PERKIN-ELMER

0S/32
LINK

Reference Manual

48-005 FOO RO1




The information in this document is subject to change without notice and should not be
construed as a commitment by the Perkin-Eimer Corporation. The Perkin-Elmer Corpo-
ration assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license, and it can be used or
copied only in a manner permitted by that license. Any copy of the described software
must include the Perkin-Elmer copyright notice. Title to and ownership of the described
software and any copies thereof shall remain in The Perkin-Eimer Corporation.

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by Perkin-Elmer,

The Perkin-Elmer Corporation, Computer Systems Division 2 Crescent Place, Oceanport, New Jersey 07757

© 1981 by The Perkin-Eimer Corporation

Printed in the United States of America




r

TABLE OF CONTENTS

PREFACE
CHAPTERS
1 05732 LINK
1.1 INTRCDUCTION
1.2 LINK FEATURES
1.3 LINK REQUIREMENTS
1.4 STATEMENT SYNTAX CONVENTIONS
Tella Link Command Syntax
Tella2 File Dlescriptors
2 STARTING LINK
2.1 BUILDING LINK
2.2 LORDING LINK
2201 Loading Link from the System Console
2.2.2 Loading Link from an MTM Terminal
2.3 STARTING LINK

w

LINK COMMANDS

INTRODUCTION
BFILE COMMAND
BUILD COMMAND
DCMD COMMAND

END COMMAND

48-005 FOO RO1

vii

N RN
[}
A



CHRAPTERS (Continued)

3.5 ESTABLISH COMMAND 3

-10
3.7 EXTERNAL COMMAND 3-13
3.8 FFILE COMMAND 3-14
3.9 INCLUDE COMMAND 3-15
3.10 LIBRARY COMMAND 3-17
3.11 LOCAL COMMAND 3219
3.12 LOG COMMAND 3-20
3.13 MAP COMMAWND 3-21
3.4 NDCMD COMMAND 3-24
3.15 NLOG COMMAND 3-25
3.16 OPTION COMMAND 3-26
3.17 OVERLRY COMMAND 3-32
3.18 PAUSE COMMAND - 3-34
3.19 POSITION COMMAND 3-35
3.29 REWIND COMMAND 3-136
2.21 SHARED COMMAND 3-37
3.22 TITLE COMMAND 3-40
3.23 VCLUME COMMAND 3-41
3,24 WEILE COMMAND 3-47

4y BUILDING EXAMPLES OF IMAGE LOAD MOCDULES USING LINK

4.1 INTRODUCTION 4-1
u,2 BUILDING A SIMPLE TASK IMAGE LOAD MODULE 4-1
4.3 BUILDING MORE CCMPLEX TASK IMAGE LOAD MODULES 4-2
Lae3e1 Building a COBOL Task Image Load Module 4-2
4.3.2 Buildirg a FORTRAN Task Image Load Module 4-2
4.3.3 Building a COBOL Task Image Load Module

with Link Commands Imbedded in Obiject
Modules 4-3

ii 48-005 FOO RO1



CHAPTERS (Continued)

APPENDIXES

BUILDING OVERLAID TASK IMAGE LOAD MODULES
Building a Simple Overlaid Task Image Load

Module

Building a More Complex Overlaid Task
Image Load Module

Moving Common Blocks

BUILDING SHARABLE SEGMENTS

BUILDING A TASK TIMAGE LOAD MODULE
REFERENCING SHARABLE SEGMENTS

BUILDING AN OPERATING SYSTEM IMAGE LOAD
MODULE

A LINK COMMAND SUMMARY

B LINK MES3AGE SUMMARY

C LINK TO TET COMFARISON

D TET COMMANDS

P e P FEREEFEFEEREFEREEFREESEEESESFWNDS

e ® o
Y ° L

® ® 8 8 & o o
« & & 2 & & 3
N e et md ) 3 d a3 d = OO E W =

OQOWwWwaoOoONNMNNEFWwN O

e ® 6 o ® o o o
e ® & & & & s 9

vlvivlvielvivielelelvlolvivivielvlviwileilelwilw e

L] L]
. *

48-005 FOO

INTRODUCTION

SYSTEM REQUIREMENTS
AN FSTABLISHED TASK
TET COMMANDS
ARZSOLUTE Command
AMAP Command

BUILD Command

EDIT Command

END Command
ESTABLISE Command
EXPAND and GET Commands
INCLUD®Y Command

JOB Command

LBLCOM Command

LOG Command

MAP Command

MAXLU Command
MXSPACE Command
NOLOG Command
OPTIONS Command
OVERLAY Command
PAUSE Command
PRIORITY Command
QIO Command

RO1

1
P Yt G Re I e NS 5 [ (N6 I QY

N EN 2O

OUUUOUO?UUUUOO

]
-
~N Oy

D-19
D~20
D=-22
D-23
D-24
D-25
D-29
D-20
D-31
D-32

iii



APPENDIXES (Continued)

Delle21 REMOTE Command D-33
D.4.22 RESOLVE Command D-3u4
Detto23 REWIND Command D-35
D.sl4.284 TCOK Command D-36
Delte25 TSHW Command D-38
Della26 VOLUME Command D-39
D.4,27 WFILE Command D-40
D.5 OPERATING PROCEDURES ' D-41
De5e1 Logical Unit Assignments D-41
De5e?2 Temporary File Operation D-42
De5.3 Command Input Sequence D-42
D.56 AUTOMATIC ASSIGNMENT D-u47
De7 EXAMPLES OF TET CPERATICN D-48
De7.1 Establishing a Simple Task D-u438
De7a2 Establishing a Task with Pure
and Impure Segments D-49
De7.3 Establishing a Reentrant Library D-50
De7ol4 Establishing a Complex Task with Overlays D-50
De745 Building "an Operating System Image D-54
D.7.6 Establishing Compound Overlay Files D-55
De7.7 Establishing a Block Data Task
Common Segment D-56
De748 Establishing a Sharable Segment D-56
De7.9 Establishing Preinitialized Task Common D-57
F.8 TET ERROk MESSAGES D-57
TABLES
3-1 LINK COMMANDS 3-1
3-2 LINK END OF TASK CCDES 3-9
B-1 SVC 7 ERROK TYPES AND STATUS B-7
B-? SVC 1 ERROR CODES AND STATUS B-38
c-1 LINK TO TET COMPARISON ‘ C-1
D-1 ADDRESS-SEGMENT RELATIONSHIP D-4
D-2 TET LOGICAL UNIT ASSIGNMENTS D-41

iv 48-095 FOO RO1



TABLES (Continued)

D-3 LOGICAL TET COMMAND SEQUENCE D-44
D-y AUTOMATIC ASSIGNMENT OF FILE D-47
D=5 : OBJECT ITEM SIGNIFICANCE D-68
FIGURES
h=-1 Sample Overlay Structure 4-6
D-1 EFstablishing a Task with Pure

and Impure Segments D-49
D=2 Graphic Description of a Task with

Two Overlays D-51
D-3 Memory Map of Overlay Task Establishment D-54
INDEX Ind-1

48-005 FOO RO1 | v






PREFACE

This manual describes the new linkage editor «called the
Perkin-Elmer 0S/32 Link, which provides the user with the ability
tc link one or more object modules producing an image 1load
module. These load modules can be tasks, sharable segments, or
operating systems. The user should be familiar with the
Perkin-Elmer 0S/32 and with the Perkin-Elmer 0S5/32 Multi-Terminal
Monitor (MTM) if Link is used in an MTM environment.

Chapter 1 provides an introduction and overview of the features
of Link. Chapter 2 describes how to build, load, and start the
linkage editor. Chapter 3 1lists and describes the 1link-edit
commands. Chapter W4 guides +the new user and explains the
fundamentals of producing image load modules. Appendix A 1is a
command sSummary. Appendix B is a message summary. Appendix C
compar=s Link to TET. Appendix D lists and describes the TET
commandse.

Revision 01 of this manual adds support for these new features:
trap event, vertical forms control, and supervisor call (SVC)
interceptionse. It also clarifies +the LIBRARY command and
includes changes to the OPTIONS and SHARED commands. This manual
can be wused with the 0S5/32 RC6 and higher software release and
with Revision 00-01 of 05732 LINK.

The user can refer to these publications:

MANUAL TITLZE PUBLICATION
NUMBER
0S/32 Operator Reference Manual 48-030

0S/32 Applicaticn Level Programmer
Reference Manual 48-039

0S/32 Multi-Terminal Monitor (MTM) Reference .
Manual ug8-043

22-3it Systems User Documentation Summary 50-003

For further information on the contents of all Perkin-Elmer
32-bit manuals, see the 32-Rit Systems User Documentation
Summary.

ug-005 FOO EO1 vii






CHAPTER 1
05732 LINK

1.1 INTRODUCTION

The Perkin-Flmer 0S/32 Link is a linkage editor that combines one
or more object modules produced by Perkin-Elmer language
processors and produces an image load module with all external
references resolved. This imaye load module then can be loaded
by the LOAD command.

1.2 LINK FEATURES

This linkage editor can build image load modules in sizes up to
16Mb. Tasks can be unsegmented or segmented into pure and impure
segments which allows the user to share the pure code when more
than one covry of the task is 1loaded. Task options such as
floating-point requirements, workspace size, and priority can be
specified. Link also can build an operating system image from
the object module produced by the Perkin-Elmer 0S/32 Library
Loader. The resulting image load module can be loaded into main
storagye using the Perkin-Elmer 0S/32 Bootstrap Loader (BOOT) or
lLoader Storage Unit (LSU).

Link automatically selects modules referencad by a user's task
from specified object libraries, and links them to the main taske.
The 1library search is performad so that the order of the modules
in the library has no etffect on the link process.

The linkage editor cen display maps with the addresses of program
modules, entry points, commen blocks, and overlays. A map can be
a build summary, or can have symbols and addresses listed in
alphabetical or address order. In addition, a cross reference
listing of entry points and program modules referencing them can
be included.

Link commands such as OPTION or POSITION, imbedded in an object
module, are executed whenever the module is linked to a mairn
taske The linkage editor can disable execution of these commands
if a particular Link command (NDCMD) is specified by the user.

Sharable segments, such as resident libraries or task comnmons,
are independently 1linked load modules that can be concurrently
used by more than one task. This 1linkage editor <can build
sharable segments and link a task to the sharable segment.

48-00% FOO RO1 1-1



Link also supports a tree-structured overlay feature. If the
user specifies that routines are to be located in an overlay at
link time, the linkage editor provides for automatic loading when

the routine is referenced
overlay structure does

execution time. Therefore, the
have to be defined in the source

module. A Link command can place common areas in the root node
or a specific node of the overlay structure.

1.3 LINK REQUIREMENTS

These resources are reguired for Link &xecution:

e 0S/32 5.2 or higher

e 1 disc device

@ 6Ukb of main storage for Link

1.4 STATEMENT SYNTAX CONVENTIONS

These statement syntax
instruction formats:

CONVENTION

Capital letters,
parentheses, and
punctuation marks

Lowercase letters

n

Underlining

PAUSE

Fllipsis

paraliqseese ,paramsg

Lettering with shading

conventinns are used in all coamand and

USAGE

)

must be entered exactly as shown.

represent parameters or information
provided by the user.

inrdicates only the underlined por-
tion of the entry is required.

rapresants an indefinite number of
parameters or a range of parameters.,

represents a default optione.

48-505 FOO R01



CONVENTION

Braces

|

Brackets

[ ]

Commas

Braces inside brackets

]

Comma preceding braces
inside brackets

(1]

Comma inside brackets

Comma outside brackets
except last parameter

INRNRN

Egqual sign separating

gkeyword from parameters

KEYWORD=param

1.4.,1 Link Command Syntax

Multiple commands can

separated by semicolons

USAGE

represent required parameters from
which one must be chosen.

represent an optional parameter that
can bhe chosen.

separate parameters and substitute
missing positional parameters.

represent optional parameters froa
which one can be chosen.

must be entered if one of the
optional parameters is chosen.

must be entered if the optional
parameter is chosen.

must be entered in place of missing
positional parameters ani to
separate optional parameters that
are chosens. Commas are omitted for
trailing parameters and a comma must
be entered with the last specified
parameter.

must be entered to associate
parameter with keyword.

entered on one 1line if they are

dhen multiple commands are entered

on the same line, they are executed sequentially. If a syntax
error 1is detected in a command, that command plus any subsequent
commands on the same line are ignored.

