Publication Number B29-434

0S/16 MT 2
~ PROGRAM
LOGIC MANUAL

IN"T"ERIDATA®

~ Subsidiary of PERKIN-ELMER
Oceanport,New Jersey 07757, US.A.

@ INTERDATA INC., 1976
All Rights Reserved
Printed in US.A.

October 1976

TITLE

PAGE TEVISION STATUS SHEET
PUBLICATIC! NUMBLH
0S/16 MT2 Program Logic Manual
DATE 10/76

REVISION ROO

B29-434

PAGE

REV.

DATE

PAGE

REV.

DATE

PAGE

REV.

DATE

to
1-2

2-1
to
2-18

3-1
to
3-6

4-1
to
4-16

5-1
to
5-34
6-1
to
6-24
7-1

7-18

ROO
ROO
%00
ROO
ROO
ROO
ROO
ROO
ROO

ROO

10/76

10/76

10/76

10/76

10/76

10/76

10/76

10/76

10/76

10/76

A1598

FOREWORD

This Manual describes the 0S/16 MT2 ROl, specifically, and is de-
‘'signed as a guide to the internal structure of the operating system.
Use of this Manual requires that the reader be knowledgeable of the
features, functions and conventions of 0S/16 from the user's point

of view as documented in the following manuals:

0S/16 MT2 Programmer's Reference Manual, Publication Number

Number 29-249

0S/16 MT2 Operator's Manual, Publications Number 29-430

0S/16 MT2 System Planning and Configuration Guide,

Publication Number 29-431

. The reader should also be familiar with the 16-Bit series archi-
tecture and its features as described in:

16-Bit Processor User's Manual, Publication Number B29-509

Chapter 1 is a general introduction to the system. Chapter 2 of
this manual describes the general structure of 0S/16 MT2. Chapter
discusses the conventions followed by the system in terms of inter-
facing between modules, naming of fields and flag bits, and the
structure of modules. Chapter 4 contains a description of the OS
overlay scheme. Chapters 5, 6 and 7 contain a detailed technical
description of the major modules‘in 0s/16. These chapters are de-
signed to provide a technicai overview of the system. Chapter 8
discusses executive tasks and user added extensions to 0S/1l6.
Appendix 1 contains a list of system crash and journal codes and
their meanings. Appendix 2 contains the format of system control

blocks.

. 29-434 ROO 10/76 . . i

Table of Contents

CHAPTER 1 INTRODUCTION . . ¢« ¢ ¢ o o« o o o =

CHAPTER 2 SYSTEM STRUCTURE . . « « « « « « &
INTRODUCTION & ¢ ¢ o o o o o o s o o =
EXECUTIVE . ¢ o ¢ o s o o o o o o o o =
I/O SYSTEM . v ¢ ¢ ¢ o o o o o o o o &
COMMAND PROCESSOR . . .« .« « ¢« « « « .« .
FILE MANAGEMENT . . ¢« ¢« ¢ ¢ ¢« o o o o o

NN N
L L]
Ul W IN =

HAPTER 3 SYSTEM CONVENTIONS
MACHINE STATES & o o e e
SVC DEFINITIONS AND CONVENTIONS o o o
INTERNAL INTERRUPT CONVENTIONS
SUBROUTINE CONVENTIONS . . . ¢« « « « &

GENERAL NAMING CONVENTIONS

WWwwwwnN

D W~

HAPTER 4 SYSTEM OVERLAY SCHEME
INTRODUCTION e o e o
GENERAL SYSTEM CONSIDERATIONS e e e e e
THE OVERLAY STRUCTURE « .« &
CODING CONVENTIONS . . « « « o « « &« &
THE OVERLAY HANDLER« o « .« .

THE ROUTINES TO BE OVERLAYED

s e

[SO O N]
A WNHD

HAPTER 5 EXECUTIVE DESCRIPTION
1 TASK MANAGEMENT « ¢« ¢« ¢ « o &
2 SVC HANDLER . ¢ « ¢ « o o o o o o o o &

.3 TASK TRAPS . . . v ¢ o o o o o o o o &

.4 TIMER MANAGER . . ¢ ¢ & ¢ & o o o o o =
5 SYSTEM JOURNAL . . ¢ o ¢ o o o o o o =
6 SYSTEM MESSAGES . .« &+ ¢ & ¢ o « o « o o
7 CRASH HANDLER e s e e e e s
8 INTERNAL INTERRUPT HANDLER c o s e e @

cuuunnuuuoon
L] L] . L

.

HAPTER 6 THE COMMAND PROCESSOR . . . « . .
INTRODUCTION . ¢ =« o 2 o o o o o o o @
COMMAND MAIN . ¢« &« ¢ & o o o o s o o o
COMMAND PARSING . . ¢ o ¢ ¢ o ¢ o o o &
COMMAND PROCESSOR OVERLAYS
COMMAND ERROR HANDLING (ERROR).
COMMAND EXECUTORS . . . o o .
COMMAND SUBSTITUTION SYSTEM (CSS) « .
CONSOLE HANDLING . . .« ¢ o ¢ o « « &« o
SYSTEM INITIALIZATION . . « « o & + « &

[)XW We e W W W W WO

VoAU WNHD

HAPTER 7 FILE MANAGEMENT SYSTEM
FILE MANAGER«
VOLUME ORGANIZATION AND INITIALIZATION
DIRECTORY MANAGEMENT . . . « « « « + &

BIT MAP MANAGEMENT . . . ¢ « « o + &

NNNNaN

. .

B wN D

ii

« @2 e 9

. L[] o .

L] . . .

e & & & o 0
.
.
.
.

.
e ®» e
.
.
.

s @ o o o
. °
.
e e o @

.
. * L] L]

s & e @
e e e 0

°
s+ & 8 e o
L]

29-434 ROO

s e e o o 8 o

! P
N BWHK HEFEHRRFPR

pMDNNDNNNDON
1

NN

L]
Wwwwww
[I I |

11

L]
L
1 !

1
NNBRHKFE HHENONER
D

L]
P 1

| UL
BWNHHFH NDHEFOLSWNOHE
- SRV-N-))

NN NN le M e We We N0

10/76

7.5

7.6 SvVC 7
7.7 sSvC 7
7.8 8vC 7
7.9 svcC 7
7.10 svC 7
7.11 svCc 1

H

C
8
8
8
8

|

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

1 L R I B |
HFNHESWNFOUOUMWNEFEFOLSWND -

oNNUOULubd b BLOLOLNDNDNDNDN
|

TABLE 3-1
TABLE 5-1
TABLE 5-2
TABLE 5-3
TABLE 5-4
TABLE 6-1
TABLE 7-1

APPENDIX 1
APPENDIX 2

29-434 ROO

FILE HANDLER (SVC 7) . . v ¢ v v v ¢ o« o o o o o o o o o o o =

OVERLAYS e e b e e e 4 e o e e e s e s s s e
FUNCTION EXECUTORS e s e o s e e o e s e e s e & o s e =

MEMORY MANAGEMENT ROUTINES . e e e e e o e e e e e e

INTEGRITY CHECKING SUBROUTINES e+ e o s e e e e e e e
SPECIAL EXECUTOR « .« v ¢ & 4 & & + o o o o o o o o o« o =
INTERCEPT ROUTINES . ¢ & v ¢ & ¢ o o o o o o o o o o o

APTER 8 EXECUTIVE TASKS AND SYSTEM EXTENSIONS « .« .
.1l INTRODUCTION . . &+ « & & o o o o o o o o o o s o o o« o o o o =
.2 EXECUTIVE TASKS . « & v ¢ ¢ ¢ o o o o o o o s o o o o o o o =
3 SYSTEM EXTENSIONS & & & v o o o o o o o o o o o o o o o o o =
4 PATCHING . . v v v o o o o o o o o o o o o o o s o o o o o o =

ILLUSTRATIONS

0S/16 MT2 System OVEXVIEWw . . « « o & o o o o o o o o =
Memory Map of Entire System « ¢ ¢ ¢« & &+ « « « .
Memory Map of User Partition« « « « ¢« « .« .
Memory Map of System Space . . ¢ « « o o o o o o o o
Register Save Areas in the UDL . . ¢ + ¢ o « o s + o« =
Organization of OS Image in Memory and on Disc .

Comparison Between Non-Overlayed and Overlayed Routlnes
Example of Conditional Overlay Code . . . e e e e e .
Tables Associated With a Very Simple Command Processor
Examples of use of EXTRNs in Overlays « .
Overlay Area Symbols v ¢« ¢ o o ¢ o o o o o o
Task Control« ¢ o ¢ v o ¢ o o o o o o o e e e .
Priority Table . . . ¢ ¢« ¢ ¢ ¢ ¢ ¢ ¢ ¢ o « o o o o o o
Journal Entry c s e e e s e e e 4 e e e =
Common Error Parameter Block e e e e e e e e e e e e .
Volume DesCriptOr . . v ¢ ¢ o o o o o o o o o o o« « o @
Directory EXample . . « ¢ ¢ o o o o &+ o o o s o o o o
SVC 2 Code 0 Parameter Block ¢ ¢ ¢« « « « .« -

TABLES

SYSTEM STATES . ¢ ¢ ¢ & ¢ o o o o o s o o o o s o o o =
TASK STATES . &« ¢ ¢ ¢ ¢« o o o o o o o o o s s o o o o =

SVC 2 OVERLAYS . . v ¢ ¢ ¢ ¢ o o o o o o o o o o o « o =
SVC 5/6 OVERLAYS . &« & &« o « o o o o o o o o o o o o o
INTERNAL INTERRUPTS . . ¢ ¢ ¢ o o o o o o s o o s = o =

COMMAND PROCESSOR OVERLAYS . . . ¢ ¢ « o « o « o o« o o« =
FILE MANAGER OVERLAYS . &+ ¢ ¢ o o ¢ o o o o o o = s o &«

APPENDICES

JOURNAL AND CRASH CODES . . ¢ « o ¢ ¢ o o o o o o o« o =
DATA STRUCTURES . . ¢ &+ ¢ ¢ o « o o o o o o o o o o o =

10/76

7-5
7-5
7-6
7-1%
7-12
7-15
7-13
8-1
8-1
8~1
8-2
8-3

oyt b LB BERNNDNODNDDN
I | L L L
NWNWNONNMHRFFEFEFOUOROYIOWN

| I B |
e

\10\U1LIHU'IU1LO

Al-tL
A2-1

iii/iv

CHAPTER 1
INTRODUCTION

The 0S/16 MT2 Program Logic Manual (PLM) is designed as a guide to
the internal structure of the operating system 0S/16 MT2. It is
intended for use by personnel involved in maintaing and modifying
the system, and is normally used in conjunction with program list-

ings.

This manual deals exclusively and specifically with 0S/16 MT2 ROl.
Thus, specified methods of implementation of various functions are
not to be construed as the method of implementation used in all

future releases of 0S/16.

0S/16 MT2 is an operating system that provides an efficient and power-
ful means of using the resources of an INTERDATA 16-Bit Processor in

a multi-tasking environment. System control by the console operator
and from specified files or devices, interrupt handling, I/0 servic-
ing, and inter-task communication/control are built-in functions of
0s/16. The 0S/16 File Manager and Device Drivers provide a powerful
set of data management services for both direct access and non-direct

access devices.

0S/16 MT2 functions as a compatible subset of 0S/32 MT for applica-
tions programming. Indexed and contiguous disc files are compatible

between systems.

29-434 ROO0 10/76 1-1/1-2

CHAPTER 2

SYSTEM STRUCTURE
2.1 INTRODUCTION
This chapter presents a general overview of the structure of 0S/16 MT2
from a technical viewpoint. As illustrated in Figure 2-1, 0S/16 MT2 is
composed of four main modules: The Executive, Command Processor,
File Manager, and Driver Library. I/0 support is provided by the drivers
together with major portions of the executive, thus the drivers are

discussed in the context of the I/O subsystem.

There are many SYSGEN options in 0S/16 MT2. Some of the features
described may be deleted from the system by the user. Refer to the

System Planning and Configuration Guide for details.

2.2 EXECUTIVE
The 0S/16 MT2 Executive provides control over, and extensions to,
an INTERDATA 16-Bit Processor, as well as providing task management
facilities. All requests for 0S/16 MT2 services are processed by the
executive's Supervisor Call (SVC) handler. Other support, provided by
the executive, includes the:

Internal interrupt handlers

Memory manager

Task manager and scheduler

I/0 service handler

Crash handler

Clock management routines

Intertask coordination and control routines

Image loader

29-434 ROO0 10/76

INTERDATA 16-81T PROCESSOR

®ETC.

JSER
PROGRAMS
| |
| |
' 0S/16 MT2
|
| FILE
I
05/16 MT2 I MANAGER
IR BN
- I AND
EXECUTIVE
I DEVICE
! DRIVERS
I w KIS
| N\ N I
' \ |
| AN |
AN N l I
N l | \zL
SYSTEM RESOURCES 0s/16 MT2
® MEMORY COMMAND
®REGISTERS PROCESSOR
®SYSTEM CLCOCK

ADDRESS
<::> DEVICES

EXTERNAL
DATA ON:

® DIRECT

®NON-DIRECT
ACCESS
DEVICES

CONTROL

— — —— —

pata FLow >

Figure 2-1

SYSTEM
OPERATOR

$/16 MT2 System Overview

29~-434 ROO 10/76

General utility function routines

System journal handler

2.2.1 Executive Services

SVC Handlers - For SVCs that can be overlayed, the SVC executive is entered
on SVC interrupt. The SVC executive handles Roadblocking* of SVC executors
The executors handled by the SVC execﬁtive are non-reehtrant, but are
executed in a reentrant state. Roadblocking is used to keep other tasks

from entering an SVC executor that is in use.

All other SVC interrupts cause control to be passed directly to the SVC

handler. These SVCs run in a non-reentrant state.

Memory Mapager - Memory is divided into three areas: the operating

system, task partitions, and dynamic system space. (See Figure 2-2.)

MTOP
Dynamic System Space
.SYS
Foreground Partition n
[od A
Foreground Partition 1
Background Partition
SYSTOP
0S/16 MT2
0

Low Memory

Figure 2-2 Memory Map of Entire System

*Roadblocking prevents the operating system from attempting to service
two concurrent SVC requests of the same type (e.g. two SVC 2's)

29-434 ROO 10/76 2-3

2.2.2 Task Management

An 0S/16 MT2 system, which includes the Command Processor module, controls
a minimum of two tasks. At the system level, the command processor runs

as an executive task (E-task) at the highest priority of 0. At the user
level, there is at least one background partition. At system generation,
the user defines the number of partitions and, therefore, the maximum

number of user tasks in the system (1 to 126).

A task is controlled through a Task Control Block (TCB). A TCB is set
up for every task at system generation. Each task in the system is in

one of the following states: Current, Ready, Wait, Paused and Dormant.

The current task is the one executing instructions. Only one task may
be in this state at any given instant in time. All other tasks in memory
are in one of the other four states, but may become the current task

depending on circumstances.

A ready task is one which has no obstacles to becoming the current task.
It is eligible to be scheduled (i.e., become current) whenever it becomes

the highest priority ready task.

A task in wait state is one which may not become ready until some specific

circumstance has occurred. Among the possible wait states are:

I/0 Wait Waiting for I/0 completion

Time Wait Waiting for an interval or time of day
Trap Wait Waiting for a task-handled trap

SVC Wait Waiting for an SVC executor

A paused task is one which may not executive until it is explicitly

29-434 R00 10/76

continued by the console operator. A paused task is said to be in console

wait.

A dormant task is one which may not execute until it has been explicitly
started, either by the console operator or by another task. When a resident
task goes to End of Task (EOT), it enters the dormant state. When any

task is loaded, it enters the dormant state after loading is complete,

and remains in this state until it is started.

Paused and dormant are both wait states; they are listed separately

since they require operator intervention.

2.2.3 Task Partitions

Memory within a partition is organized as shown in Figure 2-3. The UDL
area (User Dedicated Locations) contains TSW swap areas, system pointers,
and other data used for communication between the operating system and
the task. 1Its size depends upon the type of floating point support

required by the task:

UDL X'24" No floating point support
UDLF X'44' Single precision floating point
UDLD X'84' Double precision floating point

The main code for the task is positioned above the UDL. The first free
location above the code is given by UTOP, and the last location within
the partition by CTOP. The memory between UTOP and CTOP is available to
the task, either directly as general workspace, or by an SVC 'Get Storage’
request which dynamically updates UTOP to the next available location

above the acquired 'storage' area.

In a full system, the partition boundaries are set up by the operator

at run time. In a system with no command processor, they are set up at

29-434 ROO 10/76 2-5

system generation by the linking in of the tasks themselves; where the

size of each task determines the size of its partition.

The system recognizes two partition types: background and foreground.
A task running in the background partition is flagged by the system by
setting the background bit in the task's options halfword. The back-
ground task is limited in that it may neither communicate with any other
task, nor interfere in any way with the foreground tasks. A foreground
partition can contain a task, reentrant library, or task common block.
Support for reentrant libraries and task common block is provided
through the Task Establisher (TET/16). When an established task is
loaded, the resident image loader checks that, if a library and/or

task common block is referenced, the relevent partition has been set
up. If not, the load is rejected. At run time, the system does not

distinguish between these three different types of modules.

CTOP
User Workspace
UTOP
User Code
Low Memory UDL UBOT

Figure 2-3 Memory Map of User Partition

2.2.4 Dynamic System Space
The dynamic system space area is available to the file manager for
the temporary allocation of File Control Blocks (FCBs) on behalf of one

or more tasks in the system. FCBs are positioned from the top of memory

(MTOP) down; the lower limit is .SYS (see Figure 2-4).

2-6
29-434 ROO 10/76

An FCB is set up whenever a disc file is assigned and is deleted when
the file is closed. The pointer FBOT and any FCBs positioned below a
deleted FCB are moved up so that no gaps are left in memory. This pro-

cedure is described in Chapter 7.

MTOP
FCB
FCB
FCB
FBOT
Low Memory .SYS

Figure 2-4 Memory Map of System Space

2.2.5 Floating Point Support

Support is provided for Single and Double Precision Floating Point (SPFP
and DPFP) as a SYSGEN option. In addition, optional traps are provided
for the extended SPFP instructions, available only on a Model 8/16 with

SPFP hardware.

In multi-tasking systems on processors with hardware DPFP, the DPFP
registers are saved during scheduling. Software traps for DPFP instruc-
tions are provided for Models 7/16 and equivalent without DPFP hardware.

The registers are maintained in the task's UDL.

SPFP support is functionally similar to DPFP support described above.

The registers are saved or maintained in a separate area in the UDL.

The registers save areas are reserved in the UDL as shown in Figure 2-5.

29-434 ROO 10/76 2-7

| TASK |
X'84"'

DPFP Reg Save Area

UDL.DFRS X'44'

SPFP Reg Save Area

UDL.FPRS X'24'
PARTN START
0 (UBOT)

Figure 2-5 Register Save Areas in the UDL

2.2,6 Internal Interrupt Handlers
0S/16 MT2 handles the following interrupts:

Floating Point Arithmetic Fault (Processor)

Fixed Point Divide Arithmetic Fault (Processor)

Illegal Instruction (Processor)

Memory Parity Error (Processor)

Memory Protect Fault (Processor)

Illegal SVC (0S/16 MT2)

Illegal Address in SVC (0S/16 MT2)
On detection of any of these faults the default system action is to
log a message on the system console and pause the current task. For
some interrupts, if requested by the user, the current task continues
execution rather than pausing. If the fault occurs within the operating
system itself, control is passed immediately to the crash handler, where
a crash code is displayed on the display panel and the processor is
placed in a wait state. Note that on 0S/16 MT2 systems configured
with no Command Processor module, and therefore no system console
device, system error messages can not be output. The task is placed

in a permanently paused state.

2-8 29-434 ROO 10/76

Illegal instruction fault requires special preprocessing. Some
instructions require software support, such as list instructions on
a Model 7/16 Basic. Depending on options specified at system generation,
the system may contain one or more of the following software traps:

List

Multiply/Divide

Single Precision Floating Point

Double Precision Floating Point

Extended Single Precision Floating Point
Control is passed to each trap routine in turn until either the
instruction is recognized and can be processed, or the instruction is
found to be genuinely illegal and the illegal instruction handler is

entered.

2.2.7 Clock/Timing Facilities
0S/16 MT2 optionally supports both the line frequency clock and the
precision interval clock. The following services are provided:

Time of day clock

Day, month, and year calendar

Interval Wait; milliseconds from now

- Interval Wait; time of day

Task handled trap; milliseconds from now

Task handled trap; time of day

These services are described in Chapter 5.

2.2.8 Loader
The resident image loader loads tasks, overlays, reentrant libraries,

and task common blocks that have been established into load modules

29-434 ROO 10/76

by the Task Establisher (TET/16).

TET/16 inputs loader format object code (as outbut by CAL or the iibrary
loader) and outputs a load module consisting of:

1. A 20 byte Loader Information Block (LIB).

2. The image of the task, overlay, etc. as a number of 256 byte
records. The last record contains the exact number of bytes
required to complete the task, overlay, etc.

The LIB contains all the information necessary for the module to be
loaded and prepared for execution. See Appendix 2, Data Structures,

for details.

2.2.9 Intertask Coordination/Communication
0S/16 MT2 provides the foreground system of tasks with a means of
intertask communication and control. The features provided include:
Load a task
Start/Delay Start a task
Cancel a task
Delete a task
Queue a parameter to a task
Change a task's priority
Obtain a task's status
Send a message to a task
These functions are performed through SVC 6 calls, and the desired
function is specified in the parameter block. These calls may be

directed towards another task or may be self-directed.

29-434 ROO 10/76

2.2.10 Task Handled Traps
0S/16 MT2 provides the user task with a mechanism whereby it may interrup=
its normal execution and enter a special subroutine upon the occurrence
of certain events. The events that cause the special subroutines to be
entered are:

Receipt of a parameter on user task queue

Timer completion

Power restoration

I/0 proceed completion
The routine to be entered, if any, is cohtrolled by the current value
of the Task Status Word (TSW) and by the contents of the task's User
Dedicated Locations (UDL). The TSW is a mask containing bits which are
interpreted by 0S/16 MT2 to enable (if set) or disable (if reset) the
interrupt condition associated with the bit. The UDL contains ad-
dresses of special subroutines to be entered upon occurrence of an en-
abled event. The UDL also provides a storage area into which the value
of the user's TSW and the location counter previous to the event may be
saved so that the user may resume normal execution after completion of

a special event handler.

