16 Bit Series
Reference Manual

[
INTIERIDATTA®

BEoEEN
BBOEm
gEpDOoOOED
: d " i
oooon ..
: . S, e
Y I Y Y I

' N A 3
JASRNIG SR PX 4 Lo Y

BTN
LSS

16 Bit Series
Reference Manual

Publication Number 29-398R03

INFORMATION CONTAINED IN THIS
MANUAL IS SUBJECT TO DESIGN
CHANGE OR PRODUCT IMPROVEMENT

(© INTERDATA INC., 1974
All Rights Reserved
Printed in US.A.

May 1975

TABLE OF CONTENTS

CHAPTER 1 [INTRODUCTION

INTRODUCTION ..
MEMORY

SYSTEM ARCHITECTURE . .« « « v o v oo,

INSTRUCTIONSET

INPUT/OUTPUT SET .
SOFTWARE

OPTIONS AND PERIPHERALS . . A

SUMMARY OF 7/16 FEATURES AND OPTIONS

CHAPTER 2 SYSTEMDESCRIPTION
PROCESSOR o v it e s e e e e e e e e e e e

Program Status Word .

Wait State . . .

» s e .

......

........

External ImerrugtMask P e e s e e e e e e s s e e e e e e e

Machine Malfunction Interrupt Mask P
Fixed Point Divide Fault Interrupt Mask .

Automatic 1/O and Immediate Interrupt Mask 0 4 4 d e e e e e
Floating Point Fault Interrupt Mask. v e e e
System Queue Service InterruptMask 0 . e e 0 e
ProtectMode ¢ ¢ i . 4 b e e e e e e e e e e e e e e
ConditionCode & & & ¢ & ¢ & v o 4 o s & 2 o o o« o o »
General Registers ¢« v .+ v e v o0 . .
Floating Point Registers e
Processor Interrupts . . e ke e e e e e e e e e

Reserved Memory Locatlon
Processor Operations

DATA FORMATS

Fixed PointData,
Floating Point Data . .
Logical Data

INSTRUCTION FORMATS

Register to Register (RR) Format
Short Form (SF) Format. . .
Register to Indexed (RX) Format

.......

Register to lmmediate Storage (R}) Format e e e e

Branch Instruction Formats . . .
CHAPTER 3 LOGICAL OPERATIONS

DATAFORMATS
BOOLEANOPERATIONS
LIST PROCESSING . . . e
LOGICAL INSTRUCTION FORMATS e
LOGICAL INSTRUCTIONS .

Logical Halfword

Load HalfwordRegister
Load Halfword Immediate

Load Immediate Short et e e e e e e e e e e
Load Complement Short

Load Muitiple . e e e e e e e e e e e
Load Byte e e e e e e e e e e e e e e e
Load ByteRegister e e e e e e
Exchange Byte Register
Store Halfword e e e e e e e

. s .

« s .

. .« .

............

............

................

4] WNNNND @ -

[}

NSNSNSNOOOOOOOD N

wwowww.- o VO NNN

TABLE OF CONTENTS {Continued)

Store Multiple . . .

Store Byte e e e e e

Store Byte Register . . .

AND Halfword . .

AND Halfword Reg:ster . .
AND Halfword Immediate . .

OR Halfword . e

OR Halfword Register .

OR Halfword Immediate .

Exclusive OR Halfword
Exclusive OR Halfword Register . . .

Exclusive OR Halfword Immediate

Test Halfword Immediate

Compare Logical Halfword . . .
Compare Logical Halfword Reglster
Compare Logical Halfword Immediate
Compare Logical Byte.
Shift Left Logical ..
Shift Right Logical . . .

Shift Left Halfword Loglcal

Shift Left Logical Short .

Shift Right Halfword Logical

Shift Right Logical Short -
Rotate Left Logical
Rotate Right Logical

Add to Top of List .

Add to Bottom of List

Remove from Top of List .
Remove from Bottom of List .

CHAPTER 4 BRANCHING . .

OPERATIONS

CHAPTER 5 FIXED POINT

DATA FORMATS . .
CONDITION CODE . . .
FIXED POINT INSTRUCTION FORMATS
FIXED POINT INSTRUCTIONS

Decision Making .
Subroutine Linkage .

BRANCH INSTRUCTION FORMATS .
BRANCH INSTRUCTIONS .

Branch on False Condition . .
Branch on False Condition Reglster
Branch on False Condition Backward Short

« e s e

.............

.........

Branch on False Condition Forward Short .

Branch on True Condition
Branch on True Condition Reglster

Branch on True Condition Backward Short ..
Branch on True Condition Forward Short .

Branchand Link
Branch and Link Register

Branch on Index Low or Equal
Branch on Index High . . .

.....

AddHalfword
Add Halfword Register

Add Halfword Immediate .
Add Immediate Short

Add Halfword to Memory)

Add with Carry Halfword ..
Add with Carry Halfword Register .

.....

...........

.............

............

« o o .

.......

.......

REBBBLBBLEBLEY

21

RuUEdRNNNEHRARRRNIVBUNN

448 ¢ ¥ 888888

SES

REBS &

AEEEEE

<]

TABLE OF CONTENTS (Continued)

Subtract Halfword . . e e e e e e e e e e e e .
Subtract Halfword Reglster

SubtractHalfwordlmmedlate. . .

Subtract Immediate Short
Subtract with Carry Halfword .
Subtract with Carry Halfword Reglster

Compare Halfword e e e e e e e e
Compare Halfword Reglster e e e e e e e e e e e

Compare Halfword Immediate
Multiply Halfword . . . e e h e e e e e e e e e e e e e e
Multiply Halfword Reg|ster e e e e e e e e e e

Multiply Halfword Unsigned « . . « v« o ¢ ¢ o
Multiply Halfword Unsigned Reglster e e e e e e e e e e e e e .
Divide Halfword

Divide Halfword Register

Shift Left Arithmetic . . . e e e e e e e e e e e e e
Shift Left Halfword Anthmetlc e e e e e e .. -

Shift Right Arithmetic e

Shift Right Halfword Anthmetuc
CHAPTER 6 FLOATING POINT ARITHMETIC. .
DATA FORMATS . .

Normalization . . . e e e e e e e e e
Exponent Overrowand Underrow e e e e e e
Conversion fromDecimal

FLOATING POINT INSTRUCTION FORMATS
FLOATING POINT INSTRUCTIONS . . e e e e e e e

Load . . .
Load Reglster .
Store

Add . .

Add Reglster

......

« s € o

. e .

Subtract 0 . e o e e e e e e e

Subtract Register .
Compare . ..
Compare Register .
Multiply . . .
Multiply Reglster

Divide e e e e e e e e e e e e e e

Divide Register
CHAPTER 7 STATUS SWITCHING AND INTERRUPTS . . .
STATUS SWITCHING AND INTERRUPTS .

PROGRAMSTATUSWORD« . ¢+ v

WaitState 0000

Protect Mode\ o

INTERRUPT SYSTEM

External Interrupt e e e e e e e e e e e
Machine Malfunction Interrupt N

« e .

Fixed Point FaultInterrupt.

Immediate Interrupt
Console Interrupt

Floating Point Fault Interrupt

System Queue Interrupt .

Protect Mode Violation Interrupt

Itlegal Instruction Interrupt .

Supervisor Call Interrupt . ..
System Queue Overflow Interrupt .
Simulated Interrupt . .

a e e

......

SHEBERIN22CTIL288885

BRIV ZSHZRRANR

g

59

[=1]
(7]

8

.....

TABLE OF CONTENTS (Continued)

STATUS SWITCHING INSTRUCTION FORMATS & .« v v v e v e e e s 75
STATUS SWITCHING INSTRUCTIONS e e et e et e e s e e e s 75
Load Program StatusWord it e e e e e e e e e e e 76

Exchange Program Status Register & . v v vt e o s 0 .. 77

Simulate Interrupt L L L L L o e s e e e e e e e e e e e e e 78
SupervisorCall i . e e e e e e e e e e e e e e e e e e e 79
CHAPTER 8 INPUT/OUTPUTOPERATIONS ¢« S -1
INPUT/OQUTPUT OPERATIONS L i ottt t e e et e e e e e e e e . .8
DEVICECONTROLLERS & & & v h et ot e e e e e e e e s e e e e e e e e s 81
Device Addressing e 81
Processor/Controller Communication v 4 0 s e e e e e e 82

Device Priorities & . ¢ it it e e e e e e e e e e e s e e e e 82
INTERRUPT SERVICEPOINTERTABLE o o v v v v v v v v e e s 82
I/OINSTRUCTION FORMATS & . . i i it e e et e e s e e e e e e e e e 83
IO INSTRUCTIONS ot i i i e et e e e e e e e e e e e e s e e e 83
Acknowledge Interrupt L L L L L o0 s e e e e e e e e e e 84
Acknowledge InterruptRegister L0 L 0 0L 0 0 e e e e e e 84
SenseStatus L Lt h ot e 85
SenseStatus Register ¢ 0 L e e e e e e e e e e e e e e e 85

Output Command« ¢« v v vt e e e e e e e e e e e e e e e 86
OutputCommand Register « 4 4 v v v v e e e e e e 86

RBead Data & . & ¢ v v et e e e e e e e e e e e e e e e e 87

Read Data Register & v v & ¢ v v v v e v e e e e e e e e e e e e e 87

Read Halfword v . . oo e e e e e e e e 88

Read Halfword Register « ¢ ¢« ¢ & v 4 v v s v v e e e e e e e . 88

Read Block & & v it e 89

Read Block Register ¢« & « « ¢t ¢ v v v v v e e e e e e e e e e e 90
WriteData it i it e e e e e e e e e e e e e e e e e e]
WriteDataRegister ¢ « « v « « ¢« . . e e e e e e e e . . .9
WriteHalfword & . . & . i e e e e e e e e e e e e e e 92
WriteHalfword Register ¢« & & . . 0 s e e e e e e e e e e 92
WriteBlock L L e s e e e e e e e e e e e e e e e e e e 93
WriteBlock Register « .« © t t i e e e e e e e e e e e e e e e 94

Autoload L L L L et e e et e v e e e e e e e e e e e e e e e 95
CONTROLOFI/OOPERATIONS & i it h et e e e e e e e e e e e e e e 96
STATUSMONITORING I/O e e e e e e e e e e e e e e e e e e e 9%
INTERRUPTDRIVENI/O i i i e e i e e e e e e e e e e e e e e e e e 97
AutomaticVectoring 4ttt e e e e e e e e e e e 97

Software Vectoring & . ¢ it i e e e e e e e e e e e e e e s 98
SELECTOR CHANNEL 1/O (. o i i e e e e e et e e e e e e e e e e s 98
Selector Channel Devices « .« v v v v s 4 e e e e e e e s 99

Selector Channel Operation v 4 & o w0 s v e e n e e 99

Selector Channel Programming - « + « o ¢ 4 e . oe s e e100
AUTOMATICI/OCHANNEL v v o+ v « & e e e e e e e e e e e 100
Interrupt ServicePoint Table Ot S (1))
ChannelControl Block v« ¢ ¢ v v o o s « o s e n e e e e 100
SystemQueue e e e e e e e e e e e e e e e e e .. 101

General Operation « « « « « « « & e e e e e e e e e 102

Channel Command Words & « ¢ s & o o o o o = s o o o 0 .o, 102
Initialization e e e e e e e TP [

I/OOperation. « « . . e e e e e e e e e e e e, 103

Termination v o . e e e e e e e e e e e e e e e e s e e, 105

TABLE OF CONTENTS (Continued)

CHAPTER 9 HEXADECIMAL DISPLAY PANEL . . . 107
INTRODUCTION 107
CONFIGURATION. ¢ . v . v v v v v v e e e 107
Display Registers and Indicators o 0000 e e . . 108
Key Operated Security Lock . . . 109
Control Keys 109
OPERATING PROCEDURES
Power Up1
Power Down e e e e s . 111
Address a Memory Lomtuon ot e e e e e e e e e e . .11
Memory Read. ¢ ¢« ¢ v oo v o . . 111
Memory Write. e e e e e e e e e e e e e e . .11
General Register Display « .« « .. . 112
Floating-Point Register Display . . . e e e e e e e12
Program Status Word Dusplay and Modlflmtlon e e e . . .12
Program Execution13
Program Termination 113
Console Interrupt . . .13
Switch Register13
Power Fail . .14
DATA FORMAT . . .14
PROGRAMMING INSTRUCTlONS e e e e e e e e e e e e . . .116
input/Output Programmmg - . . 115
Wait State . . . e . 115
PROGRAMMING SEQUENCES. . 115
APPENDICES
APPENDIX 1 INSTRUCTION SUMMARY - ALPHABETICAL . . . e e e .« . A1-1/A13
APPENDIX 2 INSTRUCTION SUMMARY - NUMERICAL e e e e e e . . . A2.1/A23
APPENDIX 3 EXTENDED BRANCH MNEMONICS v w s s ... A31/A3-2
APPENDIX 4 ARITHMETIC REFERENCE « . v« v v v v v o A4-1/A44
ILLUSTRATIONS
Figure 1. System Block Diagram e e e e e e . 5
Figure 2. Program Status Word Format 6
Figure 3. Instruction Formats . 9
Figure4. LogicalData e e e e e e e e e e e e e e e e e e 13
Figure5. Circular List Definition « . « « = « +« « v v v o « 14
Figure 6. Circular List . . 14
Figure 7. Fixed Point Data Words Formats e e e e e e e 43
Figure8. Floating Point Data Format e e e e e e e 59
Figure 9. Program Status Word Format . . . e e e e e e e 69
Figure 10. 1/0 Channel Operation Block Dlagram e e e e e e 101
Figure 11. ChannelControlClock ¢ . « ¢ &t v v v v v e e o e e u 101
Figure 12, Bit Configuration for Channel Command Word . » - -« « v 102
Figure 13. Channe! Command for Initialize and Qutput Commands 103
Figure 14. Channel Command Word for I/OOperation « . . « « 104
Figure 15. Channel Command Words for Termination 105
Figure 16. Hexadecimal Display Panel 107
Figure 17. Display Registers and Indicators . . . e e e e e e . 108
Figure 18. Hexadecimal Display Panel Data Transfers 114

TABLE OF CONTENTS (Continued)

TABLES

TABLE 1. DISPLAY STATUSAND COMMAND v v v v o v v o v v n s

ALPHABETICAL INDEX

INDEX

CHAPTER 1

INTRODUCTION

INTRODUCTION

The INTERDATA 7/16 Processor is the first 16 bit, general purpose minicomputer to provide
the instructional speed, I/0O throughput and high level software and peripheral support of large
systems. The 7/16 employs the latest techniques in logic design and system architecture. In-
cluded in the basic configuration are the 7/16 Processor, 8K bytes of memory, 16 general regis-
ters, 104 instructions, hardware interrupt vectoring for up to 255 devices; four high speed Direct
Memory Access (DMA) channels, and power supply. A wide variety of standard, off the shelf
options permit the user to tailor the system to meet both his present needs and future require-
ments. The overall efficiency of the 7/16 Processor makes it exceptionally well-suited for a
wide variety of applications-from small dedicated processors to large multiuser systems.

MEMORY

The 7/16 main memory is built around core modules available in 8KB, 16KB, and 32KB versions
to optimize system reliability and physical configurations. All three modules are available with
parity as an option for those critical applications requiring the increased functional reliability

and data integrity that parity provides. Each of the modules is contained in a single 15 inch
printed circuit board, and occupies a single subassembly slot. The 8KB and 16KB memories

have a 1. 0 microsecond cycle time. The 32KB memory is available with either a 1, 0 microsecond
cycle time or a 750 nanosecond cycle time. Memory can be expanded by plugging in additional -
modules.

SYSTEM ARCHITECTURE

The INTERDATA 7/16 makes use of the powerful third generation architecture used by the other
Processors in the INTERDATA family. The advantages inherent in this type of architecture
greatly simplify system design, programming, and debugging. The large, task oriented instruc-
tion set allows the programmer to concentrate on system programming instead of playing with
"tricky code" to accomplish such basic functions as Exlucisve OR, multiple shifts, or byte pro-
cessing,

The multi-accumulator architecture that INTERDATA pioneered in the minicomputer industry
provides 16 general purpose registers for increased programming flexiblilty, and eliminates the
needless accumulator housekeeping that is characteristic of machines with fewer accumulators.
All 16 registers are available for use at the programmer's discretion. None of the 16 is dedicated
to any specific purpose, such as index registers, stack pointers, program counter, or subroutine
return pointers. The programmer is free to use the registers for storage of partical results,
frequently used constants, loop management constants, or however else he sees fit.

The architectural design also provides 100% directly addressable memory, totally eliminating

the time consuming design problems associated with paging and indirect addressing. Programmers
can write straight-forward, simple, in-line code for the 7/16 without having to concern them-
selves with running out of base pages, and without having to waste memory with indirect address
references,

INSTRUCTION SET

The instruction set for the 7/16 includes 104 individual instructions to provide the programmer
with the tools he needs to write programs in as few steps as possible. The instruction uses both
16 and 32 bit instruction formats. It permits operations between any two general registers, be-
tween a general register and any memory location, between a general register and a 16 bit data
constant carried in the instruction word, or between a general register and a four bit data con-
stant contained in the instruction word.

The 7/16 includes a complete set of Arithmetic and Logical instructions. A complete set of Con-
ditional Branch instructions permits branching to any location in memory without the use of skips.
A full set of byte processing instructions simplifies handling of byte strings and, provides for
more efficient use of available memory. The input/putput instructions permit operations be-
tween peripheral devices and general registers, or between devices and memory.

INPUT/OUTPUT SYSTEM

The INTERDATA 7/16 input/output system can handle up to 255 devices. High speed devices can
operate at up to 2,000,000 bytes per second over the optional Selector Channel. Medium and low
speed devices are connected to the standard multiplexor channel. These channels operate on a
request-response basis to allow simple, reliable device controller design. INTERDATA offers
a broad line of inexpensive peripherals for the 7/16 system that are both program and interface
compatible with all members of the INTERDATA family, INTERDATA also offers standard, low-
cost interface modules to aid the user in interface design.

SOFTWARE

Standard software available for the 7/16 includes: a symbolic Assembler, an interactive text
Editor, an interactive Debug package, interactive FORTRAN, extended FORTRAN IV, utility
programs, and the following four operating systems:

Basic Operating System (BOSS)

Disc Operating System (DOS)

Real Time Operating Systems (RTOS)

Mini Real Time Operating System (OS/16-MT)

In addition, the INTERDATA users' group, INTERCHANGE, has a large software library of its
own that is available to 7/16 users.

OPTIONS AND PERIPHERALS

The 7/16 provides a flexible hardware system that can expand to meet the end user's requirements
quickly and easily. As system demands and complexity increase, the 7/16 can be field expanded
to provide the precise computational capability required. For example:

Memory Parity provides complete data and instruction protection.

Power Fail Detection/Auto Resiart provides an early power fail interrupt and a power up
interrupt.

Programmable Memory Protect permits enabling or disabling memory writes into single
or multiple 1K bytes blocks of memory under software control. The module interrupts
the Processor when it detects a memory protect violation. ’

Binary Display Panel provides complete user control of the system. It includes long-
life Light Emitting Diode (LED) binary read out and a hexadecimal input keyboard.

Hexadecimal Display Panel provides hexadecimal LED read out in addition to the user
control and LED binary read out features of the Binary Display Panel.

Automatic Loader provides a simple, single switch bootstrap load capability.

Turnkey Console provides switch control for power, initialize, and execution for the 7/16
in dedicated systems.

Signed Multiply/Divide hardware minimizes execution time of mathematical routines,
and eliminates the necessity for additional code to generate properly signed quotients
and products.

High Speed Arithmetic Logic Unit (HSALU) includes high speed signed multiply/divide,
high speed hardware floating point, list processing instructions, privileged instructions
detect, and improves standard instruction execution times up to 50%, depending on the
individual instruction.

Stretch 32 field upgrades a 7/16 Processor to a software and I/O compatible 7/32 Processor
capable of directly addressing 1 megabyte of memory and executing a full complement of
32 bit fullword instructions.

Other options include:

Selector Channel

TTY

Loader Storage Unit

Conformal Coating

Intertape Cassette System
Digital Multiplexor System
Analog to Digital System

Digital to Analog System
Universal Clock Module
Universal Clock Interface

I/0O Bus Switch

IBM 360/370 Interface

Line Printers

Card Readers

Paper Tape Reader/Punch
Industry Compatible Magnetic Tapes
Disc Systems

Synchronous Data Set Interfaces
Asynchronous Data Set Interfaces

SUMMARY OF 7/16 FEATURES AND OPTIONS

The following chapters describe the 7/16 system including the High Speed ALU (HSALU) option.
Of the features described, the 7/16 BASIC has:

Y,

Most Logical instructions

Most Fixed Point Arithmetic instructions
All Branch instructions

All Status Switching instructions

All I/0 instructions

Not included in the 7/16 BASIC are list processing instructions, fixed point multiple and divide,
Floating Point instructions, and the automatic I/0 channel.

The interrupts associated with fixed point divide and floating point operations are not defined for
the 7/16 BASIC. The simulate interrupt instruction can result only in an immediate interrupt.
On a machine malfunction interrupt, the 7/16 BASIC Processor does not make a distinction
between parity error on a data fetch and parity error on an instruction fetch.

CHAPTER 2

SYSTEM DESCRIPTION

The unique design characteristics of the INTERDATA 7/16 allow for a fully integrated system in
which the relationships between Processor and memory, memory and peripherals, and peri-
pherals and Processor are precisely balanced to provide the utmost in hardware reliability, soft-
ware simplicity, and total system throughput.

Figure 1 illustrates how the various elements of a 7/16 system are combined,

MEMORY
EXPANRATI E TO 64 XB

- D wewT s B 2
PROCEﬁOR

16 GEMCrRAL R: W.3TERS
HERNKLRE FLOA™ N, POINT
HAR w» &F MULTIPLY GIV CE
AUTOMATIC I/0 CHAN'E 5

SE Fr, ot ' .- .-Ilt

ChaNsT *——UP TO 4 TOTAL——> INT:nl’A"

1

SELECTOR BUS

L0d

DISCS DRUMS MAGNETIC

UP TO 16 HIGH SPEED DEV|CES
_UP TO 16 HIGH SPEED DEVICES
b W TIPLE S INFUT _GLIPUT 815 3

° == []
NI ROL
PANEL LINE CARD READER MAGNETIC TAPE EXEX see e
PRINTER READER /PUNCH CASSETTE
f : DIGITAL MULTIPLEXOR
ETYPEWRITER PAPER TAPE
READER /PUNCH
UP TO 255 DEVICES INSYSTEM
Figure 1. System Block Diagram
PROCESSOR

The Central Processing Unit (CPU), or Processor, controls activities in the system. It execu-
tes instructions in a specific sequence, and performs arithmetic and logical functions. Included
in the Processor's components are:

Program Status Word Register

General Registers

Floating Point Registers (optional)
Floating Point Hardware (optional)

Signed multiply /divide hardware (optional)

Program Status Word

The 32 bit Program Status Word (PSW) shown in Figure 2 defines the state of the Processor at
any given time,

041,2,3,4,6,6,7,8)9;10)11112{13,14;15136 31
WTEII"MDFASFPCTPM ojojojofCciviGg|L LOCATION COUNTER

Figure 2. Program Status Word Format

Bits 0:15 are reserved for status information and for interrupt masks. Bits 16:31 contain the
Location Counter. Unassigned Program Status Word bits must not be used, and must always
be zero. Status information and interrupt mask bits are defined as follows:

Bit 0 Wait state
Bit 1 Extemal interrupt mask
Bit 2 Machine malfunction interrupt mask
Bit 3 Fixed polnt divide fault interrupt mask
Bit 4 Automatic I/0 and immediate interrupt mask
Bit 5 Floating point fault interrupt mask
Bit 6 Queue service interrupt mask
Bit 7 Protect mode
Bits 8:11 Not used, must be zero
Bits 12:15 Condition Code
Wait State

When Bit 0 of the Program Status Word is set, the Processor halts normal program execution.
It is still responsive to machine malfunction, external, and immediate interrupts, and to auto-
matic I/0, if these are enabled.

