32 Bit Series
Reference Manual

IN"T"ERIDATA’

32 Bit Series
Reference Manual

Publication Number 29-3656R01

INFORMATION CONTAINED IN THIS
MANUAL IS SUBJECT TO DESIGN
CHANGE OR PRODUCT IMPROVEMENT

(© INTERDATAINC., 1973
All Rights Reserved
Printed |n U.S.A.

June 1974

TABLE OF CONTENTS
CHAPTER 1 SYSTEM DESCRIPTION .

MEMORY SYSTEM
Direct Memory Access .
SelectorChannel

Relocation and Protection . .
MULTIPLEXORINPUT/OUTPUT BUS e e e e e e e e
PERIPHERALS e e e e e e e e e e

Digitial Multiplexor.

IntertapeCassetteSystem.:.

Industry Compatible Magnetic Tape Systems

Removable Cartridge DiscSystem

Alphanumeric Display Terminals
Data Communications Equipment

nghSpeedPaperTapeSystem...
System Modules e e e e e e e e e e e e e

PROCESSOR .
Program Status Word .

Wait State . |
Immediate lmenug Mask - . .
Machine Matfunction Interrupt Mask [
Arithmetic Fault Interrupt Mask

Relocation Protection InterruptMask

System Queue Service Interrupt Mask . .

Protect Mode |
Rgg-sterSetSehct
Condition Code C e e e e e e e e e e e e e .
Location Counter

General Register ., . .
Floating Point Register
Processor Interrupts . .
Reserved Memory Locations .
Processor Operation

.....
...........

DATA FORMATS .

Fixed Point Data
Floating Point Data
Logical Data

INSTRUCTION FORMATS

Register to Register (RR) Format B
Short Form (SF) Format - . e e e e e e e
Register and Indexed Storage One (RX1) Format

Register and Indexed Storage Two (RX2) Format

Register and Indexed Storage Three (RX3) Format

Register and immediate Storage One (R11) Format e e
Register and Immediate Storage Two (Rl2) Format ------
Branch Instruction Formats ...
Programming Note -

CHAPTER 2 LOGICAL OPERATIONS
DATA FORMATS
OPERATIONS
Boolean Operations
Translation e e

List Processing

......

.....

.....

......

......

~ ~Noooooo, oo ad LT WWWWwWwwwNn

- 10

NN NN

(-] NN~

. .10
- -Nn
.. 1
.. MN

-1

- 13

- 13
- 14

.14

.15

ii

TABLE OF CONTENTS (Continued)

LOGICAL INSTRUCTION FORMATS | .

LOGICAL INSTRUCTIONS .
Load

Load Reglster .

Load Immediate . . .

Load Immediate Short

Load Complement Short

Load Halfword

Load Halfword lmmedlate e e .
Load Address
Load Halfword Logical

Load Multiple .
Load Byte . . .
Load Byte Reglster
Exchange Halfword Regxster ..
Exchange Byte Register .,

Store , ., ..,
Store Halfword
Store Multiple . .

Store Byte . e

Store Byte Register

Compare Logical
Compare Logical Register

Compare Logical Immediate - -
Compare Logical Halfword .
Compare Logical Halfword lmmed;ate
Compare Logical Byte
AND
AND Register .

AND Immediate
ANDHalfword
AND Halfword Immediate .
OR

.....

........

OR Immediate

OR Halfword . . .

OR Halfword |mmed;ate

Exclusive OR . . .

Exclusive OR Reglster

Exclusive OR Immediate

Exclusive OR Halfword ..
Exclusive OR Halfword Immediate
Test Immediate
Test Halfword Immediate . .
Shift Left Logical . .

Shift Left Logical Short

Shift Right Logical . .

Shift Right Logical Short .

Shift Left Halfword Logical . .
Shift Left Halfword Logical Short
Shift Right Halfword Logical . . .
Shift Right Halfword Logical Short
Rotate Left Logical .
Rotate Right Logical .

TestandSet . . , . | | . .
Test Bit . . .

SetBit . .

Complement Blt

Reset Bit

Cyclic Redundancy Check Modulo 12
Cyclic Redundancy Check Modulo 16

Translate . .

Add to Top of Llst

Add to Bottom of List .
Remove from Top of List |
Remove from Bottom of List |

........

.....

- e

.......

ORReéxster:...........

.....

.....

BES5RREAAR RN R R PR RENOREEYY

&

g

5]
-

. B2

TABLE OF CONTENTS (Continued)

CHAPTER 3 BRANCHING . . 57
OPERATIONS - . - « « « « v v v i v bt e e e e e e e e . 57
DecisionMaking. - 0 h e e e e e e e e e e e . 57
Subroutine Linkage L. . 57
BRANCH INSTRUCTION FORMATS 57
BRANCHINSTRUCTIONS 58
Branchon FalseCondition. - 59
Branch on False Condition Reglster e e e e e e e e e . 59
Branch on False Condition BackwardShort 59
Branch on False Condition ForwardShort. 59
BranchonTrueCondition+ . . 4 v v i v v 4« s w w 60
Branch on True Condition Register 60
Branch on True Condition BackwardShort e . . 60
Branchon True ConditionForwardShort 60
Branch and Link. e e e e e e .. . 61
Branch and Link Register e e e e e e e e e e e e . 61
Brnachon Index LoworEqual 62
BranchoniIndexHigh, o000 n 00 e e e e e 63
CHAPTER 4 FIXED POINT ARITHMETIC. . - 65
DATAFORMATS ¢ i i e i v e e v v e e e e e e e s .- 65
OPERATIONSo . 65
CONDITION CODE 66
FIXED POINT INSTRUCTION FORMATS . . 66
FIXED POINT INSTRUCTIONS |, & v i e v v et e e e . 86
Add00 s - 67
AddReguster e e e e e e e e e .. e e e e e e e e e e - 67
Add Immediate . . . e e . - 67
Add ImmediateShort00 . .- 67
Add Halfword . . . e e e e e e e e e e e e e e e e e e e - 68
Add Hatfwordlmmedlate . 68
Add to Memory . . . - 69
Add Halfword to Memory - 70
Subtract . . - 71
Subtract Register -7
Subtract Immediate -7
Subtract immediateShort - o oL 0000 e 7
Subtract Halfword - . . . 72
Subtract Halfword |mmed|ate 72
Compare . e 73
Compare Reg|ster e e e e e e e e e e e e e e e e e 73
Compare lmmediate . . -o 0 e e e e e e e 73
Compare Halfword . . e 74
Compare Halfword Immedlate - 74
Multiply . . e e e e e e . - 75
Multiply Reglster . .75
Multiply Halfword . . . 76
Multiply Halfword Reg;ster - 76
Divide77
Divide Reglster . e . .
DivideHalfword. 78
Divide Halfword Register e 78
Shift LeftArithmetic. 79
Shift Left Halfword Arlthmetlc 80
Shift Right Arithmetic .,8
Shift Right Halfword Am.hmetnc . ce e e . 82
Convert to Halfword Value Register+ « . . . ¢« .. 83

iii

iv

TABLE OF CONTENTS (Continued)

CHAPTER 5 FLOATING POINT ARITHMETIC . .

DATA FORMATS .,

......

Normalization | .
Exponent Overflow and Underflow
Conversion from Decimal .

CONDITION CODE

FLOATING POINT Il\iS'i'RUCTION FORMATS
FLOATING POINT INSTRUCTIONS . . .

Load . .
Load Register .
Load Mutltiple .
Store
Store Multiple. .
Add

Subtract
Subtract Register
Compare
Compare Register
Muttiply .
Mutilply Register
Divide .
Divide Register . . .
Fix Register

Float Register . .

.....

CHAPTER 6 STATUS SWITCHING AND INTERRUPTS

PROGRAM STATUS WORD .

Wait State . .
Protect Mode . . .
Register Set Selectuon

INTERRUPT SYSTEM
Immediate Interrupt . . .
Console Interrupt

Simulated Interrupt .
Machine Malfunction Interrupt .
Arithmetic Fault interrupt .
Relocation/Protection Interrupt .
System Queue Service Interrupt .

Protect Mode Violation Interrupt .

Iilegal Instruction Interrupt
Supervisor Call Interrupt

Add Register

.....

.......

.......

......

......

..........

. s .

STATUS SWITCHING INSTRUCTION FORMATS .

STATUS SWITCHING INSTRUCTIONS

Load Program Status Word . .
Load Program Status Word Reglster

Exchange Program Status Reglster .

Simulate Interrupt .
Supervisor Call

CHAPTER 7 INPUT OUTPUT OPERATIONS .

DEVICE CONTROLLERS

Device Addressing .

Processor/Controller Commumwtlon

Device Priorities .

.......

. .

« e s n

......

« e+ e

.......

...........

......

.....

........

.......

.......

......

............

..........

.....

......

......

.......

.......

...........

G & &

BORIRRRRBEVB28888 I

8

. .13

. 113

. .13
.14

TABLE OF CONTENTS (Continued)

INTERRUPT SERVICE POINTER TABLE
1/0 INSTRUCTION FORMATS .
I/O INSTRUCTIONS .

Sense Status . . .

Sense Status Reglster

Output Command
Output Command Register. ..
Read Data . . . e

Read Data Reglster

Read Halfword
Read Halfword Reguster e e
Read Block

Read Block Reglster .
Write Data . ., .

Write Data Regmer

Wiite Halfword . .
Write Halfword Reguster
WriteBlock ., . . .
Write Block Register .
Autoload . .
Simulate Channel Program

CONTROL OF 1/0 OPERATIONS,
STATUS MONITORING 1/0 | |

INTERRUPT DRIVEN I/O .
SELECTOR CHANNEL I/O .

Selector Channel Devices
Selector Channel Operation
Selector Channel Programming .

AUTO DRIVER CHANNEL | .
CHANNEL COMMAND BLOCK

Subroutine Address
Buffer, .

Translation

Check Word ..
Channel Command Word

.....
.......

Status Mask | |
Execute Bit (E) |
FastBit (F) . . .
Read/Write Bit (R/W)
Translate Bit {T)

Check Type Bit (C) . |

Valid Channel Command Codes -

CHAPTER 8 MEMORY MANAGEMENT .

BLOCK ADDRESS CONVENTION .
SEGMENTATION REGISTERS

SEGMENTATION REGISTER SELECTION .

FUNCTION OF THE CONTROL FIELD .
INTERRUPTS . ..

......

........

.....

.......

a e .

.......

.....

.....

.....

LY

.....

114

“115
.15

. . 116

........

.....

16
S17

117

118

D118

119
119
120

St

......

122

D122
123

123

S 124
125

......

......

126

127

128

" 128

. 129

......

........

T 1

vi

TABLE OF CONTENTS (Continued)

ILLUSTRATIONS

Figure1. SystemDiagram « .« i i 44w e e e
Figure2. ProgramStatusWord« v v e v ..
Figure3. InstructionFormats « ¢ v 4 v 4 v v v 4 W .
Figure4. logicalData . .-. v v v v e .
Figure5. TranslationTableEntry
Figure 6. Circular ListDefinition
Figure7. CircularList v i v e e
Figure8. Fixed PointDataWords Formats
Figure9. FloatingPointDataFormat « .« v v v ..
Figure 10. ProgramStatusWord v« o 4 4 e e
Figure 11. ChannelCommandBlock
Figure 12. ChannelCommandWord e e e e e e .
Figure 13. Program Address ¢« . . . i v i vt e e e
Figure14. RealAddress ¢ . + « « « vt v v v e e
Figure 15. SegmentationRegisters
Figure16. Program Addresses + « ¢ v v i 4 e e e 0w ..
Figure 17. LimitandRelocationFields
Figure 18. SegmentControl Fields

APPENDICIES

APPENDIX1 INDEX .,
APPENDIX 2 INSTRUCTION SUMMARY - ALPHABETICAL
APPENDIX 3 INSTRUCTION SUMMARY - NUMERICAL
APPENDIX 4 EXTENDED BRANCH MNEMONICS
APPENDIX 5 ARITHMETIC REFERENCES

..............

.................

A2-1/A24

CHAPTER 1
SYSTEM DESCRIPTION

Aware of the growing need for minicomputers with improved performance and increased memory
capacity, INTERDATA has combined the field proven and a reliable technologies used in the Models
70, 74, and 80 with its traditional concern for programming simplicity and economy to produce the
extended series architecture. This new architecture is a logical step in the evolution of the INTER-
DATA family of minicomputers. Through the use of 32 bit general registers and revised instruc-
tion formats, it provides fullword data processing power and direct memory addressing up to a
limit of 16 million bytes. Figure 1 shows the interrelationship of the various elements contained

in this advanced system.

MEMORY SYSTEM

The basic system contains 32KB of memory. Memory may be expanded in either 16KB or 32KB
increments up to the maximum allowed. Storage addressing is consecutive, starting at zero, for
each eight hit byte. Memories may be set to maintain odd parity on the halfword level, one parity
bit for each 16 data bits.

~ wio |
1 | W MOULES |
l 22r 4 SACH
32KB KB
MEMORY MEMORY
MODULE MODULE

I!A
MEMORY ACCESS CONTROLLER

DMA BUS

DISPLAY INSTRUCTION REGISTER l —[1
ISPLAY FraN-.
OPCODE [Ry | Xy| ADORESS
........ wurl CODE [P Xy SELECTOR CuSTOM
: PROGRAM STATUS WORD CHANNEL INTERFACE
STATUS . LOC CTR.
|
PROCESSAR | 16 DEVICES _SELECTOR CHANNEL BUS
| I . '
= b Pom |
- e "I BENERAL 1
H H REGISTERS| | MAGNETIC N
l‘ FoeT | TAPE DISC
. r. ‘
LK 1
JELET 41 0o |
[
l i
MUL TIPLEXOR BUS J "
UNIVERSAL T
cLock
ANALOG
DIGITAL
MULTIPLEXOR i O O CRT
INTz 121
DUAL V& L TTE

HIGH SPEED CARD READE%
PAPER TAPE

LINE PRINTER

Figure 1. System Diagram

This information s proprietary and 18 supphied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shal
not be used for any other purpose unless specifically authonzed in writing 1

Direct Memory Access

Direct Memory Access devices may be added to the system. Direct Memory Access devices
allow the operation of high speed peripherals (e.g., discs or drums), directly to or from mem-
ory. This enables the user to perform simultaneous processing together with the high speed data
transfer. The DMA port uses a memory cycle stealing technique.

Selector Channel

The Selector Channel is a standard Direct Memory Access device that allows the connection of
high speed peripheral devices directly to memory. To use the Selector Channel, the program
initializes the device itself, sends a start and a final memory address to the Selector Channel,
and commands the channel to start. The Processor, at this point, can proceed to another func-
tion. When the Selector Channel terminates the transfer, it generates a hardware interrupt to
the Processor.

Relocation and Protection

The memory access and protect controller provides hardware relocation, segmentation, and pro-
tection of programs. Programs may be divided up into 2s many as 16 segments. Segments may
be located anywhere in available memory. The memory access and protect controller provides
direct address translation, that is, program addresses are automatically converted into real mem-
ory addresses.

The memory access and protect controller provides protection in two ways. First, it isolates the
currently running program from all others in the system. The currently running program cannot
reference, for any reason, memory locations outside its preassigned areas. Second, within its
assigned areas, the program may be prevented from executing instructions or writing into mem-
ory.

MULTIPLEXOR INPUT/OUTPUT BUS

All medium and low speed devices connect to the Multiplexor Bus. This is a request/response bus,
consisting of 30 lines: 16 bidirectional data lines, 8 control lines, 5 test lines, and 1 initialize line.
Interrupt detection and automatic hardware vectoring for each of 1,023 devices are standard.

PERIPHERALS

A complete line of standard, off-the-shelf, peripheral devices is available with the system. All
system modules and device controllers previously designed for other INTERDATA Processors are
plug compatible with the Multiplexor Bus. These field-proven designs enable the user to select
the devices or modules required for his specific application. The following are examples of what
is available.

Digital Multiplexor

The digital multiplexor provides an economical set of modular blocks to monitor or control digital
lines. A single controller, augmented with input and output modules of 128 lines each, provides
the capability for monitoring 2,048 inputs and controlling 2, 048 outputs. The digital multiplexor
uses a biased core technique for input sampling. This technique insures absolute DC isolation
from the sense contact, excellent common mode transient response and DC offset capability, which
make the digital multiplexor particularly well suited for reliable use in noise contaminated environ-
ments.

This information 18 proprietary and s suppiied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shal)
2 not be used for any other purpose unless specifically authorized In writing

Intertape Cassette System

The Intertape cassette system provides dual drive transports, capable of transferring data at a
rate of 1,000 characters per second. This reliable and inexpensive unit makes an ideal substitute
for paper tape equipment. With a storage capacity of 500, 000 bytes per cassette, hardware read-
after-write check, and longitudinal redundancy check, the Intertape cassette system is ideal for
low speed auxiliary storage.

Industry Compatible Magnetic Tape Systems

Nine track, industry compatible magnetic tape systems are available in both 800 and 1, 600 bits
per inch (bpi) densities. These units operate at 45 inches per second (ips). The 800 bpi unit in-
cludes hardware read-after-write and cyclic redundancy checking hardware. The 1,600 bpi ver-
sion includes read-after~write check and phase encoded formatter. Transfer rate for the 800 bpi
version is 36, 000 characters per second. Transfer rate for the 1, 600 bpi version is 72, 000 char-
acters per second.

Removable Cartridge Disc System

The removable cartridge disc system is a reliable and inexpensive mass storage system, capable
of providing 2.5 or 5.0 megabytes of storage per unit. Up to four disc drivers can operate on each
controller, providing a maximum storage capacity of 20. 0 megabytes per system. Average access
time is 70 milliseconds and the transfer rate is 180, 000 bytes per second.

Alphanumeric Display Terminals

Several types of alphanumeric display terminals are available. Display units provide a 1,920
character display (24 lines x 80 characters), standard 64 character ASCII subset, complete Pro-
cessor and operator cursor control, and a full range of editing features with both message and
character modes. Units operate at 110 to 9, 600 baud.

Data Communications Equipment

A complete line of character buffered adapters is available to service Bell 103, 201, 202, and 301
data sets, as well as the 801 automatic dialer. This enables the Processor to accommodate appli-
cations requiring either synchronous or asynchronous communications.

High Speed Paper Tape System

The high speed paper tape system provides a 300 character per second reader and a 75 character
per second punch. These units can be provided individually, or as a combined package using the
same controller.

System Modules

A complete line of system modules provides the user with a simple and convenient means of creat-
ing special interfaces. These general purpose interface modules greatly reduce or eliminate spec-
ial design effort. Standard modules are available to handle 8 bit or 16 bit parallel input or output,
manual data entry, and decimal indicators.

This nformation s proprietary and 18 » ed by INTERDATA for the soie
purpose of using and mamtairing INT®1 & TA supplied equ pment and sha!l
not be used for any other purpose ulucss apecificatly author:zed m writ.ing 3

PROCESSOR

The Central Processing Unit (CPU), or Processor, controls activities in the system. It executes
instructions in a specific sequence and performs arithmetic and logical functions. Included in the
Processor's components are:

Program Status Word register
General registers

Floating point registers
Hardware multiply and divide
Floating point hardware

Program Status Word

The 64 bit Program Status Word (PSW), shown below, defines the state of the Processor at any
given time.

0 16179819, 21222324 272829 3031

e L O plapl R |clvielL

2 3040 63
Loc

Figure 2. Program Status Word

Bits 0:31 are reserved for status information and interrupt masks. Bits 40:63 contain the Loca~
tion Counter. Unassigned Program Status Word bits must not be used and must always be zero.
Status information and interrupt mask bits are defined as follows:

Bit 16 Wait state
Bit 17 Immediate interrupt mask
Bit 18 Machine malfunction interrupt mask
Bit 19 Arithmetic fault interrupt mask
Bit 21 Relocation/protection interrupt mask
Bit 22 System gueue service interrupt mask
Bit 23 Protect mode
Bits 24:27 Register set select bits
Bits 28:31 Condition Code

Wait State

When this bit is set, the Processor halts normal program execution, It is still responsive to mach-
ine malfunction and immediate interrupts, if enabled.

Immediate Interrupt Mask

This bit controls requests for service from devices on the Multiplexor Bus, including the Selec-
tor Channel. If this bit is set, the Processor responds to the requests. If it is reset, the re-
quests are queued. This bit also controls the Auto Driver Channel.

This information 1s propnetary and s supplied by INTERDATA for the sole
purpose of using and maintaning INTERDATA supplied equipment and shall
4 not pe used for any other purpose unless specifically authorized in writing

Machine Matfunction Interrupt Mask

This bit conirols interrupts generated when power fails, when power returns, and when parity
checking indicates a memory parity error.

Arithmatic Fault Interrupt Mask

This bit controls internal interrupts caused by arithmetic faults —- fixed-point quotient overflow,

floating point overflow or underflow. If it is set, the interrupt is taken. If it is reset, the error
condition is ignored.

Relocation Protection Interrupt Mask

This bit serves two purposes. It enables the memory access and protect controller so that pro-
gram addresses are automatically relocated. It also enables the relocation/protection interrupt,
which is generated by the memory access and protect controller.

System Queue Service Interrupt Mask

This bit controls the interrupt generated when the system queue requires service.

Protect Mode

This bit describes an operational state of the Processor. If it is set, the Processor is in the pro-
tect mode, and only non-privileged instructions may be executed. If this bit is reset, the Pro-
cessor is in the Supervisor mode, and the currently running program may execute any legal in-
struction.

Register Set Select

Bits 24:27 of the Program Status Word are used to designate the current register set. All 32
bit series machines must have at least two register sets. Register sets are numbered 0 throug
15. If fewer than 16 sets are implemented, the last set is always numbered 15. ’

Condition Code

Bits 28:31 of the Program Status Word contain the Condition Code. As part of the execution of
certain instructions, the state of the Condition Code may be changed. The state of the Condition
Code following these instructions indicates the nature of the result, Not all instructions affect
the Condition Code. The state of the Condition Code may be tested with Conditional Branch in-
structions.

Location Counter

The Location Counter controls the sequencing of instruction execution. In normal sequential oper-
ation, the Location Counter contains the address of the next instruction to be executed. The in-
struction is fetched from memory. While the instruction is being executed, the Location Counter
is incremented by either two, or four, or six, depending on the length of the instruction. Upon
completion of instruction execution, the next instruction is fetched from the location specified by
the incremented Location Counter, and the process is repeated.

This sequential mode of operation is altered by Branch instructions and by interrupts. Branch in-
structions cause the Location Counter to be replaced by a new value derived from the instruction.
Interrupts cause the entire Program Status Word to be replaced by a new Program Status Word.

Thus information 1s propristary and s supplied by INTERDATA for the sole
purpose of using and ma- 1 amng INTERDATA suppired equ:prment and shail
not be used for any other purpose uniess specfically authorized in writing. 5

General Registers

In the current implementation, there are two sets of general registers. Each set contains 16
registers. Each register is 32 bits wide. The sets are numbered 0 and 15. Register set selec-
tion is determined by the state of Bits 24:27 of the current Program Status Word. Registers 1
through 15 of either set may be used as index registers.

When interrupts occur, the Processor loads pertinent information into preselected registers of
register set 0, the supervisor set. The details of this operation are described in Chapter 6.
Register set 15, the user set, does not have any specific functional assignments.

Floating Point Registers

There are eight floating point registers, each 32 bits wide. The registers are identified by the
even numbers, 0 through 14. Floating point operations must always identify the registers with
even numbers. The results are undefined if odd numbers are used.

Processor Interrupts

Interrupt conditions cause the entire Program Status Word to be replaced by a new Program Status
Word, thus breaking the usual sequential flow of instruction execution. When an interrupt condi-
tion arises, the Processor saves its current Program Status Word either in memory or in a pair
of general registers belonging to register set 0. It loads information related to the interrupt
condition in other registers of set 0, It loads a new Program Status Word from a memory
location reserved for the specific interrupt condition. (The immediate interrupt is an exception

to the rule. The status portion of the new Program Status Word, Bits 0:31, is forced to a pre-
set value. The Location Counter is loaded from a memory location reserved for the interrupting
device.) Refer to Chapter 6 for details on interrupt processing.

Reserved Memory Locations

The following memory locations are reserved for interrupt pointers, Program Status Words, and
system constants.

Location Use

X'000000' - X'00001F' Reserved

X'000020' - X'000027! Machine malfunction interrupt old PSW

X’000028" - X'00002F! Not used, must be zero

X'000030' - X'000037" Illegal instruction!interrupt new PSW

X'000038! - X'00003F" Machine malfunction interrupt new PSW

X'000040' - X'000047" Not used, must be zero

X'000048' - X'00004F! Arithmetic fault interrupt new PSW

X'000050" - X'00007F" Bootstrap loader and device definition table

X'000080' - X'000083" System queue pointer

X'000084" - X'000085"' Current PSW save pointer

X'000086’ - X'000087" Register save pointer

X'000088’ - X'00008F' System queue service interrupt new PSW

X'000090' - X'000097" Relocation/protection interrupt new PSW

X'000098’ - X'00009B' Supervisor call new status

X'00009C' - X'0000BB'’ Supervisor call interrupt new location counters
*X'0000BC' - X'0000CF' Not used, must be zero

X'0000D0' - X'0002CF! Interrupt service pointer table

X'0002D0' - X'0004CF" Expanded interrupt service pointer table

X'0004D0' - X'0008CF! Expanded interrupt service pointer table

*Used by Micro-Program

These reserved locations play an important role in both interrupt and input/output processing.
For details on these subjects refer to Chapters 6 and 7. In addition to the above, certain locations

are reserved for use by the Memory Access Controller. Refer to Chapter 8 for details.

This information s proprietary and 15 supplied by INTERDATA for the sole
purpose of uming and mantaning INTERDATA supptied equipment and shal!
6 not be used for any othar purposa unless specificafly authorized in writing

Processor Operations

Fixed point arithmetic and logical operation are performed between:

The contents of two fullword registers.
The contents of a fullword register and the contents of a fullword located in memory.

The contents of a fullword register and the contents of a halfword located in memory.

Where the second operand is contained in memory, it may be located in the instruction stream
(immediate operation), or it may be located in indexed storage.

In fixed point arithmetic and logical operations between a fullword register and a halfword operand
in memory, the halfword operand is expanded to a fullword by propagating the most significant

bit into the high order bits before the operation is started. This permits the use of halfword to
fullword operations with consistent results, and it provides for space economy in that small values
do not have to be contained in fullword locations.

Arithmetic operations on fixed point halfword quantities may produce results that are not entirely
consistent with the results that would be obtained in a 16 bit Processor, Where this is a problem,
the convert to halfword value instruction adjusts both the result and the Condition Code so that they
are correct and consistent with the same operations in a 16 bit Processor,

Floating point operations take place between the contents of two floating point registers, or be-
tween the contents of a floating point register and a floating point operand contained in a full-
word in memory. Following floating point operations, the Condition Code is set to indicate the
nature of the result.

DATA FORMATS

The Processor performs logical and arithmetic operations on single bits, 8 bit bytes, 16 bit half-
words, 32 bit fullwords, and 64 bit double words. This data may represent a fixed point number,
a floating point number, or logical information.

Fixed Point Data

Fixed point arithmetic operands are either 16 bit halfwords or 32 bit fullwords. In multiply and
divide operations, 64 bit operands are manipulated. Fixed point data is treated as 15 bit signed
integers in the halfword format, and as 31 bit signed integers in the fullword format. Positive
numbers are expressed in true binary form with a Sign bit of zero. Negative numbers are re-
presented in two's complement form with a Sign bit of one. The numerical value of zero is re-
presented with all bits zero. Refer to Chapter 4 for details on fixed point data representation.

Floating Point Data

A floating point number consists of a signed exponent and a signed fraction. The quantity expressed
by this number is the product of the fraction and the number 16 raised to the power of the exponent.
Each floating point value requires a 32 bit fullword, of which eight bits are used for the sign and
exponent, and 24 bits are used for the fraction. Refer to Chapter 5 for details on floating point
data representation.

