
DMS/32 provides 
retrieval & update 
of data in several 
different files , 
by multiple users. 

Product 
Description 

Features 

Perkin-Elmer's Data Management System 
(DMS/32) is the industry's first data management 
system specifically designed for the on-line 
transaction processing environment. DMS/32 is a 
component of the Reliance transaction processing 
and database management system. DMS/32 
provides high-performance, multi-keyed data 
update and retrieval from multiple user files in a 
single database. DMS/32 manages real-time 
concurrent data access by maintaining database 
integrity through automatic on-line recovery 
features, record and file locking , and facilities for 
rapid restoration of the database in the event of 
any system failure . 

These facilities make DMS/32 an outstanding 
solution to the most complex data processing 
problems: 
• Unlimited number of secondary keys 
• Random and sequential access 
• Data access by full , approximate and generic 

keys 
• Consistent, rapid response 
• Multiple files with multiple extents 
• Concurrent access control 
• Ensured data integrity 
• On-line rollback of failed transactions 

Perkin-Elmer is a registered trademark of The Perkin-Elmer Corporation. 
EVERYWARE is a trademark of The Perkin-Elmer Corporation. 

DMS/32 is well-suited for applications involving 
the retrieval and update of data in several different 
files by multiple users. Programming simplicity and 
consistent high performance make DMS/32 an 
excellent choice for business applications such as 
inventory control , order entry, and materials 
management. 

• Automatic recovery from any system failure 
• Central control of the database 
• Easy use through COBOL, FORTRAN, RPG 11 , 

and Perkin-Elmer's Common Assembler 
Language, CAL MACRO 

• Flexible and dynamic disk space management 
for peak performance and growth 

• Compaction of data records 
• On-line database back up 
• Dynamic allocation and deletion of secondary 

indices 



Data Access 
in DMS/32 

Figure 1 
Multiple Indices 
in DMS/32 

Data 
Compaction 

Consistent 
Response 

DMS/32 is designed for consistently high­
performance data access in an on-line 
environment. DMS/32 provides an indexed file 
organization in which records are referenced by 
multiple keys including: 
• One primary key which is unique for each record 

and is the identifier for that record. 
• Virtually unlimited number of secondary keys 

which may be non-unique and which provide 
alternate paths to the same data. 

As shown in Figure 1, the parts file is accessible 
through part number (primary key) or part 
description (secondary key). Any other field(s) in 
the record may also be defined as secondary 
keys, such as quantity or vendor. Users may 
retrieve records sequentially, randomly or 
dynamically (random access followed by 
sequential). Sequential access may be in 
ascending or descending order, depending on 
user needs. 

Records may be randomly accessed by 
specifying a full or partial key value for any of the 
keys. For example, an inventory request for a 
display of items whose on-hand quantity equals or 
exceeds 100 units would specify "quantity equals 
100" as an approximate key. Ascending sequenti 
access from that point would fulfill the request, 
whether or not a record with that exact quantity 
existed. 
A generic key may also be specified. A generic 
key specifies the leftmost portion of a key. This 
allows record retrieval based upon groups within a 
key. In Figure 1, specifying BOLT as a generic key 
would commence the retrieval of records whose 
description begins with that word. Using DMS/32's 
generic key facilities, all types of BOLTs in the 
database would be retrieved, simply and 
efficiently. 

Primary Index Parts File Secondary Index 

For efficient use of disk space, the records of a file 
can optionally be held in a compressed form. 
Each record is transformed, prior to being written 
to the database, by removing all redundant data to 
ensure that the minimum possible amount of data 
is stored on disk. Similarly, when a record is 
retrieved from the database, it undergoes a 
complementary transformation to return the record 
to its original form. 