External Interrupt Mask
Bit 1 of the Program Status Word controls requests for service from devices on the Multiplexor

Bus, including the Selector Channel. If this bit is set, the Processor responds to the requests.
If this bit is reset, the requests are queued. This bit also controls the Auto Driver Channel,

Machine Malfunction Interrupt Mask

Bit 2 of the Program Status Word controls interrupts generated when power fails, when power
retums, and when parity checking indicates a memory parity erroT.

Fixed Point Divide Fault Interrupt Mask

Bit 3 of the Program Statis Word controls interrupts generated when a fixed point divide opera-
tion results in quotient overflow, or when division by zero is a.ttefnpted. If this bit is set, the
interrupt is taken. If this bit is reset, the interrupt condition is ignored.

Automatic 1/0 and Immediate Interrupt Mask

Bit 4 of the Program Status Word controls automatic /0 .operations and the vectored immediate
interrupt. If this bit is set, along with Bit 1, these functions are enabled,

Floating Point Fault Interrupt Mask

Bit 5 of the Program Status Word controls interrupts generated on floating point underflow, or
division by zero. If this bit is set, these conditions cause an interrupt. If this bit is reset, the
interrupt conditions are ignored.

System Queue Service Interrupt Mask

Bit 6 of the Program Status Word controls the operation of the system queue interrupt. If this
bit is set, and if the queue requires service, the interrupt is taken.

Protect Mode

Bit 7 of the Program Status Word controls the execution of privileged instructions. If this bit
is reset, any legal instruction may be executed. If this bit is set, only non-privileged instruc-
tions may be executed.

Condition Code

The bits in the Condition Code, Bits 12:15 of the Program Status Word, are set by the Processor
to indicate the results of instruction execution. The usual interpretation of these bits is:

Bit 12 C - Carry or borrow
Bit 13 V - Overflow

Bit 14 G - Greater than zero
Bit 15 L - Less than zero

General Registers

There are 16 general purpose registers, numbered 0 through 15. Each register is 16 bits wide.
None of these registers has a preset use. All may be used at the programmer's discretion, for
accumulators and for the storing of temporary data. Registers 1 through 15 may be used as
index registers.

Floating Point Registers

There are eight floating point registers, each 32 bits wide. The registers are identified by the
even numbers, 0 through 14. Floating point operations must always identify the registers with _
even numbers, The results are undefined if odd numbers are used.

Processor Interrunts

Interrupt conditions cause the entire Program Status Word to be replaced by 2 new Program
Status Word, thus breaking the usual sequential flow of instruction execution, When an interrupt
condition arises, the Processor saves its current Program Status Word in 2 memory location
unique to the type of interrupt condition. It loads a new Program Status Word from a correspond-
ing memory location.

Reserved Memory Location

The following memory locations are reserved for interrupt pointers, Program Status Words,
and system constants,

Location Use

X'0000' - X'0021' Reserved for Processor use
X'0022' - X'0023' Register save pointer

X'0024' - Xx'0027' Current PSW save area

X'0028' - X'002B' Old PSW, Floating Point Fault
X;002C' - X'002F New PSW, Floating Point Fault
X'0030' - X'0033' 01d PSW, Hlegal Instruction
X'0034' - X'0037 New PSW, Illegal Instruction
X'0038' - X'003B' Old PSW, Machine Malfunction
X'003C' - X'003F' New PSW, Machine Malfunction
X;0040! - X'0043' 0ld PSW, External

X'0044' - X'0047' New PSW, External

X10048! - X'004B' Old PSW, Fixed Point Fault
X'004C' - X'004F' New PSW, Fixed Point Fault
X'0050' - X'007F Bootstrap Loader

X'0080' - X'0081' System Queue Pointer

X'0082' - X'0085' Old PSW, Channel Termination
X'0086' - X'0089' New PSW, Channel Termination
X'008A' — X'008B' System Queue Overflow Pointer
X'008C' -~ X;008F" 0Old PSW, System Queue Overflow
X'0090' - X'0093' New PSW, System Queue Overflow
X' 0094! - X'0095' Supervisor Call Argument Pointer
X'0096! - X'0099' Old PSW, Supervisor Call
X'009A' - X'009B' New Status, Supervisor Call
X'009C! ~ X'00BB' New Location Counters, Supervisor Call
X'00BC' - X'00CF' |Reserved

X'00D0' - X'02CF' Interrupt Service Table

These reserved locations play an important role in both interrupt and input/output processing,
For details on these subjects refer to Chapters 7 and 8.

Processor Operations

The Processor performs logical and fixed point arithmetic operations between:

The contents of two registers.

The contents of a register and the contents of a halfword located in memory.

Where the second operand is contained in memory, it may be located in the instruction stream
(immediate operation), or it may be located in indexed storage.

Floating point operations take place between the contents of two floating point registers, or be-

tween the contents of a floating point register and a floating point operand contained in a fullword
in memory.

DATA FORMATS

The Processor performs logical and arithmetic operations on 8 bit bytes, 16 bit halfwords, and 32

bit fuliwords. This data may represent a fixed point number, a floating point number, or logical
information.

Fixed Point Data

Fixed point arithmetic operands are 16 bit halfwords and 32 bit fullwords. In both of these formats,
the most significant bit is the Sign bit, and the remaining bits represent the magnitude. Positive
quantities are expressed in true binary form with a Sign bit of zero. Negative quantities are ex~
pressed in two's complement form with a Sign bit of one. The numerical value of zero is repre-
sented with all bits zero,

Floating Point Data

A floating point number consists of a signed exponent and a signed fraction. The quantity express-
ed by this notation is the product of the fraction and the number 16 raised to the power of the ex~
ponent, Each floating point value requires a 32 bit fullword, of which 8 bits are used for the sign
and the exponent, and 24 bits are used for the fraction,

Logical Data

Logical operations manipulate 8 bit bytes, 16 bit halfwords, and 32 bit fullwords. All bits parti-
cipate in logical operations and the Sign bit has no particular significance,

INSTRUCTION FORMATS

The INTERDATA instruction formats provide a concise method of representing required opera-

tions for easy interpretation by the Processor. There are four basic formats shown in Figure 3.
The abbreviations used in Figure 3 have the following meanings:

OoP Operation Code

R1 First operand register

R2 Second operand register

N A four bit immediate value

X2 Second operand index register
A2 Second operand direct address
12 Second operand immediate value

REGISTER TO REGISTER (RR}
0 7 1" 15

s N

L oP i_m Taz]

SHORT FORMAT (SF)
0 7 n 15

oP R1 N

REGISTER TO INDEXED MEMORY 1 {RX)
0 7 1 15.

- 3

[or IERER A2

REGISTER IMMEDIATE (RI)

__JLS

0 7 15 31
[— e

11
[oP | w T X2] 12

e

Figure 3. Instruction Formats

Most instructions in the 7/16 may be expressed in two or more formats, which provides flex-
ibility in data organization and instruction sequencing.

In the examples accompanying each format description, it is assumed that proper values have
been assigned to the symbols used in the assembler representation. Register specifications in
these examples are expressed as absolute numbers to show the correspondence between the mach-
ine code format and the assembler notation. In actual practice, these numbers could be expressed
symbolically.

Register to Register (RR) Format

In this 16 bit format, Bits 0:7 contain the operation code. Bits 8:11 contain the R1 field, and
Bits 12:15 contain the R2 field. In most RR instructions, the register specified by R1 contains
the first operand, and the register specified by R2 contains the second operand. For example:

Assembler Notation Machine Code
AHR 1,2 0Al12

instructs the Processor to add the contents of Register 1 to the contents of Register 2, and store
the result in Register 1.

Short Form (SF) Format

This 16 bit format provides space economy when working with small values. Bits 0:7 contain the
operation code. Bits 8:11 contain the R1 field. Bits 12:15 contain the N field. In arithmetic

and logical operations, the register specified by R1 contains the first operand. The N field con-
tains a four bit immediate value used as the second operand. For example:

Assembler Notation Machine Code
SIS 1,10 271A

instructs the Processor to subtract the quantity 10 from the contents of Register 1, and store
the result in Register 1. ’

Register and Indexed Storage {RX) Format

This is a 32 bit format, in which Bits 0:7 contain the operation code, Bits 8:11 contain the R1
field, Bits 12:15 contain the X2 field, and Bits 16:31 contain the A2 field, In general, the re-
gister specified by R1 contains the first operand. The second operand is located in memory at
the address obtained by adding the contents of the second operand index register, specified by

X2, to the contents of the A2 field. The A2 field may contain a maximum value of 65,535, For
example;

Assembler Notation Machine Code
SH 2,A2 (3) 4B233440

instructs the Processor to subtract from the contents of Register 2, the halfword quantity located
in memory at the address obtained by adding X'3440' to the contents of Register 3. The result
is stored in Register 2.

10

Register and Immediate Storage (R1) Format

This format represents a 32 bit instruction word. Bits 0:7 contain the operation code. Bits 8:11
contain the R1 field, Bits 12:15 contain the X2 field. Bits 16:31 contain the 16 bit immediate
value, I2. In this format, the register specified by Rl contains the first operand. The second
operand is obtained by adding the contents of the register specified by X2 to the value contained
in the I2 field. For example:

Assembier Notation Machine Code
AHI 1,12 (2) CA123444

instructs the Processor to add to the contents of Register 1 the quantity obtained by adding X'3444'
to the contents of Register 2. The result replaces the contents of Register 1.

Branch Instruction Formats

The Branch instructions use the RR, SF, and RX formats. However, in the Conditional Branch in-
structions, the Rl field does not specify a register. Instead, it contains a mask value which is
tested with the Condition Code. In the Short Form Branch instructions, the N field specifies the
number of halfwords to be skipped.

11/12

CHAPTER 3

LOGICAL OPERATIONS

DATA FORMATS

The set of Logical instructions provide a means for the manipulation of binary data. Many of the

instructions grouped with the logical set may also be used in arithmetic and other operations.
These instructions include loads, stores, compares, shifts, and list processing,

Logical data may be organized in 8 bit bytes, 16 bit halfwords, and 32 bit fullwords as shown in
Figure 4,

0 BYTE 7
0 HALFWORD 15
0 FULLWORD 31

Figure 4. Logical Data

BOOLEAN OPERATIONS

The boolean operators AND, OR, and Exclusive OR (XOR), operate on halfword quantities. All
bits in both operands participate individually. The boolean functions are defined as follows:

0AND 0= 0

0AND1=10 (logical product)
1ANDO=0

1AND1=1

OORO=0

OOR1=1 (logical sum)
10R0=1

10R1=1

0XORO0=0

0XOR1=1 (togical difference)
1XORO0=1

1XOR1=0

13

LISl ravLwcoosinug

The list processing instructions manipulate a circular list as defined in Figure 5.

0 15 16 31
NUMBER OF SLOTS NUMBER USED
CURRENT TOP NEXT BOTTOM
SLOTO
SLOT 1
L ¥
SLOTN

Figure 5. Circular List Definition

The first two halfwords contain the list parameters. Immediately following the parameter block
is the list itself. The first halfword in the list is designated Slot 0.

The remaining slots are designated 1, 2, 3, etec., up to a maximum slot number which is equal to
the number in the list minus one. An absolute maximum of 255 halfword slots may be specified.
(Maximum slot designation is equal to X'FE'.)

The first parameter byte indicates the number of slots (halfwords) in the entire list. The second
parameter byte indicates the current number of slots being used. When this byte equals zero,
the list is empty. When this byte equals the number of slots in the list, the list is full. Once
initialized, this byte is maintained automatically. It is incremented when elements are added to
the list and decremented when elements are removed.

The third and fourth bytes of the list parameter block specify the current top of the list and the
next bottom of the list respectively. These pointers are also updated automatically, See Figure 6,

CURRENT TOP

OCCUPIED
SECTION

NEXT BOTTOM

Figure 6. Circular List

14

LOGICAL INSTRUCTION FORMATS

The Logical instructions use the Register to Register (RR), the Short Format (SF), the Register
and Indexed Storage (RX), and the Register and Immediate Storage (RI) formats.

LOGICAL INSTRUCTIONS

The instructions described In this section are:

LH Load Halfword

LHR Load Halfword Register

LHI Load Halfword Immediate

LIS Load Immediate Short

LCS Load Complement Short

LM Load Multiple

LB Load Byte

LBR Load Byte Register

EXBR Exchange Byte Register

STH Store Halfword

STM Store Multiple

STB Store Byte

STBR Store Byte Register

NH AND Halfword

NHR AND Halfword Register

NHI AND Halfword Immediate

OH OR Halfword

OHR OR Halfword Register

OHI OR Halfword Immediate

XH Exclusive OR Halfword

XHR Exclusive OR Halfword Register
XHI Exclusive OR Halfword Immediate
THI Test Halfword Immediate

CLH Compare Logical Halfword
CLHR Compare Logical Halfword Register
CLHI Compare Logical Halfword Immediate
CLB Compare Logical Byte

SLL Shift Left Logical

SRL Shift Right Logical

SLHL Shift Left Halfword Logical
SLLS Shift Left Logical Short

SRHL Shift Right Halfword Logical
SRLS Shift Right Logical Short

RLL Rotate Left Logical

RRL Rotate Right Logical

ATL Add to Top of List

ABL Add to Bottom of List

RTL Remove from Top of List

RBL Remove from Bottom of List

Instruction

Load Halfword

Load Halfword Register
Load Halfword Immediate
Load Immediate Short
Load Complement Short

Assembler Notation Op-Code Format
LH R1,A (X2) 48 RX
LHR R1, R2 08 RR
LHI RI, I2 (A2) C8 RI
LIS RI, N 24 SF
LCS Rl, N 25 SF

Operation

The second operand replaces the contents of the register specified by R1.

Condition Code
CIV{GIL
0|0]|01i0 Value is zero
ojol0]1 Value is not zero
0{0111]0 Value is not zero

Programming Notes

16

The Load Immediate Short instruction causes the four-bit second operand to be expanded to a
16 bit halfword with high order bits forced to zero. This halfword replaces the contents of

the register specified by R1.

The Load Complement Short instruction causes the four-bit second operand to be expanded to
a 16 bit halfword with high order bits forced to zero. The two's complement value of this half-
word replaces the contents of the register specified by R1.

When the load operations operate on fixed point data, the Condition Code indicates zero (no
flags set), negative (L flag set), or positive (G flag set).

In the RR format, if R1 equals R2, the load instruction functions as a test on the contents of
the register,

In the RX format, the second operand must be located on a halfword boundary.

nstrucuon

L.oad Multiple

Assembler Notation Op-Code Format
LM R1,A (X2) D D1 RX
Operation

Successive registers, starting with the register specified by R1, are loaded from successive
memory locations, starting with the location specified as the effective address of the second
operand, Each register is loaded with a halfword from memory. The process stops when
Register 15 has been loaded.

Condition Code

Unchanged

Programming Note

The second operand must be located on a halfword boundary.

17

Instruction

Load Byte
Load Byte Register

Assembler Notation Op-Code Format
LB R1,A (X2) D3 RX
LBR R1, R2 93 RR

Operation

The eight bit second operand replaces the least significant bits (Bits 8:15) of the register
specified by R1. Bits 0:7 of the register are forced to zero.

Condition Code

Unchanged

Programming Note

In the Load Byte Register instruction, the second operand is taken from the least significant
eight bits (Bits 8:15) of the register specified by R2.

18

Instruction

Exchange Byte Register

Assembler Notation Op-Code Format
EXBR R1, R2 94 RR
Operation

The two eight bit bytes contained in the register specified by R2 are exchanged and loaded
into the registers specified by R1., Following execution of this instruction, the contents
of R2 are unchanged,

Condition Code

Unchanged

Programming Note

R1 and R2 may specify the same register.

19

Instruction

Store Halfword

Assembler Notation Op-Code Format
STH R1, AX2) 40 RX
Operation

The 16 bit contents of the register specified by R1 replace the contents of the memory loca-
tion specified by the effective address of the second operand.

Condition Code

Unchanged

Programming Note

The second operand location must be on a halfword boundary.

20

Instruction

Store Multiple

Assembler Notation Op-Code Format
STM R1, A(X2) DO RX
Operation

The halfword contents of registers, starting with the register specified by R1, replace the
contents of successive memory locations, starting with the location specified by the effective
address of the second operand. The process stops when Register 15 has been stored.

Condition Code

Unchanged

Programming Note

The second operand location must be on a halfword boundary.

21

Instruction

Store Byte
Store Byte Register

Assembler Notation Op-Code Format
STB R1,A (X2) D2 RX
STBR R1, R2 92 RR

Operation

The least significant eight bits (Bits 8:15) of the register specified by R1 are stored in the
second operand location.

Condition Code

Unchanged

Programming Note

In the Store Byte Register instruction, the eight bit quantity is stored in Bits 8:15 of the register
specified by R2. Bits 0:7 of the register are unchanged.

Instruction

AND Halfword

AND Halfword Register
AND Halfword Immediate

Assembler Notation

NH
NHR
NHI

Operation

Op-Code Format
R1, A (X2) 44 RX
R1, R2 04 RR
R1, I2 (X2) c4 RI

The logical product of the 16 bit second operand and the contents of the register specified
in R1 replaces the contents of the register specified by R1. The 16 bit product is formed
on a bit-by-bit basis.

Condition Code

G

o o ol
o o old

0
0
1

O H Ojp

Programming Note

Result is zero
Result is not zero
Result is not zero

In the RX format, the second operand must be located on a halfword boundary.

23

Instruction

OR Halfword
OR Halfword Register
OR Halfword Immediate

Assembler Notation Op-Code Format
OH R1, A (X2) 46 RX
OHR R1, R2 06 RR
OHI R1, I2 (X2) cé RI

Operation

The logical sum of the 16 bit second operand and the contents of the register specified by
R1 replaces the contents of the register specified by R1. The sum is formed on a bit-by-

bit basis.

Condition Code
CIVIGIL
ojojojo Result is zero
0j0f011 Result is not zero
ofol1]o Result is not zero

Programming Note

In the RX format, the second operand must be located on a halfword boundary.

24

Instruction

Exclusive OR Halfword
Exclusive OR Halfword Register
Exclusive OR Halfword Immediate

Assembler Notation Op-Code Format
XH R1, A (X2) 47 RX
XHR R1l, R2 07 RR
XHL R1, I2 (X2) C7 RI

Operation

The logical difference of the 16 bit second operand and the contents of the register specified
by R1 replaces the contents of the register specified by R1. The 16 bit difference is formed

on a bit-by-bit basis.

Condition Code
CIV]GIL
ojojoijo Result is zero
0jojo|1 Result is not zero
010f(1]0 Result is not zero

Programming Note

In the RX format, the second operand must be located on a halfword boundary.

25

Instruction

Test Halfword Immediate

Assembler Notation Op-Code Format
THI R1, I2 (X2) C3 RI
Operation

Each bit in the 16 bit second operand is logically ANDed with the corresponding bit in the
general register specified by R1. The contents of the register specified by Rl and the se-

cond operand are unchanged.

Condition Code
C|V|IG|L
010]0]0 Result is zero
0j0]0]}1 Result is not zero
ojof1140 Result is not zero

26

Instruction

Compare Logical Halfword
Compare Logical Halfword Register
Compare Logical Halfword Immediate

Assembler Notation Op-Code Format
CLH R1,A (X2) 45 RX
CLHR R1,R2 05 RR
CLHI R1,R2 (X2) C5 RI

Operation

The first operand, the contenés of the register specified by R1, is the compared logically
to the second operand. The result is indicated by the Condition Code settings. Neither
operand is changed.

Condition Code
C{VIG]|L
0ixX|o0}jo0 First operand equal to second
1{X]of1 First operand less than second
1[(X]1j0 First operand less than second
01X|0f1 First operand greater than second
0|X|1]0 First operand greater than second

Programming Note

In the RX format, the second operand must be located on a halfword boundary.

Instruction

Compare Logical Byte

Assembler Notation Op-Code Format
CLB R1, A (X2) D4 RX R
Operation

The byte quantity, contained in Bits 7:15 of the register specified by R1, is compared with
the second operand. The result is indicated by the Condition Code settings. Neither operand

is changed.

Condition Code
ClVI|G|L
o1xXtofjo First operand equal to second
1iX|0}1 First operand less than second
1|X{1/0 First operand less than secornd
01xX|0]1 First operand greater than second
0[X{1]0 First operand greater than second

Programming Note

The state of the V flag is undefined,

28

Instruction

Shift Left Logical

Assembler Notation Op-Code Format
SLL R1l, I2 X2) ED RI
Operation

In this instruction, the register specified by R1 and the register implied by the value of

R1+1 are linked together to form a fullword operand. This operand is shifted left the number
of binary places specified by the second operand. Bits shifted out of Pogition 0 in the register
specified by R1 are shifted through the carry flag of the Condtiion Code, and then lost. The
last bit shifted remains in the carry flag. Bits shifted from Position 0 of the second register
move into Position 15 of the first. Zeros are moved into Position 15 of the second register.

Condition Code
C|VIG|L
Xlojofo Result is zero
X|jo0{ofl1 Result is not zero
Xiol1jo Result is not zero

Programming Notes

The shift count is specified by the least significant five bits of the second operand.
The state of the C flag indicates the state of the last bit shifted.

When the first operand is fixed point data, the L flag set indicates a negative result, the G
flag set indicates a positive result.

If the second operand specifies a shift of zero places, the state of the C flag is undefined,

The register specified by R1 must be an even numbered register.

instruction

Shift Right Logical

Assembler Notation Op-Code Format
SRL R1,A (X2) EC RI
Operation

In this instruction, the register specified by R1 and the register implied by the value of
RI1+1 are linked together to form a fullword operand. This operand is shifted right the num-
ber of binary places specified by the second operand. Bits shifted out of Position 15 of the
second register are shifted through the carry flag of the Condition Code, and then lost. The
last bit shifted remains in the carry flag, Bits shifted from Position 15 of the first register
move into Position 0 of the second. Zeros are moved into Position 0 of the first register.

Condition Code
CIVIGI|L
XJ0|0}]0 Result is zero
Xl|0]|0]|1 Result is not zero 3
Xi0oj1]o Result is not zero

Programming Notes
The shift count is specified by the least significant five bits of the second operand.
The state of the C flag indicates the state of the last bit shifted.

When the first operand is fixed point data, the L flag set indicates a negative result, the G
flag set indicates a positive result.

If the second operand specifies a shift of zero places, the state of the carry flag is undefined.

The register specified by R1 must be an even numbered register.

instruction

Shift Left Halfword Logical
Shift Left Logical Short

Assembler Notation Op-Code Format
SLHL R1, I2 (X2) CD RI
SL1S R1, N 01 SF

Operation

The first operand, the contents of the register specified by R1, is shifted left the number of
places specified by the second operand. Bits shifted out of Position 0 are shifted through the
carry flag of the Condition Code, and then lost. The last bit shifted remains in the carry
flag. Zeros are moved into Position 15.

Condition Code
CI|VIG|L
XJojolo Result is zero
X|(0l0]1 Result is not zero
Xiof110 Result is not zero

Programming Notes

In the R1 format, the shift count is specified by the least significant four bits of the second
operand,

In the SF format, the maximum shift count is 15.
The state of the C flag indicates the state of the last bit shifted.

When the first operand is fixed point data, the L flag set indicates a negative result, the G
flag set indicates a positive result.

If the second operand specifies a shift of zero places, the state of the C flag is undefined.

