Publication Number CB29-633R02

METRIC

MODEL 8/16E
PROCESSOR
USER'S MANUAL

PERKIN-ELMER

Computer Systems Division
2 Crescent Place
Oceanport,N.J. 07757

Copyright @1977 by Perkin-Eimer Corporation Printed in U.S.A. July 198¢

PAGE REVISION STATUS SHEET

PUBLICATION NUMBER (B29-633
TITLE Model 8/16E Processor User's Manual

REVISION RO2 pDATE July 1980
REV. DATE PAGE REV. DATE PAGE REV. DATE
ROO 1/78|1 9-1 A8-1
ROO 1/78{} thru thru
RO1 10/78]|| 9-5/ A8-5/
RO1 10/781{] 9-6 RO2 7/80|| A8-6 ROO 1/78
9-7
RO1 10/78|] thru Index-1 RO02 7/80
9-25/ Index-2 ROO 1/78
9-26 ROO . 1/78|| Index-3 RO2 7/80
Index-4 R02 7/80
ROO 1/7811 10-1 Index-5 R02 7/80
thru Index-6 R02 7/80
10-23/
10-24 ROO 1/78
ROO 17781 11-1
thru
11-11/

11-12 ROO 1/78

ROO 1/78|] al-1/
Al-2 RO1 10/78

A2-1
thru
ROO 1/78|| A2-3/
' A2-4 ROO 1/78
A3-1
ROO 1/78]|] thru
A3-3/
A3-4 ROO 1/78
ROO 1/78|| aA4-1 ROO 1/78
Ad-2 ROO 1/78
A5-1
thru
ROO 1/78]] A5-6 ROO 1/78
ROO 1/78|| a6-1 ROO 1/78
ROO 1/78|] A6-2 ROO 1/78
ROO 1/78
RO2 7/80|1 A7-1
thru

A7-4 ROO 1/78

ROO 1/78

A2254

PREFACE

The Model 8/16E User’s Manual provides information for the programmer and operater in the use of the Model 8/16E
computer system. The Programmer is given detailed information on the 16-bit system architecture and the unique memory
management scheme as well as a description of each instruction in the Model 8/16E repertoire. The instruction descriptions
include valuable system related information presented in the form of programming notes and instruction examples.
Information on the Hexadecimal display panel is given to facilitate program preparation and execution for the programmer
and operator of the system.

29-633 ROO 1/78 ifit

Table of Contenfs

CHAPTER 1 INTRODUCTION .« + o o o e e e e e e e e e e e e s 11
CHAPTER 2 SYSTEM DESCRIPTION - « + o o v e oot e e e e e e e e e e e 21
PROCESSOR .+ « o o o o e 21
DATA FORMATS . . « o o ooooo e S PP 25
INSTRUCTION FORMATS . « « o o o oo e 25
CHAPTER 3 LOGICAL OPERATIONS .+ © « + + o oo e e e e e e e e 3-1
INTRODUCTION .« « o o oo e s 31
DATA FORMATS . .« « o o o s e 32
LOGICAL INSTRUCTION FORMATS . « « « o v o e oo e e e e e 34
LOGICAL INSTRUCTIONS o o n .. D 34
CHAPTER 4 BRANCHING .« + + o o o o e o e s 4-1
OPERATIONS .« « o o o 4-1
BRANCH INSTRUCTIONS FORMATS . « » « © o o oo o e e e e e e e 41
BRANCH INSTRUCTIONS .« « + o o oo s e 41
EXTENDED BRANCH MNEMONICS . « o o oo e e R 47
CHAPTER 5 FIXED POINT ARITHMETIC P 5-1
DATA FORMATS .+ + + o o oo e e e s 5-1
FIXED POINT NUMBER RANGE - - + « o o o oo s e 5-1
OPERATIONS . . o o o 52
CONDITION CODE . . o o e 52
FIXED POINT INSTRUCTION FORMATS . .« © + o o o o e e e e e e e e e e e 53
FIXED POINT INSTRUCTIONS . . © « © « o ottt et e e e e e e e e 53
CHAPTER 6 FLOATING POINT ARITHMETIC o, 6-1
INTRODUCTION + + « o e e e e s s 6-1
FLOATING POINT NUMBER . . + o« o o oo o e e e 63
CONDITION CODE . . « .« o o e e e 68
FLOATING POINT INSTRUCTION FORMATS . .« « + + o v oo e e e e e e e e e e e e e 68
FLOATING POINT INSTRUCTIONS . . + + + o o o e e e e e e e e e 68
CHAPTER 7 MEMORY MANAGEMENT . -« « « « + o e v et e et e e e e e e e e 71
INTRODUCTION .« « o o v e e e e e e e e e e e e . 7-1
MEMORY SEGMENT SELECTION INSTRUCTION FORMATS . . « o v e v e oot e e e eem e e e 74
CHAPTER 8 STATUS SWITCHING AND INTERRUPTS v nan A 8-1
INTRODUCTION -+ + + o o e oo e e e e e e e e s 81
PROGRAM STATUS WORD .+« « o o o e 8-1
INTERRUPT SYSTEM .« + + « v v ooeoeoe e e e e e e D 8-3
STATUS SWITCHING INSTRUCTION FORMATS - © + « + o o o oo s e e e e e e e e e e 87
STATUS SWITCHING INSTRUCTIONS . + «+ + « + v o oo e e e e e e e e e e e e 8-7

29-633 ROO 1/78 iii

Table of Contents (Continued)

..................................... 9-1
INTRODUCTION . . o o oo e e et i e e e e e et e e s 9-1
DEVICE CONTROLLERS ¢ o ittt it e et e e e e 9-1
INTERRUPT SERVICEPOINTER TABLEo e 9-2
IO INSTRUCTION FORMATS oottt e s e e e 9-3
IJOINSTRUCTIONS . . . ot vttt i e e e 93
CONTROL OF IJOOPERATIONS oot i e e e e 9-16
STATUS MONITORING I/O . . . o o o i i et e e e e e e e 9-16
INTERRUPT DRIVEN I/O o o i it e e e e e e e e s 9-17
SELECTOR CHANNEL I/O o o ittt i e e e e e e e e e e e 9-18
AUTOMATICIJOCHANNEL o i vt ot e e e e s e 9-20
CHAPTER 10 INPUT/OUTPUT SYSTEM o ot it it v i c e e e 10-1
INTRODUCTION . . . i o ot e i e e e e e et e et e et e s et s s e s s e e e 10-1
MULTIPLEXOR BUS . . . o i e e et e e i e i e e e e et e e e e e e s e e 10-3
[JOSYSTEMSMODULEt ittt i i o oo s 10-5
MULTIPLEXOR 1/O DEVICE CONTROLLER LOGICDESIGNo cvvivee e e e 10-6
MULTIPLEXOR 1/O INTERFACE DESIGN (PROGRAMMING CHARACTERISTICS) 10-15
MULTIPLEXOR I/O INTERFACE PHYSICAL PACKAGING CABLING AND CONNECTIONS 10-20
CHAPTER 11 M71-102 HEXADECIMAL DISPLAY PANEL AND
M71-101 BINARY DISPLAY PANEL PROGRAMMING SPECIFICATION oo v vive oo v 11-1
INTRODUCTION . o v v o ot e e e e e et et e et e et e e e e e e e e s e e 111
CONFIGURATION . . . o o ittt e 11-1
OPERATING PROCEDURES o o i it i it ot e e v oo e s e e me e e s e e e st 11-5
PROGRAMMING INSTRUCTIONS o o ottt et e e e e e s e s e 119
PROGRAMMING SEQUENCES o oo e oo e v i e e e e e e e 119
INDEX . . o o e e e e e e e e e e e e e e e Index-1
APPENDICES
APPENDIX 1 MODEL 8/16EOP-CODEMAP o v o v v v oo en v e e e e Al-1l
APPENDIX 2 INSTRUCTION SUMMARY - ALPHABETICAL WITH ATTRIBUTES A2-1
APPENDIX 3 INSTRUCTION SUMMARY -NUMERICALo m e A3-1
APPENDIX 4 EXTENDED BRANCHMNEMONICSo v e s s s e A4:-1
APPENDIX 5 ARITHMETIC REFERENCES« . o v i e e e A5-1
APPENDIX 6 INSTRUCTION TIMING« v o v e v o e e A6-1
APPENDIX 7 JOREFERENCES« oo e A7-1
APPENDIX 8 AUTOMATIC IJOOPERATION oo v v e i e e e e e e e A8-1
FIGURES
Figure 2-1 System Block Diagram oo PEEEFE 2-1
Figure 2-2 Program Status Word Format o oo 22
Figure 2-3 Instruction FOMAts« o v v v v o 2-4
Figure 2-4 16-Bit Instruction Format Examples e e e e e e e e e e e e e e e 2-6
Figure 3-1 Logical Data oot o oo e 32
Figure 3-2 Circular List Definition oo 0o 33
Figure 3-3 Circular LISt o« oo v v 3-3
Figure 3-4 List Processing Instructions oo oo e e 3-26
Figure 5-1 Fixed Point Data Words Formats oo oo v s s 5-1
Figure 6-1 Single Precision Floating Point Number Fields+« o v v v i e e e e e e 6-2
Figure 6-2 Exponent Overflowo cv v m e e e e e e e e e e e e e e 6-6
Figure 6-3 Exponent Underflowo . oo oo vmn o an 6-6
Figure 7-1 Case 1 Translation from Program Address to Physical Addresso oo e e e 72
Figure 7-2 Case 2 Translation from Program Address to Physical Address o oo oo e e 7-3

iv 29-633 RO1 10/78

Table of Contents (Continued)

FIGURES (Continued)
Figure 8-1 Porgram Status Word Format PR S A 81
Figure 9-1 1/O Channel Operation Block DIagram . . . o« v o v v v v oo n e e e e e 9-21
Figure 9-2 Channel Control BIOCK &+ o o o o e e et e e e e e e e e e e e e e e e e 9-21
Figure 9-3 Bit Configuration for Channel Command Word« o o o v v i i e 9-22
Figure 9-4 Channel Command for Initialize and Qutput Commands« o v e e 9-23
Figure 9-5 Channel Command Words For /O Operation« o v o v v v v ot om e 9-24
Figure 9-6 Channel Command Words For Termination o v v v oo oo v e e e e e e e e 9-25
Figure 10-1 System Interface, Block Diagram (16 Bit Processor)« oo oo v v e 10-2
Figure 10-2 I/O Interface Transmit and Receive Characteristics« o v oo v v o m oo e 10-7
Figure 10-3 General Interface to Multiplexor BUS & o o o et et e e e e e e e e e e e e e e 10-9
Figure 10-4 Multiplexor Bus Output THNINE + o o o o v v v e e e e et 10-11
Figure 10-5 Multiplexor Bus Input THMNG <« o o o o o e e e e e 10-11
Figure 10-6 DC/DC CONVEILEr . o o « o oo v vv v o m et s s s s e 10-13
Figure 10-7 Status Byte o oo oo oo 10-15
Figure 10-8 Command Byte co vt 10-15
Figure 109 Bus Sequence for Byte or Halfword DeviCe . . .« v v v o v v v oo e e v o e e e e e 10-17
Figure 10-10 Read/Write Data Transfer Bus SEAUENCE . . « o« ¢« o o s o o n e e e s e 10-18
Figure 10-11 Address and DAta Transfer Timing Between Processor and 1/O Device Interfaced - - - - . - . - 10-18
Figure 10-12 Address and Data Transfer Ftiming Between 1/0 Interface and Processoro oo v oo 10-19
Figure 10-13 Interrupt THMING . . .« o . o oo oo v v v e 10-19
Figure 10-14 16-398 Half Board Adapter Kit v v v e 10-20
 Figure 10-15 381 mm X 381 mm (15” X 157) Printed Circuit Board « .« o« o o oo e 10-21
Figure 10-16 1/0 Back Panel CONMECHONS o v oo v vve e e s 10-22
TABLES
TABLE 5-1 FIXED POINT FORMAT RELATIONSo oo e e e e e e 5-1
TABLE 6-1 FLOATING/FIXED POINT RANGES« vv v veae o ce v oenm e e e n e 64
TABLE 7-1 RELATIONSHIP BETWEEN PROGRAM ADDRESS AND PHYSICAL ADDRESS 74
TABLE 10-1 MULTIPLEXORBUSLINES n e 10-3
TABLE 11-1 DISPLAY STATUS AND COMMANDo v ot e e e e e 11-11
29-633 ROl 10/78 vivi

CHAPTER 1
INTRODUCTION

The Perkin-Elmer Model 8/16E Processor allows addressing of more than 64KB of main memory. As much as 256KB of
main memory may be added to the Model 8/16E. Included in the basic configuration are the 8/16E Processor with 98
separate instructions (optionally expandable). 8K bytes of memory, 16 general-purpose registers, hardware interrupt
vectoring for up to 255 external devices, high-speed Direct Memory Access (DMA) channel, and a power supply. A variety
of standard, off-the-shelf options permit the user to tailor the system to meet both present needs and future requirements.
The overall efficiency of the Perkin-Elmer 8/16E makes it well-suited for a wide variety of applications from small,.
dedicated processors to large multi-user systems.

System Architecture

The Perkin-Elmer Model 8/16E Processor is designed around the powerful third generation architecture. The advantages
inherent in this type of architecture greatly simplify system design, progtamming, and debugging. The large, task-oriented
instruction set allows the programmer to concentrate on system programming instead of difficult coding to accomplish
such basic functions as EXCLUSIVE OR, multiple shifts, or byte processing.

The multi-accumulator architecture provides 16 general-purpose registers for increased programming flexibility, and
eliminates accumulator housekeeping that is characteristic of machines with fewer general registers. All 16 registers are
available for use at the programmer’s discretion. None of the 16 registers is dedicated to any specific purpose, such as index
registers, stack pointers, program counter, or subroutine return pointers. The programmer may use the 16 registers for
storage of partial results, frequently used constants, loop management constants, etc.

Of the 16 general-purpose registers, 15 are available for indexing. Register Zero (R0) cannot be used as an index register as
a zero placed in the index register select field implies no indexing is to be performed. The architectural design also provides
64KB of 100% directly addressable memory, eliminating time-consuming design problems associated with paging and
indirect addressing. Programmers can write simple, in-line code without having to be concerned with running out of base
pages, and without having to waste memory with indirect address references. A simple address translation scheme allows
the 64KB of memory the program can access at any one time to reside in any two 32KB segments of actual available

memory.
Memory

The main memory is built around core modules available in 32KB and 64KB versions. All three modules are available
with parity as an option for those critical applications requiring the increased functional reliability and data integrity
that parity provides. Each of the modules is contained on a single 15-inch printed circuit board, and occupies a single
subassembly slot. The 32KB and 64KB core memories are available with a 750 nanosecond cycle time. Memory can
be expanded by plugging in additional modules, to a maximum of 256KB (total).

Instruction Set

The instruction set is built around a basic set of 98 individual instructions, designed to provide the programmer with the
tools he needs to write programs in as few steps as possible. These are 98 separate and individual instructions. All
Perkin-Elmer indexing and masking instructions are counted exclusive of the mask value or indexing register field. To add
extra meaning to the condition codes, Perkin-Elmer has provided 14 extended branch mnemonics which are interpreted
by the assembler. This brings the total number of discrete mnemonics available to the programmer in the basic set to 112.

The basic instruction set uses both 16 and 32-bit instruction formats. They permit operations between any two general
registers, between a general register and memory, or between a general register and a four bit data constant contained in
the instruction word.

. 29-633R01 10/78 "1l

The Perkin-Elmer 16-bit Processor includes a complete set of Arithmetic and Logical instructions. A complete set of
Conditional Branch instructions permits branching to any location in memory. A full set of byte-processing instructions
simplifies the handling of byte strings and provides for more efficient and effective use of available memory. The
Input/Output instructions permit operations between peripheral devices and general registers, or between peripheral
devices and memory. .

Input/Output System

The Perkin-Elmer input/output system for 16-bit Processors is built around a dual bus structure capable of handling 255
peripheral devices. High speed devices can operate up to 2,000,000 bytes per second over the optional Selector Channel

(DMA). Medium and low speed devices are connected to the standard multiplexor channel that can operate up to 66,000

gytgs per second. Both channels operate on a request-response basis to allow simple. reliable peripheral device controller
esign.

Under program control, automatic hardware interrupt vectoring is provided via the Interrupt Service Pointer (ISP) Table in
memory. This allows for a separate driver in memory to be available for each device in the system Perkin-Elmer offers a
broad li‘ne of competitively priced peripherals that are both program and interface compatible with all members of the
Perkin-Elmer family. Perkin-Elmer also offers standard low-cost interface modules to aid the user in interface design.

Software

Standard software available for Perkin-Elmer 16-bit Processors includes: a symbolic Assembler, an interactive Text Editor,
an interactive Debug Package. extended FORTRAN 1V, FORTRAN V Level 1, interactive BASIC, utility programs, and the
following operating systems:

Basic Operating System (BOSS-PLUS)
0S/16 Multi-Task Operating System (0S/16 MT2)

In addition, the Perkin-Elmer user’s group, INTERCHANGE, has a large software library of its own that is available to the
16-bit Processor user. ‘
Processor Options and Peripherals
The 16-bit Processor provides a flexible hardware system that can be expanded to meet the end user’s requirements quickly
and easily. As system demands and complexity increase, the Processor can be field-expanded to provide the precise
computational capability required.
Processor Options:
Memory Parity provides complete data and instruction protection.
Power Fail Detection/Auto Restart provides an early power fail interrupt and a power up interrupt.
Programmable Memory Protect provides read, write, or execution protection of 2K-byte blocks of
memory under software control. The module generates an interrupt to the Processor when it detects a

memory protection violation.

Binary Display Panel provides complete user control of the system. It includes long-life Light Emitting
Diodes (LED), binary read out and a hexadecimal input keyboard.

Hexadecimal Display Panel provides hexadecimal LED read out in addition to the features of the
Binary Display Panel.

Display Controller provides an interface for the Binary and Hexadecimal Display Panels.
Automatic Loader (ALQ) provides a simple, single switch bootstrap load capability. ability.

Turnkey Console provides switch control for power, initializing, and execution for the Processor in
dedicated systems.

Signed Multiply/Divide option minimizes execution time of mathematical routines, and eliminates the
necessity for additional code to generate properly signed quotients and products.

The High Speed floating point option provides both single precision and double precision floating
point operations.

1-2 29-633 ROO 1/78

Peripheral Products include:

Sclector Channel (SELCH)
Teletype (ASR 33, 35)
Carousel (Model 15, 30, 35, 300)
CRT (Non-Editing, Editing, and Graphic)
Intertape Cassette System
Digital Multiplexor System
Mini Input/Output System (D/A and A/D)
Real Time Analog System i
Clock Modules (Line Frequency and Precision Interval)
Universal Logic Interfaces
1/0O Bus Switch
Line Printers (60, 200, 600 LPM)
Card Readers (400, 1000 CPM)
Paper Tape Reader/Punch
Industry Compatible Magnetic Tapes
9 Track. 451PS, 800BPI
9 Track, 451PS, 1600BP1
7 Track, 451PS, 200BPI
7 Track. 451PS, 556BP1
7 Track. 45IPS, 800BPI
Floppy Media Disc System
Disc Systems (2.5. 10. 40, 67, 256 MB)
Synchronous Data Set Interfaces (201, 301)
Quad Synchronous Adapter (BISYNC or ZBID)
Asynchronous Data Set Interfaces (103. 202)
IBM 360/370 Interfaces

29-633 ROO 1/78 1-3/14

CHAPTER 2
SYSTEM DESCRIPTION

The unique design characteristics of the Perkin-Elmer 16-bit Processors allow for a fully integrated system in which the
relationships between Processor and memory, memory and peripherals, and peripherals and Processor are precisely
balanced to provide the utmost in hardware reliability . software simplicity, and total system throughput.

Figure 2-1 illustrates how the various elements of a 16-bit Processor system are combined.

MEMORY
(EXPANDABLE TO 256 KB)

6 HIGH SPEED MEMORY BUS ﬁ
PROCESSOR)
16 GENERAL REGISTERS CUSTOMER
ALU, MICROCODE, CONTROL SELECTOR DESIGNED
CIRCUITS : CHANNEL UP TO 4 TOTAL—*] INTERFACE
T DMA DEVICES

8 SELECTOR BUS j

' |
é CUSTOMER
N DESIGNED
BISCS INTERFACE

DRUMS MAGNETIC
TAPES

UP TO 16 HIGH SPEED SELECTOR BUS DEVICES

8 MULTIPLEXOR INPUT/QUTPUT BUS (/O BUS) j
° o o A/D AND CUSTOMER
""" D/A CONVERSION DESIGNED
DISPLAY ' EQUIPMENT INTERFACE
PANEL LINE CARD READER MAGNETIC TAPE
PRINTER READER/PUNCH CASSETTE

TELETYPEWRITER DIGITAL

INPUT/

PAPER TAPE OUTPUT

READER/PUNCH
(UP TO 255 1/O DEVICES IN SYSTEM)

Figure 2-1. System Block Diagram
PROCESSOR

The following is a general overview of the Model 8/16E Processors.

The Central Processing Unit (CPU), or Processor, controls activities in the system. It executes instructions in a specific
sequence, and performs arithmetic and.logical functions. Included in the Processor’s components are:

Program Status Word Register
16 General Registers
Signed multiply/divide hardware (optional)
Floating Point Hardware (optional)
8 Single Precision Floating Point Registers
8 Double Precision Floating Point Registers

29-633 ROO 1/78 2-1

Program Status Word

The 32-bit Program Status Word (PSW), shown in Figure 2.2. defines the state of the Processor at any given time.

0,12 3 4 5 6 7 8 9 Jon 12 13 14 15 16 31
MEMORY BANK
W |El|M |DF{AJFP|Q | P CONTROL C|V|G|L LOCATION COUNTER

Figure 2-2. Program Status Word Format

Bits 0:15 are reserved for status information and for in interrupt masks. Bits 16:31 contain the Location Counter. Status
information and interrupt mask bits are defined as follows:

Mask Bit Status Information
Bit O Wait state (W)
Bit 1 External interrupt mask (EI)
Bit 2 Machine malfunction interrupt mask (M)
Bit 3 Fixed point divide fault interrupt mask (DF)
Bit 4 Automatic 1/O-and immediate interrupt mask (A)
Bit 5 Floating point fault interrupt mask (FP)
Bit 6 System queue service interrupt mask (Q)
Bit 7 Protect mode (P)
Bits 8:11 Memory Bank Control

Bits 12:15 Condition Code (C,V,G, & L)
Wait State (W)
When Bit 0 of the Program Status Word is set, the Processor halts normal program execution and assumes an idle state. It is
still responsive to machine malfunction, external, and immediate interrupts, and to automatic [/O, if these are enabled by
other PSW bits.
External Interrupt Mask (EI)
Bit 1 of the Program Status Word controls requests for service from devices on the Multiplexor Bus, including the Selector
Channel. If this bit is set, the Processor responds to the requests. If this bit is reset, the requests are queued. This bit also
controls the Automatic 1/O Operation.

Machine Malfunction Interrupt Mask (M)

Bit 2 of the Program Status Word controls interrupts generated when power fails, when power rcturns, and when parity
checking indicates a memory parity error. .

Fixed Point Divide Fault Interrupt Mask (DF)

Bit 3 of the Program Status Word controls interrupts generated when a fixed point divide operation results in quotient
overflow, or when division by zero is attempted. If this bit is set, the interrupt is taken. If this bit is reset, the interrupt
condition is ignored.

Automatic 1/O and Immediate Interrupt Mask (A)

Bit 4 of the Program Status Word controls automatic 1/O operations and the vectored immediate interrupt. If this bit is set,
along with Bit 1, these functions arc enabled (see Chapter 9), and the normal PSW swap from location X'40" is disabled.

Floating Point Fault Interrupt Mask (FP)

Bit 5 of the Program Status Word controls interrupts generated on floating point overflow or underflow, or division by
zero. If this bit is set, these conditions cause an interrupt. If this bit is reset, the interrupt condition is ignored (See Chapter
6).

System Queue Service Interrupt Mask (Q)

Bit 6 of the Program Status Word controls the operation of the system queue interrupt. If this bit is set, and if the queue
requires service, the interrupt is taken. This bit is also used in connection with Automatic 1/O (See Chapter 9).

Protect Mode (P)
Bit 7 of the Program Status Word controls the execution of privileged instructions. If this bit is reset, any legal instruction

may be executed. If this bit is set, only non-privileged instructions may be executed. When set, attempts to execute
privileged instructions cause an Illegal Instruction Interrupt.

22 29-633 ROO 1/78

Memory Bank Controller

Bits 8:11 of the Program Status Word control the translation from 16-bit Program Addresses to 18-bit Physical Addresses.
A Program address is the 16-bit Location Counter for fetching instructions, or it is the 16-bit effective address of an
operand. The 64KB range of program addresses is divided into two 32KB segments. Segment O represents program
addresses X'0000' through X'7FFF'. Segment 1 represents program addresses X'8000"' through X'FFFF.

The 256KB range of physical address is divided into eight 32KB segments. Depending on the particular combination in
PSW bits 8:11, program addresses in segment O canbe steered to physical segment O or 1; and program addresses in segment
1 can be steered to physical segment O through 7. Refer to Chapter 7 for details.

Condition Code (C.V,G, & L)

Bits 12:15 of the Program Status Word are the Condition Code bits. These bits are set by the Processor to indicate the
results of instruction execution (See Chapter 4). The usual interpretation of these bits is:

Bit 12 C .- Carry or borrow
Bit 13 V - Overflow

Bit 14 G - Greater than zero
Bit 15 L Less than zero

Processor Interrupts

Interrupt conditions cause the entire Program Status Word to be replaced by a new Program Status Word. thus breaking the
usual sequential flow of instruction execution. When an interrupt condition arises, the Processor saves its current Program
Status Word in a memory location unique to the type of interrupt condition. It loads a new Program Status Word from a
corresponding memory location and vectors to the address specified by the-new PSW.

General Registers

There are 16 general purpose registers numbered 0 through 15. Each register is 16 bits wide. None of these registers has a
preset use. All may be used at the programmer’s discretion for accumulators and for the storing of temporary data.
Registers 1 through 15 may be used as index registers. If register 0 is specified as an index register, no indexing occurs.

Single Precision Floating Point Registers

There are eight single precision floating point registers, each 32 bits wide. The registers are identified by the even numbers
0 through 14. Floating point operations must always specify the registers with even numbers. The results are undefined if
odd numbers are used.

Double Precision Floating Point Registers

There are eight double precision floating point registers, each 64 bits wide. The registers are identified by the even numbers
0 through 14. Floating point operations must always specify the registers with even numbers. The results are undefined if

odd numbers arc used. Double precision floating point registers are entirely separate from the single precision floating point
registers.

29-633 ROO 1/78 2-3

Reserved Memory Locations

The following memory locations are reserved for interrupt pointers, Program Status Words, and system constants.

Location
X'0000'
X'0020°
X'0022'
X'0024'
X'0028'
X'002C’
X'0030'
X'0034'
X'0038'
X'003C"
X'0040°
X'0044"
X'0048'
X'004C'
X'0050'
X'0080'
X'0082"
X'0086'
X'008A'
X'008C”
X'0090°
X'0094'
X'0096'
X'009A'
X'009C’
X'00BC’
X'00D0’

X'001F'
X'0021"
X'0023'
X'0027"
X'002B’
X'002F'
X'0033’
X'0037"
X'003B'
X'003F'
X'0043'
X'0047"
X'004B’
X'004F'
X'007F"
X'0081"
X'0085"
X'0089'
X'008B’
X'008F'
X'0093'
X'0095'
X'0099"
X'009B'
X'00BB’
X'00CF’
X'02CF'

Use

Reserved (Single Precision Floating Point Register Save)
Reserved (Display Status)

Power Fail Register Save Pointer

Power Fail PSW Save Area

Floating Point Fault Interrupt Old PSW

Floating Point Fault Interrupt New PSW

IMegal Instruction Interrupt Old PSW

Hiegal Instruction Interrupt New PSW

Machine Malfunction Interrupt Old PSW

Machine Malfunction Interrupt New PSW

External Interrupt Old PSW

External Interrupt New PSW

Fixed Point Divide Fault Interrupt Old PSW

Fixed Point Divide Fault Interrupt New PSW

Bootstrap Loader and Device Definition Table

System Queue Pointer

Automatic 1/O Channel Termination Interrupt Old PSW
Automatic I/O Channel Termination Interrupt New PSW
System Queue Overflow Pointer

System Queue Overflow Interrupt Old PSW

System Queue Overflow Interrupt New PSW

Supervisor Call Argument Pointer

Supervisor Call Interrupt Old PSW

Supervisor Call Interrupt New Status (PSW)

Supervisor Call Interrupt New Location Counters
Reserved (not used, must be zero)

Interrupt Service Pointer Table

These reserved locations play an important role in both interrupt and input/output processing. For a detailed description

refer to Chapters 8 and 9.

Processor Operations

The Processor performs logical and fixed point arithmetic operations between:

The contents of two registers.

The contents of a register and the contents of a halfword located in memory.

Where the second operand is contained in memory, it may be located in the instruction stream (immediate operand), or it
may be located in indexed storage.

Floating point operations take place between the contents of two floating point registers, or between the contents of a
floating point register and a floating point operand contained in a fullword in memory.

24

29-633 RO0O 1/78

DATA FORMATS

The Processor performs logical and arithmetic operations on 8-bit bytes, 16-bit halfwords. and 32-bit fullwords. This data
may represent a fixed point number, a floating point number, or logical information.

Fixed Point Data

Fixed point arithmetic operands are 16-bit halfwords or 32-bit fullwords. In both of these formats, the most significant bit
is the Sign bit, and the remaining bits represent the magnitude. Positive quantities are expressed in true binary form with a
Sign bit of zero. Negative quantities are expressed in two’s complement form with a Sign bit of one. The numerical value of
zero is represented with all bits zero.

Floating Point Data

A floating point number consists of a signed exponent and a signed fraction. The quantity expressed by this notation is the
product of the fraction and the number 16 raised to the power of the exponent. Each floating point value requires a 32-bit
fullword or a 64-bit doubleword, of which 8 bits are used for the sign and the exponent, and the remaining bits are used
for the fraction.

Logical Data

Logical operations manipulate 8-bit bytes, 16-bit halfwords, or 32-bit fullwords. All bits participate in logical operations.
The Sign bit has no particular significance.

INSTRUCTION FORMATS

The Perkin-Elmer instruction formats provide a concise method of representing required operations for easy interpretation
by the Processor. There are four basic formats, shown in Figure 2-5. The abbreviations used in the figure have the
following meanings:

opP Operation code

R1 First operand register
R2 Second operand register
N A four bit immediate value

X2 Second operand single index register
A Second operand 16-bit address
1 Second operand 16-bit immediate value

gEGlSTER TO REGISTER (RR_,)

1" 15
op R1 R2
SHORT FORMAT (SF)
0 7 1 15
oP R1 N
REGISTER AND INDEXED STORAGE (RX)
0 7 11 15 16 3
oP R1 X2 A
REGISTER AND IMMEDIATE STORAGE (R1)
0 7 1 15 16 31
oP R1 X2) !

Figure 2-3. Instruction Formats
Many instructions may be expressed in two or more formats. This feature provides flexibility in data organization and
instruction sequencing. :
When working with the Perkin-Elmer Common Assembler Language (CAL) assembler, it is not necessary to specify the

instruction format explicitly. The assembler chooses the most economical format and supplies the required bits in the
machine code.

29-633 ROO 1/78 2-5

Branch Instruction Formats

The Branch instructions use the RR, SF, and the RX formats. However, in the Conditional Branch instructions, the R1
field does not specify a register. Instead, it contains a mask value (labeled M1 in the instruction descriptions), which is
tested against the Condition Code. The Perkin-Elmer CAL assembler provides a series of Extended Branch Mnemonics
which make it possible to specify a Conditional Branch without specifying the mask value explicitly. For a summary of the
Extended Branch Mnemonics, see Appendix 4. :

Programming Examples
Each of the following programming examples refers to the sample assembly language program shown in Figure 2-4. Note
the use of symbolic equates for general registers. Machine code generated and the result of each instruction are dependent

upon the physical and logical placement of the instructions, respectively.

Register to Register (RR) Format
0 7 8 11 12 15

opP R1 R2

In this 16-bit format, Bits 0:7 contain the operation code. Bits 8:11 contain the R1 field, and Bits 12:15 contain the R2
field. In most RR instructions, the register specified by R1 contains the first operand, and the register specified by R2
contains the second operand. For example:

Machine Code Label Assembler Notation

0865 RR LHR R6,R5
‘ |L————Second Operand
- First Operand
‘LHR’ Instruction Op-Code

Short Form (SF) Format
0 7 8 11 12 15

opP R1 N

This 16-bit format provides space economy when working with small values. Bits 0:7 contain the operation code. Bits 8:11
contain the R1 field. Bits 12:15 contain the N field. In arithmetic and logical operations, the register specified by Rl
contains the first operand. The N field contains a four bit immediate value (12:15) used as the second operand. For
example:

Machine Code Label Assembler Notation

245E SF LIS R5,14
L Second Operand
First Operand
‘LIS’ Instruction Op-Code

Register and Indexed Storage (RX) Format
0 7 8 1M 12 15 16 31

D R1 X2 A

This is a 32-bit format in which Bits 0:7 contain the operation code, Bits 8:11 contain the R1 field, Bits 12:15 contain the
X2 field, and Bits 16:31 contain the A field. In general, the register specified by R1 contains the first operand. The second
operand is located in memory at the address obtained by adding the contents of the second operand index register,
specified by X2, and the 16-bit absolute address contained in the ‘A field. For example:

Machine Code Label Assembler Notation

4050 1000 RX.EX1 STH R5.X'1000'
| T T Defines Second Operand Address

No Index Register Specified

First Operand

'STH' Instruction Op-Code

2-6 ' 294633 R0O 1/78"

16-11T INSTHUCTIUN FURMAT EXAMELES

PrOG= EXAMPL

0UOO0K
0002KR
0004K
0008R
0OOUCR
00UER
001UR
0014y
0018R

001CR

000U
ooou
000V
245E
0865
4050
4056
2302
0000
ca9u
c895

4300

29-633 ROO 1/78

ASSEMBLED Y CAL U3-U66KU4(16-BIT)

uuud
uuue
uuuY

1000

UFF2

8000
8000

QUUOR

1

2

3

5 *
6 Rb
7

8

9

R6
RY
*
10 %
11 St
12 »
13 RR
14 %
15 RXJEX1
16 *
17 RX.EX2
18 *
19
20 =
21 LOC1
22 %
23 Ri.tXxl
24 % .
2% RI.EX2
26 *
27
28
29

SCRAT
TARGT
WIDTH
EQU
€QU
EQU
LIS
LHR
STH
STH
BS

Dc
LHI

LHI

END

16
120

5
6
9
ROe14
R6 RS

ROeX*1000°*

RO« X*OFF2* (R6)

R1.EX1

H'O*
R9+X*8000°
R9+¢X*8000°* (RS)

SF

Figure 2-4. 16-Bit Instruction Format Examples

PAGE 1

GENERAL REGISTER 5
GENERAL REGISTER &
GENERAL REGISTER 9
(R5) = X*000E"*
(R6) = X*0O0CE"*
(X*1000°*) = X'000E"

(X*1000°) = X*'000E"

(R9) = Xx°*8000°

(R9) = X'BOOE"

The Second Operand address is calculated as follows:

BITS 16 19 20

23 24

27 28 31

0000

0000

0000

J

L—16 BIT ABSOLUTE ADDRESS X'1000’

No indexing is specified. Therefore, the second operand address is X'1000'.

Machine Code Label

4056 OFF2 RX.EX2

| L Defines Second Operand Address
Register 6 to be used for Indexing
First Operand
'STH' Instruction Op-Code

The Second Operand address is calculated as follows:

BITS 16 19 20

23 24

Assembler Notation

STH R5,X'0FF2'(R6)

27 28 31

0000 111

1n

0010

L 16 BIT ABSOLUTE ADDRESS X'OFF2'

Second Operand Address

= contents of A field + contents of the Index Register 6 (see Figure 2-4)

= X'0FF2' + X'000E’

= X'1000'

The formation of the second operand address has absolutely no affect on the Condition Code. No flags are generated.

Register and Immediate Data (RI) Format

0 . 7 8

11

12

15

16

31

opP

R1

X2

This format represents a 32-bit instruction word. Bits 0:7 contain the operation code. Bits 8:11 contain the R1 specifica-
tion. Bits 12:15 contain the X2 specification. Bits 16:31 contain the 16-bit immediate value, I.

In this format, the register specified by R1 contains the first operand. The 16-bit effective second operand is obtained by
adding together the 16-bit value contained in the I field, and the contents of the register specified by X2. For example:

I —

16-Bit Immediate Value
Index Register 5 Specified
First Operand

'LHI" Instruction Op-Code

Machine Code Label Assembler Notation
C890 8000 RI.EX1 LHI R9,X'8000’
l [16-Bit Inmediate Value

No Index Register Specified

_First.Operand

LHI' Instruction Op-Code
The Second Operand is calculated as follows: .

BITS 16 19 20 23 24 27 28 31
1000 0000 0000 0000

Second Operand

= X'8000'
Machine Code Label Assembler Notation
895 8000 RILEX?2 LHI R9,X'8000'(R5)

29-633 RO0O 1/78

The Second Operand is calculated as follows:

BITS 16 19 20 23 24 .27 28 31

1000 0000 0000 0000

Second Operand
= X'8000" + the contents of Index Register 5 (See Figure 2-4).

= X'8000" + X'000E'
= X'800E'

The formation of the second operand address has absolutely no affect on the Condition Code. No flags are generated.

29-633 ROO 1/78 2-9/2-10

CHAPTER 3
LOGICAL OPERATIONS

This set of logical instructions provides a means for the manipulation of binary data. Many of the instructions grouped
with the logical set may also be used in arithmetic and other operations. These instructions include loads, stores, compares,
shifts, and list processing. i

INTRODUCTION

The instruction repertoire has been grouped by function. The use and operation of each instruction is presented in the

following format:

l.

4,

5.

An instruction word chart for each instruction including: Mnemonic operation code, and first and
second operand designations in the correct assembler format. The format type is designated by SF,
RR, RI, or RX.

A description of instruction operation.

An example of a diagrammatic representation of instruction operation is shown below.

SIS: (R1)e————(R1) -N

SHR: (R1) e————(R1) - (R2)

SH: (R1) «————(R1) - [A +(X2)]
SHI: (R1) e———+—(R1) - I +(X2)

A chart illustrating the possible variations of the Condition Code in the Current Program Status Word
as a result of performing the instructions: a one indicates set, a zero indicates reset. It is important to
note that any instruction which changes the Condition Code can change all four bits. The conditions
listed on the chart are only those conditions which are meaningful after a particular instruction. Other
bits may be changed, but their condition is not meaningful, for example:

Resulting Condition Code:

12113114115

ClVv]|G]|L

0 |0 [0 [0 | DIFFERENCE IS ZERO

X | X 10 |1 | DIFFERENCE IS LESS THAN ZERO

X | X {1 | 0 | DIFFERENCE IS GREATER THAN ZERO
X |1 | X | X | ARITHMETIC OVERFLOW

1 | X | X | X | BORROW

A programming note to provide additional pertinent or clarifying information. All privileged instruc-
tions and those instructions which may cause a memory protect violation are so noted.

Examples.

The symbols and abbreviations used in the instruction diagrams are defined as follows:

O
{1

-
—_—

A
I
R1
Mi

R2

Parentheses or Brackets. Read as “the content of”

1)

Arrow. Read as “‘is replaced by .. .” or “replaces’
The 16-bit halfword address which is a part of the RX instructions.
The 16-bit halfword immediate field of Rl instructions.

The address of a General Register containing the first operand.

Mask of four bits specifying Branch on Condition testing.

The address of a General Register containing the second operand of an RR instruction.

29-633 ROO 1/78 3-1

X2 The address of a General Register containing an index value.

N The 4-bit second operand used with Short Format Immediate and Short Format Branch
instructions.

(0:7) A bit grouping within a byte, a halfword, or a fullword. Read as ““0 through 7 inclusive.”
(8:15) *‘Bits 8 through 15 inclusive”, etc.
(16:31)

PSW Program Status Word of 32 bits containing the Status, Condition Code, and current instruction
address.

CcC Condition Code of 4-bits contained in the PSW.

C Carry Bit contained in the Condition Code (Bit 12 of PSW).

\Y Overflow Bit contained in the Condition Code (Bit 13 of PSW).

G Greater Than Bit contained in the Condition Code (Bit 14 of PSW).
L Less Than Bit contained in the Condition Code (Bit 15 of PSW).

+ Arithmetic operations - Add,

- Subtract,

* Multiply.

/ and Divide respectively.

Logical comparison, (¢.g., R1:R2).

DATA FORMATS

Logical data may be organized as bytes, halfwords, or fullwords.as shown in Figure 3-1.

0 BYTE 7
0 HALFWORD 15
0 FULLWORD 31

Figure 3-1. Logical Data

Boolean Operations

The Boolean operators AND, OR, and Exclusive OR (XOR) operate on halfword quantities. All bits in both operands
participate individually. The Boolean functions are defined as follows:

0OANDO=0
0OAND 1 =0
1ANDO=0
1AND1=1

(logical product)

0OORO0=0
OOR1=1
10R0O=

10R1=1

(logical sum)

0 XOR O
0 XOR 1
1 XOR O
1 XOR 1

(logical difference)

O ==

[TR VA

3.2 29-633 ROO 1/78

List Processing

The list processing instructions manipulate a circular list as defined in Figure 3-2.

0 78 15
NUMBER OF SLOTS NUMBER USED
CURRENT TOP NEXT BOTTOM
SLOT O
SLOT 1
SLOTN

Figure 3-2. Circular List Definition

The first two halfwords contain the list parameters. Immediately following the parameter block is the list itself. The first
halfword in the list is designated Slot 0. The remaining slots are designated 1, 2, 3, etc., up to a maximum slot number
which is equal to the number in the list minus one. An absolute maximum of 255 halfword slots may be specified. (Slots
are designated O through X'FE".)

The first parameter byte indicates the number of slots (halfwords) in the entire list. The second parameter byte indicates
the current number of slots being used. When this byte equals zero, the list is empty. When this byte equals the number of
slots in the list, the list is full. Once initialized, this byte is maintained automatically. It is incremented when elements are
added to the list and decremented when elements are removed.

The third and fourth bytes of the list parameter block specify the current top of the list and the next bottom of the list
respectively. These pointers are also updated automatically. See Figure 3-3.

SLOT n
SLOT O
CURRENT TO
OCCUPIED
SECTION
NEXT BOTTOM SLOT S

Figure 3-3. Circular List

29-633 ROO 1/78 3-3

LOGICAL INSTRUCTION FORMATS

The logical instructions use the Register to Register (RR), the Register and Indexed Storage (RX), and the Register and
Immediate Storage (RI) instruction formats.

LOGICAL INSTRUCTIONS

The instructions described in this section are:

LiS Load Immediate Short OHR OR Halfword Register

LCS Load Complement Short OH OR Halfword

LH Load Halfword OHI OR Halfword Immediate

LHI Load Halfword Immediate XHR Exclusive OR Halfword Register
LHR Load Halfword Register XH Exclusive OR Halfword

LM Load Multiple XHI Exclusive OR Halfword Immediate
LB Load Byte THI Test Halfword Immediate

LBR Load Byte Register SLL Shift Left Logical

EXBR Exchange Byte Register SLLS Shift Left Logical Short

STH Store Halfword SRL Shift Right Logical

STM Store Multiple SRLS Shift Right Logical Short

STB Store Byte SLHL Shift Left Halfword Logical
STBR Store Byte Register SRHL Shift Right Halfword Logical
CLHR Compare Logical Halfword Register RLL Rotate Left Logical

CLH Compare Logical Halfword RRL Rotate Right Logical

CLHI Compare Logical Halfword Immediate ATL Add to Top of List

CLB Compare Logical Byte ABL ’ Add to Bottom of List

NHR " AND Halfword Register RTL Remove from Top of List

NH AND Halfword RBL Remove from Bottom of List
NHI1 AND Halfword Immediate

34 29-633 R0O0 1/78

INSTRUCTIONS

Load Halfword Register (LHR)
Load Immediate Short (LIS)
Load Complement Short (LCS)

Assembler Notation Op-Code - Format
LHR RI1,R2 08 RR
LIS R1,N 24 SF
LCS RI,N 25 SF
Operation

The second operand replaces the contents of the register specified in R1.

LHR: (R1) «—— (R2)

LIS: (R1) «=——N

LCS: (R1) «&—-N
Condition Code

C|V|G|L

0/0]0]0]| Valueis ZERO

o|o|0]1] Valueis not ZERO

0{011]0| Valueis not ZERO

Programming Note

These instructions may be used to preset a register with an index value. load a register with the first operand for
a subsequent arithmetic operation (e.g., add, multiply), or set the Condition Code for supplemental testing by a
Branch on Condition instruction.

The Load Immediate Short instruction causes the 4-bit second operand to be expanded to a 16-bit halfword with
high order bits forced to ZERO. This halfword replaces the contents of the register specified by R1.

The load complement short instruction causes the two’s complement value of the 4-bit second operand to be
expanded to a 16-bit halfword with high order bits forced to one. This value replaces the contents of the register
specified by R1.

When the Load instructions operate on fixed point data, the Condition Code indicates ZERO (no flags), negative
(L flag), or positive (G flag) value.

In the RR format, if R1 equals R2, the Load instruction functions as a test on the contents of the register.

Example: LCS

Assembler Notation Machine Code Comments
LCS REGS,7 2587 LOAD -7 INTO REGS8

Result of LCS Instruction

(REG8) = FFF9 :
Condition Code = 0001 (L=1)

29-633 ROO 1/78 35

INSTRUCTIONS

Load Halfword (LH)
Load Halfword Immediate (LHI)

Assembler Notation Op-Code Format
LH R1,A (X2) 48 RX
LHI R1,I (X2). C8 RI
Operation

The halfword second operand replaces the contents of the register specified by R1.

LH: (R1) =——— [A +(X2) |
LHI: (R1) «#— 1+(X2)

Condition Code

C|V|G|L

0{0}010 Value is ZERO
o001 Value is not ZERO
0/0{110} Valueis not ZERO

Programming Note

These instructions may be used to preset a register with an index value, load a register with the first operand for
a subsequent arithmetic operation (e.g., add, multiply), or set the Condition Code for supplemental testing by a

Branch on Condition instruction.

When the Load Halfword instructions operate on fixed point data, the Condition Code indicates zero (no flags),
negative (L flag), or positive (G flag) value.

In the RX format, the second operand must be located on a halfword boundary.

3-6 29-633 ROO 1/78

INSTRUCTION

Load Multiple (LM)

Assembler Notation Op-Code Format
LM R1,A (X2) D1 RX
Operation

Successive registers, starting with the register specified by R1, are loaded from successive memory locations,
starting with the location specified as the effective address of the second operand. Each register is loaded with a
halfword from memory. The process stops when Register 15 has been loaded.

1. (R)e—[A+(X2)]

2. RI: X'F'
if R1 = X'F"', then the instruction is finished.
it RY # X'F', then:

3. Rl*=——RI1 +1

4. Ae——A+2, return to Step 1.

Condition Code
Unchanged

Programming Note

The second operand must be located on a halfword boundary.

29-633 RO0 1/78 37

INSTRUCTIONS

Load Byte (LB)
Load Byte Register (LBR)

Assembler Notation Op-Code Format
LB R1.A (X2) b3 RX
LBR R1,R2 93 RR
Operation

The 8-bit second operand replaces the least significant bits (Bits 8:15) of the register specified by R1. Bits 0:7 of
the register are forced to ZERO.

LB: R1(8:15)s—{A +(X2)]
R1(0:7) «—ZERO
LBR: R1(8:15)=—R2 (8:15)
R1(0:7) «——ZERO
Condition Code
Unchanged

Programming Note

In the Load Byte Register instruction, the second operand is taken from the least significant eight bits (Bits
8:15) of the register specified by R2.

