Publication Number B29-391R02

0S/32-MT
PROGRAM LOGIC MANUAL

The information contained in this manual
is subject to design change and product
improvement.

THIS MANUAL CONTAINS PROPRIETARY INFORMATION AND IS SUPPLIED BY
INTERDATA FOR THE SOLE PURPOSE OF USING AND MAINTAINING INTERDATA
SUPPLIED EQUIPMENT AND SHALL NOT BE USED FOR ANY OTHER PURPOSE UNLESS
SPECIFICALLY AUTHORIZED IN WRITING.

L
INTERIDATTA°

Subsidiary of PERKIN-ELMER
Oceanport,New Jersey 07757, USA.

(© INTERDATA INC., 1975
All Rights Reserv>d
Printed in US.A.

April 1976

PAGE REVISION STATUS SHEET

PUBLICATION NUMBER 29-391
TITLE 0S/32 MT PROGRAM LOGIC MANUAL

DR NDNONNDNDDODNDNNNDNDNDND -

T T T T TS S S S S S S E S E ST OO LW

REVISION RO2 DATE APRIL 1976

PAGE REV. DATE PAGE REV. DATE PAGE REV. DATE
-1/1-2 RO2 4-76 ||4-23 RO2 4-76 8-3 RO1 4-75
-1 RO2 4-76 ||4-24 RO1 4-75 8-4 RO1 4-75
-2 ROl 4-75 |{4-25 RO1 4-75 8-5 RO1 4-75
-3 RO2 4-7¢6 ||4-26 RO1 4-75 8-6 RO1 4-75
-4 RO2 4-76 ||4-27 RO1 4-75 8-7/818R0O1 4-75
-5 RO2 4-76 ||4-28 RO1 4-75 9-1 RO1 4-75
-6 RO2 4-76 ||4-29 RO1 4-75 9-2 RO1 4-75
-7 RO1 4-76 |{4-30 RO1 4-75 9-3/944R01 4-75
-8 RO2 4-76 ||5-1 RO1 4-75 10-1 | RO1 4-75
-9 RO2 4-76 ||5-2 RO1 4-75 10-2 RO1 4-75
~-10 RO1 4-76 ||5-3 RO1 4-75 10-3 RO1 4-75
-11 RO2 4-76 ||5-4 RO1 4-75 10-4 RO1 4-75
-12 RO1 4-75 ||5-5 RO1 4-75 10-5 | RrRO1 4-75
-13 RO1 | 4-75 ||5-6 RO1 4-75 10-6 RO1 4-75
-14 RO1 4-75 ||5-7 RO1 4-75 11-1 | rO1 4-75
D-15 RO1 4-75 -8 RO1 4-75 11-2 RO1 4-75
2-16 RO1 4~75 -9 RO1 4-75 11-3 | RO1 4-75
-1 RO1 4-75 -10 | rO1 4-75 11-4 RO1 4-75
-2 RO1 4-75 -11 | rO1 4-75 11-5 | ROl 4-75
-3 RO1 4-75 -12 RO2 4-76 11-6 RO1 4-75
-4 RO1 4-75 -15/5F14 R0J4-76 11-7 RO1 4-75
-5 RO1 4-75 - RO1 4-75 11-8 | ROl 4-75
-6 RO1 4-75 - RO1 4-75 11-9 RO1 4-75
-7 RO1 4-75 - RO1 4-75 11-10 | RO1 4-75
-8 ROL 4~75 - RO1 4-75 11-12 | rRO1 4-75
-1 RO1 | 4-75 - RO1 4-75 11-13 | rO1 4-75
-2 RO1 4-75 - RO1 4-75 11-14 | rRO1 4-75
-3 ROl 4-75 - RO1 4-75 11-15 | rRO1 4-75
-4 RO 4-75 - RO1 4-75 11-16 | rRO1 4-75
RO1 4-75 = RO1 4-75 11-17 | RO1 J-75

RO1 4-75 0 RO1 4-75 11-18 | RO1 4-75

RO1 4-75 -11 |RO1 4-75 11-19 | rRO1 4-75

ROl 4-75 - g RO1 4-75 11-20 | rO1 4-75

ool NI N N N R R R R E R R A S O L O IV, I
I

I
NEHEMHEFOUONOAUD WNREHFHFEFEOONO U WN

-5

-6

-7

-8

-9 RO2 4-76 /6+14 RO14-75 11-21 | rRO1 4-75
-10 RO2 |4-76 |[7- RO1 [4-75 {|11-22 | RO1 W-75
-11 RO1 |4-75 |[7- RO1 |4-75 |[|11-23/11-24RO[L4-75
-12 RO2 |4-76 |[7- RO1 |4-75 ||12-1 | rO1 |J-75
-13 RO2 |4-76 |[7- RO1 [|4-75 |[12-2 | RrO1 -75
-14 ROl |4-75 |[7- ROl |4-75 ||12-3 | ROl E—75
-15 RO1 |[4-75 |[7- RO1 |4-75 ||12-4 | RO1 hk-75
-16 RO1 |4-75 |[7- RO1 |4-75 |[12-5 | ROl hk-75
-17 RO1 |a-75 |I7- RO1 |a-75 |{12-6 | rO1 h-75
-18 ROl [4-75 [f7- RO1 la-75 {{12-7 | RrO1 hk-75
-19 RO2 |4-76 |[7-10 |RrRO1 |4-75 |[12-8 | ROl k-75
-20 RO1 |4-75 |[-11/7}12 rOUa-75 |[{12-9/12-10R01k-75
=21 ROl |4-75 |B- ROl |4-75

-22 ROl |4-75 |B- RO1 |4-75

A1598

PREFACE

This manual describes the internal structure of 0S/32 MT.

The manual is revised to include descriptions of the

features added to 0S/32 MT RO0O for the release of 0S/32 MT RO1l.
In this document 0S/32 MT ROl is occasionally referred to by
its internal name, MT1.

Chapter 12 contains descriptions of the routines developed

for the implementation of 0S/32 MT R0Ol. The following sections
in Chapter 5, The Command Processor, are modified to include
changes made for 0S/32 MT RO1:

5.5.2 Allocate
Mark On

5.5.3 Examine
Display Map

5.6.4 Building CSS Files

5.7 Load Command

This information is proprietary and is supptlied by INTERDATA for ﬂ;e S:Iﬁ
purpose of using and maintaining INTERDATA supplied equnpmenf and sha
not be used for any other purpose unless specifically authorized in writing.

i/ii

0S5/32 MT
PROGRAM LOGIC MANUAL

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION « « « « o o o o o o o o« o o « o o o 1-1/1-2
1 . l INTRODUCTION . ») - . L] - [] [[() L) - o l— l/ 1-—2

CHAPTER SYSTEM STRUCTURE . . &« &« « o o s o o o = o o o =
INTRODUCTION &« « ¢ o o o o o o o 5 o o o o o o
EXECUTIVE e o e e e s & e o sie s o
Task Management (EXTM) e e e e e e e e e e e e
Executive Services . . . e s s s e s s e e
Internal Interrupt Handles (EXIN). . « « « « .
Event Service Handler (EXIO) . « « + + ¢« « o & =
Clock/Timing Facilities (EXTI) .« « « « o« « « &
Loader (EXTM). « + ¢ o« o « o o o o o o o o s o =
Intertask Coordination/Communications (EXTM) . .
Task Handled Traps (EXTM) . . . « « « « o « « =
Crash Handler v & ¢ v ¢« & o o « o o o =

0 System Journal . . . ¢« « + ¢« & 4 4 e e s e e e o
I/0 SYSTEM (EXIO) - « « o « o o o o o o o « o o &
Device/Volume Mnemonic Table « . .+ « .
Logical Unit Table . . . o o s s e s e e o = s
Device Control Block (DCB) e e e e e e e e e e . 2-12
Channel Control Block (CCB) and
Interrupt Service Pointer Table (ISPTAB) .
SVC 1 ProCeSSOr v v « « o o o o« o o o o« o o « o 2-12

N
1
[

i
b~ WO W00 00O O W =

=

L] .
3

e o o o o o
. L[] . . L] L]

* o

o o

[
|,_.l

NN N N i i AN
)

o

N

MDD N

e o o

WWWWWNONNMMODNNOMNDNDNOMNOND = -

e e o

= W HWOOdAUTLEWN

Drivers . « o« o« o o o o o o o o o o o o
Termination Event Coordination Table . .
Trap Generating Devices « « « ¢« « o« . . 2-13
COMMAND PROCESSOR '« « &« &« & & ¢ o o o« o« o & « o« 2-13
Command Processing e+ e e« .« . 2-13
Command Substitution System (CSS) e e e e . . . 2-14
Direct Access Support . .« . . « ¢ « o o o .
Console Support ¢ ¢ ¢ ¢ ¢ ¢ o o o

FILE MANAGEMENT . « + &« o o o o o o o o o« « « o 2-14

* o o o o o o o
o o o o * o o
W N O~JoYyOn

SVC 7 Processor . . . c v e e e
Directory and Bit Map Handler .« e e e e e
Contiguous File Access Method 2-15
Chain File Access Method « +« « +« &+ « . . 2-15
Disc Utility Programs . . . « « « « « « &« o +» o 2-15
FLOATING POINT . . « « « = o « o o o o o o « o« o« 2-15

L . L]
Ul W=

oot & bWWWW

CHAPTER SYSTEM CONVENTIONS . . . « « & « o o« « » « « « o 3-1
MACHINE STATES . . &« « « « o o o s s o o o « « « 3-1
3-1

User Task State (UT) . ¢ ¢ ¢ « o o o o o o o o

WWWw NONNNNNNMNNMNNNNMNONONNDNN
T
'._l

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

iii

CHAPTER

iv

www
.
=W IN

el i e

www
. .
L] . .
[o0} N oy

. .
. .

N =

.

Wwbwwwwwwwww
U U1 O b b b W=
. .
W N

.

. o .
e s »
.

.
.
U W -

= e e
NN NN NN

Y SN S S S S Y S S S S
L] .

.
. .

i
s
N
EN

.
.
.
(oo o BEN

.
L] .
WO N

W N

BB S EBRBRW W W W

.
o wn

Ty N I I S S Y Y g A A G S

e o o o e o s e e P .

NNONNNNNNODNNNNNODNNONNMNODNDOND
.

Executive Task State (ET)
Reentrant System State (RS)
Reentrant System State,

Alternate Save Area (RSA)+ . .« .
Event Service State (ES) . . +« « .+ .« .
Non-reentrant System State (NS)
Non-reentrant System State, User
Register Set (NSU) . . . e e e e e
Interrupt Service State (IS) e e e e
SVC DEFINITIONS AND CONVENTIONS
INTERNAL INTERRUPT CONVENTIONS e e e e
SUBROUTINE CONVENTIONS e« e e s e e s e
RS, RSA and NSU Subroutines
NS Subroutines . . . ¢« ¢« ¢ « o « o o =
Calling Sequences . . « « + o « o o o =
Exits e e e e e e
GENERAL NAMING CONVENTIONS e e e e e o
Data Structures . . « « o « o o o o «
BitS v v v ¢ v e e e e e e e e e e e

EXECUTIVE DESCRIPTION« .« .« . .
TASK MANAGEMENT« « o ¢ o« ¢ o + &
Task Control ¢« + « « « « « « &
Task Management Facilities . . .
Dispatch Current Task (TMDISP, TMRDISP)
Suspend the Current Task (TMSTOP) . . .
Chain (TMCHN) . . + &« o« « o« ¢ o« o o o
Unchain (TMUCHN)
Enter System State (TMRSIN, TMRSNIN
TMRSAIN) s e e o e o . s e e e e e e
Exit From System State (TMRSOUT,
TMRSNOUT, TMRSAOQUT)
Dispatch From Top of EVT Queue (EVTDISP)
Remove Wait (TMREMW). . « « « « « « « .
Start User Task (TMSTART)
Task States . .« ¢ ¢ « o ¢« o o« o + o o
EVENT SERVICE HANDLER . . .« « « ¢ o o« o

Fvent Coordination Table -EVT
System Queue . . . ¢ < ¢ ¢ 4 . e . . .
Coordination . « « « o o o o o« + « o
Connection .« « o« o « « + o o e e s e .
QUEeUINg « « ¢ + ¢ 4 e e e e e e e e e

AsSSertion .« « « o + e ¢ e 4 e e e e e
Event Service Facilities
Connect (EVCON, EVQCON) . . ¢« « &« « « =
Disconnect (EVDIS) e e e e e e e e e
Release (EVREL) . « ¢« ¢ « o « o « o o =
System Queue Service (SO0S)
Dispatch From EVT (EVTDISP)
Return From Event (EVRTE)
Propagation (EVPROP)

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

w W
(B
=

[F T I B
W W

WWwWwwwwwwwwww wwWw
| |
00O ~NNNNNJd90 b

N A S R~
[
WNDNDNON

NS
i
w

O N N N N R T N - o e e g
i
HEWOYWWOWWYWWOWOoOIIJUOuUuTULO &b WwWww

= O

CHAPTER

HFOOOONNNNNNdNNNININISSoOOdk W - (5]

e o o o
* e o e . e . e e o o o . . o o o
. e o . . o . * o o s e o

N = HHEMFEFWOWONOOULB_ WN

« o
« o o
o .

SN WN

* » L] . L]
VOO0~ BBERLEBELEDDBWLWWWWWWWWWWWWWWWLWWWWLWWWWWWWWN
L] L] . . .
> W=

o A A N L R S S A - T T R~ Y S~ A S it g e A S S A T i SN N

[LS =)

Dispatch Priority
SVC HANDLER . ¢ &« « « o o & o

First Level Interrupt Handler (FLIH)

SVC 1 Executor (SvCl)

svcC

SvC
SvC

1 Termination (IODONE) . .
SVC 2 Executors (SVC2 and SVC2.xx)
3 Executor (SvC3)
5 - Load Overlay . « « .+

.

.

SVC 6 - Intertask Service Functions

Decode SVC 6 Options (SV6.MAIN
Executor Design . . .
SVC 6 Error Handling (SV6 ERR)

Find A TCB (SV6.SCAN)
Cancel Task (SV6.CAN)
Delete Task (SV6.DELE) e e e .
Queue Parameter - (SV6.QPAR) .

Change Priority - (SV6.PRIO)

. . o o o

. o & * . ¢« . o o] .

. .

Trapped Generating Device - (SVC.TGD)

The Resident Loader (SVé6.LOAD)
Task Traps (SVC 9). . . .

Start Task (SV6.STAR) . . .« . .
Delay Start - (SV6.STAD) . . .

Add To Task Queue (SV9. ATQ) . .

Cause A Task To Take A Trap .
User SVC (SvC 14)
ADCHK . . v v v o o o o o o &
TIMER MANAGER

General Information

PIC Interrupt Handling Routine (ISRPIC
Handling LFC Interrupts (ISRLFC)
Event Service Routine (PICESR, TIMESR)

Read Interval

Cancel Interval . . « « « o « &

SYSTEM JOURNAL+ « .

CRASH HANDLER

EXECUTIVE MESSAGES

INTERNAL INTERRUPT HANDLERS

Machine Malfunction Handler (MMH)
Illegal Instruction Handler (IIH)
Memory Fault Handler (MFH). . .

Arithmetic Fault Handler (AFH)

SYSTEM INITIALIZATION

THE COMMAND PROCESSOR
INTRODUCTION « & o o o o o o &

COMMAND PROCESSOR INITIALIZATION (COMMAND)

COMMAND INPUT/PARSING (COMMAND)

Command Prompts
Command Parsing . . . « « « .

.

COMMAND ERROR HANDLING (CMDERROR)

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose uniess specifically authorized in writing.

[* e o

. . s o .

-

-

.
.
.
.
.

. e o o

0 o o e o . ¢ o . . . o . .

)

. o o . * e o . . .

.

. o e . . . e .

« o e o 0 .

® & e e & & & & 0 & 9 ° 9 * s o e e
>

IR O N A R A R N A R D I T R A R B |
'—l
(=)}

e e s o
>
111
N
o

CHAPTER

oo U

e s o o o o
.] . L] L)
w N

[GEGEGEGESG GRS NGRS R

.
.
Ul WwWN

o Ut n
L] ~ .
O O d

YA YO O
- . L .
wwihor
o

oy O O

. L]
b W

.

[l N

HFWOWOEU WD

<o

.
.
N

[e Xl e W el e W e Wer N e We) We Mo W s) We) e) Wer M) W er I o) o) W o) Io)]
» P . .
NuNNNNNSNNNNoO OO OO a0 oo ooy
N

MO

.

> W N

COMMANDS e e e e & e & e e
Task Related Commands e e e e e e e
Device/File Commands . « « « « « + + =
General Commands . . .« « « « « o« « o
COMMAND SUBSTITUTION SYSTEM (CSS) . .
Calling CSS (CSSTEST) . e e e e e
Preprocessor/Expansion (PREPRO) e .
Additional Commands . . . e e e e e
Building CSS Files (BUILD, $BUILD) . .
CSS Interaction with the Foreground

and Background . . « ¢« + « ¢ o o o o
LOAD COMMAND . .« o ¢ ¢ o o o o o o o o
CONSOLE HANDLING . ¢ « « « o o o o o =«
THE BREAK KEY . + ¢« ¢« o o o o o o o

FILE MANAGEMENT SYSTEM « .+« « .
FILE HANDLER e e
VOLUME ORGANIZATION AND INITIALIZATION
DIRECTORY MANAGEMENT
Directory Entry Creation and Deletlon
(ALLOD, RELED)
Directory Access (DIRLOOK, GEmD PUTD)
BIT MAP MANAGEMENT e v e e
File Allocation and Deletlon
(GETSECTR,RELEB,GETB,PUTB)

SVC 7 SECOND LEVEL INTERRUPT HANDLER (SVC7)

SVC 7 FUNCTION EXECUTORS ¢« ¢ &« &« « o«
Allocate (ALLO) .« e e . . .

Assign (OPEN, OPEN.DEV, OPEN CO, OPEN.CH)

Change Access Pr1v1leges (CAP)
Rename (RENAME) . &« « « « « o « o o =
Reprotect (REPRO)+ . « « « . .
Close (CLOSE) + & o« « « o o o o « o =
Delete (DELETE) e e s e s e e e e e e
Checkpoint (CHECKPT)« « « « « .
Fetch Attributes (FETCH)
SVC 7 Integrity Checking Subroutines .
SVC 1 INTERCEPT ROUTINES
Contiguous File Handler
Data Transfer for Contiguous Flles
Command Requests to Contiguous Files
Chain File Handler (CHAIN, CMD.CH) . .
Chain File Handler Subroutines
Data Transfer for Chain Files (CHAIN)
Command Requests For Files (CMD.CH) .
Error Recovery For Chain Files

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose uniess specifically authorized in writing.

.

.

(CONTIG) .
(CMD, DO)

oottt or
1 11
HWOWOLOOoULE&dWW

|
FHWOWWOWWWOWOONI~JoOuLu U1l

o

=

NN GO G O OO O
1 1

-

N

6-12

6-13/6-14

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

e 0 * o o o
. .
N

NN NNNNNNN
NoordswnhhNNE

0 0O 00 O ®
] L]
W N

O W \WWOWWY
L] []
> w N -

e
(ool o]
|—l

10.2

11
11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
11.13
11.14
11.15
11.16
11.17

DRIVER DESCRIPTION . . « « « =+
DRIVERS e o s o e e e o o o o
DRIVER CONTROL BLOCKS e o o o

Device Control Block (DCB) . . .
Channel Control Block (CCB) . .
DRIVER INITIALIZATION ROUTINES .
INTERRUPT SERVICE ROUTINES . . .
EVENT SERVICE ROUTINES
DRIVER TIMEOUT . . . e e e
HALT I/0O ROUTINE (TIMEOUT)

SYSTEM FLOW EXAMPLES

SYSTEM START UP . . «. « ¢ o « &
I/0 REQUEST . . ¢« ¢ o « o o o« o
LOG MESSAGE o« o .

READ REQUEST TO CHAIN FILE . e .

EXECUTIVE TASKS AND SYSTEM EXTENSIONS

INTRODUCTION . .« &« « o « o o o &
EXECUTIVE TASKS« « « + &
SYSTEM EXTENSIONS . « .« « « .+ &
PATCHING . « « « ¢ « o o « o o« =
JOURNAL AND CRASH CODES
CRASH CODES . « . ¢« « + « « &+ =
JOURNAL CODES . ¢« &« « o o & o« =
DATA STRUCTURES . . . «
INTRODUCTION

CHANNEL CONTROL BLOCK (CCB). . .
DEVICE CONTROL BLOCK (DCB) . . .
DIRECTORY ENTRY (DIR)

DEVICE MNEMONIC TABLE (DMT) . .
EVT LEAF (EVL) . . .« « « « « o =
EVT NODE (EVN) . . . « -« « « o« .
FILE CONTROL BLOCK (FCB)
INITIAL VALUE TABLE (IVT) . . .
SYSTEM POINTER TABLE (SPT) . . .
TASK CONTROL BLOCK . . . « . .

VOLUME MNEMONIC TABLE (VMT) .« v
VOLUME DESCRIPTOR (VD)
TASK LOADER INFORMATION BLOCK .
RTL LOADER INFORMATION BLOCK . .
OVERLAY LOADER INFORMATION BLOCK

SYSTEM DATA STRUCTURE RELATIONSHIPS

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

| | B R B
l—‘l—‘H\Dm\INNI-‘F-'

-11/7-12
-11/7-12

\J\l\l\l\l\l\l\l\l\l
1

0 0 00 @
I 1t
U A

O WO WY
1
NN

11-22

11-23/11-24

vii

CHAPTFR 12
12.1

viii

12.2

12.5.3
12.5.4
12.5.5

12.

6

12.7

12.

8

DESCRIPTION OF MT1 ROUTINES

INDEXED FILES « e+ ¢ o s a s s & «
INTERNAL STRUCTURE OF INDEXED

FILES « e e s . . . e .

SVC 7 FUNCTION EXECUTORS FOR
INDEXED FILES . . ¢ v « o o« « o« « .
Allocate (ALO.INX) « « « . .
Assign (OPEN.INX)
Change Access Privileges (CAP) . . .
Rename (RENAME)
Reprotect (REPRO)
Close (CLO.INX) e e e e e e e e s .
Delete (DEL.INX) . . « . ¢ « « « . .
Checkpoint (CPT.INX)
Fetch Attributes (FETCH)
SVC 1 INTERCEPT ROUTINES FOR
INDEXED FILES e e s s e o e & e o
Indexed File Handler

Indexed File Handler Subroutlnes .« .
Data Transfer for Indexed File

(INDEX) e e e e e e e e e e .« .
Command Requests for Indexed Flle
(CMD.IN) . . & v ¢ v 4 o« o o o o o

INTER-TASK SERVICE FUNCTION . . .
Make Task Memory Resident (SVC6. FIX)
Make Task Non—Memory Resident

(SVC6 .UNFI) . . . - . e
Suspend Executlon (SVC6 SUSP) . e .
Released Suspended Task (SVC6.RELE)
Send Message (SVC6.MESS)
ILLEGAL INSTRUCTION TRAP HANDLER
(IT) o e . .

MEMORY ACCESS FAULT HANDLER (MFH) .
ARITHMETIC FAULT HANDLER (AFH) . . .

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

12-1
12-1

12-1
12-1
12-4
12-4
12-4
12-4
12-4
12-4
12-5
12-5

12-5
12-5
12-5

12-7

12-7
12-7
12-8

12-8
12-8
12-8
12-8

12-8
12-9 .
12-9/12-10

CHAPTER 1

: INTRODUCTION
1.1 INTRODUCTION

This Program Logic Manual (PLM) is a guide to the internal
structure of the Operating System 0S/32 MT. It is intended
for use by people involved in System maintenance and mod-
ification. It is normally used with program listings.

This manual deals exclusively (and specifically) with 0S/32 MT
R02. Hence, specific methods of implementation of various
functions should not be construed as the method of implementation
to be used in all future releases of 0S/32 MT.

Use of this manual requires that the reader be familiar with
the features, functions and conventions of 0S/32 MT from the
user's point of view as documented in Program Reference
Manual, Publication Number 29-390, and Program Configuration
Manual, Publication Number 29-389. Documentation for I/0
drivers is in 0S/32 Series General Purpose Driver Manual,
Publication Number 29-384. The user should also be familiar
with the 32-Bit Series architecture and its features.

0S/32 MT is an operating system that provides program management
in a multi-tasking environment. System control via console
operator, interrupt handling, I/0 servicing, and inter-task
communication/control are built-in functions of 0S/32 MT.

Disc file management features are also provided when

the system is equipped with a disc, and as such, 0S/32 MT

is oriented towards a disc operating environment. A file
directory and allocation bit map are maintained on each disc
volume to allow for disc portability.

Chapter 2 of this manual describes the general structure of
0S/32 MT. Chapter 3 discusses the conventions followed by
the system in terms of interfacing between modules, naming
of fields and flags and structure of modules. Chapters 4,
5 and 6 contain a detailed technical description of the
major module groupings in 0S/32 MT. These chapters are designed
to provide a technical overview of the system. Chapter 8
contains examples of system flow of control. Chapter 9
contains an explanation of Executive tasks and discusses
user added extensions to 0S/32 MT. Chapter 10 contains a
list of CRASH and JOURNAL Codes and their meanings.

Chapter 11 contains the format of system control blocks.

Ch;pter 12 describes the routines that are included in MTl. The
main features are Indexed Files, five additional inter-task service
functions, illegal instruction trap, memory access fault trap and
arithmetic fault trap.

This information is proprietary and is supplied by INTERDATA for the sole
R02 4/7 6 purpose of using and maintaining INTERDATA supplied equipment and shall 1"1/1—2
not be used for any other purpose unless specifically authorized in writing.

CHAPTER 2

SYSTEM STRUCTURE

2.1 INTRODUCTION
This chapter describes the general structure of 0S/32 MT from a

technical viewpoint.
composed of four major module groupings.
Command Processor, File Manager and the 0S/32 Series General
This chapter discusses each of these module
I/0 support is provided by

Purpose drivers.
groupings and how they interact.
the 0S/32 Series General Purpose drivers together with major

portions of the Executive, so the drivers are discussed in the

context of

this I/O subsystem.

2.2 EXECUTIVE

The Executive contains logic for processing Supervisor Calls
(SVCs) and other internal interrupts, a memory manager, task
manager, Event Service handler, a Crash handler, the loader,
intertask coordination and control
routines, general utility function routines and a System
Portions of the Event Service handler and
SVC Processor support the I/0 subsystem and are discussed in

clock management routines,

Journal handler.

section 2.2.

2.2.1 Task Management (EXTM)

All functions in 0S/32 MT are performed on behalf of a

As illustrated in Figure 2-1, 0S/32 MT is
These are Executive,

task. A task is controlled through a Task Control Block (TCB).

In 0S/32 MT, the user, at SYSGEN time may decide upon the
An 0S/32 MT

number of tasks his system is to contain.

system must contain at least 2 tasks (the System Task and

a background task). The user may choose to have up to 253

other tasks in his system.

Each task in 05/32 MT has one of the following states associated

with it: current, ready or wait.
it requires the occurrence of an external event to continue
its execution, e.g., the completion of an I/O operation.
task is ready when all external events have occurred that are
necessary to let the task proceed.
"current" task when it is the highest priority ready task in

the system.

0S/32 M

m PR 4= .
i UL [-Y
higher than the priority of any ot

vy
1L Ty

- e
cridc

ac 12
LT O il

o+

A task is in wait state when

A task is said to be the

X
er task in the system.

RO2 4/76

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

Task: are scheduled on a strict priority basis with £ if 0,

or if time slicing for tasks is at the same priority. Time
Slicing is enabled and disabled by operator command. All
tasks which are currently in "ready" state are on a queue
called system "ready chain." A task is dispatched for
execution when it is the head of the "ready chain." If time
slicing is disabled, the task currently executing remains at
the head of the "ready chain" until it voluntarily relinquishes
control or until a higher priority task becomes ready. If time
slicing is enabled, the task at the hedd of the "ready chain"
relinquishes control when its time expires, if an equal
priority task is ready. Therefore, if no equal priority task

is ready, the task at the head of the "ready chain" continues
to execute for another time slice.

CONSOLE OPERATOR

0S/32 MT

i

SYSTEM | EXECUTIVE
T | |- T -z — — -7

COMMAND SVC AND INTERNAL
PROCESSOR

INTE PT PROCESSORS
(SYSTEM TASK) NTERRU ° r

]

. e e e e e o e e e o

r EVENT SERVICE HANDLER i
| SVC 1 PROCESSOR

1/0 SUBSYSTEM

FILE I 0S/32 SERIES GENERAL
MANAGER PURPOSE DRIVERS

I DCB DCB DCB

Figure 2-1. 0S/32MT FUNCTIONAL BLOCK DIAGRAM

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall :
2-_2 not be used for any other purpose unless specifically authorized in writing. Roz 4/76 ‘

2.2.2 Executive Services

SVC handlers (EXIN)

All SVC interrupts cause entry to the SVC First Level Interrupt
Handler. This module performs common preprocessing such as
making a Journal entry for the particular SVC, checking the
parameter block address for validity, saving the user registers,
if necessary, and branching to the executor for the particular
SVC. Some SVCs, such as SVC 2, have second level interrupt
handlers to perform similar preprocessing for the different
options.

Memory Manager (EXMY)

In the 0S/32 MT system three classes of memory are maintained;
user space, system space, and global task common.

User Space

User space is divided into 4 classes of partitions. They
are: foreground, background, task common, and resident library.

0S/32 MT supports one task common partition and one resident
library partition. The resident library is limited in size to
64KB. The size of the resident library is determined when it
is loaded. The size of task common and the resident library
may be established or changed, via operator command, when the
system is quiescent.

Information needed to describe the task common and resident
library (name, start address, and size) are contained in the
Segment Control Table (SPT.SCTH).

Foreground and background partitions are areas of memory
associated with tasks. Each TCB in 0S/32 MT ROO has an area
of memory associated with it. The size of this area is
selected at SYSGEN time, and may be changed via operator
command at any time the system is quiescent. Any partition
may be given a size of 0, thereby effectively deleting it from
the system. The number of partitions created at SYSGEN time
may never be increased. In 0S/32 MT R0OO there must always be
a background partition, and the user may choose to create up
to 253 foreground partitions. Tasks running in the background
partition are limited in that they may not communicate or
interfere with the foreground system. The tasks running in
the foreground partitions have available to them the full range
of 0S/32 MT functions.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
R02 4/76 not be used for any other purpose unless specifically authorized in writing. 2_3

Global Task
Common

+« SPT .MTOP

CTOP
¥

Dynamic
System Space

<~ SPT.UTOP UTOP~

User Work
Space

Background
Partition

USER CODE

UBOT~>

Partition n

Partition 3

Partition 2

Memory Map of User
Partition

Partition 1

Task Common

FCB

FCB

FCB

Run Time Library

< SPT.UBOT FCB

FCB

0S/32 MT and

Static Data Structures

|TMO TMQ TMQ

Overall Memory Map

2-4

Figure 2.

4

SPT.CTOP

Memory Map of Dynamic

System

Space

Memory Map of User and System Space

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing

RO2 4/76

«SPT .MTOP

SPT.FBOT

SPT.UTOP

In dealing with memory arrangement, the background task
plays a special role. Whenever the operator reconfigures
other partitions, the extra memory needed, or the memory
relinquished by a partition is given to or taken from the
background partition.

System Space

System space is divided into two classes: the area which contains
0S/32 MT and its static data structures, and the area available
for dynamic data structures. Dynamic data structures obtain
their space from an area at the top of memory. This area is
bounded by UTOP at its bottom and MTOP at its top. This
dynamic area is divided into two pools, one of which is

bounded by UTOP and CTOP and the other of which is bounded

by FBOT and MTOP. Large blocks of dynamic space are taken

from the FBOT-MTOP area, while small blocks are taken from

the UTOP-CTOP area. This is done to decrease the effects of
fragmentation in dynamic space. Memory in the FBOT-MTOP

area is allocated from MTOP down, while memory in the UTOP-
CTOP area is allocated from UTOP up. Each task has associated
with it a maximum amount of system space it can obtain. This
1imit is set at Task Establishment time. If a task exceeds
this limit, all further requests that require system space are
rejected, until the task has relinquished a portion of the
system space it has previously obtained.

