Publication Number 29-405

MODEL 7/32
PROCESSOR
USER'S MANUAL

o ,
EN"TTIEIIRIDATTA°

Subsidiary of PERKIN-ELMER
Oceanport,New Jersey 07757, U.S.A.

(@© INTERDATA INC., 1976
All Rights Reserved
Printed in US.A.

‘May 1976

PAGE REVISION STATUS SHEET

PUBLICATION NUMBER
TITLE

29-405

7/32 PROCESSOR USER'S MANUAL

REVISION ROO DATE 6/76
PAGE REV. DATE PAGE REV. DATE PAGE REV. DATE
1-1 A2-1
Thru Thru
1-18 ROO 6/76 A2-4 [ROO 6/76
2-1 A3-1
Thru Thru
2-52 ROO 6/76 A3-6 |ROO 6/76
3-1 Ad-1
Thru Thru
3-24 ROO 6/76 Ad4-2 | ROO 6/76
4-1 A5-1
Thru Thru
4-24 ROO 6/76 A5-6 | ROO 6/76
5-1 A6-1
Thru Thru :
5-36 ROO 6/76 Aq-8 |ROO 6/76
6~1 A7-1
Thru Thru
6-16 RO0O [6/76 A7-4 [ROO 6/76
7-1
Thru
7-26 ROO 6/76
8-1
Thru
8-8 ROO 6/76
9-1
Thru
9-10 ROO 6/76
10-1
Thru
10-12 | ROO 6/76
Al-1 R
Thru
Al-2 ROO

A1598

TABLE OF CONTENTS

CHAPTER 1 SYSTEM DESCRIPTION . . . o e e e e e e e e e e e e e e e I 1-1
PROCESSOR e s S 1-4
Program Status Word e e e e e e 1-4

General Register . . . v v 0 v o i s e s et s e 1-6

Floating Point Register e 1-6

Processor Tterrupts . . . o o o o i s e 1-6

Reserved Memory Locations o . o 0 0 0 e e e e e e e e e e e e e e e 1-6

Processor Operations e e e e e I T T T T T T TN 1-7
DATAFORMATSt e e 17
Fixed Point Data 0 0 0 o e e e e e e e e e e e e e e e e e 1-7
FloatingPoint Data e e e e e e e e e e e e 1-7

Logical Data 0 .0 0 e e e e e e e e s et e e e e 1-8
INSTRUCTION FORMATS . . . e e e e s e e e e e e e e e e e e e e e e 1-8
Branch Instruction Formats o 0 e e e e e e e e e 1-9
Programming Note S 1-9

Register to Register (RR) Format o 0 o i s e e e e e e e e e e 19

Short Form (SFYFormat e 19

Register and Indexed Storage One (RXT) Format v v v v i i e e e e e e e e e e e e 1-11

Register and Indexed Storage Two (RX2) Format e e e e e e e e e e e 1-12

Register and Indexed Storage Three (RX3) Format i i it it i et e e et e v 1-14

Register and Immediate Storage One (RIT) Format v i i ittt ee e 1-15

Register and Immediate Storage Two (RI2) Format i v v vt vt e e e e e e e 1-16
CHAPTER 2 LOGICAL OPERATIONS e e e e e e e e e e e e e 2-1
DATA FORMATS e e e e e e e e e e e e e e e 2-1
OPERATIONS e e e e e e e e e e e et e e e e e e e 2-2
Boolean Operations . . o v v v v i i bt e 22
Translation, S e e e e e e e et e e e e e e e e e e e 2-2

List Processing S e 2-3
LOGICAL INSTRUCTION FORMATS e e e e e e e e e e e e e e 24
LOGICAL INSTRUCTIONS e 2-4
CHAPTER3BRANCHING, e e e e e e e e e e e e e 341
OPERATIONS e e e e e e e e e e e e e e e e e e 0341
h DecisionMaking e e e e e e et e e e e 3-1
Subroutine Linkage S S |
BRANCH INSTRUCTION FORMATS v e e s v O 13 |
BRANCH INSTRUCTIONS e e e e e R 32
CHAPTER 4 FIXED POINT ARITHMETIC e e e e e e e et e e e e 4-1
DATAFORMATS e e i et e . e e e e e e e e e e e e e e 4-1
FIXED POINT NUMBFR RANGE . . ., e 4-1
OPERATIONS - £
CONDITIONCODE i it it s e oe o e e e e e e e e e e e e e e e e e e 4-2
FIXED POINT INSTRUCTION FORMATS i i o it it i i i et s e e et et e e e s e i 4-3
FIXED POINT INSTRUCTIONS e e e e e e e e e e e e 4-3

29-405 ROO 5/76 - : i

CHAPTER 5 FLOATING POINT ARITHMETIC

INTRODUCTION
FLOATING POINT NUMBER

CONDITION CODE
FLOATING POINT INSTRUCTION FORMATS
FLOATING POINT INSTRUCTIONS

CHAPTER 6 STATUS SWITCHING AND INTERRUPTS v
PROGRAM STATUSWORD e e e v

INTERRUPT SYSTEM

STATUS SWITCHING INSTRUCTION FORMATS Ve
STATUS SWITCHING INSTRUCTIONS

CHAPTER 7 INPUT/OUTPUT OPERATIONS

INTRODUCTION AND CONFIGURATION OF /O SYSTEM
DEVICE CONTROLLERS .

TABLE OF CONTENTS (Continued)

Floating Point Number Range
Normalization
Equalization
True Zero
Exponent Overflow
Exponent Underflow
Data Formats L e s e e e e e e e e e e e e e e e
Guard Digitand Rounding o0 e e e e e e e
Conversion from Decimal

...

.......................................

..............................

Wait State e e e
Protect Mode i i i it i e e e e e e e e e e e e e e e
Register Set Selection b e e et e e

...

Immediate Interrupt . 0 0 L Lo L0000 .
Console Interrupt
Simulated Interrupt . . . 0 L L L e e e e e e e e e e e e e e e e e
Machine Malfunction Interrupt e
Arithmetic Fault Interrupt
Relocation/Protection Interrupt e e
System Queue Service Interrupt
Protect Mode Violation Interrupt
legal Instruction Interrupt
Supervisor Call Interrupt

..................................

.................................

Device Addressing
Processor/Controller Communication
Device Priovities e

INTERRUPT SERVICEPOINTERTABLE

I/O INSTRUCTION FORMATS
I/O INSTRUCTIONS

CONTROU OF I/JO OPERATIONS T .
STATUSMONITORING I/O . . . o i i e i e e e s s e sttt s e s e oo e

..

. 29-405 ROO 5/76

TABLE OF CONTENTS (Continued)

INTERRUPT DRIVENYT/O S e e e e e s e b e s e e e e e, e e e e Cee e 7-17

SELECTORCHANNELI/O o it i s e it it e e e e e e e e Y B T

Selector Channel Devices e e e e e e e et e e e e e e e 7-18

Selector Channel Operation e ee e e e e e e e e e e it e e e 7-18

Selector Channel Programming e e e e e 7-19

AUTODRIVERCHANNEL e e e e e e e e e e e e e e e 7-19

CHANNEL COMMAND BLOCK C e e e e e e e e e e e e e e e e e e e 7-20

Subroutine Address e e e e e e e e e e e e e e e e e 7-20

Buffer e e e e e e e e e e e e e e e e e e 7-21

Translation e e e e e e e e e e s s e e e e b a e e e e e e e 7-21

Check Word 0 i i i it it e s o e e e e e e e e e e e e e e e e e e PP 2 |

Channel CommandWord e e e e e e e e e e e e 7-22

Valid Channel Command Codes et e e e e e e e e e 7-23

CHAPTER 8 MEMORY MANAGEMENT e e e e e e e e e e e e e e e 8-1

PROGRAM ADDRESSSPACE e e e e e e e e e 8-1

RELOCATION e §-1

PROTECTION s e e e e e et e e e e e e e e e e 8-1

MACREGISTERS et i e e e e e e e e e e e e e e e e e e e 8-4

Definition of MAC Register Fields e e et e e e e e e 8-5

Segimentation Register e e e e e e e e e e e e e e e 8-5

Interrupt Status Register 0o e e e e e e e e e e 8-6

CHAPTER 9 DATA COMMUNICATIONS INSTRUCTIONS e e e e e e e 9-1

DATA COMMUNICATION INSTRUCTION FORMATS i it it i oo e v e e e e e 9-1

DATA COMMUNICATION INSTRUCTIONS e e e e e e e e e e - 9-1
CHAFTER 10 M71-102 HEXADECIMAL DISPLLAY PANEL AND

M71-101 BINARY DISPLAY PANEL PROGRAMMING SPECIFICATION e 1041

INTRODUCTION R e : e 10-1

CONFIGURATION, e e e e e e e e e e e e e 10-1

Display Registers and Indicators e e e e e e e e e e e 10-2

Key Operated Security Lock e e e e e e e e e e e e e 10-3

ControlKeys . ..,............. e e e e e e e e e e e e e 10-3

OPERATING PROCEDURES o v ittt e e e o e e e e e e e 10-5

Power Up . . o o e e e e e e e e e e e e o 105

Power Down e i e e e e e e 10-5

Memory Read e e e e e e e e e e e e e e e e e e e 10-5

Memory Write 0 e e e e e e e e e e R e 10-5

General Register Display 0 . e e e e e e e e e e e 10-6

Floating Point Register Display e e 10-6

Floating Point Register Display (later versionsof 7/32). cr e e . 106

Program Status Word Display and Modification e e e e e e e e 10-6

Program Execution o e e e e e e e e e e e e e e e e 10-7

Program Termination e e e e e e e e e e e e e 10-7

ConsoleInterrupt o . i i i e e e e e e e e e e e e e e e e e 10-7

Switch Register e e e e e e e o (1 214

Power Fail e e e e e e e e e e 10-7

29405 ROO 5/76 fi

DATAFORMAT s e e e i e s e e ns e e oo
PROGRAMMING INSTRUCTIONS o o e e e e s e e ettt e e e
Input/Qutput Pnogrammmg e e e
WaitState i i e e e e e e e e e
'PROGRAMMING SEQUENCES e e e e e
Programming Note it i i e e e e e e e e N e
ILLUSTRATIONS
Figure 1-1 Model 7/32 Processor Block Diagram .,y
Figure 1-2 Program Status Word L o L L e e e e e e e e e e e e
Figure 1-3 Instruction Formats 0 0 0 0 i i s e e e e e e e e e e e e
Figure 1-4 32-Bit Instruction Format Examples v v v v v v v v v vt ot v e v e n e
Figure 2-1 Logical Data o i i i e e e e e e e e e e e e e e e e e .
Figure 2-2 Translation Table Entry 0 0 0 0 0 it i st i e e e e e e e e e e e
Figure 2-3 Circular List Definition 0 0 0 0 i i i e e i e e e e e e e e e e e e e e
Figure 2-4 Circular List L o i s e s e e e e e e e e e e et e e e e e .
Figure 2-5 Flow Chart for CRC Generatmn
Figure 2-6 Processing InStructions L L L oL L e e e s e e e e e e e e e e P
Figure 4-1 Fixed Point Data Words Formats 0 0 0 v v i i i e st et et oo e oo
Figure 5-1 Singte Precision Floating Point Number Fields e e e
Figure 5-2 Exponent Overflow . . L . . L 0 L i e e e e e e e e e e e e e e e
Figore §5-3 Exponent Underflow o 0 v i i it i e e e e e e e e e e e e
Figure 6-1 Program StatusWord o o e e e e
Figure 6-2 Interrupt System Block Diagram o0 00 o e e e e e
Figure 7-1 Channel Command Block . 0 0 . o 0 0 0 0o i s s e s e e e e e e e e e e e
Figure 7-2 Channel Command Word . . . & i 0 it i e e e i et et e e e e e e
Figure 7-3 Micro Code Flow Chart of Auto Driver Channel P .
Figure 8-1 Segmentation Registers0 00 0o e e . . e e
Figure 9-1 Flow Chart of MPBSR Insteuction e e e e e e e e . . e
Figure 10-1 Hexadecimal Display Panel e e e e e
Figure 10-2 Display Registers and Indicators e e e e e e .
Figure 10-3 Hexadecimal Display Panel Data Transfers v v« ¢ v v v v v e o v v v u v e
TABLES
TABLE 4-1 FIXED POINT FORMAT RELATIONS e e e e
TABLE 5-1 FLOATING/FIXED POINT RANGES i e i it i vt v e e e s o
TABLE 6-1 INTERRUPT SYSTEMS o it vie et e e a s . e e ‘e
TABLE 10-1 DISPLAY STATUS ANDCOMMAND e e e e e
APPENDICES
APPENDIX 1 OP-CODEMAP e e e
APPENDIX 2 INSTRUCTION SUMMARY - ALPHABETICAL WITH ATTRIBUTES
APPENDIX 3 - INSTRUCTION SUMMARY -NUMERICAL e e e e e e
APPENDIX 4 EXTENDED BRANCHMNEMONICS e e e e e e e e e
APPENDIX § ARITHMETIC REFERENCES e e e e e e e e s .
APPENDIX 6 MODEL 7/32 EXECUTION TIMES IN MICROSECONDS e e e e e e e e
APPENDIX7 I/OREFERENCES e e e e e e e e
iv

‘ 10-8
<o 109

. . 109
. . 109
c.. . 109

.....

.....

.....

.....

s e

.....

o e

o s s

:10-11/10-12

29-405 ROO 5/76

CHAPTER 1
SYSTEM DESCRIPTION

The Model 7/32 is designed to meet the need for a high performance 32-bit minicomputer.
Through the use of 32-bit general registers and a comprehensive instruction set, the Model 7/32
provides fullword data processing power and direct memory addressing up to a limit of one
million bytes. The 7/32 System is shown, in block diagram form, in Figure 1-1.

The instruction set includes arithmetic and logical operations, list processing, floating point,
cyclic redundancy checking, and bit and byte manipulation. Through this repertoire and direct
memory addressing, coding and debugging time 1is reduced to a minimum.

Two sets of sixteen 32-bit General Registers are provided. Register set selection is controlled
by bits in the Program Status Word. Register-to-Register instructions permit operations
between any of the 16 registers in the current set, eliminating redundant loads and stores;

the multiple register set organization eliminates the overhead incurred in saving and -

restoring registers when responding to interrupts.

The optional Memory Access Controller (MAC) provides automatic program segmentation, reloca-.
tion, and protection. The Processor Protect mode enables detection of privileged instructions.
These two features are invaluable in process control, data communication, and time-sharing
operations to guarantee that a running program cannot interfere with the integrity of the system.

In addition to conventional means of programmed /O, the Model 7/32 automatically acknowledges
all I/0 interrupts and performs much of the required overhead prior to activating an Interrupt
Service Routine. The Auto Driver Channel can perform data transfers with character translation,
longitudinal or cyclic redundancy checking and data buffer chaining without interrupting the run-
ning program.

The reader is referred to the following manuals for further information;

Common Assembler Language (CAL) User's Manual, Publication Number 29-375.

ESELCH Programming Manual, Publication Number 29-529.

EDMA Bus Universal Interface Instruction Manual, Publication Number 29-423.

Model 7/32 Maintenance Manual, Publication Number 29-403.

NOTE

Information contained in this manual is subject
to design change or product improvement.

29-405 ROO 5/76 1-1

e L

! | 32MODULES |
| 32KB EACH
32K8 3268
MEMORY MEMORY
MODULE MODULE
MEMORY ACCESS CONTROLLER m"‘"j

DMA BUS
INSTRUCTION REGISTER ____ 1 l
OPCODE | Ry | X;| ADDRESS | SELECTOR CUSTOM

F* cHaNNEL INTERFACE
PROGRAM STATUS WORD i
[[status Loc.cTR. | 1
PROCESSOR :
= - |
GENERAL |
REGISTERS |
e |
|
|
|
I
|
‘@ '
r——_. |
'

MULTIPLEXOR BUS [of
UNIVERSAL '
cLock
ANALOG
DIGITAL)
s on convession OO car

INTERTAPE
DUAL CASSETTE

I CARD READER '

LINE PRINTER

HIGH SPEED
PAPER TAPE

Figure 1-1 Mode! 7/32 System Block Diagram

1-2 29-405 ROO 5/76

The following are major differences between the Model 7/32 and the Model 8/32 Processors
from a programmer's point of view:

1. The Model 7/32 Processor has two General Register sets while the Model 8/32 Processor
can have two or eight General Register sets depending on the option selected.

2. The Model 7/32 Processor has no I/O Priority Levels while the Model 8/32 Processor can
have none or three I/O Priority Levels depending on the option selected.

3. The earlier version of the Model 7/32 Processor has a capability of executing some of the
programs written for the INTERDATA 16-Bit Processors. The later version of the Model
7/32 and the Model 8/32 Processors have no such capability.

4. The Model 7/32 Processor does not have an optional Writable Control Store and related
instructions as does the Model 8/32 Processor.

5. Fullword operations: In the Model 8/32 Processor, to fetch/store a fullword from/into
memory, the fullword data must be aligned on a fullword boundary. This is not the case in
the current version of the Model 7/32 Processor. In the Model 7/32, it is sufficient that a
fullword data be aligned on a halfword boundary. Thus, a program that executes correctly
on the current Model 7/32 may not do so when tried on the Model 8/32. The mnemonics for
the instructions that may introduce such a discrepancy are:

A CL LME RBL STE
ABL D LRA RTL STM
AD DD M S STMD
AE DE MD SCP STME
AM L ME SD sSvC
ATL LD N SE TLATE
C LE o ST WB

CD LM RB STD X

CE LMD

6. Machine Malfunction Interrupt: In later version of the Model 8/32 Processor, the fullword
data read/write on a halfword boundary causes the machine malfunction interrupt to occur,
if enabled in the current PSW. After the interrupt is taken, the condition code field of the
new PSW is set to 4 (CVGL = 0100).

In the earlier version of the Model 8/32 Processor fullword data read/write on a halfword
boundary forces the address to the fullword boundary and then the data is read/written.
Machine Malfunction interrupt does not occur.

In the current Model 7/32, fullword data read/write on a halfword boundary causes the data
to be read from/written into the consecutive halfwords. Machine Malfunction interrupt does

not occur.

7. In Model 7/32, the MAC traps 256 bytes. In the Model 8/32, the MAC traps 72 bytes.
8. In Model 7/32, the MAC is optional. In the Model 8/32, the MAC is part of the basic processor.
9. On the average, the Model 8/32 is 2 to 2.5 times faster than the Model 7/32.

10, The Simulate Interrupt (SINT) instruction: on the Model 7/32, the Rl field of the SINT
instruction must be zero, specifying that Register Set 0 is to be used.

11. Memory Access Controller interrupt (old Location Counter): In the Model 8/32, it points to the
current instruction. In the Model 7/32, it points to the next instruction for data fetch fault or it
points to the instruction to be executed in case of execute protect violation.

NOTE

For a detailed description of the Model 8/32
the reader should refer to the Model 8/32
Processor User's Manual, Publication Number
29-428.

29-405 ROO 5/76 ‘ 1-3

PROCESSOR

The Central Processing Unit (CPU), or Processor, controls activities in the syétem. It executes
instructions in a specific sequence and performs arithmetic and logical functions. Included in
the Processor's components are:

Program Status Word register
General registers

Floating point registers
Hardware multiply and divide
Floating point hardware

Program Status Word

The 64 bit Program Status
Figure 1-2.)

0

Word (PSW) defines the state of the Processor at any given time. (See

16171819 2021 222324 272829 3031

——— e P B A AR AN AN

32

3940 63

|_>.<[Loc

Figure 1-2. Program Status Word

Bits 0:31 are reserved for status information and interrupt masks. Bits 40:63 contain the Loca-
tion Counter. Unassigned Program Status Word bits must not be used and must always be zero.
Status information and interrupt mask bits are defined as follows:

Bit 16
Bit 17
Bit 18
Bit 19
Bit 21
Bit 22
Bit 23
Bits 24:27
Bits 28:31

Wait State (W)

Wait state

Immediate interrupt/ADC Mask
Machine malfunction interrupt mask
Arithmetic fault interrupt mask
Relocation/protection interrupt mask
System queue service interrupt mask
Protect mode:

Register set select bits

Condition Code

When this bit is set, the Processor halts normal program execution. It is still responsive to
machine malfunction and immediate interrupts, if enabled.

Immediate Interrupt/Auto Driver Channel Mask (1)

Program Status Word Bit 17 controls requests for service from devices on the Multiplexor Bus
and Selector Channel. It also controls the Auto Driver Channel. If this bit is set, the Processor

responds to the requests.,

If it is reset, the requests are queued. Refer to Chapter 6 for details

of Immediate Interrupt processing,

29405 ROO 5/76

Machine Malfunction Interrupt Mask (M)

This bit controls interrupts generated when power fails, when power returns, or when parity
checking indicates a memory parity error.

Arithmetic Fault Interrupt Mask (A)

This bit controls internal interrupts caused by arithmetic faults: fixed-point quotient overflow
or division by zero; or floating point overflow, underflow, or division by zero. If this bit is set,
the interrupt is taken. If it is reset, the error condition is ignored.

Relocation Protection Interrupt Mask (R/P)

This bit serves two purposes. It enables the memory access and protect controller (MAC) so
that program addresses are automatically relocated. It also enables the relocation/protection
interrupt which is generated by the memory access and protect controller. The MAC is optional.

System Queue Service Interrupt Mask (Q)

This bit controls the interrupt generated when the system queue requires service.

'

Protect Mode (P)

This bit describes an operational state of the Processor. If itis set, the Processor is in the
protect mode, and only non-privileged instructions may be executed, to protect the integrity of
the system. If this bit is reset, the Processor is in the Supervisor mode, and the currently
running program may execute any legal instruction.

Reaister Set Select (R)

The Model 7/32 has two sets of general registers, numbered 0 and 15. Bits 24:27 of the Program
Status Word are used to designate the current register set. If Bits 24:27 are all zeroes, register
set 0 is selected. If Bits 24:27 are all ones, register set 15 is selected.

Condition Code (CVGL)

Bits 28:31 of the Program Status Word contain the Condition Code. As part of the execution of
certain instructions, the state of the Condition Code may be changed to indicate the nature of the
result. Not all instructions affect the Condition Code. The state of the Condition Code may be
tested with Conditional Branch instructions.

Location Counter (LOC)

The Location Counter controls the sequencing of instruction execution. In normal sequential
operation, the Location Counter contains the address of the next instruction to be executed. The
instruction is fetched from memory. While the instruction is being executed, the Location Counter
is incremented by either two, or four, or six, depending on the length of the instruction. Upon
completion of instruction execution, the next instruction is fetched from the location specified by
the incremented Location Counter, and the process is repeated.

This sequential mode of operation is altered by Branch instructions, the LPSW and LPSWR, SINT,
SVC instructions, and by interrupts. Branch instructions cause the Location Counter to be
replaced by a new value derived from the instruction. The LPSW, LPSWR, SINT, and SVC
instructions, and interrupts cause the entire Program Status Word to be replaced by a new
Program Status Word.

20-405 ROO 5/76 . 1-5

GENERAL REGISTERS

The Model 7/32 has two sets of general registers, numbered 0 and 15. Each register is 32
bits wide. Register set selection is determined by the state of Bits 24:27 of the current
Program Status Word. Registers 1 through 15 of any set may be used as index registers.
If register 0 is specified, no indexing cccurs.

When interrupts occur, the Processor loads pertinent information into preselected registers
of the register set 0. The details of this operation are described in Chapter 6. Register
set 15, the user set, does not have any specific functional assignments.

Floating Point Registers

There are eight optional single-precislon floating point registers, each 32 bits wide. The
registers are identified by the even numbers 0 through 14. Floating point operations must
always specify the registers with even numbers.

There are eight optional double-precision floating point registers each 64 bits wide. These
registers are identified by the even numbers 0 through 14, and are completely separate from
the single-precision floating point registers.

Processor Interrupts

Interrupt conditions cause the entire Program Status Word to be replaced by a new Program
Status Word, thus breaking the usual sequential flow of instruction execution. When an interrupt
condition occurs, the Processor saves its current Program Status Word either in memory or in
a pair of general registers of register set 0. It loads information related to the interrupt
condition in other registers of this same set, It loads a new Program Status Word from

a memory location reserved for the specific interrupt condition. (The immediate interrupt

is an exception to the rule. The status portion of the new Program Status War d, Bits

0:31, is forced to a preset value. The Location Counter is loaded from a memory

location reserved for the interrupting device. Refer to Chapter 6 for details on

interrupt processing.)

Reserved Memory Locations

The following memory locations are reserved for interrupt pointers, Program Status Words,
and system constants.

X'000000' - X'00001F' Reserved (Single Precision Floating Point Register, if equipped, Save Area)
X'000020"' X'000027" Machine malfunction interrupt old PSW

X'000028'* - X'00002F' Not used, must be zero

X'000030" - X'000037' Illegal instruction interrupt new PSW
X'000038' - X'00003F" Machine malfunction interrupt new PSW
X'000040' - X'000047' Not used, must be zero

X'000048! - X'00004F' Arithmetic fault interrupt new PSW
X'000050" - X'00007F" Bootstrap loader and device definition table
X'000080"' - X'000083!' System queue pointer

X'000084! - X'000085' Power Fail PSW save pointer

X'000086"' - X'000087' Power Fail Register save pointer
X'000088' - X'00008F" System queue service interrupt new PSW
X'000090! - X'000097' Relocation/protection interrupt new PSW
X'000098"! - X'00009B' Supervisor call new PSW status

X'00009C! - X'0000BB' Supervisor call interrupt new PSW location counter values
X'0000BC' - X'0000CF' Not used, must be zero

X'0000D0' - X'0002CF' Interrupt service pointer table

X'0002D0' - X'0004CF' Expanded interrupt service pointer table
X'0004D0' - X'0008CF' Expanded interrupt service pointer table

*Used by Micro-Program

1-6 29-405 ROO 5/76

These reserved locations play an important role in both interrupt and input/output processing.
For details on these subjects refer to Chapters 6 and 7. In addition to the above, certain loca-
tions are reserved for use by the Memory Access Controller. Refer to Chapter 8 for details.

The power down save areas for general registers and PSW must be completely contained within
-the first 64KB of memory. All new location Counter values are subject to MAC relocation if
the new PSW enables MAC (Bit 21 = 1). All other pointers contain absolute addresses not sub-
ject to MAC relocation.

Processor Operations

Fixed point arithmetic and logical operations are performed between:
The contents of two fullword registers.
The contents of a fullword register and the contents of a fullword located in memory.
The tontents of a fullword register and the contents of a halfword located in memory.

Where the second operand is contained in memory, it may be located in the instruction stream
(immediate operation), or it may be located in indexed storage.

In fixed point arithmetic and logical operations between a fullword register and a halfword
operand in memory, the halfword operand is expanded to a fullword by propagating the most
significant bit into the high order bits before the operation is started. This permits the use of
halfword to fullword operations with consistent results, and it provides space economy in that
small values do not require fullword locations.

Arithmetic operations on fixed point halfword quantities may produce results that are not entirely
consistent with the results that are obtained in a 16-bit Processor. Where this is a problem,

the Convert to Halfword Value Register Instruction (CHVR) may be used to adjust the result and
the Condition Code so that they are consistent with the same operations in a 16-bit Processor.,

Floating point operations take place between the contents of two floating point registers, or be-
tween the contents of a floating point register and a floating point operand contained in a full-
word or double word in memory. Following floating point operations, the Condition Code is
set to indicate the nature of the result.

DATA FORMATS

The Processor performs logical and arithmetic operations on single bits, 8-bit bytes, 16-bit
halfwords, 32-bit fullwords, and 64-bit double words. This data may represent a fixed point
number, a floating point number, or logical information.

Fixed Point Data

Fixed ipoint arithmetic operands may be either 16-bit halfwords or 32-bit fullwords. In full-
word multiply and divide operations, 64-bit operands are manipulated. Fixed point data are
treated as 15-bit signed integers in the halfword format, and as 31-bit signed integers in the
fullword format. Positive numbers are expressed in true binary form with a Sign bit of zero.
Negative numbers are represented in two's complement form with a Sign bit of one. The
numerical value of zero is represented with all bits zero. Refer to Chapter 4 for details on
fixed point dat# representation.

Floating Point Data

A floating point number consists of a signed exponent and a signed fraction. The quantity ex-
pressed by this number is the product of the fraction and the number 16 raised to the power
represented by the exponent. Each floating point value requires a 32-bit fullword or a 64-bit
double word, of which eight bits are used for the sign and exponent, and the remaining bits are
used for the fraction. Refer to Chapter 5 for details on floating point data representation.

29-405 ROO 5/76 1-7

Logical Data

Logical operations manipulate 8-bit bytes, 16-bit halfwords, and 32-bit fullwords. In addition,
it is possible to perform logical operations on single bits located in bit arrays. Refer to
Chapter 2 for details on logical data representation.

INSTRUCTION FORMATS

The INTERDATA instruction formats provide a concise method of representing requ;lred opera-
tions for easy interpretation by the Processor. There are seven basic formats, shown in Figure
1-4. The abbreviations used in the figure have the following meanings:

oP Operation code

R1 First operand register

R2 Second operand register

N A four bit immediate value

X2 Second operand single index register
D2 Second operand displacement

FX2 Second operand first index register
SX2 Second operand second index register
A2 Second operand direct address

12 Second operand immediate value

REGISTER TO REBISTER (RR)
0 7 1 15

1 +

L oP |R1]R2i

SHORT FORMAT (SF)
0 7 1 15

opP R1 |

REGISTER AND INDEXED STORAGE 1 (RX1)
0 7 1m 15 18 31

op | R | X2 ioioi D2 J

REGISTER AND INDEXED STORAGE 2 (RX2)
0 7 1" 15 17 31

op T ra X2 1 D2

REGISTER AND INDEXED STORAGE 3 (RX3)

0 7 1 5 17 20 2 ‘ 47,
- 4— $ - G et 3 f Iff
o [r | rx2 Joft]ofo] sx2 | A2{ P |

REGISTER AND IMMEDIATE STORAGE 1(RI1)

0 7 1 15 3

— 3 1 1 -4

[opP IERER 2 |

REGISTER AND IMMEDIATE STORAGE 2(RI2)

LO 71 111 151 i y ~ 4L
op IRERE 12 ' c7 |

7 4

Figure 1-4. Instruction Formats

29.405 ROO 5/76

Most instructions in the extended series may be expressed in two or more formats. This feature
provides flexibility in data organization and instruction sequencing.

When working with the Interdata Common Assembler Lang‘uage (CAL) assembler, it is not neces-
sary to specify the instruction format explicitly. The assembler chooses the most economical
format and supplies the required bits in the machine code. When double indexing is implied, the
assembler always chooses the RX3 format.

Branch Instruction Formats

The Branch instructions use the RR, SF, and all variations on the RX formats. However, in

the Conditional Branch instructions, the R1 field does not specify a register. Instead, it con-

tains a mask value (labelled M1 in the instruction descriptions), which is tested with the

Condition Code. The INTERDATA CAL assembler provides a series of Extended Branch Mnemonics
which make it possible to specify a Conditional Branch without specifying the mask value ex-
plicitly. For a summary of the Extended Branch Mnemonics, see Appendix 4.

Programming Examples

Each of the following programming examples refers to the sample assembly language program
shown in Figure 1-4. Note the use of symbolic equates for general registers. Machine code
generated and the result of each instruction are dependent upon the physical and logical placement
of the instructions, respectively,

Register to Register (RR) Format
0 78 1112 15

oP R1 R2

In this 16 bit format, Bits 0:7 contain the operation code. Bits 8:11 contain the R1 field, and
Bits 12:15 contain the R2 field. In most RR instructions, the register specified by R1 contains
the first operand, and the register specified by R2 contains the second operand. For example:

Machine Code Label Assembler Notation

0865 RR LR R6, R5

Second Operand.

First Operand

'LR' Instruction Op-Code

Short Form (SF) Format

0 7,8 11,12 15

opP R1 N

This 16-bit format provides space economy when working with small values. Bits 0:7 contain
the operation code. Bits 8:11 contain the R1 field. Bits 12:15 contain the N field. In arithmetic
and logical operations, the register specified by R1 contains the first operand, The N field
contains a four bit immediate value (0:15) used as the second operand. For example:

Machine Code Label Assembler Notation

245E SF LIS R5,14

-[—— Second Operand

First Operand

'LIS' Instruction Op-Code

29-405 ROO 5/76 1-9

1 SCRrAT
2 JARGT- 32 -
3 NORX3
4 MInTH 1248 —— — -
00000071 5 NO§QZ
- £ —
7 *
. [- e - — - . —
0000 0005 9 RS EQu 5 GENERAL REGISTER §
0000 0006 10 R6—— - EQU - & GENERAL REGIRTER 6
0000 0007 11 R7 EQU 7 GENERAL REGISTER 7
0000 0008 12 _Rp - EQU 8 GENFRAL REG -
0000 0009 12 R9 EQU 9 GENERAL REGISTER 9
0000 000A 14 RiAH-—-— EQU— 10 GENERAL REGISTER 10 -
0000 QpoB 15 R11 EQU 11 GENERAL REGISTER 11
16— ———
0000001 245E 17 SF LIS RS5.14 (RS) = y*0000000E"
18« ¥
0000021 0865 19 RR LR R6E RS (R6) = y*'0000000F"
20 *® .
0000041 4050 1000 21 RX1.EX1 STH RE,X*1000° (X'1000*) = X'000F"
22 *
0000081 4056 OFF2 23 RX1.EX2 STH R5,X'0FF2* (R6) (X'1000°*) = X'000E"
24 Y
00000CI 4050 8004 25 RX2+EX1 STH RS,L0C1 (LOC1) = Xx'on0E?
_ 26 x — _
0000101 4300 8004 27 B RI1,EX1
.000014%1 00000000 . 28 10cl __ DC __ Froer . . e
29 » :
000018Y €A90 8000 . .30 RI1.EX1 AMWY _ R9,x'8000¢ AR = YIFFRE8000S
. 31 x| ' . -
00001CY _CA9S 8000 32 RI1.EX2 LHY R9,x'8000¢(RS) (R} = YIFFFEAQNQF?
. 33 x
00002071 _FaAQ 0000 p000 34 RI>.EX1 LI___ R10,X'A000' _ (R10) = Y'00008000y.
35 = .
0000261 FAaRA 0001 7FFE _3A__ _p12.FX2 1 R11,Y*'17FEFe({R10) (R11) = YI0001FEEE Y
37 x .
00002CTI 4050 FFEY 38 RX2.EX2 STW __RS5,1L0CY . (LOCLl) = X'000Ee
‘ 39 &
0000301 4056 FFD2 40 __RX2.EX3 ST . RS,LO0Cl=14(R6) . _ (LOC1) = x*000ke
41- * , ’
00003471 _SA70 4001 0000 ‘42 RpX3%,EX1 L. _R7,Y'10000¢ _ (R7) = (Y*10000e) .
43 %
00003AT 5885 4601 FFE4 44 pX=xeEX2 L RB,Y'20000'-28(RS5:R6) __(RA) = (Y'200004y
45 x
0000401 4300 FFBC .46 e B 8F o e e
I S
0000447 48 Enp -
Figure 1-5. 32-Bit Instruction Format Examples
1-10

29-405 ROO 5/76

Register and Indexed Storage One (RX1) Format

0 7.8 11,12 15 .16 17 18 31

opP R1 x2 |olo ' D2

This is a 32-bit format in which Bits 0:7 contain the operation code, Bits 8:11 contain the R1
field, Bits 12:15 contain the X2 field, Bits 16 and 17 must be zero, and Bits 18:31 contain the
D2 field. In general, the register specified by Rl contains the first operand. The second
operand is located in memory at the address obtained by adding the contents of the second
operand index register, specified by X2, and the 14-bit absolute address contained in the D2

field. For example:

Machine Code Label Assembler Notation
4050 1000 RX1.EX1 STH R5,X'1000'

Defines Second Operand Address

No Index Register Specified

First Operand

'STH' Instruction Op-Code
The Second Operand address is calculated as follows:

Bits 16 1920 2324 27 28 31

0001 0000 0000 0000
1 1
l L 14-8it Absolute Address X 1000’
Indicates RX1 Format

No indexing is specified. Therefore, the second operand address is X'1000'.

Machine Code Label Assembler Notation
4056 O0FF2 RX1.EX2 STH R5,X'0FF2'(R6)

Defines Second Operand Address

Register 6 to be used for Indexing

First Operand

'STH' Instruction Op-Code

The Second Operand address is calculated as follows:

Bits 16 19 20 23 24 27 28 31

0000 111 1M 0010
L I -

I L 14-Bit Absolute Address X' OFF2'

Indicates RX1 Format

Second Operand Address

contents of D2 field + contents of the Index Register 6 (see Figure 1-5)

Il

X'0FF2' + Y'0000000E'

Y'00001000'

29-405 ROO 5/76

1-11

Register and Indexed Storage Two (RX2) Format

0 78 1112 151617 31

opP R1 X2 1 D2

This format provides relative addressing capability in a 32 bit instruction word. Bits 0:7
contain the operand code. Bits 8:11 contain the R1 specification. Bits 12:15 contain the X2
specification. Bit 16 must always be one. Bits 17:31 contain the relative displacement, D2.

In the RX2 format, the register specified by Rl contains the first operand. The address of
the second operand, in memory, is calculated by adding the value contained in the incremented
location counter (the address of the next sequential instruction) and the sum of (1) the 32-bit
representation of the 15-bit signed number contained in the D2 field, and (2) the contents of
the index register specified by X2. Negative numbers in the D2 field are expressed in two's
complement notation. For example:

Machine Code _Label Assembler Notation

$950 8004 RX2,.EX1 STH R5,1LOC1
Defines Second Operand address
No Index Register Specified

First Operand

'STH' Instruction Op-Code
The Second Operand address is calculated as follows:

Bits 16 19 20 23 24 27I 28 31

1000 0000 0000 | 0100

[l J
| 15-Bit Positive Relative Displacement

Indicates RX2 Format

Second Operand Address

= 32-bit Expansion of contents of D2 field + contents of incremented Location
Counter (see Figure 1-5).

= Y'00000004' + Y'00000010'

= Y'00000014'
Machine Code Label Assembler Notation
4050 FFE4 RX2.EX2 STH R5,LOC1

Defines Second Operand address.

No Index Register Specified

First Operand

L 'STH' Instruction Op-Code

1-12 29405 ROO 5/76

The Second Operand address is calculated as follows:

Bits 16 1920 2324 27 28 31

1M1 1M1 1110 0100
i 1
L 15-Bit Negative Relative Displacement
Indicates RX2 Format

Second Operand Address

= 32-bit Expansion of contents of D2 field + contents of incremented Location
Counter (see Figure 1-5).

= Y'FFFFFFE4' + Y'00000030'

= Y'00000014'
Machine Code Label Assembler Notation
4056 FFD2 RX2.EX3 STH R5, LOC1-14(R6)

Defines Second Operand address

e Register 6 to be used for Indexing

First Operand

'STH' Instruction Op-Code
The Second Operand address is calculated as follows:

Bits 16 19 20 2324 27 28 31

1111 1M1 1101 0010

L .]
| 15-Bit Negative Relative Displacement

Indicates RX2 Format

Second Operand Address

32-Bit Expansion of D2 field + contents of incremented Location
Counter + contents of Index Register 6 (See Figure 1-5).

1]

Y'FFFFFFDE' + Y'00000034' + Y'0000000E'

Y'00000014'

29405 ROO 5/76

Register and Indexed Storage Three (RX3) Format

0 7 1 1516171819 20 24 . 47

rga
I ¥

oP R1 Fx2 Jo1]ojo| sx2 A2

This is a 48-bit format in which double indexing is permitted. Bits 0:7 contain the operation
code. Bits 8:11 contain the R1 specification. Bits 12:15 contain the first index specification,
FX2. Bit 16 must be zero. Bit 17 must be one. Bits 18:19 must be zero. Bits 20:23 contain
the second index specification, SX2. Bits 24:47 contain a 24-bit address, A2. Second level
indexing is allowed even if first level indexing is not specified.

In general, the first operand is contained in the register specified by R1. The second operand
is located in memory. Its memory address is obtained by adding the contents of the first index
register and the contents of the second index register, and then adding to this result the contents
of the A2 field. For example:

Machine Code Label Assembler Notation
QF'?O 4001 0000 RX3.EX1 L R7, Y'10000'
—— Defines Second Operand address

Second Level Indexing not specified

Specifies RX3 format

First Level Indexing not specified

First Operand

'L! Instruction Op-Code

The Second Operand address is czlculated as follows:

Bits 16 20 24 28 31,32 36 40 44 47
0100 0000 0000 | 0001 0000 0000 0000 0000 :
[
T 20-Bit Absolute Address - Y'10000' 1
I Indicates RX3 Format
Second Operand Address
= Contents of A2 field
= Y'00010000'
Machine Code Label Assembler Notation

5885 4601 FFE4 RX3.EX2 L RS, Y'20000'-28(R5, R6)

Defines Second Operand address

Register 6 to be used for Second Level Indexing

Specifies RX3 format

Register 5 to be used for First Level Indexing

First Operand

'L! Instruction Op-Code

1-14 29405 ROO 5/76

The Second Operand address is calculated as follows:

Bits 16 20 24 28 3132 36 40 44 47

0100 0110 | 0000 0001 11 1M 1110 | o100
1 L - :
20-Bit Absolute Address Y'1FFE4’]

Indicates RX3 Format

Second Operand Address
= contents of A2 field + contents of Index Register 6
+ contents of Index Register 5 (see Figure 1-5).
= Y'0001FFE4' + Y'0000000E' + Y'0000000E"
= Y'00020000"
Register and Immediate Storage One (R11) Format

0 78 1112 1516 31

op R1 X2 12

This format represents a 32-bit instruction word. Bits 0:7 contain the operation code. Bits 8:11
contain the Rl specification. Bits 16:31 contain the 16 bit immediate value, I2.

In this format, the register specified by R1 contains the first operand. The 32-bit effective second
operand is obtained by adding together the 32-bit representation of the signed 16-bit value contained
in the I2 field, and the contents of the register specified by X2. For example:

Machine Code Label Assembler Notation
€890 8000 RI1.EX1 LHI R9,X'8000'

16-Bit Immediate Value

No Index Register Specified

First Operand

'LHI' Instruction Op-Code

The Second Operand is calculated as follows:

Bits 16 20 24 28 3
1000 0000 0000 0000
L Sign Bit
Second Operand
= 32-Bit representation of X'8000’
= Y'FFFF8000'
Machine Code . Label Assembler Notation
C895 8000 RI1.EX2 LHI R9, X'8000'(R5)

I——— 16-Bit Immediate Value

Index Register 5 Specified

First Operand

'LHI' Instruction Op-Code

29-405 ROO 5/76 ‘ 1-15

The Second Operand is calculated as follows:

Bits 16 20 24 27 31

1000 0000 0000 0000

l Sign Bit
Second Operand

32-Bit representation of X'8000' + the contents of Index Register 5 (See Figure 1-5).

1]

Y'FFFF8000' + Y'0000000E'
= Y'FFFF800E!'
Register and Immediate Storage Two (R12) Format

0 7 1 15 47
4 £

op R1 X2 12

ey
rd

This is a 48-bit instruction format. Bits 0:7 contain the operation code. Bits 8:11 contain the
R1 specification. Bits 12:15 contain the X2 specification. Bits 16:47 contain the 32-bit immediate

value, I2.

The first operand is contained in the register specified by R1. The second operand is obtained
by adding the contents of the index register, specified by X2, and the 32 bit immediate value con-
tained in the 12 field. For example:

Machine Code Latel Assembler Notation

F8A0 0000 8000 RI2.EX1 LI R10,X'8000'
32-Bit Immediate Field
No Index Register Specified

First Operand

'LI' Instruction Op-Code
The Second Operand is calculated as follows:

Bits 16 20 24 28 32 36 40 44 47

0000 0000 0000 0000 1000 0000 0000 0000

L . 32-Bit Immediate Value
Second Operand
= Contents of I2 Field

= Y'00008000"'

1-16 29-405 ROO 5/76

Machine Code Label Assembler Notation

F8BA 0001 7FFE RI2.EX2 LI R11, Y'17FFE'(R10)

32-Bit Immediate Field
Specifies Index Register 10

First Operand

'LI' Instruction Op-Code

The Second Operand is calculated as follows:

Bits 16 20 24 28 32 36 40 44 47

0000 0000 0000 0001 0111 11 1M1 1110
1 : i)

L 328it Immediate Value

Second Operand

1f

Contents of I2 Field + contents of Index Register 10 (See Figure 1-5).

Y'00017FFE' + Y'00008000"

=Y'0001FFFE'

29-405 ROO 5/76 1-17/1-18

CHAPTER 2

LOGICAL OPERATIONS

The set of logical instructions provides a means for the manipulation of binary data. Many of the
instructions grouped with the logical set may also be used in arithmetic and other operations. These
instructions include loads, stores, compares, shifte, list processing, translation, and cyclic redun-

dancy checks.

DATA FORMATS

Logical data may be organized as bytes, halfwords, fullwords, or bit arrays of up to 231 pits as
shown in Figure 2-1.

0 BYTE 7

0 HALFWORD 15

0 FULLWORD 31

0 BIT ARRAY N

Figure 2-1. Logical Data

20-405 ROO 5/76 — 2-1

OPERATIONS

In logical operations between the contents of a general register and a halfword operand, the half-
word operand is expanded te a fullword before the operation starts. The halfword is expanded by
propagating the most significant bit through Bits 15:0 of the fullword.

Boolean Operations

The Boolean operators AND, OR, and Exclusive OR (XOR) operate on halfword and fullword quan-
tities. All bits in both operands participate individually. The Boolean functions are defined as
follows:

0AND 0=0
0AND 1=0 logical brod
1AND 0 =0 (logical product)
1AND1=1
OORO0=0
OOR1=1 lomical
10RO0=1 (logical sum)
10R1=1
0XOR0=0
0XOR1=1 .)
1XOR 0=1 (logical difference)
1XOR1=0

Translation

The tranglate instruction is used to translate a character directly, or to effect an unconditional
branch to a special translate subroutine. Associated with the translate instruction is a trans-
lation table. The entries in the ‘able are halfwords as shown in Figure 2-2.

0. 78 15
1 CHARACTER ENTRY SPECIFYING TRANSLATED
CHARACTER
IO I(CHAR. HANDLING ROUTINE ADDRESS)/2 ENTRY SPECIFYING ADDRESS OF
A CHARACTER HANDLING ROUTINE

Figure 2-2. Translation Table Entry

The character to be translated is a byte of logical data. This unsigned quantity is doubled and
used as an index into the table. If the corresponding entry has a one in bit Position zero, then
Bits 8:15 contain the character to be substituted for the data character. If there is a zero in bit
Position zero, then Bits 1:15 contain the address, divided by two, of the translate routine. When
the translate instruction results in a branch, this value is doubled to produce the address of the
routine. Because this result is a 16 bit address, the software routine must be located in the first
64KB of the program. (The program may reside anywhere in memory if it is relocated by the re-
location and protection module.) The translate table may contain up to 256 entries. However, if
the data characters are always less than eight bits, fewer entries are required.

2-2 29-405 ROO 5/76

List Processing

The list processing instructions manipulate a circular list as defined in Figure 2-3.

0 15 16 31
NUMBER OF SLOTS NUMBER USED
CURRENT TOP NEXT BOTTOM
SLOTO
SLOT1
SLOTN

Figure 2-3. Circular List Definition

The first four halfwords contain the list parameters. Immediately following the parameter block

is the list itself. The first fullword in the list is designated Slot 0. The remaining slots are desig-
nated 1, 2, 3, etc., up to a maximum slot number which is equal to the number in the list minus
one. An absolute maximum of 65, 535 fullword slots may be specified, (Slots are designated 0
through X'FFFE'.)

The first parameter halfword indicates the number of slots (fullwords) in the entire list. The
second parameter halfword indicates the current number of slots being used. When this halfword
equals zero, the list is empty. When this halfword equals the number of slots in the list, the list
is full. Once initialized, this halfword is maintained automatically. It is incremented when ele-
ments are added to the list and decremented when elements are removed.

The third and fourth halfwords of the list parametef block specify the current top of the list and the
next bottom of the list respectively. These pointers are also updated automatically. See Figure 2-4.

CURRENT TOP:

OCCUPIED
SECTION

NEXT BOTTOM SLOT S

Figure 2-4. Circular List

29-405 ROO 5/76 2-3

LOGICAL INSTRUCTION FORMATS

The logical instructions use the Register to Register (RR), the Register and Indexed Storage (RX),

and the Register and Immediate Storage (RI) instruction formats.

LOGICAL INSTRUCTIONS

The instructions described in this section are:

LR

LI
LIS
LCs
LH
LHI
LA
LRA
LHL
LM
LB
LBR
EXHR
EXBR
ST
STH

STM

STB
STBR
CL
CLR
CLI
CLH
CLHI
CLB

NR
NI
NH
NHI

OR

2-4

Load

Load Register

Load Immediate

Load Immediate Short
Load Complement Short
Load Halfword

Load Halfword Immediate
Load Address

Load Real Address

Load Halfword Logical
Load Multiple

Load Byte

Load Byte Register
Exchange Halfword Register
Exchange Byte Register
Store

Store Halfword

Store Multiple

Store Byte

Store Byte Register
Compare Logical
Compare Logical Register
Compare Logical Immediate
Compare Logical Halfword
Compare Logical Halfword Immediate
Compare Logical Byte
AND

AND Register

AND Immediate

AND Halfword

AND Halfword Immediate
OR

OR Register

Ol
OH
OHI

XR

XI

XH
XHI

TI

THI
SLL
SLLS
SRL
SRLS
SLHL
SLHLS
SRHL
SRHLS
RLL
RRL
TS
TBT
SBT
CBT
RBT
CRC12
CRC16
TLATE
ATL
ABL
RTL
RBL

OR Immediate

OR Halfword

OR Halfword Immediate
Exclusive OR

Exclusive OR Register

Exclusive OR Immediate
Exclusive OR Halfword
Exclusive OR Halfword Immediate
Test Immediate

Test Halfword Immediate

Shift Left Logical

Shift Left Logical Short

Shift Right Logical

Shift Right Logical Short

Shift Left Halfword Logical

Shift Left Halfword Logical Short
Shift Right Halfword Logical
Shift Right Halfword Logical Short
Rotate Left Logical

Rotate Right Logical

Test and Set

Test Bit

Set Bit

Complement Bit

Reset Bit

" Cyclic Redundancy Check Modulo 12

Cyclic Redundancy Check Modulo 16
Translate

Add to Top of List

Add to Bottom of List

Remove from Top of List

Remove from Bottom of List

29-405 ROO 5/76

INSTRUCTIONS

Load (L)

Load Register (LR)

Load Immediate (LI)

Load Immediate Short (LIS)
Load Complement Short (LCS)

Assembler Notation Op-Code Format
L R1,D2 (X2) 58 RX1, RX2
L R1, A2 (FX2,8X2) 58 RX3
LR R1,R2 08 RR
LI R1,12 (X2) F8 RI2
LIS R1,N 24 SF
LCS R1,N 25 SF
Operation

The second operand replaces the contents of the register specified in R1.

