PERKIN-ELLMEIR

3220

29-693
USER'S MANUAL

Publication Number C29-693

MODEL 3220 PROCESSOR
USER'S MANUAL

PERKIN ELMER

Computer Systems Division
2 Crescent Place
Oceanport. N J. 07757

Copyright ©1979 by Perkin-Eimer Corporation Printed in U.S.A. Januar y 1979

PAGE REVISION STATUS SHEET
PUBLICATION NUMBER C29-693

TITLE Model 3220 Processor User's Manual

REVISION ROO DATE January 1979

PAGE REV. DATE PAGE REV. DATE PAGE REV. DATE
i/ii 10-1
thru thru
xiii/ ROO 1/79 10-49/
Xiv 10-50 ROO 1/79
1-1
thru 11-1
1-26 ROO 1/79 thru

11-5/
2-1 11-6 ROO 1/79
thru
2-11/ 12-1
2-12 ROO 1/79 thru

12-12 ROO 1/79
3-1
thru A-1 ROO 1/79
3-63/ A-2 ROO 1/79
3-64 ROO 1/79

B-1
4-1 thru
thru B-7/
4-29/ B-8 ROO 1/79
4-30 ROO 1/79

c-1
5-1 thru
thru c-7/
5-34 ROO 1/79 Cc-8 ROO 1/79
6-1 D-
thru thru
6-53/ D-6 ROO 1/79
6-54 ROO 1/79

E-1 ROO 1/79
7-1 E-2 ROO 1/79
thru E-3/
7-15/ E-4 ROO 1/79
7-16 ROO 1/79

F-1/
8-1 F-2 ROO 1/79
thru
8-5/ Index-1
8-6 ROO 1/79 ||thru

Index-8 ROO 1/79
9-1
thru
9-27/
9-28 ROO 1/79

A1598

PREFACE

The Model 3220 Prccessor User's Manual provides programming and
operating informaticn for the Model 3220 System. The programmer
is provided with information on the 32-bit system architecture
and the unique memory management scheme, as well as a descripton
of each instruction in the Model 3220 repertoire. The
instruction descriptions include valuable system-related
information presented in the form of ©programming notes and
instruction examples.

Informaticn on the system control panel is given to facilitate
program rreparatior and execution for the system programmer and
operator.

29-633 RCCG 1/79 i/Zii

TABLE OF CONTENTS

PREFACFE

CHAPTER 1 SYSTEM DESCRIPTION

1.1 INTRODUCTIOCN

1.2 PROCESSOR

1.2.1 Program Status Word

16247 General Registers

1¢2.3 Floating-Point Rejyisters
1.3 PROCESSOR INTERRUPTS

1.4 R¥SERVED MEMORY LOCATIONS

DATA FCRMATS

1 Fixed-Point Data

2 Floating-Point Datsa

«3 Logical Data

Y Decimal String Data

5 Alphanumeric 5trinj Data

1.6 DATA ALIGNMENT

1.7 INSTRUCTION ALIGNMENT
INSTRUCTION FORMATS
Introduction

Branch JTnstruction Formats
Programming Examples

. e o o o

[s <Bie e B vIe e < Jile e o TN o lYe o}
. e o o

O X JDHh U & whN -

Short Form (SF) Format

Register and Indexed Storage 1
Register and Index«d Storaje 2
Register and [ndexed Storage 3

— d D D e ed ed d D o
L]

Register to Register (RR) Format

(RX1) Fornmat
(RYX2) Format
(RX3) Format

.8 Register and [mmediate Storage One (RI1)
Format
1.8.,1C Register and Immediate Storage Two (RI2)
Format
1.8.11 Register and Indexed 5Storage/Reqgister and

Indexed Storajye (RxRx) Format

29-693 ROO 1/79

1-10

1-11
1-11
1-13
1-13
1-14
1-14
1-15
1-16
1-18
1-20

-
|

22

1-24

iii

CHAPTER 2

2.1

N
.
N

NN
. ¢ o ®
www
e o
[\ N

s e FEE
L

NN
¢ o o
.
w N —

.
*

NN NMNNNN
. L[] . .
auonoeuun o,
Ny & W N -

L] [] L] L] L .

2.5.10

N) =

\\)
.
(o))

iv

TABLE OF CONTENTS (Continued)

SYSTEM CONTROL
INTRODUCTION
CCNFIGURATICN

SYSTEM CONTROL PANFL SWITCHES and INDICATORS
Key Operatad Security Lock
Control Switches

OPFERATING INSTRUCTIONS
Power Up

Entering Console Sarvice
Initial Program Load

SYSTEM TERMINAL COMMANDS

Select an Address and kxamine "2"
Increment and Examine Next Location "+“
Decrement and £xamine Prior Location "-"
Modify Current Location "="

Examine Ceneral Register "R"

Mcdify General Register "=*

Examine Single Precision Floating Point
Register “b*

Modify Single Precision Floating Point
Register "="

Examine Doubla Precision Floatingyg Point
Register "D

Modify Double Precision Floating Point
Register ="

Examine Program Status Wdord "P"

Modify Program Status dord "="

MEMORY INITIALIZATION

PROGRAMMING INSTRUCTIONS

LOGICAL OPERATIONS
INTRODUCTION
DATA FORMATS
OPERATIONS
Boolean Operations

Translation
List Processing

NN
|
£ ww

NNNN
1
YU

[
jeale,)

NNNNDNNNNON
[
L N~ dn

29-693 ROO 1/79

(V8]
.
=

>
<

Wwwwwwwwuwuwwweiswuwwhwwuwuwwwuwwuwuwuwwwuwwwwwwwwwwwww

L[] L
.

L] e & e & &
(S INCABEG NG NN NGRS RO RS NG R IO O BN BV O NG BN O BNV TS NV IS, IS) NG NS RO A NS IR S A G IO R € B0, IS BEG, G B, IS IO INT IS NG 5
. e o © o o o o

L] . L] * . . L] . . L] L] '] L] . L[] L] . [] L
L] * L] L] L] L] L[] L] L] L] L]] L] L] L] L] . L] L]

WWWwwWwWwWWWNNNRONNNNNRNNDND QO @ 3 a99@@aa00 I8 W -

¢ o o
—
= &
- O

.

9-693

WX MNMEBLON a2 O OO dNMNNE WNaOEC XTI WA ad

TABLFE OF CONTENTS (Continued)

LCGICAL INSTRUCTION FORMATS

LOGCICAL INSTRUCTION

Lead

Load Immediate Short

Load Complement Short

Load Halfword

LLoad Address (LA)

Load Peal Address (LRA)
Load Halfword Logical (LHL)
Load *ultiple (LM)

Load Eyte

Exchange Halfword kegister (EXHR)

Fxcharce Ryte Register (EXBR)
Store (ST)

Store Halfword (ST!H)

Store MYultiple (STH)

Store Ryte

Compare

Cocnnare logical Halfword
Compare Loaical Byte (CLE)
And

And Halfword

OR

0t Halfword

Fxclusive 0OP

xclusive or Halfwnord

Test Immediate (TI)

Test Halfword Immediate (THI)
Shift left

Shift Right

Shift Left iHalfword

Shift Right Halfword
Rotate Left Logical (RLL)
Rotates Right Logical (RRL)
Test and Set (TS)

Test RPit (TRT)

Set Rit (577)

Reset Bit (RRT)

Complement Pit (CRT)
Cyclic Redundancy Check
Translate (TLATE)

Add To List

Remove From List

R20 1/793

CHAPTFIR 4

=&
e o ® o o e o o o
o o o o o o e o ¢ * o o

L]
) ed b a3 0 DS WA

g i ol S e i o P~ S S i s o
L]
NN LS WA a0

.
-

CHAPTER 5§

vi

TABLE OF CONTENTS (Continued)

ERANCHING
INTRODUCTICN

OFERATIONS
Cecision Making
Subroutine Linkage

BRANCH INSTRUCTION FORMATS

BRANCH INSTEUCTICNS

Branch on True

Branch on False

Branch and Link

Rranch on Index Low or Equal (BXLE)
Branch on Index High (BXH)

EXTENDED BRANCH MNEMONICS
Branch on Carry

Branch o¢on ko Carry
Branch on fgual

Branch on XNot %¥gual
3ranch on Low

Branch on Not Low
Branch on Minus

Branch on Kot Minugs
Branch on Plus

Branch on XNot Plus
Branch on Overflow
Branch on No Overtlow
Branch on Zero

Branch on Not Zero
Branch {Unconditional)
No Operation

FIXED PCINT ARI[HMETIC
INTRCDUCTION
DETA FORMATS
FIXED PCINT NUMXBE2 RANE
CPRRATICNS
CONDITION CODE

FIXED POINT INSTRUCTION FORMATS

&5 & &
[}
N = —

=
|
[<V]

<

5

-10

EEEE FEE
|
D W N

4-12
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4y-21
4-22
4-23
4-24
4-25
4-26
4-27
4-23
4-23/4-30

ROO 1/79

TARLE OF CONTENTS (Continued)

5.7 FIXED POINT INSTRUCTIONS 5-4
5¢7.1 Add 5-5
5¢7.2 Add Halfword 5-7
5¢7.3 Add to Memory (AM) 5-9
574 Add Halfword to Memory (AHM) 5-11
S5¢7e5 Subtract 5-13
S5e746 Subtract Halfword 5-15
5¢67.7 Compare 5-17
5.7.8 Compare Halfword 5-18
5.7.9 Multiply 5-20
5.7.10 Multinly Halfword 5-22
5.7.11 Divide 5-24
5¢7.12 Divide Haltfword 5-27
5.7.13 Shift Left Arithmetic (SLA) 5-29
5.7.14 Shift Left Halfwecrd Arithmetic (S5LHR) 5-30
5.7.1°¢ Shift Pight Arithmetic (SRA) 2-31
5.7.18 Shift Right Halfword Arithmetic (5RHA) 5-32
5717 Convert to Halfwori Value Register (CHVR) 5-33
CHAPTER 6 FLCATING PQINT ARITHMETIC 6-1
6541 INTRODOCTION A-1
a2 DATA FORMATS 6-2
6.3 FLOATING-POINT NUMRER 5-3
fhe3e1 Floating Point Number Range 5-4
fe3e2 Normalization 6-5
6e3.3 Fqualization 6-6
fe3eld True Zero 6-17
64365 Exponent Cverflow 6-7
he3.6 Zxponent nderflow A-4
6e3e7 Guard digits and R* Rounding 5-8
6ol CONDITION CODE 6-9
6.5 FLCATING POINT INSTRUCTIONS 5-10
HeHel L.Load Floating Point =12
5542 Load Positive Floating Point Register (LPER) H-10
6.5.3 Load Complement Floating Point Register (LCER) 6-15
6.5.4 Lnad Floating Point Multiple (LME) 6=-16
EebHet Load General Register from Floating Point 6-17
Register (LGER)
6e5e6 Store Yloating Point (5TE) 6-138
febHal Store Floating Point Multiple (STHE) 6-19
beHaet Add Floatinyg Point 6-20
65¢5.9 Suhtract “loating Point 65=-22

29-693 RO0O 1/79 vii

L] L] L] .
L] . . L L]

[N @ Nk« ke, BN N e, Wa 000)}
.
oo oo

P S S T G G G
NOMNME WN ad

6e5.18

655416

o O
e ®
e an
.
NN
- O

.
]

.
.

PR NNPONNNN

WO JINn = WwN

[%= 10N e 06)0~ T e JEe) B o))
L]

.
ooy onutn
. .

o
o
w
o

L] -

65431

CHAPTER 7

~J

L]
-

.
B -

~N
.

NN
L]

~3
.
w

L]
L

L]
L]

NN NNNNNd
[]

s e EFEEEELS

NN E WN -

viii

TABLE OF CONTENTS (Continued)

Compare Floating Point

Multiply Floating Foint

Divide Floating Foint

Fix Register (FXR)

Float Segister (FLR)

Load Double Precision Floating Point

Load Positive Double Precision Register (LPDR)
Load Comnlement Double Precision Register
(LCDR)

Load Multiple Double Precision Floating

Point (LMD)

Load General Registers from Double Precision
Floating Point Regist>r (LGDR)

Store Double Precision Floating Point (STD)
Store Multiple Double Precision Floating
Point (STMD)

Add Couble Precision Floating Point

Subtract Double Precision Floating Point
Compare Double Precision Floatinj Point
Multiply Double Frecision Floating Point
Divide Double Precision Floating Point

Fix Register Double Precision (FXDR)

Float Register Double Precision (FLDR)

Load Single-Precision Floating Point Register
from Double

Load Double Precision Floating Point Register
from Single

Store DNouble Precision Floating Point
Register in Single Precision Memory (STDE)

STRING GPERATICNS

INTRODUCTION

DFCIMAL DATA FORMAT DEFINITICNS
Packed Decimal

Unpacked (7Zoned) Decimal

INSTRUCTION FORMATS

STRING INSTRUCTIONS

Load Packed Decimal String as Binary (LPB)
Store Rinary as Packed Decimal String (STBP)
Move Translated Until (MVTYU)

Move

Ccmpare

Pack and Move

Unpack and Move

6-24
6-25
6=-27
5-29
A-31
6-32
6-33
6-34

6=39
6-41
6-U43
6=-44
H-U46
6-48
65=-49
5-50

H=-52

6-53/6-54

~N N
L}
N =

~
[}
w

|
- e 2 XN E W

It
&N O

NN NN NN NN
|

29-693 ROO 1/73

TABLE OF CONTENTS (Ccntinued)

CHAPTFR 8 HIGH SPEED DATAR HANDLING INSTRUCTIONS
(OPTIONAL)

8.1 INTROLDUCTION

8e2 DATA HANDLING INSTRUCTION FORMATS

8.3 DATA HANDLING INSTRUCTIONS

8.3.1 Process Byte (PB)

8+¢3.2 Process Byte Register (PBR)

CHAPTER & INPUT/OUTPUT OP:RATICNS

9.1 INTRODUCTION AND CONFIGURATION OF I/0O SYSTEM

3.2 DEVICE CONTPOLLERS

Y.2.1 Function

Qe2e2 Device Addressing

.23 Processor/Controll=r Communication

le244 Device Priorities - External Interrupt Levels:
Interrupt L ueuing

9.3 INTERRUPT SERVICE FCINTER TABLE

J.4 CONTROL OF I/0 OPERATIONS

3.5 STATUS MONITORING I/0

Yeb INTERRUPT DRIVEN TI/C

9,7 SELECTOR CHANNEL I/0

JeTe Introduction

eT7e2 Selector Channel Devices

9.73 Selector Channel Opreration

9.7.4 Selector Channel Programming

9.8 I/0 INSTRUCTION FORMATS

9.9 [/0 INSTRUCTIONS

Q,9,.1 Output Command

9.9.2 Sense Status

93.9.3 Read Data

9.9.4 Read Halfword

9.9.5 Write Data

9.9.56 drite HYalfword

35.9.7 Autoload (AL)

7.9.8 Simulate Channel Program (SCE)

29-693 R0O0 1/79

9-10
9-11
9-12
9-13
9-14
$-15
9-16
3-17

ix

9.10

9.11

9.11.1
9.11.2
9.11.3
9.11.4
9.11.¢
9.11.¢
9‘11.7
9.11. 8

CHAPTER 10

10.1

10.2.2
10.2.2

10.3

10.3.1
10.3.2
10.3.3
10.3.4

10.4

10.4.1
10.U.2
10.4.3

TABLE OF CONTENTS (Continued)

AUTO DRIVER CHANNEL

CHANNEL COMMAND BLOCK

Introduction

Subroutine Address

Ruffers

Translation

Check Word

Channel Command Word

Valid Channel Command Codes

General Auto Driver Channel Prograaming
Procedure

STATUS SWITCHING AND INTERRUPTS
INTRODUCTION
PROGRAM STATUS WORD (P35W) AND RESERVED
MEMORY LOCATIONS

Sw Status Word
Floating Point Masked “Yode (FLHM)

Interruptible Instruction in Progress (IIP)

Wait State (W)

I/0 Interrupt Mask (I)

Machine Malfunction Interrupt Enable (M)
Floating Point Underflow Interrupt Enable
(FLU)

Memory Access Controller ¥nable (M¥AC)
Systen Queue Service Interrupt enable (Q)
Protact Mode FEnable (P)

Register Set Select Field (R)

Condition Code (C, C, G, L)

PS4 Location Counter (LOC)

Reserved Memory Locations

INTERWUPT TIMING AND PRIORITY
Maskable and Non-Maskable Interrupts
Interrupt Timing

Interrupt Precederice

Interrupt Instructions

PROCESSQOR MODES
Console Yoide

Run Mode

Single Step Mode

STATUS SWAITCHING
Illegal Instruction Interrupt

9-13
3-13
9-19

-29
9-290
9-21
9=-22
9-23

10-38

10-9
10-3
10-11

10-12
10-12
10-14
10-14

10-15
19-15

29-693 ROO 1/79

10.5.10

10.6

10.6.1
10642
10.6.3
10.6.4
10.6.5
10.6.€
10647

CHAPTEIR 11

11.1

— —d D ed b
[P N . (N N Y
L]

NN NN
e
oW RN -

TABLE OF CONTENTS (Continued)

Data Format Fault Interrupt

Alignment Faults

Invalid Digit Faults

Memory Access Controller (MAC) Fault Interrupt
Machine Malfunction Interrupt

Farly Power Fail Detect and Automatic Shutdown
Power Restore

Non-Correctable Memory Error

Non-Configured Memory Address

Input/Cutput Device (I/0) Interrupts

Priority Levels

Immediate Interrupt-Auto Driver Channel
Operation

Simulated Interrupt

System Queue Service (5QS) Interrupt
Supervisor Call (SVC) Interrupt

System Breakpoint Interrupt

Arithmetic Fault Interrupt

STATUS SWITCHING INSTRUCTIONS

Lcad Program Status Word (LPSW)

Load Program Status Word Register (LPSWR)
Exchange Program 5Status Register (EPSR)
Simulate Interrupt (SINT)

Surervisor Call (SVC)

System Breakpoint (RRX)

Privileged System Function (PSF)

Read ¥krror lLogyger (REL)

Load Process 3Segment Table Descriptor (LPSTD)
Load Shared Segment Table Descriptor (LSSTD)
Store Process State (STPS)

Lcad Process State (LDPS)

Save Interruptible State (ISSV)

Restore Interruptible state (ISRST)

Store Byte, No ECC (XSTB)

WRITABLE CONTROL STORE INSTRUCTIONS
(OPTIONAL)

INTRCDUCTION

ARXITABLE CONTROL STORE INSTRUCTIONS
Writahle Control Store (WDCS)

Read Control Store (RDCS)

Branch to Control 3tore (3DCS)
Enter Control Store (ECS)

26-693 ROD 1/79

10-16
10-17
10-17
10-17
10-18
10-20
10-21
10-23
10-24
10-25
10-25
13-26

10-28
10-29
10-30
10-31
12-31

10-32
10-33
10-34
10-35
10-35
10-37
19-32
19-39
10-40
10-42
10-43
10-44
10-45
10-47
10-48
10-49/10-50

11-1

1-1

11-1
11-2
11-3
11-4
11-5/11-6

x1

CHAPTER 12

12.1

12.2
12.2.1
12.2.2

12.3
12.4
12.5

12.6

APPENCIX
APPENLCIX

APPENLIX
APPENCIX
APPENTIX
APPENTIX

INDEX

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

A NWWWWWWwRNN - a s

xii

[N T TR R T T I AN N AN N A N B

Z o

I ROR O]

TARLE OF CONTENTS (Continuesd)

MEMORY MANAGEMENT
INTRODUCTION
ACDRESS SPACE
Physical Address Space
Virtual Address Space
RELOCATION
PROTECTION

MA

O

REGISTERS

MAC INTERRUPT STATUS

APPENDICES

MODEL 3220 0OP-COLE MAP

INSTRUCTION SUMMARY - ALPHANUMERICAL
BY MNEMONIC

INSTRUCTION SUMMARY - NUMERICAL
ARITHMETIC REFERENCES

I/0 REFERENCES

CONSOLE SUPPORT FLOWCHART

FIGURES

fodel 3220 Processor Block Diagram

Program Status Word

Register Set Numbering
Instruction Formats

Sample Program

RXRX Formats

System Control Panel

Xeyboard Layout

Logical Data

Translation Table Entry

Circular List Pefinition

Circulor List

Flow Chart for CRC Generation
List Processing Instructions
Fixed Point Data Words Formats
Exponent Overflow

Fxponent Underflow

12-1
12-1
12-1

12-2
12-2

E-1
F-1/F=-2

Index-1

[R TR IR R B |
U W N

L 2 T I T B
~N O

OO N W WWwWwWwWNN =@
]
WL s N O EWN =W =N oad e U1y

}

29-693 ROO 1/73

TARLE OF CONTENTS (Continued)

Figure 7-1 Packed Decimal Format 7-1
Figure 7-2 Dnpacked Decimal Format 7-2
Figure 9-1 Channel Command 3lock 9-19
Figure 9-2 Channel Command Word 9-22
Figure 9-3 Auto driver Channel Flow Chart 3-26
Figure 10-1 Proagram Status Wdord (PSwW) 10-2
Figure 10-2 Feserved Memory Locations 10-8
Figure 10-3 Schematic Diagram of the Model 3220 10-10
Interrupt System Architecture
Figure 10-4 *Machine ¥alfunction Status Word (MMSW) 10-20
TABLES

TABLE 2-1 SYSTEM TERMINAL SUPPOXT COMMAND SUMMARY 2-2
TABLF 5-1 FIXKD POINT FORMAT RELATICNS 5-2
TABLE 6-1 FLOATING/FIXED FOINT RANGES 6-4
TARLFE 7-1 TLLEGAL DIGIT CASES (PACK AND MOVE) 7-13
TABLK 7-2 TLLEGAL DIGIT CASES (UNPACK AND YOVE) 7-15

28-693 ROOD 1/79 xiii/xiv

CHAPTER 1
SYSTEM DESCRIPTION

1.1 INTRODUCTICN

The Series 3200 processors are designed to meet the needs for
higher performance and reliability in a 32-bit minicomputer.
This series represents a logical, upward compatible =avolution
from the Models 7/32 and 8/32 product line and includes some

significant enhancements directed towards scientific and
commercial applications. The architecture his improvad error
recovery capabilities for those applications where fault

tolerance 1is a necessity and allows direct addressiang up t»
sixteen million bytes of actual or virtual memory implem=snted 1in
MOS with Error-Correction Coda (ECC).

The first processor in the series is the 3220. Through the use
of 32-bit general registers and a comprehensive instruction sat,
this processor trovides fullword data processing power anil direct
memory addressinz up to 1 limit of one megabyt=,. The syster is
shown in block diagram form in Figure 1-1. The 1instruction set
includes:

halfword and fullword arithmetic and logical operatioas
single precision and double precision floating point

list processing

cyclic redundancy checking

bit and byte manipulationsc

alphanumeric and decimal character string processing
decimal/binary conversions

instructions designedi to improve operating system performance

With this enriched repertoire and direct memory aiddressing,
coding and debugging time is reduced to a minimum.

¥ight sets of 1€ 32-bit g2neral registers are proviilei,. Register
set selection is controlled by bits in the projram status worc.
Register-to-register instructions permit operatinons between any
of the 16 registers 1in the current set, eliminating r=2duniant
loads and storas, The multiple register sat organization
eliminates the overhead incurred 1in saviny and rastoring
registers when responding to interrupts.

The Memory Access Controller (MAC) provides automatic progjram
segmentation, relocation, and protectione. The protect nodea
enables detecticn of privileg~d instructions. These two features
are invaluable in froc2ss3 control, dita coamunication, ani
time-sharing opeorations Dbecause they prevent 3 running projgranm
from interfering with the system integrity.

29-693 R0OO 1/79 1-1

‘-1

€EL/L 008 €69-6C

556
DIRECT
Fm—————— - MEMORY
. | ACCESS
MAIN) CACHE |
MEMORY 1 OPTION 7 MEMORY
TERFACE
L= INTERFAC
mre - - - - 1
; ERROR i MEMORY
CORRECTION | ACCESS
| | CONTROLLER
| R —— | [
t
4 [y S]
PSW (STATUS)
__________ e IR 13 2 28 31
| R [ClV[G|L
8 SPFP 8 DPFP i l L LT' [] <
REGISTERS REGISTERS | a4 63 =
< 8 SETS OF 16 32-BIT GENERAL REGISTERS
' [tocation counter o iy —_—
w b }— —q
I 171
 — I w 101
w - — —
- 1 = F —]
h INSTRUCTION < —
1 1 | REGISTER _—
R2 | —]
e : FL;)OA:TNG | o [Flwi|x - —
vl SEEE
ALU \ ’_{ }_
FLOATING POINT OPTION) < —
e e N 4 N —~]
r"_ — ==
| 1
1
I | <
| ! s
| wCs ! w
i]| oprion || =
[! FIXED a FIXED-POINT
| | COS’:BF;CE’L g ARITHMETIC
| |] LOGIC
|] UNIT
Lo —f-d
MICROINSTRUCTIO A
SEQUENCING AND
DECODE LOGIC
2 A 3

MULTIPLEXOR BUS

CPU

Figure 1-1

Model 3220 Processor Block Diagram

4 CARTRIDGE
DISC
SELECTOR
CHANNEL @
-
MAGNETIC
TAPE
LINE
PRINTER
FLOPPY
= MEDIA
DISC
CARD
READER
oo UNIVERSAL
CLOCK

The Mcdel 3220 supports 1Mb of directly addressable MOS Memory,
which consists of a maximum of four 256kb modules. Error
correction is standard and is performed across every 32-bit
fullwerd in memory using a 7-bit modified error-correcting code
(ECC). All single bit errors are detected and corrected; all
double bit errors and most multiple bit errors are detected. The
optional memory error 1lcgger identifies the memory module
reporting a fault and indicates the location of the faulty memory
chipe.

The optional 1kb high speed cache memory is situated betw22n nain
memory and the processor. When the processor requasts memnory
data already in the cache, the data is read from the cache ratherc
than from the slower main =@aeomory. This option allows 1
significant improvement in memory access times such that overall
performance improvements 2f 104 to 25% can be realized, dapendingy
on the application.

In addition to conventional means of programmed I/0, the
processor automatically acknowledges all I/0 interrupts and
performs much of the required overhead before activating an
interrupt service routine. The auto driver channel can perform
data transfers with character translation, longitudinal or cyczlic
redundancy checking, and data buffer chaining without
interrupting the running program.

The 2k Writable Control Stora (WCS) option allows the user to
microprogram the processor to suit a particular application.
Scientific algorithms, communication protocols, or special
subroutines <can be implemented in WCS and executed up to thres=
times as fast as an =2gquivalent assembly level implementation.
Pefer to the following manuals for further infornation:

Common Assembler Languagje (CAL) User's Manual,
Publication Number 29-640

ESELCH Programming Manual, Publication Numbar 29-529

EDMA Bus Universal Interface Instruction Manual,
Publization h“umber 29-423

Model 3220 Yaintenance Manual, Publication Number 29-695

Model 3220 Micro-Instruction Reference Manual,
Publication Numbar 29-694

Common Micro-Code Assembler Language (MICROZAL)
User’'s Manual, Publication Number 29-4u49

29-633 ROO 1/79 1-3

559

1.2 PROCESSOR

The Central Processing Unit (CPU), or procassor, controls
activities 1in the systanm. (See Figure 1-1.) I't executes
instructions in a specific seguence and performs arithmetic and
logical functionse. Included in the processor’s componants are
the:

Program status word register
General registers

Floating pcint registers
Hardware multiply and divide
Floating point hardware

1e2e1 Program Status Worid

The 6U4-bit Program Status Word (PSW) defines tha stats of the
processor at any given time. (See Figure 1-2.)

0 12 13 14 15 16 17 18 19 20 21 22 23 24 27 28 29 30 31
Fli F R
Ll wii im|t]|/ [a]lPr R clviag]|L
M|P U P
32 4344 : 63
LOCATION COUNTER

Figure 1-2 Program Status 4ord

Bits 0:31 are reserved for status information and interrupt
masks. Bits 32:A3 contain the 1location counter. UJnassigned
program status word bits wmust not be used and must always be
Z€ero. Status information and interrupt mask bits are defined a=
follows:

Bits 0:12 Reserved Must be zero

Bit 13 FLM Floating-point arithmetic maskei mode

Bit 14 I1p Interruptible instruction in progress

Bit 15 Reserved Must be zero

Fit 16 W Wait state

Rit 17 I I/0 interrupt mask

Rit 18 M Machine malfunction interrupt misk

RBit 19 FL! Floating-point arithmetic underflow
mask

Bit 20 I I/0 interrupt mask

RHit 21 R/P Relocation/protection interrupt mask

Rit 22 D System queue interrupt mask

Bit 23 P Protect mode

Bits 24:27 R Register set select bits

Bits 28:31 c,v,G,L Condition code

Bits 32:43 Reserved Must be zero

Bits 44:63 Program address (location countar)

Refer to Chapter 10 for 1=2tails on the interrupt mask bitse.

1-4 29-633 R0O 1/73

1.2.1.1 Register Set Selact (R)

Bits 24:27 of the PSW are used to designate the c-urrent register
sete. Register sets are numbered 0 through 15. The processor has
8 sets of general registers. (See Figure 1-3.)

558
REGISTER

SET DESIGNATION
NUMBER

RESERVED FOR INTERRUPTS

WN -0

5 MAY BE ALLOCATED BY THE OS
6 FOR GENERAL PURPOSE USE.

10 UNIMPLEMENTED
1 SETS

15 GENERAL PURPOSE

Figure 1-3 Register Set Numbering

1¢2.1.2 Condition Code (ZVGL)

Bits 28:31 of the PSW contain the condition code. As part of the
execution of certain instructions, the state of the c¢ondition
code may be changed to indicate the nature of the result. Not
all instructions affect the condition code. Tha state of the
condition code may be tested with conditional branch
instructions. Each bit in the condition «c¢nde is set if ttre
corresponiing condition occurred as a result of the 1last
instruction that affectad the condition cod=. The normal
interpretation of these bits is:

Arithmetic carry, borrow, or shifted zarry
Arjithmetic overflow

Greater than zero

Less than zero

(o) el (o] BEY o]
DO |=jO|=<
Olalojo|a
= {O|OIO|

29-693 R0OO 1/79 1-5

1«21«33 Location Counter

The location counter contains the address of the 1instruction
currently being executed by the processor, and points to that
instruction until it has successfully completed execution. Once
this execution is completed, the location counter is incremented
by 2, 4, 6, 8, 10, or 12 (depending wupon the instruction
executed), and the next instruction is fetched. In the case of
a branch instruction, the location counter 1is 1loaded with the
address to which control is being transferred, and the next
instruction is fetched from that address.

If an instruction is not successfully completed due to a fault or
other interrupting condition, the location counter <contains the
address of the faulting or interrupted instruction. When a
program interruption is due to an incorrect branch address, the
location counter contains the branch address and not the location
of the branch instruction.

12.2 General Registers

The processor has eight register sets, numbered 9 through 6, and
15 (see Figure 1-3). FEach register is 32 bits wide. Register
set selection is determined by the state of bits 24:27 of the
current PSW. Registers 1 through 15 of any set may be used as
index registers.

When an interrupt occurs, the processor loads pertinent
inforration 1into preselected registers of the register set
selected by the new program status word. For details of this

operation, refer to Chapter 10.

1723 Floating-Point Registers

There are eight optional single-precision floating-point
registers, each 32 bits wide. These registers are identified by
the even numbers O through 14.

There are eight optional double-precision floating-point

registers, each pl4 bits wide. These registers are also
identified by the even numbers 0 through 14 and are separate fromn
the single-precision floating—-point registers. Floating-point

operations must alvways specify the registers with even numbers.

1-6 29-693 ROO 1/79

1.3 PROCESSOR INTERRUPTS

The PSW that is loaded in the processor at any point in time is
called the current PSW. If either the status word or both the
location counter and status word are changed, a status switch is
said to have occurred. This status switch <c¢an be caused
explicitly by executing special instructions or can be forced to
occur by an interrupt or fault. At the time of a status switch,
the current PSW that is saved is called the o0ld PSW. The PSW
that replaces the current PSW is called the new PSH.

Interrupt conditions cause the entire PSW to be replaced by a new
PSW thus breaking the usual sequential flow of instruction
execution. When an interrupt condition occurs, the processor
saves 1its current PSW either in memory or in a pair of general
registers belonging to the register set selected by the new PSWH.
It 1lcads information related to the interrupt condition in other
registers of this same set. A new PSW is loaded from a memory
location reserved for the specific interrupt condition. The
immediate interrupt is an exception to the rule. In this case,
the status portion of the new PSW, bits 0:31, is forced to a
preset value, and the location counter is loaded from a memory
location reserved for that interrupting device. Refer to Chapter
10 for details on interrupt processing.

1.4 RESERVED MEMORY LOCATIONS

Physical memory locations X'0°-X'2CF*' are called reserved memory
locations. These locations contain the various new PSWs aand
other information needed to handle interrupts.

¥*'000000°*"-X"00001F" Reserved; must be zaro

X*000020°*-X'000027" Machine malfunction interrupt
old PSW

X*000028°*-X°'000020a° Reserved for console status

¥*00002A*~-X*00002B"* Reserved; must be zero

X*00002C*"-X"00002F"* Yachine malfunction LY block
start address

X*000030*-%'00CO37" ITllegal instruction interrupt
new PSW

X*'000038°*-X*000C3F" Machine malfunction interrupt
new PSW

X*0000u40"-X*000043" Machine malfunction status
word

X*oooouyu*-xX*000047" Machine malfunction virtual
(Program) address

X'000048°-X'0000ULF" Arithmetic fault interrupt
new PSW

X*000050*-X*000C07F" Hootstrar loader and device
definition table

X*000080*'-X'000083" Jystem gqueue pointer

X*'000084'-X*000087" Power fail save area pointer

X'000088*'-X"'000CRF" S5ystem gueue service interrupt
new PSW

29-693 R0OO 1/79 1-7

X*000090°-X"000097" MAC interrupt new PS5+

X*000098°'-X*00009B" Supervisor call new PSW status
X*00009C*'~-X*0000BR" Sypervisor call new PSW location
counter values (16 halfwords)
X*'0000BC'-X"0000RF" Reserved; must be z=2ro
X*0000CO*-X*0000C7"* Reserved; must be z2ro
X*0000CR*~-X"0000CF"* Data format fault naw PSW
X*0000D0*"-X"0002CF’ Interrupt service pointer table
X*0002D0*-X'000U4CF"° Expanded interrupt service
pointer table
X*0004D0*-X*0008CF* Yxpanded interrupt service

pointer table

T'hese reserved locations play an important role in both interrupt
and input/output processing. Refer to Chapters 9 and 10, In
addition to the above, z2rtain locations are reserved for us=2 by
the MAC. Refer to Chapter 12 for details.

All location counter values are subject to MACZ relocation if the
new PSW enables MAC (bit 21 = 1). All other pointers contain
absolute addresses not subject to MAC relocation.

1.5 DATA FORMATS

The processor performs 1logical and arithmetiz op=2rations on
single bits, 8-bit bytes, 16-bit halfwords, 32-bit fullworids, ani
64-bit doublewcrds. This data may represent a fixa21i-point
number, a floating-point number, logical information, a bit or
byte array, or a decimal 2r alphanumeric byte string.

1e5e1 Fixed-Point Data

Fixed-point arithmetic op2rands may be either 16-bit halfwords or
32-bit fullwords. In fullword multiply and divide operations,
64-bit operands are manipulated. Fixed-point data is trezateil as
15-bit signed integers in the halfword format. Positive numbers
are expressed in true binary form with a sign bit >f z=2ro.
Negative numbers are repr2sented in two's complenent form with 2
sign bit of one. The numa2rical value of zero is represented with
all bits zero. Refer to Thapter 5 for details of fixa2d-point
data representation.

In fixed-point arithmetic and 1logical ope2rations between a
fullword register and a hilfword operand, the halfword op2rani is
expanded ¢to a fullword by propagating the most significant bit
into the high order bits before the operation is started. This
permits the use of halfword ¢to fullword operations with
consistent results and providas space economy, since small values
need not require fullword locations.

1-8 29-693 R0OO 1/73

Arithmetic operations on fixed-point halfword quantities may
produce results not entirely consistent with those obtained in "a
16-bit processor. If this problem exists, the Convert to
Halfword Value Register instruction (CHVR) may be used t» adjust
the result and the condition code, making them <consistent w#ith
the same operations in 3 16-bit processor.

1.5.2 Floating=-Point Data

A floating-point number consists of a 7-bit exponent in excess-6i
notation and a signed fraction. The gquantity expressed by this
number is the product of the fraction and the number 16 raised to
the power represented by the exponent. %ach floating-point value
requires a 32-bit fullwori or a 54-bit double-word, of which
eight bits are uysed for the sign and exponente. The ramaining
bits are used for the fraction. Refer to Chapter 6 for detiils
of floating-point data represaentation.

Floating-point operations take place between the conteats of a
floating-point register and another floating-point register, a
floating-point oprerand contained in a fullword or double-word in
memory, Oor a general register or pair of general registears.

153 Logical Pata

Logical operations manipulate 8-bit bytes, 16-bit halfworlis, ani
32-bit fullwords. In addition, it is possible t> perform logical
operations on <single bits located in bit a3rrays. Refer to
Chapter 3 for details of logical data representation.

154 Dacimal String Data

Decimal strings are strings of consecutive bytes in memory that
begin and end on btyte boundaries. Information zcontained in a
decimal string may represesnt packed or unpackel decimal data.
Refer to Chapter 7 for details of decimal data formats and
operationse.

1.5.5 Alphanumeric String Data

Alphanumeric strings are strings of consecutive bytes in mexory
that begin and end on byte boundaries. Information containe? in
an Aalphanumeric string may represent any character Stream
including decimal string iata. PRefer to Chapter 7 for detail: of
alphanumeric string data format and operations.

29-693 ROO 1/73 1-3

1.6 TL[ATA ALIGNMENT

The following discussion i=s unique to the Model 3220
implerentation and is presented for information only. Any
program that misuses a processor feature by taking advantage of
a peculiarity of one implementation may not work on a different
implerentation.

Locations in main memory are numbered consecutively, beginning at
address '00000*'. Although memory is addressable and alterable to
the byte level, machine accesses to memory involve only halfwords
or fullwords. Those instructions regquiring a single byte access
actually access a halfword and then manipulate the appropriate
byte with the halfword. .

Memory can only be accessed to the halfword level, therefore, bit
31 of the address is truncated at the memory. A halfword fetch
at address ‘'00051°', and a fetch at address X'00050' produce the
same halfword. There is no warning mechanism telling the progran
that it is fetching halfwords on the odd byte boundary.

The CAL Assembler generates an error flag if it sees halfword
operations directed to an odd byte address or if it sees fullword
operations directed to other than a fullword address.

Bytes of information are addressed by their specific hexadecimal
address. Two bytes form a halfword. Halfwords have an even
address, the address of the 1left most byte in the pair. Two
halfwords comprise a fullword. A fullword address is a multiple
of four (4 bytes) and is the address of the left most halfword in
the ©pair. The hardwvare actually truncates the least significant
two address bits on fullword accesses, forcing proper alignment.
A data format fault is generated if a fullword access is directed
to an address that has bit 30 or 31 set; or if a halfword store
is directed to an address that has bit 31 set.

1«7 INSTRUCTICN ALIGNMENT

User 1level instructions are always aligned on halfword
boundaries. Any halfword address is valid regardless of the
length of the instruction word. The CAL assembler generates
boundary errors if the assembled 1location <counter for an
instruction becomes odd. At the machine level, attempts to nmake
the instruction 1location counter odd by branching or causing a
status switch are ignored by the hardware. In the Model 3220,
location <counter bit 31 1is not implemented and is therefore
alwvays zero. Thus, a branch to address X*51' causes the location
counter to be set to X°'50°*.

1-10 29-693 %00 1/73

1.8 INSTRUCTION FORMATS

1.8.1 Introduction

Instruction formats provide a concise method of reprzsenting
required operations for easy interpretation by the processor.
Figure 1-4 shows the eight basic formats. The followingy is 1
l1ist of abbreviations and their meanings as used in Figur=s 1-%4%.

OP Operation code
k1 First operand register
R2 Second operand register
N A 4-bit immediate value
X2 Second opa2rand single index register
D2 Second operand displacement
FX2 Second operand first index register
SX2 Second operand second index register
A2 Second operand direct adiress
I2 Second opesrand immediate value
L1 Specifies the length of the first
operand
L2 Specifies the length of the second
operand
OPMOD Specifies a particular instruction within
the class specified by OP
ADD1 The effective first operand addrass
ADD2 The effective second operand address
Many instructions may be =a2xpress=d in two or mora2 foraats. This
feature provides flexibility in data organization and instruction
sequencinge. Yhen working with the Common Assembler Language
(CAL) assembler, it is unnecessary to specify the instruction
format. The assembler selects the most economical format ani
supplies the required bits in the machine <cod=2. Ahan double

indexing 1is required, the assembler always chooses the RX3
formate. Refer to the Common Assembler Languaga (CAL) Manual,
Publication Number 29-640

29-693 ROO 1/79 1-11

857

REGISTER TO REGISTER (RR)

0 7 1 156
OoP R1 R2
SHORT FORMAT (SF)
0 7 1 15
oP R1 N
REGISTER AND INDEXED STORAGE (RX1)
0 7 1 15 18 31
OP R1 X2 0 D2
REGISTER AND INDEXED STORAGE 2 (RX2)
0 7 1 15 17 31
oP R1 X2 D2
REGISTER AND INDEXED STORAGE 3 (RX3)
0 7 11 15 17 20 24 . 47
JJ
0] R1 FX2 11010 SX2 A2 .
v J
REGISTER AND IMMEDIATE STORAGE 1 (RI1)
0 7 11 15 31
oP R1 X2 12
REGISTER AND IMMEDIATE STORAGE 2 (R12)
0 7 11 15 47
— F
OoP R1 X2 12
g L
A 4
REGISTER AND INDEXED STORAGE, REGISTER AND INDEXED STORAGE (RXRX)
0 7 11 12 L 31/47 39/65 43/58 . 63/79/95
7 7 s 7
oP L1 ADD1 OPMQOD L2 ADD2
d o VY 4
4 J - 7
Figure 1-4 Instruction Formats
1-12 29-693 RJ0 1/73

560

1.8.2 Branch Instruction Formats

BRranch instructions use the RR, SF, and all variations of the RYX
formats. In the conditional branch instructions, however, the X1
field does not specify a register; instead, it contains a mask
value (labeled M1 in the instruction descriptions)e. This mask
value 1is tested with the condition code. The CAL assembler
provides a series of extended branch mnemonics, which m@make it

possible to specify a
mask value explicitly.

1.8.3 Programming Fxamples

Fach of the following examples refers ¢to
language program shown in Figure 1-5. Note
egquates for general registers. Machine code
result of each
logical placement of the instructions,

the

conditional branch without specifying the

issembly
symbolic
and the

sample
tha use of
generated

instruction are dependent upon the physical ani
respectivaly.

SERIES 3200 INSTRUCTION FORMAT EXAMPLES PAGE 1 18:21:44 02/09/79
PROG= S$3200 ASSEMBLED RY CAL 03-066R05-01 (32-817)
1 S3200 PROG SERIES 3200 INSTRUCTION FORMAT EXAMPLES
2 CROSS
3 NOR X3
0¢00 0005 S5 RS EQU S5 GENERAL REGISTER 5
0000 0006 6 6 EQU [3 GENERAL REGISTER &
0000 0007 _ 1 R7 EQU 7 GENERAL REGISTEZR 7
0000 0008 & R8 EQU 8 GENERAL REGISTER 8
0000 0009 9 139 FQu 9 GENERAL REGISTER 9
0000 OODA 10 R10 £EQU 10 GENERAL REGISTER 10
0000 000B 11 R11 EQU 11 GENERAL REGISTER 11
0000001 245€E 13 SF LIS R5e¢18 (R5) = *0000000F"
0000021 0865 15 RR LR R64R5 (R6) = *0O00000E"
0000041 4050 1000 17 R’X1.EX1 STH R54X*1000¢ (X*1000°*) = X*000E"
0000081 4C56 OFF2 19 3IX1eEX2 STH R35¢X*0FF2*(R6) (X*1000*) = X*0Q0E"
00000CI 4050 8004 =0000141 21 RX2.EX1 STH R54L0C1 (LOC1) = X°*000E°*
0000101 4300 8004 =0000181 22 B RI1.EX1
0000141 0CCO COOO 23 LOC1 DC Fe)e TW0 HALFWORDS OF STORAGE
0000181 (€890 8060 25 RI1.EX1 LHI R9¢X*8000° (R9) = YYFFFFB000"
060001CI (€895 8000 27 RI1.EX2 LHI R94X*8000* (R5) (R9) = YCFFFFB8OOF?
0000201 FBAQ 0000 B00O 29 RI2.EX1 LI R10e¢X*8000°" (R10) = y'gQ008000°"
0000261 FBBA 0001 7FFE 31 RI2.EX2 LI R114Y*17FFE*(R10) (R11) = YSOCOCL1FFFE?®*
00002CI 4050 FFE4 =000C141 33 R’X2.EX2 STH R5eL0C1 (LOC1) = X*000E"
0000301 4056 FFD2 =0000061 35 RX2.EX3 STH R5¢L0C1-14(R6) (LOC1) = X'000E"
0000341 5870 4001 000G 37 RX3.EXD L R7e¢Y*10000° (R7) = (Y*010000°*)
00003A1 5885 4601 FFE4 39 IAJLEX2 L RBeY'20200%-28(RS4R6) (RB) = (Y*(C20000°%)
0000A0I 4300 FFBC =0000001 40 B SF
0000441 4?2 TND
—) = o N - J o\ —
[} t | 1 i
LOCATION OBJECT INFORMATION I LABEL l OPERANDS COMMENTS
COUNTER STATEMENT OP-CODE
NUMBER
Figure 1-5 Sampls Progranm
29-633 ROO 1/79 1-13

56l

562

1.8.4 Register-to-Register (XR) Format

REGISTER TO REGISTER ({RR) FORMAT
0 7 8 11 12 15

opP R1 R2

In this 1%-bit format, bits 0:7 contain the operation code: bhits
8:11 <contain the R1 field; and bits 12:15 contain the R2 field.
In most RR instructions, the register specified by R1 =ontains
the first operand, and the register specified by R2 contiins the
second operand. For example:

Machine Code Label Assembler Notation

0865 BRR LR R6,R5

[_______.Second operani

Firest operand

Load Register (LR) instruction op-cole

18.5 Short Form (SF) Format

SHORT FORM (SF) FORMAT
0 7 8 1112 15

OP R1 N

This 16-bit format provides space economy when wdorking w#with small
values. Bits 0:7 contain the operation code; bits 8:11 <contain
the 281 field; and bits 12:15 contain the N fieldi. In arithmeatic
and logical operations, the register specified by R1 zontains th=
first operand. The N field <contains a 4-bit immediate wvalue
(0:15) usad as the second operand. For example:

#"achine Code Lahel Assembler Notation

SF LI5 R5,14

E
[———————Seconﬁ operani

First operand

243

Load Immediate Short (LIS) instructiosn op-coia

1.8.6 Register and Indexed Storage One (RX1) Format

s REGISTER AND INDEXED STORAGE ONE (RX1) FORMAT
0 7 8 11 12 15 16 17 18 31

op R1 X2 010 D2

This is a 32-bit format in which bits 0:7 contain the operation
code; bits 8:11 contain the R1 field; bits 12:15 contain tha X2
field; bits 16 and 17 must be zero; and bits 18:31 contain tha D2
fielde In general, the register specified by R1 contains the
first operand. The second operand is located in memory at the
address obtained by adding the contents of the second operand
index register (specified by X2) and the 14-bit absolute addres:s
contained in the D2 fielde For example:

Machine Code Label Assembler Notation

4050 1000 RX1.EX1 STH R5,X*1000°

Lefines second operand address

No index ragister specified

First operand

Store Halfword (STH) instruction op-code

The second operand address is calculated as follows:

564BITS 16 19 20 23 24 27 28 31
0001 0000 0000 0000
1 — 1
| 14-bit absolute address X'1000’
1 Indicates RX1 format

No indexing 1is specified; therefore, the second operand address
is X'1000°.

Machine Code Label Assembler Notation
29§6 OFF2 RX1.EX2 STH R5,X'JFF2' (R%)
] L —— - Cefines second operand address
Register 5 to he used for indexing

First operind

Store Halfword (STH) instruction op-code

29-693 ROO 1/79 1-15

565

566

The second operand address is calculated as follows:

BITS 16 19 20 23 24 27 28 31

0000 111 1M1 0010

L —
L 14-bit absolute address X'OFF2’

Indicates RX1 format

Second Orerand Address

= contents of D2 field + contents of index register 5 (see
Figure 1-3)

= X*'CFF2' + Y'0000000FL"

= Y'0C0C100C"

18.7 Register and Index=2d Storage Two (RX2) Format

0 7 8 11 12 15 16 17 31

oP R1 X2 1 D2

This format provides relative addressing capability in a 32-bit
instructicn word. Bits 0:7 contain the operand code; bits 8:11
contain the R1 specification; bits 12:15 contain the X2
specification; bit 16 must always be one; and bits 17:31 contain
the relative disrlacement, D2.

In the RY2 format, the register specified by R1 contains the
first operand. The address of the seconil onerand, in memory, is
calculated by adding the value <contained 1in the incremented
location counter (the address of the next seguential instruction)
and the sum of (1) the 32-bit representation of the 15-bit signei
number contained in the D2 field, and (2) tha contants of tha
index register specified by X2. Negative numbers in the D2 field
are expressed in twvo's complement notation. For example:

Machine Code Label Assembler Notation

40¢ 8004 RX2.EX1 STH RS,LOC1

0
) LALLE
{ L Defines second operand address

No index register specified

First operand

Store Halfword (STH) instruction »>p-cnde

1-16 29-693 ROO 1/79

The second operand address is calculated as follows:

BITS 16 19 20 23 24 27 28 31

567

1000 0000 0000 0100

1 J
15 bit positive relative displacement
Indicates RX2 format

Second Orerand Address

= 32-bit exransion of conteuts of D2 field + contents of
incremented lsocation countsr (see Figure 1-5).

= Y*C000000D4* + Y'O0D00O10"

= Y'C0000014"

_Machine Code Label Assembler Notation
33_50 FFEU RX2.EX?2 STH R5,L0C1

Defines second operand address

No index register specified

First operand

Store Halfword (STH) instruction op-code
The second operand address is calculated as follows:

ses BITS 16 19 20 23 24 27 28 31

1111 1111 1110 0100

L J
15-bit negative relative displacement
Indicates RX2 format

Second Orerand Address

= 32-bit expansion or contents ot D2 tield + contents of
incremanted leocation counter (see Figure 1-95).

= Y'FFFFFFE4' + Y'00000030"

= Y*'C0000014"

29-693 ROC 1/79 1-17

569

570

Machine Code Label Assembler Notation

4056 FFD2 RX2.EX3 STH R5,L0C1-14 (16)

Defines second operand address

Register 6 to be used for indexing

First operand

Store Halfword (STH) instruction op-—-code

The second operand address is calculated as follows:

BITS 16 19 20 23 24 27 28 31

1M 1111 1101 0010

15-bit negative relative displacement
Indicates RX2 format

Second Operand Address

= 32-bit expansion of D2 fieic + contents of incremented
location counter + <contents of inlex register 6 (see
Figure 1-5).

= Y*'FFFFFFDZ' + Y'00000034"' + Y*000C000%"

= Y'C00N0014"

1.8.8 Register and Indexed Storage Three (RX3) Format

0 7 1 15 16 17 18 19 20 24 47

An)

OoP R1 FX2 0o|1]0]o0 SX2 A2

N
»

This is a u48-bit format in which double indexing 1is permitted.
8its 0:7 contain the operation code; bits 8:11 contain the R1
specification; bits 12:15 contain the first index specification,
FX2; bit 16 must be zero; bit 17 must be one; bits 18:19 must be
zero; bits 20:23 contain the second index specification, SX2; and
bits 24:47 contain a 24-bit address, A2. Second level indexing
is allowed even if first level indexing is not specified.

-
|
-
(e <]

29-693 ROO 1/79

In general, the first operand 1is contained in the register
specified by R1. The second operand is located in memory. Its
memory address 1is obtained by adding the contents of the first
index register and the contents of the second index register, and
then adding to this result the contents of the A2 field. For

example:
Machine Ccde Label Assembler Notation
§£"9 §001 0000 RX3.EX1 L R7,Y*10000"°

Defines second operand address

Second level indexing not specified

Specifies RX3 format

First level indexing not specified

First operand

Load (L) instruction op-code

The second operand address is calculated as follows:

571
BITS 16 20 24 28 31 32 36 40 44 47

0100 0000 0000 0001 0000 0000 0000 0000

I L]
20-bit absolute address Y'10000’
Indicates RX3 format

Second QOrverand Address

= cocntents cf A2 field

= Y*'coc10002"

29-693 ROO 1/79 1-19

Machine Ccde Label Assembler Notation

5885 3601 FFE4 RX3.EX2 L R8,Y°20000°'-28 (R5,75)

Defines second operand address

Register 6 to be used for second level indexing

Specifies RX3 format

Register 5 to be used for first level indexing

First operand

Load (L) instruction op-code

The second operand address is calculated as follows:
572 .
BITS 16 20 24 28 31 32 36 40 44 47

0100 0110 0000 0001 1111 111 1110 0100
1 L N

20-bit absolute address Y’'1FFE4’
Indicates RX3 format

Second Operand Address

= contents of A? field + contents of 1index regist2r &5 +
contents of index register 5 (see Figure 1-5).

= Y*OOO1FFE4' + Y*00J0000E" + Y*0000000C"
= Y'00020000°

1.8.9 Register and Immediate Storage One (RI1) Format

573 0 7 8 11 12 15 16 31

oP R1 X2 12

This format represents a 32-bit instruction word. Rits 2137
contain the operand code; bits 8:11 contain tne R1 specification;
and bits 16:31 contain th=2 1%-bit immediate valu=, I2.

1-20 29-693 ROO 1/79

In this format, the register specified by R1 contains the first
operand. The 32-bit effective second operaad is obtainei by
adding together 32-bit representation of the signed 16-bit value
contained in the I2 field, and the contents of ths register
specified by X2. For example:

Machine Code Label Assembler Notation
gggo 8000 RI1T.EX1 LHI R9,X°'3000°*

16-bit immediate value

No index register specified

First operand

Locad Halfword Immediate (LHI) instruction op-coie

The second operand is calculated as follows:

574

BITS 16 20 24 28 31
1000 0000 0000 0000
l Sign Bit
Second Operand
= 32-bit representation of X'8030°
= Y'FFFF8000"
Machine Code Label Assembler Notation
€895 8000 ET1.EX? LHT R23,X°*°3000°'(RS5S)

16-hbit immediate value

Index register 5 specified

First operaand

Load Halfword Immediate (LHI) instruction on-cole

29-693 ROC 1/79 1-21

575

576

The second operand is calculated as follows:

BITS 16 20 24 27 31

1000 0000 0000 0000

Sign Bit

Second Operand

= 32-bit representation of X'8000*' + the c-ontents of the
index register 5 (see Figure 1-5).

= Y'FFFFB000' + Y'000000DE"

= Y'FFFF800E"'

1«8.10 Register and Immediate Storage Two (RI2) Format

0 7 11 15 47
— f
OoP R1 X2 12
d e
7 J
This is a 48-bit instruction format. Bits 2:7 <contain the

operation <code; bits 8:11 contain the R1 spacification; bits
12:15 contain the X2 specification; and bits 16:47 contain the
32-bit immediate value, T2.

The first operand is contained in the register specifiei by R1.
The second operand is obtained by adding the contents of the
index register, specified by X2, and thes 32-bit immediate valu=z
contained in the 12 field. For example:

Machine Code Label Assembler Notation
§§§0 0000 8000 RI2.EX1 LI R10,X'3000"°
{ ———— 32-bit immediate field
No index register specified

First opa2rand

Load Immediate (LI) instruction op-co>de

1-22 29-693 ROO 1/79

The second operand is calculated as follows:
77
BITS 16 20 24 28 32 36 40 44 47

0000 0000 0000 0000 1000 0000 0000 0000

I

32-bit immediate value

Second Operand

contents of I2 field

Y'00008000°

Machine Code Label Assembler Notation

£§§A 0001 T7FFE RI2.EX2 LI R11,Y'17FFE* (R12)

32-bit immediate field

Specifies index register 10

First operand

Load Immediate (LI) instruction op-code

The second operand is calculated as follows:

8
BITS 16 20 24 28 32 36 40 44 47

0000 0000 0000 0001 o111 1" 111 1110

L

32-bit immediate value

Second Operand

]

contents of I2 field + contents of index register 10 (see
Figure 1-3).

Y*00017FFE* + Y*00008000°

t

Y'O0O0O1FFEE"’

29-693 ROC 1/79 1-23

1.8.11 Register and Indexed Storage/Register and Indexed Storage
(RXRX) Format (See Figure 1-6)

The RXRX format resembles a pair of adjacent RX format
instructions, tut represents only one instruction. Each member
of the instruction pair may be any one of the standard RX
formats. For example, the first member might be RX1 and the
second member might be RX3, resulting in a 10 byte instruction.
The particular RX format chosen by the assembler for one member
is 1independent of that chosen for the other; thus, the
instruction can require 8, 10, or 12 bytes.

OP contains the operation code that defines the RXRX instruction

classe The actual operation to be performed is defined by the
OPMOD field.

The L1 field specifies the length of the first operand stringe.
If bit 0 of OPMCD is set, L1 is the length with a maximum value
of 15. If bit 0 of OPMOD is zero, the general ragister specified
by L1 contains the length. The L2 field specifies the length of
the second operand string. If bit 1 of OPMOD is set, this field
contains the length with a maximum value of 15 If bit 1 of

OPMOD is zero, the general register specified by L2 contains the
length.

The effective address calculated for the first member is the
address of the left-most (lowest - address) byte of the first
operand string. The effactive address calculated for the second

member is the address of the left-most byte of the second operand
stringe.

Machine Code Label Assembler Notation

8C50 1000 0160 OFF0O RX1.RX1 MOVE R5,X'"1000°',R6,X'FFO’
TTT —1 -

5

L———— Defines second operand address

No 2nd operand index

Register 6 contains length of 2nd operanti

JOPMOL value for MOVE

Defines first operand address

No 1st operand index

Register 5 contains length of 1st operand

RXRX format op-code

In this example both members of the RXRX instruction use the RX1
format. No indexing is specified for either member so the first

operand address is X'1000°', and the second operand address 1is
X*OFFO*.

1-24 29-633 ROO 1/79

6L/l 00Y¥ £€69-6C

579 RX1OR RX2 RX1 OR RX2
- — ~, " ~
oP L1 X2 D2 1 OPMOD L2 X2 D2
RX1 OR RX2 RX3
Vol s \ e N
opP Lt | x2 D2 OPMOD L2 | Fx2 | 0100 | sx2
RX3 RX1 OR RX2
- —~"
L1 | FX2 jo100 | $X2 A2 OPMOD | L2 | x2 D2
RX3 ' RX3
e N \ e
L1 } Fx2 jo100 | Sx2 A2 OPMOD L2 | FX2 |0100 | SX2
-~ o j¥ v
FIRST MEMBER SECOND MEMBER

Figure 1-§ RYRX Formats

Machine Code Label Assembler Notation

8CAS 4601 FFEY4 E160 4002 8000 RX3.RX3 MOVEP =10,Y'1FFE4"
T17 1 1T 7 (R5,R6),=6,1"'238000"

Defines second operand address

No 2nd op second level indexing

Specifies RX3 format

No 2nd op first level indexing

2nd op length is 6 bytes

OP,MOD value for MOVEP, immediate
lengths 1 and 2

Defines first operand address

Kegister 5 is second level
index for 1st op

Specifies RX3 format

Register 5 is first level index
for 1st op

1st op length is 10 bytes

RXRX format op-code

In this examprle, both members of the RXRX instruction use the RX3
format. Double indexing is specified for the first member and n»n
indexing is specified for the second member. The first operand
address is X'"1FFE4®" plus the contents of index registers 6 ani 5.
The second operand address is X'28000'. The length of each of
the first operand is ten bytes and the second operand 1is six
bytes.