31

Instruction

Shift Right Halfword Logical
Shift Right Logical Short

Assembler Notation Op-Code Format
SRHL R1, 12 (X2) cC RI
SRLS R1, N 90 SF

Operation

The first operand, the contents of the register specified by R1, is shifted right the number
of places specified by the second operand. Bits shifted out of Postion 15 are shifted through
the carry flag of the Condition Code, and then lost, The last bit shifted remains in the carry
flag. Zeros are shifted into Position 0,

Condition Code
ClVI|G|L
X{ojoj0 Result is zero
Xlojoj1 Result is not zero
Xlo0|l1l]0 Result is not zero

Programming Notes

In the RI format, the shift count is specified by the least significant four-bits of the second
operand,

In the SF format, the maximum sghift count is 15,
The state of the C flag indicates the state of the last bit shifted.

When the register specified by R1 contains fixed point data, the L flag set indicates a negative
result, the G flag set indicates a positive result.

If the second operand specifies a shift of zero places, the state of the C flag is undefined.

32

insrucuon

Rotate Left Logical

Assembler Notation Op-Code Format

RLL R1,12 (X2) EB RI

Operation

In this instruction, the register specified by R1 and the register implied by the value of R1+1
are linked together to form a fullword operand. This operand is rotated left the number of
binary places specified by the second operand. Bits moved from Position 0 of the first re-

gister move into Position 15 of the second register.

Condition Code
CIV|GIL
o[olofo0 Result is zero
010(0(1 Result is not zero
0101110 Result is not zero

Programming Note

The register specified by R1 must be an even numbered register.

33

Instruction

Rotate Right Logical

Assembler Notation Op-Code Format
RRL R1,I2 X2) EA RI
Operation

In this instruction, the register specified by R1 and the register implied by the value of R1+1
are linked together to form a fullword operand. This operand is rotated right the number of
binary places specified by the second operand. Bits moved from Position 15 of the second
register move into Position 0 of the first register.

Condition Code
CiV|G|L
olofo}o Result is zero
0j0j0]1 Result is not zero
0jo0|1}0 Result is not zero

Programming Note

The register specified by R1 must be an even numbered register.

Instruction .

Add to Top of List
Add to Bottom of List

Assembler Notation Op-Code Format
ATL R1,A (X2) 64 RX
ABL R1,A X2) 65 RX

Operation

The register specified by R1 contains the halfword element to be added to the list. The list
is located in memory at the address of the second operand. The number of slots tally is com-
pared with the number of slots in the list. If the number of slots used equals the number of
slots in the list, an overflow condition exists. The element is not added to the list, and the
overflow flag in the Condition Code is set. If the number of slots used tally is less than the
number of slots in the list, it is incremented by one, the appropriate pointer (current top

or next bottom) is changed, and the element is added to the list.

Condition Code
CIV|G|L
ololo|oO Element added sucessfully
0(1(1010 List overflow

Programming Notes
These instructions manipulate circular lists as described in the introduction to this chapter.

The second operand location must be on a halfword boundary.

Instruction

Remove from Top of List
Remove from Bottom of List

Assembler Notation Op-Code Format
RTL R1,A (X2) 66 RX
RBL R1,A(X2) 67 RX

Operation

The halfword element removed from the list replaces the contents of the register specified by
R1. The list is located at the address of the second operand. If, at the start of the instruc-
tion execution, the number of slots used tally is zero, the list is already empty. The instruc-
tion terminates with the overflow flag set in the Condition Code. The register specified by

R1 is unchanged. This condition is referred to as list underflow, If underflow does not occur,
the appropriate pointer (current top or next bottom) is changed, the number of slots used

tally is decremented by one, and the element extracted from the list is placed in the register

specified by R1.

Condition Code
C]V|G|L)
0;01010 List now empty
0jo0ij1;0 List is not yet empty
0i1{010 List underflow

Programming Notes

These instructions manipulate circular lists as described in the introduction to this chapter.

The second operand location must be on a halfword boundary.

36

CHAPTER 4

BRANCHING

OPERATIONS

In normal operation, the Processor executes instructions in sequential order. The Branch in-
structions allow this sequential mode of operation to be varied, so that programs can loop, trans-
fer control to subroutines, or make decisions based on the results of previous operations.

. The second operand in Branch instructions is the address of the memory location to which con-
trol is transferred. The address may be contained in a register, or it may be specified by the
instruction as the second operand address.

Decision Making
The Conditional Branch instructions permit the program to make decisions based on previous
results. In these instructions, the R1 field contains a four bit mask, M1, which is tested against

the Condition Code. The result of the test determines whether the branch is taken, or the next
sequential instruction is executed.

Subroutine Linkage
The Branch and Link instructions allow branching to subroutines in such a way that a return add-

ress is passed to the subroutine. In these instructions, the address of the memory location im-
mediately following the Branch instruction is saved in the register specified by R1.

BRANCH INSTRUCTION FORMATS

The Branch instructions use the Register to Register (RR), the Short Form (S¥), and the Regis-
ter and Indexed Storage (RX) formats.,

BRANCH INSTRUCTIONS

The instructions described in this section are:

BFC Branch on False Condition

BFCR Branch on False Condition Register
BFBS Branch on False Condition Backward Short
BFFS Branch on False Condition Forward Short
BRC Branch on True Condition

BRCR Branch on True Condition Register

BTBS Branch on True Condition Backward Short
BTFS Branch on True Condition Forward Short
BAL Branch and Link

BALR Branch and Link Register

BXLE Branch on Index Low or Equal

BXH Branch on Index High

37

Instruction

Branch on False Condition

Branch on False Condition Register
Branch on False Condition Backward Short
Branch on False Condition Forward Short

Assembfer Notation

BFC

BFCR
BFBS
BFFS

Operation

M1, A2 (X2)
M1, R2

M1, N

M1, N

Op-Code

43
03
22
23

Format

SF
SF

The Condition Code of the Program Status Word is tested for the conditions specified in the

mask field, M1.

If all conditions tested are found to be false, a branch is taken to the sec-

ond operand location. If any of the conditions tested is found to be true, the next sequential
instruction is executed.

Condition Code

Unchanged

Programming Notes

In the RR format, the branch address is contained in the register specified by R2.

In the SF format, the N field contains the number of halfwords to be added to or subtracted
from the current Location Counter to obtain the branch address.

In the RR and RX formats, the branch address must be located on a halfword boundary.

Instruction

Branch on True Condition

Branch on True Condition Register
Branch on True Condition Backward Short
Branch on True Condition Forward Short

Assembler Notation

BTC

BTCR
BTBS
BTFS

Operation

M1,A2 (x2)
M1,A2 (X2)
M1,N
M1, N

Op-Code

42
02
20
21

Format

SF
SF

The Condition Code of the Program Status Word is tested for the conditions specified by the
mask field, M1. If any of the conditions tested are found to be true, a branch is executed
to the second operand location. If none of the conditions tested is found to be true, the next

sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

In the RR format, the branch address is contained in the register specified by R2.

In the SF format, the N field contains the number of halfwords to be added to or subtracted
from the current Location Counter to obtain the branch address.

In the RR and RX formats, the branch address must be located on a halfword boundary.

Instruction

Branch and Link
Branch and Link Register

Assembler Notation Op-Code Format
BAL R1,A2 (X2) 41 RX
BALR R1, R2 01 RR

Operation

The address of the next halfword location following the Branch and Link instruction word is
placed in the register specified by R1, and branch is taken to the second operand location.

Condition Code

Unchanged

Programming Notes

The branch address is obtained before the register specified by R1 is changed. This allows
either R1 and X2 or R1 and R2 to specify the same register.

The second operand location must be on a halfword boundary.

40

Instruction

Branch on Index Low or Equal

Assembler Notation Op-Code Format
BXLE R1,A2 (X2) C1 RX
Operation

Prior to the execution of this instruction, the register specified by R1 must contain a 16 bit
starting index value. The register specified by R1+1 must contain a 16 bit increment value.
The register specified by R1+2 must contain a 16 bit comparand (limit or final value), All
values may be signed.

Execution of this instruction causes the increment value to be added to the index value. The
result is logically compared to the limit or final value. If the index value is less than or

equal to the limit value, a branch is executed to the second operand location. If the index
value is greater than the limit value, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address is obtained before the register specified by R1 is changed.
The incremented index value replaces the contents of the register specified by R1.
The register specified by R1 must not be greater than 13,

The second operand location must be on a halfword boundary.

41

Instruction

Branch on Index High

Assembler Notation Op-Code Format
BXH R1,A2 (X2) Co RX
Operation

Prior to the execution of this instruction, the register specified by R1 must contain a 16 bit
starting index value. The register specified by R1+1 must contain a 16 bit increment value,
The register specified by R1+2 must contain a 16 bit comparand (limit or final value). All
values may be signed.

Execution of this instruction causes the increment value to be added to the index value. The
result is logically compared to the limit or final value, If the index value is greater than the
limit value, a branch is executed to the second operand location. If the index value is equal

to or less than the limit value, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

42

The branch address is obtained before the register specified by R1 is changed.
The incremented index value replaces the contents of the register specified by R1.
The register specified by R1 must not be greater than 13.

The second operand location must be on a halfword boundary.

CHAPTER 5

FIXED POINT ARITHMETIC

DATA FORMATS

The Fixed Point Arithmetic instructions provide a complete set of operations for calculating
addresses and indexes, for counting, and for general purpose fixed point arithmetic.

There are two formats for fixed point data: the halfword, and the fullword. In each of these
formats, the most significant bit (Bit 0) is the Sign bit. The remaining bits, either 15 or 31,
represent the magnitude. Refer to Figure 7.

0 HALFWORD 15
al |
0 FULLWORD 31,

: J

Figure 7. Fixed Point Data Words Formats

Positive values are represented in true binary form with a Sign bit of zero. Negative numbers
are represented in two's complement form with a Sign bit of one. To change the sign of a number,
the two's complement of the number is produced as follows:

Change all zeros to ones, and all ones to zeros

Add one
The quantity zero is represented with all bits zero.
CONDITION CODE

Most Fixed Point Arithmetic instructions affect the Condition Code. (The exceptions are multiply
and divide.) The Condition Code indicates the effect of the operation on the result.

43

FIXED POINT INSTRUCTION FORMATS
The Fixed Point instructions use the Register to Register (RR), the Short Form (SF), the Regis-
ter and Indexed Storage (RX), and the Register and Immediate Storage (RI) formats.

FIXED POINT INSTRUCTIONS

The instructions described in this section are:

AH Add Halfword

AHR Add Halfword Register

AHI Add Halfword Immediate

AlS Add Immediate Short

AHM Add Halfword to Memory

ACH Add with Carry Halfword

ACHR Add with Carry Halfword Register
SH Subtract Halfword

SHR Subtract Halfword Register

SHI Subtract Halfword Immediate

SIS Subtract Immediate Short

SCH Subtract with Carry Halfword
SCHR Subtract with Carry Halfword Register
CH Compare Halfword

CHR Compare Halfword Register

CHI Compare Halfword Immediate

MH Multiply Halfword

MHR Multiply Halfword Register

MHU Multiply Halfword Unsigned
MHUR Multiply Halfword Unsigned Register
DH Divide Halfword

DHR Divide Halfword Register

SLA Shift Left Arithemtic

SLHA Shift Left Halfword Arithmetic
SRA Shift Right Arithmetic

SRHA Shift Right Halfword Arithmetic

Instruction

Add Halfword

Add Halfword Register
Add Halfword Immediate
Add Immediate Short

Assembler Notation Op-Code Format
AH R1,A2 (X2) 4A RX
AHR R1, R2 0A RR
AHI R1, I2 (X2) CA RI
AIS R1,N 26 SF

Operation

The second operation is added algebraically to the contents of the register specified by R1.
The result of this 16 bit addition replaces the contents of the register specified by R1.

Condition Code
Cl|V]|G]|L
X!ojo]1 Result is zero
Xj|0|o0}1 Result is not less than zero
X|of{1]0 Result is greater than zero
Xi1|X| X Arithmetic overflow
1 1XIX|X Carry

Programming Notes

The second operand for the Add Immediate Short instruction is obtained by expanding the
four-bits data field, N, to a 16 bit halfword by forcing the high order bits to zero.

In the RX format, the second operand must be located on a halfword boundary.

Instruction

Add Halfword to Memory

Assembler Notation) Op-Code

Format
AHM R1,A2 (X2) 61 RX
Operation

The halfword second operand is added algebraically to the contents of the register specified
by R1. The result replaces the halfword second operand in memory.

Condition Code
ClV|G]|L
Xlo0jo0]|o Result is zero
Xjo01011 Result is less than zero
X|of110 Result is greater than zero
X{1{X|X Arithmetic overflow
1 1 X|X|X Carry

Programming Note

The second operand must be located on a halfword boundary.

Instruction

Add with Carry Halfword
Add with Carry Halfword Register

Assembler Notation Op-Code Format
ACH R1,A2 (X2) 4E RX
ACHR R1,R2 0E RR

Operation

The 16 bit second operand and the carry bit of the Condition Code are added algebraically
to the contents of the register specified by R1. The result replaces the contents of the
register specified by R1. The second operand is unchanged,

Condition Code
ClVIGI|L
X|0106{0 Result is zero
Xj|0|0}1 Result is less than zero
Xiof1]o0 Result is greater than zero
X1 XX Arithmetic overflow
1|X]X|X Carry

Programming Notes

Multiple precision addition operations require a carry forward from the least significant
operands to the most significant. To accomplish this, the locations containing the least
significant portions of the two operands are summed, using the Add Halfword instruction.

A carry forward, if it occurs, is retained in the carry bit of the Condition Code. The loca-
tions containing the next least significant portions of the two operands are then summed, using
the Add with Carry instruction. The carry bit contained in the Condition Code, set from the
previous operation, participates in this sum. The carry bit is then set to reflect the new re-
sult., The Add with Carry instruction is used on succeeding pairs of operands until the most
significant operands of the multiple precision words have been summed. The resulting Con-
dition Code is valid for testing the multiple precision word.

47

Instruction

Subtract Halfword

Subtract Halfword Register
Subtract Halfword Immediate
Subtract Immediate Short

Assembler Notation Op-Code Format
SH R1,A2 (X2) 4B RX
SHR R1,R2 0B RR
SHI R1, 12 (X2) CB R
SIS R1,N 27 SF

Operation

The halfword second operand is subtracted algebraically from the contents of the register
specified by R1., The result replaces the contents of the register specified by R1.

Condition Code
C|VIGI|L
Xiolofo Result is zero
Xjolol1l Result is less than zero
Xjo0|140 Result is greater than zero
Xi1iX|X Arithmetic overflow
1 XXX Borrow

Programming Notes

The second operand for the Subtract Immediate Short instruction is obtained by expanding
the four-bit data field, N, to a 16 bit halfword by forcing the high order bits to zero.

In the RX format, the second operand must be located on a halfword boundary.

Instruction

Subtract with Carry Halfword
Subtract with Carry Halfword Register

Assembler Noatation Op-Code Format
SCH R1,A2 (X2) 4F RX
SCHR R1,R2 oF RR

Operation

The 16 bit second operand with the carry bit is subtracted from the contents of the register
specified by R1. The result replaces the contents of the register specified by R1. The
second operand is unchanged.

Condition Code
C|VI|GI|L
X|0jo0jo Result is zero
X|ojo|1 Result is less than zero
Xjoj1})o Result is greater than zero
X[1)1X{X Arithmetic overflow
XI1IX|X Carry

Programming Note

Multiple precision subtraction operations require a carry forward from the least significant
operands to the most significant. To accomplish this, the locations containing the least signi-
ficant portions of the two operands are subtracted, using the Subtract Halfword instruction.

A carry forward, if it occurs, is retained in the carry bit of the Condition Code. The locations
containing the next least significant portions of the two operands are then subtracted, using the
Subtract with Carry instruction. The carry bit contained in the Condition Code, set from the
previous operation, participates in this operation. The carry bit is then set to reflect the -
new result. The Subtract with Carry instruction is used on succeeding pairs of operands un-
til the most significant operands of the muiltiple precision words have been subtracted. The
resulting Condition Code is valid for testing the multiple precision word.

49

Instruction
Compare Halfword

Compare Halfword Register
Compare Halfword Immediate

Assembler Notation

CH R1,A2 (X2)

CHR R1,R2

CHI R1, I2 (X2)
Operation

Format

RX
RR
RI

The first operand, contained in the register specified by R1, is compared algebraically to
the 16 bit second operand. The result is indicated by the Condition Code settings. Neither

operand is changed.

Condition Cods
C{VIG|L
0[xX|0|0
1{X|o0]|1
0{X|1}|0

Programming Note

First operand equal to second operand
First operand less than second operand
First operand greater than second operand

In the RX format, the second operand must be located on a halfword boundary.

Instruction

Multiply Halfword
Multiply Halfword Register

Assembler Notation Op-Code Format
MH R1,A2 (X2) 4c RX
MHR R1,R2 (1] RR

Operation

The halfword first operand, contained in the register specified by R1+1, is multiplied by the
halfword second operand. The 32 bit result replaces the contents of the registers specified
by R1 and R1+1.

Condition Code

Unchanged

Programming Notes

The R1 field of these instructions must specify an even numbered register.

In the RX format, the second operand must be located on a halfword boundary.

51

Instruction

Multiply Halfword Unsigned
Multiply Halfword Unsigned Register

Assembler Notation Op-Code Format
MHU R1,A2 (X2) DC RX
MHUR R1,R2 9C RR

Operation

The 16 bit second operand is multiplied by the contents of the register specified by R1+1.
All 16 bits of both operands are considered magnitude. The resulting 32 bit product is con-
tained in the registers specified by R1 and R1+1. The second operand is unchanged.

Condition Code

Unchanged

Programming Notes
The R1 field must specify an even numbered register.

This instruction is most useful in applications requiring multiple precision multiply capability.

52

Instruction

Divide Halfword
Divide Halfword Register

Assembler Notation Op-Code Format
DH R1,A2 (X2) 4D RX
DHR R1,R2 oD RR

Operation

The 32 bit dividend contained in the registers specified by R1 and R1+1 is divided by the half-

word divisor. The 16 bit signed remainder replaces the contents of the register specified in

R1. The 16 bit signed quotient replaces the contents of the register specified by R1+1,
Condition Code

Unchanged

Programming Notes
The R1 field of these instructions must specify an even numbered register.

If the divisor is zero, the instruction is aborted before the destination registers are changed.
The fixed point fault interrupt is taken, if enabled by Bit 3 of the current PSW.

If the quotient cannot be expressed in a halfword (a Sign bit and 15 magnitude bits) the instruc-
tion is aborted before the destination registers are changed. The fixed point fault interrupt is
taken, if enabled by Bit 3 of the current PSW,

In the RX format, the second operand must be located on a halfword boundary.

Instruction

Shift Left Arithmetic

Assembler Notation Op-Code Format
SLA R1, 12 X2) EF RI
Operation

In this instruction, the register specified by R1 and the register implied by the value R1+1
are linked together to form a fullword operand. Bit 0 of the register specified by R1 is the
Sign bit. Bits 1:15 of the register specified by R1 and Bits 0:15 of the register specified by
R1+1 are shifted left the number of binary places specified by the second operand, The Sign
bit is not shifted. Bits shifted out of Position 1 of the first register are shifted into the

carry flag of the PSW and then lost. Zeros are moved into Position 15 of the second register.

Condition Code
CI|VIGIL
Xjo}jo0}0 Result is zero
X|0{0)1 Result is less than zero
X|011}|0 Result is greater than zero

Programming Notes
R1 must specify an even numbered register.
The least significant five bits of the second operand determine the shift count.

If the second operand specifies a shift count of zero, the state of the C flag {s undefined.

The state of the C flag indicates the state of the last bit shifted.

Instruction

Shift Left Halfword Arithmetic

Assembler Notation

SLHA

Operation

Op-Code Format

R1,12 (X2) CF RI

Bits 1:15 of the first operand, contained in the register specified by R1, are shifted left
the number of binary places specified by the second operand. The Sign bit (Bit 0) remains
unchanged. Bits shifted out of Position 1 are shifted through the carry flag, and then lost.
The last bit shifted remains in the carry flag. Zeros are shifted into Position 15.

Condition Code

\'

G

sl e

0
0
0

0
0
1

o = o

Programming Notes

Result is zero
Result is less than zero
Result is greater than zero

The state of the C flag indicates the state of the last bit shifted.

The shift count is specified by the low order four-bits of the second operand.

If the second operand specifies a shift of zero places, the state of the C flag is undefined,

Instruction

Shift Right Arithmetic

Assembler Notation Op-Code Format

SRA EE RI

Operation

In this instruction, the register specified by R1 and the register implied by the value R1+1
are linked together forming a fullword operand. Bit 0 of the register specified by R1 is the
Sign bit. Bits 1:15 of the register specified by R1 and Bits 0:15 of the register specified by
R1+1 are shifted right and the number of binary places specified by the second operand, The
Sign bit remains unchanged and is propagated right as many positions as specified by the sec-

ond operand. Bits shifted out of Position 15 of the second register are shifted into the carry
flag of the PSW, and then lost.

Condition Code
CIV|G|L -
Xlojo]o Result is zero
X|ojo}1 Result is less than zero
X{o|1}0 Result is greater than zero

Programming Notes
R1 must specify an even numbered register.
The least significant five bits of the second operand determine the shift count.
The state of the C flag indicates the state of the last bit shifted.

If the second operand specifies a shift count of zero, the state of the C flag is undefined.

Instruction

Shift Right Halfword Arithmetic

Assembler Notation Op-Code Format
SRHA R1,12 (X2) CE RI
Operation

Bits 1:15 of the first operand, contained in the register specified by R1, are shifted right the
number of binary places specified by the second operand. The Sign bit (Bit 0) remains un-
changed and is propagated right as many places as specified by the second operand, Bits
shifted out of Position 15 are shifted through the carry flag, and then lost. The last bit shifted
remains in the carry flag.

Condition Code
C|VIG|L
XJ|o0}o0}o0 Result is zero
Xlo)ot1 Result is less than zero
X|ofl1{o Result is greater than zero

Programming Notes
The state of the C flag indicates the state of the last bit shifted.,

The shift count is specified by the low order four-bits of the second operand.

If the second operand specifies a shift of zero places, the state of the C flag is undefined.

57/58

CHAPTER 6

FLOATING POINT ARITHMETIC

DATA FORMATS

The Floating Point Arithmetic instructions provide a means for rapid manipulation of the scientific
data expressed as floating point numbers. In addition to the usual operations of add, subtract,
multiply, divide, and compare, the floating point set includes instructions for loading and storing
floating point operands.

Floating point data is expressed in excess-64 notation. Each floating point number consists of a
Sign bit, an exponent field, and a fraction, as shown in Figure 8.

01 78 112 1516 1920 2324 27128 3
s X l Fi F2 F3 F4 F5 F6

Figure 8. Floating Point Data Format

This form of representation requires 32 bits. The Sign bit indicates whether the floating point
value is positive or negative. The exponent field indicates the power of 16 by which the fraction
is to be multiplied to produce the floating point value. In excess-64 notation, an exponent field

of 64 (X'40') indicates that the fraction is to be multiplied by 169, An exponent field of 63, (X'3F")
indicates that the fraction is to be multiplied by 161, An exponent field of 65 (X'41') indicates
that the fraction is to be multiplied by 16%, Floating point numbers may range in absolute value
from 5.4 x 10~79 through 7.5 x 1075,

Normalization

The process of normalizing floating point quantities allows values to be represented with the
greatest possible precision. In the normalization process, the floating point fraction is shifted
left one hexadecimal digit (four-bits) at a time until the most significant hexadecimal digit of the
fraction is non-zero. The exponent is decremented by one for each hexadecimal digit shifted.

Exponent Overflow and Underflow

Exponent overflow results when a floating point operation produces an exponent greater than 63
(exponent field greater than 127 or X'7F'). On overflow, the floating point result is forced to the
maximum absolute value, X'7FFF FFFF'. The Sign bit is not changed, and may be either zero
or one,

Exponent underflow results when a floating point operation, including normalization, produces an

exponent less than -64, (exponent field less than zero). On underflow, the result is forced to
true zero, X'0000 0000'.

