Publication Number 29-390R05

0S/32-MT
PROGRAM REFERENCE MANUAL

o
IN"T"ERR I A"T'A°

Subsidiary of PERKIN-ELMER
Oceanport,New Jersey 07757, US.A.

@ INTERDATA INC., 1976
All Rights Reserved
Printed in US.A.

November 1976

PAGE REVISION STATUS SHEET
PUBLICATION NUMBER 29-390
TITLE 0S/32 MT PRM

REVISION RO5 DATE November 1976

PAGE REV. DATE PAGE REV. DATE PAGE REV. DATE
1- 1| RO5 |11/76 |} 4-19 RO4 4/76 |{|5-27 RO4 4/76
1- 2 | RO4 4/76 || 4-20| RO4 4/76 ||5-28 | RO4 4/76 -
1- 3| RO4 | 4/76 || 4-21| RO4 4/76 ||5-29 RO4 4/76
1- 4 | RO4 4/76 || 4-22| RO5 |11/76 ||5-30 RO4 4/76
1- 5/ 4-23 | RO4 4/76 ||5-31 RO4 4/76
1- 6 | R0O4 | 4/76|| 4-24| RO4 4/76 ||5-32 RO4 4/76

4-25| RO04 | 4/76 ||5-33/
2- 1| RO4 4/76 || 4-26 | RO5 |11/76 ||5-34 RO4 4/76
2- 2| RO4 4/76 |l 4-27| RO4 4/76

4-28 | RO4 4/76 ||al1- 1| RO4 | 4/76
3- 1| RO4 4/76 || 4-29| RO4 4/76 ||a1- 2| RO4 4/76
3- 2| RO4 4/76 |l 4-30| RO4 4/76 ||a1- 3| RO4 4/76
3- 3| RO4-| 4/76|| 4-31| RO5 [11/76 ||Al- 4| RO4 4/76
3- 4| RO4 4/76] 4-32| RO4 4/76 ||al1- 5| RO4 4/76
3- 5| RO04 4/76 || 4-33| RO4 4/76 ||al- 6| RO4 4/76
3- 6| RO4 4/76|| 4-34| RO5 {11/76 ||Al- 7| RO4 4/76
3- 7| RO4 4/76 || 4-35| RO5 |11/76 ||Al- 8| RO4 4/76
3- 8| RO4 4/76|| 4-46| RO4 4/76 {|al- 9| RoO4 4/76

3- 9 RO4 4/76| 4-37 R04 | 4/76 ||A1-10 RO4 4/76
3-10 RO4 4/76|| 4-38 RO5 |11/76 || Al-11 RO4 4/76
3-11 RO4 4/76 Al-12 RO4 4/76

RO4 4/76|] 5-16 RO5 | 11/76 || A3- RO4 4/76
RO4 4/76]| 5-17 RO5 | 11/76 || A3- RO4 4/76
4-10 RO4 4/76{] 5-18 RO5 | 11/76 || A3- 6 RO4 4/76
4-11 RO4 4/76||] 5-19 RO5 | 11/76 || A3-7/
4-12 RO4 4/76|| 5-20 RO4 4/76 || A3- 8 RO4 4/76
4-13 RO4 4/76j]] 5-21 RO4 4/76
4-14 RO4 4/76{1 5-22 RO4 4/76 || Ad-1/
4-15 RO4 4/76/] 5-23 RO5 | 11/76]| A4-2 RO5 | 11/76
4-16 RO4 4/7¢| 5-24 RO5 | 11/76
4-17 RO4 4/761 5-25 RO4 4/76|| A5-1 RO4 4/76
4-18 RO4 4/7¢| 5-26 RO5 | 11/76]|| A5-2 RO4 4/76

3-12 RO4 4/76|] 5- 1 RO4 4/76 || A1-13 RO4 4/76
3-13 RO4 4/76})| 5- 2 RO4 4/76 || A1-14 RO4 4/76
3-14 RO4 4/76|1 5- 3 RO4 4/76
3-15| RO4 4/76|] 5- 4 RO4 4/76 || A2- 1 RO4 4/76
3-16 RO4 4/76|| 5- 5 RO4 4/76 || A2- 2 RO4 4/76
3-17 RO4 | 4/76|[5- 6 RO5 | 11/76 || A2- 3 R0O4 | 4/76
3-18 RO4 4/76|f 5- 7 RO5 |11/76 || A2~ 4 RO4 4/76
5- 8 RO5 | 11/76 || A2- 5 RO4 4/76
4- 1| RO4 4/76|| 5- 9 RO4 4/76 || A2- 6 RO4 4/76
4- 2 RO4 4/76|| 5-10 RO4 4/76 || A2- 7 RO4 4/76
4- 3 RO4 4/76|] 5-11 RO5 | 11/76 || A2- 8 RO4 4/76
4- 4 RO4 4/76|] 5-12 RO5 | 11/76
4- 5 RO4 4/76|] 5-13 RO5 | 11/76 || A3~ RO4 4/76
4- 6 RO5 | 11/76|] 5-14 RO4 4/76 || A3- RO4 4/76
4- 7
8
9

1
2
RO4 4/76|| 5-15 RO4 4/76 || A3- 3 RO4 4/76
4
5

A1508

PAGE REVISION STATUS SHEET

PUBLICATION NUMBER 29-390

TITLEOS/32 MT PRM

REVISION RO5

DATE November 1976

DATE

PAGE REV. DATE PAGE REV. DATE PAGE REV.
a6-1 | RO5 [11/76
A6-2 | RO5 [11/76
A6-3 | RO5 [11/76
A6-4 | RO5 |11/76
I- 1| rRO4 | 4/76
I- 2 | RO4 | 4/76
I- 3 | RO5 [11/76
I- 4 | RO4 | 4/76
I- 5 | RO4 | 4/76
I- 6 | RO4 | 4/76
1- 7 | RO4 | 4/76
I- 8 | RO4 | 4/76
I- 9 | RO4 | 4/76
I-10/

I-11 | RO4 | 4/76
I-12 | RO4 | 4/76

A1608

PREFACE

This manual describes Revision 2 of 0S/32 MT, the multi-tasking real-time operating system for the INTERDATA 32-Bit
computer systems.

The major new features are:
Multiple task common segments with sizes limited only by the available memory.
Support of discontiguous memory.
Improved timer management, including repetitive interrupts and time slicing.
Double Precision arithmetic capability.
Support of new hardware, including 67MB disc and Mini I/O.
Better disc management, including directory pre-allocation and OS images in files.
Appendix 6 describes the new features in more detail.

This revision of 0S/32 MT is upwards compatible with previous revisions; tasks which use task common or the reentrant
library must be re-established with TET RO2 to run under OS/32 MT RO2.

29-390 R0O4 4/76 ifii

TABLE OF CONTENTS

CHAPTER 1 SYSTEM OVERVIEW o e 1-1
INTRODUCTION o i e e e e e e e e e e e e e e e e e s s s e e 1-1
IMPORTANT FEATURES e e e e e e s e s s e e 1-2
SYSTEM COMPONENTS et e e e e e e e e e e s e e 12

SystemManager L e e e e e e e e e e e 1-3
Executive Functions L e e e e e e e e e e e 1-3
Task Manager e e e e e e e e e e e e 1-3
Timer Manager e e e e e e e e 1-3
Memory Manager e e e e e e e e e e e e e e 1-3
File Manager o o i i i e e e e e e e e e e e e e e 1-3
T/OSubsyStem L e e e e e e e e e e e e e e 1-3
Resident Loader 0 o 0 i i it e e e e e e e e e e e e e 1-3
OVERVIEW e e e e e e e e 14
HARDWARE CONSIDERATIONS o ot e e e et e e e e e e e e 1-5/1-6
Floating Point Support e e 1-5/1-6
Using Writable Control Store e e e e 1-5/1-6

CHAPTER 2 SYSTEM OPERATION o ittt et e e e e e e e e e s e e e e 2-1
SYSTEM GENERATION e e e e e e e e e e e e e s e e e e e 2-1
SYSTEM START UP o e e e e e e e e e e e e e e e e e e e 2-1
ERROR HANDLING o e e e e e e e e e e e e e e e e e e e 2-1

System Crashes e e 2-1
Unrecoverable Task Errors e e e e e 22
Recoverable Errors L L L e e e e e 2-2
SYSTEM SHUT DOWN AND RESTART et e e e e e e 2-2

CHAPTER 3 SYSTEM DESCRIPTION i et s e e e e e e e e 3-1

TASKS . . e e e e e e e e e e e 3-1
Foreground/Background Tasks e 3-1
User/Executive Tasks L L e e e e e e e e e e e 3-1
Task Address Space and Logical Segments e 3-1
Status e e e e e e e e e e e e e e e e e 3-2
Priority and Scheduling e 33
Protection L L e 33

SYSTEM MANAGER e e e e e e e e 33

SUPERVISOR CALLS (SVCs) o i it e e e e e e e e e e e s e e e e 33

MEMORY MANAGEMENT i e et e e e e e e e e e e e e e e e e e e s e e e e 34
Foreground Partitions 34
Background Partition Lo e e e 34
Task COMMON ottt ottt e e e e e e e e e e e 34
Resident Library L L e e 3-5
System Space L e e e e e e e e e e e 35
Sample Memory Allocation L. 0L e 35

INTERRUPTS AND TRAPS e e e e e e e e e e e s e e e e 3-7
Task QUEUE o e 3-7
Task Status Word (TSW) o e e e e e e e e e e e 3-7
User Dedicated Locations (UDL)Y oL o a3
Task-Handled Traps 0 o e e e e e e e e e e 3-10
Interrupts L e e e e e e e e 3-11

29-390 R0O4 4/76 iii

FILES AND DEVICES e e e 3-13
Direct Access Files e 3-13
Volume Organization L e e 3-13
Identification of Files 3-13
File Organization 3-14
File AccessMethods e 3-16
File and Device Protection e 3-17
Null Device e 3-18

CHAPTER 4 SUPERVISOR CALLS e e s s s s s e, 4-1

SVCINSTRUCTIONS e e e e e s e s s s s, 4-1
SVCEOIS o o e e 4-2

SVC 1 - INPUT/OUTPUT REQUEST e e s s s s 4-2
Function Code e 4-2
Halt /O Command e .44
Logical Unit (LU) e e e e 4-5
Error Status (Device Dependent and

Device Independent Status) e e 4-5
Buffer Address e e e 4-6
Random Address e e e e 4-6
Length of Data Transfer e e 4-6
Unconditional Proceed e e e e e 4-6
Proceed/Wait/I/O e 4-6
Wait Only e e e 4-7
Test I/O Complete e e e 4-7

SVC 2 - GENERAL SERVICE FUNCTIONS e e s e e e 4-7
SVC2Code 1 -Pause i i i i e e e e 4-7
SVC2Code2-GetStorage i e e 4-7
SVC2Code 3-Release Storage i i i e e e e e e 4-8
SVC2Code4-SetStatus i i e e e e e e e 4-8
SVC2Code5-FetchPointer e e e e e e e e e e e e 4.8
SVC 2 Code 6 - Unpack Binary Numberso, 49
SVC2Code 7-LogMessage it i ittt e e e e e e 49
SVC 2 Code 8 -Interrogate Clock 0 i i e 4-10
SVC2Code9-FetchDate @ . it 4-10
SVC 2 Code 10 - Time-of-Day Wait ittt i e e 4-10
SVC2Code 11 -Interval Wait e 4-11
SVC2Code15-Pack NumericData i it 4-11
SVC 2 Code 16 -Pack File Descriptor 0 i it it e et e e e 4-11
SVC 2Code 17 -ScanMnemonic Table .. 4-13
SVC 2 Code 18 -Move ASCII Characters o v v i e e e e e e et e e e e e e 4-13
SVC2Code 19-Peek e e e 4-14
SVC 2 Code 20 - Expand Allocation 4-15
SVC 2 Code 21 -Contract Allocation e e e e 4-15
SVC 2 Code 23 - Timer Management i 4-15

SVC3-ENDOF TASK (EOT) e e e e e e e e e e s e e e e 4-19
SVC 5 -FETCH OVERLAY o e e e s e e e e e e e e e e e s 4-19
SVC 6 - INTERTASK COORDINATION e e e s e e e e 4-20
Task ID and Function Code e e 4-22
End Task Function (Function Code Efield) 4-24
Load Task Function (Function Code L field) 4-24
Task Resident (Function Code Hfield) 4-24
Suspend (Function Code Sfield) e e 4-24
Send Message (Function Code M field) i i i i i ittt it e 4-24
Queue Parameter Function (Function Code Q field) 4-24
Change Priority Function (Function Code P field) 4-24
Trap-Generating Device Functions e 4-25
Connect (Function Code O field) @ i i i i it e et e e e e 4-25
Thaw (Function Code T field) i e e et i i e 4-25
SINT (Function Code I'field) e e e e e e e e e 4-25

29-390 RO4 4/76

Freeze (Function Code F field) 4-25

Unconnect (Function Code U field) 4-25
Release (Function Code Rfield) s 4-25
Task Non-Resident (FunctionCode N field) 4-25
Start Task (Function Code A field) 4-25
Message Rings and Message Buffer Structures L. ... 4-26
Message Buffer Structures L. L e 4-26
SVC 7 - FILE HANDLING SERVICES e e e s s e 4-27
SVC 7 - Parameter Block Fields e 4-28
Error Status L e e e e e 4-29

LU o e e e e e e e e e e e e e e e e 4-29
Write Keyand Read Key 4-29
Record Length e 4-29
Volume Name (VOLN) or Device Mnemonic o v v i it st 4-30
Filename e e e e e e e e 4-30
Extension L. L e e e e e e e e e e e e 4-30

Size . . e e e e e e e e e 4-30
Allocate L L e e e e e 4-31
ASSIgN . . L e e e 4-31
Change Access Privileges 0L 4-32
Rename Lo e e e e e e e e e e e 4-32
Reprotect L e e e e e e e e e e 4-33
CloSe o o e e e e e e e e e e 4-33
Delete L e e e e e e e e e e 4-33
Checkpoint e e e e e e e e e e e e e 4-33
Fetch Attributes L L e e e e e e e 4-34
SVCO-LOAD TSW e e e e e e e 4-36
SVC 14 -USER SVC e e e 4-38
SVC 15 -ITAM DEVICE DEPENDENT I/O e it 4-38
CHAPTER 5 CONSOLE OPERATIONS e e e s e e s e 5-1
SYSTEM CONSOLE DEVICE e e e e e e e s e, 5-1
Prompts e e e e e e e 5-1
BREAK Key e e e e e e e e e 5-1
COMMAND SYNTAX e e e e e e e s e e e 5-1
MRemonics L L e e e e e e e e e e e e e e e e e 5-2
Optional Operands L e e e e e e e e e 52
General SyntacticRules oL 5-2
Decimal and Hexadecimal Numbers 5-3
Task Identifiers e e e 53

File Descriptors L e e e e e e 5-3
ERROR RESPONSE e e e s e e e e e e 54
GENERAL SYSTEM COMMANDS e e e e e 5-5
Set TiMe e e e e e e e e e e e e e 5-5
Display Time e e e e e e e e e e e e 5-6
Volume L e e e e e e e e e e e e e 5-6
SetLog e e e 5-6
Display Map e e e e e e e 5-7
Display ITAMTERM e e e e e e e e, 5-8
SetPartition L e e e e e e 59

Set Slice e e e e e e e e e e e 5-10
UTILITY COMMANDS 510
Bias s 5-10
Examine e e e e e e e e e e e e 5-11
Modify e e e e e e e e e e e e e e e 5-11
Buildand ENDB L e e e e e 5-12
ReSet e 5-12

29-390 RO4 4/76 v

TASK RELATED COMMANDS e 5-12
Task . . . e, 5-12
Start . . .o 5-13
Pause L e e, 5-14
Continue L e e 5-14
Cancel L 5-14
Load e e e 5-14
7 ¢ 5-15
Display LU e 5-16
Close L e 5-17
OpLions L e 5-17
Set Priority e 5-18
Display Parameters L e e e e e e 5-18
Send . . . L e e 5-19

DEVICE AND FILE CONTROL COMMANDS o e e e e e 5-20
Allocate L e e e e 5-20
Delete L e 5-22
Rename e e e T.522
Reprotect e e 5-22
Display files e e e 5-22
Mark . . . e e e e 5-23
Display Devices L e e e e e 5-24

MAGNETIC TAPE AND FILE CONTROL COMMANDS 5-24

COMMAND SUBSTITUTION SYSTEM e e e e e e e 5-25
High Level Operator Command Package 5-26
Calling CSS Files e e 5-26

Use of Parameters e 5-27

Commands Executable froma CSSFile 5-28
Interaction of CSS with

Background and Foreground L. 5-28
SEXIT and SCLEAR e 5-28
SJOBand STERMJOB e e 5-28
Logical Operators e 5-29
Return Code Testing e e, 5-29
File Existence Testing 5-30
Parameter Existence Testing e 5-30
Listing Directives e e e e 5-31

CSS File Construction 5-31

CSS Command SUmMmaryt e e e e e 5-32
CSS Error Conditions e e 5-33
ILLUSTRATIONS

Figure 1-1. OS/32 MT Functional Block Diagram 1-4
Figure 3-1. OS/32MT Memory Map Example e e e 3-6
Figure 3-2. User Dedicated Locations i e 39
Figure 4-1. SVC 2 Code 19 Parameter Block i it e 4-14
Figure 4-2. SVC 6 Parameter Block e 4-20
Figure 4-3. Message Buffer Structures 4-27
Figure 4-4. SVC 7 Parameter Block e e 4-28
Figure 4-5. SVC 7 Command/Modifier Halfword i 4-28

vi

29-390 RO4 4/76

TABLE 3-1.
TABLE 3-2.
TABLE 4-1.
TABLE 4-2.
TABLE 4-3.
TABLE 4-4.
TABLE 4-5.
TABLE 4-6.
TABLE 4-7.
TABLE 4-8.
TABLE 4-9.
TABLE 4-10.
TABLE 4-11.
TABLE 4-12.
TABLE 4-13.

TABLES

TASK STATUS WORD e e e e e e e e e e e e e 3-8
TASK QUEUE REASONCODES e et 3-11
OS/32 MT SUPERVISOR CALLS i e 4-1
SVC 1 DATA TRANSFER FUNCTIONCODE 4-3
SVC 1 COMMAND FUNCTIONCODE e e et 4-4
INTERPRETATION OF SVC 1 DEVICE INDEPENDENT STATUSBYTE 4-5
SVC 6 PARAMETERBLOCK FIELDS it 4-21
SVC 6 FUNCTION CODES o e e e e e e e e e e e e e 4-22
SVCE6ERRORCODES o i e e e e e e e e e e e e 4-23
SVC7RETURNCODES ottt e e e e e e e e e e e s 4-30
VALID ACCESS PRIVILEGE CHANGES e 4-32
SVC 7 DEVICE ATTRIBUTES HALFWORD oo v oo 4-34

DEVICE CODES . . . o . ot e e e e e e e e e e e e e e e 4-35
TASK STATUS WORD o e e e e e e e e e e e e e e e e 4-37
TASK QUEUE REASON CODES ot e e e e 4-38

29-390 RO4 4/76 vii/viii

CHAPTER 1
SYSTEM OVERVIEW

INTRODUCTION

0S/32 MT is a Multi-Tasking Operating System for the INTERDATA 32-Bit Architecture processors. Both background and
foreground facilities are provided so that program preparation can proceed concurrently with real-time system operation.
Built-in functions of OS/32 MT include system control via the operator’s console, interrupt handling and 1/O servicing.
Data file management features are provided for any system equipped with direct-access storage media.

0S/32 MT is upwards compatible with existing 32-Bit Operating Systems. The minimum hardware requirements to support
0S/32 MT are:

INTERDATA 32-bit processor with 96 KB of memory
Memory Access Controller (MAC)

Display Panel

Interval and Line Frequency Clock

Power Fail/Automatic Restart Option

Console Device

Teletype on local TTY Interface
CRT on local TTY or PASLA Intertace
Carousel on local TTY or PASLA Interface

Paper tape. magnetic tape, cassette or LSU
(required to boot in system - may be TTY or Carousel Paper Tape)
Disc or any 2 magnetic media

800 BPI 9-track magnetic tape
1600 BPI 9-track magnetic tape
2.5 MB disc

10 MB disc

40 MB disc

67 MB disc

256 MB disc

The reader should be familiar with the following documents describing the 32-Bit processors:

32-Bit Series Reference Manual, Publication Number 29-365
Model 7/32 Reference Manual, Publication Number 29405
Model 8/32 Processor User’s Manual, Publication Number 29-428

Other manuals related to OS/32 MT are:

0S8/32 MT Pocket Guide, Publication Number 29-505

0S8/32 Series General Purpose Driver Manual, Publication Number 29-384

0S8/32 MT Program Configuration Manual, Publication Number 29-389

0S/32 MT Task Establisher (TET/32) User's Manual, Publication Number 29-412

ITAM/32 Reference Manual, Publication Number 29-541

0S8/32 MT Program Logic Manual, Publication Number 29-391

Common Assembler Language (CAL) User’s Manual, Publication Number 29-375

Model 8/32 Micro-Instruction Reference Manual, Publication Number 29-438

Common Microcode Assembler Language (MICROCAL) User’s Manual, Publication Number 29-478
Model 8/32 Writable Control Store (WCS) User’s Guide, Publication Number 29-479

08/32 MT protects the foreground environment from the effects of undebugged background tasks. Memory is protected

via the Memory Access Controller (MAC), which also provides hardware relocation of both foreground and background
tasks at run time.

29-390 ROS 11/76 1-1

0S/32 MT provides tacilities for supporting up to 253 foreground tasks running concurrently. It supports up to 1
megabyte of memory, cither as contiguous main memory or local memory and various shared memory banks.

0S/32 MT supports the single p’recis.ion and double precision floating point features of the 32-Bit Processors. It also
contains software floating point packages to emulate the hardware facilities, for those configurations without floating
point support.

0OS/32 MT provides the ability to eenerate up to 15 task common areas. It also contains support for the Precision Interval
Clock (PIC) and Line Frequency Clock (LFC) to enable tasks to schedule task level interrupts of a periodic and
non-periodic nature.

0OS/32 MT contuins file management techniques which include three types of file structures, and a disc directory structure
such that each disc contains complete information concerning all its existing files. Both static and dynamic protection
ITAM/32 provides telecommunications support for 0S/32 MT. Refer to the ITAM/32 Reference Manual for a description
of its facilities.

IMPORTANT FEATURES
Outstanding features of OS/32 MT are:
Multiple application programs can operate concurrently through the use of interleaving techniques.

Tasks are scheduled by priority, with 240 distinct priority levels available to the user. An optional time slice
scheduler is provided which allows tasks of equal priority to share processor time.

A highly modular structure and a system generation utility program allows system elements to be easily
added or deleted, thereby assuring the user of a compact, tailored OS environment.

The number of tasks in memory at any time may be as great as 255, limited only by the amount of memory
available and by system generation considerations.

Tasks need not be totally memory-resident, but may be segmented and overlaid from any bulk storage
device.

Calendar and time of day are maintained by the system: in addition, interval timing facilities are available to
user tasks, with a resolution of one millisecond.

Tasks may request the activation and execution of other tasks, and may pass parameters to one another.
Tasks may take traps on the reception of these parameters, thus providing timely response to communica-
tions between tasks.

Tasks may take traps upon the completion of a time interval or a series of time intervals, proceed 1/O
termination, or upon power restoration in case of power failure.

1/O operations are device-independent, allowing device re-assignment without having to alter existing soft-
ware.

Comprehensive file management facilities are provided on direct-access devices; three distinct file structures
are provided for safe and efficient use of the disc. I/O devices and disc files are referenced by name: files are
allocated on a sector basis.

Sharable data and Reentrant Library facilities are provided.

A powerful command language (Command Substitution System) is provided which allows sequences of
commands to be invoked by a single command.

SYSTEM COMPONENTS
The OS/32 MT system is divided into the following major groups:

System Manager (Command Processor)
Executive Functions

Task Manager

Timer Manager

Memory Manager

File Manager

1/O Subsystem

Resident Loader

Floating Point Support (optional)

1-2 29-390 RO4 4/76

System Manager

The System Manager handles all interactions between the system and the console device. It provides the operator interface
to OS/32 MT. It executes as a task in OS/32 MT and is designed so that many functions are performed through Supervisor
Calls. The System Manager contains routines to support the Command Substitution System (CSS), to do memory par-
titioning, and to support Direct Access devices. The System Manager controls all I/O requests to the Console and Log
devices.

The Systems Manager accepts commands from the system console device, decodes them and calls the appropriate executor.
It contains logic to provide the console operator with informative messages in case of error.

Command Substitution System (CSS)

The Command Substitution System routines provide the ability to build, execute and control files of OS/32 MT operator
commands. CSS consists of routines to execute CSS operator commands, to manage the CSS buffers and to provide the
command parameter substitution facility.

Direct Access Support

The System Manager provides the operator with the command functions necessary to allocate and delete files, display files,
rewind, and backspace files assigned to user tasks. It also contains commands used when mounting and dismounting direct
access volumes. These functions are executed via SVC 1 and SVC 7 calls.

Console Support

The System Manager controls user task communication with the system console. Because of this feature and the structure
of Task Management, commands can be entered and executed while user tasks are active, even if tasks have assigned the
console device.

Executive Functions

The Executive contains routines to handle supervisor calls. These include SVC 2, SVC 3, SVC 5, SVC 6, SVC 9, and
SVC 14. All functions are performed on behalf of the calling task.

Task Manager

The Task Manager handles task scheduling functions. A task is controlled through a Task Control Block (TCB). At
SYSGEN time the user determines the number of tasks the system being built is to contain. The user may choose to have
up to 254 tasks (plus the system manager) in a system.

Timer Manager

0S/32 MT makes use of both a line frequency clock and a precision interval timer to provide user tasks with a flexible set
of timer management/maintenance services. The following services are provided: time of day clock, day and year calendar,
interval and time of day wait, interval and time of day trap, and driver time-out. Time Trap functions may be set up to
occur periodically.

Memory Manager

The Memory Manager handles dynamic system space, partition memory space, and Task Common memory space. The
Memory Management system is more fully described in Chapter 3.

File Manager

The File Manager contains the SVC 7 Handler and the intercept routines for SVC 1 requests to Contiguous, Chained, and
Indexed Files.

I/O Subsystem

The 1/O Subsystem is composed of the SVC 1 Handler, the Peripheral Device Drivers, and certain other routines, such as
the System Queue Handler.

The I/O System consists of system routines and control blocks necessary to provide device independent 1/O requests.
Resident Loader

The 0S/32 MT resident loader loads tasks, overlays and library segments. The input to the resident loader must be created
by the 0S/32 MT Task Establisher (TET/32). TET/32 outputs ‘load modules’ which contain a Loader Information Block

(LIB) followed by a memory image of the task or library. The LIB enables the loader to derive the various parameters of
the load module.

29-390 R04 4/76 1-3

OVERVIEW

Figure 1-1 shows the principal interactions between the major groupings of the Operating System, ipcluding foreground
and background tasks, the Resident Library, and Task Common partitions. For clarity, many minor mte{actlons between
these module groupings are not shown. For a more detailed explanation of system interactions, the reader is referred to the

0S/32 MT Program Logic Manual, Publication Number 29-391.

TASK FORE- RE- BACK- CONSOLE
COMN GROUND ENTRANT GROUND DEVICE
TASKS LIBRARY TASK
SYSTEM
MANAGER
SVC5 SVC 6 EXECUTIVE
HANDLER HANDLER SVC 2,3,9,14
HANDLER
INTERNAL
INTERRUPT SsvC7
HANDLER HANDLER
- TIMER MANAGER
CRASH HANDLER
SCHEDULER
RESIDENT
LOADER
Yy
svC 1 INDEXED CHAINED CONTIGUOUS
HANDLER FILE FILE FILE
MANAGER MANAGER MANAGER
PERIPHERAL

DEVICE DRIVERS

14

Figure 1-1. 0S/32 MT Functional Block Diagram

29-390 RO4 4/76

HARDWARE CONSIDERATIONS

Floating Point Support

0S/32 MT provides an optional Floating-Point Emulation Package for those installations without Hardware Floating Point
Support. At SYSGEN time, the user has the option of incorporating single precision, double precision or single and double
precision floating point support into the target system.

In systems without hardware floating point, if no software floating point support is selected, no task in the system may
execute floating point instructions. If a task does execute a floating point instruction, it will be treated as an illegal
instruction. The Resident Loader does not load a task in a system without floating point support, if the LIB of its load
module indicates that floating point is required.

If software floating point support is selected, a series of routines to simulate floating point instructions is included in the
system.

If either software or hardware floating point is specified, and a task’s options indicate it uses floating point, the operating
system saves and restores the current contents of the task’s floating point registers when the task is stopped and restarted.
This means that each task has its own unique copy of the floating point registers.
Using Writable Control Store
The Model 8/32 Processor contains an optional area of high speed control store memory called Writable Control Store
(WCS). The WCS provides the user with the ability to extend the architecture of the 8/32 Processor with user written
microcode.
The INTERDATA Model 8/32 WCS Support Program (Program Number 03-102), provides the user with the ability to
debug microcode routines written for WCS. This program executes as a task within an 0S/32 MT Operating System
environment.
When using WCS within 0S/32 MT, the user should be aware that both E-tasks and U-tasks may use the instruction Enter
Control Store (ECS), which causes control to be transferred to WCS. Transferring to Control Store may overwrite the OS
image in memory, if:

1. WCSis not set up at all.

2. WCS, especially the first 16 words, is set up incorrectly.

3. WCS Support Program is at a lower priority than any other task in the system which uses WCS.

4, WCS image, maintained by the WCS Support Program, is destroyed by another E-task.

To avoid this, ensure the following:

1. WCS is set up all the time, i.e., the WCS Support Program must be at higher priority than any other
task in the system which uses WCS.

2. WCS contains fully debugged microcode.

3. The first 16 WCS words are set up to point to the debugged microroutines or to the illegal instruction
handler in the fixed ROM (ROM location X'208' labeled ILEGAL).

The instructions Branch to Control Store (BDCS), Read Control Store (RDCS), and Write Control (WDCS) are permitted
only for use within E-tasks.

Improper use of these three instructions by an E-task can destroy the system. Hence, an E-task which uses these instruc-
tions, must be debugged beyond reasonable doubts.

Refer to the following manuals for detailed instructions concerning the use of WCS:
Model 8/32 Micro-Instruction Reference Manual, Publication Number 29-438.

Common Microcode Assembler Language (MICROCAL) User’s Manual, Publication Number 29-478.
Model 8/32 Writable Control Store (WCS) User’s Guide, Publication Number 29-479. ‘

29-390 R0O4 4/76 1-5/1-6

CHAPTER 2
SYSTEM OPERATION

SYSTEM GENERATION

0S/32 MT must be tailored to the specific configuration it is to support. This is accomplished by the OS/32 MT System
Generation (SYSGEN) procedure. The OS/32 MT Configuration Utility Program (CUP/MT) allows the user to select the
desired support from a library of object modules by specifying the desired target system with CUP/MT control statements.
CUP/MT processes the input control statements and a library of peripheral device driver object modules to produce a series
of programs. These are linked together with a library of system object modules by the OS/32 Library Loader (Program
Number 03-065) to produce an absolute OS/32 MT load module. The load module can then be converted by TET/32 to an
OS image, suitable for bootstrap loading.

An OS/32 STARTER system is supplied with OS/32 MT. 0S/32 STARTER is a pre-SYSGENed OS/32 system which may
be used to run CUP/MT.
SYSTEM START UP
0S/32 MT is initially loaded into the 32-Bit Processor by the 32-Bit Relocating Loader (Program Number 03-067) or the
32-Bit Direct Access Bootstrap Loader (Program Number 03-074). On completion of the load, control is transferred to
0S/32 MT which prints:

0832MTrr-uu

on the system console device, where rr is the release number and uu is the update number, and issues the command
prompt:

*
0S/32 MT is then ready to accept commands.

Once 0S/32 MT has been initially loaded, the OS/32 Disc Initialize Utility Program may be used to save an image of the
OS on a disc. This disc image may be loaded by the OS/32 Direct Access Bootstrap Loader Program.

Once loaded, OS/32 MT provides both program control via Supervisor call (SVC) instructions and operator control via the
System Manager command language.
ERROR HANDLING
There are three distinct types of error processing provided in OS/32 MT:

System Crash Handling

Unrecoverable Task Error Handling

Recoverable Error Handling
System Crashes
When OS/32 MT determines that further execution of the system may cause system or user data to be destroyed, the
system crash handler is entered. A system crash code is displaved on the Console Display Panel and the system is put into a
Wait state. Some of the conditions causing a system crash are:

Illegal Instruction in OS code

Invalid data on System Queue

Arithmetic Fault in OS code

For a complete list of system crash codes and their meanings refer to Appendix 5. After a system crash, the system must be
reloaded. : '

29-390 RO4 4/76 2-1

Unrecoverable Task Errors
When OS/32 MT determines that further execution of a task may cause system or user data to be destroyed, the errant task
is either paused with a message indicating the nature and location of the error or is abnormally terminated (ABTERMed)
with a return code describing the error. Some of the conditions causing a task to be paused are:

Illegal Instruction in user task

Invalid address passed in SVC call

Attempt to access memory outside task partition
The user task may be continued, after correcting the error, or cancelled.
Recoverable Errors
Recoverable errors occur when 0S/32 MT detects invalid data in a command, or insufficient data is supplied to perform
the requested function. If the request is via a System Manager command, an appropriate error message is issued to the
system console and the request is not performed. The operator may enter the correct command. If the request is via an

SVC call, an appropriate status is returned in the PSW condition code or the SVC parameter block. The calling task may
decide tRe proper recovery procedure.

SYSTEM SHUT DOWN AND RESTART

In a disc oriented OS/32 MT, it is necessary that the system be shut down or restarted in an orderly fashion to assure the
integrity of the disc volumes in use. In particular, before shutting OS/32 MT down or restarting the operator should:

Cancel and delete (make non-resident) all tasks
Mark all disc devices off-line

0S/32 MT may now be restarted at location X'60". If the system is restarted as a result of a system crash, the Disc Integrity
Check Utility should be used to restore the integrity of the data on all disc volumes on-line at the time of the crash.

NOTE

If a system crashes, it should not be restarted at X'60’; it should
be reloaded.

2-2 29-390 R04 4/76

CHAPTER 3
SYSTEM DESCRIPTION

TASKS

The fundamental unit of work in OS/32 MT is the task. A task may consist of a single program, or it may include a main
program and a number of subroutines and overlays. Tasks may be permanently resident in memory, or they may be loaded
as required. Tasks are referred to by a TASKID which is associated with the task at load time. The number of tasks allowed
in memory at one time is limited only by the number of partitions established at system generation time. Each task is
controlled through a Task Control Block (TCB).

A task must be prepared by processing the component programs, subroutines and overlays with the OS/32 Task Establisher
(TET/32). Once established, the task is loaded by the resident loader via the LOAD operator command or SVC 6. The
following paragraphs describe task categorizations.

Foreground/Background Tasks

A task resident in a foreground partition (see the section entitled “Memory Management™) is referred to as a foreground
task while a task resident in the background partition is referred to as the background task. Foreground tasks have the full
range of OS/32 MT services available; the background task has the following restrictions:

SVC 6 is treated as a NOP or Illegal SVC (according to the task options).

The Tasks’s maximum priority is set at System Generation.

System Space limit is set at System Generation.

Background tasks may not communicate with the foreground tasks and vice versa.
Background tasks may not access Task Common Segments.

This prevents a background task from interfering with the foreground system thus providing a safe environment for task
debugging.

User/Executive Tasks

At task establishment time, a task may be designated a User task or an Executive task. User tasks (U-tasks) run in a
protected mode (see the section entitled “Protection’) while Executive tasks (E-tasks) have the full range of 32-Bit archi-
tecture capabilities available. E-task capabilities are designed to provide an orderly and well defined means for extending
the system and are explained in the OS/32-MT Program Logic Manual, Publication Number 29-391.

Task Address Space and Logical Segments

The process of establishing a User task with the OS/32 Task Establisher (TET/32) produces a memory image load module
of the task. The task references data and instructions via task space addresses, which are relative to the first location in the
task, as if the task were loaded at location O in memory. When a task is loaded into the 08/32 MT system, the Memory
Access Controller (MAC) is used to provnde automatic relocation from task space addresses to real physical addresses, thus
allowing a task to be loaded into any partition large enough.

Task address space is divided into one or more segments, where a segment is a set of contiguous program addresses starting
on a 64K boundary. A maximum of sixteen segments (numbered O to 15) are available for each user task. The segment
number is related to the starting address of the segment by the following formula:

SEGMENT NUMBER = START ADDRESS/64K
The following table shows the relationships of segment number to start address.

SEG NO. Program Space START ADDRESS (Hex)

Y'00000"
Y'10000'
Y'20000'
Y'30000°
Y'40000'
Y'50000"
Y'60000'
Y'70000'
Y'80000'

oI WLbh WK — O

29-390 RO4 4/76 3-1

SEG NO. Program Space START ADDRESS (Hex)

9 : Y 90000’
10 Y'A0000'
11 Y'B000O'
12 Y'C0000'
13 Y'D0000'
14 Y'E0000'
15 Y'F0000'

All segments are classified according to their contents, that is, either Impure code and data, Task Common or Reentrant
Library. A user task may consist of the following program segments:

1. One main (impure) segment, or
2. A main segment and some combination of a Reentrant Library and one or more Task Common
segments.

The impure segment consists of one or more contiguous physical segments beginning at segment 0 (address X'0").

A Task Common Segment consists of one or more contiguous segments whose address is specified at task establishment
time.

The Reentrant Library segment is one segment and starts at location Y'F0000' (segment 15).
Refer to the OS/32 MT Task Establisher (TET/32) User’s Guide for further information.
Status
A task in memory may be in any of five states. These are:
Current
Ready
Wait
Paused
Dormant
Additionally, tasks are classified as either resident or non-resident. By definition, a task which is resident is not deleted
when it completes execution. A non-resident task which goes to end-of-task (EOT) is deleted from the system. A task may

be made resident at task establishment time or at run time by the operator or another task.

The Current Task is the task executing instructions. Only one task may be in this state at any given instant in time. All
other tasks in memory are in one of the other four states, and may become the Current task depending on circumstances.

A Ready task is one which has no obstacles to becoming the Current task. It is eligible to be dispatched (i.e., become
Current) whenever it becomes the highest priority Ready task.

A task in the Wait state is one which may not become Ready until some specific circumstance has occurred. Among the
possible Wait states are:

Wait State Event

1/0 wait Waiting for I/O completion
Connection wait Waiting for 1/O to start

Time wait Waiting for an interval or time of day
Trap wait Waiting for a task-handled trap

Load wait Waiting to be loaded

Task wait Waiting to be released by another task

A Paused task is one which may not execute until it is explicitly continued by the console operator. A Paused task is said
to be in console wait.

A Dormant task is one which may not execute until it has been explicitly started, either by the console operator or by
another task. When a resident task goes to EOT it enters the Dormant state. When any task is loaded, it enters the Dormant
state after load-complete, and remains in this state until it is started.

Paused and Dormant are both Wait states; they are listed separately since they require operator intervention.

32 29-390 R0O4 4/76

Priority and Scheduling

0S/32 MT recognizes 256 priority levels from a high of 0 to a low of 255. Of these levels, 10-249 are available to user tasks
while 0-9 and 250-255 are reserved for the system’s use. Each task has three priorities associated with it:

Maximum Priority
Task Priority
Dispatch Priority

Maximum priority is the highest priority that a task may be assigned; it is set at task establishment time. The maximum
priority of a background task is set at SYSGEN time.

Task priority is the priority currently assigned to the task; it is initially set at task establishment time and may be modified
by operator command or SVC 6.

Dispatch priority is the priority set up by the system to determine the order in which ready tasks are serviced. Normally, a
task’s dispatch priority is the same as its task priority but it may be raised temporarily if the task is using a system resource
required by a higher priority task.

Two types of scheduling algorithm are available. Tasks may be scheduled in strict priority order or time-sliced within
priority. In the former case, if two tasks of equal priority are started, a task remains active until it relinquishes control of
the processor. Care should be taken in assigning priorities so that tasks which do not frequently relinquish control of the
processor do not inadvertently lock out other tasks. A task may relinquish control in one of the following ways:

It is Paused by the console operator.

It is cancelled by the operator or another task.

A higher priority task becomes ready because of some external event.
It executes an SVC that places it in Wait, Paused or Dormant state.

Rather than scheduling on a strict priority basis, tasks may be time-sliced within priority. This option allows the user to
ensure that tasks of equa! priority receive equal shares of processor time.

The time-slicing option may be enabled and disabled by an operator command. Refer to Chapter 5 for further information.
When a task becomes ready, it is queued on a round-robin basis behind all ready tasks of equal priority.
Protection

User tasks run in a protected mode. They cannot access memory outside their boundaries, cannot execute code in Task
Common, and cannot use any privileged instruction. Privileged instructions include all I/O instructions and any instruction
that changes the state of the processor, such as LPSWR, EPSR.

In order to request I/O functions or any processor state change, user tasks must use the SVC instruction. (See Chapter 4.)

Memory protection is accomplished through the use of the MAC. This protection is transparent to user tasks running
normally under OS/32 MT. Memory access errors by a task are handled either:

1. Automatically by the operating system, or
2. By the task itself in an error trap routine.

SYSTEM MANAGER

The console operator interface is provided by a task called the System Manager. The System Manager is an E-task which
runs as the highest priority task in the system: The System Manager interprets and execute, all commands; it also performs
all I/O requests to the console device. Chapter 5 describes in detail the commands and procedures related to com-
munication with the System Manager. The System Manager task is loaded as a part of OS/32 MT and cannot be cancelled.
When the System Manager is the only task in the system, except for a dormant background task, the system is said to be
quiescent.

SUPERVISOR CALLS (SVCs)

The program interface te the operating system is provided through Supervisor Call (SVC) instructions. SVC instructions are
executed by programs to request OS/32 MT services. The parameters associated with the request are passed to the OS in a
parameter block. Most of the services provided by the System Manager are performed with SVC instructions, thus making
these services available to user tasks. Chapter 4 describes the individual SVC instructions and their associated parameter
blocks in detail.

29-390 RO4 4/76 ' 33

MEMORY MANAGEMENT

Memory in an OS/32 MT system is divided into two classes, local memory and global memory. Local memory is defined as
that area containing the OS, all Sysfem Space, an optional Reentrant Library segment, an optional Task Common area
(referred to as local Task Common), all foreground partitions, and the background partition. The total amount of local
memory is known to the system as MTOP.

MTOP is defined at SYSGEN time.
NOTE

Local memory is always contiguous.

All Memory locations above MTOP are referred to as global or shared memory. Global memory may be physically
contiguous to local memory, or may be located on shared memory banks. Using Multiport Memory, it is possible to
configure 32-Bit Processors in systems with shared memory banks. In these multiprocessor systems, each system is able to
address its own local memory and one or more shared memory banks. This memory need not be contiguous.

The current implementation supports up to 14 shared memory segments. The size, number and location of these segments
are established at SYSGEN time. A new SYSGEN is required to vary any of these.

The configuration of shared memory in the OS is intended to correspond to the hardware configuration. The use of shared
memory is restricted to Task Common segments.

Foreground Partitions

Up to 253 foreground partitions may be established at SYSGEN time. At this time, the initial size of each partition is set.
When a task is loaded by the console operator or by an SVC 6 call from another foreground task, the task is loaded into a
partition and the memory associated with that partition becomes the task’s allocated memory.

Only one task can be loaded into any partition. To be loaded, a task must be able to fit into a vacant partition. The
number of foreground tasks that may run concurrently is limited by the number of foreground partitions specified at
SYSGEN time.

Normally, a task is loaded into the first partition (lowest memory address) large enough. However, a task may be loaded
into a specific vacant partition by console operator command.

SVC 6 allows foreground tasks to request the loading and execution of other foreground tasks, to cancel these tasks or
delete them from memory, or to communicate with these tasks. A foreground partition is referenced by the name of the
task loaded in it, or from operator commands by its partition number if it is vacant. (See the section entitled “Sample
Memory Allocation.”)

Background Partition

0S/32 MT provides one background partition. This partition is restricted in the following manner: SVC 6 is treated as a
NOP or an illegal SVC (depending on the task option selected) when executed from the background task; therefore the
background task may not directly affect the operation of any foreground task. A task in the background partition may not
use Task Common, although it may make use of the Resident Library.

The maximum priority and maximum amount of system space available to the background partition, are fixed at SYSGEN
time. They cannot be adjusted by the operator. The size of the background partition is fixed and does not have variable
bounds; it can be adjusted by the console operator when the size of foreground partitions are adjusted. The size of the
background is determined by the amount of local memory not being used by other partitions. The background partition is
always referenced by its name, .BG.

Task Common

Up to 15 task common areas are supported by 0S/32 MT, one in local memory and up to 14 in global memory. Each area
appears to the OS as a named Task Common segment. Task Common areas are sharable data segments and, as such, are in
Execute Protected memory. Therefore the segments are writable and may contain data but may not contain executable
code. Only foreground tasks may reference Task Common areas.

The console operator has control over local Task Common, but no control over global Task Common segments. Local Task
common size is established at SYSGEN time; it is specified in multiples of 256 bytes. The size may be varied by the
console operator, whenever the system is quiescent, with the SET PARTITION command.

Task Common areas in global memory are fixed at SYSGEN time. The number, size and starting addresses of all shared
memory Task Common segments may be modified only by a new SYSGEN. Task Common se@nents may range in size
from 256 bytes to the physical limit of the target configuration, in multiples of 256 bytes.