48-005 FOO RO1



If the specified parameters of a command in interactive nmode
exceed one 1line, enter a comma as the last character and a
carriage return (CR) which causes this message to be displayed:

CONTINUE>

‘Continue entering the remaining parameters on the same 1line
following the greater than (>) symbol. In batch mode, parameters
can be continued by entering a comma as the last character and
continuing the parameters on the following line.

Comments can be specified by entering an asterisk (*) before the
comment string and a CR or semicolan at the end of the string.
A comment can be the only data on a line or can follow a commani
on the same line. For example:

*THIS IS THE LINK ROUTINE

ESTARLISH TASK:;*A TASK IS TO BE ESTABLISHED

1«84.2 File Descriptors

File descriptors, abbreviated as fd, are entered in a standard
format.

Format:
voln: actno
[filename] [. [ext]] / }
dav: file class
Parameters:
voln: is a 1- +to UW4-character alphanumeric string

specifying the name of a disc volume. The
first character must be alvhabetic and the
remaining alpnhanumeric. If the volume name is
omitted, the default is the:

- volume specified by the Link VOLUME
command,

~ volume specified by the operator or ¥HTH
YOLUMF command, or

- volume specified as the operating system or
user default volume.

1-4 48-005 FOO RO1



dev:

filename

actno

files class

Functional Details:

is a 1- to U4-character alphanumeric string
specifying a device name. The first character
must be alphabetic and the remaining
alphanumeric,

is a 1- to 8-character alphanumeric string
specifying the name of a file, The first
character must he alphabetic and the remaining
alphanumeric. If a filename is specified when
a device name is specified, the filename 1is
ignored.

is a 1- to 3-character alphanumeric string
specifying the extension to a filename., If
the period (.) and extension are omitted, a
default extension appropriate to the
particular command in which the f£4 appears 1is
appended to the filename. If the perioi is
specified and the extension 1is omitt=zd, the
default is blankse.

is a decimal number from 9 through 255
specifying the account number associated with
the file. Kccount nuabers 1 through 240 are
used by MTM; account numb=rs 241 through 255
are raserved. Account number 0 1is used for
system files and 1is the default for all
operating system users. Specification of the
account number as part of the £fd can be
entered when running Link from the =ystem
conzole.

is a 1-character alphabetic string spvecifying
the file class. The file classes are:

- P for private file

- G for grour file

- 5 for system file

f the file class is omitted, the default is

T when running Link from an MTM terminal and
S when running Link from the system console.

o~

See the 05/32 Programmar Reference Manual for more information on

file descriptorse.

48-005 FOO RO1






CHAPTER 2
STARTING LINK

2.1 BUILDING LINK

If the Perkin-¥lmer supplied ready-to-execute version 1is to be
used, no build is necessary. However, if a new versinn of Link
is to be built, this sequence of commands builds Link as a
sharable =segmented image 1load module by using the Perkin-Elmer
supplied version of Link.

INCLUDE LINK
OPTION SEGMENTED,WOEK=8000

BUILD LINK

END
The reserved workspace must be a minimum of 8kb. The more
workspace allocated, the less pajging to and from disce. The less
workspace allocated, the more paging to and from disce. The

amount of worksbpace specified can be overridden at load timc.
2.2 LOADING LINK
Link must be a segmented image 1oad module before being loaded

into main storage.

22«1 Loading Link from the System Console

This command loads Link from the system consnle.
Format:

LOAD taskri[ﬁd]ﬂsegsize incremenﬂ
Parametérs:

taskid is a 1- to 8-character alphanumeric string
specifying the nawme of the task after it is
loaded into the foreground segment in main
storage.

48-00% FOO 801 2-1



fa is the file descriptor of the device
containing the linkage editor image 1l1load
module to be loaded into main storage. If
this parameter 1is omitted, the. default is
taskid.TSK.

segsize is a decimal number in kb specifying the

increment additional area to be added to the module's
impure segment. This valune overrides the
WORK= option if specified when the module was
built.

2¢2¢2 Loading Link from an MTM Terminal

This command loads Link from an MTM terminal.
Format:

LOAD fd [,segsize increment]
Parameters:

fd is the file descriptor of the device
containing the linkage @editor image 1load
rodule to be loaded into main storage.

seqggize is a decimal number 1an kb specifying the

increment additional area to be added to the module's
impure segment. This value overrides the
WORK= option if =specified when the module was
puilt.

2.3 STARTING LINK

After Link is loaded intn main storage this command starts its
execution and assigns the command and log devices.
Format:

START [:,QOMMAND=fd1:] [[LOG=£4,]

Parameters:

COMMANL= fdq¢ specifies the 1input device from which
commands are to be entered. If this parameter
is omitted, the default is the command input

[\
!
o

48-005 FOO RO



device (CON:). If the command input device is
interactive, all commands entered ani messages
generated are sent to the command input
device. If the command input device is batch,
the LOG parameter must be specified.

LOG= fdo specifies the output device to which all
: commands entered and messages generated are
recorded., If the command input device is
batch, this parameter must be specified. If
the log cutput device is a disc file, it must

have been previously allocated.

Functional Details:
After the linkage =2ditor is started, this message is iisplayed:
LINK Ron=-nn

The revision number (Rnn) indicates the revision level of Link,
and the wupdate number (-nn) indicates the update level of Linke.
If the command input device is interactive, the greater than (>)
symbol is then disvplayed as & prompt indicating the linkage
editor is ready to accept commands.

48-005 FOO RO1 2-3



A



CHAPTER 3
LINK COMMAND§

3.1 INTRODUCTION

There are three types of Link commands:

® Active

® Passive

e Environment

Active commands are executed as soon as they are entered and
cause an immediate action to the image load module being built,
Passive commands are executed when the build process occurs.
Environment commands affect the link session instead of the image

load module being built.

Table 3-1 lists all the Link commands, categorizes the type, and
describes the function.

TABLE 3-1 LINK COMMANDS

- - — i —— . - o - . - — - = - - S - - — - WS S S S S GS e e G WR wh - - -

| | TYPE | |
{ COMMAND |~~~ | MEANING [
| | ACT | PAS | ENV | |
|=====::=:===‘:::::‘:::::'=====|:::::=============:===========:=l
| BFILE | | | * | Backspaces a magnetic tape or |
| | | | | contiguous file |
|-=====mmm-o- |----- |-=--- |--=--- | === mmmmmmomomooomoooomoooooooooo |
| BUILD | | | | Starts building the image load |
| | | | | module |
|-====mmmm - |----- |----- |-=--- Sttt |
| DCMD | | | | Enables execution of Link |
| I * | | commands imbedded 1in object |
| | | | | modules |
|-====-mmo- |----- |-=--- | ===~ R et |
| END | * | | | Terminates the linkage editor |
|=-===oooomo |--=-- |-==-- |----- | o= mmmmmo oo oo oo |
| ESTABLISH | * | | | Specifies the type of image |
|

load module to be built |

48-005 F0O RO1 3.1



TABLE 3-1 LINK COMMANDS (Continued)

- —— e W = e e D P e wn R S e G e G WD wm G e e G D R W WD WS e W N P D S G R - e G G e s e G e W

! | TYPE ! |
{ COMMAND |o=mommm e e | MEANING |
| | ACT | PAS | ENV | |
!::::::::::::':::::':::::|=====|===========:========:==:===:===:I
{ EXTERNAL | | | | Specifies the name of the |
| | | * | common block to be referenced |
| | | | | outside a sharable segment |
|======-mme- |-=--- I----- |----- [+=mmmmmmmoee s-oommmmoooooooo- |
| FFILE | | | * | Forward spaces a magnetic tape |
| | | | | or contiguous file |
------------ R R e Rt
| INCLUDE | | | | Specifies the object modules |
| | * | | | to be included in the image |
| i | | | load module |
|-==mmmsom-- |----- |-=---- |----- e bt |
| LIBRARY | | | | Specifies the object libraries |
| | | * | | to be searchei for unresolved |
I | | | | external references |
|-==--mmmmomo |--=-- |----- |----- |=--=-==-- Fomommmmeomsomeooeooeo |
| LOCRL i | | | Specifies entry points to be |
| | | = | | referenced only within a |
| [ ! l | sharable segment |
|-===mmmmmm - |--=-- |--=-- |----- |-==------ ey |
| LOG | | | | Enables 1logging all commands, |
| | | i | messages, and maps to the log |
| | | | * | device |
|=====-mmmoe- |-=-=~ |=-=-- |----- |====m=mmmmmeoo- mmomemmomooooooe |
| VAP | | * | | Generates a map when the image |
| { ] | | 1oad module is built
I-—a. ————————————————————————————————————————————————————————— d--'
| NDCHD | | | | Disables exezution of Link |
] | * | | | commands imbedded in |
| | | | | object modules |
[=m======m oo [----- |-=--- |-=-=- | === == = mm e |
| NLGG | | | | Disables 1logging all commands, |
| i | | * | messages, and maps to the log |
| | I | | device |
|=====-=-m--- |----- [----- |----- | == === mmmmmmmmmmemo oo ~=--|
| OPTION | | * { Sets task options |
|--=s-moooo-- |----- |-=--- |----- | === mmmmoommmmso—oeeoooo oo 1
| OVERLAY | * | | | Defines an overlay and |
i | | | | specifies a level. |
e bt | ===m- |==--- | === [ === mm e |
| PAUSK | | | * | Pauses the linkage editor |
|=======-=me- |-=--~ |----- |--=--- |==mmm = o mmm oo |
| POSITION | | * | | Koves a common block intao|
| | ] | | a specific overlay node. ]
|-====m=mm oo | ===~ |~---- |-=--- R 1
| REWIND | | ] * | Rewinds a magnetic tape or|

| | | . | contiguous file |

3-2 48-005 FOO RO1



TABLE 3-1 LINK COMMANDS (Continued)

- - -

Specifies a segment can Dbe]
referenced by more than one]
task |
_________________________________ '

Specifies a title for the map]|
ittt ettt |
Specifies the default volune]
to be used for all subsequent|
file descriptors |

Writes a filemark on a magnetic|
tape or a contiguous file]

- - " S W= e = e e - o Y D G e S Y G S D W P G G T G S SR e W T e G S W T e W e S e = e

* Indicates the type 9f Link command

48-005 F0O ROV



- - - - - o= -

- o o o - -

3.2 BFILE COMMAND

The bhackspace file (BFILE) command is an environment command that
backspaces -a magnetic tape or contiguous file a specified number

of filemarks.

Format:

BETLE f£d [ n]

Parameters:

fd

Examples:

BF MAG1:,2

is the file descriptor of the devize to Dbe
backspaced the specified number of filemarks.

is a decimal number specifying the number of

filemarks to space backwards. If this
parameter is omitted, 1 is the default.

48-005 FQO RO1



3.3 BUILD COMMAND

The BUILD command is an active command that builds the imag=z 1lovad
module from the object modules specified in the INCLUDE command.
Format:

BUILD fd

Paranmeters:

fd is the file descriptor that is to receive the
image load module. If the extension is
omitted, the default extensions are:

.TSK for tasks
«SEG for sharable segnments

«000 for operating systenms

Functional Details:

The linkage editor attempts to allocate and assign the file
specified in the BUILD command. If the file does not exist, the
linkage editor allocates the file. However, if an error occurs
during this process or the file is not specified in the BUILD
command, this message is displavyed:

ENTER FILE-DESCRIPTOR OF IMAGED>

Enter the fd of the device to receive the image load moiule. If
the linkage editor is in batch mode and an fd is reguired, the
build process is terminated. A pre-allocated enmpty indexed or
contiguous file with sufficient space can be specified as the f4.
If the file does not contain sufficient space, this message is
displayed:

FILE EXISTS - DO YOU WANT IT OVERWRITTEN?>

48-005 FOO RO1 3-5



If YES is entered, the file is deleted and re-allocated. If NO
is entered, this message is displayed:

ENTER FILE-DXZSCRIPTOR OF IMAGE>

Enter the fd to receive the image load module which <causes the
allocation/assignment process to be repeated.

NOTE

Building an 1image load module on a
contiguous file is significantly faster
than building an image load module on an
indexed file.

