

Publication Number C29-693

MODEL 3220 PROCESSOR
USER'S MANUAL

PERKIN--ELMER

Computer Systems Division
2 Crescent Place
Oceanport. N J 07757

Copyright @1979 by Perkin-Elmer Corporation Printed in U.S.A. January 1979

PAGE

i/ii
thru
xiii/
xiv
1-1
thru
1-26

2-1
thru
2-11/
2-12

3-1
thru
3-63/
3-64

4-1
thru
4-29/
4-30

5-1
thru
5-34

6-1
........... .,...,,
1-.lJ • .L \A

6-53/
6-54

7-1
thru
7-15/
7-16

8-1
thru
8-5/
8-6

9-1
thru
9-27/
9-28

PAGE REVISION STATUS SHEET

PUBLICATION NUMBER C29-693
TITLE Model 3220 Processor User's Manual

REVISION RO 0 DATE January 1979

REV. DATE PAGE REV. DATE PAGE REV.

10-1
thru

ROO 1/79 10-49/
10-50 ROO 1/79

11-1
ROO 1/79 thru

11-5/
11-6 ROO 1/79

12-1
ROO 1/79 thru

12-12 ROO 1/79

A-1 ROO 1/79
A-2 ROO 1/79

ROO 1/79
B-1
thru
B-7/
B-8 ROO 1/79

ROO 1/79
C-1
thru
C-7/

ROO 1/79 C-8 ROO 1/79

D-1
thru
D-6 ROO 1/79

ROO 1/79
E-1 ROO 1/79
E-2 ROO 1/79
E-3/
E-4 ROO 1/79

ROO 1/79
F-1/
F-2 ROO 1/79

Index-1
ROO 1/79 thru

Index-8 ROO 1/79

ROO 1/79

DATE

A1598

PREFACE

The Model 3220 Processor User's Manual provides programming and
operating informaticn for the Model 3220 System. The Programmer
is provided with information on the 32-bit system architecture
and the unique memory management scheme, as well as a descripton
of each instruction in the Model 3220 repertoire. The
instruction descriptions include valuable system-related
information presented in the form of programming notes and
instruction examples.

Information on the system control panel is given to facilitate
pro~ram ~reparatior and execution for the system programmer and
operator.

29-693 ROO 1/79 i/ii

PREFACE

CHA PT FR

1 • 1

1.2
1.2.1
1.2.?.
1 • 2. 3

1 • 3

1 • 4

1. 5
1 • 5. 1
1.s.2
1.5.3
1.5.4
1 • 5. 5

1 • 6

1. 7

1 • 8
1 • 8 • 1
1 • R. 2
1 • 8. 3
1 • 8. 4
1 • 8. 5
1 • 8. 6
1 • 8. 7
1 • 8. 8
1 • 8. 9

1.8.1C

1 • 8 • 1 1

1

TABLE OF CONTENTS

SYSTEM DESCRIPTION

I N 'r R 0 D TJ CT I 0 N

PPOCFSSOR
Program Status Word
General R21isters
Floating-Point ReJisters

PROCESSOR INTEHRUPTS

RFSERVED MEMORY LOCATIONS

Dli.'r A FOR ''1ATS
Fixed-Point Data
Floating-Point Dat3
LoqicaJ Data
Decimal Strin~ Data
Alohanumeric StrinJ D~ta

Oft.TA. fl.LIG~!1ENT

INSTRUCTIO~ ALIGNMENT

INSTRUCTIO~ FORMATS
Introduction
Branch Instruction Formats
Proqr~mminq Exampl~s

jAgister to Register (RH} Format
Short Form (Sf) Format
Re1ister and Indexed Storage 1 (RX1) Format
Reqister ~nd Indexed Stora1e 2 (RX2) Format
H~qister and [ndexed 3tora~e 3 (RX3) Format
Register a~d [m~ediate Storage One (RI1)
Formcit
HeqistPr ~nd [mmedi~te Storage Two (RI2)
format
Re1ister an1 Indexed Storaqe/Re1ister and
Indexed Stor~1G (RxRx) Format

29-693 ROO 1/79

i/ii

1-1

1-1

1-4
1-4
1- ::~

1-6

1-7

1-7

1 - i3
1 - ii
1-9
1 - ')
1- 'j

1-9

1-10

1-10

1 -11
1- 11
1-13
1-1 3
1-14
1- 1 4
1-15
1-16
1-18
1-20

1-22

1- 21~

iii

CHAPTER 2

2. 1

2.2

2.3
2.3.1
2.3.2

2.4
2.4.1
2.4.2
2. 4. 3

2.5
?.5.1
2.s.2
2.s.3
2.5.4
2.5.5
2.5.6
2.5.7

?. • 5. 8

2.5.9

2.s.10

2.5.11
2.s.12

2.6

2.1

CHAPTER 1

3. 1

3.2

3.3
3. 3. 1
3. 3. 2
3. 3. 3

iv

TABLE OF CONTENTS {Continued)

SYSTEM CONTROL 2-1

INTRODUCTION 2-1

CONFIGURATICN 2-1

SYSTEM CONTROL PANEL SWITCHES and INDICATORS 2-3
Key Operat 0 d Security Lock 2-3
Control Switches 2-4

OPERATING INSTRUCTIONS 2-5
Power Up 2-5
Entering Console S2rvice 2-5
Initial Program Load 2-5

SYSTEM TER~INAL COMMANDS 2-6
Select an Address and Examine "@" 2-6
Increment ~nd Examine Next Location "+" 2-6
DecremPnt and ~xamine Prior Location "-" 2-7
Modify Current Loc~tion "=" 2-7
Examine General Regist~~ "R" 2-7
Mcdif y GenAral Register "=" 2-7
Examine Single Precision Floatin~ Point 2-~
ReqiSter .. F"
Modify Single Precision Floatinq Point 2-H
Register "="
Examine Donbl~ Pr:t?cision Floatinq Point 2-8
Register "D"
Modify Double Precision Floating Point
Re'Jister "="
Examine Pro']ram Status ~ori "P"
Modify Proqram Status ~ord "-"

MEMORY INITIALIZATION

PROGRAMMING IN~TRUCfIONS

LOGICAL OPERATIONS

INTRODUCTION

DATA FORMATS

OPERT\TIONS
Boolean Op~rations
Transln.tion
List rrocessing

2-9
2-9

2-10

2-11/2-12

3-1

3-1

3-1

3-.,
3-:?
3-2
3- 1

29-693 ROO 1/79

J.4

3.5
3. 5. 1
3.5.2
3.5.3
3.5.4
3.5.5
3.5.6
3.5.7
3.5.8
3.5.9
3.5.1C
3.5.11
3.5.12
3.5.13
3.5.14
3. 5. F
3 • 5 • H
3.5.17
3.5.18
3.5.19
3.5.2C
3.5.71
3.5.2.l
3.S.23
3.5.24
3.5.2~

03.5.26
3.5.27
3.5.28
3.5.29
3.5.30
3.5.31
3.5.32
3.5.33
3.5.34
3.5.3~

3.5.3f
3.5.37
3.5.38
3.5.3S
3. 5. ti 0
3.5.01

TAHLF OF CONTENTS (Continued)

LOGICAL INSTRUCTION FUHMATS

LOGICAL INSTRUCTION
Load
Load Immediate Short
Loa1 Complement Short
Loaij Half word
Load Address (LA)
Load ?eal Address (LRA)
Load Halfword Logical (LHL)
Load MultiplR (LM)
Lo:=id Eyte
Exchange Halfword Hegister (EXHR)
E x c h a r: g e ~i. y t e R e gt ~ t e r (E X B R)
Store (ST)
Store Halfword (ST!{)
Store ~ulti~le (ST~)

Store Hyt0
Co:npare
Cc:nnare I.O'Jical HalfWO('d
Compare La~ical By~e (CLB)
And
J\nd Halfw:nd.
OP
O i~ Ha l f word
F x c l u s i v e rJ P
Fxclusive or Halfw0rd
Test Immediate (TI)
Test !1 a 1 f word Imme di a t e (TH I)
Shift J.e ft
Shift Right
Shift Left Halfword
Shift Right Halfword
Rotate Left LoJical (RLL)
Pot<ib:-' Rir:;ht Logic'll (RRL)
Test and Set (TS)
Ti=!st Pit (T~~T)

S c t R i t (~) .- T)
Reset Kit (HRT)
Complement Pit (CHT)
Cyclic Redundancy (heck.
Translate CTLATE)
Adrl To List
R ~ in o v P F r o r, L i s t

29-693 R00 1/79

3-5

3-S
.3- 7
3-H
3-1
3-10
3-11
3-12
3-14
3-15
3-16
3-17
3-1.'3
3-19
3-20
3-:? 1
3-22
3- :~ 3
3-24
3-26
3-27
3-28
3-29
3-10
3-11
l- 3 2
3- 3 .3
3- 3 ti
3- _3 5
3-n
3- 38
3-]9
3-40
3-42
3- ·i4
3-45
3- 1 .. 6
3-47
3- 48
3 - {~ :1
3- 51
3-')4
3-S6

v

CHA PT FR 4

4. 1

4.2
4.2.1
4.2.2

4.3

4.4
4. 4. 1
4.4.2
4.4.3
4.4.l~

4.4.5

ti • 5
l~ • 5. 1
4.5.2
4.5.3
l~.5.4

4.5.5
4.5.6
4.5.7
4.5.8
ti. 5. g
4.5.10
4.5.11
4.5.12
4.5.13
4.5.14
'· r ... r 4.:-J.1:;

4. 5. H

CHAPTER C)

5. 1

5.3

5.4

5.5

S.6

vi

TABLE OF CONTENTS (Continued)

BRANCHING

INTRODUCTION

OFF: RATIONS
Decision Making
Subroutine Linkage

BRANCH INSTRUCTION FO?MATS

BRANCH INSTRUCTIONS
Branch on True
Branch on False
Rranch an·1 Link
Rranch on Index Lo~ or Equal (BXLE)
Br:anch on Index High (RXH)

EXTEND[D R~ANCH MNEMONICS
Branch on Carry
Br~nch on No Carry
Branch on Equal
Hranch on ~ot ~qual

Branch on I.ow
Branch on Not Low
Rranch on Minus
Rranch on Not MinuE
Branch on Plus
Branch on Not Plus
Branch on Overflow
Branch on No Overflow
Branch on Zero
Branch on Not Zero
Branch (Unconditional)
No Opera U on

FIXFD POINT ARil'd~ErIC

INT~CDUCTION

DJ\TA FORMA.TS

FIXED POI~T NU~BE~ RAN;E

0 P f; RAT I CNS

CO~DITION CODE

FIXED POI~T INSTRUCTIOS FORMATS

4-1

4-1
4-1
4-2

4 -) ,,

4-2
4-1
4-S
4- '>
4- ~1

4-10

4-12
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-29/~-30

5-1

5-1

5-1

5-2

5-2

5-3

29-693 HOO 1/7'1

5.7
5.7.1
5.7.2
5.7.3
5.7.4
5.7.5
5.7.6
5.7.7
5.7.8
5.7.9
5.7.10
5.7.11
5.7.12
5.7.13
5.7.1~

5.7.1':
5.7.16
5.7.17

CHA PT FR 6

6. 1

6.2

6.3
6.3.1
6. 3. 2
6. 3. 3
6.3.4
6.3.5
6.3.6
6.3.7

6.4

6. 5
6. 5. 1
6. 5. 2
6.S.3
6.5.4
6. 5. 5

6. 5. 6
ri.s.7
6.5.ti
6.5.9

TARLE OF CONTENTS (Continued)

FIXED POINT INSTRUCTIONS
And
Arid Halfword
Add to Memory CAM)
Add Halfword to Memory {AHM)
Subtract
Subtract Halfword
Compare
Compan~ Halfword
Multiply
Multinly Halfword
Divide
Divide Halfwor:i
Shift Left Arithmetic (SLA)
Shift Left. Halfwcri Arithmetic (.SLHA)
Shift Fight Arithmetic (SRA)
Shift Right Halfword Arithmetic (3RHA)
Convert to Halfwori Value ~eqister (CHVR)

FLCATING POINT A~ITHMETIC

INTRODUCTION

DATA FOR:1ATS

FLOATING-POINT NUMHER
floating Point Number Range
Normalization
fqualization
True Zero
Sxponent Overflow
Expo n ~ n t . :r n d e r f 1 ow
Guard digits and R* Rounding

CONDITION CODE

FLOATING POINT INSTRUCrIONS
I.oa.d Float.ing Point
Load Positive Floatin~ Point Register (LPER)
Load Complement Floating Point Register (LCER)
Load Floating Point Multiple (L11E)
Lo~d General Register from Floatino P~int
R e •:J i s t e r (L G E R)
St0rP Floatinq Point (STE)
Store Floating Point ~ultiple (S'f''1E)
A.Jd F loat_1ng Putnt
Subtract ?loating Point

5-4
5-5
5-7
5-g
5-11
5-13
5-15
5-17
5-18
5-20
S-22
5-24
5-27
5-29
5-30
s- 31
5-32
5-33

6-1

F;- 1

6-2

fi- 3
6-4
6-5
6-6
6-7
6-7
6-8
5-~

6-9

S-10
t)- 12
6-14
6-15
6-16
6-17

6-18
6-19
6-20
6-22

vii

6.5.1{)
6.5.11
6.5.12
6.5.13
6.5.14
6.5.15
6.5.16
6.5.17

6.5.18

6.5.19

6.5.20
6.5.21

6.5.22
6.5.23
6.5.24
6.5.2':
6.5.26
6.5.27
6.5.28
6.5.29

6.5.30

6.5.31

CHAPTER

'"' .. I • I

7.2
1.2.1
1.2.2

7.3

7.4
7.4.1
7.4.2
7.4.3
7.4.4
7.4.5
7.4.6
7.4.7

viii

7

TABLF OF CONTENTS (Continued)

Compare Floating Point
~ultiply Floating Point
Divide Floating Foint
Fix Register CFXR)
Float ~egister (FLR)
Load Double Precision Floating Point
Load Positive Double Precision Hegister (LPDR)
Load Complement Double Precision ReQister
(LCDR)
Load Multipl.e Double Precision Floating
Point (LMD)
Load General Registers from Double Precision
Floating Point Regist~r (LGDR)
Store Double Precision Floatin~ Point (STD)
Store Multiple Double Precision Floating
Point (ST!1D)
Add Double Precision Floating Point
Subtract Double Precision Floating Point
Compare Double Precision FloatinJ Point
Multiply Double Precision Floating Point
Divide Double Precision Floating Point
Fix Register Doubl? Precision CFXDR)
Float Register Double Precision (FLDR)
Load Sinqle-Precision Floating Point Register
from Double
Load Double Precision Floating Point Register
from Single
Store Double Precision Floating Point
Reqister in Single Precision Memory (STDE)

ST R T NG 0 PF: RAT I C N <;

INTRODUCTION

DFCIMAL DATA FORMAT DEFINITICNS
Packed Decimal
Unpacked (Zoned) Decim3l

INSTHUCTION FORMATS

STRING INSTRUCTION~
Loai Packed Decimal String as Binary (LPB)
Store Binary as Packed Decimal String (STBP)
'1 o v e T r a n s 1 a t e !i U n t i 1 (M V T U)
!1ove
Compare
Pack and Move
Unpack and f'lovP

6-24
6-25
6-27
6-29
1)-31
6-32
6-33
6-34

6-35

f}-36

6-37
6-38

6-39
6-41
6-43
6-44
6-46
6-48
6-49
6-50

6-52

6-53/6-54

7-1

7-1

7-1
7-1
7-2

7-3

7-3
7-4
7-5
7-6
7-8
7-10
7-12
7-14

29-693 ROO 1/7:1

CHAPTFR 8

8. 1

8.2

8.3
8. 3. 1
8.3.2

CHAPTFR q

9. 1

9.2
9.2.1
q.2.2
9. 2. 3
'J.2.4

9.4

9.5

9. 6

9.7
q.7.1
9.7.2
9.7.]
9.7.4

9.8

9. 9. 1
9.9.2
~. 9. 3
9.9.4
9.9.5
9.9.5
9.9.7
1. 9. 8

TARLE OF CONTENTS (Continued)

HIGH SPEED DATA nANDLING INSTRUCTIONS
(OPTIONAL)

INTRODUCTION

DATA HANDLING INSTRUCTION FORMATS

DATA HANDLING INSTHUCTION~

Process Ryte (PB)
Process Byte Register (PBR)

INPUT/OUTPUT OPiRATICNS

INTRODUCTION AND CONFIGURATION OF I/0 SYSTEM

DEVICE CONTPOLLERS
Function
Device Addressing
Processor/Controller CommunicatLon
Device Priorities - External Interrupt Levels:
Interrupt (ueuing

INTERRUPT SERVICE POINTER TABLE

CONTROL OP I/0 OP~2ATIONS

STATU:~ MONITORING I/0

INTERRUPT DRIVEN TIC

SELECTOR CHANN~L I/O
Introduction
Selector Channel Devices
Selector Channel Operation
Selector Channel Programming

IIO INSTRUCTIO~ FU~MATS

r /0 I 'ISTirnCTIO~S

Output rornmand
Sense Status
Rei1d Gata
Reiid Halfword
Write Data
:hite Halfword
.~utoload (AL)
Simulate Channel Program (SCP)

29-693 ~00 1/79

8-1

8-1

8-1

8-1
8-2
8-4

9-1

9-1

9-1
9-1
9- 2
0-2

J-2

·~-3

q-4

q-4

q-5

9-6
9-6
9-7
J-7
9-8

9-9

9-10
C)- 11
C)- 12
9-13
g-14
9-15
9-16
j-17

ix

9., 0

9. 11
9.11.1
q.11.2
9.11.3
9.11.4
9 • 1 1 • ~
9.11.6
9.11.7
9.11.8

CHAPTER 10

1 0. 1

10.2

10.2.1
10.2.1.1
10.2.1.2
10.2.1.3
10.2.1.4
10.2.1.s
10.2.1.6

10.2.1.1
10.2.1.8
10.2.1.9
10.2.1.10
10.2.1.11
10.2.2
10.2 • .?

10.3
10.3.1
10.3.2
10.3.3
10.3.u

10.4
10.4.1
10.4.2
10.4.3

10.5
10.s.1

x

TARLE OF CONTENTS (Continued)

AUTO DRIVER CHANNEL

C~ANSEL co~~AND BLOCK
Introduction
Suhroutin~ Address
Buffers
Translation
Check word
Channel Command Word
Valid Channel Command Codes
General Auto Driver Channel Progra~min1
Procedur~

STATUS Sw!TCHING AND INTERRUPTS

INTRODUCTION

PROGRAM STATUS WOHD (PSW) AND RESE~VED
MEMORY LOCATIONS
PS~ Status word
Floating Point Mask2d ~ode (FLM)
Interruptible Instruction in Pro1ress CIIP)
Wait State (fl)

I/O Interrupt Mask (I)
Machine Malfunction Interrupt Enable (M)
Floating Point UndPrflo• Interrupt Enable
(FLU)
Memory J\ccf=>ss Controller Enable (";.a.C)
Systen Queue Service Interrupt enable (Q)
Protect Mod0 Enable (p)

R~gister Set Select Field (R)
Condition Code (C, C, G, L)
PSW Location Counter (LOC)
Reserved Memory Locations

INTER~UPT TJ~ING 1\!~D PRIORITY
Maskable and Non-Maskable Int~rrupts
Interrupt TiminJ
Interrupt Precedence
Interrupt Instructions

Pd G CE SS 0 R ~OD r: S
Console "oie
Run MoJe
Sinqle Step Mode

STATUS S..lITCHI~lG

Illeqdl Instruction Interrupt

9-18

9-18
9-1B
g-19
1-20
4-20
9-21
9-22
'l-2 3

q-25

10-1

10-1

10-2

10-3
1 o- .3
10-3
10-3
10-4
10-4
10-5

10-5
10- 5
10-6
1'J-6
1D-7
10=7
10-8

10-8
10-8
10-9
10-q
10-11

10-12
10-12
10-14
10-14

10-15
10-15

29-69 3 ROO 1 /79

10.s.2
10.s.2.1
10.s.2.2
10.5.3
10.5.4
10.5.4.1
10.5.4.2
10.s.4.3
10.5.4.4
10.5.5
10.5.5.1
10.s.s.2

10.5.6
10.5.7
10.5.8
10.5.9
10.:i.10

10.6
10.6.1
10.6.2
10.6.3
10.6.4
10.6.~

10.6.6
10.6.7
10.6.7.1
10.6.7.2
10.6.7.3
10.6.7.4
10.6.7.5
10.6.7.6
10.6.7.7
10.6.7.8

CHAPTER 11

1 1 • 1

11. 2
11.2.1
11.2.2
11.2.3
11.2.4

TARLE OF CONTENTS (Continued)

Data Format Fault Interrupt
Alignment Faults
Invalid Dioit Faults
MPmory Access Controller (MAC) Fault Interrupt
Machine Malfunction Interrupt
Farly Power Fail Detect and Automatic Shutdown
Power RPstore
Non-Correctable Memory Error
Non-Configured Memory Address
Input/Output Device (I/0) Interrupts
Priority Levels
Immediate Interrupt-Auto Driver Channel
Opera ti on
Simulated Interrupt
System Queue Service (SQS) Interrupt
Supervisor Call (SVC) Interrupt
System Breakpoint Int~rrupt
Arithmetic fault Interrupt

STATUS SWITCHING I~STRUCTIONS

Lead Program Status Word (LPSW)
Load Program Status ~ord Register (LPSWR)
Exchange Proqram Status Register CEPSR)
Simulate Interrupt (SINT)
Supervisor Call (SVC)
System BrPakpoint (BRK)
Privileged System function (PSF)
Read Error Logger (REL)
Load ProcRss Segment TablP Descriptor (LPSTD)
Load Sharert Segment Table Descriptor (LSSTD)
Store Process State (STPS)
LoaJ Process State CLOPS)
SJve Interruptible State (ISSV)
PestorP Interruptible state (ISHST)
Store Byte, No ECC (XSTB)

~RITABLE CONTROL STORE INSTRUCTIONS
(OPTIONAL)

INTRCDUCTION

WRITA3LE CONTROL STORE INSTRUCTIO~S
Writable Control Store (WDCS)
Read Control 3tore (RDCS)
Rranch to Control ~tore (SOCS)
Enter Control Star~ (ECS)

29-693 ROO 1/79

10-16
10-17
10-17
10-17
10-18
10-20
10-21
10-23
10-24
10-25
10-25
1J-26

10-2.9
10-29
10-30
1:)-3 1
1:)-31

1:)-32
1I)-3 3
11J-)l~

1J-35
1\)- 311
1J-37
10-38
1')-3'3
10-40
10-42
10-43
10-44
10-45
10-47
10-48
10-49/10-50

11-1

1 1 - 1

11-1
11-2
11-3
11-4
11- 5/ 1 1 - 6

xi

TABLE OF CONTENTS (Continued)

CHAPTER 12 MEMORY MANAGEME~T

12.1 INTRODUCTION

12.-2 ADDRESS SPACE
12.2.1 Physical Address Space
12.2.2 Virtual Address Space

12.3 RFLOCATION

12.4 PROTECTION

12.5 MAC RSGISTERS

12.6 ~AC INTERRUPT STATUS

APPENCIX Pi
APPENCIX B

APPENCIX c
APPENJ;IX D
APPENrIX r:
APPENrrx F

INDEX

Figure
Figure
l-, • .1gure
F'igure
Figure
Figure
Figure
Figure
Figure
J;'. .. 1gure
Figure
Figure
Figure
Figure
Figure
Figure
~· • 1gure

xii

i - 1
1-)
1-3
1-4
1-5
1-6
2-1
2-2
3-1
3-2
3-1
3-4
3-5
3-5
5-1
6-1
6-2

APPENDICES

~ODF.L 3220 OP-CODE MAP
I N S 'J' R U CT I 0 N S U M M A RY - A I. P H A N U 'i ER I C AL
BY MNEMONIC
INSTRUCTION SUMMARY - NUMERICAL
ARITHM~TIC REFERENCES
I/0 REFERENCES
CONSOLE SUPPORT FLOWCHART

FI GIJR ES

Model 3220 Processor Block Diagram
Program Status ~ord
Register Set Numbering
Instruction Formdts
Sample Program
RXRX Formats
System Control Panel
Keyboari Layout
Loqical Data
Translation Table Entry
Circular List Definition
Circular List
Flow Chart for CRC Generation
List Processing Instructions

Fixed Point Data Words Formats
Exponent Overflow
Fxponent Underflow

12-1

12-1

12-1
12-2
12-2

12-3

12-4

12-7

12-9

A-1
B-1

C-1
D-1
E-1
F-1/F-2

Index-1

1-)
1-4
1-5
1-12
1-13
1-25
2-1
2- -i
3-1
3-2
.3- 3
3-4
3-50
3-57
5-1
6-7
6-3

29-693 ROO 1/79

Figure 7-1
Figure 7-2
Figure 9-1
Fi.gure 9-2
Figure 9-3
Figure 10-1
Figure 10-2
Figure 10-3

Figure 10-l'

TABLE 2-1
TABLF 5-1
TABLF 6-1
TA RU' 7-1
TARU: 7-2

TAPLE OF CONTENTS (Continued)

Packed Decimal Format
Unpacked Decimal Format
Channel Command 3lock
Channel Command ~ord

Auto driver Channel Flow Chart
Proqram Status ~ord CPS~)

Reserved Memory Locations
Schematic Diagra~ of the Model 3220
Int~rrupt System Architecture
~achine ~alfunction Status Word (MMSW)

TABU;s

SYST~M T~RMINAL SUPPOkT COMMAND SUMMARY
FIXED POINT FOR~AT RELATIONS
FLOATING/FIX~D FOINT ?ANGES
ILLFGAL CIGIT CAS~S (PACK AND MOVE)
ILLEGAL DIGIT CASES (1JNPACK AND '10VE)

2g-69.? ROO 1/79

7-1
7-2
9-19
9-22
9-26
10-2
10-8
10-10

10-20

2-2
5- /.
6-4
7-13
7-15

Xiii/xiv

1.1 INTRODUCTICN

C1APTER 1
SYSTEM DESCRIPTION

The Series 3200 processors are designed to meet the needs for
higher performance and reliability in a 32-bit minic~mputer.
This series represents a logical, upwarj compitible evolution
from the Models 7/32 ~nd 8/32 product line ini inclu1es ~ome
siQnificant enhancements directed towards scientific an1
commercial applications. The architecture his improved error
recovery capabilities f~r those applications where f1ult
tolerance is a necessity ~nd allows direct 1ddressing u9 t~
sixteen milli~n bytes of ~ctual or virtual memory implemented in
MOS with Error-Corr~ction Code (£CC).

The first processor in the series is the 3220. fhrouqh the use
of 32-bit general regist~rs ~nd a comprehensive instructiJn set,
this processor ~rovides full•orj data processing power ~ni direct
memory ajdressinJ up to l limit of one meqabyt?. The syste~ is
shown in block diagram fo~m in Fi)ure 1-1. The instruction set
includes:

• halfword and fullwor1 arithmetic and logical oper1tions
• single precision and 1ouble precision floating point
• list processing
• cyclic re1undancy che=kinq
• bit and byte ~anipulation~
• alphanumeric and decimal charact?.r strinJ prJcessinq
• decimal/binary conversions
• instructions 1esigne1 to improve operatin7 system performance

With this enriched repertoire and direct me~ory a11~essing,

coding and debugging time is reduced to ~ minimum.

Eiqht sets of 16 32-bit q~neral registers are pr~vi1e1. ieglster
set selection is controlled hy bits in the pro1ram st~tus WJr~.

8eqister-to-register instructions permit operati~ns between ~ny

of the 16 registers in th8 current set, eliminating r3duniant
loads and stor~s. The multiple registAr s2t organiz~tion

eliminates the overhead incurred in savinJ an1 rastorin1
registers when responding to interrupts.

The M2mory Access Controller (~AC) provides aut~mati= proJram
segmentation, relocation, and protection. The prote=t ~o1e

enables detection of privileg~d instructions. These tw~ feature~;

are invaluable in rro=ass control, d~ta coumuni=1ti~n, ~ni

time-sharing op0r3ti~ns be=~use they prev~nt i runninJ pro.Jram
from interf P.ring with the system integrity.

29-693 ROO 1/79 1-1

_.
I

rv

rv
l.D
I

°' l.O
w
!::O
0
0

.....
........
...J

"°

DIRECT CARTRIDGE

r - - - - - -- - I MEMORY SELECTOR DISC

MAIN : CACHE I ACCESS CHANNEL

MEMORY I OPTION I MEMORY Rl
L ________ _J INTERFACE

r--------, 0
: ERROR :J I MEMORY

'----------J CORRECTION I ACCESS
I I CONTROLLER L _______ _I MAGNETIC

TAPE

556

e: _j!._ ' ~ .--:=1

PSW IST A TUSI

r- - - -- - - - - - - - - - - - -- - - -, 13 24 28
I
I

I FLOATING POINT OPTION

L ___ ------- -

I c= R
I
I
I
I
I
I
I
I

A I
H POINT I

ALU I
I

--------'
,---
r-- --..,
I I

I I
I I
I I
I wcs I
I OPTION I
I I
I I
I I
I I
L_ - - - _J

44 63

LOCATION COUNTER

[
-----.
FIXED

ONTROL
STORE

-r---

MICROINSTRUCTION
SEQUENCING AND

DECODE LOGIC

INSTRUCTION
REGISTER

r
<t
f­
<t
0
UJ
f­
<t
0
~
::;;

OP

<t
f-
<t
0
(f)

~
a:
0
0
<t

Rl R2
Ml X

8 SETS OF 16 32-BIT GENERAL REGISTERS

11111111
'-

~

___ ___;

A

FIXED-POINT
ARITHMETIC

LOGIC
UNIT

A

~

(f)

::i
al

a:
0

~
5
::i
:;;

LINE
PRINTER

b(
a FLOPPY~ H MEDIA

DISC

UNIVERSAL
CLOCK

--
--

lll l I IB~~ lb L.J ~
coL I* -- - ~B-~

CPU

Fiqure 1-1 Model 3220 Processor Block Diagram

The Medel 3220 supports 1Mb of directly addressable ~OS Memory,
which consists of a maximum of four 256kb modules. Error
correction is standard and is performed across every 32-bit
fullword in memory using a 7-bit modified error-correctinq code
(ECC). All single bit errors are detected and corrected; all
double bit errors and most multiple bit errors are detected. The
optional memory error !egger identifies the memory module
reporting a fault and indicates the location of the faulty memory
chip.

The optional 1kb high speed cache memory is situ~tej betwa:n ~ain
memory and the processor. When the processor requests me~ory

data already in the cache, the data is read from the cache rathec
than from the slower main memory. This ~ption allows ~

significant improvement in memory access times such that overall
performance improvements ~f 10~ to 257. can be re~lized, d2penjin~

on the application.

In addition to conventional means of programmed I/~, the
processor autom~tically acknowledges all I/0 interrupts and
performs much of the required overhead bef~re activitin1 an
interrupt service routine. The auto driver channel can perform
data transfers with character translation, longitudinil oc cy=li=
redundancy checking, 2nd data buffer chaining without
interrupting the ~unninq program.

The 2k Writable Control Store (WCS) option ~llows the user to
microprogram the processor to suit a particular application.
Scientific algorithms, =ommunication protocols, or spe=ial
subroutines can be implemented in WCS ~nd exe~ute1 up t~ threa
times as fast as an equiv1lent assembly level implement3tion.

Pefer to the following manuals for further infornation:

Common As~embler Language (CAL) User's ~anu~l,
Publication NumbP-r 29-640

ESELCH ProQramming thnual, Publication Number 29-529

EDMA Rus Universal Interface Instruction ~anu~l,
Publication ~umber 29-423

Model 3220 Maintenance Manual, Publicati0n ~umber 29-695

Model 3220 Micro-Instruction Reference ~anu1l,
Publication Number 29-694

Common ~icro-Code Assembler Language (MICRO:AL)
User's Manual, Public~tion Number 29-449

29-693 ROO 1/79 1 - 3

559

1. 2 PROCESSOR

The Central Processing Unit (CPU), or procassor, :ontrols
~ctivities in t~e syst~m. (See Figure 1-1.) It executes
instructions in a specifi= sequence and performs arithmetic anj
logical functions. Included in the processor's components are
the:

Proqram status word register
General registers
Floating pcint registers
Hardware multiply ani divide
Floating point hardware

1.2.1 Program Status Wor1

The 64-bit Program Status Word CPSW) defines th2 state of the
pro=essor at any given time. (See Figure 1-2.)

0 12 13 14 15 16 17 18 19 20 21 22 23 24 27 28 29 30 31

I l&l~txl+ IMlbl 1 l:l0 H R lclvlGILI
32 4344 63

I I LOCATION COUNTER I
Figure 1-2 Program Status ..Jord

Rits 0:31 are reserve1 for status infor~ation ~nd i~terr.upt
masks. Rits 32:~3 cont~in the location counter. Un1ssi1nej
program status word bits must not be usei and must always be
zero. Status information and intPrrupt mask bits are defined as
follows:

Bits 0:12 Reserved
Bit 13 F LM
Pit 14 I IP
Rit 15 Reserved
Pit 16 w
y it 17 I
Rit 18 M
q1t 19 Ftr_i

Bit 20 I
Hit 21 ~IP

Bit 22 Q
Bit 23 p
Rits 24:27 R
R1ts 28: 31 C,V,G,L
Rits 32:43 Reserved
Bits 44:63

Refer to Chapter 10 for

1-4

Must be zero
Floating-point ~rithmetic maskej mode
Interruptible instructi~n in pr~qress
Must be zero
Wait state
I/O interrupt mask
Machine malfunction interrupt ~lsk
Floatinq-point arithmeti~ underflo~
mask
I/O interrupt mask
Relocation/protection interrupt masK
Syste~ queue interrupt m~sk
Protect mode
Register set select bits
Condition code
:1ust be zero
Program address (location count~r)

1etails on the interrupt mask bits.

29-693 ROO 1/7~

1.2.1.1 Register Set Select (R)

Bits 24:27 of the PSW are used to designate the =urrent register
set. Register sets are numbered O through 15. rhe processor h~s
8 sets of oeneral registers. (See Figure 1-3.)

558
REGISTER

SET DESIGNATION
NUMBER

0
1

RESERVED FOR INTERRUPTS
2
3

4
5 MAY BE ALLOCATED BY THE OS

6 FOR GENERAL PURPOSE USE.

7

8
9
10 UNIMPLEMENTED

11 SETS

12
13

14

15 GENERAL PURPOSE

Figure 1-3 Re~ister Set Numberin~

1.2.1.2 Condition Code C:VGL)

Bits 28:31 of the PSW contain the condition code. As p~rt of the
execution of certain instructions, the state of the c~ndition

code m~y be changed to indicate the nature of the result. Not
all instructions affect the condition code. Th~ state of tha
condition code may be tested with conditional brinch
instructions. Each bit in tht! condition coje is set if tt-.e
correspon1ing condition occurred as 1 result of the l1st
instructi~n that affectad the condition cod~. fhe normal
interpretation of these bits is:

c v G I.
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

29-693 ROO 1/7Q

Arithmetic carry, borrow, or shiftej ~arrv
Arithmetic overflow
Greater than zero
Less than zero

1-5

1.2.1.3 Location Counter

The location counter contains the address of the instruction
currently being executed by the processor, and points to that
instruction until it has successfully completed execution. Once
this execution is completed, the location counter is incremented
by 2, 4, 6, 8, 10, or 12 (depending upon the instruction
executed), and the next instruction is fetched. In the case of
a branch instruction, the location counter is loaded with the
address to which control is being transferred, and the next
instruction is fetched from that address.

If an instruction is not successfully completed due to a fault or
other interrupting condition, the location counter contains the
address of the faulting or interrupted instruction. When a
program interruption is due to an incorrect branch address, the
location counter contains the branch address and not the location
of the branch instruction.

1.2.2 General Registers

The processor has eight register sets, numbered 1 through 6, and
15 (Eee Figure 1-3). Each register is 32 bits wide. Register
set selection is determined by the state of bits 24:27 of the
current PSW. Registers 1 through 15 of any set may be used as
index registers.

When an interrupt occurs, the processor
information into preselected re~isters of
selected by the new program status word. For
operation, refer to Chapter 10.

1.2.3 Floating-Point Registers

loads pertinent
the register set
details of this

There are eight optional
registers, each 32 bits wide.
the even numbers 0 through 14.

single-precision floating-point
These registers are identifie1 by

rhere are eiQht optional double-precision floating-point
registers, each fi4 bits wide. These registers are also
identified by the even numbers 0 through 14 and are separ~te from
the single-precision floating-point registers. Floating-point
operations must always specify the registers with even numbers.

1-6 29-693 ROO 1/79

1.3 PROCESSOR INTERRUPTS

The PSW that is loaded in the processor at any point in time is
called the current PSW. If either the status word or both the
location counter and status word are chanqed, a status switch is
said to have occurred. This status switch can be caused
explicitly by executing special instructions or can be forced to
occur by an interrupt or fault. At the time of a status switch,
the current PSW that is saved is called the old PSW. The PSW
that replaces the current PSW is called the new PSW.

Interrupt conditions cause the entire PSw to be replaced by a new
PSW thus breakin9 the usual sequential flow of instruction
execution. When an interrupt condition occurs, the processor
saves its current PSW either in memory or in a pair of ~eneral
reoisters belonging to the register set selected by the new PS~.

It leads information related to the interrupt condition in other
registers of this same set. A new PSW is loaded from a memory
location reserved for the specific interrupt condition. The
immediate interrupt is an exception to the rule. In this case,
the status portion of the new PSW, bits 0:31, is forced to a
preset value, and the location counter is loaded from a memory
location reserved for that interrupting device. Refer to Chapter
10 for details on interrupt processing.

1.4 RESERVED MEMORY LOCATIONS

Physical memory locations X'O'-X'2CF' are called reserved memory
locations. These locations contain the various new PS~s and
other information needed to handle interrupts.

X'OOOOOO'-X'00001F'
X'000020'-X'000027'

X'000028'-X'000029'
X'00002A'-X'00002B'
x•oooo2c·-x·oooo2F'

X'000030'-X'000037'

X'000038'-X'OOOC3F'

X'000040'-X'000043'

X'000044'-X'000047'

X'000048'-X'00004F'

X'000050'-X'00007F'

X'000080'-X'000083'
X'000084'-X'000087'
X'000088'-X'00008F'

29-693 ROO 1/79

Reserved; must be zero
Machine malfunction interrupt
old PSW
Reserved for console status
Reserved; must be zero
~achine malfunction L~ block
~tart address
Illeqal instruction interrupt
new PSW
~achine malfunction interrupt
new PSW
Machine malfunction status
-ord
~achine malfunction virtual
(Pro9ram) address
Arithmetic fault interrupt
new PSW
~ootstrap loader and.device
definition table
~ystP-m queue pointer
Power fail save area pointer
System queue service interrupt
new PSW

1-7

X'000090'-X'000097'
X'000098'-X'00009B'
X'00009C'-X'OOOOBB'

X'OOOOBC'-X'OOOOBF'
X'OOOOCO'-X'OOOOC7'
X'OOOOCB'-X'OOOOCF'
X'OOOODO'-X'0002CF'
X'0002DO'-X'0004CF'

X'0004DO'-X'0008CF'

MAC interrupt new PS~

Supervisor call new PSW status
Supervisor call new P5W location
counter values (16 halfwords)
Reserved; must be zero
Reserved; must be zaro
Data format fault new PSW
Int2rrupt service p~inter table
Expanded interrupt service
pointer table
Expanded interrupt service
pointer table

Ihese reserved locations play an important role in both intercupt
and input/output processing. Refer to Chapters 9 ani 10. I~

ad1ition to the above, ~ertain locations are reserved for US? by
the MAC. Refer to Chapter 12 for details.

All location =ounter values are subject to MAC relocation if the
new PSW enables MAC (bit 21 = 1). All other pointers contain
absolute addresses not subject to MAC relocation.

1.5 DATA FORMATS

The processor performs logical and arithmeti: ~p2r1tions on
single bits, 8-bit bytes, 16-bit halfwords, 32-bit fullworis, an1
64-bit doublewcrds. This data may represent a fixa1-p~int

number, a floating-point number, logical information, a bit or
byte array, or a 1ecimal or alphdnumeric byte string.

1.s.1 Fixed-Point Data

Fixed-point arithmetic op~rands may be either 16-bit halfwords or
32-bit fullwords. In fullword multiply and divide operati~ns,

64-bit operands are manipulated. Fixed-point dita is treate1 a~

15-bit signed integers in the halfword format. Positive numo2r~

are expressed in true bin~ry form with a sign bit ~f z2ro.
Negative numbers are r~pr~sented in two's complenent form with l

si~n bit of one. The numerical value of zero is represented ~ith

all bits zero. Refer to Chapter 5 for details of fixad-p~int
data representation.

In fixed-point arithmetic and logical operations between a
fullword reqister and a h3lfword operand, the half~ori oparani is
expanded to a fullwori by propagating the most signifi=ant bit
into the high order bits before the operation is started. fhis
permits the use of halfword to fullword operations ~ith

consistent results and provides space economy, sin~e smill values
need not require fullword locations.

1-8 29-693 ROO 1/79

Arithmetic operations on fixed-point halfword qu~ntities miy
produce results not entirely consistent with th~se obt~ined in,~

16-bit processor. If this problem exists, the ~~nvert tJ
Halfword Value Register instruction (CHVR) m~y be used t~ adjus~

the result and the condition code, making them consistent •ith
the same operations in ~ 16-bit processor.

1.s.2 Floating-Point Dat~

A floating-point number c~nsists of a 7-bit exponent in ex=ess-64
notation and a signed fraction. rhe quantity expressed by this
number is the product of the fraction and the nu~ber 16 r~ised t~

the power represented by the exponent. Each floiting-point v1lua
requires a 32-bit fullwor1 or a 64-bit 1ouble-word, ~f which
eight bits are used for the sign and exponent. rhe ramainin1
bits are used for the fraction. Refer to Chapter 6 for iet1ils
of floating-point dat3 representation.

Floating-point operations take place between the contents of a
floating-point re9ister and another floatin9-point register, ~
floating-point oPerand containe1 in a fullword or double-word in
memory, or a gen~ral register or pair of general registers.

1.5.3 Logical Data

Logical operations manipulate 8-bit bytes, 16-bit h~lfwor1s, ~ni

32-bit fullwords. In ad1ition, it is possible t) perform loqical
operations on single bits loc3ted in bit 1rrays. ?efer to
Chapter 3 for details of loQical data representation.

1.5.4 Decimal String Data

Decimal strings are strings of consecutive bytes in memory th~t

begin and end on byte boundaries. Inform~ti~n =ont!ined in ~

decimal string may represent packed or unpacke1 1ecimal data.
Refer to Chapter 7 for d~tails of deci~al data formats anj
operations.

1.5.5 Alphanumeric String Data

Alphanumeric strings are strinqs of consecutive bytes in mer.ory
that begin and end on byte boundaries. Information cont1in°~ i1
an ~lphanumeric string may represent any character stLeam
including decimal string jata. Pefer to Chapter 7 for jet~il<; of
1lphanumeric string data format and operations.

29-693 R00 1/79 1-9

1.6 tATA ALIGNMENT

The following discussion i~ unique to the Model 3220
imple~entation and is presented for information only. Any
program that misuses a processor feature by taking advantage of
a peculiarity of one implementation may not work on a different
implesentation.

Locations in main memory are numbered consecutively, beginning at
address '00000'. Although me~ory is addressable and alterable to
the byte level, machine accesses to memory involve only h~lfwords
or fullwords. Those instructions requiring a single byte access
actuall¥ access a halfword and then manipulate the appropriate
byte with the halfword.

Memory can only be accessed to the halfword level, therefore, bit
31 of the address is truncated at the memory. A halfwor1 fetch
at address '00051', and a fetch at address X'OOOSO' produce the
same halfword. There is no warning mechanism telling the proqram
that it is fetching halfwords on the odd byte boundary.

The CAL Assembler generates an error flag if it sees half~ord

operations directed to an odd byte address or if it sees fullword
operations directed to other than a fullword address.

Bytes of information are addressed by their specific hexadecimal
address. Two bytes fo~m a h~lfword. Halfwords have an even
address, the address of the left most byte in the pair. Two
halfwords comprise a fullword. A fullword aJdress is a multiple
of four (4 bytes) and is the address of the left most halfwor.j in
the pair. The hardware actu~lly truncates the least significant
two address bits on fullword accesses, forcing proper alignm~nt.

A data format fault is 1enerated if a fullword access is directed
to an address that has bit 30 or 31 set; or if a halfword store
is directed to an address that has bit 31 set.

1.7 INSTRUCTION ALIGNMENT

User level instructions are always aligned on halfword
boundaries. Any halfword address is valid regardless of the
length of the instruction word. The CAL assembler generates
boundary errors if the assembled location counter for an
instruction becomes odd. At the machine level, ~ttempts to make
the instruction location counter odd by branchinq or causing a
statu~ switch are ignored by the hardware. In the ~odel 3220,
location counter bit 31 is not implemented and is therefore
always zero. Thus, a branch to address X'51' causes the location
counter to be set to x•so•.

1-10 29-693 HOO 1/7q

1.8 INSTRUCTION FJRMATS

1.8.1 Introduction

Instruction formats provi1e a concise method of representing
required operations for easy interpretation by the pr3=essor.
Figure 1-4 shows the eight basic formats. The followinJ i~ ~

list of abbreviations an1 their meanings !S used in Pigura 1-~.

OP
F1
R2
N
X2
D2
FX2
SX2
A2
I2
11

L2

OP MOD

ADD1
ADD2

Operation code
First operand register
Second operand register
A 4-bit immediate value
Second operand single index register
Second operand displacement
Second operand first index register
Second opera nri second index reg is te r
Second operand direct address
Second oparan1 immediate valua
Specifies the length of the first
operand
Specifies th2 length of the seco~d
operand
Specifies a p~rticular instructi~n within
the class specified by OP
The ef fe~tive first operand a1dr3ss
The effective second operand address

Many instructions may be axp~essed in two or mora for~ats. fhis
feature provides flexibility in data organization ~nd instruction
sequencing. When working with the Common Assembler Language
(CAL) assembler, it is unnecessary to specify the instruction
format. The assembler selects the most econ~mi=al format an1
supplies the required bits in the machine cod2. ;.Jh2n double
indexing is required, the assembler always chooses the RX3
format. RefPr to the Common Assembler Lan~uaq~ (CAL) Manu~l,

Publication Number 29-640

?9-693 ROO 1/79 1- 11

557 REGISTER TO REGISTER (RR)
0 7 11 15

I OP I R1 I R2 I
SHORT FORMAT (SF)

0 7 11 15

I OP I R1 I N I
REGISTER AND INDEXED STORAGE (RX1)

0 7 11 15 18 31

I OP I R1 I X2 1° I 0 I D2 I
REGISTER AND INDEXED STORAGE 2 (RX2)

0 7 11 15 17 31

I OP I R1 I X2 I 1 I D2 I
REGISTER AND INDEXED STORAGE 3 (RX3)

0 7
111 15

I 0 f:1° IJ
24 47

I OP I R1 FX2 SX2 I A2 ::=J
REGISTER AND IMMEDIATE STORAGE 1 (R11)

0 7 11 15 31

I OP I R1 I X2 I 12 I
REGISTER AND IMMEDIATE STORAGE 2 (R12)

0 7 11 15 47 , , I
OP . R1 X2 12 I , , ., ,,

REGISTER AND INDEXED STORAGE, REGISTER AND INDEXED STORAGE (RXRX)

OP

31 /47 39/55 43/59 63/79/95

I OPMOD I L2 I : :,......__.;DD2 -

Fiqure 1-4 Instruction Formats

1-12 29-693 ROO 1/79

560

1.8.2 Branch Instruction Formats

Rranch instructions use the RR, SF, and ~11 variitions of the RX
formats. In the conditional branch instructions, however, the ~1

field does not specify a register; instead, it contains a mask
value (labeled M1 in the instruction descriptions). fhis mask
value is tested with the condition code. rhe CAL assembler
provides a series of extended branch mnemonics, which make it
possible to specify a =~nditional branch without specifying the
mask value explicitly.

1 • 8. 3 Programminq Examples

Each of the following exi~ples refers to the sample iS3embly
language program shown in Figure 1-5. Note the use of symb~lic

equates for general registers. Machine code generated an1 the
result of Pach instruction are dependent upon the physical ani
logical placement of the instructions, respectiv~ly.

SERIES 3200 INSTRuCTION FORMAT EXA~~LES P~GE 18:21:44 02/09/79

PROG: S3200 ASStMBLED RY CAL 03-066R05-0l C32-9JT)

0000 0005
0000 0006
0000 0007
0000 0008
0000 0009
0000 OOOA
0000 OOOB

0000001 2,.5E

0000021 0865

0000081 ,.C56 O~F2

OOOOOCI
0000101
OOOOHI

4050 8004 =00001,.I
4300 8004 =0000181
0000 0000

0000181 C890 8000

OOOOlCI C895 8000

0000201 F8AO 0000 8000

0000261 F8BA 0001 7FFE

00002CI 4050 FFE4 =0000141

0000301 ,.056 FFD2 =0000061

000034! 5870 4001 0000

00003AI 5885 ,.601 FFE4
0000401 4300 FFBC =OOOOOOI

OOOOHI
"--...--1

I I

LOCATION OBJECT INFORMATION
COUNTER

29-6S13 ROO 1/70

S3200 PROG SERIES 3200 J~STRUCTION FORMAT EXA~PLES
CROSS

5 R 5
o H
7 R 7
8 RB
9 ~9

10 ;n 0
11 R 11

13 SF

15 ~R

NO~X3

EQU
EQU
EQU
EQU
f:QU
EQU
EOU

LIS

LR

17 ~Xl .EXl STH

19 ~XleEX2 STH

21 Rx.?.EXl STH
22 A
23 LOCI DC

25 Ul.EXl LHI

21 RI1.EX2 LHl

29 RI2.EX1 LI

31 Rl2.EX2 LI

33 :U2.EX2 STH

35 RX2.EO STH

37 RX.3.EXl L

39 ~X3.EX2 L
40 8

4 2 [NO

"-._J~ ~

I LA~EL I
STATEMENT OP-CODE
NUMBER

5
f..

7
8
9
10
11

R5tH

R & t R 5

R5,X•lOOO•

R5tX 1 0FF2'CR6>

P.5tLOCl
Rll.El(l
F' '.l •

R9,x•aooo•

R9,X•8000•CR5>

R10,x•aooo•

R 11 , Y 'l 7F FE' C ~ l 0)

R5tLOCl

R5tLOCl-HCR6)

R7eY'10000•

GENERAL REGISTER 5
GENE~AL REGISTEq 6
GENERAL REGISTER 7
GENERAL REGISTER 8
GENfRAL REGISTER 9
GENE~AL ~EGISTER 10
GENERAL REGISTER 11

<R5> = •oooooooE•

CR&> = •oooooooE•

CX•lOOO•) : X•OOOE•

cx•1000•) = X•OOOE'

CLOCU = X•OOOE•

TWO HALFWO~DS ~F STORAGE

CR9) = Y•FFFF8000 1

CR9> : Y•FFFFBOOF•

c~10> = v•oooosooo•

CRll> = Y•OOOlFFFE•

<LOCI) = X'OOOE•

(LOCl> = x•oOOE'

<R7> = cv•o10000•>

R8,Y•20J00•-29CR5tR6) <RB) = cv•02oono•>
SF

I
OPERANDS

I
COMMENTS

Figure 1-S Sample Pro1ram

1-1 3

561

1.8.4 Register-to-Register (RR) Format

REGISTER TO REGISTER (RR) FORMAT

0

OP

In this 16-bit format, bits 0:7 contain the oper~tion code; bits
8:11 contain the R1 field; and bits 12:15 cont~in the R2 fiR11.
In most RR instructions, the register specified by R1 ~ont1ins
the first operand, and the register specified by R2 cont1ins the
second operand. For example:

Machine Code Label

0865 RR

l1 Second opPt:anj

First operand

Assembler N~tation

LR R6,R5

------Load Register (LR} instruction op-coie

1.8.5 Short Form (SF) Format

SHORT FORM (SF) FORMAT
562 0 7 8 11 12 15

I OP I R1 I N I
This 16-bit format provides space economy when w~rkinq ~ith s~all

values. Bits 0:7 contain the operation c~de; bits 8:11 contain
the R1 field; and bits 12:15 contain the N fieli. In ~rithmetic
and logic~l operations, the register specified by R1 ~ont~ins th2
first operand. The N field contains a 4-bit imme1iate v1lue
(0:15) used as the s~cond operand. For example:

Machine Code Label Assembler N~tati~n

245E SF LIS R5,14

'~~~~~Second oper1n1

-------First operani

.__------Load Immediate Short (LIS) instructi:rn op-c:1i~

1-14 29-693 R30 1/7)

563

1.8.6 Register and Indexed Storage One CRX1) Format

REGISTER AND INDEXED STORAGE ONE (RXl) FORMAT

0

OP D2

11

1

12 X

2 Rl

This is a 32-bit format in which bits 0:7 contain the operation
code; bits 8: 11 contain the R1 field; bits 12:15 contain the X2
field; bits 16 and 17 must be zero; and bits 18:31 contain th~ D2
field. In Qeneral, the register specified by R1 contains the
first operand. The second operand is located in memory at the
address obtained by addin~ the contents of the second ~perand

index reqister (specified by X2) and the 14-bit absolute ~ddres3
contained in the D2 field. For example:

Machine Code Label Assembler Notation

4050 1000 RX1.EX1 STH R5,X' 1000'

L Cef ines se=ond operand address

...._ _____ No index ragister specified

....__ ______ First operand

Store Halfwor1 (STH) instruction ~p-=oje

The second operand address is calculated as foll~ws:

564
BITS 16 19 20 23 24 27 28 31

I I I I I 0001 0000 0000 0000

L-r I

L 14-bit absolute address X'lOOO'
Indicates RXl format

No indexing is specified; therefore, the second oper~n1 address
is X' 1000'.

Machine Code Label Assembler Notation

4056 OFF2 R~1.EX2 STH R5,X'JFF2' (R5)

L_ I:efines se::ond operand addres,;

~-----Register iS to be used for indexin1

~------First oper.:ind

--------Store Halfworj (STH) instruction '.lp-coie

29-693 ROO 1/79 1-15

565

The second operand address is calculated as follows:

BITS 16 19 20 23 24 27 28 31

I
0000

I
1111

I
1111

I
0010 I

L' I

14-bit absolute address X'OFF2'

Indicates RX1 ·format

.::>econ .j Oreranj Add re SS

= contents of D2 field + contents of index register 6
Figure 1-S)

= X'CFF2' + Y'OOOOOOOl'

= Y'0000100C'

1.8.7 Register and Indexed Storaqe rwo (RX2) Form~t

(see

0 7 8 11 12 15 16117 311

566 ~l _______ o_P ______ ~IL...-~R_1 __ __.li...-__ x_2 __ _..,jl~1---_________________ 0_2 ________________ _

This format provides relative addressing capability in a 32-bit
instruction word. Pits 0:7 contain the operand code; bits 8:11
contain the R1 specification; bits 12:15 contain the X2
specification; bit 16 must always be one; and bits 17:31 contain
the relative displacement, 02.

In the RX2 format, the register specified by R1 contains the
first operand. The address of the seconj onerand, in menory, is
calculated by adding the value contained in the inccementei
location counter (the address of the next sequential instruction)
and the sum of (1) the 32-bit representation of the 15-bit signe1
number contained in the D7. field, and (2) the contents of the
index register specified by X2. ~egative numbers in the D2 fielj
are expressed in two's complement notation. For ex~mple:

Machine Cod·e Label Assembler Notation

4050 8004 RX2.EX1 STH R5,LOC1

l~~~~-Def ines second operand address

L--~~~~~~No index register specified

'--~~~~~~-First operand

'-~~~~~~~Store Halfwor1 (STH) instructi~n ~p-=ode

1-16 29-693 ROO 1/79

567

The second operand address is calculated as follows:

BITS 16 19 20 23 24 27 28 31

I 1000 I 0000 I 0000 I 0100 I
I' 15 bit positive relative displacement

Indicates RX2 format

Second Orerand A1dress

= 32-bit ex~ansion of conteuts of D2 field + contents of
incremented location counter (see Figure 1-5).

= Y'C0000004' + Y'OOOOOJ10'

= Y'cooooo1q•

_Machine Code Label Assembler Notation

568

4050 FFE4 RX2.EX2 STH R5,LOC1

!~----Defines second operand address

~------No index register specified

.__------First operand

'---------Store Halfword CSTH) instruction :>p-code

The second operand address is calculated as follows:

BITS 16 19 20 23 24 27 28 31

I 1111 I 1111 I 1110 I 0100 I
I ' 15-bit negative relative displacement

Indicates RX2 format

Sec()f'lri OpEran'i A.ddre-::;::;

= 32-bit cXt-insion of contents ot D2 tL~l,j + i:ontents of
incre:nentec le-cation C•Junt•'-"t: (:-;ee Figure 1-S).

= Y'FFFFFFE4' + Y'00000030'

= y • c 0 0 0 fj 0 1 ;, •

29-693 ROC 1/79 1-17

Machine Code Label Assembler Notation

4056 FFD2 RX2.EX3 STH R5,LOC1-14 ('.{6)

-i--~----Def ines second operand address

-------Register 6 to be used for indexing

-------First operand

'---------Store Halfword CSTH) instruction op-code

The second operand address is calculated as follows:

569
_ BITS 16 19 20 23 24 27 28 31

I 1111 1111 1101 0010

15-bit negative relative displacement

Indicates R X2 format

_ Second OpFra~d Address

570

1.8.8

= 32-bit ex~ansion of D? field +
location counter + cont~nts

Figure 1-5).

contents
of iniex

= Y • ~ FF F F F D 2 ' + Y • 0 0 0 0 0 O 3 4 ' + Y ' 0 0 0 0 J 0 0 ~: '

= Y'G0000014'

of incremented
req ister 6 (see

ReQister and Indexed Storage Three (RX3) Format

0 7 11 1 5 16 17 18 19 20 24 4 7

l __ oP ___ l_R1_l_Fx_2~lol1_lolo_ls_x2_l_A~<:=J
This is a 48-bit format in which double indexing is permitted.
Bits 0:7 contain the operation code; bits 8:11 contain the R1
specification; bits 12:15 contain the first index specification,
FX2; bit 16 must be zero; bit 17 must be one; bits 18:19 must be
zero; bit~ 20:23 contain the second index specification, SX2; and
bits 24:47 contain a 24-bit address, A2. Second level indexing
is allowed even if first level indexing is not specified.

1-18 2 9- 6 9 3 R 0 0 1I7 9

571

BITS

In general, the first operand is contained in the reqister
specified by R1. The second operand is located in memory. Its
memory address is obtained by adding the contents of the first
index register and the contents of the second index register, and
then adding to this result the contents of the A2 field. For
exa'lple:

Machine Cede Label Assembler Notation

5870 4001 0000 RX3.EX1 L R7,Y'10JOO'

~Defines second operand address

'------Second level indexinq not specified

'------Specifies RX3 format

~-------First level indexing not specified

'----------Fi i:: st operand

.._---------Load (L) instruction op-code

The second operand address is calculated as follows:

16 20 24 28 31 32 36 40 44 47

I 0100 I 0000 I 0000 I 0001 I 0000 I 0000 I 0000 I 0000 I
I

20-bit absolute address Y'10000'

Indicates RX3 format

Second O~eranl Adjress

= contents cf A! fielj

::: Y'COC1000'.J'

29-693 ROO 1/79 1- 19

572

Machine Cede Label Assembler Not~tion

5885 4601 FFE4 RX3.EX2 L R8,Y'20300'-28 (RS,?5)
~.--r-

L__Defines second operand address

..___-----Register 6 to be used for second level indexing

....__ _____ Specifies RX3 for:ma t

......_-------Register 5 to be used for first level indexing

....__ ________ First operand

L.....---------Load (L) instruction op-code

The second operand address is calculated as follows:

BITS l_

16

__ 0_1_0_0 __ ~(~
0

__ 0_1_1o ____ i2_

4

__ 0_00_0 ____ (_

8

__ 00_0_1 __

3

_

1

_l

3

_

2

__ 11_1_1 ___ 1_

36

__ 1_1_1_1 ___ f_
0

__ 1_1_10 ____ (_

4

__ 01_0_0 __

4

_

7

1

20-bit absolute address Y'1 FFE4'

Indicates RX3 format

Second Operand Address

= contents of A? field + contents of indeK regist~r 5 •
contents of index register 5 (see Figure 1-5).

= Y'0001FFE4' + Y'OOJOOOOE' + Y'OOOOOOOS'

= Y'00020000'

1.8.g Register and Imrnejiate Storage One (RI1) Form~t

5 73 0 7 8 11 1 2 1 5 16 31

~I -0P-----+-1-R1~1-x-2 ~1 --------------12--------------11

rhis form~t represents ! 32-bit instructi~n Jori. Pits J:7
contain the operand code: bits 8:11 contain tne R1 specific~tion;

and bits 16:11 contain tha 16-bit immediate Vdlu~, I2.

1-20 29-693 ROO 1/79

574

In this format, the register specified by R1 contains the first
operand. The 32-bit effective second opera~d is obt1inei by
adding together 32-bit representation of the signed 15-bit v1lue
contained in the 12 field, and the contents of tha register
specified by X2. For example:

Machine Code Label Assembler Notation

C890 8000

L_
RI1.EX1 LH I R 9, X' 3 0 0 0'

16-bit imme1iate value

..__ _____ No index re1isb~r specified

-------First operand

-------Load Halfwor-d Immediate CLHI) instc:-ucti::>n op-coie

The second operand is cal:::ulated as follows:

BITS 16 20 24 28 31

I 1000 I 0000 I 0000 I 0000 I
Sign Bit

Second Operand

= 32-bit representation of x•aooo•

= Y'FFFF8000'

Machine Cade Label Assembler Notation

C895 8000 RI1.EC,> LHI R9,X'3000'(R5)

L_
16-bit imme1iate value

..__ _____ I n1ex register '1 ~pecified

------- F' irst oper1n1

-------Load Ha 1 fword I 'Timediate (LHI) instc:-ucti0n on-coie

29-693 ROC 1/79 1-21

575

576

The secon1 operand is cal=ulated as follows:

BITS 16 20 24 27 31

1000 0000 0000

Sign Bit

Second Operand

= 32-bit representation 0f X'8000' + the :ontents of the
index register S (see Figure 1-5).