3-8 29-633 RO0 1/78

INSTRUCTION
Exchange Byte Register (EXBR)

Assembler Notation Op-Code Format

EXBR R1,R2 94 RR

Operation

The two 8-bit bytes contained in the register specified by R2 are exchanged and loaded into the register specified
by R1. The register specified by R2 is unchanged.s,

EXBR: R1 (0:7) «——R2 (8:15)
R1 (8:15)«+—R2(0:7)

Condition Code
Unchanged
Programming Note

R1 and R2 may specify the same register. In this case, the two bytes in the register specified by R2 are
exchanged.

Example: EXBR

Assembler Notation Machine Code ~ Comments

LHI REG7,X'3C4D' (870 3C4D - (REG7)=3C4D
LHI REG3,X'1234' (€830 1234 (REG3) = 1234
EXBR REG_7,REG3 9473

Result of EXBR Instruction
(REG7)=3412

(REG3)=1234
Condition Code = Unchanged

'29-633 ROO 1/78~ 39

INSTRUCTION
Store Halfword (STH)

Assembler Notation Op-Code Format

STH R1,A (X2) 40 RX
Operation

The 16-bit contents of the register specified by R1 replace the contents of the halfword memory location
specified by the effective address of the second operand.

STH: (R1)—=[A +(X2) |
Condition Code
Unchanged
Programming Note
The second operand location must be on a hatfword boundary.

This instruction is subject to Memory Protect.

3-10 29-633 RO0 1/78

INSTRUCTION
Store Multiple (STM)

Assembler Notation Op-Code Format

ST™ R1,A (X2) DO RX

Operation

The halfword contents of registers. starting with the register specified by R1, replace the contents of successive

memory locations, starting with the location specified by the effective address of the second operand. The
process stops when Register 15 has been stored.

STM: 1. (R1)—=[A+(X2)]
2. RI:X'F'
if R1 = X'F', then the instruction is finished.
if R1 # X'F'. then: .
Rl*=—RI + 1
Ae——A + 2, return to Step 1.

o

Condition Code
Unchanged
Programming Note
T_hc second operand location must be on a halfword boundary. ~
This instruction is subject to Memory Protect.
The Store Multiple (STM) instruction, in conjunction with the Load Multiple (LM) instruction, is an aid to
subroutine execution. They permit the easy saving and restoring of the registers required by the subroutine. The

Store Multiple instruction can be used upon entering the subroutine, and the Load Multiple can be the last
instruction executed before returning from the subroutine.

29-633 ROO 1/78

INSTRUCTIONS

Store Byte (STB)
Store Byte Register (STBR)

Assembler Notation Op-Code Format
STB R1,A (X2) D2 RX
STBR R1,R2 92 RR
Operation

The least significant cight bits (Bits 8:15) of the register specified by Rl are stored in the second operand
location.

STB: [RI(8:15) | —*[A +(X2)]
STBR: [R1(8:15) | —=R2(8:15)

Condition Code
Unchanged
Programming Note
The Store Byte (RX) instruction is subject to memory protect.

In the Store Byte Register instruction, the 8-bit quantity is stored in Bits 8:15 of the register specified by R2.
Bits 0:7 of the register are unchanged.

Example: STBR

Assembler Notation Machine Code Comments
LHI REG4, X'7531' (840 7531 (REG4) = 7531

LHI REG3, X'8642' (830 8642 (REG3) = 8642

STBR REG4, REG3 9243
Result of STBR Instruction
(REG4) = 7531

(REG3) = 8631
Condition Code = Unchanged

312 29633 R00 1/78~

INSTRUCTIONS

Compare Logical Halfword (CLH)
Compare Logical Halfword Register (CLHR)
Compare Logical Halfword Immediate (CLHI)

Assembler Notation Op-Code Format
CLH R1,A (X2) 45 RX
CLHR RIL,R2 05 RR
CLHI R1,I (X2) C5 RI
Operation

The first operand, the contents of the register specified by R1, is compared logically to the second operand. The
result is indicated by the Condition Code setting. Neither operand is changed.

CLH: (R1): [A +(X2)]
CLHR: (R1): (R2)
CLHI: (R1): 1+(X2)

Condition Code

C|VIG|L

0{x|0{0] First operand equal to second
1{X|0|1} First operand less than second
1{X{1]0]| First operand less than second

0| X[0|1] First operand greater than second
0|X|110]| First operand greater than second

Programming Note
In the RX format, the second operand must be located on a halfword boundary.
The state of the V flag is undefined.

1t is meaningful to check the following condition code mask (M1) after a logical comparison:

Mask True/False* Inference

3 False First operand equal to second

3 True First operand not equal to second
8 False First operand not less than second
8 True First operand less than second

*Refer to Chapter 4, Branching, for True/False concept in branch instructions.

29-633 RO0 1/78 3-13

INSTRUCTION
Compare Logical Byte (CLB)

Assembler Notation Op-Code Format

CLB R1,A(X2) D4 RX
Operation

The byte quantity, contained in Bits 8:15 of the register specified by Rl, is compared with the 8-bit second
operand. The result is indicated by the Condition Code setting. Neither operand is changed.

CLB: R1(8:15) : [A +(X2)]

Condition Code

ClVIGIL

0]0[{0}0| First operand equal to second
1{0]0]1] First operand less than second
0j0|1]|0| First operand greater than second

Programming Note

It is meaningful to check the following condition code mask (M1) after a logical comparison:

Mask True/False* Inference

3 False First operand equal to second

3 True First operand not equal to second
8 False First operand not less than second
8 True First operand less than second

*Refer to Chapter 4, Branching, for True/False concept in branch instructions.

3-14 29-633 ROO 1/78

INSTRUCTIONS

AND Halfword (NH)
AND Halfword Register (NHR)
AND Halfword Immediate (NHI)

Assembler Notation Op-Code Format
NH R1,A (X2) 44 RX
NHR R1,R2 04 RR
NHI R1,I (X2) C4 RI
Operation

The logical product of the 16-bit second operand and the contents of the register specified by R1 replace the
contents of the register specified by R1. The 16-bit logical product is formed on a bit-by-bit basiss.

NHR: (R1) «=— (R1) AND (RZ)
NH: (R1) «=——— (R1) AND [A +(X2)]
NHI: (R1) «———— (R1) AND I + (X2)

Condition Code

C|VI[G|L

0/0|0]0] Resultis ZERO
0{0]0|l| Resultis not ZERO
0101 {0| Resultisnot ZERO

Programming Note

In the RX formats, the second operand must be located on a halfword boundary.

When operating on fixed-point data, the Condition Code indicates ZERO (no flags), negative (L flag), or positive
(G flag) result.

29-633 R0O0 1/78 3-15

INSTRUCTIONS

OR Halfword (OH)
OR Halfword Register (OHR)
OR Halfword Immediate (OHI)

Assembler Notation Op-Code Format
OH R1.A (X2) 46 RX
OHR RI1,R2 06 RR
OHI R1,I (X2) Co6 RI
Operation

The logical sum of the 16-bit second operand and the contents of the register specified by R1 replace the
contents of the register specified by R1. The 16-bit sum is formed on a bit-by-bit basis.

OH: (R1)*=———————(RI) OR [A +(X2)]
OHR: (R1) «&—— (R1) OR (R2)
OHI: (R1) «——— (R1) OR 1 + (X2)

Condition Code

Result is ZERO
Result is not ZERO
Result is not ZERO

oo oln
oo ol<c
— o oln
© — o~

Programming Note
In the RX format, the second operand must be located on a halfword boundary.

When operating on fixed-point data, the Condition Code indicates ZERO (no flags), negative (L flag), or positive
(G flag) result.

3-16 29-633 RO0 1/78

INSTRUCTIONS

Exclusive OR Halfword (XH)
Exclusive OR Halfword Register (XHR)
Exclusive OR Halfword Immediate (XHI)

Assembler Notation Op-Code Format
XH RI1,A (X2) 47 RX
XHR R1,R2 07 RR
XHI R1,l (X2) C7 RI
Operation

gister specified by R1 replace the

The logical difference of the 16-bit second operand and the contents of the r¢
-by-bit basis.

contents of the register specified by R1. The 16-bit difference is formed on a bit

XH: (R1) «#——— (R1) XOR [A +(X2)]
XHR: (R]) «——————(R1) XOR (R2)
XHI: (R1) «———— (R1) XOR I + (X2)

Condition Code
ClVI|G]|L
0/0]0]0] Resultis ZERO
0/0]0f1]| Resultis not ZERO
olo|110| Resultis not ZERO

Programming Note
In the RX formats, the second operand must be located on a halfword boundary.
When operating on fixed-point data, the Condition Code indicates ZERO (no flags), negative (L flag), or positive
(G flag) result.

. 29-633 ROO 1/78 3-17

INSTRUCTION
Test Halfword Immediate (THI)

Assembler Notation Op-Code Format
THI R1,I (X2) C3 RI
Operation

Each bit in the 16-bit second operand is logically ANDed with the corresponding bit contained in the register
specified by R1. Neither operand is changed.

THI: (R1) AND I + (X2)

Condition Code

ClVIGIL

0{0{0{0| Resultis ZERO
0l0{0 (1| Resultisnot ZERO
0]{0}{1(0] Resultisnot ZERO

Programming Note
When operating on fixed-point data, the Condition Code indicates ZERO (no flags), negative (L flag), or positive

(G flag) result.

3-18 29-633 ROO 1/78

INSTRUCTION

Shift Left Logical (SLL)

Assembler Notation Op-Code Format
SLL R1,I (X2) ED RI -
Operation

In this instruction. the register specified by R1 and the register implied by the value of R1+1 are linked together
to form a fullword operand. This operand is shifted left the number of binary places specified by the second
operand. Bits shifted out of Position 0 in the register specified by R1 are shifted through the carry flag of the
Condition Code, and then lost. The last bit shifted remains in the carry flag. Bits shifted from Position O of the
second register move into Position 15 of the first. Zeros are moved into Position 15 of the second register.

(R1) (R1 +1)
0 15 16 31
: 1
) SLL '
(§)
Condition Code

C|VIG|L

X[010]0] Resultis ZERO

X[o|0}1]| Resultisnot ZERO

X|0{1]j0] Resultisnot ZERO

1[0{X|X]| Carry

Programming Note

29-633 RO0O 1/78

The shift count is specified by the least significant five bits of the second operand.
The stuté of the C flag indicates the state of the last bit shifted out of Position O of register R1.

If the second operand specifies a shift of zero places, the Condition Code is set in accordance with the value con-
tained in the registers. The state of the C flag is undefined. .

The register specified by R1 must be an even numbered register.

When the registers R1 and R1+1 contain fixed point data, the L flag set indicates a negative result, the G flag sct
indicates a positive result.

3-19

INSTRUCTION

Shift Right Logical (SRL)

Assembler Notation

Operation

SRL

Op-Code Format
EC RI

R1,I (X2)

In this instruction. the register specified by R1 and the register implied by the value of R1+1 are linked together
to form a fullword operand. This operand is shifted right the number of binary places specified by the second
operand. Bits shifted out of Position 15 of the second register are shifted through the carry tlag of the Condition
Code, and then lost. The last bit shifted remains in the carry flag. Bits shifted from Position 15 of the first
register move into Position O of the second. Zeros are moved into Position 0 of the first register.

(R1)

(R1+1)
15 16 31

Condition Code

VIG

0fo
010
01
0[X

— XX XN

<o — o=

Programming Note

3-20

Result is ZERO
Result is not ZERO
Result is not ZERO
Carry

v
©)

The shift count is specified by the least significant five bits of the second operand.

The state of the C flag indicates the state of the last bit shifted out of Position 15 of register R1+1.

When the first operand contains fixed point data, the L flag set indicates a negative result, the G flag set indicates
a positive result.

If the second operand specifies a shift of zero places, the Condition Code is set in accordance with the value con-
tained in the registers. The state of the C flag is undefined.

The register specified by R1 must be an even numbered register.

29-633 ROO 1/78

INSTRUCTIONS

Shift Left Halfword Logical (SLHL)
Shift Left Logical Short (SLLS)

Assembler Notation Op-Code Format
SLHL R1,I (X2) CcD RI
SLLS RI,N 91 SF
Operation

Bits 0:16 of the register specified by R1 are shiifted left the number of places specified by the second operand.
Bits shifted out of Position O are shifted through the carry flag and lost. The last bit shifted remains in the carry
flag. Zeros are shifted into Position 15. -

(R1)
0 . 15

1
* t
)
Condition Code
C|VIGIL
X[0]0|0| Resultis ZERO
Xio |01] Resultisnot ZERO "
X10 11§10 | Resultis not ZERO
1|0 |X|X] Carry

Programming Note

In the RI format, the shift count is specified by the least significant four bits of the second operand.
In either format, the maximum shift count is 15.
The state of the C flag indicates the state of the last bit shifted out of Position 0.

When the register specified by R1 contains fixed point data, the L flag set indicates a negative result, the G flag
set indicates a positive result.

If the second operand specified a shift of zero places, the Condition Code is set in accordance with the value con-
tained in the register. The state of the C flag is undeﬁned.

29-633 R0OO 1/78 3-21

INSTRUCTIONS

Shift Right Halfword Logical (SRHL)
Shift Right Logical Short (SRLS)

Assembler Notation Op-Code Format
SRHL RI1,I (X2) cC RI
SRLS RI,N 90 SF
Operation

Bits 0:15 of the register specified by RI are shifted right the number of places specified by the second operand.
Bits shifted out of Position 15 are shifted through the carry flag and lost. The last bit shifted remains in the carry
flag. Zeros are shifted into Position 0.

(RD)

©)

Condition Code

CIVIGIL

X[0]0 0] Resultis ZERO
X{0|0 11 | Resultisnot ZERO
X|0 |1 [0 | Resultis not ZERO
110 [X|X]| Camry-

Programming Note
In the RI format, the shift count is specifiediby the least significant four bits of the second operand.
In either format, the maximum shift count is 15. »
The state of the C flag indicates the state of the last bit shifted out of Position 15.

When the register specified by R1 contains fixed point data, the L flag set indicates a negative result, the G flag
set indicates a positive result. '

If the second operand specifies a shift of zero places, the Condition Code is set in accordance with the value con-
tained in the register. The state of the C flag is undefined.

322 29-633 ROO 1/78

INSTRUCTION

Rotate Left Logical (RLL)

Assembler Notation

RLL R1,I (X2)

Operation

Op-Code

EB

Format

RI

In this instruction, the register specified by R1 and the register implied by the value of R1+1 are linked together
to form a fullword operand. This operand is rotated left the number of binary places specified by the second
operand. Bits moved from Position 0 of the first register move into Position 15 of the second register.

15

16

3‘1

(R1)

(R1 +1)

Condition Code

Programming Note

C|VIG|L

0i0[0fj0} Resultis ZERO
0lojof1 Result is not ZERO
0[0}110] Resultis not ZERO

The register specified by R1 must be an even numbered register.

The shift count is sbeciﬁed by the least significant five bits of the second operand.

If the second operand specifies a shift of zero places, the Condition Code is set in accordance with the value con-

tained in the registers.

When the register specified by Rl contains
set indicates a positive result.

Example: RLL

1. Assembler Notation

LHI REG8,X'5678

LHI REG9,X 9ABC'

RLL REGS8,X'0004'
Result of RLL Instruction

(REG8) = 6789

Machine Code

C880 5678
€890 9ABC
EB80 0004

(REG9) = ABCS

Condition Code = 0010 (G=1)

2. Assembler Notation

LHI REGS, X'8888'

LHI REGY, X'8888'

RLL REGS8, X'0003'
Result of RLL Instruction

(REG9) = 4444

Machine Code

Comments

(REG8)=5678
(REG9) =9ABC

Comments

C880 8888
C890 8888
EB80 0003

(REGB8) = 4444

Condition Code = 0010 (G=1)

29-633 R0OO 1/78

(REGB) = 8888 .

(REGY) = 8888

fixed point data, the L flag set indicates a negative result, the G flag

3-23

INSTRUCTION

Rotate Right Logical (RRL)

Assembler Notation

RRL

Operation

In this instruction, the register specified by R1 and the register implied by the value of R1+1 are linked together

Op-Code Format
R1I (X2) EA RI

to form a fullword operand. This operand is rotated right the number of binary places specified by the second
operand. Bits moved from Position 15 of the second register move into Position 0 of the first register.

31

(R1)

(R1 +1)

Condition Code

ClVIG|L
0101010
0/0]0j1

0]0]1]0

Programming Note

RRL

Result is ZERO
Result is not ZERO
Result is not ZERO

The register specified by R1 must be an even numbered register.

The shift count is specified by the least significant five bits of the second operand.

If the second operand specifies a shift of zero places, the Condition Code is set in accordance with the value con-

tained in the registers.

When the register specified by R1 contains fixed point data, the L flag set indicates a negative result, the G flag

set indicates a positive result.

Example: RRL

1. Assembler Notation Machine Code Comments
LHI REG4, X'1234' C840 1234 (REG4) = 1234
LHI REGS, X'5678' (850 5678 (REG5) = 5678
RRL REG4, X'0004' EA40 0004

Result of RRL Instruction

(REG4) = 8123 (REG5) =4567
Condition Code = 0001 (L=1)

2. Assembler Notation Machine Code

Comments

LHI
LHI
RRL

REG4, X'1111' C840 1111
REGS, X'T1111" C850 1111
REG4, X'0001' EA40 0001

Result of RRL Operation

(REG4) = 8888 (REGS5) = 8888
Condition Code = 0001 (L=1)

3-24

(REG4) = 1111
(REG5) = 1111

29-633 ROO 1/78

INSTRUCTION

Add to Top of List (ATL)
Add to Bottom of List (ABL)

Assembler Notation Op-Code Format
ATL R1,A(X2) 64 RX
ABL R1,A(X2) 65 RX
Operation

The register specified by R1 contains the halfword element to be added to the list. The list is located in memory
at the address specified by the second operand. The number of slots used tally is compared with the number of
slots in the list. If the number of slots used equals the number of slots in the list, an overflow condition exists.
The element is not added to the list and the overflow flag in the Condition Code is set. If the number of slots
used tally is less than the number of slots in the list, it is incremented by one, the appropriate pointer (current
top or next bottom) is changed, and the element is added to the list.

Condition Code

CIV|GIL
0[0f0]0| Element added successfully
0[{1]0]0| Listoverflow

Programming Note
These instructions manipulate circular lists as described in the introduction to this chapter.
The second operand location must be on a halfword boundary.
These instructions are subject to memory protect.
The Add to Top of List instruction manipulates the current top pointer in the list. If no overflow occurs, the
current top pointer, which points to the last element added to the top of the list, is decremented by one and the
element is inserted in the slot pointed to by the new current top pointer. If the current top pointer was zero on
entering this instruction, the current top pointer is set to the maximum slot number in the list. This condition is
referred to as list wrap. :
The Add to Bottom of List instruction manipulates the next bottom pointer. If no overflow occurs, the element
is inserted in the slot pointed to by the next bottom pointer, and the next bottom pointer is incremented by
one. If the incremented next bottom pointer is greater than the maximum slot number in the list, the next
bottom pointer is set to zero. This condition is referred to as list wrap.

Examples:

See examples for next instruction.

29-633 R0OO 1/78 3-25

INSTRUCTIONS

Remove from Top of List (RTL)
Remove from Bottom of List (RBL)

Assembler Notation Op-Code Format
RTL R1,A(X2) 66 RX
RBL R1,A(X2) 67 RX
Operation

The list is located at the address specified by the second operand. The halfword element removed from the list
replaces the contents of the register specified by R1. If, at the start of the instruction execution, the number of
slots used tally is ZERO, the list is already empty and the instruction terminates with the overflow flag set in the
Condition Code. This condition is referred to as list underflow; in this case, (R1) is undefined. If underflow does
not occur, the number of slots used tally is decremented by one, the appropriate pointer is changed, and the
element is extracted and placed in the register specified by R1.

Condition Code
C|VIG|L
0100 |0| Listis nowempty
0]|0}1|0] Listis notyet empty
0{110(0] List was already empty

Programming Note

Examples

3-26

These instructions manipulate circular lists as described in the introduction to this chapter.
The second operand location must be on a halfword boundary.
In the case of list underflow, the contents of the register specified by R1 are undefined.

The Remove from Top of List instruction manipulates the current top pointer. If no underflow occurs, the
current top pointer points to the element to be extracted. The element is extracted, and placed in the register
specified by R1. The current top pointer is incremented by one and compared to the maximum slot number. If
the current top pointer is greater than the maximum slot number, the current top pointer is set to ZERO. This
condition is referred to as list wrap.

The Remove from Bottom of List instruction manipulates the next bottom pointer. If no underflow occurs, and
the next bottom pointer is ZERO, it is set to the maximum slot number (list wrap); otherwise, it is decremented
by one, and the element now pointed to is extracted and placed in the register specified by R1.

: List Instructions (ATL, ABL, RTL, RBL)

The following are examples of the use of the four list processing instructions.

The original list is normally set up as shown in Figure 3-4.

LIST 05 00 where bytes at

00 00 LIST number of total slots

SLOTO UNDEFINED 5 (in this example)

SLOT 1 UNDEFINED LIST+1 = number of entries used
SLOT 2 UNDEFINED =0
SLOT 3 UNDEFINED LIST+2 = current top of list
SLOT 4 UNDEFINED = slot 0
LIST +3 ’= next bottom of list
Current Top Pointer = Slot O = slot 0

Next Bottom Pointer = Slot 0

Figure 3-4. List Processing Instructions

29-633 ROO 1/78~

Labels Assembler Notation Results and Comments

LIS REGO0,0
STB REGO,LIST+1 INITIALIZE NO. OF ENTRIES USED TO 0
STH REGO,LIST+2 INITIALIZE POINTERS TO 0
LIS REGI,1 REGISTERS 1 THRU 6 CONTAIN
LIS REG2,2 . 1 THRU 6 RESPECTIVELY
LIS REG3.3
LIS REG4 4
LIS REGS.5
LIS REG6,6
STB REGS5.LIST ‘ TOTAL NO. OF ENTRIES =5
REF1 ATL REG1 LIST LIST ' 05 01
04 00
SLOTO UNDEFINED
SLOT 1 UNDEFINED
SLOT 2 UNDEFINED
SLOT 3 UNDEFINED
SLOT 4 0001
Condition Code = 0000
Current Top Pointer = Slot 4
Next Bottom Pointer = Slot 0
REF2 ATL REG2, LIST LIST 05 02

03 00

SLOT 0 UNDEFINED

SLOT 1 UNDEFINED

SLOT 2 UNDEFINED

SLOT 3 0002

SLOT 4 0001

Condition Code = 0000
Current Top Pointer = Slot 3
Next Bottom Pointer = Siot O

29-633 ROO 1/78 327

REF3 ATL REGS3, LIST LIST 05 03

02 00

SLOTO | UNDEFINED

SLOT 1 UNDEFINED

SLOT 2 0003
SLOT 3 0002
SLOT 4 0001

Condition Code = 0000
Current Top Pointer = Slot 2
Next Bottom Pointer = Slot 0

REF4 ABL REG4, LIST LIST 05 04

02 01

SLOT 0 0004

SLOT 1 UNDEFINED

SLOT 2 0003
SLOT 3 0002
SLOT 4 0001

Condition Code = 0000
Current Top Pointer = Slot 2
Next Bottom Pointer = Slot 1

REFS ABL REGS, LIST LIST 05 05
02 02

SLOT O 0004

SLOT 1 0005

SLOT 2 0003

SLOT 3 0002

SLOT 4 0001

Condition Code = 0000
Current Top Pointer = Slot 2
Next Bottom Pointer = Slot 2

328 29-633 ROO 1/78

REF6

REF7

REF8

29-633 ROO 1/78

ABL

RTL

RBL

REGS6, LIST

REG7, LIST

REGS, LIST

X =

LIST | 05 05
02 02
SLOT 0 0004
SLOT | 0005
SLOT 2 0003
SLOT 3 0002
SLOT 4 0001

Condition Code = 0100
Condition Code = 0100 (List Overflow)
Next Bottom Pointer = Slot 2

LIST 05 04

03 02
SLOT 0 0004
SLOT 1 0005
SLOT 2 X 0003
SLOT 3 0002
SLOT 4 0001

(REG 7) =0003

Condition Code = 0010
Current Top Pointer = Slot 3
Next Bottom Pointer = Slot 2

LIST 05 03

03 01
SLOT 0 0004
SLOT1 X 0005
SLOT 2 X 0003
SLOT 3 0002
SLOT 4 0001

(REG 8) = 0005

Condition Code = 0010
Current Top Pointer = Slot 3
Next Bottom Pointer = Slot 1

NOTE
Entry removed from list, and is not accessible
through further manipulation of list instruc-
tions.

3-29

REF9 RTL REGY, LIST LIST
SLOT 0
SLOT1 X

SLOT 2

>~

SLOT 3

b

SLOT 4

05

04

0t

0004

0005

0003

0002

0001

(REG 9) = 0002

Condition Code = 0010
Current Top Pointer = Slot 4
Next Bottom Pointer = Slot 1

REF10 RBL REGI0, LIST LIST

SLOTO

X
SLOT1 X
SLOT2 X

X

SLOT 3

SLOT 4

05

01

04

00

0004

0005

0003

0002

0001

(REG 10) = 0004

Condition Code = 0010
Current Top Pointer = Slot 4
Next Bottom Pointer = Slot O

REFI11 RTL REGI1, LIST LIST

SLOTO

X
SLOT1 X
SLOT2 X

X

SLOT 3

SLOT4 X

05

00

00

00

0004

0005

0003

0002

0001

(REG 11) = 0001

Condition Code = 0000 (List is now empty)
Current Top Pointer = Slot O

Next Bottom Pointer = Slot O

NOTE

X =Entry removed from list, and is not accessible
through further manipulation of list instructions.

3-30

29-633 ROO 1/78

REF12 RTL

29-633 ROO 1/78

REG12, LIST

LIST

SLOT 0
SLOT !
SLOT 2
SLOT 3
SLOT 4

(REG 12) = UNDEFINED

Condition Code = 0100 (List Was Already Empty)
Current Top Pointer = Slot 0

Next Bottom Pointer = Slot 0

xooX X X

X

05

00

00

00

.0004

0005

0003

0002

0001

NOTE

of list instructions.

X = Entry removed from list, and is not
accessible through further manipulation

3-31/3-32

CHAPTER 4
BRANCHING

In normal operations, the Processor executes instructions in sequential order. The Branch instructions allow this sequential
mode of operation to be varied, so that programs can loop, transfer control to subroutines, or make decisions based on the
results of previous operations.)

OPERATIONS

The second operand in Branch instructions is the address of the memory location to which control is transferred. The
address may be contained in a register, or it may be specified in the instruction as the second operand address.

Decision Making
The Conditional Branch insturctions permit the program to make decisions based on previous results. In these instructions,

the R1 field contains a 4-bit mask, M1, which is tested against the Condition Code. The result of the test determines
whether the branch is taken, or the next sequential instruction is executed.

The following examples show current Condition Code, mask specified in a Branch instruction, and the result of the test on
which a branch or no branch decision is made.

Current Condition Code Mask (M1) Result of Test (True/False)
0000 0010 0000 (False)
0001 1010 0000 (False)
1001 ‘ 1000 1000 (True)
0100 0100 - 0100 (True)
1010 0010 0010 (True)
0010 0011 0010 (True)
0010 0000 0000 (False)

Subroutine Linkage
The Branch and Link instructions allow branching to subroutines in such a way that a return address is passed to the

subroutine. In these instructions, the address of the instruction immediately following the Branch instruction is saved in
the register specified by R1.

BRANCH INSTRUCTION FORMATS

The Branch instructions use the Register to Register (RR), the Short Form (SF), and the Register and Indexed Storage
(RX) format.

BRANCH INSTRUCTIONS

The instructions described in this section are:

BFC Branch on False Condition

BFCR Branch on False Condition Register

BFBS Branch on False Condition Backward Short
BFFS Branch on False Condition Forward Short
BTC Branch on True Condition

BTCR Branch on True Condition Register

BTBS Branch on True Condition Backward Short
BTFS Branch on True Condition Forward Short
BAL Branch and Link

BALR Branch and Link Register

BXLE Branch on Index Low or Equal

BXH Branch on Index High

29-633 ROO 1/78 4-1

INSTRUCTIONS

Branch on True Condition (BTC)

Branch on True Condition Register (BTCR)
Branch on True Condition Backward Short (BTBS)
Branch on True Condition Forward Short (BTFS)

Assembler Notation Op-Code Format
BTC M1,A(X2) 42 RX
BTCR MI1.R2 02 RR
BTBS MI.N 20 SF
BTFS MI,N 21 SF
Operation

The Condition Code of the Program Status Word is tested for the conditions specified by the mask field, M1. If
any of the conditions tested are found to be true. a branch is executed to the second operand location. If none
of the conditions tested is found to be true. the next sequential instruction is executed.

Tested Condition True:

BTC: [PSW (16:31)|=—A +(X2)

BTCR: [PSW (16:31)}+—(R2)

BTBS: [PSW (16:31)}*—([PSW (16:31)] -2N
BTFS: [PSW (16:31)] «—[PSW (16:31)] +2N

Tested Condition False:

BTC: [PSW (16:31)]«+—{PSW (16:31)] +4
BTBS:
BTFS: [PSW (16:31)}«—[PSW (16:31)] +2
BTCR:

Condition Code
Unchanged
Programming Note
In the RR format. the branch address is contained in the register specified by R2.

In the SF format. the N field contains the number of halfwords to be added or subtracted from the current
Location Counter to obtain the branch address. o

In the RR and RX formats, the branch address must be located on a halfword boundary.

Example: BTC

Assembler Notation Machine Code Comments
LH R1,X 100 48100100 Load halfword (X'1234") located at X'100'. Condition
BTC 3, LOC 4230 ABCO Code is set to CVGL = 0010. Mask is 3, i.e., M1 =0011.

Perform logical AND between CVGL and M1, ie., 0010
AND 0011. The result is 0010, i.e., true; therefore, a
branch is taken to LOC.

4-2 29-633 ROO 1/78

INSTRUCTIONS

Branch on False Condition (BFC)

Branch on False Condition Register (BFCR)
Branch on False Condition Backward Short (RFBS)
Branch on False Condition Forward Short (BFFS)

Assembler Notation Op-Code Format
BFC MI1,A(X2) 43 RX
BFCR M1,R2 03 RR
BFBS MI,N 22 ’ SF
BFFS MI1.N 23 SF
Operation

The Condition Code of the Program Status Word is tested for the conditions specified in the mask field, M1. If
all conditions tested are found to be false, a branch is executed to the second operand location. If any of the
conditions tested is found to be true, the next sequential instruction is executed.

Tested Condition False

BFC: [PSW (16:31))| «——A+(X2)

BFCR: [PSW (16:31)] «=——(R2)

BFBS: [PSW (16:31)] «——[PSW (16:31)] -2N
BFFS: [PSW (16:31)} @«——[PSW (16:31)] +2N

Tested Condition True

BFC: [PSW (16:31)j«——{PSW (16:31)} +4
BFCR:
BFBS: [PSW'(16:31)]«——[PSW (16:31)] +2
BFFS:

Condition Code
Uncllaxlgéd
Programming Note
In the RR format, the branch address is contained in the register specified by R2.

In the SF format, the N field contains the number of halfwords to be added to or subtracted from the current
Location Counter to obtain the branch address.

In the RR and RX formats, the branch address must be located on a halfword boundary.
Branch on False Condition with a mask of 0 is an Unconditional Branch.

Example: BFC

Assembler Notation Machine Code v Comments
LCS R1,2 2512 (R1) = X'FFFE'. Condition Code, CVGL = 0001 Mask
BFC 9, LOC 4390 ABCO is 1001. Perform logical AND between mask and CVGL,

i.e., 1001 'AND 0001. The result is 0001, i.e., true,
therefore, a branch is not taken to LOC.

29-633 ROO 1/78 43

INSTRUCTIONS

Branch and Link (BAL)
Branch and Link Register (BALR)

Assembler Notation Op-Code Format
BAL R1,A(X2) 41 - RX
BALR RI1,R2 01 RR
Operation

The address of the next sequential instruction is saved in the register specified by R1, and a branch is taken to
the second operand address.

BAL: Rl e——[PSW (16:31)] +4
[PSW (16:31) J+—A +(X2)

BALR: Rl ¢——————[PSW (16:31) | +2
[PSW (16:31) |+—(R2)

Condition Code

Unchanged

Programming Note

Example:

The second operand location must be on a halfword boundary. -

The branch address is calculated before the register specified by R1 is changed. R1 may specify the same register
as X2 or R2.

BAL
The following example illustrates the use of the BAL instruction. The instruction causes control to be

transferred to a subroutine called SUBROUT. After completion of the subroutine, the linking register is used to
branch back to the next sequential instruction after the BAL, i.e., the instruction labeled RETURN.

Labels Assembler Notation Comments

(" BEGIN BAL REG4,SUBROUT TRANSFER TO SUBROUT
MAIN RETURN XHR R6,R6
PROG ﬁ STH R6.LAB+4

& SUBROUT LH R8,LOC THE RETURN ADDRESS OF THE

SUBROUTINE IS IN REG4

SUBROUTINE{ AHI R8,10

L RTNEND ;3R REG4 RETURN TO XHR INST

NOTE

Within the subroutine, the linking register (REG4 in the example)
should not be used unless stored and reloaded within the sub-
routine.

Result of BAL Instruction

44

Condition Code = Unchanged

29-633 RO0 1/78

INSTRUCTION

Branch on Index Low or Equal (BXLE)

Assembler Notation Op-Code Format
BXLE R1,A(X2) Ct RX
Set Up
0 15
R1 Starting index value
R1+1 Increment value
R1+2 Limit or final value

Prior to execution of this instruction, the register specified by R1 must contain a starting index value. The
register specified by RI+1 must contain an increment value. The register specified by R142 must contain a
comparand (limit or final value). All values may be signed.

Operation
Exccution of this instruction causes the increment value to be added to the index value. The result is logically
compared to the limit or final value. If the index value is less than or equal to the limit value, a branch is
executed to the second operand location. If the index value is greater than the limit value, the next sequential
instruction is executed.
BXLE: (R1) «=—— (R1) + (R1+1)
(R1): (R1+2) ’
If (R1) < (R1+2), then {PSW (16:31)]+—A + (X2)
If (R1) > (R1+42), then [PSW (16:31)}*—[PSW (16:31)] +4
Condition Code

Unchanged

Programming Note

Example:

The incremented index value replaces the contents of the register specified by R1.
The register specified by R1 must not be greater than 13.
The second operand location must be on a halfword boundary.

The branch address is calculated before incrementing the starting index value contained in the register speciﬁed
by R1.

The register specified by R1 may be the same as X2.
BXLE

Transfer 10 bytes in memory starting at Memory Location Labelled BUFO to memory location labelled BUF1.

Labels Assembler Notation Comments
LIS REG3.,0 (REG 3) = STARTING INDEX VALUE =0
LIS REG4,1 (REG 4) = INCREMENT VALUE = 1
LIS R5.9 (REG 5)=FINAL VALUE =9
AGAIN LB REGO, BUFO(R3) (REG 0) = 1 BYTE FROM BUFO0
STB REGO, BUF1(R3) COPY 1 BYTE TO BUF1
BXLE R3,AGAIN IF (REG 3) = (REG 5), DONE
BUFO DS 10
BUF1 DS 10

Result of BXLE Instruction

Condition Code = Unchanged by BXLE Instruction
(REG1) = 000A
(REG2) = 0001
(REG3) = 0009

29-633 ROO 1/78 ’ 4-5

INSTRUCTION

Branch on Index High (BXH)

Assembler Notation Op-Code Format
BXH R1,A(X2) Co RX
Set Up 0 15
R1 Starting index value
R1+1 Increment value
R1+2 Limit or final value

Prior to execution of this instruction, the register specified by R1 must contain a starting index value. The
register specified by R1+l must contain an increment value. The register specified by R1+2 must contain a
comparand (limit or final value). All values may be signed.

Operation

Exccution of this instruction causes the increment value to be added to the index value. The result is logically
compared to the limit or final value. If the index value is greater than the limit value, a branch is executed to the
second operand location. If the index value is equal to or less than the limit value, the next sequential instruction
is executed.

BXH: (R1) «#———— (R1)+(R1 + 1)
(R1): (R1 +2)
if (R1) < (RI1 +2), then [PSW (16:31) }«——[PSW(16:31)] +4
if (R1) > (R1 + 2), then [PSW (16:31) |e—— A +(X2)
Condition Code
Unchanged
Programming Note
The incremented index value replaces the contents of the register specified by R1.

The second operand location must be on a halfword boundary.

The branch address is calculated before incrementing the starting index value contained in the register specified
by RI1.

The register specified by R1 may be the same as X2.
The register specified by R1 must not be greater than 13.

Example: BXH

The following example shows how to set up a counter (1 - 9) using the BXH instruction.

Label Assembler Notation Comment
LIS REG1,1 (REG 1)= 0001 (INDEX)
LIS REG2,1 (REG 2)=0001 (INCREMENT)
LIS REG3.9 (REG 3) = 0009 (COMPARAND)
BEGIN BXH REGI!, LABEL COMPARE INDEX WITH COMPARAND
LH R6,COUNT
i?. BEGIN BRANCH TO BXH INSTRUCTION
LABEL LH R8,RTN EXIT FROM BXH
ST R8,MEM

Result of BXH Instruction
The code between the instructions labelled BEGIN and LABEL is executed 9 times.
Condition Code = Unchanged by BXH instruction
(REGI) = 000A

(REG2) = 0001
(REG3) = 0009

4-6 29633 ROO 1/78

EXTENDED BRANCH MNEMONICS

The CAL Assembler supports 14 extended branch mnemonics that gerierate the branch op-code (true or false conditional)
and the condition code mask required. The programmer must supply the second operand address (symbolic or absolute). In
the case of short format (SF) branch instructions, the second operand branch address must be within = 15 halfwords of the
current location counter. The CAL Assembler determines the backward or forward relationship of the second operand
address and generates the appropriate operation code.

Examples of extended branch mnemonic:

LH R5,LOOPT

BNZ LOERR
LAP SRLS R6,1

BNCS LAP

BS CONTIN
LOERR LIS R6,0
ERRORI AlS Ro,1

SIS ‘ RS5.4

BPS ERRORI1

SIS R8,1

BO ERROR?2

CONTIN LH R1.TIME

Appendix 4 lists the extended branch mnemonics and the proper operand form to be used with each mnemonic. The actual
machine code generated is also listed.

The instructions described in this section are:

BC Branch on Carry BP Branch on Plus

BCR Branch on Carry Register BPR . Branch on Plus Register

BCS Branch on Carry Short BPS Branch on Plus Short

BNC Branch on No Carry BNP Branch on Not Plus

BNCR Branch on No Carry Register BNPR Branch on Not Plus Register
BNCS Branch on No Carry Short BNPS Branch on Not Plus Short

BE Branch on Equal BO Branch on Overflow

BER Branch on Equal Register BOR Branch on Overflow Register
BES Branch on Equal Short BOS Branch on Overflow Short
BNE Branch on Not Equal BNO Branch on No Overflow
BNER Branch on Not Equal Register BNOR Branch on No Overflow Register
BNES Branch on Not Equal Short BNOS Branch on No Overflow Short
BL Branch on Low BZ Branch on Zero

BLR Branch on Low Register BZR Branch on Zero Register

BLS Branch on Low Short BZS Branch on Zero Short

BNL Branch on Not Low BNZ Branch on Not Zero

BNLR Branch on Not Low Register BNZR Branch on Not Zero Register
BNLS Branch on Not Low Short BNZS Branch on Not Zero Short
BM Branch on Minus B Branch (Unconditional)

BMR Branch on Minus Register BR Branch Register (Unconditional)
BMS Branch on Minus Short BS Branch Short (Unconditional)
BNM Branch on Not Minus

BNMR Branch on Not Minus Register NOP No Operation

BNMS Branch on Not Minus Short NOPR No Operation Register

29-633 ROO 1/78 47

INSTRUCTION

Branch on Carry (BC)
Branch on Carry Register (BCR)
Branch on Carry Short (BCS)

Assembler Notation Op-Code + M1 Format
BC A(X2) 428 RX
BCR R2 028 . RR
BCS A 208 (Backward) SF
218 (Forward)
Operation

If the Carry (C) flag in the Condition Code is set. a branch is executed to the second operand location. If the Carry
flag is not set, the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note
The branch address must be located on a halfword boundary.

In the RR format. the branch address is contained in the register specified by R2.

Example: BCS

Assembler Notation Machine Code Comments
SHIFT SLLS R9,1 9191 Register 9 is shifted left
BCS SHIFT 2081 until the first zero bit is

shifted out (left).

4-8 29-633 R0O 1/78

INSTRUCTION

Branch on No Carry (BNC)
Branch on No Carry Register (BNCR)
Branch on No Carry Short (BNCS)

Assembler Notation Op-Code + M1 - Format
BNC A(X2) 438 . RX
BNCR R2 038 RR
BNCS A 228 (Backward) SF
238 (Forward)
Operation

If the Carry (C) flag in the Condition Code is not set, a branch is executed to the second operand location. If the
Carry flag is set, the next sequential instruction is executed.

Condition Code
Unchanged
. Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

29-633 ROO 1/78 : 49

INSTRUCTION

Branch on Equal (BE)
Branch on Equal Register (BER)
Branch on Equal Short (BES)

Assembler Notation Op-Code + M1 Format
BE A(X2) 433 RX
BER R2 033 RR
BES A 223 (Backward) SF

233 (Forward)

Operation

If the G flag and the L flag are both reset in the Condition Code, a branch is executed to the second operand
tocation. If either flag is set. the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

Example: BE

Assembler Notation Machine Code Comments
CLHI R4,X"23" C540 0023 If R4 contains X'23', a
BE OPTIN 4330 0A00 branch is executed to loca-

tion X'A00'". Otherwise the
next sequential instruction
is executed.

4-10 29-633 ROO 1/78

INSTRUCTION

Branch on Not Equal (BNE)
Branch on Not Equal Register (BNER)
Branch on Not Equal Short (BNES)

Assembler Notation Op-Code + M1 Format
BNE A(X2) 423 RX
BNER R2 023 RR
BNES A 203 (Backward) SF

213 (Forward)

Operation

If the G flag or the L flag is set in the Condition Code. a branch is executed to the second operand location. If
neither flag is set. the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note
The branch address must be located on a halfword boundary.

In the RR format. the branch address is contained in the register specified by R2.

29-633 ROO 1/78

INSTRUCTION

Branch on Low (BL)
Branch on Low Register (BLR)
Branch on Low Short (BLS)

Assembler Notation Op-Code + M1 Format
BL A(X2) 428 RX
BLR R2 028 RR
BLS A 208 (Backward) SF

218 (Forward)

Operation

When two operands are compared. the C flag is set in the Condition Code of the PSW if the first operand is less
than the second operand. If the Carry (C) flag in the Condition Code is set. a Branch on Low is executed to the
second operand address. If the Carry flag is not set. the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note
The branch address must be located on a halfword boundary.

In the RR format. the branch address is contained in the register spéciﬁed by R2.

Example: BL
Assembler Notation . Machine Code Comments
CLHI R1,X'FF' C510 00FF R1 is compared to X'00FF".
BL RESTART 4280 0A00 If R1 is less than X'FF', a branch
is taken to memory location
X'0A00".

4-12 29-633 RO0 1/78

INSTRUCTION

Branch on Not Low (BNL)
Branch on Not Low Register (BNLR)
Branch on Not Low Short (BNLS)

Assembler Notation Op-Code + M1 Format
BNL A(X2) 438 RX
BNLR R2 038 RR
BNLS A 228 (Backward) SF
238 (Forward)
Operation

When two operands are compared, the C flag is not set in the Condition Code of the PSW if the first operand is not
less than the second operand. If the Carry (C) flag in the Condition Code is not set, a Branch is executed to the
sccond operand address. If the Carry flag is set, the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

29-633 ROO 1/78 4-13

INSTRUCTION B

Branch on Minus (BM)
Branch on Minus Register (BMR)
Branch on Minus Short (BMS)

Assembler Notation Op-Code + M1 Format
BM A(X2) 421 RX
BMR R2 021 RR
BMS A 201 (Backward) SF

211 (Forward)

Operation

If the Less-Than (L) flag in the Condition Code is set, a branch is executed to the second operand location. If the L
flag is not set, the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

Example: BM
Assembler Notation Machine Code Comments
SIS R3,1 2631 If R3 is less than O after
BM CONTINUE 4210 10A0 the subtraction, a branch is

taken to X'10A0".

4-14 29-633 ROO 1/78

INSTRUCTION

Branch on Not Minus (BNM)
Branch on Not Minus Register (BNMR)
Branch on Not Minus Short (BNMS)

Assembler Notation Op-Code + M1 Format
BNM A(X2) 431 RX
BNMR R2 031 RR
BNMS A 221 (Backward) SF

231 (Forward)

Operation

If the Less-Than (L) flag in the Condition Code is not set, a branch is executed to the second operand location. If
the L flag is set, the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the regiéter specified by R2.

29-633 ROO 1/78 4-15

INSTRUCTION

Branch on Plus (BP)
Branch on Plus Register (BPR)
Branch on Plus Short (BPS)

Assembler Notation Op-Code + M1 Format
BP A(X2) 422 RX
BPR R2 022 RR
BPS A 202 (Backward) SF

212 (Forward)

Operation

If the Greater-Than (G) flag in the Condition Code is set, a branch is executed to the second operand location. If
the G flag is not set, the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register sp.eciﬁed by R2.

4-16 29-633 ROO 1/78

INSTRUCTION

Branch on Not Plus (BNP)
Branch on Not Plus Register (BNPR)
Branch on Not Plus Short (BNPS)

Assembler Notation Op-Code + M1 Format
BNP A(X2) 432 RX
BNPR R2 032 RR
BNPS A 222 (Backward) SF

232 (Forward)
Operation

If the Greater-Than (G) flag in the Condition Code is reset, a branch is executed to the second operand location. If
the G flag is set, the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

29-633 ROO 1/78 417

INSTRUCTION

Branch on Overflow (BO)
Branch on Overflow Register (BOR)
Branch on Overflow Short (BOS)

Assembler Notation Op-Code + M1 Format
BO A(X2) 424 RX
BOR R2 024 RR
BOS A 204 (Backward) SF
214 (Forward)
Operation

If the Overflow (V) flag in the Condition Code is set, a branch is executed to the second operand location. If the V
flag is not set, the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

4-18 29-633 ROO 1/78

INSTRUCTION

Branch on No Overflow (BNO)
Branch on No Overflow Register (BNOR)
Branch on No Overflow Short (BNOS)

Assembler Notation Op-Code + M1 Fonﬁat
BNO A(X2) 434 RX
BNOR R2 034 RR
BNOS A 224 (Backward) SF
234 (Forward)
Operation

If the Overflow (V) flag in the Condition Code is not set, a branch is executed to the second operand location. If
the V flag is set, the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note _
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

29-633 ROO 1/78 4-19

INSTRUCTION

Branch on Zero (BZ)
Branch on Zero Register (BZR)
Branch on Zero Short (BZS)

Assembler Notation Op-Code + M1 Format
BZ A(X2) 433 RX
BZR R2 033 RR
BZS A 223 (Backward) SF

233 (Forward)

Operation

If the G and L flag are both reset in the Condition Code, a branch is executed to the second operand location. If
the G or L flag is set, the next sequential instruction is executed.

Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

4-20 29-633 ROO 1/78

INSTRUCTION

Branch on Not Zero (BNZ)
Branch on Not Zero Register (BNZR)
Branch on Not Zero Short (BNZS)

Assembler Notation Op-Code + M1 Format
BNZ A(X2) ‘ 423 RX
BNZR R2 023 RR
BNZS A 203 (Backward) SF

213 (Forward)
Operation

If the G or L flag is set in the Condition Code, a branch is executed to the second operand address. If the G and L
flags are both reset, the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note
The branch address must be located dn a halfword bbundury.

