Publication Number $S29-430R06

0S/16 MT2
OPERATOR'S MANUAL

PERKIN-ELMER

Computer Systems Division
2Crescent Place
Oceanport. N.J. 07757

Copyright © 1975 by Perkin-Eimer Corporation Printed in U.S.A. September 1%: 9

PAGE REVISION STATUS SHEET

PUBLICATION NUMBER 529-430
TITLE O0S/16 MT2 Operator's Manual

REVISION RO6 DATE September 1979
PAGE REV. DATE PAGE REV. DATE PAGE REV. DATE
i/dii RO6 ({9/79 3-20 7-4 RO5 2/79
thru 7-5 RO2 8/76
iii 3-21 RO5 2/79 7~-6 ROS5 2/79
thru 3-22
iv RO5 [2/79 thru 8-1
3-23 RO6 9/79 thru
v RO6 [9/79 3-24 8-7/
thru 8-8 RO6 9/79
vi 3-35/
thru 3-36 RO5 2/79 9-1
ix/x RO5 [2/79 thru
4-1 RO5 2/79 9-4 RO5 2/79
1-1/ 4-2 RO6 9/79
1-2 RO4 11/78 10~-1
5-1 RO5 2/79 thru
2-1 5=2 RO2 8/76 10-3 RO5 2/79
thru 5-3 RO5 2/79 10-4 RO2 8/76
2~2 RO6 [9/79 5-4 RO4 1/78 10-5 RO5 2/79
2=-3 5-5 RO5 2/79 10-6 RO6 9/79
thru 5-6 RO6 .| 9/79 10-7 RO4 1/78
2-4 RO5 (2/79 5-7 ' 10-8
2-5 RO6 [9/79 thru thru
2-6 RO5 (2/79 5-8 RO3 6/77 10-9/
5-9 RO2 8/76 10-10|f ROS5 2/79
3-1 5-10 RO4 1/78
thru 5-11 RO3 6/77 1i-1
3-2 RO4 1/78 5-12 RO5 2/79 thru
3-3 R02 |8/76 5-13 RO3 6/77 11-2 RO6 9/79
3-4 RO4 |1/78 5-14 11-3
3-5 RO5 [2/79 thru thru
3-6 RO2 (8/76 5-15 RO4 1/78 11-4.| RO0O4 1/78
3-7 R04 |1/78 5-16 11-5
3-8 RO5 |2/79 thru thru
3-9 R04 |1/78 5-19/ 11-6 RO6 9/79
3-10 RO5 [2/79 5-20 RO2 8/76 11-7
3-11 RO6 (9/79 thru
3-12 RO5 |2/79 6-1 11-8 RO4 1/78
3-13 RO4 |1/78 thru
3-14 6-2 RO4 1/78 12-1 RO5 2/79
thru 6-3 RO5 2/79 12-2 RO4 1/78
3-16 RO5 |2/79 6-4 RO4 1/78 12-3/
3-17 R0O2 |8/76 12-4 RO2 8/76
3-18 7-1 RO5 2/79
thru 7-2 RO2 8/76 13-1
3-19 RO3 |6/77 7-3 RO4 1/78 thru ‘
13-4 RO2 8/76

Page 1 of 2

A1598

PAGE REVISION STATUS SHEET

PUBLICATION NUMBER S29-430
TITLE 0S/16 MT2 Operator's Manual

REVISION RO6 DATE September 1979

PAGE REV. DATE PAGE REV. DATE PAGE REV. DATE

13-5 RO5 2/79 A8-1 ROS5 2/79
13-6 A8-2 RO2 8/76
thru
13-12 1| RO2 8/76 A9-1 RO5 2/79
A9-2 RO2 8/76
14-1
thru Al0-1
14-8 RO3 6/77 Al0-2] RO5 2/79
14-9 R0O4 1/78
14-10 All-1
thru All-2| RO5 2/79
14-12 | RO3 6/77
14-13 | RO5 2/79 Al2-1
14-14 | RO3 6/77 Alz-2] RO2 8/76
14~-15| RO5 2/79
14-16 | RO3 6/77 Al3~1
14-17 Al3-2| RO5 2/79
thru
14-18 | RO5 2/79 Al4-1
Al4-2| RO3 6/77
Al-1
thru ‘ I-1

Al-2 RO6 2/79 thru
Al-3 RO5 2/79 I-4 RO6 9/79
Al-4 RO2 8/76 I-5/
I-6 RO5 2/79
A2~1 RO2 8/76
A2-2 RO4 1/78
A2-3
thru
A2-4 RO5 2/79

A3-1/
A3-2 RO6 9/79

Ad4-1/
A4-2 | Ro6 |9/79

A5-1/
A5-2 RO4 1/78

A6-1
thru
A6-4 RO2 8/76

A7-1/
A7-2 ROS5 2/79

Page 2 of 2

A1598

PREFACE

This manual describes the procedures for operating an INTERDATA computer with the Operating System 0s/16 MTZ‘.
The information contained herein is for the operator’s reference. Programming interface information for the 0S/16 MT2 is
contained in:

0S/16 MT2 Programmer’s Reference Manual, Publication Number 29-429.
Other manuals related to OS/16 MT?2 are:
0S/16 MT2 System Planning and Configuration Guide, Publication Number 29431
0S/16 MT2 Pocket Guide, Publication Number 29-433
0S/16 MT2 Program Logic Manual, Publication Number 29-434

16-Bit Series Reference Manual, Publication Number 29-398
0S/16 Mini I/O System User’s Manual, Publication Number 29-491.

MANUAL ORGANIZATION
This manual contains detailed reference material needed to control an 0S/16 MT2 system through the system console. In
addition, a complete description of the OS/16 Task Establisher is given, as well as a survey of the utility programs supplied

with an OS/16 MT2 system.

Chapter 2 discusses the procedures for loading either the INTERDATA Supplied Starter systems, or a user generated
system. This chapter should be understood before attempting to load an OS/16 MT2 system from Disc or Tape.

Chapter 3 discusses procedures for controlling an 0S/16 MT2 system through the OS/16 MT2 Command Processor. System
console operations and the full 0S/16 MT2 Operator Command Language are defined. Chapter 3 assumes that the reader is
familiar with the concepts discussed in Chapter 1 of the OS/16 MT2 Programmer’s Reference Manual, Publication Number
29-429. Of special interest are the sections describing memory management, task management, and roll out.

Chapter 4 discusses OS/16 MT?2 error handling as it pertains to the console operator.

Chapter 5 describes the facilities of the OS/16 Task Establisher (TET/16). This chapter provides a detailed description of
TET/16 commands, and examples of its use.

Chapter 6 discusses the operation of the Common Assembler CAL/16 (memory-based) and CAL/16D (disc-based).
Chapter 7 describes the Disc Integrity Check utility.

Chapter 8 describes the Backup utility.

Chapter 9 describes the Output Spooler utility.

Chapter 10 surveys the utility programs and Language Processors available for exccution under OS/16 MT2. For a more
detailed discussion, refer to the list of documentation provided in the OS/16 MT2 System Planning and Configuration
Guide. Publication Number 29-431.

Chapter 11 discusses the procedures for unpackaging and backing up an OS/16 MT2 System on either Magnetic Tape or
Disc. Those procedures may also serve as examples for the creation and maintenance of user libraries.

Chapter 12 is a guide to the File Management facilitics available to the console operator. It assumes the reader is familiar
with the commands described in Chapter 3.

Chapter 13 provides a tutorial discussion ot the facilities available through the Command Substitution System capability of
the Command Processor.

Chupter 14 describes the use of the High Level Operator Command Package.

Appendix information to be added.

29-430 RO6 9/79 i

Table of Contents

PREFACE e e e e ifii
CHAPTER 1 INTRODUCTION e e e e e e e e e 1-1/1-2
SYSTEM DESCRIPTION e e e e e e s e e e s e e 1-1/1-2
NOTATION . . e e e e e e e e e e e 1-1/1-2

CHAPTER 2 LOADING THE OS/16 e e e et e e e e e 2-1

INTRODUCTION e e e e e e e e s e e s s e s 21

NON-DISC SYSTEMS e e e e e, 2-1

Loading OS/16 From a Non-Disc Device 2-1

Loading OS/16 MT2 Configured with No Command Processor 2-2

Errors In Loading From a Non-Direct Access Device 2-2

}‘.’DISCSYSTEMS..............‘..........; 2-3

Loading 0S/16 MT2 with the Boot Loader 2.3

Loading OS/16 MT2 Configured With No Command Processor 23

Loading OS/16 MT2 Witha 7/16 LSUor ALO i i i ittt it 2-4

Loading OS/16 MT2 With The 5/16 LSU (M51-102) i 24

Loading OS/16 MT2 With a Series Sixteen ALO24

Bootstrapping From a Floppy Disc Using the 50 Sequence 2-5

Errorin Loading from Disc L 2-5

Tailoring Starter e e e e e e e e e e e . .26

Restarting the Operating System L o e e 2-6

Preparation for Loading Tasks 2-6

CHAPTER 3 CONSOLE OPERATIONS AND OPERATOR COMMANDS 3-1

YSYSTEM CONSOLEDEVICE oo oot ot e e e e e e s s, 3-1

Prompts L e e e e e e e e e e e 3-1

P BREAK Key . . . o e e e e e e e 3-1

Input Editing Functions L e 3-1

CCOMMAND SYNTAX . . . o e e e e e e e e e e e 31

MRemonics e e e e e e e e 3-2

Decimal and Hexadecimal Numbers L 32

Task Identifiers L L e, 32

File Descriptors o o i e e e e e e e e e e e e 32

Optional Operands L e e e e e e e e e e e 33

General SyntacticRules e 3-3

ERROR RESPONSE e e e e e e, 33

GENERAL SYSTEM COMMANDS e e e e e e e, 34

SetTime e e 3-4

Display Time e e e e e e e e e 3-5

Yolume e e e e e e 3-5

SetLog e 3-5

Display Map L e e e 3-6

Set Partition e e e 3-7

5 UTILITY COMMANDS . . . e e e e e e e e e s, 39

Bias L e e 39

Examine L e e 39

Modify e 3-10
Build e e 3-10

29-430 R0O5 2/79 i

Table of Contents (Continued)

TASK RELATED COMMANDS e e e e e e e e e 3-11
Load Image o . . i e e 3-11
Load Background (Object Code) o e e e 3-12
Load Foreground (Object Code) e 3-12
Task . . . e 3-13
SEAFT . o o e 3-14
PaUSE e 3-14
ContiNUE . . . o o e 3-14
Cancel . . L. e e e e e e e e e e e e e e e e e e e 3-15
ASSIBN . . . L L e e e e e e 3-15
Display LU e e e e 3-16
CLOSE .+ .+ o o o e e e e e e e e e e e 3-16
OPLONS e e e e e e e e e e e e 3-17
Set Priority e e e e e e e e e e e 3-18
Display Parameters e e e e e 3-18
Send . L. e e e 3-19
Display Registers L e e e e e e e e e s 3-20
DEVICE AND FILE CONTROL COMMANDS e e 3-20
ATIOCAtE e e e e e e e e e e e e e e e e e e 3-20
Delete e 3-21
Xdelete o o e e e e e e e e e e e e e e e 322
RENAME . . . o o o o e 3-22
REProtect v v v v o i e e e e e e e e e e e e e e e e 0322
Display Files o o o o oo 3-22
Mark . . . e 3-24
Display Devices o o o oo e e e e 3-26
Magnetic Tape and File Control Commands oo e 3-26
Initialize e e e e e e e e e e e e e e e e e e e 327
SV . . e e e e e e e e 3-27
PrNt . . . o L e 3-28
COMMAND SUBSTITUTION SYSTEM (CSS) o o e e e e e e e e 3-28
High Level Operator Command Package 3-29
Calling CSS Files o e e 3-29
Useof Parameters e e e e e e e e e e e e e e e e e e e 3-30
Interaction of CSS with Background and Foreground 3-30
COMMAND EXECUTABLEFROM ACSSFILE e e e 3-31
SEXIT and SCLEAR e e e e e 3-31
$JOBand STERMIOB e e e e e e e e 3-31
Logical Operators i it e e e e e e e e e 3-31
Return Code Testing o o o i i it i e e e 3-32
File Existence Testing e 333
Parameter Existence Testing L e e e 3-33
Listing Directives L L e e e e e e 3-33
CSS File Construction e e e e e e e e e e e e e e 3-33
BUILD and ENDB e e e e e 3-33
SBUILD and SENDB e e e e e e e 3-34
CHAPTER 4 SYSTEM ERROR HANDLING o e e e e e e 4-1
ERROR TYPES ot e e e e e e e e e e e e e e 4-1
SYSTEM CRASH RECOVERY o ot e e e e e e e e e e s e e e e e e e e e e 4-1
POWER FAIL/RESTORE i i e e e e e e e e e e e e e e 4-1
CHAPTER 5 TASK ESTABLISHMENT e e e e e 5-1
INTRODUCTION e et e e e e e e e e e e e e e e s 5-1
CONFIGURATION REQUIREMENTS e e e e e e e 5-1
SYSTEM ENVIORNMENT e e e e s e e e e e s e s e 5-1
TET/16 COMMANDS e e e e e e e e e e e e e 5-3

iv 29-430 RO5 2/79

Table of Contents (Continued)

OPERATING PROCEDURES e e e e e e e s s e 5-10
General Information L e e e 5-10
Special Consideration for Libraries e 5-11
- “Special Consideration for Task Common vt 5-11
Special Consideration for Tasks WithOverlays 5-11
Command Input Stream L L e e e e e e e e e 5-12
Compound OverlayFiles 0 e e 5-13
EXAMPLES OF TET/16 OPERATION it et e e e e e e e e e 5-14
Establish a Single Program Task o 5-14
Establish a Simple Task from Selected Programs 5-14
Establisha Complex Task 5-14
Establish a Reentrant Library Segment 5-17
Establish a Task Common Segment o i v i i vt e e e e .. 5-17
Establish a Task With Multilevel Overlays, 5-17
Establish OS/T6 MT2 e e e e e e e e 5-19/5-20
CHAPTER 6 CAL/16 e e e e e e s e e e s e e e 6-1
INTRODUCTION e e e e e e e e e e e e e e e e 6-1
SYSTEM REQUIREMENTS e e e e e e e e e e e e e e 6-1
CAL/16 FEATURES e e e e e e e e e e e e e e e 6-1
OPERATING PROCEDURES e e e e e e e e e e s e e e e 6-2
Logical Unit Assignments e e e e e e e e 6-2
START OPLIONS o i e e e e e e e e e e 6-3
Operation of Memory-Based CAL/16 o i i i ittt e e e 6-3
Operation of Disc-Based CAL/16D and CAL/16DS o . v i i i it e 6-3
Examples e e e e e e 6-4
Features in CAL/16D notin CAL 16/DS it 6-4
CHAPTER 7 DISCINTEGRITY CHECK .'. e e e e e e e e e 7-1
INTRODUCTION e e e e e e e e e e e e e e e e e s e s s e e 7-1
SYSTEM REQUIREMENTS o e e e e e e e e e e e e e e e e e s e e 7-1
PRINCIPLES OF OPERATION e e e e e e e e e e e e e e e 72
OPERATING PROCEDURE e e e e e e e e e e s e 7-3
PROGRAM OUTPUT e e e e e e e e e e e e e e s s e 7-4
CHAPTER 8 0S/16 BACKUP UTILITY. o v v it v i e e et e e e e e e e e e e e 8-1
INTRODUCTION e 8-1
FEATURES o e e e e e e e e 8-1
Disc To Disc Backup - - -« - -« o o o v v v oo e e e e e 8-1
Disc To Magnetic Tape Backup - o . . . o i i e 8-2
SYSTEM REQUIREMENTS o o v e e e e e i e e e e e e e e e e e e e e e e e e 8-2
OPERATING INSTRUCTIONS . . . & o o e 8-2
MESSAGES OUTPUT BY THEPROGRAM e e e e e e s 8-5
CHAPTER 9 OUTPUT SPOOLING o v o e et e e e e e e e e e e e e e e e 9-1
FUNCTIONAL DESCRIPTION oot e e e e e e e e e e e e e e 9-1
Print Command L. e e e e e e e e e e e e e e 9-1
VOLUME Command and the SPOOL Sysgen Statement 9-1

29-430 RO6 9/79

Sgd

Table of Contents (Continued)

OPERATING INSTRUCTIONS e e e e e e e e e e e e e e 9-2
Starting the Spooler L e e 9-2
ERRORMESSAGES e e e e e e e e e e e e e e 9-3
CONFIGURATION REQUIREMENTS e e e et e e e e e e e e e e 9-4
CHAPTER 10 USING UTILITY SOFTWARE e e e e e e e e e 10-1
INTRODUCTION e e e e e e e e e s e e e 10-1
COMPATIBILITY BETWEEN OS/16 MT2 AND EXISTING UTILITIES 10-1
TEXT MANIPULATION UTILITIES i e 10-1
OSEDITAND OS/16 EDIT e e e e e e e e e e s s e s 10-1
Source Updater e e 10-2
OS COPY . . . 10-3
LOADERS . . . 10-3
0S/16 Library Loader, e e e 10-3
TET/16o 104
0S/16 Direct Access Boot Loader 10-5
OS/16 Boot Puncher 10-5
SYSTEM MAINTENANCE UTILITIES oot e e e, 10-5
0S/16 Configuration Utility Program (CUP/16) e e e e e 10-5
" “DiscIntegrity Check e 10-6
CBackup .. oL e 10-6
PROGRAM MAINTENANCE UTILITIES (AIDS/16) o o v i e e e 10-6
AIDS/16 10-6
LANGUAGEPROCESSORSo s 10-7
CALand CAL/16ot o 10-7
CALMACRO 10-8
FORTRANYV, 10-8
EXTENDED FORTRANIV s 10-9
BASIC Level IT 10-9/10-10
CHAPTER 11 SYSTEM LIBRARIES e e s s, 11-1
UNPACKAGING THE MAGNETIC TAPE PACKAGEONTO ADISCo o oo 11-1
MAGNETIC TAPESYSTEM BACKUP s 11-2
OSTape 11-3
Object Library Tape 11-3
Utility Tape 11-3
Parameter and Control Block Tape e e e e e e 11-4
Source Library Tape 11-4
C8SPackage Tape, 11-4
BootLoader Tape 114
BUILDING OVERLAYED DISC SYSTEM USING MAGNETIC TAPEPACKAGE 114
DISCSYSTEM BACKUP 11-5
DISC SYSTEM MAINTENANCE e e 11-5
Buildinga Library L 11-5
Updatinga Library 11-7
CHAPTER 12 FILES AND THEOPERATOR 12-1
MARKCOMMAND 12-1
OS OVERLAY FILE - OVERLAYED SYSTEMS= 12-1
DISCINITIALIZATIONo 12-1

vi 29430 ROS 2/79

Table of Contents (Continued)

ASSIGNMENT AND ALLOCATION ot e 12-2

. Keysand AccessPrivileges , L o 12-2

Write Protected DISC« . v v v v e e e e e e e e e e e e e 12-2
DISCINTEGRITY CHECKING i i e i e it e e e e e e e e e e s s e e s e 12-3/124

CHAPTER 13 GUIDE TO WRITING AND USINGCSSFILES 13-1

INTRODUCTION . . . o ot e s e s e e e e 13-1

BASIC QUESTIONS o e e e e e e e e e e e e e 13-1

Whatis aCSS File? o o e e e e e e e 13-1

Howisa CSS File Used? o i i e e e e e e e e e e 13-1

Can One CSS File Call Another? ittt e 13-1

What Commands Can Be Executed From CSS? 13-1

USING CSSFORBATCH CONTROL e e e e e e e e 13-2

JobControl Decks L e e e e e e e 13-2

Device-Independent Job Control Decks L 13-2

Separation of Jobs L e e e 13-3

Program Pauses and Other Interactions 13-3

USING CSS TO AVOID REPETITIOUS ACTIONS e 13-4

USING CSS TO BUILD COMPLEX COMMANDS e 13-4

Passing Arguments to CSSFiles e e 13-4

Testing Arguments for Existence 0. e 13-5

Testing Files for EXiStence o v v v v v v it e e e e e e e e 13-6

Return Codes and Error Handling 0 0 i i it e e e 13-7

Sending Error Messages tothe Console 13-8
CREATING CSSFILESON DISC e e e e e e e e e e e e s 13-8
ADVANCED CONSIDERATIONS e e e e e e e e e e e s e e 13-8

Aborting ABCSS Files o i ittt et e e e 13-8

Building Task Control Files i e 139

Using Standard File Extensions e 139
AFINALEXAMPLE e e e e e e e e e 13-11
CHAPTER 14 HIGH LEVEL OPERATOR COMMAND PACKAGE 14-1
INTRODUCTION o e e e e e e e e e e e e e e e s e e e e s e e e e 14-1
SYSTEM REQUIREMENTS e e e e e e e e e e e e e e e e e e s 14-1
COMMANDS . . e e e e e e e e e e 14-2

FORTRAN Compile, Load and Go 0 i i ittt it e e i 14-3

FORTRAN Compile e e e e e e e e e s e e e 14-4

CAL Assembly L e s 14-5

CAL Assembly, Loadand Go e e e 14-6

Macro Expansion and Assembly L L L e 14-7

Macro Expansion, Assembly, Loadand Go 14-8

EditaFile e e e e e e 14-9

EstablishaTask e e 14-10

Copyan ASCILFile e e 14-11

CopyaBinary File e e 14-12

CopyaTask o o o e e e e e e e e 14-13

Loadand ExecuteaTask e e e 14-14

Generate a New Operating System 0 e e e e e e 14-15

Assign Default Logical Units e e e e e e 14-16
INSTALLATION e e e e et e e e e 14-17

OPERATIONAL DATA e e e e e e e e e e e e e e e e e 14-17

Task Establishment Defaults e 14-17

Utility Programs e e e e e e e e e e e e e e e 14-18

Source Libraries L e e e e e e e e e e e e e e e 14-18

29-430 RO5 2/79 vii

Table of Contents (Continued)

APPENDICES
APPENDIX 1 OPERATOR COMMAND SUMMARY v ot i ittt it i Al-1
APPENDIX 2 COMMAND ERROR RESPONSE SUMMARY0..u... A2-1
APPENDIX 3 OS/16 SYSTEMMESSAGES e A3-1/A3-2
APPENDIX 4 OS/16 SYSTEMCRASH CODES ittt Ad-1/A4-2
APPENDIX 5 SUMMARY OF TET/16 COMMANDS e AS5-1/A5-2
APPENDIX 6 TET/16 ERRORMESSAGES oottt e A6-1
APPENDIX 7 SUMMARY OF OS COPY COMMANDSt A7-1/A7-2
APPENDIX 8 SUMMARY OF SOURCE UPDATER COMMANDS A8-1
APPENDIX 9 SUMMARY OF EDITCOMMANDS A9-1
APPENDIX 10 SUMMARY OF LIBRARY LOADER COMMANDSA10-1/A10-2
APPENDIX 11 UTILITY COMPATIBILITY i ... AIL1/ALL2
APPENDIX 12 SYSTEM JOURNAL CODESottt ittt ot e A12-1/A12-2
APPENDIX 13 BOOT PUNCHER ERRORMESSAGES o i oo A13-1/A13-2
APPENDIX 14 TABLE TO CONVERT USER PROGRAM ADDRESS TO PHYSICAL MEMORY ADDRESS . . A14-1/A14-2
INDEX . @ e e e e I-1
FIGURES

Figure 3.1. Display Map Format e 3-6

Figure 3-2. Partition Format e 37
Figure 3-3. Display Logical Unit Formato, 3-16
Figure 3-4. Display Devices OUtput Format 3-26
Figure 3-5. Range of CSS Conditionals e 3-32
Figure 5-1. Task Establishment i 0 ittt et ettt et e e e e e e e e 5-2
Figure 5-2. TET/16 MAP EXAMPLE-Main Program 5-8
Figure 5-3. TET/16 MAP EXAMPLE-First Overlay o v i i i ittt i it e e o 59
Figure 5-4. TET/16 MAP EXAMPLE-Second Overlay0 v ittt i it 5-9
Figure 5-5. Single Overlay File et e e e e e e 5-13
Figure 5-6. Compound Overlay File Size Example 5-13
Figure 5-7. Simple Task Establishment i it e 515
Figure 5-8. Graphic Description of Task With TwoOverlays 5-15
Figure 5-9. Memory Map of Overlay Task Establishment e e e e 5-17
Figure 5-10. Multilevel Overlays e e 5-18
Figure 5-11. Memory Map of Multilevel Overlays, 5-19/5-20
Figure 10-1. OSEDIT Example i e i e e e e e e 10-2
Figure 10-2. Source Updater Example e e e e e e 10-2
Figure 10-3. OSCOPY Example i s e e « .. 10-3
Figure 10-4. OS/16 Library Loader Module Building Example 104
Figure 10-5. OS/16 Library Loader Library Maintenance Example 10-4
Figure 10-6. FORTRAN Task Example i et e e et e e e 10-5
Figure 10-7. 0S/16 Boot Puncher Example i i e e 10-5
Figure 10-8. Disc Integrity Check Example o o oo oo 10-6
Figure 10-9. Disc Compress Example, 106
Figure 10-10. AIDS/16 Example L i e e e e e e e e e e 10-7
Figure 10-11. CAL/16 Example e e e e e e e 10-7
Figure 10-12. CALMACRO Example 0 . 0 i i i e e e e e 10-8
Figure 10-13. FORTRAN VExample e e 10-8
Figure 13-1. Typical CSS Job Control Deck o it ittt et 132
Figure 13-2. Typical Batched CSS Stream i i s e 13-3
Figure 13-3. ASSEMBLE Command Example 000ttt i ittt i 13-5
Figure 13-4. EDIT Command Example 0 ittt e e 13-6
Figure 13-5. COMPILE Control Example - o . o i i i i i e e e i e e oo 13-10
Figure 13-6. Assembly with Standard Extensions Example 13-10
Figure 13-7. Library Loader Example 0 e e e e e e 13-10
Figure 13-8. Compile, Assemble, Load and Execute Example 13-11
Figure 13-9. Complex CSS Example it it e e e e e e e e 13-12

viii 29-430 ROS 2/79

TABLE 3-1.
TABLE 3-2.
TABLE 3-3.
TABLE 3-4.

TABLE 3-5.
TABLE 3-6.
TABLE 3-7.
TABLE 5-1.
TABLE 5-2.
TABLE 5-3.
TABLE 5-4.

Table of Contents (Continued)

TABLES
COMMAND PROCESSOR LOGICAL UNITS i 34
SET PARTITION EXAMPLES o o o it it e e e e e et e e e 3-8
LOAD COMMAND EXAMPLES it e e e e et e e e e e e 3-11
TASK OPTION BITS o o e i e e i i e e e e e e e e e e e e e e e e e e e 3-18
TASK WAIT STATUS BITS o e e e e e e i e e e 3-19
FILES INFORMATION o i o it e et e e et e e e e e e e 3-23
CSS COMMAND SUMMARY o ot e e i e e e e e e e s e e e e 3-34
TET OPTIONS COMMAND o ot e e et e e e e e e e e e e 5-4
TET/16 LOGICAL UNIT ASSIGNMENTSo 5-10
IMPLICIT TET/16 ASSIGNMENTS oo e e s 5-11
RECOMMENDED OPERATOR COMMAND SEQUENCE 5-13

29430 RO5 2/79 ix/x

CHAPTER 1
INTRODUCTION

SYSTEM DESCRIPTION

08/16 MT2 is an Operating System that provides task management for multiple-task environments for the 16-Bit series of
INTERDATA Processors. Both background and foreground facilities are provided so that program preparation can proceed
concurrently with real-time system operation. Built-in functions of 0S/16 MT2 include system control via the operator’s
console, interrupt handling and I/O servi¢ing. Data file management features are provided for any system equipped with
direct-access storage media. o

0S/16 MT?2 is a compatible subset, from the standpoint of the using programs, of 0S/32 MT.

08/16 MT2 protects the foreground environment from the effects of undebugged background tasks. Memory can be
protected via the Memory Protect Controller. Both static and dynamic protection mechanisms are provided for 1/O devices
and direct-access files.

This manual is intended as an operator’s reference manual for OS/16 MT2. For information on the programming interface
of OS/16 MT?2 refer to:

0S/16 MT2 Programmer’s Reference Manual, Publication Number 29-429.

Other manuals related to OS/16 MT2 are:

0S/16 MT2 System Planning and Configuration Guide, Publication Number 29-431
0S8/16 MT2 Pocket Guide, Publication Number 29-433

0S8/16 MT2 Program Logic Manual, Publication Number 29434

16-Bit Series Reference Manual, Publication Number 29-398

0S/16 Mini I/O System User’s Manual, Publication Number 29-491.

NOTATION

This seetion defines the notation used to describe the command fanguages discussed in this manual.

ftems that are shown in upper-case letters must be specified exactly as shown. If one or more letters
are underlined. this indicates @ minimum ahbreviation and the item may be specified by any number
of characters from the minimum to the full item.

ltems that are shown in lower-case letters must be replaced by a value defined in the description ol the
command.

Optional items are enclosed in square brackets:
[optionul item]
Alternate items are listed vertically. enclosed in braces:
choice a
{choicc h}
An ellipses (...) is used to denote an optional repetition of the previous item.
Numeric values are given in both decimal and hiexadecimal, where appropriate as:

Decimal (Hexadecimal)
c.g 1(1), 10(A), 32(20)

29-430 RO4 1/78 1-1/1-2

CHAPTER 2
LOADING THE OS/16

INTRODUCTION
As described in the OS/16 MT2 Packaging Document, a ready-to-load OS/16 MT2 system comes in six forms:
a non-disc system supplied on magnetic tape, cassette, and disc (STARTER 1),

a fully overlayed disc system supplied on disc only (STARTER 2, DEVELOPMENT

SYSTEMS 1, 2, and 3) ‘
a non-overlayed disc system supplied on magnetic tape, cassette and disc
(STARTER 3)

The operating instructions for the STARTER systems are given below. All data to be entered is given in hexadecimal.

NON-DISC SYSTEMS
Loading OS/16 From A Non-Disc Device
The 16-Bit Relocating Loader (REL Loader) is used to load from a non-disc device. The OS/16 MT2 Functional Program
Package contains the REL Loader as the first program on Magnetic Tape or Cassette, followed by STARTER! and
STARTER3.
To load the REL Loader, the 50 Sequence is used:
1. Mount the Magnetic Tape, Cassette or Paper Tape containing the REL Loader. Position at load point.
2. Enter the 50 Sequence into low memory.
Location 50 should be D500
52 should be 00CF
54 should be 4300
56 should be 0080

Set location *78’ to the device number and Output Command of the load device.

Magnetic Tape - 85A1
Cassette - 45A1
Paper Tape Reader - 1399
Teletype Reader - 0294

On a Series Sixteen, set the number of file marks to be skipped into the halfword at location X 7E".

3. Enter the following Illegal Instruction New PSW.

Location 34 should be 0 NOTE

36 should be 50 On systems with extended memory insure that bits 8-11 of
22 should be 80 the PSW status field are zero.

4. Initialize the Processor and execute starting at location 34. The Illegal Instruction new PSW causes the
50 sequence to be entered with the proper PSW.

5. The tape should now move as the REL Loader is loaded. When the Wait light comes ON and the tape

stops, loading is complete. If the REL Loader is on a different media than the OS to be loaded, mount
the OS Magnetic Tape, Cassette or Paper Tape, and set location 78 to the correct value as in (2).

29-430 ROG 9/79 ‘ _ 2

6. Address the REL Loader. Start address:

FBOO for a 64KB or greater Processor
DBOO for a 56KB Processor
BBOO for a 48KB Processor
9B00 for a 40KB Processor
7B00 for a 32KB Processor
5B00 for a 24KB Processor
3B0O0 for a 16KB Processor
1B0O0 for a 8KB Processor

When starting the REL loader, the operator must set the proper number of file marks to be skipped
before loading, if the OS is being loaded from Magnetic Tape or Cassette.

The data register on the display panel must be set to 0 to skip no file marks, to 100 to skip 1 file mark
(position of STARTER1), or to 200 to skip 2 file marks (position of STARTER3).

On the Model 70, 74, 80 or 85 display panel, set the data switches to the correct value before
depressing EXECUTE to start the REL loader.

l On the Series Sixteen, depress “¢” to load the OS after the REL loader enters the wait state.
On all other display panels, enter:

DTA - start address of the REL loader
ADD

DTA - file mark skip value

RUN ’

7. The tape should now move as the OS is loaded. When loading is complete, the tape stops and the OS
ID is output on the system console:

08/16 MT2 01-00 where 01-00 is the revision and update level.

The OS is now ready to accept commands.

Loading 0S/16 MT2 Configured With No Command Processor

Follow steps (1) through (6) above.

The tape should now move as the OS is loaded. When loading is complete, the tape stops and the OS begins scheduling
tasks. This system has no system console.

Errors In Loading From a Non-Direct Access Device

If the REL Loader does not load properly (Wait light fails to come ON or display panel is non-zero after tape stops) check
the low memory locations: i

22
34-37
50-57
78
to verify that the 50 sequence is entered correctly. If so, then a hardware error may exist.

Check REL Loader device to ensure that it is turned ON and is On-Line to the system.
Ensure REL Loader tape is positioned correctly.

Try a different copy of the REL Loader.

If the OSID is not output to the system console after OS tape stops, check display panel for REL Loader error code or
OS/16 crash code. See 16-Bit Loader Descriptions Manual, Publication Number 29-231 for REL Loader codes.

A system crash code of X'66666666’ indicates system console unavailable. Check to verify that the system console is
turned on and is On-Line to the system.

29-430 RO6 9/79

DISC SYSTEMS
Loading 0S/16 MT2 with the Boot Loader /
1. Mount the device containing the OS/16 MT2 Boot Loader at load point, and initialize the Processor.

2. Mount the Disc Volume and wait until the ready light comes ON Do not disable the hardware Write
Protect at this time.

3. Enter the 50 Sequence and Boot Loader control information into low memory.

Set location 22 to 80

34to0 (Set Illegal Instruction New PSW)
36 to 0050
50 to D500 (Set 50 Sequence) NOTE
32 to OOCF On extended memory processors insure that bits 8-11 of the
24 10 4300 PSW status field
56 to 0080 status field are zero.
- 78 to the Boot Loader input device/cmd

- 85A1 Magnetic Tape

~45A1 for Cassette

— 1399 for Paper Tape Reader

— 0294 for TTY Reader)

~ C186 for Floppy Disc drive 0 (C196 for drive 1, etc.)

7A to the device number and code of the disc containing the OS

- C631 for 2.5MB Disc
- C633 for 10MB Disc (removable platter)
-C732 for, IOMB Disc (fixed platter)

~“FC34 for 40MB Disc

— FC35 for 67MB Disc

— FC36 for 256MB Disc

— C137 for Floppy Disc

7C to theDisc controller and SELCH address
«—= B6FQ for 2.5 or 10MB Disc =
- FBFO for 40, 67 or 256MB Disc
— 0000 for Floppy Disc drive 0 (0001 for drive 1, etc.)

7E to the identification number of the OS to be loaded. This
number is specified by the user as the file extension when the
OS is established by TET/16. For STARTERI the value is 0001.
For STARTER2, the value is 0002.

Execute the Processor at Location 34. The illegal instruction New PSW causes the 50 Sequence to be
entered with the proper PSW.

4. The Boot Loader loads the OS 'i‘magey which outputs the system ID to the system console:

0S/16 MT2 02-00
*fd: voln PROT

Where fd and voln are the device mnemonic and volumc name, respectively, of the OS volume.

The OS is now ready to accept commands.
After initializing itself, the system marks the volume from which it was loaded, On-Line as the OS

volume, with Write protection. If this volume is to be written on, it should be marked on unprotected,
by the operator.

Loading 0S/16 MT2 Configured With No Command Processor
Follow steps (1) through (3). ‘

The Boot Loader loads the OS image into memory. After initializing itself, the system marks on-line with write protection
every disc configured in the system which is hardware protected, and marks on-line without write protection all discs
which are not hardware protected. The system then begins scheduling tasks. There is no system console.

29-430 RO5 2/79

2
w

Loading OS/16 MT2 With a 7/16 LSU Or ALO

Refer to the 0S/16 MT2 LSU Direct Access Loader Instruction Manual, Publication Number 29-534.or the OS/]§ MT2
ALO Direct Access Loader Instruction Manual, Publication Number 29-533 for information on loading OS/16 with the

Loader Storage Unit (LSU) or the Automatic Load Option (ALO), respectively.

Loading 0S/16 MT2 With the 5/16 LSU (M51-102)

When bootstrapping from a floppy disc on the 5/16, the OS/16 MT2 Boot Loader must be resident on sector 2 of the
' floppy disc. Ready the appropriate drive and depress initialize. The OS is booted from the first ready drive starting at drive
0. The OS extension number must be 0000 to be bootstrapped on the 5/16. The floppy controller address must be C1

priority:

Loading OS/16 MT2 With a Series Sixteen ALO

The Series Sixteen ALO accepts and displays boot load device information on the ASCII console. The user may load
from a number of predetermined device configurations. The following table lists these devices in the order of load

DEVICE DEVICE DEVICE CONTROLLER/ SELCH
NAME ADDR DRIVE ADDR ADDR

" 10Mb Disc DSC2 C7 Bo6 FO

10Mb Disc DSCl1 C6 B6 ~FoO

Floppy Disc FLPI Ci 0

67Mb Disc DSC5 FC FB Fl

800 BPI Mag Tape MAGI 85

1600 BPI Mag Tape MAG?2 C5

10Mb Disc DSC4 C7 36 Fl

10Mb Disc DSC3 Cc6 36 Fl

Floppy Disc FLP2 Cl 1

Floppy Disc FLP3 Cl 2

Floppy Disc FLP4 Cl 3

67Mb Disc DSC6 FD FB F1

67Mb Disc DSC7 EC EB F2

67Mb Disc DSC8 ED EB F2

800 BPI Mag Tape MAG3 95

1600 BPI Mag Tape MAG4 D5

Example:

Example:

24

When the Initialize switch is depressed, the messages:

SERIES SIXTEEN CPU nKB

LOAD dddd.002?

SERIES SIXTEEN CPU 64KB
LOAD DSC1.002?

LOAD DEVICES

DSC2
DSC1
FLP 1
FLP2
FLP3
FLP4
MAG1
MAG3

ENTER DEVN.OSID

are output on the ASCII console. n is the number of kilobytes of memory on the system and dddd is the highest
priority ready device that contains an OS with an OSid equal to .002.

For magnetic tape devices “.002” is not output. A magnetic tapc must contain the 16-bit Rel Loader followed by an OS
in 16-bit object format.

If the user types “Y” followed by carriage return, the loader attempts to load from the above device. If any other

character is entered or there was no ready device containing an OS with OSid equal to .002, the loader lists all devices on
the system, and asks the user to enter a device name and OSid. “OK” printed next to the device name indicates that the
device is ready to load.

The user should now enter a device name followed by a period, a three character OSid, and a carriage return.

29-430 RO5 2/79

Example:
DSC1.004

The Loader now loads this OS from the specified device and the message *OS/16 MT2 XX-YY appears on the console.
For magnetic tape devices, the processor enters the “wait” state after the Rel Loader is loaded. Enter “<” from the
ASCII console. If a file mark is between the Rel Loader and the OS to be loaded, enter a second “<”.

The following error messages may appear:
? Invalid device name or OSid. Reenter.
NO SUCH OS No OS found with the OSid specified. Reenter.

IOER ddss REBOOT Device input error where dd is the device number and ss is the hardware
device status. The process must be restarted.

To load an OS from a device whose device address, device code, controller address or selch address does not appear in the
table of devices, the following modification can be made to the ALO program. After the “ENTER DEVN.OSID” prompt
has been output to the console, depress the HALT/EXE button and enter

@28EC
=XXyy (xx=device code, yy=device number)
=Wwzz (ww=controller address, zz=selch address) (0 for mag tape devices)
@2762
<

The list of available devices will appear. Enter DSC2.aaa where aaa is the OS id of the OS to be loaded.
Bootstrapping from a Floppy Disc Using the 50 Sequence

When bootstrapping OS/16 from a floppy disc using the 50 sequence, the OS/16 MT2 Boot Loader must be resident on
sector 2 of the floppy disc. The OS package, when shipped cn floppy disc, comes with the Boot Loader in image form on
sector 2 of floppy number one (FLO1). If the user desires to put the Boot Loader on additional floppys for his own usc,
copy the entire physical floppy with OSCOPY.

The user should verify that the image file starts on sector 2 by use of the FILES command (see Chapter 3).

Frror In Loading From Disc

If the Boot Loader does not load properly, (OS ID does not appear on system console within 50
seconds after Boot Loader tape stops or display panel does not display Zeros), check the low memory
locations:

34-37
50-57
78-7F

to verify that the 50 Sequence is entered correctly. Display the PSW status. If the 50 Sequence is
correct and status is not Zero, a processor hardware error may exist.

Check the Disc to verify that the Ready Light is ON.

{
Check the system console to see if it is turned ON and is On-Line to the system (display panel value of
66666666 indicates system console hardware error).

Check the Boot Loader device to verify that it is turned ON and is On-Line to the system. If the tapce
does not move, therc may be a Processor or Boot Loader device hardware error. If tape was
completely read in on TTY Reader, turn TTY OFF and ON to gencrate error status. OS should then
boot in.

If a system crash code is displayed, check the code for indications of the problem.

.
i If code 0001 is displayed, the boot loader was unable to find an OS file with the extension given in
‘ location X'7TE". -

Try a different copy of the Boot Loader.

Check the disc address, disc device code, controller address and SELCH address (X'7A" X'7D') to
verity they are correct for the specific hardware configuration.

Check Console Device configured in system (Teletype or PASLA Interface) to verify that it is correct
for the specific hardware configuration.

On éystems with extended memory insure that bits 8-11 of the PSW status are zero before attempting to
set memory locations.

29-430 RO6 9/79 25

Tailoring Starter

The Starter systems are configured with standard device numbers. If the particular configuration contains devices on
non-standard device numbers, follow the procedure in the O8/16 MT2 System Planning and Configuration Guide,
Appendix 2.

NOTE

The Starter systems are configured for console CRT support. If
the system console device is a teletype consult the appropriate
Starter map supplied with the package. Find the address of
symbol DBCONA. Modify location DBCONA - X‘12’ to contain
X'1002', where 2 is the TTY device address, then start the system
at X'60".

Restarting the Operating System

At times it may be convenient to restart the operating system without reloading. This may be accomplished by starting the
system at location X'60". This may not be done if the CUP statement DELETE INITIAL is specified.

Preparation for Loading Tasks

Refer to Chapter 3 for a description of the operator commands, and Chapter 10 for examples of running utility programs.
A system with no foreground partitions and no disc management is initialized with all available memory in the background
partition (e.g. STARTER 1). The TASK command is not recognized since there can only be one task in the system. Any
object code format utility or user task can be loaded into the system directly, using the resident background loader
(LDBG).

Any system with disc management, and/or at least one foreground partition, is initialized with all available memory in the

+ dynamic system space area. Before any task can be loaded, a suitable partition must be set up for it, using the SEF

g

*. PARTITION command.

...,On a system with at least one foreground partition, the TASK command must be entered before any action can be taken

on behalf of a loaded task.

On a system with disc management, the default system volume name may or may not have been specified when the system
was configured. If it was not (this applies to the Starter systems), then it must be specified by the VOLUME command.

On a system with ROLL support, a disc volume on the system must be marked on-line for ROLL if any tasks are to be
rolled out. Note that on this type of system, it is not essential to mark on a ROLL volume if you do not intend to make
use of the ROLL feature. However, a warning message will be given when partitions are set up using SET PART.

To be able to write to the OS volume (which is automatically marked on-line with protect), it must first be marked on-line
without protect.

For example, a common sequence of commands entered immediately after a 2-partition, disc-based system is loaded, is as
follows:

MA DSC1:,0ON mark OS5 volume on-line without protect
MA DSC2:,0N,R mark second volume on-line as ROLL volume
VOL MT16 set default volume name

SET PART 1/FO00 set background partition

LD TET load TET/16 into background

TA .BG currently selected task is background task
AS 3,PR: make logical unit assignments

AS 5,CON:

AS 7,CON:

ST Start TET/16

2-6 29-430 RO5 2/79

"CHAPTER 3
CONSOLE OPERATIONS AND
OPERATOR COMMANDS

SYSTEM CONSOLE DEVICE
This chapter deals exclusively with systems that are configured with the Command Processor module.

The 0S/16 MT2 system is controlled by the console operator through a device called the system console. The devices
supported as system console are described in Chaptér 8 of the 0S/16 MT2 Programmer’s Reference Manual. This device has
a special relationship to the system; the Command Processor Task reads command input from this device and writes
system messages to it. Tasks may log messages to the system console without reference to its device name.

The system console may be assigned to tasks for ordinary I/O purposes, just as any other device; however, all [/O requests
to this device are intercepted by the Command Processor, which performs them on behalf of the calling task. If the system
console is an ASR TTY, the punch unit is not supported. The Reader unit may be accessed in the same manner as any
other device on the system.

Prompts

When the console operator is expected to enter data at the system console, a prompt is output to serve as a reminder. This
prompt takes one of the following forms: :

* (command request)
TASKID> (data request)

The command request prompt (*) is output whenever the system is ready to accept another command.

The data-request prompt (TASKID>) is output whenever a task is attempting to perform a Read I/O request from the
system console. The TASKID field of this prompt is the name of the task requesting data. In the case of the background
task, the TASKIDis “.BG”.

The console operator should satisfy the data request as soon as practical, since system messages are queued until the data
request is satisfied.

BREAK Key

If a task is in the process of reading from, or writing to the system console, the operator can interrupt this I/O in order to
enter a command by depressing the BREAK Key (on some devices, the ESCAPE Key) of the console device. This forces
the system into command mode for the entry of one command line. After one command line has been accepted, the user
1/O to the console is restarted. This process is transparent to the user task which requested the 1/0.

The BREAK Key may also be used by the operator to discard further system responses to a command. This is particularly
useful in cases such as the EXAMINE and DISPLAY commands, where large quantities of data may be output at the
system console.

Input Editing Functions

When entering commands or data at the system console, the operator may make corrections to his input line. A back arrow
_character (#-) or BACKSPACE (on some devices, CONTROL-H) causes the previous character to be ignored. A hash mark
. character (#) causes the entire input line to be ignored and a carriage return-line feed sequence to be output. The operator

should then enter a new line. Note that no new prompt character is output.

COMMAND SYNTAX

Commands are accepted one line at a time. A command may not be spread over two or more lines. Multiple commands
may appear on the same line, separated by semicolons (;). A command line is terminated by a carriage return.

Commands are composed of:
Mnemonics
Decimal numbers
Hexadecimal numbers
Task identifiers
File Descriptors

29-430 RO4 1/78 3-1

Mnemonics

Mnemonics are shown in this manual in upper-case letters. Mnemonics may be abbreviated with any number of characters
from a minimum abbreviation to the full mnemonic. Minimum abbreviations are selected so as to resolve ambiguities
between mnemonics while remaining as short as possible. Minimum abbreviations are underlined in this manual, as follows:

REWIND

For example, given the above command:

REW

REWI These are all legal forms of the
REWIN command shown above.
REWIND

RE lllegal, too short.

REWA Illegal, misspelled.

REWINDZ lilegal, too long.

Decimal and Hexadecimal Numbers

The OS/16 MT2 command structure uses decimal rather than hexadecimal operands for almost every purpose. The only
major exception to this rule is in the case of addresses, which are always expressed in hexadecimal.

Leading zeros may always be omitted in numerical operands, whether decimal or hexadecimal.