59

Conversion from Decimal
The process of converting a decimal number into the excess-64 notation involves the following
steps:
1. Separate the decimal integer from the decimal fraction.
182.8751¢ = (182 + .375)1¢
2. Convert each part to hexadecimal.
1824 = Bby¢ .375. =+ 636
3. Combine the hexadecimal integer and fraction.
B6.616 = (B6.6 X 16%)14
4. shift the radix point.
(B6.6 X 16%),, = (. B66 X 162)16
5. Add 64, (X'40') to the exponent,

6. Convert the exponent field and fraction to binary, allowing 1 bit for the sign, 7 bits
for the exponent field, and 24 bits for the fraction.

42B66. = 0100 0010 1011 0110 0110 0000 0000 0000

FLOATING POINT INSTRUCTIONS FORMATS

The Floating Point instruction use the Register to Register (RR), and the Register and Indexed
Storage (RX) instruction formats. In all the RR format instructions, the R1 and R2 fields specify
one of the floating point registers. There are eight floating point registers numbered 0; 2, 4,

6, 8, 10, 12, and 14, In the RX instructions the R1 field always specifies a floating point register.

FLOATING POINT INSTRUCTIONS

The floating point arithmetic operations (excluding loads and stores) require normalized operands
to insure correct results. If the operands are not normalized, the results of these operations are
undefined. Floating point results are normalized. The Floating Point Load instruction normalizes
floating point data extracted from memory.

The instructions described in this section are:

LE Load

LER Load Register
STE Store

AE Add

AER Add Register

SE Subtract

SER Subtract Register
CE Compare

CER Compare Register
ME Multiply

MER Multiply Register
DE Divide

DER Divide Register

61

Instruction

Load
Load Register

Assembler Notation Op-Code Format
LE R1,A2(X2) 68 RX
LER R1,R2 28 RR
Operation

The floating point second operand is normalized, if necessary, and placed in the floating
point register specified by R1.)

Condition Code
C|V|G|L
0ojofoto Floating point value is zero
0lojof1 Floating point value is less than zero
0jojijo Floating point value is greater than zero
0]1i0}]o0 Exponent underflow

Programming Notes
Normalization may produce exponent underflow. In this case, the result is forced to zero,
X'0000 0000'. The V flag is set in the Condition Code, the G and L flags are reset, and if
enabled by Bit 5 of the current PSW, the arithmetic fanlt interrupt is taken.

If the fraction of the second operand is zero, the result is forced to zero, and the C,V, G, and
L flags are reset.

In the RX format, the second operand must be located on a fullword boundary.

62

Instruction

Store
Assembler Notation Op-Code Format
STE R1,A2(X2) 60 RX
Operation

The floating point first operand, contained in the floating point register specified by R1,
is placed in the memory location specified by the second operand address. The first

operand is unchanged.

Condition Code

Unchanged

Programming Note

The second operand must be located on a fullword boundary.

Instruction

Add
Add Register

Assembler Notation Op-Code Format
AE R1,A2(X2) 6A RX
AER R1,R2 2A RR
Operation

The exponents of the two operands are compared. If the exponents differ, the fraction
with the smaller exponent is shifted right hexadecimally (four-bits at a time) and its
exponent is incremented by one for each hexadecimal shift until the two exponents are
equal, The fractions are then added algebraically.

If the addition of fractions produces a carry, the exponent of the result is incremented by
one and the fraction of the result is shifted right one hexadecimal position. The carry
bit is shifted back into the most significant hexadecimal digit of the fraction, producing

a normalized result. This result replaces the contents of the register specified by R1.

If the addition of fractions does not produce a carry, the result is normalized. The
normalized result is replaced by the contents of the register specified by R1.

Condition Code
CivIG]lL
0|X|0]o0 Floating point result is zero
0Xjo{t Floating point result is less than zero
0(X|11}0 Floating point result is greater than zero
0j1jX|X Exponent overflow
0j1f0}jo0 Exponent underflow

Programming Notes

When the addition of the fraction produces a carry, incrementing the exponent of the re-
sult by one may produce exponent overflow. In this case, the result is forced to the maxi-
mum value, +X'7FFF FFFF'. The V flag, along with the G or the L flag, is set in the
Condition Code, and if enabled by Bit 5 of the current PSW, the floating point fault interrupt
is taken,

Normalization of the result may produce exponent underflow. In this case, the result is
forced to zero, X'0000 0000'. The V flag is set in the Condition Code. The G and the L
flags are always reset, and if enabled by Bit 5 of the current PSW, the floating point fault
interrupt is taken.

In the RX format, the second operand must be located on a fullword boundary.

Instruction

Subtract
Subtract Register

Assembler Notation Op-Code Format
SE R1, Z2(X2) 6B RX
SER R1,R2 2B RR
Operation 7

The exponents of the two operands are compared. If the exponents differ, the fraction
with the smaller exponent is shifted right hexadecimally (four-bits at a time) and its ex-~
ponent incremented by one for each hexadecimal shift until the two exponents are equal.
The fractions are then subtracted algebraically.,

If the subtraction of fractions produces a carry, the exponent of the result is incremented
by one and the fraction of the result is shifted right one hexadecimal digit. The carry bit
is shifted back into the most significant hexadecimal digit of the fraction producing a nor-
malized result. This result replaces the contents of the register specified by R1.

If the subtraction of fractions does not produce a carry, the result is normalized. The
normalized result replaces the contents of the register specified by R1.

Condition Code

Floating point result is zero

Floating point result is less than zero
Floating point result is greater than zero
Exponent overflow

Exponent underflow

oo o ooln
R R R IES
oMM o o
SN o m ot

Programming Notes

When the subtraction of the fractions produce a carry, incrementing the exponent of the
result by one may produce exponent overflow. In this case, the result is forced to the
maximum value, +X'7FFF FFFF'. The V flag, along with the G or the L flag, is set in
the Condition Code, and if enabled by Bit 5 of the current PSW, the floating point fault
interrupt is taken.

Normalization of the result may produce exponent underflow. In this case, the resultis
forced to zero, X'0000 0000, The V flag is set in the Condition Code, The G and the L
flags are always reset, and if enabled by Bit 5 of the current PSW, the floating point fault
interrupt is taken.

In the RX format, the second operand must be located on a fullword boundary.

Instructions

Compare
Compare Register

Assembler Notation Op-Code Format
CE R1,A2(X2) 69 RX
CER R1,R2 29 RR
Operation

The first operand is compared to the second operand. Comparision is algebraic, taking
into account the sign, fraction, and exponent of each number. The result is indicated by
the Condition Code setting, Neither operand is changed.

Condition Code
CiV]|G|L
0[X]|0}0 First operand equal to second operand
1[X]0]1 First operand less than second operand
0(xX|1]0 First operand greater than second operand

Programming Note

In the RX format, the second operand must be located on a fullword boundary.

66

Instruction

Multiply
Multiply Register

Assembler Notation Op-Code Format
ME R1,A2(X2) 6C RX
MER R1,R2 2C RR
Operation

The exponents of each operand, as derived from the excess-64 notation used in floating
point representation, are added to produce the exponent of the result. This exponent is
converted back to excess-64 notation. The fractions are then multiplied.

If the result is zero, the entire floating point value is forced to zero, X'0000 0000'. If the
product is not zero, the result is normalized. After normalization the product is rounded.
The sign of the result is determined by the rules of algebra. The result replaces the con-
tents of the register specified by R1.

Condition Code
C|V]|G|L
0{Xjo]o Floating point result is zero
0|X]|0]|1 Floating point result is less than zero
0]X|1]0 Floating point result is greater than zero
X[1{X|X Exponent overflow
Xj1101]0 Exponent underflow

Programming Notes

The addition of exponents may produce exponent overflow. In this case, the result is
forced to the maximum value, +X'TFFF FFFF'. The V flag in the Condition Code is set,
along with the G or the L flag, depending upon the sign of the result. A floating point fault
interrupt is taken, if enabled by Bit 5 of the current PSW.

The addition of exponents and the normalization process can produce exponent underflow.
In this case, the result is forced to zero, X'0000 0000' The V flag in the Condition Code

is set. The G and the L flags are always reset, and if enabled by Bit 5 of the current PSW,
the floating point fault interrupt is taken.

If the first operand or the second operand is zero, the result is forced to zero and
C,V,G and L flags are reset.

In the RX format, the second operand must be located on a fullword boundary.

67

Instruction

Divide
Divide Register

Assembler Notation Op-Code Format
DE R1,A2(X2) 6D RX
DER R1,R2 2D RR
Operation

The exponent of the second operand is subtracted from the exponent of the first operand to
produce the exponent of the result. This exponent is converted back to excess-64 notation.

The second operand is then divided into the first operand. Division continues until the
quotient is normalized, adjusting the exponent for each additional division required, No
remainder is returned. The quotient is rounded to compensate for the loss of the remainder.
The sign of the quotient is determined by the rules of algebra. The quotient replaces the
contents of the register specified by R1.

Condition Code
Cl|V]|GI|L
ofxjojo Floating point result is zero
0i{xX10]1 Floating point result is less than zero.
0}X({110 Floating point result is greater than zero
011X |IX Exponent overflow
0111010 Exponent underflow
1/1(0]0 Divisor equal to zero

Programming Notes

Before starting the divide operation, the divisor is checked. If it is equal to zero, the
operation is aborted., Neither operand is changed. The C and the V flags are set in the
Condition Code. The G and the L are reset, If enabled by Bit 5 of the current PSW, the
floating point fault interrupt is taken.

The subtraction of exponents may produce exponent overflow. In this case, the resultis
forced to the maximum value, +X'7FFF FFFF'. The V flag in the Condition Code is set,
along the G or the L flag, depending on the sign of the result. A floating point fault interrupt
is taken if enabled by Bit 5 of the current PSW.

The subtraction of exponents and the division process can produce exponent underflow. In
this case, the result is forced to zero, X'0000 0000'. The V flag in the Condition Code is
set. The G and the L flags are always reset, and if enabled by Bit 5 of the current PSW,
the floating point fault interrupt is taken.

If the first operand is zero, the result is forced to zero, and the C, V, G and L flags are
reset,

In the RX format, the second operand must be located on a fullword boundary.

CHAPTER 7

STATUS SWITCHING AND INTERRUPTS

STATUS SWITCHING AND INTERRUPTS
At any given time, the Processor may be in either the Stop or the Run mode. In the Stop mode,
the normal execution of instructions is suspended. The Processor is under control of the oper-
-ator who can, through the Display Console:

Examine the contents of any memory location

Change the contents of any memory location

Examine the contents of any general register

Examine the contents of any floating point register

Examine the contents of the Program Status Word

Execute instructions singly

Put the Processor in the Run mode
Once the Processor has been put in the Run mode, the current Program Status Word controls the
operation of the Processor. By changing the contents of the current PSW, a running program can:

Put the Processor in the Wait state

Enable or disable various interrupts

Switch between the supervisor and the protect modes

Vary the normal sequential execution of instructions

PROGRAM STATUS WORD

The Program Status Word is a 32 bit fullword as shown in Figure 9.

o
-
~
w
»~
~

5,6 819)10,11112)13,14,15 18 1
WT | €l [MM]DF{AS FPICT M otoJ[oTo [clvia|L LOCATION COUNTER
1 P

Figure 9. Program Status Word Format

69

Bits 0:15 of the PSW are reserved for status definitions. Note that Bits 8:11 are not currently
assigned specific functions. These bits must always be zero. Bits 12:15 are reserved for the
Condition Code. Bits 16:31 are reserved for the Location Counter. The status definition bits
are interpreted as follows:

Bit 0 (WT) Wait state

Bit 1 (ED) External interrupt mask

Bit 2 (MM) Machine malfunction interrupt mask

Bit 3 (DF) Fixed point fault interrupt mask

Bit 4 (AS) Automatic I/0 and immediate interrupt mask
Bit 5 (FP) TFloating point fault interrupt mask

Bit 6 (CT) Queue service interrupt mask

Bit 7 (PM) Protect mode

The current PSW is contained in a hardware register within the Processor. Status switching re~
sults when the current PSW, or at least the first half (Bits 0:15) of the current PSW is replaced.
The occurrence of an interrupt or the execution of a Status Switching instruction can cause the
replacement of the current PSW.

Wait State

Replacing the current PSW with one in which Bit 0 is set puts the Processor in the Wait state,
When the Processor is in the Wait state, program execution is halted. However, the Processor
is still responsive to machine malfunction, external, and immediate interrupts, if they are en-
abled, Automatic I/0 channel operations can also temporarily force the Processor out of the Wait
state. If the Processor is put in the Wait state with all interrupts disabled, only operator inter-
vention from the Display Console can force the Processor out of the Wait state.

Protect Mode

When Bit 7 of the current PSW is set, the Processor is in the Protect mode. A program running
in this mode is not allowed to execute Privileged instructions. (Privileged instructions include
all I/0 instructions, and most of the Status Switching instructions.) H Bit 7 of the current PSW is
reset, the Processor is in the Supervisor mode. Programs running in this mode may execute any
legal instruction.

70

INTERRUPT SYSTEM

The interrupt system of the Processor provides rapid response to external and internal events
that require service by special software routines. In the interrupt response procedure, the Pro-
cessor preserves its current state, and transfers control to the required interrupt handler. This
software routine may optionally restore the previous state of the Processor upon completion of the
service,

Some interrupts are controlled by bits in the current Program Status Word, that is, they can be
enabled or disabled by setting or resetting a bit in the PSW. Other interrupts are not controlled
by PSW bits, and are always enabled. The following is a list of Processor interrupts and their
controlling PSW bits, if any:

Interrupt PSW Bit
External 1
Machine Malfunction 2
Fixed Point Fault 3
Automatic 1/0 4
Floating Point Fault 5
System Queue Service 6
Protect Mode Violation 7
Supervisor Call none
Simulated none
Illegal Instruction none
System Queue Overflow none

Interrupts occur at various times during processing. The external, immediate, console, and
machine malfunction interrupts occur between the execution of instructions, or after the comple-
tion of an automatic 1/0 channel operation. The system queue service, arithmetic fault, super-
visor call, and simulated interrupts occur during the execution of instructions. The system queue
overflow interrupt occurs as part of an automatic I/0 channel operation. The illegal instruction
and protect mode violation interrupts occur before the execution of the improper instruction.

The interrupt procedure is based on the concept of old, current, and new Program Status Words.
The current PSW, contained in the hardware register, defines the operating state of the Processor,
When this state must be changed, the current PSW becomes the old PSW. The new PSW becomes
the current PSW. The current PSW now contains the operating status and the Location Counter

for the interrupt service routine.

External Interrupt
This I/0 interrupt provides compatibility with previous INTERDATA Processors. Bit 1 of the

current PSW controls this interrupt. If this bit is set and Bit 4 reset (see immediate interrupt),
and an external device requests Processor service, the following action takes place:

The current Program Status Word replaces the contents of memory location X'0040'
X'0043',

The new Program Status Word from locations X'0044' - X'0047' becomes the current
Program Status Word.

From this point it is up to the software to identify the interrupting device, and take appropriate
action.

n

Machine Malfunction Interrupt

Bit 2 of the current Program Status Word controls the machine malfunction interrupt. This in-
terrupt may occur on 2 memory parity error, on the detection of primary power failure, or dur-
ing the restart procedure after power has been restored. When the machine malfunction interrupt
occurs, the current Program Status Word is saved in memory locations X'0038' - X'003B'. The
new PSW from locations X'003C' - X'003F' becomes the current PSW. The new PSW as stored in
memory must have zeros in the Condition Code. When the new PSW becomes the current PSW, the
Condition Code indicates the type of machine malfunction. These Condition Code states are:

Power restore

Power failure

Parity error on instruction read

Parity error on data read .

o o ool
= o old
o™ ooln
O O o

The new Program Status Word for the machine malfunction interrupt must disable this interrupt.

The power fail interrupt occurs when the primary power fail detector senses a low voltage, when
the initialize switch of the Display Console is depressed, or when the key operated power switch
is turned to the OFF position. Following the PSW exchange, the software has approximately one
millisecond to perform any necessary operations before the automatic shut down procedure takes
over. During the antomatic shut down procedure, the Processor saves the current PSW in mem-
ory locations X'0024' - X'0027', The contents of the general registers are saved in 16 successive
halfword locations starting at the address specified in memory location X'0022' - X'0023'.

When power returns, the Processor restores the PSW and the general registers from their save
areas. If Bit 2 of the restored PSW is set, the Processor takes another machine malfunction in-
terrupt, this time with no bits set in the Condition Code.

During write operations to memory, the parity bit of each memory word is set to maintain odd
parity. The parity bit is recomputed on each memory read. If the computed bit is not equal to
the bit read out of memory, the Processor takes a machine malfunction interrupt, setting the G
or the L flag to indicate error on instruction read or on data read.

Fixed Point Fault Interrupt
Bit 3 of the current PSW controls this interrupt. If this bit is set, the interrupt is enabled, A
fixed point fault interrupt occurs for either of two reasons:

The divisor in a Fixed Point Divide instruction is zero.

The signed quotient resulting from a fixed point divide operation cannot be expressed in
16 bits.

This interrupt is always taken before any operand has been changed. The current PSW is saved
in memory locations X'0028' - X'0031'. The new PSW, contained in memory locations X'0032' -~
X'0035', becomes the current PSW. The Location Counter of the old PSW contains the address
of the instruction following the ont that caused the interrupt.

If Bit 3 of the current PSW is reset, quotient overflow or attempted division by zero do not cause
an interrupt. The operands are unchanged, and the next sequential instruction is executed,

72

Immediate Interrupt

If both Bit 1 and Bit 4 of the current Program Status Word are set, an interrupt requests from a
peripheral device results in an automatic I/0 operation. This may be either an automatic 1/0
channel operation or an immediate interrupt.

When the Processor receives the device request, it automatically acknowledges the request. The
device, in turn, responds with its unique device number. The Processor doubles this number,
and uses the result as an index into the interrupt service pointer table, which must contain 2 half-
word entry for each of the possible 256 device numbers. The table starts at memory location
X'0D00', and extends through location X'02CF'. (Chapter 8, Input/QOutput Operations, contains
detailed descriptions of the make-up of this table and its use in both interrupt driver 1/0 and auto-
matic I/0 channel operations.)

H the location reserved for the interrupting device contains an odd value, the Processor starts
an automatic 1I/0 channel operation. If the location contains an even value, the Processor takes
the immediate interrupt, and the following events occur:

The current Program Status Word is saved in the location specified by the entry in the
table.

The status portion (Bits 0:15) of the Program Status Word is loaded with the value con-
tained in the memory location obtained by adding four to the value contained in the table,

The Location Counter of the current Program Status Word is loaded with a value obtained
by adding six to the address contained in the table,

The immediate interrupt provides hardware vectoring of external interrupt requests. Each device
on the system may have a unique location for the interrupt service routine. If several devices of
the same type are included in the system, one service routine may be used for all, if the address
of the routine is placed in the service pointer table locations for each device.

Console Interrupt

The console interrupt is also controlled by Bit 4 of the current Program Status Word. If this
bit is set, and if the operator:

Depresses the console function key, FN, and,

Depresses the hexadecimal 0 key,

the Processor acts as if it had received an interrupt request from device X'01'. The effect may
be either an immediate interrupt, or the activation of the automatic I/0 channel If Bit 4 of the
current Program Status Word is reset, and the operator attempts to generate a console interrupt
request, the request is ignored. It is not queued.

Floating Point Fault Interrupt

The floating point fault interrupt, enabled by Bit 5 of the current Program Status Word, occurs
on exponent overflow, exponent underflow, or division by zero. On exponent overflow, the re-
sult is forced to +X'"7FFF FFFF'. On exponent underflow, the result is forced to X'0000 0000,
On division by zero, the destination register is unchanged.

When this interrupt occurs, the current Program Status Word is saved in memory locations
X'0028' - X'002B'. The new Program Status Word from locations X'002C' - X'002F' becomes
the current Program Status Word. The Location Counter of the old PSW contains the address of
the next instruction location following the one that caused the interrupt.

73

System Queue Interrupt

The system queue serves both hardware (channel 1/0) and software. Whenever the Processor
executes a load Program Status Word or an Exchange Program Status Register instruction, or
when it prepares to resume normal program execution after a channel 1/0 operation, it checks
Bit 6 of the current Program Status Word, If this bit is set, and if there is an item in the sys-
tem queue, the Processor takes the system queue interrupt. Taking this interrupt causes the
current Program Status Word to be saved in memory locations X'0082' —X'0085'. The new Pro-
gram Status Word contained in memory locations X'0086' — X'0089' becomes the current Program
Status Word.

Protect Mode Violation Interrupt

This Protect mode violation interrupt is enabled by Bit 7 of the current Program Status Word.
Setting this bit puts the Processor in the Protect mode. The interrupt occurs when a program,
running in the Protect mode, attempts to execute a Privileged instruction. Privileged instruc-
tions include all I/0 operations and several of the Status Switching instructions. On taking this
interrupt, the current Program Status Word is saved in memory locations X'0030' —X'0033".
The new Program Status Word from locations X'0034' — X'0037' becomes the current Program
Status Word. The old Location Counter contains the address of the instruction that caused the
interrupt.

1tlegal Instruction Interrupt

The illegal instruction interrupt cannot be disabled. The interrupt occurs whenever the Pro-
cessor reads an instruction word containing an operation code that is not one of those permitted
by the system. The Processor saves the current Program Status Word in memory locations
X'0030' — X'0033'. The new Program Status Word contained in memory locations X'0034' —
X'0037' becomes the current Program Status Word.

When the Processor encounters an illegal instruction, it makes no attempt to execute it. The
Location Counter of the old Program Status Word contains the address of the illegal instructions.
Supervisor Call Interrupt

This interrupt occurs as the result of the execution of a Supervisor Call instruction. This instruc-
tion provides a means for user level (Protect mode) programs to communicate with system pro-
grams. The supervisor call interrupt is enabled. When the Processor executes a Supervisor
Call instruction, it:

Saves the current PSW in memory locations X'0096' — X'099'.

Places the address of the supervisor call parameter block (address of the second operand)
in memory locations X'0094' — X'0095"'.

Loads the current PSW status with the value contained in locations X'009A' — X'009B'.

Loads the current PSW Location Counter from one of the supervisor call new PSW Loca-
tion Counters.

74

Systern Queue Overflow Interrupt

The termination of an automatic I/0 channel operation may cause an item to be added to the sys-
tem queue. If, at this time, the queue is full, the Processor takes the system queue overflow
interrupt. When this occurs, the Processors:

Saves the current PSW in memory locations X'008C' - X'008F".

Loads the current PSW from the contents of the locations X'0090' - X'0093'.

Saves the item that could not be added to the queue in memory locations X'008A' - X'008B'.
This action allows the software to clear out the queue before any channel I/0 terminators are lost.
While clearing the queue, external interrupts should be disabled. The queue overflow interrupt
cannot be disabled.
Note that, although software routines may use the system queue, and take advantage of the queue
service interrupt described previously,the queue overflow interrupt results only when the auto-
matic I/0 channel attempts to add to a full queue.
Simulated Interrupt
The Simulate Interrupt instruction simulates a request for service from an external device., When
this instruction is executed, the Processor goes through the automatic 1/0 procedure, using the

device address presented in the instruction word. The effect of this instruction may be either an
immediate interrupt or the activation of the automatic 1/0 channel.,

STATUS SWITCHING INSTRUCTION FORMATS

The Status Switching instructions use the Register to Register (RR), and the Register and Indexed
Storage (RX) instruction formats. In two cases, Load Program Status Word and simulate interrupt,
the R1 field of the instruction has no significance, and must be zero.