In the RR format, the branch address is contained in the register specified by R2.

29-633 R0O 1/78 421

INSTRUCTION

Branch (Unconditional) (B)
Branch Register (Unconditional) (BR)
Branch Short (Unconditional) (BS)

Assembler Notation Op-Code + M1 Format
B A(X2) 430 RX
BR R2 030 RR
BS A 220 (Backward) SF
230 (Forward)
Operation

A branch is unconditionally executed to the second operand address.

Condition Code
Unchanged
Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

Example: B
Assembler Notation Machine Code . Comments
B OPTIN 4300 0A00 An unconditional branch
is executed.
4-22

29-633 ROO 1/78

INSTRUCTION

No Operation (NOP)
No Operation Register (NOPR)

Assembler Notation Op-Code + M1 Format
NOP A(X2) 420 RX
NOPR R2 020 RR
Operation

After a short delay (instruction decode time), the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note
A(X2) and R2 are meaningless and usually equal ZERO (0).

Example: NOP, NOPR

Assembler Notation Machine Code Comments
NOP 0 4200 0000 No Operation
NOPR 0 0200 No Operation

29-633 ROO 1/78

4-23/4-24

CHAPTER 5
FIXED POINT ARITHMETIC

Fixed Point Arithmetic instructions provide a complete set of operations for calculating addresses and indexes. for
counting, and for general purpose fixed point arithmetic.
DATA FORMATS

Figure 5-1 shows the two formats for fixed point data: halfword and fullword. In each of these formats, the most
significant bit (Bit 0) is the Sign bit. The remaining bits, either 15 or 31, represent the magnitude.

0 1 HALFWORD .15
s
01 FULLWORD 3
s

Figure 5-1. Fixed Point Data Words Format

Positive values are represented in true binary form with a Sign bit of ZERO. Negative values are represented in two’s
complement form with a Sign bit of ONE. To change the sign of a number, the two’s complement of the number is
produced as follows:

1. Change all zeros to ones, and all ones to zeros.

2. Add one.
FIXED POINT NUMBER RANGE

Fixed point numbers represent integers. Table 5-1 shows the relation between different formats along with decimal values.

TABLE 5-1. FIXED POINT FORMAT RELATIONS

FULLWORD HALFWORD DECIMAL

80000000 -21474 83648
(MOST NEGATIVE)

8000 (MOST NEGATIVE) -32768
FFFFFFFF FFFF (LEAST NEGATIVE) -1
00000000 0000 0
00000001 0001 1

7FFF (MOST POSITIVE) 32767
IFFFFFFF 21474 83647

(MOST POSITIVE)

29-633 ROO 1/78

CONDITION CODE

Most Fixed Point Arithmetic Instructions affect the Condition Code. (The exceptions are Multiply and Divide.) The
Condition Code indicates the effect of the operation on the 16-bit result.

In fixed point Add and Subtract operations, because the arguments are represented in two’s complement form, all bits, sign
included, participate in forming the result. Consequently, the occurrence of a carry or borrow has no real arithmetic
significance.

For example, an Add operation between a minus one (FFFF) and a plus two (0002) produces the correct result of plus one
(0001) and a carry. The Condition Code is set to 1010 (C =1 and G = 1). “Carry only” means that the complete result,
which in this case would have been 10001, would not fit in 16 bits.

An overflow occurs when the result does not fit in 15 bits. Note that bit “zero’ must be reserved for the sign of the result,
e.g., adding one to the largest positive fixed point value produces an overflow:

7FFF
+0001
=8000
The condition code is 0101 (V=1and L=1)

The result, 8000, is logically correct, but because the sign bit is negative when the result should be positive, the overflow
condition exists.

The columns of the Condition Code table show the state of the C, V, G, and L flags for the specific result.

The 'X'in the Condition Code column means that particular flag is not defined, i.e., the flag can be O or 1. Hence, no
inference should be drawn by testing that particular flag.

FIXED POINT INSTRUCTION FORMATS

The fixed point instructions use the Register to Register (RR), the Short Form (SF), the Register and Indexed Storage
(RX), and the Register and Immediate (RI) instruction formats.

FIXED POINT INSTRUCTIONS

The fixed point instructions described in this section are:

AHR Add Halfword Register

AlS Add Immediate Short

AH Add Halfword

AHI Add Halfword Immediate

AHM Add Halfword to Memory

SHR Subtract Halfword Register

SIS Subtract Immediate Short

SH Subtract Halfword

SHI Subtract Halfword Immediate
CHR Compare Halfword Register

CH Compare Halfword

CHI Compare Halfword Immediate
MH Multiply Halfword

MHR Multiply Halfword Register

DH Divide Halfword

DHR Divide Halfword Register

SLA Shift Left Arithmetic

SLHA Shift Left Halfword Arithmetic
SRA Shift Right Arithmetic

SRHA Shift Right Halfword Arithmetic
ACH Add With Carry Halfword

ACHR Add With Carry Halfword Register
SCH Subtract with Carry Halfword
SCHR Subtract with Carry Halfword Register
MHU Multiply Halfword Unsigned
MHUR Multiply Halfword Unsigned Register

5-2 29-633 ROO 1/78

INSTRUCTIONS

Add Halfword (AH)

Add Halfword Register (AHR)
Add Halfword Immediate (AHI)
Add Immediate Short (AIS)

Assembler Notation Op-Code Format
AH R1,A(X2) 4A RX
AHR R1,R2 0A RR
AHI R1,I(X2) CA R1
AIS R1,N 26 SF
Operation

The second operand is added algebraically to the contents of the register specified by R1. The result replaces the
contents of the register specified by R1.

AH (R1) «————— (R1)+[A+(X2))
AHR (R1) «——— (R1) +(R2)

AHI (R1) «—— (R1) + [+(X2)
AIS (R1) «———— (R +N

Condition Code

C|V|GI|L

X]01010} Resultis ZERO

X[0|0]1| Resultisless than ZERO
X[0]1 |0} Resultis greater than ZERO
X{1[X|X| Arithmetic overflow

1 XIX[X] Carry

Programming Note
In the RX format, the second operand must be located on a halfword boundary.

The second operand for the Add Immediate Short instruction is obtained by expanding the 4-bit data field, N, to
a 16-bit halfword by forcing the high order bits to zero.

Example: AH
This example adds the halfword at memory location labeled LAB to the contents of Register 4.

1. Register 4 contains X'0002'
Halfword at memory location LAB contains X'FFFF'

Assembler Notation Comments

AH REG4,LAB ADD (LAB) TO (REG4)
Result of AH Instruction

(REG4) = 0001

(LAB) = unchanged by this instruction

Condition Code = 1010 (C=1, G=1)

2. Register 5 contains X'FFFS'
LAB contains X'FFF2'

Assembler Notation Comments

AH REGS5, LAB ADD (LAB) TO (REGS)
Result of AH Instruction
(REGS5) = FFE7

(LAB) = unchanged by this instruction
Condition Code = 1001 (C=1, L=1)

29-633 R0OO 1/78 5-3

INSTRUCTION

Add Halfword to Memory (AHM)

Assembler Notation Op-Code Format
AHM R1,A(X2) 61 RX
Operation

The contents of the register specified by Rl is added algebraically to the contents of the memory location
specified by the effective address of the second operand. The 16-bit result replaces the contents of the memory
location specified by the effective address of the second operand. The content of the register specified by Rl is

not changed.
AHM [A+(X2)]e— (RD+[A+(X2)]

Condition Code

C|VIGIL

X|0]0{0| Resultis ZERO
X[010{1]| Resultis less than ZERO
X| 1 {X|{X]| Arithmetic overflow

11 XXX} Carry

Programming Note

The second operand must be located on a halfword boundary.

This instruction is subject to Memory Protect.

Example: AHM
This example adds the contents of Register 5 to the contents of memory location LAB.

1. Register 5 contains X'0002'
Halfword in memory at LAB contains X'FFFF'

Assembler Notation Comments

AHM REGS,LAB ADD (REGS) TO (LAB)
Result of AHM Instruction

(REGS) = unchanged by this instruction

(LAB) = 0001

Condition Code = 1010 (C=1,G=1)

2. Register 6 contains X'FFF5'
LAB contains X'FFF2'

Assembler Notation Comments

AHM REG6,LAB ADD (REG6) TO (LAB)
Result of AHM Instruction
(REG®6) = unchanged by this instruction

(LAB) = FFE7
Condition Code = 1001 (C=1,L=1)

54 29-633 ROO 1/78

INSTRUCTIONS

Subtract Halfword (SH)

Subtract Halfword Register (SHR)
Subtract Halfword Immediate (SHI)
Subtract Immediate Short (SIS)

Assembler Notation Op-Code Format
SH R1,A(X2) 4B RX
SHR R1,R2 0B .RR
SHI R1,I(X2) CB RI
SIS RI,N 27 SF
Operation

The halfword second operand is subtracted from the contents of the register specified by R1. The result replaces
the contents of the register specified by R1. The second operand is unchanged.

SH (R1) «=—— (R1)--[A+(X2)]
SHR (R1) «——(R1) (R2)

SHI (Rl) = (R1)-1-(X2)
SIS (R1) «=—(R1)--N

Condition Code
C|V|G|L
X[0|0]0] Resultis ZERO
Xj010[1| Resultisless than ZERO
X{0[1]0] Resultis greater than ZERO
X1 |X1X| Arithmetic overflow
1 X|X{X| Borrow

Programming Note

Example:

The second operand for the Add Immediate Short instruction obtained by expanding the 4-bit data field, N, to a
16-bit halfword by forcing the high order bits to zero.

In the RX format, the second operand must be located on a halfword boundary.
SH
This example subtracts the halfword at memory location LOC from the contents of register 9.

Register 9 contains X'3456'
LOC contains X'FFF4'

Assembler Notation Comments

SH REG9,LOC Subtract contents of LOC from (REG9)

Result of SH Instruction

Result of

(REGY) = 3462
(LOC) = FFF4
Condition Code = 1010

Register 9 contains X'4567"
LOC contains X'2345"

Assembler Notation Comments

SH REG9,LOC Subtract contents of LOC from (REG9)
SH Instruction
(REG9) = 2222

(LOC) = 2345
Condition Code = 0010

29-633 ROO 1/78 5-5

INSTRUCTIONS

Add with Carry Halfword (ACH)
Add with Carry Halfword Register (ACHR)

Assembler Notation Op-Code Format
ACH R1,A(X2) 4E RX
ACHR R1,R2 OE RR
Operation

The 16-bit second operand and the carry of the previous operation are added algebraically to the contents of the
register specified by RI. The result replaces the contents of the register specified by R1 and is reflected by the
setting of the Condition Code. The second operand is unchanged.

ACH (R]) ¢——— (R +[A+(X2)] +C
ACHR (R]) «— (R1)+(R2)+C

Condition Code

Result is ZERO

Result is less than ZERO
Result is greater than ZERO
Arithmetic overflow

Carry

— XXX XN
% — 00 o<
X X = OO0
>y o — Ol

Programming Note

Multiple precision addition operations require a carry forward from the least significant operands to the most
significant. To accomplish this, the locations containing the least significant portions of the two operands are
summed, using the Add Halfword instruction. A carry forward, if it occurs, is retained in the carry bit of the
Condition Code. The locations containing the next least significant portions of the two operands are then
summed, using the Add with Carry instruction. The carry bit contained in the Condition Code, set from the
previous operation, participates in this sum. The carry bit is then set to reflect the new result. The Add with
Carry instruction is used on succeeding pairs of operands until the most significant operands of the multiple
precision words have been summed. The resulting Condition Code is valid for testing the multiple precision
word.

5-6 29-633 ROO 1/78

INSTRUCTIONS

Subtract with Carry Halfword (SCH)
Subtract with Carry Halfword Register (SCHR)

Assembler Notation Op-Code Format
SCH R1.A(X2) 4F RX
SCHR R1,R2 OF RR
Operation

The 16-bit second operand and the borrow from the previous operation are subtracted from the contents of the
register specified by R1. The result replaces the contents of the register specified by R1 and is reflected by the
setting of the Condition Code. The second operand is unchanged.

SCH (R1) «=——— (R1) - [A+(X2)] -C
SCHR (Rl) «e—— (R1) - (R2)-C

Condition Code

Result is ZERO

Result is less than ZERO
Result is greater than ZERO
Arithmetic overflow

Carry (Borrow)

=X XX X0
o -0 oo«

XX —oon
O — Ol

Programming Note

Multiple precision subtraction operations require a carry forward from the least significant operands to the most
significant. To accomplish this, the locations containing the least significant portions of the two operands are
subtracted, using the Subtract Halfword instruction. A carry forward, if it occurs, is retained in the carry bit of
the Condition Code. The locations containing the next least significant portions of the two operands are then
subtracted, using the Subtract with Carry instruction. The carry bit contained in the Condition Code, set from
the previous operation, participates in this operation. The carry bit is then set to reflect the new result. The
Subtract with Carry instruction is used on succeeding pairs of operands until the most significant operands of the
multiple precision words have been subtracted. The resulting Condition Code is valid for testing the multiple
precision word.

29-633 R0OO 1/78 5-7

INSTRUCTIONS

Compare Halfword (CH)
Compare Halfword Register (CHR)
Compare Halfword Immediate (CHI)

Assembler Notation Op-Code Format
CH R1,A(X?2) 49 RX
CHR R1,R2 05 RR
CHI R1,I(X2) C9 RI
Operation

The Halfword second operand is compared algebraically with the first operand, the contents of the register
specified by R1. The result is indicated by the Condition Code setting. Neither operand is changed.

Condition Code

ClVIGIL

0]|X|0 [0} First operand is equal to second operand
0
1

—

11X First operand is less than second operand
0| X|1|0| First operand is greater than second operand

Programming Note
In the RX format, the second operand must be located on a halfword boundary.
The state of the V flag is undefined.

Example: CH
This example compares the contents of REGS8 to the halfword at LAB.

Register 8 contains X'7891'
Halfword at LAB contains X'3123'

Assembler Notation Comments
CH REGS,LAB Compare (REG8) to (LAB)

Result of CH Instruction
(REG8) = unchanged by this instruction

(LAB) = unchanged by this instruction
Condition Code = 001C (G=1)

5-8 29-633 ROO 1/78

INSTRUCTIONS

Multiply Halfword (MH)
Multiply Halfword Register (MHR)

Assembler Notation Op-Code Format
MH R1,A(X2) 4C RX
MHR R1,R2 oC RR
Operation

The signed (halfword) first operand, contained iﬁ the register specified by R1+1, is multiplied by the signed
(halfword) second operand. The 32-bit result replaces the contents of the registers specified by R1 and R1+1.

MH (R1,R1 +1) «——(R1 + 1) * [A +(X2)]
MHR (R1,R1 +1) «——(R1 + 1) * (R2)

Condition Code

Unchanged

Programming Note

Example:

After multiplication, the most significant 15 bits with sign bit are contained in R1. The least significant 16 bits
arc contained in R1+1. The sign of the result is determined by the rules of algebra.

In the RX format, the second operand must be located on a halfword boundary.

The R1 field of these instructions must specify an even numbered register.

MH

This example multiplies the halfword contents of Register 9 by the halfword in memory location LAB.

Register 9 contains X'0045'
Halfword at memory location LAB contains X'8674"

Assembler Notation Comments
MH REGS,LAB Multiply (REG9) by (LAB)

Result of MH Instruction

(REG8) = FFDF (REG9) =3D44
(LAB) = unchanged by this instruction
Condition Code = unchanged by this instruction -

29-633 RO0O 1/78 59

INSTRUCTIONS

Multiply Halfword Unsigned (MHU)
Multiply Halfword Unsigned Register (MHUR)

Assembler Notation Op-Code Format
MHU R1,A(X2) DC RX
MHUR R1,R2 9C RR
Operation

The 16-bit second operand is multiplied by the contents of the register specified by R1 + 1. All 16 bits of both
operands are considered magnitude. The resulting 32-bit product is contained in the registers specified by Rl and
RI +1.

MHU (RL,R1 + 1) «——(RI + 1)*[A +(X2)]
MHUR (R1,R1 + 1) «——(R1 + 1)*(R2)

Condition Code
Unchanged

Programming Note
The R1 field must specify an even numbered register.
In the RR format, R2 may specify any register.

This instruction is most useful in applications requiring multiple precision multiply capability.

5-10 29-633 R0O0O 1/78

INSTRUCTIONS

Divide Halfword (DH)
Divide Halfword Register (DHR)

Assembler Notation Op-Code Format
DH R1,A(X2) 4D RX
DHR R1,R2 oD RR
Operation

The 32-bit signed dividend contained in the register specified by R1 and R1+1 is divided by the 16-bit signed
second operand (divisor). The 16-bit signed remainder is stored in the register specified by R1. The 16-bit signed
quotient is stored in the register specified by R1+1.

DH (R1 + 1) «=——(R1,R1 + 1)/[A +(X2)]
(R1) «—— REMAINDER
DHR (Rl +1) «———(R1,R1 + 1)/(R2)

(R1) «— REMAINDER
Condition Code
Unchanged
Programming Note
The R1 field of these instructions must specify an even-numbered register. Otherwise, the results are undefined.
In the RX formats, the second operand must be.located on a halfword boundary.
If the divisor is equal to zero, the instruction is not executed, the operand registers are unchanged, and the
Divide Fault Interrupt is taken, if enabled by bit 3 of the current program status word. If the interrupt is not

enabled, the next sequential instruction is executed.

If the value of the quotient is greater than X'7FFF" or less than (more negative than) X'8000', quotient overflow
is said to occur.

If quotient overflow occurs, the operand registers are not changed, and the Divide Fault Interrupt is taken, if
enabled by bit 3 of the current program status word. If the interrupt is not enabled, the next sequential instruc-
tion is executed.

The sign of the quotient is determined by rules of algebra.

The sign of the remainder is the same as the sign of the dividend.

Example: DH
In this example, the contents of Registers 8 and 9 are divided by the halfword contents of memory location
LOC.
1. Register 8 contains X'0000' - = Dividend
Register 9 contains X'0054' = Divisor
LOC contains X'0008'
Assembler Notation Comments
DH REGS8,LOC Divide (REG8, REG9) by (LOC)
Result of DH Instruction
(REG8) = 0004 = Remainder
(REG9) = 000A = Quotient
(LOC) = 0008
Condition Code = unchanged. by this instruction
2. Register 8 contains X'0000' = Dividend
Register 9 contains X'1234' = Divisor
LOC contains X'0000'
Assembler Notation Comments
DH REGS8,LOC Divide (REG8, REG9) by (LOC)

29-633 ROO 1/78 5-11

Result of DH Instruction
Division by zero causes arithmetic fault to be taken if bit 3" of PSW is enabled.
Operands and Condition Code remain unchanged by this instruction.
3. Register 8 contains X'FFFF'

Register 9 contains X'8002'= Dividend
LOC contains X'0001'

Assembler Notation Comments
DH REGS8,LOC Divide (REG8. REG9) by (LOC)

Result of DH Instruction
Quotient overflow causes arithmetic fault to be taken if bit 3 of PSW is enabled.

Operands and Condition Code remain unchanged by this instruction.

5-12 29-633 RO0O 1/78

INSTRUCTION
Shift Left Arithmetic (SLA)

Assembler Notation Op-Code Format
SLA R1,(X2) EF RI
Operation

In this instruction. the register specified by R1 and the register implied by the value R1+1 are linked together to
form a fullword operand. Bit O of the register specified by R1 is the Sign bit. Bits 1:15 of the register specified
by R1 and Bits 0:15 of the register specified by R1+1 are shifted left the number of binary places specified by
the second operand. The Sign bit is not shifted. Bits shifted out of Position 1 of the first register are shifted into
the carry flag of the PSW and then lost. Zeros are moved into Position 15 of the second register.

(R1) v (R1+1)
0, I 15 16 31
S
i
17 1
(©) SLA

Condition Code

C|VIG|L

X|0{0]0{ Resultis ZERO

X|[0]0[1{ Resultisless than ZERO
X|0{1]0]| Resultis greater than ZERO

Programming Note
R1 must specify an even-numbered register.
The shift count is specified by the least significant five bits of the second operand.

A shift of zero places causes the Condition Code to be set in accordance with the value contained in the register
specified by R1. The state of the C flag is undefined in this case.

The state of the C flag indicates the state of the last bit shifted.
Example: SLA
This example shifts the bits in Registers 4 and 5 left by the number specified by the second operand.

Register 4 contains X'8047'
Register 5 contains X 'ABCD'

Assembler Notation Comments
SLA REG4,4 Shift Left 4 Places

Result of SLA Instruction

(REG4) = X'847A", (REGS) = X'BCDO'
Condition Code = 0001 (L=1)

29-633 ROO 1/78 5-13

INSTRUCTION
Shift Right Halfword Arithmetic (SRHA)

Assembler Notation Op-Code Format
SRHA R1,K(X2) CE R1
Operation

Bits 1:15 of the register specified by R1 are shifted right the number of places specified by the second operand.
Bit O of the register, the halfword Sign bit, remains unchanged and is propagated right the number of positions
specified by the second operand. Bits shifted out of Position 15 are shifted through the carry flag and lost. The
last bit shifted remains in the carry flag.

(R1)
0 15
S
Condition Code SRHA &
C|V|G{L
X[0[0[0] Resultis ZERO
X|0|0|1] Resultisless than ZERO
X|0{1]0]| Resultis greater than ZERO

Programming Notes
The shift count is specified by the low order four bits of the second operand.
The state of the C ﬂag indicates the state of the last bit shifted.

If the second operand specified a shift of zero pldces, the Condition Code is set in accordance with the value con-
tained in the register. The state of the C flag is undefined.

5-14 29-633 ROO 1/78

INSTRUCTION

Shift Right Arithmetic (SRA)

Assembler Notation Op-Code Format
SRA R1,I(X2) EE Rl
Operation

In this instruction, the register specified by R1 and the register implied by the value R1+1 are linked together
forming a fullword operand. BitO of the register specified by RI is the Sign bit. Bits 1:15 of the register
specified by R1 and Bits 0:15 of the register specified by R1+1 are shifted right the number of binary places
specified by the second operand. The Sign bit remains unchanged and is propagated right as many positions as
specified by the second operand. Bits shifted out of Position 15 of the second register are shifted into the carry
flag of the PSW, and then lost.

(R1) (R1+1)
S
SRA L)
Condition Code c
CIVIGIL
X|010[0] Resultis ZERO
X]0{0 |1} Resultisless than ZERO
X[0]1]0f Resultis greater than ZERO

Programming Note

Example:

Result of

29-6

R1 must specify an even-numbered register.
The state of the C flag indicates the state of the last bit shifted.
The shift count is specified by the least significant five bits of the second operand.

A shift of zero places causes the Condition Code to be set in accordance with the value contained in the registers.
The C flag is undefined.

SRA

This example shifts the contents of Registers 8 and 9 right the number of places specified by the second
operand.

Register 8 contains X' 8ABC"
Register 9 contains X'4256'

Assembler Notation Comments
SRA REGS,8 Shift (REG9) right 8 bits

SRA Instruction

(REG8) = FF8A (REGY9) = B(42
Condition Code = 0001 (L=1)

33 ROO 1/78 5-15

INSTRUCTION
Shift Left Halfword Arithmetic (SLHA)

Assembler Notation Op-Code Format
SLHA R1,I(X2) CF RI
Operation

Bits 1:15 of the register specified by R1 are shifted left the number of places specified by the second operand.
Bit 0 of the register, the Sign bit. remains unchanged. Bits shifted out of Position 1 are shifted through the carry
flag and then lost. The last bit shifted remains in the carry flag. Zeros are shifted into Position 15.

(R1)
15

[wlo

1
(©) SLHA
Condition Code

C|V|G|L

X|010[0] Resultis ZERO

X]0[0|1| Resultisless than ZERO
X[011{0| Resultis greater than ZERO

Programming Note
The state of the C flag indicates the state of the last bit shifted.

The shift count is specified by the least significant four bits of the second operand.

A shift of zero places causes the state of the Condition Code to be set in accordance with the value contained in
the register. The C flag is undefined.

5-16 29-633 ROO 1/78

CHAPTER 6
FLOATING POINT ARITHMETIC

Floating Point Arithmetic instructions provide a means for rapid manipulation of scientific data
expressed as floating point numbers. Single Precision as well as Double Precision Floating
Point Instructions are described in this chapter. The comprehensive set of instructions includes
load and store floating point numbers; add, subtract, multiply, divide and compare two floating
point numbers; convert fixed print to floating point and vice versa.

INTRODUCTION

Floating point is a means of respresenting a quantity in any numbering system. Consider a decimal
number (base = 10), 123 which can be represented in the following forms:

123.0 x 10°
1.23 x 102
0.123 x 103
0.0123 x 10%

Note that in this example, the decimal point moved. Hence we have a floating point. In actual
floating point representation the significant digits are always fractional and are collectively
referred to as fraction. The power to which the base number is raised is called the exponent.
For example, in the number ', 45678 x 102", 45678 is the fraction and 2 is the exponent, Both
the fraction and the exponent may be signed. If we have a floating point representation as,

(sign of fraction) (exponent) (fraction)

then the following representation applies:

Number Floating point
+32.94 = +.3294 x 102 +T+2 [3294
-23760000, 0 = -,23876 x 10 -1+8 | 2376
+0. 000059 = +.59x10° +[-4 |59
-0.0000000092073 = ,92073 x 10~9 - 1-9 [92073

The convenience with which extremely large or small numbers can be expressed in floating
point makes it ideally suitable for scientific computation, Note the compactness in the above
examples.

The Perkin-Elmer floating point representation is similar to the above representation. The
differences are as follows: '

Hexadecimal, instead of decimal, numbering system is used.
Physical size of the number and hence the magnitude and the precision is limited.

29-633 ROO 1/78 6-1

The single precision floating point number fields are shown in Figure 6-1.

31

F1 F2 F3 Fa

F5

F6

MOST SIGNIFICANT FRACTION DIGIT=0: UNNORMALIZED

FLOATING POINT NUMBER,
OR TRUE ZERO

#0: NORMALIZED
FLOATING POINT NUMBER

F1 F2 F3 F4

F5

Fé

J

g

—— EXPONENT IN EXCESS 64 NOTATION

EXCESS 64 HEXADECIMAL
00 TO 3F -40TO -1

40 0
41 TO 7F 1TO3F

—SIGN =0 : POSITIVE FLOATING POINT NUMBER
= : NEGATIVE FLOATING POINT NUMBER

l-VALUE OF THE FRACTION
= F1.16-1 + F2.16-2 + F3.16-3 + F4.16-4

+F5.16-5 + F6.16-6

DECIMAL
-64 TO -1
o

1TO 63

Figure 6-1. Single Precision Floating Point Number Fields

29-633 ROO 1/78

FLOATING-POINT NUMBER

A floating point number is represented in the following form:

Sign

Exponent Fraction

Sign

The most significant bit of a floating point number is a sign bit. The sign bit is zero

for positive numbers and one for negative numbers, The floating point value of zero
always has a positive sign.

Exponent

The 7-bit fields, bits 1:7, is designated as the exponent field, The exponent field con-

tains the true value of the exponent plus X'40' (decimal 64), This helps to represent
very small magnitudes between 0 and 1. The exponent is said to be expressed in
excess 64 notation. Some of the exponent values are as follows:

True True
Exponent in exponent in exponent in Multiply
Excess 64 notation hexadecimal decimal fraction by
00 -40 -64 16764
3F -1 -1 16-1
40 0 0’ 1
41 1 1 16
F © 8F 63 16%63

The exponent field

Fraction

for true zero is always 00.

- The fraction field is six hexadecimal digits for single precision floating point

numbers (thus limiting the precision) and 14 hexadecimal digits for double
precision floating point numbers. As in any other fraction, the floating point
fraction is expressed with most precision when the most significant digit (not
necessarily the most significant bit) is non-zero. The floating point number
with such a fraction is called a normalized floating point number. Normalized
numbers are always used to obtain maximum possible precision. For hexa-
decimal fraction conversion, refer to Appendix 5,

Examples: The following examples illustrate the sign, exponent and fraction concept of a floating
point number.

Numbers in Hex
integer-fraction
notation

Sign-exponent-fraction
shown for clarity

[s]E | F]

Single Precision
Floating point numbers

+1.3A25678 0 41 13A25678 4113A256
-6.89F2C 1 41 689F2C Cl689F2C
+1A.C39D21 0 42 1AC39021 421AC39D
-3C1DF.82A3 1 45 3C1DF82A3 C53C1DF8
+ABCDEF12.9AC 0 48 ABCDEF129AC 48ABCDEF
+0.0032A9CF2 0 3E 32A9CF2 3E32A9CF
-0.000002C7B5 1l 3B 2C7B5 BB2C7B50

Refer to Appendix 5 for examples of similar conversion to double precision floating

point numbers.

29-633 RO0O 1/78

Floating Point Number Range
The range of magnitude (M) of a normalized floating point number is as follows.

65

Single precision: 16 S MS - 16'6) * 1663
Double precision: 1676% € M€ (1-16"1%)x 1663
Approximately for both: 5.4 * 10779 < M < 7,2%* 1075

Table 6-1 shows the single precision floating point range in relation to the fixed point range along
with the decimal values.

TABLE 6-1 FLOATING/FIXED POINT RANGES

Floating Point Fixed Point Decimal
numbers ~ integer numbers
(most negative) FFFF FFFF -7.2% 1070
Cc880 0000 8000 0000 (most negative) -2 147 483 648
C110 0000 FFFF FIFF (least negative) -1
(Least negative) 8010 0000 -5,4* 10779
(true zero) 0000 0000 0000 0000 0
(least positive) 0010 0000 +5.4% 10779
41100000 0000 0001 (least positive) 11
4 87F FFI'F TFFF FFFF (most positive) +2 147 483 647
(most positive) 7 FFF FFFF +7.2% 1070

Normalization

Normalization is a process of making non-zero the most significant digit (F1) of the fraction of a
floating point number. In the normalization process, the floating point fraction is shifted left hexa-
decimally (i.e., four bits at a time), and its exponent is decremented by one for each hexadecimal
shift until the most significant digit (not necessarily the most significant bit) of the fraction is non-
Zero.

FRACTION

A

S EXPONENT F1 F2 F3 Fa F5 F6

SHIFT LEFT FRACTION HEXADECIMALLY UNTIL F140

DECREMENT EXPONENT BY ONE FOR EACH SHIFT

Except for LE, LER, LD, LDR instructions, all the floating point operations assume and require
normalized operands for consistent results. The LE, LER, LD and LDR instructions normalize
an unnormalized operand.

Example:
Operands After normalization
1. 42012345 41123450
2. 21000ABC 1EABCO000O
3. C900FE12 C7FE1200
4. 6C000000 00000000 (true zero)
5. 82000267 00000000 (exponent underflow)

64 29-633 ROO 1/78

In example 4, the fraction of the operand is zero. During the normalization process, such a frac-
tion is detected and the floating point number is set to true zero.

In example 5, the exponent of the operand is very small, During the normalization process, the
exponent is decremented from 00 to 7F. Such a transition results in exponent underflow and the

floating point number is set to true zero.

In floating point operations, assuming that the operands are normalized, normalized results are
always produced.

Equalization

Equalization is a process of making equal the exponents of two floating point numbers. The fraction
of the floating point number with the smaller exponent is shifted right hexadecimally, i.e., four
bits at a time, and its exponent is incremented by one for each hexadecimal shift until the two

exponents are equal.

INCREMENT EXPONENT BY ONE FOR EACH SHIFT

SHIFT FRACTION RIGHT HEXADECIMALLY UNTIL EXPONENTS EQUAL

S EXPONENT F1 F2 F3 F4 F5 F6

FRACTION

During floating point addition and subtraction the two floating point operands are equalized.

Example:
Floating point After equalization
operands
1. 43123456 43123456
3F789ABC 43000078
2. C7FE1234 C900FE12
4956789A 4956789A

In this example, normalized floating point numbers are shown because addition and subtraction
require normalization. Note that if the exponents differ by 6 or more the significance of the lower
exponent floating point number is lost in the process of equalization.

True Zero
!

A floating poinf number is said to be true zero when the exponent and the fraction fields are all
zeroes. In other words, all data bits must be zero. A value of zero always has a positive sign.
In general, zero values participate as normal operands in all floating point operations.

A true zero may be used as an operand or may result from an arithmetic operation that caused an
exponent underflow, in which case the entire number is forced to true zero. Secondly, if an arith-
metic operation produces a result whose fraction digits are all zeroes (sometimes referred to as
loss of significance), the entire number is forced to true zero.

Examples:
Numbers - Operation " Result
030000AB Normalize 0000 0000 exponent
. underflow
41ABCDEF
41ABCDEF Subtract 0000 0000 loss of
significance

29-633 ROO 1/78 6-5

Exponent Overflow

In floating point operations, exponent overflow may occur. Exponent overflow occurs when a
resulting exponent is greater than +63. If overflow occurs, the exponent and fraction bits of the
result are set to all 1s, the largest possible magnitude and therefore the closest possible answer.
The sign of the result is not affected by the overflow. Figure 6-2 illusirates exponent overflow
using a line representation of numbers.

Most negative True Most positive

number Zero number

g so e -
])
FFFFFFFF 10} TFFFFFFF
\"'V-J
exponent = 7F Underflow exponent = 7F
6310 range =6339
*>-———— @ [e

overflow overflow

Figure 6-2. Exponent Overflow

If overflow occurs, the V flag in the Condition Code is set, and an arithmetic fault interrupt is
taken, if enabled by the current PSW.

Exponent Underflow

The normalization process, during a floating point operation, may produce an exponent underflow.
Exponent underflow occurs when a result exponent would be less than -64. If underflow occurs,
the entire result is set to true zero, the closest possible answer. Figure 6-3 illustrates exponent
underflow using a line representation of numbers.

Least negative True Least positive
number Zero number
—— f—o . ~— e
80100000 0010000
[exponent =00] exponent = 00]
= "6410 = -6410

>~ -
underflow underflow

Figure 6-3. Exponent Underflow

If underflow occurs, the V flag in the Condition Code is set, and an-arithmetic fault interrupt is
taken, if enabled by the current PSW.

Data Formats

Floating point numbers occur in one of two formats, single precision and double precision.
The single precision format requires a fullword (32 bits) in one of the eight single precision
floating point registers or on a fullword address boundary, in memory. The sign (s),
exponent (x) and fraction (cons1st1ng of digits F1, F2, F3, F4, F5 and ¥6) fields are desig-

nated as follows:

6-6 29-633 RO0O 1/78

The double precision format requires a doubleword (64 bits) in one of the eight double precision
floating point registers or on a doubleword address boundary in memory. The sign (S), expon-
ent (X) and fraction (consisting of digits F1 through F14) fields are designated as follows:

01 78 12 16 20 24 28 R
S X F1 F2 F3 F4 F5 F6 ;
32 36 40 44 48 52 56 60 63
L F7 F8 F9 F10 N F12 F13 F14

r

The value of a single (and similarly double) precision floating point number can be expressed as
follows: :

4 5 X-x'40"

sign(F1.16 1 + F2.16™2 4 ¥3.1673 +.F4.16™% + ¥5.167° + 76.167%) 16

Guard Digit and Rounding

A guard digit is an extra hexadecimal digit provided to the right of the least significant fraction
digit of a floating point number. Only single precision floating point numbers can have a guard
digit. The guard digit is produced and used during the processing of intermediate results of a
floating point operation. The guard digit does not appear in the final result. However, the
guard digit helps rounding the final result, thus increasing the precision slightly. In the
absence of a guard digit, as is the case in double precision floating point numbers, the final
result is simply truncated.

NOTE

In Processors which do not have the double precision floating point
option, there is no guard digit for single precision floating point
numbers. Hence the results are truncated, not rounded.

A guard digit is produced during the equalization phase of an Add or Subtract single precision
floating point operation. Then the operation is performed to obtain an intermediate result. The
guard digit participates in the operation. If the guard digit of the intermediate result is 0 through
7, no rounding is done, If it is 8 through F, one (1) is added to the fraction of the intermediate
result to obtain the final result fraction, unless such an addition produces a carry into the expon-
ent field, The following example illustrates the rounding procedure.

After Guard
Operands equalization dt'git
42ABCD12 42aBcp12 [0)
+ +
416789AB 4206789A

+ 42B245AC intermediate result
l '
42B245AD final result

A guard digit is also produced during the Multiply and Divide single precision floating point
operations. The intermediate product or the quotient is rounded as shown here to obtain the
final result.

29-633 ROO 1/78

6-7

Conversion from Decimal

The process of converting a decimal number into the excess 64 notation used internally by the
Processor involves the following steps:

1. Separate the decimal integer from the decimal fraction:
182.375, = (182 +.375)1

2. Convert each part to hexadecimal by referring to the Integer conversion table and the Fraction
conversion table in Appendix 5.

3. Combine the hexadecimal integer and fraction:
_ 0
B6. 616 =(B6.6X16") 14
4, Shift the radix point:
' . 0, . 2
(B6.6 X 16") 16 = (-B66 X 167) ;¢
5. Add 64, (X'40'), to the exponent

6. Convert the exponent field and fraction to binary allowing 1 bit for the sign, 7 bits for
the exponent field, and 24 or 56 bits for the fraction.

42B66 = 0100 0010 1011 0110 0110 0000 0000 0000

CONDITION CODE

Following floating point operations, including load, the Condition Code indicates the result of
the operation.

FLOATING POINT INSTRUCTION FORMATS

The Floating Point instructions use the Register to Register (RR), and the Register and Indexed
Storage (RX) instruction formats. In all of the RR formats, except for Fix and Float, the R1 and
the "R2 fields specify one of the floating point registers. There are eight single precision floating
point registers, and eight double precision floating point registers numbered 0, 2, 4, 6, 8, 10, 12,
and 14, Except FXR and FXDR instructions, the Rl field always specifies a floating point register,

FLOATING POINT INSTRUCTIONS

The floating point arithmetic operations, excluding loads and stores, require normalized operands

to insure correct results. If the operands are not normalized, the results of these operations are

undefined. Floating point results are normalized. The Floating Point Load instruction normalizes
floating point data extracted from memory.

The single precision floating point instructions described in this section are:

LE Load Floating Point CE Compare Floating Point

LER Load Floating Point Register CER Compare Floating Point Register
* LME Load Floating Point Multiple ME Multiply Floating Point

STE Store Floating Point MER Multiply Floating Point Register
*STME Store Floating Point Multiple DE Divide Floating Point

AE Add Floating Point DER Divide Floating Point Register

AER Add Floating Point Register * FXR Fix Register

SE Subtract Floating Point * FLR Float Register

SER Subtract Floating Point Register

* Not Available In All Implementations

6-8 29-633 ROO 1/78

The double precision floating point instructions described in this section are:

LD Load DPFP CD Compare DPFP

LDR Load Register DPFP CDR Compare Register DPFP
LMD Load Multiple DPFP MD Multiply DPFP

STD Store DPFP MDR . Multiply Register DPFP
STMD Store Multiple DPFP DD Divide DPFP

AD Add DPFP DDR Divide Register DPFP
ADR Add Register DPFP FXDR Fix Register DPFP

SD Subtract DPFP FLDR Float Register DPFP
SDR Subtract Register DPFP :

Double precision Floating point is not available in all implementations.

29-633 ROO 1/78

6-9

INSTRUCTIONS

Load Floating Point (LE)
Load Floating Point Register (LER)

Assembler Notation Op-Code Format
LE R1, A(X2) 68 RX
LER R1, R2 28 RR
Operation

The floating point second operand is normalized, if necessary, and placed in the floating
point register specified by R1.

LER: (R1) +— (R2)
LE: (R1) =— [A+ (x2)]

Condition Code

Floating point value is ZERO

Floating point value is less than ZERO
Floating point value is greater than ZERO
Exponent underflow

o o o oln
-0 o ol

o~ o oln
© oM ol

Programming Note
If the fraction is zero, the result is forced to X'0000 0000'
Normalization may produce exponent underflow. In this event, the result is forced to zero,
X'0000 0000', the V flag in the Condition Code is set, the G and L flags are reset and, if
enabled by bit 5 of the current PSW, the arithmetic fault interrupt is taken.

In the RX formats, the second operand must be located on a fullword boundary.

Example: LE
This example normalizes the fullword at memory location LOC and places it in Floating Point
Register 8.
Floating Point Register 8 = undefined
LOC = X'4200 1000!
Assembler Notation Comments
LE REGS,LOC Normalize contents of LOC

Result of LE Instruction

(Floating Point Register 8) 4010 0000 .
(LOC) " = unchanged by this instruction
Condition Code 0010

6-10 29-633 ROO 1/78

INSTRUCTION

Load Floating Point Multiple (LME)

Assembler Notation Op-Code Format
LME R1, A (X2) 7?2 RX
Operation

Successive floating point registers, starting with the register specified by R1, are loaded
from successive memory locations starting with the address of the second operand. The
process stops when Floating Point Register 14 has been loaded.

1. [Rl)e—[A+ (x2)]

2. RL:X'E' -

if R1 = X'E', the instruction is finished
if R1 # X'E', then:

3. Rle——R1+2

4. A<*+——A+4, return to step 1

Condition Code

Unchanged

Programming Note

The second operand must be located on a fullword boundary.

29-633 ROO 1/78

INSTRUCTION

Store Floating Point (STE)

Assembler Notation Op-Code Format
STE R1,A (X2) 60 RX
Operation

The floating point first operand, contained in the floating point register specified by R1,
is placed in the memory location specified by the second operand address. The first op-
erand is unchanged.

[A+(X2)]<—(R1)

Condition Code

Unchanged

Programming Note

The second operand must be located on a fullword boundary.

This instruction is subject to memory protect.

6-12 ' 29-633 ROO 1/78

INSTRUCTION

Store Floating Point Multiple (STME)

Assembler Notation Op-Code Format
STME R1, A (X2) 71 RX
Operation

The contents of successive floating point registers, starting with the register specified by
R1, are stored in successive memory locations, starting with the address of the second
operand. The operation stops when the contents of Floating Point Register 14 have been
stored.

1. [A+(X2)]=— (R1)

2. RL:X'E'
if R1 = X'E', the instruction is finished
if R1 # X'E', then:

3. R1<+—R1+2 ,

4, A<+— A+4, return to step 1.

Condition Code

Unchanged

Programming Note

The second operand must be located on a fullword boundary.

This instruction is subject to memory protect.

29-633 ROO 1/78

6-13

INSTRUCTIONS

Add Floating Point (AE)
Add Floating Point Register (AER)

Assembler Notation Op-Code Format
AE R1, A(X2) 6A RX
AER R1,R2 2A RR
Operation

The exponents of the two operands are compared. If the exponents differ, the fraction with

the smaller exponent is shifted right hexadecimally (four bits at a time), and its exponent

is incremented by one for each hexadecimal shift until the two exponents are equal. The hex-
adecimal digits (of four bits each) are shifted through the guard digit. The guard digit contains the
last shifted hexadecimal digit. If no shift occurs it is zero. The fractions are then added alge-
braically.

If the addition of fractions produces a carry, the exponent of the result is incremented by one
and the fraction of the result is shifted right one hexadecimal digit. The carry bit is shifted
back into the most significant hexadecimal digit of the fraction, producing a normalized result.
This result replaces the contents of the register specified by R1.

If the addition of fractions does not produce a carry, the result is normalized, if necessary, and
replaces the contents of the register specified by R1.

AER: (R1) =—— (R1) + (R2)
AE: : (R1) «—— (R1) + ﬁA + (x2)]

Condition Code

Floating point result is ZERO

Floating point result is less than ZERO
Floating point result is greater than ZERO
Exponent overflow, Result is negative
Exponent overflow, Result is positive
Exponent underflow

R R R e R (e
H o O o
oMo RO Ooln
C O RO Ol

Programming Note

When the addition of the fractions produces a carry, incrementing the exponent of the result

by one may produce exponent overflow. In this case, the result is forced to the maximum
value, + X'TFFF FFFF', the V flag, along with the G or L flag is set in the Condition Code and,
if enabled by bit 5 of the current PSW, the arithmetic fault interrupt is taken.

Normalization of the result may produce exponent underflow. In this case, the result is
forced to zero, X'0000 0000'. The V flag is set in the Condition Code. The G and the

L flags are always reset, and if enabled by bit 5 of the current PSW, the arithmetic fault -
interrupt is taken.

If the guard digit is 0:7, the result is not rounded. If the guard digit is 8:F, the result is
rounded by adding 1 to the fraction of the result unless rounding produces a carry into the
exponent field.

In the RX formats, the second operand must be located on a fullword boundary.

6-14 29-633 ROO 1/78

Example: SE

This example subtracts the contents of LOC from the contents of Floating Point Register 8 and
places the result in Floating Point Register 8.

Floating Point Register 8 contains X'7FEF FFFF'
LOC contains X'7A10 0000’

Assembler Notation

SE REGS, LOC

Result of SE Instruction

(Floating Point Register 8)
(LOC)
Condition Code

29-633 ROO 1/78

Comments

Subtract (LOC) from (REGS8)

TFEF FFFE
unchanged by this instruction
0010

6-15

INSTRUCTIONS

Subtract Floating Point (SE)
Subtract Floating Point Register (SER)

Assembler Notation Op-Code Format
SE R1, A(X2) 6B RX
SER R1, R2 2B RR
Operation

The exponents of the two operands are compared. If the exponents differ, the fraction with
the smaller exponent is shifted right hexadecimally (four bits at a time), and its exponent
is incremented by one for each hexadecimal shift until the two exponents are equal. The
hexadecimal digits (of four bits each) are shifted through the guard digit. The guard digit
contains the last shifted hexadecimal digit. If no shift occurs it is zero. The second oper-
and fraction is then subtracted algebraically from the first operand fraction.

If the subtraction of fractions produces a borrow, the exponent of the result is incremented by
one and the fraction of the result is shifted right one hexadecimal digit. The borrow bit is
shifted back into the most significant hexadecimal digit of the fraction, producing a normalized
result. This result replaces the contents of the register specified by R1.

If the subtraction of fractions does not produce a borrow, the result is normalized. The
normalized result replaces the contents of the register specified by R1.

SER: (R1)*—(R1) - (R2)
SE: (R1)«—(R1) - [A + (X2)]

Condition Code

Floating point result is ZERO

Floating point result is less than ZERO
Floating point result is greater than ZERO
Exponent overflow, Result is negative
Exponent overflow, Result is positive
Exponent underflow

OO MO OIN
CorHOHO|H

HX XXM Xe
H R oo ol

Programming Note

When the subtraction of the fractions produces a borrow, incrementing the exponent of the
result by one may produce exponent overflow. In this case, the result is forced to the max-
imum value, + X'7FFF FFFF', the V flag, along with the G or L flag is set in the Condi-
tion Code and, if enabled by bit 5 of the current PSW, the arithmetic fault interrupt is taken.

Normalization of the result may produce exponent underflow. In this case, the result is
forced to zero, X'0000 0000', The V flag is set in the Condition Code. The G and the

L flags are always reset and, if enabled by bit 5 of the current PSW, the arithmetic fault
interrupt is taken.

The shifted hexadecimal digits (if any) participate in subtraction and produce a guard digit.
If the guard digit is 0:7, the result is not rounded. If the guard digit is 8:F, the result is
rounded by adding 1 to the fraction of the result unless rounding produces a carry into the
exponent field.

In the RX formats, the second operand must be located on a fullword boundary.

6-16 29-633 ROO 1/78

Example: AE

This example adds the contents of LOC to the contents of the Floating Point Register 8 and places

the answer in Floating Point Register 8.

Floating Point Register 8 contains X'7EFF FFFF!
LOC contains X'7TEFF FFFF!

Assembler Notation Comments

AE REGS,LOC ADD (REG 8) to (LOC)

Result of AE Instruction

1

(Floating Point Register 8) 7F1F FFFF
(LOC) unchanged by this instruction
Condition Code = 0010

29-633 ROO 1/78

6-17

INSTRUCTIONS

Compare Floating Point (CE)
Compare Floating Point Register (CER)

Assembler Notation Op-Code
CE R1, A(X2) 69
CER R1, R2 29
Operation

Format

RX
RR

The first operand is compared to the second operand. Comparision is algebraic, taking

into account the sign, fraction, and exponent of each number.
the Condition Code setting. Neither operand is changed.