1-26 29-593 ROO 1/79

CHAPTER 2
SYSTEM CONTROL

2.1 INTRODUCTICN

Operator control is provided by the system control panel and the
System Terminal, a microcode-supported device interfaced to the
system by an asynchronous line controller. The system terminal
may be used as the operating system's console device, and may be
a visual display unit or a printing terminal. The asynchronous
interface must be strapped as device numbers X'10* and X"11°'.

2.2 CONFIGURATION

The system control panel, shown in Figure 2-1, controls power to
the system, and Initial Program Loading (IPL). It also provides
controls for system initialization, processor halt/run, and
single step. Light Emitting Diodes (LEDs) on the system console
indicate current system state.

580

CPU SYSTEM

POWER POWER WAIT FAULT
SINGLE HALT/RUN ENABLE INIT <:> (:> (:) <:>
Lock @
IPL ON READY FAIL

STANDBY

DISABLE

Figure 2-1 System Control Panel

Keyboard commands through the System Terminal allow the operator
to examine and modify processor registers and main memory
locations and then begin rrogram execution. (Refer to Figure
2-2.) Hexadecimal characters and a number of special characters
are recognized by the System Terminal support microcode. The
characters accepted and their meanings are shown in Table 2-1.
No other characters are accepted and cause a question mark (?)
to be written to the System Terminal., When not in use for
operator control, the System Terminal is available to a running
program for use as an I/0 device. See Appendix F for a flowchart
of the console service routine.

29-693 ROOC 1/79 2-1

TABLE 2-1 SYSTEM TERMINAL SUPPORT COMMAND SUMMARY
58l
KEY SYSTEM
COMMAND MEANING TERMINAL
SEQUENCE DISPLAY
k- .
[@]n]n]n]nfn]lcRl | Select memory address <annnnn
and display halfword nnnnn YYYY
contents <
[R][n][cH Select general register | <Rn
and display contents YYYYYYYY
<
(F]n][cy] Select single-precision| <Fn
floating-point register| YYYYYYYY
and display contents <
@E Select double-precision| <Dn
floating-point register| YYYYYYYY YYYYYYYY
and display contents <
E] Select program status <P
word and display YYYYYY YYYYYY
contents <
Increment memory <+
location counter to nnnnnn YYYY
display next sequential | <
halfword
E] Decrement memory <-
location counter to nnnnnn YYYY
display previous <
halfword
EEY:I Replace contents of <=YYYY for memory
currently selected <
memory location or <=YYYYYYYY for register
register with new data <
Begin program execution| <<
at current memory
location
Delete Command <a10#
<

29-693 ROO 1/79

Notes:

1. Characters in boxes indicate operational Kkey strokes
required for commandse.

2. Character symbol of lower case "n" used to indicate
hexadecimal address of memory or register.

3, Character symbol of upper <case "Y" wused to indicate
hexadecimal contents of memory or register.

4, Underlined characters are those output from the systen.
Characters not underlined are those typed by the
operatcr.

&, A back arrow, or underline (X°'5F'), or a back space
(X'08°*) character may be used to delete the previously
input hexadecimal character.

6. Space characters may be entered as desired. They are
ignored by the processor.

582

EIBH
8 GIGCIGIEIERIRR @TE*
o ELIJW%‘LPJ]
BLILILCLE ,thw@
RER LG ~HI!I° & - -]

T

TAB

= |
]
> |
a

o]

o
=
2

Figure 2-2 Model 550 Keyboard Layout

2.3 SYSTEM CONTROL PANEL SWITCHES AND INDICATORS
2.3.1 Key Operated Security Lock

This is a three-position, STANDBY-ON-LOCK key-operated switch
that controls vprimary power to the system. It can also disable
(LOCK) the initialize and console switches, thereby preventing
any accidental manual input to the system. The power indicator
lamp (POWER) is on when the security lock is in the ON or LOCK
position.

29-693 ROO 1/79 2-3

2¢3.2 Control Switches

All the control switches, with the exception of the Initial
Program Load (IPL) switch, are enabled only when the key-operated

security
applied.

HALT/RUN

SINGLE

ENABLE

DISABLE

is in the ON position, and primary AC power is

HALT/RUN

This momentary contact switch causes progran
execution to be halted if the system was running
or resumed if the system was halted. ¥When halted,
control is given to the System Terminal support
routine through which the memory or registers can
be examined or modified and ©program execution

restarted. If the processor was already in the
System Terminal support routine, program execution
is started. This switch 1is disabled 1if the

security lock is in the LOCK position.
SINGLE STEP

When in the up position, control is automatically
given to the System Terminal support routine at
the conclusion of each user 1level instruction.
The program status word is displayed, including
the address of the next sequential instruction
(location counter). Execution of the next
instruction is caused by pressing the HALT/RUN
switch or by typing a lass than (<) character on
the System Terminal. To resume normal run mode
execution, return the SINGLE STEP switch to the
down position and begin execution by pressing the
HALT/RUN swyitch or Lty +typing the less than (<)
character on the System Terminal. The SINGLE STEP
switch is disabled when the security 1lock is in
the LOCK positione. Attempts to single step
through instructions that do I/0 to the System
Terminal do not produce meaningful results.

IPL

This switch is not disabled by the security 1lock.
When in the ENABLE position, an Initial Program
Load (IPL) from the Loader Storage Unit (LSU) is
performed after any of the following steps:

1. turning the security lock from the STANDBY to
ON position

2. depression of the Initialize (INIT) switch

3. return of AC power to the systenm

29-633 ROO 1/79

INITIALIZE

INIT This momentary contact initialize sSwitch causes
the system to be initialized. The initialization
sequence clears all device controllers on the 1I/0
bus and resets certain functions in the processor.
The fault lamp (FAULT) comes on when the switch is
depressed and is extinguished with the completion
of the initialization sequence.

2.4 OPERATING INSTRUCTIONS
2.U4.1 Power Up

To prevent Initial Program Load (IPL) on power-up, place the IPL
switch in the DISABLE position. To power up the system, turn the
key-orerated security lock clockwise from the STAND3BY to the ON
position. The power lamp (POWER) lights, and power 1is provided
to the systaen., The fault 1lamp (FAULT) on the system control
panel also lights, and the microdiagnostic routine 1is entered.
This routine exercises 1internal data paths and registers. TIf
main memory power has fallen out of regulation since the system
vas last running, locations X*000000" to X'O3FFFF* are
initialized. The diagnostic routine tests the lowest 25Ak Dbytes
of memory before extinguishing the FAULT lamp. This diagnostic
is limited in scope, serving only to 1indicate a go/no g9

condition. If an error is dJetected in any portion of the
microdiagnostic, the microcode loops indefinitely, and the FAULT
lamp remains one. If no errors are detected, the FAULT lamp is

turned off.

2.4.2 Entering Console Service

If power was lost while the microcode was in the console service
routine, control 1is returned ¢to the console when the power-up
sequence is complete, provided that IPL is not enabled. If the
system was executing a ©program when power was lost, execution
resumes when power returns, provided that IPL is not enabled. To
enter console service in this case, derress the HALT/RUN switch.

2.4.,3 TJTInitial Program Load

To perform Initial Program Load (IPL), place the IPL switch in
the ENABLE position; then initialize the system by depressing the
INIT switch momentarily. A npower down/power up seguence is
emulated, and diagnostics are performed. At the successful
completion of the microdiagnostic sequence, an IPL from the LS/
is performed. Control 1is transferred to the newly-loaded
program.

29-692 ROO 1/79 2-5

2.5 SYSTEM TERMINAL COMMANDS

When the System Terminal support routine is entered from power up
or initialize, a carriage return and 1line fead seguence are
output. The current value of the PSW status and location counnter
are cutput, followed by another carriage return and line feed
sequence. Finally, the less than (<) operator prompt character
is output to indicate that the system 1is ready to receive
operator commands. If memory Dpower was lost, the location
counter is set to X*O0O0OFFFFE', and the PSW is set to X'00008000°.
In this case, the first 286k bytes of memory are written during
power-up to establish the error correcting code bits.

Sprace characters may be used as desired in any of the described
system terminal commands. Spaces are ignored by the console
routine.

2541 Select an Address and Examine "2"

The "commercial at"™ sign (@) places the console routine 1in the
address mode. This character may be followed by up to five
hexadecimal digits of address. Leading zeros are not required.
If mcre than five digits are input, only the least significant
five are used. A carriage return is used to signal the end of
the address; then the address inrut is copied into the location
counter. A carriage return and line feed seguence are output,
followed by the new value of the 1location counter and the
halfword contents of that location. Note that the data fetch is
subject to memory relocaticn if enabled by the current PSH.
After this display, a carriage return and line feed sequence are
output, followed by a new operator prompte.

If an invalid <character 1is input by the operator, the systen
responds by outputting a guestion mark (?), a carriage return,
line feed, and an operator prompt.

25.2 Increment and Examine Next Location "+"

After examining a memory location, the plus character (+) can be
used to advance the location counter by two. No other operator
input is required. A carriage return and line feed are output,
followed by the new location counter value and the halfword
contents of that location. This memory access is subject to the
relocation defined by the current PSW. After outputting another
carriage return and line feed, the operator prompt character is
output. This procedure may be repeated to examine seguential
memory locations.

2-6 29-693 ROO 1/79

2.5.3 Decrement and Examine Prior Location "-"

After examining a memory location, the minus character (-) can be
used to decrement the 1location counter by two. No other
operation 1is required. A carriage return and line feed are
output followed by the new location counter value and the
halfword contents of that 1locatione. This memory access is
subject to the relocation defined by the current PSW. After
outputting another carriage return and line feed the operation
prompt character is output. This procedure may bDbe repeated to
examine sequential memory locations.

2e5.4 Modify Current Location "="

After examining a memory location, the equal sign (=) can be used
to put the System Terminal support routine in the memory write
mode. This <character may be followed by up to four hexadecimal
digits of data to be written. Leading zeros ars not required.
If more than four digits are input, only the least significant
four are used. A carriage return is used to signal the end of
the data. At that time, the accumulated data is written into the
memory location currently addressed by the location counter.
This memory write is subject to the relocation defined by the
current PSHW. The current location counter is incremented by two
and a carriage return, line feed, and operator prompt are output.
This procedure may be repeated to modify sa2gquential memory
locations.

2.5.5 Examine General Register “R"

The character (R) <causes the console routine +to interpret
subsequent hexadecimal input as the number of a general register
(in the set selected by the current PSW) to be displayed. A
carriage return is used to signal the end of hexadecimal input.
At that time, the least significant four bits of the accumulated
hexadecimal data are taken as the desired register number. The
fullword contents of that register are output followed by a
carriage return, line feed, and operator pronmpt. Plus and minus
commands are invalid for general registers.

2.5.6 Modify General Register “="

Immediately after examining a general register, the equal =ign
(=) <can be used to change the contents of the currently selected
registers The equal sign <can be followed by up to eight
hexadecimal digits of data. Leading zeros are not required. If
more than eight digits arz2 input, only the 1lsast significan+
eight are used. A carriage return is used to signal the end »f
the data input. At that time, the accumulated data is conied
into the currently selectad general register. A carriage return,
line feed, and cperator prompt are then output.

29-693 ROO 1/79 2-1

2.5.7 Examine Single-Precision Floating-Point Register "Fr*

The character (F) causes the <console routine to interpret
subsequent hexadecimal input as the number of a single-precision
floating-point register to be displayed. If the processor does
not have single-precision floating point, this command character
causes a question mark sequence to be output. A carriage return
is used to signal the end of hexadecimal input. At that time,
the least significant four bits of the accumulated hexadecimal
data are taken as the desired register number. If necessary,
this number is rounded to the next lowest even number. The
fullwcrd contents of that register are output followed by a
carriage return, line feed, and operator prompte. Plus and minus
commands are invalid for flcating-point registers.

2.5.8 Modify Single-Precision Floating-Point Register "="

Immediately after examining a single-precision floating-poiat
register, that register is available for modification. Type an
egual sign (=) followed by up to eight hexadecimal digits of
data. Leading zeros are not required. If more than eight digits
are input, only the least significant eight are used. A carriage
return is wused to signal the end of the data input. At that
time, the accumulated data is copied into the currently selected
single-precision floating-point register. This data 1is not
tested for normalization; therefore an unnormalized
floating-point number <can be manually placed in the register.
The system outputs a carriage return, line feed, and operator
prompte.

2.5.9 Examine Double-Precision Floating-Point Register "D"

The character (D) causes the <console routine to interpret
subsequent hexadecimal input as the number of a double-precizion
floating-point register to be displayed. If the processor does
not have double-precision floating point, this command charactsr
causes a question mark sequence to be output. A carriage return
is used to signal the end of hexadecimal input. At that time,
the least significant four bits of the accumulated hexadecinmal
data are taken as the desired register number. If necessary,
this number is rounded to the next 1lowest even number. The
doubleword <contents of that register are output, followed by a
carriage return, line feed, and operator prompt. Plus and mninus
commands are invalid for floating-point registers.

2-8 29-693 ROO 1/79

2.5.10 Modify Double-Precision Floating-Point Register "="

Immediately after examining a double-precision floating-point
register, that Tregister is available for modification. Type an
equal sign (=) followed by up to 16 hexadecimal digits. Leading
zeros are not required. If more than 16 digits are input, onnly
the last 16 digits are used. A carriage return is used to signal
the end of the data input. At that time, the accumulated data is
copied into the currently selected double-precision register.
The data is not tested for normalization:; therefore, an
unnormalized floating-point number could be manually placad in a
double-precision register. The system outputs a carriage return,
line feed, and operator prompt.

2511 Examine Program Status Word "pP"

The character (P) puts the console routine into the PSW4 display
mode. A carriage return 1is required to complete this command
input. Upon receipt of the carriage return, the contents of the
PSW are output followed by a carriage re2turn, line feed, and
operator prompt. The plus and minus commands are invalid for the
PSW.

25.12 Modify Program Status Word "=

Immediately after examining the PSHWH, the equal sign (=) can be
used to change the contents of the PSW status field. The egual
sign can he followed by up to six¥x hexadecimal digits of data.
Leading zercs are not reguired. If more than six digits are
input, only the least significant six are used. A carriage
return 1is used to signal the end of the data input. At that
time, the accumulated data is copied into the PSW, which is then
displayed. A carriage return, line feed, and operator prompt are
then cutput.

29-693 R0OO 1/79 2-9

2.6 MEMORY INITIALIZATION

The fcllowing example shows how to set up dedicated 1low menmory
for lcading the 32-bit relocating loader from magnetic tape.

583

< [a] 3] [0] Select adiress '30°

000030 0000 Location '"30*' alr=ady = °'0000°

< Advance to address °*'32°'

000032 B00O Location *32' already = *'8000°

< Advance to address '34°

000034 0000 Location '34' already = '0009°

< Advance to address '36°

00003¢€ 1536 Location '36' contains '"1536°

SE @ Change contents of '356' to '0050°

000038 0000 Location *38° cohtans '0000"

5_@ IE] @ Select address *'50°

€00050 D500 Location '50°' already = 'D500°,
the auto-load instruction

< Advance to address '52'

600052 00CF Location '52°' already = ‘00CF°*,
the usual ending address

< Advance to address 'Su4°

000054 4300 Location '54' already = *"4300°
a oranch instruction

< Advance to address '54°

000056 0080 Location *'56*' already = *'0080°*

the usual branch address

ﬁ@ Select address *78°*

000078 c186 Location '78°' contains *'C186°

2-10 29-693 ROO 1/79

4 < E m m Change *78' to '85A1', the device

number and command byte for
maghetic tape

00007A 0000 Location *7A*' contains °*0000°

< @ @ Select starting address '30°

000030 0000

< Start program execution

After loading, the relocating loader places the processor in the
wait state. The wait lamp on the consolette is on. Depress the
HALT/RUN switch to regain control at the System Terminal. The
terminal response, for example is:

003000 03FBOO
<

which shows the PSW and the LCC pointing at the loader start
address of ‘*3FR00°. Type the less than (<) character to begin
execution of the relocating lcader.

2.7 FROGRAMMING INSTRUCTIONS

The System Control Terminal (SCT) |uses either a 2-1line
asyncronous communication multiplexor or an 8-line asynchronous
mux interface. Since the microprogram of the processor must
communicate with ¢the SCT, the device address is fixed at X'010°
and X'011'. The interface must be strapped for full duplex
operation, 7 data bits, 2 stop bits, and even parity. Refer to
the appropriate instruction manual for complete programming
~information.

The microprogram programs the SCT for highest clock rate, two

stop bits per character, seven data Dbits, and even parity.
Fichoplex is

29-692 R0OD 1/79 2-11/2-12

585

CHAPTEZR 3
LOGICAL OPERATICNS

3.1 INTRODUCTICN

The set of 1lcgical instructions provides a means for the
manipulation of binary data. Many of the instructions grouped
with the logical set may also be used in arithmetic and other
operations. These instructions include loads, stores, compares,
shifts, 1l1list rrocessing, translation, and <cyclic redundancy
checks.

3.2 L[ATA FORMAIS

Logical data may be organized as bytes, halfwords, fullwords, or
bit arrays of ur to 232 pits as shown in Figure 3-1.

0 BYTE 7
0 HALFWORD 15
0 FULLWORD 31
0 BIT ARRAY
S F
d f—

“igure 3-1 Logical Data

29-693 ROC 1/7§ 3-1

586

3.3 CPERATICNS

In logical operations between the contents of a general register
and a halfword operand, the halfword operand is expanded to a
fullword before the operaticn starts. The halfword 1is expanded
by propagating the most significant bits through bits 0:15 of the
fullword. For example, the halfword °'A000' 1is expanded to
*FFFFAOQOO' before participating in the operation.

3.3.1 Boolean Cperations
The Boolean operators AND, OR, and Exclusive OR (XOR) operate on

halfword and fullword quantities. All bits in both operands
participate individually. The Boolegn functions are defined as

follows:

AND
AND
AND
AND

(logical product)

- a0 Q
O - O
wononou
- O0O00

OR
OR
OR
OR

(logical sum)

A L0000
-0 a0
iwonouon
—_ s 2 O

]

XOR
XOR
X0R
XOR

(logical difference)

- OO0
- O -0
Q- O

on o

3.3.2 Translation

The translate instruction is used to translate a character
directly, or to effect an unconditional branch to a special
translate subroutine. Associated with the translate instruction
is a translation table. The entries in the table are halfwords
as shown in Figure 3-2.

0 7 8 15

1 CHARACTER ENTRY SPECIFYING TRANSLATED
CHARACTER

0 | (CHAR. HANDLING ROUTINE ADDRESS) /2 ENTRY SPECIFYING ADDRESS OF

A CHARACTER HANDLING ROUTINE

Figure 3-2 Translation Table Entry

3-2 29-693 R0OO 1/79

587

The character to be translated is a byte of logical data. This
unsigned gquantity is doubled and wused as an 1index into the
translation table. If the corresponding table entry has a one in
bit position 2zero, then bits 8:15 contain the character to bhe
substituted for the data character. If there is a zero in bit
position =zero, bits 1:15 contain the address, divided by two, of
the translation routine. When the translate instruction results
in a branch, this value is doubled to produce the address of the
routine. Because this result is a 16-bit address, the software
routine must be located in the first 64kb of tha program address
space. The program may reside anywhere in memory if it 1is
relocated by the Memory Access Controller (MAC). The translation
table may contain up to 256 entries. Howaver, if the data
characters are always less than eight bits, fewer entries are
required.

33.3 List Processing

The list processing instructions manipulate a circular 1list as
defined in Figure 3-3.

0 15 16 31
NUMBER OF SLOTS NUMBER USED
CURRENT TOP NEXT BOTTOM
SLOT O
SLOT 1

J)

L))

\(

SLOTN

Figure 3-3 Circular List Definition

The first four halfwords, <called the list header, contain the
list rarameters. Immediately following the header 1is the 1list
itselt. The first fullword in the 1list is designated Slot 0.
The remaining slots are designated 1, 2, 3, etc., up to a maximum
slot number which is equal to the number in the list minus one.
An absolute maximum of 65,535 fullword slots may be specified.
(Slots are designated 0 through X'FFFE'.)

29-693 ROC 1/79 3-3

The first halfword of the header indicates th2 number of slots
(fullvords) in the entire list. The second hilfword indicates
the current nurber of slots being used. dhen this halfword
equals zero, the 1list is empty. When this halfword equals the
number of slots in the 1list, the 1list is full. Jdnce initialized,
this halfword is maintained automatically. It is incremented
when elements are added to the list and decremented when elements
are removed.

The third and fcurth halfwords of the 1list header specify the
current ¢top of the 1list and the next bottom of the list,
respectively. These pointers are also updated automatically.
See Figure 3-4.

588 [[
/ /
L SLOT n /
L SLOT O 7
CURRENT TOP — SLOT 1
OCCUPIED SLOT 2
SECTION SLOT 3
SLOT 4
NEXT BOTTOM ——k SLOT 5 \
\ \
N—— N\

Figure 3-4 Circular List

3-4 29-693 ROO 1/79

3.4

The lcgical instructions use the Register-to-Register
Form (SF), the Register and Indexed Storage (RX),

Register and Immediate Storage (RI) instruction formats.

Short

IOGICAL INSTRUCTION FORMATS

3.5 LOGICAL INSTRUCTIONS

The instructions described in this section are:

L

LK
LI
LIS
LCS
LH
LHI
LA
LRA
LHL
LM
LB
LBR
EXHR
EXBR
5T
STH
STM
STB
STBR
CL
CLR
CLIT
CLH
CLHI
CLB
N

NR
NI
NH
NHI
C
OR
CI
CH
CHI
X
iR
XI
XH
XHI
TI
THI

Load

load Register

load Imrmediate

lLoad Immediate Short
Load Corplement Short
load Halfwcrd

Load Halfword Immediate
Load Address

loai Real Address

Locad Halfword Logical
Joad Multiple

load Byte

load Byte Register
Exchange Halfword Register
Exchange Eyte Register
Store

Store Halfword

Store Multiple

Store Ryte

Store Byte Pegister
Compare Logical

Compare Logical Register
Compare Logical Immediate
Compare lLogical Halfword

Compare Logical Halfword Immediate

Compare Logical Eyte
AND

AND Register

AND Immediate

AND Halfweord

AND Halfword Immediate
CcP

CR Register

CR Immediate

Ck Halfword

Ck Halfword Immediate
Exclusive OR

Fxclusive OL Register
Fxclusive C% Immediate
txclusive O% Halfwoerd
Exclusive D lHalfword Immediate
Test Imnediate

Test Halfword Immediate

29-633 ROC 1/79

the
and the

SLL
SLLS
SRL
SRLS
SLHL
SLHLS
SRHL
SRHLS
RLL
RRL
TS
TBT
SBT
CBT
RBT
CRC12
CRC16
TLATE
ATL
ABL
RTL
REL

Shift Left Logical

Shift lLeft Logical Short

Shift Right Logical

Shift Right Logical Short

Shift left Halfword Logical

Shift Left Halfword Logical Short
Shift Right Halfword Logical
Shift Right Halfword Logical Short
Fotate Left Logical

Rotate Right Logical

Test and Set

Test Bit

Set Bit

Complement Fit

Reset Bit

Cyclic Redundancy Check “odulo 12
Cyclic PRedundancy Check +“odulo 15
Translate

Add to Top of List

Add to Bottom of List

Remove from Top of List

Pemove from Rottom of List

29-693 R0OO 1/79

3.5.1 Load

Load (L)
load Register (LR)
Load Immediate (II)

Assembler Notation Op-Coide Format
L R1,D2(X2) 53 RX1,EX2
L kK1,A2(FX2,5%2) 58 RX3

LR R1,RZ2 08 /R

LI R1,I1I2(X2) F8 RI2

Operation

The second operand replaces the contents of the register
spacified in R1. .

Conditiop Code

Value is zero
Value is not zero
Value is not zero

O O OlN
OO Ol
- O Ol

O - Dl

Programming Notes

When the load instructions operate on fixed point data, the
condition code indicates zero (no flajs), negative (L flag), or
positive (G flag) value.

In the RR format, if X1 equals R2, the Load instruction functions
as a test on the contents of the register.

In the RX formats, the second operand must bpe Jlocated on a
fullword tountarye.

29-693 ROC 1/79 3-7

3.5.2 Load Immediate Short
Load Immediate Short (LIS)

Assembler Notation Op-Code Format

LIS R1,N 24 SF

Operation
The 4-bit second operand is expanded to a 32-bit fullword with

high order 28 bits forced to zero. This fullword replaces the
contents of the register specified by R1.

Condition Code

ClVv |G| L
0101010 Value is zero
040 110 Value i=s not zero

Programming Note

When this instruction operates on fixed point data, the condition
code indicates zero (no flags), or positive (G flag) value.

Example: LIS

Assembler Notation Machine Code Comments

LIS REGY4, 15 244F LOAD 15 INTO REGH

Result of LIS Instruction

(REG4) =0

Q00Q000F
Condition C

00
0de=0010 (G=2)

3-8 29-583 ROO 1/79

3.5.3 Load Complement Short
Load Complement Short (LCS)

Assembler Notation Op-Code Format

LCS R1,N 25 SF

Operation

The U-bit second operand is expanded to a 32-bit fullword with
high order bits forced to zero. The two's complement value of
this fullword then replaces the contents of the register
specified by R1.

Condition Code

ClY}|G]|L
0l0]0]O Value is zero
0O|lo}lo 1 Value is not zero

Programming Note

When this instruction operates on fixed point data, the condition
code indicates zero (no flags), or negative (L flag) value.

Example: LCS

Assembler Notation Machine Code Comments

LCS REGS8,7 2587 LOAD -7 INTO REGS

Result of LCS Instruction

(PEG8) = FFFF FFF9
Condition Code=0001 (L=1)

29-693 ROO 1/79 3-3

3.5.4 Load Halfword

Load Halfword (LH)
Load Halfword Immediate (LHI)

Assembler Notation Op-Code Format
LH R1,L2(X2) 48 RX1,RX2
LH R1,A2(FX2,5X2) 48 RX3

LHI R1,12(X2) cs8 rI1

Cperation

The halfword second operand is expanded to a fullword by
propagating the most significant bit through bits 0:15. This
fullvord replaces the contents of the register specified by R1.

Condition Code

Value is zero
Value i3 not zero
Value is not zerc

[eNeoNe)le]
OO O«
- O Ol
O - Oft

Programming Notes

When the load Halfword instructions operate on fixed point data,
the condition ccde indicates zerc (no flags), negative (L flag),
or positive (G flag) value.

In the RX formats, the second operand must be located on a
halfword toundary.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register srecified by 2 are then added to form the

fullword second cperand.

3-10 29-693 ROO 1/79

3.5.5 Load Address (LA)

Assembler Notation Op-Code Format
LA R1,D2(X2) E6 RX1,RX2
LA R1,A2(FX2,5%X2) E6 RX3

Operation

The effective address of the second operand (24 bits) replaces
bits 8:31 of the register specified by R1. Bits 0:7 of the
register specified by R1 are forced to zero.

Condition Code

Unchanged

Programming Note

The length of the address Aquantity depends on the 1internal
structure of the particular machine; thus, in this processor,
with a maximum address length of 20 bits, the calculated address
replaces bits 12:31 of the register specified by R1, and bits
0:11 are forced to zero. In a processor with maximum address
length of 24 bits, the calculated address replaces bits 8:31 of
the register specified by R1, and bits 0:7 are replaced by zero.

29-693 ROO 1/79 3

1

3.5.6 Load Real Address (LRA)

Assembler Notation Op-Code Format
LRA R1,D2(X2) 63 RX1,RX2
LRA R1,A2(FX2,5X2) 63 RX3

Operation

This instruction simulates the operation of a memory access
controller. The register specified by R1 contains a projran
address (not relocated). The second operand address points to a
relocation/protection module parameter block.

The address contained in the register specified by R1 is

relocated, using the appropriate parameters. The relocated
address replaces the contents of the register specified by R1.

Condition Code

Not mapped (Limit violation)
Not present

Not writable

Not executable

No restrictions

OO O OO
D d OO O

OO OO aN
[N ool

The condition ccde is determined on priority basis with Not
Mapped having highest priority, Not Present second, Not Writable
third, and Not Executable having lowest prioritye.

3-12 29-693 ROO 1/79

Programming Notes

If the address 1is not mapped or not present, the register
specified by R1 is unchanged.

The second operand location must be 1located on a fullword
boundary.
Example: LRA

This example performs an address translation in the same nmanner
as the MAC.

For this example, Register 1 contains X°'54341°'. MACREG is the

starting address of a <copy of the MAC Registers. The fifth
fullwcrd entry located at MACREG+X'14' contains X'OFF24170°.

Assembler Notation Machine Code Comments

LRA REG1,MACREG 6310 3100 The first digit of the
20-bit program address
(5) is used to index into
MACREG

Result of LRA Instruction
(REG1) = 28441 (24100 + 04341)

MACREG Unchanged
Condition Code = 0010 (not writable)

i
-
(Ve

29-693 R0OO 1/79 3

3.5.7 Load Halfword Logical (LHL)

Assembler Notation Op=-Code Format
LHL R1,C2(X2) 13 RX1,RX2
LHL R1,A2(FX2,5%2) 73 RX3
Operation

The halfword second operand replaces bits 16:31 of the register
specified by R1. Bits 0:15 of the register specified by R1 are
replaced by zero.

Condition Code

ClVIG]|L
0 Gi{nN]o Value is zero
0} C 110 Value is not zero

Programming Note

The second operand must be located on a halfword boundary.

3-14 29-693 R0O0O 1/79

3.5.8 Load Multiple (LM)

Assembler Notation Op-Code Format
LM R1,D2(X2) D1 RX1,RX2
LM R1,A2(FX2,5X2) D1 RX3

Operation

Successive registers, starting with the register specified by R1,
are lcaded from successive memory locations, starting with the
location specified as the effective address of the second
operand. Each register is loaded with a fullword from memory.
The process stors when Register 15 has been load=d.

Condition Code

Unchanged

Programming Notes
The second operand must be located on a fullword boundary.

The second operand address is formed before any registers are
loaded; therefore, X2, FX2, and S5X2 can be among the registers
loaded.

In the event of a machine malfunction due to a non-correctable
memory error, or to a MAC Fault, the effective address calculated
at the beginning of the instruction is available should a retry
be desired. For details, refer to Chapter 10 and Chapter 12.

29-€693 ROO 1/79 3-15

3.5.9 Load Byte

Load Byte (LR)
Load Byte Register (LBR)

Assembler Notation Op-Code Format
LB R1,D2(X2) D3 £X1,RX2
LB R1,A2(FX2,5%X2) D3 EX3
I.BR R1,R2 93 RR

Operation

The 8-bit second operand replaces the least significant bits
(bits 24:31) of the register specified by R1t. Bits 0:23 of the
register are forced to zero.

Condi tion Code

Unchanged

Frogramming lVote
In the Load Byte Fegister instruction, the second operand is

taken from the least significant eight bits (bits 24:31) of the
register specified by R2.

3-16 29-693 R0OO 1779

3.5.10 Exchange Halfword Register (EXHR)

Assembler Notation Op-Code Format

EXHR R1,R2 34 RR

Operation

3its 0:15 of the register specified by R2 replace bits 16:31 of
the register specified by R1t1. Bits 16:31 of th2 register
specified by R2 replace bits 0:15 of the register specified by
R1.

Condition Code

Unchanged

Programming Note
If R1 equals R2, the two halfwords contained within the register

are exchanged. If R1 does not equal R2, the contents of R2 are
unchanged.

Example: EXHR

Assembler Notation Machine Code Comments

LI REGS, Y*OABCDEF9' F850 OABC DEF9 (RE35) = OABCDEF9
LI REG7, Y'*123u45678" F870 1234 5678 (RE37) = 12345673
FXHR REG5,REG?7 3457

Result of EXHR Instruction
(REG5) =56781234

(REG7) = 12345678
Condition Code Unchanged

29-693 ROO 1/79 3-17

3.5.11 Exchange Byte Register (EYXBR)

Assembler Notation Op-Code Format

EXBR R1,R2 qu RR

Operation

The two 8-bit bytes contained in bits 16:31 of the register

specified by
register specified by R1.
R1 are unchanged. The register specified

Condition Code

Unchanged

Programming Note

R1 and R2 may specify the same reqgistere.

bytes in bits 16:31 of the register
exchangede.

Example: EXBR

Assemtler Notation Machine Code

LI REG7, X'5A6B3CuD* F870 5A6B 3C4D
LT REG3, Y*'98761234" F830 9876 1234
EXBR REG7,REG3 9473

Result of EXBR Instruction

(REG7) = 5A6R83412
(REG3) = 98761234
Condition Code Unchanged

R2 are exchanged and loaded into bits 16:31 of the
Bits 0:15 of the register specified by

by R2 is unchanged.

the
R2

two
are

In this case,
specified by

Comments

(REG7)
(REG3)

5A6B3CuD
98761234

29-693 ROO 1/79

3.5.12 Store (ST)

Assembler Notation Cp-Code Format
5T R1,D2(X2) 50 RX1,RX2
5T R1,A2(FX2,5X2) 50 RX3

Nperation

The 32-bit contents of the register specified by R1 replace
contents of the fullword memory 1location specified by
effective address of the second operand.

Condition Code

Jnchanged

Programming Note

The second operand location must he on a fullword boundary.

29-693 RJ0 1/79

the
the

w
'

19

3.5.13 Store Halfword (STH)

Assembler Notation Op-Code Format
STH R1,D2(X2) uQ RX1,RX2
STH R1,A2(FX2,5X2) 40 kX3

Operation

Bits 16:31 of the register specified by R1 replace the contents
of the halfword memory 1location specified by the effective
address of the second operand.

Condition Code

Unchanged

Programming Note

The second operand location must be on a halfword boundarye.

3-20 29-693 ROO 1/79

3.5.14 Store Multiple (STH)

Assembler Notation Cp=-Coie *ormat
STHM E1,D2(X2) Lo EX1,RX2
STH R1,A2(FX2,5X2) |33¢] RX3

Operation

The fullwecrd contents of registers, starting with the register
specified by R1, replace the contents of successive fullword
memory locations, starting with the 1location specified by the

effective address of the second operand. The process stops when
redister 1% has been stored.

Condition Code

Unchanged

Programming Note

The second ogerand location must he on a fullword boundary.

29-693 RFOC 1/79 3-21

3.5.1% Store Byte

Store Byte (STB)
Store Byte Register (STBR)

Assembler Notation Op-Code Format
STB R1,D2(X2) D2 RX1,RX2
STB R1,A2(FX2,5X2) D2 RX3
STBR R1,R2 92 RR

Operation

The least significant eight bits (bits 24:31) of the register
specified by R1 are stored in the byte second operand location.
Condition Code

Unchanged

Programming HNote
In the Store Byte Register instruction, the 8-bit quantity is

stored in bits Z4:31 of the register specified by R2. Bits 0:23
of the register are unchanged.

Example: STBR

A ssembler Notation Machine Code Comments

LI REGU4, Y'13577531* F840 1357 7531 (REGU) = 13577531
LI REG3, Y'2u688642" F830 2468 8642 (REG3) = 2u688642
STBR REG4,REG3 9243

Result of STBR Instruction

(REGWY) 13577531
(REG3) 246886 31
Condition Code Unchanged

3-22 29-693 ROO 1/79

3.5.16 Compare

Compare Logical (CL)
Compare Logical Register (CLR)
Compare Logical Immediate (CLI)

Assembler Notation Op-Code Format
CL R1,D2(X2) 55 RX1,RX2
CL R1,A2(FX2,SX2) 55 RX3

CLR R1,R2 05 RR

CLI R1,I2(X2) F5 RI2

Operation

The first operand, the contents of the register specifisd by R1,
is compared 1lcgically to the second operani. The result is
indicated by the condition code setting. Neither operand 1is
changed.

Condition Code

First operand equal to second
First operand less than second
First operand less than sezond
First operand greater than second
First operand greater than second

OO = = 0OlN

- O e OOy

R e T B
O O - Ot

Programming Notes

In the RX formats, the second operand must be located on a
fullword boundary.

The state of the V flag is undefined.
If the second orerand is zero, the C flag cannot set.

It is meaningful to check the following condition code mask (M1)
after a logical comparison:

Mask True/False* Inference
3 False First operand equal to second
3 True First operand not equal to second
8 False First operand greater than or equal to
second
8 True First operand less than second
*Refer to Charpter 4 for True/False concept in branch

instructions.

29-693 ROO 1/79 3-23

3.5.17 Compare Logical Halfword

Compare Logical Halfword (CLH)
Compare Logical Halfword Immediate (CLHI)

Assembler Notation Op-Code Format
CLH R1,D2(X2) 45 RX1,RX2
CLH R1,A2(FX2Z,SX2) 45 RX3
CLHI R1,I2(X2) C5s RI1

Operation

The halfword csecond operand 1is expanded to a fullword by
propagating the most significant bit through bits 0:15. The
first operand, the contents of the register specified by R1, is
compared to this fullword. The result is indicated by the
condition code settinge. Neither operand is changjed.

Condition Code

First operand equal to second
First operand less than second
First operand less than second
First operand greater than second
First operand greater than second

Bl B e e B

_ O - O Ol

OO 220N
O O - O

Programming Notes

In the RX formats, the second operand must Dbe locatei on a
halfword boundary.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then add=sd ¢to form the
fullword second operand.

The state of the V flag is undefined.

If the second operand is zero, the C flag cannot set.

W
[

24 29-693 ROO 1/79

It is meaningful to check the following condition code mask (M1)
after a logical comparison:

Mask True/False* Inference
3 False First operand egqual to second
3 True First operand not equal to second
8 False First operand greater than or
egqual to second
8 True First operand less than second

*Refer to Chapter 4 for True/False conczapt in branch
instructions.

w
i

29-693 ROO 1/79 25

3.5.18 Compare Logical Byte (CLB)

Assembler Notation Op-Code Format
CLB R1,D2(X2) Dy RX1,RX2
CLB R1,A2(FXz,SX2) D4 RX3

OCperation

The byte quantity, contained in bits 24:31 of the register
specified by R1, 1s compared with the 8-bit second operand. The
result is indicated by the <condition <code s=2tting. Neither
operand is changed.

Condition Code

First operand equal to second
First operand less than second
First operand greater than second

O - OfN
- O Ol
O - O

| o D Pel <

Programming Notes
Both cperands are treated as unsigned quantities.
If the second orerand is zero, the C flag cannot set.

It is meaningful to check the following condition code mask (M1)
after a logical comparison:

Mask True/False* Inference
2 False First operand not greater than
second
2 True First operand greater than second
operand
3 False First operand egual to second
3 True First operand not equal to second
8 False First operand greater than or
equal to second
8 True First operand less than second
*Fefer to Chapter 4§ for True/False concapt in branch

instructions.

w
!

26 29-693 R00 1/79

3.5.19 AND

AND (N)
AND Register (NR)
AND Immediate (NI)

Assembler Notation Op-Code Format
N R1,D2(X2) 54 RX1,RX2
N R1,A2(FX2,5X2) 54 RX3

N R1,R2 o4 RR

NI R1,I2(X2) Fy RI12

Operation

The logical product of the 32-bit second operand and the contents
of the register specified by R1 replace the <contents of the
register specified by R1. The 32-bit logical product is formed
on a bit-by-bit basis.

Condition Code

Result is zero
Result is not zero
Result is not zero

- O Q|
O Ok«

e NeNolle
[NeNe]ES

Programming Notes

In the RX formats, the .second opbperand must bea located on a
fullword boundary.

When operating cn fixed-point data, the condition code indicates
zero (no flags), negative (L flag), or positive (G flag) result,

29-693 ROO 1/79

[¥9
|

27

3.5.20 AND Halfword

AND Halfword (NH)
AND Halfword Immediate (NHI)

Assembler Notation Op—-Code Format
NH R1,D2(X2) 4y RX1,RX2
NH R1,A2(FX2,SX2) 44 RX3

NHI R1,I2(X2) Cy RI1
Operation

The halfword second operand 1is expanded to a fullword by
propagating the most significant bit through bits 0:15. The
logical product of this 32-bit gquantity and the contents of the
register specified by R1 replace the contents of the register
specified by R1. The 32~bit 1logical product 1is formed on a
bit-by-bit basis.

Condition Code

Result is zero
Result is not zero
Result is not zero

[eNeNealle]
O O QOl=w
- O Ol
O w2 O

Programming Notes

In the RX formats, the second operand must be located on a
halfword boundary.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the
fullword second operand.

When coperating cn fixed-point data, the condition code indicates
zero (no flags), negative (L flag), or positive (5 flag) result.

3-28 29-693 ROO 1/79

3.5.21 OR

OR (0)
OR Register (OR)
OR Immediate (OI)

Assembler Notation Op-Code Format
0 R1,D2(X2) 56 RX1,RX2
0 R1,R2(FX2,5X2) 56 RX3

OR R1,R2 06 RR

0I R1,I2(X2) F6 RI2

Operation

The logical sum of the 32-bit second orerand and the contents of
the register specified by R1 replace the contents of the register
specified by R1. The 32-bit logical sum 1is formed on a
bit-by~-bit basis.

Condition Code

Result is zero
Result is not zero
Result is not zero

(e NeNelle]
O O O
- O O
DO

Programming Notes

In the RX formats, the second operand must be 1located on a
fullwcrd boundary.

WHhen operating on fixed-point data, the condition code indicates
zero (no flags), negative (L flag), or positive (G flag) result.

(V)
i

29-693 R0OO 1/79 29

3.5.22Z OR Halfword

OR Halfword (OH)
OR Halfword Immediate (OHI)

Rssembler Notation Op~Code Format
OH R1,D2(X2) 46 RX1,RX2
OH R1,A2(FX2,SX%2) 46 RX3
OHI R1,12(X2) Cé6 RI1

Operation

The halfword second ocperand is expanded to a fullword by
propagating the most significant bit through bits 0:15. The
logical sum of this 32-bit guantity and the <contents of the
register specified by R1 replace the contents of the register
specified by R1. The 32-bit logical sum is formed on a
bit-by-bit basis.

Condition Code

Result is zero
Result is not zero

C
0
0
0 Result is not zero

O O O
N eoNolln
O - Oft

Programming Notes

In the RX formats, the second operand must be located on a
halfwcrd boundary.

In the RI1 format, the 16-bit I2 field is extended to a fullwori
by prropagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the

fullwcrd second operand.

when cperating on fixed-point data, the condition code 1indicates
zero (no flags), negative (L flag), or positive (G flag) result.

w
[

30 29-693 R0OO 1/73

3.5.23 Exclusive OR

Exclusive OR (X))
Exclusive OR Register (XR)
Exclusive OR Immediate (XI)

Assembler Notation Op-Code Format
X R1,D2(X2) 57 RX1,RX2
X R1,A2(FX2,SX2) 57 RX3

XR R1,R2 07 RR

X1 R1,I1I2(X2) F7 RI2
Operation

The 1lcgical difference of the 32-bit second operand and the
contents o0f the register specified by R1 replace the contents of
the register specified by R1. The 32-bit logical difference is
formed on a bit-by-bit basis.

Condition Code

Result is zero
Result is not zero
Result is not zero

o O O|IN
O OO
- O O
D - O

Programming Notes

In the RX formats, the secondi operand must be located on a
fullword boundary.

When operating con fixed-point data, the condition code 1indicates
zero (no flags), negative (L flag), or positive (G flag) result.

29-693 R0OO 1/79

W
|

31

3.5.24 Exclusive OR Halfword

Exclusive OR Halfword (XH)
Fxclusive OR Halfword Immediate (XHI)

Assembler Notation Op-Code Format
XH R1,D2(X2) 47 RX1,RX2
XH R1,R2(FX2,SX2) 47 RX3
XHI R1,1I2(X2) C?7 RI1

Operation

The halfword second operand is expanded to a fullword by
propagating the most significant bit through bits 0:15. The
logical difference of this 32-bit quantity and the contants of
the register specified by R1 replace the contents of the register
specified by R1. The 32-bit logical difference is formed on a
bit-by-bit basis.

Condition Code

Result is zero
Result is not zero
Result is not zero

[sNoNelle)
[oNeRNel b
- OO0
O = O

Programming Notes

In the RX formats, the secodd operand must b2 located on a
halfword boundary.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then add=a2d +to form the
fullword second operand.

When operating cn fixed-point data, the condition code 1indicates
zero (no flags), negative (L flag), or positive (G flag) result.

w
]

32 29-633 ROO 1/73

3.5.25 Test Immediate (TI)

Assembler Notation Op-Code Format

TI R1,I12(X2) F3 RI2

Operation
Each bit of the second operand is logically ANDed with the

corresponding bit in the register specified by R1. Neither
operand is changed.

Condition Code

Result is zero
Result is not zero
Result is not zero

OO OM
O OOl
- O Ol
O - Ot

Programming Notes

When operating cn fixed-point data, the condition code indicates
zero (no flags), negative (L flag), or positive (G flag) result.

This instruction works the same as the AND Immediate instruction
(NI) except that the first operand is not changed.

Example: TI

This example tests if bit 16 of register 9 is set.

(REG9) = 7EFBC230

Assembler Notation Comments
TI REG9, Y'00C008000" Test Bit 16
BNZ LABEL Branch if bit is set

Result of TI Instruction
(REG9) Unchanged

Condition Code = 0010 (G=1)
The conditional branch is taken.

29-693 R0OO 1/79 3-33

3.5.26 Test Halfword Immediate (THI)

Assembler Notation Op-Code Format
THI R1,I2(X2) C3 RI1
Operation

The halfword second operand 1is expanded to a fullword by
propagating the most significant bit through bits 0:15. Each bit
in this quantity is logically ANDed with the corresponding bit
contained in the register specified by R1. Neither operand is
changed.

Condition Code

Result is zero
Result is not zero
Result is not zero

e NeNelle!
OO Q=
- OO
O - Oft=

Programming Notes

When operating on fixed-point data, the condition code indicates
zero (no flags), negative (L flag), or positive (G flag) result.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the
fullword second operand.

This instruction works the same as the AND Halfword Immediate
instruction (NHI) except that the first operand is not changed.

3-34 29-693 ROO 1/79

Example: THI

This example tests if any of bits 0:16 of register 9 is set.

(REG9) = 80800000

Assembler Notation Comments
THI REG9,X*8000" Test bits 0:16
BNZ LABEL Branch if any set

Result of THI Instruction

(REG9) Unchanged
Condition Code = 0001 (L=1)
The conditional branch is taken.

29-693 RO0O 1/79

3.5.27 Shift Left

Shift Left Logical (SLL)
Shift Left Logical Short (SLL3)

Assembler Notation Op-Code Format
SLL R1,I12(X2) ED RI1
SLLS R1,N 11 SF

Operation

The first operand, the contents of the register specified by R1,
is shifted 1left the number of places specified by the second
operand. Bits shifted out of position 0 are shifted through the
carry flag of the <condition code and then lost. The last bit
shifted remains in the <carry flag. Zeros are shifted into
position 31,

Condition Code

Result is zero
Result is not zero
Result is not zero
Carry

- 54 s IO
[oNeNeol el b
-0 OlN
> O a O

Programming Notes

In the RI1 format, the shift count 1is specified by the 1least
significant five bits of the second operand. The maximum shift
count is 31.

In the SF format, the maximum shift count is 15.

The state of the C flag indicates the state of the last bit
shifted out of position 0.

If the second operand specifies a shift of zero places, the
condition code 1is set in accordance with the value contained in
the register. The C flag is zero in this case.

When the register specified by R1 contains fixed-point data, the

I flag set indicates a negative result; the G flag set indicates
A positive result.

3-36 29-593 ROO 1/73

3.5.28 Shift Right

Shift Right Logical (SRL)
Shift Right Logical Short (SRLS)

Assembler Notation Op-Code Format
SRL R1,I2(X2) EC RIM
SRLS R1.N 10 SF
Operation

The first operand, the contents of the register specified by R1,
is shifted right the number of places specified by the second
operand. Bits shifted out of position 31 are shifted through the
carry flag of the condition code and then lost. The 1last bit
shifted remains in the carry flag. Zeros are shifted into
position 0.

Condition Code

Result is zero
Result is not zero
Result is not zero
Carry

- >4 > N
QOO OO
> - O Q|G
M O - O

Programming Notes

In the RI1 format, the shift count 1is specified by the 1least
significant five bits of the second operand. The maximum shift
count is 31.

In the SF format, the maximum shift count is 15.

The state of the C flag indicates the state of the last bit
shifted out of rosition 31.

When the register specified by R1 contains fixed-point data, the
L flag set indicates a negative result; the G flag set indicates
a positive result.

Tf the second operand specifies a shift of zero places, the

condition code 1is set in accordance with the value contained in
the register. The C flag is 7ero in this case.

29-693 ROO 1/79 3-37

3.5.29 Shift Left Halfword

Shift Left Halfword Logical (SLHL)
Shift Left Halfword Logical Short (SLHLS)

Assembler Notation Op-Code Format
SLHL R1,12(X2) CD RI
SLHLS R1,N 91 SF

Operation

Bits 16:31 of the register specified by R1 are shifted 1left the
number of places specified by the second operand. Bits shifted
out of position 16 are shifted through the carry flag and 1lost.
The 1last bit shifted remains in the <carry flag. Zeros are
shifted into position 31. Bits 0:15 of the first operand remain
unchanged.

Condition Code

Result is zero
Result is not zero
Result is not zero
Carry

-]
OO 00O
o OOl
O S Ot

Programming Notes

The condition code setting is based on the halfword (bits 16:31)
result.

In the RI1 format, the shift count 1is specified by the least
significant four bits of the second operand. The maximum shift
count is 15,

In the SF format, the maximum shift count is 15.

The state of the C flag indicates the state of the last bit
shifted out of gosition 15.

When the register specified by R1 contains fixed-point data, the
L flag set indicates a negative result; the G flag set indicates
a positive result.

If the second operand specifies a shift of =zaro placas, the
condition code 1is set in accordance with the vilue contained in
bits 16:31 of the register. The C flag is zero in this case.

w
!

38 29-693 R0OO 1/79

3.5.30 Shift Right Halfword

Shift Right Halfword Logical (SRHL)
Shift Right Halfword Logical Short (SRHLS)

Assembler Notation Op-Code Format
SRHL R1,I2(X2) CcC RI1
SRHLS R1,N 90 SF
Operation

Bits 16:31 of the register specified by R1 are shifted right the
number of places specified by the second operand. Bits shifted
out of position 31 are shifted through the carry flag and 1lost.
The last bit shifted remains in the <carry flag. Zeros are
shifted into position 16. 2its 0:15 of the first operand remain
unchanged.

Condition Code

Result is zero
Result is not zero
Result is not zero
Carry

- > g O
(ol eNeNol -
> OO0
™ O .2 Ojr

Programming Notes

The condition ccde setting is based on the halfword (bits 16:31)
result.

In the RI1 format, the shift count 1is specifiedi by the 1least
significant four bits of the second operand. The maximum shift
count is 15.

In the SF format, the maximum shift count is 15.

The state of the C flag indicates the state of the 1last bit
shifted out of rposition 31.

When the register specified by R1 contains fixed-point data, the
I flag set indicates a negative result; the G flag set indicates
a positive result.

If the second operand specifies a shift of zero places, the
condition code 1is set in accordance with the halfword value
contained in bits 16:31 of the register. The C flag is zero 1in
this case.

29-693 ROO 1/79 3-39

3.5.31 Rotate Left Logical (RLL)

Assembler Notation Op-Code Format
RLL R1,12(X2) EB RIM
Operation

The 32-bit first operand, contained in the register specified by
R1, is shifted 1left, end around, the number of positions
specified by the second operand. Bits shifted out of position 0
are shifted into position 31.

Condition Code

G

Result is zero
Result is not zero
Result is not zero

O -~ Ofr

[eNeNelle]
O O Ol=w

- OO

Programming Notes

The shift count is specified by the least significant five bits
of the second orerand. The maximum shift count is 31.

When the register specified by R1 contains fixed-point data, tha
L flag set indicates a negative result; the G flag set indicates
a positive result.

If the second operand specifies a shift of zero places, the

condition <code 1is set in accordance with the value contained in
the register specified by R1.

3-40 29-693 ROO 1/79

Example:

1.

RLL

Assembler Notation

LI REG9,Y'S67B9ARC®
RLL REG9,X°'0004°

Result of RLL Instruction

(REG9) = 6789ABCS

Condition Code = 0010

Assembler Notation

REG9,Y'88880000"
REG9,X*03"

LI
RLL

Result of RLL Instruction

(REG9) = 44400004

Condition Code = 0010

29-693 RO0O 1/79

Machine Code

F890 56789ABC
EB90 0004

Machine Code

F890 8888 0000
EB90 0003

(G=1)

Comments

(REGI9)=56783ABC

Comments

(REG9)=88880000

41

3.5.32 Rotate ERight Logical (RRL)

Assembler Notation Op-Code Format

RRL R1,I12(X2) EA RIN

Operation

The 32-bit first operand, contained in the register specified by
R1, 1is shifted right, end around, the number of positions
specified by the second operand. Bits shifted out of position 31
are shifted intc position 0.

Condition Code

Result is zero
Result is not zero
Result is not zero

- O Ol
O - O

O O oM
O O Ol

Programming Notes

The shift count is specified by the least significant five bits
of the second orperand. The maximum shift count is 31.

When the register specified by R1 contains fixed-point data, the
1 flag set indicates a negative result; the G flag set indicates
a positive result.

If the second ogerand specifies a shift of z2ro places, the

condition code 1is set in accordance with the value contained in
the register specified by R1e.

3-42 29-693 R0O0 1/79

Example: RRL

1. Assemrbler Notation

LI REGU4,Y'"12345678"
RRL REG4,X*04°

Result of RRL Instruction

(REGU) = 81234567
Condition Code = 0001

2. Asserbler Notation

LI REG4,Y'00001111°
RRL REG4,X'n1°*

Result of RRL Creration

(REGL) = '800000888"
Condition Ccde = 0001

29-693 ROO 1/79

Machine Code

F8u40 1234 5678
EA40 0004

(L=1)

Machine Code

F840 0000 1111
EA40 0001

(L=1)

Comments

(REGY)

12345678

Comments

(REGUH)

00001111

43

3.5.33 Test and Set (TS)

Assembler Notation Op-Code Format
TS D2(X2) EO RX1,RX2
TS A2(FX2,5X2) EO RX3

Operation

The halfword operand is read from memory and, on the same cycle,
written back with the most significant bit set. The other bits
in the halfword are unchanged. On the read cycle, the most
significant bit of the operand is tested. The condition code
reflects the state of this bit at the time of the memory read.

Condition Code

C{VI|IG| 1
X} X| X1 C Most significant bit is zero
X1 X4t X 1 Most significant bit is set

Programming XNotes
The second operand must be located on a halfword boundarvy.

The 1S instruction provides a mechanism for software
synchronization and can be used in a single-processor environment
as fcllows: Two or more user tasks running under an operating
system share a halfword. This halfword is located in a memory
area referred to as Task Commone. Each task can access the
halfword using the TS instruction. The synchronization sequence
may be as follows:

TASK 1 Sets the most significant bit using the TS instruction.

TASK 2 Senses the most significant bit using the TS
instruction, sees that it is set, performs the necessary
software synchronization, and then zeros the nmost

significant bit of the halfword.

The TS instruction can be used in a multi-processor system as
follows: Two or more processors share a halfword. This halfwvorid
is 1located 1in a memory area referred to as Shared Memory. Fach
processor can access the halfword using the T35 instruction. The
synchronization sequence can be as explained for user tasks with
the following slight difference. Whereas TASK 1 and TASX 2
cannot access the halfword at the same (real) time, two
processors cahe. The access is granted according to the relative
priority of the two processorse.

The hardware ensures that no other accesses to the halfword are
made during the execution of the TS instruction.

3-44 29-693 ROD 1/79

3.5.34 Test Bit (TBT)

Assembler Notation Op-Code Format
TBT R1,D2(X2) 74 RX1,RX2
TRT R1,A2(FX2,5X2) 74 RX3
Operation

The second operand address points to a bit array starting

on

a

byte boundary. The value contained in the register specified by
R1 is the bit displacement into the array. Bits in the array are
counted from left to right starting with bit 0. The argument bit

is located and tested. The test does not change the bit.

Condition Code

cCi{vVv]| G| 1L
o|0|l 0] C Tested bit is zero
0O 1 0 Tested bit is one

Programming Note

For scftware compatibility with other processors, the bit
should start on a halfword boundary.

Example: TBT

Assembler Notation Machine Code Comments
LIS REGS8, 3 2483 (REG8) = 3
TRT REG8,LABEL 7480 0BCyY LABEL = halfword

array

in memory at location

X'OBCu4*'. It contains

X*B34A’.

Result of TBT Instruction

Memory Location X'RC4' unchanged
(REG8) unchanged

Condition Code = 0010 (G=1)...Bit 3 of location X'BCU4' is set.

29-693 ROO 1/79

45

3.5.35

Assembler Notation

Set Bit (SBT)

SBT R1,D2(X2)

SBT R1,A2(FX2,5X2)

Operation

Op-Code Format
75 RX1,RX2
75 RX3

The second operand address points to a bit array starting on a

byte boundary.

The value contained in the register specified by

R1 is the bit displacement into the array. Bits in the array are
counted from left to right starting with bit O. The argument bit
cset to one.

is located and

Condition Code

ClV|G]|1
0|0}l 0| C
00| 1[0

Programming Note

Previous state of bit was zero
Previous state of bit was one

For software compatibility with other processors, the bit array
should start on a halfword boundary.

Example:

Assembler Notation

SBT

LIS REGS, 8

SBT REGS5,LABEL

Machine Code Comments

2458 (REG5) = 8

7550 1520 LABEL Located at
X*1520'. It contains
X*2134°,

Result of SBT Instruction

Contents of LABEL
(REGS5) unchanged
Condition Code

2184

0000 (G=0)

29-693 ROO 1/79

3.5.36 Reset Bit (RBT)

Assembler Notation Op-Code Format
RBT R1,D2(X2) 76 RX1,RX2
RBT R1,A2(FX2,5X2) 76 RX3
Operation

The second operand address points to a bit array starting

on

a

byte boundary. The value contained in the register specified by
R1 is the bit displacement into the arraye. Bits in the array are
counted from left to right starting with bit zero. The argument

bit is located and forced to zero (reset).

Condition Code

C|VIiG|L
o|lo0ojo0| O Previous state of bit was zero
00 1 G Previous state of bit was one

Programming Note

For software compatibility with other processors, the bit
should start on a halfword boundary.

Example: RBT

Assembler Notation Machine Code Comments

LIS REG2,3 2423 (REG2) = 3

RBT REG2,LABEL 7620 1A42 LABEL located
at X'1A42°

contains X*3143°
Result of RBT Instruction
Contents of LABEL = 2143

(REG2) unchanged
Condition Code = 0010 (G=1)

29-693 ROO 1/79

array

47

3.5.37 Complement Bit (CBT)

Assembler Notation Op-Code Format
CBT R1,D2(X2) 17 RX1,RX?2
CBT R1,AR2(FX2Z,S%2) 77 RX3
Operation

The second operand address points to a bit array starting on a
byte boundary. The value contained in the register specified by
R1 is the bit displacement into the array. Bits in the array are
counted from left to right starting with bit 0. The argument bit
is located and complemented.

Condition Code

C{V{G|(L
01010 0 Previous state of bit was zero
0|0 1 C Previous state of bit was one

Programming Notée

For software compatibility with other processors, the bit array
should start on a halfword boundary.

Example: CBT

Assembler Notation Machine Code Comments

LIS REG9,3 2493 (REG9) = 3

CBT REG9, LABEL 7790 OCU4RA LABEL located at
X'C4A*. It contaihs
X*2813°'.

Result of CBT Instruction
Contents of LABEL = 3813

(REG9) unchanged
Condition Code = 0000 (G=0)

3-u8 29-693 ROO 1/79

3.5.38 Cyclic Redundancy Check

Cyclic Redundancy Check Modulo 12 (CRC12)
Cyclic Redundancy Check Modulo 16 (CRC16)

Assembler Notation Op-Code Format
CRC12 R1,D2(X2) 5E RX1,RX2
CRC12 R1,A2(FX2,S5X2) 5E RX3
CRC16 R1,D2(X2) S5F RX1,RX2
CRC16 R1,A2(FX2,SX2) 5F RX3

Operation
These instructions are used to generate either a 12-bit or a
16-bit Cyclic PRedundancy Check (CRC) residual halfword. The
register specified by R?1 contains, in bits 24:31, the data
character to be included in the CRC residual. The second operand
is the accumulated (0l1ld) CRC residual. The polynomial used for
the 12-bit CRC generation is:
The polynomial used for the 15-bit CRC generation is:

XIG +X|5 +X2 +1
The halfword second operand is replaced by the2 generated CRC
residual.

