of 256 controllers.

NOTE

It is essential to realize that after the Processor initiates a
Control Line signal, the Processor does nothing until the
SYN signal is returned by the device controller; one or more
cycles are skipped if necessary and the data transfer rates
decreased proportionally. While this may not affect a

5-38



particular controller, the overall systenl performance is
degraded. Furthermore, if a device controller fails to
respond with a sync in the time out period of about 35
microseconds, the Processor will abort the instruction.

5.5 STANDARD I/O BOARD

5.5.1 Introduction

This section describes a basic bus communications board which is
available from INTERDATA to facilitate custom controller design by
the customer. The Standard I/O Board is essentially a mother-board
which contains the bus communications and interrupt circuits used on
most device controllers. A more complete design description is given
in the Standard I/O Board Instruction Manual, Publication Number
29-041.

The Standard I/O Board has its IC logic mounted directly on the mother­
board in a field near the lower connector (Connector O. This position­
ing keeps the signal paths to and from the bus as short as possible.
see Figures 5-22 and 5-23. The remainder of the board provides 28
connectors for standard INTERDATA daughter-boards which are de­
scribed in the Logic Module Handbook, Publication Number 29-005.
The same Standard I/O Board may be used with either the Multiplexor
Channel or the Selector Channel.

5.5.2 Communications Logic
The A.ddress and SYN circuits on Figure 5-24 perform the same func­
tions as those shown on Figure 5-16. The address straps for device
number selection are wired in a field at location 20 on the mother­
board. The lettered pins also provide the true and false states for an
eight-bit byte which can be wired to Data and/or Command Registers
in the wire-wrap portion of the board.

Data and status Bytes returned to the Processor originate in the cus­
tomer designed wire-wrap portion of the board and share the bus
driver circuits as shown in Figure 5-24. A group of pins designated
the E Field provide this connection.

The Interrupt Control circuit on Figure 5-24 is logically identical to
that on Figure 5-21. The Data Output and Command Output circuit
shown on Figure 5-24 is logically identical to that on Figure 5-20.

5.5.3 Wire-Wrap Facilities

The Standard I/O Board provides 28 daughter-board locations, 23
mother-board pull-up resistors (1K to +5 volts), space for eighteen
components (resistor, capacitors, or diodes) mounted between pull-up
resistors, space for 24 reed relays form lA, space for eight PC trim
potentiometers, and sixteen test points on the outer end of the

5-39



4 3 2 o

7

6

5

4

3

2

o

OIJ GO QD

00

MULTIPLEXOR CH.
BUS COMMUNICATIONS

IC CIRCUITS
(SEE FIGURE 4-2)

----,
ADDRESS:
STRAPS I

CONN.
1

CONN
o

4 3 2 o

Figure 5-22. Standard I/O Board Layout

zz
1-1­««
en en0)«

TERM
DESIG.

MMMMMMMM
NNNNNNNN

MMMMMMMM................................ MMMMMMC'')M
ooooooc::>o

I • I I I • I I

o 0 0 000 000 0 0 0 0 0 000 0 o 0 0 0 0 0 0 0 0

DR L070A E11
DR L060A E10
DR L020A E09
ATSYI\l1 EOa
DR L050A E07
ENSYNI E06
DR LOOOA E05
DR L040A E04
DRL010A E03
ASPSYO E02
BSPSYO E01
DR L030A EOO

o
o
o
o
o
o
o
o
o
o
o
o

____Ic=J 1__11","",""-_1C~1_

_I c=J I II~IC~ 1--------....
WIRING {~ ~

5 L 3 G I C
o 0 o 0 o 0

FIELD 0 0 0 0

FOR S M H gAIADDRESS G N 4 J 2 E
STRAPS g 0

o 0 o 0 o 0
0 0 0

P K F B
3 2

__II IC~ 1___
o

5-40

Figure 5-23. Standard I/O Board Field Layout



mother-board. Cable connectors to external devices or circuits are
mounted in the daughter-board locations along the outer edge of the
board in the same manner as with standard INTERDATA controllers.

Wire-wrap pins for the upper connector pins (Connector 1) are avail­
able. These are used when more than one mother-board is required
for the controller. The back panel "stitch pattern" shown in Figure
5-23 provides straps between adjacent boardso A multi-board control­
ler usually requires only one Standard I/O Board (35-104) to provide
the communications circuits. Wire-wrap mother-boards (35-050) with
40 daughter-board positions each are used for the additional logic.

5.6 PULSED INPUT/OUTPUT

The pulsed mode is the second mode of communicating over the System
Multiplexor Bus. Data is transferred to and from device controllers
in a synchronous fashion as opposed to the Request/Response (hand­
shaking) associated with the A.synchronous Mode discussed earlier.
The same identical Data and Control Lines are shared among device
controllers which operate in the two different modes. Device control­
lers which operate in either mode may be mixed in any way on the Com­
mon Multiplexor Bus.

Nearly all standard INTERDATA device controllers operate in the Asyn­
chronous Mode over the Multiplexor Bus. The pulsed I/O Mode is
intended principally for custom interface designs to the Model 1 Multi­
plexor Bus. Custom interface designs using the Pulsed Mode will not
be hardware plug compatible with the existing INTERDATA family of
Processors (Model 3, Model 4, Model 5, Model 13, Model 14, or
Model 15). However, in some cases for unsophisticated interfaces,
interfacing to the Model 1 using the Pulsed Mode will render a less
expensive and more straight forward interface design, sometimes at
the expense of more software overhead.

Device controllers which operate in the Pulsed Mode may interrupt
the Processor via the normal I/O Interrupt (ATN) line. If so, they
must be designed to respond to the Acknowledge Interrupt instruction
as described in an earlier part of this chapter. The custom interface
design can be completely independent of the Asynchronous Mode if it
interrupts the Processor through some Interrupt Line different from
the ATN Line.

5-41



5-42

~__--__ A5

~A7

1 ADDRESS STRAPPING TERMINAL~ ARE LOCATED IN
PQSIT'QI\I200FTHEMOTHERBOARO

Figure 5-24. Standard I/O Board Schematie
(Sheet 1 of 2)



Ol03~'010

1103~7100

4103~?120

"03~"JO

DALOfiOA

DAL07

DAL070A

~'-"--.O __~I11<)0

Figure 5-24. Standard I/O Board Schematic
(Sheet 2 of 2)

5-43



5.6.1 Pulsed I/O Instruction

The Pulsed I/O instruction takes the form

PULSED I/O PIa

o 2 3 4 5 6

This instruction outputs a control level and a fixed control pulse desig­
nated PIO and PO, respectively. In addition, it outputs any combina­
tion of the three pulses PI, P2, and P3 as specified by the instruction
word. The A.ccumulator is output over the Eight Data Available Lines
except for the interval covered by PO (at which time the I)AL Lines are
zeros). The Accumulator is loaded from the eight Data Itequest Lines
(DRLO:7) at the end of P3 if and only if P3 is specified.

The Carry Bit is not changed

Accumulator~ Data Byte (if P3 is specified)

unchanged (if P 3 is not specified)

System Configurations which use the Pulsed I/O Instruction should not
assign address X'OO' to any standard INTERDATA device controller.
The Pulsed I/O Instruction will reset the address flip-flop of all stand­
ard INTERDATA device controllers connected to the Multiplexor Bus
at the end of the PO pulse (by attempting to address deviee number
zero).

ED

NOTE. TOLE RANCE
ON ALL PULSES
IS +25 ns

/ ~_----_J

L DALOO:07 = ZEROS ACCUMULATOR --. DALOO:07

0

0

1

2

3 ,.--- ACCUMULATOR
DRLOO:07 IF
P3 IS SPECI FI

---~ %----
i4--% ____

14- % ----.14--~ ----..4-- Y2--. J..Lsec

fl
\..

P

P

P

P

PI

5-44



5.6.2 Use of the Pulsed I/O Instruction
The Pulsed I/O Instruction has a wide variety of applications suitable
for very simple to very complex device interfaces. There are no re­
strictions on the definition of the fixed level, PIa, the fixed pulse, PO,
or the 3 programmable pulses PI, P2, and P3. Their meaning is
defined by the System Designer who uses the instruction. The one
restriction placed on the use of the Pulsed I/O instruction is that the
system must not include a standard Asynchronous Device Controller
whose address is X'OO'. This is done so that the PIa instruction can
automatically clear the A.ddress flip flop of all Asynchronous Control­
lers on the Multiplexor. The remaining 255 device controller addres­
ses are legal.

Up to 255 devices may operate in the Pulsed Mode. The definition of
the addressing scheme for Pulsed I/O devices is left to the System
Designer. In General, the addressing scheme is a function of the
number of interfaces in a particular system. Any of 3 addressing
techniques could be used.

1. If there is only one Pulsed I/O interface then:

The PIa level could be used as an address line
to enable the custom Pulsed I/O interface.

2. If there are a maximum of 8 Pulsed I/O interfaces, then:

Each interface may be addressed by individual bits
in the Accumulator on a one of eight basis along with
the PIa level. The interface may need an address
flip-flop or it may not need an address flip-flop.
The decision is left to the System Designer.

3. If there are more than 8 Pulsed I/O interfaces, then:

each may be addressed by encoding any set of the
eight data bits into address. Up to 256 addresses
may be encoded. Again, as in 2 above, the device
mayor may not require an address flip-flop.

The three programmable pulses, PI, P2, and P3, may have any mean­
ing the System Designer chooses to assign them. In fact, each pulse
can be assigned a different meaning for different interfaces. In
general, the programmable pulses could be used in any of the following
ways;

1. To identify the meaning of the data from the Accumulator on
DALOO:07

2. To steer the data byte on DALOO:07 to different registers.

3. To set up any number of control flip-flops.

5-45



Thus using the pulse bits for timing, and the accumulator bits for con­
trol, one can use the computer for the timing and control of the device
itself, thus saving on the hardware required to control the device at
the expense of additional software support.

The fixed pulse PO, occurs at the beginning of the PIa instruction and
is not programmable. The fixed level PIO covers the entire interval
of the Pulsed I/O instruction and is not programmable. The System
Designer is free to assign whatever meaning he chooses to each of
these lines.

When the pulse P3 is specified, the Processor will load the Accumulator
from the eight Data Request (DRLO:7) lines. The DRL lines must be
settled within 350 nanoseconds from the beginning of P3 and must re­
main settled until the end of P3 to insure loading the proper data byte.

The control pulse lines associated with the Pulsed I/O instructions are
OR tied onto the standard Multiplexor Bus Control Lines as follows:

PIO
PO
PI
P2
P3

CL060
A.DRS
DAO
SRO
DRO

212-0
110-0
111-0
113-0
112-0

Expansion
Slot Pin
Nurrtbers.

OPTIONAL CONNECTION TO INTERRUPT LINE

5.7 SERIAL INPUT/OUTPUT PORT

The Serial I/O Port is a built-in feature of the Model 1 Processor which
is used for interfacing to low speed bit serial data streams such as
those associated with teletypewriters. Data is transferred between the
bit serial device and the Carry Bit through the Serial Port at program
command. The Serial Port is programmed in the Interrupt Mode using
either the built-in One Millisecond Clock or a customer provided clock
connected to any available External Interrupt Line. On input operations,
the program is required to assemble the serial data strearn into charac­
ters for stroage in memory. On output operations, the program disas­
sembles characters into a serial data stream. The mode of operation
through the Serial I/O Port can be Simplex, Half-Duplex, or Full­
Duplex.

COMMAND INPUT

Jl..---a CARRY
BIT

5-46

BIT
BUFFER

COMMAND OUTPUT

RCV ~

SERIAL
PORT II~L-

ADAPTOR ~~

SEND ~

SERIAL
DEVICE



The essential elements of the Serial Port are shown above. The Serial
Port Adapter is a plug replaceable circuit (daughter board) which con­
tains the bit buffer and which converts the serial data stream from/to
standard DTL/TTL logic levels to levels compatible with the serial
device. The Received serial data stream is loaded to the Carry Bit on
a program Command. The Bit Buffer is loaded from the Carry Bit on
a program Command. The state of the Bit Buffer appears on the Send
Line of the Serial Port.

The Serial Port Adapter supplied with the Processor is a daughter
board which is designed for a Teletypewriter (Teletype Corporation
PD 106 C) with the 20 milliamp option installed. If the user wishes,
he may connect a different type of serial device to the Port. Doing
so may, depending on the device, require replacing the pluggable
adapter with a different circuit.

5.7.1 Operation With a Teletypewriter

The bit rate from a Teletypewriter, is one bit per 9.09 milliseconds.
Each character is 11 bits long, including 1 Start Bit, 8 Data Bits, and
2 Stop Bits. Accordingly a character period is 99.99 milliseconds or
100 milliseconds approximately.

CHARACTER PERIOD
~100 MILLISECONDS

The Start Bit corresponds to a binary one. The Stop Bits correspond
to binary zeros. The data bits correspond to eight level ACSII code.
The Start Bit and the two Stop Bits have no significant data content.
They are used only to identify the beginning and the end of a character
period.

TO OUTPUT A CHARACTER TO THE TELETYPEWRITER

The program must output a Start Bit, eight Data Bits, and two Stop
Bits, in that order, using the built-in One Millisecond Clock to
establish the 9 millisecond bit period. The program disassembles the
character by shifting each bit into the Carry Bit and outputting it to the
Bit Buffer at the 9 millisecond rate.

5-47



DONE

OUTPUT A CHARACTER

DONE

INPUT A CHARACTER

TO INPUT A. CHARA.CTER FROM THE TELETYFEWRITEJR

After the program senses a Start Bit, it inputs each data bit at the
approximate center of each data bit period. The program assembles
the 8 data bits into a character using the Shift instruction. Note that
the center of the first data bit occurs about 13 milliseconds after the
beginning of the Start Bit (Start Bit period plus one-half a 13it Period).
The center of each bit following occurs approximately every 9 milli­
seconds thereafter.

There are two ways to sense the START Bit on Input operations.

1. The program can test the state of the input line between
characters everyone millisecond. A binary one eorresponds
to an idle condition. The first binary zero sensed corresponds
to the Start Bit.

2. The user may connect the input line to an available Interrupt
Line. The Interrupt Line would be enabled by its mask bit at
the end of the last character. The Processor wou.ld be inter­
rupted on receipt of the next Start Bit. After this interrupt
the program would disable that Interrupt Line unti.l tha end
of the character period. The procedure for connecting this
Interrupt Line is covered in Chapter 9.

5.7.2 Operation With a Device Different From a
Teletypewriter

The Serial I/O Port, although intended for use with Teletypewriter, is
certainly not limited for use with just that device. The user can con­
veniently connect any low speed bit serial data source to the Port.
Plug replaceable daughter boards are available which allo\v the user

5-48



to fabricate his own Serial Port A.dapter for converting his device
signal levels to standard DTL/TTL levels used by the Processor.
The built-in One Millisecond Clock may be adjusted ±10% for special
applications. If the user's device supplies a clock, this may be
conveniently connected into the Modell Interrupt System either as a
replacement for the built in clock or in addition to the clock.

5-49/5-50





CHAPTER 6

MEMORY SYSTEM

6.1 INTRODUCTION

The Modell Memory System, Figure 6-1, features highly reliable
2048 by eight-bit byte, 1.0 microsecond memory modules. The sys­
tem is modularly expandable to 16,384 bytes of storage (eight mod­
ules). Two types of plug compatible memory modules are available;
Core Memory Modules and Read-Only-Memory (ROM) Modules.

UP TO EIGHT MODULES
(16,384 BYTES)

ANY MIX OF MODULE
TYPE SO LONG AS THE
FIRST MODULE IS CORE

UPT04
DMAC'S
ANY MIX
SELCH OR
UMBI

'MULTIPLEXOR BUS

Figure 6-1. Modell Memory System

Core Memory Modules use field proven 3D, three-wire technology.
The memory plane uses 23 mil ferrite cores and is mounted, com­
plete with access and readout circuits, on a single standard INTER­
DATA circuit board. A 2048 by nine bit Parity Core Memory Module
is available.

•

The Modell Read-Only-Memory (ROM) is plug compatible with Core
Memory Modules. It is a non-volatile, hardwired, braided transform­
er memory having access characteristics identical to the core modules.

6-1



The first module in a Modell System must be a Core Memory. The
remaining seven modules in a fully expanded system may be any
combination of Core and ROM Modules. Similarly, Parity Core
Modules may be mixed with non-Parity Modules in any fashion.
(Parity ROM Modules are not available).

Up to four Direct Memory Access Channels (DMA.C) can be added to
a Modell Memory System. The DMACs operate over the eommon
Memory Bus on a cycle stealing basis through a Direct Me'mory
Access Port which is built into the Processor. Data rates through
a DMAC can achieve 1, 000, 000 bytes per second.

Two types of Direct Memory Access Channels are available from
INTERDATA. The Selector Channel (SELCH) operates with any stand­
ard INTERDATA peripheral device controller directly to/from the
Memory System. Up to 25 controllers can connect to a single SELCH.
The program sets up the SELCH by sending it a starting address, a
byte count, and a GO Command. The SELCH coordinates the data
transfer, autonomously, on a cycle stealing basis, and interrupts the
Processor when the transfer terminates. Detailed description of the
SELCH is covered in Chapter 5.

The second DMAC offered is the Universal Memory Bus Interface
(UMBI). This is a general purpose interface to the Memory Bus
which facilitates custom DMAC design. The UMBI has all necessary
Memory Bus drivers and receivers, all Memory Bus control logic
and a buffer Data Register. The remaining portion of the eircuit
board has IC sockets which allow the user to conveniently implement
his custom logic. A detailed description of the UMBI is covered in
Chapter 5.

The user may, if he wishes, connect directly to the Memory Bus
using his own interface.

6.2 CORE MEMORY MODULES

INTERDATA Modell Core Memory Modules are three-wire, 3D,
ferrite core memories which use 23 mil cores. Each Core Memory
Module contains 2048 bytes of storage. Parity Core Memory Modules
have a ninth bit plane in the stack corresponding to the Parity Bit.
There are 64 X-axis wires and 32 Y-axis wires common to all bit
planes. Each bit plane has its own sense/inhibit wire. In a Write
operation, inhibit current is passed over this wire to write a ZERO
(inhibit current is not passed over this wire to write a ONE). In a
Read operation, the bit readout is sensed over the sense/inhibit wire.
The block diagram in Figure 6-2 illustrates a Core Memory Module.

6-2



-oJ
o
ex:
t­
z
o
u

en
::>
CD

~

~
o
ex:
u..

~
w
ex:
Q
Q

<t
>­ex:
o
~
w
~

[ READ/WRITE
CONTROL

TIMING/4 &
TIMING

I---

-
MA02:04 MODULE PARO

SELECT

~
MA05:10 X AXIS XAXIS

SELECT

2048 x 8
(2048 x 9)

(PARITY )

CORE STACK
14-

MA11:15 Y AXIS Y AXIS
SELECT

~
READMDOO:08 INHIBIT INHIBIT MSOO:08

SWITCHES OUT ~
_ WRITE READ _ AMPS

Figure 6-2. Core Memory Module

>­
t-
ex:
<t
Q.

t­
::>
o
Q
<t
w
ex:
Q
w
CD
o
a:
t­en
>­
ex:
o
~
w
~

en
::>
CD

~

o
t-

6.3 READ-ONLV-MEMORY MODULE

The Modell Read-Only-Memory Module is illustrated in Figure 6-3.
The ROM is a plug replacement for a Modell Core Memory Module
and is useful for guaranteed non-volatile program storage. The ROM
uses a braided transformer array which is hardwired at time of
manufacture from data supplied by the customer. The ROM has ac­
cess characteristics identical to Modell Core Memory Modules.
Parity ROM Modules are not available.

6.4 PARITY OPTION

The parity control logic is built into the Modell Processor. The
parity logic is enabled/disabled by the currently addressed Memory
Module via a Parity Enable (PARD) line in the Memory Bus. The
Processor's parity circuit computes or checks parity whether the
current Memory operation is from some Direct Memory Access
Channel or the Processor. The Processor does not check parity on
a Read operation unless the addressed Memory Module has the
optional Parity feature. This allows both Parity and non-Parity

6-3



TIMING 4
TIMING

&
CONTROL

MA02:04 MODULE
SELECT

enen
w
a:

en C::> C
a1 « MA05:09 X AXIS:E >-0 a:a: 0u. :E

w
:E

MA10:13
Y AXIS

MA14:15 READ
SELECT

32
16 x 32

HARDWIRED READ en
DIODE

::>
51 2

U CORE OUT MXOO:07 ;

MATRIX 0
BRAIDED AMPLl- I-

SELECT
8

FIERS
TRANSFORMER

MEM STROBED
READOUT

4

Figure 6-3. ROM Module 2048 By Eight-Bit

Memory Modules to be mixed in a given Memory System. The output
of the parity check circuit is connected to Interrupt Line 3 in the
Processor when a Parity Memory Module is installed in the system.
This interrupt line, as are all others, is individually maskable. If a
parity failure occurs and if the parity interrupt is enabled, the Proc­
essor stores the Location Count, the Carry Bit, and the Enable Bit
at address X'l10' and X'lll' and begins the interrupt service pro­
gram at address X'l12'.

6.5 MEMORY BUS

The Memory Bus provides the communication paths between the Mem­
ory Modules, the Processor, and the Direct Memory Access Chan­
nels. The bus totals 42 lines. See Figure 6-4.

6-4



EMORY
YSTEM

MA02:15 ..
~

MDOO:08
j

MSOO:08

WTO MR
~ S

TIMING (4)

PARO

DMAC CONTROL (4)

I
I DMAC #1

DMAC #2

DMAC #3

DMAC #4

PROCESSO

Figure 6-4. Model 1 Memory System Diagram

The four DMAC Control Lines are used for establishing whether the
Processor or one of the DMA Channels is selected for the next
memory cycle. Memory service is granted on a priority basis. The
Processor is always last in priority. The four DMA Channels are
assigned priority on a parallel daisy-chain basis where the device
"closest" to the Processor is highest in priority.

The Parity Enable (PARO) Line enables the parity control logic when­
ever a Parity Memory Moclule is addressed. The parity logic is
disabled when a Memory Module without the Parity option is addressed.

The four Timing Lines required by the Memory Modules are generated
by the Processor whether it is selected for the current memory cycle
or not. Memory timing is identical for ROM or Core Memory Mod­
ules. The Read access characteristics of each are identical. The
total memory cycle time is 1.0 microsecond. The memory access
time is 0.5 microseconds.

6-5



1.0 usee

ERO 1 ..... _
LRO

L (EARLY READ)

L(LATE READ)

INHO

WO

-----I
LJ

(INHIBIT)

(WRITE)

The Write (WTO) Line defines whether the current memory cycle
is a Read or a Write cycle.

The Memory Strobed Readout lines (MSOO:08) carry the strobed
readout from the addressed memory location on Read operations.
These lines are idle on Write operations (MS08 corresponds to
the Parity Bit).

The Memory Address Lines (MA02:15) carry a fourteen-bit address
which identifies a unique memory location of the 16,384 locations
in a fully expanded system.

Only one device may communicate with the Memory Bus at a time.
When a DMA Channel requests memory, the Processor stops all
processing and disconnects itself from the Bus. At the same time,
the Processor sends an Enable signal which allows the highest priority
DMA Channel to connect itself to the Bus. The Processor generates
all Memory Timing signals and generates or checks Memory Parity
if a Memory Parity Module is addressed. The DMA Channel must '
provide Memory Address (MA02:15), Memory Data (MAOO:07), and
the Read/Write Control Line (WTO).