= Y'FFFFBOOO' + Y'OOOOOOOE'

= Y' FFFE'800E'

1.a.10 Register and Immeiiate Stora9e Two (RI2) Format

0 7 11 15 47

I OP I Rl I X2 I 12 :; I
This is a 48-bit instru=tion format. Bits J:7 contain the
operation code; bits 8:11 contain the R1 sp~cificati~n: bits
12:15 contain the X2 spe=ification; and bits 16:47 cont~in th2
32-bit immediate v~lue, r2.

The first operand is contained in the register specifie1 by R1.
The second operand is obt~ined by adding the =ontents of the
inde~ register, specified by X2, and the 32-bit immediate v~lua

contained in the I2 field. For example:

Machine Code Label Assembler ~otation

RI2.EX1 LI R10,x•qooo•

32-bit immediate field

No index register specified

Load Im~ediate {LI) instruction op-c~de

1-22 2 9- 6 9 3 R 0 0 1 I 7 9

The second operand is calculated as follows:

,77

BITS 16 20 24 28 32 36 40 44 47

I 0000 I 0000 I 0000 I 0000 I 1000 I 0000 I 0000 I 0000 l
32-bit immediate value

Second Operand

= contents of 12 field

= Y'00008000'

Machine Code L3.bel Assembler Notati~n

RI2.EX2 LI R11,Y'17FFE' CR1J)

The second operand is calculated as follows:

8

BITS 16 20 24 28 32 36 40 44 47

I 0000 I 0000 I 0000 I 0001 I 0111 I 1111 I 1111 I 1110 I
32-bit immediate value

Second Operand

= contents of 12 field + contents of index reqister 10 (see
Figure 1-5).

= Y'00017FFE' + Y'00008000'

= Y'0001FFFE'

29-693 ROC 1/79 1- 23

1.a.11 Register and Indexed Storage/Register anj Indexed Storage
(RXRX) Format (See Figure 1-6)

The RXRX format resembles a pair of adjacent RX format
instructions, but represents only one instruction. Each member
of the instruction pair may be any one of the stan1ard RX
formats. For example, the first member might be RX1 and the
second member might be RX3, resultinQ in a 10 byte instruction.
The particular RX format chosen by the assembler for one membec
is independent of that chosen for the other; thus, the
instruction can require 8, 10, or 12 bytes.

OP contains the operation code that defines the RXRX instruction
class. The actual operation to be performed is defined by the
0 PMOD field.

The 11 field specifies the length of the first operand strinQ.
If bit 0 of OPMOD is set, 11 is the length with a maximum value
of 15. If bit 0 of OPMOD is zero, the general register specifie1
by 11 contains the length. The 12 field specifies the length of
the second operand string. If bit 1 of OPMOD is set, this field
contains the length with a maximum value of 15. If bit 1 of
OPMOD is zero, the general register specified by 12 contains the
length.

The effective address calculated for the first member is the
address of the left-most (lowest - address) byte of the first
operand string. The effective address calculated for the second
member is the address of the left-most byte of the second operand
strin9.

Machine Code Label Assembler Notation

acso 1000 0160 OFFO RX1.RX1 MOVE R5,X'1000',R6,X'FFO'

L Defines second operand ~ddress
------No 2nd operand index

------- Fegister 6 contains length of 2nd operan1

------- JPMOC value for MOVE

....._ _________ Defines first operand address

~------------No 1st operand index

......._ ____________ Register S contains length of 1st oper<.tnd

....__ _____________ RXRX format op-code

In this example both members of the RXRX instruction use the RX1
format. No indexing is specified for either member so the first
operand address is X'1000', and the second operand address is
X'OFFO'.

1-24 29-693 ROO 1/79

!'...>
l.O
t

0\
'-'>
w

::0
0
0

.....

'J
..0

.....

'_)
.... •1

579 RX1 OR RX2 RX1 OR RX2

I OP I L1 I X2 I D2 I OPMOD I L2 I X2 I D2 J
RX1 OR RX2 RX3 r OP

1
L1

1
X2 r D2 r OPMOD

1
L2

1
FX2

1
0100

1
SX2r A2 1

RX3 RX1 OR RX2 r OP I L1 I FX210100 I sx2I A2 I OPMOD I L2 I x2 l D2 l

OP

RX3 I RX3

L 1 I FX2 10100 I SX2

FIRST MEMBER

A2 OPMOD L2 I FX2 I 0100 I SX2 A2

Figure 1-6 RXRX Formats

__ _/

SECOND MEMBER

Machine Code Label Assembler Notation

8CA5 4601 FFE4 E160 4002 8000 RX3.RX3 MOVEP =10,Y'1FFE4' --c.__ CR5,R6),=6,Y'28000'

Defines second operand address

-------No 2nd op second level indexing

'--------Specifies RX3 format

---------No 2nd op first level indexing

----------2nd op length is 6 bytes

----------OP,MOD value for MOVEP, immediate
lengths 1 and 2

'-------------Defines first operand ad1ress

----------------Register 5 is second levPl
index for 1st op

-----·-----------Specifies RXJ format

....__---------------Register 5 is first level index
for 1st op

-------------------1st op len~th is 10 bytes

RXRX format op-code

In this example, both members of the RXRX instruction use the RX1
format. Double indexinQ is specified for the first member an1 na
indexing is specified for the second member. The first operand
address is X'1FFE4' plus the contents of index registers 6 ~ni s.
The second operand address is x•2aooo•. The length of each of
the first operand is ten bytes and the second operand is six
bytes.

1-26 29-693 ROO 1/79

2.1 INTRODUCTICN

CHAPTER 2
SYSTEM CONTROL

Operator control is provided by the system control panel and the
System Terminal, a microcode-supported device interfaced to the
system by an asynchronous line controller. The system terminal
may be used as the operating system's console device, and may be
a visual display unit or a printing terminal. The asynchronous
interface must be strapped as device numbers X'10' and X'11'.

2.2 CONFIGURATION

The system control panel, shown in Figure 2~1, controls power to
the system, and Initial Program Loading (IPL). It also provides
controls for system initialization, processor- halt/run, and
single step. light Emitting Diodes (LEDs) on the system console
indicate current system state.

580

CPU SYSTEM

POWER POWER WAIT FAULT

0 0 0 SINGLE HALT/RUN ENABLE INIT

D D DIPLo~~CK CD
STANDBY

0
READY FAIL

DISABLE

Figure 2-1 System Control Panel

Keyboard comman1s throuQh the System Terminal allow the operator
to examine and modify processor registers and main me~ory
locations and then begin ~rogram execution. (Refer to Figure
2-2.) Hexadecimal characters and a number of special characters
are recognized by the System Terminal support microcode. The
characters accepted and their meaninqs are shown in Table 2-1.
No other characters are accepted and cause a question mark (?)

to be written to the System Terminal. When not in use for
operator control, the System Terminal is avail3ble t~ a runninq
program for use as an I/0 device. See Appendix F for a flowchart
of the console service routine.

2 9-69 3 ROO 1 /79 2-1

-

581

TABLE 2-1 SYSTEM TERMINAL SUPPORT COMMAND SUMMARY

KEY
COMMAND
SEQUENCE

2-2

MEANING

Select memory address
and display halfword
contents

Select general register
and display contents

Select single-precision
f loatinq-point register
and display contents

Select double-precision
floatin~-point reqister
and display contents

Select program status
word and display
contents

Increment memory
location counter to
display next sequential
halfword

Decrement memory
location counter to
display previous
halfword

Replace contents of
currently selected
memory location or
register with new data

Begin program execution
at current memory
location

Delete Command

SYSTEM
TERMINAL

DISPLAY

~@nnnnn

nnnnn YYYY
~

<Rn
YYYYYYY.Y
<

~Fn
YYYYYYYY
~

<Dn
YYYYYYYY YYYYYYYY
<

~p

YYYYYY YYYYYY
<

<+
nnnnnn YYYY
<

<-
nnnnnn YYYY
<

<=YYYI for memory
~
~=YYYYYYYY for register
<

<<

<@ 10#
<

29-693 ROO 1/79

Notes:

582

1. Characters in boxes indicate operational key strokes
required for commands.

2. Character symbol of lower case "n" used to indicate
hexadecimal address of memory or register.

3. Character symbol of upper case "Y" used to indicate
hexadecimal contents of memory or register.

4. Underlined characters are those output from the
Characters not underlined are those typed
opera tcr.

system.
by the

5. A back arrow, or underline (X'5F'), or a bac~ space
(X'OB') character may be used to delete the previously
input hexadecimal character.

6. Space characters may be entered as desired.
ignored by the processor.

Figure 2-2 Model 550 Keyboard Layout

They are

2.3 SYSTEM CONTBOL PANEL SWITCHES AND INDICATORS

2.3.1 Key Operated Security Lock

This is a three-position, STANDBY-ON-LOCK
that controls primary power to the system.
{LOCK) the initialize and console switches,
any accidental manual input to the system.
lamp (POWER) is on when the security lock is
position.

29-693 ROO 1/79

key-operated switch
It can also disable
thereby preventin~

The power indic~tor
in the ON or LOCK

2-3

2.3.2 Control Switches

All the control switches, with the exception of the Initi~l
Program Load (IPL) switch, are enabled only when the key-operated
security lock is in the ON position, and primary AC power is
applied.

HALT/RUN

SINGLE

ENABLE

DISABLE

2-4

HALT/RUN

This momentary contact switch causes program
execution to be halted if the system was running
or resumed if the system was halted. When halted,
control is given to the System Terminal support
routine through which the memory or registers can
be examined or modified and proqram execution
restarted. If the processor was already in the
System Terminal support routine, program execution
is started. This switch is disabled if the
security lock is in the LOCK position.

SINGLE STEP

When in the up position, control is automatically
given to the System Terminal support routine at
the conclusion of each user level instruction.
The program status word is displayed, includinq
the address of the next sequential instruction
(location counter). Execution of the next
instruction is caused by pressing the HALT/RUN
switch or by typing a l~ss than C<) character on
the System Terminal. To resume normal run mode
execution, return the SINGLE STEP switch to the
down position and begin execution by pressing the
HALT/RUN switch or by typin~ the less than <<>
character on the System Terminal. The SINGLE STEP
switch is disabled when the security lock is in
the LOCK position. Attempts to single step
through instructions that do I/O to the System
Terminal do not produce meaningful results.

IPL

This switch is not disabled by the security lock.
When in the ENABLE position, an Initial Program
Load (IPL) from the Loader Storage Unit (LSU) is
performed after any of the following steps:

1. turninQ the security lock from the STANDBY to
ON position

2. depression of the Initialize (!NIT) switch
3. return of AC power to the system

29-693 ROO 1/7q

INITIALIZE

!NIT This momentary contact initialize switch causes
the system to be initialized. The initialization
sequence clears all device controllers on the I/O
bus and resets certain functions in the pr~cessor.
The fault lamp (FAULT) comes on when the switch is
depressed and is extinguished with the completion
of the initialization sequence.

2.4 OPERATING INSTRUCTIONS

2.4.1 Power Up

To prevent Initial Program Load CIPL) on power-up, place the IPL
switch in the DISABLE position. To power up the system, turn the
key-o~erated security lock clockwise from the STAND3Y to the ON
position. The power lamp (POWER) lights, and power is provided
to the system. The fault lamp (FAULT) on the system control
panel also lights, and the microdiagnostic routine is entered.
This routine exercises internal data paths and registers. If
main memory power has fallen out of regulation since the system
was last running, locations X'OOOOOO' to X'03FFFF' are
initialized. The diagnostic routine tests th~ lowest 25~k bytes
of memory before extinguishing the FAULT lamp. This diagnostic
is limited in scope, serving only to indicate a go/no go
condition. If an error is detected in any portion of the
microdiaqnostic, the microcode loops indefinitely, and the FAULT
lamp remains on. If no errors are detected, the FAULT lamp is
turned off.

2.4.2 Entering Console Service

If power vas lost while the microcode was in the console service
routine, control is returned to the console when the power-up
sequence is complete, provided that IPL is not enabled. If the
system was executing a program when power was lost, execution
resumes when power returns, provided that IPL is not enabled. rJ
enter console service in this case, de~ress the HALT/RUN switch.

2.4.3 Initial Program Load

To perform Initial Program Load (IPL), place the IPL switch in
the ENABLE position; then initialize the system by depressinq the
INIT switch momentarily. A power down/power up sequenc~ is
emulated, and diagnostics are performed. At the successful
completion of the micro1iaqnostic sequence, an IPL from the LSfl
is performed. Control is tr~nsferred to the newly-lo1ded
program.

29-693 ROO 1/79 2-5

2.5 SYSTEM TERMINAL COMMANDS

When the System Terminal su~port routine is entered from power up
or initialize, a carriage return and line feed sequence are
output. The current value of the PSW status and location counter
are cutput, followed by another carriage return and line feed
sequence. Finally, the less than (<) operator prompt character
is output to indicate that the system is ready to receive
operator commands. If memory power was lost, the location
counter is set to X'OOOFFFFE', and the PSW is set to x•ooooaooo•.
In this case, the first 256K bytes of memory are written during
power-up to establish the error correcting code bits.

Space characters may be used as desired in any of the described
system terminal commands. Spaces are ignored by the console
routine.

2.5.1 Select an Address and Examine "@"

The "commercial at" sign (@) places the console routine in the
address mode. This character may be followed by up to five
hexadecimal digits of address. Leading zeros are not required.
If mere than five digits are input, only the least significant
five are used. A carriage return is used to signal the end of
the address; then the address in~ut is copied into the location
counter. A carriage return and line feed sequence are output,
followed by the new value of the location counter and the
halfword contents of that location. Note that the data fetch is
subject to memory relocation if enabled by the current PSW.
After this displ~y, a carriaq~ return and line feed sequence are
output, followed by a new operator prompt.

If an invalid character is input by the operator, the system
responds by outputting a question mark (?), a carria7e return,
line feed, and an operator prompt.

2.s.2 Increment and Examine Next Location "+"

~fter examining a memory location, the plus char~cter (+) can be
used to advance the location counter by two. ~o other operator
input is required. A carriage return and line feed are output,
followed by the new location counter value and the half#ord
contents of that location. This memory access is subject to the
relocation defined by the current PSW. After outputtinq another
carriage return and line feed, the operator prompt character is
output. This procedure may be repeated to examine sequential
memory locations.

2-6 29-693 ROO 1/79

2.5.3 Decrement and Examine Prior Location "-"

After examining a memory location, the minus character (-) can be
used to decrement the location counter by two. No other
operation is required. A carriage return ~nd line feed are
output followed by the new location counter value and the
halfword contents of that location. This memory access is
subject to the relocation defined by the current PSW. After
outputtinq another carriage return and line feed the operation
prompt character is output. This procedure may be repeated to
examine sequential memory locations.

2.5.4 Modify Current Location "="

After examining a memory location, the equal sign (=) can be used
to put the System Terminal support routine in th~ memory write
mode. This character may be followed by up to four hexadecimal
di9its of data to be written. Leading zeros are not required.
If more than four digits are input, only the least significant
four are used. A carriage return is used to signal the end of
the data. At that time, the accumulated data is written into the
memory location currently addressed by the location counter.
This memory write is subject to the relocation defined by the
current PSW. !he current location counter is incrementej by tw~

and a carriage return, line feed, and operator prompt are output.
This procedure may be repeated to modify sequential memory
locations.

2.5.5 Examine General Re~ister "R"

The character CR) causes the console routine to interpret
subsequent hexadecimal input as the number of a general register
(in the set selected by the current PSW) to be displayed. A
carriage return is used to signal the end of hexadecimal input.
At that time, the least significant four bits of the accumul~ted

hexadecimal data are taken as the desired register number. The
fullword contents of that register are output followej by a
carriage return, line feed, and operator prompt. Plus and minus
commands are invalid for general registers.

2.5.6 Modify General Reqister "="

Immediately after examining a general re9ister, the equal '~iQn

(=) can be used to change the contents of the currently selected
register. The equal sign can be followed by up to eight
hexadecimal digits of data. Leading zeros are not required. If
more than eight digits ar~ input, only the least significan~

eight are used. A carriage return is used to signal the end 0f
the data input. At that time, the accumulated data is cooied
into the currently selected general register. A carriage return,
line feed, and cperator prompt are then output.

29-693 ROO 1/79 2-7

2.5.7 Examine Single-Precision Floating-Point Register "F"

The character (F) causes the console routine to interpret
subsequent hexadecimal input as the number of a single-precision
f loatlng-point register to be displayed. If the processor does
not have single-precision floating point, this command charact~r
causes a question mark sequence to be output. A carriage return
is used to signal the end of hexadecimal input. At that time,
the least significant four bits of the accumulated hex~decimal

data are taken as the desired register number. If necessary,
this number is rounded to the next lo~est even number. The
fullwcrd contents of that register are output followed by a
carriage return, line feed, and operator prompt. Plus and m~nus

commands are invalid for floating-point registers.

2.5.8 Modify Single-Precision Floating-Point Register "="

Immediately after examining a sinqle-precision floating-point
register, that register is available for modification. Type an
equal sign (=) followed by up to eight hexadecimal digits of
data. Leading zeros are not required. If more than eight digits
are input, only the least significant eight are used. A carriage
return is used to ~iqnal the end of the data input. At that
time, the accumulated data is copied into tha currently selected
sin9le-precision floating-point register. This data is not
tested for normalization; therefore an unnormalized
floating-point number can be manually placed in the register.
The system outputs a carriage return, line feed, and operator
prompt.

2.5.9 Examine Double-Precision Floating-Point Register "D"

The character (D) causes the console routine to interpret
subsequent hexadecimal input as the number of a double-precision
floating-point register to be displayed. If the processor does
not have double-precision floating point, this command character
causes a question mark sequence to be output. A carriage return
is used to signal the end ~f hexadecimal input. At that time,
the least significant tour bits of the accumulated hexadecimal
data ar.e taken as the desired register number. If necessary,
this number is rounde1 to the next lowest even number. The
doubleword cont~nts of that register are output, followed by a
carria9e return, line feed, and operator prompt. Plus and minus
commands are invalid for floating-point registers.

2-8 29-693 ROO 1/79

2.s.10 Modify Double-Precision Floating-Point Register "="

Immediately after examining a double-precision floating-point
register, that register is available for modification. Type an
equal sign (=) followed by up to 16 hexadecimal digits. Leading
zeros are not required. If more than 16 di~its are input, only
the last 16 digits are used. A carriage return is used to signal
the end of the data input. At that time, the accumulated data is
copied into the currP-ntly selected double-precision register.
The data is not tested for normalization; therefore, an
unnormalized floating-point number could be ~anually placed in a
double-precision register. The system outputs a carriage return,
line feed, and operator prompt.

2.5.11 Examine Program Status Word "P"

The character (P) puts the console routine into the PS~ display
mode. A carriage return is required to complete this com~and
input. Upon receipt of the carriage return, the contents of the
PSW are output followed by a carriage return, line feed, and
operator prompt. The plus and minus commands are invalid for the
PSW.

2.s.12 Modify Program Status Word

Immediately after examinin9 the PSW, the equal sign (=) can be
used to change the contents of the PSW status field. The equal
sign can be followed by up to six hexadecimal digits of jata.
Leading zercs are not required. If more than six digits are
input, only the least significant six are used. A carriaqe
return is used to signal the end of the data input. At that
time, the accumulated data is copied into the PS~, which is then
displayed. A carriage return, line feed, dnd operator prompt are
then cutput.

29-693 ROO 1/79 2-9

583

2.6 MEMORY INITIALIZATION

The fellowing example shows how to set up dedicated low me~ory
for leading the 32-bit relocating loader from magnetic tape.

< ~w@J ~

000030 0000

~G
000032 8000

< 0
000034 0000

~G
000036 1536

~0 IT]@] @E]

000038 0000

~0[I]@J§

000050 DSOO

< 0 -
000052 OOCF

< G
000054 4300

<0
000056 0080

~ 0 IT] [I] @E]

000078 C186

2-10

Select ad1ress '30'

Location '30' already= '0000'

Advance to address '32'

Location '32' already = '8000'

Advance to address '34'

Location '34' already= '0000'

Advance to address '36'

Location '36' contains '1536'

Change contents of '36' to '0050'

Location '38' contans 'OOOJ'

Select address '50'

Location '50' already = '0500',
the auto-load instruction

Advance to address '52'

Location '52' already= '00CF',
the usual ending ~ddress

Advance to address '54'

Location 'S4' already = '4300'
a oranch instruction

Advance to address ·s~·

Location '56' already = '0080'
the usual branch address

Select address '78'

Location '78' contains 'C186'

29-693 ROO 1/79

00007A 0000

000030 0000

Change '78' to '85A1', the device·
number and command byte for
magnetic tape

Location '7A' contains •oooo•

Select starting address '30'

Start proqram execution

After loading, the relocating loader places the processor in the
wait state. The wait lamp on the consolette is on. Depress the
HALT/RUN switch to reqain control at the System Terminal. The
terminal response, for example is:

ooaooo 03FBoo
<

which shows the PSW and the LCC pointing at the loader start
address of '3F900'. Type the less than (<) character to begin
execution of the relocating loader.

2.7 PROGRAMMING INSTRUCTIONS

The System Control Terminal (SCT) uses either a 2-line
asyncronous communication multiplexor or an 8-line asynchronous
mux interface. Since the microprogram of the processor must
communicate with the SCT, the device address is fixed at X'010'
and X'011'. The interface must be strapped for full duplex
operation, 7 data bits, 2 stop bits, and even parity. Refer to
the appropriate instruction manual for complete programming
information.

The microproqram programs the
stop bits per character, seven
Echoplex is

29-693 ROO 1/79

SCT for hi~hest clock rate, two
data hits, and even parity.

2-1112-12

585

3.1 INTRODUCTICN

CHAPTER 3
LOGICAL OPERATIONS

The set of lcgical instructions provides a means for the
manipulation of binary data. Many of the instructions grouped
with the logical set may also be used in arithmetic and other
operations. These instructions include loads, stores, compares,
shifts, list ~recessing, translation, and cyclic redundancy
checks.

3.2 DATA FORMAlS

Logical data may be organized as bytes, halfwords, fullwords, or
bit arrays of ut to 2~ bits as shown in Figure 3-1.

BYTE 7

0 HALFWORD 15

0 FULLWORD 31

0 BIT ARRAY N

I...___ ___ _____.: ~J----------11

~·igure i-1 Logical Data

29-693 ROC 1/7g 3-1

586

3.3 CPERATICNS

In logical operations between the contents of a qeneral register
and a halfword operand, the halfword operand is expanded to a
fullword before the operaticn starts. The halfword is expanded
by propagating the most significant bits through bits 0:15 of the
fullword. For example, the halfword 'AOOO' is expandP.d to
'FFFFAOOO' before Participating in the operation.

3.3.1 Boolean Cperations

The Boolean operators AND, OR, and Exclusive OR (XOR) operate on
halfword and fullword quantities. All bits in both operands
participate individually. The Boolean functions are defined as

.follO'WS:

0 AND 0 = 0
0 AND 1 = 0 (logical product)
1 AND 0 :: c
1 AND 1 = 1

0 OR 0 = 0
0 OR 1 = 1 (logical sum)
1 OR 0 = 1
1 OR 1 = 1

0 XOR 0 = 0
0 XOR 1 = 1 (logical difference)
1 XOR 0 = 1
1 XOR 1 = 0

3.3.2 Translation

The translate instruction is used to translate a character
directly, or to effect an unconditional branch to a special
translate subroutine. Associated with the translate instruction
is a translation table. The entries in the table are halfwords
as shown in figure 3-2.

0 7 8 15

CHARACTER

(CHAR. HANDLING ROUTINE ADDRESS) /2

ENTRY SPECIFYING TRANSLATED
CHARACTER

ENTRY SPECIFYING ADDRESS OF
A CHARACTER HANDLING ROUTINE

FiQure 3-2 Translation Table Entry

3-2 29-693 ROO 1/79

587

The character to be translated is a byte of lo~ical data. This
unsigned quantity is doubled and used as an index into the
translation table. If the corresponding table entry has a one in
bit position zero, then bits 8:15 contain the character to be
substituted for the data =haracter. If there is a zero in bit
position zero, bits 1:15 contain the address, divided by two, of
the translation routine. When the translate instruction results
in a branch, this value is doubled to produce the address of the
routine. Because this result is a 16-bit address, the software
routine must be located in the first 64kb of th2 program address
space. The program may reside anywhere in memory if it is
relocated by the Memory Access Controller (MAC). The translation
table may contain up to 256 entries. However, if the data
characters are always less than eight bits, fewer entries are
required.

3.3.3 List Processing

The list processing instructions manipulate a circular list as
defined in Fiqure 3-3.

0 15 16 31

NUMBER OF SLOTS NUMBER USED

CURRENT TOP NEXT BOTTOM

SLOT 0

SLOT 1

&~

T
"""'

T SLOT N

Figure 3-3 Circular List Definiti~n

The first four halfwor1s, called the list he1der, contain the
list Parameters. Immediately following the header is the list
itself. The first fullworj in the list is designated Slot o.
The remaining slots are designated 1, 2, 3, etc., up to a maximum
slot number which is equal to the number in the list minus one.
An absolute maximum of 65,~35 fullword slots ~ay be specified.
{Slots are designated O throuqh X'FFFE'.)

29-6<n ROC 1/79 1-3

The first halfword of the header indicates the number of slots
(fullwords) in the entire list. The second h~lfword indicates
the current number of slots being used. ~hen this halfword
equals zero, the list is empty. When this halfword equals the
number of slots in the list, the list is full. Jnce initialized,
this halfword is maintained automatically. It is incremented
when elements are added to the list and decremented when elements
a re removed.

The third and fcurth halfwords of the list hea1er
current top of the list and the next bottom
respectively. !hese pointers are also update1
See Figure 3-4.

588

OCCUPIED
SECTION

SLOTn

SLOTO

CURRENT TOP __.,. SLOT 1

SLOT2

SLOT3

SLOT4

NEXT BOTTOM __.,. SLOT 5

Figure 3-4 Circular List

specify the
of the list,

automatically.

3-4 29-693 ROO 1/79

3.4 IOGICAL INSTRUCTION FORMATS

The logical instructions use the Register-to-Register (RR), the
Short Form (SF), the Register and Indexed Storage (RX), and the
Register and Immediate Storage (RI) instruction formats.

3.5 LOGICAL INSTRUCTIONS

fhe instructions described in this section are:

L
lR
LI
LIS
LCS
LH
LHI
LA
LRA
LHL
LM
LB
LBR
EXH R
EXBR
ST
STH
ST~

STB
3TBR
CL
CLR
CLI
CLH
CLHI
CLB
N
NR
NI
NH
NHI
c
OR
or
OH
OHI
x
XH
XI
XH
XHI
TI
THI

load
load Register
load Immediate
Load Immediate Short
load Complement Short
load Ha 1f word
Load Halfword Immediate
load Address
loai ?.~al Act1ress
Load Halfword Logical
loa1 Multiple
Load Ryte
Load Byte Register
Exchange Halfword P~~ister
Exchange Byte ~egister
Store
~;tore Halfworrl
Store Multiple
Store Byte
Store 3yte Pegister
Compare Logical
Compare Logical Pegister
Comp3re Loqical Immediate
Compare Logical Halfword
Comp~re Logical Halfword Immediate
Compare Logical Byte
AND
AND Register
AND Im111ediate
AND Halfword
AND Halfword Immediate
CP
CR Register
CR Immediate
CR H~lfword

CP Halfword Immediate
txclusive o~

Fxclusive OS Register
Fxclusiv~ cc Immediate
Exclusive O~, Halfwcrd
Exclusive Jr--: Halfword Immediate
Test Irn11edL~te

Test Half wori Im~edi~te

29-693 ROC 1/79 3-5

SLL
SLLS
SRL
SRLS
SLHL
SLHLS
SRHL
SRHLS
RLL
RRL
TS
TBT
SBT
CBT
RBT
CRC12
CRC16
TLATE
ATL
ABL
RTL
~BL

3-6

Shift Left Logical
Shift Left Logical Short
Shift Pight Loqical
Shift Right Logical Short
Shift Left Halfword Logical
Shift Left Halfword Logical Short
Shift giqht ~alfword Logical
Shift Right Halfword Logical Short
Rotate Left Logical
Rotate Right Logical
Test and Set
Test Bit
Set Bit
Complement ?it
Reset Bit
Cyclic Redundancy Check ¥odulo 12
Cyclic Redundancy Check ~odulo 16
Translate
Add to Top of List
Add to Bottom of List
Remove from Top of List
Pemove fro~ Rottom of List

29-693 ROO 1/79

3.5.1 Load

Load (L)
Load Register (LR)
Load Immediate (I.I)

Assembler Notation

L
L
LR
LI

R1,D2(X2)
f<1,A2(FX2,SX2)
R1,R2
R1,I2CX2)

Operation

Op-Coje

58
58
09
F8

f'orma t

RX1,RX2
RX3
iiB
RI2

The second operand replaces the contents of the
specified in R1.

Condition Code

c v G T.
0 0 0 0
0 0 0 1
0 c 1 0

Programming Notes

Value is zero
Value is not zero
Value is not zero

register

When the load instructions ~perate on fixej point data, the
condition code indicates zero (no tla~s), negative CL fla~), or
positive (G flag) value.

In the RR format, if H1 equals H2, the Load instruction functions
as a test on the contents of the register.

In the PX formats, th~ second operand must be located on a
fullword toun1ary.

29-693 ROC 1/79 3-7

3.5.2 Load Immediate Short

Load Immediate Short (LIS)

Assembler Notation Op-Code Format

LIS R1,N 24 SF

Opera ti on

The 4-bit second operand is expanded to a 32-bit fullword with
high order 28 bits forced to zero. This fullword replaces the
contents of the register specified by R1.

Condition Code

c v G L
0 0 0 0
0 0 1 0

Programming Note

Value is zero
Value is not zero

When this instruction operates on fixed point data, the c~ndition
code indicates zero (no flags), or positive (G flag) value.

Example: LIS

Assembler Notation

LIS REG4,15

Result of LIS Instruction

(REG4) = OOOOOOOF
Condition Code=0010 (G=2)

3-8

Machine Code Comments

244F LOAD 15 INTO REG4

29-593 ROO 1/79

3.5.3 Load Complement Short

Load Complement Short (LCS)

Assembler Notation Op-Code Format

I.CS R1,N 25 SF

Operation

The 4-bit second operand is expanded to a 32-bit fullword with
high order bits forced to zero. The two's complement value of
this fullword then replaces the contents of the register
specified by R1.

Condition Code

c v G L
0 0 0 0
0 0 0 1

Proqramming Note

Value is zero
Value is not zero

When this instruction operates on fixed point data, the condition
code indicates zero (no flags), or negative CL flag) value.

Example: LCS

Assembler Notation Machine Code

LCS REG8,7

Result of LCS Instruction

(REG8) = FFFF FFF9
Condition Code=0001 (1=1)

29-69 3 BOO 1 /79

2587

Comments

LOAD -7 INTO REGS

3-J

3.5.4 Load H~lfword

Load Halfword (LH)
Load Halfword Immediate (LHI)

Assembler Notation

LH
lH
LHI

R1,I:2(X2)
R1,A2CFX2,SX2)
R1,12(X2)

Cpera ti on

Op-Code

48
48
CB

Format

RX1,RX2
I\ x 3
1n 1

The halfword second operand is expanded to a fullword by
propa9atin9 the most significant bit throu9h bits 0:15. This
fullword replaces the contents of the register specified by R1.

Condition Code

c v G L
0 c 0 0
0 c 0 1
0 c 1 I)

Programming Notes

Value is zer:-o
Value is not zero
Value is not zero

When the Load Halfword instructions operate on fixed point data,
the condition cede indicates zero (no flags), negative CL flag),
or positive (G flag) value.

In the RX for1lats, the secon·i operand must be located on a
halfword toundary.

In the RI i focm~t, the in-bit I2 field is ext~nde'1 to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index register specified by 12 ar~ then added to form the
fullword ~econd cp~rand.

3-10 29-693 ROO 1/79

3.5.5 Load Address (LA)

Assembler Notation

LA
LA

R1,D2CX2)
R1,A2CFX2,SX2)

Operation

Op-Code

E6
E6

Format

RX1,RX2
RX3

The effective address of the second operand (24
bits 8:31 of the register specified by R1.
register specified by R1 are forced to zero.

Condition Code

Unchanged

Programming Note

bits) replaces
Bits 0:7 of the

The length of the address quantity depends on the internal
structure of the particular machine; thus, in this processor,
with a maximum address length of 20 bits, the calculated address
replaces bits 12:31 of the register specified by R1, and bits
0:11 are forced to zero. In 3 processor with maximum address
length of 24 bits, the calculated address replaces bits 8:31 of
the register specified by R1, and bits 0:7 are replaced by zero.

29-693 ROO 1/79 3-11

3.5.6 Load Real Address (LRA)

Assembler Notation

LRA
LRA

R1,D2(X2)
R1,A2CFX2,SX2)

Operation

Op-Code

63
63

Format

RX1,RX2
RX3

This instruction simulates the operation of a memory access
controller. The register specified by R1 contains a program
address (not relocated). The second operand address points to a
relocation/protection module parameter block.

The address contained in the register specified by R1 is
relocated, using the appropriate parameters. The relocated
address replaces the contents of the register specified by R1.

Condition Code

c v G
1 0 0
0 1 0
0 0 1
0 0 0
0 0 0

l
0
0
0
1
c

Not mapped (Limit viGlation)
Not present
Not writable
Not executable
No restrictions

The condition cede is determined on priority basis with Not
Mapped having highest priority, Not Present second, Not Writ~ble
third, and Not Executable having lowest priority.

3-12 29- 69 3 ROO 1 /79

Programming Notes

If the address is not mapped or not present, the register
specified by R1 is unchanged.

The second operand location must be located on a fullword
boundary.

Example: LRA

This example performs an address translation in the same manner
as the MAC.

For this example, Register 1 contains X'54341'. MACREG is the
starting address of a copy of the MAC Registers. The fifth
fullwcrd entry located at MACREG+X'14' contains X'OFF24170'.

Assembler Notation Machine Code

LRA REG1,MACRF.G 6310 3100

Result of LRA Instruction

(REG1) = 28441 (24100 + 04341)
MACREG Unchanged
Condition Code = 0010 (not writable)

29-693 ROO 1/79

Com men ts

The first digit of the
20-bit program address
(5) is used to index into
MACR EG

3- 13

3.5.7 Load Halfword Logical {LHL)

Assembler Notation

LHL
LHL

R1,C2(X2)
R1,A2(FX2,SX2)

Operation

Op-Code

73
73

Format

RX1,RX2
RX3

The halfword second operand replaces bits 16:31 of the register
specified by R1. Bits 0:15 of the register specified by R1 are
replaced by zero.

Condition Code

c v G L
0 G () 0
0 c 1 0

Programming ~ote

Value is zero
Value is not zero

The second operand must be located on a halfword boundary.

3-14 29-693 BOO 1/79

3.5.8 Load Multiple (LM)

Assembler Notation

LM
LM

R1,D2(X2)
R1,A2(FX2,SX2)

Operation

Op-Code

01
01

Format

RX1,RX2
RX3

Successive registers, starting with the register specified by R1,
are loaded from successive memory locations, st~rting with the
location specified as the effective address of the second
operand. Each reqister is loaded with a fullword from memory.
The process sto~s when Register 15 has been loaded.

Condition Code

Unchanqed

Programming Notes

The second operand must be located on a fullword boundary.

The second operand address is formed before any registers are
loaded; therefore, X2, FX2, and SX2 can be among the registers
loaded.

In the event of a machine malfunction due to a non-correctable
memory error, or to a MAC Fault, the effective address calculated
at the beginninQ of the instruction is available shoul1 a retry
be desired. For details, refer to Chapter 10 and Chapter 12.

29-693 ROO 1/79 3-15

3.5.9 Load Byte

Load Byte (LB)
Load Ryte Begist~r (LRR)

Assembler Notation

LB
LB
I.BR

R1,D2CX2}
R1,A2(FX2,SX2)
R1,P2

Opera ti on

Op-Cod?.

03
03
93

Format

RX1,RX2
RX3
RR

The 8-bit second operand replaces the least
(bits 24:31) of the register specified by R1.
register are forced to zero.

Condition Code

Unchanged

Programming Note

significant bits
Bits 0:23 of the

In the Load Byte ?egister instruction, the second operand is
taken from the least siqnificant ei~ht bits (bits 24:31) of the
register specified by R2.

3-16 29-593 ROO 1/79

3.5.10 Exchange Halfword Register CEXHR)

Assembler Notation Op-Code Format

E XHR R1,R2 34 RR

Opera ti on

3its 0:15 of the register specified by R2 replace bits 16:31 of
the register specified by R1. Bits 16:31 of tha register
specified by R2 replace bits 0:15 of the register specified by
R1.

Condition Code

Unchanged

Programming Note

If R1 equals R2, the two halfwords contained within the register
are exchanged. If R1 does not equal R2, the cantents of R2 are
unchanged.

Example: EXHR

Assembler Notation

LI
LI
EXHR

REGS, Y'OABCDEF9'
REG7, Y' 12345678'
REG.5,REG7

Hesult of EXHR Instruction

{REGS) =56781234
(REG7) = 12345678
Condition Code Unchanged

29-693 ROO 1/79

Machine Code

F850 OABC DEF9
F870 1234 5678
3457

Comments

(RE~5) = OABCDEF9
(RE;7) = 1234567~

.3-17

3.5.11 Exchange Byte Register CEXBR)

Assembler Notation Op-Code Format

EXBR R1,R2 94 RR

Operation

The two 8-bit bytes contained in bits 16:31 of the reQister
specified by R2 are exchanqed and loaded into bits 16:31 of the
register specified by R1. Bits 0:15 of the register specified by
R1 are unchanged. The register specified by R2 is unchanged.

Condition Code

Unchanged

Programming Note

R1 and R2 may specify the same register.
bytes in bits 16:31 of the register
exchanged.

Example: EXBR

Assembler Notation

LI
LI
EXBR

REG7, X'5A6B3C4D'
REG3, Y'98761234'
REG7,REG3

Result of EXBR Instruction

(REG7) = 5A6B34i2
(REG3) = 98761234
Condition Code Unchanged

3-18

Machine Code

F870 5A6B 3C4D
F8 30 9876 1234
9473

In this case,
specified by

the
R2

Comments

(REG?) = 5A6B3C4D
(REG3) = 98761234

two
are

29-693 ROO 1/79

3.5.12 Store CST)

Assembler Not3tion

ST
ST

R1,D2(X2)
R1,A2(FX2,SX2)

Opera ti on

Op-Code

50
50

Fermat

BX1,RX2
RX3

The 32-bit contents of the register specified by R1 replace the
contents of the fullword memory location specified by the
effective addr.es~ of the second operand.

Condition Code

Unchanged

Programming Note

The second operand location ~ust be on a fullword boundary.

29-693 BOO 1/79 3-19

3.5.13 Store Halfword (STH)

Assembler Notation

STH
STH

R1,D2(X2)
R1,A2(FX2,SX2)

Opera t.ion

Or-Code

40
40

RX1,RX2
RX3

Bits 16:31 of th~ register specified by R1 replace
of the halfword memory location specified by
address of the sPcond operand.

Condition Code

Un cha n qed

Progr.amrni.ng Note

the contents
the effective

The second operan1 location must b~ on a halfword boundary.

3-20 29- 69 3 ROO 1 /79

3.5.14 Store Multiple (ST~)

Assembler Notation

STM
STM

P1,D2CX2)
R1,A2CFX2,SX2)

Opera ti on

Op-Coie

ro
DO

?ormat

RX1,RX2
HX3

The f ullwcrd contents of reqisters, starting with the register
specified by R1, replace the contents of successive fullword
memory locations, starting with the location specif led by the
effective address of the second oper~nd. The process stops when
register 15 has been stored.

Condition Code

Unchanged

Programming \bte

The second operand location must be on a fullword boundary.

29-69 3 POO 1/79 3-21

3.5.15 Store Byte

Store Byte (STB)
Store Byte Register (STBR)

Assembler Notation

STB
STB
STBR

R1,D2(X2)
R 1, A 2 (FX 2, S X 2)
R 1, R2

Opera ti on

Op-Code

02
D2
92

Format

RX1,RX2
RX3
RR

The least significant eight bits (bits 24:31) of the register
specified by R1 are stored in the byte second operand loc~tion.

Condition Code

Unchanged

Programming Note

In the Store Byte Reqister instruction, the 8-bit quantity
stored in bits ~4:31 of the register specified by R2. Bits
of the reqister are unchanged.

Example: STBR

Assembler Notation

LI REG4, Y' 13577531'
LI REG3, Y'24688642'

•

STBR REG4,REG3

Machine Code

F840 1357 7531
F830 2468 8642

9243

Result of STBR Instruction

CREG4) = 13577531
CREG3) = 24688631
Condition Code Unchanged

Comments

(REG4) = 13577531
(REG3) = 24688642

is
0:23

3-22 29-693 ROO 1/79

3.5.16 Compare

Compare Logical (CL)
Compare Logical Register (CLR)
Compare Logical Immediate (CLI)

Assembler Notation

CL
CL
CLR
CL!

R1,D2(X2)
R1,A2(FX2,SX2)
R1,R2
R1,I2{X2)

Opera ti on

Op-Code

55
55
05
FS

Format

RX1,RX2
RX3
RR
RI2

The first operand, the contents of the register specified by R1,
is compared lcgically to the second operand. The result is
indicated by the condition code setting. Neither operand is
changed.

Condition Code

c v G L
0 x 0 c
1 x 0 1 , x , c
0 x 0 1
0 x , 0

Programming Notes

First operand equal to sec~nd
First operand less than se=ond
First operand less than se=ond
First operand greater than second
First operand greater than second

In the RX formats, the second operand must be located on a
fullword boundary.

The state of the V flag is undefined.

If the second o~erand is zero, the C flag cannot set.

It is meaningful to check the following condition code mask (M1)
after a logical comparison:

Mask True IF a 1 se *

3 False
3 True
8 False

8 True

*Refer to Cha~ter 4
instructions.

29-693 ROO 1/79

First
First
First
second
First

for

Inference

operand equal to second
operand not equal to secon1
operand greater than or equal to

operand less than second

True/ False concept in branch

J-23

3.5.17 Compare Logical Halfword

Compare LoQical Halfword (CLH)
Compare Logical Halfword Immediate (CLHI)

Assembler Notation

CLH
CLH
CLHI

R1,D2(X2)
R1,A2(FX2,SX2)
R1,I2(X2)

Operation

Op-Code

45
45
cs

Format

RX1,RX2
RX3
RI1

The halfword second operand is expanded to a fullword by
propagating the most significant bit through bits 0:15. The
first operand, the contents of the register specified by R1, is
compared to this fullword. The result is indicated by the
condition code setting. Neither operand is chan1ed.

Condition Code

c v G 1
0 x 0 c First operand equal to second
1 x 0 1 First operand less than second
1 x 1 c First operand less than se:: ond
0 x 0 1 First operand greater than second
0 x 1 0 First operand greater than second

Programming Notes

In the RX formats, the second operand must be locatei on ~

halfword boundary.

In the RI1 format, the 16-bit 12 field is extended to a fullwor1
by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the
f ullwor1 second operand.

The state of the V flag is undefined.

If the second operand is zero, the C flag cannot set.

3-24 29-693 ROO 1/79

It is meaningful to check the following condition code mask (M1)
after a lo9ical comparison:

Mask True/False*

3 False
3 True
8 False

8 True

*Refer to Cha~ter 4
instructions.

2 9-69 3 ROQ 1 /79

Inference

First operand equal to second
First operand not equal to second
First operand greater than or
equal to second
First operand less than second

for True/False concept in branch

3- 25

3.5.18 Compare Logical Byte (CLB)

Assembler Notation

CLB
CLB

R1,D2(X2)
R1,A2(FX~,SX2)

Operation

Op-Code

04
D4

Format

RX1,RX2
RX3

The byte quantity, contained in bits 24:31 of the register
specified by R1, is comp~red with the 8-bit second operand. The
result is indicated by the condition code setting. Neither
operand is changed.

Condition Code

c v G I
0 x 0 0 , x 0 1
0 x 1 c

Programming Notes

First operand equal to second
First operand less than·second
First operand greater than second

Both operands are treated as unsigned quantities.

If the second operand is zero, the C flaq cannot set.

It is meaningful to check the following condition code mask (M1)
after a logical comparison:

Mask True/False*

2 False

2 True

3 False
3 True
8 False

8 True

*Fefer to Ch a pt er
instructions.

3-26

4

Inference

First operand not greater than
second
First operand greater than second
operand
First operand equal to second
First operand not equal to sec0ni
First operand greater than or
equa 1 to second
First operand less than second

for True/False conc?.pt in branch

29-693 ROO 1/79

3.5.19 AND

A ND (N)
AND Register (NR)
AND Immediate (NI)

Assembler Notation

N
N
NR
NI

R1,D2(X2)
H1,A2(FX2,SX2)
R1,R2
R1,I2(X2)

Operation

Op-Code

54
54
04
F4

Format

RX1,RX2
RX3
RR
RI2

The logical product of the 32-bit second operand and the contents
of the reQister specified by R1 replace the contents of the
register specified by R1. The 32-bit logical product is formed
on a bit-by-bit basis.

Condition Code

c v G L
0 0 0 0
0 0 0 1
0 0 1 0

Proqramming Notes

Result is zero
Result is not zero
Result is not zero

In the RX formats, the second operand must be locatej on a
fullword boundary.

When operating en fixed-point data, the condition code indicates
zero (no flags), negative CL flag), or positive CG flag) result.

29-693 ROO 1/79 J-27

3.5.20 AND Halfword

AND Halfword (NH)
AND Halfword Immediate CNHI)

Assembler Notation

NH
NH
NHI

R1,D2(X2)
R1,A2(FX2,SX2)
R1,I2(X2)

Operation

Op-Code

44
44
C4

Format

RX1,RX2
RX3
RI1

The halfword second operand is expanded to a fullword by
propagating the most significant bit through bits 0:15. The
logical product of this 32-bit quantity and the contents of the
register specified by R1 replace the contents of the register
specified by R1. The 32-bit logical product is forme1 on ~

bit-by-bit basis.

Condition Code

c v G l
0 0 0 0
0 0 0 1
0 0 1 0

Programming Notes

Result is zero
Result is not zero
Result is not zero

In the RX formats, the second operand must be located on 3

halfword boundary.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents of
the index reqister specified by X2 are then added to form the
fullword second operand.

When operating en fixed-point data, the condition code indicates
zero (no flags), negative CL flag), or positive CG flag) result.

3-28 29-693 ROO 1/79

3.5.21 OR

OR (0)
OR Register (OR)
OR Immediate (QI)

Assembler Notation

0
0
OR
OI

R1,D2(X2)
R1,A2(FX2,SX2)
R1,R2
R1,I2(X2)

Operation

Op-Code

56
56
06
F6

Format

RX1,RX2
RX3
RR
RI2

The logical sum of the 32-bit second operand and the contents of
the register specified by R1 replace the contents of the register
specified by R1. The 32-bit logical sum is formed on a
bit-by-bit basis.

Condition Code

c v G l
0 0 0 c
0 0 0 1
0 0 1 c

Programming Notes

Result is zero
Result is not zero
Result is not zero

In the RX formats, the second operand must be locate1 on a
fullwcrd boundary.

When operating on fixed-point data, the condition code indicates
zero (no flags), negative CL flag), or positive (G flag) result.

29-693 ROO 1/79 3-29

3.5.22 OR Halfword

OR Halfword (OH)
OB Halfword Immediate COHI)

Assembler Notation

OH
OH
OHI

R1,D2(X2)
R1,A2CFX2,SX2)
R1,I2(X2)

Operation

Op-Code

46
46
C6

Format

RX1,RX2
RX3
RI1

The halfword second operand is expanded to a fullword by
propaQating the most significant bit through bits 0:15. The
logical sum of this 32-bit quantity and the contents of the
register specified by R1 replace the contents of the register
specified by R1. The 32-bit logical sum is formed on a
bit-by-bit basis.

Condition Code

c v G L
0 0 0 0
0 0 0 1
0 0 1 0

Programming Notes

Result is zero
Result is not zero
Result is not zero

In the RX formats, the second operand must be located on a
halfword boundary.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propaqating the sign bit through bits 0:15. The contents of

by X2 are then added to form the
fullword second operand.

when operating on fixed-point data, the condition code indic1tes
zero (no flags), negative CL flag), or positive (G flag) result.

3-30 29-693 ROO 1/79

3.5.23 Exclusive OR

Exclusive OR (X)
Exclusive OR Register (XR)
Exclusive OR Immediate (XI)

Assembler Notation

x
x
XR
XI

R1,D2(X2)
R1,A2(FX2,SX2)
R1,R2
R1,I2(X2)

Operation

Op-Code

57
57
07
F7

Format

RX1,RX2
RX3
RR
RI2

The logical difference of the 32-bit second operand and the
contents of the register specified by R1 replace the content5 of
the register specified by R1. The 32-bit logical difference is
formed on a bit-by-bit basis.

Condition Code

c v ,,
L \.:J

0 0 0 c
0 0 0 1
0 0 1 c

Programming Notes

Result is zero
Result is not zero
Result is not zero

In the RX formats, the second operand must be locate1 on a
fullword boundary.

When operating on fixed-point data, the condition code indic~tes

zero (no flaqs), negative (L flag), or positive (G flag) result.

29-693 ROO 1/79 3- 31

3.5.24 Exclusive OR Halfword

Exclusive OR Halfword CXH)
Exclusive OR Halfword Immediate CXHI)

Assembler Notation

XH
XH
XHI

R1,D2(X2)
R1,A2(FX2,SX2)
R1,I2(X2)

Operation

Op-Code

47
47
C7

Format

RX1,RX2
RX3
RI1

The halfword second operand is expanded to a fullword by
propagating the most significant bit through bits 0:15. The
logical difference of this 32-bit quantity and the contents of
the register specified by R1 replace the contents of the register
specified by R1. The 32-bit logical difference is formed on a
bit-by-bit basis.

Condition Code

c v G I
0 0 0 0
0 0 0 1
0 0 1 c

Programming Notes

Result is zero
Result is not zero
Result is not zero

In the RX formats, the second operand must ba locatej on a
halfword boundary.

In the RI1 format, the 16-bit I2 field is extended to a full~or1

by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then add~d to form the
fullword second operand.

When operating en fixed-point data, the condition code indicates
zero (no flags), negative (L flag), or positive (G flag) result.

3-32 29-693 ROO 1/7J

3.5.25 Test Immediate CTI)

Assembler Notation

TI R1,I2CX2)

Operation

Each bit of the second
corresponding bit in
operand is changed.

Condition Code

c v G l

Op-Code

F3

operand is
the register

Format

RI 2

logically
specified

0 0
0 0
0 0

0
0
1

c ,
0

Result is zero
Result is not zero
Result is not zero

Programming Notes

A~Ded with the
by R1. Neith~r

When operating en fixed-point data, the condition code indicate3
zero (no flags), negative (L flag), or positive (G flaq) result.

This instruction works the same as the AND Immediate instruction
(NI) except that the first opArand is not changej.

Example: TI

This example tests if bit 16 of register 9 is set.

(REG9) = 7EFBC230

Assembler Notation

TI
?. NZ

REG9, Y'OCOOBOOO'
LAB SL

Result of TI Instruction

(REG9) Unchanged
Condition Code = 0010 (G=1)

Comments

Test Bit 16
Branch if bit is set

The conditional branch is taken.

29-693 ROO 1/79 3-33

3.5.26 Test Halfword Immediate (THI)

Assembler Notation Op-Code Format

THI R1,!2(X2) C3 RI1

Operation

The halfword second operand is expanded to a fullword by
propagating the most significant bit through bits 0:15. Each bit
in this quantity is logically ANDed with the corresponding bit
contained in the register specified by R1. Neither operand is
changed.

Condition Code

c v G l
0 0 0 0
0 0 0 1
0 0 1 0

Programming Notes

Result is zero
Result is not zero
Result is not zero

When operating on fixed-point data, the condition code indicates
zero (no flags), negative CL flag), or positive (G flag) result.

In the RI1 format, the 16-bit I2 field is extended to a full~ord

by propagating the sign bit through bits 0:15. The contents of
the index register specified by X2 are then added to form the
fullword second operand.

This instruction works the same as the AND Halfword Immediate
instruction {NH!) except that the first operand is not chan1ed.

3-34 2g-693 ROO 1/79

Example: THI

This example tests if any of bits 0:16 of reqister 9 is set.

(REG9) = 80800000

Assembler Notation

THI
BNZ

REG9,X'8000'
L~BEL

Result of THI Instruction

(REG9) Unchanqed

Comments

Test bits 0:16
Branch if any set

Condition Code = 0001 (L=1)
The conditional branch is taken.

?.9-693 ROO 1/79 3- 35

3.5.27 Shift Left

Shift Left Logical (SLL)
Shift Left Logical Short (SLLS)

Assembler Notation

SLL
S LLS

R1,I2(X2)
R1,N

Operation

Op-Code

ED
1 1

Format

RI1
SF

contents of the register specified by R1,
number of places specified by the second

out of position 0 are shifted through the
con1ition code and then lost. The last bit

The first operand, the
is shifted left the
operand. Bits shifted
carry flag of the
shifted remains in
position 31.

the carry flag. Zeros are shifted into

Condition Code

c v G l
x 0 0 0
x 0 0 1
x 0 1 0
1 0 x x

Programming Notes

Result is zero
Result is not zero
Result is not zero
Carry

In the RI1 format, the shift count is specifie1 by the least
significant five bits of the second operand. The maximum shift
count is 31.

In the SF the maximum

The state of the C flag indicates the state of the last bit
shifted out of tosition o.

If the second operand specifies a shift of zero places, the
condition code is set in accordance with the v~lue contained in
the register. The C flag is zero in this case.

When the register specified by R1 contains fixed-point data, the
L flag set indicates a negative result; the G flag set indicates
a positive result.

3-36 29-693 ROO 1/79

3.5.28 Shift Right

Shift Right LoQical (SRL)
Shift Right Logical Short (SRLS)

Assembler Notation

SRL
SRLS

R1,I2CX2)
R1,N

Operation

Op-Code

EC
10

Format

RI1
SF

The first operand, the contents of the register specified by R1,
is shifted right the number of places specified by the second
operand. Bits Ehifted out of position 31 are shifted through the
carry flaQ of the condition code and then lost. The l~st bit
shifted remains in the carry flag. Zeros are shifted into
position o.

Condition Code

c v G 1
x 0 0 c
x 0 0 1
x 0 1 0
1 0 x x

ProQramming Notes

Result is zero
Result is not zero
Result is not zero
Carry

In the RI1 format, the shift count is specifie1 by the least
significant five bits of the second operand. fhe maximum shift
count is 31.

In the SF format, the maximum shift count is 15.

The state of the C flag indicates the state of the last bit
shifted out of ~osition 31.

When the register specified by R1 contains fixed-point data, the
L flag set indicates a negative result; the G flag set indicates
a positive result.

If the second o~erand specifies a shift of zero places, the
condition code is set in accordance with the value cont~ined in
the register. The C fla1 is zero in this case.

29-693 ROO 1/79 3- 37

3.5.29 Shift Left Halfword

Shift Left Halfword Logical (SLHL)
Shift Left Halfword Logical Short (SLHLS)

Assembler Notation

SLHL
SLHLS

R1,I2(X2)
R1,N

Opera ti on

Op-Code

CD
91

Format

RI1
SF

Bits 16:31 of the register specified by R1 are shifted left the
number of places specified by the second operand. Bits shifted
out of position 16 are shifted through the carry flag an1 lost.
The last bit shifted remains in the carry flag. Zeros are
shifted into position 31. Bits 0:15 of the first operand remain
unchanged.

Condition Code

c v G L
x 0 0 0
x 0 0 1
x 0 1 0
1 0 x x

Programming Notes

Result is zero
Result is not zero
Result is not zero
Carry

The condition code setting is based on the halfw~ri (bits 16:31)
result.

In the RI1 format, the shift count is specifie1 by the least
significant four bits of the second operand. rhe maximum shift
count is 15.

In the SF format, the maximum shift count is 15.

The state of the C flag indicates the state of the last bit
shifted out of ~osition 1s.

When the register specified by R1 contains fixed-point data, the
L flag set indicates a negative result; the G flag set indicates
a positive result.

If the second operand specifies a shift of z~ro plac~s, the
condition code is set in accordance with the v~lue contained in
bits 16:31 of the register. The C flag is zero in this case.

3-38 29-693 ROO 1/79

3.5.30 Shift Riqht Halfword

Shift Right Halfword Logical (SRHL)
Shift Right Halfword Logical Short (SRHLS)

Assembler Notation Op-Code Format

SRHL
SRHLS

R1,I2CX2)
R1,N

Operation

cc
90

RI1
SF

Bits 16:31 of the register specified by R1 are shifted right the
number of places specified by the second operand. Bits shifted
out of position 31 are shifted through the carry flaq and lost.
The last bit shifted remains in the carry flag. Zeros are
shifted into position 16. 3its 0:15 of the first operand remain
unchanged.

Condition Code

c v G I
x 0 0 0
x 0 0 1
x 0 1 0
1 0 x ~

Programming Notes

Result is zero
Pesult is not zero
Result is not zero
Carry

The condition cede setting is based on the halfw~rd (bits 16:31)
result.

In the RI1 format, the shift count is specifie1 by the least
significant four bits of the second operand. rhe maximum shift
count is 15.

In the SF format, the maximum shift count is 15.

The state of the C flag indicates the state of the l~st bit
shifted out of ~osition 31.

When the register specified by R1 contains fixed-point data, the
L flag set indicates a negative result; the G flag set indic1tes
a positive result.

If the second ocerand specifies a shift
condition code is set in accordance
contained in bits 16:31 of the register.
this case.

29-693 ROO 1/79

of zero places, the
with the halfword v~lue

The C flag is zero in

3-39

3.5.31 Rotate Left Logical CRLL)

Assembler Notation Op-Code Format

RLL R1,I2(X2) EB RI1

Operation

The 32-bit first operand, contained in the register specified by
R1, is shifted left, end around, the number of positions
specified by the second operand. Bits shifted out of position 0
are shifted into position 31.

Condition Code

c v G l
0 0 0 0
0 0 0 1
0 0 1 0

Programming Notes

Result is zero
Result is not zero
Result is not zero

The shift count is specified by the least significant five bits
of the second o~erand. The maximum shift count is 31.

When the register specified by R1 contains fixed-point data, th~

L flag set indicates a negative result; the G flag set indicates
a positive result.

If the second operand specifies a shift of zero places, the
condition code is set in accordance with the value contained in
the register specified by R1.

3-40 29-693 ROO 1/79

Example: RLL

1 • Assembler Notation

LI REG9,Y'56789ABC'
RLL REG9,X'0004'

Result of RLL Instruction

(REG9) = 6789ABC5

Machine Code Comments

F890 56789ABC (REG9)=56789ABC
EB90 0004

Condition Code = 0010 (G:1)

2. Assembler Notation Machine Code Comments

LI REG9,l'88880000'
RLL REG9,X'03'

F890 8888 0000
EB90 0003

(REG9)=88880000

Result of RLL Instruction

(REG9) = 44400004
Condition Code = 0010 (G=1)

29-693 ROO 1/79 3-41

3.5.32 Rotate Eiqht Loqical (RRL)

Assembler Notation Op-Code Format

RRL R1,I2CX2) EA RI1

Operation

The 32-bit first operand, contained in the register specified by
R1, is shifted right, end around, the number of positions
specified by the second operand. Bits shifted out of position 31
are shifted intc position o.

Condition Code

c v G 1
0 0 0 0
0 0 0 1
0 0 1 0

Programming Notes

Result is zero
Result is not zero
Result is not zero

The shift count is specified by the least significant five bits
of the second operand. The maximum shift count is 31.

When the register specified by R1 contains fixed-point data, the
L flag set indicates a negative result; the G flag set indicates
a positive result.

If the second o~erand specifies a shift of zaro places, the
condition code is set in accordance with the v1lue contained in
the register specified by R1.

3-42 29-693 ROO 1/79

Example: RRL

1. Assembler Notation

LI REG4,Y'12345678'
RRL REG4,X'04'

Result of RRL Instruction

CREG4) = 81234567

Machine Code

F840 1234 5678
EA40 0004

Condition Code = 0001 (L=1)

2. Asse~bler Notation

LI REGU,Y'00001111'
RRL REG4,X'01'

Result of RRL O~eration

Machine Code

F840 0000 1111
EA40 0001

CREG4) = '800000888'
Condition Code = 0001 (L=1)

29-693 ROO 1/79

C".)mments

(RF.G4) = 12345678

Comments

(REG4) = 00001111

3-43

3.5.33 Test and Set (TS)

Assembler Notation Op-Code Format

TS
TS

D2(X2)
A2CFX2,SX2)

EO
EO

RX1,RX2
RX3

Operation

The halfword operand is read from memory and, on the same cycle,
written back with the most significant bit set. The other bits
in the halfword are unchanged. On the read sycle, the most
siqnificant bit of the operand is tested. The condition code
reflects the state of this bit at the time of the memory read.

Condition Code

c v
x x
x x

G
x
x

1
c
1

Most significant bit is zero
Most significant bit is set

Programming Notes

The second operand must be located on a halfword boundary.