'

Condition Code

C{V|]G]L

010]0]0 Value is ZERO
0]0jo0]1 Value is not ZERO
010|110 Value is not ZERO

Programming Note

The Load Immediate Short instruction causes the four bit second operand to be expanded to
a 32 bit fullword with high order bits forced to ZERO. This fullword replaces the contents

of the register specified by R1.

The Load Complement Short instruction causes the four bit second operand to be expanded
to a 32 bit fullword with high order bits forced to ZERO. The two's complement value of
this fullword replaces the contents of the register specified by R1.

When the Load instructions operate on fixed point data, the Condition Code indicates ZERO
(no flags), negative (L flag), or positive (G flag) value.

In the RR format, if R1 equals R2, the Load instruction functions as a test on the contents
of the register. -

In the RX formats, the second operand must be located on a fullword boundary.

Example LCS
Assembler Notation Machine Code Comments
LCS REG8, 7 - 2587 LOAD -7 INTO REGS8

Result of LCS Instruction
(REG8) = FFFF FFF9

Condition Code = 0001 (L =1)

29-405 ROO 5/76 ‘ 2-5

INSTRUCTIONS

Load Halfword (LH)
Load Halfword Immediate (LHI)

Assembler Notation Op-Code Format
LH R1,D2 (X2) 48 RX1, RX2
LH R1, A2 (FX2,8X2) 48 RX3
LHI R1,12 (X2) C8 RI1
Operation

The halfword second operand is expanded to a fullword by propagating the most significant
bit through Bits 15:0. This fullword replaces the contents of the register specified by R1.

Condition Code

C|V{G|L

0(o0f0]0 Value is ZERO
ojolof1 Value is not ZERO
ojofj1{o Value is not ZERO

Programming Note

When the Load Halfword instructions operate on fixed point data, the Condition Code indi-
-cates zero (no flags), negative (L flag), or positive (G flag) value,

In the RX formats, the second operand must be located on a halfword boundary.

29-405 ROO 5/76

INSTRUCTION

Load Address (LA)

Assembler Notation Op-Code Format
LA R1,D2 (X2) E6 RX1, RX2
LA R1,A2 (FX2,8X2) E6 RX3
Operation

The effective address of the second operand (24 bits) replaces Bits 8:31 of the register
specified by R1. Bits 0:7 of the register specified by R1 are forced to ZERO.

Condition Code

Unchanged

Programming Note

The length of the address quantity depends on the internal structure of the
particular machine. Thus, in a Processor with a maximum address length
of 20 bits, the calculated address replaces bits 12:31 of the register specified
by R1, and bits 0:11 are forced to ZERO. In a Processor with maximum
address length of 24 bits, the calculated address replaces bits 8:31 of the
register specified by R1, and bits 0:7 are forced to ZERO.

29405 ROO 5/76

2-7

INSTRUCTION

Load Real Address (LRA)

Assembler Notation S)p-Code Format
LRA R1, D2(X2) 63 RX1, RX2
LRA R1, A2(FX2, SX2) 63 RX3
Operation

This instruction simulates the operation of a memory access controller. The register
specified by Rl contains a program address (not relocated). The second operand address

points to a relocation/protection module parameter block.

The address contained in the register specified by Rl is relocated, using the appropriate
parameters. The relocated address replaces the contents of the register specified by R1.

Condition Code

No restrictions

Not executable

Not writable

Not present

Not mapped (Limit violation)

o o = o oln
===l -l

- o o o oln
or oo ol

Programming Note

If the address is not mapped or not present, the register specified by R1 is unchanged.

The second operand location must specify a fullword boundary.

This instruction is supported by the new Model 7/32 microcode. It is therefore not
supported in all the models.

Example: LRA

This example performs an address translation in the same manner as the MAC,

For this example, Register 1 contains X'54341', MACREG is the starting address of a copy of

the MAC Registers. The fifth fullword entry located at MACREG+X'14' contains X'0FF24170'.

Assembler Notation Machine Code Comments

The first digit of the program
address (5) is used to index
into MACREG

LRA REG1, MACREG 6310 8100

Result of LRA Instruction

(REG1) = 28441 (24100 + 04341)

MACREG = Unchanged
Condition Code = 0010 (not writable)

2-8 29-405 ROO 5/76

INSTRUCTION

Load Halfword Logical (LHL)

Assembler Notation Op-Code Format
LHL R1,D2 (X2) 73 RX1, RX2
LHL R1,A2 (FX2,SX2) 73 RX3
Operation

The halfword second operand replaces Bits 16:31 of the register specified by R1.

0:15 of the register specified by R1 are forced to ZERO.

Condition Code

Value is ZERO
0jo]11i0 Value is not ZERO

[=]
(=]
(=
o

Programming Note

The second operand must be located on a halfword boundary.

29405 ROO 5/76

Bits

INSTRUCTION

Load Multiple (LM)

Assembler Notation Op-Code Format
LM R1,D2 (X2f D1 RX1,RX2
LM R1,A2 (FX2,8X2) D1 RX3
Operation

Successive registers, starting with the register specified by R1, are loaded from successive
memory locations, starting with the location specified as the effective address of the second
operand. Each register is loaded with a fullword from memory. The process stops when
Register 15 has been loaded. ‘

Condition Code

Unchanged

Programming Note

The second operand must be located on a fullword boundary.

2-10 29-405 ROO 5/76

INSTRUCTIONS

Load Byte (LB)
Load Byte Register (LBR)

Assembler Notation Op-Code Format_
LB R1,D2 (X2) D3 RX1, RX2
LB R1, A2 (FX2,SX2) D3 RX3
LBR R1,R2 93 RR
Operation

The eight-bit second operand replaces the least significant bits (Bits 24:31) of the register
specified by R1. Bits 0:23 of the register are forced to ZERO.
Condition Code

Unchanged

Proaramming Note
In the Load Byte Register instruction, the second operand is taken from the least significant

eight bits (Bits 24:31) of the register specified by R2.

29405 ROO 5/76

2-11

INSTRUCTION

Exchange Halfword Register (EXHR)

Assembler Notation Op-Code Format
EXHR R1,R2 34 RR
Operation

Bits 0:15 of the register specified by R2 replace Bits 16:31 of the register specified by R1.
Bits 16:31 of the register specified by R2 replace Bits 0:15 of the register specified by R1.

Condition Code
Unchanged

Programming Note

If R1 equals R2, the two halfwords contained within the register are exchanged.
If R1 does not equal R2, the contents of R2 are unchanged.

Example: EXHR

Assembler Notation Machine Code Comments

LI REGS5, Y'0OABCDEI9' F850 0ABC DEF9 (REG 5) =0ABCDET?9
L1 REG7, Y'12345673' F870 1234 5678 (REG T) = 12345678,
EXHR REGS, REG7 3457

Result of EXHR Instruction

(REG 5) = 56781234
(REG 7) = 12345678
Condition Code = Unchanged

2-12 29-405 ROO 5/76

INSTRUCTION

Exchange Byte Register (EXBR)

Assembler Notation

Op-Code Format
EXBR R1,R2 94 RR
Operation

The two eight-bit bytes contained in Bits 16:31 of the register specified by R2 are exchanged

and loaded into Bits 16:31 of the register specified by R1. Bits 0:15 of the register specified
by R1 are unchanged. The register specified by R2 is unchanged.

Condition Code

Unchanged

Programming Note

R1 and R2 may specify the same register. In this case, the two bytes in Bits 16:31 of the
register specified by R2 are exchanged.

Example: EXBR

Assembler Notation

Machine Code Comments
LI ~ REG7, X'5A6B3C4D' F870 5A6B 3C4D (REGT) = 5A6B3C4D
LI REG3, Y'98761234' F830 9876 1234

(REG3) = 98761234
EXBR REG7,REG3 9473

Result of EXBR Instruction

(REGT7) = 5A6B3412
(REG3) = 98761234
Condition Code = Unchanged

29-405 ROO 5/76 2-13

INSTRUCTION

Store (ST)
Assembler Notation Op-Code Format
ST R1,D2 (X2) 50 RX1,RX2
ST R1, A2 (FX2,8X2) 50 RX3
Operation

The 32 bit contents of the register specified by R1 replace the contents of the memory
location specified by the effective address of the second operand,

Condition Code

Unchanged

Programming Note

The second operand location must be on a fullword boundary.

214 29405 ROO $/76

INSTRUCTION

Store Halfword (STH)

Assembler Notation Op-Code Format
STH R1,D2 (X2) 40 RX1,RX2
STH R1, A2 (FX2,SX2) 40 RX3
Operation

Bits 16:31 of the register specified by R1 replace the contents of the memory location
specified by the effective address of the second operand.

Condition Code

Unchanged

Programming Note

The second operand location must be on a halfword boundary.

29-405 ROO 5/76 2-15

2-16

INSTRUCTION

Store Multiple (STM)

Assembler Notation Op-Code Format
STM R1,D2 (X2) DO RX1,RX2
STM R1,A2 (FX2,5X2) DO RX3
Operation

The fullword contents of registers, starting with the register specified by R1, replace
the contents of successive memory locations, starting with the location specified by the
effective address of the second operand. The process stops when Register 15 has been
stored.

Condition Code

Unchanged

Programming Note

The second operand location must be on a fullword boundary.

29405 ROO 5/76

INSTRUCTIONS

Store Byte (STB)
Store Byte Register (STBR)

Assembler Notation Op-Code Format
STB R1,D2 (X2) D2 RX1,RX2
STB R1,A2 (FX2,5X2) D2 RX3
STBR R1,R2 92 RR
Operation

The least significant eight bits (Bits 24:31) of the register specified by R1 are stored in
the second operand location.

Condition Code

Unchanged

Programming Note

In the Store Byte Register instruction, the eight bit quantity is stored in Bits 24:31 of the
register specified by R2. Bits 0:23 of the register are unchanged.

Example: STBR

Assembler Notation Machine Code Comments
LI REG4, Y'13577531' F840 1357 7531 (REG4) = 13577531
LI REG3, Y'24688642' F830 2468 8642 (REG3) = 24688642
STBR REG4,REG3 9243

Result of STBR Instruction
(REG4) = 13577531

(REG3) = 24688631
Condition Code = Unchanged

29-405 ROO 5/76

2-17

INSTRUCTIONS

Compare Logical (CL)
Compare Logical Register (CLR)
Compare Logical Immediate (CLI)

Assembler Notation Op-Code Format
CL R1,D2 (X2) 55 RX1,RX2
CL R1,A2 (FX2,8X2) 55 RX3
CLR R1,R2 05 RR
CLI R1,12 (X2) F5 RI2
Operation

The first operand, the contents of the register specified by R1, is compared logically to the
second operand. The result is indicated by the Condition Code setting. Neither operand is
changed.

Condition Code

First operand equal to second
First operand less than second
First operand less than second
First operand greater than second
First operand greater than second

- o+ o ol@
O O = ol

‘oor—lr-ﬂoo
Mo M| <

Programming Note
In the RX formats, the second operand must be located on a fullword boundary.
The state of the V flag is undefined.

It is meaningful to check the following condition code mask (M1) after a logical comparison:

Mask True/False* Inference
3 False First operand equal to second
3 True First operand not equal to second
8 False First operand greater than second
8 True , First operand less than second

*Refer to page 3-1 for True/False concept in branch instructions.

2-18 29-405 ROO 5/76

INSTRUCTIONS

Compare Logical Halfword (CLH)
Compare Logical Halfword Immediate (CLHI)

Assembler Notation Op-Code Format
CLH R1,D2 (X2) 45 RX1,RX2
CLH R1,A2 (FX2,8X2) 45 RX3
CLHI R1,I2 (X2) C5 RI1
Operation

The halfword second operand is expanded to a fullword by propagating the most significant
bit through Bits 15:0. The first operand, the contents of the register specified by R1, is
compared to this fullword. The result is indicated by the Condition Code setting. Neither

operand is changed.

Condition Code
CIVI|G|L
01XxX])0]0 First operand equal to second
11Xi0]1 First operand less than second
11X([1]0 First operand less than second
01X]0]1 First operand greater than second
0[X(1]0 First operand greater than second

Programming Note
In the RX formats, the second operand must be located on a halfword boundary.
The state of the V flag is undefined.

It is meaningful to check the following condition code mask (M1) after a logical conparison:

Mask True/False* Inference
3 False First operand equal to second
3 True First operand not equal to second
8 False First operand greater than second
8 True First operand less than second

*Refer to page 3-1 for True/False concept in branch instructions,

29-405 ROO 5/76 2-19

INSTRUCTION

Compare Logical Byte (CLB)

Assembler Notation

CLB R1,D2 (X2)
CLB R1,A2 (FX2,SX2)
Operation

Op-Code Format
D4 RX1,RX2
D4 RX3

The byte quantity, contained in Bits 24:31 of the register specified by R1, is compared
with the 8-bit second operand. The result is indicated by the Condition Code setting.

Neither operand is changed.

Condition Code
C|VIGI[L
0|X|0}O
11X|0]1
11X(1]0
01X]0]|1
0|Xj1]0

Programming Note

First operand equal to second
First operand less than second
First operand less than second
First operand greater than second
First operand greater than second

Ttis meaningful to check the following condition code mask (ML1) after a logical comparison:

Mask True/False*
3 False
3 True
8 False
8 True

Inference

First operand equal to second
First operand not equal to second
First operand greater than second
First operand less than second

*Refer to page 3-1 for True/False concept in branch instructions.

2-20

29-405 ROO 5/76

INSTRUCTIONS

AND (N)
AND Register (NR)
AND Immediate (NI)

Assembler Notation Op-Code
N R1,D2 (X2) 54
N R1,A2 (FX2,SX2) 54
NR R1,R2 04
NI R1,12 (X2) F4
Operation

Format

RX1,RX2
RX3

RR

RI2

The logical product of the 32 bit second operand and the contents of the register specified
by R1 replace the contents of the register specified by R1. The 32 logical bit product

is formed on a bit-by-bit basis.

Condition Code

Ci{VIG|L

ofofojo0 Result is ZERO
0j10j0](1 Result is not ZERO
ofof1]o Result is not ZERO

Programming Note

In the RX formats, the second operand must be located on a fullword boundary.

When operating on fixed~point data, the Condition Code indicates ZERO (no flags),

negative (L flag) or positive (G flag) result.

29-405 ROO 5/76

2-21

INSTRUCTIONS

AND Halfword (NH)
AND Halfword Immediate (NHI)

Assembler Notation Op-Code Format
NH R1,D2 (X2) 44 RX1,RX2
NH R1,A2 (FX2,SX2) 44 RX3
NHI R1,12 (X2) C4 RI1
Operation

The halfword second operand is expanded to a fullword by propagating the most significant
bit through Bits 15:0. The logical product of this 32 bit quantity and the contents of the
register specified by Rl replace the contents of the register specified by R1l. The 32 bit
logical product is formed on a bit-by-bit basis.

Condition Code

C|VIG]|L

0l0]0]0 Result is ZERO
0j0f{0}1 Result is not ZERO
ojojf1}o Result is not ZERO

Programming Note

In the RX formats, the second operand must be located on a halfword boundary.

When operating on fixed-point data, the Condition Code indicates ZERO (no flags), negative (Lflag)
or positive (G flag) result.

2-22 .29-405 RO0 5/76

INSTRUCTIONS

OR (0)
OR Register (OR)
OR Immediate (OI)

Assembler Notation Op-Code Format
o R1,D2 (X2) 56 RX1, RX2
o R1,A2 (FX2,5X2) 56 RX3
OR R1,R2 06 RR
o1 R1,12 (X2) 6 RI2
Operation

The logical sum of the 32 bit second operand and the contents of the'register specified by
R1 replace the contents of the register specified by R1. The logical sum is formed on a
bit-by-bit basis,

Condition Code
C|V|G|L
0j0]0}o0 Result is ZERO
0{0|0]1 Result is not ZERO
0j0j1]o0 Result is not ZERO

Programming Note

In the RX formats, the second operand must be located on a fullword boundary.
When operating on fixed-point data, the Condition Code indicates ZERO (no flags), negative (L flag)

or positive (G flag) result.

29-405 ROO 5/76 2-23

INSTRUCTIONS

OR Halfword (OH)
OR Halfword Immediate (OHI)

Assembler Notation Op-Code Format
OH R1,D2 (X2) 46 RX1,RX2
OH R1,A2 (FX2,5X2) 46 RX3
OHI R1,12 (X2) Cé RI1
Operation

The halfword second operand is expanded to a fullword by propagating the most significant
bit through Bits 15:0. The logical sum of this 32 bit quantity and the contents of the register
specified by R1 replace the contents of the register specified by R1. The 32 bit sum is
formed on a bit-by-bit basis.

Condition Code

Cl|V|G|L

0]10]01]0 Result is ZERO
ojojof1 Result is not ZERO
ojof1lfo Result is not ZERO

Programming Note
In the RX formats, the second operand must be located on a halfword boundary.

When operating on fixed-point data, the Condition Code indicates ZERO (no flags), negative (L flag)
or positive (G flag) result.

2-24 29405 ROO. 5/76.

INSTRUCTIONS

Exclusive OR (X)
Exclusive OR Register (XR)
Exclusive OR Immediate (XI)

Assembler Notation Op-Code Format
X R1,D2 (X2) 57 ' RX1,RX2
X R1, A2 (FX2,8X2) 57 RX3
XR R1,R2 07 RR
XI R1,12 (X2) F7 RI2
Operation

The logical difference of the 32 bit second operand and the contents of the register specified
by R1 replace the contents of the register specified by R1. The 32 bit difference is formed
on a bit-by-bit basis.

Condition Code

clv]g|L

0j0j0]o0 Result is ZERO
0]0]0]1 Result is not ZERO
0jof1]o Result is not ZERO

Programming Note
In the RX formats, the second operand must be located on a fullword boundary.

When operating on fixed-point data, the Condition Code indicates ZERO (no flags), negative (L flag)
or positive (G flag) result,

29-405 ROO 5/76 2-25

INSTRUCTIONS

Exclusive OR Halfword (XH)
Exclusive OR Halfword Immediate (XHI)

Assembler Notation Op-Code Format
XH R1, D2 (X2) 47 RX1, RX2
XH R1,A2 (FX2,8X2) 47 RX3
XHI R1,12 (X2) c7 RI1
Operation

The halfword second operand is expanded to a fullword by propagating the most significant
bit through Bits 15:0. The logical difference of this 32 bit quantity and the contents of the
register specified by R1 replace the contents of the register specified by R1. The 32 bit
difference is formed on a bit-by-bit basis.

Condition Code
C|{V]|G]L
ojolo|o Result is ZERO
ojojo|1 Result is not ZERO
0]0]1§0 Result is not ZERO

Programming Note
In the RX formats, the second operand must be located on a halfword boundary.

When operating on fixed—point data, the Condition Code indicates ZERO (no flags), negative (L flag)
or positive (G flag) result.

2-26 29405 ROO 5§5/76

INSTRUCTION

Test Immediate (TT)

Assembler Notation Op-Code Format
TI R1,12 (X2) F3 RI2
Operation

Each bit of the second operand is logically ANDed with the corresponding bit in the register
specified by R1. Neither operand is changed.

Condition Code

C|V]G|L
ojojojo Result is ZERO
ojo]Jol1l Result is not ZERO (Most significant bit is set)
0j0]11}0 Result is not ZERO (Most significant bit is reset)
Example: TI
Assembler Notation Machine Code Comments
LI REG2, Y'62314020' F820 62314020 (REG2) = 62314020
TI REG2, Y'08000000' F320 08000000 TEST IF BIT 4 IN REG2 IS SET
. BP X'1000' 4220 1000 DO NOT BRANCH AS CONDITION

CODE IS 0000

29-405 ROO 5/76 2-27

INSTRUCTION

Test Halfword Immediate (THI)

Assembler Notation Op-Code Format
THI R1,12 (X2) C3 RI1
Operation

The halfword second operand is expanded to a fullword by propagating the most significant
bit through Bits 15:0, Each bit in this quantity is logically ANDed with the corresponding
bit contained in the register specified by R1. Neither operand is changed.

Condition Code
C{V|G|L
ojofoj|o Result is ZERO
oio0flof1 Result is not ZERO (Most significant bit is set)
0jo|1]0 Result is not ZERO (Most significant bit is reset)

Programming Note

When operating on fixed-point data, the Condition Code indicates ZERO (no flags), negative (L flag)
or positive (G flag) result.

2-28 29-405 ROO 5/76

INSTRUCTIONS

Shift Left Logical (SLL)
Shift Left Logical Short (SLLS)

Assembler Notation Op-Code Format
SLL R1,I2 (X2) ED RI1
SL.LS R1,N 11 SF

Operation

The first operand, the contents of the register specified by R1, is shifted left the number
of places specified by the second operand. Bits shifted out of Position 0 are shifted through
the carry flag of the Condition Code and then lost. The last bit shifted remains in the carry
flag. Zeros are shifted into Position 31,

Condition Code

Result is ZERO
Result is not ZERO
Result is not ZERO
Carry

=X X M[Q
OOOO<
M=o o|ln
Nor—‘or«

Programming Note

In the RI formats, the shift count is specified by the least significant five bits of the second
operand.

In the SF format, the maximum shift coynt is 15.
The state of the C flag indicates the state of the last bit shifted out of Position 0.

If the second operand specifies a shift of zero places, the Condition Code is set in accordance with
the value contained in the register. The state of the C flag is undefined in this case.

When the register specified by Rl contains fixed point data, the L flag set indicates a negative
result, the G flag set indicates a positive result.

29-405 ROO 5/76 2-29

INSTRUCTIONS

Shift Right Logical (SRL)
shift Right Logical Short (SRLS)

Assembler Notation Op-Code Format
SRL R1, 12 (X2) EC RI1
SRLS R1,N 10 SF

Operation

The first operand, the contents of the register specified by R1, is shifted right the number
of places specified by the second operand. Bits shifted out of Position 31 are shifted through
the carry flag of the Condition Code and then lost. The last bit shifted remains in the carry
flag. Zeros are shifted into Position 0.

Condition Code

Result is ZERO
Result is not ZERO
Result is not ZERO
Carry

=X M X0
co oo«
%P o oln
MO of

Programming Note

In the Ril format, the shift count is specified by the least significant five bits of the second
operand,

In the SF format, the maximum shift count is 15.
The state of the C flag indicates the state of the last bit shifted out of Position 31.

When the register specified by R1 contains fixed point data, the L flag set indicates a nega-
tive result, the G flag set indicates a positive result.

If the second operand specifies a shift of zero places, the Condition Code is set in accordance with
the value contained in the register. The state of the C flag is undefined in this case.

2-30 29-405 ROO 5/76

INSTRUCTIONS

Shift Left Halfword Logical (SLHL)
Shift Left Halfword Logical Short (SLHLS)

Assembler Notation Op-Code Format
SLHL R1,12 (X2) CD RI1
SLHLS R1,N 91 SF

QOperation

Bits 16:31 of the register specified by R1 are shifted left the number of places specified by
the second operand. Bits shifted out of Position 16 are shifted through the carry flag and
lost. The last bit shifted remains in the carry flag. Zeros are shifted into Position 31.
Bits 0:15 of the first operand remain unchanged.

Condition Code

Result is ZERO
Result is not ZERO
Result is not ZERO
Carry

H XX XA
o o o ol
MmO o0
MO R ol

Programming Note
The condition code setting is based on the halfword (bits 16:31) result.

In the RI1 format, the shift count is specified by the least significant four bits
of the second operand.

In the ST format, the maximum shift count is 15.

The state of the C flag indicates the state'of the last bit shifted out of Position 16.

When the register specified by Rl contains fixed point data, the L flag set indicates a negative
result, the G flag set indicates a positive result.

If the second operand specifies a shift of zero places, the condition code is set in accordance with
the value contained in bits 16:31 of the register. The state of the C flag is undefined, in this case.

29-405 ROO 5/76 2-31

INSTRUCTIONS

Shift Right Halfword Logical (SRHIL)
Shift Right Halfword Logical Short (SRHLS)

Assembler Notation Op-Code Format
SRHL R1,12 (X2) CC RI1
SRHLS R1,N 90 SF

Operation

Bits 16:31 of the register specified by R1 are shifted right the number of places specified
by the second operand. Bits shifted out of Position 31 are shifted through the carry flag and
lost. The last bit shifted remains in the carry flag. Zeros are shifted into Position 16.
Bits 0:15 of the first operand remain unchanged.

Condition Code
C|V]|G|L
Xi0jo0]o Result is ZERO
Xjojot1l Result is not ZERO
Xlof1]0 Result is not ZERO
1]0|X(X Carry

Programming Note

The condition code setting is based on the halfword (bits 16:31) result.

In the RI1 format, the shift count is specified by the least significant four
bits of the second operand.

In the SF format, the maximum shift count is 15.
The state of the C flag indicates the state of the last bit shifted out of the Position 31.

When the register specified by Rl contains fixed point data, the L flag set indicates a negative
result, the G flag set indicates a positive result.

If the second operand specifies a shift of zero places, the Condition Code is set in accordance with
the halfword value contained in bits 16:31 of the register. The state of the C flag is undefined in
this case.

2-32 29405 ROO 5/76

INSTRUCTION

Rotate Left Logical (RLL)

Assembler Notation : Op-Code Format
RLL R1,12 (X2) EB RI1
Operation

The 32 bit first operand, contained in the register specified by R1, is shifted left, end around,
the number of positions specified by the second operand. Bits shifted out of Position 0 are
shifted into Position 31.

Condition Code
C|VIG]|L
ofotjof{o Result is ZERO
0]0]0{1 Result is not ZERO
0]0]J1]0 Result is not ZERO

Programming Note

The shift count is specified by the least significant five bits of the second operand.

When the register specified by R1 contains fixed point data, the L flag set indicates a nega-
tive result, the G flag set indicates a positive result.

If the second operand specifies a shift of zero places, the Condition Code is set in accordance with
the value contained in the register specified by R1.

Example: RLL

1. Assembler Notation Machine Code ' Comments
LI REGY, Y'56789ABC' F890 56789ABC (REG 9) = 56789ABC
RLL REG9, X'0004' EB90 0004

Result of RLL Instruction

(REG 9) = 6789ABCS5 |
Condition Code = 0010 (G =1)

2. Assembler Notation Machine Code Comments
LI REGSY Y'88880000' F890 8888 0000 (REG 9) = 88880000
RLL REGSY, X'03! EB90 0003

Result of RLL Instruction

(REG 9) = 44400004
Condition Code = 0010 (G =1)

29-405 ROO 5/76 2-33

INSTRUCTION

Rotate Right Logical (RRL)

Assembler Notation Op-Code Format
RRL R1,I2 (X2) EA RI1
Operation

The 32 bit first operand, contained in the register specified by R1, is shifted right, end
around, the number of positions specified by the second operand. Bits shifted out of Position
31 are shifted into Position 0.

Condition Code

Result is ZERO
Result is not ZERO
Result is not ZERO

o o ola
oo ol

- o oln
o ol

Programming Note
The shift count is specified by the least significant five bits of the second operand.

When the register specified by R1 contains fixed point data, the L flag set indicates a nega~-
. tive result, the G flag set indicates a positive result.

If the second operand specifies a shift of zero places, the Condition Code is set in accordance with
the value contained in the register specified by R1.

Example: RRL

1. Assembler Notation Machine Code Comments
LI REG4,Y'12345678' 1840 1234 5678 (REG4) = 12345678
RLL REG4, X'04' E£A40 0004

Result of RRL Instruction

(REG4) = 81234567
Condition Code = 0001 (L =1)

2. Assembler Notation Machine Code Comments
LI REG4,Y'00001111' F840 0000 1111 (REG 4) = 00001111
RRL REG4, X'01' EA40 0001

Result of RRL Operation

(REG4) = '800000888"
Condition Code = 0001 (L =1)

2-34 29-405 ROO 5/76

INSTRUCTION

Test and Set (TS)

Assembler Notation Op-Code Format
TS D2 (X2) EO0 RX1,RX2
TS A2 (FX2,8X2) E0 RX3
Operation

The halfword second operand is read from memory and, on the same cycle, written
back with the most significant bit set, The most significant bit of the second operand
is tested. The Condition Code reflects the state of this bit at the time of the memory
read. The other bits in the halfword are undefined.

Condition Code

C|V]|G|L
XX} X]0 Most significant bit reset
XIX|[X]|1 Most significant bit set

Progrémming Note
The Test and Set instruction provides a mechanism for software synchronization.

The Test and Set instruction can be used in a single processor environment as
follows. Two or more user tasks running under an Operating System share a
halfword, This halfword is located in a memory area referred to as Task
Common. Each task can access the halfword using the TS instruction. The
synchronization sequence may be as follows:

TASK 1 Sets the most significant bit using the TS instruction.

TASK 2 Senses the most significant bit using the TS instruction,
sees that it is set, performs the necessary software
synchronization, and then resets the most significant
bit of the halfword.

The Test and Set instruction can be used in a multi-processor system as
follows. Two or more processors share a halfword. This halfword is
located in a memory area can access the halfword using the TS instruction.
The synchronization sequence can be exactly as explained for user tasks
with the following subtle difference. Whereas, TASK 1 and TASK 2 cannot
access the halfword at the same (real) time, two processors can. The
access is granted according to the priority.

The hardware/firmware insures that no other accesses to the halfword
have been made during the execution of the TS instruction.

29405 ROO 5/76

2-35

INSTRUCTION

Test Bit (TBT)

Assembler Notation Op-Code Format
TBT R1,D2 (X2) 74 RX1, RX2
TBT R1,A2 (FX2,5X2) 74 RX3
Operation

The second operand address points to a bit array starting on a halfword boundary. The
value contained in the register specified by R1 is the bit displacement into the array.
The bit is located and tested. The test does not change the bit.

Condition Code

C|V|G|L
0ojo0|0]o0 Tested bit is ZERO
0]0}1]0 Tested bit is ONE
Example: TBT
Assembler Notation Machine Code Comments
LIS REGS,3 2483 (REG 8) =3
TBT REGS, LABEL 7480 0BC4 LABEL = Halfword

in memory = X'B34A"
Result of TBT Instruction
Memory Location X'BC4' unchanged

(REG 8) unchanged
Condition Code = 0010 (G =1)

2-36 29405 ROO 5/76

INSTRUCTION

Set Bit (SBT)

Assembler Notation Op-Code Format
SBT R1,D2 (X2) 75 RX1,RX2
SBT R1, A2 (FX2,5X2) 75 RX3
Operation

The second operand address points to a bit array starting on a halfword boundary. The

value contained in the register specified by Rl is the bit displacement into the array. The bit

is located and forced to one.

Condition Code

CiV]|G|L

oJjof{ojo Previous state of bit was ZERO

0]0}1]0 Previous state of bit was ONE

Example: SBT
Assembler Notation Machine Code Comments

LIS REG5,8 2458 (REG 5) =8

SBT REGS5, LABEL 7550 1520 LABEL Located at
X'1520'. It contains
X'2134!',

Result of SBT Instruction
Contents of LABEL = 21B4

(REG 5) unchanged
Condition Code = 0000 (G = 0)

29405 ROO 5/76

INSTRUCTION

Complement Bit (CBT)

Assembler Notation Op-Code Format
CBT R1,D2 (X2) 77 RX1,RX2
CBT R1,A2 (FX2,8X2) 77 RX3

Operation

The second operand address points to a bit array starting on a halfword boundary. The
value contained in the register specified by R1 is the bit displacement into the array.
The bit is located and complemented.

Condition Code
C|{VIG|L
0{0j0]o0 Previous state of bit was ZERO
0j0]|1]{o0 Previous state of bit was ONE
Example: CBT
Assembler Notation Machine Code Comments
LIS REGY,3 ’ 2493 (REG9) =3
CBT REGY, LABEL 7790 0C4A LABEL located

at X'C4A'. It
contains X'2813'.

Result of CBT Instruction

Contents of LABEL = 3813
(REG9) unchanged
Condition Code = 0000 (G = 0)

2-38 29405 ROO 5/76

INSTRUCTION

Reset Bit (RBT)

Assembler Notation Op-Code
RBT R1,D2 (X2) 76
RBT - R1,A2 (FX2,8X2) 76
Operation

The second operand address points to a bit array starting on a halfword boundary. The
value contained in the register specified by R1 is the bit displacement into the array. The

bit is located and forced to ZERO,

Condition Code

Example: RBT

Assembler Notation Machine Code
LIS REG2,3 2423

RBT REG2,LABEL 7620 1A42

Result of RBT Instruction

Contents of LABEL = 2143
(REG 2) unchanged
Condition Code = 0010 (G =1)

29-405 ROO 5/76

C|V{G|L
ojojofo Previous state of bit was ZERO
0j0f11]o0 Previous state of bit was ONE

Format

RX1,RX2
RX3

Comments

(REG 2) =3
LABEL located
at X'1A42' con-
tains X'3143'

2-39

INSTRUCTIONS

Cyclic Reduncancy Check Modulo 12 (CRC12)
Cyclic Redundancy Check Modulo 16 (CRC16)

Assembler Notation Op-Code Format
CRC12 R1,D2 (X2) 5E RX1,RX2
CRC12 R1, A2 (FX2,8X?2) 5E RX3
CRC16 R1,D2 (X2) 5F RX1, RX2
CRC16 R1,A2 (FX2,5X2) 5F RX3

Operation

These instructions are used to generate either a 12 bit or a 16 bit Cyclic Redundancy Check
(CRC) character. The register specified by R1 contains, in Bits 24:31, the next data char-
acter to be included in the CRC. The second operand is the accumulated (old) CRC. The
polynominal used for the 12 bit CRC generation is:

X124 x1hy %34 X2+ X + 1
The polynomial used for the 16 bit CRC generation is:

x164 x15, %24 1

The second operand is replaced by the generated CRC character.

Condition Code

Unchanged

Programming Note

The register specified by R1 remains unchanged.
The second operand must be located on a halfword boundary.

Figure 2-5 illustrates a Flow Chart for CRC generation,

2-40 29-405 ROO

5176

29405 ROO 5/76

CRC12 ALGORITHM

(START) '

(TEMP) *=———(R1 95.21) OLD CRC
counn 23t ®

SHIFT RIGHT

(TEMP) <*——— (TEMP)
BY 1
YES
CARRY
NO

(TEMP)*—(TEMP) (® X‘OF01°

(COUNT) @—— (COUNT) — 1

NO
CARRY

YES

SECOND OPERAND «——— (TEMP)

FOR CRC 16 ALGORITHM, USE: Rf193.37 INSTEAD OF R1yg.37 INSTEP 1
8 INSTEAD OF 6 IN STEP 2
X‘A001" INSTEAD OF X‘0OF01’ IN STEP 4

Figure 2-5. Flow Chart for CRC Generation

STEP

Py

2-41

INSTRUCTION

Translate (TLATE)

Assembler Notation Op-Code Format
TLATE R1,D2 (X2) E7 RX1,RX2
TLATE R1,A2 (FX2,5X2) E7 RX3

Operation

The least significant bits (Bits 24:31) of the register specified by R1 contain the character
to be translated. The fullword location specified by the second operand address contains the
address of a translation table. The table is made up of 256 halfwords. The character con-
tained in the register specified by R1 is used as an index into the table.

If Bit 0 of the table entry corresponding to the index character is one, then Bits 8:15 of the
table entry replace the index character, and the next sequential instruction is executed.

If Bit 0 of the table entry is zero, then Bits 1:15 of the table entry contain the address,
divided by two, of a special handling routine. In this case, no translation takes place.

The address contained in Bits 1:15 is shifted left by one, (multiplied by two). This address
replaces the current Location Counter, thereby effecting an unconditional branch.

Condition Code

Unchanged

Programming Note

The second operand address must be aligned on a fullword boundary.
0 7,8 15, -
1 TRANSLATED)
) CHARACTER P
o

(CHAR. HANDLING ROUTINE ADDRESS)/2)

o

Example: TLATE

2-42

This example illustrates the use of the TLATE instruction., The translation table must either be
initialized or assembled to contain up to a total of 256 halfword entries. In this example, the table
contains 2 entries:

Label Assembler Notation Comments
LHI REG5,X'8052' LOAD TABLE ENTRY INTO REG5
STH REGS5, TABLE PUT ENTRY INTO TABLE
LA REG7, TRANLAB LOAD ANOTHER TABLE ENTRY
SRLS REG7,1 DIVIDE BY 2

STH REGT7, TABLE+A PUT ENTRY INTO TABLE

TABADR DC A(TABLE)

Alternately, this table may be assembled with the proper constant values. The T type constant
may be used to assemble subroutine addresses in the proper format. For example:

ALIGN 2
TABLE EQU *
DO 256
DC o’
ORG TABLE + 4
DC T(TRANLAB)
ORG TABLE + 512

29-405 ROQ 5/76

Since a program is normally assembled as a relocatable program, the Address of
TRANLAB is not known, but for illustrative purposes assume address of TRANLAB
is X'864'.

0 15

TABLE+0
TABLE+2)
TABLE+4 8052
TABLE+6
TABLE+8 .
TABLE+A 0432
TABLE+C

A
TABLE-+508 T

-

At TABLE+A is the address of TRANLAB divided by 2 (X'864'/2)

1. Using this table, this example translates the character in Register 2.

Label Assembler Notation Comments

LIS REG2,2 (REG 2) = 0000 0002
TLATE REG2, TABADR

Result of TLATE Instruction

(REG2) = 0000 0052
Condition Code = Unchanged

The entry used = Contents at Address of (2 times contents of REG 2) + TABLE
= Contents at address TABLE + 4
= X'8052!

Since first bit of entry = 1, Direct translation is used and the contents of REG2 are replaced by
X'0000 0052'

2. Using the table, the following example shows how the TLATE instruction can
be used to branch to a special character handling routine:

Label Assembler Notation Comments

LIS REGS5,5 REG5 = 0000 0005
TLATE REGS5, TABADR

TRANLAB LHR R6,R5 THESE INSTRUCTIONS
LB R3,0 (R6) OPERATE ON THE SPECIAL
CHARACTER.

.

29405 ROO 5/76 2-43

Resuit of TLATE Instruction

(REG5) = 0000 0005
Condition Code = Unchanged

Control is Transferred to subroutine at address TRANLAB (X'864").

The entry used = Contents at Address of (2 times contents of REG 5) + TABLE
= Contents at Address TABLE + A
= X'04 32!

Since the first bit of entry = 0, the microcode multiplies the entry by 2 and transfers t6' TRANLAB
(at address X'864') and continues executing instrucftions from the new address.

i

2-44 29-405 ROO 5/76

INSTRUCTIONS

Add to Top of List (ATL)
Add to Bottom of List (ABL)-

Assembler Notation Op-Code Format
ATL R1,D2 (X2) 64 RX1,RX2
ATL R1, A2 (FX2,5X2) 64 RX3
ABL R1,D2 (X2) 65 RX1,RX2
ABL R1, A2 (FX2,8X2) 65 RX3
Operation

The register specified by R1 contains the fullword element to be added to the list. The list
is located in memory at the address of the second operand. The number of slots used tally
is compared with the number of slots in the list. If the number of slots used equals the num-
ber of slots in the list, an overflow condition exists. The element is not added to the list
and the overflow flag in the Condition Code is set, If the number of slots used tally is

less than the number of slots in the list, it is incremented by one, the appropriate

pointer is changed, and the element is added to the list. Refer to Figure 2-4.

Condition Code
JC|V|G]|L
oj|ojojo Element added successfully
0|110]0 List overflow

Programming Note
These instructions manipulate circular lists as described in the introduction to this chapter.
The second operand location must be on a fullword boundary.

The add to top of list instruction manipulates the current top pointer in the list, If no over-
flow occurs, the current top pointer, which points to the last element added to the top of the
list, is decremented by one and the element is inserted in the slot pointed to by the new cur-
rent top pointer. If the current top pointer was zero on entering this instruction, the cur-
rent top pointer is set to the maximum slot number in the list. This condition is referred

to as list wrap.

The add to bottom of list instruction manipulates the next bottom pointer. If no overflow oc-
curs, the element is inserted in the slot pointed to by the next bottom pointer, and the next
bottom pointer is incremented by one. If the incremented next bottom pointer is greater
than the maximum slot number in the list, the next bottom pointer is set to zero, This con-
dition is referred to as list wrap.

See examples in the next section.

29-405 ROO 5/76 2-45

INSTRUCTIONS

Remove from Top of List (RTL)
_Remove from Bottom of List (RBL)

Assembler Notation Op-Code Format
RTL R1,D2 (X2) 66 RX1,RX2
RTL R1,A2 (FX2,SX2) 66 RX3
RBL R1,D2 (X2) 67 RX1,RX2
RBL R1,A2 (FX2,SX2) 67 RX3
Operation

The element removed from the list replaces the contents of the register specified by R1.

The list is located at the address of the second operand. If, at the start of the instruction
execution, the number of slots used tally is ZERO, the list is already empty and the instruc-
tion terminates with the overflow flag set in the Condition Code. This condition is referred
to as list underflow; in this case, Rl is undefined. If underflow does not ocecur, the number
of slots used tally is decremented by one, the appropriate pointer is changed, and the element
is extracted and placed in the register specified by R1.

Condition Code

o o ol
= o olg

List now empty
List is not yet erapty

O = Ol
o o ol

List was already empty)d::}‘ijf.-,

Programming Note

2-46

These instructions manipulate circular lists as described in the introduction to this chapter.
The second operand location must be on a fullword boundary.
In the case of list underflow, the contents of the register specified by R1 are undefined.

The remove from top of list instruction manipulates the current top pointer. If no underflow
occurs, the current top pointer points to the element to be extracted. The element is ex-
tracted, and placed in the register specified by Rl. The current top pointer is incremented
by one and compared to the maximum slot number. If the current top pointer is greater than
the maximum slot number, the current top pointer is set to ZERO. This condition is referred
to as list wrap.

The remove from bottom of list instruction manipulates the next bottom pointer. If no under-
flow occurs, and the next bottom pointer is ZERO, it is set to the maximum slot number (list
wrap); otherwise, it is decremented by one, and the element now pointed to is extracted and
placed in the register specified by R1.

29-405 ROO 5/76

Examples: List Instructions (ATL, ABL, RTL, RBL)

The following are examples of the use of the four list processing instructions.

The original list is normally set up as shown in IYigure 2-6.

LIST

SLOT 0
SLOT 1
SLOT 2
SLOT 3

SLOT 4

29-405 ROO 5/76

0005| 0000

0000 0000

UNDETINED

UNDETFINED

UNDEFINED

UNDEFINED

UNDEFINED

where HALFWORDS at

LIST

LIST + 2

LIST + 4

IIST + 6

Figure 2-6. List Processing Instructions

Assembler Notation

LIS

STH

sT

LIS

LIS

LIS

LIS

LIS

LIS

STH

REGO, 0
REGO, LIST+2
REGO, LIST+4
REG1,1
REG2,2
REGS3, 3
REG4, 4
REG5, 5
REG6,6

REGS5, LIST

]

of total slots

5 (in this example)
of entries used
0

current top of list
slot 0

next bottom of list

slot 0

Results and Comments

INITIALIZE # OF ENTRIES USED TO 0

INITIALIZE POINTERS TO 0

REGISTERS 1 THRU 6 CONTAIN

1 THRU 6 RESPECTIVELY

TOTAL # OF ENTRIES =5

2-47

REF1

REF2

REF3

2-48

ATL REG1, LIST

ATL REG2,LIST

ATL REG3,LIST

LIST

SLOT 0

SLOT1

SLOT 2

SLOT 3

SLOT 4

0005(0001

0004{0000

UNDEFINED

UNDEFINED

UNDEFINED

UNDEFINED

0000 0001

Condition Code = 0000
Current Top Pointer = Slot 4
Next Bottom Pointer = Slot 0

LIST

SLOT 0

SIOT1

SLOT 2

SLOT 3

SLOT 4

00050002

000310000

UNDEFINED

UNDEFINED

UNDEFINED

0000 0002

0000 0001

Condition Code = 0000
Current Top Pointer = Slot 3
Next Bottom Pointer = Slot 0

LIST

SLOT 0

SLOT 1

SLOT 2

SLOT 3

SLOT 4

0005{0003

0002{0000

UNDEFINED

UNDETFINED

0000 0003

0000 0002

0000 0001

Condition Code = 0000
Current Top Pointer = Slot 2
Next Bottom Pointer = Slot 0

(List Wrap)

29-405 ROO 5/76

REF4 ABL REG4, LIST

REFS ABL REGS5, LIST

REF6 ABL REGS, LIST

29-405. ROO 5/76

LIST 0005(0004

0002}0001
SLOT 0 0000 0004
SIOT1 UNDEFINED

SLOT 2 0000 0003

SLOT 3 0000 0002

SLOT 4 . 0000 0001

Condition Code = 0000
Current Top Pointer = Slot 2
Next Bottom Pointer = Slot 1

LIST 0005(0005

0002(0002

SLOT 0 0000 0004

SLOT 1 0000 0005
SLOT 2 0000 0003
SLOT 3 0000 0002

SLOT 4 0000 0001

Condition Code = 0000
Current Top Pointer = Slot 2
Next Bottom Pointer = Slot 2

LIST 0005|0005

0002|0002

SLOT 0 0000 0004

SILOT1 0000 0005
SLOT 2 0000 0003
SLOT 3 0000 0002
SLOT 4 0000 0001
Condition Code = 0100 (List overflow)

Current Top Pointer = Slot 2
Next Bottom Pointer = Slot 2

2-49

REF7 RTL REGT7, LIST LIST 0005|0004
0003 0002'
SLOT 0 0000 0004
SLOT 1 0000 0005
SLOoT2 X 0060 0003
SLOT 3 0000 0002
SLOT 4 _ 0000 0001
(REG 7) = 0000 6003
Condition Code = 0010
Current Top Pointer = Slot 3
Next Bottom Pointer = Slot 2
RET'8 RBL REGS, LIST LIST QQOS 0003
0003j0001
SLOT 0 0000 0004
SLOT1 X 0000 0065
SLOT 2 X 0000 0003
SLOT 3 0000 0002
SLOT 4 0000 0001
(REG) 8) = 0000 0005
Condition Code = 0010
Current Top Pointer = Slot 3
Next Bottom Pointer = Slot 1
REF9 RTL REGY, LIST LIST 0005{0002
00040001
SLOT 0 0000 0004
SLOT1 X 00?0 0005
SLOT2 X 0000 0003
SLOT 3 X ~ 0000 0002
SLOT 4 0000 0001

(REG9) = 0000 0002
Condition Code = 0010
Current Top. Pointer = Slot 4
Next Bottom Pointer = Slot 1

NOTE

X = Entry removed from list, and is not accessible through further manipulation of list

instructions.

29-405 RO0 5/76

REF10 RBL REG10, LIST LIST | 0005[0001
0004[0000

SLOT 0 X 0000 0004

SLOT1 X | 0000 0005

SLOT2 X | ~ 0000 0003

SLOT3 X | 0000 0002

SLOT 4 0000 0001

(REG 10) = 0000 0004
Condition Code = 0010
Current Top Pointer = Slot 4
Next Bottom Pointer = Slot 0

REF11 RTL REG11, LIST LIST 0065 0000
00000000
SIOTO0 X 0000 0004
SLOT1 X 0000 0005
SLOT 2 X 0000 0003
SLOT 3 X 0000 0002
SLOT 4 X 0000 0001
(REG 11) = 0000 0001
Condition Code = 0000 (List is now empty)
Current Top Pointer = Slot 0
Next Bottom Pointer = Slot 0
REF12 RTL REG12,LIST LIST 0005{ 0000
0000|0000
SILOTO0 X 0000 0004
SIOT1 X 0000 0005
SLOT 2 X 0000 0003
SLOT3 X 0000 0602
SLOT4 X 0000 0001

(REG 12) = UNDEFINED ‘
Condition Code = 0100 (List was already empty)
Current Top Pointer = Slot 0

Next Bottom Pointer = Slot 0

NOTE

X= Entry removed from list, and is not accessible through further manipulation of list
instructions,

29-405 ROO 5/76

2-51/2-52

CHAPTER 3
BRANCHING

In normal operations, the Processor executes instructions in sequential order. The Branch
instructions allow this sequential mode of operation to be varied, so that programs can loop,
transfer control to subroutines, or make decisions based on the results of previous operations.

OPERATIONS

The second operand in Branch instructions is the address of the memory location to which con-
trol is transferred. The address may be contained in a register or it may be specified in the in-
struction as the second operand address.

Decision Making

The Conditional Branch instructions permit the program to make the decisions based on previous
results. In these instructions, the R1 field contains a four bit mask, M1, which is tested against

the Condition Code.

The result of the test determines whether the branch is taken, or the next
sequential instruction is executed.

The following examples show previous Condition Code, mask specified in a branch instruction,
and the result of the test on which branch or no branch decision is made.

Previous
Condition Code

0000
0001
1001
0100
1010
0010
0010

Subroutine Linkage

Result
Mask(M1) of Test (True/False)
0010 0000 (False)
1010 0000 (False)
1000 1000 (True)
0100 0100 (True)
0010 0010 (True)
0011 0010 (True)
0000 0000 (False)

The Branch and Link instructions allow branching to subroutines in such a way that a return ad-
In these instructions, the address of the instruction immedi-
ately following the Branch instruction is saved in the register specified by R1.

dress is passed to the subroutine.

BRANCH INSTRUCTION FORMATS

The Branch instructions use the Register to Register (RR), the Short Form (SF), and the Regis-
ter and Indexed Storage (RX) formats.

29405 ROO 5/76

3-1

BRANCH INSTRUCTIONS

The instructions described in this section are:

3-2

BFC
BFCR
BFBS
BFFS
BTC
BTCR
BTBS
BTYFS
BAL
BALR
BXLE
BXH

Branch on False Condition

Branch on False Condition Register
Branch on False Condition Backward Short
Branch on False Condition Forward Short
Branch on True Condition

Branch on True Condition Register
Branch on True Condition Backward Short
Branch on True Condition Forward Short
Branch and Link .

Branch and Link Register

Branch on Index Low or Equal

Branch on Index High

29-405 ROO 5/76

INSTRUCTIONS

Branch on True Condition (BTC)

Branch on True Condition Register (BTCR)
Branch on True Condition Backward Short (BTBS)
Branch on True Condition Forward Short (BTFS)

Assembler Notation Op-Code Format
BTC M1, D2 (X2) 42 RX1,RX2
BTC M1, A2 (FX2,8X2) 42 RX3
BTCR M1,R2 02 RR
BTBS M1, N 20 SF
BTFS M1, N 21 . SF
Operation

The Condition Code of the Program Status Word is tested for the conditions specified by the
mask field, M1. If any of the conditions tested are found to be true, a branch is executed to
the second operand location. If none of the conditions tested is found to be true, the next
sequential instruction is executed.

Condition Code

V4

i

Unchanged / ;

Programming Note

In the RR format, the branch address is contained in EPg register gpecified by R2, -~

In the SF format, the N field contains the number, cf/halfwords to/be added or subtracted
from the current Location Counter to obtain the branch address:

G
In the RR and RX formats, the branch address must be located on a halfword boundary.

