PRODUCT DESCRIPTION

The M83-111 is a truly high performance floating point
arithmetic unit for the Interdata 8/32-C Megamini: high
performance in number of instructions to control floating
point opcrations, in precision, and in speed. The Interdata
8/32 Megamini features a 32-bit word and up to one mil-
lion bytes of 750-nanosecond core memory. 1t gives large
scale computer performance at minicomputer prices.

Thirty instructions provide Load, Store, and Compare in
addition to the standard floating point arithmetic instruc-
tions of Add, Subtract, Multiply, and Divide. Operands can
be cither single or double precision. Both operands can be
located in the floating point registers, or one operand can
be in the floating point registers and the other in memory.
Load and Store have a third format for loading and storing
multiple “loating point registers.

Four additional instructions perform Fix and Float con-
version between the standard single precision integer and
single or double precision floating point formats.

@
IN'TIEIRIDATT A

PROCESSOR ENHANCEMENTS

High Performance
Floating Point

for the Model 8/32
Megamini

Because the 8/32-C uses a 32-bit word, single precision
numbers are the equivalent of 7.2 decimal digits. Double
precision numbers are the equivalent of 16,7 decimal digits.

Speeds for single precision floating point arithmetic are
0.40 microsecond for Compare Register, 1.00 microsccond
for Add Register, 1.75 microscconds for Multiply Register,
and 3.60 microseconds for Divide Register. Double preci
sion arithmetic times are 0.60 microsecond for Compare
Register Double, 1.04 microseconds for Add Reuister
Double, 2.50 microseconds for Multiply Register Double,
and 6.70 for Divide Register Double. These times are the
fastest possible instruction exccution times.

Table 1 lists all the floating point arithmetic instructions
with execution times.

FEATURES

® Single Precision (7.2 decimal digits)

® Double Precision (16,7 decimal digits)

® Thirty Floating Point Instructions

® [ight 32-Bit Registers (single precision)
® [ight 64-Bit Registers (double precision)

v Interdata Registered Trademark

TABLE 1. HIGH PERFORMANCE FLOATING POINT INSTRUCTIONS

Instruction Mnemonic Instruction Format Execution Time, usec.*
SINGLE PRECISION ‘
Loaa Floating Point LE RX1, RX2, RX3 1.39
Load Floating Point Register LER RR 1.04
Load Floating Point Multiple LME RX1, RX2, RX3 3.57 + 1.34n
Store Floating Point STE RX1, RX3, 2.23

RX2 2.60
Store Floating Point Multiple STME RX1, RX2, RX3 3.59 + 0.90n
Add Floating Point AE RX1, RX2, RX3 1.82
Add Floating Point Register AER RR 1.00
Subtract Floating Point SE RX1, RX2, RX3 1.82
Subtract Floating Point Register SER RR 1.00
Multiply Floating Point ME RX1, RX2, RX3 2.50
Multiply Floating Point Register MER RR 1.75
Divide Floating Point DE RX1, RX2, RX3 4.45
Divide Floating Point Register DER RR 3.60
Compare Floating Point ct RX1, RX2, RX3 1.45
Compare Floating Point Register CER RR 0.60
Fix Register FXR RR 5.35
Float Register FLR RR 2.00
DOUBLE PRECISION
Load Double Precision Floating Point LD RX1, RX3 2.91

RX2 3.28
Load Register Double Precision Floating Point LDR RR 1.04
Load Multiple Double Precision Floating Point LMD RX1, RX2, RX3 3.69 + 2.19n
Store Double Precision Floating Point STD RX1, RX2 2.75

RX3 2.81
Store Multiple Double Precision Point STMD RX1, RX2, RX3 4.50 + 1.80n
Add Double Precision Floating Point AD RX1, RX3 3.38

RX2 3.75
Add Register Double Precision Floating Point ADR RR 1.04
Subtract Double Precision Floating Point SD RX1, RX3 3.38

RX2 3.75
Subtract Register Double Precision Floating Point SDR RR 1.04
Multiply Double Precision Floating Point MD RX1, BX3 4.90

RX2 5.30
Multiply Register Double Precision Floating Point MDR RR 2.50
Divide Double Precision Floating Point DD RX1, RX3 9.20

RX2 9.65
Divide Register Double Precision Floating Point DDR RR 6.70
Compare Double Precision Floating Point CcD RX1, RX3 3.00

RX2 3.40
Compare Register Double Precision Floating Point CDR RR 0.60
Fix Register Double Precision FXDR RR 8.10
Float Register Double Precision FLDR RR 2.00

*Execution times vary depending on the data in the operands in many cases and on the instruction’s location in the lookahead
stack for memory referencing instructions. In all cases, the listed time for an instruction is the fastest execution time. The
following factors can be used to adjust the execution times:

® Normalize result {Add, Subtract, Multiply, Divide, Float, Load) — 100 nanoseconds per hexadecimal digit shifted.