STATUS SWITCHING INSTRUCTIONS
The Status Switching instructions provide for software control of the interrupt structure of the sys-
tem. They also allow user level programs to communicate with control software. All Status
Switching instructions, except the Supervisor Call instruction, are privileged operations.
The instructions are described in this section as:

LPSW Load Program Status Word

EPSR Exchange Program Status Register

SINT Simulate Interrupt
sve Supervisor Call

75

Instruction

Load Program Status Word

Assembler Notation Op-Code Format
LPSW 0, A2 (X2) c2 RX
Operation

The 32 bit second operand becomes the current Program Status Word.

Condition Code

Determined by the new PSW

Programming Notes
The R1 field of this instruction is not used by the Processor, and it should be zero or blank.

The quantity to be loaded into the current Program Status Word must be located on a full-
word boundary,

This instruction is a privileged operation.

78

Instruction

Exchange Program Status Register

Assembler Notation Op-Code Format
EPSR R1,R2 95 RR
Operation

Bits 0:15 of the current Program Status Word replace the contents of the register specified
by R1. The contents of the register specified by R2 replace Bits 0:15 of the current Pro-
gram Status Word.

Condition Code

Determined by the new status

Programming Notes

If R1=R2, Bits 0:15 of the current PSW are copied into the register specified by R1, but
otherwise remain unchanged,

This instruction is a privileged operation.

77

Instruction

Simulate Interrupt

Assembler Notation Op-Code Format
SINT 0,12(X2) E2 RI
Operation

The least significant eight bits of the second operand are presented to the interrupt handler
as a device number, The device number is used to index into the interrupt service pointer
table, simulating an interrupt request from an external device. This results in either an
immediate interrupt or an automatic I/0 operation channel.

Condition Code

Unchanged, if execution of this instruction results in an automatic I/0 channel operation
with return to the software program.

Determined by the new status, if execution of this instruction results in an immediate
interrupt.
Programming Notes

The R1 field of this instruction must contain zero.

This instruction is a privileged operation.

78

Instruction

Supervisor Call

Assembler Notation Op-Code Format
svce R1, A3(X2) El RX
Operation

The address of the second operand replaces the contents of memory locations, X'0094' -
X'0095'. The current Program Status Word replaces the contents of memory locations
X'0096' - X'0099'. The halfword quantity in memory locations X'009A' - X'009B' becomes
the new status, The R1 field of the instruction is doubled and added to X'009C'. The value
found at the resulting address becomes the new Location Counter.

Condition Code

Determined by the new status

Programming Note

The second operand must be located on a halfword boundary.

79/80

CHAPTER 8

INPUT OUTPUT OPERATIONS

INPUT/OUTPUT OPERATIONS

Input/output operations, as defined for the INTERDATA 7/16, provide a versatile means for the
exchange of information between the Processor, memory, and external devices. Communication
between the Processor and external devices is accomplished over the 1/0, or Multiplexor Bus.
Data transfers to or from external devices may be performed in the byte mode, the halfword
mode, or the burst mode. Byte and halfword transfers require Processor intervention, either
programmed or automatic, for each item transferred. Burst mode transfers, which require a
Selector Channel, proceed independently of the Processor,

DEVICE CONTROLLERS

The basic functions of all device controllers are:

To provide synchronization with the Processor and to provide device address recognition,
To transmit operational commands from the Processor to the device.
To translate device status into meaningful information for the Processor.
To request Processor attention when required.
In addition, controllers may generate parity, convert serial data to parallel, buffer incoming or
outgoing data, or perform other device dependent functions.
Device Addressing
The system design allows as many as 255 external devices, Each device must have its own unique

device number, or address. Device numbers may range from X'01' through X'FF'. (Device num-
ber X'00' is not used.)

81

Processor/Controller Communication

Device controllers may be attached directly to the I/0 Bus or they may be attached to the I/O Bus
indirectly, through a Selector Channel., Communication between the Processor and controllers
is a bidirectional, request-response type of operation.

If the Processor initiates the communication, it sends the device address out on the I/0 Bus,

When a controller recognizes the address, it returns a synchronization signal to the Processor,
and remains ready to accept commands from the Processor. The Processor waits up to 15 micro-
seconds for the synchronization signal. If no signal is received in this period of time, the Pro-
cessor aborts the operation, and notifies the controlling program, Controller malfunction and
software failure (incorrect device address) are the most common causes of this type of time-out.

In the other direction, a controller can initiate communication with the Processor. It does this

by generating an attention signal. If the Processor is in the interruptable state (Bit 1 of the cur-
rent PSW set) it temporarily suspends the normal, "fetch instruction, execute, fetch next instruc-
tion" operation at the end of the execute phase, and transmits an acknowledge signal over the 1/0
Bus. The controller requesting attention responds with a synchronization signal, and transmits
its device number to the Processor. (The acknowledge signal may be automatic or programmed,
depending on the current state of the Processor.)

Device Priorities

Requests for attention are asynchronous, therefore, more than one request may be pending at

any time. The system resolves these conflicts according to device priority. The placement of
the controllers on the 1/0 Bus determines their priority, When two or more controllers request
artention at the same time, the one closest to the Processor receives the acknowledge signal first,
and responds first. Those further down the line must wait until the Processor has acknowledged
and acted upon requests from higher priority controllers. Requests for attention remain queued
until all have been serviced.

INTERRUPT SERVICE POINTER TABLE

When automatic I/0 is enabled (Bits 1 and 4 of the current PSW set), device requests for service
may result in either an immediate interrupt or an automatic channel operation. The Processor
chooses between these two options according to information contained in the interrupt service
pointer table,

The interrupt service pointer table is an ordered list containing one entry for each possible device
number in the system, The table starts at memory location X'00D0' and extends through X'02CF'.
The software controlling I/0 operations must set up the table.

When, having acknowledge a request for service, the Processor receives the device address, it
adds two times the device address to X'00D0'. The result is the address, within the table, or the
entry reserved for the device requesting attention.

If the entry in the table is even (Bit 15 equals zero) the Processor takes an immediate interrupt, and
and transfers control to the appropriate software routine. If the entry in the table is odd (Bit 15
equals one) the Processor activates the automatic 1I/0 channel, without actually interrupting the
currently running program,

At the time the Processor transfers control to the software routines, the old PSW (current at the
time of the device request) has been saved at the location specified in the table; the current status
has been loaded from the halfword immediately following the old PSW save location; the current

Location Counter has been forced to a value equal to the address of the next halfword following the
new status,

1/0 INSTRUCTION FORMATS

The 1/0 instructions use the Register to Register (RR), and the Register and Indexed Storage (RX)
instruction formats.

1/0 INSTRUCTIONS

Following most 1/0 instructions, the V flag in the Condition Code indicates an instruction time-out.
This means that the operation was not completed, either because the device did not respond, or
because it responded incorrectly.

In the sense status and block 1/0 instructions, the V flag can also mean examine status. To dis-
tinguish between these two conditions, the program should test Bits 0:3 of the status byte. If all

of these bits are zero, instruction time-out has occurred.

The instructions described in this section are:

Al Acknowledge Interrupt
AIR Acknowledge Interrupt Register
8s Sense Status

SSR Sense Status Register

ocC Output Command

OCR Output Command Register
RD Read Data

RDR Read Data Register

RH Read Halfword

RHR Read Halfword Register
RB Read Block

RBR Read Block Register

WD Write Data

WDR Write Data Register

WH Write Halfword

WHR Write Halfword Register
WB Write Block

WBR Write Block Register

AL Autoload

Instruction

Acknowledge Interrupt
Acknowledge Interrupt Register

Assembler Notation

Op-Code Format
Al R1,A2(X2) DF RX
AIR R1,R2 9F RR
Operation

The address of the interrupting device replaces the contents of the register specified by
R1, The eight bit device status replaces the contents of the second operand. The Condi-

tion Code is set equal to the right-most four-bits of the device status byte. The device
interrupt condition is then cleared,

Condition Code
ClVIG L
1IXIX|X Device busy
X111 X1 X Examine status or time-out
XIX]1lX End of medium
X} X]X|1 Device unavailable

Programming Notes

The Condition Code settings described above assume standard INTERDATA device con-
trollers,

These instructions are privileged operations.

Instruction

Sense Status
Sense Status Register

Assembler Notation) Op-Code Format
SS R1, A2(X2) DD RX
SSR R1,R2 9D RR
Operation

Bits 8:15 of the register specified by R1 contain the eight bit device address. The device
is addressed, and the eight bit device status is placed in the second operand location.

The Condition Code is set equal to the least significant four-bits of the device status byte.
The first operand is unchanged.

Condition Code
cCivi]GglL
ojofojo Acceptable status
XIX|X]1 Device unavailable
X|X[1]X End of medium
X1 XX Examine status or time-out
1 1XiXIX Device busy

Programming Notes
The Condition Code interpretations of status assume standard INTERDATA device controllers,

In the RR format, the device status byte replaces Bits 8:15 of the register specified by
R2, Bits 0:7 are forced to zero.

These instructions are privileged operations.

Instruction

Output Command
Output Command Register

Assembler Notation Op-Code Format
oC R1,A2(X2) DE RX
OCR R1,R2 9E RR
Operation
The Pro-

Bits 8:15 of the register specified by R1 contain the eight bit device address,
cessor addresses the device and transmits an eight bit command byte from the second

operand location to the device. Neither operand is changed.

Condition Code
ClV|G{L
ojoijojo Operation successful
0]11010 Instruction time-out

Programming Notes
In the RR format, Bits 8:15 of the register specified by R2 contain the device command.

These instructions are privileged operations.

Instruction

Read Data
Read Data Register

Assembler Notation Op-Code Format
RD R1,A2(X2) DB RX
RDR R1,R2 9B RR
Operation

Bits 8:15 of the register specified by R1 contain the eight bit device address. The Pro-
cessor addresses the device. The device responds by transmitting an eight-bit data byte.
This byte is placed in the second operand location.

Condition Code

Operation Successful

ClV]|G
ojofo
0l1]0 Instruction time-out

o ojH

Programming Notes

In the RR format, the eight bit data byte replaces Bits 8:15 of the register specified by R2.
Bits 0:7 of the register are forced to zero.

These instructions are privileged operations.

87

Instruction

Read Halfword
Read Halfword Register

Assembler Notation Op-Code Format
RH R1,A2(X2) D9 RX
RHR R1,R2 99 RR
Operation

Bits 8:15 of the register specified by R1 contain the eight bit device address. The Pro-
cessor addresses the device. If the device is halfword oriented, the Processor transmits
16 bits of data from the device to the second operand location. If the device is byte orien-
ted, the Processor transmits two eight bit bytes in successive operations.

Condition Code
CIV{GIL
ojojolo Operation successful
011010 Instruction time-out

Programming Notes
In the RR format, the data received from a halfword device replaces the contents of the
register specified by R2. The first byte of data from a byte device replaces Bits 0:7
of the register specified by R2; the second byte replaces Bits 8:15.
In the RX format, the second operand must be located on a halfword boundary.

These instructions are privileged operations.

Instruction

Read Block
Assembler Notation Op-Code Format
RB R1,A2(Z2) D7 RX
Operation

Bits 8:15 of the register specified by R1 contain the eight bit device address. Bits 0:15

of the halfword located at the second operand address contain the starting address of the
data buffer. Bits 0:15 of the halfword located at the second operand address plus two con-
tain the ending address of the data buffer.

The Processor transmits eight bit data bytes from the device to consecutive locations in
the specified buffer.

Condition Code
C|VIGI|L
0|00 |0 Operation successful
XiX|1Xi1 Device unavailable
XXl |X End of medium
X1 [X|X Examine status or time-out
1 XXX Device busy

Programming Notes

The Condition Code interpretations of status assume standard INTERDATA device control-
lers.

The starting address must be less than, or equal to, the ending address. If the starting
address is greater than the ending address, no transfer takes place, and the Processor

forces the Condition Code to zero. If the addresses are equal, the one data byte is trans-
mitted.

The Processor is in a non-interruptable state during the transfer.

This instruction is a privileged operation.

Instruction

Read Block Register

Assembler Notation Op-Code Format
RBR R1,R2 97 RR
Operation

Bits 8:15 of the register specified by R1 contain the eight bit device address. The regis-
ter specified by R2 contains the starting address of the data buffer. The register speci-
fied by R2+1 contains the ending address of the data buffer.

The Processor transmits eight bit data bytes from the device to consecutive locations in
the specified buffer,

Condition Code
ClVIG|L
ojolojo Operation successful
X X|1X|1 Device unavailable
XX 11 |IX End of medium
X1 |X|X Examine status or time-out
1 XX |X Device busy

Programming Notes
The maximum value for R1 is 14.
The Condition Code interpretations of status assume standard INTERDATA controllers.
The starting address must be less than, or equal to, the ending address. If the starting
address is greater than the ending address, no transfer takes place, and the Processor
forces the Condition Code to zero. If the addresses are equal, one byte is transmitted.

The Processor is in a non-interruptable state during the transfer.

This instruction is a privileged operation.

Instruction

Write Data
Write Data Register

Assembler Notation Op-Code Format
WD R1,A2(X2) DA RX
WDR R1,R2 9A RR
Operation

Bits 8:15 of the register specified by R1 contain the eight bit device address. The Pro-
cessor addresses the device, and transmits an eight bit data byte from the second operand
location to the device. Neither operand is changed.

Condition Code
C|V]|G|L
ojofofo Operation successful
011j01}0 Instruction time-out

Programming Notes
In the RR format, the data byte is taken from Bits 8:15 of the register specified by R2.

These instructions are privileged operations.

91

92

Instruction

Write Halfword
Write Halfword Register

Assembler Notation Op-Code Format
WH R1,A2(X2) D8 RX
WHR R1,R2 98 RR
Operation

Bits 8:15 of the register specified by R1 contain the eight bit device address. The Pro-
cessor addresses the device. If the device is halfword oriented, the Processor transmits
16 bits of data from the second operand location to the device, If the device is byte ori-
ented, the Processor transmits two eight bit data bytes in successive operations.

Condition Code
CIVIGIL
ojojo]o Operation successful
of1]o0]}o0 Instruction time-out

Programming Notes

In the RR format, the data transmitted to a halfword device comes from Bits 0:15 of the
register specified by R2. The first byte transmitted to a byte device comes from Bits
0:7 of the register specified by R2; the second byte comes from Bits 8:15.

In the RX format, the second operand must be located on a halfword boundary.

These instructions are privileged operations.

Instruction

Write Block
Assembler Notation Op-Code Format
WB R1, A2(X2) D6 RX
Operation

Bits 8:15 of the register specified by R1 contain the eight bit device address. Bits 0:15

of the halfword located at the second operand address contain the starting address of the
data buffer. Bits 0:15 of the halfword located at the second operand address plus two con-
tain the ending address of the data buffer.

The Processor transmits eight bit data bytes from consecutive locations in the specified
buffer to the device,

Condition Code
C{V{G|L
0j0|0|0] Operation successful
X|X]|X|1] Device unavailable
XIX]1|(X| End of medium
X|11X X} Examine status or time-out
1|X X |X| Device busy

Programming Notes
The Condition Code interpretations of status assume standard INTERDATA controllers.
The starting address must be less than, or equal to, the ending address. If the starting
address is greater than the ending address, no transfer takes place, and the Processor
forces the Condition Code to zero. If the addresses are equal, one byte is transmitted,

The Processor is in a non-interruptable state during the transfer,

This instruction is a privileged operation.

93

Instruction

Write Block Register

Assembler Notation Op-Code Format
WBR R1,R2 96 RR
Operation

Bits 8:15 of the register specified by R1 contain the eight bit device address. The register
specified by R2 contains the starting address of the data buffer. The register specified
by R2+1 contains the ending address of the data buffer.

The Processor transmits eight bit data bytes from consecutive locations in the specified
buffer to the device.

Condition Code
CIVIGIL
0 0|0 | Operation successful
X|X}|X[1]| Device unavailable
XiX|11X | End of medium
X|1]X|{X | Examine status or time-out
1[X|X|X | Device busy

Programming Notes
The maximum value for R2 is 14.
The Condition Code interpretations of status assume standard INTERDATA controllers,
The starting address must be less than, or equal to, the ending address. If the starting
address is greater than the ending address, no transfer takes place, and the Processor
forces the Condition Code to zero, If the addresses are equal, one byte is transmitted.

The Processor is in a non-interruptable state during the transfer.

This instruction is a privileged operation.

Instruction

Autoload
Assembler Notation Op-Code Format
AL 0, A2(X2) D5 RX
Operation

The Autoload instruction loads memory with a block of data from a byte oriented input de-
vice. The data is read a byte at a time, and stored in successive memory locations start-

ing with location X'0080'. The last byte is loaded into the memory location specified by

the address of the second operand. Any blank or zero bytes that are input prior to the first
non-zero byte are considered to be leader, and are ignored. All other zero bytes are stored
as data. The input device is specified by memory location X'0078'. The device command code

is specified by memory location X'0079',

Condition Code
CIVIG|L
0/010]|0| Operation successful
X|X|X|1| Device unavailable
X|{X]11|{X| End of medium
X|1|X|X | Examine gtatus or time-out
1|{X X |X| Device busy

Programming Notes

The R1 field of this instruction must be zero.

The Condition Code interpretations of status assume standard INTERDATA device controllers.

This instruction is a privileged operation.

CONTROL OF 1/O OPERATIONS

The design of the 7/16 1/0 structure allows data transfers in any of several ways. The choice
of which I/O method to use depends on the particular application, and on the characteristics of
the external devices. The primary methods of data transfer between the Processor and external
devices are:

One byte or one halfword to or from any one of the general registers.

One byte or one halfword to or from memory.

A block of data to or from memory under direct Processor control.

A block of data to or from memory under control of a Selector Channel.

Multiplexed blocks of data to or from memory under control of the automatic I/0 channel.
INTERDATA standard device controllers expect a predetermined sequence of commands to effect
data transfers. These commands address the device, put it in the correct mode, and cause data
to be transferred. Because all 1/0 instructions are privileged operations, 1/0 control programs

must run in the Supervisor mode, Bit 7 of the current PSW reset. 1/0 control programs should
also exercise care in enabling external interrupts.

STATUS MONITORING 1/0

The simplest form of 1/0 programming is status monitoring I/0. In this mode of operation, only
one device is handled at a time, and the Processor cannot overlap other operations with the data
transfer., The sequence of operations in this type of programming is:

1. Address the device and set the proper mode (Output Command instruction).

2. Test the device status (Sense Status instruction).

3. Loop back to the Sense Status instruction until the status byte indicates that the device
is ready (Conditional Branch instruction).

4. When the device is ready, transfer the data (Read or Write instruction).

5. If the transfer is not complete, branch back to the Sense Status instruetion. If it is
complete, terminate.

A variation on this type of programming makes use of the block 1/0 instructions. In this kind of
programming, the program prepares the device, and waits for it to become ready. It then execu-
tes a block I/0 instruction. The Processor takes over control and completes the transfer, one
byte at a time, to or from memory. The Processor monitors device status during the transfer.
Block 1/0 instructions may be used only with byte oriented devices whose ready status is zero.

96

INTERRUPT DRIVEN 1/O

Interrupt driven I/0 allows the Processor to take advantage of the disparity in speed between it-
self and the external devices being controlled. With status monitoring, the Processor spends
much of its time waiting for the device. With interrupt driven programming, the Processor can
use much of this time to perform other funetions. This kind of programming establishes two
levels of operation. On one level are the interrupt service programs, They can usually run with
external interrupts disabled. On the other level are the interruptable programs. They run with
interrupts enabled.

Automatic Vectoring

The use of the automatic 1/0 features of the 7/16 allows hardware vectoring of external interrupts.
In this type of programming, the software is relieved of the burden of identifying explicitly the
interrupt source. This is done by the hardware through the interrupt service pointer table and the
immediate interrupt, Automatic 1/0 is controlled by Bits 1 and 4 of the current PSW.

Before starting operations of this type, the interrupt service pointer table must be set up. This
table starts at memory location X'00D0'. It must contain a halfword address entry for every
possible device. The value placed in the location reserved for a device is the address of the in-
terrupt service routine for that device. The interrupt service routine must start with a 32 bit

old PSW save area. This is followed by a halfword constant that defines the new status. The first
instruction of the routine must follow immedjately after this constant.

Although there may be gaps in the device address assignments, the interrupt service pointer table
should be completely filled. Entries for non-existent devices can point to an error recovery
routine. (This precaution prevents system failure in the event of spurious interrupts caused by
hardware malfunction or by improper use of the simulate interrupt instruction.)

The next step is to prepare the device for the transfer. This is best done with the external in-
terrupt disabled. Once the table pointer has been set up, and the device prepared, the Processor
can move on to an interruptable program.
When the device signals that it requires service, the Processor saves its current state, and trans-
fers control to the interrupt servcie routine, At this time, the old PSW has been saved in the first
two halfword locations of the routine, the new status has been loaded, and the current Location
Counter contains the address of the first instruction of the routine. The software routine can now:

1. Save any registers used in the routine.

2. Check the device status, and if satisfactory,

3. Make the transfer, and

4, Restore the registers, and

5. Return to the interrupted program by reloading the old PSW from its save location.

The interrupt service routine for a device may enable immediate interrupts, provided it first
disables interrupts from the particular device being serviced. Because INTERDATA hardware
allows interrupts to be disabled at either the device level or the Processor level, nesting of in-
terrupts is both possible and practical.

97

Software Vectoring

Software vectoring of interrupts is provided for compatibility with previous INTERDATA Pro-
cessors. The Processor reverts to this mode when Bit 4 of the current PSW is reset and Bit 1
of the current PSW is set.

The software must first set up the new external interrupt Program Status Word in memory loca-
tions X'0044' - X'0047'. This new PSW should disable external interrupts by resetting Bit 1.

The Location Counter of this new PSW contains the address of the interrupt service routine. Upon
receipt of the interrupt signal, the Processor saves the current PSW in memory locations X'0040'
- X'0043', and loads the new external interrupt PSW. This transfers control to the interrupt ser-
vice routine which must:

1. Save any registers to be used.

2. Acknowledge the interrupt request and get back the device address.

3. Transfer to an appropriate subrouting, based on the device address.

The subroutine then:

4. Checks the device status, and if satisfactory,
5. Makes the transfer.
6. Restores the registers.

7. Returns to the interrupted program by loading the PSW from location X'0040'.

This method for I/O transfers is not as efficient as is the use of the immediate interrupt. In
addition, it is not practical with this method to nest interrupts.

SELECTOR CHANNEL 1/0

The Selector Channel controls the transfer of data directly between high speed devices and mem-
ory. As many as 16 devices may be attached to the Selector Channel, only one of which may be
operating at any one time. The advantage gained in using the Selector Channel is that other pro-
cessing may proceed simultaneously with the transfer of data between external devices and mem-
ory. This is possible because the Selector Channel accesses memory on a cycle stealing basis,
which permits the Processor and the Selector Channel to share memory. In some cases, execu-
tion times of the program in progress may be affected, while in others, the effect is negligible.
This depends upon the rate at which the Selector Channel and Processor complete for memory
cycles,

The Selector Channel is linked to the Processor over the I/O Bus. It has its own unique device
number which it recognizes when addregsed by the Processor. Like other device controllers,
it can request Processor attention through the external or the immediate interrupt.

Selector Channel Devices

The Selector Channel has a private bus similar to the Processor's I/0 Bus. Controllers for the
devices associated with the Selector Channel are attached to this bus. When the Selector Channel
is idle, its private bus is connected directly to the I/0 Bus. If this condition exists, the Pro-
ceggor can address, command, and accept interrupt requests from the devices attached to the
Selector Channel. When the Selector Channel ig busy, this connection is broken. All communica-
tions between the Processor and devices on the Selector Channel is cut off. Any attempt by the
Processor to address devices on the channel results in instruction time-out.

Selector Channel Operation

Twq registers in the Selector Channel hold the current memory address and the final memory
address. Before starting a Selector Channel operation, the control software, using a Selector
Channel operation, the control software, using Write instructions, places the address of the first
byte of the data buffer in the current register and the address of the last byte of the data buffer.
in the final address register. During the data transfer, the channel increments the current
address register by one for each byte transferred. When the current address equals the final
address, the last byte has been transferred, and the channel terminates.