CER: (R1):(R2)
CE: (R1): [A+(x2)]

Condition Code

Programming Note

The state of the V flag is undefined.

C|V|G|L

0{X]0](0 First operand is equal to second operand

1({X|0]1 First operand is less than second operand
Xi1(0 First operand is greater than second operand

The result is indicated by

In the RX formats, the second operand must be located on a fullword boundary.

6-18

29633 RO0O 1/78

INSTRUCTIONS

Multiply Floating Point (ME)
Multiply Floating Point Register (MER)

Assembler Notation Op-Code Format
ME R1, A(X2) 6C RX
MER R1,R2 2C RR
Operation

The exponents of each operand, as derived from the excess 64 notation used in floating point
representation, are added to produce the exponent of the result. This exponent is converted
back to excess 64 notation, The fractions are then multiplied.

If the result is zero, the entire floating point value is forced to zero, X'0000 0000'. If the

product is not zero, the result is normalized. The sign of the result is determined by the
rules of algebra. The result replaces the contents of the register specified by R1.

MER: (R1) =— (R1) * (R2)
ME: (R1) «—— (R1) * [A+(X2)]

Condition Code

Floating point result is ZERO _
Floating point result is less than ZERO
Floating point result is greater than ZERO
Exponent overflow, Result is negative
Exponent overflow, Result is positive
Exponent underflow

I R R (o]
O o ol
O R OorHO oD
OO Mool

Programming Note

The addition of exponents may produce exponent overflow. In this case, the result is
forced to the maximum value, #X'7FFF FFFF'. The V flag in the Condition Code is set,
along with either the G or the L flag, depending on the sign of the result. An arithmetic
fault interrupt is taken, if enabled by bit 5 of the current PSW.

The addition of exponents or the normalization process can produce exponent underflow, In
this case, the result is forced to zero, X'0000 0000'. The V flag in the Condition Code is
set. The G and L flags are reset, and if enabled by bit 5 of the current PSW, the arithmetic
fault interrupt is taken.

Multiplication of two 6-hexadecimal digit fractions effectively produces a result of 6-hexa-
decimal digits and a guard digit. If the guard digit is 0:7, the result is not rounded. If the
guard digit is 8:F, the result is rounded by adding 1 to the fraction of the result, unless
rounding produces a carry into the exponent field.

In the RX formats, the second operand must be located on a fullword boundary.

29-633 ROO 1/78

Example: ME

This example multiplies the contents of LOC by the contents of the Floating Point Register 8
and places the result in Floating Pointer Register 8.

Floating Point Register 8 contains X'5FFF FFFF"'
LOC contains X'60FF FFFF'

Assembler Notation

ME REGS,LOC

Result of ME Instruction

(Floating Point Register 8)
(LOC)
Condition Code

6-20

Comments

Multiply (REG 8) by (LOC)

T7FFF FFFE
unchanged by this instruction
0010

29-633 R0OO 1/78

INSTRUCTIONS

Divide Floating Point (DE)
Divide Floating Point Register (DER)

Assembler Notation Op-Code Format
DE R1, A (X2) 6D RX
DER R1, R2 2D RR
Operation

The exponents of each operand, as derived from the excess of 64 notation used in floating point
representation, are subtracted to produce the exponent of the result. This exponent is converted
back to excess 64 notation.

The first operand fraction is then divided by the second operand fraction. Division continues
until the quotient is normalized, adjusting the exponent for each additional division required. No
remainder is returned. The sign of the quotient is determined by the rules of algebra. The quo-

tient replaces the contents of the register specified by R1.

DER: (Rl) «——— (R1) / (R2)
DE: (R1) «——— (R1) /[A+(X2)]

Condition Code

Floating point result is ZERO

Floating point result is less than ZERO
Floating point result is greater than ZERO
Exponent overflow, Result is negative
Exponent overflow, Result is positive
Exponent underflow

Divisor equal to zero

-=ooooooln
[TN -R-N-1P=
Co O ROON
cocror ol

Programming Note

Before starting the divide operation, the divisor is checked. If it is equal to zero, the op-
eration is aborted. Neither operand is changed. The C and the V flags of the Condition

. Code are set. The G and L flags are reset. If enabled by bit 5 of the current PSW, the
arithmetic fault interrupt is taken.

The subtraction of exponents may produce exponent overflow. In this case, the result is
forced to the maximum value, +X'7TFFF FFFF'. The V flag in the Condition Code is set,
along with either the G or the L flag, depending on the sign of the result. An arithmetic

fault interrupt is taken, if enabled by bit 5 of the current PSW,

The subtraction of exponents or the division process can produce exponent underflow. In
this case, the result is forced to zero, X'0000 0000', The V flag in the Condition Code is

set. The G and L flags are always reset, and if enabled by bit 5 of the current PSW, the
arithmetic fault interrupt is taken.

The 6-hexadecimal digit first operand fraction is divided by the 6-hexadecimal digit second

operand effectively producing the 6-hexadecimal digit quotient along with a guard digit. If
the guard digit is 0:7, the quotient is not rounded. If the guard digit is 8:F, the quotient is
rounded by adding 1 to the fraction of the result unless rounding produces a carry into the

exponent field,

In the RX formats, the second operand must be located on a fullword boundary.

29-633 ROO 1/78

6-21

Example: DE

This example divides the contents of Floating Point Register 4 by the contents of memory
location LOC and places the result in Floating Pointer Register 4.

Floating Point Register 4 contains X'44FF FFFF' = Dividend
LOC contains X'0611 1111' = Divisor

Assembler Notation

DE REG4,LOC

Result of DE Instruction

(Tloating Point Register 4)
(LOC)
Condition Code

6-22

Comments

Divide (REG4) by (LOC)

7FFO0 0000
unchanged by this instruction
0010

29-633 ROO 1/78

INSTRUCTION

Fix Register (FXR)

Assembler Notation Op-Code Format
FXR R1,R2 2E RR
Operation

R1 specifies one of the general purpose registers. R2 specifies one of the single precision
floating point registers. The floating point number contained in the floating point register
is converted to a two's complement notation integer value by shifting and truncating. The
16-bit result is stored in the register specified by Rl.

1. (R2): '4880000 ', then:
if (R2)2 X'440000", then:

2. (Rl1)«—'TFFF', go to step 9
if (R2)< X'44000000', then:

3. (R2): Y'41000000"
if (R2) < Y'41000000'

4. (R1)«-X'0000', Go to step 9
if (R2) 2Y'41000000', then:

5. Counte— R2 (i:7)

6. Counte— X'44' - Count

7. If Count = 0, Go to step 9

8. If Count 0, then
Shift (R1) Right four places
Count<-Count-1, go to step 7

9. If (R2) = Positive, end of instruction

If (R2) = Negative, then:
(R1)=-0-(R1)

Condition Code

C|V|G|L

X|0f0f0 Result is ZERO or underflow

X10[0j1 Result is less than ZERO

X|011{0 Result is greater than ZERO
I1xf{1fof1 Overflow, Result is negative

Xi1)1(0 Overflow, Result is positive

29-633 ROO 1/78 6-23

Programming Note

The range of floating point magnitudes M that produces a non-zero integral result is:
+ Y'4480 0000'> M> + Y'4110 0000’

Floating point magnitudes greater than -+ Y'447F FFFF' cause overflow. The result is forced
to X'"7FFF' if positive or to X'8001" if negative. The V flag is set in the Condition Code along
with either the G or L flag, depending on the sign of the result.

Floating point magnitudes less than +Y'4110 0000' cause underflow and the result is forced
to zero.

In the event of overflow or underflow, the Arithmetic Fault Interrupt is not taken, even if
enabled in the current PSW.

Example: FXR

This example converts the contents of the Floating Point Register 8 to a fixed point number and
places it in Register 2.

Floating Point Register 8 contains Y'42F0 0000’
Register 2 is undefined

Assembler Notation : Comments

FXR REG2, REGS Convert (REG 8) to fixed point

Result of FXR Instruction

(REG2) = 00F0
(Floating Point Register 8) unchanged by this instruction
Condition Code = 0010

6-24 29-633 ROO 1/78

INSTRUCTION

Float Register (FLR)

Assembler Notation Op-Code Format
FLR R1,R2 2F RR
Operation

R1 specifies one of the single precision floating point registers. R2 specifies one of the
general purpose registers. The 16-bit integer value contained in the register specified
by R2 is converted to a floating point number and stored in the floating point register
specified by R1.

1. Temporary A< Y '4600'

2. Temporary B < (R2)

3. if Temporary B is minus then:
Temporary Be—0-Temporary B and
Temporary Ae- Y'C600'

4. Normalize (Temporary A, Temporary B)

5. (Rl1)*=—Temporary A

Condition Code

CIV|G|L

X{0j01o0 Result is ZERO

X{0ol0]1 Result is less than ZERO
Xjoj1]o Result is greater than ZERO

Programming Note

The full range of fixed point integer values may be converted to floating point. The fixed point
value X'7FFF', the largest positive integer, converts to a floating point value of Y'447F FF00',
The fixed point value X'8000', the most negative integer, converts to a floating point value of
Y'C480 0000'. The result in R1 is normalized.

Example: FLR

This example converts the Fixed point contents of Register 4 to a floating point number
and places it into Floating Point Register 8.

Register 4 contains X'TFFF!
TFloating Point Register 8 is undefined

Assembler Notation Comments

FLR REGS8, REG4 ' Convert (REG4) to Floating Point

Result of FLR Instruction

(Floating Point Register 8) = 447FFF00
(REG4) = unchanged by this instruction
Condition Code = 0010

29-633 ROO 1/78 6-25

INSTRUCTIONS

Load Double Precision Floating Point (LD)
Load Register Double Precision Floating Point (LDR)

Assembler Notation Op-Code Format
LD Rl A (X2) 78 RX
LDR R1,R2 38 RR
Operation

The floating point second operand is normalized, if necessary, and placed in the double preci-
sion floating point register specified by R1.

LDR: (R1) «— (R2)
LD: (R1) =— [A+(X2)]

Condition Code

C|V|G|L

ofofofo Double precision value is ZERO

ofojo]1 Double precision.value is less than ZERO
0{0}110 Double precision value is greater than ZERO
0f{1|0}0 Exponent underflow

Programming Note

If the fraction is zero, the result is forced to X'0000 0000 0000 0000'.

Normalization may produce exponent underflow, In this event, the result is forced to
X'0000 0000 0000 0000', the V flag in the Condition Code is set, the G and L flags are reset
and, if enabled by bit-19 of the current PSW, the arithmetic fault interrupt is taken.

In the RX formats, the second operand must be located on a double word boundary.

Example: LD

This example normalizes the double word at memory location LOC and places it in Double
Precision Floating Point Register 6.

Floating Point Register 6 = undefined
4300 0000 0230 0000

LOC =
Assembler Notation Comments
LD REGG. LOC Normalize contents of LOC

Result of LD Instruction

(Floating Point Register 6) = 3C23 0000 0000 0000

(LOC) = unchanged by this instruction
Condition Code = 0010

6-26 29-633 ROO 1/78

INSTRUCTION

Load Multiple Double Precision Floating Point (LMD)

Assembler Notation Op-Code Format
LMD RI1,A (X2) 7F RX
Operation

Successive double-precision floating point registers, starting with the register specified by
R1, are loaded from successive memory locations starting with the address of the second
operand. The process stops when Double Precision Floating Point Register 14 has been loaded.

1. (Rl)=—[A+(X2)]

2. RI:X'E!
if R1=X'E', the instruction is finished’
if R1# X'E', then:

3. Rl1«—R1+ 2

4. A<+—A + 8, returnto step 1

Condition Code

Unchanged

Programming Note

The second. operand must be located on a double word boundary.

29-633 ROO 1/78 6-27

INSTRUCTION

Store Double Precision Floating Point (STD)

Assembler Notation Op-Code Format
STD R1,A (X2) 70 RX
Operation

The floating point first operand, contained in the double precision floating point register speci-
fied by R1 is placed in the memory location specified by the second operand address. The first
operand is unchanged.

[A+ (x2)] =— (RD)

Condition Code

Unchanged.

Programming Notes
The second operand must be located on a double word boundary.

This instruction is‘subj ect to memory protect.

6-28 29-633 R0O0O 1/78

INSTRUCTION

Store Multiple Double Precision Floating Point (STMD)

Assembler Notation Op-Code Format
STMD R1, A (X2) TE RX
Operation

The contents of successive double precision floating point registers, starting with the register
specified by R1, are stored in successive memory locations, starting with the address of the
second operand. The operation stops when the contents of Double Precision Floating Point
Register 14 have been stored.

1. [a+ (xz)]¢——— (R1)

2. RL:X'E'
if R1 = X'E', the instruction is finished
if R1 # X'E', then:

3. Rle«—RI1i2 .

4., A<*—A + 8, returnto step 1

Condition Code

Unchanged

Programming Note
The second operand must be located on a double word boundary.

This instruction is subject to memory protect,

29-633 ROO 1/78 6-29

INSTRUCTIONS

Add Double Precision Floating Point (AD)
Add Register Double Precision Floating Point (ADR)

Assembler Notation Op-Code Format
AD R1, A (X2) 7TA RX
ADR R1, R2 3A RR
Operation

The exponents of the two operands are compared. If the exponents differ the fraction with the
smaller exponent is shifted right hexadecimally (four bits at a time), and its exponent is incre-
mented by one for each hexadecimal shift until the two exponents are equal. The fractions are
then added algebraically.

If the addition of fractions produces a carry, the exponent of the result is incremented by one

and the fraction of the result is shifted right one hexadecimal position. The carry bit is shifted
back into the most significant hexadecimal digit of the fraction, producing a normalized result.
This result replaces the contents of the double precision floating point register specified by R1.

If the addition of fractions does not produce a carry, the result is normalized, if necessary,
and placed in the double precision floating point register specified by R1.

ADR: (R1) «——— (R1) + (R2)
AD: (R1) =—— (R1) + [A + (X2)]
Condition Code

Double Precision Result is ZERO

Double Precision Result is less than ZERO
Double Precision Result is greater than ZERO
Exponent Overflow, Result is negative
Exponent Overflow, Result is positive
Exponent Underflow

Il e
H - o o o
Sroroon
SO RO RO

Programming Note

When the addition of fractions produces a carry, incrementing the exponent of the result by one
may produce exponent overflow. In this case, the result is forced to the maximum valug,
X'TFFF FFFF FF¥F FFFF', the V flag, along with the G or L flag is set in the Condition
Code and, if enabled by bit 5 of the current PSW, the arithmetic fault interrupt is taken,

Normalization of the result may produce exponent underflow. In this case, the result is forced
to zero, X'0000 0000 0000 0000'. The V flag is set in the Condition Code, and the G and L
flags are reset, and if enabled by bit 5 of the current PSW, the arithmetic fault interrupt is

taken.

In the RX formats, the second operand must be located on a double word boundary.

6-30 29-633 ROO 1/78

INSTRUCTIONS

Subtract Double Precision Floating Point (SD)
Subtract Register Double Precision Floating Point (SDR)

Assembler Notation Op-Code Format
SD R1, A(X2) 7B RX
SDR R1, R2 3B RR
Operation

The exponents of the two operands are compared. If the exponents differ, the fraction with
the smaller exponent is shifted right hexadecimally (four bits at a time), and its exponent is
incremented by one for each hexadecimal shift until the two exponents are equal. The second
operand fraction is then subtracted algebraically fromthe first operand fraction.

If the subtraction of fractions produces a carry, the exponent of the result is incremented by
one and the fraction of the result is shifted right one hexadecimal position. The carry bit is
shifted back into the most significant hexadecimal digit of the fraction producing a normalized
result. This result replaces the contents of the double precision floating point register
specified by R1. :

SDR: (R1) «— (R1) - (R2)
SD: (R1) «— (R1) - [A + (X2)]

Condition Code

Double Precision Result is ZERO

Double Precision Result is less than ZERO
Double Precision Result is greater than ZERO
Exponent Overflow, Result is positive
Exponent Overflow, Result is negative
Exponent Underflow

XXX M X XA
HHROOO«

corrooln
orR o oKrOoH

Programming Note

When the subtraction of fractions produces a carry, incrementing the exponent of the result
by one may produce exponent overflow. In this case, the result is forced to the maximum
value, + X'TFFF FFFF FFFF FFFF', the V flag, along with the G or L flag is set in the
Condition Code, and if enabled by bit 5 of the current PSW, the arithmetic fault interrupt is
taken.

Normalization of the result may produce exponent underflow. In this case, the result is forced
to zero, X'0000 0000 0000 0000'. The V flag is set in the Condition Code, the G and L flags
are reset, and if enabled by bit 5 of the current PSW, the arithmetic fault interrupt is taken.

In the RX formats, the second operand must be located on a double word boundary.

29-633 ROO 1/78 6-31

INSTRUCTIONS

Compare Double Precision Floating Point (CD)
Compare Register Double Precision Floating Point (CDR)

Assembler Notation Op-Code Format
CD R1, A(X2) 79 RX
CDR R1, R2 39 RR
Operation

The first operand is compared to the second operand. Comparison is algebraic, taking into
account the sign, exponent and fraction of each number. The result is indicated by the Condi-

tion Code setting. Neither operand is changed.

CDR: (R1):(R2)
CD: (R1): [A + (x2)]

Condition Code

C|V|G|L

0]xXj01}0 First operand is equal to second operand
1|xX{o]1 First operand is less than second operand
0|xi|11]0 First operand is greater than second operand

Programming Note

The state of the overflow flag is undefined.

In the RX formats, the second operand must be located on a double word boundary.

6-32 29-633 R0OO 1/78

INSTRUCTIONS

Multiply Double Precision Floating Point (MD)
Multiply Register Double Precision Floating Point (MDR)

Assembler Notation Op-Code Format
MD RI, A (X2) 7C RX
MDR R1, R2 3C RR
Operation

The exponents of the two operands, as derived from the excess 64 notation used in floating
point representation, are added to produce the exponent of the result. This exponent is con-
verted back to excess 64 notation. The fractions are then multiplied.

If the product is zero, the entire double precision value is forced to zero, X'0000 0000 0000 0000'.
If the product is not zero, the result is normalized if necessary. After normalization, the
product is rounded. The sign of the result is determined by the rules of algebra. The result
replaces the contents of the double precision floating point register specified by R1.

MDR: (Rl) <—— (R1)* (R2)
MD: (R1) =—— (RL) *[A + (X2)]

Condition Code

Double precision result is ZERO

Double precision result is less than ZERO
Double precision result is greater than ZERO
Exponent overflow, Result is positive
Exponent overflow, Result is negative
Exponent underflow

comrRroON
om o oK OH

PR el (o]
HR RO oo

Programming Note

The addition of exponents may produce exponent overflow. In this case, the result is forced
to the maximum value, +X'7FFF FFFF FFFF FFFF', The V flag in the Condition Code is
set, along with either the G or L flag, depending on the sign of the result. An arithmetic
fault interrupt is taken, if enabled by bit 5 of the current PSW.

The addition of exponents or the normalization process can produce exponent underflow. In
this case, the result is forced to zero, X'0000 06000 0000 0000!. The V flag in the Condition
Code is set, the G and L flags are reset, and if enabled by bit 5 of the current PSW, the
arithmetic fault interrupt is taken.

In the RX formats, the second operand must be located on a double word boundary.

29-633 ROO 1/78 6-33

INSTRUCTIONS

Divide Double Precision Floating Point (DD)
Divide Register Double Precision Floating Point (DDR)

Assembler Notation Op-Code Format
DD R1, A (X2) 7D RX
DDR R1, R2 3D RR
Operation

The exponents of the two operands, as derived from the excess 64 notations used in floating
point representation, are subtracted to produce the exponent of the result. This exponent is
converted back to excess 64 notation.

The second operand fraction is then divided into the first operand fraction. Division continues
until the quotient is normalized, adjusting the exponent for each additional division required.

No remainder is returned. The sign of the quotient is determined by the rules of algebra. The
quotient replaces the contents of the double precision floating point register specified by R1.

DDR: (R1) «——— (R1) / (R2)
DD: (R1) «——(R1) / [A + (X2)]

Condition Code

Double precision result is ZERO

Double precision result is less than ZERO
Double precision result is greater than ZERO
Exponent overflow, Result is negative
Exponent overflow, Result is positive
Exponent underflow

Divisor is zero

- ooooooln
HHHHO O o
SorRomoon
OO o HOKO|H

Programming Notes

Before starting the divide operation, the divisor is checked. If it is equal to zero, the opera-
tion is aborted. Neither operand is changed. The C and V flags in the Condition Code are
set, the G and L flags are reset, and if enabled by bit 5 of the current PSW, the arithmetic
fault interrupt is taken.

The subtraction of exponents may produce exponent overflow. In this case, the result is
forced to the maximum value, 2 X'7FFF FFFF FFFF FFFF'. The V flag in the Condition
Code is set, along with either the G or L flag, depending on the sign of the result, An arith-
metic fault interrupt is taken, if enabled by bit 5 of the current PSW.,

The subtraction of exponents or the division process may produce exponent underflow. In
this case, the result is forced to zero, X'0000 0000 0000 0000'. The V flag in the Condition
Code is set, the G and L flags are reset, and if enabled by bit 5 of the current PSW, the
arithmetic fault interrupt is taken.

In the RX formats, the second operand must be located on a double word boundary.

6-34 29-633 ROO 1/78

INSTRUCTION

Fix Register Double Precision (FXDR)

Assembler Notation Op-Code . Format
FXDR R1,R2 3E : RR
Operation

R1 specifies one of the general purpose registers. R2 specifies one of the double precision
floating point registers. The floating point number contained in the floating point register
is converted to an integer value by truncating. The 16-bit result is placed in the general
register specified by R1.

Condition Code

C|V|G| L

xX|ofo0}o0 Result is ZERO or underflow -
X|0[0}|1 Result is less than ZERO
X[(o]|1]0 Result is greater than ZERO
X|1|0}1 Overflow, Result is negative
Xl1}1110 Overflow, Result is positive

Programming Notes

The range of the floating point magnitude (M) that produces a non-zero integral result is,
+ X'4480 0000 0000 0000' > M 2 + X'4110 0000 0000 0000'

Double precision floating point magnitudes greater than +X'447F FFFF FFFF FFFF' cause
overflow. The result is forced to X'7FFF' if positive or to X'8001' if negative. The V flag
is set in the Condition Code along with either the G or L flag, depending on the sign of the

result.

Double Precision floating point magnitudes less than +X'4110 0000 0000 0000' cause underflow.
The result is forced to zero and the Condition Code is set to zero.

In the event of overflow or underflow, the Arithmetic Fault Interrupt is not taken even if enabled
in the current PSW.

Example : FXDR

This example converts the contents of the Double Precision Floating Point Register 8
to a fixed point number and places it in Register 3. :

Floating Point Register 8 contains X'C410 0000 0000 0000
Register 3 is undefined.

Assembler Notation ' Comments
FXDR REG3,REG8 . Convert (REGS8) to fixed point

Result of FXDR Instuction

(REG3) = X'F000'
(Floating Point REG8) = X'C410 0000 0000 0000'
Condition Code = 0001

29-633R00 1/78 6-35

INSTRUCTION

Float Register Double Precision (FLDR)

Assembler Notation Op-Code Format
FLDR R1, R2 3F RR
Operation

R1 specifies one of the double precision floating point registers. R2 specifies one of the general
purpose registers. The 16-bit integer value contained in the register specified by R2 is converted
to a floating point number and placed in the double precision floating point register specified by R1.

Condition Code

CIVIG|L

X 101010 Result is ZERO

X100 |1 Result is less than ZERO
X]0]1}0 Result is greater than ZERO

Programming Notes

The full range of fixed point integer values may be converted to double precision floating point.
The fixed point value X'7FFF', the largest positive integer, converts to a double precision
floating point value of X'44F FF00 0000 0000'. The fixed point value X'8000', the most
negative integer, converts to a double precision floating point value of X'C480 0000 0000 0000'.

The result in R1 is normalized.

Example : FLDR

This example converts the Fixed point contents of Register 7 to a Floating Point number
and places it into Floating Point Register 8.

Register 7 contains X'FFFE'
Floating Point Register 8 is undefined

. Assembler Notation Comments
FLDR REGS, REGT7 Convert (REGT) to Floating Point

Result of FLDR Instruction

(Floating Point Register 8) = C120 0000 0000 0000
(Register 7) = FFFE
Condition Code = 0001

6-36 29-633 ROO 1/78

CHAPTER 7
MEMORY MANAGEMENT

The Model 8/16E Processor is unique in the 16-bit product line in that it is the first to allow ad-
dressing of more than the customary 64KB of main memory. As much as 256KB of main memory
can be added to the Model 8/16E Processor

INTRODUCTION

The maximum address in 256KB is X'3FFFF', As this number requires 18 bits to express, there
must be a translation mechanism to expand the normal 16-bit address. In the 8/16E, the mecha-
nism involves four, previously un-assigned, bits in the Program Status Word (bits 8 through 11)
and the restriction that the Processor can only access 64KB of memory at one time.

To understand the address translation mechanism, the difference between a physical address and
a program address must be understood. Simply, a physical address is an 18-bit number that allows

accessing of 256KB of memory. The program address remains 16 bits, resulting in a 64KB-at-a~time

limitation.

The program address is the 16-bit instruction Location Counter if fetching an instruction, or it is the
16-bit effective address of an operand. The 64KB range of program addresses is divided into two
32KB segments. Segment 0 represents program address from Xt0000' through X'7FFF'. Segment

1 represents program address from X'8000' through X'FFFF',

The 256KB range of physical addresses is divided into eight 32KB segments. Based upon the setting
in PSW bits 8, 9, 10, and 11, program addresses in segment 0 refer to a corresponding location in
one of the physical address segments and program addresses in segment 1 refer to a corresponding
location in another physical address segment.

When PSW bits 8 through 11 equal 00005 or 11115, a program address and the resulting physical
address are identical, The top two bits of the physical address remain reset. Program addresses
in segment 0 refer to locations in physical segment 0 and program addresses in segment 1 refer

to locations in physical segment 1.

When PSW bits 8 through 11 equal 00019 through 01103, program addresses in segment 0 still
refer to locations in physical segment 0, but program addresses in segment 1 refer to locations
in physical segment 2, 3, 4, 5, 6, or 7, depending on the actual value in PSW bits 8 through 11.

See Figure 7-1.

When PSW bits 8 through 11 equal 0111p through 11102, program addresses in. segment 0 refer to
locations in physical segment 1 in;stead of 0. Program addresses in segment 1 refer to locations
in physical segment 0, 1, 2, 3, 4, 5, 6, or 7. See Figure 7-2,

29-633 ROO 1/78

PSW PHYSICAL

8 9 [10 |11 SEGMENT
— plofi |1]o b7 p | SFFFF
38000
plofr]o]n P 6 p| 37FFF
30000
ploji1]o]o p 5 > 2FFFF
28000
—p| 0O T 1 » 4 p | 27FFF
20000
ploO 0 1 0 » 3 » 1FFFF
18000
p(ojOfOo]T » 2 » | 7FFF
10000
PROGRAM
SEGMENT
o|lojo|o.
FFFF e 1 OFFFF
1 L—{ < ——»p
8000 SERERERE P 08000
7FFF O7FFF
0 0
0000 > > 00000
PROGRAM PHYSICAL
ADDRESSES ADDRESSES

Figure 7-1. Case 1 Translation from Program Address to Physical Address.

72 29-633 ROO 1/78

PSW PHYSICAL

8 9 |10 {11 SEGMENT
3FFFF
1 1 1 0

| 4 >’ »
38000
> 1 1 0 1 > 6 > 37FFF
30000
> 1 1 0 0 > 5 > 2FFFF
28000
’ 1 0 1 1 ’ 4 ’ 27FFF
20000
> 1 0 1 0 > 3 > 1FFFF
18000
> 1 0 0 1 ’ 2 17FFF
10000

PROGRAM
SEGMENT

FFFF OFFFF

1 ¢ |1 (oo oL p1 — »
8000 08000

;__’ 0 1 1 1 __\
7FFF
0
0000

0 07FFF

—>
00000
PHYSICAL

ADDRESSES

Figure 7-2. Case 2 Translation from Program Address to Physical Address.

29-633 ROO 1/78 7-3

Table 7-1 summarizes the relationship between program addresses and physical addresses, In
order to change from the currently active 64KB, the current PSW must be modified. Now the PSW

can be modified directly by doing an LPSW or EPSR instruction.

Each of these instructions has

its disadvantages - LPSW modifies the entire PSW, Location Counter included; and EPSR requires

two general registers.

TABLE 7-1. RELATIONSHIP BETWEEN PROGRAM ADDRESS AND PHYSICAL ADDRESS

PSW PROGRAM PROGRAM

ADDRESS ADDRESS

08 09 10 1 0000 - 7FFF 8000 - FFFF
0 0 0 0 00000-07FFF 08000-OFFFF
0] 0 1 00000-07FFF 10000-17FFF
0 0 1 0 00000-07FFF 18000-1FFFF
o 0 1 1 00000-07FFF 20000-27FFF
0 1 0 0 00000-07FFF 28000-2FFFF
0 1 0 1 00000-07FFF 30000-37FFF
0 1 1 0 00000-07FFF 38000-3FFFF
] 1 1 1 08000-OFFFF 00000-07FFF
1 0 0 0 08000-OFFFF 08000-OF FFF
1 0 Y 1 08000-OF FFF 10000-17FFF
1 0 1 0 0B000-OFFFF 18000-1FFFF
1 0 1 1 08000-O0FFFF 20000-27FFF
1 1 0 0 08000-0F FFF 28000-2FFFF
1 1 0 1 08000-OFFFF 30000-37FFF
1 1 1 0 08000-0FEFFE 3R000-3FFEF
1 1 1 1 00000-Q7FFF 080GO-OFFEE

MEMORY SEGMENT SELECTION INSTRUCTION FORMATS

To make the selection of different memory segments easier, four new user level instructions have

been added to the Model 8/16E instruction repertoire.

LPSR Load Program Status Field Register
LPS Load Program Status Field

SETMR Set Map Register

SETM Set Map

74

These instructions are:

29-633 ROO 1/78

INSTRUCTIONS

Load Program Status Field Register (LPSR)

Load Program Status Field (LPS)

Assembler Notation

Op-Code Format
LPSR R2 33 RR
LPS A(X2) 73 RX

Operation
The halfword operand replaces bits 0 through 15 of the Program Status Word,
LPSR: PSW(0:15)=—(R2)
LPS: PSW(0:15)=—[A+(X2)]

Condition Code

Determined by the new status.

Programming Note

The R1 field of this instruction is not used by the Processor. The Assembler automatically sets
the Rl field to zero.

These instructions are priviledged operations.

In the RX format, the second operand must be on a halfword bou.ndafy.

29-633 R0OO 1/78

INSTRUCTIONS *
Set Map Register (SETMR)

Set Map (SETM)

Assembler Notation Op-Code Format
SETMR R1l, R2 13 RR
SETM R1,A(X2) 53 RX

Operation

The register specified by R1 contains a user's program address, The halfword second operand
contains a new PSW status field. This instruction copies bits 8 through 11 of the second operand
to bits 8 through 11 of the current PSW., These new bits and the specified program address are
adjusted as necessary so that the location can be accessed,

SETM (R): 1. PSW (8:11)=-bits 8:11 of second operand.

2. If PSW (8:11) = 0000, through 01109, or 1111,
Go to Step 6.

3. If PSW (8:11) = 0111,, Complement bit 0 of R1
and Set PSW (8:11) = 0000, and Go to Step 6.

4, If PSW (8:11) = 1000 through 1110, and if R1 bit
0 is reset, Set bit 0 of R1 and Set PSW (8:11) =
0000, and Go to Step 6,

5., I PSW (8:11) = 10005 through 1110, and if R1
bit 0 is set, Reset PSW bit 8 and Go to Step 6.

6. Adjust Condition Code of PSW according to the
new value of Rl and exit,

Condition Code

Value in Rl is zero
Value in R1 is Negative
Value in Rl is Positive

¥-K-1'¢
oo ol
Mo ol
o X ot

Programming Note

These instructions are priviledged operations.

In the RX format, the second operand must be located on a halfword boundary.

7-6 29-633 ROO 1/78

SUMMARY OF SETM, SETMR

SECOND OPERAND ORIGINAL R1 NEW R1 NEW PSW BITS
BITS 8:11 BITO BITO 8:11
0000 0 0 0000
0000 1 1 0000
0001 0 0 0001
0001 1 1 0001
0010 0 0 0010
0010 1 1 0010
0011 0 0 0011
0011 1 1 0011
0100 0 0 0100
0100 1 1 0100
0101 0 0 0101
0101 1 v 0101
0110 0 0 0110
0110 1 1 0110
0111 0 1 0000
o111 1 0 0000
1000 0 1 0000
1000 1 1 0000
1001 0 1 0000
1001 1 1 0001
1010 0 1 0000
1010 1 1 0010
1011 0 1 0000
1011 1 1 0011
1100 0 1 0000
1100 1 1 0100
1101 0 1 0000
1101 1 1 0101
1110 0 1 0000
1110 1 1 0110
1111 0 0 1111
1111 1 1 1111

29-633 ROO 1/78

71/ 18

CHAPTER 8
STATUS SWITCHING AND INTERRUPTS

INTRODUCTION
At any given time, the Processor may be in either the Stop or the Run mode. In the Stop mode,
the normal execution of instructions is suspended. The Processor is under control of the oper-
ator who can, through the Display Console:

Examine the contents of any memory location

Change the contents of any memory location

Examine the contents of any general register

Examine the contents of any 'ﬂoating point register

Examine the contents of the Program Status Word

Execute instructions singularly

Put the Processor in the Run mode
Once the Processor has been put in the Run mode, the current Program Status Word controls the
operation of the Processor. By changing the contentg of the current PSW, a running program can:

Put the Processor in the Wait state

Enable or disable various interrupts

Switch between the supervisor. and the protect modes

Vary the normal sequential execution of instructions

PROGRAM STATUS WORD

The Program Status Word is a 32-bit fullword as shown in Figure 8-1.

op11213)4|5¢6 71819110111“213 14115 116 31
P MEMORY BANK ¢ [v |G| 0 _
W|EI|M]DF] A aje I _CONTROL LOCATION COUNTER

Figure 8-1. Program Status Word Format

29-633 ROO 1/78 8-1

Bits 0:15 of the PSW are reserved for status definitions. Bits 12:15 are reserved for the
Condition Code, Bits 16:31 are reserved for the Location Counter. The status definition bits
are interpreted as follows: :

Bit 0 (W) Wait state

Bit 1 (EI) External interrupt mask

Bit 2 (M) Machine malfunction interrupt mask

Bit 3 (DF) Fixed point fault interrupt mask

Bit 4 (A) Automatic 1/0 and immediate interrupt mask
Bit 5 (FP) Floating point fault interrupt mask

Bit 6 (Q) Queue service interrupt mask
Bit 7 (P) Protect mode
Bits 8:11 Memory Bank Control

The current PSW is contained in a hardware register within the Processor. Status switching re-
sults when the current PSW, or at least the first half (bits 0:15) of the current PSW is replaced.
The occurrence of an interrupt or the execution of a Status Switching instruction can cause the
replacement of the current PSW.

Wait State

Replacing the current PSW with one in which bit 0 is set puts the Processor in the Wait state,
When the Processor is in the Wait state, program execution is halted. However, the Processor
is still responsive to machine malfunction, external, and immediate interrupts, if they are en-
abled. Automatic I/0O channel operations can also temporarily force the Processor out of the Wait
state, If the Processor is put in the Wait state with all interrupts disabled, only operator inter-
vention from the Display Console can force the Processor out of the Wait state.

Protect Mode

When bit 7 of the current PSW is set, the Processor is in the Protect mode. A program running
in this mode is not allowed to execute Privileged instructions. (Privileged instructions include
all I/0 instructions, and most of the Status Switching instructions,) If bit 7 of the current PSW is
reset, the Processor is in the Supervisor mode. Programs running in this mode may execute any
legal instruction. On models not equipped with the protect mode, PSW bit 7 has no significance
and there is no privileged instruction detection.

82 29-633 ROO 1/78

INTERRUPT SYSTEM

The interrupt system of the Processor provides rapid response to external and internal events
that require service by special software routines. In the interrupt response procedure, the Pro-
cessor preserves its current state, and transfers control to the required interrupt handler. This
software routine may optionally restore the previous state of the Processor upon completion of the
service.

Some interrupts are controlled by bits in the current Program Status Word. That is, they can
be enabled or disabled by setting or resetting a bit in the PSW. Other interrupts are not
controlled by PSW bits, and are always enabled. The following is a list of Processor interrupts
and their controlling PSW bits, if any:

Interrupt PSW Bit

External

Machine Malfunction
Fixed Point Fault
Automatic I/0
TFloating Point Fault
System Queue Service
Protect Mode Violation

N o0 W

Supervisor Call none
Simulated i none
Illegal Instruction : none
System Queue Overflow none

Interrupts occur at various times during processing. The external, immediate, console, and
machine malfunction interrupts occur between the execution of instructions, or after the comple-
tion of an automatic I/0 channel operation. The system queue service, arithmetic fault, super-
visor call, and simulated interrupts occur during the execution of instructions. The system queue
overflow interrupt occurs as part of an automatic I/0 channel operation. The illegal instruction
and protect mode violation interrupts occur before the execution of the improper instruction.

The interrupt procedure is based on the concept of old, current, and new Program Status Words.
The current PSW, contained in the hardware register, defines the operating state of the Processor.
When this state must be changed, the current PSW becomes the old PSW, The new PSW becomes
the current PSW, The current PSW now containg the operating status and the Location Counter

for the interrupt service routine.

External Interrupt
This I/0 interrupt provides compatibility with previous Perkin-Elmer Processors. Bit 1 of the

current PSW controls this interrupt. If this bit is set and bit 4 reset (see immediate interrupt),
and an external device requests Processor service, the following action takes place:

The current Program Status Word replaces the contents of memory locations X'0040' -
X'0043'.

The new Program Status Word from locations X'0044' - X'0047' becomes the current
Program Status Word,

From this point it is up to the software to identify the interrupting device, and take appropriate
action,

29-633 ROO 1/78

8-3

Machine Malfunction Interrupt

Bit 2 of the current Program Status Word controls the machine malfunction interrupt. This in-
terrupt may occur on a memory parity error, on the detection of primary power failure, or dur-
ing the restart procedure after power has been restored. When the machine malfunction interrupt
oceurs, the current Program Status Word is saved in memory locations X'0038' - X'003B'. The
new PSW from locations X'003C' - X'003F' becomes the current PSW. The new PSW as stored in
memory must have zeros in the Condition Code. When the new PSW becomes the current PSW, the
Condition Code indicates the type of machine malfunction. These Condition Code states are:

C|V|G|L
0j0j0|0 Power restore
0001 Power failure

The new Program Status Word for the machine malfunction interrupt must disable this interrupt.

The power fail interrupt occurs when the primary power fail detector senses a low voltage, when
the initialize switch of the Display Console is depressed, or when the key operated power switch

is turned to the OFF position. Following the PSW exchange, the software has approximately one
millisecond to perform any necessary operations before the automatic shut down procedure takes
over. During the automatic shut down procedure, the Processor saves the current PSW in mem-
ory locations X'0024' - X'0027', Single precision floating point registers, if equipped, are stored
in memory locations X'0' - X'001E', The contents of the general registers are saved in 16 suc-
cessive halfword locations starting at the address specified in memory locations X'0022' - X'0023'.
Double precision floating point registers, if equipped, are stored in the 1€ successive haliwords

. following the general registers

: When power returns, the Processor restores the PSW, the floating point registers, and the general
. registers from their save areas. If bit 2 of the restored PSW is set, the Processor takes another
. machine malfunction interrupt, this time with no bits set in the Condition Code.

The user is assumed to have set a flag in his machine malfunction interrupt kandler indicating

that he has executed his power-down sequence. Testing of this flag on a machine malfunction in
conjunction with a test of the L flag in the condition code will allow determination of power restore
versus memory error interrupts.

Fixed Point Fault Interrupt

Bit 3 of the current PSW controls this interrupt. If this bit is set, the interrupt is enabled. A
fixed point fault interrupt occurs for either of two reasons: '

The divisor in a Fixed Point Divide instruction is zero.

The signed quotient resulting from a fixed point divide operation cannot be expressed in
16 bits.

This interrupt is always taken before any operand is changed. The current PSW is saved in
memory locations X'48' - X'4B'. The new PSW, contained in memory locations X'4C' - X'4F",
becomes the current PSW. The Location Counter of the old PSW contains the address of the
instruction following the one that caused the interrupt.

If bit 3. of the current PSW is reset, quotient overflow or attempted division by zero do not cause
an interrupt. The operands are unchanged, and the next sequential instruction is executed.

84 29-633 R02 7/80

Immediate Interrupt

If both bit 1 and bit 4 of the current Program Status Word are set, an interrupt request from a
peripheral device results in an automatic I/O operation. This may be either an automatic 1/0
channel operation or an immediate interrupt.

When the Processor receives the interrupt request, it automatically acknowledges the request. The
device, in turn, responds with its unique device number, The Processor doubles this number,

and uses the result as an index into the interrupt service pointer table, which must contain a half-
word entry for each of the possible 256 device numbers. The table starts at memory location
X'00D0', and extends through location X'02CF'. (Chapter 9, Input/Output Operations, contains
detailed descriptions of the make-up of this table and its use in both interrupt driven 1/0 and
automatic I/O channel operations.)

If the location reserved for the interrupting device contains an odd value, the Processor starts
an automatic I/O channel operation. Otherwise, the Processor takes the immediate interrupt,
and the following events occur:

The current Program Status Word is saved in the location specified by the entry in the
table,

The status portion (bits 0:15) of the Program Status Word is loaded with the value con-
tained in the memory location obtained by adding four to the value contained in the table.

The Location Counter of the current Program Status Word is loaded with a value obtained
by adding six to the address contained in the table,

The immediate interrupt provides hardware vectoring of external interrupt requests. Each device

on the system may have a unique location for the interrupt service routine. If several devices of

the same type are included in the system, one service routine may be used for all, if the interrupting
device is first identified and then a branch is taken to the common service routine.

Console Interrupt

The console interrupt is also controlled by bit 4 of the current Program Status Word. If this
bit is set, and if the operator:

Depresses the console function key, FN, and,

Depresses the hexadecimal 0 key,

the Processor acts as if it had received an interrupt request from device X'01'. The effect may
be either an immediate interrupt, or the activation of the automatic I/O channel. If bit 4 of the
current Program Status Word is reset, and the operator attempts to generate a console interrupt
request, the request is ignored. It is not queued. On models not equipped with a display panel,
there is no provision for the console interrupt.

Floating Point Fault interrupt

The floating point fault interrupt, enabled by bit 5 of the current Program Status Word, occurs
on exponent overflow, exponent underflow, or division by zero. On exponent overflow, the re-
sult is forced to +X'7FFF FFFF', On exponent underflow, the result is forced to X'0000 0000'.
On division by zero, the destination register is unchanged,

When this interrupt occurs, the current Program Status Word is saved in memory locations
X'0028' - X'002B'. The new Program Status Word from locations X'002C" - X'002F' becomes
the current Program Status Word. The Location Counter of the old PSW contains the address of
the next instruction location following the one that caused the interrupt.

29-633 ROO 1/78 ¢85

System Queue Interrupt

The system queue serves both hardware (channel 1/ 0) and software. Whenever the Processor
executes a Load Program Status Word or an Exchange Program Status Register instruction, or
when it prepares to resume normal program execution after a channel 1/0 operation, it checks
Bit 6 of the current Program Status Word. If this bit is set, and if there is an item in the sys-
tem queue, the Processor takes the system queue interrupt. Taking this interrupt causes the
current Program Status Word to be saved in memory locations X'0082' —X'0085'. The new Pro-
gram Status Word contained in memory locations X'0086' — X'0089' becomes the current Program
Status Word,

Protect Mode Violation Interrupt

The Protect mode violation interrupt is enabled by bit 7 of the current Program Status Word.
Setting this bit puts the Processor in the Protect mode. The interrupt occurs when a program,
running in the Protect mode, attempts to execute a Privileged instruction. Privileged instruc-
tions include all 1/0 operations and several of the Status Switching instructions. On taking this
interrupt, the current Program Status Word is saved in memory locations X'0030' —X'0033".
The new Program Status Word from locations X'0034' — X'0037' becomes the current Program
Status Word. The old Location Counter contains the address of the instruction that caused the
interrupt. Not all models have the protect mode feature.

Itlegal Instruction Interrupt

The illegal instruction interrupt cannot be disabled. The interrupt occurs whenever the Pro-
cessor reads an instruction word containing an operation code that is not one of those permitted
by the system. The Processor saves the current Program Status Word in memory locations

X'0030' — X'0033'. The new Program Status Word contained in memory locations X'0034' —
X'0037' becomes the current Program Status Word.

When the Processor encounters an illegal instruction, it makes no attempt to execute it. The
Location Counter of the old Program Status Word contains the address of the illegal instruction.
Supervisor Call Interrupt

This interrupt occurs as the result of the execution of a Supervisor Call instruction. This instruc-
tion provides a means for user level (Protect mode) programs to communicate with system pro-
grams. The supervisor call interrupt is always enabled. When the Processor executes a Super-
visor Call instruction, it:

Saves the current PSW in memory locations X'0096' - X'0099'.

Places the address of the supervisor call parameter block (address of the second operand)
in memory locations X'0094' — X'0095',

Loads the current PSW status with the value contained in locations X'009A' = X'009B'.

Loads the current PSW Location Counter from one of the supervisor call new PSW Loca-
tion Counters. ‘

8-6 29-633 ROO 1/78"

System Queue Overflow Interrupt

The termination of an automatic I/O channel operation may cause an item to be added to the
system queue. If, at this time, the queue is full, the Processor takes the system queue over-
flow interrupt. When this occurs, the Processor:

Saves the current PSW in memory locations X'008C' - X'008F'.

Loads the current PSW from the contents of the locations X'0090' - X'0093',

Saves the item that could not be added to the queue in memory locations X'008A' - X'008B'.
This action allows the software to clear out the queue before any channel I/O terminations are lost.
While clearing the queue, external interrupts should be disabled. The queue overflow interrupt
cannot be disabled.
Note that, although software routines may use the system queue, and take advantage of the queue
service interrupt described previously, the queue overflow interrupt results only when the auto-
matic I/0 channel attempts to add to a full queue.
Simulated Interrupt
The Simulate Interrupt instruction simulates a request for service from an external device., When
this instruction is executed, the Processor goes through the automatic 1/0 procedure, using the

device address presented in the instruction word. The effect of this instruction may be either an
immediate interrupt or the activation of the automatic 1/0 channel,

STATUS SWITCHING INSTRUCTION FORMATS

The Status Switching instructions use the Register to Register (RR), and the Register and Indexed
Storage (RX) instruction formats. In two cases, Load Program Status Word and Simulate Interrupt,
the R1 field of the instruction has no significance, and must be zero.

STATUS SWITCHING INSTRUCTIONS

The Status Switching instructions provide for software control of. the interrupt structure of the sys-
tem. They also allow user level programs to communicate with control software. All Status
Switching instructions, except the Supervisor Call instruction, are privileged operations.

The instructions described in this section are:

LPSW Load Program Status Word

EPSR Exchange Program Status Register
SINT Simulate Interrupt

SVC: Supervisor Call

29-633 ROO 1/78

INSTRUCTION

Load Program Status Word (LPSW)

Assembler Notation Op-Code Format
LPSW A(X2) C2 RX
Operation

The 32-bit second operand becomes the current Program Status Word. The second operand
is unchanged.

LPSW: PSW (0:15) +—— [A+(X2)]

PSW (16:31) =——— [A+(X2)+2]

Condition Code

Determined by the new PSW

Programming Note

The R1 field of this instruction is not used by the Processor.
The Assembler sets the Rl field to zero.