Global Task Common

Memory above MTOP can contain zero to fourteen Global Task Commons.
These are static; their starting addresses, names, and sizes are
fixed at CUP time. Global Task Common can be used to access Shared
Memory. Each Global Task Common is described by a Segment Descriptor
(SDE) , Pointed to by SPT.SCTH.

Task Space

A user task is provided SVC calls with which he may manipulate
his partition. Each partition has 3 pointers associated

with it: UBOT, UTOP and CTOP. GET/RELEASE storage calls
manipulate UTOP. UBOT and CTOP are fixed and may only be
changed by reconfiguring partitions. EXPAND/CONTRACT alloca-
tion calls are ignored in 0S/32 MT ROO.

General Utility Functions (EXSP)

This package is primarily used for processing the miscellaneous
SVC 2 routines, but it is also entered directly by the other
system elements from time to time. Some of the features
provided are:

UNPACK routine
EXECUTIVE MESSAGE routine

Any subroutine called by more than one system module is
normally placed in this package.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
R02 4/76 not be used for any other purpose unless specifically authorized in writing. 2_5

] 2.2.3 1Internal Interrupt Handlers (EXIN)

This package handles interrupts due to machine malfunction,
illegal instruction, and arithmetic fault. Illegal instructions,
arithmetic faults or parity errors encountered within the
executive cause an immediate entry to the Crash handler.
Arithmetic faults encountered while a task is running cause

a message to be logged to the system console and the task to
be PAUSEd or continued as specified by the user. 1Illegal
instructions encountered while the task is running may enter
the SYSGENable floating-point trap package to be executed.
Otherwise, the task is PAUSEd via an entry into the task
manager, after logging a message to the system console.
Memory Access Faults cause the offending task to be PAUSEd
and a message logged to the system console. Memory parity
machine malfunctions within a task cause the task to

be aborted after logging a message to the system console.
Power failure causes all registers to be saved, whereupon the
system waits for power restoration. When power is restored,
the following actions take place for all tasks:

1. All direct-access data transfers are retried.

2. All other 1/0 operations are terminated.

3. A message is logged to the system console, requesting
the operator to reset peripherals if necessary. The
system waits for the operator to enter 'GO'.

4, Tasks are PAUSEd or take Traps (depending on the value
of the current TSW).

I 2.2.4 Event Service Handler (EXIO)

Coordination of system resources (mainly I/O devices) is
controlled through the Event Coordination Table (EVT). The
Event Service Handler contains routines to manage the EVT.

The EVT is a tree structure consisting of nodes (entries

with descendents) and leaves (entries without descendents).
(Figure 2-3 illustrates in example of an EVT structure.)

Each path in the tree corresponds to a group of system resources
that must be coordinated as one resource. For example, the
System node, Selector Channel node and magnetic tape leaf path

correspond to all the resources that must be coordinated to
control access to the magnetic tape. Coordination is implemented

by providing routines to connect to, queue to, disconnect from,
and release entries in the EVT. Only one task may be connected
to an EVT entry at a time. The EVT is generated at SYSGEN time
by the 0S/32 MT Configuration Utility Program. A task is not
connected to any required entry until it can be connected

to all required entries, thus preventing deadlock conditions.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
2"6 not be used for any other purpose unless specifically authorized in writing. R02 4/76

>

[SYs7EM |
\ NOLPEF

€

> |
Dty e
MER as'ra {m.om 1.543 (4 Eﬁ’;’“‘f) 69’73%’.(5@ (" Ay Cﬁy 454#) e,e/mza;)

/TT\SL/P 104

F 2

(Cezezres 2P (P27

Gt A/og/

F
Disc 2 OR
2E4F

A TRFE D/5C copTR, Ll
7 NIDE, AODE o/scz oK

310s 9yl 10} Y1vVAHILN| Ag payddns s1 pue Aserandosd st uoneuwlojul SIYY

‘Buism Ul pazuoyine Ajjediyioeds ssajun asodind Jaylo Aue Joj pasn 3q lou
|eys pue juawdinba paiddns v1ygu3 NI Bulueiuiew pue Buisn jo asodind

LEZE
g// JHPE 1) @scz zz@ @/;(z zz,a
ERN 8L S : AR

A IEH STEED TP

LINE PRNTER
CARYD RPEADER
SELECTIR CHEPGNNVEL L
MAE TALPE
DISC CONTROLLER
o/sc L
Orssc 2
X JLI/AYS CENERRTED BV CLP F A DRECTORY AND B17 RAP LEAF /5 GENERITED FAR LACH DISC WV 7HE SYS7EM

L-2

Figure 2-3. Example EVT Structure

2-8

2.2.5 Clock/Timing Facilities (EXTI)

0S/32 MT makes use of both a line frequency clock and a
precision interval timer to provide user tasks with a
flexible set of timer management/maintenance services. The
following services are provided: time of day clock, day
and year calendar, interval and time of day wait, interval
and time of day trap, driver time-out. The clocks are
coordinated through a leaf (TIMELV) and operate as Event
Service subroutines of the system task.

The timer management routines require the use of dynamically
allocated blocks of system space called Timer Queue Entries
(TMQs) and obtain/release these by calls to GETSYS and RELESYS.
The space used is deducted from the user's system space
allocation, and if he cannot receive space (because he has
exceeded his maximum allocation, or because none is available),
a time call will be rejected. This does not affect the status
of existing time items.

In addition, by SYSGEN option the operating system displays
mmddhhmm on the Processor Display Panel.

2.2.6 Loader (EXTM)

The 0S/32 MT resident loader loads tasks, overlays and library
segments. The input to the resident loader must be created
by the 0S/32 MT Task Establisher Task (TET). TET outputs
'load modules' which contain a Loader Information Block (LIB)
followed by a core image of the task/library. The LIB

enables the loader to derive the various parameters of the
load module. All user tasks in 0S/32 MT are established

as though they were to be loaded at physical address 0 in

the computer. Through the use of the Memory Access Controller
(MAC) the task's program addresses are relocated to correspond
to the physical addresses occupied. This process is totally
transparent to the user.

Executive tasks do not run with the MAC enabled, and hence
must be written as totally position independent code. This
will be discussed in Chapter 9. Overlays are loaded in the
same manner as tasks. Library segments are loadable only
through operator command when the system is quiescent. No
task requesting use of a library can be loaded unless that
library is present in memory.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specificatly authorized in writing. R02 4/76

l 2.2.7 1Intertask Coordination/Communication (EXTM)

0S/32 MT R0O0 provides the foreground system of tasks with
a means of intertask communication and control. The
features provided include:

Load a task

Start/Delay Start a task
Cancel a task

Delete a task

Queue a parameter to a task
Change a task's priority
Obtain a task's status

These functions are performed via SVC 6 calls, and the
desired function is specified via a parameter block. These
calls may be directed towards another task or may be self-
directed.

l 2.2.8 Task Handled Traps (EXTM)

0S/32 MT provides the user task with a mechanism whereby

it may interrupt its normal execution, and enter a special
subroutine upon the occurrence of certain events. The events
that cause the user special subroutines to be entered are

(in MT ROO):

Receipt of a parameter on user task queue
Timer Completion

Power Restoration

I/0 proceed completion

SVC 14

The routine to be entered, if any, is controlled by the current
value of the Task Status Word (TSW) and of the task's User
Dedicated Location (UDL). The TSW is a mask containing bits
which are interpreted by 0S/32 MT to enable (if set) or
disable (if reset) the interrupt condition associated with
the bit. The UDL contains addresses of special subroutines
to be entered upon occurrence of an enabled event. The UDL
also provides a storage area into which the value of the
user's TSW and location counter previous to the event may be
saved, so that the user may resume normal execution after
completion of a Special Event handler.

The value of the TSW is manipulated through a Supervisor
Call instruction (SVC 9). The addresses of subroutines, and

the user status to be set when entering those subroutines
may be set up by the task storing directly into its UDL.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
R02 4/76 not be used for any other purpose uniess specifically authorized in writing. 2_9

SvVC 1 USER
PARBLK TASK
’
)
svC 1 EVENT
AND e — o SERVICE
DEVICE IODONE HANDLER
MNEMONIC) *
TABLE I |
DMT DEVICE
CONTROL | |
TABLE | |
3
DCB | |
- — 1
DRIVER fo—
TIMEOUT fa— DRIVER
HANDLER -
CHANNEL : EVENT
CONTROL isp | COORDI-
BLOCK i TABLE ' NATION
cCB | l ;Css_LE
|
. |
AUTO DRIVER L. PERIPHERAL
CHANNEL DEVICE
CONTROL « — —

DATA FLOW+———»

2-10

Figure 2-4. Elements of 1/0 System

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

RO1

4/75

2.2.9 Crash Handler

This routine is entered when the system cannot continue

without the risk of destroying system Or user information.

A CRASH CODE is displayed on the Display Panel and is also
stored in the SYSTEM POINTER TABLE (SPT) at SPT.CRSII.

(See Chapter 10 for crash codes and meanings.) System
Initialization does not reset SPT.CRSH. Some of the conditions
which cause the Crash handler to be entered are:

TIllegal Instruction within the system.
Invalid Item on the System gueue.

Invalid TCB ID passed to Task Management.
Interrupt from undefined device.

2.2.10 System Journal

The System Journal is a circular list of historical data
maintained by the system. Each entry on the journal consists
of five fullwords of information: the task id of the task
which was active at the time of the entry, the reason for
making the entry (Journal Code) and information pertinent to
that call. The System Journal is established at SYSGEN time
by 0S/32 MT Configuration Utility Program. System Journal
processing may be eliminated at SYSGEN time. See Chapter 10
for a list of the Journal Codes and their meanings.

2.3 I/0 SYSTEM (EXIO) I

The I/0 System consists of system routines and control blocks
necessary to provide a device independent facility for performing
I/0 requests. It is composed of the SVC 1 Executor, IODONE,
device drivers, Device/Volume Mnemonic Tables (DMT/VMT), Device
Control Blocks (DCB), Channel Control Blocks (CCB), Interrupt
Service Point Table (ISPTAB), Logical Unit Table (LTAB), the
Event Coordination Table (EVT), and the Event Service handler
(see Figure 2-4).

2.3.1 Device/Volume Mnemonic Tables

All devices and direct-access volumes are referred to throughout
the system either by logical unit or by an ASCII identifier.
These tables, DMT and VMT, bind these ASCII identifiers to the
devices' DCBs.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing. 2 11

RO2 4/76

2.3.2 Logical Unit Table

This table is physically present in all TCBs. It is of
interest to the I/0 subsystem and the file manager. It
consists of a takle of DCB or FCB addresses, one for

each Logical Unit. If the Logical Unit is not assigned
to any device, the entry is set to ZERO. The size of the
Logical Unit table for all user tasks is the same, and is
fixed at SYGEN time. Access privileges are placed in a
Logical Unit entry at ASSIGN time.

2.3.3 Device Control Block (DCB)

A DCB is provided for each device in the system. This control
block contains device-dependent information such as the attri-
butes of the device, flags and register save areas if needed.

Pointers are provided to the driver initialization, interrupt

service, and termination phases, as well as the event service

leaf which coordinates access to this device.

2.3.4 Channel Control Block (CCB) and Interrupt Service
Pointer Table (ISPTAB)

CCB's and the ISP table are used to control I/0 requests through
the Auto Driver Channel capability of the 32-bit series Processor.

2.3.5 8VC 1 Processor

The SVC 1 Processor saves the user's registers, picks up the
user's parameter block for the driver, and then makes several
error checks. These are done primarily through the mechanism of
checking the attributes bytes in the device control block
against the function code specified in the call. If the

call is in order, the system enters a reentrant state, places
the data from the parameter block into the DCB and vectors to
the appropriate driver.

2.3.6 Drivers

These are the same as the 0S/32 ST Drivers and are consequently
fully reentrant, with the exception of the interrupt-handling
phase. The initiation phase of an 0S/32 Driver runs as a
reentrant subroutine of the task, i.e., using the user registers
and with queue service enabled. The interrupt-handling phase
runs with all interrupts inhibited, except for illegal
instruction and machine malfunction. The termination phase

of the Driver runs in a reentrant state although no task may

be executing more than one termination phase subroutine at a
time.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shal!
2-12 not be used for any other purpose unless specifically authorized in writing. R0]- 4/75

2.3.7 Termination Event Coordination Table

The 0S/32 Termination Event Coordination Table (EVT) is used
to coordinate access to all devices, controllers, selector
channels and bus switches in the system as well as other
system resources that must have controlled access, such as
bulk storage directories and allocation bit-maps. This table
contains busy flags for all devices and pointers for each
device that requires coordination, to the controller, channels
and bus switches with which that device must be coordinated.
See Section 2.1.4.

2.3.8 Trap Generating Devices

There exists a class of devices, called Trap Generating Devices
(TGDs) , whose interrupts require the scheduling of a task to
perform a service in response to that interrupt. In 0S/32 MT
the means provided to respond to these interrupts is to
- have the Driver queue a parameter to the appropriate user task.
so that he may respond to the event. The Instrumentation
Society of America (ISA) has established standard calls for
handling these devices, and 0S/32 MT supports:

Connect a task to a TGD (Connect)
Enable interrupts from a TGD (Thaw)
Disable interrupts from a TGD (Freeze)
Disconnect a task from a TGD (Break)

In addition, 0S/32 MT supplies the user with a facility to
simulate the occurrence of an interrupt from one of these
devices (SINT).

‘2.4 COMMAND PROCESSOR

The Command Processor (which is also the System Task) provides
the operator interface to 0S/32 MT. It executes as a task

in 0S/32 MT and is designed so that many functions are performed
through Supervisor Calls. The Command Processor contains
routines to support the Command Substitution System (CSS),
routines to do memory partitioning and routines to support
Direct Access devices. The Command Processor controls all

I/0 requests to the Console and Log devices.

2.4.1 Command Processing

The Command Processor accepts commands from the system console
device, decodes them and calls the appropriate executor. Some
commands are executed via Supervisor calls (e.g., EXPAND, ASSIGN)
while others are executed by the Command Processor routines
(e.g., MARK, DISPLAY). The Command Processor contains logic

to provide the console operator with informative messages in
case of error.

ROl 4 This information is proprietary and is supplied by INTERDATA for the scle 2 1
/7 5 purpose of using and maintaining INTERDATA supplied equipment and shali - 3
not be used for any other purpose unless specifically authorized in writing.

2.4.2 Command Substitution System (CSS)

The Command Substitution System routines provide the ability

to build, execute and control files of 0S/32 MT operator
commands. CSS consists of routines to execute CSS operator
commands, to manage the CSS buffers and to provide the command
parameter substitution facility. The CSS buffers are established
at SYSGEN time by the 0S/32 MT Configuration Utility Program.

2.4.3 Direct Access Support

The Command Processor provides the operator with the command
functions necessary to allocate and delete files, display
files, perform functions such as rewind, backspace record

to a file assigned to the user task and for mounting and
dismounting direct access volumes. Most of these functions
are executed via SVC 1 and SVC 7 calls.

2.4.4 Console Support

The Command Processor controls the user task communication
with the keyboard/printer device used as the system console.
This is accomplished via a dummy driver which intercepts all
log messages and SVC 1 requests to the console device and
executes them for the user task. Because of this feature
and the structure of Task Management, most commands can be
entered and executed while a user task is active, even if
the task has assigned the console device.

2.5 FILE MANAGEMENT

The file management routines handle all access to bulk storage
files, either by the user task or by the system. There are
four basic modules in this package: the Directory and

Bit-map handler, the Contiguous file access method, the Chained
file access method, and the SVC 7 Processor. 1In addition,
there are a set of utility programs.

2.5.1 SVC 7 Processor

This package processes all SVC 7 calls. It calls on the
directory and Bit-map handler when a file is assigned, allocated,
deleted, or check-pointed. When a file is closed, it calls

the Disc Driver as required to make sure all valid data is
written on the disc. Protection keys are checked by this

module, which also performs all assignment of devices to Logical
Units.

This infor;nation is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
2 14 not be used for any other purpose unless specifically authorized in writing. ROl 4/7 5

2.5.2 Directory and Bit-Map Handler

This package handles all access to and modifications of the
directory and bit-map for each bulk storage device. Entries
are provided to look up a file in the directory, to enter a
new file name in the directory, to modify or delete a
directory entry, to allocate one or more contiguous sectors
of storage, or to release allocated bulk storage.

2.5.3 Contiguous File Access Method

This package is entered when an I/O request is made to a
Contiguous file. It performs sector address computations
and enters the Disc Driver.

2.5.4 Chained File Access Method

This package is entered when an I/O request is made to a
Chained file. It handles all buffering and unbuffering, calls
the Disc Driver for read or write whenever a buffer is filled/
emptied, and allocates new space on the appropriate bulk
storage device as required for file expansion.

2.5.5 Disc Utility Programs

Along with 0S/32 MT the user is provided with a set of

Utility tasks which perform miscellaneous non-SVC 7 functions.
This includes Disc Dump, Disc Initialization, Bit-map/Directory
Initialization, Defective Sector Flagging, etc.

2.6 Floating Point

At SYSGEN time the user may specify which type of floating
point support his system is to contain. The choices are:

no floating point, hardware floating point, or software
simulated floating point. If no floating point is selected,
then no task in the system may execute floating point instruc-
tions. If a task does execute a floating point instruction,
it will be treated as an illegal instruction. The 0S/32 MT
Resident Loader will not load a task in a system without
floating point support, if the LIB of its Load Module
indicates that floating point is required.

If software support is selected, a series of software routines
to simulate floating point instructions is included in his
system. Each time an illegal instruction interrupt occurs,
control is passed to this simulation package. If it determines
that the illegal instruction was, indeed, a floating point
instruction, the package will perform the appropriate operation;
if not, control is passed to the Illegal Instruction handler.

ROl 4/75 This informatipn is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall 2_15
not be used for any other purpose unless specifically authorized in writing.

If either software or hardware floating point is specified,
and a task's options indicate it uses floating point, the
operating system will save and restore the current contents
of the task's floating point registers when the task is
stopped and restarted. This means that each task has its
own unique copy of the floating point registers.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
2‘-16 not be used for any other purpose uniess specifically authorized in writing. RO]_ 4/75

CHAPTER 3

SYSTEM CONVENTIONS

3.1 MACHINE STATES

0S/32 programs, tasks and routines run in one of eight well-
defined states. These states are differentiated by a combination
of PSW bits and status bits of an active task. Any state not
defined is not permissible. At any given instant in time,

the Processor is executing code in one of these states.

They are, in increasing order of priority and privilege:

l. User Task (UT)

. Executive Task (ET)

. Reentrant System (RS)

. Reentrant System, Alternate Save Area (RSA)
. Event Service (ES)

Nonreentrant System (NS)

. Nonreentrant System, User Registers (NSU)

. Interrupt Service (IS)

oNOTUVeaWN

The definition of these states in terms of PSW and TCB status
bits is shown in Table 3-1.

3.1.1 User Task State - UT

The UT state is the state in which all user tasks run. The
PSW Protect and memory relocation bits are set. Internal
and external interrupts are enabled, with the possible
exception of the Arithmetic Fault interrupt bit, which is
the only interrupt bit that is under user control. This
state may only be exited via interrupt or execution of SVC.
The User Register set is active.

3.1.2 Executive Task State - ET

The ET state is the state in which all Executive Tasks (E-tasks)
run (see Chapter 9). Protect mode and memory relocation are
disabled. All interrupts other than Arithmetic Fault are
enabled. Arithmetic Fault is under control of the E-task.

All SVC's are permitted. The User register set is active.

This state should only be exited via interrupt or execution

~£ oI
UL oV,

3.1.3 Reentrant System State - RS

The RS state is the state in which reentrant system code is
executed on behalf of a task. Machine constraints are the
same as for the ET state; however, software constraints are

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shal! 1
RO1 4/75 not be used for any other purpose unless specifically authorized in writing. 3-

more stringent: No code may be executed which would cause

the RS state to be entered (e.g., a TYPE II SVC - see Section

3.2). Note that RS, RSA and ES code is executed on behalf of

a task and is scheduled and dispatched as though it were a
privileged routine of the task. For this reason, Queue Service
interrupts are enabled. The User registér set is active; the
previous contents of the User registers is assumed to have been
stored by the Task Manager in the RS Save area of the calling task's
TCB. This state may be exited in several ways:

Branch to Task Manager to return to UT/ET state
or enter RSA state

LPSW or EPSR that enters NS or NSU state

I/0 or internal interrupt

3.1.4 Reentrant System State, Alternate Save Area - RSA

This state is identical to RS state except that the previous
contents of the user register set have been stored in an
"alternate save area" (other than in the TCB). System code
executing in RSA state may execute a full range of SVC calls
(calls that enter RS state), since the RS save area is
considered unused. Tasks in RSA state may also execute

calls that cause the current contents of the user register

set to be put into another (unused) alternate area. Alternate
save areas are linked together as shown in figure 3-1. . Each
new alternate save area is added at the beginning of the
chain. RSA code must exit from each successive RSA state

in an orderly manner. The state may be exited via:

LPSW or EPSR that enters NS or NSU state

I/0 or internal interrupt

svC

Branch to Task Manager to return to previous RSA state,
RS state

Branch to Task Manager to enter another level of RSA

3.1.5 Event Service State - ES*

This state is identical to RS state in all respects except
that the ES (Event Service) status bit in the task's TCB is
set, disabling the dispatching of an event for that task (see
Section 4.2). It is used only in drivers, principally in
driver termination code. This state may be exited only via

a call to the Return from Event routine in the Event handler
package.

* ES state was previously known as RSN state. Any reference
to RSN should be interpreted as a reference to ES.

This information is proprietary and is supplied by INTERDATA for the sole
3_2 purpose of using and maintaining INTERDATA supplied equipment and shalt
not be used for any other purpose unless specifically authorized in writing. ROl 4/75

TCB.ASV

TCB

Alternate save area

PSW

Registers

PTR to next save area

RO1

4/75

PSW

Registers

PTR to next AS area

PSW

Registers

Figure 3-1. Machine States

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

34

3.1.6 Nonreentrant System State - NS

The NS state is the state in which the system executes system
code which changes critical system information such as EVT,TCB.
This code is nonreentrant and Queue Service interrupts are
disabled. The Executive register set is active, but NS is
restricted in that the code may use only registers 8-F. As

no new task may be dispatched while the system is in this
state, routines that run in this state must necessarily be
short and quick to execute. No SVC's may be executed. This
state is exited via LPSW, EPSR, or external interrupt.

3.1.7 Nonreentrant System State User Register Set - NSU

This state is identical to the NS state (see Section 3.1.6)
except that the User register set is enabled. It is used
when the User registers are stored in a TCB or alternate
save area. NSU code may use registers 0-F of the user set.

3.1.8 Interrupt Service State - IS

The IS state is used only for interrupt service routines within
drivers and in the Machine Malfunction handler. All interrupts
are disabled except machine malfunction. The Executive register
set is active, of which IS code may use registers 2-7. This
state is only exited via LPSWR on register 0 and 1. Since all
interrupts are disabled, it is extremely important that all IS
code be as brief as possible.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shail
not be used for any other purpose unless specifically authorized in writing.

RO1 4/75

TABLE 3-1 SYSTEM STATES

TCB
PSW Status Bits Status Option
I MM AF MR QS P R ES RS ET
17 18 19 21 22 23 24:27 0 1 0

UuT 1 1 d 1 1 1 F 0 0 0
ET 1 1 d 0 1 0 F 0 0 1
RS/RSA 1 1 1 0 1 0 F 0 1 d
ES 1 1 1 0 1 0 F 1 d d
NSU 1 1 1 0 0 0 F d d d
NS 1 1 1 0 0 0 0 d d d
Is 0 1 1 0 0 0 0 d d d

0 means bit must be zero

1 means bit must be one

d means bit may be zero or one

F means all 4 bits are one

I Immediate Interrupt

MM Machine Malfunction

AF Arithmetic Fault

MR - Memory Relocation

QS System Queue Service

P Protect

R Register Select

ES Event Service State

RS Reentrant System State

ET Executive Task

This informatipn is propr_ieta.ry‘ and is supp|i;;:l\ by "‘:'IERDATA '(:ra::je:h.:ﬁ
RO 1 4/ 7 5 g::pzsee ::edus;gg ::g :::::"a;):‘.llri:)gos': TAVE\r:slespect:::':‘I)l; auo;qhor‘i)zed in writing. 3_ 5

3 6 not be used for any other purpose uniess specifically authorized in writing.

3.2 SVC DEFINITIONS AND CONVENTIONS

svC Function Type
1 I1/0 11
2 code 1 Pause II
2 Get Storage I1
3 Release Storage I
4 Set Status I
5 Fetch Pointer II
6 Unpack IT
7 Log Message 1T
15 Pack II
16 Pack File Descriptor I1
17 Mnemonic Scan II
18 Move Characters 11
19 Peek I
20 Expand Allocation I
21 Contract Allocation I
3 End of Job 11
5 Fetch Overlay 11
6 Intertask Communication II
7 File Management IT
9 TSW Swap IT
14 User SVC I1

All SVC interrupts cause the system to enter NS state. Each
SVC enters a separate entry point in the First Level Interrupt
Handler (FLIH). FLIH decodes the SVC number and passes control
to the appropriate executor. There are two types of SVC
executors: those that are short and do not require access to
the user register set (Type I) and those that are lengthy or
require access to the user register set (Type II). Type I
SVC's execute in NS state, thus eliminating the overhead of
saving the user registers. Type II SVC's execute for some
portion in RS or RSA state.

FLIH passes control to an SVC executor with:

1. Address of the Task Control Block of the invoking
task in register 9.

2. Unrelocated address of parameter block in register 12.

3. Address of the SVC parameter block in register 13.

4. Resume PSW in registers 14 and 15.

Entry is in the state (NS or RS) indicated in a table contained
in FLIH. On entry to the executor, the parameter block has
been checked to insure it is on a fullword boundary and the
address is between UBOT and CTOP+2. It is the responsibility
of the executor to perform validity checking of any addresses
passed in the parameter block.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shatl

RO1 4/75

3.3 INTERNAL INTERRUPT CONVENTIONS

Internal interrupts cause control to be passed to the
individual interrupt handler in NS state. 1In all cases,

a message is output to the system console indicating the .
nature of the interrupt and the address at which it occurred.
In addition to the interrupts generated by the 32-bit
architecture, illegal SVC calls and invalid addresses passed
in SVC calls are handled by the internal interrupt handler as
illegal instructions. '

3.4 SUBROUTINE CONVENTIONS

Two levels of subroutine linkage are defined for the reentrant
system states, RS and RSA, and for non-reentrant state, user
register set, NSU. One level of subroutine linkage is

defined for non-reentrant system state, NS.

3.4.1 RS, RSA and NSU Subroutines

The mainline level is allowed to use the full register set
UO-UF. First level subroutines are linked through

register 8 and may use registers U8-UF without save/restore.
Second level subroutines are linked through register 12

and may use registers UC-UF without save/restore. This is

a general definition used as a guideline; individual modules
may violate this definition.

3.4.2 NS Subroutines

The mainline is allowed to use registers E8-EF of the Executive
Register set. The first level subroutine is linked through
register 8 and may use register E8-~EB without save/restore.
Subroutines that may be called from either NSU or NS must be
written as an NS subroutine.

3.4.3 Calling Sequences

Parameters are passed in registers or in memory. Parameters

may be passed in memory immediately following the BAL instruction
only if the parameters require halfword alignment. Parameters
may be passed in system tables such as SPT, TCB, etc.

3.4.4 Exits

The normal exit from a subroutine should be to the address
contained in the link register, or to a specified number

of halfwords past the address contained in the link register.
Alternate exits must be to locations passed as parameters.
Exits to unlabeled addresses are not permitted.

This information is proprietary and is supplied by INTERDATA for the sole -
Ro l 4/7 5 purpose of using and maintaining INTERDATA supplied equipment and shall 3 7
not be used for any other purpose unless specifically authorized in writing.

3.5 GENERAL NAMING CONVENTIONS

3.5.1 Data Structures

All data structures (defined by CAL STRUC statements) in

0S/32 are named with three character symbolic names, e.g.,
TCB, SPT, DMT. All fields within these structures are defined
by a name of the form SSS.FFF, where SSS is the structure
name, and FFF is the field ID. (See Chapter 11 for structure
definitions).

3.5.2 Bits

Certain fields in a data structure contain flag bits to
denote information. These flag bits are manipulated with
either bit instructions (e.g., TBT, SBT, RBT) or logical
immediate instructions (e.g., THI, OHI, NHI). For each flag
bit there are two definitions - one for the bit number and one
for the mask. These definitions are of the form SFFF.XXB

and SFFF.XXM where S is a character which refers to the
structure ID, FFF are three characters which refer to the
field, XX identifies the function of the flag bit, B denotes
a bit number, and M denotes a bit mask. For example, in

the TCB there is field TCB.OPT which contains the option bits;
Bit 0 = 1 means the task is an EXEC TASK (E-TASK), Bit 0 = 0
means that the task is a USER TASK (U-TASK). The bit number
and bit mask definitions of this flag are:

TOPT.ETB EQU 0
TOPT.ETM EQU X'8000'

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing. ROl 4/75

CHAPTER 4

EXECUTIVE DESCRIPTION
4.1 TASK MANAGEMENT

4.1.1 Task Control

In 0S/32 MT a task may be in wait state or in ready state.
Wait state indicates that some external event must take
place before the task may proceed. Ready state indicates
that all such necessary events have taken place. The Task
Manager controls tasks through the use of several control
blocks (see Figure 4-1).

SYSTEM POINTER
TABLE TCB TABLE SYSTEM TCB

+4| - sTcB of”’/(’,—’———__’
+8| —» UTCB o
+12| = UTCB o~
+64| —» TCBTABLE] USER TCB
+68 | CURRENT TCB ID
USER TCB
FIGURE 4-1 TASK CONTROL
Each task is described by a Task Control Block (TCB). The
addresses of the TCB's are maintained in the TCB table which
is pointed to by the System Pointer Table (SPT). A chain,

is maintained of the tasks that are in ready state. This

task ready chain is maintained in priority order. 1In 0S/32 MT
the System Task has priority 1 (highest) and the user tasks
may be assigned priority between 10 and 249, inclusive.

TCBs are referenced by their address or by their id. TCB id
is the index, starting at 1, of the TCB in the TCB table.

The System Task is TCB 1.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
ROl 4/75 not be used for any other purpose unless specifically authorized in writing. 4_1

4.1.2 Task Management Facilities
The Task Manager provides subroutines to:

Dispatch the current task

Suspend the current task

Put a task on the ready chain

Remove a task from the ready chain

Cause a task to enter RS, RSA or ES state
Dispatch from top of EVT

Remove a wait condition from a task

Start the user task

In order to maintain the control of a task as it is in
various states, the Task Manager uses three PSW and register
save areas in the TCB, the dispatch save area, the RS save
area and the ES save area. The state of these save areas

is indicated by the ready chain, RS and ES bits in the
status field of the TCB.

4.1.2.1 Dispatch Current Task (TMDISP, TMRDISP)

The Task Manager dispatches the current task by deciding
which is higher priority, the task at the top of the ready
chain or the task at the top of the EVT queue (see Section 4.2).
The top of the ready chain is maintained in the SPT. If this
TCB ID is ZERO, there is no task ready and if there is also
no task at the top of the EVT queue the Task Manager places
the system in an enabled Wait state. If the TCB ID is non-
zero, and that task's priority is higher than the priority

of the task at the top of the EVT queue, the Task Manager
loads the user register set from the TCB dispatch save area,
loads the saved floating point registers, and then passes
control to the task by loading the resume PSW in the dispatch
save area.

4.1.2.2 Suspend the Current Task (TMSTOP)

This Task Manager facility is called to prepare the current
task for removal as current task. The contents of the
user's registers are saved in the dispatch save area of the
TCB, the task's floating point registers are saved in the
TCB, following the LU table, and the task's resume PSW is
saved in the dispatch PSW save area of the TCB. This
facility is used before placing the task in a Wait state

or when an event has occurred which has made a task of
higher priority ready.

4.1.2.3 Chain (TMCHN)

When a task has become ready it is placed on the ready chain
in priority order. 1In 0S/32 MT, the ready chain may have
any or all of the tasks in the system on it.

This information is proprietary and is supplied by INTERDATA for the sole
-purpose of using and maintaining INTERDATA supplied equipment and shall Rﬁl 4/75
not be used for any other purpose unless specifically authorized in writing.

