Publication Number 29-747

MODEL 3210 PROCESSOR
USER'S MANUAL

PERKIN-ELLMER

Computer Systems Division
2Crescent Place
Oceanport.N.J. 07757

Copyright (©)1981 by Perkin-Elmer Corporation Printed in U.S.A. April 1981

The information in this document is subject to change without notice and should not be:
construed as a commitment by The Perkin-Elmer Corporation. The Perkin-Elmer Corpora-
tion assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license, and it can be used or
copied only in a manner permitted by that license. Any copy of the described software
must include the Perkin-Elmer copyright notice. Title to and ownership of the described
software and any copies thereof shall remain in The Perkin-Elmer Corporation.

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by Perkin-Eimer.

The Perkin-Elmer Corporation, Computer Systems Division 2 Crescent Place, Oceanport, New Jersey

© 1980 by The Perkin-Elmer Corporation

Printed in the United States of America

07757

TABLE OF CONTENTS

PREFACE

CHAPTERS

1 SYSTEM DESCRIPTION

1.1 INTRODUCTION

1.2 PROCESSOR

1¢2.1 Program Status Word (PSW)

1211 Register Set Select (R)

12¢.1.2 Condition Code (C,V,G,L)

142143 Location Counter

1¢2¢2 General Registers

1¢2.3 Floating-Point Registers

1.3 PROCESSOR INTERRUPTS

1.4 RESERVED MEMORY LOCATIONS

1«5 DATA FORMATS

1¢5.1 Fixed-Point Data

1¢5¢2 Floating=-Point Data

1.5.3 Logical Data

T5. 4 Decimal String Data

1.5.4 Alphanumeric String Data

1.6 DATA ALIGNMENT

1.7 INSTRUCTION ALIGNMENT

1.8 INSTRUCTION FORMATS

14801 Introduction

18.2 Branch Instruction Formats

18.2 Programming Examples

1.8.4 Register-to-Register (RR) Format

1.8.5 Short Form (SF) Format

1¢8.6 Register and Indexed Storage One (RX1) Format

1.8.7 Register and Indexed Storage Two (RX2) Format

1.8.8 Register and Indexed Storage Three (RX3)
Format

1.8.9 Register and Immediate Storage One (RI1)
Format

29-747 ROO u4/81

xiii

—_
[}
-

]
DN B

[QT S i G T G Y
!

L]
o

CHAPTERS (Continued)

ii

1.8.10

1.8.11

Register and Immediate Storage Two (RI2)
Format

Register and Indexed Storage/Register and

Indexed Storage (RXRX) Format

SYSTEM CONTROL

2.1

2.2

NNV
e o o
www
o o
N =

NNNN
e o o o
s FEEFE
e o o
WA -

MONNDDDNNNND
e @ e & & o & o
[NN NS NG R N
o o
~NoOnmEFE WD -

[\S]
.
($)]
.
@

2.5,9
2.5.10
2.5.11
2.5.12
2.5.13
2.5.14
2.6

2.7

INTRODUCTION

CONFIGURATION

SYSTEM CONTROL PANEL SWITCHES and INDICATORS

Key-Operated Security Lock
Control Switches

OPERATING INSTRUCTIONS
Power~-Up

Entering Console Service
Initial Program Load (IPL)

SYSTEM TERMINAL COMMANDS

Select an Address and Examine "o"
Increment and Examine Next Location "+"
Decrement and Examine Prior Location “-"
Modify Current Location “="

Examine General Register "R"

Modify General Register "“="

Examine Single-Precision Floating=-Point
Register "F"

Modify Single-Precision Floating-Point
Register *=¢

Examine Double-Precision Floating-Point
Register "D"

Modify Double-Precision Floating-Point
Register "="

Examine Program Status Word "P"

Modify Program Status WHord “="

Execute Single Instruction ">"

Enter Run Mode "“<"

MEMORY INITIALIZATION

SYSTEM TERMINAL PROGRAMMING INSTRUCTIONS

LOGICAL OPERATIONS

3.1

INTRODUCTION

LOGICAL DATA FORMATS

OPERATIONS

N
1]
-

[}] 1
Tyt Eww

NN NNDDON
!
NNN NN

N
1
o

2-11/2-12

29-747 ROO 4/81

CHAPTERS (Continued)

w ww
o o o
www
e o o
w N -

w
o e 6 ¢ o ¢ o o .
=

[LEGEGESGRORGNOGEGRORGRE NGRS NORCGES BRSNS, NOGRG R RN NORS, N RG NGNS, RO NCNS, NGRS NS N NSNS, W

[L L] * L] LJ L] [) L] L [) L] L]] (] [) L] . . [) L]

L L * L[] L] [) L] L] . L]

EFLWWLWWWWWLWWWWWNRNNDNNNNNNNNNNNNNNRR Y a3 aa00D0NTOFEWND 2

2 OWVWREJOONNEWN20OVONAANNLEWN=200VOIINNEFEWNO0

.

WWWWLwWLWWLLWWLWWWLWWWLWWWWLWLWWLWLLWLWWWWLWWLWWWLWWWWWLLLWLWWWWW

4 BRANCHING

4.1

Boolean Operations
Translation
List Processing

LOGICAL INSTRUCTION FORMATS

LOGICAL INSTRUCTIONS

Load (L, LR, LI)

Load Immediate Short (LIS)

Load Complement Short (LCS)

Load Halfword (LH, LHI)

Load Address (LR)

Load Real Address (LRA)

Load Halfword Logical (LHL)

Load Multiple (LM)

Load kyte (LB, LBR)

Exchange Halfword Register (EXHR)
Exchange Byte Register (EXBR)
Store (ST)

Store Halfword (STH)

Store Multiple (STHM)

Store Byte (STB, STBR)

Compare Logical (CL, CLR, CLI)
Compare Logical Halfword (CLH, CLHI)
Compare Logical Byte (CLB)

AND (N, NR, NI)

AND Halfword (NH, NHI)

OR (0, OR, 0I)

OR Halfword (OH, OHI)

Exclusive OR (X, XR, XI)
Exclusive OR Halfword (XH, XHI)
Test Immediate (TI)

Test Halfword Immediate (THI)
Shift Left Logical (SLL, SLLS)
Shift Right Logical (SRL, SRLS)
Shift Left Halfword Logical (SLHL, SLHLS)
Shift Right Halfword Logical (SRHL, SRHLS)
Rotate Left Logical (RLL)

Rotate Right Logical (RRL)

Test and Set (TS)

Test Bit (TBT)

Set Bit (SBT)

Reset Bit (RBT)

Complement Bit (CBT)

Cyclic Redundancy Check (CRC12, CRC16)
Translate (TLATE)

Add To List (ATL, ABL)

Remove From List (RTL, RBL)

INTRODUCTION

29-747 ROO 4/81

iii

CHAPTERS (Continued)

4.2 OPERATIONS 4=-1
G261 Decision Making 4-1
4.2.2 Subroutine Linkage 4-2
4.3 BRANCH INSTRUCTION FORMATS 4-2
L.y BRANCH INSTRUCTIONS 4-2
bol.1 Branch on True (BTC, BTCR, BTBS, BTFS) 4-3
4,4,2 Branch on False (BFC, BFCR, BFBS, BFFS) 4-4
L.4.3 Branch and Link (BAL, BALR) 4-5
GolU. b Branch on Index Low or Equal (BXLE) 4-7
4.,4,5 Branch on Index High (BXH) 4-9
4.5 EXTENDED BRANCH MNEMONICS 4-11
4.5.1 Branch on Carry (BC, BCR, BCS) 4-13
Ue5.2 Branch on No Carry (BNC, BNCR, BNCS) 4-14
L.5.3 Branch on Equal (BE, BER, BES) 4-15
4.5.4 Branch on Not Egqual (BNE, BNER, BNES) 4-16
U.S-S Branch on LOV (BL' BLR’ BLS) u"17
4,5.6 Branch on Not Low (BNL, BNLR, BNLS) 4-18
B.5.7 Branch on Minus (BM, BMR, BHMS) 4-19
4.5.8 Branch on Not Minus (BNM, BNMR, BNNMS) 4-20
4.5.9 Branch on Plus (BP, BPR, BPS) 4-21
4.5.10 Branch on Not Plus (BNP, BNPR, BNPS) 4-22
4.5.11 Branch on Overflow (BO, BOR, BO0S) 4-23
4.5.12 Branch on No Overflow (BNO, BNOR, BNOS) 4-24
4.5.13 Branch on Zero (BZ, BZR, BZS) 4-2¢
4.5.14 Branch on Not Zero (BNZ, BNZR, BNZS) 4-25
4.5.15 Branch (Unconditional) (B, BR, BS) y-27
4e5.15 No Operation (NOP, NOPR) 4-28
5 . FIXED-POINT ARITHMETIC
5.1 INTRODUCTION 5-1
5.2 FIXED-POINT DATA FORMATS 5-1
5.3 FIXED-POINT NUMBER RANGE 5-2
S.4 OPERATIONS 5-2
55 CONDITION CODE 5-3
5.6 FIXED-POINT INSTRUCTION FORMATS 5-3
S5¢7 FIXED-POINT INSTRUCTIONS 5-4
5¢7.1 Add (R, AR, AI, AIS) 5-5
5.702 Add Halfword (AH' AHI) 5‘7
5.7.3 Add to Memory (AHM) 5-9
5.7.4 Add Halfword to Memory (AHM) 5-11
5.705 SuhtraCt (SI SR' SI’ SIS) B 5-13
5.7.6 5-15

Subtract Halfword (SH, SHI)

iv

29-747 ROO u4/81

CHAPTERS (Continued)

oot
e & » &6 ¢ o ¢ o ¢ ¢ o
NN NN NNNNNNY
® & 0 o & o o o o & o
P J YO W W W S G Vo s « IR)

NOOE WN =20

6

6.1
6.2
6.3
6.3.1
6.3.2
6.3.3
6.3.4
6.3.5
6.3.6
6.3.7
6.3.8
6.4
6.5
6.5.1
6.5.3
6.5.3
6e.5.U
655
6.5.6
6.5.7
6.5.8
6.5.9
6.5.10
65411
6.5.12
6.5.13
6.5.14
6.5.15
6.5.16

Compare (C, CR, CI)

Compare Halfword (CH, CHI)

Multiply (M, MR)

Multiply Halfword (MH, MHR)

Divide (D, DR)

Divide Halfword (DH, DHR)

Shift Left Arithmetic (SLRA)

Shift Left Halfword Arithmetic (SLHA)
Shift Right Arithmetic (SRA)

Shift Right Halfword Arithmetic (SRHR)
Convert to Halfword Value Register (CHVR)

FLOATING-POINT ARITHMETIC (OPTIONAL)

INTRODUCTION
FLOATING-POINT DATA FORMATS

FLOATING-POINT NUMBER
Floating-Point Number Range
Normalization

Equalization

True Zero

Exponent Overflow

Exponent Underflow

Guard Digits and R*-Rounding
Conversion from Decimal

CONDITION CODE

FLOATING-POINT INSTRUCTIONS

Load Floating-Point (LE, LER, LEGR)

Load Positive Floating-Point Register (LPER)
Load Complement Floating-Point Register
(LCER)

Load Multiple Floating-Point (LME)

Load General Register from Floating-Point
Register (LGER)

Store Floating~-Point (STE)

Store Multiple Floating-Point (STME)

Add Floating-Point (AE, AER)

Subtract Floating-Point (SE, SER)

Compare Floating-Point (CE, CER)

Multiply Floating-Point (ME, MER)

Divide Floating-Point (DE, DER)

Fix Register (FXR)

Float Register (FLR)

Load Double-Precision Floating-Point (LD, LDR,
LDGR)

Load Positive Double-Precision Register
(LPDR)

29-747 ROO 4/81

5-17
5-18
5-20
5-22
5-24
5-27
5-29
5-30
5-31
5-32
5-33

(o 0> W0, Mo Wo Mo, W W, N0,
1
OCONITANOTOE W

CHAPTERS (Continued)

vi

6.5.17
6.5.18
6.5.19

6.5.20
6+5.21

6.5.24
6+5.25
65426
6¢5.27
6.5.28
6.5.29
6.5430

6¢5.31

Load Complement Double-Precision Register
(LCDR)

Load Multiple Double-Precision Floating-
Point (LMD)

Load General Registers from Double-Precision
Floating-Point Register (LGDR)

Store Double-Precision Floating-Point (STD)
Store Multiple Double-Precision Floating-
Point (STHD)

Add Double-Precision Floating-Point (AD, ADR)
Subtract Double-Precision Floating-Point (SD,
SDR)

Compare Double-Precision Floating-Point (CD,
CDR)

Multiply Double-Precision Floating-Point (MD,
MDR)

Divide Double-Precision Floating-Point (DD,
DDR)

Fix Register Double-Precision (FXDR)

Float Register Double-Precision (FLDR)

Load Single-Precision Floating-Point

Register from Double (LED, LEDR)

Load Double-Precision Floating-Point Register
from Single (LLCE, LDER)

Store Double-Precision Floating-Point Register
in Single-Precision Memory (STDE)

STRING OPERATIONS

71
7.2
7.2.1
Te2.2
73
Tl
Tele1
Telo2
Tel.3
Telie ld
Tale5
Telie6
Telie?

INTRODUCTION

DECIMAL DATA FORMAT DEFINITIONS
Packed Decimal
Unpacked (Zoned) Decimal

DECIMAL AND ALPHANUMERIC STRING INSTRUCTION
FORMATS

STRING INSTRUCTIONS

Load Packed Decimal String as Binary (LPB)
Store Binary as Packed Decimal String (STBP)
Move Translated Until (MVTU)

Move (MOVE, MOVEP)

Compare (CPAN, CPANP)

Pack and Move (PMV, PMVA)

Unpack and Move (UMV, UMVA)

HIGH SPEED DATA HANDLING INSTRUCTIONS (OPTIONAL)

8.1

INTRODUCTION

6-49/6-50

NNN NN
|
- D OO E W

£ N0O

29-747 ROO 4/81

CHAPTERS (Continued)

DATA HANDLING INSTRUCTION FORMATS 8-1

8.2

8.3 DATA HANDLING INSTRUCTIONS 8-1
8.3.1 Process Byte (PB) 8-2
8.3,2 Process Byte Register (PBR) 8-y

9 INPUT/OUTPUT OPERATIONS

9.1 INTRODUCTION AND CONFIGURATION OF I/O0 SYSTEM 9-1
9.2 DEVICE CONTROLLERS 9-1
9.2.1 Function 9-1
9.2.2 Device Addressing 9-2
9.2.3 Processor/Controller Communication 9-2
9.2.4 Device Priorities - External Interrupt Levels:
Interrupt Queuing 9-2
9.3 INTERRUPT SERVICE POINTER TABLE 9-3
9.4 CONTROL OF I/O0 CPERATIONS 9-4
9.5 STATUS MONITORING I/O 9-4
9.6 INTERRUPT DRIVEN I/O 9-5
9.7 SELECTOR CHANNEL I/O 9-6
9.7.1 Introduction 9-6
9.7.2 Selector Channel Devices 9-7
9.7.3 Selector Channel Operation 9-7
9.7.4 Selector Channel Programming 9-3
9.8 I/0 INSTRUCTION FORMATS 9-9
9.9 I/0 INSTRUCTIONS 9-9
%9.9.1 OQutput Command (OC, OCR) 9-10
9.9.2 Sense Status (SS, SSR) 9-11
9.9.3 Read Data (RD, RDR) 9-12
9.9.4 Read Halfword (RH, RHR) 9-13
9.9.5 Write Data (WD, WDR) 9-14
9.9.6 Write Halfword (WH, WHR) 9-15
9.9.7 Autoload (AL) g9-16
9.9.8 Simulate Channel Program (SCP) 9-18
9.10 AUTO DRIVER CHANNEL 9-19
9.11 CHANNEL COMMAND BLOCK 9-19
S.11.1 Introduction 9-19
9.11.2 Subroutine Address 9-20
9.11.3 Buffers 9-21
9.11.4 Translation 9-21
9.11.5 Check Word 9-22
9.11.6 Channel Command Word 9-23

29-747 ROO 4/81 vii

CHAPTERS (Continued)

9.11.7 Valid Channel Command Codes 9-25
9.11.8 General Auto Driver Channel Programming
Procedure 9-26

10 STATUS SWITCHING AND INTERRUPTS

10.1 INTRODUCTION 10-1
10.2 PROGRAM STATUS WORD (PSW) AND RESERVED

MEMORY LOCATIONS 10-2
10241 Program Status Word 10-3
10.2.1.1 Memory Access Level Field (LVL) 10-3
10.2.1.2 Floating-Point Masked Mode (FLM) 10-3
10.2.1.3 Interruptible Instruction in Progress (IIP) 10-3
10¢2.1.4 Wait State (W) 10«4
10.2.1.5 I/0 Interrupt Mask (I) } 10-4
10.2.1.6 Machine Malfunction Interrupt Enable (M) 10-5
10¢2.1.7 Floating-Point Underflow Interrupt Enable

(FLU) 10-5
10.2.1.8 Relocation/Protection Enable (R/P) 10-6
10.2.1.9 System Queue Service Interrupt Enable (Q) 10-6
10.2.1.10 Protect Mode Enable (P) 10-6
10.2.1.11 Register Set Select Field (R) 10-7
10e2e1612 Condition Code (c' V, G’ L) R 10-8
10.2.2 PSW Location Counter (LOC) 10-8
10243 Reserved Memory Locations 10-9
10.3 INTERRUPT TIMING AND PRIORITY 10-1)
10.3.1 Maskable and Nonmaskable Interrupts 10-10
10.3.2 Interrupt Timing 10-12
10.3.3 Interrupt Precedence 10-13
10.3.4 Interruptible Instructions 10-14
10.4 PROCESSOR MODES 10-15
10.4.1 Console Mode 10-15
10.4.2 Run Mode 10-16
10.4.3 Single-Step Mode 10-17
10.5 STATUS SWITCHING 10~ 18
10.5.1 Jllegal Instruction Interrupt 10-19
10.5.2 Data Format Fault Interrupt 10-19
10.5.2+.1 Alignment Faults 10-20
10¢5¢2.2 Invalid Digit Faults 10-21
10.5.3 Relocation/Protection (MAT) Fault Interrupt 10-21
10.5.4 Machine Malfunction Interrupt 10-22
10.5.4.1 Early Power Fail Detect and Automatic

Shutdown 10-24
10.5.4.2 Power Restore 10-25
10548021 If the LSU is Disabled 10-25
10.5.4.2.2 If the LSU is Enabled 10-26
10.5.4.3 Noncorrectable Memory Error 10-26
10.5.4.4 N

onconfigured Memory Address 10-28

viii 29-747 ROO 4/81

CHAPTERS (Continued)

10.5.4.5
10.5.5

105451
10.5.5.2

10.5.6
10.5.7
10.5.8
10.5.9
10.5.10

10.6
10.641
10.6.2
10.6.3
10.6.4
10.645
10.6.6
10.6.7
10671
10¢6.7.2

Shared Memory Power Fail Detect (Jptional)
Input/Output Device (I/0) Interrupts
Priority Levels

Immediate Interrupt-Auto Driver Channel
Operation

Simulated Interrupt

System Queue Service (SQS) Interrupt
Supervisor Call (SVC) Interrupt

System Breakpoint Interrupt

Arithmetic Fault Interrupt

STATUS SWITCHING INSTRUCTIONS

Load Program Status Word (LPSW)

Load Program Status Word Register (LPSWR)
Exchange Program Status Register (EPSR)
Simulate Interrupt (SINT)

Supervisor Call (SVC)

System Breakpoint (BRK)

Privileged System Function (PSF)

Read Error Logger (REL)

Load Process Segment Table Descriptor
(LPSTD)

Load Shared Segment Table Descriptor (LSSTD)
Store Process State (STPS)

Load Process State (LDPS)

Save Interruptible State (ISSV)

Restore Interruptible State (ISRST)

Store Byte, No ECC (XSTB)

Reset Memory Voltage Failure (RMVF)

11 MEMORY MANAGEMENT

11.1

11.2
11.2.1
11.2.2
11.2.2.1
11.2.2.2
11.2.3

11.3

-
-d
L]

1.

-) -
- -t
¢ o .
e o
N -

- -

- ey

. .
wWwwwwwww

-

-

.

e o 6 o o o o o
WWWWNNON
o o o

w N =

INTRODUCTION

ADDRESS SPACE

Physical Address Space

Program Address Space

Segment Field

Offset Field

Selection of Program or Physical Addressing

TRANSLATION FROM PROGRAM TO PHYSICAL
ADDRESS SPACE

Shared and Private Segments

Segment Table Descriptors and Their Use
Format of a Segment Table Descriptor
Setting the Program Address Space Size
Segment Table Entries

Segment Table Entry Size

Hardware Segment Table Entry

Software Segment Table Entry

29-747 ROO 4u/81

10-29
10-30
10-30

10-31
10-34
10-35
10-36
10-37
10-37

10-38
10-39
10-40
10-41
10-42
10-43
10-44
10-45
10-46

10-50
10-51
10-52
10-53
10-55
10-56
10-57
10-58

11-1

11-3
11-3
11-3
11-4
11-4
11-5

11-5
11-6
11-6
1-7
11-7
11-8
11-8
11-8
11-12

ix

CHAPTERS (Continued)

11.4 MEMORY ADDRESS TRANSLATOR FAULTS
11.4.1 Conditions that Cause MAT Faults
11ele1e1 EST or SST Size Exceeded Fault
11.4.1.2 Nonpresence Fault
11«41«33 Access Level Fault
1M1..1.4 Access Mode Faults
11.U.1.5 Segment Limit Fault
11.4.2 Fault Precedence
11.4.3 MAT Fault Handling Routine
110,048 Reexecution c¢cf Faulting Instructions
11.4.5 EFffect of System Initialization on the MAT
11.5 MEMORY MANAGEMENT INSTRUCTIONS
11.5.1 Load Process Segment Table Descriptor (LPSTD)
11.5.2 load Shared Segment Table Descriptor (LSSTD)
APPENDIXES
A OP-COLE MAP
B INSTRUCTION SUMMARY - ALPHABETICAL BY MNEMONIC
C INSTRUCTION SUMMARY - NUMERICAL
D ARITHMETIC REFERENCES
E I/0 REFERENCES
F CCNSCLE SERVICE ROUTINE FLCWCHART
FIGURES
1-1 Model 3210 Processcr Block Diagram
1-2 Program Status Weord
1-3 Register Set Numbering
1-4 Instruction Formats
1-5 Sample Progranm
1-6 RXRX Formats
2-1 System Control Panel
2-2 Model 550 Keyboard layocut

Wwwww
!
MEWN =

Logical Data

Translation Table Entry
Circular List Definition
Circular lList

LRA Example

11-16
11-16
11-16
11-17
11-17
11-17
11-17
11-18
11-18
11-19
11-19

11-20
11-20
11-21/11-22

LI N |
N aeEN
N wN

- e d —d =
i]

NN
L]
w -

wwtfww
1]
- W N -

29-727 ROO u4/81

FIGURES (Continued)

INDEX

Flowchart for CRC Generation
List Processing Instructions

Fixed-Point Data Formats

Exponent Overflow
Exponent Underflow

Packed Decimal Format
Unpacked Decimal Format

Channel Command Block
Channel Command Word
Auto Driver Channel Flowchart

Program Status Word (PSW)

Reserved Memory locations

Schematic Diagram of Interrupt System
Architecture :

Machine Malfunction Status Word (MMSW)
Memory Address Translation

Program Address

Segment Table Descriptor

Segment Table Entry

SYSTEM TERMINAL SUPPORT COMMAND SUMMARY

FIXED-POINT FORMAT RELATIONS
FLOATING/FIXED-POINT RANGES

INTERRUPT PRIORITY LEVEL/REGISTER SET SUMMARY

SUMMARY

SEGMENT ACCESS FIELD SETTINGS

29-747 ROO 4/81

&N

10-32
10-32

11-10

Index-1

xi

FREFACE

The Model 3210 Processor User's Manual provides programming and
operating information for the System. The programmer is provided
with informaticn on the 32-bit system architecture and the unique
memory management scheme, as well as a description of each
instruction in the repertoire. The instruction descriptions
include valuable system-related information presented in the forn
of programming notes and instruction examples.

Information pertaining to the system control terminal is given to

facilitate program preparaticn and execution for the systenm
programmer and operatore.

29-747 ROC u4/81 xiii

CHAPTER 1
SYSTEM CESCRIPTION

1«1 INTROCUCTION

The Mcdel 3210 processor is designed to meet the needs for high
performance and reliability in a 32-bit minicomputer. The
architecture has improved errcr recovery capabilities <for +those
arplications where fault tclerance is a necessity, and allows
direct addressing of up to 4 megabytes of memory 4implemented in
MOS with Error-Correction Ccde (ECC).

Through the use of 32-bit general registers and a comprehensive
instruction set, the Model 32210 processor provides fullword data
processing power and direct memory addressing up to a limit of 8
megabytes. The system is shown in block diagram form in Figure
1-1. The instruction set includes:

halfword and fullword arithmetic and logical operations
optional single-precision and double-precision floating-point
list rrocessing

cyclic redundancy checking

bit and byte manipulations

alrhanumeric and decimal character string processing
decimal/binary ccnversions

instructions designed to improve operating system performance

With this enriched rerertcire and direct memcory addressing,
coding and debugging time is reduced to a minimum.

Eight sets of 1€ 32-bit general registers are provided. Register
set selection 1is controlled by bits in the Program Status Word

(PSH). Register-to-register instructions permit operations
between any of the 16 registers in the current set, eliminating
redundant 1loads and stores. The multiple register set

organization eliminates the overhead 4incurred in saving and
restoring registers when respcnding to interrupts.

The Memory Address Translatcr (MAT) provides automatic progranm
segmentation, relocation, and protection. The protect mode
enables detection of rprivileged instructions. These two features
are 1invaluatle in process control, data communication, and
time-sharing operations because they prevent a running program
from interfering with the system integrity.

29-747 ROO 4/81 1-1

L8/h 008 LhL-6C

556-4

Figure 1-1

Model 3210 Processor Block Diagram

DIRECT
MEMORY
ACCESS
l I 4 CARTRIOGE
MEMORY SELECTOR DIsK
MAIN CONTROLLER CHANNEL
MEMORY (ERROR CORREC-
TION)
T e
——
MEMORY
ADDRESS
TRANSLATOR MAGNETIC
TAPE
4 9 S)
PSW (STATUS)
————————————————— -= 10 24 28 31
|
| C ENCEEN
REGISTERS REGISTERS | 40 63 p PRINTER
< 8 SETS OF 16 32-BIT GENERAL REGISTERS
1 | tocaTion counter | a
1]
| w —]
!]
1 INSTRUCTION -
L 1 1 REGISTER —
A |FLoaTiNG R1_ JA2
"B POINT : op My x
ALU | [—] FLOPPY
[MEDIA
FLOATING-POINT OPTION 1 T .
e . e v = - — — —— — e e o o \ J DISK
CARD
READER
< ‘
s
] 2
w D] e
FIXED = x
CONTROL P FIXED-POINT S
STORE & ARITHMETIC]
F LOGIC &
UNIT 5 ._J UNIVERSAL
2 cLOCK
MICROINSTRUCTION A 8
SEQUENCING AND _
DECODE LOGIC SYSTEM
TERMINAL
b 4 N
& 1 3
cPy

The Model 3210 supports up to 4 Mb of directly addressable MOS
memory. Error correction is standard and is performed across
every 32-bit fullword in memory wusing a 7-bit modified
Error-Correcting Code (ECC): All single-bit errors are detected
and ccrrected; all double-bit errors and most multiple-bit errors
are detected. The memory error 1logger identifies the memory
module reporting a fault and indicates the location of the faulty
memery chir.

In addition to conventional means of ©programmed I/O, the
processor automatically acknowledges all I/0 4interrupts and
performs much c¢f the required overhead before activating an
interrupt service routine. The auto driver channel can perfornm
data transfers with character translation, longitudinal or cyclic
redundancy checking, and data buffer chaining without
interrupting the running prcgrame.

Refer to the fcllowing manuals for further information:

Common Assembly Language (CAL) User's Manual,
Fublication Number 29-640

ESELCH Prcgramming Manual, Publication Number 29-%529

ELCMA Bus Universal Interface Instruction Manual,
Publication Number 29-423

Mcdel 3210 Maintenance Manual, Publication Number 47-022

29-747 ROO 4/81 1-3

1.2 FPROCESSOR

The Central Frocessing Unit (CPU), or processor, controls
activities in the systen. (See Figure 1-1.) It executes
instructions in a specific sequence and performs arithmetic and
logical functions. Included 4in the processor's components are
the following:

e Prcgram status word register
e General registers
e Hardvare multiply and divide

1«21 Program Status Word (PSW)

The 64-bit Program Status Word (PSW) defines the state of the
processor at any given time. (See Figure 1-2.)

1321

0 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 27.28 29 30 31
L Fit F R
\% Lt WIlHIMILEI /P QjpP R ClVv|G]L
L M| P 9)
32 39 40 63
LOCATION COUNTER

Figure 1-2 Frogram Status Word

Rits 0:31 are reserved for status information and interrupt
masks. Bits 32:63 contain the location counter. Unassigned PSWH
bits must not be used and must always be 2zero. Status
information and interrupt mask bits are defined as follows:

Bits 0:9 Reserved Must be zero

Bits 10:11 LVl Memory access level

Bit¢ 12 Reserved Must Lte zero

Bit 13 FLHM Floating-point arithmetic masked mode
Bit 14 IIP Interruptible instruction in progress
Bit 1¢ Reserved Must ke =zero

BRit 16 W Wait state

Bit 17 I I/0 interrupt mask

Bit 18 M Machine malfunction interrupt mask
BRit 19 FLU Floating-point arithmetic underflow mask
Bit 20 I I/0 interrupt mask

Bit 21 R/P Relccation/protection interrupt mask
Bit 22 C System queue interrupt mask

Bit 23 P Protect mode

Bits 24327 R Register set select bits

Bits 28:31 c,v,G,L Condition code

Bits 32:39 Reserved Must be zero

Bits 40:63 Program address (location counter)

Refer to Chapter 10 for details on the interrupt mask bits.

1-4 29-747 ROO u4/81

1¢2.17+1 Register Set Select (R)

Bits 24:27 of the PSW are used to designate the current register
set. Register sets are numbered 0 through 15. The processor has
eight sets of general registers. (See Figure 1-3.)

558
REGISTER
SET DESIGNATION
NUMBER
0
; RESERVED FOR INTERRUPTS
3
4
5 MAY BE ALLOCATED BY THE OS
6 FOR GENERAL PURPOSE USE.
7
8
9
10 UNIMPLEMENTED
1 SETS
12
13
14
15 GENERAL PURPOSE

Figure 1-3 PRegister Set Numbering

1-20102 Condition COde (C,V'G'L)

Bits 28:31 of the PSW contain the condition code. As part of the
execution of certain instructions, the state of the «condition
code may be <changed to indicate the nature of the result. Not
all instructions affect the ccndition code. The state of the
condition code may be tested with conditional branch
instructions. Each bit in the <condition code 1is set 1if the
corresponding condition occurred as a result of the last
instruction that affected the condition code. The normal
interpretation of these bits is:

Arithmetic carry, borrow, or shifted carry
Arithmetic overflow

Greater than zero

Less than zero

O OO a0
OO - Ol
O -2 O Ol
- O O Oft+

29-747 ROO 4/81 1-5

1213 Location Counter

The location counter contains the address of the instruction
currently being executed by the processor, and points to that
instruction until it has successfully completed execution. Once
this execution is completed, the location counter is incremented
by 2, 4, 6, 8, 10, or 12 (depending upon the instruction
executed), and the next instruction is fetched. 1In the case of
a branch instruction, the location counter is 1locaded with the
address to which control 'is being transferred, and the next
instruction is fetched from that address.

If an instruction is not successfully completed due to a fault or
other interrupting condition, the location counter contains the
address of the faulting or interrupted instruction. When a
program interruption is due to an incorrect branch address, the
location counter contains the branch address and not the location
of the branch instruction.

1.2.2 General Registers

The processor has eight register sets, numbered 0 through 6, and
15 (see Figure 1-3). There are 16 registers in each set and each
register 1is 32 bits wide. PRegister set selection is determined
by the state of bits 24:27 of the current PSW. Registers 1
through 15 of any set may be used as index registers.,

When an interrupt occurs, the processor loads pertinent
information into preselected registers o¢f the register set
selected by the new PSW. For detalils of this operation, refer to
Chapter 10,

1«23 Floating-Point Registers

There are eight optional single-precision floating-point
registers, each 32 bits wide. These registers are identified by
the even numbers 0 through 14.

There are eight optional double-precision floating=-point
registers, each 64 Dbits wide. These registers are also
jdentified by the even numbers 0 through 14 and are separate from
the single-precision floating-point registerse. Floating-point
operations must always specify the registers with even numbers.

1-6 29-747 ROO 4/81

1.3 PROCESSOR INTERRUPTS

The PSW that is loaded in the processor at any point in time is
called the current PSW. If either the status word or both the
location counter and status wcrd are changed, a status switch is
said to have occurred. This status switch can be caused
explicitly by executing special instructions, or it can be forced
to occur by an interrupt or fault. At the time of a status
switch, the current PSW that is saved is called the old PSW. The
PSW that replaces the current PSW is called the new PSW.

Interrupt conditions cause the entire PSW to be replaced by a new
PSW, thus breaking the wusual seguential flow of instruction
execution. When an interrurt «condition occurs, the processor
saves its <current PSW either in memory or in a pair of general
registers belonging to the register set selected by the new PSW.
It 1lcads information related to the interrupt condition in other
registers of this same set. A new PSW is loaded from a memory
location reserved for the specific interrupt condition. The
immediate interrupt is an exception to the rule. In this case,
the status portion of the new PSW, bits 0:31, is forced to a
preset value, and the location counter is locaded from a memory
location reserved for that interrupting device. Refer to Chapter
10 for details of interrupt processing.

1.4 RESERVED MEMORY LOCATICNS

Physical memory locations X'0°'-X*2CF*' are called reserved memory
locations. These locations contain the various new PSWs and
other information needed to handle interrupts.

X*000000*-X*00001F" Reserved; must be 2zero

X*000020°*-X*000027" Machine malfunction interrupt old PSW
X*000028°*-X*'00002B"* Used by console service microcode
X'00002C*=-X*00002F" Machine malfunction LM block start

X*000030*-X*000037"
X*'000038*-X*00003F"
X*000040°*-x'000043"
X°0000u44*-X*000047"

X*0000u8*~-X*0000ULF"
X*000050*-X*'00007F"

X*000080*-X*000083"
X*o000084*~Xx*000087"
X*000088°*~-X'00008F"

29-747 ROO u4/81

address
Illegal instruction
Machine malfunction
Machine malfunction
Machine malfunction
address
Arithmetic fault int
Boctstrapr loader and
table
System queue pointer
Power fall save area
System qgqueue service

interrupt new PSW
interrupt new PSW
status word

virtual (program)

errupt new PSH
device definition

pointer
interrupt new PSW

X*000090°*-X*000097" Relocation/Protection interrupt new PSW

X*000098°*-X*00009B" Surervisor call new PSW status
X*C0009C*-X*0000BB"* Sugervisor call new PSW location
counter values (16 halfwords)
X*0000BC*'-X*0000BF"* Reserved; must be zero
X*0000C0O0*-X"'0000CT7"* Reserved; must be zero
X*0000C8°*-X*0000CF" Lata format fault new PSW
X*0000D0*-X*0002CF"* Interrupt service pointer table
X*0002D0*-X*000ULCF" Exranded interrupt service pointer
table
X*0004D0*-X*0008CF" Expanded interrupt service pointer
table

These reserved locations play an important role in both interrupt
and input/output processing. (Refer to Chapters 9 and 10.)

211 lccation counter values are subject to MAT relocation if the
new FPFSW enables the MAT (bit 21=1). All other pointers contain
absolute addresses not subject to MAT relocation.

1.5 TATA FORMATS

The processor performs 1logical and arithmetic operations on
single bits, B-bit bytes, 16-bit halfwords, 32-bit fullwords, and
64-bit doublewords. This data may represent a fixed-point
number, a floating-point number, logical information, a bit or
byte array, or a decimal or alphanumeric byte string.

1¢5¢1 Fixed-Point Data

Fixed-point arithmetic operands may be either 16-bit halfwords or
32-bit fullwords. In fullword multiply and divide operations,
64-bit operands are manipulated. Fixed-point data is treated as
15-bit signed integers in the halfword format. Positive numbers
are expressed in true binary form with a sign bit of zero.
Negative numbers are represented in two's complement form with a
sign bit of one. The numerical value of zero is represented with
all bits =zero. Refer tc¢ Chapter £ for details of fixed-point
data representatione.

In fixed-point arithmetic and 1logical operations between a
fullword register and a halfwcrd operand, the halfword operand is
expanded to a fullword by propagating the most significant bit
into the high order bits before che cperation is started. This
permits the use of halfword ¢to fullword operations with
consistent results and provides space economy, since small values
do not require fullword locations.

1-8 29-747 ROO u4/81

Arithmetic operations on fixed-point halfword quantities may
produce results not entirely consistent with those obtained in a
16-bit processor. If this problem exists, the Convert to
Halfword Value Register (CHVR) instruction may be used to adjust
the result and the condition code, making them consistent with
the same operations in a 16-bit processor.

152 Floating-Point Data

A floating~pcint number consists of a 7-bit exponent in excess-64
notation and a signed fraction. The quantity expressed by this
number is the product of the fraction and the number 16 raised to
the power represented by the exponent. Each floating-point value
requires a 32-bit fullword or a 64-bit doubleword, of which eight
bits are used for the sign and exponent. The remaining bits are
used for the fraction. Refer to Chapter 6 for details of
floating-point data representatione.

Floating-point operations take place between the contents of a
floating-point register and another floating-point register, a
floating-point operand. contained in a fullword or doubleword in
memory, or a general register or pair of general registers.

1.5.3 Logical Data

Logical operations manipulate 8-bit bytes, 16-bit halfwords, and
32-bit fullwords. 1In addition, it is possible to perform logical
operations on single bits 1located in bit arrays. Refer to
Chapter 3 for details of logical data representation.

154 Decimal String Data

Decimal strings are strings of consecutive bytes in memory that
begin and end on byte boundaries. Information contained in a
decimal string may represent racked or unpacked decimal data.
Refer to Chapter 7 for details of decimal data formats and
operations.

1.5.5 Alphanumeric String Data

RAlphanumeric strings are strings of consecutive bytes in memory
that begin and end on byte boundaries. Information contained in
an alphanumeric string may represent any character stream
including decimal string data. Refer to Chapter 7 for details of
alphanumeric string data format and orerations.

29-747 ROO 4/81 1-9

1.6 TCATA ALIGNMENT

The following discussion 1i=s unique to the Model 3210
implementation and 1is presented fcr information only. Any
program that misuses a processor feature by taking advantage of
a peculiarity of one implementation may not work on a different
implementation.

Locations in main memory are numbered consecutively, beginning at
address '000000'. Although memory is addressable and alterable
to the byte 1level, machine accesses to memory involve only
halfwecrds or fullwords. Thcse instructions requiring a single
byte access actually access a halfword and then manipulate the
appropriate byte within the halfword.

Memory can be accessed only tc the halfword level; therefore, bit
31 of the address is truncated at the memory. A halfword fetch
at address '000051" and a fetch at address X'000050' produce the
same halfword. There is no warning mechanism telling the program
that it is fetching halfwords ¢n the ocdd byte boundary.

The CAL Assembler generates an error flag if it sees halfword
operations directed to an odd byte address or if it sees fullword
operaticns directed to other than a fullword address.

Pytes of information are addressed by theilr specific hexadecimal
address. Twc bytes form a halfword. Halfwords have an even
address, the address of +the 1left-most byte in the pair. Two
halfwords comprise a fullword. A fullword address is a multiple
of four (4 bytes) and is the address of the left-most halfword in
the rair. The hardware actually truncates the least significant
two address bits on fullword accesses, forcing proper alignment.
A data format fault is generated if a fullword access is directed
tc ar address that has bit 30 or 31 set; or if a halfword store
is directed to an address that has bit 31 set.

1«7 INSTRUCTION ALIGNMENT

User-level instructions are always aligned on halfword
boundaries. Any halfword address 1s valid regardless of the
length of the instruction worde. The CAL assembler generates

boundary errors 1if the assembled 1location counter for an
instruction becomes odd. At the machine 1level, an attempt to
make the instruction locaticn counter odd by branching or causing
a status swvitch is ignored by the hardware. In the Model 3210,
location counter bit 31 1is nct imrlemented and 1is therefore
always 2zero. Thus, a branch to address X'000051*' causes the
location counter to be set to X'0C0050°'.

1-10 29-747 ROO 4/81

1.8 INSTRUCTICN FORMATS

181 Introduction

Instruction formats provide a concise method of representing
required operations for easy interpretation by the processor,
Figure 1-4 shows the eight tasic formats. The following is a
list of abbreviations and their meanings as used in Figure 1-4.

OF Operation code
R1 First orerand register
R2 Second operand register
N A 4-bit immediate value
X2 Second operand single index register
L2 Second operand displacement
FX2 Second operand first index register
"SX2 Second operand second index register
A2 Second operand direct address
I2 Second operand immediate value
L1 Specifies the length of the first operand
L2 Specifies the length of the second operand
CPMOD Specifies a particular instruction within
the class srpecified by OP
ADD1 The effective first orerand address
ADD2 The effective second operand address
Many instructions may be exrressed in two or more formats. This

feature rrovides flexibility in data organization and instruction
sequencing. When working with the Common Assembly Language (CAL)
assembler, it is unnecessary to specify the instruction format.
The assembler selects the mcst economical format and supplies the
required bits in the machine code. When double indexing is
required, the assembler always chooses the RX3 format. (Refer to
the Common Assembly Language (CAL) Manual, Publication Number
29-640.)

29-747 ROO u4/81 1-11

%57-! REGISTER-TO-REGISTER (RR)

0 7 11 15
opP R1 R2
SHORT FORMAT (SF)
0 7 11 15
opP R1 N
REGISTER AND INDEXED STORAGE {(RX1)
0 7 1 15 18 31
oP R1 X2 0|0 D2
REGISTER AND INDEXED STORAGE 2 (RX2)
0 7 11 15 17 31
op R1 X2 1 D2
REGISTER AND INDEXED STORAGE 3 (RX3)
0 7 11 15 17 20 24 . 47
a7
opP R1 FX2 0110 SX2 A2 L
4 4
REGISTER AND IMMEDIATE STORAGE 1 (RI1)
0 7 11 15 31
opP R1 X2 12
REGISTER AND IMMEDIATE STORAGE 2 (RI12)
0 7 11 15 ., 47
& J
op R1 X2 12
Va4
4
REGISTER AND INDEXED STORAGE, REGISTER AND INDEXED STORAGE (RXRX)
0 7 11 12 . 31/47 39/55 43/59 . 63/79/95
s 7 LA 4
opP L1 . f\DD1 OPMOD L2 R ’/:\DD2
7 7 -’ -~
Figure 1-4 Instruction Formats

29-747 ROO u4/81

1.8.2 Branch Instruction Fecrrats

Branch instructions use the RR, SF, and all variations of the RX
formats. In the conditional branch instructions, however, the R1
field does not specify a register; instead, it contains a mask
value (labeled M1 in the instruction descriptions). This mask
value 1is tested with the condition code. The CAL assembler
provides a series of extended branch mnemonics, which makes it
possible to specify a conditional branch without specifying the
mask value explicitly. '

18¢3 Programming Examples

Each of the following examples refers to the sample assembly
language program shown in Figure 1-5. Note the use of symbolic
equates for general registers. Machine code generated and the
result of each instructicn are deprendent upon the physical and
logical rplacement of the instructions, respectively.

560 SERIES 3200 INSTRUCTION FORMAT EXAPOLES PAGE 1 18:21:44 02/09/79
PROG= $3200 ASSEMBLED RY CAL 03-066R05-01 ¢32-BIT)
1 §3200 PROG SERIES 3200 INSTRUCTION FORMAT EXAMPLES
2 CROSS
3 NORXS
0000 0005 5 RS EQU S GENERAL REGISTER 5
0000 0006 6 6 EQU & GENERAL REGISTER 6
0000 0007 7 R7? QU 7 GENERAL REGISTER 7
0000 0008 g R8 €QU 8 GENERAL REGISTER 8
0000 0009 9 39 FQu 9 GENERAL REGISTER 9
0000 000A 10 R10 EQU 10 GENERAL REGISTER 10
0000 0008 11 R11 €U 11 GENERAL REGISTER 11
0000001 245¢ 13 SF LIS RSe14 (RS) = %0000000E®
0000021 0865 15 AR LR R64RS ' ¢R6) = *0000000E"
000004T 4050 1000 17 RX1.EX1 STH RS5eX41000° (X91000%) = X00OOE®
0000081 4C56 OFF2 19 ’XA1EX2 STH R5¢X®OFF2°(R6) (X91000) = X*000E®
00000CI 4050 8004 =0000141 21 RX2.EX1 STH R5,L0C1 (LOC1) = X*000E®
0000101 4300 8004 =0000181 22 8 RI1.EX1
0000141 0000 0000 23 Loci oc Fege TWO HALFWORDS OF STORAGE
0000181 €890 8000 25 RIL1EXT LHI R94X*8000°¢ (R9) = YIFFFFB00O?
00001CI C895 8000 27 RI1.EX2 LHI R94X98000%(RS5) (R9) = Y®FFFFBO0F
0000201 F8AO 0000 8000 29 RIZ.EX1 LI R104X98000° (R10) = Y'0000B000?
0000261 F8BA 0001 7FFE 31 RI2.EX2 LI R11+Y*1T7FFE*(R10) (R11) = Y$O0O0CL1FFFE®
00002CT 4050 FFEA 0000141 33 RX2.EX2 STH RS5.LOCI (LOC1) = X¥DOOE®
0000301 4056 FFD2 =0000061 35 RX2.EX3 STH R5¢LOC1-14(R6) (LOC1) = X'0OOE®
0000341 S870 4001 0000 37 RX3.EX1 L R7+Y*10000° (R7) = (Y9010000°)
00003A1 5885 4501 FFEA 39 RNILEX2 L RB4Y?200009-28(R54R6) (RB) = (Y9020000°)
0000401 4300 FFBC =0000001 a0 8 SF
0000441 a2 END
\ J - -~ J A ’\ J \ J L J \u J
] '] ' 1
LOCATION OBJECT INFORMATION | LABEL | OPERANDS COMMENTS
COUNTER STATEMENT OP-CODE
NUMBER

Figure 1-5 Sample Progranm

29-747 ROO 4/81 1-13

561

562

1.8.4 Register-to-Register (RR) Format

0 7.8 11 12 15

opP R1 R2

In this 16-bit format, bits 0:7 contain the operation code; bits
8:11 contain the R1 field; and bits 12:15 contain the R2 field.
In most RR instructions, the register specified by R1 contains
the first operand, and the register specified by R2 contains the
second operand. For example:

Machine Code Label Assembler Notation

(=]

865 RR LR R6,R5

[——————— Second operand

First operand

Load Register (LR) instruction op-code

1«8.5 Short Form (SF) Format

0 7 8 1112 15

op R1 N

This 16-bit format provides space economy when working with small
values. Bits 0:7 contain the ocoperation code; bits 8:11 contain
the R1 field; and bits 12:15 contain the N field. 1In arithmetic
and logical operations, the register specified by R1 contains the
first cperand. The N field contains a 4-bit immediate value
(12:15) used as the second operand. For example:

Machine Code Label Assembler Notation

245E SF LIS R5,14

{~—————-Second operand

First operand

Load Immediate Short (LIS) instruction op-code

1-14 29-747 ROO u4/81

563

564-1

18.6 Register and Indexed Stotage One (RX1) Format

0 7 8 1 12 15 16 17 18 31

op R1 x2 |ofo]. D2

This is a 32-bit format in which bits 0:7 contain the operation
code; bits 8:11 contain the R1 field; bits 12:15 contain the X2
field; bits 16 and 17 must be 2zero; and bits 18:31 contain the D2
fielde In general, the register specified by R1 contains the
first operand. The second operand is located in memory at the
address obtained by adding the contents of the second operand
index register (specified by X2) and the 14-bit absolute address
contained in the D2 field. For example:

Machine Code Label Assembler Notation
4050 1000 RX1.EX1 STH R5,X*1000°
l Lefines second operand address
No index register specified

First operand

Store Halfword (STH) instruction op=-code

The second operand address is calculated as follows:

16 19 20 23 24 27 28 31

0001]0000J0OO0OO0O0}JO0O0O00O

Ll l
—— 14-bit absolute address X'1000"
Indicates RX1 format

No indexing is specified; therefore, the second operand address
is X*1000°*.

Machine Code Label Assembler Notation
4056 OFF2 RX1.EX2 STH RS,X'0FF2* (R6)
7 VrZe
] L — Tefines second operand address
Register 6 to rte used for indexing

First operand

Store Halfword (STH) instruction op-code

-
]
-
(&)}

29-747 ROO 4/81

The second operand address is calculated as follows:

565-1

16 19 20 23 24 27 28 31

oo0oo0O0Of1T1T1T1T]1]1T1T11]0010
L J
— 14-bit absolute address X'‘OFF2’
Indicates RX1 format

Second Operand Address

= contents of [2 field + contents of index register 6 (see
Figure 1-%5)

= X*'OFF2* + Y*'0000000E"

= Y*00001000°

1.8.7 Register and Indexed Storage Two (RX2) Format

0 7 8 1 .12 15 16 17 31

opP R1 X2 1 D2

This format provides relative addressing capability in a 32-bit
instruction wvord. Bits 0:7 contain the operand code; bits 8:11
contain the R1 specificaticn; bits 12:15 contain the X2
specification; bit 16 must always be one; and bits 17:31 contain
the relative displacement, C2.

In the RX2 format, the register specified by R1 contains the
first operand. The address of the secend operand, in memory, is
calculated by adding the value contained in the incremented
location counter (the address of the next sequential instruction)
and the sum of (1) the 32-bit representation of the 15-bit signed
number <contained in the D2 field, and (2) the contents of the
index register specified by X2. Negative numbers in the D2 field
are expressed in tvo's complement notation. For example:

Machine Code Label Assembler Notation
gggo 8004 BRX2.EX1 STH R5,L0C1
{ —————— Defines second cperand address
No index register specified

First operand

Store Halfword (STH) instruction op-code

1_16 29-7“7 ROO a/81

The second operand address is calculated as followus:

16 19 20 23 24 27 28 31

1T000}000O0jJO0OOO0|J]O0O1O00

L 1
L 15-bit positive relative displacement
Indicates RX2 format

Second Operand Address

= 32-bit expansion of contents of D2 field + contents
incremented location ccunter (see Figure 1-5)

Y*'00000004*' + Y*00000010°

= Y'00000014"
Machine Code Label Assembler Notation
4050 FFE4 RX2.EXZ STH R5,L0OC1

——— P

Defines second operand address

No index register specified

First operand

Store Halfword (STH) instruction op-code

The second operand address is calculated as follows:

5681 16 19 20 23 24 27 28 31

1111 t111}11110}10100

1 J
l [15-bit negative relative displacement
Indicates RX2 format

Second Cpefand Address

32-bit expansion of contents of D2 field + contents
incremented location counter (see Figure 1-5).

= Y*FFFFFFE4* + Y'00000030°

= Y'00000014"

29-747 ROO 4/81

of

of

569-1

570

Machine Code Label Assembler Notation

FFL2 RX2.EX3 STH R5,L0C1-14 (R6)

| &=
1o

]
i O

Defines second operand address

Register 6 to ke used for indexing

First operand

Store Halfword (STH) instruction op-code

The second operand address is calculated as follows:

16 19 20 23 24 27 28 3

t1T11f11111 1101|0010

L }

15-bit negative relative displacement
Indicates RX2 format

Second Operand Address

= 32-bit expansion of [2 field + contents of incremented

location counter + contents of index register 6 (see
Figure 1-5%)

Y'FFFFFFD2* + Y*00000034' + Y*0000000E"®
= Y'00000014"

1.8+.8 Register and Indexed Storage Three (RX3) Format

0 7 " 156 16 17 18 19 20 24 47

L
Vo

N

oP R1 FX2 oj1]o01}o SX2 A2

A

=
L4

This is a 48-bit format in which double indexing is permitted.
Bits 0:7 contain the operation code; bits 8:11 contain the R1
specification; bits 12:15 contain the first index specification,
FX2; bit 16 must be zero; bit 17 must be one; bits 18:19 must be
zero; bits 20:23 contain the second index specification, SX2; and
bits 24:47 contain a 24-bit address, A2. Second 1level indexing
is allovwed even if first level indexing is not specified.

1-18 29-747 ROO u/81

In general, the first operand is contained in the register
specified by R1. The second operand is located in memory. 1Its
memory address is obtained by adding the contents of the first
index register and the contents of the second index register, and

then adding to this result the contents of the A2 field. For
example:

Machine Code Label Assembler Notation
§g%g 4001 0000 RX3.EX1 L R7,Y*10000"°

Defines second operand address

Second level indexing not specified

Sprecifies RX3 format

First level indexing not specified

First operand

Load (1) instruction op-code

The second operand address is calculated as follows:

571-1

BITS 16 20 24 28 31 32 36 40 44 47

0 100f0000f00O0OI0O0OOTI1/0000/0000/000O0TO0[0O0O0TO
I L il |

24-bit absolute address Y'010000" ———
No Second Level Index
Indicates RX3 format

Second Operand Address

n

contents of A2 field

Y*'00010000°

29-747 ROO 4/81 1-19

Machine Code Label Assembler Notation

|n

885 4601 FFEUY RX3.EX2 L R8,Y'20000°'~-28 (R5,R6)

Defines second operand address

Register 6 tc be used for second level indexing

Specifies RX3 format

Register 5 tc be used for first level indexing

First operand

Load (L) instruction op-code

The second operand address is calculated as follows:
572-1
BITS 16 20 24 28 31 32 36 40 44 47

0100f0o1 100000000 1f1 11 1f1111f11100100
L L Il |

24-bit absolute address Y'O1FFE4’ ——
Register 6 for Second Level Index
Indicates RX3 format

Second Operand Address

= contents of A2 field + contents of index register 6 +
contents of index register 5 (see Figure 1-5)
= Y*OO0O1TFFE4* + Y*00O0Q0OQCOQE* + Y*0000000E"

= Y'00020000°

1.8.9 Register and Immediate Storage One (RI1) Format

573 ‘ 7 8 11 12 15 16 31

oP R1 X2 12

This fcrmat represents a 32-bit instruction word. Bits 0:7
contain the operand code; bits 8:11 contain the R1 specification:
anrd bits 16:31 ccntain the 16-bit immediate value, I2.

1-20 29-747 ROO 4/81

In this format,

operande. The

the register specified by R1 contains the first

32-bit effective second operand is obtained by
adding together the 32-bit rerresentation of the signed 16-bit
value contained in the I2 field, and the contents of the register

specified by X2. For example:

Machine Code

90 800

Label Assembler Notation

RI1.EX1 LHI R9,X*8000°

16-bit immediate value
No index register specified
First operand

Load Halfword Immediate (LHI) instruction op-code

The second operand is calculated as focllows:

574-1

16 20

24 28 31

1000 000

0joooo0ojo0oO0O0O0O

Second Operand

32-bit

Y*FFFF8

Machine Code

C895 8000

29-747 ROO u4/81 1

Sign Bit

representation c¢cf X*8000"

000°*

Label Assembler Notation

RIMT.EX2 LHI R9,X°*8000°'(RS)

16-bit immediate value
Index register £ specified
First operand

Load Halfword Immediate (LHI) instruction op-code

575-1

576

The second operand

is calculated as follows:

16 20 24 28 31
1000} 00O00O0 000O0}j0O0CO0O
L Sign Bit
Second Operand
32-bit representation cf X'8000' + the contents of the
index register 5 (see Figure 1-5)
Y*'FFFF8000' + Y*00OOOOCE’
Y*FFFF800F"
18.10 PRegister and Immediate Storage Two (RI2) Format
0 78 11 15 Py 47
oP R1 X2 12 ¢
7 7
This is a U48-bit dinstruction format. Bits 0:7 contain the

orperation

32-bit immediate value,

The

index

first

reqi

code; bits

8:11 contain the R1 specification; bits
12:15 contain the X2 specification; and bits 16:47 contain the

I2.

operand is contained in the register specified by R1.
The second operand is obtained by

ster, svecified by X2,
contained in the I2 field.

Machine Code

Féao

0020

8000

Label

RI2.EX1

First operand

adding the contents of the
and the 32-bit immediate value

Fcr example:

Assembler Notation

LI R10,X°8000°

32-bit immediate field

No index register specified

Load Immediate (LI) instruction op-code

29-747 ROO u4/81

The second operand is calculated as follows:

20

24 28 32 36 40 44 47
0000 00O00O0 0000 00O0O0]1T OO Ol OODDO}ODODOO 00O00O
l——3?2-bi'c immediate value
Second Operand
= contents of I2 field
= Y*00008000"
Machine Code Label Assembler Notation
F8BA 0001 7FFE RI2.EX?2 LI R11,Y*17FFE* (R10)
32-bit immediate field
Specifies index register 10 .
First operand
Load Immediate (LI) instruction op-code
The second operand is calculated as follows:

5781 16 20 24 28 32 36 40 44 47
0000 0000J]00O0DOO0OO0O0OT1 o1 111111111111 1110
1]

l-——————-32-btt immediate value
Second Orerand
= contents of I2 field + contents of index register 10 (see
Figure 1-5)
= Y*'00017FFE* + Y*00008000"
= Y*O0001FFFE®
29-747 ROO u4/81

18.11 Register and Indexed Storage/Register and Indexed Storage
(RXRX) Format (See Figures 1-4 and 1-6)

The PRXRX format resembles a pair of adjacent RX format
instructions, but represents only one instruction. Fach member
of the instruction pair may have any one of +the standard RX
formats. For example, the first member might be RX1 and the
second member might be RX3, resulting in a 10-byte instruction.
The rarticular RX format chcsen by the assembler for one menmber
is 4independent of that <chcsen for the other; thus, the
instruction can require 8, 10, or 12 bytes.

0P contains the operation code that defines the RXRX instruction
class. The actual operation to be performed is defined by the
OPMOD field.

The L1 field specifies the length of the first operand string.
If bit O of OPMOD is set, L1 is the length with a maximum value
of 1% If bit 0 of OPMOD is zero, the general register specified
by L1 contains the length. The L2 field specifies the length of
the second operand string. If bit 1 of OPMOD is set, this field
contains the length with a maximum value of 15. If bit 1 of
OPMOD is zero, the general register specified by L2 contains the
lengthe.

The effective address calculated for the first member is the
address of the left-most (lowest-address) byte of the first
operand string. The effective address calculated for the second
member is the address of the left-most byte of the second operand
string. An RX2 displacement calculated for either member is with
respect to the incremented location counter for that member.

Machine Code Label Assembler Notation

8C50 1000 0160 OFFO RX1.RX1 MOVE R5,X*1000°',R6,X'FFO°

—— Pefines second operand address

No 2nd operand index

Register 6 contains length of 2nd operand

OPMOL value for MOVE

Defines first operand address

No 1st operand index

Register 5 contains length of 1st operand

RXRX fcrmat op-code

In this example both members ¢f the RXRX instruction use the RX1
format. No indexing is specified for either member so the first
operand address is X*'1000°', and the =<=econd operand address is
X*Q0FFC'.

1-24 29-747 ROO 4/81

L8/h 0048 LhL-6C

sZ-1

579 RX1 OR RX2 RX1 OR RX2
e N e
- -
oP L1 | x2 D2 OPMOD L2 | X2 D2
RX1OR RX2 RX3
- M ~ A
opP L1 | x2 D2 OPMOD L2 | Fx2 {0100 | Sx2
RX3 RX1 OR RX2
o ~ e N
oP L1] Fx2 Jo100 | Sx2 A2 opmMoD | L2 | X2 D2
RX3 RX3
N, e N
N/)
oP Lt | FX2 |o100 | Sx2 A2 "OPMOD L2 | FX2 |0100 | SX2
AN
W ~
FIRST MEMBER SECOND MEMBER

Figure 1-6

RXRX Formats

Machine Code ' Label Assembler Notation

| oo

CAS 4601 FFE4 E160 4002 8000 RX3.RX3 MOVEP =10,Y*1FFE4*
17 7 [(R5,R6),=6,Y*28000"

Defines second operand address

No 2nd op second level indexing

Specifies RX3 format

Nd 2nd op first level indexing

2nd op length is 6 bytes

OPMOD value for MOVEP, immediate
lengths 1 and 2

Defines first operand address

Register 6 is second level
index for 1st op

Specifies RX3 format

Register 5 is first level index
for 1st op

1st or length is 10 bytes

RXRX format op=-code

In this example, both members of the RXRX instruction use the RX3
format. Double indexing is srecified for the first member and no
indexing is specified for the second member. The first operand
address is X*1FFE4* plus the contents of index registers 6 and 5.
The second cperand address is X'28000'. The length of the first
operand is 10 bytes and the second operand is 6 bytes.

1-26 29-7u47 ROO u/81

CHAPTER 2
SYSTEM CONTROL

2.1 INTRODUCTION

Operator control is provided by the system control panel and the
System Terminal, a microcode-supported device interfaced to the
system by an asynchronous line controller. The System Terminal
may be used as the operating system's console device, and may be
a visual display unit or a printing terminal. The asynchronous
interface must be strapped as device numbers X*10°* and X*11°'.

2.2 CONFIGURATION

The system control panel, shown in Figure 2-1, controls power to
the system and Initial Program Loading (IPL). It also provides
controls for system initialization, processor halt/run, and
single step. Light Emitting Diodes (LEDs) on the system console
indicate current system state.

680-2

SINGLE HALT/RUN ENABLE INIT CPU MEMORY
LOCK POWER POWER WAIT FAULT
IPL ON O O O O
STANDBY
DISABLE

Figure 2-1 System Control Panel

Keyboard commands through the System Terminal allow the operator
to examine and modify processor registers and main memory
locations and then begin crrogran execution. (Refer to Figure
2-2.) Hexadecimal characters and a number of special characters
are recognized by the System Terminal support microcode. The
characters accepted and their meanings are shown in Table 2-1.
No other characters are accepted and cause a question mark (?)
to be written to the Systen Terminal. When not in use for
operator controcl, the Systen Terminal is available to a running
program for use as an I/0 device. See Appendix F for a flowchart
of the console service routine.

29-747 ROO 4/81 2-1

TABLE 2-1 SYSTEM TERMINAL SUPPORT COMMAND SUMMARY
681-1
KEY SYSTEM
COMMAND MEANING TERMINAL
SEQUENCE DISPLAY
E@E@nm@] [CR) | Select memory address <annnnnn
and display halfword nnnnnn YYYY
contents <
[R)(n][cHl Select general register | <Rn
and display contents YYYYYYYY
<
[E](n][cR] Select single-precision | <Fn
floating-point register | YYYYYYYY
and display contents* <
(0)(n][cr] Select double-precision | <Dn
floating-point register | YYYYYYYY YYYYYYYY
and display contents* <
() [cR] Select program status <P
word and display YYYYYY YYYYYY
contents ' <
Increment memory <+
location counter to nnnnnn YYYY
display next sequential | £
halfwvord
=] Decrement memOIry <-
location counter to nnnnnn YYYY
display previous <
halfvord
E][‘il Replace contents of <=YYYY for memory
currently selected <
memory location or <=YYYYYYYY for register
register with new data <
Begin program execution | <<
at current memory
location
(#) Delete command <a10#
<
Single-step instruction | <>
at current memory
location

*Floating-point is

optional in thls processor.