6.5.1 Priority On The Memory Bus

The Processor is assigned lowest priority on the Memory Bus. It
will always stop and give the next available memory cycle to the DMA
Channels whenever anyone of them requests service. Priority among
the four DMA Channels is established on a parallel daisy-chain basis.
See Figure 6-5.

Any DMA Channel may request memory service at any time. The
Processor scans the REQO line during every memory cycle. If it is
active, the Processor responds by generating the Enable Line (ENO).
The ENO line is applied simultaneously to all DMA Channels. The
rising edge of ENO marks the time the selected DMA Channel may
switch itself onto the Memory Bus. see Figure 6-5.

6-6 E. M.G£TTEL



PROCESSOR

REaD

END

TACO ATCO TACO

TO
MEMORY

ATCO

DMAC #1 DMAC #2 DMAC #3

F MARKS TIME DMAC MAY
""-------"" SWITCH ONTO BUS

REao I""-- ----II(
ENO----

Figure 6-5. Example of Memory Bus Priorities

The ENO signal is also passed daisy-chain fashion (ATCO/TACO)
from the top priority device, to the next highest priority device, and
so on, until it is captured by a DMA Channel that requested service.
The captured daisy-chain pulse ANDed with the rising edge of ENO
selects the DMA Channel. At this time, the selected DMA Channel
must be prepared to execute the Memory operation.

6.5.2 Interfacing To The Memory Bus

Customers may interface their circuits to the Memory Bus using
the Universal Memory Bus Interface. (See Chapter 5.) However,
those who wish to, may interface directly according to the rules in
this section.

All signals on the Memory Bus are DTL/TTL level compatible. A
logical ONE or a true condition corresponds to a low level, V = O. 4.
A logical ZERO or a false condition corresponds to a high level,
V = 2.5 volts. The customer interface is permitted two DTL/TTL
standard loads or two DTL open collector power gate OR ties onto
lines on the Memory Bus. The customer may n<?t OR tie onto any
of the four Timing Lines, the Parity Enable (PARO) line, or the
Memory Strobed Readout Lines (MSOO:08). Pull-up resistors are
supplied for all lines by the Processor.

6-7



NOTE

The INTERDATA Memory Bus may not be physically extend­
ed beyond the Standard Configuration limits described in
Chapter 9.

Reference is made to Figure 6-6 covering detailed memory timing on
all lines in the Memory Bus.

Refer to Figure 6-6, Modell Memory Bus Timing, and to Figure
6-4, Modell Memory System diagram. Figure 6-6 illustrates the
actiYJty on the Memory Bus for both Read and Write operations in
detail. Back Panel pin assignments for an expansion slot in a stand­
ard INTERDATA chassis are shown in Figure 6-6. Note all connec­
tions related to the Memory Bus are in Column Zero. An expansion
slot will accommodate either I/O or Memory.

REQUEST (REQO)

ENABLE (ENO)

6-8

Up to four DMACs OR tie onto the REQO
line. Any DMAC may activate REQO
at any time. The system will not tole­
rate temporary false outputs on REQO.
The REQO line must be released within
500 nanoseconds following the rising
edge of ENO unless the DMAC wants
two consecutiv:e memory cycles.

The Processor responds to a REQO by
activating ENO. The delay between
REQO and ENO will be in the range 30
nanoseconds to 960 nanoseconds depend­
ing on when in the current memory
cycle REQO is activated. The maximum
period of ENO is 960 nanoseconds
(when REQO is steadily active). The
width of ENO is 240 nanoseconds.

ENO is used to generate the daisy-chain
priority loop through all DMACs in the
system. The daisy-chain loop begins
at the highest priority DMAC and prop­
agates to the lower priority DMACs
until it is "captured" by some DMA
which requested service.

The "captured" daisy-chain pulse is
ANDed with the rising edge of ENO to
set the Select flip-flop in the DMAC.
Figure 6-7 illustrates a suitable circuit
for the daisy-chain select request circuits.



P16 P5 GND

N16 A2 B2
WTO

MDOOO C2 02

010

020 E2 F2

030

040 G2 H2

050

060 12 J2

070

080 K2 L2

MS080

070 M2 N2

060

050 02 P2

040

030 02 R2

020

010 S2 T2

000

TEMPB V2

TEMPA P5 GND

FIELD 1

(FROM MEMORY)

DMA ADDRESS MUST
BE OFF M BUS

300
540

600

t- MA02:15)
DMA MEMORY ADDRESS
MUST BE SETTLED THIS

INTERVAL

1020

240

"120
LRO

INHO

MEMORY
TIMING
FROM
PROCESSOR

WO

MAOl :15 ~~~~:S~ {
READ OR WRITE ..-----

I I I I I I
REOO (FROM DMA)~

ENO(FROMPROCI ~ it -~~=~.P--
ERO I 360

REOO P5 GND

ENO EXB2 EXD2

ACTO

TACO EXA2 EXC2

MAl50

140 SCLRO SPRC

130 SPRA SPRB

120 SYNO ATNO

110 RACKO TACKO

100 SRO CL070

090 ORO 060

080 DAO

070 ADRSO CMDO

060 DRL030 DRL070

050 020 060

040 010 050

030 000 040

020 DAL030 DAL070

PARO 020 060

LAO 010 050

ERO 000 040

INHO P15 N15

wo P5 GND

FIELD 0

DMA DATA MUST
BE OFF M BUS

300

540

TO MEMORY

DMA DATA MUST BE
ON THIS INTERVAL (MDOO:07)

I ~ 180 ~ DMA DATA MUST
" BE OFF M BUS

540

300

Figure 6-6. Modell Memory Bus Timing

220

WTO GUARANTEED HIGH FOR
READ THIS INTERVALt d r-= WTO GUARANTEED LOW FOR

WRITE THIS INTERVAL
180

FOR A {
MEMORY
WRITE
OPERATION

FOR A
MEMORY
READ
OPERATION

NOTE: TOLERANCE
ON ALL SIGNALS
IS ±..12 ns

0';)
I
~



STARTO

(FROM USER)
100 115 =L:..:F
max

CLROA

SEll

Figure 6-7 Daisy-Chain select Request Circuits

The selected DMACs memory cycle
begins on the rising edge of ENO and it
terminates on the rising edge of INHO
(described later).

MEMORY TIMING LINES

Early Read (ERO)
Late Read (LRO)

6-10

These two lines control the Read Current
Switching in the addressed Memory Module.



INHIBIT (INHO)
WRITE (WTO)

MEMORY ADDRESS LINES
(MA02:15)

WRITE (WTO)

MEMORY STROBED READ­
OUT LINES (MSOO:08)

MEMORY DATA LINES
(MDOO:08)

These two lines control the Write
Current Switching in the address ME-m­
ory Module.

Memory Bus timing is identical whether
the addressed Memory Module is a core
memory or a ROM. The Memory
Timing Lines are available to the Mem­
ory Bus Interface. The rising edge of
INHO is particularly useful since it
marks the end of the effective memory
cycle. The DMAC may disconnect itself
from the Memory Bus at this time.

The selected DMAC may activate the
MA lines anytime following the rising
edge of ENO. However, it must guaran­
tee the MA lines settled over the interval
beginning 120 nanoseconds after ENO
to the rising edge of INHO. Further,
the DMAC must release the MA lines
within 180 nanoseconds after the rising
edge of INHO.

This line must be settled during the
interval beginning 220 nanoseconds after
the rising edge of ENO to 500 nano­
seconds after the same edge. If WTO
is active (low), a Write operation will
be performed.

The MS Lines carry the pulsed single­
rail Memory Readout on Read operations.
The MS lines are inactive on Write
operations. The pulsed readout varies
in width from 30 nanoseconds to 100
nanoseconds and in position from 400
nanoseconds to 470 nanoseconds follow­
ing the rising edge of ENO. The se­
lected DMAC is required to register
the Memory Readout and return the
data on the MD Lines for the restore
position of the cycle.

The MD Lines carry data to be written
to the addressed Memory Module. They
also carry data to be restored to the
addressed Memory Module. If the

6-11



operation is Write, the MD Lines must
be settled for the interval beginning
300 nanoseconds following ENO to the
rising edge of INHO. If the operation
is Read, the strobed readout fron1 the
MS Lines must be returned to the MD
Lines by the falling edge of INHO and
must remain so until INHO rises. Re­
gardless of the operation (Read or Write),
the DMAC must release the MD Lines
within 180 nanoseconds after the rising
edge of INHO.

Note that MD08 corresponds to the
Parity Bit. The Processor always
controls this line. The DMAC should
not OR tie onto MD08.

6.5.3 Memory Bus Timing

The Request flip-flop is set by STARTO when the user's circuits re­
quire memory service. (STARTO should be at least 30 nanoseconds
wide and no wider than lOOnanoseonds). The REQO line is driven
active through Gate Gl when the Request flip-flop is set.

Gates G2 through G7 form the daisy-chain capture circuit which
establishes DMAC priority. Gates G6 and G7 are a contention circuit
which will capture the ACTO pulse if the Request flip-flop is set or
it passes ACTO onto the next DMAC (as TACO) through G8 if the
Request flip-flop is not set. The contention circuit will ignore a
change in the Request flip-flop if it changes during the ACTO period.

The daisy-chain delay through one DMAC is 48 nanoseconds maximum,
assuming TTL logic, 12 nanoseconds maximum delay per stage.

If the circuit captures the daisy chain pulse, the Request flip-flop is
toggled reset on the rising edge of ENO and the Select flip-flop is
toggled set at the same time. The Select flip-flop is used to switch
the DMAC onto the Memory Bus. The Select flip-flop is cleared on
the rising edge of INHO by Gate G9 which marks the end of the memory
cycle.

The ACTO Line is grounded on the top priority DMAC. On all other
DMACs, the ACTO input is driven by TACO from the next higher
priority DMAC.

The two flip-flops, REQUEST and SELECT, should be initialized
(CLROA and CLROB) to a reset condition on Power LTp by the user's
circuits. (The BC LRO Line on 117-0 is useful for this function. )

6-12



CHAPTER 7

CONTROL PANEL

7.1 INTRODUCTION

This chapter discusses the Modell Control Panel, illustrated in
Figure 7-1, which is supplied as part of the Modell Processor. The
Control Panel provides the system operator with visual indications of
the state of the Processor as well as a wide variety of manual control
over the Modell System. It is a particularly useful tool for entering
data into memory, for writing and debugging programs, and for per­
forming routine system maintenance.

Although the Standard Control Panel is a powerful tool, it is not a
mandatory part of a useful Modell System. Therefore, the Standard
Control Panel is designed to be plug replaceable by a lower cost Auto­
Control Panel when the day-to-day use of the system does not require
the convenience of the Standard Control Panel. The Auto-Control
Panel has a key operated ON-OFF-A.UTO Switch. It has no capability
to display registers or load/unload memory directly. The low-cost
Auto-Control Panel may be plug replaced with a Standard Control
Panel if program modification and system maintenance is required.
This chapter discusses the Standard Control Panel, the Auto-Control
Panel, and operating procedures related to them.

7.2 STANDARD CONTROL PANEL DESCRIPTION

The Standard Control Panel, Figure 7-1, is a RETMA standard •
5-1/4" x 19" panel which is plug removable from a Model 1 Processor.
It provides all necessary manual control over a Model 1 System. The
Standard Control Panel includes the following set of control elements:

Twenty-Six (26) Indicator Lamps

Fourteen (14) Data Switches

Six (6) Control Switches

Key Operated Security Lock

A. functional description of each of these is given in this section.

7.2.1 Indicator Lamps

The 26 indicator lamps on the Standard Control Panel continually dis­
play the state of the following registers or conditions:

Accumulator

Location Counter

Interrupt Enable

AOO:07

LOC02:15

ENA.BLE

8 bits

14 bits

1 bit

7-1



7-2



Carry Bit

Wait Mode

Power On

7.2.2 Data Switches

CARRY

WAIT

PWR

1 bit

1 bit

1 bit

The Fourteen latching Data Switches (02:15) are used to enter a mem­
ory address to the Model 1 System. The least significant eight Data
Switches (08:15) are used to load an eight-bit data byte to memory.
The state of these switches may be loaded to the A.ccumulator at pro­
gram command.

7.2.3 Control Switches

The six Control Switches on the Standard Control Panel are active
when the key operated security lock is in the ON position only.

CLEAR (CLR) The momentary CLR Switch causes the
Model 1 System to be initialized. A.fter the
initialize operation, all device controllers
on the System Multiplexor Bus are cleared,
the Carry Bit and the Interrupt Enable Bit
are cleared, the Interrupt Queue Register
is cleared, the instruction at location zero
will be executed when the Processor
restarts.

EXECUTE (EXE) The mon1entary EXE Switch causes the
Processor to perform the Control Panel
operation indicated by all other Control
Switches except C LR. The other switches
have no effect unless EXECUTE is
depressed.

STOP (STP) The latching STP Switch causes the Proces­
sor to stop program execution.

ADDRESS (ADR)) The latching ADR Switch causes the state of
Data Switches 02:15 to be loaded to the
Processor's Location Counter which is
displayed on indicator lamps.

MEMORY WRITE (MWR) The latching MWR Switch causes the state
of Data Switches 08:15 to be written into
memory at the address contained in the
Location Counter. After the Write operation
is performed, the Location Counter is in­
cremented by one. The eight-bit data byte
written is in the Accumulator.

7-3



MEMORY READ (MRD) An eight-bit data byte is read from the
memory address contained in the Location
Counter and is loaded to the Accumulator.
After the Read operation, the Location
Counter is incremented by one.

NOTE

Only one of the three Switches ADR, MWR, or MRD should
be active at any given time.

7.2.4 Key Operated Security Lock

This is a three-position key-operated locking switch which switches
primary power on and off the Model 1 System and which can disable
all Control Switches on the panel to eliminate any accidental manual
input to the system.

OFF

ON

LOCK

The primary power to the Model 1 System is turned off.

The primary power to the Model 1 System is turned on
and all Control Switches on the panel are enabled.

The primary power to the Model 1 System remains on
but all Control Switches to the panel are disabled.

7.3 CONTROL PANEL OPERATING PROCEDURES
1. To bring power up on the system,

a. Turn the key-operated security lock clockwise from the
OFF position to the ON position.

b. The Processor will unconditionally execute the instruc­
tion at location zero.

2. To shut power down to the system,

a. Turn the key-operated security lock clockwise to the
OFF position.

b. This removes AC power from the system and forces a
Primary Power Fail Interrupt to the Processor.

c. The program is required to store A. in memory and to
issue a Command Power Down (POW) within five milli­
seconds of the interrupt if it is desired to save the cur­
rent machine status.

7-4



NOTE

The hardware will eventually respond
to a power down condition, even if the
program does not. However, the con­
tent of A, C, E, and one memory
location may be lost without adequate
program support.

NOTE

Further details regarding program support
for Control Panel are found in Chapter 9,
covering Basic Model 1 programming.

3. To manually stop execution of a program.

a. Depress the Stop (STP) Switch.

b. Depress the momentary EXECUTE (EXE) Switch once.
(The Processor stops executing the program, the Loca­
tion Counter is pointing to the next instruction in
sequence).

4. To manually start execution of a program:
(The system nlust be in the STOP Mode)

a. Enter the starting address of the program on the
fourteen Data Switches.

b. Depress the ADDRESS Switch.

c. Depress the momentary EXECUTE (EXE) Switch. (The
starting address of the program is now displayed in the
Location Counter. )

d. Release the STP Switch.

e. Release the ADR Switch.

f. Depress the momentary EXE Switch. (The Processor
begins executing the program at the address entered in
Steps 1 through 3.)

5. To manually execute a program, one instruction at a time:

a. Stop the program as in Step 3 above, leaVing the Stop
(STP) Switch depressed.

b. Insure that neither ADR, MWR, or MRD is depressed.

c. Depress EXECUTE once for each instruction to be exe­
cuted. After each instruction is executed, the Location
Counter will point to the next instruction to be executed.

7-5



7-6

NOTE

When the system is in this mode, it will
respond to external interrupts by storing
the Location Counter, Carry, and Enable
Bits in the fixed Memory Interrupt Service
Table on any EXECUTE. The next EXECUTE
will cause the Processor to execute the first
instruction in the Service Table.

6. To read memory and display the results:

a. The system must be in the STOP Mode.

b. Enter the Memory Address to be read on the twelve Data
Switches.

c. Depress the latching ADDRESS Switch.

d. Depress EXECUTE. (The address of the byte to be read
is now displayed in the Location Counter. )

e. Depress the MEMORY READ Switch.

f. Depress EXECUTE. (The addressed memory location is
read and the results displayed on the Accumulator. The
Location Count is incremented once and points to the next
address to be read. The operator may read consecutive
memory locations by depressing EXECUTE once for each
address. )

7. To write to memory from the Data Switches:

a. The system must be in the STOP Mode.

b. Enter the Memory Address to be written to on the four­
teen Data Switches.

c. Depress the ADDRESS Switch.

d. Depress EXECUTE. (The Memory A.ddress to be written
to is now displayed on the Location Counter.)

e. Enter the eight-bit Data Byte on the Data Switches 08:15.

f. Depress the MEMORY WRITE Switch.

g. Depress EXECUTE once. (The Data Byte written to the
memory is displayed in the Accumulator, the Location
Counter is incremented by one, and points to the next
memory address to be written. The operator may write
consecutive memory locations by changing the Data
Switches as required and depressing EXECUTE once for
each byte.)



8. To restart from the WAIT Mode:

a. Depress the STOP Switch then the EXECUTE Switch.

b. Release the STOP Switch.

c. Depress the EXECUTE Switch. The program now begins
running at the instruction following the WAIT Command.

7.4 CONTROL PANEL PROGRAMMING

The Control Panel's Data Switches 08:15 may be read by program con­
trol using the

COMMAND READ DATA SWITCHES

instruction. The programmer is cautioned that indeterminate results
could occur if the Data Switches are changed at the same time the
program executes this instruction due to contact bounce. This can be
overcome by testing the switch several times over, for example,
one second intervals.

7.5 AUTO-CONTROL PANEL

The Auto-Control Panel is a low-cost plug replacement for the Standard
Control Panel. It has only a key-operated ON/OFF/AUTO Switch.

Systems with an Auto-Control Panel have a built-in Read-Only-Memory
program designed to load data to the system from a teletypewriter
through the Serial I/O Port. This is done when the key-operated
Switch is turned from OFF to AUTO. The tape will begin loading at
address X'100'. The tape must contain exactly 256 bytes. After the
tape is loaded, the Processor begins executing instructions at address
X'IOO'.

When power is applied to the system normally, by switching the key­
operated switch from OFF to ON, the Processor will begin executing
instructions at address X' 017C '.

Refer to Chapter 10, Basic Modell Programming, for details of oper­
ating Auto-Control Panel Systems.

7-7/7-8





CHAPTER 8

PERIPHERAL DEVICES

8.1 INTRODUCTION
The Modell Processor's Multiplexor Bus (I/O Bus) is fully hardware
plug compatible with all other INTERDATA Processors. Therefore,
the full line of field proven peripheral device controllers and system
modules are available for use with Model 1 Systems.

This Chapter lists all standard INTERDATA peripheral device control­
lers and system modules available for the Modell. Periodically, sig­
nificant new products are added to the INTERDATA Product Line which
may not appear in this manual. Please check with any INTERDATA
Sales Office for the latest additions.

Detailed programming and device specifications for Teletypewriters,
High Speed Paper Tape Readers and Punches, and Card Readers are
provided later in this chapter. Detailed programming and device spec­
ification on other INTERDATA products are available through the local
Sales Offices on request.

8.2 PERIPHERAL DEVICES
The following peripheral devices are presently available. All peri­
pheral devices are complete with the necessary interface to the Multi­
plexor Bus (I/O Bus).

8.2.1 Teletypewriters

Product Number

1-420

1-422

1-424

1-425

ASR Model 33

ASR Model 35

KSR Model 33

KSR Model 35

Description •
8.2.2 Paper Tape and Card Equipment

Product Number

1-410

Description

Paper Tape Reader

Unidirectional 300 cps, Rack Mounting with
fanfold bins.

8-1



Product Number

1-411

1-415

1-412

1-413

1-510

1-550

1-445

1-442

Description

Paper Tape Reader

Bidirectional, 300 cps, Rack Mounting with
fanfold bins

Paper Tape Handler

with 8" NAB Reels

Paper Tape Punch, 60 cps

Combination Reader/Punch

Card Reader, 200 cpm

Line Printer, 300 lpm

132 columns, 64 characters

x-Y Incremental Plotter:

Plots 18, 000 steps per minute, • 01" or • 005"
sets 12" wide paper

X-y Oscilloscope Display

Plots point to point, 10 bits/axis resolution

8.2.3 Magnetic Storage Systems

Product Number

1-660

1-740

1-741

8-2

Description

Intertape System includes:

Byte buffered controller with two cassette tape
decks and power supply; transfer rate 300 cps;
250K bytes of storage per cassette.

Mini Disc System includes:

Power supply, cabling and mounting hardware.
Transfer rate 60K bytes per second; average
access time is 8.5 milliseconds; capacity 51K
bytes per disc; 1 x 2 controller

Interface plus first disc drive

Second Disc Drive



8.2.4 System Modules

Product Number

1-834

1-811

1-812

1-820

1-821

1-822

1-823

1-824

1-825

1-830

Description

General Purpose Interface Module

Basic input/output interface without buffering.

Byte Input/Output Module

8 stored data output lines, 8 data input lines,
8 control lines, 8 sense lines, 1 priority in­
terrupt line.

Halfword Input/Output Module

16 stored data output lines, 16 data input lines,
8 control lines, 8 sense lines, 1 priority in­
terrupt line.

Control Line Module

16 buffered control lines for activation of up to
16 external devices.

Relay Closure Module

16 isolated reed relay closures with storage
registers for operation of medium power
devices.

Decimal Indicator Module

4 Decades of decimal indicators.

Decimal Indicator Module

8 decades of decimal indicators.

Decimal Indicator Module

4 decades of decimal indicators with decimal
point.

Decimal Indicator Module

8 decades of decimal indicators with decimal
point.

Sense Line Module

16 sense lines which may be used for detecting
the status of devices under external command.

8-3



Product Number

1-831

1-832

1-833

Description

Sense Switch Module

16 switches for manual entry of program
variables.

Manual Data Entry Module

8 decades of thumb-wheel switches and a
'Data Entry' push button.

Manual Data Entry Module

16 decades of thumb-wheel switches and a
'Data Entry' push button.

8.2.5 Digital Input/Output Multiplexor Equipment

Product Number

1-860

1-861

1-862

1-863

1-865

8-4

Description

Digital Multiplexor Controller

plus first expansion chassis (1-864). This is
a universal interface for both input and output
modules. One controller can support up to
2048 input lines and 2048 output lines.

128 Line Input Module

Provides transformer isolated current sensing
inputs from 128 points.

128 Line Output Module

Provides open collector output and can drive
4 each 1-865 or user circuits.

128 Line Convenience Panel

Provides 128 twisted pair, 24 guage wire wrap
connection pins. Allows for additional line
filtering and signal conditioning elements.
Cabling from input and output modules to con­
venience panel is supplied.

Relay Module

Provides 32 high power relay contacts (non­
latching 5 Amps at 240VAC) for heavy duty
SWitching.



Product Number

1-864

Description

Digital Multiplexor Expansion Chassis

Provides slots for four 128-1ine input/output
modules.