The quantity to be loaded into the current Program Status Word must be located on a full-
word boundary. '

This instruction is a privileged operation.

8-8 29-633 R0O 1/78

INSTRUCTION

Exchange Program Status Register (EPSR)

Assembler Notation Op-Code Format
EPSR R1, R2 95 RR
Operation

Bits 0:15 of the current Program Status Word replace the contents of the register specified
by R1. The contents of the register specified by R2 replace bits 0:15 of the current Pro-
gram Status Word. o

EPSR: PSW (0:15) —— R1

PSW (0:15) «——— R2

Condition Code

Determined by the new status

Programming Note

1f R1=R2, bits 0:15 of the current PSW are copied into the register spécified by R1, but
otherwise remain unchanged.

This instruction is a privileged operation.

29-633 RO0O 1/78

INSTRUCTION

Simulate Interrupt (SINT)

Assembler Notation Op-Code. . Format
SINT 0, I(X2) E2 RI
Operation

The least significant eight bits of the second operand are presented to the interrupt handier
as a device number. The device number is used to index into the interrupt service pointer
table, simulating an interrupt request from an external device. This results in either an
immediate interrupt or an automatic I/0 operation channel.

Condition Code

Unchanged, if execution of this instruction results in an automatic 1/0 channel operation
with return to the software program.

Determined by the new status, if execution of this instruction results in an immediate
interrupt.

Programming Note

The R1 field of this instruction must contain zero.

This instruction is a privileged operation.

8-10 29-633 ROO 1/78

INSTRUCTION

Supervisor Call (SVC)

Assembler Notation Op-Code Format
svC R1, A(X2) El RX
Operation

The address of the second operand replaces the contents of memory locations X'0094' -
X'0095'. The current Program Status Word replaces the contents of memory locations
X'0096' - X'0099'. The halfword quantity in memory locations X'009A' - X'009B' becomes
the new status. The R1 field of the instruction is doubled and added to X'009C'. The half-
word value found at the resulting address becomes the new Location Counter.

SVC: [x10094'] «#— A+ (x2)
[x'0096"] «—————— PswW (0:31)
[X'009AT) ———— PSwW (0:15) .

[x'009C'+2* R1]——= PSW (16:31)

Condition Code

Determined by the new status

Programming Note

The second operand must be located on a halfword boundary.

29-633 ROO 1/78 8-11/8-12

CHAPTER 9
INPUT/OUTPUT OPERATIONS

INTRODUCTION

Input/Output operations provide a versatile means for the exchange of information between the
Processor, memory, and external devices. Communication between the Processor and external
devices is accomplished over the Micro 1I/0 Bus, or Multiplexor Bus. Data transfers to or from
external devices may be performed in the byte mode or the halfword mode. Byte and halfword

transfers require Processor intervention, either programmed or automatic, for each item trans-
ferred. '

DEVICE CONTROLLERS

The basic functions of all device controllers are:

To provide synchronization with the Processor and to provide device address recognition.
To transmit operational commands from the Processor to the device.
To translate device status into meaningful information for the Processor.
To request Processor attention when required.
In addition, controllers may generate parity, convert serial data to parallel, buffer incoming or
outgoing data, or perform other device dependent functions.
Device Addressing
The system design allows as many as 255 external devices, Each device must have its own unique

device number, or address. Device numbers may range from X'01' through X'FF', (Device num-
ber X'00' is not used.)

29-633 ROO 1/78 9-1

Processor/Controller Communication

Device controllers are attached directly to the 1/0 Bus. Coinmunication between the Processor
and controllers is a bidirectional, request-response type of operation.

If the Processor initiates the communication, it sends the device address out on the 1/0 Bus.

When a controller recognizes the address, it returns a synchronization signal to the Processor,
and remains ready to accept commands from the Processor. The Processor waits up to 15 micro-
seconds for the synchronization signal. If no signal is received in this period of time, the Pro-
cessor aborts the operation, and notifies the controlling program. Controller malfunction and
software failure (incorrect device address) are the most common causes of this type of time-out.

In the other direction, a controller can initiate communication with the Processor. It does this

by generating an attention signal. If the Processor is in the interruptable state (bit 1 of the cur-
rent PSW set) it temporarily suspends the normal, "fetch instruction, execute, fetch next instruc-
tion' operation at the end of the execute phase, and transmits an acknowledge signal over the 1/0
Bus. The controller requesting attention responds with a synchronization signal, and transmits
its device number to the Processor. (The acknowledge signal may be automatic or programmed,
depending on the current state of the Processor.)

Device Priorities

Requests for attention are asynchronous. Therefore, more than one request may be pending at
any time. The system resolves these conflicts according to device priority. The placement of

the controllers on the I/O Bus determines their priority, When two or more controllers request
attention at the same time, the one closest to the Processor receives the acknowledge signal first,
and responds first. Those further down the line must wait until the Processor has acknowledged
and acted upon requests from higher priority controllers. Requests for attention remain queued
until all have been serviced.

INTERRUPT SERVICE POINTER TABLE

When automatic I/O is enabled (bits 1 and 4 of the current PSW set), device requests for service
result in an immediate interrupt.

The interrupt service pointer table is an ordered list containing one entry for each possible device
number in the system. The table starts at memory location X'00D0' and extends through X'02CF'.
The software controlling 1/0 operations must set up the table.

When, having acknowledged a request for service, the Processor receives the device address, it
adds two times the device address to X'00D0'. The result is the address, within the table, of the
entry reserved for the device requesting attention. The entry specifies the address of an appro-
priate subroutine. The Processor takes an immediate interrupt, and transfers control to the ap-
propriate software routine, If the entry in the table is odd (bit 15 equals one) the Processor acti-
vates the automatic I/O channel, without actually interrupting the currently running program.

With the immediate interrupt, at the time the Processor transfers control to the software routihe,
the old PSW (current at the time of the device request) has been saved at the location specified in
the table; the current status has been loaded from the halfword immediately following the old PSW
save location; the current Location Counter has been forced to a value equal to the address of the
next halfword following the new status.

9-2 29-633 ROO 1/78°

1/0 INSTRUCTION FORMATS

The 1/0 instructions use the Register to Register (RR), and the Register and Indexed Storage (RX)

instruction formats.

1/0 INSTRUCTIONS

Following most I/0 instructions, the V flag in the Condition Code indicates an instruction time-out.
This means that the operation was not completed, either because the device did not respond, or
because it responded incorrectly. :

In the sense status and block I/0 instructions, the V flag can also mean examine status. To dis-
tinguish between these two conditions, the program should test bits 0:3 of the status byte. If all
of these bits are zero, instruction time-out has occurred.

The instructions described in this section are:

ACK (AD)
ACKR (AIR)
Ss

SSR

oc

OCR

RD

RDR

RH

RHR

RB

RBR

WD

WDR

WH

WHR

WB

WBR

AL

29-633 ROO 1/78

Acknowledge Interrupt
Acknowledge Interrupt Register
Sense Status

Sense Status Register
Output Command

Output Command Register
Read Data

Read Data Register

Read Halfword

Read Halfword Register
Read Block

Read Block Register
Write Data’

Write Data Register
Write Halfword

Write Halfword Register
Write Block

Write Block Register
Autoload

INSTRUCTION

Acknowledge Interrupt (ACK)
Acknowledge Interrupt Register (ACKR)

Assembler Notation Op-Code Format
ACK (A]) R1,A2(X2) DF RX
ACKR (AIR) R1,R2 9F RR
Operation

The address of the interrupting device replaces the contents of the register specified by
R1. The 8-bit device status replaces the contents of the second operand. The Condition

Code is set equal to the right-most four bits of the device status byte. The device inter-
rupt condition is then cleared.

ACK: [r1 (8:15)] «——— Device number
[R1 (0:7))@————Zero
A+(X2) Je———status byte
PSW (12:15)] «——Status byte (4:7)

ACKR: [R1 (8:15)] #—————Device address
[R1 (0:7)) @—————Zero
[R2 (8:15)}]e—————status byte
[R2 (0:7)) «———— Zero
[Psw (12:15)]«—— Status byte (4:7)

Condition Code

Device unavailable

End of medium

Examine status or time-out
Device busy

R R le!
MoE X R<

5 X M@
xxxwt"

Programming Note

The Condition Code settings described above assume standard Perkin-Elmer device con-
trollers.

These instructions are privileged operations.
The RX form (ACK) is subject to Memory Protect.

The mnemonics for these instructions under the CAL Assembler (03-066)
and the CAL 16 Assembler (03-101) have been changed to avoid confusion
with the Add Immediate (Al) instruction in the Perkin-Elmer 32-Bit
Processor line. The O.S. Assembler (03-025) continues to accept Al

and AIR for these instructions, but does not accept ACK or ACKR.

94 29-633 ROO 1/78

INSTRUCTION

Sense Status (SS)
Sense Status Register (SSR)

Assembler Notation Op-Code Format
ss R1, A(X2) DD RX
SSR R1, R2 9D RR
Operation

Bits 8:15 of the register specified by Rl contain the 8-bit device address. The device

is addressed, and the 8-bit device status is placed in the second operand location.

The Condition Code is set equal to the least significant four bits of the device status byte.
The first operand is unchanged.

SSR: [R2 (8:15)] #———— Status byte
[R2 (0:7)] =———— Zero
[PSW (12:15)]#—— Status byte (4:7)

SS: [A +(X2)]¢——— Status byte
[PSW (12:15)) «—— Status byte (4:7)

Condition Code

Acceptable status

Device unavailable

End of medium

Examine status or time-out
Device busy

XXX ol
HKEMNMolg
XX P X ola
KKK olH

Programming Note

The Condition Code interpretations of status assume standard Perkin-Elmer device controllers.

In the RR format, the device status byte replaces bits 8:15 of the register:specified by R2.
Bits 0:7 are forced to zero,

- These instructions are privileged operations.

The RX form (SS) is subject to Memory Protect

29-633 ROO 1/78

9-5

INSTRUCTION

Output Command (OC)
Output Command Register (OCR)

Assembler Notation Op-Code Format
ocC R1, A(X2) DE RX
OCR R1, R2 9E RR

Operation

Bits 8:15 of the register specified by R1 contain the 8-bit device address. The Pro-
cessor addresses the device and transmits an 8-bit command byte from the second
operand location to the device, Neither operand is changed.

OCR: Device +———— R2 (8:15)

OcC: Devicé--—-———-—[A + (XZ)]

Condition Code

C|VIG|L
0101010 Operation successful
0111010 Instruction time-out

Programming Note

In the RR format, bits 8:15 of the register specified by R2 contain the device command.

These instructions are privileged operations.

9-6 29-633 R02 7/80

INSTRUCTION

Read Data (RD)
Read Data Register (RDR)

Assembler Notation Op-Code Format
RD R1, A(X2) DB RX
RDR R1, R2 9B RR
Operation

Bits 8:15 of the register specified by R1 contain the 8-bit device address. The Pro-
cessor addresses the device. The device responds by transmitting an 8-bit data byte.
This byte is placed in the second operand location.

RD: [A + (x2)] «———— Data byte

RDR: [R2 (8:15)] *————— Data byte
[R2 (0:7)) «#———— ZERO

Condition Code

C|V|G|L)
0jo0jo0]o0 Operation Successful
oj1(ofo Instruction time-out

Programming Note

In the RR format, the 8-bit data byte replaces bits 8:15 of the register specified by R2.
Bits 0:7 of the register are forced to zero.

These instructions are privileged operations.

The RX form (RD) is subject to Memory Protect.

29-633 ROO 1/78

INSTRUCTION

Read Halfword (RH)
Read Halfword Register (RHR)

Assembler Notation Op-Code Format
RH R1, A(X2) D9 RX
RHR R1,R2 99 RR
Operation

Bits 8:15 of the register specified by R1 contain the 8-bit device address. The Processor
addresses the device. If the device is halfword oriented, the Processor transmits 16 bits
of data from the device to the second operand location. If the device is byte oriented, the
Processor transmits two 8-bit bytes in successive operations.

RH: A + (X2)] «——— First data byte (8-bit oriented device controller)
A+ (X2)+ 1] «——— Second data byte (8-bit oriented device controller)
or
[A + (X2)] ————— Halfword of data (16-bit oriented device controller)

RHR: [R2 (0:7)] *———— First data byte (8-bit oriented device controller)
[R2 (8:15))¢———— Second data byte (8-bit oriented device controller)
or

[Rr2 (0:15)] «—— Halfword of data (16-bit oriented device controller)

Condition Code

clvig|L
0(0j0(0 Operation successful
011{0]0 Instruction time-out

Programming Notes
In the RR format, the data received from a halfword device replaces the contents of the
register specified by R2. The first byte of data from a byte device replaces bits 0:7
of the register specified by R2 and the second byte replaces bits 8:15.
In the RX format, the second operand must be located on a halfword boundary.

These instructions are privileged operations.

The RX form (RH) is subject to Memory Protect.

Not allowed on Micro I/0O Bus devices.

9-8 29-633 ROO 1/78

INSTRUCTION

Read Block (RB)

Assembler Notation Op-Code Format
RB R1, A(X2) D7 RX
Operation

Bits 8:15 of the register specified by Rl contain the 8-bit device address. Bits 0:15
of the halfword located at the second operand address contain the starting address of the
data buffer. Bits 0:15 of the halfword located at the second operand address plus two con~

tain the ending address of the data buffer.

The Processor transmits 8-bit data bytes from the device to consecutive locations in the
specified buffer, i

Condition Code

C|V|G|L

0101010 Operation successful
XXXl Device unavailable
XIX|[1]X End of medium

X1 XX Examine status or time-out
1|X[X[X Device busy

The Condition Code interpretations of status assume standard Perkin-Elmer device con-
trollers.

Programming Note

The starting address must be less than, or equal to, the ending address. If the starting
address is greater than the ending address, no transfer takes place, and the Processor
forces the Condition Code to zero. If the addresses are equal, one data byte is trans-
mitted.

The Processor is in a non-interruptable state during the transfer.
This instruction is a privileged operation.
This instruction is subject to Memory Protect.

This instruction should not be used with 16-bit oriented device controllers.

When PSW bits 8:11 equal 0000 or 1111, this instruction can be used to transfer up to 64K bytes
starting and ending within the first 64KB of memory. When PSW bits 8:11 do not equal 0000 or
1111, this instruction cannot be used to transfer more than 32K bytes, nor can it transfer across

a 32K boundary.

29-633 ROO 1/78 9.9

INSTRUCTION

Read Block Register (RBR)

Assembler Notation Op-Code Format
RBR R1,R2 97 RR
Operation

Bits 8:15 of the register specified by R1 contain the 8-bit device address. The regis-
ter specified by R2 contains the starting address of the data buffer. The register speci-
fied by R2+1 contains the ending address of the data buffer.

The Processor transmits 8-bit data bytes from the device to consecutive locations in
the specified buffer.

Condition Code

C|V|G|L

0jofofo Operation successful
X[X|X]|1 Device unavallable

XX 11 [X End of medium

X|1|X|X Examine status or time-out
11X [X|X Device busy

The Condition Code interpretations of status assume standard Perkin-Elmer controllers.

Programming Note

The maximum value for R2 is 14.

The starting address must be less than, or equal to, the ending address. If the starting
address is greater than the ending address, no transfer takes place, and the Processor
forces the Condition Code to zero. If the addresses are equal, one byte is transmitted.
The Processor is in a non-interruptable state during the transfer.

This instruction is a privileged operation.

This instruction is subject to Memory Protect.

This instruction should not be used with 16-bit oriented device controllers.

When PSW bits 8:11 equal 0000 or 1111, this instruction can be used to transfer up to 64K bytes
starting and ending within the first 64KB of memory. When PSW bits 8:11 do not equal 0000 or
1111, this instruction cannot be used to transfer more than 32K bytes, nor can it transfer across

a 32K boundary.

29-633 R0OO 1/78

INSTRUCTION

Write Data (WD)
Write Data Register (WDR)

Assembler Notation Op-Code Format
WD R1, A(X2) DA RX
WDR R1, R2 9A RR
Operation

Bits 8:15 of the register specified by R1 contain the 8-bit device address. The Pro-
cessor addresses the device, and transmits an 8-bit data byte from the second operand
location to the device. Neither operand is changed.

WD: [A + (X2)] —_— Deviqe

WDR: [R2 (8:15)]——— Device

Condition Code

Cl|V|G|L .
ojofofo Operation successful
0111010 Instruction time-out

Programming Note
In the RR format, the data byte is taken from bits 8:15 of the register specified by R2.

These instructions are privileged operations.

29-633 ROO 1/78

INSTRUCTION

Write Halfword (WH)
Write Halfword Register (WHR)

Assembler Notation

WH
WHR

Qperation

Format

Op-Code
R1, A(X2) D8
R1, R2 98

RX
RR

Bits 8:15 of the register specified by Rl contain the 8-bit device address. The Pro-

cessor addresses the device.

If the device is halfword oriented, the Processor transmits

16 bits of data from the second operand location to the device. If the device is byte ori-
ented, the Processor transmits two 8-bit data.bytes in successive operatims.,

WH:

WHR:

Condition Code

]
<
=]

[=]

Programming Notes

[A + (X2)] ———>Device
{A - (X2)+1]———-Device
or

[A + (X2)] ——— Device

[R2 (0:7)] ——=Device

[rR2 (8:15)]———-—’Device
or
[R2 (0:15)] —— Device

Operation successful
Instruction time-out

8-bit oriented device controller
8-bit oriented device controller

16-bit oriented device controller

8-bit oriented device controller
8-bit oriented device controller

16-bit oriented device controller

In the RR format, the data transmitted to a halfword device comes from bits 0:15 of the
register specified by R2. The first byte transmitted to a byte device comes from Bits

0:7 of the register specified by R2 and the second byte comes from bits 8:15,

In the RX format, the second operand must be located on a halfword boundary.

These instructions are privileged operations.

29-633 ROO 1/78

INSTRUCTION

Write Block (WB)

Assembler Notation Op-Code Format
WB R1, A(X2) D6 RX
Operation

Bits 8:15 of the register specified by Rl contain the 8-bit device address. Bits 0:15

of the halfword located at the second operand address contain the starting address of the
data buffer. Bits 0:15 of the halfword located at the second operand address plus two con-
tain the ending address of the data buffer.

The Processor transmits 8-bit data bytes from consecutive locations in the specified
buffer to the device. : '

Condition Code

C|V|G|L

010({0]0| Operation successful
XIX|X|1 Device unavailable
X|X|1|X | End of medium

X|1]X|X | Examine status or time-out
1|X|X[X | Device busy

Programming Note B
The Condition Code interpretations of status assume standard Perkin-Elmer controllers.
The starting address must be less than, or equal to, the ending address, If the starting
address is greater than the ending address, no transfer takes place, and the Processor
forces the Condition Code to zero. If the addresses are equal, one byte is transmitted.
The Processor is in a non-interruptable state during the transfer.

This instruction is a privileged operation.

This instruction should not be used with 16-bit oriented device controllers.

When PSW bits 8:11 equal 0000 or 1111, this instruction can be used to transfer up to 64K bytes
starting and ending within the first 64KB of memory. When PSW bits 8:11 do not equal 0000 or
1111, this instruction cannot be used to transfer more than 32K bytes, nor can it transfer across

a 32K boundary.

29-633 ROO 1/78 9-13

INSTRUCTION

Write Block Register (WBR)

Assembler Notation Op-Code Format
WBR R1,R2 96 RR
Operation

Bits 8:15 of the register specified by Rl contain the 8-bit device address. The register
specified by R2 contains the starting address of the data buffer. The register specified
by R2+1 contains the ending address of the data buffer.

The Processor transmits 8-bit data bytes from consecutive locations in the specified
buffer to the device.

Condition Code

C{V|G|L

olofolo| Operation successful
X|X|X|1| Device unavailable
XIX|1|X End of medium

XillX|X Examine status or time-out
1 X X [X | Device busy

Programming Note
The maximum value for R2 is 14.
The Condition Code interpretations of status assume standard Perkin-Elmer Controllers.
The starting address must be less than, or equal to, the ending address. 1f the starting
address is greater than the ending address, no transfer takes place, and the Processor
forces the Condition Code to zero. If the addresses are equal, one byte is transmitted.

The Processor is in & non-interruptable state during the transfer.

This instruction is a privileged operation,

This instruction should not be used with 16-bit oriented device controllers.

When PSW bits 8:11 equal 0000 or 1111, this instruction canbe used to transfer up to 64K bytes
starting and ending within the first 64KB of memory. When PSW bits 8:11 do not equal 0000 or
1111, this instruction cannot be used to transfer more than 23K bytes, nor can it transfer across

a 32K boundary.

9-14 129633 ROO 1/78

INSTRUCTION

Autoload (AL)

Assembler Notation Op-Code Format
AL A(X2) D5 RX
Operation

The Autoload instruction loads memory with a block of data from a byte oriented input de-
vice., The data is read a byte at a time, and stored in successive memory locations start-

ing with location X'0080', The last byte is loaded into the memory location specified by

the address of the second operand. Any blank or zero bytes that are input prior to the first
non-zero byte are considered to be leader, and are ignored. All other zero bytes are stored
as data. The input device is specified by memory location X'0078'. The device command code

is specified by memory location X'0079'.

If byte = 0, fetch next byte, otherwise step 2.
n<—zero

[xX'80"n]*———pbyte

ne——n+l

If A+(X2) < X'80' +n, the instruction is finished, otherwise return

to step 3.

QAW

Condition Code

Operation successful
Device unavailable

End of medium

Examine status or time-out
Device busy

R R o)
WX ol
XM oln
KM= o

Programming Note
The R1 field of this instruction must be zero.
The Condition Code interpretations of status assume standard Perkin-Elmer device controllers.
This instruction is a privileged operation.

This instruction is subject to memory protect,

9-15

29-633 R0O0O 1/78

CONTROL OF 1/0 OPERATIONS

The design of the 1/O structure allows data transférs in any of several ways. The choice of
which I/O method to use depends on the particular application, and on the characteristics of

the external devices. The primary methods of data transfer between the Processor and external
devices are:

One byte or one halfword to or from any one of the general registers.

One byte or one halfword to or from memory.

A block of data to or from memory under direct Processor control.

A block of data to or from memory under control of a Selector Channel.

Multiplexed blocks of data to or from memory under control of the automatic 1/0 channel.
Perkin-Elmer standard device controllers expect a predetermined sequence of commands to effect
data transfers. These commands address the device, put it in the correct mode, and cause data
to be transferred. Because all 1/0 instructions are privileged operations, 1/0 control programs

must Tun in the Supervisor mode, bit 7 of the current PSW reset, 1/0 control programs should
also exercise care in enabling external interrupts.

STATUS MONITORING 1/O

The simplest form of 1/0 programming is status monitoring 1I/0. In this mode of operation, only
one device is handled at a time, and the Processor cannot overlap other operations with the data
transfer. The sequence of operations in this type of programming is:

1. Address the device and set the proper mode (Output Command instruction).

2. Test the device status (Sense Status instruction).

3., Loop back to the Sense Status instruction until the status byte indicates that the device
is ready (Conditional Branch instruction).

4. When the device is ready, transfer the data (Read or Write instruction).

5. If the transfer is not complete, branch back to the Sense Status instruction (step 2).
If it is complete, terminate.

A variation on this type of programming makes use of the block I/0 instructions. In this kind of
programming, the program prepares the device, and waits for it to become ready. It then execu-
tes a block 1/0 instruction. The Processor takes over control and completes the transfer, one
byte at a time, to or from memory. The Processor monitors device status during the transfer.
Block 1/0 instructions may be used only with byte oriented devices whose ready status is zero.

9-16 29-633 ROO 1/78

INTERRUPT DRIVEN 1/0

Interrupt driven I/0 allows the Processor to take advantage of the disparity in speed between it-
self and the external devices being controlled; With status monitoring, the Processor spends
much of its time waiting for the device. With interrupt driven programming, the Processor can
use much of this time to perform other functions. This kind of programming establishes two
levels of operaticn. On one level are the interrupt service programs. They usually run with
external interrupts disabled. On the other level are the interruptable programs. They run with
interrupts enabled.

Automatic Vectoring

The use of the automatic I/0 features of the 16-Bit Processor allows hardware vectoring of external

interrupts. In this type of programming, the software is relieved of the burden of identifying explicitly
the interrupt source., This is done by the hardware through the interrupt service pointer table and the

immediate interrupt. Automatic I/O is controlled by bits 1 and 4 of the current PSW.

Before starting operations of this type, the interrupt service pointer table must be set up. This
table starts at memory location X'00D0', It must contain a halfword address entry for every
possible device. The value placed in the location reserved for a device is the address of the in-
terrupt service routine for that device. The interrupt service routine must start with a 32-bit

old PSW save area. This is followed by a halfword constant that defines the New PSW status., The
first instruction of the routine must follow immediately after this constant.

Although there may be gaps in the device address assignments, the interrupt service pointer table

should be completely filled. Entries for non-existent devices can point to an error recovery
routine. (This precaution prevents system failure in the event of spurious interrupts caused by

improper use of the simulate interrupt instruction.)

The next step is to prepare the device for data transfer. This is best done with the external in-
terrupt disabled. Once the table pointer has been set up, and the device prepared, the Processor
can move on to an interruptable program.

When the device signals that it requires service, the Processor saves its current state, and trans-
fers control to the interrupt service routine. At this time, the old PSW has been saved in the first
two halfword locations of the routine, the new status has been loaded, and the current Location

Counter contains the address of the first instruction of the routine. The software routine can now:

oy
.

Save any registers used in the routine,

2. Check the device status, and if satisfactory,
3. Make the data transfer, and

4. Restore the registers, then

5. Return to the interrupted program by reloading the old PSW from its save location.

The interrupt service routine for a device may enable immediate interrupts, provided it first

digsables interrupts from the particular device being serviced.* Because Perkin- Elmer hardware -

allows interrupts to be disabled at either the device level or the Processor level, nesting of in-
terrupts is both possible and practical, :

*Certain devices do not support this; refer to the specific device manual.

29-633 ROO 1/78

9-17

Software Vectoring

Software vectoring of interrupts is provided for compatibility ‘with previous Perkin-Elmer Pro-
cessors. The Processor reverts to this mode when bit 4 of the current PSW is reset and bit 1
of the current PSW is set. '

The software must first set up the new external interrupt Program Status Word in memory loca-
tions X'0044' - X'0047'. This new PSW should disable external interrupts by resetting bit 1.

The Location Counter of this new PSW contains the address of the interrupt service routine, Upon
receipt of the interrupt signal, the Processor saves the current PSW in memory locations X'0040'
- X'0043', and loads the new external interrupt PSW. This transfers control to the interrupt ser-
vice routine which must:

1. Save any registers to be used.

2. Acknowledge the interrupt request to get the interrupting device address.

3. Transfer to an appropriate subroutine, based on the device address.
The subroutine then:

4, Checks the device status, and if satisfactory,
5, Makes the transfer.
6. Restores the registers.

7. Returns to the interrupted program by loading the PSW from location X'0040',

This method for I/0 transfers is not as efficient as is the use of the immediate interrupt. In
addition, it is not practical with this method to nest interrupts.

SELECTOR CHANNEL 1/0

The Selector Channel controls the transfer of data directly between high speed devices and mem-
ory. As many as 16 devices may be attached to the Selector Channel, only one of which may be
operating at any one time. The advantage gained in using the Selector Channel is that other pro-
cessing may proceed simultaneously with the transfer of data between external devices and mem-
ory. This is possible because the Selector Channel accesses memory on a cycle stealing basis,
which permits the Processor and the Selector Channel to share memory. In some cases, execu-
tion times of the program in progress may be affected, while in others, the effect is negligible.
This depends upon the rate at which the Selector Channel and Processor compete for memory
cycles. For Selch Channel operations, memory is partitioned into four 64KB segments. A Selector
Channel transfer can be directed to any 64KB segment. Attempting to cross a 64KB boundary results
in wrap-around within the 64KB segment.

The Selector Channel is linked to the Processor over the I/O Bus. It has its own unique device
number which it recognizes when addressed by the Processor. Like other device controllers,
it can request Processor attention through the external or the immediate interrupt.

9-18 29-633 ROO 1/78

Selector Channel Devices

The Selector Channel has a private bus similar to the Processor's I/O Bus. Controllers for the
devices associated with the Selector Channel are attached to this bus. When the Selector Channel
is tdle, its private bus is connected directly to the I/O Bus. If this condition exists, the Pro-
cessor can address, command, and accept interrupt requests from the devices attached to the
Selector Channel. When the Selector Channel is busy, this connection is broken. All communica-
tion between the Processor and devices on the Selector Channel is cut off. Any attempt by the
Processor to address devices on the channel results in instruction time-out.

Selector Channel Operation

Two registers in the Selector Channel hold the current memory address and the final memory
address. Before starting a Selector Channel operation, the control software, using Write
instructions, places the address of the first byte of the data buffer in the current register

and the address of the last byte of the data buffer in the final address register. The two bits
that identify the 64KB Segment of Memory that the start and end address reside in are passed

in the Output Command byte that initiates the transfer. During the data transfer, the channel
increments the current address register by one for each byte transferred., When the current
address equals the final address, the last byte has been transferred, and the channel terminates.

The Selector Channel accesses memory a halfword at a time., Because of this, the transfer must
always involve an integral number of haliwords. The starting address of the data buffer must al-
ways be on an even byte (halfword) boundary, The ending address must always be on an odd byte
boundary. The starting address must be less than the ending address.

Upon termination, the software can read back from the Selector Channel the address contained
in the current address register. If this address is less than the final address specified for the
transfer, and if the buffer limits were properly checked before the transfer, this condition in-
dicates a device malfunction or an unusual condition within the device, for example, crossing
a cylinder boundary on a disc.

29-633 ROO 1/78

9-19

Selector Channel Programming

The usual method of programming with the Selector Channel uses the immediate interrupt. The
first step in the operation is to check the status of the Selector Channel. If it is not busy, the
address of the termination interrupt service routine is placed in the location within the interrupt
service pointer table reserved for the Selector Channel. Having done this, the program should
proceed as follows:

1. Give the Selector Channel a command to stop. This command initializes the Selector
Channel's registers and assures the idle condition with the Selector Channel's private

(Selector) bus connected to the I/O Bus.

2. Prepare the device for the transfer with whatever information and commands may be
required.

3. Give the Selector Channel the starting and final addresses.

4. Give the Selector Channel the command to start. Bits 6 and 7 of the command
byte identify the 64KB segment that the transfer uses.

With the Start command, the Selector Channel breaks the connection between its private bus and
the Processor's I/0 Bus, and provides a direct path to memory from the last device addressed
over its bus. When the device becomes ready, the channel starts the transfer, which proceeds to
completion without further Processor intervention. Once the START command has been given,
the Processor can be directed to the execution of concurrent programs.

On termination, the channel signals the Processor that it requires service. The Processor sub-
sequently takes an immediate interrupt, transferring control to the Selector Channel interrupt
service routine., At this point the software must check the Selector Channel and the device to in-
sure that the transfer was successful.

AUTOMATIC 1/0 CHANNEL

The automatic I/O channel executes channel programs that control the activities of peripheral
devices. The execution of channel programs takes place between the execution of user instruc-
tions, and results in a program delay rather than a program interrupt, with an exchange of Pro-
gram Status Words. The 1/0 channel may generate an interrupt because of abnormal conditions
or because of the occurrence of an event for which the software has requested an interrupt. Bits
1 and 4 of the current Program Status Word control the operation of the I/0 channel. Both of
these bits must be set to permit channel operations. Bits 8:11 of PSW have no affect on Channel
operations. Channel operations also depend on the interrupt service pointer table, the Channel
Control Block (CCB) with its associated Channel Command Word (CCW), and the system service
queue. See Figures 9-1 and 9-2. Appendix 8 is a flow chart of I/0O channel operations.

Interrupt Service Pointer Table

The interrupt service pointer table starts at location X'00D0'. It contains a halfword entry for
each of the possible 256 external device addresses. If bit 15 of the entry in this table is ZERO,
then the entry is the address within the first 64KB of an immediate interrupt software routine.
If bit 15 of the entry is one, then the entry minus one is the address within the first 64KB of a
Channel Command Word.

Channel Control Block

The Channel Control Block contains the Channel Command Word, and the storage locations and

data required for the channel operation. The Channel Command Word is a bit encoded command
that describes the automatic channel operation, Note that it is the address of the Channel Command
Word plus one that is placed in the interrupt service pointer table. A complete Channel Control
Block is shown in Figure 9-2,

920 29-633 ROO 1/78

BIT | OF CURRENT
PSW SET

x'0040
INTEIlgv?UPT BIT 4 OF CURRENT mTeERXRTi:'Nist
u
SIGNAL PSW RESET X CHANGE
BIT 4 OF
CURRENT
PSW SET IMMEDIATE
@0 INTERRUPT PSW
1%//”)r EXCHANGE
0 M
x'0000'

IMMEDIATE INTERRUPT LOCATION

CHANNEL. 'COMMAND WORD LOCATION

x'02CE’

INTERRUPT POINTER TABLE

xboad[j

A(QUEUE)

15
CHAIN VALUE
DEVICE NUMBER l STATUS
CHANNEL COMMAND WORD
CHANNEL CONTROL

o BLOCK

—‘\
v

0 15

A(CCW)

CHANNEL. TERMINATION QUEUE

Figure 9-1. 1/0 Channel Operation Block Diagram

o

15

CHAIN VALUE

je— REQUIRED IF CHAINING
SPECIFIED

FILLED IN BY CHANNEL —*

DEVICE NUMBER I FINAL STATUS

le— FILLED IN BY CHANNEL

~ CHANNEL COMMAND WORD

BUFFER START FOR DATA —#
TRANSFERS

START ADDRESS OR COUNT

le— COUNT REQUIRED FOR

BUFFER END FOR DATA —#

END ADDRESS

DECREMENT MEMORY ANOD
TEST

TRANSFERS

OUTPUT COMMAND BYTE —*

COMMAND BYTE l TERMINAL CHARACTER

REQUIRED IF TERMINAL

FOR INITIALIZATION

System Queue

Figure 9-2. Channel Control Block

CHARACTER CHECKING
SPECIFIED FOR DATA TRANSFERS

The system queue is a circular list identical to those described for the list processing instruc-
tions. The queue may be set up at any convenient location in memory. The maximum size of the
queue allows for 255 entries, but any smaller length may be used. (In actual practice, the queue
should be big enough to hold one entry for each external device controlled by a channel or soft-
ware program that makes use of the queue.) The system queue must reside in the first 64KB of

main memory.
starting any channel pro
of a channel program.

29-633 ROO 1/78

The address of the queue must be placed in memory location X'0080' prior to
gram. The automatic I/O channel uses the queue to record the termination

9-21

General Operation

When the Processor receives an interrupt signal from a peripheral device with PSW bits 1 and 4 set,
it automatically acknowledges the signal and obtains the address of the device. It uses the device
address times two to index into the interrupt service pointer table to the entry reserved for the
device. If bit 15 of the entry is ZERO, the Processor takes an immediate interrupt. If bit 15 is
one, the Processor takes activity in the I/O channel. In Models not equipped with the automatic

1/0 channel, the immediate interrupt is taken instead.

The I/0 channel uses the entry minus one to locate the Channel Command Word, It decodes the
command, and performs the required service, using the data entries in the Channel Command
‘Block as necessary. If the channel operation for this device is not yet complete, the channel re-

turns control to the Processor. The Processor now checks the pending interrupt signals. If
any are present, it services them. Otherwise, it resumes program execution,

If the channel determines that the operation for this device is complete, it terminates the channel
program by storing the device address and final status in the Channel Control Block, and for data
transfers, changes the Channel Command Word to a "no operation'. This causes subsequent in-
terrupt signals from the device coming to this Channel Command Word to be ignored. At this
point the channel can take any or all of the following actions;

Make an entry on the system queue.

Chain to another Channel Command Word.

Generate an immediate interrupt.

The action taken by the channel depends on the bit configuration of the Channel Command Word.

Channel Comma_nd Words

There are three phases involved in channel operations:

1. Initialization
2. I/0 operation
3. Termination
All three phases are controlled by the bit configuration of the Channel Command Word. A single

command word can be encoded to perform all three types of operation. The bit assignments for
Channel Command Words are shown in Figure 9-3,

0,1,2,34.5 6,789 1011 12131415

HEREEREEN .

[l
/\:[i\ L [BYTES PER INTERRUPT SIGNAL
N T TS CONTINUE
norl T CHAIN
reaol ToTots UNASSIGNED MUST BE ZERO
wrire ToToT OUTPUT COMMAND
omt| |o|1]o —HI/LO
L QUEUE

NuLL ofrg! L_TERMINAL CHARACTER

— UNASSIGNED MUST BE ZERO
Figure 9-3. Bit Configuration For Channel Command Word

922 - 29-633 ROO 1/78

Initialization

Bits 0 (INT) and 8 (Output command) control the initialize phase of channel operations. If bit 0

is set when the channel decodes the command word, it resets bit 0, and checks bit 8. If bit 8

is set, the channel issues the Output command located in the Channel Control Block, and returns
control to the Processor. Channel operations with the device resume when an interrupt signal
from the device occurs. Since the channel resets bit 0, it can pass through the initialize phase
only once. This phase is optional. The software may initialize the device with Output Command
instructions prior to starting the channel operation. The bit configuration of the Channel Command
Word for the initialize phase is shown in Figure 9-4,

BIT .0.1.2.3 4.5 6.7 .8.9,10,11.12.13.14,15
: l l 0

CHANNEL COMMAND WORD FOR INITIALIZE WITHOUT OUTPUT COMMAND

BIT 0,1.2.3.4.5 6,789 101112131415

JHNEENEEOERERER

CHANNEL COMMAND WORD FOR INITIALIZE AND OUTPUT COMMAND

Figure 9-4. Channel command for Initialize and Output Commands

1/0 Operations

There are five types of I/0 operations that the I/O channel can perform:

Read

Write

Decrement memory and test
No operation

Null operation

The Channel Command Word configurations for these operations are illustrated in Figure 9-5

For all Read/Write operations, Bits 12 through 15 must contain the number of bytes to be trans-
ferred on each interrupt signal. (This is usually one or two since Perkin-Elmer standard controllers
support byte or halfword transfers.) All zeros in these bit positions indicate that 16 bytes are to be
transferred on each interrupt signal. The two halfwords following the Channel Command Word
must contain the starting address of the I/O buffer and the ending address of the /O buffer. After
the number of bytes specified for each interrupt signal has been transferred, the starting address

is incremented by the appropriate amount and compared to the ending address. If it is greater or
equal, the channel enters the termination phase. If it is less, the channel returns control to

the Processor for program execution. Bit 5 of the Channel Command Word controls terminal
character transfers. When this bit is set, the transfer proceeds as described previously with

the exception that the last byte transferred on each interrupt signal is compared with the terminal
character byte located in the Channel Command Block, If these two bytes match, the channel en-
ters the termination phase. In this way, a channel program can terminate because a terminal
character has been found in the data stream before the buffer is exhausted.

29-633 RO0O 1/78 9-23

0,1,2,3.4,5,6 7.8 9 1011,12.13,14,15

olo]o] Jo l 'N: :
A

READ N BYTES PER INTERRUPT SIGNAL

. 0,1,2,3,4,5,6,7,8,9 10111213 14,5,
+—+
[Tofofof PP TTTEEL ™ o d

READ N BYTES PER INTERRUPT SIGNAL -TERMINATE ON TERMINAL CHARACTER

1 0,.1,2.3.4 5.6 7.8 .9 ,10,1i 12,13 ,i4,15
|O|O|I| IOl l I I I I I N I
- |

WRITE N BYTES PER INTERRUPT SIGNAL

O,1,2,3.4.5,6,7,8,9 1011 12,13 .14,i5
I IOIOIIl III | I I | | | N I
PV T 1

WRITE N BYTES PER INTERRUPT SIGNAL ~TERMINATE ON TERMINAL CHARACTER

0.1.2 3 4.5 6,7.8.91010121314.15

ool TTTITITTTL]

DECREMENT MEMORY AND TEST

O, 1,2,3,4,5.6,7.8.9 101 12.13,14,15

NO OPERATION

O | 2.3.4,5.6,7,8,9,10/1 12131415
of] | |

NULL

Figure 9-5. Channel Command Words for I/0 Operation

Before starting a data transfer, the channel checks the device status. Any non-zero status condi-
tion stops the transfer, and causes the channel to enter the termination phagse. Before entering
the termination phase, the initialize bit and the no operation bit are set in the Channel Command
Word; the queue bit is set to force an entry in the system queue; and the chain and continue bits
are reset to prevent chaining.

The decrement memory and test operation causes the value contained in the halfword immediately
following the Channel Command Word to be decremented by one for each interrupt signal, The new
value is compared to zero. If it is greater than zero, the channel returns control to the Processor.
If it is equal to zero, the channel enters the termination phase, without changing the Channel Com-
mand Word to a "no operation'". Subsequent interrupt signals from the device cause the count

field to increase negatively.

The no operation code in the Channel Command Word indicates that the channel is to ignore any
interrupt signal from the associated device. The channel itself sets this code in the Channel
Command Word on the completion of data transfers. 7The software can use this code to ignore
unsolicited interrupt signals.

The null operation differs from the no operation in that, while no 1/0 function is performed, the
channel enters the termination phase without modifying the Channel Command Word.

9.24 " 29-633 ROO 1/78

Termination

The automatic I/0 channel enters the termination phase upon-completion of a data transfer, when
the count field of a decrement memory and test opération has reached zero, or when the null opera-
tion is decoded. All of the operations in the termination phase are optional. If none are specified
the channel returns control to the Processor. The two termination functions are queue and chain.
The Channel Command Word bit configuration for queuing and chaining is shown in Figure 9-6.

Oil i2i3 i4i5i€::i'lfiei9 iloi” imilsimilii

QUEUE AT BOTTOM

0 4,5.6.7.8,9 10 11,12,13 14,15

IENENDCEESEN

QUEUE AT TOP

0.1.2,3.,4.5,6,7,8,9 1011 12131415

T T T

0.1,2.3,4,5,6,7 89 101112131415

EEEEEEROONE

CHAIN AND CONTINUE

CHAIN

Figure 9-6. Channel Command Words for Termination

Bit 6 controls queuing. If this bit is set, the channel, on entering the termination phase, stores
the address of the Channel Command Word in the system queue, The condition of bit 7 of the
Channel Command Word controls positioning in the queue. 1f 'bit 7 is set, the entry is made at the
bottom of the queue. If bit 7 is reset, the entry is made at the top of the queue.

Bit 10 of the Channel Command Word controls chaining. In this operation, the channel stores the
contents of the first halfword of the Channel Control Block in the appropriate location in the in-
terrupt service pointer table for the device. This chain value may be either the address of an-
other Channel Command Word, or the address of an immediate interrupt PSW exchange location,

If the chain bit (bit 10) and the continue bit (bit 11), are both set, the channel checks the new value
placed in the table, and takes appropriate action before returning control to the Processor. In
this way, depending on the new value stored in the table, the channel can either generate an imme-
diate interrupt, or start another channel program.

29633 ROO 1/78 “9-25/9-26

CHAPTER 10
INPUT/OUTPUT SYSTEM

INTRODUCTION

The term interface is used with digital systems to define the junction between two different devices, elements, or picces of
cquipment. Interface circuits may perform translation in voltage level, timing. or both.

Digital logic systems operate with a source of input data and an output medium. Inputs may consist of digital or analog
signals (i.e., Keyboard, card reader, data set, etc.). Outputs may be a visual display (CRT), or a hard copy terminal (i.e.,
line printer or Teletypewriter) or control signals. Each signal processed by interfacing hardware must be adequately
specified and defined for successful interfacing. :

When planning an 1/O system to which specific devices must interface, each line of the interface has a dedicated function
such as:

Transfer data to or from the processor.
Convey control and timing signals to the peripheral devices.
Transfer status from the peripheral devices to the processor.

Input/output systems provide communication between the processor and its peripheral devices or other system elements.
Mcthods of communication vary in speed. sophistication. and the amount of attention required by the processor.
There are two methods of interfacing peripheral devices on system elements:

To the Multiplexor (I/O) Bus
To the 16-Bit Extended Selector Channel (ESELCH) I/O Bus.

Figure 10-1 emphasizes the different types of system interface capabilities.

. This chapter defines both the electrical and mechanical specificatiohs of Perkin-Elmer’s Input/Output System. A
functional description of each 1/O subsystem follows with a description of the layout and interconnection for a typical
system interface. Input/output instruction sequences with considerations and specifications for designing device controllers

are discussed.

29-633 ROO 1/78 10-1

MEMORY

& DMA BUS (18 BITS) K
)
PROCESSOR
& MULTIPLEXOR BUS (16 BITS) ‘ 8
3
DEVICE DEVICE
commotien| | ormmoiien| | sesron bl | seerveneny
(BYTE) {(HALFWORD

[N N J ® e 00 o000 00
255 DEVICES
| B
h SELECTOR CHANNEL BUS (16 BITS) d
DEVICE DEVICE
CONTROLLER CONTROLLER
® & o
16 DEVICES
NOTE

The Muitiplexor Bus and the Selector Channel Bus
are electrically identical.

Figure 10-1. System Interface, Block Diagram

10-2 29-633 ROO 1/78

MULTIPLEXOR BUS

The Muitiplexor Bus is a byte or halfword oriented 1/O system which can communicate with up to 255 peripheral devices.
Perkin-Elmer’s complete line of peripheral equipment, can be interfaced to the Multiplexor Bus. The Multiplexor Bus
comprises 27 lines — 16 bi-directional data lines, 7 control lines, 3 test lines, and 1 initialize line shown in Table 10-1.

TABLE 10-1. MULTIPLEXOR BUS LINES

FUNCTION

DESIGNATION

DIRECTION

DATA LINES

D00:15

PROCESSOR <—»

DEVICE

CONTROL LINES

SR

PROCESSOR ——

DEVICE

DR
CMD
DA -
ADRS
ACK
CLO7

TEST LINES ATN
SYN
HW

PROCESSOR «—— DEVICE

INITIALIZE SCLR PROCESSOR —— DEVICE

‘The following general definitions apply to the Multiplexor Bus lines.
Data Lines (D00:15)

The data lines are used to transfer an 8-bit byte or a 16-bit halfword of data between the processor and the device. An 8-bit
device address is transferred from the processor to the device over data lines 08:15 when accompanied by the Address
(ADRS) control line. An 8-bit command byte is transferred over DO8:15 accompanied by the Command (CMD) control
line. One byte or one halfword is transferred from the processor to the device accompanied by the Data Available (DA)
control line. The device, in response to an Acknowledge (ACK) control line, sends an 8-bit address to the processor over
DO08:15, or 8-bits of status information over D08:15 in response to the Status Request (SR) control line. In response to the
Data Request (DR) control line, the device sends either an 8-bit byte or a 16-bit halfword of data to the processor.

NOTE
The device always sends a Synchronize (SYN) signal to the pro-
cessor after it has accepted an operation from the processor. The

SYN signal is then removed immediately after the processor re-
moves the control line.

29-633R00 1/78 10-3

Control Lines
SR

DR

ACK

DA

CMD
ADRS

CLO70

Test Lines

ATN

HW

SYN

Initialize Line

SCLR

10-4

Status Request. The device controlier returns device status on D08:15.

Data Request. The device controller returns data to D08:15 or D00:15. If a halfword of data is pre-
sented., the Controller also activates the Haltword (HW) test line and returns data on D00:15.

Acknowledge. The interrupting device controller returns its address on D08:15 if ATN is active.

Data Available. The processor presents data on D00:15 for transfer to the device. The device con-
troller accepts the low byte or the entire halfword and responds with a SYN.

Command. The processor presents control information to the device on DO8:15.
Address. The processor presents an 8-bit address on DO08:15.

Early Power Fail Warning. This control line is activated by the processor when a Power Fail condition
is detected by the processor. This line is held active until the SCLRO signal occurs.