The value of the TSW is manipulated through a Supervisor Call instructior
(sVC 9). The addresses of subroutines, and the user status to be set
when entering those subroutines, may be set up by the task storing

directly into its UDL or by a pre-assembled UDL.

2.2.11 Crash Handler
This routine is entered when the system cannot continue without the
risk of destroying system or user information. A crash code is dis-

played on the display panel and is also stored in the System Pointer

29-434 ROO 10/76 2-11

Table (SPT) at SPT.CRSH. (See Appendix 1 for crash codes and
meanings.) System initialization does not reset SPT.CRSH. Some

of the conditions which cause the crash handler to be entered are:

Illegal instruction within the system.
Invalid item on command processor gueue.

Interrupt from device zero.

2.2.12 System Journal

The system journal is a circular list of historical data maintained

by the system. Each entry on the journal consists of five halfwords
of information: the task ID of the task which was active at the time
of the entry, the reason for making the entry (journal code), and
information pertinent to that call. The system journal is established
at SYSGEN time by the Configuration Utility Program. System journal
processing may be eliminated at SYSGEN time. See Appendix 1 for a

list of the journal codes and their meanings.

2.3 I/0 SYSTEM

The I/O System consists of system routines and control blocks necessary
to provide a device independent facility for performing I/0 requests.

It is composed of the SVC 1 Executor, IODONE, device drivers, Device/
Volume Mnemonic Tables (DMT/VMT), Device Control Blocks (DCB) , Interrupt

Service Pointer Table (ISPTAB), and the Logical Unit Table (LTAB) .

2.3.1 Device/Volume Mnemonic Tables

All devices and direct-access volumes are referred to throughout the
system either by logical unit or by an ASCII identifier. These tables,

DMT and VMT, bind these ASCII identifiers to the devices' DCBs.

2-12 29-434 ROO 10/76

2.3.2 Logical Unit Table

This table is physically present in all TCBs. It is of interest to
the I/O subsystem and the file manager. It consists of a table of DCB
or FCB addresses, one for each logical unit. If the logical unit is
not assigned to any device, the entry is set to zero. The size of the
logical unit table for all user tasks is the same, and is fixed at
SYSGEN time. Access privileges are placed in a byte table following

the logical unit table.

2.3.3 Device Control Block (DCB)

A DCB is provided for each device in the system. This control block
contains device-dependent information such as the attributes of the
device, flags, and register save areas if needed. Pointers are provided

to the driver initialization, interrupt service, and termination phases.

2.3.4 Interrupt Service Pointer Table (ISPTAB)
The ISP table is used to control I/0O requests through the interrupt

capability of the 16-Bit Series Processor.

2.3.5 8VC 1 Processor

The SVC 1 Processor saves the user's registers, picks up the user's
parameter block address for the driver, and then makes several error
checks. These are done primarily through the mechanism of checking

the attributes bytes in the device control block against the function
code specified in the call. If the call is in order, the system vectors

to the appropriate driver.

2.3.6 Drivers
The initiation phase of an 0S/16 Driver runs in supervisor state.

The interrupt-handling phase runs with all interrupts inhibited,

N
|

29-434 ROO 10/76 13

except for machine malfunction. The termination phase of the driver runs

in supervisor state. (See Chapter 3).

2.3.7 Trap Generating Devices
There is a class of devices, called Trap Generating Devices (TGDs),
whose interrupts require the scheduling of a task to perform a service
in response to that interrupt. In 0S/16, the means provided to respond
to these interrupts is to have the driver queue a parameter to the
appropriate user task in order to respond to the event. The Instrument-
ation Society of America (ISA) has established standard calls for
handling these devices, and 0S/16 supports:

Connect a task to a TGD (Connect)

Enable interrupts from a TGD (Thaw)

Disable interrupts from a TGD (Freeze)

Disconnect a task from a TGD (Unconnect)
In addition, 0S/16 supplies the user with a facility to simulate the

occurrence of an interrupt from one of these devices (SINT).

2.4 COMMAND PROCESSOR

The command processor (which is also the system task) provides the
operator interface to 0S/16 MT2. It executes as a task in 0S/16 MT2

and is designed so that many functions are performed through supervisor
calls. The command processor contains routines to support the Command
Substitution System (CSS), routines to do memory partitioning, and
routines to support direct access devices. The command processor controls

all I/0 requests to the console and log devices.

29-434 ROO0 10/76

2.4.1 Command Processing

The command processor accepts commands from the system console device,
decodes them, and calls the appropriate executor. Some commands are
executed through supervisor calls (e.g., DELETE, ASSIGN) while others
are executed by the command processor routines (e.g., MARK, DISPLAY).
The command processor contains logic to provide the console operator

with informative messages in case of error.

2.4.2 Command Substitution System (CSS)

The Command Substitution System (CSS) routines provide the ability to
build, execute, and control files of 0S/16 MT2 operator commands. CSS
consists of routines to execute CSS operator commands, to manage the
CSS buffers, and to provide the command parameter substitution facility.
The CSS buffers are established at SYSGEN time by the Configuration

Utility Program.

2.4.3 Direct Access Support

The command processor provides the operator with the command functions
necessary to allocate and delete files, display files, perform functions
such as rewind, backspace record to a file assigned to the user task, and
for mounting and dismounting direct access volumes. Most of these

functions are executed through SVC 1 and SVC 7 calls.

2.4.4 Console Support

The command processor controls the user task communication with the
keyboard/printer device used as the system console. This is accomplished
with a dummy driver which intercepts all log messages and‘SVC 1 requests
to the console device and executes them.for the user task. Because of

this feature and the structure of task management, most commands can be

29-434 ROO 10/76 2-15

entered and executed while a user task is active, even if the task

has assigned the console device.

2.5 FILE MANAGEMENT

The file management routines handle all access to bulk storage files,
either by the user task or by the system. There are four basic
modules in this package: the directory and bit-map handler, the
contiguous file access method, the indexed file access method, and

the SVC 7 processor. In addition, there is a set of utility programs.

2.5.1 8VC 7 Processor

This package processes all SVC 7 calls. It calls on the directory

and bit-map handler when a file is assigned, allocated, deleted, or
check-pointed. When a file is closed, it calls the disc driver, as
required, to make sure all valid data is written on the disc. Protection
keys are checked by this module. It also performs all assignment of

devices to logical units.

2.5.2 Directory and Bit-Map Handler

This package handles all access to, and modifications of, the directory
and bit map for each bulk storage device. Entries are provided to look
up a file in the directory, to enter a new file name in the directory,

to modify or delete a directory entry, to allocate one or more contiguous

sectors of storage, or to release allocated bulk storage.

2.5.3 Contiguous File Access Method
This package is entered when an I/0 request is made to a contiguous
file. It performs sector address computations and enters the disc

driver.

29-434 ROO 10/76

2.5.4 1Indexed File Access Method

This package is entered when an I/O request is made to an indexed file.
It handles all buffering and unbuffering, calls the disc driver for read
or write whenever a buffer is filled or emptied, and allocates new space

on the appropriate bulk storage device '‘as required for file expansion.

2.5.5 Disc Utility Programs
Along with 0S/16 MT2, the user is provided with a set of utility tasks
which perform miscellaneous non-SVC 7 functions. This includes a disc

compress, and a disc integrity check utility.

2.6 Floating Point Support

Support is provided for Single Precision Floating Point (SPFP) and Double
Precision Floating Point (DPFP) as a system option. In addition optiona..
traps are provided for the extended SPFP instructions available on a

Model 8/16 with SPFP hardware, but on no other 1l6-bit processor.

In multi-tasking systems on processors with hardware DPFP, the DPFP
registers are saved during scheduling. Software traps for DPFP in-
structions are provided for Models 7/16 and equivalent without DPFP

hardware, the registers being maintained in the task's UDL.

SPFP support is functionally similar to DPFP support described above;

‘the registers being saved or maintained in a separate area in the UDL.

The register save areas are reserved in the UDL as shown in Figure 2-5.

29-434 ROO 10/76 2-17/2-18

CHAPTER 3
SYSTEM CONVENTIONS

3.1 MACHINE STATES
0S/16 programs, tasks, and routines run in one of five defined states.
These states are differentiated by a combination of PSW bits and flag
bits of an active task. Any state not defined below is not permissible.
At any given instant in time, the processor is executing in one of these
states. They are, in increasing order of priority and privilege

1. User Task (UT)

2. Executive Task (ET)

3. Executive System Level (ESL)

4. Supervisor (SU)

5. Interrupt Service (IS)
The definition of these states in terms of PSW and TCB flag bits is shown

in Table 3-1.

3.1.1 User Task State (UT)

The UT state is the state in which all user tasks run. The PSW protect
bit is set. Internal and external interrupts are enabled, with the
possible exception of the arithmetic fault interrupt bit, which is the
only.interrupt bit that is under user control. This state may only be

exited through an interrupt or execution of an SVC.

3.1.2 Executive Task State (ET)

The ET state is the state in which all executive tasks (E-tasks) run
(see Chapter 8). Protect mode is disabled. All interrupts, with the
possible exception of arithmetic fault, are enabled. All SVCs are
permitted. This state should only be exited through an interrupt or

execution of an SVC.

29-434 ROO 10/76 3-1

3.1.3 Executive System Level State (ESL)

The ESL state is the state in which reentrant or roadblocked system code
is executed on behalf of a task. Machine constraints are the same as
for the ET gﬁate. The user's registers and PSW have been saved in a

save area other than TCB.RSAV/TCB.CPSW.
All SVCs are permitted. This state may be exited in several ways:

- Return to UT/ET state by restoring the task's registers and
current PSW and loading a PSW which goes to IOTERM in
supervisor state.

- LPSW or EPSR that enters SU or IS state

- External or internal interrupt

- SvC

3.1.4 Supervisor State (SU)

The SU state is the state in which the system executes system code which
is non-reentrant or is not roadblocked. Also executed in this state

is code which changes critical system information such as the TCB. System
qgueue service interrupts are disabled. No SVCs may be executed. This

state is exited by a LPSW, EPSR, or external interrupt.

3.1.5 Interrupt Services State (IS)

The IS state is used for interrupt service routines within drivers and
in the list instruction traps. All interrupts are disabled except
machine malfunction and fixed point divide fault. This state is exited
by a LPSW. Since all interrupts are disabled, it is extremely important

that all IS code be as brief as possible.

3-2 29-434 ROO 10/76

3.2
sve

1

2

TABLE 3-1 SYSTEM STATES

STATE PSW

Status Bits

FLGS

TCB

oPT

I MM DF
2 13

L
n
o)

e} @]
0n
g
=

~J

uT
ET

ESL

SU
Is

orHFRFRH |HH
ol ol el ol
QI
OH K H M
oA U H

coRHF
coooH

QOO O

(el eTN el LN e

0 means bit must be zero
1 means bit must be one
d means bit may be zero or one

EI
MM
DF
AS
FPp
QS
PM
SL
ET
UuT

External Interrupt
Machine Malfunction
Divide Fault
Automatic I/0
Floating Point Fault
Queue Service
Protect Mode

System Level
Executive Task

User Task

ESL Executive System Leﬁel

SU
IS

svC

Supervisor

Interrupt Service

DEFINITIONS AND CONVENTIONS
Function Type
1/0 I
General Service II
End of Task I
Fetch Overlay IT
Intertask Communication II
File Management - IT

TSW Swap I

29-434 ROO 10/76

All SVC interrupts cause the system to enter the SU state. Type I
SVCs enter directly to the appropriate service routines. Type II
SVCs enter SVCEXEC which contains roadblocking logic. Type I SVCs
execute in the SU state, thus eliminating the extra register save

areas. Type II SVCs execute, for the most part, in the ESL state.
SVCEXEC passes control to an SVC executor with the:

1. Address of the SVC parameter block in register 2.
2. Address of the task control block of the invoking task in

register 8.

It is the responsibility of the executor to perform validity checking

of any address passed in the parameter block.
3.3 INTERNAL INTERRUPT CONVENTIONS

Internal interrupts cause control to be passed to EXEC in SU state.
EXEC transfers control to the individual interrupt handler. In:all
cases, if the system includes the Command Processor module, a message
is output to the system log indicating the nature of the interrupt

and the address at which it occurred.

3.4 SUBRdUTINE CONVENTIONS

Two levels of subroutine linkage are defined for system code. The
mainline level is allowed to use the full set of registers (RO-RF).
First level subroutines are linked through R8 and may use R8-RF
without éave/restore. Second level subroutines are linked through
RC and may use RC-RF without save/restore. This is a general def-

inition used as a guideline.

3-4 29-434 ROO 10/76

3.4.1 Calling Sequences
Parameters are passed in registers or in memory. Parameters may be
passed in memory immediately following the BAL instruction. Para-

meters may be passed in system tables such as DCB, TCB, etc.

3.4.2 Exits

The normal exit from a subroutine should be either to the address
contained in the link register, or to a specific number of halfwords
‘past the address contained in the link register. Alternate exits must
be to lqcations passed as parameters. Exits to unlabeled addresses

are not permitted.
3.5 GENERAL NAMING CONVENTIONS

3.5.1 Data Structures

All data structures (defined by CAL STRUC statements) in 0S/16 are

named with three character symbolic names, e.g., TCB, SPT, DMT. All
fields within these structures are defined by a name of the form SSS.FFl',
where S8SS is the strcuture name, and FFF is the field name. (See

Appendix 2 for structure definitions).

3.5.2 Bits

‘Certain fields in a data structure contain flag bits to denote informa-
tién. These flag bits are manipulated with logical immediate instruc-—
tions (e.g., THI, OHI, NHI). For each flag bit there is a definition for
the mask of the form SFFF.XXM: where S is a character which refers

to the structure name, FFF are three characters which refer to the

field, XX identifies the function of the flag bit, and M denotes a

29-434 ROO 10/76

bit mask. For example, in the TCB there is a field (TCB.OPT) which
contains the option bits. Bit 0=1 means the task is an E-Task. The
bit mask definition of this flag is:

TOPT.ETM EQU X'8000'

29-434 ROO 10/76

CHAPTER 4
SYSTEM OVERLAY SCHEME
4.1 INTRODUCTION
A disc-based OS/16 MT2 System may be overlayed internally to reduce
the memory requirement for the system itself. There may be slight
lessening of system response due to the greater number of disc

transfers that occur.

There are four areas in the system that can be overlayed:
l. Command Processor: command executors
error message output routine
CSS routines
system console processing routines
This is requested through the CUP statement OVCMD. The
SYSGEN parameter OVCMD is equated to 1 (overlay) to override
the default 0 (do not overlay).
2. Intertask communication services within the executive:
SVC 6 functions
fetch overlay SVC 5
This is requested through the CUP statement OVSIX. The
SYSGEN parameter OVSIX is equated to 1 to override the
default O.
3. General supervisor services within the executive:
SVC 2 functions except timer management
This is requested through the CUP statement OVTWO. The system

parameter OVITWO is equated to 1 to override the default 0.

29-434 ROO0 10/76

4, File management services:
SvC 7 functions
This is requested through the CUP statement OVSEVEN. The
SYSGEN parameter OVSEVEN is equated to 1 to override the

default 0.

If:the executive and/or file manager areas are overlayed, then

thé command processor is overlayed. This is set up by including

thé following statements in the source of each 0S module:
OVERLAY EQU OVCMD!OVSEVEN!OVSIX!OVTWO

OVCMD EQU OVERLAY
4.2 GENERAL SYSTEM CONSIDERATIONS

4,2,1 Size

The implemented overlay scheme does not increase the size of the non-
overlayed system. The size of an overlay area is the size of the
largest overlay to use that area, to the nearest halfword. This is
true even if the DELETE SYSGEN option deletes part or all of what would

have been the largest overlay.

4.2.2 Speed

An overlayed routine is not reloaded if it is already in memory when
called. Feétures commonly used together are, size permitting, grouped
together in the same overlay. An overlay is loaded with a standard
SVC 1 read/wait request to the disc involving one disc transfer. For
any given overlay area, the number of bytes read equals the number of

bytes in the reserved area, i.e., in the largest overlay for that area.

4-2 29-434 ROO 10/76

4.2.3 Disc Space

The operating system, with all its overlays, is built on a contiguous
disc file by TET/16. The overlays are built above the operating
system in the order found i.e. in the order coded (see Figure 4-1).
Each overlay for a given area begins on a sector boundary and occupies
the smallest number of complete sectors that are required to hold the

largest overlay for that area.

4.2.4 Flexibility
The overlay scheme allows for one or more routines per overlay, or one
routine divided between two or more overlays. By reference to the

sizes of the individual routines, the optimum arrangement is implemented.

4.2.5 The User Interface
For each area to be overlayed, the user enters one CUP statement at
system generation. The operating system is built onto a contiguous
disc file using TET/16. The file descriptor must be of the form:
SVOL:0S/16XXXX.NNN
where SVOL = volume name of OS disc pack
XXXX = up to four optional characters
NNN = three hexadecimal digits
The system is 1oaded with the 0S/16 MT2 Bootloader (or LSU/ALO). The
required version of the 05 is specified by setting up the extension ONNY
in locations X'7E' to X'7F'. The bootloader searches for a file of the
correct format, and if one is found, loads the 0S image into memory and
starts the system at address X'60'. The OS disc volume is automatically
marked‘on-line with protec£ as if the operaﬁor had entered:

MARK pISC:,ON,0S,PROTECT

29-434 ROO 10/76 4-3

ov n
[1 ?E
ov 3
ov 2
OV AREA D ov 1
ov 0
ov n
OV AREA C A &
ov 1
ov 0
oV n
OV AREA B oV 1
oV 0
oV n
I o=
OV AREA A ov 1
ov 0
(h
OV AREA D
— — COMMAND 0S IMAGE
‘‘‘‘‘‘ PROCESSOR
OV AREA C
FILE
- - - - - - = MANAGER
__________ DRIVERS
OV AREA B
OV AREA A EXECUTIVE

OS IMAGE IN

MEMORY
OS IMAGE AND OVER-

LAYS ON DISC FILE

Figure 4-1 Organization of 0OS Image in Memory and on Disc

29-434 ROO 10/76

4,2.6 Roadblocking
Roadblocking prevents the operating system from attempting to service
two concurrent SVC requests of the same type (eg. two SVC 2s). This is

described in Chapter 5.

Roadblocking is particularly important in an overlayed system. During
task scheduling, a lower priority task is interrupted if a higher
priority task becomes ready. The lower priority task may have recently
issued an SVC 2,5,6, or 7 request and caused an overlay to be loaded
into memory. If no special action was taken, and rescheduling occurs
while the overlayed SVC executor is operating on behalf of the task,

it could be overwritten by a similar SVC request from the higher
priority task. When control is returned to the first task at the

point where it was interrupted, the correct overlay routine is no

longer present.

Therefore, if a task requests an SVC service from SVC 2 functions,
svCc 5 and 6 functions, or SVC 7 functions while another task in the
system currently has access to that service, it is put into an SVC

wait state until that service becomes available again.

4.2.7 Overlay Load Logical Unit:
Overlays are loaded by an SVC 1 bare disc read/wait request on the

current task's file manager LU (number X'FF').

4.2.8 System Constants held in SPT:

SPT.FLBA (OSOVST) Random address of 0S file on the disc (fullword)
SPT.OVFD (OSOVFED) File descriptor of 0OS file
SPT.SDCB (OSOVDB) DCB address for 0S file

29-434 ROO 10/76 | 4-5

4.3

THE OVERLAY STRUCTURE

Routines to be overlayed can be positioned anywhere within a module,

but they must be consecutive,

between the first and last overlays.

handled.

after the other.
the beginning.

overlay area,

Figure

maintain control over the area at run-time.

No overlay can communicate directly with another overlay.

i.e., there must be no resident code

4-2 shows how these are

If routines are not overlayed, they follow normally one
If overlayed, an overlay handler is inserted at
Each overlay is positioned as from the start of the

and special information is inserted at the end to

It can,

however, call the overlay handler to load an overlay over itself

and pass control to it.

: LOW ADDRESS

|
| START OF ROUTINES OV HANDLER OVAREA
Y —_—— o
T
ROUTINE — 7
1 - 7~
— /
v
’ P P AREA |1 3
ROUTINE - -~ v i
: A
| $ _ ENDAREA
- AREA INFO »
ROUTINE
! I HIGH ADDRESS
v

NON-OVERLAYED

SECTION

Figure 4-2

EQUIVALENT OVERLAYED
SECTION

Comparison Between Non-Overlayed and Overlayed Routines

29-434 ROO 10/76

4.4 CODING CONVENTIONS

The non-overlayed OS contains only relocatable code, and is biased

at zero when built by TET/16 or the library loader. An absolute 'ORG'
statement takes on a special meaning when an operating system is built;
it indicates the start or end of an overlay and is immediately followed
by the true relocatable 'ORG' statement so that the standard object
code processing can proceed once the overlay has been identified as

such.

Considering one overlay area, let

OVAREA = start of overlay area

ENDAREA = end of overlay area

OVRPA = random address of start of first overlay in disc file
n = overlay number (first overlay = 0)

OVSIZE or m = number of sectors to hold largest overlay
CURROV = current overlay number (i.e., in memory)

OSOVST

random address of start of 0S disc file (from start of
disc) .
The absolute 'ORG' statements are defined as follows:

ORG 0 start of first/next overlay

ORG 2 end of all overlays for this area

At the beginning of the area to be overlayed, OVAREA and ENDAREA are
initialized as follows:
OVAREA EQU # *

ENDAREA EQU # *

As each overlay is assembled ENDAREA is maintained at the end of the

largest overlay so far:

29-434 ROO 10/76

ORG 0
ORG . OVAREA

((code for one overlay))

IFP *-ENDAREA
ENDAREA EQU *
ENDC

At the end of the area to be overlayed, the following resident code must

be positioned from the end of the largest overlay and not necessarily

from the end of the last overlay. This code completes the area:
ORG 2
ORG ENDAREA

OVRPA DS 2

CURROV DC -1

OVSIZE EQU ENDAREA-OVAREA+255/256

See Figure 4-3 for an example of the conditional code inserted into the
command processor. Each overlay area has its own set of unique symbols.
The following shows how the example given corresponds to the general

case described above:

GENERAL CASE COMMAND PROCESSOR
SYMBOLS EXAMPLE
OVAREA OVCMD
ENDAREA ENDOVC
OVRPA OVCRAD
CURROV CURRC
OVSIZE OVSIZE

29-434 ROO 10/76

IFP OVCMD
ovcC EQU *
ENDOVC EQU *
*

* OVERLAY 0
*

ORG 0
ORG ovceC
ENDC

((Routines for first ovérlay))

IFP OVCMD
IFP * ~ENDOVC
ENDOVC EQU *
ENDC
*
* OVERLAY 1
*
ORG 0
_ORG ove
ENDC

((Routines for next overlay))

IFP OVCMD

IFP *-ENDOVC
ENDOVC EQU *

ENDC

*

* OVERLAY 15
*

ORG 0
ORG ovC
ENDC

((Routines for last overlay))

IFP OVCMD

IFP *~ENDOVC
ENDOVC EQU *

ENDC

*

NO MORE OVERLAYS TO USE THIS AREA

ORG 2
ORG ENDOVC
*
* SPECIAL INFORMATION ABOUT AREA - RAD OF START OVS ON DISC
* - EQUATE OF NO OF SECTS TO HOLD 1 OV
*x
OVCRAD DS 2
CURRC DC -1
OVSIZE EQU ENDOVC-0VC+255/256

ENDC

Figure 4-3 Example of Conditional Overlay Code
29-434 R0O0O 1G/76

4-9

4,

5

THE OVERLAY HANDLER

The overlay handler requires the following information to load an

overlay:

The number of the overlay required (n). This is indicated
by the calling routine.
The number of the overlay currently in memory (CURROV). The
current overlay number is preset -1 and updated by the overlay
handler as different overlays are brought in.
The random address of the disc from which to load the overlay.
This calculated as
OSOVST+OVRPA+ (nxm)
where m = ENDAREA-OVAREA+255/256
OSOVST = set up by Bootloader when loading OS.
OVRPA = set up by TET/16 when building OS.