The TS instruction provides a mechanism for software
synchronization and can be used in a single-processor environment
as follows: Two or more user tasks runnin1 under an operating
system share a halfword. This halfword is located in a memory
area referred to as r1sk Common. Each task can access the
halfword using the TS instruction. The synchronization seque~ce

may be as follows:

TASK 1

TASK 2

Sets the most significant bit usin~ the TS instruction.

Senses the most significant bit using the rs
instruction, sees that it is set, performs the necess~ry
software synchronization, and then zeros the nost
significant bit of the halfword.

The TS instruction can be used in a multi-processor system as
follows: Two or more processors share a halfwori. This half~or1
is located in a memory ~rea referred to as Shared Memory. Each
processor can access the halfword using the T~ instruction. The
synchronization sequence can be as explained for user tasks ~ith
the following slight difference. Whereas rASK 1 and TASK 2
cannot access the halfword at the same (real) time, two
processors can. The access is granted accor1ing to the relative
priority 0f the two processors.

The hardw~re ensures that no other accesses to the hdlfw~rd are
made during the execution of the TS instruction.

3-44 29-693 ROO 1/79

3.5.34 Test Bit CTBT)

Assembler Notation

TBT
TBT

R1,D2(X2)
R1,A2(FX2,SX2)

Operation

Op-Code

74
74

Format

RX1,RX2
RX3

The second operand address points to a bit array starting on a
byte boundary. The value contained in the reqister specified by
R1 is the bit displacement into the array. Bits in the array are
counted from left to right starting with bit o. The argument bit
is located and tested. The test does not change the bit.

Condition Code

c v G L
0 0 0 c
0 0 1 0

Programming Note

Tested bit is zero
Tested bit is one

For software compatibility with other processors, the bit array
should start on a halfword boundary.

Example: TBT

Assembler Notation

LIS
T BT

REG8,3
R EG8, LAB EL

Result of TBT Instruction

Machine Code

2483
7480 OBC4

Memory Location X'RC4' unchanged
(REG8) unchanged

Comments

(REGS) = 3
LABEL = h;3.lfword
in memory at location
X'OBC4'. It contains
X'B34A'.

Condition Code = 0010 (G=1) ••• Rit 3 of location X'BC4' is set.

29-693 ROO 1/79 3-45

3.5.35 Set Bit (SBT)

Assembler Notation

SBT
SBT

R1,D2(X2)
R1,A2(FX2,SX2)

Operation

Op-Code

75
75

Format

RX1,RX2
RX3

The second operand address points to a bit array startin1 on a
byte boundary. The value contained in the register specified by
R1 is the bit displacement into the array. Bits in the array are
counted from left to riqht starting with bit o. The argument bit
is located and set to one.

Condition Code

c v G l
0 0 0
0 0 1

c
0

Previous state of bit was zero
Previous state of bit was one

Programm inq Note

For software compatibility with other processors, the bit array
should start on a halfword boundary.

Example: SBT

Assembler Notation

LIS
SBT

REG 5, 8
REGS, LABEL

Machine Code

2458
7550 1520

Result of SBT Instruction

Contents of LABEL = 2184
(REGS) unchanged
Condition Code = 0000 (G=O)

3-46

Comments

(REGS) = 8
LABEL Located at
X' 1520'. It contains
X'2134'.

29-693 ROO 1/79

3.5.36 Reset Bit (RBT)

Assembler Notation

RBT
RBT

R1,D2(X2)
R1,A2(FX2,SX2)

Opera ti on

Op-Code

76
76

Format

RX1,RX2
RX3

The second operand address points to a bit array starting on a
byte boundary. The value contained in the register specified by
R1 is the bit displacement into the array. Bits in the array are
counted from left to right starting with bit zero. The argument
bit is located and forced to zero (reset).

Condition Code

c v G I
0 0 0 0
0 0 1 0

ProqramminQ Note

Previous state of bit was zero
Previous state of bit was one

For software compatibility with other processors, the bit array
should start on a halfword boundary.

Example: RBT

Assembler Notation

LIS
R BT

R EG2, 3
REG2,LABEL

Result of RBT Instruction

Contents of LABEL = 2143
(REG2) unchanQed

Machine Code

2423
7620 1A42

Condition Code = 0010 (G=1)

29-693 ROO 1/79

Comments

(REG2) = 3
LABEL located
at X'1A42'
contains X'3143'.

.3- 47

3.5.37 Complement Bit (CBT)

Assembler Notation

CBT
CBT

R1,D2CX2)
R1,A2CFX~,SX2)

Opera ti on

Op-Code

77
77

Format

RX1,RX2
RX3

The second operand address points to a bit a~ray starting on a
byte boundary. The value contained in the register specified by
R1 is the bit displacement into the array. Bits in the array are
counted from left to right starting with bit o. The argument bit
is located and complemented.

Condition Code

c v G L
0 0
0 0

0
1

0
c

Previous state of bit was zero
Previous state of bit was one

Proqramming Note

For software compatibility with other processors, the bit array
should start on a halfwori boundary.

Example: CBT

Assembler Notation

LIS
CBT

R EG9, 3
REG9,LABEL

Result of CBT Instruction

Contents of LABEL = 3813
C REG9) unchanged

Machine Code

2493
7790 OC4A

Condition Code = 0000 CG=O)

3-48

Comm en ts

(REG 9) = 3
LABEL located ~t
X'C4A'. It contaih~:;

X'2813'.

29-693 ROO 1/79

3.5.38 Cyclic Redundancy Check

Cyclic Redundancy Check Modulo 12 (CRC12)
Cyclic Redundancy Check Modulo 16 CCRC16)

Assembler Notation

CRC12
CRC12
CRC16
CRC16

Operation

R1,D2(X2)
R1,A2(FX2,SX2)
R1,D2(X2)
R1,A2(FX2,SX2)

Op-Code

SE
SE
SF
SF

Format

RX1,RX2
RX3
RX1,RX2
RX3

These instructions are used to generate either a 12-bit or a
16-bit Cyclic Redundancy Check (CRC) residu~l halfword. The
re9ister specified by R1 contains, in bits 24:31, the data
character to be included in the CRC residual. The second operand
is the accumulated Cold) CRC residual. The polynomial used for
the 12-bit CRC generation is:

X 12 + X II + X 3 + X 2 + X + 1

The polynomial used for the 16-bit CRC generation is:

The halfword second operand is replaced by the generated CRC
residual.

Condition Code

Unchanqed

Programming Notes

The register specified by R1 remains unchanged.

The second operand must be located on a halfword boundary.

Figure 3-5 illustrates a flow chart for CRC generation.

29-693 ROO 1/79 3-49

589

START

(TEMP) +--(R1 26:31) Q) OLD CRC
(COUNT)+--6

(TEMP)
SHIFT RIGHT

BY 1
(TEMP)

YES

STEP

1
2

3

(TEMP) 4 - (TEMP)@ X'OF01' 4

(COUNT)· (COUNT) - 1 5

NO

SECOND OPERAND ~--- '(TEMP) 6

(_~N-D)

CRC12 ALGORITHM SHOWN

FOR CRC 16 ALGORITHM, USE: R1 24:31 INSTEAD OF R126:31 IN STEP 1

8 INSTEAD OF 6 IN STEP 2

X'A001' INSTEAD OF X'OF01' IN STEP 4

Figure 3-5 Flow Chart for CRC Generation

3-50 29-693 ROO 1/79

3.5.39 Translate CTLATE)

Assembler Notation Op-Coie Format

TLATE
TLATE

Opera ti on

The least
specified
fullword
contains
up of 256
specified

R1,D2CX2)
R1,A2(FX2,SX2)

E7
E7

RX1,RX2
RX3

significant eight bits (bits 24:31) ~f the register
by R1 contain the character to be translated. The

location specified by the second ~peran1 address
the address of a translation table. rhe table is ~ade
halfwcrds. The character contained in the register
by R1 is used as an index into the table.

If bit O of the table entry corresponding to the index character
is one, bits 8: 15 of the table entry replace the index character,
and the next sequential instruction is executed.

If bit 0 of the table entry is zero, bits 1:15 of the table entry
contain the address, divided by two, of a special chara=ter
handling routine. In this case, no translation takes pla=e. The
address contained in bits 1:15 is shifted left by one (multiplied
by two). This address replaces the current location counter,
thereby effecting an unconditional branch t~ the special
character handling routine. Translation of character string data
may also be performed using the MVTO instruction. See ~hapter 7.

Condition Code

Unchanged

Programming Notes

The second operand address must be located on a full~~r1

boundary.

0

1
TRANSLATED
CHARACTER

o}ccHAR.HANDLING ROUTINE ADDRESS)/2

Example: TLATE

This example illustrates the use of the TLAT2 instruction. The
translation table must either be initializei or asse~blei to
contain up to a total of 256 halfworj entries. In this example,
the table contains 2 entries:

29-693 ROO 1/79 3- 51

591

Label Assembler Notation Comments

T ABADR

LHI
STH
LA
SRLS
STH
•
•
•
DC

REGS, X'8052'
REGS, TABLE
REG7,TRANLAB
REG7,1
REG7,TABLE+A

A(TABLE)

LOAD TABLE ENTRY INTO REGS
PUT ENTRY INTO rABLE
LOAD ANOTHER TABLE ENTRY
DIVIDE BY 2
PUT ENTRY INTO rABLE

Alternatively, this table may be assembled with the pr~per

constant values. The T type constant may be used to ~ssemble
subroutine addresses in the proper format. For example:

ALIGN 2
TABLE EQU *

DO 256
DC H'O'
ORG T ABLE+4
DC T(TRANLAB)
ORG TABLE+512

Since a program is normally assembled as a relocatable proqram,
the address of TRANLAB is not known, but for illustrative
purposes assume the address of TRANLAB is X'864'.

T ABLE+O
TABLE+2
TABLE+4
TABLE+6
TABLE+8
TABLE+10
TABLE+12

0

8

0

l
j
I 0

l
~
l 4
I
T

15

l l .
I I
I s l 2

l
.

J_

J_ l
I 3 I 2

--'-

l I
T T

At TABLE+10 is the address of TRANLAB divided by 2 (X'864'/2)

1. Usinq this table, this example translates the character in
register 2.

Label

3-52

Assembler Notation

LIS
TLATE

REG2,2
REG2,TABADR

Comments

(REG2) = 0000 0002

29-693 ROO 1/79

Result of TLATE Instruction

(REG2) = OOOC 0052
Condition Code unchanged

The entry used = data at address of (2 times =ontents
of REG2) + TABLE

= data at address TABLE + 4
= X'8052'

Since the fitst bit of the entry is 1, direct translation is
used and the contents of REG2 are replaced by X'OOOO 0052'.

2. Usinq the tatle, the following example
instruction can be used to branch
handlinq routine:

shows how the TLATE
to a special character

Label

TRAN LAB

Assembler Notation

LIS
T lATE
•

•
•
LR
LE
•
•
•

•
•

REGS,5
REGS,TABADR

R6,R5
R3,0(R6)

Result of TLATE Instructi~n {continued)

(REGS) = 0000 0005
Condition Code Unchanqed

Comments

(REGS) = 0000 0005

THESE INSTRUCTIONS
0 P ER AT E 0 N TH E
SPECIAL CHARACTER •

Control is transferred to the subroutine at address TRANLAB
ex '864' >.
The entry used = data at address of (2 times =ontents

of REGS) + TABLE
= data at address TABLE + A
= X'0432'

Since the first bit of the entry is O, the entry is multiplied
by 2, a transfer occurs to TRANLAB (at address X'864'), and
the processor executes instructions from the new address.

29-693 ROO 1/79 3-53

3.5.40 ADD TO lIST

Add to Top of List (ATL)
Add to Bottom of List (ABL)

Assembler Notation

ATL
ATL
ABL
A BL

R1,D2(X2)
R1,A2(FX2,SX2)
R1,D2(X2)
R1,A2(FX2,SX2)

Operation

Op-Code

64
64
65
65

Format

RX1,RX2
RX3
RX1,RX2
RX3

The reqister specified by R1 contains the fullword element to be
added to the list, which is located in memory ~t the address of
the second operand. The number of slots used tally is compared
with the number of slots in the list. If the number of slots
used equals the number of slots in the list, an overflow
condition exists. The element is not added to the list and the
overflow flag in the condition code is set.

If the number of slots used tally is less than the number of
slots in the list, it is incremented by one, the appropriate
pointer is changed, and the element is added to the list. Refer
to Fioure 3-4.

Condition Code

c v G
0 0 0
0 1 0

3-54

I
c
0

Element added successfully
List overflow

29-693 ROO 1/79

Programming Notes

These instructions manipulate circular lists as 1escribed in the
introduction to this chapter.

The second operand locati~n must be on a fullwori boundary.

The ATL instruction manipulates the current top pointer in the
list. If no overflow occurs, the current top pointer, which
points to the last element added to the top of the list, is
decremented by one. The element is inserted in the slot pointed
to by the new current top pointer. If the current top pointer
was zero on entering this instruction, the current top pointer is
set to the maximum slot number in the list. fhis condition is
referred to as list wrap.

The ABL instruction manipulates the next bottom pointer. If no
overflow occurs, the element is inserted in the slot pointed to
by the next bottom pointer, and the next bottom pointer is
incremented by one. If the incremented next bottom pointer is
greater than the maximum slot number in the list, the next bottom
pointer is set to zero. This condition is referred to as list
wrap.

For the non-overflow situation, pointer halfwords in the list
header are not manipulated until after the element h~s been
successfully added. This facilitates error recovery in the event
of a memory fault.

See examples in the next section.

29-693 ROO 1/79 3-55

3.5.41 Remove From List

Remove from Top of List (RTL)
Remove from Bottom of List (RBL)

Assembler Notation

RTL
RTL
RBL
RBL

R1,D2CX2)
R1,A2CFX~,SX2)
R1,D2(X2)
R1,A2(FX2,SX2)

Operation

Op-Code

66
66
67
67

Format

RX1,RX2
RX3
RX1,RX2
RX3

The element removed from the list replaces the =ontents of the
re9ister specified by R1. The list is located at the address of
the second operand. If, at the start of the instruction
execution, the number of slots used tally is zero, then the list
is already empty and the instruction terminates with the overflow
fla9 set in the condition code. This condition is referred to as
list underflow; in this case, R1 is undefined. If underflow does
not occur, the appropriate pointer is changed, the element is
extracted and placed in the register specified by R1, and the
number of slots used tally is decremented by one.

Condition Code

c v G L
0 0 0 c
0 0 1 c
0 1 0 0

Programming Notes

List now empty
List is not yet empty
List was already empty

These instructicns manipulate circular lists as iescribed in the
introduction to this chapter.

The second operand location must be on a fullword boundary.

In the case of list underflow, the contents ~f the register
specified by R1 are unchanged.

The RTL instruction manipulates the current top pointer. If no
underflow occurs, the current top pointer points to the element
to be extracted. The element is extracted and placed in the
register specified by R1. The current top pointer is incremented
by one and compared to the maximum slot number. If the current
top pointer is greater than the maximum slot number, the current
top pointer is set to zero. This condition is referred to as
list wrap.

3-56 29-693 ROO 1/79

The RBL instruction manipulates the next bottom pointer. If no
underflow occurs, and the next bottom pointer is zero, it is set
to the maxi•um slot number. (list wrap); otherwise, it is
decremented by one, and the element now pointed to is extracted
and placed in the register specified by R1.

For the non-underflow situation, pointer halfwords in the list
header are not manipulated until after the element has been
successfully removed. The register specified by R1 is not
modified until the header has been updated. This facilitates
error recovery in the event of a memory fault.

Examples: List Instructions (ATL, ABL, RTL, RBL)

The following are examples of the use of the four list processinQ
instructions.

The original list is normally set up as shown in Figure 3-6.

590

LIST 0005 0000 WHERE HALFWORDS AT

0000 0000 LIST MAXIMUM #OF SLOTS

SLOTO UNDEFINED 5 (IN THIS EXAMPLE)

SLOT 1 UNDEFINED LIST+ 2 # OF ENTRIES USED

SLOT 2 UNDEFINED 0

SLOT3 UNDEFINED LIST+ 4 CURRENT TOP OF LIST

SLOT4 UNDEFINED SLOTO

LIST+ 6 NEXT BOTTOM OF LIST

SLOTO

Figure 3-6 List Proc~ssing Instructions

29-693 ROO 1/79 3-57

Assembler Notation

LIS REGO,O

STH REGO,LIST+2

ST REGO,LIST+4

LIS REG1,1

LIS REG2,2

LIS REG3,3

LIS REG4,4

LIS REGS,5

LIS REG6,6

STH REGS, LIST

3-58

Results and Comments

INITIALIZE NUMBER OF ENTRIES
USED TO 0

INITIALIZE POINTERS TO 0

REGISTERS 1 THROUGH 6 CONTAIN

1 THROUGH 6 RESPECTIVELY

TOTAL NUMBER OF ENTRIES = 5

2 9- 6 9 3 R 0 0 1/79

592 REF 1 A TL REG 1 , LIST

R EF2 ATL REG2,LIST

REF3 ATL REG3,LIST

29-693 ROO 1/79

LIST 0005 0001

0004 0000

SLor o UNDEFINED

SLOT 1 UNDEFINED

SLOT 2 UNDEFINED

SLOT 3 UNDEFINED

SLOT 4 0000 0001

Condition Code = 0000
Current Top Pointer = Slot 4
Next Bottom Pointer = Slot 0

LIST 0005 0002

0003 0000

SLOT 0 UNDEFINED

SLOT 1 UNDEFINED

SLOT 2 UNDEFINED

SLOT 3 0000 0002

SLOr 4 0000 0001

(List Wrap)

Conjition Code = 0000
Current Top Pointer = Slot 3
Next Bottom Pointer = Slot 0

LIST 0005 0003

0002 0000

SLOT 0 UNDEFINED

SLOT 1 UNDEFINED

SLOT 2 0000 0003

sLor 3 0000 0002

SLOT 4 0000 0001

Con1ition Code = 0000
Current Top Pointer = Slot 2
Next Bottom Pointer = Slot 0

3-59

594 REF4 ABL REG4,LIST

REFS ABL REG5,LIST

REF6 ABL REG6,LIST

LIST 0005 0004

0002 0001

SLOT 0 0000 0004

SI.OT 1 U~DEFINED

SLOT 2 0000 0003

SLOT 3 0000 0002

SLOT 4 0000 0001

Condition Code = 0000
Current Top Pointer = Slot 2
Next Bottom Pointer = Slot 1

LIST 0005 000.5

0002 0002

SLOT 0 0000 0004

SLOT 1 0000 0005

SLOT 2 0000 0003

SLOT 3 0000 0002

SLOT 4 0000 0001

Condition Code = 0000
Current Top Pointer = Slot 2
Next Bottom Pointer = Slot 2

LIST 0005 0005

0002 0002

SLOT 0 0000 0004

SLOT 1 0000 0005

SI.OT 2 0000 ()QQ]

SI.OT 3 0000 0002

SLOT 4 0000 0001

Condition Code = 0100 (List
Current Top Pointer = Slot 2 overflaw)
Next Bottom Pointer = Slot 2

29-693 ROO 1/79

593 REF?

REF8

RTL REG7,LIST

RBL REGR,LIST

LIST 0005 0004

0003 0002

SLOT 0 0000 0004

SLOT 1 0000 0005

SLOT 2 X 0000 0003

SLOT 3 0000 0002

SLOT 4 0000 0001

CREG7) = 0000 0003
Condition Code = 0010
Current Top Pointer = Slot 3
Next Bottom Pointer = Slot 2

LIST 0005 0003

00 0 3 0001

SLOT 0 0000 0004

SLOT 1 X 0000 0005

SLOT 2 X oaoo 0003

SLOT 3 0000 0002

SLOT 4 0000 0001

CREr,R) = 0000 0005
Condition Code = 0010
Current Top Pointer = Slot 3
Next Bottom Pointer = Slot 1

NOTE

X = Entry removed from list, and is
not accessible through further
manipulation by list instructions.

29-69 3 EO C 1 /79 3-61

595
REF9 RTL REG9,LIST LIST 0005 0002

0004 0001

SLOT 0 0000 0004

SLOT 1 X 0000 0005

SLOT 2 X 0000 0003

SLOT 3 X 0000 0002

SLOT 4 0000 0001

(REGJ) = 0000 0002
Condition Code : 0010
Current Top Pointer = Slot 4
Next Bottom Pointer = Slot 1

REF10 RBL REG10,LIST LIST 0005 0001

3-62

0004 0000

SLOT 0 X 0000 0004

SLO'f 1 X 0000 0005

SLOT 2 X 0000 0003

SLOT 3 X 0000 0002

SLOT 4 0000 0001

(HEG10) = 0000 0004
Condition Code = 0010
Current Top Pointer = 4
Next Bottom Pointer = O

NCTE

X = Entry removed from list, ani is
not accessible through further
manipulation by list instructions.

29-69 3 ROO 1 /79

596 REF11 RTL REG11,LIST LIST 0005 0000

0000 0000

SLOT 0 X 0000 0004

SLOT 1 X 0000 0005

SLOT 2 X 0000 0003

SLOT 3 X 0000 0002

SLOr 4 X 0000 0001

CREG11) = 0000 0001
Condition Code = 0000 (List is now empty)
Current Top Pointer = 0
Next Bottom Pointer = 0

REF12 RTL REG12,LIST LIST 0005 0000

0000 0000

SLOr 0 X 0000 0004

SLOT 1 X 0000 0005

SLOT 2 X 0000 0003

SLOT 3 X 0000 0002

SLOT 4 X 0000 0001

(RE~12) = UNDEFINED
Con1ition Code = 0100 (List was
Current Top Pointer = 0 ~!ready empty)
Next Bottom Pointer = 0

NOTE

X = Entry removed from list, and is not
accessible throuQh further manipulation
by list instructions.

29-693 ROO 1/79 3-63 /3-64

4.1 INTRODUCTION

CHAPTER 4
BRANCHING

In normal operations, the processor executes instructions in
sequential order. The branch instructions allow this sequential
mode of operation to be varied, so that programs can loop,
transfer control to subroutines, or make decisions based on the
results of previous operations.

4.2 OPERATIONS

The sEcond operand of a branch instruction is the address of the
memory location to which control is transferred. The address may
be contained in a register or it may be specified in the
instruction as the second operand address or as a displacement.

4.2.1 Decision Making

The conditional branch instructions permit the program to make
decisions based on some result. In these instructions, the R1
field contains a 4-bit mask, M1, which is tested by ANDing it
with the condition code. The result of the test determines
whether the branch is taken, or the next sequential instruc~ion

is executed.

The following examples show previous condition code, mask
specified in a branch instruction, and the result of the test on
which the branch or no branch decision is made.

Branch Branch
Condition Result (True/ True False

Code Mask(M1) of Test False) Tak.en Taken

0000 0010 0000 (False) No Yes
0001 1010 0000 (False) No Yes
1001 1000 1000 (True) Yes No
0100 0100 0100 (True) Yes N ()
1010 0010 0010 (True) Yes N 'J

0010 0011 0010 (True) Yes No
0 0 1 (J 0000 0000 (False) No Yes

29-69 3 ROO 1 /79 4-1

4.2.2 Subroutine Linkage

The branch and link instructions allow branching
in such a way that a return address is passed to
For these instructions, the address of the
immediately following the branch instruction
register 5pecified by R1.

4.3 BRANCH INSTRUCTION FORMArs

to subroutines
the subroutine.

mem:>ry location
is saved in the

The branch instructions use the Register-to-Register (RR), the
Short Form (SF), and the Register and Indexed Storage CRX)
formats.

4.4 BRANCH INSTRUCTIONS

The instructions described in this section are:

BFC B r:a nch on False Condition
BFCR Branch on False Condition Register
BFBS Pranch on False Condition Backward Short
BFFS Branch on False Condition Forward Short
BTC Branch on True Condition
BTCR Branch on True Condition Register
BTBS Branch on Ttue Condition Backward Short
BTFS Branch on True Condition Forward Short
BAL Branch and link
BALR Branch and link Register
BXLE Branch on Index Low or Equal
BXH Branch on Index High

4-2 29-693 ROO 1/79

4.4.1 Branch on True

Branch on True Condition
Branch on True Condition
Branch on True Condition
Branch on True Condition

Assembler Notation

BTC
BTC
BTCR
BTBS
BTFS

M1,D2CX2)
M1 ,A2(FX2,SX2)
M1,R2
M1,N
M1,N

Opera ti on

{ BTC)
Register
Backward
Forward

Op-Code

42
42
02
20
21

(BTCR)
Short (BTBS)

Short (BT FS)

Format

RX1,RX2
RX3
RR
SF
SF

The condition code of the Pro~ram Status Word (PSW) is tested for
the conditions specified by the mask field, M1. If any
conditions tested are found to be true, a branch is taken to the
second operand location. If none of the conditions tested is
found to be true, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

In the RR format, the branch address is contained in the reqister
specified by R2.

In the SF format, the N field contains the number of halfwords to
be added to or subtracted from the current location counter to
obtain the branch address.

In the RR and RX formats, thP. branch address must be located on
a halfword boundary.

29-693 ROC 1/79 4-3

Example: BTC

Assembler Notation

LH
BTC

4-4

R1,X'100'
3,LOC

Machine Code

4810 0100
4230 ABCO

Comments

Load halfwor1 (X'1234')
located at X'100'. Condi­
tion code is set to CVGL =
0010. Mask is 3, i.e.,
M1=0011. Perform logical
~ND between CVGL and M1,
i.e., 0010 A~D 0011. The
result is 0010, i.e., true;
therefore, a branch is
taken to LOC.

29-693 ROO 1/79

4.4.2 Branch on False

Branch on False Condition CBFC)
Branch on False Condition Register (BFCR)
Branch on False Condi ti on Backward Short CBFBS)
Branch on False Condition Forward Short CBFFS)

Assembler Notation Op-Co:ie Format

BFC M1,D2(X2) 43 RX1,RX2
BFC M1,A2CFX2,SX2) 43 RX3
BFCR l'I 1, R2 03 HR
BFBS M1,N 22 SF
BFFS M1,N 23 SF

Operation

The condition code of the PSW is tested for the conditions
specified in the mask field, M1. If all conditions tAsted are
found to be false, a branch is taken to the second operand
location. If any of the conditions tested is found to be true,
the nExt sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

In the RR format, the branch address is contained in the register
specified by R2.

In the SF format, the N field contains the number of halfwords to
be added to or subtracted from the current location counter to
obtain the br.anch address.

In the RR and RX formats, the branch address must be located on
a halfword boundary.

Example: BFC

Assembler Notation

LCS
BFC

R1,2
9,LOC

29-69 3 ROO 1 /79

~achine Cod~

2512
4390 ABCO

Comments

(R1) = FFFFFFFE. Con1ition
code, CVGL = 0001 mask is
1001. Perform logical AND
between mask and CVGL,
i.e., 1001 A~D 0001. The
result is 0001, i.e., true:
therefore, d bLanch is not
taken in LOC.

4- 5

4.4.3 Branch and Link

Rranch and Link (BAl)
Branch and Link Register CBALR)

Assembler Notation

BAL
BAL
BALR

R1,D2(X2)
R1,A2CFX2,SX2)
R1,R2

Operation

Op-Code

41
41
01

Format

RX1,RX2
RX3
RR

The address of the next sequential instruction is sived in the
register specified by R1, and a branch is taken to the se=ond
operand address.

Condition Code

Unchanged

Programming Notes

The second operand location must be on a halfword boundary.

The branch address is calculated before the register specifiei by
R1 is changed. R1 may specify the same register as X2, FX2, 3X2,
or R2.

Example : BAL

The following example illustrates the use of the BAL instruction.
This instruction causes control to be transferred to a subroutine
called SUEROUT. After completion of the subroutine, the linking
reQister is used to branch back to ~ne next sequen~ial

instruction after the BAL; i.e., the instruction labaled RETURN.

4-6 29-69 3 ROO 1 /79

Label Assembler Notation Comments

BEGIN BAL REG4,SUBROUT TRANSFER TO SUBROUT

MAIN RETURN XR R6,R6

PROG STH R6,LAB+4

SUBROU'I LHL R8,LOC THE RETURN ADDRESS
OF THE SUBROUTINE
IS IN REG 4

SUBROUTINE AHI R8,10

RTN END BR REG4 RETURM TJ

NOTE

The linking reQister (REG4 in the
example) should not be used within the
subroutine.

Result of BAL Instruction

CREG4) = Address of instruction at SUBROUT
Condition Code Unchanged

29-693 ROO 1/79

XR INST.

4-7

597

4.4.4 Branch on Index

Assembler Notation

BXLE
BXLE

Set Up

R1
R1+1
R1+2

R1,D2(X2)
R1,A2(FX2,SX2)

0

Starting
I ncre 11en t
Limit or

Low or Equal CBXLE)

Op-Code Format

C1 RX1,RX2
C1 RX3

31

index value
value

final value

Before execution of this instruction, the register specified by
R1 must contain a starting index value. The register specified
by R1+1 must contain an increment value. The register specified
by R1+2 must contain a comparand (limit or final value). All
values may be signed.

Opera ti on

Execution of this instruction causes the increment value to b~

added to the index value, creating a new index value. The result
is compared logically to the limit or final value. If the new
index value is less than or e~ual to the limit value, a branch is
taken to the second operand location. If the new in1ex value is
greater than the limit value, the next sequential instruction is
executed.

Condition Code

Unchanged

Programming Notes

The incremented index value replaces the contents of the register
specified by R1.

Any three consecutive registers of the same set may be used by
this instruction as specified by R1. These registers may be 6,
7, 8; or 14, 1 5, O; or 1 5, O, 1, etc.

The second operand location must be on a halfword boundary.

The branch address is calculated before incrementing the starting
index value contained in the register specified by R1.

R1 may specify the same register as X2, FX2 or SX2.

4-8 29-693 ROO 1/79

Example: BXLE

Transfer 10 bytes in memory starting at the memory location
labeled BUFO to the memory location labeled BUF1.

Label

AGAIN

LABEL

BUFO
BUF1

Assembler Notation

LIS
LIS
LIS

LB
STB
EXLE

•
DS
DS

REG 3, 0
REG 4, 1
RS,9

REGO,RUFO(R3)
REGO,BUF1CR1)
R3,AGAIN

10
10

Result of BXLE Instruction

Comments

(REG3)=STARTING INDEX VALUE=O
(REG4)=INCREMENT VALUE
CREGS)=FINAL VALUE=9

CREG0)=1 BYTE FROM BUFO
COPY 1 BYTE TO BUF1
IF CREG3)>(REG5),DONE

Code between the instructions labeled AGAIN and LABEL is executed
ten times.

Condition Code Unchanged by BXLE Instruction
(REG3) = OOOOOOOA
CREG4) = 00000001
(REGS) = 00000009

29-69 3 ROO 1/79 4-9

4.4.5 Branch on Index HiQh (BXH)

Assembler Notation

BXH
BXH

8 Set Up

R1
R1+1
R1+2

R1,D2(X2)
R1,A2(FX2,SX2)

0

Startin_g_ index
Increment value
Limit or final

Op-Code

co
co

31

value

value

Format

RX1,RX2
RX3

Before execution of this instruction, the register specified by
R1 must contain a starting index value. The register specified
by R1+1 must contain an increment value. The register specified
by R1+2 must contain a comparand (limit or final value). All
values may be signed.

Opera ti on

Execution of this instruction causes the increment value to be
added to the index value, creating a new index value. The result
is loQically compared to the limit or final value. If the new
index value is greater than the limit value, a branch is taken to
the second operand location. If the new index value is less than
or equal to the limit value, the next sequential instruction is
executed.

Condition Code

Unchanged

Programming Notes

The incremented index value replaces the contents of the register
specified by R1.

Any three consecutive registers of the same set may be used by
this instruction as specified by R1. These registers may b~ 6,
7, 8; 14, 15, O; or 15, O, 1, etc.

The second operand location must be on a halfword boundary.

The branch address is calculated before incrementing the st~rting
index value contained in the register specified by R1.

R1 may specify the ~ame register as X2, FX2 or SX2.

4-10 29- 69 3 ROO 1/79

Example: BXH

The following example shows how to set up a counter (1-9) using
the BXH instruction:

Label

BEGIN

LABEL

Assembler Notation

LIS
LIS
LIS
BXH
LH
•

•
B
LA
ST

REG 1, 1
REG2,1
REG 3, 9
REG1,LABEL
R6,COUNT

BEGIN
R8, RTN
RB, MEM

Result of BXH Instruction

Comment

CREG1)=0000 0001 (INDEX)
CREG2)=0000 0001 (I~CREMENT)
CREG3)=0000 0009 (CJMPARAND)
COMPARE INDEX WITH COMPARAND

BRANCH TO BXH INSTRUCTION
EXIT FROM BXH

Code between the in~tructions labeled BEGIN and LABEL is executed
9 times.

Condition Code Unchanged by BXH instruction
CREG1) = 0000 OOOA
CREG2) = 0000 0001
CREG3) = 0000 0009

29-693 ROO 1/79 4- 11

4.5 EXTENDED BRANCH MNEMONICS

The CAL assembler supports 47 extended branch mnemonics that
generate the branch op-code (true or false conditional) and the
condition code mask required. The programmer must supply the
second operand address (symbolic or absolute). In the case of
Short Format (SF) branch instructions, the second operand br~nch

address must be within 15 halfwords of the current lo~ation
counter. The CAL assembler determines the backward or forward
relationship of the second operand address and qenerates the
appropriate operaticn code.

The instructions described in this section are:

BC Branch on Carry
BCR Branch on Ca i:ry Register
BCS Branch on Carry Short

BNC Branch on No Carry
BNCR Branch on No Carry Reqister
BNCS Branch on No Carry Short

BE Branch on Equal
BER Branch on Equal Register
BES Branch on Equal Short

BNE Branch on Not Equal
BNER Branch on Not Equal Register
BNES Branch on Not F.q ua 1 Short

BL Branch on Low
BLR Branch on Low Reqister
BLS Branch on 10111 Short

BNL Branch on Not Low
BNLR Branch on Not Low Register
BNLS Rranch on Not Low Short

BM Branch on Minus
BM'R Branch on !Hnus Register
RMS Branch on Minus Short

BNM Branch on Not Minus
BNMR Branch on Not Minus Register
BNMS Branch on Not Minus Short

BP Branch on Plus
BPR Branch on Plus Register
BPS Branch on Plus Short

BNP Branch on Not Plus
BNPR Branch on Not Plus Register
BNPS Branch on Not Plus Short

4-12 29-693 ROO 1/79

BO Branch on Overflow
BOR Branch on Overflow ReQister
BOS Branch on Overflow Short

BNO Branch on No Overflow
BNOR Branch on No Overflow Reoister
BNOS Branch on Ho Overf lov Short

BZ Branch on Zero
RZR Branch on Zero Register
BZS Branch on Zeto Short

BNZ Branch on Not Zero
BNZR Branch on Not Zero Register
BNZS Branch on Not Zero Short

B Branch (Unconditional)
BR Branch Register (Uncondi tiona 1)
BS Branch Short (Uncondi tiona 1)

NOP No Operation
NOPR No Operation Register

29-69 3 ROO 1 /79 4-13

4.5.1 Branch on Carry

Branch on Carry (BC)
Branch on Carry Register (BCR)
Branch on Carry Short (BCS)

Assembler Notation

BC
BC
BCR
BCS

D2(X2)
A2(FX2,sx2>
R2
A

Opera ti on

Op-Code+M1

428
42A
028
208(Backward)
218(Forward)

Foraa t

BX1,RX2
RX3
RR
SF

If the Carry (C) flag in the condition code is set, a branch is
taken to the second operand location. If the C flag is zero, the
next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

The branch address sust be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

Exa llP le: BCS

Assembler Notation

SHIFT

4-14

SLLS
BCS

R9,1
SHIFT

Machine Code

1191
2081

Comments

Register 9 is shifted
left until the first
zero bit is shifted
out of position o.

29- 69 3 ROO 1 /79

4.5.2 Branch on No Carry

Branch on No Carry (BNC}
Branch on No Carry Register (BNCR)
Branch on No Carry Short (BNCS)

Assembler Notation

BNC
BNC
BNCR
BNCS

D2CX2)
A2(FX2,SX2)
R2
A

Operation

Op-Code+l11

438
438
038
228 (Backward)
238 (Forward)

Format

RX1,RX2
RX3
RR
SF

If the Carry (C) flag in the condition code is zero, a branch is
taken to the second operand location. If the C flaq is set, the
next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

The branch address ~ust be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

29-69 3 ROO 1 /79 4-15

4.5.3 Branch on Equal

Branch on Equal (BE)
Branch on Equal Register (BER)
Branch on Equal Short (BES)

Assembler Notation

BE
BE
BER
BES

D2(X2)
A2CFX2,SX2)
R2
A

Operation

Op-Code+l11

433
433
033
223 (Backward)
233 (Forward)

Format

RX1,RX2
RX3
RR
SF

If the G flag and the L flag are both zero in the condition code,
a branch is taken to the second operand location. If either flag
is set, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

The branch address must be located on a halfword boundary.

In the RP format, the branch address is contained in the register
specified by R2.

Example: BE

Ass em bl er

CLHI
BE

4-16

R4,X'23'
OP TIN

Machine Code

C540 0023
4330 OAOO

Comments

If R4 contains X'23',
a branch is taken to
location X'AOO'.
Otherwise, the next
sequential instruction
is executed.

29-693 ROO 1/79

4.5.4 Branch on Not Equal

Branch on Not Equal (BNE)
Branch on Not Equal Register (BNER)
Branch on Not Equal Short (BNES)

Assembler Notation

BNE
BNE
BNER
BNES

D2(X2)
A2CFX2,SX2)
R2
A

Operation

Op-Code+M1

423
423
023
203 (Backward)
213 (Forward)

Format

RX1,RX2
RX3
RR
SF

If the G flag or the L flaq is set in the condition code, a
branch is taken to the second operand location. If both flags
are zero, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

The branch address ~ust be located on a halfword boundary.

In the RR format, the branch address is contained in the reqister
specified by R2.

29-69 3 ROO 1 /79 !4- 17

4.5.5 Branch on Low

Branch on Low (BL)
Branch on Low Register CBLR)
Branch on Low Short CBLS)

Assembler Notation

BL
BL
BLR
BLS

D2(X2)
A2(FX2,SX2)
R2
A

Operation

Op-Code+M1

428
428
028
208 (Backward)
218 (Forward)

Format

RX1,RX2
RX3
RR
SF

If the Carry (C) flag in the condition code is set, a branch is
taken to the second operand address. If the C flag is zero, the
next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the reqister
specified by R2.

F.xa mp le: BL

Assembler Notation

CLHI
BL

4-18

R1,X'FF'
RESTART

Machine Code

C510 OOFF
4280 OAOO

Comments

CR1) is compared to
X'OOFF'. If (R1) is less
than X'OOFF', a branch
is taken to memory
location X'OAOO'.

29-693 ROO 1/79

4.5.6 Branch on Not Low

Branch on Not Low CENL)
Branch on Not Low Register CBNLR)
Branch on Not Low Short (BNLS)

Assembler Notation

BNL
BNL
BNLR
BNLS

D2(X2)
A2 CFX2,SX2)
R2
A

Operation

Op-Co:ie+M1

438
438
038
228 (Backward)
238 (Forward)

Format

RX1, RX2
RX3
RR
SF

If the Carry CC) flag in the condition code is zero, a branch is
taken to the second operand address. If the C flag is set, the
next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

29-693 ROO 1/79 4-19

4.5.7 Branch on Minus

Branch on Minus (BM)
Rranch on Minus Register CBMR)
Branch on Minus Short {R~S)

~ssembler Notation

BM
BM
BMR
B~S

D2(X2)
A2(FX2,SX2)
R2
A

Operation

Op-Code+M1

421
421
021
201 (Backward)
211 (Forward)

Format

RX1,RX2
RX3
RR
SF

If the Less Than (L) flag in the condition code is set, a branch
is taken to the second operand location. If the L flag is zero,
the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

The branch address must be l~cated on a halfword boundary.

In the RB format, the branch ~ddress is contained in the register
specified by R2.

Example: BM

Assembler Notation

SIS
BM

4-20

R 3 I 1
CONTINUE

Machine Code

26 31
4210 1'.)AO

Comments

If (R3) is less than 0
after the subtraction,
a branch is taken to
X'10AO'.

29- 69 3 ROO 1 /79

4.5.8 Branch on Not Minus

Branch on Not Minus CBNM) ~
Branch on Not Minus Register (BNMR)
Branch on Not Minus Short (BNMS)

Assembler Notation

BNM
BNM
BNMR
BNMS

D2(X2)
A2CFX2,SX2)
R2
A

Opera ti on

Op-Code+M1

431
431
031
221 (Backward)
231 (Forward)

Format

RX1,RX2
RX3
RR
SF

If the Less Than (L) flag in the condition code is zero, a branch
is taken to the second operand location. If the L flag is set,
the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

The branch address aust be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R 2.

29-693 ROO 1/79 4- 21

4.5.9 Branch on Plus

Rranch on Plus (BP)

Branch on Plus Register CBPR)
Branch on Plus Short (BPS)

Assembler Notation

BP
BP
BPR
BPS

D2CX2)
A2(FX2,SX2)
R2
A

Opera ti on

Op-Code+M1

422
422
022
202 (Backward)
212 (Forward)

Format

RX 1 ,RX2
RX3
RR
SF

If the Greater Than (G) flag in the condition code is set, a
branch is taken to the second operand location. If the G flag is
zero, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

The branch address wust be located on a halfword boundary.

In the RF format, the branch 1ddress is contained in the re~ister
specified by R2.

4-22 29-693 ROO 1/79

4.5.10 Branch on Hct Plus

Branch on Not Plus {BNP)
Branch on Not Plus Beqister (BNPR)
Branch on Not Plus Short CBNPS)

Assembler Notation

BNP
BNP
BNPR
BNPS

D2CX2)
A2{FX2,SX2)
R2
A

Opera ti on

Op-Code+M1

432
432
032
222 (Backward)
232 (Forward)

Format

RX1,RX2
RX3
RR
SF

If the Greater Than (G) flag in the condition code is zero, a
branch is taken to the second operand location. If the G flag is
set, the next sequential instruction is executed.

Condition Code

Uncha nqed

Programming Notes

The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

29-693 ROC 1/79 4-23

4.5.11 Branch on Overflow

Branch on Overflow (BO)
Branch on Overflow Eeqister (BOR)
Branch on Overflow Short (BOS)

Assembler Notation

BO
BO
BOR
BOS

D2(X2)
A2(FX2,SX2)
R2
A

Operation

Op-Code+M1

424
424
024
204 (Backward)
214 (Forward)

Format

RX 1,RX2
RX3
RR
SF

If the Overflow (V) flag in the condition code is set, a branch
is taken to the second operand location. If the V flag is zero,
the next sequential ,instruction is executed.

Condition Code

Unchanged

Programming Notes

The branch address must be located on a halfword boundary.

In the RR format, the branch 1ddress is contained in the register
specified by R2.

4-24 29-693 ROO 1/79

4.5.12 Branch on No Overflow

Branch on No Overflew CBNO)
Branch on No Overflow Register (BNOR)
Branch on No Overflow Short (BNOS)

Assembler Notation

BNO
BNO
BNOR
BNOS

D2(X2)
A2CFX2,SX2)
R2
A

Opera ti on

Op-Code+M1

434
434
034
224 (Backward)
234 (Forward)

Format

RX1,RX2
RX3
RR
SF

If the Overflow (V) flag in the condition code is zero, a branch
· is taken to the second operand location. If the V flag is set,

the next sequential instruction is executed.

Condition Code

Unchanged

Proqramming Notes

The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register
specified by R2.

29- 69 3 RO 0 1 /79 4-25

4.5.13 Branch on Zero

Branch on Zero CBZ)
Branch on Zero Register (BZR)
Branch on Zero Short (BZS)

Assembler Notation

BZ
BZ
BZR
BZS

D2CX2)
A2(FX2,SX2)
R2
A

Operation

Op-Code+M1

433
433
033
223 (Backward)
233 (Forward)

Format

RX1,RX2
RX3
RR
SF

If the G and L flags are both zero in the condition code, a
branch is taken to the second operand location. If the G or L
flag is set, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

The branch address must be located on a halfword boundary.

In the RR format, the branch ~ddress is contained in the register
specified by R2.

4-26 29- 69 3 ROO 1 /79

.4.S.14 Branch on Not Zero

Branch on Not Zero (BNZ)
Branch on Not Zero Register CBNZR)
Branch on Not Zero Short (BNZS)

Assembler Notation

BNZ
BNZ
BNZR
BNZS

D2(X2)
A2(FX2,SX2)
R2
A

Operation

Op-Code+M1

423
423
023
203 (Backward)
213 (Forward)

Format

RX1,RX2
RX3
RR
SF

If the G or L flag in the condition code is set, a branch is
taken to the second operand address. If the G and L flags are
both zero, the next sequential instruction is executed.

Condition Code

Uncha nqed

Programming Notes

The branch address rust be located on a halfword boundary.

In the RR format, thP. branch address is contained in the reqister
specified by R2.

29-693 ROO 1/79 4-27

4.5.15 Branch (Unconditional)

Branch (Unconditional) (R)

Branch Re9ister (Unconditional) (BR)
Branch Shcrt (Unconditional) (BS)

Assembler Notation

B D2(X2)
B A2(FX2,SX2)
BR R 2
BS A

Opera ti on

Op-Code+M1

430
430
030
220 (Backward.)
230 (Forward)

Format

RX1,RX2
RX3
RR
SF

A branch is unconditionally taken to the second oper~nd address.

Condition Code

Unchanged

Programming Notes

The branch address must be located on a half~ord boundary.

In the RR format, the branch address is contained in the register
specified by R 2.

This instruction is assembled as a Branch on False Condition
instruction, with no condition specified (M1=0). Therefore, the
branch test is always false and the branch is 3lways taken.

Example: B

Assembler Notation

B 0 PTI N

4-28

Machine Code

4300 OA.00

Comments

An unconditional branch
is taken to location
X'OAOO'.

29-693 ROO 1/79

4.5.16 No Operation

No Operation (NOP)
No Operation Register (NOPR)

Assembler Notation

NOP
NOP
NOPR

D2CX2)
A2CFX2,SX2)
R2

Operation

Op-Code+M1

420
420
020

Format

RX1,RX2
RX3
RR

The next sequential instruction is executed.

Condition Code

Unchanged

Programming Notes

02(X2) or A2(FX2,SX2) and R2 are ignored and usually equal zero
(0).

This instruction is assembled as a branch on true condition
instruction with no condition specified (~1=0). rherefore, no
branch is taken and the next instruction is fetched ~nd executed.

Example: NOP,NOPR

Assembler Notation

NOP
NOP
NOPR

0(0,0)
0

29-693 ROO 1/79

riachine Code

4200 4000 0000
4200 0000
0200

Comments

No operation
No operation
No operation

4-29/4-30

CHAPTER 5
FIXED POINT ARITHMETIC

5.1 INTRODUCTION

Fixed point arithmetic instructions provide a complete set of
operations for calculating addresses and indices, for counting,
and fer qeneral purpose fixed point arithmetic.

5.2 DATA FORMATS

There are three formats for fixed point data: the halfword, the
fullword, and the double word. In each of these formats, the
most significant bit (bit 0) is the sign bit. The remaining 15,
31 or 63 bits represent the magnitude. See Figure 5-1.

599 0 1 HALFWORD 15

Is I I
FULLWORD

0 1 DOUBLE WORD 63

l~sl~~~~::~: ~~~~I
Figure 5-1 Fixed Point Data Words Formats

Positive values are represented in true binary form with a sign
bit of zero. Negative values are represented in two's complement
form with a sign bit of one. To change the sign of a number, the
two's complement of the number may be produced by subtracting the
number from zero. Another way would be to:

1. Change all zeros to ones, and all ones to zeros.

2. Add one.

2 3 - 6 'J 3 F C C 1 I 7 :~ 5-1

600

5.3 FIXED POINT NUMBER RANGE

Fixed point nu•bers represent integers. Table 5-1 shows
relations between different formats, along with decimal values.

TABLE .5-1 FIXED POINT FORMAT RELATIONS

DOUBLE WORD FULLWORD HALFWORD DECIMAL

8000000000000000 - 9 223 372 036 854 775 808
(MOST NEGATIVE)

80000000 -2 147 483 648
(MOST NEG.l\TIVEl

8000 \MOST NEGATIVE) -32 768

FFFFFFFFFFFFFFFF FFFFFFFF FFFF (LEAST NEGATIVE) - 1

0000000000000000 00000000 0000 0

0000000000000001 00000001 0001 (LEAST POSITIVE) 1

7FFF (MOST POSITIVE) 32 767

7FFFFFFF 2 147 483 647

(MOST POSITIVE\
7FFFFFFFF FF FF FF F 9 223 372 036 854 775 807

(MOST POSITIVE\

5.4 OPERATIONS

Fixed point instructions include both fullword ~nd halfword
operations. Fullword operations take place (a) between the
contents cf two general registers; (b) between the contents of a
general register and a fullword stored in memory; or (c) between
the contents of a general register and a fullword obtained from
the instruction stream. Fullword multiply produces a double word
result which is contained in two adjacent registers. Fullword
divide operates on double wor1 data contained in two adjacent
registers.

Halfword operations take place between a fullword =ontained in
one of the general registers and a halfword contained in memory.
Before the operation is started, the halfword in memory is
expanded to a fullword by propagating the most siqnificant bit
(sign bit) into the high order bits of the fullword. The
halfword multiply and divide instructions are exceptions to this
rule.

c;-2

5.5 CONDITION CODE

As a oeneral rule, all fixed point arithmetic instructions,
except multiply and divide, affect the coniition code, to
indicate the effect of the operation on the 32-bit result.

In fixed point add and subtract operations, the arguments are
represented in two's complement form; therefore, all bits,
including sign, participate in forming the result. Conse~uently,

the occurrence cf a carry or borrow has no real arithmetic
significance.

For example, an add operation between a minus ona (FFFF
a plus two (0000 0002) produces the correct result of
(0000 0001) and a carry. The condition code is set to
1 and G = 1). Carry means that the complete result,
this case would have been 1 0000 0001, would not fit in

FFFF) and
plus one
1010 cc =
which in
32 bits.

An overflow occurs when the result does not fit in 31 bits. Note
that bit zero must be reserved for the sign of the result. For
example, adding one to the largest positive fixed point value
produces an overflow:

7FFF FFFF
+0000 0001
=8000 0000

The resulting condition code is 0101 CV=1 and L=1).

The result, 8000 0000, is logically correct, but because the sign
bit is negative when the result should be positive, the overflow
condition exists.

The columns of the condition code table given for each
instruction description show the state of the C, V, G and L flags
for the possible results.

An 'X' in a condition code column means that the particular flag
is not defined, and may be either 0 or 1. Hence, no inference
should be drawn by testing that particular flag.

5.6 FIXED POINT INSTRUCTION FORMATS

The fixed point instructions use the Register to Reqister (RR),
the Short Form (SF), the Register and Indexed Storage (RX), and
the Register and Immediate CR!) instruction formats.

29-693 ROO 1/79 5-3

5.7 FIXED POINT INSTRUCTIONS

The fixed point instructions described in this section are:

A
AR
AI
AIS
AH
AHI
AM
AHM
s
SR
SI
SIS
SH
SHI
c
CR
CI
CH
CHI
M
MR
MH
MHB
D
DR
DH
DHR
SLA
SLHA
SRA
SRHA
CHVR

S-4

Add
Add Register
Add Immediate
Add Immediate Short
Add Half word
Add Halfword Immediate
Add to Memory
Add Half word to Memory
Subtract
Subtract Register
Subtract Immediate
Subtract Immediate Short
Subtract Halfword
Subtract Halfword Immediate
Com pa re
Compare Register
Compare Immediate
Compare Halfword
Compare Halfword Immediate
Multiply
Multiply Register
Multiply Halfword
Multiply Halfword Register
Di vi de
Divide Register
Divide Halfword
Divide Halfword Register
Shift Left Arithmetic
Shift Left Halfword Arithmetic
Shift Right Arithmetic
Shift Right Halfword Arithmetic
Convert to Half word Value Register

29-1)) 3 1/7J

5.7.1 Add

Add (A)
Add Register CAR)
Add Immediate (AI)
Add Immediate Short CAIS)

Asse•bler Notation

A
A
AR
AI
AIS

R 1, 02 (X 2)
R1,A2(FX2,SX2)
R1,R2
R1,I2CX2)
R1,N

Operation

Op-Code

SA
SA
OA
FA
26

Format

RX1,RX2
RX3
BR
RI2
SF

The second operand is added algebraically to the contents of the
reoister specified by R1. The result of this 32-bit addition
replaces the contents of the register specified by R1.

Condition Code

c v ,..
L " x 0 0 0

x 0 0 1
x 0 1 0
x 1 x x
1 x x x

Pro9rammin9 Notes

Result is zero
Result is less than zero
Result is greater than zero
Arithmetic overflow
Carry

The second operand for the AIS
expanding the 4-bit data field,
forcing the high order bits to zero.

instruction is obtained by
N, to a 32-bit fullword by

In the RI2 format, the contents of the index register specified
by X2 are added to the 32-bit !2 field to form the fullword
second operand.

In the RX formats the second operand must be located on a
fullword boundary.

29-693 ROO 1/79 5-5

Example: A

Add contents of memory location labeled LAB to the contents of
REG4.

1. REG4 contains X'7F341234'
Fullword in memory at LAB contains X'7F124321'

Assembler Notation Comments

A REG4,LAB ADD (LAB) TO (REG4)

Result of A Instruction

CREG4) = X'FE465555'
(LAB) unchanged by this instruction
Condition Code = 0101 CV=l, 1=1)

2. REGS contains X'8000 0001'
Fullword in memory at LAB contains X'80000002'

Assembler Notation Comments

REGS,LAB ADD (LAB) TO (REGS)

Result of A Instruction

5-6

(REGS) = X'00000003'
(LAB) unchanged by this instruction
Condition Code = 1110 {C=1, V=1, G=1)

29-693 ROO 1/79

5.7.2 Add Halfword

Add Halfword CAH)
Add Halfword Immediate CAHI)

Assembler Notation

AH
AH
AH!

R1,D2(X2)
R 1 , A 2 (FX 2 ,S X 2)
R1,I2CX2)

Operation

Op-Code

4A
4A
CA

Format

RX1,RX2
RX3
RI1

T he 1 6- bi t sec o n d op e·r and is exp an de d to a 3 2- b it f u 11 word by
propagating the most significant bit through bits 0:15 of the
fullword. The fullword operand is added to the fullword contents
of the register specified by R1. The result replaces the
contents of the register specified by R1.

Condition Code

c v G L
x 0 0 0
x 0 0 1
x 0 1 0
x 1 x x
1 x x x

Programming Notes

Result is zero
Result is less than zero
Result is greater than zero
Arithmetic overflow
Carry

In the RX formats, the second operand must be located on a
halfword boundary.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. rhe contents of
the index register specified by X2 are then added to form the
fullword second operand.

29-693 ROO 1/79 5-7

Example: AH

This example adds the halfword at memory location labeled LAR to
the contents of register 4.

1. REG4 contains X'00230002'
Halfword at memory location LAB contains X'FFFF'

Assembler Notation Comments

AH REG4,LAB ADD (LAB) TO (REG4)

Result of AH Instruction

(REG4) = X'C0230001'
(LAB) unchanged by this instruction
Condition Code = 1010 (C=1, G=1)

2. REGS contains X'FFFF FFFS'
LAB contains X'FFF2'

Assembler Notation

AH REG5,LAB

Result of AH Instruction

(REGS) = 'FFFF FFE7'

Comments

ADD (LAB) TO (RF.GS)

(LAB) unchanqed by this instruction
Condition Cede = 1001 (C=1, 1=1)

5-8 29-693 ROO 1/79

5.7.3 Add to Memory CAM)

Assembler Notation

AM
AM

R1,D2(X2)
R1,A2CFX2,SX2)

Operation

Op-Code

51
51

Format

BX1,RX2
RX3

The first operand contained in the reqister specified by R1 is
added algebraically to the fullword second operand. The r~sult
replaces the fullword second operand in memory. The contents of
the register specified by R1 are not changed.

Condition Code

c v G L
x 0 0 0
x 0 0 1
x 0 1 0
x 1 x x
1 x x x

Programming- Note

Result is zero
Result ls less than zero
Result is greater than zero
Arithmetic overflow
Carry

The second operand must be located on a fullword boundary.

Example: AM

1. Add contents of register 8 to memory location labeled LOC:

REGS contains X'00000008'
Fullword in memory at LOC contains X'034289AB'

Assembler Notation Comments

AM PEG8,LOC ADD (REG8) TO (LOC)

29-693 ROO 1/79 5-9

Result of AM Instruction

(REGS) unchanged by this instruction
(LOC) = X'034289B3'
Condition Code = 0010 (G=1)

2. Add contents of register 7 to memory location labeled LOC:

BEG? contains X'7F341234'
Fullword in memory at LCC contains X'7F124321'

Assembler Nctation Comments

AM REG7,LCC ADD (REG7) TO (LOC)

3esult of AM Instruction

5-10

(REG7) unchanged by this inst~uction
(LOC) = X'FE465555'
Condition Cede = 0101 CV=1, L=1)

29-693 ROO 1/79

5.7.4 Add Halfword to "emory (AHM)

Assembler Notation

AHM
AHM

R1,D2(X2)
R1 ,A2(FX2 ,SX2)

Operation

Op-Code

61
61

Format

RX1,RX2
BX3

The halfword second operand is added alqebraically to tha least
significant 16 bits (bits 16:31) of the register specified by R1.
The 16-bit result replaces the contents of the memory location
specified by the effective address of the seconj operan1. The
contents of the register specif~ed by R1 are not changed.

Condition Code

c v G L
x 0 0 0
x 0 0 1
x 0 1 .0
x 1 x x
1 x x x

Programming Notes

Result is zero
Result is less than zero
Result is greater than zero
Arithmetic overflow
Carry

The second operand must be located on a halfword boundary.

The condition cede settings are based on the halfword result.

Example: AHM

This example adds the contents of register 5 to the contents of
memory location LAB.

1. REGS contains X'00230002'
Halfword in memory at LAB contains X'FFFF'

Assembler Notation Comments

AHM REGS, LAB ADD (REGS) TO (LAB)

29-693 HOO 1/79 ~>-11

Result of AHM Instruction

(REGS) unchanged by this instruction
(LAB) = 0001
Condition Cede = 1010 (C=1, G=1)

2. REG6 contains X1 FFFF FFFS'
LAB contains X'FFF2'

Assembler Nctation Comments

AHM REG6,LAE ADD (REG6) TO (LAB)

Result of AHM Instruction

5-12

CREG6) unchanged by this instruction
(LAB) = FFE7
Condition Cede = 1001 (C=1, L=1)

29-693 ROO 1/79

5. 7. 5 Subtract

Subtract CS)
Subtract Register CSR)
Subtract Immediate (SI)
Subtract Immediate Short (SIS)

Assembler Notation

s
s
SR
SI
SIS

R1,D2CX2)
R1,A2CFX2,SX2)
R1,R2
R1,I2CX2)
R1,N

Opera ti on

Op-Code

SB
58
OB
FB
27

Format

RX1,RX2
RX3
RR
RI2
SF

The fullword second operand is subtracted algebr~ically from the
contents of the register specified by R1. The result replaces
the contents of the register specified by R1.

Condition Code

c v G L
x 0 0 0
x 0 0 1
x 0 1 0
x 1 x x
1 x x x

Programming Notes

Result is zero
Result is less than zero
Result is greater than zero
Arithmetic overflow
Borrow

The second operand for the SIS
expanding the 4-bit data field,
forcing the high order bits to zero.

instruction is obtained by
N, to a 32-bit fullword by

In the RI2 format, the contents of the index re1ister specified
by X2 are added to the 32-bit 12 field to form the fullw~rd
second operand.

In the RX formats, the second operand must be located on a
fullword boundary.

29-693 ROO 1/79 5-13

Examples:

This example suttracts the fullword at memory lo=ation LOC from
the contents of register 9.

1. REG9 contains X'44444444'
LCC contain~ X'44444444'

Assembler Nctation Comments

s REG9,LCC SUBTRACT (LOC) FROM (REG9)

Result of S Instruction

(REG9) = 0
(LOC) unchanged by this instruction
Con1ition Cede = 0000

2. REG9 contains X'23456789'
LOC contains X'FFFF4321'

Assembler Notation Comments

s REG9,LCC SUBTRACT (LOC) FROM (REG9)

Result of S Instruction

5-14

CREG9) = 23462368
(LOC) unchanged by this instruction
Condition Code = 1010 (C=1, G=1)

29-693 ROO 1/79

5.7.6 Subtract Halfword

Subtract Halfword {SH)
Subtract Halfword Immediate {SHI)

Assembler Notation

SH
SH
SHI

R1,02(X2)
R1,A2(FX2,SX2)
R1,I2(X2)

Operation

Op-Code

48
4B
CB

Format

RX1,RX2
RX3
RI1

The 16-bit second operand is expanded to a 32-bit fullword by
propagating the most significant bit through bits 0:15. This
fullword is subtracted from the contents of the reqister
specified by R1. The result replaces the contents of the
register specified by R1.

Condition Code

c v G L
x 0 0 0
x 0 0 1
x 0 1 0
x 1 x x
1 x x x

Programming Notes

Result is zero
RP-sult is less than zero
Result is greater than zero
Arithmetic overflow
Borrow

In the RX formats, the second operand must be locatei on a
halfword boundaty.

In the RI1 format, the 16-bit I2 field is extended to a full~or1
by propagating the sign bit through bits 0:15. rhe contents of
the index register specified by X2 are then added to form the
fullword second operand.

29-693 ROO 1/79 5-15

Example: SH

This example suttracts the halfword at memory lo=ation LJC from
the contents of register 9.