Logical Data

Logical operations manipulate 8 bit bytes, 16 bit halfwords, and 32 bit fullwords. In addition, it
is possible to perform logical operations on single bits located in bit arrays. Refer to Chapter 2
for details on logical data representation.

This information 18 proprigtary and s supplied by INTERDATA for the sole
purpose of using and ma:taining INTERDATA suppl.ed equipment and shall
not be used for any other purpose unless spec fically authorized n wrting 7

INSTRUCTION FORMATS

The INTERDATA instruction formats provide a concise method of representing required opera-
tions for easy interpretation by the Processor. There are seven basic formats, shown in Figure
3. The abbreviations used in the figure have the following meanings:

oP
R1
R2
N
X2
D2
FX2
SX2
A2
12

Operation code

First operand register

Second operand register

A four bit immediate value

Second operand single index register
Second operand displacement

Second operand first index register
Second operand second index register
Second operand direct address
Second operand immediate value

REGISTER TO REGISTER (RR)

0

7 1 15

-

oP

SHORT FORMAT (SF)

0

7 11 15

oP

R1 N

REGISTER AND INDEXED STORAGE 1 (RX1)

0

7 1 15 18

oP

lo Io | D2

REGISTEK AND INDEXED STORAGE 2 (RX2)

0 7 1 15 17 31
opP T g1 X2 J1 D2
REGISTER AND INDEXED STORAGE 3 (RX3)
0 7 1 15 17 20 24 47
4— 4 PR W VY WU § Y - o —
oP R1 rx2 folifofo] sx2 A2
| l folrlofe] 1 L |
REGISTER AND IMMEDIATE STORAGE (RI1)
0 7 1 15 31
| A 1 1
[oP [R1] X2 I 12
REGISTER AND IMMEDIATE STORAGE (RI2)
0 7 1 15 47
- 4 1 —d pd

L

opP

iR1lX2I 2

Figure 3. Instruction Formats

This information s propretary and i supp'ed by INTERDATA for the sole
purpose of using and maintaming INTERDATA supp'ied equipment and shall
not be used for any other purpase unless spectf.cally suthorized n writing

Most instructions in the extended series may be expressed in two or more formats, which pro-
vides flexibility in data organization and instruction sequencing.

In the examples accompanying each format description, it is assumed that proper values have been
assigned to the symbols used in the assembler representation. Register specifications in these ex-
amples are expressed as absolute numbers to show the correspondence between the machine code
format and the assembler notation. In actual practice, these numbers could be expressed symboli-
cally.

Register to Register (RR} Format

In this 16 bit format, Bits 0:7 contain the operation code. Bits 8:11 contain the R1 field, and
Bits 12:15 contain the R2 field. In most RR instructions, the register specified by R1 contains
the first operand, and the register specified by R2 contains the second operand. For example:

Assembler Notation Machine Code
AR 1, 2 0A12

instructs the Processor to add the contents of Register 1 to the contents of Register 2, and store
the result in Register 1,

Short Form (SF} Format

This 16 bit format provides space economy when working with small values. Bits 0:7 contain the
operation code. Bits 8:11 contain the R1 field. Bits 12:15 contain the N field. In arithmetic and
logical operations, the register specified by R1 contains the first operand. The N field contains
a four bit immediate value used as the second operand. For example:

Assembler Notation Machine Code
SIS 1, 10 271A

instructs the Processor to subtract the quantity 10 from the contents of Register 1, and store the
result in Register 1.

Register and Indexed Storage One (RX1) Format

This is a 32 bit format in which Bits 0:7 contain the operation code, Bits 8:11 contain the R1 field
Bits 12:15 contain the X2 field, Bits 16 and 17 must be zero, and Bits 18:31 contain the D2 field.
In general, the register specified by R1 contains the first operand. The second operand is located
in memory at the address obtained by adding the contents of the second operand index register,
specified by X2, to the 14 bit displacement contained in the D2 field. The displacement is always
positive. For example:

Assembler Notation Machine Code
s 2, D2(3) 5B233400

instructs the Processor to subtract the fullword contents of the memory location, whose address
is obtained by adding X'3400' o the contents of index Register 3, from the contents of Register 2.
The result replaces the contents of Register 2.

This information s praprietary and 1s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA suppied eguipment ana snali
not be used for any other purpose uniess specifically authorized i wniting 9

Register and Indexed Storage Two {(RX2} Format

This format provides relative addressing capability in a 32 bit instruction word. Bits 0:7 contain
the operation code. Bits 8:11 contain the R1 specification. Bits 12:15 contain the X2 specification.
Bit 16 must always be one. Bits 17:31 contain the relative displacement, D2.

In this format, the register specified by R1 contains the first operand. The second operand is
located in memory at the address obtained by adding to the incremented Location Counter the sum
of the contents of the index register specified by X2 and the contents of the D2 field. The D2 field
may contain either a positive or a negative number. Negative numhers are expressed in two's
complement notation. For example:

Assembler Notation Machine Code
A 6,D2 (4) 5A648040

instructs the Processor to add to the contents of Register 6 the fullword quantity found in memory
at the address obtained by adding to the incremented Location Counter the sum of X'0040' and the
contents of the index register, Register 4. The result replaces the contents of Register 6.

Register and Indexed Storage Three (RX3) Format

This is a 48 bit format in which double indexing is permitted. Bits 0:7 contain the operation code.
Bits 8:11 contain the R1 specification. Bits 12:15 contain the first index specification, FX2. Bit
16 must be zero. Bit 17 must be one. Bits 18:19 must be zero. Bits 20:23 contain the second
index specification, SX2. Bits 24:47 contain a 24 bit address, A2.

In general, the first operand is contained in the register specified by R1. The second operand is
located in memory. Its memory address is obtained by adding the contents of the first index re-
gister to the contents of the second index register, and then adding this result ot the contents of
the A2 field. For example:

Assembler Notation Machine Code
] 7,A2 (9, 4) 5B7944000420

instructs the Processor to subtract from the contents of Register 7 the fullword quantity located
in memory at the address obtained by adding the contents of the first index register, Register 9,
to the contents of the second index register, Register 4, and then adding this result to the address
quantity, X'000420'. The resuli of the operation replaces the contents of Register 7.

NOTE

Second level indexing is allowed only if first level
indexing is also specified.

purpase of usirg and maintaining INTERDATA supplied equipment and shail
10 not be used for any other purpose unless specificaily authonized mn wnity

This wnformaion s proprietary and '3 supp! e¢ by INTERDATA for the sole
ng.

Register and Immediate Storage One (R11) Format

This format represents a 32 bit instruction word. Bits 0:7 contain the operation code. Bits
8:11 contain the R1 specification. Bits 16:31 contain the 16 bit immediate value, 12.

In this format, the register specified by R1 contains the first operand. The second operand is ob-
tained by adding the contents of the index register specified by X2 to the value contained in the I2
field. Before adding the immediate value to the contents of the index register, the 16 bit immedi-
ate value is expanded to a 32 bit fullword quantity by propagating the most significant bit through
the high order bits. For example:

Assembler Notation Machine Code
AHI 4,12 (2) CA423444

instructs the Processor to add to the contents of Register 4 the quantity obtained by adding
X'00003444' to the contents of Register 2. The result replaces the contents of Register 4.

Register and Immediate Storage Two (R12) Format

This is a 48 bit instruction format. Bits 0:7 contain the operation code. Bits 8:11 contain the
R1 specification. Bits 12:15 contain the X2 specification. Bits 16:47 contain the 32 bit immedi-
ate value, 12,

The first operand is contained in the register specified by R1. The second operand is obtained by
adding the contents of the index register, specified by X2, to the 32 bit immediate value contained
in the 12 field. For example:

Assembler Notation Machine Code
Al 3,12 (2) FA3224647318

instructs the Processor to add to the contents of Register 3 the value obtained by adding Y'24647318'
to the contents of Register 2. The result replaces the contents of Register 3.

Branch Instruction Formats

The Branch instructions use the RR, SF, and all variations on the RX formats. However, in the
Conditional Branch instructions, the R1 field does not specify a register. Instead, it contains a
mask value (labeled M1 in the instruction descriptions), which is tested with the Condition Code.

Programming Note

When working with the INTERDATA Common Assembler Language (CAL) assembler, it is not
necessary to specify explicitly either RX1 or RX2 or RX3 format. The assembler chooses the
most economical format and supplies the required bits in the machine code. When double indexing
is required, the assembler always chooses RX3 format.

This information is proprigtary and is supplied by INTERDATA for the sole
purpose of using and maniairing INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authonized in writing 11/12

CHAPTER 2
LOGICAL OPERATIONS

The set of logical instructions provide a means for the manipulation of binary data. Many of the in-
structions grouped with the logical set may also be used in arithmetic and other operations. These
instructions include loads, stores, compares, shifts, list processing, translate, and cyclic redun-
dancy checks.

DATA FORMATS

Logical data may be organized as bytes, halfwords, fullwords, or bit arrays of up to 231 bits as
shown in Figure 4.

0 BYTE 7

0 HALFWORD 15

0 FULLWORD 31

0 BIT ARRAY N
7’ ,Li
A

Figure 4. Logical Data

Thus informat.on 13 proprietary and s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authonzed in wiiting. 13

OPERATIONS

In logical operations between the contents of a general register and a halfword operand, the half-
word operand is expanded to a fullword before starting the operation. The halfword is expanded
by propagating the most significant bit through Bits 15:0 of the fullword.

Boolean Operations

The Boolean operators AND, OR, and Exclusive OR (XOR) operate on halfword and fullword quan-
tities. All bits in both operands participate individually. The Boolean functions are defined as
follows:

0OAND 0=0
0AND1=0 .
1 AND 0 = 0 (logical product)
1AND1=1
OORO=0
0OOR1=1 logical
10R0=1 (logical sum)
10R1=1
0XOR 0=0
0XOR1=1 .
1XOR 0 =1 (logical difference)
1XOR1=0

Translation

The translate instruction is used to translate a character directly, or to effect an unconditional
branch to a special translate subroutine. Associated with the translate instruction is a trans-
lation table. The entries in the table are halfwords as shown in Figure 5.

0 78 15
1 CHARACTER ENTRY SPECIFYING TRANSLATED
CHARACTER
H(CHAR. HANDLING ROUTINE ADDRESS)/4 ENTRY SPECIFYING ADDRESS OF

A CHARACTER HANDLING ROUTINE

Figure 5. Translation Table Entry

The character to be translated is a byte of logical data. This unsigned quantity is doubled and
used as an index into the table. If the corresponding entry has a one in bit Position zero, then
Bits 8:15 contain the character to be substituted for the data character. If there is a zero in bit
Position zero, then Bits 1:15 contain the address, divided by two, of the translate routine. When
the translate instruction results in a branch, this value is doubled to produce the address of the
routine. Because this result is a 16 bit address, the software routine must be located in the first
64KB of the program. (The program may reside anywhere in memory if it is relocated by the re-
location and protection module.) The translate table may contain up to 256 entries. However, if
the data characters are always less than eight bits, fewer entries are required.

This information 15 proprietary and s supphed by INTERDATA for the sole
purposz of using and maintaining INTERDATA suppled equipment and shail
14 not be used for any other purpase unless spec.fically authorized in writing

List Processing

The list processing instructions manipulate a circular list defined as follows:

0 1516 31
NUMBER OF SLOTS NUMBER USED
CURRENT TOP NEXT BOTTOM
SLOT 0
SLOT 1
T F
SLOTN

Figure 6. Circular List Definition

The first two fullwords contain the list parameters. Immediately following the parameter block
is the list itself. The first fullword in the list is designated Slot 0. The remaining slots are des-
ignated 1, 2, 3, etc., up to a maximum slot number which is equal to the number in the list minus
one. An absolute maximum of 65,535 fullword slots may be specified. (Maximum slot designa-
tion is equal to X'FFFE'.)

The first parameter halfword indicates the number of slots (fullwords) in the entire list. The
second parameter halfword indicates the current number of slots being used. When this halfword
equals zero, the list is empty. When this halfword equals the number of slots in the list, the list
is full. Once initialized, this halfword is maintained automatically, It is incremented when ele-
ments are added to the list and decremented when elements are removed.

The third and fourth halfwords of the list parameter block specify the current top of the list and the
next bottom of the list respectively. These pointers are also updated automatically. See Figure 7.

SLOTn
SLOTO
CURRENT TOP—=f* 51071

OCCUPIED
SECTION

SLtOT 2
SLOT3
SLOT4
NEXT BOTTOM SLOT 5

i G

Figure 7. Circular List

This information s proprietary and supplied by INTERDATA for the sole
purpose of using and maintain ng INTERDATA supplied equipment and shall
not be used for any other purpose ueless spec fically authonzed In writing 15

LOGICAL INSTRUCTION FORMATS

The logical instructions use the Register to Register (RR), the Register and Indexed Storage (RX),
and the Register and Immediate Storage (RI) instruction formats.

LOGICAL INSTRUCTIONS

The instructions described in this section are:

L Load

LR Load Register

I Load Immediate

LIS Load Immediate Short

LCS Load Complement Short

LH Load Halfword

LHI Load Halfword Immediate
LA Load Address

LHL Load Halfword Logical

LM Load Multiple

LB Load Byte

LBR Load Byte Register

EXHR Exchange Halfword Register
EXBR Exchange Byte Register

ST Store

STH Store Halfword

STM Store Multiple

STB Store Byte

STBR Store Byte Register

CL Compare Logical

CLR Compare Logical Register
CLI Compare Logical Immediate
CLH Compare Logical Halfword
CLHI Compare Logical Halfword Immediate
CLB Compare Logical Byte

N AND

NR AND Register

NI AND Immediate

NH AND Halfword

NHI AND Halfword Immediate

0 OR

OR OR Register

(8)} ‘OR Immediate

OH OR Halfword

OHI OR Halfword Immediate

X Exclusive OR

XR Exclusive OR Register

X1 Exclusive OR Immediate
XH Exclusive OR Halfword™
XHI Exclusive OR Halfword Immediate
TI Test Immediate

THI Test Halfword Immediate
SLL Shift Left Logical

SL1S Shift Left Logical Short
SRL Shift Right Logical

SRI1S Shift Right Logical Short
SLHL Shift Left Halfword Logical
SLHLS Shift Left Halfword Logical Short
SRHL Shift Right Halfword Logical
SRHLS Shift Right Halfword Logical Short
RLL Rotate Left Logical

RRL Rotate Right Logical

TS Test and Set

Thus snformation 18 propretary and 1s supplied by INTERDATA for the sole
purpose of using and maintaiming INTERDATA supplied equipment and shall
16 not be used for any other purpose unless specifically authorized n wnting

TBT Test Bit

SBT Set Bit .
CBT Complement Bit
RBT Reset Bit

CRC12 Cyclic Redundancy Check Modulo 12
CRC16 Cyclic Redundancy Check Modulo 16
TLATE Translate

ATL Add to Top of List

ABL Add to Bottom of List

RTL Remove from Top of List
RBL Remove from Bottom of List

Tis information s proprietary and i supplied by INTERDATA for the soie
purpose of using and maimaiming INTERDATA supplied equipment and shail
not be used for any other purpose unless specifically authorized in writing.

Instructions

Load

Load Register

Load Immediate

Load Immediate Short
Load Complement Short

Assembler Notation Op-Code Format
L R1,D2 (X2) 58 RX1, RX2
L R1, A2 (FX2, SX2) 58 RX3
LR R1,Rz 08 RR
11 R1,I2 (X2) F8 RI2
LIS R1,N 24 SF
LCS R1,N 25 SF
Operation

The second operand replaces the contents of the register specified in R1,

Condition Code
CiV|G| L
olojojo Value is zero
0j0jof1 Value is not zero
0joj1jo Value is not zero

Programming Notes

18

The Load Immediate Short instruction causes the four bit second operand to be expanded to
a 32 bit fullword with high order bits forced to zero. This fullword replaces the contents
of the register specified by R1.

The Load Complement Short instruction causes the four bit second operand to be expanded
to a 32 bit fullword with high order bits forced to zero. The two's complement value of
this fullword replaces the contents of the register specified by R1.

When the Load instructions operate on fixed point data, the Condition Code indicates zero
(no flags), negative (L flag), or positive (G flag) value.

In the RR format, if R1 equals R2, the Load instruction functions as a test on the contents
of the register.

In the RX formats, the second operand must be located on a fullword boundary.

This information 1s proprietary and s supplied by INTERDATA for the soie
purpose of using and maintarning INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized 1n wriling

Instructions

Load Halfword
Load Halfword Immediate

Assembler Notation Op-Code
LH R1,D2 X2) 48
LH R1, A2 (FX2,S8X2) 48
LHI R1,12 (X2) (of]
Operation

Format
RX1, RX2

RI1

The halfword second operand is expanded to a fullword by propagating the most significant
bit through Bits 15:0. This fullword replaces the contents of the register specified by R1.

Condition Code
C|VIG|L
ojojofjo Value is zero
ojojo|1 Value is not zero
0fj0{11]o Value is not zero
Programming Notes

When the Load Halfword instructions operate on fixed point data, the Condition Code indi-
cates zero (no flags), negative (L flag), or positive (G flag) value.

In the RX formats, the second operand must be located on a halfword boundary.

This information 18 proprietary and 15 supplied by INTERDATA for the sote
purpose of using and maintaining INTERDATA supp! ed equipment and shaft
not be used for any other purpose unless specificaltv authorized n writing

19

Instruction

Load Address
Assembler Notation Op-Code Format
LA R1,D2 (X2) E6 RX1, RX2
LA R1, A2 (FX2,8X2) E6 RX3
Operation

The effective address of the second operand (24 bits) replaces Bits 8:31 of the register
specified by R1. Bits 0:7 of the register specified by R1 are forced to zero.

Condition Code

Unchanged

This information 1s proprietary and 1s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supp! ed equipment and shall
20 not be used for any other purpose urless specfically authorized » writing

Instruction

Load Halfword Logical

Assembler Notation Op-Code Format
LHL R1,D2 (X2) 73 RX1,RX2
LHL R1, A2 (FX2,SX2) 73 RX3
Operation

The halfword second operand replaces Bits 16:31 of the register specified by R1. Bits
0:15 of the register specified by R1 are forced to zero.

Condition Code
C{VI|G({L
0jo0jojo Value is zero
0J0f1}0 Value is not zero

Programming Note

The second operand must be located on a halfword boundary.

purpose of usirg and maintaining INTERDATA supplied equipment and shall

This informat.on 18 proprierary and s supph.ed by INTERDATA for the sole
~ot be used for any other purpose unless specifically authonzed in writing 21

Instruction

Load Multiple
Assembler Notation Op-Code Format
LM R1,D2 X2f D1 RX1, RX2
LM R1, A2 (FX2,58X2) D1 RX3
Operation

Successive registers, starting with the register specified by R1, are loaded from successive
memory locations, starting with the location specified as the effective address of the second
operand. Each register is loaded with a fullword from memory. The process stops when
Register 15 has been loaded.

Condition Code

Unchanged

Programming Note

The second operand must be located on a fullword boundary.

This snformation s proprietary and s supplied by INTERDATA for the sole
purpose of using and marmtaining INTERDATA supphed equipment and shail
22 not be used for any other purpose unless specifically authorized n wnting

Instructions

Load Byte

Load Byte Register

Assembler Notation

1B
LB
LBR

Operation

The eight bit second operand replaces the least significant bits (Bits 24:31) of the register

Op-Code Format
R1,D2 X2) D3 RX1,RX2
R1, A2 (FX2,SX2) D3 RX3
R1,R2 93 RR

specified by R1. Bits 0:23 of the register are forced to zero.

Condition Code

Unchanged

Programming Note

In the Load Byte Register instruction, the second operand is taken from the least significant
eight bits (Bits 24:31) of the register specified by R2.

This informanion is proonetary and 15 supphed by INTERDATA for the soie
purpose of using and mawntaining INTERDATA supplied equipment and shalt
not be used for any other purpose unless specifically authonzed «n writing

23

Instruction

Exchange Halfword Register

Assembler Notation Op-Code Format
EXHR R1,R2 34 RR
Operation

Bits 0:15 of the register specified by R2 replace Bits 16:31 of the register specified by R1.
Bits 16:31 of the register specified by R2 replace Bits 0:15 of the register specified by R1.

Condition Code

Unchanged

Programming Note

If R1 equals R2, the two halfwords contained within the register are exchanged.

This information 18 proprietary and 8 sypplied by INTERDATA for the sole
purpose of using and maintaiming INTERDATA supplied equpment and shalt
24 not be used for any other purpose unless specifically authorized i writing

Instruction

Exchange Byte Register

Assembler Notation Op-Code Format
EXBR R1,R2 94 RR
Operation

The two eight bit bytes contained in Bits 16:31 of the register specified by R2 are exchanged
and loaded into Bits 16:31 of the register specified by R1. Bits 0:15 of the register specified
by R1 are unchanged. The register specified by R2 is unchanged.

Condition Code

Unchanged

Programming Note

R1 and R2 may specify the same register.

This informat:on s propnetary and s suppiied by INTERDATA for the sole
purpose of using and marntaining INTERDATA supptied equ pment and shall
not be used for any other purpose unless specifically authorized in writing 25

Instruction

Store
Assembler Notation Op-Code Format
ST R1,D2 (X2) 50 RX1,RX2
ST R1,A2 (FX2,5X2) 50 RX3
Operation

The 32 bit contents of the register specified by R1 replace the contents of the memory
location specified by the effective address of the second operand.

Condition Code

Unchanged

Programming Note

The second operand location must be on a fullword boundary.

Tnes information 1s proprietary and s supphed by INTERDATA for the sole
purpose of using and maintasning INTERDATA supp! ed equipment and shall
26 not be used for any other purpose uniess specifically authorized in writing

Instruction

Store Halfword

Assembler Notation Op-Code Format
STH R1,D2 (X2 40 RX1,RX2
STH R1, A2 (FX2,SX2) 40 RX3
Operation

Bits 16:31 of the regi:s,ter specified by R1 replace the contents of the memory location
specified by the effective address of the second operand.

Condition Code

Unchanged

Programming Note

The second operand location must be on a halfword boundary.

This informa*on s proprietary and ss ,.: od by INTERDATA for the soie
purpose of using and maintaiming INTz- 3TA supplied equipment and shal!
not be used for any other purpose u..ec.s specifically authorized s writing

27

Instruction

Store Multiple

Assembler Notation Op-Code Format
STM R1,D2 (X2) DO RX1,RX2
STM R1, A2 (FX2,8X2) DO RX3
Operation

The fullword contents of registers, starting with the register specified by R1, replace
the contents of successive memory locations, starting with the location specified by the
effective address of the second operand. The process stops when Register 15 has been
stored.

Condition Code

Unchanged

Pragramming Note

The second operand location must be on a fullword boundary.

This snformation is proprietary and s supphied by INTERDATA for the sole
purpose of usirg and maintaning INTERDATA supplied equipment and shal!
28 not be usea Tor any other purpose unless spectfically authorized :n writing

Instructions

Store Byte
Store Byte Register

Assembler Notation Op-Code
STB R1,D2 (X2) D2
STB R1, A2 (FX2,8X2) D2
STBR R1,R2 92
Operation

Format

RX1, RX2
RX3
RR

The least significant eight bits (Bits 24:31) of the register specified by R1 are stored in

the second operand location.

Condition Code

Unchanged

Programming Note

In the Store Byte Register instruction, the eight bit quantity is stored in Bits 24:31 of the
register specified by R2. Bits 0:23 of the register are unchanged.

This snformat 0n s proprietary and 18 supped by INTERDATA for the sote
purposa of using and maintaining INTERDATA supptied equipmient and shall
not be used for any other purpose unless spec.fically suthonized in writing

Instructions

Compare Logical
Compare Logical Register
Compare Logical Immediate

Assembler Notation Op-Code
CL R1,D2 (X2) 55
CL R1, A2 (FX2,8X2) 55
CLR R1,R2 05
CLI R1,12 (X2) ¥5
Operation

Format

RX1, RX2
RX3

RR

RI2

The first operand, the contents of the register specified by R1, is compared logically to the
second operand. The result is indicated by the Condition Code setting. Neither operand is

changed.

Condition Code
C{V|G|L
ofxX{ojo First operand equal to second
1(X[o0]1 First operand less than second
11X|1]0 First operand less than second
0|[Xlof1 First operand greater than second
olXi1lo0 First operand greater than second

Programming Note

In the RX formats, the second operand must be located on a fullword boundary.

This information 1s proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplted equipment and shall
30 not be used for any other purpose unless specificailly authorized n writing

Instructions

Compare Logical Halfword
Compare Logical Halfword Immediate

Assembler Notation

CLH
CLH
CLHI

Operation

Op-Code
R1,D2 (X2) 45
R1, A2 (FX2,8X2) 45
R1,12 (X2) C5

Format

RX1,RX2
RX3
RI1

The halfword second operand is expanded to a fullword by propagating the most significant
bit through Bits 15:0. The first operand, the contents of the register specified by R1, is

compared to this fullword. The result is indicated by the Condition Code setting. Neither
operand is changed.

Condition Code

olo|x|~ieln

PIDRIM KM <
Hlo|mioio|®
o|=|oi~|o|t

Programming Note

First operand equal to second
First operand less than second
First operand less than second
First operand greater than second
First operand greater than second

In the RX formats, the second operand must be located on a halfword boundary.

This information s proorietary and 1s supplied by INTERDATA for the sole
purpose of usng and maintaining INTERDATA supplied equipmant and shall
not be used for any other purpose unless specif.cally authorized 1 wriung

31

Instruction

Compare Logical Byte

Assembler Notation Op-Code Format
CLB R1,D2 (X2) D4 RX1,RX2
CLB R1,A2 (FX2,5X2) D4 RX3
Operation

The byte quantity, contained in Bits 24:31 of the register specified by R1, is compared
with the second operand. The result is indicated by the Condition Code setting. Neither
operand is changed.

Condition Code
CiV|GIL
0[X]0]0 First operand equal to second
1(X|0}1 First operand less than second
1{X{1}0 First operand less than second
0|xX|ol1 First operand greater than second
01X|1]0 First operand greater than second

Thus snformation 1s proprietary and 15 supplied by INTERDATA for the sole
purpose of using and mamtaining INTERDATA supplied equipment and shai!
32 not be used for any other purpose uniess specifically authonzed m writing

instructions

AND
AND Register
AND Immediate

Asseimbler Notation Op-Code
N R1,D2 (X2) 54
N R1, A2 (FX2,SX2) 54
NR R1,R2 04
NI R1,12 (X2) F4
Operation

Format

RX1,RX2
RX3

RR

RI2

The logical product of the 32 bit second operand and the contents of the register specified
by R1 replaces the contents of the register specified by R1. The 32 bit product is formed

on a bit-by-bit basis.

Condition Code
Cl|V|G|L
0jojo}o Result is zero
ojojol1 Result is not zero
0{031]0 Result is not zero

Programming Note

In the RX formats, the second operand must be located on a fullword boundary.

This informaton 8 propaetany and s supplied by INTERDATA for the sole
purpose of using and ma ntaining INTERDATA supplied equipment and shall
not be used for any other purpose uniess specifically authcrized i writing

33

Instructions

AND Halfword
AND Halfword Immediate

Assembler Notation Op-Code
NH R1,D2 (X2) 44
NH R1,A2 (FX2,8X2) 44
NHI R1,12 (X2) C4
Operation

Format

RX1,RX2
RX3
RI1

The halfword second operand is expanded to a fullword by propagating the most significant
bit through Bits 15:0. The logical product of these 32 bit quantity and the contents of the
register specified by R1 replaces the contents of the register specified by R1. The 32 bit

product is formed on a bit-by-bit basis.

Condition Code
ClV]G|L
0f{olo]o Result is zero
01001 Result is not zero
01011140 Result is not zero

Programming Note

In the RX formats, the second operand must be located on a halfword boundary.