Example: BTC
Assembler Notation Machine Code Comments
LH R1, X'100' 4810 0100 Load halfword (X'1234') located
at X'100' Condition Code is set to
BTC 3, LOC 4230 ABCO CVGL = 0010 Mask is 3, i.e.,

M1 = 0011. Perform logical AND
between CVGL and M1, i.e., 0010
and 0011. The result is 0010,
i.e., true; therefore, a branch is
taken to LOC.

29-405 ROO 5/76 3-3

INSTRUCTIONS

Branch on False Condition (BFC)

Branch on False Condition Register (BFCR)
Branch on False Condition Backward Short (BFBS)
Branch on False Condition Forward Short (BFFS)

Assembler Notation Op-Code Format
BFC M1, D2 (X2) 43 RX1,RX2
BFC M1, A2 (FX2,S8X2) 43 RX3
BFCR M1,R2 03 - RR
BFBS M1, N 22 SF
BFFS M1,N 23 SF
Operation

The Condition Code of the Program Status Word is tested for the conditions specified in the

mask field, M1, If all conditions tested are found to be false, a branch is execute

d to the

second operand location. If any of the conditions tested is found to be true, the next sequen-

tial instruction is executed.

Condition Code

Unchanged

Programming Note

In the RR format, the branch address is contained in the register specified by R2.

In the SF format, the N field contains the number of halfwords to be added to or subtracted

from the current Location Counter to obtain the branch address.

In the RR and RX formats, the branch address must be located on a halfword boundary.

Example: BFC
Assembler Notation Machine Code Comments
LCS R1,2 2512 (R1) = FFFFIFFE. Condition Code,
BFC 9, LOC 4390 ABCO CVGL = 0001 Mask is 1001, Perform

logical AND between mask and
CVGL, i.e., 1001 and 0001. The
result in 0001, i.e., true, there-

fore, a branch is not taken in

3-4

LOC.

29-405 ROO 5/76‘

INSTRUCTIONS

Branch and Link (BAL)
Branch and Link Register (BALR)

Assembler Notation Op-Code Format
BAL R1,D2 (X2) 41 RX1,RX2
BAL R1,A2 (FX2,8X2) 41 RX3
BALR R1,R2 01 RR
Operation

The address of the next sequential instruction is saved in the register specified by R1, and
a branch is taken to the second operand address.

Condition Code

Unchanged

Programming Note
The second operand location must be on a halfword boundary.

The branch address is calculated before the register specified by R1 is changed. Rl may specify
the same register as X2, FX2, 8X2, or R2.

Example: BAL

The following example illustrates the use of the BAL instruction. The instruction causes control
to be transferred to a subroutine called SUBROUT. After completion of the subroutine, the link-
ing register is used to branch back to the next sequential instruction after the BAL; i.e., the
instruction labelled RETURN.

Label : Assembler Notation Comments

[BEGIN BAL REG4, SUBROUT TRANSFER TO SUBROUT
MAIN RETURN XR R6,R6
PROG STH R6,LAB+4

[SUBROUT LHL R8,LOC THE RETURN ADDRESS OF

THE SUBROUTINE IS IN REG4

SUBROUTINE —j AHI R8,10

_RTNEND BR REG4 RETURN TO XR INST.

NOTE

Within the subroutine, the linking register (REG4 in the example) should not be used.

Result of BAL Instruction

Condition Code = Unchanged

29-405 R0OO 5/76 3-5

INSTRUCTION
Branch on Index Low or Equal (BXLE)

Assembler Notation Op-Code ' Format
BXLE R1,D2 (X2) C1 RX1,RX2
BXLE R1, A2 (FX2,8X2) C1 RX3

Set Up

0 31
R1 Starting index value
R1+1 Increment value
R1+2 Limit or final value

Prior to execution of this instruction, the register specified by R1 must contain a starting index value.
The register specified by R1+1 must contain an increment value. The register specified by R1+2 must
contain a comparand (limit or final value). All values may be signed.

Operation

Execution of this instruction causes the increment value to be added to the index value. The

result i@ompared to the limit or final value. If the index value is less than or
equal to the limit value, a branch is executed to the second operand location. If the index
value is greater than the limit value, the next sequential instruction is executed,

Condition Code

Unchanged

Programming Note
The incremented index value replaces the contents of the register specified by R1.

The register numbers wrap around, i.e., three consecutive registers used by this instruction, may be
6, 7, 8 or 14, 15, 0 or 15, C, 1, etc.

The second operand location must be on a halfword boundary.

The branch address is calculated before incrementing the starting index value contained
in the register specified by R1.

The register specified by R1 may be the same as X2, FX2 or SX2.

Example: BXLE

Transfer 10 bytes in memory starting at Memory Location Labelled BUF0 to memory location
labelled BUFI.

Labels Assembler Notation Comments
LIS REG3,0 (REG 3) = STARTING INDEX VALUE =0
LIS REG4,1 (REG 4) = INCREMENT VALUE
LIS R5,9 (REG 5) = FINAL VALUE =9
AGAIN LB REGO0, BUFO(R3) (REG 0) =1 BYTE FROM BUFO0
STB REGO, BUF1(R1) COPY 1 BYTE TO BUF1
BXLE R3, AGAIN IF (REG 3) = (REG 5), DONE
BUFO DS 10
BUF1 DS 10

Resuit of BXLE Instruction

Condition Code = Unchanged by BXLE Instruction
(REG3) = 0000000A
(REG4) = 00000001
(REG5) = 00000009

3-6 29405 ROO 5/76

INSTRUCTION

Branch on Index High (BXH)

Assembler Notation Op-Code 4 Format

BXH R1,D2 (X2) Co RX1,RX2
BXH R1,A2 (FX2,58X2) Co RX3
Set Up
R1 Starting index value
R1+1 Increment value
R1+2 Limit or final value

Prior to execution of this instruction, the register specified by Rl must contain a starting
index value. The register specified by R1+1 must contain an increment value. The register
specified by R1+2 must contain a comparand (limit or final value). All values may be signed.

Operation
Execution of this instruction causes the increment value to be added to the index value. The
result is{]og gompared to the limit or final value. If the index value is greater than

the limitvaluer & branch is executed to the second operand location, If the index value is
equal to or less than the limit value, the next sequential instruction is executed.

Condition Code

Unchanged

Programming Note
The incremented index value replaces the contents of the register specified by Rl.

* The register numbers wrap around, i.e., three consecutive registers and by this instruction
may be 6, 7, 8 or 14, 15, 0 or 15, 0, 1 etc.

The second operand location must be on a halfword boundary.

The branch address is calculated before incrementing the starting index value con-
tained in the register specified by R1.

The register specified by R1 may be the same as X2, FX2 or SX2.

Example: BXH
The following example shows how to set up a counter (1 - 9) using the BXH instruction.
Label Assembler Notation Comment
LIS REGI, 1 (REG 1) = 0000 0001 (INDEX)
LIS REG2,1 (REG 2) = 0000 0001 (INCREMENT)
LIS REGS, 9 (REG 3) = 0000 0009 (COMPARAND)
BEGIN BXH REG1, LABEL COMPARE INDEX WITH COMPARAND

LH R6, COUNT

B BEGIN BRANCH TO BXH INSTRUCTION
LABEL LA R8, RTN EXIT FROM BXH
ST R8, MEM

Result of BXH Instruction
Code between the instructions labelled BEGIN and LABEL will be executed 9 times.

Condition Code = Unchanged by BXH instruction
(REG1) = 0000 000A
(REG2) = 0000 0001
(REG3) = 0000 0009

29-405 ROO 5/76 3-7

EXTENDED BRANCH MNEMONICS

The CAL Assembler supports 14 extended branch mnemonics that generate the branch op-code (true or false conditional)
and the condition code mask required. The programmer must supply the second operand address (symbolic or absolute). In
the case of short format (SF) branch instructions, the second operand branch address must be within * 15 halfwords of the
current location counter. The CAL Assembler determines the backward or forward relationship of the second operand
address and generates the appropriate operation code.

Examples of extended branch mnemonic:

LH R5,LO0P1

BNZ LOERR
LAP SRLS R6,1

* BNCS LAP

BS CONTIN
LOERR LIS R6,0
ERRORI1 AIS R6,1

SIS R5,4

BPS ERRORI1

SIS R8,1

BO - ERROR2

CONTIN LH R1,TIME

Appendix 4 lists the extended branch mnemonics and the proper operand form to be used with each mnemonic. The actual
machine code generated is also listed.

The instructions described in this section are:

BC Branch on Carry BP Branch on Plus
BCR Branch on Carry Register BPR Branch on Plus Register
BCS Branch on Carry Short BPS Branch on Plus Short
BNC Branch on No Carry BNP Branch on Not Plus
BNCR Branch on No Carry Register BNPR Branch on Not Plus Register
BNCS Branch on No Carry Short BNPS Branch on Not Plus Short
BE Branch on Equal - BO Branch on Overflow
BER Branch on Equal Register BOR Branch on Overflow Register
BES Branch on Equal Short BOS Branch on Overflow Short
BNE Branch on Not Equal BNO Branch on No Overflow
BNER Branch on Not Equal Register BNOR Branch on No Overflow Register
BNES Branch on Not Equal Short BNOS Branch on No Overflow Short
BL Branch on Low BZ Branch on Zero
BLR Branch on Low Register BZR Branch on Zero Register
BLS Branch on Low Short BZS Branch on Zero Short
BNL Branch on Not Low BNZ Branch on Not Zero
BNLR Branch on Not Low Register BNZER Branch on Not Zero Register
BNLS Branch on Not Low Short BNZS Branch on Not Zero Short
BM Branch on Minus
BMR Branch on Minus Register B Branch (Unconditional)
BMS Branch on Minus Short BR Branch Register (Unconditional)
BS Branch Short (Unconditional)

BNM Branch on Not Minus
BNMR Branch on Not Minus Register
BNMS Branch on Not Minus Short NOP No Operation

: NOPR No Operation Register

3-8 29405 ROO 5/76

INSTRUCTION

Branch on Carry (BC)
Branch on Carry Register (BCR)
Branch on Carry Short (BCS)

Assembler Notation Op-Code + M1 Format
BC D2(X2) 428 RX1,RX2
BC A2(FX2,8X2) 428 " RX3
BCR R2 028 RR
BCS A 208 (Backward) SF

218 (Forward)
Operation

If the Carry (C) flag in the Condition Code is set, a branch is taken to the second operand location. If the Carry
flag is not set, the next sequential instruction is executed.

éondition Code
Unchanged
Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

Example: BCS

Assembler Notation Machine Code = Comments
SHIFT SLLS R9,1 1191 Register 9 is shifted left
BCS SHIFT 2081 until the first zero bit is
shifted out (left).

29405 ROO 5/76 39

INSTRUCTION

Branch on No Carry (BNC)
Branch on No Carry Register (BNCR)
Branch on No Carry Short (BNCS)

Assembler Notation Op-Code + M1 Format
BNC D2(X2) 438 RX1,RX2
BNC A2(FX2,5X2) 438 RX3
BNCR R2 038 RR
BNCS A 228 (Backward) SF

238 (Forward)

Operation

If the Carry (C) flag in the Condition Code is not set, a branch is taken to the second operand location. If the
Carry flag is set, the next sequential instruction is executed. :

Condition Code
Unchanged
Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the brarich address is contained in the register specified by R2.

3-10 29-405 ROM) 5/76

INSTRUCTION

Branch on Equal (BE)
Branch on Equal Register (BER)
Branch on Equal Short (BES)

Assembler Notation Op-Code + M1 Format
BE D2(X2) 433 RX1,RX2
BE A2(FX2,8X2) 433 RX3
BER R2 033 ‘ RR
BES A 223 (Backward) SF

233 (Forward)

Operation

If the G flag and the L flag are both reset in the Condition Code, a branch is taken to the second operand
location. If either flag is set, the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

Example: BE
Assembler Notation Machine Code Comments
CLHI R4,X"23' "~ (5400023 If R4 contains X'23', a
BE OPTIN 4330 0A00 branch is taken to loca-

tion X'A00’. Otherwise the
next sequential instruction
is executed.

29-405 ROO 5/76 3-11

INSTRUCTION

Branch on Not Equal (BNE)
Branch on Not Equal Register ((BNER)
Branch on Not Equal Short (BNES)

Assembler Notation Op-Code + M1 Format
BNE D2(X2) 423 RX1,RX2
BNE A2(FX2,8X2) 423 RX3
BNER R2 023 RR
BNES A 203 (Backward) SF

213 (Forward)

Operation

If the G flag or the L flag is set in the Condition Code, a branch is taken to the second operand location. If neither
flag is set, the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

3-12 . 29-405 ROO 5/79

INSTRUCTION

Branch on Low (BL)
Branch on Low Register (BLR)
Branch on Low Short (BLS)

Assembler Notation Op-Code + M1 Format
BL D2(X2) 428 RX1,RX2
BL A2(FX2,8X2) 428 . RX3
BLR R2 028 RR
BLS A 208 (Backward) SF

218 (Forward)

Operation

If the Carry (C) flag in the Condition Code is set, a Branch is taken to the second operand address. If the Carry flag
is not set, the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

Example: BL
Assembler Notation Machine Code Comments
CLHI R1,X'FF' C510 00FF R1 is compared to X'00FF",
BL RESTART 4280 0A00 If R1 is less than X'FF’, a branch
is taken to memory location
X'0A00".

29-405 RO0 5/76 3-13

INSTRUCTION

Branch on Not Low (BNL)
Branch on Not Low Register (BNLR)
Branch on Not Low Short (BNLS)

Assembler Notation Op-Code + M1 Format
BNL D2(X2) 438 RXI1, RX2
BNL A2(FX2,8X2) 438 RX3
BNLR R2 038 RR
BNLS A 228 (Backward) SF
238 (Forward)
Operation

If the Carry (C) flag in the Condition Code is reset, a branch is taken fo the second operand address. If the Carry
flag is set, the next sequential instruction is executed. ‘

Condition Code
Unchanged
Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

3-14 29405 ROO 5/76

INSTRUCTION

Branch on Minus (BM)
Branch on Minus Register (BMR)
Branch on Minus Short (BMS)

Assembler Notation Op-Code + M1 Format
BM D2(X2) 421 RX1,RX2
BM A2(FX2,8X2) 421 RX3
BMR R2 021) RR
BMS A 201 (Backward) SF

211 (Forward)

Operation

If the Less Than (L) flag in the Condition Code is set, a branch is taken to the second operand location. If the L
flag is not set, the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

Example: BM
Assembler Notation Machine Code Comments
SIS R3,1 2631 . If R3 is less than O after
BM CONTINUE 4210 10A0 the subtraction, a branch is

taken to X'10A0".

20-405 RO0 5/76 3-15

INSTRUCTION

Branch on Not Minus (BNM)]
Branch on Not Minus Register (BNMR)
Branch on Not Minus Short (BNMS)

Assembler Notation Op-Code + M1 Format
BNM D2(X2) 431 RX] ,RX2
BNM A2(FX2,SX2) 431 RX?)
BNMR R2 031 RR
BNMS A 221 (Backward) SF

231 (Forward)

Operation

If the Less Than (L) flag in the Condition Code is reset, a branch is taken to the second operand location. If the L
flag is set, the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

3-16 29-405 ROO 5/76

INSTRUCTION-

Branch on Plus (BP)
Branch on Plus Register (BPR)
Branch on Plus Short (BPS)

Assembler Notation Op-Code + M1 Format
BP D2(X2) 422 RX1,RX2
BP A2(FX2,5X2) 422 RX3
BPR R2 022 RR
BPS A 202 (Backward) SF

212 (Forward)’

Operation
If the Greater Than (G) flag in the Condition Code is set, a branch is taken to the second operand location. If the G
flag is not set, the next sequential instruction is executed.

Condition Code
Unchanged

Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

29-405 ROO 5/76 3-17

INSTRUCTION

Branch on Not Plus (BNP)
Branch on Not Plus Register (BNPR)
Branch on Not Plus Short (BNPS)

Assembler Notation Op-Code + M1 Format
BNP D2(X2) 432 RX1,RX2
BNP A2(FX2,5X2) 432 RX3
BNPR R2 032 RR
BNPS A 222 (Backward) SF

232 (Forward)

Operation

If the Greater Than (G) flag in the Condition Code is reset, a branch is taken to the second operand location. If the
G flag is set, the next sequential instruction is executed.

Condition Code
Unchanged

Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

29405 ROO 5/76

INSTRUCTION

Branch on Overflow (BO)
Branch on Overflow Register (BOR)
Branch on Overflow Short (BOS)

Assembler Notation . Op-Code + M1 Format
BO D2(X2) 424 RX1,RX2
BO A2(FX2,8X2) 424 RX3
BOR R2 024 RR
BOS A 204 (Backward) SF
214 (Forward)
Operation

If the Overflow (V) flag in the Condition Code is set, a branch is taken to the second operand location. If the V flag
is reset, the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

29-405. RO0 5/76 3-19

INSTRUCTION

Branch on No Overflow (BNO)
Branch on No Overflow Register (BNOR)
Branch on No Overflow Short (BNOS)

Assembler Notation Op-Code + M1 Format
BNO D2(X2) 434 ‘ RX1,RX2
BNO A2(FX2,5SX2) 434 RX3
BNOR R2 034 RR
BNOS A 224 (Backward) SF
234 (Forward)
Operation

If the Overflow (V) flag in the Condition Code is reset, a branch is taken to the second operand location. If the V
flag is set, the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

3-20 29-405 ROO 5/76

INSTRUCTION

Branch on Zero (BZ)
Branch on Zero Register (BZR)
Branch on Zero Short (BZS)

Assembler Notation Op-Code + M1 Format
BZ D2(X2) 433 RX1,RX2
Bz A2(FX2,8X2) 433 RX3
BZR R2 033 RR
BZS A 223 (Backward) . SF

233 (Forward)

Operation

If the G anfi L flags are both reset in the Condition Code, a branch is taken to the second operand location. If the
G or L flag is set, the next sequential instruction is executed.

Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

29405 ROO 5/76 3-21

INSTRUCTION

Branch on Not Zero (BNZ)
Branch on Not Zero Register (BNZR)
Branch on Not Zero Short (BNZS)

Assembler Notation Op-Code + M1 Format
BNZ D2(X2) 423 RX1,RX2
BNZ A2(FX2,5X2) 423 RX3
BNZR R2 023 RR
BNZS A 203 (Backward) SF

213 (Forward)

Operation

If the G or L flag in the Condition Code is set, a branch is taken to the second operand address. If the G and L flags
are both reset, the next sequential instruction is executed.

Condition Code
Unchanged
Programming Note
The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

29-405 ROO 5/76 322

INSTRUCTION

Branch (Unconditional) (B)
Branch Register (Unconditional) (BR)
Branch Short (Unconditional) (BS)

Assembler Notation Op-Code + M1 Format
B D2(X2) 430 RX1,RX2
B A2(FX2,8X2) 430 RX3
BR R2 030 RR
BS A 220 (Backward) SF
230 (Forward)
Operation

A branch is unconditionally taken to the second operand address.
Condition Code

Unchanged
Programming Note

The branch address must be located on a halfword boundary.

In the RR format, the branch address is contained in the register specified by R2.

Example: B
Assembler Notation Machine Code Comments
B OPTIN 4300 0A00 An unconditional branch

is taken to location X'0A00".

29-405 ROO 5/76 3-23

INSTRUCTION

No Operation (NOP)
No Operation Register (NOPR)

Assembler Notation Op-Code + M1 Forinat
NOP D2(X2) 420 RX
NOPR R2 020 RR
Operation

After a short delay (instruction decode time), the next sequential instruction is executed.

Condition Code

Unchanged
Programming Note

D2(X2) and R2 are ignored and usually equal zero (0).
Example: NOP, NOPR

Assembler Notation Machine Code Comments
NOP 0 4200 0000 No Operation
NOPR O 0200 No Operation

3-24

29-405 ROO 5/76

CHAPTER 4
FIXED POINT ARITHMETIC

Fixed Point Arithmetic instructions provide a complete set of operations for calculating addresses

and indexes, for counting, and for general purpose fixed point arithmetic.

DATA FORMATS

There are three formats for fixed point data: the halfword, the fullword, and the double word.

In each of these formats, the most significant bit (Bit 0) is the Sign bit.
either 15, 31 or 63, represent the magnitude.

The remaining bits,

0 1 HALFWORD 15

ls] l

0 1 FULLWORD 31,

s| J
1 DOUBLE WORD 63

T ©
4

Figure 4-1. Fixed Point Data Words Formats

Positive values are represented in true binary form with a Sign bit of ZERO, Negative values are
represented in two's complement form with a Sign bit of ONE. To change the sign of a number,

the two's complement of the number is produced as follows:

1. Change ail zeros to ones, and all ones to zeros.
2. Add one.

FIXED POINT NUMBER RANGE

Fixed point numbers represent integers.
along with decimal values.

TABLE 4-1. FIXED POINT FORMAT RELATIONS

Table 4-1 shows relation between different formats

(MOST POSITIVE)

DOUBLE WORD FULLWORD HALFWORD DECIMAL
8000000000000000 - 92233 72036 85477 5808
(MOST NEGATIVE)
80000000 - 21474 83648
(MOST NEGATIVE)
8000 (MOST NEGATIVE) - 32768
FFFFFFFFFFFFFFFF FFFFFFFF FFFF (LEAST NEGATIVE) -1
0000000000000000 00000000 0000 0
0000000000000001 00000001 0001 1
7FFF (MOST POSITIVE) 32767
7FFFFFFF 21474 83647
{MOST POSITIVE)
7FFFFFFFFFFFFFFF 92233 72036 85477 5807

29405 ROO 5/76

 OPERATIONS

The Fixed Point instructions include both fullword and halfwerd operations. Fullword operations
take place between (a) the contents of two general registers, or (b) between the contents of a
general register and a fullword stored in memory, or (c) between the contents of a general
register and a fullword obtained from the instruction stream. Fullword multiply produces a
double word result which is contained in two adjacent registers. Fullword divide operates on a
double word contained in two adjacent registers.

Halfword operations take place between a fullword contained in one of the general registers and

a halfword contained in memory. Before the operation is started, the halfword in memory is ex-
panded to a fullword by propagating the most significant bit (Sign bit) into the high order bits of
the fullword. (The Halfword Multiply and Divide instructions are exceptions to this rule.)

CONDITION CODE

All Fixed Point Arithmetic instructions except Multiply and Divide affect the Condition Code., The
Condition :Code indicates the effect of the operation on the 32 bit result.

" In fixed point Add and Subtract operations, because the arguments are represented in two's
complement form, all bits, sign included, participate in formihg the result. Consequently, the
occurrence of a carry or borrow has no real arithmetic significance.

For example, an Add operation between a minus one (FFFF FFFF) and a plus two (0000 0002)
produces the correct result of plus one (0000 0001) and a carry. The Condition Code is set to
1010 (C =1 and G = 1). "Carry only" means that the complete result, which in this case would
have been 1 0000 0001, would not fit in 32 bits.

An overflow occurs when the result does not fit in 31 bits. Note that bit "zero' must be re-
served for the sign of the result. For example, adding one to the largest positive fixed point
value and will produce an overflow:

7FFF FFFF
+_0000 0001
= 8000 0000

the condition code is 0101 (V=1 and L = 1)

The result, 8000 0000, is logically correct, but because the sign bit is negative when the result
should be positive, the overflow condition exists.

The columns of the Condition Code table show the state of the C, V, G and L glags for the
specific result.

The 'X' in the Condition Code column means that particular flag is not defined, i.e., the
flag can be 0 or 1. Hence, no inference should be drawn by testing that particular fiag.

4-2 '29-405 ROO 5/76

FIXED POINT INSTRUCTION FORMATS

The fixed point instructions use the Register to Register (RR), the Short Form (SF), the Register
and Indexed Storage (RX), and the Register and Immediate (RI) instruction formats.

FIXED POINT INSTRUCTIONS

The fixed point instructions deseribed in this section are:

A Add Cl Compare Immediate

AR Add Register CH Compare Halfword

Al Add Immediate CHI Compare Halfword Immediate
AIS Add Immediate Short M Multiply

AH Add Halfword : MR Multiply Register

AHI Add Halfword Immediate MH Multiply Halfword

AM Add to Memory MHR Multiply Halfword Register
AHM Add Halfword to Memory D Divide

S Subtract DR Divide Register

SR Subtract Register DH Divide Halfword

SI Subtract Immediate DHR Divide Halfword Register

SIS Subtract Immediate Short SLA Shift Left Arithmetic

SH Subtract Halfword SLHA Shift Left Halfword Arithmetic
SHI Subtract Halfword Immediate SRA Shift Right Arithmetic

C Compare SRHA Shift Right Halfword Arithmetic
CR Compare Register . CHVR Convert to Halfword Value Register

29-405 ROO 5/76 4-3

INSTRUCTIONS

Add (A)

Add Register (AR)

Add Immediate (AI)

Add Immediate Short (AIS)

Assembler Notation Op-Code Format
A R1,D2 (X2) 5A RX1,RX2
A R1,A2 (FX2,8X2) 5A RX3
AR R1, R2 0A RR
Al R1,12 (X2) FA RI2
AIS R1,N 26 SF
Operation

The second operand is added algebraically to the contents of the register specified by R1.
The result of this 32 bit addition replaces the contents of the register specified by R1.

Condition Code

C|V{G]|L

X10{010 Result is ZERO

X|lojof1 Result is less then ZERO
Xjofj1jo Result is greater than ZERO
X11]X]|X Arithmetic overflow

1 (XXX Carry

Programming Note

The second operand for the Add I'mmediate Short instruction is obtained by expanding the
four bit data field, N, to a 32 bit fullword by forcing the high order bits to zero.

In the RX formats, the second operand must be located on a fullword boundary.
Example: A

Add contents of memory location labelled LAB to the contents of (REG) 4.

1. Register 4 Contains X'7F341234'
Fullword in Memory at LAB contains X'7F124321'

Assembler Notation Comments

A REG4,LAB ADD (LAB) TO (REG 4)
Result of A Instruction

(REG4) = X'FE465555'
(LAB) = unchanged by this instruction
Condition Code = 1010 (C=1, G=1)

2. Register 5 Contains X'8000 0001’
Fullword in memory at LAB contains X'80000002'

Assembler Notation Comments
A REG5, LAB ADD (LAB) TO (REG 5)

Result of A Instruction
(REG5) = X'00000003'

(LAB) = unchanged by this instruction
Condition Code = 1110 (C=1, V=1, G=1)

4-4 29-405 ROO 5/76

INSTRUCTIONS

Add Halfword (AH)
Add Halfword Immediate (AHI)

Assembler Notation Op-Code Format
AH R1,D2 (X2) 4A RX1,RX2
AH R1, A2 (FX2,8X2) 4A RX3
AHI R1,12 (X2) CA RI1
Operation

The 16 bit second operand is expanded to a 32 bit fullword by propagating the most significant
bit through Bits 15:0 of the fullword. The fullword operand is added to the fullword contents

of the register specified by R1. The result replaces the contents of the register specified
by R1.

Condition Code

C|V|G]|L

X{0|l0]|0 Result is ZERO

X|10]1011 Result is less than ZERO
X|0|1]|0 Result is greater than ZERO
Xi1{X|X Arithmetic overflow

1 |X]X|X Carry

Programming Note

In the RX formats, the second operand must be located on a halfword boundary.

Example: AH

This example adds the halfword at memory location labelled LAB to the contents of Register 4.

1. Register 4 contains X'00230002!
Halfword at memory location LAB contains X'FFFF'

Assembler Notation

Comments

AH REG4,LAB ADD (LAB) TO (REG 4)

Result of AH Instruction

(REG4) = 00230001"
(LAB) = unchanged by this instruetion
Condition Code = 1010 (C=1, G=1)

2. Register 5 contains X'FFFF FFF5'
LAB contains X'FFF2!

Assembler Notation

Comments

AH REGS5,LAB ADD LAB TO REG5

Result of AH Instruction
(REG5) = 'FFFF FFET!

(LAB) = unchanged by this instruction
Condition Code = 1001 (C=1,1~1)

29405 ROO 5/76

INSTRUCTION

Add to Memory (AM)

Assembler Notation . Op-Code Format
AM R1,D2 (X2) 51 RX1,RX2
AM R1,A2 (FX2,8X2)) 51 RX3
Operation

The fullword second operand is added algebraically to the contents of the register specified
by R1. The result replaces the fullword second operand in memory. The contents of the
register specified by R1 are not changed.

Condition Code

C|VI|GIL

X|0]0|0 Result is ZERO

X101011 Result is less than ZERO
X|01110 Result is greater than ZERO
X|11|XIX Arithmetic overflow

1 XXX Carry

Programming Note

The second operand must be located ‘on a fullword boundary.
Example: AM
1. Add contents of register 8 to memory location labelled LOC:

Register 8 contains X100000008'
Fullword in memory at LOC contains X'034289AB'

Assembler Notation ' Comments

AM REGS,LOC ADD (REG 8) TO (LOC)
Result of AM Instruction

(REGS) = X'00000008'
i (LOC) = X'034289B3'

%, .

Condition Code = 0010 (G=1)
2. Add contents of register 7 to memory location labelled LOC:

Register 7 contains X17F341234'
Fullword in memory at LOC contains X'7F124321'

Assembler Notation Comments

AM REG7,LOC - ADD (REG 7) TO (LOC)
Result of AM Instruction
(REGT) = unchanged by this instruction

(LOC) = X'FE465555'
Condition Code = 0101 (V=1, L=1

4-6 ' 20-405 R0OO 5/76

INSTRUCTION

Add Halfword to Memory (AHM)

Assembler Notation Op-Code Format
AHM R1,D2 (X2) 61 RX1,RX2
AHM R1, A2 (FX2,S8X2) 61 RX3

Operation

The second operand is expanded to a fullword by propagating the most significant bit through
Bits 15:0, This fullword is added algebraically to the contents of the register specified by
R1. The 32 bit result is truncated to 16 bits by removing the most significant bits (Bits
0:15). The 16 bit result replaces the contents of the memory location specified by the

effective address of the second operand. The contents of the register specified by R1 are
not changed.

Condition Code

C|{VIG|L

X10{010 Result is ZERO

X|010]1 Result is less than ZERO
Xioj1|o0 Result is greater than ZERO
X|1IX| X Arithmetic overflow

1 XXX Carry

Programming Note

The ‘second operand must be located on a halfword boundary.
The Condition Code settings are based on the halfword resuit.

Example: AHM

This example adds the contents of Register 5 to the contents of memory location LAB.

1. Register 5 contains X'00230002'
Halfword in memory at LAB contains X'FFFF'

Assembler Notation Comments

AHM REGS5,LAB ADD (REG 5) TO (LAB)

Result of AHM Instruction

(REG5) = unchanged by this instruction
(LAB) = 0001
Condition Code = 1010 (C=1, G=1)

2. Register 6 contains X'FFFF FFF5!
LAB contains X'FFF2!

Assembler Notation Comments

AHM REG6, LAB ADD (REG 6) TO (LAB)
Result of AHM Instruction
(REG6) = unchanged by this instruction

(LAB) = FFE7
Condition Code = 1001 (C=1, L=1)

29-405 ROO 5/76 4-7

INSTRUCTIONS
Subtract (S)
Subtract Register (SR)
Subtract Immediate (SI)
Subtract Immediate Short (SIS)

Assembler Notation

S R1, D2 (X2)
s . R1,A2 (FX2,5X2)
SR R1,R2
SI R1,12 (X2)
SIS R1,N
Operation

Op-Code

5B
5B
0B
FB
27

Format

RX1, RX2
RX3

RR

RI2

SF

The fullword second operand is subtracted algebraically from the contents of the register
specified by R1. The result replaces the contents of the register specified by R1.

Condition Code

= MR X X0
Mmoo ol

MM - o ol
M o= o|

Borrow

Programming Note

Result is ZERO

Result is less than ZERO
Result is greater than ZERO
Arithmetic overflow

The second operand for the Subtract Immediate Short instruction is obtained by expanding
the four bit data field, N, to a 32 bit fullword by forcing the high order bits to zero.

In the RX formats, the second operand must be located on a fullword boundary.

Examples:

This example subtracts the fullword at memory location LOC from the contents of Register 9.

1. REGS9 contains X'44444444"
LOC contains X'44444444'

Assembler Notation

S REG9Y, LOC

Result of S Instruction
(REGY9) =0
LOC = X'44444444
Condition Code = 0000

2. REGY contains X'23456789'

LOC contains X'FFFF4321'

Assembler Notation

S REG9, LOC
Result of S Instruction

(REGY9) = 23462368
(LOC) = FFFF4321
Condition Code = 1010 (C=1,G=1)

Comments

Subtract contents of (LOC) from (REG 9)

Comments

Subtract contents of (LOC) from (REG 9)

29-405 ROO 5/76

INSTRUCTIONS

Subtract Halfword (SH)
Subtract Halfword Immediate (SHI)

Assembler Notation

SH R1,D2 (X2)

SH R1, A2 (FX2,8X2)

SHI R1,12 (X2)
Operation

Op-Code Format
4B RX1,RX2
4B ‘ RX3
CB RI1

The 16 bit second operand is expanded to a 32 bit fullword by propagating the most significant
bit through Bits 15:0. This fullword is subtracted from the contents of the register specified
by R1. The result replaces the contents of the register specified by R1.

Condition Code

=M K KA
Mmoo o<
M- o o|@
Mo R ol

Borrow

Programmfng Note

Result is ZERO

Result is less than ZERO
Result is greater than ZERO
Arithmetic overflow

In the RX formats, the second operand must be located on a halfword boundary.

Example: SH

This example subtracts the halfword at memory location LOC from the contents of register 9.

1. REGY9 contains X'00123456'
L.OC contains X'FFF4!'

Assembler Notation

SH REGY, LOC

Result of SH Instruction

(REG9) = 00123462
(LOC) = FFF4
Condition Code = 1010

2. REGY contains X'FFFF4567'
LOC contains X'2345!

Assembler Notation

SH REGY, LOC

Result of SH Instruction

(REGY9) = FFFF2222
(LOC) = 2345
Condition Code = 0001

29-405 ROO 5/76

Comments

Subtract contents of (LOC) from (REG 9)

Comments

Subtract contents of (LOC) from (REG 9)

4-9

INSTRUCTIONS

Compare (C)
Compare Register (CR)
Compare Immediate (CI)

Assembler Notation Op-Code
C R1,D2 (X2) 59
C R1,A2 (FX2,8X2) 59
CR R1,R2 09
C1 R1,I2 (X2) _F9
Operation

Format

RX1,RX2
RX3

RR

RI2

The first operand, contained in the register specified by R1, is compared algebraically to
the 32 bit second operand. The result is indicated by the Condition Code setting. Neither

operand is changed.

Condition Code

Programming Note

C|V|G}JL

01xX|[0]0 First operand is equal to second operand
1|X]0f1 First operand is less than second operand
0|X|1]0 First operand is greater than second operand

In the RX formats, the second operand must be located on a fullword boundary.

The state of the V flag is undefined.

Example: C

This example compares the contents of Register 3 to the contents of the fullword in memory

location LAB.

Register 3 contains X'44567894'
Fullword at LAB contains X'04321243'

Assembler Notation Comments

C REG3,LAB Compare (REG 3) to (LAB)

Result of C Instruction

(REG3) = unchanged by this instruction
(LAB) = unchanged by this instruction
Condition Code = 0010 (G=1)

4-10

29-405 ROO 5/76

INSTRUCTIONS

Compare Halfword (CH)
Compare Halfword Immediate (CHI)

Assembler Notation Op-Code
CH R1,D2 (X2) 49
CH R1,A2 (FX2,S8X2) 49
CHI R1,I12 (X2) (03]
Operation

Format

RX1, RX2
RX3
RI1

The halfword second operand is expanded to a fullword by propagating the most significant
bit through Bits 15:0. This fullword is compared algebraically with the first operand, the
contents of the register specified by R1. The result is indicated by the Condition Code set-

ting. Neither operand is changed.

Condition Code

Programming Note

ClVI|G|L

0|1X}]0]0 First operand is equal to second operand
1X]0]1 First operand is less than second operand
0|X]| 110 First operand is greater than second operand

In the RX formats, the second operand must be located on a halfword boundary.

Condition code settings are based on the fullword comparison. The state of the V flag is

undefined.

Example: CH

This example compares the contents of REG8 to the halfword at LAB.

REGS contains X'F4567891"'
Halfword at LAB contains X'3123!

Assembler Notation Comments

CH REGS8, LAB Compare (REG 8) to (LAB)

Result of CH Instruction
(REGS8) = unchanged by this instruction

(LAB) = unchanged by this instruction
Condition Code = 1001 (C=1, V=1)

29-405 ROO 5/76

4-11

INSTRUCTIONS

Multiply (M)
Multiply Register (MR)

Assembler Notation Op-Code
M R1,D2 (X2) 5C
M R1,A2 (FX2,8X2) 5C
MR R1,R2 1C
Operation

Format

RX1,RX2
RX3
RR

The fullword first operand, contzined in the register specified by RIQI, is multiplied by
the fullword second operand. The 64 bit result is stored in the registers specified by R1

and R1 + 1.

Condition Code

Unchanged

Programming Note

The R1 field of these instructions must specify an

If R1 field of these instructions is odd, the result is undefined.

even numbered register.

In the RX formats, the second operand must be located on a fullword boundary.

The most significant bits of the result are placed in the register specified by R1, the least signifi-
cant bits of the result are placed in the register specified by R1 + 1.

The sign of the result is determined by the rules of algebra.

Example: M

This example multiplies the contents of Register 9 by the contents of memory location LOC and

places the answer in Registers 8 and 9 (64 bits).

REG9 contains X'00002431'
Fullword at location LOC contains X'43120000'

Assembler Notation

M REGS, LOC

Result of M Instruction

REGS8 and REGY together contain the answer
(REG8, REGY) = 0000 097B, 5E72 0000

(LOC) = unchanged by this instruction
Condition Code = unchanged by this instruction

4-12

Comments

Multiply (REG 9) by (LOC)

29405 ROO 5/76

INSTRUCTIONS

Multiply Halfword (MH)
Multiply Halfword Register (MHR)

Assembler Notation Op-Code Format
MH R1,D2 (X2) 4C RX1,RX2
MH R1,A2 (FX2,5X2) 4C RX3
MHR R1,R2 0C RR
Operation

The first operand, contained in Bits 16:31 of the register specified by R1, is multiplied by
the 16 bit second operand, taken from memory or from Bits 16:31 of the register specified by
R2. Thé 32 bit result replaces the contents of the register specified by R1.

Condition Code

Unchanged

Programming Note

) In the RX formats, the second operand must be located on a halfword boundary.

The sign of the result is determined by the rules of algebra.

Example: MH
This example multiplies the halfword contents of Register 8 by the halfword in memory location

LAB.
REGS contains X'ABCD 0045'
Halfword at memory location LAB contains X'8674'

Assembler Notation Comments

MH REGS,LAB . Multiply least significant half of
(REG 8) by (LAB)

Result of MH Instruction

(REG8) = FFDF3D44
(LAB) = unchanged by this instruction
Condition Code = unchanged by this instruction

29-405 RO0O 5/76 4-13

INSTRUCTIONS

Divide (D)
Divide Register (DR)

Assembler Notation Op-Code Format
D R1, D2 (X2) 5D RX1,RX2
D R1,A2 (FX2,58X2) 5D RX3
DR R1,R2 1D RR
Operation

The 64 hit dividend contained in the register specified by R1 and the register specified by

- R1+1 is divided by the fullword divisor. The 32 bit signed remainder replaces the contents

of the register specified by R1. The 32 signed bit quotient replaces the contents of the
register specified by R1+1.

Condition Code

Unchanged

Programming Note

The R1 field of these instructions must specify an numbered register, - If the Rl field
of these instructions is odd, the result is undefineé. 4

The most significant bits of the dividend must be contained in the register specified by R1. The

least significant bits of the dividend must be contained in the register specified by R1 + 1.

In the RX formats, the second operand must be located on a fullword boundary.

If the divisor is equal to zero, the instruction is not executed, the operand registers are un-

changed, and the arithmetic fault interrupt is taken, if enabled by Bit-19 of the current program

status word. If the interrupt is not enabled, the next sequential instruction is executed.

If the value of the quotient is greater than X'7FFFFFFF' or less than (more negative than)
X'80000000', quotient overflow is said to occur. If quotient overflow occurs, the operand
registers are not changed, and the arithmetic fault interrupt is taken, if enabled by Bit-19
of the current program status word. If the interrupt is not enabled, the next sequential
instruction is executed.

The sign of the quotient is determined by the rules of algebra. The sign of the remainder is
same as the sign of the dividend.

Example: D

This example divides the contents of Registers 8 and 9 by the fullword contents of memory
location L.LOC.

REGS contains X'12345678' = First Half of Dividend

REGY9 contains X'98765432' = Second Half of Dividend

L.OC contains X'34343434' = Divisor

Assembler Notation Comments

D REGS, LOC Divide (REG 8,9) by (LOC)

29-405 ROO 5/76

Result of D Instruction

(REGS8) 1E1E1E1LE = Remainder

(REGY) = 5914554569 = Quoticnt

(LOC) 31313131

Condition Code - unchanged by this instruction

2. REGR contains X'FIFI'1'1234" = TFirst Half of Dividend

RIEGY containg X'00000000' = Second Half of Dividend
LOC contains X'12345678" = Divisor
Assembler Notation ‘Comments

D REGR, LOC Divide (REG 8,9) by (LOC)

Result of D Instruction

(REGS) = F250D9E0 = Remainder
(REGY) = IFIFF2EFFC= Quotient
L.OC = 12345678

Condition Code = unchanged by this instruction

3. REGS8 contains X'43657898' -+ First Half of Dividend
REGH contains X'12123456' = Second Half of Dividend
L1.OC contains X'00000000" = Divisor’
Assembler Notation A Comments
D REGS, LOC Divide (REGS, 9) by (LOC)

Result of D Instruction
Division by zero causes arithmetic fault to be taken if Bit 19 of PSW is enabled.

Operands and Condition Code remain unchanged by this instruction.

1, REG8 contains X'80000000' = First Half of Dividend
REG9 conatins X'00000001' = Second Half of Dividend
LOC contains X'00000001' = Divisor

Assembler Notation Comments
D REGS8, LOC Divide (REG 8, 9) by (LOC)

Result of D Instruction

‘Quotient overflow causes arithmetic fault to be taken if Bit-19 of PSW is enabled..

Operands and Condition Code remain unchanged by this instruction.

29-405 ROO 5/76

INSTRUCTIONS

Divide Halfword (DII)
Divide Halfword Register (DHR)

Assembler Notation Op-Code Format
DH R1,D2 (X2) 4D RX1,RX2
DH R1,A2 (FX2,8X2) 4D RX3
DHR R1,R2 0D RR
Operation

The 32 bit dividend contained in the register specified by R1 is divided by a 16 bit divisor
taken from memory or from Bits 16:31 of the register specified by R2. The 16 bit remainder
is expanded to a fullword by propagating the Sign bit through Bits 15:0 and is stored in the
register specified by R1. The 16 bit quotient is expanded to a fullword by propagating the
Sign bit through Bits 15:0 and is stored in the register specified by R1+1.

T o ol Bane B 16k of YUY

Condition Code
Unchanged

Programming Note

In the RX formats, the second operand must be located on a halfword boundary.

If the divisor is equal to zero, the instruction is not executed, the operand registers are un-
changed, and the arithmetic fault interrupt is taken, if enabled by Bit-19of the current program
status word. If the interrupt is not enabled, the next sequential instruction is executed.

If the value of the quotient is greater than X'7FFF' or less than (more negative than)
X'8000', quotient overflow is said to occur.

If quotient overflow occurs, the operand registers are not changed, and the arithmetic fault
interrupt is taken, if enabled by the Bit-19 of the current program status word. If the interrupt
is not enabled, the next sequential instruction is executed.

The sign of the quotient is determined by the rules of algebra.

The sign of the remainder is same as the sign of the dividend.

Example: DH

This example divides the halfword contents of memory location LOC into the contents of
Register 7.

1. REGT contains X'0000 0054' = Dividend
LOC contains X'0008' = Divisor
Assembler Notation Comments
DH REGT7,LOC Divide (REG 7) by (LOC)

Result of DH Instruction

(REG7) = 0000 0004 = Remainder
(REGS8) = 0000 000A = Quotient

(LOC) = 0008
Condition Code = unchanged by this instruction

4-16 29-405 ROO 5/76

1

2. REGT7 contains X'12345678' = Dividend

LOC contains X'0000' = Divisor
Assembler Notation " Comments
DH REG7, LOC , ' Divide (REG 7) by (LOC)

Result of DH Instruction
Division by zero causes arithmetic fault to be takeﬁ if Bit-19 of PSW is enabled.
Operands and Condition Code remain unchanged by tl;is instruction.

3. REG7 contains X'8000 0002' = Dividend_

LOC contains X'0001'

Assembler Notation Comments

DH REGT7, LOC Divide (REG 7) by (LOC)

Result of DH Instruction
Quotient overflow causes arithmetic fault to be taken if Bit-19 of PSW is enabled.

Operands and Condition Code remain unchanged by this instruction.

29-405 ROO 5/76

INSTRUCTION

Shift Left Arithmetic (SLA)

Assembler Notation Op-Code Format
SLA R1,12 (X2) EF RI1
Operation

Bits 1:31 of the first operand, contained in the register specified by R1, are shifted left
the number of places specified by the second operand. The Sign bit (Bit 0), remains un-
changed. Bits shifted out of Position 1 are shifted through the carry flag and then lost.

The last bit shifted remains in the carry flag. Zeros are shifted into Position 31.

Condition Code

Result is less than ZERO
Result is greater than ZERO

o o ol

- o ol

L
0 Result is ZERO
1
0

elielaile]

Programming Note

The state of the C flag indicates the state of the last bit shifted.
The shift count is specified by the least significant five bits of the second operand.

A shift of zero places causes the Condition Code to be set in accordance with the value contained
in the register specified by R1. The state of the C flag is undefined in this case.

Example: SLA

This example shifts the bits in Register 5 left by the number specified by the second operand.

REGS5 contains X'80005647'

Assembler Notation ' Comments

SLA REG5,4 Shift Left 4 Places
Result of SLA Instruction

(REGS5) = 80056470
Condition Code = 0001 (L=1)

4-18 29405 ROO 5/76

INSTRUCTION

shift Left Halfword Arithmetic (SLHA)

Assembler Notation Op-Code Format
SLHA R1,12 (X2) CF RI1
Operation

Bits 17:31 of the register specified by R1 are shifted left the number of places specified

by the second operand. Bit 16 of the register, the halfword Sign bit, remains unchanged.
Bits shifted out of Position 17 are shifted through the carry flag and then lost. The last bit
shifted remains in the carry flag. Zeros are shifted into Position 31. Bits 0:15 of the first
operand register remain unchanged.

Condition Code

Result is less than ZERO
Result is greater than ZERO

o o o<
- o of@

L
0 Result is ZERO
1
0

= iaile!

Programming Note
The Condition Code ;se;ctings are based on the halfword, Bits 16:31, result.
-The state of the C flag indicates the state of the last bit shifted.
The shift count is specified by the least significant four bits of the .second operand.

A shift of zero places causes the Condition Code to be set in accordance with the halfword value
contained in Bits 16:31 of the register. The state of the C flag is undefined in this case.

29-405 RO0 5/76 ' 4-19

INSTRUCTION

Shift Right Arithmetic (SRA)

Assembler Notation Op-Code Format
SRA R1,12 (X2) EE RI1
Operation

Bits 1:31 of the first operand, contained in the register specified by R1, are shifted right
the number of places specified by the second operand. The Sign bit (Bit 0), remains un-
changed and is propagated right as many positions as specified by the second operand. Bits

shifted out of Position 31 are shifted through the carry flag and lost. The last bit shifted
remains in the carry flag.

Condition Code

Result is less than ZERO
Result is greater than ZERO

o]
o o o<

- o ol

L
0 Result is ZERO
1
0

Programming Note
The state of the C flag indicates the state of the last bit shifted.
The shift count is specified by the least significant five bits of the second operand.

A shift of zero places causes the Condition Code to be set in accordance with the value contained
in the register. The state of the C flag in undefined in this case.

Example: SRA

This example shifts the contents of Register 9 right the number of places specified by the
second operand.

REGY contains X'800004256'

Assembler Notation Comments

SRA REGHY, 8 Shift (REG 9) right 8 bits

Result of SRA Instruction

(REGY) = X'FF800042!
Condition Code = 0001 (I.=1)

4-20 29-405 ROO 5/76

INSTRUCTION

Shift Right Halfword Arithmetic (SRHA)

Assembler Notation OE-Codé Format
SRHA R1,12 (X2) CE RI1
Operation

Bits 17:31 of the register specified by R1 are shifted right the number of places specified
by the second operand. Bit-16 of the register, the halfword Sign bit, remains unchanged
and is propagated right the number of positions specified by the second operand. Bits
shifted out of Position 31 are shifted through the carry flag and lost. The last bit shifted
remains in the carry flag. Bits 0:15 of the first operand register remain unchanged.

Condition Code

C|IV|GJ|L

Xio0lofo Result is ZERO

Xjolo]1 Result is less than ZERO
Xi0]1]0 Result is greater than ZERO

Programming Note

The condition code settings are based on the halfword, Bits 16:31, result.
The state of the C flag indicates the state of the last bit shifted.

‘If the second operand specifies a shift of zero places, the state of the C flag is undefined.

29405 RO0 5/76 : 4-21

INSTRUCTION

Convert to Halfword Value Register (CHVR)

Assembler Notation Op-Code Format
CHVR R1,R2 12 RR
Operation

The halfword second operand, (Bits 16:31) of the register specified by R2, is expanded
to a fullword by propagating the most significant bit (Bit 16) through Bits 15:0. This
fullword replaces the contents of the register specified by R1.

Condition Code

Result is ZERO

Result is less than ZERO

Result is greater than ZERO

Source operand cannot be represented by a 16 bit signed humber
Carry flag was sect in previous Condition Code

Carry flag was reset in previous Condition Code

KX Mo oll
Mo O = o

S XXM MA
XX e |

Programming Note

The V flag is set when Bits 0:15 of the second operand are not the same as Bit-16 of the
second operand. (In this case, the G and L flags reflcet the algebraic value of Bits 16:31
of the second operand,)

Execution of this instruction following halfword operations guarantees results identical
with those that would be obtained if the program were run on an INTERDATA 16 bit mach-
ine. For example, assume that location A in memory contains the halfword value of
X"TFFF' (decimal 32767) then,

LI R1,A R1 contains X'00007FFF!
AIS R1,1 R1 contains X'00008000'

Following the add operation, the Condition Code is:

ClVIG|L
0]01(1

indicating a result greater than zero, which is correct for fullword opcrations. If the
same scquence were executed on a 16 bit Processor, as:

1.1 R1,A R1 contains X'7FFF!
AIS R1,1 R1 contains X'8000'

Following this, the Condition Code in the halfword Processor is:

4-22 29-405 ROO 5/76

indicating overflow and a negative result, Going back to the or'iginal sequence and adding

the Convert to Halfword Value instruction produces the following:

Following this sequence, the Condition Code is:

R1 contains X'00007FFF!
R1 contains X'00008000'

CHVR R1,R1 R1 contains X'FFFF8000'

ClV|G|L

0{1]0

1

which is identical to that of the 16 bit Processor, and can be tested in the same manner.