Attention. Any device desiring to interrupt the processor activates the ATN line and holds this line
active until an ACK is received from the processor The device controller must not deactivate ATN
until the processor deactivates ACK.

Halfword. The HW line is activated by a halfword oriented device controller whenever it is com-
municating normally with the processor.

Synchronize. This signal is generated by the device to inform the processor that it has properly
responded to a control line.

System Clear. This is a metallic contact to ground that occurs during Power Fail, Power Up, or

Initialize.

NOTE

All control lines, except ACK, are connected in parallel to all
devices. The ACK line is activated by the processorin response to
an external interrupt and is connected in series with all devices. If
no interrupt is pending in the first controller when the ACK signal
arrives, the signal is passed in daisy-chain fashion to the next
controller, and so on until it is captured by the interrupting con-
troller. See definition of ACK.

29633 ROO 1/78

Communication over the Multiplexor Bus is performed on a requcét/response basis where each sequence is controlled by
the micro-program in the processor’s Read-Only-Memory (ROM). A typical sequence to perform an /O instruction with a
device controller is: '

1. The processor addresses the device controller by placing an 8-bit address on the data lines and activates
the ADRS control line. The device controller whose address corresponds to the 8-bit address on the
data lines responds by setting its Address flip-flop and returning SYN to the processor. (All other
device controllers reset their Address flip-flops.) Once a device controller is addressed, it remains so
until another device is addressed or until the system is initialized. The addressed device controller
responds to subsequent activity on the Multiplexor Bus until another controller is addressed.

2. If the I/O instruction involves transferring data from the processor to the device controller, the
Processor places the data on the data lines and activates the DA control line. The addressed device
controller responds with a SYN after it has received the data, and the processor removes DA.

3. If the I/O instruction involves transferring data to the processor from the device controller, the
processor activates the DR control line, and waits for the device controller to respond by placing the
data on the data lines then activating SYN. When the processor receives SYN, it accepts the data and
removes the DR. ‘

4. In all cases, the device controller removes the SYN whenever the processor removes the control line.

The sequence described here is somewhat simplified for the sake of clarity. The exact sequence for each 1/O instruction is
listed later.

Whenever a device controller detects an extraordinary condition, it may interrupt the processor by activating the ATN test
line. This may be done by any device controller at any time, provided that device interrupts are enabled, regardless of
whether it is addressed or not. If interrupts are enabled in the Current Program Status Word, the processor responds to
ATN by interrupting the currently running program and directing the processor to a new program (or a new micro-
program) which identifies and services the interrupt as required.

1/0 SYSTEMS MODULE

Introduction

The Perkin-Elmer Digital System incorporates the Extended Selector Channel (ESELCH) intended to reduce 1/0
programming requirements, increase throughput, and to add to the flexibility of the Perkin-Elmer Multiplexor Bus. A
brief description of this device is given in the following paragraphs.

Extended Selector Channel (ESELCH)

The Perkin-Elmer 16-bit ESELCH provides a high speed Direct Memory Access (DMA) port for block data transfer,
bypassing the Processor. The ESELCH generates a private 1/O Bus called the SELCH Bus. When the ESELCH is idle, the
SELCH Bus is electronically connected to the Multiplexor Bus. However, when the ESELCH is active, the private 1/O Bus
is disconnected from the Multiplexor Bus.

The ESELCH operates in a Status-Polling mode with the selected I/O device controller on the private 1/O Bus. The
ESELCH uses the device controllers Busy status bit to control the rate of data transfer, and terminates the data transfer if
any of the Status Bits (13, 14, or 15) are set. For additional information on typical handshaking time, refer to the
paragraph on I/O Bus Sequence Timing.

The ESELCH transfers data to / from only one device controller during a block transfer. The ESELCH also does not
perform interrupt servicing. In interrupts on the private 1/O Bus are allowed to queue, but are not gated to the Processor
until the completion of the block transfer.

For maximum data throughput rates, the SYNC return delay, in response to a control line, should be minimized. For
additional information, refer to the paragraph on Multiplexor Bus Timing.

29-633 ROO 1/78 10-5

MULTIPLEXOR /O DEVICE CONTROLLER LOGIC DESIGN

This section describes the procedures to follow in designing device controllers which connect to the Multiplexor Bus. While
it is impossible to describe all possible controllers, this section explains representative circuits in sufficient detail to
facilitate design of most controllers.

Multiplexor Bus

The Multiplexor Channel is a byte or halfword oriented 1/O system which communicates with up to 191 peripheral
devices. The Multiplexor Bus consists of 27 lines: 16 bi-directional Data Lines. 7 Control Lines, 3 Test Lines, and an
Initialize Line as described previously.

All busses are false type, i.e., low level is active, high level is inactive. The device controller circuits used to communicate
with the Multiplexor Bus are shown in Figure 10-2.

In a typical case. a device controller receives an 8-bit address. an 8-bit Command Byte, and either an 8-bit data byte ora
16-bit data halfword from the processor over the 16 bi-directional Data Lines (D00:15). When only a byte of data is
transferred, that byte is passed over the lower eight Data Lines (D08:15). The load resistors for all lines in the Multiplexor
Bus are located in the Processor.

Each device controller is permitted one TTL load, 2 milliamperes maximum, on any of the 16 bi-directional Data Lines.
the 7 Control Lines. or the single Initialize Line. Each device controller is permitted one high power open collector TTL

OR-tied onto each of the 16 bi-directional Data Lines and each of the 3 Test Lines. (The open collector bus driver must be
capable of sinking 48 milliamperes at 0.5 VDC maximum VCE. (See Figure 10-2.)

Multiplexor Bus Loading Rules

The Multiplexor Bus, generated at the processor, is capable of driving a total of 16 1/O controllers.

The Multiplexor Bus Buffer or 1/O Bus Switch extend the bus drive by regenerating the bus. These devices all represent one
load to the bus they are driven by. Each of these devices is capable of driving up to 16 loads.

10-6 29-633 ROO 1/78

CPU/SELCH 1/0 INTERFACE 1/0 INTERFACE BUS TERMINATION
No. 1 No. N (OPTIONAL) -
+5 % 330
1\ $ n BI-DIRECTIONAL BUS
T P S '
—E 100pf I
+ 3?3 UNI-DIRECTIONAL
— * LINES
T1,72 . -5 1
— 220 n
R1 R1
*ONLY FOR T1 10007 T
+5 % 330 +5 ¢ 1K +5 ¢ 1K
e »3 N L. RACK/TACK
T1,T2 ® _EDD— T3 P~ R1 _T_S_}‘
- 100 100 %
n }‘ l_ no }_ l_ 220 n.
T 100pf T 100pf . 100pf T
*ONLY FOR T1 = = =
+5 P5
3!3\0 SCLR
i— L g SF
1
| 100pf
ATN,HW
R1 ¢ 1 f ’
I — 220 A
+5 220 T T
f — — 100pf T
TRANSMITTER CHARACTERISTICS RECEIVER CHARACTERISTICS
PARAMETER T T2 T3 PARAMETER R1
VOL, LOW LEVEL OUTPUT 0.4V@48 ma.| 0.4V@48 ma.| 0.4V@20 ma.| | _VIH, INPUT THRESHOLD,HIGH 2.0V MIN
VOH, HIGH LEVEL QUTPUT 5.5V max. | 2.4V min. {2.4V min. ViL, INPUT THRESHOLD.LOW 0.8V MAX
I0H, HIGH LEVEL LEAKAGE, VOH=5.5V | 250 ua. N.A. N.A. liH, 'NPUT LEAKAGE HIGH®@5.5V 1mA MAX
tPLH, DELAY, LOW TO HIGH 22ns max. | 22ns max. | 10ns max. e, NPUT LOW LEVEL, ViN=04V 2mA MAX
tPHL, DELAY, HIGH TO LOW 18ns max. | 18ns max. | 10ns max. tpLH, DELAY,LOW TO HIGH 15NS MAX
tpH. DELAY HIGH TO LOW 12NS MAX
MAXIMUM BUS LOAD (DATA & CONTROL) : 29mA
MAXIMUM BUS LOAD (TACK, SCLR) - 2mA T2 TYPIGAL) 7437 e YPIGAL] 7m0t
Ti—»] :‘— —»| |je—T2
|
DATA BUS f SR,DR, I

CMD,DA ADRS

SYNC** |

1

CPU OUTPUT TIMING

T1=T2 2 75ns

** RETURN SYNC AFTER DATA HAS BEEN ACCEPTED

29-633 ROO 1/78

DATA BUS I

SYNC*"**

i

INTERFACE OUTPUT TIMING

il

*** RETURN SYNC AFTER DATA HAS BEEN PRESENTED

Figure 10-2. 1/O Interface Transmit and Receive Characteristics

10-7

Multiplexor Bus Length Restrictions

The processors Multiplexor Bus must be complete within the processor chassis and two adjacent 178 mm (77) expansion
chassis. The Multiplexor Bus normally may not be extended to any expansion chassis by use of a cable longer
than 102 mm (4”). For this configuration, a bus buffer must be used to exfend the bus.

Private 1O Busses. which are generated by a Bus Buffer or I/O Bus Switch, must be complete within the chassis the bus is
generated in, and a maximum of two 178 mm (7”) expansion chassis. Any private bus may be extended by no more than .
one 914 mm (36”") cable plus an additional cable with a maximum length of 102 mm (4).

Multiplexor Bus Terminators

1/0 Terminators (Perkin-Elmer Part Number 35-433 or 35-434) must be installed at the end of the Multiplexor Bus. If the
Multiplexor bus is present on both connector 0 and connector 1 of a chassis, terminators must be installed on both sides. If
a given Bus extends no more than four adjancent slots in a single chassis, the 1/O terminator is optional; however, a
terminator should be installed if reflection problems are noted.

Device Controller Addressing

Refer to Figure 10-3 during the following description. When a device controller is addressed, the 10-bit address code is
placed on the Data Lines (D060:150). The least significant 8-bits are switch selectable with Perkin-Elmer Part Number
33-032 switches. Bits D06 and DO7 generate CHNADL. If these bits are both ZERO. CHNADI is high. This is ANDed
with the switch sclected 8-bits. The resultant logic function is strobed with ADRS to set or resct the AD flip flop.

The Synchronize (SYN) signal is returned to the processor, during the presence of ADRSI. The ONE output from the
Address flip-flop, ADI, is used to gate all other I/O control lines to the device controlier. When a different device is
addressed, the ADRS] strobe line resets the AD flip-flop thus inhibiting further communications between the Processor
and controller. Thus, only one device controller may be addressed at any time. During the address cycle, only the device
which was addressed returns a SYN.

NOTE

The device controller must be designed such that when some other
device is addressed, the previously addressed controller clears its
Address flip-flop in no more than 350 nanoseconds after the re-
ceipt of ADRS. Otherwise the system could have two devices
addressed simultaneously.

The device controller logic must delay SYN until it has reacted to the Multiplexor Bus control line, however, unnecessarily
long delays reduce the system input/output operation.

NOTE

If the device controller is a 16-bit halfword-oriented controller,
the Halfword Enable line (HWO0) is activated while its Address
flip-flop is set, if the interface is strapped for Halfword mode. The
HWO is used by the processor to determine if the device is capable
of sending or receiving 16-bit halfword data in parallel.

Interrupt Control

Figure 10-3 shows a complete general purpose interrupt and interrupt acknowledge logic system. When an interrupt is
generated, the ATN flip-flop is set. The output from the ATN flip-flop generates an Attention signal (ATNO) to the
processor. The program responds with an Acknowledge Interrupt signal, which is received by the controller as Receive
Acknowledge (RACK). Since the ATN flip-flop was set prior to receiving RACK, ATSYNO goes low, and the Transmit
Acknowledge (TACKO) output is held high. Thus, the Acknowiedge Interrupt signal is captured by the interrupting
controller, and is prevented from propagating to the next device as Receive Acknowledge (RACKO). The ATSYNO signal
active causes the device address to be returned on the Multiplexor Bus Data Lines DO80-150 when input number three is
selected on the 4:1 multiplexor, and then causes a SYN to be returned to the Processor. On receiving the SYNO, the
processor deactivates RACKO, causing the ATN flip-flop to reset, deactivating ATNO. The device controller must not de-
activate ATNO until the processor deactivates RACKO.

NOTE

If the ATN flip-flop is reset, the RACK1 signal passes through the
device to TACKO, and on to the next device.

10-8 29-633 RO0 1/78

- | ~ | - t - X - * |) - | ~ 1 - 1 -
i i383f s
mmm.m m.p 2|
' v] oy
O~/ N HH N Q)
7 v/ 6/ Y W mmmun fw ﬁ.
g = I s I
g 2% /r-€7 Nq & Y ot & uuwmm 4MM.¢
& - oHivs Za i mmmuw ”ﬁt.” |
.] N
K2A \ 3 i HENNY
- — , ., M w m M R H RNV
2 o [BEYOL Iy e T
. q \/.V
< . : [ls
e ioer , [fod BHHH
P S 726/ y ONAS2LE : M w \«.wmﬂ) oy
X I Sy T 2
T - /Nm ﬁ:/m “ .
] Y . MEM AL ap [wﬁp
2067 < 222l Ay - \ _I I_
X2y T rf _.._.
i Yo] I !_ s
- qQild
AT w _
N KRS
L W _ MM
52 , NTTEIHF
N (60 75o4ézc _ Gléia-idd
4 Fo T oL T
ﬂhxﬁ\\o\\\ o <2 ” W ‘I\t.
r]'y@ o e .m -
.] voglolal”]2 0 U\ﬂlll\s\] . =3 o
FOSTF ene o—e 1830 ap zz_ 1 : 7Zo iz N
\ N ..vh\\:_ To- w — mm A
77 = V2 Lieozo0 a4 veo-6r N
o & Fed /v ﬂ 2/ 1621615 7ioL07]
S0 ¢/ woleoz| ™y lop M_ } 77 i) Iw
512y —{ >~ 2] n° rre ol oo~ ”a
T 90 6/ 2 Z7 I_ Ny
R £o L O s ”
N\ Y X b0 T 25067, q X
N N 7143 =L N i it rm
0 p 2210} 3 =2) Ay 672 w”
N roorZ "8 ol QN il e ik osoT
o £ »o| 3) -4 } i
T 0 & 7er O} L3 22) —{>=~
< AIN 2N 252 &7 0y
X q\\ —— xrred e&, “
4 z .
N i 2/ ’. vl .Q\\ _ B V -
6«4: ~ ﬂ .ﬂ \\..\\\l /6 2 isd ceoz < MW q
rd N .
e DRER
Tz o - =2 !
o . Yy sm ”
N I TS T N - ﬁr“ \
v ar @ QLS - .
& | 4~ JW ol = ”_ JFoo i crez < #? ymr N
- x
IR B g R
Y 2% D ‘ R 250-67) 1N A
47 CEYd /0 &) W. 22 5 M) I
N\ %7 1 18T /OI
) ") £ rrw vl
< _cr0-67 -2 a
ry ” IES LT /207 227 fi
i ﬂ 27 WZZ4 loc/. M
“lo ﬂ o Tad N
P2 o606/
402 % e Lo =) a@f ¥
7 o arjo— ZEoN - A | e £2 ﬁy M
<€ o
.w N m ‘e T LEdS . AM%@Q“ Yoo 7 Mw/rﬂ A}
2NN M N RS FW#(N
eo| ¥ Y 3°P7 B oo 1 dei
\\Q\\\.OM " M a e 25768/ .&Slc 6.
cott) \ N2 o VI ”MM N
Y vy #ol : am%wa R ﬂ,mm L
72274 bl Sy wletm N
. ﬂ AN f\wﬂ\l\;_. oo Mﬂ[!”
Sathl 3 = R » M N\ 72l ZZrred FMM LW
2606/ N 27 R . :
ON ? Lk
5106/ P— \unn\m\w ow ., ﬂ = M.mm._ L) \
I . 2, L
ez Mh\nvu =" N
7€
Gon
7o) B
. \
S AN Q.
N g \mn\ %\.w.,m ﬂ N B
.m\N\Q..qan\O\ w267 - w M N w,
a .
CN TS ,0 M.mem
N Y P
24
Ry vy Lt dy M W_m M M
Y
6T o4 = e % M Q N mﬂ
1“\ DEC 67 7P 67 V- &7 ; D N
&\/ e e S X i N M “ m o/- -
q M“\M ' _ ” \ f AN M
d &7 »
Rillar-> o iy e D -£2/] av.zk.
S - QR (VIR
| N3y
oo~ 2 SR
e Z M\\\ e > \ 9 M o N N ” N\ Q
o |7 |B\|>>>\H 4W 3 ﬂh W ”_ ﬂowwéf
=~ - CTRS | bk
Nt o6/, o5vo #5 w Mv m) pnu % ””ﬂw.o.
- ¢ \ _._ v 8 m ﬁ ..m
L — "
= — o
- 74 N (¥ 3.-
N}
N
3
- | ~] - 1 - | “ + [} ° I ~ 1 © I S 0CIVT ISPy DHINE

10-9

Multiplexor Bus (Byte or Halfword Oriented)

AFig“ure 10-3. General Interface to

29-633 ROO 1/78

The EBL and DSRM flip-flops provide control over the interrupt ATN flip-flop and the ATN control line to the processor.
Two bits of the Command Byte (bits 8 and 9) are decoded as one of three possible functions: Enable, Disable, or Disarm.

A command with bit 8 reset (ZERO) and bit 9 set (ONE) causes interrupts to be Enabled. The output from the DSRM flip
flip-flop (DSRMO) is high, allowing the ATN flip-flop to be set by a SATNO pulse, and the output from the EBL flip-flop
(EBL1) is high, enabling the output from the ATN flip-flop to activate ATN to the Processor.

A command with bit 8 set (ONE) and bit 9 reset (ZERO) causes interrupts to be Disabled. The output from the DSRM
flip-flop (DSRMO) is high, allowing the ATN flip-flop to be set by a SATNO pulse, however, the output from the EBL
flip-flop (EBL1) is low, preventing the ATN flip-flop from activating ATN. Thus. interrupts are allowed to queue, but are
not passed to the Processor.

A command with both bits 8 and 9 set (ONEs) causes interrupts to be Disarmed. The output from the DSRM flip-flop
(DSRMO) is low, forcing the clear input to the ATN flip-flop low, thus disallowing an interrupt to queue. Note that the
output from the EBL flip-flop is a don’t-care condition when DSRMQ is low.

A command with both bits 8 and 9 reset (ZERO) causes no change in the interrupt controls. This condition prevents the
command pulse from loading the DSRM and EBL flip-flops.

As described previously, RACK from the processor is the Interrupt Acknowledge (ACK) signal. This line breaks up into a
series of short lines to form the daisy-chain priority system. The RACK signal must pass through every device controller
that is equipped with Interrupt Control circuits. This implies that the device controller’s interrupt priority in the
Perkin-Elmer system is determined by the physical location within the system. That is, the controller nearest to the
Processor (first in line in the ACK daisy-chain) has the highest priority.

At any 1/O slot, the Received ACK (RACKO) appears at Pin 122-1 and the Transmitted ACK (TACKQOQ) at Pin 222-1. The
daisy-chain bus is formed by a series of isolated lines which connect Terminal 222-1 of a given position to Terminal 122-1
of the next position (lower priority). On unequipped positions, a back panel jumper shorts 122-1 and 222-1 on the same
connector to complete the bus. Back panels are wired with jumpers on all 1/O positions. Whenever a card chassis position is
equipped with a device controller that has interrupt circuits, the jumper from 122-1 to 222-1 must be removed from the
back panel at that position.

For controllers that occupy several positions, the jumper is removed only at the position where the controller board has
interrupt circuits.

Multiplexor Bus Wiring

Wiring for the Multiplexor Bus and the Selector Channel Bus is identical in the processor and Expansion chassis. Each card -
position contains two connectors with the Multiplexor Bus wired to each at pin positions indicated in Figure 10-16

Multiplexor Bus Timing

Both the Input and Output operations on the Multiplexor Bus make use of request/response signaling. This allows the
system to run at its maximum speed whenever possible, but permits a graceful slowdown if the characteristics of a
particular device controller require signals of longer duration. Device controller designs should keep Multiplexor Bus usage
as fast as possible, consistent with practical circuit margins. Doing this assures the fastest computer input/output operation
when a system is configured with many peripheral devices.

Timing for typical Output operations is shown on Figure 10-14.0n the Output operation. the processor places a signal on
the data lines followed by an appropriate control line signal. This stagger (T1) varies,but it is guaranteed to be at least 75
nanoseconds. When the device controller has received the Output Byte, the SYN signal is returned to the processor., which
terminates the control line signal. Realizing that T5 is 100 nanoseconds minimum, the SYN delay T2 should be only long
enough to guarantee proper reception of the Output Byte. The control line/data line removal time (T3) is important where
single-rail to double-rail operation is used, e.g., the ADRS flip-flop of Figure 10-3. A minimum of 75 nanoseconds is
guaranteed for T3. For SYN generation as per Figure 104 the control line signal is DC coupled through the gates to form
the SYN signal. The SYN removal time (T4) should be minimized. This delay should not be extended unnecessarily since
the processor does not begin another Input/Output operation until SYN is removed.

It should be emphasized that the times shown on Figure 104 are defined for signals on the Multipiexor Bus. Within 4 given
device controller, one signal may flow through more gates than another signal and these delays must be considered.

10-10 29-633 R0OO 1/78

D08:15
PROCESSOR #DEVICE *

ADRS, DA OR CMD
CONTROL LINES

T6

SYNC DEVICE # PROCESSOR Ll

™
T3
T5

T2
T4
T6

]- 75 NS MINIMUM 15 SEE

T T3
100 NS MINIMUM - NOTE

T2 T4

SEE TEXT

350 MINIMUM FOR ADRS. ALL
‘OTHERS HAVE NO MINIMUM
BUT DROP AFTER SYNC IS
RETURNED.

* THE PROCESSOR MUST DEACTIVATE THE DATA LINES MIN. 100 NS

BE

Timing for typical Input operations is shown on Figure 1
The currently addressed device controller should gate sig
The SYN delay (T2) must guarantee that the Input Byte is on the data |

FORE ACTIVATING ANY CONTROL LINE FOR THE NEXT 1/0 OPERATION.

Figure 10-4. Multiplexor Bus Output Timing
NOTE

The time between the completion of one 1/O operation and the
start of the next 1/O operation is undefined. In certain cases, there
is no delay between consecutive 1/O operations. The device con-
troller must be ready to respond immediately.

0-5. For the Input operation, the processor activates a control line.
nals to the data lines as soon as possible to keep T1 at a minimum.
ines. considering the slowest data gates and the

fastest SYN gates. The processor removes the control line signal when SYN is received with a minimum delay (T4) of 100

nanoseconds. With SYN

and the byte gate DC coupled to the control line, the removal delay (T3) is the

corresponding gate delays. The processor considers the operation complete when SYN deactivates.

29633 ROO 1/78

SR, DR OR ACK
CONTROL _LINES
D08:15

DEVICE TO PROCESSOR [

DEVICE TO PROCESSOR L1

T ™ T4

T SEE TEXT T2 T3 SEE
T3 NOTE

‘

\

T4 100 ns MINIMUM

Figure 10-5. Multiplexor Bus Input Timing

NOTE

The time between the completion of one 1/O operation and the
start of the next 1/O operation is undefined. In certain cases, there
is no delay between consecutive I/O operations. The device con-
troller must never hold the data lines any longer than necessary.

sum of the

10-11

When the control signal is ACK, the delay (T1) includes the cumulative gate delays (see Figure 10-3) for all the device
controllers between the responding device controller and the processor. This is less than the processor time-out even with
the maximum limit of 255 device controllers.

NOTE

With a SYN delay of 50 nanoseconds. device controllers must be
designed to accept a minimum width of 170 nanoseconds on all
control line pulses except ADRS which is guaranteed to be 350
nanoseconds minimum. The SYN delay in the device controller
may be increased to effectively lengthen the control line pulses if
it is absolutely necessary. It is essential to realize that, after the
processor initiates an 1/O opceration, the processor does nothing
until the SYN signal is returned by the device controller: one or
more processor clock cycles may be skipped if necessary and the
data throughput decreased proportionally. While this may not
affect a particular device controller, the overall system per-
tormance is degraded. Furthermore. it a device controller fails to
respond with a SYN within the time out period of approximately
15 to 35 microseconds, the processor aborts the 1/0 operation and
removes the control line signal.

General Multiplexor Bus Interface

Figure 10-3 illustrates a general interface to the Multiplexor Bus which may be used when designing custom device con-
trollers, either 8-bit byte or 16-bit halfword oriented. (If an 8-bit byte oriented interface is being designed, gates connecting
to DO01:071 and to DAT001:071 can be eliminated.) The figure illustrates an interface with the 74H logic family: how-
cver, other logic families may be used provided they conform to the characteristics in Figure 10-2 The address straps can
be hardwired by the user for any device number from X'002’ to X'3FF' with the exception of X'007', which is reserved for
the manually selected clock. The user can use the Gated Status Request (SRGO) or the Gated Data Request (DRGO) con-
trol lines to gate status or data from appropriate points in his logic. Data from the processor is available to the user’s
circuits, double rail, at the points labeled DOO1:151 and DOOOA:150A. The user can use the Gated Data Available (DAGO)
and the Gated Command (CMGO) control lines to gate the data from the processor to appropriate points in his logic. The
delay of the SYNO signal should be arranged such that it is the minimum delay necessary for the custom controllers to
function properly, per the Multiplexor Bus Timing Section.

Additional Requirements for I/O Interface:

1. +5 volts * 5% is assumed for all interface designs. Other voltages from the system power supply should
not be used in the design of the interface. If voltages other than +5 volts are required in the design of
the interface, an on-board DC to DC converter may be used. (See DC-DC Converter Specifications.)

2. When appropriate, use 16-bit 1/O for devices.

3. In general, all unused inputs of the logic packages. flip-flop (F/F). counter, etc., should be terminated
to +5 volts through a pull-up resistor (1K ohm). A maximum of 25, 74H gate loads can typically be
connected to one pull-up resistor.

4. Avoid the use of capacitors for delaying the edge of a logic signal. Use a one-shot 19-042, 19-031, etc.,
or delay lines for delays. :

5. The interface should be designed with the assumption that all data transferred to and from the
processor is valid when the BSY status bit (BSY1) changes from a logic 1 to a logic 0.

6. Avoid the use of RC networks for differentiation of logic signal edges. Use a one-shot 19-042, 19-031,
etc., for differentiation. The timing components used on these one-shots must be immediately

adjacent to the IC.

7. High-frequency decoupling capacitors should be located adjacent to ICs as required. The number of
decouplers required is a function of the logic family being used — 74S, 74LS, etc. As a minimum,
there should be one decoupler for each two ICs. Provide extra decoupling and/or isolated P5 and GND
connections for high-current driver [Cs.

10-12 29-633 ROO 1/78

Q,

10.

11.

12.

13.

4.

In general, all [/O device controllers which have a data transfer rate greater than 10 K bytes/second are
supported by a Selector Channel or Extended Selector Channel (SELCH or ESELCH).

All design rules and requirements of an 1/O device controller to operate with Perkin-Elmer
Multiplexor Bus structure are applicable for device operation with a Selector Channel.

It is good design practice, in cases where address. command. or data is loaded from the Multiplexor
Bus into an edge-triggered flip-flop. to accomplish the loading operation on the leading edge of the
appropriate control signal (i.e., coincident with the high-to-low transition of ADRSQ, CMDO, or DAO).

Device controllers lwh.ich have more than one device address, should have contiguous addresses (i.e.,
X'A0", 'Al', 'A2". 'A3").

Device controller addresses must not be restricted to a single fixed address or fixed range of addresses
and must decode ten address bits.

The 381 mm x 381 mm (15” x 15”) controllers are limited to an absolute maximum of 13 amperes of
P5 power, and the 178 mm x 381 mm (77 x 15") controllers are limited to an absolute maximum of 7
amperes of PS5 power. These limitations are imposed by the standard Perkin-Elmer back panel con-
nector.

In cases where command information is loaded into a level-triggered or R-S flip-flop by the
presence of CMGO, the 1/O interface must allow for wide variation of the width of the CMGO
pulse.

DC-DC Converter Specifications

Functional Use

The circuit shown in Figure

8-23 may be used to provide a means of developing low current voltage levels to operate

Teletypewriter (TTY) 1/O interfaces, operational amplifiers, etc.. from on-board +5 volts logic power.

P5 N.C. P5 cR2
g 5 " - 04155
REF :
I w1 +16 OUTPUT
COMPARATORY Illl cR3 J_)
1
- > R3
6 ny C3
P5 |
s | X e
$COMPARATOR 1 rs G
126 | c2 _l_
" K 2Rz H CR4 =
1% 022 pf —p— $
- 1 R
R1 S | i 9] cre C4T 1
L ¢ = _16 OUTPUT
; =
c1
- ! { F.F.
0022 I= =
pf
OUTPUT
STAGE
T 19-085_(555)
22 RS
3l Y 20004F02
. or '
100 3 R6 20-020

29-633 ROO 1/78

NOTES

1. ALL DIODES 23-001- 4. R3 = Rg = 3.9K

2. ALL RESISTORS %W. + 5% TOLERANCE
UNLESS OTHERWISE SPECIFIED

5. T1 = 30-020
3. C3 = Cq = 15 pf 20V

Figure 10-6. DC/DC Converter

10-13

General Description

The circuit is comprised of a 19-085 1C timer connected as a 24K Hz oscillator having a square wave output, which drives a _
switching transistor feeding a step-up transformer. The output from the transformer is rectified and filtered to provide +16
and -16 volts at 50 milliamperes cach, or optional levels as listed in the following specifications.
Specifications

Input +5 VDC £5% @ 200 to 500 milliamperes depending on output load.

Output: Standard circuit supplies + and - 18 volts at no toad (with 5 volt input) decreasing to + and -16 volts at full load
(100 milliamperes total sum of either or both polarity).

Output Power Options:

1. Option I supplies +18V only at no load, decreasing to +16 volts at full load (100 milliamperes).

2. Option 2 supplies -18V only at no load. decreasing to -16 volts at full load (100 milliamperes).

3. Option 3 supplies +36V only at no load. decreasing to +32 volts at full load (50 milliamperes).

4. Option 4 supplies -36V only at no load, decreasing to -32 volts at full load (50 milliamperes).

Output Ripple: Standard circuit and Options | and 2 = 150 millivolts peak-to-peak (p/p) maximum — Options 3 and 4 =
300 millivolts p/p maximum.

Line Regulation: Output varies directly as input.
Opcrating Frequency: Approximately 24K Hz.

Start-up Time: Output voltage is up to nominal level within 200 milliseconds after power is applied.

Output Configuration Options. Refer to Figure 10-6

1. Forsingle polarity +16 volts output (full load functional variations). delete CR2, CRS5, (4, and R4.
2. Forsingle polarity -16 volts output (full load), delete CR3. CR4, C3, and R3.

3. For single polarity +32 volts output (full load). open ground connection to transformer at point X,
delete ground point G, and ground -16 volts output.

4. For single polarity -32 volts output (full load), open ground connection to transformer at point X,
delete ground point G, and ground +16 volts output.

NOTE
If voltage levels other than those supplied by the converter are

needed, or close regulation is required, an IC regulator such as a
19-094 can be attached to the output of the DC to DC Converter.

10-14 29-633 ROO 1/78

MULTIPLEXOR 1/0 INTERFACE DESIGN (PROGRAMMING CHARACTERISTICS)

The recommended format for the Status Byte of an /O device controller is shown in Figure 10-7 . There may be some

exceptions to the status format, depending upon the function of the 1/O device controller.

BITS 08 09 10 1 12 13 14 15
DEVICE
BSY EX EOM UNAVAIL-
ABLE

STATUSBYTE

Figure 10-7. Status Byte

At least one of Bits 08:11 shall be set when the Examine bit (EX) is set. In many cases, all of the upper 4-bits (Bits 08:11)
of the Status Byte may be used to set the Examine bit depending upon the function of the device controller.

The standard Output Command Byte is shown in Figure 10-8. Bits 10:15 are used for control functions of the device
controller. Bits 08 and 09 must be used to control the interrupt circuit of the device controller. The meaning of Bits 08
and 09 are as shown on Figure 10-8. .

BiTS 08

14 15

DISABLE

ENABLE

DISARM

OUTPUT COMMAND BYTE

BITS

08

09

MEANING

DISABLE INTERRUPT FUNCTION
(QUEUE INTERRUPTS)

ENABLE INTERRUPT FUNCTION
(PASS INTERRUPTS TO PROCESSOR})

DISARM INTERRUPT FUNCTION
(DO NOT QUEUE INTERRUPTS)

NO CHANGE IN THE INTERRUPT CONTROLS

29-633 ROO 1/78

Figure 10-8. Command Byte

10-15

Data and Status Input

Data

Figure 10-3 shows how a bytc or halfword of data may be read into the processor. When the byte-oriented device con-
troller is addressed. ADU is high, enabling the Data Request (DR) control line from the Processor. (The HW1 is strapped to
ground for byte operation.) The DR cnables the data byte onto the cight bottom Data Lines DO80:150. If a halfword-
oricnted device controller is addressed. 16 bits are gated onto Data Lines D000: 150 since the halfword input is strapped to

a high AD1 output from the Address flip-flop, cnabling the Halfword mode. A system requirement is that the addressed
controller must respond to all control lines (i.e., Data Request) with a SYN.

Status

Figure 10-3 shows how a byte of status may be read into the processor. When the byte or halfword oriented device con-
troller is addressed. AD1 is high, enabling the Status Request (SR) control line from the processor. Open collector gates
are used tor OR tying the 4:1 multiplexor onto the cight Data Lines (D080:150).

The device controller logic should place a high on BSY 1 until the data is ready. The processor may now be synchronized to
the device data rate by testing the device status until the Busy bit is low. When the Busy bit is low, the program may
transfer data. Device synchronization can also be achieved by generating an interrupt when the data is ready.

The Lnd of Medium (EOM) bit is normally placed active at the termination of the device medium. such as End of Tape.
The Device Unavailable (DU) bit. when active, typicatly signifies that device power is not turned on.

The Examine Status (EX) bit is used to signify other appropriate device conditions. In this case, the user assigns DO8
through D11 to appropriate conditions. such as Parity Error. ctc.

It is appropriate to note here that the Busy Status is unconditionally defined such that data cannot be transferred unless
Busy is inactive. The remaining status bits are defined as required by the device controller. Not all device controllers
require all cight status bits.

Data and Command Output
Duta

Figure 10-3 shows how a data byte may be output from the processor. The buffered true and false Data Lines (D081:151
and DO80:150) connect to the set and reset inputs of the Data Register.

When the device is addressed, ADI is high. enabling the control line DAGO to return the SYN signal to the processor.
Command
The command lines are shown on Figure 10-3 as being used to enable/disable interrupts, ete.

Again, note that definition of the command bits is a function of the device controller only. Not all device controllers
require cight separate bits.

Byte-Oriented Device Controller Design

A byte-oriented device controller may be designed to accommodate Halfword Data Transfer instructions (RH/RHR and
WH/WHR). This allows slightly more efficient 1/O programming (one user-level instruction instead of two) for each two
bytes of data transfer. To accommodate these instructions. the device controller must be designed to transfer data in
accordance with the 1/0 sequence shown on Figure 10-9

10-16 29-633 ROO 1/78

ADDRESS DEVICE STATUS OF
/0F INTERRUPTING ADDRESS /lNTERRuPTING

ATNO DEVICE DEVICE
D0BO: 150 /: / /
ACKO(RACKO) } /L—R
SYNO ‘ ’
ADRSO @ \ \ i
SRO ? ;&
ACKNOWLEDGE INTERRUPT BUS SEQUENCE
DEVICE DATA — D080:150 on CMDO
ADDRESS TO DEVICE — D0BO:150 on DAO BYTE DEVICE (WD)
D080:150 - D000:150 on DAO HALFWORD DEVICE (WH)

ADRSO

SYNO é) g
CMDO/DAQ @

OUTPUT COMMAND OR WRITE DATA BUS SEQUENCE

DEVICE DATA — D080:150 on SRO
/‘ ADDRESS FROM DEVICE — D080:150 on DRO BYTE DEVICE (RD)

D0BO:150 — D000:150 on DRO HALFWORD DEVICE (RH)

ADRSO /l_—}\
SYNO \

SRO/DAQ W

STATUS REQUEST OR READ DATA BUS SEQUENCE

DEVICE _
D080:150 D080:150
ADDRESS / 1st BYTE (MS BYTE) 2nd BYTE (LS BYTE)

Wi i
7¢

I

D080:150

ADRSO

/T
SYNO

WRITE HALFWORD INSTRUCTION BUS SEQUENCE FOR BYTE DEVICE

DEVICE D080:150 D080:150
ADDRESS 1st BYTE (MS BYTE) 2nd BYTE (LS BYTE)
D080:150
ADRSO / \ { \

"""

| \

READ HALFWORD INSTRUCTION BUS SEQUENCE FOR BYTE DEVICE

|

Figure 10-9. Bus Sequence For Byte Or Halfword Device

29-633 ROO 1/78 10-17

1/0 Bus Sequence and Timing

The standard 1/O Bus sequence and timing for the 1/O Instruction Set is shown on Figures 10-9 through 10-13 for reference.

NOTE

The Busy Status bit must always be set only on the irailing edge
of DAO or DRO.

Data Transfer

The data transfer sequence between the processor and the device controller in the Block Transfer mode (Read Block/Write
Block) and Selector Channel is shown on Figure 10-10 for reference.

DRO/DAO o (‘.@ = LT!tBY]T?l_—LI L ‘._'_

2nd BYTE
A

U
fe———>{=—D120

U uuu

READ/WRITE BLOCK DATA TRANSFER BUS SEQUENCE

DATA | - D080:150

BSY 1

SRO H
D080:150 OR D00O:150
DATA D120 —— - D’__‘_"’*"’ __4

1st TRANSFER/——2nd TRANSFER

L=
SYNO [1 N

SELECTOR CHANNEL _
READ/WRITE DATA TRANSFER BUS SEQUENCE

DRO/DAO

Figure 10-10. Read/Write Data Transfer Bus Sequence

10-18 29-633 R0O0 1/78

H.W. DEV.D000:150
DOBO:"S.QT BYTE DEV.D080:150 I
ADRSO) |
- T3 ’
SYNO (L/
Nay (d
100 - 1 CMDO
NSE NSEC DAQ
MIN m MIN
75 NSEC
T2 MIN e e 100 NSEC
m MIN
ta—— THIS —
TIME DEPENDS T2
UPON PROCESSOR
AD1 __|
HWO __|
ADDRESS DATA T1.=SYNO DELAY TIME. THIS ADDRESS DATA
ON BUS EQUALS TIME SHOULD ONLY BE ON BUS NOT EQUAL
THE ADDRESS DECODING LONG ENOUGH TO GUARANTEE TO THE ADDRESS
STRAPPING ON 1/0 PROPER RECEPTION OF THE DATA STRAPPING ON 1/0
INTERFACE ON THE BUS BY THE I/0 INTERFACE INTERFACE

T2 = SYNO REMOVAL TIME. THIS TIME
SHOULD BE KEPT TO AN ABSOLUTE
MINIMUM.

T3 = 350 NSEC. MINIMUM

Figure 10-11. Address and Data Transfer Timing Between Processor and
I/0 Device Interface (Command and Data Available)

29-633 ROO 1/78 10-19 °

SR0-D080:150

DRO HW-DEV.
DO000:150
DROBYTE DEV.
D080:150
D080:150
ADRS0 ADRSO_| L
SYNO
SRO .
DRO
FOR TIMING __| i/
SEE s THIS TIME -
FIGURE 19 DEPENDS ON
PROCESSOR.
AD1 -
HWO <\4—_
ADDRESS DATA Tt — DATA DELAY. THIS TIME SHOULD BE KEPT ADDRESS DATA
ON BUS EQUALS AT THE ABSOLUTE MINIMUM. ON BUS NOT
THE ADDRESS ' EQUAL TO THE
DECODING T2 — SYNC DELAY. THIS TIME SHOULD BE LONG ADDRESS
STRAPPING OF ENOUGH TO ALLOW THE DATA ON THE BUS STRAPPING ON
1/0 INTERFACE TO SETTLE. 1/0 INTERFACE
Figure 10-12. Address and Data Transfer Timing Between I/O Interface
and Processor (Data Request and Sense Status)
ATNO

A
\

ACKO (RACKOQ)

ADDRESS OF
INTERRUPTING
D080:150 (\‘ DEVICE
SYNO \i
T

T2

T1=DATA DELAY. THIS DELAY SHOULD
BE KEPT AT THE ABSOLUTE MINIMUM

T2 = SYNC DELAY. THIS DELAY SHOULD
BE LONG ENOUGH TO ALLOW THE DATA
ON THE BUS TO SETTLE

Figure 10-13. Interrupt Timing

10-20 29-633 ROO 1/78

MULTIPLEXOR 1/0 INTERFACE PHYSICAL PACKAGING, CABLING, AND CONNECTIONS

The 1/O interface between any peripheral device and the processor Multiplexor 1/O Bus uses 381 mm x 381 mm (15” x
15”) printed circuit boards of 178 mm x 381 mm (7 x 15°) printed circuit half-boards, as required. Hereafter, these
boards are referred to as 381 mm (15”°) boards or 178 mm (7°*) half-boards respectively. The size of the printed circuit
board used in an I/O interface depends upon the amount of logic required in its design.

7 Inch Half-boards

Two 178 mm (7°°) half-boards can be inserted into a 381 mm (15”) chassis via the 16-398 Half-Board Adapter Kit (see
Figure 10-14). The 16-398 Half-Board Adapter Kit may contain two active 178 mm (7”°) half-boards or one active and one
blank 178 mm (7”°) half-board, depending on the system requirement. No wiring takes place between the boards and the
adapters. The adapters are designed such that the 84-pin connector on the board plugs directly into the back panel con-
nector in the chassis. .

The 178 mm (7”’) half-board contains one 84-pin back panel connector to pick up the I/O Bus signals. For peripheral de-
vice connection, one front connector is provided. The number of pins used (up to 50) is dictated by the application. All
the connections are mechanically mounted per drawing SK653. The 84-pin back panel connector and the front connector
may be Connectors 1 (CONN 1) and 3 (CONN 3), or Connectors 0 (CONN 0) and 2 (CONN 2) respectively, depending
upon which side of the 178 mm (7°") half-boards is to be connected to the I/O Bus. Refer to Figure 10-14, Generally, if
the I/O interface contains less than 60 ICs the I/O interface fits on one 178 mm (7”) half-board.

15 Inch Boards

Each 381 mum (15”) board may contain two 84-pin back panel connectors, labeled Connector 1 (CONN 1) and Connector
0 (CONN 0), to pick up the I/O Bus, and two 50-pin front connectors, labeled Connector 3 (CONN 3) and Connector 2
(CONN 2), for peripheral device connection. All the connectors are mechanically mounted per drawing SK653. Refer to
Figurc 10-15.

CONNECTOR 1 - =1 17} CONNECTOR 0
(CONN 1) 84-PIN (CONN 0) 84-PIN
BACK PANEL BACK PANEL
CONNECTOR

ACTIVE ACTIVE CONNECTOR

OR OR
BLANK BLANK
AS REQUIRED AS REQUIRED
e __ -])]

CONNECTOR 3

(CONN 3) 50-PIN PERIPHERAL

DEVICE CONNECTOR
(TYPICAL)

NOTE: BLANK 178 mm (7")

HALFBCARDS ARE NOT

EQUIPPED WITH CONNECTORS

29-633 ROO 1/78

178 mm x 381 mm

178 mm x 381 mm

(7 x 15”) (7 x 16")
HALF BOARD HALF BOARD
NOTE = 2
E
N oHe el

PAY

Figure 10-14. 16-398 Half Board Adapter Kit

ALY

CONNECTOR 2
(CONN 2) 50-PIN .

|~ PERIPHERAL DEVICE

CONNECTOR
(TYPICAL)

10-21

CONNECTOR 1 —{]l - !! L JE"'—‘ CONNECTOR 0

(CONN 1) 84-PIN (CONN 0) 84-PIN
BACK PANEL BACK PANEL
CONNECTOR CONNECTOR

381 mm x 381 mm (15" x 15"},
BOARD

CONNECTOR 3 CONNECTOR 2
(CONN 3) 50-PIN ™ " (CONN 2) 50-PIN

PERIPHERAL DEVICE PERIPHERAL DEVICE
CONNECTOR . CONNECTOR

(TYPICAL) 2 N r/_‘_\\ (TYPICAL)

Figure 10-15. 381 mm x 381 mm (15” x 15”) Printed Circuit Board

If the proposed 1/O interface design requires more than a 178 mm (7”°) half-board, one or more 381 mm (15”) boards may
be used. No back panel stitch pattern exists to interconnect multi-board designs. Thus, cables must be used for board-to-
board interconnects.

When designing a 381 mm (15”") board, use either Connector 0 (CONN 0) or Connector 1 (CONN 1) to pick up the I/O
signals from the back panel.

NOTE
Do not pick up some I/O signals from one connector and some

from another for convenience of layout. Always use one
connector.

Functions Common to the 178 mm (7”’) and 381 mm (15”) I/O Interface Boards
I. No pins on the back panel may be used for I/O purposes other than those listed in Figure 10-16. All
other pins arc reserved for Memory connections or other purposes.

2. The 1/O signals are duplicated in the Connector 0 and Connector 1 84-pin connectors in the same pin
positions. That is, 119-0 (Conn 0) has the same logic function as 119-1 (CONN 1).

3. Only the standard board cable connector is used for low and medium speed signals. The maximum
number of connections is 50 per connector.

4. The 3M-type Ribbon cable may be used for high speed signals. The maximum number of connections
is 50 per connector.

5. All cables used in the interior of the cabinet shall be covered with a U.L. approved material.

10-22 29-633 RO0O 1/78

CONN 1

CONN 0

40

15 20 25

10

0001

40

15 20 25

10

00 01

PS5 GND
GND GND
S—
SCLRO HWO
SYNO ATNO
RACKO TACKO
cLo70 DAO
DRO CcMDQ
SRO ADRSO
D140 D150
D120 D130
D100 D110
D080 D090
D060 D070
D040 DOS0
D020 D030
D000 D010
e
o —————
GND GND
(3] GND
ROW 1 ROW 2
PS GND
GND GND
e 1
SCLRO HWO
SYNO ATNO
RACKO TACKO
CLO70 DAO
DRO cMDO
SRO ADRSOQ
D140 D150
D120 D130
D100 D110
D080 DOg0
D060 D070
D040 D050
D020 D030
D000 D010
rl\’\,\'ll
e ey
GND GND
P5 GND
ROW 1 ROW 2

CONN 1

CONN 0

a1

00

O W T ON-O

0

00

W W T MmN~ O

Figure 10-16. 1/0 Back Panel Connections

10-23/10-24

29-633 ROO 1/78

CHAPTER M1
M 71-102 HEXADECIMAL DISPLAY
PANEL AND M 71101 BINARY DISPLAY

PANEL PROGRAMMING SPECIFICATION

INTRODUCTION

The M71-102 Hexadecimal Display Panel and M71-101 Binary Display Panel provide a means to
manually control the Processor, interrogate and display various Processor registers and machine
status, set and display Processor memory locations, and may be programmed as an I/O device
by the user. The Hexadecimal Display Panel and Binary Display Panel are identical in operation.
For convenience of the operator the Hexadecimal Display is equipped with a Hexadecimal readout
in addition to the standard Binary readout.

CONFIGURATION

The Hexadecimal Display Panel provides the system operator with visual indications of the
state of the Processor, as well as manual control over the system.