The number of bytes to load. The SVC 1 read/wait parameter

block loads from (OVAREA) to (ENDAREA-1) inclusive.

4.5.1 Entry Interface

There are two entry points.

o
1

10

For a routine called off a multi-switch.

Example: Command executor

Register x: Index, formed from multi-switch, to point into
table of (n*m) values for each overlay.

Register y: Address to branch to once the overlay is in
memory.

For a known routine - no multi-switch involved.

Example: Linking a routine divided into two or more overlays.

Register x: The value (n*m) for the overlay

Register y: Address to branch to once the overlay is in memory.

29-434 ROO 10/76

'x' and 'y' for the current OS depend upon the particular overlay

handler (one per area).

4.5.2 General Outline of Flow through Handler.
From first entry point:

- Form index into byte table and access (nxm).

From second entry point:
- If this overlay is currently in memory, then exit.
- Save essential registers.
- Form random address of overlay on disc relative to start of file.
- Call common subroutine OVLU to set up LU and calculate random
address of overlay relative to start of disc.
- Issue SVC 1 read/wait request (bare disc 1/0).
- Check status. If error, exit to error handler OVIO.
- Restore registers.

- Branch as directed on entry.

4.5.3 Set up Overlay Load LU and Random Address (Routine OVLU).

This routine picks up the 0S file DCB address from the SPT (OSOVDB)

and checks it. If it has not been set up (zero), it exits immediately
with CC = 0. Otherwise, it stores the DCB address in the file manager
LU slot in the current task's TCB (TCB.FMLU) and modifies the device
attributes so that read random is allowed. It updates the random
address given (relative to start of file) to the address, relative to
the start of the disc by adding the fullword value OSOVST from the SPT.

It then exits with CC # 0.

29-434 ROO 10/76 4-11

4.5.4 Process Overlay Load I/O Error (Routine OVIO).
This routine displays X'99999999' pattern on display panel and exits

to retry the I/0. Both OVLU and OVIO are in the executive module.

4.5.5 Example of Overlayed Module

Figure 4-4 illustrates the various tables associated with a very
simple command processor. In this example there are five operator
commands. These are listed in the standard form of a mnemonic table.
In parallel with this table is a table of symbolic entry points for

the executors and a table of {n*m) constants.

Other routines to be overlayed (such as an error message output routine)
are not called from the multi-switch. These are represented in the

(n*m) table to be accessed directly, if required.

The routines are not evenly distributed among the overlays; one overlay

holds two routines, another only part of one routine.

Note that one or more commands can be deleted as long as the corresponding
items in all three tables are removed, and the conditional delete
statements around the executor itself are placed within the ORG

statements defining the overlay, i.e., the overlay exists by number,

but is of zero size.

If one routine of a number called off a multi-switch must be resident,
even though the rest are overlayed (example: timer management SVC 2
code 23), the routine is placed beyond the end of the overlay area and

is identified by a negative value (-1) in the byte table of (n*m) values.

4-12 29-434 ROO 10/76

COMMAND COMMAND OVERLAY COMMAND

NUMBER MNEMONIC NUMBER NUMBER
ENTRY POINT *M
(SYMBOLIC)
M/S | 0xM
ERROR | 1*M
0 ACMD - 2*xM 0
E’l"”a dBewo | == ||l _ _ 1 5
deleted {ccMpD| _ _ _ N\—| __ __ 3% — _g_ele{:—ér-
5 DCMD | == axM [=
3 ECMD D 6xM) 3
Index COMTAB COMLST COMOUN Index
from Table Table Table Table from Table
Stan Scan

lst overlay - command identification and multiswitch
2nd overlay - error message O/P

3rd overlay - routines A and B

4th overlay - routine C (deleted in example)

5th overlay -~ first part routine D

6th overlay ~ second part routine D

7th overlay - routine E

Figure 4-4 Tables Associated With a Very Simple Command Processor

4.6 THE ROUTINES TO BE OVERLAYED

Routines overlayed into the same area, but into different overlays,
cannot commuhicate with each other as only one of them can be in memory
at any one time. Only certain areas of the system, in practice, can

be overlayed. Individual command executors and SVC handlers may be

overlayed without imposing too great a load on the system.

Routines designated to share one area are grouped together or divided u»
to form a number of overlays. Small routines commonly used together are

grouped together. If one routine is far larger than all the others

29-434 ROO 10/76 4-13

(example: SVC 6 image loader), then it may be worth dividing it up
into two or three overlays to reduce the size of the overlay area
even though this involves two or three disc transfers. Here, memory
savings is weighed against the overhead. Routines which loop around
from the end to the beginning to repeat the same process a number of
times are not divided up no matter how large (example: the FILES

output loop).

'ORG' statements must not be used within overlay routines. Any
absolute 'ORG', or relative 'ORG' which takes the current location

counter out of the overlay area corrupts the system.

Any EXTRN symbol referenced in an overlay must be of the form XXXXNN

any four alphanumeric characters following standard

where XXXX
conventions

NN two digit decimal number of the overlay itself.

During assembly, CAL chains together all external references to a given
EXTRN symbol giving the end of the chain as one of the last items in
the object code (see Figure 4-5). If the chain is allowed to pass
through overlayed code, TET/16 is passed an address known to be within
the overlay area, but with no indication of which overlay. Therefore,
there must be a unique chain for each overlay and one for the resident
code, i.e., unique symbols must be used within each segment. The last

two characters of the EXTRN symbol must be the overlay number (decimal).

29-434 ROO 10/76

RESIDENT

SYMBOL EQU *
BAL RO,SYMBOL
BAL RO,SYMBOL
BAL RO,SYMBOL
BAL RO,SYMBOL
BAL RO,SYMBOL
! BAL RO,SYMBOL

TOTALLY RESIDENT

Figure 4-5

29-434 R0OO 10/76

MODULE A

MODULE B
RESIDENT
ov 0
ov 1
Qv 2
ov 3
RESIDENT

SYMBOL EQU
SYMB01 EQU SYMBOL
SYMB03 EQU SYMBOL
I BAL RO,SYMBOL
I BAL RO,SYMBOl
/Y
BAL RO,SYMBO3
BAL RO,SYMBO3
Bal RO,SYMBO3
 /
'y
$ BAL RO,SYMBOL

OVERLAYED EQUIVALENT

Example of use of EXTRNs in Overlays

15

More information may be gained from the source listings themselves.
As an aid to locating particular subroutines or data items associated
with the overlay structure, Figure 4-6 lists symbols of interest used

in each of the four possible overlay areas:

command executors in the command processor

SVC 2 executors in the executive

- SVC_5 and 6 executors in the executive

SVC 7 executors in the file manager

COMMAND EXECUTIVE FILE
PROCESSOR MANAGER
EXECUTORS svC 2 svVC 5,6 | svC 7
Overlay Handler LDC.T LDS2.T LDS6.T LDS7.T
LDC.N LDS2.N LDS6.N LDS7.N
Routines used OVLU OVLU OVLU OVLU
OVIO QOVIO OoVIOo OVIO
SVC 1 parameter SVCOoVvC SVCOV2 SVCOV6 SVCOov7
block
Mnemonic table COMTAB
Entry point table COMLST STAB SVC6.FTB| S7.CTB
Byte table (n*m) COMOVN S20VN S60VN S70VN
Start of area ovce ov2 ovo6 ov7
End of area ENDOVC ENDOV2 ENDOV6 ENDOV7
Random Address of OVCRAD OV2RAD OV6RAD OV7RAD
first overlay
Current overlay CURRC CURR2 CURRG6 CURR7
Overlay size OVSIZE OV2SIZ OV6SIZ OV7S1IZ
Overlay flag OVCMD QVTWO OVSIX OVSEVEN

Figure 4-6 Overlay Area Symbols

i-16 | 29-434 ROO 10/76

CHAPTER 5

EXECUTIVE DESCRIPTION
5.1 TASK MANAGEMENT
5.1.1 Task Control
In 0S/16 MT2 a task may be in wait state or in ready state. The
wait state indicates that somé occurrence must take place before the
task may proceed. The ready state indicates that all such necessary
occurrences have taken place. Tasks are controlled through the use

of several control blocks (see Figure 5-1).

SYSTEM POINTER SYSTEM TCB

TABLE TCB TABLE
//7___
A BACKGROUND TCB
SPT.TTAB ol +4
SPT.CTCB o
CURRENT TCB +6 — USER TCB

Figure 5-1. Task Control

Each task is described by a Task Control Block (TCB). The addresses
of the TCBs are maintained in the TCB table which is pointed to by

the System Pointer Table (SPT). A table is maintained consisting

of the TCB indexes of all TCBs in priority order. (See Figure 5-2.)

In 0S/16, the system task has priority zero (highest), and user tasks
may be assigned a priority between 10 and 249, inclusive. TCBs are
referenced by their address, by their index into the TCB table, or by
their number. The TCB number is equal to the TCB index divided by two.

The system task is TCB number 1.

29-434 ROO 10/76

PRITAB TCBTAB SYSTEM TCB

+0 +0 PRIORITY
02 & P 0
+1 +2
06 .l / BACKGROUND TCB
+2 +4)
08 al . PRIORITY
+3 ' +6 128
04 o ' -
+4 +8 —| USER TCB USER TCB
+10 |prIORITY PRIORITY
50 10

Figure 5-2 Priority Table

5.1.2 Task Management Routines

Task management routines are provided to schedule the highest priority
ready task, arrange the priority table in priority order, set up
memory protect patterns in all TCBs, and to cancel a task. These

routines are detailed in the following paragraphs.

5.1.2.1 Schedule The Highest Priority Ready Task (SCHED) - If round-
robin scheduling is SYSGENed, SCHED places the last ready task at the
bottom of its priority in the priority table (PRITAB). This action

causes task scheduling to be rotated between tasks of the same priority.

The priority table (PRITAB) is scanned and the first ready task (TCB.
STAT=0) is activated. The active task pointer (ACTTCB or SPT.CTCB)

is set to the TCB index, the task's general and floating point registers
are restored from TCB.RSAV and UDL.FPRS respectively, and the task
current PSW (TCB.CPSW) is loaded. If no ready task is found, ACTTCB

is zeroed and a wait PSW is loaded with all interrupts enabled;

5.1.2.2 Arrange The Priority Table In Priority Order (PLINK) - PLINK

uses a shuttle sort to sort the priority table (PRITAB) in priority

order.

5-2 29-434 ROO0 10/76

5.1.2.3 Set Up Memory Protect Pattern (MEMPT) - MEMPT sets up the
memory protect pattern (TCB.MPT) in all TCBs. The pattern consists

of four halfwords. Each bit represents 1 KB of memory. A bit set

(1) indicates that the corresponding KB of memory is protected. A

bit reset (0) indicates that the corresponding KB of memory is un-
protected. If a task attempts a write into a protected area of

memory, the Memory Protect Controller (MPC) interrupts the processor.
The memory protect pattern for the background task is set up specifying
all of memory protected except the background area. For all fore-
ground tasks, the pattern is set up specifying all of memory protected

except the foreground area.

5.1.2.4 Cancel A Task (CANCEL) - CANCEL sets the cancel pending flag
(TFLG.CPM). If the task is in I/0 wait (TSTT.IOM), it is removed
from the I/O wait thread. All ongoing I/O is cancelled by an SINT
into the driver's abort routine (DCB.ALOC). Console I/O is cancelled
by zeroing CIORQ and CMDLMW entries that were created by this task.
The UT/ET level PSW is set pointing to an SVC 3,255 instruction (ET.3)
and the task is set ready. The next time the task is scheduled, the

SVC 3,255 is executed and the SVC 3 handler is entered.

5.1.3 Task Status

The status of a task is defined by the setting of the bits in the
status field of the TCB (TCB.STAT) and the value of the current TCB
field of the SPT (ACTTCB or SPT.CTCB). Table 5-1 indicates detailed

states and their meanings.

29-434 ROO 10/76

TABLE 5-1 TASK STATES

State Indication Meaning 1
Dormant Dormant bit (TSTT.DMM) Task has not been started or

set in TCB.STAT has gone to end of task (EOT).
Ready TCB.STAT=zero Task will be dispatched when

it becomes the highest priority

task in this state.

Current TCB index in SPT Task is the executing task.

current TCB field

Executive System level (TFLG.SLM)| Task's registers and PSW saved
System

Level set in TCB.FLGS in alternate save area. Task
(ESL)

may be current, ready, or in wait.

Wait A wait bit is set in Task needs a specific occurrence
TCB.STAT to take place before it may
proceed.

5.2 SVC HANDLER

5.2.1 SVCl Executor (SVCl)

Entry to SVCl is in the SU state. The caller's general and floating
point registers are saved in TCB.TSAV and UDL.FPRS, respectively. The
updated PSW, with the condition code set to zero, is saved in TCB.CPSW.
The Logical Unit (LU) specified is checked, and if valid, the address of
the DCB/FCB is loaded from the slot in TCB.LTAB corresponding to the LU

number. If the slot contains zero, the LU is not assigned and error status

29-434 ROO 10/76

is returned. If the DCB address is odd, the request is directed
towards either the console reader, a teletype or carousel reader,
or the second cassette of a cassette pair. The function code is
validated using the attributes of the assignment in the TCB (for
data transfer requests) or the attributes field of the DCB/FCB (for

command function requests).

If the request specifies halt I/0O to a device that supports halt I/O,
and is busy with I/O on the specified LU, the I/O is aborted by an
SINT into the driver's abort routine (DCB.ALOC). The parameter block

status is set to zero. Exit is to IOTERM.

For FCB regquests, the FCB in use flag (FFLG.IUM) is checked. If

set, the function code is tested. If the command bit, the read bit,
the write bit, or the wait bit is set, BUSY1l is entered. If test

I/0 complete is specified, the callers condition code is set to X'F'
and SVCl exits to IOTERM. If the FCB in use flag is reset, and wait
only or test I/O complete is specified, the status is set to zero and
exit is made to IOTERM. TFor data transfer requests, the start and end
addresses are validated with two calls to ADDCHK1l. The FCB in use flag

is set and the proper disc driver is entered.

For DCB requests, the DCB busy flag (pointed to by DCB.BUSY) is checked.
If set, BUSY is entered. If reset, and wait only or test I/O complete
is specified, the status is set to zero and exit is made to IOTERM.

For data transfer requests, the start and end addresses are validated.

29-434 ROO 10/76

For DCB requests, the DCB busy flag (pointed to by DCB.BUSY) is checked.
If set, BUSY is entered. If reset, and wait only or test I/0 complete
is specified, the status is set to zero and exit is made to IOTERM.

For data transfer requests, the start and end addresses are validated.

The DCB busy flag is set and the driver initialization routine (DIR)

is entered with the following registers set up:

R1 Address of DCB

R2 TCB index in upper byte

R3 Address of parameter block
R4 Function code/logical unit
R6 Device number

R7 Zero (status)

R8 Address of DIR

R9 Address of busy flag

5.2.1.1 Wait Thread - The second byte of the first halfword in DCB.RSAV
(lower byte of R2) is the wait thread pointer. This is a pointer to the
first task's TCB in I/0 wait for the device represented by the DCB.

This TCB contains a pointer to the next TCB waiting for the device.

The last TCB in the thread has a zero as its pointer. The pointer is
called TCB.WTHR. Each TCB in the thread has the address of the

beginning of the thread (DCB.RSAV+1l) in TCB.WTAD.

When a driver is entered, the lower byte of R2 contains zero. . This

is stored into DCB.RSAV when the driver saves it's registers.

5.2.1.2 Device Busy — If a device is busy on an SVC 1 request, BUSY is

entered. The function code is tested. If it is a command request,

29-434 RO0O 10/76

BUSY1l is entered. If it is a wait only or a test I/O complete, the tas.
that made the device busy are compared against the task and logical
unit on which the wait only or test I/0 is requested. If it is the

same task and logical unit, BUSY7 is entered.

BUSY1l is entered if a device is busy on a read or write request or if an
FCB is in use on a file request. The unconditional proceed (test I/0
complete) bit is checked in the function code. If reset, BUSY7 is
entered. If set, the callers condition code is set to X'F', the Wait
bit is set in the function code register so no I/0 proceed trap is

generated, and exit is made to SETSTA.

BUSY7 is entered if a device is busy on a command request or a non-
unconditional proceed read or write request. It is also entered

from the disc driver if the stop disc I/0 flag (STPDIO) is set. See
the section on release FCB in Chapter 7 for the use of this flag. The
task's current PSW is backed up to point to the SVC instruction. If
the device is not a disc, IOWAIT is entered. If it is a disc, the
stop disc I/O flag is checked. If reset, IOWAIT is entered. If set,
the task is put into SVC 7 wait instead of I/O wait so that the I/O
is re-issued after the release FCB has been completed. BUSY7 then

exits to IOTERM.

5.2.1.2 Test Wait - When driver initialization is completed, IOTWAT
is entered. The function code is checked. If I/O and wait is specified

IOWAIT is entered, otherwise, JOTERM is entered.

5.2.1.4 Set Wait - IOWAIT is entered when a task is to be placed on the

wait thread and in I/0 wait. A pointer to the wait thread is placed in

29-434 ROO 10/76

TCB.WTAD. The task is added to the end of the thread by putting its
task pointer in place of the zero, and setting its TCB.WTHR to zero,

indicating the new end of the thread.

5.2.1.5 Remove Wait - When driver termination is completed, IODONE is
entered. All tasks in the wait thread for this device are taken out of
I/0 wait. =~ If the request was to an FCB, the FCB in use flag (FFLG.IUM)
is reset. If the request was to a disc, and the stop disc I1/0 flag

(STPDIO) is set, the number of outstanding disc I/Os (NUMDIO) is de-

cremented. If it is decremented to zero, the file manager is taken out
of SVC 7 wait. This allows the release FCB to complete. Exit is made
to SETSTA.

5.2.1.6 Set Status - SETSTA is entered to set the SVC 1 status and
length of data transfer fields. The device independent and device
dependent status registers (R7 and R6) are stored in SVC1.STA in the
parameter block. The length of data transfer is returned to non-
compatable tasks on read or write requests. If the request did not
specify wait, an I/0O proceed termination trap is generated by a call

to ADTSKQ. Exit is made to IOTERM.

5.2.1.7 System Queue - The system queue is a circular list in
standard INTERDATA format. The number of slots is determined by

the number of devices in the system. The system queue is used, along
with the system queue service interrupt, to establish a non-reentrant
supervisor state (SU state) in which no task may be scheduled, but
device interrupts can still be serviced. When a driver completes its
transfer, it adds its DCB address (plus one) to the system queue and

exits to DCB.LEAV. If gueue service interrupts were enabled at the

5-8 29-434 ROO 10/76

time the last ISR was entered, the system queue is serviced immediately
and the driver termination routine is entered. When the termination
routine is complete, the task scheduler is entered from IODONE to
schedule the highest priority ready task. If queue service interrupts
were disabled, the system queue is not serviced until the code executing
in the SU state changes to the ET or ESL state. In this way, code
executing in the SU state is always assured that it is never re-entered

because no task can execute instructions that may cause it to be enterec.

TOTERM is entered when internal interrupt handlers and supervisor call
handlers terminate. It checks the system queue (LIOTRM) in case any
items were added while the system was in the SU state. If there is
nothing on the gueue, the scheduler (SCHED) is branched to. If an
item is removed from the gqueue, it is checked for zero. If zero,
IOTERM is branched to in order to try again. A zero item is added

if an ESL state routine wants to put itself into wait, as just

setting a bit in TCB.STAT does not stop the routine until an interrupt
occurs. The zero item on the system gueue causes a queue service

interrupt to occur and the scheduler to be entered.

If the queue item is not zero, it is checked to see if it is odd or
even. If the queue item is odd, it is a standard I/O driver termination
and the registers are picked up from DCB.RSAV. The termination routine
is branched to whose address is in DCB.TERM. If the queue item is

even, it is a clock termination or a system console termination. The
DCB address is picked up from the queue item plus eight, and the term-

ination routine is entered.

29-434 R00 10/76

5.2.1.8 Seek Queue - The seek queue (SEEKQ) is used by the moving head
disc driver to regain the SELCH after a seek. While the disc head is

seeking, the SELCH is not needed, so its busy flag is reset.

When the seek completes, the SELCH is again needed so the busy flag is
checked. If the SELCH is free, the busy flag is set and the transfer
starts. If the SELCH is in use, the disc device number is added to

the seek queue and the driver exits to DCB.LEAV.

When an I/0O terminates (IODONE), and when a device is busy (BUSY),
the seek queue is checked. If there is an item on the~queue, the
driver is entered by an SINT on the device number. The transfer then

proceeds as normal.

5.2.2 SVC Executive

The SVC executive, SVCEXEC, is entered when a task issues an SVC 2,
5, 6, or 7. It handles roadblocking of SVC executors. The SVC
executors are non-reentrant, but are executed in a reentrant state

(ESL state). Roadblocking is used to keep other tasks from entering

an SVC executor that is in use.