Condition Code

Unchanged

Programming Notes
The register specified by R1 remains unchanged.
The second operand must be located on a halfword boundary.

Figure 3-5 illustrates a flow chart for CRC generation.

29-6932 ROO 1/79 3-49

589

‘ START) STEP
(TEMP) «—(R1 2g.31) () OLD CRC 1
(COUNT)+—6 2
SHIFT RIGHT
(TEMP) @———o— (TEMP) 3
BY 1
CARRY YES
NO
(TEMP) <—— (TEMP)(® X'0F01° 4
g~
(COUNT) <@———— (COUNT) — 1 .
NO /
CARRY
YES
SECOND OPERAND <+————— (TEMP) 6

CRC12 ALGORITHM SHOWN
FOR CRC 16 ALGORITHM, USE:

R124.31 INSTEAD OF R126:31 INSTEP 1

8
X'A001'

INSTEAD OF 6 IN STEP 2
INSTEAD OF X'OF01’ IN STEP 4

Figure 3-5 Flow Chart for CRC Generation

29-693 ROO 1/79

3.539 Translate (TLATE)

Assembler Notation Op-Coie Format
TLATE R1,D2(X2) E7 RX1,RX2
TLATE R1,A2(FX2,5X2) E7 RX3
Operation

The least significant eight bits (bits 24:31) of the register
specified by R1 <contain the character to be translated. The
fullvord 1location specified by the second operanid address
contains the address of a translation table. The table is made
up of 256 halfwcrds. The character <contained in the register
specified by R1 is used as an index into the table.

If bit O of the table entry corresponding to the index <character
is one, bits 8:15 of the table entry replace the index character,
and the next sequential instruction is executed.

If bit 0 of the table entry is zero, bits 1:15 of the table entry
contain the address, divided by two, of a special character
handling routine. In this case, no translation takes plaze. The
address contained in tits 1:15 is shifted left by one (multiplied
by two). This address rerlaces the current location counter,
thereby effecting an unconditional branch to the special
character handling routinee. Translation of character string data
may also be performed using the MVTU instruction. See Thapter 7.

Condition Code

Unchanged

Programming Notes

The <second operand address must be located on a fullword
boundary.

0 7,8 15
TRANSLATED
1 CHARACTER

O|(CHAR.HANDLING ROUTINE ADDRESS)/2

Example: TLATE

This example 1illustrates the use of the TLAT: instruction. The
translation table must either be initializei or asseablei to
contain up to a total of 256 halfword entries. In this example,
the table contains 2 entries:

29-693 R0OO 1/739 3-51

Label Assembler Notation Comments

LHI REGS5, X'8052° LOAD TABLE ENTRY INTO REGS

STH REGS,TABLE PUT ENTRY INTO TABLE

LA REG7,TRANLAB LOAD ANOTHER TABLE ENTRY

SRLS REG7,1 DIVIDE BY 2

STH REG7,TABLE+A PUT ENTRY INTO TABLE
TABADR bC A(TABLE)

Alternatively, this table may be assembled with the proper
constant values. The T type constant may be used to assemble
subroutine addresses in the proper format. For example:

ALIGN 2
TABLE EQU *
DO 256
bDC H'O*
ORG TABLE+4
DC T (TRANLAB)
ORG TABLE+512

Since a program is normally assembled as a relocatable progranm,
the address of TRANLAB 1is not known, but for illustrative
purposes assume the address of TRANLAB is X'864°.

0 15

TABLE+O
TABLE+2
TABLE+4 8 0
TABLE+6
TABLE+8
TABLE+10 0
TABLE+12

S S—

p= ot — — b~ 4= = — o = —d

ok L) ")

TABLE+508 T

At TABLE+10 is the address of TRANLAB divided by 2 (X'864'/2)

1. Using this table, this example translates the character in
register 2.

Label Assembler Notation Comments
LIS REG2,2 (REG2) = 0000 0002
TLATE REG2,TABADR

3-52 29-693 ROO 1/79

Result of TLATE Instruction

(REG2) = 000C 0052
Condition Code unchanged

]

data at address of (2 times contents
of REG2) + TABLE

data at address TABLE + 4

X*'8052°

The entry used

Since the first bit of the entry is 1, direct translation
used and the contents of REG2 are replaced by X'0000 0052°'.

2. Using the taltle, the following example shows how the TLATE
instruction <can be used to branch to a special character

handling routine:

Label Assembler Notation Comments
LIS REGS, 5 (REG5) = 0000 0005
TIATE REGS5,TABADR

TRANLAB R6,R5 THESE INSTRUCTIONS
R3,0(R6) OPERATE ON THE

SPECIAL CHARACTER.

e o & <o s o
x o

Result of TLATE Instruction (continued)

(REG5) = 0000 0005
Condition Code Unchanged

Control is transferred to the subroutine at address TRANLAR

(Xx*'864*).

data at address of (2 times zontents
of REGS5) + TABLE

data at address TABLE + A

X'ou32°*

The entry used

Since the first bit of the entry is 0, the entry is multiplied

by 2, a transfer occurs to TRANLAB (at address X'854°'),
the processor executes instructions from the new address.

29-693 ROO 1/79 3-53

3.5.40 ADD TO LIST

Add to Top of List (ATL)
Add toc Bottom of List (ABL)

Assembler Notation Op-Code Format
ATL R1,D2(X2) 64 RX1,RX2
ATL R1,A2(FX2,5X2) 64 RX3

ABRL R1,D2(X2) 65 RX1,RX2
ABL R1,A2(FX2,5X2) 65 RX3
Operation

The register specified by R1 contains the fullword element to be
added to the 1list, which is located in memory at the address of
the second operand. The number of slots used tally 1is compared
with the number of slots in the list. If the number of slots
used equals the number of slots in the 1list, an overflow
condition exists. The element is not added to the list and the
overflovw flag in the condition code is set.

If the number of slots used tally is 1less than the number of
slots in the 1list, it is incremented by one, the appropriate
pointer is changed, and the element is added to the list. Refer
to Figure 3-4,

Condition Code

cC|VvVi|G|1L
o|lo0ojo] C Element added successfully
01 110 ¢ List overflow

3-54 29-693 ROO 1/79

Programming Notes

These instructions manipulate circular lists as lescribed in the
introduction to this chapter.

The second operand location must be on a fullwori boundary.

The ATL instruction manipulates the current top pointer in the
list. If no overflow occurs, the current top pointer, which
points to the last element added to the ¢top of the 1list, is
decremented by one. The element is inserted in the slot pointed
to by the new current top pointer. If the <currsnt top pointer
was zero on entering this instruction, the current top pointer is
set to the maximum slot number in the list. This condition is
referred to as list wrap.

The ABL instruction manipulates the next bottom pointer. If no
overflow occurs, the element is inserted in the slot pointed to
by the next bottom pointer, and the next bottom pointer is
incremented by one. If the incremented next bottom pointer is
greater than the maximum slot number in the list, the next bottonm
pointer is set to zero. This condition is referred to as 1list
wrabe.

For the non-overflow situation, pointer halfwords in the 1list
header are not manipulated wuntil after the element has been
successfully added. This facilitates error recovery in the event
of a memory fault.

See examples in the next section.

29-693 ROO 1/79 3-55

3.5.41 Remove From List

Remove from Top of List (RTL)
Remove from Bottom of List (RBL)

Assembler Notation Op-Code Format
RTL R1,D2(X2) 66 RX1,RX2
RTL R1,A2(FX2,5X2) 66 RX3

RBL R1,D2(X2) 67 RX1,RX2
RBL R1,A2(FX2,5X2) 67 RX3
Operation

The element remcved from the list replaces the contents of the
register specified by R1. The list is located at the address of
the second operande. If, at the start of the instruction
execution, the number of slots used tally is zero, then the 1list
is already empty and the instruction terminates with the overflow
flag set in the condition code. This condition is referred to as
list underflow; in this case, R1 is undefined. If underflow does
not occur, the appropriate pointer is changed, the element |is
extracted and placed in the register specified by R1, and the
number of slots used tally is decremented by one.

Condition Code

List now empty
List is not yet empty
List was already empty

- O Ol

C
0
0
0

O =2 Ol
o NeNell

Programming Notes

These instructicns manipulate circular lists as described in the
introduction to this chapter.

The second operand location must be on a fullword boundary.

In the case of list underflow, the contents of the register
specified by R1 are unchanged.

The RTL instruction manipulates the current top pointer. If no
underflow occurs, the current top pointer points to the element
to be extracted. The element is extracted and placed 1in the
register specified by R1. The current top pointar is incremented
by one and compared to the maximum slot number. If the current
top pointer is greater than the maximum slot number, the current
top pointer 1is set to zero. This condition is referred to as
list wrape.

3-56 29-693 ROO 1/79

The RBL instruction manipulates the next bottom pointer. If no
underflow occurs, and the next bottom pointer is zero, it is set
to the maximum slot number (list wrap); otherwise, it is
decremented by one, and the element now pointed to is extracted
and placed in the register specified by R1.

For the non-underflow situation, pointer halfwords in the 1list
header are not manipulated until after the element has been
successfully removed. The register specified by R1 1is not
modified until the header has been updated. This facilitates
error recovery in the event of a memory fault.

Fxamples: List Instructions (ATL, ABL, RTL, RBL)

The fcllowing are examples of the use of the four list processing
instructions.

The original list is normally set up as shown in Figure 3-6.

590

LIST 0005 0000 WHERE HALFWORDS AT
0000 0000 LIST = MAXIMUM # OF SLOTS
SLOTO UNDEFINED = 5(IN THIS EXAMPLE)
SLOT 1 UNDEFINED LIST +2 = # OF ENTRIES USED
SLOT 2 UNDEFINED = 0
SLOT 3 UNDEFINED LIST +4 = CURRENT TOP OF LIST
SLOT 4 UNDEFINED = SLOTO
LIST+6 = NEXT BOTTOM OF LIST
= SLOTO

Figure 3-6 List Processing Instructions

29-693 ROO 1/79

(*Y)
[

57

Assembler Notation Results and Comments

LIS REGO,O

STH REGO,LIST+2 INITIALIZE NUMBER OF ENTRIES
USED TO O

ST REGO,LIST+u INITIALIZE POINTERS TO O

LIS REG1,1 REGISTERS 1 THROUGH 6 CONTAIN

LIS REG2,2 1 THROUGH 6 RESPECTIVELY

LIS REG3,3
LIS REGY, 4
LIS REGS, 5
LIS REG6,6

STH REG5,LIST TOTAL NUMBER OF ENTRIES = 5

w
L}

58 29-693 ROO 1/79

%92 REF1 ATL REG1,LIST

REF2 ATL REG2,LIST

REF3 ATL REG3,LIST

29-693 ROO 1/79

LIST

SLOT 0
SLOT 1
SLOT 2
SLOT 3

SLOT 4

Condition Code = 0000
Current Top Pointer
Next Bottom Pointer

LIST

SLOT O

SLOT 1

SLOT 2

SLOT 3

SLOT 4

000510001

00040000

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED

0000 0001

0005 0002

000310000

UNDEFINED

UNDEFINED

UNDEFINED

0000 0002

0000 0001

Condition Code = 000
Current Top Pointer
Next Bottom Pointer

LIST

SLor 0
SLOT 1
SLOT 2
SLOT 3

SLOT 4

0

0005]0003

000210000

UNDEFINED

UNDEFINED

0000 0003

0000 0002

0000 0001

Condition Code = 0000
Current Top Pointer =

Next Bottom Pointer

S
S

(List Wrap)

lot 3
lot O

Slot 2
Slot 0

594 REFu4

REFS

REF6

ABL REGU4,LIST

ABL REGS5,LIST

ABL REGA,LIST

LIST 0005|0004
0002|0001

SLOT O 0000 0004
SLOT 1 UNCEFINED
SLOT 2 0200 0003
SLOT 3 0000 0002
SLOT 4 0000 0001

Condition Code = Q000

Current Top Pointer =
Next Bottom Pointer =
LIST 0005|0005

000210002
SLOT 0O 0000 0004
SLOT 1 0000 0005
SLOT 2 0000 0003
SLOT 3 2000 0002
SLCOT 4 2000 0001

Condition Code = 0000
Current Top Pointer

Next Bottom Pointer
LIST 0005({0005
0002|0002

SLOT O 0000 0004
SLOT 1 0000 0005
SLOT 2 0000 2003
SLOT 3 0000 0002
SLOT 4 0000 0001

Condition Conde = (0100
Current Top Pointer =
Next Bottom Pointer

Slot 2
Slot 1

Slot 2
51lot 2

Slot 2
5lot 2

29-693 R0O 1/79

(List

overflow)

%93 REF7

REFS8

29-693

RTL REG7,LIST

LIST 000510004
00030002
SLOT O 0000 0004
SLOT 1 0000 0005
SLOT 2 X 0000 0003
SLOT 3 0000 0002
SLOT 4 0000 0001
(REG7) = 0000 0003
Condition Code = 0010
Current Top Pointer = S51ot 3
Next Bottom Pointer = Slot 2
LIST 0005({0003
000310001
SLOT O 0000 0004
SLOT 1 X 0000 0005
SLOT 2 X 0000 0003
SLOT 3 0000 0002
SLOT 4 0000 0001
(REGB) = 0000 0005
Condition Code = 0010
Current Top Pointer = Slot 3
Next Bottom Pointer = Slot 1
NOTE
removed from 1list, and is
accessible through further

manipulation by list instructions.

RBL REGR,LIST
X = Entry
not
EOC 1/79

595

REF9

REF10

RTL REG9,LIST LIST 000510002
000410001
SLOT O 0000 0004
SLOT 1 X 0000 0005
SLOT 2 X 0000 0003
SLOT 3 X 0000 0002
SLOT 4 0000 0001
(REG3) = 0000 0002
Condition Code = 0010
Current Top Pointer = Slot 4
Next Bottom Pcinter = Slot 1
RBL REG10,LIST LIST 000510001
000410000
SLOT 0 X 0000 0004
SLOT 1 X 0000 0005
SLOT 2 X 0000 0003
SLOT 3 X 0000 0002
SLOT 4 0000 0001
(REG10) = 0000 0004
Condition Code = 0010
Current Top Pointer = 4
Next Bottom Pointer = 0O
NCTE
X = Entry removed from 1list, and is
not accessikle through further

manipulation by list instructions.

29-693 ROO

1/79

¢ REF11 RTL REG11,LIST LIST

SLOT 0 X
SLOT 1 X
SLOT 2 X
SLOT 3 X
SLOT 4 X

(REG11) =
Condition

REF12 RTL REG12,LIST LIST

SLOT 0 X
SLOT 1 X
SLOT 2 X
SLOT 3 X
SLOT 4 X

(REZ12) =
Condition

0005}

0000

0000

0000

0000

0004

0000

0005

0000

0003

0000

0002

0000

0001

0000 0001
0000 (List is now empty)
Current Top Pointer = 0

Next Bottom Pointer

Code

0005

0000

0000

0000

0000

0004

0000

0005

0000

0003

0000

0002

0000

0001

UNDEFINED

Code

010

Current Top Pointer
Next Bottom Pointer

X = Entry removed

by list instruc

29-693 R0OO 1/79

NOTE

from

tions.

0

(]

o

list,
accessible through further manipulation

0

(List was
0 already empty)

and is not

3-63 /3-64

CHAPTER 4
BRANCHING

4.1 TINTRODUCTION

In normal operations, the ©processor executes 1instructions in
sequential order. The branch instructions allow this seguential
mode of operation to be varied, so that programs can loop,
transfer control to subroutines, or make decisions based on the
results of previous operations.

4.2 CPERATIONS

The second operand of a branch instruction is the address of the
memory location to which control is transferred. The address may
be contained in a register or it may be specified in the
instruction as the second operand address or as a displacement.

4,21 Decision Making

The ccocnditional branch instructions permit the program to make
decisions based on some result. In these instructions, the R1
field contains a 4-bit mask, M1, which is tested by ANDing it
with the condition <code. The result of the test determines
whether the branch is taken, or the next sequential instruction
is executed.

The following examples show previous condition coda, mask
specified 1in a branch instruction, and the result of the test on
which the branch or no branch decision is made.

Branch 3ranch
Condition kesult (True/ True False
Code Mask(M1) of Test False) Taken Taken
0000 0010 0000 (False) No Yes
00C1 1010 0000 (False) No Yes
1001 100D 1000 (True) Yes No
01G0 0100 0100 (True) Yes No
101¢C 0010 0016 (True) Yes N»
0010 0011 0210 (True) Yes No
0010 0000 0C00 (False) No Yes

29-693 R0OO 1/79 4-1

442.2 Subroutine Linkage

The branch and link instructions allow branching to subroutines
in such a way that a return address is passed to the subroutine.
For these 1instructions, the address of the memory 1location
immediately following the branch instruction 1is saved in the
register cspecified Lty R1.

4.3 BRANCH INSTRUCTION FORMATS
The branch instructions use the Register—-to-Register (RR), the

Short Form (SF), and the Register and Indexed Storage (RX)
formatse.

4.4 BRANCH INSTRUCTIONS

The instructions described in this section are:

BFC Eranch on False Condition

BFCR Branch on False Condition Register

BFBS Branch on False Condition Backward Short
BFFS Eranch on False Condition Forward Short
BTC Branch on True Condition

BTCR Branch on True Condition Register

BTBS Branch on True Condition Backward Short
BTFS Branch on True Condition Forward Short
BAL Branch and link

BALR Branch and link Register

BXLE Branch on Index Low or Equal

BXH Branch on Index High

4-2 29-693 R0O0O 1/739

el Branch on True

Branch on True Condition (BTC)

Branch on True Condition Register (BTCR)
Branch on True Condition Backward Short (BTBS)
Branch on True Condition Forward Short (BTFS)

Assembler Notation Op-Code Format
BTC M1,D2(X2) 42 RX1,RX2
BTC M1,A2(FX2,5X2) 42 RX3
BTCR M1,R2 02 RR

BTBS M1,N 20 SF

BTFS M1,N 21 SF

Operation

The condition code c¢f the Program Status Word (PSW) is tested for
the <conditions specified by the mask field, M1. If any
conditions tested are found to be true, a branch is taken to the

second operand location. If none of the conditions tested is
found to be true, the next sequential instruction is executed.

Condi tion Code

Unchanged

Programming Notes

In the RR format, the branch address is contained in the register
specified by R2.

In the SF format, the N field contains the number of halfwords to
be added to or subtracted from the current location counter to
obtain the branch address.

In the RR and RX formats, the branch address must be 1located on
a halfword boundarye.

29-693 ROC 1/79 4-3

Example: BTC

Assembler Notation

LH
BTC

R1,X'100°*
3,L0C

Machine Code

4810 0100
4230 ABCO

Comments

Load halfword (X'1234°)
located at X'100°'. Condi-
tion code is set to CVGL =
0010. Mask is 3' i.e-,
M1=0011. Perform 1logical
AND between CVGL and M1,
i.ee, 0010 AND 0011. The
result is 0010, i.e., true:;
therefore, a branch is
taken to LOC.

29-693 R0OO 1/79

4.U4,.2 Branch on False

Branch on False Condition (BFC)

Branch on False Condition Register (BFCR)
Branch on False Condition Backward Short (BFBS)
Branch on False Condition Forward Short (BFFS3)

Assembler Notation Op-Code Format
BFC M1,D2(X2) 43 RX1,RX2
BFC M1,A2(FX2,5X2) 43 RX3
BFCR M1,R2 03 RR

BFBS M1,N 22 SF

BFFS M1,N 23 SF
Operation

The ccndition code of the PS5W 1is tested for the <conditions
specified in the mask field, M1. If all conditions tested are
found to be false, a branch 1is taken to the second operand
location. If any of the conditions tested is found to be true,
the next sequential instruction is executed.,

Condition Code

Unchanged

Programming Notes

In the RR format, the branch address is contained in the register
specified by R2.

In the SF format, the N field contains the number of halfwords to
be added to or subtracted from the current location counter to
obtain the branch address.

In the RR and RX formats, the branch address must be 1located on
a halfword boundary.

Example: BFC

Assembler Notation Machine Code Comments

LCS R1,2 2512 (R1) = FFFFFFFE. Condition

BFC 9,L0C 4390 ABCO code, CVGL = 0001 mask is
1001. Perform logical AND
between mask and CVGL,

i.e., 1001 AND 0001. The
result is 0001, i.e., true;
therefore, a branch is not
taken in LOC.

29-693 ROO 1/79 4-5

4.4.3 Branch and Link

BRranch and Link (BAL)
Branch and Link Register (BALR)

Assembler Notation Op-Code Format
BAL R1,D2(X2) 41 RX1,RX2
BAL R1,A2(FX2,5X2) 41 RX3
BALR R1,R2 01 RR
Operation

The address of the next sequential instruction is saved in the
register specified by R1, and a branch is taken to the second
operand address.

Condition Code

Unchanged

Programming Notes
The second operand location must be on a halfword boundary.

The branch address is calculated before the register specifiei by
R1 is changed. R1 may specify the same register as X2, FX2, 35X2.,
or R2.

Example: BAL

The following example illustrates the use of the BAL instruction.
This instruction causes control to be transferred to a subroutine
called SUBROUT. After completion of the subroutine, the 1linking
register is used to branch back to the next sequential
instruction after the BAL; i.e., the instruction labaled RETURN.

4-6 29-693 ROO 1/79

Label Assembler Notation

[BEGIN BAL REGY4,SUBROUT
MAIN RETURN XR R6,R6
PROG STH R6,LAB+4

TSUBROUT LHL RS, LOC
SUBROUTINE — AHI R8, 10

| RTNEND BR REGUY

NOTE
The linking register
example) should not be used

subroutine.

Result of BAL Instruction

(REGY4) = Address of instruction at SUBROUT

Condition Code Unchanged

29-693 ROO 1/79

(REGU
within the

Comments

TRANSFER TO SUBROUT

THE RETURN ADDRESS
OF THE SUBROUTINE
IS IN REGY

RETURN TJ XR INST.

in the

597

4.4.4 Branch on Index Low or Egual (BXLE)

Assembler Notation Op-Code Format
BXLE R1,D2(X2) C1 RX1,BRX2
BXLE R1,A2(FX2,5%2) C1 RX3
Set Up

0 31
R1 Starting index value
R1+1 Increment value
R1+2 Limit or final value

Before execution of this instruction, the register specified by
R1 must contain a starting index value. The register specified
by R1+1 must contain an increment value. The register specified
by R1+2 must contain a comparand (limit or final value). All
values may be signed.

Operation

Execution of this instruction causes the increment value to ba
added to the index value, creating a new index value. The result
is compared logically to the limit or final value. If the new
index value is less than or egual to the 1limit value, a branch is
taken to the second operand location. If the new index value 1is
greater than the limit value, the next sequential instruction is
executed.

Condition Code

Unchanged

Programming Notes

The incremented index value replaces the contents of the register
specified by R1.

Any three consecutive registers of the same set may be used by
this 1instruction as specified by R1. These registers may be 6,
7, 8; or 14, 15, 0; or 15, 0, 1, etc.

The second operand location must be on a halfword boundary.

The branch address is calculated before incrementing the starting
index value contained in the register specified by R1.

R1 may specify the same register as X2, FX2 or SX2.

4-8 29-693 R0OO 1/79

Exanmple: BXLE

Transfer 10 bytes in memory starting at the memdory 1location
labeled RUF0 to the memory location labeled BUF1.

Label Assembler Notation Comments
LIS REG3,0 (REG3)=STARTING INDEX VALUE=Q
LIS REGU,1 (REGU)=INCREMENT VALUE
LIS RS, 9 (REG5)=FINAL VALUE=9
AGAIN LB REGO,BUFO(R3) (REGO)=1 BYTE FROM BUFO
STB REGC,BUF1(R1) COPY 1 BYTE TO BUF1
LABEL BRXLE R3, AGAIN IF (REG3)>(REGS5),DONE
BUFO LS 10
BUF1 LS 10

Result of BXLE Instruction

Code between the instructions labeled AGAIN and LABEL is executed
ten times.

Condition Code Unchanged by BXLE Instruction

(REG3) = 0000000R
(REG4) = 00000001
(REG5) = 00000009

29-693 ROO 1/79 4-9

G4U.4.5 Branch on Index High (BXH)

Assembler Notation Op-Code Format
BXH R1,D2(X2) co RX1,RX2
BXH R1,A2(FX2,5X2) co RX3
Set Up
31
R1 . Starting index value
R1+1 Increment value
R1+2 Limit or final value

Before execution of this instruction, the register specified by
R1 must contain a starting index value. The register specified
by R1+1 must contain an increment value. The register specified
by R1+2 must contain a comparand (limit or final value). All
values may be signed.

Cpera tion

Execution of this instruction causes the increment value to be
added to the index value, creating a new index value. The result
is 1logically compared to the limit or final value. If the new
index value is greater than the limit value, a branch is taken to
the second operand location. If the new index value is less than
or equal to the limit value, the next segquential instruction is
executed.

Condition Code

Unchanged

Programming Notes

The incremented index value replaces the contents of the register
specified by R1.

Any three consecutive registers of the same set may be wused by
this instruction as specified by R1. These registers may b= 6,
7, 8; 14, 15, 0; or 15, 0, 1, etc.

The second operand location must be on a halfword boundarye.

The branch address is calculated before incrementing the starting
index value contained in the register specified by R1.

R1 may specify the s=ame register as X2, FX2 or SX2.

4-10 29-693 R0OO 1/79

Example: BXH

The following example shows how to set up a counter (1-9) using
the BXH instruction:

Label Assembler Notation Comment

LIS REG 1,1 (REG1)=0000 0001 (INDEX)

LIS REG2,1 (REG2)=0000 0001 (INCREMENT)

LIS REG 3,9 (REG3)=0000 0009 (COMPARAND)
BEGIN BXH REG1,LABEL COMPARE INDEX WITH COMPARAND

LH R6, COUNT

B BEGIN BRANCH TO BXH INSTRUCTION
LABEL LA R8, RTN EXIT FROM BXH

ST KR8, MEM

Result of BXH Instruction

Code between the instructions labeled BEGIN and LABEL is executed
9 times.

Condition Code Unchanged by BXH instruction

(REG1) = 0000 000A
(REG2) = 0000 0001
(REG3) = €000 0009

29-693 ROO 1/79 4-11

4.5 EXTENDED BRANCH MNEMONICS

The CAL assembler supports 47 extended branch mnemonics that
generate the branch op-code (true or false conditional) and the
condition code mask required. The programmer must supply the
second operand address (symbolic or absolute). In the case of
Short Format (SF) branch instructions, the second operand branch
address must be within 15 halfwords of the current location
counter. The CAL assembler determines the backward or forward
relationship of the second operand address and generates the
appropriate operaticn code.

The instructions described in this section are:

BC Branch on Carry

BCR Branch on Carry Register
BCS Branch on Carry Short
BNC Branch on No Carry

BNCR Branch on No Carry Register
BNCS Branch on No Carry Short

BE Branch on Equal

BER Branch on Equal Register
BES Branch on Egual Short
BNE Branch on Not Equal

BNER Branch on Not Equal Register
BNES Branch on Not Equal Short

BL Branch on Low

BLR Branch on Low Register
BLS Branch on Low Short
BNL Branch on Not Low

BNLR Branch on Not Low Register
BNLS Branch on Not Low Short

BM Branch on Minus

BMR BRranch on Minus Register

BMS Branch on Minus Short

BNM Branch on Not Minus

BNMR Branch on Not Minus Register

BNMS Branch on Not Minus Short

BP Branch on Plus

BPR Branch on Plus Register
BPS Branch on Plus Short
BNP Branch on Not Plus

BNPR Branch on Not Plus Register
BNPS Branch on Not Plus Short

4-12 29-693 ROO 1/79

BO
BOR
BOS

BNO
BNOR
BNOS

BZ
3ZR
BZS

BNZ
BNZR
BNZS

BR

BS

NOP
NOPR

Branch on Overflow
Branch on Overflow Register
Branch on Overflow Short

Branch on No Overflow
Branch on No Overflow Register
Branch on No Overflow Short

Branch on Zero
Branch on Zero Register
Branch on Zero Short

Branch on Not Zero
Branch on Not Zero Register
Branch on Not Zero Short

Branch (Unconditional)
Branch Register (Unconditional)
Branch Short (Unconditional)

No Operation
No Operation Register

29-693 ROOC 1/79

4-13

4.5.1 Branch on Carry

Branch on Carry (BC)
Branch on Carry Register (BCR)
Branch on Carry Short (BCS)

Assembler Notation Op-Code+M1 Format
BC D2(X2) 428 RX1,RX2
BC A2(FX2,5X2) 428 RX3

BCR R2 028 RR

BCS A 208 (Backward) SF

218(Forward)

Operation

If the Carry (C) flag in the condition code is set, a branch is
taken to the second operand location. If the C flag is zero, the
next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.
In the RR format, the branch address is contained in the register

specified by R2.

Example: BCS

Assembler Notation ggchine Code Comments
SHIFT SLLS R9,1 1191 Register 9 is shifted
BCS SHIFT 2081 left until the first

zero bit is shifted
out of position 0.

4-14 29-693 R0OO 1/79

4.5.2 Branch on No Carry

Branch on No Carry (BNC)
Branch on No Carry Register (BNCR)
Branch on No Carry Short (BNCS)

Assembler Notation Op-Code+M1 Format
BNC D2(X2) 438 RX1,RX2
BNC A2(FX2,S5X2) 438 RX3
BNCR R2 038 RR

BNCS A 228 (Backward) SF

238 (Forward)

Operation

If the Carry (C) flag in the condition code is zero, a branch is
taken to the second operand location. If the C flag is set, the
next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

1
-
wn

29-693 ROO 1/79 4

4.5.3 Branch on Egual

Branch on Equal (BE)
Branch on Equal Register (BER)
Branch on Equal Short (BES)

Assembler Notation Op-Code+M1 Format
BE D2(X2) 433 RX1,RX?2
BE A2(FX2,5X2) 433 RX3

BER R2 033 RR

BES A 223 (Backward) SF

233 (Forward)

Operation
If the G flag and the L flag are both zero in the condition code,

a branch is taken to the second operand locatione. If either flag
is set, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

Example: BE

Assembler Notation Machine Code Comments
CLHI R4,X'23° C540 0023 If R4 contains X*'23°,
BE OPTIN 4330 0OAOO a branch is taken to

location X'RAQ00'.
Otherwise, the next
sequential instruction
is executed.

4-16 29-693 ROO 1/79

4.5.4 Branch on Not Equal

Branch on Not Equal (BNE)
Branch on Not Equal Register (BNER)
Branch on Not Equal Short (BNES)

Assembler Notation Op-Code+M1 Format
BNE D2(Xx2) 423 RX1,RX2
BNE A2(FX2,5%2) 423 RX3
BNER R2 023 RR
BNES A 203 (Backward) SF

213 (Forward)

Operation

If the G flag or the L flag is set in the condition code, a
branch 1is taken to the second operand location. If both flags
are zero, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address rust be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

29-693 R0OO 1/79 4-17

4.5.5 Branch on Low

Branch on Low (BL)
Branch on Low Register (BLR)
Branch on Low Short (BLS)

Assembler Notation Op-Code+M1 Format
BL D2(X2) 428 RX1,RX2
BL A2(FX2,SX2) 428 RX3

BLR R2 028 RR

BLS A 208 (Backward) SF

218 (Forward)

Operation
If the Carry (C) flag in the condition code is set, a branch |is

taken to the second operand address. If the C flag is zero, the
next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.
In the RR format, the branch address is contained in the register

specified by R2.

Example: BL

Assembler Notation Machine Code Comments
CLHI R1,X*'FF? C510 OOFF (R1) is compared to
BL RESTART 4280 0A0O0 X*'O00FF'. If (R1) is 1less

than X'Q0FF*', a branch
is taken to memory
location X°'OAOD°'.

4-18 29-693 ROO 1/79

4,5.,6 Branch on Not Low

Branch on Not Low (ENL)

Branch on Not Low Register (BNLR)
Branch on Not Low Short (BNLS)

Assembler Notation Op-Code+M1

BNL D2(X2) 438

BNL A2(FX2,5X2) 438

BNLR R2 038

BNLS A 228 (Backward)

Operation

If the Carry (C) flag in the condition code is zero, a branch
taken to the second operand address.
next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

The branch address must be located on a halfword boundary.

238

(Forward)

RX1,
RX3
RR
SF

Format

RX2

If the C flag is set,

is

the

In the RR format, the branch address is contained in the register

specified by R2.

29-693 ROO 1/79

4.5.7 Branch on Minus

Branch on Minus (BM)
Branch on Minus Register (BMR)
Branch on Minus Short (BMS)

Assembler Notation Op-Code+#41 Format
BM D2(X2) u21 RX1,RX2
BHM A2(FX2,5%¥2) 421 RX3

BMR R2 021 RR

BMS A 201 (Backward) SF

211 (Forward)

Operation
If the Less Than (L) flag in the condition code is set, a branch

is taken to the second operand location. If the L flag is =zero,
the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be 1located on a halfword boundary.
In the RR format, the branch address is contained in the register

specified by R2.

Example: BM

Assembler Notation Machine Code Comments

SIS R3,1 2631 If (R3) is less than G

BM CONTINUE 4210 10A0 after the subtraction,
a branch is taken to
X*10A0"'.

4-20 29-693 R0OO 1/73

4,5.8 PBranch on Not Minus

Branch on Not Minus (BNM) * .
Branch on Not Minus Register (BNMR)

Branch on Not Minus Short (BNMS)

Assembler Notation Op-Code+M1 Format
BNM D2(X2) 431 RX1,RX2
BNM A2(FX2,5X%X2) 431 RX3
BNMR R2 031 RR

BNMS A 221 (Backward) SF

231 (Forward)

Operation

If the Less Than (L) flag in the condition code is zero, a branch
is taken to the second operand location. If the L flag 1is set,
the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

29-693 ROC 1/79 4-21

" 4.5.9 Branch on Plus

Branch on Plus (BP)
Branch on Plus Register (BPR)
Branch on Plus Short (BPS)

Assembler Notation Op-Code+HM1 Format
BP D2(X2) 422 RX1,RX2
BP R2(FX2,5X2) 422 RX3

BPR R2 022 RR

BPS A 202 (Backward) SF

212 (Forward)

Operation

If the Greater Than (G) flag in the <condition code 1is set, a
branch is taken to the second operand location. If the G flag is
zero, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address rust be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

22 29-693 ROO 1/79

&
|

" 4,5.,10 Branch on Nct Plus

Branch on Not Plus (BNP)
Branch on Not Plus RKegister (BNPR)
Branch on Not Plus Short (BNPS)

Assembler Notation Op-Code+M1 Format
BNP D2(X2) 432 RX1,RX2
BNP A2(FX2,5X2) 432 RX3
BNPR R2 032 RR

BNPS A 222 (Backward) SF

232 (Forward)

Operation

If the Greater Than (G) flag in the condition code 1is zero, a
branch is taken to the second operand location. If the G flag is
set, the next seguential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

29-693 ROC 1/79 b4-23

4,5.11 Branch on Overflow

Branch on Overflow (BO)
Branch on Overflow Register (BOR)
Branch on Overflow Short (BOS)

Assembler Notation Op-Code+M1 Format
BO D2(X2) 424 RX1,RX2
BO R2(FX2,5X2) y24 RX3

BOR R2 024 RR

BOS A 204 (Backward) SF

214 (Forward)

Operation

If the Overflow (V) flag in the condition code is set, a branch
is taken to the second operand location. If the V flag is zero,
the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address rust be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2. :

4-24 29-693 R0O0O 1/79

4.5,12 Branch on No Overflow

Branch on No Overflcw (BNO)
Branch on No Overflcw Register (BNOR)
Branch on No Overflow Short (BNOS)

Assembler Notation Op-Code+M1 Format
BNO D2(X2) L34 RX1,RX2
BNO A2(FX2,SX2) 434 RX3
BNOR R2 034 RR

BNOS A 224 (Backward) SF

234 (Forward)

Operation

If the Overflow (V) flag in the condition code is zero, a branch

"is taken to the second operand location. If the V flag is set,

the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundarye.

In the RR format, the branch address is contained in the register
specified by R2.

29-693 ROO 1/79 4-25

4.5.13 Branch on Zero

Branch on Zero (BRZ)
Branch on Zero Register (BZR)
Branch on Zero Short (BZS)

Assembler Notation Op-Code+M1 Format
BZ D2(X2) 433 RX1,RX2
BZ A2(FX2,5X2) 433 RX3

BZR R2 033 RR

BZS A 223 (Backward) GSF

233 (Forward)

Operation
If the G and L flags are both =zero in the <condition code, a

branch is taken to the second operand location. If the G or L
flag is set, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

4-26 29-693 ROO 1/79

4.,5.14 Branch on Not Zero

Branch on Not Zero
Branch on Not Zero
Branch on Not Zero

Assembler Notation

BNZ D2(X2)

BNZ A2(FX2,5X2)
BNZR R?2

BNZS A
Operation

If the G or L flag in the condition code 1is set,
taken to the second operand address.
both zero, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

The branch address rust be located on a halfword boundary.

In the RR format,
specified by R2.

29-693 ROO 1/79

(BNZ)
Register (BNZR)
Short (EBNZS)

Op-Code+M1

423
423
023
203 (Backward)
213 (Forward)

Format

RX1,RX2
RX3

RR

SF

is

If the G and L flags are

the branch address is contained in the register

4.5.15 Branch (Unconditional)

Branch (Unconditional) (R)
Branch Register (Unconditional) (BR)
Branch Shert (Unconditional) (BS)

Assembler Notation Op-Code+M1 Format
B D2(X2) 430 RX1,RX2
B A2(FX2,S5X2) 430 RX 3

BR R2 030 RR

BS A 220 (Backward) SF

230 (Forward)

Operation

A branch is unconditionally taken to the second operand address.

Condition Code

Unchanged

Programming Notes
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

This instruction is assembled as a Branch on False Condition

instruction, with no condition specified (M1=0). Therefore, the
branch test is always false and the branch is always taken.

Example: R

Assembler Notation Machine Code Comments

B OPTIN 4300 0AOQO An unconditional branch
is taken to location
X*0OAOQ0'.

4-28 29-693 ROO 1/79

4.5.16 No Operation

No Operation (NOP)
No Operation Register (NOPR)

Assembler Notation Op-Code+M1 Format
NOP D2(X2) 420 RX1,RX2
NOP A2(FX2,SX2) 420 RX3
NOPR R2 020 RR
Operation

The next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

D2(X2) or A2(FX2,5X2) and R2 are ignored and usually egual zero
(o).

This instruction is assembled as a branch on true condition

instruction with no condition specified (M1=0). Therefore, no
branch is taken and the next instruction is fetched and executed.

Example: NOP,NOPR

Assembler Notation Machine Code Comments

NOP 0(0,0) 4200 4000 0000 No operation
NOP 0 4200 0000 No operation
NOPR 0200 No operation

29-693 ROO 1/79 4-29/4-30

599

CHAPTER 5
FIXED POINT ARITHMETIC

51 INTRODUCTION

Fixed point arithmetic instructions provide a complete set of
operations for calculating addresses and indices, for counting,
and fcr general purpose fixed point arithmetic.

5.2 DATA FORMKATS

There are three formats for fixed point data: the halfword, the
fullwerd, and the double word. In each of these formats, the
most significant bit (bit 0) is the sign bit. The remaining 15,
31 or 63 bits represent the magnitude. See Figure 5-1.

01 HALFWORD 15

S

0 1 FULLWORD 31
S

0 1 DOUBLE WORD . 63
S L L

Figure 5-1 Fixed Point Data Words Formats

Positive values are represented in true binary form with a sign

bit of zero. Negative values are represented in two's complement
form with a sign bit of one. To change the sign of a number, the
two's complement of the number may be produced by subtracting the
number from zerc. Another way would be to:

1. Change all zeros to ones, and all ones to zeros.

2e Add one.

29=-653 PO 1/73 5-1

600

5.3 FIXEL POINT NUMBER RANGE

Fixed point numbers represent integers, Table 5-1 shows
relations between different formats, along with decimal values.

TABLE 5-1 FIXED POINT FORMAT RELATIONS

DOUBLE WORD FULLWORD HALFWORD DECIMAL
8000000000000000 -9223 372 036 854 775 808
(MOST NEGATIVE)
80000000 -2 147 483 648
(MOST NEGATIVE)
8000 (MOST NEGATIVE) —-32 768
FFFFFFFFFFFFFFFF FFFFFFFF FFFF (LEAST NEGATIVE) -1
0000000000000000 00000000 0000 0
0000000000000001 00000001 0001 (LEAST POSITIVE) 1
7FFF (MOST POSITIVE) 32 767
JFFFFFFF 2147 483 647
(MOST POSITIVE)
JFFFFFFFFFFFFFFF 9 223 372 036 854 775 807

(MOST POSITIVE)

5.4 OPERATIONS

Fixed point instructions include both fullword and halfword
operations. Fullword operations take place (a) Dbetween the
contents cf two general registers; (b) between the contents of a
general register and a fullword stored in memory; or (c) between
the contents of a general register and a fullword obtained from
the instruction stream. Fullword multiply produces a double word
result which 1is contained in two adjacent registers. Fullword
divide operates on double word data contained in two adjacent

registers.

Halfword operations take place between a fullword <contained in
one of the general registers and a halfword contained in memory.
Before the operation is started, the halfword in memory 1is
expanded to a fullword by propagating the most significant bit
(sign bit) into the high order bits of the fullword. The
halfword multiply and divide instructions are exceptions to this
rule.

€-2 29=503 100 1/7)

5.5 CONDITION CODE

As a general rule, all fixed point arithmetic instructions,
except multiply and divide, affect the condition code, to
indicate the effect of the operation on the 32-bit result.

In fixed point add and subtract operations, ths arguments are
represented in two's complement form; therefore, all bits,
including sign, participate in forming the result. Conseguently,
the occurrence ¢f a <carry or borrow has no real arithmetic
significance.

For example, an add operation between a minus ona (FFFF FFFF) and
a plus two (000C 0002) produces the correct result of plus one
(0000 0001) and a carry. The condition code is set to 1010 (C =
1 and G = 1). Carry means that the complete result, which in
this case would have been 1 0000 0001, would not fit in 32 bdits.

An overflow occurs when the result does not fit in 31 bits. Notae
that bit zero must be reserved for the sign of the resulte. For
example, adding one to the largest positive fixed point value
produces an overflow:

TFFF FFFF
+0000 0001
=8000 0000

The resulting condition code is 0101 (V=1 and L=1).

The result, 8000 0000, is logically correct, but because the sign
bit is negative when the result should be positive, the overflow
condition exists.

The <columns of the condition code table given for each
instruction description show the state of the C, V, G and L flags
for the possible results.

An 'X' in a condition code column means that the particular flag
is not defined, and may be either 0 or 1. Hence, no inference
should be drawn by testing that particular flag.

5.6 FIXED POINT INSTRUCTION FORMATS

The fixed point instructions use the Register to Register (RR),

the Short Form (SF), the Register and Indexed Storage (RX), and
the Register and Immediate (RI) instruction formats.

29-693 RO0O 1/79 5-3

5.7 FIXED POINT INSTRUCTIONS

The fixed point instructions described in this section are:

A
AR
AT
AIS
AH
AHI
AH
AHM
S
SR
S1
SIS
SH
SHI
C

CR
CI
CH
CHI
H

MR
MH
MHR
D

DR
DH
DHR
SLA
SLHA
SRA
SRHA
CHVR

J
1
=

Add

Add Register
Add Immediate

Add Immediate Short

Add Halfword

Add Halfword Immediate

Add to Memory

Subtract
Subtract
Subtract
Subtract
Subtract
Suttract
Compare
Compare
Compare
Compare
Compare
Multiply
Multiply
Multiply

Multiply Halfword Register

Divide

~ Add Halfword to Memory

Register

Immediate
Immediate Short

Halfword

Halfword Immediate

Register
Immediate
Halfword
Halfword Immediate

Register
Halfword

Divide Register
Divide Halfword

Divide Halfword Register

Shift Left Arithmetic

Shift Left Halfword Arithmetic
Shift Right Arithmetic

Shift Right Halfword Arithmetic
Convert to Halfword Value Register

29-653 [

<

(g9

1/73

S5.7.1 Add

Add (RA)

Rdd Register (AR)

Add Immediate (AI)

Add Immediate Short (AIS)

Assembler Notation Op-Code Format
A R1,D2(X2) 5A RX1,RX2
A R1,A2(FX2,5X2) 5A RX3

AR R1,R2 0A RR

Al R1,I2(X2) FA RI2

AIS R1,N 26 SF
Operation

The second operand is added algebraically to the contents of the
register specified by R1. The result of this 32-bit addition
replaces the contents of the register specified by R1.

Condition Code

Result is zero

Result is less than zero
Result is greater than zero
Arithmetic overflow

Carry

- D¢ < B IO
N e Ne Ne)L

> > -a O O

<o O - Of

Programming Notes

The second operand for the AIS instruction 1is obtained by
expanding the 4-bit data field, N, to a 32-bit fullword by
forcing the high order bits toc zero.

In the RI2 format, the contents of the index register specified
by XZ are added to the 32-bit I2 field to form the fullword
second operand.

In the RX formats the second operand must be located on a
fullword boundary.

29-693 ROO 1/79 5-5

Example: A

Add contents of memory location labeled LAB to the contents of
REGY .

1. REGU contains X'7F341234°
Fullword in memory at LAB contains X'7F124321°*

Assembler Notation Comments

A REG4,LAB ADD (LAB) TO (REGH)

Result of A Instruction
(REGY) = X'FEU65555"
(LAB) unchanged by this instruction
Condition Code = 0101 (V=1, L=1)

2. REG5 contains X*'8000 0001°
Fullword in memory at LAEB contains X*'80000002°

Assembler Notation Comments

A REGS5,LAB ADD (LAB) TO (REGS5)

Result of A Instruction
(REG5) = X'00000003"

(LAB) unchanged by this instruction
Condition Code = 1110 (C=1, V=1, G=1)

56 29-693 ROO 1/79

Se7.2 Add Halfword

Add Halfword (AH)
Add Halfword Immediate (AHI)

Assembler Notation Op-Code Format
AH R1,D2(X2) 4 RX1,RX2
AH R1,A2(FX2,5X2) 1y} RX3

AHI R1,I2(X2) CA RTI1
Operation

The 16-bit second operand is expanded to a 32-bit fullword by
propagating the most significant bit through bits 0:15 of the
fullword. The fullword operand is added to the fullword contents
of the register specified by R1. The result replaces the
contents of the register specified by R1.

Condition Code

Result is zero

Result is less than zero
Result is greater than zero
Arithmetic overflow

Carry

- > B¢ > D)
> - OO0 Ol
> > aa OOl

P PE O - Ot

Programming Notes

In the RX formats, the second operand nmust be located on a
halfwoerd boundary.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the
fullword second operand.

29-693 ROO 1/79 5-7

Example: AH

This example adds the halfword at memory location labeled LAR to
the contents of register 4.

1.

REGY contains X'00230002"

Halfword at memory location LAB contains X'FFFF*

Assembler Nctation Comments

AH REGU, LAB ADD (LAB) TO

Result of AH Instruction

(REGU4) = X*C0230001°
(LAB) unchanged by this instruction
Condition Ccde = 1010 (C=1, G=1)

REGS contains X'FFFF FFFS?
LAB contains X'FFF2°'

Assembler Nctation Comments

AH REGS5,LAB ADD (LAB) TO

Result of AH Instruction

(REGS) = °*FFFF FFET7'
(LAB) unchanged by this instruction
Condition Ccde = 1001 (C=1, L=1)

(REGH)

(REGS)

29-693 ROO0 1/79

S5¢7+3 Add to Memory (AM)

Assenmnbler Notation Op-Code Format
ANM R1,D2(X2) 51 RX1,RX2
AM R1,A2(FX2,5%X2) 51 RX3
Operation

The first operand contained in the register specified by R1 1is
added algebraically to the fullword second operand. Th=2 result
replaces the fullword second operand in memory. The contents of
the register specified by R1 are not changed.

Condition Code

Result is zero

Result is less than zero
Result is greater than zero
Arithmetic overflow

Carry

- < e M O
- O OOl
PGP - OO

PO - O

Programming Note

The second operand must be located on a fullword boundary.

Example: AM
1. Add contents of register 8 to memory location labeled LOC:

REG8 contains X°00000008"°
Fullword in memory at LOC contains X*'034289AR'

Assembler Notation Comments

AN REG8,LOC ADD (REG8) TO (LOC)

29-693 RO0O 1/79 5-9

Result of AM Instruction
(REG8) unchanged by this instruction
(LOC) = X*034289B3"
Condition Code = 0010 (G=1)
2. Add contents of register 7 to memory location labeled LOC:
REG7 contains X*7F341234°
Fullword in memory at LCC contains X*7F12u4321°

Assembler Nctation Comments

AM REG7,LCC ADD (REG7) TO (L0C)

Result of AM Instruction
(REG7) unchanged by this instruction

(LOC) = X'FEuU65555"
Condition Cecde = 0101 (V=1, L=1)

5-10 29-693 ROO 1/79

S.7.4 Add Halfword to Memory (AHM)

Assembler Notation Op-Code Format
AHM R1,D2(X2) 61 RX1,RX2
AHM R1,A2(FX2,5X2) 61 RX3
Operation

The halfword second operand is added algebraically to tha 1least
significant 16 bits (bits 16:31) of the register specified by R1.
The 16-bit result replaces the contents of the memory location
specified by the effective address of the seconi operani. The
contents of the register specified by R1 are not changed.

Condition Code

Result 1is zero

Result is less than zero
Result is greater than =zero
Arithmetic overflow

Carry

- 5¢ 3¢ ¢ x|
<00 ol
> ¢ - O OG0
O - Ot

Programming Notes
The second operand must be located on a halfword boundary.

The condition ccde settings are based on the halfword result.

Example: AHM

This example adds the contents of register 5 to the contents of
memory location LAB.

1. REGS contains X'00230002°
Halfword in memory at LAB contains X'FFFF°'

Assembler Nctation Comments

AHM REG5,LAB ADD (REGS5) TO (LAB)

29-693 ROO 1/79 -11

(8]

Result of AHY Irstruction
(REGS) unchanged by this instruction

(LAB) = 0001
Condition Ccde = 1010 (C=1, G=1)

2. REG6 contains X'FFFF FFF5*
LAB contains X'FFF2°

Assembler Nctation Comments

AHM REG6,LAER ADD (REG6) TO (LAB)

Result of AHM Instruction
(REG6) unchanged by this instruction

(LAB) = FFET7
Condition Ccde = 1001 (C=1, L=1)

-12 29-693 ROO 1/79

n

5.7.5 Subtract

Subtract (S)

Subtract Register (SR)
Subtract Immediate (S51)
Subtract Immediate Short (SIS)

Assembler Notation Op-Code Format
S R1,D2(X2) 5B RX1,RX2
S R1,A2(FX2,5X2) 5B RX3

SR R1,R2 08 RR

SI R1,I2(X2) FB RI2

SIS R1,N 27 SF

Operation
The fullword second cperand is subtracted algebraically from the

contents of the register specified by R1. The result replaces
the contents of the register specified by R1.

Condition Code

Result is zero

Result is less than zero
Result is greater than zero
Arithmetic overflow

Borrow

-~ D Bd D)
M a2 OO0 0O«
> > - OO
¢ O QO

Programming Notes

The second operand for the SIS instruction is obtained by
expanding the U4-bit data field, N, to a 32-bit fullword by
forcing the high order bits to zero.

In the RI2 format, the contents of the index register specified
by X2 are added to the 32-bit I2 field to form the fullwwurd
second operand.

In the RX formats, the second operand must be located N a
fullword boundary.

29-693 R0OO 1/79 5

13

Examples:

This example suktracts the fullword at memory
the contents of register 9.

1. REGY9 contains X'uusuy44y4®
LCC contains X*u4q4u440y"

Assembler Nctation Comments

lozation LOC from

S REG9,LCC SUBTRACT (LOC) FROM (REG9)

Result of S Instruction
(REG9) = 0

(LOC) unchanged by this instruction
Condition Ccde = 0000

2. REG9 contains X'23u456789"'
LOC contains X'FFFFu321°

Rssembler Nctation Comments

S REG3,LCC SUBTRACT (LOC) FROM (REG9)

Result of S Instruction

(REGY9) = 23462368
(LOC) unchanged by this instruction
Condition Code = 1010 (C=1, G=1)

wn
!

14

29-693 ROO 1/79

S5e¢7«6 Subtract Halfword

Subtract Halfword (SH)
Subtract Halfvord Immediate (SHI)

Assembler Notation Op-Code Format
SH R1,D2(X2) 4B RX1,RX2
SH R1,A2(FX2,5X2) 4B RX3
SHI R1,I2(X2) CB RI1

Operation

The 16-bit second operand is expanded to a 32-bit fullword by
propagating the most significant bit through bits 0:15. This
fullwerd 1s subtracted from the contents of the register
specified by R1. The result replaces the <contents of the
register specified by R1.

Condition Code

Result is zero

Result is less than zero
Result is greater than zero
Arithmetic overflow

Borrow

o e
E N eNoNeoll -
> - OOl
> 6 O - O

Programming Notes

In the RX formats, the second operand must be locatedi on a
halfword boundarye.

In the RI1 format, the 16-bit I2 field is extend=d to a fullvori
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the
fullword second operand.

29-693 ROO 1/79 5

15

Example: SH

This example suttracts the halfword at memory location LJIC fronm

the contents of register 9.

1. REGY9 contains X*'00123456"*
LOC contains X'FFFuy'

Acssembler Nctation Comments

SH REG9, LOC SUBTRACT

Result of SH Instruction
(FEG9) = 00123462
(LOC) unchanged by this instruction
Condition Ccde = 1010

2. REGY9 contains X°*FFFFu567"*
LCC contains X°'2345"*

Assembler Nctation Comments

SH REGS,LCC SUBTRACT

Result of SH Instruction

(REGQ) = FFFF2222
(LOC) unchanged by this instruction
Condition Code = 0001

wn
1

16

(LOC) FROM (REG9)

(LOC) FROM (REG9)

29-693 ROO 1/79

577 Compare

Compare (C)
Compare Register (CR)
Compare Immediate (CI)

Assembler Notation Op-Code Format
C R1,D2(X2) 59 RX1,RX2
Cc R1,A2(FX2,SX2) 59 RX3

CR R1,R2 09 RR

Ccl R1,12(X2) F9 RI2
Operation

The first operand containsd in the register specified by R1 is
compared algebraically to the 32-bit second operand. The result
is indicated by the condition code setting. Neither operand 1is
changed.

Condition Code

First operand is equal to second operand
First operand is less than sscond operand
First operand is greater than second operand

O s OO
26 >4 MG
- O Ol
Q - Ot~

Programming Notes

In the RX formats, the second operand must be 1located on a
fullword boundary.

The state of the V flag is undefined.
Example: C

This example compares the contents of register 3 to the <contents
of the fullword in memory location LAB.

REG3 contains X'44567894"°
Fullword at LAB contains X'04321243°

Assembler Notation Comments

c REG3,LAB COMPARE (REG3) TO (LAB)

Result of C Instruction
(REG3) unchanged by this instruction

(LAB) unchanged by this instruction
Condition Ccde = 0010 (G=1)

29-693 ROO 1/79 5-17

578 Compare Halfword

Compare Halfword (CH)
Compare Halfword Immediate (CHI)

Assembler Notation Op-Code Format
CH R1,D2(X2) 49 RX1,RX2
CH R1,A2(FX2,5%X2) 49 RX3

CHI R1,I2(X2) C9 RI1

Operation

The halfword second operand 1is expanded to a fullword by
propagating the most significant bit through bits 0:15. The
first operand, the contents of the register specified by R1, is
compared algebraically to the effective second operand. The
result is indicated by the <condition code setting. Neither
operand is changed.

Condition Code

First operand is equal to second operand
First operand is less than second operand
First operand is greater than second operand

O - O
> >)<
e Ralin]
O - Ol

Programming Notes

In the RX formats, the second operand must be located 20 3
halfword boundary.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propagating ¢the sign bit through bits 0:15. The contents of
the index register specified by X2 are then add=sd to form the
fullword second operande.

Condition code settings are based on the fullword comparison.
The state of the V flag is undefined.

5-18 29-633 ROO 1/79

Example: CH

This example compares the contents of Register 8 to the halfword
at LAB.

REG8 contains X°'F4567891°
Halfword at LAB contains X°*'3123°*

Assembler Notation Comments

CH REG8,LAB COMPARE (REG8) TO (LAB)

Result of CH Instruction
(REG8) unchanged by this instruction

(LAB) unchanged by this instruction
Condition Code = 1001 (C=1, V=1)

29-693 ROO 1/79 5-19

5¢7.9 Multiply

Multiply (M)
Multiply Register (MR)

Assembler Notation Op-Code Format
M R1,D2(X2) 5C RX1,RX2
M R1,A2(FX2,5%2) 5C RX3

MR R1,R2 1C RR

Operation

The fullword first operand contained in the register specified by
R1+1 is multiplied by the fullword second operand. The 64-bit
result is stored 1in the registers specified by R1 and R1 + 1.
The sign of the result is determined by the rules of algebra.

Condition Code

Unchanged

Programming Notes

The R1 field of these instructions must specify an even numbered
register. If the R1 field of these instructions is odd, the
result is undefined.

In the RX formats the second operand must be located on 2a
fullword boundary.

The mest significant bits of the result are placed 1in the
register specified by R1; the least significant bits are placed
in the register by R1+1.

Example: M

This example multiplies the contents of register 9 by tha
contents of memory location LOC and places the result in
registers 8 and 9 (64 hits).

REG8 contains unknown data

REG9 contains X*'00002431°*
Fullword at location LOC contains X'43120000°

5-20 29-693 ROO 1779

Assembler Notation Comments

M REG8,LOC MULTIPLY (REG9) BY (LOC)

Result of M Instruction

REG8 and REG9 together contain the result
(REG8, REG9) = 0000 09%7B, 5E72 0000

(LOC) unchanged by this instruction
Condition Code unchanged by this instruction

Example: MR

This example multiplies the <contents of register 9 by the
contents of register 8 and places the result in registers 8 and
9 (64 bits).

REG8 contains X'00010000°

REG9 contains X*12345678"*

Assembler Notation Comments

MR REGS8,REGS MULTIPLY (REG9) BY (REGS8)

Result of MR Instruction
REGB and REGY9 together contain the result

(REG8,REG9) = (0000 1234, 5678 0000
Condition Code unchanged by this instruction.

29-633 ROOD 1/79 5-21

5.7.10 Multiply Halfword

Multiply Halfword (MH)
Multiply Halfword Register (HMHR)

Assembler Notation Op-Code Forma;_
MH R1,D2(¥X2) 4c RX1,RX2
MH R1,A2(FX2,5X2) 4c RX3

MHR R1,R2 0C RR

Operation

The first operand, contained in bits 16:31 of the register
specified by £R1, is multiplied by the 16-bit secondi operand,
taken from memory or from bits 16:31 of the register specified by
R2. Both operands are 16-bit signed two's complement values.
The 32-bit result replaces the contents of tha ra2gister specifiel

by R1. The =sign of the result is determined by the rule: of
algebrae.

Condition Code

Unchanged

Programming Note

In the RY formats, the second operand must Dbe located on a
halfword boundary.

Example: MH

This example multiplies the halfword contents of register 8 by
the halfword in memory location LAB.

REG8 contains X *ABCD 00u45"
Halfword at memcry location LAB contains X'8674°

5-22 29-593 ROO 1/79

Assembler Notation Comments

MH REG8,LAB MULTIPLY LEAST SIGNIFICANT HALF

OF (REG8) BY (LAB)

Result of MH Instruction

(REG8) = FFDF3Dyy

(LAB) unchanged by this instruction
Condition Code unchanged by this instruction

Example: MHR

This example multiplies the halfword contents of register 11
the halfvword contents of register 4.