After these messages are displayed, the maps are generated if the
MAP command was entered. If the MAP command was not entered,
this message is disclaved:

MAP?>

If YES (Y) or NO (¥) is entered, the following four messages are
displayed:

ENTER MAP FILE DESCRIPTOR>

Enter the fd of the device or file to receive the maps.

SORTED ALPHABETICALLY?>

If YES is entered, a map with all symbols in alphabetical order
is generated:

SORTED BY ADDRESS?>

If YES is entered, a map with all symbols in address order is
generated:

CROSS REFERKENCE?>

If YES is entered, a map with all symbols in alphabetical order

3-6 48-025 FOO RO1



and the names of all modules that reference each symbol is
generated.

If NO was entered for all of these messages, only a build summary
is generated. See section 3.13.

After the BUILD command is executed, the linkage editor is ready
to build a new image load module.

Examples:

BU TASK

BU TASK.TSK

Messages:

]

UNDEFINED EXTERNAL SYMBOL(S)

The specified number of undefined external symbols exist.

n MULTIPLE DEFINED ENTRY POINTS(S)

The specified number of entry points are defined more than
once in the same path.

AMBIGUOUSLY DEFINED ENTRY POINT(S)

=}

The specified number of entry points were defined in parallel
raths and referenced from a node common to both pathse.

n COMMAND(S) ENCOUNTERED IN OBJECT CODE

The specified number of Link commands were encountered in the
object modules included in the image load module.

48-005 FOO RO1 3-7



- —— - - - . -

- - - - - - - —-—

3.4 DCMD COMMAND

The define command (DCMD) is an active command +that enables
executinn of passive Link commands in object modules included in
the image load module.

Format:

DCHD

Functional Details:

When an object module with imbedded passive Link commands is
included, the imbedded commands are treatad as if they were
entered after the INCLUDE command was entered. Imbedded LIBRARY
commands are treated as if they were entered immediately before
the BUILD command was entered.

Link commands can te imbedded in an object module if the CAL DCMD
pseudo-op was used during an assembly. JdJnly passive Link
commands c¢an be imbedded in object modules. Any active or
environment commands imbeddied in object modules are rejected and
cause a Mmessage to be displayed. If a log device is specified,
all Link commands in the object module are sent to the log device
with a plus sign (+) in column 1. For example:

ES T2
INCLUDE MOD
+0PTION FLOAT

BUILD MOD

If an error occurs during execution of an imbedded command, a
message is displayed. The format of the CAL DCMD pseudo-op is:

DCMD C'linkedit command'

Examples:

LCMD C'OPTION FLOAT®

DCMD C*'MAP PR:,ALPHA"

3-8 48-005 FoOC RO1



3.5 END COMMAND

The END command is an active command that terminates the ' linkage
editor.

Format:

legl
=
<

Functional Details:

Jf the END command is =ntered after passive Link commands are
entered but before the BUILD ccmmand is entered, this message is
displayed:

BUILD IMAGE FROM PREVIOUS TNPUT?>

Enter YES if the image l1load module is to be built. Enter NO if
no image load module is to be built and the task is to be
terminated. See Table 3-2 for the list and meaning of the 1link
end of task codes.

TABLE 3-2 LINK END OF TASK CODES

- —— e - - mn em e - . e o e G e e D S WD S S SR e M WD G R S e G S S5 e e -

| END OF TASK |

the linkage editor to abort.

|
] CODE | MEANING |
l=:=======:=======::===::::::::::::::::::::::::::::::::l
| ) | Terminated normally |
! | |
| 1 | Bn error occurred but did not affect |
| | the building of the image load module. |
I | : !
| 2 | An error coccurred that affected the |
| | building of the 1image load module. |
| | |
| 3 | A severe error occurred that caused |
| I |

48-005 FOO ROY 3-9



3.6 ESTABLISH COMMAND

The ESTABLISH command is an active command that specifies the
load module to build. The three types of image

type of image
load modules are:

] taSk,

@ sharaltle

segment, and

® operating system.

Format:

ESTABLISH

Parameters:

TASK

0S

SHARED

ACCESS=

E

R
m0000
ED Eggcgss= RE ][}AQDRESS= ]
*
RW
RWE

EﬂﬁMﬂ=segment]

srecifies that a task image load module is to
he built. If +the ESTABLISH command 1is
omitted, TA3K is the default.

specifies that an operating system image 1load
module is to be built.

specifies that a sharable segmented image load
module is to be built.

R specifies that the access privilege of the
sharable segment allows access of data within
the sharable segmente. Execution or
modification of data is not allowed.

u8-005-F00 RO1



ADDRESS=

jxal

*

3

NAME=

Functional Details:

E specifies that the access privilege of the
sharable scgment allows task execution within
the sharable segment.

R¥E specifies that the access privilege of +the
sharable segment allows access to data and
task execution within the sharable segment.
Modification of data is not allowed. If the
ACCESS= parameter is omitted, the default is
RE'

RW specifies that the access privilege of the
sharable segment allows access to data and
modification of data within the sharable
segment. Task execution is not allowed.

RWE specifies that the access privilege of the
sharable segment allows access to data,
modification of data, and task execution
within the sharable segment.

m0000 is the starting address of the sharable

segmente. This address is the bias address
used to relocate relocatable addresses in the
sharable segment. The variable m is a

hexadecimal number from 1 through BF. If the
ADDRESS= parameter is omitted, or ADDRESS=* is
specified, the sharable segment becomes
address~-independent and can be assigned a
different starting address by each task that
references it. If relocatable addr2sses are
located in an address—-independent sharable
segment, they are relocated as though
ADDRESS=00000 was specified and a warning
message is issued.

csegname is a filename.ext that identifies the
sharable segment after it is loaded into main
storage. This name is matched against the
name <cspecified by the tasks that are to
reference the sharable segment. If the NAME=
parameter is omitted, the segment name becomes
the filename.axt of the image 1load module.

If the ESTABLISH command is entered after passive commands have

been entered, this

BUILD AN IMAGE

4g-0C5 FOO RO1

message is displaved:

FROM PREVIOUS INPUT?>



If YES is entered, a build is performed. If NO 1is entered,
build is performed and this message is displayed:

***ESTARLISHMENT ABORTEL***

Examples:

ES 0S

Establish an operating system image load module.

FS SHARED,ACCESS=RE,AD=F0000,NAME=SEG1

Establish a sharable segmented image load module.

ESTABLISH SHARED, ACCESS=RE,ADDRESS=A0000

Tstablish a reentrant library image load module.

ESTABLISH SHARED,ACCESS=RW,ADDRESS=*

Establish a task common image load module.

no

3-12 48-005 FOU RO1



| EXTERNAL |

3.7 EXTERNAL COMMAND

The EXTERNAL command is a passive command that specifies the name
of one or more common blocks to be referenced outside a sharable
segmente.

Format:
EXTERNAL common block name1[;...,common block namen]
Parameters:

common block is the name of a common block to be
name referenced outside the sharable segma2nt. See
section 3.10.

Functional Details:

Common blocks are local to a sharable segment unless specified by
the EXTERNAL command. External common blocks are matched against
external common block references in the same way external
references are matched against entry points in a segment.

48-005 FOO RO1 3

!
Py
w



- o - - o - - -

3.8 FFILE COMMAND

The forward file (FFILE) command is an environment command that
forward spaces a magnetic tape or contiguous file a specified

number of filemarks.
Format:

FFILE f4 En]
Parameters:

fa is the file descriptor of the device to be
forward spaced the spacified number of
filemarks.

n is a decimal number specifying the numb=2r of

filemarks to space forward. If this parameter
is omitted, 1 is the default.

Examples:

FF MAG1:,2

3-14 48-005 FOO RO



| INCLUDE |

3.9 INCLUDE COMMAND

The INCLUDE command is an active command that specifies the file
containing the object modules and the specific names of object
modules that are to be included in the image load module.

Format:

module, moduley
INCLUDE [fd]||, - sees,moduley
* *

Parameters:

fd is the file descriptor of the file »or device
containing the modules to be included. If
this parameter is omitted, a1 preassigned 1lu 1
or the fd specified in the last INCLUDE
command entered is used. If the extension is
omitted, the default is .0BJ.

module, is a 1- to A-character alphanumeric string
cspecifying the name of the next module of a
range of modules to be included in the 1image
load module. If an asterisk (*) is specified
or this param=ster is omitted, the next module,
relative to the position of the file, 1is
included.

module, is a 1- to 8-character alphanumeric string
specifying the name of the last module of a
range of modules to be included in the 1image
load module. If this parameter is omitted,
module1 is included. If an asterisk (*) or
hyphen (-) with no module name is specified,
all modules starting with modulel1 to. the end
of the file are included.

Functional Details:

If nc module names are specified, all modules in the file are
included.

ug-c0S5 ¥00 RO1 3-15



Examples:

INCLUDE LIBRARY.OVY

Include all modules in fd LIBRARY.QVY.

INCLUDE LIRKRARY,FIRST

Include the object module FIRST in fd LIBRARY.O0BJ.

INCLUDE,SECOND-FOURTH
Include modules SECCND through FOURTH in the fd specified
in the previous INCIUD® commande.

INCLUDE LIBEARY.OBJ,~FOURTH,SIXTH,TENTH-*

Include modules FIRST through FOURTH, SIXTH, and TENTH
through the end of LIBRARY.ORJ.

3-15 48-005 FOO RO1



- - o - - -

3.10 LIBRARY COMMAND

The LIBRARY command is a passive command that specifies objsct
libraries to be searched at build time to resolve external
references. The libraries are searched in the order they are
named.

Format:

LIBRARY fd1[ eee,fdn]

Parameters:

fd is the file descriptor of the 1library to be
searched. If the extension is omitted, the
default is .0BJ.

Functional Details:

The libraries specified are searched for entry points that @match
external references in the image load module being built. When
a match is found, the object module is included. Only one pass
is made through the list of libraries.

External references generated py the EXTRN pseudo-op are matcheld
against 1library entry points. All external references generated
from modules included from the library cause the library modules
that resolve the &external references to also be included
regardless of the order of the modules.

Weak external references generated by the WXTRN pseudo-op are not
matched against the library and are only resolved to entry points
in modules explicitly included or to modules included from a
library through external references that are not weake.

Non-linking external references generated by the INCLD pseudo-op
are matched against module names in the library.

Weak entry points in the library generated by the WANTRY pseudo-op
are ignored during the library search.

B module is selected from a library for the following two
reasons:

48-0C5 FOO RO1 3

[}
-—
~



1« The module is named in an INCLD pseudo-op.

2. The module contains an ENTRY or a DNTRY which can be resolved
against an EYTRK in a previously included wmodule.

Any weak entry points contained within this newly included module
also become known to LINK. These weak entry points will be
resolved against the 1list of unresolved externals, including both
the standard andi the weak externals.

Examples:
LI USER.LIB,F7RTL.ORJ

Specifies the user run time library and FORTRAN run time
library to be searched.

3-18 48-005 00 RO1



3.11 LOCAL COMMAND

The LOCAL command is a prassive command that specifies one or more
entry points in a sharable segment c¢an only be referenced within
that segment. This command is valid only when establishing a
sharable segment.

Format:
LOCAL entry pointq[,...,entry pointy]
Parameters:

entry point is a 1- to 8-character alphanumeric string
specifying the entry point to be referenced
within that segment.

Functional Details:

When a sharable segment is built, all entry points c¢an be
externally referenced by tasks unless the entry points are maide
local to that segment by the LOCAL command.

Examples:

LOC ENTRY1

48-005 FO0O RO1 3-19



3.12 LOG COMMAND

The LOG command is an active command that specifies a new 1log
device c¢r starts the logging process if it was previously
stoppede. A1l command input, messages, and maps are sent to the
leg device.

Format:

Parameters:

fd 1is the file descriptor of the device or file
to receive command input, messages, and mapse.

Examples:

L0 PR:

10 M300:LCGFILE

3-20 48-005 FOO RO1



3.13 MAP COMMAND

The MAP command 1s a passive command that

containing the names and addresses of symbols.
Format:

ALPHABETIC

Mp® [£d] |,<ADDKESS

XREF
Parameters:
fd is the file descriptor
receive the mape. If

omitted, the map is sent to

this

However, if a 1log device was not previously
specified, the maps are output to the

input device in interactive mode and PR:

batch mode. If the specified fd 1is

same as the log device,

bo'th .