29-747 ROO 4/81

Notes:

1. Characters in boxes indicate operational Kkey strokes
required for commands

2. Character symbol <¢f lower case n used to indicate
hexadecimal address of memory or register.

3. Character symbol c¢f upper case Y used to indicate
hexadecimal contents of memory or register.

4, Underlined characters are those output from the systen.
Characters not underlined are those typed by the
operator.

5. A back arrow, or underline (X'5F'), or a back space
(X'08') character may be used to delete the previously
input hexadecimal character.

6. Space characters may be entered as desired. They are
ignored by the processor.

Figure 2-2 Mcdel 550 Keyboard Layout

2.3 SYSTEM CONTROL PANEL SWITCHES AND INDICATORS

2.3.1 Key-Operated Security lock

This is a 3-position (STANDRY-ON-LOCK) key-operated switch that
controls primary power to the system. It can also disable (LOCK)
the initialize and console switches, thereby preventing any
accidental manual input to the system. The power indicator 1lamp
(POWER) is on when the security lock is in the ON or LOCK
position.

29-747 ROO u4/81 2-3

2.3.2 Controcl Switches

A1l the control switches, with the exception of the Initial
Program Load (IPL) switch, are enabled only when the key-operated

security
applied.

HALT/RUN

SINGLE

ENABLE

DISABLE

39
'
=

lock

ijs in the CN position, and primary AC povwer is

HALT/RUN

This momentary contact switch causes progranm
execution to be halted if the system was running,
or resumed if the system was halted. When halted,
control is given to the Systenm Terminal support
routine through which the memory or registers can
be examined or modified and progran execution
restarted. Tf the rrocessor was already in the
System Terminal support routine, program execution
is started. This switch is disabled 1if the
cecurity lock is in the LOCK position.

SINGLE STEP

When in the UP position, control is automatically
given to the Systen Terminal support routine at
the conclusicn of each user level instruction.
The program status word is displayed, including
the address of the next sequential instruction
(location counter). Execution of the next
jnstruction is caused by pressing the HALT/RUN
ewitch or by typing a less than (<) character on
the System Terminal. To resume normal run mode
execution, return the SINGLE STEP switch to the
COWN position and begin execution by pressing the
HALT/RUN switch or by typing the less than (K)
character on the Systern Terminal. The SINGLE STEP
sWwitch is disatled when the security lock 1is 1in
the LOCK position. Attempts to single step
through instructions that do I/0 to the System
Terminal do not produce meaningful results.

IPL
This switch is not disabled by the security 1lock.
When in the ENABLE position, an Initial Program

Load (IPL) from the Loader Storage Unit (LSU) 1is
performed after any of the following stebps:

1. turning the security lock from the STANDBY to
ON position

2., depressicn of the Initialize (INIT) switch

3, return of AC power to the systenm

29-747 ROO u/81

INITIALIZE

INIT This momentary contact switch causes the system to
be initialized. The initialization sequence
clears all device controllers on the I/0 bus and
resets certain functions in the processor. The
fault 1lamp (FAULT) comes on when the switch is
depressed and is extinguished with the completion
of the initialization sequence.

2.4 OPERATING INSTRUCTIONS
2.4.1 Power-Up

To prevent Initial Program load (IPL) on power-up, place the IPL
ewitch in the LISABLE position. To power-up the system, turn the
key-operated security lock clockwise from the STANDBY to the ON
position. The power lamp (POWER) lights, and power 1is provided
to the systen. The fault lamp (FAULT) on the system control
panel also lights, and the microdiagnostic routine is entered.
This routine exercises internal data paths and registers. If
main memory power has fallen out of regulation since the systenm
was last running, locations X*'000000* to X'O3FFFF' are
initialized. The diagnostic routine tests the lowest 256 kbytes
of memory before extinguishing the FAULT lamp. This diagnostic
ijs 1imited in scope, serving only to ‘indicate a go/no-go
condition. If an error is detected 1in any portion of the
microdiagnostic, the microccde loops indefinitely, and the FAULT
lamp remains on. If no errcrs are detected, the FAULT 1lamp is
turned off.

2.4.2 Entering Console Service

If power was lost while the microcode was in the console service
routine, control is returned to the console when the power-up
sequence is complete, provided that IPL is not enabled. If the
system was executing a program when power was lost, execution
resumes when power returns, provided that IPL is not enabled. To
enter console service in this case, depress the HALT/RUN switche.

2.4.3 Initial Program Load (IPL)

To perform Initial Program Load (IPL), place the IPL switch in
the ENABLE position; then initialize the system by depressing the
INIT switch nmomentarily. A power down/power up sequence is
emulated, and diagnostics are performed. At the successful
completion of the microdiagnostic sequence, an IPL from the LSU
is performed. Control is transferred to the newly-loaded
programhe.

29-747 ROO u4/81 2-5

2.5 SYSTEM TERMINAL COMMANDS

When the System Terminal support routine is entered from power-up
or initialize, a carriage return and line feed sequence are
output. The current value cf the PSW status and location counter
are output, followed by another carriage return and line feed
sequence. Finally, the less than (<) operator prompt character
is output to indicate that the system is ready to recelive
operator commands. If memory power was lost, the location
counter is set to X'OO03FFFFE®', and the PSW is set to X'00008000°.
In this case, the first 256 kbytes of memory are written during
power-up to establish the error correcting code bits.

Space characters may be used as desired in any of the described
System Terminal commands. Spaces are ignored by the console
routine.

2.5.1 Select an Address and Examine "a"

The commercial "at" sign (@) places the Systenm Terminal support
routine in the address mode. This character may be followed by
up to six hexadecimal digits cf address. Leading zeros are not
reqguired. If more ¢than six digits are input, only the least
significant six are used. A carriage return is wused to signal
the end of the address; the address input is then copied into the
location countere. A carriage return and line feed sequence are
output, followed by the new value of the location counter and the
halfword contents of that location. Note that the data fetch is
subject to memory relocaticn if enabled by the current PSW.
After this display, a carriage return and l1ine feed sequence are
output, followed by a new orerator prompt.

If an invalid character is 4input by the operator, the systen
responds by outputting a question mark (?), a carriage return, a
line feed, and an operator prcmpt.

2.5.2 Increment and Examine Next Location "+"

After examining a memory location, the plus character (+) can be
used to advance the location counter by two. No other operator
input is required. A carriage return and line feed are output,
followed by the new location counter value and the halfword
contents of that location. This memory access is subject to the
relocation defined by the current PSW. After outputting another
carriage return and line feed, the operator prompt character |is
output. This procedure may be repeated to examine sequential
memory locatlions.

2-6 29-747 ROO u4/81

2.5.3 Decrement and Examine Frior Location "-"

After examining a memory location, the minus character (-) can be

used to decrement the location counter by two. No other
operation is required. A carriage return and line feed are
output, followed by the new location counter value and the
halfword contents of that location. This memory access is

subject to the relocation defined by the current PSW. After
outputting another carriage return and line feed, the operator
prompt character is output. This procedure may be repeated to
examine sequential memory locations.

2.5.4 Modify Current Location =

After examining a memory location, the equal sign (=) can be used
to put the System Terminal support routine in the memory write
mode. This character may be followed by up to four hexadecimal
digits of data to be written. Leading zeros are not required.
If more than four digits are input, only the least significant
four are used. A carriage return is used to signal the end of
the data. At that time, the accumulated data is written into the
memory 1location currently addressed by the location counter.
This memory write is subject to the relocation defined by the
current PSW. The current location counter is incremented by two
and a carriage return, line feed, and operator prompt are output.
This procedure may be repeated to modify sequential memory
locationse.

2.5.5 Examine General Register wR"

The character (R) causes the System Terminal support routine to
interrret subsequent hexadecimal input as the number of a general
register (in the set selected by the current PSW) to be
displayed. A carriage return ijs used to signal the end of
hexadecimal input. At that time, the least significant four bits
of the accumulated hexadecimal data are taken as the desired
register number. The fullwerd contents of that register are
output followed by a carriage return, line feed, and operator
prompt. Plus and minus ccmmands are invalid for general
registers.

2.5.6 Modify General Register n=w

Immediately after examining a general register, the equal sign
(=) can be used to change the contents of the currently selected
register. The egual sign can be followed by up to eight
hexadecimal digits of data. leading zeros are not required. 1f
more than eight digits are input, only the 1least significant
eight are wused. A carriage return is used to signal the end of
the data input. At that time, the accumulated data 1is copied
into the currently selected general register. A carriage return,
line feed, and operator prompt are then outpute.

29-747 ROO 4/81 2=7

2.5.7 Examine Single-Precisicn Floating-Point Register "F"

The character (F) causes the System Terminal support routine to
interrret subsequent hexadecimal input as the number of a
single-precision floating-point register to be displayed. If the
processor does not have single-precision floating-point, this
command character causes a Question mark sequence to be output.
A carriage return is used to signal the end of hexadecimal input.
At that time, the least significant four bits of the accumulated
hexadecimal data are taken as the desired register number., If
necessary, this number is rounded to the next lowest even number.
The fullword contents of that register are output followed by a
carriage return, line feed, and operator prompt. Plus and minus
commands are invalid for flcating-point reglisters.

2.5.8 Modify Single-Precision Floating-Point Register "="

Inmediately after examining a single-precision floating-point
register, that register is available for modification. Type an
equal sign (=) followed by up to eight hexadecimal digits of
data. Leading zeros are not required. If more than eight digits
are input, only the least significant eight are used. A carriage
return is used to signal the end of the data input. At that
time, the accumulated data is copied into the currently selected
single-precision floating-roint register. This data is not
tested for normalization; therefore, an unnormalized
floating-point number can Le manually placed in the register.
The system outputs a carriage return, line feed, and operator
prompte.

2.5.9 Examine Double-Precision Floating-Point Register "D"

The character (D) causes the System Terminal support routine to
interpret subsequent hexadecimal input as the number of a
double-precision floating-point register to be displayed. If the
processor does not have double-precision floating-point, this
command character causes a question mark sequence to be output.
A carriage return is used tc signal the end of hexadecimal input.
At that time, the least significant four bits of the accumulated
hexadecimal data are taken as the desired register number. If
necessary, this number is rounded to the next lowest even number.
The docubleword contents of that register are output, followed by
a carriage return, 1line feed, and operator prompt. Plus and
minus commands are invalid for floating-point registers.

2-8 29-747 ROO u4/81

2¢5.10 Modify Double-Precisicn Floating-Point Register "=*

Immediately after examining a double-precision floating-point
register, that register is available for modification. Type an
equal sign (=) followed by up to 16 hexadecimal digits. Leading
zeros are not required. If more than 16 digits are input, only
the last 16 digits are used. A carriage return is used to signal
the end of the data input. At that time, the accumulated data is
copied into the currently selected double-precision register.
The data ie not tested for normalization; therefore, an
unnormalized floating-point number can be manually placed in a
double-precisicn register. The system outputs a carriage return,
line feed, and operator prompt.

2¢5¢11 Examine Program Status Word "P"

The character (P) puts the System Terminal support routine into
the PSW display mode. A carriage return is required to complete
this command inpute. - Upon receipt of the <carriage return, the
contents of the PSW are output followed by a carriage return,
line feed, and operator prompt. The plus and minus commands are
invalid for the PSW.

2512 Modify Program Status Word "="

Immediately after examining the PSW, the equal sign (=) can be
used ¢to change the contents of the PSW status field. The egual
sign can be followed by up to six hexadecimal digits of data.
Leading zeros are not reqguired. If more than six digits are
input, only the least significant six are used. A carriage
return is used ¢to signal the end of the data input. At that
time, the accumulated data is copied into the PSW, which is then
displayed. A carriage return, line feed, and operator prompt are
then cutpute.

2.5.13 Execute Single Instruction ">"

Fntering the character (>) causes the processor to execute the
instruction indicated by the location counter, in single-step
mode. If the instruction is an interruptible instruction, only
one phase or iteration o¢f the instruction may be performed.
After this execution, the ccnsole service routine displays the
PSW and 1location counter, followed by a carriage return, line
feed, and operator prompt.

2.5.14 Enter Run Mode "<"
Entering the character (<) causes the processor to begin progranm

execution, starting with the 1instruction indicated by the
location counter.

29-747 ROO u/81 2-9

2.6 MEMORY INITIALIZATION

The following example shows hcw to set up dedicated 1low memory
for loading the 32-bit relocating loader from magnetic tape.

< [a] [3] [o] Select address °30'

000030 0000 location "30°' already = '0000°

< Advance to address °'32°

000032 8000 Location *32° already = '8000°

< Advance to address °‘'34°

000034 0000 Location '34° alréady = '0000°

< Advance to address '36°

000036 1536 location '36' contains '1536°

gIE] @ @ Change contents of *'36' to °0050°

000038 0000 location *38' contains '0000°*

<[] [£] [o] Select address '50°

000050 D500 ' location *50°' already = °*D500°,
the auto-locad instruction

< Advance to address '52°

000052 00CF location °*52' already = °‘0O0CF’*,
the usual ending address

< Advance to address °S4°

000054 4300 Location '54°' already = °4300°
a branch instruction

< Advance to address °'S6°

000056 0080 location *56*' already = '0080°

- the usual branch address
<[] [cx] Select address '78°
000078 C186 Location '78* contains °'C186°

2-10 29-747 ROO u4/81

< = [(a] [1] Change *78' to *85A1°, the device

nunber and command byte for
magnetic tape

00007A 0000 Location *7A°* contains *0000°
< Advance to address '7C'
00007C 0000 Location *7C* contains '0000°

< (@] [0] Select starting address '30°'

000030 0000

< Start program execution

After loading, the relocating loader places the processor in the
wait state. The wait lamp on the consolette is on. Depress the
HALT/RUN switch to regain control at the System Terminal. The
terminal response, for example is:

008000 03FBOO
<

which shows the PSW and the LCC pointing at the 1loader start
address of ‘*3FBOO'. Type the less than (<) character to begin
execution of the relocating lcader.

2.7 SYSTEM TERMINAL PROGRAMMING INSTRUCTIONS

The System Terminal (ST) uses either a 2-line asynchronous
communication multiplexor or an 8-line asynchronous communication
multirlexor interface. Since the microprogram of the processor
must communicate with the ST, the device address 1is fixed at
X*010* and X'011°'. The interface must be strapped for full
duplex operatiocn. Refer to the appropriate instruction manual
for complete programming information.

The microprogram programs the ST for highest clock rate, two stop

bits per character, seven data bits, and even parity. Echoplex
is not turned on.

29-747 ROO u4/81 2-11/2-12

CHAPTER 3
LOGICAL OPERATIONS

3.1 INTRODUCTICN

The set of logical instructions provides a means for the
manipulation of binary data. Many of the instructions grouped
with the logical set may also be used in arithmetic and other
operations. These instructions include loads, stores, compares,

shifts, 1list rrocessing, translation, and cyclic redundancy
checks. :

3.2 LOGICAL DATA FCRMATS
Logical data may be organized as bytes, halfwords, fullwords, or

bit arrays of up to 227 bits as shown in Figure 3-1.

585

0 BYTE 7
0 HALFWORD 15
0 FULLWORD 31
0 BIT ARRAY N
7’ IL
-4 5

Figure 3-1 Logical Data

29-747 ROO 4/81 3-1

3.3 OPERATIONS

In logical operations between the contents of a general register
and a halfword operand, the halfword operand is expanded to a
fullword before the operaticn starts. The halfword 1is expanded
by propagating the most significant bits through bits 0:15 of the
fullword. For example, the halfword °‘'A000*' |is expanded to
*FFFFAO00' before participating in the operation.

3.3.1 Boolean Operations

The Boolean operators AND, OR, and Exclusive OR (XOR) operate on
halfwoerd and fullword gquantities. A1l bits in both operands
participate individually. The Boolean functions are defined as
follows:

AND O
AND 1
AND O
AND 1

(logical product)

- 200
000

CR O
OR 1
OR O
OR 1

(logical sum)

- 200
-t O

XCR 0
XOR 1
X0R 0
XCR 1

(logical difference)

e e Ne
nonmnu
O 220

3.3.2 Translation

The Translate (TLATE) instruction is wused to translate a
character directly, or tc effect an unconditional branch to a
special translate subroutine. Associated with the translate
instruction is a translation table. The entries in the table are
halfwords, as shown in Figure 3-2.

586

0 7 8 15

1 CHARACTER ENTRY SPECIFYING TRANSLATED
- CHARACTER

0| (CHAR.HANDLING ROUTINE ADDRESS) /2 ENTRY SPECIFYING ADDRESS OF

A CHARACTER HANDLING ROUTINE

Figure 3-2 Translation Table Entry

3-2 29-747 ROO 4/81

587

The <character to be translated is a byte of logical data.
unsigned quantity is doubled and u
translation table. If the corresponding table entry has a one in
bits 8:15 contain the character to be

bit rosition =zero,

then

substituted for the data character.

position zero, bits 1:15 contain the address,

the translation routine.

spacee. The program
relocated by the Me

data characters are
are required.

3.3.3 List Processing

may
moOTrYy

always less than eight bits,

sed as

an index

If there is a =ze

into

ro in

When the translate instruction res
in a branch, this value is doubled to produce the address of the
routine. Because this result is a 16-bit address, th
routine must be located in the first 64 kb of the program address
anywhere in memory if it is

reside
Address

Translator
translation table may contain up to 256 entries.

e soft

(MAT).
However, if
fevwer entries

This
the

bit

divided by two, of

ults

ware

The
the

h)1

\(

The list processing instructicns manipulate a circular 1list as
defined in Figure 3-3.
0 15 16 31
NUMBER OF SLOTS NUMBER USED
CURRENT TOP NEXT BOTTOM
SLOTO
SLOT 1
~ -
SLOTN
Figure 3-3 Circular lList Definition
The first four halfwords, called the list header, contain the
list rarameters. Immediately following the header 1is the 1list

itself. The first

fullword

The remaining slots are designated 1, 2, 3,
slot number, which is equal tc¢ the number in the list minus
65,535 fullvword slots may be specified.
(Slots are designated 0 through X°*FFFE'.)

An absolute maximum

29-747 ROO u4/81

of

in the list is designated Slot 0.

etce, up to a maximunm

onee.

The first halfword of the header indicates the number of slots
(fullwords) in the entire 1ist.e The second halfword indicates
the current number of slots being wused. When this halfword
equals zero, the 1list is empty. When this halfword equals the
number of slots in the 1list, the 1ist is full. Once initialized,
this halfword is maintained automaticallye. It is incremented
vhen elements are added to the 1list and decremented when elements
are removed.

The third and fourth halfwords of the 1list header specify the
current top of the 1list and the next bottom of the list,
respectively. These pointers are also updated automatically.
(See Figure 3-4.)

588

ps
Vs

/ﬁf SLOT n
SLOT O
CURRENT TOP —* SLOT 1
OCCUPIED SLoT2
SECTION SLOT 3
SLOT 4
NEXT BOTTOM — SLOT & k

\ \
\ \

N ~—

—_
N

Figure 3-4 Circular List

3-4 29-747 ROO u4/81

3.4

The logical instructions use the Register to Register

Short

Register and Immediate Storage (RI) instruction formatse.

3.5

The instructions described in this section are:

L

LR
LI
LIS
LCS
LH
LHI
LA
LRA
LHL
LM
LB
LBR
EXHR
EXBR
ST
STH
STHM
STB
STBR
CL
CLR
CLI
CLH
CLHI
CLE

NR
NI
NH
NHI

OR
oI
CH
OHI

XR
XI
XH
XHI
TI
THI

29-74

LCGICAL INSTRUCTION FORMATS

the

Form (SF), the Register and Indexed Storage (RX), and the

LOGICAL INSTRUCTIONS

Load

Load Register

Load Immediate

Load Immediate Short
Load Complement Shert
Load Halfword

load Halfword Immediate
Load Address

Load Real Rddress

Load Halfword Logical
Load Multiple

Load Byte

Load Byte Register
Exchange Halfword Register
Exchange Byte Register
Store

Store Halfword

Store Multiple

Store Byte

Store Byte Register
Compare Logical

Compare lLogical Register
Compare Logical Immediate
Compare Logical Halfword

Compare Logical Halfword Immediate

Compare Logical Byte
AND

AND Register

AND Immediate

AND Halfword

AND Halfword Immediate
OR

OR Register

OR Immediate

OR Halfword

OR Halfword Immediate
Exclusive OR

Exclusive OR Register
Exclusive OR Immediate
Exclusive OR Halfword

Exclusive OR Halfwcrd Immediate

Test Immediate
Test Halfword Immediate

7 ROO u/81

SLL
SLLS
SRL
SRLS
SLHL
SLHLS
SRHL
SRHLS
RLL
RRL
TS
TBT
SBT
CBT
RBT
CRC12
CRC16
TLATE
ATL
ABL
RTL
RBL

Shift
Shift
Shift
Shift
Shift
Shift
Shift
Shift
Rotate
Rotate
Test a
Test B
Set Bi
Comple
Reset
Cyclic
Cyclic
Transl
Add to
Add to
Remove
Remove

Left Logical
left Logical Short
Right Logical
Right Logical Short
Left Halfword logical
lLeft Halfword logical Short
Right Halfword Logical
Right Halfword Logical Short
left Logical
Right Logical
nd Set '
it
t
ment Bit
Bit
Redundancy Check Modulo 12
Redundancy Check Modulo 16
ate
Top of List
Bottom of List
from Top of List
from Bottom of List

29-747 ROO 4/81

3.5.1 Load (L, LR, LI)

Load (L)
Load Register (LR)
Load Immediate (LI)

Assembler Notation Op-Code Format
L R1,D2(X2) £8 RX1,RX2
L R1,A2(FX2,5X2) E8 RX3

LR R1,R2 08 BRR

LI R1,I2(X2) F8 RI?2
Creration

The second operand replaces the contents of the register
specified in R1.

Condition Code

Value is zero
Yalue is not 2zero
Value is not 2zero

o O oln
o O Ol
- O O
O - Ol

Programming Notes

When the Load instructions o¢perate on fixed-point data, the
condition code indicates zero (no flags), negative (L flag), or
positive (G flag) value.

In the RR format, if R1 equals R2, the Load instruction functions
as a test on the contents of the register.

In the RX formats, the seccnd operand must Dbe located on a
fullword boundary.

29-747 ROO u4/81 3=-7

3.5.2 Load Immediate Short (1IS)

Assembler Notatlion Op-Code Format
LIS R1,N 24 SF
Operation

The 4-bit second operand is expanded to a 32-bit fullword with
high order bits forced +to =zero. This fullword replaces the
contents of the register specified by R1.

Condition Code

C|V]IG]|L
0|0]J]0]O0 Value is zero
0j0]11]0 Value is not 2zero

Programming Note

When this instruction operates on fixed-point data, the condition
code indicates zero (no flags), or positive (G flag) value.

Fxample: LIS

Assembler Notation Machine Code Comments

LIS REGH, 15 244F LOAD 15 INTO REGH

Result of LIS Instruction

(REG4) = 0000000F
Condition Code = 0010 (G=2)

3-8 29-747 ROO 4/81

3.5.3 Load Complement Short (LCS)

Assembler Notation Op-Code Format
1LCS E1,N 25 SF
Operaticn

The L-bit second operand is expanded to a 32-bit £fullword with
high order bits forced tc zero. The two's complement value of
this fullword then replaces the contents of the register
specified by R1.

Condition Code

civiG|L
0j0}101]0 Value is zero
ojo}jo0|1 Value is not zero

Programming Note

When this instruction operates on fixed-point data, the condition
code indicates zero (no flags), or negative (L flag) value.

Example: LCS

Assembler Notation Machine Code Comments

LCS REGS8,7 2587 LCAD -7 INTO REGS
Result of ICS Instruction

(REGB) = FFFF FFF9
Condition Code = 0001 (L=1)

29-747 ROO 4/81 3-9

3.5.4 Load Halfword (LH, LHI)

Load Halfword (LH)
load Halfword Immediate (LHI)

Assembler Notation Op-Code Format
LH R1,D2(X2) 48 RX1,RX2
LH R1,A2(FX2,5X2) us RX3

LHI R1,I2(X2) C8 RI1
Operation

The halfword second operand 1is expanded to a fullword by
propagating the most significant bit through bits 0:15. This
fullword replaces the contents of the register specified by R1.

Condition Code

Value 1s 2zero
Value is not 2zero
Value is not zero

e NoNolle]
O O olw
- O Ol
O = O

Programming Notes

When the Load Halfword instructions operate on fixed-point data,
the condition code indicates zero (no flags), negative (L flag),
or positive (G flag) value.

In the RX formats, the seccnd operand must be 1located on a
halfwcrd boundarye.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified ty X2 are then added to form the
fullword second operand.

3-10 29-747 ROO 4/81

3.5.5 Lload Address (LA)

Assembler Notation Op~Code Format
LA R1,D2(X2) Eé6 RX1,RX2
LA R1,A2(FX2,SX2) E6 RX3
Operation

The effective address of the second operand (24 bits) replaces
bits 8:31 of the register specified by R1. Bits 0:7 of the
register specified by R1 are forced to zero.

Cendition Code

Unchanged

Programming Note

The length of the address guantity depends on the internal
structure of the particular machine; thus, in this processor,
with a maximum address length of 24 bits, the calculated address
replaces bits 8:31 of the register srecified by R1, and bits 0:7
are replaced by zero. In a ¢[processor with a maximum address
length of 20 bits, the calculated address replaces bits 12:31 of
the register specified by R1, and bits 0:11 are forced to zero.

29-747 ROO 4/81 3

1

3.5.6 Lload Real Address (LRA)

Assembler Notation Op-Code Format
LRA R1,D2(X2) 63 RX1,RX2
LRA R1,A2(FX2,5X2) 63 RX3
Operation

This instruction simulates the operation of the Memory Address

Translatore. The register specified by R1 contains a progranm
address (not relocated). The second operand address points to a
relocation/protection module parameter block, in the format
showun:

BYTE

OFFSET 0 1 14 15 31
+0 (PST ENTRIES) -1 A(FROCESS SEGMENT TABLE)/128
+4 (SST ENTRIES) -1 A(SHARED SEGMENT TABLE)/128

The address contained in the reglster specified by R1 1is
relocated, wusing the approrriate parameters. The relocated
address replaces the contents of the register specified by R1.

Condition Code

C|VI|G]|L

1101010 Segment not mapped

0111010 Nonpresent segment

0jO0|11{X Write-protected segment

0Ol0 X |1 Read- or Execute-protected segment
cjo0jo0}o0 No restrictions

The condition code is determined on a priority basis with segment
table size exceeded checked first, nonpresent segment second,
segment 1limit exceeded third, and all protect keys (as a group)
last. .

Programming Notes

Segment tables must conform tc the rules given in the section on
Memory Management; otherwise, the results of the LRA instruction
are undefined.

If the address 1is not mapped or not present, the register
specified by R1 is unchanged.

Segment table size exceeded or segment limit exceeded results in
condition code 1000 (unmapped).

The second operand location must be on a fullword boundary.

3=-12 29-747 ROO 4/81

PSTD

SSTD

Examples: LRA

This example performs an address translation in the same manner
as the Memory Address Translator (MAT). The steps shown are not
optimal, and do not reflect the actual operation of +the HAT,
which is a high-speed device capable of performing several of the
steps simultaneously.

To set up for this example, register R1 contains X'053147', the
program address to be translated. RELOCBLK is the address of a
relocation/protection module parameter block. This block
contains two fullwords. The first of these is the Process
Segment Table Descriptor (PSTL), with the value X'000EQ06BF'. The
second is the Shared Segment Table Descriptor (SSTD), with the
value X'000cCco06C0O". Memory 1location X'035FA8' contains the
Process Segment Table Entry (ESTE) to be used, with the value
X'588R0028°"'. Memory location X'036028°' contains the Shared
Segment Table Entry (SSTE) to be wused, with the value
X*58126880'. The instruction proceeds as follows:

LRA E1,RELOCBLK TRANSLATE ADDRESS IN R1

1« The PSTD 4is fetched from RELOCBLK, and ANDed with
X*FFFE0OQ00* to extract the segment table size field.
The result, X'000E0000*', 1is shifted right 17 bit
positions, yielding X'00000007'. This value 1is the
number of entries in the Process Segment Table (PST),
minus one. Therefore, the PST has entries for segments
0 through 7.

2. The program address from register R1, X*'053147°', \is
shifted right 16 kit positions to yield the specified
segment number, X'00000005°. The segment number is
compared with the EST size. If the PST size were less
than the segment numter, this would mean that no entry
existed in the PST for the specified segment, and that
the segrent was unmarped (condition code = 8). However,
such is not the case, and the instruction proceeds.

3. The PSTD 1is ANDed with X'QOO1FFFF' to extract the
segment table address field. The result, X'000006BF',
is shifted left seven bit positions, to multiply it by
128. This yields the address of the PST, X'35F90°'.

4, The segment number srecified by the program address in
R1 (X*053147*) 4is wused as an index into the PST.
Because each Segment Table Entry (STE) requires eight
bytes, +the segment number, X*'00000005', is shifted left
three bit positions, ¢to multiply it by eight. The
result, X'00000028°*', and the address of the PST,
X*035F80*', are added. The result is the address
X*035FA8', and ¢the PSTE at that address is fetched.
This PSTE has the value X'588A0028°'.

29-747 ROO 4/81 3-13

14

The PSTE is ANDed with the value X'40000000°' to test the
Presence bit in the STE. If the bit were =zero, this
would mean the segment was not present (condition code
= 4). But such is not the case, and the instruction
proceeds.

The PSTE is then ANDed with X°00800000*', to test the
Shared Segment bit. If the bit were zero, the LRA
instruction would use the data in the PSTE as data in
the SSTE also, and perform the operations in step 9
below; but such is nct the case.

The Shared Segment bit in the PSTE is set, which nmeans
that an entry from the Shared Segment Table (SST) must
also be used in translating the program address. The
SSTHD (X'000C06CO0°") is ANDed with X*FFFEQOOO0® to extract
the segment table size field. The result, X'000C0000°,
is shifted right 14 bit positions to yield X°00000030°.
This value is the maximum SST offset, the offset in
bytes from the start of the SST to the beginning of the
last entry.

The SSTD is ANDed with X°'0001FFFF®* to extract the
segment table address field. The result, X'000006CO°*,
is shifted left seven bit positions to yield the address
of the Shared Segment Table (SST), X'036000°'.

The PSTE is now ANLDed with X'0001FFFF* to extract the
Segment Relocation Field (SRF). This field has the
value X'00000028°*', If this value exceeded the maximunm
SST offset, this would mean that no entry existed in the
SST for the specified segment, and that the segment was
unmapped (condition code = 8); but such is not the case,
and the instruction proceeds. The SRF is added with the
PST address, X'03600C's. The Shared Segment Table Entry
(SSTE) pointed tc¢ by the PSTE 1is located at the
resulting address, X'036028°'.,

The SSTE 1is fetched, and its value found to be
X'58126880'. . This value 4is ANDed with X'40000000° to
test the STE Presence bit. If the bit were =zero, this
would mean the segrent was not present (condition code
= 4); but such is not the case, and the instruction
proceeds.

The SSTE, with a value X'58126880°', is ANDed with the
value X'003E0000' to extract the Segment Limit Field
(SLF)e. The resulting value, X'00120000°*, 1is shifted
right six bit pcsitions, yielding an SLF value of
X*00004800'. The program address from R1, X°*053147°, is
ANDed with X*0000F800"'. The resulting value,
¥'00003000*, 4is compared to the SLF value, X*'0000u4800°.
If the SLF value were the lesser of the two values, this
would indicate that the ©program address was in an
unreachable part of © the segment (segment 1limit
violation), and thus unmapped (condition code = 8); but
such is not the case, and the instruction proceeds.

29-747 ROO u4/81

10.

11.

461-2

At this point, address translation can be performed.
The SSTE, with value X°'58126880', is ANDed with the
value X*'0001FFFF* to extract the SRF. This field has
the value X*'00006880°'. The SRF is shifted left seven
bit positions, giving the relocation value X'00344400°.

The program address from R1, X'053147°', is ANDed with
the value X'0000FFFF*, giving the value X'00003147'. To
this value is added the relocation value, X°*00344000°'.
The result is the translated program address, X'3u47147°,
which replaces the contents of register R1. '

The PSTE, with value X'588A0028°', and the SSTE, with
value X*58126880°, are ANDed, 1yielding the value
X*'58020000'. This value contains the <combined segment
access keyse. If ANDing the keys with X*08000000°*
vyielded a zero result, the G flag would be set in the
condition code to indicate a write-protected segment.
If ANDing the keys with X'10000000*' yielded a zero
result, the L flag would be set in the condition code to
indicate a read-protected segment; but neither is the
case. ANDing the keys with X*'04000000*' does yield a
zero result, and the L flag is set in the condition code
to indicate that the segment is execute-protected. The
LRA instruction terminates once these tests have been
performed. (See Figure 3-5.)

R1= | 00053147 PROGRAM ADDRESS

T : SEGMENT NUMBER
I t—————BYTEOFFSET
SEGMENT NUMBER
PST (AT X'35F80')
RELOCBLK Y AT
PSTD O0OEOGBF X BBYTES
SSTD 000C0BCO SST (AT X'36000") 2
8-BYTES 0 3
8-BYTES 8 4
8-BYTES 10 - 35FA8 ——— w5 588A0028 SHARED BYTE
8-BYTES 18 N T OFFSET=28
8-BYTES 20 } |
36028 ———| 58126888 28 ' |
\]
N e e e /
SEGMENT (AT X'344400')
0
1
BYTE OFFSET = 3147 AT 347547

Figure 3-5 LRA Example

29-747 ROO 4/81 3-15

3.5.7 load Halfword Llogical (LHL)

Assembler Notation Op-Code Format
LHL R1,D2(X2) 73 RX1,RX2
LHL R1,A2(FX2,5X2) 73 RX 3
Orperation

The halfword second operand replaces bits 16:31 of +the register
cpecified by R1. Bits 0:15 of the register specified by R1 are
replaced by zero.

Condition Code

CIVIG|L
olofo|oO Value is zero
o0jo0}1 110 Value is not zero

Programming Note

The second operand must be located on a halfword boundary.

3-16 29-747 ROO u4/81

3.5.8 Load Multiple (LM)

Assembler Notation Op-Code Format

LM R1,D2(X2) L1 RX1,RX2
LM R1,A2(FX2,SX2) L1 RX3
Operation

Successive registers, starting with the register specified by R1,
are lcaded from successive memory locations, starting with the
location specified as the effective address of the second
operand. Each register is loaded with a fullword from memory.
The process stops when reglister 15 has been loaded.

Condition Code

Unchanged

Programming Notes
The second operand must be located od a fullword boundary.

The second operand address is formed before any registers are
loaded; therefore, X2, FX2, and SX2 can be among the registers
loaded.

In the event of a machine malfunction due +to a noncorrectable
memory error, or due to a MAT fault, the effective address
calculated at the beginning of the instruction 1is available,
should a retry be desired. For details, refer to Chapter 10 and
Chapter 12.

29-747 ROO u/81 3

17

3.5.9 Load Byte (LB, LBR)

Load Byte (LB)
Load Byte Register (LBR)

Assembler Notation Op-Code Format
LB R1,02(X2) D3 RX1,RX2
LB R1,A2(FX2,5SX2) D3 RX3

LBR R1,R2 93 RR
Operation

The 8-bit second operand replaces the 1least significant bits
(bits 24:31) of the register specified by R1. Bits 0:23 of the
register are forced to zero.

Condition Code

Unchanged

Programming Note

In the Load Byte Register instruction, the second operand is
taken from the least significant eight bits (bits 24:31) of the
register specified by R2.

w
]

18 29-747 ROO 4/81

3.5.10 Exchange Halfword Register (EXHR)

Assembler Notation Op-Code Format
EXHR R1,R2 34 : RR
Operation

Bits 0:15 of the register specified by R2 replace bits 16:31 of
the register specified by R1. Bits 16:31 of the register
specified by R2 replace bits 0:15 of the register specified by
R1.

Condition Code

Unchanged

Programming Note
If R1 equals R2, the two halfwords contained within the register

are exchanged. If R1 does not eqgqual R2, the contents of R2 are
unchanged.

Example: EXHR

Assembler Notation Machine Code Comments

LI REGS,Y'OABCDEF9"* F850 OABC DEF9 (REG5) = OABCDEF9
LI REG7,Y*12345678"* F870 1234 5678 (REG7) = 12345678
EXHR REG5,REG? 34¢7

Result of EXHR Instruction
(REGS5) = 56781234

(REG7) = 12345678
Condition Code unchanged

29-747 ROO u4/81 ‘ 3-19

3.5.11 Exchange Byte Register (EXBR)

Assembler Notation Op-Code Format
EXBR R1,R2 9y RR
Operation

The two 8-bit bytes contained in bits 16:31 of the register
specified by R2 are exchanged and loaded into bits 16:31 of the
register specified by R1. Bits 0:15 of the register specified by
R1 are unchanged. The register specified by R2 is unchanged.
Condition Code

Unchanged

Programming Note
R1 and R2 may specify the same register. In this case, the two

bytes in bits 16:31 of the register specified by R2 are
exchanged.

Example: EXBR

Assembler Notation Machine Code Comments

LI REG7,X*SA6B3CuD* F870 5A6B 3Cu4D (REG7) = 5A6B3CuD
LI REG3,Y*'98761234" F830 9876 1234 (REG3) = 98761234
EXBR REG7,REG3 9473

Result of EXBR Instruction.

(REG7) SA683412
(REG3) 98761234
Condition Code unchanged

3=-20 29-747 ROO 4/81

3.5.12 Store (ST)

Assembler Notation Op-Code Format
ST R1,D2(X2) 50 - RX1,RX2
ST R1,A2(FX2,SX2) 50 RX 3
Operation

The 32-bit contents of the register sbecified by R1 replace
contents of +the fullword nmemory 1location specified by
effective address of the second operand.

Condition Code

Unchanged

Programming Note

The second operand location must be on a fullword boundary.

3.5.13 Store Halfword (STH)

Assembler Notation Op-Code Format
STH R1,D2(X2) 40 RX1,RX2
STH R1,A2(FX2,5X2) u0 RX3
Operation

the
the

Bits 16:31 of the register specified by R1 replace the contents
of the halfword memory location specified by the effective

address of the second operand.

Condition Code

Unchanged

Programming Note

The second operand location must be on a halfword boundary.

29-747 ROO 4/81

21

3.5.14 Store Multiple (STM)

Assembler Notation Op-Code Format
STHM R1,D2(X2) DO RX1,RX2
STHM R1,A2(FX2,5X2) DO RX3
Operation

The fullword contents of registers, starting with the register
specified by R1, replace the contents of successive fullword
memory locations, starting with the 1location specified by the
effective address of the second operand. The process stops when
register 15 has been stored.

Condition Code

Unchanged

Programming Note

The second operand location must be on a fullword boundary.

3=-22 29-747 ROO 4/81

3.5.15 Store Byte (STB, STBR)

Store Byte (STB)
Store Byte Register (STBR)

Assembler Notation Op-Code Format
STB R1,D2(X2) D2 RX1,RX2
STB R1,A2(FX2,5X2) D2 RX3
STRR R1,R2 92 RR
Operation

The least significant eight bits (bits 24:31) of the feqister
specified by R1 are stored in the byte second operand location.

Condition Code

Unchanged

Programming Note
In the Store Byte Register instruction, the 8-bit quantity is

stored in bits 24:31 of the register specified by R2. Bits 0:23
of the register are unchanged.

Example: STBR

Assembler Notation Machine Code Comments

LI PREGH,Y*13577531° F8u40 1357 7531 (REGY4) = 13577531
LI REG3,Y'2u4688642° F830 2468 8642 (REG3) = 24688642
STBR REG4,REG3 9243

Result of STBR Instruction
(REGU4) = 13577531

(REG3) = 2u688631
Condition Code unchanged

29-747 ROO u4/81 3-23

3.5.16 Compare logical (CL, CLR, CLI)

Compare lLogical (CL)
Compare Logical Register (CLR)
Compare lLogical Immediate (CLI)

Assembler Notation Op-Code Format
CL R1,D2(X2) 55 RX1,RX2
CL R1,A2(FX2,5X2) 5€ RX3

CLR R1,R2 05 RR

CLI R1,I2(X2) F5 RI2
Operation

The first operand, the contents of the register specified by R1,
is compared 1logically to the second operand. The result is
indicated by the condition <code setting. Neither operand is
changed.

Condition Code

First operand equal to second
First orerand less than second
First orerand less than second
First orerand greater than second
First orerand greater than second

OO - 0N

O O O

A0 =00

>4 >4 pd e <

Programming Notes

In the RX formats, the second operand must be located on a
fullword boundary.

The state of the V flag is undefined.
If the second operand is zero, the C flag cannot set.

It is meaningful to check the following condition code mask (M1)
after a logical comparison:

Mask True/False* Inference

3 False First cperand equal to second

3 True First cperand not equal to second

8 False First cperand greater than or equal to
second

8 True First cperand less than second

*Pefer to Chapter & for True/False concept in branch
instructionse.

3=-24 29-747 ROO u4/81

3.5.17 Compare lLogical Halfword (CLH, CLHI)

Compare lLogical Halfword (CLH)
Compare Logical Halfword Immediate (CLHI)

LAssembler Notation Op-Code Format
CLH R1,D2(X2) 4c RX1,RX2
CLH R1,A2(FX2,5X2) us RX3
CLHI R1,I2(X2) Cs RI1
Cperation

The halfword second operand is expanded +to a fullword by
propagating the most significant bit through bits 0:15. The
first operand, the contents of the register specified by R1, is
compared to this fullword. The result is indicated by the
condition code setting. Neither operand is changed.

Condition Code

First orerand equal to second
First orerand less than second
First orerand less than second
First operand greater than second
First orerand greater than second

OO = a0l
> >4 dd g M
ERe R Yo Rollp]
O = O Ot

Programming Notes

In the RX formats, the second operand must be 1located on a
halfword boundarye.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the
fullword second operand.

The state of the V flag is undefined.

If the second operand is zero, the C flag cannot set.

It is meaningful to check the following condition code mask (M1)
after a logical comparison:

Mask True/False* " Inference
3 False First operand equal to second
3 True First operand not equal to second
8 False First operand greater than or
equal to second
8 True First operand less than second

*Refer +to Chapter 4 for True/False concept in branch
instructions.

29-747 ROO u4/81 _ 3-25

3.5.18 Compare Logical Byte (CLB)

Assembler Notation Op-Code Format
CLB R1,D2(X2) Dy RX1,RX2
CLB - R1,A2(FX2,SX2) Dy RX3
Operation

The byte quantity, contained in bits 24:31 of the register
specified by R1, is compared with the 8-bit second operand. The
result is indicated by the <condition code settinge. Neither
operand is changed.

Condition Code

First orerand equal to second
First operand less than second
First orerand greater than second

O = OO
R R RS
- OO
O = O

Programming Notes
Both operands are treated as unsigned quantities.
If the second operand is zero, the C flag cannot sete.

It is meaningful to check the following condition code mask (M1)
after a logical comparison:

Mask True/False* Inference

2 False First operand not greater than
seccnd

2 True First operand greater than second

3 False First operand equal to second

3 True First operand not equal to second

8 False First operand greater than or
equal to second

8 True First operand less than second

*Refer to Chapter 4 ‘for True/False concept in branch
instructions.

W
H

26 29-747 ROO u4/81

3.5.19 AND (N, NR, NI)

AND (N)
AND Register (NR)
AND Immediate (NI)

Assembler Notation Op-Codé o Format
N R1,D2(X2) ‘ 54 RX1,RX2
N R1,RA2(FX2,5X2) CY] RX3

NR R1,R2 oy RR

NI R1,I2(X2) Fy RI2
Operation

The 1lcgical product of the 32-bit second operand and the contents
of the register specified by R1 replace the contents of the
register specified by R1. The 32-bit logical product is formed
on a bit-by-bit basis.

Condition Code

Result is zero
Result is not zero
Result is not zero

[« NeNallo]
O O Olw
- O Ol
o = o

Programming Notes

In the RX formats, the second operand must be located on a
fullword boundarye.

When operating on fixed-point data, the condition code indicates
zero (no flags), negative (L flag), or positive (G flag) result.

29-747 ROO u4/81 3-27

3.5.20 AND Halfword (NH, NHI)

AND Halfword (NH)
AND Halfword Immediate (NHI)

Assembler Notation Op-Code Format
NH R1,D2(X2) uy RX1,RX2
NH R1,A2(FX2,5X2) 4y RX3

NHI R1,I2(X2) cy RI1
Operation

The halfword second operand 1is expanded to a fullword by
propagating the most significant bit through bits 0:15. The
logical product of this 32-bit quantity and the contents of the
register specified by R1 replace the contents of the register
specified by R1. The 32-bit 1logical product 1is formed on a
bit-by-bit basis.

Condition Code

Result is zero
Result is not zero
Result is not zero

o O OIN
[eNeRNalbH
e Nollp]
O = Ol

Programming Notes

In the RX formats, the second operand must be located on a
halfword boundary.

In the RI1 format, the 16~-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the
fullword second operand.

When operating on fixed-point data, the condition code 1indicates
zero (no flags), negative (L flag), or positive (G flag) result.

[O%)
[}

28 - 29-747 ROO 4/81

3.5.21 OR (0, OR, 0OI)

OR (0)
OR Register (OR)
OR Immediate (OI)

Assembler Notation Op-Code Format
0 R1,D2(X2) 56 RX1,RX2
o} R1,A2(FX2,SX2) 56 RX 3

OR R1,R2 06 RR

0I R1,I2(X2) Fé6 RI2
Operation

The logical sum of the 32-bit second operand and the contents of
the register specified by R1 replace the contents of the register
specified by R1. The 32-bit 1logical sum is formed on a
bit-by-bit basis.

Condition Code

Result is zero
Result is not zero
Result is not zero

(e NeoNeollp]
[eNe Nell -
- O O|6)
O Ol

Programming Notes

In the RX formats, the second operand must be 1located on a
fullword boundarye.

When operating on fixed-point data, the condition code 4indicates
zero (no flags), negative (L flag), or positive (G flag) result.

29-747 ROO 4/81 3-29

3.5.22 OR Halfword (OH, OHI)

OR Halfword (OH)
OF Halfword Immediate (OHI)

Assembler Notation Op-Code Format
CH R1,D2(X2) 46 RX1,RX2
OH R1,A2(FX2,S5X2) 46 RX3

OHI R1,I12(X2) Cc6 RI 1
Operation

The halfword second operand is expanded to a fullword by
propagating the most significant bit through bits 0:15. The
logical sum of this 32-bit gquantity and the contents of the
register specified by R1 replace the contents of the register
specified by R1. The 32-bit 1logical sum is formed on a
bit-by-bit basis. '

Condition Code

Result is zero
Result is not zero
Result is not zero

[eNeNelle]
o O o<
- O O|a)
O - O

Programming Notes

In the RX formats, the second operand must be located on a
halfword boundary.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the
fullwecrd second operand.

When operating on fixed-point data, the condition code indicates
zero (no flags), negative (L flag), or positive (G flag) result.

3-30 29-747 ROO 4/81

3.5.23 Exclusive OR (X, XR, XI)

Exclusive OR (X)
Exclusive OR Register (XR)
Exclusive OR Immediate (XI)

Assembler Notation Op-Code Format
X R1,D2(X2) 57 _ RX1,RX2
X R1,A2(FX2,5X2) 57 RX3

XR R1,R2 07 RR

XI R1,I2(X2) F7 - RI2
Operation

The logical difference of the 32-bit second operand and the
contents of the register specified by R1 replace the contents of
the register specified by R1. The 32-bit logical difference is
formed on a bit-by-bit basis.

Condition Code

Result is zero
Result is not zero
Result is not zero

O O OlN
O O O«
-2 O Ol
O - Oft~

Programming Notes

In the RX formats, the second operand must be located on a
fullword boundarye.

When operating on fixed-point data, the condition code indicates
zero (no flags), negative (L flag), or positive (G flag) result.

29-747 ROO u4/81 3-31

3.5.24 FExclusive OR Halfword (XH, XHI)

Exclusive OR Halfword (XH)
Exclusive OR Halfword Immediate (XHI)

Assembler Notation Op-Ccde Format
XH R1,D2(X2) 47 RX1,RX2
XH R1,A2(F¥X2,5X2) 47 RX3

XHI R1,I2(X2) Cc7 RT1
Operation

The halfword second operand is expanded to a fullword by
propagating the most significant bit through bits 0:15. The
logical difference of this 32-bit quantity and the contents of
the register specified by R1 replace the contents of the register
specified by R1. The 32-bit logical difference is formed on a
bit-by-bit basis. '

Condition Code

Result is zero
Result is not zero
Result is not zero

(e NeoNelle!
QO O Ol<s
- O Ol
QO - O

Programming Notes

In the RX formats, the second operand must be 1located ‘on a
halfword boundary.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by ©propagating the sign bit through bits 0:15. The contents of
the index register specified ty X2 are then added to form the
fullword second operande.

When operating on fixed-point data, the condition code indicates
zero (no flags), negative (L flag), or positive (G flag) result.

3-32 29-747 ROO u4/81

3.5.25 Test Immediate (TI)

Assembler Notation Op-Code Format
TI R1,I2(X2) F3 RI2
Operation

Each bit of the second operand is -logically ANDed with the
corresponding bit in the register specified by R1. Neither

- operand is changed.

Condition Code

Result is zero
Result is not zero
Result is not zero

[~ReNalle]
(e NeNa1p -
- OOl
O O

Programming Notes

When operating on fixed-point data, the condition code indicates
zero (no flags), negative (L flag), or positive (G flag) result.

This instruction works the same as the AND Immediate instruction
(NI) except that the first operand is not changed.

Example: TI

This example tests if bit 16 of register 9 is set.

(REG9) = 7EFBC230

Assembler Notation Comments
TI REG9,Y*00008000° Test bit 16
BNZ LABEL Branch if bit is‘set

Result of TI Instruction
(REGY9) Unchanged

Condition Code = 0010 (G=1)
The conditional branch is taken.

29-747 ROO 4/81

w
[}

33

3.5.26 Test Halfword Immediate (THI)

Assembler Notation Op-Code Format
THI R1,I2(X2) C3 RI
Operation

The halfword second operand is expanded to a fullword by
propagating the most significant bit through bits 0:15. Each bit
in this quantity is logically ANLCed with the corresponding bit
contained in the register sgpecified by R1. Neither operand is
changed.

Condition Code

Result is zero
Result is not zero
Result is not zero

o o oln
o ocol<
-~ o ola
O 4o

Programming Notes

When operating on fixed-point data, the condition code indicates
zero (no flags), negative (1L flag), or positive (G flag) result.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added +to form the
fullword second operand.

This instruction works the same as the AND Halfword Immediate
instruction (NHI) except that the firet operand is not changed.
Example: THI

This example tests if any of bits 0:16 of register 9 is set.

(REG9) = 80800000

Assembler Notation Comments
THI REG9,X*8000" Test bits 0:16
BNZ LABEL Branch if any set

Result of THI Instruction

(REGY9) Unchanged
Condition Code = 0001 (L=1)
The conditional branch 1is taken.

w
1

34 29-747 ROO u4/81

3¢5.27 Shift left Logical (SLL, SLLS)

Shift Left Logical (SLL)
Shift Left Logical Short (SLLS)

Assembler Notation Op-Code Format
SLL R1,I2(X2) ED RI1
SLLS R1,N 11 - SF
Operation

The first operand, the contents of the register specified by R1,
is shifted 1left the number of places specified by the second
orerand. Bits shifted out ¢f position 0 are shifted through the
carry flag of the condition code and then lost. The last bit
shifted remains in the carry flag. Zeros are shifted into
position 31. ’

Condition Code

Result is zero
Result is not zero
Result is not zero
Carry

= >4 > XN
[>NelNeRNolE
L NeNelln]
MO - O

Programming Notes

In the RI1 format, the shift count is specified by the 1least
significant five bits of the second operand. The maximum shift
count is 31.

In the SF format, the maximum shift count is 15.

The state of the C flag indicates the state of the 1last bit
shifted out of position 0.

If the second operand specifies a shift of =zero places, the
condition code is set in accordance with the value contained in
the register. The C flag is zero in this case.

When the register specified by R1 contains fixed-point data, the

L flag set indicates a negative result; the G flag set indicates
a positive result.

29-747 ROO 4/81 ' 3-35

3.5.28 Shift Right Logical (SRL, SRLS)

Shift Right Logical (SRL)
Shift Right Logical Short (SRLS)

Essembler Notation Op=-Code Format
SRL R1,12(X2) EC RI1
SRLS R1,N 10 SF
Operation

The first operand, the contents of the register specified by R1,
is shifted right the number of places specified by the second
operand. Bits shifted out of position 31 are shifted through the
carry flag of the condition code and then lost. The last bit
shifted remains in the carry flag. Zeros are shifted into
position 0.

Condition Code

Result is zero
Result is not zero
Result is not zero
Carry

- ¢ pd <)
[>NelbNe)
™ a O O
O O

Programming Notes

In the RI1 format, the shift count is specified by the least
significant five bits of the second operand. The maximum shift
count is 31.

In the SF format, the maximum shift count is 15,

The state of the C flag indicates the state of the 1last bit
shifted out of position 31.

When the register specified by R1 contains fixed-point data, the
1 flag set indicates a negative result; the G flag set indicates
a positive result.

If the second operand specifies a shift of zero places, the

condition code 1is set in accordance with the value contained in
the register. The C flag is zero in this case.

3-36 29-747 ROO 4/81

3.5.29 Shift Left Halfword Lcgical (SLHL, SLHLS)

Shift Left Halfword Logical (SLHL)
Shift Left Halfword Logical Short (SLHLS)

Assembler Notation Op-Code Fdrmat
SLHL R1,I2(X2) CD RI1
SLHLS R1,N 91 SF
Operation

Bits 16:31 of the register specified by R1 are shifted 1left the
number of places specified by the second operand. Bits shifted
out of position 16 are shifted through the carry flag and 1lost.
The 1last bit shifted remains in the carry flag. Zeros are
shifted into position 31. Bits 0:15 of the first operand remain
unchanged.

Condition Code

ClV{iG]|L

Xj10f{o0of]oO Result is zero
X100 1 Result is not zero
X10111}0 Result is not zero
1101 X1 X Carry

Programming Notes

The condition code setting is based on the halfword (bits 16:31)
result.

In the RI1 format, the shift count is specified by the 1least
significant four bits of the second operand. The maximum shift
count is 15,

In the SF format, the maximum shift count is 15.

The state of the C flag indicates the state of the 1last bit
shifted out of position 16.

When the register specified by R1 contains fixed-point data, the
L flag set indicates a negative result:; the G flag set indicates
a positive result. :

If the second operand specifies a shift of Zzero places, the

condition code is set in accordance with the value contained in
bits 16:31 of the register. The C flag is zero in this case.

29-747 ROO 4/81 3-37

3.5.30 Shift Right Halfword logical (SRHL, SRHLS)

Shift Right Halfword Logical (SRHL)
Shift Right Halfword Logical Short (SRHLS)

Assembler Notation Op-Code Format
SRHL R1,12(X2) CcC RI1
SRHLS R1,N 90 SF
Operation

Bits 16:31 of the register specified by R1 are shifted right the
number of places specified by the second operand. Bits shifted
out of position 31 are shifted through the carry flag and lost.
The 1last bit shifted remains in the carry flag. Zeros are
shifted into position 16. Bits 0:15 of the first operand remain
unchanged.

Condition Code

Result 1is zero
Result is not zero
Result is not zero
Carry

- D >4 N
[cNeNoRalES
> -0 O Ol
¢ O Ol

Programming Notes

The ccndition code setting is based on the halfword (bits 16:31)
result.

In the RI1 format, the shift count is specified by the 1least
significant four bits of the second operand. The maximum shift
count is 15.

In the SF format, the maximum shift count is 15.

The state of the C flag indicates the state of the 1last bit
shifted out of position 31.

When the register specified by R1 contains fixed-point data, the
L flag set indicates a negative result; the G flag set indicates
a positive result.

If the second operand specifies a shift of zero places, the
condition cecde is set in accordance with the halfword value
contained in bits 16:31 of the register. The C flag is 2zero in
this case.

3-38 29-747 ROO 4/81

3531 Rotate Left Logical (RLL)

Assembler Notation Op-Code Format
RLL R1,I1I2(X2) EB RI1
Operation

The 32-bit first operand, contained in the register specified by
R1, 1is shifted 1left, end around, the number of positions
specified by the second operand. Bits shifted out of position 0
- are shifted into position 31.

Condition Code

Result is zero
Result is not zero

C
0
0
0 Result is not zero

O O Ol
- O Ole
O a Ot

Programming Notes

The shift count is specified ty the least significant five bits
of the second operand. The maximum shift count is 31.

When the reglister specified by R1 contains fixed-point data, the
L flag set indicates a negative result; the G flag set indicates
a positive result.

If the second operand specifies a shift of zero places, the

condition code 1is set in accordance with the value contained in
the register specified by R1.

Example: RLL

1e Assembler Notation Machine Code Comments
LI REGY9,Y*56789ABC* F890 56789ABC (REG9)=56789ABC
RLL REG9,X*0004" EB90 0004

Result of RLL Instruction

(REG9) = 6789ABCS
Condition Code = 0010 (G=1)

2e Assembler Notation Machine Code Comments
LI REG9,Y*'88880000" F890 8888 0000 (REG9)=88880000
RLL REG9,X'03° EB90 0003

Result of RLL Instruction

(REG9) = 44400004
Condition Code = 0010 (G=1)

29-747 ROO 4/81 3-39

3.5432 PRotate Right Logical (RRL)

Assembler Notation Op-Code ' Format
RRL R1,I2(X2) EA RI1
Operation

The 32-bit first operand, contained in the register specified by’
R1, is shifted right, end around, the number of positions
specified by the second operand. Bits shifted out of position 31
are shifted into position 0.

Condition Code

Result is zero
Result is not zero
Result is not zero

- O Ol
O - Ot

[eNeNeolle]
[eNeNeIE S

Programming Notes

The shift count is specified by the least significant five bits
of the second operand. The maximum shift count is 31.

When the register specified by R1 contains fixed-point data, the
L flag set indicates a negative result; the G flag set indicates
a positive result.

If the second operand specifies a shift of zero places, the

condition code 1is set in accordance with the value contained in
the register specified by R1.

Example: RRIL

1 Assembler Notation Machine Code Comments
LI REGU,Y* 12345678 F840 1234 5678 (REGY4) = 12345678
RRL REGH4,X°*0L4L"* EALO 0004

Result of RRL Instruction

(REG4) = 81234567
Condition Code = 0001 (L=1)

2. Assembler Notation Machine Code Comments
LI REG4,Y*00001111* . F840 0000 1111 (REGU4) = 00001111
RRL REG4,X°'01°* EA40 0001

Result of RRL Operation

(REGU4) = *800000888"*
Condition Code = 0001 (L=1)

3-40 29-747 ROO 4/81

3.5.33 Test and Set (TS)

Assembler Notation Op=-Code Format
TS D2(X2) . EO RX1,RX2
TS A2(FX2,S5X2) EO RX3
Operation

The halfword operand is read from memory and, on the same cycle,
~written Dback with the most significant bit set. The other bits
in the halfword are unchanged. On the read cycle, the nmost
significant bit of the operand is tested. The condition code
reflects the state of this bit at the time of the memory read.

Condition Code

C|{VI|IG]|L
X[X|x|o Most significant bit is zero
X1 X X¢{1 Most significant bit is set

Programming Notes
The second operand must be located on a halfword boundary.

The TS instruction provides a mechanism for software
synchronization and can be used in a single processor environment

as follows: Two or more user tasks running under an operating
system share a halfword. This halfword is located in a memory
area referred to as Task Common. Each task can access the

halfword using the TS instruction. The synchronization segquence
may be as follows:

TASK 1 Sets the most significant bit using the TS instruction.

TASK 2 Senses the most significant bit using the TS
instruction, sees that it is set, performs the necessary
software synchronization, and then zeros the most
significant bit of the halfword.

The TS instruction can be used in a multiprocessor system as
follows: two or more processcrs share a halfword. This halfword
is 1located 1in a memory area referred to as Shared Memory. Each
processor can access the halfword using the TS instruction. The
synchronization &sequence can be as explained for user tasks with
the following slight difference: whereas TASK 1 and TASK 2
cannot access the halfword at the same (real) time, two
processors cane. The access is granted according to the relative
priority of the two processcrse.

The hardware ensures that no other accesses to the halfword are
made during the execution of the TS instruction.

29-747 ROO 4/81

w
1

41

3.5.34 Test Bit (TBT)

Assembler Notation Op-Code Format
TBT R1,D2(X2) 74 RX1,RX2
TBT R1,R2(FX2,5X2) 74 RX 3
Operation

The second operand address points to a bit array starting on a
byte boundary. The value contained in the register specified by
R1 is the bit displacement into the array. Bits in the array are
counted from left to right starting with bit 0. The argument bit
is located and tested. The test does not change the bit.

Condition Code

ClVv]G]|]L
0jojo0yjo Tested bit is zero
0101 1]0 Tested bit is one

Programming Note

For software cocmpatibility with other processors, the bit array
should start on a halfword boundary.

Example: TBRT

Assembler Notation Machine Code Comments
LIS REGS8, 3 2483 (REG8) = 3
TRT REG8, LABEL 7480 OBC4Y LABEL = halfword

in memory at location
X*0BC4*., It contains
X*B34A’*,

Result of TBT Instructicn
Memory Location X*'BC4*' unchanged

(REG8) unchanged
Condition Code = 0010 (G=1)...Bit 3 of location X'BCU* is set.

3-42 29-747 ROO u4/81

3.5.35 Set Bit (SBT)

Assembler Notation Op-Code Format
SBT R1,D2(X2) 7¢ RX1,RX2
SBT R1,A2(FX2,SX2) 78 RX3
Operation

The second operand address points to d bit array starting

on a

byte Dboundarye. The value contained in the register specified by
R1 is the bit displacement into the array. Bits in the array are
counted from left to right starting with bit 0. The argument bit

is located and set to onee.

Condition Code

clVvieG
ojofo
0]0 |1

Previcus state of bit was zero
Previocus state of bit was one

O O

Programming Note

For software compatibility with other processors, the bit
should start on a halfword boundary.

Example: SBT

Assembler Notation Machine Code Comments

LIS REGS, 8 2458 (REGS5) = 8

SBT REG5,LABEL 7580 1520 LABEL located at

array

X*1520'. It contains

X*2134°.
Result of SBT Instruction
Contents of LABEL = 21B4

(REG5) unchanged
Condition Code = 0000 (G=0)

29-747 ROO u4/81

3.5.36 Reset Bit (RBT)

Assembler Notation Op-Code Format
RBT R1,D2(X2) 76 RX1,RX2
RBT R1,A2(FX2,SX2) 76 RX3
Operation

The second operand address points to a bit array starting on a
byte boundary. The value contained in the register specified by
R1 is the bit displacement into the array. Bits in the array are
counted from left to right starting with bit zero. The argument
bit is located and forced to 2zero (reset).