RO1

4,1.2.4 Unchain (TMUCHN)

When a condition exists that prevents a task from proceeding
until an external event occurs, the task manager removes the
TCB from the ready chain. The task need not have been the
current task.

4.1.2.5 Enter System State (TMRSIN, TMRSNIN, TMRSAIN)

All reentrant system routines execute as privileged subroutines
of the invoking task. On entry to one of these routines the
Task Manager saves the current PSW and user register values
in one of three places: the RS save area in the TCB if the
task is entering RS state, the ES save area of the TCB if the
task is entering ES state, and the specified alternate save
area if the task is entering RSA state. The condition of
these various save areas is indicated by the state of the
corresponding bits in the TCB status field, if set, the

save area contains valid data. These routines must be
entered from NS state.

4.1.2.6 Exit From System State (TMRSOUT, TMRSNOUT, TMRSAOUT)

On exit from one of the reentrant system states, RS, RSA or
ES, the Task Manager restores the state of the task to the
environment saved in the appropriate save area. The corres-
ponding bit in the status field of the TCB is reset to
indicate no valid data in that save area. An exception to
this is when multiple RSA levels are in existence. 1In this
case, the RS and RSA bits are not reset until the last RSA
state has been exited. These routines also check for pending
bits in the status field of the TCB, and if set, put the task
into the corresponding wait state by moving the PSW and

User registers from the specified save area to the TCB
dispatch save area saving the floating point registers,
removing the TCB from the ready chain, and branching to TMDISP.

4.1.2.7 Dispatch from Top of EVT Queue (EVTDISP)

This function of the Task Manager is discussed more fully in
Section 4.2.4.5. 1In brief, if the task at the top of the EVT
queue is of higher or equal priority to the task at the top
of the ready chain, it is chained and then dispatched as the
current task.

4.1.2.8 Remove Wait (TMREMW)

This facility of the Task Manager removes the specified wait
conditions from the specified task by resetting the corres-
ponding bits in the wait field of the TCB. If no wait
conditions remain the task is placed on the ready chain (TMCHN)

This information is proprietary and is supplied by INTERDATA for the sole
4 75 purpose of using and maintaining INTERDATA supplied equipment and shall
/ not be used for any other purpose unless specifically authorized in writing.

4-3

44

4.1.2.9

Start User Task (TMSTART)

The Task Manager starts the specified task by constructing
the start PSW from the options field in the TCB and the

specified location.

This PSW is placed in the dispatch

save area of the TCB and the TCB is chained on the ready

chain.

When the task becomes top of ready chain it is

dispatched at the saved PSW with all the User Registers
set to zero, if the task had been just loaded.

4.1.3

Task States

The state of a task is defined by the settings of the bits
in status and wait fields of the TCB and the value of the

current TCB field of the SPT.

Table 4-1 indicates

detailed task states and their meanings:

TABLE 4-1 TASK STATES

State Indication Meaning
Dormant Dormant bit Partition associated with
TCB wait field this has not been loaded.
Ready Ready chain bit Task on ready chain
TCB status field
Current TCB ID in SPT Task is the executing
current TCB field | task.
RS RS bit in TCB RS save area
TCB status field contains valid data.
Task may be Ready or
in walit state.
RSA AS bit in Save area(s) pointed to by
TCB status field TCB contains valid data.
Task may be ready or in
wait. RS bit must also
be set in TCB status
field.
ES ES bit in TCB ES save area contains
TCB status field valid data. Task must
be Ready. I/0 wait bit
may also be set.
Wait Ready chain bit Task needs external event
reset before it may proceed.
TCB status field

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shali
not be used for any other purpose unless specifically authorized in writing.

RO1 4/75

4.2 EVENT SERVICE HANDLER

4.2.1 Event Coordination Table - EVT

Coordination of system resources is controlled through the
Event Coordination Table. The EVT is a tree structure
consisting of nodes (entries with descendants) and leaves
(entries without descendants). Each path in the tree
corresponds to a group of system resources that must be
coordinated as one resource. Figure 4-2 illustrates a
sample portion of an EVT. All paths in the tree are
descendants of the system node.

4.2.2 System Queue

The 32 bit architecture provides for the facility of a system
queue. This queue is maintained in the standard list format,
and is pointed to by a fixed location (X'80') in low memory.
Whenever the status portion of the PSW is updated with the
Queue Service bit set, an internal interrupt is generated

if there is an entry on this gqueue. 0S/32 MT uses the system
queue to schedule events coordinated by the EVT. The entries
made to the system queue are always in the form of an address
of a leaf in the EVT. When a system queue service interrupt
occurs, the leaf is said to have evented. In 0S/32 MT there
should be at least as many system queue slots as there are
devices in the system.

4.2.3 Coordination
In order to explain the Event Service handler, the following

terms must be defined:

4.2.3.1 Connection

In order to assume control of a system resource reflected in
the EVT a task must be connected to the resource. A task

is connected to a leaf and ancestor nodes, up to system node,
by placing the task ID and priority in the leaf and the task
ID, the task priority and the connected leaf address in the
upper nodes. An unconnected leaf has a TCB ID of X'00'

and a priority of X'FF'; unconnected nodes have, in addition,
a connected leaf address of 0. Only one task may be connected

+n a Teaf A noada a4+ a +imn A +acl mune+r ha ~sannect+ad +o0
w—\s A4 e e CA A A JAINJUACT . i LI o L3 QAo Nn AW AN W NALLAIC N L -\

all entries between a connected leaf and the highest connected
node in the path. Referring to Figure 4-2, a task could be
connected to the following EVT entries:

This information is proprietary and is supplied by INTERDATA for the sole
RO 1 4/7 5 purpose of using and maintaining INTERDATA supplied equipment and shall v 4—5
not be used for any other purpose unless specifically authorized in writing.

SYSTEM
0

—s DESCENDANT

~=DESCENDANT 1

NODE 1

SYSTEM NODE

—»DESCENDANT 0O+

—»DESCENDANT 1

LEAF 2 NODE 2
NODE 1 ‘ NODE 1
DESCENDANT 0
LEAF 3
NODE 2

Figure 4-2. Portion of EVT

LEAF 1

SYSTEM NODE

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

RO1

4/75

Leaf 1

Node 1, Leaf 2

Node 1, Node 2, Leaf 3
Node 2, Leaf 3

Leaf 2

Leaf 3

A task could not be connected to just Node 1. Tasks never
connect to the system node.

4.2.3.2 Queueing

Before connection is made to an EVT entry, all upper nodes
must be unblocked (not connected). If an upper node or the
leaf being connected to is blocked, the Event Service Handler,
upon request, will queue the task for the leaf. This leaf
queue is maintained in priority order. While a task is on
the leaf's queue, it is placed in a "connection wait" state.
Each unblocked node maintains a pointer to the descendant
subtree of the highest priority. Thus the highest priority
task on a leaf queue is queued to the highest unblocked

upper node.

4,2.3.3 Assertion

Although a task must be initially connected to an entire path

in the EVT, it can release upper nodes if they are not

necessary for some portions of an operation. When the task

again requires these upper nodes, it is said to be asserting
reconnection and an assert flag is set in the highest connected
entry of this path, a pending flag is set in the leaf and the
priority of the highest connected entry is propagated. When

the asserting task becomes top of EVT, the dispatcher reconnects
required upper nodes before dispatching the Event Service Routine
(see Section 4.2.4.5).

4.2.4 Event Service Facilities

The Event Service handler provides subroutines to:

Connect a task to a path in the EVT
Disconnect a task from EVT entries
Release upper nodes

Service System Queue Service interrupts
Dispatch from top of EVT

Return from event

Propagate a priority up the EVT

All Event Service handler routines execute in NS state
except for return from event.

This information is proprietary and is supplied by INTERDATA for the sole

. N T .) hail

purpose of using and maintaining INTERDATA supplied equnpment and_s‘
ROl 4/75 not be used for any other purpose unless specifically authorized in writing. 4_7

4,2.4.1 Connect (EVCON, EVQCON)

Requests for connection always specify a leaf address to
be connected to. The connection routines check all upper
nodes up to system node. If any upper nodes are connected
in some other path, a condition code of X'F' is returned
(EVCON) or the task is placed on the leaf's queue and into
connection wait (EVQCON). If the path is unblocked, the
task is connected to the leaf and the leaf is added to the
task's connected leaf chain and a condition code of X'0'
is returned.

The connected leaf chain is maintained as a bi-directional
list of leaves pointed to by the TCB. The connection wait
chain is maintained as a bi-directional list of TCBs pointed
to by the leaf. A task can be connected to a leaf and in
connection wait for it at the same time. Refer to Figure 4-3
for an example of a task connected to two leaves and

both that task and another task in connection wait

for the first leaf. This would occur if the connected task
and the queued task issued I/O requests to a device prior

to the completion of a previous I/0 and proceed request

by the connected task to the same device.

SYSTEM TC8 (1D=01) USER TCB (1D=02)
+ 14 00 02 +14 o1 00
PREV. NEXT PREV. NEXT
TCB IN CONN. TCB IN CONN.
WAIT WAIT
+40 0 +40 ——» LEAF 1
TOP OF CONN. TOP OF CONN.
LEAF CHAIN LEAF CHAIN
LEAF 1 LEAF 2
+7 01 +7 00
TOP OF LEAF
QUEUE
+12 0 +12 | ——— LEAF 1
+16 —» LEAF2 +16 0

FIGURE 4-3 CONNECTION AND CONNECTION WAIT

This information is proprietary and is supplied by INTERDATA for the sole
RO]. 4/7 5 purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

4.2.4.2 Disconnect (EVDIS)

Requests for disconnection always specify a leaf address.

A task is disconnected from the specified leaf and all upper
nodes. After each node is unblocked, the priority of the
task on top of the queue for that node, if any, is propagated
up to the node.

4.2.4.3 Release (EVREL)

Requests for release specify a leaf address and the level
above the leaf that is to be released. All nodes from the
specified level up are unblocked as in disconnection. For
example, the Disc Driver requires only the disc for a seek
operation, so the nodes from level 2 up can be released
(the Disc Controller node and the Selector Channel node) .

4.2.4.4 System Queue Service (SQS)

SOS is entered on a queue service interrupt from the microcode.
The leaf address on the bottom of the System Queue is removed.
SOS obtains the address of the connected TCB from the TCB id
stored in the leaf. The event count in the leaf and in the
connected TCB are incremented by one. SQS checks the status
flag to see if the task is eventable. If the task is already
in ES state it is non-eventable and SQS simply loads the

PSW at the time of the interrupt. The non-zero occurrence
counts in the leaf and the TCB queue the event to the task.
If the task is eventable, SQS sets a pending flag in the

leaf and an assertion flag in the highest connected node.

The priority of the task is then propagated up the tree from
the highest connected node (see Section 4.2.4.7). 1If the
priority was able to propagate up to the top of the EVT
(system node), then the current task, if any, is suspended

by saving the current PSW and user registers in the

dispatch save area of its TCB and the event service routine
for the connected task (which may be the current task) is
scheduled by EVTDISP (Section 4.2.4.5), unless the current
task is higher priority. If the current task is of higher
priority, it is redispatched and the connected task is
dispatched into the event service routine when it becomes

top of ready chain.

" System Queue Service is also entered to service a time slice
event. 1In this case, the item processed contains the TCB-ID
of the task which has exhausted its time slice. If a task
equal in priority to this task is on the "ready chain", and
if the first task is still active, it is stopped by TMSTOP
and the new task dispatched. If the task which has exhausted
its time slice is no longer active, it is just moved on the
"ready chain" after all equal priority tasks. If no tasks
equal in priority to this task are on the "ready chain," the

current task receives another full slice and is redispatched.

4.2.4.5 Dispatch From EVT (EVTDISP)

Every routine that causes the current task to be changed
branches to the Task Manager routine TMDISP to determine
the next task to be dispatched. TMDISP determines the next
current task by comparing the priority of the task at the

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
RO2 4/7 6 not be used for any other purpose unless specifically authorized in writing. ’ 4-9

top of the ready chain, if any, with the priority of the
task queued to the system node, if any. If the top of

EVT priority is equal to or higher than the priority of

the task at the top of ready chain, EVTDISP is entered to
dispatch the task queued to the EVT. The task queued to
the top of the EVT is queued for one of two reasons: it is
in connection wait or it is queued for the dispatching of
an event service routine (asserting reconnection).

EVTDISP walks down the EVT by loading the pointer of the
highest queued descendent at each level until it reaches a
leaf or entry with the assert flag set. If it reaches a

leaf, the task at the top of the queue for that leaf is in
connection wait. If this task is also currently top of the
ready chain then TMRDISP is entered to redispatch it where

it was interrupted. Otherwise, EVTDISP removes the TCB from
the queue, connects the task to all upper nodes, removes the
task from connection wait (thus putting it on the ready chain)
and branches to the task manager to dispatch the task.

If EVTDISP reached an entry with the assert flag set, it
resets the assert flag, resets the pending flag in the
connected leaf, connects the task to all upper nodes and
branches to the Task Manager routine TMRSNIN which puts the
task in the ready chain, if necessary, saves the current state
of the task in the ES save area of the TCB, decrements the
event count in the leaf and the TCB by one, and dispatches

the task at the event service routine pointed to by the leaf.

4.,2.4.6 Return From Event (EVRTE)

All event service routines terminate through EVRTE. EVRTE
checks the event count in the TCB in case an event has occurred
for the task during the event service routine. If no events
are queued, EVRTE simply passes control to the Task Manager
routine TMRSNOUT to exit from ES state. If the TCB event

count is non-zero, EVRTE searches the connected leaf chain for
the first leaf with a non-zero event count. If the task

is connected to all upper nodes, the task is redispatched in

ES state at the event service routine pointed to by the leaf.
If it is not connected to all upper nodes, the pending flag

is checked. If the leaf's pending flag is set, then the

task has been propagated for this leaf and the routine continues
to search the connected leaf chain of the task for a leaf with
a non-zero event count.

If a leaf with a non-zero event count is found without the

pending flag set, pending is set and EVRTE walks up the EVT
to the highest connected node, sets the assert flag in that
node and propagates the priority up the EVT.

When all leaves in the task's connected leaf chain have been
processed, EVRTE passes control to TMRSNOUT to exit from ES
state.

This information is proprietary and is supplied by INTERDATA for the sole

ROl 4/75 purpose of using and maintaining INTERDATA supplied equipment and shall 4 10
not be used for any other purpose unless specifically authorized in writing. -

4.2.4.7 Propagation (EVPROP)

Whenever the priority that is queued to an entry in the EVT

is changed, that priority is propagated up the EVT to insure
that the highest priority task is always queued to the top

of the EVT. Since a task is never connected to an entry

in the EVT until it is able to be connected to all the entries
in the path required, propagation insures that the highest
priority task will be connected first at the time the path

is free. Requests for propagation specify the address of the
starting EVT entry and the priority to be propagated up from
that entry.

The priority is propagated by stepping up the EVT one level
at a time and comparing the propagating priority to the highest
queued priority of that node. If the propagating priority
is lower than the priority of the top of the node's queue,
EVPROP returns normally. If the propagating priority is
higher, EVPROP replaces the node's highest queued priority
with the propagating priority and stores the descendant
number of the entry just stepped up from in the node's
highest queued descendant pointer. This continues until the
priority has been propagated up to the system node or a
blocked node is encountered. If the priority is propagated
up to the system node, EVPROP returns with a top-of-tree
indication.

If a blocked node is encountered, EVPROP stops queuing
descendants but if the propagating priority is greater

than the priority of the task connected to the node, it
replaces the connection priority and the propagation process
continues.

4.2.5 Dispatch Priority

In 0S/32 MT each task has two priorities associated with it:
the task priority and the dispatch priority. The ready chain
is maintained in dispatch priority order. The system task
priority is 01 and a user task's priority is established at

TET time. In most cases the dispatch priority of the task

is equal to the task priority. However, if a task is connected
to an EVT entry that is blocking a path requested by a higher
priority task, then the blocking task will have its dispatch
priority raised to the priority of the blocked task for the
time it is connected to that entry.

In 0S/32 MT, certain leaves exist which are non~-eventing. These
leaves are used to coordinate and control access to certain system
logic paths or data structures (such as loading or bit-map access).
A subroutine executing on behalf of a task, that is connected

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipmentl and 4#‘3“
4 11 not be used for any other purpose unless specifically authorized in writing. ROl 4/75

4-12

to these leaves might block execution of a higher priority task.

" In that case, the dispatch priority of the connected task will

be raised to the level of the highest priority task that it
is blocking for the duration of its connection to non-eventing
leaves.

A third priority is maintained (TCB.NPRI) when a task is
connected to non-eventing leaves. This indicates the highest
priority that a task connected to a non-eventing task is
blocking. If this priority is higher than the dispatch priority
or the priority of another blocked leaf, the task is dispatched
at this priority. Each time a non-eventing leaf is released,

a search is made for the new highest priority non-eventing

leaf the task is connected to, and the ready chain is readjusted
to reflect the task's new priority.

4.3 SVC HANDLER

4.3.1 First Level Interrupt Handler (FLIH)

Each SVC interrupt vectors to a separate entry point in

the First Level Interrupt Handler, in NS state. FLIH

stores the SVC number in a save area and branches to a
common SVC preprocessing routine. FLIH maintains a table
which controls the preprocessing for each SVC. Most

require a parameter block. The address as passed, unrelocated
by the microcode, in register 13 is checked to insure that
it is between UBOT and CTOP+2 and is on a fullword boundary.
The end of the parameter block is checked except for SVC 2
which may have different length parameter blocks, and SVCs

3 & 14 which have no parameter blocks. FLIH then makes

an entry in the system journal and checks the table for the
entry state required by the requested SVC executor. If

the executor requires NS entry, FLIH branches to executor;
if the executor requires RS entry, FLIH calls the task
management routine TMRSIN to pass control in RS state. On
entry to an executor, register 9 contains the TCB address

of the invoking task and registers 14 and 15 contain the
resume PSW. On entry to selected routines, register 12 will
contain the unrelocated parameter block address and register
13 will contain the relocated parameter block address.

4,3.2 8SVC 1 Executor (SVCl)

Entry to the SVC 1 Executor is in NS state. The Executor
checks the Logical Unit (LU) specified and if it is valid
it loads the address of the DCB (for a device) or

FCB (for a file) from the TCB of the invoking task. Since
the fields of the DCB or FCB used by SVC 1 are identical,
processing is independent of the device or file being
referenced. SVC 1 checks the validity of the request for
the device or file by comparing the request against the

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall ROl 4 75
not be used for any other purpose unless specifically authorized in writing. /

attributes in the TCB LU table (for data transfer requests)

or the attributes field of the DCB/FCB (for command function
requests). Requests to the null device are returned with
normal status immediately. If any errors are detected in

the request, the appropriate status is placed in the parameter
block and control is returned to the invoking task.

If the request is for wait only or test I/0 complete, SVC 1
processes the request in NS state by loading the address of

the leaf in the EVT associated with the device from the DCB.

If the connected TCB ID of the leaf is different from the

TCB ID of the invoking task, normal status is returned
immediately to the task. If the TCB ID is the same, then

the task has I/O proceeding on the specified device. If

it is a test I/O complete request, SVC 1 sets the condition code
to X'F' and returns; if it is a wait only call, SVC 1 checks

to see if the incomplete I/O is to the same LU as specified

and, if not, returns normal status to the task. If the I/0

is to the same LU then SVC 1 places the task into I/O wait

for the I/O request by setting the I/O wait bit in the TCB

wait field, removing the TCB from the ready chain,manipulates
the function code field of the DCB to reset the command function
bit, and sets the wait (X'08') bit, and exits to the Task
Manager routine TMDISP.

SVC 1 then enters either RS state (requests for device or
unbuffered file) or RSA state (request to a buffered file)
depending on the state of the buffered access method flag
in the flags field of the DCB/FCB. It then processes

the information in the parameter block.

If the request is for HALT I/0, SVC 1 determines whether the
assigned device is haltable as defined by the attributes in
the DCB (DCB.ATRB). If the device cannot be halted, illegal
function status (X'C0') is placed in the user's parameter
block before control is returned to the task.

If there is no I/0 in progress for the calling task (i.e.,

the connected TCB ID of the leaf is the same as the TCB ID

of the current task), X'82' is returned to the status field
of the user parameter block and the task regains control.

Entry is in IS-state to the TIMEOUT routine. It schedules
driver termination by adding the leaf address to the system
queue. Upon return from TIMEOUT the SVC 1 Executor reenters
NS-state and returns zero status. A flag is set in the DCB
(DFLG.HIB) to allow the driver termination routine to
determine whether the I/0O was cancelled due to an actual

timing out process or to a HALT I/C call. ©SVC 1 then ex

to TMNSOUT.

"
[4
b=

L9 8 S~ §

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
R02 4/76 not be used for any other purpose unless specifically authorized in writing. 4_13

For data transfer requests, SVC 1 checks the validity of the
start and end addresses and if the request is not for a
buffered file, it calls the Event Service handler routine
EVQCON to connect the task to the EVT entries pointed to by

the leaf address in the DCB for requests with the unconditional
proceed bit reset, or it calls the routine EVCON for requests
with unconditional proceed set. If EVCON cannot connect

the task to the requested path in the EVT it returns a non-
zero condition code to SVC 1 which sets the condition code

in the resume PSW in the RS save area of the TCB to X'F'

and branches to the Task Manager routine TMRSOUT to return
control to the invoking task. If EVQCON cannot connect the
task to the requested path, it puts the task in connection
wait. When the task is connected, control returns to the
instruction following the EVQCON call in SVC 1. If the

leaf address in the DCB is ZERO, no connection is performed.
After processing the required connections, SVC 1 stores the
relocated start and end addresses and random address from

the parameter block into the DCB and branches to the driver or
file manager entry point specified in the DCB/FCB. If the
request is for I/0 and wait, before branching to the driver,
SVC 1 sets the I/O wait pending flag in the status field of

the TCB. Upon exit from the driver or file manager initializa-
tion routine, the Task Manager puts the task into I/O wait. For
command function requests, SVC 1 performs a call to EVQCON for
all device requests. For all requests, SVC 1 then passes control
to the command function entry point specified in the DCB/FCB.

4.3.3 S8SVC 1 Termination (IODONE)

Drivers and the file management access routines exit to IODONE
to complete I/O requests. IODONE is entered in ES state (IODONE)
or RS state (IODONE2) with a DCB address and a leaf address.
IODONE places the status returned in the DCB into the parameter
block if there is one, calls EVDIS to disconnect the task from
the specified leaf and its upper nodes, removes the I/0 wait
condition if this call is an I/0 and wait call, and branches

to EVRTE if called from termination routine of a driver, or to
TMRSOUT if called from an initialization routine at entry
IODONE2.

If an I/0 proceed call was made, IODONE calls SV9.ATQ to add
to the task's gueue, and causes an I/O proceed trap (see
Section 4.3.8) if these conditions are enabled.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
4 14 not be used for any other purpose unless specifically authorized in writing. R02 4/7 6

4.3.4 SVC 2 Executors (SVC2 and SVC2.xX)

SVC 2 requests are all vectored to the SVC 2 second level
interrupt handler SVC2 for common preprocessing. SvC2
maintains a table of valid SVC 2 codes indicating the type
of preprocessing required and the entry state required by
the individual executors. SVC2 checks the validity of

the code and then performs validity checking on the register
specifications passed in the parameter block if necessary.
For SVC 2 codes that require parameters to be passed in
registers, SVC2 assumes 2 formats of the parameter block:

0 1 2 3
OPTIONS CODE X'0" REGISTER #

for parameter blocks requiring one register specification, and:

0 1 2 3
OPTIONS CODE REGISTER # REGISTER #

for parameter blocks requiring two register specifications.

SVC2 then branches to the SVC 2 executor for the specified
code for NS entry executors, or branches to the Task Manager
routine TMRSIN to enter RS entry executors.

4.3.5 SVC 3 Executor (SVC3)

SVC3 is entered in NS state from the first level interrupt
handler. 1In NS state, SVC3 stores the specified return code

in the TCB and goes down the connected leaf chain pointed to

by the TCB and halts any read requests by calling the routine
TIMEOUT (see Section 7.6). It then enters RS state for the
rest of processing. SVC3 issues an SVC 7 checkpoint call

for memory resident tasks, or an SVC 7 close call for non-
resident tasks, for each LU in the TCB. This insures that

all writes have been normally completed, that the timeout of
all reads is also complete and that all files are in a safe
condition. If the task is currently connected to a trap-generating
device, the connection is frozen and disconnected via a call

to TGD.8. It then puts the return code in the end of task
message and sets up the TCB and the message function code so
that the task is put into I/O wait while the message is printed
on the system console and that control is returned to the SVC 3
Processor in NSU state on completion of the message. After
issuing the end of task message, SVC 3 waits the time of day
and the precision interval time chain. The TCB ID field is
zeroed for each TQE pertaining to this task. Then SVC 3
removes the TCB from the ready chain and if non-resident,

from the peer task chain. It sets the dormant bit in the TCB
wait field and zeroes out the TCB. SVC 3 then exits to the
Task Manager.

This information is proprietary and is supplied by INTERDATA for the sole
RO]. 4/75 purpose of using and maintaining INTERDATA supplied equipment and shali 4:-15
not be used for any other purpose unless specifically authorized in writing.

4.3.6 SVC5 - Load Overlay

SVC5 is called to load an overlay. It is entered in RS

state. The logical unit specified in the parameter block

is obtained, and a flag is set if the options field specifies
rewind. SV6.LOD1l is called to load the overlay. Upon return,
the status of the load is determined. TIf the load was
successful, TMRSOUT is called; if not, the status field of
the SVC5 parameter block is set to the appropriate error code
and then TMRSOUT is called to return to the user task.

4.3.7 8SVC 6 - Intertask Service Functions

4.3.7.1 Decode SVC 6 Options (SV6.MAIN)

The basic function of SV6.MAIN is to test each bit of the SVC 6
function code (SV6.FUN), store status and priority in the
SVC 6 parameter block and call the appropriate executor.

SV6.MAIN is entered in RS state. Upon entry the error status
field of the parameter block (SVC6.STA) is zeroed out. The
task-id of the task issuing the SVC 6 is tested for '.BG'. If
the calling task was the background task, the SVC 6 flag in
its TCB is tested. Either TMRSOUT is called to return to the
user level (if SVCCONTINUE is specified), effectively treating
the SVC 6 as a "no-op". If SVCPAUSE was specified, ISHRS is
called to indicate an illegal SVC 6 call.

SV6.MAIN checks the direction field in the function code to

determine if the SVC6 call is a self-directed call. In such
a case, a flag is set to indicate to executors that the SVC6
call is issued on behalf of the current task. A pointer to

the executed function is maintained.

CHECK.ID is called to validate the syntax of the task name.

If the name is invalid, SV6.ERR is called. SV6.SCAN is

called to determine to which task the specified task-id belongs.
That task's status and current priority are stored into the
SVC6 parameter block.

SV6.TAB is a table of 32 fullword entries. Each entry
corresponds to a bit in the function code. The entry is
either the address of the corresponding executor, or ZERO
if the bit specifies an illegal function code.

When all bits have been examined, TMRSOUT is called to return
‘to user level.

4.3.7.2 Executor Design

An Executor may be added to the SVC 6 package at any time by
including its address in the Executor Address table in the
location corresponding to its function code bit.

This information is proprietary and is supplied by INTERDATA for the sale
purpose of using and maintaining INTERDATA supplied equipment and shall
4—16 not be used for any other purpose unless specifically authorized in writing. RO]_ 4/7 5

All executors have the following responsibility;

Test the condition code upon entry for presence of called
task; branch to appropriate entry in SV6.ERR if necessary.

4.3.7.3 SVC 6 Error Handling (SV6.ERR)

SV6.ERR is called whenever an error is detected durina execution
of an Executor except SV6.LOAD. It stores the error code and
current position pointer in SVC6.STA and then calls TMRSOUT to
exit to UT/ET state. The SV6.ERR2 entry point is called to
return to RS state before storing the status. SV6.ERR3 is the
entry point for illegal function code.

4.3.7.4 Find a TCB (SV6.SCAN)

SV6.SCAN enters NSU state and then searches the TCBs for the
TASKID given in the parameter block (SVé6.ID). If the task is
found, condition code is set to non-zero to indicate task is
present; if the task is not found, the condition code is set
to ZERO to indicate task is not present.

SV6.SCAN returns to RS state.

4.3.7.5 Cancel Task - (SV6.CAN)

SV6.CAN is entered in NSU state and calls CANEOJ. If this
Executor was called for a self-directed call, it returns to
UT/ET state.

4.3.7.6 Delete Task (SV6.DELE)

Parameter SV6.DELE is entered in NSU state. It resets the
Memory Resident bit in TCB.OPT to indicate that the task is
no longer resident. Parameter SV6.DELE then calls SV6.CAN.

4.3.7.7 Queue Parameter - (SV6.QPAR)

This routine is entered in NSU state. The parameter to be
added to the task queue of the called task is picked up from
the parameter block (SV6.PAR). SV9.ATQ is called with this
parameter reason code 1, and the TCB ID of the task whose
queue is to be added to (i.e., the called task). If the
condition code returned by SV9.ATQ is negative, SVC.ERR2

is called with the error code set to 12.

4.3.7.8 Change Priority - (SV6.PRIO)

SV6.PRIO is entered in NSU state. The priority in the parameter
block (SV6.PRI) is compared to the maximum priority of the
called task (TCB.MPRI), and the lesser of the two is stored

in TCB.PRI. If the specified priority is less than 10 or
greater than 249, SV6.ERR2 is called with error code 5 to
indicate illegal priority.

This information is proprietary and is supplied by INTERDATA for the sole
ROl 4/75 purpose of using and maintaining INTERDATA supplied equipment and shall 4_17
not be used for any other purpose unless specifically authorized in writing.

4-18

4.3.7.9 Trap Generating Devices - (SV6.TGD)

This module is called for any of the five Trap-Generating
Device (TGD) functions in the function code. DMTLOOK is
called to obtain the address of the Device Control Block.

If the device is not found, an error exit is taken.

The DCB is checked to see if the device is "SVC 6 connectable"
(DFLG.S6B=1). If it is not an SVC 6 connectable device, an
error exit is taken. The function code pointer is used to
index ISATAB, a five byte table with each entry corresponding
to the TGD functions.

CONNECT - EVCON1l is called to connect the device leaf to

the specified task. If the device is presently connected

to any task, an error exit is taken. The gqueue parameter
(SVC6.PAR) is saved in DCB.PBLK. Return is made to SV6.MAIN.

If thaw, freeze, or SINT is specified, the function code
X'C0', X'90', or X'A0' respectively is stored in DCB.FC.
Routine EVL.CTCB is compared to the called task's number
to determine whether the device is still connected to the
task. If the device is no longer connected, an error exit
is taken. The driver is entered at the "command entry
point" (DCB.FUNC). Control is returned by the driver to
SV6.MAIN.

If unconnect is spéglfigg, a "freeze" call is performed.
The device is now disassociated from the connected task
by calling EVDIS1.

4.3.7.10 Start Task (SV6.STAR)

SV6.STAR is entered in NSU state. If a self-directed call is
being made, an error exit is taken.

The start location is obtained (from SVC6.SAD in parameter
block) or TCB.SLOC, if SV6.SAD is ZERO.

If the task is not dormant (TWT.DMB is not set), an error exit
is taken. A carriage return is stored at TCB.UTOP.

TMSTART is called to put the task on the ready chain. If
the current task is still at the top of the ready chain,
TMRSOUT is called to return to UT/ET level.

If another task is now at the top of the ready chain, then
the dispatch PSW is set up to return to RS state, and
TMDISP is called.

4.3.7.11 Delay Start - (SV6.STAD)

SV6.STAD is entered in NSU state. An error exit is taken if
a self-directed call is being made. An SVC 2,23 instruction
is built in UDL.AIDS. This is followed by a branch to the
starting address (SV6.SAD) if non-zero, or TCB.SLOC. A
branch is made to STA.4 in SV6.STAR, where the dormant bit
is tested.

This information is proprietary and is supplied by INTERDATA for the sole

purpose of using and maintaining INTERDATA supplied equipment and shalt 0 l 4
not be used for any other purpose unless specifically authorized in writing. R /75

4.3.7.12 The Resident Loader (SV6.LOAD)

This routine is used to load tasks, overlays, and library
segments that have been created by the Task Establishment
Task (TET/32). It is entered in one of 3 ways: via an SVC 6
load call, via an SVC 5 load overlay request and via the
Command Processor (both the Command Processor and SVC 5
enter at SV6.LOD1l). SV6.LOAD is entered in RS state.