29-405 ROO 5/76

4-23/4-24

CHAPTER 5
FLOATING POINT ARITHMETIC

Floating Point Arithmetic instructions provide a means for rapid manipulation of scientific data
expressed as floating point numbers. Single Precision as well as Double Precision Floating
Point Instructions are described in this chapter. The comprehensive set of instructions includes
load and store floating point numbers; add, subtract, multiply, divide and compare two floating
point numbers; convert fixed point to floating point and vice versa.

INTRODUCTION

Floating point is a means of respresenting a quantity in any numbering system. Consider a decimal
number (base = 10), 123 which can be represented in the following forms:

123.0 x 10°
1.23 x 102
0.123 x 103

x 10%

0.0123

Note that in this example, the decimal point moved. Hence we have a floating point. In actual
floating point representation the significant digits are always fractional and are collectively
referred to as fraction. The power to which the base number is raised is called the exponent.
For example, in the number ", 45678 x 102v, 45678 is the fraction and 2 is the exponent. Both
the fraction and the exponent may be signed. If we have a floating point representation as,

(sign of fraction) (exponent) (fraction)

then the following representation applies:

Number Floating point

Sign Exponent Fraction

132,94 = +.3204 x 102 T) 3294
-23760000. 0 = -.2376 x 10 - +8 2376
+0.000059 = +.59%107" + -4 59 |
-0.0000000092073 = -.92073 x 10 - -8 92073 |

The convenience with which extremely large or small numbers can be expressed in floating
point makes it ideally suitable for scientific computation. Note the compactness of floating
point notation in the above examples.

The floating point representation in the Model 7/32 is similar to the above representation. The
differences are as follows:

Hexadecimal, instead of decimal, numbering system is used.
Physical size of the number and hence the magnitude and the precision is limited,

29-405 ROO 5/76 51

The single precision floating point number fields are shown in Figure 5-1,

F1 F2 F3

————MOST SIGNIFICANT FRACTION DIGIT=0: UNNORMALIZED
‘ 'FLOATING POINT NUMBER,
OR TRUE ZERO
$0: -NORMALIZED
FLOATING POINT NUMBER

F1 F2 F3 F4 F5 F6

L _J

Y

|—VALUE OF THE FRACTION
= F1.16-1 + F2:16-2 + F3.16-3 + F4.16-4
+F5.16-5 + F6.16-6

— EXPONENT IN EXCESS 64 NOTATION

EXCESS 64 HEXADECIMAL DECIMAL

00 TO 3F -40 TO -1 -64 TO -1
40 0 0

41 TO7F 1TO3F 1TO 63

L—SIGN=0 : POSITIVE FLOATING POINT NUMBER
= : NEGATIVE FLOATING POINT NUMBER

Figure 5-1. Single Precision Floating Point Number Fields

29405 RO0 5/76

FLOATING-POINT NUMBER

In the Model 7/32 Processor a floating point number is represented in the following form:

Sign Exponent “Fraction

Sign The most significant bit of a floating point number is a sign bit. The sign bit is zero
for positive numbers and one for negative numbers. The floating point value of zero
always has a positive sign.

Exponent The 7-Bit field, Bits 1:7, is designated as the exponent field. The exponent field con-
taing the true value of the exponent plus X'40' (decimal 64). This helps to represent
very small magnitudes between 0 and 1. The exponent is said to be expressed in
excess 64 notation. Some of the exponent values are as follows:

True True
Exponent in exponent in exponent in Multiply
Excess 64 notation hexadecimal decimal fraction by

00 ~40 -64 16764

3F -1 -1 16-1

40 0 0 1

41 1 1 16

TF 3F 63 16+63
The exponent field for true zero is always 00.
Fraction The fraction field is 6-hexadecimal digits for single precision floating point

numbers (thus limiting the precision) and 14-hexadecimal digits for double
precision floating point numbers. As in any other fraction, the floating point
fraction is expressed with most precision when the most significant digit (not
necessarily the most significant bit) is non-zero. The floating point number
with such a fraction is called a normalized floating point number. In the model
7/32 Processor, normalized numbers are always used to obtain maximum
possible precision. For hexadecimal fraction conversion, refer to Appendix 6.

Examples: The following examples illustrate the sign, exponent and fraction concept of a floating
point number.

Numbers in Hex Sign-exponent-fraction
integer-fraction shown for clarity Single Precision
notation [S|E | F | Floating point numbers
+1.3A25678 0 41 13A25678 4113 A265@6
~6. 89F2C 1 41 689F2C Cl168 9 F2C
+1A.C39D21 0 42 1AC39021 4 21AC39D
-3C1DF. 82A3 1 45 3C1DF82A3 C53C 1DF 8
+ABCDEF12,9AC 0 48 ABCDEFI129AC 4 8 ABCDETF
+0.0032A9CF2 0 3E 32A9CF2 3E32A9CF
-0, 000002C7B5 1 3B 2C7B5 BB 2C 7B 50

Refer to Appendix 6 for examples of similar conversion to double precision floating
point numbers.

29-405 ROO 5/76 5-3

Floating Point Number Range
The range of magnitude (M) of a normalized floating point number is as foliows.

65

Single precision: 16 € M < - 16'6) x 1653
Double precision: 16765 < m < a- 16'14) * 1663
Approximately for both: 5.4% 10°72 < M < 7,2% 1075

Table 5-1 shows the single precision point range in relocation to the fixed point range along with
the decimal values.

TABLE 5-1 FLOATING/FIXED POINT RANGES

Floating Point Fixed Point Decimal
numbers _ integer ' numbers
(most negative) FFFF FFFF ~7.9% 1079
C880 0000 £000 0000 (most negative) -2 147 483 648
C111 0000 FFIFF FFFF (least negative) -1
(least negative) 8010 0000 -5.4* 10779
(true zero) 0000 0000 0000 0000 0
(Least positive) 0010 0000 +5.4% 10779,
4110 0000 0000 0001 (least positive) . +1
4 87F FFFF _TFFF FFFF (most positive) +2 147 483 647
(most positive) 7 FFF FFFF +7,2% 1070

Normalization

Normalization is a process of making non-zero the most significant digit (F1) of the fraction of a

floating point number. In the nrrmalization process, the floating point fraction is shifted left hexa-
decimally (i. e., four bits at a timre), and its exponent is decremented by one for each hexadecimal
shift until the most significant digit (not necessarily the most significant bit) of the fraction is non-

zero.

FRACTION
A

S EXPONENT F1 F2 F3 F4 F5 F6

SHIFT LEFT FRACTION HEXADECIMALLY UNTIL F140

DECREMENT EXPONENT BY ONE FOR EACH SHIFT

Except LE, LER, LD, LDR instructions, all the floating point operations assume and require nor-
malized operands for consistent results. The LE, LER, LD and LDR instructions normalize an

unnormalized operand.

Example:
Operands After normalization
1. 4 2 012 3 45 41123450
2. 21 000ABC 1EABCO0O0O
3.C900FE1 2 C7FE1200
4, 6C 0 00 0O0O0 000000 0 0 (true zero)
5. 8.2 00 0A 67 00000 0 0 0 (exponent underflow)

5-4 29-405 ROO 5/76

In example 4, the fraction of the operand is zero. During the normalization process, such a frac-
tion is detected and the floating point number is set to true zero,

In example 5, the exponent of the operand is very small. During the normalization process, the
exponent is decremented from 00 to 7F. Such a transition results in exponent underflow and the
floating point number is set to true zero.

In floating point operations, assuming that the operands are normalized, normalized results are
always produced. Results of operations between unnormalized numbers are undefined. Results of
operation between unnormalized numbers are undefined.

Equalization
Equalization is a process of making equal the exponents of two floating point numbers. The fraction
of the floating point number with the smaller exponent is shifted right hexadecimally, i.e., four

bits at a time, and its exponent is incremented by one for each hexadecimal shift until the two
exponents are equal.

INCREMENT EXPONENT BY ONE FOR EACH SHIFT

I SHIFT FRACTION RIGHT HEXADECIMALLY UNTIL EXPONENTS EQUAL
S EXPONENT F1 F2 F3 F4 F& F8
(. J
FRACTION

During the floating point addition and subtraction two floating point operands are equalized.

Example:
Floating point After equalization
operands
1. 43123456 43123456
‘ 3F789ABC 43000078
2. C7FE1234 C900FE12
4956789A 4956789A

In this example, normalized floating point numbers are shown because addition and subtraction
require normalization. Note that if the exponents differ by 6 or more the significance of the lower

exponent floating point number is lost in the process of equalization.

True Zero

A floating point number is said to be true zero when the exponent and the fraction fields are all
zZeroes. In other words, all data bits must be zero. A value of zero always has a positive sign.
In general, zero values participate as normal operands in all floating point operations.

A true zero may be used as an operand or may result from an arithmetic operation that caused an
exponent underflow, in which case the entire number is forced to true zero. Secondly, if an arith-
metic operation produces a result whose fraction digits are all zeroes (sometimes referred to as
loss of significance), the entire number is forced to true zero.

Examples:

Numbers Operation Result Reason

030000AB Normalize 0000 0000 exponent
underflow

41ABCDEF

41ABCDEF Subtract 0000 0000 loss of
significance

29-405 ROO 5/76 5-5

Exponent Overflow

In floating point operations, exponent overflow may occur. Exponent overflow occurs when a
resulting exponent is greater than +63. If overflow occurs, the exponent and fraction bits of the
result are set to all 1s, the largest possible magnitude and therefore the closest possible answer.,
The sign of the result is not affected by the overflow. Figure 5-2 illustrates exponent overflow
using a line representation of numbers.

Most negative True Most positive
number Zero number
- oo o
FFFFFFFF 0 TFFFFFFF
(exponent = 7F) (exponent = 7F)
4 T8 - .
overflow overflow

Figure 5-2. Exponent Overflow

If overflow occurs, the V flag in the Condition Code is set, and an arithmetic fault interrupt is
taken, if enabled by the current PSW.

Exponent Underflow

The normalization process, during a floating point operation, may produce an exponent underflow.
Exponent underflow occurs when a result exponent would be less than -64, If underflow occurs,
the entire result is set to true zero, the closest possible answer. Figure 5-3 illustrates exponent
underflow using a line representation of numbers,

Least negative True Least positive
number Zero number
——~ f—o . . —F f—
80100000 0010000
[exponent =00] exponent = 00]
= "6410 = -6410
*>r— -+

underflow underflow

Figure 5-3. Exponent Underflow

If underflow occurs, the V flag in the Condition Code is set, and an arithmetic fault interrupt is
taken, if enabled by the current PSW.

Data Formats

In the Model 7/32 Processor, floating point numbers occur in one of two formats, single precision
and double precision. The single precision format requires a fullword (32 bits) in one of the

8 single precision floating point registers or on a fullword address boundary, in memory. The sign
(s), exponent (x) and fraction (consisting of digits F1, F2, F3, F4, F5 and F6) fields are desig-
nated as follows:

5-6 29405 ROO 5/76

The double precision format requires ‘a doubleword (64 bits) in one of the 8 double precision float-
ing point registers or on a doubleword address boundary in memory. The sign (s), exponent (x)
and fraction (consisting of digits F1 through F14) fields are designated as follows:

01 7 8 12 16 20 24 28 .
S X F1 F2 .F.S . Fa F5 F6 §
32 36 40 44 48 52 56 60 63
f F7 F8 F9 F10 F11 . F12 F13 F14

The value of a single (and similarly double) precision floating point number can be expressed as
follows:

4 5 X-x'40'

sign(F1.16 * + F2.1672 + F3.16™3 + F4.167" + F5.16 " + F6.167%) 16

Guard Digit and Rounding

A guard digit is an extra hexadecimal digit provided to the right of the least significant fraction
digit of a floating point number. In the Model 7/32, only single precision floating point numbers
can have a guard digit. The guard digit is produced and used during the processing of intermedi-
ate results of a floating point operation. The guard digit does not appear in the final result. How-
ever, the guard digit helps rounding the final result, thus increasing the precision slightly. In the
absence of a guard digit, as is the case in double precision floating point numbers, the final result
is simply truncated.

NOTE

Some of the earlier models of the 7/32 Processor, which do not
have the double precision floating point option, do not have a
guard digit for single precision floating point numbers., Hence
the results are truncated, not rounded.

A guard digit is produced during the equalization phase of an Add and Subtract single precision
floating point operation. Then the operation is performed to obtain an intermediate result. The
guard digit participates in the operation. If the guard digit of the intermediate result is 0 through
7, no rounding is done. If it is 8 through F, one (1) is added to the fraction of the intermediate
result to obtain the final result fraction, unless such an addition produces a carry into the expon-
ent field. The following example illustrates the rounding procedure.

After Guard
operands equalization digit
+42ABCD12 +42ABCD12
416789AB 42067 89A(B

,42B245AC intermediate result
1 .
4 2 B245AD final result

A guard digit is also produced during the Multiply and Divide single precision floating point
operations. The intermediate product or the quotient is rounded as shown here to obtain the
final result.

29405 ROO 5/76 | 5-7

Conversion from Decimal

The process of converting a decimal number into the excess 64 notation used internally by the
Processor involves the following steps:

1. Separate the decimal integer from the decimal fraction:

182.375, = (182 + . 375);,

2. Convert each part to hexadecimal by referring to the Integer conversion table and the Fraction
conversion table in Appendix 5.

3. Combine the hexadecimal integer and fraction:
_ 0
B6.6,, = (B6.6X 16°) 1

4, Shift the radix point:
 (B6.6%16% .. - (.B66 X 169)
o 16 ‘ 16
5. Add 64, (X'40'), to the exponent

1016+ 2 =42

6. Convert the exponent field and fraction to binary allowing 1 bit for the sign, 7 bits for
the exponent field, and 24 or 56 bits for the fraction.

42B66 = 0100 0010 1011 0110 0110 0000 0000 0000

CONDITION CODE

Following floating point operations, including load, the Condition Code indicates the result of
the operation,

FLOATING POINT INSTRUCTION FORMATS

The Floating Point instructions use the Register to Register (RR), and the Register and Indexed
Storage (RX) instruction formats. In all of the RR formats, except for Fix and Float, the R1 and

the R2 fields specify one of the floating point registers. There are eight single precision float-

ing point registers, and 8 double precision floating point registers numbered 0, 2, 4, 6, 8, 10,

12, and 14. Except FXR and FXDR instructions, the Rl field always specifies a floating point register.

FLOATING POINT INSTRUCTIONS

The floating point arithmetic operations, excluding loads and stores, require normalized operands
to ensure correct results. If the operands are not normalized, the results of these operations are
undefined. Floating point results are normalized. The Floating Point Load instruction normalizes

floating point data extracted from memory.

The single precision floating point instruetions described in this section are:

LE Load Floating Point CE Compare Floating Point

LER Load Floating Point Register CER Compare Floating Point Register
LME Load Floating Point Multiple ME Multiply Floating Point

STE Store Floating Point MER Multiply Floating Point Register
STME Store Floating Point Multiple DE Divide Floating Point

AE Add Floating Point DER Divide Floating Point Register
AER Add Floating Point Register FXR Fix Register

SE Subtract Floating Point FLR Float Register

SER Subtract Floating Point Register

5-8 29-405 ROO 5/76

The double precision floating point instructions described in this section are:

LD
LDR
LMD
STD
STMD
AD
ADR
SD
SDR

29405 RO0 5/76

Load DPFP

Load Register DPFP
Load Multiple DPFP
Store DPFP

Store Multiple DPFP
Add DPFP

Add Register DPFP

_ Subtract DPFP

Subtract Register DPFP

CDh
CDR»
MD
MDR.
DD
DDR
FXDR
FLDR

Compare DPFP
Compare Register DPFP
Multiply DPFP

Multiply Register DPFP
Divide DPFP

Divide register DPFP
Fix Register DPFP
Float Register DPFP

INSTRUCTIONS

Load Floating Point (LE)
Load Floating Point Register (LLER)

Assembler Notation Op-Code Format
LE R1,D2 (X2) 68 RX1,RX2
LE R1,A2 (FX2,S8X2) 68 RX3
LER R1,R2 28 RR
Operation

The floating point second operand is normalized, if necessary, and placed in the floating
point register specified by R1.

Condition Code

Floating point value is ZERO

Floating point value is less than ZERO
Floating point value is greater than ZERO
Exponent underflow

o o o oln
- o o olg
o~ o oln
oo~ olH

Programming Note
If the fraction is zero, the result is forced to X'0000 0000’

Normalization may produce exponent underflow, In this event, the result is forced to zero,
X'0000 0000', the V flag in the Condition Code is set, the G and L flags are reset and, if
enabled by Bit 19 of the current PSW, the arithmetic fault interrupt is taken.

In the RX formats, the second operand must be located on a fullword boundary.

Example: LE

This example normalizes the fullword at memory location LOC and places it in Floating Point
Register 8.

Floating Point Register 8 = undefined
LOC = X'4200 1000'

Assembler Notation Comments

LE REGS,LOC Normalize contents of LOC

Result of LE Instruction

(Floating Point Register 8) - = 4010 0000
(LOC) = unchanged by this instruction
Condition Code = 0010

5-10 29-405 ROO 5/76

INSTRUCTION

Load Floating Point Multiple (LME)

Assembler Notation Op-Code Format
LME R1,D2 (X2) 12 RX1, RX2
LME R1,A2 (FX2,8X2) 72 RX3
Operation

Successive floating point registers, starting with the register specified by R1, are loaded

from successive memory locations starting with the address of the second operand. The
process stops when Floating Point Register 14 has been loaded.

Condition Code

Unchanged

Programming Note
Values loaded into the floating point registers are not normalized first.

The second operand must be located on a fullword boundary.

29405 RO0O 5/76

INSTRUCTION

Store Floating Point (STE)

Assembler Notation Op-Code Format
STE R1,D2 (X2) 60 RX1,RX2
STE R1,A2 (FX2,8X2) 60 RX3
Operation

The floating point first operand, contained in the floating point register specified by R1,
is placed in the memory location specified by the second operand address. The first op-
erand is unchanged.

Condition Code

Unchanged

Programming Note

The second operand must be located on a fullword boundary.

5-12 29-405 ROO 5/76

INSTRUCTION

Store Floating Point Multiple (STME)

Assembler Notation Op-Code Format
STME R1,D2 (X2) 71 RX1,RX2
STME R1,A2 (FX2,8X2) 3 71 RX3

Operation

The contents of successive floating point registers, starting with the register specified by
R1, are stored in successive memory locations, starting with the address of the second
operand. The operation stops when the contents of Floating Point Register 14 have been

stored.

Condition Code

Unchanged

Programming Note

The second operand must be located on a fullword boundary.

29405 ROO 5/76

5-13

INSTRUCTIONS

Add Floating Point (AE)
Add Floating Point Register (AER)

Assembler Notation Op-Code Format
AE R1,D2 (X2) . 6A RX1,RX2
AE R1,A2 (FX2,5X2) 6A RX3
AER R1,R2 2A RR
Operation

The exponents of the two operands are compared. If the exponents differ, the fraction with

the smaller exponent is shifted right hexadecimally (four bits at a time), and its exponent

is incremented by one for each hexadecimal shift until the two exponents are equal. The hex-
adecimal digits (of four bits each) are shifted through the guard digit. The guard digit contains the
last shifted hexadecimal digit. If no shift occurs it is zero. The fractions are then added alge-
braically.

If the addition of fractions produces a carry, the exponent of the result is incremented by one
and the fraction of the result is shifted right one hexadecimal digit. The carry bit is shifted
back into the most significant hexadecimal digit of the fraction, producing a normalized result.
This result replaces the contents of the register specified by R1.

If the addition of fractions does not produce a carry, the result is normalized, if necessary, and
replaces the contents of the register specified by R1.

Condition Code

C|V|G|L :
X10]o0}0 Floating point result is ZERO

X{0}jo|1 Floating point result is less than ZERO
X|of11|o Floating point result is greater than ZERO
X|1jo1 Exponent overflow, Result is negative
X[{1]|1]0 Exponent overflow, Result is positive
X|1]olo Exponent underflow

Programming Note

5-14

When the addition of the fractions produces a carry, incrementing the exponent of the result

by one may produce exponent overflow. In this case, the result is forced to the maximum
value, +X'7TFFF FFFF', the V flag, along with the G or L flag is set in the Condition Code and,
if enabled by Bit 19 of the current PSW, the arithmetic fault interrupt is taken.

Normalization of the result may produce exponent underflow. In this case, the result is
forced to zero, X'0000 0000'. The V flag is set in the Condition Code. The G and the
L flags are always reset, and if enabled by Bit-19 of the current PSW, the arithmetic fault

interrupt is taken.

If the guard digit is 0:7, the result is not rounded. If the guard digit is 8:F, the result is
rounded by adding 1 to the fraction of the result unless rounding produces a carry into the

exponent field.

In the RX formats, the second operand must be located on a fullword boundary.

29-405 ROO 5/76

Example: AE

This example adds the contents of LOC to the contents of the Floating Point Register 8 and places
the answer in Floating Point Register 8.

Floating Point Register 8 contains X'7TEFF FFFF'
LOC contains X'7EFF FFFF' :

Assembler Notation Comments

AE REGS, LOC . ADD (REG 8) to (LOC)

Result of AE Instruction

(Floating Point Register 8) = T7F1F FFFF

(LOC) unchanged by this instruction
Condition Code = 0010

29-405 ROO 5/76 5-15

INSTRUCTIONS

Subtract Floating Point (SE)
Subtract Floating Point Register (SER)

Assembler Notation Op-Code Format ‘
SE R1,D2 (X2) 6B RX1,RX2
SE R1,A2 (FX2,5X2) 6B RX3
SER R1,R2 2B RR
Operation

The exponents of the two operands are compared. If the exponents differ, the fraction with
the smaller exponent is shifted right hexadecimally (four bits at a time), and its exponent
is incremented by one for each hexadecimal shift until the two exponents are equal. The
hexadecimal digits (of four bits each) are shifted through the guard digit. The guard digit
contains the last shifted hexadecimal digit. If no shift occurs it is zero. The second oper-
and fraction is then subtracted algebraically from the first operand fraction.

If the subtraction of fractions produces a carry, the exponent of the result is incremented by
one and the fraction of the result is shifted right one hexadecimal digit. The carry bit is
shifted back into the most significant hexadecimal digit of the fraction, producing a normalized
result. This result replaces the contents of the register specified by R1.

If the subtraction of fractions does not produce a carry, the result is normalized. The
normalized result replaces the contents of the register specified by R1.

Condition Code

KM MM N Mo
HHROoOoolg

Floating point result is ZERO

Floating point result is less than ZERO
Floating point result is greater than ZERO
Exponent overflow, Result is negative
Exponent overflow, Result is positive

ororooln
cComor ol

Exponent underflow

Programming Note

5-16

When the subtraction of the fractions produces a carry, incrementing the exponent of thé
result by one may produce exponeut overflow. In this case, the result is forced to the max-
imum value, +X'"7TFFF FFFF', the V flag, along with the G or L flag is set in the Condi-

tion Code and, if enabled by Bit-19 of the current PSW, the arithmetic fault interrupt is taken.

Normalization of the result may produce exponent underflow. In this case, the result is

" forced to zero, X'0000 0000', The V flag is set in the Condition Code. The G and the

L flags are always reset and, if enabled by Bit-19 of the current PSW, the arithmetic fault
interrupt is taken.

The shifted hexadecimal digits (if any) participate in subtraction and produce a guard digit.
If the guard digit is 0:7, the result is not rounded, If the guard digit is 8:F, the result is
rounded by adding 1 to the fraction of the result unless rounding produces a carry into the
exponent field.

In the RX formats, the second operand must be located on a fullword boundary.

29405 ROO 5/76

Example: SE

This example subtracts the contents of LOC from the contents of Floating Point Register 8 and
places the result in Floating Point Register 8.

Floating Point Register 8 contains X'"7FEF FFFF'

LOC contains X'7A10 0000’
Assembler Notation Comments
SE REGS,LOC Subtract (LOC) from REG8

Result of SE Instruction

(Floating Point Register 8 = TFEF FFFE
(LOC) = unchanged by this instruction
Condition Code = 0010

29-405 ROO 5/76 5-17

INSTRUCTIONS

Compare Floating Point (CE)
Compare Floating Point Register (CER)

Assembler Notation Op-Code Format
CE R1,D2 (X2) 69 RX1,RX2
CE R1,D2 (FX2,S8X2) 69 RX3
CER R1,R2 29 RR
Operation

The first operand is compared to the second operand. Comparision is algebraic, ’taking
into account the sign, fraction, and exponent of each number. The result is indicated by
the Condition Code setting., Neither operand is changed.

Condition Code

First operand is equal té second operand
First operand is less than second operand
First operand is greater than second operand

IS e

KX A<
= o ol
o = o

Programming Note
The state of the V flag is undefined.

In the RX formats, the sécond operand must be located on a fullword boundary,

5-18 29-405 ROO 5/76

INSTRUCTIONS

Multiply Floating Point (ME)
Multiply Floating Point Register (MER)

Assembler Notation Op-Code Format
ME R1,D2 (X2) 6C - RX1,RX2
ME R1, A2 (FX2,8X2) 6C RX3
MER R1,R2 2C RR
Operation

The exponents of each operand, as derived from the excess 64 notation used in floating point
representation, are added to produce the exponent of the result. This exponent is converted
back to excess 64 notation. The fractions are then multiplied.

If the result is zero, the entire floating point value is forced to zero, X'0000 0000'. If the

product is not zero, the result is normalized. The sign of the result is determined by the
rules of algebra. The result replaces the contents of the register speciﬁed by R1.

Condition Code

Floating point result is ZERO

Floating point result is less than ZERO
Floating point result is greater than ZERO
Exponent overflow, Result is negative
Exponent overflow, Result is positive
Exponent underflow

tel e iel (e}
O o old
o m o mo ot
SO HOoRoH

Programming Note

The addition of exponents may produce exponent overflow. In this case, the result is
forced to the maximum value, +X'7FFF FFFF'. TheV ﬂag in the Condition Code is set,
along with either the G or the L flag, depending on the sign of the result. An arithmetic
fault interrupt is taken, if enabled by Bit-19 of the current PSW,

The addition of exponents or the normalization process can produce exponent underflow. In
this case, the result is forced to zero, X'0000 0000'. The V flag in the Condition Code is

set. The G and L flags are reset, and if enabled by Bit-19 of the current PSW, the arithmetic
fault interrupt is taken.

Multiplication of two 6-hexadecimal digit fractions effectively produces a result of 6-hexa-
decimal digits and a guard digit. If the guard digit is 0:7, the result is not rounded. If the
guard digit is 8:F, the result is rounded by adding 1 to the fraction of the result, unless
rounding produces a carry into the exponent field.

In the RX formats, the second operand must be located on a fullword boundary.

©29.405 ROO 5/76 S 5-19

Example; ME

- This example multiplies the contents of LOC by the contents of the Floatlng Point Reg'lster 8
and places the result in Floatin;r Pointer Register 8 ' :

F-loating Point Register 8 contains X'SFFF FFFF!

LoC ' contaihs X'60FF FFFF'
Assembler Notation » Comments
ME REGS, LOC Multiply (REG 8) by (LOC)

Result of ME lnstructionl v

(Floating Point Register 8)

= . TFFF FFFE
(LOC) = unchanged by this mstructlon
Condition Cede = 0010

5-20 ' : ‘ - 29405 ROQ 5{76

INSTRUCTIONS

Divide Floating Point (DE)
Divide Floating Point Register (DER)

Assembler Notation - Op-Code Format

DE R1,D2 X2) 6D RX1,RX2

DE R1, A2 (FX2, SX2) 6D RX3

DER R1,R2 2D RR
Operation

The exponents of each operand, as derived from the excess of 64 notation used in floating point
representation, are subtracted to produce the exponent of the result. This exponent is converted
back to excess 64 notation.

The first operand fraction is then divided by the second operand fraction. Division continues
until the quotient is normalized, adjusting the exponent for each additional division required. No
remainder is returned. The sign of the quotient is determined by the rules of algebra. The quo-
tient replaces the contents of the register specified by R1.

Condition Code
C|V|G|L
0]0}j0]0 Floating point result is ZERO
ofofof1 Floating point result is less than ZERO
0o(o|1]o Floating point result is greater than ZERO
oj1j0(1 Exponent overflow, Result is negative
oj1j1fo Exponent overflow, Result is positive
of1jolo Exponent underflow
1]1j0]0 Divisor equal to zero

Programming Note

Before starting the divide operation, the divisor is checked. If it is equal to zero, the op-
eration is aborted. Neither operand is changed. The C and the V flags of the Condition
Code are set. The G and L flags are reset. If enabled by Bit-19 of the current PSW, the

arithmetic fault interrupt is taken.

The subtraction of exponents may produce exponent overflow. In this case, the result is
forced to the maximum value, #X'7FFF FFFF'. The V flag in the Condition Code is set,
along with either the G or the L flag, depending on the sign of the result. Anp arithmetic

fault interrupt is taken, if enabled by Bit-19 of the current PSW.

"The subtraction of exponents or the division process can produce exponent underflow. In
this case, the result is forced to zero, X'0000 0000'. The V flag in the Condition Code is
set. The G and L flags are always reset, and if enabled by Bit-19 of the current PSW, the
arithmetic fault interrupt is taken.

The 6-hexadecimal digit first operand fraction is divided by the 6-hexadecimal digit second
operand effectively producing the 6-hexadecimal digit quotient along with a guard digit. If
the guard digit is 0:7, the quotient is not rounded. If the guard digit is 8:F, the quotient is
rounded by adding 1 to the fraction of the result unless rounding produces a carry into the
exponent field,

In the RX formats, the second operand must be located on a fullword boundary.

29-405 ROO §/76 . 5-21

Example: DE

This example divides the contents of Floating Point Register 4 by the contents of memory
location LOC and places the result in Floating Pointer Register 4.

Floating Point Register 4 contains X'44FF FFFF' = Dividend

LOC contains X'0611 1111’ = Divisor
Assembler Notation : Comments.
DE REG4,LOC Divide (LOC) into (REG 4)

Result of DE Instruction

(Floating Point Register 4 = 7FF0 0000
(LOC) = unchanged by this instruction
Condition Code = 0010

5-22 29-405 ROO ,5/76

INSTRUCTION

Fix Register (FXR)

Assembler Notation Op-Code Format
FXR R1,R2 2E RR
Operation

Rl specifies one of the general puxposé registers. R2 specifies one of the floating point registers.
The floating point number contained in the floating point register is converted to a two's comple-
ment notation integer value by shifting and truncating. The result is stored in the register speci-

fied by R1.

Condition Code

Result is ZERO or underflow
Result is less than ZERO

Result is greater than ZERO
Overflow, Result is negative
Overflow, Result is positive

PR Ralle!
N === P
= o mr ool
O R OoOKR O

Programming Note
The range of floating point magnitudes M that produces a non-zero integral result is:
+X'4880 0000' > M > +X'4110 0000'

Floating point magnitudes greater than +X'487F FFFF' cause overflow. The result is forced
to X'"7FFF FFFT' if positive or to X'8000 0001' if negative. The V flag is set in the Condition
Code along with either the G or L Flag, depending on the sign of the result.

Floating point magnitudes less than +X'4110 0000' cause underflow and the result is forced to zero.

In the event of overflow or underflow, the Arithmetic Fault Interrupt is not taken, even if
enabled in the current PSW.

Example: FXR

This example converts the contents of the Floating Point Register 8 to a fixed point number and
places it in Register 3.

Floating Point Register 8 contains X'46FF FF00'

Register 3 contains undefined
Assembler Notation Comments
FXR REG3,REGS Convert (REG 8) to fixed point

Result of FXR Instruction

(REG3) = 00FFFF00
(Floating Point Register 8) = unchanged by this instruction
Condition Code = 0010

29-405 ROO 5/76 5-23

INSTRUCTION

Float Register (FLR)

Assembler Notation Op-Code Format
FLR R1,R2 2F RR
Operation

R1 specifies one of the floating point registers. R2 specifies one of the general purpose
registers. The integer value contained in the register specified by R2 is converted to a
floating point number and stored in the floating point register specified by R1.

Condition Code

Result is ZERO
Result is less than ZERO
Result is greater than ZERO

Ll il o]
o o o|c
= o oln
S

Programming Note

The full range of fixed point integer values may be converted to floating point. The fixed point
value X'7TFFF FFFT', the largest positive integer, converts to a floating point value of X'487F
FFFF'. The fixed point value X'8000 0000', the most negative integer, converts to a floating
point value of X'C880 0000'. The result in Rl is normalized.

Example: FLR

This example converts the Fixed point contents of Register 4 to a Floating Point number and
places it into Floating Point Register 8.

Register 4 contains X'7TFFF FFF0'
Floating Point Register 8 contents undefined

Assembler Notation Comments

FLR REGS8, REG4 Convert REG4 to Floating Point

Result of FLR Instruction

(Floating Point Register 8) = 487FFFFF
(REG4) = unchanged by this instruction
Condition Code = 0010

5-24 20-405 RO0 5/76

INSTRUCTIONS

Load Double Precision Floating Point (LD)
Load Register Double Precision Floating Point (LDR)’

Assembler Notation Op-Code Format
LD R1,D2(X2) 78 RX1, RX2
LD R1,A2,(FX2,5X2) 78. RX3
LDR R1,R2 i 38 RR
Operation

The floating point second operand is normalized, if necessary, and placed in the double preci-
sion floating point register specified by R1.

Condition Code
Cl|V|G|L
ojofofo Double precision value is ZERO
oj{o0jo0|1 Double precision value is less than ZERO
0]0[11]0 Double precision value is greater than ZERO
011100 Exponent underflow

Programming Note
If the fraction is zero, the result is forced to X'0000 0000 0000 0000'.
Normalization may produce exponent underflow. In this event, the result is forced to X'0000
0000 0000 0000', the V flag in the Condition Code is set, the G and L flags are reset and, if
enabled by Bit-19 of the current PSW, the arithmetic fault interrupt is taken.

In the RX formats, the second operand must be located on a double word boundary.

29-405 ROO 5/76 5-25

INSTRUCTION

Load Multiple Double Precision Floating Point (LMD)

Assembler Notation Og-éode ' Format
LMD RI1, D2(X2) , TF RX1, RX2
LMD R1, A2(FX2,SX2) 7F RX3

Operation

Successive double-precision floating point registers, starting with the register specified by
R1, are loaded from successive memory locations starting with the address of the second
operand. The process stops when Double Precision Floating Point Register 14 has been loaded.

Condition Code

Unchanged

Programming Note
Values loaded into the double precision floating point registers are not normalized first.

The second operand must be located on a double word boundary.

5-26 29-405 ROO 5/76

INSTRUCTION

Store Double Precision Floating Point (STD)

Assembler Notation Op-Code Format
STD R1, D2, (X2) 70 ' RX1, RX2
STD R1, A2(FX2, SX2) 70 RX3
Operation

The floating point first operand, contained in the double precision floating point register speci-
fied by Rl is placed in the memory location specified by the second operand address. The first
operand is unchanged.

Condition Code

Unchanged.

Programming Note

The second operand must be located on a double word boundary.

29-405 ROO 5/76 5-21

INSTRUCTION

Store Multiple Double Precision Floating Point (STMD)

Assembler Notation Op-Code Format
STMD R1, D2(X2) 7E RX1, RX2
STMD R1,A2 (FX2, SX2) 7TE RX3

Operation

The contents of successive double precision floating point registers, starting with the register
specified by R1, are stored in successive memory locations, starting with the address of the
second operand. The operation stops when the contents of Double Precision Floating Point
Register 14 have been stored.

Condition Code

Unchanged

Programming Note

The second operand must be located on a double word boundary.

5-28 29-405 RO0O 5/76

INSTRUCTIONS

Add Double Precision Floating Point (AD)
Add Register Double Precision Floating Point (ADR)

Assembler Notation Op-Code Format
AD R1,D2(X2) TA RX1, RX2
AD R1, A2(FX2,8X2) TA RX3
ADR RI1,R2 3A RR
Operation

The exponents of the two operands are compared. If the exponents differ the fraction with the
smaller exponent is shifted right hexadecimally (four bits at a time), and its exponent is incre-
mented by one for each hexadecimal shift until the two exponents are equal. The fractions are

then added algebraically.

If the addition of fractions produces a carry, the exponent of the result is incremented by one

and the fraction of the result is shifted right one hexadecimal position. The carry bit is shifted
back into the most significant hexadecimal digit of the fraction, producing a normalized result.
This result replaces the contents of the double precision floating point register specified by R1.

If the addition of fractions does not produce a carry, the result is normalized, if necessary,
and placed in the double precision floating point register specified by R1.

Condition Code

Double Precision Result is ZERO

Double Precision Result is less than ZERO
Double Precision Result is greater than ZERO
Exponent Overflow, Result is negative
Exponent Overflow, Result is positive
Exponent Underflow

omomroon
oo ro R OH

SIS o)
R EHReO O Old

Programming Note

When the addition of fractions produces a carry, incrementing the exponent of the result by one
may produce exponent overflow. In this case, the result is forced to the maximum value,
+X"TFFF FFFF FFFF FFFF', the V flag, along with the G or L flag is set in the Condition
Code and, if enabled by Bit-19 of the current PSW, the arithmetic fault interrupt is taken.

Normalization of the result may produce exponent underflow. In this case, the result is forced
to zero, X'0000 0000 0000 0000'. The V flag is set in the Condition Code, and the G and L
flags are reset, and if enabled by Bit-19 of the current PSW, the arithmetic fault interrupt is

taken.

In the RX formats, the second operand must be located on a double word boundary.

29-405 ROO 5/76 5-29

INSTRUCTIONS

Subtract Double Precision Floating Point (SD)
Subtract Register Double Precision Floating Point (SDR)

Assembler Notation Op-Code Format
SD R1,D2(X2) 7B RX1, RX2
SD RI1, A2(FX2, SX2) 7B RX3
SDR R1, R2 3B RR
Operation

The exponents of the two operands are compared. If the exponents differ, the fraction with
the smaller exponent is shifted right hexadecimally (four bits at a time), and its exponent is
incremented by one for each hexadecimal shift until the two exponents are equal. The second
operand fraction is then subtracted algebraically fromthe first operand fraction.

If the subtraction of fractions produces a carry, the exponent of the result is incremented by
one and the fraction of the result is shifted right one hexadecimal position. The carry bit is
shifted back into the most significant hexadecimal digit of the fraction producing a normalized
result. This result replaces the contents of the double precision floating point register

specified by R1.

Condition Code

Double Precision Result is ZERO

Double Precision Result is less than ZERO
Double Precision Result is greater than ZERO
Exponent Overflow, Result is positive
Exponent Overflow, Result is negative
Exponent Underflow

IR (o}
e o ool
cormHOOn
oo oroH

Programming Note

When the subtraction of fractions produces a carry, incrementing the exponent of the result
by one may produce exponent overflow. In this case, the result is forced to the maximum
value, + X'7TFFF FFFF FFFF FFFF', the V flag, along with the Gor L flag is set in the
Condition Code, and if enabled by Bit-19 of the current PSW, the arithmetic fault interrupt is

taken.

Normalization of the result may produce exponent underflow. In this case, the result is forced
to zero, X'0000 0000 0000 0000', -The V flag is set in the Condition Code, the G and L flags
are reset, and if enabled by Bit-19 of the current PSW, the arithmetic fault interrupt is taken.

Tn the RX formats, the second operand must be located on a double word boundary.

5-30 29-405 ROO 5/76

INSTRUCTIONS

Compare Double Precision Floating Point (CD)
Compare Register Double Precision Floating Point (CDR)

Assembler Notation Op-Code Format
CD R1,D2(X2) 79 RX1, RX2
CD RI1,A2(FX2,8X2) 79 RX3
CDR R1,R2 39 RR
Operation

The first operand is compared to the second operand. Comparison is algebraic, taking into
account the sign, exponent and fraction of each number. The result is indicated by the Condi-

tion Code setting. Neither operand is changed.

Condition Code

C|V|G|L

o|xiojo First operand is equal to second operand
11X(0o]|1 First operand is less than second operand
0|X]|1](0 First operand is greater than second operand

Programming Note

The state of the overflow flag is undefined.

In the RX formats, the second operand must be located on a double word boundary.

29-405 ROO 5/76 5-31

INSTRUCTIONS

Multiply Double Precision Floating Point (MD) i
Multiply Register Double Precision Floating Point (MDR)

Assembler Notation Op-Code Format
MD R1, D2(X2) - 7C RX1, RX2
MD R1, A2(FX2,SX2) 7C RX3
MDR RI1, R2 3C RR
Operation

The exponents of the two operands, as derived from the excess 64 notation used in floating
point representation, are added to produce the exponent of the result. This exponent is con-
verted back to excess 64 notation. The fractions are then multiplied.

If the product is zero, the entire double precision value is forced to zero, X'0000 0000 0000 0000°,
If the product is not zero, the result is normalized if necessary. After normalization, the
product is rounded. The sign of the result is determined by the rules of algebra. The result
replaces the contents of the double precision floating point register specified by R1.

Condition Code

Double precision result is ZERO

Double precision result is less than ZERO
Double precision result is greater than ZERO
Exponent overflow, Result is positive
Exponent overflow, Result is negative
Exponent underflow

sl R s sRalle!
HERMO o old
cCorROOn
O R o oR ol

Programming Note

The addition of exponents may produce exponent overflow. In this case, the result is forced
to the maximum value, +X'7FFF FFFF FFFF FFFF'. The V flag in the Condition Code is
set, along with either the G or L flag, depending on the sign of the result. An arithmetic
fault interrupt is taken, if enabled by Bit-19 of the current PSW,

The addition of exponents or the normalization process can produce exponent underflow. In
this case, the result is forced to zero, X'0000 0000 0000 0000'. The V flag in the Condition
Code is set, the G and L flags are reset, and if enabled by Bit 19 of the current PSW, the

arithmetic fault interrupt is taken.

In the RX formats, the second operand must be located on a double word boundary.

5-32 29-405 ROO 5/76

INSTRUCTIONS

Divide Double Precision Floating Point (DD)
Divide Register Double Precision Floating Point (DDR)

Assembler Notation Op-Code - Format
DD R1,D2 (X2). 7D ’ RX1, RX2
DD R1,A2 (FX25X2) 7D RX3
DDR RI1,R2 3D RR
Operation

The exponents of the two operands, as derived from the excess 64 notations used in floating
point representation, are subtracted to produce the exponent of the result. This exponent is
converted back to excess 64 notation.

The second operand fraction is then divided into the first operand fraction. Division continues
until the quotient is normalized, adjusting the exponent for each additional division required.

No remainder is returned. The sign of the result is determined by the rules of algebra. The
quotient replaces the contents of the double precision floating point register specified by R1.

Condition Code

Double precision result is ZERO

Double precision result is less than ZERO
Double precision result is greater than ZERO
Exponent overflow, Result is negative
Exponent overflow, Result is positive

Exponent underflow
Divisor is zero

oo oo o oln
R MR OO
comHOoHO ool
cocororolr

Programming Note

Before starting the divide operation, the divisor is checked. If it is equal to zero, the opera-
tion is aborted. Neither operand is changed. The C and V flags in the Condition Code are
set, the G and L flags are reset, and if enabled by Bit 19 of the current PSW, the arithmetic
fault interrupt is taken,

The subtraction of exponents may produce exponent overflow. I this case, the result is
forced to the maximum value, *X'7FFF FFFF FFFF FFFF'. The V flag in the Condition
Code is set, along with either the G or L flag, depending on the sign of the result. An arith-
metic fault interrupt is taken, if enabled by Bit-19 of the current PSW.

The subtraction of exponents or the division process may produce exponent underflow. In
this case, the result is forced to zero, X'0000 0000 0000 0000'. The V flag in the Condition
Code is set, the G and L flags are reset, and if enabled by Bit-19 of the current PSW, the
arithmetic fault interrupt is taken.

In the RX formats, the second operand must be located on a double word boundary.

29405 ROO 5/76 5-33

INSTRUCTION

Fix Register Double Precision (FXDR)

Assembler Notation Op-Code Format
FXDR RI1,R2 3E RR

Operation

R1 specifies one of the general purpose registers. R2 specifies one of the double precision
floating point registers. The floating point number contained in the floating point register
is converted to an integer value by truncating. The result is placed in the general register

specified by R1.

Condition Code

Result is ZERO or underflow
Result is less than ZERO

Result is greater than ZERO
Overflow, Result is negative
Overflow, Result is positive

—omooln
oOroRr ol

H O OO

R RNl o]

Programming Note

The range of the floating point magnitude M that produces a non-zero integral result is,
+ X'4880 0000 0000 0000' > M 2 + X'4110 0000 0000 0000’

Double precision floating point magnitudes greater than +X'487F FIFF FFFF FFFF' cause
overflow. The result is forced to X'7TFFF FFFF' if positive or to X'8000 0001' if negative.
The V flag is set in the Condition Code along with either G or L flag, depending on the sign

* of the result.

Double Precision floating point nlagnitucies less than +X'4110 0000 0000 0000' cause underflow.
The result is forced to zero and the Condition Code is set to zero.

In the event of overflow or underflow, the Arithmetic Fault Interrupt is not taken even if enabled
in the current PSW,

5-34 29-405 ROO 5/76

INSTRUCTION

Float Register Double Precision (FLDR)

Assembler Notation Op-Code Format

FLDR RI1,R2 3F RR

Operation

R1 specifies one of the double precision floating point registers. R2 specifies one of the
general purpose registers. The integer value contained in the register specified by R2 is
converted to a floating point number and placed in the double precision floating point register

specified by R1.

Condition Code

C|V|G|L

X 10 [0 |0 Result is ZERO

X{0[0]1 Result is less than ZERO
X|01}0 Result is greater than ZERO

Programming Note

The full range of fixed point integer values may be converted to double precision floating point.
The fixed point value X'TFFF FFFF', the largest positive integer, converts to a double precision
floating point value of X'487F FFFF FF00 0000'. The fixed point value X'8000 0000', the most
negative integer, converts to a double precision floating point value of X'C880 0000 0000 0000'.

The result in R1 is normalized.

29-405 ROO 5/76 5-35/5-36

CHAPTER 6
STATUS SWITCHING AND INTERRUPTS

At any given time, the Processor may be in either the Stop mode or the Run mode. In the Stop

mode, the normal execution of instructions is suspended. The Processor is under control of the
operator who can, through the display console:

Examine any memory location

Change any memory location

Examine the contents of any general register
Examine and modify the current PSW

Execute instructions singly

The transition from the Stop mode to the Run mode requires operator intervention at the display
console, or the occurrence of an interrupt (if enabled by the current PSW).

Once the Processor has been put in the Run mode, the current PSW controls the operation of the
Processor. By changing the contents of the current PSW, a running program can:

Put the Processor in the Wait state
Enable or disable various interrupts
Switch between supervisor and protect modes

Vary the normal sequential execution of instructions

PROGRAM STATUS WORD

The Program Status Word is a 64-bit double word. (See Figure 6-1.)

0 1617181920 212223 24 272829 30 31

l>—<’wu waD¥lale] ® lc[vle]L

32 39 40 63
Loc

Figure 6-1. Program Status Word

29405 ROO 5/76 6-1

Bits 0:15 of the PSW are not currently used, and must be zero. Bits 16:27 are reserved for status
definition and interrupt masks. Bit 20 is not currently used, and must be zero. Bits 28:31 are
reserved for the Condition Code. Bits 32:39 are not used, and must be zero. Bits 40:63 are re-
served for the Location Counter. The status and interrupt bits are interpreted as follows:

Bit 16 (W) Wait state

Bit 17 (J) Immediate interrupt/Auto Driver Channel enable
Bit 18 (M) Machine malfunction interrupt enable

Bit 19 (A) Arithmetic fault interrupt enable

Bit 21 (RP) Relocation/protection enable

Bit 22 (Q) System queue service interrupt enable

Bit 23 (P) Protect mode

Bits 24:27 (R) Register set selection

The current PSW is contained in a hardware register within the Processor. Status switching re-
sults when the current PSW, or at least the first half (Bits 0:31) of the current PSW, is replaced.
The occurrence of an interrupt or the execution of a Status Switching instruction can cause the re-

placement of the current PSW.

Wait State

When Bit 16 of the current PSW is set, the Processor is in the Wait state. In this state, program
execution is halted. However, the Processor is still responsive to machine malfunction and
immediate interrupts, if they are enabled. If the Processor is put in the Wait state with these
interrupts disabled, only operator intervention from the Display console can force the Processor
out of the Wait state.

Protect Mode

When Bit-23 of the current PSW is set, the Processor is in the protect mode. A program running
in this mode is not allowed to execute Privileged instructions. (Privileged instructions include
all I/0 instructions and most of the Status Switching instructions. See Appendix 1.) A privileged
instruction is treated as an illegal instruction when the Processor is in the protect mode. If
Bit-23 of the current PSW is reset, the Processor is in the Supervisor mode. Programs running
in this mode may execute any legal instruction.

Register Set Selection

Model 7/32 has two register sets, numbered 0 and 15. Bits 24:27 of the current PSW control
register set selection. If Bits 24:27 are all zeroes, register set 0 is selected. If Bits 24:27
are all ones, register set 15 is selected.

NOTE
In Model 7/32, Bits 24, 25, 26 of the current
PSW have no effect on selection of register
sets. Consequently, specifying an even
numbered register set causes register set 0
to be selected whereas specifying odd numbered
register set causes register set 15 to be selected.

29-405 ROO 5/76

6-2

INTERRUPT SYSTEM

The interrupt system of the Processor provides rapid response to external and internal events
that require service by special software routines. In the intérrupt response procedure, the Proc-
essor preserves its current state and transfers control to the required interrupt handler. This
software routine may optionally restore the previous state of the Processor upon completion of
the service. (See Table 6-1 and Figure 6-2.)

Some interrupts are controlled by bits in the current Program Status Word, that is, they can be
enabled or disabled by setting or resetting a bit in the PSW. Other interrupts are not controlled
by PSW bits, and are always enabled. The following is a list of Processor interrupts and their

controlling PSW hits, if any:

Interrupt PSW Bit
Immediate, Auto Driver Channel 17
Console 17
Machine Malfunction 18
Arithmetic Fault 19
Relocation/Protection 21
System Queue Service 22
Protect Mode Violation 23
Supervisor Call none
Simulated none
Illegal Instruction none

Interrupts occur at various times during processing. The immediate, console, and machine mal-
function interrupts occur between the execution of instructions or after completion of an auto driver
channel operation. The relocation/protection interrupt occurs after the execution of an instruction.
The system queue service, arithmetic fault, supervisor call, and simulated interrupts occur dur-
ing the execution of instructions. The illegal instruction and protect mode violation interrupts
occur before the execution of the improper instruction. i

The interrupt procedure is based on the concepts of old, current, and new Program Status Words.
The currant PSW, contained in a hardware register, defines the operating state of the Processor.
When this state must be changed, the current PSW becomes the old PSW. The new PSW becomes
the current PSW. The current PSW now contains the operating status and the Location Counter for
the interrupt service routine.