In a transaction processing system, users expect 
consistently high performance. Since a major 
portion of fulfilling user transactions is the update 
and retrieval of data in the database, the data 
management system must ensure rapid response, 
regardless of the mode of file usage (i.e., the key 
used) or the volatility of the database over time 
(e.g., response at 4:30 P.M. versus response at 
8:30 A.M.). DMS/32 fulfills these needs through 
balanced indexed structures, distributed free 
space, and continuous reorganization. DMS/32 is 
not preferential to primary or secondary index keys 
as far as speed of record access is concerned. 
The index structures of a DMS/32 database 
provide consistent response, regardless of the 
path specified for access. Thus, all users of a 
DMS/32 system enjoy the same high performance 
regardless of their view of the structure of the 
database. 

2 

~ ~~ -~ - - - ---

The amount of compaction obtainable depends on 
the structure and contents of the record. On 
average, however, a record can be held in 70% of 
the space which it originally occupied. The major 
savings are achieved by characters and zeros, 
and by storing common character pairs as single 
special characters. 

Furthermore, consistency of response is assured 
over time, regardless of file activity. DMS/32's 
distributed free space allows records to be 
updated and inserted without the use of overflow 
areas and without building chain pointers to 
inserted records. The access paths to both "old" 
and "new" records are the same and response to 
later requests is consistent. Space from deleted 
records is immediately available for reuse. 
Continuous reorganization is automatic and 
eliminates the need for periodic off-line 
reorganizations. With DMS/32, records can be 
added, changed and deleted while files remain 
well organized and users' responses are 
consistently at a peak. 



Physical 
Structure of The 
Database 

• 

Figure 2 
Database Structure 

Transaction 
Units 

Concurrent 
Use of DMS/32 

A DMS/32 database is contained in one or more 
physically contiguous placement areas on one or 
more disks. These placement areas correspond to 
files under OS/32, Perkin-Elmer's multitasking 
32-bit operating system. Using multiple OS/32 
files to contain the database allows virtually 
unlimited database size. The distribution of OMS 
files over multiple disk drives allows the user to 
achieve optimum performance. 
Within the DMS/32 database, OMS files can be 
allocated with one or more physically contiguous 
areas called extents. A OMS file 's extents can be 
contained in any number of the OS/32 physical 
files. Each OMS file contains fixed length records 
and indices containing user-defined keys. Indices 
point to the records. Figure 2 portrays the 

Physical Files (PF) 
Database 

The Transaction Unit concept is central to the 
unique operational capabilities of DMS/32. A 
business transaction normally includes the 
updating of multiple files in a database. For 
example, when a sale is made from inventory, 
a number of ledger updates must be made, 
including adjusting the customer's accounts 
receivable record and debiting inventory for the 
quantity allocated. If all of the requisite updates 
are not completed, the database will contain 
inconsistencies and the financial files will be out 
of balance. In the example, the result could be 
erroneous inventory levels or improper customer 
bills. 
In DMS/32, the transaction unit is the unit of 
database integrity. A transaction unit includes a 
group of updates all of which must be properly 

DMS/32 is designed for simple and efficient use in 
a multiuser environment. The problems of 
managing user contention for the same data, 
controlling user access to the database, 
recognizing deadlock situations, and ensuring the 
consistency and on-line integrity of data are 
handled by DMS/32. In the past, application 
developers have discovered that implementing on­
line, concurrent database applications has 

3 

database structure and shows the tremendous 
flexibility of the database organization. 
Physical retrieval of data is in fixed length blocks 
called pages. Each page contains data and free 
space. The distributed free space is used to 
efficiently insert and update records. Continuous 
space reclamation and reorganization ensure 
efficient operations in storage usage and 
performance. Data records within the pages are 
compacted, further reducing disk storage 
requirements . 
DMS/32 automatically checks at the start of each 
session that all required OS/32 files and any 
associated log files are available and are proper 
compatible versions. 