It calls EVQCON to obtain control of the loader leaf (LDRLV).
TMRSRSA is called to enter RSA state, and TMRSARS is called
before exiting to return to RS from RSA.

Loading a Library

The Loader reads the Loader Information Block to determine what
type of segment is being loaded (see TET/32 Manual for LIB
description, also chapter 11).

The Loader checks the amount of space available (as passed
by the Command Processor). It moves the RTL name to the
Segment Description Element (SDE) for the library and then
reads in the RTL. It returns indicating the size of the
library that was loaded.

Loading a Task

NSU state is entered to determine that the specified task-id is
not present. The task options are checked to determine that
the task being loaded is consistent with the system being
loaded into (i.e., tasks using floating point may not be

loaded into systems not supporting floating point). An

appropriate partition is found (if not specified). The task
is loaded, and the segmentation registers are set up for the I
RTL and any TCOMs needed by the task.

The following parameters are copied into the TCB: MPRI, PRI,
DPRI, MXSP, USSP, OPT, CTSW, SLOC, UTOP. The Loader puts a
task in the peer task chain.

Loading An Overlay

Before reading the LIB, an SVC 1 rewind command is issued if
the call requested it. A test is made to determine

if available storage for the overlay exists. The overlay

name is tested to verify that the overlay name in the LIB is

the same as the name in SVC 5 parameter block. The physical

address at which to load the overlay is determined and it is
loaded.

If LOD.ERR is called on behalf of an SVC 6 load call the error
status is stored in SVC 6 parameter block, and TMRSOUT is called
to return to UT/ET level. If LOD.ERR is called on behalf of the
Command Processor or SVC 5, the condition code is set to non-
zero before returning to the Command Processor. TMRSARS is
called since any call to LOD.ERR is issued when the Loader is

in RSA state. LOD.ERR disconnects the Loader leaf by calling

EVCIS. If necessary, the task name is removed from TCB.NAME, '
and the TCB segmented registers are reset.
This information is proprietary- and is supplied by INTERDATA for the sole 4-—19

purpose of using and maintaining INTERDATA supplied equipment and shall
R02 4/76 not be used for any other purpose uniess specifically authorized in writing.

4.3.8 Task Traps (SVC 9)

Associated with each task is a Task Status Word (TSw), which
is the task level analogue of the PSW. Specific bits in the
TSW control:

Trap wait

Trap Enable for Power restoration
sSvC 14
Task Queue Service

Enable Queue Entry for TGD Device Interrupt
SVC 6 Queue Parameter request
Time-out Completion
I/0 Proceed

Queue entries are handled by SV9.ATQ; traps are performed

by SV9.STSW. SVC 9 updates the TSW and the location for
resuming execution of the user level program.

TSW Update/Establishment (SVC 9)

SVC 9 is entered in RS state. The new TSW which was pointed
to by the SVC argument is stored in TCB.CTSW. The current
PSW condition code is changed to the condition code found

in the new TSW. The new TSW "loc", which follows the TSW
status fullword in the SVC 9 parameter block is tested.

If zero, the current PSW location is unchanged; otherwise,
the PSW location is changed to the location specified by the
TSW. The PSW status and location are saved in the RPSW save
area in the TCB, since SVC 9 was entered in RS state. The
task queue service trap enable bit in the "new" TSW is tested.
If it is not set, TMRSOUT is called. If the trap bit is set,
the task queue (the address is in UDL.TSKQ) is examined.

If the queue is empty, TMRSOUT is called and a trap is not
taken. If there are any items on the queue, SV9.STSW is
called to perform TSW swap. Upon return, TMRSOUT is called
to return to UT/ET level.

4.3.8.1 Add to Task Queue (SV9.ATQ)

SV9.ATQ is entered in NSU state. It is passed the reason code
parameter and the TCB id of the task whose queue is to be added
to. The task queue reason codes are:

‘Code bits 0-7 - Meaning of Code Parameter bits 8-31
0 Device Interrupt Param. assoc. with device
1 SVC 6 Queue Param Param. Spec. in call
8 I1/0 Proceed Complete Addr. of SVC 1 param. blk.
9 Timer Termination Param. spec. in call

This information is proprietary and is supplied by INTERDATA for the sole

purpose of using and maintaining INTERDATA supplied equi
_ pment and shall
4 20 not be used for any other purpose unless specifically authorized in writing. R02 4/76

SV9.ATQ tests the validity of the reason code, and then
determines whether the appropriate Queue Entry Enable bit

in TCB.CTSW is set. If set, UDL.TSKQ is tested for the
address of the task queue. If the address is not equal

to ZERO, ADCHK is called to return the physical address

of the task queue as well as to ensure the task queue is

in a valid, writable segment. If the task queue address

is valid, the end slot in the queue is also tested by calling
ADCHK. If the queue exists and is in a valid writable segment,
the reason code and parameter are added to the bottom of the
task queue. The condition code set by the ABL instruction is
tested to determine if the queue was full. If the queue was
updated, the Task Queue Service Trap Enable bit in the TSW is
tested. If set, SV9.STSW is called to perform a TSW swap.
SV9.ATQ sets one of the following condition codes upon return:

C \% G L Meaning

0 0 1 0 Item queued; TSW swap occurred

0 0 0 0 Item queued; no TSW swap (bit not
enabled)

0 0 0 1 Item not queued (no TSW swap) for

any of the following reasons:

Invalid reason code

Queue Entry bit not set

No task queue

Task queue not in valid, writable
segment

Task queue full

4.3.8.2 Cause a Task To Take a Trap (SV9.STSW)

When it has been determined that a task is to take a trap,
SV9.STSW is called. It is entered in NSU state and is passed
the address of the TCB for whom the swap is being performed,
and the physical address of the UDL swap area.

The current TSW status, and current value of the location
counter are stored in the "old TSW" portion of the swap area.
The new status and location at which to redispatch the task
are obtained from the "new TSW" portion of the swap area.

The UT/ET level PSW is located, and the new location is stored
there.

If the task is not in trap wait, SV9.STSW returns. If it is

in trap wait, the new TSW is checked to determine if it also
has trap wait set. If the task is to be taken out of wait,
TMREMW is called. If the top-of-chain is changed by this call,

TMSTOP is called to suspend the task that was previously top-of-

chain, and TMDISP is exited to, to dispatch the appropriate task.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall

nat ho uiced fnr anu Athar nirnaen inlace cmanifinalle, actbhacisad e camitiaa

RO1 4/75

4-21

4.3.9 User SVC (SvVC 14)

User SVC (SVC 14) is entered in RS state. The SVC 14 trap
enable bit of the current TCB.CTSW is checked. If the bit

is not set the SVC 14 call is considered illegal and a branch
to ISHRS is taken. If the trap enable bit is set, the SVC

14 argument address is stored in UDL.SV14, which is the area
in the UDL reserved for use by SVC 14. The NSU state is then
entered and SV9.STSW is called to perform the TSW swap. Upon
return TMRSOUT is called to return to UT/ET level.

4.3.10 ADCHK

All SVC Executors check any addresses passed to insure that
the address lies between UBOT and CTOP+2. This prevents

the Operating System from being misled by a user task into
overwriting another task, or an RTL segment. This checking

is performed by the routine ADCHK. Entry to ADCHK is made

in one of two places, at ADCHK, for checking addresses

from all states other than RSA state, and to ADCHK1l to check
addresses from calls in RSA state. The address passed is
manipulated to determine its logical segment, and then that
logical segment is checked to see if it is present. If it is
not present, ADCHK returns with the C bit set in the condition
code. If it is present, ADCHK checks to see if the address
specified is within the limits of the specified segment. If
not, ADCHK returns with the C bit set in the condition code.
The address is then relocated, and the logical segment determined.
The G and L bits are set if the segment is non-writable or
non-executable, respectively. If the address checked is not
valid, the SVC Executor routine branches to MEMFAULT (from NS)
or MEMFLTRS (from RS) to process the error (see Section 4.7)
and suspend the offending task.

This information is proprietary and is supplied by INTERDATA for the sole

4__22 purpose of using and maintaining INTERDATA supplied equipment and shall ROl 4/75
not be used for any other purpose unless specifically authorized in writing.

4.4 TIMER MANAGEMENT

4.4.1 General Information

A task can request repetitive time interval traps by using

SVC 2 code 23. The SVC 2, 23 parameter block includes a
table which specifies the desired .intervals and their
corresponding parameters to be queued. Each requested
interval entry requires a block of system space which is
called a timer queue entry (TQE). Blocks generated from
the table are linked together as a circular ring. The
block corresponding to the first interval entry in the
table points to the block corresponding to the first
interval. A single member ring points to itself. A
non-repetitive timer queue entry is considered to be

a single-member ring with an infinite length period.

Structure of the Timer Queue Entry
Each timer queue entry is formatted as follows:

TMQ STRUC
TMQ.CHN DS
TMQ.FLGS DS
TMQ.RING DS
TMQ.ID DS
TMQ.PARM DS
TMQ.TIME DS
TMQ .FACT. DS
TMQ.PERD DS
ENDS

o WH W S

- TMQ.CHN points to the next entry in the
chain. It is zero for the last entry
in the chain.

- TMQ.FLGS is a one-byte flag field.

Bit O = Repetitive if set.

Bit 1 = Wait for termination if set.
Otherwise trap.

Bit 2 = TQE in use if set.

Bit 3 = Cancel pending if set.

Bit 4 = On-timer-chain if set.

Bits 5-7 = Undefined.

- TMO.RING contains the pointer to the next
entry in the ring.

- TMQ.ID is a one-byte field containing the
TCB identifier of the task.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
R02 4/‘7 6 not be used for any other purpose unless specificatly authorized in writing.

- TMQ.PARM is a three-byte field used only
for trap calls, and contains the data to
be added to the task queue of the task on
termination of the time-out.

- TMQ.TIME is a four-byte unsigned field representing
the number of seconds or milliseconds for the time-out.
It refers to the elapsed time from the execution of the
previous chain entry.

- TMQ.FACT is a four-byte unsigned field representing
the number of seconds or milliseconds for the time-out.
It refers to the elapsed time from the execution of
the previous entry in ring. In chaining process, this
time value is compared to the time value of entries
already on the chain.

- TMQ.PERD is a four-byte unsigned field containing the
length of the period. It is specified in seconds for
time of day intervals and is a multiple of the 86400
seconds. It is specified in milliseconds for elapsed
interval and is the total elapsed time for all intervals
from the ring.

The ring member whose interval is next to expire is placed on the
timer chain. It remains on the chain until its corresponding
interval has timed-out. If the entry is non-repetitive or

has been cancelled, its time-out entry is released from the

timer chain. The entry of the ring member next to expire is
inserted on the timer chain.

More than one member might be on the time-of-day chain if a
SET TIME Command causes more than one member in the ring to
expire. The time-of-day event service routine eventually
removes all time-out entries, leaving the next expired entry
on the chain at exit.

The treatment of the time value field for the first entry on
the chain differs between the interval and time-of-day chain.
The value of the first entry of the time-of-day chain is
decremented each second. The value of the first entry of

the interval chain is moved to a location called CURTIME

and the value in the first entry is then set to zero. Either
4095 or the value in CURTIME is used to set the physical
interval count of the precision clock. The physical interval
count is saved in a location called CURRPIC. The value of
CURTIME is decremented by the last physical count each time
PIC interrupts. If the result is zero, the first entry is
timed-out. Therefore, in order to find the number of milli-
seconds from "now" of the head of interval chain, the PIC
must be read.

This information is proprietary and s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
4-24 not be used for any other purpose unless specifically authorized in writing. R02 4/76

The formula is as follows:
milliseconds from now = CURTIME-CURRPIC + PIC reading
4.4.2 PIC Interrupt Handling Routine (ISRPIC)

Essentially, the PIC interrupts when the head of interval
chain has timed-out or at time interval 4095 milliseconds,
whichever is shorter. It may interrupt at one millisecond
while an entry is being added onto the interval chain;
when a PIC event service is pending; or if it takes too
long to determine the next physical interval count. Once
entered, this routine subtracts the last physical interval
count from CURTIME. If the result is zero, the head of
interval chain is timed-out. The time leaf is added to
the system queue, causing the event service routine (PIC ESR)
to be entered. This routine also determines the next
interval count and places it in the input buffer of the
precision clock. The precision clock loads the value into
the input buffer at the conclusion of each interval and
continues to run.

The next physical interval count is determined by:

Step 1 - Subtracting the CURTIME by the last physical
interval count.

Step 2 - If the result is not zero, it is again sub-
tracted by the current physical interval
count.

Step 3 - The result is compared to 4095; the smaller
number is chosen. If a zero results from
step 1, the head of interval chain is timed-
out and the next physical interval count is
set to one millisecond except when the time-
out entry is periodic and the only entry
in the chain. 1In this case the time value
of the next member in ring is used in Step
2.

If a zero results from step 2, the head of
interval chain is timed-out at the next
interrupt. The time value of the next
chain entry is compared to the time value
of the next member of ring. The smaller
number is used in step 3.

This routine maintains the current physical interval count
in CURRPIC and two other counters namely, CURTIME and ELAPSE.
The value in CURTIME is decremented by the last physical
count each time this routine is entered. It becomes zero
when the head of interval chain is timed-out and stays at
zero until the PIC event service routine is entered. The

event service routine chooses the next head of interval chain

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall

not be used for any other purpose unless specifically authorized in writing.
R02 4/76

and the WRTIME is set to its time value. The value in ELAPSE
is always zero unless the PIC interrupts while a PIC event
service is pending. In this case the last physical count is
added to ELAPSE. Therefore, this counter contains the elapsed
time between the time-out of the head and the service of the
event.

4.4.3 Handling LFC Interrupts (ISRLFC)

The LFC when enabled interrupts at twice the line frequency.
For example, in the United States, where the line frequency
is 60 Hz., the LFC interrupts at 120 times per second.

This routine keeps a count which is initialized at twice the
line frequency. At every interrupt, the count is decremented
by 1. When it reaches ZERO (which means one second has elapsed)
an event is scheduled to be serviced, and the count is reset to
twice the line frequency.

4.4.4 Event Service Routine (PICESR, TIMESR)

The occurence of a time event causes SQS routine to be entered.

If this is an LFC event, TIMESR routine is scheduled and executes
in ES state on behalf of the system task. If this is a PIC event,
PICESR is branched directly from SQS and therefore executes in NS
state. Either TMREMW or SV9. ATQ is called depending on the
subject queue entry, a wait call or a trap call. If the periodic
flag is set, the subject queue entry is removed from the chain
and the next member in this ring is placed on the chain. When an
entry becomes head of interval chain, its time value is substracted
by the value in ELAPSE and saved in CURTIME; a zero is placed in
the time value slot of the queue entry. If cancel flag is set,

no TMREMW or SV9.ATQl will be called. At exit, all inactive
entries are released.

4.4.5 Read Interval

This routine is executed in NS state. The proper timer chain is
searched from the top until a timer gqueue entry from the calling
task with a matched parameter is found. The sum of the time
values is maintained in the searching process. The sum is

added to SPT.TIME if this is a time-of-day interval. Otherwise
the result is computed by the following formula:

Sum of Time Values + CURTIME-CURRPIC + PIC reading

If the head of interval chain is timed-out, the result of
applying this formula is subtracted by the value in ELAPSE.

4.4.6 Cancel Interval

This routine is executed in the NS state. The proper timer

chain is searched from the top until a timer queue entry from

the calling task with a matched parameter is found. Either

this entry or one of the members in its ring must be on the

timer chain. The cancel pendino flag of this chain entry is

then set. Eventually, the event service routine will detect

this flag, terminating the service, all members in the ring are
then released.

4_26 This information is proprietary and is supplied by INTERDATA for the sole R02 4/76

purpose of using and maintaining INTERDATA supplied equipment and shal!
not be used for any other purpose unless specifically authorized in writing.

4.5 SYSTEM JOURNAL

0S/32 MT provides a facility for recording significant

events in the system in a System Journal. The journal is

a standard circular list with a length specified at Configuration
Utility Program time. The address of the journal is kept

in the System Pointer Table. Entries to the journal are

made from system routines by executing a BAL instruction to

the journal routine followed by a halfword journal code. Each
entry in the journal consists of five fullwords of information

in the following format:

0 1 2 + 3
WORD 1 TCB ID X'0' JOURNAL CODE
WORD 2 CONTENTS OF REGISTER 12
WORD 3 CONTENTS OF REGISTER 13
WORD 4 CONTENTS OF REGISTER 14
WORD 5 CONTENTS OF REGISTER 15

where TCB ID is the ID of the current task at the time of the
journal call, and the last four words are the contents of
registers 12-15 at the time of the journal call. Entry to
the journal routine must be in NS state. When the journal
list is full, the journal routine resets the slots-used

field and reuses the list, thus maintaining the most recent
entries. For a complete list of journal codes made by the
system, see Chapter 10.

In order to allow the system task and other Executive tasks
(see Chapter 9) to make journal entries from other than

NS state, an SVC 2 code 0 call is provided. The parameter
block for SVC 2 code 0 is:

+0 X'0', X'JOURNAL CODE'
+4 VALUE 1
+8 VALUE 2
+12 VALUE 3
+16 VALUE 4

where values 1-4 are stored in the second through fifth word
of the journal entry. The journal code is OR'd with X'8000'
before being stored in the journal to identify it as a user
code. This SVC is only valid from a task executing in
privileged mode (bit 23 of the PSW status reset, and Executive
Task) .

4.6 EXECUTIVE MESSAGES

Since the Executive routines cannot issue SVC calls, all
messages output by the Executive are processed by the system
task (Command Processor). this is accomplished by connecting
to the dummy leaf (see Section 5.7), storing the start and
end address of the message in the dummy DCB and branching

to the dummy driver. All messages are processed in this way
by branching to the Executive message subroutine EXECMSG.

This information is proprietary and is supplied by INTERDATA for the sole

purpose of using and maintaining INTERDATA supplied equipment and shalt
ROl 4/75 not be used for any other purpose unless specifically authorized in writing. 4—27

4.7 CRASH HANDLER

Throughout 0S/32 MT are checks for normally impossible
states of the system, such as invalid leaf address on the
system queue or illegal instruction interrupt in system
code. When such a condition is found the system brings
itself to a halt before further destroying the conditions
that led up to the impossible situation. This is done by
entering the Crash handler.

The Crash handler is entered by issuing a SINT instruction

to device number 0 followed by a halfword crash code. The

first entry in the ISP table is set by SYSINIT (see Section 4.8)
to branch to the Crash handler, CRSEP. CRSEP on entry loads

the address of the system journal into register 5 of the Executive
Set, the address of the last entry made to the System Journal into
register 6 of the Executive Register Set, displays the crash

code on the display panel and loads a PSW with only the wait

bit and the machine malfunction enable bit set, thus stopping

the system in an uninterruptable state. See Chapter 10 for

a complete list of crash codes and their meanings.

4.8 INTERNAL INTERRUPT HANDLERS

The Internal Interrupt handlers process the interrupts
generated by the microcode for illegal instruction, arithmetic
fault, memory parity error, power fail and power restore. In
addition, this package processes illegal SVC calls and

invalid addresses passed in SVC calls.

4.8.1 Machine Malfunction Handler (MMH)

On detection of memory paritvy error, power fail or power
restore, the Machine Malfunction handler (MMH) is entered.
Entry is in a state with all interrupts masked off. The
condition code is used to determine the type of interrupt
and insure that the appropriate routine is entered.

On parity error in the system, the Crash handler is entered.
If the parity error is detected while the user task is
executing, MMH loads a pointer to the memory parity error
message and enters the Illegal Instruction handler for
common interrupt processing.

On power fail detect, MMH tests an internal flag to see if

a power restore sequence was in execution at the time of

the power fail. If this is so, MMH simply loads an enabled
wait PSW to wait for the power restore interrupt. If a

power restore sequence was not in execution, the Executive
and User Register Sets are saved in an internal save area,

the machine malfunction old PSW is loaded from reserved memory
and stored in an internal save area. The 0OS does not use

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
4"28 not be used for any other purpose uniess specifically authorized in writing. ROl 4/75

. the ¢

the Power Restore Auto/Restart save area since multiple power
fails would destroy the original state of the system. MMH

then sets an internal flag to indicate a Power Restore sequence
is in effect and loads an enabled wait PSW to wait for the
Power Restore interrupt.

On Power Restore detect, the Machine Malfunction handler
enters ISU state, clears the Display Panel and loads the
address of the TCB table. For each TCB, all active I/O is
halted by passing the address of all leafs on the task's
connected leaf chain to the time-out routine (see Section 7.6).

If the task is not dormant and it has Power Restore trap
enabled, the Power Restore pending trap bit is set. Otherwise,
the pause pending bit is set in the user TCB. A task in trap
wait has the wait removed by a call to TMREMW. The MMH then
calls the power restore subroutines (entry point from the
console DCB) to issue a message to the system console stating
that a Power Restore has occurred and that all peripherals must
be reset. This is necessary primarily due to the fact that on a
true Power Fail/Restore sequence the 2.5 and 10 Mbyte Disc
Systems come up in a Write Protected state, making it impossible
to retry any active disc I/O. When the operator has reset all
necessary peripherals and typed GO, MMH reloads the register

set from the internal save area, resets the Power Restore
sequence in effect flag and reloads the Machine Malfunction

old PSW from the internal save area.

MMH issues the Power Restore message from ISU state to insure
that no interrupts from the timed out I/0 can occur before
the peripherals have been reset.

MMH must also cleanup the time of day and interval chains.
For each entry on a chain, if the TQE indicates a wait is
outstanding, TMREMW is called to remove the wait. The TQE
is released by a call to RELESYS. When each item on both
chains have been released, the pointer to each chain is
zeroed in the SPT (0 SPT.TQHD, O SPT.IQHD).

4.8.2 TIllegal Instruction Handler (IIH)

Entry to IIH is in NS state. IIH contains common processing
for illegal instruction, illegal SVC call, invalid address
passed in an SVC call and memory parity error. Each error
causes control to be passed to a separate entry point which

loads a pointer to the appropriate message and branches to
mon

Lilc L8 LI § } a VTS o 220

ROl 4/75 This information is proprietary and is supplied by INTERDATA for the sole 4-29
purpose of using and maintaining INTERDATA supplied equipment and ‘sball
not be used for any other purpose unless specifically authorized in writing.

4.8.3 Memory Fault Handler (MFH)

Upon occurrance of a Memory Fault interrupt, the Operating
System clears the MAC status register by writing a 0 into

it. The address of the Memory Fault error message is loaded,
and MEMFAULT is entered to output the message, and pause

the offending task.

4.8.4 Arithmetic Fault Handler (AFH)

Entry to the Arithmetic Fault handler is in NS state. If

the error occurred in the system, the Crash handler is
entered. If the error occurred during user task execution,
the pause pending bit is set in the status field of the

user TCB unless the Arithmetic Fault Continue bit is set

in the options field of the TCB. In either case, the
interrupt is logged by loading a pointer to the Arithmetic
Fault message and branching to the common interrupt processing
in IIH.

4.9 SYSTEM INITIALIZATION

System initialization is performed by the routine SYSINIT.

It is entered whenever the system is started at location
X'60'. On entry, the status of the PSW is unknown, so the
first operation performed by SYSINIT is to put the Processor
into an uninterruptable, privileged state. The Display

Panel is cleared, the ISP table is set to ignore all interrupts,
FBOT is reset to MTOP, all DCB's are reset to initial values,
the EVT is refreshed, the timer queues are reset, the time and
date are set to ZERO, the TCBs are reset, and SYSINIT puts the
system TCB on the top of the ready chain and branches to

the Command Processor initialization routine in the ET state.

4-30 This information is proprietary and is supplied by INTERDATA for the sole ROl 4/75
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

CHAPTER 5

THE COMMAND PROCESSOR
5.1 INTRODUCTION

The Command Processor is the highest priority task in

0S/32 MT. It is an Executive Task (see Chapter 9), and

it is the medium through which the operator communicates

with the Operating System, and controls the system environment.
Whenever possible, the Command Processor tries to perform
functions by executing Supervisor Calls. The Command Processor
is also responsible for control of the system console, memory
partitions and the Command Substitution System (CSS).

5.2 COMMAND PROCESSOR INITIALIZATION (COMMAND)

After System Initialization has been performed, the Command
Processor is entered. The mnemonic of the console device is
obtained from the Initial Value Table (IVT) and the Device
Mnemonic Table is searched for a matching mnemonic. When
found, the device's Read and Write counts are forced to -1 and
it's keys to X'FFFF', thereby making the device unavailable to
any other task in the system (see Section 5.7, System Console
Device). The 0S identifier is now printed.

The system TCB has '.SYS' stored as its name, the background
task has '.BG' stored as its name. The Command Processor

calls EVQCON and connects the timer leaf to itself. The

value of the "currently selected task" for console commands

and for CSS commands is set to indicate no task selected.

The RESET command is then exited to, to do initial partitioning
of memory in the system.

5.3 COMMAND INPUT/PARSING (COMMANDR)

The Command Processor reads commands from the system console
and also from the device/file indicated by the currently
selected CSS level. The Command Processor checks the CSS
level before issuing a read request for a new command line.
If no CSS is in effect (CSS level = 0) then an I/0 and wait
is issued to the system console. If CSS is in effect, an
I/0 and proceed is issued to the system console, and an I/O
and wait is issued to the CSS device/file.

When the CSS I/0 is done, the currently selected task (for

:
task related commands) is set to the value of the current

CSS task, and the line read is processed. After its processing,
the status of the proceed I/0O to the console is checked. If

it is finished, then the currently selected task is set to the
current console task and that command line processed.

This information is proprietary and is supplied by INTERDATA for the sole
ROl 4/75 purnose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specificaly authorized in writing.

5-1

If the I/0 and proceed is ongoing, and further CSS lines
are to be read, then an I/0 and wait is issued to the CSS
file. If no further CSS lines are to be read, a "wait only"
is performed on the console.

A single command or multiple commands may appear on a command
line. The Command Processor executes all commands on a line
until it hits an end of line indicator, or an invalid command.
All commands on a line before the invalid command are processed,
all commands following the invalid command are ignored.

5.3.1 Command Prompts

The Command Processor outputs an "*" to the system console

to indicate to the operator that the Command Processor is ready
to receive another input line. While the background task is
active, if previous command input was from a CSS file, the
processing of that file is suspended until the task goes to
End-of-Job. During the interval that the background task is
active, the console responds to command input.

5.3.2 Command Parsing

After the line is read, if it is a line read from a CSS file,
it is expanded (see Section 5.5, CSS). All lines read are
logged (see Section 5.4.3, Set Log). This is true unless
one of the BUILD commands is in effect, (see Section 5.5.4,
BUILD). After the logging, a scan is made of the command
line for the first non-blank, non-terminator. Note that the
Command Processor uses register 1 as the pointer to the
current character being processed, and that this register is
not used for anything else. When the first non-blank,
non-terminator is found, it is compared against the Command
Mnemonic Table (COMANTAB). If it is not found, the command
is assumed to be a CSS call (see Section 5.5, CSS). If the
command turns out not to be a CSS call (file/device does not
exist), a MNEMonic error has occurred.

A check is made to see if any IF statements have set the
"skip" flag (see Section 5.5.3, IFs). If so, and if this
statement is an IF, then the IF count is incremented, and a
new command is searched for. If the statement is an $ENDC
the IF count is decremented. If it is a $TERMJOB, it is also
executed.

The normal path makes a "User Journal Entry" (X'8001'), and exits
to the Executor.

This information is proprietary and 1s supplied by INTERDATA for the sole

5_2 purpose of using and maintaining INTERDATA supplied equipment and shall ROl 4/75
not be used for any other purpose unless specifically authorized in writing.

5.4 COMMAND ERROR HANDLING (CMDERROR)

When an error in syntax, or an invalid parameter, or a number
of other parsing errors occur, the Command Processor enters
the Error handler. All entries are made via a BAL on UC, the
next 4 bytes after the BAL contain the error mnemonic. An
error message is constructed of the form:

XXXX-ERR POS = XX......

The position field attempts to display the last parameter
parsed. It may not always be meaningful. The return code
in the currently selected TCB is set to 255. If the JOB
flag indicates a $JOB is in effect, the JOB "skip" flag

is set to indicate all statements until a $TERMJOB are to
be skipped. All CSS levels are closed down to the level of
the $JOB.

If a load error, 1I/0 error or SVC7 error is encountered while
processing a command, additional information on the error is
supplied. 1In these cases, the error message is:

XXXX-ERR TYPE=XXXX POS=XX.....

where TYPE indicates the error type (DU, NAME, BUFF, PRTY,
etc.). If the load error or SVC7 error is an I/0 error, then

XXXX-ERR TYPE=IO TYPE=XXXX POS=XX.....

is displayed, where the second type field indicates the I/O
error type.

5.5 COMMANDS

5.5.1 Task Related Commands

Certain commands pertain only to tasks. The task that these
commands will be applied to is the currently selected task.
The currently selected task is set by the TASK Command.

When a TASK command is entered, the Command Processor searches
the "peer task" chain. If a task with a matching name is
found, then it is set as the currently selected task. It is
also set as the currently selected CSS task or console task,
depending upon where the command was read from. If the task
entered is '.BG', the currently selected task is set to the

hackarainnd
uabn':’.l.uuxlu .

From this point on any task related commands are applied to
the currently selected task. When a task goes to end-of-job,
a check is made to see if it is the currently selected task,
CSS task or console task. If so, and if the task is not
memory resident, that mode is set to indicate the absence of
a selected task. A task related command given when there is
no selected task causes a TASK-ERR message.

ROl 4/75 This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA suppiied equipment and shall

nat ha uced far anyv other nurnnea unlecs enerificallv authorized in writina

The task related commands in 0S/32 MT R00 are: START, PAUSE,
CONTINUE, CANCEL, ASSIGN, DISPLAY LU, CLOSE, OPTIONS, SET
PRIORITY, DISPLAY PARAMETERS.

START - Obtains the Start location, moves in the starting
'options' above UTOP and calls TMSTART.

CANCEL - Calls CANEOJ, indicating the task to be cancelled.
PAUSE - Calls S21PAUSE to put the selected task in Console wait.

CONTINUE - Calls TMREMW to remove the Console wait and put
selected task back on ready chain.

OPTIONS - Used to set/reset the options bits in the user
TCB options field (TCB.OPT).

SET PRIORITY - Makes sure the specified priority is legal
and not greater than the task's TET'ed maximum priority.
Store the new priority as the task's priority (into TCB.PRI).

ASSIGN - Used to assign a File/Device to a User Logical Unit.

It defaults access privileges to SRW, keys to 0000. Initially,
the specified Device/File is assigned to Command Processor

LU3. If the task is a "user task" the Command Processor puts
itself temporarily into UT state to perform the assign. After

a successful assign, the Command Processor picks up from its

TCB the amount of system space the assign took up and determines
if this assignment would put the task over its maximum. If not,
the Command Processor LU3 is copied to the appropriate LU table
entry for the task. Command Processor LU3 is zeroed out.

CLOSE - Copies the User LU to Command Processor LU3, and puts
a ZERO in the task's LU entry. It executes an SVC 7 to close
LU3, obtains the amount of system space released, and deducts
this from the task's total of used system space (TCB.USSP).

DISPLAY LUS - Displays a list of all User LUs that are currently
assigned, and to what Device/File they are assigned.

DISPLAY PARAMETERS - Displays various parameters associated
with the task. Some of the parameters displayed are TASK,
STATUS, CTSW, UTOP, CTOP, etc.

5.5.2 Device/File Commands

The Device/File related commands are: ALLOCATE, DELETE,
MARK, RENAME, REPROTECT, DISPLAY FILES, and DISPLAY DEVICES.

This information is proprietary and is supplied by INTERDATA for the sole
5"4 purpose of using and maintaining INTERDATA supplied equipment and shatl ROl 4/7 5
not be used for any other purpose unless specifically authorized in writing.

ALLOCATE - Builds an SVC7 parameter block from data as
defined in the input line. If type is chained or indexed,
it defaults LRECL to 126 and BKSZ to 1 and ISIZE to 1 for
indexed. It then executes an SVC7.

DELETE - Executes an SVC7 with the File Descriptor specified.