REG11 contains X*'37210004°
REGY4 contains X*FFFF0307°

Assembler Notation Comments

MHR REG11,REGUY MULTIPLY LS HALF JF (REG11)
BY LS HALF OF (REG4)

Result of MHR Instruction
(REG11) = 00000C1C

(REGU) unchanged by this instruction
Condition Code unchanged by this instruction

29-693 ROO 1/79

by

57.11 Divide

Divide (D)
Divide Register (DR)

Assembler Notation Op-Code Format
D R1,D2(X2) 5D RX1,RX2
D R1,A2(FX2,5X2) sD RX3

DR R1,R2 1D RR

Operation

The 64-bit signed dividend <contained 1in the two registers
specified by R1 and R1+1 is divided by the signei fullwori second
operand. The 32-bit signed remainder replaces the contents of
the register specified by R1. The signed 32-bit guotient
replaces the contents of the register specified by R1+1,

The sign of the guotient is determined by the rules of algebra.
the sign of the remainder 1is the same as the sign of the
dividend.

Condition Code

Unchanged

Programming Notes

The R1 field of these instructions must specify an even numbered
register. If the R1 field of these instructions is o2dd, the
result is undefined.

The most significant bits of the dividend must be contained in
the register specified by R1. The least significant bits of the
dividend must be contained in the register specified by R1+1.

In the RX formats, the second operand must b2 located on a
fullword boundary.

If the divisor is equal to zero, the instruction is not executed,
the operand registers remain unchanged, and the arithmetic fault
interrupt is taken.

If the value of the gquotient is more positive than X'7FFFFFFF' or
more negative than X*80000000*', gquotient overflow is said to
occur. If gquotient overflow occurs, the operand registers remain
unchanged, and the arithmetic fault interrupt is taken.

5-24 29-693 ROO 1/79

Example: D

This example divides the contents of registers 8 and 3 by the
fullword contents of memory location LOC.

1. REGB contains X'12345678°
REG9 contains X'98765432"'

LOC contains X*34343434"°

Assembler Notation

D REG8,LOC

Result of D Instruction

(REG8B)
(REGY)

1E1E1E1E
59455459

o

Most significant half of jiividend
Least significant half

of dividend

Divisor

Comments

DIVIDE (REG8,9) BY (LOC)

Remainder
Quotient

(LOC) wunchanged by this instruction

Condition Ccde unchanged by

2. REG8 contains X'FFFF1234°
REGY9 contains X*°00000000°*

LOC contains X'12345678°*

Assembler Notation

D REGS8, LOC

Result of D Instruction

(REGS8)
(REGI)

F250D9E0
FFF2EFFC

nn

this instruction

Most significant half of dividend
Least significant half

of dividend

Divisor

Comments

DIVIDE (REG 8,9) BY (LOC)

Remainder
Quotient

LCC unchanged by this instruction

Condition Code unchanged by

3. KREG8 contains X'43657898°
REG9 contains X*12123456"

LOC contains X'00000000°

Assembler Notation

D REG8,LOC

29-693 ROO 1/79

this instruction

Most significant half of iiviidend
Least significant half

of dividend

Divisor

Comments

DIVIDE (REGS8,9) BY (LOC)

Result of D Instruction

Division by zero causes arithmetic fault to be

taken. Operands

and condition code remain unchanged by this instruction.

4,
REG9 contains

LOC contains X'00000001"*

Assembler Notation

D REGS8,LOC

Result of D Instruction

Quotient overflow causes arithmetic fault to be taken.

REG8 contains X°*80000000°
X*00000001"

Most significant half of dividend
Least significant half

of dividend

DPivisor

([T

Comments

DIVIDE (REGS8,9) BY (LOC)

Operands

and condition code remain unchanged by this instruction.

Example: DR

This example divides the contents of registers 8

contents of register 2.

REG8 contains X*'FFFFFFFF*
REG9 contains X'FFFFFFFD*
REG?2 contains X*'FFFFFFFE®

Assembler Notation

DR REG8,REG2

Result of DR instruction

-—

(REGS8) FFFFFFFF
(REG9) = 00000001
(REG2) unchanged by this
Condition Code unchanged

26

and 9 by the

Most significant half of dividend
Least significant half of dividend
Divisor

Comments

DIVIDE (REG8,9) BY (REG2)

Remainder
Quotient

instruction
by this instruction

29-693 ROO 1/79

5712 Divide Halfword

Divide Halfword (DH)
Divide Halfword Register (DHR)

Assembler Notation Op-Code Format
DH R1,D2(X2) 4p RX1,RX2
DH R1,A2(FX2,5X2) 4D RX3

DHR R1,R2 oD RR

Operation

The 32-bit signed dividend contained in the register specified by
R1 is divided by the 16-bit signed second operand., The 16-bit
signed remainder is copied to R1 (bits 16:31) and the halfword
value is converted to a fullword value. The 16-bit signed
quotient 1is c¢ccpied to the register specified by R1 + 1 after
conversion to a fullword value.

The sign of the guotient is determined by the rules of ilgebra.
The sign of the remainder 1is the same as the sign of the
dividend.

Condition Code

Unchanged

Programming Notes

In the RX formats, the second operand must be located on a
halfword boundary. In the RR format, the second operand is taken
from bits 16:31 of the register specified by R2.

If the divisor is equal to zero, the instruction is not executed,
the operand registers remain unchanged, and the arithmetic fault
interrupt is taken.

Tf the value of the quotient is more positive than X'7FFF*' or
more negative than X'8000', quotient overflow is said to oczur.
If quotient overflow occurs, ¢the operand registers remain
unchanged, and the arithmetic fault interrupt is taken.

29-693 ROO 1/79 5=27

Example: DH

This example divides the contents of register 7 by the halfword
contents of memory locatinn LOC.

le. REG7 contains X'0000 Q00f4*' = Dividend

LCC contains X'0Q008° Divisor
Assembler Notation Comments
CH REG7,L0C DIVIDE (REG7) BY (LOC)

Result of DH Instruction

(REG7) 0000 0004 = Remainder
(REGS) 0000 000A = Quotient

(LOC) unchanged by this instruction
Condition Code unchanged by this instruction

2 PEG7 contains X*1234 5678°' = Dividend
LCC contains X'0000° = Divisor
Assembler Notation Comments
DH REG7,L0C DIVIDE (REG7) BY (LOC)
Result of DH Instruction
Division by zero causes arithmetic fault to be taken. Operands

and condition code remain unchanged by this instruction.

3. REG7 contains X'8000 0602* = Dividend
LCC contains X'0001°*
Assembler Notation Comments
CH REG7,L0C DIVIDE (REG7) BY (LoOC)
Result of DH Instruction
Quotient overflow causes arithmetic fault to be taken. JOperanis

and ccndition code remain unchanged by this instruction.

Sy
!

28 29-693 ROO0 1/79

S5¢7¢13 Shift Left Arithmetic (SLA)

Assembler Notation Op-Code Format
SLA R1,12(X2) EE RI1
Operation

Bits 1:31 of the first operand, contained in the register
specified by R1, are shifted left the number of places specified
by the second ogerand. The sign bit (bit 0), remains unchanged.
Bits shifted out of position 1 are shifted through the carry flag
and then 1lost. The last bit shifted remains in the carry flage.
Zeros are shifted into position 31.

Condition Code

Result is zero
Result is less than zero
Result is greater than zero

> ¢ (O
[=NeRol bS]

- 00N
O - Of

Programming Notes

The state of the C flag indicates the state of the last bit
shifted.

The shift count is specified by the least significant five bits
of the second orerand. The maximum shift count is 31.

A shift of zero places causes the condition code ¢to be set in
accordance with the value contained in the register specified by
R1. The C flag is zero in this case.

Fxample: SLA

This example shifts the bits in register 5 1left by the number
specified by the second operand.

REGS contains X'800056u47"

Assembler Notation Comments

SLA REGS5,4 SHIFT (REGS) LEFT 4 PLACES

Result of SLA Instruction

(REGS) = 80056470
Condition Code = 0001 (L=1)

29-693 ROO 1/79 5-29

Se7+1U Shift Left Halfword Arithmetic (SLHA)

Assembler Notation Op-Code Format
SLHA R1,I2(X2) CF RI1
Operation

Bits 17:31 of the register specified by R1 are shifted 1left the
number of places specified by the second operand. Bit 16 of the
register, the halfword sign bit, remains unchanged. Bits shifted
out of position 17 are shifted through the carry flag and then
lost. The last bhit shifted remains in the carry flag. Zeros are
shifted into position 31. Bits 0:15 of the first operand
register remain unchanged.

Condition Code

Result is zero
Result is less than zero
Fesult is greater than zero

> 5¢ (O
O Q Ol
- O Ol
QO - Oft~

Programming Notes

The condition code settings are based on the halfwori (bits
16:31) result.

The state of the C flag indicates the state of the 1last bit
shifted.

The shift count is specified by the least significant four Dbits
of the second operand. The maximum shift count is 15.

A shift of zero prlaces causes the condition code to be set in

accordance with the halfword value contained in bits 16:31 of the
register specified by R1. The C flag is zero ia this case.

5-30 29-693 ROO 1/79

5715 Shift Right Arithmetic (SRA)

Assembler Notation Op-Code Format
SRA R1,12(X2) EE RI1
Operation

Bits 1:31 of the first operand, contained in the register
specified by R1, are shifted right the number of places specified
by the second operand. The sign bit (bit 0), remains unchanged
and is propagated right as many positions as specified by the
second operand. Bits shifted out of position 31 are shifted
through the C flag and lost. The last bit shifted remains in the
C flag.

Condition Code

Result is zero
Result is less than zero
Result is greater than zero

> > MO
[oNeoN-1L -
- O O|G
O - Oft

Programming Notes

The state of the C flag indicates the state of the 1last bit
shifted. '

The shift count is specified by the least significant five bits
of the second ogerand. The maximum shift count is 31.

A shift of zero places causes the condition code to be set in
accordance with the value contained in the register specified by
R1. The C flag is zero in this case.

Example: SRA

This example shifts the contents of register 9 right the nunmber
of places specified by the second operand.

REG9 contains X°'800004256"

Assembler Notation Comments

SRA REG9,8 SHIFT (REG9) RIGHT 8 PLACES
Result of SRA Instruction

(REGY9) = X*'FF80COu42"*
Condition Code = 0001 (L=1)

29-693 ROO 1/79 5=31,

~5.7.16 Shift Right Halfword Arithmetic (SRHA)

Assembler Notation Op-Code Format
SRHA R1,I2 (X2) CE RI1M
Operation

Bits 17:31 of the register specified by R1 are shifted right the
number of places specified by the second operani. Bit 16 of the
register, the halfword sign bit, remains wunchanged and is
propagated right the number of positions specified by the secHnd
operand. Bits shifted out of position 31 are shifted through the
C flag and lost. The last bit shifted remains 1in the C flage.
Bits 0:15 of the first operand register remain unchanged.

Condition Code

Result is zero
Result is less than zero
Result is greater than zero

> 5 O
O OOl
- O Ot
O - Ot

Programming Notes

The condition code settings are based on the halfworid (bits
16:31) result.

The state of the C flag indicates the state of the 1last bit
shifted.

The shift count is specified by the least significant four bits
of the second operand. The maximum shift count is 15.

A shift of zero places causes the condition code to be set 1in
accordance with the halfword value contained in bits 16:31 of the
register specified by R1. The C flag is zero in this case.

(52}
|

32 29-693 ROO 1/79

5.7.17 Convert to Halfword Value Register (CHVR)

Assembler Notation Op-Code Format
CHVR R1,R2 12 RR
Operation

The halfword second operand, bits 16:31 of the register specified
by R2, is expanded to a fullword by propagating the most
significant bit (bit 16) through bits 0:15, This fullword
replaces the contents of the register specified by R1.

Condition Code

Result is zero

Result is less than zero

Result is greater than zero

Source operand cannot be represented by a
16-bit signed number

> > |
- g D=
e Nellp]
> O - Ot

1 X] X| X Carry flag was set in previous condition
code .

c|X| X| X Carry flag was zero in previous condition
code

Programming Notes

The V flag is set when bit 15 of the second operand 1is not the
same as bit 16 of the second operand. The G and L flags reflect
the algebraic value of bits 16:31 of the second operand.

Execution of this instruction following halfword operations
guarantees the same resnlts as those obtained if the program were
run on a 16-bit machine. For example, if location A in memory
contains the halfword value of X'7FFF°' (decimal 32767) then,

LH R1,A R1 contains X'Q0007FFF"
AIS R1,1 R1 contains X*00008000"*

29-693 ROO 1/79 5-33

Following the add operation, the condition code is:

CljviG|L
0ojo0of1¢{0

indicating a result greater than 2zero, which 1is <correct for
fullword operations. If the same seguence ware executed »on a
16-bit processor, as:

LH R1,A R1 contains X' 7FFF’
AIS R1.,1 R1 contains X°*8000°

Following this, the condition code in the halfword processor is:

Cl{Vv |G| L
0]1]0]1
indicating overflow and a negative result. Going back to the

original sequence and adding the Convert to Halfword Value
Register instruction produces the following:

LH R1,A R1 contains X'0Q0007FFF"*
AIS R1,1 R1 contains X'00008200"
CHVR R1,R1 R1 contains X*'FFFF8000"

Following this sequence, the condition code is:

ClVIGIL
o[1]0}1

which is identical to that of the 16-bit processor, and can be
tested in the same manner.

5-34 29-693 R0OO 1/79

60!

CHAPTER 6
FLOATING-POINT ARITHMETIC

6.1 INTRODUCTICN

Floating-point arithmetic instructions provide a means for rapid
handling of scientific data expressed as floating-point numbers.

Single-precision and double-precision floating-point
instructions, as well as mixed mode floating-point instructions,
are described in this chapter. The comprehensive set of

instructions includes load and store floating-point numbers; adil,
subtract, multiply, divide and compare two floating-point
numbers; convert fixed-point to floating-point and vice versa;
and mixed mode operations that translate single precision to
double precision and vice versa.

Floating-point is a means of representing a 3Juantity in any
numbering systen. For example, the decimal number 123 (base =
10), can be represented in the following forms:

123.0 x 10°
1.23 x 102
0.123 x 103
0.0123 x 10°

In this example, the decimal point moved; this is called a
floating point. In actual floating-point representation, the
significant digits are always fractional and are <collectively
referred to as fractions. The power to which the base number is
raised is called the exponent. For example, in the number .45678
x 10 , 45678 is the fraction and 2 is the exponent. Both the
fraction and the exponent <can be signed. If we have a
floating—-point representation such as,

(sign of fraction) (exponent) (fraction)

the following representation applies:

Number Floating point
+32.94 = +.3294 x 102 + +2 3294
-23760000.0 = -,2376 x 108 |- +8 2376
+0.000059 = +.59 x 10 + -4 59
-0.0000000092073 = -.,92073 x 107%(- -8 192073

29-693 ROO 1/79 6-1

602

. Large or small numbers can be easily expressed in floating-point,
making it ideally suitable for scientific computition. Note the
compactness of floating-point notation in the above examples.

Floating-point representation in the processor is similar to
above representation. The differences are:

the

1 Hexadecimal,

used.

instead of decimal, numba2ring system |is

2. Physical size of the number is 1limited,

magnitude and precision are limited.

therefore the

6.2 DATA FORMATS

Floating-point numbers occur in
precision and double precision.
requires a fullword (32 bits).
memory.,

one of two formats: single
The single-precision format
When such a value is contained in

it must exist on a fullword address boundary.

The sign
(S), exponent (X), and fraction (consisting of the digits F1, F2,
F3, Fu4, FS, and F6) fields are designated as follows:
0 7 8 11 12 15 16 19 20 23 24 27 28 31
S X F1 F2 F3 F4 F5 F6
The dcuble~precision format requires a doubleword (64 Dbits),
When two general registers hold a double-pracision value, an
even/odd pair of general registers must be used. The
even-numbered register contains the most significant 32 bits, and
the next sequential odd register contains the least significant
32 bits. The sign (S), exponent (X),

7 8

1 12

15 16

and fraction (consisting of
digits F1 through F14) fields are designated as follows:

19 20

23 24

27 28

31

F1

F2

F3

F4

Fb

F6

32

35 36

39 40

43 44

47 48

51 52

55 56

59 60

63

F7

F8

F9

F10

F11

F12

F13

F14

29-693 R0OO 1/79

6.3 FLOATING-PCINT NUMBER

In the processor, a floating-point number is represented in the
following form:

604

Sign

Exponent

605

SIGN EXPONENT FRACTION

The most significant bit of a floating-point number
is the sign bit. The sign bit is zero for positive
numters and one for negative numbers. The
floating~point value of =zero always has a positive
signe

The 7-bit field, bits 1:7, 1is designated as the
expcnent fi=1d. The exponent 1is expressed in
excess-64 notation. The number 1in this field
contains the true value of the exponent plus X'40°
(decimal 64). This helps to represent very small
magnitudes between 0 and 1. Some of the 2xponent
values are as follows:

Exponent in True True
Excess-64 exponent in exponent in Multiply
notation hexadecimal decimal fraction by
00 -40 -64 15-64
3F -1 -1 16'|
40 0 0 16 ©
41 1 1 16 !
7F 3F 63 1663

The exponent field for true zero is always 00.

Fraction

The fraction field is 6 hexadecimal digits for
single-precision tloating-point numbers (thus
limiting the precision), and 14 hexadecimal digits
for double-precision floating-point numbers. As in
any other fraction, the floating-point fraction |is

expressed with most precision when the most
significant hexadecimal digit (not necessarily the
most significant bit) is Nnon-zero. The

floating-point number with such a fraction is called
a normalized floating-point number. In the Series
320C Processors, normalized numbers are always used
to obtain the maximum possible precisione. For
hexadecimal fraction conversion, refar to Appendix D.

29-693 ROO 1/79 6-3

606

Examples:

The following examples illustrate the sign,

exponent,

and fraction concept of a floating-point number:

Numbers in Hex
integer-fraction
notation

+1.3A25678
-6.89F2C
+1A.C39D21
-3C1DF.82A3
+ABCDEF12.9AC
+0.0032R9CF2
-0.000002C78B5

6301

The range of magnitude (M) of a normalized floating-point

is as follows:

Single precision:
Double precision:
Approximately for

Floating-Point

Sign-exponent-

fraction shown
for clarity

Single-precision
Floating-point numbers

(SIE] F |
0 41 13A25678 4113A256
1 41 689F2C C1689F2C
0 42 1AC39021 421AC39D
1 45 3C1DF82A3 C53C1DF8
0 48 ABCDEF129AC 4UBABCDEF
0 3E 32A9CF2 3E32A9CF
1 3B 2C7B5 BB2C7850

hoth:

Number FRange

number

16785 < M < (1 - 16°) * 1683
1678 < M < (1 - 167%) * 169
5.4 * 1077 < M < 7.2 * 107

Table 6-1 shows the floating-point range in relation to the fixed
point range with the decimal values.
TAELE 6-1 FLOATING/FIXED POINT RANGES
FLOATING-POINT FIXED-POINT DECIMAL
NUMBERS INTEGER NUMBERS
F ———
(most negative) FFFF FFFF -7.2% 1075
C880 0000 | 8000 0000 (most negative) -2 147 u483 648
C111 0000 | FFFF FFFF (least negative) -1
(least negative) 8010 0000 -5.4%10°7°
(true zero) 0000 0000 } 0000 0000 0
(least positive) 0010 00092 +5.4%10°7°
4110 0000 { 0000 0001 (least positive) +1
487F FFFF | 7FFF FFFF (most positive) |[+2 147 483 647
(most positive) 7FFF FFFF +7.2%107°
6-4 29-693 ROO 1/79

6.3.2 Normalization

Normalization 1is a process of making non-zero the most
significant digit (F1) of the fraction of a floating-point
number. In the normalization process, the floating-point
fraction 1is shifted 1left hexadecimally (i.e., four bits at a
time), and its exponent 1is decremented by one for @ach
haxadecimal shift until the most significant digit (not
necessarily the most significant bit) of the fraction is
NON—Zero.
607 FRACTION

r -\
S EXPONENT F1 F2 F3 Fa4 F5 F6

« —o

SHIFT LEFT FRACTION HEXADECIMALLY UNTIL F1>0

DECREMENT EXPONENT BY ONE FOR EACH SHIFT
Except for the load instructions, all floating-point operations
assume and require normalized operands for consistent results.

The load instructions normalize an unnormalized operand.

Example:

Operands After normalization
1. 42012345 41123450
2. 210C0ABC 1EABCO0OOCO
3. C900FE12 C7FE1200
4, 6C000000 00000000 (true zero)
In Example 4, the fraction of the operand is zero. During the

normalization process, such a fraction is detected, and the
floating-roint number is set to true zero.

Normalized results are always produced in floating-pcint

operations, assuming the operands are normalized. Results of
operations between unnormalizesd numbers are undefined.

29-693 R0OO 1/79 6-5

6«3.3 Equalization

Equalization 1is a process of equalizing exponents of two
floating-point numbers. The fraction of the floating-point
number with the smaller exponent is shifted right hexadecimally,
i.e., four bits at a time, and its exponent is incremented by one
for each hexadecimal shift until the two exponents are equal.

608
INCREMENT EXPONENT BY ONE FOR EACH SHIFT

SHIFT FRACTION RIGHT HEXADECIMALLY UNTIL EXPONENTS EQ'JAL

L 2 -
S EXPONENT F1 F2 F3 Fa4 F5 F6
4 _J
N
FRACTION
During floating-point aidition and subtraction, the tvwo

floating~point operands are equalized.

Example:
Floating roint After equalization
operands
1. 4312345¢€ 43123456
3F789ABC 43000078
2. C7FE1234 C900FE12
4956789 A 495678947

In this example, normalized floating-point numbers ar2 shown
because addition and subtraction require normalization. If the
exponents differ by more than 6 for single precision or more than
14 for double precision, the representable significance of the
lower exponent floating-point number is lost in the process of
equalization. Cigits shifted out are shifted through the guard
digits and may still have an effect on the result, sum, or
difference.

6-6 29-693 ROO 1/79

6.3.4 True Zerc

A floating-point number is true zero when the exponent and the
fraction fields are all zeros; therefore, all 1ata bits must be
zero. A Zzero value always has a positive signe. In general, zero
values participate as normal operands in all floating-point
operations.

A true zero may be used as an operand. It may also result from
an arithmetic oreration that caused an exponent underflow, in
which <case the entire number may be forced to true zero. If an
arithmetic operation produces a result whose fraction digits are
all 2zeros (sometimes referred to as loss of significance), the
entire number is forced to true zero.

Fxamples:

Numbers Operation Result Reason
0 30000AB Normalize 0000 0000 exponent
underflow
4 1ABCLCEF
4 1ABCDEF Suttract 0000 0000 loss of

signifizance

6.3.5 Exponent Cverflow

In floating-point operations, exponent overflow occurs when 2a
resulting exponent is greater than +63. If overflow ozcurs, the
result register is unchanged. The condition <code is set to
reflect the overflow situation and the resulting sign. Figure
6-1 illustrates exponent overflow using a line rspresentation of
numberse. ‘

609

Most negative True Most positive
number Zero number
(= * 0 © —e
FFFFFFFF 0 TFFFFFFF
(exponent = 7F) (exponent = 7F)
= 63y
overflow overflow

Figure 6-1 Exponent Overflow

If overflow occurs, the V flag in the condition code is set, and
an arithmetic fault interrupt 1is taken. Exponent overflow
interrupts cannct be disabled.

29-693 ROO 1/73 6-17

6.3.6 Exponent Underflow

The normalization process, during a floating-point operation, may
produce an exponent underflow. This wunderflow occurs when a
result exponent 1is 1less than =-64. Figure 6-2 illustrates
exponent underflow using a line representation of numbers.

610

Least negative True Least positive
number Zero number
o f——8 ° > —v F——8
80100000 0010020
exponent = (0 exponent = 00
[= —5%3 = “GWJ
—_— - -
underflow underflow

Figure 6-2 Fxponent Underflow

If underflow occurs, an arithmetic fault interrupt is taken, if
enabled by the current PSW. Both operands remain unchanged. If
underflow is disabled by the current PSW, the result is forced to
zero (the closest possible answer), the V flag in the <condition
code is set, and the next seguential instruction is executed.

6+.3.7 Guard Digits and R*-Rounding

When an intermediate floating-point result has been formed, it
consists of a sign, an exponent, and a fraction field. The
fraction field is extended by a number of guard digits containing
the least significant fraction digits of the intarmediate result.
Before the result is copied to a destination, it 1is rounded to
compensate for the loss in the final result of the guard digits.

The rules for the R*-Rounding scheme are:

Yy ua Ll

® If the most significant guard digit is hexadecimal 7 or
less, no rounding is performed. (See Example 1.)

® If the most significant guard digit is hexadecimal 8, and
all other guard digits are 0, the least significant bit of
the final result is forced to 1. (See Example 2.)

° If the most significant guard digit is hexadecimal 8, and
another guard digit is non-zero; or if the most significant
guard digit is hexadecimal 9 or greater, 1 is added to the
fraction field of the final result. (See Example 3.) If
this addition produces a carry out of the fraction field
(i.e., fraction field was all 1s), the result exponent is
incremented by 1, the most significant fraction digit (F1)
is set tc hexadecimal 1, and all other fraction digits are
set to 0. (See FExample 4.) Note that exponent overflow
could occur as the result of roundinge.

6-8 29-693 ROO 1/79

Examples of R*-Rounding

INTERMEDIATE RESULT FINAL SINGLE-PRECISION
RESULT
1« U42ABCD12|32680000 42ABCD12
2. (€1183756 (80000000 1183757
3. 3E265739|80100000 3E26573A
4. UWAFFFFFF|F0000000 42100000

6.3.8 Conversicn from Decimal

To convert a decimal numbar 1into the excess-64 notatiosn used
internally by the processor, the following steps must be taken:

1. Separate the decimal integer from the decimal fraction:
182.375,=(182 + .375),

2. Convert each part to hexadecimal by referring to the
integer conversion table and the fraction conversion
table in Appendix D.

182,, = B6, « 375, =.6

3. Combine the hexadecimal integer and fraction:

B6.6is = (B6.6X16°)s

4, Shift the radix point:

(B6.6X16°)¢ =(.B66X16°)

S« Add 64 (X°40°) to the exponent:

U0y +2)¢ =U2

6. Convert the exponent. field and fractions to binary

allowing 1 bit for the sign, 7 bits for exponent field,

and 24 or 56 bits for the fraction.

42866 = 0100 0010 1011 0110 0110 0020 0000 0000

5.4 CONDITION CODE

Most floating-point operations affect the condition code. For
each instruction description, the possible condition =zode
settings are shcwne.

29-693 R0OO 1/79 6-9

6.5 FLOATING-PCINT INSTRUCTIONS

Floating-point instructions use the Register to Register (RR),
and the Register and Indexed Storage (RX) instruction formats.
In all of the RR formats, except for fix and float, the R1 and R2
fields specify cne of the floating-point registers. There are
eight single-trrecision floating-point registers andi eight
double-precision floating-point registers numbersd 0, 2, 4, 6, 8,
10, 12, and 14, Except for FXR, FXDR, LGER, ani LGDR
instructions, the R1 field always specifies a floating-point
register.

Floating-point arithmetic operations, excluding loads and stor:s,

require normalized operands to ensure correct results. If the
operands are nct normalized, the results of these operations are
undefined. Floating-point results are normalized. The

floating-point load instructions normalize the floating-point
data rresented as the second operand.

The single-precision floating-point instructions described in
this section are:

LE Load Flcating-Point

LER Load Flcating-Point Register

LEGR Load Flcating-Point from GSeneral Register
LPER Load Positive Floating-Point Register
LCER Load Complement Floating-Point Register
LME Load Flcating-Point Muyltiple

LGER Load General Register from Floating-Point Register
STE Store Floating-Point

STME Store Floating-Point Multiple

AE Add Floating-Point

AER Add Floating-Point Register

SE Subtract Floating-Point

SER Subtract Floating-Point Register

CE Compare Floating-Point

CER Compare Floating-Point Register

HE Muitiply Floating-Point

MER Multiply Floating-Point Register

DE Divide Floating-Point

DER Divide Floating-Point Register

F XR Fix Register

FLR Float Register

6-10 29-693 ROO 1/79

The double-precision floating-point:- instructions
this section are:

LD
LDR
LDGR
LPDR
LCDR
LGDR
STD
STMD
AD
ADR
SD
SDR
CD
CDR
MD
MDR
DD
DDR
FXDR
FLDR

Load DPFP

Load Register DPFP

Load DPFP from General Registers
Load Pocsitive Register DPFP

Load Complement Register DPFP
Load General Register from DPFP register
Store DPFP

Store Multiple DPFP

Add DPFE

Add Register DPFP

Subtract DPFP

Subtract Register DPFP

Compare DPFP

Compare Register DPFP

Multiply DPFP

Multiply Register DPFP

Divide [LCPFP

Divide Register DPFP

Fix Register DPFP

Float Register DPFP

described

The mixed mode floating-point instructions described in
secticn are:

LED
LEDR
LDE
LDER
STDE

Load SPFP from DPFP

Load Register SPFP from DPFP
Load DPFP from SPFP

Load Register DPFP from SPFP
Store DFFP in SPFP

29-693 ROO 1/79

in

this

651 Load Floating-Point

Load Floating-Point (LE)
Load Floating-Point Register (LER)
Load Floating-Pcint from 5eneral Register (LEGR)

Assembler Notation Op-Code Format
LE R1,D2(X2) 68 RX1,RX2
LE R1,A2(FX2,S8X2) 68 RX3
LER R1,R2 28 RR
LEGR R1,R2 AS RR

Operation

The floating-point second operand is normalized, if necessary,
and placed in the =single-precision floating-point register
specified by R1.

Condition Code

Floating-point result is zero
Floating-point result is less than zero
Floating-point result is greater than zero
Exponent underflow

[l [ellelwie]
2 |O|O|O| =
OO0
O|O|-a|O]|t

Programming Notes

If the argument fraction is zero, the entire result is forced to
zero, X*'0000 00CO°'.

Normalization can produce exponent underflow. If PSW bit 19 is
set, an arithmetic fault interrupt is taken, and the register
specified by R1 is unchanged. If an exponent wunderflow occurs,
and bit 19 of the current PSW 1is zero, no arithmetic fault
occurse. Zeros replace the contents of the register specified by
R1.

In the RX formats, the second operand must be loaded on a
fullwcerd boundarye.

6-12 29-693 ROO 1/79

Example: LE

This example normalizes the fullword at memory
places it in flcating-point register 8.

Floating-point REGS8 contains unknown data
LOC contains X°'4200 1000°

Assembler Notation Comments
LE REG8,LOC LOAD FROM LOC AND

Result of LE Instruction:
(REG8) = X'4010 0000°*

{LOC) Unchanged by this instruction
Condition Code = 0010

29-693 ROO 1/79

1location

NORMALIZE

LOC

and

6.5.2 Load Positive Floating-Point Register (LPER)

Assembler Notation Op-code Format
LPER R1,R2 13 RR
Operation

The floating-point second operand specified by R2 1is forced
positive, norsalized if necessary and placed in the
single-precision floating-point register specifi=2d by R1.

Condition Code

Floating-point result is zero
Floating-point result is greater than zero
Exponent underflow

2 lOIO <

O|=i0OI6
[el{elel]a]

[»1led]e}]

Programming Notes

If the argument fraction is zero, the entire result is forced to
zero, X'0000 00CO'.

Normalization can produce exponent underflow. If PSW bit 19 is
set, an arithmetic fault 1interrupt is taken, and the register
specified by R1 is unchanged. If an exponent underflow occurs,
and bit 19 of the current PSW 1is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
R1.

Fxample:

Floating-point REGE contains unknown data
Floating-point REG8 contains X*C11921FR®

Assembler Notation Comments

LPER REG6,REGS LOAD REG6 WITH
POSITIVE OF (REGS8)

Result of LPER Instruction:
(REG6) = X'"411921FB"*

(REGB8) unchanged by this instruction
Condition Code = 0010

6-14 29-693 ROO 1/79

6.5.3 Load Complement Floating-Point Register (LCER)

Assembler Notation Op-Code Format

LCER R1,R2 17 RR

Operation

The sign of the floating—-point second operand specified by R2 is
complemented. The resulting floating-point number is normalized,
if necessary, and placed in the single-precision floating-point
register specified by R1.

Condition Code

Floating-point result is zero
Floating-point result is less than zero
Exponent underflow

olojo|n
- OlO|<
olojoia
Ol=aloft

Programming Notes

If the argument fraction is zero, the entire result is forced to
zero, X°'0000 00OCO°'.

Normalization can produce exponent underflow. If PSW bit 19 is
set, an arithmetic fault 1interrupt is taken, and the register
specified by R1 is unchanged. If an exponent underflow occurs,
and bit 19 of the current PSW 1is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
R1.

29-693 ROO 1/79 6-15

6.5.4 Load Floating-Point Multiple (LME)

Assembler Notation Op-Code Format
LME R1,D2(X%X2) 72 RX2,RX2
LME R1,R2(FX2,5X2) 72 RX3

Operation

Successive single-precision floating-point registers, starting
with the register specified by R1, are loaded from successive
fullword memory locations starting with the address of th2 second
operand. The process stops when floating-point register 14 has
been loaded.

Condition Code

Unchanged

Programming Notes

Values loaded into the floating-point registers are assumed to be
normalized, and no test or ad justment is performed.

The second operand must be located on a fullword boundarye.

(o)
|
-
[e))

29-693 R0O 1/79

6.5.5 Load General Register from Floating-Point Register (LGER)

Assembler Notation Op-Code Format
LGER R1,R2 15 RR

Operation

The floating-point second operand, contained in the
single-precision floating-point register specified by R2, is
placed in the general register specified by R1. The second

operand is unchanged.

Condition Code

Result iz zero
Result is less than zero
Result is greater than zero

- OlO|N
O -»]|Ojt=

olololn
OO0 <

[}
-
~

29-633 ROO 1/79 6

6.5.6 Store Floating-Point (STE)

Assembler Notation Op-Code Format
STE R1,D2(X2) 60 RX1,RX2
STE R1,A2 (FX2,5%X2) 60 RX3

Operation
The floating-roint first operand, contained in the
single-precision fleoating-point register specified by R1, is

placed in the fullword memory location specified by the second
operand address. The first operand is unchanged.

Condition Code

Unchanged

Programming XNote

The second operand must be located on a fullword boundary.

6-18 29-693 ROO 1/73

6e5.7 Store Flcating-Point Multiple (STME)

Assembler Notation Op-Code Format

STME R1,D2(X2) 71 RX1,RX2

STME R1,A2(FX2,5X2) 71 RX3

Operation

The contents c¢f successive single~-precision floating-point

registers, starting with the even numbered register specified by
R1, are stored in successive fullword memory locations, starting
with the address of the second operand. The operation stops when
the contents of floating-point register 14 have been storad.

Condition Code

Unchanged

Programming Note

The second operand must be located on a fullword boundary.

29-6932 R0OO 1/79 6-19

6.5.8 Add Floating-Point

Add Floating-Point (AE)
Add Floating-Point Register (ARER)

Assembler Notation Op-Code Format
AE R1,D2(X2) 6A RX1,RX?2
AE R1,A2(FX2,SX2) 6A RX3

AER R1,R2 2A RR

Operation

The two operand exponents are compared. If the 2xponents differ,
the fraction with the smaller exponent is shifted right
hexadecimally (four bits at a time), and its exponent 1is
incremented by cne for each hexadecimal shift, until the two
exponents are equal. The hexadecimal digits (of four bits each)
are shifted thrcugh the guard digits for additional precision.
If no equalizing shifts are required, the guard digits remain
zero. The fractions are then algebraically added. The guard
digits participate in this addition.

If the addition of fractions produces a carry, the exponent of
the result is incremented by one, and the fraction of tha result
is shifted right one hexadecimal digit. The carry bit is shifted
back into the mcst significant hexadecimal digit of the fraction,
producing a normalized result. This result 1is then R*-rounded
and replaces the contents of the single-precision floating-point
register specified by R1.

If the addition of fractinns does not produce a carry, the result
is normalized, if necessary, and R¥*-rounded. This result
replaces the <contents 2f the single-precision floating-point
register specified by R1.

Condition Code

C|V |G| L

cjJ]ojlo}loO -Floating-point result is zero

0j010] 1 Floating-point result is less than zero

ojo0j111|o0 Floating-point result is greater than zero

011101} 1 Exponent overflow, result is less than zero

c11 110 Exponant overflow, result is greater than
Zero

G{14101]0 Exponent underflow

o))
i

20 29-693 R0OO 1/79

Programming Notes

When the addition of the fractions produces a carry, incrementing
the exponent of the result by one can produce exponent overflow.
In this case, the arithmetic fault interrupt is taken and the
contents of the register specified by R1 remain unchanged.

Normalization of the result can produce exponent underflow. If
PSW bit 19 is set, an arithmetic fault interrupt is taken, and
the register specified by R1 is unchanged. If exponent underflow
occurs and bit 19 of the current PSW is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
R1.

In the RX formats, the second operand must be located on a
fullwecrd boundary.

Fastest results occur when the first operand is larger than the
second operand.

Example: AE

This example adds the contents of LOC to the contents of
floating-point register 8 and places the result in floating-point
register 8.

Floating-point REG8 contains X'7EFF FFFF°'.
LOC ccntains X*7EFF FFFF*

Assembler Notation Comments
AE REGS8,LOC ADD (LOC) TO (REGS)

Result of AE Instruction
(Floating—-Point REG8) = 7F1F FFFF

(LOC) unchanged by this instruction
Condition Code = 0010

29-693 ROO 1/79 6-21

6.5.9 Subtract Floating-Point

Subtract Floating-Point (SE)
Subtract Floating-Point Register (SER)

Assembler Notation Op~-Code Format
SE R1,D2(X2) 68 RX1,RX2
S R1,A2(FX2,5X2) 6B RX3

SER R1,R2 28 RR

Operation

The two operand exponents are compared. If the exponents differ,
the fraction with the smaller exponent |is shifted right
hexadecimally (four bits at a time), and its exponent is
incremented by one for each hexadecimal shift, until the two
exponents are equal. The hexadecimal digits (of four bits each)
are shifted through the guard digits for additional precisione.
If no egualizing shifts are regquired, the guard digits remain
Zero. The second operand fraction is then subtracted
algebraically from the first operand fraction. The guard digits
participate in this subtraction.

If the subtraction of fractions produces a carry, the exponent of
the result is incremented by one, and the fraction of the result
is shifted right one hexadecimal digit. The carry bit is shifted
back into the most significant hexadecimal digit of the fraction,
producing a ncrmalized result. This result is then R*-rounded
and replaces the contents of the single-precision floating-point
register specified by K1.

If the subtraction of fractions does not produce a carry, the
result is normalized, if necessary, then R*-rounied. This result
replaces the <contents o0f the single-precision floating-point
register specified by R1.

Condition Code

Cl V|G| L

0| 0;0740 Floating-point result is zero

cli olol 1 Floating-point result is less than zero

cl ol 110 Floating-point result is greater than zero

Q1 11011 Exponent overflow, result is less than zero

C 1 1,0 Exponent overflow, result is greater than
Zero

o] 11010 Exponent underflow

o))
|
N
N

29-693 ROO 1/79

Programming Notes

When the subtraction of the fractions produces a carry,
incrementing the exponent o©0f the result by one can produce
exponent overflcw. In this case, the arithmetic fault interrupt
is taken, and the contents of R1 remain unchangei.

Normalization of the result can produce exponent underflow. 1f
PSW bit 19 ies set, an arithmetic fault interrupt is taken, and
the register specified by R1 is unchanged. If exponent underflow
occurs and bit 19 of the current PSW is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
K1.

In the RX formats, the second operand must be located on a
fullword boundarye.

Fastest results occur when the first operand is larger than the
second operand.

Example: SE

This example sulktracts the contents of LOC from the <contents of
floating-point register 8 and places the result in floating-point
register 8.

Floating-point REG8 contains X'7EFF FFFF'
LOC contains X*7A10 0000°*

Assembler Notation Comments

SE REG8,LOC SUBTRACT (LOC) FROM (REGS)
Result of SE Instruction
(Floating-point REG8) = 7(FE(F (F(F(FE

(LOC) unchanged by this instruction
Condition Code = 0010

29-693 ROO 1/79 6-23

6.5.10 Compare Floating-Point

Compare Floating-Point (CE)
Compare Floating-Point Register (CER)

Assembler Notation Op~Code Format

CE R1,D2(X2) 69 RX1,RX2

CE R1,D2(FX2,5X2) 69 RX3

CER R1,R2 29 RR

Operation

The first and second operands are compared. Comparison |is

algebraic, and the sign, fraction, and exponent of each number
must be considered. The result is indicated by the condition
code setting. Neither operand is changed.

Condition Code

First operand is equal to sezond operand
First operand is less than sacond operand
First operand is greater than second operand

Of=a|ON
i<

- OO
OOt~

Programming Notes
The state of the V flag is undefined.

In the RX formats, the second operand must bz located on a
fullword boundary.

(o]
[}

24 29-693 ROO 1/79

665411 Multiply Floating-Point

Multiply Floating-Point (ME)
Multiply Floating-Point Register (MER)

A ssembler Notation Op-Code Format
ME R1,D2(X2) 5C RX1,RX2
ME R1,A2(FX2,5X2) 6C RX3

MER R1,R2 2C RR
Operation

The exponents of each operand, as derived from the excess-64
notation wused 1in floating-point representation, are added to
produce the exponent of the result. This exponent 1is converted
back to excess-64 notation, and the fractions are then
multiplied.

If the product is zero, the entire floating-point value is forced
to zero, X'0000 0000'. If the product is not zero, the result is
normalized. The sign of the result is determined by the rules of
algebra. The R*-rounded result replaces the contents of the
single-precision floating-point register specified by R1.

Condition Code

Cilv|GIlL

0|l 010} O Floating-point result is zero

0] 0jJO0 |1 Floating-point result is less than zero

ol o]l 11]0 Floating-point result is greater than zero

0f 110} 1 Exponent overflow, result is less than zero

0] 1 110 Exponent overflow, result is greater than
Zero

oj1]01]0 Exponent underflow

Programming Notes

Multiplication of two 6-~hexadecimal-digit fractions effectively
produces a result of 6 hexadecimal digits and a3 number 5f guard
digits. The guard digits participate in the R*-rounding of the
final result.

The addition of exponents can produce exponent overflow. In this

case, an arithmetic fault interrupt is taken, anid both operands
remain unchanged.

29-693 ROO 1/79 6-25

The addition of exponents or the normalization process can
produce exponent underflow. If PSW bit 19 is set, an arithmetic
fault interrupt is taken, and the register specified by R1 is
unchanged. If exponent wunderflow occurs and bit 19 of the
current PSW is zero, no arithmetic fault occurs. Zeros replace
the contents of the register specified by R1.

In the RX formats, the second operand must be 1located on a
fullwcrd boundarye.

Fastest results occur when the second operand multiplier contains
sets of four or more contiguous ones Or Zeros.

Example: ME
This example multiplies the contents of £floating-point register
8 by the contents of memory location LOC and places the result in

floating-point register 8.

Floating-point REG8 contains X'SFFF FFFF*
LOC contains X'60FF FFFF*

Assembler Notation Comments

ME REGS8,LOC MULTIPLY (REG8) BY (LOC)
Result of ME Instruction
(Floating—-point REG8) = 7FFF FFFE

(LOC) unchanged by this instruction
Condition Code = 0010

(o2}
!

26 29-693 ROO 1/79

6e5412 Divide Floating-Point

Divide Floating-Point (DE)
Divide Floating-Point Register (DER)

Assembler Notation Op-Code Format
DE R1,D2 (X2) 6D RX1,RX2
DE R1,A2 (FXZz,S5X2) 6D RX3
DER R1,R2 2D RR

Operation

The exponents 0of each operand, as derived from the excess-64
notation used in floating-point representation, are subtracted ¢to
produce the exponent of the result. This exponent is converted
back to excess-64 notation.

The first operand fraction is then divided by the second operand
fraction. Pivision <continues until the quotient is normalized,
adjusting the exponent for each additional division required.

No remainder is returned. The sign of the quotient is determined
by the rules of algebra. The R*-rounded quotient replaces the
contents of the single-precision floatiny-point register
specified by R1.

Condition Code

CI{V|G|L

cj]o|lO0]|O Floating-point result is zero

0]0] 0|1 Floating-point result is less than zero

0j0f1]0 Floating—point result is greater than zero

0110 1 Exponent overflow, result is less than zero

oj1(11]0 Exponent overflow, result is greater than
zZero

0111010 Exponent underflow

111 0 Divisor equal to zero

Programming Notes

Before starting the divids operation, the divisor is checked. If
it is egual to 2ero, the operation is aborted, and the arithmetic
fault interrupt is taken. Neither operand is changed.

Subtraction of exponents may produce exponent ovarflow. In this

case, an arithmetic fault interrupt is taken, and both operands
remain unchanged.

29-€693 ROO 1/79 5-21

The subtraction of exponents or the division process can proluce
exponent underflow; normalization of the result can produce
exponent underflow. If PSW bit 19 is set, an arithmetic fault
interrupt is taken, and the register specified by R1 is
unchanged. If exponent wunderflow occurs and bit 19 of the
current PSW is zero, no arithmetic fault occurs. Zeros replace
the contents of the register specified by R1.

The 6~hexadecimal digit first operand fraction is divided by the
6-hexadecimal 4d4igit second operand, effectively producing the
6-hexadecimal digit guotient along with a number of guard digits.
The guard digits participate in the R*-rounding of the final
result.

In the RX formats, the second operand must be located on a
fullword boundary.

Example: DE
This example divides the contents of floating-point register 4 by
the contents of memory location LOC and places the result in

floating-point register 4.

Floating-point REGY contains X'U44FF FFFF' = dividend

LOC contains X'0611 1111*' = divisor
Assembler Notation Comments
DE REGY,LOC DIVIDE (REG4) BY (LOC)

Result of DE Instruction:
(Floating-point REG4) = 7FF0 0900

(LOC) unchanged by this instruction
Condition Code = 0010

5-28 29-693 ROO 1/79

.5.13 Fix Register (FXR)

Assembler Notation Op-Code Format
FXR R1,R2 25 RR
Operation

R1 and R2 specify a general-purpose register and a floating-point
register respectively. The normalized floating-point number
contained in the floating-point register is converted to a two's
complement notation integer value by shifting and truncating.
The result is stored in the general register specified by R1.

Condition Code

Result is zero or underflow

Result is less than zero

Result is greater than zero

Overflow, result is less than zero
Overflow, result is greater than zero

e e bl bl B (@]
OO0 |=<1
SHO|= OO
Ol a|O|=|O]t

Programming Notes

The range of floating-point magnitudes (M) that produces a
non-zero integral result is:

+X'4880 0000°'> M > +X'4110 0000°
Floating-point magnitudes greater than +X487F FFFF' or
-X*4880 0000° cause overflow. The result 1is forced to
X'7FFF FFFF°* if positive, or to X*8000 2000° if negative.
The V flag is set in the condition code along with either the &
or L flag, depending on the sign of the result.

Floating-point magnitudes 1less than +X°4110 0000° cause
underflow, and the result is forcad to 2zero.

In the event of overflow or underflow, no arithmetic fault
interrupt is taken, even if enabled in the current PSW.

Example: FXR

This example converts the contents of floating-point register 8
to a fixed-point number and prlaces it in register 3.

29-693 R0OO 1/79 6-29

Floating-point REG8 contains X'4sFF FFOO'
REG3 contains unknown data

Assembler Notation Comments

FXR REG3,REGS CONVERT (REGS8) TO FIXED POINT
Result of FXR Instruction
(REG3) = QOFFFFOO

(Floating-point REG8) unchanged by this instruction
Condition Code = 0010

6-30 29-693 ROO 1/79

$e5.14 Float Register (FLR)

Assembler Notation Op-Code Format
FLR R1,R2 2F RR

Operation

R1 and R2 specify a floating-point register and a3 general-purpose
register, respectively. The integer value contained 1in the
general register specified by R2 is converted to a floating-point
number and stored in the single-precision floating-point register
specified by R1.

Condition Code

Floating-point result is zero
Floating—-roint result is less than zero
Floating-point result is greater than =zero

EE e
QjO|Oo|=
=000
OOt

Programming Note

The full range of fixed-point integer values can be converted to
floating point. The fixed-point value X'7FFF FFFF', the largest
positive integer, converts to the floating-point value X'u487F
FFFF*, The fixed-point value X'8000 0000', the most negative
integer, converts to the flcating-point value X'C880 J000°'. The
result in R1 is normalized and truncated, if necessary, to fit in
the six fraction digits.

Example: FLR
This example converts the fixed-point contents of Register 4 to
a flcating-point number and places it in floating-point register

8.

(REGU) contains X*'7FFF FFFO*
Floating—-point REG8 contains unknown data

Assembler Notation Comments

FLR KEG8,REGY CONVERT (REG4) TO FLOATING POINT
Result of FLR Instruction:
(Floating-point REG8) = 4BT7FFFFF

(REGY4) unchanged by this instruction
Condition Code = 0010

29-693 ROO 1/79 6-31

6.5.15 Load Double-Precision Floating-Point

Load LCouble-Precision Floating-Point (LD)

Load Register Double-Precision Floating-Point (LDR)

Load Couble-Precision Floating-Point Registers from General
Registers (LDGR)

Assembler Notation JOp—-Code Format
LD R1,D2(X2) 78 RX1,RX2
LD R1,A2(FX2,5X2) 78 RX3

LDR R1,R2 38 RR

LDGR R1,R2 A6 RR

Operation
The floating-point second operand is normalized, if necessary,

and placed 1in the double-precision floating-point register
specified by R1.

-Condition Code

Double-precision result is zaro
Double-precision result is less than zero
Double-precision result is greater than zero
Exponent underflow

o|ojo|o|n
LSOO |0 =t
Q= |00
OO |=|O [t

Programming Notes.

If the argument fraction is zero, the entire resualt is forced to
zero, X*0000 0000 0000 0000°.

Normalization can produce exponent underflow. If PSW bit 19 is
set, the arithmetic fault interrupt is taken, and the register
specified by R1 remains unchanged. If expronent underflow occurs,
and bit 19 of the <current PGW 1s zero, no arithmetiz fault
OCCUrS., Zeros replace the contents of the register specified by
R1.

In the RX formats, the second operand must be located on a
fullword boundarye.

The R1 field for LDGR must specify the even number of an even/od4d
pair of general registers.

6-32 29-693 ROO 1/79

6516 Load Positive Double-Precision Register (LPDR)

Assemkler Notation Op-Code Format

LPDR R1,R2 33 RR

Operation

The double-precision floating-point second operand contained in
the double-precision floating-point register specified by 22 is
forced positive. The result is normalized if necessary and
placed in the double-precision floating-point register specified
by R1.

Condition Code

Double-precision result is zero
Double-precision result is greater than zero
Exponent underflow

OO0 0
alojo|=
OOl
O O| Ot~

Programming Notes

If the argument fraction is zero, the entire result is forced to
zero, X'0000 0000 0000 0000°'.

Normalization of the result can produce exponent underflow. If
PSW bit 19 is set, the arithmetic fault interrunt is taken, and
the register specified by R1 remains unchanged. If exponent
underflow occurs, and bit 19 of the current PSW is zero, no
arithmetic fault occurs. Zeros replace the <contents of the
register specified by R1.

29-693 R0OO 1/79

(e,
|

33

6517 Load Complement Double-Precision Register (LCDR)

Assembler Notation Cp~-Code Format

LCDR R1,R2 37 RR

Operation

The sign of the double-precision floating-point second operand
contained in the double-precision floating-point register
specified by R2 is complemented. The result is normalized if
necessary and placed in the double-precision floating-point
register specified by R1.

Condition Code

Double-precision result is zero
Double-precision result is less than zero
Fxponent underflow

Fellwlleolle)]
OO | <

OO0
O Oft~

Programming Notes

If the argument fraction is zero, the entire result is forced to
zero, X*'0000 0000 0000 0000°'.

Normalization may produce exponent underflow. If PSW bit 19 is
set, the arithmetic fault interrubt is taken and the Tregister
specified by R1 remains unchanged. If an exponent underflow
occurs and bit 19 of the current PSW is zero, no arithmetic fault
occurse Zeros replace the contents of the register specified by
R1.

6-34 29-693 ROO 1/79

6518 Load Multiple Double-Precision Floating-Point (LMD)

Assembler Notation Op-Code Format
LMD PR1,D2(X2) TF RX1,RX2
LMD R1,A2(FX2,8X2) 7F RX3

Operation

Successive double-precision floating-point registers, starting
with the register specified by R1, are loaded from successiva
fullword memory location pairs, starting with tha address of the

second operand. The process stops when double-precision
floating-point register 14 has been loaded.

Condition Code

Unchanged

Programming Notes

Values loaded into the double-precision floating-point ragisters
are assumed to be normalized, and no test or adjustment is
performede.

The second operand must be located on a fullword boundary.

29-693 ROO 1/79 6-35

6.5.19 Load General Registers from Double-Precision
Floating-Point Register (LGDR)

Assembler Notation Op-Code Format

LGDR R1,R2 16 RR

Operation

The double-precision floating-point second operand, contained in
the double-precision register specified by R2, is placed in the
general register pair specified by R1. The second operand 1is
unchanged.

Condition Code

ClVIG|L

010(01]0 Result is zero

01001 Result is less than zero
ojot11]0 Result is greater than zero

Programming Notes

The R1 field must specify the even member of the even/odd pair of
general registers receiving the result. The even numbered
register receives the most significant 32 bits while the next
sequential odd numbered register receives the 1lsast significant
32 bits.

If R1 is not an even numbered register, unpredictable results
0CCur.

N
'

36 29-693 RO0O 1/79

66520 Store Double-Precision Floating-Point (SID)

Assembler Notation Op-Code Format
STD R1,D2(X2) 70 RX1,RX2
STD R1,A2(FX2,S5X2) 70 RX3

Operation

The floating-point first operand, contained in the
double-precision floating-point register specified by R1, is
placed in the dcuble word memory location specified by th2 second
operand address. The first operand is unchanged.

Condition Code

Unchanged

Programming Note

The second operand must be located on a fullword boundary.

29-693 R00 1/79 =37

6.5.21 Store Multiple Double-Precision Floating-Point (STMD)

Assembler Notation Op-Code Format

STMD R1,D2(X2) 7E RX1,RX2

STMD R1,A2(FX2,5X2) 7E RX3

Operation

The contents ¢f successive double-precision floating-point

registers, starting with the even numbered register specified by
R1, are stored in successive fullword memory 1location pairs,
starting with the address of the second operani. The operation
stops when the contents of double-precision floating-point
register 14 have been stored.

Condition Code

Unchanged

Programming Note

The second operand must be located on a fullword boundary.

6-38 29-593 ROD 1779

6e5.22 Add Doutle-Precision Floating-Point

Add Double-Precision Floating-Point (AD)
Add Register Double-Precision Floating-Point (ADR)

Assembler Notation Op-Code Format
AD R1,D2(X2) 72 RX1,kX2
AD R1,A2(FX2,5%¥2) TA RX3

ADR R1,R2 3A RR

Operation

The two operand exponents are compared. If the exponents differ,
the fraction with the smaller exponent |is shifted right
hexadecimally (four bits at a time), and 1its exponent is
incremented by one for each hexadecimal shift until ¢the two
exponents are equal. Hexadecimal digits are shifted through the
guard digits to retain precision. The fractions are then added
algebraically. '

If the addition of fractions produces a carry, the exponent of
the result 1is incremented by one and the fraction of the result

is shifted right one hexadecimal position. The <carry bit |is
shifted back into the most significant hexadecimal digit of the
fraction, producing a normalized result. This result is

R*-rounded and replaces the <contents of the double-precision
floating—-point register specified by R1.

If the addition of fractions does not produce a carry, the result

is normalized, if necessary, and placed in the double-precision
floating-point register specified by R1.

Condition Code

Doubla-precision result is zero
Double-precision result is l2ss than zero
Double-precision result is greater than zero
Exponent overflow, result is less than zero
Exponent overflow, result is greater than
zZero

Exponent underflow

QIOjo|C|OIO
-2 || DIO|O <
=2 Ol [OO
Ol |Olalojt

(@]
-
o
o

29-693 ROO 1/79 6

39

Programming Notes

When the additicn of fractions produces a carry, incrementing the
exponent of the result by one may produce exponent overflow. In
this case, the arithmetic fault interrupt 1is taken and both
operands remain unchanged.

Normalization of the result can produce exponent underflow. If
PSW bit 19 is set, an arithmetic fault interrupt is taken, and
the register specified by R1 is unchanged. If exponent underflow
occurs and bit 19 of the current PSW is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
R1. .

Fastest results occur when the first operand is larger than the
second operand.

In the RX formats, the second operand must b2 1located on a
fullword boundarye.

6-40 29-693 ROO 1/79

6523 Subtract Double-Precision Floating-Point

Subtract Double-Precision Floating-Point (SD)
Subtract Register Double~Precision Floating-Point (SDR)

Assembler Notation Op-Code Format
SD R1,D2(X2) 7B RX1,RX2
SD R1,A2(FX2,5X2) 7B RX3

SDR R1,R2 3B RR
Operation

The two operand exponents are compared. If the =2xponents differ,
the fraction with the smaller exponent 1is shifted right
hexadecimally (four bits at a time), and 1its exponent is
incremented by cne for each hexadecimal shift, until the two
exponents are equal. Hexadecimal digits are shifted through the
guard digits to retain precision. The second op2rand fraction is
then subtracted algebraically from the first operand fraction.

If the subtraction of fractions produces a carry, the exponent of
the result is incremented by one and the fraction of the result
is shifted right one hexadecimal position. The carry bit is
shifted back into the most significant hexadecimal digit of the
fraction producing a normalized result. This result is
R*~-rounded and replaces the contents of the double~precision
floating-point register specified by R1.

If the subtraction of fractions does not produce a <carry, the

result is normalized, if necessary, then R*-rounided and placed in
the double-precision floating-point register specified by R1.

Condition Code

C]VI]IG]L

0OJo]JO]| O Double-precision result is zaro

0l0]O0]|1 Double-precision result is less than zero

o|O0 1|0 Double-precision result is greater than zero

01110 1 Exponant overflow, result is less than zero

0| 1 110 Exponent overflow, result is greater than
zZero

O 11010 Exponant underflow

29-693 R0OO 1/79 6=-41

Programming Notes

When the subtraction of fractions produces a carry, incrementing
the exponent of the result by one may produce exponent overflow.
In this case, the arithmetic fault interrupt is taken and the
contents of E1 remain unchanged.

Normalization of the result can produce exponent underflow. If
PSW bit 19 is set, an arithmetic fault interrupt is taken, and
the register specified by R1 is unchanged. If exponent underflow
occurs and bit 19 of the current PSW is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
R1.

Fastest results occur when the first operand is larger than +the
second operand.

In the RX formats, the second operand must be located on a
fullword boundarye.

6-42 29-693 ROO 1/79

6.5.24 Compare Double-Precision Floating-Point

Compare Double-Frecision Floating-Point (CD)
Compare Register Double-Precision Floating-Point (CDR)

A ssembler Notation Op-Code Format

CD R1,D2(X2) 79 RX1,RX2

CD R1,A2(FXx2,5X2) 79 RX3

CDR R1,R2 39 RR

Operation

The first and second operands are compared. Comparison 1is
algebraic, taking into account the sign, exponent and fraction of
each number. The result 1is 1indicated by the condition code

setting. Neither operand is changed.

Condition Code

First operand is equal to sezond operand
First operand is less than second operand
First operand is greater than second operand

(=] M jo] (@}
] B e S
Y=l [=]Ip]
Ola|o|t

Programming Notes
The state of the overflow flag is undefined.

In the RX formats, the second operand must be locateld on a
fullword boundarye.

29-693 ROO 1/79 6

43

6.5.2% Multiply Double-Precision Floating—-Point

Kultiply Double-Precision Floating-Point (MD)
Multiply Register Double-Precision Floating-Point (MDR)

Assembler Notation Op-Code Format
MD R1,D2(X2) 7C RX1,RX?2
MD R1,A2(FX2,5X2) 7C RX3

M DR R1,R2 3C RR
Operation

The exponents of the two operands, as derived from the excess-64§
notation wused in floating-point representation, are added to
produce the exponent of the result. This exponent 1is converted
back to excess-€64 notation. The fractions are then multiplied.

If the product is zero, the entire double-precision value is
forced to zerc, X'0000 0000 0000 0000°'. If the product is not
Zera, the result is normalized, if necessary. The sign of the
result 1is determined by the rules of algebra. The R*-rounded
result replaces the contents of the double-precision floating-
point register specified by R1.