Condition Code

Clv]|GIlL
0j0]01]O0 Previcus state of bit was zero
00110 Previcus state of bit was one

Programming Note

For software compatibility with other processors, the bit array
should start on a halfword boundary.

Example: RBT

Assembler Notation Machine Code Comments

LIS REG2,3 2423 (REG2) = 3

RBT REG2, LABEL 7620 1A42 LABEL located
at X*1A42°

contains X'3143°*.
Result of RBT Instruction
Contents of LABEL = 2143

(REG2) unchanged
Condition Code = 0010 (G=1)

3-4y 29-747 ROO 4/81

3¢5437 Complement Bit (CBT)

Assembler Notation

CBT R1,D2(X2)

CBT R1,A2(FX2,SX2)

Operation

Op-Code Format
77 RX1,RX2
77 RX3

The second operand address points to a bit array starting on a

byte boundarye.

is located and complemented.

Condition Code

C

VIGI|L
0j0|0jo0
0joj1]0

Programming Note

Previous state of bit was zero
Previcus state of bit was one

For software compatibility with other processors, the bit
should start on a halfword boundary.

Example: CBT

Assembler Notation

LIS REGS, 3

CBT REG9, LABEL

Machine Code Comments
2493 (REGY9) = 3
7790 OCu4A LABEL located at

The value contained in the register specified by
R1 is the bit displacement into the array.
counted from left to right starting with bit 0.

Bits in the array are
The argument bit

array

X*C4A*, It contains

X*2813°*.

Result of CBT Instruction

Contents of LABEL

(REGY9) unchanged
Condition Code =

29-747 ROO 4/81

3813

0000 (G=0)

3.5.38 Cyclic Redundancy Check

Cyclic Redundancy Check Modulc 12 (CRC12)
Cyclic Redundancy Check Modulc 16 (CRC16)

Assembler Notation Op-Code Format
CRC12 R1,D2(X2) 5E RX1,RX2
CRC12 R1,A2(FX2,5%2) SE RX3
CRC16 R1,D2(X2) 5F RX1,RX2
CRC16 R1,A2(FX2,5X2) 5F RX 3
Operation

These instructions are used to generate either a 12-bit or a
16-bit Cyclic Redundancy Check (CRC) residual halfword. The
register srecified by R1 contains, in bits 24:31, the data
character to be included in the CRC residual. The second operand
is the accumulated (old) CRC residual. The polynomial used for
+he 12-bit CRC generation is:

XIZ +x|| +x3+x2+x +1
The polynomial used for the 16-bit CRC generation is:

x|6 +x|5 +X2+1
The halfword second operand is replaced by the generated CRC
residual.

Condition Code

Unchanged

Programming Notes
The register specified by R1 remains unchanged.
The second operand must be located on a halfword boundarye.

Figure 3-6 illustrates a flowchart for CRC generation.

w

-u46 29-747 ROO 4/81

589-1
START STEP

(TEMP) «—(R1 2¢.37) (® OLD CRC

Py

(COUNT) +—6 2
—
SHIFT RIGHT
(TEMP) @ (TEMP) 3
BY 1
CARRY YES
NO .
(TEMP) <—— (TEMP)(® X'0F01° 4
-
(COUNT)* <@———— (COUNT) —1 5
SECOND OPERAND *———— (TEMP) 6

END

CRC12 ALGORITHM SHOWN

FOR CRC 16 ALGORITHM, USE: R1 4.3 INSTEAD OF R12g.37 IN STEP 1
8 INSTEAD OF 6 ~ IN STEP 2
X'A001" INSTEAD OF X'0F01’ IN STEP 4

Figure 3-6 Flowchart for CRC Generation

29-747 ROO 4/81

3.5.39 Translate (TLATE)

Assembler Notaticn Op=-Code Format
TLATE R1,D2(X2) E7 RX1,RX2
TLATE R1,A2(FX2,S%2) E7 RX3
Operation

The least significant eight bits (bits 24:31) of the register
specified by R1 contain the character to be translated. The
fullword 1location specified by the second operand address
contains the address of a translation table. The table is made
up of 256 halfwords. The character contained in the register
specified by R1 is used as an index into the table.

If bit O of the table entry ccrresponding to the index character
is one, bits 8:15 of the table entry replace the index character,
and the next sequential instruction is executed.

If bit 0 of the table entry is zero, bits 1:15 of the table entry
contain the address, divided by ¢two, of a special character
handling routine. In this case, no translation takes place. The
address contained in bits 1:15 is shifted left by one (multiplied
by two). This address rerlaces the current location counter,
thereby effecting an unccnditional branch to the special
character handling routine. Translation of character string data
may also be performed using the MVTU instruction. (See Chapter
Te)

Condition Code

Unchanged

Programming Notes

The second operand address must be located on a fullword
boundary.

0 7,8 15
TRANSLATED
1 CHARACTER

O] (CHAR.HANDLING ROUTINE ADDRESS)/2

3-48 29-747 ROO 4/81

Example: TLATE

This example illustrates the use of the TLATE instruction. The
translation table must either be 4initialized or assembled to
contain up to a total of 256 halfword entries. In this example,
the table contains 2 entries:

Label Assembler Notation Comments
LHI REG5, X*8052°* LOAD TABLE ENTRY INTO REGS
STH REG5,TABLE PUT ENTRY INTO TABLE
LA REG7,TRANLAB LOAD ANOTHER TABLE ENTRY
SRLS REG7,1 DIVILCE BY 2
STH REG7,TABLE+4 PUT ENTRY INTO TABLE

TABADR DC A(TABLE)

Alternatively, this table may be assembled with the proper
constant values. The T type constant may be used to assemble
subroutine addresses in the proper format. For example:

ALIGN 2
TABLE EQU *
Lo 256
DC H*O"'
ORG TABLE+4
DC T(TRANLAB)
ORG TABLE+512

Since a program is normally assembled as a relocatable program,
the address of TRANLAB 4is not known, but for illustrative
purposes assume the address of TRANLAB is X'864°.

0 15

TABLE+0
TABLE+2
TABLE+4 8
TABLE+6
TABLE+8
TABLE+10 0
TABLE+12

U .

[3,]

w

A

7

At TABLE+10 is the address cf TRANLAB divided by 2 (X'864°/2)

- — 4= 4 e]
L e e e e

|
|
" l
TABLE+508 T |

1 Using this table, this example translates the character in
register 2.

Label Assembler Notation Comments

LIS REG2,2 (REG2) = 0000 0002
TLATE REG2,TABADR

29-747 ROO 4/81 3-49

Result of TLATE Instruction

(REG2) = 0000 0052
Condition Code unchanged

data at address of (2 times contents
of REG2) + TABLE

data at address TABLE + 4

X*'8052*

The entry used

Since the first bit of the entry is 1, direct +translation
used and the contents of REG2 are replaced by X'0000 0052'.

2. Using the table, the following example shows how the TLATE
instruction can be used to branch to a special character

handling routine:

Label Assembler Notation Comments
LIS REGS, S (REG5) = 0000 0005
TLATE REGS,TABADR

TRANLAB LR R6,RS THESE INSTRUCTIONS
LB R3,0(R6) OPERATE ON THE
. SPECIAL CHARACTER.

Result of TLATE Instruction (continued)

(REGS) = 0000 0005
Condition Code unchanged

Control is transferred to the subroutine at address TRANLAB

(x°864°).

data at address of (2 times contents
of REG5) + TABLE

data at address TABLE + A

X*ou32*

The entry used

Since the first bit of the entry is 0, the entry is multiplied

by 2, a transfer occurs to TRANLAB (at address X'864'),
the processor executes instructions from the new addresse.

3-50 29-747 ROO 4/81

3.5.40 Add To List (ATL, ABL)

Add to Top of List (ATL)
Add tc Bottom of List (ABL)

Assembler Notation Op-Code Format

ATL R1,D2(X2) 64 RX1,RX2

ATL R1,A2(FX2,5SX2) 64 RX3

ABL R1,D2(X2) 65 RX1,RX2
- ABL R1,A2(FX2,5X2) 65 RX3

Operation

The register specified by R1 contains the fullword element to be
added to the list, which is located in memory at the address of
the second operand. The number of slots used tally is compared
with the number of slots in the list. If the number of slots
used equals the number of slots in the 1list, an overflow
condition exists. The element is not added to the list and the
overflow flag in the condition code is set.

If the number of slots used tally is 1less than the number of
slots in the 1ist, it is incremented by one, the appropriate
pointer is changed, and the element is added to the list. (Refer
to Figure 3-4.)

Condition Code

ClV|G]|L
ojojot}o Element added successfully
o11]0]0 List overflow

29-747 ROO 4/81 3-51

Programming Notes

These instructions manipulate circular lists as described in the
introduction to this chapter.

The second operand location must be on a fullword boundary.

The ATL instruction manipulates the current top pointer in the
list. If no overflow occurs, the current top pointer, which
points to the last element added to the top of the 1list, |is
decremented by one. The element is inserted in the slot pointed
to by the new current top pointer. If the <current top pointer
was zero on entering this instruction, the current top pointer is
set to the maximum slot number in the list. This condition is
referred to as list wrap.

The REL instruction manipulates the next bottom pointer. If no
overflow occurs, the element is inserted in the slot pointed to
by the next bottom pointer, and the next bottom pointer is
incremented by one. If the incremented next bottom pointer is
greater than the maximum slot number in the list, the next bottom
pointer is set to zero. This condition is referred to as 1list
wrabe

For the nonoverflow situation, pointer halfwords in the 1list
header are not manipulated until after the element has been

successfully added. This facilitates error recovery in the event
of a memory fault,.

See examples in the next section.

3-52 29-747 ROO 4/81

3.5.41 Remove From List (RTL, RBL)

Remove from Top of List (RTL)
Remove from Bottom of List (RRL)

Assembler Notation Op4Code- Format

RTL R1,D2(X2) 66 RX1,RX2

RTL R1,A2(FX2,5X2) 66 RX3

RBL R1,D2(X2) 67 RX1,RX2
- RBL R1,A2(FX2,SX2) 67 RX3

Operation

The element removed from the list replaces the contents of the
register specified by R1. The list is located at the address of
the second operand. If, at the start of ‘the instruction
execution, the number of slots used tally is zero, then the list
is already empty and the instruction terminates with the overflow
flag set in the condition cocde. This condition is referred to as
list underflow; in this case, R1 is undefined. If underflow does
not occur, the appropriate pointer is 'changed, the element is
extracted and placed in the register specified by R1, and the
number of slots used tally is decremented by one.

Condition Code

List now empty
List is not yet empty
List was already empty

[eNeNellp]
-0 ol
O a Ol
O O ot

Programming Notes

These instructions manipulate circular lists as described in the
introduction to this chapter.

The second operand location must be on a fullword boundary.

In the case of list underflow, the contents of the register
specified by R1 are unchanged.

The RTL instruction manipulates the current top pointer. If no
underflow occurs, the current top pointer points to the element
to be extracted. The element is extracted and placed in the
register specified by R1. The current top pointer is incremented
by one and compared to the maximum slot number. If the current
top pointer is greater than the maximum slot number, the current
top pointer 4is set to zero. This condition is referred to as
list wrarp.

29-747 ROO u4/81 3-53

The RBL instruction manipulates the next bottom pointer. If no
underflow occurs, and the next bottom pointer is zero, it is set
to the maximum slot number (list wrap); otherwise, it 1is
decremented by one, and the element now pointed to is extracted
and placed in the register specified by R1.

For the nonunderflow situation, polinter halfwords in the 1list
header are not manipulated until after the element has been
successfully removed. The register specified by BR1 4is not
modified wuntil the header has been urpdated. This facilitates
error recovery in the event of a memory fault.

Examples: List Instructions (ATL, ABL, RTL, RBL)

The following are examples ¢of the use of the four list processing
instructions.

The original list is normally set up as shown in Figure 3-7.

590

LIST 0005 0000 WHERE HALFWORDS AT

0000 | 0000 LIST = MAXIMUM # OF SLOTS
SLOT O UNDEFINED = 5(IN THIS EXAMPLE)
SLOT 1 UNDEFINED LIST +2 = # OF ENTRIES USED
SLOT 2 UNDEFINED = 0
SLOT 3 UNDEFINED LIST +4 = CURRENT TOP OF LIST
SLOT 4 UNDEFINED = SLOTO

LIST+6 = NEXT BOTTOM OF LIST

= SLOT O

Figure 3-7 List Frocessing Instructions

3-54 29-747 ROO 4/81

Assembler Notation

LIS

STH

ST

LIS
LIS
LIS
LIS
LIS
LIS

STH

REGO,0

REGO,LIST+2

REGO,LIST+4
REG1,1
REG2,2
REG3,3
REG4, 4
REGS5,5
REG6,6

REG5,LIST

29-747 ROO u4/81

Results and Comments

INITIALIZE NUMBER OF ENTRIES
USEL TO 0

INITIALIZE POINTERS TO 0O
REGISTERS 1 THROUGH 6 CONTAIN
1 THROUGH 6 RESPECTIVELY

TOTAL NUMBER OF ENTRIES = 5

REF1 ATL REG1,LIST LIST 0005{0001
00040000 (List Wrap)
SLOT O UNDEFINED
SLOT 1 UNDEFINED
SLOT 2 UNDEFINED
SLOT 3 UNDEFINED
SLOT 4 00000001
Condition Code = 0000
Current Top Pointer = Slot 4
Next Bottom Pointer = Slot 0

REF2 ATL REG2,LIST LIST 00050002
0003{0000

SLOT 0O UNDEFINED

SLOT 1 UNDEFINED

SLOT 2 UNDEFINED

SLOT 3 0000|0002

SLOT 4 0000|0001

Condition Code = 0000
Current Top Pointer = Slot 3

Next Bottom Pointer

= Slot O

29-747 ROO u4/81

REF3 ATL REG3,LIST

REF 4 ABL REGH,LIST

29-747 ROO u4/81

LIST

SLOT 0
SLOT 1
SLOT 2
SLOT 3

SLOT 4

0005

0003

0002

0000

UNDEFINED

UNDEFINED

0000

0003

0000

0002

0000

0001

Condition Code
Current Top Polnter
Next Bottom Pointer

LIST

SLOT 0
SLOT 1
SLOT 2
SLOT 3
SLOT 4

000

0

0005

0004

0002

0001

0000

ooou

UNDEFINED

0000

0003

0000

0002

0000

0001

Condition Code
Current Top Pointer = Slot 2
Next Bottom Pointer

000

0

=
-
-

S
S

S

lot 2
lot 0

lot 1

REF5

REF6

58

ABL REGS,LIST

ABL REG6,LIST

LIST

SLOT O
SLOT 1

SLOT 2

SLOT 3

SLOT 4

0005

0005

0002

0002

0000

0004

0000

0005

0000

0003

0000

0002

0000

0001

Condition Code
Current Top Pointer
Next Bottom Pointer

LIST

SLOT 0
SLOT 1
SLOT 2
SLOT 3

SLOT 4

0000

0005

0005

0002

0002

0000

ooou

0000

0005

0000

0003

0000

0002

0000

0001

Condition Code
Current Top Pointer
Next Bottom Pointer

010

0

Slot 2
Slot 2

(Li
Slot 2
Slot 2

st overflow)

29-747 ROO u4/81

REF7 RTL REG7,LIST

REF8 RBL REGS8,LIST

LIST 0005{0004 |
0003|0002
SLOT O 0000|0004
SLOT 1 0000{0005

SLOT 2 X 100000003

SLOT 3 00000002

SLOT 4 0000|0001

(REG7) = 0000 0003

Conditicn Code = 0010
Current Top Pointer = Slot 3
Next Bottom Pointer = Slot 2

LIST 0005|0003
0003|0001
SLOT O 0000|0004

SLOT 1 X 0000]0005

SLOT 2 X 0000{0003

SLOT 3 00000002

SLOT 4 00000001

(REG8) = 0000 0005

Conditicn Code = 0010
Current Top Pointer = Slot 3
Next Bottom Pointer = Slot 1

NOTE

X equals entry rembved from list, and

is not

accessible through further

manipulation by list instructions.

29-747 ROO 4/81

59

REF9

REF10 -

RTL REG9Y9,LIST

RBL REG10,LIST

X equals
not

is

Next Bottom Pointer

LIST 0005|0002
0004{0001
SLOT 0 0000|0004
SLOT 1 X |0000/0005
SLOT 2 X |0000/0003
SLOT 3 X |0000|0002
SLOT 4 0000{0001
(REG9) = 0000 0002

Conditicn Code = 0010
Current Top Pointer =
Next Bottom Pointer =

LIST 0005|0001
0004|0000
SLOT 0 X 0000|0004
SLOT 1 X 00000005
SLOT 2 X 0000|0003
SLOT 3 X 0000]0002
SLOT 4 000010001
(REG10) = 0000 0004

Condition Code = 0010
Current Top Pointer

NOTE

accessible

entry removed from list,
through

Slot 4
Slot 1

and
further

manipulation by list instructions.

29-747 ROO 4/81

REF11 RTL REG11,LIST

REF12 RTL REG12,LIST

X equa
is not

LIST 000510000
0000|0000
SLOT 0 X 0000|0004
SLOT 1 X 00000005
SLOT 2z X 0000}0003
SLOT 3 X 0000 6002
SLOT 4 X 0000|0001
(REG11) = 0000 0001
Condition Code = 0000

Current Top Pointer
Next Bottom Pointer

LIST 0005)0000

000010000

SLOT 0 X 0000|0004

SLOT 1 X 0000|0005

SLOT 2 X 0000|0003

SLOT 3 X 00000002

SLOT 4 X 0000|0001

(REG12) = UNDEFINED
Condition Code = 0100
Current Top Pointer
Next Bottom Pointer

NOTE

1s

accessible through

(List is now empty)

0
0

(List was
already empty)

entry removed from list, and

further

manipulation by list instructions.

29-747 ROO 4/81

3-61/3-62

CHAPTER 4
BRANCHING

4.1 INTRODUCTION

In normal operations, the processor executes instructions in
sequential order. The branch instructions allow this sequential
mode of operation to be varied, so that programs can 1loop,
transfer contrcl to subroutines, or make decisions based on the
results of previous operaticns.

4.2 OPERATIONS

The second operand of a branch instruction is the address of the
memory location to which control is transferred. The address may
be contained in a register or it may be specified in the
instruction as the second orerand address or as a displacement.

4.,2.1 Decision Making

The conditional branch instructions permit the program to make
decisions based on some result. In these instructions, the R1
field contains a 4-bit mask, M1, which is tested by ANDing it
with the condition code. The result of the test determines
whether the branch is taken, c¢cr the next sequential instruction
is executed. :

The following examples show previcus condition code, mask
specified in a branch instruction, and the result of the test on
which the branch or no branch decision is made.

, Branch Branch
Condition Result (True/ True False
Code Mask(M1) of Test False) Taken Taken
0000 0010 0000 (False) No Yes
0001 1010 000¢C (False) No Yes
1001 1000 1000 (True) Yes No
0100 0100 0100 (True) Yes No
1010 0010 001C (True) Yes No
0010 0011 0010 (True) _ Yes No
0010 0000 0000 (False) No Yes

29-747 ROO u4/81 ‘ 4-1

4.2.2 Subroutine Linkage

The branch and link instructions allow branching to subroutines
in such a way that a return address is passed to the subroutine.
For these instructions, the address of the memory location
immediately following the branch instruction is saved in the
register srecified by R1.

4.3 BRANCH INSTRUCTION FORMATS

The branch instructions use the Register-to-Register (RR), the
Short Form (SF), and the Register and Indexed Storage (RX)
formats.

4.4 BRANCH INSTRUCTIONS

The instructions described in this section are:

BFC Branch on False Condition

BFCR Branch on False Condition Register

BFBS Branch on False Condition Backward Short
BFFS Branch on False Condition Forward Short
BRTC Branch on True Condition

BTCR Branch on True Conditicn Register

BTBS Branch on True Condition Backward Short
RTFS Branch on True Condition Forward Short
BAL Branch and Link

BALR Eranch and Link Register

BXLE Branch on Index Low or Equal

BXH Branch on Index High

4-2 29-747 ROO 4/81

4.4.1 Branch on True (BTC, BTCR, BTBS, BTFS)

Branch on True Condition (BTC)

Branch on True Condition Register (BTCR)
Branch on True Condition Backward Short (BTBS)
Branch on True Condition Forward Short (BTFS)

Assembler Notation Qp-Code Format
BTC M1,D2(X2) 42 RX1,RX2
BTC M1,A2(FX2,SX2) u2 RX3
BTCR M1,R2 02 RR

BTBS M1,N 20 SF

BTFS M1,N 21 SF
Operation

The condition ccde of the Program Status Word (PSW) is tested for
the conditions specified by the mask field, M1. If any
conditions tested are found to be true, a branch is taken to the
second operand location. If ncne of the <conditions tested is
found to be true, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

In the RR format, the branch address is contained in the register
specified by R2. '

In the SF format, the N field contains the number of halfwords to

be added to or subtracted from the current 1location counter to
obtain the branch addresse.

In the RR and RX formats, the tranch address must be 1located on
a halfword boundarye.

Example: BTC

Assemkbler Notation Machine Code Comments
LH R1,X*100" 4810 0100 Load halfword (X*'1234")
BTC 3,10C 4230 ARBCO located at X'100°. Condi-

tion code is set to CVGL =
00100 HaSk is 3' ioe.’
M1=0011. . Perform logical
AND between CVGL and M1,
i.e.. 0010 AND 0011. The
result is 0010, i.e., true;
therefore, a branch is
taken to LOC.

29-747 ROO 4/81 4-3

4.4.2 Branch on False (BFC, BFCR, BFBS, BFFS)

Branch on False Condition (BFC)

Branch on False Condition Register (BFCR)
Branch on False Condition Backward Short (BFBS)
Branch on False Condition Forward Short (BFFS)

Assembler Notation Op~-Code Format
BFC M1,L2(X2) 43 RX1,RX2
BFC M1,A2(FX2,SX2) 43 RX3
BFCR M1,R2 03 RR

BFBS M1,N 22 SF

BFFS M1,N 23 SF
Operation

The condition code of the PSW is tested for the conditions
specified in the mask field, M1. If all conditions tested are
found to be false, a branch is taken to the second operand
location. If any of the conditions tested is found to be true,
the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

In the RR format, the branch address is contained in the register
specified by R2Z.

In the SF format, the N field contains the number of halfwords to
be added to or subtracted from the current location counter to
cbtain the branch address.

In the RR and RX formats, the branch address must be located on
a halfword boundary.

Example: BFC

Assembler Notation Machine Code Comments
L.CS R1,2 2512 (R1) = FFFFFFFE. Condition
BFC 9,L0C 4390 AECO code, CVGL = 0001 mask 1is

1001. Perform logical AND
between mask and CVGL,
ioEo' 1001 AND 0001. The
result is 0001, i.e., true;
therefore, a branch is not
taken to LOC.

4-4 29-747 ROO 4/81

4.4.3 Branch and Link (BAL, BALR)

Branch and Link (BAL)
Branch and Link Register (BALR)

Assembler Notation Op-Code Format
BAL R1,D2(X2) 41 RX1,RX2
BAL R1,A2(FX2,5X2) 41 RX3 ‘
BALR R1,R2 01 RR
Operation

The address of the next sequential instruction is saved in the
register specified by R1, and a branch is taken to the second
operand addresse.

Condition Code

Unchanged

Programming Notes
The second operand location must be on a halfword boundary.

The branch address is calculated before the register specified by
R1 is changed. R1 may specify the same register as X2, FX2, sx2,
or R2.

Example: BAL

The following example illustrates the use of the BAL instruction.
This instruction causes contrcl to be transferred to a subroutine
called SUBROUT. After completion of the subroutine, the 1linking
register is used to branch back to the next sequential
instruction after the BAL; i.e., the instruction labeled RETURN.

29-747 ROO 4/81 o 4-5

Label Assemnbler Notation Comments

[BEGIN BAL REG4,SUBROUT TRANSFER TO SUBROUT
MAIN RETURN XR R6,R6
PROG STH R6,LAB+4
=SUBROUT LHL k8,LCC THE RETURN ADDRESS
OF THE SUBROUTINE
IS IN REGY4
SUBROUTINE - AHI R8,10
| RTNEND BR REGUY RETURN TO XR INST.
NOTE

The linking register (REGY4 in the
example) should not be used within the
subroutine.

Result of BAL Instruction

(REGU4) = Address of instructicn at SUBROUT
Condition Code unchanged

4-6 29-747 ROO 4/81

4.4.4 Branch on Index lLow or Equal (BXLE)

Assemtler Notation Op-Code Format
BXLE R1,D2(X2) C1 RX1,RX2
BXLE R1,A2(FX2,5X2) C1 RX3

Set Up

0 31

"R1 Starting index value

R1+1 ‘ Increment value

R1+2 Limit or final value

Before execution of this instruction, the register specified by
R1 must contain a starting index value. The register specified
by R1+1 must contain an increment value. The register specified
by R1+2 nmust contain a comparand (limit or final value). All
values may be signed.

Operation

Execution of this instruction causes the increment value to be
added to the index value, creating a new index value. The result
is <compared 1logically to the limit or final value. If the new
index value is less than or equal to the limit value, a branch is
taken to the second operand lccation. If the new index value is
greater than the limit value, the next sequential instruction is
executed.

Condition Code

Unchanged

Programming Notes

The incremented index value replaces the contents of the register
specified by R1.

Any three consecutive registers of the same set may be used by
this instruction as specified by R1. These registers may be 6,
7, 83 or 14, 15,_03 or 15' O, 1, etce '
The second operand location must be on a halfword boundary.

The branch address is calculated before incrementing the starting
index value contained in the register specified by R1.

R1 may sprecify the same register as X2, FX2 or SX2.

29-747 ROO u4/81 4-7

Example: BXLE

Transfer 10 bytes in memory starting at ¢the memory 1location
labeled BUFO to the memory location labeled BUF1.

Label Assembler Notation Comnments
LIS REG3,0 (REG3)=STARTING INDEX VALUE=0
LIS REGY4, 1 (REGU)=INCREMENT VALUE
LIS R5,9 (REGS)=FINAL VALUE=9
AGAIN LB REGO,BUFO(R3) (REGO)=1 BYTE FROM BUFO
STB REGO,BUF1(R1) COPY 1 BYTE TO BUF1
LABEL BXLE R3,AGAIN IF (REG3)>(REGS5),DONE
BUFO DS 10
BUF1 DS 10

Result of BXLF Instruction

Code between the instructions labeled AGAIN and LABEL is executed
ten times. ‘

Condition Code unchanged by BXLE instruction

(REG3) = 0000000A
(REG4) = 00000001
(REGS5) = 00000009

4-8 29-747 ROO u4/81

4.4.5 Branch on Index High (BXH)

Assembler Notation Op-Code Format
BXH R1,CL2(X2) Cco RX1,RX2
EXH R1,A2(FX2,5X2) Cco RX 3
Set Ugp

0 31
R1 Starting index value
R1+1 Increment value
R1+2 Limit or final value

Before execution of this instruction, the register specified by
R1 must contain a starting index value. The register specified
by E1+1 must contain an increment value. The register specified
by R1+2 must contain a comparand (limit or final value). All
values may be signed.

Cperation

Fxecution of this instruction causes the increment value +to be
added to the index value, creating a new index value. The result
is 1logically compared to the limit or final value. If the new
index value is greater than the limit value, a branch is taken to
the second operand location. If the new index value is less than
or equal to the limit value, the next sequential instruction is
executed. '

Condition Code

Unchanged

Programming Notes

The incremented index value replaces the contents of the register
speciflied by R1.

Any three consecutive registers of the same set may be wused by
this instruction as specified by R1. These registers may be 6,
7, 8; 14, 15, 0; or 15, 0, 1, etc.

The second operand location must be on a halfword boundary.

The branch address is calculated before incrementing the starting
index value contained in the register specified by R1.

R1 may specify the same register as X2, FX2 or SX2.

29-747 ROO 4/81 ' 4-9

Example: BXH

The following example shows how to set up a counter (1-9) using
the BXH instruction:

Label Assembler Notation Comment

LIS REG1,1 (REG1)=0000 0001 (INDEX)

LIS REG2,1 (REG2)=0000 0001 (INCREMENT)

LIS REG3,9 (REG3)=0000 0009 (COMPARAND)
BEGIN BXH REG1,LABEL COMPARE INDEX WITH COMPARAND

LH R6,CCUNT .

B BEGIN BRANCH TO BXH INSTRUCTION
LABEL LA R8 ,RTN EXIT FROM BXH

ST R8,MENM

Result of BXH Instruction

Code between the instructions labeled BEGIN and LABEL is executed
nine times.

Condition Code Unchanged by BYXH instruction

(REG1) = 0000 00O0RA
(REG2) = 0000 0001
(REG3) = 0000 0009

4-10 29-747 ROO 4/81

4.5 EXTENDED BRANCH MNEMONICS

The CAL assembler supports 47 extended branch mnemonics that
generate the branch opb-code (true or false conditional) and the
condition code mask required. The programmer must supply the
second operand address (symbolic or absolute). In the case of
Short Format (SF) branch instructions, the second operand branch
address must be within 15 halfwords of the current location
counter. The CAL assembler determines the backward or forward
relationship of the second operand address and generates the
approrriate operation code.

The instructions described in this section are:

BC Branch on Carry

BCR Branch cn Carry Register
BCS Branch on Carry Short
BNC Branch on No Carry

BNCR Branch on No Carry Register
BNCS Branch on No Carry Short

BE Branch on Equal

BER Branch on Equal Register
BFS Branch on Equal Short
BNE Branch on Not Fqual

BNER Branch on Not Egqual Register
BNES Branch on Not Equal Shcrt

BL Branch on Low

BLR Branch on Low Register
BLS Branch ¢n Low Short
BNL Branch on Not low

BNLR Branch on Not Low Register
BNLS Branch on Not Low Shcrt

BM Branch on Minus

EMR Branch on Minus Register
BMS Branch on Minus Short
BNM Branch on Not Minus

BNMR Branch on Not Minus Register
BNMS Branch on Not Minus Short

BP Branch on Plus

BPR Branch on Plus Register
BPS Branch on Plus Short
BNP Branch on Not Plus

BNPR Branch on Not Plus Register
BNPS Branch on Not Plus Short

29-747 ROO 4/81 ‘ 4-11

BO
BCR
BOS

BNO
BNOR
BNOS

BZ
BZR
BZS

BNZ
BNZR
BNZS

BR
BS

NOP
NOPR

Branch on Overflow
Branch on Overflow Register
Branch on Overflow Short

Branch on No Overflow
Branch on No Overflow Register
Branch on No Overflow Short

Branch on Zero
Branch on Zeroc Register
Branch on Zero Short

Branch on Not Zero
Branch c¢cn Not Zero Register
Branch on Not Zero Short

Branch (Unconditional)
Branch Register (Unccnditional)
Branch Short (Unconditional)

No Operation
No Operation Register

29-747 ROO 4/81

4.5.1 Branch on Carry (BC, BCR, BCS)

Branch on Carry (BC)
Branch on Carry Register (BCR)
Branch on Carry Short (BCS)

Assembler Notation Op~Code+M1 Format
BC D2(X2) 428 - RX1,RX2
BC A2(FX2,SX%2) 428 RX3

BCR R2 028 RR

BCS A 208(Backward) SF

218(Forward)

Operation

If the Carry (C) flag in the ccndition code is set, a branch is
taken to the second operand lccation. If the C flag is zero, the
next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

Example: BCS

Assembler Notation Machine Code - Comments
SHIFT SLLS R9,1 1191 Register 9 is shifted
ECS SHIFT 2C81 left until the first

zero bit is shifted
out of position 0.

29-747 ROO u4/81 4-13

4.5.2 Branch on No Carry (BNC, BNCR, BNCS)

Branch on No Carry (BNC)
Branch on No Carry Register (ENCR)
Branch on No Carry Short (BNCS)

Assembler Notation Op-Code+M1 Format
BNC D2(X2) 438 RX1,RX2
BNC A2(FX2,SX2) 438 RX3
BNCR R2 : 038 RR

BNCS A 228 (Backward) SF

238 (Forward)

Operation
If the Carry (C) flag in the condition code is zero, a branch is

taken to the second operand location. If the C flag is set, the
next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

4-14 29-747 ROO u4/81

4.5.3 Branch on Egual (BE, BER, BES)

Branch on Equal (BE)
Branch on Equal Register (BER)
Branch on Equal Short (BES)

Assembler Notation Op-Code+M1 Format
BE L2(X2) 433 - RX1,RX2
BE A2(FX2,8X2) 433 RX3

BER R2 ' 033 RR

BES A 223 (Backward) SF

233 (Forward)

Operation

If the G flag and the L flag are both zero in the condition code,
a branch is taken to the second operand location. If either flag
is set, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.
In the RR format, the branch address is contained in the register

specified by R2.

Example: BE

Assembler Notation Machine Code Comments
CLHI R4,X*23"* C540 0023 If R4 contains X*23°,
BE CPTIN 4330 0AO0O a branch is taken to

location X°'A00°.
Otherwise, the next
sequential instruction
is executed.

29-747 ROO 4/81 4-15

4.,5.4 Branch on Not Equal (BNE, BNER, BNES)

Branch on Not Equal (BNE)
Branch on Not Equal Register (BNER)
Branch on Not Equal Short (ENES)

Assembler Notation Op=-Code+M1 Format
BNE D2(X2) 423 RX1,RX2
BNE A2(FX2,58X%2) 423 RX3
BNER R2 023 RR
BNES A 203 (Backward) SF

213 (Forward)

Operation

If the G flag or the L flag is set in the condition code, a
branch is taken to the second operand location. If both flags
are zero, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

4-16 29-747 ROO 4/81

4.5.5 Branch on Low (BL, BLR, BLS)

Branch on Low (BL)
Branch on Low Register (BLR)
Branch on low Short (BLS)

Assembler Notation Op-Code+M1 Format
BL D2(X2) 428 - RX1,RX2
BL A2(FX2,5X2) 428 RX3

_ BLR R2 028 RR
BLS A 208 (Backward) SF

218 (Forward)

Operation

If the Carry (C) flag in the condition code is set, a branch is
taken to the second operand address. If the C flag is zero, the
next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

Example: BL

Assembler Notation Machine Code Comments

CLHI R1,X*FF* ' C510 OOFF (R1) is compared to
BL RESTART 4280 OAQ0O X*00FF's. If (R1) is less

than X'00FF*', a branch
" is taken to memory
location X'0OAQO*,

29-747 ROO u4/81 4-17

4.5.6 Branch on Not Low (BNL, BNLR, BNLS)

Branch on Not Low (BNL)
Branch on Not lLow Register (BNLR)
Branch on Not Low Short (BNLS)

Assembler Notation Op~-Code+M1 Format
BNL D2(X2) 438 RX1, RX2
BNL A2(FX2,5X2) 438 RX3

BNLR R2 038 RR

BNLS A 228 (Backward) SF

238 (Forward)

Operation

If the Carry (C) flag in the condition code is zero, a branch is
taken to the second operand address. If the C flag is set, the
next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

4-18 29-747 ROO u4/81

4.5.7 Branch on Minus (BM, BMR, BMS)

Branch on Minus (BMN)
Branch on Minus Register (BMR)
Branch on Minus Short (BMS)

Assembler Notation Op-Code+M1 Format
BM D2(X2) 521 ~ RX1,RX2
BM A2(FX2,SX2) 421 RX3

~ BMR R2 021 RR
BMS A 201 (Packward) SF

211 (Forward)

Operation

If the Less Than (L) flag in the condition code is set, a branch
is taken to the second operand location. If the L flag is zero,
the next sequential instructicn is executed.

Condition Code

Unchanged

Programming Notes

The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
sprecified by R2.

Example: BM

Assembler Notation Machine Code Comments

SIS R3,1 2631 If (R3) is less than 0

BM CONTINUE 4210 10A0 after the subtraction,
a branch is taken to
X*10A0°'.

29-747 ROO 4/81 4-19

4.5.8 Branch on Not Minus (BNM, BNMR, BNNS)

Branch on Not Minus (BNM)
Branch on Not Minus Register (BNMR)
Branch on Not Minus Short (BNMS)

Assembler Notation Op-Code+M1 Format
BENM D2(X2) 431 RX1,RX2
BNM A2(FX2,5X2) 431 RX3
BNMR R2 031 RR

BNMS A 221 (Backward) SF

231 (Forward)

Operation

If the Less Than (L) flag in the condition code is zero, a branch
is taken to the second operand location. If the L flag 4is set,
the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

4-20 29-747 ROO u4/81

4.5.9 Branch cn Plus (BP, BPR, BPS)

Branch on Plus (BP) ‘
Branch on Plus Register (BPR)
Branch on Plus Short (BPS)

Assembler Notation Op-Code+M1 Format
BP D2(X2) 422 ~RX1,RX2
BP A2(FX2,SX2) 422 RX3

BPR R2 022 RR

BPS A 202 (BRackward) SF

212 (Forward)

Operation

If the Greater Than (G) flag in the condition code 1is set, a
branch is taken to the second operand location. If the G flag is
zero, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary. -

In the BRR format, the branch address is contained in the register
specified by R2.

29-747 ROO u4/81 4-21

4.5.10 Branch on Not Plus (BNP, BNPR, BNPS)

Branch on Not Flus (BNP)
Branch on Not Plus Register (BNPR)
Branch on Not Flus Short (BNPS)

Assembler Notation Op-Code+M1 Format
BNP D2(X2) 432 RX1,RX2
BNP A2(FX2,SX2) 432 RX3
BNPR R2 032 RR

BNPS A 222 (Backward) SF

232 (Forward)

Operation

If the Greater Than (G) flag in the condition code is zero, a
branch is taken to the second operand location. If the G flag is
set, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundarye.

In the RR format, the branch address is contained in the register
specified by R2.

4-22 29-747 ROO 4/81

4.5.11 Branch on Overflow (BO, BOR, BOS)

Branch on Overflow (BO)
Branch on Cverflow Register (ECR)
Branch on Overflow Short (BOS)

Assembler Notation Op-Code+M1 " Format
BC D2(X2) 424 RX1,RX2
BO A2(FX2,S5X2) 424 RX3

BOR R2 024 RR

BOS A 204 (Backward) SF

214 (Forward)

Operation

If the Overflow (V) flag in the condition code is set, a branch
is taken to the second operand location. If the V flag is zero,
the next sequential instructicn is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

29-747 ROO 4/81 4-23

4.5.12 Branch on No Overfiow (BNO, BNOR, BNOS)

Branch on No Overflow (BNO)
Branch on No Overflow Register (BNOR)
Branch on No Overflow Short (ENOS)

Assembler Notation Op-Code+M1 Format
BNO D2(X2) 43y RX1,RX2
BNO A2(FX2,S8X2) 434 RX3
BNOR R2 034 RR

BNOS A 224 (Backward) SF

234 (Forward)

Operation
If the Overflow (V) flag in the condition code is zero, a branch

is taken to the second operand location. If the V flag is set,
the next sequential instructicn is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2,.

=
!

24 29-747 ROO 4/81

4.5.13 Branch on Zero (BZ, BZR, BZS)

Branch on Zero (BZ)
Branch on Zero Register (BZR)
Branch on Zero Short (BZS)

Assembler Notation Op-Code+M1 Format
BZ L2(X2) 433 RX1,RX2
BZ A2(FX2,SX2) 433 RX3

~ BZR R2 033 RR
BZS A 223 (Packward) SF

233 (Fcrward)

Operation

If the G and L flags are both 2zero in the condition code, a
branch 1is taken to the second operand location. If the G or L
flag is set, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

29-747 ROO u4/81 4-25

4.5.14 PRranch on Not Zero (BNZ, BNZR, BNZS)

Branch on Not Zero (BNZ)
Branch on Not Zero Register (BNZR)
Branch on Not Zero Short (BNZS)

Assembler Notation Op-Code+M1 Format
BNZ D2(X2) 423 RX1,RX2
BNZ A2(FX2,SX2) 423 RX3
BNZR R2 023 RR

BNZS A 203 (Fackward) SF

213 (Forwvard)

Operation
If the G or L flag in the condition code 1is set, a branch |is

taken to the second operand address. If the G and L flags are
both zero, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

&
t

26 29-747 ROO u/81

4.5.1¢ Branch (Unconditional) (B, BR, BS)

Branch (Unconditional) (B)
Branch Register (Unconditional) (BR)
Branch Short (Unconditional) (BS)

Assembler Notation Op-Code+M1 Format
R D2(X2) 430 _ RX1,RX2
B A2(FX2,SX2) 430 RX3

~ BR R2 030 "RR
BS 1 220 (Packward) SF

230 (Forwvard)

Operation

A branch is unconditionally taken to the‘second operand address.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

This instruction is assembled as a PRranch on False Condition

instruction, with no conditicn specified (M1=0). Therefore, the
branch test is always false and the branch is always taken.

Example: B

Assembler Notation Machine Code Comments

B CETIN 4300 0OAOQO An unconditional branch
is taken to location
X'0OAQO"*.

29-747 ROO u4/81 4-27

4.5.16 No Operation (NOP, NOPR)

No Operaticn (NOP)
No Operation Register (NOPR)

Assembler Notation Op-Code+M1 Format
NOP D2(X2) 420 RX1,RX2
NOP A2(FX2,5X2) 42¢C RX3
NOPR R2 020 RR
Operation

The next sequential instructicn is executed.

Condition Code

Unchanged

Programming Notes

L2(X2) or R2(FX2,5SX2) and R2 are ignored and usuvally equal zero
(0).

This instruction is assembled as a Branch on True Condition

instruction with no condition specified (M1=0); therefore, no
branch is taken and the next instruction is fetched and executed.

Example: NOP,NOPR

Assembler Notation Machine Code Comments

NOP 0(0,0) 4200 4000 0000 No operation
NOP 0 4200 0000 No operation
NOPR 0200 No operation

4-28 29-747 ROO u/81

399

CHAPTER 5
FIXED-POINT ARITHMETIC

S«1 INTROLUCTION

Fixed-point arithmetic‘instructions provide a complete set of
operations for calculating addresses and indices, for counting,
and for general purpose fixed-point arithmetic.

52 FIXED-POINT DATA FORMATS

There are three formats for fixed-point data: the halfword, the
fullword, and the doubleword. In each of these formats, the most
significant bit (bit 0) is the sign bit. The remaining 15, 31 or
63 bits represent the magnitude. (See Figure 5-1.)

01 HALFWORD 15

S

0 1 FULLWORD . 31
S

01 DOUBLE WORD . 63
S

N

Figure 5-1 Fixed-Point Data Formats

Positive values are represented in true binary form with a sign
bit of zero. Negative values are represented in two's complement
form with a sign bit of one. To change the sign of a number, the
two's complement of the numker may be produced by subtracting the
number from zero. Another way would be to:

1. Change all zeros tc cnes, and all ones to zeros.

2e Add one.

29-747 ROO u4/81 ' 5-1

53 FIXED-POINT NUMBER RANGE

Fixed-point numbers represent integers. Table 5-1 shows
relations between different fcrmats, along with decimal values.

TABLE 5-1 FIXED-POINT FORMAT RELATIONS

800

DOUBLE WORD FULLWORD HALFWORD DECIMAL
8000000000000000 -9 223 372 036 854 775 808
(MOST NEGATIVE)
80000000 -2147 483648
{MOST NEGATIVE)
8000 (MOST NEGATIVE) -32768
FFFFFFFFFFFFFFFF FFFFFFFF FFFF (LEAST NEGATIVE) -1
0000000000000000 00000000 0000 0
0000000000000001 00000001 0001 (LEAST POSITIVE) 1
7FFF (MOST POSITIVE) 32 767
7FFFFFFF 2147 483 647
: (MOST POSITIVE)
7FFFFFFFFFFFFFFF 9 223 372 036 854 775 807

(MOST POSITIVE)

5.4 OPERATIONS

Fixed-roint instructions include both fullword and halfword
operations. Fullword operations take place (a) between the
contents of two general registers; (b) between the contents of a
general register and a fullwcrd stored in memory; or (c) between
the contents of a general register and a fullword obtained from
the instruction stream. Fullword multiply produces a doubleword
result which is contained in two adjacent registers. Fullword
divide operates on doublewcrd data contained in two adjacent
registers.

Halfword operations take place between a fullword contained in
one of the general registers and a halfword contained in memorye.
Before the operation 1is started, the halfword in memory is
expanded to a fullword by propagating the most significant bit
(sign bit) into the high order bits of the fullword. The
halfword nultirly and divide instructions are exceptions to this
rule.

w
!
N

29-747 ROO u/81

5.5 CONDITION CODE

All fixed-point arithmetic instructions, except multiply and
divide, affect the conditicn code to indicate the outcome of the
operation on the 32-bit result.

In fixed-point add and subtract operations, the arguments are
represented in two's complement form; therefore, all bits,
including sign, participate in forming the result. Consequently,
the occurrence of a carry or borrow has no real arithmetic
significance.

For example, an add operation between a minus one (FFFF FFFF) and
a plus two (0000 0002) produces the correct result of plus one
(0000 0001) and a carry. The condition code is set to 1010 (C =
1 and 6 = 1). Carry means that the complete result, which in
this case would have been 1 0000 0001, would not fit in 32 bits.

An overflow occurs when the result does not fit in 31 bits. Note
that bit zero must be reserved for the sign of the result. For
example, adding one to the largest positive fixed-point value
produces an overflow: '

7FFF FFFF
+0000 0001
=8000 0000

The resulting condition code is 0101 (V=1 and L=1).

The result, 8000 0000, is logically correct, but because the sign
bit is negative when the result should be positive, the overflow
condition exists.

The columns of the condition code table given for each
instruction description show the state of the C, V, G and L flags
for the possible results.

An ‘X' in a condition code column means that the particular flag
is not defined, and may be either 0 or 1. Hence, no inference
should be drawn by testing that particular flag.

56 FIXED-POINT INSTRUCTION FORMATS

The fixed-point instructions use the Register to Register (RR),

the Short Form (SF), the Register and Indexed Storage (RX), and
the Register and Immediate (RI) instruction formats.

29-747 ROO 4/81 5-3

5.7

FIXED-PCINT INSTRUCTICNS

The fixed-point instructions described in this section are:

A
AR
AL
AIS
AH
AHI
AM
AHM
S
SR
SI
SIS
SH
SHI
C

CR
CI
CH
CHI
M

MR
MH
MHR
D

DR
DH
DHR
SLA
SLHRA
SRA
SRHA
CHVR

Adad

Add Register

Add Immediate

Add Immediate Short

Add Halfword

Add Halfword Immediate

Add to Memory

Add Halfwerd to Memory
Subtract

Subtract Register

Subtract Immediate

Subtract Immediate Short
Subtract Halfword

Subtract Halfword Immediate
Compare

Compare Register

Compare Immediate

Compare Halfword

Compare Halfword Immediate
Multiply

Multiply Register

Multiply Halfword

Multiply Halfword Register
Divide

Divide Register

Divide Halfword

Divide Halfword Register
Shift Left Arithmetic

Shift Left Halfword Arithmetic
Shift Right Arithmetic
Shift Right Halfword Arithmetic
Convert to Halfword Value Register

29-747 ROO u4/81

57.1 Add (A, AR, AI, AIS)

Add (R)

Add Register (AR)

Add Immediate (AI)

Add Immediate Short (AIS)

Assembler Notation Op-Code .Format
A R1,D2(X2) 53 RX1,RX2
A R1,A2(FX2,5X2) 5A RX3

AR R1,R2 0A RR

AY R1,12(X2) FA RI2

AIS R1,N 26 SF
Operation

The second operand is added algebraically to the contents of the
register specified by R1. The result of this 32-bit addition
replaces the contents of the register specified by R1.

Condition Code

Result is zero

Result is less than zero
Result is greater than zero
Arithmetic overflow

Carry

- 54 D44 IO
<O 00w
M a O ola
MO a0

Programming Notes

The second operand for the AIS instruction is obtained by
expanding the U4-bit data field, N, to a 32-bit fullword by
forcing the high order bits toc zero.

In the RI2 format, the contents of the index register specified
by X2 are added to the 32-bit I2 field to form the fullword
second operand.

In the RX formats the second operand must be located on a
fullword boundary.

29-747 ROO 4/81 5-5

Example: A

Rdd ccntents of memory locaticn labeled LAB to the contents of
REGU4. :

1« REGY contains X*7F341234"
Fullword in memory at LAB contains X*'7F124321"°

Assembler Notation Comments

A REGU4,LAB ADD (LAB) TO (REGWY)

Result of B Instruction
(REGU) = X'FE465555"
(LAB) unchanged by this instruction
Ccndition Code = 0101 (Y=1, L=1)
2. REGS5 contains X°8000 0001°
Fullword in memory at LAB contains X*'80000002°*

Assembler Notation Comments

A REG5,LAB ADD (LAB) TO (REG5)

Result of A Instruction
(REGE) = X*'00000003"

(LAB) unchanged by this instruction
Cendition Code = 1110 (C=1, V=1, G=1)

29-747 ROO 4/81

2]
!
[,

57.2 Add Halfword (AH, AHI)

Add Halfword (AH) _
Add Halfword Immediate (AHI)

Assembler Notation Oprode Format
AH R1,D2(X2) ' uA RX1,RX2
AH R1,A2(FX2,SX2) 4 , RX3

AHI R1,I2(X2) CA RI1
Operation

The 16-bit second operand is expanded to a 32-bit fullword by
propagating the most significant bit through bits 0:15 of the
fullword. The fullword operand is added to the fullword contents
of the register specified by R1. The result replaces the
contents of the register specified by R1.

Condition Code

Result is zero

Result is less than zero
Result is greater than zero
Arithmetic overflow

Carry

=2 5¢ < M O
Maa OO OoOl=
M -2 00N
> 5 O Ol

Programming Notes

In the RX formats, the second operand must be located on a
halfword boundarye.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified ty X2 are then added to form the
fullword second operand.

29-747 ROO 4/81 ' ' 5-7

Example: AH

This example adds the halfword at memory location labeled LAB
the contents of register 4.

1. REGU contains X*'00230002°
Halfword at memory location LAB contains X*'FFFF°

Assembler Notation _ Comments

AH REGU,LAB ADD (LAB) TO (REGH)

Result of AH Instruction
(REGY) = X*00230001"*

(LAB) unchanged by this instructicn
Ccndition Code = 1010 (C=1, G=1)

2. REGS contains X'FFFF FFF5"
LAB contains X'FFF2°'

Assembler Notation Comments

AH REGS5,LAB ADD (LAB) TO (REGS)

Result of AH Instruction

(REG5) = *FFFF FFE7°'
(LAB) unchanged by this instruction
Condition Code = 1001 (C=1, L=1)

to

5-8 29-747 ROO 4/81

57.3 Add to Memory (AM)

Assembler Notation Op-Code Format
AM R1,D2(X2) 51 RX1,RX2
AN R1,A2(FX2,SX2) 51 RX3
Operation

- The first operand contained in the register specified by R1 is
added algebraically to the fullword second operand. The result
replaces the fullword second cperand in memory. The contents of
the register specified by R1 are not changed.

Condition Code

Result is zero

Result is less than zero
Result is greater than zero
Arithmetic overflow

Carry

=2 >d >4 D¢ MO
MaoOoOoOO«
MMM a0 o0
M > O O

Programming Note

The second operand must be located on a fullword boundary.

Example: AM
1. Add contents of register 8 to memory location labeled LOC:

REGB contains X*00000008"*
Fullword in memory at LOC contains X*034289AB*

Assembler Notation Comments
AM REG8,10C ADD (REG8) TO (LOC)

29-747 ROO 4/81 5-9

Result of AM Instruction
(REG8) unchanged by this instruction
(1CC) = X*034289R3"
Condition Code = 0010 (G=1)

2. MAdd contents of register 7 to memory location labeled LOC:

REG7 contains X*7F341234"
Fullword in memory at LOC contains X'7F124321°*

Assembler Notation Comments

AM REG7,LCC ADD (REG7) TO (LOC)

Result of AM Instruction
(REG7) unchanged by this instruction

(LCC) = X*FEU65555"
Ccndition Code = 0101 (Vv=1, L=1)

5-10 29-747 ROO u4/81

€+7.4 Add Halfword to Memory (AHM)

Assembler Notation Op-Code Format
AHM R1,D2(X2) 61 RX1,RX2
AHM R1,A2(FX2,5X2) 61 RX3
Operaticen

The halfword second operand is added algebraically to the 1least
significant 16 bits (bits 16:21) of the register specified by R1.
The 16-bit result replaces the contents of the memory location
specified by the effective address of the second operand. The
contents of the register specified by R1 are not changed.

Condition Code

Result is zero

Result is less than zero
Result is greater than zero
Arithmetic overflow

Carry

R K ile]
L NeoNeNelP
R e eIl

> > O . Oft

Programming Notes
The second operand must be located on a halfword boundary.

The condition code settings are based on the halfword result.

Example: AHM

This example adds the contents of register 5 to the contents of
memory location LAB.

1. REGS contains X'00230002° .
Halfword in memory at LAR contains X'FFFF®

Assembler Notation Comments
AHM REGS5,LAB ADD (REG5) TO (LAB)

29-747 ROO 4/81 5-11

Result of AHM Instruction
(REGE) unchanged by this instruction

(LAB) = 0001
Condition Code = 1010 (C=1, 6G=1)

2. REG6 contains X'FFFF FFF5°
LAB contains X'FFF2°*

Assembler Notation Comments

AHM REG6,LAB ADD (REG6) TO (LAB)

Result of AHM Instruction
(REG6) unchanged by this instruction

(LAB) = FFE7
Ccndition Code = 1001 (C=1, L=1)

5-12 29-747 ROO 4/81

50705 SuhtraCt (S' SF’ SI' SIS)

Subtract (S)

Subtract Register (SR)
Subtract Immediate (SI)
Subtract Immediate Short (SIS)

Assembler Notation Op-Code Format
S R1,D2(X2) 5B RX1,RX2
S R1,A2(FX2,5X2) 5B RX3

SR R1,R2 OB RR

SI R1,I1I2(X2) FE RI2

SIS R1.,N 27 SF
Operaticn

The fullword second operand is subtracted algebraically from the
contents of the register srecified by R1. The result replaces
the contents of the register specified by R1.

Condition Code

Result is zero

Result is less than zero
Result is greater than zero
Arithmetic overflow

Borrow

- >d >d X Y
> .2 OO O
MO0 00N

O O

Programming Notes

The second operand for the SIS instruction is obtained by
expanding the U4-bit data field, N, to a 32-bit fullword by
forcing the high order bits tc zero.

In the RI2 format, the contents of the index register specified
by X2 are added to the 32-bit I2 field to form the fullword
second operand.

In the RX formats, the seccnd operand must be 1located on a
fullword boundary.

29-747 ROO u4/81 5-13

Examples:

This example suktracts the fullword at memory location LOC from
the contents of register 9.

1. REGY9 contains X'uuduu4u4y’
LCC contains X*4u4u44444"

Assembler Notation Comments

S REG9,10C SUBTRACT (LOC) FROM (REG9)

Fesult of S Instruction
(REGY9) = 0

(1CC) unchanged by this instruction
Ccndition Code = 0000

2. PREGY9 contains X'23456789"*
LCC contains X'FFFF4321°*

Assenmbler Notation Comments

S REG9,10C SUBTRACT (LOC) FROM (REG9)

Result of S Instruction
(REGY9) = 23462368

(1LCC) unchanged by this instructicn
Ccndition Code = 1010 (C=1, G=1)

5=-14 29-747 ROO 4/81

576 Subtract Halfword (SH, SHI)

Subtract Halfword (SH)
Subtract Halfword Immediate (SHI)

Assembler Notation Op-Code Format
SH R1,D2(X2) 4B RX1,RX2
SH R1,A2(FX2,SX2) LE RX 3

SHI R1,I2(X2) CB RI1
Operation

The 1€6-bit second operand is expanded to a 32-bit fullword by
propagating the most significant bit through bits 0:15. This
fullwerd 1is subtracted from the contents of the register
specified by BR1. The result replaces the contents of the
register specified by R1.

Condition Code

Result is zero

Result is less than zero
Result is greater than zero
Arithmetic overflow

Borrow

N]
a0 oOo<
M aOOon
> ¢ O o O

Programming Notes

In the RX formats, the second operand must be located on a
halfwcrd boundary. '

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified Ly X2 are then added to form the
fullword second operand.

29-747 ROO 4/81 5-15

Example: SH

This example subtracts the halfword at memory location LOC from
the contents of register 9.

1. REGY9 contains X'00123456°
LOC contains X'FFF4°

Assembler Notation Comments
SH REG9,ILCC SUBTRACT (LOC) FROM (REG9)

Result of SH Instruction
(REG9) = 00123462
(LOC) unchanged by this instruction
Cendition Ccde = 1010

2. REGY9 contains X'FFFFuUS67"
LCC contains X°*'2345"*

Assembler Notation Comments

SH REG9,LCC SUBTRACT (LOC) FROM (REG9)

Result of SH Instruction
(REG9) = FFFF2222

(10C) unchanged by this instruction
Condition Code = 0001

5-16 29-747 ROO u4/81

5.7.7 Compare (C, CR, CI)

Compare (C)
Cocmpare Register (CR)
Compare Immediate (CI)

Assembler Notation Op-Code Format
C R1,D02(X2) 59 RX1,RX2
C R1,A2(FX2,SX2) 5¢ RX3

CR R1,R2 09 . RR

CI R1,I2(X2) F9 RI2
Operaticn

The first operand contained in the register specified by R1 is
compared algebraically to the 32-bit second operand. The result
i1s indicated by the conditicn code setting. Neither operand is
changed.

Condition Code

First orerand is equal to second operand
First orerand is less than second operand
First operand is greater than second operand

O a 0oln
> e el
- O oO|N
O - Ot

Programming Notes

In the RX formats, the second operand must be located on a
fullword boundary.

The state of the V flag is undefined.
Example: C

This example compares the ccntents of register 3 to the contents
of the fullword in memory lccation LABR.

REG3 contains X'44567894°
Fullword at LAB contains X'04321243°

Assembler Notation Comments

c REG3,LAB COMEARE (REG3) TO (LAB)

Result of C Instruction
(REG3) unchanged by this instruction

(LAB) unchanged by this instruction
Condition Code = 0010 (€=1)

29-747 ROO 4/81

n
!

17

578 Compare Halfword (CH, CHI)

Compare Halfword (CH)
Compare Halfword Immediate (CHI)

Assembler Notation Op-Code Format
CH R1,D2(X2) ug - RX1,RX2
CH R1,RA2(FX2,5X2) 49 RX3

CHI R1,I2(X2) c9 RI1
Operation

The halfword second operand 1s expanded ¢to a fullword Dby
propagating the most significant bit through bits 0:15. The
first operand, the contents of the register specified by R1, 1is
compared algebraically to the effective second operand. The
result is indicated by the condition code setting. Neither
operand is changed.

Condition Code

First orerand is equal to second operand
First orerand is less than second operand
First orerand is greater than second operand

(o Nelle]
E R
- O OR
QO =2 O

Programming Notes

In the RX formats, the second operand must be 1located on a
halfword boundary.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by prcpagating the sign bit through bits 0:15. The contents of
the index register specified ky X2 are then added to form the
fullwcrd second operand.

Condition code settings are based on the fullword comparison.
The state of the V flag is undefined. .

5-18 29-747 ROO 4/81

Example: CH

This example compares the ccntents of register 8 to the halfword

at LAR.

REG8 contains X*Fu567891*
Halfwcrd at LAB contains X*3123*

Assembler Notation Comments

CH REG8,LAB CCMEARE (REG8) TO (LAB)

Result of CH Instruction
(REG8) unchanged by this instruction

(1AB) unchanged by this instruction
Ccndition Code = 1001 (C=1, V=1)

29-747 ROO 4/81

5-19

57.9 Multiply (M, MR)

Multiply (M)
Multiply Register (MR)

Assembler Notation Op-Code Format
M R1,D2(X2) 5C RX1,RX2
M R1,A2(FX2,5X2) 5C RX3

MR R1,R2 1C RR
Operation

The fullword first operand contained in the register specified by
R1+1 is multiplied by the fullword second operand. The 64-bit
result is stored 1in the registers specified by R1 and R1 + 1.
The sign of the result is determined by the rules of algebra.

Condition Code

Unchanged

Programming Notes

The R1 field of these instructions must specify an even numbered
register. If the R1 field of these instructions is odd, the
result is undefined.

In the RX formats, the seccnd operand must be located on a
fullword boundarye.

The most significant bits of the result are placed in the
register specified by R1; the least significant bits are placed
in the register by R1+1.

Example: M

This example multiplies the contents of register 9 by the
contents of memory location LOC and places the result in
registers 8 and 9 (64 bits).

REGB contains unknown data

REG9 ccntains X*'00002u431"
Fullword at location LOC contains X°'43120000°"

£=20 29-747 ROO 4/81

Assembler Notation Comments

M REG8,LOC MULTIPLY (REG9) BY (LOC)

Eesult of M Instruction

REG8 and REG9 tocgether contain the result
(REG8, REGY9) = 0000 097B, 5E72 0000

(LOC) unchanged by this instruction
Condition Code unchanged by this instruction

Example: MR

This example multiplies the contents of register 9 by the
contents of register 8 and rlaces the result in registers 8 and
9 (64 bits). :

REG8 contains X*'00010000°*
REGY9 contains X*12345678"*

Assembler Notation Comments

¥R REG8,REGS MULTIFPLY (REG9) BY (REGS)

Result of MR Instruction
REGS8 and REG9 together contain the result

(REG8, REG9) = 0000 1234, 5678 0000
Condition Code unchanged by this instruction

29-747 ROO 4/81 S

21

56710 Multiply Halfword (MH, MHR)

Multirly Halfword (MH)
Multiply Halfword Register (MHR)

Assembler Notation Op-Code Format
MH R1,D2(X2) 4ucC RX1,RX2
MH R1,A2(FX2,SX2) 4c RX3

MHR R1,R2 oC RR
Operaticn

The first operand, contained in bits 16:31 of the register
specified by R1, is multiplied by the 16=-bit second operand,
taken from memory or frcm bits 16:31 of the register specified by
R2. Both operands are 16-bit signed two's complement values.
The 32-bit result replaces the contents of the register specified
by R1. The =sign of the result is determined by the rules of
algebra.

Condition Code

Unchanged

Programming Note

In the RX formats, the second operand must be located on a
halfwcrd boundary.

Example: MH

This example multiplies the halfword contents of register 8 by
the halfword in memory locaticn LAB.

REG8 contains X*ABCD 0045°
Halfword at memory location LAB contains X'8674°

5=-22 29-747 ROO 4/81

Assembler Notation Comments

MH REGS8,LAB MULTIPLY LEAST SIGNIFICANT HALF

OF (REG8) BY (LAB)

Result of MH Instruction

(REG8) = FFDF3Duy

(LAB) unchanged by this instruction
Condition Code unchanged by this instruction
Example: MHR

This example multiplies the halfword contents of reqister 11
the halfword ccntents of register 4.