The sizes of Task Common segments made accessible to a task at load time are set by the corresponding common declara-
tions in the source program, with the exception that a task which uses local Task Common only is given access to the whole
of .TCM. This exception is provided for compatibility with previous releases.

Refer to the 0S/32 MT Task Establisher User’s Manual and the 0S/32 MT Program Configuration Manual for information
on how to establish and name Task Common segments.

34 29-390 RO4 4/76

Resident Librai'y

One resident library partition is supported in OS/32 MT. This partition may be of any size from 256 bytes to 64 KB, in
256-byte increments; it is mapped into the using program’s address space.

The size of the resident library partition is not established at SYSGEN time, but instead is established when the resident
library is loaded. The library may be loaded by the console operator at any time when the system is quiescent; however,
this is normally done only once, after system initialization.

Both foreground and background tasks may make use of the resident library. Calls to resident library routines are resolved
when the task is established. See the OS/32 Task Establisher User Manual for details on establishing a task that uses a
resident library. In operator commands, the resident library partition is referenced by its name, .LIB.

System Space

Certain memory areas in an 0S/32 MT system are not occupied by any partition. These areas are known as system space.
System space is used in OS/32 MT for two purposes: to hold the OS/32 MT code itself, and to hold certain tables and
system data structures required for proper operation of the system and of the user tasks.

The OS itself and all static data structures (those that do not change in size during system execution) are located in the
lowest part of physical memory. Dynamic data structures are located in the highest part of local physical memory. These
are the only two areas of system space; the remainder of physical memory is devoted to partitions, task common, and the
resident library.

At SYSGEN time the user is required to establish the area of memory for use by dynamic data structures. Currently, the
following dynamic system data structures exist: File Control Blocks (FCBs) and Timer Queue Elements (TQEs). The
minimum size of an FCB is 212 bytes (for a contiguous file). The maximum FCB size is a function of the block sizes
chosen for Chained and Indexed files. The sizes are approximated by the following formulas:

Chained files: 256 bytes + 2* block size
Indexed files: 256 bytes + 2* data block size + index block size

where maximum block size is established at SYSGEN time. An FCB is created in system space each time a file is assigned
to a Logical Unit. The FCB remains in memory as long as the file is assigned.

Each TQE is 24 bytes in size. TQEs are created for each time interval request.

The user should be aware of the size and frequency of system space requests when determining the size of the dynamic
system space necessary.

Access to the dynamic data structure area is protected in OS/32 MT so that no user task can seize excessive space. The
protection mechanism is as follows:

At task establishment time, a limit is set for each task to indicate the amount of system space it is
permitted to request (via SVC calls). This limit should normally be set somewhat greater than the amount
that the task is likely to require under normal circumstances. If that limit is exceeded through some
program error, the system call that caused the attempted system space request is aborted.

In order to protect against an errant background task which may have been mis-established, the limit set at

task establishment time is ignored for background tasks. Instead, a limit for background tasks is set at
SYSGEN time with a CUP/MT control statement.

Sample Memory Allocation

Figure 3-1 shows a map of a hypothetical OS/32 MT system. The assumed configuration is a processor with- 208 KB of
local memory. The OS is presumed to occupy 64 KB. The structure is as follows:

Dynamic System Space: 24 KB

Local Task Common: 24 KB

Foreground: 3x8 KB, 16 KB, 24 KB
Resident Library: 8 KB

Background: 24 KB

Global Task Common at physical address X'34000° 16 KB
Global Task Common at physical address X'40000' 32 KB

The remaining 24 KB of local memory is system space, used for dynamic system data structures.
Notice that global task common number one ends at physical address X'38000', and that global task common number two

begins at X'40000". From X'38000" to X'40000" is a 32 KB gap in physical space. OS/32 MT supports such hardware
configurations.

29-390 R0O4 4/76 3-5

3-6

(48000)

GLOBAL TASK COMMON ’2

{40000)
(38000}
GLOBAL TASK COMMON 1
(34000)
DYNAMIC SYSTEM SPACE

(2E000)

BACKGROUND PARTITION 6
(28000)

FOREGROUND PARTITION 5
(22000)

FOREGROUND PARTITION 4
(1£000)

FOREGROUND PARTITION 3
(1C000)

FOREGROUND PARTITION 2
(1A000)

FOREGROUND PARTITION 1
(18000}

LOCAL TASK COMMON
(12000)
(10000) RESIDENT LIBRARY
0S/32MT

(00000)

Figure 3-1. 0S/32 MT Memory Map Example

32KB

16 KB

24 KB

24 KB

24 KB

16 KB

8KB

8 K8

8 KB

24 KB

8 KB

64 KB

29-390 RO4 4/76

INTERRUPTS AND TRAPS

All interrupts at the processor level, both external and internal. are handled by the operating system. 0S/32 MT also
provides an interrupt facility at the task level known as the task-handled trap facility. This facility permits a task to be
interrupted out of its normal execution sequence for any one of a variety of hardware and software-generated causes. A
task handled trap may occur for the following reasons:

Power Restoration

SVC 14 Interrupt

Addition of a parameter to the Task Queue
Completion of an 1/O proceed request

External Interrupt from a Trap Generating Device
Termination of a specified time delay

Message received from another task

Illegal instruction

Memory Access Fault

Arithmetic Fault

Task Queue

Event-related information is maintained for each task within its own task queue. A task queue is a standard INTERDATA
32-Bit Series circular list. A task queue service trap occurs whenever that trap bit in the current TSW is set and when the
task queue is non-empty.

Task Status Word (TSW)

Traps, and additions to the task queue, are controlled through the task status word (TSW), which is the task level analogue
of a PSW. This status word is used to enable or disable the various traps, enable or disable additions to the task queue, and
to save the location counter and condition code of a task at the time of a trap (see Table 3-1). The initial TSW word of a
task is set at task establishment time, default = 0. SVC 9 calls may be used to change the TSW when the task is running. At
termination, the TSW is reset to zero. The TSW is set by initialization at TET time, SVC 9 calls, and TSW swaps on traps.

User Dedicated Locations (UDL)

The first 256 bytes of a task’s address space are reserved for the User Dedicated Locations. The UDL contains TSW swap
areas and other data used for communication between the operating system and the task. A map of these locations is
shown in Figure 3-2. The UDL, with the appropriate areas defined, must be assembled as a separate program or as the first
256 bytes of one of the programs included in a task. The program containing the UDL must be biased at task space address
X'00000" during task establishment. See the 0S/32 Task Establisher User’s Manual, Publication Number 29412, for further
information.

CTOP is a fullword. After an SVC 2 code 5 call CTOP contains the address of the highest halfword in the task’s allocated
memory (Impure Segment). This address does not reflect the possible use of the Resident Library or Task Common
segments.

UTOP is a fullword. After an SVC 2 code 5 call UTOP contains the address of the first fullword following the user
program. This value may be modified by the use of SVC 2 code 2 and code 3 calls. Its current value is obtained only after
an SVC 2, 5 call. UTOP always contains an address aligned on a fullword boundary.

UBOT is a fullword. After an SVC 2 code 5 call UBOT contains the lowest address in the user program address space. For
User tasks, this value is X'00000".

TSW swap areas are provided for Power Restorétion, Arithmetic Fault, SVC 14, Task Queue Service, Memory Access Fault,
and Illegal Instruction. These swap areas are each four fullwords in length. The first two fullwords of each location serve to
save the previous TSW when a trap occurs; the new TSW is taken from the second two fullwords.

The field A (TASK QUEUE) contains the address of the task queue. This location must be set up by the program prior to
enabling any entries to the task queue. If the content of this location is zero, no task queue entries are made, regardiess of
the state of the TSW enable bits for queue entry.

The field A (MESSAGE BUFFER) contains the address of a 76 byte storage area beginning on a fullword boundary. This
field must be set up by the task prior to receiving a message. If the content of this location is zero, no message can be
received regardless of the TSW queue entry enable bit.

The location A (SVC14 ARG) is used by the operating system to save the effective address of an SVC 14 argument prior to
performing an SVC 14 trap.

29-390 R0O4 4/76 3-7

TABLE 3-1. TASK STATUS WORD

00000O0O0O0O0GO 01 1111222222222233
01234567890 6 78901234567 8901
ofW[PTATSTQIM]] [o[T] TE] [O[Z]F] [cc
4 (unused) LOC
TASK STATUS WORD (2 FULLWORDS)

BIT NAME MASK MEANING

0 w Y’80000000' Trap Wait: task is suspended until a trap occurs.

1 P Y*40000000’ Power Restoration Trap Enable: trap is taken on restoration of
power following any power failure.

2 A Y‘20000000’ Arithmetic Fault Trap Enable: trap is taken upon arithmetic
fault.

3 S Y*10000000' SVC 14 Trap Enable: allows SVC 14 service. If this bit is not set,
SVC 14 is illegal.

4 Q Y‘08000000° Task Queue Service Trap Enable: any item added to the Task
Queue when this bit is set causes a trap. Also, a trap is taken if a
TSW having this bit set is loaded and the Task Queue is not
empty.

5 M Y‘04000000' Memory Access Fault Trap Enable: trap is taken when task
attempts to address memory outside partition.

6 I Y‘02000000' illegal Instruction Trap Enable: trap is taken when task issues
illegal instruction.

16 D Y‘00008000° Enable Task Queue Entry on Device Interrupt.

17 T Y‘00004000' Enable Task Queue Entry on Task Call: an SVC 6 Queue Para-
meter request directed at this task is rejected unless this bit is set.

19 E Y‘00001000" Enable Queue Entry on Task Message: a message from another
task can be received only if this bit is set; address of message
buffer is added to queue.

21 (o] Y‘00000400' Enable Queue Entry on |/O Completion: SVC 1 parameter block
address is added to queue upon completion of 1/0 Proceed.

22 Z Y*00000200" Enable Task deue Entry on Time-out Completion: the para-

. meter in the SVC 2 code 23 (time trap) parameter block is added
to task queue upon time-out completion.

23 F Y‘00000100° Enable Queue Entry on SVC 15 Buffer Transfer Command
Execution, Termination, or Halt I/O: SVC 15 is only supported
by ITAM,

28-31 CC Y‘0000000F’ Current Condition Code, as in PSW,

Bits 7-15, 18, 20 and 24-27 are reserved for future expansion, and should be set to 0.
Bits 0-11 of the second word are unused and must be set to 0.
Bits 12-31 of the second word contain the current LOC, as in the PSW.
3-8 29-390 R04 4/76

0(0} 4(04)
cToe uTOP
8(08) 12(0C}
UBOT RESERVED
16(10) 20(14}
A (TASK QUEUE) RESERVED
24(18) 28(1C)
A (MESSAGE BUFFER) A (SVC 14 ARGUMENT)

32(20)

RESERVED
48(30) POWER RESTORE OLD TSW SAVE AREA
56(38)

POWER RESTORE NEW TSW
64(40)
ARITHMETIC FAULT OLD TSW SAVE AREA
72(48)
ARITHMETIC FAULT NEW TSW

80(50)

RESERVED
96(60)

SVC 14 OLD TSW SAVE AREA
104(68)
SVC 14 NEW TSW
112(70)
TASK QUEUE SERVICE OLD TSW SAVE AREA
120(78)
TASK QUEUE SERVICE NEW TSW
128(80)
MEMORY ACCESS FAULT OLD TSW SAVE AREA
136(88)
MEMORY ACCESS FAULT NEW TSW
144(90)
ILLEGAL INSTRUCTION OLD TSW SAVE AREA
152(98)
ILLEGAL INSTRUCTION NEW TSW

160(AO)

RESERVED
192(CO) USED BY SVC 6

“SELAY START” FUNCTION

29-390 R0O4 4/76

Figure 3-2. User Dedicated Locations

Task-Handled Traps

When a condition occurs that causes g trap, the current TSW (status and location) is saved in the appropriate area of the
User Dedicated Locations (UDL). A new TSW (status location counter) is loaded from the appropriate area of the UDL.
The new TSW controls the traps or task queue entries that are to be allowed during the execution of the trap service
routine. It is the trap routine’s responsibility to save general and floating point registers as necessary prior to servicing the
trap. An SVC 9 (Load TSW) is used to load the saved old TSW, thus returning control to the normal execution sequence.

If a task is in any Wait state other than trap wait, a trap does not actually occur until the task has left that Wait state. While
in a Wait state, many such TSW swaps can occur, however, they are not detectable to the task until the wait condition is
removed. At this time, the last TSW swap made determines where execution resumes. It is the responsibility of the user to
assemble or dynamically prepare the desired new TSWsin the UDIL for each type of trap.

Task Queue Service Traps

Several trap-causing conditions may occur before the first trap is handled by the task. Therefore, the task queue facility is
provided to allow for queuing of trap information during periods when the task is unable to service a trap.

The following trap-causing conditions cause an item to be added to the task queue provided the appropriate bit is set in the
TSW:

Queueing of a parameter to the task queue via SVC 6

Completion of an I/O proceed request

External Interrupt from a Trap Generating Device

Termination of a specified time delay

Message received from another task

SVC 15 Buffer transfer, Command execution, Termination, or Halt 1/O

The queueing of each of these conditions is controlled by a TSW bit (as shown in Table 3-1). Each of these can be
independently disabled, or enabled.

The task queue is a “circular list” in the standard INTERDATA list-processing format. Refer to the Common Assembly
Language (CAL) User’s Manual or appropriate processor reference manual for an explanation of this format. This list may
be of any size desired, and may be located anywhere within the user program. It should be large enough to contain all
parameters which may be queued at any one time. If the queue is full, attempts to add to it are rejected by SVC 6. A
pointer to this list must be placed in the User Dedicated Locations by the program before trying to enable task queue
entries.

The system always adds items to the bottom of the task queue. The format of the item added is as follows:

0 7 8 31
T T

CODE VARIABLE, SEE TABLE 3-2
1 !

The CODE part of a task queue entry indicates the reason why the entry was placed on the queue. The content of the rest
of the entry (bits 8-31) depends upon the reason code. Table 3-2 shows the reason codes and the content of bits 8-31.

NOTE
Reason codes not given in Table 3-2 are reserved for implementa-
tion in future releases.
Power Restoration Traps
A task may wish to be informed if system power has failed. Upon power failure, OS/32 MT saves all necessary data so that
system operation can resume when power is restored. Although the system is able to resume normally, the same is not

always true of tasks, since I/O requests may have been aborted or a time interval may have been missed.

Any 1/0 operation in progress during a power fail is aborted. If the operation is on a direct-access device, the system retries
it when power is restored. I/O operations to non-direct access devices return an error status to the task.

The normal course of events, in case of power failure, is to pause all tasks in the system. However, a task may choose to
take a Power Restoration trap, instead of being paused.

If this is the case, the task should keep the P-Bit (bit 1) set in its current TSW. Whenever there is a power failure, a TSW
swap occurs upon restoration of power, and the task can go about the business of recovering.

3-10 29-390 RO4 4/76

TABLE 3-2. TASK QUEUE REASON CODES

CODE BITS 0-7 MEANING OF CODE BITS 8-31
0 DEVICE INTERRUPT PARAMETER ASSOCIATED
WITH DEVICE

1 SVC 6 QUEUE PARAMETER PARAMETER SPECIFIED IN CALL

6 MESSAGE RECE!IVED ADDRESS OF MESSAGE BUFFER

8 1/0 PROCEED COMPLETE ADDRESS OF SVC 1 PARAMETER BLOCK

9 TIMER TERMINATION PARAMETER SPECIFIED IN CALL
10 SVC 15 BUFFER ADDRESS OF SVC 15 PARAMETER BLOCK
1" SVC 15 COMMAND ADDRESS OF SVC 15 PARAMETER BLOCK
12 SVC 15 TERMINATION ADDRESS OF SVC 15 PARAMETER BLOCK
13 SVC 15 HALT 1/O0 ADDRESS OF SVC 15 PARAMETER BLOCK

SVC 14 Traps

The SVC 14 call is provided for the support of OS/32 AIDS (Program Number 03-064) the INTERDATA on-line
debugging system. It may also be used by any task which is not currently using AIDS.

When a task executes an SVC 14, the S-Bit (bit 3) in its TSW should be set. If it is not set, the SVC 14 call is considered
illegal. If the S-Bit is set, the effective address of the SVC 14 argument is placed in the User Dedicated Locations, and a
TSW swap is taken.

Trap-Generating Devices

In certain applications, it is desirable for a task to be “awakened” in response to interrupts from some external device.
0S/32 MT provides a set of facilities to do this.

Certain drivers, in particular the Eight-Line Interrupt Module driver, are capable of adding a parameter to a task queue in
response to an interrupt from the device. The addition to the task queue can cause the task to take a trap, if enabled. For
this reason, these devices are called Trap-Generating Devices (TGD) and their drivers are called TGD drivers.

Currently, the only driver offered by INTERDATA that supports TGD functions is the Eight-Line Interrupt Module driver.
Users may write their own TGD drivers; see the OS/32 Series General-Purpose Driver Manual, Publication Number 29-384,
for details.

The functions provided by 0S/32 MT for the handling of TGDs implement the entire ISA (Instrumentation Society of
America) proposed standards for process control. These functions are:

Connect: attach a TGD to a task.

Thaw: enable interrupts on a TGD.

SINT: simulate an interrupt on a TGD (Addition to ISA standard).
Freeze: disable interrupts on a TGD.

Unconnect: detach a TGD from a task.

Interrupts

Internal Interrupts handled by the OS/32 MT Executive are: Arithmetic Fault, Illegal instruction, Machine Malfunction
and Memory Access Fault. On Arithmetic Fault, lllegal Instruction, and Memory Access Fault a task may take a trap by
setting the appropriate bit in its TSW.

29-390 RO4 4/76 3-11

Arithmetic Fault

When an Arithmetic Fault (AF) intertupt occurs in system code, the System Crash Handler is entered. If the fault occurs in
user code, the following table shows the action taken, depending on the settings of the PSW Arithmetic Fault Interrupt bit,
the TSW Arithmetic Fault Trap Enable bit and the Arithmetic Fault Pause/Continue task option.

)
&
<
N X
S/
&/
N v
N
Q S/
& QO ¥
© v >
SIS
© &/ L
< N S
&S
& &/ <Y ACTION OF TASK UPON ARITHMETIC FAULT

ON e p PAUSED + MESSAGE

ON e c TRAP

ON d p PAUSED + MESSAGE

ON d c IGNORED + MESSAGE
OFF e p IGNORED
OFF e c IGNORED
OFF | d p IGNORED

OFF | d c IGNORED

Illegal Instruction

If an illegal instruction is detected within system code, the System Crash Handler is entered. If the illegal instruction is
detected within user code, and the Illegal Instruction Trap Enable bit is set in the task’s TSW, a trap is taken. Otherwise the
user task is Paused and a message is output to the system log.

This does not apply if the illegal instruction interrupt was caused by the execution of a floating-point instruction on a
system using software floating-point traps. In that case, the floating-point traps routine is entered and the execution of the
floating-point instruction is simulated.

Machine Malfunction

The machine malfunction interrupt occurs on memory parity error, power failure and power restoration, and when the
INIT switch on the display panel is depressed.

A memory parity error causes a system crash if it occurs within system code; otherwise, the active task is paused and a
message is output to the system console. Memory parity errors occur when addressing non-existent memory in a 7/32
Processor with the parity feature installed. Addressing non-existent memory in an 8/32 Processor within system code is an
illegal operation, and the result is undefined.

Power failure causes the system to prepare for an orderly shutdown and to prime itself to await the machine malfunction
interrupt that is to occur on power restoration.

On power restoration, a message is logged requesting the console operator to reset all I/O devices (such as disc, which may
come up in a write-disabled state). When this message is acknowledged by the operator, all pending I/O requests are
terminated, except those on direct-access devices, which are retried. All tasks in memory are then paused, except for those
whose TSW is set up to take a task-handled trap on power restoration. The SET TIME command should be used to set the
clock as soon as possible following a power failure.

Memory Access Fault

This interrupt occurs when a task attempts to violate the conditions of memory protection imposed by the Memory Access
Controller (MAC). The MAC is a hardware device contained within the 32-Bit series processors to monitor all memory
accesses. For more information, refer to the Model 7/32 Reference Manual, Publication Number 29-428. If the Memory
Access Fault Trap Enable bit is set in the task’s TSW, a trap is taken. If the bit is not set, the task is paused and a message
is output to the system log. If this fault should occur in system code, the System Crash Handler is entered.

3-12 29-390 RO4 4/76

FILES AND DEVICES

In order to provide device independent input and output, programs direct all I/O requests to a Logical Unit (LU) rather
than a specific device or file. The system maintains a Logical Unit Table (LTAB) for each task. LU numbers, which range
from zero to a SYSGENable limit (maximum 254), correspond to entries in the task’s LTAB. The LUs referenced by a task
must be assigned to specific devices or files by operator command or SVC 7 calls prior to their use. This allows different
devices or files to be used without recompilation of the program. Devices may be marked off-line making them unavailable
for assignment by user tasks.

Direct Access Files

All direct-access devices supported by OS/32 MT may be accessed through the OS/32 File Manager, which provides a
substantial and powerful set of volume and file management services.

Data on a direct access device is maintained as files, on a named logical volume. Each volume contains all the information
necessary to process the data on that volume. When a direct-access device is marked off-line, it is referred to by the device
mnemonic associated with the device at SYSGEN time. When a direct-access device is marked on-line, the name of the
volume mounted on that device is associated with the device and used to refer to it. VOLUMES MUST NOT BE
DISMOUNTED WITHOUT MARKING THE DEVICE OFF-LINE.

Before using a direct-access volume, it must be formatted by the Common Disc Test and Formatter Program, 06-173, and
initialized for OS/32 use by the OS/32 Disc Initializer, 03-081. The Disc Initializer can also be used to place an OS image
suitable for boot loading on a direct-access volume.

Volume Organization

Allocation of space on an OS/32 volume is made in a flexible way, in order to reduce the adverse effects of possible
defective sectors. Each sector occupies 256 bytes. Only one sector is specifically required to be valid; this is Sector 0,
Cylinder O, on which the system maintains the Volume Descriptor.

The Volume Descriptor has five fields:

Volume Name

Pointer to File Directory
Pointer to OS Image

Size of OS Image

Pointer to Allocation Map

The remainder of the Volume Descriptor is reserved for future expansion.

Volume Name field contains a four-character ASCII volume identifier. This is the name by which the volume is known to
the system.

Pointer to OS Image and Size of OS Image fields exist for compatibility with previous operating systems.

Pointer to File Directory and Pointer to Allocation Map fields point to the first sectors of the File Directory and
Allocation Map, respectively.

All data is initially placed in the Volume Descriptor by the OS/32 Disc Initializer, 03-081. OS/32 MT does not modify any
portion of the Volume Descriptor.

The Allocation Map is a bit-map containing one bit for each sector on the volume. Since a sector occupies 256 bytes, the
bit-map overhead is 0.05% of the space on the volume. This map is used to record ~llocated, unallocated and defective
sectors. If a sector is allocated or defective, its corresponding bit in the Allocation Map is set to one; if unallocated, to zero.

The file directory contains information needed by the system to process files recorded on the volume. An entry in the
directory is made for each file.

The directory itself is organized as a linked list of one-sector blocks. A directory block contains up to five file entries.
When a direct-access volume is initialized the user has the option of allocating a ‘fast access’ directory. This type of
dirartnry hac]r\'nnlrc that ara ~rhainad ftacathar for Aantimal dice ascacc +ina Qaan ﬂnn nc/?’) Nicr Initinlizor Maniinl
directory that are chained together for optimal disc access time. See the 0S/32 Disc Initializer Manual,
Publication Number 29-508, for a complete description of this procedure. If the directory is not preallocated, new
directory blocks arc added as nceded. New directory blocks are addced to a ‘fast access’ directory, when the preallocated

directory blocks are exhausted.
Identification of Files
An OS/32 file is identified by a file descriptor, which has three parts: volume name, file name, and extension.

The volume name is composed of from one to four alphanumeric characters, of which the first character must be.
alphabetic. This is the name of the volume on which the file resides.

29-390 R0O4 4/76 3-13

The file name consists of from one to eight alphanumeric characters, of which the first must be alphabetic. This is the main
identifier for the file. and may be anything the user chooses.

The extension consists of up to three alphanumeric characters. It may consist of no characters at all, in which case it is
considered to consist of blanks. The extension usually denotes the type of material on the file. It may be anything the user
chooses; however, some specific extensions are used by 0S/32 and by some OS utilities, and are assumed o have specific

meanings. These oxtensions aic:
OBl Absolute or Relocatable loader format.
FTN FORTRAN source format.
CAL CAL assembly language source format.
BAS BASIC source format.

CSS Command Substitution System source format.
TSK Task Image format.
LIB Reentrant Library image format.

ovy Overlay image format.
The user may use any of these standard extensions. or may define others.
File Descriptors are written as follows:

voln:filename.ext

where voln is the volume name, filename is the file name, and ext is the extension. voln and ext may be omitted when
default names are assumed, such as the system volume and blank extension.

A File Descriptor is also used to describe a device, in which case the voln field describes a device mnemonic rather than a
volume name. The colon following the device mnemonic must be retained to avoid confusion with a file specification
having a default volume name and extension. The filename and ext fields are ignored for devices. At SYSGEN time each
device in the system is assigned a device mnemonic of up to four-characters.

File Organization

A file is a collection of related records. From a programmer’s point of view, a file is made up of logical records which may
be of arbitrary length and structure, and are process-dependent. From the system’s point of view, a file is made up of
physical blocks which are of fixed length appropriate to the particular device and are process-independent. When a user
program is written, the logical file structure must be considered because certain information is required at execution time
by the I/O processor routines and therefore must be supplied by the user program. When a file is allocated, the manner in
which the data is to be stored physically on the device must be specified.

08/32 MT supports three file structures. Chained files, Indexed files and Contiguous files. Although these structures differ,
In many cases the same data manipulations can be performed on all three. The choice of file structure, in most
applications, does not depend on the form of the data to be put in the file, but on the way in which the data is accessed.
0S/32 MT file structures are each optimized for one specific form of access.

Chained Files

The Chained file is an open-ended file structure consisting of a chain of blocks. One fullword of each block is used by the
system as a pointer (this pointer is not available to the user).

The pointer field of each block points to the next and previous block in the chain. By following the pointers, all the blocks
in the file can be found, no matter where they are scattered on the volume. The pointer is bi-directional; that is, it can be
used to follow the chain backwards as well as forwards. The chain is anchored at each end in the file directory. The chained
structure of this file is completely transparent to the user.

When a Chained file is allocated, the physical block size of the file is specified in multiples of 256-byte sectors. The user’s
logical record size is independent of the physical block size. Blocking and deblocking of logical records is performed
automatically by the system using two buffers in the File Control Block. The size of each buffer is equal to the physical
block size of the file.

Because of its structure, the Chained file is optimized for sequential access. In order to proceed from any one block to any
other, all intervening blocks must be read. This is the normal case in sequential access, but is time consuming in random
access, unless the distances between successive random accesses are small.

The Proceed I/O trap facility is supported by Chained files. However, an I/O Proceed call to a Chained file is treated as a
WAIT call, in that control does not return to the task until the 1/O operation is complete.

All access privileges (see Section entitled “Dynamic Protection’) may be requested for Chained files, however, shared write
access is not permitted and if requested, the system automatically changes the request to exclusive write access.

3-14 29-390 R0O4 4/76

Chained file I/O returns End of File (EOF) status under any of the following conditions:
- a read sequential operation is attempted at the end of the file;

-in random mode a Read or Write is attempted and the logical number specified is greater than the total
number of logical records in the file (for a Read) or greater than the total number of logical records in the
file plus one (for a Write).

End of Medium Status (EOM) is returned if a write operation is attempted and not enough space is available on the device
containing the file.

If an 1/O error occurs during the reading of a Chained file, the I/O is terminated and the 1/O error status is returned to the
user. If an I/O error occurs during the writing of a Chained file, data may have been lost. The system returns the file to its
last known state, adjusts the file information in the File Control Block accordingly, and returns an 1/O error status to the
user. The user should then CHECKPOINT the file and issue a FETCH ATTRIBUTES call to obtain the current status of
the file. See the section entitled “SVC7 - File Handling Services” for a description of the Checkpoint and Fetch Attribute
calls.

A forward-file or backward-file operation positions a chained file at the end or beginning, respectively. If no filemark is
found, an EOF error status results. EOF status is also returned if the user attempts to read or write beyond the end of the
file’s allocation.

Contiguous Files

The Contiguous file is a fixed-length file structure. All blocks of a Contiguous file are allocated contiguously on the
volume. The file size (in 256-byte sectors) is specified at the time of allocation, and all required space is reserved at that
time. Each sector (block) is considered a record by the system. Random reads and writes may access any record on the file,
regardless of which records have been previously accessed. This makes it possible to write a Contiguous file in a random
fashion.

Contiguous file I/O is non-buffered and transfers of variable amounts of data occur between the task’s buffer, to the disc.
The user may transfer data in logical records of size greater or smaller than a sector. The appropriate sector number must
be specified to position the file for random access. All transfers begin on a sector boundary and end whenever the number
of bytes specified have been transferred.

The Contiguous file supports a pseudo filemark capability that gives it some of the characteristics of a Magnetic Tape
device. The pseudo-filemark is defined to be a X'1313" at the beginning of a record (block). Care should be taken to ensure
that this datum is not inadvertently written at the beginning of a record. The forward-file and backward-file operations, on
a Contiguous file, function as they would on a Magnetic Tape. That is, the file is positioned forward or backward
respectively until a filemark (X'1313") is found. The current record pointer is then left following this filemark. The
write-filemark operation results in writing X 1313’ at the beginning of the current record.

A ‘Test and Set’ operation is currently implemented only on Contiguous files. It provides compatibility with previous
INTERDATA Operating Systems. The Test and Set function allows a task to access a file or a sector within a file, and at
the same time mark it as being in use. When a program issues a Test and Set, the system reads the data into the user’s
buffer, and before returning to the user, checks the first halfword of the data read in. If this halfword is zero, it forces it to
X'FFFF' and rewrites the complete record back in its original location. It then sets the caller’s Condition Code to zero. If
the first halfword is non-zero, the caller’s Condition Code is set to X'F', and the record is not modified. The SVC 1
function code for Test and Set is X'60". The Test and Set operation requires Wait I/O (i.e., Bit 4 of the Function Code set)
and it is assumed even if not set, although an I/O proceed queue item is added to the task queue, if the relevant bit is set in
the TSW. When requesting a Test and Set operation the buffer specified in the SVC 1 Parameter Block should be a
minimum of 1 sector in length. (See the section entitled “SVC 1 - Input/Output Request.”)

Indexed Files

The indexed file is an open-ended file structure composed of two levels of physical blocks, a chain of index blocks and a
series of data blocks. Each index block contains fullword pointers to one or more data blocks, depending on the number of
blocks in the file. The index blocks are linked together:; two fullwords in each index block are used as forward and
backward pointers to form a doubly-linked list. The directory contains pointers to the first and last index blocks, but no
pointers to data blocks.

The data biock size, index block size, and iogical record size are established by the user at allocate time and are fixed for
the duration of the file. The data block size and index block size are specified in multiples of 256 bytes. As with the
chained file structure, the logical record length is independent of the physical block size.

The indexed file is accessed with a buffered access method. The user program requests data transfer on a logical record
basis. The actual I/O transfers are executed by the system on a block basis, using the system buffers located in the File
Control Block (FCB). Blocking and de-blocking of logical records are performed by the SVC 1 intercept routines in the
File Manager.)

29-390 RO4 4/76 3-15

An indexed file may be accessed sequentially or randomly. Because of the physical structure of the file, random access is
readily performed. For example, to read block 1 and then block 60, the indexed file structure requires an overhead read
operation for the index block containing the pointers to blocks 1 and 60, whereas the chainzd file structure requires all
blocks between 1 and 60 to be read.

The open ended structure of the indexed file allows the file to be extended in a sequential manner. This is done by writing
a logical record numbered one greater than the number of existing records. If there are currently five records in a file, a
request to write record six causes the file to be extended. However, if there are currently five records, a request to write
record seven or higher causes an End of File status. The file may be up-dated by writing over an existing record.

As with Chained files, the Proceed I/O traps occur if requested, however, all proceed I/O calls are treated as wait calls.
Shared write access is not permitted on Indexed files. If shared write access is requested, the system changes the request to
exclusive write access.

File Access Methods

0S8/32 MT supports two methods of access to files: random and sequential. These methods may be intermixed without
having to close and reopen the file. The chief mechanism used to implement these methods is the current record pointer.

The current record pointer is a number, ranging from zero to the number of logical records currently in the file, indicating
the record to be read or written on the next sequential access. Fach record is numbered in sequence, starting with zero.

The current record pointer is adjusted in one of several ways:

1. Itisset to zero by the following operations:
Rewind

Backspace to filemark (except on Contiguous files where the record pointer is positioned at the record
containing the previous pseudo file mark)

Assigning (except for write-only access)

)

It is set to the number of records in the file (the proper position to append new records) by the
following operation:

Assigning for write-only access

Forward to filemark (except on Contiguous files where the record pointer is positioned after the
record containing the next pseudo file mark)

3. It is decremented by one by a backspace record operation, unless the file is already positioned at its
beginning.

4. It isincremented by one as follows:
Forward record (unless already at end of file)
Sequential read or write to a Chained or Indexed file

5. A random read or write sets the current record pointer to a value one greater than the record read or
written.

6. It is incremented by the number of sectors that must be accessed to satisfy a sequential read or write
request to a Contiguous file.

Random Access

For random access, the user supplies the record number that is to be accessed. This record is found, the data transfer is
performed, and the current record pointer is set to point to the next sequential record. If the user continues to use random
access, the current record pointer may be ignored, since it is readjusted on every call. However, the user may wish to read
or write a sequence of records, starting with a known record number. In this case, a single random call followed by a
number of sequential calls may be used.

3-16 29-390 R0O4 4/76

With a Chained or Indexed file, the user is somewhat restricted in the use of the random write call. This call may be used to
update any record currently in the file, or to append one record to the end of the file. If the record number specified is
more than one record past the end of the file, the call is rejected with EOF (End of File) status. This means that a file must
be expanded in a sequential manner. If the file has only five records, a sixth may be added but record number 100, for
example, could not.

On Contiguous files there is no restriction on the use of the random write or read call. Any record within the file’s
allocation may be read or written.

Sequential Access
Sequential access is the simplest and most common access method. The user performs a series of sequential read or write
calls. These cause records of the file to be read or written in sequence. The current record pointer is adjusted automatically

at each access. The Rewind, Forward Record, Backward Record, Forward File and Backward File commands may be used
for repositioning as described above.

File and Device Protection
Files and devices may be protected in two ways: statically and dynamically.
Static Protection

Each file or device has associated with it two protection keys, one for read access and one for write access. Each key is one
byte long and may have any value from X'00' to X'FF'.

If the values of the keys are within the range X'01' to X'FE', the file or device may not be assigned for read or write access
unless the operator or requesting task supplies the matching keys.

If a key has a value of X'00', the file or device is unprotected for that access mode. Any key supplied is accepted as valid.
If a key has a value of X'FF’', the file is unconditionally protected for that access mode. It may not be assigned for that
access mode to any user task, regardless of the key supplied. An unconditionally protected file may be assigned to an

Executive task, including the System Manager.

Some examples of static protection follow:

Write Read

Key Key Meaning

00 00 Completely unprotected.

FF FF Unconditionally protected.

07 00 Unprotected for read, conditionally protected
for write (user must supply write key = X'07").

FF A7 Unconditionally protected for write, conditionally
protected for read.

00 FF Unprotected for write, unconditionally protected
for read.

27 32 . Conditionally protected for both read and write.

The protection keys of a file are defined when the file is allocated, and may be changed by the console operator or by any
task having that file assigned for Exclusive Read-Write access.

»
-
I

Dynamic Protection
When a task has assigned a file, it may wish to prevent other tasks from accessing that file while it is being used. For this

reason, the user may ask for exclusive access privileges, either for read or write, at assignment time. This form of protection
is called dynamic because it is only in effect while the file remains assigned.

29-390 RO4 4/76 3-17

The access privileges are generally known by their abbreviations.
These are:

SRO Sharable Read-Only

ERO Exclusive Read-Only

SWO Sharable Write-Only

EWO Exclusive Write-Only

SRW Sharable Read-Only

SREW Sharable Read, Exclusive Write
ERSW Exclusive Read, Sharable Write
ERW Exclusive Read-Write

A file cannot be assigned with a requested access privilege if it is incompatible with some other existing assignment of that
file. For example, a request to open a file for Exclusive Write-Only is compatible with an existing assignment of that file
for SRO or ERO. but is incompatible with any existing assignment for other access privileges. Table 3-3 shows com-
patibilities and incompatibilities between access privileges.

TABLE 3-3. ACCESS PRIVILEGE COMPATIBILITY

=

Z o o = o o & =

[x @ = = T

w w w w w w w [3%)
ERSW - - - - * - - -
ERO - - - - % * - -
SRO - - K kK * % % -
SRW - - * * * - - -
SWO * * * * % - - -
EWO - * * - - - - =
SREW - - * - - - - =
ERW - - - - = - - =
» = compatible; -~ = incompatible

Write Protection

All files on a disc volume may be protected from write operations by MARKing the disc on-line as a protected device (see
the section entitled “MARK”.) When a volume is write protected, only assigns for Shared Read Only (SRO) and Shared
Read /Write (SRW) are accepted: SRW is changed to Shared Read Only. If the hardware write protected feature of a disc is
enabled. the volume must be MARKed on as a protected volume. Refer to “Device and File Control Commands” for more
information.

Null Device

If a task performs I/O requests via SVC 1 calls, but no actual transfer is desired (possibly during testing), the LU used in
the transfer may be assigned to the null device. The OS/32 MT Configuration Utility Program configures every OS/32 MT
with a null device which may be referenced by the file descriptor:

NULL:

Read requests to the null device return EOF status with the specified buffer unchanged. Write requests return with the
buffer unchanged, and normal return status.

3-18 29-390 RO4 4/76

CHAPTER 4
SUPERVISOR CALLS

The SVC instruction enables the user task to communicate with the operating system and to use the software facilities
provided. Execution of an SVC instruction at the assembly language level causes an internal interrupt which is processed by
the Executive of OS/32 MT. Higher level languages provide statements which generate SVC instructions.

SVC INSTRUCTIONS

The general form of an SVC instruction is:

SvVCn,P

where: n specifies the particular SVC
P represents a parameter or the address of a parameter block which further defines the request. Parameter
blocks must be aligned on a fullword boundary.

NOTE

Reserved fields in SVC parameter blocks should be initialized to
zero, to assure upwards compatibility with future releases.

Table 4-1 summarizes the SVCs supported by 0S/32 MT.
TABLE 4-1. 0S/32 MT SUPERVISOR CALLS

SvC FUNCTION

1 GENERAL PURPOSE 1/0 OPERATIONS
PAUSE

GET STORAGE

RELEASE STORAGE
SETSTATUS

FETCH POINTER

UNPACK

LOG MESSAGE
INTERROGATE CLOCK
FETCH DATE

TIME WAIT

INTERVAL WAIT

PACK NUMERIC DATA
PACK FILE DESCRIPTOR
MNEMONIC TABLE SCAN
MOVE ASC!I CHARACTERS
PEEK

EXPAND ALLOCATION
CONTRACT ALLOCATION
TIMER MANAGEMENT

3 END OF TASK

5 FETCH OVERLAY

6 INTERTASK SERVICES
.

9

-

2 code

© 0O N O O~ WN

N NN = 2 o ek e omd
W = O © ® N O o = O

FILE MANAGEMENT

LOAD TSW

14 USER SVC

15 ITAM DEVICE DEPENDENT /0

29-390 RO4 4/76 41

SVC Errors
08/32 MT responds to syntax errors in an SVC instruction by issuing a message to the system console and pausing the task.
The two possible error messages and their causes are:
hh:mm:ss taskid: ILLEGAL SVC AT XXXXXX
indicates an illegal SVC number, or invalid parameter specified in the parameter block.
hh:mm:ss taskid: INVALID ADDRESS IN SVC AT XXXXXX
indicates an invalid parameter block address (not in task’s allocation; not on a fullword boundary) or an invalid address
specified in a parameter block.
SVC 1 - INPUT/OUTPUT REQUEST

SVC 1 is used by a task to perform all general purpose 1/O requests. The format of the SVC 1 parameter block is:

0(00} 1(01) 2{02) 3(03)
LU DEVICE IND. DEVICE DEP.
FC STATUS STATUS
4(04)
BUFFER START ADDRESS
t | +
8(08)
BUFFER END ADDRESS
1 i 4
12(0C}) ' '
RANDOM ADDRESS
J 1 l
16(10) ' ' '
LENGTH OF DATA TRANSFER
20(14) N ' '
USED FOR ITAM REQUESTS
L 1 1

This parameter block must be on a fullword boundary and must be in a writable segment of the program address space. An
SVC 1 call may be coded as follows:

SvC I,PARBLK
ALIGN 4
PARBLK DB X'FC' FUNCTION CODE
DB X'LU LOGICAL UNIT
DS 2 STATUS
DC A(START) START ADDRESS
DC A (END) END ADDRESS
DC RANDOM RANDOM ADDRESS
DS 4 LENGTH OF DATA TRANSFER
DS -4 USED FOR ITAM REQUESTS

Not all fields are required for every request.

Function Code
The Function Code field is used to specify Data Transfer requests and Command Function requests.
Data Transfer Requests

The function code field for each data transfer request is defined in Table 4-2.

4-2 29-390 RO4 4/76

TABLE 4-2. SVC 1 DATA TRANSFER FUNCTION CODE

Bit Alignment . Meaning
0 Xevo v This bit must be zero to indicate a data transfer request.
1-2 'S SN Read-Write bits. The meaning of these two bits is modified by bits 3-7

to control the transfer. Basically the values are:

10 - Read request

01 - Write request

11 - Test and Set request

00 - Wait only or Test I/O Complete

3 - R S ASCII/BINARY bit. This bit indicates the type of formatting re-
quested.

0 - indicates ASCII formatting

1 - indicates binary formatting
If bit 7 is set, this bit is ignored.

4 e X PROCEED/WAIT bit. This bit indicates the action to be taken after the
1/0 has been initiated.
0 - Proceed. Indicates that control is to be returned to the task
after initiation of 1/O.
1 - Wait. Indicates that the task is to be put into I/O Wait until the
data transfer is complete.

5 e X SEQUENTIAL/RANDOM bit.

0- Sequential. Indicates the next logical record is to be accessed.

1 - Random. Indicates the logical record specified by the
RANDOM field is to be accessed.

6 e X UNCONDITIONAL PROCEED bit.

0 - indicates the task is to be put into connection wait until the
requested device/file is free. At that time the request is
processed. '

1 - indicates that the request is to be rejected with a condition
code of X'F' if the requested device/file is not free.

NOTE

If this is the only function code bit
- set, the request is interpreted as TEST
1/0 COMPLETE.

7 | ... X FORMATTED/IMAGE bit.

0 - indicates that the request is to be formatted according to the
device/file and the setting of bit 3.

1 - indicates that no formatting is to be performed (Image mode).

In general, the request is defined by the logical ‘OR’ of the function code bits. The O setting of each bit is valid for all
devices/files. If any invalid 1 setting of a bit is specified, the request is rejected as an illegal function (see STATUS byte
definition).

For example, a function code of X'5C' specifies a request for:

Read (X'40")

Binary Formatting (X'10")
Wait 1/0 (X'08")

Random Access (X'04")

The full SVC 1 parameter block must be reserved for data transfer requests. Wait only and Test I/O complete requests (see
the sections entitled *“Proceed/Wait 1/0” and “Wait Only”) make use of the FC, LU, and STATUS fields only, so the
remaining fields may be redefined and used by the task (e.g., for storing constants, etc.).

29-390 R04 4/76 43

Command Function Requests

The function code for command function requests is defined in TABLE 4-3.

TABLE 4-3. SVC 1 COMMAND FUNCTION CODE

BIT ALIGNMENT MEANING
¢] Xevo v THIS BIT MUST BE SET TO INDICATE A
COMMAND FUNCTION REQUEST
1 Kol REWIND
2 X BACKSPACE RECORD
3 CoX FORWARD SPACE RECORD
4 e X WRITE FILE MARK
5 R FORWARD SPACE FILE
6 R 8 BACKSPACE FILE
7 X RESERVED FOR DRIVER DEPENDENT FUNCTIONS

If bits 1-7 are all reset (function code X'80") the function is a Halt I/O Command.

The effect of all commands other than Halt I/O is device-dependent and is explained for each driver in the OS/32 Series
General Purpose Driver Manual, Publication Number 29-384. The implementation of command functions for direct-access
files is explained in the section of this manual entitled “File Access Methods.”

SVC 1 Command requests are implicitly proceed calls.

When multiple bits in the FC byte are set, the following principle applies:

The FC byte is scanned from left to right. The leftmost bit found that is meaningful to the device assigned
to the specified LU indicates the function to be performed.

If no valid function is indicated by the FC byte, the system returns immediately to the user, with normal status. Note that
this condition is not considered an error. The user may find out which command functions are supported by any Logical
Unit by means of the Fetch Attributes SVC 7 call. (See the section entitled ““SVC 7 File Handling Services.”).

The full SVC 1 parameter block must be reserved for command function requests.

Halt I/O Command

A Halt 1/0O is used to cancel an I/O and proceed request which has previously been issued. This is especially useful on an
interactive terminal device: if Halt I/O is not used, an outstanding read request must be satisfied before any other I/O can
be started on a device.