Condition Code

c{vi|c|L

010]01] O Double-precision result is zero

01010 1 Double-precision result is less than zero

0101110 Double-precision result is greater than =zero

011101 1 Exponent overflow, result is less than zero

ol 11110 Exponent overflow, result is greater than
zero

0 010 Exponent underflow

Programming Notes

Multiplication of two 14-hexadecimal-digit fractions effectively
produces a result of 14 hexadecimal digits and a number of gquard
digits. The guard digits participate in the R*-rounding of the
final result.

The addition of exponents may produce exponent overflow. In this

case, an arithmetic fault interrupt is taken ani both operands
remain unchanged.

-44 29-693 ROO 1/79

Ch

Normalization of the result can produce exponent underflow. If
PSW bit 19 is set, an arithmetic fault interrupt is taken, and
the register specified by R1 is unchanged. If exponent underflow
occurs and bit 19 of the current PSW is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
R1.

In the RX formats, the second operand must be locatedi on 1a
fullword boundary.

Fastest results occur when the second operand multiplier contains
sets of 4 or more contiguous ones Or zerosSe.

29-693 R0O0O 1/79

[w))
i

45

6e5¢26 Divide Double-Precision Floating-Point

Divide Double-Precision Floating-Point (DD)
Divide Register Double-Precision Floating=-Point (DDR)

Assembler Notation Op-Code Format
DD R1,D2(X2) 7C RX1,RX2
DD R1,A2(FX2,5X2) 7D RX3

DDR R1,R2 3r RR

Operation

The exponents of the two operands, as derived from the excess-564
notation used in floating-point representation, ire subtracted to
produce the exponent of the result. This exponent is converted
back to excess—64 notation.

The first operand fraction is then divided by the second operand
fraction. Civision continues until the quotient is normalized,
adjusting the exponent for each additional division required.

HNo remainder is returned. The sign of the result 1is determined
by the rules of algebra. The R*-rounded guotient replaces the
contents of the double-precision floating-point register
specified by P1.

Condition Code

clV|iG| L

Cl]0]0} O louble-precision result is zero

010101 1 Pouble-precision result is l=2ss than zero
cfof1} 0 Double~precision result is greater than zero
0111041 Fxponent overflow, result is less than zero
-0 1 11 0 Fxponent overflow, result is jreater than

7Zero
o]l1]0] 0 Fxponent underflow
1 1191 0 Divisor ejual to =zero

6-46 29-693 ROO 1/73

Programming Notes

Before starting the divide operation, the divisor is checked. If
it is equal to zero, the operation is aborted, and the arithmetic
fault interrupt is taken. Neither orerand is changed.

The subtraction of exponents may produce exponent overflow. In
this <case, an arithmetic tault 1interrupt 1is taken and both
operands remain unchangede.

Subtraction of exponents or the division process <can produce

exponent underflow. Normalization of the result can produce
exponent underflow. If P54 bit 19 is set, an arithmetic fault
interrupt is taken, and the register specified by E1 is

unchanged. If exponent underflow occurs and bit 13 of the
current PSW is zero, no arithmetic fault occurs. Zeros renlace
the contents of the register =pecified by R1.

The 14-hexadecimal-digit first operand fraction is divided by the
14-hexadecimal-digit second operand fraction, effectively
producing the 14-hexadecimal-digit quotient along with a number
of qguard digits. The guard digits participate in the R*-rouniing
of the final result.

In the RY formats, the second operand must he located on a
fullword boundary.

29-693 R0O 1/79 H=47

665.27 Fix Register Double-Precision (FXDR)

Assembler Notation Op-Code Format

F XDR R1,R2 3E RE

Operation

R1 and X2 specify a general purpose ragister and a
double-precision floating-point register, respectively. The
normalized floating-point number contained in th=2 flocating-point
register is <ccnverted to an integer value by shifting and
truncating. The result is placed 1in the Jeneral register
specified by R1.

Condition Code

Cl V]G] L

X{D]0O0] O Result is zero or nunderflow

X101]0 1 Result is less than zero

X101 110 Result is greater than 2zero

Y1 11011 Overflow, result is less than zero
X1 110 Overflow, result is j3reater than zero

Programming Notes

The range of the floating-point magnitude M) that produces a
non-zero integral result is:

+ X*4880 000C 0000 0000' > M > + X'4110 0000 0000 0000°.

Double-precision floating-point magnitudes greater thap +X°'487F
FFFF FFFF FFFF®' or -X"4880 0200 0000 0000' cause overflow. The
result is forced to X'7FFF FFFr*®' if positive or to X*'8000 0000°*
if negative. The V flag is set in the condition code along with
either the G or L flag, depending on the sign of the result.

Double-rrecision floating-point magnitudes less than +X'4110 0009
0000* cause underflow, and the result is forced to zero.

In the event of overflow or underflow, no Arithmetic fault
interrupt is taken even if enabled in the current PSW.

6-48 29-693 ROO 1/79

6.5.28 TFloat Register Double-Precision (FLDR)

Assembler Notation Op-Code Format

FLDR R1,R2 3F RR

Gperation

P1 and R2 specify a double-precision floating-point register ani
a general purpose register, respectively. l'he integer value
contained in the general register specified by R2 is converted to
a floating-point number and placed in the double-precision
floating-point register specified by R1.

Condition Code

Double-precision result is zero
Double-precision result is less than zero
NDouble-precision result is greater than zero

Ead i e e]
ojolol<
L |O101c,
o= (O]t

Programming Notes

The full range cf fixed point integer values may be converted to
double-precision floating=-point. The fixed point value X°'7FFF
FFFF*, the largest positive 1integer, converts to a double-
precision floating-point value of X'487F FFFF FF00 0000'. The
fixed-point value X°8000 0000*', the most negative 1integer,
converts to a double-precision floating-point value of X'C880
0000 C000 000N°.

The result in R1 is normalizei.

29-693 RC2 1/79 6- 49

6.5.29 Load Single-Precision Floating-Point Register From Double

Load Single-Precision Floating-Point Register from Double-
Precision Memory (LED)

Load Single-Precision Floating-Point Register from Double-
Precision Register (LEDR)

Assembler Notation Op-Code Format
LED R1,D2(X2) 84 RX1,RX2
LED R1,A2(FX2,5X2) 84 RX3
LEDR R1,R2 Ay RR

Operation
Double-precision floating-point data from the second operand

location is R*-rounded to single-precision accuracy, and placed
in the single-precision floating-point register specified by R1.

Condition Code

Floating-point result is zero
Floating-point result is less than zero
Floating-point result is greater than zero
Exponent underflow

Exponent overflow, result is less than zero
Exponent overflow, result is greater than
zZero

olojBlololo|n

S| FOO]O| <
Y lelle] P el le] (]
O = O]O| = |0t

Programming Notecs
R1 and R2 must specify even-numbered registers.
Rounding of the result may cause exponent overflow. In this

case, the register specified by R1 1is unchangjed, and the
arithmetic fault interrupt is takene.

6-50 29-693 ROO 1/79%

Normalization of the result may produce exponent underflow. If
enabled by PSW bit 19, the arithmetic fault interrupt is taken,
and the register specified by K1 remains unchangede. If bit 19 of
the current PSW is =zero, zeros replace the contents of the
register specified by P1.

In the RR format, double-precision data 1is <contained in the
even/cdd pair of general registers specified by R2. R2 contains
the most-significant 32 bits, and R2+1 contains the
least-significant 32 bits. If R2 1is not an even numbered
register, unpredictable results occur.

In the RX formats, the second operand must be located on a
fullwerd boundarvy.

29-693 ROD 1/79 6-51

6.5.30 Load Double-Precision Floating-Point Register From Single

load TCouble-Precision Floating-Point Register from Single-
Precision Memory (LDE)

Load Couble~-Precision Floating-Point Register from Single-
Precision Register (LDER)

Assembler Notation Op-Code Format
LDE R1,D2(¥2) 87 rRX1,RX2
LDE R1,A2(FX2,5X2) 87 kX3
LDER R1,R2 A7 RR
Operation

Single-precision floating-point data from the second operand
location 1s converted to double-precision data by appending
trailing zeros. The result replaces the contents of the
double-precision floating-point register specified by R1.

Condition Code

Double-precision result is zero
Double-precision result is less than zero
Double-precision result is greater than zero
zxponent underflow

OO O OIN
= OO |0l <<
O 10|00
S| O|- O]

Programming Notes

The registers specified by R1 and R2 mnust be even-numbhered
registers.

Normalization of the result may produce exponent underflow. It
enabled by PS¥ bit 19, the arithmetic fault interrupt is taken,
and the register specified by 1 remains unchanged. If bit 13 of
the current PSW is zero, no arithmetic fault occurs. Zeros
replace the contents of the register specified by R1.

In the RX formats, the second operand must be 1located on a
fullword boundary.

6-52 29-693 ROO 1/79

6+5.31

Store Dcuble-Precision Floating-Point Register in Single-

Precisicn Memory (STDE)

Assembler Notation

STDE
STDE

R1,D2(X2)
R1,A2(FX2,SX2)

Operation

Data from the dcuble-precision floating-point register
is R*-rounded to single-precision accuracy,

by R1

Op-Code Format
82 RX1,RX2
82 RX3

specified
and stored in

the fullword second operand location.

Condition Code

Unchanged

Programming kotes

The register specified

Normalization <c¢f the
underflow. In this
contents of the second

Rounding of the result
case, the <contents
unchanged,

by R1 must be an even-numbered register.

produce exponent
00020°*, replaces the

rounded result may
case, zero, X'0000
operand location.
In this
remain

cause exponent overflow.
the second operand 1location

may
of

and the arithmetic fault interrupt is taken.

The second operand must be located on a fullword boundary.

29-693 R0OO 1/79

6-53/6-54

CHAPTER 7
STRING OPERATIONS

7.1 INTRODUCTICN

String operaticns deal with ©operands that are strings of
consecutive bytes in memory beginning and ending on byte
boundaries. Information contained in such a string may represent
packed decimal data or ASCII character information including
unpacked decimal data.

7.2 TCECIMAL DATA FORMAT DEFINITIONS

Decimal operands can be in either packed or wunpacked (zoned)
format., The decimal operands are considered as right-aligned
integers. The address of a decimal operand specifies the address
of the left-most or most significant byte of the operand.

7.2.1 Packed Decimal

A npumber represented in packed decimal format is a fixed-point,
signed 1integer, and consists of from 1 to 16 consecutive bytes.
(See Figure 7-1.) FEach byte is divided into two digit fields;
thus each byte, except for the right-most in the string, contains
two decimal digits represented in binary code. The only values
allowed in a decimal digit field are 0 through 9. The right-most
byte in the string contains the least significant decimal digit
and the sign digit.

BYTE1 | BYTE2 | BYTE3 | | BYTE14 | BYTE1S | BYTE16 |
—4
Dy Dy D3 Dy Ds Dg . Dy7 | D2g | Dag | D3o | D31 S
D¢,D9,Dg,.... D30, D31 = DECIMAL DIGITS
S = SIGN DIGIT

Figure 7-1 Packed Decimal Format

29-693 ROO 1/79 7-1

612

There are two standard values for the sign S: hexadecimal C for
plus and hexadecimal D for minus. However, the hexadecimal
values 3, A, E, and F are also recognized for plus, and
hexadecimal B is recognized for minus. Other values, O through
2 and 4 through 9, are illegal in the S position.

A packed decimal number contains an odd number of decimal digits.
The most significant digit (zero or nonzero) of the number is in
bit positions 0-3 of the left-most byte. The 1least significant
digit occupies bit positions 0-3 of the right-most byte of the
string, immediately preceding the sign digit, Se Any unused
digit at the beginning of the string is filled with a leading
Zero.

7.2.2 Unpacked (Zoned) Decimal

A number represented in unpacked decimal format is a fixed-point
signed integer, and consists of from 1 to 31 consecutive bytes.
(See Figure 7-2.) Fach byte, with the exception of the
right-most byte, is assumed to contain the 7-bit ASCII equivalent
of a decimal digit. Thus, the topr four bits contain zone
information and the bottom four bits in each byte <contain the
binary equivalent of a decimal digit from 0 through 9.

When the processor generates an unpacked decimal byte string, the
zone digit is always '3'. However, any zone value is accepted in
an unracked decimal operand, since the zone has no effect on the
operation of the instructions and is not =examined. In the
right-most byte of the string, 5 is the sign digit. Acceptable
values for the sign digit are the same as those defined for
packed decimal data.

| BYTE 1 | BYTE 2 | BYTE 3 | | BYTE29 BYTE 30 | BYTE 31 |
5
ZONE | Dy [ZONE| Dy | ZONE| D3 ZONE | Dyg | ZONE | D3q S Daq
/]
ZONE = ZONEDIGIT
D¢, Dg, D3, ...D3q. D34 = DECIMAL DIGITS
S = SIGNDIGIT

Figure 7-2 Unpacked Decimal Format

The most significant digit of an unpacked decimal number occupPies
the 1left-most byte of the string. The least significant digit
occupies the right-most byte of the stringe.

7-2 29-693 ROO 1/79

7.3 INSTRUCTION FORMATS

The two binary/decimal conversion instructions use the standard
RX format. The remaining string operations use the RXRX format.

In the instruction descriptions, the RXRX format is diagrammed as
follows:

R1 D2 (X2) R1 D2 (X2)
OP =L1(, A2 (FX2,5X2)(,)=L2(,)A2 (FX2,5X2)

where any field may have either one of the options shown in the
braces. R1/=L1 refers to the first operand length andi R2/=L2
refers to the second operand length. Length of operand strings
is always expressed as a number of bytes. These can vary from 9O
to 15 for immediate length formats, and from 0 to maximum menmory
for register length.

7.4 STRING INSTRUCTIONS
The instructions described in this section are:

LPR Load Packed Decimal String as Binary
(convert from decimal to binary)

STBP Store Binary as Packed Decimal String
(convert from binary to decimal)

MVTU Move Translated Until

MOVE Move and Pad

MOVEP Move and Pad with Default Pad

CPAN Compare Alphanumeric
CFANP Compare Alphanumeric with Default Pad
pMv Pack and MMove

(convert unpacked decimal string to packed decimal string)
PMVA Pack and Move Absolute (forced positive result)
UMV Unpack and Move

(convert packed decimal string to unpacked decimal string)
UMVA Unpack and Move Absolute (force positive result)

29-633 ROOD 1/79 7-3

7.4.1 Load Packed Decimal String as Binary (LPR)

Assembler Notation Op-Code Format
LEB R1,D2(X2) 6F RX1,RX2
LPB R1,A2(FX2,SX2) 6F RX3

Operation

The second operand address points to the 1left-most byte of a
packed decimal string of length sixteen bytes (31 packed decimal
digits plus sign). Digits of the operand are checked for
validity as the operand 1is converted to a 6U4-bit, two's
complement binary number. The result replaces the contents of
the even/odd general register pair specified by R1 and R1+1.

Condition Code

Result is zero

Result is less than zero
Result is greater than zero
Overflow

olojo|o|0
SO|O|O| =
Q|- OO
O|O|a|O|t

Programming Notes
This instruction is interruptible.

R1 must specify an even-numbered register. If not, unpredictable
results occur.

If an illegal decimal digit or sign digit is detected during
conversion, the registers specified by R1 and R1+1 remain
unchanged, and a data format fault interrupt is taken.

The 1largest positive number that <can be processed without
overflow is 9,223,372,036,854,775,807.

T-4 29-693 ROO 1/79

7.42 Store Binary As Packed Decimal String (STBP)

Assembler Notation Op-Code Format
STBP R1,D2(X2) 6E RX1,RX2
STBP R1,A2(FX2, SX2) 6E RX3

Operation

The contents of the even/odd general register pair specified by
R1 and R1+1 are converted and stored in memory as a packed
decimal string of length 16 bytes (31 packed decimal digits plus
sign). The left-most byte is stored at the address specified by
the second operand.

Condition Code

Result is zero
Result is less than zero
Result is greater than zero

ClOoI0|<s
- 100G
Ola|O]=

QIO|OIN

Programming Notes
This instruction is interruptible.

R1 must specify an even-numbered register. 1If not, unpredictable
results occur.

29-693 ROO 1/79 7-5

7.4.3 Move Translated Until (MVTU)

Op- Function
Assembler Notation Code Code Format

R1 D2(X2) R2 D2(X2) 8C 00 RXRX
MVTU | =L1/(,)A2(FX2,5X2)(,\=L2(,| A2(FX2,5X2)

Operation

General register 0 contains the escape character whose occurrence
causes the instruction to terminate. General register 2 contains
the address cf a translation table. This translation table is a
simple 1list of 256 single byte entries, not to be confused with
the table used by the translate instruction. The first operani
string begins at the addrass specified by the first operand
address. The length of this string is egual to either the
contents of the register specified by R1, or the value of L1.
The second operand string begins at the address specified by the
second operand address. The length of this string is equal to
either the contents of the rejister specified by R1, or the value
of L2. '

Successive bytes from the second operand string are moved to the
first operand string, as follows:

1. A byte is fetched from the second operand string (this
is the argument byte). The contents of general register
2 are tested. If general register 2 contains zero, no
translation occurs. If general register 2 dones not
contain =zero, it contains the address of a translation
table of maximum size 256 bytes. In this case, the
argument byte fetched from the second operand string is
used as an index into the translation table, and the
byte at the resulting address is fetched and used as the
argument byte.

2. The argument byte is compared with the escape character

contained in bits 24:31 of general register 0. If the
bytes are the same, the C flag is set in the condition
code, and the instruction terminates. Otherwise, the

argument byte is stored in the first operand string, and
the next successive byte is processed. This operation
is repeated until either the escape character is
encountered, the first operand string has been filled,
or the second operand string has been exhaustede.

7-6 29-693 ROO 1/79

3, When the instruction terminates, the address of the next
byte to be moved from the second operand string 1is
returned in general register 1.

Condition Code

C| V|G| L

o0j0(0] O Entire string moved

ofl110] 0 First operand filled before entire string
moved

110101} 0 Escape character encountered

Programming Notes
This instruction is interruptible.

The contents of general register 1 may change during instruction
execution, but are not valid until instruction termination.

Bytes are moved from the second operand string to the first
operand string in a left-to-right seguence. If the strings
overlap, such that the source is to the left of the destination,
unpredictable results occur.

29-693 ROO 1/79 7-7

T.4.4 Move

Move and Pad (MOVE)
Move and Pad with Default Pad (MOVEP)

Op- Function
Assembler Notation Code Code Format

MOVE R1 D2 (X2) R2 D2(X2) 8C 01 RXRX
=L1{, A2(FX2.SX2) +1=L2{(, A2(FX2,SX2)

MOVEP R1 D2(X2) R2 D2(X2) 8C 21 RXRX
=L1(,YA2(FX2,5X2)(,)=L2 (, YA2(FX2,SX2)

Operation

The first operand string begins at the address specified by the
first operand address and has a length equal either to the
contents of the register specified by R1, or to the value of L1.
The cecond operand string begins at the address specified by the
second operand address and has a length egual either to the
contents of the register specified by R2, or to the value of L2.

Successive bytes from the second operand string are moved to the
first operand string. If the second operand string is exhausted
before the first operand string is filled, the remaining bytes in
the first operand string are filled using the pad character. If
MOVE is specified, the pad character is contained in bits 24:31
of general register 0. If MOVEP is specified, the remainder of
the first operand is filled with ASCII space characters (X'20°').,
If the first operand string is filled before the second operand
string is exhausted, overflow results, and the operation is
terminated.

When the instruction terminates, the address of the next byte to
be moved from the second operand string is returned 1in general
register 1.

Condition Code

cCiVI|G]|L
010[0]0 entire string moved
0170160 first operand filled before entire string

moved

7-8 29-693 ROO 1/79

Programming Notes
These instructions are interruptible.

The ccntents of general register 1 may change during instruction
execution, but are not valid until instruction terminatione.

If MOVEP 1is specified, the contents of general register 0 are
ignored. ‘

Bytes are moved from the second operand string ¢to the first
operand string in a left-to-right seguence. If the strings
overlap such that the source is to the left of the destination,
unpredictable results occurs.

29-693 R0OO 1/79 7-9

T«4.5 Conmpare

Compare Alphanumeric (CPAN)
Compare Alphanumeric with Default Pad (CPANP)

Op- Function
Assembler Notation Code Code Format

CPAN D2(X2) R2{)D2(X2) 8C 02 BRXRX

A2(FX2,5X2) =L2(,|A2(FX2,5X2)

CPANP D2(X2) D2(X2) 8C 22 RXRX
=L1 | A2(FX2,5%X2) nAA2(FX2,S%2)

Operation

The first operand string begins at the address specified by the
first operand address and has a length equal either to the
contents of the register specified by R1, or to the value of L1.
The second operand string begins at the address specified by the
second operand address and has a length egual either to the
contents of the register specified by R2, or to the value of L2,

The two strings are compared a byte at a time until the first
unegual byte pair is found, or until the length of both strings
is exhausted.

Jf the strings are of unequal 1length, the shorter string is
logically extended to the length of the longer string. If CPAN
is srecified, this is done by using the pad character contained
in bits 24:31 of general register 0. If CPANP is specified, the
RSCII- space character (X'20°') 1is used as the default pad
character.

Upon termination, general register 1 is set equal to the number
of second operand bytes that successfully matched corresponding
bytess in the €first operand string. This <count includes pad
characters if the second operand string was longer than the
first.

For example, a first operand string of length 3 bytes contains
the <characters ABC. A second operand string o2f length 6 bytes
contains the characters ABCDDD.

10 29-693 ROO 1/79

~
|

A CPANP instruction returns a condition code of 0001 (first
operand string 1less than second operand string) and general
register 1 is set equal to 3. The first non-matching character
was the character *'D' in the second operand string. Given the
same cperand strings, a CPAN instruction with general register 0
set equal to a pad character of 'D*' returns a condition code of
0000 (strings are equal including pad characters) and general
register 1 is set equal to 6.

Condition Code

C|]V]|G|L

Cl0]0] O Strings are egqual

cyo0}] 110 First operand string greater than second
operand string

cjo|O}{ 1 First operand string less than second operand
string

Programming Notes

If CPANP is specified, the contents of general register 0 are
ignored.

These instructicns are interruptible.

7.4.6 Pack and Move
Pack and Move (FMV)
Pack and Move Atsolute (PMVA)

Op- Function Format
Assembler Notation Code Code

PMV R1 D2 (X2) R2 D2(X2) 8C 03 RXRX
=L1(, |A2(FX2,SX2)(,\=L2(,)|32(FX2,5¥X2)

PMYA R1 D2(X2) R2 D2(X2) 8C 23 RXRX

=L1(,)A2(FX2,5X2)(,)=L2(,)A2(FX2,5X2)

Operation

The first operand string begins at the address specified by the
first operand address. The length of this string in bytes is one
greater than either the contents of the register specified by R1,
or the value of L1. The second operand string begins at the
address specified by the second operand address. The 1length of
this string 1in bytes is one greater than either the contents of
the register specified by R1, or the value of L2.

The second operand string consists of unracked decimal data
digits with a sign digit. Data in this string is packed and
replaces the first operand string. Leading zeros are supplied as
required to fill the higher-order positions of the first operand
string.

Condition Code

Result is zero

Result is less than zereo

Result is greater than zero

Overflow

Invalid digit in second operand string

alololo|olan
|l dd|O] <
M| OO
DG Of e | O 1+

~
}

12 29-693 ROO 1/79

613

Programming Notes

PMVA causes the sign digit of the first operand string to be
forced positive.

Overflow occurs if the length of the first operand string is not
sufficient to ccntain the packed representation of the second
operand string. The V flag is set in the condition code, and the
specified number of digits in the first operand string receive
packed data from the second operand string. Higher-order digits
of packed data are lost in this case.

Leading zero digits do not cause overflow. They are truncated if
necessarye.

These instructicns are interruptible instructions.

Since packing 1is done conceptually from right to left with any
overlapping allcwed, the instruction PMV can be used to check the
validity of decimal data. The illegal digit cases shown in Table
7-1 occur during instruction execution even 1if the original
source operand does .not contain any illegal digits.

TABLE 7-1 ILLEGAL DIGIT CASES (PACKX AND MOVE)

S0URCE DESTINATION TLLEGAL DISIT FXCEPTION
OPERAND OPERAND CONDITION

CPNZ OPN1 CASE 1 CASE 2 CASE 3
lnpackad Packed No No Yes

Case 1 is when the operands overlap completely.

Case 2 1is when the low-order (least significant)
position of OPN1 is to the right of the low-order
position of OPN2.

Case 32 is when the low-order position of OPN1 is to the
left ¢cf the low-order position of OPN2.

29-692 R00O 1/79 7-13

7.4.7 Unpack and Move
Unpack and Move (UMYV)
Unpack and Move Absolute (UMVA)

Op- Function Format
Assembler Notation Code Code

UMy R1 D2(X2) P2 D2(X2) 8C o4 (RXRX)
=LY ,)A2(FX2,SX2)(,)=L2(,1A2(FX2,SX2)
UMVA R1 D2(X2) R2 D2(X2) 8C 24 (RXRX)

Operation

The first operand string begins at the address specified by the
first operand address. The length of this string in bytes is one
greater than either the contents of the register specified by R1,
or the value of L1. The second operand string begins at the
address specified by the second operand address. The 1length of
this string in bytes is one greater than either the contents of
the register specified by R2, or the value of L2.

The second operand string consists of packed decimal data digits
with a sign digite. Data in this string is unpacked and replaces
the first operand string. Leading zeros are suppnlied as required
to fill the higher-order positions of the first operand string.

Condition Code

Result is zero

Result is less than zero

Result is greater than zero

Overflow

Invalid digit in second operand string

B eliellellolle]
Pl PG RO =<

IOl |Ot™

|| = OO0

7-14 29-693 ROO 1/79

Programming Notes

UMVA causes the sign digit of the first operand string to be
forced positive.

Overflow occurs if the length of the first operand string is not
sufficient to <contain the unpacked representation of the second
operand string. The V flag is set in the condition code, and the
specified number of digits in the first operand string receive
unpacked data from the second operand string. Higher-order
digits of unpacked data are lost in this case.

Leading zero digits do not cause overflow. They are truncated if
necessarye.

These instructions are interruptible instructions.

Since unpacking is done conceptually from right to left with any
overlapping allcwed, the instruction UMV can be used to check the
validity of decimal data. The illegal digit cases shown in Table
7-2 occcur during instruction execution, =even if the original
source operand does not contain any illegal digits.

TABLE 7-2 ILLEGAL DIGIT CASES (UNPACK AND MOVE)

614
SOUERCEL NESTINATICN ILLEGAL DIGIT EXCEPTION
CPERAND OPERAND CONDITION
OPNZ OPN1
CASF 1 CASE 2 CASE 3
Packed Unpacked Yos Yes Yes

Case 1 is when the operands overlap completely.

Case 2 is when the low-order (least significant)
position of OPN1 is to the right of the low-order
position of OPN2. The exception occurs unless the
low-order position of OPN1 1is to the right of the
low-order position of OPN2 by the number of bytes in
OPN2 minus 2.

Case 3 is when the low-order position of OPN1 is to the
left cf the low-order position of OPN2.

29-693 R0OO 1/79 7-15/7-16

CHAPTER 8
HIGH SPEED DATA HANDLING INSTRUCTIONS (OPTIONAL)

8.1 INTRODUCTICN

The data handling instructions are used to compute polynomial
error check redundancy characters, as used by most data
communications protocols. Communications protocols supported by
this option include, but are not limited to, the following:

1. Binary Synchronous Communications (BISYNC or BSC) -
IBM's widely accepted half-duplex protocol uses the CRC
BISYNC error check polynomial (x'® + x!5 + x2 +1),

2. Synchronous Data Link Control (SDLC) - 1IBM's new
full-duplex protocol 1uses the CRC SDLC error check
polynomial (x!6 + x!2 + x5 +1).

3. Advanced Data Communications Control Procedure (ADCCP)
- ANSI's proposed National Standard full-duplex protocol
uses CRC SDLC.

4. High Level Data Link Control (HDLC) - The International

Standard Organizations full-duplex protocol uses CRC
SDLC.

8.2 TATA HANDLING INSTRUCTION FORMATS

The optional data handling instructions use the Register to
Fegister (RR), and the Register and Indexed Storage (RX) formats.

8.3 DATA HANDLING INSTRUCTIONS

FPB Process Ryte
PBR Process Ryte Register

29-693 R0OO 1/79 8-1

8.3.1 Process Eyte (PB)

Assembler Notation Op-Code Format
PB R1,D2(X2) 62 RX1, RX2
PB R1,R2(FX2,SX2) 62 RX3
Set-Up
&5 g 7 8 1516 23 24 31
R1 X CHECK CODE X DATA BYTE

Bits Z4:31 of the register specified by R1 contain the data byte
to be processed. Bits 8:15 of the register specified by R1
contain a check code to indicate the type of processinge. This
byte is interpreted as follows:

X'o00° Cumulative check zero (CRC BISYNC)
X*'01* Cumulative check one (CRC SDLC)
Xx*02' Cumulative check two (LRC)

The second operand address points to a halfword residual checksun
to be included in the cumulative checke.

Operation
If CEC BISYNC is specified, the data byte and the o0ld residual
checksum participate in the generation of a new residual checksunm

based on the evaluation of the polynomial (x!® + xI5 + x2 +1),

If CRC SDLC is specified, a similar operation is performed, using
the pclynomial (x!® + x12 + x5 +1).

In both of these cases, the nevw residual checksum replaces the
0ld residual checksum at the second operand location.

If LRC is specified, the EXCLUSIVE OR of the data byte with the
014 residual checksum replaces the o0ld residual checksum at the
second operand location.

Condition Code

Unchanged

3=-2 29-693 ROO 1/79

. Programming Notes

Bits 0:7 and 16:23 of the register specified by R1 are ignored.

The register specified by R1 remains unchanged.

The second operand must be located on a halfword boundary.
Undefined check codes should not be used. If they are,
results are undefined.

Example: PB

This exawmple performs a process byte instruction and stores
residue in RESILUE.

Register 1 contains X*'0001007A"*
where: 01 = CRC SDLC
7R = DATA BYTE
RESIDUE contains X*'D053' = 0ld residue
Assembler Notation Comments
PB R1,RESIDUE RESIDUE on halfword boundary

FResult of PB Instruction
(R1) unchanged by this instruction

(RESICUE) = X'BC13' = new residue
Condition Code unchanged by this instruction

29-693 R0O 1/79

the

the

8e3.2 Process Eyte Register (PBR)

Assembler Notation Op~-Code Format

PBR ER1,R2 32 RR

Set-Up
616

0 7 8 15 16 23 24 31
R1 X CHECK CODE X DATA BYTE
_R2 0 RESIDUAL CHECKSUM

Rits 24:31 of the register specified by R1 contain the data byte
to be processed. Bits 8:15 of the register specified by R1
contain a check code indicating the type of processing. This
byte is interpreted as follows:

X'o0" Cumulative check zero (CRC BISYNC)
X'o1* Cumulative check one (CRC SDLC)
X*'02* Cumulative check two (LRC)

The second operand 1is a fullword contained 1in the register
specified by FE2. Rits 16:31 of the second operand contain the
residual checksum to be included in the processing.

Operation

If CRC BISYNC is specified, the data byte and the o0ld residual
checksum participate 1in the generation of a new residual
checksum, based on the evaluation of the polynomial (x!6 + xI5 +
)(2 + 1).

If CRC SDLC is specified, a similar operation is performed, using
the polynomial (x!6 + xI2 + x5 + 1),

In both these cases, the new residual checksum replaces the
contents of bits 16:31 of register specified by R2.

If LRC is specified, the EXCLUSIVE OR of the data byte with the

01ld residual checksum replaces the 0ld residual checksum in the
second operande.

8-4 29-693 ROO 1/79

Condition Code

Unchanged

Programming Notes

Bits 0:7 and 16:23 of the register specified by R1 are 1ignored.
The register specified by R1 remains unchanged. Bits 0:15 of the
register specified by K2 are not used and must be 2zero.

Undefined check codes should not he used. If they are, the
results are undefined.

29-692 R00O 1/79 8~-5/8-6

CHAPTER 9
INPUT/OUTPUT OPERATIONS

9,1 INTRODUCTICN AND CONFIGUKATION OF I/O SYSTEHM

Input/Output (I/0) operations, as defined for the Series 3220
Processor, provide a versatile means for the exchange of
information between the processor, memory, and external devices.
Communication between the ©processor and external devices is
accomplished over the I/0 bus. Data transfers over the I/0 bus
require processor 1intervention, either programmed or automatic,
for each item transferred.

Direct data transfers between external devices and memory are
accomrlished over the EDMA Bus, and proceed independently of the
processor so other program processing can proceed simultaneously.
For mcre details refer to the following manuals:

EDMA Bus Universal Interface Instruction Manual, Publication
Number 29-423 "

ESELCH Programming Manual, Publication Number 29-529

9.2 TCEVICE CONTIROLLERS

9.2.1 Function

The basic function of a device controller is:
1« To provide synchronization with the processor
2. To provide device address recognition

2. To transmit operational commands from the processo. to
the device

4, To translate device status into meaningful information
for the processor

5« To request processor attention when required

In addition, a controller may generate parity; convert serial
data to parallel; buffer incoming or outgoing data; or perfornm
other device-dependent functions.

29-693 ROO 1/79 9-1

9.2.2 Device Addressing

The system design allows as many as 1,023 external devices. Fach
device must have its own address or device number, ranging from
X'001" through YX*'3FF'. (Device number X'000°' is not assigned.)
The minimum system provides for 255 device numbers. Larger
systems may have either 511 or 1,023,

9.2.3 Processor/Controller Communication

Device controllers may communicate with the processor either
directly, wusing ¢the I/0 bus, or indirectly through a selector
channel. Communication between the processor and controller is
a bi-directional, request/response operation.

The rrocessor can initiate communication by sanding the device
number out onto the I/0 bus. When a controller recognizes that
number as its address, it returns a synchronization signal to the

processor and remains ready to accept commands from the
processor. The processor waits up to 28 microseconds for the
synchronization signal. If no signal is received within this

period, the processor aborts the operation and notifies the
controlling program. In this case, the status returned is X'04°
known as False Sync. The condition code in the PSW is also set
to X°'4° (V flag=1). Controller malfunction and software failure
(incorrect device address) are the most common causes of this
type of time-out.

A controller can 1initiate <communication with the processor by
generating an attention signal. If the processor 1is in an
interruptible state as defined by bits 17 and 20 of the PS¥W, this
signal causes the processor to temporarily suspend the normal
"fetch instruction/execute/fetch next instruction" operation at
the end of the execute phase, and to transmit an acknowledge
signal over the I/0 bus. The controller requesting attention
responds with a synchronization signal and transmits its device
number to the processore.

9.2.4 Device Priorities - External Interrupt Levels;
Interrupt Queuing

External Interrupt Levels

The Mcdel 3220 architecture provides four external interrupt
levels. PSK bits 17 and 20 define the external interrupt enable
status of the processore.

When interrupt requests occur on more than one interrupt 1level,
the request on the highest priority interrupt 1level is
acknowledged first. Level 0 is the highest; level 3 1is the
lowest in priority.

9-2 29-693 ROO 1/79

Interrupt Queuing

Any device <controller attempting to 1interrupt the processor
activates one of the four attention lines sensed by the processor
and holds that line active until the processor acknowledges the
interrupt. Requests for attention are asynchronous; therefore
more than one request may be prending at any time on any interrupt
level. The system resolves these conflicts according to device
priority, determined by the physical placement of the Jdevice
contrcller on the I/0 bus. When two or more device controllers
on the same interrupt level regquest attention at the same time,
the controller nearest to the processor in the RACKO/TACKO
priority wiring pattern captures the acknowledge signal from the
processor and is serviced first. A1l other 1interrupting
controllers of lower priority must wait for the next acknowledge
signal from the processor.

9.3 INTERRUPT SERVICE POINTER TABLE

Device reguests for service may result in either an immediate
interrupt or an auto driver channel operation. The processor
chooses one of these options according to information <contained
in the interrupt service pointer table.

The interrupt service pointer table is an ordered list containing
one entry for each possible device number in the system. The
table starts at memory location X'0000DO' and contains a halfword
entry for each device number in the systenm. For a minimum systen
(255 device numbers), the table extends through memory location
X*0002CF'; for A maximum system (1023 device numbers), the table
extends through memory 1location X'0008CF"'. The softwvare
controlling I/0 operations must set up the table.

When the processor receives the device address after
acknowledging a reguest for service, it adds twice thas device
address to X'Q00DO°'. The result 1is the address, within the

table, of the entry reserved for the device requesting attention.

If the entry in the table is =aven (bit 15 equals 0), the
processor takes an immediate interrupt and transfers control to
the software interrupt service routine at the address contained
in the table. If the entry in the table is odd (bit 15 equals
1), the processor transfers control to the auto driver channel,
without interrupting the currently running program.

At the time the processor transfers control to the software
interrupt service routine, the old PS¥ (current at ¢the time of
the device regquest) has been saved in registers 0 and 1 of the
new register set. The device number is saved in register 2 ani
the =status in register 3. The status portion of the current PSW
has been replaced by the value X'000028nX', where n 1is the new
register set number egual to the device interrupt level, and X is
the least significant 4 bits of the device status. Machine
malfunction interrupts and higher level TI/0 interrupts are
enabled and all other interrupts are disabled. The entry in the
interrupt service pointer table is now the new location counter.

29-693 ROO 1/79 9-3

9.4 CONTROL OF I/0 OPERATICNS

The 32-bit I/0 structure allows several data transfers depending
on. the particular application and on the characteristics of the
external devices. Primary methods of data transfer between the
processor and external devices are:

® One byte or one halfword to or from any of the general
registers

e One byte or one halfword to or from memory

® A block of data to or from memory under control of a selector

channel or EDMA universal interface

° Multiplexed blocks of data to or from memory under control of
the auto driver channel

Standard device controllers require a predetermined sequence of
commands to effect data transfers. These commands address the
device, put it in the <correct mode, and cause data to be
transferred. Because all I/0 instructions are privileged
operations, I/0 control programs must run in the supervisor mode,
i.e., with bit 23 of the current PSW zero. I/0 control programs
should disable immediate interrupts or enable only higher level
interrupts, as controlled by PSW bits 17 and 20.

9.5 STATUS MONITORING I/O

The simplest form of I/0 programming is status monitoring 1I/0.
In this mode of operation, only one device is handled at a tinme,
and the processor cannot overlap other operations with the data
transfer. The sequence of operations in this type of programmning
is:

Te Address the dev

vice and set the proper mode (output
command instructi

on).

2. Test the device status (sense status instruction).

3. Loop back to the sense status instruction until the
status byte indicates that the device 1is ready

(conditional branch instruction).

4, When the device is ready, transfer the data (read or
write instruction).

5« If the transfer is not complete, branch back to the
sense status instruction. If it is complete, terminate.

9-4 29-693 ROO 1/79

9.6 INTERRUPT DRIVEN I/0

Interrupt driven I/0 allows the processor to take advantage of
the disparity in speed between itself and the external devices
being controlled. With status monitoring, the processor spends
time waiting for the device. With interrupt driven programming,
the processor can use this time performing other functions. This
kind of programming establishes at least two levels of operation.
On one level are the interrupt service programs. On the other
level are interruptible programs that run with the immediate
interrupt enabled.

Before starting interrupt driven operations, the interrupt
service pointer table must be set up. This table starts at
memory location X*'0000D0' and must contain a halfword address
entry for every possible device. The table is ordered according
to device addresses in such a way that X'0000D0* plus two times
the device address equals the memory address of the table entry
reserved for that device. The value placed 1in the 1location
reserved for a device 1is the address of the interrupt service
routine for the device.

For example, if a Teletype is connected at an address of X°'02°
and the interrupt routine resides in memory at address X'3000°,
the setup involves writing X°3000' at memory location X*D4°*,
Note that X'C4'=X'D0°’+ 2 times the Teletype address.

Although there may be gaps in device address assignments, the
interrupt service pointer table should be completely filled.
Entries for non existent devices should ©point to an error
recovery routine. This precaution prevents system failure in the
event of spurious interrupts caused by hardware malfunction or by
improper use of the simulate interrupt instruction.

The next step 1is to prepare the device for the transfer,
preferably with the 1immediate 1interrupts disabled. Once the
table pointer has been set up and the device prepared, the
processor can move on to an interruptible progran.

The sequence of operation in this type of program is:

1. Set up the interrupt service pointer table to vector to
error addresses for undefined devices.

2. Store the address of the software interrupt service
routine at two times the device number plus Y'D0O*' (¥X'DO*
is starting address of service pointer table).

3. Set up the software interrupt service routine.

4, Set up the device and enable device interrupts.

£, FEnable I/0 interrurts in the PSW.

29-693 ROO 1/79 9-5

When the device signals a need for service, the processor saves
its <current state and transfers control to the interrupt service
routine at the 1location specified in the interrupt service
pointer table. At this time, the current PSW: has a status that
indicates running state, machine malfunction interrupt enabled,
higher 1level 1I/0 interrupts enabled, and all other interrupts
disabled. The condition code contains bits 4:7 of the device
statuse. Registers 0 and 1 of the new set contain the old PSW,
indicating the status and location of the interrupted oprograme.
Register 2 of that set contains the device address. Register 3
contains the device status.

The interrupt service routine should:

1. check the device =status in Reglister 3, and if
satisfactory,

Ze« make the transfer, and

3. return to the interrupted program by reloading the o0ld
PSW from registers 0O and 1 (LPSWR RO).

The interrupt service routine should not enable immediate
interrupts on its own interrupt level. This would allow other
interrupt requests to be acknowledged, and the contents of
registers 0:4 could be 1lost. If it is necessary to enable
immediate interrupts on the same level, the routine should save
the register set, switch to a different register set, save it |if
necessary, and then enable immediate interrupts.

9.7 SELECTOR CHANNEL I/O

9.7.1 Introduction

The selector channel <controls the transfer of data directly
between high speed devices and memory. As many as 16 devices may
be attached to the selectsr channel, only one of which may be
operating at any one time. The advantage in using the selector
channel is that other progranm processing may proceed
simultaneously with the transfer of data between the external
device and memory. This is possible because the selector channel
accesses memory on a cycle stealing basis, permitting the
processor and the <channsl to share memorye. In some cases,
execution times of the program in progress may be affected, while
in others, the effect is negligible. This depends upon the rate
at which the selector channel and processor compete for memory
cycles.

The selector channel is linked to the processor over the I/0 bus.
It has its own unique device number which it recognizes when
addressed by the processor. Like other device <controllers, it
can request processor attention through the immediate interrupt.

9-6 29-5693 R0OO 1/79

9.72 Selector Channel Devices

The selector channel has a rrivate bus similar to the processor's
I1/0 bus. Controllers for the devices associated with the
selector <channel are attached to this bus. When the selector
channel is idle, its private bus is connected directly to the I/2
bus. If this condition exists, the processor can address,
command, and accept interrupt requests from the devices attached
to the selector channel. When the selector channel is busy, this
connection is broken. All communication between the processor
and devices on the selector channel is cut off. Any attempt by
the processor to address a device on the channel when it is busy
results in instruction time-out.

9.7.3 Selector Channel Operation

Two registers in the selector channel hold the current memory
address and the final memory address. With the use of write
instructions, the control software places the address of the
first byte of the data buffer into the current register and the
address of the last byte into the final address register. This
is done before starting a selector channel operation. During the
data transfer, the <channel increments the <current address
register by one for each byte transferred. When the current
address equals ¢the final address, the 1last byte has been
transferred, and the channel terminates.

The selector channel accesses memory a minimum of one halfword at
a time; therefore, the transfer must always involve an integral
number of halfwords. The starting address of the data buffer
must always be on an even byte (halfword) boundary. The final
address must always be on an odd byte boundary. The starting
address must be less than the final address.

Upon termination, the software should read back from the selector
channel the address contained in the <current address register.
If this address is not equal to the final address specified for
the transfer, and if the buffer 1limits were properly checked
before the transfer, this condition 1indicates a device
malfunction or an unusual <condition within the device. For
example, <crossing a cylinder boundary on a disc is an abnormal
termination. The reason for the termination is indicated in the
SELCH status or the device status.

29-692 ROO 1/79 9-7

9.7.4 Selector Channel Programming

The usual method of programming with the selector <channel uses
the immediate interrupt. The first step in the operation is to
check the status of the selector channel. If the selector
channel 1is not busy, the address of the termination interrupt
service is routine is placed in the location within the interrupt
service pointer table reserved for the selector channel. The
program should then proceed as follows:

1. Give the selector channel a command to stop. This
command initializes the selector channel registers and
assures the 1dle condition with the private bus

connected to the I/0 bus, so that the device may be set
up for data transfer.

2. Give the selector channel the starting and final
addresses.

3. Prepare the device for the transfer with the required
commands and informatione.

4, Give the selector channel the command to start.

With the start command, the selector channel breaks the
connection between its private bus and the processor's I/0 bus,
and provides a direct path between memory and the 1last device
addressed over its bus. dhen the device becomes ready, the
channel starts the transfer, which proceeds to completion without
further processor intervention. Once the start command has been
given, the processor can be directed to the execution of
concurrent programse.

Upon termination, the <channel signals the processor that it
requires service. The processor subsequently takes an immediate
interrupt, transferring control to the selector channel interrupt
service routine. At this time, registers 0:3 of the new set are
set up as for any other immediate interrupt.

If a power fail/restore segqguence occurs while using the selector
channel, the <contents of the selector channel's internal
registers are undefined. I/0 instructions use the Register to
Pegister (RR) and the Register and Indexed Storage (RX)
instruction formats.

9-8 29-633 R0OO 1/79

9.8 I/0 INSTRUCTIONS FORMATS

I/0 instructions use the Register to Register (RR) and the
Register and Indexed Storage (RX) instruction formats.

9.9 I/0C INSTRUCTIONS

Following most I/0 instructions, the V flag in the condition code
indicates instruction time-out. This means that the operation
was not conpleted, either because the device did not respond at
all, or because it responded incorrectly.

In the Sense Status and Autcload instructions, the V flag can
also mean examine status. To distinguish between these two
conditions, the program should test bits 0:3 of the device status
byte. If all of these bits are zero, device time-out has
occurred.

The instructions described in this section are:

SS Sense Status

SSR Sense Status Register
ocC JQutput Command

OCR Qutput Command Register
RD Read Data

RDR Read Data Register

RH Read Halfword

RHR Read Halfword Register
Wh Write Data

WDR Write Data Register

WH Write Halfword

WHR Write Halfword Register
AL Autoload

SCFP Simulate Channel Progranm

29-693 ROO 1/79 9-9

9.9.1 Output Command

Output Command (0C)
Qutput Command Register (OCR)

Assembler Notation Op-Code Format
ocC R1,D2(X2) DE RX1,RXZ
oC R1,A2(FX2,5X2) DE RX3
OCR R1,R2 9E RR

Operation

Bits 22:31 of the register specified by R1 contain the 10-bit
device address. The processor addresses the device and transfers
an eight-bit command byte from the second operand location to the
device. Neither operand is changed.

Condition Code

G| L
010 Overation successful
00

cl Vv
010
011 Instruction time-out (FALSE SYNC)

Programming Notes

In the RR format, bits 284:31 of the register specified by R2
contain the device command.

These instructions are privileged operations.

9-10 29-693 ROO 1/79

9,9.,2 Sense Status

Sense Status (SS)
Sense Status Register (SSR)

-

Assembler Notation Or-Code Format
SS R1,D2(X2) DD RX1,RX2
SS R1,A2(FX2,5X2) DD RX3
SSR R1,R2 9D RR

Operation

Bits 22:31 of the register specified by R1 <contain the 10-bit
device address. The device 1is addressed and the 3-bit device
status is transferred to the second operand 1location. The
condition code is set egual to the least significant four bits of
the device status byte. The first operand is unchanged.

Condition Code

Bits U:7 of the device status byte are copied into the <condition
code. See the appropriate device manual for a description of
this status.

If the device 1s not in the system, the condition code is set to
0100 (false sync). In this case, the status byte returned is
Xx*o4*.

Programming Notes

In the RR format, the device status byte replaces bits 24:31 of
the register specified by R2. Bits 0:23 are forced to zeroe.

These instructions are privileged operations.

23-693 R0OO 1/79 9-11

9.9.3 Read TCata

Read LCata (RD)
Read Tata Register (RDR)

Assembler Notation Op-Code Format
RD 21,D2(¥2) DB RX1,RX2
RD R1,A2(FX2,S¥2) DB RX3
RDR R1,R2 98 RR

Operation

Bits 22:31 of the register specified by &1 contain the 10-bit
device address. The processor addresses the device and transfers

an B-bit data byte from the device to the second operand
location.

Condition Code

Cl{VI|G]|L
o000 O Operation successful
ci{1j101|0 Instruction time-out (FALSE SYNC)

Programming Notes

In the RR format, the 8~-bit data byte replaces bits 24:31 of the
register specified by R2. Bits 0:23 of the register are forced
to zero.

These instructions are privileged operations.

Instruction time-out does not prevent the second operand location
from teing modified.

9-12 29-693 ROO 1/79

9.9,4 Read Halfword

Read Halfword (RH)
Read Halfword Register (RHR)

Assembler Notation Op-Code Format
RH R1,D2(X2) D9 RX1,RX2
RH R1,A2(FX2,5%2) D9 RX3
RHR R1,R2 99 RR

Operation

Bits 22:31 of the register specified by R1 contain the 10-bit
device address. The processor addresses the device. If the
device is halfword-oriented, the processor transfers 16 bits of
data from the device to the second operand location. If the
device is byte-oriented, the processor transfers two 8-bit bytes
in successive operations.

‘Condition Code

C|V]|G]|L
c{0{0]|O Operation successful
ol1]07]0 Instruction time-out (FALSE SYNC)

Programming Notes

If the device is byte-oriented, it must be capable of supplyinjg
both bytes without intervening status checks. This instruction
does not perform status checking between the two byte transfers.

In the RR format, the data transferred from a halfword device
replaces bits 16:31 of the register specified by R2. Bits 0:15
are fcrced to zero. The first byte of data from a byte device
replaces bits 16:23 of the register specified by R2 and the
second byte replaces bits 24:31. Bits 0:15 of the register
specified by R2 are forced to zero.

In the RX format, the second operand must be 1located on a
halfword boundary. The first byte of data from a byte device
replaces bits 0:7 of the halfword operand 3in memory and the
second byte replaces bits 8:15.

These instructions are privileged operations.

Instruction time-out does not prevent the second operand location
from being modified.

29-693 R0OO 1/79

&)
|
Py
w

9.9.5 Write Data

Write Data (WD)
Write Data Register (WDR)

Assembler Notation Op-Code
WD R1,D2(X2) DA
WD R1,A2(FX2,SX2) DA
WDR R1,R2 SA

Operation

Bits 22:31 of the register specified by

device address. The processor addresses
an B8-bit data byte from the second
device. Neither operand is changed.

Condition Code

C|V| G| L
cjo0f{ 0] O Cperation successful
cl|1]0]| O Instruction time-out

Programming Notes

In the RR format, the 8-bit data byte is
24:31 of the register specified by R2.

Format

RX1,RX2
RX3
RR

R1 contain the 10-bit
the device and transfers
operand location to the

(FALSE SYNC)

transferred from bits

These instructions are privileged operations.

29-693 ROO 1/73

9.9.6 Write Halfword

Write Halfword (WH)
Write Halfword Register (WHR)

Assembler Notation Op-Cole Format
WH R1,D2(X2) D8 RX1,RX2
WH R1,A2(FX2,5X2) o} RX3
WHR R1,R2 98 RR

Operation

Bits 22:31 of the register specified by Rr1 contain the 10-bit
device address. The processor addresses the device. If the
device is halfword-oriented, the processor transfers 16 bits of
data from the second operand 1location to the device. If the
device is byte—-oriented, the processor transfers two 8-bit data
bytes in successive operaticns.

Condition Code

Operation successful
Instruction time-out (FALSE SYNC)

clyv
(0
cl1

o|o|n
OOt

Programming Notes

If the device is byte-orientei, it must be capable of accepting
both bytes without intervening status checks. This instruction
does not perform status checking hetween the two byte transfers.

In the RR format, data is transferred to a halfword device fron
bits 16:31 of the register specified by R2. The first byte of
data is transferred tc a byte device from bits 16:23 of the
register specified by R2; the second byte comes from bits 24:31.

In the RX format, the second operand must be located on a
halfword boundary. The first byte of data is transferred to a
byte device from bits 0:7 of the halfword operand in menory and
the second byte is transferred from bits B8:15.

These instructions are privileged operations.

29-693 ROO 1/79 2-15

9.9.7 Autolocad (AL)

Assembler Notation Op-Code Format
AL D2(X2) D5 RX1,RX2
AL A2(FX2,5X2) D5 RX3

Operation

The AL instruction loads memory with a block of data from a
byte-oriented input device. The data is transferred a byte aiL a
.time to successive memory locations starting with 1location
¥*'000¢C80°'. If the device status 1is bad, the operation is
terminated with V, G or L flags set. The 1last byte 1is 1loaded
into the memory location specified by the address of the second
operand. If any blank or zero bytes are input before the first
non-zero byte, these bytes are considered to be leader and are

ignored. All other zero bytes are stored as datae. The 38-bit
input device address is specified by memory location X'000078°.
The device command byte 1is specified by memory location

X*'000G79".

Condition Code

Operation successful or aborted
Examine status or time out

rnd of mediun

Device unavailable

| 2| DO M
Dl |O| <
| =IO
O

Programming Notes

This instruction may be used only with devices whose addresses
are less than, or equal to, X'FF'.

This instruction is a privileged operation.

Bad status termination results if any of the 1least significant
three bits of the device status are set.

The starting and ending addresses for this instruction are
relocatable. Address translation should be disabled before
attempting to use this instructione.

If the second operand address is less than Y°B0' the operation is
aborted.

The R1 field of this instruction must be zero.

Ye)
!

16 : 29-693 RO0 1/79

9.9.2 Simulate Channel Program (SCP)

Assembler Notation Op-Code Format
SCP R1,D2(X2) E3 RX1,RX2
SCP R1,A2(FX2,5X2) E3 RX3

Operation

The second operand address is the address of a Channel Command
Block (CCB). The buffer switch bit of the Channel Command Word
(CCW) specifies the buffer to be used for the data transfer. If
this bit 1is set, buffer 1 is used. If it is zero, buffer 9 is
used. If the byte count field of the current buffer 1is greater
than 2zero, the V flag in the condition code is set, and the next
sequential instruction is executed. If the byte count field is
not dreater than zero, the following data transfer operation is
performed.

If the CCHW specifies read, a byte of data is moved from bits
24:31 of the register specified by R1 to the appropriate buffer
location. If the CCW specifies write, a byte of data 1is moved
from the appropriate buffer 1location to bits 24:31 of the
register specified by E1. Bits 0:23 are forced to zero.

BAfter a byte has been transferred, the <count field ~of the
approrriate buffer is incremented by one. If the count field is
now greater than zero, and if the fast bit of the CCW 1is zaro,
the buffer switch bit of the CCW is complemented.

Condition Code

Count field is now zero

Count field is now less than zero
Count field is now greater than zero
Count field was greater than zero

[eliellelelle]
=2 |O|IO 0|
Ol =2 OO Y
O|O| =0t

Programming Notes

If the CCW specifies fast mode, buffer 1 may be used, but the
buffer bit 1is not switched when the count field becomes greater
than zero.

The second operand must be located on a fullword boundarye.

This instruction is a privileged operation.

29-693 ROO 1/79 3-17

9.10 AUTO DRIVER CHANNEL

The auto driver channel provides a means for multiplexing block
data transfers between memory and low or medium speed I/D
devices. The channel operation is similar, in some respects, to
interrupt driven I/0. The channel is activated as a result of a
service request from a device on the I/0 bus. Upon receipt of
such a request, the processor uses the device number to index
into the interrupt service pointer table. If the value contained
in the table is even, the processor transfers control to the
interrupt service routine. If the value is odd, it transfers
control to the auto driver channel.

To the auto driver channel, the address in the interrupt service
pointer table 1is the address plus one (makXing it odd) of a
Channel Command Rlock (CCB). The <channel <command block i3 a
channel program consisting of a description of the operation to
be performed, and a 1list of ©parameters associated with the
operatione. In addition to the functions of read and write, the
channel can also:

1. translate characters
2 test device status
3. chain buffers

4, calculate longitudinal and <cyclic redundancy check
values '

e« transfer control to software routines to take <zare of
unusual situations

9.11 CHANNEL CCMMAND BLOCK

9.11+1 Intrcduction

The Channel Command Block (CCB), as shown in Figure S9-1, consists
of a channel command word (16 bits) that describes the function;
count fields (1% bits each) for two buffers; final addresses (32
bits each) for two buffers; a <check word (16 bits) for the
longitudinal or cyclic redundancy check:; the address (32 bits) of
a translation table; and the address (16 bits) of a software
routine. The CCB requires 22 bytes of memorye.

C
)

Many interrupt service routines may be available at any time ¢to
service device requests. There may also be many channel command
blocks in the system ready to handle data transfers as reguired.
Each channel command block must be aligned on a fullword
boundary. The channel command block address, plus one, aust be
placed 1in the 1interrupt service pointer table location for the
device involved in the transfer.

9-18 29-693 ROO 1/79

617

0 15
0 CHANNEL COMMAND WORD (HALFWORD)
2 BUFFER BYTE COUNT (HALFWORD)
4 BUFFER 0 END ADDRESS (FULLWORD)
8 CHECK WORD (HALFWORD)
10 BUFFER 1 BYTE COUNT (HALFWORD)
12 . BUFFER 1 END ADDRESS (FULLWORD)
16 TRANSLATION TABLE ADDRESS (FULLWORD)
20 SUBROUTINE ADDRESS (HALFWORD)

Figure 9-1 Channel Command Block

9.11.2 Subroutine Address

To handle special situations, channel control is transferred to
the =software subroutine, whose address 1is <contained 1in the
channel command block. When this occurs, registers 0:4 of the
appropriate set have already been set up by the processor to
contain the old PSW, the device number, the device status, and
the address of the channel command block. The current PSW status
specifies run state, machine malfunction 1interrupt enabled,
higher level I/0 interrupts enabled, and all other interrupts
disabled.

The channel transfers control to the subroutine either
unconditionally (controlled by a bit in the <channel command
word), because of bad device status, because of special character
translation, or because it has reached the limit of a buffer. It
indicates 1its reason for transferring control by adjusting the
condition code as follows:

Unconditional transfer or special character
Bad status
Euffer limit

OO O
O OOl
- O Ol
O =2 Ot

The subroutine address in the CCB is a 16-bit physical address.
For this reason, the subroutine at that address, or at least the
first instruction of the subroutine, must reside in the first
64kb of memory.

29-693 ROO 1/79 9-19

9.11.3 Buffers

There is a space in the CCB to describe two data Dbuffer areas.
The data areas may be located anywhere in memory. The limits of
each data area are described by an address field and a count
field. The address field contains the physical address of the
last byte in the data area. This address is right Jjustified in
the fullword rrovided. If the device being controlled is a
halfword-oriented device, the final address must be odd. TIf the
device 1is a byte-oriented device, the address may be either odd
or even. The active buffer is selected by a bit in the channel

command word. When one buffer has been exhausted, the channel
may reverse the state of this bit and thus switch to the
alternate buffer. Automatic buffer switching is available only

for byte-oriented devices and if the Fast bit of the CCW is zero.
If the Fast bit is set, buffer 0 is always used.

The count field, in most operations, contains a negative number
whose absolute value 1is equal to one less than the number of
bytes to be transferred. The one exception is the case of a
single data transfer, for which the count field contains zero.

During data transfers, the channel adds the value <contained in
the «count field to the final address in order to obtain the
current address. It makes the transfer, using the <current
address, then increments the value in the count field by one for
a byte device or by two for a halfword device. When the count
field becomes greater than zero, the channel sets the G flag in
the <condition code and transfers control to the specified
software subrovutine. If the <count field is greater than zero
upon channel activation, the channel makes no transfer and
relinquishes control of the processor.

9.117.4 Translation

The translation feature 1is available only for byte-oriented
devices and if the Fast (F) bit in the CCW 1is zero. If
translation is specified, the fullword provided in the channel
command block must contain the address, right 3justified, of a
translation table. This table, which must be aligned ¢to a
halfword boundary, can <contain up to 256 halfword entries.
During data transfers, the channel multiplies the data byte by
two and adds this value to the translation table address. The
result is the address within the translation table of the
halfword entry corresponding to the data byte.