This ntormation s propnetary and s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall

34 not be used for any other purpose uniess specifically author.zed n writing

Instructions

OR
OR Register
OR Immediate

Assembler Notation Op-Code
o R1,D2 (X2) 56
o R1, A2 (FX2,8X2) 56
OR R1,R2 06
[0)¢ R1,12 (X2) Fé
Operation

Format

RX1,RX2
RX3

RR

RI2

The logical sum of the 32 bit second operand and the contents of the register specified by
R1 replaces the contents of the register specified by R1. The sum is formed on a bit-by-bit

basis.

Condition Code
ClVv|GIL
0jojolo Result is zero
0{0]0}1 Result is not zero
0]Jjol11o0 Result is not zero

Programming Note

In the RX formats, the second operand must be located on a fullword boundary.

This information is proprietary and & supphed by INTERDATA for the sole
purpose of usirg and maintaining INTERDATA supp! ea equ'pment and shall
not be used for any other purpose unless specifically authorized in writing

Instructions

OR Halfword
OR Halfword Immediate

Assembler Notation Op-Code
OH R1,D2 (X2) 46
OH R1,A2 (FX2,8X2) 46
OHI R1,12 (X2) Cé
Operation

Format

RX1,RX2
RX3
RI1

The halfword second operand is expanded to a fullword by propagating the most significant
bit through Bits 15:0. The logical sum of this 32 bit quantity and the contents of the register
specified by R1 replaces the contents of the register specified by R1. The 32 bit sum is form

on a bit-by-bit basis.

Condition Code
Ci{Vi{G]|L
0jojolo Result is zero
0Jojo)1 Result is not zero
0j0j1j0 Result is not zero

Programming Note

In the RX formats, the second operand must be located on a halfword boundary.

This information s proprietary and s supphed by INTERDATA for the sale
purpose of using and maintawing {NTERDATA supphed equipment and shall
36 not be used for any other purpose unless specifically authorized in writing

Instructions

Exclusive OR
Exclusive OR Register
Exclusive OR Immediate

Assembler Notation Op-Code
X R1,D2 (X2) 57
X R1,A2 (FX2,8X2) 57
XR R1,R2 07
X1 R1,12 (X2) F1
Operation

Format

RX1,RX2
RX3

RR

RI2

The logical difference of the 32 bit second operand and the contents of the register specified
by R1 replaces the contents of the register specified by R1. The 32 bit difference is formed

on a bit-by-bit basis.

Condition Code
CIV|G|L
0l0{o0jo Result is zero
0l0i{041 Result is not zero
0{0]11]0 Result is not zero

Programming Note

In the RX formats, the second operand must be located on a fullword boundary.

This informat.en is proprietary and 15 supplied by INTERDATA for the sole
purpose of using and ma'ntain.ng INTERDATA supplied equipment and shall
not be used for any other purpose unless spectf:cally autrorized in writing 37

Instructions

Exclusive OR Halfword
Exclusive OR Halfword Immediate

Assembler Notation Op-Code
XH R1,D2 (X2) 47
XH R1, A2 (FX2,8X2) 47
XHI R1,12 (X2) C7
Operation

Format
RX1, RX2

RI1

The halfword second operand is expanded to a fullword by propagating the most significant
bit through Bits 15:0. The logical difference of this 32 bit quantity and the contents of the
register specified by R1 replaces the contents of the register specified by R1. The 32 bit

difference is formed on a bit-by-bit basis.

Condition Code
CIVIGIL
0]030|0 Result is zero
0jojol1 Result is not zero
0J011]0 Result is not zero

Programming Note

In the RX formats, the second operand must be located on a halfword boundary.

This information 1s proprietary and s suppired by INTERDATA for the sole
purpose of using and mantaning INTERDATA supplied equioment and shall

38 not be used for any other purpose unless specihicaily authorized in writing

Instruction

Test Immediate

Assembler Notation

TI

Operation

Op-Code Format

R1,12 (X2) F3 RI2

Each bit of the second operand is logically ANDed with the corresponding bit in the register

specified by R1.

Condition Code
C|V|GIL
0j{ojolo
0j0]011
0{01110

Neither operand is changed.

Result is zero
Result is not zero
Result is not zero

This information s propretary and 1s supphed by INTERDATA for the sole
purpose of using and marntaim:rg INTERDATA supplied equipment and shai!
not be used for any other purpose uniess specifically authorized in writing

39

Instruction

Test Halfword Immediate

Assembler Notation Op-Code Format
THI R1,12 (X2) ok} RI1
Operation

The halfword second operand is expanded to a fullword by propagating the most significant
bit through Bits 15:0. Each bit in this quantity is logically ANDed with the corresponding
bit contained in the register specified by R1. Neither operand is changed.

Condition Code
C|V|GI|L
olojofo Result is zero
ojojolx Result is not zero
0jojijo Result is not zero
'
Thes information 1s proprietary and 1s supplied by INTERDATA for the sole
purpose of using and ma nta.n.ng 'NTERDATA supplied equipment and shall
40 not be used for any ather purpose uniess spec fically authonized n writng

Instructions

Shift Left Logical
Shift Left Logical Short

Assembler Notation Op-Code Format
SLL R1,12 (X2) ED RI1
SLLS R1,N 11 SF

Operation

The first operand, the contents of the register specified by R1, is shifted left the number
of places specified by the second operand. Bits shifted out of Position 0 are shifted through
the carry flag of the Condition Code and then lost. The last bit shifted remains in the carry
flag. Zeros are shifted into Position 31.

Condition Code
ClV]G]L
Xiojo}jo Result is zero
xXjolof0 Result is not zero
X10j1|0 Result is not zero

Programming Notes

In the RI formats, the shift count is specified by the least significant five bits of the second
operand.

In the SF format, the maximum shift count is 15.
The state of the C flag indicates the state of the last bit shifted out of Position 0.

When the register specified by R1 contains fixed point data, the L flat set indicates a nega-
tive result, the G flag set indicates a positive result.

If the second operand specifies a shift of zero places, the state of the C flag is undefined.

This wnformation s proprietary and s suppwea oy INTERDATA for the sote
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized 1n writing 41

Instructions

Shift Right Logical
Shift Right Logical Short

Assembler Notation Op-Code Format
SRL R1,R2 (X2) EC RI1
SRLS R1, N 10 SF
Operation

The first operand, the contents of the register specified by R1, is shifted right the number
of places specified by the second operand. Bits shifted out of Position 31 are shifted through
the carry flag on the Condition Code and then lost. The last bit shifted remains in the carry
flag. Zeros are shifted into Position 0.

Condition Code
C|VIGIL
Xjolofo Result is zero
X|0]o0}t1 Result is not zero
X{0}1}]0 Result is not zero

Programming Notes

42

In the RI format, the shift count is specified by the least significant five bits of the second
operand.

In the SF format, the maximum shift count is 15.
The state of the C flag indicates the state of the last bit shifted out of Position 31.

When the register specified by R1 contains fixed point data, the L flag set indicates a nega-
tive result, the G flag set indicates a positive result.

If the second operand specifies a shift of zero places, the state of the C flag is undefined.

purpose pf using and maintaning INTERDATA supphed equipment and shalt

This information s proprietary and s suppled by INTERDATA for the sole
not be used for any other purpose unless specifically autnorized in writing

Instructions

Shift Left Halfword Logical
Shift Left Halfword Logical Short

Assembler Notation Op-Code

Format
SLHL R1,12 (X2) CDh RI1
SLHLS R, N 91 SF
Operation

Bits 16:31 of the register specified by R1 are shifted left the number of places specified by
the second operand. Bits shifted out of Position 16 are shifted through the carry flag and
lost. The last bit shifted remains in the carry flag. Zeros are shifted into Position 31.
Bits 0:15 of the first operand remain unchanged.

Condition Code
ClV|G|L
Xl0]0]0 Result is zero
X|0[(0]1 Result i's not zero
X|]0j1t0 Result is not zero

Programming Notes

In the RI format, the shift count is specified by the least significant four bits of the second
operand.

In the SF format, the maximum shift count is 15.
The state of the C flag indicates the state of the last bit shifted out of Position 16.

When the register specified by R1 contains fixed point data, the L flag set indicates a nega-
tive result, the G flag set indicates a positive result.

If the second operand specifies a shift of zero places, the state of the C flag is undefined.

purposz of usirg and maintacning INTERDATA supplied equipment and shall

This information 3s prepretary and supphed by INTERDATA for the sole
not be used for any Dther purpose unless specifically authorized in writing

Instructions

Shift Right Halfword Logical
Shift Right Halfword Logical Short

Assembler Notation Op-Code Format
SRHL R1,I12 X2) CC RI1
SRHLS R1, N 90 SF

Operation

Bits 16:31 of the register specified by R1 are shifted right the number of places specified
by the second operand. Bits shifted out of Position 31 are shifted through the carry flag and
lost. The last bit shifted remains in the carry flag. Zeros are shifted into Position 16.
Bits 0:15 of the first operand remain unchanged.

Condition Code
C|VIG|L
Xio0lo]o Result is zero
Xiolo]1 Result is not zero
X10]1}0 Result is not zero

Programming Notes

In the RI format, the shift count is specified by the least significant four bits of the second
operand.

In the SF format, the maximum shift count is 15.
The state of the C flag indicates the state of the last bit shifted out of Position 31.

When the register specified by R1 contains fixed point data, the L flag set indicates a nega-
tive result, the G flag set indicates a positive result.

If the second operand specifies a shift of zero places, the state of the C flag is undefined.

This information is proprietary and s supplied by INTERDATA for the sole
purpose of usirg and maintaining INTERDATA supphied equipment and shall
44 not be used for any other purpose unless spec,fically authorized 1n writing

Instruction

Rotate Left Logical

Assembler Notation Op-Code Format
RLL R1,I2 X2) EB RI1
Operation

The 32 bit first operand, contained in the register specified by R1, is shifted left, end around,
the number of positions specified by the second operand. Bits shifted out of Position 0 are
shifted into Position 31.

Condition Code
ClVIG]L
ojolofo Result is zero
0]010]1 Result is not zero
0]0§110 Result is not zero

Progrmming Notes
The shift count is specified by the least significant five bits of the second operand.

When the register specified by R1 contains fixed point data, the L flag set indicates a nega-
tive result, the G flag set indicates a positive result.

This information s proprietary and s supptied by INTERDATA for the so'e
purpose of using and ma:ntainng INTERDATA suppled equ.pment and sha'!
not be used for any other purpose unless specifically authorized in writing 45

Instruction

Rotate Right Logical

Assembler Notation Op-Code Format
RRL R1,12 (X2) EA RI1
Operation

The 32 bit first operand, contained in the register specified by R1, is shifted right, end
around, the number of positions specified by the second operand. Bits shifted out of Position
31 are shifted into Position 0.

Condition Code
Cl|VIG|L
0l0j01]0 Result is zero
010{0j1 Result is not zero
0j0]J1}0 Result is not zero

Programming Notes
The shift count is specified by the least significant five bits of the second operand.

When the register specified by R1 contains fixed point data, the L flag set indicates a nega-~
tive result, the G flag set indicates a positive result.

purpose of uting and mamntaining INTERDATA supplied equipment and shal!

This information 1S propfietary and 1s suppirea by INTERDATA for the sole
not be used for any other purpose unless specifically authonzed in writing

46

Instruction

Test and Set

Assembler Notation Op-Code Format
TS D2 (X2) EO RX1, RX2
TS A2 (FX2,8X2) EO0 RX3
Operation

The halfword second operand is read from memory and, on the same cycle, written
back with the most significant bit set. The most significant bit of the second operand
is tested. The Condition Code reflects the state of this bit at the time of the memory

read.
Condition Code
C|V|G|L
XIX|Xto Most significant bit reset
X|X|X]1 Most significant bit set

Programming Notes
The Test and Set instruction provides for the synchronization of Processors in multi-

processor systems. While one Processor is reading and modifying the second operand,
no other Processor (or device), is allowed to access the second operand location.

The second operand must be located on a halfword boundary.

This information 1s proprietary and s suppl:ed by !NTERDATA for the sole
purpose of using and maintanirg INTERDATA supplied equipment and shall
not be used for any other purpose untess specifically authorized n wr.ting

47

Instruction

Test Bit
Assembler Notation Op-Code Format
TBT R1,D2 (X2) 74 RX1, RX2
TBT R1,A2 (FX2,8X2) 74 RX3
Operation

The second operand address points to a bit array starting on a halfword boundary. The
value contained in the register specified by R1 is the bit displacement into the array.
The bit is located and tested. The test does not change the bit.

Condition Code
C|V|G|L
0101010 Tested bit is zero
010]J1]0 Tested bit is one

This information s propfietary and s supplied by INTERDATA for the sole
purpose of using and mauntaining INTERDATA supptied equipment and shall
48 not be used for any other purpose unless specifically authorized in writing

Instruction

Set Bit
Assembler Notation Op-Code Format
SBT R1,D2 (X2) 75 RX1, RX2
SBT R1, A2 (FX2,8X2) 75 RX3
Operation

The second operand address points to a bit array starting on a halfword boundary. The
value contained in the register specified by R1 is the bit displacement into the array. The
bit is located and set to one.

Condition Code
ClVvIiG|L
ojojofo Previous state of bit was zero
0foj1io Previous state of bit was one

This information 15 proprietary and 15 supphied by !INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shal!
not be used for any other purpose unless specifically authornized in writing

49

Instruction

Complement Bit

Assembler Notation Op-Code Format
CBT R1,D2 (X2) 77 RX1,RX2
CBT R1,A2 (FX2,8X2) (i RX3
Operation

The second operand address points to a bit array starting on a halfword boundary. The
value contained in the register specified by R1 is the bit displacement into the array.
The bit is located and complemented.

Condition Code
C|V|G]|L
00010 Previous state of bit was zero
0j0j1]jo0 Previous state of bit was one
Trus information 18 proprietary and 15 supplied by INTERDATA for the sole
purpose of using and maintaring INTERDATA supplied equipment and shail
50 not be used for any other ourpase unless spec:fically author:ized '~ wr Ung

Instruction

Reset Bit
Assembler Notation Op-Code Format
RBT R1,D2 (X2) 76 RX1,RX2
RBT R1,A2 (FX2, 8X2) 76 RX3
Operation

The second operand address points to a bit array starting on a halfword boundary. The
value contained in the register specified by R1 is the bit displacement into the array. The
bit is located and forced to zero.

Condition Code
CIVIG|L
0lotolo Previous state of bit was zero
0j0{1}0 Previous state of bit was one

This information 1s proprietary and s supptied by INTERDATA for the sole
purpose of usng and mamtaining INTERDATA supplied equipment and shall
not be used for any otner purpose uniess specificaily authorized i writing 51

Instructions

Cyclic Redundancy Check Modulo 12
Cyclic Redundancy Check Modulo 16

Assembler Notation Op-Code Format
CRC12 R1,D2 (X2) 5E RX1,RX2
CRC12 R1, A2 (FX2,58X2) 5E RX3
CRC16 R1,D2 (X2) S5F RX1, RX2
CRC16 R1, A2 (FX2,8X2) SF RX3

Operation

These instructions are used to generate either a 12 bit or a 16 bit Cyclic Redundancy Check
(CRC) character. The register specified by R1 contains, in Bits 24:31, the next data char-
acter to be included in the CRC. The second operand is the accumulated CRC. The poly-

nomial used for the 12 bit CRC generation is:
%12 x1h ¥34 X2+ X + 1
The polynomial used for the 16 bit CRC generation is:

Condition Code

Unchanged

Programming Note

The second operand must be located on a halfword boundary.

This informauion s proprietary and 8 supphed by INTERDATA for the sole
purpose of using and maintaining !NTERDATA suppled equipment and shel
52 not be used for any otner purpose uniess specifically authorized tn writing

Instruction

Translate
Assembler Notation Op-Code Format
TLATE R1,D2 (X2) E7 RX1, RX2
TLATE R1, A2 (FX2,8X2) E7 RX3
Operation

The least significant bits (Bits 24:31) of the register specified by R1 contain the character
to be translated. The fullword location specified by the second operand address contains the
address of a translation table. The table is made up of 256 halfwords. The character con-
tained in the register specified by R1 is used as an index into the table.

If Bit 0 of the table entry corresponding to the index character is one, then Bits 8:15 of the
table entry replace the index character, and the next sequential instruction is executed,

If Bit 0 of the table entry is zero, then Bits 1:15 of the table entry contain the address,
divided by two, of a special handling routine. In this case, no translation takes place.

The address contained in Bits 1:15 is shifted left by one, (multiplied by two). This address
replaces the current Location Counter, thereby effecting an unconditional branch.

Condition Code

Unchanged

Programming Note

The first instruction of the handling routine must be located in the low 64KB of address
space.

0 7,8 15,

1 TRANSLATED
CHARACTER

0|(CHAR. HANDLING ROUTINE ADDRESS)/2

This information is proprietary and s supphed by INTERDATA for the sole
purpase of using and mairtaung INTERDATA supplied equipment and shalt
not be used for an, other purpose un'ess spec:f cally authorized n wriling

53

Instructions

Assembler Notation

Add to Top of List
Add to Bottom of List

ATL
ATL
ABL
ABL

Operation

Condition Code

Programming Notes

54

Op-Code Format
R1,D2 X2) 64 RX1,RX2
R1,A2 (FX2,8X2) 64 RX3
R1,D2 (X2) 65 RX1, RX2
R1, A2 (FX2,8X2) 65 RX3

The register specified by R1 contains the fullword element to be added to the list. The list
is located in memory at the address of the second operand. The number of slots used tally
is compared with the number of slots in the list. If the number of slots used equals the num-
ber of slots in the list, an overflow condition exists. The element is not added to the list
and the overflow flag in the Condition Code is set. If the number of slots used tally is

less than the number of slots in the list, it is incremented by one, the appropriate

pointer is changed, and the element is added to the list.

Clv

0
0]1

(=

G
0
0

o ol

Element added successfully
List overflow

These instructions manipulate circular lists as described in the introduction to this chapter.

The second operand location must be on a fullword boundary.

This information is proprietary and 15 suppied by INTERDATA for ne soie
purpose of using and maintainang INTERDATA supphed equnpment and shall
not be used for any other purpose unless specifically authorized in wriung

Instructions

Remove from Top of List
Remove from Bottom of List

Assembler Notation

RTL
RTL
RBL
RBL

Operation

Op-Code
R1,D2 (X2) 66
R1,A2 (FX2,58X2) 66
R1,D2 (X2) 67
R1, A2 (FX2,5X2) 67

Format

RX1, RX2
RX3
RX1,RX2
RX3

The element removed from the list replaces the contents of the register specified by R1.
The list is located at the address of the second operand. If, at the start of the instruction
execution, the number of slots used tally is zero, the list is already empty and the instruc-
tion terminates with the overflow flag set in the Condition Code. This condition is referred

to as list underflow.

If underflow does not occur, the number of slots used tally is decre-

mented by one, the appropriate pointer is changed, and the element is extracted and placed
in the register specified by R1.

Condition Code
CIVIG|L
010(0}0
0101}11}0
0{110]0

List now empty
List is not yet empty

List was already empty

Programming Notes

These instructions manipulate circular lists as described in the introduction to this chapter.

The second operand location must be on a fullword boundary.

This informauon 1s proprietary and 15 supplied by INTERDATA for the sole
purpose of using arg ma.zamning iINTERDATA suppiiea equipment and shaii
not be used for any other purpos2 uniess specfically authorized in writing 55/56

CHAPTER 3
BRANCHING

In normal operations, the Processor executes instructions in sequential order. The Branch
instructions allow this sequential mode of operation to be varied, so that programs can loop,
transfer control to subroutines, or make decisions based on the results of previous operations.

OPERATIONS

The second operand in Branch instructions is the address of the memory location to which con-
trol is transferred. The address may be contained in a register or it may be specified in the in-
struction as the second operand address.

Decision Making

The Conditional Branch instructions permit the program to make the decisions based on previous
results. In these instructions, the R1 field contains a four bit mask, M1, which is tested against

the Condition Code. The result of the test determines whether the branch is taken, or the next
sequential instruction is executed.

Subroutine Linkagé
The Branch and Link instructions allow branching to subroutines in such a way that a return ad-

dress is passed to the subroutine. In these instructions, the address of the instruction immedi~
ately following the Branch instruction is saved in the register specified by R1.

BRANCH INSTRUCTION FORMATS

The Branch instructions use the Register to Register (RR), the Short Form (SF), and the Regis-
ter and Indexed Storage (RX) formats.

This information s propristary and s supplied by INTERDATA for the sole
purposz of using and mantaining INTERDATA supphied equipment and shatl
not be used for any other purpose unless specifically authonized in writing 57

BRANCH INSTRUCTIONS

The instructions described in this section are:

BFC
BFCR
BFBS
BFFS
BTC
BTCR
BTBS
BTFS
BAL
BALR
BXLE
BXH

Branch on False Condition

Branch on False Condition Register
Branch on False Condition Backward Short
Branch on False Condition Forward Short
Branch on True Condition

Branch on True Condition Register
Branch on True Condition Backward Short
Branch on True Condition Forward Short
Branch and Link

Branch and Link Register

Branch on Index Low or Equal

Branch on Index High

This information 18 propaetary and s supplied by INTERDATA for the sole
purposz of using and maintaining INTERDATA supplied equipmert and shail
not bDe used for any Otner purpose unless spsc fically author.zed 'r writrng

Instructions

Branch on False Condition

Branch on False Condition Register
Branch on False Condition Backward Short
Branch on False Condition Forward Short

Assembler Notation

BFC
BFC
BFCR
BFBS
BFFS

Operation

Op-Code
M1, D2 (X2) 43
MI1,A2 (FX2,S8X2) 43
M1,R2 03
MI,N 22
MI1,N 23

Format

RX1,RX2
RX3

RR

SF

SF

The Condition Code of the Program Status Word is tested for the conditions specified in the
mask field, M1. If all conditions tested are found to be false, a branch is executed to the
second operand location. If any of the conditions tested is found to be true, the next sequen-
tial instruction is executed.

Condition Code

Unchanged

Programming Notes

In the RR format, the branch address is contained in the register specified by R2.

In the SF format, the N field contains the number of halfwords to be added to or subtracted
from the current Location Counter to obtain the branch address.

In the RR and RX formats, the branch address must be located on a halfword boundary.

This information 1s proprictary and w supphied by INTERCATA for the soie
purpose of using and maintarming INTERDATA sypphied equipment and shaii

not be used for any other purpose unless spec.fically authonized in writing 59
.

Instructions

Branch on True Condition

Branch on True Condition Register
Branch on True Condition Backward Short
Branch on True Condition Forward Short

Assembler Notation

BTC
BTC
BTCR
BTBS
BTFS

Operation

Op-Code
M1, D2 (X2) 42
M1, A2 (FX2,5X2) 42
M1,R2 02
M1,N 20
MI,N 21

Format

RX1,RX2
RX3

RR

SF

SF

The Condition Code of the Program Status Word is tested for the conditions specified by the
mask field, M1. If any of the conditions tested are found to be true, a branch is executed to

the second operand location.

sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

If none of the conditions tested is found to be true, the next

In the RR format, the branch address is contained in the register specified by R2.

In the SF format, the N field contains the number of halfwords to be added or subtracted
from the current Location Counter to obtain the branch address.

In the RR and RX formats, the branch address must be located on a halfword boundary.

This information 18 proprietary and 1 supphed by INTERDATA for the sole
purpose of using and maintaiming INTERDATA supplied equipment and shall
not be used for any other purpcst unless specifically authorized o whting

Instruction

Branch and Link
Branch and Link Register

Assembler Notation Op-Code Format
BAL R1,D2 (X2) 41 RX1,RX2
BAL R1,A2 (FX2,8X2) 41 RX3
BALR R1,R2 01 RR
Operation

The address of the next sequential instruction is saved in the register specified by R1, and
a branch is taken to the second operand address.
Condition Code

Unchanged

Programming Notes
The second operand location must be on a halfword boundary.

The branch address is obtained before the register specified by R1 is changed. R1 may
specify the same register as X2, FX2, SX2, or R2,

This nfarmation is proprietary and s supphed by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any otner purpose urless specifically authorized n writing

61

Instruction

Branch on Index Low or Equal

Assembler Notation Op-Code Format
BXLE R1,D2 (X2) c1 RX1, RX2
BXLE R1, A2 (FX2,8X2) Cl RX3

Operation

Prior to execution of this instruction, the register specified by R1 must contain a 32 bit
starting index value, The register specified by R1+1 must contain a 32 bit increment value.
The register specified by R1+2 must contain a 32 bit comparand, (limit or final value). All
values may be signed.

Execution of this instruction causes the increment value to be added to the index value. The
result is logically compared to the limit or final value. If the index value is less than or
equal to the limit value, a branch is executed to the second operand location. If the index
value is greater than the limit value, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

62

The incremented index value replaces the contents of the register specified by R1.
The register specified by R1 must not be greater than 13.
The second operand location must be on a halfword boundary.

The branch address is calculated before incrementing the starting index value con-
tained in R1.

This nformation is peoprietary and 15 supplied by INTERDATA for the sole
purpose of using and ma.ntaming INTERDATA supplied equipment and shalf
not be used for any other purpose un'ess spec.fically author.zed :n writing

Instruction

Branch on Index High

Assembler Notation Op-Code Format
BXH R1,D2 (X2) Cco RX1,RX2
BXH R1,A2 (FX2,8X2) Co RX3
Operation

Prior to execution of this instruction, the register specified by R1 must contain a 32 bit
starting index value. The register specified by R1+1 must contain a 32 bit increment value.
The register specified by R1+2 must contain a 32 bit comparand, (limit or final value). All
values may be signed.

Execution of this instruction causes the increment value to be added tq the index value. The
result is logically compared to the limit or final value., If the index value is greater than
the limit value, a branch is executed to the second operand location. If the index value is
equal to or less than the limit value, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The incremented index value replaces the contents of the register specified by R1.
The register specified by R1 must not be greater than 13.
The second operand location must be on a halfword boundary.

The branch address is calculated before incrementing the starting index value con-
tained in R1,

This information 15 proprigtary and 18 supplied by INTERDATA for the sole
purposz of using and maintan.ng INTERDATA suppiied equ pmeat and shaft
not be used for any other purpose wnless spec.f.cally authorized » westing 63/64

CONDITION CODE

Most Fixed Point Arithmetic instructions affect the Condition Code. (The exceptions are the Mul-
tiply and Divide.) The Condition Code indicates the effect of the operation on the 32 bit result.

FIXED POINT INSTRUCTION FORMATS

The fixed point instructions use the Register to Register (RR), the Short Form (SF), the Register
and Indexed Storage (RX), and the Register and Immediate (RI) instruction formats.

FIXED POINT INSTRUCTIONS

The fixed point instructions described in this section are:

A Add

AR Add Register

Al Add Immediate

AlIS Add Immediate Short

AH Add Halfword

AHI Add Halfword Immediate

AM Add to Memory

AHM Add Halfword to Memory

S Subtract

SR Subtract Register

SI Subtract Immediate

SIS Subtract Immediate Short

SH Subtract Halfword

SHI Subtract Halfword Immediate
C Compare

CR Compare Register

C1 Compare Immediate

CH Compare Halfword

CHI Compare Halfword Immediate
M Multiply

MR Multiply Register

MH Multiply Halfword

MHR Multiply Halfword Register

D Divide

DR Divide Register

DH Divide Halfword

DHR Divide Halfword Register
SLA Shift Left Arithmetic

SLHA . Shift Left Halfword Arithmetic
SRA Shift Right Arithmetic

SRHA Shift Right Halfword Arithmetic
CHVR Convert to Halfword Value Register

This information 18 proprietary and s supplied by INTERDATA for the sole
purpase of usng and mantaining INTERDATA supplied equipment and shat!
66 not De used for any other purpose unless specifically authorized sn writing

Instructions

Add

Add Register

Add Immediate

Add Immediate Short

Assembler Notation Op-Code
A R1,D2 (X2) 5A
A R1,A2 (FX2,SX2) 5A
AR R1, R2 0A
Al R1,12 (X2) FA
AlS R1,N 26
Operation

Format

RX1, RX2
RX3

RR

RI2

SF

The second operand is added algebraically to the contents of the register specified by R1.
The result of this 32 bit addition replaces the contents of the register specified by R1.