REG11 contains X'37210004°
REGYH contains X*FFFF0307"*

Assembler Notation Comments

MHR REG11,REGH MULTIPLY LS HALF OF (REG11)
BY LS HALF OF (REGH4)

Result of MHR Instruction
(REG11) = 00000C1C

(REGY4) unchanged by this instruction
Condition Code unchanged by this instruction

29-747 ROO 4/81

by

5711 Divide (D, DR)

Divide (D)
Pivide Register (DR)

Assembler Notation Op-Code Format
D R1,D2(X2) 5 RX1,RX2
L R1,A2(FX2,SX2) 5C RX3

DR R1,R2 1L RR
Operation

The 64-bit signed dividend contained in the +two registers
specified by R1 and R1+1 is divided by the signed fullword second
operand. The 32-bit signed remainder replaces the contents of
the register specified by R1. The signed 32-bit quotient
replaces the contents of the register specified by R1+1.

The sign of the quotient is determined by the rules of algebra.
The =ign of the remainder is the same as the sign of the
dividend.

Condition Code

Unchanged

Programming Notes

The R1 field of these instructions must specify an even numbered
register. If ¢the PR1 field of these instructions is odd, the
result is undefined.

The most significant bits of the dividend must be contained in
the 1register sprecified by R1. The least significant bits of the
dividend must be contained in the register specified by R1+1.

In the RX formats, the second operand must be located on a
fullword boundarye.

If the divisor is equal to zero, the instruction is not executed,
the operand registers remain unchanged, and the arithmetic fault
interrupt is taken.

If the value of the quotient is more positive than X*7FFFFFFF*' or
more negative than X'80000000', gquotient overflow is said to
occur. If gquotient overflow occurs, the operand registers remain
unchanged, and the arithmetic fault interrupt is taken.

5-24 29-747 ROO 4/81

Example: D

This example divides the contents of registers 8 and 9 by the
fullword contents of memory lccation lOC.

1« REGS8 contains X*'12345678°
REGY9 contains X°'98765432°

Most significant half of dividend
Least significant half
of dividend

nu

LOC contains X*34343434°* = Divisor
Assenbler Notation Comments
D REG8,LOC DIVIDE (REG8,9) BY (LOC)
Result of D Instruction
Remainder

(REG8) = 1E1E1E1E =

(REG9) = 59455459 = Quotient ,

(10C) unchanged by this instruction
Condition Code unchanged bty this instruction

2. REG8 contains X'FFFF1234°
REG9 contains X'00000000°

Most significant half of dividend
Least significant half
of dividend

f#on

LCC contains X*12345678* = Divisor
Assembler Notation Comments
T REG8,L0C DIVIDE (REGB)Q) BY (LOC)
Result of D Instruction
(REG8) = F250D9E0 = Remainder

(REGY9) = FFF2EFFC = Quotient
LCC unchanged by this instruction
Ccndition Code unchanged by this instruction

29-747 ROO 4/81 5-25

Most significant half of dividend
Least significant half
of dividend

3. REGB contains X*'43657898°
REG9 contains X*'12123456"

LOC contains X'00000000* = Divisor
Assembler Notation Comments
D REG8,LOC DIVIDE (REGS8,9) BY (LOC)

Result of D Instruction

Division by zero causes arithmetic fault to be taken. Operands
and condition code remain unchanged by this instruction.

Most significant half of dividend
Least significant half
of dividend

4, REG8 contains X*80000000°*
REGS contains X'00000001"

LCC contains X*'00000001*' = Divisor
Assembler Notation Comments
) REG8,LOC DIVIDE (REG8,9) BY (LOC)

Result of D Instruction

Quotient overflow causes arithmetic fault to be taken. Operands
and condition code remain unchanged by this instruction.

Fxample: LR

This example divides the contents of registers 8 and 9 by the
contents of register 2.

Most significant half of dividend
Least significant half of dividend

REG8 contains X*FFFFFFFF'
REGY9 contains X'FFFFFFFD*

REG2 contains X*'FFFFFFFE® Divisor
Assembler Notation Comments
DK REG8,REG2 DIVIDE (REG8,9) BY (REG2)

Result of DR instruction

(REGS) FFFFFFFF = Remainder

(REG9) 00000001 = Quotient

(REG2) unchanged by this instruction
Conditicn Ccde unchanged by this instruction

5=-26 29-747 ROO 4/81

S¢7.12 TD[ivide Halfword (DH, DHR)

Divide Halfword (DH)
Divide Halfword Register (DHR)

Assembler Notation Op-Code Format
DH R1,D2(X2) 4t RX1,RX2
DH R1,A2(FX2,SX2) 4t RX3

DHR R1,R2 oL RR
Operation

The 32-bit signed dividend contained in the register specified by
R1 is divided by the 16-bit signed second operand. The 16-bit
signed remainder 4is copied to R1 (bits 16:31) and the halfword
value is converted to a fullword value. The 16-bit signed
quotient is «copied to the register specified by R1 + 1 after
conversion to a fullword value.

The sign of the quotient is determined by the rules of algebra.
The sign of the remainder is the same as the sign of the
dividend. : :

Condition Code

Unchanged

Programming Notes

In the RX formats, the second operand must be located on a
halfwcrd boundary. In the RR format, the second operand is taken
from bits 16:31 of the register specified by R2.

If the divisor is equal to zerc, the instruction is not executed,
the operand registers remain unchanged, and the arithmetic fault
interrupt is taken.

If the value of the quotient is more positive than X'7FFF*' or
more negative than X'8000°', quotient overflow is said to occur.
If quotient overflow occurs, the operand registers remain
unchanged, and the arithmetic fault interrupt is taken.

29-747 ROO 4/81 5=-27

Example: [H

This example divides the contents of register 7 by the halfword
contents of memcry location LCC.

l. REG7 contains X'0000 0OE4:‘

= LCividend
LOC contains X°0008"* = Divisor
Assembler Notation Comments
DH REG7,LOC DIVIDE (REG7) BY (LOC)
Result of DH Instruction
(REG7) = 0000 0004 = Remainder
(REG8) = 0000 O00A = Quctient

(10C) unchanged by this instruction
Condition Code unchanged bty this instruction

Ze REG7 contains X*1234 5678°* = Dividend
LCC contains X*0000°* = Divisor
Assembler Notation ' Comments
DH REG7,10C DIVIDE (REG7) BY (LoOC)

Result of DH Instruction

Division by zero causes arithmetic fault to be taken. Operands
and condition code remain unchanged by this instruction.

3. REG7 contains X*8000 0002' = Dividend
LOC contains X°0001"

Assembler Notation Comments

DH REG7,LCC DIVIDE (REG7) BY (LOC)

Result of DH Instruction

Quotient overflow causes arithmetic fault to be taken. Operands
and condition code remain unchanged by this instruction.

5-28 29-747 ROO u4/81

5713 Shift Left Arithmetic (SLR)

Assembler Notation Op-Code Format
SLA R1,I2(X2) EE - RI1

Operation

Bits 1:31 of the first operand, contained in the register

specified by R1, are shifted left the number of places specified
by the second operand. The sign bit (bit 0) remains unchanged.
Bits shifted out of position 1 are shifted through the carry flag
and then 1loste The last bit shifted remains in the carry flag.
Zeros are shifted into positicn 31.

Condition Code

Result is zero
Result is less than zero
Result is greater than zero

R[]
[e e NalE -

- O Ola)
O - Ojt

Programming Notes

The state of the C flag indicates the state of the last bit
shifted.

The shift count is specified ty the least significant five bits
of the second operand. The maximum shift count is 31.

A shift of zero places causes the condition code 1to be set in
accordance with the value contained in the register specified by
R1se The C flag is zero in this case.

Example: SLA

This example shifts the bits in register 5 1left by +the number
specified by the second operand.

REG5 contains X*80005647°

Assembler Notation Comments
SLA REGS,4 SHIFT (REG5) LEFT 4 PLACES

Result of SLA Instruction

(REGS) = 80056470
Condition Code = 0001 (L=1)

29-747 ROO u4/81 5-29

57+.14 Shift lLeft Halfword Arithmetic (SLHA)

Assembler Notation Op~-Code Format
SLHAR R1,I2(X2) CF RI1
Cperation

Bits 17:31 of the register specified by R1 are shifted 1left the
number of places specified by the second operand. Bit 16 of the
register, the halfword sign bit, remains unchanged. Bits shifted
out of position 17 are shifted through the C flag and then lost.
The last bit shifted remains in the C flag. Zeros are shifted
into position 31. Bits 0:15 of the first operand register remain
unchanged.,

Condition Code

Result is zero
Result is less than zero
Result is greater than 2zero

R o lle]
O O o<
- O On
O - O

Programming Notes

The condition code settings are based on the halfword (bits
16:31) result.

The state of the C flag indicates the state of the 1last bit
shifted.

The shift count is specified Lty the least significant four bits
of the second operand. The maximum shift count is 15.

A shift of zero places causes the condition code to be set in
accordance with the halfword value contained in bits 16:31 of the
register specified by R1. The C flag is zero in this case.

[8,]

-30 29-747 ROO 4/81

S¢7.15. Shift Right Arithmetic (SRA)

Assembler Notation Op-Code Format
SRA R1,I2(X2) EE RI1
Operation

Bits 1:31 of the first ocperand, contained 4in the register
specified by R1, are shifted right the number of places specified
by the second operand. The sign bit (bit 0) remains unchanged
and is propagated right as many positions as specified by the
second operande. Bits shifted out of position 31 are shifted
through the C flag and lost. The last bit shifted remains in the
C flage. .

Condition Code

Result is zero
Result is less than zero
Result is greater than zero

- O Ol
O a O

>d > i)
O O Ol=

Programming Notes

The state of the C flag indicates the state of the last bit
Shiftedo

The shift count is specified by the least significant five bits
of the second operand. The maximum shift count is 31.

A shift of zero places causes the condition code to be set in
accordance with the value contained in the register specified by
R1. The C flag is zero in this case.

Example: SRA

This example shifts the contents of register 9 right the number
of places specified by the seccnd operand.

REG9 contains X*800004256°

Assembler Notation Comments

SRA REG9,8 SHIFT (REG9) RIGHT 8 PLACES
Result of SRA Instruction

(REGY9) = X*'FF800042"
Condition Code = 0001 (L=1)

29-747 ROO 4/81 | 5-31

5.7.16 Shift Right Halfword Arithmetic (SRHA)

Assembler Notation Op-Code Format
SRHA R1,I2 (X2) CE RI1
Operation

Bits 17:31 of the register specified by R1 are shifted right the
number of places specified by the second operand. Bit 16 of the
register, the halfword sign bit, remains unchanged and 1is
propagated right the number of positions specified by the second
operand. Bits shifted out ¢f position 31 are shifted through the
C flag and lost. The last bit shifted remains in the C flag.
Bits 0:15 of the first operand register remain unchanged.

Condition Code

Result is zero
Result is less than zero
Result is greater than 2zero

> 5¢ O
O O Ol
- O O
O - Ot

Programming Notes

The condition code settings are based on the halfword (bits
16:31) resulte.

The state of the C flag indicates the state of the 1last bit
ShiftEdo

The shift count is specified by the least significant four bits
of the second operand. The maximum shift count is 15.

A shift of zero places causes the condition code to be set in

accordance with the halfword value contained in bits 16:31 of the
register specified by R1. The C flag is zero in this case.

5-32 29-747 ROO 4/81

57.17 Convert to Halfword Value Register (CHVR)

Assemkler Notation Op-Code Format

CHVR R1,R2 12 RR
Cperation

The halfword second operand, bits 16:31 of the register specified
by R2, 1is expanded to a fullword by propagating the most
significant bit (bit 16) through bits 0:15. This fullword
replaces the contents of the register specified by R1.

Condition Code

Cl]V]|G|L

X1X101]0 Result is zero

X1 X410} 1 Result is less than zero

X]X11]0 Result is greater than zero

X[11X|X Source cperand cannot be represented by a
16-bit signed number

11 XXX Carry flag was set in previous condition

‘ code

O X | XX Carry flag was zero in previous condition

code

Programming Notes

The V flag is set when bit 15 of the second opetand is not the
same as bit 16 of the second cperand. The G and L flags reflect
the algebraic value of bits 16:31 of the second operand.

Execution of +this instruction following halfword operations
guarantees the same results as those cbtained if the program were
run c¢n a 16-bit machine. For example, if location A in memory
contains the halfword value of X'7FFF°' (decimal 32767) then,

LH R1,A R1 contains X*00007FFF"
AIS R1,1 R1 contains X*'00008000°

29-747 ROO u4/81 : 5-33

Foilowing the add operation, the condition code is:

C|V]|GIL
ojfoj11]0

indicating a result greater than 2zero, which 1is correct for
fullword operations. If the same sequence were executed on a
16=-bit processor, as:

LH R1,A R1 contains X*'7FFF"*
AIS R1,1 E1 contains X"8000°*

Following this, the condition code in the halfword processor is:

C|V[G|L
011011

indicating overflow and a negative result. Going back to the
original sequence and adding the Convert to Halfword Value
Register instruction produces the following:

LH R1,A R1 contains X°*00007FFF*
RIS R1,1 - R1 contains X°*00008000°
CHVR R1,R1 R1 contains X'FFFF8000°*

Following this sequence, the ccndition code is:

C{VI|G]L
or1(0]1

which is identical to that of the 16-bit processor, and can be
tested in the same manner.

5-34 29-747 ROO u/81

CHAPTER 6
FLOATING-POINT ARITHMETIC (OPTIONAL)

6.1 INTRODUCTION

Floating-point arithmetic instructions provide a means for rapid
handling of scientific data expressed as floating-point numbers.
Single-precision and double~-precision floating-point
instructions, as well as mixed mode floating-point instructions,
are described in this <charpter. The comprehensive set of
instructions includes load and store floating-point numbers; add,
subtract, multiply, divide and compare two floating-point
numbers; convert fixed-point to floating-point and vice versa;
and mixed mode operations that translate single-precision to
double-precision and vice versa.

Floating-point is a means of representing a gquantity in any
numbering systenm. For exanmple, the decimal number 123 (base =
10), can be represented in the following forms:

123.0 x 10°
1.23 x 102
0.123 x 103
0.0123 x 104

In this example, the decimal point moved; this is called a
floating-point. In actual floating-point representation, the
significant digits are always fractional and are collectively
referred to as fractions. The power to which the base number is
raised is called the exponent. For example, in the number .45678
x 102, 45678 is the fraction and 2 is the exponent. Both the
fraction and the exponent can be signed. If we have a
floating-point representation such as,

(sign of fraction) (exponent) (fraction)
the following representation applies:

Number Floating-poinf

+32.94 = +,3294 x 102 + +2 3294
-23760000.0 = -.2376 x 108 - +8 2376
+0.000059 = +.59 x 107¢ + -4 59
-0.0000000092073 = =-.92073 x 108 [- -8 | 92073

29-747 ROO 4/81 6-1

602

603

lLarge or small numbers can be easily expressed in floating-point,

making it ideally suitable for scientific computation.

Note the

compactness of floating-point notation in the above examples.

Floating-point
above representation.

6.2

Floating-point
single-precision
format requires a fullword (32
contained in
boundary.
the

of

T1e

2.

representation in the processor is similar to the
The differences are:

Hexadecimal, instead of decinmal,
used.

numbering system is

Physical size of the number is limited,
magnitude and precision are limited.

therefore the

FLCATING-ECINT DATA FCRMATS

of
The

occur in one
double-precision.
bits). When
memory, it must exist on
The sign (S), exponent (X), and
digits F1, F2, F3, F4,

numbers
and

tvo formats:
single-precision
such a value |is
a fullword address
fraction (consisting

as follows:

7 8

1112

15 16

19 20

23 24

27 28

F5, and F6) fields are designated

31

F1

F2

F3

Fa

F5

F6

The dcuble-precision format

When
even/odd
even-numbered register contains the most significant 32 bits, and
sequential odd register contains the least significant

the

two

next

32 bits.

general
pair of

The sign (S),

requires

registers

general

hol

d

expchent (X),

a

doubleword

ust

be

(64

usede.

bits).

a double-precision value, an
registers

The

and fraction (consisting of
digits F1 through F1u4) fields are designated as follows:

01 7 8 11 12 15 16 19 20 23 24 27 28 31

S X F1 F2 F3 F4 Fb5 F6

32 35 36 39 40 43 44 47 48 51 52 55 66 59 60 63
F7 F8 F9 F10 F11 F12 F13 F14

6-2 29-747 ROO u4/81

6.3 FLCATING-ECINT NUMBER

In the processor, a floating-rcint number is represented in the
following form:

Sign

Exponent

Sign Expcnent ‘ Fraction

The most significant bit of a floating-point number
is the sign bit. The sign bit is zero for positive
numbers and one for negative numbers. The
floating-point value of =zero always has a positive
sign.

The 7-bit field, bits 1:7, 1is designated as the
exponent field. The exponent 1is expressed 1in
excess=-64 notaticn. The number in this field
contains the true value of the exponent plus X'40°
(decimal 64). This helps to represent very small
magnitudes between 0 and 1. Some of the exponent
values are as fcllcws:

Exponent in True True

Excess-64 expcnent in exponent in Multiply
notation hexadecimal decimal fraction by
00 -40 -64 16
3F -1 -1 16
40 0 0 16
41 1 1 16
7F 3F 63 16

The exponent field for true zero is always 00.

Fraction

The fraction field is 6 hexadecimal digits for
single-precision floating-point numbers (thus
limiting the precision), and 14 hexadecimal digits
for double-precision flocating-point numbers. As in
any other fraction, the floating-point fraction 1is
exrressed with most precision when the most
significant hexadecimal digit (not necessarily the
most significant bit) is nonzero. The floating-point
number with such a fraction is called a normalized
floating-point number. In the 3200 processors,
normalized numbers are always used to obtain the
maximum possible precision. For hexadecimal fraction
conversion, refer to Apprendix D.

29-747 ROO 4/81 6-3

Examples:

The following examples illustrate the sign, exponent,

and fraction concept of a floating-point number:

Numbers in Hexa-
decimal integer-

fraction notation

Sign-exponent-
fracticn shown

Single-precision

for clarity

floating-point numbers

S |E F
+1.3A25678 0 41 13R25678 4113A256
-6.89F2C 1 41 689F2C C1689F2C
+1A.C39D21 0 42 1AC39021 421AC39D
-3C1DF.82A3 1 45 3C1LF82A3 C53C1DFs8
+ABCDFEF12.9AC 0O 48 ABCLCEF129AC 48ABCDEF
+0.0032A9CF2 0 3E 32R9CF2 3E32A9CF
-0.000002C7RB5 1 3B ZC7BS BB2C7B50
€e3.1 Floating-Point Number Range
The range of magnitude (M) of a normalized floating-point number
is as follows:
Single precision: 166 < M < (1 - 166 = 1663
Double precision: 16765 < M < (1 - 16714) * 1683
Aprroximately for both: 5.4 * 1079 < M < 7.2 * 1079
Table 6-1 shows the floating-point range in relation ¢to the
fixed-point range along with the decimal valuese.
TABLE 6-1 FLOATING/FIXEL-POINT RANGES
606-1
FLOATING-POINT FIXED-POINT DECIMAL
NUMBERS INTEGER NUMBERS
(most negative) FFFF FFFF ~7.2% 1070
C880 0000 8000;0000 (most negative) |-2 147 u83 6us8
C110 0000 | FFFF FFFF (least negative) -1
(least negative) 8010 0000 -5.4%1077°
(true zero) 0000 0000 | 0000 0000 0
(least positive) 0010 0000 +5.4%1077°
4110 0000 | 0000.0001 (least positive) +1
487F FFFF | 7FFF FFFF (most positive) |[+2 147 483 647
(nost positive) 7FFF FFFF +7.2%107°

29-747 ROO 4/81

6.3.2 Normalization

Normalization is a process ¢f making nonzero the most significant
digit (F1) of the fraction of a floating-point number. In the
normalization ©process, the floating-point fraction is shifted
left hexadecimally (i.e., four bits at a time), and its exponent
is decremented by one for each hexadecimal shift until the most

significant digit (not necessarily the most significant bit) of
the fraction is nonzero.
607 FRAgTION
4)
S EXPONENT F1 F2 F3 Fa4 F5 F6
- -

SHIFT LEFT FRACTION HEXADECIMALLY UNTIL F120
DECREMENT EXPONENT BY ONE FOR EACH SHIFT
Except for the load instructicns, all floating-point operations

assume and require normalized operands for consistent results.
The load instructions normalize an unnormalized operand.

Example:
Operands After normalization
1. 8420123458 41123450
2. 21000ABC 1EAEC000
3. C900FE12 C7FE1200
4, 6C000000 0C000000 (true zero)
5. 82000A67 00000000 (exponent underflow)

In Example 4,
normalization

process,

the fraction of the operand is

such a fraction 1is

Zero. During the
detected, and the

floating-point number is set to true 2zero.

In Example 5, the exponent of the operand is very small.
the normalization process,
7F. Such a

Normalized
operations,

results
assuming

transition

During

the exponent is decremented from 00 to
results in exponent underflow, and the
floating-point number is set to true 2zero.

always

prcduced in
orerands

floating-point

are normalized. Results of

operations between unnormalized numbers are undefinede.

6.3.3 Equalization

Equalization is process of equalizing exponents of two
floating-point numbers. The fraction of the floating-point
number with the smaller exponent is shifted right hexadecimally,

i.e., four bits at a time, and its exronent is incremented by one
for each hexadecimal shift until the two exponents are egual.

29-747 ROO u4/81

6-5

608

INCREMENT EXPONENT BY ONE FOR EACH SHIFT

SHIFT FRACTION RIGHT HEXADECIMALLY UNTIL EXPONENTS EQUAL
L -

S EXPONENT F1 F2 F3 F4 F5 F6

v

FRACTION

During floating-point addition and subtraction, the two
floating-point orperands are equalized.

Example:
Floating-point After equalization
operands
1. 43123456 ' 43123456
3F789ABC 43000078
2. C7FE1234 C900FE12
49567894 4956789A

In this example, normalized floating-point numbers are shown
because addition and subtraction require normalization. If the
exponents differ by more than 6 for single-precision or more than
14 for double-precision, the representable significance of the
lower exponent floating-point number is lost in the process of
equalization. UDigits shifted out are shifted through +the guard
digits and may still have an effect on the result, sum, or
difference.

6+.3.4 True Zero

A floating-point number is true zero when the exponent and the
fraction fields are all zercs; therefore, all data bits must be
Zero. A zero value always has a positive sign. In general, zero
values participate as normal operands in all floating-point
operations.

A true zero may be used as an operand. It may also result from
an arithmetic operation that caused an exponent underflow, in
wvhich case the entire number may be forced to true zero. If an
arithmetic operation produces a result whose fraction digits are
all zeros (sometimes referred to as loss of significance), the
entire number is forced to true zero.

6-6 29-747 ROO u/81

Examples:

Numbers Operation Result Reason
030000AB Normalize 0000 0000 exponent
underflow
4L1ABCDEF
4U1ABCLEF Subtract 0000 0000 loss of
‘ significance

6.3.5 Exponent Overflow

In floating-point operations, exponent overflow occurs when a
resulting exponent is greater than +63. If overflow occurs, the
result register is unchangede. The condition code is set to
reflect the overflow situation and the resulting sign. Figure
6-1 illustrates exponent overflow using a line representation of
numnbers.

Mest negative True Most positive
number Zero number
[.] [] [-@
FFFFFFFF 0 7FFFFFFF
(exponent = 7F) (exponent = 7F)
= 630
- cverflow overflow -

Figure 6-1 Exponent Overflow

If overflow occurs, the V flag in the condition code is set, and
an arithmetic fault interrupt 1is taken. Exponent overflow
interrupts cannot be disabled.

6.3.6 Exponent Underflow

The normalization process, during a floating-point operation, may
produce an exponent underflow. This underflow occurs when a
result exponent is 1less than -6U4. Figure 6-2 illustrates
exponent underflow using a line representation of numbers.

Least negative True Least positive
number Zero number
- 1 . ° -— £f]
80100000 00100000
exponent = 00 exponent = 00
= =6l = =64
underflow - o underflow

Figure 6-2 Exponent Underflow

29-747 ROO u4/81 6-7

If wunderflow occurs, an arithmetic fault interrupt is taken, if
enabled by the current PSW. Both operands remain unchanged. If
underflow is disabled by the current FSW, the result is forced to
zero (the closest possible answer), the V flag in the condition
code is set, and the next sequential instruction is executed.

6e3.7 Guard Digits and R*-Rounding

When an intermediate floating-point result has been formed, it
consists of a sign, an exponent, and a fraction field. The
fraction field is extended by a number of guard digits containing
the least significant fraction digits of the intermediate result.
Before the result is copied to a destination, it is rounded to
compensate for the loss in the final result of the guard digits.

The rules for the R*-Rounding scheme are:

) If the most significant guard digit is hexadecimal 7 or less,
no rounding is performed. (See Example 1.)

™ If the most significant guard digit is hexadecimal 8, and all
other guard digits are 0, the least significant bit of the
final result is forced to 1. (See Example 2.)

° If the most significant guard digit is hexadecimal 8, and
another guard digit 4is nonzero, or if the most significant
guard digit is hexadecimal 9 or greater, 1 is added to the
fraction field of the final result. (See Example 3.) If
this addition produces a carry out of the fraction field
(i.e., fraction field was all 1s), the result exponent is
incremented by 1, the most significant fracticn digit (F1) is
set to hexadecimal 1, and all other fraction digits are set
tc 0. (See Example 4.) Note that exponent overflow could
occur as the result of rounding.

Examples of R*-Rounding

INTERMEDIATE RESULT FINAL SINGLE-PRECISION RESULT

Guard
Cata Cigits
1. U42ABCD12]|3268000¢ 42ABCD12
2. C€1183756|80000000 c1183757
3. 3E265739(80C100CO0C 3E26573A
4. UAFFFFFF|F0000000 42100000

6-8 29-747 ROO u4/81

6.3.8

Conversion from Lecimal

To convert a decimal number into the excess-64 notation used
internally by the processor, the following steps must be taken:

1.

3.

5.

Separate the decimal integer from the decimal fraction:
182,375 =(182 + .375)
Convert each part to hexadecimal by referring to the
integer conversion +table and the fraction conversion
table in Appendix D. '
182|O = B6|6 o375|0 =.6|6
Combine the hexadecimal integer and fraction:
B6.6,g = (B6.6X160)4
Shift the radix point:
(B6.6X160),g =(.B66X162) 4
Add 64 (X'40°') to the exponent:
UCig +2)g =Uz2
Convert the exponent field and fractions to binary
allowing 1 bit for the sign, 7 bits for exponent field,
and 24 or 56 bits for the fraction.

42B66 = 0100 0010 1011 0110 0110 0000 0000 0000

29-747 ROO u4/81 6-9

6.4 CONDITION CODE

Most floating-point operations affect the condition code. For
each instruction description, the possible condition code
settings are showne.

6.5 FLOATING-POINT INSTRUCTIONS

All floating-point instructions are illegal when PSW bit 13 (FLM)
is set. Floating-point instructions cannot be executed when the
processor is in the Floating-Foint Masked (FLM) mode.

Floating-point instructions use the Register to Register (RR),
and the Register and Indexed Storage (RX) instruction formats.
In all of the RR formats, except for fix and float, the R1 and R2
fields specify one of the floating-point registers. There are
eight single-precision floating-point registers and eight
double-precision floating-point registers numbered 0, 2, 4, 6, 8,
10, 12, and 14, Floating-point instructions must specify
even-numbered floating-point registers, or the results of the
instructions are undefined. Except for the FXR, FXDR, LGER, and
LGDR instructions, the R1 field always specifies a floating-point
registere.

Floating-point arithmetic operations, excluding loads and stores,

reguire normalized operands to ensure correct resultse. If the
operands are not normalized, the results of these operations are
undefined. Floating-point results are normalized. The

floating-point 1load instructions normalize the floating-point
data rresented as the second cperand.

The single-precision floating-point instructions described in
this section are:

LE Load Floating-Point

LER Load Floating-Point Register

LEGR Load Flcating-Point from General Register
LPER Load Positive Floating-Point Register
LCER Load Complement Floating-Point Register
LME Load Floating-Point Multiple

LGER Load General Register from Floating-Point Register
STE Store Floating-Point

STME Store Floating-Point Multiple

AE ARdd Floating—-Point :

AER Add Floating-Point Register

SE Subtract Floating-Pcint

SER Subtract Floating-Pcint Register

CE Compare Floating-Point

CER Compare Floating-Point Register

ME Multiply Floating-Point

MER Multiply Floating-Point Register

DE Divide Floating-Point

DER Civide Floating-Point Register

FXR Fix Register

FLR Float Register

6-10 29-747 ROO 4/81

The double-precision floating-point instructions
this section are:

LD
LDR
LDGR
LPDR
LCDR
LMD
LGDR
STD
STMD
AT
ADR
SD
SDR
CDh
CDR
MD
MDR
DD
LDR
FXDR
FLDR

Load DEFP

Load Register DPFP

Load DPFP from General Registers
Load Positive Register DPFP
Load Complement Register DPFP
Load DPFP Multiple

Load General Register from DPFP register
Store LCPFP

Store Multiple DPFP

Add DPFF

Add Register DPFP

Subtract DPFP

Subtract Register DEFF
Compare DPFP

Compare Register DPFP
Multiply DPFP

Multiply Register DPFP

Divide DPFP

Civide Register DPFEF

Fix Register DPFP

Float Register DPFP

described

The mixed mode floating-point instructions described 'in
secticn are:

LED
LEDR
LDE
LDER
STDE

Load SPFP from DPFP

lLoad Register SPFP frcm DPFP
Load DFFP from SPFP .
Load Register DPFP from SPFP
Store DPFP in SPFP '

29~747 ROO u4/81

in

this

11

6.5.1 Load Floating-Point (LE, LER, LEGR)

Load Floating-Point (LE)
Load Floating-Point Register (LER)
Load Floating-Point from General Register (LEGR)

Assembler Notation Op-Code Format
LE R1,D2(X2) 68 RX1,RX2
LE R1,A2(FX2,5X2) 68 RX3

LER R1,R2 28 RR

LEGR R1,R2 AS RR
Operation

The floating-point second operand is normalized, 1if necessary,
and placed in the single-precision floating-point register
specified by R1.

Condition Code

Floating-point result is zero
Floating-groint result is less than zero
Floating-point result is greater than 2zero
Exponent underflow

oNeoNoNellp]
- O 0 o<
O - O Olh
O O -~ Oj

Programming Notes

If the argument fraction is zero, the entire result is forced to
zero, X'0000 0000°.

Normalization can produce exponent underflow. If PSW bit 19 1is
set, an arithmetic fault interrupt is taken, and the register
specified by R1 is unchanged. If an expbonent underflow occurs,
and bit 19 of the current PSW is zero, no arithmetic fault

occurs. Zeros replace the contents of the register specified by
R1.

In the RX formats, the second operand must be located on a
fullwocrd boundary.

6-12 29-747 ROO 4/81

Example: LE

This example normalizes the fullword at memory location LOC
places it in flocating-point register 8.

Floating-point REGS8 contains unknown data
LOC contains X*'4200 1000°*

Assembler Notation Comments

LE REGS,LOC LOAD FROM LOC AND NORHALIZE
Result of LE Instruction:
(REG8) = X*4010 0000°

(LOC) unchanged by this instruction
Condition Code = 0010

29-747 ROO u4/81

and

o
!

13

652 Load Positive Floating-Point Register (LPER)

Assembler Notation Op-code Format
LPER R1,R2 13 RR
Operation

The floating-point second operand specified by R2 1is forced
positive, normalized if necessary., and placed in the
single-precision floating-point register specified by R1.

Condition Code

Floating-roint result is zero
Floating-point result is greater than zero
Exponent underflow

cN>Neollp}
-0 Ol
O O

O O Ol

Programming Notes

If the argument fraction is zero, the entire result is forced to
zero, X'0000 0000°'.

Normalization can produce exponent underflow. If PSW bit 19 1is
set, an arithmetic fault interrupt is taken, and the register
specified by R1 is unchanged. If an exponent underflow occurs,
and bit 19 of the <current PSW 1is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
R1.

Example:

Floating-point REG6 contains unknown data
Floating-point REG8 contains X*C11921FB*

Assembler Notation Comments

LPER REG6,REG8 LCAD REG6 WITH
POSITIVE OF (REGS8)

Result of LPER Instruction:
(REG6) = X'411921FB"*

(REG8) unchanged by this instruction
Condition Code = 0010

6-14 29-747 ROO 4/81

6.53 Load Complement Floating-Point Register (LCER)

Assembler Notation Op-Code Format
LCER R1,R2 17 ‘ RR
Operation

The sign of the floating-point second operand specified by R2 is
complemented. The resulting floating-point number is normalized,
if necessary, and placed in the single-precision floating-point
register specified by R1. :

Condition Code

Floating-point result is zero
Floating-roint result is less than zero
Floating-roint result is greater than zero
Exponent underflow

[eNoNaYealle!
EXeNeNell S
O a0o90n
OO a0

Programming Notes

If the argument fraction is zero, the entire result is forced to
zero, X'0000 0000°'.

Normalization can produce expcnent underflow. If PSW bit 19 is
set, an arithmetic fault interrupt is taken, and the register
specified by R1 is unchanged. If an exponent underflow occurs,
and bit 19 of the current PSW is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
R1.

29-747 ROO u4/81 6-15

6.5.4 Load Multiple Floating-Point (LME)

Assembler Notation Op-Code Format
LME R1,D2(X2) 712 RX2,RX2
LME R1,A2(FX2,SX2) 72 RX 3
Cperation

Successive single-precision floating-point registers, starting
with the register specified by R1, are loaded from successive
fullword memory locations starting with the address of the second
operand. The process stops when floating-point register 14 has
been loaded.

Condition Code

Unchanged

Programming Notes

Values loaded into the floating-point registers are assumed to be
normalized, and no test or adjustment is performed.

The second overand must be located on a fullword boundary.

6.5.5 Load General Register from Floating-Point Register (LGER)

Assembler Notation Op-Code Format

LGER R1,R2 1€ RR

Operation

The floating=-point second operand, contained in the

single-precision floating-roint register specified by R2, is
placed in the general register specified by R1. The second
operand is unchangede.

Condition Code

Result is zero
Result is less than zero
Result 1s greater than 2zero

[eNeoNollp!
O OO
- 00 ®
Q - Ot

6-16 29-747 ROO 4/81

6.5.6 Store Floating-Point (STE)

Assembler Notation Op-Code Format

STE R1,D2(X2) 60 RX1,RX2

STE R1,A2(FX2,SX2) 60 RX3

Operation

The floating-point first operand, contained in the

single-precision floating-point register specified by R1, is
placed in the fullword memory location specified by the second
operand address. The first operand is unchanged.

Condition Code

Unchanged

Programming Note

The second operand must be located on a fullword boundary.

6.5.7 Store Multiple Floating-Point (STME)

Assembler Notation Op-Code Format
STME R1,D2(X2) 71 RX1,RX2
STME R1,A2(FX2,SX2) 71 RX3
Operation

The contents of successive single-precision floating-point
registers, starting with the even numbered register specified by
R1, are stored in successive fullword memory locations, starting
with the address of the second operand. The operation stops when
the contents of floating-point register 14 have been stored.

Condition Code

Unchanged

Programming Note

The second operand must be located on a fullword boundary.

29~747 ROO 4/81 6-17

6.5.8 Add Floating-Point (RE, AER)

Add Floating-Point (AE)
Add Floating-Point Register (AER)

Assembler Notation Op-Code Format
AE R1,D2(X2) ‘ 6A RX1,RX2
AE R1,R2(FX2,5X2) 6A RX3

AER R1,R2 2A RR
Operation

The two operand exponents are comparede If the exponents differ,
the fraction with the smaller exponent is shifted right
hexadecimally (four bits at a time), and its exponent is
incremented by one for each hexadecimal shift, until the two
exponents are equal. The hexadecimal digits (of four bits each)
are shifted through the guard digits for additional precision.
If no equalizing shifts are required, the guard digits remain
zero. The fractions are then algebraically added. The guard
digits participate in this addition.

If the addition of fractions produces a carry, the exponent of
the result is incremented by one, and the fraction of the result
is shifted right one hexadecimal digit. The carry bit is shifted
back into the most significant hexadecimal digit of the fraction,
producing a normalized result. This result is then R*-rounded
and replaces the contents of the single-precision floating-point
register specified by R1.

If the addition of fractions does not produce a carry, the result
is normalized, if necessary, and R*-rounded. This result
replaces the <contents of the single-precision floating-point
register specified by R1.

Condition Code

CiV]|G| L -

0]0}0]O0 Floating-roint result is zero

ojo0}lO0] 1 Floating-point result is less than zero

0j0}111]0 . Floating-trcint result is greater than zero

011101 1 Exponent overflow, result is less than zero

0}l 11110 Exponent cverflow, result is greater than
Zero

0}j1101]0 Exponent underflow

6-18 ’ 29-747 ROO u4/81

Programming Notes

When the addition of the fractions produces a carry, incrementing
the exponent of the result ty one can produce exponent overflow.
In this case, the arithmetic fault interrupt is taken and the
contents of the register specified by R1 remain unchanged.

Normalization of the result can produce exponent underflow. If
PSW bit 19 1is set, an arithmetic fault interrupt is taken, and
the register specified by R1 is unchanged. If exponent underflow
occurs and bit 19 of the current PSW is zero, no arithmetic fault
OCCUrSs. Zeros replace the contents of the register specified by
R1.

In the RX formats, the second operand must be located on a
fullword boundary.

Fastest results occur when the first operand is larger than the
second operand.

Example: AE

This example adds the <contents of LOC to the <contents of
floating-point register 8 and rlaces the result in floating-point
register 8. :

Floating-point REG8 contains X'7EFF FEFF°'.
LOC contains X'7EFF FFFF°*

Assembler Notation Comments

AE REG8,LCC ADD (LOC) TO (REGS)
Result of AE Instruction
(Floating~point REG8) = 7F1F FFFF

(LOC) unchanged by this instruction
Condition Code = 0010

29-747 ROO 4/81 | 6-19

6.5.9 Subtract Floating-Point (SE, SER)

Subtract Floating-Point (SE)
Subtract Floating-Point Register (SER)

Assembler Notation Op-Code Format
SE R1,D2(X2) 6B RX1,RX2
SE R1,A2(FX2,SX2) 6F RX 3

SER R1,R2 2B RR
Cperation

The two operand exponents are compareds If the exponents differ,
the fraction with the smaller exponent is shifted right
hexadecimally (four bits at a time), and 1its exponent is
incremented by one for each hexadecimal shift, until the two
exponents are equal. The hexadecimal digits (of four bits each)
are shifted through the guard digits for additional precision.
If no equalizing shifts are required, the guard digits remain
Z€rOe. The second operand fraction is then subtracted
algebraically from the first operand fraction. The guard digits
participate in this subtraction.

If the subtraction of fractions produces a carry, the exponent of
the result is incremented by one, and the fraction of the result
is shifted right one hexadecimal digit. The carry bit is shifted
back into the most significant hexadecimal digit of the fraction,
producing a normalized result. This result is then R*-rounded
and replaces the contents of the single-precision floating-point
register specified by R1.

If the subtraction of fractions does not produce a carry, the
result is normalized, if necessary, then R*-rounded. This result
replaces the contents of the single-precision floating-point
register specified by R1.

Condition Code

cC| V]G L

ojo0oj0o0]0 Floating-roint result is zero

(001 Floating-roint result is less than zero

ojlo0o]1]0 Floating-roint result is greater than zero

cl1]101{1 Exponent overflow, result is less than zero

0111110 Exponent cverflow, result is greater than
zZero

(0] 0|0 Exponent underflow

6-20 29-747 ROO 4/81

Programming Notes

When the subtraction of the fractions produces a carry,
incrementing the exponent of the result by one can produce
exponent overflow. In this case, the arithmetic fault interrupt
is taken, and the contents c¢f R1 remain unchanged.

Normalization of the result can produce exponent underflow. If
PSW bPbit 19 is set, an arithmetic fault interrupt is taken, and
the register srecified by R1 is unchanged. If exponent underflow
occurs and bit 19 of the current PSW is Zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
R1.

In the RX formats, the second operand must be located on a
fullword boundary.

Fastest results occur when the first operand is larger than the
second operand.

Example: SE

This example subtracts the contents of LOC fron the contents of
floating-point register 8 and places the result in floating-point
register 8.

Floating-point REG8 contains X°'7EFF FEFF°®
LOC ccntains X*7R10 0000°

Assembler Notation Comments
SE REGS8,Lo0C SUBTRACT (LOC) FROM (REGS8)

Result of SE Instruction
(Floating-point REG8) = 7EFF FFEF

(LOC) unchanged by this instruction
Condition Code = 0010

29-747 ROO 4/81 6-21

6.5.10 Compare Floating-Point (CE, CER)

Compare Floating-Point (CE)
Compare Floating-Point Register (CER)

Assembler Notation Op-Code Format

CE R1,D2(X2) 69 RX1,RX2

CE R1,D2(FX2,5X2) 69 RX 3

CER R1,R2 26 RR

Operation

The first and second operands are compared. Comparison 1is

algebraic, and the sign, fraction, and exponent of each number
must te considered. The result is indicated by the condition
code setting. Neither operand is changed.

Condition Code

First operand is egqual to second operand
First orerand is less than second operand
First orerand is greater than second operand

eI Nelle)
S > <
- O Ol
O Ot

Programming Notes
The state of the V flag is undefined.,

In the RX formats, the second operand mnust be located on a
fullword boundary.

€-22 29-747 ROO 4/81

6.5.11 Multiply Floating-Point (ME, MER)

Multiply Floating-Point (ME)
Multiply Floating-?oint Register (MER)

Assembler Notation Op=-Code Format
ME R1,D2(X2) 6C RX1,RX2
ME R1,A2(FX2,S%2) 6C RX3

MER R1,R2 2C . BR
Operation

The exponents of each operand, as derived from the excess-64
notation wused in floating-roint representation, are added to
produce the exponent of the result. This exponent is converted
back to excess=-64 notation, and the fractions are then
multiplied.

If the product is zero, the entire floating-point value is forced
to zero, X'0000 0000's. If the product is not zero, the result is
normalized. The sign of the result is determined by the rules of
algebra. The R*-rounded result replaces the contents of the
single-precision floating-point register specified by R1.

Condition Code

C|V|G|L :

ojofjloj|o Floating-point result is zero

O(0]JO0}| 1 Floating-roint result is less than zero

oOjofl11]0 Floating-roint result is greater than zero

o110 1 Exponent cverflow, result is less than zero

oOj1]1410 Exponent cverflow, result is greater than
Zero

ott1jo0}o0 Exponent underflow

Programming Notes

Multirlication of two 6-hexadecimal-digit fractions effectively
produces a result of six hexadecimal digits and a number of guard
digits. The guard digits participate in the R*-rounding of the
final result.

The addition of exponents can produce exponent overflow. In this

case, an arithmetic fault interrupt is taken, and both operands
remain unchangede.

29-747 ROO u4/81 6-23

The addition of exponents or the normalization process can
produce exponent underflow. If PSW bit 19 is set, an arithmetic
fault interrupt is taken and the register specified by R1 1is
unchanged. If exponent underflow occurs and bit 19 of the
current PSW is zero, no arithmetic fault occurs. Zeros replace
the contents of the register specified by R1.

In the RX formats, the second operand must be 1located on a
fullword boundary.

Fastest results occur when the second operand multiplier contains
sets of four or more contiguous ones Ccr zeros.

Example: ME

This example multiplies the ccntents of floating-point register
8 by the contents of memory lccation LOC and places the result in
floating-point register 8.

Floating-point REG8 contains X'SFFF FFFF'
LOC contains X*60FF FFFF"* '

Assembler Notation Comments

ME REGS8,LOC MULTIPLY (REG8) BY (LOC)
Result of ME Instruction
(Floating-point REG8) = 7FFF FFFE

(LOC) unchanged by this instruction
Condition Code = 0010

6-24 29-747 ROO 4/81

6.5.12 UDivide Floating-Point (DE, DER)

Divide Floating=-Point (DE)
Divide Floating=-Point Register (DER)

Assembler Notation Op-Code Format
DE R1,D2 (X2) 6D RX1,RX2
DE R1,A2 (FX2,SX2) 6D RX3

DER R1,R2 2D RR
Operation

The exponents of each operand, as derived from the excess-64
notation used in floating-point representation, are subtracted to
produce the exponent of the result. This exponent is converted
back to excess-64 notation.

The first cperand fraction is then divided by the second operand
fractione. Civision continues until the quotient is normalized,
adjusting the exponent for each additional division required.

No remainder is returned. The sign of the quotient is determined
by the rules of algebra. The R*-rounded guotient replaces the
contents of the single-rrecision floating-point register
specified by R1.

Condition Code

C|{V]|G|L

0Ojo0]J]O0}|O Floating-roint result is zero

cjolo}1 Floating-point result is less than zero

010110 Floating-point result is greater than zero

oOj1101}1 Exponent cverflow, result is less than zero

o(1]11]0 Exponent cverflow, result is greater than
Zero :

0|1}010 Exponent underflow

1111010 Divisor equal to zero

Programming Notes

Before starting the divide operation, the divisor is checked. If
it is equal to zero, the operation is aborted, and the arithmetic
fault interrupt is taken. Neither operand is changed.

Subtraction of exponents may rroduce exponent overflow. In this

case, an arithmetic fault interrupt is taken, and both operands
remain unchanged.

29-747 ROO u4/81 6

25

The subtraction of exponents or the division process can produce
exponent underflow; normalization of the result can produce
exponent underflow. If PSW bit 19 is set, an arithmetic fault
interrupt is taken, and the register specified by R1 is
unchanged. If exponent wunderflow occurs and bit 19 of the
current PSW 1is zero, no arithmetic fault occurs. Zeros replace
the contents of the register specified by R1.

The 6-hexadecimal digit first operand fraction is divided by the
6-hexadecimal digit second operand, effectively producing the
6-hexadecimal digit quotient along with a number of guard digits.
The guard digits participate in the R*-rounding of the final
result.

In the RX formats, the seccnd operand must be located on a
fullword boundary.

Example: DE

This example divides the contents of floating-point register 4 by
the contents of memory location LOC and places the result in
floating«point register u.

Floating-point REGU contains X'44FF FFFF' = dividend

LOC contains X*'0611 1111* = divisor

Assembler Notation Ccmments

DE REG4,LCC DIVIDE (REG4) BY (LOC)
Result of DE Instruction:
(Floating-point REGU) = TFF0 0000

(LOC) unchanged by this instruction
Condition Code = 0010

6-26 29-747 ROO 4/81

6+.513 Fix Register (FXR)

Assembler Notation Op-Code Format
FXR R1,R2 2F RR
Operation

R1 and R2 specify a general-purpose register and a floating-point
register respectively. The normalized floating-point number
contained 1in the floating-point register is converted to a two's
complement notation integer value by shifting and truncating.
The result is stored in the general register specified by R1.

Condition Code

Result is zero or underflow

Result is less than zero

Result is greater than zero

Overflow, result is less than zero
Overflow, result is greater than zero

-]
- s 00 0«<
-0 2000
O a0 a0

Programming Notes

The range of floating-point magnitudes (M) +that produces a
nonzero integral result jis:

+X'4880 0000°'> M > +X'4110 0000°

Floating-point magnitudes greater than +X*487F FFFF' or
-X*u880 0000° cause overflow. The result is forced to
X'7FFF FFFF* if positive, or to X*8000 0000* if negative.
The V flag is set in the condition code along with either the &
or L flag, depending on the sign of the result.

Floating-point magnitudes less than +X'41100000° cause underflow,
and the result is forced to zero.

In the event of overflow or underflow, no arithmetic fault
interrupt is taken, even if enabled in the current PSW.

Example: FXR

This example converts the contents of floatihg-point register 8
to a fixed-point number and places it in register 3.

29-747 ROO 4/81 6-27

Floating=-point REGS8 contains X*'46FF FFOQO'
REG3 contains unknown data

Assembler Notation Comments

FXR REG3,REGS CONVERT (REG8) TO FIXED-POINT
Result of FXR Instruction
(REG3) = OOFFFFOO

(Floating-point REGB) unchanged by this instruction
Condition Code = 0010

6-28 29-747 ROO 4/81

6.5.14 Float Register (FLR)

Assembler Notation Op-Code Format
FLR R1,R2 2F RR
Operation

R1 and R2 specify a floating-point register and a general-purpose
register, respectively. The integer value contained in the
general register specified by R2 is converted to a floating-point
- number and stored in the single-precision floating-point register
specified by R1.

Condition Code

Floating-roint result is zero
Floating-roint result is less than zero
Floating-point result is greater than zero

> ¢ <Y
O O Olw
- O Ol
O a Ol

Programming Note

The full range of fixed-point integer values can be converted to
floating-pointe. The fixed-pcint value X'7FFF FFFF', the largest
positive integer, converts to the floating-point value X'487F
FFFF'. The fixed-point value X*8000 0000°, the most negative
integer, converts to the flcating-point value X°'C880 0000°. The
result in R1 is normalized and truncated, if necessary, to fit in
the six fraction digits.

Example: FLR

This example converts the fixed-point contents of Register # to
a flocating-point number and rlaces it in floating-point register
8.

REGY4 contains X*7FFF FFFO°
Floating-point REG8 contains unknown data

Assembler Notation Comments
FLR REG8,REGH CONVERT (REG4) TO FLOATING-POINT

Result of FLR Instruction:
(Floating-point REG8) = 487FFFFF

(REGY4) unchanged by this instruction
Condition Code = 0010

29-747 ROO 4/81 ' 6-29

6.5.15 Load Double-Precision Floating-Point (LD, LDR, LDGR)

Load Couble~-Precision Floating=-Point (LD)

Load Register Double-Precision Floating-Point (LDR)

Load LCouble-Precision Floating-Point Registers from General
Registers (LLGR)

Assembler Notation Op~Code Format
LD R1,D2(X2) 78 RX1,RX2
LD R1,A2(FX2,5X2) 78 RX3

LDR R1,R2 38 RR

LDGR R1,R2 A6 RR
Operation

The floating-point second orerand is normalized, if necessary,
and placed 1in the double-precision floating-point register
specified by R1.

Condition Code

Double-precision result is 2zero
Double~precision result is less than zero
Double-rrecision result is greater than zero
Exponent underflow

[eNeoRoNallp]
- OO0 Ol
[« 3 Y oNall]
O O -0l

Programming Notes

If the argument fracticn is zero, the entire result is forced to
zero, X'0000 0000 0000 0000°'.

‘Normalization can produce exponent underflow. If PSW bit 19 is
set, the arithmetic fault interrupt is taken, and the register
specified by R1 remains unchanged. If exponent underflow occurs,
and bit 19 of the current PSW is zero, no arithmetic fault
OCCcurs. Zeros replace the ccntents cf the register specified by
R1.

In the RX formats, the second operand must be located on a
fullword boundary.

The R2 field for LDGR must specify the even member of an even/odd
pair of general registers. The register specified by R2 contains
the most significant 32 bits, and R2+1 contains the least
significant 32 bits. If R2 is not an even numbered register,
unpredictable results occur.

€-30 29-747 ROO 4/81

6.5.16 Load Positive Double-Precision Register (LPDR)

Assembler Notation Op=Code Format
LPDR R1,R2 33 ' RR
Operation

The double-precision floating-point second operand contained in
the double-precision floating-point register specified by R2 is
forced positive. The result is normalized if necessary and
placed in the double-precision floating-point register specified
by R1. :

Condition Code

Pouble-precision result is zero
Double~precision result is greater than zero
Exponent underflow

o NeNolle)
- O Ol
(o Neli]
O O ot

Programming Notes

If the argument fraction is zero, the entire result is forced to
zero, X'0000 0000 0000 0000°.

Normalization of the result can produce exponent underflow. If
PSW bit 19 is set, the arithmetic fault interrupt is taken, and
the register specified by R1 remains unchanged. If exponent
underflow occurs, and bit 19 of the current PSW is Zero, no
arithmetic fault occurs. Zeros replace the contents of the
register specified by R1.

29-747 ROO 4/81 6-31

6.5.17 Load Complement Double-Precision Register (LCDR)

Assembler Notation Op-Code Format
LCDR -R1,R2 37 RR
Cperation

The sign of the double-precision floating-point second operand
contained in the double-rrecision floating-point register
specified by R2 is complemented. The result is normalized if
necessary and placed in the double-precision floating-point
register specified by R1.

Condition Code

Double-precision result is zero
Double-rrecision result is less than zero
Double-precision result is greater than zero
Exponent underflow

[oNeoNeNolle)
- O O 0=
(= NeNoll)]
OO - Of

Programming Notes

If the argument fraction is zero, the entire result is forced to
zero, X*'0000 0000 0000 0000'.

Normalization may produce exponent underflow. If PSW bit 19 is
set, the arithmetic fault interrupt is taken and the register
specified by R1 remains unchanged. If an exponent underflow
occurs and bit 19 of the current PSW is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
R1 ip this case.

6-32 29-747 ROO 4/81

6.5.18 Load Multiple Double-Precision Floating-Point (LMD)

Assembler Notation - Op~Code ' Format
LMD PR1,D2(X2) ' 1F RX1,RX2
LMD R1,A2(FX2,S5X2) TF RX3
Operation

Successive double~precision floating-point registers, starting
with the register specified by R1, are loaded from successive
fullword memory location pairs, starting with the address of the
second operand. The prccess stops when double-precision
floating-point register 14 has been loaded.

Condition Code

Unchanged

Programming Notes

Values loaded into the double-precision floating-point registers
are assumed to be normalized, and no test or adjustment is
performed.

The second operand must be located on a fullword boundary.

29-747 ROO u4/81 6-33

6.5.19 Load General Registers from Double-Precision
Floating-Point Register (LGDR)

Assembler Notation Op-Code Format
LGDR R1,R2 16 RR
Cperation

The double-precision floating-point second operand, contained in
the double-precision register specified by R2, is placed in the
general register pair specified by R1. The second operand is
unchanged.

Condition Code

Result is zero
Result is less than zero
Result is greater than 2zero

o 0O oln
Y e Nallnp]
O = Ol

[oNe NIk

Programming Notes

The R1 field must sprecify the even member of the even/odd pair of
general registers receiving the result. The even numbered
register receives the most. significant 32 bits while the next
sequential odd numbered register receives the 1least significant
32 bits.

If R1 and R2 do not specify even numbered registers,
unpredictable results occur.

6-34 29-747 ROO 4/81

6.5.20 Store Double-Precision Floating-Point (STD)

Assembler Notation Op-Code Format
STD R1,D2(X2) 70 RX1,RX2
STD R1,A2(FX2,SX2) 70 RX3

Operation
The floating-point first operand, contained in the
double-precision flcating-roint register specified by R1, is

placed in the double word memcry location specified by the second
operand address. The first operand is unchanged.

Condition Code

Unchanged

Programming Note

The second operand must be located oh a fullword boundary.

6.5.21 Store Multiple Double-Precision Floating-Point (STMD)

Assembler Notation Op-Code Format
STMD R1,D2(X2) 7E RX1,RX2
STMD R1,A2(FX2,SX2) 7E RX3
Operation

The contents of successive double-precision floating-point
registers, starting with the even numbered register specified by
R1, are stored in successive fullword memory 1location pairs,
starting with the address of the second operand. The operation
stops when the <contents of double-precision floating-point
register 14 have been stored.

Condition Code

Unchanged

Programming Note

The second operand must be located on a fullword boundary.

29-747 ROO u4/81 v 6-35

6.5.22 Add LCouble-Precision Floating-Point (AD, ADR)

ARdd Double-Precision Floating-Point (AD)
hkdd Register Double-Precisicn Floating-Point (ADR)

Assembler Notation Op-Code Format
AD R1,D2(Xx2) 7A RX1,RX2
AD R1,A2(FX2,S5X2) 7A RX3

ADR R1,R2 37 RR
Operation

The two operand exponents are compared. If the exponents differ,
the fraction with +the smaller exponent is shifted right
hexadecimally (four bits at a time), and its exponent is
incremented by one for each hexadecimal shift until <the two
exponents are equal. Hexadecimal digits are shifted through the
guard digits to retain precision. The fractions are then added
algebraically.

If the addition of fractions produces a carry, the exponent of
the result is incremented by one and the fraction of the result
is shifted right one hexadecimal position. The carry bit |is
shifted back into the most significant hexadecimal digit of the
fraction, producing a normalized resulte. This result is
R*-rounded and replaces the contents of the double-precision
floating-point register specified by R1.

If the addition of fractions does not produce a carry, the result

is normalized, if necessary, and placed in the double-precision
floating-point register specified by R1.

Condition Code

CiVI|G|L

¢C|0fO0]O Double-precision result is zero

Oj0}j01}1 Double-precision result is less than zero

10130 Double-precision result is greater than zero

0O}11101]1 Exponent cverflow, result is less than zero

oj1(1]0 Fxponent cverflow, result is greater than
Zero

Oj{1(01]0 Exponent underflow

6-36 29-747 ROO 4/81

Programming Notes

When the addition of fractions produces a carry, incrementing the
exponent of the result by one may produce exponent overflow. In
this case, the arithmetic fault interrupt is taken and both
operands remain unchangede.

Normalization of the result can produce exponent underflow. If
PSW bit 19 is set, an arithmetic fault interrupt is taken, and
the register specified by R1 is unchanged. If exponent underflow
occurs and bit 19 of the current PSW is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
R1.

Fastest results occur when the first operand is larger +than the
second operand.

In the RX formats, the second operahd must be located on a
fullword boundarye.

29-747 ROO 4/81 6-37

6.5.23 Subtract Double-Precision Floating-Point (SD, SDR)

Subtract Double-Precision Floating-Point (SD)
Subtract Register Double-Precision Floating-Point (SDR)

Assembler Notation Op-Code Format
SD R1,D2(X2) 7B RX1,RX2
SD R1,A2(FX2,5X2) 7B RX3

SDR R1,R2 3B RR
Cperation

The two operand exponents are compared. If the exponents differ,
the fraction with the smaller exponent 1is shifted right
hexadecimally (four bits at a time), and its exponent is
incremented by one for each hexadecimal shift, until the two
exponents are equal. Hexadecimal digits are shifted through the
guard digits to retain precision. The second operand fraction is
then subtracted algebraically from the first operand fraction.

If the subtraction of fractions produces a carry, the exponent of
the result is incremented by cne and the fraction of the result
is shifted right one hexadecimal position. The carry bit is
shifted back into the most significant hexadecimal digit of the
fraction producing a normalized result. This result is
R*-rounded and replaces the <contents of the double-precision
floating-point register specified by R1.

If the subtraction of fractions does not produce a carry, the

result is normalized, if necessary, then R*-rounded and placed in
the double-precision floating=-point register specified by R1.

Condition Code

clv]|Gc|L

0j1]0}101]0 Double-precision result is zero

cjojo{1 Double-rrecision result is less than zero

0]J]O0]1]0 Double-grrecision result is greater than zero

ofj1]10¢]1 Exponent overflow, result is less than zero

ci11i1110 Exponent overflow, result is greater than
Zero

ol1}01]0 Exponent underflow

6-38 29-747 ROO 4/81

Programming Notes

When the subtraction of fractions produces a carry, incrementing
the exponent of the result by one may produce exponent overflow.
In this case, the arithmetic fault interrupt is taken and the
contents of R1 remain unchanged.

Normalization of the result can produce exponent underflow. If
PSW bit 19 is set, an arithmetic fault interrupt is taken, and
the register specified by R1 is unchanged. If exponent underflow
occurs and bit 19 of the current PSW is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
R1.

Fastest results occur when the first operand is larger than the
second operande.

In the RX formats, the seccnd operand must be 1located on a
fullword boundarye.

29-747 ROO u4/81 6-39

6.5.24 Compare Pouble-Precision Floating-Point (CD, CDR)

Compare Double-Precision Flcating-Point (CD)
Compare Register Double-Precision Floating-Point (CDR)

Assembler Notation Op-Code Format

CD R1,D2(X2) 79 RX1,RX2

CD R1,A2(FX2,5X2) 79 RX3

CDR R1,R2 39 RR

Operation

The first and second operands are compared. Comparison is

algebraic, taking into account the sign, exponent and fraction of
each number. The result 1is indicated by the condition code
setting. Neither operand is changed.

Condition Code

First orerand is equal to second operand
First operand is less than second operand
First orerand is greater than second operand

O -2 OlN
>4 >4 el
- O Ol
O a Ol

Programming Notes
The state of the overflow flag is undefined.

In the RX formats, the second operand must be located on a
fullwecrd boundary.

6-40 29-747 ROO 4/81

6525 Multiply Double-Precision Floating-Point (MD, MDR)

Multiply Double-Precision Floating-Point (MD)
Multiply Register Double-Precision Floating-Point (MDR)

Assembler Notation Op-Code .~ Format
MD R1,D2(X2) 7¢C RX1,RX2
MD R1,A2(FXZ,SX2) 7C RX3

MDR R1,R2 3C RR
Operatidn

The exponents of the two operands, as derived from the excess-64
notation used in floating-point representation, are added to
produce the exponent of the result. This exponent is converted
back to excess-64 notation. The fractions are then multiplied.

If the product is zero, the entire double-precision value is
forced to <zero, X'0000 Q000 0000 0000's If the product is not
zero, the result is normalized, if necessary. The sign of the
result 1is determined by the rules of algebra. The R*-rounded
result replaces the contents of the double~precision floating-
point register specified by R1.

Condition Code

Cl|V|G]|L

olojolo Double-rrecision result is zero

ojO0joO]| 1 Double-precision result is less than zero

c|lo0o}1]0 Double-precision result is greater than zero

0({1}101(1 Exponent overflow, result is less than zero

oj11110 Exponent overflow, result is greater than
Zero

0 0} o0 Exponent underflow

Programming Notes

Multiplication of two 1U4-hexadecimal-digit fractions effectively
produces a result of 14 hexadecimal digits and a number of guard
digits. The guard digits participate in the R*-rounding of the
final result.

The addition of exponents may produce exponeﬂt overflow. In this
case, an arithmetic fault interrupt is taken and both operands
remain unchanged.

29-747 ROO 4/81 ' 6

41

Normalization of the result can produce exponent underflow. If
PSW bit 19 is set, an arithmetic fault interrupt is taken, and
the register specified by R1 is unchanged. If exponent underflow
occurs and bit 19 of the current PSW is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
R1.

In the RX formats, the second operand must be located on a
fullword boundary.

Fastest results occur when the second operand multiplier contains
sets of 4 or more contiguous cnes or zeros.

6-42 29-747 ROO u4/81

6.5.26 Divide Double-Precisicn Floating=-Point (DD, DDR)

Divide Double-Precision Floating-Point (DD)
Divide Register Double-Precisicn Floating—Point (DDR)

Assembler Notation Op-Code - Format
LD R1,D2(X2) 7LC RX1,RX2
DD R1,A2(FX2,S5X2) 7D RX3

DDR R1,R2 3D RR
Operation

The exponents of the two operands, as derived from the excess-64
notation used in floating-point representation, are subtracted to
produce the exponent of the result. This exponent is converted
back to excess=-6U4 notation.

The first operand fraction is then divided by the second operand
fraction. Division continues until the quotient is normalized,
adjusting the exponent for each additional division required.

No remainder is returned. The sign of the result 1is determined
by the rules of algebra. The R*-rounded quotient replaces the
contents of the double-precision floating-point register
specified by R1.

Condition Code

C|IV|G]|L .