ARLPHABETIC specifies that the map 1s to contain
symbols in alphabetical order.

ADDRESS specifies that the map 1is to contain
symbols in address ordere.

XRET specifies that the map is to contain all
names of the modules that reference

symbol.

Functional Details:

When the MAP command is entered, a build summary

this information is generated:

displays a map
the device to
parameter is

the 1log device.
command

in

not the

the map is sent to

all

all

the
each

map containing

@ The name of the file to receive the image load module

e The nunber of logical records the image load module

48-005 FOC RO1

w
!

contains

21



@ The size of each overlay which includes the size of its impure
and pure segments, common blocks, overlay tables, and total
size

@ A virtual address map containing the address and size of each
segment

@ A list of any undefined symbols

@ A list of any multiple defined symbols

® A list of any ambiguously defined symbols

Examples:

MAP PR:
The build summary is sent to the line printer.

An address mar listing contains the:

e name of =2ach symbol followed by an E (%XNTRY), D (DNTRY), P
(PROG), or C (COMMON),

e address of each symbol followed by a P (pure), I (impure), or
B (absolute), and

@ ecach overlay area grouped separately and in the order they

were defined.

Examples:

An

AP MAPFILE,ADDK

The address mep is sent to the file named MAPFILE.

alphabetic map listing contains the:

nare of each symbol followed by an I (<NTRY), D (DNTRY), P
(PRCG), or C (COMMGN), .

address of each symbol followed by a P (pure), I (impure), or

»

A (absolute), and

the name of the node containing the symbol.

22 48<005 FOO RO1



Examples:

MAP ,ALPHA

The alphabetic map is sent to the log device.

The cross reference map listing contains the names of all common
blocks and entry points followed by the name of the module in

which they were defined and a list of all modules that reference
them.

Examples:

MAP PR:,XREF

48-¢05 FOO RO1

w
!

23



- - -

3.14 NDCMD COMMAND

The NDCMD is an active command that disables execution of Link
commands imbedded in cbject modules to be included in the image
load module.

Format:

Functional Details:

The DCMD command re-enables execution of Link commands imbedded
in object modules. See section 3.4.

3-24 48-005 FQOO RO1



3.15 NLOG COMMAND
The no 1log (NLOG) command
terminates logginge.
Format:
NLOG

Functional Details:

Logging can be restarted by the

is

LOG

an environment command and

command.

See section 3.12.



3.

16

OPTION COMMAND

The OPTION command is a passive command that sets task options
that occur at execution time.

Format:

26

OPTION

NONF
= PARTIAL

]

([

s

48-005% FOO RO1



Parameters:

ETASK

UTASK

NAFPAUSE

AFPAUSE

RESIDENT

NRESIDENT

SESMENTED

NSEGMENTED

NROLL

ROLL

com

NCOH

CON

48-00% FOO RO

specifies that an executive task (e-task)
imajge 1load module is to be built. An e-task
must contain only positional-indepenient pure
and impure code and cannot reference sharable
segments.

specifies that a user task (u~task) image 1load
module 1is to be Dbuilt. If both task
parameters are omitted, UTASK is the default.

specifies that the task is to continue if an
arithmetic fault occurs during task executione.

specifies that the task is to pause if an
arithmetic fault occurs during task execution.
If both pause parameters are omitted, AFPAUSE
(arithmetic fault pause) is the default.

specities that the task is to remain in memory
when it is terminated.

specifies that the task is to be removed from
main storage when it is terminated. If both
parameters are omitted, NRESIDENT
(nonresident) is the default.

specifies that the pure segment of a task can
be shared when more than one copy of the task
is loaded (except e-tasks).

specifies that the pure segment of a task
cannot be . shared when more than one copy of
the task is loaded (except =2-tasks). If both
segmented parameters are omitted, NSEGYENTED
(nonsegmented) is the default.

specifies that a task cannot be rolled in and
cut of memory during task execution.

specifies that a task can be rolled in and out
of memory during task execution. If both roll
rarameters are omitted, ROLL is the default.

specifies that a task <c¢can 1issue intertask
communication.

specifies that a task cannot issue intertask
communication. If both communication
parameters are omitted, NCOM (no
communication) is the default.

cspecifies that a task can 1issue intertask
control.

3-27



NCON

NSVCPAUSE

SVCPAUSE

UNIVERSAL

NUNIVERSAL

DISC

NDISC

ACP

NACP

FLOAT

NFLOAT

DFLOAT

28

specifies that a task cannot issue intertask
control. If both <control paramsters are
omitted, NCON (no control) is the default.

specifies that all intertask communication and
control macros entered are ignored and task
execution continues.

specifies that all intertask communication and
control macros entered are ignored and task
execution is paused. If both pause parameters
are omitted, SVCPAUSE is the default.

specifies that a task can communicate with all
other tasks in the systenm.

specifies that a task cannot communicate with
all other tasks in the systen. If both
universal parameters are omitted, nonuniversal
(NUNIVERSAL) is the default.

specifies that a u-task has an extanded disc
privilege and can assign a bare disc. TIf the
disc is on-line, assignments for
shared-read-only (SR0) are allowed. All other
assignments are rejected and a message is
displayed. If the disc 1is marked off-1line,
all access privileges are allowed. See the
N0S/32 Programmer Reference Manual for a
description of the access privileges.

specifies that a u-task has no extend=zd disc
privileges. If both disc privileges are
omitted, no disc (NDISC) is the default.

specifies that a u-task has extended file
accass privileges and can specify an account
number instead of a file class for all f£file
maniJement functions,.

specifies that a u~task has no extended file
access rrivileges. If both access privilege
parameters are omitted, no file access
privileges (NACP) is the default.

specifies that a task <can execute single
precision floating point instructions.

specifies that a task cannot execute single
precision floating point instructions. If
both float parameters are omnitted, no float
(NFLOAT) is the default.

specifies that a task «can execute double
precision floating point instructions.

43-035 FOO RO1



NDFLOAT

SYSSPACE=

WORK=

ABSOLUTE=

IORLUCKS=

PRIORITY=

48-005 FOO RO1

specifies that a task cannot execute double
precision floating point instructions. If
both double float parameters are omitted, no
double float (NDFLOAT) is the default.

lu is a decimal number from 1 through 254
indicating the maximum quantity of logical
units that can be assigned to a task.

s is a 1- to 6-digit hexadecimal number
indicating the maximum amount of system space
that a task can use at run time. If this
parameter is omitted, X'3000' is the default.

min is a 1- to 6-digit hexadecimal number
indicating the number of bytes of main s*torage
to be added to the eni1 of a task for
workspace. Each time a number is specified,
it 1is added to the current minimum value. If
an asterisk (*) 1is specified, the minimun
value 1is reset to zero. If this parameter is
never specified, 80 Dbytes (X'50') is the
default. When a sharable segment is being
built, the default is 0.

max is a 1- to 6-digit hexadecimal number
indicating the maximum amount (kb)) of main
storage that can be added to the end of a task
for workspace. If this parameter is omitta=d,
Z5€6kb (X'400C0') is the default.

a specifies a 1- to 6-digit hexadecimal number
indicating the number of bytes of main storage
to reserve for absolute data. If this
rarameter is omitted, the default is 256 bytes
(X*100") .

b is a decimal number from O through 65,535
indicating the maximum number of I/0 control
blocks assigned to a task. Each I/0 control
block can <c¢ontain one gqueued proceed I/0
request. If this parameter is omitted, the
Aefault is one.

ipri is a decimal number from 11 +through 254
indicating the initial priority of a taske.
The initial priority must be less +than or
equal to the specified maximum priority. 1If
this parameter is omitted, the default is 128.

mpri is a decimal number from 11 through 254
indicating the maximum priority of a task. If
this rparameter 1s omitted, the default is the
value used for the initial priority.



— — e naman —— s

TSH=

ENTRY=

TEQSAVE=

XSVCA1

NXSVC1

status is a 1- to 8-digit hexadecimal number
indicating the 1initial setting of the status
portion of a task's task status word (TSW).
An OR operation 1is performed on all status
word specifications to form the £final status
vord for the image 1load module. If the
asterisk (*) is specified, the current TSW is
reset to zero. If this parameter is omitted,
the default is zero.

st adr is a 1- to 6-digit hexadecimal number
indicating the starting address of the address
portion of a task's TSW. This address
overrides the starting address at assembly or
compilation time and the starting address in
the ENTRY= nparameter if specified in a
previous OPTION command.

entry point symbol is the name of an entry
point in the root node where task execution is
to start. Specification of an entry point
overrides the starting address specified at
assambly or compilation time.

NONE specifies that no register contents are
saved and restored by 0S/32 when entering and
exiting a task event service routine. If this
parameter and the PARTIAL parameter are
omitted, ALL is the default.

PARTIAL specifies that only the <contents of
registers containing event data are saved and
restored when entering and exiting a task
event routine. If this parameter and the NONE
parameters are omitted, ALL is the default.

PLL specifies that all register contents are
saved and restored by 0S5/32 when entering and
exiting a task event service routine. If this
parameter, the NONE parameter, and the PARTIAL
parameter are omitted, ALL is the default.

specifies that the meaning of +the least
significant bit of an 3VZ1 function code being
s2t is that an extended options fullword
exists. This option must be specified to use
such features as gapless mode on. a 6250
magnetic tape drive or to control the use of
VFC on an individual I/0 basis.

specifies that the meaning of the least
significant bit of an SVC1 function zode being
set is that image I/0 is to be wused.

Currently, only the line printer and magnetic
tare drivers wuse this option. ITAM drivers
always operate as 1if XSVC1 4is in effect.
Other drivers always assume NXSVC1.

48-005 FOO RO



NVEC

INTERCEPT

NINTERCEPT

ACCOUNTING

NACCOUNTING

KEYCHECK

NKEYCHECK

Examples:

specifies that a task uses the vertical forms
control option in all I/0 operations. If VFC
is omitted, NVFC (no VFC) is the default.

specifies that a task does not  use the
vertical forms control option in all 1I/0
operations. If the VFC and NVFC parameters
are omitted, NVFC 1is the default. Vertical
forms control may still be invoked on a per LU
basis and, if XSVC1 is specified, on a per I/0
basis.

specifies that this task can intercept certain
SVCs of another task before the SVC goes to
the operating system for processing. If this
parameter is omitted, NINTERCEPT is the
default.

specifies that this task cannot intercept the
SVC of another task before the SVC goes to the
operating system for processing. If the
INTERCEPT and NINTERCEPT parameters are
omitted, the default is NINTERCEPT.

specifies that 0S5/32 task accounting features
are to be +anabled. If this parameter is
omitted, ACCOUNTING is the default.

specifies that 0S/32 task accounting features
are disabled. If the ACCOUNTING and
NACCOUNTING parameters are omitted, the
default is ACCOUNTING.

specifies that the task option keys are
checked for a privileged u-task or an E-task.
If this parameter is omitted, the default is
KEYCHECK.

specifies that no task option keys are checked
for a privileged u~-task or an e-task. Ii this
parameter and the KEYCHECK parameter are
omitted, the default is KEYCHECK.

OoP FL,RES,NAF,LU=10,WORK=3000,TS4=(,B020)

48-005 FOO RO1

— —— — — — sty et



3.17 OQVERLAY COMMAND

The OVERLAY command is an active command that defines an overlay
area and specifies a level.

Format:

flevel
OVERLAY overlay name ,1

Parameters:

overlay name is an 8-character alphanumeric string
specifying the name o9of the overlay to be
loaded into main storage. The name .ROOT is
reserved for the roost segment.

level is a decimal number from 1 through 256
specifying the number of overlays between the
overlay being defined and the root
(inzlusive). The number specified must be at
most one greater than the previous level. If
this parameter is omitted, the default is 1.