9-20 29-693 ROO 1/79

The <channel tests this entry, and, if bit 0 of the halfword is
set, it substitutes bits 8:15 of the halfword for the data byte
and proceeds with the operation. If bit O of the halfword is a
zero, the channel:

® does not increment the byte count for the appropriate buffer.

e puts the data byte, untranslated, in bits 24:31 of register 3,
of the aprrorriate set, and forces bits 0:23 of register 3 to
Zero.

e multiplies the value contained in the translation table by
twc, and transfers control to the software special character
translation routine located at the resulting address.

Upcn transfer to the translation subroutine, registers 0 and
1 contain the old PSW; register 2 contains the device number:
register 3 ccntains the untranslated character; and register
4 <contains the address of the channel command block. The
current PSW indicates run state, machine malfunction interrupt
enabled, higher level I/0 interrupts enabled and all other
interrupts disabled. The condition code is za2ro.

9.,11.5 Check Wcrd

The check word in the <channel command block <contains the
accunulated residual for longitudinal or «cyclic redundancy
checking. The initial value for the check word is usually =zero.
(There are data dependent exceptions, e.g., where initial
characters are not to be included in the check.)

The longitudinal check i1s an exclusive OR of the character with
the check vord.

The cyclic check uses the formula for CRC 16:

15 +X2 +1

Xls +X
If the data communication option is equipped, the cyclic check
may optionally use the formula for CRC SDLC:

6 12

1'% +x'% +x%+1

On input, if both redundancy checking and translation are
required, the <character 1is translated first; then the cyclic
redundancy check is done using the original character input
rather than the translatad character. On output, the translated
character participates in the redundancy check. Redundancy
checking may be used only with byte devices, and 1is only
performed if the Fast bit (F) of the CCW is zero.

29-693 ROO0 1/73 9-21

9.11.6 Channel Command Word
The Channel Command Word (CCW), as shown in Figure 9-2, consists

of ¢two parts. Bits 0:7 contain a status mask. Bits B8:15
describe the channel operation.

618

0 7 8 9 10 11 12 15
STATUS MASK E RC |BIRWT]|F
\ /
—— FAST
TRANSLATE
EXECUTE L READ/WRITE (0/1)
BUFFER SWITCH

REDUNDANCY CHECK TYPE

Figure 9-2 Channel Command Word

Status Mask

On every channel operation, if the Execute (E) bit 1is set, the
status mask is ANDed with the device status. This operation does
not change the status mask. If the result is zero, the channel
proceeds with the operation. If the result is non-zero, the
channel sets the L flag in the condition code, and transfers
control to the specified software subroutine.

Fxecute Bit (F)

If this bit 1is zero, the —channel unconditionally transfers
contrcl to the specified subroutine, without taking any other
action. The condition code is zero. If this bit 1is set, the
channel continues with the operation as specified in the channel
command word.

Fast Bit (F)

If this bit is set, the channel performs the I/0 transfer in the
fast mode. In this mode, buffer switching, redundancy checking,
and translation are not allowed. This bit must be set for
halfwerd devices. If this bit is set, buffer 0 is always used.

Read/Write Bit (R/W)

This bit indicates the type of operation. If this bit is zero,
a byte or a halfword is input from the device. If this bit is
set, a byte or a halfword is output to the device.

9-22 29-693 R0OO 1/79

Translate Bit (1)

If this bit is set, and the Fast bit 1is =zero, the channel
translates the data byte, using the translation table defined in
the CCB.

Redundancy Check Type Bits (RC)

These two encoded bits specify the type of redundancy check
required. No <check 1is performed if the fast bit is set. CRC
SDLC may be performed only if the data communication option 1is
installed. If the option is not installed, CRC BISYNC (CRC 16)
is performed when SDLC 1is specified. The following table
contains the valid types of checks:

Bit Bit
10 11 Redundancy Check Type
0 0 LRC
0 1 CRC BISYNC
1 0 kEeserved - must not be specified
1 1 CRC SDLC - Should only be specified if
the data communication option is installed.

Puffer Switch Bit (B)

¥hen zero, this bit specifies that buffer 0 is to be used for the
transfer. If it 1is set, buffer 1 is used. The channel chains
buffers, when the count field becomes greater than =zero, by
complementing the buffer switch bit before transferring control
to the specified software routine. Buffer 0 is always used if
the Fast bit in the CCW is set.

9.11.7 Valid Channel Command Codes
The fcllowing is a list of valid codes for the <channel command

word. Note that only the first three may be used with halfword
devices.

23

O
L

29-693 200 1/79

CHANNEL CCMMAND WORD 8:15

HEXADECIMAL BINARY
00 0€000000
81 10000001
85 10000101
80 1000000
82 10000010
84 10000100
86 10000110
88 1€001000
8 A 1001010
8C 1001100
8E 1001110
90 10010000
92 1010010
94 1010100
96 16010110
98 10011000
9A 1011010
9¢C 1011100
9E 1€011110
BO 1110000
B2 10110010
Bl 1C110100
B6 1€110110
B8 16111000
BA 1€111010
BC 10111100
BE 10111110

9-24"

MEANING

Transfer to subroutine

Read fast mode
Write fast mode

LRC,
LRC,
LRC,
LRC,
LRC,
LRC,
LRC,
LRC,

Buffer
Buffer
duffer
Buffer
Buffer
Buffer
Buffer
Buffer

CRC BISYNC,
CRC BISYNC,

translate

CRC BISYNC,
CRC BISYNC,

translate

CRC BISYNC,
CRC BISYNC,

translate

CRC BISYNC,
CRC BISYNC,

translate
CRC SsDLC,
CRC SDLC,
translate
CRC SDLC,
CRC SDLC,
translate
CRC sDLC,
CRC SDLC,
translate
CRC SDLC,
CRC SDLC,
translate

0, read
0, read

14

0, write
0, write,

1, read
1, read
1, writ
1, writ
Buffer
Buf fer

Buf fer
Buffer

Buffer
Buf fer

Buffer
Buffer

Buffer O,
Buffer 0,

Buffer 0O,
Buffer O,

Buffer 1,
Buffer 1,

B
B

u
4}

1,
1.

f
£

D ®
[Ba]

f
fe

’
e

e,
0,
0,

0,
0,

1,
1,

1,
1,

translate

translate

translate

translate
read
read,

Write
Wwrite,

read
read,

Wwrite
write,

read
read,

write
write,

read
read,

Wwrite
write,

29-693 ROO 1/79

9.11.8

General Auto Driver Channel Programming Procedure
(see Figure 9-3)

Set up interrupt service pointer table to vector to
error routines for undefined devices.

Set up address of channel command word + 1 (odd) in
table at 2 times device number plus X°'D0*' (start of
interrupt service pointer table).

Set up complete channel command block.

Set up device and enable device interrupt.

Enable I/0 interrupts in PSW (auto driver channel
performs I/C operation).

Check for good termination of auto driver <channel
operation when the subroutine defined in the CCB is
enterede.

29-693 ROO 1/79 9-25

620

CHANEL 1

NORMAL

OUTPUT DATA
HALFWORD,
INCREMENT

BUFFER OBYTE
COUNT BY 2

o]
1

FASTMODE

Y

R4 =-A(CCB),
FORCED EVEN

‘FAST’
BIT SET IN
ccw?

BUFFER O
BYTE COUNT
POSITIVE

ADD BYTE COUNT
TO BUFFER 0 END
ADDRESS, TO
FIND ADDRESSED
DATABYTE

DEVICE
?

YES

NO

“AND"” STATUS
MASK WITH
INTERRUPT
STATUS

EXAUTO

NON-
ZERO

RESULT
?

RESTORE
ENTRY
PSW & LOC

TEST WAIT BIT

HALFWORD
DEVICE
?

EXSUBO

PSW =~
*28N0’

EXSUB1

PSW <o

h 28N’

EXSUB2

PSW ——
"28N2’

LOC«CCB
SUBROUTINE
ADDRESS

OUTPUT DATA
BYTE,
INCREMENT
BUFFEROBYTE
COUNT BY 1

INPUT DATA
8YTE,
INCREMENT
BUFFEROBYTE
COUNT BY 1

[

26

COUN
NOW
POSITIVE

EXAUTO

Figure 9-3

A

@ EXsuB2

EXECUTE AT
SUBROUTINE Y
ADDRESS
QUEUE FLAG
- FOR
MALFUNCTION
IN CHANNEL
INPUT DATA 1
HALFWORD,
INCREMENT MMEINT
BUFFER 0 BYTE
COUNT BY 2
MACHINE MALFUNCTION
INTERRUPT
NOTES:

ON ENTRY FROM AUTOIO,
PSW = ‘000028NX’

WHERE N = ATTENTION LINE CAUSING INTERRUPT
X =4 LS DEVICE STATUS BiTS

RO = OLD PSW
R1=0LD LOC

R2 = INTERRUPT DEVICE ADDRESS
R3 = INTERRUPT DEVICE STATUS

MPE STATUS IS TRUE IF A
MACHINE MALFUNCTION

OCCURRED WITHIN THE CHANNEL.

Auto Driver Channel Flowchart

29-693 ROO

1/79

619

NORMAL

REDCHK

GENERATE NEW
CHECKWORD USING
CRC16 ALGORITHM

IN MICROCODE,
WRITE TO MEMORY

GENERATE
NEW CHECKWORD
USING COMM
ASSIST UNIT,

WRITE TO MEMORY

SET UP TO
USE
BUFFER 1
EXCLUSIVE OR
SETUPTO DATA WITH
USE CHECKWORD,
BUFFER O REWRITE TO
MEMORY
|
)
BUFFER
BYTE COUNT Y 18 | exauto RETURN
POSITIVE
?
N
ADD BYTE COUNT
TO BUFFER END
ADDRESS, TO
FIND ADDRESSED
DATABYTE
NFREAD
N INPUT
DATABYTE
NFWRIT
SUBROUTINE
TRANSL

OUTPUT
BYTE

1

SUBROUTINE
REDCHK

INCREMENT
BYTE

{

RETURN

NOTE: BYTE USED IN I/O FIGURES
IN CHECKWORD

SUBROUTINE
TRANSL

3

SUBROUTINE
REDCHK

|

WRITE BYTE
TO

COUNT -
BY 1, WRITE
TO MEMORY

BYTE

COUNT
POSITIVE
?

COMPLEMENT
ccs
BUFFER BIT

1A EXSUB2

Figure 9-3

29-693 ROO 1/73

EXAUTO

Autce

MEMORY

TRANSL

2 TIMES DATABYTE
IS TRTBL
INDEX. READ
ENTRY

FETCH
TRANSLATION
BYTE

RETURN

LOC =2 TIMES
TABLE ENTRY
{ADDRESS OF
TRANSLATION
ROUTINE)

EXIT

NOTE: USER SOFTWARE
MUST UPDATE BUFFER
BYTE COUNT AS
APPROPRIATE

Driver Channel Flowchart (Continued)

9-27/9-28

CHAPTER 10
STATUS SWITCHING AND INTERRUPTS

10.1 INTRODUCTION

The processor®'s interrupt system provides a mechinism for escape
from the normal processing sequence to handle external and
internal events. The software routine that 1is executed in
response to an interrupt is called an interrupt service routine.
Before transferring control to a service routine, the current
state of the processor is preserved so that, upon completion of
the service routine, the execution of an interrupted program may
be resumed.

Interrupts may be classified as being synchronous or
asynchronous, derending on whether they occur in fixed
relationship tc¢ the execution of instructions, or whether they
occur at random times due to events external to the processor.
Fxamples of asynchronous interrupts include power fail, console
attention, and reripheral device interrupts.

Synchronous interrupts occur due to fault conditions, or in the
case of software interrupts, may Dbe programmed to occur.
Examples of fault conditions which cause synchronous interrupts
include non-correctahbhle memory errors, illegal instructions, and
arithmetic faultse.

Software interrupts occur when the Supervisor Call (SVC) or
Simulate Interrupt (SINT) instructions are executed, or as a
result of adding an entry to the system gqueue. The Breakpoint
(RRK) instruction <causes program execution to be suspended so
that the system console terminal may be activated. See the
chapter on the System Console Terminal.

Each interrupt condition 1is —reset when the correspondiing
interrupt occurs.

29-633 F0OO 1/79 10-1

621

10.2 PROGRAM STATUS WORD (PSW) AND RESERVED MEMORY LOCATIONS

The Program Status Word (PSW), shown in Figure 10-1, is a 6u4-bit
guantity that controls the operation of the processor. The PSW
provides information about various states and conditions
affecting the operation of the processor. The PSW is composed of
twvo fullwords: bits 0:31 are the status word, and bits 32:63 are

the location counter. The various PSW fields are described

below:

0 12 1314 15 16 17 18 19 20 21 22 23 24 27 28 29 30 31
Fil F M
Lil Wit ML JAJQ]P R CIVIG{L.
MmipP U C

STATUS WORD

32 43 44 68

LOCATION COUNTER

LOCATION COUNTER

Figure 10-1 Program Status Word (P3#)

Bits 0 - 12 Unused, must be zero

Bit 13 FLM Floating-point masked mode

Bit 14 1IP Interruptible instruction in progress
Bit 15 Unused, must be zero

Bit 16 I Wait state

Bit 17 I I/0 interrupt mask

Bit 18 M Machine malfunction interrupt mask
Bit 19 FLU Floating-point underflow mask

Bit 20 I I/0 interrupt mask

Bit 21 MAC Memory access controller mask

Bit 22 0 System gueue service interrupt mask
Bit 23 P Protect mode

Bits 24 - 27 R Register set select field

Bits 28 - 31 c,Vv,G,L Condition code

Bits 32 - 43 Unused, must be zero

Bits 44 - 63 Location counter

10-2 29-693 R00 1/79

10,21 PSW Status Word

Bits 0:31 of the PSW are called the status word. This word
contrcls interrupts, defines the =status of the processor, and
contains the condition code. The following sections provide
detailed definitions of various states of the processor and how
the status word controls then. Unused bits of the status word
must always be set to zero.

10e2+1«1 Floating-Point Masked Mode (FLM)

On processors Wwith the floating-point option, when bit 13 of the
current PSW is Zero, A program may execute any legal
floating-point instruction.

When bit 13 of the current PSK is set, the processor 1is 1in the
Floating-Point Masked (FLM) mode. A program running in this mode
is not allowed to execute floating-point arithmetic instructions.
If execution <c¢f any floating-point arithmetic instruction is
attempted in FLF¥ mode, an illegal instruction interrupt occurs.
If the processcr is in FLM mode when a context switch is made by
the system program and the processor state must be saved, the
contents of the floating-point registers need not be saved. This
results in a faster context switch.

10¢2.1.2 Interruptible Instruction in Progress (IIP)

PSW bit 14 is set bhy the processor while an interruptible
instruction 1is 1n progress, and is zero when the interruptible
instruction termlnates. This bit is set by the processor to
indicate that the scratchpad registers contain valid parameters
for the interrurtible instruction and that these parameters need
not be recalculated before resuming the interrupted instruction.

If bit 14 of the current PSA is set when the processor transfers
contrcl to a software interrupt service routine, that routine
must not allow thes contents of the scratchpad registers to be
modified before the interruptible instruction 1is resumed. The
STpS, LDPPS, IS5V, and ISRST instructions provide the means for
saving and restoring these registers if they must be used by the
interrupt service routine.

10.2.1.3 Wait State (b!')

W¥hen FSW bit 16 is set, the processor is in the wait state. In
the wait state, the normal fetch instruction/execute
instruction/fetch next instruction sequence is suspended. While
in the wait state, the processor 1is responsive to console
attention interrupts and primary power fail, as well as any
interrupts specifically enabled by the current PS¥W.

PSW bit 16 is zero when the prrocessor is executing instructions.
This bit is forced to zero whenever the single-step, run switch,
or system console terminal is used to initiate instruction
execution. This bit is not forced set by entry to the console
mode.

|
W

29-693 200 1/79 10

If an interrupt occurs, PSW bit 16 is set according to the new
PSW defined for servicing the interrupt. HBit 15 of the new PS¥
for any I/0 interrupt is zero.

Except for an 1/0 interrupt, the state of bit 16 of the new PSH
is tested as the PSW is loaded. If bit 16 of the newly loaded
PSW is set, the pnrocessor entars the wait state, provided that no
interrupt is still pending. A1l rending interrupts are serviced
before the processor enters the wait state.

10e2+1e4 I/0 Interrupt Mask (I)

PSW bits 17 and 20 are wused together ¢to enable or disable
recognition of interrupt requests generated by peripheral devices
on any of the four interrupt levels, as detailed below:

BIT 17 RIT 20 MEANING
0 0 All levels disabled
0 1 Higher levels enabled
1 0 All levels enabled
1 1 Current and higher levels enabled

The interrupt levels are numbered from 0 to 3, with level 0 being
the highest pricrity interrupt level and level 3 being the lowest
priority interrupt level.

An I/0 interrupt request is queued until the processor
acknowledges the interrupt wunless the request 1is programmed
reset, or power fail occurs. The state of PSW bits 17 and 20 is
ignored by the Simulate Interrupt (SINT) instruction.

10.2.1.5 MHachine Malfunction Interrupt Enable (¥)

PSW bit 18 is used to enable and disable detection of various
malfunction conditions within the —rprocessor and the resulting
machine malfunction interrupt. #®hen this bit is set, any of the
following conditions results in a machine malfunction interrupt.

early power failure

pover restore

non-correctable memory data error
ncn-configured memory address

The Model 3220 Processor is designed with the concept that all
software must enable the machine malfunction interrupt for
maximum data integrity. Unlike other processors, Model 3220 does
not require that this interrupt ever be disabled. The processor
resets each detected interrupt condition as it occurs.

While performing a machine malfunction interrupt PSW swap, the
processor sets PSW bit 18 to allow error detection for the new
PSW data fetched from memory. If the new PSW cannot be fetched
correctly, the processor effectively stops by entering the
console mode. This prevents a runaway situation in the event of
a double fault. B

10-4 29-693 ROO 1/79

If PSW bit 18 is zero, any non-correctable memory data error is
logged by the optional error logger. Cache accesses to memory
using a non-ccnfigured memory address result in undefined data
being loaded into the optional high-speed cache, with no error
indication. N¢ machine malfunction interrupt occurs for any of
the reasons given above. A machine malfunction due to early
power failure 1is queued until PSW bit 18 is set by software, or
until automatic shutdown occurs. The interrupt is not queued for
any other reason.

10e2.1.6 Floating-Point Underflow Interrupt Enable (FLU)

PSW bit 19 controls response 0of the processor to an arithmetic
underflow resulting from a single- or double-precision
floating-point arithmetic operation.

If this bit is set when the underflow occurs, an arithmetic fault
interrupt occurs, and the participating floating-point registers
remain unchanged.

If this bhit is zero when the underflow occurs, the result of the
operation is rerlaced by zero, and the condition code is set to
0100 (V-flag only), as defined in the description of the specific
floating-point instruction.

10.2¢1.7 Hemory Access Controller Enable (MAC)

PSW bit 21 is used to enable and disable the relocation and
protection programmed 1into the Memory Access Controller (MAC).
When this bit is set, relocation, protection, anid the MAC fault
interrupt are enabled. When this bit 1is zero, relocation,
protection, and the MAC fault interrupt are disabled.

10.2.1.8 Systenr Queue Service Interrupt Enable (Q)

If bit 22 of the new PSA loaded by any of the instructions listed
below is set, the state of the system queue is tested. If the
system queue is not empty, a System Queue Service (SQS) interrupt
occurs. If ¢the system gueue is empty, the next instruction is
fetched and executed, according to the newly-loaded PSWe.

If bit 22 of the newly-loaded PSW is zero, the S32S interrupt 1is
disabled.

The following instructions test the state of the system queue:

MNEMONTIC MEANING
EPSR Exchange Program Status ‘Register
LPS Load Process State
LPSW Load Program Status Worid
LPSWR Load Program Status Word Register

N

29-693 ROO 1/79 10-

10.2+1.9 Protect Mode Enable (P)

When PSW bit 23 is set, the processor is in the protect mode.
Any attempt by a program running in this mode to execute a
privileged instruction causes an illegal instruction interrupt to
occur. The processor does not attempt to execute the offending
instruction. The Breakpoint (BRK) instruction is a privileged
inpstruction.

When PSW bit 23 is zero, the processor is in privileged mode. A
progran running in vprivileged mode may execute any 1legal
instruction,. within the <constraints 1imposed by the system

configuration and the state of PSW bit 13 (FL¥).

1021410 Register Set Select Field (R)

BRits 24, 25, 26, and 27 of the <current PSW select the active
general register set. Although 16 different sets may be
specified by using the four bits of this field, only eight sets
of general regqisters are implemented in this processor. The
implemented sets are numbered 0, 1, 2, 3, 4, 5, 6, and 15,

Set 0, 1, 2, or 3 is automatically selected by the processor in
handling an I/0 interrupt on the corresponding interrupt 1level.
Registers 0 through 4 of that set are used to maintain
information pertaining to an I/0 interrupt request which is
acknowledged on the I/0 interrupt level corresponding ¢to the
selected register set. Therefore, sets 0, 1, 2, and 3 should not
be used for general purpose processinge. These sets may, however,
be wused for processing internal interrupts, which use registers
11 through 15 of the selected set to maintain information
pertaining to the interrupt.

Sets 4, 5, 6, and 15 may be allocated according to processing
needs, without special consideratione. Sets 7 through 14 are not
implemented. An attempt to select a set which is not implemented
may result 1in the selection of any set, without any special
indication of the error.

When a new PSW is loaded, the specified register set becomes the
active set for the next instruction executed.

PSW BRIT SELECTED REGISTER SET

z4 25 26 27

0 0 0 0 0

0 0 0 1 1

0 0 1 0 2

0 0 1 1 3

0 1 0 0 4

0 1 0 1 5

0 1 1 0 6

1 1 1 1 15

10

{
o

29-693 ROO 1/79

10¢2+1.11 Condition Code (C, V, G, L)

PSW bits 28:31 contain the condition code. As part of the
execution of <certain instructions, the state of the condition
code may be updated to reflect the nature of the result. Not all
instructions affect the condition code.

For most interrupts, bits 28:31 of the new PSW are simply copied
to the <condition code. For immediate interrupts, the least
significant four bits of the status byte for the interrupting
device are <coried to the condition code after the new PSW has
been loaded. Nc restrictions are imposed on the <condition code
field of a new PSW contained in a memory location or register.
Any condition ccde value may be specified,

The condition ccde of the <current PSW may be tested by the
conditional branch instructions described in Chapter 4,

10.2.2 PSW Location Counter (LOC)

PSW bits 32:63 comprise the location counter, which contains the
address of the instruction currently being executed by the
processor. When the current instruction is successfully
completed, the value <contained in the 1location counter is
incremented by the length of the instruction in bytes, and the
instruction at the resulting addrass is fetched.

An 1instruction which results in a branch being taken causes the
contents of the 1location counter to be replaced with the
effective branch address; iere, with the address of the
instruction to which control 1is to be transferred. The
instruction at the new address 1is the next instruction to be
fetched and executed.

When an interrupt occurs, the entire PSW, bits 0:63, is replacede.
If bit 16 of the new PSW (the wait bit) is set, the 1instruction
indicated by the new contents of the location counter is not
fetched. Manual intervention is required to cause the wait bit
to be zero, and the instruction to be fetched and executed. If
an interrupt causes the PSW with the wait bit set to be replaced
by another new PSW that has the wait bit zero, the instruction
indicated by the location counter of that new PSW is fetched and
executed.

If an instruction has not been successfully completed when an
interrupt PSW swap occurs, the 64-bit PSW, in effect for the
instruction being executed at the time of the interrupt, is saved
bhefore the interrupt handler is entered. The lozcation counter in
the <caved PSW points to the instruction being executed at the
time the interrupt occurred. If the interrupt occurs after the
successful comrletion of one instruction and before beginning
another, the location counter in the saved PSW points to the next
instruction to Lte executed.

See the section on the Interrupt System for an explanation of

old, current, and new PSA, and of the use of these PSWs by the
processor in scheduling interrupt service routines.

29-693 R0OO 1/79 10

'
~J

10e2¢3 Reserved Memory Locations

Physical memory locations X°'000000° - X'0002CF*' are reserved
memory locations. For systems with expanded I/0 interrupt
service pointer tables, physical memory 1locations X'0002DQ* -
X*000U4CF* or X'0002D0* - X'0008CF* are also reserved memory
locations. These locations contain assorted information used 1in
servicing interrupts, as shown in Figure 10-2. Use of data in
these locations as the result of an interrupt is detailed in the
section describing the interrupt.

X*000000°* - X*OCOO1F’ Reserved, must be zero

X*'000020* - X*'0cCC027" Machine malfunction interrupt old PSW

X'000028°* - X'0CC02B" Used by consocle service microcode

X*00002C* - X*0COO2F" LM effective address word

X*'000030* - X*'0G0037" Illegal instruction interrupt new PSW

X*'000038* - X*'0OCOQ3F* Machine malfunction interrupt new PSW

X*0000u40" - X'0O0CO0OUL3* Machine malfunction status word

X*ooo0o0u4* - X*0C00u47° Machine malfunction virtual (program)
address word

X*o0o0o0u8* - X*'0CCO4F"* Arithmetic fault interrupt new PS¥

X*000050* - X'OCOO7F"* Bootstrap loader and device definition
table

X'000080" - X'0C0083" 3yYstem queue pointer

X*000084* - Y'QC0087"° Power fail save area pointer

X'000088°* - X'0CO08F" System queue service interrupt new P35W

X*'000090*' - X'0GC0097° MAC fault interrupt new PSH

X'000098* - X'0C0O09B" Supervisor call new PSW status word

X*'00009C* - X*OCOORR" Supervisor call new PSW location
counter values

X'000CBC* - X'000NCT* Reserved, must be zero

X*0000C8"' - Y*'0OCOOCF®* Data format fault new PSH

X'000CDO* - ¥'0C02CF° Interrupt service pointer table

X*0002D0*' - X*'OCOUCF"* Expanded interrupt service pointer table

X*'000u4D0* - X'OCOS8CF' Expanded interrupt service pointer table

Figure 10-2 Reserved Memory Locations

10.3 INTERRUPT TIMING AND PRIORITY
10.3.1 Maskable and Non-Maskable Interrupts

Maskalle interrupt conditions are controlled by bits in the PSW.
When a request to interrupt due to a maskable condition occurs,
the corresponding control bit in the PSW 1is examined. If the
control bit indicates that the interrupt is enabled, an interrupt
is taken and control is transferred to the appropriate service
routine. The paragraph describing each interrupt provides
details about the control bit(s), how the interrupt is enabled or
disabled, and the effects of enabling or disabling an interrupt.

Non-maskable interrupts are those which have ho corresponding
control bits in the PShe Examples of non-maskable interrupts are
SVC, SINT, Illegal Instruction, and Ccnsole Attention. Sections
describing each interrupt provide further details.

Figure 10-3 shows the various maskable and non-maskable
interrupts.

10 29-693 ROO 1/79

|
[e]

10432 Interrupt Timing

Asynchronous interrupts are normally permitted to occur only
after execution of an instruction has been completed, and before
execution of the next instruction begins. However, asynchronous
interrupts are permitted ¢to occur at the end of any iteration,
while an interruptible instruction is being executed.

A synchronous interrupt is permitted to occur at the time the
condition <causing the interrupt is detected. The SQS interrupt,
which occurs at some indefinite time following addition of an
entry to the system gqueue, 1is called a deferred synchronous
interrupt. A synchronous interrupt due to a fault causes the
offending instruction to be aborted with no modification of the
contents of registers or memory 1locations resulting from
execution of that instruction. Fixed and floating-point
L.oad/Store Multiple, and Store Double Precision are exceptions to
this rule. In the case of an interruptible instruction, the
current iteration ot the instruction 1is aborted by such an
interrupt without modification of the contents of registers or
memory as a result of the faulted iteration.

For all interrupts, the old PSW location counter presented to the
interrupt handler points to the next 1logically-executed
instruction in the interrupted ©programe. If the interrupt 1is
caused by a fault, the instruction causing the fault was not
completed and is logically the next instruction to be executed.
The ¢ld PSW 1location counter presented to the fault interrupt
service routine, therefore, always points to the instruction
which caused the fault.

Multirle memory accesses are required for the manipulation of a
circular list structure using the ATL, ABL, RTL, or RBL
instruction. For each of these instructions, the list header 1is
not updated until the body of the list has been successfully
accessed. For the RTI and RRL instructions, no registers are
modified unless the list element has been successfully accessed,
and the list header has been successfully updated.

103.2 Interrupt Precedence
Considering the instant of instruction fetch request as the time

of reference, interrupts have the following precedence (highest
to lowest):

INTERRUPT PRECEDENCE TABLE

Synchroncus Fault interrupts
Interrupts System gueue service
Primary pcwer fail/restore
Asynchronous Consola attention
Interrupts Machine malfunction interrupt due to early

power tail
I/0 interrupts

29-693 R0OO 1/79 10-3

oL-01

6L/L 008 £€69-6C

622
NOTES (c) SYNCHRONOUS INTERRUPTS ARE RECOGNIZED AS
THEY OCCUR ASYNCHRONOUS INTERRUPTS ARE
(a) NUMBERS IN CIRCLES INDICATE THE PRIORITY OF RECOGNIZED BETWEEN THE COMPLETION OF
INTERRUPTS. 1 REPRESENTS THE HIGHEST PRIORITY. CURRENT INSTRUCTION AND THE INITIATION OF
THE NEXT INSTRUCTION. MODEL 3220 INTERRUPTS
] FAULTS ABORT THE CURRENT INSTRUCTION THE
OLD PSW POINTS TO THE FAULTING INSTRUCTION. (d) SQS MAY OCCUR ONLY AS PART OF THE LPSW
OTHER INTERRUPTS ARE RECOGNIZED AT THE END LPSWR, EPSR, AND LDPS INSTRUCTIONS.
OF THE CURRENT INSTRUCTION AND OLD PSW !
POINTS TO THE FOLLOWING INSTRUCTION
SYNCHRONOUS ASYNCHRONOUS
|
FAULTS @ SOFTWARE INTERRUPTS
(SEE NOTE (i)
SYSTEM
BREAKPOINT
MASKABLE NON MASKABLE NONMASKABLE (BRK) mASKABLE NON-MASKABLE MASKABLE
MACHINE ARITHMLTIC ARITHMETIC ILLEGAL DATA MEMORY SUFERVISOR SIMULATE SYSTEM MACHINE CONSOLE MACHINE 170 INTERRUPTS
MALFUNCTION FAULT FAULT INSTRUCTION FORMAT ACCESS CALL (SVC) INTERRUPT DUEUE MALFUNCTION ATTENTION MALFUNCTION
INTERRUPT FAULT FAULT CONTROL (SEE NOTE () (SINT) SERVICE INTERRUPT INTERRUPT @
{MEMORY MALFUNC 150s)
TION FAULT) © ® ® ®
(2
FLOATING Pl aTineg
POINT POINT N
p— NON @— ¢ XPONINT S TF—IILHEAL p— INVALID P SEGNENT NONPRESENT $— AUTOMATIC p— EARLY
CORRECT AR 1 UNDER LOW OVERELOW 0P COnt SIGN DIGIT FAULT SHUTDOWN POWER
MEMOR Y UNPACKED DATA {POWER FAIL} :)/EITLECT
ERROA p—— 1D PT O (LLiGAL @— SEGMENT LIMIT FAULT
QUOTIENT SUB FUNCTION @ INVALID @— AUTOMATIC RESTART
@—— NON OVERFLOW DATA DT — Wil PROTECT VIOLATION POWER
UNPACKED DATA (POWER RESTORATION) HESTORATION
CONFIGURED -
MEMORY b—— CiviDE Il":is\#zLJSTL'gN o— iaiewon P— LXECUTE PROTECT VIOLATION r_DEYECT
BY ZERO ! " "
ADDRESS FLOATING PT IN PROTECT ALIGNMENT FAULT
MODF
o FULLWORY
DIVIDE R N .
Br 7E10 E(L)?NATT\N«» ALIGNMENT AULT
FIXED T INSTRUC TION
PN ELT e
MASKED
MCDE

Figure 10-3

Interrupt System Architecture

Schematic Diagram of The Model 3220

Fault interrupts are caused by various conditions that have the
following logical precedence in descending priority order.

°® Memory access controller fault on an instruction fetch

o Machine malfunction fault due to memory malfunction on an
instruction fetch

e JIllegal instruction fault
¢ JIllegal sub-function fault

e Data format fault due to alignment error on a data read/write
operation

@ Memory access controller fault on a data read/write operation

o Machine malfunction fault due to memory malfunction on a data
read/write oreration

°® Data format fault for other than boundary alignment error

° Arithmetic fault

Since any fault interrupt causes execution of an instruction to
be abertad at the point of the fault interrupt condition, no more
than one fault interrupt conlition can occur at a time. However,
other interrupts 1in the synchronous and asynchronous interrupt
classes given in the preceding Interrupt Precedence Table can
occur simultaneously. In such a case, the order given in the
table governs the servicing sequence for the interrupts.

10;3.Q Interrurtible Instructions

For any interrurtible instruction, execution <consists of the
following phases: instruction fetch, 1instruction decode, an
iterative loop, and termination. An interrupt during any ©phase
of an interruptible instruction does not affect the operation of
the instruction. It may simply be re-executed once the interrupt
has been serviced. An interrupt during the iterative phase of
the instruction <causes the processor to resume the iterative
phase when the instruction 1is re-executed, as though the
interrupt never occurred. If the interrupt was caused by a
fault, the iteration which resulted in the interrupt is repeated
when the instruction is re-executed.

26-693 R0OO 1/79 10-11

When an interrupt occurs during execution of an interruptible
instruction, except for Read Control G5Store (RDCS) or Hrite
Control Store (WDCS), the processor sets bit 14 (IIP) of the old
PSW presented tc the interrupt service routine. If PSW bit 14 is
set when an interruptible instruction is executed, the processor
assumes that valid information for controlling the instruction is
contained in the scratchpad registers. For this reason, if
return to the interruptible instruction is anticipated, the
contents of the scratchpad registers must be preserved when PSW
bit 14 is set. It is also important that the contents of these
registers be saved or restored as necessary during a context
switch by the system progran.

To abort an interruptible instruction when it is interrupted, PSW
bit 14 must be forced to zero before any subsequent interruptible
instruction (except RDCS or WDCS) is attempted.

CAUTION

SOFTWARE HMUST NEVER SET PSW 3BIT 14
UNLESS RESUMING EXECUTION OF THE
INTERRUPTIBLE INSTRUCTION THAT CAUSED
EIT 14 OF THE PSH TO BE SET.
RESUMPTION oF ANY INTERRUPTIBLE
INSTRUCTION MUST NEVER BE ATTEMPTED IF
THE CONTENTS OF THE SCRATCHPAD
FEEGISTFRS ARE NOT KNOWN TO HAVE BEEN
FRESERVED BETWEEN INSTRUCTION
INTERRUPTION AND RESUMPTION.

10.4 FROCESSCR MODES

At any given time, the processor may be in the <console mode or
run mode. The single-step mode provides a means for alternating
between the console and run modes. Wait and run states only have
meaning for the run mode.

10.4.1 Consocle Mode

While the processor is dedicated to communicating with the system
console terminal, it is said to be in the consola mode. In this
mode, program execution is suspended so that the user may examine
and modify ¢the data contained in certain registers and memory
locations.

Appendix F provides a flowchart for the console service routine.
The console mode may be entered in any of the following ways:

1« The Breakpoint (BRK) instruction is executed by a
running program when PSW bit 23 is zero.

2. Execution of an instruction is completed while in the
single-step mode.

3. The HALT/RUN Switch is depressed momentarily while the
processor is in the run mode.

10-12 29-693 ROO 1/79

4, Following a system initialization sequence, backup power
to memcry is found not to have been maintained within
regulation, and the LSU is not enabled when the segquence
is comrlete.

S5« Following a system initialization sequence, if backup
power to memory was maintained within regulation, but
the LSU is not enabled and the contents of physical
memory 1location X'000028* indicate that the processor
was in the console mode when system initialization
occurred.

€. An attempt to fetch a machine malfunction interrupt new
PSW results in a non-correctable memory error. In this
case, the error code for the 1initial malfunction is
stored in the machine malfunction status word at
X*'0000u40", and LOC is loaded with the address of +the
status word before the console mode is =2ntered.

7. 1f control has been passed to uninitialized Writable
Control Store or an errant WCS microprogram, control can
be regained at the system console by enabling the
single-step mode and depressing the HALT/RUN switche

Note that system initialization occurs when the power supply
detects that AC 1line voltage 1is failing; when the Initialize
(INIT) switch on the consdolette is momentarily depressed; or when
the key-operated LOCK/ON/STANDBY switch is moved to the STANDBY
position. The 1initialization sequence completes when power is
restored to the processore. System initialization resets all
pending interrupts for the system console and other I/0 devices
in the system. DMA operations are also terminated.

Hhile the processor is in the console mode, interrupt conditions
are nct handled in the same manner as they are if detected during
execution of a frograme.

Interrupt requests for the system console terminal and all other
I/0 devices remain queued until the run mode 1is entered. DMA
operations are not affected by changing processor modes.

DSW bit 16 is always forced to zero before the run mode 1is
entered from the console mode.

Fault conditions caused by memory accesses while in the console
mode are reset when they occur, and do not cause interrupts when
the run mode is entered. If a fault condition occurs while
attemrting to modify a mamory location, that location may not be
changed. If a fault occurs while attempting to examine a memory
location, the faulting address is displayed instead.

System initialization, while in the console mode, results in

automatic shutdcwn, with no machine malfunction interrupt due to
power failure.

29-693 ROO 1/79 10-13

10.4.2 Run Mode

When the processor is not dedicated to communizating with the
system console terminal, it is in the run mode. 1In this mode,
program executicn is controlled by the contents of the 64-bit
Program Status Word (PSW). While the processor is in the run
mode, it may be in either the wait state (PSW bit 16 is set), or
the run state (PSW bit 16 1is zero). In the run state, the
processor perfcrms a repetitive fetch instruction/execute
instruction/fetch next instruction sequence. In the wait state,
this sequence is suspended.

The run mode may be entered in any of the following ways:

1« The *less than' prompt character (<) is entered from the
system console terminal when the processor 1is 1in the
console mode.

2. The HALT/RUN switch is depressed momentarily while the
processor is in the console mode.

3. The LSU 1is installed and enabled when a system
initialization sequence is completed. 1In this case, the
program loaded from the LSU is given control of the
processor.

Interrupt conditions cannot cause the processor to enter the run
mode from the ccnsole mode, with the following two exceptions:

1. An initialization sequence performed while the processor
is in the console mode causes the program to be 1loaded
from the enabled LSU, and control of the processor is
given to the program.

2+« The HALT/RUN switch is depressed momentarily while the
processor is in the console mode.

10.4.2 Single-Step Mode

When the SINGLE switch is in the SINGLE position, the processor
is 1in the single-step mode. In this mode, whenever execution of
an instruction is completed, the processor leaves the run mode
and enters the console mode. Manual intervention is normally
required to execute the naxt instruction.

Interrupts are handled according to the methods detailed in the
previous paragraphs. If the processor is in the single-step mode
and the run state when an interrupt request occurs, the processor
completes the current instruction (or iteration) and then
performs the interrupt PSW swap. The first instruction of the
interrupt service routine is not executed.

If system initialization occurs while in the single-step mode,
any instruction in progress (or the current iteration of an
interruptible instruction) completes. When the initialization
sequence is comrlete, a maximum of one instruction 1is executed
before the processor again enters the console moie.

Note that in the single-step mode, PSW bit 16 is always forced to
zero before entering the run mode to fetch a user instruction.

10-14 29-693 ROO 1/79

10.5 STATUS SWITCHING

The PSW that is loaded in the processor, at any given time, is
called the current PSW. The register set selected by this PSWH,
the data contained in the general, floating-point, or scratchpad
registers accessible by the user rrogram, and the machine status
defined by the PSW collectively constitute the ™"process state®.
If the status word or both the location counter and status word
are changed, a status switch has occurred. A status switch can
be <caused explicitly by executing a status switching instruction
or may be forced to occur by an interrupte. When the value of the
PSW that was current at the time of a status switch is saved,
that value is called the old FSW.

The scheduling of interrupt service routines is based upon the
concepts of old PSW, current PSW, and new P3K. dhen an interrupt
occurs, the following status switch takes place: the current PSW
becomes the o0ld PSW; the new PSW defined for the interrupt is
loaded, and becomes the current P5W.

Tor a status switch resulting from an interrupt, the old PS¥ is
stored in dedicated registers of the set specified by the new PSW
defined for the interrupt. The machine malfunction interrupt is
the exception to this rule; for this interrupt, the old PSW is
stored in dedicated memory locations.

For meaningful processor response to multiple interrupts, it is
important that the new PS4 defined for a particular interrupt
class does not enable interrupts of the same class.

The various interrupts which may occur, and the response of the
processor to each interrupt, are described in the following
secticnse.

1051 Illegal Instruction Interrupt

The illegjal instruction interrupt occurs if an attempt is made to
eXxecute an instruction whose operation code is not one of those
permitted by the system. This interrupt may occur for any of the
following reascns:

1« The operation code is undefined for the system or
optional eguipment necessary to exacute the instruction
is not present in the system.

2. The operation code has several possible sub-function
specifications, and the sub-function specified 1is
undefined.

3, The instruction is a privileged instruction, and PS¥W bit
23 is set.

e The instruction is a floating-point instruction, and PSH
bit 13 is set.

29-693 ROO 1/79 10-15

The 1illegal instruction interrupt <cannot be disabled. The
floating-point instructions, high speed data handling
instructions, and writable <control store instructions require
optional equipment, and are therefore optionally illeqgal. No
attempt is made by the processor to execute an illegal
instruction. . '

When an 1illegal instruction interrupt occurs, the following
actions are taken:

1« The current PSW is stored in registers 14 and 15 of the
set selected by the illegal instruction interrupt new
PSW found in memory at physical address X'000030°'.

2. The illegal instruction interrupt new PSW becomes the
current PS¥H.

The o0ld PSW location counter presented to the 1interrupt service
routine in register 15 points to the illegal instruction.

10.5.2 Data Format Fault Interrupt

The data format fault interrupt occurs if the required halfword
or fullword alignments are violated for memory accesses, or if it
is othervwise determined that data is not properly aligned to the
specified fields. Halfword alignment violations are not detected
by the Model 3220 Processor on memory reads. The data format
fault interrupt cannot be disabled.

When a data format fault interrupt occurs, the following actions
are taken:

1« The current PSW is stored in registers 14 and 15 of the
set selected by the data format fault new PSW found in
memory at physical address ¥X'0000C8°*.

2. Register 13 of the selected set is loaded with a code to
indicate the reason for the interrupt, as shown in the
following list:

COLF REASON FOR INTERRUPT

0 Reserved code

1 Reserved code

2 Invalid sign digit, packed data

3 Invalid data digit, packed data

4 Reserved code

5 Reserved code

6 Fullword or halfword alignment fault

3. If the interrupt was caused by a halfword or fullword
alignment fault, register 12 of the selected set is
loaded with the non-aligned virtual address causing the
fault.

4. The data format fault interrupt new PSW becomes the
current PSW.

10-16 29-693 R0OO 1/79

The old PSW location counter presented to the interrupt service
routine 1in register 15 points to the instruction being executed
when the fault cccurred. A data format fault causes the current
instruction, cr the current 1iteration of an interruptible
instruction, to be aborted immediately.

10.5.2.1 Alignment Faults

An attempt to fetch a fullword of data from memory, or to write
a fullword of data to memory, using a program address which does
not have zZzeros as 1its two 1least-significant Dbits, causes a
fullword alignment fault.

An attempt to write a halfword of data to memory, using a progranm
address which does not have zero as its least significant bit,
causes a halfword alignment fault. '

The Mcdel 3220 Frocessor does not distinguish between fullword
and halfword alignment faults. An alignment fault cannot occur
during an instruction fetch on this processor.

If an alignment fault occurs while attempting to write to memory,
the fullword or halfword at the next lower aligned address may be
modified.

10e5e2.2 Invalid Digit Faults

If an invalid sign or data digit is encountered while processing
numeric string data, it is presumed that the data is not aligned
to the specified fields. Additional information may be found 1in
the description of the instruction used to process the numeric

string.

10.5.3 Memory Access Controller (MAC) Fault Interrupt

The MAC fault interrupt occurs if an executing program violates
any o¢f the relocation and protection conditions programmed into
the Memory Access Controller (MAC). MAC error checking and the
MAC fault interrupt are enabled when PSW bit 21 is set. MAC
faults are nct queued.

When a MAC fault interrupt occurs, the following actions are
taken:

1« The current PSW is stored in registers 14 and 15 of the
set selected by the MAC fault interrupt new PSW found in
memory at physical address X*000080°'.

Ze Register 13 of the selected set is loaded with a code to
indicate the reason for the interrupte. This code 1is
copied from the MAC status register while simultaneous.y
resetting the fault.

29-693 RO0O 1/79 10-17

BINAKY CODE REASON FOR INTERRUPT

16

®
&
Y

Execute protect violation
Write-interrupt
Write-protect violation
Non-present segment

Segment limit field exceeded

—a e I
LI E I
LI I B k]
I R I k]
el R e e

3. Register 12 of the selected set 1is loaded with the
virtual address which caused the fault.

4. If the fault occurred on a data fetch while attempting
to load the general registers using the Load Multiple
(LM) instruction, register 11 of the selected set is

loaded with the effective second operand address
calculated at the start of the LY instruction.
Otherwise, if the reason code for the interrupt

indicates only a write-interrupt condition, register 11
of the selected set is loaded with the address of the
instruction immediately following the one which
successfully completed, even though it caused the
interrcpt.

S« The MAC fault interrupt new PSW becomes the current PSW.

The o0ld PSW location counter presented to the interrupt service
routine in register 15 points to the instruction being executed
when the fault occurred. Note that although more than one bit
may be set in the fault code, only one error is reported. If
non-present segment is indicated, all other bits may be ignored.

10.5.4 Machine Malfunction Interrupt

The machine malfunction interrupt occurs when any of the
following conditions are detected:

) Early power fail

® Povwer restore

° Non-correctable memory error
® Non-configured memory address

Detection of the listed conditions and the machine malfunction
interrupt are enabled when PSW bit 18 is set. Early power fail
detect is queued until primary power fail occurs if PSW bit 18 is
zero. All other malfunction <conditions are ignored, and the
interrupts are lost.

When a machine malfunction interrupt occurs, the following
actions are taken:

1« The current PSW 1is stored in memory beginning at
physical address X*'000020°.

10-18 29-693 R0OO 1/79

2. The Machine Malfunction Status Word (MMSW) at physical
address X'000040°' is loaded with a code to indicate the
reason for the interrupt. Only one bit is set in this

code:
RIT
NUMBER REASON FOR INTERRUPT
0 PF - Power failure
1 PR - Power restoration
2 NCD - Non-correctable memory error
during data fetch
3 NCI - Non-correctable memory error
during instruction fetch
4 NCA - Non-correctable memory error
during auto driver channel
operation
5 NVD - Non-configured memory address
during data fetch
6 NVI - Non-configured memory address
during instruction fetch
7 NVA - Non-configured memory address
during auto driver channel
operation

3. Tf the interrupt was caused by a non-correctable memory
error, or non-configured memory address, the virtual
address used for the memory access 1is stored in the
machine malfunction virtual address word at physical
address X'000044", Otherwise, the contents of this word
are undefined.

4, If the interrupt was caused by a non-correctable memory
error, or non-configured memory address, and the fault
nccurred on a data fetch while attempting to 1load the
general registers using the LY instruction, the
effective second operand address calculated at the start
of that instruction 1is stored in the LM effective
address word at physical address X'00002C*'. Otherwise,
the contents of this word are undefined.

5. The machine malfunction interrupt new PSA found at
physical address X'020033*' becomes the new PSW.

If the interrupt was caused by executing an instruction, the old
PSW location counter presented to the interrupt service routine
points to the offending instruction. Otherwise, the o0l1ld PS¥
location <counter presented to the interrupt service routine
points to the instruction to be executed once the interrupt has
been cerviced.

29-693 ROO 1/79 10-19

If the interrupt was caused by executing the LM instruction, bits
2 and 5 of the Machine Malfunction Status Word (MMSW), may Dbe
used to determine if any registers were modified before the
interrupt occurred. If the old PSW location counter points to an
LM instruction, and if bits 2 and 5 of the MMSW are both zero, no
registers were modified. If bit 2 or bit 5 of the MMSW 1is set,
then:

1« If the data stored at physical addresses X°'000044°® and
X*00002zC"* are equal to one another, no registers were
modified by the instruction before the fault occurred.

2. If the data stored at physical addresses X'000044°®' and
X'00002C* are not equal to one another, at least one
register was modified by the 1instruction before the
fault occurred. The number of registers modified may be
determined by taking the difference of the data stored
at physical addresses X'000044°* and X*'00002C*', and
dividing the result by four.

0123 465867 29

o<
<

- > <

m

o

0

-0
>0 2

Figure 1C-4 Machine Malfunction Status Word (MMSW)

10.5+.4.1 Farly Power Fail Detect and Automatic Shutdown

Early power fail detect occurs when the primary power failure
sensor detects a low voltage; when the power switch is turned
from the ON to STANDBY position; or when the INIT switch 1is
depressed.

At the end of execution of the current instruction or the current
iteration of the current interruptible instruction, a machine
malfunction interrupt is taken if PSW bit 18 is set.

Following early powver fail detect, software has one millisecond
before the automatic shutdown procedure of the processor takes
control as a result of Primary Power Fail. During this
procedure, the following actions occur:

1« The fullword power fail save area pointer is fetched
from lccation X*'000084°.

10-20 29-693 ROO 1/73

Ze The following information is saved by firmware in the
power fail save area:

OFFSET IN SAVE
CATA AREA (IN BYTES3)

Current PSH 0-7

The eight general register
sets (in order, 0 through F) 8-519

Interruptible instruction
state (scratchpad registers) 520-583

Floating-point registers,
single and double 584-679

3. The prccessor waits for power restore.
NOTES

1. If the processor 1is not equipped
with the optional floating-point
registers, the area between offsets
584 and 679 is not used.

Ze If the pointer found 1in location
X*o000084" does not specify 31 save
area aligned to a fullword
boundary, the processor forces
correct alignment by replacing the
2 least-signitficant bits of the
pointer with Zerose. The new
pointer is stored in memory
location X*'000084°', before the
power-down sequence is performed.

3. The floating-point masked mode bit
in the PS5SW has no effect on the
saving of the floating-point
registers.

q, The IIP bit has no effect on the
saving of the scratchpad registers.

10.5.4.2 Power Restore

When power restcre occurs, a simple go/no go selftest of various
internal buses and registers is performed. If the back-up supply
voltages to memcry were not maintained within margins betwean
shutdown and power restore, the first 256k bytes of memory are
filled with a data pattern to prevent spurious non-correctable
memory error indications, and the general registers, scratchpad
registers, and floating-point registers are lcaded with
pre-determined data.

29-632 R00 1/79 10-21

The first 256k bytes of memory are then tested to see if data can
be helde This test does not modify the data contained in memory.
Failure of selftest or the memory test causes that test to
execute, as long as the failure persists. During the test, the
processor is 1responsive only to a primary power fail which
results in an automatic shutdown; and the FAULT 1lamp on the
consolette switch panel is on.

When memory testing is complete, the FAULT lamp is turned off,
and the state of the optional Loader Storage Unit (LSU) is
tested. If the LSU is not equipped, it 1is presumed to be
disabled. In all cases, bit 1 of the machine malfunction status
word at physical address X'000040°' is set to indicate powver
restore.

105421 If the LSU is Disabled

If the back-up voltages to memory were not maintained within
margins between shutdown and power restore, then memory is
assumed not to contain valid data. In this case, a PSW status of
00008000' (wait bit only) and location counter of 'OO0OFFFFE®' are
loaded and displayed on the system <cocnsole terminal. Manual
intervention is required to restart the processor.

If the back-up voltages to memory were maintained, the data saved
in the power fail save area by the automatic shutdown procedure
is reloaded.

If the data in memory at physical address X*'000028° indicates
that the processor was in console mode when power failed, the
reloaded PSW is displayed, and communication with the systenm
console terminal resumes.

If the processor was not in console mode when power failed, bDit
18 of the relcaded PSW is tested. If the bit is set, a machine
malfunction interrupt occurs.

If bit 18 of the reloaded PSW is =zero, program execution is
resumed using the relocaded P3W. Note that the state of the wait
bit (bit 168) of the PSW is tested before executing any
instruction.

NOTE

Data in the Memory Access Controller
and Selector Channel control registers
and writable control store is volatile,
and must he considered invalid
following any power fail/restore
seguence.

10e54l4e242 1f the LSU is Enabled

After the FAULT lamp is turned off, the program in the LSIJ is
loaded, and control is transferred to it, using the PSW specified
in the progranm. If the memory start address is greater than the
memory end address specified for the LSU program, the program is
not lcaded, and the console mode is entered.

10-22 29-693 ROO 1/79

10.5.43 Non-Correctable Memory Error

During write operations to memory, an Error Correcting Code (FECC)
is generated. This code enables the memory system to correct any
single bit error detected on a subseguent read operation in each
fullword of memory. If the operation is only a byte or halfword
write to memory, the memory system reads and updates the error
correcting code for the fullword of memory that contains the byte
or halfword that is being written.

Fach time data is read from memory, the error correcting code is
recreated and ccmpared to the code generated when data was last
written to any part of the fullword memory location. If a data
error is detected, and the error is a single bit error, it is
corrected transparent to the processor. If, however, a multiple
bit error is detected, a memory malfunction fault is generated,
since multiple rit errors cannot be corrected.

Note that data with three or more bits in error may not result in
a fault. Cetection of any error causes a bit to be set in the
optional error 1logger for subsequent readout using the REL
instruction.

A non-correctable memory error can be caused by performing a byte
or halfword store to memory. This is possible because the data
and ECC for the corresponding fullword are fetched so that a new
ECC ccde may be generated.

If PSW bit 18 ise zero when the error occurs, the error is
ignored, but is logged in the optional error logger.

If PSW bit 18 is set, occurrence of a non-correctable memory
error causes the current instruction (or the current iteration of
an interruptible instruction) to be immediately aborted; and a
machine malfunction interrupt occurs. Bit 2, 3, or 4 of the
machine malfunction status word at physical address X*'000040"' 1is
set to indicate the reason for the interrupt. The virtual
(program) address used for the memory access 1s stored 1in the
machine malfunction address word at physical address X'00004u".

If the error occurs on a data fetch while attempting to load the
general registers using the LM instruction, the effective second
operand address calculated at the start of the LM instruction is
stored in the LM effective address word at physical address
X*oo0¢2cC"*. This data allows the instruction to be simulated in
the event specified index registers were modified.

If the error occurs while fetchiny an instruction, the ol1ld PSw
location <counter, rresented to the interrupt service routine,
points to the first halfword of the instruction being fetched.

If the error occurs during an auto driver channel operation,
registers 0 and 1 of the set indicated by the old PSW, presented
to the interrupt service routine, <contain the PSW for the
instruction interrupted by the I/0 interrupt that activated the
channel. KXegister 4 of the set indicated contains the address of
the CCB that was being executed when the error occurrede.

29-693 R0OO 1/79 10-23

Since the errcr-correcting code is maintained on a fullword
basis, if a multiple bit error is detected when a halfword or
byte of a fullword is read or written, it is not possible to
determine which bits are in error. Therefore, a reference to any
portion of a fullword that contains multiple bit errors may caus
a memory malfunction, even though the incorrect bits might not upe
in the portion c¢cf the fullword being accessed. (References to
memory made by look-ahead buffers or caches do not cause memory
malfunction interrupts until the fullword that 1is 1in error is
actually used by the currently executing instruction.)

10.5.4.4 Non-Configured Memory Address

The Model 3220 Frocessor tests the physical address used for each

memory access, if PSW bit 18 is set. Wwhen access to memory
physically not in the system is attempted, a machine malfunction
interrupt occurs. The current instruction (or the current

iteration of an interruptible instruction) 1is immediately
aborted. Bit 5, 6, or 7 of the machine malfunction status word
at physical address X'000040°' is set to indicate the reason for
the interrupt. The virtual (program) address used for the memory
access is stored in the machine malfunction address word at
physical address X°'000044"*.

If the error occurs on a data fetch while attempting to load the
general registers using the LM instruction, the effective second
operand address calculated at the start of the LM instruction is
stored in the LMY effective address word at physical address
X'00002C"*. This data allows the instruction to be simulated in
the event specified index registers were modified.

If the error occurs while fetching an instruction, the 921d PS¥W
location counter, presented to the interrupt service routine,
points to the first halfword of the instruction being fetched.

If the error occurs during an auto driver channel operation,
registers 0 and 1 of the set indicated by the o0ld PS¥W, presented
to the interrurt service routine, <contain the PSW for the
instruction interrupted by the I/0 interrupt that activated the
channel., Register 4 of the indicated set contains the address of
the CCB that was being executed when the error occurred.

Accesses to memcry made by look-ahead buffers or <caches do not
cause non-configured memory address interrupts until an attempt
to access non-ccnfigured memory is actually made by the executing
programe. For the Model 3220 Processor equipped with the optional
high-speed <cache, only a memory access resulting in the
invalidation of a block of cache memory, and an actual attempt by
the cache to validate that blcck by accessing non-configured main
memory, results in a non-configured memory address machine
malfunction interrupt. 3Subsequent accesses to the same cache
block may give no error indication as a result of the
non—-ccnfigured memory address, until the cache again attempts to
validate the blcck.

CAUTION

FOR THE MODEL 3220 PROCESSOR WITH THE
HIGH-SPEED CACHE OPTION, IT 15
IMPORTANT THAT SOFTWARE ALWAYS RUN WITH
THE MACHINE MALFUNCTION INTERRUPT
ENABLED.

10-24 29-693 ROO 1/79

1055 Input/Output Device (I/0) Interrupts

10.5.%5«1 Priority Levels

Tnterrupt requests from I/0 devices may occur on any of four
priority 1levels. Level 0 is the highest priority level; level 3
is the lowest priority level, Acknowledgement of 1interrupt
requests on the various priority levels is enabled by PSW bits 17
and 20, as shown in the following table:

PSW BIT 17 PS4 BIT 20 MEANING

A1l levels disabled

Higher priority levels enabled

A1l priority levels enabled

Current and higher priority
levels enabled

-_- OO
e S W s)

A unique register set is selected for I/0 interrupt requests
acknowledged on each priority level. For exanmple, when an
interrupt regquest is acknowledged at priority level 3, register
set 3 1is selected by the processor for handling the interrupt
request. If the request results in entry to a software interrupt
service routine, register set 3 is selected by the PSW in effect
at the time the routine is entered, and information pertaining to
the interrupt is contained in registers 0 to 3 or 0 to 4 of that
set.

The current priority level 1is determined by bits 24:27 (the
register select field) of the current PSW. For example, if set
3 is currently selected, levels 2, 1, and O are higher priority
levels, and level 3 is the current priority level. If PSH bit 17
is zero and PSW bit 20 is set, an I/0 interrupt request occurring
on level 2, 1, or 0 is acknowledged, but a request occurring on
level 3 i3 not acknowledged.

In this example, if PSK bits 17 and 20 are both set (the PSW
status is X'4830'), ¢the 1interrupt request on level 3 is also
acknowledged.

If a register set other than 0, 1, 2, or 3 1is selected by the
current PSW, all I/0 interrupt reguests are considered to be
higher-priority reguests, and will be acknowledged if either PS4
bit 17 or bit 20 is set.

29-693 R00 1/79 10-25

Enabling of interrupts on the various levels is shown in detail
in Table 10-1. When an 1interrupt request occurs, but is not
acknowledged by the processor, the request remains gqueued until
one of the following occurs:

1« The interrupt request is acknowledged by the processor
when enabled by the current PSW.

2. The interrupt request 1is programmed reset by the
software.

3. System initialization occurs.

When the processor acknowledges an I/0 interrupt reguest, the
result may be either an auto driver channel operation, or an
immediate interrupte. In either case, the register set associated
with the vriority level, on which the interrupt is acknowledged,
is used in processing the interrupt.

For further information on progranming a device interrupt rejuest
reset, refer to the programming manual for the specific device.
This feature is not available for all I/0 devices.