MARK - This will mark a device on or off line. If a non-bulk
device, the on-line bit is merely set/reset. If the device
specified is a bulk device (disc) then:

MARK ON: Reads the volume descriptor and moves the
directory pointer to the DCB, and the volume ID to
the VMT. If Protect is specified it sets DFLB.WPB,
or it resets the bit. After marking on a direct-
access device, the volume name associated with it
is displayed on the console device.

MARK OFF: Flushes the bit map buffer and directory
buffer, and resets the presence bits. Clears the VMT
entry name portion.

RENAME - Executes an SVC 7 to assign the specified File/Device
and an SVC 7 to rename it.

REPROTECT - Executes an SVC 7 to assign the specified File/Device
and an SVC 7 to reprotect it.

DISPLAY FILES - This displays the files on the specified
volume. 1t gets the pack ID, finds which drive it is on
and assigns the drive SRO. The extent of display is then
checked for. 1In the syntax "-" means all, and hence, ABC.-
means any files with name ABC and all extensions, or -.-
means any file name and any extension.

DISPLAY DEVICES - Displays a list of all devices in the DMT,
their physical addresses and their keys. It indicates whether
the device is off-line. If the device is a disc, it displays
the name of the volume currently mounted on that drive.

5.5.3 General Commands

The other commands are: BIAS, EXAMINE, MODIFY, RESET, SET LOG,
VOLUME, SET TIME, DISPLAY TIME, DISPLAY MAP, SET PARTITION.

BIAS - Reads the BIAS value to be used by the EXAMINE and
MODIFY commands and saves it.

EXAMINE - gets the starting location and adds the bias. It

tThen checks for a '/' or ','. 1If a '/' is found, it gets the
ending address and adds the bias. If a ',' is found, it gets
the number of halfwords to be displayed, and computes an ending
address from it. The contents of memory from the starting
location through the ending location inclusive is displayed,

8 halfwords per line, to the console/log device unless a display
device is specified.

RO1 4/75 This information is proprietary and is supplied by INTERDATA for the sole 5-5
purpose of using and maintaining INTERDATA supplied equipment and shalt
not be used for any other purpose unless specifically authorized in writing.

MODIFY - This command obtains the starting address and adds
the bias. Data is obtained from the command line as halfwords,
and is stored in successive memory locations.

VOLUME - Sets up SPT.VOL for the default volume name.

SET LOG - Gets the File/Device and assigns it to LU2,

If no File/Device is specified, LU2 (current log) is closed.

If the COPY option is specified, then the copy flag is set.
This command causes all input lines to be logged to the

device specified. If the COPY option is specified, all input/
output messages will also appear on the system console. If
COPY is not specified, system messages will not be logged to
the console.

SET TIME - Scans the input line and picks up the date in the
form mm/dd/yy if SOPT.USB is reset, or in the form dd/mm/yy
if SOPT.USB is set. It determines the wvalidity of the date
and if the year specified is a leap year, sets TM.FEB to 29,
otherwise it sets it to 28. The date is stored in the SPT.
~The time is obtained in the form hh:mm:ss, and is checked for
validity. It is converted to seconds since midnight. If
there are any items on the time-of-day queue, they are updated
to reflect the change in hour only. The time is stored in
SPT.TIME, TMFREQ is set to the value in SPT.FREQ and the line
frequency clock is enabled.

DISPLAY TIME - The date and time are obtained via SVC 2,8 and
SVC 2,9 and displayed.

DISPLAY MAP - The size of the Library segment and Task Common
segments can be displayed. For all partitions the partition
number, name (if a task is loaded in the partition), starting
address, size, status and priority (if a task is loaded in
the partition) are displayed. The start and size of .SYS can
also be displayed.

RESET - This command closes all background task logical units,
and reconfigures the partitions as specified in the Initial
Value Table (IVT). Maximum priority and maximum system space
for the background are obtained, and stored in the background
task TCB.

SET PARTITION - This command readjusts the partition boundaries
of 0S/32 MT R0O0O. Any space needed to make a partition bigger
is obtained from the background partition. Any space released
when a partition is made smaller is given to the background
partition. The command is scanned to find the first partition
specified, and the new size. The difference between existing
partition size and requested partition size is computed.

6 This information is proprietary and is supplied by INTERDATA for the sote 0 1 4
5— purpose of using and maintaining INTERDATA supplied equipment and shall R /75
not be used for any other purpose unless specifically authorized in writing.

If the partition is to be expanded, a check is made to see

if there is enough space for the background to give to this
partition. A routine is then called, specifying the partition
and the amount it is to increase or decrease in size. That
partition is expanded/contracted and its segmentation registers
reset to the new values. All other foreground partitions,
above the specified partition in memory are floated upward or
downward, with their sizes unchanged, and have their segmen-
tation registers reset to appropriate values. The background
partition has its lower boundary floated up or down by the
appropriate amount, and its segmentation registers reset.

If .RTL is specified, the size field of the command must be
0. This indicates that the RTL is to be deleted from the
system. SPT.RTL is set to 0, and all partitions are floated
downward. The background partition is increased in size the
amount of space previously used for the RTL. The task
common segment, if present, is also floated up.

If .TCOM is specified, a task common partition is to be
created. If size specified is 0, then an existing task common
is to be released. All partitions are floated up or down by
the amount of memory being added/deleted from the Task Common.
The background partition has its lower boundary floated up

or down by the appropriate amount. If 0 was specified,
SPT.TCMS is set to 0.

If .SYS is specified then the size of system space is to be
changed. A check is made to see that the new size will not

be smaller than the amount of system space currently in use.
The amount of system space being given up or added is obtained.
The upper bound of the background partition is moved up or
down appropriately. No other partition is effected.

This information is proprietary and is supplied by INTERDATA for the sole 5 7
RO l 4/7 5 purpose of using and maintaining INTERDATA supplied equipment and shali -
not be used for any other purpose unless specifically authorized in writing.

5.6 COMMAND SUBSTITUTION SYSTEM (CSS)

The Command Substitution System (CSS) is a means for the user
to create catalogued but dynamically variable command input
streams to perform a predetermined job. CSS consists of the
Preprocessor and CSS commands.

5.6.1 Calling CSS (CSSTEST)

Whenever a command is parsed, and it is determined that

the command is not in the table of standard mnemonics,

then it is assumed that a CSS call is being made (true only
if CSS is in the system, as is this entire discussion). The
mnemonic is treated as a file descriptor, and an attempt to
assign the File/Device is made. If the File/Device does not
have an extension, the extension of '.CSS' is appended. If
it does not exist, a MNEMonic error has occurred;

EXAMPLE: ABC is the command, ABC.CSS (default system volume)
is assigned.

Since the Command Processor uses LUs 0-4 for its executors,
Css files are assigned starting at LU5 (level 1 = LU5,
level 2 = LU6, etc.). The pointer to the current buffer is
saved (in PTRSTACK) to be used by the Preprocessor for
parameter substitution. The address of a new buffer (for
expansion) is also calculated.

5.6.2 Preprocessor/Expansion (PREPRO)

After each command line is read, it is sent to the Preprocessor
to be expanded. The Preprocessor moves characters from the
input buffer to the appropriate expansion buffer. When an "@"
is encountered, CSS is alerted that parameter substitution is
needed. The number of @'s are counted to determine how many
levels back to go, and the parameter number is obtained. The
address of the appropriate CSS call is obtained from PTRSTACK,
and that call is scanned for the appropriate parameter. The
parameter is moved into the expansion buffer, and then the
moving of characters from the input buffer resumes.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
5_8 not be used for any other purpose unless specifically authorized in writing. ROl 4/75

EXAMPLE:

CSS call - ABC PARl, PAR2
FILE ABC.CSS - read - *INPUT LINE @1
- expands to - *INPUT LINE PARl
- read - *Q1@2
- expands to - *PAR1PAR2
- read - *XX@1lYy@2
- expands to - *XXPAR1YYPAR2

Whenever a request for substitution is made, and the parameter
does not exist, a null is substituted.

EXAMPLE: read *@@1ABC
expands to *ABC
@0 is a special parameter. A call for substitution of @O0

(or @R0, etc), will cause the file descriptor that called

the appropriate CSS level to be substituted. Substitution is
made of the file descriptor exactly as it appears in the call
(without default system volume, or .CSS extension).

5.6.3 Additional Commands

Several additional commands are supplied to allow the user
greater flexibility in building CSS files and testing
conditions. They are $COPY, S$NOCOPY, $CLEAR, S$EXIT, $JOB,
STERMJOB, $SKIP, S$IFE, SIFNE, SIFG, SIFNG, $IFL, $IFNL, $IFX,
SIFNX, SIFNULL, S$SIFNNULL, S$ENDC.

$COPY and $NOCOPY - These commands turn on ($SCOPY) or off
(SNOCOPY) the display of CSS command lines read from a CSS
file. They will or will not be listed depending on whether
SCOPY or $NOCOPY is in effect. These 2 executors merely set/
reset a flag (CSSLIST) used by MSGLOG to determine whether to
print the line.

SCLEAR - This command terminates all CSS processing, closes
all CSS LUs, and returns the input function to the console.

$JOB; STERMJOB - These are used to delimit a given sequence

of input as a unit. If a $JOB is in effect and any command

error is detected, then all commands read are skipped until a

STERMJOB is read. $JOB merely saves the level number that

the $JOB appears on. S$TERMJOB resets the $JOB saved, resets
.

TRCUYTD +had 3
any ironir TIOAT 1S SET,

$SKIP - If S$SJOB is in effect, $SKIP causes all commands to be
skipped until a S$TERMJOB. It closes all CSS levels down
to the level the $JOB was on.

This information is proprietary and is supplied by INTERDATA for the sole
ROl 4/7 5 purpose of using and maintaining INTERDATA supplied equipment and shall 5-9
not be used for any other purpose unless specifically authorized in writing.

SEXIT - This indicates that input from the current CSS level
is done and that the current CSS LU should be closed. Input
then begins from the next higher CSS level, or the console
if there are no higher levels.

$IFE $IFNE, $IFG, SIFNG, $IFL, SIFNL - These commands pick

up the value specified in the operand field of the command,

and compare the current value of the return code to the value
on the line. If the compare satisfies the condition specified,
then the next statement is merely read. If the compare does
not meet the condition then IFSKIP is set, and no statements
are processed until a corresponding S$ENDC is found. If

IFSKIP is set, reading another $IF increments IFSKIP, each
SENDC read decrements it. When IFSKIP is 0, skipping is done.

$ENDC - Terminator of a $IF (described previously). Parsing
one causes IFSKIP to be decremented.

$IFX, $IFNX - These commands check to see if the File/Device
specified by the operand exists. If the condition specified
is not met, IFSKIP is incremented. The fd is obtained, and
an attempt is made to assign it. The result returned by
SVC7 determines whether it exists. Success indicates it
exists, but certain errors also indicate the file exists.

SIFNULL, S$IFNNULL - These commands check to see if the para-
meter specified is null or not null. Since substitution has
been performed, the line is scanned for the next non-blank; if
it is a terminator, then the parameter was null.

5.6.4 Building CSS Files (BUILD, S$BUILD)

BUILD and $BUILD are used to create a CSS file. BUILD copies
input lines to the File/Device specified, $BUILD performs
substitution first. When a BUILD or S$BUILD is encountered,

an attempt is made to ALLOCATE and ASSIGN the file specified
in the operand field. If no extension is specified, 'CSS'

is the default extension. If the CSS file does not exist,

a chained file is allocated. If the file exists, it is
assigned. The BUILD flag (BUILDFLG) is then set positive, for
a BUILD, and negative for a $BUILD. Each time a line is read,
if BUILDFLG is set, BUILDDSP is entered. If $BUILD is in
effect, CSS expansion is done; if BUILD, no expansion is done.
The line is now checked for the special terminator either $ENDB
or ENDB, and if it is found, then the BUILDFLG is reset.

is i i i i [i TA for the sole
This information is proprietary and is supplied by lh{TERDA'
5—10 purpose of using and maintaining INTERDATA supplied equmem and ‘sfua" ROl 4/75
not be used for any other purpose unless specifically authorized in writing.

5.6.5 CSS Interaction with the Foreground and Background

A CSS file may be used to start a task running in the
foreground. There is no restriction as to which task may

be the current CSS task. Hence loads, assigns, starts, etc.,
may be performed from a CSS file, to get a real-time foreground
system of tasks loaded and started. CSS may not be used to
run a batch job consisting of multiple related steps in any
partition other than the background. This is because CSS
reads are keyed from the background status. When the
background task is active, reading from the CSS file is
suspended until the background task goes inactive. This

is not true of foreground. If the CSS file is being used to
start a foreground task, it will continue to be read, even
after the task has started.

5.7 LOAD COMMAND

This command is used to load tasks and Run Time Library segments.
If loading a task, the taskid is obtained and checked for
syntactic validity. The File/Device to load from is assigned

to LUl. 1If the Device/File mnemonic did not specify an extension,:
an extension of 'TSK' is assumed.

A check is made to see if a partition is specified. If so,

the partition is checked to insure that it is currently vacant.
The Command Processor puts itself into what appears to be

RS state and calls the Loader (SVC6.LODl). The result is
tested. If successful, the next command is executed. If

not, an error message indicating the failure is logged.

If a load command specifies .BG, then the background partition
is checked to see if it is dormant. If so, the load Device/File
is assigned and the Loader is called, as above. A check is

made to see that no partition is specified.

For a load command which specifies that a library segment is

to be loaded, the load Device/File is assigned. The amount

of space available for the library segment is calculated, and

a sample segmentation register, to be passed to the Loader, is
built. The Loader is called. Upon return the actual size is
obtained and a real segmentation register built and stored at
SPT.RTLS. All partitions and task common are floated up or
down by the difference in the size of the new and old libraries.
The amount of space needed/released is added to or taken from
the background partition.

This information is proprietary and is supplied by INTERDATA for the sole

RO1 4/7 5 purpose of using and maintaining INTERDATA supplied equipment and shail 5-11
not be used for any other purpose unless specifically authorized in writing.

5-12

5.8 CONSOLE HANDLING

The system console device is handled by a special interrupt
routine in 0S/32 MT. The Command Processor always has the
real console device assigned to its LUO. Tasks that try to
assign a device that has the console bit set are instead
assigned to the dummy device. When an I/O request is issued
to this dummy device, the dummy driver is entered.

The dummy driver sets a flag to indicate to the Command Processor
that I/0 is being requested by a task to the console. The

dummy driver also "times out" any read to the console being
performed by the Command Processor, if no characters have

been read except when the read is the reset of the break key.

When the Command Processor sees that I/0 is being requested
by a task (CMDPEND is non-zero), it performs the I/O for the
task. It picks up the starting address, ending address,

and function code from the dummy DCB (DCBCMD). If a read is
requested, then TASKID is printed to indicate to the
operator that a specific task requires input. The data is
then read into the users buffer. If a write is requested,
then HH:MM:SS TASKID: are written out, followed by the
task's message. Any write is governed by the current value
of logging. Hence, if log is set with no copy, the task's
write goes only to the log device.

When the I/O has been performed the Command Processor adds

an item to the System Queue for the dummy leaf (DMLV) in order
to schedule the termination phase of the dummy driver. The
termination phase merely calls IODONE.

5.9 THE BREAK KEY

The Break Key on the console has special meaing to 0S/32 MT.

It causes any Command Processor initiated output (a display,
EXAMINE, etc.) to be terminated. If a task write is in progress,
it is stopped, an "*" prompt printed and a command line read.
After the command line has been read, the task write is retried.
It may be interrupted as often as desired and continues retrying
until successful or until the task is cancelled.

If a task is in read mode ("M" has been printed) and Break
is depressed, an "*" is printed and a command line is read.
As above, when the command is executed, the read is retried,
until completion. If a task is cancelled and an I/O is out-
standing (a prompt has been interrupted by BREAK), I/0 is
cancelled.

This information is proprietary and is supplied by INTERDATA for the sole .
purpose of using and maintaining INTERDATA supplied equipment and shall) RO2 4/7 6
not be used for any other purpose unless specifically authorized in writing.

When an SVC 1 HALT I/O is issued to the console the command
processor takes appropriate action depending on how far the
user I/0 has progressed before it is halted.

If the HALT I/O is performed while the command processor is
scheduling to output the TASKID this I/O is aborted, device
dependent status X'82' and device independent status X'81!

are placed into the respective fields in the DCB (DCB.STAT

and DCB.DDPS). Termination is scheduled by adding the leaf
to the system queue.

When the read is halted prior to any data transfer but
after the TASKID has been logged on the console, the
command processor schedules the final Event Service
Routine (ESR) for the dummy driver which terminates
the I/0.

If data has already been read in to the user buffer

at the time of the HALT I/0 the dummy driver schedules
the termination phase of the console via a special
entry point in the real console driver.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall

R02 4/76 not be used for any other purpose unless specifically authorized in writing. 5_13/5_14

CHAPTER 6

FILE MANAGEMENT SYSTEM

6.1 FILE HANDLER

The routines in this package include all the logiec needed

to support the 0S/32 MT file management system. The file
handler is invoked by the SVC First Level Interrupt Handler
(FLIH) any time a task issues an SVC 7 supervisor call.

When an SVC 7 call is intercepted by FLIH, control is passed
to the SVC 7 Second Level Interrupt Handler, SVC7. This
routine then decodes each function specified by the SVC 7
parameter block and invokes the necessary Executors. The
SVC 7 Executors contain routines to:

Allocate a new file
Assign a file or device to a logical unit
Change the access privileges of a file or device
Rename a file or device
Reprotect (change the protect keys of) a file or device
Close the assignment between a logical unit and a
file or device
Delete a file
Checkpoint a file or device
Fetch the attributes associated with a file descriptor

More than one function can be performed by a single SVC 7
request. Each Executor that completes successfully returns

to SVC7 to determine if any other requests are still outstanding.
When all functions have been processed, control is returned to
the calling task via TMRSOUT. If any of the SVC 7 Executors
encounter an error, the appropriate error status is returned

in the calling task's parameter block and control returns
directly to the task via TMRSOUT. These Executors make use

of the following routines contained within the file handler:

A directory management package for maintaining 1nformatlon on
all currently allocated files.

A bit map management package which provides a: ‘method for
allocating and deleting files on direct-access volumes.

The file manager also contains SVC 1 intercept routlnes which
intercept all I/0O calls to a file.

6.2 VOLUME ORGANIZATION AND INITIALIZATION

Any direct-access volume to be used within an 05/32 -MT

environment must be formatted by the STANDALONE DISC TEST
and FORMAT PROGRAM.

This information is proprietary and is supplied by INTERDATA for the sole

RO 1 4/7 5 purpose of using and maintaining INTERDATA supplied equipment and shalt ’ . 6—1

not be used for any other purpose unless specifically authorized in writing.

Since 0S/32 handles file allocations in multiples of

one sector, the arguments to this program must specify a
DEFSEC of 1. Once a volume has been formatted using this
procedure, it should not have to be formatted again unless
a hardware failure occurs on the volume. After a disc is
formatted, it must be INITIALIZED, using the 0S/32 Disc
Initializer. This utility will read-check each sector on
the volume; any sector found to be defective will be marked
as permanently allocated. A Bit-Map and Volume Descriptor
are also written on the volume.

A Volume Descriptor is shown in figure 6.1. The Volume
Descriptor (VD) contains the volume name, a pointer to the
Bit-Map and first directory block, and a pointer and the
size of an OS boot loadable image, if one exists.

Volume Pointer to Pointer to Size Pointer to
Name lst Dir. 0S Image of 0OS bit map
: Block

Figure 6-1 Volume Descriptor

The size of the Bit-Map is determined by the size of the volume;
each complete Bit-Map sector represents 2048 allocatable
sectors on the volume. The final sector within the bit map
represents between 1 - 2048 sectors. A sector is marked as
allocated when the bit representing it is set; free when the
bit is reset.

The Volume Descriptor is placed on CYLINDER 0, SECTOR O0;
the Bit-Map may be located anywhere on the volume, since it
is pointed to by the VD.

6.3 DIRECTORY MANAGEMENT

A file directory is maintained as a chain of directory
blocks, where each directory block contains the following
fields (see Figure 6.2):

A chain field containing either a ZERO (indicating it is
the last block in the chain) or the logical block address
(sector) of the next block in the chain.

A volume that has just been INITIALIZEd contains no directory.
The INITIALIZE logic sets the VD directory pointer (VD.FDP)
to zero.

This information is proprietary and is supplied by INTERDATA for the sole

6—2 purpose of using and maintaining INTERDATA supplied equipment and shali ROl 4/75

not be used for any other purpose unless specifically authorized in writing.

First Directory Block

"

VD.FDP Chain Field e« Chain Field
e

Entry #1 r, #1
Entry #2 #2

each block Entry #3 #3

contains

between 1 and 5

active entries Entry #4 » #4
Entry #5 #5

Reserved

/!

Chain Field 0
#1
from 1-5

#2 active entries
L]
IS
.

Figure 6-2 Directory Example

RO1 4/75 This information is proprietary and is supplied by INTERDATA for the sole 6-3
nornncs nf eina and maintainino INTFRDATA cunnlied endinment and shall

6.3.1 Directory Entry Creation and Deletion (ALLOD, RELED)

When the first file is allocated on a disc volume, a directory
block is allocated. The first entry represents the new file
and the remaining 4 entries are marked inactive and therefore
available for additional new files. Subsequent allocations
search the chain for the first unused directory entry and if
none is found, a new directory block is allocated. The first
directory block is always pointed to by the VD. If a file is
deleted, its entry is marked inactive. If all entries in a
directory block are marked inactive, the directory block is
released and the chain relinked. If all the directory blocks
are thus released, the VD.FDP field is again set to ZERO.

6.3.2 Directory Access (DIRLOOK, GETD, PUTD)

When a function is requested on a currently existing file,

the directory block containing the Directory Entry (DIR) for
the file must first be found via a call to DIRLOOK. The I/O
routines used to read directory blocks into memory or to write
out modified blocks are GETD and PUTD.

When a new file is allocated, and one or more directory blocks
currently exist, the routine DIRLOOK searches each block until
an inactive entry is found. If all entries are marked active,
a new directory block is allocated as described above.

6.4 BIT MAP MANAGEMENT

0S/32 direct access files are allocated in multiples of

one sector; the status (free or allocated) of each sector on
the volume is maintained in the volume's Bit-Map. When a
volume is INITIALIZED, all non-defective sectors within

the volume are marked as free by resetting the corresponding
bit in the Bit-Map. Then the VD and bit map are created; the
sectors they occupy are marked as allocated by setting the
appropriate bits. The INITIALIZE logic also provides a pointer
from the VD to the Bit-Map (VD.MAP).

6.4.1 File Allocation and Deletion (GETSECTR, RELEB, GETB, PUTB)

When a request is received by the Bit-Map Management routines
to allocate a string of contiguous sectors, GETSECTR searches
the Bit-Map for a corresponding number of bits that are reset,

" thus indicating available sectors. Since allocations may span
Bit-Map sector boundaries, one or more calls to GETB may be
required to read Bit-Map sectors into memory. When enough
available sectors have been found in this manner, GETSECTR

then sets each bit in the Bit-Map within this allocation. As
Bit-Map sectors are modified, they are written back to disc via
PUTB.

This information is proprietary and is supplied by INTERDATA for the sole

6—'4 purpose of using and maintaining INTERDATA supplied equipment and shail ROl 4/75

not be used for any other purpose unless specifically authorized in writing.

When a file is deleted, the procedure is reversed by RELEB.
Each bit representing the allocation is reset, indicating
the sector is agair available. GETB and PUTB may again

be invoked, to Read and Write the Bit-Map sectors.

6.5 SVC 7 SECOND LEVEL INTERRUPT HANDLER (SVC7)

The FLIH transfers control to the SVC 7 driver routine, SVC7,
with two arguments, the address of the current TCB and the
address of the calling task's SVC 7 parameter block.

SVC7 processes the function code specified by the parameter
block from left to right. If the function code is initially
zero, the call is a FETCH Attributes. Otherwise, the function
code is saved in TCB.SYS, and each SVC 7 function specified
within it is performed by branching to the appropriate Executor.
Each Executor that completes successfully returns control to
SVC7. As each function is performed, the bit representing it

in TCB.SYS is reset, until each bit of TCB.SYS has been reset.
Control then returns to the calling task via a branch to the
Task Management routine TMRSOUT.

6.6 SVC 7 FUNCTION EXECUTORS

6.6.1 Allocate (ALLO)

The SVC 7 Executor ALLO is called directly from SVC 7 when
the function code in the parameter block specifies an allocate
operation.

The logic in ALLO proceeds as follows: The Directory Management
routines are called to insure that the specified file descriptor
is unique to that file, and establishes a directory entry for
the file being allocated. For a contiguous type file, the
complete file allocation size is established at allocation time;
this is performed by the Bit-Map Management routines. Since a
chain file is open-ended and has no predefined size, no allc-
cations are performed on behalf of a chain file at allocation
time. The necessary initial information is established in the
directory for both file types. Control returns directly to

SVC7 upon the successful completion of ALLO.

6.6.2 Assign (OPEN, OPEN.DEV, OPEN.CO, OPEN.CH)

Por v e] o~

The SVC 7 Executor OPEN performs all common assign processing
for direct and non-direct access devices. OPEN establishes
the validity of the Logical Unit being assigned. If the OPEN
function is being performed upon a non-direct access device,

4 This information is proprietary and is supplied by INTERDATA for the sole
R01 /75 purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

6-5

OPEN transfers control to OPEN.DEV which completes any necessary
validity checks, using the subroutines described in Section
6.6.10, and sets up the entry in the LU table to contain the

DCB address and device attributes. If the device being opened
is a direct access device, OPEN completes the assignment

process itself and places the DCB address and device attributes
in the LU table. Otherwise, control is transferred to OPEN.CO,
if the file being assigned is a contiguous file, or OPEN.CH,

if it is a chain file. 1In either case, the first event to occur
is a call to the memory management routine, GETFCB, to allocate
a file control block (FCB) within dynamic system space.

OPEN.CO and OPEN.CH also obtain current control information
about the file from its directory entry and move this to the
FCB.

OPEN.CH positions the file to the requested data block and
allocates a new block for data via the bit map management
routines, if the file is being opened with write privileges.

Upon successful completion, both OPEN.CO and OPEN.CH set up
the entry in the LU table to contain the FCB address and a
file attribute byte, which indicates the allowable data
transfers to the file.

All OPEN processing successfully terminates by returning
directly to SvC7.

6.6.3 Change Access Privileges (CAP)

The SVC 7 Executor, CAP, performs the function of changing
the access privileges associated with a given Logical Unit.
The Logical Unit can be assigned to a file or device. CAP
is a two pass operation.

On pass one, the routine insures that the new access privileges
are legal, but makes no modifications to any control blocks.
When pass one has completed successfully, the routine proceeds
to pass two, this time making updates to all required control
blocks to reflect the new access privileges. This requires
modifying the write and read count fields in the DCB or FCB
(DCB.WCNT, DCB.RCNT, FCB.WCNT, FCB.RCNT) to reflect the

current access privileges. The current access privileges
associated with a file are reflected in the WCNT and RCNT
fields of the control block in the following manner:

WCNT/RCNT = 0 implies no task having write/read privileges

WCNT/RCNT = -1 implies one task having exclusive write/read
privileges
WCNT/RCNT = +n implies n tasks sharing write/read privileges
is i i i i d i lied by INTERDATA for the sole
6-6 :3:;0':;0;?‘1(5:1’; :ng'(::;;:::::inznIN'”IS'ESS‘!))‘;?A szpplied equipment and shall ROl 4/75

not be used for any other purpose unless specifically authorized in writing.

6.6.4 Rename (RENAME)

RENAME is the SVC 7 Executor that changes the name of a

file or device. If the rename function is directed at a
device, RENAME insures that the new name does not currently
exist in the Device Mnemonic Table (DMT) and then replaces

the device's previous name in the DMT with its new name.

To RENAME a file, the procedure is similar except it is the
directory that is checked for a duplicate name. The directory
management routines are used to read the directory, search for
a name match, and rewrite it with the new File Name. RENAME
returns to SVC 7 upon successful completion.

6.6.5 Reprotect (REPRO)

The SVC 7 Executor, REPRO, contains the logic to modify the
protect keys associated with a given LU. The LU can be
assigned to a file or device. The protect keys associated
with a device are kept in its DCB (DCB.WKEY, DCB.RKEY); the
protect keys associated with a file are kept in its directory
entry (DIR.WKEY, DIR.RKEY). A file or device may be uncon-
ditionally protected (Keys = X'FF'), unconditionally unprotected
(Keys = X'00') or conditionally protected with WRITE, READ

Keys between X'0l' and X'FE'. The logic in REPRO insures that
the new protect keys are not in violation of the former

protect keys, and updates the control block (DCB or directory)
with the new protect keys. Control returns to SVC7 for further
SVC 7 processing.

6.6.6 Close (CLOSE)

The purpose of the CLOSE Executor is to disconnect an open
Logical Unit from a file or device. The logic of CLOSE insures
that the given LU is currently assigned.

If the LU was assigned to a device, the Read and Write count
fields in the DCB are modified as follows:

(1) If old.WCNT,RCNT = =1, new WCNT,RCNT = 0
(previously one exclusive user)

(2) If old WCNT,RCNT = 0, new WCNT,RCNT = 0
(implies there were no users of this privilege)

(3) If old WCNT,RCNT = n, n 0, new WCNT,RCNT = n-1
(previously n shared users)

If the LU is assigned to a file the WCNT,RCNT fields in the
directory and FCB are updated as specified above. A test is
then made to determine if the FCB should be released or if

This information is proprietary and is supplied by INTERDATA far the sole _7
RO l 4/75 purpose of using and maintaining INTERDATA supplied equipment and shall 6

not be used for any other purpose uniess specifically authorized in writing.

RO1

it is being shared. (Current file implementations preclude

the possibility of sharing FCB's. The logic is included in

CLOSE for future use). If the FCB is not being shared, its
memory allocation is returned to system space by a call to

the memory management routine, RELEFCB. The directory management
routines are then used to update the directory with the
information about the file which was in the FCB. CLOSE finishes
by setting this LU's entry in the LU table to ZERO and exiting
to sVC 7.

6.6.7 Delete (DELETE)

The DELETE Executor is used to delete contiguous and chain
files; it has no meaning with regard to devices and will
generate an error if an attempt is made to delete a device.
The logic in delete requires dynamic system space; this is
obtained by the memory management routine GETFCB. A file is
deleted by releasing its allocated storage on the volume
containing it via the Bit-Map Management routines and by
relinquishing its directory entry via the directory management
routines. Finally, the system space is returned via a call
to the memory management routine RELEFCB. DELETE returns
control to SVC7 on completion.

6.6.8 Checkpoint (CHECKPT)

The SVC 7 Executor CHECKPT contains the logic to checkpoint to
an LU; the LU may be assigned to a file or a device. If the
checkpoint function is directed to a device, a subroutine is
invoked to perform an SVC 1 I/0 wait only operation on the
device. To checkpoint a file, all current information about
the file is moved from its FCB to its directory entry. The
Bit-Map and directory management routines are used to insure
that the Bit-Map and directory on the volume reflect the current
file allocations. A chain file is also positioned to read
random mode using the chain file reset routine, RESET.CH,
described in 6.7.2. CHECKPT exits to SVC7.

6.6.9 Fetch Attributes (FETCH)

The purpose of the FETCH Executor is to obtain the attributes
associated with the file or device assigned to a given LU.
The Device/File attributes, device code, and name are moved
from the DCB/FCB to the task's SVC 7 parameter block. FETCH
returns directly to the calling task via the Task Management
routine, TMRSOUT.

This information is proprietary and is supplied by INTERDATA for the sole
4/75 purpose of using and maintaining INTERDATA supplied equipment and shati 6"'8
not be used for any other purpose unless specifically authorized in writing.

6.6.10 SVC 7 1Integrity Checking Subroutines

This section briefly describes the integrity checking subroutines
used by the SVC 7 Executors:

(1) APCHECK - Verifies the legality of the requested
access privileges; converts the requested access
privilege to a numeric gquantity, to be saved in
the WCNT and RCNT field of the control block.

(2) LUCHECK - determines if a given LU is assigned, and
picks up its LU entry from the LU table.

(3) DMTLOOK/VMTLOOK - searches the DMT/VMT for a given
Device/Volume.

(4) FDCHECK - checks the syntax of a given file or
volume name.