Hexadecimal addresses are normally four characters in length. Addresses may be five characters for extended memory
systems. Valid addresses are in the range 0-FFFF, 18000-1FFFF, 28000-2FFFF, 38000-3FFFF, 480004FFFF, 58000-
5FFFF, and 68000-6FFFF. See Chapter 6 of the OS/16 MTZ2 System Planning and Configuration Guide, Publication
Number 29431, for details on extended memory systems.

Task Identifiers

Task identifiers must consist of from one to eight characters; the first character must be alphabetic and the rest must be
alphameric. Thus: : S

TASK3

FRED These are all valid identifiers.

X

T997XY25

34TASK Invalid, first character not alphabetic.
T43.2 Invalid, non-alphameric character.

TASK12345 Invalid, more than eight characters.

File Descriptors
File Descriptors (generally abbreviated fd in this manual) are composed of three fields:

voln:filename.ext
Volun is the name of the volume on which the file resides or the device mnemonic of a device. It may be from one to four
characters, the first character being alphabetic and the rest alphameric. Filename is the name of the file. It may be from
one to eight characters, the first character being alphabetic and the rest alphameric. Ext is the filename extension field. It

may be from zero to three characters, which must be alphameric.

Voln need not be specified, the default being the system volume. If voln is not entered, the colon (:) separating voln and
filename must not be entered.)

Ext need not be specified; the default is generally the blank extension, but some commands may make use of a different
default value. If ext is to be defaulted, the period (.) separating filename and ext should not be entered.

File Descriptors may refer to devices or direct access volumes as well as to direct-access files. In the case of a device, the

voln field is the four-character device mnemonic or volume ID, and filename and ext should not be entered. The colon
following voln must always be entered in this case.

3-2 29430 RO4 1/78

Examples of legal File Descriptors are:

PACK:FRED.TSK

FRED.TSK The same File, if PACK is the system volume
FRED : The same File, if TSK is the default extension.
ABC:FOO Default extension, specified volume.
CARD: Name of a device.
DSC1: Name of a device.

Optional Operands

Some commands have optional operands. These are annotated with brackets surrounding the entire optional part of the
command, as follows:

COMMAND aaaa [, [bbbb] [,cccc]]

In this example, the operand aaaa is not optional, while the operands bbbb and cccc are optional. If ccec is specified and
bbbb omitted, the absence: of bbbb is denoted by two successive commas.

_QB_DER XXXX [,yyyy [,zzzz]] ’

In this example, operand zzzz may not be entered without operand YYYY. This is shown by the nested brackets. Legal
forms of this command are:

OR XXXX
OR XXXX,VYYY
OR XXXX,VYVY,ZZZZ

Whereas in the previous cxample, legal forms are:

COM aaaa

COM aaaa,bbbb
COM aaaa,bbbb,cccc
COM aaaa,,cccc

General Syntactic Rules
Multiple commands may appear on a line, separated by semi colons (;).

Certain commands must appear last on a line, or must be the only command on the line. These special commands are
discussed in the sections dealing with the individual commands.

% If the first character of any command is an asterisk (*), the remainder of that entire command line is considered to be a
™ comment and is not executed, although it is copied to the system log device if logging is active.
ERROR RESPONSE

If command input is not acceptable to the Command Processor, or an error condition is detected while processing a
command, an error message is output to the system console. The general format of the message is:

XXXX-ERR YYYY 7777 #=N

where XXXX is a descriptor of up to four characters (such as MNEM, CSS, FORM) which indicates the general class of
error.

YYYY is a descriptor of up to four characters which further identifies the particular type of error. The XXXX and YYYY
error descriptors are defined in Appendix 2 and are listed with each command description as appropriate. ZZZZ is a field

which is output when further information is helpful in identifying the error. It consists of a keyword followed by a value,
such as LU=5 or FD=PACK:FILE.

The #=N field indicates in which command, of multiple commands on a line, the error was defected. If N=1, this field is
omitted.

The error response to an unrecognized command is:

MNEM-ERR #=N

-+ Any command following an erroneous command is ignored.

29430 RO2 8/76 33

The error messages generated in response to certain File Management errors may contain references to Logical Units used
by the Command Processor. Table 3-1 lists the Logical Units of the Command Processor and their use.

TABLE 3-1. COMMAND PROCESSOR LOGICAL UNITS

LU USE

0 Console Device

1 Log Device

2 Work Unit

3 Work Unit

4 BUILD,$BUILD

5 First CSS level

6 Subsequent CSS levels

GENERAL SYSTEM COMMANDS
The following commands have a global effect on the system or display global system information:

SET TIME
DISPLAY TIME
VOLUME

SET LOG
DISPLAY MAP
SET PARTITION

Set Time
The SET TIME command should be entered when the system is first loaded and after any power failure. It may be entered
at any other time that the system clock is incorrect. The day is updated automatically at midnight, however, the month

and year must be updated by the operator. The format of this command is:

SET TIME [mm/dd/yy] [,hh:mm:ss]

where: mm = month
dd =day
Yy =year

hh =hours (24-hour clock)
mm = minutes
ss =seconds
All operands are in decimal. Example:
SET TIME 2/24/75,3:35:00
Alternatively (by SYSGEN option), the date operand may be entered in the format: dd/mm/yy.

If a SET TIME command is entered while there are uncompleted time intérva]s, (see SVC 2 code 23 — 0S/16 MT2
Programmer’s Reference Manual), the tasks which initiated the uncompleted intervals are affected in the following way
according to the type of interval:

1. Seconds from midnight. The date is updated; this has no effect on any time of day interval even if the
date entered differs from the previous date entered. The time difference is used to adjust all seconds
from midnight intervals.

2. Milliseconds from now. Elapsed time intervals are unaffected by a change in the time by a SET TIME.

For example, if the current date is 11/22/74 and the current time is 11:50 AM and there are three
intervals outstanding:

1. Time of day interval set to complete an 11/22/74 at 2:00 PM.
2. Time of day interval set to complete on 11/23/74 at 8:00 AM.

3. Elapsed time interval set-to complete on 11/22/74 at 1:00 PM.

34 29-430 R04 1/78

If a SET TIME 11/21/74,10:50:00 is entered, the time intervals are as follows:
1. Time of day interval set to complete on 11/21/74 at 2:00 PM.
2. Time of day interval set to complete on 11/22/74 at _8:00 AM. .
3. Elapsed time interval set to complete on 11/21/74 at*12 NOON.
Possible error responses to SET TIME are:
FORM-ERR Command syntax error; e.g., SET TIME 12/16/74/1:00:00
PARM-ERR VAL Operand error: e.g., SET TIME 68/74/18,1:00:00
PARM-ERR PRQD Operand missing: e.g., SET TIME 1/1/74,
Display Time

This command is used to display the current date and time to this system console or to a specified file or device. Its format
-is: :

DISPLAY TIME [,fd]

The optional operand fd specifies the file or device to which the display is to be output; if omitted, the display is output to
the system log. The display has the following format:

mm/dd/yy hh:mm:ss
or alternatively (by SYSGEN option):
dd/mm/yy hh:mm:ss

Possible error responses to DISPLAY TIME are:

FORM-ERR Command syntax error; e.g., DISP TIME/PR:

PARM-ERR MNEM Invalid Display option; ¢.g., DISP TM

PARM-ERR FD Invalid output File Descriptor; e.g., DI TIM,135

ASGN-ERR type Output fd could not be assigned for reason denoted by type

IO-ERR type 1/0O error denoted by type encountered on output fd. -
Volume

This command is used to set or display the name of the system default volume. Any commands that do not explicitly
specify a volume name use the system volume as a default. The format of this command is:

VOLUME {voln] [/SPL]

where voln is a one to four character volume identifier. No test is made to ensure that the volume is actually on line at the
time the command is entered. If voln is omitted, the current value of the system default volume is displayed, along with
the current OS overlay file and Roll and Spool volumes as appropriate. /SPL specifies voln as the system spool volume,
and is valid only for systems with spooling support. All spool files are allocated on volume voln.
Possible error responses to VOLUME are:

FORM-ERR Command syntax error; e.g., VOL FRED:

PARM-ERR VAL Parameter error; e.g., VOLUME 157
Set Log

This command is used to set the system log device. The system log receives a copy of all system console 1/O. This copy
includes:

— All command lines entered from the console;
— All responses to these commands (other than prompts);

— All messages logged by tasks.
All task input responses.

The format of this command is:
SET LOG [fd [,copy]]

The copy is produced on the file or device specified by fd.
In systems configured with CLOCK support, all logged 1/O is preceded by the current time:

hh:mm:ss (Logged 1/0)

29-430 ROS5 2/79) 3-5

The log may be changed at any time by another SET LOG command. If no operands are specified. logging is terminated.
Logging is automatically terminated under the following conditions:

1/O error on the log device
System initialization

When logging is terminated, the system console device receives all output directed to the system log. The command that
would have been logged when an I/O error occurred is not executed and must be re-input.

The SET LOG command may be used for two primary purposes. These are:
-~ To provide a historical record of system operation, often on a Magnetic Tape or Direct Access File.

— To allow system output, e.g., displays, log message, etc., to proceed on a high-speed device rather than on a
system console.

If the optional COPY operand is specified, the system console receives all outputs that it would have received if no SET
LOG command were in effect. This facility would normally be used when the logging is basically for historical purposes. If
COPY is not specified, however, the system console receives no outputs other than prompts. This is the case when logging
is directed at a high-speed printer device used by the console operator as an adjunct to the system console.

The Log device may be shared with user task output.

Possible error responses to SET LOG are:

FORM-ERR Command syntax error; e.g., SET LOG/PR:
PARM-ERR MNEM Invalid set option; e.g., SET FOX
PARM-ERR FD Invalid File Descriptor: e.g., SET LOG PACK.X.Y
ASGN-ERR type Log device/file could not be assigned for reason denoted by type; e.g., device off-
line or assigned for exclusive use to a task
I0-ERR type 1/0 error denoted by type, encountered on output device/file
Display Map

This command is used to display a memory map of the entire system, including all partitions and system space, to the
console or to a specified file or device. The format of the command is:

DISPLAY MAP [,fd]

The optional operand fd indicates the file or device to which the map is to be output; if omitted, the display is output to
the system log.

The format of the map is shown in Figure 3-1.

NAME START STAT PRI
.BG 6300
1 ABC 9000 A 37
2 XYZ A000 P 126 -
3 B0O0O
4 PDQ35 C000 RDO 13
5 E000
.SYS E000
FBOT F7B0
MTOP 10000

Figure 3-1. Display Map Format

fl"he; NAME field is the name of a task or of a partition. Where no name is shown, a vacant foreground partition is
indicated. The names .BG and .SYS indicate the Background and System Space partitions, respectively. Any name other
than these is the name of a Foreground task.

36 , 29430 RO2 8/76

The START field indicates the starting address of the partition.

The PRI field indicates the priority in decimal of all tasks currently in Foreground or Background partitions. The STAT
field indicates the Status of these tasks, as follows:

D Dormant
P PAUSEd
A “Active;” i.e., in any state other than Dormant or PAUSEd

A task that is displayed on the map as “Active” may in fact be in a Wait state; if this information is desired, the console
operator may use the TASK and the DISPLAY PARAMETERS commands to get the actual Wait Status halfword of a
given task. The status may be preceded by an “R” indicating the task is memory resident. It may be followed by an “O”
indicating that this task caused the task previously in this partition to be rolled out.

The last two lines of the display contain the current value of FBOT and MTOP (bottom of used System space and memory
top, respectively).

Possible crror responses to DISPLAY MAP are:

FORM-ERR Command syntax error; e.g., DISP MAP/PR:

PARM-ERR MNEM Invalid Display option; e.g., DISP MOP

PARM-ERR FD Invalid File Descriptor specified; e.g., DISP MAP, 123:

ASGN-ERR type Output Device/File could not be assigned for reason denoted by type; e.g., device
is off-line or assigned for exclusive use to a task. ‘

I0-ERR type 1/O error denoted by type encountered on output device/file

Set Partition

This command is used to partition the user and system space in the system. If Roll support is configured in the system, the
command also allocates the Roll files required by the specified partitioning. The format of the command is:

SET PARTITION pname/address [,pname/address] ..

where pname is:

1. A decimal number, indicating one of the Foreground partitions configured in the system,

or
2. .SYSindicating the System Space partition,

and address specifies the new starting address of the designated partition in hexadecimal. If the optional Memory Protect
Controller is configured in the system, the starting address of Foreground Partition 1 and of .SYS must be on a 1K
boundary; otherwise, the address must be on a halfword boundary. There is no restriction on the order of parameters.
Partitions are arranged in memory as illustrated in Figure 3-2.

Top of Memory

SYSTEM SPACE (.SYS) (MTOP)
FOREGROUND PARTITION n
FOREGROUND PARTITION 2
FOREGROUND PARTITION 1
BACKGROUND (.BG)
f SYSTOP
0S/16 MT2
Address 0

Figure 3-2. Partition Format

The size of a partition is set by specifying the start address, of the next higher partition. The SET PARTITION command
may be used to reduce the number of partitions by specifying the same starting address for two more partitions, thus giving
a Zero size to all but the last such partition.

29-430 R04 1/78 37

The entire command is processed before any change is made to the partitioning of the system. If a partitioning error is
detected, the partitions are left unchanged. If an error is detected in allocating the Roll files, the partitions are changed and
an error message is logged. This command is rejected if:

1.

2.

pname specifies a number greater than the number of configured foreground partitions,
a partition affected by a new start address is non-vacant,

address specifies an address less than SYSTOP (top of OS) or greater than FBOT (bottom of used
System Space),

address specifies a starting address greater than the starting address of the next higher partition, or less
than the starting address of a lower partition. The exception to this is that, if the effected partitions
are vacant, the starting addresses of these higher, or lower, partitions are set to the specitied address,
thus causing the start addresses of vacant partitions to be kept in memory order.

in an extended memory system, a partition may not cross a 32KB boundary except for the first 32KB
boundary.

After initial loading, an OS/16 MT2 System is normally partitioned with all start addresses equal to the first address not
occupied by the system code (SYSTOP). A SET PARTITION command must be issued before a task may be loaded. If the
SET PARTITION command is omitted from the system at system gencration time. the start-up address of .SYS is preset to
MTOP (no system space).

Assume an OS/16 MT2 system configured with 64K and four Foreground partitions, and SYSTQP has a value of 20K
(5000 hexadecimal). Table 3-2 illustrates the effect of various SET PARTITION Commands entered in the following order:

TABLE 3-2. SET PARTITION EXAMPLES

COMMAND

PARTITION START

COMMENTS

NONE

SE PA 1/E000

SE PA 3/C000,4/D000

SE PA 4/A000

SE PA 1/A000,2/C000,4/E000

.BG

BN —

.SYS

.BG

W~

.SYS

OO —.

.SYS

.BG

DWW -

.SYS

.BG

W =

SYS

5000
5000
5000
5000
5000

5000 -

5000
E000
E000
E000
E000
E000

5000

C000
C000
C000
D000
E000

5000
A000
A000
A000
A000
E000

5000
A000
C000
C000
E000
E000

State after initial load of OS.

Create .BG with 36K, 8K system space.
Partitions 1, 2, 3 and 4 are Zero size.

Start address of 1 and 2 adjusted down
to maintain Zero size. .BG reduced to
28K. Partitions 3 and 4 each 4K.

Start address of 1, 2 and 3 are adjusted
if partitions 3 and 4 are vacant and .BG
is dormant. Otherwise the command is

rejected.

Partitions 1 and 3 each 8K;2 and 4

Zero size.

3-8

29-430 RO5 2/79

TABLE 3-2. (Continued)

COMMAND PARTITION START COMMENTS
SE PA 4/E800 .BG 5000 Partition 3 enlarged to 10K, system space
1 A000 start adjusted upward to maintain zero
2 C000 size of partition 4.
3 C000
4 E800
.SYS E800

For examples of SET PARTITION in an extended memory environment, see Chapter 6 of the OS/16 MT2 System Plan- l
ning and Configuration Guide, Publication Number 29-431.

Possible error responses to SET PARTITION are:

PARM-ERR PRQD Required parameter missing; e.g., SET PAR;

PARM-ERR MNEM Something other than a decimal number or .SYS specified for pname;c.g., SET PA
.SUS/E000.

PARM-ERR VAL Invalid decimal number specificd for pname; invalid address specified for address;
invalid alignment of address; e.g., SET PA 0/ABCDE

STAT-ERR VAL Address specified results in out of order partition; e.g., SE PA 1/B000, 2/A000 or if

. address is not on a 1K boundary when memory protect is included in the system.

STAT-ERR ACTV Partition bordering on a specified boundary contains active task.

FORM-ERR Command syntax error; e.g., SET PAR 1=ABCO

ALLO-ERR TYPE Roll file could not be allocated for reason denoted by type. The partitions are set

up as specified. This is a warning only.
UTILITY COMMANDS

This group of commands is useful in debugging, or in building Command Substitution System files, but otherwise has no
effect on the system or its tasks:

BIAS BUILD
EXAMINE ENDB
MODIFY

Bias '

This command is used to sct a base address for the EXAMINE and MODIFY commands. Its format is:

BI ASI:Gd(ires§]

The operand address is a hexadecimal bias to be added to the address or addresses given in any subsequent LXAMINE or
,MODIFY command. If the operand is omitted, all addresses specified in subsequent EXAMINE and MODIFY commands
~are treated as unbiased; that is, they are assumed to be absolute physical addresses. If * is specified, the bias is set to be the
physical address of the first location of the currently selected task’s partition (see the TASK command).

A BIAS command overrides all previous BIASes.
System initialization sets the BIAS to Zero.

Possible error responses to BIAS are:

FORM-ERR Command syntax error;e.g., BL,*

PARM-ERR VAL Parameter error; e.g., BI X

FUNC-ERR TASK * gpecified, no currently selected task
Examine

This command is used to examine the contents of memory. There are two formats:

(a) EXAMINE address [,n]
(b) EXAMINE address/address

_The EXAMINE command using format (a) causes the contents of the memory location specified by address (as modified

" by any previous BIAS command) to be displayed. The decimal operand n specifies the number of halfwords to be
displayed. If n is omitted, one halfword is displayed.

29-430 RO4 1/78 3.9

Using format (b), all data from the first address to the second is displayed in hexadecimal. The BIAS is added to both
addresses. The command is rejected if the second address is less than the first address. The memory area to be examined
may not cross extended memory modules (example: EXAMINE 0/3FFFF).

All addresses presented are rounded down to halfword boundaries by the system. The command is rejected if an address
plus the bias is not less than the top of memory

Possible error responses to EXAMINE are:

FORM-ERR Command syntax error; e.g., EXAM, 100-200

PARM-ERR VAL Parameter syntax error; e.g., EXA X, 16

PARM-ERR PRQD Required parameter missing; e.g., EXA
Modify

The MODIFY command is used to change the contents of memory.

MODIFY address, I:[data] s [data] ..]

causes the contents of the halfword location specified by address (modified by any previous BIAS command) to be
replaced with data. The modify address must be aliened on a halfword boundary and must be less than the top of
memory,

If the operand data is omitted, the modify address has its contents replaced with zero. Each data field consists of 0-4
" hexadecimal digits which are to be put into memory starting at the location specified by address. Any string of data less
than four characters is right-justified and left-zero filled.

If an invalid data operand error is detected, the locations previous to the location to be updated by the erroncous data have
been updated. In this case, the EXAMINE command should be used to verify the effects of the MODIFY. The MODIFY

command is not valid across the 32KB boundaries of extended memory modules (example: MODIFY 1FFFC,0,0,0,0 is not
valid).

Possible error responses to MODIFY are:

FORM-ERR Command syntax error; e.g., MOD 124/5
PARM-ERR VAL Parameter value error; e.g., MOD 123,0 (not halfword boundary)
PARM-ERR PRQD Required parameter missing; e.g., MO;)

Build
BUILD and ENDB permit the user to copy data from the system console to an arbitrary device or file (These commands
may also be entered from a CSS file. Following a BUILD command, subsequent lines from the console are not treated as
commands, but as data, and are copied to the device or file until an ENDB is encountered. The format of these commands
is:

BUILD fd

ENDB
The operand fd is the device or file. If fd refers to a non-existent Direct-Access File, an Indexed File by that name is
allocated, with a logical record length equal to the SYSGENed command buffer length, blocksize of 1, index blocksize of
1, and keys of 0000.

The BUILD command must be the last command on its input line. Further data appearing on that line is treated as a
comment and is ignored.

The ENDB command must appear in the first four characters of the line; any subsequent characters in that line are ignored.

The BUILD command may be entered from the console only if no CSS files are active. The BUILD command may be
entered from a CSS file.

Possible error responses to BUILD are:

FORM-ERR Command syntax error; e.g., BUILD/PTRP

PARM-ERR FD Invalid File Descriptor or no Direct-Access File support
ASGN-ERR type Output file/device could not be assigned for reason denoted by type
FUNC-ERR SEQ CSS file active, entered from system console

PARM-ERR PRQD Required fd not specified; e.g., BUILD,;

ALLO-ERR type Specified fd could not be allocated for reason denoted by type

3-10 29-430 RO5 2/79

No error response is possible from ENDB if a BUILD statement is being processed. If ENDB is not entered as the first four
characters in the command line, the line is copied to the BUILD file. If no BUILD statement has been entered previously,

the response to ENDB is:

FUNC-ERR SEQ ENDB command entered without previous BUILD.

TASK RELATED COMMANDS

The following commands are related to particular tasks executing in the OS/16 MT2 environment:

LOAD ASSIGN

LDBG DISPLAY LU

LFGR CLOSE .

TASK OPTIONS

START SET PRIORITY

PAUSE DISPLAY PARAMETERS
CONTINUE SEND

CANCEL DISPLAY REGISTERS

Load Image

This command is used to load image format tasks’into a Foreground or Background partition. It is also used to load a
resident library or task common partition. The format of this command is:

LOAD taskid [fd] [*]

The taskid field specifies the name to be assigned to the task to be loaded. The fd field specifies the file or device from
which the task is to be loaded. If fd specifies a Direct-Access File and no extension is specified, a default extension of .TSK
is used. If fd is omitted, a Direct-Access-File name of taskid. TSK is used. This command is not affected by the TASK

command; it may be entered at any time.

The specified task is loaded into an available partition (a partition whose address matches the least significant 4 digits of
the task established bias). This command is rejected if:

— an available partition is not vacant and the system does not support Roll.

— If Roll is supported, but there is a task already rolled out of an available partition or the task currently
occupying the partition is now lower priority than the task being loaded or is not rollable.

— There is no partition whose starting address matches the task’s established bias.

Resident Library and Task Common partitions are loaded in the same way as tasks. The * option indicates that the task
should be loaded only in the partition specified when the task was established (extended memory systems only).

Some examples of the LOAD command are given in Table 3-3.

TABLE 3-3. LOAD COMMAND EXAMPLES

ACTION COMMAND

Load task from Paper Tape LOAD ABC,PTRP:
Reader. Give task ID of

ABC.

Load task from file SYS:CAL.TSK LO CAL
where SYS is the default volume.
Use CAL as task ID.

Load a Resident Library LOA RLIB,VOL:RTL.
partition from file VOL:RTL.
(blank extension). Give

task ID of RLIB.

Possible error responses to LOAD are:

FORM-ERR Command syntax error; e.g., LOAD ABC/TSK.TSK

PARM-ERR FD Invalid file description specified; e.g., LO ABC,X.B.C

PARM-ERR TASK Invalid TASK ID specified; e.g., LOAD 123

ASGN-ERR type Specified device/file not assigned for reason denoted by type.
LOAD-ERR type SVC 6 error encountered during load. Specific error denoted by type.

29-430 RO6 9/79

Load Background (Object Code)
LDBG is used to load object format tasks into the Background partition. Its format is:
LDBG f{d I;bias:l

The parameter fd specifies the file or device from which the task is to be loaded. If fd specifies a Direct-Access-File and no
extension is specified, an extension of .OBJ is used.

The optional parameter bias specifies the address in hexadecimal at which to start loading the object format task. This
address must be within the background partition.

If the optional bias parameter is omitted, a default value of partition start address plus size of UDL is used. The UDL is
taken as

X'24' if the system has no floating point support
X'44’ if the system has SPFP support
X'84’ if the system has DPFP support

The loader sets the task’s options RES and either NOFLOAT, FLOAT and/or DFLOAT to match the support offered by
the system.

Possible error responses to LDBG are:

FORM-ERR Command syntax error;e.g., LD MAG1:/6000

FUNC-ERR SEQ Background partition not dormant

PARM-ERR FD Invalid File Descriptor;e.g., LDBG 1:ABC

PARM-ERR VAL Invalid bias value; e.g., LDBG PTRP:.1ABCD

ASGN-ERR type Specified fd could not be assigned for reason denoted by type field

LOAD-ERR DCHN Ref-Def loop error encountered in task
LOAD-ERR CKSM Checksum error detected

LOAD-ERR SEQ Sequence numbers out of order in input

LOAD-ERR OBJ Illegal object format item detected .
LOAD-ERR MEM Attempt to load into an address outside of the background partition
I0-ERR type 1/0 error denoted by type field encountered during load

Load Foreground (Object Code)
LFGR is used to load object format tasks into a foreground partition. Its format is:

LEGR n,taskid [fd] [\bias) [.csec]

where

n specifies the foreground partition number, defining the partition into which the task is to be loaded.

taskid specifies a 1 to 8 character name to be assigned to the task once it is loaded.

fd specifies the file or device from which the task is to be loaded.

bias specifies the hexadecimal address within the partition from which to start loading the object code task.
CSEG is an option used on extended memory systems only. It specifies that task common or sharable library

segments used by the task are resident in the second 32KB memory module. See Chapter 6 of the
08/16 MT?2 Planning and Configuration Guide, Publication Number 29-431, for details on extended memory.

If the optional fd parameter is omitted, the extension '.OBJ' is appended to the taskid to form a direct access device file
descriptor. If fd is given with no extension, the default .OBJ' is appended to the given filename.

If the optional bias parameter is omitted, a default value of partition start address plus size of UDL is used. The UDL is
taken as

X'24' if the system has no floating point support
X'44' if the system has SPFP support
X'84' if the system has DPFP support

The loader sets the task’s options RES and either NOFLOAT, FLOAT and/or DFLOAT to match the support offered by
the system.

3-12 29-430 ROS 2/79

Possible error responses are:

FORM-ERR Command syntax error

FUNC-ERR SEQ Partition not vacant

PARM-ERR FD Invalid file descriptor

PARM-ERR VAL Invalid bias given

ASGN-ERR type Fd could not be assigned for reason denoted by type field
LOAD-ERR NPRT No such partition

LOAD-ERR CKSM Checksum error

LOAD-ERR SEQ Sequence numbers in object code out of order
LOAD-ERR OBJ Illegal object code item

LOAD-ERR MEM Attempt to load outside partition
LOAD-ERR PFUL Partition occupied

I0-ERR type 1/O error occurred during load

Task

This command is used to set or display the currently-sclected task. Many OS/16 MT?2 task-related commands affect only
the currently-sclected task. The TASK command is used to sclect one of the tasks in the system, either Foreground or
Background. Subsequent task-related commands affect this task. The format of the command is:

TASK [taskid]

where taskid is the name of some foreground task in the system, or is the name of the background task, .BG. If taskid is
omitted, the currently selected task is displayed in the message:

TSKID=taskid
The commands affected by TASK are:
All task-related command except LOAD, LFGR, and LDBG.
Magnetic Tape and File Control Command, Format (b)

— Some CSS Commands
— BIAS command, with * operand

For example:

T ABC Set current task = ABC

CL 2,3,4 Close ABC’s LU 2,34

AS 2,CARD: ‘Assign ABC’s LU 2 to device CARD
TXYZ Set current task = XYZ

CAN Cancel task XYZ

ST B100 Start task XYZ at address B100

T .BG Set current task = background

PAUSE Pause the Background task

NOTE

When CSS is started, the current value of TASK is associated with
the CSS file as the currently-selected CSS task. If a CSS file
executes a TASK command, it affects only that CSS file’s
commands, and does not change the value of TASK associated
with the console. ~

If the currently selected task is a Foreground task which is deleted from the system or if no TASK command has been
entered, there is no currently selected task. Task related commands (other than LOAD, LFGR, or LDBG) are rejected with
a FUNC-ERR TASK if there is no currently-selected task. In a Background only system, the currently selected task is
always set to .BG, and the TASK command is not recognized.

Possible error responses to TASK are:

FORM-ERR Command syntax error;e.g., TA .BG,ABC
PARM-ERR TASK Invalid TASK ID;e.g., TAS 1234
FUNC-ERR TASK Specified TASK ID not found in system.

29-430 RO4 1/78 3-13

Start

This command is used to start a task executing. The currently-selected task is started, if it is dormant or Paused: otherwise,
the command is rejected. The format of this command is:

START zlddress] Eurgs to prog]

The operand address represents the address at which the program is to be started. If aci(’lre§s is omitted, the
currently-selected task is started at the transfer address specified when established: or the default transfer address set when
the task was loaded.

The optional field, args to prog, contains arguments that are to be passed to the task for its own decoding and processing.
All characters between the comma beginning the ficld and the next terminator (semi-colon or carriage return) are moved to
memory beginning at UTOP. The characters are terminated in memory by a carriage return. If this operand is omitted, a
carriage return is stored at UTOP. If there is not ¢nough memory between UTOP and CTOP to pass all the characters, the
command is rejected with a FUNC-ERR ARG. In multiple command lines, a START command can only be the last com-
mand on the line.

Possible error responses to START are:

IFORM-ERR Command syntax crror: c.g., START 100/5

PARM-ERR VAL Parameter value error:c.g., START *73,GO

FUNC-ERR SEQ Task not Dormant or Paused

IFUNC-EERR TASK No currently selected task

FUNC-EERR ARG Insufficient memory between UTOP and CTOP to pass all ARGS to PROG.

Some examples of a START command are:

ST B138 Start task at X'B138' and pass
a carriage return to the program

ST C100,NOSEQ, SCRAT Start task at X’C100" and pass
'NOSLQ,SCRAT’ to the program

ST ,1000,ABC Start task at transfer address and
pass "1000,ABC” to the program.

Pause

This command causes the currently-selected task to pause as though it had issued an SVC 2 CODE 1, PAUSE (See 0s/16
MT?2 Programmer’s Reference Manual). lts format is:

PAUSE
Any I/O Proceed ongoing at the time the task is Paused. is allowed to proceed to completion after the PAUSE. If the task
is in any wait state at the time the PAUSE command is entered, all wait conditions must be removed before the pause can

become effective. This command is rejected if the task is dormant or paused at the time the command is entered.

Possible error responses to PAUSE are:

FORM-ERR Command syntax crror; e.g., PAUSE .BG
FUNC-ERR SEQ Task Paused or dormant
FUNC-ERR TASK No currently sclected task

Continue

This command resumes execution of a task which is paused. Its format is:
CONTINUE

Possible error responses to CONTINUE are:

IFORM-ERR Command syntax crror: ¢.g., CONTINUE .BG
FUNC-ERR SEQ Task not paused
FUNC-ERR TASK No currently selected task

3-14 29-430 RO5 2/79

Cancel

The CANCEL command terminates a task and sets the task’s return code to 255. The format of this command is:

CANCEL
If the task is non-resident, it is removed from the system at this time, all outstanding 1/O is terminated and the task’s LUs
are closed. If the task is resident, it is not removed from the system; its LUs are not closed, but are checkpointed. This
command may be entered even when the currently-selected task is dormant. It has no effect on a resident task that is

already dormant, unless preceded by an OPTIONS NONRES command; it may be used to remove a non-resident task,
which has been loaded but not started, from the system. The normal response to this command is:

taskid: END OF TASK 255

Possible error responses to CANCEL are:
FORM-ERR Command syntax crror: ¢.g., CANCEL .BG
FUNC-ERR TASK No currentlv selccted task

Assign

This command assigns a device or file to one of a task’s Logical Units. The format of this command is:
ASSIGN 1u, fd [Elccess-pri\] Ekeys:l}

where lu is the LU number in decimal, fd is the File Descriptor specifying the device or file to be assigned, access-priv is the
desired access privilege, and keys specifies the Write-Read protection keys of the file or device. The keys are set with
ALLOCATE and can be changed with REPROTECT.

Access-priv may contain one of the following:

SRO Sharable Read-Only

ERO Exclusive Read-Only

SWO Sharable Write-Only

EWO Exclusive Write-Only

SRW Sharable Read-Write

SREW Sharable Read, Exclusive Write
ERSW Exclusive Read, Sharable Write
ERW Exclusive Read-Write

If access-priv is omitted, SRW is assumed. The command is rejected if the requested access privilege cannot be granted.
If a console device is assigned for SRO access, the console paper tape reader is assigned to the logical unit.

The optional operand, keys, specifies the Write and Read protection keys for the file. The keys are specified as a hexa-
decimal halfword (1 to 4 digits), the first byte of which represents the Write Key and the second byte, the Read Key.
If omitted, the default is 0000. These keys are checked against the appropriate existing keys for the file or device; the
command is rejected if the keys are invalid.

An assigned Direct-Access File is positioned at the end of the file for access privileges SWO and EWO; it is positioned at the
teginning of the file for all other access privileges.

This command is rejected if the specified LU is assigned and the currently selected task is not dormant. To reassign an LU
for an active task, the LU must first be CLOSEd.

Possible error responses to ASSIGN are:

FORM-ERR Command syntax error;e.g., AS 1/CR:

PARM-ERR PRQD Required parameter missing; e.g., AS,CR:

PARM-ERR FD Invalid File Descriptor; e.g., AS1,PACK:ABC:TSK
PARM-ERR VAL Invalid keys specified; ¢.g., ASS11,CR:,,12345

PARM-ERR MNEM Invalid access privilege mnemonic;e.g., ASSIGN 1, CR:,SWR
ASGN-ERR type The assign failed for rcason denoted by type.

FUNC-ERR TASK No currently selected task

29-430 ROS 2/79 3-15

Display LU
This command permits the operator to display all assigned Logical Units of the currently-selected task. Its format is:
DISPLAY LU Efd]

where the optional operand fd signifies the file or device for the display. If the optional operand is omitted, the display is
output to the system log.

An example of the display output is shown in figure 3-3.

LU PRIV FD/NAME
1 SRO CR:
2 ERW VOLN:ABC.OBJ
3 SWO PR:
4 SRW VOLN:SCRATCH.
5 SRW TTY:
10 SWO NULL:

Figure 3-3. Display Logical Unit Format

Possible error responses to DISPLAY LU are:

FORM-ERR Command syntax error; ¢.g., DISP LU/PR:

PARM-ERR MNEM Invalid Display option; e.g., DISP LO

PARM-ERR FD Invalid File Descriptor;e.g., DISP LU,123

[IO-ERR type 1/O error denoted by type encountercd on output device/file
FUNC-ERR TASK No currently selected task

Close

This command permits the operator to close (de-assign) the files or devices assigned to one or more of the currently-
selected task’s Logical Units. The format of this command is:

CLOSE [1 [,m]
ALL

where the lu operand or operands are decimal numbers signifying the Logical Unit(s) to be de-assigned. If ALL is specified,
all the LU’s of the currently-selected task are closed.

Closing an unassigned LU does not produce an error message. Closing LUs of active tasks is permitted. Users should be
aware that this may cause inadvertent loss of data on files being written to.

If an operand is invalid, previous valid operands in the same command are processed. In this case, use the DISPLAY LU
command to verify the state of the logical units.

Example of the CLOSE command are:

CL 1,3,5 Close LUs 1,3 and 5
CLOSE AL Close all LU’s of task

Possible error responses to CLOSE are:

FORM-ERR Command syntax error;e.g., CLO 1/2/3
PARM-ERR VAL Invalid LU specified; e.g., CLO 112
PARM-ERR PRQD Required parameter missing; e.g. CL 2,,3
CLOS-ERR type Close failed for reason denoted by TYPE ficld
FUNC-ERR TASK No currently selected task

3-16 29-430 RO5 2/79

Options

This command is used to specify or to change certain options of the currently selected task. The format of this command
is:

OPTIONS opt [,opt]

where opt may be any one or more of the following options:.

AFC Continue after arithmetic fault (message logged)

AFP Pause after any arithmetic fault

RES Task is memory-resident

NONRES Task is to be removed from memory at EOT

FLOAT Task requires Single Precision floating point registers
NOFLOAT Task requires no Single Precision floating point registers
DFLOAT Task requires Double Precision floating point registers
NODFLOAT Task requires no Double Precision floating point registers
SVCP Treat SVC 6 as illegal SVC (.BG only)

SVCC Treat SVC 6 as NOP (.BG only)

uTt Task is to be a user task (non-privileged)

ET Task is to be an Exccutive task

ROLL Task may be rolled out

NOROLL Task may not be rolled out

COMP Task uses BOSS/DOS/RTOS SVC1 format parameter block
NOCOMP Task uses OS/16 MT2 SVC 1.

The options are paired, but any option may be entered in any order. If both members of a pair are entered, the last one
entered is accepted as the correct option. Thus:

OPTIONS RES,NONR

specifies non-resident. The LDBG command has no effect on existing options of the background task.
The ROLL and NOROLL, AFP and AFC, COMP and NOCOMP, UT and ET options are normally set up at task
establishment time, but may be modified by the console operator. This command may be entered at any time, regardless of
the task’s state. Note that the sequence OPT NON;CANCEL always causes the currently-selected task to be removed from
memory. The sequence OPT RES;CANCEL always causes the currently-selected task to enter the dormant state.
Note that for a specific task to be eligible for roll-out:

1. The OS must be configured with ROLL support.

2. The task must have the ROLL option set.

3. A disc volume on the system must have been marked on-line as the ROLL volume.

4. There must be no other task currently rolled out from that partition.

5. The task must not be in a wait state.

The SVCP and SVCC options apply only to the Background task; they are ignored if specified for a Foreground task.

Note that if a task uses floating point arithmetic, OPT FLOAT and/or OPT DFLOAT must be specified when the task is
established so that the UDL includes the register save areas.

Note that for a task to use floating point arithmetic (SPFP and/or DPFP) *

1. The OS must be configured with the appropriate software floating point support, whether or not the
processor has hardware floating point support.

2. The task must have the appropriate floating point option set.

3. The task’s UDL must include the floating point register save areas. (Both TET/16 and the resident
object code loaders reserve these arcas by default).

" Possible error responses to OPTIONS are:

FORM-ERR Command syntax error; e.g., OPT ET/NO RO
PARM-ERR MNEM Invalid option specified or option not supported
FUNC-ERR TASK No currently selected task

If an operand is invalid, previous valid operands in the same command are processed. In this case, use the DISPLAY
PARAMETERS command to verify the state of the task options.

29430 RO2 8/76 3-17

Set Priority
This command is used to modify the priority of the currently-selected task. Its format is:
SET PRIORITY n

where n is a decimal number from 10 to 249 inclusive for User Tasks and from 0 to 255 inclusive for Executive tasks.
The priority of the currently-selected task is sct to n, subject to the following restriction:

If the task is a Forcground task, its priority may not exceed the maximum priority sct up at task estabiishment
time. If n is greater than the maximum established priority, then the latter is taken instead of n. This is not con-
sidered an crror. In order to increase this priority, it is necessary to reestablish the task.

Display Parameters

This command is used to display certain parameters pertinent to the currently-selected task. The display appears on the
console device, or alternatively on a device or file selccted by the operator. The format of this command is:

DISPLAY PARAMETERS [.fd]

Parameters displayed are:

TASK TASKID

CTSW Current TSW status field
CLOC Current location field of TSW/PSW
CPSW Current task PSW

STAT Task’s Wait status halfword
TOPT Task Options

CTOP Top of user’s partition
UTOP Top of user task

UBOT Bottom of user task

SLOC Starting location

NLU Number of Logical Units
MPRI Task’s maximum priority
SVOL System Volume ID

The CLOC may be a program space address or an address in a system subroutine being executed on behalf of the task. NLU
is given in decimal. SVOL is the ASCII System Volume ID. As such it is not specifically related to the currently-selected
task, but it is given here for operator convenience.

TOPT is given in hexadecimal; the definition of task option bits is given in Table 3-4.

TABLE 3-4. TASK OPTION BITS

Bit Hex Mask Meaning

0 8000 0 — U-task; 1 — E-task

1 4000 0 — AFP; 1 — AFC

2 2000 0 - NOFLOAT; 1 — FLOAT

3 1000 0 — NONRES; 1 — RES

4 0800 0 -~ NOCOMP; 1 - COMP

5 0400 0 - Foreground task: 1 -~ Background task

6 0200 0- SvCp:1 svCC

7 0100 0 - NOROLL; 1 — ROLL

8 Reserved for system use

9 0040 0 -~ NODFLOAT: 1 - DFLOAT

10 0020 0 — NOCSEG;! — CSEG
(Extended Memory Systems Only)

11-15 Reserved for system use

3-i8 29-430 RO3 6/77

STAT is given in hexadecimal; the definition of Wait status bits is given in Table 3-5.

TABLE 3-5. TASK WAIT STATUS BITS

Bit Mask Meaning if Set (1)

0 8000 Dormant

1 4000 I/O Wait

3 1000 Roll Wait

5 0400 Console Wait (PAUSED)

6 0200 Time Wait

7 0100 Trap Wait

8 0080 - SVC 2 Wait

9 0040 SVC 5 or SVC 6 Wait
10 0020 SVC 7 Wait
i1 0008 DCB Wait

CTSW is given in hexadecimal. For a definition of the status portion of the TSW, see 0S/16 MT2 Progranuner's Reference
Manual.

For extended memory systems, the CPSW may be used to convert user program addresses into physical memory addresses.
See Appendix 14.

Possible error responses to DISPLAY PARAMLETERS are:

FORM-ERR Corumand syntax error; ¢.g., DISP PARM/PR:

PARM-ERR MNEM Invalid Display option specified; e.g., DISP XYZ

PARM-ERR FD Invalid File Descriptor; e.g., DISP PA,ABCDE:

I0-ERR type I/O error denoted by type encountered on output device or file
FUNC-ERR TASK No currently selected task

Send
This command enables the operator to send a message to the currently selected task via the command processor.
The format of the command is

SEND (up to 64 character string)

The message is passed to the selected task following standard SVC 6 procedures. The message data passed to the task begins
with the first non-blank character following SEND and ends with a carriage return as a terminator.

The receiving task must be capable of receiving messages.

For example:

TASK TASKID
SEND EXAMPLE MESSAGE (C/R)

will send the following message to task TASKID:
.CMDP EXAMPLE MESSAGE (C/R)

The possible error responses to SEND are:

FUNC-ERR TASK No current task

PARM-ERR PRQD No message given

PARM-ERR VAL Message too long

FUNC-ERR SEQ Command out of sequence
SEND-ERR NMSG Task could not receive message

29-430 RO3 6/77 3-19

Display Registers

This command causes the sixteen user registers to be displayed to the console or a specified file or device. The registers
can be examined while the task is active or dormant. The registers listed while the task is dormant are all viewed at the
same time. However, the display registers command for an active task guarantecs that only four registers are viewed at one
time because an active task may be changing the registers while the OS is displaying them. Registers 0,1,2, and 3 are

taken at the same time; registers 4,5,6, and 7 are viewed at the same time: registers 8,9,A, and B are examined at the same
time; registers C,D,E, and F are examined at the same time. The format of this command is:

DISPLAY REGISTERS [,fd]

where:

fd specifies the file or device to which the display is output. If omitted, the display is output to
the console.

Example/Response:

D R

0-3 0000 0C84 0000 0000
4 -7 0000 0104 O0D2E 029C
8 - B 0000 0000 0000 00B8
C-F 0000 0000 500D 2020

Possible error responses to DISPLAY REGISTERS are:

FORM-ERR Command syntax error; e.g., DISP REG/
PARM-ERR Invalid parameter; e.g., DISP YYZX
FD-ERR Invalid file descriptor; e.g., DISP R,135
ASGN-ERR Output device/file could not be assigned
T10-ERR 10 error encountered on output device/file

DEVICE AND FILE CONTROL COMMANDS

The following set of commands is used for device and file control. These commands are not affected by the setting of the
currently selected task:

ALLOCATE MARK WFILE
DELETE DISPLAY DEVICES REWIND
XDELETE FRECORD RW
RENAME FFILE INITIALIZE
REPROTECT BRECORD SAVE
FILES BFILE PRINT

DISPLAY FILES

Allocate

This command is used to create a Direct-Access File. There are two formats:

(a) ALLOCATE fd,INDEXED { [lrecl][/ [bsize] [[isize]] [,keys]] -
(b) ALLOCATE {d.CONTIGUOUS, fsize [keys]

the operand fd identifies the file to be allocated. Format (a) is used to allocate an Indexed File; format (b) is used to
allocate a Contiguous File.

29-430 RO5 2/79

If INDEXED is chosen, the next operand, Irecl, is optional and specifies the logical record length. It cannot exceed 65,535
bytes. Its default is 108 bytes. It may optionally be followed by a slash mark (/) which delimits Irecl from bsize. The bsize
operand specifies the block size, in 256-byte sectors, of the data blocks to be used for buffering and de-buffering
operations on the file. If bsize is omitted, the default value is 1 sector (256 bytes). isize specifies the block size, in sectors
of the index blocks. If isize is omitted, the default value is 1 sector (256 bytes). Note that, in order to assign this file,
sufficient room must exist in system space for a buffer of the stated size. Therefore, if bsize or isize is very great, the file
may not be assigned in some memorybound situations. isize and bsize may not exceed 255. lrecl, bsize and isize arc
specified as decimal numbers.

If CONTIGUOUS is chosen, the file size operand, fsize, is required and specifies the total allocation size in 256 byte
sectors. This size may be any value up to the number of contiguous sectors existing on the specified volume at the time the
command is entered. fsize is specified as a decimal number.

The last operand, keys, is optional. This operand specifies the Write and Read protection keys for the file. These keys are
in the form of a hexadecimal halfword, the first byte of which signifies the Write key and the second byte the Read key. If
this parameter is omitted, both keys default to zero.

"Examples of the ALLOCATE command:

AL THISFILE,INDEX

allocates on the system volume an Indexed file named THISFILE. (blank extension) with a logical record of 108 bytes, a
data blocksize of 1 sector, an index blocksize of 1 scctor, and protection keys of zero.

AL PROGRAM.TSK,CO,64

allocates on the system volume, a Contiguous File named PROGRAM.TSK, whose total length is 64 scctors (16KB) and
protection keys are zero. ' ‘

AL FRED:EXAMPLE.OBJ,1,132

allocates on the volume FRED, a file named EXAMPLE.OBJ, whose logical record length is 132 bytes. The data block size
and index block size of this file both default to one sector; the protection keys default to zero.

AL MORT:GREATBIG.BLK,IND,132/4/1

allocates on the volume MORT, an Indexed File named GREATBIG.BLK, whose logical record length is 132 bytes, using a
data block size of 4 sectors and an index block size of 1 sector. The protection keys default to zero. Note that whenever
this file is assigned, the system must have 1.25KB of available system space (the data block size plus the index block size)
for buffers.

AL SAM:DATABASE.X,1,480,AA44

allocates on the volume SAM, an Indexed File named DATABASE.X, whose logical record length is 480 bytes, data block
size and index block size are 1 sector, Write protection key is AA and Read key is 44. Note that the logical record length is
permitted to exceed the data block size.

Possible error responses to ALLOCATE are:

FORM-ERR Command syntax error;¢.g., ALLO CO=064
PARM-ERR MNEM Invalid file type specified; e.g., ALLO ABC,CH
PARM-ERR PRQD Required operand missing; e.g., ALL ,64

ALLO-ERR type Allocate failed for reason denoted by type

PARM-ERR FD Invalid File Descriptor specified

PARM-ERR VAL Invalid size or keys specified; e.g., ALL ABC,IN,123456

Delete
This command is used to delete a Direct-Access-File. Its format is:
DELETE fd [,fd] ...

where fd identifies the file to be deleted. To be. deleted, the file must not be currently assigned to any LU of any task. This
command is rejected if there are no Direct-Access Devices in the system.