SVCEXEC checks the roadblock table item (RDBLK) corresponding to the
SVC number. If the SVC is in use (RDBLK entry non-zero), the calling
task is put into SVC n wait, where n is the requested SVC. Exit is
then made to IOTERM. If the requested SVC is free, the TCB index

of the calling task is put into the roadblock table. The task's
general registers, current priority, and current PSW are saved in

the save area corresponding to the SVC requested. The priority in

the task's TCB is set to one. The SVC executor is then entered in the

ESL state.

5-10 29-434 ROO 10/76

When a roadblocked SVC executor completes, eiiher normally or because
of an error, the SVC return routine (SVCnRTN, where n is the SVC number
is entered. It takes all tasks out of SVC n wait, where n is the SVC
number. The roadblock table entry is set to zero. The task's general
registers and current PSW are restored to the TCB. If a task trap

was to occur while the task was in the ESL state, the TSWs are

swapped. The task's current priority is restored to TCB.CPRI. Exit

is made to IOTERM.

5.2.3 8SVC 2 Executor (SVC2)

Entry to SVC2 is in the ESL state from SVCEXEC. The parameter block
address is checked to ensure that it is within the partition. The
function code is validated, the proper overlay is brought in, and

the executor is branched to.

5.2.3.1 8VC 2 Overlays - The SVC 2 routines are overlayed in nine
parts. SVC 2 code 1 and SVC 2 code 23 are not overlayed. The SVC 2

overlay loader (LDS2) loads the required overlays.

5.2.3.2 SVC 2 Overlay Table - Table 5-2 shows the SVC 2 executors in
each overlay.

TABLE 5-2 SVC 2 OVERLAYS

OVERLAY CODE NAME DESCRIPTION

0 0 S2JRNL Journal Call
2 S2GETS Get Storage

1 3 S2RELS Release Storage
4 S2SETS Set Status
5 S2FPTR Fetch Pointer
20 S2EXP Expand
21 S2CON Contract

2 6 S2UPAK Unpack

3 7 SVCLG Log Message
8 SVCLK Fetch Time
9 SVCDT Fetch Date

29-434 ROO0 10/76

TABLE 5-2 SVC 2 OVERLAYS (Continued)

OVERLAY CODE NAME DESCRIPTION
4 15 S2PAK Pack Numeric
5 16 S2PKFILE Pack File Descriptor, part 1
6 16 PKFL2 Pack File Descriptor, part 2
7 17 S2SCAN Scan Mnemonic Table
8 18 S2MOV Move Characters
19 S2PEEK Peek
23 S2TIME Timer Management
Not 1 S2FAUS Pause
Overlayed
5.2.4 SVC 3 Executor (SVC3)

Entry to SVC3 is in the SU state. The cancel pending flag (TFLG.CPM)
is set in TCB.FLGS. The effective address of the SVC is stored as the
return code in TCB.RC. If the task is a non-resident foreground task,
the command processor current task is cleared if it is set to this

task. The current TSW is set to zero. If the task has a time interval
outstanding, it is cancelled. SVC3 then enters the ET state. All reads
are cancelled with an SINT into the driver's abort routine (DCB.ALOC).
SVC 7 checkpoint calls for resident tasks, or SVC 7 close calls for
non-resident tasks, are issued on each assigned LU. This ensures that
all writes have been completed, that the abort of all reads is complete,
and that all files are in a checkpointed condition. If the task is
currently connected to a trap-generating device, the connection is
frozen and unconnected by a call to the TGD driver. The return code

is unpacked with an SVC 2. svC3 then returns to the SU state. The
task is set dormant. Cancel pending is reset in TCB.FLGS. ATEXT is
called to output the end of task message. If the task is resident,

SVC3 exits to IOTERM. Otherwise, TCB.ID, TCB.OPT and TCB.FLGS are

5-12 29-434 ROO 10/76

cleared. TCB.CPRI is set to 255 to speed up task schéduling. If
the task was to be rolled out, the roll is no longer required so the
task that caused the roll attempt is taken out of SVC 6 wait. If a
"roll in is required (PARTAB contains an odd address), the address of
CROLL is added to the command processor queue by a call to ADTSKQ.

SVC3 exits to IOTERM when complete.

5.2.5 SVC 5/6 Executor (SVC6)
The SVC 5/6 executor, SVC6, is entered in the ESL state from SVCEXEC.
It decides which SVC call it is, loads the proper overlay, and branches

to it.

5.2.5.1 8SVC 5/6 Overlays - The SVC 5/6 routines are overlayed in
seven parts. See Table 5-3 for the SVC 5/6 executors in each overlay.

The SVC 6 overlay loader (LDS6) loads the required overlays.

TABLE 5-3 SVC 5/6 OVERLAYS

OVERLAY ROUTINES DESCRIPTION
0 SVC5R SVC 5 Handler
1 SVC6R SVC 6 Initialize and Executor Table
2 SVC6.ET SVC 6 End Task
SVC6.FIX SVC 6 Fix
SVC6.ATQ SVC 6 Add to Task Queue
SVC6.SEN SVC 6 Send message
SVC6.PRR SVC 6 Priority
SVC6 .CON SVC 6 Connect
3 SVC6.TGD SVC 6 Thaw, Sint, Freeze, Unconnect
‘ SVC6.UNF SVC 6 Unfix
SVC6.STR SVC 6 Start
4 SVC6.LT SVC 6 Load, part 1 - read LIB
5 LT.CS2 SVC 6 Load, part 2 - rollout
6 LT.PA SVC 6 Load, part 3 - load task

29-434 ROO0 10/76 5-13

5.2.5.2 SVC 5 Handler (SVC5R) - The SVC 5 handler is called to load
a user overlay. It is entered in the ESL state. The LU specified in
the parameter block is placed in an SVC 1 parameter block (S5.S1).
The option field is checked. 1If load after rewinding is specified,
an SVC 1 is issued to rewind the LU. The overlay's LIB is read into
the TCB register save area, TCB.RSAV, effectively reading it into the
registers. The overlay name in the LIB is verified with the name in
the SVC 5 parameter block. A test is made to determine if available
storage for the overlay exists. LOAD.MOD is then called to load the
overlay. After the overlay is loaded, CHKSUM is called to validate

the task's checksum. Exit is made to SVC6RTN.

5.2.5.3 S8VC 6 Initialize (SVC6R) - SVC6R is entered in the ESL state.
If the SVC 6 was from the background task, the SVC 6 continue bit
(TOPT.S6M) is checked in TCB.OPT. If set,‘the parameter block status
is set to zero and SVC6RTN is entered to effectively ignore the call.
If the option bit is reset, SVC6IL is entered to indicate an illegal

SVC.

The direction field in the function code is checked. If the call is
directed towards another task, the TCB is located by a call to LOCT.
If the function specifies load, the directed task must not exit unless

it is the background task. For all other functions, the task must exist.

After the directed task's TCB is located, the current status and
priority are moved to SVC6.TST and SVC6.RPI respectively. SVC6.IF

is then entered.

5-14 29-434 ROO 10/76

5.2.5.4 S8VC 6 Function Determination (SVC6.IF) - SVC6}IF tests each
bit of the function code, loads and branches to the executors requested.

The executors are entered in the SU state with the following registers

set up:
RO Current position pointer into function code
R1 TCB address of calling task
R2 Address of SVC 6 parameter block
R3 TCB address of directed task |
R4 Pointer into function code table
R5 Increment (2)
R6 End of function code table
R7 Current halfword of function code
R14 DCB address of Trap Generating Device (TGD)

The executors may use R8 through R15 as work registers. Executors
return to SVC6.IF by issuing a LPSW of SVC6.RT. Error exit is made

by placing the error status in R15 and branching to SVC6.ERR.

5.2.5.5 SVC 6 Function Executors
- END TASK (SVC6.ET) - LOCCHK is called to verify that the directeil
task is still present. " The function code is checked for a delet=
task. If set, the task is made non-resident. CANCEL is called
to cancel the task. If the call is self directed, SVC 6 processing

is terminated by exiting to SVC6RTN.

- FIX (SVC6.FIX) - LOCCHK is called to verify that the directed
task is still present. The memory resident bit (TOPT.MRM) is set

in TCB.OPT.

29-434 ROO 10/76

Ul
1

15

ADD TO TASK QUEUE (SVC6.ATQ) - LOCCHK is called to verify that
the directed task is still present. ADTSKQ is called to add

the parameter. Error code 12(C) is returned if any problems

occur.

SEND MESSAGE (SVC6.SEN) - LOCCHK is called to verify that the
directed task is still present. ADD.BC is called to validate
the message ring (UDL.MSGR) and message buffer (SVC6 .MSG)
addresses. If the current buffer in the message ring is empty
(bit 15=0), the caller's task ID followed by a 64-byte message
are moved into the ring buffer. The buffer is marked full
(bit 15=1) and the address of the next buffer is placed in

UDL.MSGR.

ADTSKQ is called to queue the send message buffer address. If
ADTSKQ returns CC=0, normal exit is made. Otherwise, the
buffer address is restored in UDL.MSGR and the buffer is
marked empty (bit 15=0). Any error results in a status of

11(B).

SET PRIORITY (SVC6.PRR) - LOCCHK is called to verify that the
directed task is still present. For a U-task, the desired
priority is checked to ensure it is greater than 250. The
priority is checked with the maximum priority. The UT/ET
priority is updated and PLINK is called to adjust the priority
table (PRITAB). Error code 5 is returned if the specified

priority is invalid.

CONNECT (SVC6.CON) - LOCCHK is called to verify that the

directed task is still present. If the device is not connectedy

29-434 ROO 10/76

the TCB pointer and parameter are placed in the DCB. Error

code 15(F) is returned if the device is already connected.

- THAW, SINT, FREEZE, UNCONNECT (SVC6.TGD) - LOCCHK is called to
verify that the directed task is still present. A check is
made to verify that the directed task is connected to the
specified device. The TGD driver is entered to perform the
requested function. For an unconnect, the task pointer in
DCB.RSAV is set to zero. Error code 16(10) is returned if

the device is not connected to the directed task.

- UNFIX (SVC6.UNF) - LOCCHK is called to verify that the
directed task is still present. The memory resident bit

(TOPT.MRM) is reset in TCB.OPT.

— START (SVC6.STR) - LOCCHK1 is called to verify that the directed
task is still present. Error code 1 is returned if the call
is self-directed. Error code 7 is returned if the directed
task is not dormant or paused. The initial TSW (TCB.ITSW)
is moved to the current TSW (TCB.CTSW). The current PSW
(TCB.CPSW) is set up to ETSTAT or UTSTAT depending on OPTION
ET (TOPT.ETM). The condition code and location are set up
from the initial TSW. If a start address is given (SVC6.SAD),
it is moved to TCB.CPSW+2. The start address is validated and
a carriage return, specifying no starting parameters, is placed
at UTOP. If delay start is specified, the start address
followed by an SVC 2 instruction, a branch to register 8, and

a SVC 2 code 23 parameter block are placed in the R8 through

29-434 ROO 10/76 5-17

R15 save areas of the TCB (TCB.RSAV+16) and TCB.CPSW+2 is set

to point to the SVC 2 instruction at TCB.RSAV+18. Error code
10(a) is returned if the time field (SVC6.TIM) is invalid. The
dormant and console wait bits are reset in TCB.STAT, and SVC6.TST

is set to this updated status.

LOAD RSVCG.LT) - The ESL state is entered. The LU specified
is placed in an SVC 1 parameter block (LT.TSV1). The module's
LIB is read into TCB.RSAV, effectively reading it into the
registers. PAR.FNDO is called to find the partition the task
is established for. Error code 76 (4C) is returned if the
partition does not exist. If the partition is vacant, the
loader part 3 (LT.PA) is called in to perform the load.
Otherﬁise, in order to load the task, a roll-out must occur.
Error code 73(49) is returned if the task is not rollable

because of any of the following conditions:

1. OPTION ROLL not set.

2. Priority is not less than the priority of the task to be
loaded.

3. Task is connected to a TGD.

4. Task has an outstanding time interval.

If the task is rollable, it is removed from the following waits:

l. Dormant
2. Console wait

3. Any SVC wait

The roll pending flag is set (TFLG.ROM), the task's previous

status and current priority and the caller's TCB pointer are

29-434 ROO 10/76

saved in otherwise unused areas of the TCB. The task's priority
is set equal to the priority of the task requesting the load.
The loader then puts itself (as a subroutine of the calling

task) into SVC 6 wait. This wait can be removed in two ways:

1. The scheduler (SCHED) discovers that there are no outstandinc
I/0 requests initiated by the task to be rolled.
2. The task to be rolled is cancelled or goes to end of task

(SVC3) and no longer has to be rolled out.

If the task does not go through SVC3, the loader continues
execution by calling in the second part (LT.CS2) to perform
the roll. Otherwise, the third part is entered at LT.CL to

perform the load.

LT.CS2 uses the load LU (SVC6.LU) to assign the roll file by
saving the contents of the logical unit table entry (TCB.LTAB)
and the attribute byte table entry. The LU table entry is then
set to zero and the roll file is assigned. The TCB, followed
by the contents of the partition, are written to the roll file.

The rolled task is set dormant.

If the background is not being rolled, the TCB.ID and the command
processor current task are reset. The roll out bit (bit 15) is
set in the corresponding partition table entry for the rolled
task. The roll file is closed and the TCB.LTAB entry is restored
to its previous contents. All logical units for the rolled task
are zeroed and the third part of the loader is enter at LT.CL.
Possible errors returned by the second part of the loader are:

29-434 RO0 10/76 ~19

Ul

75 (4B) Assign or close error on the roll file

74 (4A) 1/0 error on the roll file

LT.PA checks that the task fits in the partition. If not,

error code 76 (4C) is returned. If the task is to be loaded

into the background partition, and the directed task is not '.BG',
error code 1 is returned. For a foreground task, error code 1 is

returned if the name does not conform to 0S/1l6 naming conventions.

If the task uses a library or task common, PAR.FND is called to
ensure that the partitions exist. If not, error code 66(42) is
returned. LOAD.MOD is called to load the task, and CHKSUM is
called to verify a good checksum. Error code 18(12) is returned

for a checksum error.

If, for any of the above reasons, the load was unsuccessful

the rolled-out task is rolled back in.

The initial TSW/LOC are set up from the first four bytes of the UDL.
The maximum and current priorities are set up in the TCB and in
SVC6.RPI. The task name (TCB.ID) is set up from SVC6.ID. For

a task, UDL.UBOT, UDL.CTOP, UDL.CBOT and UDL.UTOP are set up.

PLINK is called to adjust the priority table. TCB.OPT is set

to the options in LIB.OPT. R5, R6, and R7 are set up to their

proper contents for SVC 6 function determination (SVC6.IF) and

a normal exit is made.

29-434 ROO 10/76

5.2.6 SVC 9 Executor (SVC9)

Entry to SVC9 is in the SU state. The caller's general and floating
point registers are saved in TCB.RSAV and UDL.FPRS, respectively.

The updated PSW is saved in TCB.CPSW. The requested new TSW is
loaded from the SVC instruction's effective address. If the new TSW
has task queue service traps enabled, the task queue is checked. If
it contains any entries, a trap is taken by saving the new TSW in

UDL.TSKO and SVCY9 continues with UDL.TSKN as the new TSE.

The new TSW is stored in TCB.CTSW. The condition code is extracted
and is set in TCB.CPSW. The new LOC is checked by a call to ADD.BC

and is stored in TCB.CPSW+2. Exit is made to IOTERM.

5.2.7 Address Check (ADDCHK)

The SVC routines call an entry point of ADDCHK to validate all
addresses passed in the SVC parameter block. No chécking is done

for E-Tasks, nor for tasks built into a system with no Command
Processor Module. If the task is in the background partition, the
address is checked for the range of the background partition. For a
foreground task, the address is checked for the range of the foreground

area..
5.3 TASK TRAPS

5.3.1 Add to Task Queue (ADTSKQ)
ADTSKQ is called to queue a parameter to a task. Rl4 is set to a reason

code as follows:
0 Device interrupt

1 Task request to queue parameter

29-434 ROO 10/76 5-21

%)

2 Time interval expiration

3 I/0 proceed complete
4 -Reserved-
5 Send message

Based on the reason code, the proper TSW enable bit is checked in
TCB.CTSW. The queue address is picked up from UDL.TSKQ, the

address is checked, and fhe parameter is added to the queue. If

the queue service trap enable bit is set in TCB.CTSW, é task trap

is to occur. If the task is in system level code, the trap-

pending flag is set, so that the TSW swap occurs when the task returns

to the UT/ET state. Otherwise, the trap wait bit (TSTT.TRM) is reset

in TCB.STAT and TSW.SWP is called to swap task queue service TSWs.

5.3.2 TSW Swap (TSW.SWP)

TSW.SWP moves the current TSW/LOC to the 0ld TSW/LOC in the UDL
and the UDL's new TSW/LOC to the current TSW. The condition code

from the current TSW is moved to the old TSW and the condition

code from the new TSW is moved to the current PSW.

5.4 TIMER MANAGER

.OS/16 MT2 optionally supports a Line Frequency Clock (LFC) and a
Precision Interval Clock (PIC). System initialization enables
the LFC, whereas the PIC is only enabled when a task requests a
time wait or trap. The time of day is kept in ASCII hours:.
minutes:seconds and in binary seconds since midnight. The
current date is kept in ASCII month/day/year or day/month/year

depending on the DATE SYSGEN parameter.

29-434 ROO 10/76

All tasks requesting time waits or time traps are maintained on a
timer service table (TIMTSV). There are =nough entries in TIMTSV
for every task SYSGENed into the system to have both types of

time intervals outstanding. Each entry is one byte and normally
contains zero. A used entry contains the TCB index of the task
requesting the interval. The TCB index is made odd if the request

is for a time trap (queue entry), and is even for a wait.
5.4.1 Handle LFC Interrupts (CLOCKISR), Clock ISR

The LFC interrupts at twice the line frequency. For example,
if the line frequency is 60 Hz, the LFC interrupts 120 times

per second (every 8 1/3 ms).

The clock ISR keeps a count which is initialized to twice the line
frequency minus one. On every interrupt, the count is decremented
by one. When it becomes minus (which means a second has elapsed),
the clock update routine is scheduled and the count is reset to

its original content. 5
5.4.2 Handle PIC Interrupts (TIMER), Timer ISR

"When a time interval is outstanding, the PIC is set to interrupt
at the SYSGENed INTERVAL.

The timer ISR schedules the timer update routine.
5.4.3 Clock Update Routine (CLKUPD)

The clock update routine is scheduled every second by the clock

ISR. The binary time is incremented by one second.

29-434 R0O 10/76 5-23

If it is midnight (binary time = Y¥'00015180'), the binary time is

reset to zero, the ASCII time is set to C'00:00:00', and the ASCII
date is incremented by one day. The ASCII month and year are not
changed by this routine and must be corrected by the SET TIME com-

mand every month.

If it is not midnight, the ASCII time is incremented by one

second. The minute and hour are incremented when necessary.

After the time is updated, the time-out field in the DCB of every
device in the DMT is decremented by one. If a device has timed-
out, the current ISR is entered by a SINT on the device number.

The clock'update routine then exits to IOTERM.

5.4.4 Timer Update Routine (TIMUPD)

The timer.update routine is scheduled at the SYSGENed INTERVAL

by the timer ISR. Each task in the timer service table gets its
TCB.TVAL or its TCB.ADQT decremented, depending on the low order
bit of the timer service table entry. If this value becomes nega-
tive, the task is either taken out of time wait or has the timer
parameter (TCB.ADQP) added to its task queue, depending on the type of
interval. TIMCAN.2 is called to remove the table entry and

move all of the other entries up one slot. If there are any

more entries, the routine continues to decrement the TCB timer
values. If all entries are removed from the table, the timer

is disarmed. Exit is made to IOTERM.

5.4.5 SVC 2 Timer Calls’

SVC 2 code 8, 9, and 23 deal with the clock routines. SVC 2

code 8 and 9 fetch the current time and date respectively. SVC 2
code 23 sets up for a time of day wait, a time of day trap, an

interval wait, an interval trap, or cancels an outstanding time trap.

5-24 29-434 ROO 10/76

When a task requests a time of day trap or a time of day wait,
the time specified is converted from seconds past midnight into
millisecond from now and the time of day flag, used by the SET
TIME command handler, is set in TCB.FLGS. The call is then

processed as an interval request.

For an interval wait request, the time is moved to TCB.TVAL.
For an interval trap request, the time is moved to TCB.ADQT, and
the parameter is moved from the specified regisfer (in the

register save area) to TCB.ADQP.

The TCB index (for a wait) or the TCB index plus one (for a
trap) is added to the timer service table. The PIC is enabled.
For a wait, the task is put into time wait. Exit is made to

SVCZ2RTN.

For a cancel interval request, TIMCAN is called to remove the
entry containing the TCB index plus one. The user's condition
code is set either to 0 or to 4 depending on the existence of

an interval. Exit is made to SVC2RTN.

5.5 SYSTEM JOURNAL

05/16 MT2 provides a facility for recording significant events
in the system in a system journal. The journal is a standard

circular list with the number of slots equal to five times the
SYSGENed number of journal entries. The address of the journal

is kept in the system pointer table (at SPT.JRNL) and is a system

29-434 ROO 10/76 5-25

entry point (JOURNL). Journal entries are made from system

routines by executing a BAL instruction to the journal routine
(JOURNAL), followed by a halfword journal code. Entry to the journal
routine must be in the SU state. Each entry in the journal consists

of five halfwords of information. (See Figure 5-3.)

j:g TCB_ID [JOURNAL CODE
+2 REGISTER 12
e REGISTER 13
e REGISTER 14
o
o REGISTER 15

Figure 5-3. Journal Entry

The TCB ID is the TCB number of the current task at the time of
the journal call. The last four halfwords are the contents of
register‘lz through 15 at the time of the journal call. When the
journal list becomes full, the journal routine resets the number
of slots used field and re-uses the list, thus maintaining the
most recent entries. For a complete list of the journal codes
made by the system see Appendix 1. For a description of how an

executive task can make journal entries see Chapter 8.

5.6 SYSTEM MESSAGES

Since the executive routines cannot issue SVC calls, all messages

output by the executive are queued to the command processor. This

5~-26 29-434 ROO 10/76

is accomplished by the executive message subroutine, ATEXT.

A free log queue buffer is searched for. If none is found, the
log message lost flag is set in CPS.FLGS. Otherwise, the task
name is moved into the buffer, followed by the message. ADTSKQ

is called to queue the message.