1. REG9 contains X'00123456'
LOC contains X'FFF4'

AEsembler Nctation Comments

SH REG9,LOC SUBTRACT (LOC) FROM (REG9)

Result of SH Instruction

(REG9) = 00123462
(LOC) unchanged by this instruction
Condition Cede = 1010

2. REG9 contains X'FFFF4567'
LCC contains X'2345'

Assembler Notation Comments

SH REG9,LCC SUBTRACT (LOC) FROM (REG9)

Result of SH Instruction

5-16

(REG9) = FFFF2222
(LOC) unchanged by this instruction
Condition Code = 0001

29-693 ROO 1/79

5.7.7 Compare

Compare CC)
Compare Register (CR)
Compare Immediate (CI)

Assembler Notation

c
c
CR
CI

R1,D2(X2)
R1,A2CFX2,SX2)
R1,R2
R1,!2(X2)

Operation

Op-Code

59
59
09
F9

Format

RX1,RX2
RX3
RR
RI2

The first operand contained in the register specified
compared alQebraically to the 32-bit second operand.
is indicated by the condition code setting. Neither
changed.

Condition Code

c v G L

by R 1 is
The result

operand is

0 x
1 x
0 x

0
0
1

0
1
0

First operand is equal to second operand
First operand is less than second operand
First operand is greater than second oper~nd

Programming Notes

In the RX formats, the second operand must be locatej on a
fullword boundary.

The state of the V flag is undefined.

Example: C

This example cor:pares the contents of register 3 to the contents
of the fullword in memory location LAB.

REG3 contains X'44567894'
Fullword at LAB contains X'04321243'

Assembler Notation Comments

c REG3,LAB COMPARE CREG3) TO (LAB)

Result of C Instruction

(REG3) unchanged by this instruction
(LAB) unchanged by this instruction
Condition Cede = 0010 (G=1)

29-693 ROO 1/79 5-17

5.7.8 Compare Halfword

Compare Halfword (CH)
Compare Halfword Immediate (CHI)

Assembler Notation

CH
CH
CHI

R1,D2(X2)
R1,A2CFX2,SX2)
R1,I2(X2)

Operation

Op-Code

49
49
C9

Format

RX1,RX2
RX3
RI1

The halfword second operand is expanded to a fullword by
propagating the most significant bit through bits 0:15. The
first operand, the contents of the register specified by R1, is
compared algebraically to the effective second operand. The
result is indicated by the condition code setting. Neither
operand is changed.

Condition Code

c v G L
0 x 0 0
1 x 0 1
0 x 1 0

Programming Notes

First operand is equal to se~ond operand
First operand is less than second operand
First operand is greater than second operand

In the RX formats, the second operand must be l~cate1 ~n a
halfword boundary.

In the RI1 format, the 16-bit I2 field is extended to a fullword
by propagating the sign bit through bits 0:15. The contents cf
the index register specified by X2 are then ad1ad to form the
fullword second operand.

Condition code fettings are based on the fullword comparison.
The state of the V flag is undefined.

5-18 29-693 ROO 1/79

Example: CH

This example compares the contents of Reqister 8 to the halfword
at LAB.

REG8 contains X'F4567891'
Halfword at LAB contains X'3123'

A s se m b le r Ho ta t ion Comments

CH REG8,LAB COMPARE CREG8) TO (LAB)

Result of CH In~truction

(REGS) unchanged by this instruction
(LAB) unchanged by this instruction
Condition Code = 1001 (C=1, V=1)

29-693 ROO 1/79 5-19

5.7.9 Multiply

Multiply 00
Multiply Register (MR)

Assembler Notation

M
M
MR

R1, D2(X2)
R1,A2(FX2,SX2)
R1,R2

Operation

Op-Code

SC
SC
1C

Format

RX1,RX2
RX3
RR

The fullword first operani contained in the register specified by
R1+1 is multiplied by the fullword second operand. The 64-bit
result is stored in the registers specified by R1 and R1 ~ 1.
The sign of the result is determined by the rules of algebra.

Condition Code

Unchanged

Programming Notes

The R1 field of these instructions must specify an even numbered
register. If the R1 field of these instructions is odd, the
result is undefined.

In the RX formats the second operand must ba locatei on ~

fullword boundary.

The most significant bits of the result are Placed in the
register specified by R1; the least significant bits are placed
in the register by R1+1.

Example: M

This example multiplies the
contents of memory location
registers 8 and 9 (64 bits).

REGS contains unknown data
REG9 contains X'00002431'

contents
LO C and

of register
places the

9 by
result

Fullword at location LOC =ontains X'43120000'

5-20 29-6 93 ROO 1179

Assembler Notation Comments

M REG8, LOC MULTIPLY CREG9) BI (LOC)

Result of M Instruction

REGS and REG9 together contain the result
CREG8, REG9) = 0000 097B, 5E72 0000
(LOC) unchanged by this instruction
Condition Code unchanged by this instruction

Example: MR

This example
contents of
9 (64 bits).

multiplies the contents of register 9 by the
register 8 and places the result in registers 8 and

REGS contains x•ooo10000•
REG9 contains X'12345678'

Assembler Notation

MR REG8,REG8

Result of MR Instruction

Comments

MULTIPLY CREG9) BY (REG8)

REGS and REG9 together contain the result
(REG8,REG9) = 0000 1234, 5678 0000
Condition Code unchanged by this instruction.

29-693 ROO 1/79 5-21

5.7.10 Multiply Halfword

Multiply Halfword (MH)
Multiply Halfword Register (MHR)

Assembler Notation

~H

MH
MHR

R1,D2(X2)
R 1 , ,~ 2 (FX 2 ,SX 2)
R1,R2

Operation

Op-Code

4C
4C
oc

Format

RX1,RX2
RX3
RR

The first operand, contained in bits 16:31 Jf the register
specified by F1, is multiplied by the 16-bit seconi ~per3nd,
taken from memory or from bits 16:31 of the register specifie1 by
R2. Both operands are 16-bit signed two's complement v~lues.

The 32-bit result replaces the contents of the register specifiei
by R1. The siqn of the result is determined by the r.ule~ of
algebra.

Condition Code

Unchanged

Programming Note

In the RX formats, the second operand must be locatej on a
halfword boundary.

Example: MH

This example multiplies the h~lfAord contents of reqist~r 8 by
the halfword in memory location LAB.

REG8 contains X'ABCD 0045'
Halfword at memcry location LAH contains X'8674'

5-22 29-693 ROO 1/7~

Assembler Notation Comments

MH REG8,LAB MULTIPLY LEAST sr;NIFICANT HALF
OF (REG8) BY (LAB)

Result of MH Instruction

{REG8) = FFDF3D44
(LAB) unchanged by this instruction
Condition Code unchanged by this instruction

Example: MHR

This example multiplies the halfword contents of register 11 by
the halfword contents of register 4.

REG11 contains X'37210004 1

REG4 contains X'FFFF0307'

Assembler Notation

MHR REG11,RF.G4

Result of MHR Instruction

CREG11) = OOOOOC1C

Comments

MULTIPLY LS HALF JF (REG11)
BY LS HALF OF CRE~4)

{REG4) unchanged by this instruction
Condition Code unchanged by this instruction

29-693 ROO 1/79 S-23

5.7.11 Divide

Divide {D)
Divide Register (DR)

Assembler Notation

D
D
DR

R1,D2(X2)
R1,A2CFX2,SX2)
R1,R2

Operation

Op-Code

50
SD
1D

Format

RX1,RX2
RX3
RR

The 64-bit signed divi1end contained in the two registers
specified by R1 and R1+1 is divided by the signe1 fullwor1 second
operand. The 32-bit signed remainder replaces the contents of
the register specified by R1. The signed 32-bit quotient
replaces the contents of the register specified by R1+1.

The sign of the quotient is determined by the rules of ~lgebra.

the sign of the remainder is the same as the sign of the
dividend.

Condition Code

Unchanged

Programming Notes

The R1 field of these instructions must specify ~n even numbered
register. If the R1 field of these instructions is ~dd, the
result is undefined.

The most significant bits of the dividend must be contained in
the register specified by R1. The least significant bits of the
dividend must be contained in the register specified by 81+1.

In the RX formats, the second operand must ba locatei on a
fullword boundary.

If the divisor is equal to zero, the instruction is not executed,
the operand registers remain unchanged, and the ~rithmeti= fault
interrupt is taken.

If the value of the quotient is more positive th~n X'7FFFFFFF' or
more neqative than x•sooooooo•, quotient overflow is said to
occur. If quotient overflow occurs, the operand registers ~emain
unchanged, and the arithmetic fault interrupt is taken.

5-24 29-693 ROO 1/79

_ Exaaple: D

This example divides the contents of registers 8 and 3 by the
fullword contents of memory location LOC.

1. REGS contains X'12345678' = Kost significant half of 1ividen1
REG9 contains X'98765432' = Least significant half

of dividend
LOC contain~ X'34343434' =Divisor

Assembler Notation Comments

D REG8,LOC DIVIDE (REG8,9) BY CLOC)

Result of D Instruction

(REG8) = 1E1E1E1E = Remainder
(REG9) = 59455459 = Quotient
CLOC) unchanged by this instruction
Condition Code unchanged by this instruction

2. REGS contains X'FFFF1234' = Most significant half of dividend
REG9 contains X'OOOOOOOO' = Least significant half

of dividend
LOC contains X'12345678' = Divisor

Assembler Notation Comments

D REG8,LOC

Result of D Instruction

(REGS) = F250D9EO = Remainder
(REG9) = FFF2EFFC = Quotient

DIVIDE (REG 3,9) BY (LOC)

LCC unchanged by thi3 instruction
Condition Code unchanged by this instruction

3. REG8 contains X'43657898' = ~ost significant half of 11vi1end
REG9 contains X'12123456' =Least significant half

of dividend
LOC contain~ x•oooooooo• = Divisor

Assembler Notation Comments

D REG8,LOC DIVIDE CREG8,9) RY (LOC)

29-693 ROO 1/79 5-25

Result of D Instruction

Division by zero causes arithmetic fault to be taken. Operands
and condition code remain unchanged by this instruction.

4. REGS contains X'80000000' = Most significant half of dividend
REG9 contains X'00000001' = Least significant half

of dividend
LOC contains x•ooooooo1• = Divisor

Assembler Notation Comments

D REG8,LOC DIVIDE (REG8,9) BY (LOC)

Result of D Instruction

Quotient overflow causes arithmetic fault to be taken. Operan1s
and condition code remain unchanged by this instruction.

Example: DR

This example divides the contents of registers 8 and 9 by the
contents of register 2.

REGS contains X'FFFFFFFF' = ~est significant half of dividend
REG9 contains X'FFFFFFFD' = Least significant half of dividend
REG2 contains X'FFFFFFFE' = Divisor

Assembler Notation Comments

DR REG8,REG2 DIVIDE (REG8,9) BY CREG2)

Result of DR instruction

CBEG8) = FFFFFFFF = Remainder
(REG9) = 00000001 = Quotient
(REG2) unchanged by this instruction
Condition Code unchanged by this instruction

5-26 29-693 ROO 1/79

5.7.12 Divide Halfword

Divide Halfword (DH)
Divide Halfword Register (DHR)

~ssemhler Notation

DH
DH
OHR

R1,D2(X2)
R1,A2(FX2,SX2)
R1,R2

Operation

Op-Code

4D
4D
OD

Format

RX1,RX2
RX3
RR

The 32-bit signed divideni contained in the register specified by
R1 is divided by the 16-bit signed second operand. The 16-bit
sioned remainder is copied to R1 (bits 16:31) and the halfword
value is converted to a fullword value. The 16-bit siqned
quotient is ccpied to the register specified by R1 + 1 after
conversion to a fullword value.

The sign of the quotient is determined by the rules of ~lqebra.

The sign of the remainder is the same as the sign of the
dividend.

Condition Code

Unchanged

Programming Notes

In the RX formats, the second operand must be locate1 on a
halfword boundary. In the RR format, the second operand is taken
from bits 16:31 of the register specified by R2.

If the divisor is equal to zero, the instruction is not executed,
the operand registers remain unchanged, and the ~rithmetic f~ult

interrupt is taken.

If the value of the quotient is more positive than X'7FFF' or
more neqative than x•aooo•, quotient overflow is said t~ oc=ur.
If quotient overflow occurs, the operand registers remain
unchanged, and the arithmetic fault interrupt is taken.

29-693 ROO 1/79 5-27

Example: DH

This example divides the contents of reqister 7 by the halfword
contents of memory location LOC.

1. REG7 contains x•oooo 0054' = Dividend
LOC contains X'0008' = Divisor

Assembler Notation Comments

DH REG7,LOC DIVIDE (REG7) BY (LOC)

Result of DH Instruction

(EEG7) = 0000 0004 = Remainder
(REGS) = 0000 OOOA = Quotient
(LOC) unchanged by this instruction
Condition Code unchanged by this instruction

2. REG7 contains X'1234 5678' =Dividend
LOC contains x•oooo• = Divisor

Assembler Notation Comments

DH REG7,LOC DIVIDE {REG7) BY {LOC)

Result of DH Instruction

Division by zero causes arithmetic fault to be taken. Operands
and condition code remain unchanged by this instruction.

3. REG7 contains 1'8000 0002' = Dividend
LCC contains X'0001'

~ssembler Notation Comments

DH REG7,LOC DIVIDE (REG7) BY (LOC)

Result of DH Instruction

Quotient overflow causes arithmetic fault to be taken. Qperan1s
and condition code remain unchanged by this instruction.

5-28 29-693 ROO 1/79

5.7.13 Shift Left Arithmetic CSLA)

Asseabler Notation Op-Code Format

SLA R1,I2(X2) EE RI1

Opera ti on

Bits 1:31 ~f the first operand, contained in the register
specified by R1, are shifted left the number of places specified
by the second operand. The si9n bit (bit 0), remains unchanged.
Bits shifted out of position 1 are shifted throuqh the carry flag
and then lost. The last bit shifted remains in the carry flag.
Zeros are shifted into position 31.

Condition Code

c v G L
x 0 0 0
x 0 0 1
x 0 1 0

Programming Notes

Result is zero
Result is less than zero
Result is greater than zero

The state of the C flag indicates the state of the l~st bit
shifted.

The shift count is specified by the least siQnificant five bits
of the second o~erand. The maximum shift count is 31.

A shift of zero places causes the condition code to be set in
accordance with the value contained in the register specified by
R1. The C flaq is zero in this case.

F.xamPle: SLA

This example shifts the bits in register 5 left by the number
specified by the second operand.

REGS contains X'80005647'

Assembler Notation Comments

SLA REGS,4 SHIFT (REGS) LEFT 4 PLACES

Result of SLA Instruction

(REGS) = 80056470
Condition Code = 0001 (1=1)

29-693 ROO 1/79 5-29

5.7.14 Shift Left Halfword Arithmetic CSLHA)

Assembler Notation Op-Code Format

SLHA R1,I2(X2) CF RI1

Operation

Bits 17:31 of the register specified by R1 are shifted left the
number of places specified by the second operanj. Bit 16 of the
register, the halfword siqn bit, remains unchanqed. Bits shifted
out of position 17 are shifted through the carry flag and then
lost. The last bit shifted remains in the carry flag. Zeros are
shifted into position 31. Bits 0:15 of the first operand
register remain unchanged.

Condition Code

c v G L
x 0 0 0
x 0 0 1
x 0 1 0

Programming Notes

Result is zero
Result is less than zero
Pesult is greater than zero

The condition code settings are based on the half wor1
16:31) result.

(bi ts

The state of the C flag indicates the state of the l~st bit
shifted.

The shift count is specified by the least significant four bits
of the second operand. !he maximum shift count is 15.

A shift of zero places causes the condition code to be set in
accordance with the halfword value contained in bits 16:31 of the
register specified by R1. The C flag is zero in this case.

5-30 29-693 ROO 1/79

5.7.15 Shift Riqht Arithmetic (SRA)

Assembler Notation Op-Code Format

SRA R1,!2(X2) EE RI1

Operation

Bits 1:31 of the first operand, contained in the register
specified by R1, are shifted right the number of places specified
by the second operand. The siqn bit (bit 0), remains unchanqed
and is propagated right as many positions as specified by the
second operand. Bits shifted out of position 31 are shifted
through the C flaq and lost. The last bit shifted remains in the
C flag.

Condition Code

c v G L
x 0 0 0
x 0 0 1
x 0 1 0

Programminq Notes

Result is zero
Result is less than zero
Result is greater than zero

The state of the C flag indicates the state of the l~st bit
shifted.

The shift count is specified by the least significant five bits
of the second o~erand. The maximum shift count is 31.

A shift of zero places causes the condition code to be set in
accordance with the value contained in the register specified by
R1. The C flaq is zero in this case.

Example: SRA

This example shifts the contents of register 9 right the number
of places specified by the second operand.

REG9 contains X'800004256'

Assembler Notation

SRA REG9,8

Result of SRA Instruction

CREG9) = X'FF80C042'
Condition Code = 0001 CL=1)

29-693 ROO 1/79

Comments

SHIFT (REG9) RIGHr 8 PLACES

5-31

S.7.16 Shift Riqht Halfword Arithmetic (SRHA)

Assembler Notation Op-Code Format

SRHA R1,I2 CX2) CE RI1

Operation

Bits 17:31 of the register specified by R1 are shifted right the
number of places specified by the second operan1. Bit 16 of the
register, the halfword siqn bit, remains unchanged and is
propagated right the number of positions specified by the sec~nd

_operand. Bits shifted out of position 31 are shifted through the
C flag and lost. The last bit shifted remains in the C flag.
Bits 0:15 of the first operand register remain unchanged.

Condition Code

c v G L
x 0 0 0
x 0 0 1
x 0 1 0

Pro9ramming Notes

Result is zero
Result is less than zero
Result is greater than zero

The condition code settings are based on the halfvori (bits
16:31) result.

The state of the C flag indicates the state of the last bit
shifted.

The shift count is specified by the least significant four bits
of the second o~erand. The maximum shift count is 15.

A shift of zero places causes the condition code to be set in
accordance with the halfword value contained in bits 16:31 of the
register specified by R1. The C flag is zero in this case.

5-32 29-693 ROO 1/79

5.7.17 Convert to Halfword Value Register CCHVR)

Assembler Notation Op-Code Format

CHVR R1,R2 12 RR

Operation

The.halfword second operand, bits 16:31 of the register specified
by R2, is expanded to a fullword by propa1ating the most
significant bit (bit 16) through bits 0:15. This fullword
replaces the contents of the register specified by R1.

Condition Code

c v G L
x x 0 0
x x 0 1
x x 1 0
x 1 x x

1 x x x

0 x x x

Programming Note~

Result is zero
Result is less than zero
Result is greater than zero
Source operand cannot be represented by a
16-bit signed number
Carry flag was set in previous condition
code
Carry flag was zero in previous condition
code

The V flag is set when bit 15 of the second operand is not the
same as bit 16 of the second operand. The G and L flags reflect
the algebraic value of bits 16:31 of the second operand.

Execution of this instruction following halfword operations
guarantees the same res,tlts as those obtained if the program were
run on a 16-bit machine. For example, if location A in memory
contains the halfword value of X'7FFF' (decimal 32767) then,

LH
AIS

29-693 ROO 1/73

R1,A
R1,1

R1 contains x•oooo7FFF'
R1 contains X'00008000'

5-33

Following the add operation, the condition code is:

indicating a result greater
fullword operations. If
16-bit processor, as:

LH
AIS

R1,A
R1,1

than
the

zero, which is correct for
same sequence were executed an a

R1 contains X'7FFF'
R1 contains X'8000'

Following this, the condition code in the halfword processor 1.• ~ •
..:> •

indicating overflow and a negative result. Going back to the
original sequence and adding the Convert to Halfword Value
Re9ister instruction produces the following:

LH
AIS
CHVR

R 1, A
R1,1
R1,R1

R1 contains X'00007FFF'
R1 contains X'00008JOO'
R1 contains X'FFFF8000'

Followin9 this sequence, the condition code is:

which is identical to that of the 16-bit process~r, and can be
tested in the same manner.

5-34 29-693 ROO 1/79

601

6.1 INTRODUCTION

CHAPTER 6
FLOATING-POINT ARITHMETIC

Floating-point arithmetic instructions provide a means for rapid
handling of scientific data expressed as floating-point numbers.
Single-precision and double-precision floating-point
instructions, as well as mixed mode floating-point instructions,
are described in this chapter. The comprehensive set of
instructions includes load and store floating-point numbers; ad1,
subtract, multiply, divide and compare two floating-point
numbers; convert fixed-point to floating-point and vice versa;
and mixed mode operations that translate single precision to
double precision and vice versa.

Floating-point is a means of representing a ~uantity in any
numbering system. For example, the decimal number 123 (base =
10), can be reptesented in the following forms:

123.0
1 • 2 3
0 .123
0.0123

x 1 o0

x 102

x 103

x 104

In this example, the decimal point moved; this is calle1 a
floating point. In actual floating-point representation, the
significant digits are always fractional and are collectively
referred to as fractions. The power to which the base number is
raised is called the exponent. For example, in the number .45678
x 10 , 45678 is the fraction and 2 is the exponent. Both the
fraction and the exponent can be signed. If we have a
floating-point representation such as,

(si?n of ftaction) (exponent) (fraction)

the following representation applies:

Number

+ 32. 9 4
-23760000.0
+0.000059
-o. 000000009207 3

29-693 ROO 1/79

Floatinq point

= + • 3 2 9 4 x 1 02

= - • 2 3 7 6 X 1 08

= +. 59 x: 10-4

= - • 9 2 0 7 3 x 1 o-e

+
-
+
-

+2 3294
+8 2376
-4 59
-8 92073

6-1

.Large or small numbers can be easily expressed in floating-point,
making it ideally suitable for scientific comput3tion. N~te the
compactness of floating-point notation in the ab~ve examples.

Floating-point representation in the processor is similar to the
above representation. The differences are:

1. Hexadecimal, instead of decimal, numbering system is
used.

2. Physical size of the number is limited,
magnitude and precision are limited.

therefore the

6.2 DATA FORMATS

Floating-point numbers occur in one of two formats: single
preci~ion and double precision. The sin7le-precision format
requires a fullword (32 bits). When such a value is contained in
memory, it must exist on a fullword address boun1ary. The sign
(S), exponent (X), and fraction (consisting of the digits F1, F2,
F3, F4, FS, and F6) fields are designated as follows:

602 0 7 8 11 12 15 16 19 20 23 24 27 28 31

Is I x F1 F2 F3 F4 F5 F6

The double-precision format requires a doubleword (64 bits).
When two qenetal registers hold a double-precision Vilue, an
even/odd pair of general registers must be used. The
even-numbered register contains the most significant 32 bits, and
the next sequential odd register contains the least significant
32 bits. The sign (S), exponent (X), and fraction (consisting of
digits F1 throu~h F14) fields are designated as follows:

603'. 0 1

Is I
7 8

I
11 12

I
15 16

I
F

3

19 (0 F

4

23 (4 27 28

I
31

I x F1 F2 F5 F6

35 36

F10

47 (8 51 52 55 56 59 60 63 39 40 43 44

F7 F8 F9 F11 F12 F13 F14

6-2 29-693 ROO 1/79

6.3 FLOATING-PCINT NUMBER

In the processor, a floating-point number is represented in the
following form:

604

Siqn

Exponent

605

I SIGN EXPONENT FRACTION

The most significant bit of a floating-point number
is the siqn bit. The siqn bit is zero for positive
numbers and one for negative numbers. The
floatinq-point value of zero always has a positive
sign.

The 7-bit field, bits 1:7, is designated as the
expcnent field. The exponent is expressed in
excess-64 notation. The number in this field
contains the true value of the exponent plus X'40'
(decimal 64). This helps to represent very small
maqnitudes between O and 1. Some of the exponent
values are as follows:

Exponent in True True
Excess-64 exponent in exponent in Multiply
notation hexadecimal decimal fraction by

00 -40 -64 16-64
3F -1 -1 16 - I
40 0 0 16 °
41 1 1 16 I

7F 3F 63 16 63

The exponent field for true zero is always 00.

Fraction The fraction field is 6 hexadecimal digits for
single-precision floating-point numbers (thus
limiting the precision), and 14 hexadecimal digits
for double-precision floating-point numbers. As in
any other fraction, the floating-point fraction is
expressed with most precision when the most
significant hexadecimal diqit (not necessarily the
most significant bit) is non-zero. The
floating-point number with such a fr~ction is called
a normalized floating-point number. In the Series
3200 Processors, normalized numbers ire always used
to obtain the maximum possible precision. For
hexadecimal fraction conversion, refar to Appendix D.

29-693 ROO 1/79 6-3

606

Examples: The following examples illustrate the sign, exponent,
and fraction concept of a floating-point number:

Numbers in Hex
integer-fraction

notation

+1.3A25678
-6.89f'2C
+1A.C39D21
-3C1DF.82A3
+ABCDEF12.9AC
+0.0032A9CF2
-o.000002c1ss

Si9n-exponent­
frac ti on shown

for clarity

I s I E I F

0 41 13A25678
1 41 689F2C
0 42 1AC39021
1 45 3:1DF82A3

Single-precision
Floating-point numbers

4113A256
C1689F2C
421AC39D
CS3:1DF8

0 48 ABCDEF129AC 48 AB CDEF
0 3E 32A9CF2 3E32A9CF
1 3B 2C7B5 BB2:7B50

6.3.1 Floating-Point Number Range

The range of magnitude CM) of a normalized floating-point number
is as follows:

Single precision: 1 6 -65 < M < (1 - 16-6) * 16 63

Double precision:
Approximately for both:

16 -65 (M ((1 - 16-14) * 1663

5. 4 * 10-79- < M ~ 7. 2 * 1075

Table 6-1 shows the floating-point range in relation to the fixed
point range with the decimal values.

TAELE 6-1 FLOATING/FIXED POINT RAN~ES

FLOAT I NG-POI NT FIXED-POINT DECIMAL
NUMBERS INTEGER NUMBERS

(most neqa ti ve) FFFF FFFF -7.2* 10 75

C880 0000 8000 0000 (most negative) -2 147 483 648
C111 0000 FFFF FFFF (least nec;iitive) -1

(lea st neqa ti ve) 8010 0000 -s. 4•10-19

(true zero) 0000 0000 0000 0000 0

(least positive) 0010 0000 +5.4*10- 79

4110 0000 0000 0001 (least positive) +1
487F FFFF 7FFF FFFF (most positive) +2 147 483 647

(most positive) 7FFF FFFF + 7. 2* 10 7~

6-4 29-693 ROO 1/79

6.3.2 Normalization

Normalization is a process of making non-zero the most
sign~ficant digit (F1) of the fraction of a floating-point
number. In the normalization process, the floating-point
fraction is shifted left hexadecimally (i.e., four bits at a
time), and its exponent is decremented by one for aach
hexadecimal shift until the most significant digit (not
necessarily the most significant bit) of the fraction is
non-zero.

607
FRACTION

EXPONENT F1 F2 F3 F4 F5 F6

I SHIFT LEFT FRACTION HEXADECIMALLY UNTIL F1>0

DECREMENT EXPONENT BY ONE FOR EACH SHIFT

Except for the load instructiJns, all floating-point operations
assume and require normalized operands for consistent results.
The load instructions normalize an unnormalized operand.

Example:

Operands

1. ~2012345

2. 210COABC
3. C900FE12
4. 6COOOOOO

After normalization

41123450
1EABC.OCO
C7FE1200
00000000 (true zero)

In Example 4, the fraction of the operand is zero. During the
normalization process, such a fraction is dete~ted, and the
f loating-~oint number is set to true zero.

Normalized results are always produced in flo~ting-p~~nt
operations, assuming the operands are norm~lized. Results of
operations between unnormalized numbers are undefinej.

29-693 ROO 1/79 6-5

6.3.3 Equalization

Equalization is a process of equalizing exponents of two
floating-point numbers. The fraction of the floating-point
number with the smaller exponent is shifted right hexadecimally,
i.e., four bits at a time, and its exponent is incremented by one
for each hex~decimal shift until the two exponents are equal.

608

INCREMENT EXPONENT BY ONE FOR EACH SHIFT

t SHIFT FRACTION RIGHT HEXADECIMALLY UNTIL EXPONENTS EO~JAL

EXPONENT F1 F2 F3 I F4 F5 F6

FRACTION

During floating-point a1dition and
floating-point operands are equalized.

subtraction, the two

Example:

1 •

Floating I:oint
operands

4312345€
3F789ABC

C7FE1234
4956789A

After equalization

43123456
43000078

C900FE12
4956789A

In this example, normalized floating-point numbers ara shown
because addition and subtraction require normalization. If the
exponents differ by more than 6 for single precision or m~re than
14 for double precision, the representable significance of the
lower exponent floating-point number is lost in the pr~cess of
equalization. Ligits shifted out are shifted through the guard
digits and may still have an effect on the result, sum, or
difference.

6-6 29-693 ROO 1/79

6.3.4 True Zerc

A floating-point number is true zero when the exponent and the
fraction fields are all zeros; therefore, all iata bits must be
zero. A zero value always has a positive sign. In general, zero
values participate as normal operands in all floating-point
operations.

A true zero may be used as an operand. It may also result from
an arithmetic o~eration that caused an exponent underflow, in
which case the entire number may be forced to true zero. If an
arithmetic operation produces a result whose fra=tion digits are
all zeros (sometimes referred to as loss of significance), the
entire number is forced to true zero.

Examples:

Numbers

0 30000AB

41ABCtEF
41ABCDEF

Op era ti on

Normalize

Suttract

6.3.5 Exponent Cverflow

Result

0000 0000

0000 0000

Reason

exponent
underf l~w

loss of
signifi=ance

In floating-point operations, exponent overflow occurs when a
resulting exponent is greater than +63. If overflow o=curs, the
result register is unchan~ed. The condition code is set to
reflect the overflow situation and the resulting sign. Fiqure
6-1 illustrates exponent overflow using a line representation of
numbers.

609
Most negative True Most positive

number Zero number
••~~~~~~~~~~...ae • ••~~~~~~~~~--•

FFFFFFFF 0 7FFFFFFF
(exponent = 7F) (exponent = 7F)

= 6310

overflow overflow

Figure 6-1 Exponent Overflow

If overflow occurs, the V flag in the condition =ode is set, ani
an arithmetic fault interrupt is taken. Exponent overflow
interrupts cannct be disabled.

29-693 ROO 1/79 6-7

6.3.6 Exponent Underflow

The normalization process, during a floating-point operation, may
produce an exponent underflow. This underflow occurs when a
result exponent is less than -64. Figure 6-2 illustrates
exponent underflow using a line representation of numbers.

610
Least negative True Least positive

number Zero number

• r , • • • .r .J • .,, .,,

C0100000 00100)0
exponent = 00 J [exponent = 00 J

= -6410 = -6410

underflow underflow

Figure 6-2 F.xponent Underflow

If underflow occurs, an arithmetic fault interrupt is taken, if
enabled by the current PSW. Both operands remain unchanged. If
underflow is disabled by the current PSW, the result is force1 to
zero (the closest possible answer), the V flag in the condition
code is set, and the next sequential instruction is executed.

6.3.7 Guard Digits and R*-Rounding

When an intermediate floating-point result has been formed, it
consists of a sign, an exponent, and a fra=tion field. !he
fraction field is extended by a number of ~uard digits containing
the least significant fraction digits of the intarmediate result.
Refore the result is copied to a destination, it is rounded to
c~mpensate for the loss in the final result of the guard diqits.

The rules for the R*-RouniinQ scheme are:

• If the most significint guard digit is hexadecimal 7 er
less, no rounding is performed. (See Example 1.)

• If the most significant guard digit is hex~decimal 8, and
all other guard digits are O, the least significant bit of
the final result is forced to 1. (See Example 2.)

• If the most significant guard digit is hexadecimal 8, and
another. guard digit is non-zero; or if the most significant
guard digit is hexadecimal 9 or greater, 1 is added to the
fraction field of the final result. (See Example 3.) If
this addition produces a carry out of the fraction field
(i.e., fraction field was all 1s), the rasult exp~nent is
incremented by 1, the most significant fraction digit CF1)
is set to hexadecimal 1, and all other fraction diqits are
set to O. (See Example 4.) Note that exponent overflow
could oc~ur as the result of rounding.

6-8 29-693 ROO 1/79

INTERMEDIATE RESULT

1. 42ABCD12 32680000
2. C1183756 80000000
3. 3E265739 80100000
4. 41FFFFFF FOOOOOOO

Examples of R*-Rounding

FINAL SINGLE-PRECISION
RESULT

42ABCD12
C1183757
3E26573A
42100000

6.3.8 Conversicn from Decimal

To convert a decimal number
internally by the processor,

into the excess-64 notati~n used
the following steps must be taken:

1. Separate the decimal integer from the decimal fr~ction:

18 2. 37 5'° = (18 2 + • 37 5)10

Convert each part to hexadecimal
integer conversion table and
table in Appendix D.

by referring to the
the fr~ction conversion

3. Combine the hexaiecimal integer and fra=tion:

B 6 • 616 = (B 6 • 6 X 1 6 °) 16

4. Shift the radix point:

C B 6 • 6 X 1 6°) 16
2 =C.B66X16)16

5. Add 64 CX'40') to the exponent:

6. Convert the exponent. field and fractions to binary
allowing 1 bit for the sign, 7 bits for exponent field,
and 24 or 56 bits for the fraction.

42866 = 0100 0010 1011 0110 0110 OOJO 0000 000~

6.4 CONDITION CODE

Most floating-point operations affect the condition code.
each instruction description, the possible condition
settings are shewn.

29-693 ROO 1/79

Fo!:"
::ode

6-9

6.5 FLOATING-POINT INSTRUCTIONS

Floating-point instructions use the Register to Register (RR),
and the Register and Indexed Storage (RX) instruction formats.
In all of the RB formats, except for fix and float, the R1 and R2
fields specify cne of the floating-point registers. There are
eight single-~recision floating-point registers an1 eight
double-precision floating-point registers numbered O, 2, 4, 6, 8,
10, 12, and 14. Except for FXR, FXDR, L~ER, an:i LGDR
instructions, the R1 field always specifies a floating-point
register.

Floating-point arithmetic operations, excluding loads and stor~s,
require normali2ed operands to ensure correct results. If the
operands are net normalized, the results of these oper~tions are
undefined. Floating-point results are normalized. The
floating-point load instructions normalize the floating-point
data ~resented as the second operand.

The single-precision flo~ting-point instructions described in
this section are:

LE
L ER
LEGR
LPER
LCER
LME
LGER
STE
STME
AE
A ER
SE
SER
CE
C ER
ME
MER
DE
DER
FXR
FLR

6-10

Load Flcating-Point
Load Flcating-Point Register
Load Flcatinq-Point from General Register
Load Positive Floating-Point Register
Load Complement Floating-Point Register
Load Flcating-Point Multiple
Load Gener.al Register from Floating-Point Register
Store Floating-Point
Store Floating-Point Multiple
Add Floating-Point
Add Floating-Point Register
Subtract Floating-Point
Subtract Floating-Point Register
Compare Floating-Point
Compare Floating-Point Register
Multiply Fioating-Point
Multiply Floating-Point Register
Divide Floating-Point
Divide Floating-Point Register
Fix Register
Float Register

29-693 ROO 1/79

The double-precision floating-point· instructions described in
this section are:

LD
LDR
LDGR
LPDR
LCDR
LGDR
STD
STMD
AD
A DR
SD
SOR
CD
CDR
!i D
M DR
DD
DDR
FXDR
F'LDR

Load DPFP
Load Register DPFP
Load DPFP from General Registers
Load Positive Register DPFP
Load Complement Register DPFP
Load General Register from DPFP register
Store DPFP
Store Multiple DPFP
Add DPFF
Add Register DPFP
Subtract DPFP
Subtract Register DPFP
Compare DPFP
Compa~e Reqister DPFP
Multiply DPFP
Multiply Register DPFP
Divide DPFP
Divide Register DPFP
Fix Register DPFP
Float Register DPFP

The mixed mode floating-point instructions described in this
section are:

LED Load SP FP from DPFP
LEDR Load Register SPFP front DPFP
LDE Load DPFP from SPFP
LDER Load Register DPFP from SPFP
STDE Store DFFP in SPFP

29-693 ROO 1/79 6-11

6.5.1 Load Floating-Point

Load Floating-Point CLE)
Load Floating-Point Register CLER)
Load Floatinq-Pcint from ~eneral Register CLEGR)

Assembler Notation

LE R1,D2CX2)
LE R1,A2(FX2,SX2)
LER R1,R2
LEGR R1,R2

Operation

Op-Code

68
68
28
AS

Format

RX1,RX2
RX3
RR
RR

The floating-point second operand is normalized, if ne=essary,
and placed in the single-precision floating-point register
specified by R1.

Condition Code

c v G L
0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

Programming Notes

Floating-point result is zero
Floating-point result is less than zero
Floating-point result is gre~ter than zero
Exponent underflow

If the argument fraction is zero, the entire result is forced to
zero, x•oooo ooco·.

Noraalization can produce exponent underflow. If PSW bit 19 is
set, an arithmetic fault interrupt is taken, and the register
specified by R1 is unchanged. If an exponent underflow occurs,
and bit 19 of the current PSW is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
R1.

In the RX formats, the second operand must be loaded on a
f ullwcrd boundary.

6-12 29-693 ROO 1/79

Example: LE

This example normalizes the fullword at memory location LOC and
places it in floating-point register a.

Floating-point REGS contains unknown data
LOC contains X'4200 1000'

Assembler Notation Comments

LE REG8,LOC LOAD FROM LOC AND NORMALIZE

Result of LE Instruction:

(REGS) = X'4010 0000'
(LOC) Unchanged by this instruction
Condition Code = 0010

29-693 ROO 1/79 6-13

6.5.2 Load Positive Floating-Point Register (LPER)

Assembler Notation Op-code Format

LPER R1,R2 13 RR

Operation

The floating-point second operand specified by R2 is
positive, norsalized if necessary and placed in
single-precision floatinq-point register specifiad by R1.

Condition Code

c v G L

forced
the

0 0
0 0
0 1

0
1
0

0
0
0

Floatin9-point result is zer~
Floating-point result is greater than zero
Exponent underflow

Programming Notes

If the argument fraction is zero, the entire result is forced to
zero, x•oooo 0000'.

Normalization can produce exponent underflow. If PSW bit 19 is
set, an arithmetic fault interrupt is taken, and the register
specified by R1 is unchanged. If an exponent underflow occurs,
and bit 19 of the current PSW is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
R1.

Example:

Floating-point REG6 contains unknown data
Floating-point REG8 contains X'C11921FB'

Assembler Notation

LPER REG6,REG8

Result of LPER Instruction:

(REG6) = X'4119~1FB'
(REGS) unchanged by this instruction
Condition Code = 0010

6-14

Comments

LOAD REG6 WITH
POSITIVE OF (REGS)

29-693 ROO 1/79

6.5.3 Load Complement Floating-Point Register (LCER)

Assembler Notation Op-Code Format

LCER R1,R2 17 RR

Operation

The sign of the floating-point second operand specified by R2 is
complemented. The resulting floating-point number is normalized,
if necessary, and placed in the single-precision floating-point
register specified by R1.

Condition Code

c v G L
0 0 0 0
0 0 0 1
0 1 0 0

Programming Notes

Floating-point result is zer~
Floating-point result is less than zero
Exponent underflow

If the argument fraction is zero, the entire result is forced to
zero, X'OOOO OOCO'.

Normalization can produce exponent underflow. If PSW bit 19 is
set, an arithnetic fault interrupt is taken, and the register
specified by R1 is unchanged. If an exponent underflow occurs,
and bit 19 of the current PSW is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
R 1.

29-693 ROO 1/79 6-15

6.5.4 Load Floating-Point Multiple (LME)

Assembler Notation

LME
LME

F1,D2CX2)
R1,A2(FX2,SX2)

Opera ti on

Op-Code

72
72

Format

RX2,RX2
RX3

Successive single-precision floating-point registers, starting
with the register specified by R1, are loadei from successive
fullword memory locations starting with the address of the second
operand. The ptocess stops when floating-point register 14 has
been loaded.

Condition Code

Unchanged

Programming Notes

Values loaded into the floating-point registers ~re assumed to be
normalized, and no test or adjustment is performed.

The second operand must be located on a fullword boundary.

6-16 29-693 ROO 1/79

6.5.5 Load General Register from Floating-Point Register CLGER)

Assembler Notation Op-Code Format

LGER R1,H2 15 RR

Operation

The floating-point second operand,
single-precision floating-point reqister
placed in the general register specified
operand is unchanged.

Condition Code

c v G L
0 0 0 0 Result is zero

contained
specified
by R 1.

0 0
0 0

0
1

1
0

Result is less than zero
Result is greater than zero

29-693 ROO 1/79

in
by

The

the
R2, is
second

6-17

6.5.6 Store Floating-Point (STE)

Assembler Notation

STE
STE

R1,D2(X2)
R1,A2 CFX2,SX2)

0 pera ti on

Op-Code

60
60

Format

RX1,RX2
RX3

The floating-~oint first operand, contained
single-precision floating-point register specified
placed in the f~llword memory location specified by
operand address. The first operand is unchanged.

Condition Code

Unchanged

ProQramming Note

in
by

the

The second operand must be located on a fullword boundary.

the
R 1, is
second

6-18 29-693 ROO 1/79

6.5.7 Store Flcatinq-Point Multiple CSTME)

Assembler Notation

STME
STME

R1,D2(X2)
R1,A2CFX2,SX2)

Operation

Op-Code

71
71

Format

RX1,RX2
RX3

The contents cf successive sinqle-precision floatinq-point
reqisters, sta~ting with the even numbered register specified by
R1, are stored in successive fullword memory loc~tions, starting
with the addresE of the second operand. The operation stops when
the contents of floating-point register 14 have been stored.

Condition Code

Unchanqed

Proqramminq Note

The second operand must be located on a fullword boundary.

29-693 ROO 1/79 6-19

6.5.8 Add Floating-Point

Add Floating-Point (AE)
Add Floating-Point Register CAER)

Assembler Notation

AE
AE
AER

R1,D2(X2)
R1,A2(FX2,SX2)
R1,R2

Operation

Op-Code

6A
6A
2A

Format

RX1,RX2
RX3
RR

The two operand exponents are compared. If the exponents differ,
the fraction with the smaller exponent is shifted right
hexadecimally (four bits at a time), and its exponent is
incremented by cne for each hexadecimal shift, until the two
exponents are equal. The hexadecimal digits (of four bits each)
are shifted thrcugh the guard diqits for additional precision.
If no equalizing shifts are required, the guard digits remain
zero. The fractions are then algebraically added. The guard
digits participate in this addition.

If the addition of fractions produces a carry, the exponent of
the result is incremente1 by one, and the fraction of the result
is shifted right one hexadecimal digit. The carry bit is shifted
back into the mcst significant hexadecimal digit of the fraction,
producing a normalized result. This result is then R*-rounded
and replaces the contents of the single-precisi~n floating-point
register specified by R1.

If the addition of fractions does not produce a =arry, the result
is normalized, if necessary, and R*-rounded. This result
replaces the contents of the single-precision floating-point
register specified by R1.

Condition Code

c v G
0 0 0
0 0 0
0 0 1
0 1 0
0 1 1

0 1 0

6-20

L
0
1
0
1
0

0

Floating-point result is zer~
Floating-point result is less than zero
Floating-point result is gre~ter than zero
Exponent overflow, result is less than zero
Exponent overflow, result is greater than
zero
Exponent underflow

29-693 ROO 1/79

Programming Notes

When the addition of the fractions produces a carry, incrementing
the exponent of the result by one can produce exponent overflow.
In this case, the arithmetic fault interrupt is taken and the
contents of the register specified by R1 remain unchanged.

Normalization of the result can produce exponent underflow. If
PSW bit 19 iE set, an arithmetic fault interrupt is taken, and
the register specified by R1 is unchanged. If exponent underflow
occurs and bit 19 of the =urrent PSw is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
R1.

In the RX formats, the second operand must be located on a
fullword boundary.

Fastest results occur when the first operand is larger than the
second operand.

Example: AE

This example adds the contents of LOC to the contents of
floating-point register 8 and places the result in floating-point
register 8.

Floating-point REGS contains X'7EFF FFFF'.
LOC ccntains X'7EFF FFFF'

Assembler Notation Comments

AE REG8,LOC ADD (LOC) TO (REGS)

Result of AE Instruction

(Floating-Point REG8) = 7F1F FFFF
(LOC) unchanged by this instruction
Condition Code = 0010

29-693 ROO 1/79 6-21

6.5.9 Subtract Floating-Point

Subtract Floating-Point (SE)
Subtract Floating-Point Register CSER)

Assembler Notation

SE
SE
SER

R1,D2(X2)
R1,A2CFX2,SX2)
R1,R2

Operation

Op-Code

6B
68
2B

Format

RX1,RX2
RX3
RR

The two operand exponents are compared. If the exponents differ,
the fraction with the smaller exponent is shifted right
hexadecimally (four bits at a time), and its exponent is
incremented by one for each hexadecimal shift, until the two
exponents are equal. The hexadecimal digits (of four bits each)
are shifted through the guard di9its for additional precision.
If no equalizing shifts are required, the guard digits remain
zero. The second operand fraction is then subtracted
algebraically from the first operand fraction. The guard digits
participate in this subtraction.

If the subtraction of fractions produces a carry, the exp~nent of
the result is incremented by one, and the fraction of the result
is shifted right one hexadecimal digit. The carry bit is shifted
back into the most significant hexadecimal digit of the fraction,
producing a ncrmalized result. This result is then R*-rounded
and replaces the contents of the single-precision floating-point
register specified by R1.

If the subtraction of fra~tions does not produce a carry, the
result is normalized, if necessary, then R*-roun1ed. This result
replaces the contents of the single-precisi~n floating-point
register specified by R1.

Condition Code

c v G
0 0 0
c 0 0
c 0 1
0 1 0
c 1 1

c 1 0

6-22

L
0
1
0
1
0

0

Floating-point result is zero
Floating-point result is less than zero
Floating-point result is 1reater than zero
Exponent overflow, result is less than zero
Exponent overflow, result is greater than
zero
Exponent underflow

29-693 ROO 1/79

Programming Notes

When the subtraction of the fractions produces a carry,
incrementing the exponent of the result by one can produce
exponent overf lcw. In this case, the arithmetic fault interrupt
is taken, and the contents of R1 remain unchange1.

Normalization of the result can produce exponent underflow. If
PSW bit 19 i! set, an arithmetic fault interrupt is taken, and
the register specified by R1 is unchanged. If exponent underflow
occurs and bit 19 of the current PSW is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
R1.

In the RX formats, the second operand must ba located on a
fullword boundary.

Fastest results occur when the first operand is larger than the
second operand.

Example: SE

This example suttracts the contents of LOC from the contents of
floating-point register 8 and places the result in floating-point
register 8.

Floating-point REGS contains X'7EFF FFFF'
LOC contains X'7A10 0000'

Assembler Notation Comments

SE REG8,LOC SUBTRACT (LOC) FROM (REG8)

Result of SE Instruction

(Floating-point REG8) = 7CFECF CFCFCFE
(LOC) unchanged by this instruction
Condition Code = 0010

29-693 ROO 1/79 6-23

6.5.10 Compare Floating-Point

Compare Floatino-Point (CE)
Compare Floating-Point Register (CER)

Assembler Notation

CE
CE
CER

R1,D2(X2)
R1 ,D2(FX2 ,SX2)
R1,R2

Operation

Op-Code

69
69
29

Format

RX1,RX2
RX3
RR

The first and second operands are compared. Comparison is
algebraic, and the sign, fraction, and exponent of eacn number
must be considered. The result is indicated by the c~ndition

code setting. Neither operand is changed.

Condition Code

c v G L
0 x 0 0
1 x 0 1
0 x 1 0

Programming Notes

First operand is equal to se=ond oper~nd
First operand is less than second operand
First operand is greater than second operand

The state of the V flag is undefined.

In the RX formats, the second operand must be locate1 on a
fullword boundary.

6-24 29-69 3 ROO 1/79

6.5.11 Multiply Floating-Point

Multiply Floating-Point (ME)
Multiply Floating-Point Register (MER)

Assembler Notation

ME
ME
MER

R1,D2(X2)
R1 ,A2CFX2 ,SX2)
R1,R2

Operation

Op-Code

6C
6C
2C

Format

RX1,RX2
RX3
RR

The exponents of each operand, as derived from the excess-64
notation used in floating-point representation, are ~dde1 to
produce the exponent of the result. This exponent is converted
back to excess-64 notation, and the fractions are then
multiplied.

If the product is zero, the entire floatinQ-point value is forced
to zero, X'OOOO 0000•. If the product is not zero, the result is
normalized. The sign of the result is determined by the rules of
algebra. The R*-rounded result replaces the contents of the
single-precision floatinq-point register specified by R1.

Condition Code

c v G L
0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0

0 1 0 0

Programming Notes

Floating-point result is zero
Floating-point result is less than zero
Floating-point result is gre~ter than zero
Exponent overflow, result is less than zero
Exponent overflow, result is greater than
zero
Exponent underflow

Multiplication of two 6-hexadecimal-digit fractions effectively
produces a result of 6 hexadecimal digits and i number of guard
digits. The quard digits participate in the R*-rounding of the
final result.

The addition of exponents can produce exponent overflow. In this
case, an arithmetic fault interrupt is taken, an1 both operands
remain unchanged.

29-693 ROO 1/79 6-25

The addition of exponents or the normalization process can
produce exponent underflow. If PSW bit 19 is set, an arithmetic
fault interrupt is taken, and the register specified by R 1 is
unchanged. If exponent underflow occurs and bit 19 of the
current PSW is zero, no arithmetic fault occurs. Zeros replace
the contents of the register specified by R1.

In the RX formats, the second operand must be located on a
f ullwcrd boundary.

Fastest results occur when the second operand multiplier contains
sets of four or more contiguous ones or zeros.

Example: ME

This example multiplies the contents of floating-point register
8 by the contents of memory location LOC and places the result in
f loatlng-point register 8.

Floating-point REG8 contains X'SFFF FFFF'
LOC contains X'60FF FFFF'

Assembler Notation Comments

ME REG8,LOC MULTIPLY (REGS) BY (LOC)

Result of ME Instruction

(Floating-point REGS) = 7FFF FFFE
(LOC) unchanged by this instruction
Condition Code = 0010

6-26 29-693 ROO 1/79

6.5.12 Divide Floatinq-Point

Divide Floating-Point (DE)
Divide Floating-Point Register (DER)

Assembler Notation Op-Code Format

DE
DF.
DER

R1,D2 (X2)
R1,A2 (FX~,SX2)

R1,R2

6D
6D
2D

RX1,RX2
RX3
RR

Operation

The exponents of each operand, as derived from the excess-64
notation used in floating-point representation, are subtracte1 to
produce the exponent of the result. This exponent is converted
back to excess-64 notation.

The first operand fraction is then divided by the second operand
fraction. Division continues until the quotient is normalized,
adjusting the exponent for each additional division required.

No remainder is returned. The sign of the quotient is determined
by the rules of algebra. The R*-rounded quotient repla=es the
contents of the single-precision floatin1-point register
specified by R1.

Condition Code

c v G L
0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0

0 1 0 0
1 1 0 0

Programming Notes

Floating-point result is zer~
Floating-point result is less than zero
Floating-point result is greiter than zero
Exponent overflow, result is less than zero
Exponent overflow, result is greater than
zero
Exponent underflow
Divisor equal to zero

Before starting the divide operation, the divisor is checked. If
it is equal to 2ero, the ~peration is aborted, and the arithmetic
fault interrupt is taken. Neither operand is ch~nged.

Subtraction of exponents may produce exponent ov~rflow. In this
case, an arithmetic fault interrupt is taken, ~nd both operands
remain unchanged.

29-693 ROO 1/79 6-27

The subtraction of exponents or the division process can pro1uce
exponent underflow; normalization of the result can produce
exponent underflow. If PSW bit 19 is set, an arithmetic fault
interrupt is taken, and the reqister specified by R1 is
unchanged. If exponent underflow occurs and bit 19 of the
current PSW is zero, no arithmetic fault occurs. Zeros replace
the contents of the register specified by R1.

The 6-hexadecimal digit first operand fraction is divided by the
6-hexadecimal diqit second operand, effectively producing the
6-hexadecimal digit quotient along with a number of guard digits.
The guard digits participate in the R*-rounding of the final
result.

In the RX formats, the second operand must be located on a
fullword boundary.

Example: DE

This example divides the contents of f loatinq-point register 4 by
the contents of memory location LOC and places the result in
floating-point register 4.

Floating-point rtEG4 contains X'44FF FFFF' = divi1end
LOC contains X'0611 1111' =divisor

Assembler Notation Comments

DF. RFG4,LOC DIVIDE (REG4) BY (LOC)

Result of DE Instruction:

(Floating-point REG4) = 7FFO 0000
(LOC) unchanged by this instruction
Condition Code = 0010

6-28 29-693 ROO 1/79

6.5.13 Fix Register (FXR)

Assembler Notation Op-Code Format

FXR R1,R2 2E RR

Operation

R1 and R2
register
contained
complement
The result

specify a general-purpose register and a floating-point
respectively. The normalized floating-point number
in the floating-point register is converted to a two's
notation integer value by shifting and truncating.
is stored in the qeneral register spe=ified by R1.

Condition Code

c v G L
x 0 0 0
x 0 0 1
x 0 1 0
x 1 0 1
x 1 1 0

Programming Notes

Result is zero or underflow
Result is less than zero
Result is greater than zero
Overflow, result is less than zero
Ov~rfl6w, result is greater than zero

The range of floating-point magnitudes (M) that produces a
non-zero integral result is:

±X'4880 0000'> M 2 ±X'4110 0000'

Floating-point magnitudes greater than +X487F FFFF' or
-X'4880 0000' cause overflow. Tne result is forced to
X'7FFF FFFF' if positive, or to X'8000 0000' if negative.
The V flag is set in the condition code along with either the G
or L flag, depending on the sign of the result.

Floating-point magnitudes less than +X'4110 0000' cause
underflow, and the result is forced to zero.

In the event of overflow or underflow, no irithmeti= f~ult

interrupt is taken, even if enabled in the current PSW.

Example: FXR

This ex~mple converts the contents of f loatin9-point register 8
to a fixed-point number and places it in register 3.

29-693 ROO 1/79 6-29

Floating-point REG8 contains X'46FF FFOO'
REG3 contains unknown data

Assembler Notation Comments

FXR REG3,REG8 CONVERT CREG8) TO FIXED POINT

Result of FXR Instruction

(REG3) = OOFFFFOO
(Floating-point REG8) unchanged by this instruction
Condition Code = 0010

6-30 29-693 ROO 1/79

6.5.14 Float Register (FLR)

Assembler Notation Op-Code Format

FLR R1,R2 2F RR

Operation

R1 and R2 specify a floating-point register and 1 general-purpose
register, respectively. The integer value c~ntained in the
general register specifie1 by R2 is converted to a floating-point
number and stored in the single-precision floating-point register
specified by R1.

Condition Code

c v G L
x 0
x 0
x 0

0
0
1

0
1
0

Floating-point result is zero
Floating-point result is less than zero
Floating-point result is gre~ter than zero

Programming Note

The full range of fixed-point integer values can be converted to
floating point. The fixed-point value X'7FFF FFFF', the largest
positive integer, converts to the floating-point value X'487F
FFFF'. The fixed-point value X'3000 0000', the most negative
integer, converts to the floating-point value X'C880 JOOO'. The
result in R1 is normalized and truncated, if necessary, to fit in
the six fraction digits.

Example: FLR

This example converts the fixed-point contents of Registe~ 4 to
a floating-point number and places it in floating-point register
8.

(REG4) contains X'7FFF FFFO'
Floating-point REG8 contains unknown data

Assembler Notation Comments

FLR f<EG8,REG4 CONVERT (REG4) ro FLOATING POINT

Result of FLR Instruction:

(Floating-point PEGS) = 487FFFFF
(FEG4) unchanged by this instruction
Condition Code = 0010

/.9-693 ROO 1/79 6- 31

6.5.15 Load Double-Precision Floating-Point

Load Double-Precision floating-Point CLD)
Load Register Double-Precision Floating-Point (LDR)
Load Couble-Precision Floating-Point Registers from General
Registers CLDGR)

Assembler Notation

LD
LD
LOR
LDGR

R1,D2(X2)
R1,A2(FX2,SX2)
R1,R2
R1,R2

Operation

Jp-Code

78
78
38
A6

Format

RX1,RX2
RX3
RR
RR

The floating-point second operand is normalized, if necessary,
and placed in the double-precision floating-point register
specified by R1.

Condition Code

c v G L
0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

Programming Notes

Double-precision result is zaro
Doubl2-precision result is lass than zero
Double-precision result is greater than zero
Exponent underflow

If the argument fraction is zero, the entire result is forced to
zero, x•oooo 0000 0000 000·0'.

Normalization can produce exponent underflow. If PSw bit 19 is
set, the arithmetic fault inter~upt is taken, and the register
specified by R1 remains unch~n9ed. If exponent underflow occurs,
and bit 1q of the current PSW is zero, no ~rithmeti= fault
occurs. Zeros replace the contents of the register specified by
R 1.

In the RX formats, the second operand must ba locatei on a
fullword boundary.

The R1 field for LDGR must specify the even number of an even/od1
pair of general registers.

6-32 29-693 ROO 1/79

6.5.16 Load Positive Double-Precision Register (LPDR)

Assembler Notation Op-Code Format

LPDR R1,R2 33 RR

Operation

The double-precision floating-point second operand contained in
the double-precision floating-point register specified by ~2 is
forced positive. The result is normalized if necessary and
placed in the double-precision floating-point register specified
by R1.

Condition Code

c v G L
0 0 0 0
0 0 1 0
0 1 0 0

Programming Notes

Double-precision result is zero
Double-precision result is greater than zero
Exponent underflow

If the argument fraction is zero, the entire result is forced to
zero, X'OOOO 0000 0000 0000'.

Normalization of the result can produce ~xponent underflow. If
PSW bit 19 is set, the arithmetic fault interrupt is taken, and
the register specified by R1 remains unchanged. If exponent
underflow occurs, and bit 19 of the current PSW is zero, no
arithmetic fault occurs. Zeros replace the contents of the
register specified by R1.

29-693 ROO 1/79 6-33

6.5.17 Load Complement Double-Precision Re9ister (LCDR)

~ssembler Notation Op-Code Format

LCDR R1,R2 37 RR

Operation

The sign of the double-precision floatinq-point second operand
contained in the double-precision floatin7-point reqister
specified by R2 is complemented. The res~lt is normalized if
necessary and placed in the double-precision floating-point
register specified by P1.

Condition Code

c v G L
0 0 0 0
0 0 0 1
0 1 0 0

Programming Notes

Double-precision result is zero
Double-precision result is less than zero
~xponent underflow

If the argument fraction is zero, the entire result is forced to
zero, X'OOOO 0000 0000 0000'.

Normalization may produce exponent underflow. If PSW bit 19 is
set, the arithmetic fault interrupt is taken and the register
specified by R1 remains unchanged. If an exponent underflow
occurs and bit 19 of the current PSW is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
R1.

6-34 29-693 ROO 1/79

6.5.18 Load Multiple Double-Precision Floating-Point (LMD)

Assembler Notation

LMD
LMD

R1,D2(X2)
R1,A2(FX2,SX2)

Opera ti on

Op-: ode

7F
7F

Format

RX1,RX2
HX3

Successive double-precision floating-point registers, startinq
with the register specified by R1, are loadei from successive
fullword memory location pairs, starting with the address of the
second operand. The process stops when double-precision
f loatinq-point register 14 has been loaded.

Condition Code

U nc hanged

Programming Notes

Values loaded into the double-precision floating-point r~gisters

are assumed to be normalized, and no test or adjustment is
performed.

The second operand must ba located on a fullword boundary.

29-693 ROO 1/79 6-35

6.5.19 Load General Registers from Double-Precision
Floating-Point Register (LGDR)

Assembler Notation Op-Code Format

LGDR R1,R2 16 RR

Opera ti on

The double-precision floatinq-point second operand, contained in
the double-precision register specif led by R2, is placed in the
general register pair specified by R1. The se=ond operand is
unchanged.

Condition Code

c v G L
0 0 0 0
0 0 0 1
0 0 1 0

Programming Notes

Result is zero
Result is less than zero
Result is greater than zero

The R1 field must specify the even member of the even/odd Pair of
general registers receiving the result. The even numbered
register receives the most significant 32 bits while the. next
sequential odd numbered register receives the least significant
32 bits.

If R1 is not an even numbered register, unpradictable results
occur.

6-36 29-693 ROO 1/79

6.5.20 Store Double-Precision Floatin~-Point CSrD>

Assembler Notation

STD
STD

R1,D2(X2)
R1,A2(FX2,SX2)

Operation

Op-Code

70
70

Format

RX1,RX2
RX3

The floating-~oint first operand, contained in the
double-precision floating-point register specified by R1, is
placed in the dcuble word memory location specified by tha second
operand address. The first operand is unchanged.

Condition Code

Unchanged

Programming Note

The second operand must be located on a fullword boundary.

29-69] ROO 1/79 6-37

6.5.21 Store Multiple Double-Precision Floating-Point (STMD'

A s·sembler Notation Op-Code Format

STMD
STMD

R1,D2CX2)
R1,A2(FX2,SX2)

0"Pera tion

7E
7E

The contents cf successive
reoisters, starting with the
R1, are stored in successive
starting with the address of
stops when the contents of
re~ister 14 have been stored.

Condition Code

Programming Note

RX1,RX2
RX3

double-precision floating-point
even numbered register specified by
fullword memory location pairs,
the second operanj. The operation
double-precision floating-point

The second operand must be located on a fullword boundary.