Possible error responses to DELETE are:

FORM-ERR Command syntax error; c.g., DEL PACK:A/PACK:B
PARM-ERR FD Invalid File Descriptor; e.g., DEL A:1
DELE-ERR type Delete failed for reason denoted by type

29-430 RO5 2/79 3-21

Xdelete

This command is identical to the DELETE command except that no error is generated if the file does not exist. The
XDELETE command can be used in a CSS procedure to insure that a file does not exist.

Rename

This command is used to change the name of an unassigned Direct-Access-File, a Direct-Access Volume, or Device. Its
format is:

RENAME oldfd, newfd
Examples:

REN VOLI:MYFILE.CUR,MYFILE.OLD
REN MTO1:,MT02:

The volume ID field of the new File Descriptor, newfd, may be omitted for Direct-Access Files. If it is entered, the system
ignores it. To rename a Direct-Access Volume, oldfd must specify a volume name, including the colon. Attempts to rename
the Null device are rejected.

Possible error responses to RENAME are:

FORM-ERR Command syntax crror; e.g., REN A:B C:D
ASGN-ERR type Old fd currently assigned
RENM-ERR type Rename failed for reason denoted by type
PARM-ERR FD Invalid File Descriptor specified
10-ERR type 1/O error denoted by type encountered updating the directory of volume
PARM-ERR VAL Specified old volume name not on line to system
Reprotect

This command is used to modify the protection keys of an unassigned Direct-Access-File or Device. Its format is:

REPROTECT fd, keys

where fd is the name of the file or device and keys is a hexademmal halfword whose left byte signifies the new Write keys
and whose right byte signifies the new Read key.

Possible error responses to REPROTECT are:

FORM-ERR Command syntax crror; e.g., REPR CR:/FF12
PARM-ERR VAL Invalid keys; e.g., REPR CR:,12345
ASGN-ERR type fd currently assigned or Reprotect failed for rcason denoted by type

PARM-ERR PRQD Keys not specified; e.g., REPR CR:
Display Files

Files

This command is used to display information from the directory of a Direct-Access Volume on the system log device or the
specified file or device. Its format is:

FILES ([voin]] [ﬁlenamu] [ext] [4d]

DISPLAY FILES

where

voln: specifies the volume from which the information is to be displayed. If omitted the system default volume is
assumed.

filename specifies the filename of interest. If given, all files not having this filename are ignored.

ext specifies the extension of interest. If given, all files not having this extension are ignored.

The parameter fd specifies a file or device other than the system log to which the display is to be output.

The information displayed is defined in Table 3-6.

3-22 ‘ 29-430 RO6 9/79

TABLE 3-6. FILES INFORMATION

Field Meaning

FILENAME Filename of file. Files are listed in directory order.

EXT Extension of file.

TYPE File type. CO for Contiguous Files, CH for Chained Files (created under OS/32 only), or
IN for Indexed Files.

FLBA First logical block address of file. Absolute sector number in hexadecimal. For
Contiguous Files, this field contains a pointer to the first sector of the file. For Indexed
Files, this field contains a pointer to the first Index block; if zero, the file does not have
any Index blocks.

LLBA Last logical block address of file. Absolute sector number in hexadecimal. For Contiguous
Files, this ficld contains a pointer to the last sector of the filc. For Indexed Files, this
field contains a pointer to the last Index block.

LENGTH For a Contiguous File, the length of the file in number of sectors allocated. For Indexed
(or Chained), the logical record length specified at allocate time. In cither case, a decimal
number.

KEYS The Write and Read protection keys of the file in hexadecimal in the form WWRR
WW = Write key, RR = Read key.

CSEC/NLR For Contiguous Files, this field contains the value of the current logical record number in
decimal. For Indexed (or Chained) Files, it contains the number of logical records in the
file, in decimal.

BKSZ For Contiguous File, this field is blank. For Indexed (or Chained) Files, it contains the
physical block size of the data blocks in the file in decimal number of sectors.

INBS For Contiguous (or Chained) Files, this field is blank. For Indexed Files, it contains the
block size of the Index blocks in decimal number of sectors.

CREATE Date created (systems with CLOCK support only).

WRITE Date last written to (systems with CLOCK support only).

Examples:

FILES MT16:

or DISPLAY FILES MT16:

Lists all files contained on volume MT16 onto the console device.

F1

or DF

Lists all files contained on the default system volume onto the console.

FI TEST

or D F TEST

Lists ail files with filename TEST contained on the default system volume onto the console.

FI FIXD:.OBJ,PR:

Lists all files with extension OBJ contained on volume FIXD onto the printer.

FI.,PR:

Lists all files with a blank extension contained on the default system volume onto the printer.

FI PACK:MYFILE.CAL

Lists file MYFILE.CAL contained on volume PACK onto the console.

29-430 RO6 9/79

3-23

I The possible error responses to FILES (DISPLAY FILES) are:

PARM-ERR FD Invalid File Descriptor specified for voln or fd field; e.g., FILES 123:

PARM-ERR VAL Volume specified not on line to system

FORM-ERR Command syntax error;e.g., FI ABC:/PR:

ASGN-ERR type Specified output device or file not assigned for reason denoted by type

I0-ERR type 1/O error, denoted by type, encountered reading directory of specified volume or

outputting to specified file or device.

Mark
The MARK command is used to:
— place a device Off-line
— place a device On-line
- specify system overlay volume

— specify system Roll volume

The format of this command is:

NEW
MARK fd, ON | JROLL
- PROTEC
0s
ofFf [,0s]

The mnemonic name of the device is specified by fd. If the device is the System-Console Device, the Null device, is assigned
(Non Direct-Access device) or has any assigned files (Dircct-Access Device), the command is rejected.

While a device is off-line, it cannot be assigned to any U-task. E-tasks are permitted to assign off-line devices.

If the device being MARKed ON or OFF is a Dircct-Access Device, the fd used in the command is not the volume
identifier, but the actual device mnemonic. For example, to MARK OFF a Disc name DSC1 which currently contains a
volume named FRED, the operator enters:

MA DSCI1:,0FF

This action removes the volume FRED from the system. The volume may now be changed, if DSCI is a
Removable-Cartridge Disc. To make the new volume known to the system, the operator enters:

MA:DSC1:,ON

This causes the Volume Descriptor of the volume on DSC1 to be read, and the new volume ID (if the volume was changed)
is made known to the system. The system responds with:

fd: voln

indicating the name of the volume placed on line. Removable Cartridges must not be dismounted from the system without
using the MARK command. Failure to do so will cause a subsequent attempt to mark the volume on to be rejected, until
the Disc Integrity Check Utility is run.

If the optional parameter, PROTECT, is specified in « MARK ON command, the device is marked as Write Protected. All
assignments for access privileges other than Shared Read Only (SRO) and Shared Read/Write (SRW) are rejected with a
privilege error. Shared Read/Write is changed to SRO. A Write File mark command to any file on the device is also
rejected. This option may be used for any device regardless of the state of any hardware Write Protect feature.

For disc volumes, the system responds with
fd: voln PROT

indicating that the volume is write protected. Hardware write protected discs will automatically be marked on with
protect, even if PROTECT is not specified.

The optional parameter, NEW, is used to mark on discs that have been used on 08/32, 0S8/16 MT2 RO3 or earlier
revisions of OS/16. NEW may be specified on any MARK ON command provided the disc volume is not protected. The
NEW option forces building of the extended directory structure above the existing directory (required for OS/16 R04
and above). .

3-24 29-430 RO5 2/79

The optional parameter, OS, is used to specify that the volume being MARKed ON contains the system overlay file for
systems that are overlayed. The File Descriptor of the system overlay file is:

voln:filename.ext

where voln is the name of the volume mounted on the device specified in the MARK command and filename.cxt are the
filename and extension specified to the OS/16 Boot Loader when the OS was loaded. The volume specified as system
overlay volume must contain an exact copy of the file from which the OS was Boot-Loaded.

A MARK command specifying the OS parameter may be entered at any time to change the volume containing the System
Overlay File. The OS parameter need only be specified on a MARK ON when changing to a different OS volume. This may
not be used if contiguous files are deleted from the system.

Specifying the parameter OS in a MARK OFF command closes the System Overlay File, preventing any operator com-
mands or system overlay requests from being satisfied. This command should only be entered to reboot an OS, boot in
another OS or when the OS disc pack must be removed or a different pack inserted. If the parameter OS is specified in a
system configured without system overlays, the command is rejected with a PARM-ERR MNEM message.

Specifying the parameter ROLL in the MARK ON command. indicates that the volume being placed On-line is to be uscd
for allocation of the system ROLL Files. If ROLL is specified, the following actions arc affected:

If any volume is marked on-line as the ROLL Volume, the ROLL Files it contains are
deleted, if no task is rolled out. If a task is rolled out, the MARK command is rejected.

ROLL Files are allocated for the current partitioning on the specified Volume after it is
placed on-line.

If Roll support is not included in the system, specifying ROLL causes the command to be rejected with a PARM-ERR
MNEM message.

Possible error responses to MARK are:

FORM-ERR Command syntax error; c.g., MARK LP:,ON/OS
PARM-ERR . FD Invalid File Descriptor specified; e.g., MARK 123,0N
PARM-ERR MNEM Invalid keyword specified; e.g., MA CR:,0GG
PARM-ERR VAL OS parameter specified MARKing OFF volume not specmud as System Overlay
Volume, or for Non-direct-Access Device.
10-ERR type I/O error denoted by type encountered in reading Volume Descriptor of Direct-
. Access Device being MARKed ON.
ASGN-ERR type Specitied device fd or Overlay file could not be assigned for reason denoted by type.
ALLO-ERR type Roll file could not be allocated for reason denoted by type
STAT-ERR PRIV Device specified is assigned (Non-direct-Access Device) or contains files that are
’ assigned (Direct-Access)
STAT-ERR NOFF Specified device was dismounted without being marked off. The volume can be

_marked on with PROTECT. If OS is specified, the disc volume is set on-line. Other-
wise, the disc is left in its previous state. Disc Integrity Check must be run on the
volume.

PARM-ERR PRQD Specified device contains the OS System Overlay File and parameter OS not
specified.

DUPL-ERR voln Volumec being MARKed specifies a duplicate volume name

VOLU-ERR Volume being MARKed specifies an invalid volume name

29-430 ROS 2/79 3-25

Display Devices

This command allows the operator to determine the device number, keys, On-line/Off-line state, the volume name (for On-
line Dircct-Access Devices), and the state of software write protection of all devices in the system. The format of this com-
mand is:

DISPLAY DEVICES [fd]

The operand fd specifies the device to which the display is routed; if omitted, the display goes to the System Console.

An example of the display output is shown in Figure 3-4.

MAME Lt KEYS

CUN < FFHE

NULL U yuou

PTRP 135 UUUU

Ch 4 poon

Pt 6 YOO

“rG1 8L Uooy

LsCLl Ce Vuoe WORK HROT
NnsCe2 C7 000w FHIXU

DsC3 +C 0009 UFF

Figure 3-4. Display Devices Qutput Format

Possible error responses to DISPLAY DEVICES ore:

FORM-ERR Command syntax error; ¢.g., DIS DEV/PR:

PARM-ERR MNEM Invalid display option specified; e.g., DI DEVO

PARM-ERR FD Invalid File Descriptor specified: e.g.. DI DEV.123

ASGN-ERR type Specified device/file not assigned for reason denoted by type.
I0-ERR type 1/O error denoted by type encountered on Output Device or File

Magnetic Tape and File Control Commands

This set of commands allows the operator to manipulate Magnetic Tapes. Cassettes and Direct-Access-Files from the
System Console. The general format of these commands is: ’

op[fd] [,lu]
The operator op may be any one of the following:

REWIND Rewind

RW Rewind (alternative operator)
FRECORD Forward-space one record
FFILE Forward-space to filemark
BRECORD Backspace one record

BFILE Backspace to filemark
WFILE Write filemark

The mnemonics REWIND and RW are both accepted for the REWIND command, for compatibility with previous
operating systems and certain utility programs.

The operand fd is the file descriptor of the device or file being positioned. LU is the Logical Unit number of the current
task to which the device or file is assigned. Both are optional, but one or the other must be specified.

The operand fd need only be specified when positioning a device which is not currently assigned to any Logical Unit. If
positioning a file, the file as assigned to the given Logical Unit of the curren tly selected task is manipulated. This is because
the same file could be assigned to several tasks or to several Logical Units of the same task. The current position pointer of
cach of these assignments could be different. Only the selected File Control Block is modified. If no LU is specified, the
first LU found (starting with LUO) is the one that is positioned.

For example:
REW MAG!1:
rewinds device MAG1.

FR PACK:SOMEFILE.OBJ 4

causes the file PACK:SOMEFILE.OBJ, as assigned to Logical Unit 4 of the currently selected task, to be positioned
forward one record.

FF ,2
causes the device or file assigned to LU?2 to be forward-space to a filemark.

3-26 . 29-430 RO5 2/79

Possible error responses to these commands are:

FORM-ERR Command syntax error; e.g., REW CR:/2
PARM-ERR VAL Invalid LU specified; e.g., REW ABC,40
PARM-ERR FD Invalid File Descriptor specified; e.g., BF 123
I0-ERR type 1/O error denoted by type encountered on specified device or file
ASGN-ERR type File or device could not be assigned for the reason denoted by type
FUNC-ERR TASK No currently selected task; required for form (b) only
STAT-ERR LU LU is not assigned to specified file (form (b) only).
Initialize

This command is used to prepare and clear all files from a formatted Disc Cartridge for usc under OS/16 MT2. Its format is:

INITIALIZE fd,voln [READCHECK]
The operand fd specifies a Direct-Access Device which is Off-line to the system.

voln specifies the volume name, of one to four alphameric characters starting with an alphabetic, which is to be given to
the volume mounted on the specified Direct-Access Device. If the optional opcerand, READCHECK, is specified, each
sector on the volume is accessed to check for errors. If any sector were flagged as defective during formatting,
READCHECK must be specified to avoid allocating a defective sector.

The initialization process consists of:
— Clearing the allocation map and setting as allocated:

1. Volume Descriptor (sector 0, track 0, cylinder 0)
2. Sectors required for the bit map.

3. Sectors required for initial directory blocks

4. Any defective sectors (if READCHECK specified)

Allocating and initializing one cylinder of directory blocks (3 tracks on a 40MB Disc, 1 track on a 67MB,
256MB, Floppy Disc).

— Initializing the Volume Descriptor

Before initializing a Disc Cartridge, it must be formatted using the Common Disc Format program. Possible error responses
to the INITIALIZE command are:

FORM-ERR Command syntax error;e.g., INIT DSC1:/ABC

PARM-ERR FD Invalid File Descriptor specified; e.g., INIT ABC,XYZ

PARM-ERR VAL Invalid volume name specified; e.g., INIT DSC1:,1234A or fd does not specify a Disc
Device.

PARM-ERR MNEM READCHECK not specified as third parameter; e.g., INITIAL DSC1:,A,X

PACK-ERR Not enough good scctors to allocate allocation map and directory. Pack should
be reformatted.

STAT-ERR PRIV Specified device not Off-line.

10-ERR type 1/O error denoted by type encountered during initialization process.

Save

This command is used to save a memory image load module of the operating system on a Direct-Access File suitable for
loading by the OS/16 Boot Loader (see Chapter 1). Its format is:

SAVE fd

The operand fd specifies the file to be used to save the memory image load module of the system. If the file specified does
not exist, a Contiguous File is allocated. An image of memory from location Zero to the last halfword before the start of

the Background partition is written to the specified file.

This command may be used to save a copy of the operating system with patches for subsequent loads. The command may
not be used on an Overlayed System. On a system with DELETE INITIAL, SAVE must only be used before any tasks are

loaded.

Possible error responses to SAVE are:

FORM-ERR Invalid syntax; e.g., SAVE OS16MT2.000,R

PARM-ERR FD Invalid File Descriptor specified; ¢.g., SAV 123

ALLO-ERR type Allocate error denoted by type encountered

ASGN-ERR type Error denoted by type encountered assigning specified file
I0-ERR type I/O error denoted by type encountered Writing OS image to file.

29-430 ROS 2/79 3-27

Print
The PRINT command is valid only in systems SYSGENed with the SPOOL option. It causes the OS to send a message to

the SPOOLER, requesting that the specified file be printed. If the SPOOLER successfully receives the message, the file
is placed on the print queue.

The format of this command is:

PRINT [fd[,n][,DI[,T]]

where:

fd is the file to be printed.

n is a decimal number between 1 and 9 specifying the number of copies of the file to be printed.
D is specified if the file should be deleted after printing.

T is specified if the file should be placed at the top of the print queue.

If no parameters are entered, the names of the print files currently in the print queue are dis-
played on the console.

Examples:

PRINT PCB.CAL
PRINT PCB.CAL.2
PRINT TEMP,D

Possible error responses to this command are:

MNEM-ERR Spooling feature not in system.

FORM-ERR Command syntax error: e.g., PRI P*B.CAL
FD-ERR Invalid file description: e.g., PRI |ABC:X.Y/P
SEND-ERR PRES Spooler not loaded

SEND-ERR NMSG Spooler did not receive message

COMMAND SUBSTITUTION SYSTEM (CSS)

The Command Substitution System (CSS) is an extension to the O8/16 MT2 Command Language. It provides the user with
the ability to establish files of commands which can be called from the console or other CSS Files and executed in a
defined sequence. In this way, complex operations can be carricd out by the operator with only a small number of
commands.

CSS provides more than just the ability to switch the operating system command input stream to a batch device:
— Aset of logical operators are provided to control the precise sequence of commands to be obeyed.

~— Parameters can be passed to a CSS file so that general sequences can be written which take on specific
meaning only when the parameters arc substituted.

- One CSS file can call another, in the manner of a subroutine, so that the experienced user can develop
complex command sequences.

A CSS file is simply a sequential text file, It could be a Deck of Cards, a Punched Paper Tape, a Magnetic Tape, or a Disc
File. On Disc, a CSS file is best suited to the Indexed File structure.

This is an example of a simple CSS file:

*THIS IS A SIMPLE EXAMPLE CSS FILE
TASK .BG

ALLOCATE XXXDIS.TST,IN

ASSIGN 2,PRT1:;*LU2=LINEPRINTER
LDBG COPY

START

SEXIT

Note the use of the semicolon, which allows more than one command on the same line. Note also the use of the asterisk to
introduce a comment.-

3-28 29-430 RO5 2/79

High Level Operator Command Package

The OS/16 MT2, High Level Operator Command Package is implemented as a set of CSS files. These perform a variety of
the commonly used program preparation and development sequences. The package contains the following:

COMMAND DESCRIPTION

FORT Perform FORTRAN compile, and task establishment

FORTCLG Perform FORTRAN compile, task establishment, load and start
CAL Perform CAL/16 assembly

CALCLG Perform CAL/16 assembly, load and start

MAC Perform CAL MACRO expansion, and assembly

MACCLG Perform CAL MACRO expansion, assembly, load and start

EDIT . Edit a file using OS Edit

ESTAB Establish an object program using the OS/16 Task Establisher (TET/16)
COPYA Copy an ASCII file using OS Copy

COPYB Copy a Binary File using OS Copy

COPYT Copy an established task, resident library or overlay using OS Copy
RUN Load and start a task

SYSGEN Generate an OS/16 MT2 operating system

DEFAULT.ASN Assign default Logical Units for a task

For complete information refer to Chapter 14.

* The following sections define the usc of CSS.

Calling CSS Files

A CSS File is called and executed by naming it in a stream of commands. Any valid File Descriptor (fd) can be used,
provided that there is no conflict with any of the ordinary operator commands. If the file extension is omitted an
extension of CSS is assumed. The CSS call is the last command recognized on a command line.

In other words, the operator can cause a file of commands to be executed simply by entering the name (fd) of the CSS file.
The error message, MNEM-ERR\, is returned if the file does not exist as specified.

Parameters are passed to a CSS file by appending them to the call. The first parameter is separated from the file name by a
space; all other parameters must be separated by commas. Null parameters are permitted. Leading blanks are suppressed
when parameters are passed.

The following are valid CSS calls:

RUN (Calls CSS file RUN.CSS)

CR: (Calls CSS file in Card Reader)

JUMP A,B,C (Calls CSS file JUMP.CSS with three parameters A, B, and C)

JUMP.CSS A,B,C, (Same as above)

JUMP ,,C (Calls CSS file JUMP.CSS with three parameters, the first two of which are null).

29-430 ROS 2/79 3-29

Use of Parameters

Within a CSS File a parameter to that file is referenced by means os the special symbol ‘@’. The first parameter is
referenced by @1, the second by @2, etc. A straight-forward text substitution is employed.

Thus, a CSS File RUN might consist of:

TASK .BG
LDBG @]
START @3,@2
etc.

This would then be called:
RUN PROGRAM,NOLIST,A148

Before each command of the CSS File is decoded, it is pre-processed, and any reference to the parameter is substituted
with the text of the parameter. Thus, the file RUN with the previous call would be executed as:

TASK .BG

LDBG PROGRAM
START A148 NOLIST
ete.

In general a reference to a parameter is of the form:
@n

where n is a decimal number indicating which parameter argument the user is referencing. Arguments are numbered
starting with . Argument 0 is a special argument, and is defined in the Tast 2 paragraphs in this scction.

Being a decimal number, a reference variable is terminated by a non-decimal character. For example, to reference variable
12,

@12 or @12ABC or @12.EXT

are valid expressions.

Notice that this mechanism allows concatenation. For instance, if in the above file, RUN, the second command were
LOAD .BG,@1.TSK

then only files containing established tasks would be presented to the loader.

Concatenation of numbers requires care. 123@1 is permitted and would expand correctly, but @1123 is a reference to
parameter number 1123.

A reference to a non-existent parameter is considered to be null.

Parameter @0 is a special parameter. It is used to reference the name of the CSS File in which it is contained. Parameter @0
is replaced, during the pre-processing of the command line, with the name of the File Descriptor in precisely the style used
to call the file.

This mechanism can be used to assign the CSS File itself o an LU of a program. By this means the data for a program can
be included in the CSS File itself. However, the program must read precisely the right number of data items or else
subsequent CSS processing may fail. This is only valid for Non-Direct-Access Files, since assigning a file would position the
file to the beginning as far as the task was concerned.

Interaction of CSS with Background and Foreground

CSS is essentially a Single-Stream Processor. It is not possible, in the general case, to write a CSS File that can fully control
a complex Foreground/Background System. In order to control such a system, manual intervention by the console
operator is usually required.

It is assumed that Foreground Systems are controlled, under normal circumstances, by Supervisor Calls (SVC 6) between
the Foreground tasks, and that the console operator is only required to intervene in abnormal cases. The Background
System, however, is expected to be controlled fairly often by the operator, or by CSS Files (if the background is being run
in a batch-like mode).

3-30 29-430 RO5 2/79

In batch mode, CSS control is only desirable between tasks; job-control commands are not usually desired while the tasks
are running. Therefore, CSS is “keyed” to the state of the background task. While a task in the background partition is in
any state other than dormant, the active CSS file is not accessed. If a START command in a CSS file is directed towards a
background task, the rest of the commands on the command line are executed but no new CSS command line is read until
the background task either goes to EOT or is cancelled. The console operator has full control over the system at these
times. While the Background task is Dormant, Command lines are read from active CSS files.

The state of Foreground tasks has no affect on CSS activity.

While CSS is active, the operator is still able to enter commands from the System Console. The execution of these
commands may be delayed while a CSS command is being executed; however, this delay should not be excessive under
normal circumstances.

If a CSS File is active, any attempt to call another CSS File from the System Console is rejected.

COMMANDS EXECUTABLE FROM A CSS FILE

All commands normally available to the operator at the console can be used in a CSS File, as well as a number of
commands specifically associated with the CSS facility. These additional commands are described next.

Most of the CSS commands start with the character $. If a log of commands is being kept, the $s help to emphasize where
CSS has been used, but the $ has no special meaning.

CSS Files arc permitted to affect Foreground tasks; a TASK command read from a CSS File cstablishes the
currently-selected CSS task. Commands from the console are not affected by TASK commands read from €SS, and CSS is
not affected by TASK commands read from the console. All task related commands and CSS return code testing
encountered in a CSS File affect the currently-selected CSS task.

When a CSS File is activated from the console, the currently-selected CSS task is sct equal to the currently-sclected task. If

the currently-selected CSS task is deleted from the system, any subsequent task-related or CSS return code testing
commands are rejected with a FUNC-ERR TASK

$EXIT and $CLEAR

These two commands are provided for exiting from CSS files. Command $EXIT causes control to return to where the CSS
file was called. Control returns to a higher level CSS file. CSS processing terminates if there is no higher level CSS file.

Command $CLEAR causes CSS processing to terminate unconditionally. This command may be entered at the system
console to abort an active CSS File at any time.

$JOB and $STERMJOB

These commands delimit a CSS job. The CSS job concept is a defensive mechanism which protects one user from the errors
of a previous user. A CSS job consists of all the operator commands and tasks loaded and started between a $JOB and
STERMJOB pair. The $JOB command delimits the start of a CSS job. The Return Code of the currently selected CSS task

is reset to Zero.

The $STERMJOB Command delimits the end of a CSS job. Most errors encountered in executing operator commands in a
CSS job cause the remaining statements in the CSS File to be skipped until a $TERMIJOB is encountered.

By separating independent users into CSS jobs delimited by $JOB and $TERMJOB statements they can be safely batched.
in a CSS File, eliminating the chance that errors in one job may affect another job.

Logical Operators

There are ten logical operators available. All logical operators start with the three characters $IF and allow one argument
(e.g., $IFE 255, $IFX B.CSS, $IFNULL @1).

29-430 RO5 2/79 3-31

Each logical statement establishes a condition which is tested by the CSS Processor. If the result of this test is ‘true’, then
commands up to a corresponding $ELSE or $ENDC command are exccuted. If the test gives ‘false’ result these same com-

mands are skipped.

The $ENDC command delimits the range of a logical operator; however, nesting is permitted, so each $IF must have a
corresponding $ENDC.

Command $ELSE reverses the effect of the preceding $IF.

In Figure 3-5, the ranges of the various conditionals are indicated by brackets.

$IF ... $IF... $IF ...
SENDC $IF .. SIF ...
. ' SELSE
$ENDC $ENDC

[$ENDC $IF ...
$ENDC

L $ENDC

Figure 3-5. Range of CSS Conditionals

There is no practical restriction on the depth of nesting.

The logical operators fall into three categories: Return Code testing, File Existence testing, and Parameter Existence
testing. ’

Return Code Testing

The Return Code is a halfword quantity maintained by the system (see the description of SVC 3 in the 08/16 MT2
Programmer’s Reference Manual) for each partition.

It is set in any of the following ways:

SET CODE n — This command, which can be included in a CSS File or entered at the console, sets the
Return Code for the currently-selected CSS task to n.

ﬂOBf As part of its start job function, this command resets the Return Code for the
currently-selected CSS task to Zero.

Command Error — Any command error causes the CSS mechanism to skip to $TERMIJOB (assuming that a
$JOB has been executed; if not, control returns to the console). To indicate that the skip
has taken place, the Return Code for the currently-selected CSS task is set to 255.

$SKIP — This command has the same affect as a command error.

3-32 29-430 RO5 2/79

EOT (SVC 3,n) — When any task terminates by executing the EOT program command (SVC 3,n) the
Return Code for that task is set to n.

CANCEL - When a task is CANCELed, the Return Code for that task is set to 255.

There are six commands available for testing the return code of the currently selected CSS task:

SIFE n Test Return Code cqual to n

SIFNE n Test Return Code not equal ton
SIFL n Test Return Code less than n
SIENL n Test Return Code not less than n
$IEG n Test Return Code greater than n
SIENG n Test Return Code not greater than n

In all cases if the test gives a ‘false’ result, CSS skips commands until the corresponding $ELSE or $ENDC. If such skip-
ping attempts to skip beyond a STERMJOB or End of File, a command error is given.

File Existence Testing

There are two commands concerned with the existence of files:

$IFX fd Test fd for existence
SIFNX fd Test fd nonexistence

If the test gives a ‘false’ result, CSS skips to the corresponding SELSE or $ENDC. The previous restriction on skipping
also applies.

Parameter Existence Testing
There are two commands concerned with the existence of parameters:

$IFNULL @n Test @n null
$IFNNULL @n Test @n not null

If the test gives a ‘false’ result, CSS skips to the corresponding $ELSE or $ENDC, with the same restriction as previously
stated.

In addition, a combination of parameters can be simultaneously tested. For example,
SIFNULL @1@2@3

In effect, this tests the logical OR of @1,@2, and @3 for null. If any of the three is present, the test results in ‘false’.
Listing Directives
Two commands are provided to control the listing of CSS files as they are executed:

scory
$NOCOPY

The $COPY Command causes subsequent commands to be listed, in their expanded form, after parameter substitution.
The listing takes place on the console or the log device, according to the options selected in a previous SET LOG
command.

The $NOCOPY Command switches off the listing (the $NOCOPY statement is logged). The default is $NOCOPY.
CSS File Construction
There are two command pairs provided for construction of CSS Files:
BUILD, ENDB, and $BUILD, $ENDB
BUILD and ENDB

The BUILD command causes succeeding command lines to be copied to a specified file, up to but excluding the
corresponding ENDB command. The format of the BUILD command is:

BUILD fd

29-430 RO5 2/79 3-33

where fd is the new CSS File. If fd does not already exist, it is created. (An Indexed File is allocated with a logical record
length equal to the command buffer length specified at System Generation, data and index blocksize of 1, and keys of

0000).

BUILD can be issued from the console or from within a CSS File. No nesting of BUILD commands is possible. The
processing of BUILD ends when the first ENDB command is encountered, so any attempt to nest BUILD commands
results in a corrupt CSS file being constructed.

The BUILD command must be the last command on its input line. Any further information on the ling is treated as
comment and is not copied to the new CSS file.

The ENDB command must be the only command on a line, and must occupy the first four character positions on the line.
Any further information on the line is treated as comment and is ignored.

A $BUILD. . . .$ENDB sequence can be nested inside a BUILD. . . .ENDB pair.

$BUILD and $ENDB

These commands operate in a similar manner to BUILD and ENDB, except that before each line is copied to the CSS File,
the CSS Pre-Processor substitutes any parameters in the line. It follows that $SBUILD is only used from within a CSS File so
that parameters can be passed to it. The $BUILD command has the following format:

$BUILD fd

where fd is the new CSS File. If fd does not already exist, it is created, (as with BUILD).

As with BUILD, no nesting of $BUILD is possible. A corrupt CSS File results if the attempt is made.

$BUILD must be the last command on its input line, any further information is treated as comment and is ignored.

$ENDB must be the only command on its input line, and it must occupy the first five character positions on the line. Any
further information is treated as comment and is ignored.

A BUILD. . . .ENDB sequence can be nested within a $BUILD. . . .3ENDB pair.

TABLE 3-7. CSS§ COMMAND SUMMARY

Command Meaning

$JOB Start next job, reset Return Code

$TERMIJOB End of Job, any error skip in last job stops at this command with Return Code = 255,
otherwise, Return Code is defined by the job itself.

SEXIT Exit from CSS File.

SCLEAR Return control to console.

SET CODE n Set Return Code to N.

SIFE n If Return Code equals n, continue executing commands, otherwise skip to corresponding
$ENDC, SELSE.

$IFNE n If Return Code not equal to n, continue executing commands, otherwise skip
corresponding $SENDC, $ELSE.

$IFL n If Return Code less than n, continue executing commands, otherwise skip to
corresponding $ENDC, $ELSE.

$IFNL n If Return Code not less than n, continue executing commands, otherwise skip to
corresponding SENDC, $ELSE.

3IFGn If Return Code greater than n, continue executing commands, otherwise skip to
corresponding $ENDC, $ELSE.

SIFNG n If Return Code not greater than n, continue executing commands, otherwise skip to
corresponding SENDC, SELSE.

3-34

29-430 RO5 2/79

TABLE 3-7. (Continued)

Command Meaning

SIFX fd If fd exists, continue executing commands, otherwise, skip to corresponding SENDC,
$ELSE.

SIFNX fd If fd does not exist, continue executing commands, otherwise skip to corresponding
$ENDC, $ELSE.

SIFNULL @n If parameter does not exist, continue executing commands, otherwise skip to
corresponding $SENDC, $ELSE.

$IENNULL @n If parameter exists, continue executing commands, otherwise skip to corresponding
$ENDC, $ELSE.

SELSE Reverses action of previous conditional.

SENDC Delimits above conditionals.

3CorY Switch-on listing.

SNOCOPY Switch-off listing.

$BUILD fd Construct CSS File with parameter substitution.

$ENDB End of $BUILD.

BUILD fd Construct CSS File without parameter substitution.

ENDB End of BUILD.

$SKIP Skip to $STERMJOB.

29-430 ROS 2/79

3-35/3-36

CHAPTER 4
SYSTEM ERROR HANDLING

ERROR TYPES

There are three kinds of error conditions that can occur during operation of OS/16 MT2: recoverable errors. task crashes.
and system crashes.

A recoverable error occurs when the system detects a condition which requires operator intervention in order to continue.
In this case, the system prints a message describing the condition. (e.g.. Command syntax error). The operator may then
issue commands to correct the error.

A task fault occurs when a malfunction is detected during the execution of a user task and the system cannot continue
executing the task without destroying the system or user information. At this point. the system prints an error message
which describes the error detected (e.o.. Illegal Instruction. llegal SVC) and the location of the instruction causing the
error. The user task is PAUSEd. The operator may correct the error condition and use the CONTINUE command to
proceed. The task may be aborted with a CANCEL command.

A system crash occurs when a hardware or software malfunction is detected during execution of system code and the
system cannot proceed without running the risk of destroying information. either on some peripheral or in memory. At
this point, the system attempts to display a crash code on the display panel or ASCII console and to write the crash code
in dedicated memory. It then stops. System crash codes are given in Appendix 4.

SYSTEM CRASH RECOVERY

The System Crash Handler is designed to minimize destruction of user data resulting from system error and to preserve the
state of the system so that the error can be fixed. Recovery procedures for system crash are given below with the main
intent of preserving the information necessary to find and fix the error. The only positive action that should be taken is to
run the Disc Integrity Check Utility (03-080) if any files were assigned at the time of the crash.

At the time of a system crash:

—the crash code is displayed on the Console Display Panel or ASCII console
--register S contains a pointer to the System Journal

—register 6 contains a pointer to the last entry in the System Journal

—the registers at the time of the crash are stored at Entry CRSHSV

On encountering a system crash, the crash code. contents of the registers. the contents of the System Journal and the
sequence of operator commands leading up to the crash should be recorded. See Appendix 4 for the definition of system

crash codes.

The system journal is a record of past events. Important events, such as scheduling, queue termination interrupts and 1/O
termination are entered. An entry consists of five halfwords, the journal code followed by the contents of registers
R12-R15. For a description of the journal codes, refer to Appendix 12.

System error conditions caused by machine malfunction interrupts occur for memory parity error, primary power failure,
and power restoration.

A memory parity error causes a system crash if it occurs in the system or a task crash if it occurs in the task.

POWER FAIL/RESTORE

When a power fail is detected by the Processor an interrupt occurs and 0S/16 MT?2 saves the registers and prepares itself
for another interrupt upon power restoration.

A system message
PWR RSTR - RESET DEV
appears on the Console Device (if any) when power has been restored. After the message is printed, operator intervention is

required to reset any devices that may be in an Off-line or Write-protected state as a result of the power failure. The
operator may then continue the power restoration process by depressing EXECUTE or RUN on the Console Display Panel.

29-430 RO5 2/79 4-1

All non-direct access [/O operations, in progress when power failed, are aborted and an error status is returned to the task.
Direct-Access I/O operations are retricd when power is restored.

The power restore module schedules power restore traps for those tasks which require knowledge of the power failure. It is
the user’s responsibility to see that tasks which require such knowledge have the Power Restoration Trap Enable Bit set in
the current TSW. When there is a power outage, a TSW swap occurs upon restoration of power and the task traps to a
module to recover from the power outage. All other tasks are paused. On systems having a console device (i.e. configured

with the Command Processor module) a message is output:

TASKID: PAUSE

Upon CONTINUE, return is made to normal processing.

If the OS console device or a resource-sharing user terminal device is powered down or turned off-line, the device will be-
come “not-available” to the system after a ten second retry period. If the device is restored before ten seconds, it will
again become available for normal operation. The BROADCAST command may be used to wake-up a “not-available”

user terminal.

4-2 29-430 RO6 9/79

CHAPTER 5
TASK ESTABLISHMENT

INTRODUCTION

This chapter describes TET/16, the OS/16 MT2 Operating System Task Establisher and provides examples of its use.

A task may be a single program or a group of programs linked together (see Figure 5-1). TET processes object format
programs, links their external references and produces a memory-image task for loading and running under 0S/16 MT2.
External references to Task Common and to Reentrant Library segments are also processed.

code. An established task consists of a main segment with optional overlays. The task and cach overlay may be built on

A task is established by a single execution of TET, resulting in one or more Load Modules of absolute memory image I
its own separate Disc File. Task Common and a Reentrant Library scgment may be referenced by the user task.

The establishment procedure is a two-pass process, requiring two inputs of the same program stream. On the first pass, TET
compiles a symbol table of external references and definitions. On the second pass, the actual Joad module is built. A
scratch file can be used to save the input of pass one for input to pass two.

TET/16 is also used to build a boot loadable OS/16 MT2 system onto a Contiguous Disc File.

The command stream that directs TET’s actions can be input in batch mode or interactively. An operator uses the
commands to specify programs for inclusion in the task, as well as task options.

CONFIGURATION REQUIREMENTS

TET/16 requires 12KB of memory space for its code, plus approximately 1.5KB for dynamic operations and as much space
as is required to contain a dictionary of all external references and definitions in the programs of the task being established.
TET may build task modules using a Contiguous Disc File as work storage or build the task in memory, and then write it to
a file or to a device. If the task is built in memory, there also must be enough space to hold the largest load module built.

Required devices include input and output binary devices for the input object code and output image code, an ASCII
device for TET command input, and an ASCII print device for error, warning, and prompt messages to the operator. ASCII
device requirements can be met by multiple assignment of a CRT or TTY, but high speed devices are recommended for
binary input and output. A scratch file to hold pass one input for pass two is a recommended option. A disc to build on is
also recommended, since building in memory limits the size of the task that can be built.

TET/16 may also be run under OS/32. A 32-bit object of TET is provided with the package.

SYSTEM ENVIRONMENT

The object programs for inclusion in a task can be input from any number of files. A task can include multiple overlays,
Task Common and Reentrant Library references. Certain run-time task conditions can be preset by TET. These include the
task’s priority, its initial task status, and whether it is resident and/or rollable.

A task is established for a given partition (Background or Foreground). The start address is specified at establishment time.
If the task references Task Common or a Reentrant Library, the start addresses for those partitions must also be given.

29-430 ROS 2/79 5-1

MAIN PROGRAM
(object)

TET
COMMANDS

OVERLAYS
(object)

/

TET/16

SUBROUTINES
(object)

‘\

5-2

LOADER
INFORMATION
BLOCK

OVERLAYS

{Memory Image)

SUBROUTINES
(object)

LOADER
INFORMATION
BLOCK

—ubL
— MAIN PROGRAM
— SUBROUTINES

(Memory Image)

Figure 5-1. Task Establishment

29-430 RO2 8/76

A task can have one or more overlay areas, positioned above the root, within the task’s partition. The size of each area is
determined by the largest overlay to use that area. Overlays for a task can be built sequentially onto a single file, or onto
individual files. Any local common block defined in one or more overlays but not defined in the root is positioned in the
first overlay to define it. Overlays which use the same overlay area must not call one another.

Two types of common are supported: local common and task common. Local common is contained entirely within a task’s
own segment. It is referenced by the main program and the subroutines of a task (e.g., FORTRAN common). TET
allocates space for local common as defined by the included programs. Task common is a special segment which allows
common references between tasks. It is symbolically referenced by a task by the common block label TSKCOM. The Task
Common block itself must be established by TET/16 if it is to be loaded into its own partition.

By default, TET/16 initializes the User Dedicated Locations (UDL) for a task to zero, and loads relocatable code im-
mediately following the UDL. The user may specify a bias for the first relocatable program to be included, and may load
absolute code anywhere above the start of the partition.

The handling of command errors and I/O device problems depends upon the mode of operation:

Interactive — TET defaults to interactive mode for a command device having the attribute interactive.
This normally covers all TTY and CRT type devices. In this mode, an illegal command
causes an error message but is otherwise ignored. TET pauses and waits for operator
intervention when 1/O device errors or repositioning problems occur.

Batch — TET defaults to batch mode for a command input device having the attribute non-
interactive. In this mode, an illegal command causes TET to abort since the next
command does not take account of the error. I/O device problems requiring operator
intervention are treated as for interactive mode.

Remote — TET aborts on any unrecoverable error, assuming no operator to be present. TET should
be run in this mode when run under CSS control.

A TET/16 load module consists of a Loader Information Block (LIB) followed by the absolute memory image of the task
in 256-byte records. The LIB is a 20-byte record containing data pertaining to the load module required by the OS.
TET/16 COMMANDS

TET/16 commands are followed by one or more blanks followed by optional parameters. Parameters are separated by
commas, and the parameter string may be terminated by a blank or a carriage return.

The valid TET/16 operator commands are:

INTERACTIVE -- Requests interactive mode of operation.
BATCH - Requests batch mode of operation.
REMOTE - Requests remote mode of operation. This command should be used when running under CSS or

any unattended batch-mode system.

ESTABLISH TASK
RL
TCoM
0s

This required command begins and initializes TET/16 processing. Its parameter specifies whether a Task segment,
Reentrant Library segment, Task Common segment or Operating System is to be established.

BIAS [pstart Erstart]]

This command specifics the start address of the partition for which a task, Reentrant Library or Task Common segment is
to be established.

Parameter pstart is the address and is a hexadecimal number of up to five digits. If omitted, the bias defaults to the start of
the partition in which TET/16 is currently running. In an extended memory system the default option should not be used
unless TET is running in the background partition.

This command must be given after an ESTABLISH TA,RL or TC command and before the first INCLUDE command. It is
not valid for ESTABLISH OS.

The optional parameter rstart is only valid when establishing a task. It allows the user to override the default bias for
relocatable code, which is normally set immediately above the UDL. Parameter rstart is a hexadecimal address of up to five
digits, and must be greater than or equal to pstart.

29-430 RO5 2/79 5-3

TSKCOM tstart
To resolve references to a Task Common block, a TSKCOM command must be entered.

Parameter tstart is the start address of the Task Cornmon partition, as a hexadecimal number of up to 4 digits.
It must be entered after the ESTABLISH TA command and before the first INCLUDE command.

The established task’s LIB notes that Task Common is required for the task to run. The task aborts during loading if the
required Task Common is not present.

This command is only valid for Task establishment or Reentrant Library establishment.

OPTIONS opt [,opt] ..
The OPTIONS command defines one or more of the optional 0S parameters associated with a task, as defined by Table
5-1. ,

TABLE 5-1. TET OPTIONS COMMAND

OPTION MEANING

ur User Task (default)

ET Executive Task

NOFLOAT No Single Precision Floating Point (default)

FLOAT Single Precision Floating Point '

NODFLOAT No Double Precision Floating Point (default)

DFLOAT Double Precision Floating Point

NONRES Not Memory Resident (default)

RES Memory Resident

AFP Arithmetic Fault Pause (default)

AFC Arithmetic Fault Continue

SVCP llegal SVC 6 Pause (default)

SVCC [llegal SVC 6 Continue

CSEG Task Common or Sharable Library in the

second 32KB module

NOCSEG No Task Common or Sharable Library in the
1 second 32KB modules (default)

NOROILL Task Not Rollable (default)

ROLL Task Rollable

UDL Task needs UDL (default)

NOUDL Task contains UDL

NOCOMP Task uses OS/16 MT2 SVC 1 format (default)

COMP Task uses BOSS/DOS/RTOS SVC 1 format

This command is optional, but if entered, it must follow the ESTABLISH command and precede any INCLUDE command.

The option information halfword is placed in the task’s LIB, and eventually into the Task Control Block (TCB) at load
time.

The option mnemonics are processed in order, from left to right. For contradictory options, the last one entered is taken.
If an illegal mnemonic is found, all options up to that point have been processed. Those following arz ignored.

The UDL option requests TET/16 to clear the UDL for the task, and bias relocatable code immediately above it. The UDL
provided includes the Floating Point Register save area/s if the FLOAT and/or DFLOAT options are used.

The NOUDL option requests TET/16 to bias relocatable code from the start of the partition. In this case, the user must
include the UDL as part of the program.

Note that if a task uses floating point arithmetic, OPT FLOAT and/or OPT DFLOAT as appropriate must be specified
when the task is established so that the UDL includes the register save area/s.

- CSEG is used in extended memory systems to indicate that Task Common and Reentrant Library routines are in the
l second 32KB module. See Chapter 6 of the 0S/16 MT2 System Planning and Configuration Guide, Publication Number
29-431, for details on the CSEG option and examples of extended memory systems.

54 29-430 R04 1/78

INCLUDE [d] [,program label]

To include programs from a file or device as part of the load modute, an INCLUDE command is required. The optional
parameter fd specifies a File Descriptor (VOL:FILENAME.EXT). If given, the file or device is assigned for input. Note that
disc files will be positioned at the start. If fd is not specified, the file or device currently assigned to Logical Unit 1is
assumed as the input device. In this case, no repositioning occurs. The optional program label parameter names a program
in the Input File. This command selects from the named file, one program or the entire file of programs for inclusion in the
task being established. The optional program label parameter causes only the specified program to be located and included,
leaving the file or device positioned at the end of that program. The dummy program label “*’ may be used to include one
program from the current position. If a program label is not specified, the entire file is included up to end of medium or
end of file. The optional program label parameter is not valid for RL establishment.

As the input file is read, TET creates a dictionary of external program references. A copy of each included program or
programs is written to the Scratch File, if present.

EDIT| fd]

After inclusion of one or more programs, it is possible to edit a file. EDIT includes all programs having program labels
referenced by the already-included code. The optional operand, fd, names a file to be edited from, defaulting to the file
currently assigned to LU 1.

When TET edits a file, it copies the entire file to the Scratch Device (if one is present) and notes those programs required
to build the load module. During Pass Two, those not required are skipped.

This command can be used where a task requires a number of subroutines from a subroutine library. It is only valid for
Task Establishment. The edit process terminates when an end-of-medium, end-of-file or the label “ENDVOL” is en-
countered. ‘

RESOLVE [fd] » pstart Erstart]r

To resolve external references to a Reentrant Library routine (such as a FORTRAN Run-Time Library), a RESOLVE
command must be used. The RESOLVE is used after the program referring to the RL has been included with an INCLUDE
or EDIT command. This command resolves all references for which ENTRY points can be found in the Reentrant Library
object module. The optional operand, fd, specifies the file on which the Reentrant Library object module is to be found
(defaulting to LU 1). pstart is the start address of the Reentrant Library partition, specified as a hexadecimal number of
one to four digits.

The task’s LIB specifies that the Reentrant Library Segment is required for the task to run. An attempt to load the task is
aborted if its required Reentrant Library segment is not present.

During the RESOLVE, no programs are copied to the scratch since none are actually included as part of the task.

The optional parameter rstart allows the user to override the default bias for relocatable code. It is used only for extended
memory application. See the 0S/16 MT2 System Planning and Configuration Guide, Chapter 6.