Condition Code
C|VI|G|L
Xjiojoyo Result is zero
Xiojo0|1 Result is less then zero
Xloj1j0 Result is greater than zero
X111 XX Arithmetic overflow
1iXiX|X Carry

Programming Notes

The second operand for the Add Immediate Short instruction is obtained by expanding the
four bit data field, N, to a 32 bit fullword by forcing the high order bits to zero.

In the RX formats, the second operand must be located on a fullword boundary.

This information 15 proprietary and 13 supplied by INTERDATA for the sole
purpose of using and mantaining INTEROATA supplied equipment and shail
not be used for any other purpose unless spectf cally authorized n writing

67

Instructions

Add Halfword
Add Halfword Immediate

Assembler Notation Op-Code
AH R1,D2 (X2) 2A
AH R1,A2 (FX2,SX2) 2A
AHI R1,12 (X2) CA
Operation

Format

RX1,RX2
RX3
RI1

The 16 bit second operand is expanded to a 32 bit fullword by propagating the most significant
bit through Bits 15:0 of the fullword. The fullword operand is added to the fullword contents
of the register specified by R1. The result replaces the contents of the register specified

by R1.
Condition Code
CiVI|G|L
Xj0|o0}fo0 Result is zero
Xjolo}1 Result is less than zero
Xjo0l1}0 Result is greater than zero
X111XiX Arithmetic overflow
11 XXX Carry

Thus information s proprietary and s supphied by INTERDATA for the sole
purpose of using and maintairing INTERDATA supplied equ pmeant and shail
68 not be used for any other purpose uniess specificaily authorized in writing

Instruction

Add to Memory

Assembler Notation Op-Code Format
AM R1,D2 (X2) 51 RX1,RX2
AM R1,A2 (FX2,8X2) 51 RX3
Operation

The fullword second operand is added algebraically to the contents of the register specified
by R1. The result replaces the fullword second operand in memory.

Condition Code
C|V|G|L
Xl|olo}fo Result is zero
Xio0]0{1 Result is less than zero
X|o0l1t0 Result is greater than zero
XI1jX|X Arithmetic overflow
1 |X[X1X Carry

Programming Note

The second operand must be located on a fullword boundary.

Trus information 1 proprietary and 1s supptied by INTERDATA for the sole
purpose of using and maintaiming INTERDATA supptied equipment and shall
not be used for any other purpose unless specifically authorized in writing

69

Instruction

Add Halfword to Memory

Assembler Notation Op-Code Format
AHM R1,D2 (X2) 61 RX1,RX2
AHM R1, A2 (FX2,8X2) 61 RX3
Operation

The second operand is expanded to a fullword by propagating the most significant bit through
Bits 15:0. This fullword is added algebraically to the contents of the register specified by
R1. The 32 bit result is truncated to 16 bits by removing the most significant bits (Bits
0:15). The 16 bit result replaces the contents of the memory location specified by the
effective address of the second operand.

Condition Code
CIVIGIL
Xjo|0}]0 Result is zero
Xl|0§0]1 Result is less than zero
X|0j1}o0 Result is greater than zZero
XI11]|X} X Arithmetic overflow
1 [X]|X{X Carry

Programming Note

The second operand must be located on a halfword boundary.

Tius information is proprietary and 8 supp! ed by INTERDATA for the sole
purpose of ustng and maintaining INTERDATA supphied equspment and shall
70 not be used for any other purpose uniess specifically authorized 1n writing

Instructions

Subtract

Subtract Register
Subtract Immediate
Subtract Immediate Short

Assembler Notation Op-Code
s R1,D2 (X2) 5B
s R1, A2 (FX2,S5X2) 5B
SR R1,R2 0B
SI R1,12 (X2) FB
SIS R1,N 27
Operation

Format

RX1,RX2
RX3

RR

RI2

SF

The fullword second operand is subtracted algebraically from the contents of the register

specified by R1. The result replaces the contents of the register specified by R1.

Condition Code
C|V|G|L
Xjojojo Result is zero
Xlojoj1 Result is less than zero
Xloj1jo0 Result is greater than zero
X111X]|X Arithmetic overflow
1 XXX Borrow

Programming Note

The second operand for the Subtract Immediate Short instruction is obtained by expanding

the four bit data field, N, to a 32 bit fullword by forcing the high order bits to zero.

This informat.on 18 proonietarv and o supplied by INTERDATA for the sole
purpose of using and maintaming INTERDATA supphied equipment and shail
not be used for any other purpose unless specifically authorized n writing

1

71

72

Instructions

Subtract Halfword
Subtract Halfword Immediate

Assembler Notation Op-Code
SH R1,D2 (X2) 4B
SH R1, A2 (FX2,5X2) 4B
SHI R1,I2 (X2) CB
Operation

Format

RX1,RX2
RX3
RI1

The 16 bit second operand is expanded to a 32 bit fullword by propagating the most significant
bit through Bits 15:0. This fullword is subtracted from the contents of the register specified
by R1. The result replaces the contents of the register specified by R1.

Condition Code

ClVI|GIL

Xio0j01|0 Result is zero

Xjojoj1 Result is less than zero

X|oj1{o Result is greater than zero

X111 X|X Arithmetic overflow

11XiX|X Borrow
m"‘ mformation 8 proprietary and s supplied by {NTERDATA for tne soie
purpose of using and maintaining INTERDATA supplied equipment and shall

not be us=d for any other purpose unless spec.fically suthonized n wnting

Instructions

Compare
Compare Register
Compare Immediate

Assembler Notation Op-Code Format
C R1,D2 X2) 59 RX1,RX2
c R1,A2 (FX2,8X2) 59 RX3
CRrR R1,R2 09 RR
CI R1,12 (X2) F9 RI2
Operation

The first operand, contained in the register specified by R1, is compared algebraically to
the 32 bit second operand. The result is indicated by the Condition Code setting. Neither
operand is changed.

Condition Code
C|V]G|L
0 ixXjo|o First operand is equal to second operand
1|Xj0j1 First operand is less than second operand
0 |Xj1jo0 First operand is greater than second operand

This snformation 1s proprietary and 1s suppled by INTERDATA for the sole
purpose of using and martaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writ:ng 73

Instructions

Compare Halfword-
Compare Halfword Immediate

Assembler Notation Op-Code Format
cH R1,D2 (X2) 49 RX1,RX2
CH R1,A2 (FX2,8X2) 49 RX3
CHI R1,12 (X2) C9 RI1
Operation

The halfword second operand is expanded to a fullword by propagating the most significant
bit through Bits 15:0. This fullword is compared algebraically with the first operand, the
contents of the register specified by R1. The result is indicated by the Condition Code set-
ting. Neither operand is changed.

Condition Code
ClIVI|GI|L
0{X]0 |0 First operand is equal to second operand
1{X(10j1 First operand is less than second operand
Xi{X{1]0 First operand is greater than second operand
This information is propnetary and 1 1, : by INTEROATA for the sole

purpose of using and maintaiming INT-- 37 % supplied equipment and shall
74 not be used for any Other Purpose wincas swecifically authonized 1n writing

Instructions

Multiply
Multiply Register

Assembler Notation Op-Code Format
M R1,D2 (X2) 5C RX1, RX2
M R1,A2 (FX2,SX2) 5C RX3
MR R1,R2 1C RR
Operation

The fullword first operand, contained in the register specified by R1 + 1, is multiplied by
the fullword second operand. The 64 bit result is stored in the registers specified by R1
and R1 + 1,

Condition Code

Unchanged

Programming Notes
The R1 field of these instructions must specify an even numbered register.

In the RX formats, the second operand must be located on a fullword boundary.

This information 1s proprietary and 15 supphed by INTERDATA for the sois
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any otner purpose uniess specificarlly autnorized in writing

75

Instructions

Multiply Halfword
Multiply Halfword Register

Assembler Notation Op-Code
MH R1,D2 (X2) 4C
MH R1,A2 (FX2,S8X2) 4C
MHR R1,R2 oC
Operation

Format

RX1,RX2
RX3
RR

The first operand, contained in Bits 16:31 of the register specified by R1, is multiplied by
the 16 bit second operand, taken from memory or from Bits 16:31 of the register specified by
R2. The 32 bit result replaces the contents of the register specified by R1.

Condition Code

Unchanged

Programming Note

In the RX formats, the second operand must be located on a halfword boundary.

Thes information 18 proprietary and s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA suppiied equipment and shall
76 not be used for any other purpose unless spec.fically authorized «n wiiting

Instructions

Divide
Divide Register

Assembler Notation Op-Code Format
D R1,D2 (X2) 5D RX1,RX2
D R1, A2 (FX2,5X2) 5D RX3
DR R1,R2 1D RR
Operation

The 64 bit dividend contained in the register specified by R1 and the register specified by
R1+1 is divided by the fullword divisor. The 32 bit signed remainder replaces the contents
of the register specified by R1. The 32 bit quotient replaces the contents of the register
specified by R1+1.

Condition Code

Unchanged

Programming Notes
The R1 field of these instructions must specify an even numbered register.
In the RX formats, the second operand must be located on a fullword boundarv.
The quotient overflow causes an arithmetic fault interrupt (if enabled by Bit 19 of the PSW) if the

value of the quotient would be greater than X'7FFFFFFF' or less than (more negative than)
X'80000000'. On a divide fault, the operand registers are unchanged.

This information 1S proprictary and s supplied by INTERDATA for the sote
purpose of using and ma ntarming INTERDATA supplied equipment and shal*
not be used for any other purpose unless spec.fically awthorized 'n writing 77

Instructions

Divide Halfword
Divide Halfword Register

Assembler Notation Op-Code Format
DH R1,D2 (X2) 4D RX1,RX2
DH R1,A2 (FX2,8X2) 4D RX3
DHR R1,R2 oD RR
Operation

The 32 bit dividend contained in the register specified by R1 is divided by a 16 bit divisor
taken from memory or from Bits 16:31 of the register specified by R2. The 16 bit remainder
is expanded to a fullword by propagating the Sign bit through Bits 15:0 and is stored in the
register specified by R1. The 16 bit quotient is expanded to a fullword by propagating the
Sign bit through Bits 15:0 and is stored in the register specified by R1+1.

Condition Code

Unchanged

Programming Notes
In the RX formats, the second operand must be located on a halfword boundary.

Before starting the divide operation, the divisor is checked, If it is zero, the operation is
aborted and the arithmetic fault interrupt taken, if enabled by Bit 19 of the current PSW.

The quotient overflow causes an arithmetic fault interrupt (if enabled by Bit 19 of the PSW) if the
value of the quotient is greater than X'7XXX' or less than (more negative than) X'8000°.

This informaion I8 propnetary and 13 supplied by INTERDATA for the sole
purpose of using and maintaning INTERDATA supplied equipment and shall
78 ot be used for any ather purpose unless spec fically authorized in writing

Instruction

Shift Left Arithmetic

Assembler Notation Op-Code Format
SLA R1,12 (X2) EF RI1
Operation

Bits 1:31 of the first operand, contained in the register specified by R1, are shifted left
the number of places specified by the second operand. The Sign bit (Bit 0), remains un-
changed. Bits shifted out of Position 1 are shifted through the carry flag and then lost.

The last bit shifted remains in the carry flag. Zeros are shifted into Position 31.

Condition Code
ClVIG]|L
Xi10j0]0 Result is zero
X{ojof1 Result is less than zero
X|0§1io0 Result is greater than zero

Programming Notes

The state of the C flag indicates the state of the last bit shifted.

If the second operand specifies a shift of zero places, the state of the C flag is undefined.

This information 18 proprietary and 1s supplisd by INTERDATA for the sole
purpose of using and maintaming INTERDATA supplied equipment and shal!
not be used for any other purpcse unless specifically authorized In writing

79

instruction

shift Left Halfword Arithmetic

Assembler Notation Op-Code Format

SLHA R1,12 (X2) CF RI1

Operation

Bits 17:31 of the register specified by R1 are shifted left the number of places specified

by the second operand. Bit 16 of the register, the halfword Sign bit, remains unchanged.
Bits shifted out of Position 17 are shifted through the carry flag and then lost. The last bit
shifted remains in the carry flag. Zeros are shifted into Position 31. Bits 0:15 of the first
operand register remain unchanged.

Condition Code
ClVIG|L
Xi10]0}0 Result is zero
X{o{ol1 Result is less than zero
XJoj1jo Result is greater than zero

Programming Notes
The state of the C flag indicates the state of the last bit shifted.

If the second operand specifies a shift of zero places, the state of the C flag is undefined.

This information 1s proprietary and s supplied by INTERDATA for the sole
purpose of us ng and mainzaining INTERDATA supolhied equipment and shal!
80 not be used for any other purpose unless specifically authonzed in wrting

Instruction

Shift Right Arithmetic

Assembler Notation Op-Code Format
SRA R1,12 (X2) EE RI1
Operation

Bits 1:31 of the first operand, contained in the register specified by R1, are shifted right
the number of places specified by the second operand. The Sign bit (Bit 0), remains un-
changed and is propagated right as many positions as specified by the second operand. Bits

shifted out of Position 31 are shifted through the carry flag and lost. The last bit shifted
remains in the carry flag.

Condition Code
C|V|G|L
Xl|10{0]0 Result is zero
Xiojot1 Result is less than zero
Xjoj1ijo Result is greater than zero

Programming Notes
The state of the C flag indicates the state of the last bit shifted.

If the second operand specifies a shift of zero places, the state of the C flag is undefined.

This information s proprietary and s supplied by INTERDATA for the sote
purpose of using and maintaining INTERDATA supplied equipmert and shalt
not be used for any other purpose unless specifically authorized in writing

81

instruction

Shift Right Halfword Arithmetic

Assembler Notation Op-Code Format

SRHA R1,12 (X2) CE RI1

Operation

Bits 17:31 of the register specified by R1 are shifted right the number of places specified
by the second operand. Bit 16 of the register, the halfword Sign bit, remains unchanged
and is propagated right the number of positions specified by the second operand. Bits
shifted out of Position 31 are shifted through the carry flag and lost. The last bit shifted
remains in the carry flag. Bits 0:15 of the first operand register remain unchanged.

Condition Code
ClV|G|L
X{0]0{o0 Result is zero
X|lofjol1 Result is less than zero
Xj0j1}jo0 Result is greater than zero

Programming Notes
The state of the C flag indicates the state of the last bit shifted.

If the second operand specifies a shift of zero places, the state of the C flag is undefined.

This information i1s proprietary and 15 supphed by INTERDATA for the sote
purpose of using and mamtaining INTERDATA sypplied equipment and shall
82 not be used for any other purpose uniess specifically authorized in writing

{nstruction

Convert to Halfword Value Register

Assembler Notation Op-Code Format
CHVR R1,R2 12 RR
Operation

The halfword second operand, (Bits 16:31) of the register specified by R2), is expanded
to a fullword by propagating the most significant bit (Bit 16) through Bits 15:0. This
fullword replaces the contents of the register specified by R1.

Condition Code
ClV|G|L
x{ x| o} o Result is zero
X|Xiot1 Result is less than zero
XiXi1{o0 Result is greater than zero
Xi1iX| X Source operand cannot be represented by a 16 bit signed number
1{X|X] X Carry flag was set in previous Condition Code
0IXIX| X Carry flag was reset in previous Condition Code

Programming Note

The V flag is set when Bits 0:15 of the second operand are not the same as Bit 16 of the
second operand. (In this case, the G and L flags reflect the algebraic value of Bits 16:31
of the second operand.)

Execution of this instruction following halfword operations guarantees results identical
with those that would be obtained if the program were run on an INTERDATA 16 bit mach-
ine, For example, assume that location A in memory contains the halfword value of
X'"TFFF' (decimal 32767) then,

LH R1,A R1 contains X'00007FFF"’
AIS R1,1 R1 contains X'00008000'

This information 15 proprietary and s supoled by INTERDATA for the sole
purpose of using and ma.ntaining INTERDATA suppiied equipment and shall
not be used for any other purposz unless specifically authorized n writing 83

Following the add operation, the Condition Code is:

ClV|G|L
ojoj1jo

indicating a result greater than zero, which is correct for fullword operations. If the
same sequence were executed on a 16 bit Processor, as:

LH R1,A R1 contains X'TFFF'
AIS R1,1 R1 contains X'8000'

Following this, the Condition Code in the halfword processor is:

C|VI|G|L
0110 |1

indicating overflow and a negative result. Going back to the original sequence and adding
the Convert to Halfword Value instruction produces the following:

LH R1,A R1 contains X'00007FFF'
AIS R1,1 R1 contains X'00008000'
CHVR R1,R1 R1 contains X'FFFF8000*

Following this sequence, the Condition Code is:

C|V|G]|L

0]1j0 (1

which is identical to that of the 16 bit Processor, and can be tested in the same manner.

This information s proprietary and s supplied by INTERDATA for the sole
purpose of usng and mantaining INTERDATA supplied equipment and she!®
not be used for any other purpose uriess specifically authorized n wripng.

CHAPTER 5
FLOATING POINT ARITHMETIC

The Floating Point Arithmetic instructions provide a means for rapid manipulation of scientific
data expressed as floating point numbers, In addition to the usual operations of add, subtract,
multiply, divide, and compare, the floating point set includes instructions for loading and storing
floating point operands, and instructions for converting from floating point to fixed point and from
fixed point to floating point.

OATA FORMATS

Floating point is expressed in excess-64 notation. Each floating point number consists of a
Sign bit, an exponent field, and a fraction.

g1 78 1112 1516 1920 2324 2728 31
S X F1 F2 F3 F4 F5 F6

Figure 9. Floating Point Data Format

This form of representation requires 32 bits. The Sign bit (S) indicates whether the floating point
value is positive or negative. The exponent field (X) indicates the power of 16 by which the fraction
is to be multiplied to produce the floating point value. In excess-64 notation, an exponent field

of 64 (X'40'), indicates that the fraction is to be multiplied by 160. An exponent field of 63 (X'3F"),
indicates that the fraction is to be multiplied by 161, An exponent field of 65 (X'41"), indicates
that the fraction is to be multiplied by 16~. Floating point numbers may range in absolute value
from 5.4 X 1079 through 7.5 X 1075,

Normalization

The process of normalizing floating point quantities allows values to be represented with the
greatest possible precision.

In the normalization process, the floating point fraction is shifted left one hexadecimal digit (four
bits) at a time until the most significant hexadecimal digit of the fraction is non-zero, The ex-
ponent 18 decremented by one for each hexadecimal digit shifted.

Exponent Overfiow and Underflow

Exponent overflow results when a floating point operation produces an exponent greater than 63
(exponent field greater than 127). On overflow, the floating point result is forced to the maximum
absolute value, X'7FFF FFFF'. The Sign bit is not changed, and may be either zero or one.

Exponent underflow results when a floating point operation, inclading normalization, produces an
exponent less than -64 (exponent field less than zero). On underflow, the result is forced to true
zero, X'0000 0000'.

This information 18 proprietary and s supplied by !NTERDATA for the soie
purpose of usirg and maintaining INTERDATA supplied equipment ana shan
not be used for any other purpose uniess specifically authorized in wniting 85

Conversion from Oecimal

The process of converting a decimal number into the excess 64 notation used internally by the
Processor involves the following steps:

1. Separate the decimal integer from the decimal fraction:
182. 375, = (182 + . 375),
2. Convert each part to hexadecimal:
1827 =B6,, .37510=-644
3. Combine the hexadecimal integer and fraction:
- 0
4, Shift the radix point:

®6.6 X 10%) |, = (.B66 X 10%) |,

) 16
5. Add 64, (X'40'), to the exponent

4016 +2 o =42

6. Convert the exponent field and fraction to binary allowing 1 bit for the sign, 7 bits for
the exponent field, and 24 bits for the fraction.

42B66 = 0100 0010 1011 0110 0110 0000 0000 0000

CONDITION CODE

Following floating point operations, including load, the Condition Code indicates the result of
the operation.

FLOATING POINT INSTRUCTION FORMATS

The Floating Point instructions use the Register to Register (RR), and the Register and Indexed
Storage (RX) instruction formats. In 2ll of the RR formats, except for Fix and Float, the R1 and
the R2 fields specify one of the floating point registers. There are eight floating point registers,
numbered 0, 2, 4, 6, 8, 10, 12, and 14. In the RX formats, the R1 field always specifies a float-
ing point register.

This informat.on 15 propretary and 1s supphed by INTERDATA for the sole
purpose of using and maintaiming !NTERDATA supplied equipment and shail
86 not be used for any other purpose unless specificaily authorized mn writing

FLOATING POINT INSTRUCTIONS

The floating point arithmetic operations, excluding loads and stores, require normalized operands

to insure correct results., If the operands are not normalized, the results of these operations are

undefined. Floating point results are normalized. The Floating Point Load instruction normalizes
floating point data extracted from memory.

The instructions described in this section are:

LE Load

LER Load Register
LME Load Multiple
STE Store

STME Store Multiple
AE Add

AER Add Register

SE Subtract

SER Subtract Register
CE Compare

CER Compare Register
ME Multiply

MER Multiply Register
DE Divide

DER Divide Register
FXR Fix Register
FLR Float Register

This information s proprietary and s supphied by INTERDATA for the sole
purpase of using and mantai~ ng INTERDATA supphed equipment and shail
not be used for any other purpose unzss spec.fically authorized i writing 87

Load
Load Register

Assembler Notation Op-Code Format
LE R1,D2 (X2) 68 RX1,RX2
LE R1,A2 (FX2,8X2) 68 RX3
LER R1,R2 28 RR
Operation

The floating point second operand is normalized, if necessary, and placed in the floating
point register specified by R1.

Condition Code

Floating point value is zero

Floating point value is less than zero
Floating puint value is greater than zero
Exponent underflow

oo ooln
o ool
om oo
©C oM O

Programming Notes

Normalization may produce exponent underflow. In this event, the result is forced to zero,
X'0000 0000', the V flag in the Condition Code is set, the G and L flags are reset, and if
enabled by Bit 19 of the current PSW, the arithmetic fault interrupt is taken.

In the RX formats, the second operand must be located on a fullword boundary.

This information s proprietary and s 3 ed by INTERDATA for the sole
purposz of usng and maintainng INTL = & TA supphed equipment and shali

not be used for any other purpose u---ca: spec.fically authonzed in wriling

88

Instruction

Load Multiple

Assembler Notation Op-Code Format
LME R1,D2 (X2) 72 RX2, RX2
LME R1,A2 (FX2,SX2) 72 RX3
Operation

Successive floating point registers, starting with the register specified by R1, are loaded
from successive memory locations starting with the address of the second operand. The
process stops when Floating Point Register 14 has been loaded.

Condition Code

Unchanged

Programming Notes
Values loaded into the floating point registers are not normalized.

The second operand must be located on a fullword boundary.

This tnormation 15 proprietary and 's suppliied by INTERDATA for the sole
purpose of usirg and mantaining INTERDATA supplied equipment and shail

not be used for any other purpose unless specifically authorized in writing

Instruction

Store
Assembler Notation Op-Code Format
STE R1,D2 (X2) 60 RX1,RX2
STE R1,A2 (FX2,SX2) 60 RX3
Operation

The floating point first operand, contained in the floating point register specified by R1,
is placed in the memory location specified by the second operand address. The first op-
erand 18 unchanged.

Condition Code

Unchanged

Programming Note

The second operand must be located on a fullword boundary.

This information s proprietary and 1s supplied by INTERDATA for the soie
purpose of using and ma.ntaining INTERDATA supplied equipment and shall
90 not be used for any other purpose unless spec-fically authorized n writing.

Instruction

Store Multiple

Assembler Notation Op-Code Format
STME R1,D2 (X2) 71 RX1,RX2
STME R1,A2 (FX2,SX2) 71 RX3

Operation

The contents of successive floating point registers, starting with the register specified by
R1, are stored in successive memory locations, starting with the address of the second
operand. The operation stops when the contents of Floating Point Register 14 have been
stored.

Condition Code

Unchanged

Programming Note

The second operand must be located on a fullword boundary.

This information s propretary and is supplied by INTERDATA for the sowe
purpose of using and ma1ta ning INTEROATA supptied equipment and sha!l
not be usad for anv other ourpose unless specifically authorized 1 writing

N

Instructions

Add
Add Register
Assembler Notation Op-Code Format
AE R1,D2 (X2) 6A RX1,RX2
AE R1,A2 (FX2,SX2) 6A RX3
AER R1,R2 2A RR
Operation

The exponents of the two operands are compared. If the exponents differ, the fraction with
the smaller exponent is shifted right hexadecimally (four bits at a time), and its exponent
is incremented by one for each hexadecimal shift until the two exponents are equal. The
fractions are then added algebraically.

If the addition of fractions produces a carry, the exponent of the result is incremented by one
and the fraction of the result is shifted right one hexadecimal position. The carry bit is
shifted back into the most significant hexadecimal digit of the fraction, producing a normalized
result. This result replaces the contents of the register specified by R1.

If the addition of fractions does not produce a carry, the result is normalized. The nor-
malized result replaces the contents of the register specified by R1.

Condition Code

Floating point result is zero

Floating point result is less than zero
Floating point result is greater than zero
Exponent overflow

Exponent underflow

oo oo oln
oW M

o MR oo
OO K O|H

Programming Notes

92

When the addition of the fractions produces a carry, incrementing the exponent of the result
by one may produce exponent overflow. In this case, the result is forced to the maximum
value, =X'7FFF FFFF', the V flag, along with the G or L flag is set in the Condition Code,
and if enabled by Bit 19 of the current PSW, the arithmetic fault interrupt is taken.

Normalization of the result may produce exponent underflow. In this case, the result is
forced to zero, X'0000 0000'. The V flag is set in the Condition Code. The G and the

L flags are always reset, and if enabled by Bit 19 of the current PSW, the arithmetic fault
interrupt is taken.

In the RX formats, the second operand must be located on a fullword boundary.

This information 1s propretary and s supplied by INTERDATA for the sole
purpase of using and maimaning INTERDATA supplied equipment and shali
not be used for any other purpase uniess specifically authorizeas n wrtng

Instructions

Subtract
Subtract Register

Assembler Notation Op-Code Format
SE R1,D2 (X2) 6B RX1,RX2
SE R1,A2 (FX2,SX2) 6B RX3
SER R1,R2 2B RR
Operation

The exponents of the two operands are compared. If the exponents differ, the fraction with

the smaller exponent is shifted right hexadecimally (four bits at a time), and its exponent
is incremented by one for each hexadecimal shift until the two exponents are equal. The
fractions are then subtracted algebraically.

If the subtraction of fractions produces a carry, the exponent of the result is incremented
by one and the fraction of the result is shifted right one hexadecimal position. The carry
bit is shifted back into the most significant hexadecimal digit of the fraction, producing a
normalized result. This result replaces the contents of the register specified by R1.

If the subtraction of fractions does not produce a carry, the result is normalized. The
normalized result replaces the contents of the register specified by R1.

Conditon Code

Floating point result is zero

Floating point result is less than zero
Floating point result is greater than zero
Exponent overflow

Exponent underflow

c o o o oln
el R Rl
o M- o ol@
oMo |

Programming Notes

When the subtraction of the fractions produces a carry, incrementing the exponent of the
result by one may produce exponent overflow. In this case, the result is forced to the max-
imum value, +X'7TFFF FFFF', the V flag, along with the G or L flag is set in the Condi-
tion Code, and if enabled by Bit 19 of the current PSW, the arithmetic fault interrupt is
taken.

Normalization of the result may produce exponent underflow. In this case, the result is
forced to zero, X'0000 0000'. The V flag is set in the Condition Code. The G and the

L flags are always reset, and if enabled by Bit 19 of the current PSW, the arithmetic fault
interrupt is taken,

In the RX formats, the second operand must be located on a fullword boundary.