6-38

6.5.22 Add Doutle-Precision Floating-Point

Add Double-Precision Floating-Point CAD)
Add Register Double-Precision Floating-Point CADR)

Assembler Notation

AD
AD
A DR

R1,D2(X2)
R1,A2(FX2,SX2)
R1,R2

Operation

Op-Code

7A
7A
3A

Format

RX1,RX2
RX3
RR

The two operand exponents are compared. If the exponents differ,
the fraction with the smaller exponent is shifted right
hexadecimally (four bits at a time), and its exponent is
incremented by one for e~ch hexadecimal shift until the two
exponents are equal. Hexadecimal digits are shifted through the
guard digits to retain precision. The fractions are then ajded
a lgebraicall Y•

If the addition of fractions produces a carry, the exponent of
the result is incremented by one and the fraction of the result
is shifted right one hexadecimal position. The carry bit is
shifted back into the most significant hexadecimal digit of the
traction, producing a normalized result. This result is
R*-rounded and replaces the contents of the double-precision
floating-point register specified by R1.

If the addition of fractions does not produce a =arry, the result
is normalized, if necessary, and placed in the double-precision
floating-point register specified by R1.

Condition Code

c v G L
0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0

0 1 0 0

29-693 ROO 1/79

Double-precision result is zero
Double-precision result is l~ss than zero
Double-precision result is greater than zero
Exponent overflow, result is less than zero
Exponent overflow, result is greater than
zero
Exponent underflow

6-39

ProgramminQ Notes

When the additicn of fractions produces a carry, incrementing the
exponent of the result by one may produce exponent overflow. In
this case, the arithmetic fault interrupt is taken ~nd both
operands remain unchanged.

Normalization of the result can produce exponent underflow. If
PSW bit 19 is set, an ~rithmetic fault interrupt is taken, and
the reqister specified by R1 is unchanged. If exponent underflow
occurs and bit 19 of the current PSW is zero, no arithmetic fault
occurs. Zeros replace the contents of the register specified by
R1.

Fastest results occur when the first operand is larger than the
secoµd operand.

In the RX formats, the second operand must ba located on a
fqllword boundary.

6-40 29-693 R90 1/79

6.5.23 Subtract Double-Precision.Floating-Point

Subtract Double-Precision Floating-Point (SD)
Subtract Register Double-Precision Floating-Point CSDR)

Assembler Notation

SD
SD
SDR

R1,D2(X2)
R1,A2CFX2,SX2)
R1,R2

Operation

Op-Code

7B
7B
38

Format

RX1,RX2
RX3
RR

The two operand exponents are compared. If the axponents differ,
the fraction ~ith the smaller exponent is shifted right
hexadecimally (four bits at a time), and its exponent is
incremented by cne for ea~h hexadecimal shift, until the two
exponents are equal. Hexadecimal digits are shifted through the
guard digits to retain precision. The second op~rand fra=tion is
then subtracted algebraic~lly from the first operand fraction.

If the subtraction of fractions produces a carry, the exp~nent of
the result is incremented by one and the fraction of the result
is shifted riQht one hexadecimal position. The carry bit is
shifted back into the most significant hexadecim~l digit of the
fraction producing a normalized result. This result is
R*-rounded and replaces the contents of the double-precision
floating-point register specified by R1.

If the subtraction of fractions does not produce a carry, the
result is normalized, if necessary, then R*-roun1ed and placei in
the double-precision flo1ting-point register spe=ifie1 by R1.

Condition Code

c v G L
0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0

0 1 0 0

29-693 ROO 1/79

Double-precision result is z~ro
Double-precision result is less than zero
Double-precision result is greater th~n zero
Expon9nt overflow, result is less than zero
Exponent overflow, result is greater than
zero
Exponent underflow

6-41

Programmin9 Notes

When the subtraction of fractions produces a carry, incrementing
the exponent of the result by one may produce exponent overflow.
In this case, the arithmetic fault interrupt is taken and the
contents of R1 remain unchan9ed.

Normalization of the result can produce exponent underflow. If
PSW bit 19 i~ set, an arithmetic fault interrupt is taken, and
the reQister specified by R1 is unchanged. If exponent underflow
occurs and bit 19 of the =urrent PSW is zero, no arithaetic fault
occurs. Zeros replace the contents of the register specified by
R1.

Fastest results occur when the first operand is larger than the
second operand.

In the RX formats, the second operand must be locatei on a
fullword boundary.

6-42 29-693 ROO 1/79

6.5.24 Compare Double-Precision Floating-Point

Compare Double-Precision Floating-Point (CD)
Compare Register Double-Precision Floating-Point (CDR)

~ ssembler Notation

CD
CD
CDR

R1,D2(X2)
R1 ,A2(FX2 ,SX2)
R1,R2

Operation

Op-Code

79
79
39

Format

RX1,RX2
RX3
RR

The first and second operands are compared. Comparison is
algebraic, taking into ac=ount the sign, exponent and fra=tion of
each number. The result is indicated by the condition code
setting. Neither operand is chan~ed.

Condition Code

c v G L
0 x 0 0
1 x 0 1
0 x 1 0

Programming Notes

First operand is equal to se=ond operand
First operand is less than second operand
First operand is greater than second operand

The state of the overflow flaq is undefined.

In the RX formats, the second operand must be locate1 on a
fullword boundary.

29-5q3 ROO 1/79 6-43

6.5.25 Multiply Double-Precision Floating~Point

Multiply Double-Precision Floating-Point (MD)
Multiply Register Double-Precision Floating-Point (MDR)

Assembler Notation

MD
MD
M PR

R1,D2(X2)
R1 ,A2(FX2 ,SX2)
R1,R2

Operation

Op-Code

7C
7C
3C

Format

RX1,RX2
RX3
RR

The exponents of the two operands, as derived from the e~cess-6q

notation used in floating-point representation, are aide1 to
P£Qd4G~ the exponent of the result. This exponent is converted
Pqck to excess-64 notation. The fractions are then multiplied.

If the product is zero, the entire double-ore=ision v~lue is
fo~~ed to zerc, X'OOOO 0000 0000 0000'. If the product is not
zero, the result is normalized, if necessary. The sign of the
result is determined by the rules of algebra. The R*-rounded
resqlt repl~ces the contents of the double-pre=ision floating­
point register specified by R1.

Condition Code

c v G L
0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0

0 1 0 0

Programming Notes

Double-precision result is zero
Double-precision result is less than zero
Double-precision result is greater th~n zaro
Exponent overflow, result is less than zero
Exponent overflow, result is greater than
zero
Exponent underflow

Multiplication of two 14-hexadecimal-digit fractions effectively
produces a result of 14 hex~decimal digits and ~ number of guard
digits. The guard digits participate in the R*-rounding of the
final result.

The addition of exponents may produce exponent overflow. In this
case, an arithmetic fault interrupt is taken ani both ~perands

remain unchanged.

6-44

Normalization of the result can produce exponent underflow. If
PSW bit 19 is set, an 1rithmetic fault interrupt is taken, and
the register specified by R1 is unchanged. If exponent underflow
occurs and bit 19 of the current PSW is zero, no arithmetic f~ult
occur~. Zeros replace the contents of the register specified by
R1.

In the RX formats, the second operand must be locate1 on a
fullword boundary.

Fastest results occur when the second operand multiplier contains
sets of 4 or more contiguous ones or zeros.

29-693 ROO 1/79 6-45

6.5.26 Divide Double-Precision Floating-Point

Divide Double-Precision Floating-Point (DD)
Divide Register Double-Precision Floating-Point (DOR)

Assembler Notation

OD
DD
DDR

R1,D2(X2)
R1,,2(FX2,SX2)
R1,R2

Operation

Op-Code

7D
70
3[

Format

RX1,RX2
RX3
BR

Th@ exponents of the t~o operands, as derived from the excess-64
notation used in floating-point representation, are subtracte1 to
produce the exponent of the result. This exponent is converted
back to excess-64 notation.

The first oper~nd fraction is then divided by the second operand
fraction. Division continues until the quotient is normalized,
adjusting the exponent for each additional division require1.

No re•ainder is returned. The sign of the result is determined
by the rules of algebra. The R*-rounded quotient replaces the
contents of the double-precision floating-point reqister
specified by P1.

Condition Code

c v G L
c 0 0 0
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0

I ~ I ~ I g I g I

6-46

Double-precision result is zero
Double-precision result is less than zero
Double-precision result is qreater than zero
ExponPnt overflow, result is less than z2ro
Exponent 0verflow, result is 1reater than
zero
Exponent unrterf low
Divisor e1ual to 7.ero

29-693 ffOO 1/71

Proqramming Notes

Before starting the divide operation, th8 divisor is checked. If
it is equal to zero, the operation is aborted, and the arithmetic
fault interrupt is taken. Neither operand is ch~nqed.

The subtraction of exponents may produce exponent
this case, an arithmetic fault interrupt is
operands remain unchanged.

overflow. In
taken and both

Subtraction of exponents or the division process can proiuce
exponent underflow. Normalization of the result can produce
exponent underflow. If PSw bit 19 is set, an arithmetic fault
interrupt is taken, and the register specified by R1 is
unchanged. If exponent underflow occurs and bit 19 of thP­
current PSW is zero, no arithmetic fault occurs. Zeros re~lace
the contents of the register ~pecified by R1.

The 14-hexadecimal-digit first operand fraction is divided by the
14-hexadecimal-diqit second operand fraction, effectively
producing the 14-hexadecimal-digit quotient along with a number
of guard digits. The guard digits participate in the R*-roun1inq
of the final result.

In the RX formats, the second operand must he located on a
fullword boundary.

29-5g3 ROO 1/79 6-47

6.5.27 Fix Register Double-Precision {FXDR)

Assembler Notation Op-Code Format

FXDR R1,R2 3E RR

Operation

R1 and R2 specify a general purpose reqister and a
double-precision floating-point register, respectively. The
normalized floating-point number contained in th~ floating-point
register is ccnverted to an inteqer value by shifting and
truncating. The result is placed in the 1eneral register
specified by R1.

Condition Code

c v G L
x 0 0 0
x 0 0 1
x 0 1 0
x 1 0 1
x 1 1 0

Programming Note~

Result is zero or underflow
Result is less than zero
Result is greater than zero
Overflow, result is less than zero
Overflow, result is 1reater than zero

The range of the floating-point magnitude
non-zero integral result is:

(~) that produces a

± X'4880 OOOC 0000 0000' > M ~ ± X'4110 0000 0000 0000'

Double-precision floating-point maqnitudes greater thaP +X'487F
FFFF FFFF FFFF' or -X'48~0 0800 0000 0000' cause overflow. The
result is forced to X'7FFF FFFF' if positive or to X'8000 0000'
if negative. The V flag is set in the condition code along ~ith

either the G or L flag, depending on the sign of the result.

Double-precision floating-point magnitudes less than +X'4110 000J
0000' cause underflow, and the result is forced to zero.

In the event of overflow or underflow, no ~rithmetic fault
interrupt is taken even if enabled in the current PS~.

6-48 29-693 ROO 1/79

6.5.28 Float Register Double-Precision (FLOR)

Assembler Notation Op-Coie Format

F LDR R1,R2 3F RR

C per a ti on

R1 and R2 specify a double-pr~ci~ion floating-point reqister an1
a general purpose ~egister, respectively. rhe integer value
contained in the general register specified by R2 is converted to
a floating-point number and placed in the double-precision
floating-point register specified by P1.

Condition Code

c v ' .. .J L
x 0 0 0
'f_ 0 0 1
x 0 1 0

Programming Notes

Double-precision result is zero
Double-precision result is less than zero
Double-precision result is greater th~n zero

The full range cf fixed point integer values may be converted to
double-precision floating-point. The fixed point value X'7FFF
FFFF', the largest positive integer, converts to a double­
precision floating-point value of X'487F FFFF FFOO OOOJ'. The
fixed-point value X'8000 0000', the most negative integer,
converts to a double-precision floating-point value of X'C880
0 000 0000 0000 ••

The result in R1 is normalize1.

29-693 300 1/79 6-49

6.5.29 Load Single-Precision Floating-Point Reqister Fro• Dotib~e

Load Single-Precision Flo~ting-Point Register fr~m Double­
Precision Memory (LED)
Load Single-Precision Floating-Point Register fr~m Double­
Precision Register CLEDR)

Assembler Notation Op-Code Format

I, ED
LED
L EDR

R1,D2CX2)
R1,A2CFX2,SX2)
R 1, R 2

84
84
A4

RX1,RX2
RX3
RR

Do~ble-precision f loatinq-point data from the second operand
location is R*-rounded to single-precision accuracy, anj placed
in t~e single-precision floating-point register specified by R1.

Condi·tion Code

c v G L
0 0 0 0
0 0 0 ,
0 0 1 0

\f} i , 0 0
0 1 0 1
0 1 1 0

Programming Note~

Floating-point result is zero
Floating-point result is less than zero
Floating-point result is greater than zero
Exponent underflow
Exponent overflow, result is less than zero
Exponent overflow, result is greater than
zero

R1 and R2 must specify even-numbered registers.

Rounding of the result may cause exponent overflow.
case, the register specified by R1 is unchanged,
arithmetic fault interrupt is taken.

In this
~nd the

6-50 29-:693 ROO i/79

Normalization of the result may produce exponent underflow. If
enabled by PSW bit 19, the arithmetic fault interrupt is taken,
and the reqister specified by R1 remains unchanged. If bit 19 of
the current FSW is zero, zeros replace the contents of the
register specified by P1.

In the RR format, double-precision
even/cdd Pair of general registers
the most-significant 32 bits,

data is contained in the
specified by R2. R2 contains

and R2+1 contains the
least-significant 32 bits. If R2 is not ~n even numbered
register, unpredictable results occur.

In the RX formats, the second operand must be located on a
fullword boundary.

29-693 R09 1/79 6-51

6.5.30 Load Double-Precision Floating-Point Register From Single

Load rouble-Precision Floating-Point Register from Single­
Precision Memory (LDE)
Load Double-Precision Floating-Point Register from Single­
Precision Register (LDER>

Assembler Notation

LDE
LDE
LDER

R1,D2(X2)
k1,A2(FX2,SX2)
R1,R2

Operation

Op-Code

87
87
A7

Format

RX1,RX2
8X3
RR

Single-precision floating-point data from the second operand
location is converted to double-precision data by appending
trailing zeros. The result replaces the contents of the
double-precision floating-point register specified by R1.

Condition Code

c v G L
0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

Programming Notes

Double-precision result is zaro
Double-preci3ion result is less than zero
Double-precision result is yreater than zero
~xponent underflow

The registers specified by R1 and R2 ~ust be even-numbered
registers.

Normalization of the result may produce exponent underfl~v. If
enabled by PSW bit 19, the arithmetic fault interrupt is t3ken,
and the register specified by R1 remains unchanged. If bit 19 of
the current PSW is zero, n0 arithmetic fault occurs. Zeros
replace the contents of the register specified by R1.

In the RX formats, the second operand must b~ located on a
fullword boundary.

6-52 29-691 R~O 1/79

6.5.31 Store Dcuble-Precision Floating-Point Register in Single­
Precisicn Memory CSTDE)

Assembler Notation

STDE
STDE

R1,D2(X2)
R1,A2(FX2,SX2)

Operation

Op-Code

82
82

Format

RX1,RX2
RX3

Data from the dcuble-precision floating-point re1ister specified
by R1 is R*-rounded to single-precision accura=y, and stored in
the fullword second operand location.

Condition Code

Unchanged

Programming Notes

The register specified by R1 must be an even-numbered register.

Normalization cf the rounded result may
underflow. In this case, zero, X'OOOO
contents of the second operand location.

produce exponent
OOOJ', replaces the

Rounding of the result may cause exponent overflow. In this
case, the contents of the second operand location remain
unchanged, and the arithmetic fault interrupt is taken.

The second operand must be located on a fullword boundary.

29-693 ROO 1/79 6-53/6-54

611

7.1 INTRODUCTICN

CHAPTER 7
STRING OPERATIONS

String operaticns deal with operands that ~re strings of
consecutive bytes in memory beginning and ending on byte
boundaries. Information cont~ined in such a string may represent
packed decimal data or ASCII character information including
unpacked deci~al data.

7.2 CECIMAL DATA FORMAT DEFINITIONS

Decimal operands can be in either packed or unpacked (zoned)
format. The decimal operands are considered as right-aligned
integers. The address of a decimal operand specifies the address
of the left-most or most significant byte of the operand.

7.2.1 Packed Decimal

A number represented in packed decimal format is a fixe1-point,
signed integer, and consists of from 1 to 16 consecutive bytes.
(See Figure 7-1.) Each byte is divided into two digit fields;
thus each byte, except for the right-most in the string, contains
two decimal digits represented in binary co1e. The only values
allowed in a decimal digit field are O through 9. The right-most
byte in the string contains the least si~nificant decimal digit
and the sign digit.

BYTE 1 BYTE 2 BYTE 3 I I BYTE14 BYTE15 BYTE16

---D-,--..1--D_2 ____ D_3 ___ 1_D_4 _____ D_s __ l __ D_6 __ 1---'; l __ D_2_1 ___ D_2_s___.. __ D_29 __ L.-D-3_0--'--D-3_1__. ___ s~

Di, D2, D3, D30• D31 =DECIMAL DIGITS
S =SIGN DIGIT

Figure 7-1 Packed Decimal Format

29-693 ROO 1/79 7-1

612

There are two standard values for the
plus and hexadecimal D for minus.

sign S: hexadecimal C for
However, the hexadecimal
recognize1 for plus, and v a 1 u es 3, A, E, and F are a 1 so

hexadecimal R is recognized for minus.
2 and 4 through 9, are illegal in the S

Other values, 0 through
position.

A packed decimal number contains an odd number of decimal digits.
The most significant digit (zero or nonzero) of the number is in
bit positions 0-3 of the left-most byte. The least significant
digit occupies bit positions 0-3 of the right-most byte of the
string, immediately preceding the sign digit, s. Any unused
digit at the beginning of the string is filled with a leading
zero.

1.2.2 Unpacked (Zoned) Decimal

A number represented in unpacked decimal format is a fixed-point
signed integer, and consists of from 1 to 31 consecutive bytes.
(See Figure 7-2.) Each byte, with the exception of the
right-most byte, is assumed to contain the 7-bit ASCII equivalent
of a decimal digit. Thus, the to~ four bits contain zone
information and the bottom four bits in each byte contain the
binary equivalent of a decimal diqit from 0 through 9.

When the processor generates an unpacked decimal byte string, the
zone digit is always '3'. However, any zone value is accepted in
an unr.acked decimal operand, since the zone has no effect on the
operation of the instructions and is not examined. In the
right-most byte of the string, S is the sign digit. Acceptable
values for the sign digit are the same as those defined for
packed decimal data.

BYTE 1

I ZONE o,

I BYTE 2 BYTE 3

i ZONE I D2 i ZONE I
ZONE

D1 I D2, D3, ... ,D30. D31
s

BYTE 29 BYTE 30

I I I I I ZONE I D29 I ZONE I D3o

ZONE DIGIT
DECIMAL DIGITS
SIGN DIGIT

Figure 7-2 Unpacked Decimal Form~t

BYTE 31

The most significant digit of an unpacked decimal number occupies
the left-most byte of the string. The least significant digit
occupies the right-most byte of the string.

7-2 29-693 ROO 1/79

7.3 INSTRUCTION FORMATS

The two binary/dP-cimal conversion instructions use the standard
RX format. The remaining string operations use the RXRX format.

In the instruction descriptions, the RXRX format is diagrammed as
follows:

OP ~i1},~~ ~~i~,sx2>}.~i~.~~ ~~i~.sx2~
where any field may have either one of the options shown in the
braces. R1/=L1 ref~rs to the first operand length an1 R2/=L2
refers to the second operand length. Length of operand strings
is always expressed as a number of bytes. These can v~ry from 0
to 15 for immediate length formats, and from 0 to maximum memory
for register length.

7.4 STRING INS1RUCTIONS

The instructions describej in this section are:

LPB

STBP

MVTU
MOVE
~OVEP
CPAN
CPA NP
P~V

PMVA
UMV

U~VA

Load Packed Decimal String as Binary
(convert from decimal to binary)
Store Binary as Packed Decimal String
(convert from binary to decimal)
Move Translated Until
Move and Pad
Move and Pad with Default Pad
Compare Alphanumeric
Compare Alphanumeric with Default Pad
Pack and Move
(convert unpacked decimal string to packed decimal string)
Pack and Move Absolute (forced positive result)
Unpack and Move
(convert packed decimal string to unpacked decimal string)
Unpack and Move Absolute (force positive result)

29-693 ROO 1/79 7-3

7.4.1 Load Packed Decimal String as Binary CLPB)

Assembler Notation

LPB
LPB

Operation

R1,D2(X2)
R1,A2(FX2,SX2)

Op-Code

6F
6F

Format

RX1,RX2
RX3

The second operand address points to the left-most byte of a
packed decimal string of length sixteen bytes (31 packed decimal
diQits plus sign). Digits of the operand are checked for
validity as the operand is converted to a 64-bit, two's
complement binary number. The result replaces the contents of
the even/odd qeneral register pair specified by R1 and R1+1.

Condition Code

c v G L
0 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0

Programming Notes

Result is zero
Result is less than zero
Result is greater than zero
Overflow

This instruction is interruptible.

R1 must specify an even-numbered register. If not, unpredictable
results occur.

If an illegal decimal digit or sign digit is detected during
conversion, the registers specified by R1 ~nd R1+1 remain
unchanged, and a data format fault interrupt is taken.

The largest positive number that can be processed without
overflow is 9,2~3,372,036,854,775,807.

7-4 29-693 ROO 1/79

7.4.2 Store Binary As Packed Decimal String (STBP)

Assembler Notation

STBP
STBP

Opera ti on

R1,D2(X2)
R1,A2(FX2, SX2)

Op-Code

6E
6E

Format

RX1,RX2
RX3

The contents of the even/odd general register pair specified by
R1 and R1+1 are converted and stored in memory as a packed
decimal strinq of lenQth 16 bytes (31 packed decimal digits plus
sign). The left-most byte is stored at the address specified by
the second operand.

Condition Code

c v G L
0 0 0 0
0 0 0 1
0 0 1 0

Proqramminq Notes

Result is zero
Result is less than zero
Result is greater than zero

This instruction is interruptible.

R1 must specify an even-numbered register. If not, unpredictable
results occur.

2<)-693 ROO 1/79 7-5

7.4.3 Move Translated Until (MVTU)

Op-
Assemb ler Notation Code

MVTU (=~~}.Omg,SX2J .{=g}(~~~~~~.sx2) BC

Function
Code

00

F~rmat

RXRX

Opera ti on

General register 0 contains the escape character whose occurr~nce
causes the instruction to terminate. General re~ister 2 contains
the address cf a translation table. This translation table is a
simple list of 256 single byte entries, not to be confused with
the table used by the translate instruction. The first operan1
string begins at the address specified by the first operand
address. The length of this strin9 is equal to either the
contents of the register specified by R1, or the value of L1.
The second operand string begins at the address specified by the
second operand address. The length of this string is equal to
either the contents of the re1ister specified by R1, or the value
of L2.

Successive bytes from the second operand string are moved to the
first operand string, as follows:

1. A byte is fetched from the second operand string (this
is the ~rgument byte). The contents of general register
2 are tested. If ~eneral register 2 contains zero, no
translation occurs. If general reqister 2 does not
contain zero, it contains the address of a translation
table of maximum size 256 bytes. In this case, the
argument byte fetched from the second operand string is
used as an index into the translation table, and the
byte at the resulting address is fetchei and used as the
argument byte.

2. The argument byte is compared with the escape character
contained in bits 24:31 of general register o. If the
bytes ~re the same, the C flag is set in the condition
code, and the instruction terminates. Otherwise, the
argument byte is stored in the first operand string, and
the next successive byte is processed. This operation
is rep~ated until either the escape character is
encountered, the first operand string has been filled,
or the second operand string has been exhausted.

7-6 29-693 ROO 1/79

3. When the instruction terminates, the address of the next
byte to be moved from the second operand strinq is
returned in general register 1.

Condition Code

c v G L
0 0 0 0 Entire string moved
0 1 0 0 First operand filled before entire string

moved
1 0 0 0 Escape character encountered

Programming Notes

This instruction is interruptible.

The contents of general register 1 may change during instruction
execution, but are not valid until instruction termination.

Bytes are moved from the second operand string
operand string in a left-to-right sequence.
overlap, such that the source is to the left of the
unpredictable results occur.

29-693 ROO 1/79

to the first
If the strings

destination,

7-7

7.4.4 Move

~ove and Pad (MOVE)
Move and Pad with Default Pad (MOVEP}

MOVE

MOVEP

Assembler Notation
Op­
Code

r R 1t ro 2 (x 2) l r R 2l fn 2 (x 2 } l 8 c
t11;,)!2<FX2,sx2~,l_=L2J,\!2<FX2,SX2j

(R 1l (o 2 (X 2) l r R 2} (n 2 (X 2) l 8 C
tt~,~2(FX2,SX2~,tL2 ,~2(FX2,SX2j

Operation

Function
Code

01

21

Format

RXRX

RXRX

The first operand string begins at the address specified by the
first operand address and has a length equal either to the
contents of the register specified by R1, or to the value of 11.
The second operand strin7 begins at the address specifie1 by the
second operand address and has a length equal either to the
contents of the register specified by R2, or to the value of ~2.

Successive bytes from the second operand string are moved to the
first operand string. If the second operand string is exhausted
before the first operand string is filled, the remaining bytes in
the first operand string are filled using the pad character. If
MOVE is specified, the pad character is contained in bits 24:31
of general register. o. If MOVEP is specified, the remainder of
the first operand is filled with ASCII space characters (X'20').
If the first operand string is filled before the second operand
strinQ is exhausted, overflow results, and the operation is
terminated.

When the instruction terminates, the address of the next byte to
be moved from the second operand string is returned in qeneral
rec;iister 1.

Condition Corie

c v G
0 0 0
0 1 0

7-8

L
0
0

entire string moved
first o~erand filled before entire strinq
moved

29-693 ROO 1/79

Programming Notes

These instructions are interruptible.

The contents of general reQister 1 may change during instruction
execution, but are not valid until instruction termination.

If MOVEP is specified, the contents of general register O are
ignored.

Bytes are moved from the second operand string to the first
operand string in a left-to-right sequence. If the strings
overlap such that the source is to the left of the destination,
unpredictable results occurs.

29-693 ROO 1/79 7-9

7.4.5 Compare

Compare Alphanumeric (CPAN)
Compare Alphanumeric with Def3ult Pad (CPANP)

Op- Function
Assembler Notation Code Code For•at

CPAN c RD ~2(X2) } (RD~2(X2))
BC 02 RXRX

=L1 , A2(FX2,SX2) , =12, A2CFX2,SX2)

CPA NP (RD (D2(X2)) c R~~2(X2) ~ BC 22 RXRX
=L1 , A2(FX2,SX2) , =L2, A2(FX2,SX2)

Operation

The first operand string begins at the address specified by the
first operand address and has a length equal either to the
contents of the register specified by R1, or to the value of L1.
The second operand string begins at the address specified by the
second operand address and has a length equal either to the
contents of the register specified by R2, or to the value of L2.

The two strings are compared a byte at a time until the first
unequal byte pair is found, or until the lenqth of both strings
is exhausted.

If the strings are of unequal length, the shorter string is
logically extended to the lenqth of the longer string. If CPAN
is s~ecified, this is done by usino the Pad character contained
in bits 24:31 of general register o. If CPANP is specified, the
ASCII- space character CX'20') is used as the default pad
character.

Upon termination, general register 1 is set equal to the number
of second operand bytes that successfully matched corresponding

operand string. This count includes pad
characters if the second operand string was longer than the
first.

For example, a first operand string of length 3 bytes contains
the characters ABC. A second operand string ~f length 6 bytes
contains the characters ABCDDD.

7-10 29-693 ROO 1/79

A CPANP instruction returns a condition code of 0001 (first
operand string less than second operand strinq) and general
register 1 is set equal to 3. The first non-matching character
was the character 'D' in the second operand string. Given the
same operand strings, a CPAN instruction with general register O
set equal to a pad character of 'D' returns a ~ondition code of
0000 (strings are equal including pad characters) and general
register 1 is set equal to 6.

Condition Code

c v G L
0 0 0 0
0 0 1 0

0 0 0 1

Programming Notes

Strings are equal
First operand string greater than second·
operand string
First operand string less than second operand
string

If CPANP is specified, the contents of general register O are
ignored.

These instructions are interruptible.

29-693 ROO 1/79 7-11

7.4.6 Pack and Move

Pack and Move (FMV)

Pack and Move Atsolute (PMVA)

Assembler Notation
Op­
Code

PMV (R 1l (n 2 (X2) l (R 0 (o 2 (x 2) l 8 c
\.:=L1J 1 \!2CFX2,SX2)j,_:=L:f ,\!2CFX2,SX2j

PMVA (R 1t (o 2 (X 2) l (R 2l (o 2 (X 2) l 8 C
\:L1J,\!2CFX2,SX2~,l=L2J,l~2(FX2,SX2~

Operation

Function
Code

03

23

Format

RXRX

RXRX

The first operand string begins at the address specified by the
first operand address. The length of this strin~ in bytes is one
greater than either the contents of the register specified by R1,
or the value of L1. The second operand string begins at the
addre~s specified by the second operand address. The length of
this stting in bytes is one greater than either the contents of
the register specified by R1, or the value of 12.

The second operand string consists of unpacked decimal data
digits with a sign digit. Data in this string is packed and
replaces the first operand string. Leadin~ zeros are supplied as
required to fill the higher-order positions of the first operand
string.

Condition Code

c v G L
0 0 0 0
,... v f\ 1 v A v I

0 x 1 0
0 , x x
1 x x x

7-12

Result is zero
Result is
Result is greater than zero
Overflow
Invalid digit in second operand string

29-693 ROO 1/79

Programming Notes

PMVA causes the sign digit of the first operand string to be
forced positive.

Overflow occurs if the length of the first operand string is not
sufficient to ccntain the packed representation of the second
operand string. The V flag is set in the condition code, and the
specified number of digits in the first operand string receive
packed data froD the second operand string. Higher-order digits
of packed data are lost in this case.

Leading zero digits do not cause overflow. They are truncated if
necessary.

These instructicns are interruptible instructions.

Since packing is done conceptually from right to left with any
overlapping allowed, the instruction PMV can be used to check the
validity of decimal data. The illegal digit cases shown in Table
7-1 occur during instruction execution even if the original
source operand does.not contain any illegal digits.

613

TARLE 7-1 ILLEGAL DIGIT CASES {PACK AND MOVE)

SOURCE DESTI~ATION ILLEGAL DIGIT FXCEPTION
OP EB AND OPERAND CONDITION

OPN2 OP~1 CASE 1 CASS 2 CASE 3

Unpacked Packed No No Yes

Case 1 is when the operands overlap completely.

Case 2 is when the
position of OPN1 is
position of OPN2.

low-order (least significant)
to the right of the low-order

Case 3 is when the low-order position of OPN1 is to the
left cf the low-order position of OPN2.

29-693 ROO 1/79 7-13

7.4.7 Unpack and Move

Unpack and Move (UMV)
Unpack and Move Absolute (UMVA)

Op- Function Format
Assembler Notation Code Code

UMV GR~ ~2(X2) 0 (p~} 02(X2) }
BC 04 (BXRX)

=11 , A2(FX2,SX2) , =12 , A2(FX2,SX2)

UMVA t RD ~2 (X2) ~ CD Q2(X2) }
SC 24 CRXRX)

=11 , A2CFX2,SX2) , =L~ , A2CFX2,SX2)

Operation

The first opPrand string begins at the address specified by the
first operand address. The length of this strin~ in bytes is one
greater than either the contents of the register specified by R1,
or the value of 11. The second operand string begins at the
address specified by the second operand address. The length of
this string in bytes is one greater than either the contents of
the register specified by R2, or the value of 12.

The second operand string consists of packed decimal data digits
vith a sign digit. Data in this string is unpacked and replaces
the first operand string. Leading zeros are supplied as required
to fill the higher-order positions of the first operand string.

Condition Code

c v G L
0 0 0 0
0 x 0 1
0 x 1 0
0 1 x x
1 x x x

7-14

Result is zero
Result is less than zero
Result is greater than zero
Overflow
Invalid digit in second operand string

29-693 ROO 1/79

Programming Notes

UMVA causes the sign digit of the first operan1 string to be
forced positive.

Overflow occurs if the length of the first operand string is not
sufficient to contain the unpacked representation of the second
operand string. The V flag is set in the condition code, and the
specified number of digits in the first operand string receive
unpacked data from the second operand string. Higher-order
digits of unpacked data are lost in this case.

Leading zero digits do not cause overflow. They are truncated if
necessary.

These instructions are interruptible instructions.

614

Since unpacking is done conceptually from right to left with any
overlapping allcwed, the instruction UMV can be used to check the
validity of decimal data. The illegal digit cases shown in Table
7-2 occur during instruction execution, even if the original
source operand does not contain any illegal digits.

TABLE 7-2 ILLEGAL DIGIT CASES (UNPACK AND MOVE)

SOURCE nESTINAIION ILLEGAL DIGIT EXCEPTION
OPERAND OPERAND CO~DifJON

OPN2 OPN1
CASF 1 CASE 2 CA3E 3

Packed Unpacked Y2s Yes Yes

Case 1 is when the operands overlap completely.

Case 2 is when the low-order (least significant)
position of OPN1 is to the right of the low-order
position of OPN?.. The exception occurs unless the
low-order position of OPN1 is to the right of the
low-order position of OPN2 by the number of bytes in
OPN2 minus 2.

Case 3 is when the low-order position ~f OPN1 is to the
left cf the low-order position of OPN2.

29-693 ROO 1/79 7-15/7-16

CHAPTER 8
HIGH SPEED DATA HANDLING INSTRUCTIONS {OPTIONAL)

8.1 INTRODUCTICN

The data handling instructions are used to compute polynomial
error check redundancy characters, as used by most data
communications protocols. Communications protocols supported by
this option include, but are not limited to, the following:

1. Binary Synchronous Communications (BISYNC or BSC)
IBM's videly accepted half-duplex protocol uses the CRC
BISYNC error check polynomial (x16 + x15 + x2 +1).

2. Synchronous Data Link Control
full-duplex protocol uses the
po 1 y no mi a 1 (x 16 + x 12 + x 5 + 1) •

(SDLC)
CRC SDLC

IRM's new
error check

3. Advanced Data Communications Control Procedure CADCCP)
- ANSI's proposed National Standard full-duplex protocol
uses CRC SDLC.

4. High Level Data Link Control (HDLC) - The International
Standard Organizations full-duplex protocol uses CRC
SDLC.

8.2 DATA HANDLING INSTRUCTION FORMATS

The optional data handling instructions use the Register to
Register (RR), and the ReQister and Indexed Storage (RX) formats.

8.3 CATA HANDLING INSTRUCTIONS

PB Process Byte
PBR Process Ryte Register

29-693 ROO 1/79 8-1

8.3.1 Process Eyte CPB)

Assembler Notation

PB
PB

Set-Up

R1,D2(X2)
R1,A2CFX2,SX2)

Op-Code

62
62

Format

RX1, RX2
RX3

·:,1~
0

________ x ________ ~_l~
8

_. ___ c_H_E_c_K~c-o_o_E ____

1

_
5

~f_
6

______ x _________

23

--&..1_

4

___ o_A_T_A __ B_Y_T_E ____

3

_

1

I
Bits 24:31 of the register specified by R1 contain the data byte
to be processed. Bits 8:15 of the register specified by R1
contain a check code to indicate the type of processing. This
byte is interpreted as follows:

X'OO'
X'01'
X'02'

Cumulative check zero (CRC BISYNC)
Cumulative check one (CRC SDLC)
Cumulative check two (LRC)

The second'operand address points to a halfword residual checksum
to be included in the cumulative check.

Opera ti on

If CRC BISYNC is specified, the data byte and the old residual
check~u• participate in the generation of a new residual checksum
b a se d,, on the e v a 1 u a ti on of the po 1yno.mia1 (x 16 + x 15 + x 2 + 1) •

If CRC SDLC is specified, a simildr operation is perfo~med, using
the polynomial (xl6 + x 12 + x5 + 1).

Jn both of these cases, the new residual checksum replaces the
old residual checksum at the second operand location.

If LRC is specified, the EXCLUSIVE OR of the data byte with the
old residual checksum replaces the old residual checksum at the
second operand location.

Condition Code

Unchanged

8-2 29-693 ROO 1/79

Programming Notes

Bits 0:7 and 16:23 of the register specified by R1 are ignored.

The register specified by R1 remains unchanged.

The second operand must be located on a halfword boundary.

Undefined check codes should not be used.
results are undefined.

If they are, the

Example: PB

This example performs a process byte instruction and stores the
residue in RES!tUE.

Register 1
where:

RESIDUE

Assembler Notation

PB R1,RESIDUE

contains x•ooo1007A'
01 = CRC SDLC
7A = DATA BYTE

contains X'D053' =old residue

Comments

RESIDUE on halfword boundary

Result of PB Instruction

(R1) unchanged by this instruction
(RESICUE) = X'BC13' = new residue
Condition Code unchanqed by this instruction

29-693 ROO 1/79 8-3

8.3.2 Process Eyte ReQister (PBR)

Assembler Notation Op-Code Format

PBR F.1,R2 32 RR

Set-Up

616
__ Q 7 8 1p 16 23 24 - 3~

I

R1_ x CHECK CODE x DATA BYTE

_R2 0 RESIDUAL CHECKSUM

Bits 24:31 of the register specified by R1 contain the data byte
to be processed. Bits 8:15 of the register specified by R1
contain a check code indicating the type of processing. This
byte is interpreted as follows:

x•oo•
x • 01 •
x. 0 2.

Cumulative check zero CCRC BISYNC)
Cumulative check one (CRC SDLC)
Cumulative check two (LRC)

The second operand is a fullword contained in the reQister
specified by B2. Bits 16:31 of the second operand contain the
residual checksum to be included in the processing.

O pera_tion

If CRC BISYNC is specified, the data byte anj the old
checksum participate in the generation of ~ new
checksum, based on the evaluation of the polynomial (x16
x2 + 1).

residual
residual
+ x15 +

If CRC SDLC is specified, a similar operation is performed, using
the po 1yno!ftia1 (x 16 + x 12 + x 5 + 1) •

In both these cases, the new residual checksum replaces the
contents of bits 16:31 of register specified by R2.

If LPC is specified, the EXCLUSIVE OR of the data byte with the
old residual checksum replaces the old residual checksum in the
second operand.

8-4

Condition Code

Unchanged

Programming Notes

Bits 0:7 and 16:23 of the re~ister specified by R1 are ignored.
The register specified by R1 remains unchanged. Bits 0:15 of the
register specified by R2 are not used and must be zero.

Undefined check codes should not he used.
results are undefined.

29-693 ROO 1/79

If they are, the

8-5/8-6

CHAPTER 9
INPUT/OUTPUT OPERATIONS

9.1 INTRODUCTICN AND CONFIGURATION OF I/0 SYSTEM

Input/Output (I/0) operations, as defined for the Series 3220
Processor, provide a versatile means for the exchange of
information between the processor, memory, and external devices.
Communication between the processor and external devices is
accomplished over the I/0 bus. Data transfers over the I/0 bus
require processor intervention, either programmed or automatic,
for each item transferred.

Direct data transfers between external devices and memory are
accomrlished over the EDMA Bus, and proceed independently of the
processor so other program processing can proceed simultaneously.
For mere details refer to the following manuals:

EDMA Bus Universal Interface Instruction Manual, Publication
Number 29-423

ESELCH Programming Manual, Publication Number 29-529

9.2 rEVICE CONTROLLERS

9.2.1 Function

The basic function of a 1evice controller is:

1. To provide synchronization with the processor

2. To provide device address recognition

3. To transmit operational commands from the processo~· to
the device

4. To translate device status into meanin~ful information
for the processor

5. To request processor attention when required

In addition, a controller may generate parity; convert serial
data to parallel; buffer incoming or outgoing data; or perform
other device-detendent functions.

29-693 ROO 1/79 9-1

9.2.2 Device Addressing

The system design allows as many as 1,023 external devices. F.ach
device must have its own address or device number, ranging from
X'001' through X'3FF'. (Device number X'OOO' is not assigned.)
The minimum system provides for 255 device numbers. Larger
systems may have either 511 or 1,023.

9.2.3 Processor/Controller Communication

Device controllers may communicate with the processor either
directly, using the I/O bus, or indirectly through a selector
channel. Communication between the processor an1 controller is
a bl-directional, request/response operation.

The ~rocessor can initiate communication by sending the device
number out onto the I/0 bus. When a controller recognizes that
number as its address, it returns a synchronization signal to the
processor and remains ready to accept commands from the
processor. The processor waits up to 28 microseconds for the
synchronization signal. If no signal is received within thi3
period, the processor aborts the operation and notifies the
controlling program. In this case, the status returned is X'04'
known as False Sync. The condition code in the PSW is also set
to X'4' (V flag=1). Controller malfunction and software failure
(incorrect device address) are the most common causes of this
type of time-out.

A controller can initiate communication with the processor by
generating an attention signal. If the processor is in an
interruptible state as defined by bits 17 and 20 of the PSW, this
signal causes the processor to temporarily suspend the normal
"fetch instruction/execute/fetch next instruction" operation at
the end of the execute phase, and to transmit an acknowledge
signal over the I/O bus. The controller requesting attention
responds with a synchronization signal and transmits its device
number to the processor.

9.2.4 Device Priorities - External Interrupt Levels;
Interrupt Queuing

External Interrupt Levels

The Model 3220 architecture provides four external interrupt
levels. PSW bits 17 and 20 define the external interrupt enable
status of the processor.

When interrupt requests occur on more than one interrupt level,
the request on the highest priority interrupt level is
acknowledged first. Level 0 is the hiQhest; level 3 is the
lowest in priority.

9-2 29-693 ROO 1/79

Interrupt Queuinq

Any device controller attempting to interrupt the processor
activates one of the four attention lines sensed by the processor.
and holds that line active until the processor acknowledges the
interrupt. Requests for attention are asynchronous; therefore
more than one request may be pendinQ at any time on any interrupt
level. The system resolves these conflicts according to device
priority, determined by the physical placement of the 1evice
contrcller on the I/O bus. When two or more device controllers
on the same interrupt level request attention at the same time,
the controller nearest to the processor in the RACKO/TACKO
priority wiring pattern captures the acknowledge signal from the
processor and is serviced first. All other interrupting
controllers of lower priority must wait for the next acknowledge
signal from the processor.

9.3 INTERRUPT SERVICE POINTER TABLE

Device requests for service may result in either an immediate
interrupt or an auto driver channel operation. The processor
chooses one of these options according to information contained
in the interrupt service pointer table.

The interrupt service pointer table is an ordered list containing
one entry for each possible device number in the system. The
table starts at memory locati~n X'OOOODO' and contains a halfwor1
entry for each device number in the system. For a minimum system
(255 device numbers), the table exten1s through memory location
X'0002CF'; for a maximum system (1023 device numbers), the table
extends through memory location X'0008CF'. The soft~are

controlling I/O operations must set up the table.

When the processor receives the device address after
acknowledging a request for service, it adds twice the device
address to X'OOODO'. The result is the address, within the
table, of the entry reserved for the device requesting attention.

If the entry in the tablP is ~ven (bit 15 equals 0), the
processor takes an immediate interrupt and transfers control to
the software interrupt service routine at the aidress contained
in the table. If the entry in the table is o1d (bit 15 equals
1), the processor transfers control to the auto driver channel,
without interrupting the currently running program.

At the time the proc~ssor transfers control to the software
interrupt service routine, the old PSW (current at the time of
the device request) has been saved in registers 0 and 1 of the
new register set. The device number is saved in register 2 an:
the Etatus in register 3. The status portion of the current PSW
has been replaced by the value X'OOOO?BnX', where n is the new
register set number equal to the device interLupt level, and X is
the least significant 4 bits of the device status. Machine
malfunction interrupts and hiqher level I/O interrupts are
enabled and all other interrupts are disable1. The entry in the
interrupt service pointer table is now the new location c~unter.

29-693 ROO 1/79 9-3

9.4 CONTROL OF I/0 OPERATIONS

The 32-bit I/0 structure allows several data transfers depending
on the particular application and on the characteristics of the
external devices. Primary methods of data transfer between the
processor and external deviceE are:

• One byte or one halfword to or from any of the general
registers

• One byte or one halfword to or from memory

• A block of data to or from memory under control of a selector
channel or EDMA universal interface

• Multiplexed blocks of data to or from memory under control of
the auto driver channel

Standard device controllers require a predetermined sequence of
commands to effect data transfers. These commands address the
device, put it in the correct mode, and cause data to be
transferred. Because all I/0 instructions are privileQed
operations, I/O control programs must run in the supervisor mode,
i.e., with bit 23 of the current PSW zero. I/0 control programs
should disable immediate interrupts or enable only higher level
interrupts, as controlled by PSW bits 17 and 20.

9.5 STATUS MONITORING I/0

The simplest form of I/O programming is status monitoring I/O.
In this mode of operation, only one device is handled at a time,
and the processor cannot overlap other operations with the data
transfer. The sequence of operations in this type of programming
is:

1. Address the device and set the proper mode (output
command instruction).

2. Test the device status (sense status instruction).

3. Loop back to the sense status
status byte indicates that
(conditional branch instruction).

instruction
the 1evice

until the
is ready

4. When the device is ready, transfer the data (read or
write instruction).

5. If the transfer is not complete, branch back to the
sense status instruction. If it is complete, terminate.

9-4 29-693 ROO 1/79

9.6 INTERRUPT DRIVEN I/0

Interrupt driven I/0 allows the processor to take advantage of
the disparity in speed between itself and the external devices
beinq controlled. With status monitoring, the processor spends
time waiting for the device. With interrupt driven proqramminq,
the processor can use this time performinq other functions. This
kind of programming establishes at least two levels of operation.
On one level are the interrupt service programs. On the other
level are interruptible programs that run with the immediate
interrupt enabled.

Before starting interrupt driven operations, the interrupt
service pointer table must be set up. This table starts at
memory location x•oooooo• and must contain a halfword address
entry for every possible device. The table is ordered accordinQ
to device addresses in such a way that X'OOOODO' plus two times
the device address equals the memory address of the table entry
reserved for that device. The value placed in the location
reserved for a device is the address of the interrupt service
routine for the device.

For example, if a Teletype is connected at an address of X'02'
and the interrupt routine resides in memory at address X'3000',
the setup involves writinQ X'3000' at memory location X'D4'.
Note that X'D4'=X'DO'+ 2 times the Teletype address.

Although there may be gaps in device address assignments, the
interrupt service pointer table should be completely filled.
Entries for non existent devices should point to an error
recovery routine. This precaution prevents system failure in the
event of spurious interrupts caused by hardware malfunction or by
improper use of the simulate interrupt instruction.

The next step is to prepare the device for the transfer,
preferably with the immediate interrupts disabled. Jnce the
table pointer has been set up and the device prepared, the
processor can move on to an interruptible program.

The sequence of operation in this type of program is:

1. Set up the interrupt service pointer table to vector to
error addresses for undefined devices.

2. Store the address of the software interrupt
routine at two times the device number plus Y.'DO'
is starting address of s9rvice pointer table).

3. Set up the software interrupt service routine.

4. Set up the device an1 enable device interrupts.

5. Enable I/O interrupts in the PSw.

29-693 ROO 1/79

service
CX'DO'

9-5

When the device signals a need for service, the processor saves
its current state and transfers control to the interrupt service
routine at the location specified in the interrupt service
pointer table. At this time, the current PSW! has a status that
indicates running state, machine malfunction interrupt enabled,
higher level I/O interrupts enabled, and all other interrupts
disabled. The condition code contains bits 4:7 of the device
status. Registers O and 1 of the new set contain the old PSW,
indicating the status and location of the interrupted program.
Register 2 of that set contains the device address. Register 3
contains the device status.

The interrupt service routine should:

1. check the device status in Register
satisfactory,

2. make the transfer, and

3, and if

3. return to the interrupted program by reloading the old
PSW from registers O and 1 CLPSWR RO).

The interrupt service routine should not enable immediate
interrupts on its own interrupt level. This would allow other
interrupt requests to be acknowledged, and the contents of
registers 0:4 could be lost. If it is necessary to enable
immediate interrupts on the same level, the routine should save
the register set, switch to a different register set, save it if
necessary, and then enable immediate interrupts.

9.7 SELECTOR CHANNEL I/0

9.7.1 Introduction

The selector channel controls the transfer of data directly
between high speed devices and memory. As many as 16 devices may
be attached to the selector channel, only one of which may be
operating at any one ti•e. The advantage in using the selector
channel is that other program processing may proceed
simultaneously with the transfer of data between the axternal
device and memory. This is possible because the selector channel
accesses memory on a cycle stealinQ basis, permitting the
processor and the channel to share memory. In some cases,
execution times of the program in progress may be affected, while
in others, the effect is negligible. This depends upon the rate
at which the selector channel and processor compete for memory
cycles.

The selector channel is linked to the processor over the I/0 bus.
It has its own unique device number which it recognizes when
addressed by the processor. Like other device controllers, it
can request processor attention throuQh the imme1iate interrupt.

9-6 29-693 ROO 1/79

9.7.2 Selector Channel Devices

The selector channel has a ~rivate bus similar to the processor's
I/0 bus. Controllers for the devices associated with the
selector channel are attached to this bus. When the selector
channel is idle, its private bus is connected directly to the I/J
bus. If this condition exists, the processor can address,
command, and accept interrupt requests from the devices attached
to the selector channel. When the selector channel is busy, this
connection is broken. All communication between the processor
and devices on the selector channel is cut off. Any attempt by
the processor to address a device on the channel when it is husy
results in instruction time-out.

9.7.3 Selector Channel Operation

Two registers in the selector channel hold the current memory
address and the final memory address. With the use of write
instructions, the control software places the address of the
first byte of the data buffer into the current register and the
address of the last byte into the final address register. This
is done before starting a selector channel operation. During the
data transfer, the channel increments the current address
register by one for each byte transferred. When the current
address equals the final address, the last byte has been
transferred, and the channel terminates.

The selector channel accesses memory a minimu~ of one halfword at
a time; therefore, the transfer must always involve an integral
numbe~ of halfwords. The starting address of the data buffer
must always be on an even byte (halfword) boundary. The final
address must always be on an odd byte boundary. The starting
address must be less than the final address.

Upon termination, the software should read back from the selector
channel the address contained in the current aidress register.
If this address is not equal to the final address specified for
the transfer, and if the buffer limits were properly checked
before the transfer, this condition indicates a device
malfunction or an unusual condition within the device. For
example, crossing a cylinder boundary on a disc is an abnorm~l
termination. The reason for the termination is indicated in the
SELCH status or the device status.

29-693 ROO 1/79 9-7

9.7.4 Selector Channel Programming

The usual method of programming with the selector channel uses
the immediate interrupt. The first step in the operation is to
check the status of the selector channel. If the selector
channel is not busy, the address of the termination interrupt
service is routine is placed in the location within the interrupt
service pointer table reserved for the selector channel. The
program should then proceed as follows:

1. Give the selector channel a comm~nd to stop. This
command initializes the selector channel registers and
assures the idle condition with the private ~us

connected to the I/0 bus, so that the device may be set
up for data transfer.

2. Give the selector channel the starting and
addresses.

final

3. Prepare the device for the transfer with the required
commands and information.

4. Give the selector channel the command to start.

With the start command, the selector channel breaks the
connection between its private bus and the processor•s I/0 bus,
and provides a direct path between memory and the last device
addressed over its bus. When the device becomes re1dy, the
channel starts the transfer, which proceeds to c~mpletion without
further processor intervention. Once the start command has been
given, the processor can be directed to the execution of
concurrent programs.

Upon termination, the channel signals the processor that it
requires service. The processor subsequently takes an immediate
interrupt, transferring control to the selector channel interrupt
service routine. At this time, registers 0:3 of the new set are
set up as for any other immediate interrupt.

If a power fail/restore seQuence occurs while using the selector
channel, the contents of the selector channel's internal
registers are undefined. I/0 instructions use the Register to
Register (RR) and the Register and Indexed Storage (RX)
instruction formats.

9-8 29-693 ROO 1/79

9.8 I/0 INSTRUCTIONS FORMATS

I/0 instructions use the Register to Register (RR) and the
Register and Indexed Storage (RX) instruction formats.

9.9 I/0 INSTRUCTIONS

Following most I/O instructions, the V flag in the condition code
indicates instruction time-out. This means that the operation
was not completed, either because the device did not respond at
all, or because it responded incorrectly.

In the Sense Status and Autoload instructions, the V flag can
also mean examine status. To distinguish between these two
conditions, the program should test bits 0:3 of the device status
byte. If all of these bits are zero, device time-out has
occurred.

The instructions described in this section are:

SS Sense Status
SSR Sense Status Register
OC Output Command
OCR Output Command Register
RD Read Data
RDR Read Data Register
RH Read Halfword
RHB Read Halfword Register
WD Write Data
WDR Write Data Register
WH Write Halfword
WHR Write Halfword Reqister
AL Autoload
SCP Simulate Channel Program

2q-693 ROO 1/79 9-9

9.9.1 Output Command

Output Command (OC)
Output Command Register (OCR)

Assembler Notation

oc
oc
OCR

R1,D2CX2)
R1,A2(FX2,SX2)
R1,R2

Opera ti on

Op-Code

DE
DE
9E

Format

RX1,RX2
RX3
RR

Bits 22:31 of the register specified by R1 contain the 10-bit
device address. The processor addresses the device and transfers
an eight-bit command byte from the second operand location to the
device. Neither operand is chan1ed.

Condition Code

c v G L
0 0 0 0 Operation successful
0 1 0 0 Instruction time-out (FALSE SYNC)

Programming Notes

In the RR format, bits 24:31 of the register specified by R2
contain the device command.

These instructions are privileged operations.

9-10 29-693 BOO 1/79

9.9.2 Sense Status

Sense Status (SS)
Sense Status Register (SSR)

~ssembler Notation

SS
SS
SSR

R1,D2(X2)
R1,A2(FX2,SX2)
R1,R2

Operation

Op-Code

DD
DD
9D

Format

RX1,RX2
RX3
RR

Bits 22:31 of the register specified by R1 contain the 10-bit
device address. The device is addressed and the 8-bit device
status is transferred to the second operand location. The
condition code is set equal to the least significant four bits of
the device status byte. The first operand is unchanged.

Condition Code

Bits 4:7 of the device status byte are copied into the condition
code. See the appropriate device manual for a description of
this ~tatus.

If the device is not in the system, the condition code is set to
0100 (false sync). In this case, the status byte returneJ is
X'04'.

Programming ~ates

In the RR format, the device status byte replaces bits 24:31 of
the register specified by R2. Bits 0:23 are forced to zero.

These instructions are privileged operations.

29-693 ROO 1/79 9-11

9.9.3 Read Data

Read Data (RD)
Read tata Register (RDP)

Assembler Notation

RD
RD
RDR

Operation

g1,D2(X2)
R1,A2(FX2,SX2)
R1,R2

Op-Code

DB
DB
9B

F".>rmat

RX1,RX2
RX3
RR

Bits 22:31 of the register specified by H1 contain the 10-bit
device address. The processor addresses the device and transfers
an 8-bit data byte from the device to the second operand
location.

Condition Code

c v G L
0 0 0 0 Operation successful
0 1 0 0 Instruction time-out (FALSE SYNC)

Programming Notes

In the RR format, the 8-bit data byte replaces bits 24:31 of the
register specified by R~. 3its 0:23 of the reqister are forced
to zero.

These instructions are privileged operations.

Instruction time-out does not prevent the second operand location
from being modified.

9-12 29-693 ROO 1/79

9.9.4 Read Halfword

Read Halfword (RH)
Read Halfword Register CRHR)

Assembler Notation

RH
R~
RHR

Operation

R1,D2(X2)
R1,A2(FX2,SX2)
R1,R2

Op-Code

09
09
99

Format

RX1,RX2
RX3
RR

Rits 22:31 of the register specified by R1 contain the 10-bit
device address. The processor addresses the device. If the
device is halfword-oriented, the processor transfers 16 bits of
data from the device to the second operand location. If the
device is byte-oriented, the processor transfers two 8-bit bytes
in successive operations.

·condition Code

c v G L
0 0 0 0 Operation successful
0 1 0 0 Instruction time-out {FALSE SYNC)

Programming Notes

If the device is byte-oriented, it must be capable of supplyinJ
both bytes without intervening status checks. This instruction
does not perform status checking between the two byte transfers.

In the RR format, the data transferred from a halfword device
replaces bits 16:31 of ~he register specified by R2. Bits 0:15
are fcrced to zero. The first byte of data from a byte device
replaces bits 16:23 of the register specified by R2 and the
second byte replaces bits 24:31. Bits 0:15 of the register
specified by R2 are forced to zero.

In the RX format, the second operand must be locate1 on a
halfword boundary. Th~ first byte of data from a byte device
replaces bits 0:7 of the halfwor1 operand in memory and the
second byte replaces bits 8:15.

These instructions are privileged operations.

Instruction time-out does not prevent the second operand location
from being modified.

29-693 ROO 1/79 3-13

9.9.5 Write Data

Write Data (WD)
Write Data Register (WDR)

Assembler Notation

WD
WP
WDR

Operation

R1,D2(X2)
R1,A2(FX2,SX2)
R1,R2

Op-Code

DA
DA
9A

Format

RX1,RX2
RX3
RR

Bits 22:31 of the register specified by R1 contain the 10-bit
device address. The processor addresses the device and transfers
an 8-bit data byte from the second operand location to the
device. Neither operand is changed.

Condition Code

c v G L
0 0 0 0 Operation successful
c 1 0 0 Instruction time-out (FALSE SYNC)

Programming Notes

In the RR format, the 8-bit data byte is transferred from bits
24:31 of the register specified by R2.

These instructions are privileged operations.

9-14 29-693 ROO 1/79

9.9.6 Write Halfword

Write Halfword (WH)
Write Halfword Register (WHR)

Assembler Notation

WH
WH
WHR

Operation

R1,D2(X2)
R1,A2(FX2,SX2)
R1,F2

Op-Cole

D8
DB
98

Format

RX1,RX2
RX3
RR

Bits 22:31 of the register specified by R1 contain the 10-bit
device address. The proc~ssor addres~es the jevice. If the
device is halfword-oriented, the processor transfers· 16 bits of
data from the second operand location to the device. If the
device is byte-oriented, the proc~ssor transfers two 8-bit data
bytes in successive operaticns.

Condition Code

c v G L
0 0 0 0 Oper~tion successful
0 1 0 0 Instruction time-out {FALSE SYNC)

Programming Notes

If the device is byte-oriente1, it must be capable of acceptinq
both bytes without intervening status checks. This instruction
does not perform status checking between the two byte transf~cs.

In the RR format, data is transfeired to a halfw~rd device from
bits 16:31 of the register specified by R2. The first byte of
data is transferred tc a byte device from bits 16:23 of the
register specified by R2; the second byte comes from bits 24:31.

In the RX format, the second operand must be located on a
halfword bounJary. The first byte of data is transferre1 to a
byte device from bits 0:7 of the halfword oper~nd in me~ory and
the second byte is transferred from bits 8:15.

These instructions are privileged op~rations.

29-693 ROO 1/79)-15

9.9.7 Autoload (AL)

Assembler Notation

AL
AL

D2(X2)
A2(FX2,SX2)

Operation

Op-Code

DS
D5

F~rmat

RX1,RX2
RX3

The AL instruction loads memory with a block of data from a
byte-oriented input device. The data is transferred a byte aL a

.time to successive memory locations starting with location
X'OOOOBO'. If the device status is bad, the operation is
terminated with V, G or L flags set. The last byte is loaded
into the memory location specified by the address of the secon1
operand. If any blank or zero bytes are input before the first
non-zero byte, these bytes are considerdd to be leader and are
ignored. All other zero bytes are stored as data. The d-bit
input device address is specified by memory location X'000078'.
The device command byte is specified by memory location
X'000079'.

Condition Code

c v G L
0 0
x 1

0
x

0
x

Operation successful or aborted
Examine status or time out

x x 1 x End of m~dium
x x x 1 Device unavailable

Programming Notes

This instruction may be used only with d~vices whose aidresses
are less than, or equal to, X'FF'.

This instruction is a privileged operation.

Bad status termination results if any of the least significant
three bits of the device status are set.

The starting and ending addresses for
relocatable. Address translation should
attem~tinq to use this instruction.

this
be

instruction are
disabled before

If the second operand address is less than X'80' the operation is
aborted.

The R1 field of this instruction must be zero.

9-16 29-693 ROO 1/79

9.9.8 Simulate Channel Program (SCP)

Assembler Notation

SCP
SCP

Operation

R1,D2(X2)
R1,A2CFX2,SX2)

Op-Code

E3
E3

Format

RX1,RX2
RX3

The second operand address is the address of a Channel Command
Block (CCB). The buffer switch bit of the Channel Command Word
(CCW) specifies the buffer to be used for the data transfer. If
this bit is set, buffer 1 is used. If it is zero, buffer O is
used. If the byte count field of the current buffer is qreater
than zero, the V flag in the condition code is set, and the next
sequential instruction is executed. If the byte count field is
not greater than zero, the following data transfer operation is
performed.

If the CCW specifies read, a byte of data is moved from bits
24:31 of the register specified by R1 to thP. appropriate buffer
location. If the CCW specifies write, a byte of data is moved
from the appropriate buffer location to bits 24:31 of the
register specified by R1. Bits 0:23 are forced to zero.

After a byte has been transferred, the count field of the
appro~riate buffer is incremented by one. If the count field is
now greater than zero, and if the fast bit of the CCW is Z?ro,
the buffer switch bit of the CCW is complemented.

Condition Code

c v G L
0 0 0 0
0 0 0 1
0 0 1 0
c 1 0 0

Pro9ramminq Notes

Count field is now zero
l.ount field is now less than zero
Count field is now greater than zero
Count field was greater than zero

If the CCW specifies fast mode, buffer 1 may be used, but the
buffer bit is not switched when the count field becomes greater
than zero.

The second operand must be located on a fullword ooundary.

This instruction is a privileqed operation.