Functional Details:

This command is entered after all modules to be included in the

root segment have heen specified. Object modules to be
positioned in an overlay area are included following the OVERLAY
commande. The seguence of defining overlays must specify the

overlay and all its descendants before defining other overlays at
the same level. Overlaid tasks generated by Link result in
automatic 1loading of overlays (see Section Ud.4). However,
user-controlled loading of cverlays is done by using SVC. 5. See
the 0S/32 Application Level Programmer Reference Manual.

w
|

32 48-005 FOO RO1



Examples:

INCLUDE ROOT.OBJ
OVERLAY ONE,1
INCLUDE A.ORJ

OVERLAY THREE,2
INCLUDE D.OEJ
INCLUDE E.OBJ
OVERLAY FOUR,2
INCLUDE F.OBJ
OVERLAY TWO,1
INCLULCE B.OBJ
INCLUDE C.OBJ
OVERLAY FIVE,2
INCLUDE G.OBJ

48-0C5 FOO RO1



——— - — - - - -

3.18 PAUSE COMMAND

The PAUSF commard is an environment

linkage editor.

Format:

PRUSE

Functional Details:

The linkage editor can be continued
command.

command

by

entering

that pauses

the

the CONTINUE

48-005 FGO

RO1



| POSITION |

3.19 POSITION COMMAND

The POSITION command is a passive command that moves common
blocks from their original location closer to the root segment
and places thew in a node that will not be initialized when an
overlay is loaded.

Format:

Eame1 ,...,nameé] nodename
POSITION COMMON= , I0=

* «ROOT

Parameters:

COMMON= name is a 1- to B8-character alphanumeric
string specifying the name of the common block
to be moved. If an asterisk (*) is specified,
all common blocks are moved.

TO= node name is a 1- to 8-character alphanumeric
string specifying the name of the node to
which the blocks are to be moved. If this

parameter is omitted, the blocks ar2 moved to
the overlay node in which the POSITION ccmmand
is encountered. If .RO0T 1is specified, the
plocks are moved to the root segment.

Functional Details:

The placement of common blocks in a task 1is determined by the
location in which the blocks are referenced. A common block is
initially placed no closer to the root segment than any
partiicular reference to the common block.

Examples:

ES TASK

INCLUDE RQOT

POSITION COMMON=(A,B)
OVERLAY OVLY1,1
INCLUDE SURAM

INCLUDE SUBR?2

OVERLAY OVLY2,1
INCLUDE SUE3

48-00& FOO RO1

w
1

35



3.20 REWIND COMMAND
The REWIND command is an environmnent commnand that rewinds a
magnetic tape or contiguous file.
Format:
REWIND fd

Parameters:

fd is the file descriptor of the devize +to be
rewound.

Examples:

RE MAG1:

3-36 48-005 FOO RO1



3.21 SHARED COMMARND

The SHARED command is an active command that specifies the name
of the sharable segment to be referenced by the image load
module.

Format:

SHARED [fd] [/ NAME=segname]

p—

m0000
,ACCESS= | RE > , ADDRESS=

*

RW

RWQ

[§IRUCTURE=(name1 [/sizeq] E...,namen[?sizen:ﬂ>]

[, ZE=([min nax]| \)]

In
-

Parameters:

fd is the file descriptor of the sharable
segmente. If this parameter is omitted, the
default 1is a non-established task common
cegnent defined by the operator TCOM command.

NAME= segname is a filename.ext specifying the name
of the sharable segment. If this parameter is
omitted, fd must be specified, and the default
is the name assigned to the sharable segment
when it was created. This name 1is matched
against the name of any sharables segments
already in wmain storage when the task 1is
lcaded. If a sharable segment with this name
is not found when the task 1s loaded, the
segment name 1s treated as a file descriptor
and is used to load a sharable segmente.

ACCESS= R specifies that the access privilegs of the
sharable segment allows access of data within
the sharable segmente. Fxecution or

modification of data is not allowed.

48-005 FOO RO1 3-37



3e

ADDRES

STRUCTURE=

0

=~

n

n

.

1%

F specifies that the access privilege of the
sharable segment allows task execution within
the sharable segment.

RE specifies the access privilege of the
sharable segment allows access to data and
task execution within the sharable segment.
Modification of data is not allowed. If the
ACCESS= parameter is omitted, default is RE.

RW specifies that the access privilege of the
sharable segment allows access to data and
rodification of data within the sharable
segment. Task execution is not allowed.

RHE specifies that the access privilege »f the
sharable segment allows access to data,
modification of data, and task execution
within the sharable segment.

mO0C00 is the starting address of the sharable
segment. If the sharable segment specifies a
file descriptor and the sharable s=2gment is
not address independent, the specified address

must match the address specified in the
sharable segment. If this parameter is
omitted or not specified in the sharable
segment, Link assigns an address to the

sharable segment.

nama2 is an 8-character alphanumeric string
specifying +the name of the task common block
to be placed in the sharable segmente.

size 1s a hexadecimal number specifying the
length of the task common block. This number
nust he greater than or equal to the size of
the common block. If this number is smaller
than the current size of +the task common
block, a message is displayed and the size of
the task common block 1s used. If this
parametsr is omitted, the default is the size
of the task common blocke.

min is a 1- to 6-digit hexadecimal number
specifying the minimum number of bytes of main
storage to he occupied by the sharable
segment. If this parameter and the fd

parameter are omitted, the default is the
total number of bytes of all commdon blocks
specified in the STRUCTURE= parameter or the
size of segment as éestaplished. If +this
parameter 1is omitted and the fd parameter is
specified, the default is the number of Dbytes
specified when the sharable segment was built.

48-005 FOO RO1



max is a 1- to 6-digit hexadecimal number
specifying the maximum number of bytss »f main
storage to be occupied by the sharable
segment. If +this parameter and the fd
parameter are omitted, the default is the
total number of bytes of all common blocks
specified in the STRUCTURE= parameter. 1If
this parameter is omitted and the fd parameter
is specified, the default is the number of
bytes specified when the sharable segment was
built.

Functional Details:

When the task referencing the sharable segment is loaded, the
user-specified minimum and maximum values are compared with the
actual size of the sharable segment. If the actual size 1is
smaller +than the specified minimum value, a message is displayed
and the task is not loaded. If the actual size is 1larger than
the specified maximum value, only the specified maximum value is
available. If the sharable segment references other sharable
segments, these references are automatically included in the
image load module. However, these secondary references need not
be declared again by using the SHARED command.

Examples:

ESTABLISH SHARED, NAME=SEGMENT.ACC,ACCESS=RW
INCLUDE COHNYX

BUILD COMX

END

ESTABLISH TASK

SHARED COMX,STRUCTURE=(COMX)
INCLUDE PROG1

BUILD PROG1

END

ESTABLISH SHARED, NAME=SEGMENT.ACC,ACCESS5=RE,ADDRESS=EQ0D0
INCLUDE LIB1

INCLUDE LIB2

BUILD LIBX

END

ESTABLISH TASK
SHARED LIBX
INCLUDE PROGA1
BUILD PROG1
END

48-005 FOO RO1 3

39



-——— - - ——

3.22 TITLE COMMAND

The TITLE command is an environment command
heading to be printed at the top of all maps.

Format:

TITLE title

Parameters:

that specifies the

title is a 60-character alphanumeric string
specifying the title to be printed at the top
of all maps. If the title contains a blank,
comma, or semicolon, 1t must be enclosed
within single quotation marks.

Functional Details:

The TITLE command remains in effect until
command is specified.

Examples:

TI PERKIN-ELMER
TI °*DEPARTMENT 3086"

a subsequant TITLE

48-035 FOO RO1



3.23 VOLUME COMMAND

The VOLUME command is an environment command that specifies the
volume to be used by the linkage editor when a volume is omitted

in a file descriptor.
Format:
VOLUME [voln]

Parameters:

voln is the name of the volume to be used by the

linkage

editor as the default. If tais

parameter 1is omitted, the current default

volume
device.

Functional Details:

The VOLUME command remains
command is specified.

Examples:

VO M3090

48-005 FO0O RO1

is displayed on the <command input

in effect until a subseguent VOLUME



3.24 WFILE COMMAND
The WFILE command is an environment command that writes a
filemark on a magnetic tape or contiguous file.

Format:

4EILE fd [[n]

Parameters:
£d is the file descriptor of the device to which
a filemark is toc be written.
n is a decimal number specifying the number of

filemarks to be written. If this parameter is
omitted, 1 is the default.

Examples:

WF MAG1:,?

3-072 48-005 FOO RO



CHAPTER 4
BUILDING EXAMPLES OF IMAGE LOAD MODULES USING LINK

4.1 INTRODUCTION

This chapter explains the basic concepts required to wuse the
linkage editor through examples showing sample command build
segquences. See Chapter 3 for detailed information on the Link
commands.

4.2 BUILDING A SIMPLE TASK IMAGE LOAD MODULE

This example includes an object module with no external
references called MOD1.CBJ, produced by the CAL Assembler, and
builds a task image load module. For example:

INCLUDE MOD1
MA? PR1:
BUILD MOD1
END

The INCLUDE command specifies that all the object modules in the
input file MOD1.0BJ Aare to be included in the build. The file
extension <0BRJ is the default extension for the INCLUDE command
which is an active command and is executed immediately.

The MAP command specifies that a build summary is to be printed
on the output device (PR1:). The MAP command is a passive
cormand and is executed only when the BUILD command is entered.

The BUILD command builds the image load module and stores it 1in
file MOD1.TSKe The file extension .TSK is the default extension
for the BUILD command. The BUILD command is an active command
and is executed immediately.

The END command is an active command and terminates the 1linkage
editor.

48-005 FOC RO1 4-1



4.3 BUILDING MORE COMPLEX TASK IMAGE LOAD MODULES

This section discusses building COBCL and FORTRAN task image load
modules, using subroutine libraries, maps, ths OPTION command,
and object modules containing imbedded Link commands.

4,3.1 Building a COBOL Task Image Load Module

This example includes an object module <containing external
references called MCD2.083J produced by the COBOL compiler. The
task image 1l1load module to be built is to include the
single-precision floating point capability. A map 1is to be
generated listing the names and 1locations of all modules and
entry points in address order.

INCLIUDE MOD2
LIBRARY COBOL.LIE
OPTION FLOAT

MAP PR1:,ADDRESS
BUILD MOD2.TSK
END

The INCLUDE command specifies that all the object modules in the
input file MOD2.0BJ are to be included in the build.

The LIBRARY command specifies that the COBJL run time 1library
file COB0L.LI® 1is to> be searched, and any routines that contain
entry voints matching unresclvad external references are to be
included in the task image load module. The LIBRARY command is
a passive command and causes the specified library to be searched
when the build process occurs.

The OPTION command specifies that the single-precision floating
point canmability is to bhe included as part of the task image 1lnad
module.

The MAP command specifies that a build summary and a listing of
the nares and locations of all modules and entry points in
address order are to be dgenerated.

The RUILD command builds the task image load module and stores it
in file MUD2.T3He

The #ND command terminates the linkage editor.

4.,3.2 Building a FORTRAN Task Image Load Module

This example includes an object module containing external
references <called MOD3.03J produced by the 0S/32 FORTRAN VII
Compiler and builds an image load module. The image 1oad module
to be bhuilt 1is to include Dboth single and double precision
floating point capabilities, and additional workspace for the

b-2 48-005 F00 RO



user and FORTRAN run time libraries. A map is to be generated
listing the names and locations of all modules, common blozks,
and entry poiuts in alphabetical order. Rlso a cross reference
of all entry points and the modules referencing them 1is to be
generated.

INCLUDE MOD3

LI3RARY USKERLIB,F7RTL

OPTION DFLOAT,FLOAT,WORK=A0D
MRP PR1:,ALPHARETIC,XREF
BUILD MOD3

END

The INCLUDE command specifies that the main  task in the input
file MOD3.083J is to be included in the build.

The LIBRARY command specifies that the user library file USERLIB
and FORTRAN run time library file F7RTL are to be searched in the
order that they are named and that any routines containing entry
poirts matching unresolved external references are to be included
in the task image load module,

The OPTION command specifies that the single- and
doulble-precision floating point capabilities and additional
workspace for the run time libraries are to be included as part
of the task image load module.

The MAP command specifies that a build summary and an
alphabetical 1listing of +the namas and locations of all modules
and entry points are to bhe genarated. A cross reference of all
entry points and modules referencing them 1is also to be
generataed.

The BUTILD command builds the task image load module and stores it
in file MOD3.TSK and the END command terminates the 1linkage
editor.