The Selector Channel accesses memory a halfword at a time. Because of this, the transfer must
always involve an intergral number of halfwords. The starting address of the data buffer must al-
ways be on an even byte (halfword) boundary. The ending address must always be on an odd byte
boundary. The starting address must be less than the ending address.

Upon termination, the software can read back from the Selector Channel, the address contained
in the current address register. If this address is less than the final address specified for the
transfer, and if the buffer limits were properly checked before the transfer, this condition in-
dicates a device malfunction or an unusual condition within the device, for example, crossing

a cylinder boundary on a disc.

Selector Channel Programming

The usual method of programming with the Selector Channel uses the immediate interrupt. The
first step in the operation is to check the status of the Selector Channel. 1If it is not busy, the
address of the termination interrupt service routine is placed in the location within the interrupt
service pointer table reserved for the Selector Channel. Having done this, the program should
proceed as follows:

1. Give the Selector Channel a command to stop. This command initializes the Selector
Channel's registers and assures the idle condition with the private bus connected to
the 1/0 Bus.

2. Prepare the device for the transfer with whatever information and commands may be
required.

3. Give the Selector Channel the starting and final addresses.

4. Give the Selector Channel the command to start.

With the Start command, the Selector Channel breaks the connection between its private bus and
the Processor's 1/0 Bus, and provides a direct path to memory from the last device addressed
over its bus. When the device becomes ready, the channel starts the transfer, which proceeds to
completion without further Processor intervention. Once the Start command has been given,

this Processor can be directed to the execution of concurrent programs.

On termination, the channel signals the Processor that it requires service. The Processor sub-
sequently takes an immediate interrupt, transferring control to the Selector Channel interrupt
service routine. At this point the software must check the Selector Channel and the device to in-
sure that the transfer was successful,

AUTOMATIC 1/O CHANNEL

The automatic 1/0 channel executes channel programs that control the activities of peripheral
devices. The execution of channel programs takes place between the execution of user instrue-
tions, and results in a program delay rather than a program interrupt, with an exchange of Pro-
gram Status Words. The I/O channel may generate an interrupt because of abnormal conditions
or because of the occurrence of an event for which the software has requested an interrupt. Bits
1 and 4 of the current Program Status Word control the operation of the I/0 channel. Both of
these bits must be set to permit channel operations. Channel operations also depend on the in-
terrupt service pointer table, the Channel Control Block (CCB) with its associated Channel Com-
mand Word (CCW) and the system service queue. See Figure 10.

Interrupt Service Pointer Table

The interrupt service pointer table starts at location X'00D0'. It contains a halfword entry for each
of the possible 256 external device addresses. If Bit 15 of the entry in this table is zero, then the
entry is the address of an immediate interrupt software routine. If Bit 15 of the entry is one, then
the entry minus one is the address of a Channel Command Word.

Channel Control Block

The Channel Control Block contains the Channel Command Word, and the storage locations and

data required for the channel operation. The Channel Command Word is a bit encoded command
that describes the automatic channel operation. Note that it is the address of the Channel Command
Word plus one that is placed in the interrupt service pointer table, A complete Channel Control
Block is shown in Figure 11.

100

BIT | OF CURRENT
PSW SET

1/0
INTERRUPY

x'0040|

SIGNAL

BIT 4 OF CURRENT EXTERNAL
INTERRUPT PSW
PSW RESET EXCHANGE

X'0000"

IMMEDIATE INTERRUPT LOCATION

IMMEDIATE
INTERRUPT PSW
EXCHANGE

CHANNEL COMMAND WORD LOCATION

CHAIN VALUE

DEVICE

NUMBER [STATUS

CHANNEL COMMAND WORD

x'02ce"

INTERRUPY POINTER TABLE

CHANNEL CONTROL
8LOCK

X'OOBO"

A(QUEUE)

AlCCW)

CH

ANNEL TERMINATION
QUEUE

Figure 10. 1/0 Channel Operation Block Diagram

CHAIN VALUE

fo— REQUIRL T IF CHAINING
SPEC:*1ED

FILLED IN BY CHANNEL —

DEVICE NUMBER l FINAL STATUS

pe— FILLED IN BY CHANNEL

CHANNEL COMMAND WORD

BUFFER START FUR DATA —*

START ADDRESS OR COUNT

jo— COIINT REQUIRED FOR

TRANSFERS

END ADDRESS

GECHEMENT MEMORY AND
TEST

BUFFER END FOR DATA
TRANSFERS

OUTPUT COMMAND BYTE —e

COMMAND BYTE l TERMINAL CHARACTER

REQUIRED IF TERM \&!

FOR INITIALIZATION

System Queue

The system queue is a circular list identical to those described for the list processing instruc-
The queue may be set up at any convenient location in memory.
queue allows for 255 entries, but any smaller length may be used.
should be big enough to hold one entry for each external device controlled by a channel or soft-

tions.

Figure 11. Channel Control Block

CHARACTER CHE(r Nu
SPECIFIED FOR DATA TRANSFERS

The maximum size of the
(In actual practice, the queue

ware program that makes use of the quene.) The address of the queue must be placed in memory
location X'0080' prior to starting any channel program. The automate I/0 channel uses the queue
to record the termination of a channel program.

101

General Operation

When the Processor detects the presence of an interrupt signal from a peripheral device, it auto-
matically acknowledges the signal and obtains the address of the device. It uses the device address
times two to index into the interrupt service pointer table to the entry reserved for the device. If
Bit 15 of the entry is zero, the Processor takes an immediate interrupt. If Bit 15 is one, the Pro-
cessor takes activity in the I/0 channel.

The 1/0 channel uses the entry minus one to locate the Channel Command Word. It decodes the
command, and performs the required service, using the data entries in the Channel Command
Block as necessary. If the channel operation for this device is not yet complete, the channel re-
turns control to the Procsesor. The Processor now checks the pending interrupt signals. If
any are present, it services them, Otherwise, it resumes program execution.

If the channel determines that the operation for this device is complete, it terminates the channel
program by storing the device address and final status in the Channel Control Block, and for data
transfers, changes the Channel Command Word to a 'no operation”. This causes subsequent in-
terrupt signals from the device coming to this Channel Command Word to be ignored. At this
point the channel can take any or all of the following actions:

Make an entry on the system queue.

Chain to another Channel Command Word.

Generate an immediate interrupt.

The action taken by the channel depends on the bit configuration of the Channel Command Word.

Channel Command Words

There are three phases involved in channel operations:

1. Initialization
2. 1/0 operation
3. Termination
All three phases are controlled by the bit configuration of the Channel Command Word. A single

command word can be encoded to perform all three types of operation. The bit assignments for
Channel Command Words are shown in Figure 12.

0,1.,2.3.4 5 6 7 8.9 1011 12131415

o

:’: L [BYTES PER INTERRUPT SIGNAL

INrT{1 10 CONTINUE

vorl T3 CHAIN

reaol ToTolo UNASSIGNED MUST BE ZERO
warel ToToha OUTPUT COMMAND

omt| |ol1]o —HI/LO

— QuEUE
NULL| jOojr]! L—TERMlNAL CHARACTER

——UN-ASSIGNED MUST BE ZERO

Figure 12. Bit Configuration For Channel Command Word

102

Initialization

Bits 0 INIT) and 8 (Output command) contrcl the initialize phase of channel operations, If Bit-0
is set when the channel decodes the command word, it resets Bit-0, and checks Bit-8. If Bit-8

is set, the channel issues the Output command located in the Channel Control Block, and returns
control to the Processor. Channel operations with the device resume when an interrupt signal
from the device occurs. Since the channel resets Bit-0, it can pass through the initialize phase
only once. This phase is optional, The software may initialize the device with Output Command
instructions prior to starting the channel operation, The bit configuration of the Channel Command
Word for the initialize phase is shown in Figure 13.

BIT 0,1,2.3 4.5 6.7.8.9,10,11.12.13.14_15

' HEREC

CHANNEL COMMAND WORD FOR INITIALIZE WITHOUT OUTPUT COMMAND

BIT ,0,1.2.3.4 56,7 8.9 101112131415

JNERE INENENE

CHANNEL COMMAND WORD FOR INITIALIZE AND OUTPUT COMMAND

Figure 13. Channel Command for Initialize and Output Commands

1/O Operations

There are five types of I/0 operations that the I/O channel can perform:

Read

Write

Decrement memory and test
No operation

Null operation

The Channel Command Word configurations for these operations are illustrated in Figure 14.

For all Read/Write operations, Bits 12 through 15 must contain the number of bytes to be trans-
ferred on each interrupt signal. All zeros in these bit positions indicate that 16 bytes are to be
transferred on each interrupt signal, The two halfwords following the Channel Command Word
must contain the starting address of the I/0 buffer and the ending address of the I/0 buffer. After
the number of bytes specified for each interrupt signal has been transferred, the starting address
is incremented by the appropriate amount and compared to the ending address. If it is greater or
equal, the channel enters the termination phase. If it is less, the channel returns controls to

the Processor for program execution. Bit 5 of the Channel Command Word controls terminal
character transfers. When this bit is set, the transfer proceeds as described previously with
the exception that the last byte transferred on each interrupt signal is compared with the terminal
character byte located in the Channel Command Block. If these two bytes match, the channel en-
ters the termination phase. In this way, a channel program can terminate because a terminal
character has been found in the data stream before the buffer is exhausted.

103

0,1,2,3.4.5,6.7.8.,9,1011,12,13,14,15

ololo ol l N

.

READ N BYTES PER INTERRUPT SIGNAL

0,1,2,3,4.5,6_7 8.9 10111213 14,15
ojojo [) N

A LA

READ N BYTES PER INTERRUPT SIGNAL ~TERMINATE ON TERMINAL CHARACTER

0] .‘;121314 izis i? i& iS iIOILIIJ,IZ:rI:EI4'I.'>

WRITE N BYTES PER INTERRUPT SIGNAL

0.1,2,3.4.56.7,8.9.10.11.12 13 14,15
oo}l I N

) 1 1 AL

WRITE N BYTES PER INTERRUPT SIGNAL -TERMINATE ON TERMINAL CHARACTER

0.1,2.3 4. 56_7.8.910.111213 1415

ofof | | HEEE

DECREMENT MEMORY AND TEST

0,1,2,3,4.5 6.7 8.9 1011 12,13,i4,15

NO OPERATION

o1 .2 3 4 56 7.8 9101 12131415
30k |

NULL

Figure 14. Channel Command Words for 1/O Operation

Before starting a data transfer, the channel checks the device status. Any non-zero status condi-
tion stops the transfer, and causes the channel to enter the termination phase. Before entering
the termination phase, the initialize bit and the no operation bit are set in the Channel Command
Word; the queue bit is set to force an entry in the system queue; and the chain and continue bits
are reset to prevent chaining.

The decrement memory and test operation causes the value contained in the halfword immediately
following the Channel Command Word to be decremented by one for each interrupt signal. The new
value is compared to zero. If it is greater than zero, the channel returns control to the Processor.
If it is equal to zero, the channel enters the termination phase, without changing the Channel Com-
mand Word to a "no operator'. Subsequent interrupt signals from the device causes the count

field to increase negatively.

The no operation code in the Channel Command Word indicates that the channel is to ignore any
interrupt signal from the associated device. The channel itself sets this code in the Channel
Command Word on the completion of data transfers. The software can use this code to ignore
unsolicited interrupt signals,

The null operation differs from the no operation in that, while no 1/0 function is performed, the
channel enters the termination phase without modifying the Channel Command Word.

104

Termination

The automatic 1/0 channel enters the termination phase upon completion of a data transfer, when
the count field of a decrement memory and test operation has reached zero, or when the null opera-
tion is decoded. All of the operations in the termination phase are optional. If none is specified
the channel returns control to the Processor. The two termination functions are queue and chain,
The Channel Command Word bit configuration for queuing and chaining is shown in Figure 15.

0. 1.2 3 4 5 6 7 89 101l 12131415

QUEUE AT BOTTOM

0.1,2,3.4,5.6.7.8_9 1011,12,13,14.15

I el T1TT]

QUEUE AT TOP

0,1,2,3.4.5,6,.7,8.9 10,11 i2,13,14.15

LI | Lol T11

2,3.4.5 6.7 8.9 101112,13 1415

HEEREEEOOEN

CHAIN AND CONTINUE

CHAIN

o

Figure 15. Channel Command Words for Termination

Bit 6 controls queuing. If this bit is set, the channel, on entering the termination phase, stores
the address of the Channel Command Word in the system queue. The condition of Bit-7 of the
Channel Command Word controls positioning in the queue. If Bit-7 is set, the entry is made at the
bottom of the queue. If Bit-7 is reset, the entry is made at the top of the queue.

Bit-10 of the Channel Command Word controls chaining. In this operation, the channel stores the
contents of the first halfword of the Channel Control Block in the appropriate location in the in-
terrupt service pointer table for the device. This chain value may be either the address of an-
other Channel Command Word, or the address of an immediate interrupt PSW exchange location,
If the chain bit (Bit 10) and the continue bit (Bit 11), are both set, the channel checks the new value
placed in the table, and takes appropriate action before returning control to the Processor. In
this way, depending on the new value stored in the table, the channel can either generate an imme-
liate interrupt, or start another channel program.

105/106

CHAPTER 9

M71-102 HEXADECIMAL DISPLAY PANEL AND M71-101
BINARY DISPLAY PANEL PROGRAMMING SPECIFICATION

INTRODUCTION

The M71-102 Hexadecimal Display Panel and M71-101 Binary Display Panel provide a means to
manually control the Processor, interrogate and display various Processor registers and machine
status, set and display Processor memory locations, and may he programmed as an I/O device
hy the user. The Hexadecimal Display Panel and Binary Display Panel are identical in operation.
For convenience of the operator the Hexadecimal Display is equipped with a Hexadecimal readout
in addition to the standard Binary readout.

CONFIGURATION

The Hexadecimal Display Panel provides the system operator with visual indications of the
state of the Processor, as well as manual control over the system.

The Hexadecimal Display Panel, shown in Figure 16, is a RETMA standard 55" x 19" panel which
is plug removable from the Processor. I displays the current state of the Processor and provides
all necessary manual control over the system. The following paragraphs describe the control and
display elements of the Hexadecimal Display Panel.

FLY

an

[Y]
] EDE
C

[
HBEEH

n -]]] 5 16 v 18 » .

OrOOO 0000 0000 0000 00000000 0000 0000 0000 .

oz 1516 " 3o MESORY DATA ‘:, D

ol LI R - E sGL
o™ Y mILT 3 =
gﬂzmsrzn I': e . owe em ;: .@H ,095“

e wocx
on
L mﬂRDATA.J OFF @

Figure 16. Hexadecimal Display Panel

107

Display Registers and Indicators

Internal to the Hexadecimal Display Panel are five eight-hit hyte Display Registers, D1 through D5,
that hold data output from the Processor, and a 20-hit Switch Register that holds data input from
The Hexadecimal Keyboard. Refer to Figure 17.

19
SWITCH REGISTER
0 7jo E B S 7
DS D4 D3 D2 D1
. 1516 MEMDRY ADDRESS - MEMDRY DATA 5
Os— = v | =
SWITCH REGISTER
o) fd 34 19,
L ¥ A
FUNCTION o PROGRAM STATUS WORD N
1
O¢—— — 5> GTl
REGISTER GENERAL REGISTER
Oe—-—1 | — 0 31,
r v o 18!
REGISTER FLOATING-POINT REGISTER
Ot—-——JI 0] 713 3

Figure 17. Display Registers and Indicators

Associated with each of Display Registers D1 through D4 are eight indicator lamps that provide

a hinary read-out and two optional hexadecimal read-out indicators. Associated with the least sig-
nificant four hits of Display Register D5 are four indicator lamps for hinary display and one optional
hexadecimal read-out indicator.

The most significant four hits of Display Register D5 (Bits 0:3) control four of the five indicator
lamps along the left edge of the Hexadecimal Display Panel. The fifth indicator lamp is controlled
hy logic internal to the Hexadecimal Display Panel. To the right of each of these five lamps is a
diagram that defines what is being displayed. In general, only one of the diagram lamps is on at
a time, If none of the diagram lamps are on, a user program has written data to the Display
Register D5.

As seen in Figure 17, the most significant 20-bits of the display show the contents of Display Registers
D3 and D4 and the least significant four hits of Display Register D5 (Bits 4:7); or the contents of the
20-hit Switch Register. When the Switch Register is being displayed, the lamp next to the Switch
Register diagram is illuminated. Any other diagram lamp that may have been on, remains on.

When the Switch Register is no longer displayed, its diagram lamp goes out and the most significant
20-hits of the display again show the cantents of Display Registers D3 and D4 and the least signifi-
cant four hits of Display Register D5 (Bits 4:7).

The methods of displaying the Switch Register and the other diagrammed items are discussed later.

108

This is a three-position, OFF-ON-LOCK, key-operated locking switch, which controls the primary
power to the system. This switch can also disahle the Hexadecimal Display Panel, thereby pre-
venting any accidental manual input to the system. The power indicator lamp (PWR) associated
with the key lock is located in the lower right corner of the Hexadecimal Display Panel. The

PWR lamp is on when the key lock is in the ON or LOCK position. The relationship hetween the
key lock switch positions, primary power, the Control keys, and the Hexadecimal keys is:

OFF The primary power is OFF.
ON The primary power is ON and the Control keys and Hexadecimal keys are
enabled.

LOCK The primary power is ON and the Control keys and Hexadecimal keys are
disabled. Only INT switch is active.

Control Keys

The momentary contact Control keys are only active when the key-operated locking switch is in

the ON position.

INITIALIZE (INT)

DATA (DTA)

ADDRESS (ADD)

MEMORY READ (RD)

The Initialize (INT) key causes the system to be -
initialized. After the initialize operation, all device
controllers on the system Multiplexor Bus are cleared
and certain other functions in the Processor are reset.

The Data (DTA) key clears the Switch Register and
connects it to the most significant 20 display indicators.
The Switch Register diagram lamp illuminates. Hexa-
decimal data may now be entered into the Switch Register
from the Hexadecimal Keyboard. As each Hexadecimal
key is depressed, the data shifts into the Switch Register
from the right. If more than five hexadecimal digits are
entered, data shifted out of the Switch Register is lost.

Depressing any non-hexadecimal key disconnects the
Switch Register from the high order 20 display lamps and
extinguishes the Switch Register diagram lamp. ’

The Address (ADD) key causes the Processor to halt and
copy the contents of the Switch Register into the Location
Counter field of the Program Status Word. The new
value of the Location Counter is then output to Display
Registers D1, D2, D3, and D4. The function diagram
lamp is illuminated and a Hexadecimal 5 in output to the
top four display lamps (Bits 4:7 of D5).

The Memory Read (RD) key causes the Processor to halt
and read the halfword contents of the memory location
presently pointed to by the Location Counter. (If the
Memory Access Controller is enabled then the relocated
value of the Location Counter is the effective address of
the memory location.) The halfword data read is output
to Display Registers D1 and D2. The Location Counter
is incremented hy two and output to Display Registers D3
and D4 and the least significant four bits of Display
Register D5 (a 20-bit value). The lamp next to the
Memory Address/Memory Data diagram is illuminated.

109

MEMORY WRITE (WRT)

EXAMINE REGISTER (REG)

EXAMINE FLOATING-
POINT REGISTER (FLT)

FUNCTION (FN)

SINGLE STEP (SGL)

RUN (RUN)

110

The Memory Write (WRT) key causes the Processor to
halt and read in the least significant 16 bits of the 20

bit Switch Register. The halfword of data is written into
the memory location presently pointed to hy the Location
Counter. (If the Memory Access Controller is enabled
then the relocated value of the Location Counter is the
effective address of the memory location.) The data
written is then output to Display Registers D1 and D2.
The Location Counter is incremented by two and output
to Display Registers D3 and D4 and the least significant
four bits of Display Register D5. The lamp next to the
Memory Address/Memory Data diagram is illuminated.

The Examine Register (REG) key sets up the Hexadecimal
Display Panel to interpret the next Hexadecimal key de-
pressed as a General Register number. When the hexa-
decimal register number key is depressed, the Processor
halts and the content of the selected General Register is
output to Display Registers D1, D2, D3, and D4. The
General Register diagram lamp is illuminated and the
number of the displayed register is output to the top four
display lamps.

The Examine Floating-Point Register (FLT) key sets up
the Hexadecimal Display Panel to interpret the next hexa-
decimal key depressed as the number of a Floating-Point
Register. When the hexadecimal register numher key is
depressed, the Processor halts and the content of the
selected Floating-Point Register is output to Display Re-
gisters D1, D2, D3, and D4. The Floating-Point Register
diagram lamp is illuminated and the number of the dis-
played register is output to the top four display lamps. If
an odd numbered register had been selected and the proces-
sor is not equipped with douhle precision option, the
register number is forced to the next lower even value
before being used. On Processors not equipped with
floating-point, the result of this operation is undefined.

The Function (FN) key sets up the Hexadecimal Display
Panel fo interpret the next hexadecimal key depressed as
the number of one of sixteen functions. When the hexa-
decimal key is depressed, the Processor halts to interpret
the selected function. If the function is undefined, the
Processor remains halted with no change to the display
indicators. The defined functions are detailed later.

The Single Step (SGL) key causes the Processor to exe-
cute one user level instruction at current location counter,
increment the LOC and then halt. The register that was
selected (PSW, LOC, General Register, etc.) is displayed.

The Run (RUN) key causes the Processor to begin program
execution at the address pointed to by the Location Counter

(LOOC).

OPERATING PROCEDURES

Power Up

To power up the system, turn the key-operated security lock clockwise from the OFF position to
the ON position. This action provides electrical power to the system and leaves all device con-
trollers on the Multiplexor Bus in an initialized state.

Power Down
To shut down power to the system:

1. Halt the Processor.

2. Turn the key-operated security lock to the OFF position.
This removes primary power from the system and forces a Primary Power Fail (PPF) interrupt to
the Processor. When power is re-applied, the Processor displays the contents of the Location
Counter (LOC) and then assumes the Halt mode., If the Processor had been running when power

was turned off, the mode assumed when power is re-applied (RUN or SGL) depends upon the presence
or absence of the Automatic Restart option. See Power Fail.

Address a Memory Location
To select an address:
1. Depress the Data (DTA) key. The Switch Register is cleared and displayed.
2. Enter the desired address from the Hexadecimal Keyboard.
3. Depress the Address (ADD) key. The Processor halts and copies the contents of the

Switch Register into the Location Counter field of the PSW. The new value of the
Location Counter is then displayed.

Memory Read

To display the contents of memory locations:

1. Select the memory read start address as in Address a Memory Location.

2. Depress the Read (RD) key. The address read from, plus two, and the data read from
memory are displayed.

3. Repeat from Step 2 to read successive memory locations. The Location Counter is
automatically incremented by two each time RD is depressed.

Memory Write

To write data from the Switch Register into memory:

1. Select the memory write start address as in Address a Memory Location.

2. Depress the Data (DTA) key. The Switch Register is cleared and displayed.

11

3. Enter the data to be written from the Hexadecimal Keyboard.

4. Depress the Write (WRT) key. The address written into, plus two, and the data written
are displayed.

5. Repeat from Step 2 to write different data into successive locations or from Step 4 to

write the same data into successive locations. The Location Counter is automatically
incremented by two each time WRT is depressed.

General Register Display

To examine the contents of a General Register:
1. Depress the Register (REG) key.

2. Depress the hexadecimal register number. The Processor halts and the contents of the
selected General Register is displayed.

NOTE
The General Register displayed is from the

register set specified hy the current Program
Status Word.

Floating-Point Register Display

To examine the contents of a Floating-Point Register:
1. Depress the Floating-Point Register (FLT) key.
2. Depress the hexadecimal register number. If the Processor is not equipped with
floating-point the result of this operation is undefined. If the Processor is equipped

with floating-point, the selected register number is forced even and the Floating-Point
Register is displayed. The Processor is left in the Halt mode.