The Halt I/O command is supported on the following devices:

Card Reader, Printer, Paper Tape Reader/Punch, TTY Keyboard Printer,‘ Magnetic Tape, TTY Reader
Punch, Cassette, CRT, Carousel

Halt 1/O is also supported on certain ITAM devices. Refer to the /TAM/32 Reference Manual for more information.

~:iWhenv a Halt 1/O command is issued, the operating system schedules the I/O operation for termination. The actual
termination is asynchronous to the Halt I/O request. When the I/O completes, the task receives a Proceed 1/O Trap, if
enabled. The parameter added to the task queue is the address of the original data transfer parameter block, not the

address of the Halt I/O parameter block. Alternatively, the task may sense the completion of the I/O with SVC 1 Test I/O
or Wait Only. - '

44 29-390 R0O4 4/76

Two SVC 1 parameter blocks are involved in the Halt I/O processing. The first is the data transfer parameter block
specified by the user when the 1/O is initiated. The second is the command function parameter block which is requesting
the Halt I/O. These should not be the same parameter block. As the result of Halt I/O, status is returned to both of these
parameter blocks as indicated below:

1. Halt I/O parameter block status. The following status indications are returned to the Device Inde-
pendent Status field of the user’s parameter block as the result of requesting a Halt 1/O:

Status Description

X'00' The requested I/O termination has been scheduled.
X'81' LU not assigned.

X'82’ No I/O on-going for the task on this LU.

The Device Dependent Status contains the device number.

2. Data Transfer parameter block status. When the I/O terminates, Status X'82' is returned to the Device
Independent Status field of the data transfer parameter block. The Device Dependent Status field
contains the information defined in the following section.

Logical Unit (LU)

In order to provide device independent 1/0, all I/O requests are directed to a Logical Unit. LU is a number from 0 to a
SYSGENed maximum (up to 254) which describes an entry in the task’s LU table. The particular device or file desired
must be assigned to the specified LU by operator command (see the section entitled “Task Related Commands”) or SVC 7
call (see the section entitled “SVC 7 File Handling Services”) prior to executing the SVC 1 call. If an invalid or unassigned
LU is specified, the call is rejected. If no operation is desired, the specified LU should be assigned to the NULL device (see
the section entitled ““Null Device”).

Error Status (Device Dependent and Device Independent Status)

The system returns the status of the requested function in the Device Independent Status byte. This Status byte is set to
indicate the general type of error that occurred. If there was no error, it is set to zero. In addition, the Prgcessor Condition
Code is set to zero. In the case of a rejected Unconditional Proceed call, the Condition Code is set to X F'. (See the section
entitled “Unconditional Proceed.”)

The Device Dependent Status byte may contain information unique to the specific type of device.

The system does not modify the contents of the Error Status halfword until the requested function is complete or an error
has been detected. While the function is in progress, the previous.contents of these bytes are left unchanged.

Specific interpretations of the error codes as they apply to devices are explained in the OS/32 Series General Purpose
Driver Manual, Publication Number 29-384. The general definition of the status bits is given in Table 44.

TABLE 4-4. INTERPRETATION OF SVC L DEVICE INDEPENDENT STATUS BYTE

BIT MEANING IF SET TO 1 BINARY HEXADECIMAL
0 ALWAYS 1 FOR ERROR STATUS

1 ILLEGAL FUNCTION 1100 0000 x'co’

2 DEVICE UNAVAILABLE 1010 0000 x'A0’

3 END OF MEDIUM 1001 0000 X'00'

4 END OF FILE 1000 1000 x'sg’

5 UNRECOVERABLE ERROR 1000 0100 x'84’

6 PARITY OR RECOVERABLE ERROR 1000 0010 x'82'

7 ILLEGAL OR UNASSIGNED LU 1000 0001 x's1’

The SVC 1 Device Dependent Status byte is defined as follows:

X'82' 1/0O terminated by time-out
X's1' 1/O terminated by Halt 1/O

29-390 ROS 11/76 4-5

For the 67 and 256 MB discs, if the device independent field contains an unrecoverable error status (X'84") the device
dependent field contains the controller status. Refer to the Mass Storage Module Programming Manual 29-518 for a
description of the possible values of this field. This information should not be interpreted at the programming level. It is
provided as an aid in debugging possible hardware problems.

If no dependent status is available, the Device Dependent Status byte contains the device number.

In general, for a data request, if Illegal Function, Device Unavailable, or Illegal LU status is indicated alone, then no data
was transferred. Otherwise, some data may have been transferred. Device Unavailable may indicate that the device is
physically inoperative. If the device becomes unavailable after a transfer is started, Unrecoverable Error is set to indicate
the possibility that data was transferred.

The Illegal Function bit is set for a data transfer whenever the system cannot accept the SVC 1 FC byte as specified. This
may be for one of the following reasons:

— A modifier was specified that is not supported by the device: e.g., Binary on a CRT.
-~ A function was specified that is not supported by the device; e.g., Read on a Line Printer.

— A function was specified that is not supported by the access privileges granted at Assign time;e.g., Read
on a file that is assigned for Write-Only.

Buffer Address

For data transfer requests, the buffer is specified by the buffer start and buffer end address fields. The buffer start address
is the first byte in the buffer and the buffer end is the last byte in the buffer.

All buffers must start on a fullword boundary and must be fully contained in the same logical segment of task address
space. Refer to section entitled “Tasks™ for a description of program segments. Buffers used in read requests must be in a
writable segment, since the memory locations are changed by the read operation.

An Invalid Address in SVC Error occurs if:

Buffer start and end are not in the same logical segment
Buffer end address is less than buffer start address
Buffer for a read request is in a write protected logical segment (e.g., .LIB)

Random Address

The Random Address field is used to specify the logical record number (starting at 0) to be accessed on data transfer
requests if function code bit 5 is set. The interpretation of this field is driver dependent.

Length of Data Transfer

This field is used to return the actual number of bytes transferred during a request. This field is most useful when dealing
with variable length record devices, such as Magnetic Tape. This field is undefined on error status.

Unconditional Proceed

Unconditional Proceed 1/O is used when a task does not wish to wait for the requested operation. I/O requests are
coordinated by the system so that only one I/O request may access any device at a time. If unconditional proceed is not
requested, and the specified device is in use at the time of the data transfer request, the calling task is suspended by the
operating system until the device is free. At that time, the I/O request is initiated. If unconditional proceed is specified and
the device is in use. the SVC 1 request is rejected. Error status is set to zero (normal) and the condition code is set to X'F.
The calling task may then retry the request at a later time. If the specified device is not in use, the setting of the
unconditional proceed has no effect on the request.

Proceed/Wait 1/O

Once an I/O request has been initiated (that is, the specified device is free), any I/O Proceed call (bit 4 of function code
reset) causes control to be returned to the task so that the task may execute concurrently with the data transfer. The status
is not set until completion of the I/O (except for illegal function, and illegal LU which are rejected before transfer
initiation).

The status of the request may be checked by:

Monitoring the status field in the parameter block
Taking a task handled trap on completion (see the section entitled “Task-Handled Traps”™)

Issuing a wait only request to the same LU to wait for completion

An 1/O and Wait call (bit 4 of the function code set) requests the operating system to suspend the calling task until
completion of the I/O operation.

4-6 29-390 RO5 11/76

Wait Only

A Wait Only request (function code X'08') causes the task to be placed into I/O wait until the completion of a previous
1/O Proceed request to the specified LU. If there is no outstanding I/O by the task to the specified LU, control is returned
immediately. This call makes use of the FC, LU and STATUS fields of the SVC 1 parameter block. Illegal LU is the only
error status returned by this call. The status of the I/O being tested is returned in the parameter block associated with the
original I/O Proceed call and not in the Wait Only call’s parameter block.

Test 1/0 Complete

A Test I/O complete call (function code X'02") returns with a condition code of X'0' if there is no outstanding 1/O proceed
to the specified LU by the task. If there is an outstanding I/O Proceed, the call returns a condition code of X'F".

SVC 2 - GENERAL SERVICE FUNCTIONS

This SVC provides a number of general service functions. These functions relate to the task’s communication with the
console operator, to memory allocation, to text-processing and command-processing functions, and to timer management.

All SVC 2 calls require a parameter block, aligned on a fullword boundary. The general structure of an SVC 2 parameter
block is as follows:

0{00} 1(01) 2(02)
OPTIONS CODE

(OTHER DATA AS REQUIRED)

The CODE byte is a binary number which may range from O to 255. Not all of the 256 possible codes are implemented at
this time; unrecognized codes are rejected as illegal SVCs. The SVC 2 codes are shown in Table 4-1.

The OPTIONS byte is generally used to further modify the conditions of the call. Options are used by individual SVC 2
codes as required; these are described in subsequent sections. For those functions for which no options are defined, the
options byte is ignored.

The remainder of the parameter block is as long as required for proper operation of the SVC 2 call.

SVC 2 Code 1 - Pause

This call places the task in Console Wait state. A message is issued to the system console. If the operator enters a CON-
TINUE command at the system console device, the program is restarted at the instruction immediately following the
supervisor call. The parameter block format is as follows:

ALIGN 4
PARBLK DB 0,1 NO OPTIONS

Incomplete 1/0 Proceed requests continue to completion normally even while the task is in the paused state.
SVC 2 Code 2 - Get Storage
This callis used to provide temporary storage locations for certain subroutines called by a program, in particular FORTRAN

Run-Time Library subroutines. This call does not increase the size of the task’s memory allocation, but obtains locations
from the program’s current allocation. The parameter block format is as follows:

ALIGN 4
PARBLK DB OPTION,?2 DESIRED OPTION
DC H'REG' ADDRESS REGISTER
DC F'SIZE' NUMBER CF BYTES
Options allowed are:
X'00' ' Get specified number of bytes
X'80’ Get all allocated storage

If option X'00" is specified, the system adjusts the task parameter, UTOP, upwards by the number of bytes requested. The
starting address of the storage obtained is returned in the designated register. Subsequent calls with this option obtain new
areas. Since UTOP is maintained on a fullword boundary, requests are rounded up to the nearest fullword.

29-390 R04 4/76 4-7

If option X'80" is specified, the system sets UTOP equal to the task parameter CTOP+2, thus making available all of the
task’s current allocation. The starting address of the storage obtained is returned in the designated register and the number
of bytes obtained is placed into the parameter block’s SIZE parameter. The parameter block must be in a writable segment
if this option is selected.

If the call is successful, the condition code is set to zero. If more storage is requested than is currently available, or a
negative size is specified, an address of zero is returned in REG. UTOP is not changed and the ‘V’ bit of the Condition
Code is set (CC=4).

SVC 2 Code 3 - Release Storage

This call is the inverse of the GET STORAGE call (Code 2). It releases storage previously obtained. The format of the
parameter block is as follows:

ALIGN 4
PARBLK DB 0,3 NO OPTIONS
DCF F'SIZE' NUMBER OF BYTES TO BE RELEASED

This call does not reduce the task’s memory allocation. The pointer UTOP is adjusted downwards by this call; but not
below UBOT. Since UTOP always points to a fullword boundary, it is rounded up to the nearest fullword if the number of
bytes released is not a multiple of 4 (e.g., a request to release 5 bytes actually releases 4). If the call adjusts UTOP below
UBOT, or if a negative size is specified, UTOP is not changed and the condition code ‘V’ bit is set (CC=4), otherwise the
condition code is set to zero.

Due to the alignment of the size field, there is an unused halfword in the parameter block.
SVC 2 Code 4 - Set Status
This call allows the user to modify the Arithmetic Fault (AF) Interrupt Enable bit (Bit 19) and the Condition Code (CC)

of the PSW. Two options are provided: the first option specifies that all allowable bits be modified; the second option
specifies that only the Condition Code be modified. The format of the parameter block is:

ALIGN 4
PARBLK DB OPTION,4 DESIRED OPTION
DB AF,CC NEW STATUS, CONDITION CODE
The options allowed are:
X'00' Modify Status and Condition Code
X'80’ Modify Condition Code only

The AF byte parameter indicates whether or not the arithmetic faults are to be handled and the valid combinations are:

X'00’' Disable Arithmetic Faults;i.e., ignore Arithmetic Faults
X'10° Enable Arithmetic Faults

See the section entitled ““Arithmetic Faults,” for an explanation of Arithmetic Fault Interrupts.

The CC byte parameter has the form:

X'0ox’ where X is to replace the Condition Code.
SVC 2 Code 5 - Fetch Pointer

This SVC is used by a task that wishes to determine the extent of its memory allocation. It performs two functions:

— It returns a pointer to the base of the task’s User Dedicated Locations (UDL).

— It copies UTOP, CTOP and UBOT from the task’s TCB into its User Dedicated Locations. (See Figure
3-2)

The first function is essentially meaningless for a U-task, since the User Dedicated Locations of such a task always begin at
location O in the task’s address space. An E-task, however, runs with the Memory Access Controller disabled. The address
returned by this call, therefore, is the physical address of its UDL.

4-8 29-390 RO4 4/76

The second function is highly important. If the task has modified its UDL by writing into it, or if UTOP has been modified
with Get/Release storage calls, the data contained in UTOP, CTOP and UBOT in the UDL may not be valid. This call
restores these data to a valid state.

The format of the parameter block is-as follows:

ALIGN 4
PARBLK DB 0,5 NO OPTIONS
DC H'REG' REGISTER SPECIFICATION

No options are recognized. The REG field contains the number of one of the user’s General Registers; the pointer to the
start of the user’s UDL is returned in this register.

SVC 2 Code 6 - Unpack Binary Number

This call is used to translate a binary number contained in user General Register Zero into ASCII decimal or hexadecimal
format. The format of the parameter block is as follows:

ALIGN 4
PARBLK DB OPTION,6 DESIRED OPTION
DCF A(DEST) ADDRESS OF DESTINATION

The OPTION field contains the supervisor call options. The ADDRESS OF DESTINATION field contains a pointer to the
first location of a buffer in memory where the converted number is to be stored. This buffer may begin on any byte
boundary; it must be in a writable logical segment.

Options recognized are as follows:

X'00'+N Convert to hexadecimal

X'40'+N Convert to hexadecimal, suppress leading zeros
X'80"+N Convert to decimal

X'CO'+N Convert to decimal, suppress leading zeros

N represents the length of the buffer, in bytes. If N is zero, a four-byte buffer is assumed. N must be less than or equal to
63 (X'3F"). Note that a 10 digit buffer is sufficient for unpacking a decimal number and an 8 digit buffer is sufficient for
hexadecimal.

The converted number is right-justified in the buffer so that the least significant digit occupies the right-most byte (highest
address) in the buffer. If the number to be converted exceeds the buffer length, most significant bytes are lost. If
suppression of leading zeros is requested, the number is stored in the buffer right-justified, and the remaining characters, if
any, are filled with blanks.

The number to be converted must be supplied by the user in General Register Zero, and is assumed to be an unsigned
32-Bit constant.

Fullword alignment of the parameter block introduces a halfword of fill between the OPTION and A(DEST) fields.
SVC 2 Code 7 - Log Message

This call provides access from the user task to the system console (or system log device). It gives the user a means of
outputting a message with the assurance that it is printed on the console or log device regardless of Logical Unit
assignments in force at the time of the call. A number of options are provided and the parameter block may take on two
forms, Direct and Indirect Text:

Direct Text:
ALIGN 4

PARBLK DB OPTION,7 DESIRED OPTION
DC H'LENGTH’ LENGTH OF MESSAGE IN BYTES
DC CTEXT’ TEXT OF MESSAGE

Indirect Test:
ALIGN 4

PARRLK DR OPTION,7 DESIRED OPTION
DC - H'LENGTH’ LENGTH OF MESSAGE IN BYTES
DC A(TEXT) ADDRESS OF MESSAGE TEXT

Options recognized are:

X'00' Direct text, formatted message

X'40' Indirect text, formatted message

X'80’ Direct text, Image message

X'co’ Indirect text, Image message

29-390 ROS 11/76 4-9

The LENGTH field expresses the length of the message in bytes. For the Indirect text option, this message may be of any
length and may begin on any boundary.

The formatted/image option is similar to the ASCII formatted/image option in SVC 1. Its effect on the system console or
log device cannot be properly predicted by the caller, however, since there exists no mechanism for fetching attributes of
the system console or log device. The System Manager, therefore, may restrict the Image option by executing it as though
it were formatted for certain devices. The primary effect of the image option on a TTY or CRT is to suppress the
automatic carriage return at end of line, or to allow multiple line messages to be logged with one SVC call.*

A Log Message call is treated as an I/O Proceed call. Message text is buffered within the system, enabling the user to
modify or destroy the text or parameter block immediately following the call. A second Log Message request causes a task
to be placed in connection wait until its first request is complete.

SVC 2 Code 8 - Interrogate Clock
This call is used by a task to request the current time of day from the system. The system maintains a 24-hour clock

calibrated in seconds since midnight. A value of zero indicates midnight: a value of 86399 indicates 23:59:59. The clock
may be interrogated in ASCII or binary format. The format of the parameter block is:

ALIGN 4
PARBLK DB OPTION, 8 DESIRED OPTION
DCF A(BUFFER) ADDRESS OF BUFFER
Options recognized are:
X'00’ ASCII format
X'80' Binary format

The receiving buffer must be in a writable segment. If ASCII format is selected, the receiving buffer must be eight bytes
long, and may be aligned on a byte boundary. The data stored in it is in the format:

hh:mm:ss

If Binary format is selected, the receiving buffer must be four bytes long and aligned on a fullword boundary. The data
stored in it is a binary fullword indicating seconds since midnight.

SVC 2 Code 9 - Fetch Date

This call is used to request the current date from the system. The format of the parameter block is:

ALIGN 4
PARBLK DB 0.9 NO OPTIONS
DCF A(DEST) ADDRESS OF RECEIVING BUFFER

The receiving buffer must be eight bytes long and in a writable segment. The system returns the date in the following
format:

mm/dd/yy
Alternatively, the following format may be selected at System Generation:

dd/mm/yy

This format is widely used outside the United States and in certain governmental (chiefly military) applications within the
United States.

SVC 2 Code 10 - Time-of-Day Wait
This call causes the calling task to be suspended until a specific time of day. The time of day is specified in seconds since

midnight of the current day. Values greater than 86399 refer to future days. If the value given has already elapsed, the
same time of the succeeding day is used. The format of the parameter block is as follows:

ALIGN 4
DB 0.10 NO OPTIONS
DCF Y'time' TIME OF DAY (FULLWORD)

The time-of-day field is masked to a 28-Bit binary value.

This call requires that a timer queue element is obtained from system space. If the task has already exhausted its allocation,
or if not enough memory is available, the call is rejected with the condition code = 4 ('V' bit set).

*Care should be taken when using this option since, depending on the console device, varying amounts of time must be left
for a carriage return to take effect.

4-10 29-390 R04 4/76

SVC 2 Code 11 - Interval Wait

This call causes the calling task to be placed in a Wait state for a given interval of time. The interval is defined in
milliseconds from the time the call is executed. The parameter block format is as follows:

ALIGN 4

DB 0,11 NO OPTIONS
DCF Y'time' INTERVAL IN MILLISECONDS (FULLWORD)

The Interval field is masked to a 28-Bit binary value. This call requires that a timer queue element be obtained from system
space. If the task has already exhausted its allocation, or if not enough memory is available, the call is rejected with the
condition code = 4 ('V' bit set).

SVC 2 Code 15 - Pack Numeric Data

This call is the inverse of the UNPACK BINARY NUMBER (SVC 2 Code 6) call. It translates ASCII hexadecimal or
decimal character strings to binary numbers. An option is provided to skip leading blanks. The format of the parameter
block is as follows:

ALIGN 4
PARBLK DB OPTIONS,15 DESIRED OPTIONS
DC H'REG’ REGISTER HOLDING ADDRESS
Options recognized are:
X'00’ Hexadecimal
X'40' Hexadecimal, skip leading blanks
X'80’ Decimal
X'co’ Decimal, skip leading blanks

The REGISTER field of the parameter block specifies one of the user general registers. This register must contain a pointer
to the first character of the ASCII string to be converted. The result is always returned in User General Register Zero.

The pointer register is returned pointing to the first byte in the string that was not converted. (If decimal is specified, this
would be the first non-numeric byte; if hexadecimal is specified, this is the first byte that is not 0-9 or A-F.) If register 0 is
specified, the updated input pointer is not returned.

The Condition Code (CC) is set to reflect the results of the processing:

CC=0 means a normal termination with ro errors encountered in packing.

CC=1 (‘L’ bit set) means no characters were processed; in this case, User General Register Zero is set to
Zero.

CC=4 (‘V’ bit set) means that the number processed was too large to be represented in 32 bits. If
hexadecimal is specified, more than eight valid hexadecimal digits were processed; in this case, Register
Zero contains the result of converting the least significant (right-most) eight characters. If decimal is
specified, the number processed is greater than 231.1 (2,147,483,647). In this case, User General Register
Zero contains the number processed, modulo 231

SVC 2 Code 16 - Pack File Descriptor

This call permits the user to process a File Descriptor in standard OS/32 Syntax. This call inserts the name of the system
volume if the volume field is omitted. The format of the parameter block is:

ALIGN 4
PARBLK DB OPTIONS, 16 DESIRED OPTIONS
DC H'REG’ ASCII STRING ADDRESS REGISTER
A(DEST) ADDRESS OF RECEIVING AREA

e [ate s vivE) F22s2/INEOD \UL AN 0L ¥V LINST SaaNIis

The REG field specifies one of the caller’s General Registers. This register must point to the ASCII string to be processed.

The scan terminates when a syntax error is detected, or it proceeds until it has satisfactorily processed each field.

29-390 R04 4/76 4-11

The RECEIVING AREA ADDRESS field points to a 16-byte receiving area. This receiving area must be aligned on a
fullword boundary in a writable segment and is formatted as follows:

Y T T

0(00)
VOLUME NAME

I L r
4(04) j j j
B FILE NAME 7

: :
12(0C) 15(0F)

EXTENSION RESERVED
[1

Note that this is the same format as the File Descriptor field of an SVC 7 parameter block. The receiving area may, in fact,
be such a field.

Options recognized are:

X'00’ Default system volume

X'40’ Default system volume, skip leading blanks
X'80’ No default volume

x'co’ No default volume, skip leading blanks

If the “skip leading blanks” option is selected, the SVC ignores all blanks from the current position of the pointer to the
first non-blank. Otherwise, the file descriptor to be converted is assumed to start at the current pointer position.

The pointer contained in Register REG is returned pointing to the first byte that is not part of the file descriptor. The
Condition Code is set on return as follows:

cC= 0 Normal

1 no volume name present in input ('L’ bit)

4 syntax error ('V 'bit)

8 no extension present in input ('C'bit)

9 no extension or volume name present in input ('C'& 'L’ bits)

If a Syntax error is detected, the contents of the receiving area are undefined. If volume name, file name or extension is
fewer than 4, 8 or 3 characters long, respectively, the field is left justified and unused characters in the receiving area are
blank-filled. The reserved character following the extension field is always set to a blank by the system.

If no volume name is provided and the *“‘default system volume’ option is selected, the current system volume name is
moved into the VOLUME NAME field of the receiving area. If this option is not selected, the contents of the receiving area
VOLUME NAME field are left unchanged.

For example:

Input String Receiving Area Condition Code
1. DSC3: DSC3 BB BBy 8 (no extension)
2. ABC:FILE1.XY ABCbFILE1 B¥BXYKH 0 (normal)
3. DEF:FILE2 DEFbFILE2BBBBBYY 8 (no extension)
4, FILE4.PDQ ***x*ETLE4¥BBPDQY 1 (no volume)
5. FILES **x*FILESYBPYBLY 9 (no volume or extension)
6. FRED:FILES. FREDFILESBY¥YSYY 0 (normal)
7. $3%X,CP% undefined 4 (syntax error)
8. FILENAME 123 ***+*x F]LENAMEBYYY 9 (no volume or extension)

*#%% = yolume name field contents depend on selected option
b = blank character (X'20")

Note that the selection of the blank extension (example 6) is not considered the same as the selection of no extension at
all. If no extension at all is selected, it is assumed that the caller may wish to use some default value.

In examples 1-6, REG is returned pointing to the first blank after the fd. In example 7 it is left unchanged.

In example 8, the receiving area contains the file descriptor FILENAME not FILENAME.123 since the scan terminates
when it detects the blank (¢).

4-12 29-390 RO4 4/76

SVC 2 Code 17 - Scan Mnemonic Table

This call permits the user to decode command mnemonics in a way identical to the OS/32 MT Command Processor. The
format of the parameter block is as follows:

ALIGN 4

PARBLK DB 0,17 NO OPTIONS
DB REGI1,REG2 INPUT, INDEX REGISTERS
DC A(MNEMONIC TABLE) MNEMONIC TABLE ADDRESS

The REGI byte specifies the general register which points to the source string being scanned. The REG2 byte contains the
number of a general register to contain the result. The MNEMONIC TABLE ADDRESS field contains the address of a
mnemonic table within the user’s program space. This table must begin on a fullword boundary.

A mnemonic table is composed of a string of mnemonics, separated from each other by bytes containing X'00". The end of
the table is signified by the occurrence of two consecutive bytes of X'00".

MNEMI1|{OOMNEM2|0OO0OIMNEM3j00 00

The first byte of a mnemonic may be any ASCII character; subsequent bytes of the mnemonic must be alphabetic. The
scan terminates if it encounters a non-alphabetic character. A mnemonic may be of any length. Abbreviations are
permitted in the same way as described in the operator command syntax (see the section entitled “Mnemonics™). To
indicate an abbreviation, required characters of a mnemonic are flagged with bit 0 = 1; non-required characters are flagged
with bit 0 = 0. Required characters must be contiguous and must begin with the first character of a mnemonic. Thus, the
mnemonic RECONFIGURE, in which letters R, E, C are required, is coded as:

DB C'R'+X'80',C'E'+X'80', C'C+X'80',C'ONFIGURE',X'00"'
where the first three characters are flagged as required. Note the byte of zeros at the end; this is the mnemonic terminator.
The result, returned in Register REG2, is a number which is -1 if no match was found, or O to n-1, where n is the number
of mnemonics in the table, if a match was found. This number represents the position of the matched mnemonic in the

table, starting with zero. Thus, if a match is found on the third item in the table, the result returned in REG2 is 2.

REGI is returned pointing to the first character that was not matched. This is normally a separator following the
mnemonic in the string being scanned. If no match is found, register REG1 is returned unchanged.

If a match is found, the condition code is set to zero; if no match is found, the condition code ‘V’ bit is set to 1 (CC=4).

SVC 2 Code 18 - Move ASCII Characters

This call is used to move characters from an input string to a target string. The number of characters moved may optionally
be controlled by the presence of one or more terminating characters in the input string. The format of the parameter block
is:

ALIGN 4
PARBLK DB OPTION, 18 OPTION
DB REG1,REG2 INPUT, OUTPUT POINTERS
DC A(ECSTRING) ADDRESS OF ENDING CHARACTER STRING

REGI1 specifies the register pointing to the input string and REG?2 specifies the register pointing to the output string, which
must be in a writable segment.

Options recognized are:

X'00'+N No ending characters
X'80'+N Use ending character string

where N is the number of characters to be moved. N must be less than or equal to 127 (X'7F").

If option X'00' is selected, N characters are moved. The input and output string pointers are modified to point to the
location following the last byte moved in the input and output areas, respectively. The condition code is set to zero.

If option X'80' is selected, each character moved is checked against the ending character string. If this character matches
any of the ending characters, this character is not moved and the SVC terminates, modifying the pointers as for X'00', and
setting the processor condition code to zero. If the Nth character is moved and no match has been found, the SVC
terminates as described previously, but the ‘V’ bit of the condition code is set (CC=4) to signify that no ending character
was found.

29-390 RO4 4/76 4-13

The ending character string is formatted as follows:

M | ending characters

where M is a byte containing the number of ending characters in the string. The length of the entire string, therefore, is
M+1 bytes. For example, a string containing the ending characters ,.;./ is coded as follows:

DB 5, C',.;:/'
No alignment is required for the ending string.

SVC 2 Code 19 - Peek

This call permits the task to extract certain system and task-dependent information from system tables. This information is
moved to the caller’s parameter block, which is 28 bytes long. The format of this parameter block is illustrated in Figure
4-1.

0(00) 101 2(02) 3(03)
0 19 NLU MPRI
4(04)
o 0sID _
+ t +
12(0C}
| TASK 1D i
' ' '
20(14)
CTSW
24(18)) 26(1A))
TASK OPTIONS RESERVED
1 1

Figure 4-1. SVC 2 Code 19 Parameter Block

The first two bytes of the parameter block are set by the user program and indicate SVC 2 code 19. The remaining are
return fields and have the following meanings:

NLU Number of LUs available to the task.

MPRI Maximum priority of the task.

OSID Eight ASCII characters of the form “OS32MTrr” where “rr” is numeric and indicates the revision
level of the OS/32 MT system.

TASK ID Eight-character ASCII Task Identifier, left justified, blank filled as necessary.

CTSW Status field (upper 32 bits) of the task’s current Task Status Word.

TASK OPTIONS The Options halfword from the task’s TCB.

The parameter block must be on a fullword boundary in a writable segment and may be coded as follows:

ALIGN 4
PARBLK DB 0,19
i DS 26

NOTE

This parameter block must be 28 bytes long, otherwise, informa-
tion following it is overwritten.

4-14 29-390 RO4 4/76

SVC 2 Code 20 - Expand Allocation

This SVC is provided for compatibility with previous 32-bit operating systems. The size of a task’s allocation under
08/32 MT is defined by the size of its partition and is invariant while the task is in the system. The format of the
parameter block is as follows: .

ALIGN 4
PARBLK DB OPTION,20 DESIRED OPTION
DC H'N' NUMBER OF 256 BYTE BLOCKS

To allow programs written under previous operating systems to run unchanged, the following two option fields are
recognized:

Option field = X'00’
Option field = X'80"

If option = X'00' is specified, the condition code ‘V’ bit is set (CC=4), indicating that the expand was not performed. If
option = X'80" is specified, the condition code ‘L’ bit is set (CC=1), and N is set to zero, indicating that the expand was not
performed. For option X'80' the parameter block must be in a writable segment.

SVC 2 Code 21 - Contract Allocation

This SVC is provided for compatibility with previous 32-bit operating systems. OS/32 MT takes no action upon receiving
this call, and returns immediately to the caller. The parameter block may be coded:

ALIGN 4
PARBLK DB 0,21
DC H'N'

SVC 2 Code 23 - Timer Management

This call is used by a task to coordinate with real-time. A number of timer management facilities are available:

- A task can place itself in a time wait for a specified period.

— A task can ask to be trapped (using the task queue) at a specified time.

— A task can request repetitive traps (using the task queue) at defined intervals within a specified period.
— A task can determine the time until the occurrence of a specified trap.

— A task can cancel specified trap requests.

Parameter Block

The basic format of the SVC 2 code 23 parameter block is as follows:

0(00) 101) 2(02) !
OPTIONS 23 N
4(04) 1
TIME
1] A1
which may be coded:
ALIGN 4
PARBLOCK DB OPTIONS,23
DC H'N'
DC F'TIME’

The N and TIME fields take on different meanings for the specific options, and the parameter block is augmented for the
repetitive traps request.

General Considerations

Some options require a timer queue element (TQE) to be allocated in system space. If the task has exhausted its allocation
of system space, or if no system space is available, such calls are rejected with the'V'bit of the condition code set (CC = 4).

A task can make timer calls only on its own behalf and cannot affect or have any knowledge of outstanding timer requests
for other tasks.

Timer requests can be intermixed without restriction, and intervals do not have to be requested in the order they expire.
At EOT all outstanding intervals are cancelled.

29-390 R04 4/76 4-15

Specific Options

The following table specifies the valid options to SVC 2 code 23. Any other values are illegal and result in the task being
paused and an ILLEGAL SVC message to the system console.

BIT HEX BINARY MEANING

0 x'00' 0000 0000 ADD TO QUEUE ON COMPLETION OF INTERVAL
0 X'80' 1000 0000 WAIT UNTIL COMPLETION OF INTERVAL

1 x'a0' 0100 0000 ADD TO QUEUE REPETITIVELY

2 x'20' 0010 0000 READ TIME UNTIL SPECIFIED INTERVAL

3 x'10' 0001 0000 CANCEL INTERVAL REQUEST

Option X'00" Add to Queue on Completion of Interval

With this option a task requests that at a specified time in the future an item be added to its task queue. In the mean time,
the task may continue processing or enter trap wait (using SVC 9) with the appropriate bits set in the TSW.

The form of this call is:

SVC 2,TRAPTIME

ALIGN 4

TRAPTIME DB X'00',23 Option 00, Code 23
DC H'N' Specify register
DC F'TIME' Specify time
where: N is in the range 0-15 and identifies the register, of which bits 8-31 contain the parameter part of the queue

item to be added on termination of the interval (see Table 3-2).

TIME is a fullword quantity which specifies the interval. Bits 0-3 of the time field specify the type of
interval required. The defined interval types are:

0000 Seconds since midnight (time of day interval)
0001 Milliseconds from now (elapsed time interval)

All other values are illegal and result in the task being paused and an ILLEGAL SVC message to the system console. The
remaining 28 bits of the time field specify the duration of the interval. For time of day intervals values in excess of 86399
refer to future days.

Error Conditions

If a TQE is unobtainable, the call is rejected with the' V'bit of the condition code set (CC = 4).

If, on expiration of the time interval, the Z Bit of the TSW (see Table 3-1) is not set, or A(Task Queue) in the UDL (see
Figure 3-2) is zero, no item is added to the queue and the interval request is deleted (effectively the task has lost an

interrupt).

If, on expiration of the time interval, the attempt to add the item to the task queue results in queue overflow, the task is
abnormally terminated with a return code of 1000.

4-16 29-390 R04 4/76

Option X80’ Wait Until Completion of Interval
With this option a task places itself in Time Wait for a specified interval.

The form of this call is:

sveC 2,WAITTIME
ALIGN 4
WAITTIME DB X'80',23 Option '80', Code 23
DS 2 N field not used
DC F'TIME' Specify time
where: N is not used for this option.

TIME is a fullword quantity which specifies the interval. The inferpretation of the time field is the same as
for option X'00'.

Error Conditions

If a TQE is unobtainable, the call is rejected with the'V'bit of the condition code set (CC = 4).

For a time of day wait, if the time specified has already passed the task waits until the same time on the next day.

Option X'40" Add to Quéue Repetitively

With this option a task requests that items be added to its task queue repetitively at defined intervals within a specified

period. All the intervals in a period are of the same type. The periodic interrupts repeat until the task cancels the period or
goes to EOT.

The form of this call is:

SvC 2,PERIODIC
ALIGN 4
PERIODIC DB X'40',23 Option '40’, Code 23
DC H'N' N items in table
DCF Y'TO000000'+A(TIMTABLE) Interval type and pointer to table
ALIGN 4
TIMTABLE DC F'TIME' 1st Interval
DC F'PARAMETER' st Parameter
DC F'TIME' 2nd Interval
DC F'PARAMETER' 2nd Parameter
DC F'TIME' Nth Interval
DC F'PARAMETER' Nth Parameter
where: N defines the number of intervals in the period; N can take any value.

T defines the interval type, exactly as for bits 0-3 of the TIME field in option X'00".

A(TIMTABLE) is a pointer to N pairs of fullword items, defining the N intervals and the task queue items
associated with each. Within each pair of fullwords, bits 4-31 of the first define an interval and bits 8-31 of
the second specify the task queue item parameter (see Table 3-2).

Time of Day Intervals

If the type of interval is time of day (T=0) each time value represents the number of seconds from midnight of the day on
which the call is made. Each time value must be at least one greater than the previous entry, i.e., the table must be arranged
in increasing order. Values greater than 86,399 refer to suceeding days, thus 86,400 refers to midnight on the second day.
The period is defined as time of the last interval, rounded up to the next multiple of 86,400, i.e., the period is always a
whole number of days.

29-390 RO4 4/76 4-17

FElapsed Time Intervals

For elapsed time intervals (T=1) successive times in the table are incremental, each value specifying milliseconds from the
previous value. The first value specifies milliseconds from zero, i.e., the time of the execution of the SVC 2 code 23. A
time interval of zero is invalid in a repetitive request.

The period is defined as the sum of all the intervals in the table.

Parameters

Each interval in a periodic table can have a unique parameter associated with it. The parameters are returned to the task in
the queue items added to the task queue when intervals expire. Parameters are limited to 24 bits (see Table 3-2).

Lrror Conditions
If 2 TQE is unobtainable, the call is rejected with the' V'bit of the condition code set (CC =4).

If a time of day periodic table is out of order, or if an elapsed time periodic table has a zero interval, the task is paused and
an ILLEGAL SVC message is issued to the system console.

If. on expiration of any time interval, the Z Bit of the TSW (see Table 3-1) is not set, or A(Task Queue) in the UDL (see

Figure 3-2) is zero, no item is added to the queue (effectively the task has lost’ an interrupt). The repetitive request is not
cancelled.

If. on expiration of any time interval, the attempt to add the item to the task queue results in queue overflow, the task is
abnormally terminated with a return code of 1000.

Option X'20" Read Time Until Specified Interval

This option is used by a task to determine the time until the expiration of an interval, previously established with either an
option X'00' or option X'40' call. The call must specify both the parameter associated with the interval and its type.

The form of the call is:

Sve 2,GETTIME
ALIGN 4
GETTIME DB X'20 ,23 Option ‘20", code 23
DC H'N' Specify register
RTNTIME DC Y'"T0000000" Time type; used for return value
where: N is in the range O-15 and identifies the register, of which bits 8-31 contain the parameter of the interval of

interest.
T identifies the interval type (elapsed time, or time of day) of the interval of interest.

the fullword at RTNTIME is used to return the time until the specified interval. Therefore the parameter
block for this option must be in a writable segment.

Lffects

On return from this call the TIME field contains the time until the next expiration of an interval with the specified
parameter. The value returned depends on the interval type. For time of day intervals (T=0) the value is the time in
seconds from midnight on the day of the call. For elapsed time intervals (T=1) the value is the number of milliseconds
remaining.

WARNING
IF MULTIPLE INTERVALS HAVE THE SAME PARAMETER,
THE VALUE RETURNED IS THE TIME OF THE FIRST
FOUND, NOT NECESSARILY THE NEXT INTERVAL TO
EXPIRE.

NOTE

The T field is not changed by this call, thus, for elapsed time
intervals, the value returned is Y'T0000000" + TIME.

If no interval is active with the specified parameter the' V'bit of the condition code is set (CC = 4).

4-18 29-390 RO4 4/76

Option X'10" Cancel Interval Request
This option is used to cancel previous requests for interval traps or for periods of interval traps.

The iorm of the call is:

SsvcC 2,CANCELTM
ALIGN 4
CANCELTM DB X'10',23 Option'10’, Code 23
DC H'N' Specify register
DC Y'T0000000' Time type
where: bits 8-31 of the register identified by N specify a parameter associated either with a single interval,

previously established with an option X'00' call, or with any interval in a period, previously established
with an option X '40' call.

T specifies the interval type of the intervals or periods to be cancelled.

Effects

All previous interval requests of the interval type specified, associated with the specified parameter, are cancelled. If any of
these intervals is a member of a repetitive period, the whole period is cancelled.

If no interval is found of the right type with the specified parameter, the V' bit of the condition code is set (CC = 4).
SVC 3 — END OF TASK (EOT)

This call permits a task to terminate itself in an orderly fashion. Its format is:
SVC 3,N EOT

There is no parameter block associated with this call. Instead, the effective address of the second argument, N, is treated as
a binary constant, truncated to 8 bits. It replaces the Return Code used by the Command Substitution System (CSS) (see
Chapter 5).

Return Codes may be treated as desired by the user in CSS conditional testing; however, the CSS system assumes that
return code O represents normal termination.

If the task issuing this call has I/O in progress at the time the call is made, the I/O is terminated. Write operations are
permitted to terminate normally, while Read operations are aborted.

If the task issuing this call is a non-resident foreground task, its files and devices are all closed. It is removed from memory
by deleting all control information pertaining to the task. If, however, the task issuing this call is a resident foreground
task, or is the background task, its files are checkpointed but not closed, and it is not removed from memory. See the
section entitled “File Handling Services” for an explanation of file checkpoint and close operations.

SVC 5 — FETCH OVERLAY

This call permits a task to fetch an overlay from a specified Logical Unit. The SVC 5 parameter block is 12 bytes long. Its
format is:

ALIGN 4
PARBLK DC C'OVLYNAME' OVERLAY NAME
DS 1
DB OPTIONS OPTIONS
DC H'LU' LU NUMBER
Options recongized are:
x'or’ Load from LU without positioning
X'04' Load from LU after rcwind

Any other value in the OPTIONS byte is considered illegal and results in an Illegal SVC error.

The status returned is:

X'00' Overlay loaded successfully

X'10' Load failed

X"20' Mismatch on overlay name :
X'40' Overlay would not fit in allocated memory

If the overlay name is less than 8 characters, the field must be left justified and padded with blanks.

29-390 R0O4 4/76 4-19

The eight-character overlay name field is matched against the overlay name in the Loader Information Block of the overlay
file. If it does not match, error status X'20' is returned. The overlay file must be assigned to the Logical Unit specified in
the parameter block. This file must be prepared by the OS/32 MT Task Establisher (TET/32). See the 0S/32 Task
Establisher User’s Manual for details on preparing tasks with overlays.

The calling program is placed in load wait until the overlay is loaded. If the overlay is successfully loaded, the root program
may Branch and Link to it as a subroutine.

Overlays should not call other overlays directly; the calling code is overlaid with the new overlay and the results are
unpredictable.

The parameter block must be in a writable segment.

On return, the overlay file or device is positioned to the logical record following the last logical record containing the
overlay.

SVC 6 — INTERTASK COORDINATION

SVC 6 provides facilities for foreground tasks to invoke and communicate with other foreground tasks. SVC 6 is treated as
an illegal SVC or a NOP from a background task, depending on the task options associated with the background task.

SVC 6 functions include the ability to:

Load a task

Start a task

Cancel a task

Queue a parameter to a task
Change a task’s priority

Use Trap Generating Devices
Set task resident, non-resident
Suspend a task

Release a suspended task

Send a message to another task

The SVC 6 parameter block is 48 bytes long and must start on a fullword boundary in a writable segment. The format is
shown in Figure 4-2.

0(00)
N TASKID .
8(08) ' ! '
FUNCTION CODE
1
12(0C) 14(0E)
TASK STATUS ERROR STATUS
16(10) 1701) 18(12) 19(13)
LOAD LU PRIORITY RPRI RESERVED
20(14)
START ADDRESS
240181 | ' ' '
TT 1 DELAY TIME
1 I " -
28(1¢) j '
DEVICE MNEMONIC
I 4
32(20) 33(21) '
RESERVED PARAMETER
MUST BE 0 | ;
36(24)
A (MESSAGE)
1 4 1
40(28) ! ' !
= RESERVED 4
1 1

Figure 4-2. SVC 6 Parameter Block

4-20 29-390 R04 4/76

The meaning of each field is explained in the description of each function requiring that field. Table 4-5 summarizes the
use of each field. The parameter block may be coded:

ALIGN 4
PARBLK pC - C'TASK ID' TASK ID (8 BYTES)
DC Y ‘function’ FUNCTION CODE (4BYTES)
DS 4 STATUS. FIELD ($ BYTES)
DB LU LOAD LU (1 BYTE)
DB PRI PRIORITY (1 BYTE)
DS 2 (2 BYTES)
DC A(START) START ADDRESS (4 BYTES)
DC Y'TIME' TIME DELAY (4 BYTES)
DC C'DEVM' DEVICE MNEMONIC (4 BYTES)
- DC Y'PARM' PARAMETER (4 BYTES)
DC Y'MESS;' MESSAGE BUFFER ADDRESS (4 BYTES)
DS 8 (8 BYTES)

Although not all fields are used by each function, the full SVC 6 parameter block must be reserved.

TABLE 4-5. SVC 6 PARAMETER BLOCK FIELDS

FIELD NAME MEANING

Bytes

07 TASK ID Name of task; not required if call is self-directed.

8-11 Function Code Specifies desired functions; See Table 4-6.

12-13 Task Status The wait status halfword of the specified task is returned

by the system in this field.

14-15 Error Status Set to zero for normal termination or to error code if error
detected. See Table 4-8.

16 Load LU Specifies LU from which to load the task. Used only for
Load function.

17 Priority Specifies priority for change priority function. May not be
255 for E-tasks. Must be in range 10-249 for U-Tasks.

18 RPRI! Set by system to actual priority of specified task
19 (reserved)
20-23 Start Address Used only for START functions; specifies address at which

to start specified task. |f zero, signifies normal transfer
address, as specified at TET/32 time.

24, TT Time Type: indicates type of time delay. Used only for
Bits 0-3 Delay-Start. Legal codes are:

0000 = seconds since midnight
0001 = milliseconds from now

24, Delay Time Specifies number of second or milliseconds, as defined by

Bits 4-31 TT field, to delay the start operation. Used only for Delay-
Start.

28-31 Device Mnemonic Specifies device affected by Connect, Thaw, SINT, Freeze and

Unconnect functions. See Table 4-6.
32 Unused, must be zero.

33-35 Parameter ' Specifies parameter to be queued for Queue parameter
function; specifies device parameter for Connect function.

36-39 A (Message) Specifies address of message Buffer for Send Message
function.
40-47 (Reserved)

29-390 RO4 4/76 4-21

Task ID and Function Code

The Task ID field specifies the name of the task at which the SVC 6 is directed. A TASKID must consist of alphanumeric
characters with the first character alphabetic. If the call is directed at the calling task (function code D field) then it is
termed a self-directed call and the TASKID field is not required. A function may be directed at the calling task by
specifying “other task’ in the function code (see function code D field) and the calling task’s name in the TASKID field.
The function code specifies the functions to be performed on the specified task. Each bit in the function code specifies a
scparate function. The functions specified are performed in the order of designated bits from left to right. The definition
of the function code bit assignments is given in Table 4-6.