This nformation s propdnietary and s supp! ed by INTERDATA for the sole
purpose of using and mantaining INTERDATA supplied equipment and shail
not be used for any other purpose unless specifically authorized in writing 93

Instructions

Compare

Compare Register

Assembler Notation

CE
CE
CER

Operation

Op-Code Format
R1,D2 (X2) 69 RX1,RX2
R1,D2 (FX2,SX2) 69 RX3
R1,R2 29 RR

The first operand is compared to the second operand. Comparision is algebraic, taking

into account the sign, fraction, and exponent of each number.

the Condition Code setting. Neither operand is changed.

Condition Code
C{VIG|L
0|X|0]0
1{Xjo0(1
0[XI1}]0

Programming Note

First operand is equal to second operand
First operand is less than second operand
First operand is greater than second operand

The result is indicated by

In the RX formats, the second operand must be located on a fullword boundary.

94

This information 18 proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supphied equipment and shati
not be used for any other purpose uniess spac.ficaily authorized in writing

Instructions

Multiply
Multiply Register

Assembler Notation Op-Code Format
ME R1,D2 (X2) 6C RX1,RX2
ME R1,A2 (FX2,5X2) 6C RX3
MER R1,R2 2C RR
Operation

The exponents of each operand, as derived from the excess 64 notation used in floating point
representation, are added to produce the exponent of the result. This exponent is converted

back to excess 64 notation. The fractions are then multiplied.

If the result is zero, the entire floating point value is forced to zero, X'0000 0000'. X the

product is not zero, the result is normalized. After normalization, the product is rounded.

The sign of the result is determined by the rules of algebra, The result replaces the con-
tents of the register specified by R1.

Condition Code

Floating point result is zero

Floating point result is less than zero
Floating point result is greater than zero
Exponent overflow

Exponent underflow

oo oo on
el b
OO ol
oo ot

Programming Notes

The addition of exponents may produce exponent overflow. In this case, the result is
forced to the maximum value, #X'7FFF FFFF'. The V flag in the Condition Code is set,
along with either the G or the L flag, depending on the sign of the result. An arithmetic
fault interrupt is taken, if enabled by Bit 19 of the current PSW.

The addition of exponents and the normalization process can produce exponent underflow. In

this case, the result is forced to zero, X'0000 0000'. The V flag in the Condition Code is
set. The G and L flags are always reset, and if enabled by Bit 19 of the current PSW, the
arithmetic fault interrupt is taken,

In the RX formats, the second operand must be located on a fullword boundary.

This information i proprietary and s supplied by INTERDATA for the sole
purpose of using and mantaining INTERDATA suppiied equipment and shall
not be used for anv other puiposz unless specifically authorized In writing

Instructions

Divide
Divide Register

Assembler Notation Op-Code Format
DE R1,D2 (X2) 6D RX1,RX2
DE R1,A2 (FX2,SX2) 6D RX3
DER R1,R2 2D RR
Operation

The exponents of each operand, as derived from the excess 64 notation used in floating point
representation are subtracted to produce the exponent of the result. This exponent is con-
verted back to excess 64 notation.

The second operand is then divided into the first operand. Division continues until the quo-
tient is normalized, adjusting the exponent for each additional division required. No remainder
is returned. The quotient is rounded to compensate for the loss of the remainder. The sign

of the quotient is determined by the rules of algebra. The quotient replaces the contents of

the register specified by R1.

Condition Code
ClVIG|L
0[X|0}0 Floating point result is zero
0(X]0}1 Floating point result is less than zero
0iX{1]0 Floating point result is greater than zero
01 XX Exponent overflow
of1]o0fo0 Exponent underflow
111{0]0 Divisor equal to zero

Programming Notes

Before starting the divide operation, the divisor is checked. If it is equal to zero, the op-
eration is aborted. Neither operand is changed. The C and the V flags of the Condition
Code are set. The G and L flags are reset. If enabled by Bit 19 of the current PSW, the
arithmetic fault interrupt is taken.

The subtraction of exponents may produce exponent overflow. In this case, the result is
forced to the maximum value, +X'7FFF FFFF'. The V flag in the Condition Code is set,
along with either the G or the L flag, depending on the sign of the result. An arithmetic

fault interrupt is taken, if enabled by Bit 19 of the current PSW.

The subtraction of exponents and the division process can produce exponent underflow. In
this case, the result is forced to zero, X'0000 0000'. The V flag in the Condition Code is
set. The G and L flags are always reset, and if enabled by Bit 19 of the current PSW, the
arithmetic fault interrupt is taken.

In the RX formats, the second operand must be located on a fullword boundary.

This information s proprietary and is supphied by INTERDATA for the sole
purpose of using and ma nta'ning INTERDATA suppired equipment and shall
96 not be used for any other purpose unless specifically authonized in winting

Instruction

Fix Register
Assembler Notation Op-Code Format
FXR R1,R2 2E RR
Operation

R1 specifies one of the general purpose registers. R2 specifies one of the floating point
registers. The floating point number contained in the floating point register is converted
to an integer value by truncating. The result is stored in the register specified by R1.

Condition Code
C|V|G|L
010j010 Result is zero
010]0 11 Result is less than zero
0ojoj11jo Result is greater than zero
XI1|X|X Overflow

Programming Notes

On fullword overflow, the result is forced to the maximum value, #X'7FFF FFFF'.

On halfword overflow, the result is not changed.

This information is proprietary and s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpase uniess spec fically authornzed in wnling

97

Instruction

Float Register

Assembler Notation Op-Code Format
FLR R1,R2 2F RR
Operation

R1 specifies one of the floating point registers. R2 specifies one of the general purpose
registers. The integer value contained in the register specified by R2 is converted to a
floating point number and stored in the floating point register specified by R1.

Condition Code
C|V]|G|L
oj{ojo|o Result is zero
0jo0fo0{1 Result is less than zero
0jof1ijo Result is greater than zero
Programming Note

The result in R1 is normalized.

purpose of using and ma.nzaining INTERDATA supphed equipment and shall

This informaton is proprietary and is supphed by INTERDATA for the sole
98 not be used for any other purpose unless specificailv authorized in writing

CHAPTER 6
STATUS SWITCHING AND INTERRUPTS

At any given time, the Processor may be in either the Stop mode or the Run mode. In the Stop
mode, the normal execution of instructions is suspended. The Processor is under control of the
operator who can, through the display console:

Examine any memory location

Change any memory location

Examine the contents of any general register
Examine the current PSW

Execute instructions singly

The translation from the Stop mode to the Run mode requires operator intervention at the display
console.

Once the Processor has been put in the Run mode, the current PSW controls the operation of the
Processor. By changing the contents of the current PSW, a running program can:

Put the Processor in the Wait state

Enable or disable various interrupts

Switch between supervisor and protect modes

Vary the normal sequential execution of instructions

PROGRAM STATUS WORD

The Program Status Word is a 64 bit double word.

0 16171819 2122 23 24 27 2829 30 3]

wli [MaDdielale] " [c]vls]L

32 3940 63
Loc

Figure 10. Program Status Word

This information is prophictary and s supphied by INTERDATA for tne sole
purpose of using and maintaining INTERDATA supplied equipment and shali
not be used for any other purpose untess spacifically authonzed in writing 99

Bits 0:15 of the PSW are not currently used, and must be zero. Bits 16:27 are reserved for status
definition and interrupt masks. Note that Bit 20 is not currently assigned a specific function. This
bit must always be zero. Bits 28:31 are reserved for the Condition Code. Bits 32:39 are not used,
and must be zero. Bits 40:63 are reserved for the Location Counter. The status and interrupt bits
are interpreted as follows:

Bit 16 (W) Wait state

Bit 17 (1) Immediate interrupt enable

Bit 18 (M) Machine malfunction interrupt enable
Bit 19 (A) Arithmetic fault interrupt enable

Bit 21 (RP) Relocation/protection enable

Bit 22 Q) System queue service interrupt enable
Bit 23 (P) Protect mode

Bits 24:27 (R) Register set selection

The current PSW is contained in a hardware register within the Processor. Status switching re-
sults when the current PSW, or at least the first half (Bits 0:31) of the current PSW, is replaced.
The occurrence of an interrupt or the execution of a Status Switching instruction can cause the re-
placement of the current PSW.

Wait State

Replacing the current PSW with one in which Bit 16 is set puts the Processor in the Wait state.
When the Processor is in the Wait state, program execution is halted. However, the Processor
is still responsive to machine malfunction and immediate interrupts, if they are enabled. If the
Processor is put in the Wait state with these interrupts disabled, only operator intervention from
the display console can force the Processor out of the Wait state.

Protect Mode

When Bit 23 of the current PSW is set, the Processor is in the protect mode. A program running
in this mode is not allowed to execute Privileged instructions. (Privileged instructions include
all I/0 instructions and most of the Status Switching instructions,) If Bit 23 of the current PSW

is reset, the Processor is in the Supervisor mode. Programs running in this mode may execute
any legal instruction.

Register Set Selection

Bits 24:27 of the current PSW control register set selection. If these bits are reset, general
register set 0 is used. If these bits are set, general register set 15 is used.

This informaton s prop-etary and .s supphed by INTERDATA for e sole
100 purpose of using and maintaining INTERDATA supplied equipment and shall

not be used for any other purpase unless specificaily authorized In writing

INTERRUPT SYSTEM

The interrupt system of the Processor provides rapid response to external and internal events
that require service by special software routines. In the interrupt response procedure, the Proc-
essor preserves its current state and transfers control to the required interrupt handler. This
software routine may optionally restore the previous state of the Processor upon completion of the
service.

Some interrupts are controlled by bits in the current Program Status Word, that is, they canbe
enabled or disabled by setting or resetting a bit in the PSW. Other interrupts are not controlled
by PSW bits, and are always enabled. The following is a list of Processor interrupts and their
controlling PSW bits, if any:

Interrupt PSW Bit
Immediate, Auto Driver Channel 17
Console 17
Machine Malfunction 18
Arithmetic Fault 19
System Queue Service 22
Protect Mode Violation 23
Relocation/Protection 21
Supervisor Call none
Simulated none
Illegal Instruction none

Interrupts occur at various times during processing. The immediate, console, and machine mal-
function interrupts occur between the execution of instructions or after completion of an auto driver
channel operation. The relocation/protection interrupt occurs after the execution of an instruction.
The system queue service, arithmetic fault, supervisor call, and simulated interrupts occur dur-
ing the execution of instructions. The illegal instruction and protect mode violation interrupts
occur before the execution of the improper instruction.

The interrupt procedure is based on the concepts of old, current, and new Program Status Words.
The current PSW, contained in a hardware register, defines the operating state of the Processor.
When this state must be changed, the current PSW becomes the old PSW. The new PSW becomes
the current PSW. The current PSW now contains the operating status and the Location Counter for
the interrupt service routine.

With one exception (the machine malfunction interrupt), when the current PSW becomes the old PSW
it is saved in a pair of registers belonging to register set 0. The machine malfunction old PSW

is stored in a reserved memory location. Again with one exception, when a new PSW becomss the
current PSW, it is loaded from a reserved memory location. The exception is the immediate in-
terrupt. On an immediate interrupt, the current status is forced to a predetermined value. The
current Location Counter is loaded from the interrupt service pointer table.

The new Program Status Word for any interrupt should, if possible, disable interrupts of its own
class, and should, to avoid the overhead of saving registers, specify register set 0.

Ths information 1s proprietary and s supplied by INTERDATA for the sole
purpase of using and maintaining INTERDATA suppiied equipmant and shail
not be used for any other purpose unless specifically authorized n writing 101

Immediate Interrupt

The immediate interrupt is used for 1/0 control. Through this mechanism, external devices can
request and obtain Processor service. Bit 17 of the current PSW controls the immediate interrupt.
If this bit is set, the Processor is responsive to device requests. If this bit is reset, requests are
queued until the Processor is able to recognize them. When the Processor recognizes a request
from a device it:

Saves .the current PSW in Registers 0 and 1 of general register set 0.
Loads the status portion (Bits 0:31) of the current PSW with a value of X'00002000'.

Acknowledges the request and obtains the device number and status from the device. The
device number is placed in Register 2 of the register set 0. The status is placed in Register 3.

Adds two times the device number to X'0000D0' (the starting location of the interrupt ser-
vice pointer table) to obtain the address within the table that corresponds to the interrupt-
ing device. For the immediate interrupt, the value in the table must be even. The value in
the table becomes the current Location Counter.

In setting up the registers for the immediate interrupt service routine, the Processor loads the
device number and status into the least significant bits of Registers 2 and 3. The most significant
bits are forced to zero.

Note that the current PSW for immediate interrupts disables the immediate interrupt and specifies
register set 0. If it is desired to run the interrupt routine with interrupts enabled, the routine
must save the information contained in Registers 0:4, and should switch to register set 15.

Console Interrupt
The console interrupt is a special case of the immediate interrupt. It too is controlled by Bit 17
of the current PSW. If this bit is set, a console interrupt is generated by:

Depressing the Function key on the console

Depressing 0
The effect of the console interrupt is to cause an immediate interrupt, as described previously,
from device X'001".
Simulated Interrupt
The Simulate Interrupt instruction simulates an immediate interrupt. When this instruction is
executed, the Processor goes through the immediate interrupt procedure as if a request for ser-
vice had been received from an external device. The current PSW is saved, and the current PSW
loaded just as for the immediate interrupt. The device is addressed, and the status returned in

Register 3. The address from the interrupt service pointer table is placed in Register 4. The
state of Bit 17, immediate interrupt enable, has no effect on this interrupt. It is always enabled.

This information 18 proprietary and 15 supplied by INTERDATA for the sole
purpose of using and mairtaining INTERDATA supplied equipment and shall
102 ~ot be used for any other purpose u~less spec:f cally authonzed '» weiting

Machine Malfunction Interrupt

Bit 18 of the current PSW controls the machine malfunction interrupt. This interrupt occurs on

a memory parity error, on the detection of primary power failure, and during the restart pro-
cedure after power has been restored. When a machine malfunction interrupt occurs, the current
PSW is saved in memory location X'000020'. The new PSW from memory location X'000038' be-
comes the current PSW. The Condition Code of the new PSW as stored in memory must contain
zeros. After the interrupt is taken, the state of the Condition Code indicates the specific cause of
the interrupt.

Condition Code states are:

CiVIG|L

o{ojojo Power restore

X|0|0]1 Power failure

ojo}1]j0 Parity error on instruction fetch

Xii|o0i}o Parity error on data fetch

1{X]0 X Parity error or power failure during auto driver channel operation

Power failure occurs when the primary power fail detector senses a low voltage, when the Initialize
key (INI) of the display console is depressed, or when the key operated Power switch is turned to
the OFF position. Following the PSW exchange, the software has approximately one millisecond to
perform any necessary operations before the automatic shut down procedure takes over. During
the automatic shut down procedure the Processor saves the current PSW at the memory location
specified by the contents of location X'000084’; and it saves both sets of general registers, start-
ing with register set 0, at the location specified by the contents of memory location X'000086'.

When power returns, the Processor restores the PSW and the general registers from their save
areas. If Bit 18 of the restored PSW is set, the Processor takes another machine malfunction
interrupt, this time with no bits set in the Condition Code of the current PSW,

During write operations to memory, the Parity bit of each memory word is set to maintain odd
parity. The Parity bit is recomputed on each memory read. If the computed bit is not equal to
the bit read out of memory, the Processor takes a machine malfunction interrupt, setting the V
or the G flag to indicate error on data fetch or instruction fetch,

If a machine malfunction interrupt condition arises during an auto driver channel operation, the
PSW, current at the time the channel was activated, becomes the old machine malfunction PSW,
Register 4 of register set 0 contains the address of the Channel Command Block. The C flag of

the current PSW is set along with either the L flag or the V flag to indicate either power failure
or parity error on a data fetch.

Arithmetic Fault Interrupt:

Bit 19 of the current PSW controls the arithmetic fault interrupt. This interrupt, if enabled, can
occur for any of the following reasons:

Fixed point division by zero

Fixed point quotient overflow
Floating point division by zero
Floating point overflow or underflow

This information s proprictary and 15 supplied by INTERDATA for the sole
purpose of using and mamtaiming INTERDATA supphied equipmeat and shail
not be used for any other purpose unless specifically authorized n wniting 103

When this interrupt occurs, the current PSW is saved in Registers 14 and 15 of register set 0.
The new PSW, from memory location X'000048', becomes the current PSW. All Condition Code
bits in the new PSW as stored in memory must be zero. Before going to the interrupt service
routine, the Processor sets the carry flag in the Condition Code if the interrupt is the result of
a floating point operation. If the interrupt is the result of a fixed point operation, the carry flag
is not set.

Any of the following conditions cause fixed point quotient overflow:

A halfword divide operation produces a result greater than 32, 767.
A halfword divide operation produces a result less than -32, 768.
A fﬁllword divide operation produces a result greater than 2, 147, 483, 647.

A fullword divide operation produces a result less than -2, 147,483, 648.

When a fixed point division by zero or a fixed point quotient overflow occurs, the operand registers
remain unchanged.

Floating point overflow occurs when, in a floating point operation, the value of the exponent ex-
ceeds 127. TFloating point underflow occurs when, during the execution of a Floating Point instruc-
tion, the value of the exponent becomes negative. Following floating point overflow, the result is
forced to plus or minus X'7FFF FFFF'. Following a floating point underflow, the result is forced
to true zero, X'0000 0000'. After a floating point division by zero, the operand register remains
unchanged.

After any arithmetic fault interrupt, the Location Counter of the old PSW contains the address of
the instruction immediately following the one that caused the interrupt.

Relocation/Protection Interrupt

Bit 21 of the current PSW controls the relocation/protection interrupt. If this bit is set, and the
currently running program violates any of the relocation and protection conditions available in the
relocation and protection module, the Processor saves the current PSW in Registers 14 and 15

of register set 0. The new PSW at memory location X'000090' becomes the current PSW.

System Queue Service Interrupt

Memory location X'000080' contains the address of the system queue. In the course of executing
any of the following instructions:

Load Program Status Word
Load Program Status Word Register
Exchange Program Status

the Processor tests Bit 22 of the new status being loaded. If this bit is set, the Processor checks
the state of the system queue. If there is an entry in the queue, the just loaded PSW becomes the
old PSW, It is saved in Registers 14 and 15 of register set 0. The address of the queue, taken
from location X'000080’, is placed in Register 13 of register set 0. The new PSW from location
X'000088' becomes the current PSW,

This information 15 prapne;ary and s supplied by INTERDATA for the sole
purpose of using and mamaming INTERDATA suppted equipment and shal
104 not be used for any other purpose unless specifically authornzed in writing

Protect Mode Violation Interrupt

Bit 23 of the current PSW controls the execution of Privileged instructions. When this bit is set,
the Processor is in the Protect mode. Programs running in the Protect mode are not allowed to
execute Privileged instructions. Privileged instructions are:

All 1/0 instructions

Load Program Status Word

Load Program Status Word Register
Exchange Program Status Register
Simulate Interrupt

Simulate Channel Program

If a program running in the protect mode attempts to execute a Privileged instruction, the instruc-
tion is not executed. The Processor saves the current PSW in Registers 14 and 15 of register set
0. The new PSW at location X'000030' becomes the current PSW, The Location Counter of the
old PSW contains the address of the Privileged instruction.

lilegal Instruction Interrupt

The illegal instruction interrupt cannot be disabled. The interrupt occurs whenever the Processor
fetches an instruction word containing an operation code that is not one of those permitted by the
system. The Processor saves the current PSW in Registers 14 and 15 of register set 0. The
illegal instruction new PSW from memory location X'000030' becomes the current PSW,

When the Processor encounters an illéga.l instruction, it makes no attempt to execute it. The
Location Counter of the old PSW contains the address of the illegal instruction.

Supervisor Call Interrupt

This interrupt occurs as the result of the execution of a Supervisor Call instruction. This in-
struction provides a means for user level programs to communicate with system programs. The
supervisor call interrupt is always enabled. When the Processor executes a Supervisor Call in-
struction, it:

Saves the current PSW in Registers 14 and 15 of register set 0.

Places the address of the supervisor call parameter block (address of the second operand) in
in Register 13 of register set 0.

Loads the current PSW status with the value contained at memory location X'000098°, super-
visor call new status.

Loads the current PSW Location Counter from one of the supervisor call new PSW Location
Counter locations.

This information s proprietary and 15 supplied by INTERDATA for the sole
purpose of using and matirtain ng INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authonzed in writing 105

STATUS SWITCHING INSTRUCTION FORMATS

The Status Switching instructions use the Register to Register (RR), and the Register and Indexed
Storage (RX) instruction formats. In some cases, Load Program Status Word and Load Program
Status Word Register, and the R1 field of the instruction has no significance and must be zero.

STATUS SWITCHING INSTRUCTIONS

The Status Switching instructions provide for software control of the interrupt structure of the sys-
tem. They also allow user level programs to communicate efficiently with control software. All
Status Switching instructions, except the Supervisor Call instruction are privileged operations.
Because of this all interrupt handling routines must run in the Supervisor mode.

The instructions described in this section are:

LPSW Load Program Status Word

LPSWR Load Program Status Word Register
EPSR Exchange Program Status Register
SINT Simulate Interrupt

svC Supervisor Call

Ths information s propretary and s supphed by INTERDATA for the sole
purpose of using and mairtaining INTERDATA suppiied equipment and shall
106 not be used for any other purpose unless spec fically authorized n writing

Instruction

Load Program Status Word

Mnemonic Op-Code Format
LPSW D2 (X2) Cc2 RX1, RX2
LPSW A2 (FX2, SX2) C2 RX3

Operation

The 64 bit second operand becomes the current Program Status Word.

Condition Code

Determined by the new PSW

Programming Note

The quantity to be loaded into the current Program Status Word must be located in memory
on a double word boundary.

This instruction is a privileged operation.

This information 18 proprietary and s suppiied by INTERDATA for the sole
purpos2 of using and maintaiming INTERDATA supphed equipment and shall
not be used for any other purpose unless specifically authorized in wnting 107

Instruction

Load Program Status Word Register

Mnemonic Op-Code Format
LPSWR R2 18 RR
Operation

The contents of the register specified by R2 replace Bits 0:31 of the current Program Status
Word. The contents of the register specified by R2+1 replace Bits 32:63 of the current
Program Status Word.

Condition Code

Determined by new PSW

Programming Notes
The R1 field of this instruction has no significance and must always be zero.

This instruction may be used to change register sets. The new set becomes active upon
execution of the next instruction.

This instruetion is a privileged operation.

The R2 field of this instruction may not specify a register greater than 14,

purpose of using and maintaining INTERDATA supplied equipment and shalt

This infgrmat.on s propretary and s supphed by INTERDATA for the sole
108 not be used for any other purpose unless specificaily authorized in writing

Instruction

Exchange Program Status Register

Mnemonic Op-Code Format
EPSR R1, R2 95 RR
Operation

Bits 0:31 of the current Program Status Word replace the contents of the register specified
by R1. The contents of the register specified by R2 replace Bits 0:31 of the current Program
Status Word.

Condition Code

Determined by new status

Programming Notes

If R1 = R2, Bits 0:31 of the current PSW are copied into the register specified by R1, but
otherwise remain unchanged.

This instruction is a privileged operation.

This information s proprietary and 15 supphed by INTERDATA for the sole
purpose of using and maintamning INTERDATA supphed equipment and shall
not be used for any other purpose urless specifically authonzed n writing 109

Instruction

Simulate Interrupt

Mnemonic Op-Code Format
SINT D2 (X2) E2 RI1
SINT A2 (FX2, SX2) E2

Operation

The least significant 10 bits of the second operand are presented to the interrupt handler as
a device number. The device number is used to index into the interrupt service pointer
table, simulating an interrupt request from an external device. This results in either an
immediate interrupt or an auto driver channel operation.

Programming Notes

The R1 field of this instruction must contain zero.

In the execution of this instruction, the Processor loads Registers 0:4 of register set 0
as for a real interrupt request.

This instruction is a privileged operation.

During the execution of this instruction, the device is addressed and the status returned in Regis-
ter 3 of register set 0.

This information 15 propretary and 15 supplied by INTERDATA for the sole
purpose of us.ng and maintaimirg INTERDATA suppl ed equipment and shall
110 not be used for any other purpose unless specifically authorized in writing

Instruction

Supervisor Call

Mnemonic Op-Code Format
svC D2 (X2) E1 RX1, RX2
svC A2 (FX2, SX2) El RX3

Operation

The address of the second operand replaces Bits 8:31 of Register 13 of register set 0. Bits 0:7
of this register are forced to zero. The current Program Status Word replaces the contents of
Registers 14 and 15 of register set 0. The fullword quantity located at X'000098' in memory re-
places Bits 0:31 of the current Program Status Word. The R1 field is doubled and added to
X'00009C'. The halfword quantity located at this address becomes the current Location Counter.

Condition Code

Determined by the new PSW

This information s proprietary and 15 supphed by INTERDATA for the sole
purpose of using and marntaimng INTERDATA supplied equipment and shat!
not be used for any other purpose unless specificaily authorized 10 wniting. 111/112

CHAPTER 7
INPUT OUTPUT OPERATIONS

Input output (I/0) operations, as defined for the 32 bit series, provide a versatile means for the
exchange of information between the Processor, memory, and external devices. Communication
between the Processor and external devices is accomplished over the 1/0, or Multiplexor Bus.
Data transfers between external devices and memory may be performed in the Byte mode, the
Halfword mode, or the Burst mode. Byte and halfword transfers require Processor intervention,
either programmed or automatic, for each item transferred. Burst mode transfers, which re-
quire a Selector Channel, proceed independent of the Processor.

DEVICE CONTROLLERS

The basic functions of all device controllers are:
To provide synchronization with the Processor and to provide device address recognition.
To transmit operational commands from the Processor to the device.
To translate device status into meaningful information for the Processor.

To request Processor attention when required.

In addition, controllers may generate parity, convert serial data to parallel, buffer incoming or
outgoing data, or perform other device-dependent functions.

Device Addressing

The system design allows as many as 1, 023 external devices. Each device must have its own
unique device number or address. Device numbers may range from X'001' through X'3FF".
{(Device number X'000' is not used.) The minimum system has provision for 255 device numbers.
Larger systems may have either 511 or 1, 023.

Processor/Controller Communication

Device controllers may be attached directly to the 1/0 Bus, or they may be attached to the 1/0
Bus indirectly through a Selector Channel. Communication between the Processor and controller
is a bi-directional, request-response type of operation.

If the Processor initiates the communication, it sends the device address out on the 1/O Bus.

When a controller recognizes the address, it returns a synchronization signal to the Processor,
and remains ready to accept commands from the Processor. The Processor waits up to 15 micro-
seconds for the synchronization signal. If no signal is received in this period, the Processor
aborts the operation and notifies the controlling program. Controller malfunction and software
failure (incorrect device address) are the most common causes of this type of time-out.

In the other direction, a controller can initiate communication with the Processor. It does this

by generating an attention signal. If the Processor is in the interruptable state (Bit 17 of the
current PSW set), it temporarily suspends the normal "feteh instruction, execute, fetch next in-
struction" operation at the end of the execute phase, and transmits an acknowledge signal over

the I/O Bus. The controller requesting attention responds with a synchronization signal, and trans-
mits its device number to the Processor.,

This mnformation s proprietary and 15 supplied by INTERDATA for the sole
purpose of using and martaining INTERDATA supphed equipment and shall
not be used for any other purpose unless specificaity authorized in writing 113

Device Priorities

Requests for attention are asynchronous; therefore, more than one request may be pending at any
time. The system resolves these conflicts according to device priority. Placement of controllers
on the 1/0 Bus determines priority. When two or more controllers request attention at the same
time, the one closest to the Processor receives the acknowledge signal first, and responds first.
Those farther down in line must wait until the Processor has acknoweldged and acted upon re-
quests from higher priority controllers. Requests for attention remain queued until all have been
serviced.

INTERRUPT SERVICE POINTER TABLE

Device requests for service may result in either an immediate interrupt or an auto driver channel
operation. The Processor chooses between these two options according to information contained
in the interrupt service pointer table.

The interrupt service pointer table is an ordered list containing oue entry for each possible de-
vice number in the system. The table starts at memory location X'0000D0' and contains a half-
word entry for each device number in the system. For a minimum system, 255 device numbers,
the table extends through memory location X'0002CF'; for a maximum system, the table extends
through memory location X'0008CF'. The software controlling I/O operations must set up the
table.