With one exception (the machine malfunction interrupt), when the current PSW bcomes the old
PSW it is saved in a pair of registers of register set 0. The machine malfunction old PSW is
stored in a reserved memory location. Again with one exception, when a new PSW becomes

the current PSW, it is loaded from a reserved memory location. The exception is the immediate
interrupt. On an immediate interrupt, the current status is forced to a predetermined value.
The current Location Counter is loaded from the interrupt service pointer table.

The new Program Status Word for any i.nterru.pt should, if possible, disable interrupts of its
own class.

29405 ROO 5/76 6-3

‘pajqeus sAemie st idnualug Siyl

IN3N0 WILSAS 40 Ss3yaav
={€l '934) "ALdWNI LON ININD WILSAS 41 @3LNI3X3

SNOILONYLSNI ,HMSd, HO .'/MSd T, .'dSd3, NIHM NIMV.L ,3888X Gl ‘vl 'O3H S3A 44 TYNHILNI 3N3N0 W3LSAS

30078 H313IWVHYd DAS 40 SSIHAAV = (€1 'O3H) | (00T} 378VL HALNIOd
@3LND3X3 NOILONYLSNI ,OAS, NIHM NIXVL [OAS (SNLVLS) 8686 X| &l ‘vl '©3Y ON M TYNHILNI 77V3 HOSIAHILNS

3AOW 103104d-NON (SLdNYYILNI TINNVHO
NI @31N23X3 NOILONYLSNI ,LNIS, NIHM NIXNVL HIAIYA OLNV HO 3LVIA3IWWI 33S) ON * AVNHILNI Q3aLvINWNIS
JAOW 103104d NI HOSS3D0Hd

371HM 03 LdWAL LV NOILONYLSNI G3IDITIA YD NIHM N3IAVL LEDE X Gl ‘vl O34 ON 24 TYNYILNG NO!LONYLSNI G3D3TIAIHd
1dNYHILNI 40 IYNLYN SILVOIGNI HI1SIDIY SNLVIS OVIN ,L6-06,X Sl 'yl O34 S3A %4 TYNHILNI [437704 LNOD SS3I00V AHOWIW
NOHLONNZTYIW 4O 3HNLVYN JLVIIANI OL 135 3000 NOILLIGNOD ,4€-8E X LT —0CX S3A 13 TYNHILNI NOILONNITVIN INIHOVIN

SN1V1S 3DIA30 ONILINYYILNI = (€'D38) .
$S34AAV 3DIA3A DNILNYHIALNI = (€'934) | (0C7) 3718v.L HILNIOd

301AH3S LdNYYILNI

(Q378YN3 LdNHYILNI NOILONNSTYW INIHOVI) . ﬂ\f -~y J
{SNLvis) U

,008Z0000,A = SNLVLS MSd M3N WYHOOHJOYDIA 10’03y S3A Ll TYNEILXD 3LVIGINNI

Q318vSIa 38 LONNVD LEOEX | L'yl 'D3IM ON . TYNYILNI NOILONYLSNI T¥OI 1T

00820000, A = SNLYLS MSd MIN {LdNYHALNI ILVIGIWWI 33S) ON 2L TYNY3LX3 370SNOD

0079 ANVINNOD TINNVYHI 40 SS34aav = (¥ 93y)
SNLV1S 30IA3A DNILINYHILNI = (€D3H) (007 SS3HAAY

SS3IHAAY 3IDIA3A0 ONILINYYILNI = (2934) 3INILAOYANS 802
NOILVNINY31 NO 300D NOILIONOD 3H1 SI X

(@3719vYN3 1dNYHE3LNI NOILLINN4TVIN INIHOVI)

(snivis)
,X08Z0000,A = SNLVLS MSd M3IN WVHOO0HdOHDIN 10934 S3A Ll IYNEILXT TINNVHD H3AIHA 01NV
17NVd J113WHLIYY 1NIOd ONILVYOTd 41 MSd MaN NI 13S Dv7i4 .0, Av —8v X St “.N.._,r-w.wﬁ ON 6l AYNH3ILNI 17NV4d DIL3WHLIYY
XS
S31ON WOY4 g3avol NI Q340l1S aanano (S) 118 msd JdAL 1dNHHEILINI
MSd M3N MSd @10 JGNVD | A8A3TT0HINOD

SIW3L1SAS 1dNHY3LNI 19 378VL

6-4

weJbeiq }oojg swalisAg 1dnuu| g-9 anbi4

a|qel uonejsuel)

95z 4

i
’o0|g [013U0) [sUUBYD
. H SNOLL

“VISNVHL OLNV ANV

1
€ | z/ss34aAv INILNOY DNITANVH "HVHO 0

0z ss3vAav INLLNOHENS >SHILIVHVHD 1VI03dS
z S] |40 NolLvNIanod ANY
9L | ss3yaav 31avL NOLLYISNVHL
L L "HVHO L
o
2 $$34AAV aN3 L Y3d4ng L 81l 0
oL INNOD 31A8 | ¥3ddng e TINNVHO HIAMA o . - —_—— ——O0 N
: 01NV 3NDINN 0L 09 SS3dAAV
‘8 QHOM Y93HD ado
- —_—— —¢—0
v $S3HAAV AN3 0 H3ddng
— —_————0
z INNOD 31Ad 0 H3d4dng
—— — — —¢—0
0 QHOM ANVWOD TINNVHD |&
—_ —_— ——0
JdAL YOIHO ADNVANNGIH = 31n93X3 - ————0
HOLIMS H344n8 . Jnavl a1 SLANYHALNI
311uM/av3ay , . 1~ hmun_mm..“,: —301A3a T © > vzoL
ILVISNVHL WAWIXVI
—— — ——¢—0
1svd _
_ 4
311 [wa[g | oW 3 | SISV SNLV1S _ —_————0
Y4] R T o
- —_—— ——0
PIOM puewILO) JauueYy)
-— —— —e¢—0
MSd 410 avol
- — — -—0
aINILNOYENS
391AH3S e NOILVD01 3NDINN OL dWNf ® <ss3maay - —bt—0
LdNYYILNI MSd 3DNVHOX3 @ poao

6-5

29-405 ROO 5/76

Immediate Interrupt

The immediate interrupt is used for control of external devices. Through this mechanism,
external devices can request and cbtain Processor service.

When the Processor recognizes a request from a device, and Bit 17 of the current
PSW is set, it:

1. Saves the current PSW in registers zero and one of the register set 0, (Bits 0:31 are
saved in register zero; bits 32:63 are saved in register one.)

2. Loads the status portion of the current PSW with a value of X'00002800",

3. Acknowledges the request and obtains the device number and status from the device.
The device number is placed in register two. The status is placed in register three
of the register set 0.

4. Adds two times the device number to X'0000D0' (the start of the interrupt service
pointer table), to obtain the address within the table that corresponds to the interrupt-
ing device. For the immediate interrupt, the value in the table must be even. The
value in the table becomes the current location counter.

In setting up the registers for the immediate interrupt service routine, the Processor loads the
device number and status into the least significant bits of registers two and three. The most
significant bits in these registers are forced to ZERO. Note that the new PSW disables immediate
interrupt and specifies register set 0. The machine malfunction interrupt is enabled. Relocation
and protection are disabled.

Console Interrupt

The console interrupt is a special case of the immediate interrupt. It also is controlled by
Bit 17 of the current PSW. If Bit-17 is set, a console interrupt is generated by:

' Depressing the Function key on the console, and then,

Depressing 0

The effect of the console interrupt is to cause an immediate interrupt, as described previously,
from device number X'001'.

Simulated Interrupt

The Simulate Interrupt instruction simulates an immediate interrupt. When this instruction is
executed, the Processor goes through the immediate interrupt procedure as if a request for ser-
vice had been received from an external device. The current PSW is saved, and the current PSW
loaded just as for the immediate interrupt. The device is addressed, and the status returned in
Register 3. The address from the interrupt service pointer table is placed in Register 4. The
state of Bit-17 has no effect on this interrupt. It is always enabled. The new register set is
specified by the least significant 4 bits of the register specified by the R1 field of the instruction.

6-6 29405 ROO 5/76

Machine Malfunction Interrupt

Bit-18 of the current PSW controls the machine malfunction interrupt. This interrupt occurs on
a memory parity error, on the detection of primary power failure, and during the restart pro-
cedure after power has been restored. When a machine malfunction interrupt occurs, the current
PSW is saved in memory location X'000020'. The new PSW from memory location X'000038' be-
comes the current PSW. The Condition Code of the new PSW as stored in memory must contain
seros. After the interrupt is taken, the state of the Condition Code indicates the specific cause of

the interrupt.

Condition Code states are:

Power Restore

Power failure

Memory malfunction (Parity Error on instruction fetch)
Memory malfunction (Parity error on data fetch)

Memory malfunction during Auto Driver Channel operation
Power failure during Auto Driver Channel operation

~ = o © © ©|n
O Mmoo ol
oo o rooln
—o oo molH

Power failure occurs when the primary power fail detector senses a low voltage, when the Initialize
key (INT) of the Display console is depressed, or when the key operated POWER switch is turned to
the OFF position, Following the PSW exchange, the software has approximately one millisecond

to perform any necessary operations before the automatic shut down procedure takes over. During
the automatic shut down procedure the Processor saves the current PSW at the memory location
specified by the contents of location X'00084'; saves the 8 single-precision floating point registers,

if equipped, in memory locations X'00000’ through '0001F'; and it saves both sets of general registers,
starting with register set 0, at the location specified by the contents of memory locaticn X'00086'.

If the processor is equipped with double precision floating point, the double precision floating point
registers are stored immediately following the General Register Save area.

When power returns, the Processor restores the PSW and the general registers and floating
point registers from their save areas. If Bit 18 of the restored PSW is set, the Processor takes
another machine malfunction interrupt, this time with no bits set in the Condition Code of the
current PSW,

During Write operations to memory, with parity option, the Parity bit of each memory word is set to
maintain odd parity. The Parity bit is recomputed on each memory read. If the computed bit is not
equal to the bit read out of memory, the Processor takes a machine malfunction interrupt, setting
the G.flag to indicate the parity error.

If 2 machine malfunction interrupt condition arises during an auto driver channel operation, the
PSW, current at the time the channel was activated, becomes the old machine malfunction PSW,
Register 4 of the set, designated by the machine malfunction new PSW, contains the address of
the Channel Command Block. The C flag of the current PSW is set along with either the L

flag or the V flag to indicate either power failure or parity error.

29405 ROO 5/76 ‘ 6-7

Arithmetic Fault Interrupt:

Bit-19 of the current PSW controls the arithmetic fault interrupt. This interrupt, if enabled, can
occur for any of the following reascns: .

Fixed point division by zero

Fixed point quotient overflow
Floating point division by zero
Floating point overflow or underflow

When this interrupt occurs, the current PSW is saved in Registers 14 and 15 of the register
set 0. The new PSW, from memory location X'000048', becomes the current PSW. All
Condition Code bits in the new PSW as stored in memory must be zero. Before going to
the interrupt service routine, the Processor sets the carry flag in the Condition Code

if the interrupt is the result of a floating point operation. If the interrupt is the result

of a fixed point operation, the carry flag is reset.

Any of the following conditions cause fixed point quotient overflow:

A halfword divide operation produces a result greater than 32,767 (X'7TFFI').,
A halfword divide operation produces a result less than -32,768 (X'8000').
A fullword divide operation produces a result greater than 2,147,483,647 (X'TFFF FFFF').

A fullword divide operation produces a result less than -2,147, 483,648 (X'8000 0000').

When a fixed point division by zero or a fixed point quotient overflow occurs, the operand registers

remain unchanged.

Floating point overflow occurs when, in a floating point operation, the value of the exponent ex-
ceeds +63. Floating point underflow occurs when, during the execution of a Floating Point instruc-
tion, the value of the exponent becomes less than -64, Following floating point overflow, the result
is forced to plus or minus X'7TFFF FFFI', Tollowing a floating point underflow, the result is forced
to true zero, X'0000 0000'. After a floating point division by zero, the operand register remains

unchanged,

After any arithmetic fault interrupt, the Location Counter of the old PSW contains the address of
the instruction immediately following the one that caused the interrupt.

Relocation/Protection Interrupt

Bit-21 of the current PSW controls the relocation/protection interrupt. If this bit is set, and the
currently running program violates any of the relocation and protection conditions available in the
relocation and protection module, the Processor saves the current PSW in Registers 14 and 15 of

the register set 0. The new PSW at memory location X'000090' becomes the current PSW.

6-8 29-405 ROO 5/76

System Queue Service Interrupt

Memory location X'000080' contains the address of the system queue. In the course of executing
any of the following instructions:

Load Program Status Word
Load Program Status Word Register
Exchange Program Status Register

the Processor tests Bit-22 of the new status being loaded. If this bit is set, the Processor checks
the state of the system queue. If there is an entry in the queue, the just loaded PSW becomes the
old PSW. It is saved in Registers 14 and 15 'of the register set 0. The address of the queue, taken -
from location X'000080', is placed in Register 13 of that set. The new PSW from location X'000088"
becomes the current PSW.

Protect Mode Violation Interrupt

Bit-23 of the current PSW controls the execution of Privileged instructions. When this bit is set,
the Processor is in the Protect mode. Programs running in the Protect mode are not allowed to
execute Privileged instructions. Privileged instructions are:

All 1/0 instructions

Load Program Status Word

Load Program Status Word Register
Exchange Program Status Register
Simulate Interrupt

Simulate Channel Program

If a program running in the protect mode attempts to execute a Privileged instruction, the in-
struction is not executed., The Processor saves the current PSW in Registers 14 and 15 of the
register set 0. The illegal instruction new PSW at location X'000030' becomes the current PSW.
The Location Counter of the old PSW contains the address of the Privileged instructions.

Ilegal Instruction Interrupt

The illegal instruction interrupt cannot be disabled. The interrupt occurs whenever the Processor
fetches an instruction word containing an operation code that is not one of those permitted by the
system. The Processor saves the current PSW in Registers 14 and 15 of the register set 0. The
illegal instruction new PSW from memory location X'000030' becomes the current PSW.

When the Processor encounters an illegal instruction, it makes no attempt to execute it. The
Location Counter of the old PSW contains the address of the illegal instruction.

Supervisor Call Interrupt

This interrupt occurs as the result of the execution of a Supervisor Call instruction. This in-
struction provides a means for user level programs to communicate with system programs. The
supervisor call interrupt is always enabled. When the Processor executes a Supervisor Call in-
struction, it:

Saves the current PSW in Registers 14 and 15 of the register set 0.

Places the address of the supervisor call parameter block (the second operand) in Register
13 of the register set 0.

Loads the current PSW status with the value contained at memory location X'000098', super-
visor call new PSW status.

Loads the current PSW Location Counter from one of the supervisor call new PSW Location
Counter locations (depending on the first operand).

29405 ROO 5/76 6-9

STATUS SWITCHING INSTRUCTION FORMATS

The Status Switching instructions use the Kegister to Register (RR), and the Register and Indexed
Storage (RX) instruction formats. In some cases, Load Program Status Word and Load Program
Status Word Register, and the R1 field of the instruction has no significance and must be ZERO.

STATUS SWITCHING INSTRUCTIONS
The Status Switching instructions use the Register to Register (RR), and the Register and Indexed

Storage (RX) instruction formats. In three instructions, Load Program Status Word, Load Program
Status Word Register and Simulate Interrupt, the R1 field of the instruction has no significance and must

be ZERO.

The instructions described in this section are:

LPSW Load Program Status Word

LPSWR Load Program Status Word Register
EPSR Exchange Program Status Register
SINT Simulate Interrupt ’

sveC Supervisor Call

6-10 29405 ROO 5/76

INSTRUCTION

Load Program Status Word (LPSW)

Assembler Notation Op-Code
LPSW D2 (X2) . C2
LPSW A2 (FX2, SX2) c2
Operation

Format

RX1, RX2
RX3

The 64 bit second operand becomes the current Program Status Word.

Condition Code

Determined by the new PSW (bits 28:31)

Programming Note

The quantity to be loaded into the current Program Status Word must be located in memory

on a double word boundary.
This instruction is a privileged operation.

The R1 field of this instruction must be zero.

This instruction may be used to change register sets. The new set becomes active for execu-

tion of the next instructions.

29405 ROO 5/76

6-11

INSTRUCTION
Load Program Status Word Register (LPSWR)

Assembler Notation Op-Code Format
LPSWR R2 18 RR
Operation

The contents of the register specified by R2 replace Bits-0:31 of the current Program Status
Word. The contents of the register specified by R2+1 replace Bits-82:63 of the current

Program Status Word.

Condition Code

Determined by the new PSW (Bits 28:31)

Programming Note
The R1 field of this instruction must be zero.

This instruction may be used to change register sets. The new set becomes active for execu-

tion of the next instructions.

This instruction is a privileged operation,

The R2 field of this instruction may not specify a register greater than 14,

6-12 29-405 ROO 5/76

INSTRUCTION

Exchange Program Status Register (EPSR)

Assembler Notation ' Op-Code Format
EPSR R1, R2 95 RR
Operation

Bits 0:31 of the current Program Status Word replace the contents of the register specified
by R1. The contents of the register specified by R2 replace Bits 0:31 of the current Program
Status Word.

Condition Code

Determined by the new PSW (Bits 28:31)

Programming Note

If R1 = R2, Bits 0:31 of the current PSW are copied into the register specified by R1, but
otherwise remain unchanged.

This instruction may be used to change register sets. The new set becomes active for execu-
tion of the next instructions.

This instruction is a privileged operation.

29-405 ROO 5/76 ' : 6-13

INSTRUCTION

Simulate Interrupt (SINT)

Assembler Notation Op-Code Format
SINT 12(X2) E2 RI1
Operation

The least significant 10 bits of the second operand are presented to the interrupt handler as
a device number. The device number is used to index into the interrupt service pointer
table, simulating an interrupt request from an external device. The result is either an
immediate interrupt or an auto driver channel operation.

Condition Code

Determined by the new PSW in case of immediate interrupt or determined by the way the auto
driver channel operation terminates.

Programming Note

6-14

The R1 field of this instruction must contain zero.

This instruction is a privileged operation.
In the execution of this instruction, the Processor loads Registers 0:3 or 0:4 of the register

set 0 as for a real interrupt request.

During the execution of this instruction, the device is addressed and the status byte is returned
in register 3 of the register set 0.

In the event of instruction time-out, the V flag is set in the PSW, and register 3 of the
register set 0 contains Y'00000004'.

29-405 ROO 5/76

INSTRUCTION

Supervisor Call (SVC)

Assembler Notation Op-Code , Format

svcC N, D2 (X2) . El RX1, RX2
svcC N, A2 (FX2, SX2) El RX3
Operation

The address of the second operand replaces Bits 8:31 of Register 13 of the register set 0.
Bits 0:7 of this register are forced to ZERO. The current Program Status Word replaces
the contents of Registers 14 and 15 of the register set 0. The fullword quantity located

at X'000098' in memory replaces Bits 0:31 of the current Program Status Word. The
four-bit N field is doubled and added to X'00009C'. The halfword quantity located at this
address becomes the current Location Counter.

Condition Code

Determined by the new PSW (Bits 28:31)

Programming Note
The second operand must be located on a fullword boundary.

This instruction provides means of switching from the Protect Mode to the Supervisor Mode.

It is used by the user program running under an Operating System to initiate certain functions
in the Supervisor program., The second operand address, is normally a pointer to the memory
location of the parameters the Supervisor program needs to complete the function specified.
The type of Supervisor call is specified in the N field of the instruction. Sixteen different

calls are provided for. Return from the Supervisor is made by executing an LPSWR instruction
specifying the stored "Old" PSW in Registers 14, 15 of the register set 0 (LPSWR R14).

29-405 ROO 5/76 6-15/6-16

CHAPTER 7
INPUT/OUTPUT OPERATIONS

INTRODUCTION AND CONFIGURATION OF 1/O SYSTEM

Input output (I/O) operations, as defined for the 32 bit series, provide a versatile means for
the exchange of information between the Processor, memory, and external devices. Com-
munication between the Processor and external devices is accomplished over the I/O Multi-
plexor Chamnel Bus (Byte or Halfword Modes). Data transfers over the Multiplexor Channel
require Processor intervention, either programmed or automatic for each item transferred.

Direct data transfers between external devices and memory are accomplished over the Extended
Direct Memory Access (EDMA) Bus, (Byte, Halfword or Burst Mode) and proceed independently
of the Processor, so other program processing can proceed simultaneously. For more details
refer to the following manuals:

1. EDMA Bus Universal Interface Instruction Manual, Publication Number 29-423
2, ESELCH Programming Manual, Publication Number 29-529

Burst mode data transfers over the EDMA Bus are possible only with the help of the EDMA
Bus Universal Interface 02-361 which can handle data transfer rates up to six Megabytes per
second between Local Memory and a custom designed 1/0 systems. In the burst mode, the
originating device transmits the starting memory address and Burst Read or Burst Write
command. This is followed by an arbitrary number of fullword data transmissions (up to six
Megabytes/sec). Lower limit burst mode data transmission rate is 400 Kbytes/sec (10
microsec/fullword), below which bus control circuits assume the transmitter dead and abort

the transfer.
DEVICE CONTROLLERS

The basic functions of all device controllers are:

1, To provide synchronization with the Processor and to provide device address recognition.

2. To transmit operational commands from the Processor to the device.
3. To translate device status into meaningful information for the Processor.
4. To request Processor attention when required.

29-405 ROO 5/76

7-1

In addition, controllers may generate parity, convert serial data to parallel, buffer incoming
or outgoing data, or perform other device-dependent functions.

Device Addressing

The system design allows as many as 1,023 external devices. Each device must have its own
unique device number or address. Device numbers may range from X'001' through X'3FF',
(Device number X'000' is not used.) The minimum system provides for 255 device numbers.
Larger systems may have from 511 to 1,023 devices.

Processor/Controller Communication

Device controllers may be attached directly to the I/0 Bus, or they may be attached to the
I/0 Bus indirectly through a Selector Channel. Communication between the Processor and
controller is a bi-directional, request-response type of operation. '

The Processor can initiate a communication, by sending the device address out onto the I/O
Bus. When a controller recognizes the address, it returns a synchronization signal to the
Processor, and remains ready to accept commands from the Processor. The Processor waits
up to 35 microseconds for the synchronization signal. If no signal is received within this
period, the Processor aborts the operation and notifies the controlling program. In this

case, the status returned is X'04'. The condition code in the PSW, known as False Sync., is
also set to X'4' (V flag = 1). Controller malfunction and software failure (incorrect device
address) are the most common causes of this type of time-out.

A controller can initiate communication with the Processor by generating an attention signal.
If the Processor is in the interruptable state as defined by Bit 17 of PSW, it tempor-

arily suspends the normal '"fetch instruction, execute, fetch next instruction'" operation at
the end of the execute phase, and transmits an acknowledge signal over the I/0 Bus. The
controller requesting attention responds with a synchronization signal, and transmits its
device number to the Processor.

Device Priorities — External Interrupt ; Interrupt Queuing

Device requests for attention are asynchronous; therefore more than one request may be pending
at any time, The system resolves these conflicts according to device priority, determined by
the physical placement of the device controller on the I/O Bus. When two or more device
controllers request attention at the same time, the controller '"nearest' to the Processor in

the RACKO/TACKO priority wiring pattern captures the Acknowledge signal from the Processor
and gets serviced first. All other interrupting controllers further down the line in priority must
wait for the next Acknowledge signal from the Processor. Requests for attention remain queued
until serviced by the Processor.

For details on standard and modified RACK0O/TACKO priority wiring patterns, see 01-078A20
(Installation section).

INTERRUPT SERVICE POINTER TABLE
Device requests for service may result in either an immediate interrupt or an Auto Driver

Channel operation. The Processor chooses one of these options according to information
contained in the Interrupt Service Pointer Table.

7-2 29-405 ROO 5/76

The Interrupt Service Pointer Table is an ordered list containing one entry for each possible
device number in the system. The table starts at memory location X'0000D0' and contains a
halfword entry for each device number in the system. For.a minimum system, 255 device
numbers, the table extends through memory location X'0002CF'; for a maximum system, the
table extends through memory location X'0008CF' (1023 device numbers). The software
controlling I/0 operations must set up the table.

When, having acknowledged a request for service, the Processor receives the device address,
it adds two times the device address to X'000D0'. The result is the address, within the table,
of the entry reserved for the device requesting attention.

If the entry in the table is even (Bit 15 equals 0), the Processor takes an immediate interrupt
and transfers control to the software routine at the address contained in the table., If the
entry in the table is odd (Bit 15 equals 1), the Processor transfers control to the Auto Driver
Channel, without interrupting the currently running program.

At the time the Processor transfers control to the software routine, the old PSW (current at
the time of the device request) has been saved in Registers 0 and 1 of the register set 0.

The device number is saved in Register 2 and the status in Register 3. The status portion

of the current PSW has been forced to a value of X'00002800', thus switching to register set
0. Machine Malfunction Interrupt is enabled and all other interrupts disabled. The entry

in the Interrupt Service Pointer Table has become the new Location Counter. (See Table 6-1.)

In using the device number presented by the controller to vector into the Interrupt Service
Pointer Table, the Processor masks off the high order bits of the address as received from the
I/O Bus. In a system with only 255 device numbers, the address is masked to eight bits. In

a system with 1,023 device numbers the address is masked to 10 bits. The action preserves
system integrity in the event that a hardware malfunction results in a device address greater
than the maximum allowed in the system. (See Table 6-1.)

1/0 INSTRUCTION FORMATS

The 1/0 instructions use the Register to Register (RR) and the Register and Indexed Storage (RX)
instruction formats.

1/0 INSTRUCTIONS

Following most I/0 instructions, the V flag in the Condition Code indicates an instruction time-out.
This means that the operation was not completed, either because the device did not respond at all,
or because it responded incorrectly.

In the Sense Status and Block I/O instructions, the V flag can also mean examine status. To dis-
tinguish between these two conditions, the program should test Bits 0:3 of the device status byte.
If all of these bits are ZERO, device time-out has occurred.

The instructions deseribed in this section are:

SsS Sense Status RBR Read Block Register

SSR Sense Status Register WD Write Data

oC Output Command ' WDR Write Data Register

OCR Output Command Register WH Write Halfword

RD Read Data WHR Write Halfword Register
RDR Read Data Register . wB Write Block

RH Read Halfword "WBR Write Block Register

RHR Read Halfword Register AL Autoload

RB Read Block SCp Simulate Channel Program

29405 ROO 5/76 7-3

INSTRUCTIONS

Output Command (OC)
Output Command Register (OCR)

Assembler Notation

oC R1, D2 (X2)
ocC R1, A2 (X2, 8X2)
OCR R1, R2

Operation

Format

RX1, RX2
RX3
RR

Bits 22:31 of the register specified by Rl contain the 10 bit device address. The Processor
addresses the device and transmits an eight-bit command byte from the second operand loca-

tion to the device. Neither operand is changed.

Condition Code

Programming Note

ClVI|G]|L
oj0 |0]oO Operation successful
0110 |0 Instruction time-out (FALSE SYNC) or EXAMINE status

In the RR format, Bits 24:31 of the register specified by R2 contain the device command.

These instructions are privileged operations.

7-4

29405 ROO 5/76

INSTRUCTIONS

Sense Status (SS)
Sense Status Register (SSR)

Assembler Notation Op-Code
SS R1, D2 (X2) DD
Ss R1, A2 (FX2, SX2) DD
SSR R1, R2 9D
Operation

Format

RX1, RX2
RX3
RR

Bits 22:31 of the register specified by Rl contain the 10 bit device address. The device is
addressed and the eight bit device status is placed in the second operand location. The
Condition Code is set equal to the right most four bits of the device status byte, The first

operand is unchanged.

Condition Code

Bits 4:7 of the device status byte are copied into the Condition Code. See the appropriate device

manual for a description of this status.

If the device is not in the system, condition code is set to 0100.

Programming Note

In the RR format, the device status byte replaces Bits 24:31 of the register specified by R2.

Bits 0:23 are forced to zero.

These instructions are privileged operations.

29405 ROO 5/76

7-5

INSTRUCTIONS

Read Data (RD)
Read Data Register (RDR)

Assembler Notation Op-Code
RD R1, D2 (X2) DB
RD R1, A2 (X2, SX2) DB
RDR R1, R2 9B
Operation

Format

RX1,RX2
RX3
RR

Bits 22:31 of the register specified by Rl contain the 10 bit device address. The Processor
addresses the device. The device responds by transmitting an eight-bit data byte. This

byte is placed in the second operand location,

Condition Code

CIV|G| L
0)10|0}0 Operation successful
0j1]|]0]0

Programming Note

Instruction time-out (FALSE SYNC) or EXAMINE status

In the RR format, the eight bit cata byte replaces Bits 24:31 of the register specified by R2.

Bits 0:23 of the register are forced to zero.

These instructions are privileged operations.

7-6

29405 ROO 5/76

INSTRUCTIONS

Read Halfword (RH)
Read Halfword Register (RHR)

Assembler Notation Op-Code Format
RH R1, D2 (X2) D9 RX1,RX2
RH Rl, A2 (FX2, SX2) D9 RX3
RHR R1,R2 99 RR
Operation

Bits 22:31 of the register specified by Rl contain the 10 bit device address. The Processor
addresses the device. If the device is halfword oriented, the Processor transmits 16 bits
of data from the device to the second operand location., If the device is byte oriented, the
Processor transmits two eight-bit bytes in successive operations.

Condition Code

C|V]|GI|L
0j1]0]01]0 Operation successful
0]1]1]0¢}60 Instruction time-out (FALSE SYNC) or EXAMINE status

Programming Note

In the RR format, the data received from a halfword device replaces Bits 16:31 of the reg-
ister specified by R2. Bits 0:15 are forced to zero, The first byte of data from a byte de-
vice replaces Bits 16:23 of the register specified by R2. The second byte replaces Bits 24:31.
Bits 0:15 are forced to ZERO.

If the device is byte-oriented, it must be capable of supplying both bytes without intervening status
checks. Unlike the RB and RBR instructions, this instruction does not perform status checking

between the two byte transfers.

In the RX format, the second operand must be located on a halfword boundary.

These instructions are privileged operations.

20.405 ROO 5/76 7-7

INSTRUCTIONS

Read Block (RB)

Assembler Notation Op-Code Format
RB R1, D2 (X2) D7 RX1, RX2
RB R1, A2 (FX2, SX2) D7 RX3
Operation

Bits 22:31 of the register specified by R1 contain the 10 bit device address. Bits 8:31 of
the fullword located at the second operand address contain the starting address of the data
buffer. Bits 8:31 of the fullword located at the second operand address plus four contain the
ending address of the data buffer,

The Processor transmits eight bit data bytes from the device to consecutive locations in the
specified buffer.

Condition Code

Bits 4:7 of the device status byte are copied into the Condition Code. See the appropriate device
manual for a description of this status.

If the device is not in the system, condition code is set to 0100,

Programming Note
The starting address must be less than, or equal to, the ending address. If the starting
address is greater than the ending address, no transfer takes place and the Processor
forces the Condition Code to ZERO. If the addresses are equal, one byte of data is trans-
mitted.
The Processor is in a non~interruptable state during the transfer.

This instruction is a privileged operation.

The second operand must be located on a fullword boundary.

7-8 29-405 ROO 5/76

INSTRUCTIONS

Read Block Register (RBR)

Assembler Notation Op-Code Format
RBR R1, R2 97 RR
Operation

Bits 22:31 of the register specified by R1 contain the 10 bit device address. The register
specified by R2 contains the starting address of the data buffer. The register specified by
R2+1 contains the ending address of the data buffer.

The Processor transmits eight bit data bytes from the device to consecutive locations in the
specified buffer.

Condition Code

Bits 4:7 of the device status byte are copied into the Condition Code. See the appropriate device
manual for a description of this status.

If the device is not in the system, condition code is set to 0100.

Programming Note

The starting address must be less than, or equal to, the ending address, If the starting
address is greater than the ending address, no transfer takes place and the Processor
forces the Condition Code to ZERO. If the addresses are equal, one byte of data is trans-
mitted.

The Processor is in a non-interruptable state during the transfer.

This instruction is a privileged operation.

29-405 ROO 5/76 7-9

INSTRUCTION

Write Data (WD)
Write Data Register (WDR)

Assembler Notation Op-Code Format
WD R1, 82(X2) DA RX1, RX2
WD R1, A2(FX2, SX2) DA RX3
WDR R1, R2 9A RR
Operation

Bits 22:31 of the register specified by R1 contain the 10 bit device address. The Procéssor

addresses the device and transmits an eight data byte from the second operand location
to the device., Neither operand is changed.

Condition Code

C|V|G]|L
ojojofo Operation successful
0O f11}10fo0 Instruction time-out (FALSE SYNC) or EXAMINE status

Programming Note

In the RR format, the eight bit data byte is contained in Bits 24:31 of the register specified
by R2.,

These instructions are privileged operations.

7-10 29405 ROO 5/76

INSTRUCTION

Write Halfword (WH)
Write Halfword Register (WHR)

Assembler Notation Op-Code Format
Wi R1, D2 (X2) D8 RX1, RX2
WH R1, A2 (FX2, SX2) D8 RX3
WHR R1l, R2 98 RR

Operation

Bits 22:31 of the register specified by R1 contain the 10 bit device address. The Processor
addresses the device. If the device is halfword oriented, the Processor transmits 16 bits
of data from the second operand location to the device. If the device is bytc oriented, the
Processor transmits two eight bit data bytes in successive operations,

Condition Code

C|V|G|L
o|lojotlo Operation successful
0]1]0]0 Instruction time-out (FALSE SYNC) or EXAMINE status

Programming Note
In the RR format, the data transmitted to a halfword device comes from Bits 16:31 of the
register specified by R2. The first byte of data transmitted to a byte device comes from
Bits 16:23 of the register specified by R2, the second byte, from Bits 24:31.
If the device is byte-oriented, it must be capable of accepting both bytes without intervening status
checks. Unlike the WB and WBR instructions, this instruction does not perform status checking

between the two byte transfers.

In the RX format, the second operand must be located on a halfword boundary.

These instructions are privileged operations.

29-405 ROO 5/76 7-11

INSTRUCTION

Write Block (WB)

Assembler Notation Op-Code Format
WB R1, D2 (X2) D6 RX1, RX2
WB R1, A2 (FX2, SX2) D6 RX3
Operation

Bits 22:31 of the register specified by R1 contain the 10 bit device address. Bits 8:31 of the
fullword located at the second operand address contain the starting address of the data buffer.
Bits 8:31 of the fullword located at the second operand address plus four contain the ending

address or the data buffer.

The Processor transmits eight bit data bytes from consecutive locations in the specified
buffer to the device.

Condition Code

Bits 4:7 of the device status byte are copied into the Condition Code. See the appropriate device
manual for a description of this status.

If the device is not in the systen , the condition code is set to 0100.

Programming Note
The starting address must be less than, or equal to, the ending address. If the starting

address is greater than the ending address, no transfer takes place and the Processor
forces the Condition Code to ZERO. If the addresses are equal, one byte of data is trans-

mitted.

The Processor is in a non-interruptable state during the transfer.
This instruction is a privileged operation.

The second operand must be located on a fullword boundary.

7-12 29405 ROO 5/76

INSTRUCTION

Write Block Register (WBR)

Assembler Notation Op-Code Format
WBR R1, R2 96 RR
Operation

Bits 22:31 of the register specified by R1 contain the 10 bit device address., The register
specified by R2 contains the starting address of the data buffer. The register specified by
R2+1 contains the ending address of the data buffer.

The Processor transmits eight bit data bytes from consecutive locations in the specified
buffer to the device.

Condition Code

Bits 4:7 of the device status byte are copied into the Condition Code. See the appropriate device
manual for a description of this status.

If the device is not in the system, the condition code is set to 0100,

Programming Note

The starting address must be less than, or equal to, the ending address. If the starting
address is greater than the ending address, no transfer takes place and the Processor
forces the Condition Code to ZERO. If the addresses are equal, one byte of data is trans-
mitted.

The Processor is in a non-interruptable state during the transfer.

This instruction is a privileged operation.

29-405 ROO 5/76 7-13

INSTRUCTION

Autoload (AL)

Assembler Notation | Op-Code Format
AL D2 (X2) D5 RX1, RX2
AL A2 (I'X2,S5X2) D5 RX3
Operation

The Autoload instruction loads raemory with a block ot data from a byte oriented input device.
The data is read a byte at a time and stored in successive memory locations starting with
location X'000080°. If the status is bad, the operation is terminated with V, G or L flags set.
The last byte is loaded into the memory location specified by the address of the second operand.
Any blank or zcro bytes that are input prior to the lirst non-zero byte are considered to be
leader and arc ignored. All other zero bytes are stored as data. The eight bit input device
address is specified by memory location X'000078', The device command code is specified by
memory location X'000079',

Condition Code

L

0 Operation successful or ahorted.
X Isxamine status or time-out

X knd of medium

1 Device unavailable

KK M 2|G
Ao
MoK 2

Programming Note

This instruction may only be used with devices whose addresses are less than, or equal to,
X'FI.

The Rl ficld of this instruction must be ZERO.
This instruction is a privileged operation,

The starting and ending addresses for this instruction are relocatable. Users should disable
the Memory Access Controller before attempting to use this instruction.

If the second operand is less than X'80' the operation is aborted.

Example:
Assembler Notation Machine Code Comments
LOAD AL, X'CF' D500 O00CF Autoload program from X'80' to X'CI!
B X'80" 4300 0080 Jump to the program loaded
BINDV DC X'0294' 0294 Load using Teletypewriter tape reader

This is location X'00078'

7-14 29405 ROO 5/76

INSTRUCTION

Simulate .Channel Program (SCP)

Assembler Notation Op-Code Format
SCP R1, D2 (X2) E3 RX1, RX2
SCP R1,A2 (FX2, SX2) E3 RX3

Operation

The second operand address is the address of a Channel Command Block (CCB). The buffer
switch bit of the Channel Command Word (CCW) specifies the buffer to be used for the data
transfer. If this bit is set, Buffer 1 is used. If it is reset, Buffer 0 is used. If the byte
count field of the current buffer is positive, the V flag in the Condition Code is set, and the
next sequential instruction is executed. If the byte count field is not positive, the following

data transfer operation is performed.

If the Channel Command Word specifies read, a byte of data is moved from Bits 24:31

of the register specified by Rl to the appropriate buffer location, If the Channel Command
Word specifies write, a byte of data is moved from the appropriate buffer location to Bits
24:31 of the register specified by Rl1. Bits 0:23 are forced to ZERO.

After a byte has been transferred, the count field of the appropriate buffer is incremented by
one. If the count field is now positive, and if the last bit of the CCW is reset, the buffer switch

bit of the CCW is complemented.

Condition Code

Count field is now ZERO

Count field is now less than ZERO
Count field is now greater than ZERO
Count field was positive

o+ o oln
o o+ olH

o o o ola
oo o<

Programming Note

The second operand must be located on a fullword boundary.

This instruction is a privileged operation,

29-405 ROO 5/76 7-15

CONTROL OF |/0 OPERATIONS
The design of the 32 bit series 1/O structure allows data transfers in any of several ways. The

choice of which I/0 method to use depends on the particular application and on the characteristics
of the external devices. The primary methods of data transfer between the Processor and external

devices are:

One byte or one halfword to or from any of the general registers.
One byte or one halfword to or from memory.
A block of data to or from memory under direct Processor control.

A block of data to or from memory under control of a Selector Channel or EDMA Universal
Interface.

Multiplexed blocks of data to or from memory under control of the auto driver channel.

INTERDATA standard device controllers expect a predetermined sequence of commands to effect
data transfers. These commands address the device, put it in the correct mode, and cause data
to be transferred. Because all I/O instructions are privileged operations, I/0 control programs
must run in the Supervisor mode, Bit 23 of the current PSW reset. I/O control programs should
disable immediate interrupts, controlled by PSW Bit 17.

STATUS MONITORING 1/0

The simplest form of 1/O programming is status monitoring I/0. In this mode of operation, only
one device is handled at a time, and the Processor cannot overlap other operations with the data
transfer. The sequence of operations in this type of programming is:

1. Address the device and set the proper mode (Output Command instruction).
2. Test the device status (Sense Status instruction).

3. Loop back to the Sense Status instruction until the status byte indicates that the device is
ready (Conditional Branch instruction).

4. When the device is ready, transfer the data (Read or Write instruction).

5. If the transfer is not complete, branch back to the Sense Status instruction. If it is com-
plete, terminate.

A variation on this type of programming makes use of the block 1/0 instructions. In this kind of
programming, the program prepares the device and waits for it to become ready. It then executes
a block 1/0 instruction. The Processor takes over control and completes the transfer, one byte
at a time to or from memory. The Processor monitors device status during the transfer. Block
transfers may be used only with byte oriented devices whose ready status is zero.

7-16 ‘ 29-405 ROO 5/76

INTERRUPT DRIVEN 1/0

Interrupt driven 1/0O allows the Processor to take advantage of the disparity in speed between it-
self and the external devices being controlled. With status monitoring, the Processor spends
much of its time waiting for the device. With interrupt driven programming, the Processor can
use much of this time to perform other functions. This kind of programming establishes at
least two levels of operation. On one level are the interrupt service programs. On the other
levels are the interruptable programs that run with the immediate interrupt enabled.

Before starting interrupt driven operations, the Interrupt Service Pointer Table must be set up.
This table starts at memory location X'0000D0'. It must contain a halfword address entry for
every possible device. The table is ordered according to device addresses in such a way that
X10000D0" plus two times the device address equals the memory address of the table entry re-
served for that device. The value placed in the location reserved for a device is the address of
the interrupt service routine for the device.

For example: if a console Teletype is connected at an address of X'02' and the interrupt
routine resides in memory at address X'3000', the set up involves: writing X'3000' at memory
location X'D4'. Note that X'D4' = X'D0' + 2 times the Teletype address.

Although there may be gaps in device address assignments, the interrupt service pointer table
should be completely filled. Entries for non-existent devices can point to an error recovery
routine. (This precaution prevents system failure in the event of spurious interrupts caused
by hardware malfunction or by improper use of the Simulate Interrupt instruction.)

The next step is to prepare the device for the transfer. This is done best with the immedjate
interrupt disabled. Once the table pointer has been set up, and the device prepared, the
Processor can move on to an interruptable program.

When the device signals that it requires service, the Processor saves the current state,

and transfers control to the location specified in the interrupt service pointer table. At this
time, the current PSW has a status that indicates running state, machine malfunction inter-
rupt enabled, I/O interrupts enabled and all other interrupts disabled. Registers 0 and 1 of
the register set 0 contain the old PSW, indicating the status and location of the interrupted
program. Register 2 of that set contains the device address. Register 3 contains the device
status. The sequence of operation in this type of program is:

1. Set up the Interrupt Service Pointer Table to vector to error addresses for undefined plus
devices.

2. Set up address of software interrupt handler routine at 2 times the device number plus
X'DO' (X'DO' is starting address of Service Pointer table).

3. Set up software interrupt handler routine.

4. Set up the device and enable device interrupts.

5. Enable interrupts in PSW

The interrupt handler routine should:

1. Check the device status in Register 3, and if satisfactory,

2. Make the transfer, and

3. Return to the interrupted program by reloading the old PSW from Registers 0 and 1. (LPSWR R0)
The interrupt service routine should not enable the immediate interrupt. To do so

allows other interrupt requests to be acknowledged, and the contents of Registers 0:4

would be lost. If it is necessary to enable the immediate interrupt, the routine should
save the register set, and then enable the immediate interrupt.

29-405 ROO 5/76 7-17

SELECTOR CHANNEL 1/0

The Selector Channel controls the transfer of data directly between high speed devices and memory.
As many as 16 devices may be attached to the Selector Channel, only one of which may be opera-
ting at any one time. The advantage gained in using the Selector Channel is that other program
processing may proceed simultaneously with the transfer of data between the external device and
memory. This is possible because the Selector Channel accesses memory on a cycle stealing
basis, which permits the Processor and the channel to share memory. In some cases, execution
times of the program in progress may be affected, while in others, the effect is negligible. This
depends upon the rate at which the Selector Channel and Processor compete for memory cycles.

The Selector Channel is linked to the Processor over the I/O Bus. It has its own unique device
number which it recognizes when addressed by the Processor. Like other device wntrollers, it
can request Processor attention through the immediate interrupt.

Selector Channel Devices

The Selector Channel has a private bus similar to the Processor's I/O Bus. Controllers for the
devices associated with the Selector Channel are attached to this bus. When the Selector Channel
is idle, its private bus is connected directly to the I/O Bus. If this condition exists, the Processor
can address, command, and accept interrupt requests from the devices attached to the Selector
Channel. When the Selector Channel is busy, this connection is broken. All communication be-
tween the Processor and devices on the Selector Channel are cut off. Any attempt by the Processor
to address devices on the channel results in instruction time-out.

Selector Channel Operation

Two registers in the Selector Channel hold the current memory address:and the final memory
address. Before starting a Selector Channel operation, the control software, using Write instruc-
tions, places the address of the first byte of the data buffer in the current register and the address
of the last byte in the final address register. During the data transfer, the channel increments the
current address register by one for each byte transferred. When the current address equals the
final address, the last byte has been transferred, and the channel terminates.

The Selector Channel accesses memory a halfword at a time. Therefore, the transfer must
always involve an integer number of halfwords. The starting address of the data buffer must
always be on an even byte (halfword) boundary. The ending address must always be on an odd
byte boundary. The starting address must be less than the ending address.

Upon termination, the software can read back from the Selector Channel the address command in
the current address register. If this address is less than the final address specified for the trans-
fer, and if the buffer limits were properly checked before the transfer, then this condition indicates
a device malfunction or an unusual condition within the device, for example, crossing a cylinder
boundary on a disc.

7-18 29405 ROO 5/76

Selector Channel Programming

The usual method of programming with the Selector Channel uses the immediate interrupt. The
first step in the operation is to check the status of the Selector Channel. If it is not busy, the
address of the termination interrupt service routine is placed in the location within the interrupt
service pointer table reserved for the Selector Channel. Next the program should proceed.

as follows:

1. Give the Selector Channel a command to stop. This command initializes the Selector
Channel's registers and assures the idle condition with the private bus connected to the
1/0 Bus.

2, Prepare the device for the transfer with whatever commands and information may be
required.

3. Give the Selector Channel the starting and final addresses.

4. Give the Selector Channel the command to start.

With the Start command, the Selector Channel breaks the connection between its private bus and
the Processor's I/0 Bus, and provides a direct path to memory from the last device addressed
over its bus. When the device becomes ready, the channel starts the transfer which proceeds to
completion without further Processor intervention. Once the Start command has been given, the
Processor can be directed to the execution of concurrent programs.

On termination, the channel signals the Processor that it requires service. The Processor sub-
sequently takes an immediate interrupt, transferring control to the Selector Channel interrupt
service routine. At this time, Registers 0:3 of the register set 0 are set up as for

any other immediate interrupt.

AUTO DRIVER CHANNEL

The Auto Driver Channel provides a means for multiplexing block data transfers between memory
and low or medium speed I/0 devices. The operation of the channel is similar in some respects
to interrupt driven I/O. The channel is activated upon a service request from a device on the 1/0
Bus. Upon receipt of a device request, the Processor uses the device number to index into the
Interrupt Service Pointer Table. If the value contained in the table is even, the Processor trans-
fers control to the interrupt service routine. If the value is odd, it transfers control to the Auto
Driver Channel.

To the Auto Driver Channel, the address in the Interrupt Service Pointer Table is the address plus
one (making it odd) of a Channel Command Block (CCB). The Channel Command Block is basically
a channel program consisting of a description of the operation to be performed, and a list of para-
meters associated with the operation. In addition to the functions of Read and Write, the channel
can (a) translate characters, (b) test device status, (c) chain buffers, (d) calculate longitudinal
and cyclic redundancy check values, and (e) transfer control to software routines to take care

of unusual situations.

29-405 ROO 5/76 7-19

CHANNEL COMMAND BLOCK

The Channel Command Block (CCB), as shown in Figure 7-1, consists of a Channel Command Word
(16 bits) that describes the function, count fields (16 bits each) for two buffers, final addresses

(32 bits each) for two buffers, a check word (16 bits) for the longitudinal or cyclic redundancy
check, the address (32 bits) of a translation table, and the address (16 bits) of a software routine,

0 15

0 CHANNEL COMMAND WORD (HALFWORD)
2 | BUFFER 0 BYTE COUNT (HALFWORD)
4 BUFFER 0 END ADDRESS (FULLWORD)
8 CHECK WORD (HALFWORD)
10 BUFFER 1 BYTE COUNT (HALFWORD)
12 BUFFER 1 END ADDRESS (FULLWORD)
16 TRANSLATION TABLE ADDRESS (FULLWORD)
20 SUBROUTINE ADDRESS (HALFWORD)

Figure 7-1. Channel Command Block

Just as there may be many interrupt service routines ready at any time to service device requests,
there may be many channel command blocks in the system ready to handle data transfers as re-
quired. Each channel command block must start on a fullword boundary. The address plus one

of the channel command block must be placed in the interrupt service pointer table location

for the device involved in the transfer.

Subroutine Address

When the channel transfers control to the software subroutine whose address is contained in the
Channel Command Block, Registers 0:4 of the register set 0 have already been set up by the
Processor to contain the old PSW, the device number, the device status, and the address of the
Channel Command Block., The current PSW status specifies run state, machine malfunction
interrupt enabled, immediate interrupt enabled, and all other interrupts disabled.

The channel transfers control to the subroutine either unconditionally (controlled by a bit in the
Channel Command Word), or because cf bad device status, or because it has reached the limit of
a buffer. It indicates its reason for transferring control by adjusting the Condition Code as
follows.

Unconditional transfer
Bad status
Buffer limit

oo oln
o o ol
= o oln
S OolH

The subroutine address in the CCB is a 16 bit address. Because of this, the subroutine, or at
least the first instruction of the subroutine, must reside in the first 64KB of memory.

7-20 29-405 ROO 5/76

Buffers

There is space in the CCB to describe two data buffer areas. The data areas may be located any-
where in memory. The limits of each data area are described by an address field and a count
field. The address field contains the address of the last byte in the data area. This is a 24 bit
address, right justified in the fullword provided. If the device being controlled is a halfword de-
vice, the final address must be odd. If the device is a byte device, the address may be either odd
or even.

The count field, in most operations, contains a negative number whose absolute value is equal to
one less than the number of bytes to be transferred. The one exception is the case of a single
byte transfer, where the count field contains ZERO.

During data transfers, the channel adds the value contained in the count field to the final address
to obtain the current address. It makes the transfer, referencing the current address, then in-
crements the value in the count field by one for a byte device or by two for a halfword device.
When the count field becomes positive, i.e., greater than zero, the channel sets the G flag in
the Condition Code and transfers control to the specified software subroutine. If the count

field is positive upon channel activation, the Channel makes no transfer and returns control

to the processor with Condition Code = 0010 (G=1).