0101010 Double~rrecision result is zero

o{o|lO0f} 1 Double-precision result is less than zero

0j0}j1]0 Double~-precision result is greater than zero

oj1(01 1 Exponent cverflow, result is less than zero

c|1]14{0 Exponent cverflow, result is greater than
Zero

0l1]01]0 Exponent underflow

1111010 Divisor eaual to zero

29-747 ROO 4/81 6-43

Programming Notes

Before starting the divide operation, the divisor is checked. 1If
it is equal to zero, the operation is aborted, and the arithmetic
fault interrupt is taken. Neither operand is changed.

The subtraction of exponents may produce exponent overflow. In
this case, an arithmetic fault interrupt is taken and both
operands remain unchanged.

Subtraction of exponents or the division process can produce
exponent underflow. Normalization of the result can produce
exponent underflow. If PSW bit 19 is set, an arithmetic fault
interrupt is taken, and the register specified by R1 1is
unchanged. If exponent wunderflov occurs and bit 19 of the
current PSW 1is zero, no arithmetic fault occurs. Zeros replace
the contents of the register specified by R1.

The 14-hexadecimal-digit first operand fraction is divided by the
14-hexadecimal-digit second operand fraction, effectively
producing the 14-hexadecimal-digit gquotient along with a number
of guard digits. The guard digits participate in the R*-rounding
of the final result.

In the RX formats, the second operand must be located on a
fullword boundary.

6-44 29-747 ROO Uu4/81

6527 Fix Register Double-Precision (FXDR)

Assembler Notation Op-Code Format

FXDR R1,R2 3E RR
Operation

R1 and R2 specify a general purpose register and a
double-precision floating-pcint register, respectively. The
normalized floating-point number contained in the floating-point
register 1is converted to an integer value by shifting and
truncating. The result is placed in the general register
specified by R1.

Condition Code

Result is zero or underflow

Result is less than zero

Result is greater than zero

Overflow, result is less than zero
Overflow, result is greater than zero

LR R R B le]
- - O OO
- O OOomNn
O O Ok

Programming Notes

The range of the floating-point magnitude (M) that produces a
nonzero integral result is:

+ X'4880 0000 0000 0000°* > M > + X'4110 0000 0000 0000°*

Double-precision floating-roint magnitudes greater than +X‘'u487F
FFFF FFFF FFFF*' or -X*'4880 0000 0000 0000* cause overflow. The
result 1is forced to X*7FFF FFFF' if positive or to X'8000 0000°
if negative. The V flag is set in the condition code along with
either the G or L flag, devending on the sign of the result.

Double-precision floating-point magnitudes less than +X'4110 0000
0000' cause underflow, and the result is forced to zero.

In the event of overflow or wunderflow, no arithmetic fault
interrupt is taken even if enabled in the current PSW.

29-747 ROO 4/81 6

45

6.5.28 Float Register Double-Frecision (FLDR)

Assembler Notation Op-Code Format
FLDR R1,R2 3F RR
Operation

R1 and R2 specify a double-precision floating-point register and
a general purpose register, respectively. The integer value
contained in the general register specified by R2 is converted to
a floating-point number and placed in the double-precision
floating-point register specified by R1.

Condition Code

Double-precision result is zero
Double-rrecision result is less than zero
Double-precision result is greater than zero

>d D IO
O O Ol=
e Nally]
O - ot

Programming Notes

The full range of fixed-point integer values may be converted to
double-precision floating-point. The fixed-point value X'7FFF
FFFF?*, the largest positive integer, converts to a
double-precision floating-point value of X'487F FFFF FF00 0000°.
The fixed-point value X°*8000 0000', the most negative integer,
converts to a double-precision floating-point value of X*'C880
0000 0000 0000°*.

The result id R1 is normalized.

46 29-747 ROO 4/81

o
i

6.5.29 Load Single-Precision Floating-Point Register From Double
(LED, LEDR)

Load Single-Precision Floating-Point Register from Double-
Precision Memory (LED)

Load Single-Precision Floating-Point Register from Double-
Precision Register (LEDR)

Assembler Notation Op-Code Format
LED R1,D2(X2) 8y RX1,RX2
LED R1,A2(FX2,5X2) 84 RX3
LEDR R1,R2 Ay RR
Operation

Double-precision floating-point data from the second operand
location is R*-rounded to single-precision accuracy, and placed
in the single-precision floating-pvoint register specified by R1.

Condition Code

Floating-point result is zero
Floating-point result is less than zero
Floating-point result is greater than zero
Exponent underflow

Exponent overflow, result is less than zero
Exponent overflow, result is greater than
Zero

e NoNoRoNeoNallp]
-2 a0 00w
= OO0 -2 00N
O =2 OO0 Ot

Programming Notes
R1 and R2 must specify even-numbered registers.

Rounding of the result may cause exponent overflow. In this
case, the register specified by R1 is unchanged, and the
arithmetic fault interrupt is takene.

Normalization of the result may produce exponent underflow. If
enabled by PSW bit 19, the arithmetic fault interrupt is taken,
and the register specified by R1 remains unchanged. If bit 19 of
the current PSW is <zero, 2zeros replace the <contents of the
register specified by R1.

In the RX formats, the second operand must be 1located on a
fullword boundary.

29-747 ROO u4/81 6-47

6530 Load Double-Precision Fldatinq-Point Register From Single
(LDE, LDER)

Load Double-Precision Floating-Point Register from Single-
Precision Memory (LDE)

Load Double-Precision Floating-Point Register from Single-
Precision Register (LDER)

Assembler Notation Op=Code Format
LDE R1,D2(X2) 87 RX1,RX2
LDE R1,02(FX2,S5X2) 87 RX3
LDER R1,R2 A7 RR
Operation

Single-precision floating-point data from the second operand
location 1is converted to double-precision data by appending
trailing =zeros. The result replaces the contents of the
double-precision floating-point register specified by R1.

Condition Code

Double~precision result is zero
Double-precision result is less than zero
Double-precision result is greater than zero
Exponent underflow

OO0 OO
e NoNo N -
[« R eNa)]
QO Ot

Programming Notes

The registers specified by R1 and R2 must be even-numbered
registers.

Normalization of the result may produce exponent underflow. If
enabled by PSW bit 19, the arithmetic fault interrupt is taken,
and the register specified by R1 remains unchanged. If bit 19 of
the current PSW is zero, no arithmetic fault occurs. Zeros
replace the contents of the register specified by R1.

In the RX formats, the second operand must be locatei on a
fullword boundary. '

6-48 29-747 ROO u4/81

6.5.31 Store Louble-Precision Floating-Point Register in Single-
Precision Memory (STDE)

Assembler Notation Op-Code Format
STDE R1,D2(X2) 82 RX1,RX2
STDE R1,R2(FX2,S5X2) 82 RX3
Operation

" Data from the double-precision floating-point register specified
by R1 is R*-rounded to single-precision accuracy, and stored in
the fullword second operand lccation.

Condition Code

Unchanged

Programming Notes

The register specified by R1 must be an even~-numbered register.
Normalization of the rounded result may produce exponent
underflow. In ¢this case, 2zero, X'0000 0000', replaces the
contents of the second operand location.

Rounding of the result may cause exponent overflow. In ¢this
case, the contents of the second operand 1location remain
unchanged, and the arithmetic fault interrupt is taken.

The second operand must be located on a fullword boundary.

29-747 ROO 4/81 6-49/6-50

CHAPTER 7
STRING OPERATIONS

7.1 INTRODUCTICN

String operations deal with operands that are strings of
consecutive bytes in memory beginning and ending on byte
boundaries. Information contained in such a string may represent
packed decimal data or ASCII character information including
unpacked decimal data.

7.2 DECIMAL DATA FORMAT DEFINITICNS

Decimal operands can be in either packed or wunpacked (zoned)
format. The decimal operands are ceonsidered as right-aligned
integers. The address of a decimal operand specifies the address
of the left-most or most significant byte of the operand.

7«21 Packed Decimal

A number represented in packed decimal format is a fixed-point,
signed 1integer, and consists of from 1 to 16 consecutive bytes.
(See Figure 7-1.) Each byte is divided into two digit fields;
thus each byte, except for the right-most in the string, contains
two decimal digits represented in binary code. The only values
allowed in a decimal digit field are 0 through 9. The right-most
byte in the string contains the least significant decimal digit
and the sign digit.

en| Byter | syre2 | syres |J§ | syres | syreis | syrete
p)

Dy | b2 | D3 |Ds | D5 | De y D27 | Dag | Do | D30 | Dag S
P

D1, D2, D3, D30, D31 = DECIMAL DIGITS
S =SIGN DIGIT

Figure 7-1 Packed Lecimal Format

29-747 ROO u4/81 7-1

612

There are two standard values for the sign S: hexadecimal C for
plus and hexadecimal D for minus. However, the hexadecimal
values 3, A, E, and F are also recognized for plus, and
hexadecimal B is recognized fcr minus. Other values, 0 through
2 and 4 through 9, are illegal in the S position.

A packed decimal number contains an odd number of decimal digits.
The most significant digit (zero or nonzero) of the number is in
bit positions 0-3 of the left-most byte. The least significant
digit occupies bit positions 0-3 of the right-most byte of the
string, immediately preceding the sign digit, S. Any unused
digit at the Dbeginning o¢f the string is filled with a leading
Zeroe.

7.2.2 Unpacked (Zoned) Decimal

A number represented in unpacked decimal format is a fixed-point
signed integer, and consists of from 1 to 31 consecutive bytes.
(See. Figure 7-2.) Fach byte, with the exception of the
right-most byte, is assumed tc contain the 7-bit ASCII equivalent
of a decimal digit. Thus, the top four bits contain zone
information and the bottom four bits in each byte contain the
binary equivalent of a decimal digit from 0 through 9.

When the processor generates an unpacked decimal byte string, the
zone digit is always '3'. However, any zone value is accepted in
an unpacked decimal operand, since the zone has no effect on the
operation of the 1instructicns and 4is not examined. In the
right-most byte of the string, S is the sign digit. Acceptable
values for the sign digit are the same as those defined for
packed decimal datae.

| Byrer | BYytE2 | BYTE3 I,‘ | ByTE2e | BytE30 | BYTE31 |
ZONE | D, |ZONE | D, [zONE | D, g ZONE | Dyg |ZONE | Dy, s | Dg
ZONE | = ZONE DIGIT
D400 5......050,D54 - DECIMAL DIGITS
s - SIGN DIGIT

Figure 7-2 Unpacked Decimal Format

The most significant digit of an unpacked decimal number occupbies -

the 1left-most byte of the string. The least significant digit
occupies the right-most byte ¢f the stringe.

7=-2 29-747 ROO 4/81

7.3 DECIMAL ANLC ALPHANUMERIC STRING INSTRUCTICN FORMATS

The two binary/decimal conversion instructions use the standard
RX format. The remaining string operations use the RXRX format.

In the instruction descriptions, the RXRX format is diagrammed as
follows: :

{R1 D2 (X2)] [R1 L2 (X2) ‘

CP =L1),|A2 (FX2,5X2)|,|=L2),|A2 (FX2,SX2)

where any field may have either one of the options shown in the
braces. R1/=11 refers +to the first operand length and R2/=L2
refers to the second operand length. Length of operand strings
is always expressed as a number of bytes. These can vary from O
to 15 for immediate length formats, and from 0 to maximum memory
for register 1length. See Section 1.8.11 for further details of
the RXRX instruction format.

7.4 STRING INSTRUCTIONS

The string instructions are interruptible, and use the scratchpad
registers. If an interrupt occurs during the execution of a
string instruction, bit 14 (IIP) is set by the processor in the
0ld FSW +to indicate that the scratchpad registers contain
information pertinent to the interrupted instruction. See
Section 10.3.4 for further information.

The instructions described in this section are:

LPB Load Packed Decimal String as Binary
(convert from decimal to binary)
STBP Store Binary as Packed lecimal String
(convert from binary tc decimal)
MVTU Move Translated Until
MOVE Move and Pad
MOVEP Move and Pad with Default Pad
CPAN Compare Alphanumeric
CPANP Compare Alphanumeric with LCefault Pad
PMY Pack and Move
(convert unpacked decimal string to packed decimal string)
PMVA Pack and Move Absolute (force positive result)
UMv Unpack and Move '
(convert packed decimal string to unpacked decimal string)
UMVA Unpack and Move Absolute (force positive result)

29-747 ROO 4/81 7-3

7.4.1 Load Packed Decimal String as Binary (LPB)

Assembler Notation Op-Code Format
LPB R1,D2(X2) 6F RX1,RX2
LPB R1,R2(FX2,5X2) 6F RX3
Operation

The second orerand address points to the left-most byte of a
packed decimal string of length sixteen bytes (31 packed decimal
digits plus sign). Digits of the operand are checked for
validity as the operand 4is converted to a 64-bit, two's
complement binary number., The result replaces the contents of
the even/odd general register pair specified by R1 and R1+1.

Condition Code

Result is zero

Result is less than zero
Result is greater than zero
Overflow

[eNoNeNeolle)
-0 00«
O - OO
O O - Of

Programming Notes
This instruction is interruptible.

R1 must specify an even-numbered register. If not, unpredictable
results occur.

If an illegal decimal digit or sign digit is detected during
conversion, the registers specified by R1 and R1+1 remain
unchanged, and a data format fault interrupt is taken.

The largest positive number that can be processed without
overflow is 9,223,372,036,854,775,807.

7-4 29-747 ROO u4/81

7.4.2 Store Binary As Packed LCecimal String (STBP)

Assembler Notation Op-Code Format
STBP R1,D2(X2) €E RX1,RX2
STBP R1,A2(FX2, SX2) 6E RX3
Operation

The contents of the even/odd general register pair specified by
R1 and R1+1 are converted and stored in memory as a packed
decimal string of length 16 bytes (31 packed decimal digits plus
sign). The left-most byte is stored at the address specified by
the second operand.

Condition Code

Result is zero
Result is less than zero
Result is greater than zero

[eNoNellp]
0O OOl
- O OlR
O a Ol

Programming Notes
This instruction is interrurtible.

R1 must specify an even-numbered register. If not, unpredictable
results occure.

29-747 ROO 4/81 : 7-5

7.4¢3 Move Translated Until (MVTU)

Op- Function

Assembler Notation Code Code Format
'{ R1 [nztxz) { 32] D2(X2) 8C 00 RXRX
MVTU |=L1),|A2(FX2,SX2)|,|=L2),|A2(FX2,5X2)

Operation

General register 0 contains the escape character whose occurrence
causes the instruction to terminate. General register 2 contains
the address of a translation table. This translation table is a
simple 1ist of 256 single byte entries, not to be confused with
the table used by the translate instruction. The first operand
string begins at the address specified by the first operand
address.s The length of this string is equal to either the
contents of the register specified by R1, or the value of L1.
The second operand string begins at the address specified by the
second operand address. The length of this string is equal to
either the contents of the register sprecified by R1, or the value
of LZ-

Successive bytes'from the seccnd operand string are moved to the
first cperand string, as follcws:

1« A byte is fetched from the second operand string (this
is the argument byte). The contents of general register
2 are tested. If general register 2 contains Zero, no
translation occurs. If general register 2 does not
contain =zero, it ccntains the address of a translation
table of maximum size 256 bytes. In this case, the
argument byte fetched from the second operand string is
used as an index intc the translation table, and the
byte at the resulting address is fetched and used as the
argument byte.

2. The argument byte is compared with the escape character
contained in bits Z4:31 of general register 0, If the
bytes are the same, the C flag is set in the condition
code, and the instruction terminates. Otherwise, the
argument byte is stored in the first operand string, and
the next successive byte is rrocessed. This operation
is repeated until either the escape character is
encountered, the first operand string has been filled,
or the second operand string has been exhausted.

3. When the instruction terminates, the address of the next

byte toc be moved from the second operand string is
returned in general register 1.

7-6 29-747 ROO 4/81

Condition Code

C|V]|G]|L

ojo0jlojo Entire string moved

oj1(040 First operand filled before entire string
moved

110101} 0 Escape character encountered

Programming Notes
This instruction is interruptible.

The contents of general register 1 may change during instruction
execution, but are not valid until instruction termination.

Bytes are moved from the second operand string to the first
operand string in a left-to-right sequence. If the strings
overlap, such that the source is to the left of the destination,
unpredictable results occur.

29-747 ROO u4/81 7-17

7.4.4 Move (MOVE, MOVEP)

Move and Pad (MOVE)
Move and Pad with Default Pad (MOVEP)

Op- Function

Assembler Notation Code Code Format

MOVE { R1} D2(X2) l ' RZ} {Dz(xz) lac 01 RXRX
=L1), |A2(FX2,S%X2)/), |=L2/,|A2(FX2,5X2)

MOVEP 31’ {Dz(xz) ’ ‘ R2} D2(X2) }BC 21 RXRX
=L1),|A2(FX2,SX2)| ,|=L2J,|A2(FX2,5%2)

Operation

The first operand string begins at the address specified by the
first operand address and has a length equal either to the
contents of the register specified by R1, or to the value of L1.
The =second operand string tegins at the address specified by the
second operand address and has a length equal either to the
contents of the register specified by R2, or to the value of L2.

Successive bytes from the second operand string are moved to the
first operand string. If the second operand string is exhausted
before the first operand string is filled, the remaining bytes in
the first operand string are filled using the pad character. If
MOVE is specified, the pad character is contained in bits 24:31
of general register 0. If MOVEP is specified, the remainder of
the first operand is filled with ASCII space characters (X'20°').
If the first operand string is filled before the second operand
string is exhausted, overflow results, and the operation is
terminated.

When the instruction terminates, the address of the next byte to

be moved from the second operand string is returned in general
register 1.

Condition Code

clVv|iG]|1l
010]O0FJO Entire string moved
o11]101f0 First orerand filled before entire string

moved

7-8 29-747 ROO u4/81

Programming Notes
These instructions are interruptible.

The contents of general register 1 may change during instruction
execution, but are not valid until instruction termination.

If MCVEP 1is specified, the contents of general register 0 are
ignored. :

Bytes are moved from the seccnd operand string to the first
operand string in a left-to-right sequence. If the strings
" overlap such that the source is to the left of the destination,
unpredictable results occur.

29-747 ROO 4/81 : 7-9

7+.4.5 Compare (CPAN, CPANP)

Compare Alrhanumeriec (CPAN)
Compare Alphanumeric with Default Pad (CPANP)

Op- Function

Assembler Notation Code Code Format
CPAN { R1’ {DZ(X2) l l R2 {D2(X2) 8C 02 RXRX
=L1),|A2(FX2,SX2)|,|=L2, |A2(FX2,SX2)
CPANP R1’ D2(X2) RZL D2(X2) ' 8C 22 RXRX
=L1),{A2(FX2,SX2)),|=L2,|A2(FX2,SX2)
Operation

The first operand string begins at the address specified by the
first operand address and has a length equal either to the
contents of the register specified by R1, or to the value of L1.
The =econd operand string regins at the address specified by the
second operand address and has a length equal either to the
contents of the register specified by R2, or to the value of L2.

The two strings are compared a byte at a time until the first
unequal byte pair is found, or until the length of both strings
is exhausted.

If the strings are of wunequal length, the shorter string is
logically extended to the length of the longer string. If CPAN
is srecified, this is done ty using the pad character contained
in bits 24:31 of general register 0. If CPANP is specified, the
ASCII space character (X'20') is used as the default pad
character.

Upon termination, general register 1 is set equal to one less
than the number of second orerand bytes that successfully matched
correspcending bytes in the first operand string. This count (or
offset) includes pad characters if the second operand string was
longer than the first.

For example, a first operand string of 1length three bytes

contains the characters ABC. A second operand string of 1length
six bytes contains the characters ABCDDD. ,

7-10 29-747 ROO 4/81

A CPANP instruction returns a condition code of 0001 (first
operand string 1less than second operand string) and general
register 1 is set equal to 2. The first nonmatching character
was the character 'D' in the second operand string. Given the
same operand strings, a CPAN instruction with general register O
set equal to a pad character of 'D' returns a condition code of
0000 (strings are equal including pad characters) and general
register 1 is set equal to 5.

Condition Code

clVvi|iG|L

c|o0|O0O}O Strings are egual

ojo0(11]0 First orerand string greater than second
operand string .

110|011 First crerand string less than second operand

string

Programming Notes

If CPANP is specified, the contents of general register 0 are
ignored. If CPAN is specified, bits 0:23 of general register 0
are ignored. :

These instructions are interruptible.

29-747 ROO 4/81 7

11

7.4.6 Pack and Move (PMV, PMVA)

Pack and Move (PMV)
Pack and Move Absolute (PMVA)

Op- Function Fornat

Assembler Notation Code Code
PMV { R1I {D2(X2) } { R2 lbzcxz) }ac 03 RXRX
=L1), |A2(FX2,SX2)),|=L2),|A2(FX2,S5X2)
A2(FX2,Sx2)f, A2(FX2,5X2)

PMVA I R1’ {DZ(XZ) { R2] ‘D2(X2) }BC 23 RXRX
=L1]), =L2},

Operation

The first operand string begins at the address specified by the
first operand address. The length of this string in bytes is one
greater than either the contents of the register specified by R1,
or the value of L1. The second operand string begins at the
address specified by the second operand address. The length of
this string in bytes is one greater than either the contents of
the register specified by R1, or the value of L2.

The second operand string consists of unpacked decimal data
digits with a sign digit. Data in this string is packed and
replaces the first operand string. Leading zeros are supplied as
required to f£i1ll the hiqher-order.positions of the first operand
string.

Condition Code

Result is 2zero

Result is less than zero

Result is greater than zero

Overflow

Invalid digit in second operand string

Y eNeoNoNalle]
D¢ -a O
M a0 OO0

M dd O Ot

~
!

12 29-747 ROO 4/81

Programming Notes

PMVA causes the sign digit cf the first operand string to be
forced positive.

Overflow occurs if the length of the first operand string is not
sufficlent to contain the pracked representation of the second
operand string. The V flag is set in the condition code, and the
specified number of digits in the first operand string receive
packed data from the second operand string. Higher-order digits
of packed data are lost in this case.

Leading zero digits do not cauvse overflow. They are truncated if
necessarye.

These instructions are interruptible instructions.

Since packing 1is done conceptually from right to left with any
overlapping allowed, the instruction PMV can be used to check the
validity of decimal data.

If the destination string is to the left of the source string,
such that the signed byte of the destination string is taken as
data from the source string, the sign digit is found to be an
illegal data digit, and the C flag is set at completion of the
instruction.

29-747 ROO 4/81 7

13

7.4.7 Unpack and Move (UMV, UMVA)

Unpack and Move (UMV)
Unpack and Move Absoclute (UMVRA)

Op- Function Format

Assembler Notation Code Code
UMV R1] D2(X2) } { Rzl lnz(xz) l 8C ou RXRX
=L1),|R2(FX2,5X2)) ,\=L2),| A2(FX2,SX2)
UMVA [R1 =D2(X2) } R2} D2(X2) } 8C 24 RXRX

Operation

The first operand string begins at the address specified by the
first operand address. The length of this string in bytes is one
greater than either the contents of the register specified by R1,
or the value of L1, The second operand string begins at the
address specified by the second operand address. The length of
this string in bytes is one greater than either the contents of
the register specified by R2, or the value of L2.

The second operand string ccnsists of packed decimal data digits
with a sign digit. Data in this string is unpacked and replaces
the first operand string. Leading zeros are supplied as required
to £fill the higher-order positions of the first operand string.

Condition Code

C|V|G]|L

0j0]0]|O Result is zero

O X0} 1 Result is less than 2zero

oj X140 Result is greater than zero

o1 X1} X Overflow

1 X)X | X Invalid digit in second operand string

Programming Notes

UMVA causes the sign digit of the first operand string to be
forced positive.

7-14 29-747 ROO u4/81

Overflow occurs if the length of the first operand string is not
sufficient to <contain the unpacked representation of the second
operand string. The V flag is set in the condition code, and the
specified number of digits in the first operand string receive
unpacked data from the second operand string. Higher-order
digits of unpacked data are lcst in this case.

Leading zero digits do not cause overflow. They are truncated ir
necessary.

These instructions are interruptible instructions.

Since unpacking is done conceptually from right to left with any
overlapping allowed, the instruction UMV can be used to check the
validity of decimal data.

If the destination string is to the left of the source string,
such that the signed byte of the destination string is taken as
data from the source string, the sign digit is found to be an
illegal data digit, and the C flag is set at the completion of
the instruction. :

29-747 ROO 4/81 7-15/7-16

: CHAPTER 8
HIGH SPEED DATA HANDLING INSTRUCTIONS (OPTIONAL)

8.1 INTRODUCTION

The data handling instructions are used to compute polynonmial
error check redundancy characters, as used by most data
communications protocols. Communications protocols supported by
this option include, but are not limited to, the following:

1. Binary Synchronous Communications (BISYNC or BSC) -
IBM's widely accepted half-duplex protocol uses the CRC
BISYNC error check polynomial (x'6 + x!'S + x2 +1).

2. Synchronous Data Link Control (SDLC) - 1IBM's new
full-duplex protocol uses the CRC SDLC error check
polynomial (x'6 + x!2 X5 +1).

3. Advanced Data Communications Control Procedure (ADCCP)
- ANSI's proposed National Standard full-duplex protocol
uses CRC SDILC.

4. High Level Data Link Control (HDLC) - The International

Standard Organizations full-duplex protocol uses CRC
STLC.

8.2 DATA HANDLING INSTRUCTION FORMATS

The optional data handling instructions (use the Register to
Register (RR), and the Register and Indexed Storage (RX) formats.

8.3 LATA HANDLING INSTRUCTIONS

PB Process Byte
PBR Process Byte Register

29-747 ROO u4/81 8-1

615

R1

8.3.1 Process Byte (PB)

Assembler Notation Op-Code Format

PB R1,D2(X2) 62 RX1, RX2

PB R1,A2(FX2,S5X2) 62 RX3

Set-Ugp

0 _ 7 8 15 16 23 24 31
X CHECK CODE X DATABYTE

Bits 24:31 of the register specified by R1 contain the data byte
to be rrocessed. Bits 8:15 of the register specified by R1
contain a check code to indicate the type of processing. This
byte is interpreted as follows:

X*00° Cumulative check zerc (CRC BISYNC)
X*01° Cumulative check one (CRC SDLC)
X*o02°* Cumulative check two (LRC)

The second operand address points to a halfword residual checksun
to be included in the cumulative check.

Cperation

If CRC BISYNC is specified, the data byte and the o0ld residual
checksum participate in the generation of a new residual checksum
based on the evaluation of the polynomial (x'6 + x!5 + x2 +1).

If CRC SPLC is specified, a similar operation is performed, using
the pclynomial (x!'6 + x!12 + x5 +1),

In both of these cases, the new residual checksum replaces the
0ld residual checksum at the second operand location.

If LRC is specified, the Exclusive-OR of the data byte with the
0ld residual checksum replaces the old residual checksum at the
second operand location. '

Condition Code

Unchanged

8-2 29-747 ROO 4/81

Programming Notes

Rits 0:7 and 16:23 of the register specified by R1 are ignored.

The register specified by R1 remains unchanged.

The secend operand must be located on a halfword boundary.
Undefined check codes should not be used. If they are,
results are undefined.

Example: PB

This example performs a Process Byte instruction and stores
residue in RESIDUE.

Register 1 contains X*C001007A"*
where: 01 = CRC SDIC
7A = DATA BYTE
RESIDUE contains X'L053' = o0ld residue
Assembler Notation Comments
PB R1,RESIDUE RESILUE on halfword boundary

Result of PB Instruction
(R1) unchanged by this instruction

(RESIDUE) = X'BC13* = new residue
Condition Code unchanged by this instruction

29-747 ROO 4/81

the

the

8+.3.2 Process Byte Register (PBR)

Assembler Notation Qr-Code Format

PBR R1,R2 32 RR

Set-Up
616

0 7 8 15 16 23 24 31
R1 X CHECK CODE X DATA BYTE
R2 0 RESIDUAL CHECKSUM

Bits 24:31 of the register specified by R1 contain the data byte
to be processed. Bits 8:15 of the register specified by R1
contain a check code indicating the type of processing. This
byte is interpreted as follcws:

X*00" Cumulative check zero (CRC BISYNC)
X'01* Cumulative check one (CRC SDLC)
X*to02* Cumulative check two (LRC)

The second operand is a fullword contained in the register
specified by R2. Bits 16:31 of the second operand contain the
residual checksum to be included in the processing.

Operation

If CRC BISYNC is specified, the data byte and the o0ld residual
checksun participate in +the generation of a new residual
checksum, based on the evaluation of the polynomial (x'6 + x5+
x2 + 1).

If CRC SDLC is specified, a similar operation is performed, using
the polynomial (x!® + x/!2 + x5 + 1),

In both these cases, the new residual checksum replaces the
contents of bits 16:31 of register specified by R2.

If LRC is specified, the Exclusive-OR of the data byte with the

0ld residual checksum replaces the old residual checksum in the
second operand.

Condition Code

Unchanged

Programming Notes

Bits 0:7 and 16:23 of the register specified by R1 are ignored.
The register specified by R1 remains unchanged. Bits 0:15 of the

register specified by R2 are nct used and must be zero.

Undefined check codes should not be used. If they are, the
results are undefinede.

8-4 29-747 ROO u4/81

CHAPTER 9
INPUT/CUTPUT OPERATIONS

9.1 INTROLUCTION AND CONFIGUERATION OF I/0 SYSTEM

Input/Output (I/C) operations, as defined for the processor,
provide a versatile means fcr the exchange of information between
the processor, memory, and external devices. Communication
between the processor and external devices is accomplished over

the I/0 bus. Data transfers over the I/0 bus require processor

intervention, either programmed or automatic, for each itenm
transferred.

Direct data transfers between external devices and memory are

accomplished over the DMA Bus, and proceed independently of the
processor so other program prccessing can proceed simultaneously.

9.2 TLEVICE CONTROLLERS

9.2.1 Function

The basic function of a device controller is:
1. To provide synchronization with the processor
2. To provide device address recognition

3. To transmit operational commands from the processor to
the device

4., To translate device status into meaningful information
for the processor

5. To request processcr attention when required

In addition, a controller may g¢enerate parity; convert serial
data to parallel; buffer incoming or outgoing data; or perform
other device-dependent functicns.

29-747 ROO 4/81 9-1

9.2.2 PDevice Addressing

The system design allows as many as 1,023 external devices. Each
device must have its own address or device number, ranging from
X*001* through X°'3FF'. (Levice number X'000®' is not assigned.)
The minimum system provides for 255 device numbers. Larger
systems may have either 511 or 1,023.

9.2.3 Processcr/Controller Ccmmunication

Device controllers may communicate with the processor either
directly, wusing the I/O0 bus, or indirectly through a selector
channel. Communication between the processor and controller is
a bidirectional, request/respcnse operation.

The processor can initiate communication by sending the device
number out ontc the I/O bus. When a controller recognizes that
number as its address, it returns a synchronization signal to the
processor and remains ready to accept commands from the
processor. The processor waits up to 40 microseconds for the
synchreocnization signal. If no signal is received within this
period, the processor aborts the oreration and notifies the
contrclling programe In this case, the status returned is X*04°*
known as False Sync. The condition ccde in the PSW is also set
to X'4*' (V flag=1). Contrcller malfunction and software failure
(incorrect device address) are the most common causes of this
type of time-out.

R controller can initiate communication with the processor by
generating an attention signal. If the processor is in an
interruptible state as defined by bits 17 and 20 of the PSW, this
signal causes the processor to temporarily suspend the normal
"fetch instruction/execute/fetch next instruction" operation at
the end of the execute phase, and to transmit an acknowledge
signal over the I/0 bus. The contrcller requesting attention
responds with a synchronization signal and transmits its device
number to the processor.

9.2.4 Tlevice Friorities - External Interrupt levels:
Interrupt Queuing

External Interrupt levels

The system architecture provides four external interrupt 1levels.
PSW bits 17 and 20 define the €xternal interrupt enable status of
the processore.

When interrupt requests occur on more than one interrupt 1level,
the request on the highest priority interrupt level is
acknowledged first. Level 0 is the highest; level 3 is the
lowest in priority.

9-2 29-747 ROO u4/81

Interrupt Queuing

Any device controller attempting to interrupt the processor
activates one of the four attention lines sensed by the processor
and holds that line active until the processor acknowledges the
interrupt. Requests for attention are asynchronous; therefore
more than one request may be pending at any time on any interrupt
level. The <system resolves these conflicts according to device
priority, determined by the rphysical placement of the device
controller on the I/0 bus. When twoc or more device controllers
on the same interrupt level request attention at the same time,
the controller nearest tc the processor in the RACKO/TACKO
priority wiring pattern captures the acknowledge signal from the
processor and is serviced first. All other interrupting
controllers of lower priority must wait for the next acknowledge
signal from the processor.

9.3 INTERRUPT SERVICE POINTEER TABLE

Device requests for service may result in either an immediate
interrupt or an auto driver channel operation. The processor
chooses one of these options according to information contained
in the interrupt service pointer table.

The interrupt service pointer table is an ordered list containing
one entry for each possible device number in the system. The
table starts at memory locaticn X'0000D0* and contains a halfword
entry for each device number in the system. For a minimum system
(255 device numbers), the table extends through memory location
X*0002CF*'; for a maximum system (1023 device numbers), the table
extends through memory 1lccation X*0008CF*. The softwvare
controlling I/C operations must set ur the table.

When the processor receives the device address after
acknowledging a request for service, it adds twice the device
address to X°*0000DO°. The result is the address, within the
table, of the entry reserved for the device requesting attention.

If the entry in the table is even (bit 15 -equals 0), the
processor takes an immediate interrupt and transfers control to
the software interrupt service routine at the address contained
in the table. If the entry in the table is odd (bit 15 equals
1), the rrocesscr transfers ccntrol toc the auto driver channel,
without interrupting the currently running programe.

At the time the processcr transfers control to the software
interrupt service routine, the old ESW (current at the time of
the device request) has been saved in registers 0 and 1 of the
nev register set. The device number is saved in register 2 and
the status in register 3. The status portion of the current PSH
has been replaced by the value X*000028nX', where n 1is the new
register set number equal tc the device interrupt level, and X is
the Jleast significant 4 Dbits of the device status. Machine
malfunction 4interrupts and higher 1level I/0 interrupts are
enabled and all other interrurts are disabled., The entry in the
interrupt service pointer table is now the new location counter.

29-747 ROO 4/81 9-3

9.4 CONTROL OF I/O OPERATICNS

The 32-bit I/0 structure allows several data transfers depending
on the particular application and on the characteristics of the
external devices. Primary methods of data transfer between the
processor and external devices are:

® One byte or one halfword to or fronm any of the general
registers

@ One byte or one halfword tc or fron memory

@ A block of data to or frem memory under control of a selector
channel or CMA universal interface

® Multiplexed blocks of data to or from memory under control of
the auto driver channel

Standard device controllers require a predetermined sequence of
commands to effect data transfers. These commands address the
device, put it in the «correct mode, and cause data to be
transferred. BEecause all I/0 instructions are privileged
operations, I/0 control programs must run in the supervisor mode,
i.e., with bit 23 of the current PSW zero. I/0 control ©programs
should disable immediate interrupts or enable only higher 1level
interrupts, as controlled by PSW bits 17 and 20.

9.5 STATUS MONITORING I/O

The simplest form of I/0 programming is status monitoring 1I/0.
In this mode of operation, only one device is handled at a time,
and the processor cannot overlap other operations with the data
transfer. The sequence of cperations in this type of programming
is: :

1. Address the device and set the proper mode (output
command instruction).

2. Test the device status (sense status instruction).

3. Loop back to the sense status 4instruction until the
status byte indicates that the device is ready
(conditional branch instruction).

L. When the device is ready, transfer the data (read or
write instruction).

5 If the transfer is not complete, branch back to the
sense status instruction. If it is complete, terminate.

9-4 29-747 ROO u4/81

9.6 INTERRUPT DRIVEN I/O

Interrupt driven I/0 allows the processor to take advantage of
the disparity in speed between itself and the external devices
being controlled. With status monitoring, the processor spends
time waiting for the device. With interrupt driven programming,
the processor can use this time performing other functions. This
kind of programming establishes at least two levels of operation.
On one level are the interrupt service programs. On the other
level are interruptible ©programs that run with the immediate
interrupt enabled.

" Before starting interrupt driven operations, the interrupt
service pointer table must be set up. This table starts at
memory location X'0000DO* and must contain a halfword address
entry for every possible device. The table is ordered according
to device addresses in such a way that X'0000D0* plus two times
the device address equals the memory address of the table entry
reserved for that device. The value placed in the 1location
reserved for a device 1is the address of the interrupt service
routine for the device.

For example, if a terminal is connected at an address of X'02°
and the interrupt routine resides in memory at address X'3000°,
the setup involves writing X*3000' at memory location X'Du4°.
Note that X*Du'=X*'DO0'+ 2 times the terminal address.

Although there may be gaps in device address assignments, the
interrupt service pointer table =should be completely filled.
Entries for nonexistent devices should point to an error

recovery routine. This precaution prevents system failure in the
event of spurious interrupts caused by hardware malfunction or by
improper use of the simulate interrupt instruction.

The next step is to prerare the device for the transfer,
preferably with the immediate 4interrupts disabled. Once the
table pointer has been set up and the device ©prepared, the
processor can move on to an interruptible program.

The segquence of operation in this type of progranm is:

1. Set up the interrupt service pointer table to vector to
error addresses for undefined devices.

2. Store the address of the software interrupt service
routine at two times the device number plus X*'DO' (X'DO°
is starting address cf service pointer table).

3. Set up the software interrupt service routine.

4. Set up the device and enable device interrupts.

£« Enable I/0 interrurts in the PSW.

29=-747 ROO 4/81 5-5

When the device signals a need for service, the processor saves
its current state and transfers control to the interrupt service
routine at the 1location specified in the interrupt service
pointer table, At this time, the current PSHW has a status that
indicates running state, machine malfunction interrupt enabled,
higher 1level 1I/0 interrupts enabled, and all other interrupts
disabled. The condition code contains bits 4:7 of the device
status. Registers 0 and 1 of the new set contain the old PSW,
indicating the status and lccation 0f the 4interrupted progranme.
Register 2 of that set contains the device address. Register 3
contains the device status.

The interrupt service routine should:

1« check the device status in Register 3, and if
satisfactory,

2. make the transfer, and

3. return to the interrupted program by reloading the o1l1d
PSW from registers 0 and 1 (LPSHR RO).

The interrupt service routine should not enable immediate
interrupts on its own interrurt level. This would allow other
interrupt requests to be acknowledged, and the contents of
registers 0:4 could be 1lost. If it 1is necessary to enable
immediate interrupts on the same level, the routine should save
the register set, switch to a different register set, save it if
hecessary, and then enable immediate interrupts.

9.7 SELECTOR CHANNEL I/O

9.7.1 Introduction

The selector channel controls the transfer of data directly
between high speed devices and memory. As many as 16 devices may
be attached to the selecter channel, only one of which may be
operating at any one time. The advantage in using the selector
channel is that other progranm processing may proceed
simultaneously with the transfer of data between the external
device and memory. This is pcssible because the selector channel
accesses memory on a cycle stealing basis, permitting the
processor and the channel +tc share memory. In some cases,
execution time of the prograr in bprogress may be affected, while
in others, the effect is negligible. This depends upon the rate
at which the selector channel and Erocessor compete for memory
cycles.

The selector channel is linked to the processor over the I/0 bus.
It has its own unique device number which it recognizes when
addressed by the processor. Like other device controllers, it
can request prccessor attention through the immediate interrupt.

9-6 29-747 ROO u4/81

9.7.2 Selector Channel Devicés

The selector channel has a rrivate bus similar to the processor's
I/0 bus. Controllers for ¢the devices associated with the
selector channel are attached to this bus. When the selector
channel is idle, its private bus is connected directly to the I/O
bus. If this condition exists, the processor can address,
command, and accept interrupt requests from the devices attached
to the selector channel. When the selector channel is busy, this
connection is broken. All communication between the processor
and devices on the selector chanhel is cut off. Any attempt by
the processor to address a device on the channel when the channel
is busy results in instruction time-out.

9.7.3 Selector Channel Operaticn

Two registers in the selector channel hold the current memory
address and the final memocry address. With the use of write
instructions, the control software places the address of the
first byte of the data buffer into the current address register
and the address of the last byte into the final address register.
This is done before starting a selector channel operation.
During the data transfer, the channel increments the current
address register by one for each byte transferred. When the
current address equals the final address, the last byte has been
transferred, and the channel terminates.

The selector channel accesses memory a minimum of one halfword at
a time; therefore, the transfer must always involve an integral
number of halfvords. The starting address of the data buffer
must always be on an even byte (halfword) boundarye. The final
address must always be o¢n an odd byte boundary. The starting
address must be less than the final address.

Upon terminaticn, the software should read back from the selector
channel the address contained in the current address register.
If this address is not equal to the final address specified for
the transfer, and if the buffer 1limits were properly checked
before the transfer, this condition indicates a device
malfunction or an unusual ccndition within the device. For
example, crossing a cylinder boundary on a disc is an abnormal
termination. The reason for the termination is indicated in the
selector channel status or the device status.

29-747 ROO 4/81 9-7

9.7.4 Selector Channel Programming

The usual method of programming with the selector channel uses
the immediate interrupt. The first step in the operation is to
check the status of the selector - channel. If the selector
channel is not busy, the address| of the termination interrupt
service routine is placed in the location within the interrupt
service pointer table reserved for the selector channel. The
program should then proceed as follows:

1. Give the selector channel ra command to stop. This
command initializes the selector channel registers and
assures the idle condition with the private bus
connected to the I/C bus, so that the device may be set
up for data transfer.

2. ‘Give the selector channel the starting and final
addresses,

3« Prepare the device fer the transfer with the reqgquired
commands and information.

4. Give the selector channel the command to start.

With the start command, the selector channel breaks the
connection between its private bus and the processor's I1/0 bus,
and provides a direct path between memory and the 1last device
addressed over its bus,. When the device becomes ready, the
channel starts the transfer, which proceeds to completion without
further processor intervention. Oncq the start command has been
given, the processor can be directed to the execution of
concurrent programse -

Upon termination, the channel signals the ©processor that it
requires service. The processor suQsequently takes an immediate
interrupt, transferring contrcl to the selector channel interrupt
service routine. At this time, registers 0:3 of the new set are

set ur as for any other immediate interrupt.
If a power fail/restore Sequence occurs while using the selector

channel, the contents of the selector channel's internal
registers are undefined.

9-8 29~747 ROO 4/81

9.8 I/O0 INSTRUCTION FORMATS

I/0 instructions use the Register to Register (RR) and the
Register and Indexed Storage (RX) instruction formats.

9.9 1I/0 INSTRUCTIONS

Following most I/0 instructions, the V flag-in the condition code
indicates instruction time-cut. This means that the operation
was not completed, either because the device did not respond at
all, or because it responded incorrectly.

In the Sense Status and Autolcad instructions, the V £flag can
also mean examine status. To distinguish between these two
conditions, the program should test bits 0:3 of the device status
bytee If all of these bits are 2zero, device time-out has
occurred.

The instructions described in this section are:

SS Sense Status

SSR Sense Status Register
0C OQutrut Command

CCR Cutput Command Register
RD Read Data

RDR Read Data Register

RH Read Halfword

RHR Read Halfword Register
WD Write Data

WLCR Write LCata Register

WH Write Halfword

WHR Write Halfword Register
AL Autoload

SCP Simulate Channel Progranm

29-747 ROO 4/81 9-9

9.9.1 Output Command (0OC, OCR)’

Qutput Command (OC)
Cutput Command Register (OCR)

Assembler Notation Op-Code Format
ocC R1,D2(X2) LCE RX1,RX2
oC R1,A2(FX2,5X2) DE RX3

OCR ‘R1,R2 9E RR
Operation

Bits 22:31 of the register specified by R1 contain the 10-bit
device address. The processor addresses the device and transfers
an 8-bit command byte from the second operand location to the
device. Neither operand is changed.

Condition Code

ClV|G]|L .
¢cjo0l101}10 Operaticn successful
0}j1101]0 Instructicn time~ocut (FALSE SYNC)

Programming Notes

In the RR format, bits 24:31 cf the register specified by R2
contain the device command.

These instructions are privileged operations.

9-10 29-747 ROO u4/81

9.9.2 Sense Status (SS, SSR)

Sense Status (SS)
Sense Status Register (SSR)

Assembler Notation Op-Code Format
SS R1,D2(X2) 1) N RX1,RX2
SS R1,A2(FX2,SX2) DD RX3

SSR R1,R2 , 9D RR
Operation

Bits 22:31 of the register specified by R1 contain the 10-bit
device address. The device 1is addressed and the 8-bit device
status is transferred to the second operand 1location. The
condition code is set equal tc the least significant four bits of
the device status byte. The first operand is unchanged.

Condition Code

Bits U4:7 of the device status byte are copied into the condition
code. See the appropriate device manual for a description of
this status.

If the device is not in the system, the condition code is set to
0100 (false sync)e. In this case, the status byte returned is
X*ou*,

Programming Notes

In the RR format, the device status byte replaces bits 24:31 of
the register specified by R2. Bits 0:23 are forced to zero.

These instructions are privileged operations.

29-747 ROO 4/81 9-11

9.9.3 Read Pata (RD, RDR)

Read Data (RD)
Read LCata Register (RDR)

Assembler Notation Ogp-Code Format
RD R1,D2(X2) LB RX1,RX2
RD R1,R2(FX2,5X2) DB RX3

RDR R1,R2 9B RR
Operation

Bits 22:31 of the register specified by R1 contain the 10-bit
device address. The processor addresses the device and transfers
an 8-bit data byte from the device ¢to the second operand
location.

Condition Code

Operaticn successful
Instructicn time-out (FALSE SYNC)

(e Neollp]
- Ol
[oNe]ip]
O O

Programming Notes

In the RR format, the 8-bit data byte replaces bits 24:31 of the
register specified by R2. Eits 0:23 of the register are forced
to zero.

These instructions are privileged operations.

Instruction time-out does not prevent the second operand location
from being modified.

9-12 29-747 ROO 4/81

9.9.4 Read Halfword (RH, RHR):

Read Halfword (RH)
Read Halfword Register (RHR)

Assembler Notation Op-Code Format

RH R1,D2(X2) D9 RX1,RX2
RH R1,A2(FX2,5X2) D9 RX3

RHR R1,R2 99 RR
Operation

Bits 22:31 of the register specified by R1 contain the 10-bit
device address. The processor addresses the device. If the
device is halfword-oriented, the processor transfers 16 bits of
data from +the device to the second operand location. If the
device is byte-oriented, the rrocessor transfers two 8-bit bytes
in successive operations.

Condition Code

ClVIGI|L
ojo0ojo} o Operaticn successful
cj1101}0 Instructicn time-ocut (FALSE SYNC)

Programming Notes

If the device is byte-oriented, it must be capable of supplying
both bytes without intervening status checks. This instruction
does not perform status checking between the two byte transfers.

In the RR format, the data transferred from a halfword device
replaces bits 16:31 of the register specified by R2. Bits 0:15
are forced to zero. The first byte of data from a byte device
replaces bits 16:23 of the register specified by R2 and the
second byte replaces bits 24:31. Bits 0:15 of +the register
specified by R2 are forced to zero.

In the RYX format, the second operand must be located on a
halfword boundarye. The first byte of data from a byte device
replaces bits 0:7 of the halfword operand in memory and the
second byte replaces bits 8:1E.

These instructions are privileged operations.

Instruction time-out does not prevent the second operand location
from being modified.

29-747 ROO u4/81

e}
!

13

9.9-5 Hrite Data (WD' WDR)

Write Data (WD)
Write Data Register (WDR)

Assembler Notation Op-Code Format
WD R1,D2(X2) DA RX1,RX2
WD R1,A2(FX2,SX2) CA RX3

WDR R1,R2 9A RR
Oreration

Bits 22:31 of the register specified by R1 contain the 10-bit
device address. The processor addresses the device and transfers
an 8-bit data byte from the second operand location to the
device. Neither operand is changed.

Condition Code

C|VIGI|L
clOo0j0] O Operaticn successful
ol1/0]0 Instruction time-ocut (FALSE SYNC)

Programming Notes

In the RR format, the 8-bit data byte is transferred from bits
24:31 of the register specified by R2.

These instructions are privileged operations.

9-14 ' 29-747 ROO 4/81

9.9.6 Write Halfword (WH, WHR)

Write Halfword (WH)
Write Halfword Register (WHER)

Assembler Notation Op-Code Format
WH R1,D2(X2) D8 \ RX1,RX2
WH R1,A2(FX2,5X2) _ L8 RX3

WHR R1,R2 98 RR
Operation

Bits 22:31 of the register specified by R1 contain the 10-bit
device address. The processor addresses the device. If the
device is halfword-oriented, the processor transfers 16 bits of
data from the second operand 1location to the device. If the
device is byte-oriented, the processor transfers two B8-bit data
bytes in successive operaticns.

Condition Code

C|V]|]G|L
o0 0]| O Operaticn successful
oj1101]0 Instructicn time-cut (FALSE SYNC)

Programming Notes

If the device is byte-oriented, it must be capable of accepting
both bytes without intervening status checks. This instruction
does not perform status checking between the two byte transfers.

In the RR format, data is transferred to a halfword device fronm
bits 16:31 of the register specified by R2. The first byte of
data is transferred to a byte device from bits 16:23 of the
register specified by R2; the second byte comes from bits 24:31.

In the RX format, ¢the =second operand must be located on a
halfword boundary. The first byte of data is transferred to a
byte device from bits 0:7 of the halfword operand in memory and
the second byte is transferred from bits 8:15.

These instructions are privileged operations.

29-747 ROO 4/81 15

O
t

9,9,7 Autoload (AL)

Assembler Notation Op-Code Format
AL D2(X2) D5 RX1,RX2
AL R1,D2{(X2) LS RX1,RX2
AL A2(FX2,SX2) DS RX3

AL R1,A2(FX2,5X2) LS RX3
Operation

The AL instruction loads memory with a block of data from an
input device. The 8-bit input device address is specified by
memory location X'000078'. The device command byte is specified
by memory location X°000079°'.

If the R1 field of this instruction is not specified, or contains
zero, the default value X'000080' is used for the start address
of the data block in memory and the second operand address is
used for the end of the data block. If the R1 field of this
instruction contains a value other than zero, then the contents
of the general registers srecified by R1 and R1+1 are used for
the start and end of the data block, respectively. If the start
address 1is greater than +the end address, the instruction is
aborted.

The address of a selector channel is specified by memory location
X*00007D*s If the byte at this 1location contains 2zero, the
selector channel is not used by this instruction. In this case,
data is transferred a byte at a time from the input device to
successive memory locations, beginning with the specified block
start address. If any blank or zero bytes are input before the
first nonzero byte, these bytes are considered to be leader and
are ignored. All other zerc kytes are stored as datae. WHhen a
data bkyte has been stored at the specified block end address, the
instruction terminates.

If the selector channel address specified by memory location
X*'00007L* is not zero, the selector channel is used to transfer
data from the input device to <successive memory locations,
beginning with the specified block start address. All data bytes
are transferred; no checking for leading zero bytes can be made,
The instruction terminates when data has been stored at the
specified block end address.

Conditicn Code

Operaticn successful or aborted
Examine status or time out

End of medium

Device unavailable

54 >4 > O|N
M a o<
- OO0
- >4 ¢ Ol

0
|

16 = 29-747 ROO 4/81

Programming Notes

This instruction may be used only with devices whose addressec
are less than, or equal to, X*'FF°'.

This instruction is a privileged operation.

Bad status termination results if any of the 1least significant
three bits of the device status are set.

If the selector channel is not used, the starting and ending
addresses for this 4instruction are relocatable. Address
translation should be disaktled before attempting to use this
instruction in this case.

If the selector channel is used, the data block must begin on a
halfword boundary and end on an odd byte boundary. The block may
be loaded anywhere in memory. Software must issue a stop command
to the selector channel fcllowing this instruction. A selector
channel interrupt may be queued by this instruction.

If the R1 field of this instruction is used, it must specify the
even member of an even/odd register pair.

29-747 ROO 4/81 9-17

9.9.8 Simulate Channel Program (SCP)

Assembler Notation Or-Code Format
SCP R1,D2(X2) E3 RX1,RX2
SCP R1,A2(FX2,SX2) E3 RX3
Operation

The second operand address is the address of a Channel Command
Block (CCB). The buffer switch bit of the Channel Command Word
(CCVW) specifies the buffer to be used for the data transfer. If
this bit is set, buffer 1 is used. If it is zero, buffer 0 is
used. If the byte count field of the current buffer 1is greater
than 2zero, the V flag in the condition code is set, and the next
sequential instruction is executed. If the byte count field is
not greater than zero, the following data transfer operation is
performed.

If the CCW specifies read, a byte of data is moved from bits
24:31 of the register specified by R1 to the appropriate buffer
location. If the CCW specifies write, a byte of data is moved
from the appropriate buffer 1location to bits 24:31 of the
register specified by R1. Bits 0:23 are forced to zero.

After a byte has been transferred, the count field of the
appropriate buffer is incremented by one. If the count field is
now greater than zero, and if the fast bit of the CCW 1is <zero,
the buffer switch bit of the CCW is complemented.

Condition Code

Count field is now zero

Count field is now less than zero
Count field is now greater than zero
Count field was greater than zero

eNeNeNella]
EYeoNeNel]
O =20 0OlRN
QO 4Ol

Programming Notes

If the CCW specifies fast mede, buffer 1 may be used, but ¢the
buffer bit 4is not switched when the count field becomes greater
than zero.

The second operand must be located on a fullword boundary.

This instruction is a privileged operation.

9-18 29-747 ROO 4/81

9.10 AUTO DRIVER CHANNEL

The auto driver channel provides a means for multiplexing Dblock
data transfers between memcry and low or medium speed I/0
devices. The channel operaticn is similar, in some respects, to
interrupt driven I/0. The channel is activated as a result of a
service request from a device on the I/0 bus. Upon receipt of
such a request, the processor uses the device number to index
into the interrupt service rointer table. TIf the value contained
in the table is even, the trrccessor transfers control to the
interrupt service routine. If. the value is odd, it transfers
controcl to the auto driver channel.

To the auto driver channel, the address in the interrupt service
pointer table is the address plus one (making it odd) of a
Channel Command Block (CCB). The. channel command block 1is a
channel program consisting c¢cf a-description of the operation to
be performed, and a 1list of parameters associated with the
operation. In addition tc the functions of read and write, the
channel can also:

1« translate characters
2. test device status
3. chain buffers

4, calculate 1longitudinal and cyclic redundancy check
values

€. transfer control tc softvare rocutines to take care of
unusual situations

9.11 CHANNEL COMMAND BLOCK

9.11«1 Introduction

The Channel Command Block (CCE), as shown in Figure 9-1, consists
of a channel command word (16 bits) that describes the function;
count fields (16 bits each) for two buffers; final addresses (32
bits each) for two buffers; a check word (16 bits) for the
longitudinal or cyclic redundancy check; the address (32 bits) of
a translation table; and the address (16 bits) of a software
routine. The CCB requires 22 bytes of memory.

Many interrupt service routines may be available at any time to
service device requests. There may also be many channel command
blocks in the system ready to handle data transfers as required.
Each channel command block must be aligned on a fullword
boundary. The channel command block address, plus one, must be
placed in the interrupt service pointer table location for the
device involved in the transfer.

29-747 ROO u4/81 ‘ 9-19

817

0 15
0 CHANNEL COMMAND WORD {HALFWORD)
2 BUFFER BYTE COUNT (HALFWORD)
4 BUFFER 0 END ADDRESS (FULLWORD)
8 CHECK WORD (HALFWORD)
10 BUFFER 1 BYTE COUNT (HALFWORD) |
12 BUFFER 1 END ADDRESS {(FULLWORD)
16 TRANSLATION TABLE ADDRESS (FULLWORD)
20 SUBROUTINE ADDRESS (HALFWORD)

Figure 9-1 Channel Ccmmand Block

9112 Subroutine Address

To handle special situations, channel control is transferred to
the software subroutine, wvhose address is contained in the
channel command block. When this occurs, registers 0:4 of the
appropriate set have already been set up by the processor to
contain the o0ld PSW, the device number, the device status, and
the address of the channel command block. The current PSW status
specifies run state, machine malfunction interrupt enabled,
higher level I/0 interrupts enabled, and all other interrupts
disabled.

The channel transfers cantrol to the subroutine either
unconditionally (controlled by a bit in the channel command
word), because of bad device status, because of special character
translation, or because it has reached the limit of a buffer. It
indicates its reason for transferring control by adjusting the
condition code as follows:

Unconditional transfer or special character
Bad status
Buffer limit

[NeoNellg]
[=NeNelE
-0 ON
© a Ojt

The subroutine address in the CCB is a 16-bit physical address.
For this reascn, the subroutine at that address, or at least the
first 4instruction of the =subroutine, must reside in the
64 kb of memorye.

9-20 29-747 ROO u/81

9.11.3 Buffers

There is a space in the CCB tc describe two data buffer areas.
The data areas may be located anywhere in memory. The limits of
each data area are described by an address field and a count
field. The address field contains the physical address of the
last byte in the data area. This address is right Jjustified in
the fullword ©provided. If the device being controlled is a
halfword-oriented device, the final address must bhe odd. If the
device 1is a byte-oriented device, the address may be either odd
or even. The active buffer is selected by a bit in the channel

command word. When one buffer has been exhausted, the channel
' may reverse the state of this bit and thus switch to the
alternate buffer. Automatic buffer switching is available only
for byte-oriented devices and if the Fast bit of the CCW is zero.
If the Fast bit is set, buffer 0 is always used.

The count field, in most operations, contains a negative number
whose absolute value is eqgual to one less than the number of
bytes to be transferred. The one exception is the case of a
single data transfer, for which the count field contains zero.

During data transfers, the channel adds the value contained in
the count field to the final address in order to obtain the
current address. It makes the transfer, wusing the current
address, then increments the value in the count field by one for
a byte device or by two for a halfword device. When the count
field becomes greater than zero, the channel sets the G flag in
the condition code and transfers control to the specified
software subroutine. If the count field is greater than zero
upon channel activation, the channel makes no transfer and
relinquishes control of the processor.

9.11.4 Translation

The translation feature is available only for bhyte-oriented
devices and 1if the Fast (F) bit in +the CCW 1is zero. If
translation is specified, the fullword provided in the <channel
command block must contain the address, right justified, of a
translation table. This table, which must be aligned to a
halfword boundary, can contain up to 256 halfword entries. The
format of this table is identical to that used by the Translate
(TLATE) 1instruction (see Section 3.3.2). During data transfers,
the channel multiplies the data byte by two and adds this value
to the translation table address. The result is the address
within the translation table cf the halfword entry corresponding
to the data byte. ’

29-747 ROO 4/81 9

21

The channel tests this entry, and, if bit 0 of the halfword is
set, it substitutes bits 8:15 of the halfword for the data byte
and proceeds with the operaticn. If bit 0 of the halfword is a
zero, the channel:

® does not increment the byte count for the appropriate buffer.

® puts the data byte, untranslated, in bits 24:31 of register 3,
of the appropriate set, and forces bits 0:23 of register 3 to
Zero.

e nultiplies the valde contained in the translation table by
two, and transfers control to the software special character
translation routine located at the resulting address.

Upon transfer to the translation subroutine, registers 0 and
1 contain the 0ld PSW; register 2 contains the device number;
register 3 contains the untranslated character; and register
b4 contains the address of the channel command block. The
current PSW indicates run state, machine malfunction interrupt
enabled, higher level I/0 interrupts enabled and all other
interrupts disabled. The condition code is zero.

911.5 Check Word

The check word in +the channel command block contains the
accumulated residval for longitudinal or cyclic redundancy
checking. The initial value for the check word is usually =zero.
(There are data dependent exceptions, e.g., where initial
characters are not to be included in the check.)

The longitudinal check is an exclusive OR of the character with
the check word.

The cyclic check uses the fcrmula for CRC 16:
X186 +X'5 +%X2 41

If the data communication orticn is equipped, the cyclic check
may ortionally use the formula for CRC SDLC:

On input, if both redundancy checking and translation are
required, the <character is +translated first; then the cyclic
redundancy check is done wusing the original character input
rather than the translated character. On output, the translated
character participates 4in the redundancy checke. Redundancy
checking may be wused only with byte devices, and is only
performed if the Fast bit (F) of the CCW is zero.

o]
[

22 29-747 ROO 4/81

9.11.6 Channel Command Word

The Channel Command Word (CCW), as shown in Figure 9-2, consists
of two parts. Bits 0:7 ccntailn a status mask. Bits 8:15
describe the channel operation.

% 9 7 8 9 10 11,12, . 15
STATUS MASK E RC |[BRRMT]F
\ / '
‘ —— FAST
TRANSLATE
EXECUTE READ/WRITE (0/1)
: BUFFER SWITCH
REDUNDANCY CHECK TYPE

Figure 9-2 Channel Command Word

Status Mask

On every channel operation, if the Execute (E) bit is set, the
status mask is ANDed with the device status. This operation does
not change the status mask. If the result is zero, the channel
proceeds with the oreration. If the result is nonzero, the
channel sets the L flag -in the condition code, and transfers
control to the specified software subroutine.

Execute Bit (E)

If this bit 1is 2zero, the <channel unconditionally transfers
contrcl to +the specified <subroutine, without taking any other
action. The condition code is zero. If this bit is set, the
channel continues with the operaticn as specified in the channel
command word.

Fast Eit (D)

If this bit is set, the channel performs the I/0 transfer in the
fast mode. In this mode, buffer switching, redundancy checking,
and translation are not allowed. This bit must be set for
halfword devices. If this bit is set, buffer O is always used.

Read/¥rite Bit (R/H)
This bit indicates the type of operation. If this bit is =zero,

a byte or a halfword is input from the device. If this bit is
set, a byte or a halfword is cutput to the device.

29-747 ROO 4/81 9

23

Iranslate Bit (I)

If this bit is set, and the Fast bit is zero, the channel
translates the data byte, using the translation table defined in
the CCBe. '

Redundancy Check Iype Bits (RQ)

These two encoded bits specify the type of redundancy check
requirede. No <check 1is rperformed if the Fast bit is set. CRC
SDLC may be rerformed only if the data communication option 4is
installed. If the option is not installed, CRC BISYNC (CRC 16)
is performed when SDLC is specified. The following table
contains the valid types of checks:

Bit Bit
10 1 Redundancy Check Tyre
0 0 LRC
0 1 CRC BISYNC
1 0 Reserved - must not be specified
1 1 CRC SDLC - Should only be specified if
the data communication option is installed.

Buffer Switch Bit (B)

When zeroc, this bit specifies that buyffer 0 is to be used for the
transfer. If it is set, buffer 1 is used. The channel chains
buffers, when the count field becomes greater than zero, by
complementing the buffer switch bit before transferring control
to the specified software routine. Buffer 0 is always used if
the Fast bit in the CCHWH is set.