GET xxxx
This command is used to provide space for GET STORAGE calls (SVC 2,2). xxxx is a hexadecimal number of up to 4
digits specifying the number of bytes to be reserved for GET STORAGE calls. If this.command is not specified, a default

value of X‘400’ bytes (the amount necessary for an executing FORTRAN program) is assumed; this command can be given
with a parameter of Zero to save space if no GET STORAGE calls are to be issued.

OVERLAY name [,NEW]
An OVERLAY statement is used to indicate that an overlay for a task being established is about to be included.

The parameter name is the name of the overlay as referenced in the fetch overlay SVC parameter block of the calling
program. It must have up to 6 alphanumeric characters, with the first character alphabet.

The optional parameter NEW specifies that a new overlay area is to be set up for this and subsequent overlays. -

TET interprets this statement as ending the definition of a main segment and starting the definition of an overlay. Each
overlay must be completely defined (with INCLUDE and EDIT statements) before another OVERLAY statement is
presented in the command stream. All overlays to share one arca must be processed before any overlays for another area.

After all overlays have been defined for one overlay area, the area is set to the size of the largest.

The OVERLAY command must precede the INCLUDE and EDIT commands that define its contents, and these must
precede any other OVERLAY statement or the BUILD command that terminates all pass 1 processing.

29-430 ROS 2/79 5-5

PRIORITY rp,mp

This optional command sets the initial and maximum priorities for the task. Where rp is the initial priority, mp is the
maximum priority. Both rp and mp must be decimal numbers between 10 and 249 for user tasks and between 0 and 255
for executive tasks, with mp less than or equal to rp.

If omitted, a default value of 128 is assumed for both parameters. This command may be given during pass one, after an
ESTABLISH TA command.

TSW status Estart address]

This command specifies initial settings of the task’s TSW status, and optionally provides a start address for the task. The
TSW (Task Status Word) status is defined in Chapter 2 of the OS/16 MT2 Programmer’s Reference Manual. The status
parameter and the optional start address are one to four-digit hexadecimal numbers. If no start address is given, the last
transfer address to be found in the object module is used as task start address. If none is found, the address of the first
location above the UDL is taken by default. This command may be given during pass one, after an ESTABLISH TA
command.

BUILD

]

After the first pass definition of the segment is complete, the Load Module must be built. A BUILD command signals the
end of pass one and the beginning of pass two. The required first parameter specifies the type of Load Module to be built.
The optional File Descriptor specifies a file onto which the Load Module is to be output. File Descriptor fd defaults to the
file or device currently assigned to Logical Unit 2. If the file specificd by fd or assigned to Logical Unit 2 is a Contiguous
Disc File, TET builds the load module directly on that file. If the file is not a Contiguous Disc File, TET builds in memory
and outputs the load module to the file. If the form of the fd parameter is valid for a Disc File, but the file does not exist,
TET/16 attempts to allocate and assign a Contiguous File of the correct length, to the nearest 1024 bytes. If building on
disc, TET rewinds the Disc File before the build operation. If building in memory, TET outputs the resultant load module
to the specified file or device with no repositioning.

The BUILD command reads the Input Program File again in the same order as the first pass. If a Scratch File is being used,
it is rewound by the system if possible, otherwise, the operator is prompted to reposition the device. If a Scratch File is not
being used, the operator is prompted to reposition zach input in sequence. Each fd input during PASS 1 is displayed and
TET pauses. The user should reposition the fd if necessary and enter CONTINUE.

Specifying TASK as the first parameter results in building one Load Module for a task (or the main segment of a task with
overlays), and outputting it to the specified fd. This segment contains all absolute code, local common positioned in the
main segment, and all programs included in the segment during pass one.

Specifying RL or TCOM results in building one Load Module for a Reentrant Library or Task Common Segment.
Specifying OVLY results in an absolute overlay segment being output to the file. For each OVERLAY command entered
during pass 1, a BUILD OVLY command must be entered in corresponding order during pass 2. Overlay segments can be
built on one file or separate files, and are ready for loading at execution time by the main segment via Fetch Overlay (SVC
5) calls.

Specifying OS results in building a memory image load module of 0S/16 MT2 onto the specified file or device, with or
without overlays, depending upon the user specified system parameters.

[f fd does not specify a Contiguous Disc File, and the OS is to be overlayed, the command is rejected. In order to load the
Operating System with the Bootstrap Loader, the {d must be of the form:

VOLN:OS16XXXX.NNN

where: VOLN = Volume name of up to 4 characters

Osl6 = Mandatory first 4 characters of filename

XXXX = Up to 4 optional characters

NNN = Three hexadecimal digits as the extension (OS identifier)
VOLUME voln

This command is used to specify a default volume for TET commands. If omitted, the system default volume is used. It
can be entered more than once, if desired, and takes effect immediately. voln is any ligitimate volume name of one to four
characters.

This command can appear anywhere in the sequence, including prior to ESTABLISH. Whenever a File Descriptor
(FILENAME.EXT) that does not specify a volume name is encountered, voln is used.

5-6 29-430 RO6 9/79

map [rd]

The MAP command requests TET to display the contents of the dictionary to the device specified by fd, defaulting to the
file or device currently assigned to Logical Unit 3 if fd is not specified. The value of the resultant map is dependent upon
when the command is issued. During pass 1, a list of undefined symbols is valuable in determining which programs are yet
required. The MAP is most useful at the end of pass two when the dictionary is complete. The items are output in address
order.

An explanation of each item in a TET map is listed below. Individual headings are not printed unless there is an item to be

printed under that heading. A sample map is illustrated in Figure 5-2, 5-3, 54.

PARTN Output in the header portion of the map, indicates the physical memory location
of the task.

MEMORY

CONSTANTS:

UBOT Start address of the task, RL or task common block being established.

BIAS Bias taken for relocatable code

SIZE Address of first location above the image to be loaded. For a task with overlays,
this is the start of the overlay arca.

UTOP Address of first location in the GET Storage area if any.

CTOP Minimum acceptable address for the last halfword location in the user’s required
memory partition.

PROGRAM An entry in this list is a 4 digit hexadecimal address tollowed by a 6 character

LABELS: label. Each entry represents a program label and its start location in the user’s
space.

ENTRY An entry in this list is a 4 digit hexadecimal address and its associated symbolic

POINTS: name. It is a list of all definition addresses in TET’s dictionary.

UNDEFINED This a list of all external references for which no definitions have been

SYMBOLS: encountered.

COMMON This section lists the components of the local common area of the user’s task. An

BLOCKS: entry is a 4 digit hexadecimal address field, followed by the local common
symbolic name.

LIBRARY This is a list of all RESOLVEd references.

ENTRIES:

TASK COMMON This section of the map can have only one entry (xxxx TSKCOM). It is prescnt

BLOCK: during processing if the TSKCOM command is give.

OVERLAY: Each overlay of a task is listed on a separate page after the main segment has been
mapped. The name of the overlay follows the heading, followed by all entry
points and undefined symbols contained in the overlay segment (items 2,3,4,5
in the map).

OVERLAY This section appears only on the final map (after the BUILD command) for an

AREAS: overlayed OS. The following sub-headings apply.

PROG The program label of the program containing the overlay area.

START The start address of the overlay area.

NEXT The address of the halfword following the overlay area.

OVvS The number of overlays to use the arca.

RAD The Random Address in the Contiguous File at which the first overlay starts.

SECTS/OV The number of sectors used for each overlay.

29430 RO3 6/77

5-7

AMAP [£d]

The AMAP command requests a map with symbols in alphabetical order rather than address order. It is otherwise identical
to the MAP command.

REWIND [fd]

The REWIND command assigns fd to Logical Unit 1 and rewinds the file. If fd is not specified, Logical Unit 1 is rewound.
NS16mT2 TASK ESTARLISHER n0=00 LGan «ap
DATE: 11,28/75 TIMES? 1ct%z:13
TYPE: TA

JuB EXamPLE |

1 PARTN: 7n00
FO: WORKIKOOT, TSk

AEMOrY COMSTANTS:

| 7000 V30T 7024 AlAs 78FA KITH 7AC6E uTor
7066 CTQP

PROGRAM LABELS:

70,4 LYESTH Ti26 TCOMPK T8 MWICST

FNTRY POInTS:

7024 LTESTB Tu24 START2 102C MIni» 7034 cONTR

704E SR1lb 767C SH2u 7082 St3u 70D8 JKMESS ;
70¢A FmESS 7126 TC1 713& CaRFK 7136 (VTEST ’
733E PROUT 7358 FOJ 735C DL AR 739 CHECKS
730A PASS T3EQ0 FAIL 7690 Aova 7694 p0VB

7698 A0VC 7e9C alvi 7600 ACVF 7704 1 0ADA

77TNnC STATA T7E0 L 0AbDR TTEE STATH 77EC L OADC

77v4 STATC 77F8 LUADD 7800 SYATD 7804 (OADF

78nC STATE THEA FNDTES

UhOEF INE(, SYMBOLS:

STakTuy M1D0% SR4C TWO FOLIK DaTA

COMMON B CCKS:

78cA /y TaF2 RTCONMN

LIBRARY ENTRIESS

AAnA CpouEC AASA TESTCM AAED CuDFUL AAF4 TESTRD
ABue CUOEE

TASK COMMUN nLOCK:

Uozy TSKCOM

Figure 5-2. TET/16 MAP EXAMPLE — Main Program

5-8 29430 RO3 6/77

0S16MT2 TASK ESTABLISHER ¢0-00 LOoAD maAp
NDATE: 11,28/75 TIME: 10:52:13

TYPE: TA .

JOb: EXAMPLE

OVER(LAYS OVLY1

PROGKRAM LABELSS

78FA CoDEA Ta2A SRAYH
FMNTRY POIwlis:

78N CplLEA 792A FRDA 7O S AR

Figure 5-3. TET/16 MAP EXAMPLE — First Overlay

nS16MT2 TASK ESTABLISHER 00-00 LOAD mMaAp
UATE: 11728775 TIMES 10:52:13

TYPE: TA

JOBs EXAMPLE

OVERLAY? OvLY2

PROGRAM L ABELS:

78FA CoDEB 7TA90 skag

ENTRY POINTS:

78rA CoUEB 7A90 ENDB 7A90 Skan

Figure 5-4. TET/16 MAP EXAMPLE — Second Overlay

29-430 RO2 8/76

WFILE [fd]

The WFILE command assigns fd to Logical Unit 2 and Writes a file mark to the file. If fd is not specified, a file mark is
Written to Logical Unit 2. This command should not be used on disc files.

LOG [fd]

The LOG command causes all opcrator commands to be copied to the unit specified by fd. If fd is not specified,
commands are copied to the device or file assigned to Logical Unit 3.

NOLOG
The NOLOG command halts the LOG command operation.

JOB aaaaaaaaaaaa

This command allows the operator to title the TET output map with the characters anaaaaaaaaaa. Any characters are valid
in this zero to twelve character field. This command is permitted at any point during the execution of TET.

PAUSE

This command causes TET to pause. To continue, enter CO on the console device.
END

Terminates operation of TET and returns control to the operating system.

OPERATING PROCEDURES
General Information

TET/16 may be run as an established task under OS/16 MT?2 or as a non-cstablished Background task. TET is supplied as a
non-established object program. To run under OS/32, the 32-bit object of TET/16 supplied with the package
(TET1632.0BJ) must be established as a task under OS/32.

TET is executed by the use of the LOAD, LFGR, or LDBG command and START command. Logical Unit assignments
should be made prior to issuing the START command. When TET is started, the message “TET/16 01-00” is output to LU
7. Table 5-2 lists the TET Logical Units and their use.

TABLE 5-2. TET/16 LOGICAL UNIT ASSIGNMENTS

LOGICAL DATA
UNIT TYPE USE DEVICE EXAMPLES
1 Binary Object-code input HSPTR, Magnetic Tape,
Disc, TTY
2 Binary Image Load-Module HSPTP, Magnetic Tape,
Disc
3 ASCH Memory map output, TTY, Line Printer,
command logging CRT
4 Binary Scratch (optional) Magnetic Tape, Disc
(Object code format)
5 ASCII Command input Card Reader, Disc, TTY,
CRT
7 ASCIt Error messages, TTY, Line Printer,
warnings, prompts CRT
to operator

Logical Unit 5 and Logical Unit 7 must be assigned before execution. Logical Unit 1, Logical Unit 2 and Logical Unit 3 can
be assigned by parameters in TET commands or prior to execution. If a scratch file is to be used, Logical Unit 4 must be
assigned prior to execution to a binary device of record length 108 or greater. TET determines the existence of a scratch
file by whether or not Logical Unit 4 is assigned. The scratch file is rewound at the beginning of pass 1. At the end of pass
1, a file mark is written to the scratch device and it is rewound for pass 2. If it is not a rewindable device, the operator is
prompted to reposition the scratch. During pass 2, Logical Unit 1 is assigned to the scratch device and Logical Unit 4 is
assigned to the null device. At the end of pass 2, Logical Unit 4 is reassigned to the scratch device, i.c., one scratch device
may be used for successive TET/16 runs without operator intervention. Logical Unit 1 is reassigned to the last input device.

Specifying a File Descriptor in certain TET commands causes the file to be assigned to one of the TET Logical Units. Table
5-3 summarizes this action. This information is useful in defaulting File Descriptors to already assigned files.

5-10 29-430 RO4 1/78

TABLE 5-3. IMPLICIT TET/16 ASSIGNMENTS

COMMAND LU ASSIGNED

INCLUDE
EDIT
RESOLVE
REWIND
BUILD
WFILE
MAP
AMAP
LOG

W W W R DD r= e s

Various parts of the File Descriptor, or the entire File Descriptor can be omitted by the user for convenience. Typically if
the fd is omitted, TET checks the Logical Unit that should be assigned for that function, and uses the assigned device until
a reassignment occurs. Consider, as an example, the following sequence.

Assume the user has assigned LU to the PTRP: before starting TET.

ES TASK

BIAS €000

IN

IN

IN

IN MAG1:

IN

IN PTRP:

BU TA, TETOUT

Finding no File Descriptor in the first INCLUDE command, TET checks LU 1 to see what is assigned. If nothing werce
assigned, TET would output the message ‘LU I NOT ASSIGNED’. Since, in this case, the Paper Tape Unit is assigned, TET
reads data from LU 1. This Input Unit is used for cach INCLUDE command until IN MAG1: where TET closes LU 1 and
then assigns thc Magnetic Tape Unit to LU 1. Data is then read from Magnetic Tape until IN PTRP: which causes TET/16
to start inputting from the Paper Tape again.

If the fd specified is a Disc File, TET may default a predefined VOLN: to the File Descriptor. If the user does not specify
the Volume Name and if the VOLUME command has been issued, TET substitutes the Volume Name specified in the
VOLUME command. If the VOLUME command has not been issued the OS System Default Volume is used.

If no extension is specified, TET/16 uses:

—-.0BJ for INCLUDE, EDIT, RESOLVE
—.TSK for BUILD TA, BUILD TC, BUILD OV, BUILD RL

Special Considerations for Libraries
A library is given a 36(24) byte UDL.

All object code programs to be included in a library must be output to one file or device. They are then included with onc
command during the library establishment, and resolved with one command during a task establishment.

Special Considerations for Task Common

A Task Common segment must be a single labelled common block definition of TSKCOM, or a block data subprogram ot
this common block. No other code is accepted.

A Task Common segment is given a 36(24) byte UDL.

Special Consideration for Tasks With Overlays

No overlay may contain an absolutely located code.

No overlay may reference another overlay in the same overlay area.

If an overlay defines Labelled Common which does not appear in the root nor in any other accessible overlay, it is
positioned within that overlay.

Refer to: Guide to User Overlays, Chapter 6 of OS/16 MT2 Programmer’s Reference Manual

29-430 RO3 6/77 5-11

Command Input Stream

Commands to TET can be entered in batch mode or interactively. In either case, certain logical considerations constrain
the command sequence.

After starting TET, the command stream is read from LU 5. In batch mode, a REMOTE command should be used to
prevent TET from pausing, unless an operator is present. To begin an establishment, the ESTABLISH command must
precede all other commands except REMOTE, BATCH, INTERACTIVE, VOLUME, MAP, and AMAP, which can appear at
any point in the stream.

TET execution is started by an ESTABLISH command. TET defines the segment on the first pass, and constructs the load
module on the second pass. Before specifying any inclusion of task code, TET must know the partition start address and
whether the task uses floating point arithmetic. The BIAS, TSKCOM, and the OPTIONS commands must be entered before
any INCLUDE command. An OPTION CSEG command, it given, must always precede a TSKCOM command.

The task’s program contents must be processed. INCLUDE and EDIT are used to select the input object format programs
that are to be part of the main program segment. One INCLUDE statement must be used to bring in a single relocatable
program or an entire file. Any number of INCLUDE statements may follow. If a single program is included, the input read
operation stops at the end of that program, allowing the next inclusion from the same file or another file.

The EDIT statement reads the entire specified file, and marks for inclusion any programs that have program labels
referenced by the code already included. If a Scratch File is present, the entire Edit File is copied to it, but only the
required programs are used during the BUILD operation. EDIT statements can be repeated. allowing an EDIT to bring in
programs referenced by programs included by a previous EDIT. The user can select programs from multiple files by varying
the fd parameters of successive EDIT and INCLUDE statements. Sce Examples in the section entitled EXAMPLES OF TET
OPERATION.

TET resolves all references from one included program to another in a task’s included code. but references to a Reentrant
Library must be resolved by the use of a RESOLVE command. TET/106 finds the ENTRY symbols that are the same as the
referencing EXTRNs in the task. A message indicating that unresolved labels exist is output at the beginning of pass 2, in
addition to a table in the MAP which lists these symbols.

One RESOLVE command should be issued after all INCLUDE and EDIT statements of a task including any overlay seg-
ments. An error message is printed if more than one RESOLVE command is entered. Only one library segment may be
referenced by a task.

TET resolves Task Common references if the TSKCOM command is given, noting their occurrance in the task’s LIB. Task
Common is referenced by the symbol TSKCOM as the Labeled Common block name.

Overlays are specified and named by OVERLAY statements, and defined by INCLUDE and EDIT statements, after their
main segment has been completely defined (by INCLUDI and EDIT statements). If the main segment and overlays
together use GET STORAGE calls greater than X'300" bytes, a GET command must be given to reserve such space. Each
overlay results in a separate Load Module. All INCLUDE and EDIT statements after an OVERLAY statement and before
the next OVERLAY statement (or a BUILD statement) define that overlay. Space beyond the area where the task is
loaded, for an expanding operation such as a symbol table, can also be reserved with a GET command.

After an ESTABLISH TA command within TET’s first pass, the PRIORITY and TSW commands can also be entered.

The first pass ends and the second pass starts upon encountering a BUILD command. Any unresolved references remaining
are reported by a message to the operator.

A BUILD command specifies creation of one Load Module for a task, an overlay, an RL, Task Common block, or an OS

using the resolutions and specifications of the first pass. Each overlay module of a task requires a separate BUILD
command. All programs included on pass onc are read again, and built onto the Load Module as specified during pass one.

5-12 29-430 ROS 2/79

TABLE 5-4. RECOMMENDED OPERATOR COMMAND SEQUENCE

COMMAND OPTIONAL/REQUIRED
PASS 1 REMOTE orT

LOG OPT

VOLUME OPT

ESTABLISH REQD

BIAS REQD (except for OS)

OPTIONS OPT

TSKCOM REQD (if TSKCOM referenced)

PRIORITY OPT

TSW OPT

INCLUDE REQD

EDIT OPT

GET OPT

OVERLAY OPT

RESOLVE orT
PASS 2 BUILD REQD

MAP/AMAP OPT

END REQD

Compound Overlay Files
In the case of overlay segments, it is sometimes desirable to build segments on a single file as shown in Figure 5-5.

OVERLAY OVERLAY OVERLAY
SEGMENT 1 SEGMENT 2 R SEGMENT n

Figure 5-5. Single Overlay File

This particular file structure introduces special consideration when building on disc. A contiguous disc file must be used.
“TET attempts to allocate a file when the BUILD command specifies a file that does not already exist on disc. If the user
wants to build this compound file, the default allocate function of TET may not be used because TET cannot anticipate
hlow many overlays will be built to the same file.

Therefore, when building the compound file the user must allocate the file before entering TET: (note that this refers to
disc only). The user may choose a file size large enough. To determine the exact length of the required file, lengths of the
individual segments (expressed as the number of 256-byte blocks) must be summed to arrive at the approximatc total
image length. In addition, a single LIB sector for cach segment to be contained in the file plus five sectors for work space is
required by TET. Figure 5-6 illustrates by example:

Overlay 1 3500 hex (round up to nearest X'100°
byte boundary)

Overlay 2 500 hex
Overlay 3 2200 hex
Overlay 4 1500 hex
Find the segment length expressed in sectors:
' Overlay 1 3500/100 =35 sectors
Overlay 2 500/100= 5 sectors

Overlay 3 2200/100 =22 sectors
Overlay 4 1500/100 =15 sectors

TOTAL =77 sectors
+ 4 sectors (LIBs)
+ 5 sectors (Workspace)

TOTAL =86 sectors
Figure 5-6. Compound Overlay File Size Example

NOTE

When generating compound disc files, it is not always permissible
to change output units during the process. Consider a task with 4
overlays, where overlay 1, overlay 2, and overlay 4 are directed to
one fd, and overlay 3 is directed to another. Numbers 1 and 2 are
built sequentially. Logical Unit 2 assignment is changed for
number 3, and when reassigned for number 4, the Disc File is
rewound. Number 4 over-writes those previously built on that file.
It is thercfore recommended that all overlays for one task be built
on the same file, or each on a separate file.

29-430 RO3 6/77 5-13

EXAMPLES OF TET/16 OPERATION

Establish A Single Program Task

This command sequence establishes a task such as TET/16, which requires no linking of programs and no editing or
resolving of external references.

ESTABLISH TA (Establish a task)

BIAS A000 (Partition start address A0O0Q)

GET A00 (Reserve 2.5K memory above code)
INCLUDE PTRP: } (Input object code from Paper Tape Reader)
BUILD TA,MAGH!: (Build load module on Magnetic Tape)

MAP PR: (Produce map)

END

Establish A Simple Task From Selected Programs

This command sequence establishes one Load Module from a file that contains other programs not required by this task.
Programs A. C and D are to be included in the task. Figure 5-7 is a description of the input and output files.

The required command sequence is as follows:

ESTABLISH TASK

BIAS 9000 (Partition start address 9000)
INCLUDE FILEA, PROGA

INCLUD'E ,PROGC

EDIT (Includes PROGRAM F, referenced by PROGRAM A, and PROGRAMS D
and H referenced by PROGRAM C.)

BUILD TASK (As no fd is specified, and assuming that LU 2 is not assigned to a Contiguous
Disc File, this task is built in memory, where it requires a work area, the
total size of tasks A, C, D, F, and H.)

MAP PR: (Produces a map of the task).
END (Return control to the system)
Establish a Complex Task

To illustrate the capabilities of TET in establishing a more involved task, this command sequence shows establishment of a
task with overlays, references to a Reentrant Library and Task Common, absolute-address and special space requirements.
The main segment and each overlay is to be built on a separate file, and it is necessary to use two Disc Volumes because of
space limitations. Disc is available for building the task and the command input is on a CSS File.

The task comprises three programs from FILE A and three from FILE C. Two overlays are necessary: one from FILE B,
and the other from FILE C with two programs that it references. These files are shown in Figure 5-8.

5-14 29-430 RO4 1/78

contains external

PROG A -———{ references to PROG H
PROG F

PROG B contains external PROG F
references to

PROG C «+———< PROGA PROG D
PROG D

PROG D PROG H PROG C

PROG E PROG A

PROG F

L.oad Module of
PROG G established task
(LY 2) (Image Code)

PROG H
File A (LU1)
(Object Code)
Figure 5-7. Simple Task Establishment
PROG A PROG A
PROG B PROG B PROG A
INCLUDES TSKCOM REF INCLUDES LIBRARY
PROG C — REFS
r‘ PROG C
FILE A PROG B
PROG D
VOA:FILEA.EX1 PROG C
FILEB
PROG D
VOB:FILEB.EX1 INCLUDES REFS TO
PROGRAMS A, B, & F
IN THIS FILE
PROG E
' INCLUDES REFS TO .
PROGRAMS B & C IN
FILEB
'—- PROG F
PROG F FROM FILE C FILEC
PROG B FROM FILEC VOA:FILEC.EX1
PROG A FROM FILEC
PROG D FROM FILE C
—> PROG C FROM FILE A PROG C FROM FILE B f-—
PROG A
PROG B FROM FILE A PROG B FROM FILE B FROM FILE B
PROG A FROM FILE A PROG E FROM FILE C
DESIRED STRUCTURE
DESIRED MAIN SEGMENT DESIRED STRUCTURE FOR FOR OVERLAY TWO
STRUCTURE OVERLAY ONE

Figure 5-8. Graphic Description of Task With Two Overlays

29-430 RO4 1/78 5-15

The command sequence is:

REMOTE
ESTAB TASK
BIAS 8000,8200

VOLUME VOA
TSKCOM E400
INCL FILEA.EX1

INCL FILEC.EX1,PROGD
REWIND FILEC.EX1

EDIT

RESOLVE MAG1:,7200

PRIORITY 20,14

GET 400

OVERLAY OVONE,NEW

INCL FILEC.EX1,PROGE

EDIT VOB:FILEB.EX1

OVERLAY OVTWO

INCLUDE VOB:FILEB.EX1,PROGA

BUILD TASK,FILED.LMD

BUILD OVLY,FILEG.LMO

BUILD OVLY,VOG:FILEA.LMO

MAP

END

Specifics that TET/16 should not pause since input is controlled by CSS).

(Partition start address 8000. Relocatable bias 8200 provides 512 bytes of
absolute-address space before beginning relocatable code).

(VOA is the Default Volume Descriptor)
(Task Common partition address E400)
(Includes all of FILE A)

(Includes PROGRAM D of FILE ()

(Edits FILE C, which includes PROGRAMs A,B, and F. Default is to LU 1
which was last assigned to FILE C).

(PROGRAM A in FILE C contains references to a reentrant library module
which is on the Magnetic Tape Unit. The RESOLVE command reads the RL
object module from Magnetic Tape and satisfies the references.)

(Specifies that the task is to run at priority 20, unless raised at run time, to a
priority no higher than 14).

(Allows 1024 bytes for GET STORAGE calls in the main segment)

(Terminates definition of the main segment; names and initiates definition
of the first overlay)

(Include first overlay)

(Edits FILE B for programs referenced by PROGRAM E. Includes
PROGRAMs B and C, from FILE B: PROGRAM C references TSKCOM,
which is noted in the task’s LIB).

(Terminates first overlay definition and initiates second)

(Include second overlay)

(This command terminates all specifications: pass two starts, and all
INCLUDEd and EDITed programs will be copied from the scratch to the
Load Module, which is being built on FILE D of VOA. The extension field
can be any three characters, such as (LMD) Load Module)

(Builds overlay one of FILE G of Volume A; LMO = Load Module Overlay)
(Builds overlay two on FILE A of Volume G)

(Produces a map of the entire task)

(Returns control to the system)

ljigure~ 5-9 illustrates a map of this task in memory. The main segment is built as shown, with the absolute-address area
first, followed by the main inclusions, the overlay area large enough for the longest overlay, and the GET requested area.
The system, at load time, places the CTOP indicator to the top of the partition.

5-16 29-430 RO2 8/76

Task Common

E400
/[Reentrant Library]-
7200
3 i
CTOP
GET 400 (1024 Bytes)
Overlay Area
uTor
Local Common
Main Segment
8200
User Dedicated Locations 8000

Figure 5-9. Memory Map of Overlay Task Establishment

Establish a Reentrant Library Segment
This command scquence establishes a Reentrant Library Scgment, sharable by any tasks in the system which reference it

This example describes the establishment of selected routines from the FORTRAN Run Time Library as a Reentrant
Library Segment. The command sequence might be:

ESTAB RL (Specifics that the establishment is to produce a Reentrant Library Load
Module)

BIAS 7200 (Position start address 7200)

INCL MAG1: (Include the FORTRAN run time routines)

BUILD RL,RELIBRY (Ends pass one definition; builds library Load Module on file
VOLN:RELIBRY.TSK)

MAP (Specifies a map of completed module)

END (Returns control to the system)

Establish a Task Common Segment

This command sequence establishes a Task Common Segment, sharable by any tasks in the system which reference it.

ESTAB TCOM

BIAS E400 (Partition start address)

INCL PTRP:,* (Include first program onty, from Paper Tape Reader)
BU TCOM,MAG1: (Build on Magnetic Tape)

JOB TCOM SEGMENT (Title for map)

MAP (Output map)

END

Establish a Task With Multilevel Overlays
A task runs through three discrete phases before terminating, and the code to process each phase may be overlayed. Two of

the phases share some common routines. The third calls two other routines which may also be overlayed as illustrated in
Figure 5-10. A Memory Map of Multilevel Overlays is shown in Figure 5-11.

29430 RO2 8/76 _ 5-17

ROOT SEGMENT

MAIN

OVERLAY
AREA SuB
B 1

The sequence of commands is:
ESTAB TA
BIAS 8000
INCL MAIN.OBJ
OV PHASE1,NEW
INCL PHASE1.0BJ
OV PHASE2
INCL PHASE2.0BJ
OV PHASE3
INCL PHASE3.0BJ
OV SUBI,NEW
INCL SUB1.OBJ
OV SUB2
INCL SUB2.0OBJ
OV SUB3
INCL SUB3.0BJ
OV SUB4
INCL SUB4.0BJ
BU TA,MAIN.TSK
BU OV,PHASE1.0VL

BU OV,PHASE2.0VL

5-18

suB SuB

Figure 5-10. Multilevel Overlays

(Partition start address)

(Main control program)

(First overlay area, overlay name PHASEI)
(Include ovetlay)

(Overlay name PHASE?2)

(Include overlay)

(Overlay name PHASE3)

(Include overlay)

(Second overlay area, overlay name SUB1)
(Include overlay)

(Overlay name SUB2)

(Include overlay)

(Overlay name SUB3).

(Include overlay)

(Overlay name SUB4)

(Include overlay)

(Build task load module)

(Build first overlay for area A)

(Build second overlay for area A)

29-430 RO2 8/76

BU OV,PHASE3.OVL (Build third overlay for area A)

BU OV,SUB1.OVL (Build first overlay for area B)
BU OV,SUB2.0VL (Build second overlay for area B)
BU OV,SUB4.0VL (Build fourth overlay for area B)
MAP (Map in address order)
AMAP (Map in alphabetic order)
EN
! CTOP
Get Storage
UTOP
Overlay Area B
Overlay Arca A
Local Common
Main Segment
8024
UDL
8000

Figure 5-11. Memory Map of Multilevel Overlays

Establish 0S/16 MT2

The following command sequence establishes the Operating System, building it on the Contiguous Disc File
VOLN:0OS16R00.001 in a form that can be bootstrapped into memory.

ESTAB OS

INCLUDE EXEC16.0BJ (Include Executive as first module)
INCLUDE FMGR16.0BJ (Include File Manager)

EDIT DLIB16.OBJ (Edit Driver Library)

INCLUDE USERDRV.OBJ (Include user-coded drivers)

INCLUDE CMDP16.0BJ (Include Command Processor as last module)

BUILD OS,VOLN:0S16R00.001 (Build onto Contiguous Disc File)
MAP PR:
AMAP

END

29-430 RO2 8/76 5-19/5-20

CHAPTER 6
CAL/16

INTRODUCTION

The Common Assembler (CAL/16), 03-101, is a subset of the Common Assembler (CAL) 03-066. It is used on 16-Bit
Processors and assembles source programs for 16-Bit Processors only. It is supplied with the 0S/16 MT?2 package in three
forms, memory-based (CAL/16) and disc-based (CAL/16D and CAL/16DS).

Note that CAL/16 cannot be used to assemble the intermediate text output of FORTRAN V because the COMN and
BDATA pseudo-ops are not processed by CAL/16.

SYSTEM REQUIREMENTS

The following are the minimum requirements to operate CAL/16:

— any 16-Bit Processor

— 0S/16 MT2

— approximately 14KB memory over and above OS/16, but exclusive of symbol table space for CAL/16
-- approximately 16.25KB memory over and above OS/16 for CAL/16D (15KB for CALI 6DS)

— a source input device

— a source output device

— a binary output device

CAL/16 FEATURES

For detailed information on the assembler language, refer to the Common Assembler Language User’s Manual, Publication
Number 29-375.

CAL/16 contains the features of CAL with the exception of those features listed below.
1. The TARGT pseudo-op must specify 16. All assemblies are targeted for 16-Bit Processors.
2. All 32-bit instruction processing is deleted.

3. Contiguous or Indexed files may be used as the cross reference file. If an Indexed file is used, its
record length should be = 256.

4. The following op-codes are deleted.

A CHVR ECS M RBT SI WDHS
ABLF Cl EXHR MR RDCS SPSW WDRHS
Al CL GIPI N RDRHS SR WPDHS
AM CLI L NHM RPDHS ST X

AR CLR LA NI RPSW STBHS XHM
ATLF CR LBHS NR RTLF TBT XI
BDCS CRC12 LBHSI o S TI XR
BESHS CRC16 LHL OHM SBHSI TLATE

BNSHS b LHS OI SBT TS

C DCHS LPSWR OR SCp UNC

CBT DR LR RBLF SHM WDCS

29-430 RO4 1/78 6-1

5. The following pseudo-ops and their associated features are deleted.

Deleted pseudo-op Suggested alternate
ABS ORG
CAL N/A
CNOP N/A
DSF DS
NOCAL N/A
NORX3 N/A
SYM N/A
SQUEZ N/A
BDATA N/A
COMN N/A
DLIST DC, DS
IFE IFZ
iFO IFNZ
MSG N/A
WIDTH N/A
NOSQZ N/A
IF IFNZ
PURE N/A
IMPUR ORG
OPT N/A

6. The following constant types are deleted from fhe DC pseudo-op.

F - fullword decimal
E - single precision floating point
D - double precision floating point

OPERATING PROCEDURES

Either version of CAL/16, memory-based or disc-based, is loaded in object Format, or is established first using TET/16 and
then loaded by the image loader. Logical unit assignments are made before the assembly is started. Assembly options are
given either in the source or as arguments to the START command. The arguments supersede any similar pseudo-ops in the
source.

Logical Unit Assignments

Logical Unit

0t Source Input Device — The source program to be assembled is read from this device on pass 1. On pass 2
this device is rewound and reread only if SCRAT and PPAUS are not selected.

02 Binary Object Output Device — the assembled object program is written to this device on the last pass. 108
byte records are output.

03 Assembly Listing Output Device — the assembly listing is printed on this device on the last pass.

04 Primary Source Copy (Scratch) Device, Output and Input (Bulk Storage) — the source program is written to
this device on pass 1 if the SCRAT option is specified and read on pass 2. This device is rewound following
pass 1. If Logical Unit 4 is assigned to a disc file, the logical record length of that file should be > 80 bytes.

05 Symbol Table Cross Reference File Device (direct Physical Access File) — cross reference information is
built on the file during the last pass and is printed after the last pass. This file is accessed randomly. Each
cross reference record is 256 bytes long.

06 Symbol Table File — an indexed file of logical record length 256 bytes or a contiguous file (recommended
size 256 sectors). Used by disc-based version only.

07 Source Library Input Device - source information is read from this device on pass 1. Source information is

also read from this device during pass 2 if SCRAT is not specified. This device is rewound each time a
COPY statement is read.

6-2 29-430 RO4 1/78

08 Symbol Table Work File — an indexed file of logical record length 256 bytes. Used by disc-based version
only.

09 Scratch Device for Accumulation of Errors, Output and Input (Bulk Storage) - errors that are included in
the error count along with the associated statement number where the error occurred are written to this
device-during the last pass if selected by an ERLST option and then read back at the end of the assembly. If
Logical Unit 9 is assigned to a disc file, the logical record length of that file should be 2= 36 bytes.

START Options
The options are specified as arguments to the OS START command. Any combination of spaces and/or commas may

separate or follow external options in the START command. In addition, each external option may be abbreviated to a
minimum of the characters underlined in the following table:

OPTION OPTION VALUES
PPAUS None

CROSS None

NLIST None

SQCHK None

SCRAT None

WIDTH Width of print line
LCNT * Number of lines/page
ERLST None

NLSTC None

FSIZE Symbol table file size
FREZE None

Each option has the same meaning as the pseudo-op of the same name. Options or option values specified in the START
command remain in effect for the entire assembly (or assemblies, if BATCH is in effect) regardless of any pseudo-op
encountered in the source. For example, if NLIST is specified as an external option, CAL ignores any LIST or NLIST
pseudo-ops.

Operation of Memory-Based CAL/16
CAL/16 operates in a similar manner to CAL.

Operation of Disc-Based CAL/16D and CAL/16DS

CAL/16D is designed to assemble programs of any size irrespective of available resident memory. It differs from CAL/16

in that part of the symbol table is built on disc if it cannot fit in available memory, and thus CAL/16D is only operational in
a disc based system. The use of CAL/16D is basically the same as CAL/16, except two additional logical unit assignments
are required (for symbol table work), and an additional starting option is provided.

Logical Unit 6 is assigned to either an Indexed file of 256 byte records, or a Contiguous file. For a Contiguous file the
number of sectors allocated must be 256, or the number specified in the starting option FSIZE.

If the Contiguous file assigned contains less than 256 sectors (or less sectors than the value specified in FSIZE), an EOM
message is output during the first pass of the assembly, and the task is paused. The user has the option of assigning a file of
correct length and continuing the task.

Starting Option FSIZE is the size of the file assigned to LU 6; this value is used to initialize the file for building the symbol
table. If FSIZE is not supplied, the default value is 256. The use of 256 records easily allows for assembling programs
containing 2500 symbols. (The full Command Processor in OS/16 MT2 contains approximately 1800 symbols). However,
by specifying FSIZE larger than 256, larger programs may be assembled.

Whenever FSIZE is supplied and a Contiguous file is assigned to LU 6, the number of sectors allocated must be greater than
or equal to FSIZE. (See the LUG description.)

CAL16/DS is a smaller version of CAL/16D and must be used if a processor has only a 32KB memory. File allocations
must be considered carefully when executing in a 32KB environment. The following is suggested:

— use contiguous files for LU 6 and LU 8. Use CAL/16 option FSIZE=200

Example: ALLO SYM,CO,200
ALLO MRG,C0,200

— do not use the CROSS option

— for sysgen assemblies use a contiguous file for the CUPOUT file.
A 1000 sector file is sufficient for most sysgens.

29-430 ROS 2/79 63

Examples

The following three examples illustrate how the Common Assembler is loaded and the logical units are assigned to the
devices or files containing the appropriate information.

Example 1 (Non-Disc system)

LDBG MAGI: Load CAL/16 from mag tape

ASSIGN 1,CR: Assign the source module input to LU 1 (Card Reader)
ASSIGN 2,PTRP: Assign the object module output to LU 2 (Paper Tape Punch)
ASSIGN 3,PR: Assign the list device to LU 3 (Line Printer)

ASSIGN 4,MAG1: Assign a scratch device to LU 4 (Mag Tape)

ASSIGN 7,PTRP: Assign the source SYSGEN output of CUP to LU 7

Example 2 (Disc system using memory-based CAL/16)

(Paper Tape Reader)

LDBG CAL16.0BlJ Load CAL/16 from a Disc File

ALLO EXEC.OBJ,I Allocate a file for the assembly’s object output
ALLO SCRAT,IN,80 Allocate scratch file

ALLO CROSS,IN,256/2 Allocate cross-reference file

ASSIGN 1,LEXEC.CAL Assign the OS/16 source module to LU 1 (Disc File)
ASSIGN 2,EXEC.OBJ Assign the object module output to LU 2 (Disc File)
ASSIGN 3,PR: Assign the list device to LU 3 (Line Printer)
ASSIGN 4,SCRAT Assign scratch file to LU 4

ASSIGN 5,CROSS Assign cross-reference file to LU 5

ASSIGN 7,CUPOUT Assign the course SYSGEN output of CUP to LU 7

Example 3 (Disc system using disc-based CAL/16D)

(Disc File)

LDBG CAL16D Load CAL/16D from a disc file

ALLO EXEC16.0BJ,1 Allocate a file for the object output

ALLO SYMTAB,CO,512 Allocate a file for symbol table

ALLO SYMWORK,IN,256 Allocate a file for symbol table work

ASSIGN 1,LEXEC16.CAL,SRO Assign 0S/16 source module to LU 1

ASSIGN 2,EXEC16.0BJ Assign object module output to LU 2

ASSIGN 3,PR: Assign the list device to LU 3

ASSIGN 6,SYMTAB Assign file for symbol table to LU 6

ASSIGN 7,CUPOUT Assign the source SYSGEN output of CUP to LU 7
ASSIGN 8,SYMWORK Assign file for symbol table work to LU 8

The scratch unit (LU 4) should be assigned only if the scratch feature is being used. For example, scratch should not be
used if the source modules are on disc.

Once the correct units have been assigned and the devices are ready, CAL/16 is started with the START command. For the
previous Examples 1 and 2, one of the following commands can be given:

START

START,PPAUS
START,SCRAT,CROSS

for non-scratch assemblies where source input is rewindable

for non-scratch assemblies where source input is not rewindable
for scratch assemblies with cross-reference listed

For Example 3 (loading CAL/16D), one of the following commands can be given:

START,FSIZE = 512

START

for disc-based assemblies

for disc-based assemblies where symbol table file is indexed
or 256 sector contiguous file

Features in CAL/16D not in CAL/16DS

CAL/16DS is a somewhat smaller version of CAL/16D designed for use in 32KB systems. The following features have been

removed.
— The ERLST, SQCHK and WIDTH options are not provided
- The SPACE psuedo-op is ignored
— Common-mode CAL mnemonics are not accepted
— Output from CAL MACRO is not accepted
— The LCNT, LSTM, NLSTM, and DCY psuedo-ops are not accepted
64 29-430 R04 1/78

CHAPTER 7
DISC INTEGRITY CHECK

INTRODUCTION

The Disc Integrity Check Utility Program Number 03-080 provides a means of recovering open disc files following an
Operating System crash. Recovery from a system crash requires reloading the Operating System. This utility is then used to
restore the integrity of data on disc volumes that were dismounted without being marked off-line. (A system crash has the
effect of dismounting on-line disc volumes). The program rebuilds the Bit Map and validates file pointers of indexed,
contiguous, and chained files under OS/16 MT2, regardless of whether the files are supported by the Operating System.
{Chained files are supported by 0S/32 MT).

The Disc Integrity Check closes alt files found to be assigned and validates all control information on the disc. This latter
function is performed in case bad data was written to the volume during the system crash. Complete volume recovery is
not always possible because bad data may have been written to the volume prior to the crash. The program output
messages explain the status of individual files or the entire disc, and describe what actions have been taken or attempted.

CAUTION

IT IS IMPERATIVE TO RUN THE INTEGRITY CHECK
UTILITY WHENEVER THE INTEGRITY OF A DISC IS IN
QUESTION. FAILURE TO DO SO IMMEDIATELY CAN
RESULT IN THE UNNECESSARY LOSS OF DATA AND FILES

Systems without direct-access devices need only restore the Operating System environment that existed prior to the system
crash. No further action is required.

Systems with direct-access devices that did not have any direct-access files assigned at the time of the system crash can be
recovered using the procedure for systems without direct-access devices. However, it is not always possible to tell if any
files are assigned, (i.e., a program may have made an assignment using SVC 7). Therefore, it is recommended that the Disc
Integrity Check be used on all systems configured with direct-access devices. Failure to e¢xecute this utility program after a
system crash may leave direct-access volumes in a state where the volume cannot be marked on without protect.

SYSTEM REQUIREMENTS
For operation, the Disc Integrity Check requires:

16-Bit Processor

Operating System OS/16 MT2

8.50 KB of memory above the OS size, plus an optional buffer for Read Check Operation
A console device (CRT or TTY)

Any currently supported disc device.

29-430 RO5 2/79 ‘ 7-1

PRINCIPLES OF OPERATION

When user tasks assign direct-access files, a File Control Block (FCB) is created in memory which is used by the file
management routines in processing user requests to the file. The most current state of an assigned file is defined within the
FCB.

The File Directory, located on each disc volume, may not have up-to-date information recorded for each file. In particular,
the sector allocation Bit Map may show sectors as allocated which are not allocated, as far as the File Directory is
concerned. The File Directory also shows the use of each file (i.c., unassigned, assigned) and the access privileges currently
in effect for each file. Thus, after a system crash, some files may be shown as assigned in the File Directory with their FCBs
removed from memory by the crash.

The Disc Integrity Check program closes all assigned files and validates the control information on the disc. The program
START command assigns the Disc Volume to Logical Unit 1 (LU 1) via the Supervisor Call 7 (SVC 7) ASSIGN call and
assigns the print device to LU 3. The attributes are fetched via the SVC 7 — FETCH ATTRIBUTES and the device code is
checked to see if the device is a disc. Once it is established that the device is actually a disc, the maximum Logical Block
Address (LBA) is calculated and the Volume Descriptor (VD) is read in from LBA zero via SVC 1. If there is an 1/O error,
the disc must be reinitialized, and the program terminates with output message (#4).

NOTE

All program output messages are listed by number in the last
paragraph of this chapter.

If there is no 1/O error, the volume name is checked for conformity with Operating System conventions. and all pointers
are checked to see that they do not exceed the maximum LBA on the volume. If valid, the Bit Map final LBA is calculated
and the Bit Map is zeroed. One sector is allocated in the Bit Map for the VD and the sectors to be occupied by the Bit Map
are allocated. If the VD points to an OS image on the pack (old 32-bit packs only), the sectors it occupies are allocated.
The VD is checked to see if a File Directory is present. if not, the program is finished.

For volumes with directories, the utility starts by reading the first directory block. The directory block is then allocated in
the Bit Map. Directory blocks are processed in this manner until the end of the directory or until a bad directory link is
found. If the latter condition occurs, the directory chain is closed off and a message (#6) is printed. Since the rest of the
directory cannot be found, the files it defined are lost and must be re-allocated and rebuilt. Then the first directory block
is re-read and checked for active file entries. Non-active entries are skipped. Active file entries have their file names
validated by verifying that the name conforms to OS naming conventions. Files are checked for TYPE and to see that both
the first and last LBA lie within the volume.

The Disc Integrity Check Utility Program verifies contiguous, chained, and indexed files. All three file types are supported
by 0S/32 MT. OS/16 MT?2 supports only contiguous and indexed files.

Contiguous Files

Read/Write counts of contiguous files are checked by the program. If one or both counts are non-zero, message (#10) is
printed with this file. The program then allocates the sectors occupied by the file.

Chained Files

Chained files are checked to see if the block size is zero, in which case the file is deleted and messages (#17) and (#9) are
printed. The begin field (first logical block address) is checked to determine if it is zero. If zero, the Read/Write counts are
set to zero and the number of logical records in the file are examined. If the number of logical records is non-zero, the file
is deleted and message (#9) is printed. If the first logical block address is non-zero and there arc no records in the file, both
first logical block address (FLBA) and last logical block address (LLBA) are set to zero before the next directory entry is
processed.

The number of blocks in the file are calculated when both the begin field and the number of logical records are non-zero.
The chain is then followed through the link fields of each block until either the end (as specified in the directory) is
reached, or the pointer runs off the volume. If the pointer runs off the volume, the file is deleted and message (#9) is
printed.

If the number of blocks between FLBA and LLBA docs not equal the calculated number of blocks, the file is deleted and
message (#16) is generated followed by message (#9).

If the number of blocks between FLBA and LLBA equals the calculated number of blocks, the program starts at FLBA
and goes through the chain again, the chain is followed through the link field of each block and the sectors the file
occupies are allocated in the Bit Map. The last link, as recorded in the directory, is checked. If it points to another entry,
the chain is broken and the message (#11) is printed.