4.3.3 Building a COBOL Task Image Load Module with Link
Commands Imbedded in Object Modules

This example includes an object module, 4M0ODU4.0BJ, containing
external references and imbedded Link commands produced by the
COROL compiler, and builds an image load module. The image 1load
module to be built will 1include single- and double-precision
floating point capabilities and additional workspace for the user
and COBOL run time libraries. An alphabetical map will be
generated 1listing the names and locations of all modules, common
blocks, and entry pointse. LRlso a cross reference of all entry
points and the modules referencing them will be 3enerated.
Execution of all imbedded Link commands is disabled in MOD4 Dby
the NDCMD command and enabled by the DCMD command in the library
modules. Multiple ccmmands are entered on one line separated by
a <cemicolon, and comment lines are used by preceding the comment
with an asterisk.

Lg-0Cc5 FOO RO1 4-3



NDCMD; *IGNCRF IMBEDDEL COMMANDS IN MODUY

INCLUDE MOD4;LIBRAKRY USERLIB,COBOL.LIB

OPTION DFLOAT,FLOAT,WORK=A00Q

MAP PR1:,ALPHABETIC,XREF

DCHD; *PROCESS IMBEDDED COMMANDS IN LIBRARY MODULES
BUILD MOD4

END

Link accepts passive conmmands that have been compiled or
assembled into an object module. These commands are treated as
if they occurred at the point where the module is included.
Therefore, passive commands imbedded in object modules referenced
by an INCLUDE command are treated as 1f they were entered
irrediately after the INCLUDE command. Commands imbedded in
object modules referenced by a LIBRARY command are treated as if
they were entered immediately before the next BUILD command. The
NDCMD command causes all subsequent imbedded commanis to be
ignored and the DCMD command reenables this feature.

4.4 BUILDING OVERLAID TASK IMAGE LOAD MODULES

This section discusses building overlaid task image load modules
using subroutines, root segments, overlay areas, root nodes, and
overlay nodes. This overlay feature allows a task to be broken
into sections so jt+t can be executed using less main storage than
its total size.

4.4.1 Building a Simple Overlaid Task Image Load Module

This example includes an object module called MOD5.0BJ which
consists of a main task that calls three subroutines (SUBA, SU8B,

and SURC). These subroutines do not reference each other and
overlay 10kh of the same main storage area if each subroutine 1is
lcaded only when needed. The main task occupies 10kb of main

storage, and the largest overlay occupies 10kb of main storage
which 1is a total of 20kb for the whole task. This task wouid
occupy 4Ckd of main storage without using the overlay feature.
The MAP command specifies that a build summary and a listing of
the names and locations of all modules and entry points in
address order are to be generat=2d. It is assumed that all the
routines are contain<d in file M3P.OBJ.

INCLUDE M300:MSP.ORJ,MOCS
OVERLAY A

INCLUDE ,SUBA

OVERLAY B

INCLUDE ,SUBB

OVFRLAY C

INCLUDE ,SUBC

MAP PR1:,ADDRESS

BUILD MOD5

END

U-4 48=«005 FOO RO1



The INCLUDE command specifies that the object module MOD5.0BJ in
the input file MSP.OBJ is to be included in the build. Because
no overlays have been specified by the OVERLAY command, MOD5.0BJ
becomes the main task (root segment) and is placed in the root
node.

The first OVERLAY command defines an overlay area nameil A. The
INCLUDE command specifies that the object module called SUBA is
part of overlay A and will be automatically 1loaded intn =wmain
storage if it 1is not already loaded when H0ODS calls SUBA. The
overlay can be explicitly loaded by issuing an SVC 5 in assembly
language or CALL IFETCH in FORTRAN.

The second OVERLAY command defines an overlay area named B. The
INCLUD® command specifies that the object module callad SUBRBR is
part of overlay B and will be automatically loaded into the same
maln storage area bpreviously occupied by overlay A, if SUBB is
not already loaded when MOD'S calls it.

The third OVERLAY and INCLULE commands define an overlay area
named C and includes the object module called SUBC as part of
overlay C.

The MAP command specifies that a build summary and a listing of
the names and locations of the main task (root segment) and all
subroutines (overlay areas) in address order are to be generated.
A map of 2ach overlay area is also produced.

The BUILD command tuilds the imege load module called MOD5.TSK
which consists of & root segmant (Y40D%.0BJ), an overlay area
large encugh to contain the largest overlay (A, B, and <€), and
the subroutines (SUBA, SUBE, and SUBC)., The END commard
terminates the linkage eaditor.

4.4.2 Building a More Complex Overlaid Task Image Load Module

This exampls includes an c¢biect module called £file LFP.0OBJ.
which consists of a main task that calls two subroutines (ST3A
and SURR). Subroutine SUBA calls two more subroutines (SURA1 and
SUBA2). Subroutine SUBB alsc zalls two more subroutines (SUBBH1
and SUBR2). In addition to SUBA and 35UBB overlaying each other,
SUBA1 and SUBA2 are to be overlaid when SUBA is in main storage,
and SUBB1 and SUEB2 are tn be overlaid when SUBR is in main
storage. This overlay process can be accomplished by using
another 1level of overlay areas. Figure U4-1 illustrates the
overlay structure for this examrle.

ug-co0c Fo0 RO1 4=5



- ————— - —— - -

| MOD®6 |

—— - —— - —— -

- —— - - - e wm e - - -

Level | SUBA | | SUBB |
1 | (node A) | | (node D) |
| |
| |
! |
______ U FE—
! ! | |
Level | SUBA1 ] | SUBA2 | | SUBB1 | | SUBB2 {
2 | (node B) | | (node C) | | (node E) | | (node F) |

Figure U4-1 Sample Overlay Structure

AR path is defined as a set of nodes (a group of routines loaded
at one time is a node), one at each level, each of which is a
descendant of the node at the previcus level. For example, the
root node, node D, and node ¥ form a bpath. Only nodes in the
same path may be in memory at the same time and, therefore, a
routine may only call routines in nodes which are 1in the same
path as the node containing the calling routine.

The overlay nodes may be different sizes and the total overlay
area required at any one time is the total size of all the nodes
in the current path. The size of the overlay area for +the task
is determined by the path with the largest total size.

It is assumed that all the subroutines are contained in file
LFP.OBJ. Utility routines called in the task are in USERLIB.OBJ.

INCLUDE M300:LFP.OBJ,MOD6
OVERLAY A,1
INCLUDE ,SUBA
OVERLAY R,2
INCLUDE ,SUBA1
OVERLAY C,2

L-¢ 48-005 FOO RO1



INCLUDE ,SUBA2
OVERLAY D,1
INCLUPE ,SUBR

OVERLAY E,2

INCLUDE ,SUBB1

OVERLAY F,2

INCLUDE ,SUBB2

LIBRARY USERLIB
MAP PR1:,ADDRESS
BUILD MODe6

END

The INCLUDFE command specifies that the object module MOD6 in the
input file LFP.OBJ is to be included in the build. MOD6 becomes
the main task (root segment)e.

The first OVERLAY command defines an overlay area named A with a
depth 1level of one. The INCLUDE <command specifies that the
object module called SUBA is part of overlay A. All descendants
of overlay A must be specified before any other overlays with a
depth level of one are defined.

The second and third OVERLAY commands define overlay areas named
B and C with a depth level of two which indicates that these
overlays are descendants of overlay A.

The fourth OVERLAY command defines an overlay area named D with
a depth level of one.

The fifth and sixth OVERLAY commands define overlay areas named
E and F with a depth level of two which indicates that these
overlays are descendants of overlay D.

The LIBRARY command specifies that the user library file USERLIB
is to be searched and any routines containing entry points
matching unresolved external references are to be included in the
overlay structure being built. If a particular overlay area
contains external references tc a routine in the user library, a
copy of that routine is placed in the referencing overlay area
unless the referencing overlay area is a descendant of an overlay
area that already contains a cory of that particular routine.

If modules SUBA1 and SURA2 reference a routine called TAG located
in the user library, a copy of routine TAG is included in overlay
areas B and C. However, if modules ©SUBB and SUBB1. reference
routine TAG, a copy of the routine is only included in overlay
area D. If the main task MCD6 references routine TAG, a copy of
the routine 1is only included in the root segment regardless of
any other overlay areas referencing it. However, if two <copies
of a routine are to be included in two overlay areas (one being
a descendant of the other), that routine must be explicitly
included by the INCLUDE command.

The MAP command specifies that a build summary and a listing of
the names and locations of the main task (MOD6) and all

48-005 FOO RO1 4=7



subroutines (SUBA, SUBA1, SUBA2, SUBB, SUBB1, and SUBB2) in
address order are to be generated.

The BUILD command builds the image load module which consists of
the root segment, overlay areas, and the subroutines. The END
cormand terminates the linkage editor.

4.4.3 Moving Common Blocks

Normally, the placement of common blocks in a task is determined
by where they are referenced. For example, if ALPHA is a common
block referenced by routines in a particular node, ALPHA is
included in that node.

If ALPHA is referenced by routines in more than one overlay node,
ALPHA is included in the numerically highest level node of the
path in with each node references ALPHA. This is subjsct to the
restriction that ALPHA is not referenced in a numerically lower
level nodes than the one in which it is placed.

If SUBA1 and SUBA2 both reference ALPHA, it is placed in node A.
If routines SUBA2 and SUBB1 reference ALPHA, ALPHA is placei in
the root node.

In some cases, it is desirable to place a common block in a node
other than the one in which it would normally be placed which is
wvhere it is referenced. For example, placing a common block in
the root node prevents the data in it from being reinitialized
each time the node in which it is locatad is loaded.

This example moves a common block called BETA, which is
referenced by routines in modules SUBA2 and SUBB1 in Figure 4-1,
to the root node in the overlay structure by using the POSITION
commande.

INCLUDE M300:LFP.OBJ,MOCS6
OVERLAY A,1

LIBRARY USERLIB
POSITION COMMON=BETA,TO=.RO0OT

END

This command specifies that the common block named ALPHA is to be
placed in the root node. Only one copy of a <common block <can
occur in a task and an error results if an attempt is made to
position a common block in a node that is at a numerically higher
level or not in the same path as the node in which it would
normally be placed.

4-8 48-005 FOO RO1



4.5 BUILDING SHARABLE SEGMENTS

Sharable segments, such as blockdata modules and run time
libraries, must be separately built by Link to be used or
referenced by established tasks. This example includes two
blockdata object modules <called BDALPHA.OBJ and BDBETA.O0OBJ to
initialize common blocks called ALPHA and BETA.

This example also includes an object file called F7RTL.0OBJ to be
included in a second build. The shared segment to be built is to
include 1local and external entry points and additional workspace
for the FORTRAN run time library.

ESTABLISH SHARED,ACCESS=RW,NAME=COMMONS
INCLUDE BDALPHA.OBJ

INCLUDE BDBETA.OBJ

EXTERNAL ALPHA,BETA

BUILD COMMONS.SEG

*THIS COMMAND SEQUENCE STARTS THE SECOND BUILD
ESTABLISH SHARED,ACCESS=RE,ADDRESS=F0000
INCLUDE F7RTL.OBJ

LocaL. .0I1,.D0,.TGD,.TASKID, .HYDEX, .HYEXP
OPTION WORK=AO0O0

BUILD F7RTL.SEG

END

The first ESTARLISH command specifies that the sharable segment
to be built is called COMMONS.SEG with read/write access
privileges. The ACCESS and NAME parameters provide information
that is verified against the parameters specified in a
referencing task's SHARED command or the defaults 1if no SHARED
command 1is specified in a referencing taske. For example, if a
subsequent SHARED command in a referencing task specifies
read-only access and a name of COMMONS, the access is allowed
because it is a subset of the maximum access specified in the
previous example and the name COMMONS matches the name specified
in the previous example. A reqguest for executs access would be
rejected.

The first two INCLUDE commands include the blockdata object
modules called BEDALPHA.OBJ and BDBETA.OBJ.

The EXTERNAL command specifies that the two common blocks ALPHA
and BETA are tc be known outside the sharable segment. .

Normally, common blocks are considered local. Note that =either
the STRUCTURE parameter in a subsequent SHARED coamand in a
referencing task or the EXTERNAL command ,not both, are required
to match up the common references in a task with the initialized
commen blocks in the sharable segment named COMMONS. The
EXTERNAL command is passive.

The first BUILD command builds the sharable segment in file
COMMONS.SEG.