8.2.6 Data Communications Equipment, Character Buffered Half
Duplex Line Adapters

Product Number

1-022

1-023

1-024

1-025

1-026

1-027

10-052

10-055

Description

Bell 801 Automatic Dialer Control

for 4 lines (Group of 4 only).

Bell 103 Data Set Adapter

(Requires 10-052)

Bell 201 Data Set Adapter

(Requires 10-052)

Bell 202 Data Set Adapter

(Requires 10-052)

Bell 301 Data Set Adapter

(Requires 10-055)

Parity Option for 1-023/24/25/26

25' Cable between Connector

Panel and data set.

25' Cable between Connector

Panel and 301 data set.

8.2.7 Conversion Equipment

Product Number Description

Multichannel Analog to Digital Converters

Provides fully interfaced conversion of bipolar
analog signals, and can multiplex up to 64
analog channels in both random or sequential
modes.

8-5



Product Number

1-751

1-752

1-753

1-754

1-771

1-772

1-773

1-774

1-764

1-761

8-6

Description

A-D Converter with Buffering

8 bit Resolution

A-D Converter with Buffering

10 bit Resolution

A-D Converter with Buffering

12 bit Resolution

Sample and Hold Amplifier

(Maximum of 1 per 64 channels)

4 Channel Multiplexor

(Requires 1-751 or 1-752 or 1-753)

8 Channel Multiplexor

(Requires 1-751 or 1-752 or 1-753)

12 Channel Multiplexor

(Requires 1-751 or 1-752 or 1-753)

16 Channel Multiplexor

(Requires 1-751 or'1-752 or 1-753) Maximum
of 4 Multiplexor Boards per System.

Multichannel Digital to Analog Converters

Provides fully interfaced conversion of digital
data to bipolar analog signals. The system can
address up to 16 channels in random or sequen­
tial modes. Each channel employs dual rank
registers and an operational amplifier.

D-A Controller

for up to 16 Channels. (Requires 1-761 or
1-762 or 1-763)

Dual Channel D-A Converter

8 bit Resolution



Product Number

1-762

1-763

Description

Dual Channel D-A Converter

10 bit Resolution

Dual Channel D-A Converter

12 bit Resolution

8.3 TELETYPE (WITH TELETYPE CONTROLLER)
OPERATION AND PROGRAMMING

8.3.1 Device/Controller Description

Device

Controller

Model Numbers - ASR33 and ASR35

Data Rate - 10 Characters per second

Printer Width - 72 Characters maximum

Character Set - see Table 8-1

Paper Feed - Pin feed

Dimensions - W 22", D 18-1/2", H 8-318"
(without Stand) overall ASR33

W 38-1/2", D 24", H 38-1/2"
(includes Stand) overall ASR35

Weight - 44 pounds desk top ASR33

225 pounds (includes stand) ASR35

Power Requirement - 115VA.C 60 Hz

9A start up} _ ASR35
2A running

12A start up} _ A.SR35
4A running

115VAC 50 Hz models are available

INTERDATA Part Number 32-120FOI

Size - Single 10 inch INTERDATA standard
printed cireuit board

Back Panel Slots - requires one standard
expansion slot

Power Requirement - lA + 5VDC
• 75A + 16VDC

Weight - 1-1/2 pounds (approx.)

8-7



Programming examples do not refer to a Teletype connected to the
Serial I/O Port although the ftmctional characteristics of the Teletype
are the same. For Serial I/O Port programming examples, see
Section 10.4. 6.

TABLE 8-1
TELETYPE/ASCII/HEX CONVERSION TABLE

HEX (MSD) 8 9 A B C D E F

(LSD)
Teletype

8 Depends upon parity

Tape 7 0 0 0 0 1 1 1 1
Channels_

6 0 0 1 1 0 0 1 1

1 5 0 1 0 1 0 1 0 1

4 3 2 1

0 0 0 0 0 NULL DCo SPACE 0 @ P

1 0 0 0 1 SUM X-ON
,

1 A Q

2 0 0 1 0 EOA
TAPE

" 2 B R
ON

3 0 0 1 1 EOM X-OFF # 3 C S

4 0 1 0 0 EaT
TAPE

$ 4 D T
OFF

5 0 1 0 1 WRU ERR % 5 E U

6 0 1 1 0 RU SYNC & 6 F V

7 0 1 1 1 BELL LEM , 7 G W

8 1 0 0 0 FEo 80 ( 8 H X

9 1 0 0 1 HT/8K 81 ) 9 1 Y

A 1 0 1 0 LF 82 * : J Z

B 1 0 1 1 VT 83 + ; K [
C 1 1 0 0 FF 84 , < L \ ACK

D 1 1 0 1 CR 85 - M ] ALT.
= MODE

E 1 1 1 0 SO S6 > N t ESC

F 1 1 1 1 81 87 / ? a ... DEL

8-8



Onn~CDYoCDnCDCDnOOQ
1 vUv 5 6 \J 8 9 "'-V ~ ~

8@G)®®OOQG:)~CD@~
800@G)®QO®eO@88

8 OOG)G)G)CDCDGOO g
( SPACE BAR )

Figure 8-1. Teletype Keyboard Layout

8.3.2 Power Control

A three position power switch is located to the right and below the
keyboard. When rotated left to the position marked LINE, power is
applied to the Teletype and the device is logically connected to the
Pr9cessor. When rotated to the right to the position marked LOCAL,
the unit is powered, but disconnected from the Processor.

8.3.3 Status and Commands

Table 8-2 illustrates the Teletype Status and Command Byte coding.

A Sense Status Instruction (SS) is used to transfer the status byte from
the device controller to the accumulator. In general, testing the status
byte for all bits zero during READ operations is required.

8.3.4 Device Number

Teletypes supplied by INTERDATA are normally assigned Device
Number 2. The device nUlnber can be changed, or additional Teletypes
added, as needed by a minor change to the teletype controller. Refer
to the Maintenance Manual for details.

8-9



TABLE 8-2.
TELETYPE STATUS AND COMMAND BYTE DATA

HEX ADDRESS 02

BIT
NUMBER 0 1 2 3 4 5 6 7

STATUS
BYTE BRK BSY EX DU

COMMAND PWR PWR
BYTE DISABLE ENABLE UNBLOCK BLOCK WRT READ ON OFF

BRK

BSY

EX

DU

DISABLE

ENABLE

UNBLOCK

BLOCK

WRT }
READ

PWR ON }
PWR OFF

8-10

The Break bit is set when the Break key on the Tele­
type is depressed, or the Teletype is logically dis­
connected from the Processor.

The significance of the Busy bit depends upon whether
a Read or a Write operation is in progress. During
Write mode, BSY is normally low, and goes high only
while data is being received by the device. During
Read mode, BSY is normally high, and goes low only
when data has been received from the device, but not
yet been transferred to the Processor. During Read
mode, BSY goes high again as soon as the Processor
accepts the data.

The Examine bit is set whenever BRK is set.

The Device Unavailable bit is set whenever the Tele­
type power is off, the Teletype is in LOCAL mode,
or power is not connected to the Teletype.

This command disables the Device Interrupt to the
Processor from the Device Controller.

This command enables the Device Interrupt to the
Processor from the Device Controller.

This command enables the printer to print data en­
tered via either the keyboard or the tape reader.

This command disables the feature described above.

The Write and Read commands are used to define the
significance of the BSY bit.

The Power On and Power Off commands are signifi­
cant only with those Teletypes provided with an option­
al Power Control Box. The option permits the Teletype
power to be enabled or disabled under program control.



8.3.5 Interrupts

The interrupt associated with the Teletype is a data-ready, or ready­
to-transfer interrupt. That is, when enabled, an interrupt is genera­
ted by the Teletype controller whenever it is ready to execute a data
transfer with the Processor. In the WRITE mode, an interrupt occurs
when the controller is ready for another character to send to the Tele­
type. In the READ Mode, an interrupt occurs when the controller
has assembled a character for transfer to the Processor.

Note that when changing from the READ mode to the WRITE mode
with interrupts enabled, an interrupt occurs as soon as the controller
is ready to receive the first character for output.

8.3.6 Initialization

When the CLR button on the Processor Display Panel is depressed,
the following occurs:

1. The DSBL, BLK, and READ commands functions are set.

2. The BSY status bit is set.

3. The BRK, EX, and DU status bits are reset.

4. Any pending interrupts are cleared.

8.3.7 ASR-35 Features

The ASR-35 is a ruggedized or heavy-duty version of the ASR-33.
The programming of an ASR-35 is identical to an ASR-33. The
operation of an ASR-35 is similar to an ASR-33 with the following
exceptions:

1. The Tape Reader and Tape Punch controls are different
as explained later in this description.

2. The ASR-35 has a mode control switch to the left of the
keyboard. The meaning of the 5 positions of this switch
is illustrated in Table 8-3.

3. Several additional keys, such as Local Line Feed, are
provided. The meaning of these keys is self-explanatory.

8.3.8 Paper Tape Reader

The tape reader is controlled by a three-position switch on the reader.
The three positions are START, STOP, and FREE. When the switch
is moved to the START position, any tape in the reader is advanced
continuously at a 10 character per second rate. Tape motion con­
tinues until the reader switch is moved to the STOP position or the
tape runs out of the reader.

8-11



Mode

KT (Keyboard Tape)

TTs

(Tape to Tape send)

Non ASCII Tapes

TTr

(Tape to Tape Rev)

Non ASCII Tapes

TABLE 8-3.
35 ASR OPERATING MODES

Line

Computer

Computer

Computer

~computer

}-

Off

~ Line

IPrinter I Not used

~computer

IReader I
Not Used

Local

Not Applicable

Not Applicable

In the STOP position, tape motion can be controlled by program,
assuming the teletype power switch is in the LINE position. The
specific control characters which affect the reader are X-ON (X'91 ')
which starts the tape motion, and X-OFF (X'93') which stops tape
motion.

The programmed steps required to start the reader are as follows:

8-12

LI

ADR

LI

OC

2

'98'

A'DDRESS DEVICE

SET WRITE MODE



LI '91' GET X-ON CHAR

WDS

B ERROR

L1 '94' SET READ MODE

OC

RDS READ A CHAR

B ERROR

The programmed steps required to stop the reader are as follows:

LI

OC

LI

'98'

'93'

SET WRITE MODE

GET X-OFF CHAR

WDS STOP TAPE

B ERROR

Note that when stopping the tape reader under program control, the
tape may advance 1 or 2 characters between the time the XOFF
character is issued and the tape comes to a complete halt. Similarly
on starting a tape, 1 or 2 characters may be missed before synchro­
nization is attained. Therefore, tapes to be read under program
control should be formatted to account for the start/stop character­
istics of the reader.

The above procedures apply to both the ASR-33 and the ASR-35
teletypes. The ASR-35 tape reader is enabled, however, only when
the ASR-35 Mode Switch is in the KT, T, or TTS positions. See
Table 8-3 for details.

8.3.9 Paper Tape Punch

The ASR-33 tape punch can be manually turned on at any time by
depressing the LOCK "ON" button on the punch unit. Once turned on
in this fashion, all data output to the Teletype is unconditionally
printed and punched. Note that non-printing characters transferred
to the Teletype will be ptmched, but no image will be printed, and the
printer carriage will not advance.

To manually turn the punch off on the ASR-33, the following steps
are required.

1. Turn the power switch to LOCAL mode.

2. Depress the UNLOCK key on the tape punch.

3. Strike the TAPE key while the CTRL key is depressed.

8-13



If the ASR-33 is not in a LOCK"ON" mode (depress 1JNLOCK to re­
lease the LOCK "ON" mode), and the power switch is in the LINE
position, the tape punch can be controlled via program.

The specific control characters which affect the punch are TAPE ON
(X'92'), which starts the punch and TAPE OFF (X'94'), which stops
the punch. The punch controls are achieved by outputting the appro­
priate character to the teletype. Note that the TAPE ON and TAPE
OFF characters, themselves, will get punched on the tape.

The tape punch can be manually started in an alternate way. If the
punch is not already on, strike the TAPE key with the CTRL key
depressed, and the power switch in LOCAL mode. This technique
is equivalent to transferring a TAPE ON character to the Teletype
from the Processor.

The ASR-35 tape punch is enabled only when the ASR-35 Mode Switch
is in the KT or TTR position. In these modes, the punch is controlled
via TAPE and TAPE keys, and TAPE ON and TAPE OFF characters
as described above. Refer to Table 8-3 for details. Following the
program transfer of a TAPE ON character to start the ASR-35 TAPE
punch, the program should output 2 or 3 rubout characters (X'FF')
to achieve data synchronization prior to punching the data.

8.3.10 Data Formats
The format of data transferred to and from the teletype is as follows:

1. When reading data from a tape, each 8-bit tape character
is transferred to the Processor as one 8-bit data byte.

2. When reading data from the keyboard, one data byte is trans­
ferred for each key depressed. The data is ASCII code for
the particular character, in which the most significant bit
for the character is a one or zero to achieve even parity for
that character. In general, programs which read Teletype
data mask the most significant bit to zero, and manipulate
7-bit Ascn codes in memory. See Table 8-1.

3. When transferring characters from the Processor to the
Teletype Printer, the most significant bit of each character
can be either one or zero since it has no effect on the Teletype.

4. When transferring characters from the Processor to the
Teletype punch, each 8-bit data byte is punched as one tape
character. The most significant bit is punched as specified
in the data byte.

8-14



8.3.11 Program Examples

Typical routines for transferring data to and from the teletype are
as follows:

EXAMPLE 1

*THIS IS A SUBROUTINE WHICH READS A BYTE FROM THE
*TELETYPE

*THE CALL IS BAL READ

*BYTE IS RETURNED IN THE ACCUMULATOR

*

READ DC

LI

ADR

L

OC

RDS

B

B

'0000'

2

CMD

ERROR

READ, I

ADDRESS TTY

LOAD COMMAND

SET READ MODE

READ

EXIT IF ERROR

EXIT NORMAL

CMD DC

END

'A4' DISABLE, UNBLOCK, READ

DC '0000'

ST SAVE+l SAVE DATA BYTE

LI 2 ADDRESS TTY

ADR

L CMD LOAD COMMAND

OC SET WRITE MODE

LI 0 GET DATA BYTE

WDS WRITE CHAR

8-15

SAVE

EXAMPLE 2

*THIS IS A SUBROUTINE WmCH OUTPUTS A BYTE TO THE
*TELETYPE

*ENTER THE ROUTINE WITH THE BYTE IN THE
*ACCUMULATOR

*THE CALL IS BAL WRITE

WRITE



B ERROR

CMD

B

DC

WRITE, I

'98'

EXIT

DISABLE, BLOCK, WRITE
COMMAND

8.4 HIGH SPEED PAPER TAPE READER/PUNCH
OPERATION AND PROGRAMMING

8.4.1 Introduction

This section provides information on the operation and programming
of the High Speed Paper Tape Reader, the High Speed Paper Tape
Punch, and the Combination High Speed Reader/Punch. Included in
this section are a general description, a table of status and command
bytes, and sample programs for each device.

The above products all include a single-board device controller. Note,
that with the Combination Reader/Punch" since there is only one de­
vice controller, the devices cannot be used simultaneously. To read
and punch tapes at the same time, it is necessary to use products
which would provide separate device controllers for each device.

8.4.2 General Description

Table 8-4 lists general characteristics of the Reader, the Punch, and
the Controller.

TABLE 8-4.
READER AND PUNCH CHARACTERISTICS

Characteristics Reader Punch

Type Photo-electric Electro-mechanical

Tape Width adjustable tape guides fixed width of 1"
for 1/2', 11/16", and
1" tape

Speed maximum of 300 char- maximum of 63.3
acters-per-second characters-per-

second

Tape handling paper, paper-mylar, same as the Reader
and mylar

stop time capable of stopping on will punch the next
a character (approxi- character and stop
mately 1 millisecond)

8-16



TABLE 8-4.
READER AND PUNCH CHARACTERISTICS (Continued)

Characteristics Reader Punch

Read/Load Lever allows loading or chang- does not apply
ing of tapes of varying
widths

Power Switch applies AC power to applies AC power to
Reader motor Punch motor

Remote Switch does not apply puts the Punch on-
line with the
Processor

Dimension Rack Adapter - 19"W, Punch - 8" W, II"H,
7" H, 10-1/4"D, 16-1/2" D
3/8" T

Rack - 19" W,
11-1/4" H, 22" D

Front - 19" W,
15.72" H

Rack Mountable Yes Yes

Weight Reader 15 Ibs. Punch 24. 5 lbs.
Adapter 5 lbs. Punch, Chassis

(Incl. Pwr. Sup.)
33 lbs.

Power Requirement 115 VAC 50/60 Hz 115 VAC 60 Hz
150 watts Motor - 9A START

" 2ARUN
50 Hz models are
available
Punch Magnets - 2A

Controller INTERDATA Part No. 32-136F02

Size - Single 10 inch INTERDATA standard
wire wrapped circuit board

Back Panel Slots - requires two standard
expansion slots

Weight - 1-1/2 pounds (approx.)

Power Req. - +5 VDC .75A
+16.5 .005A

8-17



8.4.3 Status and Command

Table 8-5. provides Status and Command Byte Data for the HSPTR/P.

TABLE 8-5.
READER/PUNCH STATUS AND COMMAND BYTE FORMAT

BIT
NUM-

0 1 2 3 4 5 6 7
BER

STATUS OV NMTN BSY EX DU
BYTE

COM-
MAND
BYTE DISABLE ENABLE STOP RUN INCR SLEW WRITE READ

STATUS BIT DESCRIPTIONS

Bit

OV

NMTN

BSY

Reader

The Overflow bit is set when
the Buffer Register is loaded
from the Reader before the
previous character has been
transferred. This condition
can only happen in the SLEW
mode.

The No-Motion bit is set
when the Reader has been
issued a STOP command
and the tape has stopped
on the next character.

The BUSY bit is set when
the Buffer Register is emp­
ty, waiting for a character
from the Reader.

Punch

The Overflow bit is al­
ways in a reset con­
dition in the WRITE
mode.

The No-Motion bit is al­
ways in a reset condi­
tion in the WRITE mode.

The BUSY bit is set when
the Buffer is full, waiting
to transfer to the Punch.

EX The Examine bit is set when- The Examine bit is al-
ever OV=l or NMTN=l. ways reset in the WRITE

mode.

DU

8-18

The Device Unavailable bit
is set when the power to the
Reader motor is off, or the
Read/Load lever is in the
Load position (straight up).

The Device Unavailable
bit is set when the power
to the Punch motor is off,
or the REMOTE switch is
released, or a low tape



TABLE 8-5.
READER/PUNCH STATUS AND COMMAND BYTE FORMAT (Continued)

STATUS BIT DESCRIPTIONS (Continued)

Bit

DU
(cont'd)

Reader Punch

condition exists on the
tape reel. There is no
low tape sensor on the
fan fold bins.

COMMAND BIT DESCRIPTIONS

DISABLE This command inhibits Inter- Same as the Reader.
rupts from the Device Con-
troller from interrupting
the Processor.

ENABLE This command permits Inter- Same as the Reader
rupts from the Device Con-
troller to interrupt the
Processor.

STOP

RUN

INCR

This command halts the mo­
tion of the tape after the next
character has been read. The
next character to be read is
positioned over the sense
lights when the tape stops.

This command starts the
tape moving and leaves the
controller in the RUN Dlode.

In this mode of operation,
the tape is advanced one
character when the control­
ler is in the RUN mode and
BSY=l. The tape stops after
reading one character. The
tape remains stopped until
a Read Data instruction is
issued by the Processor,
which will reset BSY and
start the tape moving.

This command halts the
tape after the next charac­
ter is punched. The
Punch motor is also turned
off, unless the Power
Switch on the panel is
depressed.

This commands starts
the Punch motor, lIDless
the REMOTE Switch on
the panel is released.

Not used.

8-19



TABLE 8-5.
READER/PUNCH STATUSAND COMMAND BYTE FORMAT (Continued)

COMMAND BIT DESCRIPTIONS (Continued)

Bit

SLEW

WRITE

READ

Reader Punch

In this mode of operation, Not used.
the tape is advanced, reading
continuous characters, until
stopped.

Designates the High Speed
Paper Tape Punch.

Designates the High Speed
Paper Tape Reader.

8.4.4 Interrupts
When enabled in the READ Mode, the device controller generates an
external device interrupt when a data character is present in the
controller, waiting to be transferred to the Processor. When enabled,
in the WRITE Mode, the device controller generates an external de­
vice interrupt when the controller is ready for another character to
be punched.

8.4.5 Initialization

When the CLR switch on the Processor is depressed, the following
occurs:

1. Interrupts of all kinds are disabled.

2. The BSY, NMTN, and EX status bits are set.

3. The DISABLE, STOP, INCR, and READ command functions
are set.

4. The punch power is turned off unless the POWER pushbutton
is depressed (locked on).

8.4.6 Punch Power Controls

There are two pushbuttons on the front panel of the High Speed Paper
Tape Punch. The top button, labeled REMOTE, determines the state
of the Punch in reference to the Processor. If this pushbutton is re­
leased, the Punch is off-line with the Processor and is said to be in
a LOCAL Mode. If the button is depressed, the Punch is on-line with
the Processor and is said to be in a REMOTE Mode. The POWER
pushbutton is located directly below the REMOTE pushbutton. With
the POWER Switch released, and the REMOTE Switch depressed,

8-20



Punch power may be turned on by the program via the command RUN
bit. The power may also be turned off by the program via the com­
mand STOP bit. Figure 8-2 illustrates when the power is on/off as a
function of programmed and manual controls. The letter B represents
the POWER button depressed, B means the POWER button is released.
The letter P represents program-controlled power on. P means
program-controlled power off.

- -
B P B P B P B P

REMOTE OFF ON ON ON
LOCAL OFF OFF ON ON

Figure 8-2. Punch Power

8.4.7 Mode Switching
With a Combination Reader/Punch, care must be used when switching
modes. The following is an example of switching from the WRITE to
the READ Mode.

WD

SS
B
LI
OC

*-1,NZ
READCM

WRITE DATA

WAIT FOR NON-BUSY

SET READ MODE

The sense loop is required to insure that the last character in the buf­
fer register is punched prior to issuing the Output Command READ.
If the READ command is given too soon, the last character is inter­
fered with. This is because the command READ causes the character
on the tape, under the sense lights to be strobed into the buffer regis­
ter. The logic behind this is that when the Reader has been issued a
command STOP (Output Command WRITE causes a stop action also),
the tape stops with the next character to be read under the sense lights.
Thus, a RUN/STOP action will not cause a skipping of characters on

8-21



tape. Because of this feature, there is no need to sense status and
check for BSY = 1 in switching from the READ mode to the WRITE
Mode.

Table 8-6 shows a sample program for the Combination Reader/Punch
which reads a block of characters and punches a block of character.

TA.BLE 8-6.
SA.MPLE PROGRAM FOR COMBINATION READER/PUNCH

P1cSAMPLE PROGRAM USING THE HSPTR/HSPTP IN MODE SWITCHING

P1cREAD A.ND PUNCH 100 BYTES (REPRODUCE)

START LI BUFFER-l RESET BUFFER PTR.

ST ADDR+l ADDRESS DEVICE

LI 3

ADR

LI -100 SErr BYTE COUNT

ST COUNT

INPUT LI '99' READ MODE

OC

INP1 RDS READ AND STORE

B ERROR

ST ADDR, I

ISZ COUNT CHECK IF DONE

B INPI

OUTPUT LI BUFFER-1 RESET BUFFER POINTER

ST ADDR+l

LI -100 SET LINE COUNT

ST COUNT

LI '92' WRITE MODE

OC

8-22



TABLE 8-6.
SAMPLE PROGRAM FOR COMBINATION READER/PUNCH (Continued)

OUTl L ADDR, I GET BYTE

WDS WRITE

B ERROR

ISZ COUNT DONE?