OMS Files 

completed to ensure database consistency. 
DMS/32 automatically locks records affected in a 
transaction unit and unlocks them following that 
transaction unit's completion. Commands to end or 
fail transaction units allow the programmer to state 
simply whether prior updates in the transaction 
unit should be accepted or rejected. Updates from 
failed transaction units are automatically rolled 
back with minimal overhead to the system. 
The transaction unit approach is a breakthrough in 
on-line system design. A comparison with other 
approaches to the concurrent transaction problem 
shows that DMS/32 truly offers the simplest and 
highest performance solution for multi-user 
systems. 

involved more thought and coding related to 
concurrency than to the actual application. 
Concepts and techniques built into DMS/32 ease 
the development of transaction processing 
systems, allowing programmers and analysts to 
focus on the application problem to be solved. The 
DMS/32 transaction unit concept and 
implementation offers unprecedented ease in the 
development of application transactions. 



Old Cures­
New Problems 

The DMS/32 
Solution 

Programming 
Ease 

Run 
Units 

Disk 
Logging 

Application designers normally have had to build 
into their application programs the procedures for 
ensuring against database inconsistencies. The 
result has been oversized and overly complex 
programs using coding sequences reflective more 
of concurrency concerns than the solution to the 
application problem. One common approach 
in the past has been the journalling or staging 
of database updates until the transaction is 
completed . In a journalling system, the staged 
updates are not applied to the database if the 
transaction fails . If the transaction is successful , 
the entire database is usually locked while all 
journalized updates are applied to the files . 

With DMS/32, successful transactions are 
accorded maximum efficiency, while failed 
transactions incur the minimal overhead of the 
integrity system. 
Updates are applied directly to the database next 
to the previous version of the updated record . For 
efficiency, WRITEs to DMS/32 are performed 
asynchronously, allowing the application program 
to continue processing. Locking is performed at 
the record level, not at the file or database level. 
(Optional file locking is permitted for sensitive off­
line applications). Following successful completion 
of the transaction , the new versions of the updated 

Due to the transaction unit approach, application 
programming is greatly simplified and undue side 
effects of a concurrent database are eliminated . 
All data records affected by a transaction unit are 
locked for the duration of that transaction unit. This 
prevents concurrent modification of the same 
record by two separate users. 
An example of this concurrent processing problem 
is a situation where user 1 and user 2 retrieve the 
same inventory record . Initially, the record 
indicates that quantity-on-hand is 100 units. User 1 
requires 60 units for a customer, and updates the 
quantity-on-hand to 40 units. User 2, meanwhile, 
requires 70 units and updates the record to reflect 
that 30 units are remaining . In fact, of course, the 
two users have unknowingly overdrawn the stock, 
and have committed the same inventory to two 
customers. 
In DMS/32 , such a situation cannot occur. 
Updates are only performed on locked records , 
and locks are maintained until the end of the 
transaction unit. The other user attempting to 
access the locked record would be rejected until 
the first transaction unit was completed . 
The commands to END or FAIL a transaction unit 
automatically remove all record locks, freeing the 
programmer from concerns about inadvertently 
leaving "orphan" locks on records . 

A DMS/32 run unit represents a user's right-of­
access to the database, either a terminal user's 
session or a batch program. Thus, each DMS/32 

To safeguard against the loss of a database as a 
result of media failure, DMS/32 optionally copies 
the contents of updated pages to a disk log file 
associated with the database. The log file , which 
is normally held on a separate disk volume from its 
database, contains only the latest copy of all 
pages updated successfully since the last security 
copy of the database and , thus, generally requires 
significantly less disk space than the database. 

4 

There are numerous drawbacks to this approach. 
Managing the journalizing process is frequently 
the obligation of the application program. Shared 
use of the entire database is prevented while all 
updates are applied from the journal. Most 
significantly, successful updates require writing 
both to the journal and to the database. In effect , 
"good" transactions are penalized in order to allow 
for "bad" transactions. Since the large majority of 
transactions are successful , the entire system 
incurs a very large performance overhead in 
exchange for some automation of the integrity 
process. 

records are immediately available for use. The 
space occupied by the old versions is reclaimed 
for reuse. If the transaction fails , control pointers 
are modified to indicate the old versions are still 
active. The space occupied by the new versions 
is reclaimed and record locks are cancelled. 
Thus, top efficiency is afforded to successful 
transactions. Failed transactions bear a minimal 
overhead . At no time is the entire database locked: 
other transactions not using the specifically 
updated records proceed while DMS/32 
asynchronously removes the effects of the failed 
transaction . 