48-005 FOO RO1 b-9



The second ESTABLISH command specifies +that a new sharable
segment 1is to be built called F7RTL.SEG with read-execute access
privileges only and a starting address of X'F0000"' within the
task referencing it. The ADDRESS parameter specifies that this
segment is to start at FO00O0 in the address space of any task
which references it. Segments that do not specify an address in
either the SHARED command of +the referencing task or the
ESTABLISH command of the segment are address independent and may
be allocated anywhere within the address space of tasks which
reference then.

The third INCLUDE command includes all +the FORTRAN run time
library routines 1in F7RTL.CBJ in the sharable segment to be
built.

The LOCAL command defines that the entry points .DI, .DO, .TGD,
«TASKID, +HYDEX, and .HYEXP are local to the segment and cannot
be referenced by tasks referencing the sharable segment.

The OPTION command specifies that addiitional workspace for the
run time 1library is to be included in the sharable segment when
any task references this segment.

The second RUILD command builds the sharable segment and stores
it in file F7RTL.SEG. The END command terminates the linkage
editor.

Sharable segments can also be created by the operator at the
system console if it is to be used as an area for common blocks.
These sharable segments do not reguire loading into main storage
or initialization before they can be referenced by other tasks.

4.6 BUILDING A TASK TIMAGE LOAD MODULE REFERENCING SHARABLE
SEGMENTS

Link provides the capability of sharing one copy of a1 segment
containing code and/or data areas among multiple tasks. In
particular, shared common blocks allow data to be shared or
communicated among tasks. Shared copies of run time libraries
allow more efficient use of main storage.

This example builds a FORTRAN task. MOD7.0BJd is a FORTRAN
program that references a sharable segment containing two common
blocks called DZLTA and GAMMA and the FORTRAN run time library.

INCLUDE MOD7

SHARED COMMON.SEG,NAME=COMMONS,ACCESS=R,
CONTINUE>STRUCTURE=(DELTA/1000,GAMHA)
SHARED F7RTL.SEG

MAP PR1:,ADDRESS

BUILD MoD7

END

u-10 48-005% FOO RO1



The INCLUDE command specifies that the object module MOD7.0BJ is
to be included in the build.

The first SHARED command specifies that COMMON.SEG is the file
containing a sharable segment called COMMONS which consists of
the two common blocks, DELTA and GAMMA. The access privileges
are read-only. Because a comma is the last character entered on
the line, the CONTINUE> prompt is displayed in interactive mode
and the remaining parameters are enterei. The STRUCTURE
parameter specifies that the first 1000 bytes of the segment
COMMONS is to be allocated for the common block DELTA, regardless
of the size of DELTA in the program. The area after the first
1000 bytes is to be allocated for the common block GAMMA. The
parameters in the SHARED command are compared against the
information in the file COMMON.SEG. Any information not provided
by the parameters is taken from the file or defaulted. At run
time, the pre-initialized segment is loaded from the file.

The second SHARED command specifies that another shared segment
is to be . loaded from the file F7RTL.SEG. All of the other
parameters default to information contained in the file.

The MAP command specifies that a build summary and a listing of
the names and locations of all mwmodules and entry points in
address order are to be generated.

The BUILD command builds the task image load module and stores it
in the file MOD7.TSK. The sharable segments are referenced to
resolve external references and to determine the placement of
common blocks. The sharable segments are stored as separate
files and are not included as part of the load module. The END
command terminates the linkage editor.

4,7 BUILDING AN OPERATING SYSTEM IMAGE LOAD MODULE

This example includes an obhject module called MTSYSTEM.OBJ with
external references produced by the Library Loader and builds an
image load module. A map is to be generated listing the names
and lccations of all sywmbols, tasks, and entry points in
alphabetical and address order.

ESTABLISH 0OS

INCLUDE MTSYSTEM.OBJ

MAP PR1:,ADDRESS,ALPHABETIC
BUILD 0S5S32R0n.009

END

The ESTABLISH command specifies that the image load module to be
built is to be an operating system load module,

The INCLUDE command specifies that the input file ANTSYSTEM.O0BJ
contains the object module to be included in the build.

48-005 FOO RO1 5-11



The MAP command specifies that a build summary and a listing of
the names and locations of all modules and entry points in
alphabetical and address order are to be generated.

The BUILD command builds the operating system image 1load modnle
and stores it in the file 0S32R0On.000 which can be loaded into
main storage by the BOOT or LSU. The END command terminates the
linkage editor.

4 12 48-005 F0O RO1



APPENDIX A
LINK COMMAND SUMMARY

BEILE fd [,n]

EUILD €4
DCHD
END

IASK

03 ({
ESTABLISH R

mo0O00
SHARED [,ACCEsS=¢ RE )][,ADDRESS=
\ *
RH

tRWE}

Lﬁﬁvﬁrsegment]
EXTERNAL common block name,[,...,common block namen]
FEILE £d [, ]

*

mciule,} {modulan

INCLUDE [£d]{]., { },...,modulex

LLHRARY £d,[reee, fdn]

| g

CCAL entry point, E...,entry pointn]

48-005 FOO RO1 | : R



ALPHABETIC

[( ETASK)] [ (NAEPAUSE) ]

min max

Im

NONE
QCSAVE= PARTIAL

{I TERCEPT
’

a
.AQSOLUTE.{_}_
100

§EQMENTED}]
NESEGHENTRD

48-005 FOO RO1



level,
CVERLAY overlay name |,

AUSE

oS _ (:name1 ,..-,namen] _
POSITION COMMON= ,T0=J

*

Iro

nodename}]

SHARED [fd] [[NAME=segnanme]

R

E

-~ m0000
+ACCESS= RE , ADDRESS=

*

RYW

RWE

b —

[,gIRUCTU.R E= (name ; \[/-size] E «.,nameg [/size{'])]
[,_IZE= ([min Emax]])]

TITLE title

92]

VOLUME [voln]

WEILE £d [,n]

48-005 FOO RO1






APPENDIX B
LINK MESSAGE SUMMARY

ACCESS PRIVILEGE CONFLICT IN SHARABLE SEGMENT

Access privileges of a segment being referenced should be a
higher privilege level than the access privileges specified
when the segmnent was defined.

ADDRESS OVERFLOW AT xxxxXxX

A halfword relocatable address was larger than 6u4kbe.

ATTEMPT TO POSITION x IN A DIFFERENT PATH

An attempt was made to position a common block that is in a
different path than the node referencing it.

ATTEMPT TO POSITION x IN LOWER LEVEL NODE

An attempt was made to reposition a common block program in
a lower level ncde.

BUILD NOT SUPPORTED ON THIS DEVICE

Other than an indexed or contiguous file was specified for
building the image.

CHECKSUM ERRCR FILE: x MCDULE: y RECORD: =z

An invalid checksum was detected while reading an object
file.

COMMAND NOT PERMITTED

Command is not valid for the type of build or not permitted
in a DCMD statement.

u8-005 FOO RO1 8-1



COMMON BLOCK x ENCOUNTERED IN MORE THAN ONE SHARABLE SEGMENT

The same commonh block was specified in more than one SEGMENT
command.

COMMON BLOCK x, NOT REFERENCED

The common block named was never referenced.

COMMON BLOCK x SPECIFIED IN POSITION COMMAND IS PART OF SHARABLE
SEGMENT

An attempt was made to reposition a common block that was
part of a sharable segment by using the POSITION command.

CONTINUATION NOT PERMITTED

An attempt was made to continue a command imbedded in the
object code.

ENTRY POINT x SPECIFIED IN ENTRY OPTION NOT FOUND

The FENTRY parameter of the OPTION command specified a
nonexistant entry point or an entry point in other than the
root node.

ENTRY POINT x, SPECIFIED IN LOCAL COMAND, NOT DEFINED

The entry point named was never defined.

ESTABLISHMENT ABORTED

A serious error occurred, and the 3image module <cannot pe
. built. Link is cleared as if a maodule was built.

EXTEENAL REFERENCE TO OVERLAY CONTAINS OFFSET AT XxXXXXX

An external reference with offset cannot be resolved Dbecause
the corresponding entry point is an overlaye.

EXTRA RIGHT PARENTHESIS

Fither an extra right parenthesis or a missing left
parenthesis condition occurred.

B-2 48-005 F0OO RO1



fd NOT FOUND

An assignment error occurred while Link attempted +o assign
the specified file.

INCORRECT PARAMETER LENGTH

The length of the value of an operand was longer or shorter
than expected.

INSUFFICIENT WORK SPACE

There was nct erough workspace for Link, It will return to
command mode and clear itself as if an image had been built.

INVALID CHARACTERS 1IN NAME

Invalid characters in an entry point, common block, or
overlay node name were encountered.

INVALID COMBINATION OF OPERANDS

A particular combination of operands was invalid.

INVALID COMMAND

An invalid command was specified.

INVALID DELIMITER

A delimiter that was unknown was found at the end of a
paranmeter or where a parameter shauld have been.

INVALID FILE-DESCRIPTOR

A syntax error occurred in the fd entered.

INVALID KEYWORD

Misspelled keyword.

INVALID NUMERIC VALUE

A numeric value was expected but was not encounteredi.

48-005 F0O RO1 B-3



INVALID PARAMETER
An invalid varameter was specified in a command.

INVALID POINTER TO LOCATION xxxxxx ENCOUNTERED IN

REFERENCE CHAIN FOR xxxxxx AT LOCATION xxxxxx

THIS INVALID POINTER ERROR OCCURRED IN

- FILE: vol:filename.ext/a - MODULE: module

- RECORD: number - BYTE number
LINK encountered an invalid link in an address chain. When
LINK resolves a chain of references, it traces back through
the chain, 1link by 1link, replacing the chain pointer with the
resolved address of the object. If a chain has a forward
pointer within a module or if a pointer indicates an area
outside of the module, LINK ceases to follow this <chain,

leaving the remainder of the chain unresolved, and prints the
error message above.

ITEM NOT PERMITTED IN E-TASK FILE: x MODULE: y RECORD: =z
BYTE: m

The loader item encountered 1is not allowed in an e-task
establishment,

MISSING PARAMETER

A required parameter was not specified.

MISSING RIGHT PARENTHESIS

A left parenthesis was encountered for which no matching
right parenthesis was encountered.

MODULE INCOMPLETE FILE: x MODULE: y

An end-of-file condition was detected before the
end-of-program item in an object module.

MODULE xxxxxxx NOT FOUND

A module specified in an INCLUDE command was not founad.

MORE THAN 132 SEGMENTATION REGISTERS REQUIRED

More than 192 segmentation registers are regquired.

B-4 48-005 F00O RO1




n MULTIPLY DEFINED SYMBOLS
Fntry points were encountered that were defined more than
once in the same pathe.

n UNDEFINED EXTERNAL SYMBOLS
This message is output at build time if any standard external
symbols remain unresolved.

*** nnn UNDEFINED WEAK EXTERNAL SYMBOL(S)**x*
This message is output at build time if any weak external
symbols remain unresolved.

name SPECIFIED IN POSITION COMMAND NOT FOUND
AR common block that was specified on a POSITION command could
not be found.

NUMERIC VALUE OUT QOF RANGE
A numeric operand was greater than +the maximum permissable
value or less than the minimum permissable value.

OBJECT CODE ERROR (n) FILE: x MODULE: y RECORD: =z BYTE m
An object code error cccurred. If n=1, an invalid object
code 1item exists in object record. If n=2, the object code

item overflows record. If n=3, a load program address item
was expected but not encountered.

OVERLAY DEFINED OUT OF ORDER

An OVERLAY command specifies a level that is not consistent
with the rules for defining overlayse.

RECORD LENGTH FOR MAP LESS THAN 64 DEVICE/FILE

The device or file specified for the output of the maps has
a record length less that 64 bytes.

SEGMENT AT x OVERLAPS NEXT SEGKENT
An impure, pure, or sharable segment's end addiress was

greater than the end address of another segment. See the
build summary map for the names of the segments.

48-005 FOO RO1 B-5



SEQUENCE ERROR FILE x MODULE: y RECORD: VA
A sequence number error ﬁas detected while reading an object
module.

TOO MANY OPERANDS

More operands than were expected were encountered.

VIRTUAL SYMBOL TABLE SPACE LIMIT EXCEEDED

More than 256K symbol table space required.