TABLE 4-6. SVC 6 FUNCTION CODES

0000000000117 1T1111111222222222233
01234567890123456789012345678901
[OTET [CT TAIST WIoP] [T [FU] TR\ __TAT]
FUNCTION CODE FULLWORD
BIT(S) NAME HEX MASK MEANING
01 D Direction: 00,01 = illegal codes
8000 0000 10 = other task
C000 0000 11 = self
2-3 E 0000 0000 End Task: 00 = no function requested
1000 0000 01 = cancel
2000 0000 10 = delete
3000 0000 11 = delete
4-5 Reserved
6 L 0200 0000 Load Task
7 Reserved
8 H 0080 0000 Task resident
9 S 0040 0000 Suspend execution
10 Reserved
11 M 0010 0000 Send message
12 Q 0008 0000 Add parameter to specified task’s Task Queue
13 P 0004 0000 Change Priority of specified task
14-15 Reserved
16 (6] 0000 8000 Connect specified device to specified task
17 T 0000 4000 Thaw: enable interrupts on specified device
18 | 0000 2000 SINT: Simulate interrupt on specified device
19 F 0000 1000 Freeze: disable interrupts on specified device
20 U 0000 0800 Unconnect: disconnect specified device from specified task.
21-23 Reserved
24 R 0000 0080 Release suspended task
25 N 0000 0040 Task non-resident
26-28 Reserved
29-30 A 0000 0000 Start Task: 00 = no function requested
0000 0002 01 = start immediately
0000 0004 10 = delay start
0000 0006 11 = delay start
31 Reserved

4-22 29-390 RO5 11/76

Errors

if an error is detected in the performance of any requested function, an error status is returned and no further functions
are performed. Since the Error Status field indicates which function was being performed at the time of error, it is always
possible for the calling task to determine the functions that were performed and those that were not.

Error Codes are described in Table 4-7. The format of the Error Status halfword is as follows:

15

0 7.8
FOS.PTR. | ERROR CODE |

The position pointer points to the field in the Function Code fullword that was being processed at the time the error was
detected. This pointer takes the form of a bit pointer which may have values in the range (0:31).

Status Return

No matter what functions are specified or whether or not an error is detected, the Wait Status halfword and the current
priority from the specified task’s TCB are always returned in the TASK STATUS and RPRI fields at the time of the SVC 6
call. This allows the calling task to restore the specified task to its previous priority. If only a status return is desired, it is
permissible to set no bits in the function code (except for the Direction field). The entire SVC 6 call is then treated as a
null operation, but the status and priority are returned as usual.

TABLE 4-7. SVC 6 ERROR CODES

CODE

HEX (DEC) FUNCTION MEANING
0(0) Al No errors; all requested functions complete
11 Ail Syntax error in TASKID field. Does not apply to self-directed calls
2(2) lllegal function code
3(3) L Task already present
4(4) Ail But L No such task in foreground
5(5) P Invalid priority
6(6) L Task requires floating point facilities not supported by SYSGEN
7(7) A Specified task not dormant
A(10) A (delay) Invalid code in TT field
B(11) M Message not sent
C(12) Q No queue, full queue, or entries disabled
D(13) O, T, FU No such device in system k
E(14) o1 FU Device named is not a connectable device
F(15) (0] Device is busy, cannot connect
10(16) TAFU Device not connected to specified task
11(17) L Invalid or unassigned Load LU
19(25) 1 Device is not SINTable
41(65) L No partition with sufficient number of LUs
42 (68) (R RTL or TCOM not present
44(68) L Invalid format on Loader Information Block
49(73) L No vacant partition of correct size
80-FF L 1/0 error reading Load LU; error status is as
(128-255) returned by SVC 1

29-390 RO4 4/76 4-23

End Task Function (Function Code E field)

TASK ID and Function code are the required fields.

This function causes the specified task to terminate as though it had executed an SVC 3,255.

The Return Code of 255 indicatcs abnormal termination. If Delete is specified, the task is made non-resident and then
cancelled. This causes it to be removed from memory. If Cancel is specified, the task is removed from memory only if it is
a non-resident foreground task. If this call is self-directed, SVC 6 processing is terminated.

Load Task Function (Function Code L field)

TASKID, Function Code and Load LU are the required fields.

The specified task is loaded from the Load LU. If a task is already present in the system with the given TASKID or the
TASKID is invalid, the call is rejected. A self-directed load request is also rejected.

The specified LU must be assigned and positioned to the Loader Information Block (LIB). A foreground partition is then
found which is vacant, large enough, and has sufficient Logical Units to accommodate the task to be loaded. If there is no
such partition, the call is rejected. Upon loading the task, it is given the name found in the TASKID field. This call may not
be used to load a task into the background partition; tasks may be loaded into the background partition only by the
console operator.

On return from this call, the specified file or device is positioned after the loaded task. If the same task is to be loaded into
more than one partition, the logical unit must be rewound prior to each subsequent load.

Task Resident (Function Code H field)

TASKID and Function Code are the required fields.
This function sets the called task memory resident.
Suspend (Function Code S field)

TASKID and Function Code are the required fields.

This function causes the called task to enter a Wait state. The task does not continue to execute until it is released by an
SVC 6 Release call. A task may suspend itself. In that case, another task must be available to release it subsequently.

Send Message (Function Code M field)
TASKID and Function Code are the required fields.
This function provides the calling task with the capability of sending a message to the called task. This message can be up
to 64 bytes in length. In the parameter block, the A(Message) field points to a 64 byte message buffer. The message is
transmitted to the called task in binary image. No formatting of the message text is performed, although the system puts a
header on the message, which consists of the 8-byte TASKID of the task that sent the message. The called task must be set
up to receive messages. Refer to the section further in this chapter entitled, “Message Rings and Message Buffer Structures”
for more information.
Queue Parameter Function (Function Code Q field)
TASKID, Function Code and Parameter are the required fields.
The parameter specified in the PARAMETER field of the parameter block is added to the specified task’s Task Queue, if:
— the specified task has a Task Queue;
— that queue is not full; and
— the specified task’s TSW enables additions to the queue. Otherwise, the call is rejected with appropriate
error status.
Change Priority Function (Function Code P field)
TASKID, Function Code and Priority are the required fields.

This function changes the priority of the specified task to that specified in the PRIORITY field of the parameter block and
sets RPRI to the old priority of the task. The call is rejected if the priority specified is outside the valid range of 10-249.

If the specified priority is greater than the established maximum priority of the specified task, the established maximum
priority is used instead of the specified priority. This is not considered an error.

4-24 29-390 R04 4/76

Trap-Generating Device Functions

The functions Connect, Thaw, SINT, Freeze and Unconnect are provided for the control of Trap-Generating Device
(TGD). These functions all use the DEVICE MNEMONIC field of the parameter block. This field must contain the
mnemonic of a TGD. For all functions except Connect, a test is made to make sure that the specified TGD is connected to
the specified task.

A TGD may not be connected to more than one task at a time; however, a task may have any number of TGDs connected
to it. The parameter that the TGD places in the Task Queue can be used to differentiate between multiple TGDs connected
to a task.

Connect (Function Code O field)

TASKID, Function Code, Device Mnemonic and Parameter are the required fields.

This function connects the TGD specified by DEVICE MNEMONIC to the specified task. The named device must be a
TGD; it must not be connected to any other task, or already connected to the same task. The parameter specified by
PARAMETER becomes associated with the TGD; this parameter is placed in the specified task’s Task Queue when an
interrupt occurs. Interrupts are not enabled by this call; a Thaw call must be used to enable interrupts.

Thaw (Function Code T field)

TASKID, Function Code and Device Mnemonic are the required fields.

This function enables interrupts on the named TGD. The TGD is first checked to make sure that it is connected to the
specified task. Once enabled, interrupts on this device may be disabled only by a Freeze or Unconnect call, or by the task
going to EOT. This call has no effect if interrupts are already “Thawed”.

SINT (Function Code I field)

TASKID, Function Code and Device Mnemonic are the required fields.

This function simulates an interrupt on the named device. The device must be connected to the specified task and it must
be a SINTable TGD. (Not all TGD drivers are capable of accepting a SINT call; see the OS/32 Series General Purpose Driver
Manual, Publication Number 29-384.) If device interrupts have not been enabled by means of a Thaw call, the SINT call is
ignored. This condition is not treated as an error.

Freeze (Function Code F field)

TASKID, Function Code and Device mnemonic are the required fields.

This function disables interrupts on the named TGD. It does not disconnect the device from the task. Note that interrupts
are not queued while the TGD driver is in a “frozen” state. This call has no effect if interrupts are already “frozen”.

Unconnect (Function Code U field)
TASKID, Function Code and Device Mnemonic are the required fields.

This function detaches the named TGD from the specified task. If the device is in a ““Thawed” state, its interrupts are
disabled. The device is now free to be Connected to any other task.

Release (Function Code R field)
TASKID and Function Code are the required fields.

This function takes an SVC 6 suspended task out of its Wait state. The task continues to execute as before it was
suspended, provided it is not in any other Wait state.

Task Non-Resident (Function Code N field)

TASKID, and Function Code are the required fields.

This function sets the called task non-resident.

Start Task (Function Code A field)

TASKID, Function Code and Start Address are the required fields.

TT and Delay Time may optionally be specified.

29-390 R04 4/76 425

This call starts the named task. If the Start Address field is non-zero, it indicates the address at which the task is to be
started. If this field contains zero, the task is started at its established transfer address. If this field contains an address
which is not within the specified task’s memory, no error is detected by SVC 6. However, the specified task aborts as soon
as it starts.

This call is rejected if the specified task is not in a dormant or Console Wait state. No implied-load facility is provided by
this call; therefore. the specified task must be present in memory at the time of the call. It is permissible, of course, to
specify both Load and Start functions in the same call, since the Start field is not processed until after the Load field
processing is complete.

If delay-start is selected, the TT and DELAY TIME fields of the parameter block are used to determine the length and type
of the delay. The specified task is actually started, but is placed immediately in a Time Wait or Interval Wait state. The
UDL of the specified task is used to construct the appropriate Wait call; thus, this function should not be directed at a task
which does not use the UDL in the defined manner. Bytes 192-255 of the UDL are used.

This call is rejected if it is self-directed.
Message Rings and Message Buffer Structures

To receive messages sent by other tasks, using SVC 6 Function Code M, the called task must be set up to receive messages.
This means that the called task must have in the A(Message Ring) field of its UDL the address of the first of a chain or ring
of message buffers. Each buffer must be 76 bytes long. Each buffer must start on a fullword boundary. The first 4 bytes of
each buffer contain a link address that points to the next buffer in the chain or ring, or contain zero. The next eight bytes
are used for the TASKID of the sending task; this is stored by the system. The remaining 64 bytes are used for data. The
most significant bit (bit 0) of the ““ link address” field must be set up initially to zero.

The called task must also be able to have message parameters added to its Task Queue. This means that bit 19, Enable
Queue Entry on Task Message, of its current TSW must be set. See Table 3-1 for TSW contents.

When a message is sent, the appropriate TSW bit is examined. If it is set, the task has a Task Queue, the A(Message Ring)
field in the called task’s UDL is examined. If this field contains zero or an illegal address, the request is rejected. If this
address is valid and non-zero, it is taken to be the address of a fresh buffer.

The link field of the buffer is examined next. If its most significant bit (Bit 0) is set to 1, the system infers that the buffer
is full of unprocessed data and the request is rejected. If this bit is set to zero, the system moves the message from the
calling task into this buffer, appending the caller’s TASKID as a header. Bit zero of the link field is then set to 1, indicating
a full buffer. The address of the buffer, with a reason code of 6 is added to the called task’s Task Queue. The contents of
the link field (with bit zero still set to zero) are placed in the user’s A(Message Ring) field in the UDL. Thus, the next Send
Message call goes directly to the next buffer, without having to examine any previous buffers in the chain.

The called task, upon receiving the message, takes a trap if the Task Queue Service Trap Enable bit in the TSW is set.
If the system cannot perform the Send Message function, an error code of 11 is given.

Message Buffer Structures

The mechanism for message passing permits the task receiving messages a choice of message buffer structures. Figure 4-3
shows four possible structures that may be used.

Figure 4-3 (a) shows a single-buffer ring. When the buffer is empty, its link field (pointing to itself) is positive. When a
message is received by the called task, bit O of its link field is set to | by the send message routine. All further messages are
inhibited until the receiving task sets bit 0 of the link field to zero again.

Figure 4-3 (b) shows a single-buffer chain. When a message is received, the buffer’s link field is set to Y'80000000' (i.e., bit
0 is set to a 1) and the contents of A(MESSAGE RING) in the UDL are set to zero (i.e., previous contents of the buffer’s
link field). In order to receive further messages, the receiving program must set AIMESSAGE RING) to point to an empty
buffer in which bit O of the link field is set to zero.

A multiple-buffer ring is illustrated in Figure 4-3 (c). Initially, all link fields are set positive. When buffer 1 is filled,
A(MESSAGE RING) is set to point to buffer 2. When buffer 2 is filled, A(MESSAGE RING) is set to point to buffer 1. If,
by the time the next message is ready to be sent, buffer 1 has been processed by the receiving task and the receiving task
has set buffer 1 link field positive, the message is placed in buffer 1. As long as the receiving task can process buffers as fast
as they are being filled, no messages are lost and no ‘“‘send message” requests are rejected. A multiple-buffer ring may
consist of as many buffers as the user task desires. The link field of each buffer is set to point to the next buffer; that of
the last buffer is set to point to the first.

A multiple-buffer chain is shown in Figure 4-3 (d). This structure is similar to that of the multiple-buffer ring, with the
exception that the link field of the last buffer is set to zero. When the last buffer is filled by the system, A(MESSAGE
RING) is set to zero, inhibiting the sending of further messages. This structure is of value if the receiving task is
dynamically acquiring buffers from a pool within itself. Processed buffers are released from the chain and new buffers
added to its end. If new buffers can be acquired as fast as the system fills them, no messages are lost.

4-26 29-390 RO5 11/76

A (MESSAGE RING) Qj)

BUFFER A(BUFFER)

DATA AREA

(a) Single-Buffer Ring

A(MESSAGE RING) A(BUFFER)

BUFFER 0

DATA AREA

(b) Single-Buffer Chain

A(MESSAGE RING) (’ A(BUFFER 1)
BUFFER 1 A{(BUFFER 2} BUFFER 2 A(BUFFER 1)

QA AREA DATA AREA

(c) Multiple-Buffer Ring

A(MESSAGE RING) A(BUFFER 1)
BUFFER 1 ABUFFER2) | BUFFERZ = 0

DATA AREA DATA AREA

{d} Multiple-Buffer Chain

Figure 4-3 Message Buffer Structures

SVC 7 - FILE HANDLING SERVICES
This call gives the user facilities for manipulation of files and devices. The following facilities are provided:

— Aliocation (creation) of direct-access fiies;

— Assignment of files and devices to Logical Units (LUs);
— Modification of access privileges on existing assignments;
— Renaming of files;

— Modification of file protection keys;

— Closing (deassignment) of assigned files and devices;

— Deletion of direct-access files;

— Checkpointing of assigned files;

— Examination of attributes of assigned files and devices.

29-390 R04 4/76 4-27

SVC 7 also provides the following facilities for use with the INTERDATA Telecommunications Access Method (ITAM):

— Allocation and delection of Line Control Blocks (LCBs) for buffered Terminal Manager Access via SVC 1
— Assignment and closing of Logical Units for Line Drivers (via SVC 15) and Terminal Manager (via SVC 1)
access

— Renaming and Reprotecting ITAM lines (SVC 15 access devices), and Terminals (SVC 1 access devices)

The SVC 7 Parameter Block must be on a fullword boundary in a writable segment. Its format is shown in Figure 4-4.

0(00) 101 2(02) 3(03)
COMMAND MODI!FIER STATUS LU
4(04) 5(05) 6(06)
WKEY RKEY RECORD LENGTH
8(08) '
VOLUME NAME
1 L 1
12(0C) ! K ’
| FILE NAME -
: |
20(14) 23(17)
EXTENSION RESERVED
24(18) ' '
SIZE
1 ! |

Figure 4-4. SVC 7 Parameter Block

Although not all fields of this parameter block are required for each function of SVC 7, the 28 bytes required for the full
parameter block must be reserved. The meaning and use of each field is explained in the description of each function
requiring that field. The parameter block may be coded as follows:

ALIGN 4
PARBLK DB CMD COMMAND (1 BYTE)
DB MOD MODIFIER (1 BYTE)
DS 1 STATUS (1 BYTE)
DB LU LU (1 BYTE)
DB WKEY WRITE KEY (1 BYTE)
DB RKEY READ KEY (1 BYTE)
DC H'LRECL RECORD LENGTH (2 BYTES)
DC C'VOLN' VOLUME (4 BYTES)
DC C'FILENAME' FILE NAME (8 BYTES)
DC C'EXT' EXTENSION (3 BYTES — followed by 1 reserved byte)
DC F'SIZE' SIZE (4 BYTES)

SVC 7 — Parameter Block Fields

COMMAND/MODIFIER

The format of the Command/Modifier halfword is shown in Figure 4-5.

0 1 2 3 4 5 6 7 8 10 11 12 13 15
A 0 H N P c D T AP 8M FT
[|= COMMANDS Jr MODIFIERS
A (BITO) ALLOCATE; REQUIRES FILE TYPE (FT) FIELD AS MODIFIER.
O (BIT 1) ASSIGN;REQU!RES ACCESS PRIVILEGE (AP) AND BUFFER MANAGEMENT (BM)
FIELDS AS MODIFIERS.
H (BIT2) CHANGE ACCESS PRIVILEGES; REQUIRES AP FIELD AS MODIFIER.
N (BIT3) RENAME.
P (BIT4) REPROTECT.
C (BIT5) CLOSE.
D (BIT6) DELETE.
T (BIT7) CHECKPOINT.

ALL BITS ZERO = FETCH ATTRIBUTES

4-28

Figure 4-5. SVC 7 Command/Modifier Halfword

29-390 RO4 4/76

If more than one command bit is set, the SVC 7 functions are sequentially processed from left to right.
The modifiers are bits 8-15; they are defined as follows.
Bits 8-10 specify Access Privileges, encoded as follows:

000 = SRO Sharable Read Only

001 = ERO Exclusive Read Only

010 =SWO Sharable Write Only

011 =EWO Exclusive Write Only

100 = SRW Sharable Read-Write

101 = SREW Sharable Read, Exclusive Write
110 = ERSW Exclusive Read, Sharable Write
111 = ERW Exclsuive Read-Write

For SVC 7 calls to direct access files, Bits 11-12 specify Buffer Management, encoded as follows:
00 = Default buffer management method
01 = Unbuffered Physical
10 = Buffered, Logical

The default buffer management method is unbuffered physical for Contiguous files and buffered logical for Chained and
Indexed files. Current implementations ignore this field and the default is always used.

For SVC 7 calls to ITAM devices, Bits 11-12 specify Access Method, encoded as follows:

00 = Terminal Level (SVC 1) Access
11 = Line Level (SVC 15) Access

Bits 13-15 specify File Type, encoded as follows:
000 - Contiguous

001 = Chained
010 = Indexed

100
- Reserved, considered illegal

110

111 = ITAM Buffered Terminal Manager
On a Fetch Attributes call, the Modifier field is not used. Instead, the Device Code is returned in this field.
Error Status
The interpretation of the status byte depends upon the command specified in the call and is defined under the description
of each command. A status of zero always means the desired options were performed without error. A summary of all

possible error codes is given in Table 4-8 for reference.

The first error detected causes the SVC to return. If multiple functions were specified (e.g., Allocate and Assign) some
functions may have been properly performed (always in left-to-right sequence).

LU

This byte defines the Logical Unit used for all the SVC 7 functions except Allocate and Del-te.

Write Key and Read Key

Protection keys for direct-access files and devices are specified in this halfword. These keys are required for the Allocate,
Assign, Reprotect and Delete functions. This field is used by the Fetch Attributes call to return the device or file
attributes.

Record Length

This halfword field, on an Allocate file call, must contain the logical record length for a buffered file. For an allocate Line
Control Block call, this field must contain the logical record length in bytes to be associated with the logical Terminal.

On a Fetch Attributes call, the logical length of a file or physical record length of a device is returned in this field.
RECORD LENGTH is not used for other functions.

29-390 R04 4/76 4-29

TABLE 4-8. SVC 7 RETURN CODES

o conss
00 NO ERROR
01 ILLEGAL FUNCTION
02 LU ERROR
03 VOLUME ERROR
04 NAME ERROR
05 SIZE ERROR
06 PROTECT ERROR
07 PRIVILEGE ERROR
08 BUFFER ERROR
09 ASSIGNMENT ERROR
0A TYPE ERROR
0B FILE DESCRIPTOR ERROR
oc TGD ASSIGNMENT ERROR
80-FF 1/0 ERROR

Volume Name (VOLN) or Device Mnemonic*

This four-byte ASCII field identifies the volume for direct-access devices, or the device mnemonic for non-direct-access
devices. This field is required for the Allocate, Assign, Delete, and Fetch Attributes functions.

VOLN together with FILENAME and EXT fields identify a File Descriptor. The volume name or device name, as the case
may be, is returned by the system on a Fetch Attributes call in the VOLN field.

Filename*

This eight-byte ASCII field identifies the file on a direct-access device; it is not required for a non-direct-access device. The
user must specify the filename for Allocate, Assign, Rename and Delete calls. The filename is returned by the system on a
Fetch Attributes call; it is blank for a non-direct-access device.

This field must also be used to allocate or assign a buffered logical terminal (LCB)

Extension*

This three-byte ASCII field identifies the file type (e.g., OBJ, TSK, CSS, etc.), on a direct access device. It is treated as an
extension of the FILENAME, and is required under the same conditions. The byte following this field is reserved for future
expansion and is ignored.

Size

The Size field is defined for the allocate call depending on the type of file being allocated. For a Contiguous file, the Size
field must be a fullword containing the file size in sectors. For a Chained file, the Size field must be a fullword containing
the physical block size in sectors. For an Indexed file, the Size field is divided into two halfword fields; the first halfword
field contains the index block size in sectors, the second halfword contains the data block size in sectors. For ITAM
Buffered Terminal Managers, this field contains the physical block size in bytes. On a Fetch Attributes call, this field is
used to return the current size of a direct access file; SIZE is not used for a non-direct-access device.

*For full description of the syntax of the VOLN, FILENAME and EXTENSION fields, see section entitled ‘“File
Identification™.

4-30 29-390 RO4 4/76

Note that the full parameter block should be specified for the Fetch Attributes call or the system may overwrite other
information. The SVC 7 Parameter Block SIZE field for Indexed files is as follows:

Allocate

24(18)

INDEX BLOCK SIZE DATA BLOCK SIZE

! 26(1A) !

i il

NOTE

If the Index Block size field is specified as zero, the File Manager
allocates index blocks of size one sector.

The Allocate function reserves space on a direct-access device and in the directory for the specified file type (FT). In the
case of Chained and Indexed files, only a directory entry is reserved. The protect keys are entered in the directory. The
required parameters are FT, KEYS, LRECL, VOLN. FILENAME, EXT and SIZE. This call is also used to allocate an ITAM
Line Control Block for a Buffered Terminal Manager.

Applicable error codes are:

1(01)
3(03)
4(04)
5(05)

7(07)
10(0A)
11(0B)
128-255
(80-FF)

Assign

Illegal Function; an illegal file type as specified

Volume Error; the specified volume was not mounted

Name Error; the specified file name already exists on the specified volume
Size Error; there is not sufficient space on the specified volume to allocate
a file of the specified size

Privilege Error;entire disc currently assigned Exclusive Read/Write

Type Error; the specified volume is not a direct-access device

File Descriptor Error

1/O Error (as returned by SVC1 defined in Table 44)

The Assign function establishes a logical connection between a file (or device) and the task through a specified Logical
Unit, under a given access privilege (AP) and using a given Buffer Management (BM) technique. The call proceeds as
follows: first the access privilege is examined to determine which protect key to check. The proper key is then checked
against the keys in the file directory. The BM field is checked to see if the required Buffer Management technique is valid
for the type of file being assigned. The file is then assigned according to the requested access privileges. If SWO or WEO
(Write only) is specified, the file is positioned at its logical end (records are appended). Otherwise, the file is positioned at
the beginning (record number =

devices.

zero). Only the keys are checked, for the given access privilege, for non-direct-access

The Assign function is also used to establish a logical connection between an ITAM line or terminal and the task through a
Logical Unit. This logical assignment can be used for I/O operations via SVC 1 and SVC 15.

The required parameters are AP, BM, LU, KEYS, VOLN, FILENAME and EXT: BM, FILENAME and EXT fields are not

used for non-direct-access devices.

Applicable error codes are:

1(01)
2(02)
3(03)
4(04)
5(05)
6(06)
7(07)

8(08)
9(09)
11(OB)

12¢0CY

[PAR VL 0y

29-390 ROS

11/76

Illegal function; invalid BM field

LU Error; Illegal LU

Volume Error; no such volume

Name Error; no such name on given volume

Size Error; no room on disc for data or index block
Protect Error; mismatch on protection keys

Privilege Error; requested privilege may not be granted for file, or
entire disc is currently assigned Exclusive Read/Write
Buffer Error; no room for FCB or buffer

Assignment Error; LU already assigned or off-line
File Descriptor Error

A tt,

amnt tn acgion 2 Tran canar
4alCITIP e WO aSS5Ign a aTdp gONncr

128-255(80-FF) 1/O Error — Interpreted as SVC

atina Navica
aullg LOVILT

rror codes defined in Table 4-4

NOTE

A Chained file or ITAM Buffered Terminal Manager requires two
single buffers to be allocated in memory, each equal to the
physical block size. An Indexed file requires two data buffers,
each equal to the data block size, and one index buffer, equal to
the index block size.

Change Access Privileges

This function allows the user to change the current access privileges of a file or device which is assigned. Only two
parameter entries in the SVC 7 Parameter Block are required. the LU and AP portions of the modifier field.

The requested new access privilege cannot, however, change the I/O mode which was established when the file was

originally assigned. For example. if the file was assigned for ERO, no access privilege requiring write access is allowed.
Table 4-9 shows all valid access privilege changes.

TABLE 9. VALID ACCESS PRIVILEGE CHANGES

CHANGE
TO SRO | ERO | SWO EWO | SRW | SREW | ERSW | ERW
CHANGE
FROM
SRO Y Y N N N N N N
ERO Y Y N N N N N N
SWO N N Y Y N N N N
EWO N N Y Y N N N N
SRW Y Y Y Y Y Y Y Y
SREW Y Y Y Y Y Y Y Y
ERSW Y Y Y Y Y Y Y Y
ERW Y Y Y Y Y Y Y Y
Y = VALID REQUEST N = INVALID REQUEST

If an error is encountered while processing this request, the file remains assigned with its original access privilege. The only
legal Access privileges for SVC 15 assignment are those specifying both read and write access.

Applicable error codes are:

2(02) LU Error;illegal LU

7(07) Privilege Error; new privileges cannot be granted
9(09) Assignment Error; LU not assigned

(182(%}315:)5 1/0O Error (as returned by SVC 1)

Rename

This function changes the name of an assigned file. The file must currently be assigned for ERW. The required parameters
are LU, FILENAME and EXT. The given LU must be assigned to a direct-access file (unless the caller is an Executive Task
which may rename non-direct access devices). The volume name field of the parameter block is ignored. The specified
FILENAME.EXT replaces the previous FILENAME.EXT in the directory if the Rename function is successful.

Applicable error codes are:

2(02) LU Error; illegal LU

4(04) Name Error; new name already exists on given volume
7(07) Privilege Error; file not assigned for ERW

9(09) Assignment Error; LU not assigned

10(0A) Type Error; LU for non-direct access device

11(0B) File Descriptor Error

128-255 1/O Error (as returned by SVC 1)

(80-FF)

4-32 29-390 R0O4 4/76

Reprotect

This function changes the protection keys of an assigned file. The required parameters are KEYS and LU. The given LU
must be assigned to a direct-access file, which must currently be assigned for ERW (unless the caller is an Executive task
which may modify the protection keys of non-direct-access devices). If either the specified Read Key or Write key is equal
to X'FF', that k?y is ignored (unless the caller is an Executive task). If the call is rejected, the previous keys remain
unchanged. S

Applicable error codes are:

2(02) LU Error;illegal LU

7(07) Privilege Error; not assigned for ERW
9(09) Assignment Error; LU not assigned

10(0A) Type Error; LU for non-direct-access device
128-255 1/O Error (as returned by SVC 1)

(80-FF)

Close
This function discontinues an assigned logical cennection between a task and a file or device. LU is the only required

parameter. The specified LU is de-assigned. Logical Units assigned for Write access to files or buffered Terminals (SVC 1)
have any partially filled buffers written to the file by the CLOSE call.

Applicable error codes are:

2(02) LU Error

9(09) Assignment Error; LU Not Assigned
128-255

(80-FF) 1/0 Error (as returned by SVC 1)

Delete

For a Delete function, the VOLN, FILENAME, EXT, and KEYS parameters must specify a direct-access file or ITAM Line
Control Block which is not currently assigned. If these conditions are met and both Read and Write keys match, the file is
deleted from the directory of its volume. The sectors previousty occupied by the file on the disc are marked as available in
the Allocate Map.

Applicable error codes are:

3(03) Volume Error, no such volume

4(04) Name Error; file name does not exist on volume

6(06) Protect Error;invalid protection keys

7(07) Privilege Error; file not closed, or entire disc currently
assigned Exclusive Read/Write

10(0A) Type Error; non-direct-access device

11(0B) File Descriptor Error

128-255

(80-FF) 1/O Error (as returned by SVC 1)

Checkpoint

The Checkpoint function flushes system Buffer Management buffers and updates the directory entry for a Chained or
Indexed file or ITAM Buffered Terminal Manager on a given LU. LU is the only required parameter. Requesting a
checkpoint for a Contiguous file or for a non-direct-access device has the same effect as an SVC 1 Wait-only call.

The applicable error codes are:

2(02) LU Error
9(09) Assignment Error; LU Not assigned
128-255

(80-FF) /O Error (as returned by SVC 1)
NOTE

The user may wish to employ Checkpointing after sensitive data is
added to a buffered file. Logical blocking of data in memory in
system buffers leaves the file vulnerable. The integrity of the data
can be preserved on the direct-access device by Checkpointing. In
case of system failure, all data on Chained and Indexed files up to
the latest Close or Checkpoint operation is recoverable; data
appended after the most recent Checkpoint is lost. Checkpoint
differs from a Close/Assign sequence in that no repositioning is
performed. File name, access privileges, and keys need not be
specified.

29-390 RO4 4/76 4-33

Fetch Attributes

Certain programs may require, for proper operation, knowledge of the physical attributes of the device or file associated
with a given LU. For example, it might be desirable to know if random access is possible or if the device is rewindable. The
Fetch Attributes function gives the user access to this information.

The applicable error codes are:

2(02) LU Error; illegal LU
9(09) Assignment Error; LU Not Assigned

Various fields within the SVC 7 parameter block are redefined for this call. When the command field is set to zero,
indicating a Fetch Attributes call, the only required parameter is the Logical Unit. The system returns information in fields
KEYS, RECORD, VOLUME NAME, FILENAME, EXT, SIZE and MOD.

The Write Key/Read Key halfword is redefined to receive an Attributes halfword as given in Table 4-10. Any bit set means

the device or file supports the corresponding attribute.

TABLE 4-10. SVC 7 DEVICE ATTRIBUTES HALFWORD

BIT ATTRIBUTES

0 Interactive Device

1 Supports Read

2 Supports Write

3 Supports Binary

4 Supports Wait |/O

5 Supports Random

6 Supports Unconditional Proceed
7 Supports Image

8 Supports Halt 1/0

9 Supports Rewind

10 Supports Backspace Record
1" Supports Forward Space Record
12 Supports Write Filemark
13 Supports Forward Space Filemark
14 Supports Backspace Filemark
15 Reserved

The RECORD LENGTH field is set by the system to the physical record length associated with the device (e.g., 80 for a
Card Reader, 120 or 132 for a Line Printer) if the record length is fixed; these two bytes are set to zero for a variable
record length device (e.g., Magnetic Tape). The TTY and CRT, which are strictly variable record length devices, normally
have RECORD LENGTH set as though they were fixed-record length devices. This is because such a device is normally
used in a fixed-record length method. A Contiguous direct-access file is considered to have a variable record length; a
Chained or Indexed file is considered to have a fixed record length, which is the logical record length chosen for that file
at the time of its allocation.

The Volume name, File name, and Extension (VOLN:FILENAME.EXT) for a named file, or the device mnemonic for a
non-direct access device is returned in the File Descriptor portion of the parameter block.

The current size of a direct-access file is returned in the SIZE field; SIZE is unchanged for non-direct-access devices. The
number of logical records is returned for a Chained or Indexed file; the number of sectors is returned for a Contiguous file.
These sizes are returned as unsigned hexadecimal numbers.

The MODIFIER byte is set to indicate the file or device type. Table 4-11 contains the codes for all supported devices.
Refer to the 0S/32 Series General Purpose Driver Manual, Publication Number 29-384 for additional information.

4-34 29-390 RO5 11/76

TABLE 4-11. DEVICE CODES

CODE (DECIMAL)

" FILE OR DEVICE TYPE

16
17
18
21
22
32

36
37
38
48
49
50
51
52
53

64
65
66
80
81
82
83
96
97
112
114
128
129
136
137

CONTIGUOUS FILE

CHAINED FILE

INDEXED FILE

MODEL 33 TTY KEYBOARD/PRINTER
MODEL 35 TTY KEYBOARD/PRINTER
NONEDITING CRT ON TTY INTERFACE
INTERDATA CAROUSEL 30, 35 (80 COLUMNS)
INTERDATA CAROUSEL 30, 35 (132 COLUMNS)
MODEL 33 TTY, PALS OR PASLA
NONEDITING CRT ON LOCAL PASLA
GRAPHIC DISPLAY TERMINAL ON PASLA
CAROUSEL 300

CAROUSEL 300, ELECTRONIC

2.5MB DISC, FIXED PLATTER

2.5MB DISC, REMOVABLE PLATTER

5MB DISC, FIXED PLATTER

5MB DISC, REMOVABLE PLATTER

40MB DISC

67MB DISC

256MB DISC

800 BPI MAGNETIC TAPE

1600 BPI MAGNETIC TAPE

INTERTAPE CASSETTE

HIGH SPEED PAPER TAPE READER/PUNCH
MODEL 33 TTY READER/PUNCH

MODEL 35 TTY READER/PUNCH
CAROUSEL 35, PAPER TAPE READER

CARD READER WITHOUT HOLLERITH/ASCII TRANSLATION
CARD READER WITH HOLLERITH/ASCII TRANSLATION
LOW SPEED LINE PRINTER

HIGH SPEED LINE PRINTER

8 LINE INTERRRUPT MODULE

DIGITAL MULTIPLEXOR CONTROLLER

REAL TIME ANALOG SYSTEM

REAL TIME ANALOG SYSTEM (EXTERNAL CLOCK)

29-390 ROS 11/76

4-35

TABLE 4-11. DEVICE CODES (Continued)

CODE (DECIMAL) FILE OR DEVICE TYPE
138 MINI 1/0 ANALOG INPUT
139 MINI 1/0 ANALOG OUTPUT
140 MINI 1/0 DIGITAL INPUT/OUTPUT MODULE
144 ASYNCHRONOUS COMM. LINE (LINE DRIVER ONLY) (ITAM)
145 MODEL 33 TTY KEYBOARD/PRINTER (ITAM)
146 MODEL 35 TTY KEYBOARD/PRINTER (ITAM)
147 NON-EDITING CRT (ITAM)
148 GRAPHIC DISPLAY TERMINAL (ITAM)
149 CAROUSEL 300 (ITAM)
150 CAROUSEL 300 (ITAM) WiTH ELECTRONIC FORMAT CONTROL
160 BINARY SYNCHRONOUS COMM LINE (LINE DRIVER ONLY) (ITAM)
161 1BM 2780 REMOTE JOB ENTRY EMULATION
162 1BM 3780 REMOTE JOB ENTRY EMULATION
163 BISYNC PROCESSOR-TO-PROCESSOR LINK
168 BINARY SYNCHRONOUS COMMUNICATIONS LINE (LINE DRIVER ONLY) ON QSA (ITAM)
169 IBM 3780 RJE EMULATION ON QSA (ITAM)
170 IBM 2780 RJE EMULATION ON QSA (ITAM)
m BISYNC PROCESSOR-TO-PROCESSOR LINE ON QSA (ITAM)
255 NULL DEVICE

SVC 9 - LOAD TSW

This call is used to return from task-handled traps. It is also used to change trap enable/disable bits, to change queue entry
enable/disable bits, and to enter Trap Wait. This is the user analogue of the machine-level LPSW instruction.

The format of this call is:

SVC 9, A(X2) Load TSW (RX1,RX2)
SVC 9, A(FX2,SX2) Load TSW (RX3)

The effective address of the SVC instruction specifies the location at which the new TSW is to be found in the task’s
address space.

The effect of this instruction is to replace the Current Task Status Word found in the task’s TCB with the indicated Task
Status Word. Unless Trap Wait is specified in the new TSW, the task resumes executing instructions at the address specified
by the LOC field of the new TSW.

If only the status of the current TSW is to be changed, a zero LOC field should be used. In this case, execution resumes at
the instruction following the SVC 9 call.

If an SVC 9 call loads a TSW enabling a task trap that is capable of occurring immediately (e.g., enabling Task Queue
Service Trap while the Task Queue is non-empty) a TSW swap occurs, storing the just loaded TSW in the UDL and loading
anew TSW from the UDL.

If the address specified within the SVC 9 call is outside the task’s program space, the task is paused with an illegal address
in SVC message.

An SVC 9 load of a TSW enabling Trap Wait places the task in Trap Wait, suspending execution until one of the traps
enabled in the same TSW occurs.

4-36 29-390 R0O4 4/76

Note that if a task is in Trap Wait with no task traps enabled, it waits indefinitely or until it is cancelled.
Table 4-12 gives a description of the Task Status Word.
NOTE
A Task Status Word has its value set in one of the following ways:
— An SVC 9 — LOAD TSW is executed
— The TSW option of TET is used when the task is established
— A resident task goes to end of task, in which case the TSW is zeroed.

— A Task Trap occurs and a TSW swap is made.
Merely storing into the UDL does not change the TSW.

TABLE 4-12. TASK STATUS WORD

000000O0OO0OOO1T1T1T1T111111222222222233
01234567890123456789012345¢678901
o|wlpials]a[m|T] o] [l lojz|F} | cc
4 (UNUSED) | LOC
Task Status Word (2 Fullwords)

BIT NAME MASK MEANING

0 W Y'80000000' Trap Wait: task is suspended until a trap occurs

1 P Y '40000000' Power Restoration Trap Enable: Trap is taken on restoration of power
following any power failure.

2 A Y '20000000' Arithmetic Fault Trap Enable: trap is taken upon arithmetic fault.

3 S Y'10000000" SVC 14 Trap Enable: allows SVC 14 service. If this bit is not set, SVC
14 is illegal.

4 Q Y'08000000' Task Queue Service Trap Enable: any item added to the Task Queue
when this bit is set causes a trap. Also, a trap is taken if a TSW having
this bit set is loaded and the Task Queue is not empty.

5 M Y'04000000' Memory Access Fault Trap Enable: trap is taken when task attempts to
address memory outside partition.

6 | Y‘02000000' lllegal Instruction Trap Enable: trap is taken when task issues illegal
instruction.

16 D Y'00008000' Enable Task Queue Entry on Device Interrupt.

17 T Y'00004000' Enable Task Queue Entry on Task Call: an SVC 6 Queue Parameter
request directed at this task is rejected unless this bit is set.

19 E Y'00001000' Enable Queue Entry on Task Message: a message from another task can
be received if this bit is set; address of message buffer is added to
queue.

21 [0} Y'00000400' Enable Queue Entry on !/O Completion: SVC 1 parameter block
address is added to queue upon completion of 1/0 Proceed.

22 7 Y'00000200' Enable Task Queue Entry on Time-out Completion: the parameter in
the SVC2 code 23 (time trap) parameter block is added to task queue
upon time-out completion.

23 F Y'00000100' Enable Queue Entry on SVC 15 Buffer Transfer Command Execution,

\ Termination, or Halt 1/0: SVC 15 is only supported by ITAM.

28-31 cc Y'0000000F " Current Condition Code, as in PSW.

29-390 R0O4 4/76

4-37

Bits 7-15, 18, 20 and 24-27 are reserved for future expansion. Bits 0-11 of the second word are unused. Bits 12-31 of the
second word contain the current LOC, as in the PSW.

Table 4-13 gives a description of the Task Queue Reason Codes.

TABLE 4-13. TASK QUEUE REASON CODES

CODE (BITS 0-7) MEANING OF CODE BITS 8-31
] Device Interrupt Parameter associated with device
1 SVC 6 Queue Parameter Parameter specified in call
6 Message Sent Address of Message Buffer
8 1/0 Proceed Complete Address of SVC 1 parameter block
9 Timer Termination Parameter specified in call
10 SVC 15 Buffer Address of SVC 15 parameter block
1 SVC 15 Command Address of SVC 15 parameter block
12 SVC 15 Termination Address of SVC 15 parameter block
13 SVC 15 Halt /O Address of SVC 15 parameter block
NOTE

Reason codes not given in Table 4-13 are reserved for implementa-
tion in future releases.

SVC 14 — USER SVC
SVC 14 gives the user task a means of accepting an SVC call from a part of itself, e.g., a subroutine or other module.
Its format is:

SvC 14, A(X2) or RX1,RX2 FORMATS
SvC 14, A(FX2,5X2) RX3 FORMAT

The address field of SVC 14 is not interpreted by OS/32, but may be defined by the user task. Normally, it might be used
to point to a parameter block.

If the User SVC Trap Enable bit in the task’s current TSW is enabled, SVC 14 is enabled. Otherwise, SVC 14 is considered
an illegal SVC.

When SVC 14 is executed, if enabled, OS/32 stores the effective program address of the SVC 14 second argument into the
SVC 14 Address Pointer location in the task’s User Dedicated Locations (UDL). A TSW swap then occurs, using the
SVC 14 TSW Swap area in the UDL. The interpretation of this SVC is then left to the user. The effective program address
is calculated as for RX1, RX2 or RX3 instructions — see 32-Bit Series Reference Manual, Publication Number 29-365 or
the Model 8/32 Processor User’s Manual, Publication Number 29428 for details. This facility permits the user to build a
virtual executive within a single task’s environment.

It should be noted that OS/32 AIDS (03-064), the OS/32 debugging utility, makes use of SVC 14, and consequently tasks
using this facility are not easily debugged through the use of 0S/32 AIDS.

SVYC 15 — ITAM DEVICE DEPENDENT I/0O

This call allows the user task to access ITAM devices at the Device Dependent Level. Refer to the ITAM/32 Reference
Manual for details.

4-38 29-390 RO5 11/76

CHAPTER 5
CONSOLE OPERATIONS

SYSTEM CONSOLE DEVICE

The 0S/32 MT system is controlled by the console operator through a device called the system console. This device may
be any that is Teletype-compatible such as CRT or Carousel. It has a special relationship to the system; the System Manager
task receives command input from the console and writes system messages to it. Tasks may log messages to the system con-
sole without reference to its device name.

The system console may be assigned to tasks for ordinary I/O purposes, just as any other device; however, all I/O requests
to this device are intercepted by the System Manager, which performs them on behalf of the calling task. If the system
console is an ASR TTY or Carousel 35, only its keyboard/printer unit may be used by calling tasks; the reader/punch unit
is reserved for the System Manager’s use.

Prompts

When the console operator is expected to enter data at the system console, a prompt is output. This prompt takes one of
the following forms:

* (command request)
TASKID> (data request)

The command request prompt(*) is output whenever the system is ready to accept another command.

The data-request prompt (TASKID>) is output whenever a task is attempting to perform a read I/O request from the
system console. The TASKID field of this prompt is the name of the task requesting data. For the background task, the
TASKID is *“.BG”.

The console operator should satisfy the data request as soon as practical, since system messages are held in abeyance until
the data request is satisfied.

BREAK Key

If a task is in the process of reading from or writing to the system console, the operator can interrupt this I/O in order to
enter a command by depressing the BREAK (or ESC. for some devices) Key of the console device. This forces the system
into Command mode for the entry of one command line. After the command line has been accepted, the user I/O to the
console is restarted. This process is transparent to the user task.

The BREAK Key may also be used by the operator to terminate further system responses to a command. This is

particularly useful in cases such as the EXAMINE and DISPLAY commands, where large quantities of data may be output
at the system console.

COMMAND SYNTAX

Commands are accepted one line at a time. A command may not be spread over two or more lines. Multiple commands
may appear on the same line, separated by semicolons (;). A command line is terminated by a carriage return.

Commands are composed of:

Mnemonics

Decimal numbers
Hexadecimal numbers
Task identifiers

File descriptors

If multiple commands are specified, they are executed sequentially. If an error is detected, all commands preceding the
error are executed and subsequent commands ignored.