When, having acknowledged a request for service, the Processor receives the device address,
it adds two times the device address to X'000D0'. The result is the address, within the table,
of the entry reserved for the device requesting attention.

If the entry in the table is even (Bit 15 equals 0), the Processor taken an immediate interrupt and
transfers control to the software routine at the address contained in the table. If the entry in the
table is odd (Bit 15 equals 1), the Processor transfers control to the auto driver channel, with-
out interrupting the currently running program.

At the time the Processor transfers control to the software routine, the old PSW (current at the
time of the device request) has been saved in Registers 0 and 1 of general register set 0. The de-
vice number has been placed in Register 2, the device status in Register 3. Other registers in
register set 0 are undefined. The status portion of the current PSW has been forced to a value of
X'0000-4000', which specifies running state, register set 0, machine malfunction interrupt enabled,
and all other interrupts disabled. The entry in the interrupt service pointer table has become the
new Location Counter.

In using the device number presented by the controller to vector into the interrupt service pointer
table, the Processor masks off the high order bits of the address as received from the I/0 Bus.
In a system with only 255 device numbers, the address is masked to eight bits. In a system with
1, 023 device numbers, the address is masked to 10 bits. This action preserves system integrity
in the event that a hardware malfunction results in a device address greater than the maximum
allowed in the system.

purpose of usirg and maintaining INTERDATA supphed equipment and shail
114 not be used for any other purpose unless specifically authonized i writing

This information 1s proprietary and 15 supphed by INTERDATA for the sole ’

1/0 INSTRUCTION FORMATS

The 1/0 instructions use the Register to Register (RR) and the Register and Indexed Storage (RX)
instruction formats.

1/0 INSTRUCTIONS

Following most 1/0 instructions, the V flag in the Condition Code indicates an instruction time-out.
This means that the operation was not completed, either because the device did not respond at all,
or because it responded incorrectly.

In the sense status and block I/0 instructions, the V flag can also mean examine status. To dis-
tinguish between these two conditions, the program should test Bits 0:3 of the device status byte.

If all of these bits are zero, device time-out has occurred.

The instructions described in this section are:

SS Sense Status

SSR Sense Status Register

oC Oufput Command

OCR OQutput Command Register
RD Read Data

RDR Read Data Register

RH Read Halfword

RHR Read Halfword Register
RB Read Block

RBR Read Block Register

WD Write Data

WDR Write Data Register

WH Write Halfword

WHR Write Halfword Register
WB Write Block

WBR Write Block Register

AL Autoload

SCp Simulate Channel Program

This information s proprietary and s supplied by INTERDATA for the sole
purpose of using and mantaining INTERDATA supphed equipment and shall
not be used for any orthar purpose unless specifically authornized in writing 115

Instructions

Sense Status
Sense Status Register

Assembler Notation Op-Code Format
ss R1,D2 (X2) DD RX1,RX2
SS R1,A2 (FX2,5X2) DD RX3
SSR R1,R2 9D RR
Operation

Bits 22:31 of the register specified by R1 contain the 10 bit device address. The device is
addressed and the eight bit device status is placed in the second operand location. The
Condition Code is set equal to the right most four bits of the device status byte. The first
operand is unchanged.,

Condition Code
Bits 4:7 of the device status byte are copied into the Condition Code. See the appropriate device
manual for a description of this status.

Programming Notes
The Condition Code interpretations of status assume standard INTERDATA device controllers.

In the RR format, the device status byte replaces Bits 24:31 of the register specified by R2.
Bits 0:23 are forced to zero.

These instructions are privileged operations.

Thes information 1s proprietary and s supphied by INTERDATA for the sole
purpose of using and maintaiming INTERDATA supplied equipment and sha'l
116 not be used for any other purpose unless specifically authorized in writing

Instruction

Output Command
Output Command Register

Assembler Notation Op-Code
ocC R1,D2 X2) DE
ocC R1,A2 (FX2,SX2) DE
OCR R1,R2 9E

Operation

Format

RX1,RX2
RX3
RR

Bits 22:31 of the register specified by R1 contain the 10 bit device address. The Processor
addresses the device and transmits an eight bit command byte from the second operand loca-

tion to the device. Neither operand is changed.

Condition Code
CiV|G|L
0101010 Operation successful
011]010 Instruction time-out

Programming Notes

In the RR format, Bits 24:31 of the register specified by R2 contain the device command.

These instructions are privileged operations.

This wnfgrmation s propreeiary and 15 supp! od by 'NTERDATA for the sole
purpose of using and ma ntairing INTERDATA supphied equipment and shail
not be used for any other purpose unless specificatiy authorized i wniting

117

Instructions

Read Data
Read Data Register

Assembler Notation Op-Code
RD R1,D2 (X2) DB
RD R1,A2 (FX2,5X2) DB
RDR R1,R2 9B
Operation

Format

RX1,RX2
RX3
RR

Bits 22:31 of the register specified by R1 contain the 10 bit device address. The Processor
addresses the device. The device responds by transmitting an eight bit data byte. This

byte is placed in the second operand location.

Condition Code
C{V|G|L
ofojolo Operation successful
011]0}]0 Instruction time-out

Programming Notes

In the RR format, the eight bit data byte replaces Bits 24:31 of the register specified by R2.

Bits 0:23 of the register are forced to zero.

These instructions are privileged operations.

118

This nformation '3 propretary and & supphed by iINTERDATA 1or the sole
purpose of usirg and ma.ntain'ng INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing

Instructions

Read Halfword
Read Halfword Register

Assembler Notation Op-Code Format
RH R1,D2 (X2) D9 RX1,RX2
RH R1, A2 (FX2,8X2) D9 RX3
RHR R1,R2 99 RR
Operation

Bits 22:31 of the register specified by R1 contain the 10 bit device address. The Processor
addresses the device. If the device is halfword oriented, the Processor transmits 16 bits
of data from the device to the second operand location. If the device is byte oriented, the
Processor transmits two eight bit bytes in successive operations.

Condition Code
C|V|IGIL
ojojofo Operation successful
0j1101io0 Instruction time-out

Programming Notes

In the RR format, the data received from a halfword device replaces Bits 16:31 of the reg-

ister specified by R1. Bits 0:15 are forced to zero.
vice replaces Bits 16:23 of the register specified by Rl1.

Bits 0:15 are forced to zero.

The first byte of data from a byte de-

The second byte replaces Bits 24:31.

1f the device is byte-oriented, it must be capable of supplying both bytes without intervening status
checks. Unlike the RB and RBR instructions, this instruction does not perform status checking

between the two byte transfers.

In the RX format, the second operand must be located on a halfword boundary.

These instructions are privileged operations.

This information 1s proprietary and 15 supplied by INTERDATA for the sole
purpose of using and ma -tanung INTERDATA supp'.ed equ'pment and shati

not be used for any other purpose unless specifically authorized in writing 119

Instruction

Read Block
Assembler Notation Op-Code Format
RB R1,D2 (X2) D7 RX1,RX2
RB R1,A2 (FX2,5X2) D7 RX3
Operation

Bits 22:31 of the register specified by R1 contain the 10 bit device address. Bits 8:31 of
the fullword located at the second operand address contain the starting address of the data
buffer. Bits 8:31 of the fullword located at the second operand address plus four contain the
ending address of the data buffer.

The Processor transmits eight bit data bytes from the device to consecutive locations in the
specified buffer.

Condition Code

Bits 4:7 of the device status byte are copied into the Condition Code. See the appropriate device
manual for a description of this status.

Programming Notes
The starting address must be less than, or equal to, the ending address. If the starting
address is greater than the ending address, no transfer takes place and the Processor
forces the Condition Code to zero. If the addresses are equal, one byte of data is trans-
mitted.

The Processor is in a non-interruptable state during the transfer.

This instruction is a privileged operation.

This mformation 15 proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA suppiied equipment and shall
120 not be used for any other purpose uniess specfically authorized in writing

Instruction

Read Block Register

Assembler Notation Op-Code Format
RBR R1,R2 97 RR
Operation

Bits 22:31 of the register specified by R1 contain the 10 bit device address. The register
specified by R2 contains the starting address of the data buffer. The register specified by
R2+1 contains the ending address of the data buffer.
The Processor transmits eight bit data bytes from the device to consecutive locations in the
specified buffer.

Condition Code
Bits 4:7 of the device status byte are copied into the Condition Code. See the appropriate device

manual for a description of this status.

Programming Notes

The starting address must be less than, or equal to, the ending address. If the starting
address is greater than the ending address, no transfer takes place and the Processor
forces the Condition Code to zero. If the addresses are equal, one byte of data is trans-
mitted.

The Processor is in a non-interruptable state during the transfer.

This instruction is a privileged operation.

This aformaton s propetafy and s supohied by INTERDATA for the soie
purpose of using and mairtaming INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized i writing 121

Instructions

Write Data
Write Data Register

Assembler Notation Op-Code
WD R1,52 (X2) DA
WD R1,A2 (FX2,5X2) DA
WDR R1,R2 9A
Operation

Format

RX1,RX2
RX3
RR

Bits 22:31 of the register specified by R1 contain the 10 bit device address. The Processor
addresses the device and transmits an eight bit data byte from the second operand location

to the device. Neither operand is changed.

Condition Code
CIVIGIL
ojojoijo Operation successful
0]130]0 Instruction time-out

Programming Notes

In the RR format, the eight bit data byte is contained in Bits 24:31 of the register specified

by R2.

These instructions are privileged operations.

nis in‘ormation s proprietary and s supplied by INTERDATA for the sob
purpose of using and maintaining INTERDATA supplied equipment and shall

T e
122 not be used for any other purpose untess specifically authorized i writing

Instructions

Write Halfword
Write Halfword Register

Assembler Notation Op-Code Format
WH R1,D2 (X2) D8 RX1,RX2
WH R1, A2 (FX2,5X2) D8 RX3
WHR R1,R2 98 RR
Operation

Bits 22:31 of the register specified by R1 contain the 10 bit device address. The Processor
addresses the device. If the device is halfword oriented, the Processor transmits 16 bits
of data from the second operand location to the device. If the device is byte oriented, the
Processor transmits two eight bit data bytes in successive operations.

Condition Code
ClVIGIL
0jojo|o Operation successful
0111010 Instruction time-out

Programming Notes

In the RR format, the data transmitted to a halfword device comes from Bits 16:31 of the
register specified by R2. The first byte of data transmitted to a byte device comes from
Bits 16:23 of the register specified by R2, the second byte, from Bits 24:31.

If the device is byte-oriented, it must be capable of accepting both bytes without intervening status
checks. Unlike the WB and WBR instructions, this instruction does not perform status checking .
between the two byte transfers.

In the RX format, the second operand must be located on a halfword boundary.

These instructions are privileged operations.

Trs information 15 proprietary ano s suppriea by INTERDATA for the sole
purpose of using and ma:.rtaiming INTERDATA supphed equ:pment and sha'
not be used for any other purpose unless specifically authorized n writing 123

Instruction

Write Block
Assembler Notation Op-Code Format
WB R1,D2 (X2) D6 RX1, RX2
WB R1, A2 (FX2,5X2) D6 RX3
Operation

Bits 22:31 of the register specified by R1 contain the 10 bit device address. Bits 8:31 of the
fullword located at the second operand address contain the starting address of the data buffer.
Bits 8:31 of the fullword located at the second operand address plus four contain the ending
address or the data buffer.

The Processor transmits eight bit data bytes from consecutive locations in the specified
buffer to the device.
Condition Code
Bits 4:7 of the device status byte are copied into the Condition Code. See the appropriate device

manual for a description of this status.

Programming Notes

The starting address must be less than, or equal to, the ending address. If the starting
address is greater than the ending address, no transfer takes place and the Processor
forces the Condition Code to zero. If the addresses are equal, one byte of data is trans-
mitted.

The Processor is in a non-interruptable state during the transfer.

This instruction is a privileged operation.

This information s proprietary and 1s supphied by INTERDATA for the sole
purpose of using and mai~taining INTERDATA suppiied equipment and shall
124 not be used for any other purpose unless spec fically authorized in wniting

Instruction

Write Block Register

Assembler Notation Op-Code Format
WBR R1,R2 96 RR
Operation

Bits 22:31 of the register specified by R1 contain the 10 bit device address. The register
specified by R2 contains the starting address of the data buffer. The register specified by
R2+1 contains the ending address of the data buffer,

The Processor transmits eight bit data bytes from consecutive locations in the specified
buffer to the device.

Condition Code
Bits 4:7 of the device status byte are copied into the Condition Code. See the appropriate device
manual for a description of this status.

Programming Notes
The starting address must be less than, or equal to, the ending address. If the starting
address is greater than the ending address, no transfer takes place and the Processor
forces the Condition Code to zero. If the addresses are equal, one byte of data is trans-
mitted.

The Processor is in a non-interruptable state during the transfer.

This instruction is a privileged operation.

This information s proprietary and 1s supp! ed by INTERDATA for the soie
4 purpose of using and mairtaning INTERDATA supplied equrpment and shalt
not be used for any other purpose unless specifically authorized in writing 125

Instruction

Autoload
Assembler Notation Op-Code Format
AL D2 X2) D5 RX1,RX2
AL A2 (FX2, SX2) D5 RX3
Operation

The Autoload instruction loads memory with a block of data from a byte oriented input device.
The data is read a byte at a time and stored in successive memory locations starting with
location X'000080'. The last byte is loaded into the memory location specified by the address
of the second operand. Any blank or zero bytes that are input prior to the first non-zero byte
are considered to be leader and are ignored. All other zero bytes are stored as data. The
eight bit input device address is specified by memory location X'000078'. The device com-
mand code is specified by memory location X'000079'.

Condition Code

Operation successful
Device busy

Examine status or time-out
End of medium

Device unavailable

MM MHee
e R L

WM H o0
M- old

Programming Notes

126

This instruction may only be used with devices whose addresses are less than, or equal to,
X'FF',

The R1 field of this instruction must be zero.

This instruction is a privileged operation.

This information s propretary and s supplied by INTERDATA for the soie
purposz of using and maintaining INTERDATA supptied equ:pment and shait
~ot be used for any other purpose unless spec fically authorized i witing

Instruction

Simulate Channel Program

Assembler Notation Op-Code Format
SCP R1,D2 (X2) E3 RX1,RX2
SCP R1, A2 (FX2,SX2) E3 RX3
Operation

The second operand address is the address of a Channel Command Block (CCB). The buffer
switch bit of the Channel Command Word (CCW) specifies the buffer to be used for the data
transfer. If this bit is set, Buffer 1 is used. If it is reset, Buffer 0 is used. If the byte
count field of the current buffer is positive, the V flag in the Condition Code is set, and the
next sequential instruction is executed. If the byte count field is not positive, the following
date transfer operation is performed.

If the Channel Command Word specifies read, a byte of data is moved from Bits 24:31

of the register specified by R1 to the appropriate buffer location. If the Channel Command
Word specifies write, a byte of data is moved from the appropriate buffer location to Bits
24:31 of the register specified by R1. Bits 0:23 are forced to zero.

After a byte has been transferred, the count field of the appropriate buffer is incremented by

one. If the count field is now positive, and if the fast bit of the CCW is reset, the buffer switch
bit of the CCW is complemented.

Condition Code

Count field is now zero

Count field is now less than zero
Count field is now greater than zero
Count field was positive

o o o oln
- o o o|d
or o oln
© O o

Programming Notes
The second operand must be located on a fullword boundary.

This instruction is a privileged operation,

Thes information s proprietary and 1s supplied by INTERDATA for the sole
purpase of using and mawtarirg INTERDATA supphed equipmert and shail
not be used for any otter purpose unless spec.fically author.zed in wriung 127

CONTROL OF 1/0 OPERATIONS

The design of the 32 bit series I/O structure allows data transfers in any of several ways. The
choice of which I/O method to use depends on the particular application and on the characteristics
of the external devices. The primary methods of data transfer between the Processor and external
devices are:

One byte or one halfword to or from any of the general registers.

One byte or one halfword to or from memory.

A block of data to or from memory under direct Processor control.

A block of data to or from memory under control of a Selector Channel.

Multiplexed blocks of data to or from memory under control of the auto driver channel.

INTERDATA standard device controllers expect a predetermined sequence of commands to effect
data transfers. These commands address the device, put it in the correct mode, and cause data
to be transferred. Because all I/O instructions are privileged operations, I/O control programs
must run in the Supervisor mode, Bit 23 of the current PSW reset. 1/0 control programs should
disable immediate interrupts, controlled by Bit 17 of the current PSW, and use general register

set 0. General register set 0 is also used for other interrupts, and the software must establish

conventions to govern the sharing of these registers.

STATUS MONITORING 1/0

The simplest form of 1/0 programming is status monitoring I/0. In this mode of operation, only
one device is handled at a time, and the Processor cannot overlap other operations with the data
transfer. The sequence of operations in this type of programming is:

1. Address the device and set the proper mode (Output Command instruction).
2. Test the device status (Sense Status instruction).

3. Loop back to the Sense Status instruction until the status byte indicates that the device is
ready (Conditional Branch instruction).

4. When the device is ready, transfer the data (Read or Write instruction).

5. If the transfer is not complete, branch back to the Sense Status instruction. If it is com-
plete, terminate.

A variation on this type of programming makes use of the block I/0 instructions. In this kind of
programming, the program prepares the device and waits for it to become ready. It then executes
a block I/0 instruction. The Processor takes over control and completes the transfer, one byte
at a time to or from memory. The Processor monitors device status during the transfer. Block
transfers may be used only with byte oriented devices whose ready status is zero\.

—_——
This information 8 proprietary and s suppiied by INTERDATA for the sole
purpose of usirg and maintaining INTERDATA supptied equipment and shall
128 not be used for any otner purpose uniess specificaiiy authonzed 10 writing

INTERRUPT DRIVEN 1/O

Interrupt driven 1/0 allows the Processor to take advantage of the disparity in speed between it-
self and the external devices being controlled. With status monitoring, the Processor spends
much of its time waiting for the device. With interrupt driven programming, the Processor can
use much of this time to perform other functions. This kind of programming establishes two levels
of operation. On one level are the interrupt service programs. They run with the immediate
interrupt disabled, and use register set 0. On the second level are the interruptable programs.
They run with the immediate interrupt enabled, and use register set 15.

Before starting interrupt driven operations, the interrupt service pointer table must be set up.
This table starts at memory location X'0000D0'. It must contain a halfword address entry for
every possible device. The table is ordered according to device addresses in such a way that
X'0000D0' plus two times the device address equals the memory address of the table entry re-
served for that device. The value placed in the location reserved for a device is the address of
the interrupt service routine for the device.

Although there may be gaps in device address assignments, the interrupt service pointer table
should be completely filled. Entries for non-existent devices can point to an error recovery
routine. (This precaution prevents system failure in the event of spurious interrupts caused by
hardware malfunction or by improper use of the Simulate Interrupt instruction.)

The next step is to prepare the device for the transfer. This is done best with the immediate in-
terrupt disabled. Once the table pointer has been set up, the and device prepared, the Processor
can move on to an interruptable program.

When the device signals that it requires service, the Processor saves its current state, and trans-
fers control to the location specified in the interrupt service pointer table. At this time, the
current PSW has a status that indicates running state, register set 0, machine malfunction
interrupt enabled, and all other interrupts disabled. Registers 0 and 1 of register set 0

contain the old PSW, indicating the status and location of the interrupted program. Register 2 of
register set 0 contains the device address. Register 3 contains the device status. The soft-

ware routine can now:

1. Check the device status in Register 2, and if satisfactory,

2. Make the transfer, and

3. Return to the interrupted program by reloading the old PSW from Registers 0 and 1.
The interrupt service routine must not enable the immediate interrupt while it is working with reg-
ister set 0. To do so allows other interrupt requests to be acknowledged, and the contents of Reg-
isters 0:4 would be lost. If it is necessary to enable the immediate interrupt, the routine should

save register set 0, switch to register set 15, saving it if necessary, and then enable the immedi~
ate interrupt.

Tms snformation 1s proprietary and s suppiied by INTERDATA for the sole
purpose of uting and maintaining INTERDATA supplied equipment and shail
not be used for any other purpose unless specifically authorized in writing 129

SELECTOR CHANNEL 1/O

The Selector Channel controls the transfer of data directly between high speed devices and memory.
As many as 16 devices may be attached to the Selector Channel, only one of which may be opera-
ting at any one time. The advantage gained in using the Selector Channel is that other program
processing may proceed simultaneously with the transfer of data between the external device and
memory. This is possible because the Selector Channel accesses memory on a cycle stealing
basis, which permits the Processor and the channel to share memory. In some cases, execution
times of the program in progress may be affected, while in others, the effect is negligible. This
depends upon the rate at which the Selector Channel and Processor compete for memory cycles.

The Selector Channel is linked to the Processor over the I/O Bus. It has its own unique device
number which it recognizes when addressed by the Processor. Like other device controllers, it
can request Processor attention through the immediate interrupt.

Selector Channel Devices

The Selector Channel has a private bus similar to the Processor's 1/O Bus. Controllers for the
devices associated with the Selector Channel are attached to this bus. When the Selector Channel
is idle, its private bus is connected directly to the I/O Bus. If this condition exists, the Processor
can address, command, and accept interrupt requests from the devices attached to the Selector
Channel. When the Selector Channel is busy, this connection is broken. All communication be-
tween the Processor and devices on the Selector Channel are cut off. Any attempt by the Processor
to address devices on the channel results in instruction time-out.

Selector Channe!l Operation

Two registers in the Selector Channel hold the current memory address and the final memory
address. Before starting a Selector Channel operation, the control software, using Write instruc-
tions, places the address of the first byte of the data buffer in the current register and the address
of the last byte in the final address register. During the data transfer, the channel increments the
current address register by one for each byte transferred. When the current address equals the
final address, the last byte has been transferred, and the channel terminates.

The Selector Channel accesses memory a halfword at a time. Because of this, the transfer must
always involve an integer number of halfwords. The starting address of the data buffer must
always be on an even byte (halfword) boundary. The ending address must always be on an odd
byte boundary. The starting address must be less than the ending address.

Upon termination, the software can read back from the Selector Channel the address contained in
the current address register. If this address is less than the final address specified for the trans-
fer, and if the buffer limits were properly checked before the transfer, then this condition indicates
a device malfunction or an unusual condition within the device, for example, crossing a cylinder
boundary on a disc.

This information is proprietary and 1s supphed by INTERDATA for the sole
purpose of ustrg and mamntaining INTERDATA supp! ed equipment and shall
130 not be used for any other purpose uniess specficaily authorized in writing

Selector Channe! Programming

The usual method of programming with the Selector Channel uses the immediate interrupt. The
first step in the operation is to check the status of the Selector Channel. If it is not busy, the
address of the termination interrupt service routine is placed in the location within the interrupt
service pointer table reserved for the Selector Channel. Having done this the program should
proceed as follows:

1. Give the Selector Channel a command to stop. This command initializes the Selector
Channel's registers and assures the idle condition with the private bus connected to the
1/0 Bus.

2. Prepare the device for the transfer with whatever commands and information may be
required,

3. Give the Selector Channel the starting and final addresses.

4. Give the Selector Channel the command to start.

With the Start command, the Selector Channel breaks the connection between its private bus and
the Processor's 1/0 Bus, and provides a direct path to memory from the last device addressed
over its bus. When the device becomes ready, the channel starts the transfer which proceeds to
completion without further Processor intervention. Once the Start command has been given, the
Processor can be directed to the execution of concurrent programs.

On termination, the channel signals the Processor that it requires service. The Processor sub-
sequently takes an immediate interrupt, transferring control to the Selector Channel interrupt
service routine. At this time, Registers 0:3 of register set 0 are set up as for any other immedi-
ate interrupt.

AUTO DRIVER CHANNEL

The auto driver channel provides a means for multiplexing block data transfers between memory
and low or medium speed I/0 devices. The operation of the channel is similar in some respects
to interrupt driven I/O. The channel is activated upon a service request from a device on the 1/0
Bus. Upon receipt of a device request, the Processor uses the device number to index into the
interrupt service pointer table, If the value contained in the table is even, the Processor trans-
fers control to the interrupt service routine. If the value is odd, it transfers control to the auto
driver channel.

To the auto driver channel, the address in the interrupt service pointer table is the address plus
one (making it odd) of a Channel Command Block (CCB). The Channel Command Block is basically
a channel program consisting of a description of the operation to be performed, and a list of para-
meters associated with the operation. In addition to the functions of read and write, the channel
can translate characters, test device status, chain buffers, calculate longitudinal and cyclic re-
dundancy check values, and transfer control to software routines to take care of unusual situations.

This information s proprietary anag 1s suppiied by INTERDATA for the sole
purpose of using and matainrg INTERDATA supplied equipment and shall
nat be used for any other purposz uniess spacifically authorized n writing 131

CHANNEL COMMAND BLOCK

The Channel Command Block (CCB), as shown in Figure 11, consists of a Channel Command Word
(16 bits) that describes the function, count fields (16 bits each) for two buffers, final addresses

(32 bits each) for two buffers, a check word (16 bits) for the longitudinal or cyclic redundancy
check, the address (32 bits) of a translation table, and the address (16 bits) of a software routine,

0o 15
0o CHANNEL COMMAND WORD
2 BUFFER 0 BYTE COUNT
4 BUFFER 0 END ADDRESS
6 CHECK WORD
8 BUFFER 1 BYTE COUNT
10 BUFFER 1 END ADDRESS
12 TRANSLATION TABLE ADDRESS
20 SUBROUTINE ADDRESS

Figure 11. Channel Command Block

Just as there may be many interrupt service routines ready at any time to service device requests,
there may be many channel command blocks in the system ready to handle data transfers as re-
quired. Each channel command block must start on a fullword boundary. The address plus one

of the channel command block is placed in the interrupt service pointer table location for the de-
vice involved in the transfer.

Subroutine Address

When the channel transfers control to the software subroutine whose address is contained in the
Channel Command Block, Registers 0:4 of register set 0 have already been set up by the Proc-
essor to contain the old PSW, the device numbher, the device status, and the address of the
Channel Command Block. The current PSW status specifies run state, register set 0, machine
malfunction interrupt enabled, and all other interrupts disabled.

The channel transfers control to the subroutine either unconditionally (controlled by a bit in the
Channel Command Word), or because of bad device status, or because it has reached the limit of
a buffer. It indicates its reason for transferring control by adjusting the Condition Code as
follows.

Ci{VIGI|L

ojojolo Unconditional transfer
010]01]1 Bad status

0jojf1i{o Buffer limit

The subroutine address in the CCB is a 16 bit address. Because of this, the subroutine, or at
least the first instruction of the subroutine, must reside in the first 64KB of memory.

purpose of using and ma.ntaning INTERDATA supplied equipment ang shall
132 not be used for any other purpose unless specifically authonized in writing

Thes information ts roprietary and 15 supphied by INTERDATA for the wle]

Buffers

There is space in the CCB to describe two data buffer areas. The data areas may be located any-
where in memory. The limits of each data area are described by an address field and a count
field. The address field contains the address of the last byte in the data area. This isa 24 bit
address, right justified in the fullword provided. If the device being controlled is a halfword de-
vice, the final address must be odd. If the device is a byte device, the address may be either odd
or even.

The count field, in most operations, contains a negative number whose absolute value is equal to
one less than the number of bytes to be transferred. The one exception is the case of a single
byte transfer, where the count field contains zero.

During data transfers, the channel adds the value contained in the count field to the final address
to obtain the current address. It makes the transfer, referencing the current address, then in-
crements the value in the count field by one for a byte device or by two for a halfword device.
When the count field becomes positive, i.e., greater than zero, the channel sets the G flag in
the Condition Code and transfers control to the specified software subroutine.

Translation

The translation feature is available only for byte devices. If this operation is specified, the full-
word provided in the Channel Command Block must contain the 24 bit address, right justified, of
a translation table. The table, which must start on a halfword boundary, can contain up to 256
halfword entries. During data transfers, the channel multiplies the data byte by two and adds this
value to the translation table address. The result is the address within the translation table of
the halfword corresponding to the data byte.