O
|

24 29-747 ROO 4/81

9.11.7

Valid Channel Command Codes

The following is a list of valid codes for the channel command

word. Note that only the first three may be used with halfword
devices. '
CHANNEL CCMMAND WORD 8:15
HEXADECIMAL BINARY MEANING
0] 4] 00000000 Transfer to subroutine
81 10000001 Read fast mode '
8¢ 10000101 Write fast mode
80 10000000 LRC, Buffer 0, read
82 10000010 LRC, Buffer 0, read, translate
84 10000100 LRC, Buffer 0, write ’
86 10000110 LRC, Buffer 0, write, translate
88 10001000 LRC, Buffer 1, read
8A 10001010 LEC, Buffer 1, read, translate
8C 10001100 LRC, Buffer 1, write
8E 10001110 LEC, Buffer 1, write, translate
90 10010000 CRC BISYNC, Buffer 0, read
92 10010010 CRC BISYNC, Buffer 0, read,
translate
94 10010100 CRC BISYNC, Buffer 0, write
96 10010110 CRC BISYNC, Buffer 0, write,
translate
g8 10011000 CEC BISYNC, Buffer 1, read
9A 10011010 CRC BISINC, Buffer 1, read,
translate
a9C 10011100 CRC BISYNC, Buffer 1, write
9E 10011110 CRC BISINC, Buffer 1, write,
translate
BO 10110000 CRC SDLC, Buffer 0, read
B2 10110010 CRC SDLC, Buffer 0, read,
translate
B4 10110100 CEC SDLC, Buffer 0, write
Bé 10110110 CRC SDLC, Buffer 0, write,
translate
B8 10111000 CEC SDLC, Buffer 1, read
BA 10111010 CRC SDLC, Buffer 1, read,
translate
BC 10111100 CRC SLCLC, Buffer 1, write
BE 10111110 CEC SDLC, Buffer 1, write,
translate

29-747 ROO u4/81 9-25

9.11.8

26

General Auto Driver Channel Programming Procedure
(See Figure 9-3)

Set up interrupt service pointer table to vector to
error routines for undefined devices.

Set up address of channel command word + 1 (odd) in
table at 2 times device number plus X'D0* (start of
interrupt service pointer table).

Set up complete channel command block.

Set up device and enable device interrupt.

Enable I/C interrurts in PSW (auto driver channel
performs I/0 operaticn)e.

Check for g¢good termination of auto driver channel

operation when the subroutine defined in the CCB is
entered.

29-747 ROO 4/81

620

CHANEL

NORMAL

R4--A(CCB),
FORCED EVEN

FASTMODE

‘FAST’
BIT SET IN
ccw?

BUFFER 0
BYTE COUNT
POSITIVE

NO

YES

"AND" STATUS
MASK WITH
INTERRUPT
STATUS

NON-
ZERO
RESULT
?

EXAUTO

RESTORE

EXSUBO

PSW ==
28N0’

EXSUB1

PSW -

Y

‘28N1’

H EXSUB2

PSW =—
'28N2’

ENTRY o
PSW & LOC

ADD BYTE COUNT
TO BUFFER 0 END
ADDRESS, TO
FIND ADDRESSED
DATABYTE

OUTPUT DATA
HALFWORD,
INCREMENT

BUFFEROBYTE
COUNT BY 2

DEVICE
?

TEST WAIT BIT

HALFWORD
DEVICE
?

OUTPUT DATA
BYTE,
INCREMENT

BUFFEROBYTE
COUNT BY 1

INPUT DATA
BYTE,
INCREMENT
BUFFER OBYTE
COUNTBY 1

!

LOC<CCB
SUBROUTINE
ADDRESS

29-747 ROO u4/81

EXAUTO

Figure 9-3

@ EXSUB2

ON ENTRY FROM AUTOI0,
PSW = "000028NX"

WHERE N = ATTENTION LINE CAUSING INTERRUPT
X =4 LS DEVICE STATUS BITS

RO = OLD PSW
R1=0LD LOC

R2 = INTERRUPT DEVICE ADDRESS
R3 = INTERRUPT DEVICE STATUS
MPE STATUS IS TRUE IF A
MACHINE MALFUNCTION
OCCURRED WITHIN THE CHANNEL.

Auto Iriver Channel Flowchart

EXECUTE AT
SUBROUTINE v
ADDRESS
QUEUE FLAG
FOR
*1 MALFUNCTION
IN CHANNEL
INPUT DATA 1
HALFWORD,
INCREMENT MMFINT
BUFFER 0 BYTE
COUNT BY 2
MACHINE MALFUNCTION
INTERRUPT
NOTES:

NFWRIT

O
i

619

NORMAL

SETUPTO
USE
BUFFER 1

SETUPTO

REDCHK

GENERATE NEW
CHECKWORD USING
CRC16 ALGORITHM

IN MICROCODE,

WRITE TO MEMORY

GENERATE

USING COMM
ASSIST UNIT,

NEW CHECKWORD

WRITE TO MEMORY

EXCLUSIVE OR

DATA WITH -
USE CHECKWORD,
BUFFER 0 REWRITE TO
MEMORY
RETURN
- Y
NOTE: BYTE USED IN I/0 FIGURES
SOFFER IN CHECKWORD.
BYTE COUNT EXAUTO RETURN
POSITIVE
?
N
ADD BYTE COUNT
TO BUFFER END
ADDRESS, TO
FIND ADDRESSED
DATABYTE
NFREAD
INPUT
DATA BYTE
ccwW v
SUBROUTINE TBIT SUBROUTINE
Sl;T TRANSL
N e * N ‘
i
SUBROUTINE
OUTPUT
BYTE REDCHK
SUBROUTINE
REDCHK
]
'NCSWENT WRITE BYTE
COUNT T0
BY 1, WRITE MEMORY
TO MEMORY

BYTE

COUNT
POSITIVE
?

Y
COMPLEMENT
CcCB
BUFFER BIT
u EXSUB2
Figure 9-3
28

EXAUTO

TRANSL

" 2 TIMES DATA BYTE
IS TRTBL
INDEX. READ
ENTR

FETCH
TRANSLATION
8YTE

RETURN

LOC =2 TIMES
TABLE ENTRY
(ADDRESS OF
TRANSLATION
ROUTINE)

EXIT

NOTE: USER SOFTWARE

MUST UPDATE BUFFER

BYTE COUNT AS
APPROPRIATE.

Auto Driver Channel Flowchart (Continued)

29-747 ROO 4/81

CHAPTER 10
STATUS SWITCHING AND INTERRUPTS

170.1 INTRCDUCTION

The processor's interrupt system provides a mechanism for escabe
from the normal processing sequence to handle external and
internal events. The software routine that is executed in
response to an interrupt is called an interrupt service routine.
Before transferring control tc a service routine, the current
state of the processor is preserved so that, upon completion of
the service routine, the execution of an interrupted program may
be resumed.

Interrupts may be classified as being synchronous or
asynchronous, depending on whether they .occur in fixed
relationship to the execution of instructions, or whether they
occur at random times due tc events external to the processor.
Examples of asynchronous interrupts include power fail, console
attention, and peripheral device interrupts.

Synchronous interrupts occur due to fault conditions, or in the
case of software interrupts, may be programmed to occur.
Examples of fault conditions which cause synchronous interrupts
include noncorrectable memory errors, illegal instructions, and
arithmetic faults.

Software interrupts occur when the Supervisor Call (SVC) or
Simulate Interrupt (SINT) instructions are executed, or as a
result of adding an entry tc the system queue. The Breakpoint
(BRK) instruction causes program execution to be suspended so
that the system console terminal may be activated. See the
chapter on the System Console Terminal. '

Each interrupt condition 1s reset when the corresponding
interrupt is serviced by the processore.

29-747 ROO u4/81 10-1

10.2 PROGRAM STATUS WORD (FSW) AND RESERVED MEMORY LOCATIONS

The Program Status Word (PSW), shown in Figure 10-1, is a 64-~bit
quantity that controls the cperaticn of the processor. The PSW
provides information about various states and conditions
affecting the operation of the processor. The PSW is composed of
two fullwords: bits 0:31 are the status word, and bits 32:63 are
the 1location counter. The various PSW fields are described
below:

1321

0 9 10 11,1213 14 1516 17 18 19 20 21 22 23 24 27 28 29 30 31
L Fl1 F R
\Y Ll witmfelr | plafr R clvja|L
L M| P U
32 39 40 63
LOCATION COUNTER

Figure 10-1 Program Status Word (PSW)

Bits 0-9 Unused, must be zero

Bits 10-11 LVL Memcry access level

Bit 12 Unused, must be zero

Bit 13 FLM Floating-roint masked mode

Bit 14 IIP Interruptible instruction in progress
Bit 15 Unused, must be zero

Bit 16 W Wait state

Bit 17 I I/0 interrurt mask

Bit 18 M Machine malfunction interrupt mask
Bit 19 FLU Floating~-point underflow mask

Bit 20 I I/0 interrurt mask

Bit 21 R/P Relocation/protection mask

Bit 22 Q System queue service interrupt mask
Bit 23 P Protect mode

Bits 24 - 27 R Register set select field

Bits 28 - 31 c,v,G,L Ccndition code

Bits 32 - 39 Unused, must be zero

Bits 40 - 63 Lecation counter

10-2 29-747 ROO u4/81

10.2.1 'Program Status Word (PSW)

Bits 0:31 of the PSW are <called the status word. This word
controls interrupts, defines the status of the processor, and
contains the ccondition code. The following sections provide
detailed definitions of various states of the processor and how
the status word controls them. Unused bits of +the status word
must alvays be zero.

10¢2.11 Memory Access level Field (LVL)

When PSW bit 21 (R/P) is set, PSW bits 10 and 11 participate in
an access 1level check for any memory access attempted by the
current rrogram. The LVL field of PSW is compared numerically to

the access level field of the appropriate segment table entry.
If the LVL field contains a lesser value than the access level
field, a Memory Address Translator (MAT) fault interrrupt occurs.

When PSW bit 21 is zero, PSW kits 10 and 11 are ignored, and no
access level check is performed.

10.241.2 Floating-Point Masked Mode (FLM)

On processors with the floating-point option, when bit 13 of the
current PSW is Zero, a program may execute any legal
floating-voint instruction.

When bit 13 of the current PSW is set, the processor is in the
Floating-Point Masked (FLM) mcde. A program running in this mode
is not allowed to execute floating-point arithmetic instructions.
If execution of any floating-point arithmetic instruction is
attempted in FILM mode, an illegal instruction interrupt occurse.
If the processor is in FLM mcde when a context switch is made by
the system program and the prccessor state must be saved, the
contents of the floating-point registers need not be saved. This
results in a faster context switch.

10.2.1+.3 Interruptible Instruction in Progress (IIP)

PSW bit 14 is set by the processor while an interruptible
instruction 1is in progress, and is zero when the interruptible
instruction terminates. This bit is set by the processor to
indicate that the scratchpad registers contain valid parameters
for the interruptible instruction and that these parameters need
not be recalculated before resuming the interrupted instruction.

If bit 14 of the current PSW is sét when the processor transfers
control to a software interrurt service routine, that routine
must not allow the contents of the scratchpad registers to be
modified before the interrurtible instruction 1is resumed. The
STPS, LLCPS, 1ISSV, and ISRST instructions provide the means for
saving and restoring these registers if they must be used by the
interrupt service routine.

29-747 ROO 4/81 10-3

10.2010“ Hait State (W)

When PSW bit 16 is set, +the processor is in +the wait state. 1In
the wait state, the normal fetch instruction/execute
instruction/fetch next instruction segquence is suspended. While
in the wait state, the processor 1is responsive to console
attention interrupts and primary power fail, as well as any
interrupts specifically enabhled by the current PSW.

PSW kit 16 is zero when the rrocessor is executing instructions.
This bit is forced to zero whenever the single-step, run switch,
or system console terminal 4is wused to initiate instruction
execution. This bit is not fcrced set by entry to the console
mode.

If an interrupt occurs, PSW bit 16 is set according to the new
PSW defined for servicing the interrupt. Bit 16 of the new PSW
for any I/0 interrupt is zero.

Except for an I/0 interrupt, the state of bit 16 of the new PSW
is tested as the PSW is loaded. If bit 16 of the newly loaded
PSW is set, the processor enters the wait state, provided that no
interrupt is still pending. All pending interrupts are serviced
before the processor enters the wait state.

10.2.1.5 1I/0 Interrupt Mask (I)
PSW bits 17 and 20 are used together to enable or disable

recognition of interrupt requests generated by peripheral devices
on any of the four interrupt levels, as detailed below:

BIT 17 BIT 20 MEANING
0 0 All levels disabled
0 1 Higher levels enabled
1 0 All levels enabled
1 1 Current and higher levels enabled

The interrupt levels are numbered from 0 to 3, with level 0 being
the highest priority interrupt level and level 3 being the lowest
priority interrupt level.

An I/C interrupt request is queued until the processor
acknowledges the interrupt unless the reguest is programmed
reset, or rower fail occurs. The state of PSW bits 17 and 20 is
ignored by the Simulate Interrupt (SINT) instruction.

10-4 29-747 ROO 4/81

10.2.1.6 Machine Malfunction Interrurt Enable (M)

PSW bit 18 is used to enable and disable detection of various
malfunction conditions within the processor and the resulting
machine malfunction interrurt. When this bit is set, any of the
following conditions results in a machine malfunction interrupt.

early power failure

povwer restore

noncorrectable memory data error
nonconfigured memory address
shared memory power failure

The processor is designed with the concept that all software must
enable the machine malfunction interrupt for maximunm data
integrity. Unlike other prccessors, this does not require that
this interrupt ever be disabled. The processor resets each
detected interrurt condition as it occurs.,

While performing a machine malfunction interrupt PSW swap, the
processor sets PSW bit 18 tc allow error detection for the new
PSW data fetched from memcry. If the new PSW cannot be fetched
correctly, the processor effectively stops by entering the
console mode. This prevents a runaway situation in the event of
a double fault.

If PSW bit 18 is zero, any noncorrectable memory data error |is
logged by the optional error logger. Cache accesses to memory
using a nonconfigured memory address result in undefined data
being 1locaded into the optional high-speed cache, with no error
indication. (Subsequent access to the same area of cache results
in another memory fetch, as cache data is invalidated.) No
machine malfunction interrupt occurs for any of the reasons given
above. A machine malfunction due to early power failure or
shared memory power failure is queued until PSW bit 18 is set by
software, or until automatic shutdown occurs. The interrupt is
not queued for any other reascn.

10¢2.1.7 Floating-Point Underflow Interrupt Enable (FLU)

PSW bit 19 controls response cf the processor to an arithmetic
underflow resulting from a single- or double-precision
floating-point arithmetic operation.

If this bit is set when the underflow occurs, an arithmetic fault
interrupt occurs, and the participating floating-point registers
remain unchanged.

If this bit is zero when the underflow occurs, the result of the
operation is rerlaced by zero, and the condition code is set to
0100 (V-flag only), as defined in the description of the specific
floating-point instruction.

29-747 ROO 4/81 10-5

10.2.1.8 Relocation/Protecticn Enable (R/P)

PSW bit 21 is used to enable and disable the relocation and
protection programmed into the Memory Address Translator (MAT).
When this bit is set, relocation, protection, and the MAT fault
interrupt are enabled. When this bit is zero, relocation,
protection, and the MAT fault interrupt are disabled.

10.2.1.9 System Queue Service Interrupt Enable (Q)

If bit 22 of the new PSW loaded by any of the instructions listed
below is set, the state of the system queue is tested. If the
system qQueuve is not empty, a System Queue Service (5QS) interrupt
OCCULS. If the system queuve is empty, the next instruction is
fetched and executed, according to the newly-loaded PSW.

If bit 22 of the newly-loaded ESW is zero, the SQS interrupt is
disabled.

The fcllowing instructions test the state of the system queue:

MNEMONIC MEANING
EPSR Exchange Program Status Register
LDPS Load Process State
LPSW Load Program Status Word
LPSWR Load PFrogram Status Word Register

106241410 Protect Mode Enable (P)

When PSW bit 23 is set, the processor is in the protect mode.
Any attempt by a program running in this mode to execute a
privileged instruction causes an illegal instruction interrupt to
occur. The processor does not attempt to execute the offending
instruction. The Breakpoint (BRK) instruction is a privileged
instruction.

When PSW bit 23 is zero, the rrocessor is in privileged mode. A
program running in privileged mode may execute any legal
instruction, within the constraints 4imposed by the systen
configuration and the state of PSW bit 13 (FLM).

10-6 29-747 ROO 4/81

102111 Register Set Select Field (R)

Bits 24, 25, 26, and 27 of the current PSW select the active
general register set. Although 16 different sets may be
specified by using the four bits of this field, only eight sets
of general registers are implemented in this processor. The
implemented sets are numbered 0, 1, 2, 3, 4, 5, 6, and 15.

Set 0, 1, 2, or 3 is automatically selected by the processor in
handling an I/0 interrupt on the corresponding interrupt level.
Registers 0 through 4 of that set are used to maintain

information pertaining to an I/0 interrupt request which is
" acknowledged on the I/0 interrupt level corresponding to the
selected register set. Therefore, sets 0, 1, 2, and 3 should not
be used for general purpose processing. These sets may, however,
be used for processing internal interrupts, which use registers
11 through 15 of +the selected =set ¢to maintain information
pertaining to the interrupt.

Sets 4, S, 6, and 15 may te allocated according to processing
needs, without special consideration. Sets 7 through 14 are not
implemented. An attempt to select a set which is not implemented
may result in the selecticn of any set, without any special
indication of the error.

When a new PSW is loaded, the spvecified register set becomes the
active set for the next instruction executed.

PSW BIT SELECTED REGISTER SET

24 25 26 27

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 m

0 1 0 1 5

0 1 1 0 6

1 1 R 1 15

29-747 ROO 4/81 10-7

10421412 Condition Code (C, V, G, L)

PSW bits 28:31 contain the <condition code. As part of the
execution of certain 4instructions, the state of the condition
code may be updated to reflect the nature of the result. Not all
instructions affect the condition codee.

For mcst interrupts, bits 28:31 of the new PSW are simply copied
to the condition code. Fcr immediate interrupts, the least
significant four bits of the status byte for the interrupting
device are coried to the condition code after the new PSW has
been locaded. No restrictions are imposed on the condition code
field of a new PSW contained in a memory location or register.
Any condition code value may te specified.

The condition code of the current PSW may be tested by the
conditional branch instructions described in Chapter 4.

10.2.2 FSW Location Counter (LOC)

PSW bits 32:63 comprise the lccation counter, which contains the
address of the instruction currently being executed by the
pProcessor. When the current instruction is successfully
completed, the value contained in the 1location counter is
incremented by the length of the instruction in bytes, and the
instruction at the resulting address is fetched.

Arn instruction which results in a branch being taken causes the
contents of the 1location counter to be replaced with the
effective branch address; i.e., with the address of the
instruction to which <contrcl is to be transferred. The
instruction at the new address is the next instruction to be
fetched and executed.

When an interrupt occurs, the entire FSW, bits 0:63, is replaced.
If bit 16 of the new PSW (the wait bit) is set, the instruction
indicated by the new «contents of the location counter is not
fetched. Manual intervention is required to cause the wait bit
to be =zero, and the instruction to be fetched and executed. TIf
an interrupt causes the PSW with the wait bit set to be replaced
by another new PSW that has the wait bit Zzero, the instruction
indicated by the location ccunter of that new PSW is fetched and
executed.

If an instruction has noct been successfully completed when an
interrupt PSW swap occurs, the 64-bit PSW, in effect for the
instruction being executed at the time of the interrupt, is saved
before the interrupt handler is entered. The location counter in
the =saved PSW points to the instruction being executed at the
time the interrupt occurred. If the interrupt occurs after the
successful completion of one instruction and before beginning
another, the lccation counter in the saved PSW points to the next
instruction to be executed.

See Section 10.5, Status Switching, for an explanation of old,

current, and new PSW, and of the use of these PSHs by the
processor in scheduling interrupt service routines.

10-8 29-747 ROO 4/81

10.2.3

Physical memory locations
locations.
service rointer tables,
X*0002D0"

remory

X*0004CF"

locations.
servicing

or

Reserved Memory Locations

X*'000000°' - X'0002CF*' are reserved
systems with expanded I/0 interrupt

physical memcry locations X*0002D0°
- Y'0008CF' are also reserved memory

These locations contain assorted information used

interrupts,

as shown in Figure 10-2.
these locations as the result of an interrupt is detailed in

section describing the interrupte.

X*Qo00000"
X*000020°
X*000028"
X*oo0002C*
X*000030"
X*000038"
X*oo00040"
X*oooouy:*

xtoooous*
X*oo0cos0"

X*000080"
Xx*oooc08y"
X*oo00088"
X*'000090°

X*000GC98"
X*00009C*

X*0000BC"
X*oo0o0o0Cs8"
X*oooo0cLCo0"
X'oo002rC0"

xrooou4ro®

X*00001F"
X*'000027°
X*00002B*
X*00002F"
X*000037*
X*'00003F"*
X*oooou3"
x'gooo00u47°

X*00004F"*
X*000CO07F"

X*o000083"*
X*'000087"
X'00008F"
X*'000097"

X*'00009B"*
X*0000BB"*

X'o0000C7"
X*'0000CF*
X*'0002CF"*
X*0004CF"*

X*0008CF"*

Figure 10-2

29-747 ROO u4/81

Reserved, must be zero

Machine malfunction interrupt old

Used by console service microcode

LM effective address word

Illegal instruction interrupt new

Machine malfunction interrupt new

Machine malfunction status word

Machine malfunction virtuval (program)
address word

Arithmetic fault interrupt new PSW

Bootstrap loader and device definition
table

System qQueue pointer

Power fail save area pointer

Systerm queue service interrupt new PSW

Relocation/Protection (MAT fault)
new PSW

Surervisor call new PSW status word

Surervisor call new PSW location
ccunter values

Reserved, must be zero

Data format fault new PSW

Interrupt service pointer table

Exranded interrupt service pointer
table

Expranded interrupt service pointer
table :

PSW

PSW
PSHW

Reserved Memory Locations

Use of data in
the

10.3 INTERRUPT TIMING AND FRICRITY

10.3.1 Maskable and Nonmaskable Interrupts

Maskable interrupt conditions are controlled by bits in the PSH.
When a request to interrurt due to a maskable condition occurs,
the corresponding control bit in the PSW is examined, If the
control bit indicates that the interrupt is enabled, an interrupt
is taken and control is transferred to the appropriate service
routine. The paragraph describing each interrupt provides
details about the control bit(s), how the interrupt is enabled or
disabled, and the effects of enabling or disabling an interrupt.

Nonmaskable interrupts are those which have no corresponding
control bits in the PSW. Examples of nonmaskable interrupts are
SVC, SINT, Illegal Instructicn, and Console Attention. Sections
describing each interrupt provide further details.

Figure 10-3 shows the various maskable and nonmaskable
interruptse.

1¢-10 ' 29-747 ROO u4/81

L8/h 008 LhL-6C

LL-01

2
NOTES {c) SYNCHRONOUS INTERRUPTS ARE RECOGNIZED AS
THEY OCCUR. ASYNCHRONQUS INTERRUPTS ARE
{a} NUMBERS IN CIRCLES INDICATE THE PRIORITY OF RECOGNIZED BETWEEN THE COMPLETION OF
INTERRUPTS. 1 REPRESENTS THE HIGHEST PRIORITY. CURRENT INSTRUCTION AND THE INITIATION OF INTERRUPTS
THE NEXT INSTRUCTION.
(b} FAULTS ABORT THE CURRENT INSTRUCTION. THE
OLD PSW POINTS TO THE FAULTING INSTRUCTION. {d) SQS MAY OCCUR ONLY AS PART OF THE LPSW,
OTHER INTERRUPTS ARE RECOGNIZED AT THE END LPSWR, EPSR, AND LDPS INSTRUCTIONS.
OF THE CURRENT INSTRUCTION AND OLD PSW ®
POINTS TO THE FOLLOWING INSTRUCTION.
SYNCHRONOUS ASYNCHRONGUS
FAULTS @ SOFTWARE INTERRUPTS
{SEE NOTE (b))
MASKABLE NONMASKABLE NONMASKABLE MASKABLE NONMASKABLE MASKABLE
I/0 INTERRUPTS
MACHIN ARITHMETIC ARITHMETIC ILLEGAL DATA MEMORY SUPERVISOR SIMULATE SYSTEM MACHINE CONSOLE MACHINE
MALFSNCT$0N FAULT FAULT INSTRUCTION FORMAT ADDRESS CALL (SVC} INTERRUPT QUEUE MALFUNCTION ATTENTION MALFUNCTION
INTERRUPT FAULT FAULT TRANSLATOR {SINT) SE‘I;(\g,CE INTERRUPT INTERRUPT
{MEMORY MALFUNC-
SYSTEM (SEE NOTE (d) ‘
TION FAULT) BREAKPOINT @ @ @
FLOATING- FLOATING- {BRK}
POINT INT .
b— NON- @— EXPONENT b CYPONENT §—ILLEGAL p— nvaLiD b— SEGMENT NONPRESENT I T i
CORRECTABLE UNDERFLOW OVERFLOW OP-CODE iiGgKEI;IG‘;;TA FAULT m’gﬂ FAIL) FAIL
MEMORY Al
ERROR @— FIXED-PT. @— |LLEGAL @— SEGMENT LIMIT FAULT DETECT
QUOTIENT SUBFUNCTION §=— INVALID @— AUTOMATIC RESTART
&— non- OVERFLOW DATA DIGIT @ WRITE PROTECT VIOLATION POWER
CONFIGURED PACKED DATA (POWER RESTORATION) | AESTORATION
MEMORY b— DIVIDE f»'fs'¥LLE§rfg~ p— EXECUTE PROTECT VIOLATION DETECT
ADDRESS BY ZERO @— N mg_rec_r p— HALFWORD
FLOATING-PT. MODE AUGNMENT FAULT @— READ PROTECT VIOLATION
@— FULLWORD b ACCESS LEVEL VIOLATION
DIVIDE FLOATING- ALIGNMENT FAULT
p— BY ZERO POINT p——SST SIZE ERROR
FIXED-PT. INSTRUCTION
IN FLT. PT. §—— PST SIZE ERROR
MASKED
MODE

Figure 10-3

Schematic LCiagram of Interrupt Systen
Architecture

10«3.2 Interrupt Timing

Asynchronous interrupts are normally permitted to occur only
after execution of an instruction has been completed, and before
execution of the next instruction begins. However, asynchronous
interrupts are permitted to occur at the end of any iteration,
while an interruptible instruction is being executed.

A synchronous interrupt is permitted to occur at the time the
condition causing the interrupt is detected. The SQS interrupt,
which occurs at some indefinite time following addition of an
entry to the system queue, is called a deferred synchrocnous
interrupt. A synchronous interrupt due to a fault causes the
offending instruction to be aborted with no modification of the
contents of registers or memory 1locations generally resulting
from execution of that instruction. Fixed- and floating-point
Load/Store Multiple, and Stcre Double-Precision are exceptions to
this rule. 1In the case of an interruptible instruction, the
current iteration of the instruction is aborted by such an
interrupt without modification of the contents of registers or
memory as a result of the faulted iteration,

For all interrupts, the old PSW location counter presented to the
interrupt handler points to the next 1logically-executed
instruction in the interrupted progranm. If the interrupt is
caused by a fault, the instruction causing the fault was not
completed and is logically the next instruction to be executed.
The o©1d PSW 1location counter presented to the fault interrupt
service routine, therefore, always rpoints to the instruction
which caused the fault.

Multirle memory accesses are required for the manipulation of a
circular list structure wusing the ATL, ABL, RTL, or RBL
instruction. For each of these instructions, the list header is
not updated wuntil the body of the list has been successfully
accessed. For the RTL and RBL instructions, no registers are
modified wunless the list element has been successfully accessed,
and the list header has been successfully updated.

10-12 29-747 ROO 4/81

10¢3.3 Interrupt Precedence

Considering the instant of instruction fetch request as the tinme

of reference, interrupts have the following precedence (highest
to lowest):

INTERRUPI PRECEDENCE TABLE

Synchronous __Fault interrupts
Interrupts | System queue service

Primary pcwer fail/restore
Asynchronous Console attention
Interrupts Early powver fail
Shared memory power fail
LI/O interrupts

Fault interrupts are caused by various conditicns that have the
following logical precedence in descending priority order.

e Relocation/protection fault on an instruction’fetch

e¢ Machine malfunction fault due to memory malfunction on an
instruction fetch

® JIllegal instruction fault
¢ JIllegal subfunction fault

e Data format fault due to alignment error on a data read/write
operation ‘

e Relocation/protection fault on a data read/write operation

@ Machine malfunction fault due to memory malfunction on a data
read/write operation

e Data format fault for other than boundary alignment error
e Arithmetic fault

For a memory malfunction, a nonconfigured memory address fault
takes rrecedence over a noncorrectable memory data fault.

Since any fault interrupt causes execution of an instruction to
be aborted at the point of the fault interrupt condition, no more
than one fault interrupt condition can occur at a time. However,
other interrupts 1in the synchronous and asynchronous interrupt
classes given in the preceding Interrupt Precedence Table can
occur simultaneouslye. In <such a case, the order given in the
table above governs the servicing sequence for the interrupts.

29-747 ROO 4/81 10-13

10.3.4 Interruptible Instructions

For any interruptible instruction, execution consists of the
following phases: instruction fetch, 4instruction decode, an
iterative loop, and terminaticn. An interrupt during any phase
of an interrurtible instructicn does not affect the operation of
the instruction. It may simply be reexecuted once the interrupt
has been serviced. An interrupt during the iterative phase of
the instruction causes the processor to resume the iterative
phase when the instruction is reexecuted, as though the interrupt
never occurred. If the 4interrurt was caused by a fault, the
iteraticn which resulted in the interrupt is repeated when the
instruction is reexecuted.

To abort an interruptible instruction when it is interrupted, PSW
bit 14 must be forced to zero before any subsequent interruptible
instruction (excep6t RDCS or WLCS) is attempted.

CAUTION

SOFTWARE MUST NEVER SET PSW BIT 14 UNLESS
RESUMING EXECUTICN OF THE INTERRUPTIBLE
INSTRUCTION THAT CAUSED BIT 14 OF THE PSW TO
BE SET. RESUMPTION OF ANY INTERRUPTIRBLE
INSTRUCTION MUST NEVER BE ATTEMPTED IF THE
CONTENTS OF THE SCRATCHFAL REGISTERS ARE NOT
KNOWN TO HAVE BEEN PRESERVED BETWEEN
INSTRUCTION INTERRUPTION AND RESUMPTICN.

10-14 ' 29-747 ROO 4/81

10.4 PROCESSOR MODES

At any given time, the processc¢r may be in the console mode or
run mode. The single-step mcde provides a means for alternating
between the console and run modes. Wait and run states only have
meaning for the run mode.

10.4.1 Console Mode

While the processor is dedicated to communicating with the system
console terminal, it is said to be in the console mode. In this
mode, program execution is suspended so that the user may examine
and modify the data contained in certain registers and memory
locations.

Aprpendix F provides a flowchart for the console service routine.
The ccnsole mode may be entered in any of the following ways:

1« The Breakpoint (BRK) instruction is executed by a
running program when PFSW bit 23 is zero.

Execution of an instruction is completed while in the
single~step modee.

N)
.

3« The HALT/RUN switch cr the SINGLE switch is depressed
momentarily while the processor is in the run mode.

4, Following a system initialization seguence, backup power
to memory is found not to have been maintained within
regulation, and the ISU is not enabled when the sequence
is complete.

E., Following a system initialization sequence, if backup
power to memory was maintained within regulation, but
the LSU is not enabled 'and the contents of physical
memory location X°*'000028°* indicate that the processor
was in the console mode when system initialization
occurred.

6. An attempt to fetch a machine malfunction interrupt new
PSW results in a non-correctable memory error. In this
case, the error code for the initial malfunction |is
stored in the machine malfunction status word at
X'0000u40', and LOC is loaded with the address of the
status word before the console mode is entered.

7. If control has been passed to uninitialized Writable
Control Store or an errant WCS microprogram, control can
be regained at the system console by enabling the
single-step mode via the SINGLE switch, and depressing
the HALT/RUN switche.

29-747 ROO u4/81 10-15

Note that system initializaticn occurs vwhen the power supply
detects that AC 1line voltage is failing; when the Initialize
(INIT) switch on the consolette is momentarily depressed; or when
the key-operated LOCK/ON/STANLBY switch is moved to the STANDBY
position. The 1initializaticn sequence completes when power is
restored to the processor. System initialization resets all
rending interrupts for the system console and other I/0 devices
in the system. DMA operaticns are also terminated.

While the processor is in the console mode, interrupt conditions
are not handled in the same manner as they are if detected during
execution of a progranm.

Interrupt requests for the system console terminal and all other
I/0 devices remain queued until the run mode 1is entered. DMA
cperations are not affected by changing processor modes.

PSW bit 16 1is always fcrced to 2zero before the run mode is
entered from the console mode. :

Fault conditions caused by memory accesses while in the console
mode are reset when they occur, and do not cause interrupts when
the run mode is entered. If a fault condition occurs while
attempting to modify a memcry location, that location may not be
changed. If a fault occurs while attempting to examine a memory
location, the console service routine is aborted and restarted.

System initialization, while in the console mode, results in
automatic shutdown, with no machine malfunction interrupt due to
povwer failure.

10.4.2 Run Mode

When the processor is not dedicated to communicating with the
system console terminal, it is in the run mode. In this mode,
program execution is controlled by the contents of the 6U4-Dbit
Program Status Word (PSH). While the processor is in the run
mode, it may be in either the wait state (PSW bit 16 is set), or
the run state (PSW bit 16 is zero). In the run state, the
processor performs a reretitive fetch instruction/execute
instruction/fetch next instruction sequence. In the wait state,
this sequence is suspended.

The run mode may be entered in any of the following ways:
1« The 'less than' prompt character (<) is entered from the
system console terminal when the processor is 4in the
ccnsole mode.

2. The HALT/RUN switch is depressed momentarily while the
processor is in the ccnsole mode.

10-16 29-747 ROO 4/81

3, The LSU is 1installed and enabled when a system
initialization sequence is completed. In this case, the
program loaded from the LSU is given control of the
ProcessoOr.

4, The ‘greater than' single-step character (>) is entered
from the system console terminal when the processor is
in the console mode. This causes the instruction to be
executed in single-step mode, regardless of the position
of the SINGLE switch.

Interrupt conditions cannot cause the processor to enter the run
mode from the console mode, with the following two exceptions:

1. An initialization sequence performed while the processor
is in the console mode causes a program to be 1loaded
from the enabled LSU. Control of the processor is given
to that program. '

2. The HALT/RUN switch is depressed momentarily while the
processor is in the ccnsole mode.

10.4.3 Single-Step MNode

When the SINGLE switch is in the SINGLE position, the processor
is in the single-step mode. In this mode, whenever execution of
an instruction is completed, the processor leaves the run mode
and enters the console mode. Manual intervention is normally
required to execute the next instruction.

Interrupts are handled according to the methods detailed in the
previous paragraphs. If the rrocessor is in the single-step mode
and the run state when an interrupt request occurs, the processor
completes the current instruction (or iteration) and then
performs the interrupt PSW swap. The first instruction of the
interrupt service routine is not executed.

If system initialization occurs while in the single-step mode,
any instruction in progress (or the current iteration of an
interruptible instruction) completes. When the initialization
sequence is comrplete, a maximum of one instruction is executed
before the processor again enters the console mode.

If the processor is in the run state when the SINGLE switch is
placed in the SINGLE positicn, the consocle mode is entered.

29-747 ROO u4/81 10-17

Note that in the single-step mode, PSHW bit 16 is always forced to
zero before entering the run mode to fetch a user instruction.

NCTE

If interrupts are enabled at the systenm
control terminal interface by software,
entering the console mode causes
interrupts tc be queued from device
X*011* (the write side). Depression of
any key at the ccnsole may cause an
interrupt to¢ be queued from device
X'010' (the read side).

10.5 STATUS SWITCHING

The PSW that is loaded in the processor, at any given time, 1is
called the current PSW. The register set selected by this PSW,
the data contained in the general, floating-point, or scratchpad
registers accessible by the user pregram, and the machine status
defined by the PSW collectively constitute the "process state".
If the status word or both the location counter and status word
are changed, a status switch has occurred. A status switch can
be caused explicitly by executing a status switching instruction
or may be forced to occur by an interrupt. When the value of the
PSW that was current at the time of a status switch 1is saved,
that value is called the old ESW.

The scheduling of interrupt service routines is based upon the
concerts of old PSW, current EFSW, and new PSW. When an interrupt
occurs, the following status switch takes place: the current PSW
becomes the old PSW; the new PSW defined for +the interrupt is
loaded, and becomes the current PSHW.

For a status switch resulting from an interrupt, the old PSW is
stored in dedicated registers of the set specified by the new PSW
defined for the interrupt. The machine malfunction interrupt is
the exception to this rule; for this interrupt, the old PSW is
stored in dedicated memory locations.

For meaningful processor respcnse to multiple interrupts, it is
important that the new PSH defined for a particular interrupt
class does nct enable interrurts of the same class.

The various interrupts which may occur, and the response of the

brocessor t¢ each interrupt, are described in the following
sectiocns.

10-18 29-747 ROO u4/81

10451 Tllegal Instruction Interrupt

The illegal instruction interrupt occurs if an attempt is made to
execute an instruction whose creration code is not one of those
permitted by the system. This interrupt may occur for any of the
following reasons:

1. The operation code 1is undefined for the system, or
optional equipment necessary to execute the instruction
is not present in the systen.

2. The operation code has several ©possible subfunction
specifications, and the subfunction specified 1is
undefined.

3. The instruction is a privileged instruction, and PSW bit
23 is set.

4. The instruction is a floating-point instruction, and PSW
bit 13 is set.

The 1illegal instruction interrupt cannot be disabled. The
floating-point instructicns, high speed data handling
instructions, and writable ccntrol =store instructions require
optional equipment, and are therefore opticnally illegal. No
attempt is made by the processor to execute an illegal
instruction.

When an 1illegal instruction interrupt occurs, the following
actions are taken:

1« The current PSW is étored in registers 14 and 15 of the
set selected by the illegal instruction interrupt new
PSW found in memory at physical address X'000030°'.

2. The illegal instructicn interrupt new PSW becomes the
current PSW.

The o0ld PSW location counter presented to the 1interrupt service
routine in register 15 points to the illegal instruction.

10.5.2 T[Cata Format Fault Interrupt

The data format fault interrurt occurs if the required halfword
or fullword alignments are viclated for memory accesses, or if it
is otherwise determined that data is not properly aligned to the
specified fields. Halfword alignment violations are not detected
by the processor on memory read. The data format fault interrupt
cannot be disabled.

29-747 ROO 4/81 10-19

When a data format fault interrupt occurs, the following actions
are taken:

1. The current PSW is stored in registers 14 and 15 of the
set selected by the data format fault new PSW found in
memory at physical address X'0000C8°*.

2. Register 13 of the selected set is loaded with a code to

indicate the reason for the interrupt, as shown in the
following list:

REASCN FCR INTERRUPT

Reserved code

Reserved code

Invalid sign digit, packed data
Invalid data digit, packed data
Reserved code

Reserved code

Fullword or Halfword alignment fault

10
AN EZTWNAO O
o
]

2. If the interrupt was caused by a halfword or fullword

' alignment fault, register 12 of <the selected set is
loaded with the nonaligned virtual address causing the
faulte.

4. The data format fault interrupt new PSW becomes the
current PSWH.

The old PSW location counter presented to the interrupt service
routine in register 15 points to the instruction being executed
when the fault occurred. A data format fault causes the current
instruction, or the <current iteration of an interruptible
instruction, to be aborted immediately.

10.5.2.1 Alignment Faults

An attempt to fetch a fullword of data from memory, or to write
a fullword of data to memory, using a program address which does
not have zeros as its two 1least significant bits, causes a
fullwerd alignment fault.

An attempt to write a halfwecrd of data to memory, using a program
address which does not have zero as its least significant bit,
causes a halfword alignment fault. The processor does not
distinguish between fullword and halfword alignment faults. An
alignment fault cannot occur during an instruction fetch on this
Processor.

If an alignment fault occurs while attempting to write to memory,
the fullword or halfword at the next lower aligned address may be
modified.

10-20 29-747 ROO 4/81

10.5.2.2 1Invalid Digit Faults

If an invalid sign or data digit is encountered while Dprocessing
numeric string data, it is presumed that the data is not aligned
to the specified fields. Additional information may be found in
the description of the instruction used to process the numeric
string.

10.5.3 Relocation/Protecticn (MAT) Fault Interrupt

This fault interrupt occurs if an executing program violates any
of the relocation and protection conditions programmed into the
Memory Address Translator (MAT). MAT error checking and the MAT
fault interrupt are enabled when PSW bit 21 is set. MAT faults
are not queuved.

When a MAT fault interrupt occurs, the following actions are
taken:

1« The current PSW is stored in registers 14 and 15 of the
set selected by the MAT fault interrupt new PSW found in
memory at physical address X°*'000090°.

2. Register 13 of the selected set is loaded with a code to
indicate the reason for the interrupt. This code is
copied from the MAT status register while simultaneously
resetting the faulte.

CODE REASON FOR INTERRUPT

Reserved code

Execute protect violation
Write protect violation
Read protect violation
Access level fault
Segment limit fault
Nonpresent segment

SST size exceeded

PST size exceeded

O~NO NN EWNN 20

3. Register 12 of the selected set is loaded with the
program address which caused the fault.

4, If the fault occurred on a data fetch while attempting
to 1lcad the general registers using the Load Multiple
(LM) instruction, register 11 of ¢the selected set |is
loaded with the effective second operand address
calculated at the start of the LM instruction.

%« The MAT fault interrupt new PSW becomes the current PSW.

29-747 ROO u4/81 10-21

~

The 01ld PSW location counter presented to the interrupt service
routine in register 15 points to the instruction being executed
when the fault occurred. Further information on memory
management may be found in Chapter 12.

105.8 Machine Malfunction Interrupt

The machine malfunction interrupt occurs when any of the
following conditions are detected:

Early power fail

Power restore

Noncorrectable memory data error
Nonconfigured memory address
Shared memory power fail

Detection of the listed conditions and the machine malfunction
interrupt are enabled when ESH bit 18 is set. Early power fail
and shared memory power fail detects are queued until primary
power fail occurs if PSW tit 18 is zero. All other malfunction
conditions are ignored, and the interrupts are lost.

When a machine malfuncticn interrupt occurs, the following
actions are taken:

1« The <current PSW 1is stored in memory beginning at
physical address X'000020°*.

2. The Machine Malfunction Status Word (MMSW) at physical
address X'000040"' ics loaded with a code to indicate the
reason for the interrupt. Only one bit is set in this

code:
BIT
NUMBER REASON FOR INTERRUPT
0 PF ~ Power failure
1 PR - Fower restoration
2 NCD - Noncorrectable memory error
during data fetch
3 NCI - Noncorrectable memory error
during instruction fetch
4 NCA - Noncorrectable memory error
during auto driver channel
operaticn
5 NVD - Nonconfigured memory address
during data fetch
6 NVI - Nonconfigured memory address
during instruction fetch
7 NVA - Nonconfigured memory address
during auto driver channel
operaticn
30 SMP - Shared memory power failure

10-22 29-747 ROO 4/81

3. If the interrupt was caused by a noncorrectable memory
error, or nonconfigured - memory address, the virtual
address used for the memory access is stored in the
machine malfuncticn virtual address word at physical
address X°'00004u4°', Ctherwise, the contents of this word
are undefined.

4. TIf the interrupt was caused by a noncorrectable memory
error, or nonconfigured memory address, and the fault
occurred on a data fetch while attempting to 1load the
general registers using the LM instruction, the
effective second orerand address calculated at the start
of that instructicn 1is stored in the LM effective
address word at physical address X'00002C'. Otherwise,
the contents of this word are undefined.

£« The machine malfunction interrupt new PSW found at
physical address X'000038* becomes the new PSW.

If the interrurt was caused by executing an instruction, the old
PSW 1location counter presented to the interrupt service routine
points to the offending instruction. Otherwise, the o0l1d PSW
location counter presented to the interrupt service routine
points to the instruction to ke executed once the interrupt has
been serviced.

If the interrurt was caused by executing the LM instruction, bits
2 and 5 of the Machine Malfunction Status Word (MMSW), may be
used to determine if any registers were modified before the
interrupt occurred. If the old PSW location counter points to an
LM instruction, and if bits 2 and 5 of the MMSW are both zero, no
registers were mcdified. If kit 2 or bit 5 of the MMSW is set,
then:

1« If the data stored at physical addresses X'000044°* and
X*'00002C* are equal to one another, no registers were
modified by the instruction before the fault occurred.

2. If the data stored at physical addresses X'000044°* and
X'00002C' are not equal to one another, at least one
register was modified by the 4instruction before the
fault occurred. The number of registers modified may be
determined by taking the difference of the data stored
at physical addresses X'000044°® and. X°00002C*', and
dividing the result by four.

1322

0123 4567 30 31
PIPIN[NIN|IN|IN|N S
FIR|cic|c|v]v]v M

D1 |A]|D]!I}A P

Figure 10-4 Machine Malfunction Status Word (MMSH)

29-747 ROO 4/81 10-23

10.5.4.1 Early Power Fail Cetect and Automatic Shutdown

Early power fail detect occurs when the primary power failure
sensor detects a low voltage; when the power switch is turned
from the ON to STANDBY position; or when the INIT switch is
depressed.

At the end of execution of the current instruction or the current
iteration of the <current interruptible instruction, a machine
malfunction interrupt is taken if PSW bit 18 is set.

Following early power fail detect, software has one millisecond
before the automatic shutdown procedure of the processor takes
contrcl as a result of Primary Power Fail. During this
procedure, the following acticns occur:

1. The fullword power fail save area pointer is fetched
: from location X'000084°.

2. The following information is saved by firmware in the
pcwer fail save area:
OFFSET IN SAVE

CATA AREA (IN BYTES)
Current PSW 0-7
The eight general register
sets (in order, 0 through F) 8-519
Interruptible instruction
state (scratchpad registers) 520-583

Optional floating-point
registers, single and double 584-679

3. The processor waits fcr power restore.

NOTES

1« If the processor 1s not equipped
with the optional floating-point
registers, the area between offsets
584 and €79 is not used.

2. If the pointer found in location
X'000084* does not specify a save
area aligned te a fullword
boundary, the processor forces
correct alignment by replacing the
two least significant bits of the
pointer with zeros.

3. The floating-point masked mode bit
in the PSW has no effect on the
saving of the floating-point
registerse.

4. The IIP bit 4in the PSW has no
effect on the saving of the
scratchpad registerse.

10-24 29-747 ROO u4/81

10.5.4.,2 Power Restore

When power restore occurs, a simple go/no-go self-test of various
internal buses and registers is performed. If the back-up supply
voltages to memcry were not maintained within margins between
shutdown and power restore, the first 256 kbytes of memory are
filled with a data pattern tc ©prevent spurious noncorrectable
memory error indications, and the general registers, scratchpad
registers, and floating-point registers are loaded with
predetermined data. .

The first 256 kbytes of memory are then tested to see if data can
be held. This test does not modify the data contained in memory.
Failure of self-test or the memory test causes that test to loop,
as 1long as the failure persists. T[Curing the test, the processor
is responsive only to a primary power fail which results in an
automatic shutdown, and the FAULT lamp on the consolette switch
panel is on.

When memory testing is complete, the FAULT lamp is turned off,
and the state of the optional Loader Storage Unit (LSU) is
tested. If the LSU 4is not equipped, it is presumed to be
disabled. In all cases, bit 1 of the machine malfunction status
word at physical address X'000040° is set to indicate power
restoree.

10.5.4.2.1 If the LSU is Disabled

If the back-up voltages to memory were not maintained within
margins between shutdown and power restore, then memory is
assumed not to contain valid data. In this case, a PSW status of
'00008000' (wait bit only) and location counter of °*O00FFFFFE®' are
loaded and displayed on the system console terminal. Manual
intervention is required tc restart the processor. The Memory
Voltage Failure (MVF) indication is reset in this case. MVF is
discussed under the section "If the LSU is Enabled."

If the back-up voltages to memory were maintained, the data saved
in the povwer fail save area by the automatic shutdown procedure
is relocaded.

If the data in memory at physical address X°'000028' indicates
that the ©processor was in console mode when power failed, the
reloaded PSW is displayed, and communication with the systenm
console terminal resumes.

29-747 ROO 4/81 10-25

If the processor was not in ccnsole mode when power failed, bit
18 of the relcaded PSW is testeds If the bit is set, a machine
malfunction interrupt occurs.

If bit 18 of the reloaded EFESW 1is =zero, program execution is
resumed using the reloaded PSW. Note that the state of the wait
bit (bit 16) of the PSW 1is tested before executing any
instruction.

NOTE

Data in the Memory Address Translator
and Selector Channel control registers
and Writable Ccntrol Store is volatile,
and must te considered invalid
following any power fail/restore
sequence.

10.5.4.2.2 If the LSU is Enabled

After the FAULT lamp is turned off, the program in the LSU is
loaded, and control is transferred to it, using the PSW specified
in the program. If the memory start address is greater than the
memory end address specified for the LSU program, the program is
not loaded, and the console mcde is entered.

R Memory Voltage Failure (MVF) indication is available to the
processor if memory voltages are not maintained within margins
between shutdown and power restore. MVF is reset when the
console mode is entered, or 1is reset when the Reset Memory
Voltage Failure (RMVF) instruction is executed.,

If MVF 1is indicated following power restore, it is assumed that
memory does not contain an executable programe. The MVF
indicaticn is retained until reset as described above, even if
multiple shutdown/power restore seguences occur. Software loaded
via the optional LSU should execute the RMVF instruction once the
load is complete and all interrupt new PSWs have been
established. Froper use of the RMVF instruction prevents a
potential runaway condition in the event of multiple power
failures.

10.5.4.3 Noncorrectable Memory Error

During write operations to memory, an Error Correcting Code (ECC)
is generated. This code enables the memory system to correct any
single bit error detected on a subsequent read operation in each
fullwerd o¢f memory. If the coperation is only a byte or halfword
write to memory, the memory system reads and updates the error
correcting code for the fullwcrd of memory that contains the byte
or halfword that is being written.

10-26 29-747 ROO 4/81

Fach time data is read from memory, the error correcting code is
re-created and compared to the code generated when data was last
written to any rart of the fullword memory location. If a data
error is detected, and the error is a single bit error, it is
corrected transparent to the processor. If, however, a multiple
bit error is detected, a memory malfunction fault is generated,
since multiple bit errors cannot be corrected.

Note that data with three or more bits in error may not result in
a fault. Detection of any error causes a bit toc be set 1in the
optional error 1logger for subsequent readout wusing the REL
~instruction.

If PSW bit 18 is 2zero when the error occurs, the error |is
ignored, but is logged in the cptional error logger.

If PSW bit 18 is set, occurrence of a noncorrectable memory error
causes the current instruction (or the current iteration of an
interruptible instruction) tc be aborted immediately, and a
machine malfunction interrurt occurs. Bit 2, 3, or 4 of the
machine malfunction status word at physical address X'000040°' is
set to indicate the reason for the interrupt. The progran
address used for the memory access 1is stored in the machine
malfunction address word at physical address X'000044°.

If +the error occurs on a data fetch while attempting to load the
general registers using the LM instruction, the effective second
operand address calculated at the start of the LM instruction is
stored in the LM effective address word at physical address
X*00002C*. This data allows the instruction to be simulated in
the event specified index registers were modified.

If the error occurs while fetching an instruction, the o0ld PSW
location counter, presented to the interrupt service routine,
points to the first halfword cf the instruction being fetched.

If the error occurs during an auto driver channel operation,
registers 0 and 1 of the set indicated by the old PSW presented
to the interrupt service routine contain the PSW for the
instruction interrupted by the I/0 interrupt that activated the
channel. Register 4 of the set indicated contains the address of
the CCB that was being executed when the error occurred.

Since the error correcting ccde is maintained on a fullword
basis, if a multiple bit error is detected when a halfword or
byte of a fullword is read, it is not possible to determine which
bits are in error. Therefore, a reference to any portion of a
fullword that contains multiple bit errors may cause a memory
malfunction, even though the incorrect bits might not be in the
portion of the fullword being accessed. (References to memory
made by 1look-ahead buffers or caches do not cause memory
malfunction interrupts until the fullword that is in error is
actually used by the currently executing instruction.)

29-747 ROO 4/81 10-27

10.5.4.4 Nonconfigured Mencry Address

The processor tests the physical address used for each memory
access, if PSW bit 18 is set. When access to memory assigned to
a memory controller physically not in the system is attempted, a
machine malfunction interrupt occurse. The current instruction
(or the current iteration of an interruptible instruction) is
immediately aborted. Bit 5, 6, or 7 of the machine malfunction
status word at physical address X'000040° is set to indicate the
reason for the interrupt. The program address used for the
memory access is stored in the machine malfunction address word
at physical address X'000044°.

If the error cccurs on a data fetch while attempting to load the
general registers using the LN instruction, the effective second
operand address calculated at the start of the LM instruction is
stored in the LM effective address word at physical address
X*00002C*. This data allows the instruction to be simulated in
the event specified index registers were modified.

If the error occurs while fetching an instruction, the o1ld PSW
location counter, presented to the interrupt service routine,
points to the first halfword cf the instruction being fetched.

If the error occurs during an auto driver channel operation,
registers 0 and 1 of the set indicated by the old PSW presented
to the interrupt service routine contain the PSW for the
instruction interrupted by the I/O interrupt that activated the
channel. Register 4 of the indicated set contains the address of
the CCB that was being executed when the error occurred.

10-28 29-747 ROO 4/81

10.5.4.,5 Shared Memory Power.Fail Detect (Optional)

This interrupt can occur only if the processor is equipped Wwith
the MOS shared memory option. Shared memory power fail detect
occurs when the early power failure sensor in the shared nmemory
power supply detects a low vcltage. Each processor attached to
the shared memory system is interrupted.

At the end of execution of the current instruction or the current
jteration of the current 4interruptible instruction, a machine
malfunction interrupt is taken if PSW bit 18 is set.

Following shared memory power fail detect, software has one
millisecond before the MOS shared memory system enters a
power-down or stand-by mode. During this time, any necessary
housekeeping functions may be performed by system software.

There is no mechanism to indicate to the processor that shared
memory power has been restored; however, the following sequence
may be performed to test for shared memory power:

1. Store a fullword data pattern in a fullword lccation in
shared memory. This pattern may be any data other than
all zeros or all ones.

2« Store a different data pattern in the
next-higher-addressed fullvword location in shared
MEMOLYe. :

3. Compare the contents of the first fullword location with
the data pattern stored by step 1. If no error \is
indicated and the patterns are equal, power is applied
to the shared memory system.

Note that if the MOS shared memory back-up supply voltages are
maintained within margins between power fail and power restore,
data in the shared memory is retained during the power
fail/restore sequence. This can be determined by software means.
There is no mechanism, however, to indicate this fact to the
processor. If the stand-by vcltages were not maintained within
margins, the data is lost. In this case, software in the master
processor must store a fullword data rattern in each fullword of
shared memory, 4initializing the ECC bits to prevent subsequent
spuriocus noncorrectable memory error indications.

An attempt to fetch an instruction or data from shared memory,
while the memory is in a power-down or stand-by state, results in
a noncorrectable memory error or nonconfigured memory address
faulto

29-747 ROO 4/81 10-29

10.5.5 TInput/Cutput Device (I/0) Interrupts

1054541 Priority levels

Interrupt requests from I/0 devices may occur on any of four
priority 1levels. Level 0 is the highest priority level; level 3
is the 1lowest priority level. Acknowledgement of interrupt
requests on the various pricrity levels is enabled by PSW bits 17
and 20, as shown in the following table:

PSW BIT 17 PSW BIT 2¢ MEANING
0 0 All levels disabled
0 1 Higher priority levels enabled
1 0 All priority levels enabled
1 1 Current and higher priority

levels enabled

A unique register set is selected for I/0 interrupt requests
acknowledged on each pricrity level. For example, when an
interrupt request is acknowledged at priority level 3, register
set 3 1is selected by the rrocessor for handling the interrupt
request. If the request results in entry to a software interrupt
service routine, register set 3 is selected by the PSW in effect
at the time the routine is entered, and information pertaining to
the interrupt is contained in registers 0 to 3 or 0 to 4 of that
sete.

The current priority level i:s determined by bits 24:27 (the
register select field) of the current PSW. For example, if set
3 is currently selected, levels 2, 1, and 0 are higher priority
levels, and level 3 is the current priority level. If PSW bit 17
is zero and PSW bit 20 is set, an I/O interrupt request occurring
on level 2, 1, or 0 is ackncwledged, but a request occurring on
level 3 is not acknowledged.

In this example, if PSW bits 17 and 20 are both set (the PSW
status is X'4830°'), the interrupt request on level 3 is also
acknowledged.

If a register set other than 0, 1, 2, or 3 is selected by the
current PSW, all I/O interrupt requests are considered to be
higher-priority requests, and will be acknowledged if either ©PSWH
bit 17 or bit 20 is set.

If the current PSW selects register set 4, 5, 6, or 15, all
interrupt levels are considered to be higher priority levels.

10-30 29-747 ROO u/81

Enabling of interrupts on the various levels is shown in detail
in Table 10-1. When an interrupt request occurs, but is not
acknowledged by the processor, the request remains gqueued until
one of the following occurs:

1« The interrupt request is acknowledged by the processor
when enabled by the current PSW.
when enabled by the current ESW.

2. The 4interrupt request 1is programmed reset by the
software.

3. System initialization occurs.

When the processor acknowledges an I/0 interrupt request, the
result may be either an auto driver channel operation, or an
immediate interrupt. In either case, the register set associated
with the priority level, on which the interrupt is acknowledged,
is used in processing the interrupte.

For further information on prcgramming a device interrupt request
reset, refer to the programming manual for the specific device.
This feature is not available for all I/0 devices.

10.5.5.2 Immediate Interrupt - Auto Lriver Channel Operation
An interrupt request by an I/0 device at one of the four
interrupt priority 1levels is acknowledged only when interrupts

are enabled for that level, as defined by the status of PSW bits
17 and 20, and the selected register set.

29-747 ROO u4/81 v 10-31

TABLE 10-1 INTERRUPT PRICRITY LEVEL/REGISTER SET SUMMARY

PSH CURRENT
BITS REGISTER SET EXTERNAL INTERRUPT LEVEL ENABLED

17 20 LEVEL 0 LEVEL 1 LEVEL 2 LEVEL 3
0 0 ANY SET NO NG NO NO
0 1 0 NO NO NO NO
0 1 1 YES NC NO NO
0 1 2 YES YES NO NO
0 1 3 YES YES YES NO
0 1 4 YES YES YES YES
0 1 5 YES YES YES YES
o 1 6 YES YES YES YES
0 1 F YES YES YES YES
1 0 ANY SET YES YES YES YES
1 1 0 YES NC NO NO
1 1 1 YES YES NO NO
1 1 2 YES YES YES NO
1 1 3 YES YES YES YES
1 1 Y YES YES YES YES
1 1 5 YES YES YES YES
1 1 6 YES ©YES YES YES
1 1 F YES YES YES YES

10-32 29-747 ROO 4/81

The processor recognizes I/C interrupts between the execution of
instructions, or at the end of an iteration of an interruptible
instruction. Khen an I/0 interrupt is recognized, the following
actions occur: '

Te

2.

3.

4.

The current PSW is saved in registers 0 and 1 of the new
set selected by the interrupt level. (PSW bits 0:31 are
saved in register 0 and bits 32:63 in register 1.)

The PSW status vword 1is loaded ‘with the value
Y*000028N0°', where N specifies the new register set.
This status enables higher 1level 1I/0 interrupts and
machine malfunction interrupts. Also note that memory
address translation is disabled.

The I/0 interrupt request is acknowledged and reset.
The address of the interrupting device is placed in
register 2 of the selected set. The status byte fron
the interrupting device replaces the contents of
register 3. The device number and status are placed in
the least significant bit positions in the register; the
most significant bits are forced to zero. The four
least significant bits of the status of the interrupting
device are placed in the condition code.

The device number is added twice to X'0000D0’ (the start
of the interrupt service pointer table) to obtain the
address within the table that corresponds to the
interrupting device. The contents of this halfword of
memory are fetched and examined to see if the interrupt
is to be treated as an immediate interrupt or as an auto
driver channel operation. If bit 15 of the halfword is
zero, an immediate interrupt is required. If bit 15 of
the halfword is one (the halfword is odd), an auto
driver channel operation is required. If the interrupt
is an immediate interrupt, the value in the table
becomes the locaticn counter portion of the current PSW.
If the interrupt 4is an auto driver channel operation,
then the 1least significant bit of the halfword is
replaced by zero and the resulting value is placed in
register 4 of the selected set. The auto driver channel
is then activated.

29-747 ROO u4/81 10-33

10.5.6 Simulated Interrupt

The simulated interrupt results from executing a Simulate
Interrupt (SINT) instruction when PSW bit 23 is zero. SINT is a
privileged instruction, and may not be executed when PSW bit 23
is set.

Execution of the SINT instruction causes the processor to
simulate acknowledgement of an enabled I/0 interrupt request from
an external device. The device address and interrupt 1level for
the simulated interrupt are srecified by the operands of the SINT
instruction.

The states of PSW bits 17 and 20, normally used to enable and
disable the various I/0 interrupt levels, are ignored by the SINT
instruction. For purposes of the simulated interrupt, 1I/0
interrupts at all priority levels are assumed to be enabled. No
pending device interrupt request is actually acknowledged by the
Processor as a result of executing the SINT instruction. With
the exception of the differences described here, the simulated
interrupt request is handled as detailed in Section 10.5.5.

CAUTION

DUE' TC THE FACT THAT THE SINT INSTRUCTION
IGNORES THE STATES OF PSW BITS 17 AND 20, IT
SHOULD BE USED CAREFULLY BY PROGRAMS WHICH
RUN IN REGISTER SETS 0, 1, 2, OR 3. FOR
EXAMPLE, IF A PROGRAM EXECUTING IN REGISTER
SET 2 ENABLES ONLY HIGHER~LEVEL INTERRUPTS,
DATA IN THE REGISTERS OF SET 2 ARE NOT
NORMALLY SUBJECT TO CHANGE AS A RESULT OF AN
I70 INTERRUPT. HOWEVER, IF THE PROGRAM
EXECUTING IN REGISTER SET 2 DOES A SINT
CAUSING TINTERRUPT LEVEL 3 (AND REGISTER SET
3) TO BE SELECTED, THE NEW PSW LOADED BY THE
PROCESSOR CAUSES INTERRUPTS AT LEVELS 2, 1,
AND O TO BE ENABLED. IF AN 1I/0 INTERRUPT
REQUEST AT LEVEL 2 OCCURRED, IT WOULD BE
HONORED, CAUSING REGISTERS 0, 1, 2, AND 3
(AND FERHAPS 4) OF SET 2 TO BE OVERWRITTEN.

IF THESE REGISTERS ARE NOT STORED BEFORE THE
SINT INSTRUCTION IS EXECUTED, DATA 1IN THE
REGISTERS IS LOST, AND SYSTEM SOFTWARE COULD
BE LEFT IN AN INDETERMINATE STATE.

The simulated interrupt is a software interrupt.

10-34 29-747 ROO 4/81

10.5.7 System CQueue Service (SQS) Interrupt

When any of the instructions 1listed below is executed, as the
instruction completes, bit 22 of the new P3W loaded by the
instruction is tested. If the bit is zero, the SQS interrupt is
disabled, and program execution continues according to the new
PSW lcaded.