29-390 R0O4 4/76 5-1

Mnemonics
Mnemonics are shown in this manual in upper-case letters. Mnemonics may be abbreviated. This abbreviation may consist
of any number of characters from the “minimum abbreviation” to the full mnemonic. Minimum abbreviations are selected

to resolve ambiguities between mnemonics while remaining as short as possible. Minimum abbreviations are underlined in-
this manual, as follows:

REWIND

For example, given the above command:

REW
REWI
these are all legal forms of the command shown above
REWIN
REWIND
RE illegal, too short
REWA illegal, misspelled
REWINDZ illegal, too long

Optional Operands

Some commands have optional operands. These are annotated with brackets surrounding the entire optional part of the
command, as follows:

COMMAND aaaa, [bbbb] [cccc]

In this example, the operand aaaa is not optional, while the operands bbbb and cccc are optional. Note that the comma
preceding operand cccc is also optional, but that the comma preceding operand bbbb is required.

ORDER XXXX [,yyyy [,zzzz]:l

In this example, operand zzzz must not be entered without operand yyyy. This is shown by the nested brackets. Legal
forms of this command are:

OR XXXX
OR XXXX,YYYY
OR XXXX,YYVY.Z22Z

Whereas in the previous example, legal forms are:

COM aaaa,

COM aaaa,bbbb
COM aaaa,bbbb,cccc
COM aaaa,,cccc

General Syntactic Rules
Multiple commands may appear on a line, separated by semi-colons (;).

Certain commands must appear last on a line, or must be the only command on the line. These special commands are
discussed in the sections dealing with the individual commands.

If the first character of any command is an asterisk (*), the remainder of that entire line is considered to be a comment and
is not executed, although it is copied to the system log device if logging is active.

5-2 29-390 RO4 4/76

Decimal and Hexadecimal Numbers

The OS/32 MT command structure uses decimal rather than hexadecimal operands for almost every purpose. The only
major exception of this rule is in the case of addresses, which are invariably expressed in hexadecimal.

Most numeric operands are of integer format and do not tolerate the presence of decimal points. The only exception to
this rule is in the SET PARTITION command.

Leading zeros may be omitted in numerical operands, whether decimal or hexadecimal.

Task Identifiers

Task identifiers must consist of from one to eight characters; the first character must be alphabetic and those remaining
must be alphanumeric.

Thus:
TASK3
FRED
these are all valid task identifiers
X
T997XY25
34TASK invalid, first character not alphabetic
T43.2 invalid, non-alphanumeric character
TASK12345 invalid, more than eight characters

The background task has a special identifier, “.BG}’».’

File Descriptors

File descriptors (generally abbreviated fd in this manual) are composed of three fields:

voln: filename.ext

Voln is the name of the volume on which the file resides or the device mnemonic of a device. It may be from one to four
characters, the first character being alphabetic and the remainder alphanumeric.

Filename is the name of the file. It may be from one to eight characters, the first being alphabetic and the remainder
alphanumeric.

Ext is the filename extension field. It may be from zero to three characters, which must be alphanumeric.

Voln need not be specified, the default being the system volume. If voln is not entered, the colon (:) separating voln and
filename should not be entered.

Ext need not be specified; the default is generally the blank extension, but some commands make use of a different default
value. If ext is not entered, the period (.) separating filename and ext should not be entered.

File descriptors may refer to devices as well as to direct-access files. In this case, the voln field is the four-character device
mnemonic; filename and ext, if entered, are ignored. The colon following voln must always be entered in this case.

Example of legal file descriptors are:

PACK:FRED.TSK

FRED.TSK the same file, if PACK is the system volume
FRED the same file, if TSK is the default extension
ABC:FOO default extension, specified volume

CARD: name of a device

29-390 RO4 4/76 5.3

ERROR RESPONSE

If a command input is not acceptable to the system or an error condition is detected while processing a command, an error
message is output to the system console device. The general format of the message is:

XXXX-ERR TYPE=YYYY POS=ZZZZ

XXXX is an error descriptor of up to four characters (such as MNEM, ALLO, IO, etc.). Error descriptors are defined in
Appendix 3, and are listed with each command description as appropriate.

ZZ77 represents the last command item processed by the System Manager. This field is most useful when multiple
commands are entered on one line. It is not always meaningful.

YYYY indicates the type of error encountered and is output only when an I/O, SVC 6 or file handler error is encountered.
The possible types of error are:

1/0: LU (Illegal or unassigned LU)
PRTY (Parity or recoverable error)
UNRV (Unrecoverable error)
EOF (End of File detected)
EOM (End of Medium detected)
DU (Device unavailable)
FUNC (Invalid function for specified device/file)
FILE: LU (Illegal LU)
VOL (No such volume/device)
SIZE (Erroneous record length/size)
NAME (Mismatched FILENAME.EXT)
PROT (Mismatched protection keys)
PRIV (Mismatched access privilege)
BUFF (Insufficient system space to obtain FCB)
ASGN (LU not assigned)
TYPE (Non-direct-access device or off-line)
FD (Illegal File Descriptor syntax)
FUNC (Invalid function)
SVC6: NLU (No partition vacant with sufficient LUs)
PRES (Specified TASKID already present in system)
LIB (Invalid data in Loader Information Block)
MEM (No partition of sufficient size vacant)
10 (I/O error detected on specified device or file)
NOFP (System does not support Floating Point)
SEG (RTL or TCOM not present when trying to load task using them)
NMSG (task has messages disabled)

If an 1/O error occurs during execution of a file management or SVC 6 function, the following error message is output:
XXXX-ERR TYPE=IO TYPE=YYYY POS=2ZZZ

where YYYY indicates one of the above I/O error types.

The error response to an unrecognized command is:
MNEM-ERR

All commands following an erroneous command on a command line are ignored.

The message:
SEQ-ERR

is output if the particular command cannot be accepted because of the state of the system (e.g., the SET PARTITION

Command is rejected if there are any active tasks). Such restrictions are discussed in the explanation of the particular
commands.

54 29-390 RO4 4/76

GENERAL SYSTEM COMMANDS

The following commands pertain to the system as a whole. As such, they have a global effect on the system or display
global system information:

Set Time

SET TIME

DISPLAY TIME
VOLUME

SET LOG

DISPLAY MAP
DISPLAY ITAMTERM
SET PARTITION

SET SLICE

The SET TIME command should be entered when the system is first loaded and after any power failure. It may be entered
at any other time that the system clock is incorrect. The day, month, and year are automatically updated by the system
(even during leap years). The format of this command is:

where:

SET TIME mm/dd/yy,hh:nn:ss

mm = month

dd = day

Yy = year

hh = hours (24-hour clock)
nn = minutes

ss = seconds

All operands are in decimal. Example:

SE T 2/24/75,3:5:00

Alternatively (by SYSGEN option) the date operand may be entered in the format: dd/mm/yy.

If a SET TIME command is entered while there are uncompleted time intervals (see SVC 2 code 23), the tasks which
initiated the incomplete intervals are affected in the following way:

1. Seconds from midnight. The data is updated; this has no effect on any time of day interval even if the
date entered differs from the previous date entered. The time difference is used to adjust all seconds

from midnight intervals.
2. Milliseconds from now. Elapsed time intervals are unaffected by a change in the time by a SET TIME.

For example, if the current date is 11/22/74 and the current time is 11:50 AM and there are three intervals
outstanding:

A. Time of day interval set to complete on 11/22/74 at 2:00 PM.
B. Time of day interval set to complete on 11/23/74 at 8:00 AM.
C. Elapsed time interval set to complete on 11/22/74 at 1:00 PM.

If a SET TIME 11/21/74, 10:50:00 is entered, the time intervals are as follows:
A. Time of day interval set to complete on 11/21/74 at 2:00 PM.

B. Time of day interval set to complete on 11/22/74 at 8:00 AM.
C. Elapsed time interval set to complete on 11/21/74 at 12 NOON.

Possible error responses to SET TIME are:

fQlach inatand Af anmm
o1ddii 1isiCau Ui CUIIIII

FORM-ERR Command syntax error;e.g., SET TIME 12/16/74/1:00:00
ta ima

(X
[*3

PARM-ERR Operand syntax error;e.g., SET TIME 68/74/18,1:00:00
(Invalid date specified)

NOPR-ERR Operand missing; e.g., SET TIME 1/1/74
(Time operand missing)

29-390 R04 4/76 5-5

Display Time

The DISPLAY TIME command causes the current date and time to be output to the system console or to a specified file or
device. Its format is:

DISPLAY TIME [fd]

The optional operand fd specifies the file or device to which the display is to be output;if omitted, the display is output to
the system console. The display has the following format:

mm/dd/yy hh:nn:ss

or alternatively (by SYSGEN option):
dd/mm/yy hh:nn:ss

Possible error responses to DISPLAY TIME are:

FORM-ERR Command syntax error; e.g. DISP TIME CCC
PARM-ERR Operand syntax error; e.g. DISP XXJX

FD-ERR Invalid file descriptor; e.g. DIS TIME, 135
ASGN-ERR Output device/file could not be assigned
I0-ERR /O error encountered on output device/file

Volume
The VOLUME command is used to set or to change the name of the system volume or to interrogate the system for the
current system volume name. Any commands that do not explicitly specify a volume name use the system volume as a
default. The format of this command is:

VOLUME [voln]
where voln is a four-character volume identifier. No test is made to ensure that the volume is actually on line at the time
the command is entered. If voln is not specified, the name of the current default system volume is output to the console
device.
Possible error responses to VOLUME are:

FORM-ERR Command syntax error; e.g., VOLUME ABCDEF

PARM-ERR Operand syntax error;e.g., VOLUME 157
NODA-ERR No direct access support SYSGENed .

Set Log

The SET LOG command is used to set the system log device. The system log device receives a copy of all system console
1/0O. This copy includes:

— All command lines entered from the console or from the Command Substitution System (CSS);
— All responses to these commands (other than prompts);
- All messages logged by tasks.
The format of this command is:
sETLoc [[.copv]]
This copy is produced on a file or device specified by fd.

This device may be changed at any time by another SET LOG command. If no operands are specified, logging is
terminated. Logging is automatically terminated under the following conditions:

I/O error on the log device
System initialization
Power restoration

When logging is terminated, the system console device again receives all output.

5-6 29-390 RO5 11/76

The SET LOG command may be used for two primary purposes. These are:
— To provide a historical record of system operation, often on a Magnetic Tape or direct access file.

— To allow system output, e.g., displays, log messages, etc., to proceed on a high-speed device rather than
on a system console.

If the COPY operand is specified, the system console continues to receive all system console I/O with a copy being sent to
the log device; if COPY is not specified, the system console receives only its own error messages.

The Log device may be shared with user task output.

Possible error responses to SET LOG are:
PARM-ERR Operand syntax error; e.g., SET FOX
FD-ERR Invalid file-descriptor;e.g., SET LOG PACK.X.Y
ASGN-ERR Log device/file could not be assigned; e.g., device off-line or

assigned for exclusive use to a task
I0-ERR 1/0 error occurred on output device/file

Display Map
The DISPLAY MAP command causes a map to be output to the console or to a specified file or device. The display map

may be a map of the entire system or of a particular partition or task common segment. The format of the command is:

DISPLAYMAP [/id] [.fd]

The id field can be .BG, .LIB, .TCM, or .SYS to refer to the background partition, the resident library, local task common
or system space. It can also be the name associated with an occupied partition or global task common segment. If a
TASKID and a task common segment share a common name, the display pertains to the partition and not the task com-
mon segment.

The optional operand fd indicates the file or device on which the map is to be output;if omitted the display is output to
the system console:

If the optional id is specified, only the map pertaining to the task or segment is output.

A sample format of an entire system map is as follows:

PART NAME START SIZE STAT PRI
.LIB 0C000 12.75
.TCM O0F300 11.75
1 ABC 12200 11.00 A 37
2 XYZ 14E00 8.50 P 126
3 17000 13.00
4 PDQ35 20400 11.00 RD 13
5 23000 6.50
6 23A00 13.50
.BG 28000 16.00 100
.SYS 2C000 16.00
TSK1 36000 16.00
TSK2 46000 - 80.00

The NAME field is the name of a task, a partition, or a segment. Where no name is shown, a vacant foreground partition is
indicated. The names .LIB, .TCM, .BG, and .SYS indicate the resident library, local task common, background, and system
space partitions, respectively. Any name other than these is the name of a foreground task or a global task common
segment.

The START field indicates the physical starting address. The SIZE field indicates the size in KB. These sizes are a multiple
of .25 KB (i.e., 256 bytes).

29-390 RO5 11/76 5-7

The STAT field indicates the status of these tasks, as follows:

D Dormant .
P Paused (console wait)
A “Active;” i.e., in any state other than Dormant or Paused

The status may be preceded by an “R” indicating the task is memory resident. A task that is displayed on the map as
“Active” may in fact be in a Wait state. The console operator may use the TASK and the DISPLAY PARAMETERS com-
mands to get the actual Wait Status halfword of a given task.

The PRI field indicates the priority in decimal of all tasks currently in foreground or background partitions.

Possible error responses to DISPLAY MAP are:

PARM-ERR Operand syntax error; e.g., DISP MAD

FD-ERR Invalid file descriptor specified; e.g., DISP MAP,123:

ASGN-ERR Output device/file could not be assigned; e.g., device is off-line or
assigned for exclusive use to a task.

I0-ERR 1/O error occurred on output device/file

Display ITAMTERM

The DISPLAY ITAMTERM command permits information relative to allocated ITAM Line Control Blocks (L.CBs) to be
output to the system console or, optionally, to a named file or device. Its format is:

DISPLAY ITAMTERM | . [voln:]{{ﬁlename or *} [[{axt or -}m [,fd}

The optional operand fd specifies the device or file on which the display is to be output. If voln is omitted, the default
system volume is assumed. If one or more of the optional operands are given, a comma must follow DISPLAY
ITAMTERM.

The information displayed is:

Volume Name, Filename and Extension
Device Code (Decimal)

ITAM Extended Device Code (Hexadecimal)
Transmission Block Size (Decimal)

Logical Record Size (Decimal)

Number of Transmission Blocks (Decimal)

Possible error responses to DISPLAY ITAMTERM are:

FORM-ERR Command syntax error

PARM-ERR Operand syntax error

NOPR-ERR Required operand missing

10-ERR 1/0 error encountered on output device.

If a specific ITAM Terminal is not found or if voln has no Line Control Blocks allocated for it, the following message is
displayed:

SPECIFIED TERMINAL(S) NON-EXISTENT FOR voln

The following are examples of valid DISPLAY ITAMTERM commands:

1. DI

Displays all ITAM Terminal Line Control Blocks using the default system volume as device mnemonic.

2. DI,MAGI:

Displays all ITAM Terminal Line Control Blocks using the default system volume as device mnemonic. In
this case, the display is routed to device MAGI:.

3. D1, BSCIL:

Displays all ITAM Terminal Line Control Blocks using BSCI: as device mnemonic.

4. D LLBSCI:-.-

Is treated identically to 3.

5. D LBSCI:-.LIN

Displays all ITAM Terminal Line Control Blocks with BSCI: as device mnemonic and extension LIN. If
LCB’s BSCI: THISTERM.LIN, BSCI: THATTERM.LIN, and BSCI: WHATTERM.LIN exist, all are displayed.
6. D LSBCL:INPUT.LIN)

Displays ITAM Terminal Line Control Block with SBCL as device mnemonic, INPUT as filename and LIN
as extension.

5-8 29-390 RO5 11/76

Set Partition

The SET PARTITION command is used to vary the size of partitions within the system. It may be entered only when the
system is quiesent; i.e., when all partitions are vacant. A dormant, but resident background partition is considered a vacant
partition. The format of the commaund is as follows:

SET PARTITION id/size [idfsize]
id specifies a partition to be modified. This may consist of:

.LIB

.TCM

.SYS

decimal number

The decimal number is used for vacant foreground partitions; the first foreground partition is partition number 1. The
numbers correspond to those displayed by the DISPLAY MAP command.

Size specifies the size to which the associated partition is to be set. These arguments are in decimal KB, in one of the
following formats:

n

n.00 n.25
n.5 n.50
n.75

Whenever any partition is adjusted in size, the size of all other partitions, except .BG, remains the same; their starting
addresses are adjusted as appropriate. The background partition is expanded or contracted as appropriate.

If .LIB is specified, the size field must be zero; this effectively removes the Library partition. To readjust the size of the
Library partition, use the LOAD command (see the section entitled, “Task Related Commands”’).

For example, assume a system is originally set up as follows:

PART NAME START SIZE STAT PRI
.LIB 0C000 8.00
.TCM 0E000 24.00
1 14000 8.00
2 16000 8.00
3 18000 16.00
4 1C000 16.00
5 20000 16.00
.BG 24000 32.00
.SYS 2C000 16.00

and the console operator enters the following command:
SE PA .TCM/20,3/15.75,4/0,.8YS/18.5

This command changes the size of the local Task Common partition to 20 KB, the third partition to zero KB, the system
space to 18.5 KB. The difference, if any, affects the background partition.

A new map is taken and the result is:

PART NAME START SIZE STAT PRI
.LIB 0C000 8.00
.TCM 0E000 20.00
1 13000 8.00
2 15000 8.00
3 17000 15.75
4 1AF00 0.00
5 1AF00 16.00
.BG 1EF00 49.75
.SYS 2B600 18.50

Note the setting of one of the partitions to zero size. This is legitimate; no task can, of course, be loaded into that partition
while it has a size of zero.

29-390 RO4 4/76 59

This command is rejected and partitions remain the same, if it would cause:
--.BG to have a negative size; it is not rejected if it would cause .BG to have zero size.
- The size of .SYS to be decreased to a size less than the amount of .SYS space currently in use by the
System Manager.
Possible error responses to SET PARTITION are:
FORM-ERR Command syntax error;e.g., SET PART 1,8
PARM-ERR Operand syntax error;e.g., SET PART .XYZ/10

SEQ-ERR System not quiescent
MEM-ERR .BG would have negative size or .SYS would be decreased too much

If more than one partition/size is specified in a command, the partitions are adjusted as they appear on the command line.
No check is made to see if all requests in the command are valid. If an invalid request is processed, the partitions are left as
they were after the previous valid adjustment. In this case, use a DISPLAY MAP command to determine the state of the
partitions.
Note that the SET PARTITION command applies only to local memory. The sizes and starting addresses of global task
common segments are fixed at SYSGEN time. To modify the global task common segments, the user must re-SYSGEN the
system. See the OS/32 MT Program Configuration Manual, for details.
Set Slice
The SET SLICE Command is used to invoke the time-slice scheduling option. Its format is:

SET SLICE n

where n is zero or a decimal number greater than or equal to 20 and less than 65,536.

If n is O, time-slice scheduling is disabled; otherwise, n represents the maximum time, in milliseconds, any one task can re-
main active if another task of equal priority is ready.

The time slice option is initially disabled.
Refer to the section entitled “Priority and Scheduling” for further information on Time-Slicing.
Possible error responses to SET SLICE are:
NOPR-ERR Operand n missing from command, e.g., SET SLICE
PARM-ERR n not 0 or a decimal number within the required bounds, e.g., SET SLICE 5.
UTILITY COMMANDS

This group of commands is useful in debugging or in building Command Substitution System files.

BIAS BUILD
EXAMINE ENDB
MODIFY RESET

Bias
The BIAS command is used to set a base address for the EXAMINE and MODIFY commands. Its format is:

BIAS [{address or *}]

The operand address is a hexadecimal bias, to be added to the address given in any subsequent EXAMINE or MODIFY
command. If the operand is omitted, all addresses specified in subsequent EXAMINE and MODIFY commands are treated
as unbiased; that is they are assumed to be absolute physical addresses. If an * is specified, the bias is set to be the physical
address of the first location of the currently selected task’s partition. (See the section entitled “Task Related Commands.”)
A BIAS command overrides all previous BIASes.

BIAS is not reset by the RESET command; the operator should enter a BIAS command if the current value is unknown.

5-10 29-390 RO4 4/76

Possible error responses to BIAS are:
FORM-ERR Command syntax error;e.g., BL,*

PARM-ERR Operand syntax error; e.g., BI FFFFF (too big)
TASK-ERR * specified, no currently selected task

Examine

The EXAMINE command is used to examine the contents of memory. Its formats are:
(a) EXAMINE address [,n [.fa]]

(b) EXAMINE address [Jaddress [,fd] |

The EXAMINE command, using format (a), causes the contents of the memory location specified by address (as modified
by any previous BIAS command) to be displayed. The decimal operand n specifies the number.of halfwords to be
displayed. If n is omitted, one halfword is displayed.

Using format (b), all data from the first address to the second is displayed in hexadecimal. The BIAS is added to both
addresses.

If fd is specified, the EXAMINE command outputs to that specified fd.
All addresses presented are rounded down to halfword boundaries by the system.

The EXAMINE command is used to examine the contents of local or shared memory.

Possible error response to EXAMINE are:

FORM-ERR Command syntax error;e.g., EXAM 100-200

PARM-ERR Operand syntax error; e.g., EXA FFFFFF,16; or
attempt to examine memory reserved for MAC, or
non-existent

FD-ERR Invalid file descriptor; e.g., EXA 10,10,123

ASGN-ERR Specified file descriptor could not be assigned, e.g.,
EKA 10,10,PR:, where PR: exclusively assigned elsewhere.

Modify
The MODIFY command is used to change the contents of memory.
MODIFY address , [data] [,data ...]
causes the contents of the halfword location specified by address (modified by any previous BIAS command) to be
replaced with data. The modify address must be aligned on a halfword boundary.
If the operand data is omitted, the modify address has its contents replaced with zeros. Each data field consists of 04

hexadecimal digits which represents a halfword to be written to memory starting at the location specified by address. Any
string or data less than four characters is right-justified and left-zero filled.

The MODIFY command is used to modify the contents of local or shared memory.
Possible error responses to MODIFY are:
FORM-ERR Command syntax error; e.g., MOD 124/5

PARM-ERR Operand syntax error; e.g., MOD 123,0 (not halfword boundary); or
address specified not in memory, or reserved for MAC

29-390 ROS5 11/76 5-11

Build and ENDB
The BUILD and ENDB commands permit the user to copy data from the system console to an arbitrary device or file
(these commands may also be entered from a CSS file, see the section entitled “Command Substitution System”’). Subse-

quent lines from the console are not treated as commands, but as data, and are copied to the device or file until an ENDB
is encountered. The format of these commands is:

BUILD fd

ENDB
The operand fd is the device or file. If the fd specified does not contain an extension, then CSS is used as a default. If a
blank extension is desired, the period following the file name must be specified. If fd refers to a non-existent direct-access
file, a chained file by that name is allocated, with a logical record length equal to the SYSGENed command buffer length, a
blocksize of 1 and keys of 0000.

The BUILD command must be the last command on an input line. Further data appearing on that line is treated as
comment and causes no action to be taken.

The ENDB command must appear in the first four characters of the line; any subsequent characters in that line are ignored.

The BUILD command may be entered from the console only if no CSS files are active. The BUILD command may be
entered from a CSS file.

Possible error responses to BUILD are:

PARM-ERR Operand syntax error; e.g., BUILD/

FD-ERR Invalid file descriptor or no chain file support
ASGN-ERR Output file/device could not be assigned
SEQ-ERR CSS file active, build entered from system console

NOPR-ERR Required fd not specified; e.g., BUILD ;

No error response is possible from ENDB. If ENDB is not entered as the first four characters in the command line, the line
is copied to the BUILD file.

Reset

The RESET Command is used to close all background LUs and return the sizes of all partitions to their SYSGENed
default. Its format is:

RESET
This is valid only when the system is quiescent.
Possible error response to RESET is:

SEQ-ERR System not quiescent

TASK RELATED COMMANDS

The following commands are related to particular tasks:

TASK ASSIGN

START DISPLAY LU

PAUSE CLOSE

CONTINUE OPTIONS

CANCEL SET PRIORITY

LOAD DISPLAY PARAMETERS
SEND

Task

The TASK command is used to set the currently-selected task, either foreground or background. Task-related commands
operate on the currently-selected task and on no other. The format of the command is:

TASK [taskid]

where taskid is the name of some foreground task in the system, or is the name of the background task, “.BG”. If taskid is
not specified, the TASKID of the currently selected task is output to the console device.

5-12 29-390 RO5 11/76

All task related commands except LOAD are affected by the TASK command. Also affected are the Magnetic Tape and
File Control Commands, Format (b) as described in the section entitled, “Device and File Control Commands.”

Some CSS commands are affected by TASK; they are described in the section entitled, “Command Substitution System.”

For example:

T ABC Set current task = ABC

CL234 Close ABC’s LUs 2,3,4

AS 2,CARD Assign ABC’s LU 2 to device CARD
TXYZ Set current task = XYZ

OPT RES Make Task XYZ Resident

CAN Cancel task XYZ

ST 100 Start task XYZ at relative address 100
T .BG Set current task = background
PAUSE Pause the background task

NOTE

When CSS is started, the current value of TASK is associated with
the CSS file as the currently-selected CSS task. If a CSS file exe-
cutes a TASK command it affects only that CSS file’s commands,
and does not change the value of TASK associated with the con-
sole.

If the currently selected task is deleted from the system or if no TASK command has been entered, task related commands
(other than LOAD or TASK) are rejected with a TASK-ERR.

Possible error responses to TASK are:

Operand syﬁtax error; e.g., specified TASKID not present
No currently selected task

PARM-ERR
TASK-ERR

Start

The START command is used to initiate task execution. The currently-selected task is started, if it is dormant or paused,
otherwise the command is rejected. The format of this command is:
START

[address] [, args to prog]

The START command must be the last command on its input line. The operand address represents the address at which
the program is to be started. For User tasks this is not a physical address, but is an address within the task’s own program.
For Executive tasks, it is a physical address within the task partition. If address is omitted, the currently-selected task is
started at the transfer address specified when the task was established.

The optional field ‘args to prog’ contains arguments that are to be passed to the task for its own decoding and processing.
All characters between the comma and the line terminator (semi-colon or carriage return) are moved to memory beginning
at UTOP. The characters are terminated in memory by a carriage return. If this operand is omitted, a carriage return is
stored at UTOP. If there is not enough memory between UTOP and CTOP to pass all the characters, the call is rejected
with an ARGS-ERR.

Possible error responses to START are:

FORM-ERR Command syntax error; e.g., START 100/5

SEQ-ERR Task active

TASK-ERR No currently selected task

ARGS-ERR Insufficient memory between UTOP and CTOP to pass all args to prog.
Examples of valid START commands are:

ST 138

ST 100,NOSEQ,SCRAT
ST ,1000,ABC

29-390 RO5 11/76

START TASK AT X 138

START TASK AT X 100 AND PASS
NOSEQ,SCRAT TO THE PROGRAM

START TASK AT TRANSFER ADDRESS AND
PASS 1000,ABC TO THE PROGRAM

5-13

Pause

The PAUSE command causes the currently selected task to pause as though it has issued an SVC 2 CODE 1, PAUSE (See
the section entitled SVC 2 - General Service Functions). Its format is:

PAUSE

Any 1/O Proceed ongoing at the time the task is paused is allowed to proceed to completion. If the task is in any Wait state
at the time the PAUSE command is entered, all external wait conditions must have been satisified before the PAUSE
becomes effective. This command is rejected if the task is dormant or paused at the time it is entered.

Possible error responses to PAUSE are:

FORM-ERR Command syntax error
SEQ-ERR Task paused or dormant
TASK-ERR No currently selected task

Continue

CONTINUE causes a task which has executed a PAUSE SVC 2 CODE 1 or has been paused by the operator to resume
operation. The format of this command is:

CONTINUE
Possible error responses to CONTINUE are:

FORM-ERR Command syntax error
SEQ-ERR Task not paused
TASK-ERR No currently selected task

Cancel
The CANCEL command terminates a task as if it had executed an SVC 3,255. The format of this command is:

CANCEL

If the task is non-resident, it is removed from the system;all outstanding 1/O is terminated and the task’s LUs are closed. If
the task is resident, it is not removed from the system:its LUs are not closed, but are checkpointed. This command may be
entered even when the currently-selected task is Dormant. It has no effect on a resident task that has already gone to EOT,
unless preceded by an OPTIONS NONRESIDENT command. It may be used to remove a non-resident task, which has been
loaded but not started, from the system. The normal response to this command is:

hh:mm:ss TASKID:END OF TASK 255
Possible error responses to CANCEL are:

FORM-ERR Command syntax error
SEQ-ERR Task not loaded
TASK-ERR No currently selected task

Load

The LOAD command is used to load a task. The task is loaded into a specified partition or the first foreground partition
large enough to accept the task. The loader searches for a vacant position starting from the partition with the lowest
memory address. The command may also be used to load a background task, or a new copy of the Resident Library. The
format of this command is:

LOAD taskid [, [fd] [,n]]

The taskid field specifies the name to be assigned to the task to be loaded. The optional fd field specifies the file or device
from which the task is to be loaded. If fd is omitted, the file is defaulted to taskid. TSK. If fd specifies a direct access file
and no extension is specified, the extension is defaulted to .TSK. An fd with blank extension must have the period after
the specified file name. This command is not affected by the TASK command, but may be entered at any time. The
optional operand, n, specifies a particular vacant partition in which to load the task.

5-14 29-390 RO4 4/76

The taskid field may be one of the following:
— A valid task identifier which is not the same as any task identifier presently in the system;
.BG
--.LIB

If the first option is selected, the task is loaded into a foreground partition. It then becomes a member of the foreground
system and can be selected by the TASK command.

If the second option (.BG) is selected, the task is loaded into the background partition. This command is only accepted
when the background partition is vacant, or when the task in the background partition is dormant.

The operand, n, is invalid, if .BG is specified.

The taskid .LIB is used to load the resident library. To do this, all partitions, both foreground and background, must be
vacant. When this command is entered, the current resident library, if any, is deleted. The new resident library is loaded
from the device specified by fd. This may cause a change in the size of the resident library partition. The bounds of all
other partitions in the system are adjusted accordingly. This causes an adjustment in the size of the background partition
(see the section entitled “General System Commands™). Any data previously stored in the local task common partition
must at this time be presumed lost. The operand, n, is invalid.

Some examples of the LOAD command are:

LO ABC,PTRP:,2 LOAD a task from a device named PTRP: into partition 2. Associate
the name ABC with the task.

LO .BG,VOL:CAL.TSK LOAD the task from file VOL:CAL.TSK into the background partition.

LO .LIB,VOL:FORT.RTL LOAD the library from file VOL:FORT.RTL.

LTl LOAD a task from file named T1.TSK on the default system volume
into a foreground partition. Associate the name T1 with the task.

LTI1.TI. LOAD a task from the default system volume from a file named T1.

~ into a foreground partition. Associate the name T1 with the task.
LO T3,4 LOAD the task T3 from file T3.TSK into partition 4.

Possible error responses to LOAD are:

FORM-ERR Command syntax error; e.g., LOAD,PTRP:
PARM-ERR Operand syntax error; e.g., LOAD T1, PTRP:,ABCD

PART-ERR Specified partition not vacant

TKID-ERR Invalid TASKID syntax;e.g., LOAD 1,PTRP:

ASGN-ERR Specified fd not assigned for reason denoted by TYPE field
FD-ERR Invalid file descriptor;e.g., LOAD ABC,A:B:C

LOAD-ERR Load failed for reason denoted by TYPE field

LOAD error TYPE field:

SEG (Proper .LIB not in system; task uses TCOM, not in system.)

NLU (No partition with sufficient LUs vacant.)

PRES (Specified TASKID already present in system.)

LIB (Invalid data in Task Loader Information Block.)

MEM (No partition big enough.)

10 (1/0O error detected on specified device or file.)

NOFP (System does not support the Floating Point options required by the task.)

Assign

The ASSIGN command assigns a device, file, or ITAM device to one of a task’s Logical Units. The format of this command
is:

ASSIGN 1u, fd [,[access-priv] [,keys]]

where lu is the LU number in decimal, fd is the File Descriptor signifying the device or file to be assigned, access-priv is the
desired access privilege, and keys signifies the write-read protection keys of the file or device.

29-390 R04 4/76 5-15

Access-priv may contain one of the following:

SRO Sharable Read-Only

ERO Exclusive Read-Only

SWO Sharable Write-Only

EWO Exclusive Write-Only

SRW Sharable Read-Write

SREW Sharable Read, Exclusive Write
ERSW Exclusive Read, Sharable Write
ERW Exclusive Read-Write

If access-priv is omitted. SRW is assumed. The command is rejected if the requested access privilege cannot be granted.

Keys is a four digit hexadecimal number. The left two digits signify the write-protection key and the right two digits the
read-protection key. If omitted. the default is 0000. These keys are checked against the appropriate existing keys for the
file or device; the command is rejected if the keys are invalid.

An assigned direct-access file is positioned at the end of the file for access privileges SWO and EWO: it is positioned at the
beginning of the file for all other access privileges.

This command is rejected if the specified LU is assigned and the currently selected task is not dormant. To reassign an LU
for an active task, the LU must first be closed.
Possible error responses to ASSIGN are:

FORM-ERR Command syntax error:e.g., AS 1/CR:

PARM-ERR Operand syntax error;e.g., AS CR:,1
NODA-ERR No direct access support in this SYSGEN

FD-ERR Invalid file descriptor;e.g., AS1, PACK:ABC:TSK

LU-ERR Invalid LU number or LU assigned

PRIV-ERR Invalid access privilege mnemonic; e.g., ASSIGN 1, CR:,SWO
ASGN-ERR The assign failed for reason denoted by the TYPE field
TASK-ERR No currently selected task

SPAC-ERR Task would exceed established maximum system space usage

Display LU

The DISPLAY LU command permits the operator to display all assigned Logical Units of the currently-selected task. Its
format is:

DISPLAY LU [,td]

where the optional operand fd signifies the file or device on which the display is to output. If the optional operand is
omitted, the display is output to the system console.

An example of the DISPLAY LU output is:

Lu FD/NAME

01 CR:

02 VOLN:ABC.OBJ
03 PR:

04 VOLN:SCRATCH.
05 TTY:

10 NULL:

Possible error responses to DISPLAY LU are:

FORM-ERR Command syntax error; e.g., DISP LU CCC
PARM-ERR Operand syntax error;e.g., DISP LUPR:

FD-ERR Invalid file descriptor;e.g., DISP LU,123
I0-ERR 1/0O error detected on output device/file
TASK-ERR No currently selected task

5-16 29-390 RO5 11/76

Close

The CLOSE command permits the operator to close (deassign) one or more files or devices assigned to the
currently-selected task’s Logical Units. The formats of this command are:

CLOSE [lu [lu]]

CLOSE ALL

where the lu operands are decimal numbers signifying the Logical Units to be deassigned. If ALL is specified, all the LUs of
the currently-selected task are closed.

Closing an unassigned LU does not produce an error message. A CLOSE Command may only be entered if the referenced
task is dormant or paused.

Examples of the CLOSE command are:

CL 1,3,5 Close LUs 1,3, and 5 of the currently selected task
CLOSE A Close all LUs of the currently selected task

Possible error responses to CLOSE are:
FORM-ERR Command syntax error;e.g., CLO 1/2/3
CLOS-ERR Close failed for reason denoted by TYPE field

TASK-ERR No currently selected task
SEQ-ERR Task not dormant or paused

Options

The OPTIONS command is used to specify or to change certain options of the currently selected task. An OPTIONS
command may be entered if the referenced task is dormant or has been paused. The format of this command is:

OPTIONS opt [,opt -]

where opt may be any of the following options:

AFCONT If the AF trap enable bit is set, a trap is taken; otherwise, the task continues after
arithmetic fault with message logged

AFPAUSE PAUSE after any arithmetic fault

RESIDENT Task is memory-resident

NONRESIDENT Task is to be removed from memory at EOT

FLOAT Task requires single precision floating point registers
DFLOAT Task requires double precision floating point registers
NOFLOAT Task requires no floating point registers.
SVCPAUSE Treat SVC 6 as illegal SVC (applies to .BG only)
SVCCONT Treat SVC 6 as NOP (applied to .BG only)

NOTE

Unless otherwise specified with the TET/32 OPTIONS command,
the default options when a task is loaded are: AFPAUSE, NON-
RESIDENT, NOFLOAT, SVCPAUSE.

Note that most options are paired, but options are entered in any order and if both members of a pair are entered, the
latest one entered is accepted. Thus:

OPTIONS R,NONR

specifies NONRESIDENT.

29-390 RO5 11/76 5-17

The AFPAUSE and AFCONT options are normally set up at task establishment time, but may be modified by the console
operator. Note that the sequence OPT NON; CANCEL always causes the currently-selected task to be removed from
memory. The sequence OPT R; CANCEL always causes the currently-selected task to enter the Dormant state.

The SVCPAUSE and SVCCONT options apply only to the background task: they are ignored if specified for a foreground
task.

Possible error responses to OPTIONS are:

PARM-ERR Operand syntax error;e.g., OPT NO

TASK-ERR No currently selected task
NOFP-ERR Floating Point option not supported in OS
SEQ-ERR Task not dormant or paused

If an operand is invalid. previous valid operands in the same command are processed. In this case use the DISPLAY
PARAMETERS command to verify the state of the task options.
Set Priority
The SET PRIORITY command is used to modify the priority of the currently-selected task. Its format is:
SET PRIORITY n

where n is a decimal number from 10 to 249 inclusive. The priority of the currently-selected task is set to n, subject to the
following restriction:

If the task is a foreground task, its priority may not exceed the maximum priority set up at task establish-
ment time. In order to increase this priority, it is necessary to reestablish the task. The maximum priority a
background task may attain is set at SYSGEN time. To increase this priority, the system must be
re-SYSGENed.

Possible error responses to SET PRIORITY are:
FORM-ERR Command syntax error;e.g., SET PRI, 12
PARM-ERR Operand syntax error;e.g., SET PRI O
NOPR-ERR Required operand n omitted;e.g., SET PRI;
TASK-ERR No currently-selected task
Display Parameters
The DISPLAY PARAMETERS command is used to display certain parameters pertinent to the currently-selected task. The
display appears on the console device, or alternatively on a device or file selected by the operator. The format of this com-

mand is:

DISPLAY PARAMETERS [,fd]

Parameters displayed are:

TASK taskid task name

CTSW XXXXXXXX status portion of current TSW
CLOC XXXXX loc portion of current TSW
STAT XXXXX task’s Wait status

TOPT XXXXX task options

CTOP XXXXX task CTOP

UTOP XXXXX task UTOP

UBOT XXXXX task UBOT

SLOC XXX task starting location

NLU XX number of LUs (decimal)
MPRI XXX maximum priority (decimal)
SVOL XXXX default volume ID.

The addresses displayed as CTOP, UTOP, UBOT, and SLOC are not physical addresses, but are addresses within the task’s
own program space. The CLOC may be a program space address or a physical address in a system subroutine being
executed on behalf of the task. NLU is given in decimal. SVOL is the ASCII System Volume ID. As such it is not
specifically related to the currently-selected task, but it is given here for operator convenience.

5-18 29-390 RO5 11/76

TOPT is given in hexadecimal; the definition of task option bits is:

Bit Mask Meaning

0 8000 + 0 — User task; 1 — E-task

1 4000 0 - AFPAUSE; 1 — AFCONT

2 2000 0 — NOFLOAT; 1 — FLOAT

3 1000 0 — NONRESIDENT; 1 — RESIDENT
4 0800 0 -- NOTCOM; 1 — TCOM

) 0400 0 - NOLIB; 1 — LIB

6 0200 0 - SVCPAUSE: 1 — SVCCONT

7 0100 0 - NOFLOAT; 1 —~ DFLOAT

STAT is given in hexadecimal; the definition of wait status bits is:

Bit Mask Meaning if set

0 8000 I/O Wait

1 4000 Connection Wait
2 2000 Console Wait (Paused)
3 1000 Load Wait

4 0800 Dormant

5 0400 Trap Wait

6 Reserved

7 0100 Task Wait

8 0080 Time Wait

9-15 Reserved

TSW is given in hexadecimal. For a definition of the status portion of the TSW, see the section entitled Interrupts and
Traps.

Possible error responses to DISPLAY PARAMETERS are:

FORM-ERR Command syntax error; e.g., DISP PARM CCC
PARM-ERR Operand syntax error; e.g., DISP XYZ
IO-ERR I/O error detected on output device or file
TASK-ERR No currently selected task

ASGN-ERR Invalid File Descriptor;e.g., DISP PA,ABCDE:

Send

The SEND command is used to send a message to the currently-selected task. The format of the command is as follows:
SEND (Up to 64 ASCII characters)

The message is passed to the selected task in the same manner as an SVC 6 Send Message. Following standard SVC 6

procedures, the message consists of an 8 byte TASKID identifying the System Manager, followed by the operator supplied

character string.

The message data passed to the selected task begins with the first non-blank character following SEND and ends with a
carriage return or semicolon as a line termination.

The receiving task must have intertask message traps enabled in its TSW and must have established a message buffer area.

For example:

TASK STATS

SEND PROVIDE SYSTEM STATOIE
provides the following message for the task STATS:

.CMDPbbbPROVIDEbSYSTEMbSTATO1 g

X!
0% %
7. % % _
NN 7
T2 ()
© 0,9 ©

29-390 ROS 11/76 5-19

TA TPSRCH
SEN STOP TAPE SEARCH§

provides the following message for the task TPSRCH:

CMDPBYPPSTOPYTAPEBSEARCHE

\ sn
5o (f
A %
Lo kA
(AR (=}

<29 <2

The possible error responses to SEND are:

TASK-ERR No currently selected task.

NOPR-ERR No message was provided. The first non-space character following the SEND command was
a carriage return.

ARGS-ERR A message exceeding 64 characters was provided.

SEQ-ERR Task paused, not yet started or otherwise not capable of receiving a message

SVC6-ERR An SVC-6 error 11 was returned indicating that the task could not receive a message trap.

Refer to the section entitled SVC 6 Intertask Coordination for more information about SEND MESSAGE.

DEVICE AND FILE CONTROL COMMANDS

The following set of commands is used for device and file control. These commands are not affected by the setting of the
currently-selected task:

ALLOCATE FRECORD
DELETE FFILE
RENAME BRECORD
REPROTECT BFILE
DISPLAY FILES WFILE
MARK REWIND
DISPLAY DEVICES RW

Allocate

The ALLOCATE command is used to create a direct-access file or allocate an ITAM Line Control Block for a Buffered
Terminal Manager. The following formats exist for this command:

() ALLOCATE fd, CHAINED [, [lrec [/vsize]] [keys]]
(b) ALLOCATE fd, CONTIGUOUS, fsize [keys]

(c) ALLOCATE fd, INDEX [[lrecl] [/ [bsize] [/isize]] [,keys]]

(d) ALLOCATE fd, ITAM [,lrecl [/bsize] Lkeys]:l

The operand fd identifies the file to be allocated. Format (a) is used to allocate a Chained file; format (b) is used to
allocate a Contiguous file; format (c) is used to allocate an Indexed file; format (d) is used to allocate an ITAM device.

If CHAINED is chosen, the next operand, lrecl, is optional and specifies the logical record length. It cannot exceed 65,535
bytes. Its default is 126 bytes. It may optionally be followed by a slash mark (/) which delimits lrecl from bsize. The bsize
operand specifies the physical block size, in 256-byte sectors, to be used for buffering and de-buffering operations on the
file. If bsize is omitted, the default value is 1 sector (256 bytes). Note that, in order to assign this file, sufficient room must
exist in system space for two buffers, each of the stated size. Therefore, if bsize is very great, the file may not be assignable
in some memory-bound situations. At SYSGEN time, a maximum block size parameter is established in the system; bsize
cannot exceed this constant. In no case may bsize exceed 255. Both lrecl and bsize are specified as decimal numbers.

5-20 29-390 R0O4 4/76

If CONTIGUOUS is chosen, the file size operand, fsize, is required and specifies the total allocation size in 256 byte
sectors. This size may be any value up to the number of contiguous sectors existing on the specified volume at the time the
command is entered. Fsize is specified as a decimal number.

If INDEX is chosen, the operands frecl and bsize are defined as for CHAINED. The isize optional operand specifies the
index block size in decimal. If isize is omitted, the default value is 1 sector (256 bytes). Like bsize, isize cannot exceed the
maximum block size which is established at SYSGEN time, and in any case neither can exceed 255.

If ITAM is chosen, the optional operand Irecl specifies the logical record length. The bsize operand specifies the physical
block size in bytes.

The last operand. keys, is optional. This operand specifies the write and read protection keys for the file. These keys are in
the form of a hexadecimal halfword, the left byte of which signifies the write key and the right byte the read key. If this
parameter is omitted, both keys default to zero.

Examples of the ALLOCATE command:

AL THISFILE,CH

allocates on the system volume a Chained file named THISFILE, (blank extension) with a logical record of 126 bytes, a
buffer size of 1 sector, and protection keys of zero.

AL PROGRAM.TSK,CO,64

allocates on the system volume a Contiguous file named PROGRAM.TSK, whose total length is 64 sectors (16KB) and
protection keys are zero.

AL FRED:EXAMPLE.OBJ,CH,126

allocates on the volume FRED a Chained file named EXAMPLE.OBJ, whose logical record length is 126 bytes. The buffer
size of this file defaults to one sector; the protection keys default to zero.

AL MORT:GREATBIG.BLK,CH,132/4

allocates on the volume MORT a Chained file named GREATBIG.BLK, whose logical record length is 132 bytes, using a
physical block size of 4 sectors. The protection keys default to zero. Note that whenever this file is assigned, the system
must have 2KB of available system space (twice the physical block size) for buffers.

AL SAM:DATABASE.X,CH,480,AA44

allocates on the volume SAM a Chained file named DATABASE.X, whose logical record length is 480 bytes, physical block
size is 1 sector, write protection key is X'AA' and read key is X'44'. Note that the logical record length is permitted to
exceed the physical block size.

AL THISFILE,IN,256/4/2

allocates on the default system volume an Indexed file named THISFILE (blank extension) with a logical record of 256
bytes, a data block size of 4 sectors, an index block size of 2 sectors, and protection keys of zero.