The channel references this location, and, if Bit 0 of the halfword is a one, it substitutes Bits
8:15 of the halfword for the data byte and proceeds with the operation. If Bit 0 of the halfword
is a zero, the channel:

Puts the data byte, untranslated, in Bits 24:31 of Register 3, register set 0.
Forces Bits 0:23 of Register 3 to zero.

Multiplies the value contained in the translation table by two, and transfers control to the
software routine located at this address.

Upon transfer to the translation subroutine, Registers 0 and 1 of set 0 contain the old PSW. Reg-

ister 2 contains the device number. Register 3 contains the untranslated character. Register

4 contains the address of the Channel Command Block. The current PSW indicates run state, reg-
ister set 0, machine malfunction interrupt enabled, and all other interrupts disabled. The Condi-
tion Code is zero.

Check Word

If either longitudinal or cyclic redundancy checking is required, the check word in the Channel
Command Block contains the accumulated value. The initial value for the check word is usually
zero. (There are data dependent exceptions, e.g., where initial characters are not to be in-
cluded in the check.) The longitudinal check is an Exclusive OR of the character with the check
word. The cyclic check uses the formula:

16, <15 . 2,4
On input, if both redundancy checking and translation are required, the redundancy check is done

first, then the character is translated. On output, the character is translated first. Redundancy
checking may be used only with byte devices.

This wnformation s propnietary and » supphed by INTERDATA for the sole
purpose of using and maintaining INTERDATA suppthied equipment and shall
nat be used for any other purposa uniess specifically authorized in writing 133

Channel Command Word

The Channel Command Word (CCW), as shown in Figure 12, consists of two parts. Bits 0:7 con-
tain a status mask. Bits 8:15 describe the channel operation.

0o 78 9 101112
'l 1 '

15
4 Il A -

T STATUS MASK FM ClB T FJ

L e

EXECUTE L TRANSLATE
L READMRITE

BUFFER SWITCH

L——————— CHECK TYPE

Figure 12. Channel Command Word

Status Mask
On every channe] operation involving a data transfer, the status mask is ANDed with the device
status. This operation does not change the status mask. If the result is zero, the channel pro-

ceeds with the operation. If the result is non-zero, the channel sets the L flag in the Condition
Code, and transfers control to the specified software subroutine.

Execute Bit (E)
If this bit is reset, the channel transfers control to the specified subroutine, without taking any

other action. The Condition Code is zero. If this bit is set, the channel continues with the
operation as specified in the Channel Command Word.

Fast Bit (F)

If this bit is set, the channel performs the I/O transfer in the fast mode. In the fast mode, buffer
chaining, redundancy checking, and translation are not allowed. This bit must be set for halfword
devices. If this bit is set, Buffer 0 is always used.

Read/Write Bit (R/W)

This bit indicates the type of cperation. If this bit is reset, a byte or a halfword is input from
the device. If this bit is set, a byte or a halfword is output to the device.

Translate Bit {T)

If this bit is set, and the fast bit reset, the channel translates the data byte.

This informat.on 15 proprietary and is supplied by INTERDATA for the sola
purpose of using and maritaining INTERDATA suppired equ pment and shall
134 not be used for any other purpose unless specifically authorized wm writing

Check Type Bit {C)

This bit specifies the type of check required. If it is set, the channel performs a cyclic redun-
dancy check. If it is reset, the channel performs a longitudinal redundancy check. This bit is
ignored if the fast bit is set.

Buffer Switch Bit (B)

When the fast bit is reset, this bit specifies which of the two buffers is to be used for the trans-
fer. If this bit is reset, Buffer 0 is used. If it is set, Buffer 1 is used. The channel chains
buffers when the count field becomes positive. It does this by complementing the buffer switch
bit before transferring control to the specified software routine.

Valid Channel Command Codes

The following is a list of valid codes for the Channel Command Word. Note that only the first three
may be used with halfword devices.

Channel Command Word 8:15

Hexadecimal Binary Meaning

00 00000000 Transfer to subroutine

81 10000001 Read fast mode

85 10000101 Write, fast mode

80 10000000 LRC, Buffer 0, read

82 10000010 LRC, Buffer 0, read, translate
84 10000100 LRC, Buffer 0, write

86 10000110 LRC, Buffer 0, write, translate
88 10001000 LRC, Buffer 1, read

8A 10001010 LRC, Buffer 1, read, translate
8C 10001100 LRC, Buffer 1, write

8E 10001110 LRC, Buffer 1, write, translate
90 10010000 CRC, Buffer 0, read

92 10010010 CRC, Buffer 0, read, translate
94 10010100 CRC, Buffer 0, write

96 10010110 CRC, Buffer 0, write, translate
98 10011000 CRC, Buffer 1, read

9A 10011010 CRC, Buffer 1, read, translate
9C 10011100 CRC, Buffer 1, write

9E 10011110 CRC, Buffer 1, write, translate

This nformat.on s proprietary and ¢ supphed by INTERDATA for the so'2
purpose of using and mainta ning INTERDATA suppt-ed equipment and shall
nat be used for any other purpose uniass spec.fically authorized in writing 135/136

CHAPTER 8
MEMORY MANAGEMENT

The memory access and protect controller is an auxiliary module available with the INTERDATA
extended series Processors. It provides:

Program segmentation
Automatic relocation of programs
Memory protection

The controller operates on a 20 bit program (or virtual) address produced by the Processor. It
converts this address, through an addition process, into a real address, again 20 bits, in mem-
ory. At the same time, it checks the program address against a preset limit which it is not al-
lowed to exceed. It verifies that the item referenced by the program address is actually in mem-
ory. It also checks the type of memory access, that is, instruction fetch, memory read, or mem-
ory write, against the allowable operations. If the program address exceeds the limit, or if the
item is not in memory, or if the operation is not allowed, the controller notifies the Processor by
generating relocation/protection interrupt.

In an operating system environment, the operation of the memory access and protect controller is
completely transparent to most programs. It is very similar to a peripheral device in that only
the operating system modules directly responsible for its operation need to be aware of its exist-
ence.

The memory access and protect controller contains seventeen hardware registers. Sixteen of the
registers, called segmentation registers, contain relocation, protection, and control information.
The seventeenth register is the interrupt status register. When the controller interrupts the Proc-
essor, it sets this register to indicate the type of violation that caused the interrupt.

The segmentation registers and the status register are assigned absolute memory locations. Mem-
ory reference instructions may be used to load the registers and to read out the least significant
byte of the status register. The block of memory locations reserved for these registers depends
on the particular configuration.

If the configuration has provision for no more than 255 external devices, the segmentation regis-
ters are assigned locations X'000300' through X'00033F'. The status register is assigned the full-
word location at X'000340°',

If the configuration has provision for more than 255 external devices, the block of memory loca-
tions assigned to the controller starts at the nearest multiple of X'000100' above the expanded in-
terrupt service pointer table.

Bit 21 of the current Program Status Word enables the segmentation, relocation, and protection
features of the memory access and protect controller. If this bit is set, segmentation, reloca-
tion, protection, and the relocation/protection interrupt are enabled. If this bit is reset, all mem-
ory references are absolute, and all protection is disabled.

This information 15 proprietary and s supphed by INTERDATA for the sole
purpose of using and ma niaining INTERDATA suppied equipment and shall
nat be used for any other purpose uniess specifically authorized n writing 137

When Bit 21 is reset, the controller is still active in that it traps memory references to the loca-
tions assigned to its registers. Although only 68 bytes of address space (e.g., X'000300' through
X'000343') are used as register addresses, the controller is set up to trap 256 bytes of address
space (e.g., X'000300' through X'0003FF'). If the Processor references any location trapped, but
not used by the controller, the results are undefined. When Bit 21 of the current Program Status
Wword is reset, the Processor can write into the segmentation registers. The Processor can read
the least significant eight bits of the interrupt status register. Any Write instruction to the inter-
rupt status register forces it to zero.

Bit 21 of the current Program Status Word must be reset to reference the memory access and pro-
tect controller registers. If Bit 21 is set, and a program makes a memory reference that is re-
located to one of the locations reserved for the controller, data is read from or written into the
corresponding memory locations.

BLOCK ADDRESS CONVENTION

Although the address coming into the controller is a 20 bit address in program space, and the
relocated address produced by the controller is a 20 bit address in memory, internal to the con-
troller, addresses are artifically broken down into two parts. These are the block address and
the displacement within the block. An incoming address appears as:

0 11 19
PBA BD

Figure 13. Program Address

in which PBA is the Program Block Address, the address of a 256 byte block in program space.
BD is the Byte Displacement within the block. Similarly, the real address appears as:

RBA BD

Figure 14. Real Address

in which RBA is the Real Block Address of a 256 byte block of real memory, and BD is the Byte
Displacement within that block. The block address convention allows the controller to operate on
12 bit addresses. It also forces program segmentation to begin and to end on 256 byte boundaries.

SEGMENTATION REGISTERS

Each of the 16 segmentation registers is 32 bits wide, and is divided into three fields as shown
in Figure 15.

SLF SRF SCF

Figure 15. Segmentation Register

SLF is the Segment Limit Field, 8 bits. SRF is the Segment Relocation Field, 12 bits. SCF is
the Segment Control Field, 4 bits. Bits 0:3 and 28:31 of the segmentation register are not used
and must be zero.

purpose of using and maintaring INTERDATA supptied equipment and shall
138 not be used for any other purpose unless specificaily authorized n writing

This informatign 15 propiietary and s supphed by INTERDATA for the so]:“

SEGMENTATION REGISTER SELECTION

Bit 11 of the current Program Status Word controls the method of segmentation register selection.
If this bit is zero, the memory access and protect controller uses the high order four bits (Bits
0:3) of the 20 bit program address to select the segmentation register (0:15) that is to be used in
the relocation and protection process.

If Bit 11 of the current Program Status Word is one, the memory access and protect controller
uses Bits 4:7 as the segmentation register select bits. (This state defines a Processor mode in
which Bits 0:3 of the program address must be zero.) Thus to the memory access and protect con-
troller, the program address appears as shown in Figure 16.

SN BN BD

SN BN I BD

Figure 16. Program Addresses

In this figure, SN is the Segment Number, BN is the Block Number within that segment, and BD
is the Byte Displacement within that block.

Each segmentation register contains a 8 bit limit field and a 12 bit relocation field as shown in
Figure 17.

SLF J SRF

Figure 17. Limit and Relocation Fields

SLF is the Segment Limit field, SRF is the Segment Relocation field.

The relocation field contains the block address of the first 256 byte block of memory controlled by
the register. Program addresses are relocated by adding the block number taken from the pro-
gram address to the value contained in the relocation field. The byte displacement from the pro-
gram address is then appended to the result to produce the 20 bit address in memory.

In a parallel with this process, the block number is compared with the value contained in the seg-
ment limit field. The limit field must contain the maximum program block address allowed for
this segment, (Although segments have a fixed maximum length, 64KB or 4KB, the actual seg-
ment size may be any multiple of 256 bytes up to the limit,) If the comparison indicates that the
block number is less than or equal to the limit, the relocated address is valid. If the block num-
ber is greater than the limit, the relocated address is invalid, and the memory access and pro-
tect controller interrupts the Processor. This type of protection isolates the program from all
others in the system. No program is allowed to generate an address outside its assigned area.

This information s propristary and s supphad by INTERDATA for the sole
purpose of ustng and mairts +.ng INTERDATA supplied equ:pmert and shail
not be used for any other purpose unless spec.fically authorized n writing 139

The effect of an invalid address varies, depending on the synchronization between the memory
access and protect controller and the Processor. As soon as the controller detects an invalid
address, it attempts to notify the Processor. If the Processor cannot accept the interrupt im-
mediately, the controller continues to operate. However, it does not allow memory to be changed.
All writes are converted to reads until the Processor clears the interrupt.

FUNCTION OF THE CONTROL FIELD

In addition to the isolation protection provided by the limit field, the memory access and protect
controller allows execute protection, two forms of write protection, and non-presence indications.
These functions are controlled by Bits 24:27 of the segmentation register, the Segment Control
Field is shown in Figure 18.

0 27 31

- 13—

Figure 18. Segment Control Field

If Bit 24, E, is set, the area of memory described by the segmentation register is protected
against execution, that is, instruction fetches from the area are not allowed. If this bit is reset,
execution of instructions from the area is allowed. Any attempt to execute instructions from an
execute protected area causes the memory access and protect controller to interrupt the Processor.
The controller attempts to notify the Processor immediately upon the detection of an execute pro-
tection violation. If the Processor is not able to accept the interrupt and abort the operation, the
controller continues to operate. However, all write operations are converted to read operations
until the Processor has cleared the interrupt.

Bits 25 and 26, W, are encoded to provide two types of write protection. The interpretation of
these bits is:

00 Unprotected

01 Write Protected

10 Write/Interrupt Protected

11 Write Protected (same as 01)

If the area controlled by the segmentation register is unprotected, all writes are allowed. If the
area is write protected, the memory access and protect controller aborts all write operations
and attempts to interrupt the Processor. If the Processor cannot accept the interrupt immedi-
ately, the controller continues to operate. However, all write operations are converted to read
operation. If the area is write/interrupt protected, the memory access and protect controller
allows the write operation to proceed, and then interrupts the Processor.

Bit 27, P, is the presence bit. If this bit is set, it means that the area of memory described by
the segmentation register has been loaded with the correct program segment. If this bit is reset,
it means that the program segment does not exist or has not yet been loaded. I a program ad-
dress references a segmentation register in which this bit is reset, the controller interrupts

the Processor.

This information s propnetary and s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shali
140 not be used for any other purpose unless specifically authorized n writing

INTERRUPTS

The memory access and protect controller can generate interrupts to the Processor only when re-
location and protection are enabled (Bit 21 of the current Program Status Word set). It generates
interrupts for the following reasons:

Invalid Address
Non-Present Address
Write Protect Violation
Write/Interrupt Condition
Execute Protect Violation

An invalid address interrupt occurs when the block number is greater than the value in the limit
field.

A non-present address interrupt occurs when the program accesses a segmentation register in
which the presence bit is zero.

A write protect violation interrupt occurs when the program attempts to write in an area controlled
by a segmentation register in which the write protect bit is set.

A write/interrupt condition interrupt occurs when the program writes into an area controlled by
a segmentation register in which the write/interrupt code appears.

An execute protect violation interrupt occurs when the program attempts to execute an instruction
from an area controlled by a segmentation register in which the execute protect bit is set.

When the memory access and protect controller generates an interrupt, it sets a bit in the interrupt
status register to indicate the reason for the interrupt. The interrupt status register is 32 bits
wide. Bits 0:26 are undefined. The significance of the remaining bits is:

Bit Meaning
27 Invalid Address
28 Non-Present Address
29 Write Protect Violation
30 Write/Interrupt Condition
31 Execute Protect Violation

The new Program Status Word for the memory access and protect controller interrupt handler
should disable relocation and protection. The handler can then determine the cause of the inter-
rupt by testing the memory location assigned to the interrupt status register. The first reference,
either read or write, to the interrupt status register clears the interrupt condition within the con-
troller.

This information 13 propretary and 18 supphed by INTERDATA for the sole
purpose of using and mairtaining INTERDATA supp'ied equipment and shali
not be used for any other purpose unless specifically authorized 0 writing 141/142

APPENDIX 1

Access, Direct Memory ., . .

Alphanumeric Display Termmals Penpheral .
Appendix 2 Instruction Summary - Alphabetical .
Appendix 3 Instruction Summary - Numerical .
Appendix 4 Extended Branch Mnemonics
Appendix 5 Arithmetic References .

Arithmetic Fault Interrupt Mask, Processor PSW .

Arithmetic Fault Interrupt, lnterrupt System .
Auto Driver Channel .

Block Address Convention

Boolean Operations . .

Branching, Chapter 3

Branch Instructions . . .
Branchand Link
Branch and Link Register .

Branch on False Condition

Branch on False Condition Backward Short
Branch on False Condition Forward Short
Branch on False Condition Register .

Branch on Index High . ..
Branch on Index Low or Equal .

Branch on True Condition

Branch on True Condition Backward Short . :

Branch on True Condition Forward Short
Branch on True Condition Register |

Branch Instruction Formats, Instruction Formats.
Branching Instruction Fromats .
Branching Operations

Decision Making
Subroutine Linkage .

Buffers, Channel Command Block . .
Buffer Switch Bit (B), Channel Command Block

Channel Command Block .

Buffers . . .
Channel Command Word Fagure 12
Channe! Command Word . .

Buffer Switch Bit (B)
Check Type Bit (C) .
Execute Bit (E).

Fast Bit (F) . A
Read/Write (R/W). .
Status Mask . . .
Translate Bit (T) .

Check Word , .

Subroutine Address

Translation
Valid Channel Command Codes .

.....

..... v e e e e e . . A21/n24
. A3-1/A34

Ad-1/A4-2

A5-1/A54

. . BAL
. BALR

. .BFC . ..
"BFBS. . . .

. .BFFS
. BFCR

. .BXH
.BXLE
.BTC . . .

. L BTBS
. BTFS
. BTCR

5
103
131

138
14
57
58
61
61

133
135

132

Al-1

APPENDIX 1 (Continued)

Channe! Command Block, Figure 11 .
Circular List, Figure 7 .
Circular List Definition, anure 6

Condition Code
Processor, Program Status Word .

Fixed Point Arithmetic .
Floating Point Arithmetic . .

Conversion From Decimal, Floating Point Arithmetic

Console Interrupt, InterruptSystem
Control of 1/O Operations . ..
Control Field, Function .

Data Communication Equipment, Periphera! .
DataFormats ,
Fixed Point Data ,

Floating Point Data,

Logica! Data

Data Formats, Fixed Point Arithmetic
Data Formats, Floating Point Arithmetic
Device Controllers, 1/0 Operations .

Device Addressing .
Device Priorities .
Processor/Controller Commummtion

Device Controllers, Interrupt Service Pointer Table.
Decision Making, Branching Operations .

Digital Multiplexor, Peripheral.

Direct Memory Address .

Execute Bit (E), Channel Command Word .
Exponent Overflow and Underflow

Fast Bit (F), Channel Command Word
Fixed Point Arithmetic, Chapter 4 . .

Fixed Point Arithmetic, Condition Code

Fixed Point Arithmetic, Data Formats
Fixed Point Arithmetic, Operations

Fixed Point Data Words Formats, Figure 8
Fixed Point Instructions .,

AddHaIfword.. e e e e e e e e e e e e e e e e ... AH
Add Halfword Immedlate e U
Add HalfwordtoMemory AHM
Addimmediate A
AddimmediateShortAIS
AddtoMemory AM
AddRegister« . ¢ e+ v+ AR
Compare . . . e
Compare Halfword .. e o
Compare Halfword lmmedlate e o]
Comparelmmediate« ¢+«0Cl
CompareRegister¢+.+«4v+.....CR
Divide . . . e
Divide Halfword .. e 0]
Divide Halfword Reglster e v+ e e v+ e e e e e oe.. DHR
DivideRegisterDR

Al-2

. 132

15

Multiply

Multiply Halfword . .
Multiply Halfword Reg|ster
Multiply Register

Shift Left Arithmetic

Shift Left Halfword Anthmetlc

Shift Right Arithmetic .

Shift Right Halfword Anthmetlc .

Subtract . .
Subtract Halfword

Subtract Halfword Imm;adiate :

Subtract Immediate . . .
Subtract Immediate Short.
Subtract Register , .

APPENDIX 1 (Continued)

.....

Convert to Halfword Value Reglster

Fixed Point intsruction Formats . .
Floating Point Arithmetic, Chapter 5
Floating Point Arithmetic Condition Code

Floating Point Arithmetic Conversion from E‘)e(.nmal

Floating Point Arithmetic Data Formats .

Normalization .

Exponent Overflow and Underﬂow ..

Conversion and Decimal

Floating Point Data Format, F|gure9 s

Floating Point instructions
Add . . .
Add Register
Compare
Compare Reglster
Divide e
Divide Register .

Fix Register
Float Register

Load .
Load Multiple .
Load Register

Muktiply . .
Muitiply Reglster .

Store. .
Store Multnple .

Subtract .
Subtract Reglster .

Floating Point Instruction Formats . .

Floating Point Registers, Processor
Function of the Control Field .

General Register, Processor .

High Speed Paper Tape System, Peripheral

Immediate Interrupt Mask, Processor PSW

......

. - AE

- CE

- CER .

.DE .
. DER .

.. .FXR. ..
. .FLR .

.LE .
. LME .
. LER .

.ME |
. MER .

. STE .
. STME.

. SE

Industry Compatible Magnetic Tape Systerns Pénpheral

Input Output Operations, Chapter 7.

Instructions, Branch .
Instructions, Fixed Point .
Instructions, Floating Point .
Instruction Formats .

" SER .

- 140

. 113

93
93

86

66
87

Al-3

APPENDIX 1 {Continued)

Branch instruction Format o 0 e e e e e e 11
Programming Note . . e e e e e e e e e e e e e e e e 11
Register and Immediate Storage One (RI1) Format e e e e e e e e e e e e e e 11
Register and Immediate Storage Two {(RI2) Format. 11
Register and Indexed Storage One (RX1) Format « . « 9
Register and Indexed Storage Two (RX2) Format « . . . 10
Register and indexed Storage Three (RX3) Format « . . . 10
Register to Register {(RR) Format, e e e e e e e e e e e e e e e 9
ShortForm(SF)Format............................ 9

Instruction Formats, Branch.o o e e e e e e e e, 58
Instruction Formats, Figure 3 0 e e e e e e e e e e 8
Instruction Formats, FixedPoint v v v v e e e 66
Instruction Formats, Floating Point . . . e e e e e e e e e e e e 86
Instruction Formats, Status Switching and Interrupts e e e e e e e e e 106
Instructions, Status Switchingand Interrupts 106
Instruction Summary - Alphabetical, Appendix2 A21/A2-4
Interrupt Driven 1/Q, Device Controllers 129
Interrupts, Memory Management _ | | , | 1M
Interrupts, Processor 6
Interrupt Service Pointer Table, DeviceController . ., 1
Interrupt System ., . | . [. L e e

Arithmetic Fault Interrupt 103
Console Interrupt , . . e, | 7.
Illegallnstructlonlnterrupt O 115
Immediate Interrupt. . . T 4
Machine Malfunction Interrupt 1 <
Relocation/Protectioninterrupt 104
Protect Mode Violation Interrupt 105
Simulated Interrupt 102
SupervisorCaltlnterrupt 105
System Queue Service Interrupt " 14

intertape Cassette System, Peripheral 00 e e 3
1/O Instructions, DeviceController 15

Autoload AL ... 126

OutputCommand0c 1n7
OutputCommand RegisterOCR.,. ... M7

ReadBlockRB 12
ReadBlock Register _RBR, 1
ReadData.,RD, 118
ReadDataRegister . . ., . . ., .,RDR. ., ., . 18
Read Halfowrd,RH _ . . 19
ReadHaIfwordReglster.....................RHR..... 119

SemseStatus8 116
SenseStatusReglster......................SSR..... 116

Simulate Channel Program , . . ., .,,sP ., ... 127

WriteBlockwB ... 124
WriteBlock Register, ., .,WBR.. 125
WriteData,w 122
Write DataRegisterWDR, 122
WiiteHalfwordWH 123
Write Halfword RegisterWHR. 1238

1/0 Instruction Formats, DeviceController 15
1/0 Operation Control, Device Controllers . . . e b}
1/0 Operations Device Controllers, Device Addressmg K]
1/O Operations Device Controllers, Device Priorities 14

Al-4

Limit and Relocation Fields, Figure 17,

Location Counter, Processor PSW |
Logical Data, Figure 4

Logical Data Formats . .
Logical Operations, Chapter 2 .

Logical Operations
Boolean Operations .
List Processing . .

Translation

Logica! Instructions .

AND .N
AND Halfword L. . NH
AND Halfword Immedlate . NH!
AND Immediate . Ni
AND Register . NR
Add to Bottom of List . ABL
AddtoTopoflist « ATL
Compare Logical . . . CL
Compare Logical Byte . . . CLB
Compare Logical Halfword . . . © 4 e 4 s+ 4 e w4+ e v+« a <. CLH
Compare Logical Halfword Immedlate e o I L
Compare Logical Immediate e e e . . . CL!
Compare Logical Register . - CLR
Complement Bit CBT
Cyclic Redundancy Check Modulo12CRC12. .
Cyclic Redundancy Check Modulo16CRC16.
Exchange Byte Register . EXBR
Exchange Halfword Register EXHR
Exclusive OR . . X
Exclusive OR Halfword XH
Exclusive OR Halfword lmmedlate . . . XHI
Exclusive OR Immediate . . X
Exclusive ORRegister XR
Load , . . L
Load Address . LA
Load Byte | . . LB
Load Byte Reglster e e e e e e e e LBR
Load Complement Short LCS
Load Halfword , |, . LH
Load Halfword immediate LHI}
Load Halfword Logical . . LHL
Load Immediate , ., , . .U
Load Immediate Short . . LIS
Load Multiple . LM
Load Register LR
OR . . .0
OR Halfword OH
OR Halfword Immedlate . . OH!
OR Immediate . . .01
OR Register . . OR
Reset Bit . RBT
Remove from Bottom of List RBL
Remove from Top of List . . RTL

APPENDIX 1 (Continued)

Al-5

APPENDIX 1 (Continued)

Rotate Left Logical |
Rotate Right Logical

Set Bit |

Shift Left Halfword Logical
Shift Left Halfword Log:ml Short .
Shift Left Logical . . .
Shift Left Logical Short

Shift Right Halfword Logical . .
Shift Right Halfword Logical Short .
Shift Right Logical e .
Shift Right Logical Short . .

Store .
Store Byte.

Store Halfword .
Store Muttiple

StoreBtyeRe.g;s‘ter L

Test and Set .

TestBit. . .

Test Halfword Immed|ate
Test immediate .

Translate

Logical Instruction Formats .

Mask, Program Status Word
Arithmetic Fault Interrupt
Immediate Interrupt . .
Machine Malfunction | nterrug

Relocation/Protection Interrupt
System Queue Service Interrupt

Machine Malfunction Interrupt, Status Switching .
Memory Management, Chapter 8
Memory System .

Direct Memory Access e e .
Relocation and Protection.
Selector Channel

Multiplexor Input/Qutput Bus . .
Normalization, Floating Point Arithmetic .
Operations

Boolean .

Branching . . -
Fixed Point Anthmetnc .
1/0 Control

Logical

Processor . .

Selector Channel

Peripherals . .

Alphanumeric Display Terminals
Data Communications Equipment . .
Digital Multiplexor . .
High Speed Paper Tape System .

Industry Compatible Magnetic Tape System

Intertape Cassette System ., . . .
Removable Cartridge Disk System .
System Modules _

Al-6

. RRL .

. SBT .

. SLHL

C _SLHLS . - . .

. .SLL
LSLLS

.SRHL

. .SRHLS . -

. -SRL
.SRLS

. .8T
.STB

. .STBR
. STH
.ST™

. - TS

. THI
. T

-TLATE . .

oo eao

NN

85

128
14

128

130

Wwwwwnhnww N

APPENDIX 1 (Continued)

Processor . .
Program Status Word

Arithmetic Fault Interrupt Mask
Condition Code
Immediate Interrupt Mask .

Location Counter . . .
Machine Malfunction lnterrupt Mask .
Protect Mode
Register Set Select
Relocation/Protection lnter;pt Mask
System Queue Service |nterrupt Mask
Wait State e e . ..

General Registers
Floating Point Registers .
Processor Interrupts
Processor Operations -

Processor/Controller Commumwtnon I/O Operatlons

Program Address, Figure 13

Program Addresses, Figure 16 .
Programming Note, Instruction Formats.
Programming, Selector Channel 1/0O

Program Status Word

Processor -

System Descnptlon Figure 2 .
Status Switch and Interrupts, Figure 10
Status Switching and Interrupts .