B OUT! NO

WAIT SS WAIT TIL LAST CHAR PUNCHED

B *-1, NZ

LI '20' TURN OFF PUNCH

OC

B INPUT LOOP

BUFFER DS 100

ADDR DC @BUFFER-! AUTOINDEXED BUFFER PTR.

8.4.8 Device Number

The High Speed Reader/Punch is normally assigned address X'03' if
using a Reader only. If using a Punch only, or both a Reader and a
Punch, address X'13' is normally assigned. These device numbers
are easily changed by a minor modification to the device controllers.

8.5 CARD READER OPERATION AND PROGRAMMING

8.5.1 General Description
The Card Reader employs a photoelectric read station and a vacuum
throat feed assembly. A special "wide strobe" read technique is used
to preclude loss of data, even on cards which have been mispunched by
as much as plus or minus one-half column.

The card read rate is in excess of 200 cards per minute with a 500
card capacity for both the input hopper and the output stacker.

Throughout the read operation light current checks, dark current
checks, and card motion checks are continuously performed to verify
the performance of the Card Reader.

8-23



Card Reader

Dimensions: 13"H, 12"D, 23"W

Weight: 75 lbs.

Power Requirement: 115VAC, 300VA max.

Controller

INTERDATA. Part Number - 32-084

Size - Single 10 inch INTERDATA standard wire wrapped Circuit
Board

Back Panel Slots - Requires two standard expansion slots

Power Requirement - +5VDC .75A

Weight - 1.5 pounds (approx.) (M. B. )
1 pound (approx.) (cable)

8.5.2 Operator Controls

8. 5. 2. 1 POWER

The lighted POWER pushbutton applies AC power to all circuits. The
pushbutton is lit when the power is on.

8. 5. 2. 2 MOTOR Start

The lighted MOTOR pushbutton starts the drive motor is no error in­
dicator lights are lit. The pushbutton is lit when the drive motor is
running.

8.5.2.3 Read START

The lighted START pushbutton clears all error indicators and advances
the Card Reader to the "ready" state to begin a read cycle upon receipt
of the proper signal. The pushbutton is lit when the switch is de­
pressed and no errors have been detected.

8. 5. 2.4 Read STOP

The lighted STOP pushbutton inhibits further read cycles until Read
START is again depressed. Read STOP action is delayed until the
current read cycle is completed. The pushbutton is lit when the
switch is depressed, or if the Card Reader is stopped due to an error
detection.

8.5.3 Status Indicator Lights

8.5. 3.1 POWER On

The indicator on the POWER Switch is illuminated when power is
applied to the Card Reader.

8-24



8.5.3.2 MOTOR On

The MOTOR Switch indicator is illuminated when the nlotor is running.

8.5. 3.3 Read START

The START Switch is illuminated when the switch is depressed and no
malfunctions have been detected.

8.5.3.4 Read STOP

The STOP Switch is illuminated when the switch is depressed or the
Card Reader has stopped due to a trouble detection, as described in
the following paragraphs.

8.5.3.5 PICK FAIL

If a card fails to be picked upon command, the PICK FAIL indicator is
illuminated.

8. 5. 3. 6 CARD MOTION Error

If the interval between the time the selected card enters the read sta­
tion and the time the card leaves, does not correspond to 85 + 1/3
columns (the total card width), the CARD MOTION indicator illuminates.

8. 5. 3. 7 LIGHT CURRENT Error

When all photo-read-cells do not conduct whenever a card is not in the
read station, the LIGHT CURRENT indicator illuminates.

8.5. 3.8 DARK CURRENT Error

The DARK CURRENT indicator illuminates if all photo-read-cells do
not go dark for some instant between the beginning of the card and
column 1, or between column 80 and the end of the card.

8.5.4 Status and Command Bytes

Table 8-7 illustrates the status and command byte coding for the Card
Reader.

8.5.5 Data Format

A card Feed command causes the card to move over the photo-read­
cells column by column, starting with column 1. Every column read
(blank columns are read as all bits zero) generates a data strobe for
that column and initiates a data transfer cycle. The first Read Data
instruction reads the top six rows of the column; the second Read Data
instruction reads the bottom six rows of that column. Figure 8-3 is
an example of the data byte format.

8-25



TABLE 8-7.
CARD READER STATUS AND COMMAND BYTE DATA

(HEX ADDRESS 04)

BIT
NUMBER 0 1 2 3 4 5 6 7

STATUS
BYTE EOV TBL HE NMTN BSY EX EOM DU

COMMAND
BYTE DISABLE ENABLE FEED

EOV The EOV bit is set when the data is not taken from the
Device Controller buffer before the next column of data
arrives from the read station. This bit is reset by a
FEED Command.

TBL/DU These bits are set when the Card Reader fails to pick a
card upon command, or when an error condition occurs in
the Card Reader. The error conditions are:

1. Card Motion Error
2. Light Current Error
3. Dark Current Error

These error conditions prevent the reading of any more
cards until manually reset by the operator.

HE The HE bit is set when the last card in the input hopper has
been read. When HE sets, NMTN is set. The HE bit must
be manually reset by the operator.

NMTN The NMTN is set except for the time between a FEED
command and the time it takes for a card to pass through
the read station.

BSY The BSY bit is set while the Device Controller is awaiting
data from the Card Reader. It resets when the data is
available to be transferred.

EX The EX bit sets when anyone of the upper four (4) bits of
the Status byte is set.

EOM The EOM bit is set whenever NMTN is set, and when the
input hopper becomes empty.

DISABLE This command disables the Card Reader Device Interrupt.

ENABLE This command enables the Card Reader Device Interrupt.

FEED This command initiates a new card feed cycle; however, no
action occurs if TBL, DU, or HE is set.

8-26



BIT NUMBER 0 1 2 3 4 5 6 7

ROW NUMBER 12 11 0 1 2 3 FIRST DATA
BYTE

ROW NUMBER 4 5 6 7 8 9
SECOND DATA

BYTE

NOTE: Bit numbers 0 and 1 should always be zero.

Figure 8-3. Data Byte Format

8.5.6 Interrupts

When enabled (Bit 1 of the COMMAND byte set), the Card Reader De­
vice Controller generates an external device interrupt for each column
read. The interrupt indicates to the Processor that data is available
for transfer.

8.5.7 Initialization

When CLR pushbutton on the Processor is depressed, the following
occurs:

1. The NMTN and EOM bits are set.

2. The EOV bit is reset.

3. The BSY and EX bit are set.

8.5.8 Operator Procedures

After applying power to the Card Reader, allow it a few minutes to
warm up. Cards should be placed face down in the hopper with the
12-edge toward the operator. Additional cards may be added to the
hopper without interfering with the operation.

8.5.9 Programming

A sample card input routine is shown in Table 8-8. In the sample
program, note that the HE bit (hopper empty) is checked before other
bits. This bit does not become set until the last card is read. If 80
columns are not read from each card, there is a Card Reader mal­
function, as all blank columns should be read as zeros.

Code conversion is required when reading conventional Hollerith cards.

See Table 8-9 of the Hollerith punched-card codes for the ASCII char­
acter set.

8-27



TABLE 8-8.
CARD READER SAMPLE SUBROUTINE

*READ 80 COLUMNS INTO 160 BYTE BUFFER

*CALL IS BAL READ

*

READ DC '0000'

LI BUFFER-1 RESET BUFFER POINTER

ST ADDR+1

LI -80 RESET COLUMN COUNT

ST COUNT

LI 4 GET CARD DEVICE NUMBER

ADR ADDRESS DEVICE

WAIT SS SENSE STATUS

SH 2, CO GET EOM BIT INTO CARRY

B WAIT, NC WAIT IF NO EOM

NI 8 GET HE BIT

B EMPTY, NZ EXIT IF HOPPER EMPTY

FEED LI 'AO' GET DEV COMMAND

OC

READ 2 RDS READ ROWS 1-6

B ERROR ERROR CONDITION EXIT

ST ADDR, I

RD READ ROWS 7-12

ST ADDR, I

ISZ COUNT TEST IF 80 eOLS READ

B READ2 DO MORE

B READ, DONE

BUFFER DS 160

ADDR DC @BUFFER-1 AUTOINDEXED POINTER

END

8-28



TABLE 8-9.
ASCII TO CARD CODE CONVERSION

8-Bit 7-Bit
Card

8-Bit 7-Bit
Card

Graphic ASCII ASCII Code
Graphic ASCII ASCII Code

Code Code Code Code

SPACE AO 20 0-8-2 @ CO 40 8-4

Z Al 21 12-8-7 A Cl 41 12-1

" A2 22 8-7 B C2 42 12-2

4/= A3 23 8-3 C C3 43 12-3

$ A4 24 11-8-3 D C4 44 12-4

% A5 25 0-8-4 E C5 45 12-5
& A6 26 12 F C6 46 12-6
, A7 27 8-5 G C7 47 12-7

( A8 28 12-8-5 H C8 48 12-8

) A9 29 11-8-5 I C9 49 12-9

* AA 2A 11-8-4 J CA 4A 11-1

+ AB 2B 12-8-6 K CB 4B 11-2
, AC 2C 0-8-3 L CC 4C 11-3

- AD 2D 11 M CD 4D 11-4
AE 2E 12-8-3 N CE 4E 11-5

/ AF 2F 0-1 0 CF 4F 11-6
0 BO 30 0 P DO 50 11-7
1 B1 31 1 Q D1 51 11-8
2 B2 32 2 R D2 52 11-9

3 B3 33 3 S D3 53 0-2

4 B4 34 4 T D4 54 0-3
5 B5 35 5 U D5 55 0-4

6 B6 36 6 V D6 56 0-5

7 B7 37 7 W D7 57 0-6
8 B8 38 8 X D8 58 0-7
9 B9 39 9 Y D9 59 0-8
: BA 3A 8-2 Z DA 5A 0-9
; BB 3B 11-8-6 [ DB 5B 12-8-2

< BC 3C 12-8-4 "- DC 5C 11-8-1
= BD 3D 8-6 ] DD 5D 11-8-2

> BE 3E 0-8-6 • DE 5E 11-8-7
? BF 3F 0-8-7 ~ DF 5F 0-8-5

8-29/30





CHAPTER 9

CONFIGURATION AND INSTALLATION PLANNING

9.1 INTRODUCTION

Modularity is the key word which describes the INTERDATA building
block approach to configuring Model 1 Digital Systems. The highly
modular structure of the Model 1 line of digital equipment permits
custom configurations to suit the user's exact needs. It also provides
the means for gracefully expanding a Model 1 Digital System as the
user's requirements grow.

9.2 BASIC PROCESSOR CHASSIS

The basic Model 1 Processor is packaged in a single RETMA standard
5-1/4 inch rack mountable chassis. See Figure 9-1. This chassis in­
cludes a power supply, cooling fans, and room for 8 standard 10 inch
printed circuit boards. The first 5 circuit board slots are used for
the Processor and the first 2048 byte core memory module. The re­
maining 3 circuit board slots are universal expansion slots which can
accept any combination (up to 3) of the following:

1. Additional 2048 byte core memory modules

2. 2048 byte read only memory modules

3. Standard INTERDATA peripheral device controllers

4. Standard INTERDATA Selector Channel

5. User designed interfaces to either the Multiplexor Bus (I/O
Bus) or the Memory Bus (M Bus).

Wire wrapped circuit cards require two expansion card slot positions.
Printed circuit cards require a single expansion card slot. The basic
Model 1 chassis with 2048 bytes of memory and the standard control
panel weighs about 42 pounds, including the power supply. Typical •
weight of circuit cards is approximately 1 pound.

9.3 EXPANSION CHASSIS

Model 1 system expansion chassis have identical dimensions as the
basic Processor chassis. The expansion chassis contains 8 universal
expansion slots which can accept any combination of up to 8 memory
modules, peripheral controllers, selector channels, or user designed
interfaces as described for the basic chassis. Expansion chassis in­
clude cooling fans and have room to accept an additional power supply,
although it is not equipped with the power supply. Expansion chassis
are supplied with two cables for connecting to the basic Processor
chassis.

9-1



r-15.~
-r UPRIGHT MOUNTING

SURFACE

.06 .203 WI DE SLOTS FORr r- #10 PAN HEAD PHILLIPS SCREW-----,2.12
1

..

en ):"
17.50(j) ~

en -J
<t Cl.

::I: CIJ
u 9 19.00

18.31

AC CORD

TOP VIEW

.75

~
-j ~1.48
2.25~

5.21 --J
FRONT VIEW

Figure 9-1. Modell Outline Drawing

Expansion chassis may be added to the Modell Digital System as re­
quired by the particular system configuration subject to certain con­
straints discussed later.

9.4 DECORATOR COVER

A decorator cabinet cover for a single 5-1/4 inch chassis is available
for desk top mounting versions of the Modell Processor.

9.5 LINE POWER REQUIREMENTS

The basic Modell Processor requires ll5VAC, ±10%, 47Hz to 63Hz,
4. 5 amps maximum.

9-2



9.6 REGULATED POWER

The Model 1 power supply, included with the Processor, provides
three regulated voltage supplies:

+5VAC ±1%

+16VDC ±1%*

-16VDC ±1%*

12 anlps

1.5 amps

3.0 amps

and requires 115VAC, ±10%, 4.4 amps, 47Hz to 63Hz primary power.

9.7 CONFIGURING POWER REQUIREMENTS

The Model 1 Processor and the first 2048 byte memory module
requires:

+5VDC 5.25 amps

+16VDC 1.15 amps

-16VDC 1.45 amps

which leaves

+5VDC 6.75 amps

+16VDC .35 amps

-16VDC 1.55 amps

of regulated power for user designated expansions. Ordinarily, this is
sufficient power for the basic Processor chassis plus one expansion
chassis. If it is not, the user is expected to purchase an expansion
power supply separately.

Table 9-1 lists the approximate regulated power requirements for
typical Modell expansion modules.

TABLE 9-1
EXPANSION MODULES POWER REQUIREMENTS

Modules +5VDC +16VDC -16VDC

2048 byte core memory 0.75 -- 0.12
2048 byte read only memory .80 -- .20
Selector Channel 1.0 --
Typical printed circuit board 1.0 --
Typical wire wrapped board .80 --

*The +16VDC and -16VDC supplies are temperature tracking supplies
which vary, approximately linearly, from ±15VDC to ±18VDC over the
temperature range 50°C to 0 °C, respectively.

9-3



The exact power requirements for Modell expansions are listed in
the documentation for each individual product.

9.8 CONFIGURATION CONSTRAINTS

Modell Digital Systems may be configured in an unusually wide vari­
ety of ways. However, the following factors should be considered
when planning for the installation of a Model 1 Digital System.

1) Air Flow

At least two inches of free air space should be provided on each
side, or at the rear, of each basic Modell chassis and each expansion
chassis to permit adequate flow for air cooling. The Processor is
designed to operate over an ambient temperature, ranging from O°C
to 50°C.

2) Expansion Chassis

Expansion chassis should be mounted either immediately above or
immediately below the next chassis to minimize the lengths of the
chassis to chassis interconnect cables.

3) Memory Modules

All memory modules must be physically located in the basic
Processor chassis and in the first expansion chassis and all memory
modules must be powered by the power supply in the basic processor's
chassis.

4) Selector Channels, Universal Memory Bus Interfaces, Memory Bus

The Memory Bus may not extend beyond the first two expansion
chassis which must be immediately above and below the basic Proc­
essor chassis. Any device physically connecting to the Memory Bus
(i. e., Selector Channel, Universal Memory Bus Interface, or user
designed interfaces) must, therefore, be physically located in one of
these 3 chassis.

9.9 INSTALLATION

All necessary mounting hardware, interconnect cabling and installation
instructions are shipped with the Modell Processor. Similarly
mounting hardware, cabling, and installation instructions are provided
with all standard INTERDATA peripheral device controllers. Installa­
tion of INTERDATA equipment by INTERDATA representatives can
be arranged by contacting the local INTERDATA Sales Office.

9-4



CHAPTER 10

BASIC MODEL 1 PROGRAMMING

10.1 INTRODUCTION

The purpose of this chapter is to introduce the user/programmer to the
Modell. It provides helpful programming information and examples
and is intended to aid the user who has little or no Modell program­
ming experience. Some experience in assembly language programming
is assumed. This document is designed to be used in conjunction with
the Modell Assembler Language Specifications (see Chapter 11) and
other software descriptions. A rigorous explanation of each Model 1
machine instruction is contained in Chapter 4. The reader should have
a basic knowledge of the instruction set, and the symbolic assembly
language before he attempts to study the programming examples given
in this chapter.

10.1.1 TheModel1

The Modell Processor is designed around an eight-bit byte memory
system. It is a page addressable machine with a minimum memory
size of 2K bytes, and maximum of 16K bytes. Each page consists of
256 bytes (A 2K machine has eight pages). Instructions are of two
lengths: one byte (short-form instruction) and two bytes (long-form
instruction). Instructions may appear anywhere in memory without
restrictions regarding byte or page boundaries. Addressing may be
either direct or indirect. (See Chapter 3 and the Section on address­
ing techniques).

10.1.2 Programmable Registers

An eight-bit register called the Accumulator is available to the pro­
grammer. In addition, a Carry Bit associated with the Accumulator,
is also programmable.

The Accumulator is involved in nearly all Modell instructions. The
Carry Bit is linked to the Accumulator for arithmetic and shift oper-
ations, but it may also be independently controlled by the programmer••

10.1.3 Arithmetic/Logical Unit
The Arithmetic/Logical Unit processes binary integer and logical in­
formation. The operands are located in the accumulator and/or core
memory. Arithmetic data is fixed point and is treated as a signed
seven bit integer or as an unsigned eight-bit integer. Extended­
precision arithmetic may be accomplished via software routines.
Negative numbers are represented in 2's complement fqrm with a
sign bit of one. The numeric value of zero is always treated as non­
negative. Table 10-1 shows several examples of the fixed-point num­
ber representation used in the Model 1.

10-1



TABLE 10-1
EXAMPLES OF FIXED-POINT NUMBER REPRESENTATION

NUMBER DECIMAL BINARY HEXADECIMAL

27-1 127 0111 1111 7 F

20 1 0000 0001 o 1

0 0 0000 0000 o 0

-(20) -1 1111 1111 FF

-(27) -128 1000 0000 8 0

22+1 5 0000 0101 o 5

o BYTE 7

011 INTEGER 7

Sign

10.1.4 2'5 Complement Notation
Negative numbers are represented in 2's complement notation. An
eight-bit number is negative only if bit 0 is set. To change the sign
of a number, the 2's complement of the number is produced in a two­
step procedure:

1) Change all zeros to ones, and change all ones to zeros
(complement every bit).

2) Add 1 to the number.

Example: The number five is represented in binary form as
00000101

Step 1)

Step 2)

11111010

11111011

(complement) = l' s complement of 5

(add one) = .2's complement of 5

The result is the 2's complement of 5 representing -5.

10.1.5 Hex Notation

Binary information is expressed in hexadecimal notation (base 16) for
purposes of simplicity. All references to binary instructions, data or
addresses in Model 1 software are made in hex notation. Four binary
bits of information can be expressed by a single hexadecimal charac­
ter. An eight-bit byte of memory is expressed by a pair of hex char­
acters. Table 10-2 lists binary, hexadecimal and decimal equivalents.

10-2



TABLE 10-2
HEXADECIMAL, BINARY, AND DECIMAL CROSS-REFERENCE

HEXADECIMAL BINARY DECIMAL

0 0000 0

1 0001 1

2 0010 2

3 0011 3

4 0100 4

5 0101 5

6 0110 6

7 0111 7

8 1000 8

9 1001 9

A 1010 10

B 1011 11

C 1100 12

D 1101 13

E 1110 14

F 1111 15

Example: The binary 2-byte number (0001111110100101)
can be expressed in hex notation as '1FA5'

10.2 ADDRESSING TECHNIQUES

The Model 1 is a page-addressed machine. The Memory System is
subdivided into pages numbered in hex notation from '00' (page zero)
to the top page of memory (which depends upon how many memory
modules are attached to the machine). On a 2K system the pages are
numbered from '00' to '07'. Adding another 2K, adds pages '08' to
'OF'. On a full 16K system, the top page number is '3F'. Within each
page there are 256 bytes numbered from '00' to 'FF'. A Modell ad­
dress is made up of a page number combined with a byte location.
The address length is 14 bits, and ranges from '0000' to '3FFF', as
follows:

3F FF

PAGE ADDRESS

10-3



Memory reference instructions may directly address either the cur­
rent page or page zero. The current page is the page on which the
instruction itself lies. (If a two byte instruction lies in two pages,
then the current page is the highest numbered page containing part of
the instruction.) Thus a load instruction in page 4 may directly ad­
dress locations '0400' to '04FF' and '0000' to 'OOFF'. Page 0 is an
important "common" area that can be directly referenced from any­
where throughout memory.

Addressing other than the Current Page or Page 0 must be done In­
directly. Indirect addressing is accomplished as follows: a memory
reference instruction (with the Indirect Bit Set) directly addresses a
2 byte address word in its resident page or page zero, and the least
significant 14 bits of the 2 byte word becomes the effective address of
the instruction.

Given below are examples of the four combinations of addressing on
the Modell.

LOAD LOCATION DATA INTO A

1) Direct addressing of the current page:

ORG '0300'
L DATA
B DONE

DATA DC 7

2) Direct addressing of page O.

ORG '0000'
DATA DC 7

ORG '0300'
L DATA
B DONE

LOAD LOCATION DATA INTO A

LOAD INDffiECT, LOCATION DATA

ADDRESS CONSTANT FOR LOCA­
TION DATA*

ADDR

3) Indirect addressing through the current page.

ORG '0300'
L ADDR, I
B DONE
DC DATA

ORG '0400'
DATA DC 7

10-4



4) Indirect addressing through page zero.

ORG '0000'
ADDR DC DATA ADDRESS CONSTANT OF DATA

ORG '0300'
L ADDR, I LOAD INDIRECT, LOCATION DATA
B DONE

ORG '0400'
DATA DC 7

In examples 3) and 4) "ADDR" is a two byte address word which points
to location "DATA".

The symbolic address DONE always lies within page 3.

Programming note: Since direct addressing to a page other than the
current page or page 0 is impossible, the Assembler Program will
indicate an error during the assembly process if a referenced location
is outside of the current page or page O. In this case the assembler
places an "A" flag next to the instruction to alert the programmer to
the mistake.

EXAMPLE:

A
ORG '0300'
L DATA
B DONE

ORG '0400'
DATA DC 7

DIRECT ADDRESSING ATTEMPTED
OUTSIDE OF CURRENT PAGE

To rectify this condition, the programmer must set up an address con­
stant and change the mode to indirect as shown in Example (3).

In writing programs for a paged machine, the difficulty of addressing
locations outside the current page may arise. It is recommended that
all coding be roughly pre-counted so that it can be divided into 240 byte
blocks and placed on unique pages. Doing this allows the programmer
to see what label references are outside of the current page (or page
zero) so that he may re-arrange his coding or set up the necessary
address constants for indirect addressing. Arranging coding in 240
byte blocks allows for 16 bytes of expansion in a page with little danger
of page overflow.

10.3 MEMORY ORGANIZATION

Some areas of Inemory are dedicated to certain hardware and software
functions. This section describes these areas, giving their purposes
and specific locations.