7-2 29430 RO2 8/7¢

Indexed Files

The data and index block size of indexed files are checked. If zero, the file is deleted and messages (#17) and (#9) are
printed.

The begin field is tested for zero. If zero, the Read/Write counts are zeroed and the number of logical records are tested _for
zero. If the number of logical records is non-zero, the file is deleted and message (#9) is printed. If the number ofloglc?l
records is zero and the begin field is non-zero, both FLBA and LLBA are sct to zero before the next directory entry is
processed.

The number of data pointers is calculated for a file with a non-zero begin field and one or more logical records. The index
and data block pointers, contained in each index block, are tested to make certain that they point to valid sector addresses
on the disc and are not overlapping other files. The backward pointer of the first index block is tested for zero. If non-zero,
the file is deleted and messages (#11) and (#9) are printed. All other backward pointers are checked to make certain that
they point to the previous index block or the file is deleted and messages (#11) and (#9) are printed.

if the forward pointer in the last index block (LLBA) is not zero, it is set to zero, the index block is rewritten and message
(#11) printed. If the last index block contains non-zero pointers after the last calculated record, these pointers are zeroed
and message (#18) is printed. If the last calculated data pointer is not contained in the last index block (LLBA), the file is
deleted, messages (#16) and #9) are printed. Otherwise, all sectors occupied by the file are allocated in the Bit Map. If the
file was assigned, the Read/Write counts are set to zero and message (#10) is printed.

Directory entries are processed until the end of the directory. All empty non-preallocated directory blocks are deleted.
After all file entries are validated, sector zero of the disc is read once more. If the disc is marked off-line and VATR.ONM
in the attributes field is set, Disc Integrity Check zeros this bit and rewrites the VD. LU 1 is closed and the program

terminates.

OPERATING PROCEDURE

The following procedure is recommended for all systems configured with direct-access devices. Load Disc Integrity Check
after reloading the Operating System. Execute the program once for each disc pack by passing the disc file descriptor as an
argument to the program by use of the START command.

The file descriptor must be passed as a parameter in the START command; it may not be preassigned. The list device may
be preassigned to LU3, or the file descriptor can be passed as a parameter to the program in the START command. Any
disc supported by the Operating System can be used with the Disc Integrity Check program and any list device can be used
to output messages. The program operates as an Executive Task; OPTION ETASK must be specified when loading the
object program. Also the program can be TETed as an E-Task and loaded by the image loader. The CSEG option must
never be specified.

Disc Integrity Check may be run with the disc marked off-line, or with the disc marked on-line without protect if no files
are assigned.

If the Operating System is overlayed on the disc volume one cannot mark the disc off-line and run Disc Integrity Check.

1. Mark the disc off-line (or on-line with OS and without protect if it is the OS volume).

2. Use the START parameters to execute Disc Integrity Check.
The syntax of the start command is: START,disc fd [,print fd] [,option]

Examples:

T .BG

OPT ET

LD DISCHECK
ST ,DSCI1:,CON:

ST ,DSCI:,PR: Normal program with read check
ST ,DSC1:,CON:,READCHECK Normal program with read check
ST ,DSC1:,CON:,;NOREADCHECK Normal program without read check
ST ,DSC1:,CON:,CLOSE Close files only

29-430 RO4 1/78 7-3

The Disc Integrity Check Utility Program provides the following options:

READCHECK: If READCHECK is specified, the program searches for bad sectors in the following manner. As
many sectors as can be accommodated in a buffer between UTOP and CTOP are read. If non-zero
status is returned, a scctor-by-sector read is performed until the bad sectors are located. Any bad
sectors are marked as allocated in the Bit Map and message (#15) is output. If zero status is
returned, the next group of sectors is read. This process continues until the entire disc is checked.

READCHECK is performed differently if the program is loaded into a small partition where the
buffer size is less than four sectors. In this situation, every nth sector in each cylinder is read,
where n is chosen for the particular device, until all the sectors are checked.

Default is READCHECK

NOREADCHECK: If this option is specified, no READCHECK is performed. When the DISC INTEGRITY CHECK
clears the Bit Map, all sectors previously flagged defective are freed. This option should never be
specified if a disc is known to have bad sectors.

Default is READCHECK

CLOSE: When this option is specified, all active file entries in the Directory are checked for non-zero
Read/Write counts. This means the file is still assigned.

Non-zero Read counts are set to zero and message (#10) is printed. Non-zero Write counts cause
message (#19) to be printed; the counts are not reset.

CAUTION
SINCE NO ADDITIONAL VALIDITY TESTS ARE PER-
FORMED WITH THIS OPTION, IT SHOULD BE USED IF FILES

WERE ASSIGNED FOR READ ONLY OR IF NO FILES WERE
ASSIGNED.

PROGRAM OUTPUT

I This Disc Integrity Check program produces twenty-two messages. One message informs the user the program is operating
and the remaining are error messages. The following table classifies the error messages into four categories.

TYPE MEANING MESSAGE #
Warning Informatory messages 10,11,14,15,18,19
File Errors A file is deleted or data is lost 7,8,9,10,16,17

i Directory Errors Possibility of many files lost 6,22
Operator Errors Operator intervention required 2,3,4,5,12,13,20,21

The following messages are output by the program:

1. DISCCHECK XX-YY

This message is initially printed on the Console and informs the user that the program is operational,
XX is the current revision level of Disc Integrity Check, Y'Y is the update level within the revision.

2. FD-ERR

This message is logged if an invalid file descriptor is issued in the START command.
3. FORM-ERR

This message is printed when the options in the START command do not conform to specifications.
4. BAD PACK-REINITIALIZE

This message is printed if the disc cannot be checked because of some I/O error. It is also printed if the
disc is not Write enabled.

74 29-430 RO5 2/79

5. DEVICE NOT DISC
This message is logged if the first file descriptor in the START command is not a disc descriptor.

6. BAD DIRECTORY-CHAIN BROKEN
This message is printed if the pointer to the next directory block is not valid. The directory chain is
closed off. This means that the directory entries further down the directory chain are now not
accessible to any program, and the files that they defined are lost. To obtain a list of the valid files, use
the OS FILES Command.

7. BAD FILENAME filename

This message is printed when a filename does not conform to the OS naming conventions. The file is
then deleted.

8. INVALID FILE TYPE, FILE filename

This message is printed when the file type ficld in the directory is not contiguous. chained or indexed.
The file is deleted.

9. FILE filename DELETED

This message is printed after a previously active directory entry is marked inactive. Causes for this
message include:

An invalid directory pointer

An invalid file type (sece message #8)

A bad file name (sce message #7)

A contiguous file with the last LBA (LLBA) lcss than the first LBA (FLBA)

An invalid block size (see message #17)

An invalid chained or indexed file link

Calculated number of blocks not equal to actual number of blocks in a chained file
(see message #106)

This message is output for an indexed file for the following reasons:
The index or data pointers are invalid

The calculated number of data blocks docs not agree with the actual number of data blocks
between FLBA and LLBA (sce message #16)

The FLBA is zero but the number of logical records is non-zero
If the last data pointer is not contained in the last index block
When a backward pointer does not point to the previous index block (see message #11)
10. POTENTIAL LOST DATA ON FILE filename
This message is printed when a file is closed by the program.
11. CHAIN BROKEN ON FILE filename
This message is printed under the following circumstances:
When examining a chained file, the Last Logical Block (LLBA) currently recorded in the
directory points to another LBA. This causes the chain to be closed off at the LLBA, and
the message to be printed. Any blocks of data following the LLBA are lost.
When examining an indexed file, the last forward pointer of an index block is not zero. This
causes the last forward pointer to be reset to zero, the first sector of the index block to be

rewritten, and the message to be printed.

This message is also printed when the backward pointer of an index block does not point to
the previous index block. The message is then followed by message (#9).

12. ASSIGN ERROR CODE XX

This message is logged if there is an error while trying to assign either LU 1 or LU 3 to their respective
file descriptors (xx = returned SVC 7 status).

29-430-R02 8/76 7-5

13.

17.

18.

20.

21.

10 ERROR ssdd

This message is logged if a non-zero status was received while trying to Write to LU 3. The program is
then paused (ss = device independent status, dd = device dependent status).

10 ERROR ssdd LBA = nnnann

This message is logged if a non-zero status is received while trying to Read or Write a sector on the disc
(ss =device independent status, dd = device dependent status, nnnnnn = hexadecimal logical block address).

BAD SECTOR, LBA = nnnnnn

This message is logged if a bad sector was found while doing a Read check. This sector is then marked
as allocated in the Bit Map {nnnnnn = hexadecimal logical block address).

INCORRECT BLOCK COUNT ON FILE filename

This message is printed when the calculated block count does not equal the actual number of data
blocks for a chained or indexed file. This message is followed by message (#9).

INVALID BLOCKSIZE OF ZIERO ON FILE filename

This message is printed when the blocksize field in the directory is zero for a chained or indexed file.
The file is deleted.

DATA POINTERS FOLLOWING LAST POINTER NOT ZERO, FILE filename

This message is logged when any index file data block pointers following the last calculated pointer are
non-zero. The pointers are then set to zero.

FILE filename ASSIGNED FOR WRITE, COUNTS NOT RESET

This message is generated when non-zero Write counts arc found during execution of the Close option.
Disc Integrity has not been restored and the program has to be re-executed without the Close option.

ILLEGAL OPTION COMP

This message is logged if OPTION COMP is in effect when the program is started.
ILLEGAL OPTION UT

This message is logged if OPTION ET is not in effect when the program is started.

DIRECTORY INCORRECT - REBUILD WITH MARK ON

There is an incosrect pointer in the volume descriptor or files have been allocated or deleted using
0S§/32, OS/16 MT2 RO3 or an earlier revision of OS/16. The directory should be rebuilt with the
NEW option of the MARK command, and Disc Integrity Check should be run again.

The following list contains examples of typical messages output by the program.

7-6

DISCCHECK XX-YY

BAD SECTOR, LBA = 6154

DATA POINTERS FOLLOWING LAST POINTER NOT ZERO, FILE AA.TSK
POTENTIAL LOST DATA ON FILE DLIB.OBJ

END OF TASK 0

DISCCHECK XX-YY
DEVICE NOT DISC
END OF TASK !

DISCCHECK XX-YY
BAD PACK - REINITIALIZE
END OF TASK 0

DISCCHECK XX-YY

INVALID FILE TYPE, FILE CUP.OUT

FILE CUP.OUT DELETED

POTENTIAL LOST DATA ON FILE TSTCHN.CHA
BAD FILENAME 4355525240202020.202020
FILE CURR@.DELETED

INCORRECT BLOCK COUNT ON FILE SCRT
FILE SCRT.DELETED

BAD DIRECTORY-CHAIN BROKEN

END OF TASK 0

29-430 RO5 2/79

CHAPTER 8
0S/16 BACKUP UTILITY

INTRODUCTION

The OS/16 Disc Backup- Utility provides a fast method of saving files. The files may be transferred from disc to disc. or
disc to magnetic tape or tape to disc. Either all files or selected files may be saved and restored. Optionally, the data on
the backup device may be verified.

The tape format of OS/16 BACKUP is nearly compatible with DISC COMPRESS. Therefore, tapes created with DISC
COMPRESS can be restored using BACKUP with the following exception:

0S/16 BACKUP does not handle multiple tape volumes created by COMPRESS. However, files can be sclectively restored
or verified provided that all requested files are contained on one tape, and that no specified file is continued on the next
tape.

FEATURES

The Disc Backup provides the facilities to:

— transfer files directly from one disc to another; the output disc serves as a backup of the original.

— transfer files from an input disc to an intermediate magnetic tape device; the magnetic tapes are used
as a backup.

— restore the data from the intermediate device to an output disc.
— verify data copied during the backup operation.
- verify data which has been copied during a previous execution of the program.
— selectively dump individual files from disc to disc or from disc to tape.
— selectively restore files from tape to disc.
— transfer files created under OS/32 to OS/16 media or vice versa.
— delete an already cxistent file on the output disc.
— enter additional starting arguments from a specified device or file.
— transfer all files created before a given date.
— transfer all files created after a given date.
Disc to Disc Backup
When transferring files from one disc to another, BACKUP writes the files onto the destination disc in a contiguous manner

as long as there are no bad sectors. This minimizes access time on the destination disc for indexed files, and maximizes the
amount of contiguous free space on the destination disc.

29-430 RO6 9/79 8-1

BACKUP can copy the files onto an empty destination disc or on a disc already containing some files.

Disc to Magnetic Tape Backup

The output tape created by BACKUP when copying files onto magnetic tape is in the following format.

0 81 161
E
VOLUME HEADER FILE INFORMATION DATA (o} FiB
BLOCK (FIB) F
Volume Header Contains the following fields:

— Disc volume (volume name of input disc).
Sequence number of tape, starting with number one.
- Number of blocks written on the preceding tape.
Size of buffer used to transfer data.

File Information Block The File Information Block provides information relative to the file. It precedes the
data of each file.

Data The disc block image of the data on the file.
EOF End of file mark.
EOT Handling An end of volume label is written at the end of cach tape volume. The format of this
label is:
FILEMARK EOV1 FILEMARK

This end of volume indicator allows Selective Restore to span multiple tapes. It is also used by BACKUP to ensure that all
records written to a tape are restored properly.

NOTE
If a very large buffer size is specified in the Start command, the
user must make certain that the tape has a sufficient length of
trailer following the EOT marker or the tape may run off the reel
in an attempt to write the last record.
SYSTEM REQUIREMENTS
The Disc Backup Utility requires:
— approximately 18KB of memory plus additional memory required for buffers.
— aconsole device.
— atleast one currently supported disc device and an additional disc or magnetic tape.
BACKUP uses any additional memory available up to CTOP to expand its buffers. Program execution times are a function
of memory, and decrease as memory increases.

OPERATING INSTRUCTIONS

The 0S/16 BACKUP operates as an Executive Task (E-TASK).

8-2 29-430 ROG 9/79

All discs used by the Disc Backup Utility must be marked on-line. It is possible for the input disc to be marked on-line pro-
tected, but this is not required. If the input disc is on-line protected, users may read from, but not write to, any files on the
volume. If the input disc is not protected, users may read from, and write to, all files on the volume. If Backup attempts
to copy a file which is currently assighed with write privileges, a message is output indicating the file cannot be copied. If
option SKIP is in effect, the program skips to the next file without pausing. If option SKIP is not in effect, the program
pauses after logging the message. At this point, the condition may be corrected by closing the file. When the program is
continued, it attempts to copy the same file.

The integrity of all files is assumed. To guarantee successful execution of the program, the output disc must be cither ini-
tialized prior to compression or, if files are to be restored in selective mode, the disc must be in a valid state. Initialization

ensures that any bad sectors on the disc are avoided during the program’s operation and that all file entries are removed
from the disc’s directory. The integrity of a disc is ensured by executing the Disc Integrity Check Utility.

NOTE

BACKUP does not save temporary or spool files. All filenames
are output to the list device as they are copied by BACKUP. In
this way, the operator is provided with a log of the files con-
tained on a given tape.

To execute BACKUP:
1. Load BACKUP as follows:
LD BACKUP
T .BG
OP ET

2. If an empty disc is used as an output device, it must be already initialized using the OS/16 INITIAL-
1ZE command.

3. Mark the disc used as input on-line, (optionally) protected using the OS MARK command, as follows:

"MARK fd:,ON
MARK fd:,ON,PROTECT

or
4, Mark the disc used as output on-line using the OS MARK command, as follows:
MARK fd:,ON

5. The OS START command is used to start the Disc Backup program, and to provide parameters
specifying the desired operations.

The following keywords are recognized as valid arguments in the START command and may be specified in any order,
separated by commas:

IN=FD: (required) Where FD is the input device to the program. This device is assigned for Sharable Read
Only to LU 1.

OUT=FD: (required) Where FD is the output device. The program assigns this device for Sharable Read/Write
to LU 2.

LIST=FD: (optional in START command but a required assignment) Where FD is the list device for filenames

and messages. The list device may be preassigned by the user to LU 7. If entered in the START com-
mand, the list device is assigned for Sharable Write Only to LU 7.

SIZE=n (optional) Where n is the buffer size in KB requested for Disc to Tape Operation. The default size is
12K. The nis a decimal number with optional decimal places (e.g., 16.50).

VERIFY (optional) Data on the input and output device is verified after all files have been copied. If the data
does not verify, the non-verifying records from both files are output to the list device along with an
error message. :

DELETE (optional) Any file already existing on the destination disc whose date of creation is older than that

(/NODATECHECK) of the corresponding file on the input device is deleted. If NODATECHECK is specified, the file on
the destination disc is deleted regardless of the date of creation. The list of files copied indicates if
a file was replaced.

29-430 RO6 9/79 8-3

COMMAND={d

Vo

ABORT

SINCE=
mmm/dd/yy
(dd/mmm/yy)

ARCHIVE=
mmm/dd/yy
(dd/mmm/yy)

SKIP

SELECT=FD:

Where fd is the input device from which additional arguments are to be taken. Command may appear
anywhere in the START argument list. After processing all the START arguments, additional argu-
ments are read from the fd. The arguments are the same as in the START argument list and are proc-
essed until an END is encountered.

(optional) Data on the input and output device is verified only. No copy operation is performed.
Any records that do not verify are output to the list device.

(optional) When this keyword is specified in the START command, the program terminates it non-
ZERO status is returned following an /O operation or when attempting to allocatc or assign a file. If
ABORT is not specified, the task PAUSEs. (Default = PAUSE)

(optional) Where (month) mmm is alphabetic, (day) dd and (year) yy are decimal. All files created
on or after the date given are transferred. (All system files are transferred regardless of the date

given.)

(optional) Where mmm, dd and yy are as defined above. All files created on or before the date given
are transferred. (All system files are transferred regardless of the date given.)

(optional) When this option is specified in the START command, any files which cannot be success-
fully assigned on the input disc, or allocated and assigned on the output disc by BACKUP arc not
transferred. The files are identified in an error message: the program skips to the next file without
pausing. If any files were skipped during the copy operation, a message is generated and verify is not
performed. (Default = PAUSE)

(optional) This option can be used to sclectively copy or verify files from disc to disc, or to sclectively
transfer or verify files from disc to tape: and to restore or verify them from tape to disc. FD is the

file descriptor from which filenames to be restored or verified can be entered, BACKUP assigns this
FD to LU 5. The SELECT list is terminated by a */ or ./ record. As much memory as is available
after allocation of buffers will be used for the SELECT list. A minimum of 40 entrics will always be
available.

The format used in specifying filenames is as follows:

filename . ext acent
or or or

The filename, ext and accnt fields are optional. The accnt field may specify an account number, or the characters S or -
only. If the accnt number field is omitted, system files arc assumed (account number zero).

The filename and ext field may contain a - to indicate a match on any filename or extension. For example:

A.B/S
or
A.B specifies that system file A.B is to be copied.
A.- specifies that all system files with filename A, any extension, are to be copied.
-.B specifies that all system files with any filename and extension B are to be copied.

Private user files may be backed up by specifying the account number. For example:

A.B/5 specifies that file A.B of account 5 is to be copied.

-5 specifies that all files in account number 5 are to be copied.
or

-/5

Filenames are read until either the maximum number of files that can be selected in one operation has been reached, or an
[ind of Block indicator (/* or ./) has been found. After all filenames have been entered, BACKUP starts the requested

operation.

When files are to be selectively restored from magnetic tape to disc, the program may be started with a tape other than
number 1. In this manner any tapes prior to the tape containing the first file to be restored or verified need not be passed.
Any succeeding tapes, however, must be in sequence.

29-430 RO6 9/79

When started, Backup prints the message 0S/16 BACKUP XX-YY and proceeds with the requested operation. If any errors
or abnormal conditions occur, a message is logged on the System Console and printed on the list device and the appropriate
action is taken. A list of all error messages and resulting actions is found at the end of this document. Upon successtul

completion, the following message is printed:

END OF TASK 0

EXAMPLES:

Examples of START command for DISC to DISC operation:

START ,IN=DSC1:,0UT=DSC2:,LIST=PR:

START ,IN=DSC2:,0UT=DSCI:,VERIFY,A,LIST=PR:

ASSIGN 7,PR:
START ,0UT=DSCI1:,IN=DSC2:,VE

preassign List Device
copy DSC2 to DSC1, verify

copy DSCI1 to DSC2, no options

copy DSC2 to DSC1, verify, stop on errors

Examples of START command for DISC to MAGNETIC TAPE and MAGNETIC TAPE to DISC operation:

START ,IN=DSC1:,0UT=MAG!:,LIST=PR: copy disc to tape, no options

START ,IN=DSC1:,0UT=MAGI:,LIST=PR:,S81Z=4.5,VE,A

START ,VE,IN=DSC1:,0UT=MAG1:,LIST=PR: copy disc to tape, verify
START ,IN=MAGI1:,0UT=DSC2:,LIST=PR:,VE restore, verify

START ,IN=MAGI1:,0UT=DSC2:,LIST=PR:,A,VE restore, verify, abort
START ,IN=MAG!:,0UT=DSC2:,LIST=PR: restore

START ,IN=MAGI1:,0UT=DSC2:,LI=PR:,VO

START ,IN=DSC5:,0UT=MAG1:,L=PR:,SEL=CON:

START ,IN=DSC1:,0UT=MAG]1:,L=PR:,VO,SEL=CON:

copy files

read filenames from CON:

copy disc to tape size=4.5KB, Verify, stop on errors

verify files between MAG1: and DSC2: but do not

selectively restore files from DSC5: to MAGI1:,

selectively verify without copy files between DSC1:

and MAG]1:, read filenames from CON:

MESSAGES OUTPUT BY THE PROGRAM

MESSAGE

1. 0S/16 BACKUP XX-YY

2. OPTION VERIFY

3. PLEASE MOUNT TAPE
NUMBER XX

4. INVALID TAPE VOLUME
XXXX, EXPECTING XXXX

5. TAPE OUT OF SEQUENCE,
SEQU=XX

6. INCORRECT NUMBER OF
RECORDS TRANSFERRED

29-430 RO6 9/79

MEANING

The program is operational. XX is the program’s
revision level. YY is the update level within the
revision.

Program started verify routine.

This message is generated if the end of a tape is reached
before all files have been copied or verified; or at the
start of the verify routine when the tape currently
mounted is not the first tape.

For multi-volume tapes, when the currently mounted
tape has not been created from the same input disc
as the previous tape.

For multi-volume tape to disc operation where XX is
the sequence number found on the volume label of the
currently mounted tape; e.g., if the first tape mounted
is not tape number one during a normal restore opera-
tion.

For multi-volume tape to disc operation, when the num-
ber of data blocks written on the previous tape during
disc to tape operation does not equal the number of
data blocks read during tape to disc operation.

PROGRAM
ACTION

continue

continue

pause

pause

pause

abort

8-5

16.

17.

18.

19.

20.

21.

23.

24,

25.

26.

MARK INPUT DISC ON
MARK OUTPUT DISC ON
FD-ERR

FORM-ERR

LU XX UNASSIGNED
INVALID DEVICE CODE
INPUT DISC CONTAINS
NO FILES

I/0 ERROR LU=XX

STATUS=YY ON FD:
fn.ext

INVALID FILE TYPE,
FILE fn
FILE fn NOT TRANSFERRED

ASSIGN(DELETE)ERROR
FILE fn:message

SYNTAX ERROR fn

INSUFFICIENT MEMORY

SELECTIVE RESTORE:
MAXIMUM ENTRIES=XXXX

SELECTIVE VERIFY
MAXIMUM ENTRIES=XXXX

ENTER FILENAMES TO
BE COPIED

ENTER FILENAMES TO
BE VERIFIED

SELECTED FILES
EXCEED MAXIMUM

SELECTED FILES NOT
COPIED

fn

fn

SELECTED FILES NOT
VERIFIED

fn

fn

SKIP IN EFFECT
VERIFY IGNORED

8-6

Input disc has not been marked ON.

Qutput disc is OFFLINE.

Invalid file descriptor in START command.

Syntax crror in START command.

Input, Output or List device have not been assigned.

Device code is below 48, or magnetic tape is specified
as both Input and Output device.

No directory found on Input disc.

An I/O Error is encountered during an SVC 1 Read
or Write operation on any Input or OQutput device
or file. XX is the logical unit assigned at the time of
the 1/0, YY is the error status.

File type not contiguous or indexed.

Bad status encountered while:

a) trying to assign a device (START command).

b) attemplting to allocate, delcte, or assign a file.
“Message™ specifies the type of error depending on
returned SVC 7 status.

Invalid syntax in filename for Selective Restore

Not enough memory available. Reload the program
into a larger segment and restart.

Mode is sclective restore. XXXX is the maximum
number of filenames that can be entered.

Mode is selective verify only. XXXX is the maximum
number of filenames that can be entered.

Program request for filenames that are to be restored.
If LU 5 is assigned to the console, a prompt is output.

Program request for filenames that are to be verified
only. If LU 5 is assigned to the console, a prompt is
output.

The maximum number of files allowed during Selective
Restore/verify has been exceeded.

This message is output after a Selective Restore opera-
tion if any of the specified files have not been found
on the disc or tape. All filenames not processed are
listed following this message.

This message is output after a Selective Verify Opera-
tion if any of the specified files have not been found
on the disc or tape. The filenames follow this message.

Files were skipped during the copy operation. Verify
cannot be performed.

pause
pause
abort
abort
pause

abort

abort

pause (abort if A
option)

continue

abort

pausc (abort if A
option: continue if
SKIP option)
continue

abort

continue

continue

wait for input on LU 5

wait for input on LU 5

continue with requested

operation

continue

continue

End of Task

29-430 RO6 9/79

27.

29.

30.

31.

NON-VERIFY:FILE vn
LOGICAL UNIT X:
RECORD NUMBER XXXX

DATE-ERR

FILE REPLACED
(mmm/dd/yy)

DEVICE NOT AVAILABLE
FOR EXCLUSIVE USE: FD

SET DATE AND TIME

29-430 RO6 9/79

Data in file fn does not verity.

Date given is invalid.

Informative message output after the name of any

file that was deleted and replaced. If NODATECHECK
is not specified, the date of creation of the replaced

file is also output.

Device fd cannot be assigned duc to a conflict in access
privileges.

Informative message output if system supports clock,
and date and time have not already been set.

continue to verify
next record if chained
or indexed file, if con-
tiguous or indexed
file, or verify next file
if contiguous file
abort

continue

pause

pause

8-7/8-8

CHAPTER 9
OUTPUT SPOOLING

FUNCTIONAL DESCRIPTION

Output spooling allows more than one task to be assigned to a print device simultaneously. Data to be printed is written
to disc files where it is then copied by the Spooler to the available printer on a first-in/first-out basis.

To use the output Spooler, the user assigns any logical units to be printed to the pscudo print device defined by the
PSEUDO sysgen statement. As soon as the logical unit is closed, the Spooler automatically prints the results. Printing may
be delayed because of a backlog to the printer.

There is no limit to the number of tasks or logical units that may be assigned to the pseudo print device. After the user
makes a logical unit assignment, the following internally occurs:

e The operating system automatically intercepts all assignments to the pseudo printer and allocates an indexed file,
called a Spool file, on the Spool volume.

e Subsequent write calls cause data to be written to this file and not to the printer. The Spooler supports both image
and formatted writes.

When the LU assigned to the Spool file is closed, the file is placed into the Spooler’s print queue. The print queue is main-
tained as a file on the spool volume. If there is an entry on the print queue, the output Spooler begins printing and stays
active as long as there is something on the queue.

PRINT Command

The operator command PRINT can be used to invoke the Spooler to print a disc file.

If the user desires multiple copies of a file, data may be written to any disc file and a subsequent PRINT command may be
issued to print multiple copies. .

The user must ensure that sufficient disc space is available to accommodate output spooling. The user task is responsible
for handling EOM status while writing to spool files within its own I/O error recovery routines.

A header page with the following information precedes the printing of each spool file:

user-id or filename
user account number
time of day

date

VOLUME Command and the SPOOL Sysgen Statement

The disc volume (spool volume) used for the queuc file and the spool files themselves may be specified with the VOLUME
command or the SPOOL sysgen statement. The queue file is automatically created when execution of the Spooler task
begins, unless a quecue file already resides on the spool volume. The Spooler will use a pre-existing queue file, thus per-
mitting interruption of Spooler cxecution without loss of print files.

Only print files submitted to the Spooler while it is executing are queued and subsequently printed. Therefore, it is essen-
tial that the system console operator load and initiate execution of the Spooler before any users submit print files. If the
Spooler is not executing, no action is taken on print files submitted with the PRINT command and an error message is
displayed on the terminal indicating that the Spooler was not able to service the PRINT request. The PRINT command
can be reentered after the Spooler begins executing.

Files submitted for printing by means of assignment to the pseudo device will not be automatically printed if the files are
closed when the Spooler is not executing. Status is returned to the program closing the file, indicating that an error has
occurred. The file can then be resubmitted for printing using the PRINT command when the Spooler is executing.

29-430 ROS 2/79 9-1

OPERATING INSTRUCTIONS
The Spooler is provided with the OS/16 MT2 Package. It must be loaded with the task-id SPOOLER. Example:
LOAD SPOOLER (i.e., LOAD SPOOLER,SPOOLER.TSK)

Starting the Spooler

The START command to the SPOOLER task indicates which print device is to be assigned exclusively for the spooling
operation. The format of the START command is:

START,PR=fd.VOL=fd [,LETTER=fd|[,M=n]
where:
PR identifies the print device on which the print files should be listed.

VOL identifies the spool volume specified in the most recent VOLUME command or the spool
volume specified in the SPOOL sysgen statement if the name of the spool volume had not
been modified with a VOLUME command.

LETTER identifies the volume that contains the file LETTER.IN. This file contains information
necessary for creatirg the large letters on cach listing’s heading. This file is supplied with
0S/16. 1f LETTER is not specified, the large letters are not used on the listing headers:
instead, the heading is printed using normal size letters.

M specifies the number of message buffers that the Spooler should use to communicate with
the command processor and file manager. The number of message buffers required depends
upon the spooling activity at the specific installation. There should be a message buffer for
each Spooler request (PRINT command or closing of a pseudo print device) that can occur
simnultaneously. At lcast two buffers should be used: the default is four.

The PR and VOL parameters are required; LETTER and M are optional. All of the keywords can be abbreviated; only the
first letter has to be used, ¢.g., V=MT16:

Examples of the START sequence:

LO SPOOLER load the spooler task
TA SPOOLER set the current task

ST,PR=PR:,VOL=MTI16:
where:
PR: is the print device.
MT16: is the spool volume.
Small letters should be used for list headings and four message buffers should be used.

ST,PR=PR:,VOL=MT16:,LETTER=MT16:
where:
PR: is the print device.
MT16: is the spool volume.
Large letters should be used for list headings and four message buffers should be used.

ST,PR=PR:,VOL=MT16:,LETTER=MT16:,M=2
where:
PR: is the print device.
MT16: is the spool voiume.
Large letters should be used for list headings and two message buffers should be used.
NOTE

The Spooler assigns the print device for exclusive access (EWO)
for the duration of its execution.

The file currently being printed may be aborted by passing the Spooler and closing the logical unit assigned to the input
file (LU 1). Execution can then be resumed with a CONTINUE command.

Deleting a file queued for printing aborts printing of a file that is queued but not being printed. It is also possible to
restart the printing of the file by:

o pausing the spooler task,
e rewinding the input file (LU !), and

e resuming execution with the CONTINUE command.

9-2 29-430 RO5 2/79

ERROR MESSAGES
The errors reported by the Spooler are:
ILLEGAL OPTION UT

Cause: OPTION ET was not specified prior to starting the Spooler.
User Action: Restart the Spooler after specifying OPTION ET.

ILLEGAL OPTION COMP

Cause: OPTION COMP was spcecified prior to starting the Spooler.
User Action: Restart the Spooler without specifying OPTION COMP.

INSUFFICIENT STORAGE

Cause: The partition that the Spooler was loaded in was not large enough.
User Action: Load the Spooler in a larger partition. Use fewer message buffers on the list heading. Each mes-
sage buffer requires an additional 78 bytes. Using large letters requires an additional 256 bytes.

PRINT
ASSIGN ERROR ON <(LETTER } FILL
QUEUE

Cause: The print device, letter file, or Spool queue file could not be successfully assigned.
User Action: Enter the correct parameters on the START command and reexecute the Spooler.

ILLEGL
PR
START COMMAND ERROR,KEYWORD=4 VOL
‘ LETTER
M

Cause: The value entered for the keyword identified in the message was incorrect. If the word ILLEGL
is displayed in the message, an invalid keyword was specified on the START command.

User Action: Correct the keyword in error, ensuring that it is not specified more than once in the START com-
mand, and reexecute the Spooler.

SPOOLER QUEUE OVERFLOW

Cause: A file was submitted to the Spooler for printing with a PRINT command or a file assigned to the
pseudo print device was closed when there were no entries available in the queue.

User Action: Wait for the Spooler to print a few files, thereby creating available entries in its queue, before sub-
mitting more print files. The file that was being submitted when the error occurred must be
resubmitted for printing with a PRINT command.

I/O ERROR ON voln:filename.ext

Cause: An 1/O error occurred when attempting to read from or write to the file identified in the message.
User Action: Ensure that all of the parameters entered on the START command are correct. If they are not,
correct the START command and reexecute the Spooler. If the file in error is the print device,
the Spooler automatically pauses, awaiting correction of the problem. The printer may be out of
paper or may have been taken off line for some rcason during a write operation. Spooler exccu-
tion can be resumed with a CONTINUE command after the error is corrected. Execution can also

be aborted with a CANCEL command.

29-430 RO5 2/79 9.3

CONFIGURATION REQUIREMENTS
For operation, the Spooler requires:
16-bit Processor
Any OS supported disc device(s)

Any OS supported print device .))
3.25kb of memory above the OS size, plus an optional 0.25kb buffer if the large headings are desired

0S/16 MT?2 system with at least one foreground partition
Example:

The following example sequence establishes the Spooler for operation:

*LD TET Load the task establisher

*TA .BG Set the current task

*AS 5,CON::AS 7,CON: Assign the console

*AL TS,IN;AS 4, TS Allocate and assign scratch file

*ST Start TET

* BG>ES TA Establish as a task

* BG > BI E000 Set the bias

*BG >OPTET Make it an E-task

* BG > GET300 Leave room for the letter and message buffers

* BG >INCLUDE SPOOLER Read Spooler object

* BG >BUI TA,SPOOLER Build the task

*.BG >MAP CON: Take a map

* BG >END End the establishment
* BG:END OF TASK 0

94 29-430 ROS5 2/79

CHAPTER 10
USING UTILITY SOFTWARE

INTRODUCTION

A complete software system is composed of several parts. These include the Operating System, Language Processors such
as CAL and FORTRAN, and Utility Programs.

This guide describes the most commonly used utility programs that arc capable of running in an OS/16 MT2 environment.
In some cases, there cxists an overlap between the functions of one utility program and those of another. This presents the
user with a choice of which utility program to use when confronted with a given problem. This guide attempts to make this
choice somewhat more simple, by describing, in brief, each utility program and its intended uses. The utilities described in
this chapter can be run in the Background or established using TET/16 and run in a Foreground environment.

The user is referred to the document listed with cach utility description for a more detailed discussion of that utility.
COMPATIBILITY BETWEEN OS/16MT2 AND EXISTING UTILITIES

0S/16 MT2 is upwards compatible with earlier 16-bit operating systems for common SVC functions, with the exception of
SVC 1 random 1/O and SVC 5 fetch overlay calls. All utilitics and user programs designed prior to OS/16 MT2 and all
compiled FORTRAN programs must be run with ‘OPTION COMPATIBLE’ set, until such time as they are modificd to use
the new form of the SVC parameter blocks. Sce Appendix 11.

TEXT MANIPULATION UTILITIES

Text manipulation utilities include text editors, copicers, etc. These programs are ASCll-oriented, but some can handle
binary text. The programs discussed in this section are: OS EDIT, Source Updater, and OS COPY.

OS EDIT AND 0S/16 EDIT I

OS EDIT, program number 03-063, is a general-purpose ASCII-oriented text editor. It is principally designed for interactive
use. but has some facilities allowing it to be used in a batch environment if necessary. OS EDIT is line- and
character-oriented. It has powerful facilitics for pattern-matching and string-replacement. OS/16 EDIT, program number I
03-169, is a disc based version of the editor.

OS EDIT may be used to edit any ASCII text file. It is not restricted to any particular text format; therefore it can be used
to edit CAL or FORTRAN programs, or any other sort of text. Refer to OS EDIT User’s Manual, Publication Number
29-373 or OS/16 EDIT User’s Manual, Publication Number 29-637.

An example of OS EDIT’s use is illustrated in Figure 10-1.

*TASK.BG
*LD OSEDIT *LOAD THE EDITOR
*ASSIGN 1, INPUT ;*ASSIGN INPUT FILE

*ASSIGN 2, OUTPUT
*ASSIGN 3, CON:
*ASSIGN 4, NULL:
*ASSIGN 5, CON:
*ASSIGN 6, CON:

*START

OS EDIT

> CR

> NOW IS THE TIME

> FOR ALL MEN

>TO COME TO THE AYD
> OF THE PARTY

> [*

>PR2

2 FOR ALL MEN

> 2.1 AND WOMEN

>PR 23

2 FOR ALL MEN

2.10 AND WOMEN

3 TO COME TO THE AYD
> CH /AYD/AID/

>ML1

> PL /ALL MEN/

29-430 RO5 2/79

;#*AND OUTPUT FILE

*ASSIGN LIST DEVICE

;*NO BATCH MODE

*ASSIGN COMMAND DEVICE
:*ASSIGN ERROR MESSAGE DEVICE

Create a file

Terminate text input
Print line 2

Insert a line
Print lines 2 to 3

Change AYD to AID
Move to top of buffer
Print line containing ALL MEN

10-1

2 FOR ALL MEN

> CH /MEN/GOOD MEN/ Change MEN to GOOD MEN
>PR Print all text

1 NOW IS THE TIME

2 FOR ALL GOOD MEN

2.10 AND WOMEN

3. TO COME TO THE AID

4 OF THE PARTY.

> EN Output edit buffer and end task

END OF TASK 0
*

Figure 10-1. OS EDIT Example

Source Updater

The Source Updater, 03-090, is a special-purpose text editor and updater designed specifically for use with CAL source
files. It is principally batch-oriented and is designed so that it can be run unattended, although it can be used interactively
if necessary. '

Since the Source Updater is specifically CAL-oriented, it can make use of the sequence numbers in a CAL source file
for efficient file search. In addition, commands are provided for verification and listing of source files.

Refer to the Source Updater Users Manual, Publication Number 29-630.

An example of this program’s use is illustrated in Figure 10-2.

*LDBG SOURCEUP ;*LOAD SOURCE UPDATER

*TASK .BG

*ASSIGN 3,PR: ;*ASSIGN LIST DEVICE

*ASSIGN 5,CON: ;¥*ASSIGN COMMAND INPUT DEVICE
*START

SOURCE UPDATER
>UPDATE CR:,OLDFILE.CAL,NEWFILE.CAL

(This command causes the change deck in device CR: to be applied to the old source file in file OLDFILE.CAL, with the
output going to NEWFILE.CAL. The change deck might include the following statements:)

INSERT ABC01450 Insert following sequence ABC01450
LABO1 LHI R15,X203'
STH R15ERRCODE

/*
DELETE ABC01680, ABC01695 Delete some statements
MODIFY ABC02300 Modify a statement
LE FRO,PI
SELECT Insert or modify as required
ATL R12,SYSQUE ABC03420
STH RS5,TEMP ABC03530
SER FRO,FR2 ABCO05565
LAB3 EQU * ABC06780
/*
ENDUP End of update

(Now control reverts to the command device)

EXCEPTION OLDFILE.CAL,NEWFILE.CAL
REWIND NEWFILE.CAL

COPY NEWFILE.CAL,NEWFILE.BAK
VERIFY NEWFILE.CAL,NEWFILE.BAK
END

Figure 10-2. Source Updater Example

10-2 29-430 RO5 2/79

The previous statements perform the following actions:

Generate a listing of all differences between the old and new files;
Rewind the new file and copy it to a backup file;

Compare both files to make sure they are the same;

End processing.

e

0S COPY

0S COPY, program number 03-056, is a utility program that provides file duplication capabilities. It is able to copy both
ASCII and binary files of fixed-length records. When using cards or magnetic tape media, it can copy entire “volumes” of
files with one command. (Such a “volume”, not to be confused with the OS8/16 direct-access volume, is a file containing a
sequence of files separated by file marks.)

Refer to OS COPY Program Description, Publication Number 03-050A15. 0S COPY is a batch-oriented program, but can
be used interactively if necessary. An example of its use is illustrated in Figure 10-3.

*LOAD OSCOPY #LOAD COPIER

*TASK OSCOPY

*ASSIGN 1,MAG1: *ASSIGN INPUT DEVICE
*ASSIGN 2,MAG2: #AND OUTPUT DEVICE
*#*ASSIGN 3,PR: #LIST DEVICE

*ASSIGN 5,CON: :#*AND COMMAND INPUT DEVICE
*START

0OS COPY

> FIXD Sct for fixed-length records

> CPYB PROGA Copy program PROGA (binary)
>CPYB PROGB,,ALL Copy program PROGB and all succeeding
>RWD 1 programs; rewind input and output
>RWD 2

> VERB PROGA Verify PROGA

> VERB PROGB,,ALL Verify remainder of tapce

> END End of task

END OF TASK 0
%

Figure 10-3. OSCOPY Example

Copying functions may be performed by several programs other than the OS COPY program. The OS/16 Library Loader
can copy binary files (in object format only) on any medium;however, it does not contain verification capabilities. The OS
Source Updater and OS EDIT can copy ASCII files on any medium; however, the OS Source Updater is restricted to 80
byte records, and the OS EDIT program has no verification capabilities.

LOADERS

Under the category of loaders come all those programs that process the output of language Processors so that this output
can be executed, cither at the current time or at some later time. Programs discussed in this section are the 0S/16 Library
Loader, TET/16, the OS/16 MT2 Direct Access Boot Loader and the Boot Puncher.

0S/16 Library Loader

The 0S/16 Library Loader, program number 03-030, is a linking loader with library manipulation capabilities. It is able to
build load modules for later execution under OS/16. It has a full complement of commands for building and modifying
object-format subroutine libraries. In addition, it is able to copy object-format programs using any available media under
0s/16.

Refer to 16-Bit Loader Description Manual, Publication Number 28-321. As a load module builder, it has full linking and
library-editing capabilities. It builds absolute load modules only, but can handle either absolute or relocatable input text.

When building a load module, leave room for the UDL between the start of the partition and the start of the module.
Examples of the library loader’s use are illustrated in Figures 104 and 10-5.

29-430 ROS 2/79 10-3

*LOAD LIBLDR Load the Library Loader
*TASK LIBLDR

*ASSIGN 3,PR: Assign list device

*ASSIGN 5,CON: Command input

*ASSIGN 1,PROGRAM.OBJ Program input

*ASSIGN 2,SUBR.OBIJ Subroutine to be linked
*ASSIGN 4,LIBRARY.OB) Subroutine Library to be edited
*ASSIGN 6,PROGRAM.OUT Load module output

*START Start it

*LOADER-R06

>0uUT 6 Define load module output LU
>BI 8024 Set the load module origin
>LOAD 1 Now ““load” the program
>LINK 2 Link in the subroutine

>EDIT 4 : and edit the library

> XouT Close the output

>MAP 3 and write the load map to the printer
> END End of task

END OF TASK 0
£

Figure 10-4. OS/16 Library Loader Module Building Example

Figure 10-4 shows the use of the OS/16 Library Loader as a load module builder. Figure 10-5 shows its use for library
manipulation.

*LOAD LIBLDR Load Library Loader

*TASK LIBLDR

*ASSIGN 5,CON: Assign command input

*ASSIGN 3,PR: and listing

*ASSIGN 1,0LDLIB.OBIJ Old master

*ASSIGN 2,SUB12.0BJ New subroutine

*ASSIGN 4,NEWLIB.OBJ and new master

*START and start

LOADER-R06

>DUPE 104 SUB12 Dupe from beginning to new subroutine
>COPY 204 SUB12 Now copy subroutine from change file
>FIND 1 SUBI13 Find the next program on the input file
>DUPE 104 and dupe the rest of the file

>RW 4 Rewind output

>TABLE 403 Dump a table-of-contents to the printer
>END End of task

END OF TASK 0
&

Figure 10-5. OS/16 Library Loader Library Maintenance Example

TET/16

The OS/16 MT2 Task Establisher (TET/16) performs task building functions for OS/16 MT2. Unlike the OS/16 object
loaders, which load programs in object format, the memory image loader loads programs in memory image format, with
data in a Loader Information Block prefixed to the image file to pass information to the loader. TET/16 builds these image
files. Refer to Chapter 5 of this manual.

TET/16 has facilities for handling overlays and Library Files, as well as those for handling ordinary task building. It can be
used in both interactive and batch modes of operation. A typical example of the use of TET/16 to establish a FORTRAN
task is illustrated in Figure 10-6.

104 29-430 RO2 8/76

*OP NOCOMP

*LOAD TET

*TASK TET

*ASSIGN 5,CON:

*ASSIGN 7,CON:

*ASSIGN 4,TET.SCR
*ASSIGN 1,PROGRAM.OBJ
*ASSIGN 2,PROGRAM.TSK
*LOAD TET

*START

TET/16 00-00
>ESTABLISH TASK

>OP COMP

>BI 8500

>INCLUDE

>INCLUDE SUBR.OBJ
>RESOLVE FTNRTL,E000
>EDIT SUBLIB.OBJ
>PRIORITY 200,50

>GET 1400

>BUILD TASK

>MAP PR:

;*ENSURE NOT IN ‘COMPATIBLE’ MODE
*LOAD TET

;*ASSIGN COMMAND INPUT
;*ASSIGN ERROR MESSAGE OUTPUT
;*ASSIGN SCRATCH FILE

*ASSIGN OBJECT FILE

*ASSIGN TASK IMAGE OUTPUT FILE
*AND START IT

Set TET to establish a task

Set option compatible

Set start of partition

Include PROGRAM.OBJ (on LU 1)

Link in subroutine on file SUBR.OBJ

Resolve references to the Resident Library at EO0O
Get further subroutines from file SUBLIB.OBJ
Set running and max priority for task

Give the task extra memory

Put the task image output on file PROGRAM.TSK
Put a map of the established task on PR:

>END ’ End of task
END OF TASK 0
®

Figure 10-6. FORTRAN Task Example

0S/16 Direct Access Boot Loader

The OS/16 Direct Access Boot Loader is a program that allows an established copy of 0S/16 MT2 to be boot loaded from
disc. Its use is fully described in Chapter 2 of this manual, Loading the OS.

0S/16 Boot Puncher
The OS/16 Boot Puncher, program number 03-108, is used to create a bootstrap tape of a program which may be loaded
by the 50 Sequence. Its input is an object format module of the program. Qutput is one record containing a memory image

of the program. This program is used to create bootstrap tapes of the 0OS/16 Direct Access Boot Loader. An example of its
use is given in Figure 10-7. Refer to Appendix 13 for a description of boot puncher error messages.

*LDBG BPCH16 LOAD BOOT PUNCHER INTO BACKGROUND
*TA .BG SET TASK TO BACKGROUND
*ST,BOOT16.0BJ,PTRP: START IN=BOOT16.0BJ,OUT=PTRP:

0S/16 MT2 BOOTSTRAP PUNCHER 00-00

END OF TASK 0

Figure 10-7. OS/16 Boot Puncher Example

SYSTEM MAINTENANCE UTILITIES

Under this heading fall all utility programs whose principal function is to act as extensions of the operating system itsclf,
and to perform tasks closely related with the operating system.