Translation

The translation feature is available only for byte devices. If this operation is specified, the full-
word provided in the Channel Command Block must contain the 24 bit address, right justified, of
a translation table. The table, which must start on a halfword boundary, ‘can contain up to 256
halfword entries. During data transfers, the channel multiplies the data byte by two and adds this
value to the translation table address. The result is the address within the translation table of
the halfword corresponding to the data byte.

The channel references this location, and, if Bit 0 of the halfword is a one, it substitutes Bits
8:15 of the halfword for the data byte and proceeds with the operation. If Bit 0 of the halfword
is a ZERO, the channel:

Does not increment the byte count for the appropriate buffer.
Puts the data byte, untranslated, in Bits 24:31 of Register 3, of the register set 0.
Forces Bits 0:23 of Register 3 to ZERO,

Multiplies the value contained in the translation table by two, and transfers control to the
software routine located at this address.

Upon transfer to the translation subroutine, Registers 0 and 1 contain the old PSW. Register 2
contains the device number. Register 3 contains the untranslated character. Register 4 con-
tains the address of the Channel Command Block. The current PSW indicates run state, machine
malfunction interrupt enabled, 1mmed1ate interrupt enabled and all other interrupts disabled.

The Condition Code is zero.

Check Word

If either longitudinal or cyclic redundancy checking is required, the check word in the Channel
Command Block contains the accumulated value. The initial value for the check word is usually
zero. (There are data dependent exceptions, e.g., where initial characters are not to be in-
cluded in the check.) The longitudinal check is an Exclusive OR of the character with the check
word. The cyclic check uses the formula for CRC 16:

X16 +X15 +X2 41

If the Data Communication Option is equipped, the cyclic check may optionally use the formula
for CRC SDLC:

6+X12+X5+1

29-405 ROO 5/76 7-21

On input, if both redundancy checking and translation are required, the character is translated
first, then the cyclic redundancy check is done using the original character input rather than
the translated character, On oufput, the character is translated first. Redundancy checking
may be used only with byte devices.

Channel Command Word

The Channel Command Word (CCW), as shown in Figure 7-2, consists of two parts. Bits 0:7
contain a status mask. Bits 8:15 describe the channel operation,

0 7 8 9 10 1112 15
STATUS MASK E RC |B RWT F
j L FAST
TRANSLATE
EXECUTE ———— READ/WRITE
BUFFER SWITCH

REDUNDANCY CHECK TYPE

Figure 7-2. Channel Command Word

Status Mask

On every channel operation involving a data transfer, the status mask is ANDed with the device
status. This operation does not change the status mask, If the result is zero, the channel pro-
ceeds with the operation. If the result is non-zero, the channel sets the L flag in the Condition
Code, and transfers control to the specified software subroutine.

Execute Bit (E)

If this bit is reset, the channel unconditionally transfers control to the specified subroutine, without
taking any other action. The Condition Code is zero. If this bit is set, the channel continues with
the operation as specified in the Channel Command Word.

Fast Bit (F)

If this bit is set, the channel performs the I/0O transfer in the fast mode, In the fast mode, buffer
chaining, redundancy checking, and translation are not allowed, This bit must be set for halfword
devices. If this bit is set, Buffer 0 is always used.

Read/Write Bit (R/W)

This bit indicates the type of operation. If this bit is reset, a byte or a halfword is imp ut from
the device, If this bit is set, a byte or a halfword is output to the device,

Translate Bit (T)

If this bit is set, and the fast bit reset, the channel translates the data byte.

7-22 29-405 ROO 5/76

Redundancy Check Type Bits (RC)

These two encoded bits specify the type of redundancy check required. The following is a list
of valid redundancy check specifications. - These bits are ighored if the part bit (bit 15) is set.
CRC SDLC can be specified only if the Data Communication option is installed.

t\g A
>\ @
> > Redundancy Check Type
© ¢ .
0 0 LRC
0 1 BISYNC CRC
1 0 Reserved - Should Not be Specified
1 1 SDLC CRC - Should Only be Specified if
Data Communication Option Present

Buffer Switch Bit (B)

When the fast bit is reset, this bit specifies which of the two buffers is to be used for the trans-
fer. If this bit is reset, Buffer 0 is used. If it is set, Buffer 1 is used. The channel chains
buffers when the count field becomes positive. It does this by complementing the buffer switch
bit before transferring control to the specified software routine.

Valid Channel Command Codes

The following is a list of valid codes for the Channel Command Word. Note that only the first three
may be used with halfword devices.

Channel Command Word 8:156

Hexadecimal Binary Meaning

00 00000000 Transfer to subroutine

81 10000001 Read fast mode

85 10000101 Write, fast mode

80 10000000 LRC, Buffer 0, Read

82 10000010 LRC, Buffer 0, Read, translate

84 10000100 LRC, Buffer 0, Write

86 10000110 ' LRC, Buffer 0, Write, translate

88 10001000 LRC, Buffer 1, Read

8A 10001010 LRC, Buffer 1, Read, translate

8C 10001100 LRC, Buffer 1, Write

8E 10001110 LRC, Buffer 1, Write, translate

920 10010000 CRC BISYNC, Buffer 0, Read

92 10010010 CRC BISYNC, Buffer 0, Read, translate
94 10010100 CRC BISYNC, Buffer 0, Write

96 10010110 CRC BISYNC, Buffer 0, Write, translate
98 10011000 CRC BISYNC, Buffer 1, Read

9A 10011010 CRC BISYNC, Buffer 1, Read, translate
9C - 10011100 CRC BISYNC, Buffer 1, Write

9E 10011110 CRC BISYNC, Buffer 1, Write, translate
BO 10110000 CRC SDLC, Buffer 0, Read

B2 10110010 CRC SDLC, Buffer 0, Read, translate
B4 10110100 ' CRC SDLC, Buffer 0, Write

B6 10110110 CRC SDLC, Buffer 0, Write, translate
B8 10111000 CRC SDLC, Buffer 1, Read

BA 10111010 CRC SDLC, Buffer 1, Read, translate
BC 10111100 CRC SDLC, Buffer 1, Write

BE 10111110 CRC SDLC, Buffer 1, Write, translate

29-405 ROO 5/76 ’ 7-23

General Auto Driver Channel Programming Procedure (See Figure 7-3.)
1. Set up Interrupt Service Pointer Table to vector to error routines for undefined devices.

2. Set up address of Channel Command Word + 1 (odd) in table at 2 times Device number
plus X'D0' (start of Interrupt Service Pointer Table)

3. Set up complete Channel Command Block.
4. Set up device and enable device interrupt.
5. Enable interrupts in PSW (Auto Driver Channel finishes operation),

6. Check for good termination of Auto Driver Channel.

7-24 29-405 ROO 5/76

1/0 INTERRUPT

ACKNOWLEDGE INTERRUPT
SELECT REGISTER SET 0
RO, *—PSW
R1, *+—LOC
R2, SETh<+—DEVICE NUMBER
R3, SETn*—DEVICE STATUS
PSW<—'00002800"
2x DEVICE NUMBER IS INDEX
TO SERVICE POINTER TABLE
FETCH TABLE ENTRY

CONDITION CODE = LS 4 STATUS BITS '

SERVICE POINTER TABLE ENTRY

IS ADDRESS OF A CHANNEL COMMAND BLOCK

LOC+—TABLE ENTRY
FETCH AND EXECUTE
NEXT USER INSTRUCTION
“IMMEDIATE INTERRUPT”
SERVICE POINTER TABLE
ENTRY WAS ADDRESS OF

1 CHANNEL

R4, <“—TABLE ENTRY
FETCH CHANNEL COMMAND WORD

EXECUTE NO

BIT SET
?

CONDITION CODE =2
CHECK DEVICE STATUS
AGAINST STATUS MASK

CONDITION CODE<—0

“STATUS OK” NO CONDITION

CODE =1

NO 'FAST’

BIT IN CCW
SET?

YES “FAST MODE"

FETCH BUFFER O
BYTE COUNT

SUBROUTINE
D B
NFAST EXAUTO

FETCH BUFFER 0 END ADDRESS
ADD BYTE COUNT AND
BUFFER END ADDRESS.
RESULT IS THE ADDRESS
OF DATA TO TRANSFER

C

EUXSUB1

Figure 7-3. Microcode Flowchart of Auto Driver Channel (Sheet 1 of 3)

29405 ROO 5/76

7-25

NO

HALFWORD

NOT ZERO

] HWRT1

BYTEIO

TEST
R/WBIT
IN CCW

NON-ZERO

WRITE HALFWORD
FROM MEMORY
TO THE DEVICE

READ BYTE FROM
DEVICE AND STORE
BYTE IN MEMORY

READ HALFWORD FROM
DEVICE AND STORE
HALFWORD IN MEMORY

HRDWT

INCREMENT BUFFER 0
BYTE COUNT BY 2

FWRIT

WRITE BYTE FROM
MEMORY TO THE DEVICE|

N

INCREMENT BUFFER 0
BYTE COUNTBY 1

FRDWT

COMMON

BYTE cou>\
POSI'V

PSW
WAIT BIT
SET?

FETCH AND EXECUTE
NEXT USER INSTRUCTION

EXSUB1

FETCH SUBROUTINE ADDRESS
FROM CCB COPY ADDRESS
TO LOC FETCH AND
EXECUTE NEXT USER
INSTRUCTION

PSW SWAP

DO MACHINE MALFUNCTIOD

GO TO INTERRUPTA
WAIT STATE

BLE)

*FETCH NEXT USER INSTRUCTION

Figure 7-3. Microcode Flowchart of Auto Driver Channel (Sheet 2 of 3)

7-26

29-405 ROO 5/76

“NORMAL MODE"

“SUBROUTINE TRANSL"

FETCH ADDRESS OF
TRANSLATION TABLE
FROM CCB

ADD TWICE THE
DATA BYTE TO THE
TABLE ADDRESS AND
FETCH HALFWORD ENTRY

USE BUFFER 0
BYTE COUNT AND
END ADDRESS

USE BUFFER 1
BYTE COUNT AND

END ADDRESS

|

1S
BYTE COUNT_YES

v EXAUTO

MASK LS 8 BITS

TRANSLATED

POSITIVE

ADD BYTE COUNT AND
BUFFER END ADDRESS
AND FETCH THE
ADDRESSED BYTE

TEST
SET

CHARf\CTER

RETURN

R/WBIT IN
ccw

READ DATA BYTE
FROM THE DEVICE
AND SET ASIDE

SUBROUTINE
TRANSL

STORE TRANSLATED
BYTE IN MEMORY
GET ORIGINAL DATA
BYTE INPUT FROM DEVICE

NFWRIT

LOCe—2x TABLE ENTRY
FETCH AND EXECUTE
NEXT USER INSTRUCTION

“ EXIT TO SPECIAL
CHARACTER SUBROUTINE"

SUBROUTINE
TRANSL

r OUTPUT BYTE TO DEVICE J

FETCH CHECKWORD
FROM CCB
DO LONGITUDINAL OR
CYCLIC REDUNDANCY CHECK

INCREMENT BUFFER
BYTE COUNT

IS COUNT
POSITIVE

COMPLEMENT
BUFFER SWITCH
BIT IN CCW

?

*FETCH NEXT USER INSTRUCTION

Figure 7-3. Microcode Flowchart of Auto Driver Channel (Sheet 3 of 3)

29-405 ROO 5/76

EXAUTO

EXSuB1

7-27/7-28

CHAPTER 8
MEMORY MANAGEMENT

The 02-348 Memory Access Controller (MAC) is an optional auxiliary module available
with Model 7/32., The MAC provides memory relocation and protection. The MAC is
a device which monitors all memory accesses. Under program control, it can (a)
translate the address of a memory access from a 20-bit program address to a 20-bit
physical address, (b) prevent write access to a block of memory, (c) reject instruction
execution from a block of memory or (d) detect an invalid memory access.

The throughput between the Processor and local memory or between the Selector Channel and local
memory is not affected by the use of the MAC.

In an operating system environment, the operation of the MAC is completely transparent to most
programs. It is very similar to a peripheral device in that only the operating system modules
directly responsible for its operation need be aware of its existence.

PROGRAM ADDRESS SPACE

The MAC allows an Operating System to provide support to user programs in such a way that

the program can be coded as if some subset of available memory, starting at address 0, were
available to the program. The range of addresses thus referenced by the program is called the
Program Address Space. At load time, the MAC can be used to map this program address space
into the available physical memory addresses so that any program address, referenced during

the program execution, is translated (relocated) to the correct physical address before memory is
accessed. The MAC interprets the Program Address as follows

0 11,12 15,16 31
SRN MBD

SRN: SEGMENTATION REGISTER NUMBER
MBD: MEMORY BLOCK DISPLACEMENT

RELOCATION

" The relocation of program address to physical address is accomplished through the relocation/
protection bit (bit 21) of the Program Status Word and the 16 Segmentation Registers of the
MAC. If the relocation/protection bit of the PSW is reset, the MAC provides no translation of
the addresses. If the relocation/protection bit of the PSW is set, the MAC assumes that all
memory accesses are program addresses which must be relocated to physical addresses.
Before the relocation/protection bit of the PSW is set, the MAC Segmentation Registers must
be loaded with the appropriate mapping of the program to physical address (see below). The
MAC Segmentation Register describes the starting address and length of a block of physical
memory allocated to the program address space. These blocks must start on a 256 byte boundary
and may be up to 64K bytes long.

29405 ROO 5/76 8-1

0 11 12 15 16 31
PROGRAM
ADDRESS | 0011|0010 0011 0100 1010
3 2 3 4 A
SEGMENTATION — n 2 23 24 31,
REGISTER3 | _ | o111 0100 o010 |]
7 4 2
0 11 12 31
PHYSICAL
ADDRESS 0111 0110 0101 0100 1010
7 6 5 a A

Address calculation:

X'0234A"
X'74200'
X'T654A"

Memory block displacement
Memory block starting address
Physical memory address

When the relocation/protection bit of the PSW is set, the program address is relocated as follows:

Program address Bits 12:15 select one of the segmentation Registers. In the example
above, segmentation Resister 3 is selected.

Segmentation Register Bits 12:23 specify starting address of the block of memory. In the
illustration above, X'742' means that the memory block starting address is X'74200',

Program address Bits 16:31 contain the memory block displacement.

The block displacement is added to the memory block starting address to obtain physical

memory address.

PROTECTION

In addition to describing a block of physical addresses, each Segmentation Register can be used
to limit the type of access to the described block of addresses. Five types of protection are
provided by the MAC when the relocation/protection bit of the current PSW is set:

if the presence bit (Bit 27) is reset in the Segmentation Register selected by Bits 12:15 of
the Program address (non-present address), or

if the write-protect bit (Bits 25:26 = 01 or 11) is set in the Segmentation Register
selected by Bits 12:15 of the program address, and an attempt is made to store into the
addressed memory (write protection violation), or

if write/interrupt protection bit (Bits 25:26 = 10) is set in the Segmentation Register
selected by bits 12:15 of the program address and a store is made into the addressed
memory (write/interrupt protection violation), or

if the execution-protection bit (Bit 24) is set in the Segmentation Register selected by
Bits 12:15 of the program address and an instruction fetch is being attempted from the

addressed memory (execute protection violation)y, or

if the value of Bits 24:31 of the program address is larger than the limit described in the
Segmentation Register selected by Bits 12:15 of the program address (invalid address),
then a Relocation/Protection Fault interrupt is generated, The MAC status register
contains the reason for the interrupt (see below),

29405 ROO 5/76

0 - 26 27 2829 30 31
[|N|W Wi E

INTERRUPT STATUS REGISTER

0 3 4 112 23 24 25 26,27 28 31

SLF SRF G W.P. | P.

SEGMENTATION REGISTER

In the case of an execution protection violation, write protection violation or invalid address, if
the interrupt generated by the MAC cannot be accepted immediately by the Processor, the con-
troller continues to operate, but all Write operations are changed to read operations until the
interrupt is cleared. In the case of write/interrupt protect violation, the store operation is
allowed to complete and then an interrupt is generated. A MAC interrupt condition is cleared
by any reference to the MAC interrupt status register, however, only a store instruction will
clear the status register.

EXAMPLE:

The effect of the MAC is best illustrated by an example of a program executing under operating
system control.

Assume that the program consists of:

main program coded as if addresses 0 through 2FFF are available and a program entry
address of 100. (Program Address Space = 12K)

a subroutine coded as if addresses F0000 through F1FFF are available. (Program Address

Space = 8K)

a data area which is initialized by some other program and which is contained at addresses

A0000 through AFFFF, This area is to be write and execute protected. (Program Address

Space = 64K)

The operating system executes with the relocation/protection bit of the PSW reset so that no
address relocation or protection is in effect.

Assume that the main program, subroutine and data area are loaded into physical memory
starting at addresses 21000, F000, 13000 respectively. Before passing control to the example
program, the operating system:

sets the start address of Segmentation Registers 0, 10 and 15 to 21000, 13000 and 0F000
respectively.

resets the presence bit in the remaining Segmentation Registers.

sets the limits of Segmentation Registers 0, 10 and 15 to 47, 255 and 31 blocks respectively.

sets write and executes protection in Segmentation Register 10.

29-405 R0OO 5/76

0 3 4 1" 12 23 24 25 26,27 28 31
SLF SRF E [WP.| P

SEGMENTATION REGISTER FIELDS

SEGMENTATION REGISTEF 0:

() 34 1112 23 24 27,28 3

[><] o010 1 0010 0001 0000 0001

4] 2 F 2 1 0 1 0

SEGMENTATION REGISTER 10:

0 3,4 11,12 23,24 27 28 31
1111 111 0001 0011 0000 1011

SEGMENTATION REGISTER 15:

0 34 1112 23,24 27,28 31
0001 1111 0000 1M1 0000 0001

0 1 F 0 F 0 1 0

SEGMENTATION REGISTERS 1,2,3,4,5,6,7,8,9,11,12,13 & 14:

0 3.4 11, 12 23,24 27,28 31
0000 0000 0000 0000 0000 0000

0 0 0 0] 0 0 0

The program can then be started by loading a PSW with relocation/protection bit of the status
portion set and a location counter of 100. A relocation/protection fault interrupt occurs if:

an attempt is made to reference 30000. (Presence bit reset in selected Segmentation
Register, i.e., Segmentation Register 3.)

an attempt is made to store into A0100. (Write protect set in selected Segmentation
Register, i.e., Segmentation Register 10.)

an attempt is made to branch to A0000, (Execute protect set in selected Segmentation
Register, i.e., Segmentation Register 10.)

an attempt is made to reference F3000. (Value of Bits 15:31 of program address (30000)
is larger than the limit field of Segmentation Register 15 (32 256 byte blocks or 2000).

An attempt to reference 100, F1200 or A0001 results in an access to 21100, 10200 or 13001
respectively.

29-405 RO0O 5/76

MAC REGISTERS

The MAC has 17 hardware registers referred to as Base Regisfers. There are 16 Segmentation
Registers and 1 Interrupt Status Register. These reglstered are accessed through the assigned
memory locations. :

The 256 bytes starting at the first 256 byte boundary above the Interrupt Service Pointer Table,
are dedicated to the MAC.,

.MAX NUMBER OF DEVICES DEDICATED MAC LOCATIONS
266 300 — 3FF
512 . 500 — 5FF
1024 ' 900 — 9FF

The MAC Registers are assigned to the dedicated locations as follows (for 256 maximum number
of devices):

Segmentation Register Memory Location

0 - 300

" " 1 _ 304
1 " 2 - 308
1" A 3 - 300
" " 4 - 310
" " 5 - 314
1" " 6 - 31 8
" " 7 - 310
" " 8 - 320
1" " 9 - 324
" " 10 - 328
" " 11 - 32C
" " 12 - 330
" " 13 . - 334
" " 14 - 338
" " 15 - 33C
Interrupt Status Register - 340

Values are loaded into the MAC registers by storing the values into the appropriate assigned memory
locations. Any attempt to read the dedicated MAC locations returns the value in the corresponding
memory location except for the location assigned to the MAC Status Register. In general, manipula-
tion of MAC registers is performed with the relocation/protectmn of the PSW reset. To summarize
the manipulation of the MAC registers:

The 68 bytes starting at the first 256 byte boundary above the Interrupt Service Pointer
Table, are dedicated to the MAC (if present in the system).

The value of a MAC register is changed by storing into the appropriate dedicated MAC
location.

The value of the MAC Status Register is read by loading from the appropriate dedicated:
MAC location.

All attempts to read (load) from dedicated MAC locations return the value in the corres-
ponding memory location , except for the MAC status register location.

29405 ROO 5/76 8-5

MAC registers are manipulated, with the relocation/protection bit of the PSW reset , as follows:

The Segmentation Registers are set up by storing data into the appropriate assigned
memory locations,

The Segmentation Registers cannot be read. Any attempt to read the dedicated MAC
locations assigned for the Segmentation Registers returns the value in the corres-
ponding memory locations. This value may be different than the actual (hardware)
Segmentation Register value. To read the data which has been loaded into the Segmen-
tation Registers, it is necessary to read the assigned locations after the registers
have been loaded (with MAC disabled) and before the MAC is enabled. Under these
conditions the assigned memory locations will contain the same data as the Segmen-

tation Registers.

The Interrupt Status Register is cleared by writing any data into its assigned mem-
ory location.

The Interrupt Status Register can be read by reading its assigned memory location,
This also clears the Interrupt Status Register.

Definition of MAC Register Fields

Segmentation Register

0 3,4 1,12 23 ,24,26,26,27 31

SLF SRF Elwp [P

Each Segmentation Register is 32 bits wide.

Field Bits Meaning
0-3 Unused - must be zero
SLF 4-11 Segment Limit Field, contains one less than the number of

256 byte blocks in the segment described by this register.

SRF 12-23 Segment Relocation Field - indicates the starting address of
the segment described by this register (Starting address = SRF
multiplied by X'100').

E 24 Execute protect bit - if set, instruction fetch from segment
causes relocation/protection fault.

wP 25-26 Write protection field - encoded as follows:
00 - no write protection
01 or
11 - Write protected - attempt to store into segment causes

relocation/protection fault - store is not executed.

10 - Write/Interrupt protect - attempt to stere into segment
causes relocation/protect fault - store is executed.

P 27 Presence bit ~ if not set, selection of this register causes
relocation/protection fault.

28-31 Unused - must be zero.

29405 R0O0 5/76

INTERRUPT STATUS REGISTER

o 26 27 28 29 30 31

[Tl wle]

Field Bits Meaning
I 27 Invalid Address - value of bits 16:31 of program address

greater than the limit specified by SLF in the selected
Segmentation Register.

N 28 Non-present Address - present bit not set in selected
segmentation register.

WP 29 Write Protect Violation - attempt to store into write
protected segment,

WI 30 Write/interrupt protection violation - store into write/
interrupt protected segment,

E 31 Execute Protect Violation ~ instruction fetch attempt from
execute protected segment,

The Interrupt Status Register is set by the MAC during generation of a relocation/protection
fault interrupt., The first reference, load or store, to the memory location assigned to the
interrupt status register following the interrupt, clears the interrupt condition from the MAC.
The Relocation and protection interrupt handler should execute with the relocation/protection
bit of the PSW reset and should clear the Interrupt Status Register by storing any fullword into
the assigned memory location before exiting.

INITIALIZATION

Whenever the Initialize Switch (INT) on the display panel is depressed, or the processor is
powered up, all segmentation, relocation, protection and MAC interrupts are disabled regard-
less of the state of bit 21 in the current PSW. The contents of the MAC segmentation registers
must be restored by software after Power Fail.

The MAC remains disabled until a memory reference instruction is issued. At this time, the
MAC is enabled or remains disabled depending on the condition of bit 21 of the current PSW.

29-405 ROO 5/76 8-7/8-8

CHAPTER 9
DATA COMMUNICATION
INSTRUCTIONS

The Data Communications instructions are used to compute polynomial error check redundancy
characters, as used by most data communications protocols. A high speed memory-to-memory
move capability is also provided with this option. Communications protocols supported by this
option include, but are not limited to, the following:

Binary Synchronous Communications (BISYNC or BSC) - IBM's widely accepted

half-duplex protocol uses the CRC BISYNC error check polynomial (xl +x10 4
2

x4 + 1),

Synchronous Data Link Control (SDLC) - IBM's new full-duplex protocol uses the
CRC SDLC error check polynomial (x 64 x12 4 x5 4 1).

Advanced Data Communications Control Procedure (ADCCP) - ANSI's proposed
National Standard full-duplex protocol uses CRC SDLC.

High Level Data Link Control (HDLC) - The ISO's International Standard full-duplex
protocol uses CRC SDLC.

DATA COMMUNICATION INSTRUCTION FORMATS

The optional Data Communication instructions use the Register to Register (RR), and the Regis-
ter and Indexed Storage (RX) formats.

DATA COMMUNICATION INSTRUCTIONS

PB Process Byte
PBR Process Byte Register
MPBSR Move and Process Byte String Register

29-405 ROO 5/76 9-1

INSTRUCTION

Process Byte (PB)

Assembler Notation Op-Code Format
PB R1, D2(X2) 62 ' " RX1, RX2
PB R1, A2(FX2, SX2) 62 RX3
Set Up 0 7,8 15.16 23 ,24 31
R1 X CHECKCODE | = X DATA BYTE

Bits 24:31 of the register specified by R1 contain the data byte to be processed. Bits 8:15 of the
register specified by R1 contain a check code to indicate the type of processing. This byte is
interpreted as follows:

X'00' Cumulative check zero (CRC BISYNC)

X'01' Cumulative check one (CRC SDLC)
x'02' Cumulative check two (LRC)

The second operand address points to a halfword residual checksum to be included in the cumula-
tive check.

Operation

I CRC BISYNC is specified, the data byte, and the old residual checksum participate in the Gen-
eration of a new residual checksum based on the evaluation of the polynomial (x16 +x30 4+ x2 4+ 1).

If CRC SDLC is specified, a similar operation is performed, using the polynomial
x16 + x12 1 x5 + 1)

In both of these cases, the new residual checksum replaces the old residual checksum at the second
operand location.

If LRC is specified, the EXCLUSIVE OR of the data byte with the old residual checksum replaces
the old residual checksum at the second operand location,

Condition Code

Unchanged

Programming Note
Bits 0:7 and 16:23 of the register specified by R1 are ignored.
The register specified by R1 remains unchanged.
The second operand must be located on a halfword boundary.

Undefined check codes should not be used. If they are, the results are undefined.

29405 ROO 5/76

Example: PB

This example performs a Process Byte instruction and stores the residue into RESIDUE,

Register 1 contains X'0001007A"
where: 01 = CRC SDLC ‘
7A = DATA BYTE

RESIDUE contains X'D053' = old residue
Assembler Notation Comments
PB R1,RESIDUE RESIDUE ON HALFWORD BOUNDARY

Result of PB Instruction

(R1) = unchanged by this instruction
(RESIDUE) = X'BC13' = new residue
Condition Code = unchanged by this instruction

29-405 ROO 5/76

INSTRUCTION

Process Byte Register (PBR)

Assembler Notation Op-Code Format
PBR R1,R2 32 RR
Set Up
0 7,8 15,16 23,24 31
R1 X CHECK CODE X DATA BYTE
R2 0 RESIDUAL CHECKSUM

Bits 24:31 of the register specified by R1 contain the data byte to be processed. Bits 8:15 of the
register specified by R1 contain a check code to indicate the type of processing. This byte is
interpreted as follows:

X'00' Cumulative check zero (CRC BISYNC)
X'01' Cumulative check one (CRC SDLC)
X'02' Cumulative check two (LRC)

The second operand is a fullword contained in the register specified by R2. Bits 16:31 of the
second operand contain the residual checksum to be included in the processing.

Operation

If CRC BISYNC is specified, the data byte, and the old residual checksum participate in the gen-
eration of a new residual checksum based on the evaluation of the polynomial (x16 + x15 1 x2 + 1),

IF CRC SDLC is specified, a similar operation is performed, using the polynomial
x16 + x12 1+ x5 1 1),

In both these cases, the new residual checksum replaces the contents of the Bits 16:31 of the
register specified by R2.

If LRC is specified, the EXCLUSIVE OR of the data byte with the old residual checksum replaces
the old residual checksum in the second operand.

Condition Code

Unchanged

Programming Note

Bits 0:7 and 16:23 of the register specified by Rl are ignored. The register specified by R1 re-
mains unchanged. Bits 0:15 of the register specified by R2 are not used and must be zero.

Undefined check codes should not be used. If they are, the results are undefined.

29405 ROO 5/76

INSTRUCTION

Move and Process Byte String Register (MPBSR)

Assembler Notation Op-Code Format
MPBSR R1,R2 30 ' RR
Set Up
0 7,8 15 16 31

R1 DATA BYTES STRING ADDRESS
R1+1 TRANSLATION TABLE ADDRESS
R1+2 CONTROL CODE | CHECK CODE COUNT
R1+3 0 RESIDUAL CHECKSUM
R1+4 LINK REGISTER FOR SUBROUTINE
R2 DESTINATION BUFFER ADDRESS J

The register specified by R1 contains the address of the first byte in the string to be moved and
processed.

The register specified by R1+1 contains the address of the translation table.

Bits 0:7 of the register specified by R1+2 contain a control code to indicate both the type and the
sequence of processing. This byte is defined as follows:

X'00' Cumulative check using data byte, move data byte

X'08' Translate, cumulative check using data byte, move translated byte
X'0A! Translate, cumulative check using translated byte, move translated byte
X'0C' Translate, move translated byte

Bits 8:15 of the register specified by R1+2 contain a check code to indicate the type of cumulative
check to be used in processing the data bytes. This byte is interpreted as follows:

X'00' Cumulative check zero (CRC BISYNC)
X'01' Cumulative check one (CRC SDLC)
X2 - Cumulative check two (LRC)

If cumalative check is not specified, this byte does not participate in the MPBSR instruction.

Bits 16:31 of the register specified by R1+2 contain a halfword count which defines the number of
bytes to be processed. A count of X'0000' specifies a move of 1 character. A count of X'TFFF'
specifies a move of 32,768 characters. These are the minimum and maximum values respectively.

Bits 16:31 of the register specified by R1+3 contain the halfword residual value to be used in per-
forming the cumulative check. If cumulative check is not specified, this register does not participate
in the MPBSR instruction.

The register specified by R1+4 is used as a link register in the translation process, if a special
character subroutine is specified. If translate is not specified or if a special character routine is

not specified, this register does not participate in the MPBSR instruction.

The register specified by R2 contains the address of the destination buffer.

29-405 ROO 5/76 9-5

Operation
Refer to Figure 10-1.
Successive bytes, starting with the first in the source string are:

1. Processed in accordance with the specified codes.
2, Moved to the destination buffer.

The operation stops when the byte count becomes negative. The source string is unchanged. (See
Addresses and Count, below.) The processed bytes replace the contents of the destination buffer,
Upon completion of the instruction, the location counter is incremented to point to the next
instruction in sequence. If the byte count is negative at the start of the instruction, no moving

or processing is done, the instruction terminates, and the location counter is incremented to
point to the next instruction.

Translation

The translation operation requires a 256 halfword table located in memory at the address con-
tained in the register specified by R1+1. The table is arranged in ascending order, with one entry
for each of the 256 possible data bytes. The translation operation may result in either a direct re-
placement, (in the destination buffer), of the data byte with another, or in a transfer to a special
character subroutine.

If the most significant bit, bit zero, of the halfword entry corresponding to the data byte is a one,
then bits 8:15 contain the replacement byte. This byte is moved to the proper location in the des-
tination buffer. The table entry is unchanged.

If the most significant bit of the entry is a zero, then bits 1:15 contain the address, divided by
two, of the special character subroutine. Before transferring to the subroutine, the link register,
specified by R1+4, is loaded with the address of the MPBSR instruction. The source address has
not been incremented and points to the current byte. The count has not been decremented. The
destination address has not been incremented and points to the proper destination for this byte.
This byte does not participate in the cumulative check.

If none of the halfwords in the translation table has its most significant bit set (i. e., no special
character subroutines), the register specified by R1+4 is not used by this instruction.

. Cumulative Check

The source byte used for the cumulative check may be the data byte or the translated byte as spec-
ified by the control code. The source byte is included in any one of three types of cumulative
check operations as specified by the check code.

If CRC BISYNC is specified, the source byte, and the old residual checksum contained in Bits
16:31 of the register specified by R1+3 participate in the generation of a new residual checksum
using a cyclic redundancy checking algorithm based on the generated polynomial =16 + x15 + x2 + 1),

E CRC SDLC is specified, a similar operation is performed, using the polynomial
x16 + x12 1 x5 4+ 1), ‘

In both of these cases, the new residual checksum replaces the contents of Bits 16:31 of the reg-
ister specified by R1+3.

If LRC is specified, the EXCLUSIVE OR of the source byte with the old residual checksum re-
places the old residual checksum in Bits 16:31 of the register specified by R1+3.

9-6 29-405 R0OO 5/76

START

BYTE

COUNT

NEGATIVE
?

YES

'
(LOC)=—(LOC)+2
CONDITION CODE

EXIT

0100

TRANSLATE YES

-

ONLY

A\ VI g
N

TRCK

YES

NO
FETCH SOURCE BYTE
INCREMENT SOURCE ADRS.
2x BYTE PLUS TRANSLATION
TABLE ADDRESS. FETCH
TRANSLATION TABLE HALFWORD

-

FETCH SOURCE BYTE
INCREMENT SOURCE ADRS.
2x BYTE PLUS TRANSLATION
TABLE ADDRESS. FETCH
TRANSLATION TABLE
HALFWORD

NO

NO NEGATIVE
?

YES

LS 8 BITS ARE TRANSLATED BYTE
DEVELOP NEW CHECKWORD
USING TRANSLATED BYTE

3 STORE TRANSLATED BYTE IN
DESTINATION BYTE STRING
INCREMENT DESTINATION ADRS.
DECREMENT BYTE COUNT

NO

>

YES

NEGATIVE
?

YES
LS 8 BITS ARE TRANSLATED
BYTE. DEVELOP NEW CHECK
WORD USING ORIGINAL SOURCE
BYTE. STORE TRANSLATED
BYTE IN DESTINATION BYTE
STRING INCREMENT DESTINA-
TION ADRS. DECREMENT BYTE
COUNT

NEGATIVE
?

Figure 9-1. Flowchart of MPBSR Instruction (Sheet 1 of 2)

29-405 ROO 5/76

9-7

vY

w

CKONLY

NO

FETCH SOURCE BYTE
INCREMENT SOURCE ADRS.
DEVELOP NEW CHECKWORD
USING THE SOURCE BYTE
STORE THE BYTE IN
DESTINATION BYTE STRING
INCREMENT DESTINATION ADRS.
DECREMENT BYTE COUNT

NEGATIVE
?

YES

TRONLY

INTERRUPT \.YES

?

FETCH SOURCE BYTE
INCREMENT SOURCE ADRS.

2x BYTE PLUS TRANSLATION
TABLE ADDRESS. FETCH
TRANSLATION TABLE HALFWORD

LS 8 BITS ARE TRANSLATED BYTE
STORE TRANSLATED BYTE IN
DESTINATION BYTE STRING
INCREMENT DESTINATION ADDRESS
DECREMENT BYTE COUNT

NO NEGATIVE
?

YES

(R1+20:31)<-LFFFF FFFF’
(LOC)e—(LOC)+2
ole

|
CONDITION CODE «—'0000’

[4)] -3
v Y VY

EXIT

—

(R1+4) =~ (LOC)

{LOC)=2x TRANSLATION
TABLE HALFWORD

EXIT

Figure 9-1. Flowchart of MPBSR Instruction (Sheet 2 of 2)

29-405 ROO 5/76

Byte Count

As each byte is moved, the source address and the destination address are incremented by one.
The count is decremented by one. Upon completion of the instruction, the source and destination
address registers contain the incremented addresses. The count register specified by R1+2 con-
tains a negative one, X'FFFF FFFF',

The count value is equal to the number of bytes in the source string minus one. A count of X'0000'

causes one byte to be processed, a count of X'7TFIF'F' causes 32,768 bytes to be processed. These
are the minimum and maximum count values respectively.

Condition Code

C|V|G|L

01010]0 Successful completion

011{0{0 Count negative at start
Addresses

There are no boundary restrictions on either the location of the source string or on the location of
the destination buffer. FEither may start and end on odd byte boundaries. If the memory access
controller is present and enabled, memory references using these addresses are relocated.

The translation table must be located on a halfword boundary. The address of the translation
table is relocated, if the memory access controller is present and enabled. Within the trans-
lation table, the address of the special subroutine must point to a location within the first 64KB
of program space., This address is also subject to relocation by the memory access controller.

Source and destination buffers may overlap. No checking is performed. The addresses specified
by the source (R1) and destination (R2) registers may be equal, specifying a move in place, but
R1 must not be equal to R2. That is, the instruction MPBSR 3, 3 is invalid.

Programming Note

This instruction is interruptable. The point at which interrupts are recognized, and the periods
of non-interruptability may vary in different implementations. Any of the following events may
cause this instruction to be interrupted: machine malfunction, memory failure, memory access
violation, external device attention. Before taking the interrupt, the processor finishes process-
ing the current byte, increments the source and destination addresses, and decrements the count.
The location counter is not incremented. This permits the move to resume, following the servie-
ing of the interrupt. Interrupt routines may use this instruction, provided they do not destroy the
contents of the registers.

Undefined control codes should not be used. If they are, the results are unpredictable.

Illegal instruction interrupt occurs if the Processor is not equipped with the communication
Instructions option.

If Rl specifies register number 6, then registers 6, 7, 8, 9 and 10 are used by this instruction.
If Rl specifies register number 13, then registers 13, 14, 15, 0 and 1 are used, in that order,

by this instruction.

if Rl = R2, the results are not defined.

29405 RO0 5/76 9-9

EXAMPLE: MPBSR

This example moves and performs a CRC SDLC check on a byte string of data.

BUFIN = 256 bytes buffer containing data 0:X'FF'

Register 1
Register 2
Register 3

Register 4
Register 5 |
Register 6

Assembler Notation

~MPBSR REGI, REG6

9-10

(REG1) =
(REG2) =
(REG3) =
(REG4) =
(REGS) =
Condition Code =

contains address of BUFIN
contains address of TRANSTAB
contains X'000100FF"'
where: 00 indicates check and move
01 indicates CRC SDLC
00 is not used
T'T indicates 256 bytes to be used
contains X'0' to begin
not used in this example
contains address of BUFOUT

Comment

MOVE BUFIN TO BUFOUT

BUFIN + 256

unchanged by this instruction
X'FFFF FFFF'

Half Residue X'D841'
BUFOUT + 256

0000 successful completion

BUFIN is unchanged
BUFOUT now contains 256 bytes 0-255

29405 ROO 5/76

CHAPTER 10
M71-102 HEXADECIMAL DISPLAY
PANEL AND M 71-101 BINARY DISPLAY

PANEL PROGRAMMING SPECIFICATION

INTRODUCTION

The M71-102 Hexadecimal Display Panel and M71-101 Binary Display Panel provide a means to
manually control the Processor, interrogate and display various Processor registers and machine
status, set and display Processor memory locations, and may be programmed as an I/O device
by the user. The Hexadecimal Display Panel and Binary Display Panel are identical in operation.
For convenience of the operator the Hexadecimal Display is equipped with a Hexadecimal readout
in addition to the standard Binary readout.

CONFIGURATION

The Hexadecimal Display Panel provides the system operator with visual indications of the
state of the Processor, as well as manual control over the system.

The Hexadecimal Display Panel, shown in Figure 10-1, is a RETMA standard 54" x 19" panel which
is plug removable from the Processor. It displays the current state of the Processor and provid-s
all necessary manual control over the system. The following paragraphs describe the control and
display elements of the Hexadecimal Display Panel.

n R B 14 15 Ie 17 Is T9

O!OOO 0000 000D 0000 OO0V JOO0O 0000 0000 OOOIOD

oY is1e MEMORY ADDRESS a1le MEMORY DATA 15
ole SWITCH REGISTER 15

H[FUNCTION PROGRAM STATUS WORD a
8| REGISTER |“ GENERAL REGISTER e

O FESBTER 1o e FLOATING REGISTER a1
I £11 (%]

LJ

]

o[=1 » -
a c
fl Z|3]-

S
P
3

-EHEE
o
S

- |[=
E ° HEE

HEEOR
HEEEB

3
c
z

3
2
&
3

—

ocCcr
328
2

L gNTﬂRm’I‘AJ

Figure 10-1. Hexadecimal Display Panel

29-405 RO0 5/76 ‘ 10-1

Display Registers and Indicators

Internal to the Hexadecimal Display Panel are five eight-bit byte Display Registers, D1 through D5,
that hold data output from the Processor, and a 20-bit Switch Register that holds data input from
The Hexadecimal Keyboard. Refer to Figure 10-2.

SWITCH REGISTER

,JTTi:fTTijTTiTTTi

0 . 710 710
D5 D4 D3

12 1516 MEMORY ADDRESS 310 MEMORY DATA

O+—- F T { E—:

34 SWITCH REGISTER

o F ; 2y
FUNCTION o PROGRAM STATUS WORD

Qe L 31
' =32 ﬁ:
REGISTER GENERAL REGISTER

O¢——— { 0 31,
L} T 1
REGISTER 0 7.8 FLOATING-POINT REGISTER

\ 31
Os f 2 ' 631

Figure 10-2. Display Registers and Indicators

Associated with each of Display Registers D1 through D4 are eight indicator lamps that provide
a binary read-out and two optional hexadecimal read-out indicators. Associated with the least sig-
nificant four bits of Display Register D5 are four indicator lamps for binary display and one optional

hexadecimal read-out indicator.

The most significant four bits of Display Register D5 (Bits 0:3) control four of the five indicator
lamps along the left edge of the Hexadecimal Display Panel. The fifth indicator lamp is controlled
by logic internal to the Hexadecimal Display Panel. To the right of each of these five lamps is a.
diagram that defines what is being displayed. In general, only one of the diagram lamps is on at
a time. If none of the diagram lamps are on, a user program has written data to the Display

Register D5.

As seen in Figure 10-2, the most significant 20-bits of the display show the contents of Display Registers
D3 and D4 and the least significant four bits of Display Register D5 (Bits 4:7); or the contents of the
20-bit Switch Register. When the Switch Register is being displayed, the lamp next to the Switch
Register diagram is turned ON. Any other diagram lamp that may have been ON, remains ON.

When the Switch Register is no longer displayed, its diagram lamp goes out and the most significant
20-bits of the display again show the contents of Display Registers D3 and D4 and the least signifi-

cant four bits of Display Register D5 (Bits 4:7).

The methods of displaying the Switch Register and the other diagrammed items are discussed later.

10-2 29-405 ROO 5/76

Key Operated Security Lock

This is a three-position, OFF-ON-LOCK, key-operated locking switch, which controls the primary
power to the system. This switch can also disable the Hexadecimal Display Panel, thereby pre-
venting any accidental manual input to the system. The power indicator lamp (PWR) associated
with the key lock is located in the lower right corner of the Hexadecimal Display Panel. The

PWR lamp is ON when the key lock is in the ON or LOCK position. The relationship between the
key lock switch positions, primary power, the Control keys, and the Hexadecimal keys is:

OFF The primary power is OFF.
ON The primary power is ON and the Control keys and Hexadecimal keys are
enabled.

LOCK The primary power is ON and the Control keys and Hexadecimal keys are
disabled. Only INT switch is active.

Control Keys

The momentary contact Control keys are only active when the key-operated locking switch is in

the ON position.

INITIALIZE (INT)

DATA (DTA)

ADDRESS (ADD)

MEMORY READ (RD)

29405 ROO 5/76

The Initialize (INT) key causes the system to be
initialized. After the initialize operation, all device
controllers on the system Multiplexor Bus are cleared
and certain other functions in the Processor are reset.

The Data (DTA) key clears the Switch Register and
connects it to the most significant 20 display indicators.
The Switch Register diagram lamp is turned ON. Hexa-
decimal data may now be entered into the Switch Register
from the Hexadecimal Keyboard. As each Hexadecimal
key is depressed, the data shifts into the Switch Register
from the right. If more than five hexadecimal digits are
entered, data shifted out of the Switch Register is lost.

Depressing any non-hexadecimal key disconnects the
Switch Register from the high order 20 display lamps anc
extinguishes the Switch Register diagram lamp.

The Address (ADD) key causes the Processor to halt and
copy the contents of the Switch Register into the Location
Counter field of the Program Status Word., The new
value of the Location Counter is then output to Display
Registers D1, D2, D3, and D4. The function diagram
lamp is turned ON and a Hexadecimal 5 is output to the
top four display lamps (Bits 4:7 of D5).

The Memory Read (RD) key causes the Processor to halt
and read the halfword contents of the memory location
presently pointed to by the Location Counter. (If the
Memory Access Controller is enabled then the relocated
value of the Location Counter is the effective address of
the memory location.) The halfword data read is output
to Display Registers D1 and D2. The Location Counter
is incremented by two and output to Display Registers D3
and D4 and the least significant four bits.of Display
Register D5 (a 20-bit value). The lamp next to the
Memory Address/Memory Data diagram is turned ON.

10-3

MEMORY WRITE (WRT)

EXAMINE REGISTER (REG)

EXAMINE FLOATING-
POINT REGISTER (FLT)

FUNCTION (FN)

SINGLE STEP (SGL)

RUN (RUN)

10-4

The Memory Write (WRT) key causes the Processor to
halt and read in the least significant 16 bits of the 20

bit Switch Register. The halfword of data is written into
the memory location presently pointed to by the Location
Counter. (If the Memory Access Controller is enabled
then the relocated value of the Location Counter is the
effective address of the memory location.) The data
written is then output to Display Registers D1 and D2.
The Location Counter is incremented by two and output
to Display Registers D3 and D4 and the least significant
four bits of Display Register D5. The lamp next to the
Memory Address/Memory Data diagram is turned ON.

The Examine Register (REG) key sets up the Hexadecimal
Display Panel to interpret the next Hexadecimal key de-
pressed as a General Register number. When the hexa-
decimal register number key is depressed, the Processor
halts and the content of the selected General Register of
the current register set is output to Display Registers

D1, D2, D3 and D4. The General Register diagram lamp
is turned ON and the number of the displayed register

is output to the top four display lamps.

The Examine Floating~Point Register (FLT) key sets up
the Hexadecimal Display Panel to interpret the next hexa-
decimal key depressed as the number of a Floating-Point
Register. When the hexadecimal register number key is
depressed, the Processor halts and the content of the
selected Floating-Point Register is output to Display Re~
gisters D1, D2, D3, and D4. The Floating-Point Register
diagram lamp is turned ON and the number of the dis-
played register is output to the top four display lamps. If
an odd numbered register had been selected and the proces-
sor is not equipped with double precision option, the
register number is forced to the next lower even value
before being used. On Processors not equipped with
floating-point, the result of this operation is undefined.

The Function (FN) key sets up the Hexadecimal Display
Panel to interpret the next hexadecimal key depressed as
the number of one of sixteen functions. When the hexa~
decimal key is depressed, the Processor halts to interpret
the selected function. If the function is undefined, the
Processor remains halted with no change to the display
indicators. The defined functions are detailed later.

The Single Step (SGL) key causes the Processor to exe-
cute one user level instruction at current location counter,
increment the LOC and then halt. The register that was
selected (PSW, LOC, General Register, etc.) is displayed.

The Run (RUN) key causes the Processor to begin program

execution at the address pointed to by the Location Counter
(LOC).

29-405 ROO 5/76

OPERATING PROCEDURES

Power Up

To power up the system, turn the key-operated security lock clockwise from the OFF position to
the ON position. This action provides electrical power to the system and leaves all device con-
trollers on the Multiplexor Bus in an initialized state.

Power Down

To shut down power to the system:

1. Halt the Processor.

2. Turn the key-operated security lock to the OFF position.

This removes primary power from the system and forces a Primary Power Fail (PPF) interrupt
the Processor. When power is re-applied, the Processor displays the contents of the Location
Counter (LOC) and then assumes the Halt mode. If the Processor had been running when power
was turned OFF, the Run mode is assumed when power is re-applied.

Address a Memory Location
To select an address:
1. Depress the Data (DTA) key. The Switch Register is cleared and displayed.
2. Enter the desired address from the Hexadecimal Keyboard.
3. Depress the Address (ADD) key. The Processor halts and copies the contents of the

Switch Register into the Location Counter field of the PSW. The new value of the
Location Counter is then displayed.

Memory Read

To display the contents of memory locations:.

1. Select the memory read start address as in Address a Memory Location.

2. Depress the Read (RD) key. The address read from, plus two, and the data read from
memory are displayed.

3. Repeat from Step 2 to read successive memory locations. The Location Counter is
automatically incremented by two each time RD is depressed.

Memory Write

To write data from the Switch Register into memory:
1. Select the memory write start address as in Address a Memory Location.
2. Depress the Data (DTA) key. The Switch Register is cleared and displayed.

3. Enter the data to be written from the Hexadecimal Keyboard.

4, Depress the Write (WRT) key. The address written into, plus two, and the data written
are displayed.

5. Repeat from Step 2 to write different data into successive locations or from Step 4 to

write the same data into successive locations. The Location Counter is automatically
incremented by two each time WRT is depressed.

29405 ROO 5/76

to

10-5 °

General Register Display

To examine the contents of a General Register:
1. Depress the Register (REG) key.

2. Depress the hexadecimal register number. The Processor halts and the contéents of the
selected General Register is displayed.

NOTE

The General Register displayed is from the
register set specified by the current Program
Status Word.

Floating-Point Register Display

To examine the contents of a Floating-Point Register:
1. Depress the Floating-Point Register (FLT) key.

2. Depress the hexadecimal register number. If the Processor is not equipped with
floating-point the result of this operation is undefined. If the Processor is equipped
with floating-point, the selected register number is forced even and the Floating-Point
Register is displayed. The Processor is left in the Halt mode.

Floating-Point Register Display (later versions of 7/32)

After initialize or after a Function 2 all manual references to floating register are single precision.
After a Function 3 all references to floating registers are double precision, if the Double Floating
Point Unit (DFU) is equipped.

Using even/odd concept

The even numbered register of an even/odd pair refers to the most significant 32 bits and the
odd numbered register refers to the least significant 32 bits.

References to an odd numbered floating point register when in the single precision mode (FN 2)
produce different results depending on whether or not the DFU is equipped. If DFU is absent
then the number is forced to the next lower even number and that single precision register is
displayed. If DFU is present then the LS 32 bits of the corresponding double register are
displayed.

Program Status Word Display and Modification

To examine the Status field (most significant half) of the current PSW:
1. Depress the Function (FN) key.

2. Depress Hexadecimal key 4. The Processor halts and the status field (most significant
half) of PSW is displayed.

To examine the Location Counter field (least significant half) of the current PSW:
1. Depress the Function (FN) key.

2. Depress Hexadecimal key 5. The Processor halts and the Location Counter field (least
significant half) of PSW is displayed.

To modify the least significant 16 bits (Bits 16-31) of the Status field:
1. Depress the Data (DATA) key.