10e5.%.2 Imnmediate Interrupt - Auto Driver Channel Operation
An interrupt request by an I/0 device at one of the four
interrupt priority levels 1is acknowledged only when interrupts

are enabled for that level, as defined by the status of PSW bits
17 and 20, and the selected register cset.

10-26 29-693 ROO 1/79

623

TABLE 10-1 INTERRUPT PRICRITY LEVEL/REGISTER SET SUMMARY

PSH CURRENT
BITS REGISTER SET EXTERNAL INTERRUPT LEVEL ENABLED

17 20 LEVEL © LEVEL 1 LEVEL 2 LEVEL 3
0 0 ANY SET NO NO NO ND
0 1 0 NO NO NO NO
0 1 1 YES NO NO NO
0 1 2 YES YES NO NO
0 1 3 YES YES YES NO
0 1 4 YES YES YES YES
0 1 5 YES YES YES YES
N 1 6 YES YES YES YES
0 1 F YES YES TES YES
1 e ANY SET YES YES YES YES
1 1 0 YES NO NO NO
1 1 1 YES YES NO NO
1 1 2 YES YES YES NO
1 1 3 YES YES YES YES
1 1 4 YES YES YES YES
1 1 5 YES YES YES YES
1 1 6 YES YES YES YES
1 1 F YES YES YES YES

29-692 R0OO 1/79

10-27

The processor recognizes I/0 interrupts between the execution of
instructions, cr at the end of an iteration of an interruptible
instruction. When an I/0 interrupt is recognized, the following
actions occur:

7. The current PSW is saved in registers 0 and 1 of the new
set selected by the interrupt level. (PSW bits 0:31 are
saved in register 0 and bits 32:63 in register 1.)

2. The 'PSW status word 1is loaded with the value
Y*'000028N0*', where N specifies the new register set.
This status enables higher level I/0 interrupts and
machine malfunction interrupts. Also note that memory
address translation is disabled.

3. The I/C interrupt request 1is acknowledged and reset.
The address of the interrupting device is placed in
register 2 of the selected set. The status byte from
the interrupting device replaces the contents of
register 3. The device number and status are placed in
the least significant bit positions in the register; the
most significant bits are forced to zero. The four
least significant bits of the status of the interrupting
device are placed in the condition code.

4, The device number is added twice to X'0000D0O' (the start
of the interrupt service pointer table) to obtain the
address within the table that corresponds to the
interrupting device. The contents of this halfword of
memory are fetched and examined to see if the interrupt
is to Lte treated as an immediate interrupt or as an
auto-driver channel operaticn. If bit 15 of the
halfword is zero, an immediate interrupt 1is required.
If bit 15 of the halfword is one (the halfword is odd),
an autc-driver channel operation is reguired. If ¢the
interrvpt is an immediate interrupt, the value in the
table bhecomes the 1location counter portion of the
current PSW. If the interrupt is an auto-driver channel

operation, then the 1least significant bit of the
halfword is replaced by zero and the resulting value is
placed in register 4 of the selected set. The

auto-driver channel is then activated.

10.5.€ Simulated Interrupt

The simulated interrupt results from executing a Simulate
Interrupt (SINT) instruction when PSW bit 23 is zero. SINT is a

privileged instruction, and may not be executed when PSW¥ bit 23
is set.

Execution of the SINT instruction causes the processor to
simulate acknowledgement of an enabled I/0 interrupt request from
an external device. The device address and interrupt level for
the simulated interrupt are specified by the operands of the SINT
instruction.

10-28 29-693 ROO 1/79

The states of PSW bits 17 and 20, normally used to enable and
disable the various I/0 interrupt levels, are ignored by the SINT
instruction. For purposes of the simulated 1interrupt, 1I1/0
interrupts at all priority levels are assumed to be enabled. No
pending device interrupt regquest is actually acknowledged by the
processor as a result of executing the SINT instruction. With
the exception of the differences described here, the simulated
interrupt request is handled as detailed in paragraph 10.5.5.

CAUTION

DUE TO THE FACT THAT THE SINT INSTRUCTION
IGNORES THE STATES OF PSW BITS 17 AND 20, IT
SHOULL BE USED CAREFULLY BY PROGRAMS WHICH
RUN IN REGISTER SETS 0, 1, 2, OR 3. FOR
EXAMPIE, IF A PROGRAM EXFCUTING IN REGISTER
SET 2 ENABLES ONLY HIGHER-LEVEL INTERRUPTS,
DATA IN THE REGISTERS OF SET 2 ARE NOT
NORMALLY SUBJECT TO CHANGE AS A RESULT OF AN
I/0 INTERRUPT. HOWEVER, IF THE PROGRAM
EXECUTING IN REGISTER SET 2 DOES A SINT
CAUSING INTERRUPT LEVEL 3 (AND REGISTER SET
3) TO BRE SFLFCTED, THE NEW PSW LOADED BY THE
PROCESSOR CAUSES INTERRUPTS AT LEVELS 2, 1,
AND 0 TO BE ENABLED. IF AN I/0 TINTERRUPT
REQUEST AT LEVEL 2 OCCURRED, IT WOULD BE
HONORED, CAUSING REGISTERS 0, 1, 2, AND 3
(AND FFRHAPS 4) OF SET 2 TO BE OVERWRITTEN.

IF THESE REGISTERS ARE NOT STORED BEFORE THE
SINT INSTRUCTION IS EXECUTEL, DATA IN THE
REGISTERS IS LOST, AND SYSTEM SOFTWARE COULD
BE LEFT IN AN INDETXRMINATE STATE.

The simulated interrupt is a software interrupt.

10.5.7 System Cueue Service (SQS) Interrupt

“hen any of the instructions listed below 1is executed, as the
instruction completes, hit 22 of the new PSW loaded by the
instruction is tested. If the bit is zero, the 3QS interrupt |is
disabled, and program execution continues according to the new
PSW 1lcaded.

MNEMONIC MEANING

EPSR Exchange Program Status Register
LLCPS Load Process State

LPSH Load Program Status Word

LPSWEK Load Program Status Word Register

29-693 ROO 1/79 10-29

If bit 22 of the new PSW loaded by any of these instructions is
set, the state of the system gqueue (whose physical address is
found at physical location X'0Q00080') 1is tested. The systenm
queue 1is assumed to be maintained according to the circular 1list
format. The nunmber used field is fetched from the 1list header.
If this field contains zero, the system gueue is assumed to be
empty, and program execution continues according to the new PSW
loaded.

If the number used field for the system queue is not zero when it
is tested, the following actions are taken to cause an SQS
interrupt:

1« The current PSW, which was loaded by execution of one of
the listed instructions, is stored in registers 14 and
15 of the set selected by the SQS interrupt new PSW
found in memory at physical address X*'000088°'.

2. Register 13 of the selected set 1is 1loaded with the
address of the system queue.

3. The SOS interrupt new PSW becomes the current PSW.

If the SQS interrupt occurs as a result of executing an EPSR
instruction, the o0ld PSW 1location counter presented to the
interrupt service routine in register 15 points to the
instruction following the EPSR instruction. If the interrupt
occurs as a result of executing any of the other 1listed
instructions, the o01ld PSW location counter contains the value
loaded by the instruction causing the interrupte.

Items may be added to the system queue while the SQS interrupt is
enabled or disableds The Add to Top of List (ATL) and Add to
Bottom of List (ABL) instructions are normally used for this
purpose. The fact that the items have been added to the systenm
gqueue is recorded in the list header. Only when a new PSW is
loaded which enables the SQS interrupt, is the state of the queue
tested, and an interrupt allowed.

The system queue has a maximum size, as determined by the 1list
header established by system software. If an attempt is made to
add an item to the gueue when it is already full, the data may be

lost. This could result in system software being 1left 1in an
indeterminate state.

Note that the address of the system queue contained in the system
gqueue pointer must be aligned to a fullword boundary.

See the section on Status Switching Instructions for a
description of the EPSR, LDPS, LPS5W, and LPSWR instructions.

The S3S interrurt is a deferred synchronous software interrupte.

10.5.8 Supervisor Call (SVC) Interrupt

The Supervisor Call (SVC) 1interrupt occurs when the SVC
instruction 1s executed. This instruction and the resulting
interrupt preocvide a means for any program to communicate with
system software.

10-30 29-693 RCO 1/79

The states of PSW bits 17 and 20, normally used to enable and
disable the various I/0 interrupt levels, are ignored by the SINT
instruction. For purposes of the simulated interrupt, 1/0
interrupts at all priority levels are assumed to be enabled. No
pending device interrupt request is actually acknowledged by the
processor as a result of executing the SINT instruction. With
the exception of the differences described here, the simulated
interrupt request is handled as detailed in paragraph 10.5.5.

CAUTION

DUE TO THE FACT THAT THE SINT INSTRUCTION
IGNORES THE STATES OF PSW BITS 17 AND 20, IT
SHOULL BE USED CAREFULLY BY PROGRAMS WHICH
RUN IN REGISTER S5ETS 0, 1, 2, OR 3. FOR
EXAMPLE, IF A PROGRAM EXFCUTING IN REGISTER
SET 2 ENABLES ONLY HIGHER-LEVEL INTERRUPTS,
DATA IN THE REGISTERS OF SET 2 ARE NOT
NORMALLY SUBJECT TO CHANGE AS A RESULT OF AN
I/0 INTERRUPT. HOWEVER, IF THE PROGRAM
EXECUTING IN REGISTER SET 2 DOES A SINT
CAUSING INTERRUPT LEVEL 3 (AND REGISTER SET
3) TO RE SFLFCTED, THE NEW PSW LOADED BY THE
PROCESSOR CAUSES INTERRUPTS AT LEVELS 2, 1,
AND 0 TO BE ENABLED. IF AN I/O0 INTERRUPT
REQUEST AT LEVEL 2 OCCURRED, IT WOULD BE
HONORED, CAUSING REGISTERS O, 1, 2, AND 3
(AND EFFRHAPS 4) OF SET 2 TO BE OVERWRITTEN.

IF THESE REGISTERS ARE NOT STORED BEFORE THE
SINT INSTRUCTION IS EXECUTEL, DATA 1IN THE
REGISTERS IS LOST, AND SYSTEM SOFTWARE COULD
BE LEFT IN AN INDETERMINATE STATE.

The simulated interrupt is a software interrupt.

10.5.7 System (Cueue Service (SQS) Interrupt

Wwhen any of the instructions listed below is executed, as the
instruction cormpletes, hit 22 of the new PSW loaded by the
instruction is tested. If the bit is zero, the 3QS interrupt is
disabled, and program execution continues according to the new
PSW lcaded.

MNEMONIC MEANING

EPSR Exchange Program Status Register
LLPS Load Process State

LPSH Load Program Status Word

LPSWEK Load Program Status Word Register

29-693 ROO 1/79 10-29

If bit 22 of the new PSW loaded by any of these instructions is
set, the state of the system gueue (whose physical address is
found at physical location X'000080') 1is tested. The system
queue 1is assumed to be maintained according to the circular 1list
format. The number used field is fetched from the 1list header.
If this field contains zero, the system gqueue is assumed to be
empty, and program execution continues accordiing to the new PSW
loaded.

If the number ucsed field for the system gueue is not zero when it
is tested, the following actions are taken to cause an SQS
interrupt:

1. The current PSW, which was loaded by execution of one of
the listed instructions, is stored in registers 14 and
15 of the set selected by the SQS interrupt new PSW
found in memory at physical address X'000088°'.

2. Register 13 of the selected set 1is 1loaded with the
address of the system queue.

3. The SQS interrupt new PSW becomes the current PSW.

If the SQS interrupt occurs as a result of executing an EPSR
instruction, the o0ld PSW location counter presented to the
interrupt service routine 1in register 15 points to the
instruction following the EPSR instruction. If the interrupt
occurs as a result of executing any of the other 1listed
instructions, the o01ld PSW 1location counter contains the value
loaded by the instruction causing the interrupte.

IJtems may be added to the system queue while the SQS interrupt is
enabled or disabled. The Add to Top of List (ATL) and Add to
Bottom of List (ABL) instructions are normally used for this
purpose. The fact that the items have been added to the systen
gqueue is recorded in the 1list header. Only when a new PSW is
loaded which enables the SQS interrupt, is the state of the gqueue
tested, and an interrupt allowed.

The system queue has a maximum size, as determined by the 1list
header established by system software. If an attempt is made to
add an item to the gueue when it is already full, the data may be
lost. This could result in system software being 1left in an
indeterminate state.

Note that the address of the system queue contained in the systenm
gqueue pointer must be aligned to a fullword boundary.

See the section on Status Switching Instructions for a
description of the EPSK, LDP5, LPSW, and LPSWR instructions.

The S3S interrurt is a deferred synchronous software interrupt.

10e5.8 Supervisor Call (SVC) Interrupt

The Supervisor Call (SVC) interrupt occurs when the SVC
instruction 1s executede. This 1instruction and the resulting
interrupt prcvide a means for any program to communicate with
system software.

10-30 29-693 RCO 1/79

When the SVC instruction 1is executed, the processor takes the
following actions:

1« The current PSW is saved in registers 14 and 15 of the
set selected by the SVC interrupt new PSW found in
memory at physical address X*000098°.

2. Register 13 of the selected set 1is 1loaded with the
effective second operand address calculated for the SVC
instruction executed. This is normally the address of
an SVC parameter block, aligned to a fullword boundary.

3. The SVC interrupt new PSW becomes the current PSW, with
a new LOC value <chosen from the table at physical
locaticn X'9C'.

The old PSW location counter presented to the interrupt service
routine 1in register 15 points to the instruction following the
SVC instructione.

The SVC interrupt is a software interrupt and cannot be disabled.

10.5.9 System Ereakpoint Interrupt

A system breakpcint results if a Breakpoint (BRK) instruction is
executed when PSW bit 23 1is zero. BABRK 1is a privileged
instruction, and may not be executed when PSW bit 23 is set.

Fxecution of the BRK instruction causes the processor to enter
the <console mcde. In this mode, the processor is dedicated tn
communication with the systenm console terminal. Various
registers and memory locations may be examined or modified by the
user from the system console terminal while in this mode.

When the BRK instruction 1is executed, no registers or memory
locations are mcdified. The PSW status and location counter are
not modified ty the BRK instruction. The location counter, at
entry to the console mode, pboints to the BRK instruction.

When the run mode is entered from the console modie, PSW bHit 16 is
forced to zero, so that an instruction is fetched and executed.
If the run mode is entered immediately after a BRK instruction is
executed, the same BRK instruction results in another system
breakroint.

The system breakpoint interrupt is a software interrupt.

10.5.10 Arithmetic Fault Interrupt

The arithmetic fault interrupt results from either a fixed-point
or a floating-point arithmetic operation, when the magnitude of
the result is tco large to be represented within the required
number of bits. Division by zZero is a special case, and always
results in an arithmetic fault interrupt. Interrupts for any of
these reasons cannot be disabled.

Floating-roint underflow occurs when the normalized result of a
floating-point load, conversion, or other arithmetic operation is
not zero, but is so small that it cannot be represented within
the floating-point number system defined for the processor.

29-693 ROO 1/79 10-31

If PSW bit 19 is zero when floating-point underflow occurs, no’
arithmetic fault interrupt results. In this case, the result of
the operation 1is set to "true zero". This means that every bit
of the result is forced to zero as the result is copied to 1its
destination. If PS4 bit 19 is set when floating-point underflow
occurs, an arithmetic fault interrupt does occur.

When an arithmetic fault interrupt occurs, the following actions
are taken:

17« The instruction causing the interrupt is aborted before
the data in any register or memory location is modified.

2. The current PSW is stored in registers 14 and 15 of the
set selected by the arithmetic fault interrupt new PSW
found in memory at physical address X°'000048°.

3. Register 13 of the selected set is loaded with a code to
indicate the reason for the interrupt:

CCDE REASON FOR INTERRUPT
C Fixed-point division by zero
1 Fixed-point qguotient overflow
2 Floating-point division by zero
3 Floating-point exponent underflow
4 Floating-point exponent overflow

4. Register 12 of the selected set 1is 1loaded w«with the
address of the instruction following the instruction
causing the interrupt.

5« The arithmetic fault interrupt new PSW becomes the
current PSW.

The o0ld PSW location counter presented to the 1interrupt service

routine in register 15 points to the instruction that caused the
interrupt.

10.6 STATUS SWITCHING INSTRUCTIONS

Status switching instructions provide for software control of the

system's interrupt structure. They also allow user level
programs to ccmmunicate efficiently with control software. All
status switching instructions, except the supervisor call

instruction, are privileged onperations. Therefore, all interrupt
handling routines must run in the supervisor mode.

The status switching instruction described in this section are:

10.6.1 LPSHK Load Program Status Word

10.6.2 LPSWR Load Program Status Word Register
10.6+«3 EPSR Exchange Program Status Register
10.6.4 SINT Simulate Interrupt

10.5.5 SVC Supervisor Call

10.6.6 BRK System Breakpoint

10.6.7 PSE Privileged System Function

10-32

10.6.1 Load Prcgram Status Word (LPSW)

Assembler Notation Op-Code Format
LPSW D2(X2) Cc2 RX1,RX2
LPSWH A2(FX2,5X2) Cc2 RX3

Operation

The 64-bit second operand replaces the current PS¥W.

Condition Code

Determined by the new PSW (bits 28:31).

Programming Notes

The R1 field of this instruction must be zero.

The second operand must be aligned to a fullword boundary.
This instruction is a privileged operation.

This instruction may be used to change register sets. The new
set becomes active for execution of the next instruction.

If bit 22 of the new PSW is set, the state of the system queue is
tested. If the queue is non-empty, a System Queue Service (SQS)
interrupt occurs. In this case, the newly-loaded PSW is saved as
the 0l1ld PSW when the SQS interrupt occurs.

29-693 ROO 1/79 10-33

10.6.2 Load Program Status Word Register (LPSWR)

Assembler Notation Op-Code Format

LPSHR R2 18 RR

Operation

The contents of the register specified by R2 replace bits 0:31 of
the current PSW. The contents of the register specified by R2+1
replace bits 32:63 of the current PSW.

Condition Code

Determined by the new PSW (bits 28:31).

Programming Notes
The R1 field of this instruction must be zero.

The R2 field of this instruction must specify an even-numbered
register.

This instruction may be used to change register sets. The new
set becomes active for execution of the next instruction.

This instruction is a privileged operation.
If bit 22 of the new PSW is set, the state of the system gueue is
tested. If the gueue is non-empty, a System Queue Service (SQS)

interrupt occurse. In this case, the newly-loaded PSW is saved as
the old PSW when the S0QS interrupt occurs.

10-34 29-693 ROO 1/79

10.6.3 Exchange Program Status Register (EPSR)

Assembler Notation Op~Code Format
EPSR R1,R2 95 RR

Operation

Bits 0:31 of the current PSW replace the contents of the register
specified by R1. The contents of the register specified by R2
then replace bits 0:31 of the current PSW.

Condition Code

Determined by the new PSW (bits 28:31).

Programming Notes

R1 and R2 may specify any general-purpose registerse.

If R1 and R2 specify the same register, bits 0:31 of the current
PSW are <copied into the register specified by R2, but otherwvise

remain unchanqged.

This instruction may be used to change register sets. The new
set becomes active for execution of the next instruction.

This instruction is a privileged operatione.

If bit 22 of the new PSW is set, the state of the system gueue is
tested. Tf the gueue is non-emnpty, a System Queue Service (5Q5)
interrupt occurs. In this case, the newly-loaded PSW is saved as
the old PSW when the S{)S interrupt occurs.

29-693 ROO 1/79 10-35

10.6.4 Simulate Interrupt (SINT)

Assembler Notation Op-Code Format
SINT I2(Xx2) E2 RIM
SINT R1,I2(X2) E2 RI1

Operation

The least significant 10 bits of the second operand are presented
to the interrupt handler as a device number. The device number
is wused to index into the interrupt service pointer table, when
simulating an interrupt request from an external device. The
result is either an immediate interrupt or an auto-driver channel
operation.

Condition Code

Determined by the status of the address device, in the case of
the immediate interrupt, or set by the auto-driver channel at
termination.

Programming Notes

If the R1 field of this instruction is not specified or <contains
zero, it 1s assumed that an interrupt from level 0 is required,
and register set 0 is selected.

If the R1 field of ¢the 1instruction is non-zero, the least
significant U Fbits of the register specified by R1 designate the
new register set, and consequently the new interrrupt level.

This instruction is a privileged operation.

This instruction causes the processor to load registers 2 through
3, or 0 through 4, of +the new set as for a real interrupt
request.

During the execution of this instruction, 'the device is addressed
and the status tyte is returned in register 3 of the new set,

If the specified device does not respond to the status request,
register 3 of the new set contains X*'00000004°' due to time-out.
If an immediate interrupt is being simulated, the V flag is also
set in the condition code as a result of the time-out.

The SINT instruction does hot cause any pending interrupt to be
acknowledged.

10-36 29-693 ROO 1/79

10.6.5 Supervisor Call (SVC)

Assembler Notation Op-Code Format
SVC N,D2(X2) E1 RX1, RX2
SvC N,A2(FX2,5X2) E1 RX3

Operation

The second operand (normally the program address of an SVC
parameter block) replaces bits 8:31 of register 13 of the set
designated by the supervisor call new PSW status. Bits 0:7 of
this register are forced to zero. The current PSW replaces the
contents of registers 14 and 15 of that set. The fullword
quantity located at Y*'000098' in memory replaces bits 0:31 of the
current PSW. The U4-bit N field is doubled and added with
X*'00009C*. The halfword quantity 1located at the resultant
address becomes the current location counter.

Condition Code

Determined by the new PSW (bits 28:31).

Programming Note

This instruction provides a means to switch from the protect mode
to the superviscr mode. It is used by a program running under an
operating system to initiate certain functions in the supervisor
program. The second operand address is normally a pointer to the
memory location of parameters needed by the supervisor program to
perform the srecified function. Such a pointer must indicate a
parameter block aligned to a fullword boundarye. The type of
supervisor call 1is specified in the N field of the instruction.
Sixteen different calls are provided for. Return from the
supervisor 1is made by executing an LPSWR instruction specifying
the stored o0ld FS¥ in registers 14 and 15 of the set selected by
the Supervisor Call interrupt new PSW (LPSWR R14).

29-6932 ROO 1/79 10-37

10.6.6 System Breakpoint (BRK)

Assembler Notation Op-Code
BRK 88
Operation

The BRK instruction causes the processor to
mode.

Programming Notes
The lccation counter is not incremented.

This instruction is a privileged instruction.

10-38

Format

SF

enter the console

29-693 ROO 1/79

10.6.5 Supervisor Call (SVC)

Assembler Notation Op-Code Format
SvC N,D2(X2) E1 RX1, RX2
SvVC N,A2(FX2,5X2) E1 RX3

Operation

The second operand (normally the program address of an SVC
parameter block) replaces bits 8:31 of register 13 of the set
designated by the supervisor call new PSW status. Bits 0:7 of
this register are forced to zero. The current PSW replaces the
contents of registers 14 and 15 of that set. The fullword
quantity located at ¥Y'000098' in memory replaces bits 0:31 of the
current PSW. The U4-bit N field 1is doubled and added with
X*'00009C"*. The halfword gquantity 1located at the resultant
address becomes the current location counter.

Condition Code

Determined by the new PSW (bits 28:31).

Programming Note

This instruction provides a means to switch from the protect mode
to the superviscr mode. It is used by a program running under an
operating syster to initiate certain functions in the supervisor
program. The second operand address is normally a pointer to the
memory location of parameters needed by the supervisor program to
perform the srpecified function. Such a pointer must indicate a
parameter block aligned to a fullword boundary. The type of
supervisor call 1is specified in the N field of the instruction.
Sixteen different calls are provided for. Return from the
supervisor 1is made by executing an LPSWR instruction specifying
the stored old FSW in registers 14 and 15 of the set selected by
the Supervisor Call interrupt new PSW (LPSWR R14).

29-692 ROO 1/79 10-37

10.6.6 System Breakpoint (BRK)

Assembler Notation Op-Code
BRK 88
Operation

The BRK instruction causes the processor to
mode.

Programming Notes
The lccation counter is not incremented.

This instruction is a privileged instruction.

10-38

Format

SF

enter the console

29-693 ROO 1/79

10.6.7 Privileged System Function (PSF)

Assembler Notation Op-Code Format
PSF N,D2(X2) DF RX1,RX2
PSF N,A2(FX2,5X2) DF RX3

Operation

The PSF instruction may perform any one of 16 functions, as
specified by the value contained in the N field. The assembler
recognizes extended mnemonics which cause the proper value to be
specified in the N field of this instruction. The nature of the
specified function may vary from ©processor to processor. The
following paragraphs detail PSF operations performed by this
processor.,

EXTENDED
PSF
VALUE OF N MNEMONIC MEANING
0 REL Read EKrror logger
1 LESTD Load Process Segment Table Descriptor
2 LSSTD Load Shared Segment Table Descriptor
3 STPS 5tore Process State
y LCPS Load Process State
£ IS5V Save Interruptible State
& ISRST Restore Interruptible State
7 LSTR Store Byte, no ECC

Programming YNote

This instruction is a privileged instruction.

29-693 ROO 1/79 10- 39

624

10.6.7.1 Read Error logger (REL)

Assembler Notation Op-Code Format
REL R2 DFO RX1
(see programming
notes)
Operation

The register specified by R2 contains an error logger address.
Error 1logger data at this address 1is read and placed in the
register specified by R2+1.

The format of the error logger address is:

0 7 8 910 13 14 1516 18 19 20 .31
RESERVED B M Cc S X RESERVED
BITS MNEMONIC USE
0-7 RESERVED must be zero
8-9 B bank - must be zero
10-13 ¥ module - selects one of’sixteen 256kb

memory modules

14-15 C column - selects one of four columns
of 64k bytes

16-18 S syndrome - a syndrome code modulo 24.
The 16 syndrome bits at
this address are read.

19 X error - if the X bit is zero, the
check error logger data at the

address specified by (B,M,C,S)
is read. If the X bit is set,
the state of the error bit for
the bank specified by B is
read, and the bit is then
forced to zero.

20-31 RESERVED must be zero

10-40 29-693 R0OO 1/79

823

The format of the data read from the error logger is:

0 15 16 31

0 SF----S‘ISO

where:

bit in the error logger corresponding to the syndrome
code address selected

2]
o
it

S¢ = bit in the error logger corresponding to the syndrome
cnde address selected plus X'F°'.

If the X bit is set, the condition code returned indicates either
negative (L flag set), or not negative. If the L flag 1is not
returned, no error bits are set in the error logger for the
selected bank. If the L flag is set, at least one error bit 1is
set in the error logger for the selected bank.

Condition Code

cCi{v!|GC|L
L1 X! X]O0 No error bits in the selected bank
X1 XX 1 At least one error bit in the selected bank

Programming Notes

The R2 field »of this instruction must specify an even-numbered
register.

PFL generates an RX1 format instruction, in which the
displacement field is always zero.

REL is an extended PSF mnemonic.

This instruction is a privileged instruction.

29-693 ROD 1/79 10-41

626

BIT

10.6.7.2 Load Process Segment Table Descriptor (LPSTD)

Assembler Notation Op-Code Format
LPSTD D2(X2) DF1 RX1,RX2
LPSTID A2(FXz,5X2) PF1 RX3

Operation

The second operand address points to a fullword Process Segment
Table Descriptor (PSTD), which has the following format:

MAC ADDRESS OF SEGMENT TABLE

Bits 0:7 (MAC) of the descriptor contain digits which 1indicate
the physical memory address to be used when loadiing segmentation
register 0 of the Memory Access Controller.

MAC ALDRESS VALID MAC FIELD
X*3¢0° X*03"
X'5C0° X*05"
X*9co’ X*09"

The 16 fullwords of data in the segment table are loaded into the
16 Memory Access Controller (MAC) segmentation registers,
starting with segmentation register zero. This data is used in
translation of program addresses from virtual to physical address
space when PSW kit 21 is set at some later time.

Condition Code

Unchanged

Programming Notes
The operand address nust be aligned to a fullword boundary.

The MAC segmentation registers may be loaded only when PSW bit 21
is zero. .

The correct valve, X'03°', X*05*, or X*09*' MUST be used in the MAC
field of the PSID used by this instruction.

This instruction is a privileged instruction.

LPSTD is an extended PSF mnemonic.

10-42 29-6593 ROO 1/79

10.6.7.3 Load Shared Segment Table Descriptor (LSSTD)

Assembler Notation Op-Code Format
LSSTD D2(X2) DF2 RX1,RX2
LSSTD A2(FX2,5X2) DF2 RX3

Operation

As shared segment tables are not provided for this processor,
this instruction performs no operation.

Condition Code

Unchanged

Programming Notes
This instruction is a privileged instruction.

LSSTD is an extended PSF mnemonic.

29-693 ROO 1/79 10-43

10.6.7.4 Store Process State (STPS)

Assembler Notation Orp-Code Format
STPS D2(X2) DF3 RX1,RX2
STPS A2(FX2,5X2) DF3 RX3
Operation

The process state, defined by the old PSW in registers 14 and 15
of the current set, is saved in the area of memory whose starting
address is specified by the operand. The area has the following
format:

NORMAL OFFSET (BYTES) STORED DATA
0-7 Process PSH
8- 11 Reserved - not used
12-75 Process general registers
76-139 Process interruptible state
140-235 5ingle and double precision

floating-point registers

Condition Code

Unchanged

Programming Notes

The orerand address must be aligned to a fullword boundary.
This instruction is a privileged instruction.

STPS is an extended P5F mnemonic.

The process general register s=set is selected by the o1l1d PSH¥ in
register 14 when this instruction is executed.

If bit 14 of the process PSW in register 14 is zero, the process
interruptible state is not saved, and the save area is compacted
accordingly. In this case, the process' floating point registers
are saved beginning at an offset of 76 bytes from the specified
overand address,

If bit 13 of the process PSW in register 14 is set, or if the
processor 1is not equipped with floating-point registers, then
floating—-point ragisters are not saved, and the save area is
compacted accordingly.

10-404 29-693 ROO 1/79

10.6+.7.5 Load Process State (LDPS3)

Assembler Notation Op-Code Format
LDPS D2(¥2) DFy RX1,RX2
LDPS A2(FX2,5¥2) DF4 RX3

Operation

Data from the area of memory specified by the operand replaces
the current process state. The area has the following format:

NORMAL OFFSET (BYTES) STORED DATA
0-7 Process PSH
8-11 Process segment table descriptor
12-75 Process general registers
76-139 Process interruptible stite (if

bit 14 in saved PSW is set)

140-235 Process single precision and
double precision floating-point
registers (if bit 13 in saved
PSW is zero)

The new PSA at the operand address specifies the general register
set which is loaded from the save area. If bit 14 of the new PSW
is set, the interruptible state is loaded from the save area. If
bit 13 of the new PSW 1is zero, and the processor is equipped with
floating—-point registers, then the single and double precision
floating-point registers ar= loaded from the save area. If bit
21 of the new PSW is set, the data indicated by the Process
Segment Table Descriptor is loaded into the 16 MAC segmentation
registerse. Finally, the new PSW at the operand address becomes
the current PSW.

Programming Notes
The orerand address must be aligned to a fullword boundarvy.

This instruction is a privileged instructione.

LDPS is an extended PSF mnemonice.

If bit 14 of the new FPSW is zero, the process interruptible state
is not loaded, and the save area is assumed t0 be compacted
accordingly. In thigs case, the process®' floating-point registers
are loaded from memory beginning at an offset of 76 bvytes from
the specified operand address.

29-693 ROO 1/79 10-45

If bit 13 of the new PSW is set, or if the processor 1is not
equipped with floating-roint registers, the process'
floating-point registers are not loaded, and the save area is
assumed to be compacted accordinglye.

If bit 22 of +the new PSW is set, the state of system queue is
tested before testing the wait bit (bit 16). If the queue 1is
non-empty, a System Queue Service (SQ5) interrupt occurs. In
this case, the newly-loaded P5W is saved as the old PSW when the
SQS interrupt occurs.

The =state of the wait bit (P3W bit 16) is tested before the next
instruction is executed. If PSW bit 23 1is set when this
instruction 1is executed, the MAC segmentation registers are not
loaded with the indicated data. The segmentation registers can
hbe loaded only when PSW bit 23 is zero.

10-456 29-693 ROO 1/79

10.6.7.6 Save Interruptible State (ISSV)

Assembler Notation Op-Code Format
ISSV D2(X2) DFs RX1,RX2
ISSV A2(FX2,SX2) DFS RX3
Operation
The contents of the interruptible instruction scratchpad

registers are stored 1in the 16 fullwords of memory starting at
the address specified by the operand.
Condition Code

nchanged

Programming Notes
The orerand address must be aligned to a fullword boundary.
This instruction is a privileged instruction.

ISSV is an extended PSF mnemonic.

29-693 R0OO0 1/79 10-47

10.6.7.7 Restore Interruptible State (ISRST)

Assembler Notation Op-Code Format
ISRST D2(X2) CF6 RX1,RX2
ISRST A2(FX2,5X2) DF6 RX3

Operation

The interruptible instruction scratchpad registers are 1loaded
from the 16 fullwords in memory starting at the address specified
by the operand.

Condition Code

Unchanged

Programming Notes
The operand address must be aligned to a fullword boundary.
This instruction is a privileged instruction.

ISRST is an extended PSF mnemonic.:

10-48 29-693 ROO 1/79

10.6.7.8 Store Byte, no ECC (XST3)

Assembler Notation Op-Code Format
XSTP D2(X2) DF7 RX1,RX2
XSTER A2(FX2,5X2) DF7 RX3

Operation

The contents of bits 24:31 of general register 0 are stored 1in
memory at the address specified by the operand, without changing
the error correction code bits for the specified memory location.

Condition Code

Unchanged

Programming Notes

This instruction is a privileged instruction.

XSTB is an extended PSF mnemonic.

This instruction may be used in conjunction with the read error

logger instruction to test the operation of the Error Correcting
Codes (ECC).

29-693 ROO 1/79 10-49/10-50

CHAPTER 11
WRITABLIE CONTROL STORE INSTRUCTIONS (OPTIONAL)

1171 INTRODUCTION

The optional Writable Control Store (WCS) adds another dimension
to the wuser level architecture, making all the resources of the
actual microprocessor available to the system programmer. A
two-to-three-times speed advantage over conventional software can
be realized when special algorithms or other functions are
i mplerented in WCS.

This coption provides the user with 2048 words of dynamically
alterable high-speed <control store memory, organized as an
extension to the 2048 words of fixed, read-only control store.
Each word in writable or fixed control store is 32 bits wide and
represents one machine level micro-instructione. Associated with
the WCS option are user-level instructions for moving blocks of
data between main memory and WCS, and for transferring control to
microprogrammed routines contained in WCS.

Fixed control store represents microcode addresses X*'000*' through
X*7FF*' and writable control =store represents addresses X'800°
through X'FFF*'.

Refer to the Model 3220 Microprogramming Reference Manual,

Publication Numkter 29-694, for a detailed description of the
various processcr elements and each individual micro-instruction.

11.2 WRITABLE CONTROL STORE INSTRUCTIONS

Instructions described in this section are:

WDCS Write Control Store
3DCS Read Control Stcre

EDCS Branch to Control Store
ECS Enter Control Store

29-692 ROO 1/79 11-1

11.2.1 V¥Write Ccntrol Store (HWDCS)

Assembler Notation Op-Code Format
WDCS R2 E80 RR
Operation

The second orerand address contained in the register specified by
R2 is the starting location in main memory of the data to be
transferred to KCS. The area of WCS to be loaded is specified by
the 1low address contained in general register 0 and the fullword
count minus one contained in general register 1. These registers
must be set up Ly the user before executing the WDCS instruction.

The WLCS instruction is interruptible. If it is interrupted, the
location counter field of PSW is not incremented so that after
the interrupt 1is serviced, the WDCS instruction can be resumed.
Proper resumpticn of the instruction is assured because, as each
fullword 1is transferred to the WCS address specified by the
contents of general register 0 plus the count, the <count in
general register 1 1is decremented by one. The operation
continues until the count decrements from zero to minus one.
Condition Code

Unchanged

Programming Notes
The R2 field may specify any register other than 0 or 1.

The second orerand address in the register specified by R2 must
be located on a fullword boundarye.

The contents of general reagister 1 are modified during the
execution of this instruction.

This instruction is a privileged operation.

11-2 29-693 ROO 1/79

11«2.2 Read Control Store (RDCS)

Assembler Notation Op-Code Format

RECS R2 E82 RR

Operation

The second operand address contained in the register specified by
R2 is the starting location in main memory ¢that 1is to receive
data from HWCS, The area in WCS from which this data is to be
copied is specified by the 1low address contained in general
register 2 and the fullword count minus one in general register
3., These registers must be set up by the user before executing
the RLCCS instruction.

The KRLCS instruction is interruptible. If it is interrupted, the
location counter field of the PSW is not incremented so that
after servicing the interrupt, the RDCS instruction <can Dbe

resumed. Prorer resumption of the instruction is assured
becaucse, as each fullword is transferred from WCS to main memory,
the count in general register 3 is decremented by one. The

operation continues until the count decrements from zero to minus
Oonee.

Condition Code

Unchanged

Programming Notes
The R2 field may specify any register other than 2 or 3.

The second operand address in the register specified by R2 must
be located on a fullword boundary.

The contents of general register 3 are modified during the
execution of this instruction.

Fixed control store (addresses less than X*'809') may not be read;
undefined data is returned.

This instruction is a privileged operation.

29-693 R00 1/79 11-3

11.2.3 Branch to Control Store (BDCS)

Assembler Notation Op-Code Format
BDCS R1,D2(X2) ES RX1,RX2
BDCS R1,A(FX2,5X2) ES RX3

Operation

An unconditional branch is taken to the <control store address
specified by the least significant 12 bits of the second operand
address. The second operand address may specify any location
within the writable portion of the control store, X'800°' through
X*FFF', or to any location within the read-only portion of the
contrcl store, X'000*' through X'7FF'. Unpredictable results can
occur if a dbranch is taken to a non-present microprogram address.
Condition Code

Depends on the microprogram entered into.

Programming Notes
The second operand address is not tested for validity.

The user may assign any desired meaning to the R1 field of the
instruction.

Upon entry to the control store routine, both the incremented and
unincremented values of the location counter are available to the
microprogranme.

This instruction is a privileged operation.

11-4 29-693 ROO 1/79

11.2.4 FEnter Control Store (ECS)

Assembler Notation Cp-Code Format

ECS R1,I2(X2) E9 RIN1

Operation

Control is given to the #CS location whose value is X'802°' plus
the contents of the R1 field. The effect is a branch to one of
the first 16 locations 1in KWCS. These locations may contain
branch micrc-instructions to 16 different microroutines. By
placing the appropriate number in the R1 field of the ECS
instruction, the user can call one of 16 different functions.

Condition Code

Depends on the microprogram entered into.

Programming Notes

The user may assign any desired meaning to the X2 field or the I2
field.

lpon entry to the control store routine, both the incremented and

unincremented values of the location counter are available to the
microrprogram.

29-693 R00 1/79 11-5/711-6

CHAPTER 12
MEMORY MANAGEMENT

12.1 INTRODUCTION

For the Model 3220 processor, memory relocation and protection is
provided by the Memory Access Controller (MAC). The MAC 1is a
device which monitors all memory accessese. Under program
contrcl, it can do the following:

® translate the address of a memory access from a 20-bit
program (virtual) address to a 20-bit physical address

° prevent write access to a block of menmory
® prevent instruction execution from a block of memory
° detect an invalid memory access

The throughput between the processor and local memory or between
the selector channel and local memory is not affected by the use
of the MAC.

In an operating system environment, the operation of the MAC is
completely transparent to most programs. It is very similar to
a peripheral device, in that only the operating system modules
directly resronsible for its cperation are affected by it.

12.2 ADDRESS SPACE

This processor supports management of a 2% byte physical or
virtual address space. When physical or virtual addresses are
manipulated, they are treated as 20-bit guantities. In general,
32-bit quantities are available to the processor for address
calculation. When intermediate calculations are complete, bits
0:11 of the 32-bit effective result are forced to zero or
discarded, giving a calculated address 20 bits in length, which
occupies bits 12:31 of the 32-bit effective result.

In some instances, an address consisting of less than 20 bits may

he used by the processor. Such an address is extended to 20 bits
in length by forcing the higher-order bits to zero.

29-692 ROO 1/79 12-1

627

12.2.1 Physical Address Space

The Memory Access Controller (MAC) is disabled when PSW bit 21 is
zero. When the MAC is disabled, any of the 2% byte maximum
available memory may be directly accessed. In those cases where
fewer than 2%° bytes of memory are configured, a machine
malfunction fault condition is 1likely to occur as a result of
attempting to access memory outside the available limits.

12e2.2 Virtual Address Space

The Memory Access Controller (MAC) is disabled when PSW bit 21 is
zero. When disabled, the MAC may be programmed so that when
translation 1is enabled, it is possible for a program to run in a
virtual address space of a maximum 2%° Dbytes. Virtual (or
program) addresses generated during the execution of such a
program are translated to physical addresses used 1in accessing
memory, by the MAC.

The MAC allows an operating system to provide support to user
programs So that each program can be coded as if some subset of
available memory, starting at address 0, were available to that
program. The range of addresses thus referenced by the progran
is called the program address space. At program load time, the
MAC can be used to map this program address space into the
available physical memory addresses so that any program address,
referenced during the program execution, is translated
(relocated) to the correct physical address before memory is
accessed. The MAC interprets the program address as follows:

0 » 11 12 15 16 31

SRN MBD

SRN: SEGMENTATION REGISTER NUMBER
MBD: MEMORY BLOCK DISPLACEMENT

If a virtual address space of less than 2% bytes has been
created and a virtual address is generated which is outside the
limits of the virtual address space, a Memory Access Controller
fault occurs.

The MAC, when properly programmed, allows simultaneous execution
of <ccncurrent processes while protecting each process fronm
interfering with the other processes in the systen. Violation of
any of the enabled protection mechanisms causes a MAC fault to
occur. Descrirtions of such faults may be found later in this
sectiocn.

If a physical address space of less than 22 bytes exists, and

address translation by the MAC results in a physical address

which is outside the limits of physical address space, a machine

malfunction fault condition is 1likely to occur. Proper

programming of the MAC causes a virtual address which results in

such a physical address to be intercepted before reaching the
‘mory systenm.

12-2 29-693 ROO 1/79

123 RELOCATION

Relocation of program address to physical address is accomplished
through the relccation/protection bit (bit 21) of the program
status word and the 16 segmentation registers of the MAC. 1If the
relocation/protection bit of the PSW is zero, the MAC provides no
translation of the addresses. If the relocation/protection bit
of the PSW is set, the MAC assumes that all memory accesses use
program addresses which must be relocated to physical addresses.
BRefore the relocation/protection bit of the PSW is set, the MAC
segmentation registers must be 1loaded to allow appropriate
mapping of the program to physical address (see following
diagram). The MAC segmentation register describes the starting
address and length of a block of vhysical memory allocated to the
program address space. Each block starts on a 256-byte boundary
and may be up to 64k bytes long.

PROGRAM ADDRESS
0 11,12 15,16 ' 31

0011 0010 0011 0100 1010
3 2 3 4 A

SEGMENTATION REGISTER 3
0 11,12 23 24 31

011 0100 0010

7 4 2
PHYSICAL ADDRESS

0 11,12 31

0111 0110 0101 0100 1010

7 6 5 4) A

Address calculation: X*'02344A" Memory block displacement
+ X'74200° Memory block starting address

X*'7654A" Physical memory address

When the relocation/protection bit of the PSW is set, the progran
address is relocated as follows:

1. Program address bits 12:15 select one of the
segmentation registers. In the example above,
segmentation register 3 is selected.

2. Segmentation register bits 12:23 specify the starting

address of the memory block. In the example above,
X'742* means that the memory block starting address is
X*7420C'.

3. Program address bits 16:31 contain the memory block
displacement.

4. The memory block displacement is added to the memory
block starting address to obtain physical memory
address.

i
w

29-6932 ROO 1/79 12

12.4 PROTECTION

In addition to describing a block of physical addresses, each
segmentation register can be used to limit the type of access to
the described block of addresses. Five types of protection are
provided by the MAC when the relocation/protection bit of the
current PSW is set:

1. if the presence bit (bit 27) is zero in the segmentation
register selected by bits 12:15 of the program address
(non-present address)

2« 1if the write-protect bit (bits 25 and 26 = 01 or 11) is
set 1in the segmentation register selected by bits 12:15
of the program address, and an attempt is made to store
into the addressed memory (write protect violation)

3. if the write/interruct protect bit (bits 25 and 26 = 10)
is set in the segmentation register selected by bits
12:15 of the program address, and a store is made into
the addressed memory (write/interrupt protect violation)

4, if the execute-protect bit (bit 24) 1is set in the
segmentation register selected by bits 12:15 of the
program address, and an instruction fetch 1is being
attempted from the addressed memory (execute protect
violation)

e 1f the value of bits 16:23 of the program address is
larger than the limit described 1in the segmentation
register selected by bits 12:15 of the program address
(invalid address), then a relocation/protection fault
interrupt is generated (segment limit violation).

The MAC status register contains the reason for the
interrupt (see diagram below).

629

0 26 27 .28 .29 30 31
| ——= “_/__}i
I N WPIWH E
——— —
INTERRUPT STATUS REGISTER
0 3,4 11 .12 23 .24 25 26,27 28 31
SLF SRF E | WP. | P.

SEGMENTATION REGISTER

12-4 ‘ 29-693 ROO 1/79

In the cases of an execute protection violation, write protection
violation, or invalid address, if the interrupt generated by the
MAC cannot be accepted immediately by the processor, the
contrcller continues to operate but all write operations do not
modify memory data until the interrupt is cleared. When a
write/interrupt protect violation occurs, the user instruction is
allowed to complete and then an interrurt is generated. The MAC
interrupt condition 1is cleared by the microprogram. The reason
code from the interrupt status register is returned in general
register 13 of +the set selected by the MAC interrupt new PSW.
(See Chapter 10.)

Fxample:

The effect of the MAC is best illustrated by an example of a
program executing under operating system control.

Assume that the program consists of:

° main program coded as if addresses 3 through 2FFF are
available and a prograp entry address of 100. (Program
address space = 12K)

° a subroutine coded as if addresses F0000 through FI1FFF are
available. (Program address space = 8K)

° a data area which is initialized by some other program and

which is contained at addresses AQO00O through AFFFF. Thi=s
area is to be write and execute protectad. (Program address
space = 64K)

The operating system executes with the relocation/protection bit
of the PSW reset so that no address relocation or protection is
in effect.

Assume that the main program, subroutine and data area are loaded
into physical memory starting at addresses 21000, F000, 13000,
respectively. Before passing control to the example program, the
operating system:

1e sets the relocation field of segmentation registers 0,
10 and 15 to 21000, 13000, and OF000, resvrectively, andi
sets the present bit for each of these registers.

Ze resets the preSent pit 1in the remaining segmentation
registerse.

3. sets the limit fields of segmentation registers O, 10
and 15 for 47, 255, and 31 256 byte Dblocks,
resrectively.

4, sets Wwrite and execute protection 1in segmentation
register 10.

29-693 RO0O 1/79 12-5

630 3.4 1,12 23 24 ,25 26,27 ,28 31
SLF SRF E |W.P. |P.
SEGMENTATION REGISTER FIELDS
SEGMENTATION REGISTER 0:
0 3,4 11,12 23 24 27,28 31
0010 1M 0010 0001 0000 0001
0 2 F 2 1 0 1 0
SEGMENTATION REGISTER 10:
0 3,4 11,12 23,24 27,28 31
1111 1111 0001 0011 0000 1011
0 F F 1 3 0 B 0
SEGMENTATION REGISTER 15:
0 3.4 11,12 23,24 27 28 31
0001 111 0000 "M 0000 0001
0 1 F 0 F 0 1 0
SEGMENTATION REGISTERS 1,2,3,4,5,6,7,8,9,11, 12, 13 & 14:
0 3 4 1,12 23 24 27 28 31
0000 0000 0000 0000 0000 0000
0 0 0 0 0 0 0 0

The program can then be started by loading a PSW with relocation/

protection bit of the status portion set and a

of 100.

1« an attempt is made to
reset in selected
segmentation register

2. an attempt is made to
set in selected
segmentation register

3. an attempt is made to
set in selected
Segmentation register

4, an attempt is made to

15:31 c¢f program address

field ¢f segmentation
2000).

An attempt to reference 100,
to 21100, 10200 or 13001,

12

|
(<,

F1200 or AQ0001 results in an
respectively.

location counter

A relocation/protection fault interrupt occurs if:

reference 30000. (Presence bit
segmentation register, i.ee,

3.)

store into A0100. (Write protect
segmentation register, i.e.,

10.)

branch to A0000. (Execute protect

segmentation ragister, i.e.,

10.)

reference F3000. (Value of bits

(3000) is largar than the 1limit
register 15 (32 256 byte blocks or

access

29-693 ROO 1/79

631

12.5 MAC REGISTERS

The MAC has 16 hardware segmentation registers referred to as
base registers. These registers are accessed through the
assigned memory locations. The 64 bytes, starting at the first
256 byte boundary above the interrupt service pointer table, are
dedicated to the MAC.

MAX NUMBER OF DEVICES DEDICATED MAC LOCATIONS
25€,, 300, - 33F,
5120 500, - 53F
102440 9006 - 93F

MAC registers are assigned to the dedicated locations as follows
(for 256 maximur number of devices):

SEGMENTATION MEMORY LOCATION
RFGISTER

300
304
308
30C
310
314
318
31C
320
324
0 328
1 32C
2 330
3 334
1y 338
15 33C

2 e D OO INNE WN 2O

Values are loaded into MAC registers by storing the values into
the appropriate dedicated memory 1locations while the MAC 1is
disabled. Any attempt to read the dedicated MAC 1locations
returns the value 1in the corresponding memory location. To
summarize the manipulation of the MAC registers:

1« The 64 bytes, starting at the first 256~-byte boundary
above the interrupt service pointer table, are dedicated
to the MAC.

2. The value of a MAC ragister is changed by storing into

the appropriate dedicated MAC location, while thes MAC is
disabled.

29-693 R00 1/79 12-7

3.

4.

The value of the MAC status register 1is read by the

microprograme.

All attempts to read (load) from dedicated MAC locations
return the value in the corresponding memory location.

Cefinition of MAC Register Fields

Segmentation Register

632

_,0 3.4 11,12 23 .24 ,25 26,27 31
SLF SRF E| wp [P
Each segmentation register is 32 bits wide.
FIELD BITS MEANING
0-3 Reserved - must be zero

SLF 4-11 Segment limit field - contains a value
one less than the number of 256 byte
blocks in the segment described by this
register.

SRF 12-23 Segment relocation field - indicates
the starting address of the segment
described by this register (starting
address = SRF multiplied by X*'100°').

F 24 Execute protect bit - if set,
instruction fetch from segment causes
relocation/protection fault.
Instruction aborts.

4F 265-26 Write protection field - encoded as
follows:

00 - no write protection

01 or

11 - Write protected - attempt to store
into segmnent causes
relocation/protection fault - store is
not executed. Instruction abortse.

10 - Write/interrupt protected -
attempt to store 1into segment causes
relocation/ protect fault - store is
executed. Instruction completes.

F 27 Presence bit - if not set, selection of
this register causes
relocation/protection fault.
Instruction aborts.,

28—31 Reserved - must be zero.

12-8

29-693 R0O 1/79

633

12.6 MAC INTERRUPT STATUS

26,27 28,29,30,31

0
e——— -
————...

FIELD BITS MEANING

I 27 Invalid address - value of bits 16:31 of
program address greater than the 1limit
specified by SLF in the selected
segmentation register. Instruction was
aborted.

N 28 Non-present address - present bit not set
in selected segmentation register.
Instruction was aborted.

WP 29 Write protect violation - attempt to store
into write protected segment. Instruction
was aborted.

WI 30 Write/interrupt protection violation -
store into write/interrupt protected
segment. If no other status bits are set,
instruction was completed.

E 31 Execute protect violation - instruction
fetch attempt from execute protected
segmente. Instruction was aborted.

The interrupt status is set by the MAC during generation of a
relocation/protection fault interrupt. The microprogram clears
the interrupt ccndition from the MAC. The contents of the MAC
interrupt statuts register are copied to register 13 of the set
specified by the relocation/protection interrupt new PSW. The
MAC interrupt status register is then cleared. :

Initialization

When the Initialize Switch (INIT) on the display panel is
depressed, or the processor 1is powered up, all segmentation,
relocation, protection and MAC interrupts are disabled regardless
of the state of bit 21 in the current PSW. The contents of the
MAC segmentaticn registers must be restored by software after
power fail.

The MAC remains disabled until a memory reference instruction is
i ssued. At this time, the MAC is enabled or remains disabled,
depending on the conditicr of bit 21 of the current PSW.

29-692 ROO 1/79 12-9

634

The Lcad Process Segment Table
described in Chapter 10,

MAC registerse.

a main memory image.

Descriptor (LPSTD) instruction,

is provided to facilitate loading of the
This instruction loads all 16 MAC registers from
This image begins at the address

specified

by the segment table descriptor as shown by the format below:

0 7 31
N SEGMENT TABLE ADDRESS
where N equals X*o03* if the MAC registers are at address
X*0300°*
or X*05* if the MAC registers are at address
X*0500"'
or X*09"* if the MAC registers are at address
X'0900°"
The segment table address 1is the address of a block of 16
fullwords to be loaded into the MAC.
The following ©program sequence shows how to set up the MAC
registers to initially map all program addresses to the
corresponding physical addresses (i.e., no translation).
EPSR R4,R4 Capture current PSW
NHI R4,X*FBFF"* Reset bit 21 in R4
EPSR R3,RuU Disable MAC
R3 = original PSH
*
LPSTD ST«DESCR Load process segment table
: descriptor
OHI R3,X°0400" Set bit 21 in R3
EPSR R4,R3 Enable MAC
°
®
°

12-10

29-693 ROO 1/79

ST.DESCR DC

SEG.TAB

DCY
DCY
DCY
DCY
DCY
DCY
DCY
DCY
DCY
DCY
DCY
DCY
DCY
DCY
DCY
DCY

SEG.TAB + Y*03000000°

0FF00010
OFF1C010
0FF20010
OF} 010
OFFu40010
OEF50010
0FF60010
0EFF70010
OFF80010
0FF90010
OFFA0010
OFFBOO10
OFFC0010
0FFDOO10
OFFEOO10
OFFFO0010

29-693 B0O 1/79

MAC STARTS AT X*0300°'...POINT

TO SEGMENT TABLE

Segmentation register image

Each value has a linmit

field of X'FF'. The Relocation
field is set for one-to-~one
translation; i.e., a progranm
address that equals *'5XXXY°*
selects seg.req 5 which will
relocate the address to physical
5XXX¥., The presence bit is set
in each register.

12-11

12.7 RE-EXECUTION OF FAULTING INSTRUCTIONS

In general, an instruction causing a correctable MAC fault can be
re-executed simply after the fault is corrected.

The Load Multiple (LM) instruction in some <cases cannot be
re—-executed simply, but must be simulated. When an LY
instruction faults, register 11 of the set specified by the MAC
interrupt new PSW is loaded with the virtual address calculated
by the hardvare as the effective second operand address of the
instruction. If that address is the same as the virtual address
which caused the fault (contained in register 12), the
instruction may be re-executed once the fault has been corrected;
no registers were modified by the LM instruction.

If the addresses in registers 11 and 12 are not equal, at least
one register was modified by the LM instruction. Once the fault
has been corrected, system software should build and execute an
instruction to load the required registers, using the <calculated
virtual address in register 11. The location counter of the o0ld
PSW should be incremented by instruction length before resuming
normal program execution.

ALTERNATE METHOD:

If the addresses are not equil, the difference in the addresses,
D, should be computed. The last register modified, M=(D/8) -
1+R1, should be calculated. If M is less than the X2 field in an
RX1 or RX2, or 1is less than both the FX2 and 35X2 fields in an
RX3, the instruction may be re-executed. If this 1is not the
case, then system software must build an instruction segquence to
load the remaining registers from the appropriate memory
locations. The 1location portion of the old PSW should then be
incremented by the instruction length. At +this point, normal
execution can be resumed by loading the old PSWe.