The Hexadecimal Display Panel, shown in Figure 11-1, is a RETMA standard 133 mm x 483 mm
(6 1/4 " x 19") panel which is plug removable from the Processor. It displays the current state of
the Processor and provides all necessary manual control over the system. The following para-
graphs describe the control and display elements of the Hexadecimal Display Panel.

n » 13 1 15 16 7 Is To BB W

Q0000000 OO0D OO00 OOVVJOO0O OO0O 0000 0000 EBE
o - 151s MEMORY ADDRESS wle MEMORY DATA " El s |[en r—lm
Ll
8: FOUNCTION o S PROGRAM ‘S:‘ATUS WORD a E]E] _; i WQ'
&3
St —— - EEEEE s,
3T 2

—
LOCK
LF’EF!KIN-ELMEF\ : @ D

Figure 11-1. Hexadecimal Display Panel

29-633 ROO 1/78 11-1

Display Registers and Indicators

Internal to the Hexadecimal Display Panel are five 8-bit byté Display Registers, D1 through D5,
that hold data output from the Processor, and a 20-bit Switch Register that holds data input from

The Hexadecimal Keyboard. Refer to Figure 11-2.

SWITCH REGISTER

T

7o 7lo
DS D4 D3
" 516 MEMORY ADDRESS 10 MEMORY DATA
Oe+— I t + 124
SWITCH REGISTER
34
o A t L
FUNCTION PROGRAM STATUS WORD
o | |t .
REGISTER GENERAL REGISTER
O¢—— L 0 31,
I v N
REGISTER FLOATING-POINT REGISTER
Oe L 0 7,8 31,
! 33 ‘ 63"

Figure 11-2. Display Registers and Indicators

Associated with each of Display Registers D1 through D4 are eight indicator lamps that provide

a binary read-out and two optional hexadecimal read-out indicators. Associated with the least sig-
nificant four bits of Display Register D5 are four indicator lamps for binary display and one optional
hexadecimal read-out indicator.

The most significant four bits of Display Register D5 (bits 0:3) control four of the five indicator
lamps along the left edge of the Hexadecimal Display Panel. The fifth indicator lamp is controlled
by logic internal to the Hexadecimal Display Panel. To the right of each of these five lamps is a.
diagram that defines what is being displayed. In general, only one of the diagram lamps is on at
a time. If none of the diagram lamps are on, a user program has written data to the Display
Register D5.

As seen in Figure 9-2, the most significant 20-bits of the display show the contents of Display Registers
D3 and D4 and the least significant four bits of Display Register D5 (bits 4:7); or the contents of the

20 bit Switch Register. When the Switch Register is being displayed, the lamp next to the Switch
Register diagram is turned ON. Any other diagram lamp that may have been ON, remains ON.

When the Switch Register is no longer displayed, its diagram lamp goes out and the most significant
20-bits of the display again show the contents of Display Registers D3 and D4 and the least signifi~-

cant four bits of Display Register D5 (bits 4:7).

The methods of displaying the Switch Register and the other diagrammed items are discussed later.

11-2 29-633 ROO 1/78

Key Operated Security Lock

This is a three~position, OFF-ON-LOCK, key-operated locking switch, which controls the primary
power to the system. This switch can also disable the Hexadecimal Display Panel, thereby pre-
venting any accidental manual input to the system. The power indicator lamp (PWR) associated
with the key lock is located in the lower right corner of the Hexadecimal Display Panel. The

PWR lamp is ON when the key lock is in the ON or LOCK position, The relationship between the
key lock switch positions, primary power, the Control keys, and the Hexadecimal keys is:

OFF The primary power is OFF.
ON The primary power is ON and the Control keys and Hexadecimal keys are
enabled.

LOCK The primary power is ON and the Control keys and Hexadecimal keys are

disabled.

Control Keys

The momentary contact Control keys are only active when the key-operated locking switch is in

the ON position,

INITIALIZE (INT)

DATA (DTA)

ADDRESS (ADD)

MEMORY READ (RD)

29-633 RO0O 1/78

The Initialize (INT) key causes the system to be
initialized. After the initialize operation, all device
controllers on the system Multiplexor Bus are cleared
and certain other functions in the Processor are reset.

The Data (leA) key clears the Switch Register and
connects it to the most significant 20 display indicators.
The Switch Register diagram lamp is turned ON. Hexa-
decimal data may now be entered into the Switch Register
from the Hexadecimal Keyboard. As each Hexadecimal
key is depressed, the data shifts into the Switch Register
from the right, If more than five hexadecimal digits are
entered, data shifted out of the Switch Register is lost.

Depressing any non-hexadecimal key disconnects the
Switch Register from the high order 20 display lamps and
extinguishes the Switch Register diagram lamp.

The Address (ADD) key causes the Processor to halt and
copy the contents of the Switch Register into the Location
Counter field of the Program Status Word. The new
value of the Location Counter is then output to Display
Registers D1, D2, D3, and D4. The function diagram
lamp is turned ON and a Hexadecimal 5 is output to the
top four display lamps (bits 4:7 of D5).

The Memory Read (RD) key causes the Processor to halt
and read the halfword contents of the memory location
presently pointed to by the Location Counter., The
memory operation is subject to translation as defined

by PSW bits 8:11, The halfword data read is output

to Display Registers D1 and D2. The Location Counter
is incremented by two and output to Display Registers

D3 and D4. The lamp next to the Memory Address/
Memory Data diagram is turned ON.

MEMORY WRITE (WRT)

EXAMINE REGISTER (REG)

EXAMINE SINGLE
PRECISION FLOATING -
POINT REGISTER (FLT)

FUNCTION (FN)

SINGLE STEP (SGL)

RUN (RUN)

114

The Memory Write (WRT) key causes the Processor to
halt and read in the least significant 16 bits of the 20~
bit Switch Register. The halfword of data is written
into the memory location presently pointed to by the
Location Counter. The memory operation is subject
to translation or defined by PSW bits 8:11, The data
written is then output to Display Registers D1 and

D2. The Location Counter is incremented by two

and output to Display Registers D3 and D4. The lamp
next to the Memory Address/Memory Data diagram
is turned ON.

The Examine Register (REG) key sets up the Hexadecimal
Display Panel to interpret the next Hexadecimal key de-
pressed as a General Register number., When the hexa-
decimal register number key is depressed, the Processor
halts and the content of the selected General Register is
output to Display Registers D1, D2, D3 and D4, The
General Register diagram lamp is turned ON and the
number of the displayed register is output to the

top four display lamps.

The Examine Floating-Point Register (FLT) key sets up
the Hexadecimal Display Panel to interpret the next hexa-
decimal key depressed as the number of a Floating-Point
Register. When the hexadecimal register number key is
depressed, the Processor halts and the content of the
selected Floating-Point Register is output to Display Re-
gisters D1, D2, D3, and D4. The Floating-Point Register
diagram lamp is turned ON and the number of the dis-
played register is output to the top four display lamps. If
an odd numbered register had been selected and the proces-
sor is not equipped with double precision option, the
register number is forced to the next lower even value
before being used. On Processors not equipped with
floating-point, the result of this operation is undefined.

The Function (FN) key sets up the Hexadecimal Display
Panel to interpret the next hexadecimal key depressed as
the number of one of sixteen functions. When the hexa-
decimal key is depressed, the Processor halts to interpret
the selected function. If the function is undefined, the
Processor remains halted with no change to the display
indicators. The defined functions are detailed later.

The Single Step (SGL) key causes the Processor to exe-
cute one user level instruction at current location counter,
increment the LOC and then halt. The register that was
selected (PSW, LOC, General Register, etc.) is displayed.

The Run (RUN) key causes the Processor to begin program

execution at the address pointed to by the Location Counter
(LOC).

29-633 ROO

1/78

OPERATING PROCEDURES

Power Up
To power up the system, turn the key-operated security lock clockwise from the OFF position to

the ON position. This action provides electrical power to the system and leaves all device con-
trollers on the Multiplexor Bus in an initialized state.

Power Down

To shut down power to the system:

1. Halt the Processor.

2., Turn the key-operated security lock to the OFF position.

This removes primary power from the system and forces a Primary Power Fail (PPF) interrupt to
the Processor. When power is re-applied, the Processor displays the contents of the Location
Counter (LOC) and then assumes the Halt mode. If the Processor had been running when power
was turned OFF, the Run mode is assumed when power is re-applied.

Program Status Word Display and Modification

To examine the Status field (most significant half) of the current PSW:

1. Depress the Function (FN) key.

2. Depress Hexadecimal key 4. The Processor halts and the status field (most significant
half) of PSW is displayed.

To examine the Location Counter field (least significant half) of the current PSW:
1. Depress. the Function (FN) key,

2. Depress Hexadecimal key 5. The Processor halts and the Location Counter field (least
significant half) of PSW is displayed.

To modify the most significant 16 bits (bits 0-15) of the Program Status Register:
1. Depress the Data (DATA) key.
2. Enter the data (to be written into bits 0-15 of the PSW) from the Hexadecimal keyboard.
3. Depress the Function (FN) key.

4. Depress Hexadecimal key 1. The Processor halts and copies the 16 bits of the Switch
register into bits 0-15 of the PSW. The modified PSW is then displayed.

Address a Memory Location
To select an address:

1. Depress the Data (DTA) key. The Switch Register is cleared and displayed.
2. Enter the desired address from the Hexadecimal Keyboard.
3. Depress the Address (ADD) key. The Processor halts and copies the contents of the

Switch Register into the Location Counter field of the PSW. The new value of the
Location Counter is then displayed.

29-633 ROO 1/78 115

Memory Read

To display the contents of memory locations:

1. As the memory read function is subject to translation as defined by PSW bits 8:11, the
user should check these bits and modify them if necessary as in Program Status Word
Display and Modification.

2. Select the memory read start address as in Address a Memory Location,

3. Depress the Read (RD) key. The address read from, plus two, and the data read from
memory are displayed.

4. Repeat from Step 3 to read successive memory locations. The Location Counter is
automatically incremented by two each time RD is depressed.

Memory Write
To write data from the Switch Register into memory:

1, As the memory read function is subject to translation as defined by PSW bits 8:11, the
user should check these bits and modify them if necessary as in Program Status Word
Display and Modification.

2. Select the memory write start address as in Address a Memory Location.

3. Depress the Data (DTA) key. The Switch Register is cleared and displayed.
4. Enter the data to be written from the Hexadecimal Keyboard.

5. Depress the Write (WRT) key. The address written into, plus two, and the data written
are displayed.

6. Repeat from Step 3 to write different data into successive locations or from Step 5 to
write the same data into successive locations, The Location Counter is automatically
incremented by two each time WRT is depressed.

General Register Display
To examine the contents of a General Register:
1. Depress the Register (REG) key.

2. Depress the hexadecimal register number. The Processor halts and the contents of the
selected General Register is displayed.

Single Precision Floating-Point Register Display
To examine the contents of a Floating-Point Register:
1. Depress the Floating-Point Register (FLT) key.

2. Depress the hexadecimal register number. If the Processor is not equipped with
floating-point the result of this operation is undefined. If the Processor is equipped
with floating-point, the selected register number is forced even and the Floating-Point
Register is displayed. The Processor is left in the Halt mode.

Double Precision Floating-Point Register Display

After initialize or after a Function 2, all manual references to floating register are single
precision. After a Function 3, all references to floating registers are double precision, if the

Double Floating Point Unit (DFU) is equipped.

11-6 29-633 RQO 1/78

Using Even/Odd Concept

The even numbered register of an even/odd pair refers to the most significant 32 bits and the
odd numbered register refers to the least significant 32 bits.

References to an odd numbered floating point register when in the single precision mode (FN 2)
produce different results depending on whether or not the DFU is equipped. If DFU is absent,
then the number is forced to the next lower even number and that single precision register is
displayed. If DFU is present, then the LS 32 bits of the corresponding double precision register
are displayed.

Program Execution

To begin execution of a program:

1., Select the program start address as in Address a Memory Location.

2. Select the register to be displayed.

3. Depress the Run (RUN) key.
To execute a program in the Single-Step mode:

1. Select the program start address as in Address a Memory Location.

2. Select the register to be displayed.

3. Depress the Single-Step (SGL) key. One instruction is executed, the last selected
register (PSW, LOC, General Register, etc.) is displayed and the Processor halts.

4. Repeat Step 3 to execute successive instructions. Return to Step 2 to display different
registers.

Program Termination

To manually halt the execution of a program, display any register or depress the Single-Step
(SGL) key. In the latter case, the last selected register is displayed.

Console Interrupt
To generate an interrupt from the Hexadecimal Display Panel:

1. Depress the Function (FN) key.

2. Depress Hexadecimal key 0. If enabled by the current PSW, an interrupt from device

number 1 is simulated. If not enabled, the Processor enters the Run mode. Hexadecimal

Display Panel interrupts are not queued.

The Hexadecimal Display Panel interrupt feature allows an operator to inform the running pro-
gram that some operator service or function is needed. No acknowledgement of the interrupt is

required of the running program.

Switch Register

To examine the Switch Register at any time during execution of a program, depress any hexa-
decimal key. The Switch Register is displayed for as long as the key is depressed. No informa-
tion enters the Switch Register. When the hexadecimal key is released, the top 20 display lamps
return to their previous state.

The Switch Register can be modified without interrupting the Processor as follows:

1. Depress the Data (DTA) key. The Switch Register is cleared and displayed.

2. Enter the desired hexadecimal data.

29-633 ROO 1/78

11-7

Power Fail

When the Processor detects a power failure, the micro-program senses the Hexadecimal Display
Panel status. The present status of the display is stored in main memory at a dedicated area

by the micro-program. The current Program Status Word, Location Counter and the programmable
registers are then saved in dedicated main memory locations and the micro-program deactivates
the System Clear (SCLR) relay, '

On power up, after the system clear relay has re-activated, the Program Status Word, Location
Counter, and programmable registers are restored from their main memory save locations. The
status of the display prior to the power failure is retrieved and interrogated by the micro-program.

If the Hexadecimal Display was in the Run mode and if the Machine Malfunction Interrupt Enable
bit of the PSW is set, a Machine Malfunction Interrupt is taken. If Machine Malfunction Interrupts
are not enabled, the Processor enters the Run mode beginning at the instruction pointed to by the
Location Counter.

If the Hexadecimal Display Panel was not in the Run mode the value of the Location Counter is
output to the display registers, the WAIT lamp on the console is turned ON and the Halt mode
is entered.

Power failure and operation of the Initialize key are indistinguishable to the Micro-Program.
Consequently, operation of the Initialize key should be considered carefully when the Machine
Malfunction Interrupt is enabled.

Care should also be taken when using the Hexadecimal Display Panel as an input device (testing
Switch Register bits) due to the volatility of the Switch Register in a power fail situation.

After a power up, the contents of the Switch Register are undefined. The display status byte is
forced to X'40' on power up or initialize.

Wait State

The running program can place the Processor into the Wait state by setting the Wait bit of the
current PSW. The WAIT indicator on the lower right of the panel is turned ON to inform the
operator of the Wait state. The Processor can leave the Wait state and resume execution in
two ways:

1. An Interrupt can occur causing the Processor to jump to an interrupt service routine.
When the routine restores the original PSW, the Wait state is re-established.

2. The operator can depress the RUN key which causes the Wait bit in the PSW and the
WATT lamp to be reset and execution to resume at the address specified by LOC.

11-8 29-633 ROO 1/78

PROGRAMMING INSTRUCTIONS

Input/Output Programming

The Hexadecimal Display Panel is available to any running program as an 1/0 device with device
address 01. The status and command bytes for the Hexadecimal Display Panel are summarized
in Table 11-1. The status byte indicates the mode of the Hexadecimal Display Panel and is of little

interest to a running program as it always indicates Run mode or Hexadecimal Display Panel

Interrupt (Function 0). The command byte selects Normal or Incremental mode, which pertains

to data Transfers. The selection logic which deterinines the Switch Register byte or register
display byte to transfer is reset every time the Hexadecimal Display Panel is addressed when

in the Normal mode. When an Output Command Incremental mode is issued to the Hexadecimal
Display Panel, the byte selection logic is initially reset. Subsequent Read or Write instructions
transfer bytes as shown in Figure 11-3.

Block I/0 with the Hexadecimal Display Panel is only feasible when the least significant four
status bits are reset.

When programming the Hexadecimal Display Panel in the Incremental mode, the Output Command

NOTE

After an initialize sequence or after any
manual Hexadecimal Display Panel operation
that results in anything being displayed, the
Display Device Controller is automatically
placed in the Normal mode.

Incremental mode must be issued before each set of data transfers to guarantee that the byte

selection logic is reset.

The most significant four bits of the Switch Register are only available to the micro-program.

These four bits are transferred as bits 5, 6, 7, and 0 of the status when the Hexadecimal Display

Panel status is Address (i.e., Display Status = X011XXXX).

DATA FORMAT

A byte or a halfword can be transferred to or from the Display using a WD, WH, WDR, WHR, or
RD, RH, RDR, RHR instruction. Refer to Figure 11-3.

REGISTER :

DISPLAY DS D4 D3 D2 D1
SWITCH S2 S1

REGISTER

DATA TRANSFERRED

INRTRLLTaNS NORMAL MODE INCREMENTAL MODE

RD (R) S1 s1

RD (R) S1)

RD (R) S1 s1

RD (R) st S2

RH (R) 1,52 51,52

RB (R * 51,52.51.52 51,52,51,52

WD (R] D1 D1

WD (R) D1 D2

WD (R) D1 D3

WD (R) D1 D4

WD (R) D1 D5

WH (R) D1,D2 D1,D2

WH (R) D1,02 D3,04

WH (R) . D1.D2 DS.NOTE 1
WB (R) * ¢ D1,02,03,04,05 D1.02,03.04.05

.

BLOCK LENGTH = 4BYTES

29-633 ROO 1/78

“* BLOCK LENGTH = 58YTES

NOTE 1. SUBSEQUENT BYTES OUTPUT ARE LOST.

Figure 11-3. Hexadecimal Display Panel Data Transfers

119

PROGRAMMING SEQUENCES

The Hexadecimal Display has a device address of X'01'.

This device can be used to output up to five bytes of data to the Console Panel Indicators. The
following program sequence outputs four bytes of data starting from the memory location BUF:

LIS R1,1 (R1) = Display Address

LHI R3, X'40'

OCR R1,R3 Display in Incremental Mode
WD R1,BUF

WD R1,BUF+1

WD R1,BUF+2

WD R1,BUF+3

At this time the Console Panel Indicators are ON as shown below:

D5 D4 D3 D2 D1
(BUF+3) (BUF+2) | (BUF+1) (BUF)

In order to light indicators D1 and D2, the Console can be in the normal mode and one halfword
can be output. The following programming sequenoce can be used:

LIS R1,1

LHI R3, X'80'

OCR R1,R3 Console in Normal Mode
WH R1,BUF

The Console Panel 4Indicators will be ON as shown below:

D5 D4 D3 D2 D1
(BUF+1) (BUF)

Note that when a halfword of data is output to the Console Panel, the most significant byte loads
in indicator D1 and the least significant byte loads in D2.

The Console Panel Switch Register can be read by using the read instructions as shown below:

LIS R1,1 (R1) = Console Address
LHI R3,X'80' (R3) = 80 = Normal Mode
OCR R1,R3

RHR R1,R4 Read 1 Halfword

EXBR R4, R4 Exchange Bytes

At this time Register 4 has the 16 data switches.

Programming Note:

If more than five bytes are outpdt to the Display Panel, the data is lost after five bytes. The
Console must then be initialized by giving an Output Command to it before outputting any data,
if the data is to be displayed.

11-10 29-633 ROO 1/78

TABLE 11-1. DISPLAY STATUS AND COMMAND

STATUS
0|1 |2 3 4 5 6 7
Run | X [0 (O 0 X| X| X| X
Memory write X{01}0 1 X| X] XX
Memory read X0 (1 0 X| X| X| X
Address X101 1 X| X X[X
Fixed Register | X {1 |0 0| X X| X[|X
Floating Register | X {1 [0 1| X| X! x| X
Function X|11]0 01 X | X} XX
General Register 0 011101 X 1 0 ofo Floating Register 0
1 1 1 01} X 1 0 010
2 [of1fo x| 1fofof1 2
3 1 1 0| X 1 0 01
4 0 110 X 1 0 1(0 4
5 1 110 X 1 0 110
6 o1]o|X|{ 1[0 1|1 6
7 1|10 |X| 1|0} 1|1
8 0 1 0| X 1 1 00 &
9 1 110X 1 1 0|0
A 0 110 X 1 1 0|1 A
B 1 10X 1 1 01
cC o]l Xfo|x]|1]1]1]o0 C
D 1 10X 1 1 110 {
E Jo| 10X} 1]1]1]1 Floating Register E
General Register F 1 110 (X 11 1]1
Function 0 0|11 {0 0| o}l o] ol o |Console Interrupt
1 1{1|0]o| o0o]of o]0 |PSWSelect
2 0|10 0| ofof of1 |SetsSingleprecision display mode
3 1|11 (0]o0 0 0| 0| 1 {Set Double precision display mode
4 0 1 0 0 0 0 1 0 Display PSW
5 1 1 0 0 0 0 1 0 Display LOC
6 01110 0 0 0 1 1
7 1 1 0 0 0 0 1 1
8 01110 0 0 1 0]0
9 11110 0 0 1 0o
A 0110 0 0 1 011
B 1 1 0 0 0 1 0f1
C 0 1 (o0 0 0 1 1]0
D 1 1 (o0 0 0 1 1{0
E 0|1 {o 0 0 1 1|1
Function F 1 (1 (0 0 01 111
COMMAND

Normal 110 10 0 0 010 0
Incremental 0111 |oO 0 0 0o |o 0

29-633 ROO 1/78 11-11/11-12

LSD

APPENDIX 1

MODEL 8/16E OP-CODE MAP
MSD
0 1 2 3 4 5 6 8 9 c D E
1 1 i 1 1
BTBS STH STE, | STD, | SRLS | BXH STM
BALR BTFS AL AHM! STME; stes | sxe! | ' | svc!
BTCR BFBS gTc! LME12 stBR | Lesw! sTB SINT
* *
BFCR | SETMR | BFFs | LpsR | BFC! SETM LPS LBR THI (8
* * * *
NHR LIS NH! atL! EXBR NHI cLB
CLHR LCS cLH! asL! EPSR CLHI AL
* *
OHR AlS on'! RTL! WBR OHI wa'!
. * *
XHR SIS XH? RreL’ RBR XHI re!
* *
LHR LER, | LDR, | LA ey | mRk | wer | W | wH!
* 'y *
CHR CER, | CDR, | cH' CE; CD; RHR CHI an!
»* *
AHR AER, | ADR, | AH! AE] ap! | wor | AHI wD RRL
2 2 2 . .
SHR SER, | SDR, sH! SE12 SD; RDR SHI RD RLL
* -
MHR MER, | MDR, | MH' ME, | MD) | MHUR | SRHL mHu! | SRL
DHR DER, | DDR, | DH! DE; DD; SSR SLHL ss SLL
* *
ACHR FXR, |FXDR, | AcH! ' STMD; OCR | SRHA oc SRA
»* »
ACKR ACK
1 1
SCHR FLR, |FLDR, | SCH D) | (aiy | StHA Al SLA
» *
*PRIVILEGED INSTRUCTIONS NOTES

29-633 RO! 10/78

SECOND OPERAND MUST BE

ALIGNED ON A HALFWORD

BOUNDARY.
THESE INSTRUCTIONS ARE

OPTIONAL.

Al-1/A1-2

APPENDIX 2 -
INSTRUCTION SUMMARY — ALPHABETICAL WITH ATTRIBUTES

Attributes

A: Arithmetic Fault Interrupt can occur

C: Condition Code in the PSW is set to reflect the result

D: Second operand should be on doubleword boundary for consistent results

F: Sccond operand should be on fullword boundary for consistent result (also see H)

H: Second operand must be on halfword boundary for consistent result

I: Hllegal Instruction Interrupt can be initiated

1A: Immediate Interrupt can be initiated

P: Protect Mode violation can occur

INSTRUCTION OP-CODE MNEMONIC ATTRIBUTES PAGE NO.
Acknowledge Interrupt DF ACK(AD C.p 9-4
Acknowledge Interrupt Register 9F ACKR(AIR) C,p 9-4
Add Double Precision Floating Point TA AD C,D,A,l 6-30
Add Floating Point 6A AE C,F.A,l 6-14
Add Floating Point Register 2A AER CA,l 6-14
Add Halfword 4A AH CH 5-3
Add Halfword Immediate CA AHI C 5-3
Add Halfword to Memory 61 AHM’) CH 54
Add Halfword Register 0A AHR C 5-3
Add Immediate Short : 26 . AlS C 5-3
Add Register Double Precision Floating Point 3A ADR CAl 3-25
Add to Bottom of List 65 ABL C,F 3-25
Add to Top of List 64 ATL CF 25
Add with Carry Halfword 4L ACH 5-6
AND Halfword 44 NH C,H 3-15
AND Halfword Immediate (0] NHI C 3-15
AND Halfword Register 04 NHR C 3-15
Autoload D5 AL C,P 9-15
Branch and Link 41 BAL H 44
Branch and Link Register 01 BALR 44
Branch on False Condition 43 " BFC H 4-3
Branch on False Condition Backward Short 22 BFBS 4-3
Branch on False Condition Forward Short 23 BFFS 4-3
Branch on False Condition Register 03 BFCR 4-3
Branch on Index High Co BXH H 4-6
Branch on Index Low or Equal Cl BXLE H 4-5
Branch on True Condition 42 BTC H 4-2
Branch on True Condition Backward Short 20 BTBS 4-2
Branch on True Condition Forward Short 21 BTFS 4-2
Branch on True Condition Register 02 BTCR 4-2
Compare Double Precision Floating Point 79 CDh C.D,I 6-32
Compare Floating Point 69 CE C,F.l 6-18
Compare Floating Point Register 29 CER C,l 6-18
Compare Halfword 49 CH C,H 5-8
Compare Halfword Immediate c9 CHI C 5-8
Compare Halfword Register 09 CHR C 5-8
Compare Logical Byte D4 CLB C 3-14
Compare Logical Halfword 45 CLH CH 3-13
Compare Logical Halfword Immediate Cs CLHI C 3-13
Compare Logical Halfword Register 05 CLHR C 3-13
Compare Register Double Precision Floating Point 39 CDR (oN | 6-32
Divide Double Precision Floating Point 7D DD C,D,A,L 6-34
Divide Floating Point 6D DE C,F,Al 6-2
Divide Floating Point Register YD DER CA,l 621
Divide Halfword 4D DH H.A 5-11
Divide Halfword Register oD DHR A 5-11
Divide Register Double Precision Floating Point 3D DDR CA,l 6-34

29-633 ROO 1/78 A2-1

INSTRUCTION

Exchange Byte Register
Exchange Program Status Register

Exclusive OR Halfword
Exclusive OR Halfword Immediate
Exclusive OR Halfword Register

Fix Register

Fix Register Double Precision Floating Point
Float Register

Float Register Double Precision Floating Point

Load Byte

Load Byte Register

Load Complement Short

Load Double Precision Floating Point

Load Floating Point

Load Floating Point Multiple

Load Floating Point Register

Load Halfword

Load Halfword Immediate

Load Halfword Register

Load Immediate Short

Load Multiple

Load Multiple Double Precision Floating Point
Load Program Status

Load Program Status Register

Load Program Status Word

Load Register Double Precision Floating Point

Multiply Double Precision Floating Point
Multiply Floating Point

Multiply Floating Point Register
Multiply Halfword

Multiply Halfword Register

Multiply Halfword Unsigned

Multiply Halfword Unsigned Register

APPENDIX 2 (Continued)

OP-CODE

94
95

47
C7
07

2E
3E
2F
3F

Multiply Register Double Precision Floating Point 3C

OR Halfword
OR Halfword Immediate
OR Halfword Register

Output Command
Output Command Register

Read Block

Read Block Register
Read Data

Read Data Register
Read Halfword

Read Halfword Register

Remove from Bottom of List
Remove from Top of List

Rotate Left Logical
Rotate Right Logical

Sense Status
Sense Status Register

Set Map
Set Map Register

A2-2

EB
EA
DD
9D

53
13

PAGE NO.

MNEMONIC ATTRIBUTES

EXBR 39
EPSR C,P.IA 89
XH CH -17
XHI C 3-17
XHR C -17
FXR (&8 | 6-23
FXDR Gl 6-35
FLR ClI 6-24
FLDR G, 6-36
LB 3-8
LBR 3-8
LCS C 3-5
LD CD.ALI 6-25
LE C,F,Al 6-10
LME F.I 6-11
LER C.A.l 6-10
LH C 3-6
LHI, C 3-8
LHR C 3-5
LIS C 3-5
LM F 3-7
LMD D.1 6-27
LPS 7-5
LPSR 7-5
LPSW CP,IA 8-8
LDR C,Al 6-25
MD CD,AI 6-33
ME C,F,Al 6-19
MER C.A,l 6-19
MH H 5-9
MHR 59
MHUR 5-1¢
MHU 5-1C-
MDR GA,I 6-33
OH C,H 3-
OHI C 3-16
OHR C 3-1
oC C,P.IA 9-6
OCR C,PIA 9-6
RB C,F,P 99
RBR C,Pp 9-10
RD C.p 9-7
RDR C,p 9-7
RH C,H,P 9-7
RHR C,P 9-8
RBL C,F 3-26
RTL CF 3-26
RLL C 3-23
RRL C 3-24
SS C,P 9-5
SSR C,p 9-5
SETM 7-6
SETMR 7-6

29-633 ROO 1/78

APPENDIX 2 (Continued)

INSTRUCTION OP-CODE " MNEMONIC ATTRIBUTES PAGE NO.

Shift Left Arithmetic EF SLA C 5-13
Shift Left Halfword Arithmetic CF SLHA C 5-14
Shift Left Halfword Logical CDh SLHL C 3-21
Shift Left Logical Short 91 SLLS C 3-21
Shift Left Logical ED SLL C 3-10
Shift Right Arithmetic EE SRA C 5-15
Shift Right Halfword Arithmetic CE SRHA C 5-15
Shift Right Halfword Logical CC SRHL C 322
Shift Right Logical Short 20 SRLS C 3-22
Shift Right Logical EC SRL C 3-20
Simulate Interrupt E2 SINT CPIA 8-10
Store Byte D2 STB RP 3-12
Store Byte Register 92 STBR 3-12
Store Double Precision Floating Point 70 STD D,I 6-28
Store Floating Point 60 . STE F,1 6-12
Store Floating Point Multiple 71 STME F,1 6-13
Store Halfword 40 STH . H 3-10
Store Multiple DO STM F 3-11
Store Multiple Double Precision Floating Point 7E STMD D,I 6-29
Subtract Double Precision Floating Point. 7B SD C,D,AL 6-31
Subtract Floating Point . 6B SE C,F,A,l 6-16
Subtract Floating Point Register 2B SER CA,l 6-16
Subtract Halfword 4B SH CH 5-5
Subtract Halfword limmmediate CB SHI C 5-5
Subtract Halfword Kegister 0B SHR C 5-5
Subtract Immediate Short 27 SIS C 5-5
Subtract Register Douhle Precision Floating Point 3B SDR CA,l 6-31
Subtract with Carry Halfword 4F SCH 5-7
Supervisor Call El . SVC CF 8-11
Test Halfword Immediate C3 THI C 3-18 -
Write Block D6 WB C,F.P 9-13
Write Block Register 96 WBR C,P 9-14
Write Data DA WD C,P 9-11
Write Data Register 9A WDR CPp 9-11
Write Halfword : D8 WH ‘ CH,P 9-12
Write Halfword Register 98 : WHR CP 9-12

29-633 ROO 1/78 A2-3/A24

APPENDIX 3
INSTRUCTION SUMMARY NUMERICAL

OP CODE MNEMONIC INSTRUCTION PAGE NO.
01* BALR Branch and Link Register 4-4
02*% BTCR Branch on True Condition Register . 4-2
03* BFCR Branch on False Condition Register 4-3
04 NHR AND Halfword Register 3-15
05 CLHR Compare Logical Halfword Register 3-13
06 OHR OR Halfword Register 3-16
07 . XHR _ Exclusive OR Halfword Register 3-17
08 LHR Load Halfword Register .35
09 CHR Compare Halfword Register 5-8
0A AHR Add Halfword Register 5-3
0B SHR Subtract Halfword Register 5-5
oc* MHR Multiply Halfword Register 5-9
ob* DHR Divide Halfword Register 5-11
OE ACHR Add with Carry Halfword Register 5-6
oF SCHR Subtract with Carry Halfword Register 5-7
13 SETMR Set Map Register 7-6
20* BTBS Branch on True Condition Backward Short 4-2
21* BTFS ’ Branch on True Condition Forward Short 4-2
22% BFBS : Branch on False Condition Backward Short 43
23* . BFFS Branch on False Condition Forward Short 4-3
24 LIS Load Immediate Short 35
25 LCS Load Complement Short 3-5
26 . AlS Add Immediate Short 5-3
27 SIS Subtract Immediate Short 5-5
28 LER Floating Point Load Register 6-10
29 CER Floating Point Compare Register 6-18
2A AER Floating Point Add Register 6-14
2B SER Floating Point Subtract Register 6-16
2 MER Floating Point Multiply Register 6-19
2D DER Floating Point Divide Register 6-21
2E FXR Fix Register 6-23
2F FLR Float Register 6-24
33 LPSR Load Program Status Register 7-5
38 LDR Load Register Double Precision Floating Point 6-25
39 CDR Compare Register Double Precision Floating Point 6-32
3A ADR Add Register Double Precision Floating Point 3-25
3B SDR Subtract Register Double Precision Floating Point 6-31
3C MDR Multiply Register Double Precision Floating Point 6-33
3D DDR Divide Register Double Precision Floating Point 6-34
3E FXDR Fix Register Double Precision Floating Point 6-35
3F FLDR Float Register Double Precision Floating Point 6-36
40%* STH Store Halfword 3-10
41* BAL Branch and Link 4-4
42% BTC Branch on True Condition 4-5
43* BFC | Branch on False Condition 4-3
44 NH AND Halfword 4-15
45 CLH Compare Logical Halfword 3-13

29-633 ROO 1/78 A3-1

OP CODE

46
47

48
49

4A
4B
4C*
4D*
4E
4F

53

60*
6l
64
65

60
67
68
69

6A
6B
6C
6D

70
71
72

73

94 *

96
97

98
99

9A
9B
9C*
9D
oF
9F

MNEMONIC

OH
XH

LH
CH

AH
SH
MH
DH
ACH
SCH

SETM

STE

AHM
ATL
ABL

WDR

RDR

MHUR

SSR

OCR

ACKR (AIR)

APPENDIX 3 (Continued)

INSTRUCTION

OR Halfword
Exclusive OR Halfword

Load Halfword
Compare Halfword

Add Halfword

Subtract Halfword

Multiply Halfword

Divide Halfword

Add with Carry Halfword
Subtract with Carry Halfword

Set Map

Store Floating Point

Add Halfword to Memory
Add to Top of List

Add to Bottom of List

Remove from Top of List
Remove from Bottom of List
Load Floating Point
Compare Floating Point

Add Floating Point
Subtract Floating Point
Multiply Floating Point
Divide Floating Point

Store Double Precision Floating Point
Store Floating Point Multiple
Load Floating Point Multiple

Load Program Status

Load Double Precision Floating Point
Compare Double Precision Floating Point

Add Double Precision Floating Point

Subtract Double Precision Floating Point
Multiply Double Precision Floating Point
Divide Double Precision Floating Point

Store Multiple Double Precision Floating Point
Load Multiple Double Precision Floating Point

Shift Right Logical Short
Shift Left Logical Short
Store Byte Register
Load Byte Register

Exchange Byte Register
Exchange Program Status Register

Write Block Register
Read Block Register

Write Halfword Register
Read Halfword Register

Write Data Register

Read Data Register

Multiply Halfword Unsigned Register
Sense Status Register

Output Command Register
Acknowledge Interrupt Register

PAGE NO.

9-12
9-8

9-11

5-10
9-5
9-6
9-4

29-633 ROO 1/78

OP CODE

CO*
c1*

2

C3

C4
Cs
C6
7

(&
9

CA
B

cC
D

CE
Cr

DO*
DI#
D2*
D3*
D4

Do
D7

D8
D9

DA
DB
DC*
DD
DE
DF

El

MNEMONIC

BXH
BXLE

LPSW

THI

NHI
CLHI
OHI
XHI

LHI
CHI

AHI
SHI

SRHL
SLHL

SRHA
SLHA

ACK (Al)
svC

SINT
RRL
RLL

SRL
SLL
SRA
SLA

* Condition Code NOT CHANGED.

29-633 ROO 1/78

APPENDIX 3 (Continued)

INSTRUCTION

Branch on Index High
Branch on Index Low or Equal

Load Program Status Word

Test Halfword immediate

AND Halfword Immediate

Compare Logical Halfword Immediate

OR Halfword Immediate

Exclusive OR Halfword Immediate

Load Halfword Immediate
Compare Halfword Immediate

Add Halfword Immediate
Subtract Halfword Immediate

Shift Right Halfword Logical
Shift Left Halfword Logical

Shift Right Halfword Arithmetic '

Shift Left Halfword Arithmetic

Store Multiple

Load Multiple

Store Byte

Load Byte

Compare Logical Byte

Autoload

Write Block
Read Block

Write Halfword
Read Halfword

Write Data

Read Data

Multiply Halfword Unsigned
Sense Status

Qutput Command
Acknowledge Interrupt

Supervisor Call

Simulate Interrupt

Rotate Right Logical

Rotate Left Logical

Shift Right Logical
Shift Left Logical
Shift Right Arithmetic
Shift Left Arithmetic

PAGE NO,

9-13

9-12
9-8

9-11
9-7
5-10
9-5
9-6
94

8-11

8-10
3-24
3-23

3-20
3-10
5-15
5-13

A3-3/A3-4

APPENDIX 4

EXTENDED BRANCH MNEMONICS

INSTRUCTION OP CONE (M1) MNMNEMONIC OPERAND

Branch on Carry 428 BC A(X2)

Branch on Carry Register 028 BCR R2

Branch on No Carry 438 BNC A(X2)

Branch on No Carry Register 038 BNCR R2

Branch on Equal 433 BE A(X2)

Branch on Equal Register 033 BER R2

Branch on Not Equal 423 BNE A(X2)

Branch on Not Equal Register 023 BNER R2

Branch on Low 428 BL A(X2)

Branch on Low Register 028 BLR R2

Branch on Not Low 438 BNL A(X2)

Branch on Not Low Register 038 BNLR R2

Branch on Minus 421 BM A(X2)

Branch on Minus Register 021 BMR R2

Branch on Not Minus 431 BNM A(X2)

Branch on Not Minus Register 031 BNMR R2

Branch on Plus 422 BP A(X2)

Branch on Plus Register 022 BPR R2

Branch on Not Plus 432 BNP A(X2)

Branch on Not Plus Register 032 BNPR R2

Branch on Overflow 424 BO A(X2)

Branch on Overflow Register 024 BOR R2

Branch on No Overflow 434 BNO A(X2)

Branch on No Overflow Register 034 BNOR R2

Branch Unconditional 430 B A(X2)

Branch Unconditional Register 030 BR R2

Branch on Zero 433 BZ A(X2)

Branch on Zero Register 033 BZR R2

Branch on Not Zero 423 BNZ A(X2)

Branch on Not Zero Register 023 BNZR R2

No Operation 420 NOP

No Operation Register 020 NOPR

Branch on Carry Short 208 BCS A (Backward Reference)
218 BCS A (Forward Reference)

Branch on No Carry Short 228 BNCS A (Backward Reference)
238 BNCS A (Forward Reference)

Branch on Equal Short 223 BES A (Backward Reference)
233 BES A (Forward Reference)

Branch on Not Equal Short 203 BNES A (Backward Reference)
213 BNES A (Forward Reference)

Branch on Low Short 208 BLS A (Backward Reference)
218 BLS A (Forward Reference)

Branch on Not Low Short 228 BNLS A (Backward Reference)
238 BNLS A (Forward Reference)

29-633 ROO 1/78

A4-1

APPENDIX 4 (Continued)

INSTRUCTION OP CODE (M1) MNEMONIC OPERANDS
Branch on Minus Short 201 BMS A (Backward Reference)
21 BMS A (Forward Reference)
Branch on Not Minus Short 221 BNMS A (Backward Reference)
231 BNMS A (Forward Reference)
Branch on Plus Short 202 BPS A (Backward Reference)
212 BPS A (Forward Reference)
Branch on Not Plus Short 222 BNPS A (Backward Reference)
232 BNPS A (Forward Reference)
Branch on Overflow Short 204 . B80S A (Backward Reference)
214 BOS A (Forward Reference)
Branch on No Overflow Short 224 BNOS A (Backward Reference)
234 BNOS A (Forward Reference)
Branch Unconditional Short 220 BS A (Backward Reference)
230 BS . A (Forward Reference)
Branch on Zero Short 223 BZS A (Backward Reference)
233 BZS A (Forward Reference)
Branch on Not Zero Short 203 BN2ZS A (Backward Reference)
213 BNZS A (Forward Reference)

A4-2 29-633 R0OO 1/78

oc

34

68
137
274
549

099

29-633 ROO 1/78

el I

16

67
134

268
536
073
147

294
589
179
359

79
438
877
755

511

16
32

65
131

262

524

048
097
194
388

777
554
108
217

435
870
741
483

967
934
869
738

476
953
906
813

627

128

266
512
024
048

096
192
384
768

536
072
144
288

576
152
304
608

216
432
864
728

456
912
824
648

296
592
184
368

736
472
944
888

776

APPENDIX 5
ARITHMETIC REFERENCES

TABLE OF POWERS OF TWO

w N - O

25
0.015 625
0.007 812 5

EN - RS IS
e
o
<
b

8 0.003 906 25

9 0.001 953 125

10 0.000 976 562 5
11 0,000 488 281 25

12 0,000 244 140 625

13 0,000 122 070 312 5
14 0.000 061 035 156 25
15 0,000 030 517 578 125

16 0.000 015 258 789 062 5

17 0.000 007 629 394 531 25

18 0,000 003 814 697 265 625

19 0.000 001 907 348 632 812 -5

20 0,000 000 953 674 316 406 25
21 0,000 000 476 837 158 203 125
22 0,000 000 233 418 579 101 562
23 0.000 000 119 209 289 550 781

24 0.000 000 059 604 644 775 390
25 0,000 000 029 802 322 387 695
26 0.000 000 014 901 161 193 847
27 0,000 000 007 450 580 596 923

28 0.000 000 003 725 290 298 461
29 0.000 000 001 862 645 149 230
30 0.000 000 000 931 322 574 615
31 0.000 000 000 465 661 287 307

32 0,000 000 000 232 830 643 653
33 0,000 000 000 116 415 321 826
34 0,000 000 000 058 207 660 913
35 0.000 000 000 029 103 830 456

36 0.000 000 000 014 551 915 228
37 0,000 000 000 007 275 957 614
38 0.000 000 000 003 637 978 807
39 0.000 000 000 001 818 989 403

40 0,000 000 000 000 909 494 701

25

625
312
656
828

914
957
478
739

869
934
467
733

366
183
091
545

772

25
125

062
031
515
257

628
814
407
703

851
425
712
856

928

26
625
812

906
453
226
613

806
903
951
475

237

25

125
562
281

640
320
660
830

915

25

625
312
156
078

039

25
125

062

APPENDIX 5 (Continued)

TABLE OF POWERS OF SIXTEEN

16 n

1 0

16 1

256 2

4 096 3

65 536 4

1 048 576 5

16 777 216 6

268 435 456 7

4 294 967 296 8

68 719 476 736 9
1 099 511 627 776 10

17 592 186 044 416 11
281 474 976 710 656 12
4 503 599 627 370 496 13
72 057 594 037 927 936 14
152 921 504 606 846 976 15
— N
Decimal Values
AS5-2 29-633 ROO 1/78

APPENDIX 5 (Continued)

HEXADECIMAL ADDITION AND SUBTRACTION TABLE
Examples: 5+A = F; 18-D = B; A+B = 15

1 2 3 4 5 6 7 8 9 |aA B c| ol E|F
i 2 3 4 5 6 7 8 9 | A |B C D | E F |10 | 1
2 | 3 4 5 6 7 8 9 [A | B |C D E| F |10 |11 2
3 | 4 5 6 7 8 9 | A |B |c |D E F |10 |11 |12 | 3
4 | 5 6 7 8 9 | A B C D |E F | 10 |11 |12 |13 | 4 |
5 | 6 7 8 9| a|l Bl c |p |E |F [10 |11 |12 [13 [14 | 5
6 | 7 8 9| Al B| c|D|E F |10 |11 [12 |13 |14 |15 | 6
7 | 8 9 Al Bl ¢c| b | E F (10 [10 |12 | 13 {14 |15 |16 | 7
8 | 9 A B| c| p| E r |10 |12 |12 |13 [14 [15 |16 |17 | 8
9 | A | B c|l | E] F [10 J11 {12 |13 |14 |15 | 16 |17 [18 [9
AlB| C p| E| F |10 [11 [12 |13 |14 [15 |16 [17 |18 |19 | A"
B|C| D E| F | 10 | 11 |12 |13 |14 |15 |16 |17 |18 |19 [1A [B |
c|bp| E Fli1o |11 [12 [13 |14 |15 |16 |17 |18 [19 | 1A |1B | C
D | E F | 10|11 | 12 |13 [14 |15 |16 [17 [18 | 19 | 1A [1B | 1C | D
E| F | 10| 11 {12 |13 |14 {15 |16 |17 |18 |19 [1A | 1B |1C | 1D | E
F |10f 11| 12 |13 [14 | 15 |16 |17 |18 |19 | 1A | 1B | 1C | 1D | 1E | F
1 2 3 4 5 6 7 8 9 |a B c| | E]F
HEXADECIMAL MULTIPLICATION AND DIVISION TABLE
Examples: 5x6 = 1E; 75+D = 9; 58 +8 = B; 9xC = 6C
1 |2 3 4 5 6 7 8 9 | A B C p |E |F ‘
1 |1 |2 3 4 5 6 7 8 9 | A B C D | E 1
2 |2 | 4 6 8 | a c E | 10 | 12 | 14 16 | 18 | 1A |1C |1E |2
3 |3 |8 9 C F |12 | 15 | 18 | 1B | 1E| 21 | 24 | 27 |2A [2D |3
4 |4 |8 c |10 |14 [18 [1c | 20 | 24 | 28 2c | 30 | 34 |38 [3C |4
5 [5 | A F | 14 |19 | 1E | 23 | 28 | 2D | 32 37 | 3C | 41 |46 |4B |5
6 |6 | C 12 | 18 | 1E | 24 | 2A | 30 | 36 | 3c | 42 | 48 | 4E [54 |5A |6
7 |7 | E 15 | 1C | 23 | 2a | 31 | 38 | 3F | 46 4D | 54 | 5B |62 |69 |7
s |8 |10 | 18 |2 [28 [30 | 38 | 40 [48 | 50 58 | 60 | 68 |70 |78 |8
9 1o |12 | 1B | 24 | 2D | 36 | 3F | 48 | 51 | 5A| 63 | 6C | 75 | 7E |87 |9
A | A |14 | 1E | 28 [32 [3c | 46 | 50 | 5A | 64 GE | 78 | 82 |8C |96 | A
B 1B |16 | 21 |2c |37 | 42 | ab | 58 | 63 | 6E| 79 | 84 | 8F [9A | A5 | B
c lc |18 [24 |30 [3c| 48 | 54 | 60 | 6C | 78 sa | 90 | 9C | A8 | B4 | C
D | D |1a | 27 | 34 |41 | 4E | 5B | 68 | 75 | 82 8F | oC | A9 | B6 [C3 [D
E |k |1c | 2a | 38 |46 [54 | 62 | 70 | 7E| 8Cc| 9A| A8 | B6 | C4 | D2 | E
F|lF |1] 20 | 3c| 4B | 5a | 69 | 78 | 87| 96 A5 | B4 | C3 | D2 [El | F
1 2 3 4 5 6 7 8 9 | A B| c| DJ|E]|F

29-633 ROO 1/78

AS-3

APPENDIX 5 (Continued)