6.7 SVC 1 INTERCEPT ROUTINES

When the SVC 1 Processor (SVCl) determines that an SVC 1 call
is directed to a file, the file management SVC 1 intercept
routines are entered to process the request.

6.7.1 Contiguous File Handler

The Contiguous File handler package consists of the following
two routines:

CONTIG - processes data transfer requests to a Contiguous
File

CMD.CO - processes command function requests to a
Contiguous File

6.7.1.1 Data Transfer for Contiguous Files (CONTIG)

The routine CONTIG is entered directly from SVC1l; the length
of the data transfer request is computed and the random
address is obtained either from the FCB random address (for

a random I/0 request) or from the FCB current sector pointer
(for a sequential I/0 request). The CONTIG Routine copies the
FCB information into the DCB and if the I/O request is a Read
or Write, CONTIG exits by transferring control directly to the
Disc Driver. If the I/O request is a test and set (both Read
and Write bits set in the SVC 1 function code), CONTIG enters
RSA state, moving the RS save area to a save area in the FCB via
TMRSRSA, and then modifies the following fields in the TCB:

This information is proprietary and is supplied by INTERDATA for the sole
ROl 4/75 purpose of using and maintaining INTERDATA supplied equipment and shall . 6_9

not be used for any other purpose unless specifically authorized in writing.

TCB.RPSW - the location field of the resume PSW is
set up to contain a secondary entry point
within CONTIG

TCB.RGPR - the general purpose register save area is
set up to contain the current values of User
Register Set.

The routine then obtains control of the directory leaf to ensure
Test and Set as an indivisible operation and then transfers
control to the Disc Driver for the read portion of the test and
set operation. By modifying the TCB.RPSW and TCB.RGPR fields as
specified above, upon termination of the read the Disc Driver
returns to CONTIG at its secondary entry point. CONTIG then
processes the remainder of the test and set operation itself.

If a write is to be performed (the first halfword of the buffer
read contained a X'0000'), CONTIG does the Write by issuing an
SVC 1 WRITE, WAIT call. The directory leaf is released and
control is returned to the calling task upon successful
completion of CONTIG via the Task Management routine, TMRSAOQUT.
If CONTIG receives an EOM status following an I/O operation,

EOM status is saved in the FCB and control is returned to the
task by branching to IODONE2 to complete the request.

6.7.1.2 Command Requests to Contiguous Files (CMD.CO)

The Command Function Intercept routine for Contiguous Files,
CMD.CO, contains six Command Executors. Each Executor and
its function is briefly described below:

Rewind (CMD.REW) - Set current sector (FCB.CSEC) in the
FCB to 0 and return via a branch to IODONE2.'

Backspace Record (CMD.BSR) - Decrement FCB.CSEC by 1,
enter RSA state and issue an SVC 1 read of new current
sector to check for any I/0 problems. Exit to TMRSAOUT.

Forward Space Record (CMD.FSR) - Increment FCB.CSEC by 1
and proceed as in CMD.BSR.

Write End of File (CMD.WEOF) - Increment FCB.CSEC by 1,
enter RSA state and write a pseudo-file mark (X'1313')
at that random address via an SVC 1 WRITE,WAIT call.
Exit via TMRSAOUT.

Forward Space File (CMD.FSF) - Enter RSA state and issue
SVC 1 read commands starting at FCB.CSEC, until a pseudo-
file mark, X'1313' is found. Exit to TMRSAOUT.

Backward Space File (CMD.BSF) - Same as Forward Space File,
except the X'1313' is searched for starting at FCB.CSEC
and backing up one sector at a time. Exit to TMRSAOUT.

6_10 This information is proprietary and s supplied by INTERDATA far the sole Rol 4/75
purpose of using and maintaining INTERDATA supplied equipment and sha’t
not be used for any other purpose unless specifically authorized in writing.

6.7.2 Chain File Handler (CHAIN, CMD.CH)

The Chain File Handler consists of the following two routines,
CHAIN and CMD.CH, and various subroutines, described in Section
6.6.2.1. The purpose of each is:

CHAIN =~ Process data transfer requests to a Chain File

CMD.CH - Process commands to a Chain File ~

6.7.2.1 Chain File Handler Subroutines

The Chain File Handler requires various subroutines in order
to process Chain Files. Each is briefly described below:

POSITN - Position the chain file to a specific block and
record beginning within that block. The current position of
a Chain File is indicated by the value of the FCB.CBLK.

GETCHL - Move logical record from a system buffer to the
task's buffer. If the logical record spans more than 1
physical block, a call is made to GETCHPR, to read the next
block into a system buffer.

PUTCHL - Move logical record from task's buffer to system
buffer. 1If a logical record spans physical blocks, the
block is written via a call to PUTCHP.

GETCHPR, GETCHPL - Perform physical reads to a Chain File to
the right (entry point GETCHPR) or to the left (entry point

GETCHPL). If the File is currently in sequential mode, double
buffering is used; in random mode, single buffering is used.

PUTCHP - Perform physical writes to a Chain File. If the file

is in sequential mode, the Write logic uses double buffering;

in random mode, single buffering is used. If the file is in
Write sequential mode, @& new block of sectors is preallocated

at this time, via a call to the Bit Management routine, GETSECTR.
If an EOM status on the disc is returned from GETSECTR during
PUTCHP processing, the file is returned to a known state by
writing out the current buffer and backing up until the last
logical record within the file ends in the current block.

CHDIR - Establish the direction in which a Chain File is to
be processed (right or left).

RESET.CH - Change the current state of a Chain File. At any
point in time, the contents of the FCB.FLGS field indicate the

state of the Chain File, where a state is defined as being one
of the following:

This information 1s proprietary and is supplied by INTERDATA for the sole

Rol 4 75 purpose of using and maintaining INTERDATA supplied equipment and shall 6_11
/ not be used for any other purpose unless specifically authorized in writing.

Operation Processing Mode

Read Sequential
Read Random
Write Sequential
Write Random

Therefore, there are sixteen possible state changes a file
may undergo, where four of these are no-ops. RESET.CH
performs whatever functions are required to change a file
from one state to another.

6.7.2.2 Data Transfer for Chain Files (CHAIN)

The routine CHAIN is entered directly from SVC1l in RSA

state. The routine determines the state the file should be
processed to based upon the function code within the FCB. An
EOM status is generated if a Read at the end of the file or

a Write beyond the end of the file is attempted. The current
state of the file is established via a call to RESET.CH.
Control is transferred directly to either GETCHL or PUTCHL,
to perform the logical I/O operation.

6.7.2.3 Command Requests For Files (CMD.CH)

The Command Function Intercept routine for Chain Files contains
5 Executors to perform the 5 allowable commands to a Chain File.
These Executors all make use of the Chain File subroutines
described in Section 6.7.2.1. The following is a brief
description of each Executor:

Rewind (CCH.REW) - The first block in the file (block 0) is
positioned to by a call to POSITN, and the current logical
record field in the FCB (FCB.CLRL) is set to ZERO.

Backspace Record (CCH.BSR) - The previous record in the file
is positioned to by decrementing the FCB.CLRL field by 1

and then positioning to the block containing this record via
a call to POSITN.

Forwardspace Record (CCH.FSR) - The logic of CCH.FSR is tc
increment the FCB.CLRL by 1 and proceed as CCH.BSR.

Forwardspace File (CCH.FSF) - The last block in the file is
positioned to (FCB.NBLK -1) via POSITN.

Backward Space File (CCH.BSF) - identical to CCH.REW.

All the Executors return to the calling task wvia TMRSAOUT since
entry to CMD.CHN is in RSA state.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shalf

6—12 not be used for any other purpose unless specifically authorized in writing ROl 4/75

6.7.2.4 Error Recovery For Chain Files

I/0 errors may occur during the processing of an SVC 1

Data Transfer or Command Request to a chain file. An
End-of-Media status (X'90') is a software generated status
that means an attempt to write to a chain file could not be
satisfied because no more allocatable space exists on the
direct-access Volume. The file is then 'closed' in the sense
that the last block in the file is written with a proper link
field. The user can then continue to process the file in any
way (i.e., Close, Delete, etc.) or, after making more direct-
access space available on the Volume, continue writing to

the file.

Any other type of I/O error is caused by some hardware problem
and may require user intervention to correct. If the user

was updating an existing logical record within a file that

has been closed or checkpointed, and an I/O error occurs, the
file may be closed, the error corrected, and processing of
that file may resume. If however the file was being processed
in any manner and had not been previously closed or checkpointed,
some link fields may not be set properly which causes the file
to be unusable. The action taken by the user in this case
should be to execute the Disc Integrity Check Utility Program
03-080 before continuing to process the file. Failure to do
so may result in other files being inadvertently destroyed if
the user attempts to process this file.

This information is proprietary and is supplied by INTERDATA for the sole

purpose of using and maintaining INTERDATA supplied equipment and shall - -
ROl 4/75 not be used for any other purpose unless specifically authorized in writing. 6 13/6 14

CHAPTER 7

DRIVER DESCRIPTION

7.1 DRIVERS

Fach driver consists of three phases: Initialization,
Interrupt Service, and Termination (or Event Service).

The Initialization phase runs as a reentrant subroutine
(interrupts are enabled) of the task issuing the I/0 request.
In general, the Initialization phase uses the information
stored in the DCB by the SVC 1 Executor to prepare the device
dependent information required to execute the required
function. After all processing has been done, the
Initialization phase starts the physical 1/0 process by causing
an interrupt on the device requested. The Initialization phase
then enters the Task Manager which returns control to the
calling task on an I/O and proceed call, or puts the calling
task into I/O wait on an I/O and wait call.

When an interrupt is detected from the device, the microcode
causes control to pass to the Auto Driver Channel or to the
Interrupt Service Phase. If the Auto Driver Channel is
employed, end of buffer or error conditions cause control to
be passed to the Interrupt Service phase of the driver
specified. The Interrupt service phase of the drivers
execute with all interrupts disabled(except for Machine
Malfunction). This phase controls the actual I/0 to the
device, either in conjunction with the Auto Driver Channel
or by I/0 instructions. Error conditions cause status to

be set in the DCB. On completion of the I/0, the Interrupt
Service phase disables interrupts from the device and adds
the address of the device's leaf (EVT entry) to the system
queue.

When a PSW is loaded that has Queue Service interrupts
enabled, the System Queue Service routine (sQs) is entered

by the microcode. SQS removes the address of the Device's
leaf from the system queue and schedules the termination

phase of the driver, as specified in the leaf. The scheduling
of the termination phase is called an event. The Termination
phase (or Event Service Routine - ESR) of the Driver executes
as an asynchronous, reentrant, non-eventable subroutine of the
- task which requested the I/O. The Termination phase is
asynchronous because it is scheduled as the result of a Queue
Service interrupt. If the calling task is executing (or

about to execute) at the time the Termination phase of the
Driver is scheduled, the state of the task is saved in the

TCB until the ESR is complete. The ESR executes with all
interrupts enabled, so it is reentrant. Non-eventable means
that if another Queue Service interrupt occurs for the

calling task while the ESR is executing, the second ESR

will be queued by the System Queue Service handler for
scheduling when the first ESR completes.

This information is proprietary and is supplied by INTERDATA for the sole
RO l 4/75 purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

7-1

7—2 purpose of using and maintaining INTERDATA supplied equipment and shall

The ESR performs post-processing on the I/0 performed and
either schedules another ISR and enters the Event Service
Handler which passes control back to the calling task or

schedules a queued ESR, or the ESR enters IODONE to complete
the I/0 request.

The Executive routine, IODONE, performs common post-processing
for all drivers. It passes status and length of transfer

from the DCB to the SVC 1 parameter block, calls Event Service
Routines to disconnect the task from all EVT entries that

were necessary to coordinate the I/0 request, resets the

ISP table entry for the device so that subsequent interrupts
will not cause entry to the driver, removes the I/0 wait
condition from the task, if necessary, and enters the Event
Service Handler to return control to the task or to schedule

a queued ESR. IODONE also causes a task trap if a proceed I/0
is being completed, and the task has I/0O proceed traps enabled.

It is the responsibility of the Executive to schedule driver
routines in the proper state - Initialization Routines in RS,
Interrupt Service Routines in IS, and Event Service Routines
in ES State. It is the responsibility of the Driver
Initialization and Event Service Routines to enter and exit
from NSU state via LPSW, LPSWR or EPSR instructions if
necessary.

7.2 DRIVER CONTROL BLOCKS

7.2.1 Device Control Block (DCB)

All standard drivers make use of the device independent
portion of the DCB (see Figure 11-2). The DCB is used to

pass information between the executive and the drivers; it

is also used by the drivers, SVC 1 and SVC 7 to control

I/0 requests. The use of the Event Service Handler allows

a driver to assume exclusive access to a DCB for the duration
ocf an I/0 request to the device associated with that DCB.

The following section describes each field in the DCB and
its usage:

DCB.DMT - Address of Device Mnemonic Table entry for this
DCB. Established by the Configuration Utility Program.
Used by File Manager at assign time.

DCB.LEAF - Address of Event Coordination Table entry for the
device described by the DCB. Established by the Configuration
Utility Program. Used by the SVC 1 Executor to establish
task connection to the required EVT entries before passing
control the the driver.

This information is proprietary and is supplied by INTERDATA for the sole
RO1 4/75

not be used for any other purpose unless specificaily authorized in writing.

RO1

DCB.INIT - Driver entry point for data transfer requests.
Established at DCB assembly time by referencing the data

transfer entry in the Driver Initialization routine.
entry point must have a

designates the driver.

This
name of the form INITxxxx where XXXX
This address is used by the SVC 1

Executor to enter the driver for data transfer requests.

DCB.FUNC - Driver entry point for Command Function requests.
Established at DCB assembly time by referencing the Command

Function entry in the Driver Initialization routine.
entry point must have a

designates the driver.

This
name of the form CMDxxxx where XXxX
This address is used by the SVC 1

Executor to enter the driver for Command Function requests.

DCB.TERM - Driver entry point for first Event Service Routine

to be scheduled.

Established at DCB assembly time by

referencing the entry address of the desired Event Service

Routine.

This address is placed in the device EVT entry

(leaf) at connection time (svC 1 Executor).

DCB.WCNT; DCB.RCNT - Read and Write count fields used by
the File Manager to control access at assign time.

DCB.ATRB - Attributes of device.

Used by File Manager to

determine the attributes to associate with the device at

assign time.

The File Manager copies the attributes to

the Logical Unit being assigned, possibly resetting the

Read or Write bit.
Control Block.

The Logical Unit is a field in the Task
The SVC 1 Executor uses this copy of the

attributes to determine the validity of an I/0 request.
The attribute bits are defined in Figure 7-1.

BIT ATTRIBUTE
0 RESERVED
1 SUPPORTS READ
2 SUPPORTS WRITE
3 SUPPORTS BINARY
4 SUPPORTS WAIT I/O
5 SUPPORTS RANDOM
6 SUPPORTS UNCONDITIONAL PROCEED
7 SUPPORTS IMAGE
8 RESERVED
9 SUPPORTS REWIND
10 SUPPORTS BACKSPACE RECORD
11 SUPPORTS FORWARD SPACE RECORD
12 SUPPORTS WRITE FILEMARK
13 SUPPORTS FORWARD SPACE FILEMARK
14 SUPPORTS BACKSPACE FILEMARK
15 RESERVED

Figure 7-1 DCB Attribute Bit Definitions

4/75

This information 1s proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

7-3

DCB.RECL - This field defines the maximum length of a
record for the Device. Established at DCB assembly time.
Used by the Driver to truncate requests larger than
maximum.

DCB.TOUT - Time-out constant. Established by Interrupt
Service Routines to indicate desired treatment by the
Executive or the Timer Routines. The value of the timeout
constant is defined as follows:

-1 (X'FFFF') means the I/0 request is in the process
of normal termination by the driver. An ESR has been
scheduled for the I/0 request.

0 (X'0000') means the driver should abnormally termi-
nate the I/0 request. An ESR has been scheduled for
the I/0 request.

21537 (X'7FFF') means the I/0 request is not to be
timed out by a Timer interrupt.

1 through X'7FFE' means the timeout constant is to
be decremented by 1 every second by the system clock
until value is ZERO.

A driver's initialization phase must put the DCB on the driver
timeout chain, and its Termination phase remove it. This is
accomplished via calls to TOCHON, and TOCHOFF respectively.

An ISR normally sets the timeout constant to the appropriate
value for the device and request. After the timeout constant
has been set to a positive value, all subsequent ISRs and ESRs
check for timeout constant = 0. If the request has been timed
out, the appropriate status is placed in the DCB, an ESR is
scheduled if necessary, and the timeout constant is set to -1.

DCB.RTRY - Retry count. Established by driver if necessary.
Used by standard drivers to control number of error retries.

DCB.FLGS - Flag bytes used to describe various characteristics
of the device to the File Manager, the Executive and to
Drivers. The flag bits are defined in Figure 7-2.

7_4 This information is proprietary and is supplied by INTERDATA for the sole Rol 4/75

purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

Bit

Name

Meaning and Usage

10-15

Bulk device flag

On-line flag

Directory Presence

Bit-Map Presence
bit

Check Pseudo File
Mark flag

Bit Map Modify
flag

Console flag

Uncancellable
flag

SVC 6 Connectable

Write Protect Bit

Reserved

Set at DCB assembly time,
used by File Manager.

Set at DCB assembly time,
Modified by Command
Processor. Used by File
Manager at assign time.

Set by system initialization
routine. Used by File
Manager for directory
processing on device. Bulk
Device Flag must also be set.

Similar to Directory Presence
bit.

Set by the File Manager.
designates to the Disc Driver
to check for pseudo File Mark.

Set and modified by File
Manager. Indicates Bit Map
must be updated on device.
Bulk device flag must also
be set.

Device is the Console Device.
Set by System Initialization
Routine.

Set at DCB assembly time.
Designates to Executive not
to timeout I/O to this device
on End of Task.

Set at DCB assembly time.
Indicates this device may only
be used by SVC 6 connect,
freeze, thaw, SINT, and break.
Any device accessed by these
calls must have this bit set.

Set by Command Processor.
Indicates the device is
"write protected". All
assigns are turned into SRO.

Must be 0

RO1

4/75

FIGURE 7-2

DCB Flag Definitions

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shalt
not be used for any other purpose unless specifically authorized in writing.

DCB.STAT - Status field. Set by driver to indicate status

of I/O request. SVC 1 executor sets value to zero before
passing control to driver. Executive routine, IODONE, copies
this field to status field in SVC 1 parameter block on
completion of I/0 request.

DCB.DCOD - Device Code. Established at DCB assembly time.
Must correspond to nnn in name of DCB module (DCBnnn).

DCB.WKEY; DCB.RKEY - File Protect Keys. Established by File
Manager Reprotect function. Used by File Manager to control
access at assign time.

DCB.PBLK - Parameter Block Address. Established by SVC 1
Executor. Contains the relocated physical address of the
SVC 1 parameter block for current I/0O request. Drivers
generally do not use this address.

DCB.FC - Function Code. Established by SVC 1 Executor.

Used by Driver Initialization routine to determine nature

of I/0 request. Subsequent Wait only request may modify this
field, therefore, ISRs and ESRs should not depend on contents.

DCB.LU - Logical Unit of current I/0 request. Established by
SVC 1 Executor. Used by File Manager and SVC 1 Executor.
Must not be modified by Driver.

DCB.DN - Device Number. Established by Configuration Utility
Program. Used by drivers to determine physical device to
perform I/O request.

DCB.SADR; DCB.EADR - Data transfer Start and End Addresses.
Established by SVC 1 Executor for data transfer requests,
Contains the relocated physical addresses. Used by drivers
to define buffer for request.

DCB.RAND - Data Transfer Random Address. Established by
SVC 1 Executor.

DCB.LLXF - Length of last transfer. Established by driver.
This value is copied to length of last transfer field of

SVC 1 parameter block by the Executive routine IODONE for data
transfer requests.

DCB.TOCH - Time-out Chain. This contains the address of the
next DCB on the Time-out Chain, or 0 is this is the last
device on the Chain.

DCB.UPBK - Unrelocated Parameter Block Address. Used by
IODONE. This is passed to SV9.ATQ when an I/O proceed
completes, so that it may be queued to tasks that have the
I/0 proceed queue bit enabled.

This information is proprietary and is supplied by INTERDATA for the sole

7_6 purpose of using and maintaining INTERDATA supplied equipment and shail RO]. 4/75

not be used for any other purpose unless specifically authorized in writing.

RO1

7.2.2 Channel Control Block (CCB)

The Channel Control Block is used to control Auto Driver
Channel operations. The address of the CCB+1 (to make it

odd) is placed in the ISP table entry for a device before

any serviceable interrupts are generated. The CCB must

reside in the first 64K of memory since the ISP table entry
must contain a halfword entry. The following section describes
each field in the CCB. Refer to Figure 1l1l-1,

CCB.CCW - Channel Command Word. Established and modified
by the driver before enabling interrupts on the device.
Used by Auto Driver Channel to control I/O request. The
CCW bits are defined in Figure 7-3.

BITS MEANING

0-7 Status mask

8 Execute bit

12 Buffer bit. Zero value selects buffer 0,
One value selects buffer 1
if Fast bit reset.

13 Write bit When reset, indicates Read
operation.

14 _ Translate Specifies Translation if

bit Fast bit reset.
15 Fast bit Specifies no Translate, no

Buffer switch, no
redundance check.

Figure 7-3 CCW Bit Definitions

CCB.LB0 - Length of buffer 0. Used to specify length of
data pointed to by buffer 0. Length is expressed as a
negative number whose value is equal to start address minus
end address. Thus, at any time, the length added to the
ending address gives the next character to be processed.

CCB.EBO0 - End Address of Buffer 0. Last character to be

processed by Auto Driver Channel. Established by driver.

CCB.CW - Check Word. Used by Auto Driver Channel to
accumulate redundancy check. Not used by standard drivers.

CCB.LBl1 - Length of Buffer 1 (See CCB.LB0O). Established
by driver. .

4 -7 5 This information is proprietary and is supplied by INTERDATA for the sole
/ purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

CCB.LBl - End Address of buffer 1. Established by driver.

CCB.XLT - Translation Table Address. Specifies the Trans-
lation Table to be used by Auto Driver Channel when CCB.CCW
flag bit 14 is set. Established at CCB assembly time by
referencing the Translation Table Address in the Driver
module.

CCB.SUBA - Subroutine Address. Specifies an ISR entry
point which is branched to by the Auto Driver Channel
in the following cases:

Execute bit (CCB.CCW bit 8) is reset
End of Buffer Condition
Error condition detected

Since this is a halfword field, the ISR entry point must
exist in the first 64K of memory. Established by the
Driver.

CCB.MISC - Miscellaneous field. Established and used by
drivers to pass information between Initiation, Interrupt
Service and Termination phases.

CCB.FLGS - Established and used by drivers to pass infor-
mation between Initialization, Interrupt Service and Termination
phases.

CCB.DCB - Address of DCB for device being controlled by CCB.
Established at CCB assembly time by referencing the DCB name.

7.3 DRIVER INITIALIZATION ROUTINES

Each Driver Initialization Phase has two entry points: data
Transfer Request (INIT) entry and Command Reguest (FUNC)
entry. These entry points are named INITxxxx and CMDXXXX,
where xxxx designates the driver. At driver assembly time,
these entry point addresses are coded in each DCB the

driver controls.

Driver Initialization Routines (DIR) execute in Reentrant
System (RS) state, thus executing as reentrant sub-routines
of the calling task. The user task's registers and resume
PSW are stored in the TCB RS save area by the SVC 1 Executor.
The user task is connected to the Event Coordination Table
entries corresponding to the peripherals required for the
I/0 request. This insures that no other I/O requests can

be initiated to the device until the driver requests the
task's disconnection. Register 13 of the user register set
contains the address of the SVC 1 parameter block, function
code, Logical Unit, physical start and end addresses and the
random address as required by the function code in the DCB.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall RO l 4 7 5
not be used for any other purpose unless specifically authorized in writing. /

The DIR performs the preprocessing necessary to translate

the device independent SVC 1 parameter block quantities

into the device dependent information to be used by the

ISR and ESR portions of the Driver or by the Auto Driver
Channel (see 32 Bit Series Reference Manual, Publication

Number 29-365). After preprocessing, the DIR modifies the
Interrupt Service Pointer Table entries for the devices required
to point to the proper CCB or ISR, call TOCHON to put the DCB
on the driver time-out chain, (if necessary), and then issues

a Simulate Interrupt instruction on the device address. The
Driver Initialization Routine then exits to the Task Management
routine TMRSOUT. This routine returns control to the calling
task following the SVC 1 if the call is for I/O and proceed

or it places the calling task into I/0 wait state if the call
is for I/0 and wait.

The DIR may determine that I/O to the device is not necessary
due to an error condition or because of the nature of the
request. In this case, no ISR will execute. In order to
terminate the I/0 request, the driver does one of two things:

1. Exits to Executive Routine IODONE at the alternate entry
) IODONE2.

2. Schedules an ESR by adding the address of the leaf
contained in the DCB (DCB.LEAF) to the top of the
system queue.

7.4 INTERRUPT SERVICE ROUTINES

Interrupt Service Routines (ISR) execute in the Interrupt
Service (IS) state. They are entered as the result of an
interrupt on a device involved in the I/0 request. On entry,
registers 0 and 1 of the Executive Register set contain the
resume PSW for the program that was executing at the time the
interrupt was serviced. Register 2 contains the device number
of the interrupting device. In the case of drivers which
employ the Auto Driver Channel, Register 4 contains address
of the CCB which is controlling the Auto Driver Channel.

ISRs may use Registers 2 through 7 of the Executive Register
set.

In general, all I/O instructions (e.g., SS, RD, WB) are
issued from ISRs. The Auto Driver Channel is used both to
perform I/0 requests through the appropriate Channel Command
Word and to simply transfer control to an ISR, as would
Interrupt Driven I/O but with the addition of the CCB pointer
in register 4. An ISR always exits by loading the PSW in
Registers 0 and 1. An ISR may place another ISR entry in

the Interrupt Service Pointer Table or CCB to process the

next interrupt. If the ISR detects that the I/0 request is

This information is proprietary and is supplied by INTERDATA for the sole
Ro l 4 75 purpose of using and maintaining INTERDATA supplied equipment and shall
/ not be used for any other purpose unless specifically authorized in writing. 7"‘9

complete or that some portion of the I/O request is complete
(e.g., SEEK complete on a disc I/0 request), it disarms the
device to prevent further interrupts. The ISR then schedules
the Event Service routine pointed to by the leaf (EVT entry)
for the device by placing the address of the leaf on the top of
the system queue with an ATL instruction. It is the
responsibility of the driver to insure that the ESR address
contained in the leaf is the proper address before adding

the leaf address to the system queue. The address in the
leaf is initially set by the SVC 1 Executor to the value
contained in the DCB (DCB.TERM). If the driver determines
that some other ESR should be scheduled, it modifies the

ESR address contained in the leaf by calling the Event
Service Handler routine EVMOD with the address of the new
ESR in Register 14 and the leaf address in Register 15.

If an ISR detects an error condition it sets the Status
field of the DCB to the appropriate value (see respective
driver program descriptions). If Auto Driver Channel
translation is employed, the translation subroutines are
ISRs. The ISR is responsible for setting up DCB.TOUT for
any I/O operation on the device that he wishes timed.

7.5 EVENT SERVICE ROUTINES

Event Service Routines are scheduled in the Event Service (ES)
state by the Task Manager, as a result of a System Queue
Service interrupt. All interrupts are enabled and the

user register set is used. On entry, the registers and PSW

of the task which initiated the I/O request are saved in

the Task Control Block, register 13 contains the address

of the DCB and register 15 contains the address of the leaf
corresponding to the device. ESRs can use registers 0 through
15 of the user register set.

ESRs perform post-processing on the I/O request being termi-
nated, such as calculating Length of Last Transfer, or

they process intermediate I/O events in the case where the
request requires more than one I/O sequence to complete

(e.g., a seek and then a Data Transfer is required to complete
a DISC read). If additional ISRs are required, the ESR may
modify the CCB to schedule a different ISR, or change the
address in the leaf to schedule a different ESR on completion
of the ISR. If further I/0 must be initiated, the ESR causes
an interrupt on the device and exits by branching to the
Event Service Handler routine EVRTE (return from Event).

If I/0 request is complete, the ESR exits to the Executive
Routine IODONE with DCB address in register 13 and leaf address
in register 15. The ESR is responsible for removing a DCB
from the Timer Chain, via a call to TOCHOFF.

This information is proprietary and is supplied by INTERDATA for the sole
RO l 4/-75 purpose of using and maintaining INTERDATA supplied equipment and shall 7 10
not be used for any other purpose unless specifically authorized in writing. -

7.6 DRIVER TIMEOUT

Each driver is responsible for putting a DCB on the

timeout chain, and for removing it. To put a DCB on

the chain, the initialization phase of the driver must call
TOCHON. To remove the DCB, the termination phase must

call TOCHOFF. When the DCB is added, the timeout constant
(DCB.TOUT) should be set to -1. The first ISR has the
responsibility for setting the timeout constant to the
appropriate value. A value of -1 means the DCB has timed
out, X'7FFF' means that the DCB is not to be timed out.

Any other value is considered to be an interval (in seconds)
after which the transfer is to be timed out.

7.7 HALT I/0 ROUTINE (TIMEOUT)

At certain times it is necessary to cancel I/0 requests that
have already been started, such as in cancel processing.
This is accomplished by a pseudo timeout facility in 0S/32 MT.
In order to halt I/O that is in progress, TIMEOUT is called
from IS state with the address of the leaf corresponding

to the device. TIMEOUT loads the DCB pointer from the leaf
and returns if the pointer is ZERO (as in the case of the
dummy leaf - see Section 5.7). If the DCB pointer is
non-zero, TIMEOUT checks the timeout constant in the DCB.

If it is zero or negative, an event service routine has
already been scheduled for this request and the routine
returns to the caller. If the timeout constant in the DCB
is positive, TIMEOUT checks the value of the last entry

in the system queue, since a power fail/restore sequence

may have interrupted a driver ISR in between adding the leaf
address to the system queue and setting the DCB timeout
constant to -1. If the address of the leaf ‘is not the

last entry in the system queue, TIMEOUT adds it to the top
of the queue, thus scheduling a termination routine for that
request.

This information is proprietary and is supplied by INTERDATA for the sole
RO 1 4/75 purpose of using and maintaining INTERDATA supplied equipment and shal! 7-11/7—12

not be used for any other purpose uniess specifically authorized in writing.

Lllnl LN O

SYSTEM FLOW EXAMPLES

8.1 SYSTEM START UP

Figure 8-1 illustrates system flow during Initialization of the
system, loading and starting a task. At location X'60' is a
branch to the first location of the SPT which contains a branch
to SYSINIT. SYSINIT initializes the ISP Table, the EVT, DCBs
and TCBs. The system TCB is placed on the ready chain. All
processing is performed with all interrupts disabled. The
Command Processor is branched to in ET state. The Command
Processor initializes all its internal flags and buffers and
uses SVC 1 to display the 0S ID on the system console. It

then issues a Write image SVC 1 to prompt with an * and issues
an SVC 1 Read and Wait to the system console. The system task
enters I/0 wait state, placing the Processor in a System Wait
state. When the load command is entered, the Teletype Driver
ESR is scheduled by the Task Manager, the I/0 is completed

and the Command Processor resumes processing after the SVC 1.
The Command Processor decodes the command and branches to the
Resident Loader. The Resident Loader calls TMRSAIN to enter
RSA state. It calls EVQCON to connect to the Loader leaf.

The Loader reads the LIB via issuing SVC 1 calls. It now

reads the task image into memory, calls TMRSAOUT to leave

RSA state and EVDIS to release the Loader leaf. Control is
returned to the Command Processor. SVC 1 is used to write

the prompt, followed by SVC 1 Read and Wait to the system
console. The system task enters I/O Wait state. The START
command causes the Task Manager to schedule the Teletype ESR,
the I/0 is completed and the Command Processor resumes execution
following the SVC 1. The command is decoded and the Command
Processor branches to the Executive Routine TMSTART with the
start address. TMSTART constructs a start PSW in the dispatch
PSW save area of the background TCB, calls TMCHN to put the TCB
on the ready chain behind the system task and returns to the
Command Processor. The Command Processor tests the background
TCB to see if it is dormant and since it is not, no prompt is
written to the console; an SVC 1 Read and Wait is issued thus
leaving the background task at top of ready chain. The Task
Manager dispatches the background task by loading the user
register set from the dispatch register save area in the TCB
and loading PSW from the TCB dispatch PSW save area.