Programmers can use simple programming 
sequences to process the DMS/32 database. 
These sequences can reflect the application flow 
without being artificially reordered to allow for 
update rollback at the transaction level. The 
resulting code is far simpler to write , read and 
maintain . There is no need to write recovery 
programs or rollback subroutines. At any point 
where the user decides to cancel the transaction, 
a single FAIL command will undo all updates and 
restore database consistency. 
Program-level or system-level failures are 
automatically handled by DMS/32. If a user 
program fails , DMS/32 rolls back the effects of that 
transaction unit. If there is a more widespread 
system failure, such as a power failure or 
hardware/software malfunction , DMS/32 rolls back 
active transaction units for all users when it is 
reinstated . The rollback is automatic and cannot 
be bypassed, thus ensuring database consistency 
in all circumstances. 

user is uniquely identified for purposes of access 
control and recovery. A run unit consists of one or 
more consecutive transaction units. 

Each time a security copy of the database is 
taken, a new log for the database can be created 
by specifying a log filename. When DMS/32 
detects that a log is nearly full , it informs the 
operator who can respond by adding an extension 
file to the log. 



Rollforward 
Reconstruction 

File Space 
Management 

Database 
Structure 

DMS/32 
Operation 

• 

System 
Requirements 

Product 
Numbers 

Related 
Documentation 

In the event of media corruption, a DMS/32 
database can be reconstructed by applying the 
contents of the appropriate log files to a security 
backup of the database. If, during rollforward , 
more than one log file is required , DMS/32 
prompts for successive logs as its needs them. At 
the same time, DMS/32 checks that the logs are 
supplied in the correct order and are for the 
database concerned. 

OMS files and secondary placement areas can be 
created, modified or deleted at any time while the 
database is operational. The operations may be 
performed either by using the File Space 
Management Utility, or by issuing supplied CAL 
MACROS. 

Information held by DMS/32 regarding the 
database, placement areas, log and OMS files can 
be obtained by interrogating special OMS 
information files . Data from the information files 

A DMS/32 database is created by the Generate 
Utility. This utility allocates the primary placement 
area and establishes the control information for the 
database. 
The DMS/32 session initialization command loads 
the DMS/32 software and establishes the DMS/32 
environment. This includes: 
• preparing the data areas and the database for 

use, 
• recovering the consistency of the database after 

a system failure, 
• rolling back the transaction units that were 

interrupted by a system failure. 
These operations are performed without operator 
intervention; DMS/32 detects if the system failed 
last time the database was used. 
The only circumstances that require extra 
information from the operator during initialization 
are: 
• to specify a new log file, 
• to inhibit logging, 
• to reconstruct, or rollforward , the database 

following a disk media failure. 

Minimum Hardware Requirement 
Any Perkin-Elmer 32-bit processor with a minimum 
of 512KB, 80MB disk, and a console device. 

871-022 DMS/32 Group I 
872-022 DMS/32 Group II 
873-022 DMS/32 Group Ill 
Note: DMS/32 is also supplied as a component 
of the Reliance software system, part number 
871-035 Reliance Group I 
872-035 Reliance Group II 

29-714 DMS/32 Introduction 
29-715 Data Management with COBOL 
Programmers Reference Manual 
29-716 DMS/32 CAL Programmers Reference 
Manual 
29-717 DMS/32 System Programming and 
Operations Manual 

5 

Because the log files include only the latest 
updated versions of new or modified records , the 
rollforward process is exceptionally fast. Thus, 
system availability is maximized, regardless of any 
problem with the physical database. 