10-5



Page 0, because of its universal addressing capability, is left mostly
for the user. The locations in page 0 which have special uses by
Modell software are shown in Table 10-3.

TABLE 10-3
TABLE OF COMMONLY USED A.DDRESSES

FIXED
HARDWARE
LOCATIONS

LOC

'0000'

'OOOA'

'OOFO'

'OOFE' - 'OOFF'

'0100' - '0107'

'0108' - '010F'

'0110' - '0117'

'0118' - 'OllF'

'0120' - '0127'

'0128' - '012F'

'0130' - '0137'

'0138' - '013F'

'0140'

'014A' - '014B'

'014C' - '014D'

'014E' - '014F'

'0150' - '0151'

'0152'

'0154'

'017C'

'0180'

'0182'

'0400'

USE

Power up restart point (Fixed hardware location)

Top of core pointer for the Text Editor

Core available pointer for the Assembler

Address constant used by DBUG for breakpoints

Interrupt service block 0

Interrupt service block 1

Interrupt service block 2

Interrupt service block 3

Interrupt service block 4

Interrupt service block 5

Interrupt service block 6

Interrupt service block 7

Execute point for the Incore Loader

Device and command for binary input

Device and command for binary output

Device and command for source input

Device and command for list output

Incore loader page pointer

Entry point for binary input routine

Power up restart point (for Auto Control Panel)

Assembler Pass 1 start point

Assembler Pass 2 start point

Relocation pointer for the DBUG program

NOTE

Systems with Auto Load Panel have the first 64 bytes of
core frozen as read only memory.

10-6



Page 1 contains several dedicated locations:

1) Hardware Interrupt service table beginning at location '0100'.
There are 8 bytes per interrupt line, and a maximum of 8
lineso

The first four lines (numbers 0-3) are standard on the Model
1. The remaining lines are optional. Programming examples
using the interrupt service blocks will be found in Section 4.

Although these locations are dedicated to interrupt handling,
each group of eight bytes may be used as ordinary memory
locations if the respective interrupt is not being used.

2) Software In-Core loader and Device-Definition table.

LOC '140'-'153'

These locations contain the In-Core boot loader and a Device
Definition table which allows the Modell software a certain
degree of device independence. This area is described in
the Loader Descriptions Section of Chapter 11. It should not
be overwritten by the programmer unless absolutely needed,
since the instructions contained in these locations will have
to be manually entered if an initial load is required.

3) Software Binary Input Device driver.
This set of coding is used by the In-Core Loader and the
General Loader to drive the Binary Input Device. This driver
is one of two forms:

a) For High Speed Paper Tape Reader, Cassette Tape or
parallel Teletype. LOC '154'-'160'

b) For serial Teletype LOC '154'-'179'

The driver areas also should not be overwritten by the pro­
grammer if the In-Core Loader or General Loader is to be
used. The remaining locations of Page 1 and all other core
locations are available to the programmer.

10-7



10.4 BASIC PROGRAMMING EXAMPLES

10.4.1 Moves

Move Field A to Field B (where fields are not in the same page as the
move routine).

ORG '0200'

FIELDA DS 10 TEN BYTE SOURCE FIELD

FIELDB DS 10 TEN BYTE DESTINATION
FIELD

ORG '0300'

LOOP L SOURCE, I LOAD FIELD A BYTE
INDIRECrr

ST DEST, I STORE FIE LD B BYTE
INDIRECT

ISZ SOURCE+l BUM:P ADDRESS WORDS
BY ONE

ISZ DEST+l

ISZ CNT BUMP LOOP COUNT
(SKIP IF TEN BYTES
DONE)

B LOOP RETURN TO DO ANOTHER
BYTE

B DONE FINISHED

CNT DC -10

SOURCE DC FIELDA FIELD A ADDRESS WORD

DEST DC FIELDB FIELD B ADDRESS WORD

This routine is not reusable as it now stands. The address words
(SOURCE and DEST) and the loop count (CNT) must be re-initialized
to their original values.

Move Field A to Field B (where fields are in the same page
as the move coding).

*THE FOLLOWING CODING MAKES THE ROUTINE REUSABLE.

ORG '0200'

RESET

10-8

LI

ST

LI

-10

CNT

FIELDA

RESET LOOP COUNT

LOAD FIELD A LOCATION



ST LOAD+l RESET SOURCE PTR

LI FIELDB LOAD FIELD B LOCATION

ST STORE+l RESET DESTINATION PTR

MOVE ROUTINE LOOP

L FIELDA GET FIELD A BYTE

ISZ *-1 BUMP ADDRESS

ST FIELDB PUT FIELD B BYTE

ISZ *-1 BlJMP ADDRESS

ISZ CNT BUMP LOOP COUNT
(SKIP IF DONE)

B LOAD RETURN TO DO NEXT
BYTE

B DONE FINISHED

DS 10 TEN BYTE SOURCE FIELD

LOAD

*

STORE

FIELDA

FIELDB DS 10 TEN BYTE DESTINATION
FIELD

10.4.2 l\'Iultiple Precision Arithmetic (Triple Precision Example)

Add two 24-bit numbers (Add A to B, answer in B).

A DS 3 FACTOR 1

B DS 3 ANSWER HERE (FACTOR 2)

ADD L A+2 GET A

A B+2 A.DD LEAST SIGNIFICANT BYTES

ST B+2 STORE IN B

L A+l GET MIDDLE BYTE OF A
TS NC SKIP IF NO CARRY FROM FIRST ADD

ISZ B+l INCREMENT B+l IF CARRY. SKIP ADD
IF ZERO

A B+l ADD MIDDLE BYTES

ST B+1 STORE IN B

L A GET TOP A BYTE

TS NC SKIP IF NO CARRY FROM MIDDLE ADD

ISZ B BUMP B, SKIP IF ZERO

A B ADD TOP BYTES

ST B STORE IN B

B DONE FINISHED

10-9



The present state of Carry is now the result of Carry from the
entire 24-bit ADD.

10.4.3 Subroutine Linkage (Use of the BAL Instruction)

In the example below, a main program calls a subroutine (SUBR1)
which calls another subroutine (SUBR2). The following sequence of
execution occurs. Subroutine Coding examples are shown in Table 10-4.

1. BAL SUBRI causes the address of RETRN to be deposited
in the two byte area at SUERI. Processing continues at
SUBRl+2.

2. BAL SUBR2 causes the address of RETRN2 to be deposited in
the two byte area at SUBR2. Processing continues at SUBR2+2.

3. B SUBR2, I causes the transfer of program control to the
address at SUBR2, i. e. RETRN2, where processing
resumes.

4. B SUBRl, I causes transfer to the contents of SUBRI, i. e.
RETRN, where processing resumes.

5. Processing halts at DONE.

TABLE 10-4
SUBROUTINE CODING EXAMPLE

MAIN

RETRN

BAL SUBRI LINK TO SUBR1

DONE C '02' HALT

SUBRI DC '0000' LOCATION COUNTER
STORED HERE

BAL SUBR2 LINK TO SUBR2

RETRN2

B SUBR1, I RETURN FROM SUBR1

SUBR2 DC '0000' WCATION COUNTER
STORED HERE

B SUBR2,I RETURN FROM SUBR2

10-10



10.4.4 Auto-Indexing/Auto-Skip

Auto-indexing is a feature on the Modell that allows automatic incre­
menting of an address word used in indirect addressing. Auto-skip is
a feature that causes an automatic skip of the next 2 byte instruction
if the resulting incremented byte location is not equal to 'FF'.

An address word is always 16 bits. The address itself comprises the
low order 14 bits. Bit 0 is the Auto-indexing (AU) Bit, and Bit 1 is
the Auto-skip (SK) Bit.

o 1 15

EEl..... A_D_D_R_ES_S 1
When using the Auto-indexing or the Auto-skip feature, the following
operations take place:

1) When the AU Bit is set, the incrementing takes place on the
byte-address portion of the address word (bits 8-15). It takes
place anytime the address word is referenced by an indirect
instruction. The incrementing takes place before the indirect
instruction is executed, therefore if the programmer desires
his first effective address be '0700', his address word should
be '87FF'. The address increment will not overflow into the
page portion of the address word.

2) When the Auto-skip flag is set, a test is made on the byte
address portion of the address word after the indirect instruc­
tion has been executed. If it is not 'FF', then the location
counter is incremented by 2. If it is 'FF', then the next
sequential instruction is executed. The Auto-index and Auto­
skip flags can be set on an address word by special prefixes
in the assembler language or by address adjustment constants.

<ADDR

@ADDRDC

DC

SETS AUTO-INDEX FLAG
ON ADDR

SETS AUTO-INDEX & SKIP
FLAGS

DC ADDR+'8000' SET AUTO-INDEX FLAG

Example:

10-11



Coding Example: Move page 7 to page 8 with instructions in
page 2 using auto-indexing

LOOP

SOURCE

DEST

ORG '0200'

L SOURCE, I LOAD INDIRECT WITH
AUTO-INDEX

ST DEST, I STORE INDffiECT WITH
AUTO-INDEX & SKIP

B DONE FALL THRU IF '08FF'
REACHED

B LOOP MORE

DC '87FF' AUTO-INDEX BIT SET

DC 'C8FF' AUTO-INDEX & SKIP BIT
SET

Without the use of Auto-indexing this routine would require
two more instructions (2 ISZ instructions for manually
bumping the address words).

10.4.5 Condition Checks and Comparison

The following three hardware states can be tested on the Model 1.

1) The carry state

2) The sign of the accumulator

3) Zero condition of the accumulator

Tests for the negative condition of each of these states (NC no carry,
NM non-minus, NZ non-zero) are available as modifier options on
many of the Modell instructionso

There are 4 extended mnemonics available on the Modell Assembler
in the form of compare instructions.

1) CEI - Compare equal immediate

2) CE - Compare equal

3) CLI - Compare low immediate (logical)

4) CL - Compare low (logical)

In these instructions, the accumulator is compared to the operand
either immediate or memory reference) and if the condition is met
(accumulator low or equal depending upon the mnemonic), the next
instruction is executed. If the condition is not met then the location

10-12



counter is incremented by 2. To show this symbolically the following
examples are given:

L
CEI
B
B

CHAR
nAY'

EQUAL
NEQUAL

L
CL
B
B

RSULT
DATA
LOW
NOT LOW

NOTE: The CEI instruction is equivalent to the XI instruction with the
Nand NZ modifiers specified.

If the programmer desires to branch out on the not equal condition and
fall through on equal, the following sequence may be used:

* EXIT A ROUTINE IF ACCUMULATOR NOT EQUAL TO'12'

*
*
*

XI '12'
B EXIT, NZ

*
*
*

*NOTE: ACCUMULATOR DESTROYED IN THE ABOVE OPERATION

* EXIT A ROUTINE IF ACCUMULATOR IS ZERO

*
*
*

TS NZ
B EXIT

*
*
*

10.4.6 I/O Programming

Several methods of I/O programming are available on the Modell,
I/O transfers can be accomplished in the Interrupt or Non-Interrupt
mode, and through both serial and parallel transfers or Pulsed I/O.
Exan1ples and explanations of I/O programming are given in the follow­
ing paragraphs.

10.4. 6. 1 Parallel I/O

Parallel transfers are byte transfers made through the I/O Multiplexor
Bus. A.n eight-bit byte or group of bytes is transferred to or from the
Accumulator (data transfer) or core memory (block transfers). Four
programming steps are required to complete a transfer.

10-13



1. Address the device using the ADR Instruction.

2. Send the proper device command to the device controller
using the OC Instruction.

3. Wait until the device is ready to receive or send data. This
can be accomplished by:

a. The use of interrupts (the device interrupts the Proces­
sor when ready, i. e. Interrupt Mode).

b. By sensing status on the device (wait for non-busy status
to appear, i. e. Non-Interrupt Mode).

4. Accept or send the data with a Read or Write Instruction.

10.4. 6. 2 Interrupt Mode

When working in this mode, the programmer addresses the device,
enables the external interrupt state with the Command Instruction
(C '08'), enables the individual device interrupt by choosing the ap­
propriate device command and sets the Mask Register to enable the
appropriate external interrupt line. He then can proceed with proces­
sing until he receives an external interrupt. Control is transferred
to the Interrupt Service Block associated with the external interrupt.
See Figure 10-1. The device status is checked and data is received
or sent accordingly. Through buffering, I/O can be overlapped with
processing to take full advantage of available processing time.

INTERRUPT
LINE

MEMORY
ADDRESS

EVEN
ADDRESS

ODD
ADDRESS

o--{ X'l00'

l--{X"00

X'110'

X'118'

X'120'

X'128'

6--{ X'130

7--{X"~

CI E] LOCATION COUNT

ci EI LOCATION COUNT

C I E I LOCATION COUNT

C I E I LOCATION COUNT

} B BYTES

} B BYTES

} B BYTES

} B BYTES

NOTE - MEMORY LOCATIONS BEYOND X' 120' ARE AVAILABLE WITHOUT RESTRICTION IF
THE PROCESSOR DOES NOT HAVE THE OPTIONAL 4 INTE RRUPT LINES (4:7)

- THE FIRST INSTRUCTION OF THE NEW PROGRAM CORRESPONDING TO INTERRUPT
LINE 0 WOULD BE AT LOCATION X' 102'

Figure 10-1. Interrupt Service Table

10-14



10.4. 6.3 Non-Interrupt Mode

In this method, the time between the command to the device and the
actual transfer is spent in a status loop wating for the device to be­
come ready. This method does not make the most efficient use of
Processor time because of the unused time in the status loop. The
Non-Interrupt Mode is much easier to program. When the device is
ready for transfer, the status of the device becomes zero (non-busy
and no error conditions)o Status may be checked with the SS Instruction,
but some Read and Write Instructions have a built-in status check such
as RDS, WDS, and the block transfer instructions.

When processing in mixed mode (both Interrupt and Non-Interrupt),
care must be taken to insure that interrupts are disabled when initializ­
ing or completing transfers from Non-Interrupt Mode Devices. This
must be done to insure that a device does not become "unaddressed" by
an Interrupt Service Routine.

EXAMPLE I: Parallel Non-Interrupt Mode

* WRITE THE CHARACTER "A'! ON THE TTY
BEGIN LI 2 LOAD TTY DEVICE #.

ADR ADDRESS THE DEVICE
LI '98' LOAD WRITE MODE COMMAND
OC ISSUE WRITE COMMAND TO TTY
LI "A" GET "A" INTO ACCUMULATOR
WDS WAIT FOR BUSY TO DROP THEN

WRITE
B ERROR
B DONE

*READ 256 BYTES FROM HSPTR INTO AREA CALLED "BUFFER"

ORG '0300'
BE_GIN LI '13'

ADR
LI '99'
OC
RB ADDR, I
B ERROR
B DONE

ADDR DC BUFFER
ORG '0400'

LOAD HSPTR DEVICE #=
ADDRESS HSPTR
LOAD READ COMMAND
ISSUE READ COMMAND
READ BLOCK INDIRECT

ADDRESS CONSTANT OF BUFFER

BUFFER EQU * 1 PAGE (256 BYTE) READ BUFFER

*READ CHARACTERS FROM A TTY AND STORE THEM
*UNTIL A CR (CARRIAGE RETURN) IS READ.

BEGIN LI 2 TTY DEVICE #=
ADR
LI '94' TTY READ COMMAND
OC

10-15



MORE RDS READ BYTE
B ERROR
ST BUFFER STORE IN BUFFER
ISZ *-1 BUMP STORE ADDRESS
CEI 'OD' COMPARE EQUAL TO CR
B DONE YES, CR
B MORE NO, GET A.NOTHER

BUFFER DS 10

EXAMPLE II: PARA.LLEL INTERRUPT MODE

* INITIATE A READ FROM THE TELETYPE.
* CONTINUE PROCESSING UNTIL THE CHARACTER IS NEEDED.
* IF 1ST NON-ZERO CHA.RACTER IS NOT A,LREADY READ, THEN
*' WAIT FOR READ TO BE COMPLETE

ORG '0400'

BEGIN LI 2 TTY DEVICE NO.
ADR
LI 'A6' COMMAND READ AND ENABLE

DEVICE INTERRUPT
OC
LI '10' LOAD EXTERNAL INTERRUPT

MASK (LINE 3)
C '28' ENABLE MOD1 EXTERNAL INTER-

RUPT AND SET MASK REGISTER

INTERMEDIATE PROCESSING NOT SHOWN

FLAG LI O,NZ WAIT LOOP FOR READ COMPLE­
TION

CONTINITED PROCESSING WITH CHARACTER
IN ACCUMULATOR

B DONE

* LOC '0118' ASSUMED TO BE EXTERNAL INTERRUPT SERVICE
* BLOCK

10-16



ORG '0118' INTERRUPT LINE 3
IOLINE DC '0000' LOCATION COUNT STORED HERE

ST AREG+l SAVE ACCUMULATOR
AK ACKNOWLEDGE THE INTERRUPT
XI 2 CHECK IF DEVICE NUMBER IS 2
B ERROR,NZ INVALID INTERRUPT IF NOT 2.
LI 2 ADDRESS DEVICE
ADR
RDS GET CHARACTER
B ERROR
ST ADDR, I STORE INDIRECT AT FLAGE+l

AREG LI 0 RESTORE ACCUMULATOR
B IOLINE, I RETURN FROM INTERRUPT

ADDR DC FLAG+l ADDRESS CONSTANT OF FLAG+l

If the character is ready during the intermediate processing, the in­
terrupt occurs, and the character is read and placed in FLAG+l and
processing continues where it left off. When the processing reaches
FLAG the LI will load the character into the accumulator, resulting
in a NZ condition which will cause the Processor to skip the looping
branch. If the Processor reaches FLAG before the character is read,
it will remain in the 2 instruction loop until interrupted and the non­
zero character is placed in FLAG+1 by the read routine.

1004. 6.4 Serial I/O

Serial I/O is a bit-by-bit I/O process accomplished through the
Serial I/O Port of the Modell. The Serial I/O Port is connected to
the Carry Flag of the Processor. Two processor Instructions are
available to complete data transfers.

C
C

'10'
'80'

Input Serial Port to Carry
Output Carry to Serial Port

Serial devices such as a Teletype may be attached to the Serial I/O
Port. The technique for serial I/O programming is to time the bit
period of the device being programmed and use appropriate C Instruc­
tions each time a bit transfer period is reached. This is illustrated
below for serial input from a Teletype:

1. Test the Serial I/O Port repeatedly and wait for it to become
zero. This indicates the start of a character.

2. Wait one and one half bit periods, using a software timer or
the Modell one Millisecond Clock. This will position us into
the middle of the first data bit period.

3. Input the Serial I/O Port to Carry, and shift the Carry Bit
into a Data Byte.

10-17



WAIT FOR START PERIOD

REMOVE THIS INSTRUCTION FOR
BLOCKED (NON-PRINTING) INPUT.

4. Wait one bit period.

5. Repeat Steps 3 and 4 until eight data bits have been shifted
into a byte. The result is a single Teletype character.

Examples of Input and Output coding sequences follow:

EXAMPLE I - SERIAL INPUT

Input a character from a TTY attached to the Serial I/O port.

NOTE

A TTY character period consists of one start-bit period
where the I/O port goes to zero, followed by eight data-bit
periods which comprise the desired byte character. A bit
period is approximately 9 milliseconds in duration. Fol­
lowing the eight data-bits are at least two stop-bit periods
(ignored by the driver) where I/O port is a one.

*INITIALIZATION ROUTINE
*THIS ROUTINE ECHOS CHAR BACK TO PAGE PRINTER
*(UNBLOCKED TTY)

BEGIN C 'lO',NC
B *-2
C '80'

LI -9
ST CHAR
AA

SET UP COUNTER FOR 9 PERIODS
DOUBLE ACCUMULATOR TO -18

*THE FOLLOWING ROUTINE IS A SOFTWARE TIMER. THE FIRST
*TIME THROUGH (WITH AN ARGUMENT OF -18) IT COUNTS
*13.5 MILLESECONDS TO POSITION OURSELVES IN THE
*MIDDLE OF THE FIRST DATA-BIT PERIOD. FROM THEN ON
*WITH AN ARGUMENT OF -12, IT COUNTS 9 ms. (THE
*MIDDLE OF EACH FOLLOWING DATA-BIT PERIOD).

COM ST COUNT
LI 9
AO
B *-1, NZ
ISZ COUNT
B COM+2

*DATA BIT READY (TIME IS UP)

10-18



TIME LI 0 GET BYTE FOR BUILDING

C '10' GET DATA BIT
C '80' REMOVE THIS INSTRUCTION

FOR NON-PRINTING INPUT
ISN CHAR CHECK IF 8 DATA PERIODS

COMPLETE
B DONE YES, EXIT WITH BYTE IN

ACCUMULATOR
SH I,CI SHIFT CARRY INTO DATA BYTE
ST TIME+l RESTORE IN SAVE LOCATION
LI -12 SET 9MSo TIMER ARGUMENT
B COM GO TO TIMER

COUNT DC 0
CHAR DC 0

EXAMPLE II

SERIAL OUTPUT ROUTINE (Using the 1 Millisecond Clock as the
Timer)

*BYTE TO BE OUTPUT LOCATED AT DATA+l

BEGIN LI -10
ST CHR SET UP FOR 10 BIT PERIODS
LI -18 WAIT 18 MILLISECONDS BEFORE

SENDING START BIT
RC RESET CARRY A8 START PERIOD

COMOUT ST COUNT STORE # OF MS TO BE COUNTED
LI '40' LOAD CLOCK ENABLE MASK

(LINE 1)
C '28' ACTIVA.TE CLOCK, ENABLE

INTERRUPT

WAIT B * LOCKING HALT TO WAIT OUT
INTERRUPTS

B WAIT
TIME C '80' SEND CARRY TO SERIAL PORT

ISZ CHR
B DONE CHECK IF DONE

DATA LI 0 GET BYTE TO BE OUTPUT
SC
SH 1, CO, CI SHIFT OUT A BIT AND SHIFT IN
ST DATA+l RESTORE DATA BYTE
LI -9 WAIT 9 MILLISECONDS (ONE

BIT PERIOD)
B COMOUT BEFORE NEXT WRITE

CHR DC 0

10-19



*THE 1 MILLISECOND CLOCK INTERRUPT LINE ASSUMED TO
BE LOCATION '0108'.

CLOCK

COUNT

ORG '0108'
DC '0000'
ISZ COUNT
B CLOCK, I
B TIME

DC 0

LINE 1
ADDRESS OF TIME STORED HERE
DONE?
RETURN TO LOCKING HA.LT
TIME IS UP, PROCESS BIT

When interrupts are enabled, the One Millisecond Clock causes an
interrupt from the (B *) Loop at Location 'WAIT'. When the count
does not show zero, a return is made (B CLOCK, I) which returns us
to the B *). When the interrupt occurs, interrupts are disabled, but
the enable flag is deposited in Bit 1 of the location counter stored at
CLOCK. When the (B CLOCK, I) instruction is executed, the enable
flag in the address word at C LOCK causes interrupts to be enabled
again, so that we can be re-interrupted from the branch loop (B *)
every millisecond.

Alternately, the programmer could use the time between interrupts
to handle other processing instead of waiting in the (B *) loop. This
overlap method of processing is the most efficient. The Serial I/O
Port can also be attached to a separate interrupt line to give an in­
terrupt on each zero period.