0S/16 Configuration Utility Program (CUP/16)
This program is used to perform tailored System Generation for the OS/16 MT2 Operating System.

The operation of this program is fully discussed in the 0S/16 MT2 System Planning and Configuration Manual.

29-430 RO5 2/79 10-5

Disc Integrity Check

0S/16 maintains directories for each Disc Volume on the disc itself. In case of a system crash or system reload when Disc
Files are open, these directories may be left in a faulty state. This condition can result in the inability to delete certain
files, to assign certain files, or to release disc space which is no longer needed.

Disc Integrity Check, Program Number 03-080, is designed to examine an off-line Disc Volume and to correct any error
conditions resulting from a system crash. It provides warning messages when a possible loss of data on files may have
occurred as a result of the crash. It is capable of deleting any Disc Files that have erroneous directory entries or physical
record chains that make them unusable. Refer to Disc Integrity Check Description, Chapter 7. An example of its use is-
illustrated in Figure 10-8.

*LD DISCHECK #LOAD DISC CHECK IN BACKGROUND
*MARK DSC1:,OFF *MARK THE DISC OFFLINE

*TASK .BG .

*OPTIONS ET *MAKE IT AN E-TASK

*START ,DSC1:,CON: *STARTIT

POTENTIAL LOST DATA ON FILE FRED.XYZ
POTENTIAL LOST DATA ON FILE IRVING.PXT
END OF TASK 0

%

Figure 10-8. Disc Integrity Check Example

BACKUP

BACKUP/16, program number 03-239, may be used to create a backup of a Disc Volume. It may be used to compact
sector allocation into a contiguous area on a Disc Volume, thus maximizing the largest contiguous free space on the
volume. Refer to Chapter 8. Figure 10-9 illustrates the use of BACKUP to dump the contents of a Disc Volume to

Magnetic Tape and to restore it to the same volume.

*TA .BG

*LD BACKUP LOAD BACKUP

*OP ET MAKE IT AN E-TASK

*MA DSC1:,0ON,PROT MARK DISC ON WITH PROTECT

*ST, IN=DSC1: ,0UT=MAGI!: ,LIST=PR: ,VERIFY
END OF TASK 0

To restore:
*TA .BG
*OP ET MAKE IT AN E-TASK
*LLD BACKUP LOAD BACKUP
*MA DSCI1:,0FF MARK OFF DISC
*IN DSC1:,PACK,RE INITIALIZE PACK
*MA DSC1:, ON

*ST, IN=MAG1: ,0UT=DSC1: ,LIST=PR: ,VERIFY
END OF TASK 0

Figure 10-9. BACKUP Example

PROGRAM MAINTENANCE UTILITIES

AIDS/16

AIDS/ 16 is an interactive debugging utility program designed to assist the user in debugging tasks in an OS/16 MT2
environment. It has powerful facilities for monitoring the execution of a program, either in real-time or in interpretive
mode, and allows program modifications to be easily made at run time. Do not run more than one program with AIDS/16

at any one _time;. AIDS/16 may be used only in the background on extended memory systems. Refer to AIDS/16 User’s
Guide, Publication Number B29-571. An example is illustrated in Figure 10-10.

10-6 29-430 RO6 9/79

-*TASK .BG - - -
*LD BUGGY, 8000
*LD AIDS,A100
*ASSIGN 5,CON:
*START A100
AIDS/16 00-00
>BI 8000
>0A 1302
1302R C8300045 LHI 3,45
>RH C850
>IX 470
>IX 1350
>GO 44
BRK: 0470R
>0X A
GP (A) 0100
>GO
BRK: 1350R
>1P 2040
>GO
PRO: 108AR 2040 425A
BRK: 0470R
>ZX
>ZP
>GO
END OF TASK 0
#*

LANGUAGE PROCESSORS

The following language Processors are available under OS/16 MT2:

CAL 03-066
CAL/16 23-101
memory-based 03-101F01
disc-based 03-101F02
CAL MACRO 03-084
FORTRAN V 03-060
FORTRAN IV 03-054
BASIC 03-055

BASIC LEVEL II 03-105

CAL and CAL/16

CAL, The Common Assembly Language Assembler, provides the capability to assemble a program for both the 32-bit and
the 16-bit line of Processors under OS/16. It has a full complement of user features, including conditional assembly, page
control, arithmetic expressions, and support of COMMON. It contains over 70 pseudo-ops. Refer to Common Assembler

Language User’s Manual, Publication Number 29-375.

CAL/16 is a subset of CAL. It is designed for smaller memory environments and supports programs for the 16-bit machines
only. Operation of CAL and CAL/16 are the same, except that CAL must be run with OPTION COMP. Refer to Chapter 6

*LOAD TASK TO BE DEBUGGED
*LOAD OS AIDS IN UPPER MEMORY
:*ASSIGN COMMAND INPUT DEVICE
*START AIDS/16

Set relocatable bias
Open location 1302 relocatable

Change the contents of that halfword
Insert Breakpoint, display

Insert Breakpoint, display

Start program

First breakpoint executed

Examine general register 10

Resume from breakpoint
Second breakpoint executed
“Protect” all 2040 relocatable
Resume execution

Breakpoint executed
Remove breakpoint and protection

Resume program unconditionally
Termination of program

Figure 10-10. AIDS/16 Example

of the manual for further information on CAL/16. Figure 10-11 illustrates the use of OS/16.

*TASK .BG
*LD CAL16
*ASSIGN 1,CR:
*ASSIGN 2,0BJFILE
*ASSIGN 3,PR:
*ASSIGN 4,SCRAT
*ASSIGN 7,COPYFILE
*START

CAL/16 00-00
- END OF TASK 0

29-430 R04 1/78

Set task to background

Load CAL/16

Assign source input to card reader
Assign output object file

Assign list output to the printer
Assign scratch file

Assign source copy file

Start CAL

Figure 10-11. CAL/16 Example

10-7

CAL MACRO

CAL MACRO Processor, program number 03-084, allows the user to write a series of Macro definitions and to invoke these
macro definitions, causing an expansion into CAL source statements. CAL MACRO output may then be input to CAL for
assembly. Macro definitions may be placed in a library or included in the input stream along with references to these
definitions. Refer to CAL MACRO Processor Reference Manual, Publication Number 29-408. Figure 10-12 illustrates an

assembly with a macro preprocessing step: :

*TASK .BG

*LD CALMAC LOAD CAL MACRO PROC INTO BACKGROUND
*AS 1,EXPSRC.CAL ASSIGN OUTPUT TO INTERMEDIATE FILE
*AS 3,PR: ASSIGN LIST DEVICE

*AS 6,CR: ASSIGN SOURCE INPUT TO CARD READER
*AS 7,MACLIB ASSIGN MACRO.LIBRARY

*START "~ START PREPROCESSOR

END OF TASK 0

RW EXPSRC.CAL,1 . REPOSITION INTERMEDIATE FILE

*LD CAL16 LOAD CAL/16

*AS 2,0BJFILE ASSIGN OUTPUT

*START START ASSEMBLY (USE NO SCRATCH)

CAL/16 00-00
END OF TASK 0

Figure 10-12. CAL MACRO Example

FORTRAN V

The FORTRAN systems available under OS§/16 are FORTRAN V and Extended FORTRAN IV. FORTRAN V outputs
intermediate source that must be assembled by CAL, and established by TET before execution. Extended FORTRAN 1V
outputs object code that need only be established. It is designed for use in small memory systems. The FORTRAN V
compiler and corresponding object programs must be run with OPTION COMP.

Figure 10-13 illustrates a sample FORTRAN V operating sequence:

*LD FORTRANV Load the FORTRAN compiler into the background
*TASK .BG
*OP COMP
*ASSIGN 1,CR: Source Input
*ASSIGN 2,TEXT Intermediate text output
*ASSIGN 3,PR: Source Listing
*ASSIGN 7,PR: Error Listing
*START Start Compilation
END OF TASK 0 Compilation complete with no errors

(The message END OF TASK 1 is output if compila-
tion crrors were detected)

Figure 10-13. FORTRAN V Example

At this time the file TEXT must be assembled by CAL as described in the previous section. Assume the object program is
output on file OBJECT.

The OS/16 MT?2 Task Establisher (TET/16) may be used to prepare the object program for execution. For the purposes of
this example, assume a main FORTRAN program with two user subroutines in 16-bit object format on file OBJECT with a

file mark written after the last user subprogram. Assume also that the FORTRAN V Level 1 Run Time Library is resident
on a Direct-Access File named RTL.OBJ.

Once TET/16 is started, the first commands entered are:
ESTABLISH TASK
OPTIONS FLOAT,COMP
BIAS xxxx

The system then responds with a prompt, whereupon the user enters:

INCLUDE OBJECT.

This causes TET/16 to read the main FORTRAN object module and link the two user subroutines; this operation is
terminated by the detection of the filemark. The system again responds with a prompt, whereupon the user should enter:

EDIT RTL.OBJ

10-8 29-430 RO5 2/79

TET/16 makes one pass over the Run Time Library object module library, loading only those routines as required by the
user program. Once this operation is complete, the system responds with a prompt and the user should enter:

BUILD TASK,fd

where fd is a file to contain the established task. If at this point, additional routines are still required to complete the
FORTRAN task, TET/16 outputs the message:

UNDEFD SYMBOLS

The user should then take a map (sec below) to determine the cause of the error. In general, once a FORTRAN program
and all user subroutines are loaded and the Run Time Library is edited, no routines remain undefined.

Once the task is built, the system responds with the p}ompt and the user requests a memory map of the task with the
command:

MAP fd

where fd is the list device. This map defines the entry points of all subprograms and gives the minimum partition size
required for execution of this task.

EXTENDED FORTRAN 1V

This compiler generates object code rather than intermediate source output. Tasks may be established in the same manner
as the FORTRAN V example above. Operating instructions are found in the Extended FORTRAN IV User’s Guide,
Publication Number 29-336.

BASIC LEVEL II

BASIC LEVEL II is an exhanced interpreter designed to run under OS/16 or OS/32. Refer to the Basic Level II Reference
Manual, Publication Number 29-488.

For information on running the BASIC LEVEL II Interpreter on an OS/16 MT2 system configured with no Command
Processor Module, refer to the System Planning and Configuration Guide, Chapter 2.

29-430 ROS 2/79 10-9/10-10

P
CHAPTER N1
SYSTEM LIBRARIES

It is prudent to back up the information shipped in the 0S/16 MT2 package so that system or operator error cannot
destroy the only copy of the information. The following sections describe backup procedures for magnetic tape and disc
media.

NOTES

1. These backup procedures are performed while running under the
0S/16 MT2 Starter System just loaded. OS/16 MT2 Starter
Systems are backed up as well as the components necessary to
configure the OS/16MT2 system that is to be the result of this
entire Startup procedure.

2. If a backup device called for in these procedures is not available in
the configuration, another magnetic device (Disc, Cassette, etc.)
can be substituted. For example, if a second Magnetic Tape is
unavailable, a cassctte can be substituted MAG2: becomes
CAS1:).

UNPACKAGING THE MAGNETIC TAPE PACKAGE ONTO A DISC
- Load STARTER 3 as described on Page 2-1
— Ready a Disc, insuring that Hardware Protcct is turned off.

— Follow the procedure below:

— Enter the following OS/16 commands:

INIT DSC1:MT16 Initialize the Pack
MA DSC1:,0N Mark Disc On
V MT16 Set Default Volume
SET PAR .S/E800
FF MAG1: Skip Past File Mark
LD MAG1: Load Library Loader
BF MAGI1: Reposition to front on Library Loader
FF MAG1:
AS 5,CON: Assign Library Loader Units
AS 1,MAG1:
— At this point use the TABLE command of the Library Loader to confirm that the object program on the tape [|

agrees with the list in the Packaging Information document, Appendix 3. Verify from LOADER to RELLDR. To
reposition to the start of the Library Loader enter:

PA

BF MAGI:
BF MAGI1:
BF MAGI:
FF MAG!:

— Allocate disc files for all package items. Use the disc file names in the Packaging Information Document, Appendix
5.

Example: ALLO LIBLDR.OBIJ,I,108
ALLO EXEC16.CAL,L,80
ALLO CUP1632.0BJ,1,126
ALLO LETTER.IN,CO,6

29-430 RO6 9/79 . 11-1

— Use the Library Loader to copy object files from mag tape to. disc.

Example: AS 2,LIBLDR.OBJ ASSIGN SOME FILES
AS 3,DLIB16.0BJ
AS 4, DLIBI6EX.OBJ

AS 6,CUP.OBJ

ST " START LIBRARY LOADER

COPY 102 COPY LIBRARY LOADER

DUPE 103 COPY DRIVER LIBRARY

DUPE 104 CUPI16 COPY EXTENDED DRIVER LIBRARY
COPY 106 COPY CUPl6

PA PAUSE LIBRARY LOADER

— The user may now assign other object files (TET.OBJ, etc.) and enter CO to reenter the Library Loader and
continue copying with the COPY command up to the next file mark on tape.

Use OS COPY to copy the remaining files to disc:

EN End Library Loader

LD COPY Load OS copy from Disc

AS 2,LETTER.IN

ST

CPYB ,256,,1,6 Copy Output Spooler Table

END

?F? 2,CUP1632.0BJ Copy CUP1632 (Repeat for TET1632)
CPYB ,126

END

— To again verify that you have the right tape contents use the OS copy FNDA command to locate the remaining
modules. Verify with the Packaging Information Document, Appendix 3.

— Copy these modules.

AS 2,PCB16.CAL

ST

CPYA ,,ALL Copy PCB

END

AS 2,EXEC16.CAL

ST

CPYA Copy Exec Source (repeat for remaining files)

— To display the contents of the disc after unpackaging, enter FI. Starter 3 may now be used to perform a sysgen
from disc.

MAGNETIC TAPE SYSTEM BACKUP

All the modules in the MT package are shipped on one Magnetic Tape, making this volume inconvenient to use as a working
volume 1:‘0 perform SYSGENs and to access the utilities, since the tape must be scarched from the beginning each time any
module is to be accessed. Therefore, the backup procedure recommended is to produce several working volumes and leave
the original volume as the backup.

The order of the modules on a Magnetic Tape is found in the Packaging Information Document.

11-2 29-430 RO6 9/79

It is recommended that 8 working volumes be created as follows, once a Starter system is loaded.

OS Tape
Mount the 0S/16 MT?2 tape on MAG!: and the output tape on MAG2:. Use the following commands:

*RW MAGI: Position OS/16 MT2 package tape at load point
*FF MAGI1:;FF MAGI1:;FF MAG1: Position to Library Loader
*TA .BG
*LD MAGI: Load Library Loader
*AS 1,MAGI: Make assignments
*AS 2,MAG2:
*AS 3,PR:
*AS 5,CON:
*ST Start Library Loader
FI 1 OSCOPY Position to OS COPY
END Exit from Library Loader
*LD MAGI: Load OS COPY
*RW MAGI: Position to REL Loader
*OPT COMP Set OPTION compatable
ST Start
CPYB 1000 Copy REL Loader to output
CPYB Copy starter 1 to output
CPYB Copy starter 3 to output
-END

Now the output tape contains a REL Loader, STARTER!1 and STARTER3. To load the OS from this tape use the ap-
propriate steps outlined in Chapter 2.

Object Library Tape

Leaving the input tape at its current position, mount a new output tape on MAG2:

*LD MAGI1: Load Library Loader

*RW MAG!: Position to Library Loader

*FF MAGI1:

*FF MAGI1:

*FF MAGI1:

*ST
DU 102 Duplicate Library Loader, driver librarics on output
DU 102 CUP16 tape up to CUP object module

Utility Tape

Mount a new output tape on MAG?2:

BF 1;BF 1 Position input to Library Loader
FF 1 .

CO 102 Copy Library Loader

FI 1 CUPlo Position to CUP

DU 102 Copy rest of utilities

To load any utility from this tape, mount tape on MAG1: for example:

*LD MAGI1: Load Library Loader

*AS 1,MAGI1::AS 5,CON:

*ST
FI 1 (utility name) Use TABLE command of Library Loader to list utility names
END Exit Library Loader

*LD MAGI1: Load desired utility

29-430 RO4 1/78 11-3

Parameter and Control Block Tape

Mount a new output tape on MAG2: and enter the following to the Library Loader:

BF 1

FF 1

FI 1 (Source Updater)
END

*LD MAGI:

*FF MAGI:

*FF MAGI:

*FF MAGI:

*ST
COPY MAGI1: MAG2:

Source Library Tape

Mount a new output tape on MAG?2:

COPY MAG1: MAG2:
COPY

COPY

COoPrY

END

WF MAG2:

CSS Package Tape

Mount a new output tape on MAG2:
?IFBPY MAGI1:,MAG2:
END

Boot Loader Tape

Mount a new output tape on MAG?2:

*RW MAGI:
*FF MAGI:
*FF MAGI:
*FF MAGI:
*LD MAGI:
*AS 5,CON:
*AS 1,MAGI:
*ST
FI 1 (Boot Puncher)
END
*LD MAGI:

*ST ,MAGI1: MAG2:

Find source updater

See tape Table of Contents for Source Updater program label

Exit
Load it
Position to source modules

Copy Parameters & Control Blocks

Copy Exccutive, - filemark -

Copy File Manager, filemark

Copy Command Processor. - filemark
Copy Driver Library. -~ filemark -
Exit)

Write 2nd filemark as end of volume

Copy CSS package
Exit

Load Library Loader

Position to Boot Puncher
Exit

Load the Boot Puncher
Output Boot Loader to tape

BUILDING OVERLAYED DISC SYSTEM USING MAGNETIC TAPE PACKAGE

The magnetic tape and cassette packages include two starter systems. Starter 1 has no disc support. Starter 3 is
non-overlayed disc-supporting system; non-overlayed so that it can be built to and loaded from a non-disc device, and

disc-supporting so that it can be used to build an overla

and TET/16.

yed disc-supported system directly onto the disc using CAL/16D

For details of the system generation process, refer to the System Planning and Configuration Guide.

114

29-430 RO4 1/78

DISC SYSTEM BACKUP

Since each program or library resides in a separate file (see disc table of contents for file identification), the 0S/16 MT2
disc package is well suited to be a working volume. A backup copy of the disc contents is easily created with the BACKUP |
Utility. In addition to the original shipped OS/16 MT?2 disc package, any important disc volumes should be periodically

backed up in the following fashion:

*MARK DSC1:,ON,PROT Mark volume on write protected

*LD MT16:BACKUP * Load BACKUP |
*OP ET Make it an E-Task
*ST,IN=DSC1:,0UT=MAGI1:,LIST=PR:,VERIFY Save the disc on Magnetic Tape

Alternatively, the back up can be made directly to a second disc if available.

*MARK DSC1:,0N,PROT Mark volume on write protected

*LD MT16:BACKUP Load BACKUP]
*QP ET Make it an E-task

*INIT DSC2:,PACK,RE Initialize second disc pack

*MA DSC2:,0N Mark it on-line
*ST,IN=DSC1:,0UT=DSC2:,LIST=PR:,VERIFY Save the disc

The Starter 3 system on the disc is a non-overlayed disc-supported system in object code format. It is advisable to copy this
system out to a magnetic tape or cassette, followed by BACKUP and Disc Integrity Check, to be held as a “backup OS” [|
in case the disc is destroyed, This is particularly important for users with only one disc drive.

To create the tape, mount it on MAG1: and enter:

*LD MT16:LIBLDR.OBJ Load Library Loader
*AS 1,MT16:0S16MT3.0BJ

*AS 2 MAGL:

*AS 4,MT16:BACKUP.OBJ |
*AS 5,CON

*AS 6,MT16:DISCHECK.OBJ

*ST

CcOo 102 Output Starter 3

WF 2

CO 402 Output Disc Compress
WF 2

CO 602 Output Disc Check

To restore a disc pack from the dumped volume, load the saved STARTER 3 system from the backup tape, position to the
start of disc compress, and enter:

:(13112 MAGI: : Load BACKUP I
*INIT DSC1:,PACK,RE Initialize disc pack
*MA DSC1:,0ON Mark it On-line

*ST ,IN=MAGI:,0UT=DSC1:, LIST=PR:,VERIFY Restore the disc

DISC SYSTEM MAINTENANCE

This section illustrates the procedures involved in building and maintaining a disc-based program library under OS/16 MT?2
by using the standard program library supplied with OS/16 as an example.

Building a Library

To build a library of programs on disc, one must have a Magnetic Tape, or Cassette containing all programs one wishes to
build on the disc. The disc must be formatted and initialized (if not done so already), after formatting, enter:

*INIT DSC1:,PACK,READ Initialize, volume=PACK, read check is performed
Once initialized, the disc must be marked On-line and the default volume set:

*MARK DSC1:, ON Mark the disc On-line
*VOL PACK Set the Default Volume

29-430 RO6 9/79 11-5

Now the necessary files must be allocated:

*ALLO STARTER!1.OBIJ,IN
*ALLO STARTER3.0BJ.IN
*ALLO LIBLDR.OBIJ,IN
*ALLO DLIB16.0BJ,IN
*ALLO CUP.OBJ,IN
*ALLO TET.OBJ,IN
*ALLO DISCHECK.OBJ,IN
*ALLO BACKUP.OBJ,IN
*ALLO SOURCEUP.OBJ,IN
*ALLO CAL16.0BJ,IN
*ALLO CAL16D.OBJ,IN
*ALLO EDIT.OBJ,IN
*ALLO COPY.OBJ,IN
*ALLO AIDS.OBJ,IN
*ALLO BOOTPNCH.OBJ,IN
*ALLO BOOTLOAD.OBJ,IN
*ALLO MIORTL.OBJ,IN
*ALLO LETTER.IN,CO,6

*RW MAGI:

*FF MAGI:

*FF MAGI:

*FF MAGI:

*LD MAGI:

*TA.BG

*AS 1,MAGI:

*AS 2,STARTER1.OBJ
*AS 3,STARTER3.0OBJ
*AS 5,CON:

*RW MAG1:

*FF MAGI:

*ST

*BG:>CO 102
*BG:>PA

*FF MAG!:

*CO

*BG:>CO 103
*BG:>PA

*FF MAGI:

*CL 2,3

*AS 2,LIBLDR.OBI
*AS 3,DLIB16.0BJ
*AS 4,CUP.OBJ

*AS 6,TET.OBJ

*AS 7,DISCHECK.OBJ
*AS 8,BACKUP.OBJ
*AS 9,SOURCEUP.OBJ
*CO

*.BG:>CO 102
*.BG:>DU 103 CUP16
*BG:>CO 104
*.BG:>CO 106
*.BG:>CO 107
*.BG:>CO 108
*BG:>CO 109

* BG:>PA

*CL 2,3,4,6,7,8,9

*AS 2,EDIT.OBJ

*AS 3,COPY.OBJ

*AS 4,AIDS.OBJ

*AS 6,CAL16.0BJ
*AS 7,CAL16D.OBI
*AS 8,BOOTPNCH.OBJ
*AS 9,BOOTLOAD.OBIJ

11-6

Copy the object programs usine the OS/16 Library Loader:

Position tape to beginning
Position to Starterl
Position to Starter 3
Position to Library Loader
Load the Loader

Set the task

Assign the input device

Assign the console device
Position tape back to beginning
Position to Starter 1

Start the loader

Copy Starter 1

Pause the Loader

Position to Starter 3

Copy Starter 3
Pause the loader
Position to Library Loader

Assign Logical Units
to all of the files

Continue the loader

Copy Loader

Dupe Driver Library

Copy Cup

Copy TET

Copy Disc Integrity Check
Copy BACKUP

Copy Source Updater
Pause the loader

Assign the rest of
the files

29-430 RO6 9/79

*CO

* BG:>CO 102

* BG:>CO 103

* BG:>CO 104

* BG:>CO 106

* BG:>CO 107

* BG:>CO 108
*BG:>CO 109
*BG:>PA

*CL 8,9

*AS 8,SPOOLER.OBJ
*AS 9,MIORTL.OBJ
*CO

* BG:>CO 108

* BG:>DU 109
*BG:>END
*CLOSE ALL

RELLDR

Now copy the output spooler table using OS copy:

*LD COPY

*OPT COMP

*FF MAGI:

*AS 1,MAG!:

*AS 2,LETTER.IN
*AS 5,CON:

*ST

* BG>CPYB,256,,1,6
* BG>END

*OPT NOCOMP
*CLOSE ALL

Continue the loader
Copy OS Edit

Copy OS Copy
Copy OS Aids
Copy CAL/16
Copy CAL/16D
Copy Boot Puncher
Copy Boot Loader

Copy Output Spooler
Copy Mini 1/O0 RTL

Terminate the loader
Close all the files

Load OS Copy Utility

Set Option Compatible
Position to start of table
Assign input tape

Assign output file

Assign command input device
Start OS Copy

Copy 6 256-byte records
Terminate OS Copy

Reset compatibility option
Close all logical units

Now copy the source modules using OS source updater:

*LD SOURCEUP

*FF MAGI1::FF MAGI:

*AS 3,CON:

*AS 5,CON:

*ST

* BG>COMAGI1:,PCB16.CAL

* BG:>CO MAG1:,EXEC16.CAL
* BG:>CO MAG1:,FMGR16.CAL
* BG:>CO MAG1:,CMDP16.CAL
* BG:>CO MAG1:,DLIB16.CAL
* BG:>CO MAG1:,HLOC.CSS

* BG:>END

Now the disc is complete. To list the files on the d
*F1PR:

Updating a Library

Object Programs

If an updated version of a program has been receiv

*LD LIBLDR
*AS 1,PTRP:
*DEL fn.OBJ
*AL fn.OBJ,IN
*AS2,fn.OBJ
*AS5,CON:
*ST

* BG:>CO 102
* BG:>END
*CLOSE ALL

The new object program is now on the disc.

29-430 R04 1/78

Load the source updater from disc
Position to the start of the source
Assign list

and command devices to the console
Start the updater

Copy the PCB

Copy the EXEC

Copy the FMGR

Copy the CMDP

Copy the Driver Library

Copy the High Level Operator Command Package
End the updater

isc to the Line Printer, enter:

ed, the disc may be updated as follows:

Load the Library Loader into the Background
Assign the input device

fn-filename of program to be updated
Reallocate file

Assign the output file

Assign the console device

Start the loader

Copy the updated program to the file

End the loader

Close the LU’s

If an updated version of a source program has been received, the disc may be updated as follows:

*LD SOURCEUP Load the source updater into the background
*DEL fn.CAL Delete the old file

*AS 3,CON: Assign the list

*AS 5,CON: and command devices to the console

*ST Start the updater

* BG:>COPY MAG!:,fn.CAL Copy the new source program

* BG:>END End the updater

The new source program is now on the disc.

Once the disc has been set up with all the proper files, it is a good idea to Write protect all the files. To do this enter:

REP fd,FF00 where fd=filename.ext
example:
REP LIBLDR.OBJ,FF00 Reprotect FF=write key,00=read key

Now the file may only be assigned with Read only access (SRO or ERO):
AS 1,LIBLDR.OBIJ,SRO Assign the loader to LU for Shared Read Onily
This command will be accepted but:
AS 1,LIBLDR.OBJ
will be rejected with ASGN-ERR PROT.
To Write enable the file again enter:

REP LIBLDR.OBJ,0 Reprotect with ZERO keys

11-8 29-430 RO4 1/78

CHAPTER 12
FILES AND THE OPERATOR

Al Dircet-Access Devices supported by OS/16 MT2 may be accessed through the OS/16 MT2 File Manager, which provides
u substantial and powerful set of volume and file management scrvices. While a Direct-Access Device is marked Off-line.itis
referred to by the device mnemonic associated with the device at system generation time. Example DSC1:

Data on a Direct-Access Device is maintained as files on a named logical volume. Each volume contains all the information
necessary to process the data on that volume. When a Dircct-Access Device is marked On-line; the name of the volume
mounted on that device is associated with, and used to refer to the device. Example -- PACK:

MARK COMMAND

In order to ensure that the system maintains the correct volume information, the MARK command must be used to mount
and dismount disc packs. When a new pack is mounted, the MARK ON command reads the volume name into the system
volume table. Before dismounting a disc pack, it should be MARKed OFF to insure that no files on that volume are
assigned. Use a DISPLAY LU command and the CLOSE command to close all LU’s.assigned to files for each task on that
N N . . . 1

volume prior to issuing the MARK OFF. -

OS OVERLAY FILE — OVERLAYED SYSTEMS

When the OS is boot loaded from disc, the Boot Loader saves the name of the file used to load the system. This file

contains.no_t only the resident portion of the OS, but also the OS overlays. When the OS is first loaded, the disc containing
the OS file is marked On-line as the OS volume with write protection, as if the operator had entered:

*MARK DSC1:,ON,OS,PROTECT
When the OS volume is marked OFF, OS must be specified as an operand to the MARK command also:

*MARK DSC1:,0FF,0S

When the OS volume is marked OFF, operator commands are no longer accepted. The OS or a different OS must be boot
loaded from disc.

The current OS fd may be displayed by entering the VOLUME command.
DISC INITIALIZATION

In order to prepare a disc pack for use by OS/16 MT2, the pack must be formatted by the Common Disc Formatter
program.

See either the Common Disc Formatter Program Description, Part Number 06-173M95A15 for 2.5, 10, and 40 MB discs
or the Common MSM Disc Formatter Program Description, Part Number 06-201M95A15 for 67 and 256 MB discs.

29-430 ROS5 2/79 12-1

Once the disc pack has been formatted, it must be initialized by the 0S/16 INITIALIZE command. In order to initialize a
disc volume, the device it is mounted on must be Off-line. To initialize a new pack for OS/16 MT2 usc enter:

*INIT DSC1:,PACK,READCHECK
This command places the name PACK in the Volume Descriptor of the pack on device DSCI:, constructs an empty
directory and an allocation bit map which indicates all sectors unatlocated except for: sector 0 (Volume Descriptor). the
sectors required to contain the bit map, one cylinder for the empty directory (3 tracks on a 40MB Disc, I track on a 67MB,
256MB, Floppy Disc), and any sectors marked as defective during formatting. Since the READCHECK option performs a

read check operation on each sector, this operation takes approximately three minutes on a 2.5MB disc and correspond-
ingly long on any other disc.

If no defective sectors were detected in the formatting process, the initialization process may be shortened by not
specifying the READCHECK option. The command would then be:

*INIT DSCI1:,PACK
To rename a disc volume, mark the device On-line and enter:
*REN PACK:,NEWP:
To save an image of the currently loaded OS suitable for boot loading, mark the desired device On-line and enter:
*SAVE PACK:0S816MT2.000
NOTE

This command functions properly in a non-overlayed system only.

ASSIGNMENT AND ALLOCATION
0S/16 MT?2 maintains control of assigned files through File Control Blocks (FCBs). FCBs are built in system space from
the top of physical memory down. Any time an ASSIGN command is rejected with an ASGN-ERR BUFF message the

amount of system space remaining is insufficient to build the required FCB. To gain space to allow the command, other
assigned files must be closed or SET PARTITION command must be entered to increase the size of the .SYS partition:

*SET PART .SYS/D800 D800 = new start of system space

Keys and Access Privileges
The following examples illustrate the use of protection keys and access privileges for Direct-Access Files.

*ALLO PACK:FILE1,CO,100,AABB Allocate a contiguous file with protection keys

*ALLO PACK:FILE2,IN,80 and an unprotected indexed file

*AS 1,PACK:FILE1,ERO,AABB Assign file 1 for Exclusive Read

*AS2,PACK:FILE1,EWQ,AAQ0 and for Exclusive Write

*AS3,PACK:FILE!,,AABB Attempt to assign file for SRW (default) — rejected since it is already

assigned exclusively.

ASGN-ERR PRIV

*CL 2 Deassign for Exclusive Write

*AS 2,PACK:FILE1,SWO Attempt to assign for Shared Write
ASGN-ERR PROT Rejected — invalid keys

*AS 2,PACK:FILE2 File 2 assigned for SRW

Write Protected Disc

Write protection for discs is provided on a software basis. This aHows the data to be read from the disc volume but prevents
any attempt to write on the disc. Write protection should not be presumed to take the place of backup procedures since
hardware failure can destroy data on a disc volume. To Write protect the data on a disc volume, enter the following
command after mounting the pack:

*MARK DSC1:,ON,PROTECT

12-2 29-430 R04 1/78

If the OS file is contained on a volume to be Write protected enter:

*MARK DSC1:,0ON,0S,PROTECT

This command may be entered regardless of the state of the hardware write protect feature of the disc. If the disc device is
left in hardware write protect mode, any attempts at MARK ON without PROTECT will instead MARK ON with
PROTECT. This action ensures that the OS will never attempt to write on a hardware protected volume. Once a disc
volume has been Write protected, all assignments for access privileges other than Shared Read Only (SRO) and all rename,
reprotect, deletion and allocation attempts are rejected. Assignments for Shared Read Write (SRW) are granted Shared
Read Only access.

DISC INTEGRITY CHECKING

The Disc Integrity Check Utility 03-080 is designed to restore a direct access volume to a usable state after a system crash
or software failure. The most essential functions performed are:

— discs that were on-line at the time of the crash are marked off.

— the files that were assigned at the time of the crash are closed.

the link fields of Indexed files that were being processed at the time of the crash are restored so that the
data retained is usable by the system.

The first function is essential because unless the discs are marked off, they cannot be marked on without protect.

To restore a disc volume mounted on DSCI:, load the Disc Integrity Check and enter:

*TA name . Set Current task to proper partition
*OP ET Make it an E-Task
*ST, DSC1:,PR: Start program-disc device=DSC1:, error list=PR:

Refer to Chapter 7 of this manual for a more detailed description of Disc Integrity Check.

29-430 RO2 8/76 12-3/124

CHAPTER 13
GUIDE TO WRITING AND
USING CSS FILES

INTRODUCTION

0S/16’s Command Substitution System (CSS) is a versatile facility that can be used for anything from simple batch-stream
control to the development of highly complex macro commands. It has many of the characteristics of a programming
language, and, as such, requires more than the usual degree of study to learn thoroughly. However, its structure allows

“simple functions to be performed without knowing everything there is to know about CSS. This chapter is intended to
guide the user from the beginning stages through the more advanced stages of CSS usc.

It is assumed that the user is familiar with the functions of the OS/16 non-CSS operator commands, or at least with their
most common forms. If not, these may be found in Chapter 3 of this manual.

BASIC QUESTIONS
What is a CSS File?

A CSS file is a series of OS/16 MT2 operator commands. These commands exist in some machine-readable form, such as on
cards, or disc, or Magnetic Tape. When the file is called, the commands contained in it are executed in order. When the
special command $EXIT is executed, CSS execution is terminated from this file.

How is a CSS File Used?

The file is installed in a position to be read by the machine; i.e., the card deck is placed into the Card Reader hopper, the
Magnetic Tape is mounted, or the necessary steps are performed for the particular medium the CSS file is on. If the CSS
file is on disc, no installation is necessary. The device being used, whether disc, Card Reader, or other device, must be
On-line.

The operator calls the CSS file by typing in the name of the device or disc file. This is typed in the same way as the oper-
dator would type in a command. For example, if the file is on cards, and the Card Reader is named CR2, the operator
types in:

CR2:
and the file is executed. The colon (:) tells the system that the CSS file is on a non-disc device.
Can One CSS File Call Another?
With OS/16, a CSS file is like the console operator. Therefore, onc CSS file can call another, just as the operator would.
This may only continue to a certain depth. When too many CSS files are active, the Command Processor’s Buffers fill up,
and at this time, a new CSS file may not be called. The maximum nesting depth is set up at SYSGEN (SYStem
GENeration) time, and can vary from one system to another. If a CSS file tries to call another one, and exceeds this depth,
the system logs:

CSS-ERR LVL

and CSS processing ceases.

When one CSS file calls another, the first file is still active. When the second file finishes processing, the first one continues
from the previous location. Therefore, a CSS file does not directly branch to another, but calls it like a subroutine.

What Commands Can Be Executed From CSS?
Every operator command can be executed from a CSS file. In addition, a number of special CSS commands can be

executed, such as $EXIT, mentioned previously. Special CSS commands start with a dollar sign, so it is easy to identify
them.

29-430 RO2 8/76 13-1

USING CSS FOR BATCH CONTROL

The simplest use of CSS is to control a batch job. This allows the user to put together the sequence of operator command.s
needed to run a job, together with the data for the job, and to enter the entire job stream to OS/16 through CSS. This
saves much work for the console operator, and the job control statements can often be reused.

Job Control Decks

A typical job control deck is illustrated in Figure 13-1.

TASK .BG

LDBG CAL16 *DO ASSEMBLY
ASSIGN 1,CR:

ASSIGN 2,MAG:

ASSIGN 3,PR:

ASSIGN 4,SCRATCH

START ,SCRAT ;*START ASSEMBLER

(data)

REWIND MAG:

LDBG LIBLDR ;*LOAD LIBRARY LOADER

ASSIGN 5,CR: ;*ASSIGN COMMAND INPUT TO THIS FILE
ASSIGN 6,PROGRAM.OBIJ .
ASSIGN 7,SUBROUT.OBJ

START *START LOADER

OuUT 6

LOAD 2

BIAS 6000

LINK 7

MAP 3

XouT

END

CLOSE ALL ;*LOAD MODULE IS NOW BUILT

LBDG PROGRAM.OBJ *LOAD NEW LOAD MODULE

START ;*RUN PROGRAM
SEXIT ;*END OF JOB

Figure 13-1. Typical CSS Job Control Deck

The first statements load the CAL/16 assembler, assign devices and files to its Logical Units, and start the assembly process;
following these statements arc the source statements of the program to be assembled. There are more command statements
to load and assign devices to the Library Loader; the START command starts the Loader. The statements from OUT 6 to
END are part of the Library Loader’s command language. The CSS file loads the load module that the Library Loader
produced, and runs the program. Finally, the $EXIT command terminates CSS processing.

Device-Independent Job Control Decks

The example given previously assumes that the CSS file is in a device named CR:. It would not work properly if the
device name were different, for example, MAG?2:. This is because the CSS statements specifically ASSIGN Logical Unit 1
of CAL and Logical Unit 5 of the Library Loader to a device named CR:, and these Logical Units (source input for CAL,
command input for the loader) refer to the job control deck itself.

The program source and the Library Loader commands (OUT 6 through END) are embedded in the job control deck. If
this job control deck were entered from device MAG?2:, all CSS commands would be processed properly, up to the first
source statement of the program bein< assembled. CAL reads the source, however, from device CR:, since this is the
assignment of Logical Unit 1.

The situation can be a problem if there are two or more identical devices of the same kind in the system. Assume there are
two card readers, named CR: and CR2:. The example job control deck works in one but not the other.

To create a device-independent job control deck, use the characters @0 whenever referring to the CSS file itself. @0 means
“this device or file.”” The example is changed as follows:

LDBG CAL1l6
ASSIGN 1,@0
ASSIGN 2, MAG:

ASSIGN 5, @0

13-2 29430 RO2 8/76

Separation of Jobs

When any error occurs in processing a CSS file, CSS processing stops, and control is returned to the console operator. This
is desirable in many circumstances. It is not desirable when batch jobs are being run, however. If there are several sets of
job control statements in the CSS file, for example, in the Card Reader, the faulty termination of one job should not cause
all jobs to be aborted.

The CSS commands $JOB and $TERMJOB are used to isolate errors to a single job. Each job control deck starts with a

$JOB statement and ends with a $STERMJOB statement. If this is done, an error in a given job simply causes the CSS
Processor to skip all commands until a $TERMJOB or $JOB is found, and to resume normal CSS processing.

A typical batch stream, consisting of several jobs, is illustrated in Figure 13-2.

$JOB

15t JOB CONTROL SEQUENCE
$TERMJOB
$JOB

2nd JOB CONTROL SEQUENCE
$TERMJOB
SEXIT *END OF BATCH STREAM

NOTE

It is not permissible to nest Jobs.

Figure 13-2. Typical Batched CSS Stream

Program Pauses and Other Interactions

CSS processing should not continue while a program called by CSS is running. In any job control deck, the job steps are
sequential. When a background program is started, it runs to completion before any more CSS statements are executed.
Otherwise, the CSS Processor might try to perform device assignments for the second job step before the first one was
finished.

When a background program executes a PAUSE, CSS processing does not resume. Instead, the PAUSE message is routed
to the console operator, who is responsible for correcting the error and issuing a CONTINUE command. CSS assumes that
the program is still active, whether or not it has paused. If the program goes to End of Task, or if it is cancelled by the op-
erator, CSS processing resumes.

This procedure assumes that programs only PAUSE for one reason:

An error, or some abnormal condition, has occurred, and the
program is unable to take corrective action by itself. Operator
intervention is required.

Programs that PAUSE arbitrarily, or CAL assemblies with PAUSE or PPAUS statements in their source decks, cannot be
properly handled under CSS batch control.

20430 RO2 8/76 13-3

USING CSS TO AVOID REPETITIOUS ACTIONS

CSS is not used only for batch control. It can also be used to avoid lengthy, repetitious operator type-ins. Assume that at a
given installation all CAL assemblies are done with a standard set of Logical Unit assignments. These assignments are made
into a CSS file, and that CSS file is put on disc and used before each CAL assembly. For example, assume a disc file named
CALASINE contained the following:

TASK .BG

CLOSE ALL

ASSIGN 1,CR:

ASSIGN 2,MAGI:

ASSIGN 3,PR:

ASSIGN 4,CALSCRAT.TMP
ASSIGN 5,CROSSREF.TMP
ASSIGN 6,SYMDUMP.TMP
ASSIGN 7,S0RCELIB.CAL
ASSIGN 8,SQUEEZE.TMP
ASSIGN 9,ERRLIST.TMP
SEXIT

The operator places the source in device CR: and an object output tape on device MAG1: and types:

LDBG CAL
CALASINE
START

and the assembly proceeds. The LDBG and START commands can also be put on the CSS file.

This procedure not only simplifies the operator’s task, but also reduces the possibility of error. For this reason, CSS is
always used, if possible, to enter patch information to OS/16 after system start-up. Assume the installation has a list of
patches that are necessary to fix a bug in the interim before a new revision of OS/16, or a list of patches to a user-written
driver developed at the installation. These patches are prepared on a card deck, with verification information, as follows:

BIAS 0

MODIFY 1FE0,220.80A,4300,1ED4
EXAMINE 1FE0,4

SEXIT

Immediately upon system start-up, this deck is put in the Card Reader, and the command CR: entered from the console.
The CSS file is read, and the patches are made to the system without possibility of typing errors. The EXAMINE command
produces a listing of the patches on the console device. The operator verifies this listing before proceeding.

USING CSS TO BUILD COMPLEX COMMANDS

Although the previously described CSS uses are very important, the most sophisticated and powerful use of CSS is as a
system macro command language, to build complex commands. The set of commands provided in the 0S/16 Command
Processor is sufficient to perform any function, but at a heavy cost in type ins. Complex commands like “COMPILE/
ASSEMBLE/LOAD and GO are not provided. This is because such commands can be built using CSS.

The High Level Operator Command Package, supplied by INTERDATA, contains some useful and powerful complex
commands built with CSS. These commands, however, probably will not satisfy everyone’s needs. The following sections
describe how to create complex commands tailored to the specific needs of any installation or application.

Passing Arguments to CSS Files

The CAL assignment example given above does not work if some of the devices vary from assembly to assembly. When
executed, file CALASINE always assigns Logical Unit 1 to CR:, 2 to MAGI:, etc. To build a proper ASSEMBLE
command, it is necessary to pass variable data (command “arguments”) to a CSS file. This is done by using the character
sequence @n.

Whenever the sequence @n (where n is any decimal number) is applied in a CSS command, the CSS processor uses the n’th
argument in the CSS calling statement. This is best shown by example. Assume CSS file ASINE123 contains the following
commands:

ASSIGN 1,@1
ASSIGN 2,@2
ASSIGN 3,@3
$EXIT

134 29-430 RO2 8/76

and the operator types in:
ASINE123 CR:,PR: MAG!:
The CSS file is executed as though it contained:

ASSIGN 1,CR:
ASSIGN 2,PR:
ASSIGN 3,MAGI:
SEXIT

The first argument of the calling statement is CR:, and every occurrence of the sequence @1 in the CSS file is replaced with
CR:. An argument is always terminated with a comma or end-of-line. Therefore, the second argument is PR: and the third
argument is MAG1:. Now the previous example, CALASINE, can be turned into a generalized ASSEMBLE command as
illustrated in Figure 13-3.

TASK .BG

LDBG CAL

CLOSE ALL

ASSIGN 1,@1 #*VARIABLE INPUT
ASSIGN 2,@2 ;*VARIABLE OUTPUT
ASSIGN 3,@3 #VARIABLE LISTING
ASSIGN 4,CALSCRAT.TMP

ASSIGN 5,CROSSREF.TMP

ASSIGN 6,SYMDUMP.TMP

ASSIGN 7,@4 ;*VARIABLE SOURCE LIBRARY
ASSIGN 8,SQUEEZE.TMP

ASSIGN 9,ERRLIST.TMP

START

SEXIT

Figure 13-3. ASSEMBLE Command Example
This file may be called as follows:
ASSEMBLE CR:,MAG4:,PR:,LIBRARY.CAL

The first argument is the input device, the second is the output device, the third is the listing device, and the fourth argu-
ment is the source library device.

Testing Arguments for Existence
Assume the operator wants to assemble a program without using a source library device? If the following is typed in:
ASSEMBLE CR:,MAG4:,PR:

the fourth argument is not present. A missing argument is considercd to be a “null string”, that is, a sequence of no
characters. Therefore, the command ASSIGN 7,@4 is executed as:

ASSIGN 7,
This is an illegal command. The CSS file aborts, and the assembly does not take place.

It is possible, however, to test whether an argument exists or not. This is done with onc of the special CSS commands
$IFNULL and $IFNNULL. The $IFNULL command tests to see whether its argument is null. The $IFNNULL command
tests to see whether its argument is not null. If the tested condition is true, the CSS Processor continues to exccute
statements. If the tested condition is not true, the CSS processor skips all statements until a ENDC (end conditional) or a
$ELSE command is found. Thercfore, the command ASSIGN 7,@4 can be replaced with the following:

SIFNNULL @4 ;¥IS THERE A SOURCE LIBRARY?
ASSIGN 7,@4 ;¥IF SO, ASSIGN IT TO L.U. 7
$ENDC ;*END OF CONDITIONAL

This facility can also be used to set up default assignments. For example, assume the list device is normally the printer
(PR:). The following sequence can be put into the ASSEMBLE CSS file:

SIFNULL @3 ;*IS THERE A LIST DEVICE SPECIFIED?
ASSIGN 3,PR: ;¥IF NOT, USE PR:

SELSE ;¥1F THERE IS,

ASSIGN 3,@3 . ;*ASSIGN IT TO L.U. 3

SENDC

29-430 ROS 2/79 13-5

If the operator typed in:
ASSEMBLE MAG2:,MAG3:,MAG4:

The listing is assigned to PR:. An argument is null if it consists only of blanks; therefore, the ASSIGN 3,PR: statement is
executed.

Testing Files for Existence

It is often desirable to allocate files from a CSS file. The development of the ASSEMBLE file requires a number of
temporary files to assign for scratch purposes, etc., which causes 3 dilemma.

— {f the scratch file is allocated, and it already exists, the ALLOCATE command is rejected and the CSS file
aborts.

- If the scratch file is not allocated, and it does not exist, the ASSIGN command is in error, and the CSS file
aborts.

In order to solve this problem a facility is provided to enable the CSS file to test the existence of certain files. This is done
with the $IFX (if file exists) and $IFNX (if file does not exist) commands. These special commands work in the same way
as the $IFNULL and $IFNNULL commands mentioned previously. That is, if the tested condition is true, CSS continues
processing, but if the tested condition is false, CSS skips until a SENDC or SELSE command is found.