8.2 I/0 REQUEST

Figure 8-2 illustrates system flow during an SVC 1 Write Image
and Wait Request to the Line Printer. The task issues an SVC 1

Write, Image and Wait. The First Level Interrupt llandler
decodes the SVC and passes control to the SVC 1 Processor.
SVC 1 checks the validity of the data in the parameter block
and enters RS state, saving the user registers and resume PSW
in the TCB. EVQCON is called to connect to the Line Printer
leaf. On return the information in the parameter block is

stored in the Line Printer DCB and SVC 1 branches to the DIR.

ROl 4/75 This information is proprietary and is supplied by INTERDATA for the sole 8_1
purpose of using and maintaining INTERDATA supplied equipment and shail
not be used for any other purpose unless specifically authorized in writing.

Current Task

Executive

External Event

None

SYSINIT

- init system tables

- put system TCB on
ready chain

Command Processor

- init Command Proces-
sor data structures

- SVC 1 Write 0S32MT

- SVC 1 Write *

— SVC 1 Read to consoley

None

Command Processor

- decode cmd

call Loader

SVC 1 Write *

SVC 1 Read to console

I

None

(Tgsk Manager

- unchain system TCB
- enter Wait state I/0

- complete I/0 - remove
I/0 Wait

- chain system TCB

\/

- Enter RSA state -

- connect to Loader leaf

- Read into load task

Task Manager

- unchain system TCB

- enter I/0 Wait state

'l
IODONE - Task Manager
- complete I/O -
remove I/0 Wait
—~ chain system TCB

\\’

Command Processor

- decode command

— check validity of
Start

branch to TMSTA?E/////

TMSTART

- set up specified TCB
dispatch PSW from
OPTIONS and Start
address

- chain specified TCB

User Task

Figure 8-1

«
SVC 1 Read to congg}sﬂ/ﬁggk Manager

- unchain system TCB
- set I/0 Wait in system

\,/ TCB

System Start Up

This information is prop

purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

rietary and is supplied by INTERDATA for the sole

4
IODONE - Task Manager S\

Start processor at
X'60!

LOAD .BG Command
N

START command
\,

RO1 4/75

Program Executive Driver Firmware
SvVC 1
(/0 &
Wait)‘// SVC 1 Processor
Enter RS state
EVQCON
connect to required
EVT entries
A
C SVC 1 Pprocessor
T Set I/0 wait pending Initialization
I Phase -
v prepare CCB, etc.
E Simulate Interrupt
Schedule ISR via
/ r"’x ISPTAB
ISR subroutine —/
I/0 instructions,
etc.
TMRSOUT Auto Driver Chan
put task in I/0 wWait 7
ISR subroutine
disarm interrupts
I add address of
/ Device leaf to SQ
o System Queue Service ~
save task environment
W
A Termination Phase
I (ESR)
T calculate Length

RO1

HHAOQ W wwnHo

NE:

4/75

IODONE
return status - remove
I/0 Wait

EVDIS
disconnect task from
EVT

EVRTE-TMRSNOUT)
return control to task

Figure 8-2

./

of Transfer

SVC 1 (I/O AND WAIT)

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

8-4

The Line Printer DIR sets up the CCB with the proper CCW,
subroutine address and buffer information and then SINTs the
device. The microcode transfers control in IS state to the
ISR routine pointed to by the CCB. The ISR sets the timeout
constant, checks the device status and enables interrupts on
the device. It picks up the first character in the buffer
and writes it to the device and returns control to the DIR
following the SINT. The DIR exits to the Task Manager which
puts the task into I/O wait by setting the I/O Wait bit,
unchaining the TCB and moving the user registers and resume
PSW from the RS save area to the dispatch save area of the
user TCB. The Auto Driver Channel completes the transfer

and passes control to the ISR on buffer empty. The ISR
disarms interrupts on the printer and adds the address of

the Line Printer leaf to the system queue. The ISR exits by
loading the PSW in registers 0 and 1 of register set 0. This
PSW is the system wait PSW since no task was active. The
Queue Service enable bit is set, so the microcode causes a
Queue Service interrupt, passing control to SQS. SQS removes
the address of the printer leaf from the system queue, gqueues
the user task to the top of the EVT by calling EVPROP and branches
to EVTDISP. EVTDISP saves the user task environment by moving
the dispatch save area to the ES save area in the user TCB,
chains the user TCB and schedules the ESR pointed to by the
leaf. The ESR calculates length of transfer, stores it in
the DCB and exits to IODONE. IODONE moves the status and
length of transfer to the SVC 1 parameter block, disconnects
from the leaf by calling EVDIS, resets the I/0 wait bit in
the TCB and exits to EVRTE to return from the event. EVRTE
finds no queued events and exits to TMRSNOUT which returns
control to the user task by loading the user registers and
resume PSW from the TCB ES save area.

8.3 LOG MESSAGE

Figure 8-3 illustrates system flow during a log message request.
The background task issues an SVC 2 code 7. The SVC First Level
Interrupt Handler decodes the SVC and passes control to the

SVC 2 Second Level Interrupt Handler. SVC 2 SLIH enters the

SVC 2 code 7 Executor (SVC2.7) via TMRSIN. SVC2.7 checks

the options and calls EVQCON to connect to the EVT leaf for

the dummy device. On return SVC2.7 moves the text to an
internal buffer, sets up the DCB for the dummy device to

point to the internal buffer and branches to the dummy driver.
The dummy driver sets the message pending flag in the Command
Processor, times out the Read outstanding to the system console
by storing a carriage return in the command buffer and
scheduling the Teletype ESR. This causes the system task to

be scheduled, suspending the background task inside the dummy driver.
The Command Processor finds the command buffer empty and
message pending set. The data in the DCB for the dummy device

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall 4 75
not be used for any other purpose unless specifically authorized in writing. ROl /

Background Task 0S

svC 2,7 \/)FLIH
log message - decode SVC
- get TCB address
- branch to SVC 2 FLIH

SVC 2
- decode SVC 2 code
- enter Executor via TMRSIN

svc2.7

- check validity & options ’
branch EVQCON
- connect to

dummy leaf
u‘,—_, ———~_‘~_\\\~"3 return

- move message to system

buffer
- set up dummy DCB
- branch\\-———_“ﬂd—_‘,,/"’/’gigmy driver
- set message
pending
- time out console
read

- put CR in command
buffer
IODONE - Task Manager

- Remove I/O wait from
system task
- Chain system TCB

y‘,,-——__‘~\\\\\:—5uspend background task
Command Processor

- test message
pending

- prepare SVC 1
parm blk from

SVCl - Console Driver - Task
Manager

dummy DCB - set I/0 Wait in system task
- 8SVC 1 write & - unchain system TCB
wait - restore background task registers

- LPSW
Background Task

I/0 Complete

JODONE - Task Manager
- Remove I/0 Wait from system

task
- chain system TCB
Command Processor - suspend background task
- Clear message
pending

- SVC 1 write
- SVC 1 Read & 33i3’4/af
SVC 1 - Console Driver - Task

Manager
- set I/0 Wait in system task
- unchain system TCB
- restore background task register
- LPSW — —— . -
This information is proprietary and is supplied by INTERDATA for the sole

BaCkground TaSk purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authofzed in writing.

RO1 4/75 Figure 8-3 Log Message Request 8-5

8-6

is used to prepare a parameter block for the SVC 1 Write and “ait
to the system log. The Task Manager puts the system task

into I/O wait thus making the background task top of ready chain.
The background task is dispatched at the exit from the dummy driver.
The dummy driver exits to TMRSOUT which returns control to

the user task following the SVC 2 code 7. When the message
completes, the Teletype ESR is scheduled for the system task,
suspending the background task. The Command Processor clears
message pending flag and issues an SVC 1 Read and Wait to

the system console. The Task Manager puts the system task

into I/0 Wait and returns control to the backbround task.

8.4 READ REQUEST TO CHAIN FILE

Figure 8-4 illustrates system flow during an SVC 1 Read
request to a Chain File. On execution of the SVC 1, the
First Level Interrupt Handler passes control to SVC1.

SVC1l checks the validity of the request and since the LU
entry points to a Chain File FCB, SVCl does not attempt to
perform a connection since the leaf field in the FCB contains
zeroes. SVC1l enters RSA state since the request is to an

FCB with the buffered access method flag set. Entry to the
File Manager is made at CHAIN. CHAIN resets I/0 wait pending
in the task, determines that it is a read request and calls
GETCHL. GETCHL moves the data from the current FCB buffer

to the user task buffer. When the data in the current buffer
is exhausted, GETCHL calls GETCHPR to refill the buffer.
GETCHPR issues an SVC 1 read and proceed call for the next
sector in the File to be read into the just exhausted buffer.
This causes the SVC 1 Processor to enter RS state, connect

to the disc leaf and branch to the Disc Driver. The Disc
Driver initiates the read and exits wvia TMRSOUT. Since
CHAIN reset I/O wait pending, TMRSOUT returns control to the
File Manager in RSA state following the SVC 1 request.
GETCHPR returns to GETCHL which completes the data move

from the other buffer (now current). On completion, the
File Manager exits via TMRSAOUT which returns control to

the user task following the SVC 1 read and wait.

This information is proprietary and is supplied by INTERDATA for the sole RO:L 4/75
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

User Task

svC 1
Read & Wait
to chain file

T

e

EXEC-Drivers

File Manager

C 1 processor
- check parameters //E%AIN
- find read operation
- reset I/0 Wait

- enter RSA state
- enter File Manag%E//ﬁ

SVC 1 Processor
- check parameters
- enter RS state
- connect to Disc leaf
- enter Disc Driver

TMRSOUT
- return to RSA state

/
k/’“—‘-‘-_________,/’

TMRSAOUT
- return to task

pending

GETCHL

- move data from

FCB buffer to
user buffer

GETCHPR
- Request move

Proceed
- exit

GETCHL

- complete data
movement to
user buffer

- exit to Task
Manager

Figure 8-4 Example Of Read Request To Chain File

This information is proprietary and is supplied by INTERDATA for the sole
RO1 4/75

purpose of using and maintaining INTERDATA supplied equipment and shal:
not be used for any other purpose unless specifically authorized in writing.

data from Disc
via SVC 1 Read &

8—?//8-8

CHAPTER 9

EXECUTIVE TASKS AND SYSTEM EXTENSIONS

9.1 INTRODUCTION

There are several ways of extending or modifying the capa-
bilities of 0S/32 MT. This chapter discusses the features
designed into 0S/32 MT to facilitate such extensions. The

user may wish to incorporate the modification directly into

the system by modifying one or more system modules or by adding
a system module. For example, the user may support a non-
standard peripheral device by writing a driver. On the other

hand, the user may wish to support infrequently used extensions to

the system by writing an Executive Task (E-Task) which may be
loaded and executed on demand.

9.2 EXECUTIVE TASKS

An Executive Task (E-Task) is written as a user task and
executed in ET state by specifying OPTIONS ET when TETing

the task. E-Tasks execute in a hardware and software privileged
mode. All machine instructions are allowed and these additional

capabilities are provided:

- All addresses are valid in SVC calls

- A disc device (rather than a file on the disc) may be
assigned to the E-Task

- SVC 2 code 0 (Journal Entry) is valid

- REPROTECT (SVC 7) for a key of X'FF' and to non-bulk
device is valid

- RENAME (SVC 7) for a key of X'FF' and to non-bulk
device is valid

As a direct result of these added capabilities, E-Tasks must
be designed and coded with extreme caution to prevent crashing
the system. E-Tasks may not execute in halfword mode.

The Operating System assumes E-Tasks are debugged tasks, and
hence make no mistakes.

Access to system tables and control information is provided
through the System Pointer Table (SPT). The address of the
SPT is contained in the halfword at location X'62' in low
memory. E-Tasks may use all SVCs. An example of a function
which might require an E-Task is a Disc Utility program. The
0S/32 MT Command Processor executes as an E-Task.

Special care must be taken when writing an E-Task. Since the
task can be loaded into any partition, and furthermore, since
it is run without the MAC enabled, the E-Task must be coded as
completely position independent. This means that the E-Task
must:

This information is proprietary and is supplied by INTERDATA for the sole
ROl 4/7 5 purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

1. Contain no RX3 instructions, other than immediate
constant references.

2. May not assemble into any of his SVC parameter
blocks: an address i.e.,

sVC 7 BLK DB X'80',7
DAC address

since addresses will not be relocated.

3. E-tasks cannot reference the Task Common or
RTL in a manner which would use TET to resolve
references. Addressing E0000 will probably
give erroneous data or memory parity error.

In order to find out where an E-Task has been loaded, it
should perform the following instruction

LABEL LA BASE,LABEL
at the beginning or at some known offset in the task.

The E-Task, then knowing where it is loaded, should dynamically
set up its parameter blocks. For instance,

BASE LA U4,BASE
LA UE , BUFSTART-BASE (U4)
LA UF , BUFEND-BASE (U4)
LA U3,SVC1BLK-BASE (U4)
STM UE,SVC1.SAD(U3)
svC 1,0 (REG3)

If no label references are made, that range further than 16KB,
the CAL NORX3 option X can be used. In this case you can
assemble in references, and CAL will turn references to these
labels into RX2 (relative addressing) instructions.

9.3 SYSTEM EXTENSIONS

0S/32 MT may be extended or modified by incorporating changes
into the source of one or more system modules or adding a
system module and using the Configuration Utility Program (CUP)
MODULE statement to include the modified or new module in the
system (refer to the 0S/32 MT Program Configuration Manual,
Publication Number 29-389). All system data structures

should be referenced by copying the STRUC defining the data
structure from the Parameters and Control Block Module at
assembly time and using these field definitions in all instr-
uctions referencing the structure.

9.4 PATCHING

In making modifications to 0S/32 MT, debugging usually entails
making patches to new or existing code to avoid reassembling
every time a bug is found. In order to insert a patch in
0S/32 MT:

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall ROl 4/75
not be used for any other purpose unless specifically authorized in writing.

RO1

4/75

Locate the address of SPT.UBOT in the map of the
system produced by the 0S/32 Library Loader.

Use the MODIFY command to increase the value of
UBOT by an amount sufficient to contain the patch.

Use the MODIFY command to insert the patch starting
at the old value of UBOT.

Use the MODIFY command or the console panel to
insert a branch to the patch area.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose uniess specifically authorized in writing.

9-3/9-4

CHAPTER 10

JOURNAL AND CRASH CODES

10.1 CRASH CODES

After a system crash, register 5 of register set 0 contains

a pointer to the System Journal and register 6 contains a
pointer to the most recent entry to the journal. The following
is a list of crash codes, their meanings and in some cases
additional information concerning the cause of the crash.

(Ex denotes register X of the Executive register set (set 0);
Ux denotes register X of User register set, Rx denotes register

X of register set in use at time of crash).

TABLE 10-1 CRASH CODES (Sheet 1 of 3)

CRASH CODE (HEX) DESCRIPTION

1 Console Device Mnemonic not found in DMT

2 Unrecoverable error on system console

4 Not enough space in system for preSYSGENed TCOM
and SYS to be allocated.

7 Invalid VMT during MARK processing
10 Invalid file descriptor during MARK processing
100 Arithmetic fault not in UT/ET state

E9 contains address of current TCB.
EE-EF contain PSW at time of fault.

101 Arithmetic fault not in user task. E9 contains
current TCB ID, EE-EF contain PSW at time of
v fault.
102 Illegal instruction, illegal SVC or illegal

address passed in SVC not in user task. E9
contains current TCB ID, ED contains pointer
to 4 bytes before pointer to message, EE-EF
contain PSW at time of fault.

Contents of Executive registers are stored over
the code starting at the first fullword
following the crash code.

103 Illegal instruction, illegal SVC or illegal
address passed in SVC-user task not in UT/ET
state. E9 contains address of user TCB, ED-EF
same as for 102.

104 Memory parity error during Auto Driver Channel
operation.

105%* Attempt to pause system task.

106 Illegal SVC or illegal address passed in SVC

with PSW not pointing after an SVC 1 instruction.
EE-EF contain PSW at time of interrupt.

107* Attempt to remove illegal TCB from ready chain.
R9-TCB ID, R8-return address.
L 108%* Attempt to remove a wait condition from or chain

an illegal TCB ID. R8-return address, R9-TCB ID.

This information is proprietary and is supplied by INTERDATA for th: sole
ROl 4/75 purpose of using and maintaining INTERDATA supplied equipment and shall 10_1
not be used for any other purpose unless specifically authorized in writing.

LADLE LU—L UkADMD LULLD \dIleer <& OL J3)

CRASH CODE DESCRIPTION

109* Attempt to dispatch illegal TCB ID from top of
ready chain. E9-TCB ID.

10A* Attempt to dispatch ESR for illegal TCB ID.
E9-TCB ID; EA-ES priority, EF-leaf address.

110%* Attempt to start illegal TCB ID. U9-TCB ID,
UF-start location.

111%* Attempt to remove illegal wait bits from TCB.
R8-return address, R9-TCB address, RD-wait bits.

112* Attempt to put illegal TCB into RS state.
E9-TCB ID; EA-EB-return PSW.

113* Attempt to take illegal TCB out of RS state.
U9-TCB 1ID.

115%* Attempt to suspend illegal TCB. E8-return
address; E9-TCB ID.

118 TCB has ready chain bit set but is not on
ready chain. E8-return address, E9-TCB ID.

119 Memory fault interrupt-hardware error. EE-EF-
PSW at time of fault.

120%* Invalid size request to GETSYS. 03 = size.

132 Illegal SVC executed from within system code.
UF contains SVC address.

142 Memory fault in SVC executed from within
system code, i.e., buffer not on fullword
boundary.

152 Parity error within system code. Locations
X'20' - X'26' contain the PSW of the time
of the parity error.

162 Crash handler entered from other than
a SINT 0; e.g., false SYNC.

180 Clock ESR scheduled, but no flags set.

181* - Clock ESR scheduled, with PIC service flag
set, but SPT.IQHD = 0.

182* - Clock ESR scheduled, with LFC service flag
set, but SPT.TQHD = 0.

183* Clock ESR in removing a wait, caused someone
other than the system task to become the
current task.

200* System Queue Service interrupt-hardware error.
EE-EF-PSW at time of fault.

201~* Invalid leaf address on system queue. ED-
leaf address.

202% Event for unconnected leaf. ED-leaf address.

205%* Attempt to disconnect or release leaf not
connected to current task. U8-return address,
U9-connected TCB ID; UF-leaf address.

206%* Release level 2 or greater than connection
level for leaf.

Same as for 205 with UE-release level.

207* Attempt to connect to invalid leaf address.
U8~return address; UD-DCB/FCB pointer, UF-
leaf address.

208%* Attempt to modify a leaf not connected to current
task. U8-return address, UE-new ESR address;
UF-leaf address.

This information is proprietary and is supplied by INTERDATA for the sole
10_2 purpose of using and maintaining INTERDATA supplied equipment and shall ROl 4/75
not be used for any other purpose unless specifically authorized in writing

TABLE 10-1 CRASH CODES (Sheet 3 of 3)

CRASH CODE

DESCRIPTION

20A*
210
211

212%*

213

307
308
30A
30B
30C
30D
30E
30F

Leaf queued to system node with no task queued
to leaf. EB-leaf address.

Entry to EVRTE not in ES state. U9-TCB ID;
E0O-E1-PSW at entry to EVRTE.

Task event count non-zero but all leaf occurrence
counts ZERO. U9-TCB address.

Leaf being disconnected has occurrence count
greater than TCB event count. U8-return address;
U9-TCB address; UF-leaf address.

Attempt to delete a DCB from the driver timeout
chain when it is not on the chain.

Request for FCB of invalid size

Attempt to release FCB with FBOT=MTOP

FCB not found during release attempt

Invalid DCB link field during release FCB
Invalid FCB chain found during release FCB

Bit map or directory leaf added to system queue
Invalid save attributes

Attempt to close invalid file type

* denotes crash check present only if SGN.SAFE = 1

RO1

4/75

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

10-3

10.2 JOURNAL CODES
TABLE 10-2 JOURNAL CODES (Sheet 1 of 3)
CODE DESCRIPTION AND REGISTER CONTENTS

6x Execution of SVC x. (FLIH)
: 12 - First word of SVC parameter block (if any)
13 - Address of parameter block
14 - SVC o0ld PSW status
15 - SVC old PSW location (updated)

71 Task dispatched from suspended state or from NS
state (TMRDISP)

12 - n.i.

13 - n.i.

14 - Status portion of PSW to be loaded

15 - Location counter of PSW to be loaded

72 Task exit from RS state. (TMRSOUT)
12 -~ address of TCB RS save area
13 - n.i.
14 - n.i. (if 15=0); status portion of exit
PSW (15#0)

15 - 0 means load PSW in TCB.RPSW; location
of exit PSW if non-zero

73 Task entered ES state (TMRSNIN)
12 - n.i.
13 - DCB address
14 - n.i.

15 - leaf address

74 Task exit from ES state (TMRSNOUT)
12 - address of TCB ES save area
13 - n.i.
14 - n.i.
15 - 0
75 Task exit from RSA state (TMRSAOUT)
12 -~ address of alternate save area
13 - n.i.
14 - n.i. (15=0); status portion of exit PSW
(15#0)

15 - 0 means load PSW from save area; location
of exit PSW if non-zero

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
104 not be used for any other purpose unless specifically authorized in writing. RO1 4/7 5

TABLE 10-2 JOURNAL CODES (Sheet 2 of 3)

RO1 4/75

CODE DESCRIPTION AND REGISTER CONTENTS B
76 Task entered RS state (TMRSIN)
12 - address of RS save area
13 - n.i.
14 - status portion of resume PSW
15 - location counter of resume PSW
77 Task entered RSA state (TMRSAIN)
12 - address of alternate save area
13 - n.i.
14 - status portion of resume PSW
15 - location counter of resume PSW
80%* Remove wait or Chain call (TMREMW)
12 - n.i.
13 - wait bits if Remove wait call; n.i. if
chain call
14 - n.i.
15 - n.i.
91%* Illegal Instruction Interrupt (IIH)
12 - n.i.
13 - n.i.
14 - status portion of PSW at time of interrupt
15 - location counter of PSW at time of interrupt
92% Arithmetic Fault Interrupt (AFH)
12 - n.i. :
13 - n.i.
14 - status portion of PSW at time of interrupt
15 - location counter of PSW at time of interrupt
94 System Queue Service Interrupt (SQS)
12 - n.i.
13 - leaf address
14 - status portion of old PSW
15 - location counter of old PSW
95% Connect to Leaf (EVQCON)
12 - 0 means QCON call; -1 means CON call
13 - DCB address
14 - ESR address
15 - leaf address

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall

not be used for any other purpose unless specifically authorized in writing. 10-5

TABLE 10-2 JOURNAL CODES (Sheet 3 of 3)

CODE DESCRIPTION AND REGISTER CONTENTS
96 Disconnect from Leaf (EVDIS)

12 - n.i.
13 - DCB address
14 - n.i.
15 - leaf address

8001 Command Processor Command decoded (COMMANDR)
12
13
14 - Index of Command in command table
15

8002 Command Processor Dummy Driver Call (COMMANDR)
12 - n.i.
13 - n.i.
14 - n.i.
15 - n.i.

Bxxx User Journal Code (SVC 2 code 0)

* denotes journal code present only if SGN.SAFE = 1

n.i. means register contains no information or
information meaningful only in context.

This information is proprietary and is supplied by INTERDATA for the sole

1@_6 purpose of using and maintaining INTERDATA supplied equipment and shall RO l 4/75
not be used for any other purpose unless specifically authorized in writing.

CHAPTER 11

DATA STRUCTURES

11.1 INTRODUCTION

This chapter presents the formats of System Control Blocks
and table entry. Each field is identified by its name and
a descriptive title. All Control Blocks and table entries
are referenced in 0S/32 MT by copying the CAL STRUC of the
same name from the 0S/32 MT Parameters and Control Block
module. The full field identifier is of the form:

BBB.FFFF
where BBB is the Control Block name and FFFF is the field
name. Most fields are self explanatory; those which are not
are explained following the figure for that Control Block.
Offsets are given in the form:

DD (HH)
where DD is the offset in decimal and HH is the offset in

hexadecimal.

11.2 CHANNEL CONTROL BLOCK (CCB)

0(0) CCW 2(2) LBO
channel Command Word Length of Buffer 0
4(4) EBO
End Address of Buffer 0
8(8) Cw 10(a) LBl
Check Word Length of Buffer 1
12 (C) EB1
End Address of Buffer 1
16 (10) XLT
Address of Translation Table
20(14) SUBA 22 (1l6) MISC 23(17) FLGS
Address of Subroutine Miscellaneous Flags
24 (18) DCB

Address of DCB

Figure 11-1 Channel Control Block (CCB)

This information is proprietary and is supplied by INTERDATA for the sole
RO l 4/7 5 purpose of using and maintaining INTERDATA supplied equipment and shall 11—1
not be used for any other purpose unless specifically authorized in writing.

- Channel Command Word (CCW)

Bit

9-11
12

13

14

15

Flag Name

CCWSTAT

CCWEX

CCBB1

CCBWR

CCBTL

CCWFST

Meaning

This byte is AND'd with device status;
if result is non-zero, control is
passed to CCB subroutine.

Execute bit. If set Auto Driver
performs operation specified by CCW;
if reset, control is passed to CCB
subroutine.

Reserved.

Buffer bit. If reset buffer 0 in
use; 1f set buffer 1 in use (unless
bit 15 also set).

Read/Write bit. Reset means read;
set means write.

Translate bit. If set translation
is performed using translation table
pointed to by CCB.XLT.

Fast Bit. Set indicates fast mode -
no translation, buffer 0, no buffer
switch, no redundancy checking.

- Miscellaneous and Flags (MISC and FLGS)

These fields are used by drivers to pass and maintain information

controlling the request from DIR to ISRs and ESRs. Sometimes
referenced as a halfword field, sometimes as two byte fields.

11-2

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing

RO1

4/75

11. 3 DEVICE CONTROL BLOCK (DCB)

0(0) DMT
Address of DMT entry
4(4) LEAF
Address of Leaf
8(8) INIT
Address of Driver Data Xfer Entry
12 (C) FUNC
Address of Driver Cmd Function Entry
16 (10) TERM
Address of Driver Termination Routine
20(14) WCNT 22(16) RCNT
Write count Read Count
24 (18) ATRB 26 (1A) RECL
Attributes of Device Record Length
28 (1C) TOUT 30(1E) RTRY
Time Out Constant Retry Count
32(20) FLGS 34(22)
Flags Halfword Reserved
36(24) STAT 37(25) DCOD 38(26) WKEY 39(27) RKEY
I/0 Status Device Code Write Key Read Key
40(28) PBLK
Relocated SVC 1 pParameter Block Address
44 (2C) FC 45(20) LU 46 (2E) DN
Function Code Iogical Unit Device Number
48 (30) SADR
Relocated SVC 1 Start Address
52(34) EADR
Relocated SVC 1 End Address
56 (38) RAND
SVC 1 Random Address
60(3C) LLXF
Length of Last Transfer
64 (40) TOCH
Time-Out Chain
68 (44) UPBK

Unrelocated Parameter Block Address

Figure 11-2 Device Control Block (DCB)

The DCB is used by the I/0O subsystem to identify characteristics

of each Device configured in the system and to serve as a work
space for Drivers during an I/0 request. DCBs are pointed to

by the Device Menmonic Table (DMT) entry for the device represented.
DCBs are included in the system by the Configuration Utility
Program (CUP) at object SYSGEN time.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

RO1 4/75

11-3

- Attributes (ATRB)

This field is used at assign and SVC 1 time to check the
validity of the request.

Bit

oAU WNHO

Meaning

reserved
supports
supports
supports
supports
suppcrts
supports
supports
reserved
supports
supports
supports
supports
supports
supports
supports

read

write

binary formatted records
wait I/0

random requests
unconditional proceed
image

rewind

backspace record

forward space record
write file mark
forward space file mark
backspace file mark
device dependent command

- Time out constant (TOUT)

This field is used to control device time out and halt I/O

functions.

Value

X'001'-X'7FFF'

X'0000'

X'FFFF'

Meaning

- Flags (FLGS)

Bit

0
1

2

11-4

Flag Name

DFLG.BLM/B
DFLG.LNM/B

DFLG.DRM/B

DFLG.MPM/B

Device active for request
Device has been timed out (I/0 halted)

ESR has been scheduled for this request

Meaning

Bulk device flags

On-line flag. Set indicates device
online.

Directory presence flag. Set indicates
valid directory record in memory for
this device. Bulk device flag must
also be set.

Bit Map presence bit. Set indicates
valid bit map record in memory for
this device. Bulk device flag must
also be set.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

RO1 4/75

Bit Flag Name Meaning

4 DFLG.PFM/B Set indicates moving head Disc Driver
should check record for pseudo file
mark.

5 DFLG.BMM/B Bit Map modify bit. Set indicates
Bit Map record in memory has been
modified and must be rewritten to
disc. Bulk device flag must also be
set.

6 DFLG.CNM/B Console bit. Device is a console
device.

7 DFLG.UCM/B Uncancellable flag. Device not to be
halted on cancel.

8 DFLG.S6B SVC 6 Connectable Bit. Indicates that
this device is useable only through
SVC 6 ISA calls.

9 DFLG.WPB Write-protect bit. Indicates this device

~ Device Code (DCB)

This field is used to identify the particular device.
must be greater than X'0OF'.

null device.

is write protected.

Value

A value of X'FF' indicates the

11.4 DIRECTORY ENTRY (DIR)

0(0) FNM

File Name
8(8) EXT 11(B) VERS
Extension Version
12(C) FLBA
First Logical Block Address
16 (10) LLBA
Last Logical Block Address
20(14) WKEY 21(15) RKEY 22(16) LRCL
Write Key Read Key Logical Record Length
24 (18) DATE
Creation Date/Time
28 (1C) LUSE
Last Used Date/Time
32(20) WCNT 32(22) RCNT
Write Count Read Count
36{(24) ATRB 32(25) BKSZ 38(26) FLRO
Attributes Blocksize First Logical Record Offset
40(28) CSEC
Current Sector/# of Logical Records

ROl 4/75

Figure 11-3 Directory Entry (DIR)

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

11-5

Each directory record contains up to five directory
entries. Version (VERS), Creation date (DATE), date
last used (LUSE), are unused in 0S5/32 MT.

- Current Sector/# of Logical Records (CSEC)
This field contains a pointer to the current relative sector

for a contiguous file; number of logical records in a chain
file.

11.5 DEVICE MNEMONIC TABLE (DMT)

0(0) DM
Device Mnemonic
4(4) DCB
Address of DCB

Figure 11-4 Device Mnemonic Table (DMT)

The DMT consists of 1 entry for each device configured in
the system. The table is terminated by a doubleword of
zeroes. The DMT is pointed to by the SPT. There is no
structure for the DMT.

11.6 EVT LEAF (EVL)

0(0) CORD

coordination-address of parent
4(4) CPRI 5(5) FLGS 6(6) QPRI 7(7) QTCB
connection flag byte highest queued lst TCB ID

| priority priority in queue
8(8) DSCN 10(A) OCNT
descendent number occurrence count
12 (C) PREV
previous leaf in connected chain

16 (10) NEXT

next leaf in connected chain
20(14) DCB

connected DCB
24 (18) ESR
entry point of ESR

2B(1C) CLEV 29 (1D) TSIz 31(1E) CTCB
connection tree size reserved connected TCB
level

Figure 11-5 EVT Leaf (EVL)

This information is proprietary and is supplied by INTERDATA for the sole

11_.6 purpose of using and maintaining INTERDATA supplied aquipment and shall Rol 4/75
’ not be used for any other purpose uniess specifically authorized in writing.

- Flags (FLG)

Bit Offsets are from the halfword boundary - EVL.CPRI.

Bit Flag Name Meaning
8 EVF.LEFM/B Leaf bit. EVT entry is a leaf.
9 EVF.ASSM/B Assert bit. Task is asserting
reconnection to upper nodes of
leaf.
10 EVF.PENM/B Pending flag. Leaf has evented.
11 EVF.DUMM/B Non-eventing flag. This leaf doesn't

represent a physical device, thus it
should never appear on the system
queue.