10.4.7 Power Fail and Restart Programming

The Modell is equipped with functions to facilitate the handling of a
Power Fail condition, and to enable a resumption of a Power Fail
interrupted program. The Model 1 has a dedicated Power Fail Inter­
rupt Line, a "Command Power Down" Instruction, and a dedicated
location ('0000') where processing resumes when power is returned
to the Processor. The Power Fail Interrupt is maskable, but cannot
be Disabled. Considering the above functions, an example of a Power
Fail/Restart sequence is given.

*HEX LOCATION '0000' IS DEDICATED TO "POWER UP"
*CONTROL

10-20

ORG '0000'
B *+2, I
DC POWUP

BRANCH INDIRECT TO POWUP
ADDRESS CONSTANT OF POWUP



*ASSUME INTERRUPT LINE 0 (HEX LOCATION '0100') IS THE
*POWER FAIL INTERRUPT LINE

ORG '0100'
POWDWN DC '0000'

ST POWUP+l
C '03'

POWUP LI
B

LOCATION COUNTER PLACED
HERE WHEN POWER FAIL
OCCURS
SAVE ACCUMULATOR
COMMAND POWER DOWN AND
HALT

o RESTORE ACCUMULATOR
POWDWN, I RETURN TO INTERRUPTED

PROGRAM

10.4.8 Bit Instructions

The bit-oriented instructions can be used to efficiently evaluate Boo­
lean expressions where the parameters are represented by bits in
memory. Although this can be done by using conventional machine
instructions, a considerable amount of shifting and complementing of
operands and storing of partial results is required, much of which is
saved by using the bit instructions. The Bit instructions can result
in significant savings when large numbers of bits are involved.

Since the bit instructions are memory referenced, auto-indexing and
indirect addressing modes are available, allowing tables of data to be
operated on efficiently.

As in any programming effort, the organization of the data can have a
significant effect on efficiency. Carefully examine the expression to
be evaluated and, if possible, structure the data for efficient solution.

The following example, demonstrates many of the bit operation
features.

EXAMPLE: Solve the Boolean expression

X = [ABC + CD -I- EJ· F + AB + G

Assume for convenience the bits representing the variables are con­
tained in core location ALPHA.

o 7

ALPHA~

First note that:
----

ABC = lA + B + cJ

10-21



Thus, we can take advantage of the 'ORTing of selected bits in one
instruction.

BUF DC '00' TEMP STORAGE AREA
MASK DC '07'
START LI '04' SELECT BIT C

RC
OB ALPHA CARRY=C
AA SELECT D BY SHIFTING MASK

LEFT
NB ALPHA,BN CARRY=CD
AA
OB ALPHA CARRY=CD + E
L ALPHA
XI '01' COMPLEMENT BIT A
OB MASK,BN CARRY=ABC + CD + E, SEE

NOTE ABOVE
LI '20' SELECT F
NB ALPHA,CN CARRY= [ABC + CD + EJ • F
L BUF
SH 1, CI, CO CAPTURE AND CLEAR CARRY
ST BUF PREVIOUS STATE OF CARRY IS

IN BITO OF BUF
LI '01' SELECT A
OB ALPHA CARRY=A
AA SELECT B
NB ALPHA,CN CARRY=A'B
LI '40' SELECT G
OB ALPHA CARRY=AB + G
LI 'FF'
OB BUF CARRY=SOLUTION
END

Note that the last instruction collected all the partial 'sums (in this I
case only one) that were stored in BUF. If the expression contained i
more partial sums, they would have been evaluated separately, col- .
lected in BUF by shifting with Carry, then one final instruction com-
pletes the solution, as in the example.

If the expression happened to be in the form of partial products, i. e.

FNC = (X + X + X) • (X +X) •(X+X+X). X

collect the partial products in the BUF as in the above, complement
the BUF contents, then execute an NB with BN to complete the solu­
tion. (Similar to the way ABC was evaluated in the example).

10-22



10.5 SOFTWARE AND PROGRAM USAGE

10.5.1 Model 1 Software Summary

A set of basic software is available to the programmer to enable effi­
cient programming of the Model 1. Included are:

1) An Assembler for writing complete symbolic assembly
language programs.

2) A Debug Program (called DBUG) used for interactive testing
of programs.

3) A Text Editor (called TEDIT) used for preparing or modifying
assembler source tapes.

4) An In-Core loader for system initialization

5) A General Loader for loading user and Model 1 programs in
standard loader format.

6) An Unloader used for punching an object program from core
memory onto tape in standard loader format.

All of the above programs will run on a minimum (2K byte) system with
the exception of the assembler which requires 4K bytes.

For specific descriptions on all of the above programs, refer to
Chapter 11.

10.5.2 Model 1 Tape Formats

There are 3 forms of standard program tapes that can be processed by
Model 1 software:

1) Binary object tape

2) Standard loader format tape

3) Standard assembler source format tape.

A binary object tape is a 256 byte tape with one 8-bit byte per tape
frame that can be read into a page of memory by the In-Core loader.
The tape is core image for 256 bytes from the point where the read
begins. Only the General Loader, Unloader and Memory Test are
available in this format. No current Mod 1 software will produce
this tape format.

standard loader format is the object tape formate output by the assem­
bler. It has 4 data bits (one hex character) per tape frame. The high­
order bits are special zones devised to allow free use of a TTY as a
punch device. Each tape record consists of a logical 8-bit checksum
(2 frames), a 16 bit origin or end/transfer address (4 frames), and a

10-23



variable number of data bytes (2 frames per byte). Blank tape signi­
fies the end of data. For more detailed information on the above 2
formats see the Loader Descriptions section in Chapter 11.

Standard assembler source format can be used for both assembly
language source programs and user program input data. For assembly
language programs each record may be a maxinlum of 67 A.SCII
characters and must be followed by a CR and 8 rubouts.

Table .10-5 shows the tape format type processed by Model 1 software
and the form in which each program is available.

TABLE 10-5
TAPE FORMAT SUMMARY

PROGRAM TAPE FORM TAPE INPUT TAPE OUTPUT

IN-CORE LDR BINARY
GENERAL LDR BINARY LOADER
UN LOADER BINARY LOADER
ASSEMBLER LOADER SOURCE LOADER
DBUG LOADER
TEXT EDITOR LOADER SOURCE SOURCE
PROCESSOR TEST LOADER
MEMORY TEST BINARY

10.5.3 Loading Procedure and Core Usage

To load a Model 1 program that has been assembled by the Model 1
Assembler assuming Standard Control Panel:

1. Insure the correct Incore Loader is in memory.

2. Locate a page of memory (other than page 1) in which locations
'80' through 'FF' will not be used by the program. (i. e. No
data is to be loaded there)

3. Manually enter this page number into location '0152' with the
Switches.

4. Load the Modell General Loader, and then load the user object
program as described in the Loader Descriptions publication.

10-24



User written programs should be located in memory in such a way that
they:

1. Do not overlay the In-core loader in Page One.

2. Do not overlay the top half of at least one page. This area
(location '80' through 'FF') will be needed for the Model 1
General Loader.

3. Do not use locations 'OOFE' and 'DOFF' if the program is to
be debugged using the breakpoint feature of the Model 1
debug program.

10.5.4 User Program Relocation In The Model 1

Because the Model 1 is a page-addressed machine, program relocation
is not a trivial task. The simplest procedure would be to reassemble
the program with a new starting location (ORG) on the desired pages.
To relocate a Modell program anywhere in memory without reassem­
bly is difficult because a program's direct addressing ability depends
on a single block of coding being resident in a single page. But it
certainly is feasible to consider "page" relocation, ie., a program
originally assembled for pages 3,4,5 could be moved as a block to
6,7, 8. This is a valid move, only if the address constants used in
pages 3,4, 5 (used to refer indirectly to each other) are adjusted up­
ward by the proper bias value. In this case, a block move from pages
3,4,5 to pages 6,7,8 followed by adding 3 to the page address of every
address constant in 3,4,5 (that refers to one of the other two pages)
would suffice.

10-25/10-26





CHAPTER 11

MODEL 1 SOFTWARE

11.1 MODEL 1 ASSEMBLER

11.1.1 Introduction

The Model 1 is a programmable digital system. The flexibility pro­
vided by the stored program allows the hardware to solve a wide
range of problems. A program stored in the Model 1 memory com­
prises binary coded instructions and data. The binary form of a
program is referred to as an object program.

To make the process of programming faster and easier, the user
can write his program using symbolic operation codes, operands,
modifiers and labels for memory locations. When a program is in
this form, it is referred to as a source program.

The translation from the symbolic source program to the binary
object program is done by the assembler. The Assembler runs on
all Model 1 Systems with 4K or more and a Teletype. Table 11-1 is
an example of a typical source program that searches for the first
occurrence of the number 15 in a 256 byte table.

TABLE 11-1.
TYPICAL SOURCE PROGRAM

'NAME(LABEL) OPERATION OPERAND COMMENT

BEGIN

LOOP

FINI

ADR

TABLE

ORG '0100' SET THE LOCATION
COUNTER

LI 15 SEARCH VALUE OF 15

CE ADR, COMPARE INDIRECT
OF TABLE

B FINI MATCH FOUND

ISZ ADR+l NO MATCH, BUMP
ADDRESS

B LOOP GO LOOK AT NEXT
BYTE •C '02' HA LT PROGRAM

DC TABLE INDIRECT ADDRESS
WORD FOR TABLE

ORG '0200'

DS '0100'

END

11-1



An assembly is performed in two passes. This means that the source
tape or cards must be read twice. On the first pass, as the state­
ments are read, a symbol table is built. This table contains the
definition of every symbol encountered in the program. A symbol may
be used as a name or an operand. The Symbol table is printed at the
end of the Pass 1 in alphanumeric order. See Table 11-2. On the second
pass, object code is generated and a listing is produced. As the object
code for each statement is generated, it is stored in a128 byte buffer.
The contents of this buffer are punched when it becomes full or the
origin of code generation is changed or an END statement is read.

The listing is a printed record showing each source statement and
the binary data generated for that statement. Binary information is
represented in hexadecimal form.

TABLE 11-2.
TYPICAL SYMBOL TABLE

Location Symbol

010e ADR

0100 BEGIN

010A FINI

0102 LOOP

0200 TABLE

11.1.2 Assembly Listing

The Assembly listing is produced as part of the assembly process.
The listing contains the source statements and the data generated
from each statement.

The first four hexadecimal digits represent the value of the location
counter. The next 2 or 4 hex digits represent the data generated by
the assembler from the source statement. Table 11-3 shows the
assembly listing for the previous example. Error flags nlay precede
the location counter values. These flags indicate that an error was
encountered in interpreting the statement. The meaning of each flag
is as follows:

F format error (invalid modifiers or operand for a given
op-code)

M multiple defined symbol (same symbol appears twice in
label field)

a op-code error (invalid mnemonic op-code)

11-2



U Undefined symbol (symbol appears in operand field but
never in label field)

A address error (direct addressing was attempted out-
side of current page or page zero)

TABLE 11-3.
TYPICAL ASSEMBLY LISTING

LOCATION DATA NAME OPERA TION OPERAND COMMENT

ORG 0100 SET LOCATION
COUNTER

0100 900F BEGIN LI 15 SEARCH
VALUE OF 15

0102 F70C LOOP CE ADR, I COMPARE IN-
DIRECT TO
TABLE

0104 610A B FINI MATCH FOUND

0106 D50D ISZ ADR+1 NO MATCH,
BUMP ADDRESS

0108 6102 B LOOP GO LOOK AT
NEXT BYTE

010A 8002 FINI C '02' HALT PRO-
GRAM

OIOC 0200 ADR DC TABLE ADDRESS IN-
DEX CONSTANT

ORG '0200'

0200 TABLE DS '0100'

0300 END

Whenever an F or 0 error occurs, the assembler advances the
location counter by 2 bytes so that the program can be patched easily
for debugging without re-assembly.

The synlbol table that is built during the assembly process is printed
follOWing the END assembly pseudo-op at the end of pass one. The
symbols are listed alphabetically with their values.

Preceeding each symbol in the sylnbol table is a field for error flags.
These flags are as follows:

U undefined symbol

M multiple defined symbol

11-3



If the symbol is undefined, the last value of the location counter for
a statement referencing the undefined symbol is printed.

11.1.3 The Assembler Language

11. 1. 3. 1 Source Statements

There are two basic kinds of source statements, instruction state­
ments and comment statements. Instruction statements are used for
machine instructions and assembler instructions.

Comment statements are used for narrative explanation. They begin
with *, and should not be confused with the comments of the instruction
statement. Comment statements can occupy the entire statement
line.

11.1. 3.1. 1 Instruction Statements

The comment and instruction statements are written by the program­
mer on a coding form that has the various fields clearly marked.
This form, when filled out, is used to generate the source paper tape
or source cards that are read by the assembler during the assembly
process. On a coding form, the Nanle (label) begins in column 1, the
Operation begins in column 10 and the Operand begins in column 16.
The fixed field positions are a convenience for the programmer only,
and are not required by the assembler. The assembler simply
requires that fields be separated by one or more spaces. The fields
are described in the following paragraphs.

NAME (LABEL)

A name is from one to six characters in length. The name must be
written with the first character in column 1, and it must not contain
any blanks. Names are used by the programmer to identify data and
instructions in the program. The first character must be a letter;
the remaining five can be letters or numbers. Typical names are:

11-4

NAME (LABEL)

START

ARG1

LOOP2

GO

OPERATION



OPERATION

The operation field specifies a machine instruction that is translated
by the assembler to machine code, or it specifies an assembler
instruction (pseudo-op) to control the assembly process. An opera­
tion is always required in an instruction statement, and should be
written on the coding form beginning in column 10. No blanks may
be used within the operation. Typical operations are:

NAME (LABEL) OPERATION

ORG

LI

A

DC

OPERAND

In addition to the machine instruction set, there are 4 extended
mnemonics (compare instructions) designed for programming ease.
See 10. 4. 5 for their explanation and use.

OPERAND/MODIFIER

Operands identify the data to be used by the instruction. Some in­
structions require operands, e. g. Load, Add, Subtract. Only one
operand per instruction is valid. These operands refer to Names
(Labels) or constants. Other instructions do not have operands e. g.
Test & Skip, Read Data. Modifiers are special mnemonics which add
conditional or special functions to certain instructions, e. g., NZ =
non-zero, I = indirect. The nUlnber and type of modifiers allowed
depends on the operation. Modifiers are strung after the operand (if
one exists) and are separated by commas. Modifiers may appear in
any order. Typical operands and modifiers are:

NAME (LABEL) OPERATION OPERAND/MODIFIER

A TEMP

B OUT

ST TEMP,I

B IN, NZ, I

TS NC,NM

Valid modifiers for each instruction are explained in chapter 4, and
summarized in Table 11-4. No spaces may appear between operands
or modifiers.

11-5



TABLE 11-4.
SUMMARY OF INSTRUCTIONS

Mneumonic Instruction
Instruction Number of

Valid Modifiers
Type Operands

A ADD MEM REF I,N

AA ADD A TO A SHORT FORM NC, NZ,NM

ADR ADDRESS SHORT FORM

AI ADD IMMEDIATE IMMEDIATE N,NC,NM

AK ACKNOWLEDGE SHORT FORM

AO ADD 1 TO A SHORT FORM NC, NZ,NM

B BRANCH MEM REF I, NC, NZ, NM

BAL BRANCH AND LINK MEM REF I,NC, NZ,NM

C COMMAND IMMEDIATE NC,NM

CA COMPLEMENT A SHORT FORM NC, NZ, NM

CC COMPLEMENT CARRY SHORT FORM NC

CE COMPARE EQUAL MEM REF

CEI COMPARE EQUAL IMMEDIATE IMMEDIATE

CL COMPARE LOW MEM REF

CLI COMPARE LOW IMMEDIATE IMMEDIATE

CLR CLEAR A SHORT FORM NC, NZ, NM

DC DEFINE CONSTANT PSEUDO-OP I-n

DS DEFINE STORAGE PSEUDO-OP

END END SOURCE PSEUDO-OP 0-1

EQU EQUATE PSEUDO-OP

ISN INCREMENT & SKIP NZ MEM REF

ISZ INCREMENT & SKIP Z MEM REF

L LOAD MEM REF

LI LOAD IMMEDIATE IMMEDIATE NZ, NM,N

N AND MEM REF I,N

NB AND BIT MEM REF I,BN,CN

NI AND IMMEDIATE IMMEDIATE N, NZ, NM

NOP NO-OPERATION SHORT FORM

0 OR MEM REF I,N

OB OR-BIT MEM REF I,BN,CN

OC OUTPUT COMMAND SHORT FORM

01 OR-IMME DIATE IMMEDIATE N,NM,NZ

ORG ORIGIN PSEUDO-OP

PIO PULSED I/O SHORT FORM 1,2,3

RB READ BLOCK MEM REF

RC RESET CARRY SHORT FORM NC

RD READ DATA SHORT FORM

11-6



TABLE 11-4.
SUMMARY OF INSTRUCTIONS (Continued)

Mneumonic Instruction
Instruction Number of

Valid Modifiers
Type Operands

RDS READ DATA & SKIP SHORT FORM

RT ROTATE IMMEDIATE CO, NC, NM, 1-8

S SUBTRACT MEM REF I,N

SC SET CARRY SHORT FORM NC

SH SHIFT IMMEDIATE CO, CI, 1-8, NC, NM

SI SUBTACT IMMEDIATE IMMEDIATE N,NM,NC

SS SENSE STATUS SHORT FORM

ST STORE MEM REF

TS TEST AND SKIP SHORT FORM NZ,NC,NM

WB WRITE BLOCK MEM REF I

WD WRITE DATA SHORT FORM

WDS WRITE DATA & SKIP SHORT FORM

X EXCLUSIVE-OR MEM REF I,N

XI EXLUSIVE OR IMMEDIATE IMMEDIATE N,NM,NZ

MODIFIER DESCRIPTION

N INHIBIT A-REG. ALTERATION
NC SKIP ON NOT CARRY
NM SKIP ON NOT MINUS
NZ SKIP ON NOT ZERO
I INDIRECT
CI CARRY IN
CO CARRY OUT
BN BIT NOT
CN CARRY NOT

COMMEN'r

Comments are descriptive text. Comments are printed on the as­
sembly listing, along with the name, operation, and operand of the
source statement. Comments are written beginning after the first
blank in the operand, and can continue to column 71 of the coding
form. Typical comments are:

OPERATION

L

ST

B

OPERAND

TEMP, I

START

STOP

COMMENT

FETCH FIRST VALUE

TABLE AREA

ERROR STOP

11-7



11.1.3.1.2 Comment Statements

Comment statements are descriptive text that can occupy the entire
source statement line. Comment statements are written with an
asterisk (*) in column 1, followed by any descriptive text the pro­
grammer desires. Any number of comment statements may be used
at any place in a program. Comment statements do not produce
binary object information and are used only as documenting aids.
Typical comment statements are:

* THIS IS A COMMENT STATEMENT, IT

* CAN BE USED ANYWHERE IN A

* PROGRAM AS A PROGRAMMER'S COMMENT

* AND DOCUMENTATION AID

11.1.3.1.3 Character Set

All source statements are written using the following characters:

Alphabetics A through Z

Numerics 0 through 9

Special characters <..+ - , = * , ( @ " and blank

11.1. 3. 2 Instruction Statement Format

The source instruction statement consists of:

a name

an operation

an operand/modifier

a comment

Each entry in a source statement may be composed of one or more
items depending on the kind of source statement begin written.

a name, when present, must be a symbol

an operation, always present, must be a machine
instruction mnemonic or a pseudo instruction mnemonic.

an operand when present, may be composed of one or
more expressions, which in turn, are composed of syITtbols,
constants and arithmetic combinations of symbols and
constants.

a modifier must be a mnemonic valid for the operation
specified.

11-8



11.1.3.2.1 Symbols

A symbol is used as a name or as an operand. In either case, sym­
bols consist of from one to six characters. The first character
must be alphabetic. The characters that can be used for a symbol are:

Alphabetics

Numerics

A through Z

o through 9

The following symbols are valid and could be used as a name or as
an operand.

T2

LOOP25

N

STOP

The following symbols are invalid for the reasons given:

2TOP First character is not alphabetic

COMMAND

A TOD

X4.2

More than 6 characters

Contains a blank

Contains a special character, a period

11. 1. 3. 2. 2 Assembler Constants

Assembler constants appear as an operand for both machine instruc­
tions and assembler instructions. A constant can be one of 4 types:

Address

Decimal

Hexadecimal

Character

An address constant is assumed if the first character is alphabetic.
If the first character is numeric, a decimal constant is assumed.
Constants are also identified by a delimiter.

Delimeter

@

<

"

Constant Type

Address (with auto-indexing)

Address (with auto-index and auto
skip)

Hexadecimal (single quote)

Character (double quote)

Decimal (minus)

11-9



Decimal constants always generate one byte of data and may vary
from 0 to 255 in magnitude. A preceding minus sign (-) generates
the 2's complement of the magnitude.

EXAMPLES: SOURCE GENERATED OBJECT CODE

o 00

128 80

-1 FF

10 OA

300 format error (magnitude too large)

Hexadecimal constants may contain any even number of hex charac­
ters contained in single quotes ('). The valid hex characters are
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F. One byte is
generated for each pair of characters.

EXAMPLES: SOURCE

'10FE'

'103'

'IG'

'0123456789'

OBJECT CODE

10FE

(forn1at error: odd
number of characters)

(format error: invalid
hex character

0123
4567
89

Character constants may contain any number of characters (including
blanks) enclosed by the double quote character (ft). The Assembler
generates the equivalent 7-bit ASCII code.

EXAMPLES: SOURCE

"ABCDEC"

"MODEL 1"

OBJECT CODE

4142
4344
4543

4D4F
4445
4C20
31

Address constants always generate the 14-bit address of the symbol
given. If the symbol is preceded by @ the auto-index bit (bit 0)
of the address constant is set. If the symbol is preceded by < the

11-10



auto-index and auto-skip bits (bits 0 and 1) are both set. If the symbol
is preceded by neither of the above, both bits remain reset.

EXAMPLES: SOURCE

ADDR

@ADDR

<ADDR

OBJECT CODE

0200

8200

C200

11.1.3.2.3 Expressions

An expression is a constant or a symbol followed by an optional
arithmetic operator (+ or -) followed by a hex or decimal constant.
Expressions can be used as address constants or as instruction
operands. Examples of expressions are:

OPERAND

ADDR
'2000'
-96
LOOP+4
TABLE-'1020'
A+I00

11.1. 3. 2.4 Location Counter

The value of the location counter can be referenced by using an "*",
which nleans "current value of the location counter". Addressing
relative to the location counter is on a byte basis. To specify an
address that is 2 bytes forward, the correct expression is *+2.

11.1.4 Machine Instruction Format

The assembler provides the facility for representing all the machine
instructions with mnemonics. The binary instruction is generated
by the assembler from the operation mnemonic the operand and the
modifier. Each instruction has a unique mnemonic, that is used as
the operation. These mnemonics and their meanings are listed in
Table 11-4 along with valid operands and modifiers.

11.1.4.1 Short Format Instructions

The short form (8-bit) instructions have no operands but may have
optional modifiers.

11.1.4. 2 Memory Referenced Instructions

All memory referenced instructions must have symbolic or real
operands which refer to addresses within their current page or page
zero. Address violations are flagged with an "A" in the assembly
listing. This means the programmer attempted symbolic direct
addressing outside the current page or page zero.