DMS/32 can automatically extend OMS files when 
they become full. The extension is performed in 
such a way that application programs updating 
the OMS file are not affected. Automatic extension 
is an option controlled by information supplied 
when the file was created or modified. 

can be retrieved using the File Space 
Management Utility, or by programs using a 
subset of the DMS/32 retrieval commands. 

A DMS/32 system is terminated by a QUIESCE 
command entered at the system console. This 
brings the system to an end when all the current 
run units have been detached from the database. 
Typically, this occurs in a batch environment at the 
end of all the current application programs, and in 
a transaction processing environment at the end of 
all the current business transactions. Alternatively, 
by using one of the optional forms of the OU I ESCE 
command type, the system can be ended after all 
the current transaction units have completed, or 
immediately. When used in the Reliance system, 
DMS/32 quiescence is synchronized with the 
transaction processor. The Reliance CONTROL­
QUIESCE transaction terminates DMS/32 activity 
for each terminal as the terminal completes a 
logical unit of work as defined by the transaction 
designers. In this way, DMS/32 gradually quiesces 
as the transaction terminals arrive at natural 
stopping points. 

Minimum Software Requirement 
OS/32 Release 7.2 or higher. 

873-035 Reliance Group Ill 
and the Reliance PLUS System, part number 
871 -054 Reliance PLUS Group I 
872-054 Reliance PLUS Group II 
873-054 Reliance PLUS Group Ill 

48-045 Data Management with FORTRAN 
Programmers Reference Manual 
48-061 Data Management System/32 File Space 
Management Utility Manual 



Worldwide 
Sales Offices 

U.S.A Offices 
ALABAMA: Huntsville; ARIZONA: Phoenix; 
CALIFORNIA: Los Angeles , San Diego, San 
Francisco, Santa Clara, Tustin; COLORADO: 
Denver; CONNECTICUT: Fairfield, Hartford; 
FLORIDA: Orlando; GEORGIA: Atlanta; ILLINOIS: 
Chicago, Springfield; MARYLAND: Rockville ; 
MASSACHUSETIS: Boston; MICHIGAN: Detroit; 
MISSOURI: St. Louis; NEW JERSEY: Cherry Hill , 
West Long Branch; NEW MEXICO: Albuquerque; 
NEW YORK: Binghamton, Lake Success, New 
York City, Rochester; NORTH CAROLINA: 
Raleigh; OHIO: Cleveland , Dayton; OKLAHOMA: 
Tulsa; PENNSYLVANIA: Pittsburgh; TEXAS: 
Dallas, Houston; VIRGINIA: Richmond; 
WASHINGTON: Seattle. 

Major Subsidiaries 
AUSTRALIA: Brisbane, Canberra, Melbourne, 
North Ryde, North Sydney, Perth, and NEW 
ZEALAND: Auckland, Wellington; BELGIUM: 
Brussels; CANADA: Calgary, Montreal , Ottawa, 
Toronto, Vancouver; FRANCE: Bois d'Arcy 
Cedex, Bordeaux, Grenoble, Lille, Lyon, 
Toulouse; GERMANY: Dusseldorf, Frankfurt, 
Munich, Stuttgart, Uberlingen, and AUSTRIA: 
Vienna; GREECE: Athens; HONG KONG; ITALY: 
Milan; THE NETHERLANDS: Gouda; THE 
REPUBLIC OF SINGAPORE: Singapore; SPAIN: 
Madrid; UNITED KINGDOM: Manchester, 
Slough. Other countries are served by a network 
of distributors. 

The information contained herein is intended to be a general description and is subject to change with product enhancement. 

PERKIN-ELMER 

Data Systems Group 
2 Crescent Place 
Oceanport, N.J. 07757 
(201) 870-4 712 
(800) 631-2154 (U.S.A. Only) 

PB304084 
Printed in U.S.A. 