For example:

SIFNX CALSCRAT.TMP ;*DOES CALSCRAT.TMP EXIST?
ALLOCATE CALSCRAT.TMP,IN,86 FNO,ALLOCATE IT
SENDC *END OF CONDITIONAL

This sequence checks to see if the scratch file already exists, and allocates it if it does not.

The same facility can be used to test for the existence of a file passed to the CSS file as an argument. For example, see
Figure 134.

TASK .BG

LDBG EDIT 7#*LOAD THE EDITOR

SIFNX @1 *IF THE FILE DOESN’T EXIST YET
ASSIGN 1,CON: *THEN INPUT FROM CONSOLE
$ELSE ;*BUT IF THE FILE DOES EXIST
ASSIGN 1,@1 J*THEN USE IT FOR INPUT

SENDC

ALLOCATE EDIT.TMP,IN,80 ;*NOW ALLOCATE AN OUTPUT FILE
ASSIGN 2,EDIT.TMP,ERW *ASSIGN FOR EXCLUSIVE READ-WRITE
ASSIGN 5,CON: ;#*ASSIGN COMMAND INPUT

START ;*START THE EDITOR

CLOSE 1,2,5 ;*CLOSE FILES

SIFX @1 *IF THE CONSOLE WASN’T USED
RENAME @1,EDIT.OLD ;*THEN RENAME THE INPUT FILE
$ENDC

RENAME EDIT.TMP,@1 ;*NOW RENAME THE OUTPUT FILE
SEXIT *AND RETURN TO THE CONSOLE

Figure 13-4. EDIT Command Example
This file needs some explanation. It is called as follows:

EDIT filename

If filename is the name of an existing file, that file is edited. The output file is named EDIT.TMP; but after the editing is
done, the output file is given the name of the input file, and the input file is renamed EDIT.OLD. If filename does not yet
exist, however, the input device is assumed to bz the console, and the file created by the editor is given the name filename.
This CSS file only works if @1 refers to a Direct-Access File, since the RENAME command as given above is not applicable
to Non-Direct Access Devices. Now the EDIT file can be put on disc and used just as though it were a normal OS/16
command.

13-6 29430 RO2 8/76

Return Codes and Error Handling

Wlhen a program, called by CSS, detects an error and terminates abnormally, CSS takes special action. A job control deck
that performs a compilation, assembly, creation of a load module, loading and execution of a program, does not continue
the process, if the first step (the compilation) terminated in error.

CSS must be informed of the erroneous end of task. This is done through the Return Code mechanism, but the program
must cooperate. Each program, on terminating, returns a Return Code that may be used to show why the program
terminated. This return code is a 16-Bit number that is set up by the program’s author in the SVC 3 call that terminates the
program. (For details on SVC 3, see the 0S/16 MT2 Programmer’s Reference Manual).

A return code of 0 means the program terminated properly, with no errors. A non-zero return code means the program
terminated abnormally. The return code of 255 is used by the system if the task was cancelled by the console operator.

CSS files test the return code with a set of special CSS commands. These are:

$IFE (equal) SIFNE (not equal)
$IFG (greater) $IFNG (not greater)
SIFL (less) $IENL (not less)

These commands are used as follows:

SIFE 14 If Return = 14

$IFG 0 If Return Code >0

SIFL 255 If Return Code < 255

$IFNE 1 If Return Code # 1

$IFNG @3 If Return Code < the third argument
$IFNL 2840 If Return Code = 2840

If the tested condition is true, CSS continues to execute commands: if the condition is false. however, CSS skips all
statements until a SENDC or $ELSE is found.

~ The special comma’n.d $SKIP causes CSS to unconditionally skip to the next $TERMJOB command, if inside a job control
deck. This has the same effect as any error detected in a CSS statement. Thus:

LDBG CAL *LOAD THE ASSEMBLER

START #STARTIT

$IFNE 0 ;*ANY ERRORS?

$SKIP *IF YES, SKIP FURTHER PROCESSING
$ENDC ;*OTHERWISE, CONTINUE

This is the simplest way to handle errors. If the program has multiple error return codes, each with a distinct meaning, the
CSS file may inform the operator as to the nature of the problem, as follows:

LDBG PROGRAM ;*LOAD THE PROGRAM

START FSTARTIT

$IFNE 0 ;*IF ANY ERRORS

SIFNE 1 7*RC =2 MEANS FATAL ERROR

$SKIP #S0 SKIP

$ENDC *BUT RC = | MEANS NON-FATAL ERROR
$Cory

*NON-FATAL ERROR DETECTED

INOCOPY

$ENDC ;*CONTINUE AFTER LOGGING MESSAGE

Note the nesting of the $IFNE. .. .$ENDC sequences. Nesting of any $1F tests is permitted, to a level of 255.

A CSS file not only tests the Return Code, it may set it as well. This is possible because CSS is only active when the
controlled program is inactive, and therefore the Return Code is not used asynchronously. The Return Code is set using the
commands:

SET CODE n

which has the effect of setting the Return Code to n. This may be any number from 0 to 9999. The Return Code is
changed whenever a program is run.

This ability of CSS to set the Return Code may be used by one part of a CSS file to signal another, providing there are no
START commands between setting and testing the Return Code.

29-430 RO2 8/76 13-7

Sending Error Messages to the Console

The special CSS commands $COPY and $NOCOFY allow the CSS file to send messages to the system log device. Normally,
CSS should be in $NOCOPY mode. Under these conditions, CSS comnands are executed but are not printed out at the
console or on the log device. If the CSS command $COPY is executed, however, a copy of all CSS statements exccuted up
to and including the next $NOCOPY is printed at the console or on the log device, or both. (The choice of routing is set up
by the system console operator with the SET LOG command, and CSS shoutd not attempt to overide this choice.)

Since comments, as well as commands, are printed out, the easiest way to send a message is:

$COPY
*THIS IS A MESSAGE FOR THE OPERATOR
$NOCOPY

CREATING CSS FILES ON DISC
CSS files can be created on disc in one of two ways: first, the OS EDIT or Source Updater utility programs can be used
in their usual fashion, and second, the BUILD and ENDB commands can be used to crcate a CSS file directly from the
system console.
The BUILD command is used as follows:

BUILD filename.ext
This command causes an Indexed file of the name filename.ext to be allocated if there is not one already on the disc, and
then puts the console into a ‘‘data entry” mode, to write data to that file. Every line typed at the console from that time
until an ENDB command is found is written to the file being built.
This data may include any text at all, including commands, @ sequences, etc. The Command Processor does not attempt to
execute any commands contained in the text, nor does it attempt to expand @ sequences. The only thing that cannot be
written to a file being built is a line with the characters ENDB in the first four character positions.
When an ENDB command is read, the console reverts to its normal “command” mode.
To build a CSS file named FRED.CSS, the following is entered:

BUILD FRED.CSS

*THIS IS A CSS FILE NAMED @0

SEXIT

ENDB
This CSS file is now ready for execution. It may be called as follows:

FRED.CSS
or simply:

FRED

since the CSS Processor uses the default extension .CSS if the console operator does not type in any specific extension.

ADVANCED CONSIDERATIONS
Aborting All CSS Files
The $EXIT command causes the current CSS file to return to its caller. The command $CLEAR causes all currently active

CSS files to be abruptly terminated, and returns control directly to the console operator. This command is used when a
massive error is detected, and continuation is inappropriate. '

13-8 29-430 RO2 8/76

Building Task Control Files

Although it is possible to embed task control commands within a CSS file, as shown previously, certain problems may
occur while using this technique. In the example:

LDBG LIBLDR *LOAD THE LIBRARY LOADER

TASK .BG

ASSIGN 5,@0 ;#*ASSIGN TASK CONTROL TO THIS FILE

START *START LOADER

OUT 6

LOAD |

LINK 2

EDIT 2

XOUT

MAP 3

END

SEXIT
the statements between START and $EXIT are not CSS commands, but are commands to the Library Loader. The START
command activates the loader, which then reads and executes the commands from OUT 6 te END. Since these commands
are not CSS commands and are not processed by CSS, but by the loader, parameter substitution via ®n operands may not
be used. This is becausc the loader does not contain paramecter-substitution logic. There is no mechanism to apply
parameter-substitution. logic, even if it were desired.

This example docs not work if the CSS file is on disc, since the ASSIGN 5, @0 command positions the file at its first Jogical
record, and the loader gets LDBG LIBLDR as its first command.

If the loader is cancelled or abnormally terminates before it exhausts its full set of commands, the CSS Processor reads the
next Library Loader command, as a CSS command, and attempts to execute it. In most cases, such a command would not
be excecutable, and CSS processing would terminate; however, sometimes, utility program commands are similar to OS/16
commands, and the CSS Processor is able to execute one or more of them, often with undesired results.

In order to prevent these problems, the BUILD and ENDB commands, or the special CSS commands $BUILD and $ENDB,
can be used. The following file has the same effect as the previous one, but provides better error control:

LDBG LIBLDR ;*LOAD THE LOADER

TASK .BG

ALLOCATE LOADER.TMP,IN,10

BUILD LOADER.TMP ;*BUILD LOADER CONTROL FILE
OuT 6

LOAD t

ENDB ;*END OF LOADER CONTROL FILE
ASSIGN 5,LOADER.TMP,ERW ;#*ASSIGN CONTROL FILE

START ;*START THE LOADER

CLOSE 5 ;*CLOSE CONTROL FILE

DELETE LOADER.TMP ;*DELETE CONTROL FILE

$EXIT

This sequence builds a separate control file called LOADER.TMP and assigns it, rather than the CSS file itself, to the loader
command input Logical Unit. The loader control file is then deleted from the disc before the CSS file terminates.

The $BUILD and $ENDB commands allow parameter substitution. Using BUILD. . .ENDB, all @ signs in the data being
written to the file being built are ignored, as described previously. If $BUILD. . .$ENDB are used instead of BUILD. .
.ENDB, parameter substitution takes place.

Using Standard File Extensions

In a disc-based system, standard file extensions can be used to relieve the console operator’s task, and to allow CSS files to
perform more sophisticated functions. The concatenation facility of CSS allows the use of standard extensions in a simple
mannet.

Standard file extensions that are useful in FORTRAN compilation, CAL assembly, are:

.FTN FORTRAN source
.CAL CAL source

.OBlJ object format

LST listing format

.ERR error listing file
.LDM load module format

29430 RO2 8/76 139

A file COMPILE.CSS can be created to control compilation as illustrated in Figure 13-5.

*COMPILE CSS FILE

LDBG FORTRAN ;*LOAD THE COMPILER

ASSIGN 1,@1.FTN,SRO *ASSIGN FORTRAN INPUT
ASSIGN 2,@1.CAL,ERW 7*ASSIGN CAL OUTPUT

ASSIGN 3,@1.LST,EWO 7*ASSIGN LISTING (APPEND)
ASSIGN 7,@1.ERR *ASSIGN ERROR MESSAGE FILE
START #*START COMPILER

CLOSE ALL ;*CLOSE ALL FILES

SEXIT JFAND EXIT

Figure 13-5. COMPILE Control Example
This file is called as follows:
COMPILE program-name
The COMPILE file assumes the FORTRAN source is on a file called program-name.FTN and puts the output, listing, and

error messages onto files named program-name.CAL, program-name.LST and program-name.ERR respectively. This file
assumes that all the named files already exist. The ASSEMBLE file can be created similarly (sec Figure 13-6).

*ASSEMBLE CSS FILE

LDBG CAL16 ;*LOAD ASSEMBLER

ASSIGN 1,@1.CAL,SRO ;¥*ASSIGN CAL INPUT

ASSIGN 2,@1.0BJ ;*ASSIGN OBJECT OUTPUT
ASSIGN 3,@1 . LST,EWO *ASSIGN LISTING (APPEND)
ALLOCATE @1.CRF,IN,256 *ALLOCATE CROSSREF SCRATCH
ASSIGN 5,@1.CRF #*ASSIGN SCROSS REFERENCE

ALLOCATE @1.SCR,IN,86
ASSIGN 4,@1.SCR
START ,SCRAT,CROSS

CLOSE ALL *CLOSE ALL LOGICAL UNITS
DELETE @1.CRF #DELETE ALL SCRATCH FILES
DELETE @1.SCR

SEXIT *NOW EXIT

Figure 13-6. Assembly with Standard Extensions Example

This CSS file assigns all Logical Units and allocates and deletes scratch files as appropriate. It is called just like the
COMPILE file, and assumes the files program-name.CAL, program-name.OBJ and program-name.LST already exist.

The library loader control file is illustrated in Figure 13-7.

*LIBLOAD CSS FILE

LDBG LIBLDR ;*LOAD LIBRARY LOADER

TASK .BG

ASSIGN 1,@1.0BJ,SRO ;*ASSIGN OBJECT INPUT
ALLOCATE @1.LDM,IN ;*ALLOCATE LOAD MODULE OUTPUT
ASSIGN 2,@1.LDM ;*AND ASSIGN IT

ASSIGN 3,@1.LST,EWO ;*ASSIGN LIST FILE (APPEND)
ASSIGN 4,FTNRTL.OBJ,SRO ;*ASSIGN FORTRAN LIBRARY
ALLOCATE @1.LDC,IN,10

BUILD @1.LDC ;*BUILD LOADER CONTROL FILE
OuT 2

LOAD 1

EDIT 4

MAP 3

XOouT

END

ENDB

ASSIGN 5,@1.LDC ;*ASSIGN CONTROL FILE

START *START LOADER

CLOSE ALL ;*CLOSE ALL LOGICAL UNITS
DELETE @1.LDC *DELETE LOADER CONTROL FILE
SEXIT ;*AND EXIT

Figure 13-7. Library Loader Example

13-10 29-430 RO2 8&/76

This file creates a load module from the object file, by linking the FORTRAN Run-Time Library (RTL) subroutines.

Now a file can be built that coordinates the activities of all these files, as illustrated in Figure 13-8.

*EXECUTE CSS FILE

TASK .BG

ALLOCATE @].CAL,IN,80 :*ALLOCATE ALL NEW FILES
ALLOCATE @1.0B},IN

ALLOCATE @1.LDM,IN

ALLOCATE @1.LST,IN,120

ALLOCATE @1.ERR,IN,120

COMPILE @1 ;*COMPILE THE PROGRAM
ASSEMBLE @1 ;*ASSEMBLE IT

LIBLOAD @1 ;*BUILD A LOAD MODULE
LDBG @1.LDM ;*LOAD THE LOAD MODULE
START : ;*AND RUN THE PROGRAM
SEXIT

Figure 13-8. Compile, Assemble, Load and Execute Example

This EXECUTE file takes the program through all steps from compilation to execution. It also puts on the listing file the
FORTRAN listing, assembly listing, and load module map. But it makes the error of assuming that the CAL. OBJ, LDM,
LST and ERR files do not exist at the time EXECUTE is called. Furthermore, it does not take into account the possibility
that the program may not be a FORTRAN program, or may already exist in CAL or OBJ form.

A FINAL EXAMPLE

Figure 13-9 contains a version of the EXECUTE file that takes the most basic version of the program that exists, and
manipulates it as needed to execute it. If there is already a load module, it is simply executed. If there is an object file but
no load modiile, a load module is created and then executed. If there is no load module or object, but there is a CAL file, it
is assembled, and a load module is built and executed. Finally, if the most basic version is FORTRAN, the entire procedure
described above is performed.

This example illustrates several important features including the use of indentation to make the file easy to read, and
complete error-handling facilities, which include the processing of the FORTRAN return Code of 1, which means “one or
more errors detected by compiler”. (This return code is only returned by FORTRAN V Level 1 RO1 and later.)

In every case there is a test for program cancellation, because any program running at any time may be cancelled by the
console operator, and CSS files should take this into account.

The CSS EXECUTE file, and the files that is calls, COMPILE, ASSEMBLE and LIBLOAD, all allocate their own files and
delete them when finished. This promotes good use of the disc. The use of the program name as part of the filenames, even
for scratch files, tends to avoid filename conflicts.

With the use of this package, given a program in FORTRAN format on disc called, for example, FRED.FTN, the operator
can type in:

EXECUTE FRED

and a long and complex sequence of events will take place, culminating in the execution of program FRED. No additional
typeins by the operator are necessary. When the execution is finished, the CAL, object, load module, and listing files are
available on disc, as well as the original FORTRAN file.

This example shows how a complex command with advanced facilities is created using CSS. Other than that, it does not fill
the specific needs of any application. To promote clarity, no facilities for processing FORTRAN subprograms are included.
The user is encouraged to use the techniques shown in the development of this CSS file, even though the filc itself is not
used. An important aspect of CSS is that the user does not have to rely only on the commands the Operating System
designers have put into the Command Processor, but may design CSS commands to satisfy a particular set of needs.

29-430 RO2 8/76 13-11

*EXECUTE CSS FILE

TASK .BG
$IFNX @1.LDM 7*IF NO LOAD MODULE
$IFNX @1.0BJ 7*THEN IF NO OBJECT
SIFNX @I.CAL THEN IF NO CAL SOURCE
$IFNX @1.FTN #*THEN IF NO FORTRAN SOURCE
$COPY *THEN ERROR
*NO SUCH FILE IN FORTRAN FORMAT
$NOCOPY 'S0 EXIT
$SKIP ;
SENDC *ELSE (THERE IS A FORTRAN FILE)
$IFX @1.LST IF THERE IS A LISTING FILE
DELETE @1.LST J*THEN DELETE IT
$ENDC
ALLOCATE @1.LST.IN,120 ;*NOW ALLOCATE A LISTING FILE
$IFX @1.ERR *IF THERE IS AN ERROR FILE
DELETE @I.ERR *THEN DELETE IT
SENDC
ALLOCATE @1.ERR,IN,120 *ALLOCATE ERROR FILE
ALLOCATE @1.CAL,IN,80 #ALLOCATE CAL OUTPUT FILE
COMPILE @1 - *NOW COMPILE
SIFE 1 #IF RETURN CODE IS 1
$COPY #THE COMPILER FOUND ERRORS
*ERROR IN COMPILATION .
SNOCOPY
$SKIP #SO EXIT
$ENDC #ELSE (NO COMPILE ERRORS)
DELETE @I.ERR #DELETE THE ERROR FILE
SIFNE 0 #IF RETURN CODE ISN'T 0
$COPY #*FORTRAN WAS CANCELLED
*COMPILATION ABORTED
$NOCOPY
DELETE @1.CAL 7SO THE CAL FILE IS NO GOOD
DELETE @1.LST ;*AND THE LIST FILE IS USELESS
$SKIP *DELETE THEM AND EXIT
SENDC
$ENDC *NOW THERE IS CAL BUT NO OB
ALLOCATE @1.0BJ,IN 7*SO ALLOCATE OBJECT FILE
ASSEMBLE @1 *AND DO ASSEMBLY
SIFNE 0 ;*IF RETURN CODE ISN'T 0
$COPY *CAL WAS CANCELLED
*ASSEMBLY ABORTED
SNOCOPY
DELETE @1.0BJ 7SO DELETE THE OBJECT FILE
$SKIP *AND EXIT
SENDC
SENDC ;*NOW THERE IS OBJ BUT NO LDM
ALLOCATE @1.LDM,IN SO ALLOCATE LOAD MODULE FILE
LIBLOAD @1 ;*AND CREATE LOAD MODULE
SIFNE 0 »*IF RETURN CODE ISN'T 0
$COPY ;*THE LOADER WAS CANCELLED
*LIBRARY LOAD ABORTED
$NOCOPY
DELETE @!.LDM 7*SO DELETE LOAD MODULE FILE
$SKIP 2*AND EXIT
SENDC
SENDC *AT LAST WE HAVE A LOAD MODULE
LDBG @1.LDM ;*LOAD IT
START *START IT
SEXIT *FINISHED!

Figure 13-9. Complex CSS Example

13-12 29430 RO2 8/76

CHAPTER 14
HIGH LEVEL OPERATOR

COMMAND PACKAGE

INTRODUCTION

The High Level Operator Command Package allows the user to perform complex operator functions with a single operator
command. For example, the command FORTCLG compiles, establishes, loads, and executes a FORTRAN program with
no operator intervention.

The High Level Operator Command Package consists of a set of Command Substitution System (CSS) procedures. Thesc
procedures are designed to extend the basic commands included in the OS/16 MT2 Command Processor. Calls for the most
common functions consist of simply a verb and a single operand. This chapter is designed as an operator’s guide in using
the package.

SYSTEM REQUIREMENTS

The following are the required resources for operation of the High Level Operator Command Package.
— 0S/16 MT2
-— A console device
— A disc device

— A printer
— The utility programs listed in the Operational Data section.

A disc is required to use this package. Disc files are assumed for most data, particularly for intermediate and output data. A
default set of task establishment parameters is used in each procedure which produces an established task. This default set
of parameters may be overridden by parameters specificd by the user at the time the procedure is called.

Some additional assumptions are:

1. The background partition is available to the CSS procedure.

2. The background partition is large enough to load the appropriate utility program or language Pro-
cessor.

3. All referenced utilities and language Processors are present in object form on the default system
volume under the filenames specified in the Operational Data section.

4. The following types of files have the indicated extensions:

FORTRAN source .FTN
CAL source .CAL
CAL MACRO source MAC
Object .OBJ

Task Image .TSK
Task Logical Unit assignment files .ASN
Task establishment command input .TET
Help files HLP

5. The console device mnemonic is CON:.

6. All listing output is directed to device name PR:.

7. The default volume is set to the disc which contains the CSS package
and the disc must be marked on unprotected.

29-430 RO3 6/77 14-1

CSS procedures output error messages, and clean up after themselves, deleting temporary files, etc. A Help file is available
for each procedure and provides information about using the procedure. As an example, if the user is having difficulty
using the EDIT procedure, typing

HELP EDIT

causes the file EDIT.HLP, which contains tutoriai information, to be output to the console.

The Operational Data section contains references to relevant documentation for each procedure.

COMMANDS

This section contains a description of each procedure provided in this package. In reading the individual procedure
descriptions, pay particular attention to the terras fn and fd. The term fn refers to a Disc File name, specifically excluding
any extension field. A volume name, however, may optionally be included in fn if different from the Default System
Volume. The term fd, unless otherwise noted, refers to any device name or an entire Disc File Descriptor which can
contain an Extension Field.

Procedure names must be typed exactly as specified. The following characters are used to describe Command Syntax and
should not be typed when the actual Command is entered:

Square brackets I:xxx] Used to indicate an optional argument. An argument enclosed in square brackets may be
specified or omitted. If omitted and followed by other arguments, its preceding comma
must be typed.

Braces { a} Used to indicate a choice between two alternatives which are listed vertically within the
b, braces.

14-2 29-430 RO3 6/77

FORTRAN Compile, Load and Go

Name:
Purpose:
Format:

Function:

Operational
Notes:

Messages:

Example:

29430 RO3 6/77

FORTCLG
Perform a FORTRAN IV compile, task establishment, load and start.
FORTCLG fn

A FORTRAN main program and any number of subroutines contained in file fn.FTN are compiled,
established, loaded, and started.

File FTNRTL.OBJ is the assumed filename of the object format FORTRAN Run Time Library. If
any errors are detected during the FORTRAN compilation,the process is halted after all programs
have been compiled with no new files remaining. If file fn. TET exists it is used as TET input for the
task establishment; otherwise, a default establishment is performed as described in the Task
Establishment Defaults section. File fn.OBJ is created and deleted in the course of the process and
file fn.TSK remains as a result of the process. Listing output is directed to the printer. If file fn.ASN
exists, it is called to make Logical Unit (LU) assignments for the resulting task, otherwise
DEFAULT.ASN is called to make LU assignments. The FORTRAN $BATCH option must be used
when compiling a main program and a number of subroutines.

***FORTCLG: MISSING PARAMETER (FN)
-- Filename specifying source file to be compiled was omitted.

***FORTCLG: File fn.FTN NON-EXISTENT
— Source file to be compiled cannot be found.

#*¥+*FORTCLG: ERROR DETECTED DURING COMPILE
- Syntax errors were detected by the FORTRAN Compiler. No new files are generated and the
procedure stops.

***RFORTCLG: ERRORS DETECTED DURING TASK ESTABLISHMENT
— TET ended abnormally. Refer to the TET Command log listed on the printer for nature of error.

FORTCLG GRAPH
File GRAPH.FTN is compiled, established, and loaded. If file GRAPH.TET exists, it is used during

the establishment, otherwise a default establishment is performed; if file GRAPH.ASN exists, it is
called to make LU assignments, otherwise DEFAULT.ASN is called. The task is then started.

14-3

FORTRAN Compile
Name:

Purpose:

Format:

Function:

Operational
Notes:

Messages:

Example:

144

FORT
Perform a FORTRAN IV compile, and task establishment.
FORT fn

Compile, and establish a FORTRAN main program and any number of FORTRAN subroutines
contained in file fn.FTN.

Fite FTNRTL.OBJ is the assumed filename of the object format FORTRAN Run Time Library. If
any errors are detected during the FORTRAN compilation, the process is halted after all programs
have been compiled, with no new files remaining. If file fn. TET exists, it is used as Task Establisher
(TET) input for the task establishment, otherwise a default establishment is performed as described
in the Task Establishment Defaults section. File fn.OBJ is created and deleted in the course of the
process; file fn.TSK is the result of the process. Listing output is directed to the printer. The
FORTRAN $BATCH option must be used when compiling a main program and a number of sub-
routines.

*#*FORT: MISSING PARAMETER (FN)
— Filename specifying source file to be compiled was omitted.

***FORT: FILE fm.FTN NON-EXISTENT
~ Source file to be compiled cannot be found.

**FQRT: ERRORS DETECTED DURING COMPILE
— Syntax errors were detected by the FORTRAN Compiler. No new files are generated and the
procedure stops.

***FORT: ERRORS DETECTED DURING TASK ESTABLISHMENT
— TET ended abnormally. Refer to the TET Command log listed on the printer for nature of error.

FORT ELIZER

File ELIZER.FTN is compiled, and established, resulting in file ELIZER.TSK. If file ELIZER.TET
exists, it is used as TET input, otherwise a default establishment takes place.

29430 R0O3 6/77

CAL Assembly

Name: CAL

Purpose: Perform a CAL assembly.

Format: CAL fn l:,CAL options]

Function: File fn.CAL is assembled by CAL/16D.

Operational Up to 12 starting options can be specified to be passed to CAL. The CAL source program contained
Notes: in file fn.CAL is assembled with the resulting object being placed in file fn.OBJ.

The assembly listing is directed to the printer. CAL source library input, LU 7, is assigned to file
PCB16.CAL, if it exists.

If any assembly errors are detected by CAL, processing is halted after the assembly with no new
files remaining. Under normal operation, file fn.OBJ remains as the result of the process. For
optimum efficiency, the CAL SCRAT option should not be specified.

Messages: ***CAL: MISSING PARAMETER (FN) }
— Filename specifying source file to be assembled was omitted.

#**CAL: FILE fn.CAL NON-EXISTENT
— Source file to be assembled cannot be found.

***CAL: ERRORS DETECTED DURING ASSEMBLY
- Syntax errors were detected by the CAL Assembler. No new files are generated.

Example: CAL OP,CROSS

File OP.CAL is assembled resulting in file OP.OBJ; a cross reference is produced on the listing
output.

29-430 RO3 6/77 14-5

CAL Assembly, Load and Go

Name:
Purpose:
Format:
Function:

Operational
Notes:

Messages:

Example:

14-6

CALCLG

Perform a CAL/16D assembly, load and execution.

CALCLG fn [[CAL options|

File fn.CAL is assembled, loaded into the background, and started. Object file fn.OBJ is produced.

Up to 12 starting options can be specified to be passed to CAL. The CAL source program contained
in file fn.CAL is assembled, loaded, and started. If file fn.ASN exists, it is called as a CSS file to
make Logical Unit assignments for the task before starting it, otherwise DEFAULT.ASN is called.

The assembly listing is directed to the printer. CAL’s source library inpuit unit (LU7) is assigned to
file PCB 16. CAL if existent. If any assembly errors are detected by CAL, processing halts after the
assembly with no new files remaining.

Under normal operation file fn.OBJ remains as a result of the process. For optimum efficiency, the
CAL SCRAT option should not be specified.

***CALCLG: MISSING PARAMETER (FN)
— Filename specifying source file to be assembled was omitted.

***CALCLG: FILE fn.CAL NON-EXISTENT
— Source file to be assembled cannot be found.

***CALCLG: ERRORS DETECTED DURING ASSEMBLY
— Syntax errors were detected by the CAL Assembler. No new files are generated.

CALCLG PER,ERLST,CROSS
File PER.CAL is assembled, with an error listing and a cross reference, and loaded. If file PER.ASN

exists, it is called to make LU assignments, otherwise DEFAULT.ASN is called to make the
assignments. The task is then started. File PER.OBJ remains after completion.

29430 RO3 6/77

Macro Expansion and Assembly

Name:
Purpose:
Format:
Function:

Operational
Notes:

Messages:

Example:

29-430 RO3 6/77

MAC
Perform a CAL MACRO expansion and assembly.
MAC fn [,CAL options]

File fn.MAC is expanded and assembled. i
i

File fn.MAC is expanded using the CAL'MACRO Processor. Logical Unit assignments to various
macro libraries are made by calling CSS procedure MACROLIB.ASN which, unless modified to suit
the needs of a particular installation, assigns LU 7 to the standard system macro library (filename
MACROLIB.MAC).

Up to 12 starting options can be specified to be passed to CAL/16D for the subsequent assembly.
CAL’s source library input LU 7 is assigned to file PCB16.CAL if it exists.

Intermediate file fn.CAL is created and deleted during the course of this CSS procedure, and file
fn.OBJ is produced as a result of the procedure. All listing output is directed to the printer. For
optimum efficiency the CAL SCRAT option should not be specified.

#*x*MAC: MISSING PARAMETER (FN)
— Filename specifying source file to be expanded and assembled was omitted.

#***MAC: FILE fn.MAC NON-EXISTENT
— Source file to be expanded and assembled cannot be found.

#¥MAC: ERRORS DETECTED DURING MACRO EXPANSION
— Errors were detected by the Macro Processor. Other than the listing provided, no new files are
generated and the procedure stops.

MAC LUM,CROSS

File LUM.MAC is expanded using macro libraries assigned by MACROLIB.ASN, assembled with
cross reference listing, resulting in file LUM.OBJ.

14-7

Macro Expansion, Assembly, Load and Go

Name:
Purpose:
Format:

Function:

Operational
Notes:

Messages:

Example:

14-8

MACCLG
Perform a CAL MACRO expansion, assembly, load and start.
MACCLG fn [,CAL options]

File fn.MAC is expanded, assembled, loaded into the background, and started. Object file fn.OBJ is
produced.

File fn.MAC is expanded using the CAL MACRO Processor. Logical Unit assignments to macro
libraries are accomplished by calling CSS procedure MACROLIB.ASN which, unless modified to
suit the needs of a particular installation, assigns LU 7 to the standard system macro library
(filename MACROLIB.MACQC).

Up to 12 starting options can be specified to be passed to CAL/16D to effect the subsequent
assembly. CAL’s source library input LU is assighed to file PCB16.CAL if it exists. If file fn.ASN
exists, it is called as a CSS file to make Logical Unit assignments for the task before starting it,
otherwise DEFAULT.ASN is called.

Intermediate file fn.CAL is created and deleted during the course of the procedure and file fn.OBJ
remains as a result of the procedure. All listing output is directed to the printer. For optimum
efficiency, the CAL SCRAT option should not be specified.

***MACCLG: MISSING PARAMETER (FN)
— Filename specifying source file to be expanded and assemblied was omitted.

*#*MACCLG: FILE fn.MAC NON-EXISTENT
— Source file to be expanded and assembled cannot be found.

***MACCLG: ERRORS DETECTED DURING MACRO EXPANSION
— Errors were detected by the Macro Processor. No new files are generated and the procedure stops.

***MACCLG: ERRORS DETECTED DURING ASSEMBLY
— Syntax errors were detected by the CAL Assembler. No new files are generated and the pro-
cedure stops.

MACCLG FILE12

File FILE12.MAC is expanded using macro libraries assigned by MACROLIB. ASN, assembled into
FILE12.0BJ, loaded, and started.

29430 R0O3 6/77

Edit a File
Name:
Purpose:
Format:

“unction:

Operational
Notes:

Messages:

Examples:

29-430 R04 1/78

EDIT

Edit a file.

EDITfd; [fdy] [:Vol]

1.

If fdy is omitted:

0S EDIT is loaded into the background. Command input to the editor is taken from the
console. Fdy is edited with the resulting file replacing the existing fd. Should OS EDIT
terminate abnormally, the existing fd| is left unchanged. If fdj is a new file a message to this
effect is output and it is allocated (Indexed file, LRECL = 80).

If fd+ is specified:

As above except that the file to be edited is taken from fd; with the resultant file replacing
fdy. Fdj is unchanged. '

Fdy must specify a disc file with a logical record length of 80 bytes. If fdy is omitted, fd] must
specify a disc file with a logical record length of 80 bytes: if fdy is specified, fdy may specify any
device or file. Neither fd{ or fdy may contain a volume descriptor. Vol indicates the volume on
which the file to be edited resides. If omitted, the default system volume is assumed.

Since no files are changed it OS EDIT terminates abnormally, an editing session can be aborted by
pressing the Break key, and cancelling the background partition.

By specifying fd as in (2) above, an unedited backup file is retained (fdy).

#***EDIT: MISSING PARAMETER (FD1)
— File Descriptor specifying file to be edited was omitted.

##*EDIT: ABORT, NO NEW FILES GENERATED
— OS EDIT ended with a non-Zero Return Code, no files have been altered nor new files created.

#*#*EDIT: NEW FILE fd
— A new file results from this editing session and is being allocated.

EDIT TEST.CAL -

File TEST.CAL is edited, with the edited version replacing the original version.

EDIT OLD.FTN,NEW.FTN

File OLD.FTN is cdited. The edited version of OLD.FTN becomes NEW.FTN. File OLD.FTN is
retained in its original form.

14-9

Establish a Task

Name: ESTAB

Purpose: Establish an object program as a Task, Reentrant Library, or Overlay.

Format: ESTAB fn [,id, bias |

Function: Object program fn.OBJ is established with the Task Establisher (TET). If file fn.TET exists, it is

used as task establishment command input for TET. If file fn.TET does not exist, a default
establishment is performed. In this case id specifies a one to four (one ‘go three for.e'xten(.led
memory) character identification for the resultant task image, and bias specifies the partition bias.
Operational If fn.TET exists, id and bias are ignored. The object programs to be established are sgeciﬁed in the
Notes: INCLUDE statements contained in file fn.TET, and the image output file is specified in the BUILD
statement contained in file fn. TET.
If fn.TET does not exist, the result is file id bias .TSK (the id and bias parameters are concatenated
to form the filename). If id and bias are not specified, the task is biased at the background partition
and placed on file fn. TSK.

Messages: *#*ESTAB: MISSING PARAMETER (FN)
— fn was not specified.

*#+*ESTAB: FILE fn.OBJ NON-EXISTENT
— The object file to be esiablished cannot be found.

*#+*ESTAB: MISSING PARAMETER (ID)
— Bias was specified, but id was omitted.

***ESTAB: MISSING PARAMETER (BIAS)
— id was specified, but bias was omitted.

Examples: If SUBPROG.TET exists,
ESTAB SUBPROG
establishes SUBPROG.OBJ according to the TET input contained in SUBPROG.TET.
If SUBPROG.TET does not exist,
ESTAB SUBPROG,SUBP,9000

establishes SUBPROG.OBJ as a TASK with all task attributes set to TET defaults, and biased at
9000. The task is placed in file SUBP9000.TSK.

If SUBPROG.TET does not exist,
ESTAB SUBPROG

establishes SUBPROG.OBJ as a TASK with all task attributes set to TET defaults, and biased at the
background partition. The task is placed in file SUBPROG.TSK.

14-10 29-430 RO3 6/77

Copy an ASCII File
Name:

Purpose:

Format:

Function:

Operational
Notes:

Messages:

Examples:

29-430 RO3 6/77

COPYA

Copy an ASCII file.

COPYA fd,fd, [,**label] [,r] [,f_] [,1]

ASCII file fd | is copied to fdp; fdz is allocéted if necessary.

Optional modifiers may be specified as follows:

** label — specifies an ASCII label to be searched for on fd| before copying.

r - specifies the record length of the file being copied. DEFAULT = 80.

f

|

specifies the starting record where copying is to begin. DEFAULT = first record.

1 — specifies the record number where copying is to end. DEFAULT = last record
(EOF/EOM).

File fdj is allocated, if necessary, as an Indexed file with a logical record length of 80 bytes orr, if
specified. .

Copying starts at record 1 of fdy. If file fdy is smaller than file fdy the latter is possibly left with
erroneous trailing records. In such a case the user is advised to delete file fd) before the COPYA
procedure is executed and allow fd; to be allocated, thus ensuring that there are no trailing records.
In using COPYA with Paper Tape, Card Readers, or Console-like devices, the end of the input file
should be denoted by a record containing the characters '/*' in columns 1 and 2. Mag tape and
Cassette files should use a filemark to denote EOF. Disc files contain a built-in EOF indication
(Contiguous Disc files support filemarks if required).

***COPYA: MISSING PARAMETER (FD1)
— File Descriptor specifying file to be copied FROM was omitted.

***COPYA: MISSING PARAMETER (FD2) .
— File Descriptor specifying file to be copied TO was omitted.

**+*COPYA: FILE fd NON-EXISTENT
— File to be copied from cannot be found.

***COPYA: NEW FILE fd;
— fdy is a new file and is being allocated.

COPYA CR:,NEWFILE.FTN
Copy ASCII file from card reader to NEWFILE.FTN.
COPYA REF.LST,PR:,**TCB,132

Copy from file REF.LST to printer PR: starting at ASCII label **TCB with 132 byte records.

14-11

Copy a Binary File
Name:

Purpose:

Format:

Function:

Operational
Notes:

Messages:

Examples:

14-12

COPYB
Copy a binary file.
copyB fap,dy [dabet] [r]] [1]
Binary file fd is copied to fdy. Fdy is allocated if necessary.
Optional modifiers may be specified as follows:
label — specifies a binary label to be searched for on fd{, before copying is to begin.
r - specifies record length of the file being copied. DEFAULT = 108.
f — specifies the starting record number where copying is to begin. DEFAULT = 1.

| - specifies the record number where copying is to end. DEFAULT = last record
(EOF/EOM).

File fdy is allocated, if necessary, as an Indexed file with a logical record length of 108 bytes orr, if
specified.

Copying starts at record 1 of fdj. If file fdy is smaller than file fdy, the latter is possibly left with
erroneous trailing records. In such a case the user is advised to delete file fdy before the COPYB
procedure is executed and allow fdy to be allocated, thus ensuring that there are no erroneous
trailing records.

In using COPYB with files that do not have an EOF indication (Paper Tape), operator intervention
is necessary to complete the operation. In such a case COPYB terminates with an 84xx 1/O-error. At
that time the user should terminate by typing TA .BG;CA which properly terminates the copy
operation.

***COPYB: MISSING PARAMETER (FD1)
— File descriptor specifying file to be copied FROM was omitted.

#**COPYB: MISSING PARAMETER (FD2)
— File descriptor specifying file to be copied TO was omitted.

**#COPYB: FILE fd| NON-EXISTENT
— File to be copied from cannot be found.

***COPYB: NEW FILE fdy
— fdy is a new file and is being allocated.

COPYB RES.OBJ,CAS1:,ERR

Copy object file from file RES.OBJ to Cassette CAS1: starting at object label ERR.
COPYB PTRP:,CAL.OBJ

I/O-ERR:8413

*TA.BG;CA

Copy object file from Paper Tape Reader(PTRP:) to Disc File CAL.OBJ.

29-430 RO3 6/77

Copy a Task
Name:
Purpose:
Format:

Function:

Operational
Notes:

Messages:

Examples:

29-430 RO5 2/79

COPYT

Copy a file containing an established Task, Reentrant Library, or Overlay (i.e., TET output).
COPYT fdy, fdy

Image file fdg is copied to file fdy; fdy is allocated (as a 256 byte record length Indexed file) if
necessary. .

Copying starts at record 1 of fdy. If file fd{ is smaller than file fd), the latter is left with extraneous
trailing records. In such a case, the user is advised to delete file fdy before the COPYT procedure is
allocated thus ensuring that there are no erroncous trailing records.

In using COPYT with files that do not have an EOF indication (e.g. Paper Tape), operator
intervention is necessary to complete the operation. In such a case COPYT terminates with an 84xx
1/O-error. At that time the user should terminate by typing TA .BG;CA which properly terminates
the copy operation. COPY may not be used to copy the OS file itself.

***COPYT: MISSING PARAMETER (FD1)
— File descriptor specifying file to be copied FROM was omitted.

##kCOPYT: MISSING PARAMETER (FD2)
— File descriptor specifying file to be copied TO was omitted.

*###COPYT: FILE fdq NON-EXISTENT
— File to be copied from cannot be found.

*#*COPYT: NEW FILE fdy
— fdy is a new file and is being allocated.

COPYT TASKI1.TSK,PTRP:
Copy image file TASK1.TSK to Paper Tape Reader/Punch PTRP:
COPYT MAG1:,MAG2:

Copy image file on Mag Tape MAG1: to Mag Tape MAG2:

14-13

Load and Execute a Task

Name:
Purpose:
Format:

Function:

Operational
Notes:

Messages:

Example:

14-14

RUN

Load and start a task.

RUN fn

File fn. TSK is loaded into the background partition. If file fn.TSK does not exist, file fn.OBJ is
loaded. If file fn.ASN exists, it is called as a CSS procedure to make Logical Unit assignments for
the task, otherwise DEFAULT.ASN is called to make default LU assignments. The task is then
started.

This procedure can be used to run the task image file resulting from a FORT call, the task image file
that remains as a result of a FORTCLG, the object file resulting from a CAL or MAC, or the object
file that remains as a result of a CALCLG or MACCLG call. See the description of DEFAULT.ASN
for a sample of the form file fn.ASN might take.

***RUN: MISSING PARAMETER (FN)
— File descriptor specifying program to be loaded was omitted.

***RUN: FILE fn.OBJ NON-EXISTENT
— Neither fn.TSK or fn.OBJ exist.

After a FORTRAN compile and task establishment with:
FORT BARGRAPH
The user can load and start the resulting task image file with:

RUN BARGRAPH

29-430 RO3 6/77

Generate a New Operating System

Name:
Purpose:
Format:

Function:

Operational
Notes:

Messages:

Examples:

SYSGEN
Generate an OS/16MT?2 operating system.
SYSGEN osid [,fa] [NusT] [EX]

The configuration statements from fd are used to configure an OS/16MT2 system. The resultant
system is placed on file OS160sid, where osid has the format XXXX.ext.

The Configuration Utility Program (CUP/16) is run using fd for configuration input. The default fd
is CUPIosid. Output is put on file CUPQosid, and a listing of the CUP statements is output to the
printer. Configuration statements are prepared as described in Chapter 4 of the OS/16MT2 System
Planning and Configuration Guide, Publication Number 29-431.

osid must be of the form xxxx.nnn, where xxxx is up to four alphanumeric characters, and nnn is
three hexadecimal characters.

NLIST is a CAL/16 option
EX specifies that the SYSGEN is for an extended memory processor.

CAL/16D is used to assemble the three source modules. File CUPOosid is used for CAL copy input,
Files EXEC16.CAL, FMGR16.CAL, CMDP16.CAL are used as the system module source input.
EXECosid, FMGRosid, CMDPosid are produced as the result of the assemblies.

TET/16 is used to establish the threc object modules produced by the assembler along with the
proper driver library file (DLIB16.0OBJ or DLIBIGEX.OBJ). The established system is output to file
0OS160sid. The system is built whether or not there are assembly errors.

##*%§YSGEN: MISSING PARAMETER (OSID)
- Parameter specifying osid was omitted.

#*SYSGEN: FILE fd NON-EXISTENT
— Configuration statement fd cannot be found.

SYSGEN MT20.000,CR:

A system is generated from configuration statements read from the card reader. The output of CUP
is placed on file CUPOMT20.000. The outputs of CAL/16 are placed on files EXECMT20.000,
FMGRMT?20.000, CMDPMT20.000. The system is produced on file OS16MT20.000.

SYSGEN TEMP.123

A system is generated from configuration statements read from file CUPITEMP.123. The output of

CUP is placed on file CUPOTEMP.123. The outputs of CAL/16 are placed on files EXECTEMP.123,
FMGRTEMP.123, CMDPTEMP.123. The system is produced on file OSI6TEMP.123.

29-430 RO5 2/79 14-15

Assign Default Logical Units

Name: DEFAULT.ASN

Purpose: Make default assignments for a task.

Format: DEFAULT.ASN (no arguments)

Function: DEFAULT.ASN is called by any CSS procedure which loads and starts a task to make default

Logical Unit assignments for the task. Such Logical Unit assignments are used when no user
provided task assignment file exists.

Operational Unless changed by the user to reflect the needs of particular installation, the contents of
Notes: DEFAULT.ASN are:

ASSIGN 1,CON:
ASSIGN 3,PR:
ASSIGN 5,CON:
ASSIGN 6,PR:
$EXIT

14-16 29-430 RO3 6/77

INSTALLATION ,
The following procedure is used to build the OS/16MT2 High Level Operator Command (HLOC) package on disc.
Begin by MARKing the disc on-line, and setting the disc’s volume name as the default volume.

MARK Disc name,ON
VOLUME Volume Name

The individual procedures are built by calling file HLOC which contains the package. Enter the file name from the system
console:

HLOC

After generating the procedures, HLOC checks for the presence of the required support programs on the DISC and outputs
a list of those not present. Such programs should be built before the calling CSS procedure is used. The next section

summarizes utility requirements.

Finally, files DEFAULT.ASN and MACROLIB.ASN should be examined for compatibility with the needs of the particular
installation and modified if necessary (see the descriptions of procedures DEFAULT.ASN, and MAC or MACCLG

respectively).

NOTE

The package requires an OS/16MT?2 configured for a minimum of
2 levels of CSS nesting and a minimum command buffer length of
40 bytes. A command buffer length of 72 is necessary to call a
HELP file.

OPERATIONAL DATA

Task Establishment Defaults

The following task establishment parameters are used when a default task establishment is selected by the user.

Establish as a TASK

OPTIONS: User task
Floating point
Not memory resident
Arithmetic Fault Pause
SVC 6 pause
Compatible
Double Floating Point

GET: X400’ bytes (the amount needed by a FORTRAN program)

BIAS: The task is biased to run in the background partition if no bias is specified in the
command.

PRIORITY: Initial priority = 128,
maximum priority = 128

TSW: Status = 0000

start address = that address contained in the object code or UBOT+X’84" if not avail-
able.

Space is reserved for User Dedicated Locations (e.g., REL code starts at UBOT+X'84").

If the establishment is a result of the FORT or FORTCLG procedures, an EDIT of file FTNRTL.OBI is performed.
If the above establishment defaults are unsuitable to a particular installation they can be changed by altering (via the EDIT

Procedure call) the default establishment parameters contained in the ESTAB.CSS, FORT.CSS, and FORTCLG.CSS
segments of file HLOC.CSS. ‘

29-430 RO5 2/79 14-17

Utility Programs

The following utility programs and libraries are required by the package, and must be on the disc under the filenames

listed below.

Program No.

03-054

07-040
03-101F02
03-101F03
03-084
03-097
07-091
03-087

03-056

03-063

Source Libraries

Program No.

07-090

07068
07-087
07-088
07-089

14-18

Name

Extended Fortran IV Compiler

Fortran RTL

CAL/16D Assembler
CAL/16DS Assembler
CAL Macro Processor
CUP/16

0S/16 MT?2 Driver Library

0S/16 MT2 Task Establisher
(TET/16)

0OS COPY

OS EDIT

Name

0S/16 MT2 Parameters and
Control Blocks!