MNEMONIC MEANING

EPSR Exchange Program Status Register
LDPS Load Process State

LPSHW Load Program Status Word

LPSHR Load Program Status Word Register

If bit 22 of the new PSW loaded by any of these instructions 1is
set, the state of the system queue (wvhose physical address is
found at physical location X°'000080°') is tested. The system
gqueue is assumed to be maintained according to the circular 1list
format. The number used field is fetched from the list header.
If this field contains zeroc, the system queue is assumed to be
empty, and program execution continues according to the new PSW
loaded.

If the number used field for the system queue is not zero when it
is tested, the following actions are taken to cause an SQS
interrupt:

1. The current PSW, which was loaded by execution of one of
the listed instructicns, is stored in registers 14 and
15 of the set selected by the SQS interrupt new PSHW
found in memory at physical address X'000088°.

2. Register 13 of the selected set is 1loaded with the
address of the systen queue.

3. The SQS interrupt new PSW Dbecomes the durrent PSW.

If the SQS interrupt occurs as a result of executing an EPSR
instruction, the o0ld PSW 1location counter presented to the
interrupt service routine in register 15 points to the
instruction following the EPSR instruction. If the interrupt
occurs as a result of executing any of the other 1listed
instructions, the old PSW 1location counter contains the value
loaded by the instruction causing the interrupt.

Items may be added to the system queue while the SQS interrupt is
enabled or disabled. The Add to Top of List (ATL) and RAdd to
Bottom of 1list (ABL) instructions are normally used for this
purpose. The fact that the items have been added to the system
queue is recorded in the 1list header. Only when a new PSW is
loaded which enables the SQS interrupt, is the state of the queue
tested, and an interrupt allowed.

29-747 ROO 4/81 10-35

The system queue has a maximunm size, as determined by the list
header established by systen software. If an attempt is made to
add an item to the queue when it is already full, the data may be
lost. This could result in system software being 1left in an
indeterminate state.

Note that the address of the system queue contained in the systenm
queue pointer must be aligned to a fullvord boundary.

See Section 10.6 on Status Switching Instructions for a
description of the EPSR, LDPS, LPSW, and LPSWR instructions.

The SQS interrupt is a deferred synchronous software interrupt.

10.5.8 Supervisor Call (SVC) Interrupt

The Supervisor Call (SVC) interrupt occurs when the Svce
instruction is executed. This instruction and the resulting
interrupt provide a means for any program ¢to communicate with
system software.

When the SVC instruction is executed, the processor takes the
following actions:

1« The current PSW is saved in registers 14 and 15 of the
set selected by the SVC interrupt new PSW found in
memory at physical address X'000098°'.

2. Register 13 of the celected set 1is loaded with the
effective second operand address calculated for the SVC
instruction executed. This is normally the address of
an SVC parameter block, aligned to a fullword boundary.

3. The SVC interrupt new PSW becomes the current PSW, with
a new Jlocation counter value chosen from the ordered
list of halfwords at physical location X'9C*.

The ©1d PSW location counter Fresented to the interrupt service
routine in register 15 pocints to the instruction following the
SVC instruction.

The SVC interrupt is a software interrupt and cannot be disabled.

10-36 29-747 ROO 4/81

1059 System Breakpoint Interrupt

A system breakpoint results if a Breakpoint (BRK) instruction is
executed when PSW bit 23 1is zero. BRK is a privileged
instruction, and may not be executed when PSW bit 23 is set.

Execution of the BRK instruction causes the processor to enter
the <console nmode. In this mode, the processor is dedicated to
communication with the systen console terminal. Various
registers and memory locaticns may be examined or modified by the
user from the system console terminal while in this mode.

When the BRK instruction is executed, no registers or memory
locations are mcdified. The FSW status and location counter are
not modified by <the BRK instruction. The location counter, at
entry to the console mode, roints to the BRK instruction.

When the run mcde is entered from the console mode, PSW bit 16 is
forced to zero, so that an instruction is fetched and executed.
If the run mode is entered immediately after a BRK instruction is
executed, the same BRK 4instruction results in another systen
breakroint. :

The system breakpoint interrurt is a software interrupt.

10510 Arithmetic Fault Interrupt

The arithmetic fault interrupt results from either a fixed-point
or a floating-point arithmetic operation, when the magnitude of
the result is too large to be represented within the required
number of Dbits. pPivision by zero is a special case and always
results in an arithmetic fault interrupt. Interrupts for any of
these reasons cannot be disabled.

Floating-point underflow occurs when the normalized result of a
floating-point load, conversion, or other arithmetic operation is
‘not zero, but is so small that it cannot be represented within
the floating-point number system defined for the processor.

If PSW bit 19 is zero when floating-point underflow occurs, no
arithmetic fault interrupt results. In this case, the result of
the operation is set to "true zero". This means that every blit
of the result is forced to zerc as the result is copied to its
destination. If PSW bit 19 is set when floating-point underflow
occurs, an arithmetic fault interrupt does occur.

29-747 ROO u4/81 10-37

When an arithmetic fault interrupt occurs, the following actions
are taken:

1« The instruction causing the interrupt is aborted before
the data in any register or memory location is modified.

2. The current PSW is stored in registers 14 and 15 of the
set selected by the arithmetic fault interrupt new PSW
found in memory at physical address X'000048°.

3. Register 13 of the selected set is loaded with a code to
indicate the reason for the interrupt:

COLE REASON FOR INTERRUPT

0 Fixed-point division by zero

1 Fixed-point quotient overflow

2 Flcating-point division by zero

3 Flcating-point exponent underflow
q Flcating-point exponent overflow

4. Register 12 of the =selected set is 1loaded with the
address of +the instruction following the instruction
causing the interrupt.

€+ The arithmetic fault interiupt new PSW becomes the
current PSW.

The old PSW location counter presented to the interrupt service
routine in register 15 points to the instruction that caused the
interrupt.

106 STATUS SWITCHING INSTRUCTIONS

Status switching instructions provide for software control of the
system's interrupt structure. They also allow user-level
programs to communicate efficiently with control software. All
status switching instructions, except the supervisor call
instruction, are privileged cperations:; therefore, all interrupt
handling routines must run in the superviscr mode.

The status switching instructions described in this section are:

10.6+.1 LPSW Load Program Status Word

10642 LPSHR Load Program Status Word Register
10.6.3 EEFSR Exchange Program Status Register
10e6s4 SINT Simulate Interrupt

10.6.5 SVC Supervisor Call

10.6.6 BRK System Breakpoint i

10.6.7 PSF Privileged System Function

10-38 29-747 ROO 4/81

10.6.1 Load Program Status Word (LPSW)

Assembler Notation Op~Code Format
LPSW D2(X2) c2 RX1,RX2
LPSH A2(FX2,SX2) c2 ‘ RX3
Operation

The 64-bit second operand replaces the current PSW.

Condition Code

Determined by the new PSW (bits 28:31).

Programming Notes

The R1 field of this instructicn must be zero.

The second operand must be aligned £0'a fullword boundary.
This instruction is a privileged operation.

This instruction may be used to change register sets. The new
set becomes active for execution of the next instructione.

If bit 22 of the new PSW is set, the state of the system queue is
tested. If +the queue is nonempty, a System Queue Service (SQS)
interrupt occurs. 1In this case, the newly loaded PSW is saved as
the old PSW when the SQS interrupt occurs.

29-747 ROO 4/81 ' 10-39

10.6.2 Load Program Status Word Register (LPSWR)

Assembler Notation Op-Code Format
LPSHR R2R2 18 RR
Operation

The contents of the register specified by R2 replace bits 0:31 of
the current PSW. The contents of the register specified by R2+1
replace bits 32:63 of the current PSW.

Condition Code

Determined by the new PSW (bits 28:31).

Programming Notes
The R1 field of this instruction must be zero.

The R2 field of this instruction must specify an even-numbered
register.

This instruction may be used to change register sets. The new
set becomes active for execution of the next instruction.

This instruction is a privileged operation.
If bit 22 of the new PSW is set, the state of the system queue is
tested. If the queue is nonempty, a System Queue Service (SQS)

interrupt occurs. In this case, the newly loaded PSW is saved as
the old PSW when the SQS interrupt occurse.

10-40 29-747 ROO 4/81

10.6.3 Exchange Program Status Register (EPSR)

Assembler Notation Op-Code Format
EPSR R1,R2 ‘ 95 RR
Cperation

Bits 0:31 of the current PSW replace the contents of the register
specified by R1. The contents of the register specified by R2
then replace bits 0:31 of the current PSW.

Condition Code

Determined by the new PSW (bits 28:31).

Programming Notes

R1 and R2 may specify any general-purpose registers.

If R1 and R2 specify the same register, bits 0:31 of the current
PSW are copied into the register specified by R2, but otherwise
remain unchanged.

This instruction may be used tc change register sets. The new
set becomes active for execution of the next instruction.

This instruction is a privileged operation.
If bit 22 of the new PSW is set, the state of the system gueue is
tested. If the queue is nonempty, a System Queue Service (5Q5)

interrupt occcurs. In this case, the newly loaded PSW is saved as
the old PSW when the SQS interrupt occurs.

29-747 ROO u4/81 10-41

10.6.4 Simulate Interrupt (SINT)

Assembler Notation Or-Code Format
SINT I2(X2) E2 RI1
SINT R1,I12(X2) E2 RI1
Operation

The least significant 10 bits of the second operand are presented
to the interrupt handler as a device number. The device number
is wused to index into the interrupt service pointer table,
simulating an interrupt request from an external device. The
result is either an immediate interrupt or an auto driver channel
operation. ' '

Condition Code

Determined by the status of the addressed device, in the case of
the immediate interrupt, or set by the auto driver channel at
termination.

Programming Notes

If the R1 field of this instruction is not specified or contains
zero, it 1= assumed that an interrupt from level 0 is required,
and register set 0 is selected.

If the R1 field of the instruction is nonzero, the 1least
significant 4 bits of the register specified by R1 designate the
nevw register set, and consequently the new interrrupt level.

This instruction is a privileged operation.

This instruction causes the processor to load registers 0 through
3, or 0 through 4, of the new set as for a real interrupt
requeste. '

During the execution of this instruction, the device is addressed
and the status byte is returned in register 3 of the new set.

If the specified device does not respond to the status request,
register 3 of the new set ccntains X'00000004°' due to time-out.
If an immediate interrupt is being simulated, the V flag is also
set in the condition code as a result of the time-out.

The SINT instruction does nct cause any pending interrupt to be
acknowledged.

10-42 ‘ 29-747 ROO u4/81

10.6.5 Supervisor Call (SVC)

Assembler Notation Oor-Code Format
SVC N,D2(X2) E1 RX1, RX2
sSvVe N,A2(FX2,5X2) E1 RX3
Operation

The second operand (normally the program address of an SVC
parameter block) replaces Lits 8:31 of register 13 of the set
designated by the supervisor call new PSW status. Bits 0:7 of
this register are forced to zero. The current PSW replaces the
contents of registers 14 and 15 of that set. The fullword
guantity located at X'000098' in memory replaces bits 0:31 of the
current PSW. The U4-b»it N field 4is doubled and added with
X'00009C’*. The halfword gquantity located at the resultant
address becomes the current lccation counter.

Condition Code

Determined by the new PSW (kits 28:31).

Programming Note

This instruction provides a means to switch from the protect mode
to the superviscr mode. It is used by a program running under an
operating system to initiate certain functions in the supervisor
program. The second operand address is normally a pointer to the
memcry location of parameters needed by the supervisor program to
perform the specified function. Such a pointer must indicate a
parameter block aligned to a fullword boundary. The type of
supervisor call 1is specified in the N field of the instruction.
Sixteen different calls are provided for. Return from the
supervisor is made by executing an LPSWR instruction specifying
the stored o0ld FSW in registers 14 and 15 of the set selected by
the Supervisor Call interruprt new PSW (LPSWR R14).

29-747 ROO u4/81 10-43

10.6.6 System Breakpoint (ERK)

Assembler Notation _ Op~-Code
BRK 88
Operation

The BRK instruction causes the processor to
mode.

Programming Notes
The location counter is not incremented.

This instruction is a privileged instruction.

10-44

Format

SF

enter the console

29-747 ROO 4/81

10.6.7 Privileged System Function (PSF)

Assembler Notation Op-Code Format
PSF N,D2(X2) DF RX1,RX2
PSF N,A2(FX2,5X2) LF RX3
Operation

The PSF instruction may perform any one of 16 functions, as
specified by the value contained in the N field. The assembler
recognizes extended mnemonics which cause the proper value to Dbe
specified in the N field of this instruction. The nature of the
specified function may vary from processor to Processor. The
following paragraphs detail PSF orerations performed by this
processor.

EXTENDED
PSF
VALUE OF N MNEMONIC MEANING
0 REL Read Error Logger
1 LESTD lcad Process Segment Table Descriptor
z LSSTD Lcad Shared Segment Table Descriptor
3 STPS Store Process State
u LLCPS Lcad Process State
£ ISSV Save Interruptible State
6 ISRST Restore Interruptible State
7 XSTB Store Byte, no ECC
8 RMVF Reset Memory Voltage Fallure

Programming Notes
This instruction is a privileged instruction.
PSF functions selected by values of N other than those 1listed

above are undefined for this processor and result in an illegal
instruction interrurt.

29-747 ROO 4/81 : 10-45

624

10.6.7.1 Read Error Logger (EEL)

Assembler Notation Orp-Code Format
REL R2 LFO RX 1

(see programming notes)
Operation

The register specified by R2 contains an error logger address as
shown below. If bit 19 of the specified error logger address is
zerc, the 16 error logger bits at this address are read. These
bits <correspond to memory data errors detected since the error
logger bits at that address were last read.

If bit 19 of the error logger address is set, the error 1logger
status register is read. PRit 16 of this data is one if errors
were detected since the status was last read; otherwise, bit 16
of this data is zero.

Data read from the error logger replaces the contents of the
register specified by R2+1., Bit 16 of the data is copied to the
L flag in the condition code. Once the data has been read fron
the error logger location, data at that location is set to zero.

0 78 910 13 14 1516 18 19 20 31

RESERVED B M C S X RESERVED
BITS MNEMONIC USE
00:07 Reserved Must be zero.
08:13 M Selects one 256 kb memory arraye.
14:15 C Selects one of the four columns within the

memory arraye.
16218 S A syndrome code, modulo 8. The 16 error
logger tits at a corresponding syndrone
address are read if the X bit is zero.
19 X If this it is set in the error 1logger
address, error logger status is read. The C
and S fields are ignored in this case.

20: 31 Reserved Must be zero.

10-46 29-747 ROO u4/81

e23

The format of the data read from the error logger is shown below.
S(n) is the bit in the error logger at the address corresponding
to the srecified syndrome ccde plus n.

0 15 16 31

0 Sg....S1Sg

' There may be multiple error lcggers in the systen, each unigquely

accessible via the M field of the REL error logger address. The
following paragraphs describe the relationship between an area of
memory and the associated errcr logger.

There is an error logger for each memory bank. The bank also
consists of a bank controller and at least one main memory
storage module (STM). For this processor, there is only one bank
within a given memory block. The memory block is noninterleaved.

The lowest-addressed byte within a memory block is located on a
1-megabyte boundarye. There may be more than one memory block
within the system. The primary (lowest-addressed) memory block
is 1labeled Block 0. Memory within the block is configurable in
minimum increments of 256 kt. In a system with both 1local and
shared memory, local memory occupies low address space. Local
memory cannot occupy the same memory block as shared memorye.

Condition Code (after reading error logger status)

C|VI]|G]{L
X|X|X|O No new error bits in selected bank
X[X | X 1 At least cne new error bit in selected bank

29-747 ROO u4/81 ' 10-47

Programming Notes
This instruction is a privileged instruction.

The R2 field of this instruction must specify an even-numbered
register.

Reading error logger status sets the error bit to zero, but does
not necessarily zero the error logger bits at any syndrome
address. ‘

REL is assembled as an RX1 format instruction, in which the
displacement field is always 2ero.

REL is an extended PSF mnemonic.

If the error logger is not equipped, undefined data 1is returned
by this instruction.

Refer to the Processor Maintenance Manual for further details of
error logger operation.

PROGRAMMING EXAMPLE: REL

In order to determine the number and location of error loggers in
the system, it is first hecessary to zero the error bit in each
possible error logger status register. The following sequence
requires that location MEMTOP contain the address of the 1last
byte in memory. For the examrle, MEMTOP contains Y'003FFFFF' for
a 4 Mb memory configuration.

Location Contains Assembler Notation Comments

1000 €820 0010 LHI R2,X'10° BANK INCREMENT

1004 C800 1000 LHI RO,X*1000" X BIT, LOGGER 0 BANK 0

1008 DFQO0 0000 LABR1 REL RO READ BANK 0 STATUS REG

100C 0AO2 AR RO,R2 ADVANCE TO BANK 1

100E LF00 0000 REL RO READ BANK 1 STATUS REG

1012 OAO2 . AR RO,R2 ADVANCE TO BANK 2

1014 LCF00 0000 REL RO READ BANK 2 STATUS REG

1018 OAO02 AR RO,R2 ADVANCE TO BANK 3

101A DF0O0 0000 REL RD READ BANK 3 STATUS REG

101E FAOO O0OOF FFDO AI RO,Y'FFFDO®* ADVANCE TO NEXT 1 MB
BOUNDARY, @2 BANK 0

1024 5500 1090 CL RO,MENTOP PAST TOP OF PHYS MEMORY ?

1028 4280 1008 BL LAB1 BRANCH: NO

At this time, the error logger error status bits are zero for all
loggers associated with memcry from address X'000000° through the
address value contained in MEMTOP.

10-48 29-747 ROO Uu4/81

The following example shows hcw to create a new error indication
in an error logger. On entry, R6 contains the running PSW, with
bit 18 forced to zero. This ESW is used to allow errors to be
logged without causing a machine malfunction interrupt.

Location Contains Assembler Notation Comments

1200 5821 0000 L R2,0(R1) GET MEMORY DATA FULLWORD

1204 0802 LR RO,R2 COPY FOR XSTB

1206 C700 0001 XHI RO, 1 CHANGE LS BIT

120A LF71 0003 XSTE 3(R1) STORE 1S BYTE OF FULLWORD
WITH SINGLE-BIT ERROR

120E 9556 EPSR RS,R6 ZERO PSW BIT 18 (MNMF)

1210 5831 0000 L R3,0(R1) READ,CREATE ERROR

1214 9565 EPSR R6,RS RESTORE ENTRY PSW

1216 5020 0000 ST . R2,0(R1) RESTORE MEMORY DATA

If the preceding sequence is used with a program address
corresponding to Bank 0 of the memory block under test, and 1if
the error is shown also in Bank 3, the block is not interleaved.
If the error is not shown in PBank 3, but is shown in Bank 1, then
the block is 2-way interleaved; otherwise, the block 1is UH-way
interleaved. Note that once the error logger status is read and
the error is shown to have been detected, the status bit is set
to zero. Thie requires that the error be re-created before
continuing the sequence. A similar technique. may be used to
determine the amount of memcry in each bank of an error logger.
The error is created at the lcwest 1 Mb Dboundary in the bank.
The next 1 Mb boundary of the bank is tested for the error. If
the error bit is set, that address space belongs to the error
logger being interrogated. When the error disappears, a new
memory block may have been entered. Note that "address wrap" may
occur if an address larger than the configured memory size is
used. This may be detected by interrogating the logger at the
same bank of Block 0.

29-747 ROO 4/81 : ' 10-49

10.6+.7.2 Load Process Segment Table Descriptor (LPSTD)

Assembler Notation Or-Code Format
LPSTD D2(X2) CF1 RX1,RX2
LPSTD A2(FX2,SX2) DF1 RX3
Operation

The second operand address points to a fullword Process Segment
Table Descriptor (PSTD), which has the following format:

2231

01 2 14 15 31
SEGMENT TABLE SiZE SEGMENT TABLE ADDRESS
Bits 0:1 Are reserved, and must be zero.
Bits 2:14 Contain the number of doubleword entries in the

Process Segment Table, minus one. This number
defines the Maximum Valid Program Address (MVPA) for
the executing program (process).

Bits 15:31 Contain the absolute address of the Process Segment
Table in main memory, divided by 128.

The data in the Process Segment Table is used in translation of
program addresses from program to phyesical address space when PSW
bit 21 is set.
Condition Code

Unchanged

Programming Notes
The orerand address must be aligned to a fullword boundary.

The LPSTD instruction may be executed regardless of the state of
PSW bit 21.

The new Process Segment Table is available for execution of the .
next instruction which is executed with PSHW bit 21 set.

This instruction is a privileged instruction.

LPSTD is an extended PSF mnemonic.

10-50 29-747 ROO u4/81

10.6.7.3 Load Shared Segment Table Descriptor (LSSTD)

Assembler Notation Ogp~-Code Format
LSSTD D2(X2) , DF2 ‘ RX1,RX2
LSSTD A2(FX2,5X2) LF2 RX3
Operaticn

The second operand address points to a fullword Shared Segment
Table Descriptor (SSTD), which has the following format:

2231

0 1 2 14 15 31
SEGMENT TABLE SIZE SEGMENT TABLE ADDRESS
Bits 0:1 Are reserved, and must be zero.
Bits 2:14 Contain the number of doubleword entries in the

Shared Segment Table, minus one.

Bits 15:31 Contain the absolute address of the Shared Segment
Table in main memory, divided by 128.

The data in the Shared Segment Table is used in translation of
program addresses from program to physical address space when PSW
bit 21 is set, if the Process Segment Table entry specifies that
the segment is shared.

Condition Code

Unchanged

Programming Notes
The operand address must be aligned to a fullword boundary.

The LSSTD instruction may be executed regardless of the state of
PSW bit 21.

The new Shared Segment Table is available for execution of the
next instruction which is executed with PSW bit 21 set.

Following an LSSTD instruction, the Process Segment Table
Descrirtor must be loaded, using the LPSTD or LDPS instruction,
before attempting MAT translation with the newly defined shared
segment table.

This instruction is a privileged instruction.

1.SSTD is an extended PSF mnemcnic.

29-747 ROO 4/81 10-51

10.6.7.4 Store Process State (STPS)

Assembler Notation Or~Code Format
STPS L2(X2) ' LCF3 RX1,RX2
STPS A2(FX2,SX2) DF3 RX3

Operation

The process state, defined by the old PSW in registers 14 and 15
of the current set, is saved in the area of memory whose starting
address 1is specified by the cperand. The area has the following
format:

NORMAL OFFSET (BYTES) STORED DATA
0-7 Process PSW
8-11 Reserved - not used
12-75 Process general registers
76-139 ' Process interruptible state
140-235 Single- and double-precision

floating-point registers
Condition Code

Unchanged

Programming Notes

The operand address must be aligned to a fullword boundary.
This ;nstruction is a privileged instruction.

STPS is an extended PSF mnemonic.

The process general register set is specified by the ol1d PSW in
register 14 when this instruction is executed.

If bit 14 of the process PSW in register 14 is zero, the process
interruptible state is not saved, and the save area is compacted
accordingly. In this case, the process' floating-point registers
are saved beginning at an offset of 76 bytes from the specified
operand address.

If bit 13 of the process PSH in register 14 is set, or if the
processor is not equipped with floating-point registers, then
floating-point registers are nct saved, and the save area is
compacted accordingly.

10-52 29-747 ROO 4/81

10.6.7.5 load Process State (LDPS)

Assembler Notation Ogp-Code Format
LDPS D2(X2) LF4 RX1,RX2
LDPS A2(FX2,S5X2) LCFuy RX3
Operation

. Data from the area of memory specified by the operand replaces
the current process state. The area has the following format:

NORMAL OFFSET (BYTES) STORED DATA
0-7 Process PSH
8-11 Process segment table descriptor
12-75 Process general registers
76-139 Process interruptible state (if

bit 14 in saved PSW is set)

140-235 Process single-precision and
double-precision floating-point
registers (if bit 13 in saved
PSW is zero)

The new PSW at the operand address specifies the general register
set which is loaded from the save area. If bit 14 of the new PSW
is set, the interruptible state is loaded from the save area. If
bit 13 of the new PSW is zero, and the processor is equipped with
floating-point registers, then the single- and double-precision
floating-point registers are loaded from the save area. If bit
21 of the new PSW is set, the Process Segment Table Descriptor is
loaded. Finally, the new PSW at the operand address becomes the
current PSW.

Programming Notes
The operand address must be aligned to a fullword boundary.
This instruction is a privileged instruction.

LDPS is an extended PSF mnemonic.

29-747 ROO 4/81 10-53

If bit 14 of the new PSW is zero, the process interruptible state
is not loaded, and the save area 4is assumed to be compacted
accordingly. In this case, the process®' floating-point registers
are loaded from memory beginning at an offset of 76 bytes fronm
the specified orerand address,

If bit 13 of the new PSW is set, or if the processor is not
equipped with floating-point registers, the process"'
floating-point registers are nct loaded, and the save area is
assumed to be compacted accordingly.

If bit 22 of the new PSW is set, the state of the system queue is
tested before testing the wait bit (bit 16). If the gueue is
nonempty, a System Queue Service (SQS) interrupt occurs. In this
case, the newlyloaded PSW is saved as the old PSW when the SQS
interrupt occurs.

The state of the wait bit (PSW bit 16) is tested before the next
instruction is executed.

The process register set is selected in order to load the process
general registers. All data is fetched from the save area bhefore
the process PSW 1is 1loaded. If a fault occurs during the
execution of this instruction, one or more of the specified
registers may have been modified. The o0ld PSW presented to the
fault interrupt service routine in register 14 may select the
general register set specified by the process PSW in the save
area, but 1is otherwise the same as the PSW in effect when this
instruction is fetched and executed. The o0ld PSW location
counter presented to the interrupt service routine in register 15
points to the LDPS instruction.

16-54 29-747 ROO 4/81

10.6.7.6 Save Interruptible State (ISSV)

Assembler Notation Op-Code Format
ISSY £L2(X2) DF5 RX1,RX2
1SSV A2(F¥X2,SX2) DF5 RX3
Operation

" The ccntents of the interruptible instruction scratchpad
registers are stored in the 16 fullwords of memory starting at
the address specified by the cperand.

Condition Code

Unchanged

Programming Notes
The orerand address must be aligned to & fullword boundarye.
This instruction is a privileged instruction.

ISSV is an extended PSF mneronic.

29-747 ROO 4/81 10-55

10.6+7.7 Restore Interruptible State (ISRST)

Assembler Notation Or-Code Format
ISRST D2(X2) LFe6 RX1,RX2
ISRST A2(FX2,SXx2) LF6 RX3
Operation

The interruptible instruction scratchpad registers are 1loaded
from the 16 fullwords in mepory starting at the address specified
by the operand.
Condition Code

Unchanged

Programming Notes
The operand address must be aligned to a fullword boundary.
This instruction is a privileged instruction.

ISRST is an extended PSF mnemcnic.

10-56 29-747 ROO u4/81

10.6.7.8 Store Byte, No ECC (XSTB)

Assembler Notation Or~-Code Format
XSTB L2(X2) CF7 RX1,RX2
XSTB A2(FX2,SX2) CF7 RX3
Operation

The contents of bits 24:31 of general register 0 are stored in
memory at the address specified by the operand, without changing
the error correction code bits for the specified memory location.

Condition Code

Unchanged

Programming Notes

This instruction is a privileged instruction.

XSTB is an extended PSF mnemonic.

This instruction may be used in conjunction with the read error

logger instruction to test the operation of the Error Correction
Codes (ECC).

29-747 ROO 4/81 10-57

10e6.7.9 Reset Memory Voltage Failure (RMVF)

Assembler Notation Or-Code Format

RMVF DF8 RX1

(See programming notes)
Operaticn
The processor's internal Memory Voltage Failure (MVF) indication
is reset. The MVF indication is set only as a result of the

voltages to main memory not being maintained within acceptable
margins during a povwer fail/restore sequence.

Condition Code

Unchanged

Programming Notes

This instruction should be executed by software loaded via the
optional LSU, after all interrupt new PSWs have been established.
Proper use of this instruction prevents a potential runaway
condition in the event of multiple power fail/restore sequences.
MVF is reset by the processcr when the console mode is entered.
This instruction is a privileged instruction.

RMVF is an extended PSF mnemonic.

RMVF generates an RX1 fcrmat instruction, in which the
displacement field is always zero.

1¢-58 29-747 ROO 4/81

. CHAPTER 11
MEMCRY MANAGEMENT

11«1 INTRODUCTION
The Memory Address Translatcr (MAT) supports:

224 pyte (16 Mbyte) physical address space

224 pyte (16 Mbyte) prcgram address space
Segmentation

Shared segments

Read, write, and execute protection

4 levels of hardvware ccntrolled access to segments

Figure 11-1 provides a block diagram of the data structures
required for various types of translation from program to
physical address space.

Program address space consists of all memory addresses which may
be specified by the executing program. Physical address space
consists of all addresses resulting from translation of progranm
addresses to addresses corresponding to actual memory locations.
The Memory Address Translator (MAT) performs the translation as
detailed in Figure 11-1 and in the following paragraphs.

The segment number field of the program address is used as an
index into the process segment table to select a segment table
entry. The segment table entry points either to a segment or the
shared segment table. (See Figure 11-1.)

If the segment table entry points to the segment, then the offset
selects the desired address relative to the beginning of the
segmente.

If the segment table entry roints to a shared segment table, the
value is used as an index relative to the beginning of the shared
segment table where a segment table entry for the segment can be
found. The segment table entry in the shared segment table
cannot point to a shared segment table.

29-747 ROO u4/81 11-1

1323

PROCESS
SEGMENT TABLE
x SEGMENT

PHYSICAL MEMORY

SEGMENT S T

NUMfER /A . ,/////// 7 OFFlSET.

PROCESS
SEGMENT
TABLE
DESCRIPTOR
REGISTER

A

SHARED
SEGMENT
TABLE
DESCRIPTOR
REGISTER

"\ SEGMENT
TABLE _Zﬁ/
ENTRY ‘ /

VYT . K

DATA

SHARED SEGMENT
SEGMENT | TABLE
NUMBER + ENTRY

R,

SHARED
SEGMENT
TABLE

\ SEGMENT

S = SHARED SEGMENT BIT

11=-2

Figure 11-1 Memcry Address Translation

29-747 ROO u4/81

11.2 ADDRESS SPACE

This processor supports management of a 224 byte physical or
program address space. When physical or program addresses are
manipulated, they are treated as 24-bit quantities. 1In general,
32-bit quantities are available to the processor for address
calculation. When intermediate calculations are complete, bits
0 through 7 of the 32-bit effective result are forced to zero or
discarded, giving a calculated address 24 bits in 1length, which
occupies bits 8 through 31 cf the 32-bit effective result.

In some instances, an address consisting of less than 24 bits may
be used by the processor. Such an address is extended to 24 bits
in length by forcing the higher-order bits to zero.

11.2.1 Physical Address Space

The Memory Address Translator (MAT) is disabled when PSW bit 21
is =zero. When the MAT is disabled, any of the 224 pyte maximum
available memory may be directly accessed. In those cases where
less than 22% Dbytes of nmemory are configured, a machine
malfunction fault condition is likely to occur as a result of
attempting to access memory outside the available limitse.

11«2.2 Program Address Space

The Memory Address Translator (MAT) is disabled when PSW bit 21
is =zero. When enabled or disabled, the MAT may be programmed so
that when translation is enabled, it is possible for a program to
run in a maximum program address space of 22% |Dbytes. Program
addresses generated during the execution of such a program are
translated to rhysical addresses used in accessing memory by the
MAT.

If a program address space of 1less than 224 pytes has been
created, and a program address is generated which is outside the
limits of the program address space, a Memory Address Translator
fault occurs.

The MAT, when properly programmed, allows simultaneous execution
of concurrent processes while protecting each process from
interference by the other processes in the systen. Violation of
any of the enabled protection mechanisms causes a Memory Address
Translator fault to occur. A descriprtion of such faults may be
found in the section on Memory Address Translator Faults in this
chapter.

If a thysical address space of less than 224 bytes exists, and
program address translation by the MAT results in a physical
address which is outside the limits of physical address space, a
machine malfunction fault ccndition is likely to occur. Proper
programming of the MAT causes a programn address which would
result in such a physical address to be intercepted before
reaching the memory systen.

29-747 ROO u4/81 11-3

Figure 11-2 shows a 24-bit program address as it would be
contained in a 32-bit general register or memory location. The
program address is comprised cf two fields: SEGMENT and OFFSET.
The significance of each field 4is described in the following
paragraphs.

2228

0 7 8 15 16 31
|
0 718 23
|
SEGMENT | OFFSET
]
PROGRAM ADDRESS
FULLWORD

Figure 11-2 Program Address

11¢2.2.1 Segment Field

The maximum program address space of 224 bytes 1is divided into
28 (256) segments of 2'® (65536) bytes each. A particular 64
kbyte segment is selected by the most significant 8 bits of the
program address (this is shown graphically in Figure 11-2 as bits
0 through 7 of the progranm address, or bits 8 through 15 of the
fullword containing the address). For example, program addresses
in the range Y'000000' - Y'O0OFFFF' select segment 0, as the most
significant 8 bits of each address are zero. Progran addresses
in the range Y'4F0000°' - Y'4FFFFF' select segment U4F g (79,5), as
the most significant 8 bits of the address are 4F 16 »

11¢2¢242 Offset Field

The offset field is comprised cf the least significant 16 bits of
the program address (this ig shown graphically in Figure 11-2 as
bits 8 through 23 of the program address, or bits 16 through 31
of the fullword containing the address). The value contained in
this field is wused as a byte offset into the selected segment.
For example, program address Y*09F001' specifies byte F001 of
segment 9. The offset field of the program address has no
special significance to the MAT, exceprt with respect to Ssegment
limit checking (see Section 11.3.3.2).

11-4 29-747 ROO 4/81

11.2.3 Selection of Program cr Physical Addressing

PSW bit 21, the relocation/protection bit, controls selection of
program or physical addressing. When bit 21 is zero, the Memory
Address Translator (MAT) is disabled. In this mode, all
addresses generated are physical addresses. No segment table is
used:; hence, no level checking, access mode checking, etc., is
performed. Rits 10 and 11 cf the PSW (the access level bits) are
jgnored in the physical mode.

The user of +the physical mode must take care when modifying
memory. The fact that a data area has Dbeen modified is not
recorded by hardwaree. If it is desired to reflect the
modification information in the segment tables, this must be done
explicitly by the program running in the physical mode.

When PSW bit 21 is set, the MAT is enabled. All addresses
generated are program addresses which are translated to physical
addresses using the segment tables. System software must ensure
that segment table addresses have been specified via the LPSTD
and LSSTD instructions (as in the =section on Setting of the
Program Address Space Size in this chapter) before the MAT is
enabled.

When the MAT is enabled, bits 10 and 11 of the PSW indicate the
level at which the program is running. When a program address is
generated, the access level specified 1in the STE is compared
against the contents of bits 10 and 11 of the PSW. If the
contents of bits 10 and 11 are greater than or equal to the
access level specified in the STE, then access to the segment |is
permitted; otherwise, a MAT fault occurs. Systen software should
set bits 10 and 11 of the PSW according to the level at which the
process is running to insure protection of segments.

11.3 TRANSLATION FROM PROGRAM TO PHYSICAL ADDRESS SPACE

The mapping of program address space to physical address space is
accomplished using information supplied in a segment table. A
segment table «contains one doubleword entry, called a Segment
Table Entry (STE), per segment in the program address sbpace
created. The segment number field of the program address is used
as an index into the segment table for selection of an STE. A
segment table must be aligned to a 27 (128) byte boundary in
physical memory. The table may contain from 1 to 256 doubleword
entries.

29-747 ROOC 4/81 11-5

113.1 Shared and Private Segments

There may be a number of brccesses resident in the system at any
given tinme. Each of these processes has its own progranm address
sSpace requirements, reflected in the process segment table
associated with that process. Consequently, there may be several
Process Segment Tables (ESTs) in memory concurrently, although
only one, the segment table fcr the active pPprocess, may be known
to the MAT at any given tinme. Section 11.3.2 contains details on
how the active Process Segment Table is specified.

Segments of the program address space of a process which are used
only by that process are called private segments. Other segments
of the program address Space may exist that are shared with other
processes; these segments are consequently called shared
segments. Although the STE describing a shared segment may be
replicated in the segment tables associated with each process
using the segment, it isg preferable to maintain a separate Shared
Segment Table (SST). For a shared segment, the process STE has
an indication that the segment's description is not found in the
Process Segment Table (PST), tut is instead found in the Shared
Segment Table. A detailed explanation of this is found in the
section on Hardware Segment Table Entry.

The data contained in a segment must be stored in contiguous
locations in rphysical memory. This is called Unpaged Allocation.
For wunpaged allocation, each <csegment must be aligned to a 2
(2048) byte boundary in physical memory.

11.3.2 Segment Table Descriptcrs and Their Use

The Memory Address Translater is enabled only when PSW bit 21 is
set. Prior to enabling the MAT, the locations and sizes of the
Process Segment Table and Shared Segment Table to be used must be
identified to the systenm by lcading the appropriate descriptor
registers, These registers can be changed while MAT is enabled.
To specify the address of the Process Segment Table to the
system, a Load Process Segment Table Descriptor (LPSTD)
instruction is used; to specify the address of the shared segment
table, the Load Shared Segment Table Descriptor (LSSTD)
instruction is used.

The STDs are volatile quantities. This means that in the event
of a power fail, the values lcaded must be assumed to have been
destroyed. The power restcre routine must reload the SSTD and
PSTD before enabling the MAT.

11-6 29-747 ROO u4/81

11¢3e2¢1 Format of a Segment Tabie Descriptor

R Segment Table Descriptor (STIL) is a fullword quantity, as shown
in Figure 11-3.

Bits 0 and 1 of the STD are reserved and must always be zero.
Bits 2 through 14 srecify the segment table size, minus 1. For
example, if the segment table size were 4, this field would have
a value of 3. For a process STD (PSTL), this field has a maximunm
value of 255 (Y'FF'). For a shared STD (SSTD), this field has a
maximum value of 8191 (Y*1FEFF').

Bits 15 through 31 of the STD specify the segment table physical
address, divided by 27 (128). A segment table must be aligned to
a 27 byte boundary in physical memory. For example, if a segment
table starts at location Y*'035F80°, then bits 15:31 of the STD
contain Y'06BF*' (Y'035F80'; divided by 27). The value of 0 for
this field is a reserved value and, therefore, no segment table
can start at physical address 0.

2229

0 1 2 14 15 31
R
s
SEGMENT TABLESIZE,
E (NUMBER OF ENTRIES) — 1 (SEGMENT TABLE ADDRESS)/128
Vv
E
D

Figure 11-3 Segment Table Descriptor

1e3.2¢2 Setting the Program Address Space Size

When a PSTD is loaded, its segment table size £field determines
the maximum valid program address. The maximum valid progranm
address (MVPA) is defined by the following formula:

MVPA = (number of segment table entries)*(Y*10000') + X'FFFF*

The MVPA includes address space for the zeroth Segment Table
Entry (STE).

For example, if the specified segment table size in the STD is 5,
(requiring 6 segment table entries) then program addresses in the
range Y'000000°*'~Y'O5FFFF*' are considered valid. If a progranm
address 1is generated which is greater than the MVPA, a MAT fault
occurs. (See Section 11.4 cn MAT Faults.)

29-747 ROO 4/81 11-7

Within the valid program address space, there may be segments
which are not used. For example, a program address space of a
process uses segments 0, 1, 2, and 5 while segments 3 and 4 are
unused in that process. In this case, the segment table must
contain entries for segments 3 and 4. To indicate that each of
these segments is unused, its STE indicates that it is nonpresent
and unused. (See Section 11.3.3.3 on Software Segment Table
Entry).

1143.3 Segment Table Entries

Figure 11-4 represents a segment table entry. Entries in the
shared segment table and ©rprocess segment table have the same
format, with wminor differences which are detailed in the
following text.

11¢3.3.1 Segment Table Entry Size

An STE is a 64-bit quantity. Bits 0:31 are the hardware STE and
bits 32:63 are the software STE. The hardware STE contains the
necessary information to enable hardvware to perform program to
physical address translation.

The software STE contains information used by system software to
manage the process address space and keep track of segment
history.

11¢3.3.2 Hardvare Segment Table Entry
The hardvware pcrtion of the STE (HSTE) is contained in bits 0:31
of the STE. The HSTE is comrrised of several fields as shown in

Figure 11-4., Reserved fields of the HSTE must always contain
Z€TroOe

11-8 29-747 ROO u4/81

2230

0123 5 6780910 14 15 31
R
E
s
rRlplp] A L sk SLF SRF
Vv
E
D
HSTE
32 33 34 35 36 37 38 43 44 63
R
E
s
u | H £ PUN RSN
Vv
E
D
SSTE

Figure 11-4 Segment Table Entry

R - Reference Bit - Bit 0 of the HSTE is called the reference (R)

bit. This bit of the HSTE is set by the hardware when the
segment is referenced by software. A segment is said to be
referenced when an attempt is made to read, write, or execute
the contents of the segment. DMA I/0O does not set the
reference bit for the participating segment.

Presence Bit - Bit 1 of the HSTE is the presence (P) Dbit.
The presence bit is set when the segment described by the STE
i in memory; it is zerc when the segment is not present in
memory. A segment is said to be present when any portion of
the segment is in memory. When P=0, hardware ignores the
contents of the rest of the HSTE (Bits 2 through 31), but the
R bit 1is set as a result of the attempted access.
Referencing a segment that is not present (P=0) causes a
fault. (See Section 11.4.1.2 on Nonpresence Fault.)

Dirty Bit - Bit 2 of the HSTE is called the dirty (D) bit.
This bit of the HSTE is set by the hardware when a program
modifies (writes into) a segment. This bit is not set by DMA
1/0 operations that modify the segment. If P=0, attempts to
modify the segment do nct affect the dirty bit. If the PST
STE indicates that the segment is shared, the D bit is set in
both the SST STE, and in the PST STE, for a write.

29-747 ROO 4/81 11-9

A - Access Mode Bits - BRits 3 through 5 of the HSTE are called
the access mode (A) bits. These bits determine the allowed
mcdes of access to the segment. The three modes of access to
a segment are: read access, write access, and execute
access. If an attemrt is made to access a segment in a
manner not permitted by the setting of the access mode Dbits,
a MAT fault occurs. For example, instructions cannot be
fetched from a segment unless execute access 1is enabled.
Section 11.4 contains a detailed definition of all MAT
faults. Table 11-1 defines access field settings and the
types of access that are enabled.

TABLE 11-1 SEGMENT ACCESS FIELD SETTINGS

SETTING REAL ENABLEL WRITE ENABLED EXECUTE ENABLED
0CG No No No
001 No No Yes
010 No Yes No
011 No Yes Yes
100 Yes No No
101 Yes No Yes
110 Yes Yes No
111 Yes Yes Yes
L - Rccess Level Bits - Bits 6-7 of the HSTE are called the

access level (L) bits. The L field is used in conjunction
with bits 10 and 11 of the Program Status Word (PSHW) to
determine if a program can access a segment. If the
contents of PSW bits 10 and 11 are greater than or equal to
the L bits, thenr access to the selected segment is allowed:;
if the value of PSW bits 10 and 11 is less than L, then a
fault occurs., The L bits are checked before the B bits.
See Section 11.4 for a detailed description of MAT faults.

11-10 29-747 ROO u4/81

SLF -

SRF -

Shared Segment Bit - Bit 8 of the HSTE is called the Shared
Segment (S) bit. If this bit is =zero, the MAT perfornms
protection and relocation functions as defined for a
private segment. The S bit must be zero for all STEs in
the SST.

If the S bit is set in a Process Segment Table entry, the
selected segment is a shared segment. In this case, the
SRF field of the PST STE is used as a byte offset into the
SSTe. The SST STE found at the resulting address is used by
the MAT in performing protection and relocation functions,
as follows:

The values of the R fields in the PST STE and the SST STE
are ANDed to determine the allowed access modes. All other
MAT protection and relocation functions are performed using
data from the SST STE.

Segment Limit Field - Bits 10 through 14 of the HSTE are
called the Segment lLimit Field (SLF). The SLF is used to
indicate the size of a segment. The SLF contents are
determined according to the following formula:

SLF = (size of segment) divided by (2'') -1

For example, for a segment of size 2!' bytes, the SLF would
contain 0. When a program address 1is generated, the
contents of bits 8:12 of the program address is compared to
the SLF. If the SLF is less than this number, a MAT fault
occurs (see Section 11.4).

The granularity of memory allccation is 2'' (2,048) bytes.
This means that memory must be allocated in 2!' byte units.
For example, if a segment requires Y'3542' bytes, 14 kbytes
of memory must be allccated, though only part of the last
2,048 bytes is used.

Segment Relocation Field - Bits 15 through 31 of the HSTE
are called the Segment Relccation Field (SRF). The
interpretation of the SRF depends upon the setting of the
S bit.

29-747 RCO 4/81 11-11

If S is set in the PST, the PST SRF field contains a byte
offset into the SST at which the STE for the segment can be
found. If the value contained in the PST SRF field is
greater than the size in bytes of the SST, a MAT fault
occurs. See Section 11.4 for a detailed description of MAT
faults:

If S is =zero in the PST, the SRF contains the physical
address of the segment in memory, divided by 27. For
example, if the =segment starts at physical address
Y*'146800', the SRF field of the HSTE should contain
X' 28L0°.

Note that for a shared segment, the least significant 3
bits of the SRF field in a PST HSTE must be zero, as the
indicated SST HSTE is aligned to a doubleword boundary.
The least significant 4 bits must be zero for the SRF field
in all other cases, as the SRF is the address of a segment
aligned to a 2!' byte boundary, divided by 27. If the MAT
attempts to use an SRF field which has a one in any of
these trailing bits, the results are undefined.

11.3.3.3 Software Segment Takle Entry

Bits 32-63 of the segment table entry are called the Software
Segment Table Entry (SSTE)s. These bits are used by software in
managing the program address space, and have no hardware
significance to the processcr.

The information presented in this section details one possible
scheme for software management of memory. The fullword SSTE is
available for any software memory management scheme. The 0S/32
MT operating system software dces not manage memory as suggested
in this section.

a. Usage Mode Bits - Bits 0 and 1 of the SSTE (bits 32 and 33
of the STE) are called the wusage mode (U) bits. In
conjunction with the P bit in the HSTE, these bits
indicate the state of each segment. Possible states of a
segment are:

State P U
Unused 0 00
Used 0 01
Loading 0 10
Unlocading 0 11
Active 1 00
I/0 Ongoing 1 01
Unload Pending 1 10

11-12 29-747 ROO u4/81

1« Unused State - If a segment is logically an invalid
portion of the ¢program address space of a process,
then it is said tc be in the wunused state. For
example, if a process has data in segments 0, 1, 2,
and 5, but has no data in segments 3 and U4, references
to segments 3 and 4 are invalid. Since segments 3 and
4 must each have an STE, -the fact that these segments
represent an invalid portion of the program address
space of the process is indicated by setting P=0 and
U=0 for the unused state. Since P=0 in the HSTE, any
references to such a segment cause a MAT fault. The
fault handler, using the U field, may determine that
the fault was caused by a reference to an invalid
portion of the process program address space and can
take appropriate action.

2. Used State - If a segment is logically a valid part of
the process program address space, but is not
physically present in memory, that segment is said to
be in the used state. When a reference 1is made to
such a segment, a MAT fault occurs since P=0 in the
HSTE. The fault handler, using the U field, may
determine that the fault was caused by a reference to
a used segment, and then take action to 1load the
segment.

When a used segment is to be loaded, the segment state
is changed by scftware from used to loading as
explained in the next paragraph.

3. Loading State - If a segment that is logically part of
the program address space of the process 1is Dbeing
moved from backing store into physical memory, it is
said to be in the loading state. If a reference |is
made to a segment that is in the loading state, a
fault occurs since P=0 in the HSTE. The fault handler
normally rlaces the process that made the reference
intoc a wait state, pending completion of the loading
operatione.

When a segment has successfully been locaded, software
normally changes its state from loading to active. At
this point, any process that faulted because it
referenced the segment in the loading state, and was
consequently put into a wait state, may resunme
execution.

4, Unlocading State - When a segment that is logically
part of the ©program address space of the process is
being temporarily removed from physical memory and
copied +to back-ur store, it 1is said to be in the
unloading state. Any references ¢to such a segment
cause a MAT fault, because P=0 in the- HSTE.

29-747 ROO 4/81 11-13

11-14

When a MAT fault occurs and the U field indicates that
it was caused by a segment in an unloading state, the
fault handler has a choice of actions it can take.
For example, if the segment was being unloaded to make
physical memory space available, the process that made
the reference can be put into a wait state. When the
unload completes, the physical memory that the segment
occupies may be retained and the segment put into an
active state. If it is desired to give the ©physical
memory that the segment occupied to another segment,
then the unloaded segment should be put into the used
state and the fault should be treated in the same
manner as faults that occur in a used state.

In some systems, a segment may be unloaded because it
is ©being removed not only from physical memory but is
also being removed logically from the program address
space of the ¢grceccess. A dynamically attached and
detached buffer segment is an example of such a
segment. If a segment in an unloading state is being
logically removed from the program address of the
process, the segment goes into an unused state at the
completion of the unloading operation. Faults
generated by references to such segments are normally
€ILrorS.

Active State - When a segment is 1logically in the
program address space of a process, physically
resident in memory, and free to be used by the process
Wwithin the restrictions placed by the A and L fields,
it 1is =said to be in the active state. The active
state is the normal state for a segment that is being
used by a process.

I/0 Ongoing State - When I/0 operations are being
perfermed wupon the contents of an active segment, the
seqment is put into the 1I/0 ongoing state. The
physical memory being occupied by the segment may not
be deallocated and reassigned to another segment. The
segment should nct be unloaded until all I/0
operations terminate.

A segment should be in I/0 ongoing state until all I/O
operations being performed wupon the contents of the
segment have been completed. At this point, the
segment may be returned to the active state.

29-747 ROO u4/81

7. Unload Pending State - If it 1is determined that a
segment is to be unloaded and the segment is in the
I/0 ongoing state, the segment must be placed in an
unload pending state which indicates that it is to be
unloaded when all I/0 operations terminate. When the
last I/0 operaticn completes, the segment may be
placed in an unlcading state and may then be unloaded.
If the decision to unload the segment is changed while
the segment is in an unload pending state, the state
should be changed back to either I/0 ongoing, if there
are still outstanding I/0 operations, or active, if
all I/0 operations have completed.

b. Reference History Bits - Bits 34 and 35 of the STE (bits
2 and 3 of the SSTE) are called the reference history (R)
bits. The H field 1is wused to manage replacement
algerithns. At given intervals, the state of the R and D
bits in the HSTE are recorded in the H field and are reset
in the HSTE.

The state of the R bit is retained only between intervals.
For example, if the R kit is reset at the time it is
examined, the H field will indicate that the last state of
the R bit was reset (0). In contrast to this, once D has
been set in the HSTE, that fact is retained in the H field
until the segment is either unloaded or a copY of the
modified state of the segment is made.

The H field is comrosed of 2 bits. The most significant
bit of the H field will always be set egqual to the value
of R at the time the HSTE was last scanned and reset.

The 1least significant bit of the H field will be an OR of
its previous contents and the csetting of D in the HSTE the
last time D was scanned. This results in four possible
values for the H field:

“1e segment unreferenced in last interval, unmodified

(H=00)

2 segment referenced in last interval, unmodified
(H=10)

3. segment referenced in 1last interval, modified
(H=11)

4, segment unreferenced in last interval, modified (at
some previous time) (H=01)

c. Reserved Field - Bits 36 and 37 of the STE (bits 4 and 5
of the SSTE) are reserved. These bits must be set to 0.

d. Disk Address - Bits 38 through 63 of the STE (bits 6
through 31 of the SSTE) contain the Disk Address (DA)
field. This field contains two subfields: the Paging
Unit Number (PUN) which is contained in bits 38 through 43
of the STE (bits 6 through 11 of the SSTE) and the
Relative Sector Number (RSN) which is contained in bits 4u
through 63 of the STE (bits 12 through 31 of the SSTE).

29-747 ROO u/81 11-15

A paging unit is a randomly accessible device which may be
read from or written tc. This unit is used to load and
unload segments. The PUN is used as an index into a Page
Device Table (PDT) which is used to translate the PUN into
a physical device. The PDT entry contains a physical
device address and a device starting sector. The RSN in
the SSTE is added to the starting sector specified in the
PCT entry to compute the actual sector number at which
segment can be found.

There may be up to 32 paging units used in a system at any
given time. The PDT allows independence of the logical
paging wunit from the physical paging unit. For example,
a given physical device could be divided into multiple
paging units or several physical devices could be combined
to be a single paging unit.

11.4 MEMORY ADDRESS TRANSLATCR FAULTS

Previcus sections of this manuval have stated that «certain
conditions result in MAT faults. A fault is an indication that
some exception condition has cccurred and that system software
should take some action in response. Some faults (such as access
violation) are 4indicative of error, while other faults (such as
presence fault) may be wused for management of the software
systeme

11.4.1 Conditiocns that Cause MAT Faults

The ccnditions that cause MAT faults to occur are described in
the following sections.

11.4.1.1 PST or SST Size Exceeded Fault

The LPSTLC or LLCPS instruction defines the MVPA (as in Section
11¢3.2e2) If an address is generated that is greater than the
MVPA, a PST size exceeded fault occurs.

The LSSTL instruction defines a size for the SST. If an STE in
the PST cpecifies an SST offset greater than the size of the SST,
an SST size exceeded fault cccurs.

If the MVPA is exceeded for the PST, then no reference to memory
is made. If the fault is caused by exceeding the valid size of
the SST, then only the Process Segment Table will have been
referenced.

11-16 29-7u47 ROO 4/81

11.4.1.2 Nonpresence Fault

The nonpresence fault occurs when an STE which has 1its presence
bit reset (0) is referenced. The program address that caused the
fault is returned to systems software. The R bit of the
referenced STE is set; but the contents of the segment and the D
pit in the STE are not modified as a result of a reference to a
nonpresent segment. .

If the nonpresent segment can bhe loaded, the instruction that
caused the fault may be reexecuted after the segment is loaded.
For certain instructions, software intervention may be required
to allow correct reexecution. Section 11.4.4 contains a detailed
descrirtion of how to recover from a nonpresence fault.

11<84.1.3 Access Level Fault

An access level fault occurs when the access level specified by
bits 10 and 11 of the PSW is less than the access level specified
in an STE that is referenced. The R bit of the referenced STE is
set: the contents of the segment and the D bit in the STE are
not modified as a result of a reference for the segment which
causes an access level fault.

If systenm softvware can correct the fault, the faulting
instruction may be reexecuted with certain restrictions. See
Section 11.4.4 for details.

11.4.1.4 Access Mode Faults

There are three access mode faults: read access fault, write
accese fault, and execute access fault. Each fault occurs when
a mode of access is attempted for a segment that does not allow
that mode of access.

The R bit of the referenced STE is set; but the contents of the
segment and the D bit in the STE are not modified as the result
of an attempted access resulting in the access mode fault.

If system scftware can correct the fault, the instruction may be
reexecuted with certain restrictions. See Section 11.4.4 for
details. :

11.4.1.5 Segment Limit Fault

A segment limit fault occurs when the value contained in Dbits
8:12 of a program address is greater than the value specified in
the SLF field of the HSTE. The R bit of the referenced STE is
set; but the contents of the segment and the D bit in the STE are
not modified as the result of an attempted access resulting in a
segment limit fault.

If +the system software can correct the fault, then the
instruction that caused the fault may be reexecuted Wwith certain
restrictions. See Section 11.4.,4 for details.

29-747 ROO 4/81 11-17

11.4.2 Fault Precedence

While some faults may physically be checked for in parallel by
the hardware, there is a logical priority in which faults are
checked:

1« Segment table size exceeded
2« Nonpresent segment

3., Segment limit violation

4. Access level violaticn

5. Access mode violation

Detection of any of the listed MAT faults causes the user
instruction to be aborted immediately. The reason for the abort
is rerorted to system software as detailed in Section 11.4.3.
Only one MAT fault can occur for a single memory operation.

11.4.,3 MAT Fault Handling Routine

Hhen a MAT fault occurs, the MAT fault handling routine pointed
to by the MAT fault handler new PSW is entered. The MAT fault
interrupt new PSW is contained in physical location X'000090°'.

The PSW in effect at the time the fault occurs is placed in
registers 14 and 15 of the set selected by the MAT fault handler
new PSW. The location counter of the old PSW (register 15)
contains the address of the instruction that caused the fault.

Register 13 of the selected set 1is 1loaded with a value to
indicate the reason for the fault. The possible values are:

VALUE MEANING
0 Reserved code
1 Access mode fault - execute protected
2 Access mode fault - write protected
3 Access mode fault - read protected
4 Access level fault
£ Segment limit fault
6 Nonpresent segment fault
7 SST =size exceeded
8 PST size exceeded

11-18 29-747 ROO u/81

Register 12 of the selected cet. is loaded with the prograrm
address that caused the fault.

If the fault occurred during execution of the LM instruction, the
calculated address of the start of the data block is placed in
register 11 of the selected set.

11.4.4 Reexecution of Faulting Instructions

In general, an instruction that caused a correctable MAT fault
can simply be reexecuted after the fault is corrected.

The Load Multiple (LM) instruction in some cases cannot simply be
reexecuted, but must be <simulated. When a Load Multiple
instruction faults, register 11 of the set specified by the MAT
interrupt new PSW is loaded with the program address calculated
by the hardware as the effective second operand address of the
instruction. If that address is the same as the progranm address
which caused the fault (contained in register 12), then the
instruction may be reexecuted once the fault has been corrected:;
no registers were modified by the LM instruction.

If the addresses in register 11 and register 12 are not equal, at
least one register was modified by the LM instruction. Once the
fault has been corrected, system software should build and
execute an instruction sequence to load the required registers,
using the calculated program address in register 11.

If the addresses are not equal, then the difference in the
addresses, D, should be computed. The last register modified,
M=(D/4)-1+R1, should be <calculated. If M is less than the X2
field in an RX1 or RX2, or is less than both the FX2 and SX2
fields in an RX3, the instruction may be reexecuted. If this is
not the case, then system software must build an instruction
sequence to load the remaining registers from the appropriate
memory locations. The locaticn portion of the o0ld PSW should
then be incremented by the length of the faulted instruction. At
this point, normal executicn can be resumed by loading the old
PSH.

11.4.5 Fffect of System Initialization on the MAT

When the Initialize switch (INIT) on the display panel is
depressed, or the processor |is powered up, all segmentation,
relocation, protection, and MAT = interrupts are disabled
regardless of the state of bit 21 4in the current PSW. The
contents of the Shared Segment Table and Process Segment Table
descriptor registers must be restored by software after power
fail.

The MAT remains disabled until an LPSTD instruction 1is issued.

At this time, the MAT is enabled or remains disabled, according
to the state of bit 21 of the current PSWH.

29-747 ROO u/81 11-19

11.5 MEMORY MANAGEMENT INSTRUCTIONS

Instructions are provided tc control the MAT. These instructions
are:

LPSTD Load Process Segment Table Descriptor

LSSTD Load Shared Segment Table Descrirctor

11.5.1 Load Process Segment Table Lescriptor (LPSTD)

Assembler Notation Op~-Code Format
LPSTD D2(X2) DF1 RX3
LPSTD A2(FX2,SX2) DF1 RX 3
Operation

The operand specifies the address of the fullword Process Segment
Table Descriptor. This descriptor is 1loaded and its contents
define the Process Segment Table to be used in program to
pPLhysical address translation when bit 21 of the PSW is set.
Condition Code

Unchanged

Programming Notes
This instruction is a privileged instruction.

The address specified by the operand must be on a fullword
boundary.

A Process Segment Table Descriptor may be loaded while PSW bit 21
is set or =zero.

LPSTD is an extended PSF mnemonic.

11-26 29-747 ROO 4/81

11.5.2 Load Shared Segment Table Descriptor (LSSTD)

Assembler Notation Op-Code Format
LSSTD p2(X2) CE2 RX1,RX2
LSSTD A2(FX2,SX2) LF2 RX3
Operaticn

The orerand specifies the address of the fullword Shared Segment
Table Descriptcr. This descriptor is loaded and its contents
define the Shared Segment Table to be used in program to physical
address translation when bit 21 of the PSW is set.

Condition Code

Unchanged

Programming Notes
This instruction is a privileged instruction.

The address specified by the operand must be on a fullword
boundarye.

A Process Segment Table Descriptor may be loaded while PSW bit 21
is set or zero.

LSSTLC is an extended PSF mnemcnic.
Following an LSSTD instruction, the Process Segment Table
Descriptor must be loaded, using the LPSTD or LDPS instruction,

before attempting MAT translation with the newly defined shared
segment table.

29-747 ROO u4/81 11-21/11-22

APEENDIX A
CP-CCDE MAE

635-1
MSD ——
0 1 2 3 4 5 6 7 8 9 A [D E F
LSD 3 3 3 4 4
0 SRLS BTBS STH ST STE STD SRHLS BXH sTM | TS
1 1
4 3 4 3 4 3
1|8ALR |SLLS BTFS BAL |AM AHM STME SLHLS BXLE | LM SVC
1
4 2 2 3 3 3
2]B8TCcR |cHVR |BFBS |PBR BTC PB LME |STDE |[STBR LPSW | STB SINT
4 1 1 . «
4 1 1 3 4 3
3lsrcr |LPER | BFFS |LPDR [|BFC LRA LHL LBR THI LB SCP T
M
4 3 3 3
4| NR LIS EXHR | NH N ATL TBT LED EXBR |JLEDR NHI cLB NI
1 1
4 3 3
5| CLR LGER | LCS CLH |ctL ABL SBT EPSR LEGR CLH! |AL cLl
1 N 1 o
4 3 3
6 | OR LGDR | AlS OH o RTL RBT LDGR OHI LA ol
1
4 3 3 3 3
7| xR LCER |[SIS LCDR | XH X RBL c8T LDE LDER XHI TLATE |Xi
1 1 1 1
3 3 3
g|LR LPSWR | LER LDR LH L LE LD BRK WHR LHI WH LI
. 1 1 1] *
3 3 3
9lcr CER CDR CH c CE cD RHR CH! RH I
1 1 1 * .
4 3 3 3
AlAR AER ADR | AH A AE AD WDR AH1 WD RRL Al
1 1 1 . A
4 3 3 3
B|SR SER SDR SH S SE sSD RDR SHI RD RLL Sl
1 1 1 o .
4 3 3 3 5
clmur MR MER |MDR | MH M ME MD RXRX SRHL SRL
1 1 1
4 3 3 3
p|oHR DR DER |DDR |DH D DE DD SSR SLHL |ss SLL
1 1 1 * .
4 5 3
E FXR FXDR CRC12 | sTBP |STMD OCR SRHA | OC SRA
1 1 . .
4 5 3
F FLR FLDR CRC16 | LPB LMD SLHA |PSF SLA
1 1 -
1. OPTIONAL FLOATING-POINT INSTRUCTION
2. OPTIONAL HIGH-SPEED DATA HANDLING INSTRUCTION
3. SECOND OPERAND ADDRESS MUST BE FULLWORD ALIGNED.
4 SECOND OPERAND ADDRESS MUST BE HALFWORD ALIGNED.
5. USE SCRATCHPAD REGISTERS.
.