29-693 ROO 1/79 9-17

9.10 AUTO DRIVER CHANNEL

The auto driver channel provides a means for multiplexing block
data transfers between memory and low or medium speed I/O
devices. The channel operation is similar, in some respects, to
interrupt driven I/O. The channel is activated as a result of a
service request from a device on the I/O bus. Upon receipt of
such a request, the processor uses the device number to index
into the interrupt service pointer table. If the value contained
in the table is even, the processor transfers control to the
interrupt service routine. If the value is odd, it transfers
control to the auto driver channel.

To the auto driver channel, the address in the interrupt service
pointer table is the address plus one (makin~ it aid) of a
Channel Command Block (CCR). The channel command block is a
channel program consisting of a description of the operation to
be performed, and a list of parameters associated with the
operation. In addition to the functions of read and write, the
channel can also:

1. translate characters

2. test device status

3. chain buffers

4. calculate longitudinal and cyclic redundancy
values

check

~. transfer control to software routines to take =are of
unusual situations

9.11 CHANNEL COMMAND BLOCK

9.11.1 Introduction

The Channel Command Block (CCB), as shown in Fiqure 9=1, consists
~f a channel command word (16 bits) that describes the function;
count fields (16 bits each) for two buffers; final addresses (32
bits each) for two buffers; a check word (16 bits) for the
longitudinal or cyclic redundancy check~ the address (32 bits) of
a translation table; and the address (16 bits) of a software
routine. The CCR requires 22 bytes of memory.

Many interrupt service routines may be available at any time to
service device requests. There may also be many channel command
blocks in the system ready to handle data transfers as required.
Each channel command block must be aligned on a full#ord
boundary. The channel command block address, plus one, must be
placed in the interrupt service pointer table location for the
device involved in the transfer.

9-18 29-693 ROO 1/79

617 0 15

0 CHANNEL COMMAND WORD (HALFWORD)

2 BUFFER BYTE COUNT (HALFWORD)

4 BUFFER 0 END ADDRESS (FULLWORD)

8 CHECK WORD (HALFWORD)

10 BUFFER 1 BYTE COUNT (HALFWORD)

12 - BUFFER 1 END ADDRESS (FULLWORD)

16 TRANSLATION TABLE ADDRESS (FULLWORD)

20 SUBROUTINE ADDRESS (HALFWORD)

Figure 9-1 Channel Command Block

9.11.2 Subroutine Address

To handle special situations, channel control is transferred to
the software subroutine, whose address is contained in the
channel command block. When this occurs, registers 0:4 of the
appropriate set have alrea~y been set up by the processor to
contain the old PSW, the device number, the device status, and
the address of the channel command block. The current PSW status
specifies run state, machine malfunction interrupt enabled,
higher level I/0 interrupts enabled, and all other interrupts
disabled.

The channel transfers control to the subroutine either
unconditionally (controlled by a bit in the channel command
word), because of bad device status, because of special character
translation, or because it has reached the limit of a buffer. It
indicates its reason for transferring control by adjusting the
condition code as follows:

c v ("
\.11

0 0 0
0 0 0
c 0 1

L
0
1
0

Unconditional transfer or special character
Bad status
Buffer limit

The subroutine address in the CCR is a 16-bit physical address.
For this reason, the subroutine at that address, or at least the
first instruction of the subroutine, must reside in the first
64k.b of memory.

29-693 ROO 1/79 9-19

9.11.3 Buffers

There is a space in the CCB to describe two data buffer areas.
The data areas may be located anywhere in memory. The limits of
each data area are described by an address field and a count
field. The address field contains the physical address of the
last byte in the data area. This address is right justified in
the fullword ~rovided. If the device being controlled is a
halfword-oriented device, the final address must be odd. If the
device is a byte-oriented device, the address may be either odd
or even. The active buffer is selected by a bit in the channel
command word. When one buffer has been exhausted, the channel
may reverse the state of this bit and thus switch to the
alternate buffer. Automatic buffer switching is available only
for byte-oriented devices and if the Fast bit of the CCW is zero.
If the Fast bit is set, buffer 0 is always used.

The count field, in most operations, contains a negative number
whose absolute value is e1ual to one less than the number of
bytes to be transferred. The one exception is the case of a
single data transfer, for which the count field contains zero.

During data transfers, the channel adds the value contained in
the count field to the final address in order to obtain the
current address. It makes the transfer, using the current
address, then increments the value in the count field by one for
a byte device or by two for a half word device. When the count
field becomes greater than zero, the channel sets the G flag in
the condition code and transfers control to the specified
software subroutine. If the count field is greater than zero
upon channel activation, the channel makes no transfer and
relinquishes control of the processor.

9.11.4 Translation

The translation feature is available only for byte-oriented
devices and if the Fast CF) bit in the CCw is zero. If
translation is specified; the fullword provided in the channel
command block must contain the address, right justified, of a
translation table. This table, which must be aligned to a
halfword boundary, can contain up to 256 halfw0rd entries.
Durin9 data transfers, the channel multiplies tha data byte by
two and adds this value to the translation table address. The
result is the address within the translation table of the
halfword entry corresponding to the data byte.

9-20 29-693 ROO 1/79

The channel tests this entry, and, if bit 0 of the halfword is
set, it substitutes bits 8:15 of the halfword for the data byte
and proceeds with the operation. If bit 0 of the halfword is a
zero, the channel:

• does not increment the byte count for the appropriate buffer.

• puts the data byte, untranslated, in bits 24:31 of register 3,
of the appro~riate set, and forces bits 0:23 of register 3 to
zero.

• multiplies the value contained in the translation table by
twc, and transfers control to the software special character
translation routine located at the resulting address.

Upcn transfer to the translation subroutine, registers O and
1 contain the old PSW; register 2 contains the device number;
register 3 contains the untranslated character; and register
4 contains the address of the channel command block. The
current PSW indicates run state, machine malfunction interrupt
enabled, higher level I/0 interrupts enabled and all other
interrupts disabled. The condition code is zero.

9.11.S Check Wcrd

The check word in the channel command block contains the
accumulated residual for longitudinal or cyclic redun1ancy
checking. The initial value for the check word is usually zero.
(There are data dependent exceptions, e.g., where initial
characters are not to be included in the check.)

The longitudinal check is an exclusive OR of the character with
the check word.

The cyclic chec~ uses the formula for CRC 16:

x 16 + x 15 + x 2 + 1

If the data communication option is equipped,
may optionally use the formula for CRC SDLC:

the cyclic check

On input, if both redundancy checking and translation are
required, the character is translated first; then the cyclic
redundancy check is done using the original character input
rather than the translated character. On output, the tr~nslated
character participates in the redundancy check. Redundancy
checking may be used only with byte devices, and is only
performed if the Fast bit (F) of the CCW is zero.

29-693 ROO 1/79 9-21

9.11.6 Channel Command Word

The Channel Command Word (CCW), as shown in Figure 9-2,
of two parts. Bits 0:7 contain a status mask.
describe the channel operation.

618
0 7 8 9 10 11 12 15

STATUS MASK

FAST

TRANSLATE

EXECUTE READ/WRITE (0/1)

BUFFER SWITCH

consists
Bits 8:15

REDUNDANCY CHECK TYPE

Fi9ure 9-2 Channel Command Word

Status Mask

On every channel operation, if the Execute CE) bit is set, the
status mask is ANDed with the device status. This operation does
not change the status m1sk. If the result is zero, the channel
proceeds with the operation. If the result is non-zero, the
channel sets the L flag in the condition code, and transfers
control to the specified software subroutine.

Execute Bit (E)

If this bit is zero, the channel unconditionally transfers
contrcl to the specified subroutine, without taking any other
action. The condition code is zero. If this bit is set, the
channel continues with the operation as specified in the channel
command word.

Fast Bit CF)

If this bit is set, the channel performs the I/O transfer in the
fast mode. In this mode, buffer switching, redundancy checking,
and translation are not allowed. This bit must be set for
halfwcrd devices. If this bit is set, buffer O is always used.

Read/Write Bit (R/W)

This bit indicates the type of operation. If this bit is zero,
a byte or a halfword is input from the device. If this bit is
set, a byte or a halfword is output to the device.

9-22 29-693 ROO 1/79

Translate Bit (!)

If this bit is set, and the Fast bit is zero, the channel
translates the data byte, using the translation table defined in
the CCB.

Redundancy Check Type Bits (RC)

These two encoded bits specify the type of redundancy check
required. No check is performed if the fast bit is set. CRC
SDLC may be performed only if the data communic~tion option is
installed. If the option is not installed, CRC BISYNC (CRC 16)
is Performed when SDLC is specified. The following table
contains the valid types of checks:

Bit Bit
10 1 1 Redundancy Check Type

0 0 LRC
0 1 CRC BISYNC
1 0 Reserved - must not be specified
1 1 CRC SDLC - Should only be specified if

the data co~munication option is installed.

Puffer Switch Bit (B)

when zero, this bit specifies that buffer 0 is to be used for the
transfer. If it is set, buffer 1 is used. The channel chains
buffers, when the count field becomes greater than zero, by
complementing the buffer switch bit before transferring control
to the specified software routine. Buffer 0 is always used if
the Fast bit in the CCW is set.

9.11.7 Valid Ch~nnel Command Codes

The following is a list of valid codes for the channel command
word. Note that only the first three may be used with halfword
devices.

29-693 ?00 1/79 9-23

CHANNEL COMMAND WORD 8: 15

HEXADECIMAL EI NARY MEANING

00 ocoooooo Transfer to subroutine
8 1 10000001 Read fast mode
85 10000101 Write fast mode
80 1COOOOOO LRC, Ruffer O, read
82 10000010 LRC, Buffer o, read, translate
84 10000100 LRC, .auff er o, write
86 10000110 LRC, Buffer o, write, translate
88 1C001000 LRC, Buffer 1 , read
8A 1C001010 LRC, Buffer 1, read, translate
BC 1C001100 LRC, Buffer 1, write
BE 10001110 LRC, Buffer 1 , write, translate
90 10010000 CRC BI SYNC, Buffer O, read
92 1C010010 CRC BI SYNC, Buffer o, read,

translate
94 1C010100 CRC BI SYNC, Buffer 0, write
96 1C010110 CRC BI SYNC, Buffer o, write,

translate
98 10011000 CRC BI SYNC, Buffer 1, read
9A 1C011010 CRC BI SYNC, Buffer 1, read,

translate
9C 10011100 CRC BI SYNC, B uf fer 1, write
9E 10011110 CRC BI SYNC, Buffer 1, write,

translate
BO 10110000 CHC SDLC, Buffer o, read
B2 10110010 CRC SDLC, Ruffer o, read,

translate
B4 10110100 CRC SDLC, Buffer o, w r. i te
B6 1C110110 CRC SDLC, Buffer o, write,

translate
BB 1C111000 CRC SDLC, Buff er 1 , read
BA 1C111010 CRC SDLC, Buffer 1 , read,

translate
BC 10111100 CRC SDLC, Buffer 1 , write
BF 10111110 CRC SDLC, Buffer 1, write,

translate

9-24. 29-69 3 R 00 1 /79

9.11.e General Auto Driver Channel Programming Procedure
(see Figure CJ-3)

1. Set up interrupt service pointer table to vector to
error routines for undefined devices.

2. Set up address of channel command word + 1
table at 2 times device number plus X'DO'
interrupt service pointer table).

3. Set up complete channel command block.

4. Set up device and enable device interrupt.

(odd) in
(start of

5. Enable I/O interrupts in PSW (auto driver channel
performs I/O operation).

6. Check for
operation
entered.

29-693 ROO 1/79

good
when

termination of
the subroutine

auto
defined

driver channel
in the CCB is

9-25

620

NORMAL

OUTPUT DATA
HALFWORD,
INCREMENT

BUFFER 0 BYTE
COUNT BY 2

9-26

N

y

R4-AICCB),
FORCED EVEN

ADD BYTE COUNT
TO BUFFER 0 END

ADDRESS, TO
FIND ADDRESSED

DATA BYTE

OUTPUT DATA
BYTE,

INCREMENT
BUFFER 0 BYTE

COUNT BY 1

EX AUTO

Figure 9-3

"AND" STATUS
MASK WITH

INTERRUPT
STATUS

EXAUTO

RESTORE
ENTRY

PSW & LOC

N

TWAIT

TEST WAIT BIT

INPUT DATA
BYTE,

INCREMENT
BUFFER 0 BYTE

COUNT BY 1

>--y--~o EXSUB2

NO

y

EXSUBO

Psw--
'28NO'

EXSUB1

PSW.-
'28N1'

EXSUB2

EXIT

EXECUTE AT
SUBROUTINE

ADDRESS

INPUT DATA
HALFWORD,
INCREMENT

BUFFER 0 BYTE
COUNT BY 2

NOTES:

PSW--
'28N2'

ON ENTRY FROM AUTOIO,
PSW = '000028NX'

Loc-ccB
SUBROUTINE

ADDRESS

y

QUEUE FLAG
FOR

MALFUNCTION
IN CHANNEL

MMFINT

MACHINE MALFUNCTION
INTERRUPT

WHERE N =ATTENTION LINE ~AUSING INTERRUPT
X = 4 LS DEVICE STATUS BITS
RO= OLD PSW
R1 =OLD LOC
R2 =INTERRUPT DEVICE ADDRESS
R3 =INTERRUPT DEVICE STATUS
MPE STATUS IS TRUE IF A
MACHINE MALFUNCTION
OCCURRED WITHIN THE CHANNEL.

Auto Driver Channel Flowchart

29-693 ROO 1/79

619

SET UP TO
USE

BUFFER 0

ADD BYTE COUNT
TO BUFFER END

ADDRESS, TO
FIND ADDRESSED

DATA BYTE

OUTPUT
BYTE

SUBROUTINE
REDCHK

INCREMENT
BYTE

COUNT
BY 1, WRITE
TO MEMORY

COMPLEMENT
CCB

BUFFER BIT

y

y

EXSUB2

N

Fiqure 9-3

29-693 ROO 1/B

SET UP TO
USE

BUFFER 1

EXAUTO

SUBROUTINE
TRANSL

EXAUTO

REDCHK

EXCLUSIVE OR
DATA WITH

CHECKWORD.
REWRITE TO

MEMORY

RETURN

NFREAD

INPUT
DATA BYTE

SUBROUTINE
REDCHK

WRITE BYTE
TO

MEMORY

TRANSL

2 TIMES DATA BYTE
IS TRTBL

INDEX. READ
ENTRY

GENERATE
NEW CHECKWORD

USING COMM
ASSIST UNIT.

WRITE TO MEMORY

RETURN

N

NOTE BYTE USED IN 1/0 FIGURES

y

IN CHECKWORD

SUBROUTINE
TRANSL

FETCH
TRANSLATION

BYTE

RETURN

N

GENERATE NEW
CHECKWORD USING
CRC16 ALGORITHM

IN MICROCODE,
WRITE TO MEMORY

LOC-2 TIMES
TABLE ENTRY
!ADDRESS OF

TRANSLATION
ROUTINE)

EXIT

NOTE USER SOFTWARE
MUST UPDATE BUFFER
BYTE COUNT AS
APPROPRIATE

Auto Driver Channel Flowchart (Continued)

9-27/9-28

CHAPTER 10
STATUS SWITCHING AND INTERRUPTS

10.1 INTRODUCTION

The processor's interrupt system provides a mechinism for es~ape

from the normal processing sequence to handle external ani
internal events. The software routine that is executed in
response to an interrupt is called an interrupt service routine.
Before transferring control to a service routine, the current
state of the processor is preserved so that, upon completion of
the service routine, the execution of an interrupted program may
be resumed.

Interrupts may be classified as being synchronous or
asynchronous, depending on whether they occur in fixed
relationship tc the execution of instructions, or whether they
occur at random times due to events external to the processor.
r.xamples of asynchronous interrupts include power fail, console
attention, and teripheral device interrupts.

Synchronous interrupts occur due to fault conditions, or in the
case of software interrupts, may be programmed to occur.
Examples of fault conditions which cause synchronous interrupts
include non-correctable memory errors, illelal instructions, and
arithmetic faults.

Softwar.e interrupts occur when the Supervisor Call (SVC) or
Simulate Interrupt (SINT) instructions are executed, or as a
rPsult of adding an entry to the system queue. The Breakpoint
(RRK) instruction causes program execution to be suspended so
that the system console terminal may he activated. See the
chapter on the System Console Terminal.

Each interrupt condition is reset when the correspon1ing
interrupt occur~.

29-693 FOO 1/7g 10-1

621

10.2 PROGRAM StATUS WORD (PSW) AND RESERVED MEMORY LOCATIONS

The Proqram Status Word (PSW), shown in Fi~ure 10-1, is a 64-bit
quantity that controls the operation of the processor. The PSW
provides information about various states and conditions
affecting the operation of the processor. The PSW is composed of
two fullwords: bits 0:31 are the status word, and bits 32:53 are
the location counter. The various PSW fields are described
belov:

STATUS WORD

LOCATION COUNTER
681

LOCATION COUNTER

Fi~ure 10-1 Program Status Word (PSW)

Bits 0 - 12 Unused, must be zero
Bit 13 FLM Floating-point ma skf!d mode
Bit 14 IIP Interruptible instruction in progress
Bit 15 Unused, must be zero
Bit 16 w Wait state
Bit 17 I I/O interrupt mask
Bit 18 t1 Machine malfunction interrupt mask
Bit 19 FLU Floating-point underflow mask
Rit 20 I I/0 interrupt mask
Bit 21 MAC Memory access controller mask
Bit 22 () System queue service interrupt mask '.o:.

Bit 23 p Protect mode
Bits 24 - 27 R ReQister set select field
Bits 28 - 31 C,V,G,t Condition code
Bits 32 - 43 Unused, must be zero
Bits 44 - 63 Location counter

10-2 29-693 ROO 1/79

10.2.1 PSW Status W0rd

Bits 0:31 of the PSW are called the status
controls interrupts, defines the status of
contains the condition C3de. The following
detailed definitions of various states of the
the status word controls them. Unused bits of
must always be set to zero.

Floating-Point Masked Mode (FLM)

word. This wori
the processor, and
sections provide
processor and how
the status word

On processors with the floating-point option, when bit 13 of the
current PSW is zero, a program may execute any legal
floating-point instruction.

When bit 13 of the current PSW is set, the processor is in the
Floating-Point Masked (FL~) mode. A pro~ram running in this mode
is not allowed to execute floatinq-point arithmetic instructions.
If execution cf any floatin~-point arithmetic instruction is
attempted in FL~ modP, an illegal instruction interrupt occurs.
If the processcr is in FLM mode when a context switch is made by
the system program and the processor state must be saved, the
contents of the floating-point registers need not be saved. This
results in a faster context switch.

10.2.1.2 Interruptible Instruction in Progress (IIP)

PSW bit 14 is set bY the processor while an interruptible
instruction is in progress, and is zero when the interruptible
instruction terrrinates. This bit is set by the processor to
indicate that the scratchpa1 registers contain valid parameters
for the interru~tible instruction and that these parameters need
not be recalculated before resuming the interrupted instruction.

If bit 14 of the current PSW is set when the processor transfers
control to ~ software interrupt service routine, that routine
must not allow th~ contents of the scratchpad registers to be
modified before the interruptible instruction is resumed. The
STPS, LDPS, ISSY, and ISRST instructions provide the means for
saving and restoring these reqisters if they must be used by the
interrupt servicP routine.

10.2.1.3 Wait State (W)

When FSW bit 16 is set, the processor is in the wait state. In
the wait st~te, the normal fetch instruction/execute
instruction/fetch next instruction sequence is suspended. While
in the wait state, the processor is responsive to console
attention interrupts and primary power fail, as well as any
interrupts specifically enabled by the current PSW.

PSW bit 16 is zero when the processor is executing instructions.
This bit is forced to zero whenever the single-step, run switch,
or system console terminal is used to initiate instruction
execution. This bit is not forced set by entry to the con~ole

mode.

10-3

If an interrupt occurs, PSW bit 16 is set according to the new
PSW defined for servicing the interrupt. Hit 16 of the new PSW
for any I/O interrupt is zero.

Except for an I/0 interrupt, the stat~ of bit 16 of the new PSW
is tested as the PSW is loaded. If bit 16 of the newly loaded
PSW is set, the nrocessor enters the ~ait st~te, provide~ that no
interrupt is still pending. All ~ending interrupts are serviced
before the processor enters the wait state.

10.2.1.q I/O Interrupt Mask (!)

PSW bits 17 and 20 are used toqether to enable or disable
recognition of interrupt requests generated by peripheral devices
on any of the four interrupt levels, as detailed below:

BIT 17 BIT 20 MEANING

0 0 All levels disabled
0 1 Higher leve 1 s en ab led
1 0 A 11 levels enabled
1 1 Current and higher levels enabled

The interrupt levels are numbered from O to 3, with level 0 being
the highest priority interrupt level and level 3 being the lowest
priority interrupt level.

An I/O interrupt request is 1ueued until the processor
acknowledges the interrupt unless the request is programmed
reset, or power fail occurs. The state of PSW bits 17 and 20 is
ignored by the Simulate Interrupt (SINT) instruction.

10.2.1.s Machine Malfunction Interrupt Enable (M)

PSW bit 18 is used to enable and disable detection of various
malfunction conditions within the ~rocessor and the resulting
machine malfunction interrupt. When this bit is set, any of the
following conditions results in a machine malfun=tion interrupt.

• early power failure
• power restore
• non-correctable memory data error
• non-configured memory address

The Model 3220 Processor is designed with the concept that all
software must ~nable the machine malfunction interrupt for
maximum data integrity. Unlike other processors, Model 3220 does
not require that this interrupt ever be disabled. The processor
resets each detected interrupt condition as it occurs.

While performin9 a machine malfunction interrupt PSW swap, the
processor sets PSW bit 18 to allow error detection for the new
PSW data fetched from memory. If the new PSW cannot be fetched
correctly, the processor effectively stops by entering the
console mode. 1his prevents a runaway situation in the event of
a double fault.

10-4 29-693 ROO 1/79

If PSW bit 18 is zero, any non-correctable memory data error is
logged by the o~tional error logger. Cache accesses to memory
using a non-ccnfigured memory address result in undefined data
being loaded into the optional high-speed cache, with no error
indication. Ne machine malfunction interrupt occurs for any of
the reasons given above. A machine malfunction due to early
power failure is queued until PSW bit 18 is set by software, or
until automatic shutdown occurs. The interrupt is not queued for
any other reason.

10.2.1.6 Floating-Point Underflow Interrupt Enable (FLU)

PSW bit 19 controls response of the processor to an arithmetic
underflow resulting from a single- or double-precision
floating-point arithmetic operation.

If this bit is set whPn the underflow occurs, an arithmetic fault
interrupt occur~, and the participating floating-point registers
remain unchanged.

If this ~it is zero when the underflow occurs, the result of the
operation is retlaced by zero, and the condition code is set to
0100 CV-flag only), as defined in the description of the specific
f loa~ing-point instruction.

10.2.1.7 Memory Access Controller Enable (MAC)

PSW bit 21 is used to enable and disable the relocation and
protection programmed into the Memory Access Controller (MAC).
When this bit iE set, relocation, protection, ani the MAC fault
interrupt are enabled. When this bit is zero, relocation,
protection, and the MAC fault interrupt are disabled.

10.2.1.8 Systerri Queue Service Interrupt Enable (Q)

If bit 22 of the new PS~ loaded by any of the instructions listed
below is set, the state of the system queue is tested. If the
system queue is not empty, a System Queue Service (SQS) interrupt
occurs. If the system queue is empty, the next instruction is
fetched and executed, acc~rding to the newly-loaded PSW.

If bit 22 of the newly-loaded PSW is zero, the SQS interrupt is
disabled.

The following instructions test the state of the system queue:

MNEMONIC

EPSR
LPS
LPSW
LPSW~

29-693 HOO 1/79

MEANING

Exchange Program Status ·Register
Load Process State
Load Program Status Wor1
Load Program Status Word Register

10-5

10.2.1.9 Protect Mode Enable (P)

When PSW bit 23 is set, the processor is in the protect mode.
Any attempt by a program running in this mode to execute a
privileQed instruction causes an illegal instruction interrupt to
occur. The processor does not attempt to execute the offending
instruction. 1he Breakpoint (BRK) instruction is a privileqed
instruction.

When PSW bit 23 is zero, the processor is in privileged mode. A
program running in privileged mode may execute any legal
instruction,. within the constr~ints imposed by the system
configuration and the state of PSW bit 13 CFLM).

10.2.1.10 Register Set Select Field CR)

Bits 24, 25, 26, and 27 of the current PSW select the active
general register set. Although 16 different sets may be
specified by using the four bits of this field, only eight sets
of general reqisters are implemented in this processor. The
implemented set~ are numbered O, 1, 2, 3, 4, S, 6, and 15.

Set O, 1, 2, or 3 is automatically selected by the processor in
handling an I/0 interrupt on the corresponding interrupt level.
Registers O through 4 of that set are used to maintain
information pertaining to an I/0 interrupt request which is
acknowledged on the I/O interrupt level corresponding to the
selected register set. Therefore, sets O, 1, 2, and 3 should not
be used for general purpose processinq. These sets may, however,
be used for processing internal interrupts, which use reQisters
11 through 15 of the selected set to maintain information
pertaining to the interrupt.

Sets 4, 5, 6, and 15 may be allocated according to processing
needs, without special consideration. Sets 7 through 14 are not
implemented. An attempt to select a set which is not implemented
may result in the selection of any set, without any special
indication of the error.

When a new PSW is loaded, the specified register set becomes the
active set for the next instruction executed.

PSW BIT

24 25

0 0
0 0
0 0
0 0
0 1
0 1
0 1
1 1

10-6

26

0
0
1
1
0
0
1
1

27

0
1
0
1
0
1
0
1

SELECTED REGISTER SET

0
1
2
3
4
5
6

15

29-693 ROO 1/79

10.2.1.11 Condition Code CC, V, G, L)

PSW hits 28:31 contain the condition code. As part of the
execution of certain instructions, the state of the condition
code may be updated to reflect the nature of the result. Not all
instructions affect the condition code.

For most interrupts, bits 28:31 of the new PSw are simply copied
to the condition code. For immedjate interrupts, the least
significant four bits of the status byte for the interrupting
device are co~ied to the condition code after the new PSW has
been loaded. Ne restrictions are imposed on the condition code
field of a new PSW contained in a memory location or register.
Any condition cede value may be specified.

The condition cede of the current PSW may be tested by the
conditional branch instructions describej in Chapter 4.

10.2.2 PSW Location Counter (LOC)

PSW bits 32:63 comprise the location counter, which contains the
address of the instruction currently being executed by the
processor. When the current instruction is successfully
completed, the value contained in the location counter is
incremented by the length of the instruction in bytes, and the
instruction at the resulting addr~ss is fetched.

An instruction which results in a branch being taken causes the
contents of the location counter to be replaced with the
effective branch address; i.e., with the address of the
instruction to which control is to be transferred. The
instruction at the new address is the next instruction to be
fetched and executed.

When an interrupt occurs, the entire PSW, bits 0:63, is replaced.
If bit 16 of the new PSw (the wait bit) is set, the instruction
indicated by the new contents of the location counter is not
fetched. Manual intervention is required to cause the wait bit
to be zero, and the instruction to be fetched and executed. If
an interrupt causes the PSW with the wait bit set to be replaced
by another new PSW that has the wait bit zero, the instruction
indicated by the location counter of that new PSW is fetched and
executed.

If an instruction has not been successfully completed when an
interrupt PSW s~ap occurs, the 64-bit PSW, in effect for the
instruction being executed at the time of the interrupt, is saved
before the interrupt handler is entered. The location counter in
the saved PSW points to the instruction being executed at the
time the interrupt occurred. If the interrupt occurs after the
successful com~letion of one instruction and before beginning
another, the location counter in the saved PSW points to the next
instruction to te executed.

See the section on the Interrupt System for an explanation of
old, current, and new PSw, and of the use of these PSWs by the
processor in scheduling interrupt service routines.

29-693 ROO 1/79 10-7

10.2.3 Reserved Memory Locations

Physical memory locations X'OOOOOO' X'0002CF' are reserved
memory locations. For systems with expanded I/O interrupt
service pointer tables, physical memory locations X'0002DO'
X'0004CF' or X'0002DO' X'0008CF' are also reserved memory
locations. These locations contain assorted information used in
servicing interrupts, as shown in Figure 10-2. Use of data in
these locations as the result of an interrupt is detailed in the
section describing the interrupt.

X'OOOCOO' - X'OC001F'
X'000020' - X'OCC027'
X'000028' - X'OC002B'
X'00002C' - X'OC002F'
X'000030' - X'000037'
X'000038' - X'OC003F'
X'000040' - X'OC0043'
X'000044' - X'OC0047'

X'000048' - X'OC004F'
X'OOOOSO' - X'OC007F'

X'000080' - X'OC0083'
X'000084' - X'OCOOR7'
X'000088' - X'OC008F'
X'000090' - X'OC0097'
X'000098' - X'OC009B'
X'00009C' - X'OCOOBB'

- X'OOOOC7' X'OOOCBC'
X'OOOOC8'
X'OOOCDO'
X'0002DO'
X'0004DO' -

- X'OCOOCF'
- X'0002CF'

X'OC04CF'
X'OC08CF'

Figure 10-2

Reserved, must be zero
Machine malfunction interrupt old PSw
Used by console service microcode
LM effective address word
Illegal instruction interrupt new PSW
Machine malfunction interrupt new PSW
Machine malfunction status word
Machine malfunction virtual (program)

address word
Arithmetic fault interrupt new PSW
Bootstrap loader and device definition

table
System queue pointer
Power fail save area pointer
System queue service interrupt new PSW
MAC fault interrupt new PSW
Supervisor call new PSW status word
3upervisor call new PSW location

counter values
Reserved, must be zero
Data format fault new PSW
Interrupt service pointer table
Expanded interrupt service pointer table
Expanded interrupt service pointer table

Reserved Memory Locations

10.3 INTERRUPT TIMING AND PRIORITY

10.3.1 Maskable and Non-Maskable Interrupts

Maskahle interrupt conditions are controlled by bits in the PSW.
When a request to interrupt due to a maskable condition occurs,
the corresponding control bit in the PSW is examined. If the
control bit indicates that the interrupt is enabled, an interrupt
is taken and control is transferred to the appropriate service
routine. The paragraph describing each interrupt provides
details about the control bit(s), how the interrupt is enabled or
disabled, and the effects of enabling or disabling an interrupt.

Non-maskable interrupts are those which have ho corresponding
control hits in the PSw. Examples of non-maskable interrupts are
SVC, SINT, Illegal Instruction, and Console Attention. Sections
describing each interrupt provide further details.

Figure 10-3 shows the various
interrupts.

10-8

maskable and non-maskable

29-693 ROO 1/79

10.3.2 Interrupt Timing

Asynchronous interrupts are normally permitted to occur only
after execution of an instruction has been completed, and before
execution of the next instruction begins. However, asynchronous
interrupts are permitted to occur at the end of any iteration,
while an interruptible instruction is being executed.

A synchronous interrupt is permitted to occur at the time the
condition causing the interrupt is detected. The SQS interrupt,
which occurs at some indefinite time following addition of an
entry to the system queue, is called a deferred synchronous
interrupt. A synchronous interrupt due to a f~ult causes the
of fending instruction to be aborted with no modification of the
contents of registers or memory locations resulting from
execution of that instruction. Fixed and floating-point
Load/Store Multiple, and Store Double Precision are exceptions to
this rule. In the case of an interruptible instruction, the
current iteration ot the instruction is aborted by such an
interrupt without modification of the contents of registers or
memory as a result of the faulted iteration.

For all interrupts, the old PSw location counter presented to the
interrupt handler points to the next logically-executed
instruction in the interrupted program. If the interrupt is
causAd by a fault, the instruction causing the fault was not
completed and is logically the next instruction to be executed.
The old PSW location counter presented to the fault interrupt
service routine, therefore, always points to the instruction
which caused the fault.

Multi~le memory ~ccesses are required for the manipulation of a
circular list structure using the ATL, ABL, RTL, or RBL
instruction. For each of these instructions, the list header is
not updated until the body of the list has been successfully
accessed. For the RTL and RBL instructions, no registers are
modified unless the list element has been successfully accessed,
and the list hea1er has been successfully updated.

10.J.3 Interrupt Precedence

Considering the instant of instruction fetch request as the time
of reference, interrupts have the following precedence (highest
to lowest):

Synchronous
Interrupts

Asynchronous
Interrupts

29-693 ROO 1/79

INTERRUPT PRECEDENCE TABLE

f Fault interrupts
l System queue service

{

Primary power fail/restore
Consol~ attention
Machine malfunction interrupt

power fail
I/0 interrupts

due to early

10-J

-0
I -0

N
\0
I

°' "° w

!::O
0
0

-'
'°

622
NOTES

(J)

lb)

NUMBERS IN Cl RCU S INDICATE THE PRIORITY OF
11'.i"ERRUPTS 1 REPRESENTS THE HIGHEST PRIORITY

FAUL TS ABORT THE CUfiRENT INSTRUCTION THE

le)

OLD PSW POINTS TO THE FAUL TING INSTRUCTION Id)
OTHE:R INTERRUPTS ARE RECOGNIZED AT THE END

SYNCHRONOUS INTERRUPTS ARE RECOGNIZED AS
THEY OCCUR ASYNCHRONOUS INTERRUPTS ARE
RECOGNIZED BETWEEN THE COMPLETION OF
CURRENT INSTRUCTION AND THE INITIATION OF
THE NEXT INSTRUCTION.

SOS MAY OCCUR ONLY AS PART OF THE LPSW
LPSWR. EPSR. AND LOPS INSTRUCTIONS

MODEL 3220 INTERRUPTS

l OF THE CURRENT INSTRUCTION AND OLD PSW
POINTS TO THE FOLLOWING INSTRUCTION I - 1

SnJCHRONOUS

I
FAUL TS

I !SEE NOTE 11-11

CD

I l

n
MACHINE .4RITHML T1C

MALFWJCTION F-1\Ul l
INHRRUPT

1MEMORY MALFUNC
TION eAULTI

'JON

COHH!-CT/d~,·

1\M \1t~H ~

rHH<)R

NON

CONf-H1UH~IJ

MEMOF<>

ADDRESS

F LUAT1~t1

POiNT

l XPDNI NT

UNU[R·· LO\~

~JON MASKABLE

l .,,rnn l I
DATA MEMO HY

FAULT ILLEGAL
INSTRUCTION FORMAT ACCESS

IL ,\T

P(l If'~ T

!-_ x: 1), l N ~ '.'~ T

01./ ~ HF l_(JI,\.

FI~ I [J PT

<JlJ\JTI! r'. T

l)Vf H!-Ul\\'

DIVIDI
f1Y Zf- H,)

l'AUl T

FL, J/\ Tir'\Jl, PT

[)IVIUl

8 r 7EH 1 J

F!Xf-[) PT

FAULT CONTROL

ll U(;AL
OP corn

ILL! C1Al
~;ue f. UNCTION

PHIVILl (,[[)
INSTRUCTION
fl~ PROHCT

MODf

FLOATIN.;
POINT
11~STf1UC fl ON
1\1 FLT PT

MASK EU

MOUE

INVALID

s1r:iN u1c;11

IJNPACKl ll DATA

INVALID
Ui\l A [)"CIT

·,•'JPACKl il llATA

~~Al F\f\H)~HJ

AllGNMENT FAlJLT

I ULLWOHI
All()NME\JT tAULT

Fiqure 10-3 Schematic
Interrupt System

SOFlWARE INTERRUPT~;

SYSTEM
BREAKPOINT

n'""
SUPERVISOR SIMULATE
CALL ISVCI INTERRUPT

!SEE NOTE (d)I ISINTI

SlG~·E'JT NON PHEScNT
f AUi T

Sf:Ci~ 1 ENT LIMIT FAULT

Wflll L PfWTECT VIOLATION

LXH:UH PROTECT VIOLATION

MASK ABLE

SYSTEM
QUEUE

SE Fl VICE
1sos1

@

Diagram of The
Architecture

Model

ASYNCHRONOUS

NON MASK ABLE

II
MACHINE
MALFUNCTION
INTERRUPT

G)

AUTOMATIC

SHUTDOWN

CONSOLE
ATTENTION

0

I POWER FAlLI

AUTOMATIC RESTART

!POWER RESTORATION!

3220

MASK.ABLE

MI_J~]Rum
MALFUNCTION
INTERRUPT

®

EARLY
POWER
FAIL
DETECT

POWER

RESTORATION

DETECT

©

Fault interrupts are caused by various conditions that have the
following logical precedence in descending priority order.

• Mereory access controller fault on an instruction fetch

• Machine malfunction fault due to memory malfunction on an
inEtruction fetch

• Illegal instruction fault

• Illegal sub-function fault

• Data format fault due to alignment error on a data read/write
operation

• Memory access controller fault on a data read/write operation

• Machine malfunction fault due to memory malfunction on a data
read/write o~eration

• Data format fault for other than boundary alignment error

• Arithmetic fault

Since any fault interrupt causes execution of an instruction to
be abcrt2d at the point of the fault interrupt condition, no more
than one fault interrupt con1ition can occur at a time. However,
other interrupts in the synchronous and asynchronous interrupt
classes given in the preceding Interrupt Precedence Table can
occur simultaneously. In such a case, the order given in the
table governs the servicing sequence for the interrupts.

10.3.4 Interru~tible Instructions

For any interru~tible instruction, execution consists of the
following phases: instruction fetch, instru~tion de~ode, an
iterative loop, and termination. An interrupt during any phase
of an interruptible instruction does not affect the oper~ti~n of
the instruction. It may simply be re-executed once the interrupt
has been serviced. An interrupt during the iterative phase of
the instruction causes the processor to resume the iterative
Phase when the instruction is re-executed, as though the
interrupt never occurred. If the interrupt was caused by 1

fault, the iteration which resulted in the interrupt is repeated
when the instruction is re-executed.

29-693 ROO 1/79 10-11

When an interrupt occurs durin9 execution of an interruptible
instruction, except for Read ~ontrol Store (RDCS) or write
Control Store (WDCS), the processor sets bit 14 CIIP) of the old
PSW presented tc the interrupt service routine. If PSW bit 14 is
set when an interruptible instruction is execute1, the processor
assumes that valid information for controlling the instruction is
contained in the scratchpad registers. For this reason, if
return to the interruptible instruction is ~nticipated, the
contents of the scratchpad registers must be preserved when PSW
bit 14 is set. It is also important that the contents of these
reoisters be saved or restored as necessary during a context
switch by the system program.

To abort an interruptible instruction when it is interrupted, PSW
bit 14 must be forced to zero before any subsequent interruptible
instruction (except RDCS or WDCS) is attempted.

CAUTION

SOFTWARE MUST NEVER SET PSW BIT 14
UNLESS RESUMING EXECUTION OF THE
INTERRUPTIBLE INSTRUCTION THAT CAUSED
EIT 14 OF THE PSW TO BE SET.
RESUMPTION OF ANY INTERRUPTIBLE
INSTRUCTION MUST NEVER BE ATTEMPTED IF
1HE CONTENTS OF THE SCRATCH PAD
BEGISTERS ARE NOT KNOwN TO HAVE BEEN
FRESERVED BETWEEN INSTRUCTION
INTERRUPTION AND RESUMPTION.

10.4 FROCESSCR MODES

At any given time, the processor may be in the console mode or
run mode. The single-step mode provides a ~eans for alternating
between the con~ole and run modes. wait and run states only have
meaning for the run mode.

10.4.1 Console Mode

While the processor is dedicated to communicating with the system
console terminal, it is said to be in the console mode. In this
~ode, program execution is suspended so that the user may examine
and modify the data contained in certain registers and memory
locations.

Appendix F provides a flowchart for the console service routine.
The console mode may be entered in any of the following ways:

10-12

1. The Breakpoint CBRK) instruction is execute1 by ~
running program when PSW bit 23 is zero.

2. Execution of an instruction is completed while in the
sin~le-step mode.

3. The HAlT/RUN Switch is depressed momentarily while the
processor is in the run mode.

29-693 HOO 1/79

4. Following a system initialization sequence, backup power
to memcry is found not to have been maintained within
regulation, and the LSU is not enabled when the sequence
is comtlete.

5. Followiuq a system initialization sequence, if backup
power to memory was maintained within regulation, but
the LSU is not enabled and the contents of physical
memory location X'000028' indicate that the processor
was in the console mode when system initialization
occurred.

6. An attempt to fetch a machine malfunction interrupt new
PSW results in a non-correctable memory error. In this
case, the error code for the initial malfunction is
stored in the machine malfunction status word at
x•oooo~o·, and LOC is loaded with the address of the
status word before the console mode is entered.

7. If control has been passed to uninitialized Writable
Control Store or an errant WCS microproqram, control can
be regained at the system console by enabling the
single-step mode and depressing the HALr/RUN switch.

Note that system initialization occurs when the power supply
detects that AC line voltage is failing; when the Initialize
CINIT) s~itch on the consolette is momentarily depressed; or when
the key-operated LOCK/ON/STANDBY switch is moved to the STANDBY
position. The initialization sequence completes when power is
restored to the processor. System initialization resets all
pending interrupts for the system console and other I/0 devices
in the system. DMA operations are also terminated.

While the processor is in the console mode, interrupt conditions
are net handled in the same manner as they are if detected during
execution of a ~rogram.

Interrupt requests for the system console terminal and all other
I/0 devices remain queued until the run mode is entered. DMA
operations are not affected by changing processor modes.

PSW bit 16 is always forced to zero before the run mode is
entered from the console mode.

Fault conditions caused by memory accesses while in the console
mode are reset when they occur, and do not cause interrupts when
the run mode is ~ntered. If a fault condition occurs while
attempting to modify a memory location, that lo=ation may not be
changed. If a fault occurs while attempting to examine a memory
location, the faulting address is displayed instead.

System initialization, while in the console mode, results in
automatic shutdcwn, with no machine malfunction interrupt due to
power failure.

29-693 ROO 1/79 10-13

10.4.2 Run Mode

When the processor is not dedicated to communi=atinQ with the
system console terminal, it is in the run mode. In this mode,
program executicn is controlled by the contents of the 64-bit
Proqram Status Word {PSW). While the processor is in the run
mode, it may be in either the wait state (PSW bit 16 is set), or
the run state {PSW bit 16 is zero). In the run state, the
processor perf crms a repetitive fetch instruction/execute
instruction/fetch next instruction sequence. In the wait state,
this sequence is suspended.

The run aode may be entered in any of the following ways:

1. The 'less than' prompt character <<> is entered from the
system console terminal when the processor is in the
console mode.

2. The HALT/RUN switch is depressed momentarily while the
processor is in the console mode.

3. The LSU is installed and enabled when a system
initialization sequence is completed. In this case, the
program loaded from the LSU is given control of the
processor.

Interrupt conditions cannot cause the processor to enter the run
mode from the ccnsole mode, with the following two exceptions:

1. An initialization sequence performed while the processor
is in the consol~ mode causes the program to be loaded
from the enabled LSU, and control of the processor is
given to the program.

2. The HALT/RUN switch is depressed moment~rily while the
processor is in the console mode.

10.4.3 Single-Step Mode

When the SINGLE switch is in the SINGLE position, the processor
is in the single-step mode. In this mode, whenever execution of
an instruction is completed, the processor leaves the run mode
and enters the console mode. Manual intervention is normally
required to execute the next instruction.

Inter~upts are handled according to the methods jetailed in the
previous paragraphs. If the processor is in the sinqle-step mode
and the run state when an interrupt request occurs, the processor
completes the current instruction (or iter~tion) and then
performs the interrupt PSW swap. The first instruction of the
interrupt service routine is not executed.

If system initialization occurs while in the single-step mode,
any instruction in progress (or the current iteration of an
interruptible instruction) completes. When the initialization
sequence is com~lete, a maximum of one instruction is executed
before the processor again enters the console moie.

Note that in the single-step mode, PSW bit 16 is always forced to
zero before entering the run mode to fetch a user instruction.

10-14 29-693 ROO 1/79

10.5 STATUS SWITCHING

The PSW that is loaded in the processor, at any given time, is
called the current PSW. The register set selected by this PSW,
the data contained in the qeneral, floatin1-point, or scratchpad
registers accessible by the user ~rogram, and the machine status
defined by the PSW collectively constitute the "process state".
If the status word or both the location counter and status word
are changed, a status switch has occurred. A status switch can
be caused explicitly by executing a status switching instruction
or may be forced to occur by an interrupt. When the value of the
PSW that was current at the time of a status switch is saved,
that value is called the old FSW.

The scheduling of interrupt service routines is based upon the
concepts of old PSW, current PSW, and new P3W. When an interrupt
occurs, the following status switch takes place: the current PSW
becomes the old PSW~ the new PSW defined for the interrupt is
loaded, and becomes the current PSW.

For a status switch resulting from an interrupt, the old PSW is
stored in dedicated registers of the set specified by the new PSW
defined for the interrupt. The machine malfunction interrupt is
the exception to this rule; for this interrupt, the old PS# is
stored in dedicated memory locations.

For meaningful processor response to multiple interrupts, it is
important that the ne~ PSA defined f~r a particular interrupt
class does not enable interrupts of the same class.

The various interrupts which may occur, and the response of the
processor to each interrupt, are described in the following
sec ticns.

10.s.1 Illeg~l Instruction Interrupt

The ille1al instruction interrupt occurs if an attempt is made to
execute an instruction whose operation code is not one of those
permitted by the system. This interrupt may occur for any of the
following reasons:

1. The operation code is undefined for the system or
optional equipment necessary to exAcute the instruction
is not present in the system.

2. The operation code has
specifications, and
undPf ined.

several possible
the sub-function

sub-function
specified

3. The instruction is a privileged instruction, and PSW bit
23 is set.

4. The instruction is a floating-point instruction, and PS~

bit 13 is set.

29-693 ROO 1/79 10-15

The illeqal instruction interrupt cannot be disabled. The
f loatinq-point instructions, hiGh speed data handling
instructions, and writable control store instructions require
optional equipment, and are therefore optionally ille7al. No
attempt is made by the processor to execute an illegal
instruction.

When an illegal instruction interrupt occurs, the following
actions are taken:

1. The current PSW is stored in registers 14 and 15 of the
set selected by the illegal instruction interrupt new
PSW found in memory at Physical address X'000030'.

2. The illegal instruction interrupt new PSw becomes the
current PSW.

The old PSW location counter presented to the interrupt service
routine in register 15 points to the illegal instruction.

10.s.2 Data Format Fault Interrupt

The data format fault interrupt occurs if the required halfword
or fullword alignments are violated for memory accesses, or if it
is otherwise determined that data is not properly aligned to the
specified field~. Halfword alignment violations are not detected
by the Model 3220 Processor on memory reads. The data format
fault interrupt cannot be disabled.

When a data format fault interrupt occurs, the following actions
are taken:

10-16

1. The current PSW is stored in registers 14 and 15 of the
set selected by the data format fault new PSW found in
memory 3t physical address X'OOOOCR'.

2. Register 13 of the selected set is loaded with a code to
indicate the reason for the interrupt, as shown in the
following list:

CO[P REASON FOR INTERRUPT

0 R~served code
1 Reserved code
2 Invalid siqn digit, packed data
3 Invalid data digit, packed data
4 Reserved code
5 Reserved code
6 Fullword or halfword alignment fault

3. If the interrupt was caused by a halfwJrd or fullword
aliqnment fault, register 12 of the selected set is
loaded with the non-aligned virtual address causing the
fault.

4. The data format fault interrupt new PSW becomes the
current PSW.

29-693 ROO 1/79

The old PSW location counter presented to the interrupt service
routine in re9ister 15 points to the instruction being executed
when the fault cccurred. A data format fau1t causes the current
instruction, er the current iteration of an interruptible
instruction, to be aborted immediately.

10.s.2.1 Alignment Faults

An attempt to fetch a fullword of data from mBmory, or to write
a fullword of data to memory, using a program address which does
not have zeros as its two least-significant bits, causes a
fullword alignment fault.

An attempt to write a halfword of data to memory, using a program
address which does not have zero as its least significant ~it,
causes a halfword alignment fault.

The Model 3220 Frocessor does not distinguish between fullword
and halfword alignment faults. An alignment f~ult cannot occur
during an instruction fetch on this processor.

If an alignment fault occurs while attempting to write to memory,
the fullword or halfword at the next lower aligned address may be
modified.

10.5.2.2 Invalid Digit Faults

If an invalid sign or data digit is encountered while processing
numeric string data, it is presumed that the data is not aligned
to the specified fields. Additional information may be found in
the description of the instruction used to pr~cess the numeric
string.

10.5.3 Memory Access Controller (MAC) Fault Interrupt

The MAC fault interrupt occurs if an executing program violates
any of the relocation and protection conditions programmed into
the Memory AcceEs Controller (MAC). MAC error checking and the
MAC fault interrupt are enabled when PSW bit 21 is set. MAC
faults are not queued.

When a MAC fault interrupt occurs, the following actions are
taken:

1. The current PSW is stored in registers 14 and 15 of the
set selected by the MAC fault interrupt new PSw found in
memory at physical address X'000090'.

2. Reqister 13 of the selected set is loaded with a code to
indicate the reason for the interrupt. This code is
copied from the MAC status register while simultaneous:y
resetting the fault.

29-693 ROO 1/79 10-17

BINAEY CODE

16 8 4 2

x x x x
x x x 1
x x ~ x
x 1 x x
1 x x x

1

1
x
x
x
x

REASON FOR INTERRUPT

Execute protect violation
Write-interrupt
Write-protect violation
Non-present segment
Segment limit field exceeded

3. Register 12 of the selected set is loaded with the
virtual address which caused the fault.

4. If the fault occurred on a data fetch while attemptinq
to load the general registers using the Load Multiple
(LM) instruction, register 11 of the selected set is
loaded with the effective second operand address
calculated at the start of the LM instruction.
Otherwise, if the reason code for the interrupt
indicates only a write-interrupt condition, register 11
of the selected set is loaded with the address of the
instruction immediately following the one which
successfully completed, even though it caused the
interrtpt.

5. The MAC fault interrupt new PSw becomes the current PSW.

The old PSW location counter presented to the interrupt service
routine in register 15 points to the instruction being executed
when the fault occurred. Note that although more than one bit
may be set in the fault code, only one error is reported. If
non-present segment is indicated, all other bits may be ignored.

10.5.4 Machine Malfunction Interrupt

The machine malfunction interrupt occurs when any of the
following conditions are detected:

• Early power fail
• Power restore
• Non-correctable memory error
• Non-configured memory address

Detection of the listed conditions and the machine malfunction
interrupt are enabled when PSW bit 18 is set. Early power fail
detect is queued until primary power fail occurs if PSW bit 18 is
zero. All other malfunction conditions are ignored, and the
interrupts are lost.

When a machine malfunction interrupt occurs,
actions are taken:

the following

1. The current PSw is stored in memory beQinninq at
physical address X'000020'.

10-18 29-693 ROO 1/79

2. The Machine Malfunction Status Word (MMSW) at physical
address X'000040' is loaded with a code to indicate the
reason for the interrupt. Only one bit is set in this
code:

BIT
NUMBER

0 PF
1 PR
2 NCD

3 NCI

4 NCA

5 NV D

6 NV!

7 NVA

-
-
-

-
-

-
-

-

REASON FOR INTERRUPT

Power failure
Power restoration
Non-correctable memory error
during data fetch
Non-correctable memory error
during instruction fetch
Non-correctable memory error
during auto driver channel
operation
Non-configured memory address
during data fetch
Non-configured memory address
durinq instruction fetch
Non-confi9ured mem~ry address
during auto driver channel
operation

3. If the interrupt was caused by a non-correctable memory
error, or non-configured memory address, the virtual
address used for the memory access is stored in the
machine malfunction virtual address word at physical
address X'000044'. Otherwise, the contents of this word
are undefined.

4. If the interrupt was caused by a non-correctable memory
error, or non-configured memory address, and the fault
occurred on a data fetch while attempting to load the
general registers using the L~ instruction, the
effective second operand address calculated at the start
of that instruction is stored in the LM effective
address word at phy~ical address X'00002C'. Otherwise,
the contents of this word are undefined.

5. The machine malfunction interrupt new PS~ found at
physical address X'010038' becomes the new PSw.

If the interrupt was caused by executing an instruction, the old
PSW location counter presented to the interrupt service routine
points to the offending instruction. Otherwise, the old PSW
location counter presented to the interrupt service routine
points to the instruction to be ~xecuted once the interrupt has
been Eerviced.

29-693 ROO 1/79

If the interrupt was caused by executinQ the LM instruction, bits
2 and 5 of the Machine Malfunction Status Word CMMSW), may be
used to determine if any registers were modified before the
interrupt occurrP-d. If the old PSW location counter points to an
LM instruction, and if bits 2 and 5 of the MMSW are both zero, no
reQisters were modified. If bit 2 or bit 5 of the MMSW is set,
then:

1. If the data stored at physical addresses X'000044' and
X'00002C' are equal to one another, no registers were
modified by the instruction before the fault occurred.

2. If the data stored at physical addresses X'000044' and
X'00002C' are not equal to one another, at least one
register was modified by the instruction before the
fault occurred. The number of registers modified may be
determined by taking the difference of the data stored
at physical addresses X'000044' and X'00002C', and
dividing the result by four.

Figure 10-4 Machine Malfunction Status W~rd (MMSW)

10.5.4.1 Early Power Fail Detect and Automatic Shutdown

Early power fail detect occurs when the primary power failure
sensor detects a low voltage; when the power switch is turned
from the ON to STANDBY position; or when the !NIT switch is
depressed.

At the end of execution of the current instruction or the current
iteration of the current interruptible instruction, a machine
malfunction interrupt is taken if PSW bit 18 is set.

Followinq early power fail detect, software has one millisecond
before the automatic shutdown procedure of the processor takes
control as a result of Primary Power Fail. During this
procedure, the following actions occur:

10-20

1. The fullword power fail save area pointer is fetched
from lccation X'000084'.

29-693 ROO 1/79

2. The following information is saved by firmware in the
pover fail save area:

tATA

Current PSW

The eiQht general register
sets (in order, O through F)

Interruptible instruction
state (scratchpad registers)

Floating-point registers,
single and double

OFFSET IN SAVE
AREA CI N BYTE3)

0-7

8- 519

520-583

584-679

3. The prccessor waits tor power restore.

NOTES

1 • I f th e pro c es so r i s no t e q u i PP e d
with the optional floating-point
registers, the area between offsets
584 and 67~ is not used.

L. If the pointer found in location
X'000084' does not specify 1 save
arPa aligned to a fullword
boundary, the processor forces
correct alignment by replacing the
2 least-significant bits of the
pointer with zeros. The new
pointer is stored in memory
location X'000084', before the
power-down sequence is performed.

3. The floating-point masked mode bit
in the PSW has no effect on the
saving of the floating-point
rf'qisters.

4. The IIP bit has no effect on the
saving of the scratchpad registers.

10.5.4.2 Power Restore

When power restcre occurs, a simple go/no qo self test of various
internal buses and registers is performed. If the back-up supply
voltages to memcry were not maintained within margins betwe~n
shutdown and ~ower restore, the first 256k bytes of memory are
filled with a data pattern to prevent spurious non-correctable
memory error indications, and the general registers, scratchpad
registers, and floating-point registers are loaded with
pre-deter~ined data.

29-6J3 ROO 1/79 10-21

The first 256k bytes of memory are then tested to see if data can
be held. This test does not modify the data contained in memory.
Failure of selftest or the memory test causes that test to
execute, as long as the failure persists. During the test, the
processor is responsive only to a primary power fail which
results in an automatic shutdown; and the FAULT lamp on the
consolette switch panel is on.

When memory testing is complete, the FAULT lamp is turned off,
and the state of the optional Loader Storage Unit (LSU) is
tested. If the LSU is not equipped, it is presumed to be
disabled. In all cases, bit 1 of the machine malfunction status
word at physical address X'000040' is set to indicate power
restore.

10.5.4.2.1 If the LSU is Disabled

If the back-up voltages to memory were not maintained within
margins between shutdown and power restore, then memory is
assumed not to contain valid data. In this case, a PSW status of
'00008000' (wait bit only) and location counter of 'OOOFFFFE' are
loaded and displayed on the system console terminal. Manual
intervention is required to restart the processor.

If the back-up voltages to memory were maintainei, the data saved
in the power fail save area by the automatic shutdown procedure
is reloaded.

If the data in memory at
that the processor was
reloaded PSW is displayed,
console terminal resumes.

physical address X'000028' indicates
in console mode when power failed, the

and communication with the system

If the processor was not in console mode when power failed, bit
18 of the relcaded PSW is tested. If the bit is set, a machine
malfunction interrupt occurs.

If bit 18 of the reloaded PSW is
resumed usin~ the reloaded PSW.
bit (bit 16) of the PSW is
instruction.

zero, program execution is
Note that the state of the wait
tested before executing any

NOTE

Data in the Memory Access Controller
and Selector Channel control registers
and writable control store is volatile,
and must be considered invalid
following any power fail/restore
sequence.

10.5.4.2.2 If the LSU is Enabled

After the FAULT lamp is turned off, the program in the LSU is
loaded, and control is transferred to it, using the PSW specified
in the program. If the memory start address is greater than the
memory end address specified for the LSU program, the program is
not loaded, and the console mode is entered.

10-22 29-693 ROO 1/79

10.s.4.3 Non-Correctable Memory Error

During write operations to memory, an ~rror Correcting Code CF.CC)
is generated. This code enables the memory system to correct any
single bit error detected on a subsequent read operation in each
fullword of memory. If the operation is only a byte or halfword
write to memory, the memory system reads and updates the error
correcting code for the fullword of memory that contains the byte
or halfword that is being written.

Each time data is read from memory, the error correcting code is
recreated and ccmpared to the code generated when data was last
written to any part of the fullword memory location. If a data
error is detected, and the error is a single bit error, it is
corrected tr~nsparent to the processor. If, however, a multiple
bit error is detected, a memory malfunction fault is generated,
since multiple ~it errors cannot be corrected.

Note that data with three or more bits in error may not result in
a fault. Detection of any error causes a bit to be set in the
optional error logger for subsequent readout using the REL
instruction.

A non-correctable memory error can be caused by performing a byte
or halfword store to memory. This is possible because the data
and ECC for the correspondinJ fullword are fetched so that a new
ECC cede may be generated.

If PSW bit 18 is zero when the error occurs, the error is
ignored, but is logged in the optional error logger.

If PSW bit 18 is set, occurrence of a non-correctable memory
error causes the current instruction (or the current iteration of
an interruptible instruction) to be imme1iately aborted; and a
machine malfunction interrupt occurs. Bit 2, 3, or 4 of the
machine malfunction status word at physical address X'000040' is
set to indicate the reason for the interrupt. The virtual
(program) address used for the memory access is stored in the
machine malfunction address word at physical address X'000044'.

If the error occurs on a data fetch while attempting to load the
general registers using the LM instruction, the effective second
operand address calculated at the start of the LM instruction is
stored in the L~ effective dddr~ss word at physical address
X'00002C'. This data allows the instruction t~ be simulated in
the event specified index registers were modified.

If the error occurs while fetchinq an instruction, the old PSW
location counter., presented to the interrupt service routine,
points to the first halfword of the instruction being fetched.

If the error occurs during an auto driver channel operation,
registers 0 and 1 of the set indicated by the old PS~, presentPd
to the interrupt sPrvice routine, contain the PSW for the
instruction intPrrupted by the I/O interrupt that activate1 the
channel. aegister 4 of the set injicated co~tains the address of
the CCB that was being executed when the error occurred.

29-693 ROO 1/79 10-23

Since the errcr-correctinQ code is maintained on a fullword
basis, if a multiple bit error is detected when a halfword or
byte· of a fullword is read or written, it is not possible to
determine which bits are in error. Therefore, a reference to any
portion of a fullword that contains multiple bit errors may cau~
a memory malfunction, even though the incorrect bits might not o~
in the portion cf the fullword being accessed. (References to
memory made by look-ahead buffers or caches do not cause memory
malfunction interrupts until the fullword that is in error is
actually used by the currently ex~cutinQ instruction.)

10.5.4.4 Non-Configured Memory Address

The Model 3220 Frocessor tests the physical address used for each
memory access, if PSW bit 18 is set. when access to memory
physically not in the system is attempted, a machine m~lfunction
interrupt occurs. The current instruction (or the current
iteration of an interruptible instruction) is immediately
aborted. Bit 5, 6, or 7 of the machine malfunction status word
at physical address X'000040' is set to indicate the reason for
the interrupt. The virtual (program) address used for the memory
access is stored in the machine malfunction address word at
physical address X'000044'.

If the error occurs on a data fetch while attempting to load the
general registers using the LM instruction, the effective second
operand address calculated at the start of the LM instruction is
stored in the L~ effective address word at physical address
X'00002C'. This data allows the instruction to be simulated in
the event specified index registers were modifie1.

If the error occurs while fetching an instruction, the old PSW
location counter, presented to the interrupt service routine,
points to the first halfword of the instruction being fetched.

If the error occurs durinq an auto driver channel operation,
registers 0 and 1 of the set indicated by the old PSW, presented
to the interrutt service routine, contain the PSW for the
instruction interrupted by the I/0 interrupt that activated the
channel. Register 4 of the indicated set contains the address of
the CCB that was being executed when the error occurred.

Accesses to memcry made by look-ahead buffers or caches do not
cause non-conf iqured memory address interrupts until an attempt
to access non-ccnfigured memory is actually made by the executing
program. For the Model 3220 Processor equipped with the optional
hiqh-speed cache, only a memory access resulting in the
invalidation of a block of cache memory, and an actual attempt by
the cache to validate that block by accessing non-confiQured main
memory, result~ in a non-configured memory address machine
malfunction interrupt. Subsequent accesses to the same cache
block may give no error indication as a result of the
non-ccnfigured memory address, until the cache again attempts to
validate the blcck.

10-24

CAUTION

FOR THE MODEL 3220 PROCESSOR WITH THE
HIGH-SPEED CACHE OPTION, IT IS
IMPORTANT THAT SOFTWARE ALWAYS RUN WITH
THE ~ACHINE MALFUNCTION INTERRUPT
ENABLED.