TABLE OF MATHEMATICAL CONSTANTS

CONSTANT DECIMAL VALUE HEXC:ESLMAL FLOATING POINT VALUE
DOUBLE PRECISION
SINGLE PRECISION
e

T 3.14169 26536 89793 23846 | 3.243F 6ASS 4132 43F6 A888 5A31
85A3 08D3

-1 0.31830 98861 83790 67154 | 0.517C C1B7 4051 7CC1 B727 220B
2722 0A95

Jn 1.77245 38509 05516 02730 1.C5BF 891B ~ 411C 5BF8 9184 EFéB
4EF6 AATA

Lnw 1.14472 08858 49400 17414 1.250D 048E 4112 B67A E858 4CAA
7A1B DOBD

J3 1.73206 08075 68877 29353 1.8B67 AES85 411B 67AE 8584 CAA7
84CA A738B

e 271828 18284 59045 23536 2.B7Et 5162 412B 7E15 1628 AED3
8AED 2A6B

e-1 0.36787 94411 71442 32160 | 0.5E2D 58D8 405E 2D58 D8B3 BCDF
B3BC DF1B

Je 1.64872 12707 00128 14683 1.A612 98E1 411A 6129 8E1E 069C
E069 BCO7

logqge 0.43429 44819 03251 82765 | 0.6F2D EC54 406F 2DEC 5A9B 9439
9894 38CB

logge 144269 50408 88963 40736 1.7154 7652 4117 1547 6528 . 82FE
B82F E177

v 0.57721 66649 01532 86061 0.93C4 67E3 4093 C467 E37D BOCS
7DBO C7A5

Lny -0.54953 93129 81644 82234 |.0.8CAE 9BC1 C08C AE9B C11F 5A60
1F5A 5FF4

J2 141421 35623 73095 04880 1.6A09 E667 4116 AO09E 667F 3BCD
F3BC €909

Ln2 0.69314 71805 59945 30942 | 0.B172 17F7 40B1 7217 F7D1 CF7A
D1CF 79AC

logq02 0.30102 99956 63981 19521 0.4D10 4D42 404D 104D 427D E7FC
7DE7 FBCC

J10 3.16227 76601 68379 33199 | 3.2088 075B 4132 98B0 75B4 B6AS
4B6A 5240

Ln10 2.30258 50929 94045 68402 2.4D76 3776 4124 D763 776A AA2B
AAA2 BOSC

AS5-4 29-633 ROO 1/78

APPENDIX 5 (Continued)
INTEGER CONVERSION TABLE

Mexadecimal and Decimal Integer Conversion Table
HALFWORD HALFWORD
BYTE BYTE , BYTE BYTE
BITS: 0123 4567 0123 4567 0123 4567 0123 4567
Hex Decimal Hex Decimal Hex Decimal Hex | Decimal Hex | Decimal | Hex | D I | Hex | D | | Hex | Decimal
0 0 0] 0 0] 0 0 0 0olo 010 0 o | _ 0 __
| 268,435,456 | 1 16,777,216 1 1,048,576 | 1 65,536 1 4,09 | 1 256 | 1 16 1 1
2 536,870,912 | 2 33,554,432 2 2,097,152 | 2 131,072 2 8,192 | 2 512 | 2 32 12 2
3 | #05.308,368 [3| 30,331,648 | 3| 3,145,728 [3| 196,808 | 3 | 12,288 [3 73 e T3] 3
4 [1,073,741,824 | 4 67,108,864 | 4 4,194,304 | 4 262,144 4 16,384 | 4 1,024 | 4 64| 4 | 4 _
5 [1,342,177,280 | 5 83,886,080 | 5 5,242,880 [5 327,680 5 20,480 | 5 1,280 [S 80 |5 5
6 [1,610,612,736] & 100,863,296 | & 6,291,456 | & 393,218 6 24,5766 1,536 | 6 9% |6 | 6
7 1,879,088192 7 117,440,512 | 7 7,340,032 | 7 458,752 7 28,672 | 7 1,792 | 7 112 7 17
8 12,147,483,648 | 8 134,217,728 8 8,388,608 | 8 524,288 8 32,768 | 8 2,048 | 8 128 8 8
12,153,704 9 156?”4,944 9 837184 1 9 589,624 9 36,8841 9 2,304 [9 144 9 9
A 12,684,354,560 | A 167,772,160 | A 110,485,760 [A 655,360 A 40,960 | A 2,560 | A 160 | A] 10
B |2,952,790,016 [B |184,549,376 | B |11,534,33% | B 720,896 B 45,056 | B 2,816 | 8 176 B n_
C [3,221,225,472 | C (201,326,592 | C 12,582,912 | C 786,432 c 49,152 | C 3,072 | C 192 C 2
D [3,489,660,928 [D 218,103,808 D (13,631,488 | D 851,968 D 53,248 | D 3,328 [D 208 D | 13
E 3,733:_@6,384 E 234,881,024 | E 14,680,064 | E 917,504 E 57,344 | E 3,584 [E 224 E 14
4,026, 537,8%0 | £ | 251,858,240 | F (15,728,640 | F | 983,040 F 61,440 | F 3,840 [F 240 F 15
8 7 5 4 3 2 1
TO CONVERT HEXADECIMAL TO DECIMAL To convert integer numbers greater than the capacity of
EXAMPLE .
- table, use the techniques below:
1. Locate the column of decimal numbers corresponding to Conversion of
the left-most digit or letter of the hexadecimal; select Hexadecimal Volue D34 HEXADECIMAL TO DECIMAL
from this column and record the number that corresponds
to the position of the hexadecimal digit or letter. 1. D 3328 Successive cumulative multiplication from left to right,
2, Repeot step 1 for the next (second from the left) 2.3 48 adding units position.
position. Exomple: D34)4=3380,p D= 13
3. Repeat step | for the units (third from the left) 3. 4 4 x16
position. - 208
4. Add the numbers selected from the table to form the 4. Decimal 3390 3= ;T?
decimal number.
x16
3376
4= +4
3380
JO CONVERT DECIMAL TO HEXADECIMAL
@S N EXAMPLE
1. (o) Select from the table the highest decimal number
that is equal to or less than the number to be con- Conyeuion of DEClMAL TO HEXADECIMAL
Decimal Value 3380
verted. i . . ;
P rd evend | | . Divide and collect the remainder in reverse order.
(b) the of the Y containing 1. D 3328
the selected number. ‘ Seees 52 E lo: 3380.. = X
(c) Subtract the selected decimal from the number to xomple: 10 16
be converted. 2.3 48 16 | 3380 remainder
2. Using the remainder from step 1(c) repeat all of step 1 4 16 1211 \ .
to develop the second position of the hexadecimal l———\
(ond a remainder). 3. 4 -4 16 (13 3
3. Using the remainder from step 2 repeat all of step 1 to 4. Hexadecimal D34 \ D 33801 9=D34,,
develop the units position of the hexadecimal. - e ima
4, Combine terms to form the hexadecimal number.
29-633 ROO 1/78 AS-5

APPENDIX 5 (Continued)
FRACTION CONVERSION TABLE

Hexadecimal and Decimal Fraction Conversion Table

HALFWORD
BYTE BYTE
BITS 0123 4567 0123 4567

Hex | Decimal | Hex Decimal Hex Decimal Hex Decimal Equivalent

.0 .0000 .00 .0000 0000 .000 .0000 0000 0000 .0000 .0000 0000 0000 0000
. .0625 .01 .0039 0625 .001 .0002 4414 0625 .0001 .0000 1525 8789 0625
2 | 1250 | .02 .0078 1250 | .002 | .0004 8828 1250 | 0002 .0000 3051 7578 T250
.3 1875 .03 017 1875 .003 .0007 3242 1875 .0003 .0000 4577 6367 1875
4 .2500 .04 0156 2500 .004 .0009 7656 2500 .0004 .0000 6103 5156 2500
5 .3125 05 | 0 3125 .005 .0012 2070 3125 .0005 .0000 76 1
) 3750 .06 .0234 3750 .006 .0014 6484 3750 .0006 .0000 9155 2734 3750
7 . 4375 .07 .0273 4375 .007 .0017 0898 4375 .0007 .0001 0681 1523 4375
.8 .5000 .08 .0312 5000 .008 .0019 5312 5000 | .0008 .0001 2207 0312 5000
.9 5625 .09 .0351 5625 .009 .0021 9726 5625 L0009 _ .0001 3732 9101 2623
A .6250 .0A .0390 6250 .00A .0024 4140 6250 .000A .0001 5258 7890 6250
.8 .6875 | .08 0429 6875 | .00B | .0026 8554 €875 | 0008 .000 &784 8679 &875
.C .7500 .0C 0468 7500 .00C .0029 2968 7500 .000C .000 8310 5448 7500
.D .8125 .0D .0507 8125 .00D .0031 7382 125 .000D .000 9836 4257 8125
.E .8750 .0E .0546 8750 .00E .0034 1796 750 . 000E .0002 1362 3046 8750
.F .9375 .OF .0585 9375 .00F .0036 6210 375 . Q00F .0002 2888 1835 9!

1 2 3 4
TO CONVERT . ABC HEXADECIMAL TO DECIMAL _ To convert fractions beyond the capacity of table, use techniques below:

Find \A in position 1 .6250
Find .0B in position 2 .0429 6875
Find .00C in position 3 .0029 2968 7500

HEXADECIMAL FRACTION TO DECIMAL

Convert the hexadecimal fraction to its decimal equivalent using the same
technique os for integer numbers. Divide the results by 16" (n is the

.ABC Hex is equal to .6708 9843 7500 number of fraction positions).
Example: .BA7 = .540771y¢
TO CONVERT .13 DECIMAL TO HEXADECIMAL 8A716 = 221510 540771
163 = 4096 4096[2215..000000
1. Find .1250 next lowest to .1300
subtract -.1250 = ,2Hex
2. Find .0039 0625 next lowest to .0050 0000
-.0039 0625 = .01 DECIMAL FRACTION TO HEXADECIMAL
3. Find .0009 7656 2500 .0010 9375 0000 Collect integer parts of product in the order of calculation.
-w = .004 Example: .540810 = .8A714
4. Find .0001 0681 1523 4375 .0001 1718 7500 0000 5408
-.0001 0681 1523 4375 = .0007 ' ¥16
.0000 1037 5976 5625 = .2147 Hex 8 - [g 6528
5. 13 Decimal is approximately equal to A - —4%
x16
7 < [Ames

A5-6 29-633 ROO 1/78

APPENDIX 6
INSTRUCTION TIMING
MODEL 8/16E WITH 750NS CORE

RR/SF RI RX COMMENTS NOTES -
ABL - - 2.75/7.00/7.50 OVF/NORM/WRAP 1
ACH 1.00 - 2.25 ' 1
ACK 3.25 - 5.50 1
AD
AE
AH 0.75 1.25 2.00 1
AHM - - 3.00 1
AIS 1.00
AL - - 4.75+2.75L+3.75N L=LEADER, N=BYTES 1
ATL - - 2.75/6.75/7.00 OVE/NORM/WRAP 1
BAL 1.25 - 1.75
BFBS 1.00/2.25 - - NO/YES
BFC 1.00/1.25 - 1.50/1.75 NO/YES
BFFS 1.00/2.00 - - NO/YES
BTBS 1.00/2.25 - - NO/YES
BTC 1.00/1.25 - 1.50/1.75 NO/YES
BTFS 1.00/2.00 - - NO/YES
BXH - - 2.75/3.00 - NO/YES 1
BXLE - - 2.50/2.75 NO/YES 1
CD
CE
CH 1.25/1.75 1.75/2.25 2.50/3.00 SIGNS ALIKE/DIFFER 1
CLB - - 2.75 1
CLH 0.75 1.25 2.00 1
DD
DE
DH
EPSR 3.00 - -
EXBR 1.00 - -
FLDR
FLR
FXDR
FXR
LB 1.25 - 2.75 1
LCS 0.75 - -
LD
LE
LH 0.75 1.25 2.00 1
LIS 1.00 - -
M - - 2.25+10N N=REGISTERS 1
LMD
LME
LPSS 3.00 - 425 1
LPSW - - 5.00 1
MD MIN/AVE/MAX
ME MIN/AVE/MAX
MH 5.50/6.00/6.50 - 6.75/1.25/1.75 MIN/AVE/MAX 1
MHU . MIN/AVE/MAX
NH 0.75 1.25 2.00 1
ocC 3.25 - 4.50 1
OH 0.75 1.25 2.00 1

29-633 ROO 1/78 : A6-1

APPENDIX 6 (Continued)

RR/SF RI RX COMMENTS NOTES

RB 2.75+.75R+3.75N - 4.0043.75N N=BYTES 4,1
RBL - - 2.25/6.50/6.75 UNF/NORM/WRAP 1
RD 2.50 - 4.25 : 1
RH 2.75/3.50 - 5.25/6.00 HALFWORD/BYTE 1
RLL - 5.5/4.50+.25N - N=0/N=SHIFTS 2
RRL - 5.5/4.50+.25N - N=0/N=SHIFTS 2
RTL - - 2.25/6.75/7.25 UNF/NORM/WRAP 1
SCH 1.00 - 2.25 1
SD
SE
SETM 4.50/6.00/6.25 - 5.75/7.25/7.50 5,1
SH 0.75 1.25 2.00
SINT - 7.00 - IMMEDIATE INTERRUPT
SIS 1.00 - -
SLA - 6.25/5.50+.25N - N=0/N=SHIFTS 2,3
SLHA - 5.75/4.00+.25N - N=0/N=SHIFTS 2,3
SLHL - 4.0/3.25+.25N - N=0/N=SHIFTS 2,
SLL - 5.5/4.25+.25N - N=0/N=SHIFTS 2
SLLS 1.25/1.75+.25N - - N=0/N=SHIFTS
SRA - 6.25/4.25+1.50N | - N=0/N=SHIFTS 2,3
SRHA - 5.75/5.00+0.25N - 2
SRHL - 4.0/3.50+.25N - N=0/N=SHIFTS 2
SRL - 5.5/4.50+.25N - N=0/N=SHIFTS 2
SRLS 1.25/1.75+2.00+25N - - N=0/N=SHIFTS
SS 2.50 - 4.75 1
STB 2.00 - 3.50 i
STD
STE
STH - - 2.50
ST™M - - 1.75+1.0N N=REGISTERS 1
STMD
STME
SvVC - - 6.25
THI - 1.25 -
WB 2.75+75R+3.75N - 4.00+3.75N N=BYTES 4,1
WD 2.50 - 3.50 1.
WH 2.75/3.50 - 3.75/4.50 HALFWORD BYTE i
XH 0.75 1.25 2.00 1

NOTE 1 add 0.25 if indexed RX

NOTE 2 add 0.25 if indexed

NOTE 3 add 0.50 if argument negative

NOTE 4 R=Value of R2 field

NOTE 5 (BANK=0:6 or F) or (8:E and R1 minus)/BANK=7/BANK=8:E and R1 positive

A6-2

on LPSW, EPSR, LPSS, LPSSR, Add 2.25 if Queue Service interrupt enabled. Add

4.75 if interrupt taken

29-633 ROO 1/78

APPENDIX 7
I/O REFERENCES'

TELETYPE/ASCII HEX CONVERSION TABLE

HEX (MSD) - 0 1 2 3 4 5 | 6 7
(LSD) | reletype 8 DEPENDS UPON PARITY*
Tape 7 0 0 0 0 1 1|1 1
Channels —»l 0 0 1 1 o ol 1
5 0 1 0 1 0 1| o 1
4 3 2 1
0 0 0 0 0 NULL DCq SPACE 0 @ | p
1 0 0 0 1 SOM X-ON ! 1 A |Q
2 o | o |1 o | EOA gng " 2 | B |R
3 0 0 1 1 EOM X-OFF # 3 c |s
4 0 1 0 0 EOT gg?E $ 4 | D |T
5 0 1 0 1 WRU ERR % 5 U
6 0 1 1 0 | RU SYNC & 6 '
7 0 1 1| BELL LEM ' 7 G |w
8 1 0 0 0 FE, So (8 H | x
9 1 0 0 1 HT/SK S) 9 I Y
A 1 0 1 0 LF So * J zZ
B 1 0 1 1 VT S3 + ; K L)
C 1 1 0 0 FF S4 , < L |~ ACK
D 1 1 0 1 CR S5 - = M] QE%E
E 1 1 1 0 SO Se . > | N 4 ESC
F 1 1 1 1 SI S7 / 0 |« DEL |

*Parity bit adjusted for even parity (even number of 1's) on input from Teletype keyboard. Parity
bit is ignored on output to Teletype printer.

29-633 ROO 1/78 A7-1

APPENDIX 7 (Continued)

ASCII CARD CODE CONVERSION TABLE
(029 EBCDIC)

7-BIT 7-BIT
ASCII CARD ASCII CARD
GRAPHIC CODE CODE -~ GRAPHIC CODE CODE
SPACE 20 BLANK @ 40
[21 12-8-7 A 41 1
" 22 8-7 B 42 1
23 8-3 c 43 1
$ 24 11-8-3 D 44 1
% 25 0-8-4 E 45 1
& 26 12 F 46 12-6
' 27 8-5 G 47 12-7
(28 12-8-5 H 48 12-8
) 29 11-8-5 I 49 12-9
* 2A 11-8-4 J 4A 11-1
\ 2B 12-8-6 K 4B 11-2
2C 0-8-3 L 4c 11-3
- 2D 11 M 4D 11-4
. 2E 12-8-3 N 4E 11-5
/ 2F 0-1 0 4F 11-6
0 30 0 p 50 11-7
1 31 1 Q 51 11-8
2 32 2 R 52 11-9
3 33 3 S 53 0
4 34 4 T 54 0
5 35 5 U 55 0
6 36 6 v 56 0
7 37 7 w 57 0
8 38 8 X 58 0
9 39 9 Y 59 0
: 3A 8-2 V] 5A 0
; 3B 11-8-6 [5B 12-8
< 3C 12-8-4 N 5C 11-8
N 3D 8-6] 5D 11-8-
5 3E 0-8-6 4 5E 11-8
2 3F 0-8-7 « 5F 0-8

A7-2 29-633 ROO 1/78

LR A L AL T |

G oW ®-30 G i I

1

APPENDIX 7 (Continued)

JOVIYILNI OIDOT TVSYIAINA = 1IN
AL VAV SNONOYHONXS Avnd = vsd

HdATTOYLNOD O/I TVLIDIA = Old
YITTOLLNOD LAdLAO DOTVYNY = D0V
YIATTIOYLNOD LNANI DOTVNY = DIV

- SKS 0SId ¢ 0SIa | STINNVHO
¢ d114 e 714 RGIx _
2 11 131 0 4114 WSI/EIN 0% aaxad € osid YOLOATIS
% OS1d z Jsla
agxid
T 0sia
1
e asia
[os1d qALdvav
0 OSId 0 Js1a 2dVL OVIV viqaw sng
agxis 149 0091 XddOT4d O/I QUIIN
INOD Jsia [
vsd IADATYLYVO
4TIVAONTY
TOYLNOD
LOILO¥d § IS (o —
KHOWII
* S ¥ O ——
ddVLI DVIN
ra or 1dd NOISHAANOD
008/955,/00%
ATNAON
yTIVId YAANEA
108 AVIZY
zi09 ATAVIVA INALSAS SHALNIE
MD0T1D ALLIASSVD ANIT
TYSHAAIND anodas
.
16
X1 ALLISSYD
VLI LSULL
; ITAAOW
NI | ax1 xav - [DLLAS $.14 O [————— TUNSOTO
0L€/09¢ 02/09¢ LOVINOD
(42 OL 87 SUAV) (17 01 0z SH@Y)
T11AOIE Ld IMYALNI ANTT & ANOJAS TTATON Ld NIEALNI ANIT R
T T
X0 HON.d - «q@mll.ltoom
CHAGYTY | TASNOMYD
LINO HONA {
Wivd
+
VI s vl LI yaavan vivo 19 NOH
L3S v.Lva 13S v1va ADVUOLS Yo vad adv)€ 08 ST (ergsia
108,102 108/102 TIAVOT b NFdvd quwwﬁw:«o
t
Kl I a o} 1 v [< A 9 ¢ + € b 1

379VY.L $S3YAAY A34Y3434d GHVANVYLS

v

6

-

w

asio

N e— (N1

A7-3

29-633 ROO 1/78

APPENDIX 7 (Continued)

CAROUSEL ASCII/HEX CONVERSION TABLE

~
bg | O 0 0 0 1 1 1 1
BITS bg 0 0 1 1 0 0 1 1
by 0 1 0 1 0 1 0 1
bf bf b" bf’ LSDMSD 0 1 2 3 4 5 6 7
ol 0]O|O 0 NUL DLE |SPACE 0 @ P ' p
ojojo]1 1 SOH DC1 ! 1 A Q a q
0r1o0]1j0 2 STX DC2 2 B R b r
oo} 3 ETX DC3 # 3 Cc S c 3
ol 1]o]o] a eoT | pca | s 4 |.o T | d t
O 1|10} 1 5 ENQ NAK % 5 E U e u
oj1]1110 6 ACK SYN & 6 F \ f v
of 1111 7 BEL | ETB ' 7 G w g w
110|040 8 BS CAN (8 H X h X
110101(1 9 HT EM) 9 | Y i A4
110(110 A LF SUB * J z j z
1lof1]1]| =8 vT | ESC + K [K {
1l 1]ol o] ¢ FF FS ‘ < L \ | i
1f1fof1} b CR GS - = M] m }
11 11110 E SO RS . > N -~ n ~
1111 F S us / ? 0 — 0 DEL
NUL Null DLE Data link escape
SOH Start of heading DC1-3 Device control
STX Start of text DC4 Device stop
ETX End of text NAK Negative acknowledge
EOT End of transmission SYN Synchronous idle
ENQ Enquiry ETB End of transmission block
ACK Acknowledgce CAN Cancel
BEL Audible signal EM End of medium
BS Backspace SUB Start of special sequence
HT Horizontal tabulation ESC Escape :
LF Line feed S File separator
VT Vertical tabulation GS Group separator
FF Form feed RS Record separator
CR Carriage return Us Unit separator
SO Shift out : SP Space
SI Shift in DEL Delete/Idle

A74 29-633 ROO 1/78

RESET

APPENDIX 8

AUTOMATIC 1/0 OPERATION

!

I A « X ‘0040’]

(SHEET 4}
(SHEET 4)

PSW BIT 4

ACKNOWLEDGE J

(SINT ’

| DEVNO = A+(X2) I

FETCH AUTO 1/0
SERVICE POINTER
QFLAG « 0

NO

NOP, INIT, DMT

29-633 ROO 1/78

AND NULL
(SHEET 3)

ESE
PTR BIT 15 RESET
SET

STORE STATUS

FETCH ccw AT PTR ADDR
STORE LOC AT
PTR ADDR +2
GET STATUS

DATA
TRANSFER

DATA TRANSFER
(SHEET 2)

Sheet 1 of 4

FROM PTR ADDR
+4 SET LOC TO
PTR ADDR +6

A8-1

APPENDIX

(SHEET 1)
DATA TRANSFER

8 (Continued)

LOAD CURRENT
ADDR AND FINAL

ADDR F?OM ces

SET BYTE COUNT
FROM CCw

!

ADDRESS DEVICE
GET STATUS

SET INIT, NOP,
QBITS; RESET
CHAIN, CONTINUE
IN CCW

READ DATA STORE
IN CUR ADDR. INCR.
CUR ADDR. DEC.

WRITE DATA FROM
CUR ADDR. INCR
CUR ADDR. DEC
BYTE COUNT

YES

STORE CUR. ADDR.
INTO CCB

CUR > FINAL

COUNT=0

YES

T CHAR

BYTE COUNT
A COUNT=0 > YES
NO
DONE
(SHEET 4)

A8-2

BIT SET

FETCH T CHAR
FROM CCB

T CHAR =
LAST CHAR

DONE
(SHEET 4)

YES

Sheet 2 of 4

SET NOP
IN CCW

STORE CCw
IN CCB

9

TERMINATION
(SHEET 4)

29-633 ROO 1/78

APPENDIX 8 (Continued)

, (SHEET 1)
NOP, INIT, DMT AND NULL

D

TERMINATION
(SHEET 4)

29-633 ROO 1/78

NO DONE
(SHEET 4)
RESET INIT,
STORE CCW
IN CCB
ocl YES
NO
NO
YES Ecj
NO
DMT DATA TRANSFER ADDRESS DEVICE
(SHEET 2)
YES
FETCH COUNT OUTPUT COMMAND
FROM CCB BYTE FROM CCB
DECREMENT
AND RESTORE
DONE
YES (SHEET 4)
NO
(0 e
DONE TERMINATION
(SHEET 4) (SHEET 4)
Sheet 3 of 4

A8-3

APPENDIX 8 (Continued)

(SHEET 3)
TERMINATION

(SHEETS 2 AND 3)
DONE

STORE DEVNO/
STATUS IN CCB

. (SHEET 1) NO
PSW
EXCHANGE
OA YES
L SET Q FLAG]
SET QUEUE YES
FULL
I A < X '0082' 1
NO
PSW EXCHANGE PUT A (CCW) IN PUT A (CCW)
FROM A QUEUE H! OR LO INTO X “008A’
NO
CHAIN L A < X 0080
YES
PUT CHAIN VAL
IN AUTOMATIC
1/0 SERVICE TABLE PSW EXCHANGE
(THIS SHEET)
NO

YES

RE—ENTER (SHEET 1)
~—MEANS EXECUTE NEXT INSTRUCTION AS SPECIFIED BY PSW.

" - IF INTERRUPT SIGNAL IS PRESENT, FIRMWARE WILL SERVICE IT
BEFORE EXECUTION OF THE NEXT INSTRUCTION.

Shect 4 of 4

A84 29-633 ROO 1/78

APPENDIX 8 (Continupd)

Iilegal Instruction 7.25
Machine Malfunction 8.75
Normal 1/0 Interrupt 8.25
Immediate 1/0 Interrupt 8.75

Automatic Input/Output Interrupt Service Times

NOP NULL DMT ocCl READ WRITE BAD STATUS
BASE 8.25 13.75 12.26 14.50 22.50+2.50n 22.25+2.26n 26.00
INIT - 2,50 2.50 - 2.50 2.50 2.50
TCHAR - - - - 2.50 2.50
No Match
TCHAR - - - - 1.256 1.25 -
Match
1

COUNT=0 - - 2.75 - 2.00 2.00 -
or
CUR=FINAL

(QUEUE.HI - 9.50 9.50 . 9.50 9.50 -
QUEUE LW - 9.75 9.76 - 9.75 9.75 -
CHAIN - 3.00 3.00 . 3.00 3.00

2 .
CONT . Next Next .
-6.256 -6.25 - Next -6.25 Next -6.25
Qsve 6.25 6.25 6.25 6.25 6.25 6.25 6.25
INT '
1. Reason for Termination

2. Termination Procedure

All times are given in microseconds. To determine the execution time of a particulat interrupt, add to the base time, the time for each pertinant
option. For example: a Write of one character using a Termination Character test (TCHAR) with no match takes 22.50 Base
2.50 +2.50n (n=characters)
2.50 (TCHAR no match)
27.50

29-633 ROO 1/78 A8-5/A8-6

INDEX

ARITHMETIC REFERENCES JE T A5-1
AUTOLOAD e 9-15
AUTOMATIC VECTORING e e e 9-17
BOOLEAN OPERATIONS e 3-2
BRANCHING e 4-1
BRANCH INSTRUCTION FORMATS o e e 4-1
BRANCH INSTRUCTIONS e e e e 4-1
Branchand Link (BAL) 4-4
Branch and Link Register (BALR) 4-4
Branch on False Condition (BFC) 4-3
Branch on False Condition Backward Short (BFBS) 4-3
Branch on False Condition Forward Short (BFFS) 4-3
Branch on False Condition Register (BFCR) 4-3
Branch on Index High (BXH) 4-6
Branch on Index Low or Equal (BXLE) 4-5
Branch on True Condition (BTC) 4-2
Branch on True Condition Backward Short (BTBS) 4-2
Branch on True Condition Forward Short (BTFS) 4-2
Branch on True Condition Register (BTCR) 4-2
CHANNEL COMMANDWORD e e e e e, 9-22
CHANNELCONTROL BLOCK 9-20
CIRCULARLIST o e e e 3-3
CONDITIONCODE i 2-3.5-2.6-8
CONSOLEINTERRUPT o 8-5.11-7
CONTROLKEYS e 11-3
CONTROLOF I/OOPERATIONS o 9-16
CONVERSION FROM DECIMAL 6-8
DATAFORMATS 2-4.3-1.5-1,6-6
DECISION MAKING T 4-1
DEVICE ADDRESSING e e e e e e e e e e 9-1
DEVICECONTROLLERS 9-1
DEVICEPRIORITIES 9-2
DISPLAY REGISTERS AND INDICATORS 11-2
DOUBLE PRECISION FLOATING POINT REGISTERS~~~ 2-3
EXECUTION TIMES IN MICROSECONDSo A6-1
EQUALIZATION 6-5
EXPONENT OVERFLOW o o 6-6
EXPONENT UNDERFLOW 6-6
EXTENDED BRANCHMNEMONICS 4-7.A4-1
Branch (Unconditional) (B) 4-22
Branch on Carry (BC) 4-8
Branch on Carry Register (BCR) 4-8
Branch on Carry Short (BCS) 4-8
Branchon Equal (BE) 4-10
Branch on Equal Register (BER) 4-10
Branch on Equal Short (BES) 4-10
Branchon Low (BL) 4-12
Branch on Low Register (BLR) 4-12
Branch on Low Short (BLS) 4-12
Branch on Minus (BM)o 4-14
Branch on Minus Register (BMR) 4-14
Branch on Minus Short (BMS) 4-14
Branch on No Carry (BNC) 4-9
Branch on No Carry Register (BNCR), 49
Branch on No Carry Short (BNCS) 4-9
Branch on Ne Overflow (BNO) 4-19
Branch on No Jverflow Register (BNOR), 4-19
Branch on No Overflow Short (BNOS), 4-19
Branch on Not Equal (BNE) 4-11

29-633 RO2 7/80 Index-1

INDEX (Continued)

Branch on Not Equal Register (BNER)« v v v o 4-11
Branch on Not Equal Short (BNES)+« o o v o v 4-11
Branch on Not Low (BNL) 0 v v i o i e e e et it e e e e 4-13
Branch on Not Low Register (BNLR) o oo v i 4-13
Branch on Not Low Short (BNLS) . .« o v e i v v v e e e e e e e e 4-13
Branch on Not Minus (BNM)« 0 o i v e i e e e e e e 4-15
Branch on Not Minus Register (BNMR)« o o oo v 4-15
Branch on Not Minus Short (BNMS) o« o o i i e e e e e e 4-15
Branch on Not Plus (BNP) o 0 o o e e e e e e e e e e e e 4-17
Branch on Not Plus Register (BNPR)« oo 4-17
Branch on Not Plus Short (BNPS) o o o o o it e e e e e s e 4-17
Branch on Not Zero (BNZ) o o i it e e e e e 4-21
Branch on Not Zero Register (BNZR)« o v e e 4-21
Branch on Not Zero Short (BNZS)« o o v o i e e e e e e e e e e e e e 4-21
Branch on Overflow (BO) o o i i e e 4-18
Branch on Overflow Register (BOR) o 4-18
Branch on Overflow Short (BOS) o o o v it e e e e e 4-18
Branch on Plus (BP) o e e e e e e e e e 4-16
Branch on Plus Register (BPR) o oo v 4-16
Branch on Plus Short (BPS) o« o i e e 4-16
Branch on Zero (BZ) o o o e e e e e e e e e e e e e e e 4-20
Branch on Zero Register (BZR) - . o o oo e e 4-20
Branch on Zero Short (BZS) o o i i e e e e e e e e e e e e e e 4-20
Branch Register (Unconditional) (BR)« oo o 4-22
Branch Short (Unconditional) (BS) o o 0 o e 4-22
No Operation (NOP) e 4-23
No Operation Register (NOPR) oo i 4-23
FIXED POINT ARITHMETIC o e e e e e e e e e e e e e e e e e e s e 5-1
FIXED POINT DATA . . o o o o e s e 2-4
FIXED POINT DATA WORDS FORMATS o i i i e e e e e e e e e e s e e e e s s e e e s 5-2
FIXED POINT INSTRUCTION FORMATS o o i i e e e e e e e e e e e e e e e e e 5-2
FIXED POINT INSTRUCTIONS . . . o o o et e e e e e e e e s e e e e e s s e e s e e 5-3
Add Halfword (AH) o e e e e e e e e 5-3
Add Halfword Immediate (AHI) o . 0 e e e 5-3
Add Halfword to Memory (AHM) 0 o e e e e 5-4
Add Halfword Register (AHR) e 5-3
Add Immediate Short (AIS) e e e e e e e e e e e 5-3
Add with Carry Halfword (ACH) e 5-6
Add with Carry Halfword Register (ACHR) oo o 5-6
Compare Halfword (CH) e 5-8
Compare Halfword Immediate (CHI) o oo 5-8
Compare Halfword Register (CHR) oo 5-8
Divide Halfword (DH) o e e e e e e e e e e e e e e 5-11
Divide Halfword Register (DHR) o o i e e e 5-11
Multiply Halfword (MH) L e 59
Multiply Halfword Register (MHR) o oo 59
Multiply Halfword Unsigned (MHU) oo oo 5-10
Multiply Halfword Unsigned Register (MHUR) 5-10
Shift Left Arithmetic (SLA) e e e e e e e e e e 5-13
Shift Left Halfword Arithmetic (SLHA) e e e e e 5-14
Shift Right Arithmetic (SRA) e 5-15
Shift Right Halfword Arithmetic (SRHA) o o o oo 5-15
Subtract Halfword (SH) o e e e e e e e e e e e e e e e e 5-5
Subtract Halfword Immediate (SHI) e e e e e 5-5
Subtract Halfword Register (SHR) o 5-5
Subtract Immediate Short (SIS) L L e e e e e 5-5
Subtract with Carry Halfword (SCH) e e e 5-7
Subtract with Carry Halfword Register (SCHR) o oo 5-7
FIXED POINT NUMBER RANGE e e e e e e e e e e e e e e e 5-1
FLOATING POINT ARITHMETIC e e e e e e e e e e e 6-1
FLOATING POINT DATA . . . o e e e e e e e i e e e e e e e e e 2-4
FLOATING POINT INSTRUCTION FORMATS e e e e e e 6-8
FLOATING POINT INSTRUCTIONS e e e e e e e e e e e 6-8

Index-2

26-633R00 1/78

INDEX (Continued)

Add Double Precision Floating Point (AD) 6-30
Add Floating Point (AE) " e 6-14
;Add Floating Point Register (AER) 0l 1"t 6-14
Add Register Double Precision Floating Point (ADR)~ """ ""°° 6-30
Compare Double Precision Floating Point (CD) _ . "7 6-32
Compare Floating Point (CE) ..o 6-18
Compare Floating Point Register (CER) """ " " 6-18
Compare Register Double Precision F loating Point (CDR) _ ~ """ 6-32
Divide Double Precision Floating Point(DD) _ . 6-34
Divide Floating Point (DE) 6-21
Divide Floating Point Register (DER) """t 6-21
Divide Register Double Precision FloatingPoint (DDR)~~~ "°°° 6-34
FixRegister (FXR) 6-23
Fix Register Double Precision Floating Point (FXDR) _ """ 6-35
Float Register (FLR) e 6-24
Float Register Double Precision Floating Point (FLDR)~ ~""""° 6-36
Load Double Precision Floating Point (LD) 770 6-25
Load Floating Point (LE) 0 1 6-10
Load Floating Point Multiple (LME) ["""t 6-11
Load Floating Point Register (LER)/ """t 6-10
Load Multiple Double Precision Floating Point (LMD) "~ """ 6-27
Load Register Double Precision Floating Point(LDR) _ _ _ ~_~""""° 6-25
Multiply Double Precision Floating Point (MD) 6-33
Multiply Floating Point (ME) [01T 6-19
Multiply Floating Point Register (MER) ["""t 6-19
Multiply Register Double Precision Floating Point(MDR) """ 6-33
Store Double Precision Floating Point (STD) _ """ "°° 6-28
Store Floating Point (STE) 6-12
Store Floating Point Multiple (STME), . . . [/ tccoroee 6-13
Store Multiple Double Precision Floating Point(STMD)~ ~~"""'° 6-29
Subtract Double Precision Floating Point (SD) 77t 6-31
Subtract Floating Point (SE) 11T 6-16
Subtiact Floating Point Register (SER) 6-16
Subtract Register Double Precision Floating Point (SDR) """ 6-31
FLOATINGPOINTNUMBER 6-2,6-3
FLOATING POINT NUMBER RANGE [[- rcccseeee 0 6-4
FLOATING POINT REGISTER [[-t e 2-3
FLOATING POINT REGISTER DISPLAY [77/ - - 11-6
FLOATINGPOINT TRUEZERO 0l i o] 6-5
GENERALREGISTER 2-3
GENERAL REGISTER DISPLAY [[/ 777 e 11-6
GUARD DIGITAND ROUNDING [7 7 e 6-7
HEXADECIMALDISPLAY PANEL 11-1
HEXADECIMAL DISPLAY PANEL DATA TRANSFERS /' "=/ " - 11-9
INPUT/OUTPUT INSTRUCTION FORMATS 9-3
INPUT/OUTPUT INSTRUCTIONS [77/ crrere e 9-3
INPUT/OUTPUT SYSTEM 10-1
Acknowledge Interrupt (ACK) (AI) R 94
Acknowledge Interrupt Register (ACKR)AIR) 9-4
Autoload (AL) 9-15
Qutput Command (OC) T 9-6
Output Command Register (OCR) e 9-9
Read Block (RB) [l 9-9
Read Block Register (RBR) | [7 Tt 9-10
Read Data (RD) 0 9-7
Read Data Register (RDR) 0 [0 01T T 9-7
Read Halfword (RH) [7 T 9-8
Read Halfword Register (RHR), . . [/' " oo 9-8
Semse Status (SS) .. . L 9-5
Sense Status Register (SSR) 0TIl 9-5

29-633 RO2 7/80 Index-3

INDEX (Continued)

Write Block (WB)« oo v oo
Write Block Register (WBR) - oremmmm e
Write Data (WD) o o o oo
Write Data Register (WDR)« . o oo oo e
Write Halfword (WH)« oo oo mmmm i m e
Write Halfword Register (WHR)« oo e

INPUT/OUTPUT PROGRAMMINGo oo e mm o m m 0t
INPUT/OUTPUT OPERATIONS o v oo mm om0t
INPUT/OUTPUT REFERENCESc-ooremn o e
INPUT/OUTPUT SYSTEM CONFIGU RATION« ~
INPUT/OUTPUT SYSTEM MODULE- - om0 nn 00
INSTRUCTION FORMATS o oo oo ememmm e

Branch Instruction Formats -« « « o co0 o0 e
Register and Immediate Storage (R1) Format
Register and Indexed Storage (RX) Format
Register to Register (R2)- oo oo ee e
Short Form (SF) Format« - -« v oo v v e e

INSTRUCTION SET o v oo v e e v e o e e = 2 e
INSTRUCTION SUMMARY - ALPHABETICAL WITH ATTRIBUTES
INSTRUCTION SUMMARY - NUMERICAL- vc e
INTERRUPT SERVICE POINTER TABLE -~
INTERRUPT SYSTEM oo oo

Console Interrupt o oo
External Interrupt oo s e e
Fixed Point Fault Interrupt« .« oo oo v e
Floating Point Fault Interrupt« .o ov o e e

Machine Malfunction Interrupt« . o oo
Protect Mode Violation Interrupt« .« o oo - e
Simulated Interrupto e e e e
Supervisor Call Interrupt oo
System Queue Overflow Interrupt o oo v v ee
System Queue Service Interrupt

KEY OPERATED SECURITY LOCK« o v oo oo ee

LISTPROCESSING« o o i oo e e e e e e
LOGICAL DATA ot i et
LOGICAL INSTRUCTION FORMATS«
LOGICAL INSTRUCTIONS oo e e

Add to Bottomof List (ABL)
Add to Topof List (ATL)
AND Halfword (NH)« o oo v v e
AND Halfword Immediate (NHD)
AND Halfword Register (NHR)
Compare Logical Byte (CLB)
Compare Logical Halfword (CLH)
Compare Logical Halfword Immediate (CLHI)
Compare Logical Halfword Register (CLHR)
Exchange Byte Register (EXBR)
Exclusive OR Halfword (XH)
Exclusive OR Halfword Immediate (XHI)
Exclusive OR Halfword Register (XHR)
Load Byte (LB)
Load Byte Register (LBR)
Load Complement Short (LCS)
Load Halfword (LH) oo
Load Halfword Immediate (LHI)
Load Halfword Register (LHR)
Load Immediate Short (LIS)

Index-4

............. P 2

........................ 10-5

......................... 2-4

........................ 8-6

29-633 RO2 7/80

INDEX (Continued)

Load Multiple (LM) o o oo e et oo e e e 3-7
OR Halfword (OH) e e e e e e e e e e e 3-16
OR Halfword Immediate (OHI) o o o o v v e e e 3-16
OR Halfword Register (OHR)« v v 3-16
Remove from Bottom of List (RBL)« « o« v v o v v i oo I 1
Remove from Top of List (RTL)« v o v oo vt 3-26
Rotate Left Logical (RLL) o o o oo v 3-23
Rotate Right Logical (RRL)« « o v v v oo 3-24
Shift Left Halfword Logical (SLHL)« o v oo 3-21
Shift Left Logical (SLL)« v i e e e 3-19
Shift Left Logical Short (SLLS) o« o o v v 3-21
Shfit Right Halfword Logical (SRHL)« . oo v v oo 3-22
Shift Right Logical (SRL)« o v v v oo e 3-20
Shift Right Logical Short (SRLS)« o o oot 3-22
Store Byte (STB) o o o i e e e 3-12
Store Byte Register (STBR)« o v i it 3-12
Store Halfword (STH) o 0 i v e e e e e e e e e e e e e e 3-10
Store Multiple (STM) o o o e e e 3-11
Test Halfword Immediate (THI) T e e e e e e e e e e 3-18
LOGICAL OPERATIONS o ot e 3-1
MEMORY MANAGEMENT o e e e e e e e e e e e e e e e e e e e 7-1
MEMORY READ o e e e e e e e e e e 11-6
MEMORY WRITE o e e e e e e e e e e e e e 11-6
MULTIPLEXOR BUS . o o o v o e i e 10-3
OP-CODE MAP . . . e e e e e e Al-1
OPERATING PROCEDURES e e e e e e e e e s e e e e e s s 11-5
Console INterrupt e e e e e e 11-7
Floating Point Register Display e 11-6
General Register Display L. e 11-6
Memory Read e e e e e 11-5
Memory Write o e e e e e e e e e e e e e e 11-5
Power DOWN e e e e e e e e e e e e e e s 11-5
Power Fail L e e e e e e e e e e e 11-7
Power Up e e e e e e e e e e 11-§
Program Execution L e e e e 11-7
Program Status Word Display and Modification 000000 11-6
Program Termination L L e e e e e e e e 11-7
Switch Register e e e e e e e e e 11-7
OPERATIONS e e e e e e e e 2-1,3-1
PERIPHERALS e e e e e e e e e e e e e e e 1-2
POWER DOWN . . . e e e e e e e e e e e e e e e 11-5
POWER FAIL e e e e e e e e e e e 11-7
POWER UP . . . e e e e e e e e e 11-5
PROCESSOR e e e e 2-1
PROCESSOR/CONTROLLER COMMUNICATION e e e 9-2
PROCESSOR INTERRUPTS o e e e e e e e e e e e e e 2-3
PROCESSOR OPERATIONS e e e e e e e e e e 2-4
PROCESSOR OPTIONS e e e e e e e e e e e e e e e e e e 2-7
PROGRAM EXECUTION o e e e e e s e e e e e e e e e e e s s e e s 11-7
PROGRAMMING INSTRUCTIONS e e e e e e e e e s s e e e e 11-9
PROGRAMMING SEQUENCES e e e e e e e e e e e e e e e 11-9
PROGRAM STATUSWORD e e e e e e e s 2-2,8-1
Automatic 1/0 and Immediate Interrupt Mask(A) Lo 2-2
Condition Code (CVGL) e e e 233
External Interrupt Mask(E) L L L e e e e e e e 2-2
Fixed Point Divide Fault Interrupt Mask(DF) o e 2-2
Floating Point Fault Interrupt Mask(FP) e 2-2
Machine Malfunction Interrupt Mask(M) e e 2-2
Processorlnterrupts...¢......................................,...2-2
System Queue Service Interrupt Mask(Q) L 2-2

Wait State(W)

29-633 R0O2 7/80 Index-5

INDEX (Continued)

PROGRAM STATUS WORD DISPLAY AND MODIFICATION 11-6
PROGRAM TERMINATION e e e e e e e e e e e e e e e e e e 11-7
PROTECTMODE e e e e e e, 2-2.7-2
REGISTER SET SELECTION o o i et e s, 8-2
RESERVED MEMORY LOCATIONS o o o i e e e e e e e e e e e e e s s, 2-3
SELECTOR CHANNEL 1/O i e e e e e e e e e e e e e e e, 9-18

Selector Channel Devices o o v i i e e e e e e e e e e e e 9-19

Selector Channel Programming o o v o i i e 9-20

Selector Channel Operation« ¢ o v v bt v it i e e e e e e 9-19
SINGLE PRECISION FLOATING POINT REGISTERS 2-3
SOFTWARE e e e e e e e e e 1-2
SOFTWARE VECTORING o ot e e e e e e e e e e e e e e e s e, 9-18
STATUS MONITORING I/O e e e e e e e e s e s s 9-16
STATUS SWITCHING AND INTERRUPTS o e e e s, 8-1
STATUS SWITCHING INSTRUCTION FORMATS o o e e s e e e 87
STATUS SWITCHING INSTRUCTIONS e e e e e, 87

Exchange Program Status Register (EPSR) L e 89

Load Program Status Word (LPSW) e e 8-8

Simulate Interrupt (SINT) e e e e 8-10

Supervisor Call (SVC) e e e e e e 8-11
SUBROUTINE LINKAGE e e s e e e e s s s, 4-1
SYSTEM ARCHITECTURE e e e e e e e s, R
SYSTEM QUEUE e e e e e e e e e e e e e 9-21
SWITCH REGISTER e e e e e e e e e e e e e e e s s e e e 11-7
TERMINATION . . . o e e e e e e e e e e e e e e e 9-25

WAIT STATE e e e 2-2,8-2

Index-6 : 29-633 R0O2 7/80

CUT ALONG LINE

PUBLICATION COMMENT FORM

Please use this postage-paid form to make any' oomments, suggestions, criticisms, etc. concerning
this publication.

From Date

Title Publication Title

Company Publication Number

Address

FOLD ' FOLD

Check the appropriate item.

D Error Page No. Drawing No.

[] Addition Page No. Drawing No.

[:] Other Page No. Drawing No.

Explanation:

FOLD : FOI D

Fold and Staple
No postage necessary if mailed in U.S.A.

STAPLE

.__.__——-———-—_—.__._—_————.—_____——

BUSINESS REPLY MAIL

FIRST CLASS PERAMIT NO. 22 OCEANPORT, N.J.

POSTAGE WILL BE PAID BY ADDRESSEE

PERKIN-ELMER

Computer Systems Division
2 Crescent Place
Oceanport, NJ 07757

TECH PUBLICATIONS DEPT. MS 322A

STAPLE

__—.———-—__-—_—__-—_—-—_—_-—

STAPLE

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

-

STAPLE

	0001
	0002
	001
	002
	003
	004
	005
	006
	01-01
	01-02
	01-03
	01-04
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	08-10
	08-11
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	A1-1
	A2-1
	A2-2
	A2-3
	A3-1
	A3-2
	A3-3
	A4-1
	A4-2
	A5-1
	A5-2
	A5-3
	A5-4
	A5-5
	A5-6
	A6-1
	A6-2
	A7-1
	A7-2
	A7-3
	A7-4
	A8-1
	A8-2
	A8-3
	A8-4
	A8-5
	I-1
	I-2
	I-3
	I-4
	I-5
	I-6
	replyA
	replyB