System MACRO Library2
0S/16 MT2 Executive

0S/16 MT2 File Manager

0S/16 MT2 Command Processor

Filename
FORT4.0BJ
FORT4.0VL

FTNRTL.OBJ
CAL16D.OBJ
CAL16DS.0OBJ
CALMACRO.OBJ
CUP.OBJ
DLIB16.0BJ

TET.OBJ

COPY.OBJ

EDIT.OBJ

Filename

PCB16.CAL

MACROLIB.MAC
EXEC16.CAL
FMGR16.CAL

CMDP16.CAL

NOTES

Used By

FORT,FORTCLG

(Required for the overlaid compiler only)

FORT,FORTCLG
CAL,CALCLG,MACMACCLG -
SYSGEN

MAC,MACCLG

SYSGEN

SYSGEN

ESTAB,FORT,FORTCLG,SYSGEN

COPYA, COPYB, COPYT

EDIT

Used By

CAL, CALCLG,
MAC, MACCLG

MACMACCLG
SYSGEN
SYSGEN
SYSGEN

1. Presence of PCB16.CAL is optional. See description of

CAL.CSS procedure.

2. Presence of MACROLIB.MAC is the default case. See des-
cription of MAC.CSS procedure.

29-430 ROS 2/79

APPENDIX 1

OPERATOR COMMAND SUMMARY

ALLOCATE fd CONTIGUOUS. fsize [.kcys]

ats ¢ {LNDEX [.lrccl { / [bsize} [/isizc] [,kcys]]}
defaults: Irecl = 108, bsize = 1, isize = 1,
keys = 0000

ASSIGN lu.fd [[access priv.] [keys]]

defaults: access priv. = SRW, keys = 0060

BIAS [{adrs }J default: adrs=0
- &

BFILE td - [du]

BRECORD fd - [aa]

BUILD fd

CANCEL

CLEAR fd

CLOSE {Iu _A_Llplu] }
CONTINUE

DELETE fd [ta] ...
DISPLAY DEVICES [fa]

DISPLAY FILES , [voln:] [filename] [.ext] {,fd]
DISPLAY LU [fd]

DISPLAY MAP [ra]

DISPLAY PARAMETERS [.£d]

DISPLAY REGISTERS [fd]

DISPLAY TIME [fd]

29-430 RO6 9/79 Al-1

APPENDIX 1 (Continued)

ENDB

n
EXAMINE adrs Jadrs
FFILE [fa] []
FILES [voln:][filenamg [.ext][,fd] default volume name is system volume
FRECORD [ea] [te]
INITIALIZE d,voln [[READCHECK]
LDBG fd [.bias]
LFGR partition, taskid [fd] [, bias] [,CSEG]
LOAD taskid [ka] [*]
- .BG

PROTECT
MARK fd, g\]_ s oS
ROLL
OFF [05]
l_/[Q_DIFY adrs, [data] , [data]
default data is zero
OPTIONS opt [,opt] -
opt= AFC,AFP,RES,NONRES,UT,ET,ROLL,
NOROLL,FLOAT,NOFLOAT,DFLOAT,
NODFLOAT,SVCP,SVCC,COMP, or NOCOMP

PAUSE
PRINT (fdl,n] DI, TI
RENAME oldfd,newfd
REPROTECT fd,keys
REWIND [fa] L[]
e R
SAVE fd
SEND (up to 64 character string)
SET CODE n

Al-2 29-430 RO6 9/79

APPENDIX 1 (Continued)

SET LOG [fd [,COPY]]

SET PARTITION name/start [,name/start] -
SET PRIORITY n

S_ET :l:IME [mm/dd/yy] [,hh:mm:ss] or [dd/mm/yy] [,hh:mm:ss]
g ART [adrs] [,args to prog]
TASK [taskid]

VOLUME [voin] or [voln/SPL]
WFILE fd [u]

XDELETE fd[,fd]

SBUILD fd

SCLEAR

SCOPY

SELSE

$SENDB

SENDC

$E_XIT

$IFE n

SIFG n

_TEE n

$IFNE n

$IYFNG n

SIENL n

SIFNNULL @n

$IFNULL @n

29-430 ROS 2/79

APPENDIX 1 (Continued)

SIFNX fd

SIFX fd
$JOB

$NOCOPY

EKIP

$TERMIOB

Al4 29430 RO2 8/76

Response to a command etror is a message in the general format:

XXXX is the general error class descriptor.

XXXX-ERR

APPENDIX 2

2777 #=N

YYYY is an error descriptor which further defines the error.

COMMAND ERROR RESPONSE SUMMARY

7777 is an informational field which specifies an entity helpful in determining the cause of the error.

N is the number of the command for multiple commands on a line; if N=1, this field is omitted

ALLO

ALLO

ALLO

ALLO

ALLO

ASGN

ASGN

ASGN

ASGN

ASGN

ASGN

ASGN

ASGN

ASGN

TYPE

PRIV

VOL

NAME

SIZE

TYPE

LU

VOL

NAME

PROT

PRIV

BUFF

ASGN

CONN

EOM

20-430 RO2 8/76

INFORMATION

MEANING

FD=fd

IFD=fd

FD=fd

FD=fd

FD=fd

LU=lu

FD=fd

FD=fd

FD=fd

FD=fd

none

FD=fd

FD=fd

FD-fd

Allocate failed because volume is write protected.

Allocate failed because specificd volume not found in
system.

Allocate failed because file name currently exists on
specified volume.

Allocate failed because specified size is too large.

Allocation failed because specified volume is a device
instead of a direct access volume.

Assignment necessary for command failed because of
illegal LU specification.

Assignment required by command failed because
specified volume or device not found in system.

Assignment required by command failed because
specified file name not found on specified volume.

Assignment required by command failed because
specified protection keys do not match keys associ-
ated with specified fd.

Assignment required by command failed because re-
quested access privileges could not be granted.

Assignment required by command failed because of
insufficient system space to contain buffer.

Assignment required by command failed because
specified logical unit is alrecady assigned.

Assignment required by command failed because
specified fd is an SVC 6 connectable device.

Assignment required by command failed because of
End of Medium 1/O crror. If error occurs on disc de-
vice, check size of disc (2.5MB, 10MB, etc.) was speci-
fied correctly when the system was SYSGENd.

A2-1

CLASS

ASGN

ASGN

ASGN

ASGN

CLOS

CLOS
CLOS

CLOS
(&

CSS

DELE
DELE
DELE

DELE
DELE

DELE
DELE
DELE

DELE

DELE

A2-2

TYPL

RECV

FUNC

SIZE

TYPE

LU

DU

UNRV

RECV

LVL

BUFF

PROT

VOL

NAME

ASGN
FD

DU

UNRV

RECV

EOM

FUNC

APPENDIX 2 (Continued)

INFORMATION

MEANING

FD=fd

FD=fd

FD=fd

FD=fd

LU=lu

FD=fd

FD=fd

FD=fd

none

none

FD=fd

FD=fd

FD=fd

FD=fd
FD=fd

FD=fd

FD=fd

FD=fd

FD=fd

FD=fd

Assignment failed because recoverable 1/O error en-
countered on device referenced by fd.

Assignment required by command failed because fd
specifies a file of illegal type (e.g.. a chained file,
created under OS/32, or an indexed file on a system
SYSGENd without an INDEX cup statement).

Assignment failed because there is no room on the
disc for an index and a data block.

Assign failed because specified fd is an off-line device.

Close required by command failed because LU
specified is illegal.

Close required by command failed because device
referenced by fd is unavailable to system. This results
{rom [/O error encountered during Close.

Close required by command failed because unrecover-
able 1/O crror encountered on device referenced by
fd.

Close required by command failed because recover-
able 1/O error encountered on device referenced by

fd.

CSS call would cause CSS level to be greater than
SYSGENed value or number of nested $1Fs greater
than 255.

CSS parameter substitution caused a command line to
exceed SYSGENed command length.

Delete failed because fd specified has non-zero pro-
tection keys.

Delete tailed because specified volume not online to
system.

Delete failed because specified file name not found
on specified volume,.

Delete failed because specitied fd currently assigned.
Delete failed because of invalid syntax of fd.

Delete failed because of device unavailable 1/O error
encountercd on device referenced by fd.

Delete failed because of unrecoverable 1/O error en-
countered on device referenced.

Delete failed because recoverable error encountered
on device referenced.

Delete failed because of End of Medium 1/O error. If
error occurs on disc device, check size of disc (2.5MB,
10MB ctc) was specificd correctly when the system
was SYSGENd.

Delete failed because fd specifies a file of illegal type
(c.g.: a chained file, created under OS/32, or an
indexed file on a system SYSGENd without an
INDEX cup statement).

29-430 R0O4 1/78

APPENDIX 2 (Continued)

CLASS TYPE INFORMATION MEANING
DELE TYPE FD=fd Delete failed because fd specifies a device.
DELE PRIV FD=fd Delete failed because volume which contains the

specified fd is write protected.

DUPL none none Specified direct access device contains a volume name
which is identical to the name of another volume or device.

FORM none POS=text Invalid command syntax. Usually caused by invalid
delimiters. The information field indicates the posi-
tion in the command where the syntax error was
detected.

FUNC SEQ noné Command entered out of sequence. See particular
command definition for restrictions.

FUNC ARG nonge Not enough memory between UTOP and CTOP to
contain the specified arguments to program.

FUNC TASK none ' Command requires a curreﬁtly selected task and there
is none.

10 DU FD=fd Device unavailable error encountercd on specitfied fd.

(o) IOFN FD=fd Illegal function error cncduntered on specificd fd.

10 EOM FD=fd End of Medium error encountered on specified fd.

10 EOF FD=fd End of file encountered on specified fd.

10 UNRV FD=fd Unrecoverable error encountered on specified fd.

10 RECV FD=fd Recoverable error encountered on specified fd.

10 LU LU=lu Illegal or unassigned Logical Unit specified by lu.

LOAD DCHN none Invalid REF-DEF chain encountered during load.

LOAD CKSM none ’ Checksum error encountered during load.

LOAD SEQ none Object record out of sequence encountered during
load.

LOAD OBl none Invalid object format is encountered during load.

LOAD MEM none Insufficient memory in background partition to
contain program.

LOAD PRES TSK=taskid Specified TASK ID already present in system.

LOAD NAME TSK=taskid * Specified TASK ID is illegal.

LOAD SEG none Specified task requires Task Common or Library
partition that does not exist or is in incorrect l

32kb module.

LOAD LIB none Invalid format item in Loader Information Block.

LOAD LU none Load LU is invalid or unassigned or Load LU attributes
are invalid.

LOAD PFUL none Partition required by specified task not vacant and
cannot be rolled out.

LOAD NOFL none . Floating Pt not supported by sysgen.

29-430 ROS5 2/79 A2-3

CLASS

LOAD

LOAD

LOGQ

MNEM
OVLY

PACK

PARM

PARM

PARM

PARM

PARM

RENM
RENM

RENM

RENM

RENM

RENM
SEND

SEND
STAT
STAT

STAT
STAT

STAT

VOLU

A24

TYPE

NPRT

EOM

none

none
none

nonec

MNEM

VAL

TASK

FD

PRQD

NAME
FD

DU

UNRV

RECV

TYPE

PRES

NMSG
ACTV
PRIV

LU

VAL

NOFF

none

APPENDIX 2 (Continued)

INFORMATION

MEANING

none¢

none

none

none

none

nonce

POS=text

POS=text

POS=text

POS=text

POS=text

FD=fd
FD=fd

FD=fd

FD=fd

FD=fd

FD=fd

TSK=taskid

TSK=taskid
none

none

none

none

none

none

Partition required by specified task not in system.

Load failed because of End of Medium 1/O error. If
error on disc device, check size of disc (2.5MB, 10MB
etc) was specified correctly when the system was
SYSGENd.

System log queue has been overflowed. Log message
has been lost.

Command not recognized as command or CSS call.

System overlay volume marked off-line.

Too few good scctors to allocate the allocation map
and directory. Pack should be reformatted.

Mnemonic parameter was not recognized. Parameter
in error specified by text.

Parameter denoted by text, specifies an invalid value.

Parameter denoted by text, contains invalid syntax
for task 1D.

Parameter denoled by text, contains invalid syntax
for a File Descriptor.

A required parameter following the field denoted by
text is missing.

New name already exists.
Rename failed because of syntax error in specified fd.

Rename failed because of device unavailable 1/O error
encountered on device referenced by fd.

Rename failed because of unrecoverable error 1/O
error encountered on device referenced by fd.

Rename failed because of recoverable I/O error en-
countered on device referenced by fd.

Attempt to rename the NULL device.

Print failed because Spooler not active.
Send failed because task cannot receive message.
Specified partition contains an active task.

Specified device or file is assigned or contains as-
signed files and command requires exclusive access.

LU not assigned as specified.

Specified partition addresses are out of order.

Specified device was dismounted without being
marked off. The volume can be marked on with pro-
tect. Disc Integrity Check must be run.

Specified direct access volume contains an invalid
volume name

29-430 RO5 2/79

MESSAGE

0S/16 MT2 01-00

PWR RSTR-RESET DEV

ILGL INST AT XXXX
ILGL SVC XXXX

ILGL SVC ADDR XXXX

MEMF XXXX
MEMPROT ERR XXXX

ARITH ERR XXXX

END OF TASK YYYY

PAUSE

29-430 RO6 9/79

APPENDIX 3
0S/16 SYSTEM MESSAGES

DESCRIPTION

System initialization message.

Recovery from power failure. Devices must be initialized and RUN entered at
the display panel (core-memory systems) or the run key “<” depressed
(Series Sixteen systems) for restoration to continue

Hlegal instruction at XXXX in task code. Results in task being PAUSEd.

Illegal SVC at XXXX in task code. Results in task being PAUSE.

Illegal address in SVC at XXXX in task code. Results in task being PAUSEd.
Memory parity error at XXXX. Results in task being PAUSEd.

Memory Violation PSW loc = XXXX. Results in task being PAUSEd. If the
memory protect option is enabled, the background task is protected from
writing over system and foreground areas. Foreground tasks are protected from

writing over system and background arecas.

Arithmetic fault has occurred, PSW loc = XXXX. Results in task being PAUSEd
unless the arithmetic continue option is specified.

Task identification by Task ID has terminated with Return Code YYYY.

Task identified by Task ID has entered console wait state (Paused).

A3-1/A3-2

APPENDIX 4

0S/16 SYSTEM CRASH CODES

CODE DESCRIPTION
2 Invalid queue entry on the Command Processors’s queue
7 Invalid VMT during mark processing
100 Arithmetic fault in system code X'48' = PSW at time of fault
101 Memory Protect fault in system code.
102 Illegal instruction in system code IIIPSW = PSW at time of interrupt
121 No OS file found for overlayed system
132 Illegal SVC in system code
142 Illegal address in SVC in system code
152 Memory parity error in system code X'38'= PSW at time of interrupt
153 Attempt at recovery from power failure on a system with no power fail recovery logic
154 Attempt to run an OS SYSGENed for exténded memory on a processor with less than 64KB, or when the
OS itself is > 32KB
162 [llegal interrupt on Device address O
321 Attempt to release a free sector
330 Attempt to manipulate allocation for an invalid sector address
401 Attempt to boot load a hardware protected or completely full disc with incorrect directory.
The disc from which the OS is being boot loaded must be marked on without hardware protection. Once
this is done, the OS can be reloaded with the hardware protection in effect if desired. If subsequent load
attempts fail, there is insufficient disc storage available for marking the disc on. Delete a file on the disc
using another OS.
66666666 Console device is unavailable - recovers when console device is restored.
99999999 OS volume is unavailable - recovers when volume is restored.
0S/16 BOOTSTRAP LOADER ERROR CODES
CODE DESCRIPTION
1 Unable to find the specified OS file on the disc.
i.e. VOLN: OS16XXXX.NNN
where XXXX = up to four optional characters
NNN = three hexadecimal digits specified in location X'7E'as X'ONNN'
DNXX I/O Error occurred while attempting to access the disc.
DN = device number on which error occurred.
XX = device status byte

29-430 RO6 9/79 A4-1/A4-2

APPENDIX 5§

SUMMARY OF TET/16 COMMANDS

COMMAND SYNTAX SEQUENCE CONSIDERATIONS VALID FOR:
TA RL TC OS

AMAP [fd] anywhere X X X X

_BATCH anywhere X X X X

B_lAS XXXX [,xxxx]]
TASK

BUILD RL

- TCOM
OVLY ,fd
oS

EDIT fd

END

ESTABLISH |TASK

GET xxxx

INCLUDE fd ,program
_ label

INTERACTIVE
JOB name
LOG fd

MAP [fd]
NOLOG

OPTIONS opt [,opt]
OVERLAY name [NEW]

PAUSE

_EBIORITY rp,mp
REMOTE

RESOLVE fdxxxx [xxxx]
REWIND [fd]

TSKCOM xxxx

TSW status | ,start
address

ELUME voln

WFILE [fd]

must follow ESTAB and precede INCLUDE

must follow INCLUDE

must follow INCLUDE
last

must precede everything except
VOLUME and REMOTE

must follow ESTABLISH

anywhere
anywhere
anywhere
anywhere
anywhere

must precede all INCLUDESs
and EDITs

after main segment definition;
must have following INCLUDE

anywhere

anywhere in pass one
anywhere (
after INCLUDE
anywhere

must follow ESTABLISH
and precede INCLUDE

anywhere in pass one

anywhere

anywhere

>
>
>
>

b ST
XX X x® X
XX X) X
XX X X X

X

X X X X

X

X X X X

X

X X X X

X

X

X X X
X

29-430 R0O4 1/78

A5-1/A5-2

APPENDIX 6

TET/16 ERROR MESSAGES

TET/16 error messages contain a TET number and message ficld.

Example: TET006 1/O DEV ERR (status)
TET message field
number

The TET-number field is normally TET001 in which case it has no special meaning. When it is other than TET0O01, it serves
to better define the condition causing the message. In the previous example the message field explains the problem and
shows the relevant I/O status while TET0O0G indicates the error occurred while outputting the map.

All possible TET/16 messages are listed below in the error table.

The meaning of the table headings are as follows:

MESSAGE: The message field output
TET NO: Further identifies the cause of the problem
MEANING: An explanation of the message.
INTERACTIVE: TET’s action if run in interactive (Command stream from console device)
BATCH: TET’s action if run is batch (Command stream not from console device)
REMOTE: TET’s action if run is remote (REMOTE Command Specified)
TET INTER-
MESSAGE NO. MEANING ACTIVE BATCH REMOTE
ILG CMD 001 Command verb invalid Read next Abort Abort
command
ILG CMD SEQ 001 Command not valid at this point in Read next Abort Abort
TET operation command
ILG CMD PARAM Improper command parameter: Read next Abort Abort
command
001 Illegal parameter
002 Missing parameter
003 Format invalid
MEM FULL TET workspace error: Abort Abort Abort
001 No room for LIB
002 No room for dictionary
003 No room for load module
004 Build below top of dictionary

(invalid chain)

29-430 RO2 8/76 ' A6-1

MESSAGE

ILG OBJ ITEM XX

ILG COMN

NO DCHN END XXXX

MULT DEFD

RESOLVE ERR
ILG GET STOR
(SYMBOL) NOT

FOUND

WRONG PROG

TET ABORTED

A6-2

APPENDIX 6 (Continued)

TET INTER-
NO. MEANING ACTIVE BATCH REMOTE
001 Illegal Object format item Abort Abort Abort
in input (XX=item)
Common processing error: Abort Abort Abort
001 Common item encountered during
Reentrant Library build
002 Labeled Common increased in size from
previous
003 Block data item encountered for
TSKCOM during task build
004 Task common symbo! not TSKCOM during
Task Common build
005 TSKCOM referenced but no TSKCOM
command processed
006 Block Data item encountered in
wrong module during overlay build
007 Blank common referenced in overlay
not found in root segment
001 Endless chain (32767 links) found on Abort Abort Abort
resolving reference.
002 Chain loops (REF=DEF) on resolving
reference (XXXX gives DEF or ENTRY
address)
001 Multiple definitions Ignore Ignore Ignore
002 Definition in more than one overlay
is referenced by the root
001 Second Resolve command gives different Ignore Abort Abort
partition start address
001 GET command specifies too large Read next Abort Abort
an amount of memory command
001 Program label search failed Read next Abort Abort
command
001 New definition or common block Abort Abort Abort
encountered on Pass 2
002 Different definition address
encountered on Pass 2
003 Different program sizes encountered
on Pass 2
001 No scratch or scratch not rewindable Abort Abort Abort
in REMOTE
002 REF-DEF error
003 Dictionary error

29-430 RO2 8/76

MESSAGE

LU (lu) NOT
ASSIGNED

I/0 DEV ERR XXXX
(fd)

CKSM ERR

SEQ ERR

EOM

FD SYNTAX

FILE ERROR (xxxx)
(fd)

UNDEFD SYMBOLS

SHORT RECORD
(fd)

29:430 R0O2 8/76

TET

APPENDIX 6 (Continued)

INTER-
NO. MEANING : ACTIVE BATCH
004 Exceeded maximum number of programs
in EDIT libraries (4096)
005 Common or Block Data reference without
definition
006 Error in error handling
001 Optional fd omitted; associated LU Read next Abort
not assigned. command
1/O error encountered; xxxx is the Pause Pause
SVC 1 returned error status.
001 Reading Command input
002 Reading Object input
003 Copying overlays
004 Writing to scratch file
005 Outputting load module
006 Outputting map
001 Checksum error encountered on input Abort Abort
file
001 Sequence number error encountered Abort Abort
on input file (Record lost or out of
sequence)
001 End of medium on LU 1 Pause Pause
001 File descriptor syntax-crror Read next Abort
command
Error encountered ; xxxx is the Rcad next Abort
SVC 7 returned error status command
001 Closing a file
002 Assigning a file
003 Allocating a file
004 Reassigning at end of Pass 1
005 Error during reassignment at
TET termination
001 Warning that undefined symbols exist Ignore Ignore
001 Build file has logical record Abort Abort
length less than 256
002 Scratch file has logical record

length less than 108

REMOTE

Abort

Abort

Abort

Abort

Abort

Abort

Abort

Ignore

Abort

A6-3

MESSAGE

ILG ADRS

LOAD PROGRAMS
(fd)
REPOSN SCRATCH

TCOM ERR
CO FILE RQD

ILG OV EXTRN

A64

TET

001

002

001

001

001

001

001

APPENDIX 6 (Continued)

(See Program Logic Manual
29434, Chapter 4)

INTER-
MEANING ACTIVE BATCH REMOTE
ORG to address outside partition Abort Abort Abort
encountered
ORG to absolute address encountered
in overlay
Prompt if no scratch
Operator prompt for non-rewindable
scratch
Nlegal object item for TSKCOM build Abort Abort Abort
Overlayed OS requires CO file Read next Abort Abort
command -
Illegal External reference in overlayed OS Abort Abort Abort

29430 RO2 8/76

APPENDIX 7

SUMMARY OF 0S COPY COMMANDS

29-430.R0OS5 2/79

DEVICE COMMANDS
BSP LU,n backspace device on LU by n filemarks.
WFM LU write filemark on device on LU.
SKP LU,n skip forward n or ALL filemarks on device on LU.
LU,ALL
RWD LU rewind device on LU.
FUNCTION COMMANDS
CPYA FN or **NNNNNNNN,R,N or ALL,F,L Copy ASCII file.
CPYB FN or LLLLLL,R\Nor ALL,F,L Copy Binary file.
VERA FN or **NNNNNNNN,R,NorALL,F,L Verify ASCII file.
VERB FN or LLLLLL,RNorALL,F,L Verify Binary file.
DSPA FN or **NNNNNNNN,R,NorALL,F,L Display ASCII file.
DSPB FN or LLLLLL,R\NorALL,F,L Display Binary file.
LBLA #**NNNNNNNN Write label for ASCII file
LBLB LLLLLL . Write label for Binary file.
FNDA **NNNNNNNN,LU Search for label on ASCH file.
FNDB LLLLLL,LU Search for label on Binary file.
LSTA LU List labels on ASCII file.
LSTB LU List labels on Binary file.
CONT Restart an interrupted OSCOPY operation.
P Pause OS COPY
END Terminate OS COPY
R126 Set OS COPY to process 126 byte object code records
R108 Reset OS COPY to process 108 byte object code records.

(OSCOPY initialized to this mode)

A7-1/A7-2

APPENDIX 8

SUMMARY OF SOURCE UPDATER COMMANDS

In the syntax, reference is made to the following operands:

ifd input source fd. If omitted or '*'; defaults to LU 1.

ofd output source fd. If omitted or '*', defaults to LU 2.

ufd update commands fd.

label source label of form **label. If optional and omitted, defaults to current position on fd.

str ending string on a source line, given to identify the last source record to be processed. Must be

specified in quotes. If omitted, stops on / in columns 1 and 2, EOF, or EOM.

col column number identifying the first column or character number to be checked when searching for
the ending string. If omitted, defaults to 1.

n number of characters counting from the '?beginning of a source line. If omitted, defaults to 80.

seq/seql/seq2 sequence number in columns 73 through 80

incr sequence number increment.

OPERATOR COMMANDS

FIND label [,ifd]

CopY [ifd] [ofd] [str [col]]
LisT [ifd] [label]
TABLE ifd

VERIFY [itd][ofd] [[str]]

EXCEPTION [ifd] [,ofd]

RESEQUENCE [ifd] ,seql [,incr][,0fd]

REWIND fd
BUILD ofd

INCLUDE ifd, label

ENDB

UPDATE ufd [itd][ofd] [str [ico]]

29-430 RO5 2/79

search for label on input fd

Copy from ifd to ofd

search for label on input fd, then list remaining source on LU 3.
rewind ifd and print on LU 3 a table of all labels.

compare source on ifd with source on ofd, comparing the first n characters on
each line. Print on LU 3 any which do not match.

compare source on ifd with source on ofd, comparing sequence numbers. Print
on LU 3 all lines which (by number) appear in one source and not the other,
and all lines which (by number) appear in both but do not otherwise match.

input source from ifd, resequence starting from seql with increments of incr.
output to ofd.

rewind fd
put update into Build mode where only INCLUDE commands are accepted.

search for label on ifd, then copy rest of source to ofd given in BUILD com-
mand.

end Build mode.

put updater into Update mode where update commands are read from ufd, old
source is input from ifd and new source’is output to ofd.

A8-1

APPENDIX 8 (Continued)

UPDATE COMMANDS

INSERT seq insert the line/s which follow this command immediately after the line with sequence
number seq. A line with /* in columns I and 2 terminates the insert.

DELETE seql [,seq2] delete from seql to seq2 inclusive. If seq2 is omitted, delete seql only.

MODIFY seql delete line seql and replace by single source line which follows this command.

REPLACE seql replace line seql by the line/s which follow this command. A line with /* in columns

1 and 2 terminates the replacement line/s.

SELECT insert and/or replace by sequence number source lines which follow. Those already in
input source arc replaced; those not are inserted in the correct position by number.
The source lines are terminated by a line with /* in columns 1 and 2.

ENDUP terminate UPDATE mode.

A8-2 29430 RO2 8/76

UTILITY COMMANDS

ol

LL n

PA

KI

SLn

EN

LUn

BC

TB n

TC [C]

BT [ng, np, ... n20]
RW LU

WF LU

FF LU [n]

BF LU [n]

FR LU [,n

FS LU [n]

5s v [n)

29-430 RO5 2/79

APPENDIX 9

SUMMARY OF EDIT COMMANDS

DESCRIPTION

Set mode

Set line length

Pausc

Kill edit buffer

Set list device record length
End editor operation

Change input file logical unit
Request for byte count

Set tabulation

Set or display tab character

Set or display tab points ng, . ..

Rewind

Write file mark
Skip forward n file marks
Backspace n file marks

Skip forward n records

Backspace n records

20

A9:1

INPUT/OUTPUT COMMANDS

OR Li,L,
or xsix [s2x] [n]
RE Ly,Ly

RE xS1x [S2x] [n]
WR Ly,Ly

WR xS1x [S2x] [n]
ML L

ML xSyx [n]
PL L
PL xS1x [n]
UP n
DN n

CH xS1xS87x [n]

CCoxSix [n]

PR xS1x [Syx] [n]
PR Ly,Ly

Ly [text]

CR

AP
IL [L]
DL [n]

DL /string/ [m,n]

MV Ly, Ly [, L3]

APPENDIX 9 (Continued)

DESCRIPTION

Output and Read

Read into Edit Bufter

Write from Edit Buffcer

Move to a line
Move to a line

Move to a line and print

Up n lines from the current line
Down n lines from the current line
Change a string

Change char(s) beginning at a spec-
ified column

Print Line

Insert, delete or replace line

Create text

Append text following last line of EB.

Insert lines following current line or
line L.

Delete n lines at current line.

Delete line containing /string/n times;

if m then consider /string/ starting
at column m only.

Move line(s) from Ly up to and inclu-

ding L3, if specified and insert them
following Lj.

CURRENT LINE

First line read
First line read
Last line output

Ly

Line containing Sj

L -

Line containing S}
Previous current line +n
Previous current line -n
nth line

nth line

Last line printed
Last line printed

L

First line entered
First line entered.
Unchanged or line L.

Line following last line
deleted.

Line following last line
deleted.

Last line having line
number renumbered.

SA xS1x [m,n] Save all lines in EB containing string Unchanged
81 starting at Column m, for n occur-

rances, when specified.

SV x81x [m,n] Save all lines on input file containing First line read
string Sy, starting at Column m, for

n occurrances, when specified.

A9-2 29430 RO2 8/76

AMAPIu
BIAS xxxx
BC xxxx
BE lu
BR lu

COPY lulu [program
label]

DUPE Iulu [program
[Iabe]]

EDIT lu [program
[label

END

EF lu

FIND lu program
label

FR lu
GO

LABEL lu program
label

LC xxxx

LF lu [program
[label

LINK 1Iu [program]
label

LOAD 1u programJ

label
MAP 1lu
OUT 1u program]
label
PAUSE
REWIND lu

TABLE lulu
TQPCOR
WE lu

XOuT

29-430 RO5 2/79

APPENDIX 10

SUMMARY OF LIBRARY LOADER COMMANDS

display map on logical unit (alphabetic sort)

set bias for program

set number of bytes of memory (hex) to be reserved for blank common.
move backward on LU until filemark found

move backward one record on LU

Copy one program from first LU to second LU; named program if specified, otherwise
next program.

Copy all programs from first LU to second LU; up to but not including named program if
specified or up to EOF or EOM if not.

edit against all programs on logical unit up to EOF to EOM. Link in any program whose
program label matches an outstanding reference in previously loaded programs. If pro-
gram label is specified search for this program before starting to edit.

Terminate library loader.

move forward on LU until filemark found

search for named program on logical unit

move forward one record on LU

transfer control to the transfer address of the program/s loaded by the library loader.
output to the logical unit specified, one object code record representing the given pro-
gram label. (A program without a label can then be copied or assembled and output
immediately following on the same LU.)

set number of bytes of memory (hex) to be reserved for labelled common.

link into programs loaded so far all programs on logical unit up to EOF or EOM. If
program label is specified, search for this program before starting to link in programs.

link into programs loaded so far one program from logical unit; named program if spec-
ified, otherwise next program.

load one program from logical unit; named program if specified, otherwise next program.

display map on logical unit (address sort)

put library loader into output mode, the linked programs to be output as a single object
code load module on logical unit. Label output module if program label is given.

Pause Library Loader

rewind LU

Search first LU and list all program labels on second LU.
Define top of physical memory.

write filemark on LU

complete output module and terminate output mode

Al10-1/A10-2

APPENDIX 11
UTILITY COMPATIBILITY

The following utilitics must be run with OP COMP:

CAL MACRO
CAL

FORTRAN V
FORTRAN RTL

29-430 ROS 2/79 All-1/A11-2

JOURNAL ENTRY

APPENDIX 12

SYSTEM JOURNAL CODES

TCBNBR

JOURNAL CODE

Register 12

Register 13

Register 14

Register 15

where: TCBNBR = Task number of currently active task

Command Processor

Foreground Task 2

Illegal instruction fault
Floating point fault
Queue termination interrupt

Memory protect fault
Paramecter added to task queue

1
2 Background Task
3 Foreground Task 1
4
ete.
JOURNAL CODES
CODE (HEX) DESCRIPTION
10 [/O termination
11 Task scheduled
13
14
15
16 Divide fault
17
20
6X SVC X call

REGISTER DEFINITION

CODE (HEX) REG 12 REG 13 REG 14 REG 15
10 TCB PNTR of task A(DCB) not defined not defined
using DCB
11 not defined not defined Task’s current PSW
13 not defined not defined Illegal Instruction
OLD PSW
14 not defined not defined Floating Point Fault
OLD PSW
15 not defined not defined Queue Termination
Interrupt OLD PSW
16 not defined not defined Divide Fault
OLD PSW
17 not defined not defined Memory Protect Fault
OLD PSW
20 ADTSKQ A(UDL) A (task queue) Parameter
return adrs.
6X 1st halfword A(SVC para- SVC OLD PSW
of parameter meter block)
block

29-430 RO2 8/76

Al12-1/A12-2

29-430 RO5 2/79

APPENDIX 13
BOOT PUNCHER ERROR MESSAGES

FD1-ERR Illegal syntax on input fd

FD2-ERR Illegal syntax on output fd
ASGN-ERR xxxx LU=n Assignment error on LU n

10-ERR xxxx LU=n I/O error on LU n

CKSM-ERR Checksum error in object code
SEQ-ERR Object code records out of sequence
OBJ-ERR Tllegal object code item

MEM-ERR Insufficient memory to hold image

(xxxx same as OS mnemonic for type of error)

NOTE:

Legal object code items for the boot puncher are 0,1.3,5.8,
A, and F. See the 16-bit Loader Description Manual. Publi-
cation Number 29-231. for a description of object code
items.

Al13-1/A13-2

APPENDIX 14

TABLE TO CONVERT USER PROGRAM ADDRESS TO
PHYSICAL MEMORY ADDRESS

11;?1‘% USER ADDRESSES USER ADDRESSES
8-11 0000-7FFF 8000-FFFF
0 0000-7FFF 8000-FFFF
1 0000-7FFF 18000-1FFFF
2 0000-7FFF 28000-2FFFF
3 0000-7FFF 38000-3FFFF
4 0000-7FFF 480004FFFF
5 0000-7FFF 58000-5FFFF
6 0000-7FFF 68000-6FFFF
7 8000-FFFF 0000-7FFF
8 8000-FFFF 8000-FFFF
9 8000-FFFF 18000-1FFFF
A 8000-FFFF 28000-2FFFF
B 8000-FFFF 38000-3FFFF
C 8000-FFFF 480004FFFF
D 8000-FFFF 58000-5FFFF
E 8000-FFFF 68000-6FFFF
F 0000-7FFF 8000-FFFF

29-430 RO3 6/77

PHYSICAL
ADDRESS

Al4-1/A14-2

INDEX

Aborting All CSS Files, 13-8
Addresses, Hexadecimal, 3-2
Advanced Considerations, 13-8
AIDS/16,10-6

ALLOCATE Command, 3-20
AMAP Command, 5-8

ASSIGN Command, 3-15

Assign Default Logical Units, 14-16
Assignment and Allocation, 12-2

BASIC Interpreter, 10-9

BASIC Level II, 10-10

Batch Control, Using CSS for, 13-2
BIAS Command, 3-9

Boot Loader Tape, 11-4

Boot Puncher Error Messages, A13-1/A13-2
Bootstrapping from a Floppy Disc, 2-5
BREAK Key, 3-1

BUILD Command, 3-10, 3-33
Building a Library, 11-5

Building Overlayed Disc System, 1l-4
Building Task Control Files, 13-9

CAL and CAL/16, 10-7

CAL Assembly, 14-5

CAL Assembly, Load and Go, 14-6

CAL Macro, 10-8

CAL/16 Features, 6-1

CAL/16 Operating Procedures, 6-2, 6-3
CAL/16 System Requirements, 6-1

Calling CSS Files, 3-29

CANCEL Command, 3-15

CLEAR Command, 3-26

$CLEAR Command, 3-31

CLOSE Command, 3-16

Command Input Stream, 5-12

Command Substitution System, 3-28
Command Syntax, 3-1

Commands, Device and File Control, 3-20
Command Error Response Summary, A2-1
Commands Executable from a CSS File, 3-31
Commands, System, 3-4

Commands, Task Related, 3-11

Commands, TET/16, 5-3, 5-9

Commands, Utility, 3-9

Compound Overlay Files, 5-13
Configuration Requirements, Output Spooling, 9-4
Configuration Requirements, TET/16, 5-1
CONTINUE Command, 3-14

Copy an ASCII File, 14-11

Copy a Binary File, 14-12

Copy a Task, 14-13

Creating CSS Files on Disc, 13-8

CSS Basic Questions, 13-1

CSS File Existence Testing, 3-33

CSS File Interaction with Background and Foreground, 3-30
CSS Package Tape, I-4

CSS with Background and Foreground, 3-30

Decimal Numbers, 3-2

DELETE Command, 3-21

Device and File Control Commands, 3-20

Device Independent Job Control Decks, 13-2
Disc Backup Features, 8-1

Disc Backup Operating Instructions, 8-2, 8-3, 8-4

29-430 RO6 9/79

INDEX (Continued)

Disc Backup Output Messages, 8-5

Disc Backup System Requirements, 8-2

Disc Backup Utility Program, 10-6

Disc-based CAL/16D, 6-3

Disc Utility Program, 10-6

Disc Initialization, 12-1

Disc Integrity Checking, 10-6, 12-3/12-4

Disc Integrity Check Operating Procedure, 7-3
Disc Integrity Check Principles of Operation, 7-2
Disc Integrity Check Program Output, 7-4
Disc Integrity Check System Requirements, 7-1
Disc Integrity Check Utility, 7-1

Disc System Backup, 11-5

Disc System Maintenance, 11-5

Disc to Magnetic Tape, 8-2

Disc to Disc, 8-1

DISPLAY DEVICES Command, 3-26
DISPLAY LU Command, 3-16

DISPLAY MAP Command, 3-6

DISPLAY PARAMETERS Command, 3-18
DISPLAY TIME Command, 3-5

Edit a File, 14-9

EDIT Command, 5-5

END Command, 5-10

ENDB Command, 3-10, 3-32, 3-33

Errors in Loading from a Non-Direct Access Drive, 2-2
Error Response, 3-3

Error Types, 4-1

Establish a Complex Task, 5-14

Establish a Reentrant Library Segment, 5-17
Establish a Simple Task, 5-14

Establish a Single Task, 5-14

Establish a Task, 14-10

Establish a Task Common Segment, 5-17
Establish a Task with Multilevel Overlays, 5-17
Establish OS/16MT2, 5-19, 5-20

EXAMINE Command, 3-9

Examples of TET/16 Operation, 5-14

S$EXIT Command, 3-31

Extended FORTRAN 1V, 10-9

File Descriptors, 3-2

File Existence Testing, 3-33

FILES Command, 3-22

Floppy Disc, Bootstrapping from, 2-5
FORTRAN Compile, 14-4

FORTRAN Compile, Load, and Go, 14-3
FORTRAN YV, 10-8

Functional Description, Output Spooling, 9-1

General Syntactic Rules, 3-3

General System Commands, 34
Generate a New Operating System, 14-15
GET Command, 5-5

Hexadecimal Address, 3-2

Hexadecimal Numbers, 3-2

High Level Operator Command Installation, 14-17

High Level Operator Command Operational Data, 14-17

High Level Operator Command Package, 3-29

High Level Operator Command Package System Requirements, 14-1
High Level Operator Commands, 14-2 to 14-16

Identifiers, Task, 3-2
INCLUDE Command, 5-5
INITIALIZE Command, 3-27

29-430 R0O6 9/79

INDEX (Continued)

Input Editing Functions, 3-1
Interaction of CSS with Background and Foreground, 3-30

$JOB Command, 3-31
Keys and Access Privileges, 12-2

Language Processors, 10-7

Listing Directives, 3-33

Load and Execute a Task, 14-14

Load Background (Object Code), 3-12

Load Foreground (Object Code), 3-12

LOAD IMAGE Command, 3-11

Loaders, 10-3

Loading 0S/16 MT2 Configured with No Command Processor, 2-2
Loading 0S/16 MT2 From Disc, 2-3

Loading 0S/16 From a Non-Disc System, 2-1

Loading OS/16 MT2 With a 5/16 LSU (M51-102), 2-4
Loading OS/16 MT2 With a 7/16 LSU or ALO, 2-4
Logical Operators, 3-30

Logical Unit Assignments, 6-2

MACRO Expansion and Assembly, 14-7

MACRO Expansion, Assembly, Load and Go, 14-8
Magnetic Tape and File Control Commands, 3-26
Magnetic Tape System Backup, 11-2 thru 11-4
MAP Command, 5-7

MARK Command, 3-24, 12-1

Memory-Based CAL/16, 6-3

- Messages Output by the Program, 8-5

Mnemonics, 3-2

MODIFY Command, 3-10

Non-Disc Systems, 2-1

Object Library Tape, 11-3
- Operands, Optional, 3-3
Operating Instructions, Disc Backup, 8-2
_Operating Instructions, Output Spooling, 9-2
Operating Procedure, Disc Integrity Check, 7-3
Operating Procedures, CAL/16, 6-2, 6-3, 6-4
Operating Procedures for TET/16, 5-10 thru 5-13
Operation of Disc-Based CAL/16D and CAL/16DS, 6-3
Operation of Memory-Based CAL/16, 6-3
Operational Data, 14-17
Optional Operands, 3-3
OPTIONS Command, 3-17
Output Messages, Disc Backup, 8-5
Output Spooling Configuration Requirements, 9-4
Output Spooling Functional Description, 9-1
Output Spooling Operation Considerations, 9-1
OS Copy, 10-3
OS Edit, 10-1
OS Overlay File, 12-1
OS Tape, 11-3
0S/16 Boot Puncher, 10-5
. 0S/16 Configuration Utility Program, 10-5
0S/16 Direct Access Boot Loader, 10-5
0S/16 EDIT, 10-1
0S/16 Library Loader, 10-3
0S8/16 MT2 Compatibility, 10-1
OVERLAY Command, 5-5

Parameter and Control Block Tape, 11-4

Parameter Existence Testing, 3-32
Parameters, Use of, 3-30

29-430 RO6 9/79

INDEX (Continued)

Passing Arguments to CSS Files, 13-4
PAUSE Command, 3-14

Power Fail/Restore, 4-1

Preparation for Loading Tasks, 2-6
Principles of Operation, Disc Integrity Check, 7-2
PRINT Command, 9-1

PRIORITY Command, 5-6

Processors Language, 10-7

Program Maintenance Utilities, 10-6
Program Output, Disc Integrity Check, 7-4
Program Pauses and Other Interactions, 13-3
Prompts, 3-1

Reentrant Library Segment, 5-17
RENAME Command, 3-22
REPROTECT Command, 3-22
RESOLVE Command, 5-5

Response, Error, 3-3

Restarting the Operating System, 2-6
Return Code Testing, 3-32

REWIND Command, 5-5

SAVE Command, 3-27

SEND Command, 3-19

Sending Error Messages to the Console, 13-8
Separation of Jobs, 13-3

SET LOG Command, 3-5

SET PARTITION Command, 3-7

SET PRIORITY Command, 3-18

SET TIME Command, 3-4

Source Library Tape, 11-4

Source Updater, 10-2

Special Considerations for Libraries, 5-11
Special Considerations for Task Common, 5-11
Special Considerations for Tasks With Overlays, 5-11
SPOQL Sysgen Statement, 9-1

START Command, 3-14

START Options. 6-3

Starter Systems, 2-4

Starting Disc Backup, 8-5

Starting the Spooler, 9-2

Syntactic Rules, 3-3

Syntax, Command, 3-1

System Commands, General, 3-4

System Console Device, 0S/16 MT2, 3-1
System Crash Recovery, 4-1

System Description, 0S/16 MT2, 1-1/1-2
System Environment, TET/16, 5-1

System Requirements, CAL/16, 6-1

System Requirements, Disc Backup, 8-2
System Requirements, Disc Integrity Check, 7-1
System Requirements for the High Level Operator Command Package, 14-1
Systems, Non-Disc, 2-1

Tailoring Starter, 2-6

TASK Command, 3-13

Task Common Segment, 5-17

Task Identifiers, 3-2

Task Related Commands, 3-11

Task With Multilevel Overlays, 5-17
$TERMJOB Command, 3-31

TET/16 Commands, 5-3 to 5-9
Testing Arguments for Existence, 13-5
Testing, File Existence, 3-32, 13-6

-4 29-430 RO6 9/79

INDEX (Continued)

Testing, Parameter Existence, 3-33
Testing, Return Code, 3-32

TSKCOM Command, 5-4

TSW Command, 5-6

TET/16 Configuration Requirements, 5-1
TET/16 System Environment, 5-1

Text Manipulation Utilities, 10-1

Unpackaging the Magnetic Tape Package onto a Disc, 11-1
Updating a Library, 11-7

Use of Parameters, 3-30

Using CSS for Batch Control, 13-2

Using CSS to Avoid Repetitious Actions, 13-4
Using CSS to Build Complex Commands, 13-4
Using Standard File Extensions, 13-9
Utilities, Text Manipulation, 10-1

Utility Commands, 3-9

Utility Programs, 14-18

Utility Tape, 11-3

VOLUME Command, 3-5, 9-1

WFILE Command, 5-10
Write Protected Disc, 12-2

29-430 RO5 2/79 I-5/ 1-6

. CUT ALONG LINE

PUBLICATION COMMENT FORM

Please use this postage-paid form to make any comments, suggestions, criticisms, etc. concerning
this publication. '

From Date

Title Publication Title

Company Publication Number

Address

FOLD

Check the appropriate item.

l:] Error - Page No. Drawing No.

D Addition Page No.___________ Drawing No.

D ~Other Page No.____ . Drawing No.

 Explanation:

"FOLD

Fold and Staple
No postage necessary if mailed in U.S.A.

FOLI{

FOL‘Q

STAPLE STAPLE

' |
NO POSTAGE
| “ " | NECESSARY |
IF MAILED
IN THE |
UNITED STATES '
|
]
BUSINESS REPLY MAIL nm——
FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J.] '
e
POSTAGE WILL BE PAID BY ADDRESSEE] :
|
=]
PERKIN-ELMERR pr—
Computer Systems Division] I
2 Crescent Place]
‘ Oceanport, NJ 07757 I — I
| :
PN |
|
TECH PUBLICATIONS DEPT. MS 322A |
e e e e e e e e e e
FOLD FOLD

STAPLE STAPLE

	0001
	0002
	0003
	001
	003
	004
	005
	006
	007
	008
	009
	01-01
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	04-01
	04-02
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	06-01
	06-02
	06-03
	06-04
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	09-01
	09-02
	09-03
	09-04
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	12-01
	12-02
	12-03
	13-01
	13-02
	13-03
	13-04
	13-05
	13-06
	13-07
	13-08
	13-09
	13-10
	13-11
	13-12
	14-01
	14-02
	14-03
	14-04
	14-05
	14-06
	14-07
	14-08
	14-09
	14-10
	14-11
	14-12
	14-13
	14-14
	14-15
	14-16
	14-17
	14-18
	A01-1
	A01-2
	A01-3
	A01-4
	A02-1
	A02-2
	A02-3
	A02-4
	A03-1
	A04-1
	A05-1
	A06-1
	A06-2
	A06-3
	A06-4
	A07-1
	A08-1
	A08-2
	A09-1
	A09-2
	A10-1
	A11-1
	A12-1
	A13-1
	A14-1
	I-1
	I-2
	I-3
	I-4
	I-5
	replyA
	replyB