® FEqualize exponents (Add, Subtract) — 100 nanoseconds per hexadecimal digit shifted.

® Data with alternate 1’s and O's (Multiply only) - can increase time by up to 700 nanoscconds for single precision oper-
ands and by 1600 nanoscconds for double precision operands.

® Position of instruction in lookahead stack {all memory referencing instructions) — can increase execution time by 400
nanoseconds {maximum), if the instruction recad causes the stack to try to refill from memory, or if the stack is already
being filled from memory.

FLOATING POINT DATA FORMATS

The data formats for floating point operands are based on
hexadecimal digits. Lach operand consists of a sign, an
exponent, and a fraction. The sign is one bit that designates
the sign of the fraction: zero (0) for positive fraction and
one (1) for negative fraction. The exponent is a 7-bit ficld
that expresses the floating point number’s exponent in
hexadecimal excess 64 notation. For example, 64 (x '40")
in the exponent field represents an exponent of sero,

63 (x '3F’) in the exponent field represents an exponent of
minus one {—1), and 65 (x ‘41") in the exponent field
represents an exponent of plus one (+1). The fraction
consists of six (single precision) or fourteen (double preci-
sion) hexadecimal digits expressed in absolute form.

The exponent of true zero (all zeros in fraction) is 7ero. The
sign of true scro is always zero (positive). Figure 1 illustrates
the floating point formats.

0 7,8 o 31,32 64
F (Contal)
s ;
<] F Double Prccnsion]

l |F1iF2\F3lF4—[FblFL|
t :
i s - -
VALUE OF THE FRACTION (first word)
=F1.167 + F2.162 4 F3.163 1 F4.16°
+F5165 + F6.16

F7 T F8 Fo | F10 [F11 | F12 l F13 TFM
o . s
VALUE OF THE FRACTION (second word — double precision only)
-F7.167 + £8.168 + F0.162 + F10,16

vF11.16 1+ F1216 121 F13.16 13 4 P16 14

EXPONENT IN EXCESS 64 NOTATION
EQUIVALENTS

EXCESS 64 HEXADECIMAL DECIMAL

00 TO 3F ~40TO -1 64 TO
40 0 0

4170 7F 170 3F 17063

SIGN=0 : POSITIVE FLOATING POINT NUMBER
=1 : NEGATIVE FLOATING POINT NUMBER

FIGURE 1. FLOATING POINT ARITHMETIC DATA FORMATS

Because of the hexadecimal format, normalized numbers can
have up to three leading zeros in the fraction. Minimum
precision for single precision operands is equivalent to 21
bits in binary format or 6.2 decimal digits. Minimum pre-
cision for double precision operands is equivalent to b3 bits
binary format or 15.9 decimal digits.

Results of all floating point operations including the Float
instructions are normalized in hexadecimal format. All
Load instructions except Load Muttiple normalize numbers
transferred into the floating point registers. Other floating
point instructions assume normalized operands.

The result of a single precision floating point arithmetic
operation is rounded up rather than truncated. The result
is calculated to 7 hexadecimal digits (the seventh digit is
called a guard digit). If the seventh hexadecimal digit is
equal to 8 or above, a one (1) is added to the sixth hexa-
decimal digit. The result of a double precision arithmetic
operation is simply truncated.

CONDITION CODES

The Condition Code (CC) bits arc set for the floating point
arithmetic operations and for Fix and Float instructions
to indicate the characteristics ot the result. They are:

Result is zero
Result is less than zero
Result is greater than sero
Exponent overflow (greater than +63), result is negative
Exponent overflow (greater than t63), result is positive
Result is forced to maximum value (all 1's).
® [Exponent underflow (less than --64). Result is forced
to zero.
Divide has one additional condition code setting:
® Divisor equal to zero.

For Fix instructions, Exponent Underflow does not occur.
FFor Float instructions, ncither Exponent Overflow nor
Underflow occurs. All the Load instructions except the
lLoad Multiple instructions use the same condition codes

as the arithmetic instructions, but Exponent Overflow does
not occur. Load Multiple instructions leave the condition
codes unchanged from the previous opecration.

All the Store instructions also leave the condition codes
unchanged from the previous operations.