11-11



OPERATION OPERAND/MODIFIERS

RD

TS NC

L SYMBOL

L '12', I

ST 30

LI 2

LI '80',NZ

AI SYMBOL

11.1.4.3 Immediate Instructions

Except for shift and rotate which take no operand, the immediate
instruction operand may be any valid expression. The assembler
allows the 8-bit literal to be specified in a variety of ways. The
simplest is a hexadecimal constant, in which the instruction takes
the form:

'n'

Where I is an operation mnemonic and 'n' is two or four hex digits.
(An odd number of digits or more than four digits is flagged with an F
in the assembly listing). If four hex digits are specified, the right
most two digits are used to generate the eight-bit immediate operand.

It is convenient to use the immediate constant to represent an address.
Memory addresses are 14 bits long and the immediate constant is only
8 bits. Therefore, provision is made to select either the high or low
order byte of an address. The instruction takes the form:

SYMBOL

(SYMBOL

The left parentheses "(" specifies the high order byte of the address de­
fined by SYMBOL. If the parenthesis is absent, the low order byte of
the address is implied.

EXAMPLES:

SHORT FORM WITH NO
MODIFIER

SHORT FORM WITH
MODIFIER

MEM REF WITH SYMBOLIC
OPERAND

MEM REF WITH HEX OPER­
AND AND MODIFIER

MEM REF WITH DECIMAL
OPERAND

IM:MEDIATE WITH DECIMAL
OPERAND

IMMEDIATE WITH HEX OP­
ERAND AND MODIFIER

IMMEDIATE WITH SYMBOLIC
OPERAND

11-12



11.1.5 PSEUDO-OPS
PSEUDO-OPS are used to control the assembly process, define sym­
bols, and generate data. PSEUDO-OP statements do not always gen­
erate data as the machine instruction statements do. The following
paragraphs describe the PSEUDO-OPS.

11.1. 5.1 Symbol Definition

EQU-Equate Symbol

NAME

A Symbol

OPERATION

EQU

OPERAND

An expression

required

The EQU statement is used to equate a symbol to the value of an ex­
pression. Symbols used in the expression must be previously defined.

NAME OPERATION OPERAND

LOOP EQU LOOPI

TOP EQU END-64

DELTA EQU BOTTOM

HERE EQU *

START EQU 'OIFE'

TWO EQU 2

11.1.5.2 Data Definition

There are two data definition instructions; the DS and the DC. These
PSUEDO-OPS provide a convenient means to define and reserve a data
storage.

11.1.5. 2.1 DC - Define Constant

NAME

A symbol
(optional)

OPERATION

DC

OPERAND

One or more op­
erands separated
by commas

The DC assembler instruction is used to define constants. These con­
stants may be hexadecimal, decimal, character, or address.

CONSTANT TYPE

Character

Hexadecimal

Decimal

Address

MACHINE FORMAT

8-bit character code

8-bit binary

8-bit binary

16-bit binary

11-13



11.1.5.2.1.1 Character Constant

The character constant can be any length. It must be enclosed in
double quotation marks.

NAME

MESG1

OPERATION

DC

DC

OPERAND

"LOAD THE TAPE"

"EXECUTE AT 19FE"

Each character is tanslated into one 8-bit byte of storage.

11. 1. 5. 2.1.2 Hexadecimal Constant

A Hexadecimal constant can be any even number of Hex digits,

The hexadecimal constant must be enclosed in single quotation marks.
Examples are:

NAME

DATAl

OPERATION

DC

DC

OPERAND

'lFE036'

'C800'

11. 1. 5. 2. 1. 3 Decimal Constants

A decimal constant can be any number less than 256.

OPERATION

DC

DC

OPERAND

30

-9

The decimal constant is converted to an 8-bit integer.

11. 1. 5. 2. 1. 4 Address Constant

An address constant is a 2 byte storage address that is translated into
a constant.

OPERATION

DC

DC

OPERAND

LOOP+2

TABLE

The following examples show how a single DC instruction can be used
to define different types of data. Operands in the DC statement may
be strung together, separated by commas, as long as they fit on a
single source statement.

11-14



DC *,ADDR+2,@ADDR

LOCATION DATA

0000 OFOO

0002 4341

0004 54

0005 17

0006 0006

0008 0002

OOOA 8000

LABEL

ADDR

OPERATION

DC

OPERAND

'OFOO', "CAT", 23,

11.1.5.2.2 Define Storage DS

NAME

A symbol
(Optional)

OPERATION

DS

OPERAND

An expression

The DS assembler instruction is used to reserve storage areas. The
value of the expression in the operand entry determines the number of
bytes reserved. The label of a DS statement is the location of the
first byte reserved. No data is generated and the storage area re­
served is not preset to any value.

EXAMPLE:

NAME

INAREA

OUTPUT

OPERATION

DS

DS

OPERAND

80

'0100'

11.1.5.3 Assembler Control Instructions

Assembler Control Instructions are used to control the location coun­
ter. None of these instructions generate machine instructions or con­
stants in the object program.

11.1.5.3.1 ORG - Set Location Counter

NAME

Not used

OPERATION

ORG

OPERAND

expression

The ORG PSEUDO-OP is used to control the location counter. The
ORG causes the location counter to be set to the value of the expres­
sion in the operand entry.

The location counter is initialized to zero before each assembly. If
no ORG assembler instruction appears at the beginning of the program,
the location counter will begin at zero.

11-15



Syn1bols appearing in the operand of the ORG must be previously
defined.

EXAMPLES: ORG '0100'

ORG 20

ORG ADDR+3

11. 1. 5. 3. 2 END - End Assembly

OPERATION

END

OPERAND

An Expression
optional

The END asselnbler instruction terminates the assembly of the pro­
gram. The value of the expression, if present, designates the place
in the program where control is transferred after the program has
been loaded. If an expression is not present, no automatic transfer
of control takes place after loading.

An example follows:

NAME

PLACE 1

OPERATION

ORG

LI

END

OPERAND

100

DATA 2

PLACE 1

11. 1. 5.4 Summary of Assembler Instructions

SYMBOL DEFINITION INSTRUCTIONS

- DC Define Constant, used to specify the following data types.

1. Character Constant

2. Hexadecimal Constant

3. Address Constant or

4. Decimal Constant

- DS Define storage

- END End Asserrlbly

- EQU Equate A Syrrlbol

- ORG Set Location Counter

11-16



11.1.6 Input Format

The source program may be prepared as a deck of cards or as a
source tape. If cards are to be the source input, they will be pre­
pared with one instruction per card. The following format is recon1­
mended, although the assen1bler will accept free format.

1. Columns 1 through 6 - Label

2. Column 9 - (0.2.8) punch "space" character

3. Columns 10 through 14 - Symbolic Operation Code

4. Column 15 - (0.2.8) punch "space" character

5. Column 16 on - Symbolic Operands

6. Column 35 - (0.2. 8) punch "space" character

7. Column 36 on - Comments

Items 1, 6 and 7 are optional. Item 2, 4, and 6 are optional depending
on the type of card reader used. If the card reader used generates a
column strobe, the (0.2.8) "space" character may be replaced by blank
columns-keypunch space bar. The cards must be front slashed (IBM
form X28-6509-2), and prepared on an IBM 029 or 026 keypunch. If
the operands occupy more space than that suggested above, the com­
ment field may be moved right. The comment field is restricted in
length because of the narrow pages that a teletype types. Longer
statements will be truncated to 71 listing spaces total.

The Assembler needs to see only one space between source statement
fields, superfluous blank columns (spaces) are ignored. The Assem­
bler reformats the input statements which may cause the appearance
of the listing to differ from the appearance of the source cards.

Source tapes are prepared by the Text Editor for input into the assem­
bler. Each field of the source tape is separated by one or more blank
characters. The code is ASCII. Each instruction is terminated by a
carriage return. If the teletype is the source input device, each in­
struction on the source tape will be separated from the next by a min­
imum of six delete characters. This is necessary because of the start
and stop characteristics of the teletype paper tape reader. This for­
mat is normally produced by the Editor and is of no real concern to
the user.

11.1.7 Operating Instructions for the Model 1 Assembler

11. 1. 7. 1 General Description

The Assembler will accept source statements from a card reader,
teletype, high speed paper tape reader, or cassette tape.

11-17



11.1.7. 2 Configuration

The Asserrlbler will run on any Modell Processor with 4K or more
of core memory. The minimum device configuration is a teletype.

11.1.7 0 3 Tape Format

The Assembler is provided in standard loader format. Refer to the
Loader Descriptions (11.2) for an explanation of the tape organization
and loading sequence.

11.1.7.4 Loading Procedures

The Assembler tape is loaded with the Modell General Loader.
Prior to loading, the Binary Input Device specification at X 'OI4A'
must be set to select the desired loading device.

The following steps are required to load the assembler.

1. Load the General Loader into the top available page of mem­
ory using the Incore Loader. The processor will halt.

2. Place the assembler tape in the tape reader with leader over
the read station.

3. Enter RUN mode to begin loading the assembler.

4. When all of the program has been loaded, the tape will stop,
and control is transferred directly to the assembler at '180'
for PASSI. The processor then halts.

11.1.7. 5 Device Selection

The Assembler uses three 2-byte locations in the Device Definition
Table as follows:

LOCATION NAME USED FOR

'014C' - '014D' BOUTDV Selection of the punch device

'014E' - '014F' SINDV Selection of the source input
device

'0150' - '0151' SOUTDV Selection of the list device

These Locations must be set up prior to starting the assembler. In­
formation contained in these halfwords are of the form:

11-18

DEVICE
NUMBER

BYTEI

COMMAND

BYTE2



The appropriate halfwords for various devices are shown below:

Teletype input/output via serial port

Teletype input

Teletype output

Line Printer output

High Speed paper tape input

High Speed paper tape output

Card Reader input

0000

0294

0298

6280

0399

0392

04A0

Various configurations are as follows:

'014C' '0000' Teletype punch device (serial port)
'014E' '0000' Teletype source input device (serial port)
'0150' '0000' Teletype list device (serial port)

'014C' '0298' Teletype punch device
'014E' '0294' Teletype source input device
'0150' '0298' Teletype list device

'014C r '039A' High Speed punch device
'014E' '0395' High Speed papertape source input device
'0150' '0298' Teletype list device

'014C' '039A' Speed High punch device
'014E' '04AO' Card reader source input device
'0150' '6280' Line printer list device

11. 1. 7. 6 Operating Procedures

After loading the Assembler tape, control is transferred directly to
the Assembler. The Asserrlbler then halts to allow device preparation.
Enter RUN mode to proceed with the asselnbly.

If the Assembler needs to be restarted, use the following procedure:

1. Set the DatalAddress switches to 0180

2. Select Address mode and depress EXECUTE

3. Select RUN mode and depress EXECUTE. The Assenlbler
will perform some initialization then halt.

At this point, the operator should place the source tape or card deck
in the source input device, adjust the list device to top of form then
depress EXECUTE.

After reading the source program, the Assembler prints the symbol
table on the List device than halts.

11-19



Replace the source tape or card deck in the source input device, pre­
pare the punch device and enter RUN mode to start pass 2. The
Assembler generates the assembly listing and object tape on the sec­
ond pass. If for any reason, pass two must be restarted, set the Datal
Address switches to '0182' and repeat step 2 and 3 above.

11.1.7.7 Symbol Table Size

The symbol table begins after the last location in the Assembler pro­
gram. The top of the sy mbol table is defined by the page address con­
tained in location 'FO'.

At load time the value is '10' which defines a 4K core ll1emory. If
more symbol table space is required change the entry in location FO'
as shown below.

CORE AVAILABLE

4K
6K
8K

10K
12K
14K
16K

ENTRY IN LaC 'FO'

'10'
'18'
'20'
'28'
'30'
'38'
'40'

The maximum number of symbols that can be defined depends on the
length of the symbol. The table space required in bytes equals the
number of characters in the symbol plus two.

The symbol capacity is approximately 220 symbols for a 4K machine.

11.1.7.8 NO-PRINT and NO-PUNCH Options

Assemblies may be performed without printing of the listing or punch­
ing of an object tape if so desired by the user to save assembly time.

If no listing is desired, zero location 'OOEE' before the assembly
is begun

If no object tape is desired, zero location 'OOEF' before the
asserrlbly is begun

To restore the print or punch option, write any non-zero value into
the above locations.

11-20



11.2 MODEL 1 IN-CORE LOADER

11.2.1 Introduction

The Model One In-Core Loader comprises the basic 8-bi.t loader and
Device Definition table which reside in page one. A portion of this
area of core memory is usually reserved for this sequence.

The In-Core Loader must be manually entered into memory when the
processor is first turned on.

The In-Core Loader serves two basic functions:

1) The 8-bit loader will read 256 bytes (one page) of 8-bit binary
input data into a specified page of memory and then branch to
the first address, address '00', on that page. The Model One
General Loader, program number 08-005, or any 256 byte
binary object tape constructed by the user may be loaded in
this manner.

2) The Device Definition Table provides a limited degree of de­
vice independence by specifying which devices are to be used
by standard programs.

There are two versions of the In-Core loader. The first, shown in
Table 11-5, is used when the binary input device is a teletype inter­
faced through the Serial I/o port. The second version, shown in
Table 11-6, is used when the binary input device (Teletype, High Speed
Paper Tape reader, or Cassette Tape) is interfaced to the multiplexor
I/O bus.

11.2.2 Loader Description

The 8-bit loader stores 8-bit bytes into consecutive byte locations
beginning at address '00' of the destination page and ending at address
'FF' of the destination page. The destination page is specified by the
contents of location '0152' which the user may adjust to any available
page other than page one. Page one ('01 ') may not be specified as this
would allow the loader to be over-written. Specifying a non-existent
page will cause the tape to be read, but nothing will be loaded.

The In-Core loader does not skip leader so it is important that the
first data character on the tape be positioned over the read station.
Also, when loading from the teletype, tape motion must be manually
started. After the loader is started at '0140', with an ASR33, toggle
the reader switch to START. With an ASR35, put the reader switch
in RUN with the teletype Mode switch in the KT position.

11-21



TABLE 11-5
IN-CORE LOADER, SERIAL I/O VERSION

0140 7154 LOAD BAL GETBYT
0142 CB52 ST PAGE, I
0144 D553 ISZ PAGE+1
0146 6140 B LOAD
0148 6352 B PAGE, I

*
* DEVICE DEFINITION TABLE
*

014A 0294 BINDV DC '0000'
014C 0298 BOUTDV DC '0000'
014E 0294 SINDV DC '0000'
0150 0298 LISTDV DC '0000'

*
0152 0000 PAGE DC '0000'

*
0154 0000 GETBYT DC '0000'
0156 8210 C '10',NC
0158 6156 B *-2 WAIT FOR START
015A 90F7 LI -9
015C C97B ST CHAR
015E 28 AA
015F C97A COM ST COUNT TIM:ER
0161 9009 LI 9 13.5 or 9 MS
0163 10 AO
0164 6563 B *-1, NZ
0166 D57A ISZ COUNT
0168 6161 B COM+2
016A 9000 TIM:E LI 0
016C CD7B ISN CflAR
016E 6354 B GETBYT, I END
0170 8010 C '10'
0172 8856 SH 1, CI SHIFT IN BIT
0174 C96B ST TIME+1
0176 90F4 LI -12
0178 615F B COM
017A 00 COUNT DC 0
017B 00 CHAR DC 0

11-22



TABLE 11-6
IN-CORE LOADER, MULTIPLEXED I/O VERSION

0140 7154 LOAD BAL GETBYT
0142 CB52 ST PAGE, I
0144 D553 ISZ PAGE+1
0146 615C B NEXT
0148 6352 B PAGE,!

*
* DEVICE DEFINITION TABLE
*

014A 0294 BINDV DC '0294'
014C 0298 BOUTDV DC '0298'
014E 0294 SINDV DC '0294'
0150 0298 LISTDV DC '0298'

*
0152 0000 PAGE DC '0000'

*
0154 0000 GETBYT DC '0000'
0156 Dl4A L BINDV
0158 00 ADR
0159 D14B L BINDV+1
015B 01 OC
015C 07 NEXT RDS
015D 615C B *-1
015F 6354 B GETBYT,I

11.2.3 Device Definition Table

The Device Definition Table contains four halfwords. Each halfword
specifies one device. The format is:

DEVICE OUTPUT
NUMBER COMMAND

The left byte specifies the device number, the right byte contains the
output command required to start that device. The four halfwords are
used as follows:

X'Ol4A' BINDV Binary Input Device

Used by loaders to select the load device.

X'014C' BOUTDV Binary Output Device

Used by the Assembler, Text Editor, Unloader
etc. To select the punch device.

11-23



X'014E'

X'0150'

SINDV

LISTDV

Source Input Device

Used by the Assembler, and the Text Editor
to select the source Input Device.

List Device

Used by the Assembler to select the list device.

The range of devices that can be used varies with different programs.
The In-Core loader only references BINDV at '014A'. Table 11-6
shows the Device Table entries for a teletype. Table 11-7 shows de­
vice table entries for other devices.

TABLE 11-7
DEVICE DEFINITION TABLE ENTRIES

DEVICE BINDV BOUTDV SINDV LISTDV

TTY (Serial) '0000' '0000' '0000' '0000'

TTY (Parallel) '0294' '0298' '0294' '0298'

HIGH SPEED
'0395' '039A' '0395' '039A'PAPER TAPE

CASSETTE TAPE '4581 ' '4582' '4581' '4582'

CARD READER - - '04AO' -

LINE PRINTER - - - '6280'

11.3 MODEL 1 GENERAL LOADER

11.3.1 Introduction

The Model One General Loader is a relocatable program designed to
load standard format binary object tapes as generated by the Model
One Asserrlbler.

The Input Device for loading is specified by the Binary Input Device
entry in the Device Definition Table. See In-Core Loader description.

11.3.2 Loader Features

When reading binary data from tape, blank tape and illegal characters
are skipped and checksums are checked after each binary record is
read. After loading the last record, the loader will autonlatically
transfer to the program loaded if specified on the object tape.

11-24



11.3.3 Standard Loader Format

Standard format binary object tapes are divided into variable length
records containing 128 bytes, or less, of object data. Records are
separated by blank characters. Each character (frame) punched on
paper tape represents one hexadecimal digit of inforn1ation. There­
fore, two frames of paper tape are required to represent one byte of
object data. This representation is known as zoned ASCII. The first
four bits in a frame are the ASR33 zones and the last four bits are the
actual data.

The zones have been selected to produce a non-printing set of ASCII
characters, avoiding the characters XON, XOFF, TON, TOFF and
WRU that could interfere with teletype usage. Table 11-8 shows the
character set recognized. All other characters are ignored by the
loader.

TABLE 11-8
VALID LOADER CHARACToERS

Zone Data Hex Data

1001 0000 0

1000 0001 1

1000 0010 2

1000 0011 3

1000 0100 4

1001 0101 5

1001 0110 6

1001 0111 7

1001 1000 8

1001 1001 9

1001 1010 A

1001 1011 B

1001 1100 C

1001 1101 D

1001 1110 E

1001 1111 F

The first data byte (two frames) of a record is an 8-bit exclusive-or
checksum of every remaining character in the record. The next two

11-25



bytes (four frames) are the origin address for the variable length
object data that follows immediately. The tape therefore appears as
shown on Figure 11-1.

MSB

(
o
o
o
o
o
o
o
o
o
o
o
o

f BLANK LEADER

000 00
} CHECK SUM 'BA'

00 0 0
0 0

} ORIGIN ADDRESS '0300'0 00
0 0

0 0

0 0
} DATA '01'

0 0
0 0 } DATA '24'0

0
0

} DATA 'B7'00 0
0 o 00 0

DATA TERMINATED BY BLANK TAPE

ZONE DATA

Figure 11-1. Tape Format

Following the last data record on the binary object tape is a special
end record containing only a check sum and an address. This record
differs from data records in that bit 0 of the address is set. If bit 1
is also set (remember that Model One Memory addresses are only 14
bits) the loader halts. If bit 1 is reset, the loader transfers control
to the user program at the address specified. See Figure 11-2.

SPROCKET MSB LSB

+J BLANK J BLANK

0 0 0 } CHECK 0 00 0 } CHECK
SUM

0 0 0 SUM '06' 0 0 00 '83'

0 00 0000 0 000
0 00 0000 0 0 00 } ADDRESS

} ADDRESS '8300'

0 00 0000 'FFFF' 0 0 0

0 00 0000 0 0 0
0 } BLANK

} BLANK TRAILER
TRAILER

ZONE DATA
END RECORD

NO TRANSFER SPECIFIED
END RECORD

TRANSFER ADDRESS '0300' SPECI FlED

Figure 11-2. End Record

11-26



11.3.4 Loader Tape Format

The loader tape is provided in 8-bit format and may be loaded into any
page of memory other than page one by the In-Core loader. The Gen­
eral Loader occupies the Upper 128 bytes of the page. After loading,
the General Loader halts at address '82' of the page, ready to load a
user object tape.

11.3.5 Operating Procedures

The steps required to load and operate the General Loader are sum­
marized below:

1. Manually load the In-Core loader and adjust the Binary Input
Device definition. NOTE: The General Loader uses the input
driver of the In-Core loader.

2. Adjust the destination page specification in location '0152' to
the page where the loader is to reside.

3. Place the loader tape in the tape reader with the first non­
zero character over the read fingers or photo diodes.

4. Enter '0140' in the display switches, select ADR Mode and
depress EXECUTE.

5. Select RUN Mode and depress EXECUTE.

6. If a teletype is the input device, tape motion must be manually
started.

7. The entire tape is read and the Program will halt with 'XX 82'
in the Location Counter where XX is the page and 82 is the
starting address of the General Loader.

8. Put the object tape to be loaded in the tape reader with leader
over the read fingers or photo diodes and enter RUN Mode.

9. If check sum errors are detected during tape input, the tape
will stop and the processor will halt at address 'D4' on the
loader page. When this occurs, re-position the tape to the
previous record gap, and depress EXECUTE to re-read the
record.

10. When the load is complete, and if no end transfer address is
specified in the end record, the Processor will halt at address
'82' on the loader page, ready to load another tape. If an end
transfer address is specified, the loader will transfer directly
to the location specified.

11. If more tapes are to be loaded, repeat from step 8.

12. To re-enter the loader at any time, enter the RUN Mode
at location '82' of the loader's resident page.

11-27



11.4 THE MODEL 1 UNLOADER

The Mod 1 Unloader is a relocatable 1 page program used to output from
core to tape in standard loader format. It is especially useful to the 2K
user who cannotuse the assembler. He has the capability of writing a pro­
gram in machine language, keying it into the Processor manually with DBUG
or the memory write function, and then punching a loader format object
tape. The Unloader punches core between 2 limits specified by the user
on a specified device. The program is available in binary format and
is loaded by the Incore loade r. Instructions for use are as follows:

1) Select a page for the Unloader program to reside, and enter
the page number into location '0152' of the In-Core Loader.

2) Set desired Binary Output Device and Command in location
'014C - 014D' of the Device table.

3) Load the Unloader program tape with the In-core loader. The
processor will halt.

4) Using the memory write flIDction of the console, place the low
limit (14 bit address) desired by the user into locations 'FC' ­
'FD' of the Unloader's resident page.

5) Place the high limit address in locations 'FE'-'FF' of the Un­
loader's resident page

6) Select RUN Mode and depress EXEC UTE. The Unloader will punch
core from the low limit to the high limit on the specified device.

7) When finished the Processor will halt and 4, 5 and 6 may be repeated.