29-693 ROO 1/79

10.s.s Input/Output Device {I/O) Interrupts

10.5.5.1 Priority Levels

Interrupt requests from I/O devices may occur on
priority levels. Level 0 is the highest priority
is the lowest priority level. Acknowledgement
requ~sts on the various priority levels is enabled
and 20, as shown in the following table:

PS W BIT 17 PSW BIT 20 MEANING

any of four
level; level 3
of interrupt

by PSW bits 17

0 O All levels disabled
0 1 Higher priority levels enabled
1 O All priority levels enabled
1 1 Current and higher priority

levels en,;ibled

A unique register set is selected for I/O interrupt requests
ackno~ledged on each priority level. For example, when an
interrupt request is acknowledged at priority level 3, register
set 3 is selected by the processor for handling the interrupt
request. If the request results in entry to a software interrupt
service routine, register set 3 is selected by the PSW in effect
at the time the routine is entered, and information pertaining to
the interrupt is contained in registers 0 to 3 or 0 to 4 of that
set.

The current priority level is determined by bits 24:27 (the
register select field) of the current PSW. For example, if set
3 is currently selected, levels 2, 1, and O are higher priority
levels, and level 3 is the current priority level. If PS~ bit 17
is zero and PSW bit 20 is set, an I/O interrupt request occurring
on level 2, 1, or 0 is acknowlBdqed, but a request occurrinq on
level 3 is not acknowledged.

In this example, if PSW bits 17 and 20
status is X'4830'), the interrupt
acknowledged.

are both set (the PSW
request on level 3 is also

If a register set other than O, 1, 2, or 3 is selected by the
current PSW, all 1/0 interrupt requests are considered to be
higher-priority requests, and will be acknowledged if either PSW
bit 17 or bit 20 is set.

29-693 FOO 1/79 10-25

Enabling of interrupts on the various levels is shown in detail
in Table 10-1. When an interrupt request occurs, but is not
acknowledged by the processor, the request remains queued until
one of the following occurs:

1. The interrupt request is acknowledged by the proc~ssor

when enabled by the current PSW.

2. The interrupt request is programmed reset by the
software.

3. System initialization occurs.

When the processor acknowledges an I/0 interrupt request, the
result may be either an auto driver channel operation, or an
immediate interrupt. In either case, the reqistar set associated
with the priority level, on which the interrupt is acknowledged,
is used in processing the interrupt.

For further infor.mation on programming a device interrupt request
reset, refer to the programming manual for the specific device.
This feature is not availabl?. for all I/0 devices.

10.5.5.2 Immediate Interrupt - Auto Driver Channel Operation

An interrupt request by an I/O device at one of the four
interrupt priority levels is acknowledged only when interrupts
are enabled for that level, as defined by the status of PSW bits
17 and 20, and the selected register ~et.

10-26 29-693 ROO 1/79

TABLE 10-1 INTERRUPT PRIORITY LEV EL/R EGI ST ER SET SUMMARY

623

PSW CURRENT
BITS REGISTER SET EXTERNAL I~TERRUPT LEVEL ENABLED

17 20 LEVEL 0 LEVEL 1 LEV EL 2 LEVEL 3

0 0 ANY SET NO NO NO N'.J

0 1 0 NO NO NO NO

0 1 1 YES NO NO NO

0 1 2 YES YES NO NO

0 1 3 H~S YES I ES NO

0 1 4 Y~S YES YES YES

0 1 5 YES YES YES YES

') 1 6 YES YES I ES YES

0 1 F YES :i ES 1 ES YES

1 Q ANY SET YRS YES YES y F.S

1 1 0 Y~S NO NO NO

1 1 1 'f ES YES NO NO

1 1 2 YES YES YES NO

1 1 3 YES YES YES YES

1 1 4 YES YES YES YES

1 1 5 YES YES YES '.!ES

1 1 6 YES YES YES YES

1 1 F YES YES YES YES

29-693 ROO 1/79 10-27

The processor recognizes I/O interrupts between the execution of
instructions, or at the end of an iteration of an interruptible
instruction. When an I/O interrupt is recognized, the following
actions occur:

1. The current PSW is saved in registers 0 and 1 of the new
set select~d by the interrupt level. (PSW bits 0:31 are
saved in register O and bits 32:63 in re9ister 1.)

2. The PSW status word is loaded
Y'0000~8NO', where N specifies
This status enables higher level
machine malfunction interrupts.
address translation is disabled.

with the value
the new register set.
I/0 interrupts and

Also note that memory

3. The I/0 interrupt rP.quest is ackno#ledged and reset.
The address of the interrupting device is placed in
r.egister 2 of the selected set. The status byte from
the interrupting device replaces the contents of
register 3. The device number and status are placed in
the least significant bit positions in the register: the
most significant bits are forced to zero. The four
least significant bits of the status of the interrupting
device are placed in the condition code.

4. The device number is added twice to X'OOOODO' (the start
of the interrupt service pointer table) to obtain the
address within the table that corresponds to the
interrupting device. The contents of this halfword of
memory are fetched and examined to see if the interrupt
is to te treated as an immediate interrupt or as an
auto-driver channel operation. If bit 15 of the
halfword is zero, an immediate interrupt is required.
If bit 15·of the halfword is one (the halfword is odd),
an autc-driver channel operation is re~uired. If the
interrupt is an immediate interrupt, the value in the
table becomes the location counter portion of the
current PSW. If the interrupt is an auto-driver channel
operation, then the least siqnificant bit of the
halfword is replaced by zero and the resulting value is
placed in register 4 of the selected set. The
auto-1river channel is then activated.

10.5.6 Simulated Interrupt

The simulated interrupt results from executing a Simulate
Interrupt (SI~T> instruction when PSW bit 23 is zero. SINT is a
privileged instruction, and may not be executed when PSw bit 23
is set.

Execution of the SINT instruction causes the processor to
simulate acknowledgement of an enabled I/0 interLupt request from
an external device. The device address and interrupt level for
the simulated interrupt are specified by the operands of the SINT
instruction.

10-28 29-693 ROO 1/79

The states of PSW bits 17 and 20, normally used to enable and
disable the various I/O interrupt levels, are ignored by the SINT
instruction. For purposes of the simulated interrupt, I/O
interrupts at all priority levels are assumed to be enabled. No
pending device interrupt request is actually acknowledged by the
processor as a result of executing the SINT instruction. with
the exception of the differences described here, the simulated
interrupt request is handled as detailed in paragraph 10.5.5.

CAUTION

DUE TO THE FACT THAT THE SINT INSTRUCTION
IGNORES THE STATES OF PSW BITS 17 AND 20, IT
SHOULC BE USED CAREFULLY BY PROGRAMS WHICH
RUN IN REGISTER SETS O, 1, 2, OR 3. FOR
EXAMPIE, IF A PROGRAM EXF.CUTING IN REGISTER
SET 2 ENABLES ONLY HIGHER-LEVEL INTERRUPTS,
DATA IN THE REGISTERS OF SET 2 ARE NOT
NORMALLY SURJECT TO CHANGE AS A RESULT OF AN
I/0 INTERRUPT. HOWEVER, IF THE PROGRAM
EXECUTING IN REGISTER SET 2 DOES A SINT
CAUSING INTERRUPT LEVEL 3 (AND REGISTER SET
3) TO RE SELFCTED, THE NEW PSW LOADED BY THE
PROCESSOR CAUSES INTERRUPTS AT LEVELS 2, 1,
AND 0 TO BE ENABLED. IF AN I/O INIERRUPT
REQUEST AT LEVEL 2 OCCURRED, IT WOULD BE
HONORED, CAUSING REGISTERS O, 1, 2, AND 3
(AND FERHAPS 4) OF SET 2 TO BE OVERWRITTEN.

IF THESE REGISTERS ARE NOT STORED BEFORE THE
SINT INSTRUCTION IS EXECUTEt, DATA IN THE
REGISTERS IS LOST, AND SYSTEM SOFTwARE COULD
BE LEFT IN AN INDETERMINATE STATE.

The simulated interrupt is a software interrupt.

10.5.7 System Cueue Service CSQS) Interrupt

~hen any of the instructions listed below is executed, as the
instruction completes, hit 22 of the new PSW load~1 by the
instruction is tested. If the bit is zero, the SQS interrupt is
disabled, and program execution continues according to the new
PSW loaded.

MNEMONIC

EPSR
LDPS
LPSW
LPSWR

29-693 ROO 1/79

MEANING

Exchange Proqram Status Register
Load Process State
Load Program Status Word
Load Program Status Word Register

10-29

If bit 22 of the new PSW loaded by any of these instructions is
set, the state of the system queue (whose physical address is
found at physical location X'000080') is tested. The system
queue is assumed to be maintained according to the circular list
format. The number used field is fetched from the list header.
If this field contains zero, the system queue is assumed to be
empty, and program execution continues according to the new PSW
loaded.

If the number used field for the system queue is not zero when it
is tested, the following actions are taken to cause an SQS
interrupt:

1. The current PSW, which was loaded by execution of one of
the listed instructions, is stored in registers 14 and
15 of the set selected by the SQS interrupt new PSW
found in memory at physical address X'000088'.

2. Register 13 of the selected set is loaded with the
address of the system queue.

3. The SQS interrupt new PSW becomes the current PSW.

If the SQS interrupt occurs as a result of executing an EPSR
instruction, the old PSW location counter presented to the
interrupt service routine in register 15 points to the
instruction following the EPSB instruction. If the interrupt
occurs as a result of executing any of the other listed
instructions, the old PSW location counter contains the value
loaded by the instruction causing the interrupt.

Items may be added to the system queue while the SQS interrupt is
enabled or disabled. The Add to Top of List (ATL) and Add to
Bottom of List CABL) instructions are normally used for this
purpose. The fact that the items have been added to the system
queue is recorded in the list header. Only when a new PSW is
loaded which enables the SQS interrupt, is the state of the queue
tested, and an interrupt allowed.

The system queue has a maximum size, as determined by the list
header establi~hed by system software. If an attempt is made to
add an item to the queue when it is already full, thP. data may be
lost. This could result in system software being left in an
indeterminate state.

Note that the address of the system queue contained in the system
queue pointer must be aligned to a fullword boundary.

See the section on Status Switching Instructions for a
description of the EPSR, LDFS, LPSW, and LPSWR instructions.

The SQS interru~t is a deferred synchronous software interrupt.

1C.5.8 Supervi5or Call (SVC) Interrupt

The Supervisor Call (SVC) interrupt occurs
instruction is executed. This instruction
interrupt provide a means for any program to
system software.

10-30

when the SVC
and the resulting
communicate with

29-693 ROO 1/79

The states of PSW bits 17 and 20, normally used to enable and
disable the various I/O interrupt levels, are ignored by the SINT
instruction. For purposes of the simulated interrupt, I/O
interrupts at all priority levels are assumed to be enabled. No
pending device interrupt reQuest is actually acknowledged by the
processor as a result of executing the SINT instruction. With
the exception of the differences described here, the simulated
interrupt request is handled as detailed in paragraph 10.5.5.

CAUTION

DUE TO THE FACT THAT THE SINT INSTRUCTION
IGNORES THE STATES OF PSW BITS 17 AND 20, IT
SHOULC BE USED CAREFULLY BY PROGRAMS WHICH
RUN IN REGISTER SETS O, 1, 2, OR 3. FOR
EXAMPIE, IF A PROGRAM EXF.CUTING IN REGISTER
SET 2 ENABLES ONLY HIGHER-LEVEL INTERRUPTS,
DATA IN THE REGISTERS OF SET 2 ARE NOT
NORMALLY SURJECT TO CHANGE AS A RESULT OF AN
I/0 INTERRUPT. HOWEVER, IF THE PROGRAM
EXECUTING IN REGISTER SET 2 DOES A SINT
CAUSING INTERRUPT LEVEL 3 (AND REGISTER SET
3) TO RE S~LFCTED, THE NEW PSW LOADED BY THE
PROCESSOR CAUSES INTERRUPTS AT LEVELS 2, 1,
AND 0 TO BE ENABLED. IF AN I/0 INIERRUPT
REQUEST AT LEVEL 2 OCCURRED, IT WOULD BE
HONORED, CAUSING REGISTERS O, 1, 2, AND 3
(AND FERHAPS 4) OF SET 2 TO BE OVERWRITTEN.

IF THESE REGISTERS ARE NOT STORED BEFORE THE
SINT INSTRUCTION IS EXECUTEL, DATA IN THE
REGISTERS IS LOST, AND SYSTEM SOFTwARE COULD
BE LEFT IN AN INDETERMINATE STATE.

The simulated interrupt is a software interrupt.

10.5.7 System Cueue Service CSQS) Interrupt

~hen any of the instructions listed below is executed, as the
instruction completes, hit 22 of the new PSW load~1 by the
instruction is tested. If the bit is zero, the SQS interrupt is
disabled, and program execution continues according to the new
PSW loaded.

MNEMONIC

EPSR
LDPS
LPSW
LPSWR

29-693 ROO 1/79

MEANING

Exchange ProQram Status Register
Load Process State
Load Program Status Word
Load Program Status Word Register

10-29

If bit 22 of the new PSW loaded by any of these instructions is
set, the state of the system queue (whose physical address is
found at physical location X'000080') is tested. The system
queue is assumed to be maintained accordinq to the circular list
format. The number used field is fetched from the list header.
If this field contains zero, the system queue is assumed to be
empty, and program execution continues accor1ing to the new PSW
loaded.

If the number used field for the system queue is not zero when it
is tested, the following actions are taken to cause an SQS
interrupt:

1. The current PSW, which was loaded by execution of one of
the listed instructions, is stored in registers 14 and
15 of the set selected by the SQS interrupt new PSW
found in memory at physical address X'000088'.

2. Register 13 of the selected set is loaded with the
address of the system queue.

3. The SQS interrupt new PSW becomes the current PSW.

If the SQS interrupt occurs as a result of executing an EPSR
instruction, the old PSW location counter presented to the
interrupt service routine in register 15 points to the
instruction following the EPSB instruction. If the interrupt
occurs as a result of executinQ any of the other listed
instructions, the old PSW location counter contains the value
loaded by the instruction causing the interrupt.

Items may be added to the system queue while the SQS interrupt is
enabled or disabled. The Add to Top of List (ATL) and Add to
Bottom of List CABL) instructions are normally used for this
purpose. The fact that the items have been added to the system
queue is recorded in the list header. Only when a new PSW is
loaded which enables the SQS interrupt, is the state of the queue
tested, and an interrupt allowed.

The system queue has a maximum size, as determined by the list
header establi~hed by system software. If an attempt is made to
add an item to the queue when it is already full, the data may be
lost. This could result in system software being left in an
indeterminate state.

Note that the address of the system queue contained in the system
queue pointer must be aligned to a fullword boundary.

See the section on Status Switchin9 Instructions for a
description of the EPSR, LDPS, LPSW, and LPSWR instructions.

The SQS interru~t is a deferred synchronous software interrupt.

10.5.8 SuperviEor Call (SVC) Interrupt

The Supervisor Call (SVC) interrupt occurs
instruction is executed. This instruction
interrupt provide a means for any program to
systero software.

10-30

when the SVC
and the resulting
communicate with

29-693 ROO 1/79

When the SVC instruction is executed, the processor takes the
f ollowinq actions:

1. The cutrent PSW is saved in registers 14 and 15 of the
set selected by the SVC interrupt new PSW foun1 in
memory at physical address X'000098'.

2. Register 13 of the selected set is loaded with the
effective second operand address calculated for the SVC
instruction executed. This is normally the address of
an SVC parameter block, aligned to a fullword boundary.

3. The SVC interrupt new PSW becomes the current PSW, with
a new LOC value chosen from the table at physical
locaticn X'9C'.

The old PSW location counter presented to the interrupt service
routine in register 15 points to the instruction following the
SVC instruction.

The SVC interru~t is a software interrupt and cannot be disabled.

10.5.9 System Breakpoint Interrupt

A system breakpcint results if a Breakpoint (BRK) instruction is
executed when PSW bit 23 is zero. BRK is a privileged
instruction, and may not be executed when PSW bit 23 is set.

Execution of
the console
communication
registers and
user from the

the BRK
mcde.

•ith
memory
system

instruction causes the processor to enter
In this mode, the processor is dedicated to

the system console terminal. Various
locations may be examined or modifiej by the
console terminal while in this mode.

When the BRK instruction is executed, no re9isters or memory
locations are mcdified. The PSW status and location counter are
not modified ty the BRK instruction. The loc~tion counter, at
entry to the console mode, points to the BRK instruction.

When the run mode is entered from the console mode, PSW bit 16 is
forced to zero, so that an instruction is fetched and executed.
If the run mode is entered immediately after a BRK instruction is
executed, the same BRK instruction results in another system
break~oint.

The system breakpoint interrupt is a software interrupt.

10.5.10 Arithmetic Fault Interrupt

The arithmetic fault interrupt results from either a fixed-point
or a floating-point arithmetic operation, when the magnitude of
the result is tco large to be represented within the required
number of bits. Division by zero is a special case, an1 always
results in an arithmetic fault interrupt. Interrupts for any of
these reasons cannot be disabled.

Floating-~oint underflow occurs when the normalized result of a
floating-point load, conversion, or other drithmetic oper~tion is
not zero, but is so small that it cannot be represented within
the floating-point number system defined for the processor.

29-693 ROO 1/79 10-31

If PSW bit 19 is zero when floating-point underflow occurs, no
arithmetic fault interrupt results. In this case, the result of
the operation is set to "true zero". This means that every bit
of the result is forced to zero as the result is copied to its
destination. If PSw bit 19 is set when floating-point underflow
occurs, an arithmetic fault interrupt does occur.

When an arithmetic fault interrupt occurs, the following actions
are taken:

1. The instruction causing the interrupt is aborted before
the data in any register or memory location is modified.

2. The current PSW is stored in registers 14 and 15 of the
set selected by the arithmetic fault interrupt new PSW
found in memory at physical address X'000048'.

3. Register 13 of the selected set is loaded with a code to
indicate the reason fo~ the interrupt:

4.

CCDE

c
1
2
3
4

REASON FOR INTERRUPT

Fixed-point division by zero
Fixed-point quotient overflow
Floating-point division by zero
Floating-point exponent underflow
Floating-point exponent overflow

Register 12 of the selected
address of the instruction
causing the interrupt.

set is loaded with the
following the instruction

5. The arithmetic fault interrupt new PSW becomes the
current PSW.

The old PSW location counter presented to the interrupt service
routine in register 15 points to the instruction that caused the
interrupt.

10.6 STATUS SWITCHING INSTRUCTIONS

Status switching instructions provide for software control of the
system's interrupt structure. They also allow user level
programs to ccmmunicate efficiently with control software. All
status switchinq instructions, except the supervisor call
instruction, are privileged operations. Therefore, all interrupt
handling routines must run in the supervisor mode.

The status switching instruction described in this section are:

10-32

10.6.1
10.6.2
10.6.3
1Q.6.4
10.5.5
10.6.6
10.6.7

LPSW
LPSwR
EPSR
SINT
SVC
BRK
PSF

Load Program Status Word
Load Program Status Word Register
Exchange Program Status Register
Simulate Interrupt
Supervisor Call
System Breakpoint
PrivileQed System Function

10.6.1 Load Program Status Word (LPSW)

Assembler Notation

LPSW
LPSW

Operation

D2CX2)
A2CFX~,SX2)

Op-Code

C2
C2

Format

RX1,RX2
RX3

The 64-bit second operand replaces the current PSW.

Condition Code

Determined by the new PSW (bits 28:31).

Programming Notes

The R1 field of this instruction must be zero.

The second operand must be aligned to a fullword boundary.

This instruction is a privileged operation.

This instruction may be used to change register sets. The new
set becomes active for execution of the next instruction.

If bit 22 of the new PSW is set, the state of the system queue is
tested. If the queue is non-empty, a System Queue Service (SQS)
interrupt occurs. In this case, the newly-loaded PSW is saved as
the old PSW when the SQS interrupt occurs.

29-693 ROO 1/79 10-33

10.6.2 Load Program Status Word Register (LPSWR)

Assembler Notation Op-Code Format

LPSWR R2 18 RR

Operation

The contents of the register specified by R2 replace bits 0:31 of
the current PSW. The contents of the register specified by R2+1
replace bits 32:63 of the current PSW.

Condition Code

Determined by the new PSW (bits 28:31).

Programming Notes

The R1 field of this instruction must be zero.

The R2 field of this instruction must specify ~n even-numbered
register.

This instruction may be used to change register sets. The new
set becomes active for execution of the next instruction.

This instruction is a privileged operation.

If bit 22 of the new PSW is set, the state of the system queue is
tested. If the queue is non-empty, a System Queue Service (SQS)
interrupt occur~. In this case, the newly-loade1 PSW is saved as
the old PSW when the SQS interrupt occurs.

10-34 29-693 ROO 1/79

10.6.3 Exchanqe ProQram Status Register (EPSR)

Assembler Notation Op-Code Format

EPSR R1,R2 95 RR

Operation

Bits 0:31 of the current PSW replace the contents of the register
specified by R1. The contents of the register specified by R2
then replace bits 0:31 of the current PSW.

Condition Code

Determined by the new PSW (bits 28:31).

Programming Notes

R1 and R2 may s~ecify any general-purpose reGisters.

If R1 and R2 specify the same register, bits 0:31 of the current
PSW are copied into the register specified by R2, but otherwise
remain unchanged.

This instruction may be used to change registP.r sets. The new
set becomes active for execution of the next instruction.

This instruction is a privileged operation.

If bit 22 of the new PSW is set, the state of the system queue is
tested. If the queue is non-empty, a System Queue Service (SQS)
interrupt occurs. In this case, the newly-loaded PSW is savej as
the old PSW when the SQS interrupt occurs.

29-693 ROO 1/79 10-35

10.6.4 Simulate Interrupt (SINT)

Assembler Notation

SINT
SINT

Operation

I2CX2)
R1,I2(X2)

Op-Code

E2
E2

Format

RI1
RI1

The least significant 10 bits of the second operand are presented
to the interrupt handler as a device number. The device number
is used to index into the interrupt service pointer table, when
simulating an interrupt request from an external device. The
result is either an immediate interrupt or an auto-driver channel
operation.

Condition Code

Determined by the status of the addr~ss device, in the case of
the immediate interrupt, or set by the auto-driver channel at
termination.

Programming Notes

If the R1 field of this instruction is not specified or contains
zero, it is assumed that an interrupt from level 0 is required,
and register set 0 is selected.

If the R1 field of the instruction is non-zero, the least
significant 4 bits of the register specified by R1 designate the
new register set, and consequently the new interrrupt level.

This instruction is a privileqed operation.

This instruction causes the processor to load registers 0 through
3, or 0 throuqh 4, of the new set as for a real interrupt
request.

During the execution of this instruction, 'tne device is addressed
and the status tyte is returned in register 3 of the new set.

If the specified device does not respond to the status request,
register 3 of the new set contains X'00000004' due to time-out.
If an immediate interrupt is being simulated, the V flag is also
set in the condition code as a result of the time-out.

The SINT instruction does not c~use any pending interrupt to be
ackno~ledged.

10-36 29-693 ROO 1/79

10.6.5 Supervisor Call {SVC)

Assembler Notation

SVC
SVC

Operation

N,D2(X~)
N,A2(FX2,SX2)

Op-Code

E1
E1

Format

RX1, RX2
RX3

The second operand (normally the program address of an SVC
parameter block) replaces bits 8:31 of register 13 of the set
designated by the supervisor call new PSW status. Bits 0:7 of
this register are forced to zero. The current PSW replaces the
contents of registers 14 and 15 of that set. The fullword
quantity located at Y.'000098' in memory replaces bits 0:31 of the
current PSW. The 4-bit N field is doubled and added with
X'00009C'. The halfword quantity located at the resultant
address becomes the current location counter.

Condition Code

Determined by the new PSW (bits 28:31).

Programming Note

This instruction provides a means to switch from the protect mode
to the superviscr mode. It is used by a program running under an
operating system to initiate certain functions in the supervisor
program. The second operand ~ddress is normally a pointer to the
memory location of parameters needed by the supervisor program to
perform the s~ecified function. Such a pointer must indicate a
parameter block aligned to a fullword boundary. The type of
supervisor call is specified in the N field of the instruction.
Sixteen different calls are provided for. Return from the
supervisor is made by executing an LPSWR instruction specifying
the stored old FSW in registers 14 and 15 of the set selected by
the Supervisor Call interrupt new PSW (LPSWR R14).

29-693 ROO 1/79 10-37

10.6.6 System Breakpoint {BRK)

Assembler Notation Op-Code Format

BRK 88 SF

Operation

The BRK instruction causes the processor to enter the con~ole

mode.

Programming Notes

The location counter is not incremented.

~his instruction is a privileged instruction.

10-38 29-693 ROO 1/79

10.6.5 Supervisor Call (SVC)

Assembler Notation

SVC
SVC

Operation

N,D2(X~)

N,A2(FX2,SX2)

Op-Code

E1
E1

Format

RX1, RX2
RX3

The second operand (normally the program address of an SVC
parameter block) replaces bits 8:31 of register 13 of the set
designated by the supervisor call new PSW status. Bits 0:7 of
this register are forced to zero. The current PSW replaces the
contents of regiRters 14 and 15 of that set. The fullword
quantity located at Y.'000098' in memory replaces bits 0:31 of the
current PSW. The 4-bit N field is doubled and added with
X'00009C'. The halfword quantity located at the resultant
address becomes the current location counter.

Condition Code

Determined by the new PSW (bits 28:31).

Programming Note

This instruction provides a means to switch from the protect mode
to the superviscr mode. It is used by a program running under an
operating system to initiate certain functions in the supervisor
program. The second operand ~ddress is normally a pointer to the
memory location of parameters needed by the supervisor program to
perform the s~ecified function. Such a pointer must indicate a
parameter block aligned to a fullword boundary. The type of
supervisor call is specified in the N field of the instruction.
Sixteen different calls are provided for. Return from the
supervisor is made by executing an LPSWR instruction specifying
the stored old FSW in registers 1q and 15 of the set selected by
the Supervisor Call interrupt new PSW (LPSWR R14).

29-693 ROO 1/79 10-37

10.6.6 System Breakpoint CBRK)

Assembler Notation Op-Code Format

BRK 88 SF

Operation

The BRK instruction causes the processor to enter the con~ole

mode.

Programming Notes

The location counter is not incremented.

This instruction is a privileged instruction.

10-38 29-693 ROO 1/79

10.6.7 Privileged System Function (PSF)

Assembler Notation

PSF
PSF

N, D2 (X 2)
N,A2(FX2,SX2)

Operation

Op-Code

DF
DF

Format

RX1,RX2
RX3

The PSF instruction may perform any one of 16 functions, as
specified by the value contained in the N field. The assembler
recognizes extended mnemonics which cause the proper value to be
specified in the N field of this instruction. The nature of the
specified function may vary from processor to processor. The
follo~ing paragraphs detail PSF operations performed by this
processor.

EXTENDED
PSF

VALUE OF N MNEMONIC

0 REL
1 LPSTD
"" LSSTD ,(.

3 STPS
4 LCPS
c: ISSY -
6 ISRST
7 XSTR

P r o gr am m in g ;Jot e

MEANING

Read Error Logger
Load Process Segment Table Descriptor
Load Shared Segment Table Descriptor
Store Process State
Load Process State
Save Interruptible State
Restore Interruptible State
Store Byte, no ECC

This instruction is a privileged instruction.

29-693 HOO 1/79 1o-39

624

10.6.7.1 Read Error I.egger (HEL)

Assembler Notation Op-Code Format

REL R2

O Pera ti on

DFO RX1
(see programming

notes)

The register specified by R2 contains an error logger address.
Error logger data at this address is read and placed in the
register specified by R2+1.

The format of the error logger address is:

7 8 9 10 13 14 1516 18 19 20 _31

RESERVED M RESERVED

BITS MNEMONIC USE

0-7 RES ERV ED must be zero

8-9 R bank - must be zero

10-13 M: module - selects one of sixteen 256kb
memory modules

14-15 c column - selects one of four columns
of 64k bytes

16-18 s syndrome - a syndrome code modulo 24.
The 16 syndrome bits at
... " .; ,.. --~A-~..,..., are -~-A 1..ui,:::, QUUl."t::;:,;:::, .L't::Q.Ue

19 x error - if the x bit is zero, the
check error logger d:i ta at the

address specified by CB,M,C,S)
is read. If the x bit is set,
the state of the error bit for
the bank specified by B is
read, and the bit is then
forced to zero.

20-31 RESERVED must be zero

10-40 29-693 ROO 1/79

The format of the data read from the error logQer is:

62~ 0 15 16 31

I 0 SF S1 So

where:

So = bit in the error logger corresponding to the syndrome
code address selected

SF = bit in the error logger corresponding to the syndrome
code address selected plus X'F'.

If the X bit is set, the condition code returned indicates either
negative (L flag set), or not negative. If the L flag is not
returned, no error bits ~re set in the error logger for the
selected bank. If the L flaq is set, at least one error bit is
set in the error logger for the selected bank.

Condition Code

c v G L
x x x 0 No error bits in the selected bank
x x x 1 At least one error bit in the selectej bank

Programming Notes

The R2 field of this instruction must specify an even-numb~red

register.

PEL generates an RX1 format instruction,
displacement field is always zero.

REL is an extended PSF mnemonic.

This instruction is a privileoed instruction.

29-693 ROO 1/79

in which the

10-41

626

10.6.7.2 Load Process Segment Table Descriptor CLPSTD)

Assembler Notation

LPSTD
LPS'ID

Operation

D2(X2)
A2(FX~,SX2)

Op-Code

DF1
DF1

Format

RX1,RX2
RX3

The second operand address points to a fullword Process Segment
Table Descriptor (PSTD), which has the following format:

BIT 0 7 8 3.1

l ________ M_A_c ________ l ________________ A_o_o_R_E_ss __ o_F __ s~_.G_M __ EN_T __ T_A_B_L_E ________________ I

Bits 0:7 (MAC) of the descriptor contain digits which indicate
the physical memory address to be used when loaiing segmentation
register 0 of the Memory Access Controller.

MT\C AtDRESS

x I 3 00 I
x•sco·
x•gco•

VALID MAC FIELD

x•o3•
x•os•
X'09'

The 16 fullwords of data in the segment table are loaded into the
16 Memory Acces~ Controller (MAC) segmentation registers,
starting with segmentation register zero. This data is used in
translation of program addresses from virtual to physical address
space when PSW bit 21 is set at some later time.

Condition Code

Unchanged

Programming Notes

The o~erand address must be aligned to a fullword boundary.

The MAC segmentation registers may be loaded only when PSW bit 21
is zero.

The correct value, X'03', x•os•, or X'09' MUST be used in the MAC
field of the PS1D used by this instruction.

This instruction is a privileged instruction.

LPSTD is an extended PSF mnemonic.

10-42 29-693 ROO 1/79

10.6.7.3 Load Shared Segment Table Descriptor (LSSTD)

Assembler Notation

LSSTD
LSSTD

Opera ti on

D2(X2)
A2CFX2,SX2)

Op-C:>de

DF2
DF2

Format

RX1,RX2
RX3

As shared segment tablAs are not provided for this processor,
this instruction performs no operation.

Condition Code

Unchanged

Programming Notes

This instruction is a privileged instruction.

LSSTD is an extended PSF mnemonic.

29-693 ROO 1/79 10-43

10.6.7.4 Store Process State (STPS)

Assembler Notation

STPS
STPS

D2(X2)
A2(FX2,SX~)

Operation

Op-Code

DF3
DF 3

Format

RX1,RX2
RX3

The process state, defined by the old PSW in registers 14 and 15
of the current !et, is saved in the area of memory whose starting
address is specified by the operand. The area has the following
format:

NORMAL OFFS~T (BYTES)

0-7

8-11

12-75

76-139

140-~35

Condition Code

Unchanged

Programming Notes

STORED DAT A

Process PSw

Reserved - not used

Process general registers

Process interruptible state

Single and double precision
floating-point registers

The operand address must be aligned to a f ullwor1 boundary.

This instruction is a privileged instruction.

STPS is an extended PSF mnemonic.

The process general register Eet is selected by the old PSW in
register 14 when this instruction is executed.

If bit 14 of the process PSW in register 14 is zero, the process
interruptible state is not saved, and the save area is compacted
accordingly. In this case, the process' floating point registers
are saved beginning at an offset of 76 bytes from the specified
operand address.

If bit 13 of the process PSW in register 14 is set, or if the
processor is not equipped with floating-point registers, then
floating-point registers are not saved, and the save area is
compacted accordingly.

10-44 29-693 ROO 1/79

10.6.7.5 Load Process State (LDPS)

Assembler Notation

LDPS
LDPS

Operation

D2(X2)
A2(FX2,SX2)

Op-Co1e

DF4
DF4

Format

RX1,RX2
RX3

Data from the area of memory specified by the operand repl~ces

the current process state. The area has the following format:

NORMAL OFFSET (BYTES)

0-7

8-11

12-75

76-139

140-235

STORED DATA

Process PS~

Process segment table descriptor

Process general registers

Process interruptible st~te (if
bit 14 in saved PSW is set)

Process single precision and
double precision floating-point
registers (if bit 13 in saved
PSW is zero)

The new PSw at the operand address specifies the general register
set which is loaded from the save area. If bit 14 of the new PSw
is set, the interruptible state is loaded from the save area. If
bit 13 of the new PSW is zero, and the processor is equipped with
floating-point registers, then the single and double precision
floating-point registers ar2 loaded from the save area. If bit
21 of the new PSW is set, the data indicated by the Process
Segment Table Descriptor is loaded into the 16 MAC segmentation
registers. Finally, the new PSW at the operand address becomes
the current PSW.

Programming Notes

The o~erand address must be aligned to a fullword boundary.

This instruction is a privileqed instruction.

LDPS is an exteniert PSF mnemonic.

If bit 14 of the new PSW is zero, the process interruptible state
is not loaded, and the save area is assumed to be compacted
accordingly. In this case, the process' f loatinq-point registers
are loaded from memory beginning at an offset of 76 bytes from
the siecified opPrand address.

29-693 ROO 1/79 10-45

If bit 13 of the new PSW is set, or if the processor
equipped with floating-point registers, the
floating-point registers are not loaded, and the save
assumed to be compacted accordingly.

is not
process'
area is

If bit 22 of the new PSW is set, the state of system queue is
tested before testing the wait bit (bit 16). If the queue is
non-empty, a System Queue Service (SQS) interrupt occurs. In
this case, the newly-loaded PSW is saved as the old PSW when the
SQS interrupt occurs.

The state of the wait bit (P~W bit 16) is tested before the next
instruction is executed. If PSW bit 23 is set when this
instruction is executed, the MAC seQmentation registers are not
loaded with the indicated data. The segmentation registers can
be loaded only when PSW bit 23 is zero.

10-46 29-693 ROO 1/79

10.6.7.6 Save Interruptible 3tate CISSY)

Assembler ~otation

ISSY
ISSV

Operation

D2(X2)
A2CFX2,SX2)

Op-Code

DF5
DE'S

Format

RX1,RX2
RX3

The contents of the interruptible instruction scratchpad
registers are stored in the 16 fullwords of memory starting at
the address specified by the operand.

Condition Code

Unchanged

Programming ~otes

The operand address ~ust be aligned to a f ull~ord boundary.

This instruction is a privileged instruction.

ISSY is an extended PSF mnemonic.

29-693 ROO 1/79 10-47

10.6.7.7 Restore Interruptible State (ISRST)

Assembler Notation

I SR ST
ISRST

Operation

D2(X2)
A2(FX2,SX2)

Op-Code

DF6
DF6

Format

RX1,RX2
RX3

The interruptible instruction scratchpad registers are loaded
from the 16 fullwords in memory starting at the address specified
by the operand.

Condition Code

Unchanged

Programming Notes

The o~erand address must be aligned to a fullword boundary.

This instruction is a privileoed instruction.

ISRST is an extended PSF mnemotiic.

10-48 29-693 ROO 1/79

10.6.7.8 Store Byte, no ECC CXSTB)

Assembler Notation

XSTP
XSTB

Operation

D2(X2)
A2(FX2,SX2)

Op-Code

DF7
DF7

Format

RX1,RX2
RX3

The contents of bits 24:31 of general register O are stored in
memory at the address specified by the operand, without changing
the error correction code bits for the specified memory location.

Condition Code

Unchanged

Programming Notes

This instruction is a privileged instruction.

XSTB is an extended PSF mnemonic.

This instruction may be used in conjunction with the read error
logger instruction to test the operation of the Error Correcting
Codes CECC).

29-693 ROO 1/79 10-49/10-50

CHAPTER 11
WRITABIE CONTROL STORE INSTRUCTIONS (OPTIONAL)

11.1 INTRODUCTION

The optional Writable Control Store (WCS) adds another dimension
to the user level architecture, making all the resources of the
actual microprocessor available to the system programmer. A
two-to-three-times speed advantage over conventional software can
be realized when special algorithms or other functions are
imple~ented in WCS.

This option provides the user with 2048 words of dynamically
alterable hiqh-speed control store memory, organized as an
extension to the 2048 words of fixed, read-only control store.
Each word in writable or fixed control store is 32 bits wide and
represents one machine level micro-instruction. Associated with
the WCS option are user-level instructions for moving blocks of
data between main memory and WCS, and for transferring control to
microprogrammed routines contained in WCS.

Fixed control store represents microcode addresses X'OOO' through
X'7FF' and writable control store represents ~ddresses X'ROO'
through X'FFF'.

Refer to the Model 3220 Microprogramming Reference Manual,
Publication Number 29-694, for a detailed description of the
various processcr elements and each individual micro-instruction.

11.2 WRITABLE CONTROL STORE INSTRUCTIONS

Instructions de~cribed in this section are:

WDCS
3DCS
BDCS
ECS

Write Control Store
Read Control Stcre
Branch to Control Store
Enter Control Store

29-693 ROO 1/79 11-1

11.2.1 Write Centro! Store (WDCS)

Assembler Notation Op-Code Format

WDCS R2 E80 RR

Operation

The second operand address contained in the register specified by
R2 is the starting location in main memory of the data to be
transferred to wcs. The area of WCS to be loaded is specified by
the low address contained in general register 0 and the fullword
count minus one contained in general register 1. These registers
must be set up by the user before executing the WDCS instruction.

The WtCS instruction is interruptible. If it is interrupted, the
location counter field of PSW is not incremented so that after
the interrupt is serviced, the ~DCS instruction can be resumed.
Proper resumpticn of the instruction is assured because, as each
fullword is transferred to the WCS address specified by the
contents of general register O plus the count, the count in
general register 1 is decremented by one. The operation
continues until the count decrements from zero to minus one.

Condition Code

Unchanged

Programming Notes

The R2 field may specify any register other than 0 or 1.

The second operand address in the register specif led by R2 must
be located on a fullword boundary.

The contents of general register 1 are modified during the
execution of this instruction.

This instruction is a privileged operation.

11-} 29-693 ROO 1/79

11.2.2 Read Control Store (RDCS)

Assembler Notation Op-Code Format

RCCS R2 E82 RR

Operation

The second operand address contained in the reQister specified by
R2 is the starting location in main memory that is to receive
data from WCS. The area in WCS from which this data is to be
copied is specified by the low address contained in general
register 2 and the fullword count minus one in general register
3. These registers must be set up by the user before executing
the RDCS instruction.

The RtCS instruction is interruptible. If it is interrupted, the
location counter field of the PSW is not incremented so that
after servicing the interrupt, the RDCS instruction can be
resumed. Pro~er resumption of the instruction is assured
because, as each fullword is transferred from WCS to main memory,
the count in general register 3 is decremented by one. The
operation continues until the count decrements from zero to minus
one.

Condition Code

U nc hanged

Programming Notes

The R2 field may specify any register other than 2 or 3.

The second operand address in the register specified by R2 must
be located on a fullword boundary.

The contents of general register 3 are modified during the
execution of this instruction.

Fixed control store (addresses less than X'800') may not be read;
undefined data is returned.

This instruction is a privileged operation.

29-693 ROO 1/79 11 - 1

11.2.3 Branch to Control Store CBDCS)

Assembler Notation

BDCS
BDCS

Operation

R 1, D2 (X2)
R1,A(FX2,SX2)

Op-Code

E5
E5

Format

RX1,RX2
RX 3

An unconditional branch is taken to the control store address
specified by the least significant 12 bits of the second operand
address. The SEcond operand address may specify any location
within the writable portion of the control store, X'800' through
X'FFF', or to any location within the read-only portion of the
contrcl store, X'OOO' through X'7FF'. Unpredictable results can
occur if a branch is taken to a non-present microprogram address.

Condition Code

Depends on the microprogram entered into.

Programming Notes

The second operand address is not tested for validity.

The user may assign any desired meaning to the R1
instruction.

field of the

Upon entry to the control store routine, both the incremented and
unincremented values of the location counter are available to the
microprogram.

This instruction is a privileged operation.

11-4 29-693 ROO 1/79

11.2.4 Enter Control Store (ECS)

Assembler Notation Cp-Code Format

ECS R1,I2(X2) E9 RI1

Operation

Control is given to the ~CS location whose value is X'800' plus
the contents of the B1 field. The effect is a branch to one of
the first 16 locations in WCS. These locations may contain
branch micro-instructions to 16 different microroutines. By
placing the appropriate number in the R1 field of the ECS
instruction, the user can call one of 16 different functions.

Condition Code

Depends on the microprogram entered into.

Programming ~otes

The user may assign any desired meaning to the X2 field or the I2
field.

Upon entry to the control store routine, both the incremented and
unincremented values of the location counter are available to the
microprogram.

29-693 ROO 1/79 11-5/11-6

12.1 INTRODUCTION

CHAPTER 12
MEMORY MANAGEMENT

For the Model 3220 processor, memory relocation and protection is
provided by the Memory Access Controller (MAC). The MAC is a
device which monitors all memory accesses. Under program
contrcl, it can do the following:

• translate the address of a memory access from a 20-bit
program (virtual) address to a 20-bit physical address

• prevent write access to a block of memory

• prevent instruction execution from a block of memory

• detect an invalid memory access

The throughput between the processor and local memory or between
the selector channel and local memory is not affected by the use
of the MAC.

In an operating system environment, the operation of the MAC is
completely transparent to most programs. It is very similar to
a peripheral device, in that only the operating system modules
directly responsible for its operation are affected by it.

12.2 ADDRESS SPACE

This processor supports management of a 2w byte physical or
virtual address space. When physical or virtual addresses are
manipulated, they are treated as 20-bit quantities. In general,
32-bit 1uantiti~~ are available to the processor for address
calculation. When intermediate calculations are complete, hits
0:11 of the 32-bit effective result are forced to zero or
discarded, giving a calculated address 20 bits in length, which
occupies bits 12:31 of the 32-bit effective result.

In some instances, an address consisting of less than 20 bits may
be used by the processor. Such an address is extended to 20 bits
in length by forcinq the higher-order bits to zero.

29-693 ROO 1/79 12-1

627

12.2.1 Physical Address Space

The Memory Access Controller (MAC) is disabled when PSW bit 21 is
zero. When the MAC is disabled, any of the 2m byte maximum
available memory may be directly accessed. In those cases where
fewer than 2 20 bytes of memor:-y are configured, a machine
malfunction fault condition is likely to occur as a result of
attem~ting to access memory outside the available limits.

12.2.2 Virtual Address Space

The Memory Access Controller (MAC) is disabled when PSW bit 21 is
zero. When disabled, the MAC may be programmed so that when
translation is enabled, it is possible for a program to run in a
vi r tu a 1 add re s s space of a ma xi au m 2 20 bytes • Vi rt u a 1 (or
program) addresses generated during the execution of such a
program are translated to physical addresses used in accessing
memory, by the MAC.

The MAC allows an operating system to provide support to user
programs so that each program can be coded as if some subset of
available memory, starting at address O, were available to that
program. The range of addresses thus referenced by the program
is called the program address space. At program load time, the
~AC can be used to map this program address space into the
available physical memory addresses so that any program address,
referenced during the program execution, is translated
(relocated) to the correct physical address before memory is
accessed. The MAC interpr:-ets the program address as follows:

SRN MBD

SRN: SEGMENTATION REGISTER NUMBER
MBD: MEMORY BLOCK DISPLACEMENT

If a vi rtua 1 address !3Pace of less than 2 20 bytes has been
created and a virtual address is generated which is outside the
limits of the virtual address space, a Memory Access Controller
fault occurs.

The MAC, when properly programmed, allows simultaneous execution
of concurrent processes while protecting each process from
interfering with the other processes in the system. Violation of
any of the enabled protection mechanisms causes a MAC fault to
occur. Descri~tions of such faults may be found later in this
section.

I f a physic a 1 add res s space o f 1 es s th a n 2 20 bytes exists, and
address translation by the MAC results in a physical address
which is outside the limits of physical address space, a machine
malfunction fault condition is likely to occur. Proper
proQramming of the MAC causes a virtual address which results in
snch a physical address to be intercepted before reaching the

·mory system.

12-2 29-693 ROO 1/79

628

12.3 RELOCATION

Relocation of program address to physical address is accomplished
through the relocation/protection bit (bit 21) of the program
status word and the 16 segmentation registers of the MAC. If the
relocation/protection bit of the PSW is zero, the MAC provides no
translation of the addresses. If the relocation/protection bit
of the PSW is set, the MAC assumes that all memory accesses use
program addresses which must be relocated to physical addresses.
Before the relocation/protection bit of the PSW is set, the MAC
segmentation registers must be loaded to allow appropriate
mapping of the program to physical address (see following.
diagram). The MAC segmentation register describes the starting
address and len9th of a block of physical memory allocated to the
program address space. Each block starts on a 256-byte boundary
and may be up to 64k bytes long.

PROGRAM ADDRESS

I°
11 112

0011

15r6
0010 0011 0100 1010

311

3 2 3 4 A

SEGMENTATION REGISTER 3

lo 11 r2
0111 0100 0010

23r4 311

7 4 2

PHYSICAL ADDRESS

lo 11 r2
0111 0110 0101 0100 1010

311

7 6 5 4 A

AddreEs calculation: X'0234.l\' Memory black :iisplacement
+ X'74200' Memory block starting addr~ss

X'7654A' Physical memory address

When the relocation/protection bit of the PSW is set, the program
address is relocated as follows:

1. Program address bits 12: 15 select one of the
segmentation registers. In the example above,
segmentation register 3 is selected.

2. Segmentation register bits 12:23 specify the startinq
address of the memory block. In the example above,
X'742' means that the memory block starting address is
X'7420C'.

3. Progra• address bits 16:31 contain the memory block
displacement.

4. The memory block displacement is added
block starting address to obtain
address.

29-693 ROO 1/79

to the
physical

memory
memory

12-3

629

12.4 PROTECTION

In addition to describing a block of physical addresses, each
segmentation register can be used to limit the type of access to
the described block of addresses. Five types of protection are
provided by the MAC when the relocation/protection bit of the
current PSW is set:

r

12-4

1. if the presence bit (bit 27} is zero in the segmentation
register selected by bits 12:15 of the program address
(non-present address}

2. if the write-protect bit (bits 25 and 26 = 01 or 11} is
set in the segmentation register selected by bits 12:15
of the program address, and an attempt is made to store
into the addressed memory (write protect violation)

3. if the write/interrupt protect bit (bits 25 and 26 = 10)
is set in the segmentation register selected by bits
12:15 of the program address, and a store is made into
the addressed memory (write/interrupt protect violation)

4. if the execute-protect
segmentation register
program address, and
attempted from the
via la ti on)

bit (bit 24) is set in the
selected by bits 12:15 of the

an instruction fetch is beinq
addressed memory (execute protect

5. if the valuA of bits 16:23 of the proqram address is
larq?.r than the limit described in the segmentation
register selected by bits 12:15 of the program address
(invalid address), then a relocation/protection fault
interrupt is generated (segment limit violation).

The MAC status register contains the reason for the
interrupt (see diagram below).

INTERRUPT STATUS REGISTER

11f2
SEGMENTATION REGISTER

29-693 ROO 1/79

In the cases of an execute protection violation, write protection
violation, or invalid address, if the interrupt generated by the
MAC cannot be accepted immediately by the processor, the
contrcller continues to operate but all write operations do not
modify memory data until the interrupt is cleared. When a
write/interrupt protect violation occurs, the user instruction is
allowed to complete and then an interrupt is generated. The MAC
interrupt condition is cleared by the microprogram. The reason
code from the interrupt status register is returned in general
register 13 of the set selected by the MAC interrupt new PSw.
(See Chapter 10.)

Example:

The effect of the MAC is best illustrated by an example of a
program executinq under operatin~ system control.

Assume that the program consists of:

• main program coded as if
available and a program
address space = 12K)

addresses 0
entry address

through
of 100.

2FFF are
(Program

• a subroutine coded as if a1dresses FOOOJ through F1FFF are
available. (Program address space = 8K)

• a data area which is initialized by some other program and
which is contained at addresses AOOOO through AFFFF. This
area is to bA write and ezecute protectqd. (Proqram address
si.:ace = 64K)

The operating system executes with the relocation/protection bit
of the PSW reset so that no address relocation or protection is
in effect.

Assume that the main program, subroutine and data area are loaded
into physical memory starting at addresses 21000, FOOO, 13000,
respectively. BeforP passing control to the example program, the
operating system:

1. sets the relocation field of segmentation registers O,
10 and 15 to 21000, 13000, and OFOOO, respectively, an1
sets the present bit for each of these registers.

2. resets the present bit in the remaining segment~tion

registers.

3. sets the limit fields of segmentation
and 15 for 47, 255, and 31
resi:ectively.

registers
256 byte

O, 10
blocks,

4. sets write aid execut(~ protectic>n in
register 10.

segmentation

29-693 ROO 1/79 12-5

s30 C><!:l4 SLF 11 r
SRF

SEGMENTATION REGISTER FIELDS

SEGMENTATION REGISTER 0:

t><:14 1r
0010 1111 0010 0001

0000 23 C 0001 27 RI
0 2 F 2 0 0

SEGMENTATION REGISTER 10:

CX:f 1111

11 r2
0011

0000 23r4 1011 27RI
0 F F 3 0 8 0

SEGMENTATION REGISTER 15:

1><:f 0001

11 r2
1111

0000 23 r4 0001 27 ~
0 F 0 F 0 0

SEGMENTATION REGISTERS 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13 & 14:

0 3 4 11f2 t:::><I 0000 0000 0000 0000 0000 0000

27b><21
0 0 0 0 0 0 0 0

The program can then be started by loading a PSW with relocation/
protection bit of the status portion set and a location counter
of 100. A relocation/protection fault interrupt occurs if:

1. an attempt is made to reference 30000. (Presence bit
reset in selecte1 segmentation reQister, i.e.,
segmentation register 3.)

2. an attempt is made to store into A0100. (Write protect

3.

set in selected segmentation register, i.e.,
segmentation register 10.)

an ~ttempt is made to br1nch to AOOOO. (Execute protect
set in selected segmentation register, i.e.,
segmentation register 10.)

4. an attempt is made to reference F3000. (Value of bits
15:31 cf program address (3000) is larger than the limit
field cf segmentation reqister 15 (32 256 byte blocks or
2000).

An attempt to reference 100, F1200 or A0001 r~sults in an access
to 21100, 10200 or 13001, respectively.

12-6 29-693 ROO 1/79

631

12.5 MAC REGIS!ERS

The MAC has 16 hardware segmentation registers referred to as
base registers. These registers are accessed through the
assioned memory locations. The 64 bytes, starting at the first
256 byte boundary above the interrupt service pointer table, are
dedicated to the MAC.

r MAX NUMBER OF DEVIC€S DEDICATED MAC LOCATIONS

25E 10 300,6 - 33F 16

51210 soo,6 - 53F 16

10 2 4 10 9001s - 93F1s

MAC registers are assigned to the dedicated locations as follows
(for 256 maximuw number of devices):

SEGr'.ENTATION
REGISTER

0
1
2
3
4
5
6
7
8
9
10
1 1
12
1 3
14
15

MEMORY LOCATION

300
304
308
30C
310
314
318
31C
320
324
328
32C
330
334
338
33C

Values are loaded into MAC registers by storing the values into
the appropriate dedicated memory locations while the MAC is
disabled. Any attempt to read the dedicated MAC locations
returns the value in the corresponding memory location. To
summarize the manipulation of the MAC registers:

1. The 64 bytes, starting at the first 256-byte boundary
above the interrupt service pointer table, are dedicated
to the MAC.

2. The value of a M~C register is changed by storing into
the appropriate dedicated MAC location, while the MAC is
disabled.

29-693 ROO 1/79 12-7

632

3. The value of the MAC status register is read by the
microprogram.

4. All attempts to .read (load) from dedicated MAC locations
return the value in the corresponding memory location.

Definition of MAC Register Fields

Segmentation Register

-t><f SLF

11 r2

Each segmentation register

FIELD BITS

0-3

SLF 4-11

SRF 12-23

E 24

WF 2S-26

F 27

28- 31

12-8

SRF

is 32 bits wide.

MEANING

Reserved - must be zero

Segment limit field - contains a value
one less than the number of 256 byte
blocks in the segment described by this
register.

Segment relocation field indicates
the starting address of the segment
described by this register (starting
address= SRF multiplied by X'100').

Execute protect bit if set,_
instruction fetch from segment causes
relocation/protection fault.
Instruction aborts.

Write protection field
follows:

00 - no write Protection
01 or

enc:>ded as

11 - Write protected - attempt to store
into segment causes
relocation/protection fault - store is
not executed. Instruction aborts.

10 write/interrupt protected
attempt to store into segment causes
relocation/ protect fault store is
executed. Instruction completes.

Presence bit - if not set, selection of
this register causes
relocation/protection fault.
Instruction aborts.

Reserved - must be zero.

29-693 ROO 1/79

12.6 MAC INTERRUPT STATUS

FIELD BITS

I 27

N 28

WP

WI 30

E 31

MEANING

Invalid address - value of
program address greater
specified by SLF in
se~mentation register.
aborted.

bits 16:31 of
than the limit
the selected

Instruction was

Non-present address - present bit not set
in selected segmentation register.
Instruction was aborted.

Write protect violation - ~ttempt to store
into write protected segment. Instruction
was aborted.

Write/interrupt protection violation
store into write/interrupt protected
segment. If no other status bits are set,
instruction was completed.

Execute protect viola ti on - instruction
fetch attempt from execute protected
se?ment. Instruction was aborted.

The interrupt status is set by the MAC during generation of a
relocation/protection fault interrupt. The microprogram clears
the interrupt ccndition from the MAC. The contents of the MAC
interrupt status register are copied to register 13 of the set
specified by the relocation/protection interrupt new PSW. The
MAC interrupt status register is then cleared.

I ni tiali za ti on

When the Initialize Switch (INIT) on the display panel is
depressed, or the processor is powered up, all segmentation,
relocation, protection and MAC interrupts are disabled regardless
of the state of bit 21 in the current PSW. The contents of the
MAC segmentation registers must be restored by software after
power fail.

The MAC remains disabled until a memory reference instruction is
issued. At this time, the MAC is enabled or remains disabled,
dependin1 on the conditic~ of bit 21 of the current PSW.

29-693 ROO 1/79 12-9

634

The Load Process Segment Table Descriptor CLPSTD) instruction,
described in Chapter 10, is provided to facilitate loading of the
MAC registers. This instruction loads all 16 MAC reqisters from
a main meaory image. This image begins at the address specified
by the seqment table descriptor as shown by the format below:

lo
7 (31 I

N SEGMENT TABLE ADDRESS

where N equals X'03' if the MAC registers are at address
X'0300'

or XI 05' if the MAC reQisters are at address
x•osoo•

or X'09' if the MAC registers are at address
X'0900'

The segment table address is the address of a block of 16
fullwords to be loaded into the MAC.

The following proqram sequence shows how to set up the MAC
registers to initially map all pro~ram addresses to the
corresponding physical addresses (i.e., no translation).

EPSR R 4, R 4 Capture current PSW

NH! R4,X'FBFF' Reset bit 21 in R4

EPSR R3, R4 Disable MAC

R3 = original PS ri

*

LPSTD ST.DESCR Load process segment table
descriptor

OHI R3,X'0400' Set bit 21 in R3

EPSR R4, B 3 Enable M~C

•
•
•

12-10 29-69 3 ROO 1 /79

ST.DESCR DC SEG.TAB + Y'03000000'

*
*

•
•

SEG.TAB DCY OFF00010
DCY OFF10010
DCY OFF20010
DCY 0 Fl 010
DCY OFF40010
DCY OFF50010
DCY OFF60010
DCY OFF70010
DCY OFF80010
DCY OFF90010
DCY OFFA0010
DCY 0H'BOO10
DCY OFFC0010
DCY OFFD0010
DCY OFFE0010
DCY OFFF0010

29-693 ROO 1/79

MAC STARTS AT X'0300' ••• POINT
TO SEGMENT TABLE

Segmentation reQister image
Each value has a limit
field of X'FF'. The Relocati~n
field is set for one-to-one
translation; i.e., a proqram
address that equals '5XXXX'
selects seg.req 5 which will
relocate the address to physical
'5XXXX'. The presence bit is set
in each register.

12-11

12.7 RE-EXECUTION OF FAULTING INSTRUCTIONS

In general, an instruction causin1 a correctable MAC fault can be
re-executed simply after the fault is corrected.

The Load Multiple (LM) instruction in some cases cannot be
re-executed simply, but must be simulated. When an L~
instruction faults, register 11 of the set specified by the MAC
interrupt new PSW is loaded with the virtual address calculated
by the hardware as the effective second operand address of the
instruction. If that address is the same as the virtual address
which caused the fault (contained in register 12), the
instruction may be re-executed once the fault has been corrected;
no registers were modified by the LM instruction.

If the addresses in registers 11 and 12 are not equal, at least
one reqister was modified by the LM instruction. Once the fault
has been corrected, system software should build and execute an
instruction to load the required registers, using the calculated
virtual address in register 11. The location counter of the old
PSW should be incremented by instruction length before resuming
normal program execution.

ALTERNATE METHOD:

If the addresses are not equ~l, the difference in the addresses,
D, should be computed. The last register modified, M=CD/4)
1+R1, should be calculated. If M is less than the X2 field in an
RX1 or RX2, or is less than both the FX2 and SX2 fields in an
RX3, the instruction may be re-executed. If this is not the
case, then system software must build an instruction sequence to
load the remaining registers from the appropriate memory
locations. The location portion of the old PSW should then be
incremented by the instruction length. At this point, normal
execution can be resumed by loading the old PSW.

12-12 29-693 ROO 1/79

635

AP?'~ NIH X A
r~ () D F L 3 2 7 D 0 P - ~~ 0 N: ~1 A P

LSD

0

2

3

4

5

6

8

9

A

B

c

D

E

F

Mso-

0 2 3 4 5 6

5 4 4 4
SRLS BTBS STH ST STE STD

1 1

5 5 4 5 4

BALA SLLS BTFS BAL AM AHM STME
1

5 3 5 3 4
BTCR CHVR BFBS PBR BTC PB LME

5 1

5 1 1 5 4 5
BFCR LPER BFFS LPDR BFC LAA LHL

5 4 4

NR LIS EXHR NH N ATL TBT

5 4 4

CLR LGER LCS CLH CL ABL SBT

1

5 4 4
OR LGDR AIS OH 0 RTL ABT

1

5 4 4
XR LCER SIS LCDR XH x RBL CBT

1 1

5 4 4 4
LR LPSWR LEA LOR LH L LE LO

* 1 1 1 1

5 4 4 4

CR CEA CDR CH c CE CD
1 1 1 1

5 4 4 4
AR AER ADA AH A AE AD

1 1 1 1

5 4 4 4

SR SER SOR SH s SE SD
1 1 1 1

5 4 4 4
MHR MR MER MOR MH M ME MD

1 1 1 1

5 4 4 4
OHR DA DER DOR DH D DE DD

1 1 1 1

5 4
FXR FXDR CRC12 STBP STMD

1 1

5

FLA FLOR CRC16 LPB LMD
1 1

1. OPTIONAL FLOATING-POINT INSTRUCTION

2. OPTIONAL WCS INSTRUCTION

3 OPTIONAL HIGH SPEED DATA HANDLING INSTR' JCTION
4. SECOND OPERAND ADDRESS MUST BE FULLWORD ALIGNED.

5. SECOND OPERAND ADDRESS MUST BE HALFWORD ALIGNED.

• PRIVILEGED INSTRUCTION.

1

4

1

29-693 ROO 1/79

8 9 A

SRHLS

SLHLS

4
STDE STBR

1

LBR

4

LED EXBR LEDA
1 1

EPSR LEGR

1

LDGR
1

4

LOE LDER
1 1

BAK WHR

AHR

WDR

RDA .

RXRX

SSA .

OCR

B c D E

5 4 5
BXH STM TS

5 4 4
BXLE LM SVC

4
LPSW STB SINT .

4
THI LB SCP Tl

NHI CLB NI

CLHI AL BDCS CLI . 2

OHi LA 01

4
XHI TLATE XI

5 4

LHI WH R/WDCS
1.

LI

2

5
CHI RH ECS Cl . 2

AHi WO RRL Al .
SHI RD ALL SI .
SAHL SAL

SLHL SS SLL .
SAHA QC SRA .

SLHA PSF SLA .

A-1

636

LSD

0

w 1
Cl
0
(.)

z
0 2
~
(.)
z
::>
LL 3

4

A-2

~rr·ENDIX ,n,_ (Co:itinued)
MOD~L 32/.'J OP-CODE MAP

RXRX SUB FUNCTIONS

Mso-....