The Compare instructions use the condition codc settings
to indicate the following characteristics of the result:

® QOperands are equal.
® First operand is less than second operand.
® [irst operand is greater than second operand.

All Exponent Underflow or Overflow conditions except as
the result of a Fix instruction generate an Arithmetic Fault
Interrupt. A Fix instruction Exponent Overflow condition
does not generate an interrupt.

INSTRUCTION FORMATS

The M83-111 High Performance Floating Point option uses
four register formats: Register-to-Register (RR), Register and
Indexed Storage 1 (RX 1), Register and Indexed Storage 2
(RX2), and Register and Indexed Storage 3 (RX3). The Fix
and Float instructions use only the RR format. All other
instructions use all four formats. Figure 2 illustrates the
instruction formats.

In the RR format except for Fix and Float instructions, R1
and R2 select floating point registers. Registers are even
numbered for both single and double precision: 0, 2, 4, 6, 8,
A, C, and E. For the Fix instructions, R1 selects a general
purpose register and R2 selects a floating point register. For
the Float instructions, R1 selects a floating point register
and R2 selects one of the gencral purpose registers.

For the RX 1, RX2, and RX3 instruction formats, R1 selects
a floating point register that contains one operand. The
second operand resides in memory. The contents of the
general purpose register X2 is used as a base added to the
D2 displacement to form the memory address of the second
operand. In the RX3 format, the contents of two general
purpose registers can be used with A2 to calculate the
memory address of the second operand.

REGISTER TO REGISTLR (hRI}

. 7* ,l%

R2

0 N

o]

REGISTER AND INDEXED STORAGE 1 {RX1])

|
i
|

18 8

0 ’ 1 31
B . T T | [
opP R1 xz lofo! D2
L. PR S A O ST
REGISTER AND INDEXED STORAGE 2 [RX2)
TO, 'IT 11| oy 17 - 31|
! op I X2 \ 1 l D2 J
G e b i . R
REGISTER AND INDEXED STORAGE 3 {RX3}
2 a7
12 _ 7‘ 1]1 T 20 2 tf T
op I a1 FX2 oiﬁo o sx2 | A2 ‘
—} Ao . i | o f

Operation Code

First operand register

Second operand register

Second operand singte index register

Second operand displacement
2 Second operand first index register
Serond operand second index register
Second operand direct address

FIGURE 2. FLOATING POINT INSTRUCTION FORMATS

SOFTWARE SUPPORT

The OS/32MT02 Multitasking Operating System and the
FORTRAN VI compiler support the M83-111 High Perfor-
mance Floating Point option.

0S/32MT is a real-time, event-driven operating system. 1t
provides fast real-time response in the foreground. The back-
ground can be used for batch processing or to develop
programs for on-line tasks or applications computation.

The background can be used for batch processing or to
develop programs for on-line tasks or applications computa-
tion.

0S/32MT supports three file structures, 255 levels of task
priority, and dynamic memory segmentation and relocation.

FORTRAN VI is a full ANSI standard language implementa-
tion with full Purdue/ISA extensions for real-time processing.
The compiler includes a re-entrant run-time library. It can
handle large arrays and programs.

MANUAL CONTROL

The Hexadecimal Display Panel (see Figure 3) can display
the contents of the floating point registers. The FLT key
selects the single precision floating point register set if it is
preceded by depressing the FN (Function) Key with num-
ber 2. The FLT key preceded by depressing FN key with
number 3 selects the double precision floating point register
set for display. The hexadecimal keys select which register
is displayed. For double precision, odd numbers select the
least significant 32-bit register and even numbers the most
significant 32-bit register. For single precision, only even
numbers have meaning and depressing an odd number
selects the next lower even number register. Registers are
numbered, O, 2,4, 6,8, A, C, and E.

INTERDATA PRODUCT NUMBER

M83-111 High Performance Floating Point Option for the

Model 8/32

0000 0000 000Q 00009

MIMORY AGDRE S5

0000 0000 0000 000Q]

17 I

O‘ 12 st] 1|‘Q MEMORY DAT)__
e SWITCHREGISTER 1s]

ST UNCTION PROGRAM STATUS WORD
O [TEGETER “? h GINERAT REGISTE 1 -

ofREGISTLR

o FLOATING REGISTER

(-

The information contained herein is intended to be a general
description and is subject to change with product enhancement.

Printed in U.S.A.

FIGURE 3. HEXADECIMAL DISPLAY PANEL

@
IN"T"EERIDA'T A

Subsidiary of PERKIN £{ MER ® Oceanport New Jersey 07757
9761033