5.7 CRASH HANDLER

Throughout 0S/16 MT2, checks are made for normally impossible
states of the system such as an invalid item on the command
processor's queue or an illegal instruction in system code. When
such a condition is found, the system brings itself to a halt |
before further destroying the conditions that led up to the

impossible situation. This is done by entering the crash handler.

The crash handler is entered by issuing a SINT instruction to
device zero followed by a halfword crash code. The first entry in
the ISP table is set by system initialization to branch to the
crash handler, CRASHX. CRASHX saves all the registers in the
crash save area, CRSHSV. The old PSW is checked to make sure
entry was because of a SINT instruction. If not, entry was
because of a hardware failure, and the crash code is set to 162.
For a SINT the crash code is picked up from the halfword following
the SINT instruction. The crash code is stored in SPT.CRSH.
Register 5 is set to the address of the system journal, and
register 6 is set to the address of the last entry made in the system

journal. The crash code is displayed on the display panel and a

29-434 ROO 10/76 5

27

PSW is loaded with only the wait and machine malfunction enable
bits set, thus stopping the system in-an uninterruptable state.
See Appendix 1 for a complete list of crash codes and their

meanings.

5.8 INTERNAL INTERRUPT HANDLERS

The internal interrupt handlers process the interrupts generated
by the microcode for illegal instruction, arithmetic fault,
memory protect fault, system queue service, memory parity error,
power fail, and power restore. In addition, illegal SVC calls

and invalid addresses passed in SVC calls are processed.

Most internal interrupts are processed by the internal interrupt
handler, EXEC. Entry to EXEC is in the SU state with the

condition code specifying the type of interrupt (see Table 5-4).

EXEC saves the general registers and calls EXECSUB to save the
floating point registers. A branch is made to the proper service

routine.

TABLE 5-4. INTERNAL INTERRUPTS

CcC Internal Interrupt

0 Illegal Instruction

2 Floating Point Fault

4 _ Illegal SVC

6 System Queue Service

8 Fixed Point Divide Fault
A Memory Protect Fault

5-28 29-434 ROO 10/76

5.8.1 Machine Malfunction Handler (MMH)

on detection of a memory parity error; a power fail, or a power
restore, the machine malfunction handler is entered. Entry is
directly from the microcode with all interrupts masked off. The
condition code is used to determine the type of interrupt and the

appropriate routine is entered.

On a memory parity error, the common error handler (IIMPH) is

entered in the SU state.

For power fail detect, MMH tests an internal flag (PFFLAG) to
see if a power restore sequence was in execution at the time of
the power fail. If this is so, MMH simply loads an enabled
wait PSW to wait for the power restore interrupt. If a power
restore sequence was not in execution, the power fail flag is
set. Since the list instruction traps are used by the power
restore routine, and they are non-reentrant, the PSW location

is checked for being within the list instruction traps. If in
the traps, the traps are allowed to complete and are set to
return back to the power fail routine at MMPF.4. Otherwise, the
machine malfunction old PSW and the general registers are saved.
The power restore auto/restart save areas are not used since
multiple power fails would destroy the original state of the
system. MMH then loads an enabled wait PSW to wait for the power

restore interrupt.

29-434 ROO 10/76 5-29

On power restore detect, MMH enters the IS state and checks the

power fail flag. If reset, the memory parity error handler is

entered. Otherwise, the power restore message is written to the console
device and a wait PSW is loaded. When the operator has reset all de-
vices and depresses the RUN switch on the Processor, execution con-

tinues. All busy devices have their driver's abort routine entered.

Each task is checked for power fail trap enable. If enabled,
the power fail trap pending flag (TFLG.PRM) is set. Otherwise,
the pause pending flag (TFLG.PPM) is set. The task is removed

from all waits except roll wait and I/O wait. The timer service

table is cleared.

The system clocks are enabled, and a zero is added to the system

queue to force an interrupt and enter the scheduler.

MMH then reloads the registers from the save area, resets the

power fail flag, and reloads the machine malfunction old PSW from

the internal save area.
5.8.2 1Illegal Instruction Handler (III)
After going through the required traps, EXEC is entered to save the

current task's registers. Return is to IIINT in the SU state which

enters the common error handler (IIMPH).

29-434 R0O 10/76

5.8.3 Memory Protect Fault Handler (MPDVR)

MPDVR is entered on an interrupt from .the memory protect controller.
EXEC is entered to save the current task's registers. Return is

to MPINT in the SU state. If the task is attempting to modify

the SVC 13 or SVC 14 vector table entry (used by 0S AIDS), it is
allowed to. Otherwise, the common error handler (IIMPH) is

entered.
5.8.4 Arithmetic Fault Handler (ARITHF)

The arithmetic fault handler is entered from EXEC at FPINT for a
floating point fault, or at DVINT for a fixed point divide fault.

The common error handler is entered at IMPH.
5.8.5 1Illegal SVC Handler (SVCIL)

SVCIL is entered in the SU state from EXEC because of an illegal
SVC number. SVC2IL is entered in the ESL state because of an
illegal SVC 2 code. SVC6IL is entered in the ESL state because

of an illegal SVC 5 option, or an SVC 6 from the background
partition with OPTION SVCP (Illegal SVC 6 pause). The common error

handler (IIMPH) is entered in the SU state.
5.8.6 Invalid SVC Address Handler (SVCILA)

SVCILA is entered in the SU state from SVCl for one of the followinc
reasons:
- The parameter block is not on a halfword boundary.
- For a U-Task, the parameter block is outside of the
task's address space.

- The end address is less than the start address.

29-434 ROO 10/76

- For a U-Task, the start address or the end address is
outside of the task's address space.

- The start address is not on a halfword boundary.

SVCILA is entered in the SU state from SVC9 for one of the following
reasons:
~ The parameter block is not on a halfword boundary.
- TFor a U-Task, the TSW to be loaded is outsidé of the
task's address space.
- TFor a U-Task, the location specified by the TSW is out-

side of the task's address space.

SVC2LA is entered in the ESL state ffom svc2 for one of the following
reasons:
- The parameter block is not on a halfword boundary.
- For a U-Task, the parameter block is outside of the task's
address space.
- For a U-Task, an address specified by the parameter block

is outside of the task's address space.

SVC6LA is entered in the ESL state from SVC6 for one of the following
reasons:
- The parameter block is not on a halfword boundary.
- TFor a U-Task, the parameter block is outside of the
task's address space.
- For a called U-Task, the start address specified on
an SVC6 start request is outside of the called task's

address space.

29-434 ROO 10/76

SVCTLA is entered in the ESL state from SVC7 for one of the followirg
reasons:
- The parameter block is not on a halfword boundary.
- For a U-Task, the parameter block is outside of the
task's address space.
The invalid SVC address handler enters the common error handler (IIFPH

in the SU state.

5.8.7 System Queue Service Handler (QTERM)

QTERM is entered in the SU state from EXEC. It moves the old PSW

to the current task's TCB and exits to IOTERM.

5.8.8 Common Error Handler (IIMPH)

The common error handler is called to handle internal interrupts
which may be generated by a task. Register 4 contains the address
of a message parameter block (see Figure 5-4). Registers 14 and

15 contain the PSW at time of interrupt. If a task, other than the
system task, was current at time of interrupt, the message is queued
to the command processor and the task is paused. Otherwise, the

crash handler is entered.

Crash Code

0ld PSW Offset Length of Message

21

Message Text

Location buffer

(4 Bytes)

Figure 5-4 Common Error Parameter Block

29-434 ROO 10/76 5-33/5-34

CHAPTER 6
THE COMMAND PROCESSOR

6.1 INTRODUCTION

The command processor is the highest priority task in 0S/16 MT2. It
is an executive task (see Chapter 8). The command processor is the
medium through which the console operator communicates with the
operating system, and it controls the system environment. The

command processor also controls the system console, memory partitions:,

and the Command Substitution System (CSS).

6.2 COMMAND MAIN

CMD.TOP is the main line routine of the command processor. It calls
CMD.CKIO to ensure the console and current CSS level are active. The:
status fields of the two parameter blocks (CPS.CNIN and CPS.CSIN)

define the current state of the console and the current CSS level as

follows:

Status Meaning
+2 : needs a read (inactive)
+1 read is outstanding (active)
0 read has been completed successfully
-n read has been completed with an error

29-434 ROO 10/76

CMD.CKIO checks to see if the console should request input from
the operator (status=2). If so, it outputs the prompt '*' with
a write/wait/image, sets the status to 1, and issues a read/proceed
to LU O. If CSS is in effect, CMD.CKIO checks the status of

CPS.CSIN. If this status is 2, it checks if the background parti-
tion is currently dormant, and if so, sets the status to 1 and issues

a read/proceed to the current CSS LU.

After calling CMD.CKIO, CMD.TOP checks the Command Processor
Queue (CMDPQ). If the queue is empty, CMD.TOP issues an SVC 9
to put the command processor into trap wait with all interrupts
enabled. If the queue is not empty, it takes an item off the

queue and decodes it as follows:

Value Routine Meaning
CPS.CNIN CMD.INO command line from the console
CPS.CSIN CMD. INX Command line from current CSS level
CPS.IPRQ CMD.TI svCc 1 input request from a task
CPS.OPRQ CTP,OUTP SVC 1 output request from a task
CROLL CMD. ROL Roll-in request
A (BUFFER) +1 CTP.LOGR Log message request
BSC.PARM CMD.BSCT Bulk storage command termination

6.3 COMMAND PARSING

CMD.INO or CMD.INX is entered when the I/0 proceed termination
trap for the console or the current CSS level respectively, has

occurred. They check the parameter block status, and if the read

6-2 29-434 ROO 10/76

terminated properly, the status is set back to 2 (needs a read).
Then CMD.NEXT is entered to process the line, unless one of the

build commands is in effect.

CMD.NEXT is entered from CMD.IN and from all command executors to
process the next command on the command line. Individual commands
are moved from the buffer into which they were read to the buffer
CMDBUF. If the command was entered from CSS, parameter substitution
takes place each time an @ is found. When CMD.NEXT completes its
moving, CMDBUF contains a single command with leading and trailing
blanks deleted and a carriage return appended after the last
character. The command mnemonic table is then scanned using an
SvVC 2 code 17. If the command was entered from CSS, a check is
made to see if the skip to $TERMJOB flag (CFLG.SJ) is set. If

so, only $JOB and $TERMJOB commands are processed; all others

are ignored. If the skip to $ENDC flag (CFLG.SE) is set, only
IF, SELSE, and S$ENDC commands are processed. Processed commaﬁds
read from CSS are then logged. If the command was in the comm-
and table, the appropriate executor is brought in and executed.
Otherwise, unless the command starts with a '*', CMD.CSS is

called to process a CSS call.

6.4 COMMAND PROCESSOR OVERLAYS

The command processor is overlayed in 16 parts. See Table 6-1 for
the names of routines in each overlay. The command processor

overlay loader (LDC) loads the required overlays.

29-434 ROO 10/76 6-3

TABLE 6-1. COMMAND PROCESSOR OVERLAYS

OVERLAY ROUTINES OVERLAY ROUTINES

0 CMD.ROL 5 ASSIGN
CTP.OUTP CIL.OSE
CTP.LOGR ALLOCATE
CMD.IN DELETE
CMD.TI 6 BIAS
CMD.BSCT EXAMINE

1 CMD.CSS MODIFY
CIN.NX (CMD.NEXT) VOLUME

2 ERRMSG (ERROR) MARK Part 2

3 $JOB 7 MARK Part 1
$SKIP 8 RENAME
SIFx REPROTECT
SENDC CLEAR
SELSE SAVE
BUILD/ENDB FILES Part 1
SBUILD/SENDB 9 FILES Part 2
SCOPY/$NOCOPY 10 INITIALIZE
CSs.CLOS 11 LDBG
SCLEAR LFGR
SEXIT LOAD
STERMJOB 12 SET LOG

4 START SET CODE
CANCEL SET PRIORITY
CONTINUE SET TIME _
PAUSE 13 SET PARTITION
TASK 14 DISPLAY LU
OPTION DISPLAY MAP
SEND DISPLAY TIME
Bulk Storage 15 DISPLAY DEVICES

DISPLAY PARAMETERS

6.5 COMMAND ERROR HANDLING (ERROR)

When an error occurs, and a command executor wants to output an

error message, the ERROR routine is entered. The address of the
error mnemonic must be contained in R14. For an error which
gives no additional information other than the primary mnemonic
(errors before ETAB.2 in the ERROR routine), R15 does not have

to be set up. For errors between ETAB.2 and ETAB.4, R15 must

6-4 29-434 ROO 10/76

contain the address of a secondary mnemonic. The parameter
block address must be contained in R15 for SVC 1, SVC 7, and
SVC 6 type errors between ETAB.4 and ETAB.7. The error message
is output by a call to CMD.LOG. CMD.TOP is then entered which,

in effect, ignores the rest of the commands on the line.
6.6 COMMAND EXECUTORS

All command executors require that R2 contain a pointer to the
command parameters, and R5 contain the TCB address of the
currently selected task. In addition, the CSS '$' executors re-
quire that the Command Processor flags (CPS.FLGS) are contained

in R7.
6.6.1 Task Related Commands

Certain commands pertain only to tasks. These commands are

applied to the currently selected task as set by the TASK command.

The TASK command executor calls LOCT which scans all the TCBs in
TCBTAB. If a task with a matching name is found, then its TCBTAB
index is stored in CPT.CT or CPS.CCT, depending upon where the
command was read from. If the task is entered as '.BG', the
currently selected task is set to the background (index=4). 1If
the system is SYSGENed without foreground partitions (FOREGRND 0),
the current task is maintained as the background task, and the

TASK command is illegal.

When a nonresident foregrdund task goes to End of Task (EOT), CLR.CT
is called. 1If the task is the currently selected task, the current
task is reset to zero (no current task). A task related command,
entered when there is no currently selected task, causes a

FUNC-ERR TASK.

29-434 ROO 10/76 6-5

6.6.2 Task Related Command Descriptions

The task related commands in 0S/16 MT2 are as follows:

START - Obtains the start location, sets up TCB.CPSW,
moves the starting argument above UTOP, and sets TCB.STAT

to zero.
PAUSE - Sets pause pending in TCB.FLGS.
CONTINUE - Resets the console wait bit in TCB.STAT.

CANCEL - Changes to the SU state, calls CANCEL (in the Executive),

changes back to the ET state.

ASSIGN - Sets parameter block minus two (CPS.7T) to the TCB
address of the current task for the file manager. Performs

an SVC 7 assign.

DISPLAY LU - Goes through TCB.LTAB. If the entry is zero,

it skips to the next. If the LU is assigned to a device
(address is below top of system), it calls DMTSRC to find the
corresponding device name. If assigned to a file, FCB.VMT
points to the volume name, FCB.NAME and FCB.EXT contain the
filename and extension, respectively. The access privilege
mnemonic is picked up from a table, based on the attribute

byte in the TCB and the read and write counts in the DCB/FCB.

CLOSE - Sets parameter block minus two (CPsS.7T) to the TCB
address of the current task for the file manager. Performs
SVC 7 closes until all specified LUs are closed. Error status

9 (LU not assigned) is ignored.

29-434 ROO 10/76

- OPTIONS - Sets/resets the specified option bits in the user

TCB option field (TCB.OPT).

- SET PRIORITY - Makes sure the specified priority is legal
and not greater than the task's maximum priority. Stores

the new priority in the UT/ET level priority byte.

- DISPLAY PARAMETERS - Unpacks and logs various parameters
associated with the task. Parameters come from the task's

TCB and UDL.

- SEND - The message is moved to CLOGB. An SVC 6 is issued

to send the message.
6.6.3 Device and File Related Command Descriptions

The Device/File related commands are as follows:

ALLOCATE - Executes an SVC 7 with data specified or defaulted.

- DELETE - Executes an SVC 7 with the file descriptor specified.

Repeats for multiple FDs.

- RENAME - If the FD specified is a disc volume, it is renamed
in the VMT and the VD. Otherwise, an SVC 7 assign for an

ERW is issued followed by an SVC 7 rename.

- REPROTECT - Executes an SVC 7 to assign and reprotect the

specified file/device.

29-434 ROO0 10/76 6-7

- FILES - This executor is divided into two overlays. Overlay
8 contains the command parsing and the assigning of the disc
and the print FD. Overlay 9 contains the directory search

and file print logic.

- MARK - This executor is divided into two overlays. Overlay 7
contains the mark parsing, mark on, and mark overlay error
handler. Overlay 6 contains mark off and the mark off/on
roll handling. When the 0OS volume is marked off, overlay 7
remains in the overlay area and contains the logic necessary
to mark it back on. While the 0S volume is off, the only
SVC 2 functions that can be used are SVC 2 code 17 (Scan),
SVC 2 code 1 (Pause), and SVC 2 code 23 (Timer Management) .

SVC 7 assign is the only SVC 7 function that can be used.

Mark packs the specified file descriptor with a call to

MARK.PFD. DCB.CNTS are checked to ensure that no logical

unit is assigned to this device (or to a file on this

device). The write protect bit (DFL.WPM) is reset in DCB.FLGS

so the device may be assigned with a write privilege. The device
is assigned to LU 2 for ERW. DCB.FLGS are restored to the
previous contents. Once the device is assigned, the 'OFF' or

'ON' mnemonics are scanned and the proper executor is entered.

For Mark On, the 'PROTECT', 'ROLL', and '0OS’ mnemonics are
scanned and flags are set to note which ones are specified.
If the device is a disc, MON.BULK is entered. Otherwise,

the on~line flag is set in DCB.FLGS.

29-434 ROO 10/76

MON.BULK reads the volume descriptor. If the device was
previously‘off—line, neither 0S nor PROTECT are specified,

and the on-line bit (VATR.ONM) is set in VD.ATRB, the mark

is rejected with a STAT-ERR NOFF. Otherwise, the directory

and bit map pointers are moved to the DCB. The volume name

is validated. If 0OS is specified, the SVC 7 parameter block
(CPS.S7) is set up to assign the 0S file. If ROLL and

PROTECT are specified, the mark is rejected with a PARM-ERR

VAL. If ROLL is specified and any task is currently rolled out,
the mark is rejected with a FUNC-ERR SEQ. The volume name is
moved to the proper entry in the VMT. If OS is specified, the
DCB counts are reset to SRW, an SVC 7 assign is issued to locate
the 0S file and the counts are reset to ERW. The command
processor queue entries, which were saved on MOE.Q, are

moved back to CMDPQ. A dummy SVC 2 and SVC 6 are executed

to remove wait from all tasks which issued these SVCs while

the 0S8 volume was off. An attempt is made to re-write the

VD with VATR.ONM set in VD.ATRB. If this attempt fails, the
disc is hardware write protected so the software write protect
flag (DFLG.WPM) is set. Overlay 6 is loaded and MON.6 is

entered.

If ROLL is specified, roll files are deleted on the previous
roll volume and new roll files are allocated. If ROLL is not
specified, roll files are deleted if this volume was the roll

volume. Overlay 7 is loaded and MON.MON is entered.

29-434 ROO0 10/76 6-9

This routine outputs the mark on message and sets the on-lihe
flagvin the DCB. If 0S is specified without PROTECT, the
device was previously off-line and the on-line bit (VATR.ONM)
is set in VD.ATRB, the message STAT-ERR NOFF is generated,
but ﬁhe volume is still on-line. Otherwise, exit is made

to CMD.NEXT.

For Mark Off, overlay 6 is loaded and MARK.OFF is entered. If
the device is not a disc, the on-line flag in DCB.FLGS is reset

and exit is made to CMD.NEXT. Otherwise, MOF.BULK is entered.

The OS Mnemonic is scanned, and if found, a flag is set. If the
voluﬁe to be marked off is the OS volume, 0S must be specified.
Otherwise, OS must not be specified. If this is the roll
volume, the roll files are deleted (if no task is currently
rolled out). The VMT entry and the bit-map presence flag are

reset.

If the 0OS volume is being marked, all logical units are closed.
Overlay 7 is then loaded and MOF.OFF7 is entered. The SVC 7
assign and the SVC 2 scan overlays are brought in. The 0S

file is closed by resetting OSOVDB and OSOVFD.

The on-line and write protect flags are reset in DCB.FLGS. The
on-line bit (VATR.ONM) is reset in the volume descriptor of the

disc. Exit is made to CMD.NEXT.

For Mark Overlay Error Handler, this routine is entered at
LDC.R when the command processor-overlay loader discovers that
there is no 0S file from which to read in overlays. It decides
which overlay load was attempted and handles the three cases

itself.
29-434 ROO 1l0/76

If overlay 0 was to be loaded, R1l4 is checked. If it is not a
command from the console} the queue item is saved on MOE.Q. If
it is a command input termination from the console, MOE.INO is

entered and it performs the functions as CMD.IN.

If overlay 1 was to be loaded, MOE.NEXT is entered which performs

the same functions as CMD.NEXT.

If any other overlay was to be loaded, MOE.ERR is entered to log

OVLY-ERR on the log device.

- DISPLAY DEVICES - Displays a list of all devices in the DMT,
their device numbers, and their keys. It indicates whether
the device is off-line or write protected. If the device is
an on-line disc, it displays the name of the volume currently

mounted on the device.

- FRECORD, FFILE, BRECORD, BFILE, WFILE, REWIND, RW - Picks up
the proper SVC 1 function code byte and packs the FD. If
LU is not specified, assigns the fd and issues an SVC 1 of
the requested command. If LU is specified, the FCB address
is obtained from the TCB of the current task. The fd speci-
fied is compared against the fd in the FCB. If the names
match, the FCB counts are checked to ensure that the file
is not assigned for any exclusive access. The file is
'patch assigned' to command processor LU 2 by storing the
FCB address in the qommand processor TCB.LTAB. An SVC 1
is then issued to perform the requested function. Command

processor LU 2 is then zeroed. An I/0 proceed completion

29--434 R0OO 10/76 6-11

trap occurs upon termination of the requested function.
CMD.BSCT is entered when the trap.occurs. The parameter

block status is checked and ERROR is entered if necessary.