AL PACK:TEST.OBJ,IN,126//3

allocates on the volume PACK an Indexed file named TEST.OBJ with logica! record length of 126 bytes. The data block
size is defaulted to 1 sector, the index block size is 3 sectors and the protection keys default to zero.

Possible error responses to ALLOCATE are:

FORM-ERR Command syntax error

PARM-ERR Operand syntax error

NOPR-ERR Required operand missing

ALLO-ERR Allocation failed; for reason denoted by TYPE field
FD-ERR Invalid file descriptor

NODA-ERR Direct-access support not included in this SYSGEN

29-390 RO4 4/76 5-21

Delete
The DELETE command is used to delete a direct access file. Its format is:
DELETE fd [fd...]

where fd identifies the file to be deleted. To be deleted, the file must not be currently assigned to any LU of any task. This
command is not recognized if there are no direct-access devices in the system.

Possible error responses to DELETE are:

FORM-ERR Command syntax error;e.g., DEL, PACK:A

FD-ERR Invalid file descriptor;e.g.. DEL A:1
NOPR-ERR Required operand missing; e.g., DEL;
DELE-ERR Delete failed for reason denoted by TYPE field

ASGN-ERR fd currently assigned
NODA-ERR Direct Access support not included in this SYSGEN

Rename

The RENAME command is used to change the name of an unassigned direct-access file or a device. Its format is:
RENAME oldfd, newfd

Examples:

REN VOL1:MYFILE.CUR,MYFILE.OLD
REN MTO01:,MTO2:

The volume ID field of the new File Descriptor (newfd) may be omitted for direct-access files. If it is entered, the system
ignores it. This command cannot be used to rename a direct-access volume; the OS/32 Disc Initializer must be used for this.
Attempts to rename the console device or the null device are rejected with ASGN-ERR and NULL-ERR respectively. An
attempt to rename a device to an existent device or volume name is rejected with NAME-ERR.

Possible error responses to RENAME are:

FORM-ERR Command syntax error;e.g., REN A:B C:D
NOPR-ERR Required parameter missing, e.g., REN CR:
ASGN-ERR fd currently assigned

RENM-ERR Rename failed for reason denoted by TYPE field
NULL-ERR Attempt to rename the Null device

NAME-ERR Duplicate Device or Volume Name exists

Reprotect

The REPROTECT command permits the operator to modify the protection keys of an unassigned direct-access file or
device. Its format is:

REPROTECT fd, keys

where fd is the name of the file or device and keys is a hexadecimal halfword whose left byte signifies the new write keys
and whose right byte signifies the new read key.

Possible error responses to REPROTECT are:
FORM-ERR Command syntax error;e.g., REPR CR:/FF12
PARM-ERR Operand syntax error; e.g., REPR CR:,XXYY
ASGN-ERR fd currently assigned
NOPR-ERR Keys not specified; e.g., REPR CR:
REPR-ERR Reprotect failed for reason denoted by TYPE field
Display files

The DISPLAY FILES command permits information from the directory of one or more direct-access files to be output to
the system console or optionally to a named file or device. Its format is:

DISPLAY FILES |, [vo]n:] [(ﬁlename or-} [[{ext or }]]] [,fd }

5-22 29-390 RO4 4/76

The optional operand fd specifies the device or file for the display. If voln is omitted, the default system volume is
assumed. If any of the optional operands is given they must be preceded by at least one comma.

The following forms are all acceptable:

1. DF
displays all files on the default system volume to the console device.
2. DF,,MAGI:
display all files on the default system volume. In this case, the display is routed to the device MAG1:

3. DF,PACK:
displays all files on PACK to the console device.
4. DF,PACK: —-. -

is treated identically to 3.

5. DF,SCRT: —. TSK
displays information concerning all files on SCRT with extension TSK, regardless of filename. If SCRT
contains files names THISFILE.TSK, THATFILE.TSK, and LOADER.TSK, all are displayed.

6. DF,—.,PRIN:
displays information concerning all files on the default system with blank extensions regardless of
filename. In this case, the display is routed to device PRIN:

7. DF, - .-
is treated the same as 1.

The information displayed is:
File Name and Extension
TYPE.
LENGTH
KEYS
START/NLR

For Contiguous files, TYPE is CO, the LENGTH is the number of sectors allocated to the file in decimal and START/NLR
is the starting sector number in hexadecimal.

For Chained or Indexed files, TYPE is CH or IN respectively, the length is-the logical record length in decimal, and
START/NLR is the number of logical records in hexadecimal.

Possible error responses to DISPLAY FILES are:

FORM-ERR Command syntax error

PARM-ERR Operand syntax error

NOPR-ERR Required operand missing

I0-ERR /O error encountered on output device or file

NODA-ERR Direct-access support not included in this SYSTEM.
If VOLN has no files on it, the following message is displayed:

NO DIRECTORY ENTRIES ON VOLN

If a specific file is not found, the following message is displayed:

FILENAME NOT FOUND

Mark

The MARK command is used to take a device off-line, or to bring on-line a device that was previously off-line. The format
of this command is:

MARK fd, ON [,PROTECT]
OFF
The mnemonic name of the device is specified by fd. If the device is the system console device, is the null device, is
assigned, was not properly marked off-line, or has any assigned files (if a direct-access device), the command is rejected.
After marking on a direct-access device, the volume name associated with it is output to the console device, in the format
VOLN=XXXXX.

While a device is off-line, it cannot be assigned to any U-task. E-Tasks are permitted to assign off-line devices.

29-390 ROS 11/76 5-23

If the device being MARKed ON or OFF is a direct-access device, the fd used in the command is not the volume identifier,
but the actual device mnemonic. For example, to MARK OFF a disc name DSC1 which currently contains a volume named
SYSI, the operator enters:

MA DSC1:,OFF

This action removes the volume SYSI from the system. The volume may now be changed, if DSC1 is a removable-cartridge
disc. To make the new volume known to the system, the operator enters:

MA DSCI1:,ON

This causes the Volume Descriptor (see the Section entitled “Files and Devices”) of the pack on DSCI to be read. The new
volume ID is made known to the system. The volume ID associated with DSC1 is output to the system console in the for-

mat voln=xxxx. Removable cartridges should not be mounted or dismounted from the system without using the MARK
command.

If a volume is dismounted without being MARKed OFF-line, it can only be MARKed ON-line in the write protected state.
The volume cannot again be MARKed ON with write privileges until the Disc Integrity Utility, Revision 05 or later, is run.
This ensures that the disc is returned to a valid state.

If the optional parameter, PROTECT, is specified in a MARK ON command, the device is marked as write protected. All
assignments for access privileges other than Shared Read Only (SRO) and Shared Read/Write (SRW) are rejected with a
privilege error. Shared Read/Write (SRW) is changed to SRO. A Write File mark command to any file on the device is also
rejected. This option may be used for any device regardless of the state of any hardware write protect feature. It must be
specified for hardware protected discs.

Possible error responses to MARK are:

FORM-ERR Command syntax error
PARM-ERR Operand syntax error

STAT-ERR fd already assigned or has files assigned

BPAC-ERR Direct-access volume 1/O error encountered

DUPL-ERR Duplicate device or volume name exists

SEQ-ERR Attempt to mark on-line a currently on-line disc; occurs

if previous volume was dismounted without being marked off.
NOFF-ERR Attempt to mark on-line a disc which was dismounted

without being marked off-line.
Display Devices

The DISPLAY DEVICES command allows the operator to determine the physical address, keys, on-line/off-line state, and
the volume name (for on-line direct-access devices) of all devices in the system. The format of this command is:

DISPLAY DEVICES [,fd]
The operand fd specifies the device to which the display is routed; if omitted, the display goes to the system console.
Possible error responses to DISPLAY DEVICES are:

FORM-ERR Command syntax error

PARM-ERR Operand syntax error

FD-ERR Invalid file descriptor
10-ERR 1/0 error encountered on output device or file

MAGNETIC TAPE AND FILE CONTROL COMMANDS

This set of commands allows the operator to manipulate magnetic tapes, cassettes and direct-access files from the system
console. There are two general formats of these commands as follows:

(a) op fd
b) op fd [,1u]

The operator op may be any one of the following:

REWIND Rewind

RW Rewind (alternative operator)
FRECORD Forward-space one record
FFILE Forward-space to filemark
BRECORD Backspace one record

BFILE Backspace to filemark
WFILE Write filemark

5-24 29-390 RO5 11/76

The mnemonics REWIND and RW are both accepted for the REWIND command, for compatibility with previous
operating systems and certain utility programs.

Format (a) is used for magnetic tapes and cassettes. Format (b) is used for direct-access files. The optional operand is
specified if the file is assigned to more than one logical unit in the task associated with this file.
NOTE
Format (b) of these commands applies to the currently selected

task, as specified by the TASK command. Refer to the section
entitled Task Related Commands.

For example:
REW MAGI:
rewinds device MAG1:
FR PACK:SOMEFILE.OBJ,4
causes the file PACK:SOMEFILE.OBJ, as assigned to Logical Unit 4 of the currently-selected task, to be positioned
forward one record.
Possible error responses to these commands are:

FORM-ERR Command syntax error
PARM-ERR Operand syntax error

I0-ERR 1/O error encountered on specified device or file or illegal or unassigned LU
ASGN-ERR File or device could not be assigned for the reason denoted by the TYPE field
TASK-ERR There was no currently selected task and a command using format (b) was specified

COMMAND SUBSTITUTION SYSTEM

The Command Substitution System (CSS) is an extension to the 0S/32 MT Command language. It provides the user with
the ability to establish files of dynamically modifiable commands which can be called from the console or other CSS files
and executed in a defined sequence. In this way, complex operations can be carried out by the operator with only a small
number of commands.

CSS provides more than just the ability to switch the operating system command input stream to a batch device:
—A set of logical operators are provided to control the precise sequence of commands to be obeyed.

—Parameters can be passed to a CSS file so that general sequences can be written which take on specific
meaning only when the parameters are substituted.

—One CSS file can call another, in the manner of a subroutine, so that complex command sequences can be
developed.

A CSS file is simply a sequential text file. It could be a deck of cards, a punched paper tupe, a magnetic tape, or a disc file.
Following is an example of a simple CSS file:

*THIS IS A SIMPLE EXAMPLE CSS FILE
TASK .BG

ALLOCATE XXXDIX.TST

ASSIGN 2,PRT1:;*LU2-LINEPRINTER

TOATY DO ONDVY
LA JDOULUT

START
SEXIT

Note the use of the semicolon, which allows more than one command on the same line. Note also the use of the asterisk to
introduce a comment.

29-390 RO4 4/76 5-25

High Level Operator Command Package

The OS/32-MT High Level Operator Command Package is implemented as a set of CSS files. These perform a variety of the
commonly used program preparation and development sequences. The package contains the following:

COMMAND DESCRIPTION

FORT Perform FORTRAN V compile, assembly and task establishment

FORTCLG Perform FORTRAN V compile, assembly, task establishment, load and start
FORT6C Perform FORTRAN VI

FORT6CA Perform FORTRAN VI compile and assembly

FORT6CAE Perform FORTRAN VI compile, assembly and task establishment
FORT6CLG Perform FORTRAN VI compile, assembly, task establishment, load and start.
CAL Perform CAL assembly and task establishment

CALCLG Perform CAL assembly, task establishment, load and start

MAC Perform CAL MACRO expansion, assembly and task establishment

MACCLG Perform CAL MACRO expansion, assembly, task establishment, load and start
EDIT Load OS Edit and Start

ESTAB Establish an object program using the OS/32 Task Establisher (TET/32)
COPYA Copy an ASCII file using OS Copy

COPYB Copy a Binary File using OS Copy

COPYT Copy an established task, resident library or overlay using OS Copy

RUN Load and start a task

SYSGENI1,SYSGEN?2 Generate a System

DEFAULT.ASN Assign default Logical Units

For complete information refer to the 0S/32 MT High Level Operator Command Package User’s Manual, Publication
Number 29-482.

Calling CSS Files

A CSS File is called and executed by naming it in a stream of commands. Any valid File Descriptor (fd) can be used,
provided that there is no conflict with any of the ordinary operator commands. If the file extension is omitted and
extension of “CSS” is assumed. The CSS call is the last command recognized on a command line.

In other words, the operator can cause a file of commands to be executed simply by entering the name (fd) of that CSS
file. The error message, MNEM-ERR, is returned if the file does not exist as specified.

Parameters are passed to a CSS file by appending them to the call. The first parameter is separated from the file name by a
space; all other parameters must be separated by commas. Null parameters are permitted.

The following are valid CSS calls:

RUN (Calls CSS file RUN.CSS on the system volume)

CARD: (Calls CSS file in card reader)

JUMP A,B,C (Calls CSS file JUMP.CSS on the system volume with three parameters A,B, and C)

JUMP.CSS A,B,C (same as previous example)

JUMP, ,C (Calls CSS file JUMP.CSS on the system volume with three parameters, the first two of which are
null)

VOLN:JUMP (Calls CSS file JUMP.CSS on the volume VOLN)

5-26 29-390 ROS 11/76

Use of Parameters

Within a CSS file, a parameter to that file is referenced by means of the special symbol @. The first parameter is
referenced by @1, the second @2, etc. A straight-forward text substitution is employed.

Thus, a CSS file RUN could consist of:

LOAD @1
START @3,@2
etc.

This could be called:
RUN PROGRAM,NOLIST,148

Before each line of the CSS file is decoded, it is pre-processed, and any reference to a parameter is substituted with the
corresponding text. Thus, the file RUN with the previous call is executed as:

LOAD PROGRAM
START 148,NOLIST
etc.
In general, a reference to a parameter is of the form:

@n

where n is a decimal number indicating which parameter the user is referencing. Parameters are numbered starting with 1.
Parameter O has special meaning, defined later in this section.

A reference to a parameter is terminated by a non-decimal character.

For example, to reference parameter 12,
@12 or @12ABC or @l 2.EXT

are valid expressions.

Notice that this mechanism allows concatenation. For instance, if in the above file, RUN, the first command were
LOAD @1.TSK

Then only files with the extension .TSK would be presented to the loader.

Concatenation of numbers requires care. 123@1 references parameter 1, but @1123 is a reference to parameter number
1123.

A reference to a non-existent parameter is considered to be null.
The multiple @ facility enables a CSS file to access parameters of higher level files. CSS files can call each other to a
g}zximum depth specified at system generation time. Thus, @@2 in a CSS file refers to the second parameter of the calling
For instance, given the CSS call,

CSS1 argl,arg?
and assuming that in file CSS1 there is another CSS call,

CSS2 arg3,argd

the following references may be made in CSS2:

@1 = arg3
@2 = argd
@@1 = argl
@@2 = arg2

If a multiple @ sequence is such that the calling level referred to is non-existent, the parameter is considered to be null.
Parameter @0 is a special parameter. It is used to reference the name of the CSS file in which it is contained. Parameter @0

is replaced, during the pre-processing of the command line, with the name of the File Descriptor in precisely the style used
to call the file.

29-390 RO4 4/76 5-27

This mechanism can be used to assign the CSS file itself to a task LU. By this means the data for a program can be included
in the CSS file itself. However, the program must read precisely the right number of data items or else subsequent CSS
processing may fail. THIS IS ONLY VALID FOR NON DIRECT ACCESS FILES, SINCE ASSIGNING A FILE WOULD
POSITION THE FILE TO THE BEGINNING AS FAR AS THE TASK WAS CONCERNED.

By simplc extension, @0 refers to the file which calls the CSS file that contains it.
Commands Executable from a CSS File

All of the commands normally available to the operator at the console can be used in a CSS file, as well as a number of
commands specifically associated with the CSS facility. These additional commands are described next.

Most of the CSS commands start with the character $. If a log of commands is being kept, the $s help to emphasize where
CSS has been used, but the $ has no special meaning.

Interaction of CSS with Background and Foreground

CSS is essentially a single-stream processor. It is not possible, in the general case, to write a CSS file that can fully contro! a
complex foreground/background system. In order to control such a system, manual intervention by the console operator is
often required.

It is assumed that foreground systems are controlled, under normal circumstances, by SVC 6 calls between foreground
tasks. The console operator is only required to intervene in abnormal cases. The background system, however, is expected
to be controlled fairly often by the operator, or by CSS files (if the background is being run in a batch-like mode).

In batch mode, CSS control is only desirable between tasks; job-control commands are not usually desired while the tasks
are running. Therefore, CSS is “keyed” to the state of the background system. While a task in the background partition is
in any state other than Dormant, CSS is inactive. Therefore, a START command in a CSS file should be the last command
on the line if it is starting the background task. The console operator has full control over the system at these times. While
the background task is Dormant, CSS is active, if a CSS file had been invoked.

The state of foreground tasks has no effect on CSS activity.

While CSS is active, the operator is still able to enter commands from the system console. The execution of these
commands may be delayed while a CSS command is being read: however, this delay should not be excessive under normal
circumstances. If the operator has invoked an interactive device, however, such as TTY or CRT as a CSS file, the delay may
become great. Therefore, CSS should not be invoked from such devices unless the operator is willing to relinquish a great
measure of system control.

If a CSS file is active, any attempt to call another CSS file from the system console is rejected.

CSS files are permitted to affect foreground tasks;a TASK command read from a CSS file establishes the currently-selected
CSS task. Commands from the console are not affected by TASK commands read from CSS, and CSS is not affected by
TASK commands read from the console. All task related commands (see the section entitled Task Related Commands) and
CSS return code testing encountered in a CSS file affect the currently-selected CSS task.

When a CSS file is activated from the console, the currently selected CSS task is set equal to the currently-selected task. If
the currently-selected CSS task is deleted from the system, any subsequent task-reiated or CSS return code testing
commands are rejected with a task error (TASK-ERR). Also, if the currently-selected CSS task is cancelled, the active CSS
File is aborted as if a SCLEAR command had been executed.

$EXIT and SCLEAR

These two commands are provided for exiting from CSS files. SEXIT causes control to return to where it was when the
CSS file was called. Control returns either to the console or to a higher CSS file. A SEXIT must terminate each CSS file
called.

$CLEAR causes unconditional retum of control to the console. This command may be entered at the system console at
any time to abort an active CSS file.

$JOB and STERMJOB

These commands delimit a CSS job. The CSS job concept is a defensive mechanism which protects one user from the errors
of a previous user. A CSS job consists of all the operator commands and tasks loaded and started between a $JOB and
$TERMIJOB pair. The $JOB command delimits the start of a CSS job. The return code of the background partition is reset
to zero.

5-28 29-390 RO4 4/76

S$TERMJOB delimits the end of a CSS job. Most errors encountered in executing operator commands in a CSS job cause
the remaining statements in the CSS file to be skipped until a STERMJOB is encountered. If the STERMJOB is omitted,
errors may cause a subsequent $JOB statement to be skipped. Some errors cause control to be returned to the console.

By separating independent users into' CSS jobs delimited by $JOB and $TERMJOB statements they can be safely batched
in a CSS file, eliminating the chance that errors in one job affect another. A $JOB and $STERMJOB must be on the same

CSS level.

Logical Operators

There are ten logical operators available. They all start with the three characters $IF and allow one argument (e.g., $IFE
255, $SIFX B.CSS, SIFNULL @t1).

Each logical statement establishes a condition which is tested by the CSS processor. If the result of this test is true , then
commands up to a corresponding $SENDC command are executed. If the test gives false these same commands are
skipped.

The SENDC command delimits the range of a logical operator; however, nesting is permitted, so each $IF must have
corresponding SENDC.

In the following examples, the ranges of the various conditionals are indicated by brackets.

:SIF... ——:$IF... —:le...
:SENDC :$IF :$IF
:$ENDC :SENDC

——:SENDC :SIF
:$ENDC

____SENDC

There is no practical restriction on the depth of nesting.

The logical operators fall into three categories: Return Code testing, file existence testing, and parameter existence testing.

Return Code Testing

The Return Code is a halfword quantity maintained for each partition by the system (also see the description of SVC 3 in
Chapter 3).

29-390 RO4 4/76 5-29

It is set in any of the following ways:

SET CODE n — This command, which can be included in a CSS file or entered at the console, sets
the Return Code for the currently-selected CSS task to n.

$JOB — As part of its start job function. this command resets the Return Code for the
currently-selected CSS task to zero.

Command Error -- Any command error causes the CSS mechanism to skip to STERMJOB (assuming
that a $JOB has been executed; if not, control returns to the console). To indicate
that the skip has taken place, the Return Code for the currently-selected CSS task
is set to 255.

SSKIP -- This command has the same effect as a command error.

EOT (SVC 3,n) - When any task terminates by executing the EOT program command (SVC 3,n)
the Return Code for that task is set to n.

CANCEL - When a task is CANCELed, the Return Code for that task is set to 255.

There are six commands available for testing the return code of the currently selected CSS task:

SIFE n Test Return Code equal to n

SIFNE n Test Return Code not equal to n
SIFL n Test Return Code less than n
$IFNL n Test Return Code not less than n
SIFG n Test Return Code greater than n
$IFNG n Test Return Code not greater than n

In all cases if the test gives 'false', CSS skips commands until the corresponding $SENDC. If such skipping attempts to skip
beyond a STERMJOB or End of File, a command error is given.

NOTE

The return code can only be checked if the terminating task is
memory resident; otherwise, the return code is always zero.

In order to run a multi-step operation in the background, where steps depend on the results of the previous steps, the
background partition should be made resident. It is only meaningful to test the return code of a resident task.

File Existence Testing
There are two commands concerned with the existence of files:

$IFX fd Test fd for existence
SIFNX fd Test fd for nonexistence

Again, if the test gives ' false’, CSS skips to the corresponding SENDC. The restrictions on skipping also apply.
Parameter Existence Testing
There are two commands concerned with the existence of parameters:

$IFNULL @n Test @n null
SIFNNULL @n Test @n not null

Again, if the test gives 'false', CSS skips to the corresponding $ENDC, with the same restrictions.
The use of the multiple @ notation to test for the existence of higher level parameters is permitted.
In addition. a combination of parameters can be simultaneously tested.
For example,

SIFNULL @]1@2@3

In effect, this tests the logical AND of @1,@2, and @3 for nullity. If any of the three is present, then the test results in
'false’.

5-30 29-390 R0O4 4/76

Listing Directives

Two commands are provided to control the listing of CSS files as they are executed:
$COPY and $NOCOPY.

$COPY causes subsequent command lines to be listed, in their expanded form after parameter substitution. The listing
takes place on the console or the log device, according to the options selected in a previous SET LOG command.

SNOCOPY switches off the listing (The SNOCOPY statement is logged.) The default is SNOCOPY.

CSS File Construction
There are two command pairs provided for construction of CSS files: BUILD, ENDB, and $BUILD, $ENDB.
BUILD and ENDB

The BUILD command causes succeeding lines to be copied to a specified file, up to but excluding the corresponding ENDB
command. The format of the BUILD command is:

BUILD fd

where fd is the new CSS file. If fd does not already exist, it is created. (A chained file is allocated with a logical record
length equal to the SYSGENed command buffer length and keys of 0000; FD-ERR is issued if chained file support is not
in the system.)

BUILD can be issued from the console or from within a CSS file. No nesting of BUILD commands is possible. The
processing of BUILD ends when the first ENDB command is encountered, so any attempt to nest BUILD commands
results in a corrupt CSS file being constructed.

The BUILD command must be the last command on its input line. Any further information on the line is treated as
comment and is not copied to the new CSS file.

The ENDB command must be the only command on a line, and must occupy the first four character positions on the line.
Any further information on the line is treated as comment and is ignored.

A SBUILD. ... $ENDB sequence can be nested inside a BUILD ENDB pair.

$BUILD and SENDB

These commands operate in a similar manner to BUILD and ENDB, except that before each line is copied to the CSS file,
the CSS pre-processor substitutes any parameters in the line. It follows that $BUILD is only sensibly used from within a
CSS file so that parameters can be passed to it. For instance, $BUILD is normally used to build a command file for a
program (e.g., TET/32) from within a CSS file. The $BUILD command has the following format:

$BUILD fd

where fd is the new CSS file. If fd does not already exist, it is created (as with BUILD).
As with BUILD, no nesting of $BUILD is possible. A corrupt CSS file results if the attempt is made.
$BUILD must be the last command on its input line, any further information is treated as comment and ignored.

SENDB must be the only command on its input line, and it must occupy the first five character positions on the line. Any
further information is treated as comment and ignored.

A BUILD ENDB sequence can be nested within a SBUILD $ENDB pair.

29-390 R04 4/76 5-31

CSS Command Summary

$JOB
STERMJOB

SEXIT
SCLEAR
SET CODE n
SIFE n

SIFNE n

SIFL n

SIENL n

SIFG n

$IFNG n

$IFX fd
SIFNX fd

SIENULL @n

SIFNNULL @n

SENDC
$COPY
$SNOCOPY
$BUILD fd
SENDB
BUILD fd
ENDB

SSKIP

5-32

Start next job, reset Return Code

End of Job, any error skip in last job stops at this command with Return Code = 255, otherwise,
Return Code is defined by the job itself.

Exit from CSS file.

Return control to console.

Set Return Code to n.

If Return Code equals n, continue executing commands, otherwise skip to corresponding SENDC.

If Return Code not equal to n, continue executing commands, otherwise skip to corresponding
SENDC.

If Return Code less than n, continue executing commands, otherwise skip to corresponding SENDC.

If Return Code not less than n, continue executing commands, otherwise skip to corresponding
SENDC.

If Return Code greater than n, continue executing commands, otherwise skip to corresponding
$ENDC.

If Return Code not greater than n, continue executing commands, otherwise skip to corresponding
SENDC.

If fd exists, continue executing commands, otherwise, skip to corresponding SENDC.

If fd does not exist, continue executing commands, otherwise skip to corresponding $ENDC.
If parameter does not exist, continue executing commands, otherwise skip to corresponding SENDC.
If parameter exists, continue executing commands, otherwise skip to corresponding SENDC.
Delimits above conditionals.

Switch on listing.

Switch off listing

Construct CSS file with parameter substitution.

End of $BUILD.

Construct CSS file without parameter substitution.

End of BUILD

Skip to STERMJOB

29-390 RO4 4/76

CSS Error Conditions

ERROR
Task active
Command not recognized

Command syntax error

Second $JOB found

End of File found while
skipping to SENDC

$TERMJOB found while

skipping to $SENDC within
a job

End of file found before

MESSAGE ACTION TAKEN

SEQ-ERR Returns control to console
MNEM-ERR Skips to STERMJOB

FORM-ERR Skips to STERMJOB

PARM-ERR

JOBS-ERR Returns control to console

IO-ERR Skips to STERMJOB

I0-ERR Sets return code to 255 and ends job.

(This is only detected if the conditional
that caused the skip was also inside the
job;i.e., a skip to SENDC can skip over a
complete job).

(3) ENDB while (8) BUILDing

a file

Not enough space to build
an fd, or chained file
support not in system

Expanded command line
exceeds CSS buffer

Too many CSS levels
required

Currently selected CSS
task not in system

29-390 R0O4 4/76

IO-ERR Skips to STERMJOB

FD-ERR Skips to STERMJOB

BUFF-ERR Skips to STERMJOB

LVL-ERR Returns control to console

TASK-ERR Skips to STERMJOB
NOTE

Skips to STERMJOB — This action only occurs if the error is
detected within a CSS job. The job is aborted and the next
command obeyed is the first command after the $TERMJOB, at
which point the return code is 255. If the error occurs outside a
job, control is returned to the console.

5-33/5-34

APPENDIX 1
SUPERVISOR CALLS

Supervisor Call (SVC) instructions provide the Program Interface to 08/32 MT. The general form of an SVC instruction is:

SvCn,P

where n represents the type of SVC and P represents an address of a parameter block.
Parameter blocks must be aligned on fullword boundaries.
Unrecognized SVC types generate an illegal SVC interrupt.

Address parameters in parameter blocks must reference locations in the user tasks’ memory allocation.

SVC 1 - INPUT/OUTPUT OPERATIONS

SVC 1 - PARAMETER BLOCK

0(o0) 1on 202 pevice IND. | 3003) pevICE DEP.
FC Lu STATUS STATUS ALIGN 4
DB X’FUNCTION CODE'
4(04) DB X'LOGICAL UNIT’
BUFFER START ADDRESS DS 2
8(08) ‘ ’ ‘ DC A(START)
BUFFER END ADDRESS DC A(END)
,) , DC RANDOM
12{0C) DS 4
RANDOM ADDRESS DS 4
160101 ; ‘ ;
LENGTH OF DATA TRANSFER
1 1l n
20(14) ') ’
USED FOR ITAM REQUESTS
1 1 1
Buffers must be aligned on fullword boundaries.

The full parameter block is always required, although the START ADDRESS, END ADDRESS, RANDOM ADDRESS and
LENGTH fields are not necessarily used by the individual drivers in all cases.

29-390 RO4 4/76 Al-1

SVC | DATA TRANSFER FUNCTION CODE

Bit Alignment Meaning
0 Xoot o This bit must be zero to indicate a data transfer request.
1-2 XX e Read-Write bits. The meaning of these two bits is modified by bits 3-7
to control the transfer. Basically the values are:
10 - Read request
01 - Write request
11 - Test and Set request
00 - Wait only or Test 1/O Complete
3 X ASCII/BINARY bit. This bit indicates the type of formatting re-
quested.
0 - indicates ASCII formatting
1 - indicates binary formatting
If bit 7 is set, this bit is ignored.
4 X. PROCEED/WAIT bit. This bit indicates the action to be taken after the
/O has been initiated.

0- Proceed. Indicates that control is to be returned to the task
after initiation of 1/O.

1 - Wait. Indicates that the task is to be put into I/O Wait until the
data transfer is complete.

5 e X SEQUENTIAL/RANDOM bit.

0- Sequential. Indicates the next logical record is to be accessed.

1 - Random. Indicates the logical record specified by the
RANDOM field is to be accessed.

6 X UNCONDITIONAL PROCEED bit.

0- indicates the task is to be put into connection wait until the
requested device/file is free. At that time the request is
processed.

1 - indicates that the request is to be rejected with a condition
code of X'F' if the requested device/file is not free.

NOTE
If this is the only function code bit
set, the request is interpreted as TEST
1/O COMPLETE.
70 e X FORMATTED/IMAGE bit.

0 - indicates that the request is to be formatted according to the
device/file and the setting of bit 3.

1 - indicates that no formatting is to be performed (Image mode).

SVC 1 COMMAND FUNCTION CODE

Bit Alignment Meaning

0 Xov v This bit must be set to indicate a command function request
1 X . Rewind

2 Xeo. Backspace Record

3 DX e Forward Space Record

4 X . Write File Mark

5 X . Forward Space File

6 .X. Backspace File

7 1 ... X Reserved for driver dependent functions

Bits 1-7 reset (Function Code X'80") implies HALT I/O

Al-2

29-390 RO4 4/76

The ASCII/Binary, Formatted/Image and Sequential/Random modifiers for data transfer functions have general meanings,
but specific protocol interpretations are device dependent. ASCII/Binary modifier only has meaning if Formatted is
specified. Interpretation of command functions is device dependent, although the illustrated commands are conventional
for devices that can support them.

INTERPRETATION OF SVC 1 DEVICE INDEPENDENT STATUS BYTE

Bit Meaning if set to 1 Binary Hexadecimal
0 Always 1 for error status

1 Illegal Function 1100 0000 x'co

2 Device Unavailable 1010 0000 X'AQ'

3 End of Medium 1001 0000 X'90'

4 End of File 1000 1000 X'88!

5 Unrecoverable Error 1000 0100 X's4!

6 Parity or Recoverable Error 1000 0010 X'g2!

7 Illegal or Unassigned LU 1000 0001 X'81’

Interpretation of SVC 1 Device Dependent Status Byte

X'dn' device number if no dependent status available
X'82! I/O terminated by time-out
x's1’ /O terminated by Halt I/O

Condition code is always zero except for unconditional proceed calls.

The Status fields are set to zero on normal termination.

SVC 2 -SYSTEM UTILITY SERVICES

SVC 2.PARBLK UTILITY CALL
PARBLK ALIGN 4

DB OPTIONS, CODE OPTIONS and FUNCTION CODE

PARAMETERS

Function codes specify type of SVC 2 call. Unrecognized function codes are treated as illegal SVC instructions.
Option byte contains modifier bits as appropriate for function code, otherwise must be zero.

SVC 2 functions recognized by 0S/32 MT are:

Code Number

1 PAUSE

2 GET STORAGE

3 RELEASE STORAGE

4 SET STATUS

5 FETCH POINTER

6 UNPACK BINARY NUMBER
7 LOG MESSAGE

8 INTERROGATE CLOCK

9 FETCH DATE

10 TIME WAIT

11 INTERVAL WAIT

15 PACK NUMERIC DATA

16 PACK FILE DESCRIPTOR
17 SCAN MNEMONIC TABLE
18 MOVE ASCII CHARACTERS
19 PEEK

20 EXPAND ALLOCATION

21 CONTRACT ALLOCATION
23 TIMER MANAGEMENT

29-390 R04 4/76 Al-3

SVC 2 parameter blocks are illustrated in the following subsections.

Code 1 - Pause

0!00} 1on ALIGN 4
0 1 DB 0,1

Code 2 - Get Storage

0(00) 101) 2(02) !
OPTIONS 2 USER REG
1

4(04) !

NUMBER OF BYTES
I I l

OPT = X'00' GET specified number of bytes
OPT = X'80' GET all allocated storage between UTOP and CTOP

ALIGN 4

D8 OPT,2
DC H'REG’
DC F'SIZE’

REG is returned containing starting address of storage obtained or zero if request could not be honored.

SIZE specifies number of bytes to obtain for Options X'00'. The size field is returned set to the number of bytes obtained

for Option X'80".
The Condition Code is set:

CC = 0. if storage obtained
CC = 4, if request not honored

Code 3 - Release Storage

0(00) 1(01) 2(02) !
0 3 RESERVED

4(04) T

NUMBER OF BYTES
1 L 1

There are no options. SIZE specifies number of bytes to release.
The Condition Code is Set:

CC =0, it storage released
CC = 4, if request not honored

Code 4 - Set Status

0{(00) 1(01) 2{02) 3(03)
OPTIONS 4 AF cc

OPT = X'00' Modify Status and Condition Code
OPT = X'80' Modify Condition Code Only

AF = X'00' Disable Arithmetic Faults
AF = X'10" Enable Arithmetic Faults

CC = X'0x' where x is to replace the Condition Code.

Code 5 - Fetch Pointer

0(00} 1(01) 2(02) !
o] S USER REG
L

There are no options.

ALIGN 4

DB 0,3

DC H'0’
DCF F'SIZE’

ALIGN 4
DB OPT 4,AF.CC

ALIGN 4
DB 0,5
DC H'REG’

REG is returned pointing to a table of system parameters, of which the first three fullwords are CTOP, UTOP, and UBOT.

Al4

29-390 RO4 4/76

Code 6 - Unpack Binary Number

0(00) 1(01) 2(02) T ALIGN 4
OPTIONS 6 RESERVED DB OPT.6
: DC HO’
(04 DCF A(BUFFER)
A (DESTINATION BUFFER)
1 i 1

The binary number contained in user register zero is translated into ASCII hexadecimal or decimal format. The converted
data is stored in buffer pointed to by A(DESTINATION BUFFER).

OPT = X'00' + N Convert to Hexadecimal

OPT = X'80' + N Convert to Decimal

OPT = X'C0'+ N Convert to Decimal, suppress leading zero

OPT = X'40' + N Convert to Hexadecimal, suppress leading zero

Where ‘N is the length of the DESTINATION BUFFER in bytes. If ‘N’ = 0, a value of 4 is assumed.

Code 7 - Log Message

0(00) GEH] 2(02) T ALIGN 4
OPTIONS 7 LENGTH bB OPT7
P ; DC HLENGTH’
A (INDIRECT TEXT) be A(TEXT)
! 1 I
0(00) 1(01) 2(02) !
OPTIONS 7 LENGTH ALIGN 4
+ DB OPT,7
atoa) DC HLENGTH’
i DIRECT TEXT | bc corecT TEXT
OPT = X'40' Indirect text, ASCII formatted message
OPT = X'CO' Indirect text, ASCII image message
OPT = X'00' Direct text, ASCII formatted message
OPT = X'80' Direct text, ASCII image message
Indirect text may start on any byte boundary.
A Log Message request is treated as I/O Proceed.
Code 8 - Interrogate Clock
Ll
0{00) 1(01) 2(02) ALIGN 4
OPTIONS 8 RESERVED DB OPT,8
aloa) ' DC HO'
A{DESTINATION BUFFER) DCF A (BUFFER)
1 1 |
The current time of day is stored in the DESTINATION BUFFER in ASCII or binary format.
oPT = X'00' ASCII format, destination buffer must be 8 bytes long and can begin on a byte boundary.
OPT = X'80' Binary format, destination buffer must be 4 bytes long and located on a fullword boundary.

29-390 RO4 4/76 Al-5

Code 9 - Fetch Date

1

0(00) 1{01) 2(02) ALIGN 4
0 9 RESERVED DB 0,9
4(04) T DC H0
A (DESTINATION BUFFER) DCF A (BUFFER)
1 i 1

The current date is stored in the DESTINATION BUFFER. The receiving buffer must be eight bytes long and can begin on
a byte boundary. The date is returned in the following format:

mm/dd/yy or dd/mm/yy controlled by SYSGEN option
Code 10 - Time of Day Wait

T

0(00) 1(01) 2(02) ALIGN 4
0 10 RESERVED DB 0,10
4(04) i DC Hlo ,
TIME OF DAY DCF F'TIME
1 1 1

The calling task is suspended until a specific time of day. The Time of Day is specified in binary as seconds since midnight
of the current day. The time of day field is masked to a 28-bit binary (values greater than 86399 refer to future days).

If there is insufficient system space for a timer queue entry, the wait does not take place and the condition code ‘V’ bit is
set (CC =4).

Code 11 - Interval Wait

0(00) 1(01) 2(02} ALIGN 4
0 11 RESERVED DB 0,11
4(04) ' bc H"O’ ,
INTERVAL IN MILLISECONDS DCF F'TIME
| [1

The calling task is suspended for a given interval of time. The interval is specified in milliseconds from the time the call is
executed and it is masked to a 28-bit binary value. If there is insufficient system space for a timer queue entry, the wait
does not take place and the condition code “V’ bit is set (CC = 4).

Code 15 - Pack Numeric Data

0700] 1(01) 2(02) ' g;ng;} 15
OPTIONS 15 USER IREG DC H'REG’
OPT = X'00* Hexadecimal
OPT = X'80' Decimal
OPT = X'40' Hexadecimal, skip leading blanks
OPT = X'Co' Decimal. skip leading blanks

The converted ASCII representation is returned as a binary number in the user register zero: it is set to zero if no character
could be processed.

REG points to the ASCII string to be converted. It is returned pointing to the first byte in the string that could not be
converted (non-numeric if decimal is specified other than 0-9 and A-F if hexadecimal is specified), unless Register O is
specified.

The Condition Code is set to reflect the number of characters processed:

CC = 0, if characters are processed with no overflow

CC =1, if no characters are processed

CC =4, if conversion overflows Register 0

On overflow, for hexadecimal the least significant eight characters are returned in Register O; for decimal the returned
number is modulo ,31.

29-390 R04 4/76

Code 16 - Pack File Descriptor

0(00) 1101 2(02) ' | ALIGN 4
OPTIONS 16 USER REG DB OPT,16
0 } DC H'REG’
4(04)
A (DESTINATION BUFFER) DCF A(BUFFER)
1 L L

OPT = X'00' Default system volume

OPT = X'40' Default system volume, skip leading blanks
OPT = X'80! No default

OPT = X'C0O' No default, skip leading blanks

The File Descriptor ASCII string, expressed in command syntax, pointed to by the contents of REG, is placed in the
16-byte destination buffer in SVC 7 format. REG is returned pointing to the first character after the end of the File
Descriptor.

The Condition Code is set:

CC = 0, if full File Descriptor is processed

CC = 1. if no volume name was specified (even if default is taken)
CC = 4, if there is a syntax error

CC = 8, it no extension name was specified (defaults to blanks).
CC =9, if no extension or volume name was specified.

Code 17 - Scan Mnemonic Table

0 (00} 1{01) 2(02) 3(03) ALIGN 4

0 17 REG 1 REG 2 bB 0,17,R1,R2
DCF A (TABLE)

4(04)
A (MNEMONIC TABLE)

REGI1 contains a pointer to the input 7-bit ASCII string to be matched against entries in a mnemonic table. REGI is
returned pointing to the byte in the string following the match.

REG2 is returned with the index number of the matched entry in the table (-1 if no match, O if first word, etc).
The Condition Code is set:

CC = 0, if match is found
CC =1, if no match is found

Entries in the mnemonic table are separated by a null byte (X'00'); two null bytes end the table. Each character required
to be matched in an entry is indicated by its high order bit (Bit 0) being set.

Code 18 - Move ASCII Characters

0(00) 1(01) 2(02) 3(03) ALIGN 4

OPTIONS 18 REG 1 REG 2 DB OPT,18,R1,R2
DCF A (STRING)

4(04)

A (END CHAR STRING)
] 1

OPT = X'00' + N No Ending Character
OPT = X'80' + N Use Ending Characters

Where N is the maximum number of characters to be moved.

REG! contains a pointer to the input string. REG2 contains a pointer to the receiving area. Both registers are returned
pointing to the byte following the last byte moved.

A(END CHAR STRING) points to string of ASCII characters, any one of which halts the move and is not included in the
move; the first byte contains the number of ending characters.

29-390 R0O4 4/76 Al-7

The Condition Code is set:

CC =4, if no ending character is found with OPT = X'80".
CC = 0, otherwise. '

Code 19 - Peek

0(00) 1(01) 2(02) 3(03)
0 19 NLU MPRI
ALIGN 4
4(04) DB 0,19,0,0
[0sID DS 24
12(0C) : : '
| TASK ID |
+ |
20(14) ' '
CTSW
24(18) t 26(1A) '
TASK OPTIONS RESERVED
I I
Code 20 - Expand Allocation
0(00) 1001) 2(02) ' ALIGN 4
OPTIONS 20 NUMBER OF BLOCKS DB OPT,20
L DC HN’

This call is provided for compatibility with earlier 32-Bit operating systems.
Options recognized are:

OPT = X'00'
OPT = X'80"

With options. X'00', the Condition Code is set to 4. With options X'80', the N field is set to zero and the Condition Code is
set to 1.

Code 21 - Contract Allocation

0(00) 1(01) 2(02) ! ALIGN 4

0 21 NUMBER OF BLOCKS bB 0,21
1 DC H'N'

This call is provided for compatibility with earlier 32-Bit operating systems. 0S/32 MT takes no action upon receiving this
call, and returns immediately to the user.

The Condition Code is set to 0.

Code 23 - Timer Management

0{00) 101) 2(02) ! ALIGN 4
OPTIONS 23 N DB OPT,23
T + DC H'N’
40a DCF Y'T0000000"+F TIME’
T TIME
i 1 1 A

PARAMETER BLOCK FORMAT 1

Al-8 29-390 R04 4/76

0(00) 1101) 2(02) i ALIGN 4
OPT IONS 23 N D8 OPT.23
' \ DC HN'
4(04) | DCF Y'T0000000'+A(TABLE)
T A (PERIODIC TABLE)
| [1 1

PARAMETER BLOCK FORMAT 2

Format 1 causes the calling task to either wait for a single interval or time of day, or have an item added to its task queue
upon completion of an interval or reaching a time of day (additions to the Task Queue cause a trap if enabled). It is also
used to set up periodic time intervals. Bits 0-3 (T) of the TIME field indicate the type of interval desired:

0000 Seconds since midnight (Time of day)
0001 Milliseconds from now (Elapsed time interval)

Bits 4-31 of the TIME field contain the Time of Day to be waited on (Bits 0-3 = 0000) or length of interval in milliseconds
(Bits 0-3 = 0001).

Options recognized are:

X'00' Add to Queue on completion of a single interval
X's0' Wait until completion of interval

X'20' Read time until next interrupt

X'10* Cancel interval

X'40' Request Periodic Interrupts (Parameter Block 2)

The REGISTER field specifies the register containing the parameter associated with the interval. (The REG field is ignored
for the option X'80".)

If there is insufficient system space for a timer queue entry, the wait does not take place and the condition code ‘V’ bit is
set (CC =4).

Parameter block format 2 is required to request periodic interrupts only (OPT = X'40"). Bits 4-31 of the second fullword
contain the address of a table of time intervals and associated parameters. The number of pairs of entries is specified by N.

SVC 3 - END OF TASK (EOT)

There is no parameter block associated with this SVC. Instead, the resultant parameter block address of the SVC
instruction is treated as a binary constant and truncated to 8 bits, and replaces the System Return Code.