- Tree Size (TSIZ)

This is the number of entries in the path up to the system
node including the leaf. For example, TSIZ = 1 for a TTY
leaf; TSIZ = 3 for a disc leaf (disc leaf, disc controller
node, selch node). When connection level (CLEV) = tree size
(TSIZ) the task is connected to all required entries for this
path. EVL is contained in the STRUC named EVT.

11.7 EVT NODE (EVN)

0(0) CORD
coordination-address of parent
4(4) CPRI | 5(5) FLAGS 6(6) QPRI 7(7) QDSC
connect | flag byte high queued high queued
priority i priority dsc
8(8) DSCN 10(A) NDSC
descendant number number of descendants
12 (C) LEAF
address of connected leaf
i 16 (10) DPRI DPTR
I descendant descendant address (1 for each desc)
{ priority

-

Figure 1l1-6 EVT Node (EVN)

The bit definitions of the flags field (EVN.FLGS) is identical
to those for the EVT leaf (EVL). The leaf bit (bit 8) or the
pending bit (bit 10) should never be set in a node. The
length of a node is variable since the descendant pointer list
occupies 4 bytes for each direct descend nt.

RO1 4/75

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

11-7

11-8

11.8 FILE CONTROL BLOCK (FCB)

0(0) VMT
address of VMT entry
4(4) LEAF
address of leaf
8(8) INIT
address of driver data xfer entry
12 (C) FUNC
address of driver cmd-function entry
16 (10) TERM
address of driver term entry
20(14) WCNT RCNT
write count read count
24(18) ATRB RECL
attributes of file record length
28(1C) OFF 29 (1D) BKSZ 30 (1E)
directory file block reserved
offset size
32(20) FLGS 34(22)
flag halfword reserved
36(24) STAT 37(25) DCOD 38(26) WKEY 39(27) RKEY
DCB I/0 device code write key read key
status
40(28) PBLK
relocated SVC 1 parameter block address
44 (2C) FC 45(2D) LU 46 (2E) PA
function code logical unit physical address
48(30) SADR
relocated SVC 1 start address
52(34) EADR
relocated SVC 1 end address
56 (38) RAND
SVC 1 random address
60 (3C) LLXF
length of last transfer
64 (40) DS 8
reserved for DCB compatibility
72(48) NAME

file name

80(50) EXT 83(53) VERS
file extension reserved
84 (54) DIR
address of directory block
88(58) DCB

address of DCB

Figure 11-7 File Control Block (FCB)

This information is proprietary and is supplied by INTERDATA for the sole

not be used for any other purpose unless specifically authorized in writing.

purpose of using and maintaining INTERDATA supplied equipment and shall RO]_ 4/7 5

90 (5C)

FLBA
first logical block address

96 (50)

LLBA
last logical block address

100(64)

CSEC
current sector logical block address

104 (68)

RPSW

PSW save area

112 (70)

RGPR

general
register
save area

176 (BO)

ASP
pointer to next RSA save area

RO1

4/75

Figure 11-7 File Control Block (FCB)

(Continued)

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

11-9

11-10

180 (B4)
BAPB

parameter block of buffer A

200 (C8) FCB
FCB Linkage Field
204 (CC) SLU
saved LU entry
208 (D0) BAPT

buffer for contiguous files/buffer A parm block
ptr. for chained files

212 (D4) BBPT
address of buffer B parm block
216 (D8) FCB.RSAS
save area
228 (E4) PBUF
previous buffer
232 (ES8) NBLK
number blocks in file
236 (EC) ’ CBLK
current block number
240 (FO) NLR
number logical records in file
244 (F4) CLRL
current logical record number
248 (F8) COFF 250 (FA) 219 (FB) CBUF
offset of current blk reserved current buffer
252 (FC) BBPB
parameter block of buffer B
Figure 11-7 File Control Block (FCB)
(Continued)
This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall ROl
not be used for any other purpose unless specifically authorized in writing.

4/75

272 (110) BUFA

BUFB

Chained Files

Buffers

Figure 11-7 File Control Block (FCB)

(Continued)

This information is proprietary and s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall -
ROl 4/75 not be used for any other purpose uniess specifically authorized in writing. 11 11

The first portion of the FCB is defined as the DCB with the
exception of a VMT pointer instead of a DMT pointer and
different flag definitions. The value of the device code
identifies this control block as an FCB rather than a DCB.

- Flags (FLGS)

Bit Flag Name Meaning

0 FFLG.BAM/B Buffered access method flag. Set
indicates a buffered access file.

1 FFLG.USM/B Set implies FCB in use.

2 FFLG.OPM/B Operation flag. Set implies write.

3 FFLG.ABM/B Active buffer bit. Set implies
buffer active (chain files only)

4 FFLG.BMM/B Current buffer flag (chain files only)

5 FFLG.MOM/B Mode flag. Set indicates random
(chain files only)

6 FFLG.DIM/B Direction flag. Set implies left

(chain files only)
- Device Code (DCOD)
Device code must be X'00' (Contiguous File) or X'0l' (Chain

File).

11.9 INITIAL VALUE TABLE (IVT)

0(0) CSL
Console Device Mnemonic

4(4) MXBX
1 byte = .BG MAXPRI other 3 = .bg Maximum
System Space

8(8) . TCMS
Intertask Common Size

12(C) .SYSS
Initial Size of System Space

16 (10) PART
Initial Size of Part 1

20(14) Initial Size of Part 2

IVT is pointed to by SPT.IVT

Figure 11-8 1Initial Value Table (IVT)

This information is proprietary and is supplied by INTERDATA for the sole
11—12 purpose of using and maintaining INTERDATA supplied equipment and shall RO]. 4/75
not be used for any other purpose unless specmcaﬂv authorized in writing.

11.10 SYSTEM POINTER TABLE (SPT)

0(0) INIT
branch to SYSINIT
6(6) CRSH
system crash code
8(8) FLV
address of first leaf
12 (C) LLV
address of last leaf
16(10) MLBL 18(12) CTSP
message log buffer length ctop expand gquantity
20(14) CSLV
number of CSS levels
24(18) CSBF
size of CSS buffer + 2
28 (1C) CHBK 30(1E) ISPT
maximum chain file block size Top of ISP + MAC
32(20) CTOP
top of TQE's - 2
36 (24) UTOP
lst byte in system space
40(28) UBOT
lst byte above 0S/32 MT
44(2C) FBOT
lower bound of FCB's
48 (30) MTOP
lst byte above configured memory
52(34) 0SID
system ID = OS32MT RR RR = release level
60 (3C) IVT
address of initial value table
64 (40) TTAB
address of TCB table
68(44) CTCB 69 (45) NTCB 70 (46) SPT.60
current TCB ID max TCB ID + 1 timer constant
72 (48) DMT
address of DMT
76 (4C) VMT

address of VMT

Figure 11-9 System Pointer Table (SPT)

This information is proprietary and is supplied by INTERDATA for the sole
RO 1 4/7 5 purpose of using and maintaining INTERDATA supplied equipment and shali 11-13
not be used for any other purpose unless specifically authorized in writing.

80 (50) SVOL
name of default volume
84 (54) SNOD
address of system node
88(58) JRNL
address of system journal
92 (5C) FREQ 94 (5E) PIC
line frequency #2 address of PIC
96 (60) LFC 98(62)
address of line freg. clock reserved
100(64) SOPT
system options
- 104 (68) MNTH 108 (6A) DAY
month day
- 110 (6C) YEAR 112 (6E)
~year reserved
114(70) TIME
time in seconds since midnight
118(74) DTHD
: address of head of device timeout queue
122(78) TQHD
address of head of time of day gueue
126 (7C) IQHD
f address of head of interval queue
130(80) RTLS
RTL segment register
134 (84) TCMS
Task Common segment register
138(88) RTLN
RTL name
150(94) TCMN
Task Common name
162 (A0) PSvV
Task Manager PSW save
170(A8) RSV
Task Manager register save
174 (AC) TSV
Task Manager TCB address save
178 (B0O) AFSV
Task Manager Save Area REG A-F

11-14

Figure 11-9 System Pointer Table (SPT)

(Continued)

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall RO 1
not be used for any other purpose unless specifically authorized in writing.

4/75

11.11 TASK CONTROL BLOCK

0(0) ID 1(1) PRI 2(2) DPRI 3(3) NLU
TCB ID # TCB PRIORITY DISPATCH PRIO. # LOGICAL UNIT
4(4) MPRI 5(5) NPRI
max. prio. # non-evnt lvs cnct Reserved
8(8) OPT 10 (R) STAT
options halfword status halfword
12 (C) WAIT 14 (E) EVC
wait condition halfword event occurrence count
16 (10) PTCB 17(11) NTCB 18(12) PCWT 19(13) NCWT
prev. tcb next tcb on prev. tcb in next tcb in
on ready ready cnct wt cnct wt
20(14) SLOC
default starting address
24 (18) NAME
Task Name
32(20) CTOP
36 (24) UTOP
40(28) UBOT
44 (2C) MXSP
maximum system space
48 (30) USSP
52(34) SEG
116 (74) LST
180 (B4) SYS
system word
184 (B8) Sys 1
system word
188 (BC) USER
user TCB field
196 (C4) PTCH
peer task chain
200(C8) ASV
alternate save area pointer
204 (CC) LEAF
leaf ptr. during connect wait
208 (DO) CLC
connect leaf chain

RO1 4/75

Figure 11-10 Task Control Block

This information is proprietary and s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically autnorized in writing.

(TCB)

11-15

212 (D4) RC
return code Reserved
216 (D8) CTSW
current task status word
220 (DC) DPSW
dispatch save PSW
228(E4) DGPR
dispatch save registers
292 (124) RPSW
RS Save PSW
300(12C) RGPR
RS save registers
364(16C) EPSW
ES save PSW
372(174) EGPR
ES save registers
436 (1B4) FMLU
file manager dummy LU
440(1B8) LTAB
Logical Unit Table
Figure 11-10 Task Control Block (TCE)
(Continued)
11-16 oarpon oF s e e 0T ST oo moamene o oo | RO1 4/75

 not be used for any other purpose uniess specifically authorized in writing.

- Options (OPT)

Bit

0

N -

[NS 2 R -y VN]

7-15

Flag Name

TOPT.ETM/B
TOPT.ACM/B
TOPT .FPM/B
TOPT.MRM/B
TOPT.TCM/B

TOPT.LBM/B
TOPT.SGM/B

reserved

- Status (STAT)

Bit

0

10

11-

RO1

15

4/75

Flag Name
TSTT.ESM/B

TSTT.RSM/B

TSTT.RPM/B

TSTT.RCM/B
TSTT.ASM/B

TSTT.IPM/B
TSTT.SYM/B
TSTT.CPM/B
TSTT.APM/B
TSTT.PWM/B

TSTT.FVM/B

reserved

Meaning

Set means E-task,
user task.

Set means continue on arithmetic
fault; reset means pause.

Set means task uses floating point
registers.

Set means task is memory resident.
Set means task uses task common.

Set means task uses RTL.

Set means if task is background and
issues an SVC 6, it will be ignored.
Reset means treat SVC 6 from the

reset means

background as illegal.

must be 0

Meaning

Set implies valid data in TCB

Save area. Task is non-eventable.
Task is in ES state.

Set implies valid data in TCB
RS-save area of alternate save area.
Task may be in RS, RSA or ES state
depending on other status bits.
Pause pending. Set means task to

be put into console wait on dispatch
into UT/ET state.

Set implies task on ready chain.

Set means valid data in save area
pointed to by TCB.ASV.

TSTT.RSM/B must also be set.

I/0 wait pending. Task to be put
into I/O wait on exit from RS or

RS state.

Set means TCB is the system task.
Cancel pending. Task is in SVC 3
processing.

Set means ABTERM is pending. Task
will go to EOJ whem ready to return
to UT/ET state.

Set means task was in system when
power fail/restart took place.

Set means task floating point registers
are caved; reset implies task's
floating point registers are current
(meaningful only if TOPT.FPB = 1).
must be 0

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

11-17

- Wait (WAIT)

Bit

0
1

o W

O o Wn

11-18

Flag Name Meaning

TWT.IOM/B I/0 wait

TWT .CWM/B Connection wait. Task on an EVT
queue.

TWT.CNM/B Console wait. Task paused.

TWT.LWM/B Load wait. No task has been loaded
or task in SVC 5 processing.

TWT .DMM/B Dormant. Task loaded but not started
or task has gone to EOT.

TWT . TWM/B Set means Task in trap wait.

TWT.TMM/B Set means task in time/interval wait

reserved must be 0

This information is proprietary and is ~‘suppléed'_EyMlNTrERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shail
not be used for any other purpose unless specifically authorized in writing.

RO1

4/75

11.12 VOLUME MNEMONIC TABLE (VMT)

0(0) VM
Volume Mnemonic
4(4) DMT
address of corresponding DMT entry

Figure 11-11 Volume Mnemonic Table (VMT)

There is one entry in the VMT for each Disc Device configured
in the system. When the Disc is marked online the volume
name is read from the volume Directory and placed in the VMT
entry. The VMT is terminated with a doubleword of zeroes.
There is no structure for the VMT.

11.13 VOLUME DESCRIPTOR (VD)

0(0) VOL
Volume Name
4(4) ATRB
Volume Attributes
8(8) FDP
First Directory Block Pointer
12 (C) OSP
Pointer to OS Image
16 (10) 0ss
Size of CS Image
20(14) MAP
Pointer to Bit Map

Figure 11-12 Volume Descriptor (VD)

The Volume Descriptor is written onto sector 0 of a Disc
Pack by the INITIALIZE command. Volume attributes field
is not used in 0S/32 MT.

This information is proprietary and is supplied by INTERDATA for the sole

ROl 4/75 purpose of using and maintaining INTERDATA supplied equipment and shall 11 _19
not be used for any other purpose unless specifically authorized in writing.

11.14

TASK LOADER INFORMATION BLOCK

0(0) 1(1) 2(2) 3(3)
SEG TYPE "1" NO OF LIBS MAX LU ROD RESERVED
4(4) 5(5) 6(6) 7(7)
MAX PRIORITY INIT PRIORITY RESERVED NO OF TCOM's
8(8) 9(9) 10(a)
NO OF RTL's RESERVED OPTIONS HALFWORD
12 (C)
SIZE OF IMAGE AS NO. OF 256-BYTE BLOCKS
16 (10)
20(14)
MAX SYSTEM SPACE AVAILABLE
24(18)
INITIAL TSW
32(20)
44 (2C)
RESERVED FOR FUTURE USE
60 (3C)
INITIAL CAPABILITY MATRIX
80 (50)
TIME/DATE
100(64)
CTOP
104 (68)
UTOP
108 (6C) IF RTL REQUIRED:
11 char RTL seg. name, 1 byte seg. reg used (=14)
Figure 11-13 Task Loader Information Block
This informatign is propr}etary. and is supplied by !N‘TERDATA for the sole
11-20 D e oo e pormbie. ety specifiny auunoriaed i ring. RO1 4/75

11.15 RTL LOADER INFORMATION BLOCK

0(0) 1(1) 2(2)
seqg type #3 no. of LIB's
4(4)
8(8)
12 (C)
Size of Image as No. of 256-Byte Blocks
16 (10)
No. of entry symbols in RTL
20(14)
24 (18)
32(20)
11 char seg name
44 (2C)
60 (3C)
80(50)
TIME/DATE
100(64)
104 (68)
108 (6C) List of item, one per entry:
"8 char symbol, 4 byte offset"
i

Figure 11-14 RTL Loader Information Block

This information is proprietary and is supplied by INTERDATA for the sole

purpose of using and maintaining INTERDATA supplied equipment and shall
ROl 4/75 not be used for any other purpose unless specifically authorized in writing. 11 21

11.16 OVERLAY LOADER INFORMATION BLOCK

0(0) 1(1) 2(2)
seg type "5" no. of LIB's

4(4)

8(8)

12 (C)
size of Image in No. of 256-Byte Blocks

16 (10)
Start Address of Overlay Area

20(14)

24(18)

32(20)
8 Char Overlay Name

44 (2C)

60 (3C)

80 (50)
TIME/DATE

100(64)

104 (68)

108 (6C)

Figure 11-15 Overlay Loader Information Block

11 _22 This information is proprietary and is supplied by INTERDATA for the sote
purpose of using and maintaining INTERDATA supplied equipment and shali RO 1 4/75
not be used for any other purpose unless specifically authorized in writing.

11.17 SYSTEM DATA STRUCTURE RELATIONSHIPS

__LOW MEMORY

X'62" .

NS NI NN
+4 /
IVT +8 S~
SYSTEM TCB
N
T~
it
USER TCB
VMT
"\ WN
N LTAB
M -
s N
DCB
s > FCB
\.
WA M AA
e
+80 -—
T VY WY Ny \\\\

+gof ——*

A AN

Figure 11-16 System Data Structure Relationships

This information is proprietary and is supplied by INTERDATA for the sole
»N1 A/IR purpose of using and maintaining INTERDATA supplied equipment and shali

11-23/11-24

CHAPTER 12

DESCRIPTION OF MT1 ROUTINES

12.1 INDEXED FILES

The routines to support Indexed Files are included in the general
0S/32 MT File Management System. This chapter describes the
physical structure of an Indexed File and the new routines that
have been added to the File Management System to provide the
Indexed File support. The user is referred to Chapter 6 of this
document for an explanation of the Directory Management Package,
the Bit-Map Management Package, the mainline SVC 7 routines, and
the SVC 1 intercept routines. '

Figure 12-1 illustrates the physical structure of an indexed
file. Figure 12-2 contains the addition to the File Control
Block data structure (FCB) needed to support Indexed files.
See Chapter 11 for a detailed description of all existing data
structures.

12.2 INTERNAL STRUCTURE OF INDEXED FILES

The Indexed File is composed of two levels of physical blocks, a
chain of index blocks and a series of data blocks. Each index
block contains fullword pointers to one or more data blocks, de-
pending on the number of blocks in the file. The index blocks
are linked together; two fullwords in each index block are used
as forward and backward pointers to form a double-linked list.
The directory contains pointers to the first and last index
block, but no pointers to data blocks.

The data block size, index block size, and logical record size are
established by the user at allocate time and are fixed for the
duration of the file. The block size and index block size are
specified in multiples of 256 bytes. As with the chained file
structure, the logical record length is independent of the physical
block size.

12.3 svCc 7 FUNCTION EXECUTORS FOR INDEXED FILES
12.3.1 Allocate (ALO.INX)

When the function code in the user's parameter block specifies an
allocate operation for an Indexed File, the file descriptor is
checked for uniqueness and a directory entry is established for

the file, using the directory management routines. The index

and data block sizes are then checked for validity, and the initial
file information is saved into the directory entry. Control returns
to the SVC 7 Second Level Interrupt Handler, SVC 7, when ALO.INX

has terminated successfully.

This information is proprietary and is supplied by INTERDATA for the sole

purpose of using and maintaining INTERDATA supplied equipment and shall
R01 4/7 5 not be used for any other purpose uniess specifically authorized in writing. 12 -1

Directory

[]
®
[]
¢ Data Block 1
Data Block 2
First 0
Index
Block
Data Block 3°
[]
[]
[]
Second \
Index Data Block n
Block
[]
e Data Block n+l
[]
[]
to next ‘ L
block .
to previous
block
[]
[]
[]
0 Last Data Block
Last
Index
Block

Figure 12-1 Indexed File Structure

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing,

12-2 RO1L 4/75

272(110) CINX 244(112)

Current Index Block Offset Reserved

276 (114) CINB

CURRENT INDEX BLOCK NUMBER

280(118) NINB

NUMBER INDEX BLOCKS

284 (11C) IBPB

PARAMETER BLOCK FOR INDEX BLOCK

304(130) IBUF
IBFA
IBFB

INDEXED FILE BUFFERS

Figure 12-2 File Control Block (FCB)

Additions for Indexed Files

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

RO1 4/75

12-3

12.3.2 Assign (OPEN.INX)

OPEN.INX receives control from OPEN (see 6.6.2) when the Assign
is directed to an Indexed File. If the file being Assigned
contains no indexed blocks, OPEN.INX will call the bit manage-
ment package to allocate an index block and a data block for
the file. If the file currently exists, the user's SVC 7
function code is checked to determine the desired access. A
file being opened for write only access is positioned to the
last index block by INX.FORL (see 12.4.1) and positioned to

the last data block by reading the current data buffer into

the FCB with an SVC 1 Read, Wait call. If the file is being
Assigned for Read or Read/Write access, the file is positioned
at the beginning by reading the first index block via INX.FORL
and reading the first data block into the FCB current data
buffer. The directory is then updated and written out, the Logical
Unit Table is set up with the file's attributes and the FCB
pointer, and the routine returns to SvC7.

12.3.3 Change Access Privileges (CAP)

See 6.6.3

12.3.4 Rename (RENAME)

See 6.6.4

12.3.5 Reprotect (REPRO)

See 6.6.5

12.3.6 Close (CLO.INX)

To close an Indexed File, the routine CLOSE is called first to
perform all common close functions as described in 6.6.6. To
insure that all index and data blocks in memory are written,
CLO.INX calls RESET.IN (see 12.4.1.1). Upon successful comple-
tion, the routine returns to SVC7.

12.3.7 Delete (DEL.INX)

An Indexed File is deleted by setting as allocatable all
sectors currently being occupied by the file's index and
data blocks. The directory entry is also freed. Upon
successful completion of the delete operation, control re-
turns to SVC7.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shali
not be used for any other purpose unless specifically authorized in writing.

12-4 RO1 4/75

12.3.8 Checkpoint (CPT.INX)

An Index File is checkpointed by moving its current information
from the FCB to the directory and by flushing all buffers via
RESET,IN. Return is to SVC7.

12.3.9 Fetch Attributes (FETCH)

See 6.6.9

12.4 SvC 1 INTERCEPT ROUTINES FOR INDEXED FILES

The Indexed File is accessed via the Buffered Logical Access
Method. The user program requests data transfers on a logical
record basis. The actual I/O transfers are executed by the
system on a block basis, using the system buffers located in
the File Control Block. Blocking and deblocking logical
records are performed by the SVC 1 intercept routines in the
File Manager (Described below).

If a file is being extended (i.e., writing a record numbered one
greater than the total number of logical records), the file is
set into write sequential mode. Any write to a currently
existing record causes the write random mode flag to be set
in the FCB.
12.4.1 1Indexed File Handler
The Indexed File Handler consists of the following routines:
INDEX - process data transfer requests to an Indexed File.
CMD.IN - process commands to an Indexed File.
It also includes various subroutines used by INDEX and CMD.IN,

as described in 12.4.1.1.

12.4.1.1 1Indexed File Handler Subroutines. The
following is a brief description of the Indexed File Handler
subroutines used to process Indexed Files.

INX.READ, INX.RORL, INX.FORL - Update the current index block

data block pointer (FCB.CINX). If the required data block
pointer is contained in the next index block, the current

index block is written if it has been modified. Then the

next index block is read into memory. Entry at INX.RORL will
read the next block to the right or the left, depending upon its
arguments. Entry at INX.FORL will read in the first index block
if FCB.FLBA has been set into the random address field, or the

last index block or FCB.LLBA set into the random address field.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

RO1 4/75 12-5

12-6

INX.WRTE - Add data block pointers by incrementing FCB.CINX.

If this causes an overflow of the current index block, it is
written out. Then a new index block is allocated via GETSECTR,
the current index block (FCB.CINX), and number of index blocks
(FCB.NINB) are incremented by one. This routine is only called
when the file is being extended.

INX.CINX - Based upon a logical record number, compute the
following: the data block containing that record, the offset
of the record within that block, the index block containing
this data block pointer, and the offset with the index block
of the data pointer.

INX.POSN - Position the file in memory so that the required index
and data blocks are current, and set up the index block offset
(FCB.CINX) and the data block offset (FCB.COFF) for the file.

INX.GETL -~ Move a logical record from a system buffer to the
tasks's buffer. If the logical record spans more than one
physical block, pure is made to INX.GETP to read into memory
the next data block.

INX.PUTL - Move logical record from task's buffer to the system
buffer. If a logical record spans physical blocks, the following
check is performed: for a file being extended (i.e., one in
write sequential mode), the current data block is written via
INX.PUTP; for a file being updated (i.e., one in write random
mode) , the current data block is written via INX.PUTP and the
next data block is read via INX.GETP.

INX.GETP - Perform physical reads to an Indexed File. A call

is made to INX.READ to obtain the next data block pointer; a
file in random mode uses a single buffer, a file in sequential
mode uses double buffering. If the file is in read random
mode, an SVC 1 Read and Wait operation is performed.

If the file is in read sequential mode, an SVC 1 Wait call is
directed to the current buffer. If the previous I/0 completed
successfully, INX.GETP will check to see if the next data block
currently exists. If it does, the read performed is an SVC 1
Read and proceed.

INX.PUTP - Perform physical writes to an Indexed File. If the
file is in Write random mode, the current data block is written
via an SVC 1 Write Wait call, using only a single buffer. Then
the next data block pointer is obtained via a call to INX.READ.
If the file is in write sequential mode, a new data block is
obtained via a call to GETSECTR. Then the current data block is
written via an SVC 1 Write Proceed call. Double buffering is
used in write sequential mode. Therefore, the status of the
alternate buffer is checked to ensure that the previous Proceed
write completed successfully.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shali
not be used for any other purpose unless specifically authorized in writing.

RO1 4/75

RESET.IN - Change the current state of an Indexed File. RESET.IN
is called for each I/O operation to an Indexed File to make sure
that all current buffers are flushed, if necessary, prior to
initiating a new I/O operation.

12.4.1.2 Data Transfer for Indexed Files (INDEX). The
purpose of the routine INDEX is to intercept all SVC 1 I/0O requests
to an Indexed File. INDEX receives control from the First Level
Interrupt Handler (FLIH) in RSA state (see 4.3.1 for a description
of the FLIH; see 2.1.2 for an explanation of RSA state. INDEX
determines the type of I/O request, flushes buffers if necessary
via RESET.IN, repositions the file (if necessary) via INX.POSN,
and sets the initial value for FCB.CINX (current index block offset)
and FCB.COFF (current data block offset) via INX.CINX. If the
call is a read, it transfers control directly to INX.GETL; if the
call is a write, it transfers control directly to INX.PUTL.

12.4.1.3 Command Requests for Indexed File (CMD.IN).
The routine CMD.IN receives control from the FLIH whenever a data
transfer request is directed to an indexed file. CMD.IN contains
five Executors, to perform the five allowable Indexed File command
functions. The functions are:

Rewind (CIN.REW) - Set the files current logical record number
(FCB.CLRL) to 0 and position to the first index and data blocks
via INX.POSN.

Backspace Record (CIN.BSR) - If a file is currently positioned at
the beginning, return EOF status. Otherwise, decrement FCB.CLRL by
1 and compute the index block and data block corresponding to this
logical record number via INX.CINX. Position the file accordingly
with INX.POSN.

Forward Space Record (CIN.FSR) - Return EOF if file currently
positioned at end. Otherwise, increment FCB.CLRL by 1 and proceed
as in CIN.BSR.

Forward Space File (CIN.FSF) - Update FCB.CLRL to contain the
value of FCB.NLR (the number of logical records, to position just
beyond the last logical record) and compute the required index and
data block via INX. CINX. Then position the file to its end with
INX.POSN.

Backspace File (CIN.BSF) - Identical to CIN.REW

Upon successful completion, all five Executors return to the
calling task via TMRSAOUT.

12.5 INTER-TASK SERVICE FUNCTIONS
SVC 6, which provides facilities for foreground tasks to

communicate with each other allows five functions in addition
to the ones mentioned in Section 4.3.7.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

ROl 4/75 12-7

12.5.1 Make Task Memory Resident (SVC6.FIX)

SVC6.FIX is entered in NSU state. It sets the memory resident
bit in TCB.OPT.

12.5.2 Make Task Non-Memory Resident (SVC6.UNFI)

SVC6.UNFI is entered in NSU state. It resets the memory resident
bit in TCB.OPT.

12.5.3 Suspend Execution (SVC6.SUSP)

SVC6.SUSP is entered in NSU state. The task wait bit is set
in TCB.WAIT.

12.5.4 Release Suspended Task (SVC6.RELE)

SVC6.RELE is entered in NSU state. The task wait bit is reset in
TCB.WAIT. If not already reset, TMREMW is called to remove the
wait bit from the called task. If, as a result, the calling task
is no longer at top of ready chain, TMSTOP is called to suspend
the calling task, and a branch to TMDISP is made.

12.5.5 Send Message (SVC6.MESS)

This routine is entered in NSU state. UDL.MSGR is tested. If

zero, no buffer exists, and an error exit is taken. If non-zero,
ADCHK is called to verify the address of the message buffer. If
invalid, an error exit is taken. Next, the first bit of the message
buffer is examined. If the bit is set, this indicates the buffer

is full and not yet processed, and an error exit is taken. If

the bit is zero, an empty buffer is indicated. Next, the address

of the sending buffer is ADCHK'ed. If invalid, an error exit is
taken. If the address is valid, the address of the receiving buffer
and reason code 6 is added to the receiving task's Task Queue by
calling SV9.ATQ. If SV9.ATQ returns without adding the item to

the queue, an error exit is taken. Otherwise, the first word of

the receiving message buffer is stored in UDL.MSGR. This word
contains the address of the next buffer or 0. Then, bit 0 of the
receiving message buffer is set to indicate a full buffer. The
eight character name of the sending task is moved into the second
two fullwords of the message buffer. The remaining 16 fullwords

are filled with the message. No formatting takes place.

12.6 ILLEGAL INSTRUCTION TRAP HANDLER (IIH)

Entry to IIH is in NS state. TMRSINl is called to enter RS state and
save all user registers in the RS save area. The illegal instruction
trap bit in TCB.CTSW is tested. If it is set, NSU state is entered
and SV9.STSW is called. After the TSW is swapped, RS state is re-
entered and exit is made through TMRSOUT. If the illegal instruction
trap bit is not set, processing is done as described in section 4.8.2.
In any case, the old PSW location counter is pointing to the illegal
instruction that caused the error.

This information is proprietary and is supplied by INTERDATA for the sole
12 8 purpose of using and maintaining INTERDATA supplied equipment and shall
- not be used for any other purpose unless specifically authorized in writing. . RO]- 4/75

12.7 MEMORY ACCESS FAULT HANDLER (MFH)

Upon occurrence of a memory fault interrupt, the operating system
clears the MAC status register by writing a 0 into it. MFH is

entered in NS state. IIHCOM is entered to process the same way as

for illegal instruction trap, except that the memory fault trap bit is
tested instead. If the trap bit is not set, MEMFAULT is entered to
output memory fault message, and pause the offending task.

12.8 ARITHMETIC FAULT HANDLER (AFH)

Entry to the arithmetic fault handler is in NS state. If the error
occurred in system code, the crash handler is entered. If the error
occurred during user task execution, the Arithmetic Fault Continue
bit in the user TCB options field is tested. If it is not set, the
pause pending bit is set in the status field of the user TCB, and

the common processing in IIH is entered to log the Arithmetic Fault
message. If the Arithmetic Fault Continue bit is set, the

trap bit in the TSW is tested. If the trap bit is not set, IIHCOM

is entered to log message and exit. If the trap bit is set, SV9.STSW
is called and exit is made through TMRSOUT.

This information is proprietary and is supplied by INTERDATA for the sole
RO1 4/7 5 purpose of using and maintaining INTERDATA supplied equipment and shall 12"9/12"10
not be used for any other purpose unless specifically authorized in writing.

CUT ALONG LINE

- —— — ——— s St . ————— — — p— — — — o—— S
— o it S —— — — o St o O et s s o e ey i et et e ot o ——

PUBLICATION COMMENT FORM

Please use this postage-paid form to make any comments, suggestions, criticisms, etc. concerning
this publication.)

From Date

Title Publication Title

Company Publication Number

Address

FOLD FOLD

Check the appropriate item.

D Error Page No. —— Drawing No.

D Addition Page No. ________ Drawing No.

E] Other Page No.___________ Drawing No.

Explanation:

FOLD FOLD

Fold and Staple

STAPLE STAPLE

FIRST CLASS
PERMIT No. 22
OCEANPORT, N. J.

BUSINESS REPLY MAIL

NO POSTAGE NECESSARY IF MAILED IN U.S.A.

POSTAGE WILL BE PAID BY:

Subsidiary of PERKIN-ELMER '
Oceanport,New Jersey 07757, US.A.

TECH PUBLICATIONS DEPT. MS 229