Program Status Word Display and Modification

To examine the Status field (most significant half) of the current PSW:
1. Depress the Function (FN) key.

2. Depress Hexadecimal key 4. The Processc;r halts and the status field (most significant
half) of PSW is displayed.

To examine the Location Counter field (least significant half) of the current PSW:
1. Depress the Function (FN) key.

2. Depress Hexadecimal key 5. The Processor halts and the Location Counter field (least
significant half) of PSW is displayed.

To modify the least significant 16 bits (Bits 16-31) of the Status field:
1. Depress the Data (DATA) key.

2. Enter the data (to be written into bits 16-31 of the PSW) from the Hexidecimal keyboard.

112

3. Depress the Function (FN) key.

4, Depress Hexadecimal key 1. The Processor halts and copies the 16 bits of the Switch
register in bits 16-31 of the PSW. The modified PSW is then displayed.

Program Execution

To begin execution of a program:
1. Select the program start address as in Address a Memory Location.

2. Select the register to be displayed.

3. Depress the Run (RUN) key.
To execute a program in the Single-Step mode:
1. Select the program start address as in Address a Memory Location.

2. Select the register to be displayed.

3. Depress the Single-Step (SGL) key. One instruction is executed, the last selected
register (PSW, LOC, General Register, etc.) is displayed and the Processor halts.

4. Repeat Step 3 to execute successive instructions. Return to Step 2 to display different
registers.

Program Termination

To manually halt the execution of a program, display any register or depress the Single-Step
(SGL) key. In the latter case, the last selected register is displayed.

Console Interrupt
To generate an interrupt from the Hexadecimal Display Panel:
1. Depress the Function (FN) key.

2. Depress Hexadecimal key 0. If enabled by the current PSW, an interrupt from device
number 1 is simulated. If not enabled, the Processor enters the Run mode. Hexadecimal
Display Panel interrupts are not queued.

The Hexadecimal Display Panel interrupt feature allows an operator to inform the running pro-

gram that some operator service or function is needed. No acknowledgement of the interrupt is
required of the running program.

Switch Register
To examine the Switch Register at any time during execution of a program, depress any hexa-
decimal key. The Switch Register is displayed for as long as the key is depressed. No informa-

tion enters the Switch Register. When the hexadecimal key is released, the top 20 display lamps
return to their previous state.

The Switch Register can be modified without interrupting the Processor as follows:
1. Depress the Data (DTA) key. The Switch Register is cleared and displayed.

2. Enter the desired hexadecimal data.

113

Power Fail

When the Processor detects a power failure, the micro-program senses the Hexadecimal Display
Panel status. The present status of the display is stored in main memory at a dedicated area

hy the micro-program. The current Program Status Word, Location Counter and the programmable
registers are then saved in dedicated main memory locations and the micro-program deactivates
the System Clear (SCLR) relay.

On power up, after the system clear relay has re-activated, the Program Status Word, Location
Counter, and programmable registers are restored from their main memory save locations., The
status of the display prior to the power failure is retrieved and interrogated hy the micro-program.

If the Hexadecimal Display Panel was in the Run mode, and the Automatic Restart option is present
and if the Machine Malfunction Interrupt Enable hit of the PSW is set, a Machine Malfunction
Interrupt is taken. If Machine Malfunction Interrupts are not enabled, the Processor enters the
Run mode beginning at the instruction pointed to by the Location Counter.

If the Hexadecimal Display Panel was not in the Run mode, or if the Automatic Restart option is
not present, the value of the Location Counter is output to the display registers, the WAIT lamp
on the console is illuminated and the Halt mode is entered.

Power failure and operation of the Initialize key are indistinguishable to the Micro-Program.
Consequently, operation of the Initialize key should he considered carefully when the Machine
Malfunction Interrupt is enabled.

Care should also be taken when using the Hexadecimal Display Panel as an input device (testing
Switch Register bits) due to the volatility of the Switch Register in a power fail situation.

After a power up, the contents of the Switch Register are undefined. The display status byte is
forced to X'40' on power up or initialize.
DATA FORMAT

A byte or a halfword can he transferred to or from the Display using a WD, WH, WDR, WHR, or RD,
RH, RDR, RHR instruction. Refer to Figure 18.

REGISTER
DISPLAY D5 D4 03 D2 D1
SWITCH 2
REGISTER S 81
DATA TRANSFERRED
INSTRUCT it 5
XECUTED NORMAL MODE INCREMENTAL MDDE
RD (R) S1 S1
RD (R) S1 s2
RD (R) S1 $1
RD (R) S1 S2
RH (R) $1,52 $1,52
RB(R) * $1,52,51.52 $1.52,51.82
WD (R) DI - D1
WD (R) D1 D2
WD (R) D1 D3
WD (R) D1 D4
WD (R) D1 DS
WH (R) D1,D2 D1.02
WH (R) D1.D2 03,04
WH (R) D1.D2 NS.NOTE 1
WB (R) * * D1,02,03.04,05 01,02,03,04.05

114

BLOCK LENGTH = 4 BYTES

** BLOCK LENGTH=$5BYTES

NOTE 1 SUBSEQUE

NT BYTES OUTPUT ARE LOST.

Figure 18. Hexadecimal Display Panel Data Transfers

PROGRAMMING INSTRUCTIONS
Input/Output Programming

The Hexadecimal Display Panel is available to any running program as an 1/0 device with device
address 01. The status and command bytes for the Hexadecimal Display Panel are summarized
in Table 1. The status hyte indicates the mode of the Hexadecimal Display Panel and is of little
interest to a running program as it always indicates Run mode or Hexadecimal Display Panel
Interrupt (Function 0). The command byte selects Normal or Incremental mode, which pertains
to data Transfers. The selection logic which determines the Switch Register hyte or register
display hyte to transfer is reset every time the Hexadecimal Display Panel is addressed when

in the Normal mode. When an Output Command Incremental mode is issued to the Hexadecimal
Display Panel, the hyte selection logic is initially reset. Subsequent Read or Write instructions
transfer bytes as shown in Figure 18.

Block I/0 with the Hexadecimal Display Panel is only feasible when the least significant four
status bits are reset.

NOTE

After an initialize sequence or after any
manual Hexadecimal Display Panel operation
that results in anything heing displayed, the
Display Device Controller is automatically
placed in the Normal mode.

When programming the Hexadecimal Display Panel in the Incremental mode, the Output Command
Incremental mode must he issued before each set of data transfers to guarantee that the byte
selection logic is reset.

The most significant four bits of the Switch Register are only available to the micro-program.
These four bits are transferred as Bits 5, 6, 7, and 0 of the status when the Hexadecimal Display
Panel status is Address (i.e., Display Status = X011XXXX!'.

Wait State

The running program can place the Processor into the Wait state by setting the Wait hit of the
current PSW. The WAIT indicator on the lower right of the panel illuminates to inform the
operator of the Wait state. The Processor can leave the Wait state and resume execution in
two ways:

1. An Interrupt can occur causing the Processor to jump to an interrupt service routine.
When the routine restores the original PSW, the Wait state is re-established.

2, The operator can depress the RUN key which causes the Wait bit in the PSW and the
WAIT lamp to he reset and execution to resume at the address specified by LOC.

PROGRAMMING SEQUENCES

The Hexadecimal Display has a device address of X'01'.

This device can be used to output up to five hytes of data to the Console Panel Indicators. The
following program sequence outputs four hytes of data starting from the memory location BUF:

LIS R1,1 (R1) = Display Address

LHI R3,X'40'

OCR R1,R3 Display in Incremental Mode
WD R1,BUF

WD R1,BUF+1

WD R1,BUF+2

WD R1,BUF+3

115

UIDFLAT Q1A 1 UD ANL LUIVIIVIAIIL

1ABLE I

STATUS

S] ~~+ © © < Q O]
1 9] -
5 -
G 2 ® 5 e
-) 2
(9] ~
9 x - .mm
o 50 2 9
o
] : 2 g3 el
f O = A
R OO O O OO DO o OO OO e OO ™ e OO o
LR T R] C OO O OO OO rmi il C O OO rHr i DO OO v vt ot
E R Y O O S O OO OO rmlrd rd vt vt vt vt v QO OO OO O O v rd rd oyt rd el rd
xxxxxxx o e e o vt et e e vt e e v e e el C OO OO
S HOHO O I R R R R R R R R R R LI S S S -
cCorMHOoO OO RSB T T I T R R R R R R
C OO O - EIETE I I T R L ESI e A i S]
E A] O MO MO rMOrMO MO O MO S rH O rHOrMO MO MO OO~
m%ﬁﬁﬂrm O RMNMTWOr~ooo<AOA N K S HNMYTW O <AUA W K
NEEEEE § 5 5 5
-8 @ B5 2 @ g g
Fo<mgn) P g £
EE T w x - = o
25 XE 3 3
== L3 & &
ke 2 2
)]
b 3 3

COMMAND

1
V]

Normal
Incremental

116

At this time the Console Panel Indicators are on as shown below:

D5 D4 D3 D2 D1
(BUF+3) (BUF+2) | (BUF+Y) (BUF)

In order to light indicators D1 and D2, the Console can be in the normal mode and one halfword
can be output. The following programming sequence can be used:

LIS R1,1

LHI R3,X'80'

OCR R1,R3 Console in Normal Mode
WH R1,BUF

The Console Panel Indicators will be on as shown below:

D5 D4 D3 D2 D1
(BUF+1) (BUF)

Note that when a halfword of data is output to the Console Panel, the most significant byte loads
in indicator D1 and the least significant byte loads in D2.

The Console Panel Switch Register can be read by using the read instructions as shown below:

LIS Ri1,1 (R1) = Console Address
LHI R3,X'80' (R3) = 80 = Normal Mode
OCR R1,R3

RHR R1,R4 Read 1 Halfword

EXBR R4,R4 Exchange Bytes

At this time Register 4 has the 16 data switches.

Programming Note:

If more than five bytes are output to the Display Panel, the data is lost after five bytes. The
Console must then be initialized by giving an output command to it before outputting any data,
if the data is to be displayed.

117/118

APPENDIX 1

INSTRUCTION SUMMARY - ALPHABETICAL

INSTRUCTION OP-CODE MNEMONIC PAGE NO.
Acknowledge Interrupt DF Al 84
Acknowledge Interrupt Register 9F AIR 84
Add Halfword an AH 45
Add Halfword Immediate CA AHI 45
Add Halfword Register 0A AHR a5
Add Halfword Memory 61 AHM 46
Add Immediate Short 26 AlS 45
Add to Bottom of List 65 ABL 35
Add to Top of List 64 ATL 35
Add with Carry Halfword 4E ACH 46
Add with Carry Halfword Register OE ACHR 4
AND Halfword 44 NH 23
AND Halfword Immediate ca HNI 23
AND Halfword Register 04 NHR 23
Autoload D5 AL 95
Branch on Index High Cco BXH 42
Branch on Index Low or Equal C1 BXLE 41
Branch and Link 41 BAL 40
Branch and Link Register 0 BALR 40
Branch on False Condition 43 BFC 38
Branch on False Condition Register 03 BFCR 38
Branch on True Condition 42 BTC 39
Branch on True Condition Register 02 BRCR - 39
Branch on False Condition Backward Short 22 BFBS 38
Branch on False Condition Forward Short 23 BFFS 38
Branch on True Condition Backward Short 20 BTBS 39
Branch on True Condition Forward Short 21 BTFS 39
Compare Halfword 49 CH 50
Compare Halfword Immediate c9 CHI 50
Compare Halfword Register 09 CHR 50
Compare Logical Byte D4 CcLB 28
Compare Logical Halfword 45 CLH 27
Compare Logical Halfword Immediate C5 CLHI 27
Compare Logical Halfword Register 05 CLHR 27
Divide Halfword 4D DH 53
Divide Halfword Register oD DHR 54
Exchange Byte Register 94 EXBR 19
Exchange Program Status Register 95 EPSR 77
Exclusive OR Halfword 47 XH 27
Exclusive OR Halfword immediate c7 XHi 27
Exclusive OR Halfword Register 07 XHR 27

APPENDIX 1 (Continued)

INSTRUCTION OP-CODE MNEMONIC PAGE NO.
Floating Point Add 6A AE 64
Floating Point Add Register 2A AER 64
Floating Point Compare 69 CE 66
Floating Point Compate Register 29 CER 66
Floating Point Divide 6D DE 68
Floating Point Divide Register 2D DER 68
Floating Point Load 68 LE 62
Floating Point Load Register 28 LER 62
Floating Point Multiply 6C ME 67
Floating Point Multiply Register 2C MER 67
Floating Point Store 60 STE 63
Floating Point Subtract 6B SE 65
Floating Point Subtract Register 2B SER 65
Load Byte D3 LB 18
Load Byte Register 93 LBR 18
Load Complement Short 25 LCS 16
Load Halfword 438 LH 16
Load Halfword Immediate C8 LH! 16
Load Halfword Register 08 LHR 16
Load Immediate Short 24 Lis 16
Load Muitiple D1 M 17
Load Program Status Word Cc2 LPSW 76
Muttiply Halfword 4C MH 51
Muttiply Halfword Register ocC MHR 51
Muttiply Halfword Unsigned DC MHU 52
Multiply Halfword Unsigned Register 9C MHUR 52
OR Halfword 46 OH 24
OR Halfword Immediate Cc6 OHI 24
OR Halfword Register 06 OHR 24
Output Command DE oc 86
Output Command Register 9E OCR 86
Read Block D7 RB 89
Read Block Register -97 RBR 90
Read Data DB RD 87
Read Data Register 98 RDR 87
Read Halfword D9 RH 88
Read Halfword Register 99 RHR 88
Rotate Left Logical EB RLL 33
Rotate Right Logical EA RRL 34

Al1-2

APPENDIX 1 (Continued)

INSTRUCTION OP-CODE MNEMONIC PAGE NO.
Remove from Bottom of List 67 RBL 36
Remove from Top of List 66 RTL 36
Sense Status DD SS 85
Sense Status Register 9D SSR 85
Shift Left Arithmetic EF SLA 54
Shift Left Halfword Arithmetic CF SLHA 55
Shift Left Halfword Logical cD SLHL 30
Shift Left Logical ED SLL 29
Shift Left Logicat Short 91 SLLS 32
Shift Right Arithmetic EE SRA 56
Shift Right Halfword Arithmetic CE SRHA 57
Shift Right Halfword Logical cC SRHL 31
Shift Right Logical EC SRL 31
Shift Right Logical Short 90 SRLS 32
Simulate Interrupt E2 SINT 78
Store Byte D2 STB 22
Store Byte Register 92 STBR 22
Store Halfword 40 STH 20
Store Multiple DO ST™M 21
Subtract Halfword 4B SH 48
Subtract Halfword Immediate cB SHi 48
Subtract Halfword Register oB SHR 48
Subtract Immediate Short 27 SIS 48
Subtract with Carry Halfword 4F SCH 49
Subtract with Carry Halfword Register OF SCHR 49
Supervisor Call E1 svC 79
Test Halfword Immediate Cc3 THI 26
Write Block D6 wB 93
Write Block. Register 96 WBR 94
Write Data DA WD N
Write Data Register 9A WDR 921
Write Halfword D8 WH 92
Write Halfword Register 98 WHR 93

A1-3/A14

APPENDIX 2
INSTRUCTION SUMMARY - NUMERICAL

OP-CODE MNEMONIC INSTRUCTION PAGE NO.
01 BALR Branch and Link Register 40
02 BTCR Branch on True Conditon Register 39
03 BFCR Branch on False Condition Register 38
04 NHR AND Halfword Register 23
05 CLHR Compare Logical Halfword Register 27
06 OHR OR Halfword Register 24
a7 XHR Exclusive OR Register 27
08 LHR Load Halfword Register 16
09 CHR Compare Halfword Register 50
0A AHR Add Halfword Register 45
0B SHR Subtract Halfword Register 48
oc MHR Multiply Halfword Register 51
oD DHR Divide Halfword Register 54
OE ACHR Add with Carry Halfword Register 47
OF SCHR Subtract with Carry Halfword Register 49
20 BRBS Branch on True Condition Backward Short 39
21 BRFS Branch on True Condition Forward Short 39
22 BFBS Branch on False Condition Backward Short 38
23 BFFS Branch on False Condition Forward Short 38
24 LIS Load Immediate Short 16
25 LCS Load Complement Short 16
26 AIS Add Immediate Short 45
27 SIS Subtract Immediate Short 48
28 LER Floating Point Load Register 62
29 CER Floating Point Compare Register 66
2A AER Floating Point Add Register 64
28 SER Floating Point Subtract Register 65
2C MER Floating Point Multiply Register 67
2D DER Floating Point Divide Register 68
40 SHT Store Halfword 20
41 BLA Branch and Link 40
42 BTC Branch on True Conditinn 39
43 BFC Branch on False Condition 38
a4 NH AND Halfword 23
45 CLH Compare Logical Halfword 27
46 OH OR Halfword 24
a7 XH Exclusive OR Halfword 27
48 LH Load Halfword 16
49 CH Compare Halfword 50
4A AH Add Halfword 45
4B SH Subtract Halfword 48
4c MH Multiply Halfword 51
4D DH Divide Halfword 53

APPENDIX 2 {Continued)

OP-CODE MNEMONIC INSTRUCTION PAGE NO.
4E ACH Add with Carry Halfword 46
4F SCH Subtract with Carry Halfword 49
60 STE Floating Point Store 63
61 AHM Add Halfword Memory 46
64 ATL Add to Top of List 35
65 ABL Add to Bottom of List 35
66 RTL Remove from Top of List 36
67 RBL Remove from Bottom of List 36
68 LE Floating Point Load 62
69 CE Floating Point Compare 66
70

6A AE Floating Point Add 64
68 SE Floating Point Subtract 65
6C ME Floating Point Multiply 67
6D DE Floating Point Divide 68
90 SRLS Shift Right Logical Short 32
91 SLLS Shift Left Logical Short 32
92 STBR Store Byte Register 22
93 LBR Load Byte Register 18
94 EXBR Exchange Byte Register 19
95 EPSR Exchange Program Status Register 77
96 WBR Write Block 94
97 RBR Read Block Register 90
98 WHR Write Halfword Register 93
99 RHR Read Halfword Register 88
9A WDR Write Data Register Nn
9B RDR Read Data Register 87
9C MHUR Multiply Halfword Unsigned Register 52
9D SSR Sense Status Register 85
9E OCR Output Command Register 86
9F AIR Acknowledge interrupt Register 84
co BXH Branch on Index High 42
c1 BXLE Branch on Index Low or Equal 41
c2 LPSW Load Program Status Word 76
c3 THi Test Halfword immediate 26
c4 NHI AND Halfword Immediate 23
Cc5 CLHI Compare Logical Halfword Immediate 27
c6 OHI OR Halfword Immediate 24
c7 XHi Exclusive OR Halfword Immediate 27
cs LHi Load Halfword Immediate 16

APPENDIX 2 (Continued)

OP-CODE MNEMONIC INSTRUCTION PAGE NO.
c9 CHI Compare Halfword immediate 50
CA AHI Add Halfword Immediate 45
CB SHi Subtract Halfword Immediate 48
cC SRHL Shift Right Halfword Logical 31
cD SLHL Shift Left Halfword Logical 30
CE SRHA Shift Right Halfword Arithmetic 57
CF SLHA Shift Left Halfword Arithmetic 55
DO ST™ Store Multiple 21
D1 LM Load Multiple 17
D2 STM Store Byte 22
D3 L8 Load Byte 18
D4 cLB Compare Logical Byte 28
D5 AL Auto Load 95
D6 wB Write Block 93
D7 RB Read Block 89
D8 WH Write Halfword 92
D9 RH Read Hatfword 88
DA WD Write Data 91
DB RD Read Data 87
DC MRU Mutltiply Halfword Unsigned 52
DD SS Sense Status 85
DE oC Output Command 86
DF At Acknowledge Interrupt 84
E1 SvC Supervisor Call 79
E2 SINT Simulate Interrupt 78
EA RRL Rotate Right Logical 34
EB RRL Rotate Left Logical 33
EC SRL Shift Right Logical 31
ED SLL Shift Left Logical 29
EE SRA Shift Right Arithmetic 56
EF SLA Shift Left Arithmetic 54

A2-3/A2-4

APPENDIX 3

EXTENDED BRANCH MNEMONICS

INSTRUCTION OP-CODE_(M1) MNEMONIC OPERANDS

Branch on Carry 428 BC A(X2)

Branch on Carry RR 028 BCR R2

Branch on No Carry 438 BNC A(X2)

Branch on No Carry RR 038 BNCR R2

Branch on Equal 433 BE A(X2)

Branch on Equal RR 033 BER R2

Branch on Not Equal 423 BNE A(X2)

Branch on Not Equal RR 029 BNER R2

Branch on Low 428 BL A(X2)

Branch on Low RR 028 BLR R2

Branch on Not Low 438 BNL A(X2)

Branch on Not Low RR 038 BNLR R2

Branch on Minus 421 BM A(X2)

Branch on Minus RR 021 BMR R2

Branch on Not Minus 431 BNM A(X2)

Branch on Not Minus RR 031 BNMR R2

Branch on Plus 422 BP A(X2)

Branch on Plus RR 022 BPR R2

Branch on Not Plus 432 BNP A(X2)

Branch on Not Plus RR 032 BNPR R2

Branch on Overflow 424 BO A(X2)

Branch on Overflow RR 024 BOR R2

Branch Unconditional 430 B A(X2)

Branch on Unconditional RR 030 BR R2

Branch on Zero 433 BZ A(X2)

Branch on Zero RR 033 BZR R2

Branch on Not Zero 423 BNZ A(X2)

Branch on Not Zero RR 023 BNZR R2

No Operation 420 NOP

No Operation RR 020 NOPR

Branch on Carry Short 208 BCS A (Backward Reference)
218 BCS A (Forward Reference)

Branch on No Carry Short 228 BNCS A (Backward Reference)
238 BNCS A (Forward Reference)

Branch on Equal Short 223 BES A (Backward Reference}
233 BES A (Forward Reference)

Branch on Not Equal Short 203 BNES A (Backward Reference)
213 BNES A (Forward Reference)

APPENDIX 3 (Continued)

INSTRUCTION OP-CODE (M1) MNEMONIC OPERANDS
Branch on Low Short 208 BLS A (Backward Reference)
218 BLS A (Forward Reference)
Branch on Not Low Short 228 BNLS A (Backward Referance)
238 BNLS A (Forward Reference)
Branch on Minus Short 201 BMS A (Backward Reference)
211 BMS A (Forward Reference)
Branch on Not Minus Short 221 BNMS A (Backward Reference)
231 BNMS A (Forward Reference)
Branch on Plus Short 202 BPS A (Backward Reference)
212 BPS A (Forward Reference)
Branch on Not Plus Short 222 BNPS A (Backward Reference)
232 BNPS A (Forward Reference)
Branch on Overflow Short 204 BOS A (Backward Reference)
214 BOS A (Forward Reference)
Branch Unconditional Short 220 BS A (Backward Reference)
230 BS A (Forward Reference)
Branch on Zero Short 223 BZS A (Backward Reference)
233 BZS A (Forward Reference)
Branch on Not Zero Short 203 BNZS A (Backward Reference)
213 BNZS A (Forward Reference)