SVC 5- OVERLAY CALL

The SVC 5 parameter block format is:

I T T
oloo) ALIGN 4
. OVERLAY NAME] DC C'‘OVLYNAME’
DB STAT,OPT
DC H'LU’
L
8(08) 9(09) 10(0A) i
STATUS OPTIONS LU
L

Options recognized are:

x'or’ Load from LU without positioning
X'o4' Load from LU after rewind

Status returned is:
x'00’ Overlay loaded successfully
X'10! Load failed

xX"20' Mismatch on overlay name
X'40' Load failed, overlay would not fit in allocated memory

29-390 RO4 4/76 Al-9

SVC 6 - INTERTASK COORDINATION

SVC 6 - FUNCTION CODES

Al-10

0(00} ' } T
i TASKID] ALIGN 4
DC C'TASKID’
. DC Y'FUNCTION CODE’
1 [
8(08)) ' i DS 4
FUNCTION CODE D8 LUPRI
' : DC H'O'
12{0C) 14(0E) ' DC A(START)
TASK STATUS ERROR STATUS DC F'TIME’
16(10) 17011) 18(12) 19(13) gg Sgi\ém
LOAD LU PRIORITY RPRI RESERVED DC A(MESSAGE)
20(14) DC 0
START ADDRESS pDc o0
280181 | * : !
TT Il DELAY TIME
28(1C) ' y
DEVICE MNEMONIC
32(20) RESERVED | 33021 : =
MUST BE 0 PARAMETER
36(24) ' '
A (MESSAGE)
40(28) : : 1
- RESERVED |
i | 1
oo0o0o0000OO0GO!I1TITIIT1111222222222233
01234567890123456789012345678901'1
(DT E[Jr| H[s] [MQ[p] TOIT ITF[U] R NJ [A]]
Hex Mask Name Meaning
C000 0000 D DIRECTION: SELF
8000 0000 D DIRECTION: OTHER
1000 0000 E END TASK: CANCEL
3000 0000 E END TASK: DELETE
0200 0000 L LOAD
0080 0000 H TASK RESIDENT
0040 0000 S SUSPEND EXECUTION
0010 0000 M SEND MESSAGE
0008 0000 Q QUEUE PARAMETER
0004 0000 P CHANGE PRIORITY
0000 8000 (6] CONNECT
0000 4000 T THAW
0000 2000 I SINT
0000 1000 F FREEZE
0000 0800 U UNCONNECT
0000 0080 R RELEASE SUSPEND TASK
0000 0040 N TASK NON-RESIDENT
0000 0002 A START: IMMEDIATE
0000 0006 A START: DELAY

29-390 R04 4/76

SVC 6 - ERROR CODES

Code

Dec (Hex) Function(s) Meaning

0(0) All No errors; all requested functions complete.
1(1) All Syntax error in TASKID field. Does not apply to self-directed calls.
2(2) — Illegal function code.

3(3) L Task already present.

4(4) All but L No such task in foreground.

5(5) P Invalid priority.

6(6) L Floating point not supported by SYSGEN.
7(7) A Specified task not dormant.

10(A) A (delay) Invalid code in TT field.

11(B) M Message cannot be sent.

12(C) Q No queue, full queue, or entries disabled.
13(D) O, T,LF,U No such device in system.

14(E) O,T.LF,U Device named is not a connectable device.
15(F) (¢} Device is busy, cannot connect.

16(10) T,LE,U Device not connected to specified task.
17(11) L Invalid or unassigned Load LU.

25(19) I Device is not SINTable.

65(41) L No partition with sufficient number of LUs.
66(42) L RTL or TCOM not present.

68(44) L Invatid format on Loader Information Block.
73(49) L No vacant partition of correct size.

128-255 L 1/O error reading Load LU; error status is as returned by SVC 1.
(80-FF)

SVC 7 - FILE HANDLING SERVICES

0(00) 1601 2(02) 3(03)
COMMAND MODIFIER STATUS ALIGN 4
DB CC,MD,0,LU
4(04) 5(05} 6(06) DC H'KEYS’, H'LRECL'
WKEY RKEY RECORD LENGTH DC C'VOLN’
3108) t DC C'FILENAME’
VOLUME NAME DC C'EXT'
' ; ; DC F'SIZE
12(0C)
= FILE NAME -
i I
20{14) ' " 23(17)
EXTENSION RESERVED
24(18) : !
SIZE
1 1 1
24(18) ' 26(1A) ']
INDEX BLOCK SIZE DATA BLOCK SIZE DC H’ISIZE’',H’'DSIZE’
1 1
NOTE

For chained files, the fullword beginning at byte 24 contains the
physical block size in sectors.

29-390 R04 4/76 Al-11

Format of the Command/Modifier halfword:

0 1 2 3 4 5 6 7 8 10 11 12 13 15
A 0] H N P C D T AP B8M FT
COMMANDS MODIFIERS -!

(Bit 0) Allocate; requires File Type (FT) tield as modifier.

(Bit 1) Assign: requires Access Privilege (AP) and Buffer Management (BM) fields
as modifiers.

(Bit 2) Change access privileges: requires AP field as modifier.

(Bit3) Rename.

(Bit4) Reprotect.

(Bit 5) Close.

(Bit 6) Delete.

(Bit 7) Checkpoint.

-TcnwzZzT O»

All bits zero = Fetch Attributes.

Bits 8-10 specify Access Privileges, encoded as follows:

000 = SRO (Sharable Read Only)

001 = ERO (Exclusive Read Only)

010 = SWO (Sharable Write Only)

011 = EWO (Exclusive Write Only)

100 = SRW (Sharable Read-Write)

101 = SREW (Sharable Read, Exclusive Write)
110 = ERSW (Exclusive Read, Sharable Write)
111 = ERW (Exclusive Read-Write)

Bits 11-12 specify Buffer Management, encoded as follows:

00 = Deftault buffer management method.

0l = Unbuffered Physical (default for Contiguous files).

10 = Buffered Logical (default for Chained files and Indexed files).
It = Reserved, considered illegal.

Bits 13-15 specify File Type, encoded as follows:

000 = Contiguous

001 = Chained

010 = Indexed

011

L= Reserved, considered illegal

110

111 = ITAM Buffered Terminal Manager

SvC 7 RETURN CODES

Error Code
(Hexadecimal)
00 No error
01 Illegal function
02 LU Error
03 Volume Error
04 Name Error
05 Size Error
06 Protect Error
07 Privilege Error
08 Buffer Error
09 Assignment Error
0A Type Error
0B File Descriptor Error
oC TGD Assignment Error
80-FF I/O Error

Al-12 29-390 R04 4/76

The required parameters for the command are:

ALLOCATE FT, KEYS, LRECL, VOLN, FILENAME, EXT and SIZE

ASSIGN i AP, BM, LU, KEYS, VOLN, FILENAME, EXT; except BM, FILENAME, and
EXT for direct access files only

CHANGE ACCESS PRIVILEGES AP and LU

RENAME LU, FILENAME, and EXT

REPROTECT KEYS and LU

CLOSE LU

DELETE VOLN, FILENAME, EXT and KEYS

CHECKPOINT LU

FETCH ATTRIBUTES LU: returned are LRECL, VOLN, FILENAME, EXT, SIZE, device attributes in

KEYS halfword and device code in MODIFIERS byte.

SVC 9 - LOAD TSW

The effective address of the SVC 9 argument specifies the location of the TASK STATUS WORD to be loaded.

TASK STATUS WORD

Name Bit Mask Meaning

w 0 8000 0000 * Trap Wait

P 1 4000 0000 Power Restoration Trap Enable

A 2 2000 0000 Arithmetic Fault Trap Enable

S 3 1000 0000 SVC 14 Trap Enable

Q 4 0800 0000 Task Queue Service Trap Enable

M 5 0400 0000 Memory Access Fault Trap Enable

I 6 0200 0000 Illegal Instruction Trap Enable

D 16 0000 8000 Enable Queue Entry on Device Interrupt

T 17 0000 4000 Enable Queue Entry on Task Call

E 19 0000 1000 Enable Queue Entry on Task Message

(6] 21 0000 0400 Enable Queue Entry on I/O Proceed Termination
Z 22 0000 0200 Enable Queue Entry on Time-out Completion
F 23 0000 0100 Enable SVC 15 Queue Entries

cvgl 28-31 Condition Code at Time of Trap

LOC Location Counter at Time of Trap

If the LOC field of the new TSW is zero, execution resumes at the instruction following the SVC 9.

SVC 14 - USER’S SVC '

The address field of SVC 14 is not interpreted by OS/32, but may be defined by the user task. If the SVC 14 Trap Enable
bit in the task’s current TSW is enabled, the effective address of the SVC 14 argument is stored in the SVC 14

ARGUMENT field in the task’s USER DEDICATED LOCATIONS. If the SVC 14 Trap Enable bit in the task’s current
TSW is disabled, the SVC 14 is treated as an illegal SVC.

29-390 R04 4/76 Al-13

SVC 15 ITAM DEVICE DEPENDENT I/O

Al-14

0(00) 1(01) 2(02)
FUNCTION . LU STATUS
4104) 5(05) '
NUMBER A(DCW STRING)

8(08)
LENGTH OF LAST READ

10(0A}
LENGTH OF LAST WRITE

+

12(0C) 13(0D)
CODE 1 A{(DATA FIELD 1)
16101 17011) ! '
CODE 2 A(DATA FIELD 2)
1 4
20014) 21(15) i
CODE 3 A(DATA FIELD 3)
1 L
24(18) '
e R R

ALIGN 4

DB FC,LU,0,0

DC A(DCW)

DCX 0,0

DC DC1+A(DATA1)
DC DC2+A(DATA2)
DC DC3+A(DATA3)

29-390 RO4 4/76

APPENDIX 2
COMMAND SUMMARY

ALLOCATE fd, CHAINED [,[lrecl[/bsizel]ll,keys]}]

Allocates chained file <fd> with

<lrecl> = record length default = 126
<bsize> = block size default = 1
<keys> = protection keys default = 00

Minimum abbreviation AL filename,.CH
ALLOCATE fd, CONTIGUOUS ,fsizel,keys]

Allocates contiguous file <fd> with
<fsize> = file size in sectors
<keys> = protection keys default = 00

Minimum abbreviation AL filename,CO, fsize

ALLOCATE fd, INDEX [,[lrecl][/[bsize] [/isizel]l[,keys]]

Allocates indexed file «<fd> with

<lrecl> = record length default = 126
<bsize> = data block size default = 1
<isize> = index block size default = 1
<keys> = protection keys default = 00

Minimum abbreviation AL filename,IN
ALLOCATE fd,ITAM [,lrecl(/bsize]([,keys]]

Allocates ITAM terminal <fd> with

<lrecl> = record length default = terminal dependent
<bsize> = block size default = terminal dependent
<keys> = protection keys default = 00

Minimum abbreviation AL £4,IT
ASSIGN 1lu,fd[,[access-priv] [,keys]]
Assigns file or device <fd> to logical unit <1lu> with
<access-priv> = access privileges default = SRW
<keys> = protection keys default = 00
Minimum abbreviation AS lu,filename

BFILE fdl[,1lu]

Backspaces file <fd> to filemark, <lu> required for
direct access files

Minimum abbreviation BF fd

BIAS [{address or *}]

Sets BIAS to <address> or base of partition containing currently
selected task

Minimum abbreviation BI *

29-390 R0O4 4/76

A2-1

BRECORD fdf,1u]

Backspaces file <fd> one record, <lu> required for
direct access files

Minimum abbreviation BR fd
BUILD fd
Builds text file to <fd>, if extension omitted .CSS is
used. Subsequent input from console is written to <fad>
until ENDB command is encountered.
Minimum abbreviation BU filename
CANCEL
Cancels current task
Minimum abbreviation CA
CLOSE [lul,lu ...]}
Closes specified Logical Units of currently selected task
Minimum abbreviation CL 1lu
CLOSE ALL
Closes all Logical Units of currently selected task
Minimum abbreviation CL A
CONTINUE

Continues current task, if paused by operator command or
by SVC 2 code 1.

Minimum abbreviation CO
DELETE fd{,fd ...]
Deletes specified files.
Minimum abbreviation DE fd
DISPLAY DEVICES [, fd]
Displays on <fd> the names of the devices and direct
access volumes in the system.

<fd> defaults to the system console.

Minimum abbreviation D D

DISPLAY FILES [,[voln:][{filename or -}[.[{ext or =}1}][,£fd]]
Displays on <fd> the files contained on volume <voln>
with name <filename> and extension <ext>.
-.- means all filenames, all extensions.

<voln> defaults to the current system volume
<fd> defaults to the system console

Minimum abbreviation D F

A2-2 29-390 R04 4/76

DISPLAY ITAMTERM [,[voln:][{filename or -}t.[{ext or -}1111[,£dl]

Displays ITAM terminal information on <fd>. The command syntax
is interpreted as for DISPLAY FILES.

Minimum abbreviation D I
DISPLAY LU [,£d]
Displays on <fd> the current logical assignments of
the currently selected task.
<fd> defaults to the system console.
Minimum abbreviation D L
DISPLAY MAP(/id] [, £fd]
Displays on <fd> information about partition <iad>.
<id> defaults to ‘whole system”
<fd> defaults to the system console.
Minimum abbreviation D M

DISPLAY PARAMETERS [, £d]

Displays on <fd> the parameters of the current task.
<fd> defaults to the system console.

Minimum abbreviation D P
DISPLAY TIME [, £d]

Displays on <fd> the current date and time.
<fd> defaults to the current system console.

Minimum abbreviation D T
ENDB
Ends creation of text file started by BUILD command.
Minimum abbreviation ENDB
EXAMINE address [,n[,£fd]]
Displays on <fd> the contents of the <n> locations, starting
with <address>+BIAS.
<n> defaults to 2
<fd> defaults to the system console.
Minimum abbreviation EXA address
EXAMINE addressl [/address2([, fd]]
Displays on <fd> the contents of the bytes from <addressl>+BIAS
to <address2>+BIAS.
<address2> defaults to <addressl>+BIAS+2,

<fd> defaults to the system console.

Minimum abbreviation EXA address

29-390 R0O4 4/76 A2-3

FFILE fd [,1ul

Forward spaces file <fd> to filemark. <lu> is required for
direct access files.

Minimum abbreviation FF f£d
FRECORD fd [, 1lul

Forward spaces file <fd> one record. <lu> is required
for direct access files.

Minimum abbreviation FR f£d

LOAD taskid [,[£fd][,n]]

loads task or library from <fd> into partiton <n> and names
it <taskid>. .
<taskid> may also be .BG or .LIB
<fd> defaults to TASKID.TSK for foreground tasks.
<n> defaults to first vacant foreground partition
large enough for task being loaded.
Minimum abbreviation L taskid
For background L .BG,fd
For library L .LIB,fd
MARK f£d,ON[,PROTECT]

Marks direct access device <fd> on-line to the Operating
System. PROTECT specifies device is read-only.

Minimum abbreviation MA fd,ON
MARK fd,OFF

Marks direct access device <fd> off-line to the Operating
fystem.

Minimum abbreviation MA fd4,0F
MODIFY address,[data)[,data ...]

Changes location specified by <address>+BIAS to <data>.
<data> defaults to 0.

Minimum abbreviation MO address,
OPTIONS opt [,opt ...]
Sets task options to <opt>. Possible values for <opt>
are AFCONT, AFPAUSE, RESIDENT, NONRESIDENT, FLOAT, DFLOAT,
NOFLOAT, SVCPAUSE, or SVCCONT.

Minimum abbreviation OPT AFC,AFP,R,NON,F,DF,
NOF ,SVCP,SVCC

PAUSE
Pauses current task.

Minimum abbreviation P

A2-4 29-390 RO4 4/76

RENAME oldfd,newfd
Changes name of device or file from <oldfd> to<newfd>.
Minimum abbreviation REN oldfd,newfd
REPROTECT fd,keys
Changes protection keys of file or device <fd> to <keys>.

Minimum abbreviation REP fd,keys

RESET
Resets a quiescent system.
Minimum abbreviation RES
REWIND fd [, 1lu]
Rewinds file <fd>. <lu> is required for direct access files.
Minimum abbreviation REW fd
RW fd [,1u]
Alternative spelling for REWIND.
SEND (Up to 64 ASCII characters)
Sends characters as message to current task.
Minimum abbreviation SEN (message)
SET CODE n
Sets the return code of the CSS task to <n>.
Minimum abbreviation SE C n
SET LOG [fd[.COPY]]

Sets system log device to <fd>. COPY option allows console to
receive messages also. No parameters switches log off.

Minimum abbreviation SE L or SE L
SET PARTITION id/size[,id/size ...]
Sets sizes of partitions in a quiescent system. <id> is a
foreground partition number, .TCOM or .SYS
<size> is a multiple of 1KByte, in steps of .25.
Minimum abbreviation SE PA id/size
SET PRIORITY n

Sets priority of current task to <n>.

Minimum abbreviation SE PR n

29-390 RO4 4/76

fd,cC

A2-5

SET SLICE n

Sets time slicing constant.
<n> = 0 switches off time slicing.

Minimum abbreviation SE S n

SET TIME mm/dd/yy,hh:nn:ss{(or dd/mm/yy,hh:nn:ss)
Sets date and time; format defined at SYSGEN.
Minimum abbreviation SE T mm/dd/yy,hh:nn:ss
START [address][,args to prog]
Starts current task at <address>, args are passed at UBOT.
<address> defaults to transfer address set by TET/32.
<args to prog> defaults to <carriage return>.
Minimum abbreviation ST

TASK [taskid]

Sets current task. If <taskid> is omitted the system responds
with the taskid of the current task.

Minimum abbreviation T
VOLUME [voln]

Sets system default volume. If <voln> is omitted the system
responds with the current default volume name.

Minimum abbreviation V
WFILE fd [.,1lu]

Writes a filemark to <fd>. <lu> is required for
direct access devices.

Minimum abbreviation WF f£d
$SBUILD f£fd
Builds a CSS text file to <fd>, until a $ENDB command is
read from the command stream. Parameters are expanded as
the file is built.
Minimum abbreviation §$B fd

SCLEAR

Forces control back to the system console from a CSS file
of any depth.

Minimum abbreviation $CL
$COPY
Switches on listing of CSS commands to the system console.

Minimum abbreviation $CO

A2-6 29-390 RO4 4/76

SENDB

Ends creation of a CSS file by a $BUILD command.

SENDC

Minimum abbreviation

SENDB

Signifies the end of a group of conditionally obeyed commands.

S$EXIT

Minimum abbreviation

Exit from CSS file.

$IFE n

Tests

SIFG n

Tests

SIFL n

Tests

SIFNE n

Tests

S$IFNG n

Tests

SIFNL n

Tests

return

return

return

return

return

return

SIFNNULL @n

code

code

code

code

code

code

Minimum abbreviation

equal to <n>.

Minimum abbreviation

greater than <n>

Minimum abbreviation

less than <n>.

Minimum abbreviation

not equal to <n>.

Minimum abbreviation

not greater than <n>.

Minimum abbreviation

not less than <n>.

Minimum abbreviation

Tests that parameter <@n> exists.

29-390 R0O4 4/76

Minimum abbreviation

SENDC

S$EX

SIFE n

$IFG n

$IFL n

SIFNE n

SIFNG n

SIFNL n

$IFNN @n

A2-1

SIFNULL @n
Tests that parameter <@n> does not exist.
Minimum abbreviation $IFNU @n
$IFNX fd
Tests that file <fd> does not exist.
Minimum abbreviation SIFNX fd
SIFX fd
Tests that file «<fd> exists.
Minimum abbreviation S$IFX f£d4
$JOB
Starts a CSS job.
Minimum abbreviation §J
SNOCOPY
Switches off listing of CSS commands to system console.
Minimum abbreviation §N
$SKIP
Skip to next STERMJOB in command stream.
Minimum abbreviation §S
STERMJOB
Terminates a CSS job.

Minimum abbreviation ST

A2-8

29-390 RO4 4/76

APPENDIX 3
COMMAND ERROR SUMMARY

XXXX-ERR TYPE=YYYY POS =ZZZ7ZZ

where XXXX is error descriptor
Z7717 represents last command item parsed
YYYY is error type for 1/O, file access, and loader

The possible values of the TYPE=YYYY field are:

1/0: LU (illegal or unassigned LU)
PRTY (parity or recoverable errors)
UNRV (unrecoverable error)
EOF (end of file)
EOM (end of medium)
DU (device unavailable)
FUNC (invalid function for device)
file: LU (illegal LU)
VOL (no such volume/device)
SIZE (erroneous record length or size)
NAME (mismatched FILENAME.EXT)
PROT (mismatched protection keys)
PRIV (mismatched access privilege)
BUFF (unable to obtain FCB)
ASGN (LU not assigned)
TYPE (non-direct access device or off-line)
FD (illegal File Descriptor syntax)
FUNC (invalid function)
I0 (I/O error during file access; second TYPE field
indicates type of I/O error encountered)
SvVCé6 NLU (no partition vacant with sufficient LUs)
PRES (specified TASKID already present in system)
LIB (invalid data in Loader Information Block)
MEM (no partition of sufficient size vacant)
10 (I/O error detected on specified device or file)
NOFP (system does not support floating point options required by task)
SEG (RTL or TCOM not present when trying to load a task
using them)
NMSG (task has messages disabled)

If an I/O error occurs during execution of a file management or SVC 6 function, the followiag error message is output:
XXXX-ERR TYPE=IOTYPE=YYYY POS=ZZZZ

where YYYY indicates one of the above I/O error types.

The following is a list of Error Messages:

ALLO-ERR TYPE = NAME
De§ired file name currently exists on the specified volume.

Corrective Action: Specify a unique file name.

29-390 RO4 4/76 A3-1

ALLO-ERR TYPE = SIZE

Insufficient room on the disc to allocate the file.

Corrective Action: If possible, delete any files no longer needed; if a contiguous file is being allocated,
reduce the size of the allocation.

Block size of Chained or Indexed file exceeds limit established at SYSGEN time.

Corrective Action: reduce the block size.

For a Chained or Indexed file, a zero logical record length or data block size was specified.

Corrective Action: Specify a non-zero logical record length or blocksize.
ALLO-ERR TYPE = TYPE

The volume specified is not a direct-access device.

Corrective Action: Ensure that specified volume is the disc volume name, not its device name.
ALLO-ERR TYPE = VOL

Volume name specified, or defaulted to, is not the name of any of the discs currently on-line.

Corrective Action: ensure that desired disc is on-line; if defaulting the volume name, ensure that the default
volume name is correct (enter a VOLUME command).

ARG-ERR

The amount of space between CTOP and UTOP is insufficient for the Command Processor to place the
arguments of the START command.

Corrective Action: A larger partition is required.
ASGN-ERR TYPE = BUFF

An attempt is being made to assign a file when there is insufficient system space available to accommodate
the File Control Block (FCB).

Corrective Action: Close any files currently assigned which are no longer required or quiesce the system and
increase the size of system space.

ASGN-ERR TYPE = LU
Attempt to assign to an LU that is greater than the maximum LU number specified at SYSGEN time.
Corrective Action:

1. Specify LU which is less than maximum LU number, or
2. ReSYSGEN system to specify greater maximum LU number.

ASGN-ERR TYPE = NAME
An assignment is being directed at a non-existent file.

Corrective Action: Make sure that the default volume name is correct. Check the files currently in existence
on a given volume with a DISPLAY FILES command.

ASGN-ERR TYPE = PRIV
A file, which is currently assigned to a Logical Unit with a given privilege, can not be assigned to another
Logical Unit because the access privileges are in conflict; e.g., an assignment of Exclusive Read/Write (ERW)
is directed towards a file currently assigned for Shared Read only (SRO).

Corrective Action: Request a compatible access privilege on second assignment or change the access
privileges currently associated with the file.

A3-2 29-390 RO4 4/76

ASGN-ERR TYPE = PROT

The file being assigned to is unconditionally protected (Read and/or Write keys = X'FF') or the Read/Write
keys specified in the assign statement do not correspond to those associated with the file.

Corrective Action: Specify the correct Read/Write keys in the assignment or reprotect the file using the
REPROTECT command.

ASGN-ERR TYPE = SIZE
A chained file is being assigned and there is not enough room on the disc to allocate a physical block.

Corrective Action: Ensure sufficient space on the disc by deleting old files or reducing the block size of the
file.

ASGN-ERR TYPE = TGD
Attempt to assign a TGD device that is not assignable.
ASGN-ERR TYPE = VOL
Volume name specified, or defaulted to is not the name of any of the discs currently on-line.

Corrective Action: Ensure that desired disc is on-line; if defaulting the volume name, ensure that the default
volume name is correct.

BPAC-ERR
The disc is not ready or it is not readable.
Corrective Action: If disc is ready and is not write-protected, re-format using the DISC FORMATTER
program, and INITIALIZE using the DISC INITIALIZE program.

BUFF-ERR

The expanded CSS line overflowed CSS buffer size.
Corrective Action: Specify larger CSS buffer length at next SYSGEN, or modify CSS statements. In the
{?If:nwhile, ensure that expanded CSS line will not overflow buffer by shortening length of unexpanded
CLOS-ERR TYPE = ASGN
The Logical Unit specified in the close command is not assigned.
Corrective Action: Verify the Logical Unit being closed with a D LU command.
DELE-ERR TYPE = ASGN
An attempt is being made to delete a file which is currently assigned.
Corrective Action: Close the Logical Unit assignment and repeat the delete.
NOTE
Following a system crash, the directory block for a file might
incorrectly indicate that the file is currently assigned. In this case,
the Disc Integrity Check must be run.
DELE-ERR TYPE = BUFF

There is insufficient available memory in System Space to perform the delete operation.

Corrective Action: Quiesce the system and enlarge system space or make more space available by closing
one or more logical units.

29-390 R0O4 4/76 A3-3

DELE-ERR TYPE = TYPE

DIR-ERR

DUPL-ERR

FD-ERR

FORM-ERR

I/O ERR

JOBS-ERR

LU-ERR

The volume name specified or defaulted to is not a direct-access device.

Corrective Action: Ensure that the proper disc is on-line and that the volume name is specified correctly. If
using the volume name, make sure the current default volume name is correct.

A DISPLAY FILES command is directed at a disc containing one or more invalid directory entries.

Corrective Action: Run the Disc Integrity Check to verify the contents of the Disc Pack.

When marking on a direct-access device, the volume name associated with it is an existent device or volume
name.

Corrective Action: Run the Disc Initializer to change the disc volume name.

The file descriptor is syntactically incorrect, or a program on the disc is being loaded and there is not
enough system space for the load operation.

Corrective Action: Ensure that the volume name, file name and extension are all specified correctly.

The command line is syntactically incorrect.

Corrective Action: Verify the format of the command in Chapter 5.

A device being accessed by the Command Processor is returning a non-zero I/O status.

Corrective Action:

TYPE=PRTY - Parity or other Recoverable error. Retry the operation with another unit, if possible.
TYPE=UNRYV — An unrecoverable error has occurred.

TYPE=EOF,EOM - The device has reached an end of file or end of medium before completing the
operation.

TYPE=DU -- The device is unavailable. Ensure that the device is on-line and ready.

TYPE=FUNC - An invalid operation is being directed toward a device, e.g., attempting to write to a
read-only device.

TYPE=LU -- Illegal or unassigned LU. Close and reassign proper LU.

A $JOB statement was encountered following another $JOB statement but prior to a $TERMJOB
statement.

Corrective Action: The scope of $JOB must be terminated by a STERMJOB. $JOBs may not be restarted.

A Logical Unit specified in an assign statement is invalid.

Corrective Action: Verify that the desired LU is available for the assignment with a DISPLAY LU
command.

29-390 R0O4 4/76

LVL-ERR

The number of SYSGENed CSS levels was exceeded. At the cost of additional buffer space, specify a
greater number of CS8 levels the next time a SYSGEN is performed.

LOAD-ERR TYPE=10
An 1/O error was generated during the ifoad operation.

Corrective Action: Retry the Load operation. If the same condition results, verify the status of the medium
from which the task is being loaded.

LOAD-ERR TYPE = LIB
The data in the Loader Informuation Block is Invalid.

Corrective Action: This error most frequently occurs when an attempt is made to load a task which has not
been established with the Task Establisher (TET/32).

LOAD-ERR TYPE = MEM
Aload is attempted when no partition large cnough is available.

Corrective Action: Quiesce the system and enlarge one partition to the minimum size specified when the
task was established.

LOAD-ERR TYPE = NLU
There is no available partition with sufficient Logical Units. In OS/32 MT, all partitions support the
same number of Logical Units. This error means that the number of Logical Units specified when the task

was established exceeds the number of Logical Units specified at SYSGEN time.

Corrective Actions Rocntd™ihh 0 Ll specil e« Bar dose thua v cquad to MAXLU W sl by the

SYSGEN. or re-SYSCGEN the svstem. increasing T e \lAX[namber specified to CUP/MT

LOAD-ERR TYPE = NOFP

A task requiring floating peint suppert is being leaded and the required floating point option is not
supported in the system.

Corrective Action: Re-establish the task. eliminating the floating point option if possible; if the task
requires floating point support and the system contains no hardware floating point, the system must be
1e-SYSGENed to include Floating Point Traps (include a FLOAT S or FLOAT S,S statement in the
CUP/MT input).

LOAD-ERR TYPE = PRES
The specified TASKID is already present in the system.
Corrective Action: If a duplicate TASKID was accidentally specified, merely specify another TASKID and
retry the LOAD. However, if the same task is already in memory delete the first copy by first ensuring that
the task is non-resident and then cancelling the original task.

LOAD-ERR TYPE = SEG

A task requiring the Run Time Library (RTL) or a Task Common Area (TCOM) is being loaded prior to
establishing an RTL or TCOM partition.

Corrective Action: Eusurc that RTL or TCOM is present before attempting to load a task requiring them.
Ensure that global task common names were specified correctly when the task was established.

MEM-ERR
The system contains insufficient memory te support the command request. For example, a SET
PARTITION comimand was entered and the sum of the partition sizes exceeds the available memory.

Corrective Action: Enter a DISPLAY MAP commuand to determine the current partition structure. If the
structure resulting fiom the previous SET PARTITION command is unsatisfactory, repeat the SET
PARTITION command. .

29-390 RO4 4/76 A3-5

MNEM-ERR

NODA-ERK

NOFP-ERR

NOPR-ERR

NULL-ERR

PARM-ERR

PRIV-ERR

The entered command is unrecognizable.

Corrective Action: If a CSS call, verify that the device/volume name or file name is specified correctly.
Otherwise. verify the command syntax in Chapter 5.

upport does not exist in system.

S}
~

<
o
wr
w
w

Corrective Action: Reconfigure system to include direct access.

There exists no floating-point support in the system.

A command was entered which required more parameters than specified in the command line.

Corrective Action: Verify the syntax of the command in Chapter 5.

An attempt was made to rename the NULL device.

A command has been entered with invalid parameters.

Corrective Action: Verify the syntax of the command in Chapter 5.

The access privilege mnemonic is syntactically incorrect.

Corrective Action: Ensure that the access privilege specified in the command is one of the following: SRO,
SRW, SWO, SREW, ERO, ERW, EWO, EREW.

RENM-ERR TYPE = ASGN

The file/device cannot be assigned for ERW (required to perform the rename) because the file/device is
currently assigned to at least one Logical Unit.

Corrective Action: Close any Logical Units currently assigned to the file device and repeat the RENAME
command.

RENM-ERR TYPE = NAME

1. The new file name already exists in the volume directory.
Corrective Action: Specify a unique tile name in the RENAME command.
2. The new device name already exists within the Device Mnemonic Table (DMT).

Corrective Action: Specify a unique device name in the RENAME command.

REPR-ERR TYPE = ASGN

A3-6

The file/device cannot be assigned for ERW (required to carry out the reprotection) because the file device
is currently assigned to at least one Logical Unit.

Corrective Action: Close any Logical Units currently assigned to the file device and repeat the REPRO
command.

29-390 RO4 4/76

SEQ-ERR

SKIP-ERR

SLOC-ERR

SPAC-ERR

STAT-ERR

A command is entered out of sequence. The following would all generate sequence errors:
- attempting to PAUSE a task when none is active

- assigning to a currently assigned Logical Unit while a task is active
— entering an OPTION command for an uctive task

An attempt was made to skip beyond the end of a CSS job. The CSS job concept delimits CSS jobs withi the
$JOB STERMIJOB statements. The conditional CSS statcments allow skipping to a conditional end
statenient (SENDC) if certain conditions are met. If the nesting of conditional statements is incorrect, a
STERMJOB statement can be encountered prior to terminating the scope of the conditional.

Corrective Action: Ensure that the nesting of CSS conditional statements is specified correctly.

The start locati..n of a task was specified below UBOT or was omitted when it was required.

Corrective Action: Specify correct starting location or reestablish the task.

An assign on behalf of a task is refused because the system space available for task use has been exceeded.

Corrective Action: Re-establish the task with a larger maximum system space.

An attempt was made to MARK a device on/off-line while a Logical Unit was assigned to it.

Corrective Action: Close the Logical Unit assignment and retry the MARK.

SV(6-ERR TYPE = NMSG

TASK-ERR

TKID-ERR

An SVC 6 error was returned, indicating that receiving task could not receive a message trap.

Corrective A-tion: Refer to scction entitled “Message Rings and Message Buffer Structures” for description
of how to enuble a task to receive messages.

A task related command was entered and there was no currently selected task.

Corrective Action: Re-enter TASK command, specifying correct TASKID.

An invalid TASKID syntax was entered on a LOAD command.

Corrective Action: Specify the correct TASKID in the LOAD command.

29-390 R04 4/76 A3-7/A3-8

APPENDIX 4
SYSTEM MESSAGES

TASK RELATED ERROR MESSAGES:
taskid: TASK PAUSED

Task ‘taskid” paused. Results from SVC 2 code 1 or PAUSE operator command.
taskid: END OF TASK n

Task ‘taskid’ hus ended - n = Return Code in decimal.
taskid: ILLEGAL INSTRUCTION AT XXXXX

[llegal instruction fault detected at loca ion XXXXX in taskid’s address space
taskid: ILLEGAL SVC AT XXXXX

Illegal SVC cal: at location XXXXX in taskid’s address space
taskid: ADDRESS FAULT IN SVC AT XXXXX

Addres~ of SVC parameter block or an address parameter in the parameter block is outside task taskid’s
memory allocation, or is not aligned properly.

taskid: ARITHMETIC FAULI' AT XXXXX

Arithmetic fault detected at location XXXXX in taskid's address space
taskid: MEMORY PARITY I:IRROR AT XXXXX

Parity machine malfunction detected at location XXXXX.

taskid: MEMORY FAULT AT XXXXX

The Tas\k is attempting to access memory outside its allowable limits.
tuskid>

SVC 1 read request to console device from task ‘taskid’. Data should be entered as soon as possible to
prevent blocking the console.

SYSTEM RELATED MESSAGES:
0S32MTrr-uu - Printed after system initialization

rr = release level, uu = update level

POWER RESTORE — RES! T PERIPHERALS AND ENTER GO —

Power fail restore sequence — type ‘GO’ and carriage return to complete power recovery.
J o

Power fail rstore sequence - No operator intervention required.

29-390 ROS 11/76 Ad-1/A4-2

APPENDIX 5
CRASH CODES

CRASH CODE (HEX) DESCRIPTION

1

2

10

100

101

102

103

104
105
106

107
108
109
10A
110
111
112
113
115
118
119

120

Console device mnemonic not found in DMT.

Unrecoverable error on system console.

Not enough space in system for preSYSGENed TCOM and SYS to be allocated.

Iliegal Error Code from SVC 6

Invalid VMT during MARK processing.

Invalid file descriptor during MARK processing.

Arithmetic fault not in UT/ET state.

E9 contains address of current TCB.

EE-EF contains PSW at time of fault.

Arithmetic fault not in user task. E9 contains current PSW at time of fault.

Illegal instruction, illegal SVC or illegal address passed in SVC not in user task. E9 contains current TCB ID,
ED contains pointer to 4 bytes before pointer to message, EE-EF contains PSW at time of fault. Contents

of Executive registers are saved in the save area pointed to by location X'86".

Illegal instruction, illegal SVC or illegal address passed in SVC-user task not in UT/ET state. E9 contains
address or user TCB, EF-EF same as for 102.

Memory parity error during Auto Driver Channel operation.
Attempt to pause system task.

Illegal SVC or illegal address passed in SVC with PSW not pointing after an SVC instruction. EE-EF con-
tains PSW at time of interrupt.

Attempt to remove illegal TCB from ready chain. R9-TCB ID, R8-return address.

Attempt to remove a wait condition from, or chain, an illegal TCB ID. R8-return address, R9-TCB ID.
Attempt to dispatch illegal TCB ID from top of ready chain. E9-TCB ID.

Attempt to dispatch ESR for illegal TCB ID. ES-TCB ID; EA-ES priority, EF-leaf address.
Attempt to start illegal TCB ID. U9-TCB ID. UF-start location.

Attempt to remove illegal wait bits from TCB. R8-return address, R9-TCB address, RD-wait bits.
Attempt to put illegal TCB into RS state. E9-TCB ID; EA-EB-return PSW.

Attempt to take illegal TCB out of RS state. U9-TCB ID.

Attempt to suspend illegal TCB. E8-return address; E9-return address; E9-TCB ID.

TCB has ready chain bit set but is not on ready chain. E8-return address, E9-TCB ID.

Memory fault interrupt-hardware error. EE-EF-PSW at time of fault.

Invalid size request to GETSYS. U3 = size.

Iltegal SVC executed from within the system code. UF contains SVC address.

Memory fault in SVC executed from within system code, i.e., buffer not on fullword boundary.

Parity error within system code. Locations X'20'—X'26' contain the PSW at the time of the parity error.

29-390 R04 4/76 AS-1

CRASH CODE (HEX) DESCRIPTION

162
180
180
181
182
183

200

201
202

205

206

207

208

20A

210
211

212

213
214
302
307
308
30A
30B
30C
30D
30E
30F
320
321

322

False SYNC interrupt-received from hardware.

Clock ESR scheduled. but no flags set.

Clock ESR scheduled, but no flags set.

Clock ESR scheduled, with PIC service flag set. but SPT.TQHD=0.

Clock ESR scheduled, with PIC service flag set, but there are no TQEs with evented flag set.

Clock ESR is removing a wait, causing something other than the system task to become the current task.

System Queue Service Interrupt-hardware error.
EE-EF-PSW at time of fault.

Invalid leaf address on system queue. ED-leaf address.
Event for unconnected leaf. ED-leaf address.

Attempt to disconnect or release leaf not connected to current task. U8-return address, U9-connected TCB
ID; UF-leaf address.

Releasc level 2 or greater than connection level for leaf.

Same as for 205 with UE-release level. Attempt to connect to invalid leaf address. U8-return address:
UD-DCB/FCB pointer, UF-leaf address.

Attempt to modify a leaf not connected to current task. US-return address, UE-new ESR address; UF-leaf
address.

Leaf queued to system mode with no task queued to leaf.
EB-leaf address.

Entry to EVRTE not in ES state. U9-TCB ID; EO-E1-PSW at entry to EVRTE.
Task event count non-zero but all leaf occurrence counts zero. U9-TCB address.

Leaf being disconnected has occurrence count greater than TCB event count. U8-return addresses, U9-TCB
address: UF-leaf address.

Attempt to delete a DCB from the driver time-out chain when it is not on the chain.
Top of ready Chain changed while propogating event for current task.

Attempt to walk directory link field when no directory entry currently in memory.
Request tfor FCB of invalid size

Attempt to release FCB with FBOT=MTOP

FCB not found during release attempt

Invalid DCB link field during release FCB

Invalid FCB chain found during release attempt

Bit map or directory leaf added to system queue

Invalid save attributes

Attempt to close invalid file type

Attempt to allocate an already allocated sector

Attempt to release a free sector

Attempt to release a free sector

29-390 RO4 4/76

APPENDIX 6
REVISION INFORMATION

are made only to manuals other than the PRM, the revision levels quoted are minimum levels. For further information in

This appendix provides descriptions of the new and revised features of 0S/32 MT 02-01 and 0S/32 MT 02-02. References I
this manual, refer to the index.

Multiple Task Common/Discontiguous Memory

0S/32 MT 02-01 divides memory into local memory and global memory. Local memory corresponds to the total memory
space recognized by OS/32 MT RO1; it must be contiguous from physical address zero; and its upper bound is MTOP. As
for previous revisions, local memory is used for System Space, an optional Reentrant Library segment, an optional local
Task Common segment, all Foreground partitions and the Background partition.

Global memory is above MTOP. It need not be contiguous and is used for global Task Common segments. Global memory
is defined for a system at System Generation using the CUP TCOM statement. A task uses a particular task common, local
or global, by

1. Referencing it symbolically at the source level, using FORTRAN COMMON declarations or CAL
COMN statements, and
2. Naming task common segments in the TCOM command to TET.

NOTE

The names used at TET time must correspond to the task common
names established at System Generation.

If an attempt is made to load a task into a system which does not have the required Task Common segments, it is rejected
with an error return. SVC 6 error X'42' or Operator error message: LOAD-ERR TYPE=SEG.

NOTE

If global memory is shared by more than one processor, each
processor must be loaded with its own operating system.

References:

CUP - 0S/32 MT Program Configuration Manual, Publication Number 29-389R05

TET - 0S/32 MT Task Establisher (TET/32) User’s Guide, Publication Number 29-412R03

FORTRAN - FORTRAN V Level 1 Reference Manual, Publication Number 29-360 1
CAL - Common Assembler Language (CAL) User’s Manual, Publication Number 29-375

Task Common Segments Greater Than 64KB

This revision of 0S/32 MT removes the limits of Task Common segments. They are now limited only by the physical
constraints of the User’s memory configuration.

The sizes of Task Common segments in the operating system are set at System Generation, with the CUP PARTITION
command for Local Task Common, and the TCOM command for global. The Local Task Common size can be changed by
the operator with a SET PARTITION command.

The sizes of Task Common segments needed by a task are set by the source level statements (FORTRAN: COMMON,
CAL: COMN) which define the common blocks. TET is used to position these segments in the task address space. The
TCOM command specifies the starting segmentation register for a Task Common block. For Task Commons of greater than
64KB, TET automatically allocates segmentation registers sequentially. This may cause a SEGMENT ADDRESSING
ERROR message.

When a task is loaded, the loader ensures that the Task Commons in the system are large enough to accommodate the
requirements of the task. If not, the load is rejected with an error return, SVC 6 error X'42' or Operator error message;
LOAD-ERR TYPE=SEG.

References:

CUP - 0S/32 MT Program Configuration Manual, Publication Number 29-389R05
TET - 0S/32 MT Task Establisher (TET/32) User’s Guide, Publication Number 29412R03

29-390 RO5 11/76 A6-1

Timer Management Facilities

The Timer Management Facilities of 0S/32 MT are significantly enhanced by revision 02-01, which includes a repetitive
interrupt feature. This allows application systems to interact with their environments on a periodic basis, with an economy
of effort and a minimum of overhead.

The new facilities are upwards compatible with previous releases of OS/32, and tasks written to use the earlier facilities can
be freely mixed with tasks that take advantage of the new features.

1 The Time Management SVC (2 code 23) provides the following function in OS/32 MT 02-01.

A task can place itself in time wait for a specified period.

A task can ask to be trapped (using the task queue) at a specified time.

A task can request repetitive traps (using the task queue) at defined intervals within a specified period.
A task can discover the time until the occurrence of a specified trap.

A task can cancel specified trap requests.

Time Slice Scheduling

0S/32 MT RO2 provides two task scheduling algorithms for tasks at the same priority, round-robin and time slicing.
Previous releases provided only round-robin.

The time slice option is under operator control. Using the SET SLICE command, the operator can:

1. Setamaximum period a task may remain current if another task is ready at the same priority.
2. Switch off time slicing.

67MB Discs

I These large capacity discs are supported with the full facilities of the 0S/32 MT 02-01 File Manager. The disc support is
incorporated into a system at System Generation, using the device code; see Table 4-11.

Reference:

0S/32 MT Program Configuration Manual, Publication Number 29-389R05

Halt 1/O

This compatible extension to the SVC 1 Input/Output facilities allows a task to abort an outstanding proceed 1/O request.
This is particularly useful for interactive tasks, which can now keep a terminal ‘permanently live’ with a proceed 1/O read
request while performing calculations.

The user can interrupt the calculations by typing in a command, which the task detects either by taking a trap or by using
the SVC 1 Test 1/O function. However, if the calculations are completed and the read is still outstanding, the task outputs
results to the terminal by aborting the read with SVC 1 Halt 1/O and then performing write requests as required.

Halt 1/O can also be used to abort write and command function requests.
Double Precision Floating Point Support
0S8/32 MT RO2 provides support for Double Precision Floating Point (DPFP) in two ways:

1. Hardware Support
The Double Precision Floating Point hardware option of the 8/32 processor is supported. The registers
are saved and restored, as necessary, during scheduling, and a save area is reserved for power failure.

2. Software Emulation
Double Precision Floating Point is emulated on systems without the hardware with DPFP Software
Traps. This package of routines is called by the illegal instruction handler to emulate the DPFP
hardware.

The user selects the Floating Point support for a system at System Generation, using the CUP FLOAT command. The
floating point options required by a task are specified with the TET OPTIONS command, at Task Establishment, or with
the Operator OPTIONS command at run time.

References:

0S/32 MT Program Configuration Manual, Publication Number 29-389R05
0S/32 MT Task Establisher (TET/32) User’s Guide, Publication Number 29-412R03

~

A6-2 29-390 ROS 11/76

Mini I/O System

The Mini I/O System of Analog and Digital conversion equipment is supported by the 02-01 revision of 0S/32 MT. The I
system is fully integrated with the operating system and is accessed using the SVC 1 Input/Output facilities.

Mini I/O support is incorporated into a system at System Cieneration, using the device codes specified in Table 4-11.
Reference:

Mini 1/O Systen User’s Manual, Publicatic : Number 29-485
Sub-Division of Source Modules

This change to the Operating System packaging only affects those users who wish to perform source system generations, or
who wish to modify the OS itself. Otherwise this change is invisible to the user.

Reference:
0S8/32 MT Program Configuration Manual, Publication Number 29-389R05
Multiple OS Images on 9isc Files

0S/32 MT RO2 allows OS images to be created in contiguous files within the standard Filing system. Such files are created
using the Task Establisher (TET/32): an example is included in the TET User’s Guide.