PRIVILEGED INSTRUCTION

29-747 ROO 4/81

636-1

APPENDIX A (Continued)

RXRX SUB FUNCTIONS

MSD ——»
0 1 2 3
4 5 6 7 IMMEDIATE LENGTH SECOND OPERAND
8 9 A B IMMEDIATE LENGTH FIRST OPERAND
C D E F IMMEDIATE LENGTH BOTH OPERANDS
LSD h
o | mvtu
w 1| MOVE MOVEP
(@]
(&)
S 2| cran CPANP . USE SCRATCHPAD REGISTERS
5
=
2D
T 3| pmv PMVA
a| umv UMVA
J
PRIVILEGED SYSTEM FUNCTIONS (PSF)
OP-CODE MNEMONIC MEANING
DFO REL READ ERROR LOGGER
DF1 LPSTD LOAD PROCESS SEGMENT TABLE DESCRIPTOR
DF2 LSSTD LOAD SHARED SEGMENT TABLE DESCRIPTOR
DF3 STPS SAVE PROCESS STATE
DF4 LDPS LOAD PROCESS STATE
DF5 1SSV SAVE INTERRUPTIBLE STATE
DF6 ISRST RESTORE INTERRUPTIBLE STATE
DF7 XSTB STORE BYTE WITHOUT ECC
DF8 RMVF RESET MEMORY VOLTAGE FAILURE

29-747 ROO u4/81

MNEMCNIC

A
ABL
AD
ALR
AE
AER
AH
RHI
AHNM
Al
AIS
AL
AM
AR
ATL

B
BAL
BALR
BC
BCR
BCS
BCS
BE
BER
BES
BES
BFBS
BFC
BFCR
BFFS
BL
BLR
BLS
BLS
BM
BMR
BMS
BMS
BNC

OE-CODE

5A
65
7R
3A
6A
2A
A
CA
61
FA
26
D5
g1
OR
6u

430
b1

01

428
028
208
218
433
033
223
233
22

43

03

23

428
028
208
218
421
021
201
211
438

29-7u47 ROO u4/81

APFENDIX B
INSTRUCTION SUMMARY - ALPHABETICAL BY MNEMONIC

Add

INSTRUCTICN

Add to Bottom of List
Add LCEFP
Add LPFP Register
Add SPFP
Add SPFP Register

Add Halfword

Add Halfword Immediate
Add Halfword to Memory
Add Immediate

Add Immediate Short
Autoload
Add to Memory

Add Register

Top of List

Add to

Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch

Uncondi tional
and Link
and Link Register

on
on
on
on
on
on
on
on
on
on
on
cn
on
on
on
on
on
on
on
on
on

Carry

Carry Register

Carry Short (Backward)
Carry Short (Forward)
Equal

Equal Register

Equal Short (Backward)
Equal Short (Forward)
False Condition Backward Short
False Condition

False Condition Register
False Condition Forward Short
Low :

low Register

Low Short (Backward)

Low Short (Forward)
Minus

Minus Register

Minus Short (Backward)
Minus Short (Forward)

No Carry

MNEMONIC

BNCR
ENCS
BNCS
BNE
BNER
BNES
BNES
BNL
BNLR
BNLS
BNLS
BNM
BNMR
BNHS
BNMS
BNO
BNOR
BNOS
BNOS
BNP
BNPR
BNPS
BNPS
BNZ
BNZR
BNZS
BNZS
BO
BOR
BOS
BOS
BP
BPR
BPS
BPS
BR
BRK
BS
BS
BTBS
BTC
BTCR
BTFS
BXH
BXLE
BZ
BZR
BZS
BZS

OF-CODE

038
228
238
423
023
203
213
438
038
228
238
431
031
221
231
434
034
224
234
432
032
222
232
423
023
203
213
424
024
204
214
422
022
202
212
030
88
220
230
20
42
02
21
Cco
C1
433
033
223
233

APPENDIX B (Continued)

Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch

INSTRUCTION

on No Carry Register

on No Carry Short (Backward)
on No Carry Short (Forward)
on Not Equal

on Not Equal Register

on Not Equal Short (Backward)
on Not Equal Short (Forward)
on Not Low

on Not Low Register

on Not Low Short (Backward)
on Not Low Short (Forward)

on Not Minus

on Not Minus Register

on Net Minus Short (Backward)
on Nct Minus Short (Forward)
on No Cverflow

on No Overflow Register

on No Overflow Short (Backward)
on Nc Overflow Short (Forward)
on Not Plus

on Nct Plus Register

on Nct Plus Short (Backward)
on Nct Plus Short (Forward)
on Nc¢t Zero

on Not Zero Register

on Not Zero Short (Backward)
on Not Zero Short (Forward)
on Overflow

on Overflow Register

on Overflow Short (Backward)
on Overflow Short (Forward)
on Plus

on Plus Register

on Plus Short (Backward)

on Plus Short (Forward)
Unconditional Register

Breakpoint

Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch

Unconditional Short (Backward)
Unconditional Short (Forward)
on True Condition Backward Short
on True Condition

on True Condition Register

on True Condition Forward Short
on Index High

on Index Low or Equal

on Zero

on Zero Register

on Zero Short (Backward)

on Zero Short (Forward)

29-747 ROO 4/81

29-747 ROO u4/81

MNEMCONIC OP-CODE
C 59
CBT 717
CcDh 79
CDR 39
CE 69
CER 29
CH 49
CHI c9
CHVR 12
CI F9
CL &5
CLE D4
CLH 4s
CLHI CS
CLI F5
CLR 0¢
CPAN 8C/02
CPANP 8C/22
CR 09
CRC12 EE
CRC16 5F
D 5C
DD 70
DDR 3D
DE 6D
DER 2D
LH 4rv
DHR 0D
DR 1D
EPSR 95
EXBR 9y
EXHR 34
FLR 2F
FLDR 3F
FXDR 3E
FXR 2E
ISRST DF6
ISSY DF5
L 58
LA Eé6
LB D3
LBR 93
LCDR 37

Ccmrare
Comrlem
Cecmrpare
Compare
Comgpare
Ccmpare
Compare
Ccemrpare
Cenvert
Compare
Compare
Cecmgpare
Ccmpare
Ccmpare
Ccmrare
Ccmrare
Ccmpare
Ccmrare
Compare
Cyclic

Cyclic

Divide
Divide
Divide
Divide
Divide
Divide
Divide
Divide

Exchang
Exchang
Exchang

Float R
Float R
Fix Reg
Point
Fix Reg

Interru
Interru

Load

Lcad Ad
Lcad By
Locad By
Load Co

APPENDIX B (Continued)

INSTRUCTION

ent Bit
Double Floating-Point

Double Floating-Point Register
Floating-Point

Floating-Point Register
Halfword

Halfword Immediate

Halfword Value Register
Immediate

Lcgical
Logical
Logical
Logical

Byte

Halfword
Halfword Immediate
Logical Immediate

Logical Register
Alphanumeric

Alphanumeric and Pad
Register

Redundancy Check Modulo 12
Redundancy Check Modulo 16

Double-Precision Floating-Point
Double Floating-Point Register
Floating-Point

Floating-Point Register

Halfword

Halfword Register
Register

e Program Status Register

e Byte Register
e Halfword Register

eglister
egister Double Precision

ister Double-Precision Floating
ister
ptible State Restore

ptible State Save

dress

te _

te Register

mplement Double Floating Register

APPENLCIX E (Continued)

MNEMONIC 0P-CODE INSTRUCTION
LCER 17 load Complement Floating-Point Register
LCS 2t Load Complement Short
LD 78 Load L[ouble-Precision Floating~Point
LDE 87 Load LCouble Floating-Point From Single
LDER A7 Load L[ouble From Single Register
LDGR A6 Load LCouble From General Register
LDPS CFyY Load Frocess State
LDR 3s Load Louble-Precision Register
LE 68 Load Floating-Point
LED su Load Floating From Double Precision
LEDLR Ay Load Floating From Double Register
LEGR AS Load Floating From General Register
LER 28 Load Floating-Point Register
LH us Load Halfword
LHI cs8 Load Halfword Immediate
LHL 73 Load Halfword Logical
LI F8 Load Immediate
LIS 24 Load Immediate Short
LM : C1 Load Multiple
LMD TF Load Multiple Double-Precision Floating
Point
LME 72 Load Multiple Floating-Point
LPB 6F Load Facked Binary
LPLR 33 Load Fositive Double Floating Register
LPER 13 Load Fositive Floating Register
LPSTD CF1 Load Frocess Segment Table Description
LPSWH c2 Load Frogram Status Word
LPSHKR 18 Load Frogram Status Word Register
LR 08 Load Fegister
LRA 63 Load Real Address
LSSTD CF2 Load Shared Segment Table Descriptor
M sC Multicly
MD 7C Multirly Double Floating-Point
MDR 3C Multirly Double Floating Register
ME 6C Multiply Floating-Point
MER 2C Multicly Floating-Point Register
MR yc Multigly Halfword
MHR oC Multiply Halfword Register
MOVE 8C/01 Move
MCVEP 8C/21 Move and Pad
MR 1C Multiprly Register
N £y AND
NH yu AND Halfword
NHI Cu AND Halfword Immediate
NI Fuy AND Imrmediate
NOP 420 No Cperation
NCER 020 No Cperation Register
NR ou AND Register

B-U 29-747 ROO 4/81

29-747 ROO 4/81

MNEMONIC OP-CODE
0 56
oC DE
OCR 9E
OH 46
OHI Cé
01 E6
CR 06
PB 62
PBR 32
PHV 8C/03
PMVA 8C/23
RBL 67
RET 76
RD LB
RDR 9B
REL DFO
RH D9
RHR 99
RLL EB
RMVF DF8
RRL EA
RTL 66
S 5B
SBT 7¢
SCP E3
SC 7B
SPR 3B
SE 6B
SER 2B
SH uB
SHI CB
SI FB
SINT E2
SIS 27
SLA EF
SLHA CF
SLHL CD
SLHLS 91
SLL ED
SLLS 11

APPENDIX B (Continued)

INSTRUCTION

CR

Outrut Command

Cutput Command Register
CR Halfword

OR Halfword Immediate
CR Immediate

CR Register

Prccess Byte
Frccess Byte Register
Fack and Move
Pack and Mcve Absolute

Remove from Bottom of List
Recet Bit

Read Data

Read Data Register

Read Error lLogger

Read Halfword

Read Halfword Register
Rotate Left Logical

Reset Memory Voltage Fault
Rotate Right Logical
Remove from Tcp of List

Subtract

Set Bit

Simulate Channel Program

Subtract Couble-Precision Floating
Pcint

Suttract Register Double-Precision
Floating-Foint

Suktract Floating-Point

Suttract Flocating-Point Register

Subtract Halfword

Subtract Halfword Immediate

Subtract Immediate

Simulate Interrupt

Subtract Irnmediate Short

Shift Left Arithmetic

Shift Left Halfword Arithmetic

Shift Left Halfword Logical

Shift Left Halfword logical Short

Shift Left Logical
Shift Left Logical Short

MNEMONIC

SR
SRA
SRHA
SRHL
SRHLS
SRL
SRLS
SS
SSR
ST
STB
STBP
STBR
STD
STDE
STE
STH
STM
STML

STHE
STES
SvC

TBT
THI
TI
TLATE
TS

UMV
UNVA

WD
WDR
WH
WHR

X

XH
XHI
XI
XR
XSTER

OP-CODE

0B
EE
CE
ccC
S0
EC
10
DD
9D
50
D2
6F
92
70
82
60
4o
Do
7E

71
CEF3
E1

74
C3
F3
E7
EO

8C/04
8C/2u

DA
9A
L8
98

57
47
c7
F7
07
DF7

APPENDIX B (Continued)

INSTRUCTION

Subtract Register

Shift Right Arithmetic

Shift Right Halfword Arithmetic

Shift Right Halfword Logical

Shift Right Halfword Logical Short

Shift Right Logical

Shift Right Logical Short

Sense Status

Sense Status Register

Store

Store Byte

Store Binary as Packed

Store Byte Register

Store Double-Precision Floating-~Point

Store LCouble~Frecision in Single-Precision

Store Floating=-Point

Store Halfword

Store Multiple

Store Multiple Double-~-Precision
Floating-Point

Store Multiple Floating-Point

Save Frocess State

Supervisor Call

Test Bit

Test Halfword Immediate
Test Immediate
Translate

Test and Set

Unpack and Move
Unpack and Move Absolute

Write Data

Write Cata Register
Write Halfword

Write Halfword Register

Exclusive OR

Exclusive OR Halfword

Exclusive OR Halfword Immediate
Exclusive OR Immediate
Exclusive OR Register

Store Byte, No ECC

29-747 ROO u4/81

OP-COLE

c1*
02*%
03*

ou
05

06
07

o8
09

OA
CB
oC+*
oD*

10
11

12

13+
15+
16+
17+

18

1C*
1D*

20*
21*

22%
23>

APPENDIX C

INSTRUCTION SUMMARY - NUMERICAL

MNEMONIC

BALR
BTCR
BFCR

NR
CLR

OR
XR

LR
CR

AR
SR
MHR
CHR

SRLS
SLLS

CHVR
LPER
LGER
LGDR
LCER

LESWR

MR
DR

BTBS
BTFS

BEBS
BFFS

INSTRUCTION

Branch and Link Register
Branch on True Condition Register
Branch on False Condition Register

ANL Register
Compare Logical Register

OR Register
Exclusive OR Register

Load Register
Compare Register

Add Kegister

Subtract Register

Multiply Halfword Register
Divide Halfword Register

Shift Right lLogical Short
Shift Left lLocgical Short

Convert to Halfword Valué Register

‘Load Positive Floating-Point

Load General Register from Floating
Load General from Double Floating
Load Complement Floating Register

Load Program Status Word Register

Multiply Register
Divide Register

Branch on True Condition Backward Short
Branch on True Condition Forward Short

Branch on False Condition Backward Short
Branch on False Condition Forward Short

*Condition code not changed

+0ptional instruction

29-747 ROO 4/81

APPENDIX C (Continued)

OP-COLE MNEMONIC INSTRUCTION

24 LIS Load Immediate Short

25 LCS Lcad Complement Short

26 RIS Add Immediate Short

27 SIS Subtract Immediate Short

28+ LER Lcad

29+ CER Ccmpare Floating=Point

2A+ AER Add Floating-Point Register

2B+ SER Subtract Flcating-Point Register

2C+ MER Multiply Floating=-Point Register

2D+ DER Divide Flocating-Point Register

2E+ FXR Fix Register

2F+ FLR Float Register

32*%+ PBR Prccess Byte Register

33+ LPDR Lcad Positive Double Register

34> EXHR Exchange Halfword Register

37+ LCDR Lcad Complement Double Register

38+ LDR Lcad Register Double-Precision
Floating-Point

39+ CDR Ccmpare Register Double-Precision
Floating-Point

3A+ ADR Add Register Double-Precision
Floating-Point

3B+ SDR Subtract Register Double~Precision
Floating~Point

3C+ MDR Multiply Register Double-Precision
Floating-Point

3D+ CDR Divide Register Double-Precision
Floating~Point

3E+ FXDR Fix Register Double-Precision
Floating-Point

3F+ FLDR Float Register Double-Precision

Floating-Point

4o* STH Store Halfword

*Condition code not changed
+0Optional instruction

c-2 29-747 ROO 4/81

APPENDIX C (Continued)

*Condition code not changed
+0ptional instruction

29-747 ROO u4/81

OP-COLE MNEMONIC INSTBUCTION
u1* BAL Branch and Link
y2+* BTC Branch cn True Condition
y3n BFC Branch on False Condition
uy NH AND Halfword
us CLH Compare Locgical Halfword
ne CH OR Halfword
47 XH Exclusive OR Halfword
48 LH Load Halfword
u9 CH Compare Halfword
iy} AH Add Halfword
4B SH Subtract Halfword
ucr MH Multiply Halfword
4p* DH Civide Halfword
50%* ST Store
51 AM Add to Memory
54 N AND
55 CL Compare Logical
56 o) CR
57 X Exclusive OR
58 L Load
59 C Compare
SA A Add
SB S Subtract
5C* M Multiply
5D* D Civide
5E* CRC12 Cyclic Redundancy Check Modulo 12
SF* CRC16 Cyclic Redundancy Check Modulo 16
60*+ STE Store Floating-Point
61 AHM Add Halfword to Memory
62%+ PB Frocess Byte
63 LRA lLoad Read Address
64 ATL Add to Top of List
65 ABL Add to Bottom of List

CP-CCLCE

66
67

68+
69+

6A+
6B+.
6C+
6D+
6E
6F

70%+
T1%+
72%+
73

74
75
76
77

78+
79+
7A+
7B+
7C+
7D+
TE*+

TE*+

82*+
BU+
87+
8g*

APPENDIX C (Continued)

MNEMONIC

RTL
RBL

LE
CE

AE
SE
ME
DE
STBEP
LPB

STD
STME
LME
LHL

TBT
SBT
RBT
CBT

LD
Cch
AD
SD
MD
Db
STHMD

LMD

STDE
LED
LDE
BRK

INSTRUCTION

Remcve from Top of List
Remcve from Bottom of List

Lcad Floating-Point
Compare Floating-Point

Add Floating-Point
Subtract Floating-Point
Multiply Floating-Point
Divide Floating-Point
Store Binary as Packed
Lcad Packed Binary

Store Double-Precision Floating-Point
Store Floating-Point Multiple

Locad Floating-Point Multiple

Load Halfword Logical

Test Bit

Set Bit

Reset Bit
Cemrlement Bit

Lcad Double-Precision Floating-Point
Comrare Doutle-Precision Floating-Point
Add Double-Frecision Floating-Point
Subtract Double-Precision Flocating-Point
Multiply Double-Precision Floating-Point
Divide Double-Precision Floating-Point
Store Multiple Double-Precision
Flcating-Foint
Load Multiple Double-Precision Floating
Pcint

Store Double Precision in Single
Lcad Floating from Double Precision
Locad Double from Floating-Point
Breakpoint

*Condition code not changed
+Opticnal instruction

29-7u47 ROO 4/81

OP-CODE MNEMONIC
8C (RXRX)
8C/00 MVTU
8C/01 MOVE
gc/02 CPAN
8C/03 PMY
gCc/ou UMV
8C/21 MOVEP
8C/22 CPANP
8C/23 PMVA
8C/24 UMVA
90 SRHLS
91 SLHLS
g2* STBR
93 LBR
qu* EXBR
95 EPSR
98 WHR
99 RHR
9A WDR
9B RDR
SC SSR
9E OCR
AL+ LEDR
AS+ LEGR
A6+ LDGR
A7+ LDER
cor BXH
C1* BXLE
C2 LPSH
C3 THI
cuy NHI
cs CLHI

APPENDIX C (Continued)

INSTRUCTION

RXRX Class designator

Move Translated Until

Mcve

Compare Alphanumeric

Pack and Move

Unpack and Move

Move and Pad

Compare Alphanumeric and Pad
Pack and Move Absolute
Unpack and MNove Absolute

Shift Right Halfword Logical Short
Shift Left Halfword Logical Short
Store Byte Register

Lcad Byte Register

Fxchange Byte Register
Exchange Program Status Word

Write Halfword Register
Read Halfword Register

Write Data Register
Read Data Register

Sense Status Register
Output Command Register

Lcad Floating from Double Register
Lcad Floating from GCeneral Register
Load Double from General Register
Lcad LCouble from Floating Register

Branch on Index High
Branch on Index Low or Equal

Lcad Program Status Word
Test Halfword Immediate

AND Halfword Immediate
Ccmpare Logical Halfword Immediate

*Condition code not changed
+0Optional instruction

29-747 ROO u4/81

OP-COTE

Ccé
c7

cs
c9

CA
CB

ccC
CcDh
CE
CF

Do*
D1*
D2*
D3*
D4

D5

D8
D9

DA
DB

DD
DE
DF

DFO

DE1*
DF2*
DF3+*
DF4

DF5*
DF6*
DF7*
DFg*

*Condition code not changed

MNEMONIC

OHI
XHI

LHI
CHI

AHI
SHI

SRHL
SLHL
SRHA
SLHA

STM
LM
STB
LB
CLB

AL

WH
RH

WD
RD

SS
ocC
(PSF)

REL
LPSTD
LSSTD
STPS
LDPS
ISSY
ISRST
XSTB
RMVE

+0pticnal instruction

APPENLCIX C (Continued)

INSTRUCTION

OR Halfword Immediate
Exclusive OR Halfword Immediate

Lcad Halfword Immediate
Ccmpare Halfword Immediate

Add Halfwerd Immediate
Subtract Halfword Immediate

Shift Right Halfword Logical
Shift Left Halfword Logical
Shift Right Halfword Arithmetic
Shift Left Halfword Arithmetic

‘Store Multiple

Lcad Multiple

Store Byte

Lcad Byte

Compare Logical Byte

RAutoload

Write Halfwofd
Read Halfword

Write Data
Read Data

Sense Status
Output Command
PSF Class Designator

Read Error Logger

Lcad Process Segment Table Descriptor
Lcad Shared Segment Table Descriptor
Save Process State

Lcad Process State

Interruptible State Save
Interruptible State Restore

Stcre Byte, No ECC

Reset Memory Voltage Fault

29-747 ROO 4/81

APPENLDIX € (Continued)

OP-COLE MNEMONIC INSTRUCTION
EO TS Test and Set
E1 sSvC Superviscr Call
E2 SINT Simulate Interrupt
E3 SCP Simulate Channel Progranm
E6x LA Locad Address
ET7* TLATE Translate
ER RRL Rotate Right Logical
EB RLL Rotate lLeft Logical
EC SRL Shift Right Logical
ED SLL Shift Left Logical
EE SRA Shift Right Arithreetic
EF SLA Shift Left Arithmetic
F3 TI Test Immediate
Fu NI AND Immediate
F5 CLI Compare logical Immediate
Fé oI CR Immediate
F7 XI EFxclusive OR Immediate
F8 LI locad Immediate
F9 CI Compare Immediate
FA AI Add Immediate
FB ST Subtract Immediate

*Condition ccde not changed
+0Optional instruction

29-747 ROO u/81 c-7/C-8

637-1

HON -

34

68
137
274
549

1 099

29-747 ROO u4/81

AN =

33
67
134

268
536
073
147

294
589
179
359

719
438
877
755

511

3

ogd WN-O

JErQ—Y
- 0w

_ e e
A WN

— - - —
O o0o~NO®

NNNN
WwinN -0

NNNN
No o b

NN
28(0@

w W
KEES

W wWww
© O NO®

D
o

2'n

1.0
0.5
0.25
0.125

0.062
0.031
0.015
0.007

0.003
0.001
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000
0.000
0.000
0.000

0.000

ARITHMETIC REFERENCES

TABLE OF POWERS OF TWO

25
625
812

906
953
976
488

244
122
061
030

015
007
003
001

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000
000
000
000

000

APEENDIX D

25
125
562
281

140

070
035
517

258
629
814
907

953
476
238
119

059
029
014
007

003
001
000
000

000
000
000
000

000
000
000
000

000

25

625
312
156
578

789
394
697
348

674
837
418
209
604
802
901
450

725
862
931
465

232
116
058
029

014
007
003
001

000

25
125

062
531
265
632

316
158
579
289

644
322
161
580

290
645
322
661

830
415
207
103

551
275
637
818

909

25
625
812

406
203
101
550

775
387
193
596

298
149
574
287

643
321
660
830

916
957
978
989

494

25

125
562
781

390
695
847
923

461
230
615
307

653
826
913
456

228
614
807
403

701

25

625
312
656
828

914
957
478
739

869
934
467
733

366
183
091
545

772

25
125

062
031
515
257

628
814
407
703

851
425
712
856

928

25
625
812

906
453
226
613

806
903
951
475

237

25

125
562
281

640
320
660
830

915

25

625
312
156
078

039

25
125

062 5

638

APPENDIX L (Continued)

TABLE OF POWERS OF SIXTEEN

16" n

1 0

16 1

256 2

4 096 3

65 536 4

1 048 576 5

16 777 218 6

268 435 456 7

4 204 967 296 8

68 719 476 736 9

1 099 511 627 776 10

17 592 186 044 416 1

281 474 976 710 656 12

4 503 599 627 370 496 13

72 057 594 037 927 936 14

1 152 921 504 606 846 976 15

. J

Y

DECIMAL VALUES

29-747 ROO u4/81

639

APPENDIX D (Continued)

HEXADECIMAL ADDITION AND SUBTRACTION TABLE
EXAMPLES: 6+A=F;18-D=B;A+B=15

1 2 3 4 5 6 7 8 9 |A |B c D E F
1 2 3 4 5 6 7 8 9 A | B Cc D E F 10
2 3 4 5 6 7 8 9 A | B C b E F 10 |1
3 4 5 6 7 8 9 A B Cc D E F 10 11 |12
4 5 6 7 8 9 A B Cc D E F 10 |11] 12 |13
5 6 7 8 9 A | B c D E F 10 (11 112] 13 (14
6 7 8 9 Al B C D E F 10 {11 |12 |13 | 14 |15
7 8 9 A | B C D E F 10 | 11 [12 |13 |14 | 15 | 16
8 9 A | B Cc D E F 10} 11 |12 |13 |14 |15 | 16 |17
9 Al B Cc D E F 0|11]112 (13 |14 |16 |16 | 17 |18
A | B ‘ Cc D E F 10| 111213 }14 {15 |16 |17 | 18 |19
B Cc D E F 10| 11112 (13| 14 ‘15 16 ({17 |18 | 19 [1A
Cc D E F 10 11f 12| 13y14 | 15|16 |17 |18 | 19| 1A | 1B
D E F 10 11} 12 13. 14 (15| 16| 17 |18 |19 | 1A| 1B | 1C
E F 10 11| 12| 13| 14} 156 | 16} 17 | 18 | 19 |1A | 1B | 1C | 1D
F 10| 11| 12} 13} 14| 16| 16 | 17| 18119 | 1A [1B | 1C] 1D | 1E

1 2 3 4 5 6 7 8 9 A B c|D E F

29-747 ROO u4/81

APPENDIX [(Continued)

640

HEXADECIMAL MULTIPLICATION AND DIVISION TABLE
EXAMPLES: 5x6=1E;76+D=9;58+8=8B;9xC= 6C

7 7 E 15 | 1c| 23| 2a]| 31| 38| 3F| 46| 4D | 54 | 5B 62169 |7

8 8 10 | 18| 20| 28| 30| 38| 40| 48| 50| 58

3

68170 | 78 | 8

9 9 12118 24| 20| 36| 3F| 48| 51| 5A| 63 | 6C | 75 | 7E 87 | 9

AA141E28323C46505A646E78828096A

B B 16 21| 2c| 37| 42| aD| 58| 63| 6E| 79 | 84 | 8F | 9A A5 | B

.C Cc 18|24 | 30| 3c| 48] 54| 60| 6C| 78| 84 | 90 9ac | A8 B4 | C

D D 1Al 27 34| 41| 4E| 5B| 68| 75| 82| 8F | 9C | A9 B6 | C3|D

D-y 29-747 ROO u/81

641

APPENDIX L[(Continued)

TABLE OF MATHEMATICAL CONSTANTS

CONSTANT DECIMAL VALUE HEXADECIMAL FLOATING POINT VALUE
VALUE
DOUBLE PRECISION
SINGLE PRECISION
Pttt
n 3.14169 26535 89793 23846 3.243F GA88 4132 43F6 A888 5A31
' 85A3 08D3
-1 0.31830 98861 83790 67154 0.517C C187 4051 JCC1 B727 2208
2722 0A95
Jn 1.77245 38509 05516 (02730 1.C5BF 891B a11c 5BF8 9184 EF6B
4EF6 AATA v
Lnm 1.14472 98858 49400 17414 1.250D 048E 4112 B67A EB858 4CAA
7A1B DOBD
J3 1.73205 08075 6887/ 29353 1.8B67 AEB85 4118 67AE - 8584 CAA7
84CA A/3B
e 271828 18284 59045 23536 | 2.B7E1 5162 4128 715 1628 AED3
8AED 2A6B
e 0.36787 94411 71442 32160 | 0.5E2D 58D8 405E 2058 D8B3 BCDF
B3BC DF1B
Je 1.64872 12707 00128 14683 | 1.A612 98E) 411A 6129 B8E1E 069C
E069 BC97
iog1 e 0.43429 44819 03251 82765 0.6F2D ECS54 406F 20DEC 5A9B 9439
9894 38CB
logge 144269 50408 88063 40736 1.7154 7652 4117 1547 6528 82FE
B82F E177
v 0.57721 56649 01532 86061 0.93C4 67E3 4093 Ca467 E37D BOC8
7DBO C7A5
Lny -0.54953 93129 81644 82234 |.0.8CAE 9BC1 Co8C AE9B C11F 5A60
1F5A SFF4
J2 1.41421 35623 73095 04880 1.6A09 E667 4116 AO9E 667F 3BCD
F3BC C909 '
Ln2 0.69314 71805 59945 30942 0.8172 17F7 40B1 7217 FiD1 CF7A
D1CF 79AC
log102 0.30102 99956 63981 19521 0.4D10 4D42 404D 104D 427D E7FC
7DE7 FBCC
J10 3.16227 76601 68379 33199 3.2988 0758 4132 98B0 7584 B6AS
4B6A 5240
Ln10 2.30258 50929 94045 68402 2.4D76 3776 4124 D763 776A AA2B
AAA2 BO5C ‘

29-747 ROO 4/81

APPENDIX D (Continued)

FRACTION CONVERSION TABLE

642
Hexodecimal ond Decimal Froction Conversion Table
HALFWORD
BYTE BYTE
BITS 0123 4567 0123 4567
Hex | Decimal | Hex Decimal Hex Decimal Hex | Decimal Equivalent
.0 .0000 .00 .0000 0000 .000 .0000 0000 0000 .0000 .0000 0000 0000 0000
] 0625 [.01 -0039 0625 | 001 | .0002 M4 0625 | 0001 -0000 1525 8789 0625 |
2 1250 .02 10078 1250 .002 . 0004 8628] .0002 . 0000 3051 7578 1250
.3 1875 .03 L0117 1875 .003 .0007 3242 1875 .0003 .0000 4577 6367 1875
4 .2500 .04 .0156 2500 . 004 . 0009 7656 2500 .0004 .0000 6103 5156 2500
.5 L3125 . L0195 3125 .005 .0012 070 NG .0005 ,0080 765 3545 NS
.6 .3750 .06 .0234 3750 .006 .0014 6484 3750 . 0006 .0000 9155 2734 3750
.7 . 4375 .07 .0273 4375 .007 .0017 0898 4375 .0007 .000! 0681 1523 4375
.8 5000 | .08 .0312 5000 | 008 | 0019 53127 - 5000 | . -0007 2207 0312 5000 |
9 5625 | .09 .0351 5625 | .009 | .0021 9728 LY L -0001 732 LD 25
LA .6250 L0A .0390 6250 .00A .0024 4140 6250 .000A .0001 5258 7890 6250
.8 .6875 .08 L0429 6875 .00B .0026 8554 6875 .0008 .0001 6764 8679 6875
.C .7500 .0C 0448 7500 .00C .0029 2968 7500 .000C .0001 8310 5468 7500
.D .8125 .0D .0507 8125 .00D .0031 7382 125 .000D .0001 9836 4257 8125
.E .8750 (0 0546 8750 .00 .0034 1796 750 . 000E .0002 1362 3046 8730
.F 9375 .OF .0585 9375 .00F .0036 6210 375 .000F .0002 2888 1835 75
| 2 3 4
TO CONVERT . ABC HEXADECIMAL TO DECIMAL To convert fractions beyond the capacity of table, use techniques below:

Find .A in position 1 6250
Find .0B in position 2 .0429 6875 HEXADECIMAL FRACTION TO DECIMAL
. R - 2968 Convert the hexodecimal fraction to its decimal equivalent using the same
Find .00C in position 3 u technique os for integer numbers. Divide the results by 167 (n is the
.ABC Hex is equal to .6708 9843 7500 number of fraction positions).
Exomple: .BA7 = 5407719

8A7,4 = 221510

TO CONVERT .13 DECIMAL TO HEXADECIMAL .540771
163 = 4096 4096[2215 000000
V. Find .1250 next lowest to .1300
subtract -.1250 = ,2Hex
2. Find .0039 0525 next lowest to .0050 0000
- 0039 0625 « .0 DECIMAL FRACTION TO HEXADECIMAL
3. Find .0009 7656 2500 .0010 9375 0000 Collect integer ports of product in the order of calculation.
-.0009 7656 2500 = 004 Exaomple: .540810 = .BA7)4
4. Find .0001 0681 1523 4375 L0001 1718 7500 0000 5408
-.000! 0681 1523 4375 = .0007 : «16
.0000 1037 5976 5625 = ,2147 Hex 8 = [g6528
: : . . x16
5. 13 Decimal is approximately equal to A - W
x16
7 - [A7iee

D-6 29-747 ROO 4/81

643

APPENDIX L (Continued)

INTEGER CCNVERSION TABLE

Hexodecimal and Decimal Integer Conversion Table

HALFWORD HALFWORD
BYTE BYTE BYTE BYTE
BITS: 0123 4567 0123 4567 0123 4567 0123 4567
Hex Decimal Hex Decimal Hex Decimal Hex | Decimal Hex | Decimal | Hex | Decimal | Hex | Decimal | Hex | Decimal
0 0l 0 0] 0 (V) 0 [1] 0]o 0olo 0 0 0
1 268,435,456 | | 16,777,216 | | 1,048,576 | 1 45,536 1 4,09 | | 256 | 1 16 []
2 536,870,912 | 2 33,554,432 1 2 2,007,152 1 2 131,072 2 8,192 [2 512 [2 32 2 2
3 #03, 08,388 | 3 331 3 3,145, 7. 3 198,608 3 12,2881 3 768 13 48 3 3
4 [T,073, 741 8241 4 67,108,864 | 4 4,194,304 | 4 262,144 4 16,384 | 4 1,024 | 4 o4 4 4
5 [1,342,177,280 | 5 83,886,080 | 5 5,242,880 | 5 327,680 5 20,480 | 5 1,280 | 5 80 5 5
6 TT1,810,8T2,7%1 & 100, 66 6 1 [216 3 24,576 | 6 1,538 [6 96 é é
T 1T858, 97 7 [T, 40511 | 7| TR T e T ey T, 7Tz 7 7
8 (2,147,483, 8 (134,217,728 8 | 6,388,608 | 8 | 524,288 8 | 32,768 [8 2,048 |6 | 128 8 []
Y 12395, T4 9 FATR Y 3, 87184 [9 | 580,85] %,864 % 2,304 |9 &] v
A 12, S0 A T167, 772180 | A [10,483,760 | A 360 A 40,960 | A 2,560 | A 180 A 10
] . 016 B " 8 11,534,338 1 B m 8 45,056 | B 2,816 [B) 1
C 13,20 ,225,472 | C 201,326,592 | C 12,582,912 | C 786,432 [d 49,152 [C 3,072 | C 92 C 12
D 3,489,680 D 1218,103,808 D 13,631,488 | D 851,948 D 53,248 | D 3,328 | D 208 D 13
E [3, . E 234,681,004 | E 14,680,064 | E 917,304 E 57,344 1€ 3,584 | E 224 3 14
F 130830 | F B850 | F 7m0 F 00 T F e, [F 380 [F T I0 TF 5
8 7 é 5 4 3 2 1
TO CONVERT HEXADECIMAL TO DECIMAL EXAMPLE To convert integer numbers greater than the copacity of
— table, use the techniques below:
1. Locate the column of decimal numbers corresponding to Conversion of
the left-most digit or leHer of the hexadecimal; select Hexadecimal Volue D34 HEXADECIMAL TO DECIMAL
from this column oand record the number that corresponds
to the position of the hexadecimal digit or letter. 1. D 3328 Successive cumulative multiplication from left to right,
2. Repect step | for the next (second from the left) 2 3 8 odding units position.
position. Exomple: D34;g=3380,, D= 13
3. Repect step 1 for the units (third from the left) 3. 4 4 x16
position, 2“5
4. Add the numbers selected from the fable 1o form the 4. Decimal 3380 it
decimal number. x16
3376
4= +4
3380
TO CONVERT DECIMAL TO HEXADECIMAL
EXAMPLE
1. (a) Select from the table the highest decimal number .
that is equal to or less than the number to be con- gonvemon lof DECIMAL TO HEXADECIMAL
verted. ecimal Value 3380 Divide and coll . inder i "
(b) Record the hexadecimal of the column containing 1. 0 332 vide and collect the remainder in reverse order.
the selected number. ' 45; Exomple: 3380, = X
(c) Subtroct the selected decimal from the number to omple: 10 16
be convarted. 2.3 48 16 3380 remoinder
2. Using the remainder from step 1(c) repect oll of step | 4 16 (211 \ 4
to develop the second position of the hexadecimal \
(and a remainder) . 3. 4 -4 16 |13 \ 3
3. Using the remainder from step 2 repeat all of step 1 to 4. Hexodecimal D34 D 338010-034‘6
develop the units position of the hexadecimal . .

4. Combine terms to form the hexadecimal number.

29-747 ROO 4/81

D-7/D-8

644-1

ASCII/HEX CONVERSION TABLE

APFENDIX E
I/C KEFERENCES

bg 0 0 0 0 1 1 1
BITS bg 0 0 1 1 0 0 1 1
by 0 1 0 1 0 1 0 1
bz | b2 | bq|bo MSD
VAt el 4] wso 0 1 2 3 4 5 6 7
ojofojo 0 NUL DLE SP 0 @ P *
ojojo]n1 1 SOH DC1 ! 1 A Q a
olo]1]o 2 STX DC2 " 2 B R b r
ojlof1{1 3 ETX DC3 # 3 C S c s
ol1]0]o0 4 EOT DC4 $ 4 D T d t
0jl1]011 5 ENQ NAK % 5 E. U e u
ol1]1]0 6 ACK SYN & 6 F \Y) f v
of1]1]1 7 BEL ETB ' 7 G W g w
1{o0]olo 8 BS CAN (8 H X h X
1{0}o0]1 9 HT EM) 9 | Y i y
11011]o0 A LF SUB * J Z i .
1]o}1]1 B VT ESC + ; K [k {
111]0]o0 C FF FS , < L \ | '
11101 D CR GS = M|] m }
111]1}o0 E SO RS > N ~ n ~
111111 F Sl us / ? 0 _ o DEL
NUL Null DLE Data link escape
SOH Start of heading DC1-4 Device control
STX Start of text NAK Negative acknowledge
ETX End of text SYN Synchronous idle
EOT End of transmission ETB End of transmission block
ENQ Enquiry CAN Cancel
ACK Acknowledge EM End of medium
BEL Audible signal SUB Start of special sequence
BS Backspace ESC Escape
HT Horizontal tabulation FS File separator
LF Line feed GS Group separator
VT Vertical tabulation RS Record separator
FF Form feed us Unit separator
CR Carrier return SP Space
SO Shift out DEL Delete/Idle
Sl Shift in

29-747 ROO u4/81

APPENDIX E (Continued)

ASCII/CARD CODE CONVERSION TABLE

645-1

7-BIT 7-BIT
GRAPHIC ASCII gggg GRAPHIC ASCII gggg
CODE CODE

SPACE 20 BLANK @ 40 84
! 21 11-8-2 A 41 12-1
g 22 8-7 B 42 122
23 8-3 C 43 123
$ 24 11-8-3 D 44 124
% 25 0-8-4 E 45 125
& 26 12 F 46 126
' 27 8-5 G 47 127
(28 12:8- H 48 128
) 29 11-8-5 | 49 129
* 2A 11-8-4 J 4A 11-1
+ 2B 12-8-6 K 4B 112
2¢C 0-8-3 L 4C 113

; 2D 11 M 4D 11-4
. 2E 12-8-3 N 4E 115
/ 2F 0-1 0 4F 116
0 30 0 P 50 117
1 31 1 Q 51 118
2 32 2 R 52 119
3 33 3 s 53 0-2
4 34 4 T 54 0-3
5 35 5 u 55 0-4
6 36 6 v 56 0-5
7 37 7 W 57 0-6
8 38 8 X 58 0-7
9 39 9 Y 59 0-8
, 3A 8-2 z 5A 0-9
; 3B 11-8-6 [58 12-8-2
< 3C 12-8-4 \ 5C 0-8-2
= 3D 8-6] 5D 12-8-7
> 3E 0-8- $ 5E 1187
? 3F 0-8-7 - 5F 0-8-5

E-2 29-747 ROO 4/81

L8/t 008 LhL-62

h-3/€-3

646-1

LSsD—» 0

MSDO

1 2 3 4 5 6 7 8 9 A B c D E F
TTY
CAROUSEL carp | LOADER 201/301 | 201/301
RESERVED STORAGE | RESERVED MDIO DATA SET | DATA SET
15,30 READER W M
CRT BN ELI UNIT DX DX
e—— COMM MUX ——»]
8-LINE INTERRUPT MODULE SECOND 8-LINE INTERRUPT MODULE
{ADRS 20 TO 27) (ADRS 28 TO 2F}
CONTACT
CLOSURE [@—————————— |/0 BUS SWITCH ————— & acosre | 38%isTo
MODULE -
DIGITAL
MUX
UNIVERSAL
LINE
CLOCK
PRINTERS VARIABLE, 60 Hz
RELAY
801
DRIVER
MODULE DIALER
CONVERSION 556/800
EQUIPMENT BPI AlC uu
MAG TAPE
AOC
le—— DIO ——
REMOVABLE
CARTRIDGE asA
DISK CONT
MICROBUS | FLOPPY 1600 BP DISK 0 FIXED
ADAPTER DISK MAG TAPE DISK 0
FIXED
DISK 1 Eaxen
FIXED
DISK 2 DISK 2
SELECTOR DISK 3 FIXED B”ﬁsﬂ DRIVE | DRIVE | DRIVE DRIVE
CHANNELS DISK 3 Svarem 0 1 2 3

AIC = ANALOG INPUT CONTROLLER
AOC = ANALOG OUTPUT CONTROLLER
DIO = DIGITAL 1/0 CONTROLLER

QSA = QUAD SYNCHRONOUS ADAPTER

UL) = UNIVERSAL LOGIC INTERFACE
MDIO = MEMORY DISPATCHED 1/0

dTEVI SSTYIAV QI¥¥93JI¥d-QUVANVIS

(penut3juo)) I XIQGNId4dY

647-1

CONSOLE SERVICE ROUTINE FLOWCHART

APEENDIX F

ACCEPT REGISTE
ADDRESS oie;: g DISPLAY PROMPT N
CONSER . ACCEPT ONE
DISPLAY GENERAL R
REGISTER, CURRENT SET
DECODE
Y
SET UP FDX
LOCAL
TERMINAL; ACCEPT REGISTER
DISPLAY PSW, ADDRESS, FORCE AoCERY, DaTA.
LOCATION COUNTER, EVEN, OPEN & DISPLAY REGISTon
SET "CONSOLE SPFP REGISTER."
MODE" FLAG
! (>
NEXTREQ
DISPLAY ACCEPT REGISTER
ADDRESS, FORCE
OP"FESQ'T,.?“ EVEN, OPEN & DISPLAY [~ NEXTREQ
DPFP REGISTER."
N
ACCEPT CARRIAGE
vl RETURN, DISPLAY
CHAGNETER ENTIRE PSW. -
OPEN PSW STATUS.
DECODE
v RESET "CONSOLE ENTER RUN
PR MODE" FLAG MODE WITH
omer RESET PSW CURRENT EXIT
BIT 16 PSW & LOC
ACCEPT
NEW LOC

OPEN & DISPLAY ACCEPT DATA,

CELL ADDRESSED Y MODIFY OPEN
LOC *—— BY LOC. DISPLAY HALFWORD
LOC +2 PROMPT. ACCEPT CELL

ONE CHARACTER

N
LOC *+—
LoC -2
DECODE IS. PLUS

QUESTN UNRECOGNIZED.

DISPLAY
CARRIAGE RETURN,
LINE FEED NEXTREQ

QUESTION MARK

NOTES:

1. ALL RECEIVED CHARACTERS ECHOED BY PROCESSOR.

2. LOWER-CASE CHARACTERS INTERPRETED AS UPPER-CASE.

. SPACE CHARACTERS IGNORED.

- BACKSPACE, UNDERLINE, DELETE CAUSE PREVIOUS NUMERIC CHARACTER TO BE IGNORED.
IF HARDWARE FLOATING POINT IS NOT AVAILABLE, DISPLAYS ALL “F“s AS CONTENTS.

rHW

29-747 ROO 4/81 F-1/F-2

INDEX

Access level fault, 11-17
Access mode faults, 11-17
Add (A,AR,AI,RIS), 5-5
double-rrecision floating-point (AL,ALR), 6-36
floating-roint (AE,AER), 6-18
halfword (AH,AHI), 5-7
halfword tc memory (AHM), 5-11
to list (ATL,ABL), 3-51
to memory (AM), 5-9
Rddress space, 11-3
Alphanumeric string data, 1-9
Alignment faults, 10-20
AND (N,NR)NI), 3"27
AND halfword (NHINHI)' 3-28
Arithmetic fault interrupt, 10-37
Arithmetic references, L[-1
Auto driver channel, 9-13
buffers, 9-21
channel command block, 9-19, 9-20
channel command word, 9-23
checkword, 9-22
general programming procedure for, 9-26
subroutine address, 9-20
translation by, 9-21
valid command codes, 9-2%
Auto driver channel flowchart, 9-27
Autolcad (AL), 9-16

Rlock diagram, processor, 1-2

Booclean operaticns, 3-2

Branching, 4-1

Branch instructions, 4-2

Branch
and link (BAL,BALR), U4-5
on carry (BC,BCR,BCS), 4-13
¢cn equal (BE,BER,BES), 4-15
on false (BRFC,BFCR,BFBS,EBFFS), u4-4
on index high (BXH), 4-9
cn index low or equal (BYLE), 4-7
on low (BL,BLR,BLS), 4-17
cn minus (BM,BMR,BMS), 4-19
cn no carry (BNC,BNCR,ENCS), u4-14
cn no overflow (BNO,BNCR,BNOS), u4-24
on not equal (BNE,BNER,BNES), U-16
cn not low (BNL,BNLR,BNLS), 4-18
on not minus (BNM,BNMR,BNMS), 4-20

29-747 ROO u4/81

Index-1

Branch
cn not plus (BNP,BNPR,RBNES), 4-22
cn not zero (BNZ,BNZR,BNZS), 4-26
on overflow (BO,BOR,BOS), 4-23
¢n plus (BP,BPR,BPS), #-21
cn true (BRTC,BTCR,BTBS,BTFS), 4-3
c¢cn zero (BZ,BZR,BZS), #4-25
unconditional (B,BR,BS), u4-27
Buffers, 9-21
Buffer switch bit, (B), 9-24

Channel, see Auto Driver Channel
Check word, 9-22
Circular list, 3-4
Circular l1list definition, 3-3
Compare, 3-24, 5-17, 7-10
alphanumeric (CPAN,CPANP), 7-10
alphanumeric with default pad (CPANP), 7-10
arithmetic (C,CR,CI), £-17
double~precision floating-point (CD,CDR), 6-40
floating-roint (CE,CER), 6-22
halfword (CH,CHI), 5-18
logical (CL,CLR,CLI), 3-24
logical byte (CLB), 3-Z6
logical halfword (CLH,CLHI), 3-2€¢
Complement bit (CBT), 3-u5
Condition code, 1-5, 6-10, 10-8
Conditions that cause MAT faults, 11-16
Configuration, system contrcl, 2-1
Console mode, 10~15
Console service routine flowchart, F-1
Contrcl of I/0 operations, 9-4
Contrcl switches, 2-4
Convert to halfword value register (CHVR), 5-33
Conversion from deciral, 6-9
CRC generation flowchart, 3-47
Cyclic redundancy check (CRC12,CRC16), 3-U6
ty auto-driver channel, 9-22

Tata alignment, 1-10
Data fcrmats, 1-8
decimal data, 7-1
fixed-point data, 5-1
floating-pcint data, 6-2
logical data, 3-1
Data fcrmat fault interrupt, 10-19
Data handling instructions, 3-1
Data handling instruction formats, 8-1
Decimal string data, 1-9, 7-1
Decision making, u4-1
Decrement and examrmine prior lccation “-", 2-7
Device addressing, 9-2
Device controllers, 9-1
Cevice priorities, 9-2

Index-2 29-747 ROO 4/81

Divide (C,DR), 5-24

double-precision floating-point (DD,DDR), 6-u43

floating-point (DE,DER), 6-25
halfword (DH,DHR), 5-27

Early power fail detect and auvtomatic shutdown, 10-24

EFntering console service, 2-%5
Fgualization, 6-5
Examine (see also Modify)

double-precision floating-point register "D",

general register “R", 2-7
program status word "P", 2-9
csingle-precision floating~- point register "F",
Examples of R*-rounding, 6-8
Fxchange byte register (EXBR), 3-20
Exchange halfword register (EXHR), 3-19
Exchange program status register (EPSR), 10-u41
Exclusive-OR (X,XR,XI), 3-31
Exclusive-CR halfword (XH,XHI), 3-32
Execute bit (%), 9-23
Exponent overflow, 6-7
Exponent underflow, 6-7
Extended branch mnemonics, 4-11

Fast bit (F), 9-23
Fault precedence, 11-18
Faults

alignment, 10-20

data format, 10-19

illegal instruction, 10-19

machine malfunction, 10-22

memcry address translator (MAT), 11-18
Fix register (FXR), 6-27
Fix register double-precisicn (FXDR), 6-45
Fixed-point

arithmetic, 5-1

data, 1-8

data formats, 5-1

instructions, 5-4

instruction formats, 5-3

number range, 5-2

operations, 5-2
Float register (FLR), 6-29
Float register double-precisicn (FLLCR), 5-46
Floating/fixed point ranges, 6-4
Floating-Point

arithmetic, 6-1

data formats, 1-9, 6-2

instructions, 6-10

masked mode (FLM), 10-3

number, 6-3

number range, 6-4

registers, 1-6

underflow interrupt enable (FLU), 10-5
Flowchart, console service routine, F-1
Format of a segment table descriptor, 11-7

29-747 ROO 4/81

2-8

2-8

Index-3

General auto driver channel programming procedure, 9-26
General registers, 1-6 ‘
Guard digits and R*-rounding, 6-8

Hardware segment table entry, 11-8
High sreed data handling instructions, 8-1

Tllegal digit cases (pack and move), 7-12
Illegal digit cases (unpack and move), 7-14
Illegal instruction interrurt, 10-19
Immediate interrupt - auto driver channel, 10-31
Increment and examine next location "+", 2-6
Initial program locad, 2-5
Input/ocutput overations, 9-1
Instruction alignment, 1-10
Instruction formats, 1-11
branch instructions, 4-2
decimal and alphanumeric string, 7-3
fixed-point instructions, 5-3
flocating-peint instructicns, 6-4
I/0 instructions, 9-9
logical instructions, 3-€¢
Instruction summary - alphabetical by mnemonic, B-1
Instruction summary - numerical, C-1
Interrupt
driven I/0, 9-5
precedence, 10-13
rriority level/register set summary, 10-32
gueuing, 9-3
service pointer table, 9-3
system architecture - schematic diagram, 10-11
timing and priocrity, 10-10, 10-12
Interrupts, processor, 1-7
Interruptible instructions, 10-14
Interruptible instruction in rrogress (IIP), 10-3
Interruptible state
instructions using, 7-3, 10-55, 10-56
caving c¢cn power fail, 10-29
Invalid digit faults, 10-21
1/0
device interrupts, 10-30
instruction format, 9-9
instructions, 9-9
interrupt mask (I), 10-4
references, E-1
system configuration, 9-1
Key orerated security lock, 2-3

List rrocessing, 3-3
List rrocessing instructions, 3-54
Load
(L,LR,LI), 3-7
address (LA), 3-11
tyte (LB,LBR), 3-18
complement double-precision register (LCDR), 6-32
ccmrlement floating-point register (LCER), 6-15

Index-14 29-747 ROQC 4/81

load (continued)
complement short (LCS), 3-9
double-precision floating-point (LD,LLCR,LDGR), 6-30
dcuble-prrecision floating-point register from single
(LLE,LDER), 6-u8
floating-point (LE,LER,LEGR), 6-12
general registers from double-precision floating-point
register (LGDR), 6-34
general register from flcating-point register (LGER), 6-16
halfword (LH,LHI), 3-1Q
halfwerd lcgical (LHL), 3-16
immediate short, 3-8
multiple (LM), 3-17
multiple double-precision floating=-point (LMD), 6-33
multiple floating-point (LME), 6-16
racked decimal string as tinary (LPB), 7-4
positive double-precision register (LPDR), 6-31
rositive floating-point register (LPER), 6-14
process segment table descriptcr (LPSTD), 10-50, 11-20
process state (LDPS), 10-53
program status word (LPSW), 10-39
rrogram status word register (LPSWR), 10-40
real address (LRA), 3-12
shared segment table descriptor (LSSTD), 10-51, 11-21
single-rrecision floating-point register from double
(LEC,LECR), €-u47

Location counter, 1-6

Logical
data, 1-9, 3-1
instructions, 3-5
instruction formats, 3-5
cperations, 3-1

Machine malfunction interrurt, 10-22
early power fail (EPF), 10-22
nonconfigured memory address, 10-28
noncorrectable memory errcr, 10-26
power restcre, 10-25
shared memory power fail, 10-29
Machine malfunction interrurt enable, 10-5
Machine malfunction status word (MMSW), 10-23
Maskable and nonmaskable interrupts, 10-10
MAT fault handling routine, 11-18
Memory access level field (IVI), 10-3
Memory address translation, 11-2
Memory address translator faults, 11-16
access level fault, 11-17

access mode violation - execute, 11-17
access mode violation - read, 11-17
access mode violation - write, 11-17

nonrresent segment fault, 11-17
PST size exceeded, 11-16
SST size exceeded, 11-16
segment 1limit violation, 11-17
Memory initialization, 2-10
Memory management, 11-1

29-747 ROO 4/81 Index-5

Memory management instructiocns, 11-20
Modify
current location %"=%, 2-7
double~precision floating-point register "=", 2-9
general register =", 2-7
Frogram status word "=", 2-9
single-precision floating-point register "=", 2-8
Move, 7-8
and pad (MOVE), 7-8
and pad with default pad (MOVEP), 7-8
translated until (MVTU), 7-6
Multicly
(M,MR), 5=20
double-precision floating-point (MLC,MDR), 6-41
floating-point (ME,MER), 6-23
halfword (MH,MHR), 5-22
MVTIU instruction, 7-6

Nonpresence fault, 11-17
Normalization, 6-5
No operation (NCP,NCPR), 4-28

Offset field, 11-4

Op-code map, A-1

Operating instructions, 2-5
OR (C,CR,0T), 3-29

OR halfword (OH,OHI), 3-30
Output command (OC,OCR), 9-10

Pack and move (PMV), 7-12
Pack and move absolute (MPVRA), 7-12
Packed decimal, 7-1
Packed decimal format, 7-1
Physical address space, 11-3
Power fail

early, 10-24

shared memory, 10-29
Power restore, 10-25
Power-up, 2-%
Priority levels, 10-30
Privileged system function (PSF), 10-45
Process byte (FB), 8-2
Process byte register (PBR), &-4
Processor, 1-4
Processor/controller communication, 9-2
Processor interrupts, 1-7
Processcr modes, 10-15
Program address space, 11-3
Programming examples, 1-13
Programming instructions, system terminal, 2-11/2-12
Program status word (PSW), 1-4, 10-2, 10-3
Protect mode enable (P), 10«6
FST size exceeded fault, 11-16
PSW location counter (LOC), 10-8
PSW status word, 10-3

Index-6 29-747 ROO 4/81

Read

data (RLC,RLCR), 9-12

error logger (REL), 10-u46€

halfiword (RH,RHR), 9-13
Read/write bit (R/W), 9-23
Redundancy check type bits (RC), 9-24
Reexecution of faulting instructions

after a MAT interrupt, 11-19

after 2 machine malfuncticn interrupt, 10-29
Register and immediate storage formats

RI1, 1-20

RI2, 1-22
Register and indexed storage formats

RX1, 1-18

szl 1-16

RX3, 1-18

RXRX, 1-24
Register set

rnumbering, 1-5

celect, 1-%5

select field (R), 10-7
Register-to-register format (RR), 1-14
Relocation/protection enable (R/P), 10-6
Relocation/protection (MAT) €fault interrupt, 10-21
Remove from l1list (RTL,RBL), 3-53
Reserved memory locations, 1-7, 10-9
Reset bit (RRT), 3-u44
Peset memory voltage failure (RMVF), 10-58
Restore interruptible state (ISRST), 10-56
Rotate left logical (RLL), 3-23g9
Rotate right logical (RRL), 3-40
Run mcde, 10-16
RXRX formats, See Register and indexed storage formats

Sample program, 1-13 :
Save interruptible state (ISSV), 10-55
Schematic diagram - interrupt system architecture, 10-11
Segment

field, 11-4

access field settings, 11-10

limit fault, 11-17

table descriptors and their use, 11-6

table entries, 11-8

table entry size, 11-8
Select an address and examine "a", 2-6
Selection of program or physical addressing, 11-5
Selectcr channel

I/OI 9’6

devices, 9-7

oreration, 9-7

programming, 9-8
Sense status (SS,SSR), 9-11
Set bit (SBT), 3-u43
Setting the program address space size, 11-7
Shared and private segments, 11-6
Shared memecry pcwer fail, 10-29

29-74% ROO 4/81

Index-7

Shift :
left arithmetic (SLA), 5-29
left halfword arithmetic (SLHA), 5-30
left halfword logical (SLHL,SLHLS), 3-37
left logical (SLL,SLLS), 3-35
right arithmetic (SRA), £-31
right halfword arithmetic (SRHA), 5-32
right halfword logical (SRHL,SRHLS), 3-38
right logical (SRL,SRLS), 3-36
Short form format (SF), 1-14
Simulate channel program (SCP), 9-18
Simulate interrupt (SINT), 10-42
Simulated interrupt, 10-34
Single step mode, 10-17
Software segment table entry, 11-12
SST size exceeded fault, 11-16
Status
mask, 9-23
mcnitoring I/0, 9-8
switching, 10-18
ewitching and interrupts, 10-1
switching instructions, 10-38
Store
(ST): 3‘21
binary as packed decimal string (STBP), 7-5
byte (STB,STBR), 3-23
byte, no ECC (XSTB), 10-£t7
double-rrecision floating=-point (STD), 6-35
double-~precision floating-point register in single-
precision memory (STDE), 6-49/6-50
floating-roint (STE), €-17
halfword (STH), 3-21
multiple (STHM), 3-22
multiple flcating-point (STME), 6-~17
multiple double-rrecision floating-point (STMD), 6-35
rrocess state (STPS), 10-%&2
String instructions, 7-3
String oreraticns, 7-1
Subroutine address, ¢-20
Subroutine linkage, #4-2
Subtract
($S,SR,SI,S81Is), 5-13
double~-precision floating-point (SD,SDR), 6-38
floating-point (SE,SER), 6-20
halfword (SH,SHI), 5-1E&
Supervisor call (SVC), 10-43
Supervisor call (SVC) interrurpt, 10-36
Systen
treakpoint (BRK), 10-44
breakpoint interrupt, 10-37
control, 2-1
contrcl panel, 2-1
control panel switches and indicators, 2-3
description, 1-1
cueue service (SQS) interrupt, 10-35

Index-8 29-747 ROO 4/81

System (continued)
queue service interrupt enable (Q), 10-6
terminal ccmmands, 2-6
terminal support command summary, 2-2

Test and set (TS), 3-u41

Test kit (TBT), 3-42

Test halfword immediate (THI), 3-34
Test immediate (TI), 3-33

TLATE instructicn, 3-2, 3-u48
Translate (TLATE), 3~u8

Translate bit, 9-24

TranSIationl 3’2' 3-“8’ 7"6’ 9-21
Translation from program to physical address srace, 11-5
Translation takle entry, 3-2

True zerc, 6-6

Unpack and move (UMV), 7-14

Unpack and move absolute (UMVA), 7-14
Unpacked decimal format, 7-2

Unpacked (zoned) decimal, 7-2

Valid channel ccmmand codes, 9-25
Wait state (W), 10-4

Write data (WD,WDR), 9-14

Write halfword (WH,WHR), 9-15

550 Keyboard layout, 2-3

Model 3210 block diagram, 1-2
Cp-code mar, A-1

29-747 ROO u4/81 Index-9/Index~-10

CUT ALONG LINE

—— i i omvn e e e, sttt s s e i s i e e it e e e et e e, | it ot | ottt oottt e, w—n t—— o o— oo— o—

PUBLICATION COMMENT FORM

Please use this postage-paid form to make any comments, suggestions, criticisms, etc. concerning
this publication.

From Date

Title Publication Title

Company Publication Number

Address

FOLD

Check the appropriate item.

D Error Page No. — Drawing No.

[[] Addition PageNo._________ Drawing No.

(3 other Page No.__________ Drawing No.

Explanation:

FOLD

Fold and Staple
No postage necessary if mailed in U.S.A.

FOLD

FOLD

STAPLE

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J.

POSTAGE WILL BE PAID BY ADDRESSEE

PERKIN-ELLMER

Computer Systems Division
2 Crescent Place
Oceanport, NJ 07757

TECH PUBLICATIONS DEPT. MS 322A

STAPLE

STAPLE

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES

STAPLE

	00001
	00002
	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0013
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	01-19
	01-20
	01-21
	01-22
	01-23
	01-24
	01-25
	01-26
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	03-25
	03-26
	03-27
	03-28
	03-29
	03-30
	03-31
	03-32
	03-33
	03-34
	03-35
	03-36
	03-37
	03-38
	03-39
	03-40
	03-41
	03-42
	03-43
	03-44
	03-45
	03-46
	03-47
	03-48
	03-49
	03-50
	03-51
	03-52
	03-53
	03-54
	03-55
	03-56
	03-57
	03-58
	03-59
	03-60
	03-61
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	04-25
	04-26
	04-27
	04-28
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	06-17
	06-18
	06-19
	06-20
	06-21
	06-22
	06-23
	06-24
	06-25
	06-26
	06-27
	06-28
	06-29
	06-30
	06-31
	06-32
	06-33
	06-34
	06-35
	06-36
	06-37
	06-38
	06-39
	06-40
	06-41
	06-42
	06-43
	06-44
	06-45
	06-46
	06-47
	06-48
	06-49
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	08-01
	08-02
	08-03
	08-04
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	09-11
	09-12
	09-13
	09-14
	09-15
	09-16
	09-17
	09-18
	09-19
	09-20
	09-21
	09-22
	09-23
	09-24
	09-25
	09-26
	09-27
	09-28
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	10-12
	10-13
	10-14
	10-15
	10-16
	10-17
	10-18
	10-19
	10-20
	10-21
	10-22
	10-23
	10-24
	10-25
	10-26
	10-27
	10-28
	10-29
	10-30
	10-31
	10-32
	10-33
	10-34
	10-35
	10-36
	10-37
	10-38
	10-39
	10-40
	10-41
	10-42
	10-43
	10-44
	10-45
	10-46
	10-47
	10-48
	10-49
	10-50
	10-51
	10-52
	10-53
	10-54
	10-55
	10-56
	10-57
	10-58
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	11-19
	11-20
	11-21
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	C-02
	C-03
	C-04
	C-05
	C-06
	C-07
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	E-01
	E-02
	E-03
	F-01
	Index-01
	Index-02
	Index-03
	Index-04
	Index-05
	Index-06
	Index-07
	Index-08
	Index-09
	replyA
	replyB