INITIALIZE - The specified device is assigned for ERW. A
check is made to ensure that the device is an off-line disc.
Sector zerc is readchecked to ensure that it is good. The
size of the bit map is calculated by dividing the number of
sectors on the device (DCB.SIZE) by 2048. A sufficient
number of good sectors are found to contain the bit map.
VD.MAP is set up in the VD buffer (INI.VD). The bit map

is then zeroed. Sector 0 and the sectors occupied by the
bit map are allocated in the bit map by issuing SVC 7s with
function X'FF' and modifier X'01' (see Chapter 7). 1If
readcheck is specified, all sectors within each cylinder are
read by issuing reads to every Nth sector, where N is picked
up from DCB.OINC. A cylinder of empty directory blocks is
then allocated. On a 40 MB disc, three tracks of directory
are allocated. On a 67 MB, 256 MB or on a floppy disc, one
track is allocated. These blocks are allocated by units of
N for maximum directory search efficiency. VD.FDP is set up
in the VD buffer. The VD is then written to sector 0 and
the bit map is updated by an SVC 7 checkpoint specifying

LU X'FF' (see Chapter 7). Exit is made to CMD.NEXT.

SAVE - Packs the fd. If the file does not exist, it allocates
a contiguous file large enough to hold the image. An SVC 1

is issued to write out the O0S.

29~-434 ROO 10/76

- CLEAR - Packs the fd. Issues an SVC 7 delete of the specified

volume (see Chapter 7).

6.6.4 General System Command Descriptions
The general system commands are as follows:

- BIAS - Stores bias value in BVALUE to be used by EXAMINE and
MODIFY.

- EXAMINE - Gets the starting location and adds the bias. Checks
for '/' or ','. If '/' is found, it gets the ending location,
adds the bias, and computes the number of halfwords to be displayed.
If ',' is found, it gets the number of halfwords to be displayed.
The contents of memory, from the starting location through the
ending location inclusive, are displayed, eight halfwords per
line, to the log device.

- MODIFY - Obtains the starting address and adds the bias. Data
obtained from the command line is stored in successive memory
locations.

-~ SET LOG - Packs the fd and assigns it to LU 1. If no fd is
specified, LU 1 is closed. 1If the copy option is specified, the
copy flag (CFLG.LWC) is set in CPS.FLGS.

- VOLUME - Sets up the system default volume (SYSVOL). If no volume

| is specified, the system default volume (SYSVOL), the roll volume
(ROLVOL) , and the 0S overlay fd (OSOVFD) are displayed.

- SET TIME - Scans the input line and picks up the date in the form
mn/dd/yy or dd/mm/yy depending on the DATE SYSGEN parameter. It
determines the validity of the date. The date is then stored in
CALDAT. The time is obtained in the form hh:mm:ss, and is checked

for validity. It is converted to seconds since midnight. If

29-434 ROO 10/7/6 6-13

there are any items on the timer service table that are in time
of day wait or time of day add to queue, the corresponding TCBs
are updated to reflect the change in time. The ASCII time is

stored in CBUF and the binary time in SECPM.

DISPLAY TIME - The date and time are obtained using an SVC 2

code 8 and code 9 and are displayed.

DISPLAY MAP - For all partitions, the partition number, name

(if a task is loaded in the partition), starting address, status,
and priority (if a task is loaded in the partition) are displayed.
The address of .SYS, FBOT, and MTOP are also displayed.

SET PARTITION - The current partition table (PARTAB) is copied to
the work buffer (SPBUF). The partition modify flag byte for each
partition (MKBUF) is set to zero. Each partition address specified
is stored in the SPBUF entry corresponding to the specified part-
ition number. The corresponding MKBUF entry is set to the part-
ition number. After all parameters are parsed, each SPBUF entry
is compared to the next to check if the partitions are still in
order. If a partition address‘is found which is not in order,
the corresponding MKBUF entry is checked. If the MKBUF entry
contains other than the partition number (partition not specified
by user), the out of order partition address is made equal to the
previous partition address and MKBUF is set indicating a change
was made. The loop then continues. If the MKBUF entry contains
the partition number (partition specified by user), a backwards
scan is started. If the preceding SPBUF entry is not in order,

the corresponding MKBUF entry is checked. If set to the part-

29-434 ROO 10/76

ition number, this partition was also specified by the user, so

a STAT-ERR VAL is given. Otherwise, the preceeding SPBUF entry

is set equal to the current SPBUF entry, MKBUF is set, and the loop
continues. After the backward scan finishes, the forward scan
continues. After the forward loop terminates, all changed
partitions are checked to ensure that they are vacant and the
partition's UDLs are set up. In a system with memory protect
support, the address 6f partitions 1 and .SYS are checked for a

1K boundary. SPBUF is then copied to PARTAB. The memory protect
pattern is then set up with a call to MEMPT. New roll files are

allocated for changed partitions. Exit is made to CMD.NEXT.

Load Command Descriptions

LDBG - Ensures that the background is dormant, assigns fd for SRO,
and loads standard object records. When an end of program loader
item is read, it sets up TCB.OPT floating point, memory resident,
and background bits. It sets up UDL.UBOT, UBL.UTOP, UDL.CBOT, and
UDL.CTOP. Then it exits to CMD.NEXT.

LFGR - Ensures that the specified foreground partition exists and
is vacant, assigns for SRO, and loads standard object records.
When an end of program loader item is read, it sets up TCB.OPT
floating point and memory resident. It sets up TCB.ID, UDL.UBOT,
UDL.UTOP, UDL.CBOT, and UDL.CTOP. Then it exists to CMD.NEXT.
LOAD - Sets up an SVC 6 parameter block, assigns fd for SRO, and
issues an SVC 6 to load the task, reentrant library, or task common

block.

29-434 R0OO 10/76 6-15

6.7 COMMAND SUBSTITUTION SYSTEM (CSS)
The Command Substitutioi. System (CSS) is a means for the user to create
cataloged, but dynamically variable, command input streams to perform a

predefined job.

6.7.1 Calling CSS (CMD.CSS)

Whenever a command is parsed, and it is determined that the command is
not in the table of command mnemonics, it is then assumed that a CSS call
is being made. The mnemonic is treated as a file descriptor, and an
attempt is made to assign it. If the f£4 does not have an extension,

then '.CSS' is appended. If the file/device does not exist, a MNEM-ERR

message is issued.

Since the command executors use LUs 0 to 4, CSS files are assigned starting
at LU 5 (level 1 = LU 5, level 2 = LU 6, etc.). The calling command

string is moved from CMDBUF to the corresponding buffer for the called

CSS level in the CNSLBUFF buffer pool. The SVC 1 parameter block (CPS.CSIN)
is then set up to read into the next buffer in the pool. The status is set
to 2 so that CMD.CKIO issues a read to the LU. The current CSS level
(CPS.CLEV) is incremented by one. If the call was from the console, the
current CSS task (CPS.CCT) is set equal to the current task (CPS.CT).

CMD.CSS exits to CMD.TOP

6.7.2 Parameter Substitution (CSS.SUBS)

If an @ is found while moving the input string to CMDBUF, the actdal
parameter is substituted for the parameter reference. The parameéer
number and the address of the appropriate parameter are obtained. The
parameter (if it exists) is moved to CMDBUF. If, in moving the parameter

into CMDBUF, the CMDBUF pointer exceeds the size of CMDBUF (CMDLEN+2),

6-16 29-434 ROO 10/76

a CSS-ERR BUFF is generated. If the parameter number refers to a non-

existent parameter, no characters are moved into CMDBUF and the routine

completes normally.

6.7.3 Additional CSS Commands

Several additional commands are supplied (only when the CSS SYSGEN
parameter is specified) to allow the user greater flexibility in
creating CSS files and testing conditions. They are as follows:

~ $COPY and $NOCOPY - These commands turn on ($COPY) or off ($NOCOPY)
the display of CSS commands executed from a CSS file. They are
or are not logged, depending on whether $COPY or $NOCOPY is in
effect. These executors merely set or reset a flag (CLFG.DC) in
CPS.FLGS used by CMD.NEXT to determine whether to log the command.

- SCLEAR - This command terminates all CSS processing, closes all
CSS LUs, and resets all CSS flags.

- $JOB - Sets $JOB mode (CFLG.JM) in CPS.FLGS, saves the CSS level
number that the $JOB appears on in CPS.JLEV. If there is a
current task, its return code (TCB.RC) is set to zero. The
current S$IF level is reset to zero.

- STERMJOB - Resets all CSS flags, resets the $IF level to zero,
and closes CSS LUs down to the $JOB level.

- $SKIP - If there is a current task, its return code (TCB.RC) is
set to 255. If $JOB is in effect, the skip to $TERMJOB flag
(CFLG.SJ) is set in CPS.FLGS. The S$IF level is reset to zero and
the CSS LUs are closed down to the $JOB level. If $JOB is'not in
effect, the $CLEAR executor is entered.

- $EXIT - The current CSS LU is closed and input begins from the

previous level. If the $JOB level is greater than the previous

29-434 ROO0 10/76 6-17

level, it is set to the previous level. The current SIF level is
reset to zero.

- SIFE, S$IFNE, $IFG, $IFNG, $IFL, $IFNL - These commands get the
value specified in the operand field of the command, and compare
it to the current return code (TCB.RC). The S$IF level (IFLV) is
incremented by one. If the compare satisfies the condition
specified, exit is made to CMD.NEXT. Otherwise, the skip to
$ENDC flag (CFLG.SE) is set in CPS.FLGS and the skip level (SKLV)
is set equal to the $IF level (IFLV).

- $IFX, $IFNX - Same as previous $IFs except, instead of the compare,
an assign attempt is made on the specified file. Success indicates
it exists, but certain'errors also indicate the file exists.

- $IFNULL, SIFNNULL - Same as previous $IFs except, instead of the
compare, the next character is checked. If it is a CR, the
parameter is null. Otherwise, it is not null.

- SELSE - If the skip to $ENDC flag (CFLG.SE) is reset, it is set
and the skip level (SKLV) is set equal to the $IF level (IFLV).

If set, the current $IF level is compared to the skip level. If
not equal, exit is made to CMD.NEXT. If equal, the skip to $ENDC
flag is reset and the skip level is set to zero. Exit is made to
CMD.NEXT.

- $ENDC - The SIF level is decremented by one. If the skip to $ENDC
flag is reset, exit is made to CMD.NEXT. If set, the skip level
is compared to the previous $IF level. If not equal, exit!is made
to CMD.NEXT. If equal, the skip to $ENDC flag is reset and the
skip level is set to zero. Exit is made to CMD.NEXT.

- SET CODE - The parameter is packed and stored in TCB.RC for the

current task.

6-18 29-434 ROO 10/76

- BUILD/ENDB, $BUILD/$ENDB - The fd is packed and assigned to LU 4.
If the file does not exist, it is allocated with CMDLEN record

length and blocksize of 1/1. CFLG.BLD or CFLG.DB is set appropriately.

Each time a line is read and CMD.IN is entered, these flags are

checked. If either is set, CSS.BLD is entered.

CSS.BLD checks the $BUILD flag (CFLG.DB) and enters CSS.DB if it
is set. Otherwise, it checks for ENDB. If it is ENDB, the build
flags are reset and exit is made to CMD.TOP. If other than ENDB,

the line is written out to LU 4 and exit is made to CMD.TOP.

CSS.DB checks for $ENDB. If found, the build flags are reset and
exit is made to CMD.TOP. Otherwise, the line is preprocessed into
CMDBUF, by performing parameter substitution. The line is written

out to LU 4 and exit is made to CMD.TOP.

6.8 CONSOLE HANDLING
The system console device is controlled by the command processor. Any
I/0 requests issued to this device cause a queue entry to be added to the

command processor's queue (CMDPQ).

The command processor always has the real console device assigned to its
LU 0. If SET LOG is in effect, LU 1 is assigned to the SET LOG device.
When the command processor wishes to output a message to the console/log

device, CMD.LOG is called.

CMD.LOG checks if LU 1 is assigned. If so, the time followed by the
message is moved into CLOGB and is output to LU 1. Then the log with

copy flag (CFLG.LWC) is checked. If set, the message is output to LU 0.

29-434 ROO 10/76 6-19

If LU 1 is not assigned, the message is output to LU 0.

6.8.1 §SVC 1 Output Requests

CTP.OUTP processes SVC 1 write requests to the console device. The task
name, followed by the message, is moved into COUTB. CMD.LOG is called
to output the text. The dummy termination routine (DMYTRM) is then

scheduled.

6.8.2 SVC 1 Input Requests

CMD.TI processes SVC 1 read requests to the console device. The task name
followed by a promt (2) is output with an SVC 1 to LU 0. Then an SVC 1
read is issued. The text read is moved into COUTB following the prompt.
CMD.LOG is called to log the input. The dummy termination routiné (DMYTRM)

is then scheduled.

6.8.3 Log Message Requests
CTP.LOGR processes log messages to the consdle device. CMD.LOG is called
to output the message. The log message buffer is freed by zeroing the

first halfword.

6.8.4 The Break Key

The break key (or escape) on the console has special meaning to 0s/16.
It causes any I/O to be terminated. CMD.CERR, along with CPS.CENT,
control the console break. When the console driver detects break or
escape, it returns error status to the command processor. CMD.CERR is
called in this case. Normally, CPS.CENT is set to zero in CMD.CKIO.
When the task I/O routines are entered, CPS.CENT is set to the queue

entry removed from CMDPQ.

6-20 29-434 ROO 10/76

CMD.CERR checks CPS.CENT. If non-zero, it adds the value tb the bottom
. of CMDPQ. A time wait for % second is then‘issued. An SVC 1 is issued
to output the '*' prompt. Then a read is issued to read a command line.
After a command line is read, CMD.TOP or CMD.NEXT is entered, depending

on whether there is an unfinished line from CSS.

6.8.5 Halt I/O

When an SVC 1 Halt I/O is issued to the console, the command processor

takes appropriate action depending on how far the user I/O has progressed

before it is halted.

If the Halt I/O is performed while the command processor is scheduling
to output the TASKID, this I/O is aborted and the dummy termination

routine is scheduled.

When the read is halted prior to the SVC 1 read to the real console, but
after the TASKID has been logged on the console, the command processor
schedules the Termination Routine for the dummy driver which terminates

the 1/0.

If the SVC 1 read to the real console has been issued at the time of the
Halt I/O, the abort routine of the real console driver is entered to

cancel the I/O.

Halt I/O status (X'8281') is returned in the Dummy Driver Termination
routine (DMYTRM) if the Halt I/O abort flag (DFLG.HIM) is set in %he

Dummy DCB.

29-434 ROO 10/76 6-21

6.9 SYSTEM INITIALIZATION
System initialization is performed by the routine INIT. It is entered
in the IS state whenevar the system is started at X'60'. The system

queues and flags are cleared. Top of memory is searched for and MTOP and

FBOT are set up.

6.9.1 System with the Command Processor Module

The partition address table, PARTAB, is set up. All TCBs are set to initial
values and the priority table, PRITAB, is set up. The DCBs and the VMT

are set up. The ISPTAB is set up for the console device. The command
processor buffers and flags are cleared. The system clocks are enabled

and the command processor is set ready when the PSW pointing to INMARK.

The scheduler, SCHED, is then entered in the SU state. INMARK is

scheduled in the ET state. The disc with device number in location X'72'
and the SELCH device number floppy selector in location X'70' is marked on-
line with protect and the system start up message is logged. The command

processor is started at CMD.TOP.

6.9.2 System with no Command Processor Module

On a system with no operator interface, the partition table and TCBs are
set up by CUP/16 at system generation and are not initialized by the
system initialization code. If the system has no SVC 7 support, CUP/16

also sets up the LU assignments as specified by the user.

If the system has no disc devices, the dummy command processor is set

dormant and the scheduler (SCHED) is entered in the SU state.

6-22 29-434 ROO 10/76

If the system includes support for one or more disc devices, the dummy
command processor (INMARK) is set ready, and the scheduler is entered

in the SU state. INMARK is scheduled in the ET state. ALL discs configure
in the system are marked on-line, with S/W protect if H/W protected and with-

out S/W protect if not H/W protected as follows:

Command processor LU 2 1is patch assigned to the disc by storing the

DCB address of the Disc into the TCB.LTAB entry. The LU attributes cre
set equal to the Device attributes (DCB.ATRB). The Volume Description
is ready by an SVC 1. The Directory Pointer (VD.FDP) is moved to
DCB.DIRP and the Bit Map Pointer (VD.MAP) is moved to DCB.BITP. The
VMT entry is found by a call to VMTSRC. The Volume Name is validatert:
by a call to NAMCHK. VOLCHK is called to ensure that a duplicate
volume/device name is not present. The Volume Name is moved to the
proper VMT entry. If the on-line bit is set in VD.ATRB, DCB.FLGS are
set for on-line and write protect. Otherwise, an attempt is made to
re-write the VD with the on-line bit set. The on-line bit is set in
DCB.FLGS, and if the write returned an error, the write protect bit is
set. The patch assignment is closed by setting the TCB.LTAB entry to

Zero.

After all discs are marked on-line, INMARK is set permanently dormant.

The scheduling of tasks continues as normal.

29-434 R0OO 10/76 6-23/6-24

CHAPTER 7

FILE MANAGEMENT SYSTEM
7.1 FILE MANAGER
The routines in this program include all the logic needed to support
the 0S/16 MT2 File Management System. The file handler (SVC7) is in-
voked by the Supervisor Call Executive (SVCEXEC) any time a task issues
an SVC 7 supervisor call and the file handler is not currently in use
(roadblocked) . When entered, SVC7 decodes each function specified by
the SVC 7 parameter block, then loads and invokes the necessary executors

The SVC 7 executors contain routine to:

Allocate a new file

- Assign a file or device to a logical unit

- Change the access privileges of a logical unit assignment

- Rename a file or device

- Reprotect (change the protection keys of) a file or device

- Close the assignment between a logical unit and a file or device
- Delete a file

- Checkpoint a logical unit

Fetch the attributes associated with a logical unit assignment

More than one function can be performed by a single SVC 7 request. Each
executor that completes successfully returns to S7.CMD to determine if
any other requests are still outstanding. When all functions have been
processed, control is returned to the calling task and SVC 7 is un-road-
blocked by SVC7RN. If any of the SVC 7 executors encounter an error,
the appropriate error statuslis returned in the calling task's parameter
block and control returns by way of SVC7RN. The executors make use of

the resident routines contained within the file manager, such as:

29-434 ROO0 10/76 7-1

Directory management routines for maintaining information on all

surrently allocated files.

7t map management routines which provide a method for allocating

and deleting files on direct-access volumes.

7.2 VOLUME ORGANIZATION AND INITIALIZATION

Any direct-access volume to be used within an 0S8/16 MT2 environment
must be formatted by the Common Disc Formatter. Since 0s8/16 handles
file allocations in multiples of one sector, the arguments to this
program must specify DEFSEC 1. Once a volume has been formatted using
this procedure, it should not have to be formatted again unless a hard-
war - failure occurs on the volume. After a disc is formatted, it must

be ¢ ther initializes uasing the 0S/16 INITIALIZE command or the 0S/32 Disc

volume. Any sector found to be defective is marked as permanently alloca-

ted. A bit map, directory, and volume descriptor (VD) are also written

on the volume.

A volume descriptor is shown in Figure 7-1. The volume descriptor contain:
the volume name, the volume attribute bits, a pointer to the first direc-

tory block, and a pointer to the bit map.

VD.VOL VD.ATRB VD.FDP VD.OSP VD.OSS VD.MAP
Volume name Volume pointer to (reserved) (reserved) pointer to
attributes first bit map
directory
block

Figure 7-1 Volume Descriptor

The size of the bit map is determined by the size of the volume. Each
complete bit map sector represents 2048 allocatable sectors on the
volume. The final sector within the bit map represents between 1 and

2048 sectors. A sector is marked as allocated when the bit representing

7-2 29-434 ROO 10/76

it is set (1) or free when the bit is reset (0).

The volume descriptor is placed on cylinder 0, track 0, sector 0. The

bit map may be located anywhere on the volume since it is pointed to

by the VD.

7.3 DIRECTORY MANAGEMENT

A file directory is maintained as a chain of directory blocks (see
Figure 7-2). A chain field contains either a zero (indicating it is
the last block in the chain) or the logical block address (sector) of

the next block in the chain.

A volume that has just been INITIALIZED contains a directory of empty
blocks. The blocks are chained together in a manner which decreases

directory search time.

Chain Field 0
VD.FDP { Entry #1 #1
Entry #2 " #2
each block Entry #3 %3
contains ~ Entry #4
between 1 Entry #5 #5
and 5 active
entries

Figure 7-2 Directory Example

7.3.1 Directory Entry Creation (ALO.ALLD)

When the pre-allocated directory is filled with active entries, and a
new file is allocated, a new directory block is allocated. The first
entry represents the new file and the remaining four entries are marked

inactive and therefore available for additional new files.

29-434 ROO 10/76

7.3.2 Directory Access (DIRLOOK,GETD,PUTD)

When a function is requested on a currently existing file, the directory
block containing the Directory Entry (DIR) for the file must first be
found. The I/0 routines used to read directory blocks into memory or

to write out modified blocks are GETD and PUTD.

When a new file is allocated, each block of the directory is searched
until an inactive entry is found. If all entries are marked active,

a new directory block is allocated as described previously.

7.4 BIT MAP MANAGEMENT

0S/16 direct access files are allocated in multiples of one sector. The
status (freé or allocated) of each sector on the volume is maintained

in the volume's bit map. When a volume is INITIALIZED, all non-defective
sectors within the volume are marked as free by resetting the corres-
ponding bit in the bit map. The VD, bit map, and directory are then
created. The sectors they occupy are marked as allocated by setting

the appropriate bits. The INITIALIZE logic also provides a pointer from

the VD to the bit map (VD.MAP), and to the directory (VD.FDP).

When a request is received by the bit map management routines to allocate
a string of contiguous sectors, GETSEC searches the bit map for a
corresponding number of bits that are reset, thus indicating available
sectors. The search starts at the current index of the current bit map
sector. CHECKB is called to check bits in the bit map. GETB is called,
if allocations span bit map sector boundaries, to read bit map sectors

in this manner. GETSEC then sets each bit in the bit map within this
allocation. ALLOB is called to set bits in this manner. As bit map
sectors are modified, they are written back to the disc by a call to

PUTB.

7-4 29-434 ROO 10/76

When a file is deleted, the procedufﬁ is reserved by RELEB (a part of
the DELETE overlay). Each bit répresenting the allocation is reset by
multiple calls to FREEB, indicating the sector is again available. GETB

and PUTB may again be invoked to read and write the bit map sectors.

7.5 FILE HANDLER (SVC7)

SVCEXEC transfers control to the SVC 7 handler routine SVC7, passing
two arguments; the address of the calling task's TCB and the address
of the calling task's SVC 7 parameter block. If the calling task is
the command proceséor, SVC7 replaces the calling ﬁask's TCB address
with the TCB address at the parameter block address minus two. This
allows the command processcr to perform SVC 7 assign and close for a

tagsk other than itself.