The OS/32 Direct Access Bootstrap Loader (03-074R02 is used to load and execute OSs held in these files. For upward
compatibility, the Bootstrap Loader provides a method io load unnamed OS images created with earlier revisions of the
32-Bit software. The 32-Bit 1.SU Direct Access Loader can also be used to load OS image files.

References:
TET - 0S/32 MT Task Establisher (TET/32) User’s Guide, Publication Number 29-412R03

Bootstrap Loader - 32-Bit Familyv Loader Description Manual, Publication Number 29-376R10
LSU Loader - 32-Bit LSU Direct Access Lcader Instruction Manual, Publication Number 29-472

Disc Directory Pre-Allocation

0S/32 MT 02-01 recognizes disc directories pre-allocated by the OS/32 Disc Initializer (03-081R02). Such directories are l
organized for optimal search time, taking into account the rotation speed of the discs.

The File Manager does not delete pre-allocated directory blocks during system operation. If the pre-allocation proves to be
inadequate, further blocks are allocated in the normal fashion; however these are deleted when they become empty.

Reference:
0S8/32 Lisc Initializer Manual, Publication Number 29-508

Date Stamping of Disc Files

and time of last assipament ure recorded in the directory. The date and time of last assignment is preset to zero on
allocation.

The OS/32 MT 02-01 File Manager provides date and time stamping of files. Both the date and time of allocation and date I
This information is included on disc directory maps printed by the Disc Dump Utility.
Reference:

Disc Dump Utility Manual, Publication Number 29-417.

New Operator Commands

In addition to the SET SLICE command (see Time Slice Scheduling) OS/32 MT 02-01 contains the following new
commands:

DISPLAY ITAMTERM
This command providss the operator with information about his ITAM configuration. The syntax of the
command is similar to the DISPLAY FILES command, and the same flexibility is provided.

SEND

This command allows the operator to send text messages to foreground tasks. The tasks must have set
themselves up to receive SVC 6 messages.

29-39') RO5 11/76 A6-3

Modified Operator Commands
B The following commands are affected by 0S/32 MT 02-01.

DISPLAY MAP
Displays information about global task common segments.

EXAMINE & MODIFY
These commands protect the user against illegal addresses.

OPTIONS
Include:s DFLOAT option for DPFP.

Functional Changes
Reentrant Library Segment

I The reentrant library segment is mapped into segment 15 by OS/32 MT 02-01. This provides more flexibility in the use of
the other segments for task common segments.

All tasks established to run under previous versions of the OS must be re-established with TET/32 RO2 if they use the
reentrant library or tas< common.

EOT Return Codes

The return code parameter to SVC 3 is truncated to 8 bits. Tasks are therefore restricted to return codes in the range
0-255. The OS forces a return code of 1000 if a task is abnormally terminated due to queue overflow on a timer trap.

0S/32 MT 02-02 Revision Information

Functional Changes

Changes to the MARK logic to prevent a disc from being MARKed ON-line unless it was properly MARKed OFF-line.
Support of 256 MB disc.

Support of FORTRAN VI in HLOC package.

New power fail source sysgen option that does not require operated intervention on a power failure. -

A6-4 29-390 RO5 11/76

Common, FORTRAN
Common, CAL
Communications
Condition code
Configuration Utility Program (CUP/MT)

D R R R N A I I AT A A
LI I I I I N O R R O S I NS S N S Y
L L I I I I I I N

LI I R BN IR S A S A SN SR A

Connect
Connection wait
Console device
Console Errors
Console Operations
Console operator
Console wait
Contiguous files

Contiguous files, functional ..ceeeess
Contiguous files, Structure .e.ceeecees
CONTINUE, operator command ...eceeceeee
Copy
Crash codes,
Crashes,
CRT
CcSS
CSS
css
CSS
CSSs
Css
CSss
CSSs
CSS
CSs
CsSs
CSss
CSS
Css
Css,
Css,
css,
css,
CSs,
css,
css,
css,
CSSs,
Ccss,
CcsSs,
css,
css,
CTOP tieeestotseseecansonssnssssnsssannsss
CUP/MT teeveonoecnsssscnssonessstssnasns
Current record pointer
Current state

T T T T T T S
summary
system

L R I R R A I N A I IR ST

e sesesss e e

L I R O I N I A I I RN A

L R I I O N A A I I A R R R R

commands SCLEAR,SEXIT .ceeeeecesns
commands SCOPY,SNOCOPY .uveceecoecs
commands $JOB,STERMIOB .vceeesvvoes
commands $IF,$ENDC
commands S$IFE,$ IFNE
commands $IFG,$ IFNG
commands $ IFL,$ IFNL
commands $IFNULL,S IFNNULL
commands $ IFX,$ IFNX
command $SKIP
commands BUILD ,ENDB,S$BUILD,$ ENDB .
conditionals, return code testing
files, construction of
aborting files
calling CSS files teisvnneonnnnss
command SUMMATLY «cesseccos sosscse
error conditioOnNsS s ceeeesssosonecns
error handling ceeessecesconnnsos
interaction backgrnd/foregrnd ..
introduction ceesveveccoscacaneas
logical operators
listing directives
return COdeS s eevsressosscsosssses
to test parameter exjistence
to test files for existence
use of parameters

*e se et 000 s
DR R IR WA)
*e seec s s e
S esccs v eer e
ss 0 s

* o ses 0 es s 00

D I I I R N X

L A I I B

L R A I I N SR S S S Y

L R X

s es0 st et

" se0 et e s s

LR R N I NI Y

L IR B A SR A S A A I Y

D

Data File Management
Day and year
Date and time stamps

Default system volume

S s s 0 st et e st e

L R I I I I A I I Y

* e 00 s s e s 0 e

LI I I I Y IR N AT AR

A6-1

A6 -1

see “ITAM’

2'2,4'8

1‘2 ,2-1,1\6-17

see also ‘System Generation’
see “SVC 6°

3-2
1-1,3-3,4-9,5-1
Appendix 3

5-1 Chapter S
see “Operator”

see “Paused state’
1-3,3~-15,5-20; see also “SvC 7°
3-15

3-15
2-2,3-2,5-14,A2-2
see “0S COPY’
Appendix 5
2-1,3-12

1-1,5-1
5-12,5-13,5-25
5-28,A2~-6,A2-7
5-31,A2~-6,A2-8
5-28,A2-8
5-29,A2-7
5-30,A2-7
5-30,A2-7
5-30,A2-7
5-30,A2-7,A2-8
5-30,A2-8
5-30,A2-8
5-31,A2-6,A2-7
5-29

5-31

5-28

5-26

5-32,Appendix 2
5-33

5-28

5-28

5-25

5-29

5-31
4-19,5-29,A6-4
5-30

5-30

5=-27
3-7,4-8,4-9,5-13,5-17
see ‘Configuration Utitilty Program’
3-16; see also ‘File control’
3-2,3-3

see ‘File Manager”’

see ‘“Calendar”’

A6 =3

see “VOLUME, operator command’
‘Volume, default”

29-390 RO4 4/76

DELETE, operator command esecssssessses 1-3,5-22,A2-2

Delete, SVC 7 cveevssssvescsnssassaess 4=-33,A1-13

Device and file control commands :e.e.ees 5-20

Device attributes, SVC 7 .ceecccceccess 4=-34

Device codes, table of (ceeceeveccssecss 4-35,4-36

Device driver object modules .eceveees 2-1

Device MNEMONiC ¢ieeeesosssassssscsese See ‘File descriptor”

Device mnemonics, to display e.se.se... see “DISPLAY DEVICES, operator command”’
Digital I/0 tecessscssccssnsccsssssssss S€€ ‘Mini I/0°

Direct Access Bootstrap Loader, 32-bit 2-1,A6-3

Direct access devicCesS tseseessessssess 1-3,3-10,3-13

DirecCtoOry eceecececscoscosascscsscesnsesess 1-2,3-13,4-31,4-32,26-3

Disc 2.5 Mb v ieevisecscccncssonssssnces 1=

Disc 10 mb teceeeceectsstsscsscssenases 1
Disc 40 Mb teveceesttectsconcnccsnscnss 1-
DisSC 67 MD ceeeooensssssesssccsssnssns 1
DisC 256 MD s eeccesssssscscscssssnssss 1
Disc Dump Utility ccceeeccccscscscaccss Ab
Disc Initializer .sceeevcevesscncsnscens 2
Disc integrity checking ecesssecsscseses 2
Disc protection ceceeecesseccsccscsess 1
Discontiguous MEMOrY eecsessescsscscss 1
Dismounting volumes .eeecceeccesccacss 1
DispatCh teececsccscccsescsscennnnsene 3=
Dispatch priority .ccceececesscscsossssssse 3
DISPLAY DEVICES, operator command «..¢ 5
DISPLAY FILES, operator command seeses 1
DISPLAY ITAMTERM, operator command ... 5-8,A2-3,A6-3

DISPLAY LU, operator command eeseesees 5-16,A2-3

DISPLAY MAP, operator command +e.eeeses 5=7,A2-3,A6~-4

Display panel .cccecescsssscscssssssss 1=-1,2-1

DISPLAY PARAMETERS, operator command . 5-18,A2-3

DISPLAY TIME, operator command ee.seses 5=-6,A2=3

Dormant state seceeccscsssscscscsssnss 3=2

Double precision floating point <ee¢eee¢ 1=-2,1-5,5-17,A6-2

DPFP ceevescsscccssassssssnssssssvssssss S€€ ‘Double precision floating point”
Driver timeout .ceecececceccceccsnccnes 1=3

Dynamic data structures seeeecescsssss 3-5

DynamiC sSyStem SPaCe .sseecsvessssssses S€ee ‘System space”’

4,A2-2
»5-22,A2-2

E

E-tasSK ceeecsssscsseacssccssssssscessssss See ‘Executive task’
EQitOr +eeeesssssssssssssssnsssssssesss S€€ “OS EDIT’
Eight line interrupt moduleecsss» See “Traps, device generated’
End of task (EOT) .ceccsssccssscsseses 4=17; see also “SVC 3° ‘svc 6°
ENDB, operator command «ceccecececessse 5-12,5-31,A2-3
EOT ceceecscscessssscssesssssscssscsssss See “End of task”
ERO,ERSW,ERW,EWO «c cevescsvsecsvsssssssss S€€ "Access privileges”’

‘File protection”’
Error handling ceceecccecccecscccscesss 2 4-2
Error handling, Systeém seececcsccsssss 2
Error response, system manager ..sesee 5
Errors, console cceececsccsscsccncsnss 2
Errors; CSS cesecesesesessssssescnscens 5-33
Errors, summary command error response Appendix 3
Errors, SVC 6 error Codes esssessseses Al=-11
Errors, SVC 7 error COdeS seeesesseeces AL=-12
EXAMINE, operator command e«ssessseesess 5=10,5-11,A2-3,A6-4
Execute protecCt ceeesccescsccsssasssess 3-4
Executive: functions seeseecscccesrassses 1=2
Executive task ceecocesescccsssccssees 3-1,3-3,4~-8
External event ccssccecsvcscessesseses 3-3

-1,
-1
-4,Appendix 3
-2

29-390 RO5 11/76 I3

F

see ‘File control block”’
3-15,4-34,A1~-13

FCB
Fetch attributes,

® 08 s Eet eI I OELLELIOILIEITOEOESEOEETIOEES

svc 7

L A I IR S S N Y

Fetch date .evveeeeerececescssnsacesses S€€ “SVC 2 code 9°
Fetch pointer ..ccecesscsecssssncescss S€e “SVC 2 code S°
Fetch time ..iceevesccecsesssssesesnecss S€EE SVC 2 code 8°
FFILE, operator command eecseceesesces 5=24,A2-4

File access methods ..sveeeeseecsecess 3-14,3-15,3-16,3-17
File control bloCksS ..eeessesesceccees 3-5,3-14

File control, positioning commands ... 3-15,3-16

File

descriptor, decodinNg ececeesces

see “SVC 2 code 16°

File descriptor, format ..ceeeseseeses 3-13,3-14,4-30

File desSCriptoOrs cceeseecescecssnsscess 3-13,3-14

File extension ...eseesssessasnssseses 3-13,3-14,5-3

File extensions, reserved ¢eeeeceeeess 3-14

File identification ..ceseseccceacncsess 3-13

File Manager c¢eseeecesscvssncensssenes 1-2,3-13,3-14,3-15

File nNname .ccceeeesosscscsscsnsscnsses 3-13,3-14

File protection «s.eeeceessnssessecsses 1-2,3=-17,4-29

File Structures c.cesesesscsssesnscesss See ‘Chained”
‘Contiguous’
“Indexed’

File structures, buffer management ... 3~-14

File structures, tradeoffs ceececeeess 3-14

FLOAT CUP cOommand eescescsccsosccsscsss A6=2

Floating point emulation scesveveevees 1-2,1-5,3=12,A6=2
Floating point Support «..cescesssseces 1-5,5=17,A6-2
Foreground partitions ..¢eceeccessesse 3=-1,3-4,3-5,5=9
Foreground tasks .ececececovosnsessees 1-1,1-2,3-1,3-4
Formatting diSCS cesseessescacsscsensss 3=13

FORTRAN COMMON +evesessssosssnsssnssees A6-1

FORTRAN compilation teececescescnscees 5-26

Forward space file .¢cstvevsesssceaesses see “File control”’

FRECORD, operator command «ssecoceesses 5=-24,A2-4
G
General system commands .eeeeessccsces 5=5

see “SVC 2 code 2°
3-4,3-5,A6-1

Get storage
Global memory

LR I 2L I I I S S S S N Y N N S NP S S SO

LA 2L A I B B I B I I IR I I S I S S S

4-4,A6-2
see ‘Memory Access Controller”’
‘Physical segment’

Halt I/0 teeeonvnnncisonssconsonsananss
Hardware relocation

L I A I I R N I S Sy

High Level Operator Control Package .. 5-26

I
I/0 proceed sesvsaccsccccssoncssnnssae 1-2,3-10,3-14,4-4,4-56
J/0 SUDSYStem cseeceescsnsssscassesess 1=2,1-3
J/0 Wwait teieeessteesssccsscansccsncses 3-2,3-14,4-6
Illegal instruction se.eveeccescecnceases 2-1,2-2,3-7,3-11,3-12
Illegal SVC ..cieertcccnsssnscnnescess S€€ “SVC, illegal”’
Impure Segment ceoececossescssnsensescecs 3=2
Indexed fileS .teetevcesscecscnsvscnease 1-3,3-5,3-15,5-20; see also “SVC 7°
Indexed files, functional .ceeceecseses 3=-15
Indexed files, StTUCtUre (.seeeeceecse 3-15

14 29-390 R0O4 4/76

Initialization, disc
Input/output programming ¢sececececossss
Instumentation Society of America
Interrogate CloCK eciocevcecssnssscnsoe
Interrupt handling sceseccecscsccscssens
Interrupts and traps csscecessscoscons
Intertask coordination ...
Interval trap
Interval wait

®° 000 00 0000000

se o0

S e ese vee e

LK 2N I I I I A I AR I B AR I A A A X

S eees s s e st v

ISA
ITAM

L A I I I R N A I I A A A I A)

e 0L LI e LI LTOEEITROENI CEPIOEOSIELOE OSSN TOSEEOEDRD O

JOb control cteeeeesevsescccosesccncsonas

Keys

® s eesseLsr PP LeIRNOIRIOSELEIOPTIROEOETTOEOEONTS

L
Levels, Priority ecscsecccccccsccccsces
IIB ceevessccsesoecscccsonssssnssnsssesas

Library Loader, OS/32 teoesencescsscss
Library segments ceeececscescsscoscccens
Line frequency CloCK ceeesvsvcecscnsnes
Line pPrinteér seeeccecccecssccscscccssccse
Ioad modules
Ioad task, SVC 6
I08d TSW cececeevesceccssscsscssssossnss
Ioad wait
LOAD, operator command ee¢ sesoocsososscace
LOAder . oetcesvsscscvssscssrsosssecssses
Ioader information block seeseccsecces
I0Cal MEMOTXY coesesssovscsssccsacsnsccs
JOg deviCe cesesecasvcoscsssssseccnces
Log message
logging of system commands eececscccss
Iogical segments .cceesvsecsscccccscse
LogiCal Unit ceeeenveassevesoscscnccsen

® 990 200 09t eee PN OO IO OO

LI IR I I I BRI I A Y

©® 990 v e P ee PRGNS OENOLEOIOIOEOEROEEOETS

L I I K]

LSU
LSU Direct Access LoAder seveoescvccces
ITAB

S0 e st es 0000 ee eI LTLIESIOILITOIOEOSECOECEOTDRDREY

teeeceserssserrsssrerse v s
LU L B B N B B B B I N B AR B B N I O LB 2R B O B AR B 2R BN 2
MAC teeeecsccssvecssesscscssasssccascss

Machine malfunction
MACRO CAL, to run
Magnetic tape
Magnetic tape and file commands .
Main program

L R A A R A R

e se P OO SININEOLIOELTETOETSTOCOS
R R R N I A R A I I I A I R)
*ee e

LI R I R R N A I A I 2N)

29-390 RO4 4/76

see “Disc Initializer’

see ‘SvC 1°

3-11

see “SVC 2 code 8°

3-7

3=-7

1-2

1-3; see also “SVC 2 code 23°

1-3; see also “SVC 2 code 11°
‘SVC 2 code 23°

See “Instrumentation Society of America’

see ‘svC 1° ‘svec 7° ‘svcC 15°

“DISPLAY ITAMTERM’
“ALLOCATE, operator command’

see ‘CSS”

see ‘File protection”’
“Assign’
‘svec 7°

see ‘Task priority and scheduling’

see ‘Loader information block”’
2-1

see “Reentrant library”’
1-1,1-2,1-3

4-34

2-1,3-1

3'113"414‘24

see “SvC 9°

3-2

3-1,3-4,3-5,5-14,A2-4
1-2,1-3,1-5,3-1

1-3,1-5

1-2,3-4,3-5

1-315‘6

see “SVC 2 code 7°

see “SET LOG, operator command’
3-1

3'5 '3‘12'4-5’4‘14'5’18 '5'22’5‘26 H
see also “Assign” ‘Close”’
‘DISPLAY LU, operator command’
A6-3
A6-3
see ‘Logical Unit”’
see “Logical Unit”

see ‘Memory Access Controller”’
3-11,3~-12

5-26

1-1,4-4,4-34,5~-7

5-24

3-1

Mark on/off teeesesssccsscccsssssessss 3-13,3-18,5-23
MARK, operator command «essesssessesee 2-2,5-23,A2-4
Maximum pPriority eececesececccssoccecesse 3-1,3-3,3-4
Memory Access Controller «ec¢eesesecess 1-1,3-1,3-12,4-8
Memory access fault ceseecesscecsccess Ssee ‘Traps”
Memory allocation, example s¢eseeeeees 3-5,3-6

MEemOry iMage seessessssscsassssssesssss See ‘Load modules’

Memory Manager (eecsceessecccsseccssee 1-2,1-3,3-4

Memory parity coeecescssesccescsossses 3-12

Memory partitions ceeececsesesssesssses see “Partitions”

Memory protection .veesssesesssssessss S€e@ “Memory Access Controller’
‘Physical segment’

Message buffers ceceesesecscscvosecceces 3=-7,4-26,4-27

Mini I/0 cevecesvecosscaasssscssscessesss A6=3

Minimum hardware requirements .esessse 1-1

MODIFY, operator command seeeseecessees 5-10,5-11,A2-4,A6-4

Mounting volumes ¢eecceeccscocesecsese 1-3,5-23

Move Characters ce.ceeeseanssssssssssss S€€ “SVC 2 code 18~

MTOP coeeecccescoscessscsscsosssnssnss 3-4,A6-1

Multi-tasking operating system ..¢.0.. 1=1

Multiport MEmOry ceceeeecescesscscccces 3-4

MultiproCesSSOrS seeesecccescvsencescsces 3-4

Non-resident task, end of task ¢seeese 3-2,5-14
Non-resident task, to set option see “SVC 6 unest’

“OPTIONS, operator command’
Null deviCe essecececsscsvscsssscsccses 3-18

OPEeratoOr s eeececscescssosssscsnsssanse 3-4

Operator commandsS, SUMMATY seccseessss Appendix 2
Operator’S CONSOle «sssessessesssessss See ‘Console device’
OPTIONS, operator command .seeeoeeseeee 2-2,5-17,A2-4,A6~-2,A6-4
OPTIONS TET/32 command e«esesseccesecees 5=-17,A6~-2

OS AIDS, utility eeceeecocccsssosssesss 3-11,4-38

OS COPY, tO FUN ecceeseocescssncsensscces 5=26

OS EDIT, tO IrUN s cesessscosossccscesces 5=26

OS image filesS ciieevvecscocsossaceass 3-13,A6-3

OSID coevoeecccsscsccscsssnsscsnvsnnsasnsse 4-14

Overlays, general ...ceeecoesscsscsccee 3=1

Overlay, SVC 5 fetCh cvesecsovsecssees See “SVC 5°

Overview Of system ..ceceecesesssssess l=1 ==« Chapter one

Pack data@ scesvecccccsscnscsssssnssssss S€€ “SVC 2 code 15°
Pack file desCriptor ...vcseessccssses see “SVC 2 code 16°
Paper tape .¢ccececcccoscscscssccccsnsess 1-1,4-4

Partitions, general s.eseceooccscscses 1-3,2-2,3-1,3-4,3-5

Partitions, initial size ..eeeecescese 3-4

PASLA cectectecccestoscsasssosnssssessncse 1=1

PAUSE, operator command ecceceecsesees 3-3,5-14,A2-4

Pause, SVC ceevecsccncscccnsnsscscnscsse S€€ 'SVC 2 code 1°

Paused state ..vseceevscccsssssonnsses 3=-2,3-12

Periodic interrupts .eceecesesessnsess 1-2,1-3; see also “SVC 2 code 23°
Periodic table .ceeessosssensssecsscnes 4-17

Physical segment ¢ecceeevecscessesnscee 3=2

16 29-390 RO4 4/76

Power fail/automatic restart
Power restoration trap
Precision interval clock
Priority ececececsccccccensocas
Privileged instructions e.sess
Proceed I/0
Program space
Prompts
Protected mode
Protection, files sceeecevsen
Protection, memory .

se o0

e se ce0 00000 v
e evee s ve s e
L A R R I I R S A O S)

*es 0600 s00 000 0

Pseudo filemark
PSW

es o0 e 000 e s

L R R I I A N N A A I)

Queue parameter
Queue service traps
Quiescent systeém seeesecccsce

DRI A I JE IR S S IR Y

files

CEE I I IR A IR A B B)

Random access,
Ready state
Recoverable errors
Reentrant library,
Reentrant library,
Release storage sescecessssss
Relocating Loader, 32-bit ...
RENAME, operator command
Rename, SVC 7
Repetitive interrupts
REPROTECT, operator command .
Reprotect, SvVC 7
RESET, operator command
Resident library cscececececcese
Resident loader
Resident task
Resident task,
Resident task,

e e e sses e

eressseses
general
reference

.

o oo
s 0ser ses s 00 e

se s o svsev o0

* e o0

®e 00 000000 000

end of task
to set option

Return Ccode tecesecscococsonce
Revision information
Rewind file
REWIND, operator command
Round robin
Run task, operator command ..
RW, operator command

ee es e v

e s e 00 ses 00 s s
S v e 0000 ese s e

ee ve e 00

Scan mnemonic table
Scheduling algorithm

LRI A)

.

.

.

.

oo o

ce e

LAY

e ee

se

se 0

e e

DY

seo e e e
so 00
ce e
LAY
LRI
LICIE I Y
se e e
ce o0
e o0 o0

s e o0

seo 000

se s

Q

LICI Y
LECICN Y

R

LIS Y
e es o
se s

from task

.

.

.

.

LIRS

se

ce s oo

L R A R

Scheduling Of tasksS esecccsosacnse

Segment

Segment,
Segment,
SEND, operator command

29-390 R04 4/76

LRI Y

e s s e

LR 2

s eon e

es e e

e oo

eo e o

R A I I IR AR Y IR I A N B NIRRT S Y

reentrant 1library cceeeescees
task common seeecececcccccses

e e e e s e e

1-1,1-2,3-10,3-12

see “Traps”’

1-1,1~-2,1-3

see ‘Task priority and scheduling’
3-3
see
see
see
3-3
see
see

‘svc 1° ‘Proceed 1/0°
‘Task address space”’
‘Command prompts”

‘File gprotection”’

‘Memory Access Controller”
“Physical segment”’

3-15

2-~2,3-7,4-8

‘svec 67
‘Traps”

see
s ee

‘File access methods’

-2
-2,3-4,3-5,3-7,5-9,A6-4

’
’
‘SVC 2 code 3°

4-32,A1-~-13

see ‘SVC 2 code 23°
5-22,A2-5

4-33,A1-13
5-10,5-12, A2-5

see “Reentrant library’
see “Loader’

3-1,3-2

3-2; see also “svC 3°
see °‘SVC 6 resident’

‘OPTIONS, operator command’
see °CSS, return codes’
Appendix 6
see ‘File control”
1-3,5-24,A2-5
see “Task priority and scheduling”
5~26
5-24,A2~-5

see ‘SVC 2 code 17°
3-3
see

see

‘Task priority and scheduling’
‘Memory Access Controller’
‘Impure segment”’

‘Physical segment”’

see ‘Reentrant library”’

see ‘Task common’

5-19,A2-5,A6-3

17

Sequential access, files cceeeesesess. see “File access methods’

SET CODE, operator command «s.sseeeesos 5=-30,A2-5

SET LOG, operator command seseeseessss 5=6,A2=5

SET PARTITION, operator command eseese 3-4,5-9,A2=-5

SET PRIORITY, operator command es¢ee.. 3-3,5-18,A2-5

SET SLICE, operator command s+e.eeseeees 3-3,5-10,A2-6,A6<=2

Set StAtuUS sieesreesecccesessssssssesss S€€ “SVC 2 code 47

SET TIME, operator ‘ommand seseceeeess 3-12,5-5,a26

Shared memory banks ..sceeessoessseses 1-2,3-4

Single precision floating p01nt eeeeee 1-2,1-5

SINT cevenerennsasessssecestececsnsess SEE “SVC 6°

Software floating point package see “Floating point emulation”

Space limit, tasks ¢ceceesecsesesceses 3-1,3=-5,4-15

SREW,SRO,SRW,SWO sseecessesssecsecesss See ‘Access privileges”’
‘File protection”’

Start task, request by another task .. see “SVC 6°

START, operator command .eeeessesesees 3-2,5-13,A2-6

StArter ¢eeevcessccsccscsnvssnssncecses 2-1

Summary, command e€rror response Appendix 3

Summary, operator commandS secseccse e Appendix 2

Summary, SVC instructions «...e.eeese.. 4-1,Appendix 1

Supervisor calls (SVC'S)eeeeoeeceesees 1-3,2-1,2~2,3-3,4-1 --~- Chapter 4
Support program, WCS ..ectevecessesess see ‘WCS support program”’
SVC 1 error statusS eeeesssessssssesees 4-5,A1 -3

SVC 1 function CodeS .veecessccsencsese 4=2,4=-3,4~4,A1-2

SVC 1 input/output request seseceesees 1-3,4-2,4-3,4-4,4-5,4-6
SVC 1 parameter bloCk ceeeersecenceees 4=2,A1=1

SVC 2 . teeeeeceresncesocssssonssnssncnse 1-3,4-7,A1-3

SVC 2 code 1 PAUSE ¢ evssscccsscscece 4=7,5-14,A1-4

SVC 2 code 2 get storage ..ceeseesee 3-7,4=-7,A1-4

SVC 2 code 3 release storage ceeeees 3=-7,4-7,A1-4

SVC 2 code 4 set status sesecesssscees 4-8,A1-4

SVC 2 code 5 fetch pointer ¢e.c¢eees 3~-7,4~8,A1-4

SVC 2 code 6 unpack binary number .. 4-9,Al-5S

SVC 2 code 7 log message ¢ceeeeecess 4=-9,5-1,A1-5

SVC 2 code 8 fetch time ¢veeeeseeees 4-10,A1-5

SVC 2 code ¢ fetch date seeeeveesses 4-10,A1-6

SVC 2 code 10 time wait ceceveevceeee 4-10,A1-6

SVC 2 code 11 interval wait seseeeese 4-11,A1-6

SVC 2 code 15 pack numeric data 4-11,A1-6

SVC 2 code 16 pack file descriptor .. 4-11,4-12,A1-7

SVC 2 code 17 mnemonic table scan ... 4-13,Al1~7

SVC 2 code 18 move ascii characters . 4-13,Al1-7

SVC 2 code 19 peek ceeoseocsscenceces 4—-14,A1-8

SVC 2 code 20 expand allocation 4-15,A1-8

SVC 2 code 21 contract allocation ... 4-15,A1-8

SVC 2 code 23 timer management 4-15,4-16,4-17,4-18,4-19,A1~-8,A6-2
SVC 3 end of task (eot) cececeersceeses 1-3,4~-19,5-14,A1-9,A6~-4
SVC 5 fetch overlay eeeecevecsessessese 1-3,4-19,A1-9

SVC 5 parameter bloCk ceeecevcessesees 4-19,A1-9

SVC 6 +cevevsseccossessccssssscsssonssee 1-3,3-4,4-20,A1-10

SVC 6 Cancel .eeveeeseecccsssssencscss 3-3; see also “SVC 6 end task”’
SVC 6 change pPriority c.seecececeesssss 3=-3,4-24

SVC 6 COnNect ceesesecocsnsssrsssnenneces 3-11,4-25

SVC 6 delay Start cceseecocsosscsscsess 3-9,4-25,4-26

SVC 6 delete coeevececscscososnsnssese S€€ “SVC 6 end task”’

SVC 6 end task ceceecesescossnsesnscses 3-3,4-24

SVC 6 error COdeS essecenssosccsssesecse 4=23,A1~-11

SVC 6 EST sseseesseccsessccscscsccncsesess S€€ “SVC 6 resident’

SVC 6 freeze ..cceeeoveccossssnssccsscese 3-11,4-25

SVC 6 function coOdeS .eeeevsvovesossee 4=22,A1-10

8 29-390 RO4 4/76

SVC 6
SVC 6 1load task «...
SVC 6
SVC 6
SVC 6
SVC 6 release ...+0.
SVC 6 resident
SVC 6 send message .
SVC 6
SVC 6 start task ...
SVC 6 suspend ece.eeos
SVC 6
SVC 6 unconnect +...
SVvC 6
svc 7
svc 7
SVC 7 functions

intertask coordination c..cecoeee.

*eveeses e 000

NOP seeecceccssscscssssssosssoscssnsoes
parameter blOCK ccecvesecsccsssocs
queue parameter cevocecceeccscocs

®9 e es s ev s esvee e e

*ee ver e e

® ev e see e s e e

SINT eeeevosoreonsscssscnssnnenos

S oes 000 s

s ev ssrvve s e s

thaw ceeecerersscecsecsncccanosns

® o0 es e v ser oo

UNEST seeececvoccccccscocsnsnsas

file management «c.cececsccseccs

LG I I I I A A A A I

SVC 7 parameter block seeeseessccoascooe

SVC 9 load TS
SVC 14 user S
SVvC 15 ITAM S

W oeeeoo
VC ...
VC .een

SVC errors, general

SVC, illegal

®ees s se0 v 000

S50 0o s s o0

"ee s eeees e e e

LR IR I I I B I A A Y ST

LI B A I IR SR A A I

SVC SUMMATY «oveoveoosnsnssosscssosnsosnes

Swap areas, T

SW ...

®s e ees0ce e e

SYSGEN cvteeocvcescscccsossssnnsvacece
System console devicCe .eceveccccnnesocoe
System data eevececscscorscsscvcrcncecs

System descri
System Genera

ption .
tion ..

LR B I A I A B AR A Y

® o0 e eevesessv e e

System 1lOg ¢ eeceevoscersoscscssccccoans
System MAanager scecsccsessccsnscovcess
€S, SUMMAXY ecesescscsccsos

System messag
System operat
System operat
System overvi
System queue
System restar
System shut d
System space
System start

Task address
Task common,

Task common,
Task control

Task identifi
Task Manager
Task options
Task options,

29-390 R0O4 4/76

ion ...
OF vo oo
ew ...
® 00 000
t eecee
OWN ...
cecssee

UP e oo

space .
general

LB I AT I B A B BT A
LA I N R I N R
®eee ses s 0eve v e
®see e e ev e e e
®se vev e esoseve
" 2s e vev 000000000
LRI A R I A I B A AR

® e e0 vse e e s

T

Pee e sepser e

LRI G I NN A A B S Y

reference from task .ee..
block (tcb)eeeocesveovses
Task EStabliSher seecececescecccsccnses

er

s s s 00 00

* e ss0 s

‘table

[R T T
LRI A I A 2 I I I SO B T Y
LRI B A R R I I Y

®oe 00 e evr s sse e

4-20

see ‘Load task, SVC 6°

3-1,3-4,5-17

4-20,4-21

3-10,4-24

4-25

4-24

3-10,4-24,5-19

3-11,4-25

3-9,4-25,4-26

4-24

3-11,4-25

3-11,4-25

4-25

1-3,4-27

4~-27

see “Allocate”’ “Assign’
‘Change access privileges”’
‘Checkpoint’ ‘Close”’
‘Delete” ‘Fetch attributes”’
“Rename” ‘Reprotect”’

4-28,4-29,A1-11,A1~-12

1-3,3-7,4-36,A1-13

1-3,3-7,3-11,4-38,A1-13

3-10,4-38,A1-14

4-1

3-1,3-4,4-2,4-18

Appendix 1

3-9

see ‘System Generation’

1-1,1-3,2-1,4-9,5-1

2-1,2-2

3-1 --- Chapter 3

1-2,2-1,3-1,3-3,3~-4,3-5,3-13,3~-14,

3-17,5-5,5-6,5- 20 5-26,A6~-1

see ‘Log device”’

e
1-2,1-3,2-1,2-2,3-3,5~-1
Appendix 4
2-1 =--- Chapter 2
see ‘Operator”’
see ‘Overview of system’
1‘312‘1
2-2

2-2
1-3,3‘1’ 3"4'3‘5
2-1

3-1
1-2,1-3,3~-2,3-3,3-4,3-5,3-7,
5-9,A6-1,A6-4

3-3,3-4

1-3,3-1
1-3,2-1,3-1,3-2,3~-3,3-4,3-5,3-7,
5~-26,A6-1,A6~-3

see “Taskid”’

1-2,1-3
1-5,3-12,4-14,5-17,5-18,5-19
5-17,5~19

19

Task priority and scheduling ..ecesees 1= 3,3-1,3-2,3-3

Task QUEUE «eevceesccssosssassssansnses 37 7 10,4-16,4-18 ,4-36

Task queue iteém ..ecceecesscsssescasse 3-10,4-18

Task queue reason €OdeS essesessssssss 3-10,3-11,4-38

Task QUEUE SEIViCE cssessscecsssencssss See Traps”’

Task related commandsS ..ceeseoecoseese 5-12

Task scheduling «.eeescessescsssssssss See “Task priority and scheduling’
Task StatUS . .ceeveceocsccssessscsesss 3—-2,4-25,5-18 ;

Task status word (TSW) eeveevsceccseces 3-7,3-10,3-11,3-12,4-16,4-36

Task status word (TSW), bit definition 3-8,4-37

Task WaAit eceoeeeeevecssocsscscsscsssscese 3=2

TASK, operator command ..eceseseeesssss 5=12,A2-6

Task, to load and Start eecvesesssssss See “Run task’

TASKID . eeccecosscscccscccscssscossssssssse 3-1,5-3

Tasks, introduction .cecceeesecescecssssss 1-3,3~-1

TCB cenvessoscasescssssasssssencesnsssse S€€ "Task control block”’

TCOM CUP command eeecceccoscvcsssossese A6G=-1

TCOM TET command s+ cesosoessocssossesesas Ab=-1

Teletype ececescececerssccseverccsnocosse 1-1,4-4,4~-34,5-1

Test and S€t eeeecevcevsccscossocsssocees 3-15

Test I/0 complete sescesescesscccssess 4=-4,4-7,A6-2

TET/ 32 ¢ eeeeessesssccnssessssescsccsesss See ~Task Establisher”

TGD cveceesescnsosnssossscssssassncsss See Traps, device generated”’

THAW ceoesoeccosssssccsscsssssccsscssses S€E SVC 67
Time of day C€loCk ceesececesccsoceosess 1=3

Time oOf day trap eesesecescocscsccccsecss 13

Time of day wait eseceeceovercoccssccese 1=3

1=
3~

.

ee also “SVC 2 code 23

ee also “SVC 2 code 10°
‘SVC 2 code 23°

,A6<-2

+»3-10 ,4-16

6,4-17,4~-18

+4-17

+1-3,A6=-2

4-16,4~-18

‘Timer queue elements”

3-10,4-36,4~-37

3-10,4-25

3-7,3~11,3-12

3~

3-

Time slice scheduler ..c.coeeccceccccces
Time trap s ececeeccsccccsccscscsosnonnnses
Time typPe ¢sceceeecescescccsnsocccscssos
Time Wailt ceceecescccccncsssconcssnsece
Timer MAnager cecessceccccesccsvonsccse
Timer queue elements .ecseecessnssoses
TOQE ¢ceeececescecscsccssossonssesnnsasnse
Trap wait .cceessccscrccossocscoccnsenses
Traps, device generated eeeceseosasese
Traps, memory access fault c.cececccsee
Traps, power restoration seceececescees
Traps, task handled cesececescecccscnns
Traps, task queue Service ..seeescceese

o
ﬂ-du»vnam m!onawcuu

s\‘\s\

~-10

-10
3-10,4-26; see also “I/0 proceed’
‘Task status word’
‘Teletype”’

wwwuwum Uf—‘wthv

7

TOW ceeeercsersosscsssssccnscccssosoncs

[
oo
oo

TTY LA B R A L 2 B 2 O B B BN N BN 2 BN L BE B BN BN IR BN IR N B NN Y Y

U=tasSK teeveeesessanssossossnsssssosesees See “User tasks”’

UBOT cevecorsosscesssscsssssoscsssssseese 3-7,4-8,4-9,5-18

UDL cetevveesevsceccssonccssssnssssssss S€ee ‘User dedicated locations’

Unconditional proceed I/70 scoesevsenese 4=5,4-6

UNCONNECt cecevevsosssncsssesssscsscss S€E€ “SVC 67

UnNpack cceeeecscescsscscccscssssssssescs S€E€ SVC 2 code 67

Unrecoverable task errors ceecesesseees 2-1,2-2

User dedicated locations .c¢cseeseeceee 3-7,3-10,3-11,4-8,4-9

User dedicated locations, structure .. 3-9

User tasksS ssceececcccsosescscscsssssses 3-1,

Utility commands ccecesooccscssscssces 5=-10
3-7,

UTOP st vevceccscecsccscssscscscnsososncnasn

I-10 29-390 RO4 4/76

\Y%

Volume deSCriptoOr sccesvecccccscscccees 3-13
Volume, default «coececccscscscccsnsses 5=6,5-18
Volume, NAme «occesceovossssssescensses 3—13
VOLUME, operator command ecseecsoecesces 5-6,A2-6
Volume, organizatioOn eccooeseosensssess 3-13
Volumes, mounting/dismounting «e.ceeee. 3-13

W

Wait I/0 cecevecsccssscscssnsessssssese S€E “SVC 17 ‘1/0 Wait”
Wait only, SVC 1l sceeecescencsscssncsecse 4=7

Wait state ceececvescsssosccsessscseces 3-2,3-10

WCS teesevscnnssssnssessssseansssssssees S€€ ‘Writable control store’
WCS support Program eesesseseossscsssse 1=5

WFILE, operator command cecessccesccees 5-24,A2-6

Writable control StOre ¢.ceseceescsess 1=-5

29-390 R0O4 4/76 I-11/1-12

INDEX

A

ABTERM ¢coceeeceoncsssosessssescsssses 2=2,4-18

Access privileges, ASSIGN command 3-18,5-15

Access privileges, change with SVvC 7 . 3-18,4-32

Access privileges, compatibility 3-14,3-16,3-18

ACtive t@SK teseecssssssssssssssessesse See ‘Current state”
AIDS seeeeesnsssacssssassnsssssassesees S€€ ~OS AIDS’
ALLOCATE, operator command +cscsesseees 5=20,A2-1

Allocate, SVC 7 ¢eeeeeeesosnensncesacse 4-31,A1-13

Allocation bit Map cescseeccseccesenss 3-13

Analog conversion equipment ...scess.. see “Mini I/0°
Arithmetic fault ..sessssvsossecessess 2-1,3-7,3-11,3-12,4-8,5-17
ASSIGN, operator command +.seeeseesess 3-13,3-16,5-15,A2-1
Assign, SVC 7 . .iceevenssssescensssssecse 3-13,3-16,4-31,A1-13
Attributes, deviCe .scssessssesssscsss see ‘Fetch attributes’

Background partition teeiececcccescseces 3-4,5-9

Background tasks ..ececeececcsesecenss 1-1,3-1,3-5

Backspace file t.eveessssssescsasssses See 'BFILE, operator command’
‘File control”’

BFILE, operator command ..e.ceeeeseeees 1=-3,5-24,A2-1

BIAS, operator command e..e.ssececsesees 5-10,5-11,A2-1

Bit MAD tvsveessssosssssssssssssssseasss See “Allocation bit map”’

BOOtStrap LOGAEr «eeceecscssssesseasses See “Direct Access Bootstrap Loader”

Break K€y teeeeeecscsocsecsaccnssessess 5=1

BRECORD, operator command «.eceeceeesses 5-24,A2=2

BUILD, CSS command seseesocssssscsssss 5=-31,A2-2

BUILD, operator command ..scesesssssss 5-12,A2-2

Bulkstorage devices, positioning cmds see °‘File control’

CAL assembly tccceecccctccscscssscsses 5=26

Calendar «ecesessssvecscscnsssosssssssas 1-2,1-3; see also “SVC 2 code 9°

Cancel time trap sessssssssscsesssenss S€E “SVC 2 code 237

Cancel, intertask function .¢c.¢eecese.. see “SVC 6 end task’

CANCEL, operator command .« .scseeeceess 2=-2,3-3,5-14,A2-2

Card reader . .ceceeccccscscsccssnsecess 4-4,4-34

CarousSe€l.isesecssessesssosassssssssssese 1-1,4-4,5-1

CasSSette coevveescsssscsscsossssssssscese 1-1,4-4

Chained files .(eecoeeeccscccssecesesss 1-3,3-5,3-14,5-12,5-20,5-31;
see also “svC 7°

Chained files, functional .c¢eeeoeesses 3-14,3-15

Chained files, Structure ..c.csseesecees 3-14

Change access privileges, SVC 7 ..¢... 4-32,A1l-13

Change Priority eceeeesscscsecsssenssecess see ‘SVC 67

Checkpoint, SVC 7 <. ceeesssososesssess 3-15,4~19,4~-33,A1~13

CLOSE, operator command «eeeecsessosses 5-17,A2-2

Close, SVC 7 teeeeessosseasscssasssses 4-19,4-33,A1-13

Command parameter substitution ..¢eee.. 5=-27

Command ProCeSSOr «.ssssssscesssessess S€€ ‘System Manager”

Command prombPt .. .c-::2e2:2222222e2s22 2=-1,5-1

Command Substitution System (CSS)..... 1-2,1-3,5-25

Command SUMMALY ssesssssssesssesssssss Appendix 2

Command SYNta@8X seeseesessesssssssscsses 5-1,5-2,5-3

29-390 R0O4 4/76 k1

CUT ALONG LINE

PUBLICATION COMMENT FORM

Please use this postage-paid form to make any cominents, suggestions, criticisms, etc. concerning
this publication. '

From Date

Title Publication Title

Company Publication Number

Address

FOLD FOLD

Check the appropriate item.

D Error Page No. —_ Drawing No.

[] Addition PageNo.____ Drawing No.

[:] Other Page No._____ Drawing No.

Explanation:

FOLD FOLD

Fold and Staple
No postage necessary if mailed in U.S.A.

STAPLE STAPLE

FOLD FOLD

— i fOUD -

FIRST CLASS |

PERMIT No. 22 |

OCEANPORT, N.J.| |

|
, I

BUSINESS REPLY MAIL l
T

NO POSTAGE NECESSARY IF MAILED IN U.S.A. |
:]

POSTAGE WILL BE PAID BY: I :
]

@ |
IR

TINI"T"IEIRIDATA" |
I

Subsidiary of PERKIN-ELMER l
]

Oceanport,New Jersey 07757, U.S.A. l
]

L |

TECH PUBLICATIONS DEPT. MS 229 l

o0 - T T o

STAPLE STAPLE

	0001
	0002
	0003
	001
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	1-05
	2-01
	2-02
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	4-28
	4-29
	4-30
	4-31
	4-32
	4-33
	4-34
	4-35
	4-36
	4-37
	4-38
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	5-22
	5-23
	5-24
	5-25
	5-26
	5-27
	5-28
	5-29
	5-30
	5-31
	5-32
	5-33
	A1-01
	A1-02
	A1-03
	A1-04
	A1-05
	A1-06
	A1-07
	A1-08
	A1-09
	A1-10
	A1-11
	A1-12
	A1-13
	A1-14
	A2-01
	A2-02
	A2-03
	A2-04
	A2-05
	A2-06
	A2-07
	A2-08
	A3-01
	A3-02
	A3-03
	A3-04
	A3-05
	A3-06
	A3-07
	A4-01
	A5-01
	A5-02
	A6-01
	A6-02
	A6-03
	A6-04
	I-02
	I-03
	I-04
	I-05
	I-06
	I-07
	I-08
	I-09
	I-10
	I-11
	I_01
	replyA
	replyB