Protect Mode, Status Switching and Interrupts PSW .

Protect Mode, Processor PSW . .
Protect Mode Violation Interrupt

Read Address, Figure 14. .

Read/Write Bit (R/W), Channel Command Word .
Register and Immediate Storage One (R11) Format
Register and !mmediate Storage Two (R12) Format
Register and Indexed Storage One {(RX1) Format .
Register and indexed Storage Two {RX2) Format .
Register and Indexed Storage Three (RX3) Format
Register to Register Form (RR) Format .

Register Set Sefect, Processor PSW |

Register Set Selection, Status Switching and Interrupt PSW

Relocation and Protection, Memory System . . .
Relocation/Protection Interrupt Mask, Processor PSW
Relocation/Protection Interrupt, Interrupt Systems
Removable Cartridge Disc System, Peripheral .
Reserved Memory Location, Processor

Segment Control Field, Figure 18 .
Segmentation Registers .
Segmentation Registers, Figure 15
Segmentation Register Selection
Selector Channef 1/0 .

Devices .
Operation
Programming .

Selector Channel, Memory System .
Short Form (SF) Formats . .
Simulated Interrupt, Interrupt System .
Status Mask, Channei Command Word
Status Monitoring 1/O

~Nao o pPOoOOIOIOINAE OO -

Al-7

APPENDIX 1 (Continued)

Status Switching Instructions .

Exchange Program Status Register.EPSR
Load Program Status Word . . B N 14
Load Program Status Word Reglster O & 51 14
SimulateInterruptSINT.
SupervisorCall8v¢C

Status Switching Instruction Formats .

Status Switching and Interrupts, Chapter 6 .
Subroutine Address, Channel Command Block
Subroutine Linkage, Branching Operations
Supervisor Call Interrupt, Interrupt System

System Description, Chapter 1 .

System Diagram, Figure 1

System Modules, Peripherals . .

System Queue Service Interrupt, Interrupt System
System Queue Service Interrupt Mask, Processor PSW

Translate Bit {(T), Channel Command Word
Translation Table Entry, Figure 5 .
Translation, Logical Operation

Translation, Channel Command Block

Valid Channel Command Codes, Channel Command Block

Wait State, Processor PSW |
Wait State, Status Switching and lnterrupts PSW

Al-8

106
109
107
108

110
11

132

APPENDIX 2

INSTRUCTION SUMMARY - ALPHABETICAL

INSTRUCTION OP-CODE MNEMONIC PAGE NO.
Add 5A A 67
Add B6A AE 86
Add Halfword 4A AH 68
Add Halfword Immediate CA AHI 68
Add Halfword tc Memory 61 AHM 70
Add Immediate FA Al 67
Add Immdidate Short 26 AlS 67
Add to Bottom of List 65 ABL 54
Add to Memory 51 AM 67
Add to Top of List 64 ATL 54
Add Register 2A AER 91
Add Register 0A AR 67
AND 54 N 33
AND Halfword 44 NH 34
AND Halfword Immediate ca NHi 34
AND Immediate F4 NI 33
AND Register 04 NR 33
Autoload D5 AL 126
Branch and Link 1 BAL 61
Branch and Link Register 01 BALR 61
Branch on False Condition 43 BFC 59
Branch on False Condition Backward Short 22 BFBS 59
Branch on False Condition Forward Short 23 BFFS 59
Branch on False Condition Register 03 BFCR 59
Branch on Index High Cco BXH 63
Branch on Index Low or Equal C1 BXLE 61
Branch on True Condition 42 BTC 60
Branch on True Condition Backward Short 20 BTBS 60
Branch on True Condition Forward Short 21 BTFS 60
Branch on True Condition Register 02 BTCR 60
Compare 59 c 73
Compare 69 CE 94
Compare Halfword 49 CH 74
Compare Halfword Immediate c9 CHI 74
Compare lmmediate F9 o] 73
Compare Register 29 CER 94
Compare Register 09 CR 73
Compare Logical 55 cL 30
Compare Logical Byte D4 CcLB 32
Compare Logical Haltword 45 CLH 31
Compare Logical Halfword lmmediate c5 CLHI 31
Compare Logical Immediate F5 CL} 30
Compare Logical Register 05 CLR 30
Complement Bit 77 CBT 50
Cyclic Redundancy Check Modulo 12 SE CRC12 52
Cyclic Redundancy Check Modulo 16 5F CRC16 52

This informotion 15 proprietary and s suppied by INTERDATA for

the sole
purpos2 of using and maintaiming INTERDATA suoolied equipment and shall
not be used for any other purpose untess specifically authorized in writing

A2-1

APPENDI X 2 (Continued)

INSTRUCTION OP-CODE MNEMONIC PAGE NO.
Divide 5D D 77
Divide 6D DE 96
Divide Halfword 4D DH 78
Divide Halfword Register oD DHR 78
Divide Register 2D DER 96
Divide Register 1D DR 78
Exchange Byte Register 94 EXBR 25
Exchange Halfword Register 34 EXHR 24
Exchange Program Status Register 05 EPSR 109
Exclusive OR 57 X 37
Exicusive OR Halfword 47 XH 38
Exculsive OR Halfword Immediate c7 XHI 39
Exclusive OR Immediate F7 Xi 37
Exclusive OR Register 07 XR 37
Fix Register 2E FXR 97
Float Register 2F FLR 98
Load 58 L 18
Load 68 LE 88
Load Address E6 LA 20
Load Byte D3 LB 23
Load Byte Register 93 LBR 23
Load Complement Short 25 LCS 18
Load Halfword 48 LH 19
Load Halfword Immediate cs LHI 19
Load Halfword Logical 73 LHL 21
Load Immediate F8 Lt 18
Load Immediate Short 24 LIS 18
Load Multiple D1 LM 22
Load Multiple 72 LME 89
Load Program Status Word Cc2 LPSW 107
Load Program Status Word Register 18 LPSWR 108
Load Register 28 LER 92
Load Register 08 LR 18
Multiply 5C M 76
Mutltiply 6C ME 95
Mutltiply Halfword 4C MH 77
Muitiply Halfword Register oC MHR 77
Multiply Register 2C MER 95
Multiply Register 1C MR 76
OR 56 0 35
OR Halfword 46 OH 36
OR Halfword Immediate Cé6 OH! 36
OR Immediate Fé6 ol 35
OR Register 06 OR 35
Output Command DE oC 117
Output Command Register 9E OCR 117
Read Block D7 RB 120
Read Block Register 97 RBR 121
Read Data DB RD 118
Read Data Register 9B RDR 118
Read Halfword D9 RH 119
Read Halfword Register 99 RHR 119

This information 1§ proprietary and is supplied by INTERDATA for the sole
purpose of using and ma.ntaining INTERDATA suppied equipment and sha'l
Az_z not be used for any other purpose unless specifically authorized in writing

APPENDIX 2 {Continued)

INSTRUCTION OP-CODE MNEMONIC PAGE NO.
Reset Bit 76 RBT 51
Remove from Bottom of List 67 RBL 55
Remove from Top of List 66 RTL 55
Sense Status DD Ss 116
Sense Status Register 9D SSR 116
Set Bit 75 SBT 49
Shift Left Arithmetic EF SLA 79
Shift Left Halfword Arithmetic CF SLHA 80
Shift Left Halfword Logical cD SLHL 43
Shift Left Halfword Logical Short 1] SLHLS 43
Shift Left Logical ED SLL 41
Shift Left Logical Short 1" SLLS 41
Shift Right Arithmetic EE SRA 81
Shift Right Halfword Arithmetic CE SRHA 82
Shift Right Halfword Logical cc SRHL 44
Shift Right Halfword Logical Short 90 SRHLS 44
Shift Right Logical EC SRL 42
Shift Right Logical Short 10 SRLS 42
Simulate Channel Program E3 ScpP 127
Simulate Interrupt E2 SINT 110
Store 50 ST 26
Store 60 STE 90
Store Byte D2 STB 29
Store Byte Register 92 STBR 29
Store Halfword 40 STH 27
Store Multiple D0 ST™M 28
Store Multiple 71 STME 91
Subtract 58 S 7
Subtract 6B SE 93
Subtract Halfword 48 SH 72
Subtract Halfword Immediate CcB SHi 72
Subtract Immediate FB St n
Subtract Immediate Short 27 SIS 7
Subtract Register 1]:] SR n
Subtract Register 2B SER 93
Supervisor Call E1 svec 11
Test Bit 74 TBT 48
Test Halfword Immediate c3 TH! 40
Test Immediate F3 Tl 39
Translate E7 TLATE 53
Write Block D6 WR 124
Write Block Register 96 WBR 125
Write Data DA WD 122
Write Data Register 9A WDR 122
Write Halfword D8 WH 123
Write Halfword Register 98 WHR 123

This information 15 proprietary and 1s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA suppiiea equipment and shall
not be used for any other purpose unless specifically authonzed n wnung.

A2-3/A2-4

APPENDIX 3

INSTRUCTION SUMMARY - NUMERICAL

OP-CODE MNEMONIC INSTRUCTION PAGE NO.
01 BALR Branch and Link Register 61
02 BTCR Branch on True Condition Register 60
03 BFCR Branch on False Condition Register 59
04 NR AND Register 33
05 CLR Compare Logical Register 30
06 OR OR Register 35
07 XR Exclusive OR Register 37
08 LR Load Register 18
09 CR Compare Register 73
0A AR Add Register 67
0B SR Subtract Register n
oc MHR Multiply Halfword Register 76
oD DHR Divide Halfword Register 78
10 SRLS Shift Right Logical Short 42
1 SLLS Shift Left Logical Short 41
12 CHVR Convert to Halfword Value 83
13 BFCR Branch on False Condition Register 59
18 LPSWR Load Program Status Word Register 108
1c MR Multiply Register 75
1D DR Divide Register 78
20 BTBS Branch on True Condition Backward Short 60
21 BTFS Branch on True Condition Forward Short 60
22 BFBS Branch on False Condition Backward Short 59
23 BFFS Branch on False Condition Forward Short 59
24 LIS Load Immediate Short 18
25 LCS Load Complement Short 18
26 AlS Add Immediate Short 67
27 SIS Subtract Immediate Short 71
28 LER Load Register 92
29 CER Compare Register 94
2A AER Add Register 92
2B SER Subtract Register 93
2C MER Multiply Register 95
2D DER Divide Register 96
2E FXR Fix Register 97
2F FLR Float Register 98
30 BTBS Branch on True Condition Backward Short 60
31 BTFS Branch on True Condition Forward Short 60
32 BFBS Branch on False Condition Backward Short 59
33 BFFS Branch on False Condition Forward Short 59
34 EXHR Exchange Halfword Register 24

This informanon i propratary and s supp’ ed by INTERDATA for the sole
purpose of using and mamntatning INTERDATA supphed equipment and shatt
not be used for any other purpcse uniess specificaily authorized in writing

A3-1

APPENDIX 3 (Continued)

OP-CODE MNEMONIC INSTRUCTION PAGE NO.
40 STH Store Halfword 27
41 BAL Branch and Link 61
42 BTC Branch on True Condition. 60
43 BFC Branch on False Condition 59
44 NH AND Halfword 34
45 CLH Compare Logical Halfword 31
46 OH OR Halfword 36
47 XH Exclusive OR Halfword 38
48 LH Load Halfword 19
49 CH Compare Halfword 74
aA AH Add Halfword 68
4B SH Subtract Halfword 72
4C MH Multiply Halfword 76
4D DH Divide Halfword 78
50 ST Store 26
51 AM Add to Memory 67
52 BTC Branch on True Condition 60
53 BFC Branch on False Condition 59
54 N AND 33
55 cL Compare Logical 30
56 o OR 35
57 X Exclusive OR 37
58 L Load 18
59 c Compare 73
5A A Add 67
58 S Subtract 7
5C M Multiply 75
5D D Divide 77
S5E CRC12 Cycdlic Redundancy Check Modulo 12 52
5F CRC16 Cyclic Redundancy Check Modulo 16 52
60 STE Store 90
61 AHM Add Halfword to Memory 72
64 ATL Add to Top of List 54
65 ABL Add to Bottom of List 54
66 RTL Remove from Top of List 55
67 RBL Remove from Bottom of List 55
68 LE Load 88
69 CE Compare 94
6A AE Add 87
6B SE Subtract 93
6C ME Multiply 95
6D DE Divide 76

This information s propreetary and $ supp: ed by INTERDATA for the sole
purposz of using and ma.ntaning INTERDATA suppl.ed equipment and shall
A3—2 not be used for any other purpose unless specifically authorized in writing

APPENDIX 3 (Continued)

OP-CODE MNENONIC INSTRUCTION PAGE NO.
71 STME Store Multiple 91
72 LME Load Multiply 89
73 LHL Load Halfword Logical 21
74 TBT Test Bit 48
75 SBT Set Bit 49
76 RBT Reset Bit 51
77 CBT Complement Bit 50
90 SRHLS Shift Right Halfword Logical Short 44
1] SLHLS Shift Left Halfword Logical Short 43
92 STBR Store Byte Register 29
93 LBR Load Byte Register 23
94 EXBR Exchange Byte Register 25
95 EPSR Exchange Program Status Word 109
96 WBR Write Block Register 125
97 RBR Read Block Register 121
98 WHR Write Halfword Register 123
99 RHR Read Halfword Register 119
9A WDR Write Data Register 122
9B RDR Read Data Register 118
9D SSR Sense Status Register 116
9E OCR Output Command Register 117
Co BXH Branch on Index High 63
c1 BXLE Branch on Index Low or Equal 63
c2 LPSW Load Program Status Word 107
Cc3 THI Test Halfword Immediate 40
c4 NHI AND Halfword Immediate 34
Cc5 CLHI Compare Logical Halfword Immediate 31
Ccé OHI OR Halfword Immediate 36
c7 XHI Exclusive OR Halfword Immediate 38
c8 LH! Load Halfword Immediate 19
Cc9 CHI Compare Halfword Immediate 74
CA AHI Add Halfword Immediate 68
cB SH!} Subtract Halfword Immediate 72
cc SRHL Shift Right Halfword Logical a4
CcD SLHL Shift Left Halfword Logical 43
CE SRHA Shift Right Halfword Arithmetic 82
CF SLHA Shift Left Halfword Arithmetic 80
DO ST™M Store Multiple 28
D1 LM Load Multiple 22

This information 15 propiietary and s suppliea oy INTERDATA for the sole
purpose of using and ma:ntaining INTERDATA supplied equipment and shail
not be used for any other purpose uniess specifically authonized in wnuing

A3-3

APPENDIX 3 {Continued)

OP-CODE MNEMONIC INSTRUCTION PAGE NO.
D2 STB Store Byte 29
D3 LB Load Byte 32
D4 cLs Compare Logical Byte 52
D5 AL Autoload 126
D6 WB Write Block 124
D7 RB Read Block 120
D8 WH Write Halfword 123
D9 RH Read Halfword 119
DA WD Write Data 122
DB RD Read Data 118
DD sS Sense Status 116
DE ocC Output Command 117
EO TS Test and Set 47
E1 SvC Supervisor Call 111
E2 SINT Simulate Interrupt 110
E3 SCP Simulate Channel Program 127
E6 LA Load Address 20
E7 TLATE Translate 53
EA RRL Rotate Right Logical 46
EB RLL Rotate Left Logical 45
EC SRL Shift Right Logical 42
ED SLL Shift Left Logical 41
EE SRA Shift Right Arithmetic 81
EF SLA Shift Left Arithmetic 79
F3 TI Test immediate 39
F4 NI AND Immediate 33
F5 CLi Compare Logical Immediate 30
F6 ol OR Immediate 35
F7 X1 Exclusive OR Immediate 37
F8 LI Load Immediate 18
F9 ci Compare Immediate 73
FA Al Add Immediate 67
FB sI Subtract Immediate n

Thes nformat,on s -;(opnet;ry ana s supphied by INTERDATA for the sole

A3-4

purpose of using and me.ntam:ng INTERDATA supphed equipment and shail
not be used for any other purpose untess specifically authorized in writing

APPENDIX 4

EXTENDED BRANCH MNEMONICS

INSTRUCTION OP CODE (M1) MNEMONIC OPERANDS

Branch on Carry 428 BC A(X2)

Branch on Carry Register 028 BCR R2

Branch on No Carry 438 BNC A(X2)

Branch on No Carry Register 038 BNCR R2

Branch on Equal 433 BE A(X2)

Branch on Equal Register 033 BER R2

Branch on Not Equal 423 BNE A(X2)

Branch on Not Equal Register 023 BNER R2

Branch on Low 428 BL A(X2)

Branch on Low Register 028 BLR R2

Branch on Not Low 438 BNL A(X2)

Branch on Not Low Register 038 BNLR R2

Branch on Minus 421 BM A(X2)

Branch on Minus Register 021 BMR R2

Branch on Not Minus 431 BNM A(X2)

Branch on Not Minus Register 031 BNMR R2

Branch on Plus 422 BP A(X2)

Branch on Plus Register 022 BPR R2

Branch on Not Plus 432 BNP A(X2)

Branch on Not Plus Register 032 BNPR R2

Branch on Overflow 424 BO A(X2)

Branch on Overflow Register 024 BOR R2

Branch Unconditional 430 B A(X2)

Branch Unconditional Register 030 BR R2

Branch on Zero 433 BZ A(X2)

Branch on Zero Register 033 BZR R2

Branch on Not Zero 423 BNZ A(X2)

Branch on Not Zero Register 023 BNZR R2

No Operation 420 NOP

No Operation Register 020 NOPR

Branch on Carry Short 208 BCS A (Backward Reference)
218 BCS A (Forward Reference)

Branch on No Carry Short 228 BNCS A (Backward Reference)
238 BNCS A (Forward Reference)

Branch on Equal Short 223 BES A (Backwarrd Reference)
233 BES A (Forward Reference)

Branch on Not Equal Short 203 BNES A (Backward Reference)
213 BNES A (Forward Reference)

Branch on Low Short 208 BLS A (Backward Reference)
218 BLS A (Forward Reference)

Branch on Not Low Short 228 BNLS A (Backward Reference)
238 BNLS A (Forward Reference)

This information s proprietary and s supphed by INTERDATA for the sole
purpose of using and mairtaring INTERDATA supphied equipment and shall
not be used for any other purpose umess specificaily authorized n wniting

A4-1

INSTRUCTION OP CODE (M1) MNEMONIC OPERANDS

Branch on Minus Short 201 BMS A (Backward Reference)
211 BMS A (Forward Reference)
Branch on Not Minus Short 221 BNMS A (Backward Reference)
231 BNMS A (Forward Reference)
Branch on Plus Short 202 BPS A (Backward Reference)
212 BPS A (Forward Reference)
Branch on Not Plus Short 222 BNPS A (Backward Reference)
232 BNPS A (Forward Reference)
Branch on Overflow Short 204 BOS A (Backward Reference)
214 BOS A (Forward Reference)
Branch Unconditional Short 220 BS A (Backward Reference)
230 BS A (Forward Reference)
Branch on Zero Short 223 BNA A {Backward Reference)
233 BZS A (Forward Reference)
Branch on Not Zero Short 203 BNZS A (Backward Reference)
213 BNZS A (Forward Reference)

hig nformation 15 propr.etary and s supphed by INTERDATA for the soie

T
purpose of using and maintaining INTERDATA supphed equipment and shall
A4_2 not be used for any other purpose unless specifically authonzed in wniting

68
137
274
549

1 099

268
536
073
147

294
589
179
359

719
438
877
755

511

16
32

65
131
262
524

097
194
388

(KN
554
108
217

435
870
741
483

967
934
869
738

476
953
906
813

627

128

256
512
024

096
192
384
768

536
072
144
288

576
152
304
608

216
432
864
728

456
912
824

296
592
184
368

736
472
944
888

776

~1 O U WP o

[o]

11

12
13
14
15

16
17
18
19

20
21
22
23

24
25
26
27

28
29
30
31

32
33
34
35

36
37
38
39

40

0.000
0. 000
0. 000
0. 000

0. 000
0.000
0. 000
0. 000

0. 000
0. 000
0. 000
0. 000

0. 000
0. 000
0. 000
0.000

0. 000
0. 000
0.000
0. 000

0. 000
0.000
0. 000
0. 000

0.000
0. 000
0. 000
0. 000

0. 000

ARITHMETIC REFERENCES

TABLE OF POWERS OF TWO

25
625
812

906
953
976
488

244
122
061
030

015
007
003
001

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000

APPENDIX 5

25

125
562
281

140
070
035
517

258
629
814
907

953
476
238
119

059
029
014
007

003
001
000
000

000
000
000
000

000
000
000
000

000

25

625
312
156
578

789
394
697
348

674
837
418
209

604
802
901
450

725
862
931
465

232
116
058
029

014
007
003
001

000

25
125

062
531
265
632

316
158
579
289

644
322
161
580

290
645
322
661

830
415
207
103

551
275
637
818

909

5
25
625
812

406
203
101
550

775
387
193
596

298
149
574
287

643
321
660
830

915
957
978
989

494

5

25

125
562
781

390
695
847
923

461
230
615
307

653
826
913
456

228
614
807
403

701

5
25

625
312
656
828

914
957
478
739

869
934
467
733

366
183
091
545

772

This anformatior 1S props etary and 1 swppled by INTERDATA for the sole
purpose of usirg and mairtaining INTERDATA supplied equipment and shalt
not be used for any other purpose unless specifically authorized wn writing

25
125

062
031
515
257

628
814
407
703

851
425
712
856

928

25
625
812

906
453
226
613

806
903
951
475

237

25

125
562
281

640
320
660
830

915

625

312 5
156 25
078 125

039 062 3

A5-1

APPENDIX 5 {Continued)

TABLE OF POWERS OF SIXTEEN

A5-2

16" n
1 0
16 1
256 2
4 096 3
65 536 4
1 048 576 5
16 7 216 6
268 435 456 7
4 294 967 296 8
68 719 476 736 9
1 099 511 627 776 10
17 592 186 044 416 11
281 474 976 710 656 12
4 503 599 627 370 496 13
72 057 594 037 927 936 14
152 921 504 606 846 976 15
L\
N
Decimal Values
HEXADECIMAL TO DECIMAL CONVERSION TABLE
BYTE BYTE
HEX DEC HEX DEC HEX DEC HEX DEC
0 0 0 0 0 0 0 0
1 4,096 1 256 1 16 1 1
2 8,192 2 512 2 32 2 2
3 12,288 3 768 3 48 3 3
4 16,384 4 1,024 4 64 4 4
5 20,480 5 1,280 5 80 5 5
6 24,576 6 1,536 6 96 6 6
7 28,672 7 1,792 7 112 7 7
8 32,768 8 2,048 8 128 8 8
9 36,864 9 2,304 9 144 9 9
A 40,960 A 2,560 A 160 A 10
B 45, 056 B 2,816 B 176 B 11
C 49,152 C 3,072 C 192 C 12
D 53, 248 D 3,328 D 208 D 13
E 57,344 E 3,584 E 224 E 14
F 61,440 F 3,840 F 240 F 15

This mnformation 15 prognietary and s supplied by INTERDATA for the sole
purpos2 of usirg and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless spacifically authorized in writing

HEXADECIMAL ADDITION TABLE

APPENDIX 5 (Continued)

1 2 3 4 5 6 7 8 9 A B C E F
1 2 3 4 5 6 7 8 9 A B C D E F 10 1
2 3 4 5 6 7 8 9 A B C D E F 10 11 2
3 4 5 6 7 8 9 A B C D E F 10 11 12 3
4 5 6 7 8 9 A B C D E F 10 11 12 13 4
5 6 7 8 9 A B C D E F 10 11 12 13 14 5
6 7 8 9 A B C D E F 10 11 12 13 14 15 6
7 8 9 A B C D E F 10 11 12 13 14 15 16 7
8 9 A B C D E F 10 11 12 13 14 15 16 17 8
9 A B C D E F 10 11 12 13 14 15 16 17 18 9
A B C D E F 10 11 12 13 14 15 16 17 18 19 A
B C D E F 10 11 12 13 14 15 16 17 18 19 1A B
C D E F | 10 11 12 13 14 15 16 17 18 19 1A | 1B C
D E F 10 11 12 13 14 15 16 17 18 19 1A | 1B | 1C D
E F 10 11 12 13 14 15 16 17 18 19 1A | 1B | 1C | 1D E
F 10 11 12 13 14 15 16 17 18 19 1A 1B | 1C 1D | 1E F
1 2 3 4 5 6 7 8 9 A B C D E F
HEXADECIMAL MULTIPLICATION TABLE
1 2 3 4 5 6 7 8 9 A B D E F
1 1 2 3 4 5 7 8 9 A B C D F 1
2 2 4 6 8 A C E 10 12 14 16 18 1A {1C | 1E | 2
3 3 6 9 C F 12 15 18 1B 1E 21 24 27 2D |3
4 4 8 C 10 14 18 1C 20 24 28 2C 30 34 | 38 3C | 4
5 5 A F 14 19 1E 23 28 2D | 32 37 3C 41 46 | 4B |5
6 6 C 12 18 1E 24 2A 30 36 3C 42 48 4E | 54 | 5A |6
7 7 E 15 1C 23 2A 31 38 3F | 46 4D 54 5B | 62 69 7
8 8 10 18 20 28 30 38 40 48 50 58 60 68 70 78 8
9 9 12 1B 24 2D 36 3F 48 51 5A 63 6C 75 7E | 87 9
A A 14 1E 28 32 3C 46 50 5A 64 6E 78 82 | 8C |96 | A
B B 16 21 2C 37 42 4D 58 63 6E 79 84 8F | 9A | A5 | B
C C 18 24 30 3C 48 54 60 6C 78 84 90 9C | A8 | B4 | C
D D 1A 21 34 41 4E 5B 68 75 82 8F 9C A9 {B6 | C3 | D
E E 1C 2A 38 46 54 62 70 7TE | 8C 9A A8 B6 | C4 | D2 | E
F F 1E 2D 3C 4B 5A 69 78 87 96 A5 B4 C3 | D2 |El |F
1 2 3 4 5 6 7 8 9 A B C D E F

This informato~ 1s proprigtasy and 1s suppled by 'NTERDATA for the sole
purpose of using and ma‘ntairing INTERDATA supplied equipmant and shail

not be used for any other purpose unless specificsily authonzed n writing

A5-3

APPENDIX 5 (Continued)

TABLE OF MATHEMATICAL CONSTANTS

A5-4

Constant Decimal Value Hexadecimal
Value
r 3.14159 26535 89793 3.243F 6A89
-1 0.31830 98861 83790 0.517C C1B7
Vr 1.77245 38509 05516 1.C5BF 891C
Lox 1.14472 98858 49400 1.250D 048F
e 2.71828 18284 59045 2.B7E1 5163
e-1 0.36787 94411 71442 0.5E2D 58D9
ve 1.64872 12707 00128 1.A612 98E2
logy e 0.43429 44819 03252 0.6F2D EC55
logoe 1.44269 50408 88963 1.7154 7653
v 0.57721 56649 01533 0.93C4 67E4
LnY -0.54953 93129 81645 -0.8CAE 9BC1
V2 1.41421 35623 73095 1.6A09 E668
Ln2 0.69314 71805 59945 0.B172 17F8
log; 2 0.30102 99956 63981 0.4D10 4D42
V10 3.16227 76601 68379 3.298B 075C
Lnl0 2.30258 50929 94046 2.4D76 37717

This information 15 propretarv and 15 supplied bv INTERDATA for the sole
purpose of using and mantaiming INTERDATA supplied equipment and shall
not be used for any other purpose uniess spec.fically authorized in writing

	00000
	00001
	0001
	0002
	0003
	0004
	0005
	0006
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	057
	058
	059
	060
	061
	062
	063
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	137
	138
	139
	140
	141
	A1-1
	A1-2
	A1-3
	A1-4
	A1-5
	A1-6
	A1-7
	A1-8
	A2-1
	A2-2
	A2-3
	A3-1
	A3-2
	A3-3
	A3-4
	A4-1
	A4-2
	A5-1
	A5-2
	A5-3
	A5-4