SVC7 processes the function code specified by the parameter block from
left to right. 1If the function code is initially zero, the call is a
fetch attribute. If the calling task is the command processor, and the
function code is initially X'FF', the call is a bit map manipulation
call (used by the INITIALIZE command). Otherwise, the function code is
saved in CMDBYTE, and each SVC 7 function specified within it is per-
formed by loading and branching the appropriate executor. Each executor
that completes successfully returns control to SVC7. As each function
is performed, the bit representing it in CMDBYTE is reset until every
bit of CMDBYTE has been reset. Control then returns to the calling

task by a branch to the SVC 7 unblock routine SVC7RN.

7.6 SVC 7 OVERLAYS
The file manager is overlayed in eight parts. See Table 7-1 for the
names of routines in each overlay. The SVC 7 overlay loader (LDS7)

loads the required overlays.

29-434 ROO0 10/76 7-5

TABLE 7-1. FILE MANAGER OVERLAYS

OVERLAY - ROUTINES

0 S7ALLO

1 S7ASSIGN part 1

2 S7TASSIGN part 2
GETFCB
ASN.FMLU

3 S7CAP

4 S7TRENAME
S7REPROT
EXCHECK

5 S7CLOSE
RELEFCB

6 S7DELETE
RELEB

7 S7CHECKP
S7FETCH
S7.BMP

7.7 SVC 7 FUNCTION EXECUTORS
7.7.1 Allocate (S7ALLO)
The SVC 7 executor STALLO is called directly from SVC7 when the function

code in the parameter block specifies an allocate operation.

The directory management routines are called to ensure that the specified
file descriptor is unique to the file specified, and to establish a direc-
tory entry for the file being allocated. For a contiguous type file, the
complete file allocation size is established at allocation time by the
bit map management routines. Since an indexed file is open~ended and

has no predefined size, no kit map allocations are performed on behalf

of an indexed file at allocation time. The necessary initial information
is established in the directory for both file types. Control returns

directly to S7.CMD upon successful completion of S7ALLO.

7.7.2 Assign (S7ASSIGN,ASN.CO,ASN.IN)
The SVC 7 executor S7ASSIGN performs all common assign processing for all
assign calls. S7TASSIGN establishes the validity of the logical unit being

assigned with a call to LUCHECK.

7-6 29-434 ROO 10/76

If the assign function is being performed on a device, control is
transferred to ASN.DMT. ASN.DMT completes any necessary validity

checks using the integrity checking subroﬁtines APCHECK and ASN.KYCK
(described later), and sets up the entry in the LU table to contain the
DCB address and the corresponding entry in the attribute table to contain
the device attributes. If the assign function is being performed on a
file, control is transferred to ASN.VMT which validates the file descriptor
with a call to FDCHECK, searches the directory for the file, and checks
access privileges and keys (APCHECK and ASN.KYCK). If the file being
assigned is the 0S overlay file, then only SRO access is permitted.

If the command processor is assigning the 0S overlay file, and the
logical unit specified is X'FF', then it is a call from the MARK

command executor to assign the 08 file. 1In this case OSOVST and OSOVDB
are set up to contain the file starting sector number and the device's
DCB address respectively. Otherwise, the second part of assign is

loaded into the overlay area and control is transferred to it (ASN.A).
There, the file manager logical unit TCB.FMLU) is set up by a call to
ASN.FMLU which increments DCB.CNTS as if the disc were being assigned

for SRW access. The appropriate routine, ASN.CO or ASN.IN, depending

on the file type, is then entered.

ASN.CO and ASN.IN call the system space management routine (GETFCB)
to allocate a file control block (FCB) within dynamic system space.
GETFCB also moves control information from the file's directory entry

to the FCB,.

For a contiguous file, control is passed to ASN.CO. If the file is beimg
assigned for a Read privilege, FCB.CSEC is set to zero. ASN.UPDT is

entered to finish.

29-434 ROO 10/76 7-7

For an indexed file, control is passed to ASN.IN. If the file being
assigned contains no index blocks, ASN.IN calls the bit map management
rout ines to allocate an index block and a data block for the file. If

the file already has index blocks, the first index block and the first
data block are read into the FCB buffers with an SVC 1 read/wait call to
the file manager logical unit (X'FF'). If the file is being assigned for
write only (SWO or EWO), it is positioned at the end by setting the
current logical record number (FCB.CLRL) to the number of logical records
(DIR.CSEC). Otherwise, the file is positioned at the beginning by setting

FCB.CLRL to =zero. ASN.UPDT is entered to finish the assign.

ASN.UPDT sets up the logical unit table with the file's FCB address,
and the attribute table with the file's attributes. The directory is
updated and written ouc by a call to PUTD. The routine then returns

to S7.CMD.

7.7.3 Change Access Privileges (S7CAP)
The SVC 7 executor, S7CAP, changes the access privileges associated with

a given logical unit wnich is assigned to a file or device.

S7CAP ensures that the new access privileges are legal, removes the old
privileges with a call to RESET, and assigns the new privileges with a
call to APCHECK. This requires modifying the write and read count fields
in the DCB, or the FCB/DIR (DCB.WCNT/DCB.RCNT; FCB.WCNT/FCB.RCNT,DIR.WCNT/
DIR.RCNT) to reflect the current access privileges. The access privileges
associated with a file are reflected in the WCNT and RCNT fields of the

control block in the following manner:

WCNT/RCNT = 0 implies no task having write/read privileges

WCNT/RCNT = -1 implies one task having exclusive write/read
privileges

WCNT/RCNT = +n implies n tasks having shared write/read privileges

7-8 29-434 ROO 10/76

7.4.7 Rename (STRENAME)

STRENAME is the SVC 7 executor that changes the name of a file or
device. STRENAME ensures that the device or file is assigned for ERW
by calling EXCHECK. If the rename function is directed at a device,
REN.DCB ensures that the ﬁew name does not currently exist in the
Device Mnemonic Table (DMT) or in the Volume Mnemonic Table (VMT).

If the new name is unique, the device's previous name is replaced with

its new name in the DMT.

To rename a file, the procedure is similar except that it is the
directory that is checked for a duplicate name. The directory manage-
ment routines are used to read the directory, search for a name match,
and replace it with the new file name. S7RENAME returns to S7.CMD

upon successful completion.

7.7.5 Reprotect (STREPROT)

The SVC 7 executor, S7REPROT, modifies the protection keys associated
with a given LU. The LU must be assigned to a file or device for ERW
(EXCHECK) . The keys associated with a device are kept in its DCB
(DCB.WKEY,DCB.RKEY) . The keys associated with a file are kept in its
directory entry (DIR.WKEY, DIR.RKEY). A file or device may be uncond-
itionally protected (keys = X'FF'), unconditionally unprotected

(keys = X'00'), or conditionally protected with write/read keys
between X'01l' and X'FE'. The logic in S7REPROT ensures that the

new protected keys are not in violation of the former protect kéys

and updates the control block (DCB or DIR) with the new keys. Control

returns to S7.CMD for further SVC 7 processing.

29-434 ROO 10/76 7-9

7.7.6 Close (S7CLOSE)

The purpose of the S7CLOSE executor is to-disconnect an assigned logical
unit from a file or device. The logic of S7CLOSE ensures that the given
LU is currently assigned. If the close call was not from the CLOSE command
in the command processor, an SVC 1 wait only is performed on the logical
unit to ensure that all ongoing I/0 and proceed calls are complete. The

LU entry in the LU table is set to zero.

If the LU was assigned to a device, the read and write count fields
in the DCB are modified as follows:
If old count = -1, new count = 0

(previously one exclusive user)

If old count = +n, new count = n-1

(previously n ~hared users)

If the LU is assigned to a file, the directory block is read by GETD.
If the file is indexed, RESET.IN and PUTB are called to ensure that all
index and data blocks in memory are written and that the bit map on

the disc is up to date. For either file type, the count fields in the
directory are updated as specified above. The FCB's memory allocation
is returned to system space by a call to the memory management routine,
RELEFCB. The directory management routines are then used to update

the directory with the information about the file which was in the

FCB. S7CLOSE exits to S7.CMD to process the remaining function code bits.

bits.

7.7.7 Delete (S7DELETE)
The S7DELETE executor deletes contiguous and indexed files. A file is

deleted by releasing its allocated storage on the volume containing it

~J
I

10 29-434 ROO 10/76

using the bit map management routines, and by relinquishing its
directory entry by means of the directory'management routines. The
command processor CLEAR command deletes all files on the volume. It
performs an SVC 7 delete with the volume name set up, but the filename
is set to blanks. This signals the delete routine to perform a clear
operation instead of just a delete. The command processor is the only
task that may issue such a call. S7DELETE returns control to S7.CMD

upon completion.

7.7.8 Checkpoint (S7CHECKP)

The S7CHECKP executor checkpoints a logical unit which is assigned to

a file or a device. If the checkpoint function is directed to a device,
an SVC 1 wait only operation is performed on the LU. To checkpoint a
file, all current information about the file is moved from its FCB to
its directory entry. The bit map and directory management routines

are used to ensure that the bit map and directory on the volume reflect
current file allocations. An indexed file is also checkpointed to read
mode using the indexed file reset routine, RESET.IN. After a wait only

is performed on the LU, S7CHECKP exits to S7.CMD.

If command processor performs a checkpoint of LU X'FF', a PUTB operation
is performed instead. This is used in the INITIALIZE command handler to

update the bit map.

7.7.9 Fetch Attributes (S7FETCH)

The purpose of the STFETCH executor is to obtain the attributes
associated with the file or device assigned to a given LU. The device/
file attributes, device code, and name are moved from the DCB/FCB to

the task's SVC 7 parameter block. S7FETCH returns directly to the

29-434 ROO 10/76 , ‘ 7-11

calling task by branching to S7.RTN.

7.8 SVC 7 MEMORY MANAGEMENT ROUTINES
This section describes the memory managemént routines used by the SVC 7
executors:
- GETFCB - Allocates a new FCB. FBOT is decremented by the size
requested. If the new FBOT is below SYSBOT, an error is returned.

The FCB is then set up with information from the directory.

- RELEFCB - Releases an FCB. If the FCB to be released is at

FBOT, FBOT is incremented by the size of the FCB and the routine
is exited. Otherwise, a flag is set telling the disc driver not
to start any disc 1I/0 operations, and any disc I/O that is already
started is allowed to complete. Once all disc I/O is halted,
lower FCBs are moved up to fill the gap left by the FCB released.
All address constants within those FCBs are relocated to reflect
the new buffer addresses. FCB addresses in the TCB logical unit
table are reloc:ced to reflect the new FCB addresses. Then disc

I/0 is allowed to continue.

7.9 SVC 7 INTEGRITY CHECKING SUBROUTINES
This section briefly describes the integrity checking subroutines used
by the SVC 7 executors:
- APCHECK -~ Verifies the legality of the requested access privi-
leges and converts the requested access privilege to a numeric
quantity to be saved in the WCNT and RCNT field of the control

block.

- LUCHECK - Determines if a given LU is assigned and picks up its

entry from the LU table.

~1
|

12 29-434 ROO 10/76

- FDCHECK - Checks the syntax of a given file or volume name.

- OSOVCK - Checks if the fd in the SVC 7 parameter block is the

0S overlay f£fd.

7.10 SVC 7 SPECIAL EXECUTOR

If the command processor executes an SVC 7 call with all function bits
set (CMD = X'FF'), the special executor S7.BMP is entered. The function
of this executor is to manipulate bit map allocation. The SVC 7 para-
meter block is redéfined somewhat for this call. The MOD fields containe
the function. X'FF'! means free a sector, X'00' means test a sector and
%1'01' means allocate a sector. The KYS field contains the DCB address
of the device to which the call applies. The SIZ field contains the
fullword sector address of the sector to be manipulated. The bit map
manipulation routine, entered at MAN.COM, is called to perform the
desired function. The status of a tested sector is returned in the STA

field; 0 = free, 1 = allocated. Return is made to S7.RTN.

7.11 SVC 1 INTERCEPT ROUTINES
When the disc driver determines that an SVC 1 call is directed to a
file, the file management SVC 1 intercept routine (MHDFCB) is entered

to process the request.

7.11.1 Contiguous File Handler
The contiguous file handler consists of the following two routines:

- CONTIG - Processes data transfer requests to a contiguous file.
- CMD.CO - Processes command function requests to a contiguous file.

Initially, CONTIG is entered for both types of request. If the request

29-434 R0OO 10/76
7-13

is a rewind, the current sector is zeroed and CONTIG exits to FMGR.IX1,
the exit point if no physical I/0 is performed, otherwise, I/O is to be
performed. CHKBSY is called to set the device and the DCB busy. A test
is made to see if the call is a command function, and if so, a branch

to CMD.CO is taken.

7.11.2 Data Transfer for Contiguous Files (CONTIG)

The SVC 1 parameter block information is copied to the DCB. The random
address is obtained either from the parameter block (for a random
request) or from the FCB current sector pointer (for a sequential
request). The random address is then relocated by adding the FLBA of

the file into it. If the request is a read or a write, it is performed
by calling the disc data transfer routine, DISCIO. If the request is

a test and set, a read is performed by a call to DISCIO. The first half-
word of the buffer is then tested. If zero, it is set to =1 and the first
sector of the buffer is rewritten to the disc. If the first halfword is
-1, the users condition code is set to X'F'. The routine exits by branch-
ing to CMD.OUT1 which takes the task out of I/0 Wait before branching to

FMGR.IEX because the proceed bit of the function code is ignored. (The

task was put into I/0 Wait even if the function code specified proceed.)

7.11.3 Command Requests to Contiguous Files (CMD.CO)
The command function intercept routine for contiguous files, CMD.CO
contains five command executors. Each executor and its function is

briefly described below:

- BACKSPACE RECORD (CMD.BSR) =~ Decrement FCB.CSEC by 1, read

this sector to check for EOF.

- FORWARD SPACE RECORD (CMD.FSR) - Increment FCB.CSEC by 1, and

prcceed as in CMD.BSR.

~
1

14 29-434 R0OO0 10/76

- FORWARD SPACE FILE (CMD.FFM) - Issue reads starting at FCB.CSEC

until a pseudo filemark is found.

- BACKSPACE FILE (CMD.BFM) -~ Same as forward space file, except
that the filemark is searched for starting at FCB.CSEC and

backing up one sector at a time.

- WRITE FILE MARK (CMD.WFM) - Increment FCB.CSEC by 1, write a

pseudo filemark at that address.

7.11.4 Indexed File Handler
The indexed file handler consists of the following two routines:
- INDEXED - Process data transfer requests to an indexed file.

- CMD.IN - Process command requests to an indexed file.

7.11.5 Indexed File Handler Subroutines
The following is a brief description of the indexed file handler sub-
routines:

- INX.READ, INX.PORN, INX.FORL - Update the current index block
offset (FCB.CINX). If the required data block pointer is con-
tained in the next index block, the current index block is
written (if it has been modified), and the next index block is
read into memory. Entry at INX.PORN reads the previous or the
next block, depending its argument. Entry at INX.FORL reads
in the first index block or the last index block, depending

its argument.

- CALC.NBK - Based upon a logical record number, compute the follow-
ing: the data block containing the record, the offset of the re-

cord within that block, the index block containing this data

~
I

15
29-434 ROO 10/76

block pointer, and the offset within the index block of the data

pointer.

INX.GETL - Move a logical record from a system buffer to the
task buffer. If the logical record spans physical blocks, a call

is made to INX.GETP to read the next data block into memory.

INX.PUTL -~ Move a logical record f:om the task buffer to the
system buffer. If the logical record spans physical blocks,

a check is performed. For a file being extended, the current
data block is written and a new block is allocated by a call to
INX.PUTP. For a file being updated, the current data block is
written by a call to INX.PUTP and the next data block is read

by a call to INX.GETP.

INX.GETP - Perform physical writes to an indexed file. The
current data block is written with a call to DISCIO. If the
file is being extended, then FCB.CINX is incremented. If this
causes an overflow of the current index block, a new index block
is allocated through GETSEC. A pointer to the new index block
is placed in the current index block and is written out. The
new index block is zeroed and a pointer to the previous block
is placed into it. The current index block offset (FCB.CINX)
is set to eight to point: to the first data pointer slot. The
current index block number (FCB.CINB) and the number of index
blocks (FCB.NINB) are incremented by one. When room is made
for a data block pointer, a data block is allocated with a call
to GETSEC. A pointer to this data block is placed in the index
block. The current data block number (FCB.CBLK) and the total

number of data blocks (FCB.NBLK) are incremented by one.

29-434 ROO 10/76

- RESET.IN - Change the current state of an indexed file. RESET.IN
ig called for each I/O operation to an indexed file to make sure
that all current buffers are flushed, if necessary, prior to

initiating a new I/O operation.

- INX.CUPD - Add one to current data block number (FCB.CBLK).

- SET.LRCL - Pick up buffer pointers and length of data to transfer.

7.11.6 Data Transfer for Indexed Files (INDEXED)
The purpose of the routine INDEXED is to intercept all SVC 1 requests

to an indexed file. If the call is a command function, INDEXED branches

to CMD.IN. Otherwise, INDEXED determines the type of I/0 request, checks

the device busy flag (if a physical I/0 is to be done), flushes buffers,
if necessary, by a call to RESET.IN, repositions the file, if necessary,
and sets the initial value for FCB.CINX (current index block offset) and
FCB.COFF (current data block offset) by a call to CALC.NBK. If the

call is a read, INDEXED transfers control to INX.GETL. If the call is

a write, control is transferred to INX.PUTL.

7.11.7 Command Requests for Indexed Files (CMD.IN)
The routine CMD.IN receives control from INDEXED whenever a command
request is directed to an indexed file. CMD.IN contains six executors,
to perform the six permissable indexed file command functions. The
functions are:

- REWIND (CIN.REW) - Set the files current logical record number

(FCB.CLRL) to zero.

- BACKSPACE RECORD (CIN.BSR) - If the file is currently positioned

at the beginning, return EOF status, otherwise, decrement FCB.CLRL

by one.

29-434 ROO 10/76 7-17

Upon

- FORWARD SPACE RECORD (CIN.FSR) - Return EOF if file is currently

positioned at the end, otherwise, increment FCB.CLRL by one.

- WRITE FILE MARK (CIN.EXIT) - Write file mark is not supported

on indexed files.

- FORWARD SPACE FILE (CIN.FSF) - Update FCB.CLRL to contain the
value of FCB.CSEC (the number of logical records) to position

just beyond the last logical record.

BACK SPACE FILE (CIN.REW) - Identical to rewind.

successful completion, all six executors return to FMGR.IX1.

29-434 ROO 10/76

CHAPTER 8

EXECUTIVE TASKS AND SYSTEM EXTENSIONS
8.1 INTRODUCTION
There are several ways of extending or modifying the capabilities of
0S/16 MT2. This chapter discusses the features designed into 0S/16
to facilitate such extensions. The user may wish to incorporate
the modification directly into the system by modifying one or more
system modules or by adding a system module. For example, the user
may support a non-standard peripheral device by writing a driver.
Alternatively, the user may wish to support infrequently used extensions
to the system by writing an executive task (E-Task) which may be loaded

and executed on demand.

8.2 EXECUTIVE TASKS

An executive task (E-Task) is written as a user task and executed in
the ET state by specifying OPTION ET when TETing or when loading the
task. E-Tasks execute in a hardware and software privileged mode.
Privileged machine instructions are allowed and additional privileges

are given as follows:

All addresses are valid in SVC calls

A disc device (as distinct from a file on the disc) may be assigmad

- SVC 2 code 0 (journal entry) is valid (see Figure 8-1)

!

REPROTECT (SvC 7) for a key of X'FF' and to devices is valid

RENAME (SVC 7) to devices is valid

ASSIGN (SVC 7) to files with any protection keys is valid

As a direct‘result of these added capabilities, E-Tasks must be designec
and coded with extreme caution to prevent crashing the system. The

operating system assumes E-Tasks are fully debugged tasks.

29-~434 ROO 10/76 8-1

CAL Code Format

ALIGN ADC 0(0) 1(1)
PARBLK DB 0,0 00 00(00)
DC H'JCODE' 2(2)
DAS 4 Journal Code
4 (4)
RC
6(6)
RD
8(8)
RE
10(A)
RF

Figure 8-1 SVC 2 Code 0 Parameter Block

Access to system tables and control information is provided through the
System Pointer (SPT). The address of the SPT is contained in the half-

word at location X'62' in low memory.

E-Tasks may use all SVCs. An example of a function which requires an
E-Task is a disc utility. Also, the 0S/16 MT2 Command Processor

executes as an E-Task.

8.3 SYSTEM EXTENSIONS

0S/16 MT2 may be extended or modified by incorporating changes into the
source of one or more system modules or by adding a system module. A
system module may be included after the executive module and before the
command processor module. System data structures should be referenced
using the STRUC which defines the data structure. These field definitions
should be used in all instructions referencing the structure. The STRUC
is copied in at assembly time from the parameter and control block module

(PCB) .

Chapter 4, describing the system overlay scheme, outlines coding con-

ventions that must be followed when modifying the operating system. In

8-2 29-434 ROO 10/76

particular, note that absolutely located code must not be inserted

pecause TET/16 does not handle it in ESTABLISH OS mode.

8.4 PATCHING

In making modifications to 0s/16 MT2, debugging usually involves
making patches to new or existing code to avoid reassembling every
time a bug is found. It is recommended that a non-overlayed system
be generated after making modifications to 0S/16. 1In oxrder to insert

a patch in 0S/16 MT2:

1. Locate the address UBOT in the map of the system.

2. Use the MODIFY command to increase the value of UBOT by an
amount sufficient to contain the patch.

3. Use the MODIFY command to insert the patch starting at the
old value of UBOT.

4. Use the MODIFY command or the console panel to insert a branch
to the patch area.

5. Restart the system at location X'60' in order to set up the

partition table.

29-434 ROO 10/76 8-3/8-4

Al.1 CRASH CODES

APPENDIX 1

JOURNAL AND CRASH CODES

After a system crash, register 5 contains a pointer to the system

journal, register 6 contains a pointer to the most recent entry in the

journal, and registers E and F contain the PSW at the time the SINT was

executed. The crash code is stored at SPT.CRSH.

Table Al-1 is a list of crash codes, their meanings, and in some cases

additional information concerning the cause of the crash.

TABLE Al-1 CRASH CODES

CRASH CODE

DESCRIPTION

2

100

101

102

121

e

Invalid queue entry on the command processor's
queue. Entry CRSHSV+X'lC' = invalid item.