2. Enter the data (to be written into bits 16-31 of the PSW) from the Hexadecimal keyboard.

10-6 29405 ROO 5/76

3. Depress the Function (FN) key.

4. Depress Hexadecimal key 1. The Processor halts and copies the 16 bits of the Switch
register in bits 16-31 of the PSW. The modified PSW is then displayed.

Program Execution

To begin execution of a program:

1. Select the program start address as in Address a Memory Location.

2. Select the register to be displayed.

3. Depress the Run (RUN) key.
To execute a program in the Single-Step mode:

1. Select the program start address as in Address a Memory Location.

2. Select the register to be displayed.

3. Depress the Single-Step (SGL) key. One instruction is executed, the last selected
register (PSW, LOC, General Register, etc.) is displayed and the Processor halts.

4. Repeat Step 3 to execute successive instructions. Return to Step 2 to display different
registers.

Program Termination

To manually halt the execution of a program, display any register or depress the Single-Step
(SGL) key. In the latter case, the last selected register is displayed.

Console Interrupt

To generate an interrupt from the Hexadecimal Display Panel:
1. Depress the Function (FN) key.

2. Depress Hexadecimal key 0. If enabled by the current PSW, an interrupt from device
number 1 is simulated. If not enabled, the Processor enters the Run mode. Hexadecima.
Display Panel interrupts are not queued.

The Hexadecimal Display Panel interrupt feature allows an operator to inform the running pro-
gram that some operator service or function is needed. No acknowledgement of the interrupt is

required of the running program.
Switch Register

To examine the Switch Register at any time during execution of a program, depress any hexa-
decimal key. The Switch Register is displayed for as long as the key is depressed. No informa-
tion enters the Switch Register. When the hexadecimal key is released, the top 20 display lamps
return to their previous state.

The Switch Register can be modified without interrupting the Processor as follows:

1. Depress the Data (DTA) key. The Switch Register is cleared and displayed.
2, Enter the desired hexadecimal data.

Power Fail

When the Processor detects a power failure, the micro-program senses the Hexadecimal Display
Panel status. The present status of the display is stored in main memory at a dedicated area

by the micro-program. The current Program Status Word, Location Counter and the programmable
registers are then saved in dedicated main memory locations and the micro-program deactivates
the System Clear (SCLR) relay.

29-405 ROO 5/76 10-7

On power up, after the system clear relay has re-activated, the Program Status Word, Location
Counter, and programmable registers are restored from their main memory save locations. The
status of the display prior to the power failure is retrieved and interrogated by the micro-program.

If the Hexadecimal Display Pancl was in the Run mode, and the Initialize Key is not depressed,
and if the Machine Malfunction Interrupt Enable bit of the PSW is set, a Machine Malfunction

Interrupt is taken. If Machine Malfunction Interrupts are not enabled, the Processor enters the
Run mode beginning at the instruction pointed to by the Location Counter. ’

If the Hexadecimal Display Panel was not in the Run mode, or if the Initialize Key is still de-
pressed, the value of the Location Counter is output to the display registers, the WAIT lamp on
the console is turned ON and the Halt mode is entered.

Power failure and operation of the Initialize key are indistinguishable to the Micro-Program ex-
cept as described above, Consequently, operation of the Initialize key should be considered care~
fully when the Machine Malfunction Interrupt is enabled. The Initialize Key causes all the activi-

ties associated with a power failure to occur.
some delay, it is re-activated.

The System Clear relay deactivates, then, after
If, after these electro-mechanical delays, the Initialize Key is

still being depressed, the Halt mode is entered. The total delay works out to be about a half a

second.

Care should also be taken when using the Hexadecimal Display Panel as an input device (testing
Switch Register bits) due to the volatility of the Switch Register in a power fail situation.

After a power up, the contents of the Switch Register are undefined. The display status byte is
forced to X'40' on power up or initialize.

DATA FORMAT

A byte or a halfword can be transferred to or from the Display using the WD, WH, WDR, WHR, or
RD, RH, RDR, RHR instructions.

Refer to Figure 10-3.

REGISTER

DISPLAY D5 D4 D3 D2 D1
SWITCH s2 S1

REGISTER

DATA TRANSFERRED

R

NORMAL MODE

INCREMENTAL MODE

RD (R) S1 S1

RD (R) s1 52

RD (R) S1 st

RD (R} s1 52

RH (R) 51,52 51,52

RB (R) $1,52,51.52 $1,52,51,82

WD (R) D1 D1

WD (R} D1 D2

WD (R) D1 D3

WD (R) D1 Da

WD (R) D1 D5

WH (R) D1,02 D1.02
WH (R) D1,02 P3,04

WH (R) D1.D2 D5.NOTE 1
WB (R) * * D1,02,03,04,05 01,02,03,D4,08

* BLOCK LENGTH =4 BYTES

10-8

** BLOCK LENGTH =5BYTES

NOTE 1. SUBSEQUENT BYTES OUTPUT ARE LOST.

Figure 10-3. Hexadecimal Display Panel Data Transfers

29-405 ROO 5/76

PROGRAMMING INSTRUCTIONS
Input/Output Programming

The Hexadecimal Display Panel is available to any running program as an I/O device with device
address 01. The status and command bytes for the Hexadecimal Display Panel are summarized

in Table 10-1. The status byte indicates the mode of the Hexadecimal Display Panel and is of little
interest to a running program as it always indicates Run mode or Hexadecimal Display Panel
Interrupt (Function 0). The command byte selects Normal or Incremental mode, which pertains
to data Transfers. The selection logic which deterinines the Switch Register byte or register
display byte to transfer is reset every time the Hexadecimal Display Panel is addressed when

in the Normal mode. When an Output Command Incremental mode is issued to the Hexadecimal
Display Panel, the byte selection logic is initially reset. Subsequent Read or Write instructions
transfer bytes as shown in Figure 10-3.

Block I/O with the Hexadecimal Display Panel is only feasible when the least significant four
status bits are reset.

NOTE

After an initialize sequence or after any
manual Hexadecimal Display Panel operation
that results in anything being displayed, the
Display Device Controller is automatically
placed in the Normal mode.

When programming the Hexadecimal Display Panel in the Incremental mode, the Output Command
Incremental mode must be issued before each set of data transfers to guarantee that the byte
selection logic is reset.

The most significant four bits of the Switch Register are only available to the micro-program.
These four bits are transferred as Bits 5, 6, 7, and 0 of the status when the Hexadecimal Display
Panel status is Address (i.e., Display Status ="XM11XXXX").

Wait State

The running program can place the Processor into the Wait state by setting the Wait bit of the
current PSW. The WAIT indicator on the lower right of the panel is turned ON to inform the
operator of the Wait state. The Processor can leave the Wait state and resume execution in
two ways:

1. An Interrupt can occur causing the Processor to jump to an interrupt service routine.
When the routine restores the original PSW, the Wait state is re-established.

2. The operator can depress the RUN key which causes the Wait bit in the PSW and the
WAIT lamp to be reset and execution to resume at the address specified by LOC,

PROGRAMMING SEQUENCES

The Hexadecimal Display has a device address of X'01'.

This device can be used to output up to five bytes of data to the Console Panel Indicators. The
following program sequence outputs four bytes of data starting from the memory location BUF:

LIS R1,1 (R1) = Display Address

LHI R3, X'40')

OCR R1,R3 Display in Incremental Mode
WD R1,BUF

WD R1, BUF+1

WD R1,BUF+2

WD R1,BUF+3

29-405 ROO -5/76 10-9

At this time the Console Panel Indicators are ON as shown below:

D5 D4 D3 D2 D1
(BUF+3) (BUF+2) | (BUF+1) (BUF)

In order to light indicators D1 and D2, the Console can be in the normal mode and one halfword
can be output. The following programming sequenoe can be used:

LIS R1,1

LHI R3, X'80'

OCR R1,R3 Console in Normal Mode
WH R1,BUF

The Console Panel Indicators will be ON as shown below:

D5 D4 D3 D2 D1
(BUF+1) | (BUF)

Note that when a halfword of data is output to the Console Panel, the most significant byte loads
in indicator D1 and the least significant byte loads in D2.

The Console Panel Switch Register can be read by using the read instructions as shown below:

LIS R1,1 (R1) = Console Address
LHI R3, X'80! (R3) = 80 = Normal Mode
OCR R1,R3

RHR R1,R4 Read 1 Halfword

EXBR R4,R4 Exchange Bytes

At this time Register 4 has the 16 data switches.

Programming Note:

If more than five bytes are output to the Display Panel, the data is lost after five bytes. The
Console must then be initialized by giving an Output Command to it before outputting any data,
if the data is to be displayed.

10-10 29-405 ROO 5/76

TABLE 10-1. DISPLAY STATUS AND COMMAND

STATUS

0

'

Floating Register

Floating Register E

Console Interrupt

PSW Select

Set Single precision display mode
Set Double precision display mode

Display PSW
Display LOC

0
0
1
1
0
0

0
0
1
1

X| X[X

XX X[X
X| X[XX

X

0

® K

KKK

o o

OO O

e~

e

X
X
X

0

- O -

0

LR R]
LR
R
el R o]
.0101
S O
[=T = e)
E T T
£ o 0
35T
=E§¢
> a3
£g<
£ E
o 9
s =

Fixed Register
Floating Register

Function

D
E
F

General Register 0

General Register

Function 0

Function F

COMMAND

1
0

Normal

Incremental

10-11/10-12

29405 RO0O 5/76

MSD ————=

APPENDIX 1

MODEL 7/32 OP-CODE MAP

0 1 2 3 4 5 6 7 9 c D E F
LSD 1 4 2 3
0 SRLS |BTBS |MPBSR|STH |ST STE, |STD, |SRHLS|BXH |sTM |TS
4 2
1|BALR [sLLs |BTFS BAL |AM |AHM |STME_|SLHLS |BXLE [LM , [SVC ,
1 1
2|8TcrR |cHvR [BFBS | pBR |BTC PB LMEi STBR |*LPsw |sTB |*sINT
3|BFCR BFFS BFC LRA, |LHL [LBR |THI LB "scp, | T
4
4 NR LIS |EXHR [NH |N ATL |TBT |EXBR [NHI [CLB NI
4
5 |CLR LCS CLH |cL fABL |SBT *EPSR |CLHI |*AL cLi
4
6 [oR AIS oH |o RTL, |RBT [*WBR [OHI |"WB , |LA ol
4
7|xR sis XH |x RBL, |CBT |*RBR |XHI |*RB, TLATE | i
2 3 4 3
8| LR |*LPsWR LER“|LDR” |LH |[L LE LD °, ["WHR [LHI |*WH LI
2 3 4 3
9lcr cer “lcor e ¢ CE i co *RHR [cHI |*RH cl
4
AlAR aer? [aDR® |aH |A AE24 Aoi’ *WDR |AHI |*WD |RRL Al
2 3 4 2 3 |, .
8[sRr SER“ |SDR” |sn [s SE , [sD RDR [SHI RD |RLL sl
clwir [mr mMer? Mor3{me |m ¢ [me? Moi’ SRHL SRL
2 3 4 3 |. *
ploHrR [pR |DER® |DDR|DH |D DE’ DD, [*SSR [SLHL |'ss |SLL
2 3 3, .
E FXR® |FXDR CRC12 STMD4 OCR |SRHA |*OC [SRA
2 3 3
F FLR“ |FLDR CRC16 Mo, SLHA SLA
NOTES

29405 ROO 5/76

BN~

Privileged Instructions

Communication (Optional) Instructions. (Models 7/32C and 7/32C 1l only)
Single Precision Floating Point (Optional) Instructions.

Double Precision Floating Point (Optional) Instructions.
Second operand must be aligned on a fullword boundary.

Al-1

APPENDIX 1 (Continued)

This manual describes all of the features (standard and optional) for all of the versions of Model 7/32 except M73-025 and
M73-026. Refer to Model 7/32 Reference Manual, Publication Number 29-399 for a description of these two versions.

The following table shows the standard and optional features of the current versions of Model 7/32. Note that the optional
features may be included with the initial system or may be added later. Certain optional features are required for certain
software products. For example, 0S/32-MT requires the Memory Access Controller (M73-104). The corresponding

software manuals list all such requirements.

For further information, refer to INTERDATA Price List, Publication Number 38-074.

Standard
Model Features Optional Features
7/32C M73-030: 750 ns 64KB M71-101 Binary Display Panel
Core Memory M71-102 Hexadecimal Display Panel
or M73-100 Power Fail Detection/Auto Restart
M73-031: 1000 ns 64KB M73-101 Floating Point Hardware
Core Memory (Single Precision Only)
M73-103 Direct Memory Access Buffer
Standard 132 instructions M73-104 Memory Access and Protect Controller
M73-105 Extended Memory Selector Channel
M73-106 Local Memory Bank Interface
M73-107 Processor Parity Control
M73-111 Local Memory Bank Interface Chassis
M73-112 High Speed Data Handling
(includes Data Communication
Instructions and Hardware CRC)
Up to 1 MB of core memory (750 ns or 1000 ns)
7/32C 11 M73-032: 750 ns 64KB M71-101 Binary Display Panel
Core Memory M71-102 Hexadecimal Display Panel
or M73-100 Power Fail Detection/Auto Restart
M73-033: 1000 ns 64KB M73-103 Direct Memory Access Buffer
Core Memory M73-104 Memory Access and Protect Controller
M73-105 Extended Memory Selector Channel
Standard 132 instructions M73-106 Local Memory Bank Interface
M73-107 Processor Parity Control
M73-111 Local Memory Bank Interface Chassis
M73-112 High Speed Data Handling
(includes Data Communication
Instructions and Hardware CRC)
M73-034 Floating Point Processor

" Up to 1 MB of core memory (750 ns or 1000 ns)

(Both Single and Double Precision)

Al-2

29-405 ROO 5/76

APPENDIX 2
INSTRUCTION SUMMARY - ALPHABETICAL WITH ATTRIBUTES

Attributes

A arithmetic fault interrupt can occur

C: Condition Code in the PSW is set to reflect the result

D: second operand must be on double work boundary for consistent result
F second operand must be on fullword boundary for consistent result

H second operand must be on halfword boundary for consistent result

1 illegal instruction interrupt can be initiated

IA: immediate interrupt or Auto-Driver Channel can be initiated

P: protect mode violation can occur

RP: relocation/protection interrupt can occur

INSTRUCTION OP-CODE MNEMONIC ATTRIBUTES PAGE NO,
Add 5A A C,F 4-4
Add Double Precision Floating Point - TA AD C,D,A,I 5-29
Add Floating Point 6A AE C,F, AL 5-14
Add Floating Point Register 2A AER C,A I 5-14
Add Halfword 4A AH C,H 4-5
Add Halfword immediate CA AHI C 4-5
Add Halfword to Memory 61 AHM C,RP,H 4-7
Add Immediate FA Al C 4-4
Add Immediate Short 26 AIS C 4-4
Add Register 0A AR C 4-4
Add Register Double Precision Floating Point 3A ADR C,A I 5-29
Add to Bottom of List 65 ABL C, F, RP 2-45
Add to Memory 51 AM C, ', RP 4-6
Add to Top of List 64 ATL C,F,RP 2-45
AND 54 N C,F 2-21
AND Halfword 44 NH C,H 2-22
AND Halfword Immediate C4 NHI C 2-22
AND Immediate F4 NI C 2-21
AND Register 04 NR C 2-21
Autoload D5 AL C,P 7-14
Branch and Link i 41 BAL H 3-5
Branch and Link Register 01 BALR 3-5
Branch on False Condition 43 BFC H 3-4
Branch on False Condition Backward Short 22 BFBS 3-4
Branch on False Condition Forward Short 23 BFFS 3-4
Branch on False Condition Register 03 BFCR 3-4
Branch on Index High Co BXH H 3-7
Branch on Index Low or Equal C1 BXLE H 3-6
Branch on True Condition 42 BTC H 3-3
Branch on True Condition Backward Short 20 BTBS 3-3
Branch on True Condition Forward Short 21 BTFS 3-3
Branch on True Condition Register 02 BTCR 3-3

29-405 ROO 5/76 A2-1

APPENDIX 2 (Continued)

INSTRUCTION

Compare

Compare Double Precision Floating Point
Compare Floating Point

Compare Floating Point Register
Compare Halfword

Compare Halfword Immediate

Compare Immediate

Compare Logical

Compare Logical Byte

Compare Logical Halfword

Compare Logical Halfword Immediate
Compare Logical Immediate

Compare Logical Register

Compare Register

Compare Register Double Precision Floating Point
Convert to Halfword Value Register
Complement Bit

Cyclic Redundancy Check Modulo 12
Cyclic Redundancy Check Modulo 16

Divide

Divide Double Precision Floating Point

Divide Floating Point

Divide Floating Point Register

Divide Halfword

Divide Halfword Register

Divide Register

Divide Register Double Precision Floating Point

Exchange Byte Register
Exchange Halfword Register
Exchange Program Status Register

Exclusive OR

Exclusive OR Halfword

Exclusive OR Halfword Immediate
Exclusive OR Immediate
Exclusive OR Register

Fix Register
Fix Register Double Precision Floating Point

Float Register
Float Register Double Precision

Load

Load Address

Load Byte

Load Byte Register

Load Complement Short

Load Double Precision Floating Point
Load Floating Point

Load Floating Point Multiple

Load Floating Point Register

Load Halfword

A2-2

OP-CODE MNEMONIC
59 C
79 CD
69 CE
29 CER
49 CH
Cc9 CHI
F9 CI
55 CL
D4 CLB
45 CLH
C5 CLHI
Fb5 CLI
05 CLR
09 CR
39 CDR
12 CHVR
77 CBT
5E CRC12
5F CRC16
5D D
7D DD
6D DE
2D DER
4D DH
0D DHR
1D DR
3D DDR
94 EXBR
34 EXHR
95 EPSR
57 X
47 XH
c7 XHI
7 XI
07 XR
2E I'XR
3E FXDR
2F FLR
3F FLDR
58 L
E6 LA
D3 LB
93 LBR
25 LCS
78 LD
68 LE
72 LME
28 LER
48 LH

ATTRIBUTES PAGE NO.

S
i

-

me g

—
S IS)
T 1 1
®wR o

- 11 5
B9 B0 B9 B2 B0 RO e

o o W
@ ©© W OO

= j=JoNeNoNoloNoNoNoNoNoNoRoNONONONONS
s l=c i
v v i) &

Do

|

-

> O e

—
()]
1
[J
[8]

-

arrmoQam

>
—
1
1
(2]
w

caaa
[\
I
[\~
(=2}

-

QQ aQ
— -t
i g
W [\V]
(3] w

> P

P
PR
=3 U1

-

OO'TJS')OO
Py
]

NO‘!CIHU'IUIL\D
=N O
(= =

29-405 ROO 5/76

APPENDIX 2 (Continued)

INSTRUCTION OP-CODE MNEMONIC ATTRIBUTES PAGE NO.

Load Halfword Immediate C8 LHI C 2-6
Load Halfword Logical 73 LHL C 2-9
Load Immediate F8 LI C 2-5
Load Immediate Short 24 LIS C 2-5
Load Multiple D1 LM F 2-10
Load Multiple Double Precision Floating Point 7F LMD D,1 5-26
Load Program Status Word c2 LPSW C,D,P,IA 6-12
Load Program Status Word Register 18 LPSWR C,P, 1A 6-13
Load Real Address 63 LRA C,F,1 2-8
Load Register 08 LR C 2-5
Load Register Double Precision Floating Point 38 LDR C,A1 5-25
Move and Process Byte String Register 30 MPBSR C,1 9-5
Multiply 5C M ¥ 4-12
Multiply Double Precision Floating Point 7C MD C,D, A1 5-32
Multiply Floating Point 6C ME C,F,AL 5-19
Multiply Floating Point Register 2C MER C,A, T 5-19
Multiply Halfword 4C MH H 4-13
Multiply Halfword Register 0C MHR 4-13
Multiply Register 1C MR 4-12
Multiply Register Double Precision Floating Point 3C MDR C,A,I 5-32
OR 56 o C,F 2-22
OR Halfword 46 OH C,H 2-24
OR Halfword Immediate (o] OHI C 2-24
OR Immediate F6 (0)] C 2-23
OR Register 06 OR C 2-23
Output Command " DE ocC c,P,IA 7-4
Output Command Register 9E OCR C,P,IA -4
Process Byte ' 62 PB H,1 9-2
Process Byte Register 32 PBR I 9-5
Read Block D7 RB C,T,P 7-9
Read Block Register 97 RBR C,P 7-8
Read Data DB RD C,P 7-6
Read Data Register 9B RDR C,P 7-6
Read Halfword ‘ D9 RH C,H,P 7-7
Read Halfword Register 99 RHR C,P 7-7
Remove from Bottom of List 67 RBL C, F, RP 2-46
Remove from Top of List 66 RTL C,F, RP 2-46
Reset Bit 76 RBT C,RP 2-39
Rotate Left Logical EB RLL C 2-33
Rotate Right Logical EA RRL C 2-34
Sense Status Arithmetic DD SS C,P 7-5
Sense Status Register 9D SSR C,P 7-5
Set Bit 75 SBT C, RP 2-37
Shift Left Arithmetic EF SLA o} 4-18
Shift Left Halfword Arithmetic CF SLHA C 4-19

29-405 ROO 5/76 A2-3

APPENDIX 2 (Continued)

INSTRUCTION

Shift Left Halfword Logical

Shift Left Halfword Logical Short
Shift Left Logical

Shift Left Logical Short

Shift Right Arithmetic

Shift Right Halfword Arithmetic
Shift Right Halfword Logical

Shift Right Halfword Logical Short
Shift Right Logical

Shift Right Logical Short

Simulate Channel Program
Simulate Interrupt

Store

Store Byte

Store Byte Register

Store Double Precision Floating Point

Store Floating Point

Store Floating Point Multiple

Store Halfword

Store Multiple

Store Multiple Double Precision Floating Point

Subtract

Subtract Double Precision Floating Point

Subtract Floating Point

Subtract Floating Point Register

Subtract Halfword

Subtract Halfword Immediate

Subtract Immediate

Subtract Immediate Short

Subtract Register

Subtract Register Double Precision Floating Point

Supervisor Call

Test and Set

Test Bit

Test Halfword Immediate
Test Immediate

Translate

Write Block

Write Block Register
Write Data

Write Data Register
Write Halfword

Write Halfword Register

A2-4

MNEMONIC

OP-CODE ATTRIBUTES PAGE NO.
CcD SLHL c 2-31
91 SLHLS C 2-31
ED SLL C 2-29
11 SLLS C 2-29
EE SRA o) 4-20
CE SRHA c 4-21
cc SRHL C 2-32
90 SRHLS C 2-32
EC SRL C 2-30
10 SRLS C 2-30
E3 SCP C,F, P 7-15
E2 SINT c, P, 1A 6-15
50 ST F, RP 2-14

D2 STB RP 2-17
92 STBR 2-17
70 STD D, RP, 1 5-27
60 STE F,RP,I 5-12
71 STME F, RP,1 5-13
40 STH H, RP 2-15
Do STM F, RP 2-35
TE STMD D,RP,1 5-28
5B S C,F 4-8
7B SD C,D, A1 5-30
6B SE C,F,A, 1 5-16
2B SER C,A, 1 5-16
4B SH c,H 4-9
CB SHI C 4-9
FB SI c 4-8
27 SIS C 4-8
0B SR C 4-8
3B SDR C, AL 5-30
El SVC C,F 6-16
EO0 TS C, RP 2-35
74 TBT C 2-36
c3 THI C 2-28
3 TI o) 2-27
E7 TLATE F 2-42
D6 WB C,F,P 7-12
96 WBR C,P 7-13
DA WD c,pP 7-10
9A WDR C,P 7-10
D8 WH C,H, P 7-11
98 WHR C, P 7-11

29405 ROO 5/76

APPENDIX 3

INSTRUCTION SUMMARY - NUMERICAL

OP-CODE MNEMONIC INSTRUCTION PAGE NO.
01* BALR Branch and Link Register 35
02* BTCR Branch on True Condition Register 33
03* BFCR Branch on False Condition Register 34
04 NR AND Register 2-21
05 CLR Compare Logical Register 218
06 OR OR Register 2-23
07 XR Exclusive OR Register 2-25
08 LR Load Register 25
09 CR Compare Register 4-10
0A AR Add Register 4-4
08 SR Subtract Register 4-8
oc* MHR Muitiply Halfword Register 4-13
oD* DHR Divide Halfword Register 4-16
10 SRLS Shift Right Logical Short 2-30
1 SLLS Shift Left Logical Short 2-29
12 CHVR Convert to Halfword Value 4-22
18 LPSWR Load Program Status Word Register 6-13
1C* MR Multiply Register 4-12
1D* DR Divide Register 4-14
20* BTBS Branch on True Condition Backward Short 33
21* BTFS Branch on True Condition Forward Short. 33
22+% BFBS Branch on False Condition Backward Short 34
23* BFFS Branch on False Condition Forward Short 34
24 LIS Load Immediate Short 25
25 LCS Load Complement Short 25
26 AlS Add Immediate Short 4-4
27 SIS Subtract Immediate Short 4-8
28 LER Load Floating Point 5-10
29 CER Compare Floating Point 518
2A AER Add Floating Point Register 5-14
28 SER Subtract Floating Point Register 4-16
2C MER Mutltiply Floating Point Register 519
2D DER Divide Floating Point Register 5-21
2E FXR ‘Fix Register 5-23
2F FLR Float Register 5-24
30 MPBSR Move & Process Byte String Register 9-5
32* PBR Process Byte Register 95
* Condition Code Not Changed

29-405 ROO 5/76 A3-1

APPENDIX 3 (Continued)

OP-CODE MNEMONIC INSTRUCTION PAGE NO.
34* EXHR Exchange Halfword Register 2-13
38 LDR Load Register Double Precision Floating Point 5-26
39 CDR Compare Register Double Precision Floating Point 5-31
3A ADR Add Register Double Precision Floating Point 5-29
3B SDR Subtract REgister Double Precision Floating Point 5-30
3C MDR Multiply Register Double Precision Floating Point 5-32
3D DDR Divide Register Double Pracision Floating Point 5-33
3E FXDR Fix Register Double Precision Floating Point 5-34
3F FLDR Float Register Double Precision Floating Point 5-35
40* STH Store Halfword 2.15
41* BAL Branch and Link 3.5
42* BTC Branch on True Condition 3.3
43* BFC Branch on False Condition 3.4
a4 NH " AND Halfword 220
45 CLH Compare Logical Halfword 2.19
46 OH OR Halfword 2.24
47 XH Exclusive OR Halfword e

2-26
48 LH Load Halfword 2.6
49 CH Compare Halfword 4-11
4A AH Add Halfword 45
4B SH Subtract Halfword 4.9
4C* MH Multiply Halfword 413
4D* DH Divide Halfword

4-16
50* ST Store 2.14
51 AM Add to Memory

4-6
54 N AND 2.21
55 CL Compare Logical 2-18
56 o OR .
57 X Exclusive OR ggg
58 L Load 2.5
59 Cc Compare 4-10
5A A Add
5B S Subtract ig
5C* M Multiply 412

* Py -

5D D Divide 414
BE* CRC12 Cyclic Redundancy Check Modulo 12 2.40
5F* CRC16 Cyclic Redundancy Check Modulo 16 2.40
60* STE Store Floating Point 5.12
61 AHM Add Halfword to Memory 47
62* PB Process Byte 9.2
63 LRA Load Read Address 2.8
64 ATL Add to Top of List 2-45
65 ABL Add to Bottom of List 2-45
66 RTL Remove from Top of List 2-46
67 RBL Remove from Bottom of List 2-46

* Condition Code Not Changed

29-405 ROO 5/76

APPENDIX 3 (Continued)

MNENONIC , INSTRUCTION

OP-CODE PAGE NO.
68 LE " Load Floating Point 5-10
69 CE Compare Floating Point 5-18
6A AE Add Floating Point 5-14
6B SE Subtract Floating Point 5-16
6C ME Multiply Floating Point 5-19
6D DE Divide Floating Point 521
70* STD Store Double Precision Floating Point 5-27
71* STME Store Floating Point Multiple 5-13
72* LME Load Floating Point Multiple 5-11
73 LHL Load Halfword Logical 29
74 TBT Test Bit 2-36
75 SBT . SetBit 2-37
76 RBT Reset Bit 2-39
77 CBT Complement Bit 2-38
78 LD Load Double Precision Floating Point 5-26
79 ch Compare Double Precision Floating Point 5-31
7A AD Add Double Precision Floating Point 5-29
7B SD Subtract Double Precision Floating Point 5-30
7C mMD Muttiply Double Precision Floating Point 5-32
7D DD Divide Double Precision Floating Point 5-33
7E* STMD Store Multiple Double Precision Floating Point 5-28
7E* LMD Load Multiple Double Precision Floating Point 5-26
90 SRHLS Shift Right Halfword Logical Short 2-32
91 SLHLS Shift Left Halfword Logical Short 2-31
92* STBR Store Byte Register 2-17
93* LBR Load Byte Register 2-11
94* EXBR Exchange Byte Register 212
95 EPSR Exchange Program Status Word 6-14
96 WBR Write Block Register 7-13
97 RBR Read Block Register 79
98 WHR Write Halfword Register 7-11
99 RHR Read Halfword Register 7-7
9A WDR Write Data Register 7-10
9B RDR Read Data Register 7-6
9D SSR Sense Status Register 7-5
9E OCR Output Command Register 7-4
co* BXH Branch on Index High 37
c1* BXLE Branch on Index Low or Equal 3-6
Cc2 LPSW Load Program Status Word 6-12
C3 THI Test Halfword Immediate 2-28
Cca NHI AND Halfword Immediate 2-22
ChH CLHI Compare Logical Halfword immediate 2-19
* Condition Code Not Changed ’

A3-3

29405 ROO 5/76

APPENDIX 3 (Continued)

OP-CODE MNEMONIC INSTRUCTION PAGE NO.
C6 OHI OR Halfword Immediate 2-24
Cc7 XHI Exclusive OR Halfword Immediate 2-26
Cc8 LHI Load Halfword Immediate 2-6
co CHI Compare Halfword Immediate 4mn
CA AHI Add Halfword Immediate 4-5
cB SHI Subtract Halfword Immediate 4-9
cC SRHL Shift Right Halfword Logical .2-32
CD SLHL Shift Left Halfword Logical 2-31
CE SRHA Shift Right Halfword Arithmetic 4-21
CF SLHA Shift Left Halfword Arithmetic 4-19
Do* STM Store Multiple 2.35
D1* LM Load Multipie 2.10
D2* STB Store Byte 217
D3* LB Load Byte 2-11
D4 CcLB Compare Logical Byte 2-19
D5 AL Autoload 7-14
D6 WB Write Block 7-12
D7 RB Read Block 7-8
D8 WH Write Halfword 7-1
D9 RH Read Halfword 7-7
DA WD Write Data 7-10
DB RD Read Data 7-6
DD SS Sense Status 7-5
DE ocC Output Command 7-4
EOQ TS Test and Set 2-35
E1 SvC Supervisor Call 6-16
E2 SINT Simulate Interrupt 6-156
E3 ScP Simulate Channel Program 7-15
E6* LA Load Address 2-7
E7* TLATE Translate 2-42
EA RRL Rotate Right Logical 2.34
EB RLL Rotate Left Logical 233
EC SRL Shift Right Logical 2-30
ED SLL Shift Left Logical 2.29

A3-4

* Condition Code Not Changed

29-405 ROO 5/76

APPENDIX 3 (Continued)

OP-CODE MNEMONIC INSTRUCTION PAGE NO.
EE SRA Shift Right Arithmetic 4-20
EF SLA Shift Left Arithmetic 4-18
F3 TI Test Immediate 2-27
F4 NI AND Immediate 2-21
F5 cLi Compare Logical Immediate 218
F6 0Ol OR Immediate 2-23
F7 Xl Exclusive OR Immediate 2-25
F8 Ll Load Immediate 2-5
F9 Cl Compare Immediate 4-10
FA Al Add Immediate 4-4
FB Si Subtract Immediate 4-8

A3-5/A3-6

29-405 ROO 5/76

APPENDIX 4

EXTENDED BRANCH MNEMONICS

MNEMONIC

INSTRUCTION OP CODE (M1) OPERAND

Branch on Carry 428 BC A(X2)

Branch on Carry Register 028 BCR R2

Branch on No Carry 438 BNC A(X2)

Branch on No Carry Register 038 BNCR R2

Branch on Equal 433 BE A(X2)

Branch on Equal Register 033 BER R2

Branch on Not Equal 423 BNE A(X2)

Branch on Not Equal Register 023 BNER R2

Branch on Low 428 BL A(X2)

Branch on Low Register 028 BLR R2

Branch on Not Low 438 BNL A(X2)

Branch on Not Low Register 038 BNLR R2

Branch on Minus 421 BM A(X2)

Branch on Minus Register 021 BMR R2

Branch on Not Minus 431 BNM A(X2)

Branch on Not Minus Register 031 BNMR R2

Branch on Plus 422 BP A(X2)

Branch on Plus Register 022 BPR R2

Branch on Not Plus 432 BNP A(X2)

Branch on Not Plus Register 032 BNPR R2

Branch on Overflow 424 BO A(X2)

Branch on Overflow Register 024 BOR R2

Branch on No Overflow 434 BNO A(X2)

Branch on No Overflow Register 034 BNOR R2

Branch Unconditional 430 B A’(XZ)

Branch Unconditional Register 030 BR R2

Branch on Zero 433 BZ A(X2)

Branch on Zero Register 033 BZR R2

Branch on Not Zero 423 BNZ A(X2)

Branch on Not Zero Register 023 BNZR R2

No Operation 420 NOP

No Operation Register 020 NOPR

Branch on Carry Short 208 BCS A (Backward Reference)
218 BCS A (Forward Reference)

Branch on No Carry Short 228 BNCS A (Backward Reference)
238 BNCS A (Forward Reference)

Branch on Equal Short 223 BES A (Backward Reference)
233 BES A (Forward Reference)

Branch on Not Equal Short 203 BNES A (Backwarr Reference)
213 BMES A (Forwarr Reference)

Branch on Low Short 208 BLS A (Backward Reference)
218 BLS A (Forward Reference)

Branch on Not Low Short 228 BNLS A {Backward Reference)
238 BNLS A (Forward Reference)

29-405 ROO 5/76

A4-1

INSTRUCTION

APPENDIX 4 (Continued)

OP CODE (Mm1)

MNEMONIC

OPERANDS

Branch on Minus Short
Branch on Not Minus Short
Branch on Plus Short

Branch on th Plus Short
Branch on Overflow Short
Branch on No Overflow Short
Branch Unconditional Short
Branch on Zero Short

Branch on Not Zero Short

A4-2

201
21

221
231

202
212
222
232

204
214

224
234

220
230

223
233

203
213

BMS
BMS

BNMS
BNMS

BPS
BPS

BNPS
BNPS

BOS
BOS

BNOS
BNOS

BS
BS

BZS
BZS

BNZS
BNZS

A (Backward Reference)
A (Forward Reference)

A (Backward Reference)
A (Forward Reference)

A (Backward Reference)
A (Forward Reference)

A {Backward Reference)
A (Forward Reference)

A (Backward Reference)
A (Forward Reference)

A {Backward Reference)
A (Forward Reference)

A (Backward Reference)
A (Forward Reference)

A {Backward Reference)
A (Forward Reference)

A (Backward Reference)
A (Forward Reference)

29-405 ROO 5/76

o]

34

68
137
274
549

1 099

29405 ROO 5/76

W B o

33
67
134

268
536
073
147

294
589
179
359

719
438
877
755

511

16
32

65
131
262
524

043
097
194
388

777
554
108
217

435
870
741
483

967
934
869
738

476
953
906
813

627

128

256
512
024
048

096
192
384
768

536
072
144
288

576
152
304
608

216
432
864
728

456
912
824
648

296
592
184
368

736
472
944
888

776

APPENDIX 5
ARITHMETIC REFERENCES

TABLE OF POWERS OF TWO

wNnF o

25
0,015 625
0.007 812 5

2o Ul
o
=
&
=t

8 0.003 906 25

9 0.001 953 125

10 0.000 976 562 5
11 0.000 488 281 25

12 0.000 244 140 625

13 0.000 122 070 312 5
14 0.000 061 035 156 25
15 0.000 030 517 578 125

16 0.000 015 258 789 062 5

17 0.000 G607 629 394 531 25

18 0.000 003 814 697 265 625

19 0.000 001 907 348 632 812 5

20 0.000 000 953 674 316 406 25
21 0.000 000 476 837 158 203 125
22 0,000 000 238 418 579 101 562
23 0.000 000 119 209 289 550 781

24 0.000 000 059 604 644 775 390
25 0.000 000 029 802 322 387 695
26 0.000 000 014 901 161 193 847
27 0,000 000 007 450 580 596 923

28 0.000 000 003 725 290 298 461
29 0.000 000 001 862 645 149 230
30 0.000 000 000 931 322 574 615
31 0.000 000 000 465 661 287 307

32 0.000 000 000 232 830 643 653
33 0.000 000 000 116 415 321 826
34 0.000 000 000 058 207 660 913
35 0.000 000 000 029 103 830 456

36 0.000. 000 000 014 551 915 228
37 0.000 000 000 007 275 957 614
38 0.000 000 000 003 637 978 807
39 0.000 000 000 001 818 989 403

40 0,000 000 000 000 909 494 701

25

625
312
656
828

914
957
478
739

869
934
467
733

366
183
091
545

772

25
125

062
031
515
257

628
814
407
703

851
425
712
856

928

25
625
812

906
453
226
613

806
903
951
475

237

25

125
562
281

640
320
660
830

915

625
312
156
078

039

5
25
125

062

A5-1

APPENDIX 5 ‘(Continued)

TABLE OF POWERS OF SIXTEEN

16n n

1 0

16 1

256 2

4 096 3

65 536 4

1 048 576 5

16 777 216 6

268 435 456 7

4 294 967 296 8

68 719 476 736 9
1 099 511 627 776 10
17 592 186 044 416 11
281 474 976 710 656 12
4 503 599 627 370 496 13
72 057 594 037 927 936 14
152 921 504 606 846 976 15

A5-2

Decimal Values

"

HEXADICIMAL TO DECIMAL INTEGER CONVERSION TABLE

BYTE BYTE
HEX DEC HEX DEC HEX | DEC HEX DEC
0 0 0 0 0 0 0 0
1 4,096 1 256 1 16 1 1
2 8,192 2 512 2 32 2 2
3 12,288 3 768 3 48 3 3
4 16,384 4 1,024 4 64 4 4
5 20,480 5 1,280 5 80 5 5
6 24,576 6 1,536 6 96 6 6
7 28,672 7 | 1,792 7 112 7 7
8 32,768 8 2, 048 8 128 8 8
9 36,864 9 2, 304 9 144 9 9
A 40,960 A 2, 560 A 160 A 10
B 45,056 B 2,816 B 176 B 11
C 49,152 C 3,072 C 192 c 12
D 53,248 D 3, 328 D 208 D 13
E 57,344 ! 3,584 E 224 E 14
F 61,440 F 3,840 F 240 F 15

29405 ROO 5/76

HEXADECIMAL ADDITION AND SUBTRACTION TABLE

APPENDIX 5 (Continued)

Examples: 5+A = F; 1‘8—D = B; .A+B =15

29405 ROO 5/76

1 2 3l 4| s 6 { 7 | 8 9 |aA B | C E | F
i l2 | 3| 4 5 6 7 8 9 | a |B c D F |10 | 1
2 [3 | 4 5 6 7| s 9o |a | B |cC D | E 10 |11 | 2
3 |4 | 5 6 7] ¢ 9] a | B |[c |D E | F |10 |11 |12 | 3
4 |5 | 7 s | o| A | B |[c | D [E F | 10 |11 |12 [138 | 4
5 |6 | 7 s | ol a|{ B |c |p | E [Fr [10 |11 |12 13 |14} 5
6 |7 8 9| aA| B| C|D E F |10 [11 [12 [13 |14 [15 | 8
7 |8 | 9 Al Bl c| p|lE |7 |10 |11 |12 13|14 |15 [16 |7
8 |9 A B C D E F |10 |11 |12 |13 | 14 | 15 |18 | 17 8
9 [A B c D E F [10 |11 [12 {13 |14 | 15 | 16 | 17 | 18 9
A|lB| C D| E F |10 |11 |12 |13 [14 |15 [16 | 17 |18 |19 A
B|C| D E| F | 10 | 11 |12 |13 |14 |15 |16 | 17 | 18 [19 [1A | B
c|p| E F|1o |11 |12 [13 |14 |15 |16 |17 | 18 [19 |1A [1B | C
D |E| F [101 |12 [13 |14 15 |16 {17 [18 [19 1A 1B [1C | D
E | F| 10| 11 |12 |13 |14 [15 |16 |17 [18 |19 | 1A | 1B |1C [1D | E
F |10] 11| 12 | 13 | 14 | 15 {16 |17 |18 [19 |1a [1B | 1c | 1D [1E | F
1 2 3 | 4 5| 6 | 7 |8 [9 |a B c| op| E| F
HEXADECIMAL MULTIPLICATION AND DIVISION TABLE
Examples: 5x6 = 1E; 75+D = 9; 58 +8 = B; 9xC = 6C
1 |2 3 4| 5 6 7 8 9 | A B D |E |F
1 |1 |2 3 4| 5 6 7 8 9 | A B D |E |F |1
2 |2 |4 6 8 | A c E | 10 | 12 | 14 | 16 | 18 | 1A |1C |1E |2
3 |3 |6 9 c | F |12 |15 | 18 | 1B | 1E| 21 | 24 | 27 |[2A | 2D |3
4 |4 |8 c 10 {14 | 18 [1c | 20 | 24 | 28 2c | 30 | 34 |38 |3c |4
5 |5 | A F | 14 |19 | 1E | 23 | 28 | 2D | 32 [37 | 3C | 41 [46 [4B |5
6 16 1 C | 12 |18 |1E | 24 | 2a | 30 | 36 | 3C | 42 [48 | 4E [54 [5A |6
7 17 | E | 15 |1C | 23 | 24 | 21 | 38 | aF | 46 | 4D | 54 | 5B |62 |69 [7
8 |8 |10 | 18 | 20 | 28 | 30 | 38 | 40 | 48 | 50 | 58 | 60 | 68 | 70 |78 |8
o 1o 112 | 1B | 22 | 2D | 36 | 8F | 48 | 61 | 5A| 63 | 6C | 75 | 7E |87 |9
A | A |12 | 1E | 28 | 32 | 3C | 46 | 50 | 5A | 64 | GE| 78 | 82 [8C |96 | A
5 1B [16 | 2t | 2C | 37 | 42 | 4D | 58 | 63 | 6E | 79 | 84 | 8F |9A [A5 | B
c |c |18 | 24 |30 [3c | 48 | 54 | 60 | 6C | 78 84 | 90 | 9C | A8 | B4 | C
b I D | 1a | 27 | 32 | 41 | 4 | 5B | 68 | 75 | 82 | 8F | 9Cc | A9 [B6 [C3 | D
E |E |1C | 2a | 38 |46 | 54 | 62 | 70 | 7E | 8c| 9a | As | B6 [C4 | D2 | E
F | r |1 | 20 | 3c | 4B | 5a | 6o | 8 | 87| 96 | A5 | Ba | C3 | D2 | El [F
1 2 3 4 5 6 7 8 9 | a B| c | D |E|F
A5-3

APPENDIX 5 (Continued)

TABLE OF MATHEMATICAL CONSTANTS

CONSTANT DECIMAL VALUE HEXCEfS:EMAL FLOATING POINT VALUE
DOUBLE PRECISION

,SINGLE PRECISION)

T 3.14159 26535 89793 23846 | 3.243F 6A89 4132 43F6 A888 - 5A31
-1 0.31830 98861 83790 67153 | 0.517C C1B7 4051 7cc1 B727 2208
NE 1.77245 38509 05516 02729 | 1.C5BF 891C a411c 5BF8 9184 EF6B
Lnm 1.14472 98858 49400 17414 | 1.250D 048F 4112 50D0 48E7 AI1BD
J3 1.73205 08075 68877 29353 | 1.B67A E858 4118 67AE 8584 CAA7
e 271828 18284 59045 23536 | 2.B7E1 5163 4128 7E15 1628 AED3
et 0.36787 94411 71442 32159 | 0.5E2D 58D9 405E 2D58 D8B3 BCDF
Je 1.64872 12707 00128 14680 | 1.A612 98E2 411A 6129 8E1E 069C
fogqge 0.43429 44819 03251 82765 | 0.6F2D EC65 | 406F 2DEC 5A9B 9439
logge 1.44269 50408 88963 1.7154 7653 M17 1647 652
v 0.57721 56649 01532 86060 | 0.93C4 67E4 4093 C467 E37D BOCB
Lny -0.54953 903129 81644 82233 |-0.8CAE 9BC! Co8C AE9B C11F SAB0
J2 1.41421 35623 73095 04880 | 1.6A09 E668 4116 AO9E 667F 3BCD
Ln2 0.69314 71805 59945 30941 | 0.B172 17F8 4081 7217 F7D1 CF7A
logig2 | 030102 99956 63981 19521 | 0.4D10 4D42 | 404D 104D 427D E7FC
V10 3.16227 76601 68379 33200 | 3.2088 075C 4132 98B0 75B4 B6AS
Ln10 2.30258 60929 04945 68401 | 2.4D76 3777 4124 D763 776A AA2B

A5-4

29-405 ROO 5/76

APPENDIX 5 (Continued)
INTEGER CONVERSION TABLE

Hexadecimal and Decimal Integer Conversion Table
HALFWORD HALFWORD
BYTE BYTE BYTE BYTE
BITS: 0123 4567 0123 4567 0123 4567 0123 4567
Hex Decimal Hex Decimal Hex Dacimal Hex | Decimal Hex | Decimal | Hex | Decimal | Hex| Decimal | Hex | Decimal
0 01 0 0 0 0i 0 1] 0 010 [} 0 0 0
] 268,435,456 | 1 16,777,216 | 1 1,048,576 | 1 65,536 1 4,096 | 1 256 | 1 16 | 1
536,870,912 | 2 33,554,432 | 2 2,007,152 [2 137,072 2 8,192 | 2 512 | 2 32 2 2
3 308,368 | 3 50,331,648 | 3 3,145,728 | 3 196,608 | 3 12,288 | 3 768 [3 48 3 3
4 {1,073,741,824 | 4 67,108,864 | 4 4,194,304 | 4 262,144 4 16,384 | 4 1,024 | 4 64 4 4
5 11,342,177,280 | 5 83,886,080 | 5 5,242,880 [5 327,680 5 20,480 | 5 1,280 | 5 80 5 5
& [1,670,812,736 | & |100,663,29% | 6 8,291,456 | & 393,218 6 24,576 | 6 1,596 | 6 96 6 6
7 I,E#WIW 7 17,480,512 | 7 7,340,032 | 7 458,752 7 28,672 | 7 1,792 | 7 112 7 7
2,147,483,648 | 8 134,217,728 | 8 8,388,608 | 8 524,288 8 32,768 | 8 2,048 | 8 128 8 8
2,415,919,104 1 9 155:-@4,944 9 9,437,184 [9 589,824 9 36,864 19 2,304 |9 14 9 9
A 12 688 B4 560 | A [167.772,160 | A_|10,485,760 | A | 655,360 | A | 40,960 [A | 2,50 [A | 160 | A | 10
B 992,790,016 | B 84,549,376 | 8 (534,33 | B 720,896 | B 45,056 | B 2,816 | B 176 B 1
C [3,221,225,472 | C 201,326,592 | C 2,582,912 | C 786,432 [49,152 | C 3,072 [C 192 C 1
D [3,489,660,928 | D 18,103,808 | D 631,488 | D 851,968 D 53,248 | D 3,328 | D 208 D 1
E |3,756,096,384 | £ |234,881,024 | E 4,680,064 | E 917,504 E 57,344 | E 3,584 | E 224 E 14
F [4,028,331,840 | ¥ |251,658,240 | F 15,728,840 | F K F 61,440 | F 3,840 | F 240 F 15
8 7 5 4 3 2 1
TO CONVERT HEXADECIMAL TO DECIMAL EXAMPLE To convert integer numbers greater than the capacity of
— table, use the techniques below:
1. Locate the column of decimal numbers corresponding to Conversion of
the left-most digit or letter of the hexadecimal; select Hexadecimal Volue D34 HEXADECIMAL TO DECIMAL
from this column and record the number that corresponds :
to the position of the hexadecimal digit or letter. 1. D 3328 Successive cumulative multiplication from left to right,
2. Repeat stap 1 for the next (second from the left) 2. 3 48 adding units position.
position. ' Example: D34)4=3380,p D= 13
3. Repeat step 1 for the units (thind from the leff) 3. 4 4 x16.
position. 208
4. Add the numbers selected from the table to form the 4. Decimal 3380 8= -;—‘%
decimal number.
x16
3376
= +4
3380
TO CONVERT DECIMAL TO HEXADECIMAL
1. (a) Sel the table the h be| EXAMPLE
. (a) Select from the table the highest decimal number
that is equal to or less than the number to be con- Conversion of DECIMAL TO_HEXADECIMAL
Decimal Value 3380
verted. Divide and collect the remainder i rde
(b) Record the hexodecimal of the column containing ivide and collect the remainder in reverse orcer.
1. D -3328
the selected number. 1 E le: 3380, = X
(c) Subtract the selected decimal from the ber to xample: 10- M6
be converted. 2. 3 w48 16 | 3380 remainder
2. Using the remainder from step 1(c) repeat all of step 1 4 16 1211 4 |
to develop the second position of the hexadecimal L——\
(and a remainder) . ’ . 3. 4 -4 16 |13 _\ 3
3. Using the remainder from step 2 repeat all of step 1 to . D 3380, 9=D34
develop the unlts position of the hexadecimal. 4. Hexadecimal D34 . 10 16
4. Combine terms to form the hexadecimal number.
29-405 ROO 5/76 Ab5-5

APPENDIX 5 (Continued)
FRACTION CONVERSION TABLE

Hexadecimal and Decimal Fraction Conversion Table

HALFWORD
BYTE BYTE
BITS 0123 4567 0123 4567

Hex | Decimal | Hex Decimal Hex Decimal Hex Decimal Equivalent

.0 .0000 .00 .0000 0000 .000 .0000 0000 0000 .0000 .0000 0000 0000 0000
.1 .0625 .01 .0039 0625 .001 .0002 4414 0625 .0001 ,0000 1525 8789 0625
) 1250 | .02 ~0078 1250 | .002 | .0004 8828 1250 | .0002 .0000 3057 7578 1250
.3 .1875 .03 0117 1875 .003 0007 3242 1875 0003 .0000 4577 6367 1875
4 .2500 .04 L0156 2500 .004 0009 7656 2500 .0004 . 0000 6103 5156 2500
5 3125 | % L0195 3125 | .005 | .0012 2070 3125 | 0005 .0000 762% 3945 3125
6 .3750 .06 .0234 3750 .006 .0014 6484 3750 .0006 .0000 9155 2734 3750
7 475 | 07 L0273 4375 | .007 | .0017 0898 4375 | 0007 -0001 0681 1523 4375
.8 .5000 K) L0312 5000 .008 .0019 5312 5000 | .0008 ,0001 2207 0312 5000
9 5625 .09 .0351 5625 .009 L0021 9728 5675 | 0009 .0001 3732 9101 5625
A .6250 .0A .0390 6250 L00A | .0024 4140 6250 .000A .0001 5258 7890 6250
.B .6875 .08 .0429 6875 .00B .0026 8554 6875 .0008 . 0001 6784 &679 6875
.C .7500 .0C .0468 7500 .00C | .0029 2968 7500 .000C .000 8310 5468 7500
.D .8125 .0D .0507 8125 .00D | 0031 7382 8125 .000D .000 P836 4257 8125
.E_! .8750 .0E .0546 8750 .00F .0034 1796 8750 .000E .0002 362 3046 8750
.F | .9375 .OF .0585 9375 .00F .0036 6210 9375 .000F .0002 888 1835 9375

1 2 3 4
TQ CONVERT .ABC HEXADECIMAL TO DECIMAL To convert fractions beyond the capacity of table, use techniques below:

Find .A in position 1 ,6250
Find .0B in position 2 0429 6875 HEXADECIMAL FRACTION TO DECIMAL
. . : Convert the hexadecimal fraction to its decimal equivalent using the same
Find .00C in position 3 .0029 2968 7500 technique as for integer numbers. Divide the results by 16 (n is the
.ABC Hex is equal to .6708 9843 7500 number of fraction positions).
Example: .8A7 = 5407710

TO CONVERT .13 DECIMAL TO HEXADECIMAL 8A714 = 221510 540771
163 = 4096 4096[2215 000000
1. Find .1250 next lowest to .1300
. subtract -.1250 = ,2Hex
2. Find .0039 0625 next lowest to 0050 0000
~.0039 0625 =.0 DECIMAL FRACTION TO HEXADECIMAL
3. Find .0009 7656 2500 .0010 9375 0000 Collect integer parts of product in the order of calculation. .
~-.0009 7656 2500 = .004

Example: .540810 = .8A714
4. Find .0001 0681 1523 4375 .0001 1718 7500 0000 5408
-.0001 0681 1523 4375 = .0007 '

x16

.0000 1037 5976 5625 = ,2147 Hex 8 - [8]'6528

H 1 1 sal 16

5. 13D is app y equal to L A - E)FJTB-
x16

y7 < [Ane

A5-6 29405 ROO 5/76

APPENDIX 6.