0 1 2 3

4 5 6 7 IMMEDIATE LENGTH SECOND OPERAND

8 9 A B IMMEDIATE LENGTH FIRST OPERAND

c D E F IMMEDIATE LENGTH BOTH OPERANDS

MVTU

MOVE MOVEP

CPAN CPA NP

PMV PMVA

UMV UMVA

PRIVILEGED SYSTEM FUNCTIONS (PSF)

OP-CODE MNEMONIC MEANING

DFO REL READ ERROR LOGGER

DF1 LPSTD LOAD PROCESS SEGMENT TABLE DESCRIPTOR
DF3 STPS SAVE PROCESS STATE
DF4 LOPS LOAD PROCESS STATE
DF5 ISSV SAVE INTERRUPTIBLE STATE
DF6 ISRST RESTORE INTERRUPTIBLE STATE
DF7 XSTB STORE BYTE WITHOUT ECC

2J-.Jy3 R01 1/79

APPENDIX B
INST~UCTION SUMMARY - ALPHABETICAL BY MNEMONIC

MNEMONIC

A
ABL
AD
ADR
AE
AER
AH
AH!
AHM
AI
AIS
AL
AM
AR
ATL

B
BAL
BALP
BC
BCR
BCS
BCS
BDCS
BF.
BER
BES
BES
BFBS

BFC
BFCR
BFFS

BL
BLR
BLS
BLS

29-693 ROO 1/79

OP-CODE

5A
65
7A
3A
6A
2A
4A
CA
61
FA
26
DS
51
OA
64

4 30
41
01
428
028
208
218
ES
433
033
223
233
22

43
03
23

'~28
028
208
218

INSTRUCTION

~dd

Add to Bottom of List
Add DPFP
Add DPFP Register
Add SPFP
Add SPFP Reqister
Add Halfword
Add Halfword Immediate
Add Half word to Memory
Add Immediate
Add Immediate Short
.~utoload

Add to Memory
Add Register
Add to Top of List

Branch Unconditional
Branch and Link
Rranch and Link Reqister
Branch on Carry
Branch on Carry Register
Branch on Carry Short (Backward)
Branch on Carry Short (Forw~rd)
Branch to Control Store
Branch on Equal
Branch on Equal Register
Branch on Equal Short (Backward)
Branch on E1ual Short (Forward)
Rranch on False Condition Hackw~rd
Shnrt

Branch on False Con1ition
Br~nch on False Condition Reqister
Branch on False Condition Forward
Short

Branch on Low
aranch on Low Register
Branch on Low Short (Backward)
Rranch on L~w Short (Forwar1)

B-1

APPENDIX B (Continued)
INSTgUCTION SUMMARY - ALPHABETICAL BY MNEMONIC

MNEMONIC OP-CODE INSTRUCTION

BM 421 Branch on !Hnus
BM& 021 Branch on Minus Register
BMS 201 Branch on Minus Short (Backward)
BMS 211 Branch on Minus Short (Forward)
BNC 438 Branch on No Carry
BNCR 038 Branch on No Carry Register
BNCS 228 Branch on No Carry Short (Backward)
BNCS 2 38 Branch on No Carry Short (Forward)
BNE 423 Branch on Not Equal
BNER 023 Branch on Not Equal Register
BNES 203 Branch ·)n Not Equal Short (Backward)
BNES 213 Branch on Not Equal Short (Forward)
BNL 4 38 Branch on Not Low
BNLR 038 Branch on Not Low ReQister
BNLS 228 Branch on Not Low Short (Backward)
BNLS 238 Branch on Not Low Short (Forwar1)
BNM 4 31 Branch on Not Minus
BNMB 031 Branch on Not Minus Register
BNMS 221 Branch on Not Minus Short (Backward)
BNMS 231 Branch on Not Minus Short (Forward)
BNO 434 Branch on No Overflow
BNOR 0 34 Branch on No Overflow Register
BNOS 224 Branch on No Overflow Short (Backward)
BNOS 234 Branch on No Cverf low Short (Forward)
BNP 432 Branch on Not Plus
BNPR 032 Branch on Not Plus Register
BNPS 222 Branch on Not Plus Short (Backward)
BNPS 232 Branch on Not Plus Short (Forward)
BNZ 423 Branch on Not Zero
BNZR 023 Branch on Not Zero ~egister
BNZS 203 Branch on Not Zero Short (Backward)
BNZS 213 Branch on Not Zero Short (Forward)
BO 42U Branch on Overflow
BOR 024 a ranch on Overflow Register
BOS 204 Branch on Overflow Short (Backward)
BOS 214 Rranch ')n Overflow Short (Forward)
BP 422 Branch on Plus
BPR 022 Branch on Plus Register
BPS 202 Branch 0!1 Plus Short (Backward)
BPS 212 Branch on Plus Short (Forward)
BR 030 Branch Unconditional Register
BRK 88 Breakpoint
BS 220 Branch Unconditional Short (Backward)
BS 230 Branch Unconditional Short (Forward)
BTBS 20 Branch on True Condition Backward Short
BTC 42 Branch on True Condition

B-2 29-693 ROO 1/79

APPENDIX B (Continued)
INSTRUCTION SUM~ARY - ALPHABETICAL BY MNEMONIC

MNEMONIC OP-CODE INSTRUCTION

BTCB. 02 Branch on True Cond.i tion Register
BTFS 21 Branch on True Condition Forward Short
BXH co Branch on Index High
BXLE C1 Branch on Index Low or Equal
BZ 433 Branch on Zero
BZR 03] Branch on Zero Register
BZS 223 Branch on Zero Short CRackwa rd)
BZS 233 Branch on Zero Short (Forward)

c 59 Compare
CBT 77 Complement Bit
CD 79 Compare Double Floating Point
CDR 39 Compare Double Floatinq-Point R~gister
CE 69 Com pa_re Floating Point
CER 29 Compare Floatinq-Point Register
CH 49 Compare Half word
CHI C9 Compare Half word Immediate
CHVR 12 Convert Halfword Value Regi.ster
CI F9 Compare Immediate
CL 55 Compare Logical
CLB 04 Compare Logical Byte
CLH 45 Compare Logical Halfword
CLHI cs Cc:ni;:.are Logical Half woa rd Immediate
CL! F5 Compare Logical Immediate
CLR 05 Compare Logical Register
CPAN BC/02 Compare Alphanumeric
CPA NP 8C/22 Compare Alphanumeric and Pad
CR 09 Compare Register
CRC12 5E Cyclic Redundancy Check. Modulo 12
CRC16 SF Cycle Redundancy Check Modulo 16

D SD Divide
DD 7D Divide Double-Precision Floating Point
DDR 3D Divide Double Floating-Point Register
DE 6D Divide Floating Point
DER 2D Divide Floating-Point Register
DH 4D Divide Half word
OHR OD Di vi.de Halfword Register
DR 10 Divide Reqister

ECS Eg Enter Control Store
EPSP qs Exchanqe Program Status Register
EXBE 94 Exchange Byte Reqister
EXHR 34 E:xchanye Halfword Register

29-693 ROO 1/79 B-3

MNEMONIC

FLR
FLDR
FXDR

FXR

ISRST
ISSV

L
LA
LB
LBR
LCDR
LCEB
LCS
LD
LDE
LDER
LDGR
LDPS
LDR
LE
LED
LEDR
LEGR
LER
LH
LHI
LHL
LI
LIS
LM
LMD

LME
LPB
LPDR
LPER
LPSTD
LPSw
LPSWR
LR
LRA

B-4

APPENDIX B (Continued)
INSTRUCTION SUMMARY - ALPHABETICAL BY MNEMONIC

OP-CODE

2F
3F
3E

2E

DF6
DF5

58
E6
D3
93
37
17
25
78
87
A7
}\ 6
DF4
38
68
84
A4
AS
28
48
C8
73
F8
24
D1
7F

7/
6F
33
1 3
DF1
C7.
1P
OR
63

INSTRUCTION

Float Register
Float Register Double Precision
Fix Register Double-Precision Floating

Point
Fix Register

Interruptible State Restore
Interruptible State Save

Load
Load l\ddress
Load Byte
Load Ryte Register
Load Complement Double Floating Register
Load Complement Floating-Point Register
Load Complement Short
Load rouble-Precision Floating Point
Load Double FloatinQ Point From Single
Load Double From Single Register
Load Double From General Register
Load Process State
Load Cauble-Precision Register
Load Floating Point
Load Floating From Double Precision
Load Floating From Double Register
Load Floating From General Register
Load Floatinq-Point Register
Load Halfword
Load Halfword Immediate
Load Half word Logical
Load Immediate
Load Immediate Short
Load '.': ul ti ple
Load ~ultiple Double-Precision Floating

Point
Load Multiple Floating Point
Load Packed From Binary
Load Positive Double Floating Register
Load Positive Floating Register
T.oad Process SeQment Table Description
Load Program Status Word
Load Program Status ~ord Register
Load Register
Load ~eal Address

29-693 ROO 1/79

APPENDIX B (Continued)
INSTRUCTION SUMMARY - ALPHABETICAL BY MNEMONIC

MNEMONIC

M
MD
MDR
f1 E
KEH
MR
MHF
MOVE
MOVEP
MR

N
NH
NHI
NI
NOP
NOPR
NR

0
QC
OCR
OH
OHI
OI
OR

PB
PBR
PMV
PMVA

RBL
RBT
RD
RDCS
RDR
REL
RH
RHR
RLL
RRL
RTL

s
SBT
SCP

29-69 3 ROO 1 /79

OP-CODE

SC
7C
3C
6C
2C
4C
oc
8C/01
8C/21
1C

54
44
c ,,
F4
420
020
04

56
DE
9E
46
C6
F6
06

62
32

8C/03
8C/23

67
76
DB
E82
9B
DFO
D9
99
EB
EA
66

SB
75
E3

INSTRUCTION

Multiply
Multiply Double Floating Point
Multiply Double Floating Register
Multiply Floatinq Point
Multiply Floating-Point Register
Multiply Halfword
Multiply Halfword Register
Move
Move and Pad
Multiply Register

AND
AND Half word
AND Halfword Immediate
AND Immediate
No Operation
No Operation Register
AND Register

OR
Output Command
Output Command Register
OR Halfword
OR Halfword Immediate
OR Immediate
OR Register

Process Byte
Process Byte Register
Pack and Move
Pack and Move Absolute

Remove from Bottom of List
Reset Bit
Read Data
Read Control Store
Read Data Register
Read Error LoJqer
Read Halfword
Read Halfword Register
Rotate Left Logical
Rotate Ri~ht Logical
Remove from Top of List

Subtract
Set Bit
Simulate Channel Program

B-5

MNEMONIC

SD

SDR

SE
SER
SH
SHI
SI
SINT
SIS
SLA
SLHA
SLHL
SLHLS

SLL
SLLS
STPS
SR
SRA
SRHA
SRHL
SRHlS
SRL
SRLS
SS
SSH
ST
STB
STRF
STBR
STD
STE
STH
STM
STMC

STME
SVC

TBT
THI
TI
TL ATE
TS

B-6

APPENDIX B (Continued)
INSTRUCTION SU~KARY - ALPHABETICAL BY MNEMONIC

OP-CODE

78

3B

68
2B
4B
CB
FB
E2
27
EF
CF
CD
91

ED
1 1
DF3
OB
EE
CE
cc
90
EC
10
DD
9D
50
02
6E
92
70
60
40
DO
7E

71
E1

74
C3
F3
E7
EO

INSTRUCTION

Subtract Double-Precision Floating
Point

Subtract Register Double-Precision
Floating Point

Subtract FloatinQ Point
Subtract Floating-Point Register
Subtract Halfword
Subtract Halfword Immediate
Subtract Immediate
Simulate Interrupt
Subtract Immediate Short
Shift Left Arithmetic
Shift Left Halfword Arithmetic
Shift Left Halfword Logical
Shift Left Halfword Logical Short

Shift Left Logical
Shift Left Logical Short
Save Process State
Subtract Register
Shift Right Arithmetic
Shift Right Halfword Arithmetic
Shift Right Halfword Logical
Shift Right Halfword Loqical Short
Shift Right Logical
Shift Right Logical Short
Sense Status
Sense Status Register
Store
Store Byte
Store Binary as Packed
Store Byte Register
Store Double-Precision Floating Point
Store Floating Point
Store Halfword
Store Multiple
Store Multiple Double-Precision

Floating Point
Store Multiple Floating Point
Supervisor Call

Test Bit
Test Halfword Immediate
Test Immediate
Translate
Test and Set

29-693 ROO 1/79

APPENDIX B (Continued)
INSTRUCTION SUM~ARY - ALPHABETICAL BY MNEMONIC

ftHEMONIC OP-CODE INSTRUCTION

UMV 8C/04 Unpack and Move
UMVA 8C/24 Unpack and Move Absolute

WD DA Write Data
WDCS E80 Write Control Store
WDR 9A Write Data Register
WH DB Write Halfword
WHB 98 write Halfword Reqister

x 57 Excl.usive OR
XH 47 Exclusive OR Half word
XHI C7 Exclusive OR Halfword Immediate
XI F7 Exclusive OR Immediate
XR 07 Exclusive OR Register
XSTE DF7 Store Byte, no ECC

29-69 3 ROO 1 /79 B-7/ B-8

OP-COtE

01*
02*
03*

04
05

06
07

08
09

OA
OB
OC*
OD*

10
1 1

12
13+
15+
16+
17+

18

1C*
1 D*

20*
21*

22*
23*

APPENDIX C
INSTRUCTION SUMMARY - NUMERICAL

MNEPWNIC

BALR
B'ICR
BFCR

NR
CIR

OR
XR

LE
CB

AB
SB
MHR
DHR

SRLS
S lLS

CHVR
L PF:R
LGER
LGDR
LCER

LPSWR

MB
DR

B'IRS
B1FS

BFBS
B FFS

INSTRUCTION

Branch and Link Register
Branch on True Condition Register
Branch on False Condition Register

AND Register
Compare Loqical Register

OR Register
Exclusive OR Register

Load Register
Compare Register

Add Register
Subtract Register
Multiply Halfword Reqister
Divide Halfword Register

Shift Right Logical Short
Shift Left Logical Short

Convert to Halfword Register
Load Positive Floating Point
Load General Register from Floating
Load General from Double Floating
Load Complement Floating Register

Load Pro~ram Status wori Register

~ultiply Register
Divide Register

Branch on True Condition Backward Short
Branch on True Condition Forward Short

Branch on False Condition Backward Short
Rranch on False Condition Forward Short

*Condition code not chan0ed
+Optional instruction

29-693 ROO 1/79 C-1

APPENDIX C (Continued)
INSTRUCTION SUMMARY NUMERICAL

OP-CODE

24
25

26
27

28+
29+

2A+
2E+
2C+
20+

2E+
2F+

32*+
33+
34*
37+

38+

39+

31\+

3B+

3C+

30+

3E+

3F+

40*

MNEMONIC

LIS
LCS

AIS
SIS

LER
CER

AER
SER
MER
DER

FXR
FLR

PBR
LPDR
EXHR
LCDR

LOH

CDR

ADR

SDR

MDR

DDR

FXDR

FLDR

STH

*Condition code not changed
+Optional instruction

C-2

INSTRUCTION

Load Immediate Short
Load Complement Short

Add Immediate Short
Subtract Immediate Short

Load
Compare Floating Point

Add Floating-Point Register
Subtract Floating-Point Register
Multiply Floating-Point Register
Divide Floating-Point Register

Fix Register
Float Register

Process Byte Register
Load Positive Double Register
Exchange Halfword Register
Load Complement Double Register

Load Register Double-Precision
Floating Point
Compare Register Double-Precision
Floating Point
Add Register Double-Precision
Floating Point
Subtract Register Double-Precision
Floating Point
Multiply Register Double-Precision
Floating Point
Divide Register Double-Precision
~, loa ting Point
Fix Register Double-Precision
~loating Point
Float Register Double-Precision
Floating Point

Store Halfword

29-693 ROO 1/79

APPENDIX C (Continued)
INSTRUCTION SUMMARY NUMERICAL

OP-CODE

41*
42*
43*

44
45

46
47
48
49

4A
4B
4C*
4D*

50*
51

54
55

56
57

58
59

SA
SB
SC*
SD*

SE*
SF*

60*+
61
62*+
63
64
65

MNEMONIC

BAL
RTC
BFC

NH
CLH

OH
XH
LH
CH

AH
SH
MH
DH

ST
AM

N
CL

0
x

L
c

A

M
D

CRC12
r.Q c 1 6

STE
AHM
PB
LRA
ATL
ABL

*Condition code not changed
+Optional instruction

29-693 ROO 1/79

INSTRUCTION

Branch and Link
Branch on True Condition
Branch on False Condition

AND Halfword
Compare Logical Halfword

OR Half word
Exclusive OR Halfword
Load Halfword
Compare Half word

Add Half word
Subtract Half word
Multiply Half word
Divide Halfword

Store
Add to Memory

AND
Compare Logical

OR
Exclusive OR

Load
Compare

Add
Subtract
Multiply
Divide

Cyclic Redundancy :heck Modulo 12
Cyclic Redundancy Check Modulo 16

Store Floating Point
Add Half word to Memory
Process Byte
Load Read Address
Add to Top of List
Add to Bottom of List

C-3

OP-CODE

66
67

68+
69+

6A+
68+
6C+
60+
6E
6F

70*+
71*+
7 2* +
73

74
75
76
77

78+
79+
7A+
78+

7C+

7D+
7E*+

7F*+

82*+
84+
87+
88*

APPENDIX C (Continued)
INSTFUCTION SUMMARY NUMERICAL

MNEMONIC

RTL
PRL

LE
CE

AE
SE
MF.
DE
STBP
LPB

STD
STME
LME
LHL

TBT
SBT
RBT
CBT

LD
CD
AD
SD

MD

DD
STMD

urn

STDE
LED
LDE
8RK

INSTRUCTION

Remove from Top of List
Remove from Bottom of List

Load Floating Point
Compare Floatinq Point

Add Floating Point
Subtract Floating Point
Multiply Floating Point
Divide Floating Point
Store Binary as Packed
Load Packed Binary

Store Double-Precision Floating Point
Store Floating-Point Multiple
Load Floating-Point Multiple
Load Halfword LoQical

Test Bit
Set Bit
Reset Bit
Complement Bit

Load Double-Precision Floating Point
Compare Double-Precision Floating Point
Add Double-Precision Floating Point
Subtract Double-Precision Floating
Point
Multiply Double-Precision Floating
Point
Divide Oouble-Precision Floating Point
Store Multiple Double=Precision
Flaa tin·J Point
Load Multiple Double-Precision Floatin~
Point

Store Double Precision to Single
Load FloatinQ from Double Precision
Load Double from Floatinq Point
Breakpoint

*Condition code not chanqed
+Optional instruction

C-4 29-693 ROO 1/79

APPENDIX C (Continued)
INSTRUCTION SUMMARY NUMERICAL

0 P-CODE .MNEMONIC INSTRUCTION

BC CRXRX) RXRX Class designator
BC/00 MVTU Move Translates l1nti1
8C/01 MOVE Move
8C/02 CPAN Compare Alphanumeric
BC/03 PMV Pack and Move
8C/04 UMV Unpack and Move
8C/21 MOVEP Move and Pad
BC/22 CPA NP Compare Alphanumeric and Pad
8C/23 PMVA Pack and Move Absolute
BC/24 UMVA Unpack and Move Absolute

90 SRHLS Shift Right Half word LoQica 1 Short
91 SLHLS Shift Left Halfword Logical Short
92* STBR Store Byte Register
93* LBR Loa·1 Byte Register

94* EXBR Exchange Byte Register
95 EPSR Exchange Progrdm Status Word

98 WHR Write Halfword Register
99 RHR Read Halfword Reqister

9A WDR Write Data Register
9B HDR Read Data Register

9D SSR Sense Status Register
9E OCR Output Command Hegister

A4+ LF.DR Load Floating from Doub le ReQister
A5+ LEGR Load Floating from Genera 1 Register
A6+ LOGR Load Double from General Register
A7+ LDF.R Loarj Double from F loa ting Register

CO* BXH Branch on Index High
C1* BXLE Branch on Index Low or Equa 1

C2 LPSW Load Program Stat us Word

C3 THI Test Halfword Immediate

C4 NHI AND Halfword Immediate
cs CLHI Compare Logical Halfword Immediate

*Condition code not changed
+Optional instruction

29-69 3 ROO 1/79 C-5

APPENDIX C (Continued)
INSTRUCTION SUM~ARY NUMERICAL

0 P-COtE

C6
C7

CB

C9

CA
CB

cc
CD
CE
CF

DO*
D1*
D2*
D3*
D4

DS

DB
09

DA
DB

DD
DE
DF

DFO
DF1*
DF2*
DF3*
DF4
DFS*
DF6*
DF7*

MNEMONIC

OHI
XHI

LHI

CHI

AHI
SHI

SRHL
SLHL
SRHA
SLHA

STM
LM
STB
LB
CLB

AL

WH
RH

WD
RD

SS
oc

CPS F)

RF:L
LP STD
LS STD
STPS
LDPS
ISSV
ISRST
XSTB

*Condition code not changed
+Optional instruction

C-6

INSTRUCTION

OR Halfword Immediate
Exclusive CR Halfword Immediate

Load Halfword Immediate

Compare Halfword Immediate

Add Halfword Immediate
Subtract Halfword Immediate

Shitc Hight Halfword Logical.
Shift Left Half word Logical
Shift Right Halfword Arithmetic
Shift Left Half word Arithmetic

Store Multiple
Load Multiple
Store Byte
Load Byte
Compare Logical Byte

Auto load

Write Halfword
Read Half word

Write Data
Read Data

Sense Status
Output Command
PSF Class Designator

Read Error Logger
Load Process Segment Table Descriptor
Load Shared Segment Table Descriptor
Save Process State
Load Process State
Interruptible State Save
Interruptible State Restore
Test Error Logger

29-69 3 RO 0 1 /79

APPENDIX C (Continued)
INSTRUCTION SUMMARY NUMERICAL

OP-COtE

EO

E1

E2
E3

ES*+
E6*

E7*
EBO*+
E82*+
E9*+

EA
EB

EC
ED

EE
EF

F3

F4
FS

F6
F7

F8
F9

FA
FB

MNEMONIC

TS

SVC

SINT
SCP

BDCS
LA

TL ATE
WDCS
RDCS
ECS

RRL
RLL

SRL
SLL

SRA
SLA

TI

NI
CLI

or
XI

LI
CI

AI
SI

*Condition code not changed
+Optional instruction

29-693 ROO 1/79

INSTRUCTION

Test and Set

Supervisor Call

Simulate Interrupt
Simulate Channel Program

Rranch to Control Store
Load Address

Translate
Write Control Store
8ead Control Store
Enter Control Store

Rotate Right Logical
Rotate Left Logical

Shift Right Logical
Shift Left Logical

Shift Right Arithmetic
Shift Left Arithmetic

Test Immediate

AND Immediate
Compare Logical Immediate

OR Immediate
Exclusive OR Immediate

Load I mmed ia te
Compare Immediate

Add Immediate
Subtract Immediate

C-7/C-8

&37

1
2

4
8

16
32
64

128

256
512

1 024
2 048

4 096
8 192

16 384
32 768

65 536
131 072
262 144
524 288

1 048 576
2 097 152
4 194 304
8 388 608

16 777 216
33 554 432
67 108 864

134 21 7 728

268 435 456
536 870 912

1 073 741 824
2 147 483 648

4 294 967 296
8 589 934 592

17 179 869 184
34 359 738 368

68 719 476 736
137 438 953 472
274 877 906 944
549 755 813 888

n
(2)16

1
2
4

8

10
20
40
80

100
200
400
800

1 000
2 000
4 000
8 000

10 000
20 000
40 000
80 000

100 000
200 000
400 000
800 000

1 000 000
2 000 000
4 000 000
8 000 000

10 000 000
20 000 000
40 000 000
80 000 000

100 000 000
200 000 000
400 000 000
800 000 000

A PPEl'tlDI X D
I\ RI Ta M ~:r I c :nF FF EN c ES

TABLE OF POWERS OF TWO

() 1. 0
1 o. 5
2 0.25
3 0.125

4 0.062 5
5 o. 031 25
6 o. 015 625
7 0.007 ~12 5

8 0.003 906 25
9 0.001 953 125

10 o.ooo 976 562 5
11 o.ooo 488 281 25

12 0.000 244 140 625
13 o.ooo 122 070 312 5
14 0.000 061 035 156 25
15 0.000 030 517 578 125

16 o.ooo 015 258 789 062 5
17 o.ooo 007 629 394 531 25
18 0.000 003 814 697 265 625
19 o.ooo 001 907 348 632 812 5

20 o.ooo 000 953 674 316 406 25
21 o.ooo 000 476 837 158 203 125
22 o.ooo 000 238 418 579 101 562 5
23 0.000 000 119 209 289 550 781 25

24 o.ooo 000 059 604 644 775 390 625
25 o.ooo 000 029 802 322 387 695 312 5
26 0.000 000 014 901 161 193 847 656 25
27 o.ooo 000 007 450 580 596 923 828 125

28 0.000 000 003 725 290 298 461 914 062 5
29 o.ooo 000 001 862 645 149 230 957 031 25
30 o.ooo 000 000 931 322 574 615 478 515 625
31 0.000 000 000 465 661 287 307 739 257 812 5

32 o.ooo 000 000 232 830 643 653 869 628 906 25
33 o.ooo 000 000 116 415 321 826 934 814 453 125
34 0.000 000 000 058 207 660 913 467 407 226 562 5
35 0.000 000 000 029 103 830 456 733 703 613 281 25

1 000 000 000 36 O. 000 000 000 014 551 915 22H 366 851 806 640 625
2 000 000 000 37 o. 000 000 000 007 275 957 614 183 425 903 320 312 5
4 000 000 000 38 o. 000 000 000 003 637 978 8 07 091 712 951 660 156 25
8 000 000 000 39 o. 000 000 000 001 818 989 403 545 856 475 830 078 125

1 099 511 627 776 10 000 000 000 40 o. 000 000 000 000 909 494 701 772 928 237 915 039 062 5

2J-6J3 RQ.J 1/79 [;-1

~PPENDIX D (Continued)

638 TABLE OF POWERS OF SIXTEt:N

lGn n

1 0

lG 1

256 2

4 096 3.

65 536 4

1 048 576 5

16 777 216 6

268 435 456 7

4 294 967 296 8

l)l'l 719 476 736 9

1 099 511 627 776 10

17 592 186 044 416 11

281 474 97G 710 656 12

4 50:~ 599 627 370 496 13

72 057 594 037 927 936 14

1 152 921 504 606 846 976 15

Decimal Values

D-? 29-693 HOO 1/79

639

1 2 3

i 2 3 4

2 3 4 5

3 4 5 G

4 5 6 7

5 6 7 8

6 7 8 9

7 ,-, 9 A

8 9 A B

9 A B c
A B c D

B c D E

c D E F

D E F 10

E F 10 11

F 10 11 12

1 2 3

640

1 2 3

1 1 2 3

2 2 4 6

3 3 6 9

4 4 8 c

5 5 A F

6 6 c 12

7 7 E 15

8 8 10 18

9 9 12 1B

A A 14 lE

B B 16 21

c c lH 24

D D lA 27

E E lC 2A

F F lE 2D

1 2 3

APPENDIX D (Continued)

HEXADECll\lAL ADDITION AND SUBTRACTION TABLE

Examples: 5_. A'- F; 18-D B; A~ B =-- 15

4 5 G 7 ti 9 A B c

5 G 7 M 9 A B c D

G 7 8 9 A B c D E

7 ti 9 A B c D E F

8 9 A B c D E F 10

9 A B c D E F 10 11

A B c D E F 10 11 12

B c D E F 10 11 12 13

c D E F 10 11 12 1:3 14

D E F 10 11 12 13 14 15

E F 10 11 12 13 14 15 16

F 10 11 12 13 14 15 16 17

10 11 12 13 14 15 lG 17 18

11 12 13 14 15 16 17 18 19

12 13 14 15 lG 17 lt\ 19 lA

13 14 15 16 17 18 19 lA lB

4 5 6 7 b 9 A B c

HEXADECIMAL MULTIPLICATION AND DIVISION TABLE

Examples: 5x6:::; lE; 75+D-=- 9; 58 7ti =-- B; 9xC "- GC

4 5 6 7 8 9 A B c

4 5 6 7 8 9 A B c
8 A c E 10 12 14 16 18

c F 12 15 18 1B lE 21 24

10 14 18 lC 20 24 28 2C 30

14 19 lE 23 28 2D 32 37 3C

18 lE 24 2A 30 36 3C 42 48

lC 23 2A 31 38 3F 46 4D 54

20 28 30 38 40 48 50 58 60

24 2D 36 3F 48 51 5A 63 6C

2S 32 3C 46 50 5A 64 6E 7S

2C 37 42 4D 58 63 6E 79 84

30 :3C 4:-1 54 60 GC 7H H4 90
-

:34 41 4L 5B 6:-l 75 82 :-iF 9C

38 46 54 62 70 7£ 8C 8A A.8

3C 4B 5A 69 78 t<.7 96 A5 B4

4 5 6 7 8 9 A B c

2')-6j) ROO 1/79

D E F

E F 10 1

F 10 11 2

10 11 12 3

11 12 13 4

12 13 14 5

13 14 15 6

14 15 16 7

15 16 17 8

16 17 18 9

17 18 19 A

18 19 lA B

19 lA lB c
lA lB lC D

lB lC lD E

lC 1D lE F

D E F

D E F

D E F 1

lA lC lE 2

27 2A 2D 3

34 38 3C 4

41 46 4B 5

4E 54 5A 6

5B 62 69 7

68 70 78 8

75 7E 87 9

82 SC 96 A

SF 9A A5 B

9C AS B4 c

A9 B6 C3 D

B6 C4 D2 E

C3 D2 El F

D E F

9-J

APPENDIX D (Continued)

641

TABLE OF MATHEMATICAL CONSTANTS

CONSTANT DECIMAL VALUE
HEXA;:JECIMAL

FLOATING POINT VALUE
VALUE

DOUB LE PR EC IS ION

I
SINGLE PRECISION

1r 3.14159 26535 89793 23846 3.243f- 6A88 4132 43F6 A888 5A31

I
85A3 0803

rr-1 0.31830 98861 83790 67154 0.517C C1B7 4051 7CC1 8727 2208

I 2722 OA95

Jrr 1. 77245 38509 05516 02730 1.C5BF 8918 411C 5BF8 9184 EF68

4EF6 AA7A

Ln rr 1.14472 98858 49400 17414 1.2500 048E 4112 867A E858 4CAA

7A18 0080

J3 1. 73205 08075 68877 29353 1.8867 AE85 4118 67AE 8584 CAA7.

84CA A738

e 2. 71828 18284 59045 23536 2.87E 1 5162 4128 7E15 1628 AED3

8AED 2A68

e -1 0.36787 94411 71442 32160 0.5E20 5808 405E 2058 0883 8COF

83BC OF18

Je 1.64872 12707 00128 14683 1.A612 98E1 411A 6129 8E1E 069C

E069 BC97

log10e 0.43429 44819 03251 82765 0.6F2D EC54 406F 20EC SA9B 9439

9894 38CB

log2e 1.44269 50408 88963 40736 1.7154 7652 4117 1547 6528 82FE

882F El 77

'Y 0.57721 56649 01532 86061 0.93C4 67E3 4093 C467 E370 80C8

7080 C7.4.5

Ln 'Y -0.54953 93129 81644 82234 -0.BCAE 98C1 C08C AE98 C11F 5A60

1F5A 5FF4

J2 1.41421 35623 73095 04880 1.6A09 E667 4116 A09E 667F 38CO

F38C C909

Ln2 0.69314 71805 5~J45 30942 0.8172 17F 7 4081 7217 F701 CF7A

01CF 79AC

109102 0.30102 99956 63981 19521 0.4010 4042 4040 1040 4270 E7FC

7DE7 FBCC

J10 3.16227 76601 68379 33199 3.2988 0758 4132 9880 7584 B6A5
486A 5240

Ln10 2.30258 50929 94045 68402 2.4076 3776 4124 0763 776A AA28
AAA2 805C

D-4 2)-693 [L)i) 1/79

642

APPENDIX D (Continued)
FRACTION CONVERSION TABLE

Hexacimal and Decimal Fraction Convenion Table

BYTE

BITS 0123 4567

Hex Decimal Hex Decimal Hex

.0 .0000 .00 .0000 0000 .000

.1 .0625 .01 .0039 0625 .001

.2 .~o ~ .0078 ~o .00"1

.3 .1875 ~ .0117 1875 .0032500 ·°" .0156 2500 .004

.5 :_!125 .05 .0195 .11..!5 .005

.6 .3750 .06 .023" 3750 .006

.7 ."'375 .CTl .0273 "'375 .007

.8 .5000 .08 .0312 5000 .008

.9 .5625 .09 .0351 5625 .009

.A .6250 .QA .0390 6250 .OOA

.B .6875 .OB .o.429 6875 .008

.c .7500 .oc .0468 7500 .ooc

.D .8125 .00 .0507 8125 .OOD

.E .8750 -~ .0546 8750 .OOE

.F .9375 .Cl= .0585 9375 .OOF

1 2

TO CONVERT .ABC HEXADECIMAL TO DECIMAL

Find .A in position l .6250

Find .OB in position 2 .0429 6875

Find .OOC in position 3 .0029 2968 7500

. ABC Hex is equal to .6708 98"'3 7500

TO CONVERT .13 DECIMAL TO HEXADECIMAL

.0000

.0002

. ()()(M

.0007

.0009

.001_!

.0014

.0017
:_QQ_19
.001_1
.0024
.0026
.0029
.0031
.003"
.0036

HALFWORD

3

BYTE

0123 4567

Decimal Hex Decimal Equivalent

0000
4414
8828
3_m:
7656
2<!10
6484
0898
~12
9_Zi6
4140
8554
2968
7382
1796
6210

0000 .0000 .0000 0000 0000 0000
0625 .0001 .0000 1525 8789 06~
1250 .()()()2 .0000 3051 --~ Ti,,q
1875 .0003 .0000 "577 6367 1~
2500 .OQ0.4 .0000 6103 5156 2500

... ~J~ .0005 .0000 7~ 3945 ~
3750 .0006 .0000 9155 273" 3750
"'375 .0007 .0001 0681 1523 ~
5000 .0008 .0001 22fJl 03f2 ~000

5~ .0009 .0001 ~1 ..!!Q.1 5625
6250 .OOOA .0001 5258 7890 6250
6875 .0008 .0001 678" 6679 68~
7500 .oooc .0001 8310 5468 7500
8125 .OOOD .0001 9836 4257 8~
8750 .OOOE .0002 1362 30"6 .~
9375 .OOOF .0002 2888 1835 9375

4

To convert fractions beyond the capacity of table, use techniques below:

HEXADECIMAL FRACTION TO DECIMAL

Convert the hexadecimal fraction to its decimal equivalent using the same

technique as for integer numben. Divide the results by l 6n (n is the
number of fraction positions) .
Example: .8A7 = .54077110

8A7 16 = 22151 0

163 = 4096 409612215 . 000000
1. Find .1250 next lowest to

subtract
.1300

-.1250 = .2Hex

2. Find .0039 0625 next lowest to .0050 0000
-.0039 0625 = .01

3. Find .0009 7656 2500 . 0010 9375 0000
- . 0009 7656 2500 = . 004

4. Find .0001 0681 1523 "'375 . 0001 1718 7500 0000
-.0001 0681 1523 "'375 = .0007

. 0000 1037 5976 5625 = . 2147 Hex

5. 13 Decimal is approximately equal to _______ _.......+

29-693 HOO 1/79

DECIMAL FRACTION TO HEXADECIMAL

Collect integer parts of product in the order of calculation .

Example:

1
8 ~

A

7~

.s.40810 = .8A716

.s.408
x16

(!].6528
x16

[§) . """8
xl6

[ZI. 1168

D-5

~PPENDIX D (Continued)
INTEGER CONVERSION TABLE

643

Hexadecimal and Decimal Integer Conversion Table

HALFWORD

BYTE BYTE

BITS: 0123 4567 0123

Hex Decimal Hex Decimal Hex Decimal

0 0 9 0 0 0
1 268 / 435 I 456 I 1~m.L216 1 !.i_o.48,576

2 m 81o;9f! 2 33;554,432 2 1t_ 09~ 1""°52
3 Af\li -.V. ~ 3 50;331,~ 3 JL 1-45,728
~ ,073;741 ,82-4 --. 67108-L~ • • 19~304
5 1,342, 1n ,280 5 83,886,080 5 5,2-42.1_880
6 l ,&r !f ilf i00,663,m 6 6 6,291~ .,. 1,871 I 111,~ "40;511 I ~.032

.. tui

8 "l.1_14: 1.CS. ,,.~ 8 13'4, 17,728 8 ~38~608

"'" '""
~.41: 5,91 ., ucr '9-4,-9-44 9 !,437, 18'

A '1 H: 'l~ A 167, 72, 160 A 10,45, 760
T ~.·"~ 7Vf T fll i.l.0_~7A 8 11.534.336
c 3.221 225,472 c 201,326,592 c 12 582 912
D 3~66QL928 D 21e1 103--'808 D 1~63L_-488

E 13" 1 758 ;o9"6 I 38"' E 2J.4;Bi1 t 1)}4 E 1"1_680,064 ...,. '.f,026,53l ,840 ...,. 251,658, 240 F IJ,721~

8 7

TO CONVERT HEXADECIMAL TO DECIMAL

1 . Locate the column of decimal numbers corresponding ta
the left-mast digit or letter of the hexadecimal; select
from this column and record the number that corresponds
to the position of the hexadecimal digit or letter.

2. Repeat step 1 for the next (second from the left)
position.

3. Repeat step 1 for the units (third from the left)
position.

4. Add the numbers selected from the table ta form the
decimal number.

TO CONVERT DECIMAL TO HEXADECIMAL

1 . (a) Select from the table the highest decimal number
thot is equal ta or less than the number to be co;"l­
verted.
(b) Record the hexadecimal of the column containing
the .. 1ected number.
(c) Subtract the selected decimal from the number to
be converted.

2. Using the remainder from step I (c) repeot all of step 1
to develop the •cond position of the hexadecimal
(and a remainder).

3. Using the remainder from step 2 repeat ol 1 of step 1 to
develop the units position of the hexadecimal.

4. Combine terms to form the hexadecimal number.

D-,:,

6

4567

Hex Decimal

0 0
I 65...1.536

2 !_!1.1_07_!
_3 196,608
::! _1~ 144
5 327.1680
6 ~216

] -"~ 8 5 ~288
__! _SW~
A 6: iS...L 360
8 _z;!0,896
c 786.L432
D 85L_968
E 91~5()4
F ?83,040

5

EXAMPLE

Conversion of
Hexadecimal Value

I. D

2. 3

3. •
•• Decimal

EXAMPLE

Conversion of
Decimal Value

l, D

2. 3

3 . •
... Hexadecimal

Hex

0
I
2

l. • 5
6
7
8
9
A
8
c
D
E
F

D:W

3328

-48

•
3380

3380

-3328
-s2

~ ..
-4

D34

HALFWORD

BYTE BYTE

0123 "567 0123 4567

Decimal Hex Decimal Hex Decimol Hex Decimal

0 0 0 0 0 0 0
• 096 1 256 I 16 1 1
8, 192 2 512 2 32 2 2

12:2°88 3 ~ 3 .ca 3 ±
16,38"' • I :00-4 • 64 • • 20,480 5 1,280 5 80 5 5
24;316 6 1,536 6 :-96 6 6
28_.l_~ I 1;m 7 112 7 7
32 .. 768 8 2,048 8 128 8 8
36,86-4 9 ~ 9 141(~ 9
"40J960 A 2,560 A 160 A ~
-45.~ 8 2.816 8 t76 8 11
49_, 152 c 3i072 c 192 c 12
53_.1_2.CS D 3,328 D 208 D 13
57--'344 E 3,584 E 224 E ~

61,-440 F 3,840 F 240 F fJ

• 3 2 1

To convert integer numbers gl'9ater than the capacity of
table, use the techniques below:

HEXADECIMAL TO DECIMAL

Successive cumulative multiplication from left to right,
adding units position.

Example: DJ-416 = 338010

DECIMAL TO HEXADECIMAL

D = 13
~
208

3 = + 3
2iT
xl6

3376
.. = +4

3380

Divide and collect the remainder in reverse order.

Example: 338010 = x16

1613380 ~remainder .. Lfil_----- ~ 1
16 ill_----.. 3

D 338010. DJ.416

21-69 3 R00 1/79

APPENDIX

ASCII/HEX CONVERSION TABLE
644

bs 0 0 0 0 1 1 1 1

BITS b5 0 0 1 1 0 0 1 1

b4 0 1 0 1 0 1 0 1

b3 b2 b1 bo ~ 0 1 2 3 4 5 6 7

• t • • D

0 0 0 0 0 NUL OLE SPACE 0 @ p p

0 0 0 1 1 SOH DC1 I 1 A 0 a q

0 0 1 0 2 STX DC2 " 2 B R b r

0 0 1 1 3 ETX DC3 * 3 c s c s

0 1 0 0 4 EQT DC4 $ 4 D T d t

0 1 0 1 5 ENO NAK % 5 E u e u

0 1 1 0 6 ACK SYN & 6 F v f v

0 1 1 1 7 BEL ETB 7 G w ...2. w

1 0 0 0 8 BS CAN (8 H x h x

1 0 0 1 9 HT EM) 9 I y i y

1 0 1 0 A LF SUB * : J z j z

1 0 1 1 B VT ESC + K [k {

< \ I
1 1 0 0 c FF FS L I I

1 1 0 1 D CR GS - ~ M] m }
1 1 1 0 E so RS > N /""'..... n -
1 1 1 1 F SI us I ? 0 -- 0 DEL

·NUL Null DLE Data link escape
SOH Start of heading DCl-4 Device control
STX Start of text NAK Negative acknowledge
ETX End of text SYN Synchronous idle
EOT End of transmission ETB End of transmission block
ENQ Enquiry CAN Cancel
ACK Acknowledge EM End of medium
BEL Audible signal SUB Start of special sequence
BS Backspace ESC Escape
HT Horizontal tabulation FS File separator
LF Line feed GS Group separator
VT Vertical tabulation RS Record separator
FF Form feed us Unit separator
CR Carrier return SP Space
so Shift out DEL Delete/Idle
SI Shift in

29-693 ROO 1/79 E-1

APPENDIX E (Continued)

645

ASCII/CARD CODE CONVERSION TABLE

7-BIT 7-BIT
ASCII CARD ASCII CARD

GRAPHIC CODE CODE GRAPHIC CODE CODE

SPACE 20 BLANK cg 40 8-4
! 21 11-8-2 A 41 12-1
" 22 8-7 B 42 12-2
23 8-3 c 43 12-3
$ 24 11-8-3 D 44 12-4
% 25 0-8-4 E 45 12-5
& 26 12 F 46 12-6

' 27 8-5 G 47 12-7
(28 12-8-5 H 48 12-8
) 29 11-8-5 I 49 12-9

* 2A 11-8-4 J 4A 11-1
+ 2B 12-8-6 K 4B 11-2

'
2C 0-8-3 L 4C 11-3

- 2D 11 M 4D 11-4
. 2E 12-8-3 N 4E 11-5
I 2F 0-1 0 4F 11-6
0 30 0 p 50 11-7
1 31 1 Q 51 11-8
2 32 2 R 52 11-9
3 33 3 s 53 0-2
4 34 4 T 54 0-3
5 35 5 u 55 0-4
6 36 6 v 56 0-5
7 37 7 w 57 0-6
8 38 8 x 58 0-7
9 39 9 y 59 0-8
: 3A 8-2 z 5A 0-9
; 3B 11-8-6 [5B 12-8-2

< 3C 12-8-4 "' 5C 0-8-2
= 3D 8-6] 5D 12-8-7

> 3E 0-8-6 t 5E 11-8-7
? 3F 0-8-7 - 5F 0-8-5

f,-) 29-593 ROO 1/79

646
t\..)

....:... 1.sD-
I

°' '..{)

LU

'.X'
0
0

~

.........

....J
\,()

!:71
t

w

' M
I

+:

l\ISD

l

A

B

c

D

E

F

TTY·
LOADER CAROUSEL CAHD RESERVED

RESl".RVED 15, 30 STORAGE
HEADEH

UNIT
CRT ON CLI

~C'OMMMUX-

8 LINE INTERRUPT MODULE

- t ADI ts ~o to l7)

CONTACT
CWSl'RE IIO BCS SWJTC H ~

MODULE

+
l INF

PRINTERS

REL\Y
DHl\'ER
MODl'LE •

I
I

I

l\IJCROBl'S FLOPPY
ADAPTFH DISC

SELECTOH
Cl!At\t\FLS

AIC ANAWG INPUT CONTROLLER
AOC At\ALOG Ot:TPUT CONTROLLER
DIO - DIGITAL J/O CONTROLLER

CO'>\"EHSJO-.;
556/800
BPI

HKIP:'llE'.'T
MAG TAPE

HE MOVABLE
CARTRIDGE • DISC CONT

1600 BPI
MAG TAPE

DISC 0

I
DISC I

DISC' 2

DISC 3
~

QSA QUAD SYNCHRONOUS ADAPTEH
UL! 0 UNIVERSAL LOGIC INTERFACE
MDIO MEMORY DISPATCHED 1/0

A B c D

l\IDJO

SECClND H 1.INE INTERRl'PT l\IODl l.E
(ADRS 28 TO 2F)

DIGITAL
M!JX

UNIVERSAL
CLOCK

VARIABLE 60Hz

AIC UL!

~ AOC,

.. DIO -

:- QSA

FIXED
DISC 0

FIXED
DISC 1
FIXED
DISC 2

FIXED l\!Sl\l DRIVE DRIVE
DISC 0 I DISC 3 SYSTEl\l

E F

201/301 201/301
DATA SET DATA SET

HDX FDX

-
360/370 360/370
AUX. INF INF

801
DIALER

..,

DRIVE DRIVE
~ 3

Ul
..;
>
~
0
>>
!:O "'O
0 "'O
11:1:1

"'d 2:
co 0
~
tTJ ><
1:11']
co tsj
!:O
1:1:1-
~n

0
>it'
0 ('t
ot­
t::0=
MC
tll (1)
ti] Q,

..;
>
tD
t""'
1:1:1

-

647

CONSER

SET UP FOX
LOCAL

TERMINAL;
DISPLAY PSW,

LOCATION COUNTER,
SET "CONSOLE
MODE" FLAG

DISPLAY
OPERATOR

PROMPT

ACCEPT
ONE

CHARACTER

APPENDIX F
CONSOLE SERVICE ROUTINE FLOWCHART

RESET "CONSOLE
MODE" FLAG

RESET PSW
BIT 16

ACCEPT
NEW LOC

ACCEPT REGISTER
ADDRESS, OPEN &
DISPLAY GENERAL

REGISTER, CURRENT SET

ACCEPT REGISTER
ADDRESS, FORCE

EVE~pP/ERNEG~s-P~W.LAY

ACCEPT REGISTER
ADDRESS, FORCE

EVEN, OPEN & DI SPLAY
DPFP REGISTER.

ACCEPT CARRIAGE
RETURN, DISPLAY

ENTIRE PSW.
OPEN PSW STATUS.

ENTER RUN
MODE WITH

CURRENT
PSW & LOC

LOC - 1---"'-.-..

OPEN & DISPLAY
CELL ADDRESSED
BY LOC. DISPLAY
PROMPT. ACCEPT
ONE CHARACTER

LOC +2

Loc­
LOC -2

UNRECOGNIZED.

DI SPLAY PROMPT
ACCEPT ONE
CHARACTER

EXIT

DECODE

DISPLAY
CARRIAGE RETURN.

LINE FEED
QUESTION MARK

NEXTREO

NOTES:

1. ALL RECEIVED CHARACTERS ECHOED BY PROCESSOR.
2. LOWER-CASE CHARACTERS INTERPRETED AS UPPER-CASE.
3. SPACE CHARACTERS IGNORED.

ACCEPT DATA,
MODIFY OPEN

REGISTER

NEXTREO

ACCEPT DATA,
MODIFY OPEN

HALFWORD
CELL

IS. PLUS

4. BACKSPACE, UNDERLINE, DELETE CAUSE PREVIOUS NUMERIC CHARACTER TO BE IGNORED.

29-693 R01 1/79 F-1/F-2

INDEX

Add, ~- 5
Add double precision floatinq point, 6-39
Add floating point, 6-20
Add halfword, 5-7
Add halfword to memory (AHM), 5-11
Add to list, 3-54
Add to memory (AM), 5-9
AddreEs space, 12-1
Alphanumeric string data, 1-9
Alignment faults, 10-17
And, 3-27
And halfword, 3-28
Arithmetic fault interrupt, 10-31
Arithmetic references, D-1
Auto driver channel, 9-1q
Auto driver channel flow chart, g-26
Auto driver channel immediate interrupt, 10-26
Autoload (AL), 9-16

Block diaqram, 1-2
Boolean operations, 3-2
Rranching, 4-1
Branch instruction formats, 1-13, 4-2
Branch instructions, 4-2
Branch and link, 4-6
Branch on carry, 4-14
Branch on equal, 4-1n
Branch on false, 4-5
Rranch on index high (RXH), 4-10
Branch on index low or equal (BXLE), 4-8
Rranch on low, 4-18
Branch on minus, 4-20
Branch on no carry, 4-15
Branch on no overflow, 4-25
Branch on not equal, 4-17
Rranch on not low, 4-19
Rranch on not minus, 4-21
Rranch on not plus, 4-23
Rranch on not zero, 4-27
Branch on overflow, 4-24
Branch on plus, 4-27.
Rranch on true, 4-3
Branch on zero, u-26
Rranch to control store (RDCS), 11-4
Branch unconditional, 4-28
Buffers, 9-20
Buffer switch bit, On, 9-23

29-693 ROO 1/7g Index-1

INDEX (Continued)

Channel command block, 9-18, 9-19
Channel command word, 9-22
ChannEl command word 8:15, 9-24
Check word, g-21
Circular list, 3-4
Circular list definition, 3-3
Compare, 3-23, 5-17, 7-10
Compare double precision floating point, 6-43
Compare floatinq point, 6-24
Compare halfword, 5-18
Compare logical halfword, 3-24
r.ompare logical byte, 3-26
Complement bit (CBT}, 3-48
Condition code, 6-9, 10-7
Configuration, 2-1
Console mode, 10-1?
Console service routine flow chart, F-1
Contrcl of I/O operations, 9-4
Control switches, 2-4
Convert to halfword value reqister (CHVR), 5-33
CRC generation flow chart, 3-SO
Cyclic redundancy check, 3-49

Data alignment, 1-10
Data formats, 5-1, 6-2
Data format fault interrupt, 10-1h
Data handling instructions, 8-1
Data handlinq instruction formats, 8-1
Decimal data format ctefinitions, 7-1
Decimal string data, 1-9
Decision making, 4-1
Decrement and examine prior location "-", 2-7
Device addressinq, 9-2
Device controllers, 9-1
Device priorities, 9-2
Divide, 5-24
Divide double pr~cison floating point, 6-46
Divide floatinq point, 6-27
Divide halfword, 5-27

Early Power ~ail Detect and Automdtic Shutdown, 10-20
Enter control store (FCS), 11-5
Entering console service, 2-5
F.qualization, 6-6
~xamine double precision floating point register "D", 2-B
Examine general register "R", 2-7
Examine singl~ precision floating point register "F", 2-8
Examine program status word 11 P.", 2-9

Index-2 29-693 ROO 1/79

INDEX (Continued)

Examples of R* rounding , 6-9
Exchange byte register (EXBR), 3-18
Exchange halfword register CEXHR), 3-17
Exchange program status register CEPSR), 10-35
Fxclusive OR, 3-31
Exclusive OR halfword, 3-32
Execute bit (E), 9-22
Exponent overflow, 6-7
Exponent underflow, 6-8
Extended branch mnemonics, 4-12

Fast bit (F), 9-22
Fix register (FXR), 6-29
Fix register double precision (FXDR), 6-48
Fixed point arithmetic, 5-1
Fixed point data, 1-8
Fixed point data word formats, 5-1
Fixed point format relations, 5-2
Fixed point instructions, 5-4
fixed point instruction formats, 5-3
Fixed point number range, 5-2
Fixed point operations, 5-2
Float register (FLF), 6-31
Float register double precision (FLDR), 6-49
Floating/Fixed point ranqes, 6-4
Floating point arithmetic, 6-1
Floating point data, 1-9
Floating point data formats, 6-2
Floating point instructions, 6-10
Floating point masked mode (FLM), 10-3
Floating point number, 6-3
Floating point number range, 6-4
Floating point registers, 1-6
Floating point underflow interrupt enable (FLU), 10-5
Flow chart, console service routine, F-1

General auto driver channel programming procedure, 9-25
General registers, 1-6
Guard digits and B*-rounding, 6-8

Biqh speed data handling instructions, 8-1

Illegal digit cases (Pack and Move), 7-13
Illegal digit cases (Unpack and Move), 7-15
Illegal instruction interrupt, 10-15
Immediate interrupt - Auto driver channel, 10-26
Increment and examine next loc~tion "+", 2-5
Initial program load, ?-5
Input/Output operations, 9-1

29-693 ROO 1/79 Index-3

INDEX {Continued)

Instruction alignment, 1-10
Instruction formats, 1-11, 1-12, 7-3
Instruction summary - Alphabetical by mnemonic, B-1
Instruction summary - Numeric1l, C-1
Interrupt Driven I/O, 9-5
Interrupts, Processor, 1-7
Interrupt precedence, 10-9
Interrupt priority level/register set summary, 10-27
Interrupt service pointer table, 9-3
Interrupt status register, 12-4
Interrupt system architecture - Schematic diagram, 10-10
Interrupt timing, 10-9
Interrupt timing and priority, 10-8
Interruptible instructions, 10-11
Interruptible instruction in progress {!IP), 10-3
Invalid digit faults, 10-17
I/O device interrupts, 10-25
I/0 instruction formats, 9-9
I/0 instructions, 9-9
I/O interrupt mask (!), 10-4
I/0 references, E-1
I/O system confiquration, 9-1

Key operated security lock, ?.-3

List ~recessing, 3-1
List processing instructions, 3-57
Load, 3-7
Load address , 3-11
Load byte, 3-16
Load complement double precision register (LCDR), 6-34
Load complement floating point reqister, 6-15
Load complement short, 3-9
Load doubie precision floating point, 6-32
Load double precision floating point register from single, 6-52
Load floatinq point, 6-12
Load floating point ~ultiple (L~E), 6-16
Load general registers from double precision floating point

register (LGDR), 6-36
Load general register from floating point register (LGER), 6-17
Load halfword, 3-10
Load halfYord logical (LHL), 3-14
Load immediate short, 3-8
Load ~ultiple CL~), 3-15
L0ad multiple double precision floatinq point (LMD), 6-35
Load racked decimal string as binary (LPB), 7-4
Load positive double precision register (LPDR), 6-33
Load positive floating point register (LPER), 6-14

Index-4 29-693 ROO 1/79

INDEX (Continued)

Load process segment table descriptor (LPSTD), 10-42
Load process state (LPS), 10-45
Load ~rogram status word (LPSW), 10-33
Load r;rogram status word register (LPSWR), 10-34
Load ~eal address (LRA), 3-12
Load shared segment table descriptor CLSSTD), 10-43
Load single precision floating point register from double, 6-50
Location counter, 1-6
Logical data, 1-9, 3-1
Logical instructions, 3-5
Logical instruction formats, 3-5
Logical operations, 3-1

MAC Interrupt status, 12-9
MAC Registers, 12-7
Machine malfunction interrupt, 10-18
Machine malfunction interrupt enable, 10-4
Machine malfunction status word {MMSW), 10-20
Maskable and non-maskable interrupts, 10-8
Memory access controller (MAC) fault interrupt,
Memory access controller enable {MAC), 10-5
Memory initialization, 2-10
Memory management, 12-1
Modify current location "=", 2-7
Modify double precision floating point register
Modify general register "=", 2-7
Modify program status word "=", 2-9
Modify single precision floating point register
Move, 7-8
Move and pa1, 7-8
Move and pad with default pad, 7-8
Move translated until, 7-6
Multit:ly , 5-20
Multiply double precision floatinQ point, 6-44
Multiply floating point, 6-25
Multi~ly halfword, 5-22

~ormalization, 6-5
No operation, 4-29

OP-Code map, A-1
Operations, 3-2
Operatinq instructions, 2-5
OR, 3-29
OR Halfword, 3-30
Output command, 9-10

29-693 ROO 1/79

10-17

"_ .. - ,

.. _ .. - ,

2-9

2-8

Index-S

Pack and move, 7-12
Packed decimal, 7-1

INDEX (Continued)

Packed decimal format, 7-1
Physical address space, 12-2
Pover restore, 10-21
Power up, 2-5
Privileged system function (PSF), 10-39
Process byte (PB), 8-2
Process byte register (PBR), 8-4
Processor, 1-4
Processor/Controller communication, 9-2
Processor interrupts, 1-7
Processor modes, 10-12
Programming examples, 1-13
Programming instructions, 2-11
Program status word, 1-4, 10-2
Program status word (PSW) and reserved memory locations, 10-2
Protection, 12-4
Protect mode enable (P), 10-6
PSW Location counter (LOC), 10-7
PSW Status word, 10-3

Read control store (RDCS), 11-3
Read data, 9-12
Read error logger (REL), 10-40
Read halfword, 9-13
Read/Write bit CR/W), 9-22
Redundancy check type bits (RC), 9-23
Re-execution of faulting instructions, 12-12
Register and immediate storage one format CRI1), 1-20
Register and immediate storage two format (RI2), 1-22
Register. and Indexed storage/Pegister and indexed storage format

CRXRX), 1-24
Register and indexed storage one format (RX1), 1-15
Register and indexed storage three format (RX3), 1-18
Register and indexed storage two format (RX2), 1-16
Register set numberinq, 1-5
Register set select, 1-5
Reqister set select field (R), 10-6
Register-to-Register format (RR), 1-14
Relocation, 12-3
Remove from list, 3-56
Reserved memory locations, 1-7, 10-8
Reset bit (RBT), 3-47
Restore interrupible state (ISHST), 10-48
Rotate left logical CRLL), 3-40
Rotate right logical (FRL), 3-42
Run mode, 10-14
RXRX formats, 1-25

Index-6 29-693 ROO 1/79

INDEX (Continued)

Sample program, 1-13
Save interruptible state CISSY), 10-47
Schematic diagram - Interrupt system architecture, 10-10
Segmentation register, 12-4
Select an address and examine "@", 2-6
Selector channel I/O, 9-6
Selector channel devices, 9-7
Selector channel operation, 9-7
Selector channel programming, 9-8
Sense status, 9-11
Set bit (SBT), 3-t~6

Shift left, 3-36
Shift left arithmetic (SLA), 5-29
Shift left halfword, 3-38
Shift left halfword arithmetic (SLHA), 5-30
Shift right, 3-37
Shift right arithmetic (SRA), 5-31
Shift right halfword, J-39
Shift right halfword arithmetic (SRHA), 5-32
Short form format (SF}, 1-14
Simulate channel program (SCP), 9-17
Simulate interrupt (SINT), 10-36
Simulated interrupt, 10-28
Single step mode, 10-14
Status mask, 9-2?.
Status monitoring I/O, 9-4
Status switching, 10-15
Status switching and interrupts, 10-1
Status switching instructions, 10-32
Store (ST), 3-19
Store byte, 3-22
Store byt~, no ECC, 10-49/10-50
Store binary as packed decimal string (STBP), 7-5
Store double precision floating point (STD}, 6-37
Store double precision floating point register in single

precision memory (STOP.), 6-53
Store floating point (STE), 6-18
Store floatinq point multiple (STME), 6-19
Store halfword (STH), 3-20
Store muliple (STM), 3-21
Store multiple double precision floating point (STMD), 6-38
Store process state (STPS), 10-44
String instructions, 7-3
String operations, 7-1
Subroutine address, 9-19
Subroutine linkage, 4-2
Subtract, 5-13
Subtract double precision f loatinq point, 6-41

29-693 ROO 1/79 Ind~x-7

\

\.

\
INDEX (Continued)

Subtract floating point, 6-22
Subtract halfword, 5-15
Supervisor call (SVC), 10-37
Supervisor call (SVC) interrupt, 10-30
Systew, Rreak Point (BRK), 10-38
System breakpoint interrupt, 10-31
System control, 2-1
System control panel, 2-1
System control panel switches and indicators, 2-3
System description, 1-1
System queue service (SQS) interrupt, 10-29
Systen; queue service interrupt enable (Q), 10-5
System terminal commands, 2-6
System terminal support command summary, 2-2

Test and set (TS), 3-44
Test bit (TBT), 3-45
Test error logger (TEL), 10-48
Test halfword immediate (THI), 3-34
Test immediate CTI), 3-33
Translate (TLATE), 3-51
Translate bit, 9-23
Translation, 3-2, 9-20
Translation tabl~ entry, 3-2
True zero, 6-7

Unpack and move, 7-14
Unpac~ed decimal format, 7-2
Unpacked (zoned) decimal, 7-2

Valid channel command codes, ~-23

Virtual address space, 12-2

W a l t s ta t e (W) , 1 0 - 3
Write control store (~DCS), 11-2
Writable control store instructions, 11-1
Write data, g-14
Write halfword, 9-15

550 Keyboard layout, 2-3
3200 Block. diagram, 1-2
3200 CP-Code map, A-1

Index-8 29-693 ROO 1/79

w
z
_J

l?
z
0
_J

<(

1-a 1

I
I
I
I
I
I
I
I
I
I
1

I

I
I
I
I

PUBLICATION COMMENT FORM

Please use this postage-paid form to make any comments, suggestions, criticisms, etc. concerning
this publication.

Company ________________ Publication Number ------------

Address ----------------

FOLD FOLD

Check the appropriate item.

D Error Page No. Drawing No.---------

D Addition Page No. Drawing No. ________ _

D Other Page No. Drawing No. ---------

Explanation:

FOLD FOLD

Fold and Staple
No postage necessary if mailed in U.S.A.

:;.

STAPLE

FOLD

Ill II I
BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J.

POSTAGE Will BE PAID BY ADDRESSEE

PERKIN-ELMER
Computer Systems Division
2 Crescent Place
Oceanport, NJ 07757

TECH PUBLICATIONS DEPT. MS 322A

FOLD

•.

- STAPLE

STAPLE

NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

FOLD

FOLD

STAPLE

-'