11.5 HEXADECIMAL DEBUG PROGRAM
DESCRIPTION (DBUG)

11.5.1 Introduction

DBUG is an on-line, real-time relocatable hexadecimal debug program.
Its purpose is to provide maximum assistance in debugging a user pro­
gram while using a minimun1 of memory storage. The user of DBUG
directs the debugging operation by entering directives and associated
data via the teletype keyboard. The response to these inputs is
shown on the teletype page printer. Table 11-9 provides an Index of
Directives.

11.5.2 Terminology

The term cell, as used in the following discussion, refers to a 2-byte
(sixteen-bit) memory location, defined by the address of the left-most
byte.

An open cell is the cell that is currently available for modification.
To operate on a cell in memory, it must be made the current open cell.
Only one cell at a time is considered open.

11-28



TABLE 11-9
INDEX OF DIRECTIVES

1. Cell Examination and Modification 2. Program Control

)) OPEN CELL X INSERT BREAKPOINT

LINE OPEN NEXT
FEED SEQUENTIAL Z ZAP A BREAKPOINT

CELL

CARRIAGE OPEN PRECEDING K KILL ALL BREAK-
RETURN CELL POlNTS

R OPEN A- G GO EXECUTE
REGISTER

• MODIFY W GO WAIT
CONTENTS

T TRANSFER TO
CONTENTS

Directives are instructions to DBUG and consist of a single character,
other than 0-9 and A-F. Directives are given to DBUG through the
teletype keyboard. See Figure 11-3. Each directive initiates an
action. Some directives are to be preceded by an argument.

( SPACE BAR)

Figure 11-3. ASR 33 Teletype Keyboard Layout

11-29



The argument is the address or data input which will be used by the
directive. Leading zeros are not necessary. Data inputs are in a
hexadecimal format using the characters 0-9 and A-F. All other
characters are assumed to be directives to DBUG. An undefined
directive given to DBUG is ignored and no action is taken.

11.5.3 Configuration

DBUG requires a teletype keyboard for the input of directives and the
teletype page printer for the output of responses.

11.5.4 Tape Format

DBUG is provided in standard loader format. Refer- to 11.9. 3

11.5.5 Features Available in DBUG

Memory cell examination. Memory cell modification. Multiple
breakpoints. Execution of User's Program. Halt in User's program.
Accumulator and Carry Bit examination and modification.

11.5.6 Description of Operations

The directive for each operation is defined by showing the directive
teletype key encircled to the left along side its title, and followed by a
description of its function.

The underline is used in the examples to differentiate between the
user's input and DBUG's output response. The user's input is under­
lined.

11.5.6.1 Cell Examination and Modification

The directives described in this section provide memory cell exanlina­
tion and modification. These directives are generally preceded by
some hexadecimal input. Hexadecimal inputs are accepted until a
directive is received; the last four hexadecimal characters are then
used as the address or data. The input of leading zeros is not neces­
sary.

® "OPEN CELL"

The space bar is the cell examination directive. Typed after an ad­
dress, it causes that cell's address, and the content of that cell is to
be printed. If no address was specified prior to typing the space bar,
the address of cell zero and its contents will be printed. For example,
if the user types 1FE», DBUG will output a carriage return, line feed,
the address OIFE and the content of the reference cell XXXX.

Example: 1FE16
OIFE XXXX

11-30



~ "OPEN NEXT SEQUENTIAL CELL"

'eJ
To open the next cell in sequence, the user types a line feed. The cur-
rent open cell is closed, and the address and content of the next se­
quential cell are printed.

Example: IFE~

OIFE
0200

XXXX
NNNN

LINEFEED

<1§TURY "OPEN PRECEDING CELL"

To open the previous cell instead of the next cell in sequence as in
LINE FEED above, the user types a carriage return. The current
open cell is closed and the address and content of the previous cell
are printed.

Example: IFE~

OIFE
OlFC

XXXX
NNNN

RETURN

@ "TRANSFER TO CONTENTS"

This directive causes the content of the current open cell to become the
address of the new open cell. The address and content of the new open cell
are printed.

Example: 1FE~

OIFE
03EO

03EO T
XXXX

o "MODIFY CONTENTS"

The period is the directive to modify the open cell. The content of the
current open cell is replaced by the four hexadecimal characters en­
tered just prior to the period. The input of leading zeros is not neces­
sary, although acceptable as in the following example. If no hexa­
decimal entry is made, the cell is zeroed.

Example: 1FE~

OIFE
OIFE
01FE

03FO
045C
0000

045C.

® "OPEN A-REGISTER"

The status of the A Register, the carry flag and the Interrupt Enable Flag
at the time of entry to DBUG, or upon encountering a breakpoint, is saved
in a reserved cell within the DBUGprogram. The format of this cell is:

~L ~18
~ooooo, A. REGISTER

11-31



This cell may be accessed for examination or modificationby the R direc­
tive. This cell becomes the current open cell and may be operated as such.

Example: ®
AREG
AREG
AREG

XOXX
0007
8005

7.
8005.

The A-Register, Carry flag and Interrupt Enable flag are restored
from this cell when the G or W directive is executed. If modified,
they assume their new values upon execution of the G or W directive.

11.5. 6. 2 Program Control

The program control directives (X, Z, K, G, and W) permit the userto di­
rect the operation of this program through the use ofDBUG. At a point
within the use r' s program, it is frequently de sirable to return control to
DBUG. This is accomplished by inserting a breakpoint at the address at
which the transfe r of control is to take place. When a breakpoint is en­
countered during the execution of a progran1, control returns to DBUG
and the message BKPT is printed. Along with the address and contents
of the breakpointed location. This becomes the current open cell.

® "INSERT BREAKPOINT"

The X directive causes a breakpoint to be inserted at the address
specified by the preceding hexadecimal input. If no address is speci­
fied, the breakpoint will be inserted in the current open cell.

Up to eight breakpoints at a time may be resident in the user's pro­
gram. If a breakpoint insertion is requested and eight breakpoints
have already been inserted, the message BPOF (Breakpoint Overflow)
is printed and the address of the current open cell or the specified cell
and its content is printed.

When a breakpoint is inserted, the address at which the breakpoint is
inserted and its new contents are printed. That address becomes the
current open cell.

Example: The breakpoint is inse rted on the currently open cell:

IFEB
OIFE
OIFE

03EO
72FE

X

An address is specified:

11-32

IFEB
01FE
025A

03EO
72FE

25AX



Following are some restrictions to observe pertaining to breakpoints.

1. Regardless of the size of the instruction word at the refer­
enced cell, two successive bytes are replaced by the break­
point value '72FE'. If the breakpoint is set on a one-byte
instruction no attempt should be made to execute the next
instruction before the breakpoint is removed.

2. Core locations 'OOFE' and 'OOFF' are used by DBUG to pro­
cess breakpoints, so the contents of these locations are de­
stroyed if the X directive is used.

3. The user should be careful not to set breakpoints which over­
lap (are within one byte of one another).

Two bytes of a user program are needed to set a breakpoint. A BAL
indirect instruction to address "FE" of page zero (HEX '72FE') is
inserted. Thus, the user will overlay two (2) bytes when he sets a
breakpoint.

® "ZAP BREAKPOINT"

The Z directive causes the removal of a single breakpoint. If the Z
directive is preceded by a hexadecimal input, the breakpoint at the
address specified by that input is removed. If no address was speci­
fied, the breakpoint is removed from the current open cell. The break­
point is removed and the address and restored content of the cell are
printed. If no breakpoint is found at the address indicated, the mes­
sage NOBP and the address and content of the cell are printed.

Example: OIFE
OIFE
03EO

72FE
03EO

XXXX

Z
3EOZ
NOBP

® "KILL ALL BREAKPOINTS"

The K directive removes all resident breakpoints from the user's
program.

® "GO"

The G directive causes DBUG to restore the A Register, Carry flag
and interrupt enable flags and transfer processor control to the user's
program. If the G directive is preceeded by a hexadecimal input,
execution will begin at the address specified by that input. If no ad­
dress is specified, execution begins at the current open cell.

A carriage return and line feed are output in response to this directive
to indicate that transfer of control is about to take place.

11-33



Example: 0200G

(Carriage return, line feed, control transferred to 0200.)

When DBUG is loaded, the A Register, the carry flag and Interrupt
Enable flag are preset to O. Therefore unless these are modified by
DBUG, the G directive will use these preset values.

@ "GO WAIT"

The W directive causes DBUG to restore the A Register, Carry Flag
and Interrupt Enable Flags and place the Processor in the WAIT State.
If the W directive is preceeded by hexadecimal input, the Processor is
halted at the location specified by that input. If no address is specified,
the Processor is halted at the current open cell.

A carriage return and line feed is output in response to this directive
to indicate that tra.llsfer of control is about to take place.

Example: 200W

(carriage return, line feed)

Processor is halted at location 0200.

The directive facilitates single step console debugging of a user pro­
gram. Select RUN mode or HALT Mode and depress execute to cause
the instruction at the referenced cell to be executed.

11.5.7 Loading Procedures

DBUG is a relocatable program in absolute form. The tape provided
to the user is in standard loader format and must be loaded with the
Mod 1 General Loader. It is loaded as an absolute program into
pages 4-7. It then refers to a I-BYTE pointer in memory, and re­
locates itself to a 4 page block of core memory specified by that
pointer. The pointer byte is location '0400'.

DBUG may relocate itself to any 4 page block of core memory attached
to the processor except those in the lower 2K. After relocation DBUG
takes control and is ready to receive directives. The pointer byte can
be set to any number between X'08' and X'3C' representing the first of
4 consecutive pages of core memory in which DBUG will reside. If
the pointer contains a value other than '08' - '3C' then DBUG will re­
main in pages '04' - '07'.

The following is a description of the loading procedures:

1. Set loc '0400' to the desired core pointer value.

2. Using the In-core loader, load the Modell General Loader
into any page other than 1 or 4-7 as described in Section 11.2.

11-34



3. Enter RUN Mode to load the DBUG program with the Modell
General Loader. DBUG will relocate and assume control.

ENTRY POINTS: To enter DBUG for another program, a processing
loop, or any external situation, EXECUTE at location '00,' of the top
page of the 4 page block occupied by DBUG.

Example: If DBUG was relocated to page '08' then the entry
address is 'OBOO'

CORE USAGE: Not all of the lower page of the 4 pages is required by
DBUG.

Mter relocation, if the TTY used by DBUG is serial I/O driven, the
user may overwrite '00' - 'BF' of the lower page. If the TTY is not
serial driven, the user may overwrite the entire lower page.

11.6 MODEL 1 TEXT EDITOR PROGRAM DESCRIPTION

11.6.1 Introduction

The Model One text editor, Program Number 08-007, is an
on-line, interactive text editing program. It is designed to create
and modify character-oriented text material which is stored on
paper tape or input through the teletype keyboard. The text may
be an assembly language program or any text in the literal
sense.

The editing process is directed by an operator through the keyboard of
a teletype terminal. Upon receiving a keyboard input directive, the
editor will read text from a specified input device into a designated
area of core memory. The user can examine, delete and/or modify
the text while it remains in core memory. When the editor receives a
keyboard output directive, the revised text can then be output to a
specified output device.

11.6.2 Program Structures

11. 6. 2.1 Operating Modes

The editor has two modes of operation: Command and Edit. The pro­
gram indicates the current mode by printing, in column one on the
teletype, a left arrow (-..) for the command mode or an asterisk (*) for
edit mode. In the Command mode, the program accepts keyboard
commands which specify an editing procedure or which specify a text
input or output operation.

From an Edit command, the program enters the edit mode. Edit mode
allows the user to insert or append text after which control returns to
the command mode.

11-35



11. 6. 2.2 Basic Unit

The basic unit of stored text is a variable length line from 1 to 67
ASCII characters long including the line terminating carriage return
(CR). Each line of input is stored in the text buffer as it is received.
If the text buffer contains a symbolic source program, each source
statement is one line of text.

Lines of text in the text buffer have unique decimal addresses which
are sequenced in ascending order; the first line in the buffer has ad­
dress number one (0001). This allows editing of any line by line
address rather than core location address.

11.6.2.3 Line Addressing

A specific line can be referenced by its decimal number address. To
examine line n, type the decimal number followed by a carriage return.
The teleprinte r will list:

n ZZZ.••. Z

Where n is the four digit line number, and Z the text contained in
line n. This becomes the line currently available for modification and
is called the open line. To examine the last line in the text buffer, type
the letter Q. The teleprinter will list:

n ZZZ .••.• Z

Where n is the four digit line number, and Z the text contained in the
last line in the text buffer.

Any attempt to examine a non-existent line will result in an error
message. See Section 11. 6. 2. 7. The execution of some editor com­
mands will change the position of a line in the text buffer, and conse­
quently change the line number. This number change does not affect
the contents of the line. See Section 11. 6.2. 6 for Command examples.

11.6.2. 4 Command Formats

Commands are entered through the keyboard in one of the following
formats:

11-36

FORMAT

x

nX

DESCRIPTION

Editor performs
Command X

Editor performs
Command X on n
lines



Where n is a 4 digit maximum decimal number and X is a command
specifying the operation to be performed.

Editor commands are described in Table 1.

If the command is illegal (Section 11. 6. 2. 7), no action is taken and the edi­
tor returns to the Command mode (..-.).

11. 6. 2.5 Commands

The three main functions of the editor are input, modification, and
output. The input commands are used to enter text into the text buffer.
The modify comnland manipulates the text stored in the text buffer.
The output commands produce a hard copy of the text on a specified
output deviae. Table 11-10 contains the definitions for the command
repertoire. Section 11.6.3. 2 explains input/output device specifica­
tions.

TABLE 11-10
COMMAND REPERTOffiE

Func-
Keyboard

Defini-
tion

Input Response
tion

Description
Conlmand

Input A * Append The editor enters the
edit mode and accepts
input from the Keyboard.
The typed text line is ap-
pended following the last
line (if any) in the text
buffer. Each line of in-
put is terminated with a
CR. Mter an * response,
the Append operation is
terminated by typing t ·
After termination, the
last line input, now the
open line, and its deci-
mal number address are
printed. The program
returns to the command
mode (..-)

Input nA None Append The editor enters the
n Lines edit mode after which n

lines are read from the
source input device. 1
The read operation may
be aborted by depressing

11-37



TABLE 11-10
COMMAND REPERTOIRE (Continued)

FlIDC-
Keyboard

Defini-
tion

Input Response
tion

Description
Command

console switch 15. After
manual or normal ter-
mination, this command
continues as the A com-
mand.

Input I * Insert The editor enters the
edit mode and accepts
text lines from the key-
board to be inserted pre-
ceding the open line. In-
sertions are made in the
order in which lines are
input. Each line is ter-
minated with a CR.
After an * response the
Insert operation in ter-
minate by typing t or
by depressing console
switch 15. Upon ter-
mination, the open line
with its corrected deci-
mal address will be
printed. Control re-
turns to the command
mode.

Input nI None Insert The editor enters the
n lines edit mode after which n

lines are read from the
source input device1 and
are inserted into the text
buffer as described for
the I command. The
read operation may be
aborted by depressing
console switch 15. After
manual or normal ter-
mination this command
continues as the I com-
mand.

11-38



TABLE 11-10
COMMAND REPERTOIRE (Continued)

Func-
Keyboard

Defini-
tion

Input Response
tion

Description
Command

Modify D None Delete The editor deletes the
current line. The line
following the current
open line is now the open
line and will be printed
along with its corrected
line number. If the last
line in the buffer was the
open line and it is de-
leted, the new last line
is now the open line and
it is listed Control re-
turns to the command
mode (~)

Modify nD None Delete The editor deletes n
n lines lines of text beginning

with the current open
line. The line following
the last line deleted or
the last line in the text
buffer, if less than n
lines remained, becomes
the open line and it is
listed. Control returns
to the command mode
(-.-. ).

Output P None Print The line number and con-
tent of the current open
line are printed on the
Teletype. Control re-
turns to the command
mode (-~).

Output nP None Print The editor prints n lines
n lines beginning with the cur-

rent open line. If less
than n lines remain, out-
put terminates after
printing the last line in
the text buffe r. Output
may be aborted by de-
pressing console switch

11-39



TABLE 11-10
COMMAND REPERTOIRE (Continued)

Func-
Keyboard

Defini-
tion

Input Response
tion

Description
Command

15. After manual or
normal termination con-
trol returns to the com-
mand mode (.--).

Output 0 None Output The entire text buffer is
punched punched in the standard
tape source tape format2 on

the binary output device1 .
Output may be aborted by
depressing console
switch 15. Afte r manual
or normal termination
control returns to the
command mode (..-).

Set Up K ...- Kill This command erases
the the text buffe r and re-
text turns control to the com-
buffer mand mode (...-).

Other nS None Skip The Source Input Device l

n lines is advanced the number
of lines specified. No
information enters the
text buffer. Skipping
may be aborted by de-
pressing console switch
15. After manual or
normal termination con-
trol returns to the Com-
mand mode.

TELETYPE EDITOR CONTROL
,KEY DEFINITION

11-40

t

RO

CR

Return to Command Mode
the open line is printed

Delete last character typed

Delete line just typed

End of Current Line



Footnotes:

1. See Section 11. 6. 3. 2, I/O Device Selection
2. See Section 11. 6. 3.4, Tape Format

Note: The symbol CR refers to a carriage return. lTnderlined
characters are processor responses.

11. 6. 2. 6 Command Examples

See Table 11-10 for command definitions

a. Append

~ A

* APP END LINES TO @

* THE TEXT BUFFER @

* TERMINATE INPUT BY @

* TYPING AN UP-ARROW

* t
0004 TYPING AN UP-ARROW

6. Open last line

~Q

0004 TYPING AN UP-ARROW

c. Open line

0003 TERMINATE INPUT BY

11-41



d. Insert

...-

* INSERT LINES @

* INTO THE TEXT BUFFER @

* t
0006 TERMINATE INPUT BY

e. Delete

~D

0005 TYPING AN UP-ARROW

f. Print

0001 APP END LINES TO

~5P @
0001 APPEND LINES TO

0002 THE TEXT BUFFER

0003 INSERT LINES

0004 INTO THE TEXT BUFFER

0005 TYPING AN UP-ARROW
11.6.2.7 Errors

The error message for an improper editor command entry or for a line
of text (from any input device) which exceeds the character limit, is
the question mark (?). If a command entry error is made, no action
is taken upon the information in the text buffer. The program responds
with the error message (?) and remains in the command mode (....-).
If the text line exceeds 67 characters, the error message (?) will be
printed and control is transferred to the command mode (....-). None
of the characters in the line will be entered into the text buffer. If a
typing error occurs and is discovered before typing the CR, the mis-

11-42



take may be corrected. Corrections are made by typing a left arrow
(..-) which deletes the last character input, or by typing a Rubout
(RO) which deletes the entire line. Control remains in the edit mode.

Another error flag is the exclamation point ( ! ) which means the text
buffer has overflowed. When this happens, the line which caused the
overflow is not entered into the text buffer. The program returns to
the command mode.(.-) To enter more information, it is necessary
to delete one or more lines from the buffer or adjust the pointer to the
top of the text buffer. See Section 11. 6.3.5.

11.6.3 Operating Procedures

11. 6. 3. 1 Loading

The Modell text editor, program number 08-007, requires '2K' bytes
of memory including a 1000 byte text buffer. To load the editor, use
the Modell General Loader, program number 08-005. Refer to
Section 11.3 for use of the loader.

11. 6. 3. 2 I/O Device Selection

Prior to executing the editor the appropriate 2 byte blocks in the
Device Definition Table (11. 2. 3) should be set up in the following
format:

Device Number Output Command

The appropriate halfwords for various devices is shown below.

'0000'

'0294'

'02A4'

'0298'

'0399'

'0392'

TTY I/O via serial I/O Port

TTY tape reader input (no printing)

TTY input (with printing)

TTY output

High speed paper tape input

High speed paper tape output

Device selection locations in the Device Definition table appropriate
to the editor are

LOCATION

'OI4C'

'OI4E'

NAME

BOUTDV

SlNDV

USE WITH COMMANDS:

Output

Append, Insert, Skip

11-43



11. 6. 3.3 Starting Location

Starting the Editor at location' 0004' causes the text buffer pointers to
be reset. The program is initialized and the Command Mode (~) is
entered.

Starting the Editor at location '0000' causes the Command Mode (...-.)
to be entered without affecting the Text buffer. Initializing the proc­
essor causes execution to restart at location' 0000' .

11. 6. 3.4 Tape Format

Punched tapes produced by the Output (0) command are in the standard
source tape format. Each line of text is preceeded by eight rubouts
(RO) and terminated with a CR and LF. The format for each charac­
ter is seven bit ASCII, except the RO which is eight bit ASCII code.

Input tapes to the editor should be in the standard tape format; however,
the minimum tape format requirements are that each line must be
terminated by a carriage return and contain no more than 67 charac­
ters including the carriage return. In addition, successive statements
must be separated by at least five or six rubouts, due to the start/stop
characteristics of the Teletype reader.

11. 6. 3. 5 Text Buffer Size

When loaded, the editor provides a text buffer for 1000 characters.
The user may adjust the size of the Text buffer by inserting the be­
ginning and ending addresses into locations '0008' and 'OOOA' respec­
tively. The text buffer may be located anywhere in core providing
it does not overwrite the editor.

11-44



TABLE 11-11
EDITOR RESPONSES, CONTROLS, AND ADDRESSES

EDITOR RESPONSES
SYMBOL

*
?

DEFINITION

Command Mode

Edit Mode

Error

Text Buffer Overflow

TELETYPE EDITOR CONTROL
KEY DEFINITION

t
RO

CR

Return to Command Mode
the open line is printed

Delete last character typed

Delte line just typed

End of Current Line

SPECIAL EDITOR ADDRESS
LOCATION DEFINITION

'0000'

'0004'

'0008'

'OOOA'

Restart location. program will
not initialize text buffe r.

Starting location, program will
initialize text buffer

Location defines first address
of text buffe r .

Location defines last address of
text buffer.

11-45/11-46





Intemational OffIces
CANADA

Allan Crawford Assoc.
65 Martin Ross Ave.
Downsview, 463 Ontario
(416) 63lH910
157 Saint Charles SI. West
Longueuil Quebec
(514) 670-1212
376 Churchill Avenue
Ottawa, Ontario
(613) 725-3354
721 Aldford Ave.
Mnacis Industrial Estate
New Westminster, British Columbia
(604) 524-1161

FAR EAST

Kyokuto Boeki, Kaisha, Ltd.
C.P.O. Box 330
Tokyo, Japan
(270)n11

UNITED KINGDOM

INTERDATA, Ltd.

Station House
Harrow Road
Wembley, Middlesex
ENGLAND
01-902-3202

Domestic OffIces
EASTERN REGION

2 Crescent Place
Oceanport, New Jersey On57
(201) 229-4040
60 Hickory Drive,
Waltham, Mass. 02154
(617) 899-6287
1800 North Kent SI.

rlington, Va. 22210

CENTRAL REGION

3553 West Peterson Ave.
Chicago, Illinois 60645
(312) 463-9080
1700 Needmore Ro d
Suite 305
Dayton, Ohio 45414
(513) 2n-1142

SOUTHWESTERN REGION

300 North Central Expressway
Richardson, Texas 75080
(214) 23&9656

WESTERN REGION

2390 EI.Camino Real
Palo Alto, Calif. 94306
(415) 328-0783

8703 La Tijera Blvd.
Los Angeles, Galif. 90045
(213) 670-8386•:K::aT-r:El:.&~-r~

The Forthcoming Generation


	Interdata Model 1-cover.pdf
	Interdata Model 1-new