MODEL 7/32 EXECUTION TIMES
IN MICRO SECONDS -
(1000 NANOSECOND ME .IORY)

EXECUTION

INST. TIME NOTES COMMENTS
A 3.50 1
ABL 5,00/9.50/9.75 1 OVF/NORM/WRAP
AD
ADR
AE 12.75/17.75/23.,25 1 MIN/AVG/MAX
AER 11.75/16.75/22.25 1 MIN/AVG/MAX
AH 2.75 1
AHI 1.75

‘ AHM 3.75 1
Al 2.75
AlS 1.25
AL 6.25+2,501L+2.50n 5 L = LEADER, n = BYTES
AM 5,75 1
AR 1.00
ATL 5.00/9.75/9.75 1 OVF/NORM/WRAP
BAL 2.00 | 1
BALR 1.50
BFBS 1.50/2.00 No branch/branch
BFC 2,00/2.00 4 No branch/branch
BFCR 1.50/1.50 No branch/branch
BFFS 1.50/2.00 No branch/branch
BTBS 1.50/2.00 No branch/branch
BTC 2,00/2, 00 4 No branch/branch
BTCR 1.50/1.50 No branch/branch
BTFS 1.50/2.00 No branch/branch
BXH 4,75/4.25 1 No branch/branch
BXLE 4,75/4.25 3 No branch/branch

29-405 ROO 5/76

A6-1

APPENDIX 6

(CONTINUED)
EXECUTION
INST. TIME NOTES COMMENTS
c 4.50/4.25 SIGNS.ALﬁ{E/DIFFER
CBT 6.25/7.00/7.175 1 MIN/AVG/MAX
CD
CDR
CE 7.25/8.25/9.50 1 MIN/AVG/MAX
CER 6.25/7.25/8.50 MIN/AVG/MAX
CH 3.75/3.50 SIGNS ALIKE/DIFFER
CHI 2.75/2.50 SIGNS ALIKE/DIFFER
CHVR 2.75/4. 00 NORM/OVF
CI 3.75/3.50 SIGNS ALIKE/DIFFER
CL 3.50 1
CLB 3.00 1
CLH 2.75 1
CLHI 1.75
CLI 2.75
CLR 1.00
CR 2.00/1.75 SIGNS ALIKE/DIFFER
CRC12 11,.50/13.25/15. 00 1 MIN/AVG/MAX
CRC16 13.00/15.25/17.50 1 MIN/AVG/MAX
D 82,75/88.50/96.50 1 MIN/AVG/MAX
DD
DDR
DE 49, 25/50,25/51.00 1 MIN/AVG/MAX
DER 48,25/48.25/50.00 MIN/AVG/MAX
DH 13.00/13.00/14, 25 1 MIN/AVG/MAX
DHR 11.00/11,00/12. 25 MIN/AVG/MAX
DR 80.25/86.00/94. 00 MIN/AVG/MAX
EPSR 3.75
EXBR 1.00
EXHR 1.00
A6-2

29-405 ROO 5/76

APPENDIX 6

(CONTINUED)
EXECUTION

INST. TIME. NOTE" COMMENTS
FLDR '

FLR 10,50/13.75/18. 00 MIN/AVE/MAX
FXDR

FXR 8.25/10,25/16.25 MIN/AVG/MAX :
L 3.50 1

LA 2.25 5

LB 3,00 1

LBR 1.25

LCS 1.50

[LD

LDR

LE 7.50/10,50/14,25 1 MIN/AVG/MAX
LER 6.50/9.50/13. 25 MIN/AVG/MAX
LH 2.75 1

LHI 1.75

LHL 2,75 1

LI 2.75

LIS 1.00

LM 2.75+2.25n 1 n = REGISTERS
LMD

LME 7.25+3.25 (n-1) 1,2 n = REGISTERS
LPSW 7.25 1

LPSWR 3.50

LR 1.00

LRA 5.50/8.25/8.25/8.50/8. 25 5 LIMIT/PRESENCE/WRITE/EXEC/

NORMAL

-M 24.25/25.25/26.75 1 MIN/AVG/MAX
MD

MDR

ME 30.00/30.25/32, 00 1 MIN/AVG/MAX
MER 29, 00/29.25/31. 00 1 MIN/AVG/MAX
MH 6.25 1

MHR 4,25

MPBSR See A6-8

MR 21,75/22.75/24. 25 MIN/AVG/MAX
N 3.50 1

NH 2.75 1

29-405 ROO 5/76

A6-3

APPENDIX 6

(CONTINUED)
EXECUTION
INST. TIME NOTES COMMENTS
NHI 1.75
NI 2.75
NR 1,00
o) 3.50 1
ocC 4,00 1
OCR 3.25
OH 2.75 1
OHI 1,75
o1 2,75
OR 1,00
PB 4,75 1
PBR 3.50
| rB 7.25+2.50n 1 n = BYTES
RBL 5.00/9.75/9.75 1 OVF/NORM/WRAP
RBR 4.50+2.50n n = BYTES
RBT 6.75/7.00/7.75 1 MIN/AVG/MAX
RD 4,25 1
RDR 2,25
RH 4,75/4.00 1 BYTE/HALFWORD
RHR 3,00/2.25 BYTE/HALFWORD
RLL 2.25/1.75+1.00n n=0/n = SHIFTS
RRL 2.25/1,75+1.00n n=0/n = SHIFTS
RTL 5.00/10.75/11, 00 1 OVF/NORM/WRAP
S 3,50 1
SBT 6.75/7.00/7.75 1 MIN/AVG/MAX
SCP 5.75/9.50/9.25/11, 00 1 CNT+/NORM/TERM/ TERM
(FAST) (NORM)
SD
SDR
SE 13, 25/18,25/28.15 1 MIN/AVG/MAX
SER 12.25/17.25/22.75 MIN/AVG/MAX

A6-4

29405 ROO 5/76

APPENDIX 6

(CONTINUED)
EXECUTION

INST. TIME NOT: 3 COMMENTS
SH 2.75 1
SHI 1.75
ST 2.75
SINT 7.75 IMMEDIATE INTERRUPT
SIS 1.25
SLA 3.75+ (n-2)/2 (.25) 3 n = SHIFTS
SLHA 2.75+(n-1) (. 25) 2 n = SHIFTS
SLHL 2, 50+(n-1) (, 25) 2 n = SHIFTS
SLHLS 1.75+(n-1) (. 25) 2 n = SHIFTS

" SLL 3.25+ (n-2)/2 (.25) 3 n = SHIFTS
SLLS 2.75+ (n-2)/2 (. 25) 3 n = SHIFTS
SR 1.00
SRA 3.75+ (n-2)/2 (.25) 3 n = SHIFTS
SRHA 2.50+(@n-1) (. 25) 2 n = SHIFTS
SRHL 2.50+(n-1) (. 25) 2 n = SHIFTS
SRHLS 1.75+(n-1) (. 25) 2 n = SHIFTS
SRL 3.25+ (n-2)/2 (.25) 3 n = SHIFTS
SRLS 2.75+ (n-2)/2 (.25) 3 n = SHIFTS
ss 4.50 1
SSR 3.00
ST 3.75 1
STB 3.75 1
STBR 2.00
STD
STE 5.75 1
STH 2.75 1
STM 2.50+2, 00n 1 n = REGISTERS
STMD
STME 7.50+3.50(n-1) 1,2 n = REGISTERS
svC 7.00 1

29-405 ROO 5/76

A6-5

APPENDIX 6

(CONTINUED)
EXECUTION
INST. TIME NOTES COMMENTS
TBT 6.00/6.75/7.50 1 MIN/AVG/MAX
THI 1.75
TI 2.75
TLATE 4.25/5.25 1 Translation/Spec. Character
Bit Set/Bit Reset
TS 3.50/4.00 1
WB 7.25/2.75n 1
WBR 4.50/2.75n
WD 3.75 1
WDR 2.25
WH 4,75/3.75 1 BYTE/HALFWORD
WHR 3.75/2.50 BYTE/HALFWORD
X 3.50 1
XH 2.75 1
XHI 1.75
X1 2,175
XR 1.00

All execution times assume no DMA interference. Times given for I/0 Instructions assume best case

device response.

A6-6

U WD
.

(n-2)/2

NOTES

Add 1.00 if RX3 format
(n-1) is zero if n is zero
is zero if nis 0, 1, 2 or 3.
If branch is taken, add 0.75 if RX3.

. Add 0.75 if RX3 format

29-405 ROO 5/76

AUTO DRIVER CHANNEL EXECUTION TIMES IN MICROSECONDS

APPENDIX 6
(CONTINUED)

FAST MODE
] .
5 = e =
FUNCTION . %.1) E E = % g NORMAL E
< .
AE| 35 |58x 58
READ (BYTE) 9.50 | 10.75 12.25 16.25 16.50
READ (HALFWORD) 9.50 | 10.75 12.25 16.75 17.00
WRITE (BYTE) 9,50 | 10,75 12.25 16.00 16.25
WRITE (HALFWORD) 9.50 | 10.75 12.25 17.00 17.25
NORMAL MODE
=
I 0
FUNCTION 8 P luZaw NORMAL BUFFER END .
54| 95 | £33 s
o M n m O & z
LRC, BUFF0, READ 9.50 10,75 13.25 21.25 21.00
LRC,BUFF0, READ, TLATE | 9.50 | 10.75 | 13,25 25.25/20. 50 16.00 1
LRC, BUFF0, WRITE 9.50 | 10.75 | 13.25 20.75 21.50
LRC, BUFFO,WRITE, TLATE | 9.50 | 10.75 | 13,25 24,50/20. 00 25,25 1
LRC, BUFF1, READ 9.50 | 10.75 14. 00 21,00 22.75
LRC,BUFF1, READ, TLATE | 9.50 | 10.75 | 14.00 26.00/21,25 26.75 1
LRC, BUFF1, WRITE 9.50 | 10.75 | 14.00 21.50 22,25
LRC, BUFF1, WRITE, TLATE | 9.50 | 10.75 | 14,00 25.25/21. 50 26,00 1
CRC,BUFF0, READ 9.50 | 10.75 | 13.25 24.75 25,50 2
CRC,BUFF0, READ, TLATE | 9.50 | 10.75 | 13.25 28.,75/20. 50 29,50 1,2
CRC, BUFF0, WRITE 9.50 | 10,75 | 13.25 24,25 25,00 2
CRC, BUFF0, WRITE, TLATE | 9.50 | 10.75 | 13.25 28.00/20.75 28.175 1,2
CRC, BUFF1, READ, 9.50 | 10.75 | 14.00 25,50 26.25 2
CRC, BUFF1,READ, TLATE | 9.50 | 10.75 | 14.00 29.50/21. 25 30.25 1,2
CRC, BUFF1, WRITE 9.50 | 10.75 | 14.00 25,00 25.75 2
CRC, BUFF1, WRITE, TLATE | 9.50 | 10.75 | 14.00 28.75/21.50 29,50 1,2

NOTE 1 NORMAL/SPECIAL CHARACTER

NOTE 2 If data communication option is not equipped, add to the NORMAL time 5. 00/7.25/9. 50 MIN/AVG/MAX

IMMEDIATE INTERRUPTS

MALF

MAC

ILLEGAL INSTR

on LPSW, LPSWR, EPSR ADD
THEN ADD

29405 ROO 5/76

5.75

15.00

8.00 -

7.50

3.50 IF QUEUE SERVICE ENABLED
7.75 IF QUEUE NOT EMPTY

A6-T

MPBSR Instruction Execution Times

SEQUENCE FIRST SUBSEQUENT SPECIAL INTERRUPTED LAST
BYTE BYTES CHARACTER BYTE BYTE
ERROR CHECK ONLY 8.50 4.50 2.75 6.25
TRANSLATE ONLY 8.25 5.00 6.00 1.50 6,00
CHECK THEN TRANSLATE 10.00 5,50 7.25 2.50 7.25
TRANSLATE THEN CHECK 9.75 5.50 7.25 2.50 6.75

A6-8

29-405 ROO 5/76

APPENDIX 7
1/0 REFERENCES

TELETYPE ASCII/HEX CONVERSION TABLE

HEX (MSD) - 0 1 2 3 4 [5] s 7
(LSD) | roletype 8 DEPENDS UPON PARITY*
Tape 7 0 0 0 0 1 1|1 1
Chamnels —l 0 0 1 1 o [o]1 1
5 0 1 0 1 0 1] o0 1
4 | 3| 2 1
0 oo | o 0 | NULL DC, SPACE | o© @ | p
1 o lo] o 1 | som X-ON ! 1 | A |Q
2 0 jJo |1 0o | EoA gﬁPE " 2 [B |R
3 0 | o | 1 1 | EoM X-OFF # 3 | ¢ |s
4 0o |1 0 0o | EoOT g?iE $ 4 | D (T
5 o | 1| o 1 | wWRU ERR % 5 | E |vU
6 0 | 1 1 o | ruU SYNC & 6 F |V
7 0 |1 1 1 | BELL LEM ' 71l G |w
8 1 o | o o | FE, So (8 | H [X
9 1 oo 1 HT/SK Sy) 9 |1 Y
A 1 0 | 1 0 LF So * J |z
B 1 0 1 1§ vr S3 + ; K [
c 1 1| o 0 | FF S4 , < L |~ ACK
D 1 1 0 1 CR S5 - = | M] ﬁl(;%E
E 1 1 1 0 SO Se > | N 4 ESC
F 1 1 1 1 | s1 Sq / ?2 | 0 | DEL

*Parity bit adjusted for even parity (even number of 1's) on input from Teletype keyboard. Parity
bit is ignored on output to Teletype printer.

29405 ROO 5/76 A7-1

APPENDIX 7 (Continued)

ASCII CARD CODE CONVERSION TABLE

7-BIT 7-BIT
ASCII CARD ASCII CARD
GRAPHIC CODE CCDE GRAPHIC CODE CODE
SPACE 20 BLANK @ 40 8-4
! ‘ 21 11-8-2 A 41 12-1
" 22 8-7 B 42 12-2
23 8-3 C 43 12-3
$ 24 11-8-3 D 44 12-4
% 25 0-8-4 E 45 12-5
& 26 12 F 46 12-6
' 27 8-5 G 47 12-7
(28 12-8-5 H 48 12-8
) 29 11-8-5 I 49 12-9
* 2A 11-8-4 J 4A 11-1
+ 2B 12-8-6 K 4B 11-2
, 2C 0-8-3 L 4C 11-3
- 2D 11 M 4D 11-4
. 2F 12-8-3 N 4E 11-5
/ 2F 0-1 o) 4F 11-6
0 30 0 P 50 11-7
1 31 1 Q 51 11-8
2 32 2 R 52 11-9
3 33 3 S 53 0-2
4 34 4 T 54 0-3
5 35 5 U 55 0-4
6 36 6 Y 56 0-5
7 37 7 w 57 0-6
8 38 8 X 58 0-17
9 39 9 Y 59 0-8
: 3A 8-2 Z 5A 0-9
; 3B 11-8-6 L 5B 12-8-2
% 3C 12-8-4 \ 5C 0-8-2
- 3D 8-6] 5D 12-8-7
> 3E 0-8-6 A 5E 11-8-17
? 3F 0-8-7 -« 5F 0-8-5

A7-2 29-405 ROO 5/76

HOVIYALNI OIDOT TYSHIAINA = I

YILIVAY SNONOYHONAS avnd = v§d

YATIONINOD O/1 TVLIDIA = OId

YITIOYINOD LAALAO HOTVNV = DOV

HITTOUWLNOD LOANI DOTYNY = DIV

APPENDIX 7 (Continued)

I amww% ¢ OSIa TINNVHO [o o
g 2AT | 1A | 0 AT € 0sIa
. aaxid ¥OLOITAS i
Z osId <
% 0sIa
qIXId q
1 0SIQ
1
e osIa a
0 0SIT VL DV
0 0
QIXIA osia 144 0091
INOD 0sia 1
vsd > IDATLLEVD g
ATdVAONTY
TOUINOD
LOdLOYdd O —————] v
XMOWIN
- ——————— Y ————————————— > 6
a oy HdVL oHMM ININAINDA .
. NOISHEANOD
008/9¢5
ATNAON
mmwowo YIATEA)
. AVId"
ZH09 ATAVIMVA WALSAS SHELNIN
MOOTO FALLASSYD ANIT 9
TVSHAAING anoods
<]
WILSAS
. WMH«ME ALLASSYO v e
LSHLL S
w
ITNAONW :
ANL | dNL X0V <—————— HOLIMS SnE O/I———— | mupsoTo e 8
0L8/09¢g 048/09¢ LOVINOO H
I &
(32 OL 87 SUav) (17 01 0Z SEAV) . 3
TIAQON LdAHUILNI INIT 8 NODIS TINAON IdNMHALINI ANIT 8 «
|'WOD HONNd - VISVd——™
/HAAVAY | 1
XINO HONAJ ——
Xad XaH N0 | gaqvan XTno 110 NO ZHD
13S VIVA LdS VLVA ADVHOLS ¥yay advi| 08°ST AVIdSIT 0 asm
T08/108 108/108 gzavor | VP uadva | TISAOHVD
s a a o} q v 6 8 A 9 g 4 3 4 T 0 <*——as1

379V1 SS34AQY 434YIJIHI-QUVANYLS

APPENDIX 7 (Continued)

CAROUSEL ASCII/HEX CONVERSION TABLE

bg] 0 0 0 1 1 1 1
BITS bg 0 0 1 1 0 0 1 1
by Q 1 0 1 4} 1 0 1
bf bf b" 110 LSDMSD 0 1 2 3 4 5 6 7
oflololo 0 NUL | DLE [SPACE 0 @ P : p
OlojoOf 1 1 SOH DC1 ! 1 A Q a q
ofloli1}o 2 STX | DC2 2 B R b r
ol of1]1 3 ETX | pC3 | # 3 C S c s
0] 1]0]0 4 EOT DC4 $ 4 D T d 1
o] 1]0]1 5 ENG [NAK % 5 E u e u
ol 1]1]0 6 ACK SYN & 6 F \ f v
0] 1141 7 BEL | ETB ‘ 7 G W g w
1101010 8 BS CAN (8 H X h X
110]0]1 9 HT EM) 9 | Y i R
11ol110 A LF SUB * J Z i Zz
1{of1]1] 8 vt | esc | + K L | « {
1{1f{ofo] ¢ FF FS , < L \ | i
1|1]o[1] o [cr | s | - M 1 [m }
1111110 E SO RS . > N A~ n ~
11111 F St us / ? (e] — o DEL
NUL Null DLE Data link escape
soH Start of heading DC1-3 Device control
STX Start of text DC4 Device stop
ETX End of text NAK Negative acknowledge
EOT End of transmission SYN Synchronous idle
ENQ Enquiry ETB End of transmission block
ACK Acknowledge CAN Cancel N
BEL Audible signal EM End of medium
BS Backspace SUB Start of special sequence
HT Horizontal tabulation ESC Escape
LF Line feed FS File separator
vT Vertical tabulation GS Group separator
FF Form feed RS Record separator
CR Carrier return Us Unit separator
SO Shift out SP Space
SI Shift in DEL Delete/Idle

AT-4, 29-405 ROO 5/76

INDEX

ARITHMETIC REFERENCES o ot o it e it it e it e e et e e e e e i e e e e AS-1
AUTODRIVER CHANNEL it v ettt e e ettt e e e e e i e e e e e e 7-19
AUTOLOAD . . . o i e 7-14
BOOLEAN OPERATIONS i it it it e e e e e e e e e e e et e e e e e e e e e 22
BRANCHING et et e e e e e e e e e e e e e s e e e e e e e e 3-1
BRANCH INSTRUCTION FORMATS o i i it e it e et e e e e e e e i e e e e e 1-10, 3-1
BRANCH INSTRUCTIONS ot ittt e e e et e e e e e e e e i e e e e e e e 3-2
Branch and Link (BAL) i i e e e e e e e e e e e e e 35
Branch and Link Register (BALR) o o 0 i i i e i e e e e 35
Branch on False Condition (BFC) @ i i i i it e e i e e e e e e e 34
Branch on False Condition Backward Short (BFBS) o i i vt oot 34
Branch on False Condition Forward Short (BFFS) o 0 o i vt v it i e e 3-4
Branch on False Condition Register (BFCR) 0 i i i i ittt it e e e e 34
BranchonIndex High (BXH) o i i i i i e it e e e e e e e e e it e e e 3-7/3-8
Branch onIndex Lowor Equal (BXLE) o« o v i i it it e e et e e e e e e e 3-6
Branch on True Condition (BTC) ¢ o v i i ittt e it et s e e s et e e e e e 33
Branch on True Condition Backward Short (BTBS)« ot v i it i e oo 33
Branch on True Condition Forward Short (BTFS) o v v v vt i it e e 3-3
Branch on True Condition Register (BTCR) ¢« v v v v v i i v it vt e et e et e e e e e e s 3-3
BUFFER o ot i e it e e e e e e e e e e e e e e 7-21
CHANNEL COMMAND BLOCK o ot it e e e e e e e e e e i e e e e e e e e e e 7-20
CHANNEL COMMAND CODES ot i et et e e e e e e et e e e e e e e e 7-23
CHANNEL COMMAND WORD ittt e s 7-22
Buffer Switch Bit (B) o e e e e e e e e e e e e 7-23
Check Type Bit (C) o o i i i i e e e e e e e e e s e e e e 7-23
Cyclic Check TYPE BIt (S) « + « « v v v o e e e e e e et e e e 7-23
Executive Bit (E) i i i i i e 7-22
Fast Bit (F) o o i e i e 7-22
Read/Write Bit (R/W) o o i i e e i e e e e e e e e e e e e e 7-22
Status Mask L e 7-22
Translate Bit (T) 0 0 i e e e e e e e e e e e e e e e e e e e 7-22
CHECK WORDt e et e e e e e e e e e e e s e e e e e e e e 7-21
CIRCULAR LIST i e e e e e e e e e e e e e e i e e s e e e e e 2-3
CONDITION CODEttt it e e e e e e e e e i e e e e e i i e 1-5, 4-2, 5-8
CONSOLE INTERRUPT i i it e e et e e e e e e e s e e e e i e 6-7, 10-7
CONTROL KEY S . . . o e e e e e e e e e e e e e e e e e e 10-3
CONTROL OF I/O OPERATIONS i it e e e e et e e e e e e s e s e e 7-16
CONVERSION FROM DECIMALttt et e e e e e e e e e e e e e e e e 5-8
DATA COMMUNICATION INSTRUCTION FORMATS e e e e e e e e 9-1
DATA COMMUNICATION INSTRUCTIONS o e e e e e e e e e e e e e 9-1
Move and Process Byte String Register (MPBSR). i it 9-5
Process Byte (PB) o o v i i i e 9-2
Process Byte Register (PBR) o o o o i i it et e e e e e 94
DATA FORMATS o e e e e e e e e e e e e 1-8, 2-1, 4-1, 5-6
Fixed Point Data i i i i e 1-7
Floating Point Data« . 0 i i i i e e e e e e e e e e e 1-7
Logical Data i e 1-8
DECISION MAKINGt e 31
DEVICEADDRESSING e e e e e e e e e e e e e e e e e e 7-2
DEVICECONTROLLERS o ittt et e e e e e e e e e e e e e e e 7-1
DEVICE PRIORITIES i it et e et e e e e e e e e e e e e s e e e e e 72
DISPLAY REGISTERS AND INDICATORS o . 0 i ittt it it et e o e 10-2
DISPLAY STATUS AND COMMAND it ettt e et e e e e e 11-10

29-405 RO0 5/76 I-1

INDEX (Continued)

EQUALIZATION e et e e e e e e e e e e e e e e e e e e 5-5
EXPONENT OVERFLOW ot e s e e e e e e e e s e s e 5-6
EXPONENT UNDERFLOW s e s e e e e e e e e s e s e s e s e e e e 5-6
EXTENDED BRANCH MNEMONICS e e e e e e e e e e e 3-8, A4-1
Branchon Carry (BC) 0 e e e e e e e e 39
Branch on Carry Register (BCR) e e 3-9
Branch on Carry Short (BCS) e e e e e 39
Branch on Equal (BE) e e 3-11
Branch on Equal Register (BER) e 3-11
Branch on Equal Short (BES) L e e e e 3-11
Branchon Low (BL) 0 e e e e e e e e e e e 3-13
Branch on Low Register (BLR) i e e e e e e e 3-13
Branch on Low Short (BLS) e e e e e e e e 3-13
Branch on Minus (BM) 0 i e e e e e e e e e e e e e e e 3-15
Branch on Minus Register (BMR) e Y., 315
Branch on Minus Short (BMS) L L e e e e e e e 3-15
Branchon No Carry (BNC) 0 i i e e e e e e e e e e e e 3-10
Branch on No Carry Register (BNCR) e e e e e e e 3-10
Branch on No Carry Short (BNCS) L e e e 3-10
Branch on No Overflow (BNO) i et e e e e e e e e s e e e e 3-20
Branch on No Overflow Register (BNOR) i et 3-20
Branch on No Overflow Short (BNOS) e e e e e e e e e e e e 3-20
Branch on Not Equal (BNE) 0 i i it et et e e e e e e e e e e e e e e 3-12
Branch on Not Equal Register (BNER) it it et e 3-12
Branch on Not Equal Short (BNES) e 3-12
Branch on Not Low (BNL) e e e e e e e 3-14
Branch on Not Low Register (BNLR) e e 3-14
Branch on Not Low Short (BNLS) e e e e e e e e e e e 3-14
Branch on Not Minus (BNM) it e e e e e e e e e e e e e e 3-16
Branch on Not Minus Register (BNMR) e e 3-16
Branch on Not Minus Short (BNMS) i e e e e e e e e e e 3-16
Branchon Not Plus (BNP) e e e e e e 3-18
Branch on Not Plus Register (BNPR) e e e e e et e e e 3-18
Branch on Not Plus Short (BNPS) e e e e e e e 3-18
Branchon Not Zero (BNZ) i 0 i i e e e e e e e e e e 3-22
Branch on Not Zero Register (BNZR) o i i i i e e et e e e e e 3-22
Branch on Not Zero Short (BNZS) i i i e e e e e e e e e e e e e e 3-22
Branch on Overflow (BO) o i i i e e e e e e e e e e e e e e 3-19
Branch on Overflow Register (BOR) it 319
Branch on Overflow Short (BOS) e e e e e e e e e 3-19
Branchon Plus (BP) e e e e e e e e e e e e e 3-17
Branch on Plus Register (BPR) e e e 3-17
Branch on Plus Short (BPS) e e e e e e 3-17
Branch (Unconditional (B) e e e e e e e e e e e e e e 3-23
Branch Register (Unconditional) (BR) L 3-23
Branch Short (Unconditional) (BS) 0 e e e e e e e e e e e 3-23
Branch on Zero (BZ) e 3-21
Branch on Zero Register (BZR) i i e e e e e e e e e 321
Branch on Zero Short (BZS) e e e e e e e e e e e e e e e e e e 3-21
No Operation (NOP) e e e e e e e e 3-24
No Operation Register (NOPR) 0 0 e e e e e e s e e e e e e 3-24
FIXED POINT ARITHMETIC o i i i et e s e 4-1
FIXED POINT DATA WORDS FORMATS o e e e e e e e e e e e e e e e e e e e 4-1
FIXED POINT INSTRUCTION FORMATS o i i i e et e 4-3
FIXED POINT INSTRUCTIONS o o i e e e e e e e e e e e e e e e e s e e e e e e e e e 4-3
Add (A) . . . o e 4-4
Add Halfword (AH). e e e e e e e e e e e e e e e e e 4-5
Add Halfword Immediate (AHI) i i i 4S
Add Halfword to Memory (AHM). e e e e e e e e e e e e e 4-7
Add Immediate (AI) e 4-4
Add Immediate Short (AIS). e e e e e e e e e e e e e e e e 4-4
Add Register (AR) e e e e e e e 4-4
Add to Memory (AM). e e e e e e e e e e e e e e e e e e 4-6

I-2 29-405 ROO 5/76

INDEX (Continued)

Compare (C) o i i it et i i it e e e e e e e e e e e e e e e e e
Compare Halfword (CH) i e
Compare Halfword Immediate (CHI) i i it i i e i e e
Compare Immediate (CI) e e e e e e
Compare Register (CR) e e e e e e e
Convert to Halfword Value Register (CHVR) vttt inenn
Divide (D) L e e e e e e e e e e e e e e e e
Divide Halfword Register (DHR) e et e
Divide Register (DR) o e e e e e e e e e

Multiply (M) 0o e e e e e e e

Multiply Halfword (MH) e e e e e e e
Multiply Halfword Register (MHR) it it i
Multiply Register (MR) o e e
Shift Left Arithmetic (SLA) e
Shift Left Halfword Arithmetic (SLAH) i it
Shift Right Arithmetic (SRA) e
Shift Right Halfword Arithmetic (SRHA) i
Subtract (S) e e e e e e e
Subtract Halfword (SH) e e
Subtract Halfword Immediate (SHI) e
Subtract Immediate (SI) L e e e e e e e
Subtract Immediate Short (SIS) e e e e e
Subtract Register (SR) e e e e e

FLOATING/FIXED POINT RANGESt e e e e e e e e
FLOATING POINT INSTRUCTION FORMATSottt it ettt e e
FLOATING POINT INSTRUCTIONS et e et e e

Add Double Precision Floating Point (AD) vt
Add Floating Point (AE) e e e e e e
Add Floating Point Register (AER) e
Add Register Double Precision Floating Point (ADR)
Compare Double Precision Floating Point (CD)c......
Compare Floating Point (CE) e et i e e
Compare Floating Point Register (CER) e ...
Compare Register Double Precision Floating Point (CDR)
Divide Double Precision Floating Point (DD) it i i v ittt i n
Divide Floating Point (DE) e e e e e
Divide Floating Point Register (DER) i i ittt
Divide Register Double Precision Floating Point (DDR)
Fix Register (FXR) o 0 o e e e e e e e e e e e e
Fix Register Double Precision Floating Point (FXDR)
Float Register (FLR) e e e e e e e e e e e e e
Floating Register Double Precision (FLDR) i it i i et e e
Load Double Precision FloatingPoint (LD)
Load Floating Point (LE) i i it e e e e e e
Load Floating Point Multiple (LME) i et ettt e
Load Floating Point Register (LER) 0 i i it ittt et et e e e
Load Multiple Double Precision Floating Point (LMD) oo
Load Register Double Precision Floating Point (LDR)
Multiply Double Precision Floating Point (MD) vune...
Multiply Floating Point (ME) e e e e
Multiply Floating Point Register (MER) i ittt it
Multiply Register Double Precision Floating Point (MDR)o u....
Store Double Precision Floating Point (STD) i i ittt it e
Store Floating Point (STE) i e e e
Store Floating Point Multiple (STME) it i
Store Multiple Double Precision Floating Point (STMD)
Subtract Double Precision FloatingPoint (SD)
Subtract Floating Point (SE) L . e e e e e e e e e e e
Subtract Floating Point Register (SER) e e e e e e e e e e e e e e
Subtract Register Double Precision Floating Point (SDR)

29-405 ROO 5/76

... 524

1-3

INDEX (Continued)

FLOATING POINT NUMBER o i i e e e e e e e i e e e e e i e e s e e e e 53
FLOATING POINT NUMBER RANGE o o et et i e e e e e e e e e et e 54
FLOATING POINT REGISTER ot ot i et i e e e et e e e e e e e s e et e e e e e s 1-6
FLOATING POINT REGISTER DISPLAY o o i it et e e e e et e e e e e s 10-6
FLOATING POINT REGISTER DISPLAY (LATER VERSIONSOF 7/32) v v v v v v vt o u 10-6
GENERAL REGISTER . . . o o o it e e i e e e e e e e e e e e e e e e e et e e s e e e 1-6
GENERAL REGISTER DISPLAY o i i i i i it i e it i e s e s et s e e e 10-6
GUARD DIGITAND ROUNDING o ot e et e i e et e e e e e e e et e e S N4
HEXADECIMAL DISPLAY PANEL o e e e e e s e e e e e e 10-1
HEXADECIMAL DISPLAY PANEL DATA TRANSFERS it e e e 10-8
INPUT/OUTPUT INSTRUCTION FORMATS o e it e e et e e e e e e e 7-3
INPUT/OUTPUT INSTRUCTIONS o i e e et e e e e e e et e e e 7-3
Autoload (AL) e e e e e e e e e 7-14
Output Command (OC)« . o vttt it e e e e e e 74
Output Command Register (OCR)o ittt 7-4
Read Block (RB) i i i it e i it e e e e e e e e e e 7-8
Read Block Register (RBR) o i i i ittt e e e et e e e e e 7-9
Read Data (RD) o o o i i et e e e e e e e e e e e e e 7-6
Read Data Register (RDR) e 7-6
Read Halfword (RH) o o e e e e e e e e e e e e e e 77
Read Halfword Register (RHR) 0 o ittt i i st s e 7-7
Sense Status (SS) i e e e e e e e e e e e e 7-5
Sense Status Register (SSR) e 7-5
Stimulate Channel Program (SCP) i i e e 7-15
Write Block (WB) e 7-12
Write Block Register (WBR) 0 . v ittt e e e e 7-13
Write Data (WD) o o o e e e e e e e e e e e e e e e e e e et e e e 7-10
Write Data Register (WDR) 0 . ittt it e e e e 7-10
Write Halfword (WH) o o o it e e e e e e e e e e 7-11
Write Halfword Register (WHR) i 711
INPUT/OUTPUT PROGRAMMING o oo ettt e e et e e e e e e e v 10-9
INPUT/OUTPUT OPERATIONS o ittt e ettt e s v s e s s Y B3
INPUT/OUTPUT REFERENCES i it ettt e e e e e e e A7-1
INPUT/OUTPUT SYSTEM CONFIGURATIONot e e e s 7-1
INSTRUCTION FORMATS . . . o o v i e e it e e e e e e e e e i e s i et e et e s e e e e e e e 1-8
Branch Instruction FOrmats ¢ ot v v i i vt e e e e e e e e e e e e e e s 19
Register and Immediate Storage One (RI1) Format oo oo 1-15
Register and Immediate Storage Two (RI2Z) Formato . 1-16
Register and Indexed Storage One (RX1) Format oo L1
Register and Indexed Storage Two (RX2) Formato v 1-12
Register and Indexed Storage Three (RX3) Formato c oo oo v oo v 1-14
Short Form (SFYFormat o v it e it e e e e e e L. 19
INSTRUCTION SUMMARY - ALPHABETICAL WITH ATTRIBUTESo A2-1
INSTRUCTION SUMMARY -NUMERICAL ot i i i et e et e et e e e e e s A3-1
INTERRUPT SERVICE POINTER TABLE o it e i i e s e e e e e e s 7-2
INTERRUPT STATUS REGISTER o i i i e et e e e e e e e e e e e e e e 8-6
INTERRUPT SYSTEM . . o o it e e i i e e e e e e e e e e e e s e e e e e et e e e e e e e e s 6-4
Arithmetic Fault Interrupt o o o o e e e e e 69
Console INTEITUPE . . o o o v o o e et b i e e e e e e e e e 6-7
Megal Instruction Interrupt« o o o e -10
Immediate INEITUPE o« « . v e e e e e e e e e e e e e e 6-6
Machine Malfunction Interrupt o o o . o e e e e e e e e 6-8
Protect Mode Violation Interrupt o . . o oo e e 6-10
Relocation/Protection Interrupt o o o 0 b ot e 6-9
Simulated INterrupt o o o e e e e e e e e e e e e e e e e e e e 6-7
Supervisor Call Interrupt v .« .o i e e 6-10
System Queue Service Interrupto 6-10

14 29405 ROO 5/76

INDEX (Continued)

INTERRUPT SYSTEM BLOCK DIAGRAM S 6-5
KEY OPERATED SECURITYLOCK e e e e e e e 10-3
LIST PROCESSING . . i i i i i i i it e e et e 2-3
LOGICAL DAT A o et e e e e e e e s e e e e e e e e e e e e e 2-1
LOGICAL INSTRUCTION FORMATS i i i i et it e et st s e e e et e s s e s o e e 2-4
LOGICAL INSTRUCTIONS . . . o i i it et i e e e e e e s e et s e e e e e e e e e e s e s s e e s 2-4
Add to Bottomof List (ABL) o i e e e e e 1-45
AddtoTopof LISt (ATL) o o o ottt it i e e st e e e s e e e e e 2-45
AND (N) o o o i e e e e e e e e e e e 221
AND Halfword (NH) . . . o ot ot o e 2-22
AND Halfword Immediate (NHI) o o e e e e e e 2-22
AND Immediate (NI) 0 v i e 2-21
AND Register (NR) o o vt it et e et e et et e e e e e e e e 2-21
Compare Logical (CL) 0 i e s e e e e 2-18
Compare Logical Byte (CLB) 0 i i ittt e e e e e 2-19
Compare Logical Halfword (CLH) 0o ittt i i 2-19
Compare Logical Halfword Immediate (CLHI) 2-19
Compare Logical Immediate (CLI) ittt v i e 2-18
Compare Logical Register (CLR) it 2-18
Complement Bit (CBT) ittt et e e e e e e e e 2-38
Cyclic Redundancy Check Modulo 12(CRC12) vi oo 2-40
Cyclic Redundancy Check Modulo 16 (CRC16) oo i i 2-40
Exchange Byte Register (EXBR) it 2-12
Exchange Halfword Register (EXHR) oo i oo 2-13
Exclusive OR (X) . - o o 0 i i i e e e i e et e e et e e e e e e e s e e e e 2-25
Exclusive OR Halfword (XH) o o v i v i et e et e et et e e e e e et e e e e e 2-26
Exclusive OR Halfword Immediate (XHI) o . 0 i o i i i i e i e e s 2-26
Exclusive OR Immediate (XI) o . o 0 v it e et e e e e e e e e e e e e e e e 2-25
Exclusive OR Register (XR) o i i it i e s e s e e 225
Load (L) . . . o o i i i i e 2-5
Load Address (LA) . . o o o v i i e 2-7
Load Byte (LB)« « o i i i i it i e e e e e e e e e e e 2-11
Load Byte Register (LBR) o i e e s s e 2-11
Load Complement Short (LCS) & .« 0 o v i i i it i i i e e e e e e 2-5
Load Halfword (LH) i o i e e e e e e it e e et e e e e e e e e 2-6
Load Halfword Immediate (LHI) 0 o 0 i it i et et s e 2-6
Load Halfword Logical (LHL) i i it i ittt e e e e e e e e e 29
Load Immediate (LI) o o o it e e e e e e e e e e e e e e e e e 2-5
Load Immeidate Short (LIS) o o o i e e e e e e e e e e e e 2-5
Load Multiple (LM), e e e e e e e e e e e e e e e e e 2-10
Load Real Address (LRA) 0 0 i i i it i i i e e e e e et e e e e e 2-8
Load Register (LR) o o o o i i e i e e e e e e e e e e e 2-§
76 2 3o) T 2-22
OR Halfword (OH) i o i it et it e i et e s e e e e e e e e e 2-24
OR Halfword Immediate (OHI) 0 i i e e e e e e e e e e e e 2-24
OR Immediate (OF) i i e e e e e e s e 2-23
ORRegister (OR)« o i it e it e e e e et e et et s i s s e e e 223
Remove from Bottom of List (RBL) i i i i i i i it e e e e e e e e 2-46
Remove from Topof List (RTL) i v ittt i e e e e e e 2-46
Reset Bit (RBT) . . . o o o o o o o e e e e e e e e e et e e e e e e e e e e e 2-39
Rotate Left Logical (RLL) ot it ittt ittt i et e e e e 2-33
Rotate Right Logical (RRL) 0 4 vt v ittt e e it e ot e e e e e 2-34
SetBit(SBT) P 2-37
Shift Left Halfword Logical (SLHL)ottt v s .. 231
Shift Left Halfword Logical Short (SLHLS) oot v i o e v 2-31
Shift Left Logical (SLL) . . . o . o . 0 ot i e it e et e e 2-29
Shift Left Logical Short (SLLS) e 2-29
Shift Right Halfword Logical (SRHL) oo i o e e 2-32
Shift Right Halfword Logical Short (SRHLS) oo v v v o i oo o 2-32
Shift Right Logical (SRL) 0 i it ittt s e 2-30
Shift Right Logical Short (SRLS)o i e 2-30

29-405 ROO 5/76 I-5

INDEX (Continued)

Store (ST) o 2-14
Store Byte (STB) 2-17
Store Byte Register (STBR) 2-17
Store Haifword (STH) 2-15
Store Multiple (STM) 2-16
Testand Set (TS) 2-35
TestBit (TBT) 2-36
Test Halfword Immediate (THI), 2-28
Test Immediate (TI) YW 2227
Translate (TLATE) i 2-42
MACREGISTERS 8-4
Definition of MAC Register Fields 85
Interrupt Status Register 8-6
Segmentation Register 85
MEMORY READ 10-5
MEMORY WRITE i 10-5
MICRO CODE FLOW CHART OF AUTODRIVERCHANNEL 7-24
MODEL7/32 BLOCKDIAGRAM 9-2
MODEL 7/32 EXECUTION TIMES INMICROSECONDS~ A6-1
MODEL 7/32 INSTRUCTION FORMATS oo 9-3
MODEL 7/32 MICROINSTRUCTIONS o A8-1
MODEL 7/32 PROCESSOR BLOCK DIAGRAM oo 1-2
OP-CODEMAP Al-1
OPERATING PROCEDURES ittt 10-5
Comsole Interrupt 10-7
Floating Point Register Display, 10-6
Floating Point Register Display (later versions of 8/32)o ... 10-6
General Register Display 10-6
Memory Read 10-5
Memory Write 10-5
PowerDown 10-5
PowerFail e e e e e e e e e e e e e e e e e e e 10-7
Power Up o L o 10-5
Program Execution L 10-7
Program Status Word Display and Modification 10-6
Program Termination 10-7
Switch Register L 10-7
OPERATIONS 3-1, 4-1
POWERDOWN 10-5
POWERFAIL 10-7
POWERUP 10-5
PROCESSINGINSTRUCTIONS ittt 2-47
PROCESSOR 1-1
PROCESSOR/CONTROLLER COMMUNICATION 7-2
PROCESSORINTERRUPTS 10-7
PROCESSOR OPERATIONS s 109
PROGRAMEXECUTIONt 109
PROGRAMMING INSTRUCTIONS e e i e e e e e e e e 1-6 .
PROGRAMMING SEQUENCES oo 1-7-
PROGRAMSTATUSWORD i 1-4, 6-1
Arithmetic Fault Interrupt Mask (A) 1-5
Condition Code (CVGL) i 1-5
Immediate Interrupt/Auto Driver Channel Mask (I) 1-4
Location Counter (LOC) i i . e e e e e e e 1-5
Protect Mode (P) 1-5
Register Set Select (R) A 15
Relocation Protection Interrupt Mask (R/P) 1-5
System Queue Service Interrupt Mask (Q) 1-5

Wait State (W) 1-4

I-6 , 29-405 ROO- 5/76

INDEX (Continued)

PROGRAM STATUS WORD DISPLAY ANDMODIFICATION 10-6

PROGRAM TERMINATION o et e e e e et s e e e e e e e e e e e e e e 10-7
PROTECTION . . . ittt e e e e e e et e e et e e e e e e e e e e e e e e e e e 81
PROTECT MODE o i e e e et e e e et e s et e e e e e e e e e e e e e e e 6-2
REGISTER SET SELECTION o e e e e e e e e e e e e e e e s e e e 6-2
RELOCATION o it e 8-1
RESERVED MEMORY LOCATIONt e e e e e e e e e e e e e e s e s e 16
SEGMENTATION REGISTERS e s e e s e e e e e e e s e 8-5, 8-6
SELECTOR CHANNEL I/0 o e e e e e e s s e e e e e e s s e s e 7-18
Selector Channel Devices o e e e e e e e e e e e e 7-18
Selector Channel Programming e e e 7-19
Selector Channel Operation 0 i i i i it et e e e e e e e e e e e 7-18
STATUSMONITORING /0 o e e e e e e e e e e e e e e e e e e s e e e 7-16
STATUS SWITCHING AND INTERRUPTS e e e e e e e e e e e e 6-1
STATUS SWITCHING INSTRUCTION FORMATS i e e e e e e e e e e 6-11
STATUS SWITCHING INSTRUCTIONS o ot e 6-11
Exchange Program Status Register (EPSR) o 6-14
Load Program Status Word (LPSW) o e 6-12
Load Program Status Work Register (LPSWR) 6-13
Stimulate Interrupt (SING) L e e 6-15
Supervisor Call (SVC), D e e e e e e e e e e e e e e e e e 6-16
SUBROUTINE ADD RESS e e et e et e e e e e e e e e e e e e e 7-20
SUBROUTINELINKAGE e e e e e e e e e 3-1
SWITCH REGISTER o i i it i et e e e it e st e e e et e e e e e e e e e e e e e 10-7.
TRANSLATION . . . it e e e e s e e e e et et e e e e e e e e e e e e e e 2-2,7-21
TRANSLATION TABLE ENTRY o i e e e e e e e e e e et e e e e e e e 2-2
WAIT STATE ot e 14,62

29-405 ROO 5/76 EF7/1-8

CUT ALONG LINE

. ——— et o —— — s i ot s iy ey ot G g e it b e et | it o S e pmn o o i e,y s, s it St St etne. e Gt s .t

PUBLICATION COMMENT FORM

Please use this postage-paid form to make any comments, suggestions; criticisms, etc. concerning
this publication.

From Date

Title Publication Title

Company Publication Number

Address

FOLD FOLD

Check the appropriate item.

D Error Page No. — . Drawing No.

D Addition PageNo.__________ Drawing No.

D Other Page No.____ Drawing No.

Explanation:

FOLD FOLD

Fold and Staple
No postage necessary if mailed in U.S.A.

STAPLE STAPLE

FOLD — EOLD

— e e e =) ———— — — = _i

FIRST CLASS |

PERMIT No. 22 |

OCEANPORT, N.J.| |

|
R

BUSINESS REPLY MAIL |
D

NO POSTAGE NECESSARY IF MAILED IN U.S.A. I
]

POSTAGE WILL BE PAID BY: I :
I

o |
R

TIN"T"EITEVIEIDD AN'A° |

B

Subsidiary of PERKIN-ELMER |
R

Oceanport,New Jersey 07757, U.SA. |

I |

TECH PUBLICATIONS DEPT. MS 322 |

TR T T T T T T T T T T T T T T T T T ol

STAPLE STAPLE

	0001
	0002
	001
	002
	003
	004
	01-01
	01-02
	01-03
	01-04
	01-05
	01-06
	01-07
	01-08
	01-09
	01-10
	01-11
	01-12
	01-13
	01-14
	01-15
	01-16
	01-17
	01-18
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	02-13
	02-14
	02-15
	02-16
	02-17
	02-18
	02-19
	02-20
	02-21
	02-22
	02-23
	02-24
	02-25
	02-26
	02-27
	02-28
	02-29
	02-30
	02-31
	02-32
	02-33
	02-34
	02-35
	02-36
	02-37
	02-38
	02-39
	02-40
	02-41
	02-42
	02-43
	02-44
	02-45
	02-46
	02-47
	02-48
	02-49
	02-50
	02-51
	02-52
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	03-07
	03-08
	03-09
	03-10
	03-11
	03-12
	03-13
	03-14
	03-15
	03-16
	03-17
	03-18
	03-19
	03-20
	03-21
	03-22
	03-23
	03-24
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	04-21
	04-22
	04-23
	04-24
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	05-11
	05-12
	05-13
	05-14
	05-15
	05-16
	05-17
	05-18
	05-19
	05-20
	05-21
	05-22
	05-23
	05-24
	05-25
	05-26
	05-27
	05-28
	05-29
	05-30
	05-31
	05-32
	05-33
	05-34
	05-35
	05-36
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	06-14
	06-15
	06-16
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	07-12
	07-13
	07-14
	07-15
	07-16
	07-17
	07-18
	07-19
	07-20
	07-21
	07-22
	07-23
	07-24
	07-25
	07-26
	07-27
	07-28
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	09-01
	09-02
	09-03
	09-04
	09-05
	09-06
	09-07
	09-08
	09-09
	09-10
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	10-07
	10-08
	10-09
	10-10
	10-11
	A1-1
	A1-2
	A2-1
	A2-2
	A2-3
	A2-4
	A3-1
	A3-2
	A3-3
	A3-4
	A3-5
	A3-6
	A4-1
	A4-2
	A5-1
	A5-2
	A5-3
	A5-4
	A5-5
	A5-6
	A6-1
	A6-2
	A6-3
	A6-4
	A6-5
	A6-6
	A6-7
	A6-8
	A7-1
	A7-2
	A7-3
	A7-4
	I-1
	I-2
	I-3
	I-4
	I-5
	I-6
	I-7
	I-8
	replyA
	replyB