635

MODFEL MAP
MSD —
0 1 2 3 a 5 6 7 8 9 A c D E F
LsD 4 4 5 5
0 SRLS | BTBS STH ST STE STD SRHLS BXH sT™M | Ts
1
5 4 5 4 5 4
118ALR |stts |BTFs BAL |AM AHM STME SLHLS BXLE | LM sve
1
5 3 a a a
2{BTCR |CHVR |BFBS |PBR BTC PB LME |sSTDE |sTBR Lpsw | sTB SINT
] 1 . .
5 1 1 5 4
3|B8FCR |LPER |BFFS |LPDR |BFC LRA LHL LBR THI LB scp TI
5 4 a
4InNR LIS EXHR | NH N ATL TBT LED ExBR |LEDR NHI cLB NI
1 1
4
5|cLR LGER | LCS CLH |cL ABL SBT EPSR LEGR CLH! |AL BDCS |cCLI
1 .] M M 2
a a
6 |oR LGDR |AIS OH o) RTL RBT LDGR OHI LA ol
1
5 4 a4 4
7| xR LCER [SIS LCDR | xH X RBL cBT LDE LDER XHI TLATE |X!
1 1 1
5 4 4 4 4
8 |LR LPSWR | LER LDR LH L LE LD BRK |WHR LHI WH R/WDCS jLI
* 1 1] . " " 2
5 4 4
9|cr CER |cCDR CH C CE co RHR CHI RH ECS ClI
1 1 . . 2
5 a a4 a4
AlAr AER | ADR | AH A AE AD WDR AHI WD RRL Al
1 1 1 . P
5 4 a 4
Blsm SER SDR SH S SE SD RDR SHI RD RLL s
1 1 1 - .
5 4 4
cimHr MR MER |MDR |MH M ME MD RXRX SRHL SRL
1 1 1
4 4
p{DHR DR DER {DDR [DH D DE DD SSR SLHL [ss SLL
1 1 . .
5 4
3 FXR FXDR CRC12 | STBP |STMD OCR SRHA | oOC SRA
1 1 1 - .
5 4
F FLR FLDR CRC16 | LPB LMD SLHA | PSF SLA
1 1 1 *
1. OPTIONAL FLOATING=POINT INSTRUCTION
2. OPTIONAL WCS INSTRUCTION
3. OPTIONAL HIGH SPEED DATA HANDLING INSTR!ICTION
4. SECOND OPERAND ADDRESS MUST BE FULLWORD ALIGNED.
5. SECOND OPERAND ADDRESS MUST BE HAL FWORD ALIGNED.
* PRIVILEGED INSTRUCTION.
29-693 ROO 1/79 A-1

636

APTENDIX A (Continued)
MODTL 3220 0OP-CODE MAP

RXRX SUB FUNCTIONS

MSD ——»

IMMEDIATE LENGTH SECOND OPERAND

IMMEDIATE LENGTH FIRST OPERAND

IMMEDIATE LENGTH BOTH OPERANDS

0 2

4 6

8 A

c E

LSD
MVTU
LCL; MOVE MOVEP
8
Z
o CPAN CPANP
|
[S]
=
-
u PMV PMVA
umyv UMVA

PRIVILEGED SYSTEM FUNCTIONS (PSF)

OP-CODE MNEMONIC
DFO REL

DF1 LPSTD
DF3 STPS

DF4 LDPS

DF5 ISSV

DF6 ISRST

DF7 XSTB

MEANING

READ ERROR LOGGER

LOAD PROCESS SEGMENT TABLE DESCRIPTOR
SAVE PROCESS STATE

LOAD PROCESS STATE

SAVE INTERRUPTIBLE STATE

RESTORE INTERRUPTIBLE STATE

STORE BYTE WITHOUT ECC

27-593 RO1 1/7¢

29-693 ROO 1/79

INSTRUCTION
MNEMONIC OP-CODE
A SA
ABL 65
AD TA
ADR 3R
AE 6A
AER 2A
AH A
AHI CA
AHN 61
AI FA
AIS 26
AL D5
AN 51
AR OA
ATL €y
B 430
BAL 41
BALEF 01
BC 428
BCR 028
BCS 208
BCS 218
BDCS ES
BE 433
BER 033
BES 223
BES 233
BFBS 22
BFC 43
BFCR 03
BFFS 23
BL 428
BLR 028
BLS 208
BLS 218

SUMMARY -

APPENDIX B

Add
Add
Add
Add
Add
Add
Add
Add
Add
Add
Add

ALPHARETICAL BY MNEMONIC

INSTRUCTION

to Bottom of List
DPFP

DPFP Register

SPFP

SPFP Register
Halfword

Halfword Immediate
Halfword to Memory
Immediate
Immediate Short

Autoload

Add
Add
Add

to Memory
Register
to Top of List

Branch Unconditional

Branch and Link

BRranch and Link Register

Branch on Carry

Branch on Carry Register

Branch on Carry Short (Backward)

Branch on Carry Short (Forward)

Branch to Control Store

Branch on Equal

Branch on Equal Register

Branch on Egqual Short (Backward)
8ranch on Equal Short (Forward)
Branch on False Condition Backward
Short

Branch on False Condition

Branch on False Condition Kegister
Branch on False Condition Forward
Short

Branch on Low

dranch on Low Register

Branch on Low Short (Backward)
Branch on Low Short (Forwari)

APPENDIX B (Continued)

INSTRUCTION SUMMARY - ALPHABETICAL BY MNEMONIC

MNEMONIC OP-CODE
BN 421
BMK 021
BNS 201
BMS 211
BNC 438
BNCR 038
BNCS 228
BNCS 238
BNE 423
BNER 023
BNES 203
BNES 213
BNL 438
BNLR 038
BNLS 228
BNLS 238
BNM 431
BNMR 031
BNHS 221
BNMS 231
BNO 434
BNOR 034
BNOS 224
BNOS 234
NP 432
BNPR 032
BNPS 222
BNPS 232
BNZ 423
BNZR 023
BNZS 203
BNZS 213
BO 420
BOR 024
BOS 204
BOS 214
BP 422
BPR 022
BPS 202
BPS 212
BR 030
BRK 88
BS 220
BS 230
BTBS 20
BTC 42

B-2

INSTRUCTION

Branch on Minus

Branch on Minus Register

Branch on Minus Short (Backward)
Branch on Minus Short (Forward)
Branch on No Carry

Branch on No Carry Register

Branch on No Carry Short (Backward)
Branch on No Carry Short (Forward)
Branch on Not Equal

Branch on Not Equal Register

Branch om Not Equal Short (Backward)
Branch on Not Equal Short (Forward)
Branch on Not Low

Branch on Not Low Register

Branch on Not Low Short (Backward)
Branch on Not Low Short (Forwardi)
Branch on Not Minus

Branch on Not Minus Register

Branch on Not Minus Short (Backward)
Branch on Not Minus Short (Forward)
Branch on No Overflow

Branch on No Overflow Register
Branch on No Overflow Short (Backward)
Branch on No Cverflow Short (Forward)
Branch on Not Plus

Branch on Not Plus Register

Branch on Not Plus Short (Backward)
Branch on Not Plus Short (Forward)
Branch on Not Zero

Branch on Not Zero Register

Branch on Not Zero Short (Backward)
Branch on Not Zero Short (Forward)
Branch on Overflow

dranch on Overflow Register

Branch on Overflow Short (Backward)
Branch »n Overflow Short (Forward)
Branch on Plus

Branch on Plus Register

Branch oa Plus Short (Backward)
Branch on Plus Short (Forward)
Branch Unconditional Register
Breakpoint

Branch Unconditional Short (Backward)
Branch Unconditional Short (Forward)
Branch on True Condition Backward Short
Branch on True Condition

29-693 ROO 1/79

MNEMONIC

BTCR
BTFS
BXH
BXLE
BZ
BZR
BZS
BZS

C

CBT
CD
CDR
CE
CER
CH
CHI
CHVR
CI

CL
CLB
CLH
CLHI
CLI
CLR
CPAN
CPANP
CR
CRC12
CRC16

D
DD
DDR
DE
DER
DH
DHR
DR

ECS

EPSEK
EXBE
EXHR

OP-CODE

02
21
co
C1
433
033
223
233

59
77
79
39
69
29
49
Cc9
12
F9
55
D4
45
cs
F5
05
8C/02
8C/22
09
5E
5F

5D
7D
3D
6D
2D
up
0D
1D

E9
95
94
34

29-693 ROO 1/79

Branch
Branch
Branch
Branch
Branch
Branch
Branch
Branch

Compare
Complenm
Compare
Compare
Compare
Compare
Ccmpare
Compare
Convert
Compare
Compare
Comgpare
Comrare
Ccmrare
Compare
Compare
Ccmpare
Compare
Compare
Cyclic

Cycle R

Divide
Divide
Divide
Divide
Divide
Divide
Divide
Divide

Enter C
mxchang
Exchang
Kxchany

APPENDIX B (Continued)
INSTRUCTION SUMMARY - AL

PHABETICAL BY MNEMONIC

INSTRUCTION

on True Condition Register

on True Condition Forward Short
on Index High

on Index Low or Equal

on Zero

on Zero Register

on 7Zero Short (Backward)

on Zero Short (Forward)

ent Bit
Double Floating Point
Double Floating-Point Ragister
Floating Point
Floating-Point Register
Halfword
Halfword Immediate
Halfword Value Register
Immediate
Logical
Logical Byte
Logical Halfword
Logical Halfwoard Immediate
Logical Immediate
Logical Register
Alphanumeric
Alphanumeric and Pad
Register
Redundancy Check Modulo 12
edundancy Check Modulo 16

Pouble-Precision Floating Point
Double Floating-Point Register
Floating Point

Floating-Point Register
Halfword

Halfword Register

Register

ontrol Store

e Program Status Register
e Byte Register

e Halfword Register

APPENDIX B (Continued)
INSTRUCTION SUMMARY - ALPHABETICAL BY MNEMONIC

MNEMCNIC OP-CODE INSTRUCTION
FLR 2F Float Register
FLDR 3F Float Register Double Precision
FXDR 3E Fix Register Double-Precision Floating
Foint
FXR 2E Fix Register
ISRST DF6 Interruptible State Restore
ISSY DF5 Interruptible State Save
L 53 Load
LA ES Load Address
LB D3 Load Byte
LEBR 93 Load Byte Register
LCDR 37 Load Complement Double Floating Register
LCER 17 Load Complement Floating-Point Register
LCS 25 Load Complement Short
LD 78 Load Couble-Precision Floating Point
LDE 87 Load Double Floating Point From Single
LDER A7 Load Double From Single Register
LDGR Af Load Double From General Register
LDPS DFy Load Process State
LDR 38 Load [Couble-Precision Register
LE 68 Load Floating Point
LED 84 Load Floating From Double Precision
LEDR Ay Load Floating From Double Register
LEGK AS Load Floating From General Register
LER 28 Load Floating-Point Register
LH 44 Load Halfword
LHI Cc8 Load Halfword Immediate
LHL 73 Load Haltword Logical
LI F3g Load Immediate
LIS 24 Load Immediate Short
LM¥ D1 Load Yultiple
LMC TF Load Multiple Double-Precision Floating
Point
LME 72 Load Multiple Floating Point
LPR 6F Load Packed rrom Binary
LPDR 33 Load Positive LCouble Floating Register
LPER 13 Load Fositive Floating Register
LPSTD DF1 l.oad Process Segment Table Description
LPSHW c2 Load Program Status Word
LPSWR 1R Load Program Status Word Register
LE 04 Load Register
LRA 63 Load 2eal Address

B-u 29~693 R0OO 1/79

INSTRUCTION SUMMARY -

MNEMONIC

M

MD
MDR
ME
MER
MR
MHR
MOVE
MOVEP
MR

N

NH
NHI
NI
NOP
NOPR
NR

0
oc
OCR
CH
OHI
0I
OR

PB
PBR
PMV
PHVA

RBL
RBT
RD
RDCS
RDR
REL
RH
RHR
RLL
RRL
RTL

SBT
SCP

29-693 R0O 1/79

APPENDIX B (Continued)

OP-CODE

5C
7C
3C
6C
2C
4c
oC
8C/01
8C/21
1C

54
4y
cy
Fy
420
020
o4

56
DE
9E
46
Cé
Fé
06

652

32
8C/03
8C/23

67
76
DB
E82
9B
DFO
D9
99
EB
EA
66

58
75
E3

ALPHABETICAL BY MNEMONIC

INSTRUCTION

Multiply

Multiply Double Floating Point
Multiply Double Floating Register
Multiply Floating Point

Multiply Floating-Point Register
Multiply Halfword

Multiply Halfword Register

Move

Move and Pad

Multiply Register

AND

AND Halfword

AND Halfword Immediate
AND Immediate

No Operation

No Operation Register
AND Register

OR

Output Command

Output Command Register
OR Halfword

OR Halfword Immediate
OF Immediate

0R Register

Process Byte
Process Byte Register
Pack and Move
Pack and Move Absolute

Remove from Bottom of List

Reset Bit

Read Data

Read Control Store
Read Data Reglister

Read Error Logger

Read Halfword

Read Halfword Register
Rotate Left Logical
Rotate Right Logical
R2move from Top of List

Subtract
Set Bit
Simulate Channel Progranm

APPENDIX 3 (Continued)
INSTRUCTION SUMMARY - ALPHABETICAL BY MNEMONIC

MNEMONIC 0P-CODE INSTRUCTION
SD 78 Subtract Double-Precision Floating
Point
SDR 3B Subtract Register Double-Precision
Floating Point
SE 6B Subtract Floating Point
SER 2B Subtract Floating-Point Register
SH 4B Subtract Halfword
SHI CB Subtract Halfword Immediate
SI FB Subtract Immediate
SINT E2 Simulate Interrupt
SIS 27 Subtract Immediate Short
SLA EF Shift Left Arithmetic
SLHA CF Shift Left Halfword Arithmetic
SLHL CD Shift Left Halfword Logical
SLHLS 91 Shift Left Halfword Logical Short
SLL ED Shift Left logical
SLLS 11 Shift Left Logical Short
STPS D¥F3 Save Process State
SR 0B Subtract Register
SRA EE Shift Right Arithmetic
SRHA CE Shift Right Halfword Arithmetic
SRHL cC Shift Right Halfword Logical
SRHLS 90 Shift Right Halfword Logical Short
SRL EC Shift Right Logical
SRLS 10 Shift Right Logical Short
SS DD Sense 3Status
SSR 9D Sense Status Reglster
ST 50 Store
STB D2 Store Byte
STRFE 6 E Store Binary as Packed
STBR g2 Store Byte Register
STD 70 Store Double-Precision Floating Point
STE 60 Store Floating Point
STH 40 Store Halfword
STH Do Store Multiple
STHL TE Store Multiple Double-Precision
Flcating Point
STME 71 Store Multiple Floating Point
SVC E1 Supervisor Call
TBT T4 Test Bit
THI C3 Test Halfword Immediate
TI F3 Test Immediate
TLATE E7 Translate
TS EO Test and Set

B-6 29-693 ROO 1/79

MNEMONIC

UMY
UMVA

WD
WDCS
WDR
WH
WHR

X

XH
XHI
X1
XR
XSTE

29-693 ROO 1/79

APPENDIX B (Continued)
INSTRUCTION SUMMARY - ALPHABETICRL BY MNEMONIC

OP-CODE

8C/04
8C/24

DA
E80
93
D8
38

57
L7
c7
F7
07
DF7

INSTRUCTION

Unpack and Move
Unpack and Move Absolute

Write
Write
Write
WHrite
Write

Da ta

Control Store
Data Register
Halfword

Halfword Register

Exclusive OR

Exclusive OR Halfword
Exclusive OR Halfword Immediate
Exclusive OR Immediate
Exclusive OR Register

Store

Byte, no ECC

B-7/82-8

OP-COTE

01~
02*
03+

ou
05

06
07

08
09

0.1
OB
oC*
oD~*

10
1

12
13+
15+
16+
17+

18

1C*
1D*

20*
21+

22+

23*

APPENDIX C

INSTRUCTION SUMMARY - NUMERICAL

MNEMONIC

BALR
BICR
BECR

NR
CIR

OR
XR

LE
CE

AR
SE
MHR
DHR

SRLS
SILS

CHVR
LPER
LGER
LGDR
LCER

LPSHR

MR
DR

BIRS
BTFS

BEBS
BEFFS

INSTRUCTION

Branch and Link Register
Branch on True Condition Register
3ranch on False Condition Register

AND Register
Compare Logical Register

OR Register
Exclusive OR Register

Load Register
Compare Register

Add Register

Subtract Register

Multiply Halfword Register
Divide Halfword Register

Shift Right Logical Short
Shift Left Logical Short

Convert to Halfword Register
Load Positive Floating Point

Load General Register from Floating

Load General from Double Floating
Load Complement Floating Register

Load Program Status Word Register

Multiply Register
Divide Register

Branch on True Condition Backward Short
Branch on True Condition Forward Short

dranch on False Condition Backward Short
Branch on False Condition Forward Short

*Condition code not chanced

+Cptional instruction

29-693 R0OO 1/79

APPENDIX C (Continued)
INSTRUCTION SUMMARY NUMERICAL

O0P-COLCE MNEMONIC INSTRUCTION

24 LIS Load Immediate Short

25 LCS Load Complement Short

26 AIS Add Immediate Short

27 SIS Subtract Immediate Short

28+ LER Load

29+ CER Compare Floating Point

2A+ AER Add Floating-Point Register

2B+ SER Subtract Floating-Point Register

2C+ MER Multiply Floating-Point Register

2D+ DER Divide Floating-Point Register

2E+ FXR Fix Register

2F+ FLR Float Register

32*+ PBR Process Byte Register

33+ LPDR Load Positive Double Register

3y* EXHR Exchange Halfword Register

37+ LCDR Load Complement Double Register

38+ LDR Load Register Double-Precision
Floating Point

39+ CDR Compare Register Double-Precision
Floating Point

3A+ ADR Ldd Register Double-Precision
Floating Point

3B+ SDR Subtract Register Double-Precision
Floating Point

3C+ MDR Multiply Register Double-Precision
Floating Point

3D+ DDR Divide Register Double-Precision
Floating Point

3E+ FXDR Fix Register Double-Precision
Floating Point

3F+ FLDR Float Register Double-Precision

Floating Point

4o+ STH Store Halfword

*Condition code not changed
+0ptional instruction

C-2 29-693 R0OO 1/79

APPENDIX C (Continued)
INSTRUCTION SUMMARY NUMERICAL

OP-COLE MNEMONIC INSTRUCTION
41* BAL Branch and Link
y2+* BTC Branch on True Condition
43* BFC Branch on False Condition
4y NH AND Halfword
45 CLH Compare lLogical Halfword
46 OH OR Halfword
47 XH Exclusive OR Halfword
48 LH Load Halfword
49 CH Compare Halfword
4A AH Add Halfword
4B SH Subtract Halfword
4Ccw MH Multiply Halfword
up=* DH Divide Halfword
50+ S Store
51 AM Add to Memory
54 N AND
55 CL Compare Logical
56 0 OR
57 X Exclusive OR
58 L Load
59 C Compare
5A A Add
5B S Subtract
5C* M Multiply
SD~* D Divide
SE* CRC12 Cyclic Redundancy CTheck Modulo 12
5F* tRC16 Cyclic Redundancy Check Modulo 16
60*+ STE Store Floating Point
61 AHM Add Halfword to Memory
62*+ PB Process Byte
63 LRA Load Read Address
64 ATL Add to Top of List
65 ABL Add to Bottom of List

*Condition code not changed
+0Optional instruction

29-693 R0OO 1/79 C-3

0P-COLCE

66
67

68+
69+

6A+
6B+
6C+
6D+
6F
6F

70%+
T1%+
72%+

74

76
77

78+
79+
TA+
7B+

7C+

7D+
TE*+

TE*+

82*+
su+
87+
g8~*

APPENDIX C (Continued)

INSTRUCTICN SUMMARY NUMERICAL

MNEMONIC

RTL
RBL

LE
CE

AE
SE
ME
DE
STBP
LPB

STD
STME
LME
LHL

TBT
SBT
RBT
CBT

LD
CD
AD
SD

MD

DD

STHD

L®D

STDE
LED
LDE
2RK

INSTRUCTION

Remove from Top of List
Remove from Bottom of List

Load Floating Point
Compare Floating Point

Add Floating Point
Subtract Floating Point
Multiply Floating Point
Divide Floating Point
Store Binary as Packed
Load Packed Binary

Store Double-Precision Floating Point
Store Floating-Point Multiple

Load Floating-Point Multiple

Load Halfword Logical

Test Bit

Set Bit

Reset Bit
Complement Bit

Load Double-Precision Floating Point
Compare Double-Precision Floating Point
Add Double-Precision Floating Point
Subtract Double-Precision Floating
Point

Multiply Double-Precision Floating
Point

Divide Double-Precision Floating Point
Store Multiple Double-Precision
Floating Point

Load Multiple Double-Precision Floating
Point

Store Double Precision to Single
Load Floating from Double Precision
Load Double from Floating Point
Breakpoint

*Condition code not changed

+0ptional instruction

29-693 ROO 1/79

APPENDIX C (Continued)

INSTRUCTION SUMMARY NUMERICAL

OP-COLCE MNEMONIC
8C (RXRX)
8C/00 MVTU
8C/01 MOVE
8C/02 CPAN
8C/03 PMV
gC/ou UMy
8C/21 MOVEP
8C/22 CPRNP
8C/23 PMVA
8C/24 UMVA
90 SRHLS
91 SLHLS
92* STBR
93+ LBR
9u* EXBR
95 EPSR
98 WHR
99 RHR
9A WDR
9B RDR
9D SSR
9E OCR
Al+ L¥DR
AS+ LEGR
A6+ LDGR
A7+ LDER
Ccox* 3XH
C1* BXLE
c2 LPSW
C3 THI
Cy NHI
C5 CLHI

INSTRUCTION

RXRX Class designator

Move Translates Until

Kove

Compare Alphanumeric

Pack and Move

Unpack and Move

Move and Pad

Compare Alphanumeric and Pad
Pack and Move Absolute
Unpack and Move Absolute

Shift Right Halfword Logical Short
Shift Left Halfword Logical Short
Store Byte Register

Load Byte Register

Exchange Byte Register
Exchange Program Status Word

Write Halfword Register
Read Halfword Register

Write Data Register
Read Data Register

Sense Status Register
Output Command Register

Load Floating from Double Register
Load Floating from General Register
Load Double from General Register

Load Double from Floating Register

Branch on Index High
Branch on Index Low or Egqual

Load Program Status Word
Test Halfword Immediate

AND Halfword Immediate
Compare Logical Halfword Immediate

*Condition code not changed

+0Opticnal instr

29-633 ROC 1/79

uction

APPENDIX C (Continued)
INSTRUCTION SUMMARY NUMERICAL

OP-COTLE MNEMONIC INSTRUCTION
Cé OHI OR Halfword Immediate
c7 XHI Exclusive CR Halfword Immediate
of:} LHI Load Halfword Immediate
Cc9 CHI Compare Halfword Immediate
ChA AHI Add Halfword Immediate
CB SHI Subtract Halfword Immediate
ccC SRHL Shitfc¢ Kight Halfword Logical.
cD SLHL Shift Left Halfword Logical
CE SRHA Shift Right Halfword Arithmetic
CF SLHA Shift Left Halfword Arithmetic
Do* STM Store Multiple
D1~ LM Load Multiple
D2* STR Store Byte
D3* LB Load Byte
Dy CLB Compare Logical Byte
DS AL Autoload
D8 WH Write Halfword
DS RH Read Halfword
DA WD Write Data
DB RD Read Data
DD SS Sense Status
DE 0cC Output Command
DF (PSF) PSF Class Designator
DFO REL Read Error Logger
DF1* LPSTD Load Process Segment Table Descriptor
DF2~* LSSTD Load Shared Segment Table Descriptor
DF3* STPS Save Process State
DFu LDPS Load Process State
DF5* ISSY Interruptible State Save
DFe6~* ISRST Interruptible State Restore
DF7* XSTB Test Error Logger

*Condition code not changed
+0Optional instruction

c-6 29-693 ROO 1/79

APPENDIX C (Continued)
INSTRUCTION SUMMARY NUMERICAL

OP-COLE MNEMONIC INSTRUCTION
EO TS Test and Set
E1 SvC Supervisor Call
E2 SINT 53imulate Interrupt
E3 SCP Simulate Channel Program
ES* + BDCS Branch to Control Store
E6* LA Load Address
E7* TLATE Translate
E8Q*+ WDCS Write Control Store
Eg2*+ RDCS Read Control Store
Eg*+ ECS Enter Control Store
EA RRL Rotate Right Logical
EB RLL Rotate Left Logical
EC SRL Shift Right Logical
ED SLL 5hift Left Logical
EE SRA Shift Right Arithmetic
EF SLA Shift Left Arithmetic
F3 TI Test Immediate
Fy NI AND Immediate
F5 CLI Compare Logical Immediate
Fé6 0I OR Immediate
F7 ¥I Exclusive OR Immediate
F8 LI Load Immediate
F9 CI Compare Immediate
FA Al Add Immediate
FB SI Subtract Immediate

*Condition code not changed
+0pticnal instruction

29-693 ROC 1/79 c-7/C-8

APPENDIX D
ARITHMETIC REFIFENCES

637 TABLE OF POWERS OF TWO
n n -
@ ho @ n 27
1 1 0 1,0
2 2 1 0.5
4 4 2 0,25
8 8 3 0.125
16 10 4 0.062 5
32) 20 5 0.031 25
64 40 6 0.015 625
128 80 7 0.007 812 5
256 100 8 0.003 906 25
512 200 9 0.001 953 125
1 024 400 10 0,000 976 562 5
2 048 800 11 0.000 488 281 25
4 096 1000 12 0.000 244 140 625
8 192 2000 13 0.000 122 070 312 5
16. 384 4000 14 0.000 061 035 156 25
32 1768 8000 15 0,000 030 517 578 125
65 536 10000 16 0.000 015 258 789 062 5
131 072 20000 17 0.000 007 629 394 531 25
262 144 40 000 18 0.000 003 814 697 265 625
524 288 80 000 19 0,000 001 907 348 632 812 5
1 048 576 100 000 20 0,000 000 953 674 316 406 25
2 097 152 200000 21 0.000 000 476 837 158 203 125
4 194 304 400 000 22 0,000 000 233 418 579 101 562 5
8 388 608 800 000 23 0.000 000 119 209 289 550 781 25
16 777 216 1000000 24 0.000 000 059 604 644 775 390 625
33 554 432 2000000 25 0.000 000 029 802 322 387 695 312 5
67 108 864 4000000 26 0.000 000 014 901 161 193 847 656 25
134 217 1728 8 000 000 27 0.000 000 007 450 580 596 923 828 125
268 435 456 10 000 000 28 0.000 000 003 725 290 298 461 914 062 5
536 870 912 20 000 000 29 0.000 000 001 862 645 149 230 957 031 25
1 073 741 824 40 000 000 30 0.000 000 000 931 322 574 615 478 515 625
2 147 483 648 80 000 000 31 0.000 000 000 465 661 287 307 1739 257 812 5
4 294 967 296 100 000 000 32 0.000 000 000 232 830 643 653 869 628 906 25
8 589 934 592 200 000 000 33 0.000 000 000 116 415 321 826 934 814 453 125
17 179 869 184 400 000 000 34 0.000 000 000 058 207 660 913 467 407 226 562 5
34 359 1738 368 800 000 000 35 0.000 000 000 029 103 830 456 733 703 613 281 25

68 719 476 736 1 000 000 000 36 0.000 000 000 014 551 915 228 366 851 806 640 625
137 438 953 472 2 000 000 000 37 0,000 000 000 007 275 957 614 183 425 903 320 312 5
274 877 906 944 4 000 000 000 38 0.000 000 000 003 637 97 807 091 712 951 660 156 25
549 755 813 888 8 000 000 000 39 0.000 000 000 001 818 989 403 545 856 475 830 078 125

099 511 627 776 10 000 000 000 40 0.000 000 000 000 909 494 701 772 928 237 915 039 062

23-633 RDO 1/79 -1

AEPENDIY D (Continued)

638 TABLE OF POWERS OF SIXTEEN
1(5n n
1 0
16 1
256 2
4 096 3
65 536 4
1 043 576 5
16 777 216 6
263 435 456 7
4 294 967 296 8
68 719 476 736 9
1 099 511 627 776 10
17 592 186 044 416 11
231 474 976 710 656 12
4 503 599 627 370 496 13
72 057 594 037 927 936 14
1 152 921 504 606 846 976 15
— J

e

Decimal Values

~"

29-6393 ROO 1/79

APPENDIX D (Continued)

639 HEXADECIMAL ADDITION AND SUBTRAC TION TABLE
Examples: 5+A - ;18-D - B; A+B =15
1 2 3 4 5 6 7 8 9 |A B C D | E|F
i |2 3 4 5 6 7 3 9 | A |B C D | E F |10 | 1
2 | 3 4 5 6 7 3 9 | A B |C D E F [10 [11 7
3 | 4 5 6 7 8 9 | A B c |D E F |10 |11 [12 | 3
4 |5 6 7 5 9 | A | B C D |E F | 10 | 11 |12 |13 | 4
5 | 6 7 8 9 | A B C D E |F 10 | 11 [12 |13 |14 | 5
6 | 7 8 9 | A B| c |D E F [10 |11 | 12 |13 |14 |15 6
7 |8 9 Aj| B c| o | E F ol10 |11 | 1 13 |14 [15 [16 | 7
s |9 A Bl c| D E F [10 |11 [12 |13 [14 [15 [16 [17 | 8
9 | a | B cl ol E| F |10 |11 |12 |13 [1a |15 |16 |17 |18 | 9
A | B C D| E F |10 [11 |12 |13 |14 |15 [16 [17 [18 [19 [A~
B|[Cc]| D E| F 10|11 [12 |13 [14 [15 J16 [17 [18 [19 [1A | B
c|bp| E F |10 | 11 |12 [13 |14 {15 |16 |17 | 18 |19 |[1A |1B | C
D | E F | 10 [11 | 12 [13 {14 |15 [16 [17 |18 [19 [1A [1B [1C | D
E | F | 10| 11 |12 | 13 | 14 |15 |16 |17 |[1s |19 | 1A | 1B | 1C | 1D | E
Fl10| 11| 12 [13 |14 | 15 {16 |17 |18 |19 [1Aa [1B |1C [1D [1E | F
1 2 3 4 5 6 7 3 9 |a B C D E F
HEXADECIMAL MULTIPLICATION AND DIVISION TABLE
840 Examples: 5x6 = 1E; 756+D = 9; 58 +8 = B; 9xC = 6C
1 |2 3 4 5 6 7 3 9 | A B D | E
1 |1 |2 3 4 5 6 7 8 9 [A B D |E 1
2 |2 |4 6 8 A C E |10 |12 | 14 16 | 18 | 1A |1C |1E | 2
3 |3 |6 9 c F [12 |15 | 18 [1B | 1E 21 | 24 | 27 |2A [2D |3
4 |4 |8 c |10 14 |18 [1C | 20 | 24 | 28 2c | 30 | 34 |38 [3C [4
5 |5 | A F |14 |19 [1E | 23 | 28 | 2D | 32 37 | 3C | 41 |46 [4B [5
6 |6 |C 12 | 18 |1E | 24 | 2a | 30 | 36 | 3C | 42 | 48 | 4E |54 |[5A [6
7 17 | E 15 | 1c |23 [2a | 31 | 38 | 3F [46 4D | 54 | 5B | 62 |69 |7
8 |8 10 [18 [20 [28 [30 [385 | 40 | 48 | 50 58 | 60 | 68 |70 |78 [8
9 |9 |12 | 1B | 24 |20 | 36 | 3F | 48 | 51 | 5sA] 63] 6C | 75 | 7TE |87 |9
A | A |14 [1E |28 [32 [3c] 46 | 50 | 5| 64 GE | 78 | 82 | 8C |96 |A
B | B |16 | 21 | 2c [37 [42 [4D | 58 | 63 [6E 79 | 84 | 8F | 9A | A5 | B
c {c |18 | 24 |30 [3C]| 43 | 54 [60 [6C | 75 x4 | 90 | 9C | A8 [B4 | C
D | D |1a | 27 |34 | 41 | 4 | 5B | 63 | 75 | 82 SF| oc | A9 [B6 [C3 | D
E|E |1c | 2a |38 |46 | 54 | 62 | 70 | 76| sc| 9A | A3 | B6 | C4 | D2 | E
F|F |1E | 20 |3c|4B | 5a | 69 | 78 | 87 | 96 A5 | B4 | c3 | D2 | El1 |F
1 2 3 4 5 6 7 8 9 | A B C D |E | F
235-633 ROO 1/79 N-1

641

EPPELNDIY

D (Continued)

TABLE OF MATHEMATICAL CONSTANTS
CONSTANT DECIMAL VALUE HEXCESS:EMAL FLOATING POINT VALUE
DOUBLE PRECISION
SINGLE PRECISION
Y
n 3.14159 26535 89793 23846 3.243F 6A88 4132 43F6 A888 5A31
85A3 08D3
-1 0.31830 98861 83790 67154 0.517C C1B7 4051 7CC1 B727 2208
2722 0A95
NE S 1.77245 38509 05516 02730 1.C58F 891B 411C 5BF8 9184 EF6B
4EF6 AATA
Lnm 1.14472 08858 49400 17414 1.250D 048E 4112 B67A EB58 4CAA
7A1B DOBD
/3 1.73205 08075 68877 29353 | 1.BB67 AE85 4118 67AE 8584 CAA7.
84CA A738B
e 2.71828 18284 59045 23536 2.B7E1 5162 4128 7E15 1628 AED3
8AED 2A68B
e-! 0.36787 94411 71442 32160 0.5E2D0 58D8 405E 2D58 D8B3 BCDF
B3BC DF1B
Je 1.64872 12707 00128 14683 1.A612 98E1 411A 6129 B8E1E 069C
E069 BCY7
logyge 0.43429 44819 03251 82765 | 0.6F2D EC54 406F 2DEC 5A9B 9439
9894 38CB
logge 1.44269 50408 88963 40736 1.7154 7652 4117 1547 652B 82FE
B82F E177
Y 0.57721 56649 01532 86061 0.93C4 67E3 4093 C467 E37D BOCB
7DBO C7A5
Ln vy -0.54953 93129 81644 82234 | 0.8CAE 9BC1 Co8C AE9B C11F 5A8B0
1F5A 5FF4
J2 1.41421 35623 73095 04880 1.6A09 E667 4116 AO09E 667F 3BCD
» F3BC €909
Ln2 0.69314 71805 59945 30942 0.8172 17F7 40B1 7217 F7D1 CF7A
D1CF 79AC
log102 0.30102 99956 63981 19521 0.4D10 4D42 404D 104D 427D E7FC
7DE7 FBCC
J10 3.16227 76601 68379 33199 3.2988 0758 4132 9880 7584 BB6AS
4B6A 5240
Ln10 2.30258 50929 94045 68402 24D76 3776 4124 D763 776A AA2B
AAA2 BO5C
23-693

ROO 1/79

APPENDIX D (Continued)
FRACTION CONVERSION TABLE

642
Hexadecimal and Decimal Froction Conversion Table
HALFWORD
BYTE BYTE
BITS 0123 4567 0123 4567
Hex | Decimal | Hex Decimal Hex Decimal Hex Decimal Equivalent
] .0625 .01 .0039 0625 .001 .0002 4414 0625 .0001 .0000 1525 8789 0625
.2 1250 .02 .0078 1250 .002 .0004 8828 1250 .0002 .0000 — 3051 7578 T250
.3 .1875 .03 L0117 1875 .003 .0007 3242 1875 .0003 . 0000 4577 6387 1875
4 .2500 .04 .0156 2500 .004 .0009 7656 2500 .0004 .0000 6103 5156 2500
.5 L3125 .05 L0195 3125 .005 .0012 2070 NB .0005 .0000 76% k[Z4] NS
.6 .3750 .06 .0234 3750 .006 .0014 6484 3750 .0006 .0000 9155 2734 3750
7 . 4375 .07 .0273 4375 .007 .0017 0898 4375 .0007 .0001 0681 1523 4375
.8 | 5000 | .08 L0312 5000 [.008 | .001% 5312 3000 | . _0001 2207 0312 3000
.9 .5625 .09 .0351 5625 .009 .0021 9726 5625 .0009 .0001 3732 9101 -y
A .6250 .0A .0390 6250 .00A | .0024 4140 6250 .000A .0001 5258 7890 6250
.8 .6875 .08 .0429 6875 .00B .0026 8554 6875 .000B .0001 6784 6679 6875
.C .7500 .0C . 0468 7500 .00C .0029 2968 7500 .000C .0001 8310 5468 7500
.D .8125 .00 .0507 125 .00D .0031 7382 8125 ,000D .000} 9836 4257 31
.E .8750 N3 05446 750 . 00E .0034 1796 8750 . 000E .0002 1362 3046 730
.F .9375 .OF .0585 375 .0OF .0036 6210 9375 .000F .0002 2888 1835 S
1 2 3 4
TO CONVERT .ABC HEXADECIMAL TO DECIMAL To convert froctions beyond the capacity of table, use techniques below:
Find .A in position | .6250
Find .0B in position 2 .0429 4875 HEXADECIMAL FRACTION TO DECIMAL
. . - Convert the hexodecimal fraction to its decimal equivalent using the same
Find .00C in position 3 0029 2948 7500 technique as for integer numbers. Divide the results by 16" (n is the
.ABC Hex is equal to .6708 9843 7500 number of fraction positions).
Example: .BA7 = 5407719
TO CONVERT .13 DECIMAL TO HEXADECIMAL 84716 = 221510 540771
163 = 409 4096[2215.000000
1. Find .1250 next lowest to .1300
subtract -.1250 = .2Hex
2. Find .0039 0625 next lowest to .0050 0000
-.0039 0625 = .0 DECIMAL FRACTION TO HEXADECIMAL
3. Find .0009 7656 2500 .0010 9375 0000 Collect integer parts of product in the order of calculation.
'M = 004 Example: .540810 = .8A714
4. Find .0001 0681 1523 4375 .0001 1718 7500 0000 5408
-.0001 0681 1523 4375 = .0007 : 16
.0000 1037 5976 5625 = .2147 Hex 8 < [g§].&528
13 imal i . | | x16
5. Decimal is approximately equal to A < [0 4448
x1é
7 - [Fnes

29-693 ROQO 1/79

[
<
1

wn

APPENDIX

D (Continued)
INTEGER CONVERSION TABLE

643
Hexadecimal and Decimal Integer Conversion Table
HALFWORD HALFWORD
BYTE BYTE BYTE BYTE
BITS: 0123 4567 0123 4567 0123 4567 0123 4567
Hex Decimal Hex Decimal Hex Decimol Hex | Decimal Hex | Decimal | Hex | Decimal | Hex | Decimal | Hex | Decimal
0 0 0 9l 0 [J) 0 1] 00 o]0 0 Q Q
1 268,435,456 | | 16,777,216 | 1 1,048,576 | | 65,536 1 4,09 | 1 256 | | 16 1 1
2 535,870,912 [2 33,554,432 | 2 097 152 1 2 131,072 2 8,192 | 2 512 | 2 32 2 2
3 05,308,358 [3 331, 3 3 145, ﬁf 3 196, ¢ 3 12,288 | 3 768 |3 48 3 3
4 T1,073,707,824 1 4 67,108,864 | 4 4,194,304 | 4 262,144 4 16,384 | 4 1,024 | 4 o4 4 4
5 |1,342,177,280 | 5 83,886,080 | 5 5,242,880 | 5 327,680 5 20,480 | 5 1,280 | 5 80 5 5
T TS TR 6 [10.63. 06 | 6 T 8.3 S TRATE | 6 [A% 6 | 5% [6 [% |6 3
7 1.8%. 7 703512 | 7 | 7,040,000 | 7 [4.7 [7 [B’em| 7 [g7 |2 [7 7
AL m 8 127,78] 8 8,386,608 | 8 | 524,288 | 8 | 32,7686 | 2,046 | 8 | 12 |8 8
14 ZIW 51041 9 130, v 3871847 9 EE 824 9 36,864 | 9 2,304 1 9 144 9 (]
A2 m‘m T A |67, L 70,485,760 | A | 635,360 | A | 40,960 [A | 2,50 | A | 180 [A [10
8 12, 016 1 B 1 [] 234,38 | B . B 036 | 8 2,816] 1
C |3 472 [4 20!,326,592 C 582,912 | C 786,43 C 49,152 | C ,072 | C 92 C 1
D .LW D (218,103,808 [D 3,631,488 | D 851, 96¢ D | 53,248 | D ,328 | D 208 D 1
E 3,7 R E 234,881,024 | E 14 4,680,004 | E 917, 504 E 57,344 | E 3,584 | E 224 € 14
F{4,0%,53 50 | F 251,85, F m FTSEsi | F [840 [F 30 [F [TF 1%
8 7 5 4 3 2 1
TO CONVERT HEXADECIMAL TO DECIMAL To convert integer numbers greater than the capacity of
EXAMPLE table, use the techniques below:
1. Locate the column of decimal numbers corresponding to Conversion of
the left-most digit or letter of the hexadecimal; select Hexodecimal Value D34 HEXADECIMAL TO DECIMAL
from this column and record the number that corresponds
to the position of the hexadecimal digit or letter. 1. D 3328 Successive cumulative multiplication from left to right,
2. Repeat step 1 for the next (second from the left) 2 3 .8 adding units position.
position. Exomple: D34;4=3380,p D= 13
3. Repeat step 1 for the units (third from the left) 3. 4 4 xlé
position. 208
4. Add the numbers selected from the table to form the 4. Decimal 3380 3- _;_l%
decimal number.
x16
3376
4= 4
3380
TO CONVERT DECIMAL TO HEXADECIMAL
@ EXAMPLE
1. (a) Select from the table the highest decimal number .
that is equal to or less than the number to be con- g°"§'°“|'°° of DECIMAL TO HEXADECIMAL
verted. ecimal Value 3380 .] .
(b) Record the hexadecimal of the column containing . 2328 Divide and collect the remainder in reverse order.
the selected number. ’ ~ 5 £ lo: 3380
(c) Subtract the selected decimal from the number to xample: 10° X6
be converted. 2.3 48 16 | 3380 remainder
2. Using the remainder from step 1(c) repeat all of step | 4 6 121 T~
to develop the second position of the hexadecimal {2n . \ 4
(and a remainder). 3. 4 -4 16 113 3
T
3. Using the remainder from step 2 repeat all of step 1 to . o) 3380,4=D34
develop the units position of the hexadecimal . 4. Hexadecimal o34 10 16

4. Combine terms to form the hexadecimal number.

23-693 ROO 1/79

644

‘NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
VT
FF
CR
SO
SI

T/70Q

APPENDIX
REFERENCHS

e
s

ASCII/HEX CONVERSION TABLE

bg | O 0 0 1 1 1
BITS bg 0 0 1 1 0 1 1
b4 0 1 0 1 1 0 1
*13 bf 111 tlo LSQMSD o 1 2 3 4 5 6 7
olo]ojfo 0 NUL | DLE |SPACE 0 e P)]
0fofo] 1 SOH | DC1 ! 1 A Q a q
0loj1fo 2 STX | DC2 2 B R b r
0l oft)1 3 | ETX | pc3 | # 3 o S c s
0] 1{ofo]| a EOT | pca | s 4 D T d !
0 1]01]1 5 ENQ NAK % 5 E U e u
0]l 1(1]o 6 ACK SYN & 6 F \ f v
ol 111]1 7 BEL ETB ' 7 G w g w
110]0] 0 8 BS CAN { 8 H X h X
1lojo] 1 9 HT EM) 9 | Y i y
1{ojt1r|{o0 A LF suB * J 4 1 z
1of1]1] 8 vT | EBsc | + ; K [k {
1[1]o]o] ¢ FE | FS < L \ l i
1[1]of1] o [cr | Gas | - - M Il | m)i
111140 E SO RS . > N N n -~
1 1]1]1 F S us / ? 0 — o DEL
Null DLE Data link escape
Start of heading DC1-4 Device control
Start of text NAK Negative acknowledge
End of text SYN Synchronous idle
End of transmission ETB End of transmission block
Enquiry CAN Cancel
Acknowledge EM End of medium
Audible signal SUB Start of special sequence
Backspace ESC Escape
Horizontal tabulation FS File separator
Line feed GS Group separator
Vertical tabulation RS Record separator
Form feed Us Unit separator
Carrier return Sp Space
Shift out DEL Delete/Idle
Shift in

29-693 R0OO 1/73

645

APPENDIX E (Continued)

ASCII/CARD CODE CONVERSION TABLE

7-BIT 7-BIT

ASCII CARD ASCII CARD

GRAPHIC CODE CCDE GRAPHIC CODE CODE

SPACE 20 BLANK @ 40 8-4

! 21 11-8-2 A 41 12-1

" 22 8-7 B 42 12-2

23 8-3 C 43 12-3

$ 24 11-8-3 D 44 12-4

% 25 0-8-4 E 45 12-5

& 26 12 F 46 12-6

! 27 8-5 G 47 12-17

(28 12-8-5 H 48 12-8

) 29 11-8-5 I 49 12-9

* 2A 11-8-4 J 4A 11-1

+ 2B 12-8-6 K 4B 11-2

, 2C 0-8-3 L 4C 11-3

- 2D 11 M 4D 11-4

. 2F 12-8-3 N 4E 11-5

/ 2F 0-1 o) 4F 11-6

0 30 0 P 50 11-7

1 31 1 Q 51 11-8

2 32 2 R 52 11-9

3 33 3 S 53 0-2

4 34 4 T 54 0-3

5 35 5 U 55 0-4

6 36 6 \'% 56 0-5

7 37 7 w 57 0-6

8 38 8 X 58 0-7

9 39 9 Y 59 0-8

: 3A 8-2 v/ 5A 0-9

; 3B 11-8-6 [5B 12-8-2

< 3C 12-8-4 N 5C 0-8-2

= 3D 8-6] 5D 12-8-7

S 3E 0-8-6 4 5E 11-8-7

? 3F 0-8-7 - 5F 0-8-5
) 29-593 R0OO 1/79

eL/1 CCH £6€9-6C

h-3/€-3

646

LSD wee—t 0 1 2 3 4 5 . 6 7 8 9 A B C D E F
TTY
) LOADER . 201/301 201/301
CAROUSEL CARD RESERVED
MSD 0 RESERVED 15, 30 neaper | STOBAGE MDIO DATA SET DATA SET
CRT ON CLI UNIT HDX FDX
1
e COMM MUX — gt
., % LINE INTERRUPT MODULE SECOND & LINE INTERRUPT MODULE
2 (ADRS 20 to 27 (ADRS 28 TO 2F)
5 (EON’{‘f'xC 1 ' , 360/370 360/370
CLOSURE *—— 1/0 BUS SWITCH —————> AUX. INF | INF
MODULE
DIGITAL
4 MUX
5
UNIVERSAL
6 1 INE CLOCK
PRINTERS VARIABLE| 60Hz
RELAY 801
7 DRIVER DIALER
MODULE
RN 556/800
u coNy “'\“‘?L‘j* BPI AlC uul
EQUIPMENT MAG TAPE
i) AOC
A la— plo——
REMOVABLE
" CARTRIDGE QSA
y DISC CONT
¢ MICROBUS | FLOPPY 1600 BPI DISC 0 FIXED
“ | apapPTER DISC MAG TAPE DISC 0
FIXED
D DISC 1 DISC 1
E N FIXED
DISC 2 DISC 2
o e MSM DRIVE | DRIVE| DRIVE DRIVE
e |sELECTOR DISC 3 P DISC R VE| DRI H
CHANNELS DI SYSTEM -

AIC ANALOG INPUT CONTROLLER QSA - QUAD SYNCHRONOUS ADAPTER
AOC - ANALOG OUTPUT CONTROLLER ULI = UNIVERSAL LOGIC INTERFACE
DIO - DIGITAL 170 CONTROLLER MDIO MEMORY DISPATCHED /O

478Vl SSIYAQAY IEYIITYI-QEVANVLS
(penutluo)) I XIQANIddV

647

(CONSER >

SET UP FDX
LOCAL
TERMINAL;
DISPLAY PSW,
LOCATION COUNTER,
SET CONSOLE
MODE"” FLAG

DISPLAY
OPERATOR
PROMPT

ACCEPT
ONE
CHARACTER

29-693 RO1

CONSOLE SERVICE ROUTINE FLOWCHART

A

NEXTREQ

N

APPENDIX F

ACCEPT REGISTER

ADDRESS, OPEN &

DISPLAY GENERAL
REGISTER, CURRENT SET

DISPLAY PROMPT
ACCEPT ONE
CHARACTER

ACCEPT REGISTER
ADDRESS, FORCE

EVEN, OPEN & DISPLAY
SPFP REGISTER.

ACCEPT REGISTER
ADDRESS, FORCE

DPFP REGISTER.

ACCEPT CARRIAGE
RETURN, DISPLAY
ENTIRE PSW.
OPEN PSW _STATUS.

RESET "“CONSOLE ENTER RUN
MODE" FLAG MODE WITH
RESET PSW *™| CURRENT
B8IT 16 PSW & LOC
ACCEPT
NEW LOC

LOC +——
LOC +2

EVEN, OPEN & DISPLAY [

-

OPEN & DISPLAY
CELL ADDRESSED
- BY LOC. DISPLAY

LOC *+—
LOC -2

PROMPT. ACCEPT
ONE CHARACTER

QUESTN

UNRECOGNIZED.

DISPLAY
CARRIAGE RETURN,
LINE FEED

QUESTION MARK

NOTES:

DECODE

—'@ NEXTREQ

1. ALL RECEIVED CHARACTERS ECHOED BY PROCESSOR.

2. LOWER-CASE CHARACTERS INTERPRETED AS UPPER-CASE.
3. SPACE CHARACTERS IGNORED.
4. BACKSPACE, UNDERLINE, DELETE CAUSE PREVIOUS NUMERIC CHARACTER TO BE IGNORED.

1/79

()

DECODE

ACCEPT DATA,
MODIFY OPEN
REGISTER

NEXTREQ

ACCEPT DATA,
MODIFY OPEN
HALFWORD
CELL

IS. PLUS

F-1/F-2

INDEX

Add, £-5

Add double precision floating point, 6-39

Add floating point, 6-20

2dd halfword, 5-7

Add halfword to memory (AHM), 5-11

Add tc list, 3-54

Add to memory (AM), 5-9

Addrecss space, 12-1

Alphanumeric string data, 1-9

Alignment faults, 10-17

And, 3-27

And halfword, 3-28

Arithmetic fault interrupt, 10-31

Arithmetic references, D-1

Auto driver channel, 9-18

Auto driver channel flow chart, 93-26 -
Auto driver channel immediate interrupt, 10-26
Autolcad (AL), 9-16

Block diagram, 1-2

Boolean operations, 3-2

Rranching, 4-1

Branch instruction formats, 1-13, 4-2
BRranch instructions, 4-2

Branch and 1link, 4-6

Branch on carry, 4-14

Eranch on equal, 4-1%

Branch on false, 4-5

Branch on index high (BXH), #-10
BRranch on index low or equal (BXLE), 4-8
Kranch on low, 4-18

Rranch on minus, #4-20

Rranch on no carry, 4-15

Branch on no overflow, 4-25

BRranch on not equal, u4-~17

Eranch on not 1low, 4-19

Pranch on not minus, 4-21

Branch on not plus, 4-23

Branch on not zero, 4-27

Branch on overflow, U4-24

Rranch on plus, 4-22

Rranch on true, 4-3

Branch on zero, UuU-26

Branch to control store (BDCS), 11-4
Branch unconditional, u4-28

Buffers, 9-20

Buffer switch bit, (B), 9-23

29-693 R0OO 1/79 Index-1

Channel
Channel
Channel

INDEX (Continued)

command block, 9-18, 3-19
command word, 9-22
command word 8:15, 9-24

Check word, 9-21
Circular list, 3-4
Circular l1list definition, 3-3

Compare,

Compare
Compare
Compare
Compare
Compare

3-23, 5-17, 7-10
double precision floating point, 6-43
floating point, 6-24
halfword, 5-13
logical halfword, 3-24
logical byte, 3-2%

Complement bit (CBT), 3-u8
Condition code, 6-9, 10-7
Configuration, 2-1

Console
Console
Contrcl
Control
Convert

mode, 10-12

service routine flow chart, F-1

of I/0 operations, 9-4

switches, 2-4

to halfword value register (CHVR), 5-33

CRC generation flow chart, 3-%50
Cyclic redundancy check, 3-49

Data alignment, 1-10

Data formats, 5-1, 6-2

Pata format fault interrupt, 10-156
Data handling instructions, 8-1

Data handling instruction formats, 8-1

Decimal
lecimal

data format definitions, 7-1
string data, 1-9

Decision makiag, 4-1

Decrement and examine prior location "-%, 2-7
Device addressing, 9-2

Pevice controllers, 9-1

Device priorities, 9-2

Divide,

5=-24

FCivide double precison floating point, 6-U46
DPivide floating point, 6-27
Pivide halfword, 5-27

Farly Power tail Detect and Automatic Shutdown, 10-20
Enter control store (kCS), 11-5

Fntering console service, 2-5

Equalization, 6-4

Examine
Examine
Examine
Examine

Index-2

double precision floating point register “D", 2-8
general register "R%, 2-7

single precision flocating point register "F", 2-8
program status word "p", 2-9

29-693 R0OO 1/79

INDEX (Continued)

Examples of R* rounding , 6-9

Exchange byte register (EXBR), 3-18

Exchange halfword register (EXHR), 3-17
Exchange program status register (EP3R), 10-35
Fxclusive OR, 3-31

Exclusive OR halfword, 3-32

Fxecute bit (E), 9-22

Exponent overflow, 6-7

Exponent underflow, 6-8

Extended branch mnemonics, 4-12

Fast bit (F), 9-22

Fix register (FXR), £-29

Fix register double precision (FXDR), 6-48
Fixed point arithmetic, 5-1

Fixed point data, 1-8

Fixed point data word formats, 5-1

Fixed point format relations, 5-2

Fixed point instructions, 5-4

Fixed point instruction formats, 5-3

Fixed point number range, 5-2

Fixed point operations, 5-2

Float register (FLR), 6-31

Float register double precision (FLDR), 6-49
Floating/Fixed point ranges, 6-4

Floating point arithmetic, 6-1

Floating point data, 1-9

Floating point data formats, 6-2

Floating point instructions, 6-10

Floating point masked mode (FLM), 10-3
Floating point number, 6-3

Floating point number range, 6-4§

Floating point registers, 1-6

Floating point underflow interrupt enable (FL7), 10-5
Flow chart, console service routine, F-1

General auto driver channel programming procedure, 9-25
General registers, 1-6¢
Guard digits and R*-rounding, 6-8

#igh speed data handling instructions, B8-1

Illegal digit cases (Pack and #Move), 7-13
Illegal digit cases (Unpack and Move), 7-15
Illegal instruction interrupt, 10-15

Immediate interrupt - Auto driver channel, 19-26
Increment and examine next location "+", 2-5
Initial program load, 2-5

Input/Output operations, 9-1

29-693 R0OO 1/79

Index-3

INDEX (Continued)

Instruction alignment, 1-10

Instruction formats, 1-11, 1-12, 7-3

Instruction summary - Alphabetical by mnemonic, B-1
Instruction summary - Numerical, C-1

Interrupt Driven 1/0, 9-5

Interrupts, Processor, 1-7

Interrupt precedence, 10-9

Interrupt priority level/register set summary, 10-27
Interrupt service pointer table, 9-3

Interrupt status register, 12-4

Interrupt system architecture - Schematic diagram, 10-10
Interrupt timing, 10-9

Interrupt timing and priority, 10-8

Interruptible instructions, 10-11

Interruptible instruction in progress (IIP), 10-3
Invalid digit faults, 10-17

I1/0 device interrupts, 10-25

I/0 instruction formats, 9-9

I/0 instructions, 9-9

I/0 interrupt mask (I), 10-4

I/0 references, #-1

I/0 system configuration, 9-1

Key orerated security lock, 2-3

List rrocessing, 3-3

List processing instructions, 3-57

Load' 3—7

Load address , 3-11

Load byte, 3-16

Load complement double precision register (LCDR), 6-34

Load complement floating point register, 6-15

lL.oad complement short, 3-9

Load double precision floating point, 6-32

Load double precision floating point register from single, 6-52
Load floating point, 5-12

Load floating point multiple (LME), 6-16

Load general registers from double precision floating point
' register (LGDR), 6-36

Load general register from floating point register (LGER), 6-17
Load halfword, 3-10

Load halfword logical (LHL), 3-14

Load immediate short, 3-8

Load multiple (LM), 3-15

Load multiple double precision floating point (LMD), 6-35
Load racked decimal string as binary (LPB), 7-4

Load positive double precision register (LPDR), 6-33

Load positive floating point register (LPER), 6-14

Index-u 29-693 ROO 1/79

INDEX (Continued)

Load process segment table descriptor (LPSTD), 10-42
Load process state (LPS), 10-45

Load rrogram status word (LPSW), 10-33

Load rrogram status word register (LPSWR), 10-34
Load real address (LRR), 3-12

Load shared segment table descriptor (LSSTD), 10-43
Load single precision floating point register from double, 6-50
Location counter, 1-6

lLogical data, 1-9, 3-1

Logical instructions, 3-5

Logical instruction formats, 3-5

Logical operations, 3-1

MAC Interrupt status, 12-9

MAC Registers, 12-7

Machine malfunction interrupt, 10-18

Machine malfunction interrupt enable, 10-4

Machine malfunction status word (MMSW), 10-20
Maskalble and non-maskable interrupts, 10-8

Memory access controller (MAC) fault interrupt, 10-17
Memory access controller enable (MAC), 10-5

Memory initialization, 2-10

Memory management, 12-1

Modify current location "=", 2-7

Modify double precision floating point register "=", 2-9
Modify general register "“=", 2-7

Modify program status word "=", 2-9

Modify single precision floating point register "=", 2-8
Hove' 7-8

Move and pad, 7-8

Move and pad with default pad, 7-3

Move translated until, 7-6

Multirly , 5-20

¥ultiply double precision floating point, 6-44
Multiply floating point, 6-25

Multirly halfword, 5-22

Normalizatiocn, 6-5
No operation, 4-29

0pP-Code map, A-1
Operations, 3-2

Operating instructions, 2-5
Ok, 3-29

OR Halfword, 3-30

Cutput command, 9-10

29-692 ROO 1/79 Index-5

INDEX (Continued)

Pack and move, 7-12

Packed decimal, 7-1

Packed decimal format, 7-1

Physical address space, 12-2

Power restore, 10-21

Power up, 2-5

Privileged system function (PSF), 10-39
Process byte (PB), 8-2

Process byte register (PBR), 8-4
Processor, 1-4

Processor/Controller communication, 9-2
Processor interrupts, 1-7

Processor modes, 10-12

Programming examples, 1-13

Programming instructions, 2-11

Program status word, 1-4, 10-2

Program status word (PSW) and reserved memory locations, 10-2
Protection, 12-4

Protect mode enable (P), 10-6

PSW Location counter (LOC), 10-7

PSW Status word, 10-3

Read control store (KDCS), 11-3

Read data, 9-12

Read error logger (REL), 10-40

Read halfword, 9-13

Read/Write bit (R/W), 9-22

Redundancy check type bits (RC), 9-23

Re-execution of faulting instructions, 12-12

Register and immediate storage one format (RI1), 1-20

Register and immediate storage two format (RI2), 1-22

Register and Indexed storage/Register and indexed storage format
(RXRX), 1-24

Register and indexed storage one format (RX1), 1-

Register and indexed storage three format (RX3),

Register and indexed storage two format (RX2), 1-

Register set numbering, 1-5

Register set select, 1-5

Register set select field (R), 10-5

Register~to-Register format (RR), 1-14

Relocation, 12-3

Remove from list, 3-56

Reserved memory locations, 1-7, 10-8

Reset bit (RBT), 3-47

Restore interrupible state (ISRST), 10-u8

Rotate left logical (RLL), 3-u40Q

Rotate right logical (RRL), 3-42

Run mode, 10-14

RXRX formats, 1-25

Index-6 29-693 R0OO 1/79

INDEX (Continued)

Sample program, 1-13

Save interruptible state (ISSV), 10-u47

Schematic diagram - Interrupt system architecturs, 10-10

Segmentation register, 12-4§

Select an address and examine "a%“, 2-6

Selector channel 1/0, 9-6

Selector channel devices, 9-7

Selector channel operation, 9-7

Selector channel programming, 9-8

Sense status, 9-11

Set bit (SBT), 3-ué

Shift left, 3-36

Shift left arithmetic (SLA), 5-29

Shift left halfword, 3-38

Shift left halfword arithmetic (SLHA), 5-30

Shift right, 3-37

Shift right arithmetic (S5RA), 5-31

Shift right halfword, 3-39

Shift right halfword arithmetic (SRHA), 5-32

Short form format (SF), 1-14

Simulate channel program (SCP), 9-17

Simulate interrupt (SINT), 10-36

Simulated interrupt, 10-28

Single step mode, 10-14

Status mask, 9-22

Status monitoring 1/0, 9-4

Status switching, 10-15

Status switching and interrupts, 10-1

Status switching instructions, 10-32

Store (ST), 3-19

Store byte, 3-22

Store byte, no ECC, 10-49/10-50

Store binary as packed decimal string (STBP), 7-5

Store double precision floating point (STD), 6-37

Store double precision floating point register in single
precision memory (STDE), 6-53

Store floating point (STE), 6-18

Store floating point multiple (STHE), 6-19

Store halfword (STH), 3-29

Store muliple (STM), 3-21

Store multiple double precision floating point (5TMD), 6-38

Store process state (STPS), 10-u44

String instructions, 7-3

String operations, 7-1

Subroutine address, 9-19

Subroutine linkage, 4-2

Subtract, 5-13

Subtract double precision floatingy point, 6-41

29-6$3 ROO 1/79 Index-7

INDEX (Continued)

Subtract floating point, 6-22

Subtract halfword, 5-15

Supervisor call (SvC), 10-37

Supervisor call (SVC) interrupt, 10-30

Systerm Break Point (BkK), 10-38

System breakpoint interrupt, 10-31

System control, 2-1

System control panel, 2-1

System control panel switches and indicators, 2-3
System descriptinn, 1-1

System gqueue service (SQ5) interrupt, 10-29
Syster queue service interrupt enable (Q), 10-5
System terminal commands, 2-6

System terminal support command summary, 2-2

Test and set (TS), 3-u4y

Test bit (TBT), 3-45

Test error logger (TEL), 10-48

Test halfword immediate (THI), 3-34
Test immediate (TI), 3-33
Translate (TLATE), 3-%51

Translate bit, 9-23

Translation, 3-2, 9-20

Translation table entry, 3-2

True zero, 6-7

Unpack and move, 7-14
Unpacked decimal tormat, 7-2
Unpacked (zoned) decimal, 7-2

Valid channel command codes, 9-23
Virtual address space, 12-2

Wait state (W), 10-3

Write control store (4DC3), 11-2

Writable control store instructions, 11-1
Write data, 9-14

Write halfword, 9-15

550 Keyboard layout, 2-3

3200 Rlock diagram, 1-
3200 CP-Code map, A-1

2

Index-8 29-693 ROO 1/79

CUT ALONG LINE

PUBLICATION COMMENT FORM

Please use this postage-paid form to make any comments, suggestions, criticisms, etc. concerning

this publication.

From Date

Title Publication Title
Company Publication Number
Address

FOLD

Check the appropriate item.

(] Error Page No. —_ Drawing No.

[] Addition PageNo._____ Drawing No.

D Other Page No.___________ Drawing No.

Explanation:

FOLD

Fold and Staple
No postage necessary if mailed in U.S.A.

FOLD

FOLD

STAPLE STAPLE

FOLD FOLD
o o e o o — — — — e — ____.._i
|
NO POSTAGE
NECESSARY |
IF MAILED

. IN THE]
UNITED STATES |

.]

]
BUSINESS REPLY MAIL '

- .]
- FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J. | l

]
POSTAGE WILL BE PAID BY ADDRESSEE] !
.] |

.]
- Computer Systems Division] |

. 2 Crescent Place]
Oceanport, NJ 07757 T ——— ;

]
- I |
. : |
TECH PUBLICATIONS DEPT. MS 322A |
— o e — o |
FOLD FOLD I
R |
- I
- l
I
} I
: I
. |
i
N I
|
- I
 STAPLE STAPLE I