Invalid VMT during MARK processing. Entry
CRSHSV+X'14' = address of DMT entry.

Arithmetic fault in system code.
PSW at time of fault.

X'48' =

Memory protect fault within system code.
Entry CRSHSV+X'1lC' = PSW at time of fault.

Illegal instruction in system code (with RF

pointing within IIMPH routine) or

internal

interrupt with no current task (with RF

pointing within EXECSUB routine).

For

illegal instruction, entry IIIPSW=PSW at
time of interrupt. For internalr interrupt,
SAVCC can be used to determine the PSW loc-

ation (see Table 5-4, Chapter 5).

In both

cases, GRSPTR points to the registers at the

time of interrupt.

Error in marking on OS volume (in
initialization). e.g. device not
in system (device number accessed
as set by the operator) or unable
due to an I/O error.

system
configured

from X'7A°'.

to read VD

29-434 ROO 10/76

Al-1

TABLE Al-1 CRASH CODES (Continued)

CRASH CODE 4 DESCRIPTION ’
132 Illegal SVC in system cocde. Entry CRSHSV+X'IC'
. = PSW pointing after SVC instruction

142 Illegal address in SVC in system code. Entry
CRSHSV+X'1C' = PSW pointing after SVC instruc-
tion.

152 Memory parity error in system code. Entry
CRSHSV+X'1lC' = PSW at time of interrupt.

. 153 ' Attempt to recover from power fail on

system with no power fail recovery logic
{(DELETE PFREC) .

invalid sector address. Entry CRSHSV+X'C'
fullword sector address.

162 Illegal interrupt on device zero. RE-RF = PSW
at time of interrupt.

321 Attempt to release a free sector. Entry j

CRSHSV+X'1C' = fullword sector address. i

330 Attempt to manipulate allocation for an }

|

i

Al-2 JOURNAL CODES
Table Al-2 contains System Journal Codes.

TABLE Al-2 JOURNAL CODES

CODE DESCRIPTION AND REGISTER CONTENTS

10 Item removed from system queue (IOTERM)
’ 12 - TCB index
13 - Ttem removed (address of DCB+1)

14 - NA
15 - NA
11 Task scheduled (SCHED)
12 - NA
13 - NA

14 - Status portion of PSW to be loaded
15 - Location counter of PSW to be loaded

13 Illegal Instruction Interrupt (EXECSUB)
12 - NA
13 - NA

L]
14 - Status portion of PSW at time of interrupt:
15 Location counter of PSW at time of interrupt]

Al-2 29-434 ROO 10/76

TABLE Al-2 JOURNAL CODES (Continued)

CODE DESCRIPTION AND REGISTER CONTENTS
14 Floating Point Fault Interrupt (EXECSUB)
12 - NA
13 - NA

14 - Status portion of PSW at time of interrupt
15 - Location counter of PSW at time of interrupt

15 System Queue Service Interrupt (EXECSUB)
12 - NA
13 - NA

14 - Status portion of PSW at time of interrupt
15 - Location counter of PSW at time of interrupt

16 Fixed Point Divide Fault Interrupt (EXECSUB)
12 - NA
13 - NA

14 - Status portion of PSW at time of interrupt
15 - Location counter of PSW at time of interrupt

]

17 ' Memory Protect Fault Interrupt (EXECSUB)
12 - NA
13 - NA

14 - Status portion of PSW at time of interrupt
15 - Location counter of PSW at time of interrupt

20 Item added to task gqueue (ADTSKQ)

12 - Return address

13 - Address of TCB

14 - Address of task queue

15 - Parameter to be added to queue

6x Execution of SVC x (EXECSUB)

12 - First halfword of SVC parameter block
13 - Address of parameter block

14 - sVC old PSW status

15 - SVC old PSW location (updated)

80-FF User Journal Code (SVC 2 code 0)

29-434 R0OO0 10/76 Al-3/Al1-4

APPENDIX 2
DATA STRUCTURES

A2.1 INTRODUCTION

This appendix presents the formats of system control blocks and table
entries. Each field is identified by its name and a descriptive title.
All control blocks and table entries are referenced in 0S/16 MT2 by
copying the CAL STRUC of the same name from the 0S/16 MT2 Parameters
and control block module (PCB). The full field identifier is of the
form:

BBB.FFFF

where BBB is the control block name and FFFF is the field name. Most
fields are self explanatory. Those which are not are explained

following the figure for that control block. Offsets are given in the

form:
DD (HH)

where DD is the offset in decimal and HH is the offset in hexadecimal.

29-434 ROO0 10/76 A2-1

A2.2 SYSTEM DATA STRUCTURE RELATIONSHIPS
Figure A2-1 shows the data structure relationships for the system.

Low Memory

X'62' o4 CB TABLE
+2
SPT 8
+4 Lo
TTAB ¢ YSTEM TCB
DMT N DMT
NAME
. - VMT
V\g”V\ArVV SER TCB
® DCB VMT
NAME
LTAB & LU 0 assignec
DCB N VOLN to disc file_
B N LU 1 assignec
vV\AJ\/VhJ to card reade
be DMT
CARD DCB
24
DISC DCB
FCB
N DCB
"ANAAAANASY

Figure A2-1 System Data Structure Relationships

A2-2 29-434 ROO 10/76

A2.3

Figure A2-2 is a System Pointer Table.

SYSTEM POINTER TABLE (SPT)

P11

—

]

oo

0(0)
INIT
branch to SYSINIT
12(C) CRSH system crash code
14 (E) CE command processor initializaticn
entry

16 (10) UBOT first byte above 0S/16
18(12) FBOT lower bound of FCBs
20(14) MTOP first byte above top of memory
22(16) OSID

System ID = OS16MT2r r=release level
30 (1E) TTAB address of TCB table
32(20) NTCB number of 33(21) CTCB current TCB index
34(22) LeBe DMT address of DMT
36(24) VMT address of VMT
38(26) JRNL address of system journal
40(28) FLBA

starting sector number of 0§ overlay file
44 (2C) OVFD
name of 0S overlay file (VOLN/FILENAME/EXT)

60 (3C) SDCB pointer to DCB of OS overlay

device

Figure A2-2 System Pointer Table (SPT)

29-434 ROO 10/76

A2-3

A2.4 TASK CONTROL BLOCK 'TABLE (TCBTAB)
TCBTAB is pointed to by SPT.TTAB.
There is no STRUC for the TCB TAB.

Figure A2-3 is a Task Control Block Table.

- 3.

0(0)
Reserved

2(2)

Pointer to command processor TCB
4(4)

Pointer to background TCB
6(6)

Pointer to foreground 1 TCB
8(8)

Pointer to foreground 2 TCB

L ~

‘2n+4)

Pointer to foreground n TCB

Figure A2-3 Task Control Block Table (TCBTAB)

A2-4 29-434 ROO 10/76

A2.5 TASK CONTROL BLOCK (TCB)

Figure A2-4 illustrates a Task Control Block

-

L

= TR+

| 0(0) —
- ID ot
Task Name

8(8) STAT Status Halfword

10 (A) ITSW B
™ : Initial TSW and Location

14 (E) CPSW]
" Current PSW Save Area

18(12) CTSW Current Task Status Halfword

20(14) UBOT Address of Partition (A (UDL))

22(16) MPRI Max Priorirty 23(17) CPRI Current Priority

' Reserved #_25(19) WTHR Wait Thread Ptr

76 (1A) TVAL - _
B Time Value for Interval Wait

30 (IE) ADQT]
B Time Value for Task Queue Wait

34(22) ADQP Task Queue Parameter

36 (24) OPT Task Options

38(26) FLGS Task Flags

40(28) WTAD Walit Thread Beginning Address

42 (24) MPT
~ Memory Protect Pattern]

50(32) NLU Number of LUs | 51(33) PNT TCBTAB index

52 (34) RC Return Code
A 54(36) RSAV 7
- Register Save Area i

86 (56) FMLU File Manager Dummy LU

808 (58) LTAB

Logical Unit Table
NLU*2+A (LTAB) LUAT

Logical Unit Attribute Byte Table

2 v

Figure A2-4 Task Control Block (TCB)

29-434 ROCQ 10/76

A2.5.1 Status (TCB.STAT)

Mask

8000

4000

1000

0400
0200
0100
0080
04:40
002vu

0008

A2.5.2

Mask

8000
4000
2000
1000
0800
0400
0200
0100

0040

A2-6

Flag Name
TSTT.DMM

TSTT.IOM

TSTT.RWM

TSTT.CWM
TSTT.TIM
TSTT.TRM
TSTT.S2M
TSTT.S5M
TSTT.S7M

TSTT.DWM

Options (TCB.OPT)

Flag Name
TOPT.ETM
TOPT.ACM
TOPT.FPM
TOPT.MRM
TOPT .COM
TOPT .BGM
TOPT.S6M
TOPT.ROM

TOPT.DFM

Meaning if Set

Dormant. Task loaded but not Started or task

has gone to EOT.

I/0 wait.

Roll wait. Task is being rolled out or task

is being rolled in.

Console wait. Task is paused

Time wait. Task is in interval/time wait.
Trap wait.

SVC 2 wait.

SVC 5 or 6 wait.

SVC 7 wait.

DCB wait. Task is waiting for a disc DCB.

Meaning if Set

Task is an E-Task.

Continue on arithmetic fault.

Task uses single precision floating point.
Task is memory resident.

Task uses compatible SVCs.

Task is the background task.

SVC 6 from the background will be ignored.
Task is rollable.

Task uses double precision floating point.

29-434 ROO 10/76

A2.5.3
Mask
0080
0040
0020

0010

0008

0004
0002

0001

A2.6

Flag Name
TFLG.PPM

TFLG.CPM
TFLG.SLM

TFLG.BIM

TFLG.PRM

TFLG.ROM
TFLG.TOD

TFLG. TPM

Meaning

if Set

Task to
Task is
Task is

Task is
driver.

be put into console wait.

being cancelled or is
executing in ET state

executing in ET state

Task was in system when power

place.

Task is

Task is

to be rolled out.

in time of day wait.

A TSW swap is to take place.

DEVICE MNEMONIC TABLE (DMT)

going to EOT.
in the system.

in the BISYNC

restore took

The DMT consists of one entry for each device configured in the system.

The table is terminated by a halfword of zero.
by SPT.DMT.

Device Mnemonic table entry.

0(0)

NAME

Device Mnemonic

-

4 (4)

DCB Address of DCB

Figure A2-5

29-434 R0OO0 10/76

Device Mnemonic Table (DMT)

The DMT is pointed to
The DMT structure is called 'DMT.' Figure A2-5 is a

A2-7

A2.7 DEVICE CONTROL BLOCK (DCB)

The DCB is used to identify characteristics of each device configured

in the system and to serve as a work space for drivers during an I/O

request.

DCBs are pointed to by the DMT entry for the device represented.

DCBs are included in the system at source SYSGEN time. Figure A2-6

is a Device Control Block.

-22(-16) RECL Record Length (0 = variable)

-20(-14) WCNT Write Count -19(-13) RCNT Read Count

-18(-12) DCOD Device Count -17(-11) DN Device Number

-16(-10) ATRB Attributes of Device

-14 (-E) WKEY Write Key i -13(-D) RKEY Read Key

-12 (-C) BUSY Address of Busy Flag

~10(-A) TERM Address of Driver Termination Routine

-8() ALOC Address of Driver Abort Routine

-61 2) TOUT Time Out Count. o

-41-4) FLGS Filags Halfword _

-2 - INIT Address of Driver Initiallzation Routine

0(0) OPSW -]
[0ld PSW Save Area

4(4) NPSS New PSW Status (ISSTAT)

6(06) ENTR _
:: Interrupt Service Entry Point ::
| le{i0) LEAV o

Interrupt Service Exit Location

.. 2C{14) NOPI o
[NOP Interrupt Service Entry Point -
| 28(1C) RSAV R2 TCB Pointer [29(ID) IOW I/O Wait Pointer _
| 30(1E) R3 Address of parameter block. _
L 32(20) R4 Function Code/LU _
L 34(22) R5 -
| 36(24) R6 Device Number
[38(26) R7 Status]
[40(28) R8 B
[42(2n) R _
| 44 (2C) RA Length of data transfer _
| 46 (2E) RB N
| 48(30) RC]
| 50(32) RD Device Number]
| 52(34) RE Address of DCB |

54(36) RF ISR Interrupt Service Routine Ptr

56 (38) RES Reserved for busy flag

Figure A2-6 Device Control Block (DCB)
A2-8 29-434 ROO 10/76

A2.7.1 Flags (DCB.FLGS)

Meaning i1f Set

Bulk device (disc)

Device is on line

BISYNC device is busy

Valid bit map record is in memory
Disc driver should check record for
pseudo file mark

Bit map record in memory has been modifi=d
Device is the console device

Device is a BISYNC device

Device is connectable

Device is write protected

Halt I/O in progress on device
Routine was called from SVC 1

Bit map was searched from start

Mask Flag Name
8000 DFLG.BLM
4000 DFLG.LNM
2000 DFLG.BBM
1000 DFLG.MPM
0800 DFLG.PFM
0400 DFLG.BMM
0200 DFLG.CNM
0100 DFLG.BIM
0080 DFLG.S6M
0040 DFLG.WPM
0020 DFLG.HIM
0010 DFLG.S1M
0008 DFLG.S0OM
0004 DFLG.IUM
0001 DFLG.SDM
A2.7.2 Attributes (DCB.ATRB)
Mask Flag Name
8000 DATR.INM
4000 DATR.RDM
2000 DATR.WRM
1000 DATR.BIM
0800 DATR.WTM
0400 DATR.RNM
0200 DATR.UMP
0100 DATR.IMM
0080 DATR.HIM
0040 DATR.RWM
0020 DATR.DRM
0010 DATR.FRM
0008 DATR.WFM
0004 DATR.FFM
0002 DATR.BFM

29-434 ROO 10/76

DCB is in use
SELCH device

Meaning if Set

Interactive device

Supports
Supports
Supports
Supports
Supports
Supports
Supports
Supports
Supports
Supports
Supports
Supports
Supports
Supports

read

write

binary formatted records
wait I/0

random requests
unconditional proceed
image

halt I/0

rewind

backspace record
forward space record
write file mark

forward space file mark
backspace file mark

A2-9

A2.8 VOLUME MNEMONIC TABLE (VMT)

There is one entry in the VMT for each disc device configured in the
system. When a disc is marked on line, the volume name is read from
the VD and placed in the VMT entry corresponding to the disc being

marked. The VMT is terminated with a halfword of zero. The VMT

structure is called 'VMT.' Figure A2-7 is a Volume Mnemonic Table entry.
0(0) VOLN

Volume Name
4(4) DMT Address of Corresponding DMT entry

Figure A2-7 Volume Mnemonic Table (VMT)

A2.9 FILE CONTROL BLOCK (FCB)

Figure A2-8 illustrates a File Control Block.

0(0) VMT Address of VMT Entry
2(2) WCNT Write Count I 3(3) RCNT Read Count
4(4) ATRB Attributes of File
6(6) LRCL Logical Record Length
8(8) OFF Directory Offset 9(9) BKS?Z File Blocksize
10 (A) DIR -
Address of Directory Block
14(E) FLGS Flags | 15(F) DCOD _ Device Code
N 16(10) NAME -
L Filename -
24(18) EXT File Extension
B 27 (1B) VERS Reserxrved
28 (1C) DCB Address of DCB
30(1lE) FLBA
B First Logical Block Address N
| 33722) LLBA M
Last Logical Block Address
_’38(26) CSEC -
Current Sector/Number of Logical Records
47(2R) LU Logical Unit|[43(2B) TPNT TCB Pointer

Figure A2-8 File Control Block (FCB)

A2-10 29-434 ROO 10/76

—

Z4(2C) BLK Data Blocksize in Byte

46 (2E) IBLK Index Blocksize in Bytes

48(30) INBS Index Blocksize[49(31) CCR Clear Character

50(32) BAPB |
B Data Block SVC 1 Parameter Block _
| 64 (40) IBPB .
™ Index Block SVC 1 Parameter Block B
n -

78 (4E) NINB Number of Index Blocks

80(50) CINB Current Index Block Number

82(52) CINX Current Offset into Index Block
| 84 (54) NBLK R

Number of Data Blocks
| 88(58) CBLK _
Current Data Block Number
| 92 (5C) CLRL .
Current Logical Record Number
| _98(62) RSAV
— Register Save Area (R13-R15)
, 104 (68) BUFF
Index Block Buffer
BUFF+IBLK

Data Block Buffer

-

Figure A2-8 File Control Block (FCB) (Continued)

(Additional for Indexed Files Only)

22.9.1 TFlags (FLGS)

Mask

80
40

20
08
04
02
01
A2.9.2

Value

00
02

29-434

Flag Name Meaning if Set

FFLG.BAM Buffered access method

FFLG.IUM FCB is in use; SVC 1 request to file
is being processed.

FFLG.OPM Write request is being processed.

FFLG.BMM Data block buffer has been modified..

FFLG.MOM Extending the file; increasing the
number of logical records.

FFLG.SBM Disc and SELCH busy flags were set.

FFLG.XMM Index block buffer has been modified.

Device Code (DCOD)

Flag Name

FDCD.CO
FDCD.IN

ROO 10/76

Meaning

Contiguous file
Indexed file

A2-11

A2,10 VOLUME DESCRIPTOR (VD)

T~ volume descriptor is written onto sector 0 of the disc by the

INITIALIZE command. VD.OSP, and VD.0OSS fields are not used by O0S/1lFf.

Figure A2-9 illustrates a Volume Descriptor.

Pointer to Bit Map

| 0(0) VOL -
Volume Name

4(4) ATRB _

B Volume Attributes
8(8) FDP

— First Directory Block Pointer 7
T27(C) OSP

— Pointer to 0S Image]
16 (10) ’ 0SS

B Size of 0S Image B
20(14) MAP

Figure A2-9 Volume Descriptor (VD)

Attributes (ATRB)

Mask Flag Name Meaning

if Set

8000 VATR.ONM Disc is marked on-line

A2.11 DIRECTORY ENTRY (DIR)

Each directory block contains five directory entries. DIR.VERS, DIR.DATE,

and DIR.LUSE are unused in 0S/16MT2. Figure A2-10 illustrates Directory

Entry.
| 0(0) FNM —
N File Name _
| 8(8) EXT
Extension 11(B)| VERS Version
[12 (C) FLBA]
First Logical Block Address
16 (10) LLBA]
Last Logical Block Address
20(14) WKEY Write Key | 21(15) RKEY Read Key
22 (16) LRCL Logical Record Length
Figure A2-10 Directory Entry (DIR)
A2-12 29-434 ROO 10/76

24 (18) DATE
Creation Date/Time

28 (1C) LUSE

Last Used Date/Time 7
32(20) WCNT Write Count
34(22) RCNT Read Count
36 (24) ATRB 'ile Attributesqd 37(25) BKSZ Data Blocksize
38(26) INBS Index Blocksize| 39(27) Reserved
40(28) CSEC

Current Sector (Contiguous)/Number of Logical Records (Indexed)]

44 (2C) .
Reserved

Figure A2-10 Directory Entry (DIR) (Continued)

File Attributes (DIR.ATRB)

Value Meaning

00 Entry is free; contains no valid information
10 Contiguous file

50 Indexed file

A2.12 LOADER INFORMATION BLOCK (LIB)

Every load module produced by TET/16 consists of a loader information
block followed by the image of the task, library or task common that
was established. The LIB passes to the resident image loader all
information about the module which must be known before the load can

proceed. Figure A2-11 illustrates a Loader Information Block.

0(0) OPT Task Options 1(1) FLGS Task Flags

2(2) MPRI Maximum Priority 3(3) IPRI Initial Priority
4(4) UBOT Address of Partition

6(6) UTOP Top of program

8(8) CKSM Checksum

10(a) CTOP Top of Partition

12 (C) ID SRL Address of Reentrant Library

14 (E) ID overlay name SCM Address of Task Common

16 (10) ID reserved

18(12) OBOT Overlay bottom

Figure A2-11 Loader Information Block

29-434 ROO 10/76
9-43 / A2-13

A2.12.1 Options (OPT)

Mask Flag Name Meaning if Set

8000 LOPT.ETM Task is an E-Task

4000 LOPT.ACM Continue on arithmetic fault

2000 LOPT.FPM Task uses single precision floating
point

1000 LOPT.MRM Task is memory resident

0800 LOPT.COM Task uses compatible SVCs

0200 LOPT.S6M SVC 6 from the background to be ignored

0100 LOPT.ROM Task is rollable

0040 LOPT.DFM Task uses double precision floating
point

A2.12.2 Flags (FLGS)

Mask Flag Name Meaning if Set
20 LFLG.OVM Module is an overlay

Az.12.3 Checksum (CKSM)
A checksum is formed from the entire load module image (excluding

the LIB data).

The checksum halfword is initialized to -1 and dynamically updated
in a loop, forming the exclusive OR with each halfword of data in

the module.

This is checked by the loader against the image data after it has
been loaded into memory. If they do not agree, then data has been

lost or corrupted.

A2-14 29-434 ROO 10/76

CUT ALONG LINE

PUBLICATION COMMENT FORM

Please use this postage-paid form to make any comments, suggestions, criticisms, etc. concerning
this publication.

From Date

Title Publication Title

Company Publication Number

Address

FOLD FOLD

Check the appropriate item.

D Error Page No. — . Drawing No.

[___I Addition PageNo. Drawing No.

[(] Other . PageNo._____ Drawing No.

Explanation:

FOLD FOLD

Fold and Staple
No postage necessary if mailed in U.S.A.

STAPLE STAPLE

__________________________ .

FIRST CLASS |

PERMIT No. 22 |

OCEANPORT, N.J.| |

|
.]

BUSINESS REPLY MAIL . T l
]

NO POSTAGE NECESSARY IF MAILED IN U.S.A. |
]

POSTAGE WILL BE PAID BY: IS :
:]

® |
I

ITN"T"IEIRIDATA - I
I

Subsidiary of PERKIN-ELMER |
R

Oceanport,New Jersey 07757, US.A. ‘
IR

] |

TECH PUBLICATIONS DEPT. MS 322 |

T n]

STAPLE STAPLE

	0001
	0002
	001
	002
	003
	01-01
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	08-01
	08-02
	08-03
	A1-1
	A1-2
	A1-3
	A2-01
	A2-02
	A2-03
	A2-04
	A2-05
	A2-06
	A2-07
	A2-08
	A2-09
	A2-10
	A2-11
	A2-12
	A2-13
	A2-14
	replyA
	replyB