137
274
549

1 099

a0 b by

33
67
134

268
536
073
147

294
589
179
359

79
438
877
755

511

Jury

65
131
262
524

097
194
388

777
554
108
217

435
870
741
483

967
934
869
738

476
953
906
813

627

256
512
024
048

096
192
384
768

536
072
144
288

576
152
304
608

216
432
864
728

456
912
824

296
592
184
368

736
472
944
888

776

W Ho

ES - I B

10
11

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

32
33
34
35

36
37
38
39

40

TABLE OF POWERS OF TWO

25
625
812

906
953
976
488

244
122
061
030

015
007
003
001

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000

25

125
562
281

140
070
035
517

258
629
814
907

953
476
238
119

059
029
014
007

003
001
000
000

000
000
000
000

000
000
000
000

000

APPENDIX 4
ARITHMETIC REFERENCES

625
312
156
578

789
394
697

674
837
418
209

604
802
901
450

725
862
931
465

232
116
058
029

014
007
003
001

000

25
125

062
531
265
632

316
168
579
289

644
322
161
580

290
645
322
661

830
415
207
103

551
275
637
818

909

25
625
812

406
203
101
550

775
387
193
596

298
149
574
287

643
321
660
830

915
957
978
989

494

5

125
562
781

390
695
847
923

461
230
615
307

653
826
913
456

228
614
807
403

701

25

625
312
656
828

914
957
478
739

869
934
467
733

366
183
091
545

772

25
125

062
031
515
257

628
814
407
703

851
425
n2
856

928

25
625
812

906
453
226
613

806
903
951
475

237

25

125
562
281

640
320
660
830

915

625

312 5
156 25
078 125

039 062 5

TABLE OF POWERS OF SIXTEEN

16" n
1 0
16 1
256 2
4 096 3
65 536 4
1 048 576 5
16 7 216 6
268 435 456 7
4 294 967 296 8
68 719 476 136 9
1 099 511 627 776 10
17 592 186 044 416 11
281 474 976 710 656 12
4 503 599 6217 370 496 13
72 057 594 037 927 936 14
152 921 504 606 846 976 15
L\
e
Decimal Values
HEXADECIMAL TO DECIMAL CONVERSION TABLE
BYTE BYTE
HEX DEC HEX DEC HEX DEC HEX DEC
0 0 0 0 0 0 0 0
1 4,096 1 256 1 16 1 1
2 8,192 2 512 2 32 2 2
3 12,288 3 768 3 48 3 3
4 16,384 4 1,024 4 64 4 4
5 20,480 5 1,280 5 80 5 5
6 24,576 6 1,536 6 96 6 6
7 28,672 7 1,792 7 112 7 7
8 32,768 8 2,048 8 128 8 8
9 36,864 9 2,304 9 144 9 9
A 40,960 A 2,560 A 160 A 10
B 45,056 B 2,816 B 176 B 11
C 49,152 C 3,072 C 192 C 12
D 53, 248 D 3,328 D 208 D 13
E 57,344 E 3,584 E 224 E 14
F 61,440 F 3,840 F 240 F 15

A4-2

APPENDIX 4 (Continued)

HEXADECIMAL ADDITION TABLE

- || |l] |~ o jo | A (O |A A |K
S e |0 [[w | |0 [~ |0 | |<€ |A (O [A WK
L T S e e e I I e R I I I T I T R B I B T I I I I I I |
o fm ||| [0l o jo (<€ |AI0 A
P o e T e T A B I T I T I T A T O O O I B I B |
W ol ||| | o |- o |o < {MA]0
P I I T A I I I I T I I I O O I T I O I B |
Almimieo|r|alols lvie =|ole </
P A e I T A T I I I I A I I I I I I I I I |
OlAalm|lm|ojm|{a | (¢ iw joic- oo <
PO I T I I I T A I O O O I O T O I I I O |
mlolgle|e SIS |S|3 225|245
<|mjojalmixigi|y g |s]alg|s]e
o|<|mloja|mim|g gy |alX|a]2]xs
o f<lmiojal@ ke g gie)y
Slelela|mlola @ kg nin e e
© o |
789ABCDEFNH11M
-
w | © w|oid|m O AE|KIS|H|INIR
¢ lvwjo{clo|lo|(dim O AIKIM|©f-]|x
L R B |
3456789ABCDEFNH
23456789ABCDEFN
|l |t|lv|lele]|lo o< |MIO|A|K]|MKX

HEXADECIMAL MULTIPLICATION TABLE

o oo |2 v o j= |oo | | (A (O (A K [B
RRIRSIsREIgIRIRAICIA|R
Cildizlslz s eBIRIEIRIRIT|A
Sislzls|818 18R |8 (R|R|C
2Ig8IR(2|xI8BleIZI2IRIZ|A
SRR 3|818 121315 |5(<
RN R G F- 2 b3 O - R R R B
NAIxIRIgBlzlals |8 |02
Sl IRIRIB|IS (2B |B|8|8|IR |8
alalolaislzlalxleala]s|z|s
Olalo i i2 5121812 (9|25 (3(8
<|/m|x|aPIR 8RNI |RF(%]9
ool |z | IRIIIRIBISIZ|IBISP
©lo |0 fm|aln e @18 14 3 I5IF(R
vlolw|<|o(m|S|32]8]23(2]8
mlo|ld|lvw]jo|lc|oleo|d|m]O|A]RA] &~
o]l ¢lvw]|lo|r|loloa|d]|majOo|A|R]|~

A4-3

APPENDIX 4 (Continued)

TABLE OF MATHEMATICAL CONSTANTS

Constant Decimal Value Hex{ag tle‘c";mal

x 3.14159 26535 89793 3.243F 6A89
=1 0.31830 98361 83790 0.517C C1B7
Vr 1.77245 38509 05516 1.C5BF 891C
Lanr 1.14472 98858 49400 1.250D 048F
e 2.71828 18284 59045 2.B7E1 5163
el 0.36787 94411 T1442 0.5E2D 58D9
ve 1.64872 12707 00128 1.A612 98EZ2
log; ge 0.43429 44819 03252 0.6F2D EC55
logge 1.44269 50408 88963 1.7154 7653

v 0.57721 56649 01533 0.93C4 67E4
Lo -0.54953 93129 81645 -0.8CAE 9BCl
v 1.41421 35623 73095 1.6A09 E668
Ln2 0.69314 71805 59945 0.B172 17F8
logy o2 0.30102 99956 63981 0.4D10 4D42
Vvio 3.16227 76601 68379 3.298B 075C
Lnl0 2.30258 50929 94046 2.4D76 3777

ALPHABETICAL

INDEX
Appendix 1 Instruction Summary - Alphabetical A1-1/A13
Appendix 2 Instruction Summary-Numerical0.v.... A2-1/A2-3
Appendix 3 Extended Branch Mnemonics v . it vt i v e e e e A3-1/A3-2
Appendix 4 Arithmetic References ittt ittt s e e A4d-1/A44
Automatic 1/O and Immediate Interrupt Mask, ProcessorPSW 6
Automatic /O Channel i i it ittt s e e e e e e e e e 100
Interrupt Service Point Table i it i s e e e e e 100
Channel Control Block it i ittt e it e e e e e e e e e e 100
SystemQuUeUE s e e e e e e e e e e e e e e e e e e e 101
General Operation i ittt it e e e e e e e e e e e e e e e e e e 102
Channel Command Words i it i it it it et e e e e e e 102
Initialization L e e e e e e e e e e e e e 103
JOOPEration v ittt ittt et e et e e e e e e e 103
Termination i st e e e e e e e e e e e e e e e e e 105
- Bit Configuration for Command ChanneiWord, Figure 12 102
Boolean, Chapter 3 i i et e e e e e e e e e e e e e e e e e e e 13
Branching, Chapterd i ittt ittt et e e e e e e e 37
Branch Instructions i i i it e e e e e e e e e e 37
Branchon FalseCondition BFC 38
Branch on False Condition Register BFCR 38
Branch on False Condition BackwardShort BFBS 38
Branch on False Condition Forward Short BFFS 38
Branchon TrueCondition BTC............. 39
Branch on True Condition Register BTCR 39
Branch on True Condition BackwardShort BRBS 39
Branch on True Condition ForwardShort BTFS 39
Branchand Link, BAL 40
Branchand Link Register BALR 40
Branchon Index LoworEqual BXLE 41
BranchonindexHigh BXH 42
Branch Instruction Formats it i it it it it e e e e e e e e e 37
Channel! Control Block, Automatic 1I/O Control v v i v v i v v e e e e e e e e ee e n 100
Channel Control Block, Figure 11 i i ittt it it e et it e e aa 101
Channel Command Words, Automatic 1/OControl i i it vt e e e s o 102
Inftialization e e e e e e e e e e 103
O OPeration i it it ittt e e e e e e e e e e 103
Termination i i it ittt e e et e e e e e e e e e e 105
Channel Command for Initialize and Output Commands, Figure 13 103
Channel Command Word for 1/0 Operation, Figure 14 it v v ... 104
Channe! Command Words for Terminators, Figure 15 ¢ . i it vt i i et s 105
Circular List, Figure 6 i i it it it it e et et e e et e e 14
Circular List Definition, Figure 5 i i it it i ittt it e it eee e 14
Condition Codes, Fixed Point Arithmeticot v it it ittt et 43
Condition Code, Processor PSW i i it it et e sttt ot n e e e 7
Configuration (HEX Display) it i it i it i e et e s e et e et eee s 107
Console Interrupt, Interrupt System it ittt e e e et e e e e e e e e 73
Control of /O OPerations i i i i it it et e e e 96
Control Keys i i i it ittt et e e e h e e e e e e e e e e e e 109
Conversion from Decimal, Data Formats i it it it it ettt te e e en 60
Data Formats, Fixed Point Arithmetic vt i i i i it ittt e et e e e e s e e e e 43
Data Formats, Floating Point Arithmetic e e et e e et e e e e e e e 59

Data Format (Hex Display) i i i i ittt i s ettt e e e e e e 114

Data Formats, Logical Operation L . i it it i it it et e e e e e, 13

Data Formats, Processor Operation v o i i i i o v i i it e s e e e e e e 8
Decision Making, Branching Operations i it i i it v et e e 37
Device Addressing, Device Controllers I/OOperation & . ¢ i et o v v v v v et ne e e 81
Device Controliers, Input/Output Operations ¢ v v s vt v v v v ot o n e e s nss 81
Device AdOressing . . o ¢« v v v v i b i it et et e e e e e e et 81
Processor/Controfler Communication ¢« i v v v v v e e e e 82
Device Priorities 0 0 it e e e e e e e e e e s e e s ee . .82
Device Priorities, Device Controllers 1/O Operations e e e e e e e P e .. 82
Display Registersand Indicators 0 . i i i ittt e e e e e108
Display Statusand Command L L Lt e e e e e e e e e e e 116
Exponent Overflow and Underflow, Data Formats e e e e e e e e e e 59
External Interrupt, Interrupt System L. o 0. e e e e e e 7
External Interrupt Mask, Processor PSW e e e e e e e e s 6
Fixed Point Arithmetic,Chapter5 f e e e e s e e e e 43
Fixed Point Data, Data Formats i i i vt v i it e et s et et it e e s 9
Fixed Point Divide Fault Interrupt Mask, Processor PSW it it it it et i e e 6
Fixed Point Data Words Formats, Figure 7 i it ittt nnn s 43
Fixed Point Fault Interrupt, Interrupt System v it i v ittt n e n e e 72
Fixed PointInstructions i i i i ittt it et sttt et e teena 44
AddHalfword et e AH 45
Add Halfword Register e e e e e AHR 45
Add Halfword Immediate e e e AHI 45
Add immediateShort AlS 45
Add HalfwordtoMemory e e e e e e e AHM 46
Add with Carry Halfword e e e e e e e e ACH 47
Add with Carry Halfword Register ACHR 47
SubtractHalfword SH 48
Subtract Halfword Register SHR 48
Subtract Halfword Immediate SH! 48
Subtract immediate Short SIS 48
Subtract withCarryHalfword SCH 49
Subtract with Carry Halfword Register SCHR 49
Compare Halfword CH 50
Compare Halfword Register e e e e e e e e e CHR 50
Compare Halfword Immediate CHI 50
MultiplyHafword MH 51
Multiply Halfword Register D, MHR 51
Multiply Halfword Unsigned MHU 52
Multiply Halfword Unsigned Register MHUR 52
DivideHalfword e e e e e e e e DH 53
Divide Halfword Register DHR 53
Shift Left Arithmetic00.... SLA 54
Shift Left Halfword Arithmetic SLHA b5
Shift Right Arithmetic SRA 56
Shift Right Halfword Arithmetic SRHA 57
Fixed Point Instruction Formats i 0 it vttt i it it ettt s e e n e 44
Floating Point Arithmetic, Chapter® L v i v vt it et e et e vt e en 59
Floating Point Data, Data Formatst i v i v vt vt ot et o o ien s aenan 59
Floating Point Data Formats, Figure 80t enenn. 59
Floating Point Fault Interrupt, Interrupt System o v v v it it et e et e e 73
Floating Point Fault Interrupt Mask, Processor PSW i i i i it it e ittt e n e e 7
Floating Point Instructions i i i vttt it et et e et e e 61
Load e e e e e e e e e e e LE0 62
Load Register it iuenenen. LER 62
SOrE . L. e e e e e e e e e e e e STE 63
T L AE, 64
AddRegistert AER 64
Subtract e e e e e e e SE 65
Subtract Register¢.u.iv .. SER 65
COMPare i Lt i e e e e e e e e e e e e, CE 66
Compare Register¢¢0uuionvu.. CER 66
Multiply e e e e e e ME 67
Multiply Register o' uue.n.. MER 67

Dividet DE 68

Divide Register @ .. viiuennun.. DER 68
Floating Point Instruction Formats v i ittt it e e e e e e 61
Floating Point Registers i i i i ittt it st ittt st et e e e e 7
General Operation, Automatic I/OChannel it it in e i e 102
General Registers ¢ i i i it e et e 7
Hexadecimal Display Panel i it it it e e e e e e e 107
llegal Instruction Interrupt, Interrupt SYStemt b i v i e e e e e e e e e 74
Immediate Interrupt, Interrupt System s e e e e e e e e 73
Initialization, Channel Command Words i i it it e s e e e 103
1/0 Channe! Operation Block Diagram, Figure 10 o v i v e e . 101
HOINStructions i i it it e e e e e e e e e e e, 83

Acknowledge Interrupt e . Al ... o 84

Acknowledge Interrupt Register AR 84

SenseStatus L. i e e e e e e e e e 8S e e 85

SenseStatus Register i i i, SSR 85

OutputCommand ' ivrmunenean OC 86

Output Command Register OCR 86

Read Data ittt nenennunn RD 87

Read DataRegister RDR 87

ReadHalfword RH 83

Read Halfword Register RHR 88

ReadBlock 't iunenn. RB 89

Read Block Register, RBR 90

WriteData WD 91

WriteDataRegistert WDR 91

WriteHalfword WH 92

Write Halfword Register WHR 92

Write Block it i WB 93

WriteBlock Register, WBR 94

Autoloadttt e AL 95
O Instruction FOrmats v i i vt i e i e e et et e e e e e e 83
I/0 Operations, Channel Command Words v o v v i e e et e e e e et e 103
Input/Output Operations, Chapter 8 i ittt it et e et e e e et e e e 81
INPUL OUtPUL SEt L L i e e e e e e e e e e e e e e e e e e e 2
Instructions FOrmats i i i i ittt it s ittt e e e e e e e e 9

Register to Register (RR) Formatt un.. 10

Short Form (SF) Format @ i ittt it ittt i ene e 10

Register to Indexed (RX) Format i it it i ittt e et et 10

Register to Immediate Storage (RI) Format ¢ .ouiiienmnne... n

Branch Instruction Formats i it i ittt vttt st s e s eis o e ann 11
Instruction Formats, Figure 3 it e e e e 9
Instruction Set L e e e e et e e e e e e e et e e e 2
Interrupt Driven 1/0 L e e e e e e e e e e e e e e e 97

Automatic VECIONNg v o v o v i v e e e e e e e e e e e e e e e e 97

Software Vectoring & o . i i i it i e e i e e e e e e e e 98
Introduction, Chapter 1 i i ittt ittt s st s et ettt e ettt 1
Interrupt Service Pointer Tablet v i i i i it ittt e et e e 82
Interrupt Service Pointer Table, Automatic I/OChannel ¢« v i v v i v vt s et e n e 100
Intermupt System L L L L i it e i e e e e e e e e e e e e e e e 71

External Interrupt it e e e e e et e e e 71

Machine Malfunction Interrupt 72

FixedPoint Fault Interrupt 0 it v it it st et et e e e e 72

Immediate INterrupt L e e e e e e e e e e e e e e e, 73

Console Interrupt @ ittt it i e e e e e e e e e e e e 73

Floating Point Fault Interrupt it ittt ittt it e 73

System Queue Interrupt e e e e e e e e e e e e e e e e e e 74

Protect Mode Violation Interrupt it it et e e e e e e 74

Megal Instruction INtermupt 0 L i i i i it e et et ettt it e e 74

Supervisory Call Interrupt L L L e e e e e i e e 74
System Queue Overflow Interrupt i i i i it it et it e e e 75
Simulated Interrupt L e e e e e e et e e 75
Key Operated Security Lock L i it it i it e s et e 109
List Processing, Logical Operationst v i i i i e ittt e bt et e et e 14
Logical Data, Figure 4 i i i i i it it ettt i e et e e 13
Logical Data, Data Formatst i i it it s i st i e et s e e 9
Logical Instructions i i i i i i et e e e e et e e e e 15
loadHalfword¢.. ¢ .v.... LH 16
Load Halfword Register c v eo.n LHR 16
Load Halfword Immediate LHI 16
Load ImmediateShort LIS0... 16
Load ComplementShort LCS 16
Load Multiplet nennenn M 17
loadByte et e e s e ae e s e e LBc... 18
LoadByte Registert i v uneno LBR 18
ExchangeByte Register ' o o.. EXBR 19
StoreHalfword STH. 20
StoreMultiple STM 21
StoreBytet e STB............. 22
StoreByte Register 0o STBR 22
ANDHalfwordt iinunnnnnn NH 23
ANDHalfword Register0t v e unn NHR 23
AND Halfword Immediate NHI 23
ORHalfword i i it nneennn OH 24
OR Halfword Registero .un.. OHR 24
OR Halfword Immediate OHI 24
ExclusiveORHalfword XH 25
Exclusive OR Halfword Register XCHR ‘25
Exclusive OR Halfword Immediate XHi 25
Test Halfword Immediate THI (... 26
Compare Logical Halfword CLH 27
Compare Logical Halfword Register CLHR 27
Compare Logical Halfword Immediate CLHI 27
Compare Logical Byte o v v v o v vt e esann LCB............. 28
Shift Left Logical ¢ ' eveuwenun SLL 29
Shift Left Halfword Logical SLHL 30
Shift RightLogical ¢t neensn SRL 31
Shift Right Halfword Logical SRHL 31
Shift Left LogicalShort¢..... SLLS 32
Shift Right LogicalShort SRLS 32
Rotate Left Logical¢00uuee... RLL 33
Rotate Right Logical0... RRL H
AddtoTopofList 0 vueuuu.n ATL 35
AddtoBottomof List00... ABL 35
Remove fromTopofList0.00... RTL 36
Remove fromBottomof List RBL 36
Logical Instruction Formats i i i i i it it et e e e et e 15
Logical Operations, Chapter 3 i i i ittt ittt ittt s ar s e eaen 13
Machine Malfunction Interrupt, Interrupt System v o i v i i i it e e e e e 72
Machine Malfunction Interrupt Mask, PSW Processor v v v v v v v v v it e et a e men e n 6
1= 11T 1
Normalization, Data Formats i i i it i it i et e it e s et e 59
OpEratioNS L i e e e i e e e e e e e e e e e 37
Decision Making i ittt ittt ittt e e e e 37
Subroutine Linkage e e e e e e e e e 37
Operating Procedures (Hex Display) o v v it it e e e e et e e e e e e e e 111
Optionsand Peripherals i i ittt s st e e e e e e e 2

g e T T -.5

Processor/Controller Communication, DeviceController v vt v it vt e s e 82
Processor INterTUPtS L . L . it it e e et e e e e e e e e e e e 7
ProcessorOperations ek e e e e e e e e e e e e e e e e e e e 8
Program Status Word, Figure2 et e e e e e e e e e e e e 6
Program Status Word, Processor i i i i it i it e e e e e e e e e e 6
WaitState e e e e e e e e e e h e e e e e e e e 6
External Interrupt Mask 0 L L e e e e et e e e e e e e e e e e e e e e e 6
Machine Malfunction Interrupt Mask i i i i i i ittt et e e e e e 6
Fixed Point Divide Fault Interrupt Mask i it it e e e e e et e e e 6
Automatic 1/Oand Immediate Interrupt Maskt e e 6
Floating Point Fault Interrupt Mask i e e 7
System Queue Service Interrupt Mask L L. . e e e e e e e e e 7
Protect Mode @ i it it i i e e e e e e e e e e 7
Condition Code @ . . i i it i i e e e e e e e e e e e e 7
Program Status Word, Figure O L. L i e e e e e e e 69
Program Status Word, Status Switchingand Interrupts @ . i it it i e 69
Wait State L L e 69
Protect Mode i i e e e e e e e e e e e e e e 69
Protect Mode, PSW Processor« v i v i i i e i e it e e e e e e e e e e 7
Programming Instructions L L L L e e e e e e e e e e e e 115
Programming SequUences & ittt et e e e e e e e e e e e e 115
Protect Mode, PSW Status Switchingand Interrupts i i it v . 70
Protect Mode Violation interrupt, Interrupt System c 0 v i i i it e e e .. 74
Protect Mode, PSW Processor L L i i it s e e e e e e e e e e 7
Register to Immediate Storage (R1) Format, InstructionFormats 11
Register to Indexed (RX) Format, Instruction Formats v v v i v v v v v e .. 10
Register to Register (RR) Format, Instruction Formatso vnu.o.. 10
Reserved Memory Location, System Description 4 i it ittt et e e 8
Selactor Channel 1/0 i i it e e e e e e e e e e e e e e e e e e 98
Selector Channel Devices i i i i i i i et e e e e e e e e e e e e e 929
Selector Channel Operation o i i i vt i it sttt e e e e 99
Selector Channe! Programming L i L i i it e e e e e e 100
SoftWare L L e 2
Short Form (SF) Format, Instruction Farmats ¢ ..ttt ennn. 10
Simulated Interrupt, Interrupt System L . L. i s e e e et e e e e e e 75
Software Vectoring, InterruptDriven 1/O i i i i i it e s e e e e e e 98
Status Switchingand Interrupts, Chapter 7 i it i it i it e e 69
Status Monitoring 1/0 L .. e e et e e e et e et e 96
Status Switching Instructions ¢ i L i i i i e e s e e e e e e e e e e 75
Load ProgramStatusWord, LPSW 76
Exchange Program Status Register EPSR e 77
SimulateIntermupt i . e e e e e SINT 78
SupervisorCall e e SVC oo 79
Status Switching Instruction Formats 0t v il i s e e e e 75
Subroutine Linkage, Branching Operationst vt v v it vttt i i e 37
Summary of 7/16 Features and Options v o v v vttt s @t ot t e m et e s 2
Supervisor Call Interrupt, Interrupt System L L e e e e s e e e e 3
System ArchitectUre ¢ . i it it e e m e e e e e e e e e e e e e e 1
System Block Diagram, Figure 1 i i 0 i i it it e e e e e 5
System Description, Chapter2t o i vt v s s s e e e a e e e e e 5
Systemn Queue, Automatic I/OChannel c v i i it e e e e e et 5
System Queue Interrupt, Interrupt System L L Lt e e e e e 74
System Queue Overflow Interrupt, InterruptSystemo v v it it n .t 75
System Queue Service Interrupt Mask, PSWProcessoro oo ., 7
Termination, Channel Command Words & vt vt i v it bt b e e it e e e e 105
Wait State, PSW Processor . . . & .« v v o ot et v n o b e et e e e e e e e e e e e 6
Wait State, PSW Status Switchingand Interrupts it i e e e 70

vivi

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	A1-1
	A1-2
	A1-3
	A2-1
	A2-2
	A2-3
	A3-1
	A3-2
	A4-1
	A4-2
	A4-3
	A4-4
	i-1
	i-2
	i-3
	i-4
	i-5