WARNING: ABSOLUTE SPACE LESS THAN 100

Less than 100 byvytes of absolute code was reserved for the
UDL.

WARNING: MORE THAN 16 SEGMENTATION REGISTERS REQUIRED

More than 16 segmentation registers were used, making this
image loadable only on a processor with greater than 1MB of
Memory.

WARNING: n AMBIGUOUS REFERENCES

External references were encountered that could be resolved
to more than one entry point.

WARNING: OVERRIDE SIZE FOR COMMON BLOCK x SMALLER THAN ACTUAL
SIZE

The override size specified in the STRUCTURE parameter of the
SEGMENT command was smaller than the 1largest definition of
the common block.

WARNING: NAME OF SHARABLE SEGMENT x DOES NOT MATCH NAME
SPECIFIED IN SHARED COMMAND

The name given to a sharable segment when it was linked does
not match the name cspecified in the NAME parameter of the
SHARED command. The name specified in the SHARED command is
usede.

x ERROR (y) ON z TO fd
An SVC 7 error occurred. Variable x is the type of error, vy

is +the hexadecimal status, z 1is the SVC 7, and f£4 is the
file. See Table E-1 for the error types and status.

B-6 48-005 FOO RO1



ALLOCATE |
ASSIGN |

CLOSE |

DELETE ]

!
FETCH |
ATTRIBUTES |

— . cm— A T — — — —— —— — — — —— —— —_ T——— o— — —

x ERROR (y)

An SVC 1
is the

TABLE B-1 SVC 7 ERROR TYPES AND STATUS

ERROR TYPE | HEX STATUS | |
X | Y | MEANING |
et e e e e e S e o e~ oo ool o el l
VOLUME | 3 | Volume was not specified.|
____________________________________________________ |
DISC SPACE | 5 | Insufficient disc space |
| | available to allocate or |
| | assign a file. |
--------------------- R e LT ey
PROTECTION | 6 | File being assigned had |
KEY | | nonzero protection keys. |
____________________________________________________ l
ACCESS | 7 | Specified access privi- |
PRIVILEGE | | leges could not he |
| | granted. |
---------------------------------------------------- '
SYSTEM | 8 | Insufficient system |
SPACE | | space available. |
____________________________________________________ l
svc 7 ] 9-FF | An SVC 7 error occurred

|
| | other than the errors |
I | specified above. [

- n - - - - - e - - — = W . G = - G e e S em e e e e G W e e W= S

ON z TO LU n FILE £fd

error occurred. Variable x is the type of error, Yy
hexadecimal status, z is the function that was being

performed, and n is the 1lu number. See Table B-2 for +the
error types and status.

48-005 FOO RO1 B-7



TABLE B-2 SVC 1 ERROR CODES AND STATUS

| FUNCTION | ERROR TYPE | HEX STATUS | |
| z | X | Y | MEANING |
I==================================== -+ttt t 1+t 2 1ttt '
| READ |] DEVICE | A0 | Device has been turned |
| : | UNAVAILABLE | | off. |
| WRITE e it e it |
| | END OF | 90 | End of tape or disc |
| COMMAND | MEDIUM | | encountered. |
| | =====m=mmmmmmmmmmo oo Sommmmmmmmmesoooeooooooo- |
| | END OF | 88 | End of tape or disc |
| { FILE i | encountered., |
! | === m oo mm mm e oo oo oooo oo |
| | UNRECOVERABLE| 84 | An unrecoverable error |
| | i | occurred. |
: Lt :
| J]RECOVERABLE | B2 | A recoverable error |
| f | | occurred. |

x IS NOT A SHARABLE SEGMENT

R file named in the SEGMENT command as a sharable segment was
not a valid sharable segment.

B-8 48-005 FOO RO1



APPENDIX C
LINK TO TET COMPARISON

This table compares Link to TET, the utility previously used to
establish and build image load modules under 0S5/32. The Link
commands are listed with the corresponding TET commands as a
guide to converting from TET to Link.

TABLE C-1 LINK TO TET COMPARISON

Lk TEr T |
| COMMANDS | COMMANDS | MEANINGS |
Briee T f
Butio |y evio ) TTTTATTTTTTTTTTTTTTTTT |
hows |y Ty |
eeo Ve T T |
| ESThsLISA | Estheiisa 1. |
ExzeemaL 1y T {
T |
| Ixcieos  \ twciee 1 ST |
N < :
BT |
oe T Ve T < |
e T i T Generares & man wieh smbels 1n |
| : | | address order |
| | AHAp | Gemerates a map with svmbols in |
| | | alphabetical order |
oo . |
e TVwee : |

48-005 FOO RO ce1



TABLE C-1 LINK TC TET COMPARISON (Continued)

. —n — —————— - - " D e NP W P G e W S En T o I W e P TR e v G S MW e R R R G YR W e G5 G ep WP En e e o =

e T o e e e m——

LINK | TET | ‘ |
COMMANDS | COMMANDS | MEANINGS |
T S TN S S T S o L N S IS S I S S TN N N S S S SN T N ST NN T S o NN NS EmSS RN EEsEmED==== l
OPTION | OPTIONS | Specifies task options |
- e ---1

| MAXLU | Specifies maximum number of task's |

| | logical units |
Rttty moo--moooooo-- moommmomoooooooooo-ooo- l

| MXSPACE | Sets maximum size of task's system |

| | space |
|-====o=-mm-e- R e Lttt ===

| ABSOLUTE | Sets size of absolute memory to |

| | precede impure segment |
R bt |

| QIO | Sets maximum number of I/0 proceed |

| | requests that can be queued by a |

| | task |
e |

| PRIORITY | Sets task priorities |

[ === o mmm oo o oom oo oo moommmmmmooo- !

| GET | Adds additional task memory |
|-~ e - mmm e e e ——— - |

| EXPAND | Adds additional task memory |
R |

| TSW | Sets task's initial TSW |
--------------------------------------------------------------- '
OVERLAY | OVERLAY | * |
--------------------------------------------------------------- '
PAUSE | PAUSE | * |
| === o e e e e e e oo oo rmmmmmoe |
PCSITION | | |
——————————————————————————————————————————————————————————————— '
REWIND | REWIND | * |
--------------------------------------------------------------- '
SHARED ** | RESOLVE | Resolves external references to a |
| { sharable segment |

| == oo oo oo oo oo oo l

| TCOM | Defines a task common segment |

=oom oo oo omo oo oo ooooo oo !

{ LBLCOM | Defines a labeled common segment |
--------------------------------------------------------- ~—----
TITLE | JOB | * |
IRt il D bt bl Dl —mm——————— ]
VCLUME | VOLUME | * |
--------------------------------------------------------------- '
WFILE | WFILE | * |
—————————————————————————————————————————————— - e 4 ap - an Gn o - - - - - ‘
CCMMAND | REMOTE | |
parameter | | |
in START | | |
command | | |

- - - —— e - - - - e e Y W A W W e G W e W e R W W A W D R g e e MR W G e WS e G WS e e am e m

48-005 r0O0 RO1



* Indicates that the meanings
commands are the same.

for both Link and TET

** T.ink does not recognize previously generated TET
shared segmentse. These shared segments must be

reestablished using Link.

4e-005 FOO0 RO1






APPENDIX D
TET COMMANDS

De1 INTRODUCTION

This chapter describes the 0S/32 Task Establisher Task (TET).
Any task, reentrant library, or preinitialized task common must
be established using TET before it c¢can run under 05/32. The
functions of TET and the commands used to control it, are fully
described in this manual. Examples are provided to show how TET
is used to establish tasks in various environments. The user
should refer to the 0S/32 Application Level Programmer Reference
Manual for detailed information about task preparation within an
0S/32 environment.

A task may be a single program ¢cr a group of programs linked
together. TET processes object code programs, links external
references, and produces a memory image task for loading and
running wunder 0S/32. External references to task common and to
previously established reentrant library segments are also
processed.

When a task is established by executing TEI, the result is one or
nore load modules of memory image code that <can be loaded
directly 4into memory using the 0S/32 Resident Loader. The
command stream directing TET activity can be input in batch mode
or interactively. An operator wuses the commands to specify
programs for inclusion in the task, as well as task options. The
establishment procedure requires two passes of the object coie.
On the first pass, TET compiles a symbol table of external
references and definitions. On the second pass, the actual 1load
module is built.

TET can also be used to build a memory image of 0S/32 on disc.
The operating system 1image produced by TET may be loaded into
memory by the 32-bit Direct Access Bootstrap Loader, or by the
loader Storage Unit (LSU).

D.2 SYSTEM REQUIREMENTS

TET requires 25kb of memory space, plus approximately 2kb for
dynamic operations, and as much space as is required to house a
dictionary of all external references and definitions in the
programs of the +task bheing established. TET may build task
modules in memory or use a contiguous disc file as work storage.

4g-005 FOO RO1 D~1



If the task is built in memory, there also must be enough space
to hold the 1largest load module built. This workspace can be
allocated at establishment time or load time. In either case,
the amount of memory for workspace can be approximated as
follows:

FUNCTION MEMORY
For each entry in program 16 bytes
For each program definition 16 bytes
For =ach TET command entered 16 bytes
If image built in memory 256 bytes and

largest load module

Plus 2kb

To allocate this amount of working storage at establishment time,
the TET EXPAND and GET commands are used. Refer to Section D.U.7
for information. To allocate this amount of working storage at
task locad time, the segment size increment field of the LOAD
command should be used. For example:

LOAD TET,TET32.TSK,10

Required devices include input and output binary devices for the
input object code and output image code, an ASCII device for TET
command input, and an ASCII print device for error warning and
messages to prompt the operator. ASCII device requirements can
be met by multiple assignments of a CRT or TTY, but high-speed
devices are recommended for binary input and output. A temporary
file 1is a recommended option to hold pass one input programs for
use during pass two. If a temporary file is not used, the object
code input file is processed twice. It is also recommended that
the task be established on disc, because building in memory may
require a very large memory segment.

Ds3 AN ESTABLISHED TASK

An established task consists of at least a main (impure) segment
made up of one or more object code programs. A task can also
include a sharable (pure) segment, one or more task common
segments, and one or more reentrant library segments. Certain
run time task «conditions can be established by TET. These

D-2 48-005 FOO RO1



include limits on the task's use of system space, the number of
logical units (LUs) it may assign, its priority, and its initial
task status. Most present options can be overridden once a task
is 1loaded into memorye. Those options that cannot be changed,
except by reestablishment of the task, are notad in the command
descriptions.

Task address space is divided into one or more program segments,
sets of contiguous logical program addresses starting on a 6U4kb
boundary. All program segments are classified according to their
contents. That is, they are either pure or impure and task
common or reentrant librarye.

An established task may consist of:

® Cne main (impure) segment (with optional user overlay)

e One sharable (pure) segment

e One or more task common segments (up to 15)

®¢ Cne or more reentrant library segments (up to 15)

The inclusion of a pure segment, reentrant library segments, or
tacsk common sSegments is a user option depending on the task to be
established. A maximum of 16 segments is available for task

establishment. Table D-1 shows the relationship of the segment
numbers to the start addresses.

ug-005 FOO RO1 D-3



TABLE D=1 ADDRESS-SEGMENT RELATIONSHIP

- TR WS TR P T W - G TR W T WR eP MD wn e e AW e T e e

STARTING PROGRAM

9]
=
[p]
=
=1
=
e}

I

|

ADDRESS OF THE |

| NUMBER SEGMENT (HEXADECIMAL) |
| | I
| 0 | Y*00000"* |
i 1 : Y'10000° :
: 2 : Y*20000" :
: 3 : Y*30000°* :
: 4 : Y'40000" :
: 5 : Y'50000° :
; 6 : Y*60000° :
= 7 : Y*70000" ’
: 8 : Y*80000"* :
: 9 : Y*'50000" }
: 10 ‘ Y*A0000" :
: 11 : Y *B00GO" ;
: 12 % Y*C0000" :
: 13 : Y*D0O0O0O"* %
: 10 : Y'E0000" :
: 15 : Y'F0000"* :

- ——— - ———— - - ——— W - . ==

Two types of common are suprorted under 05/32: 1local common and
task common. Local common is contained entir=21ly within the main
segment. It is referenced via EXTRNS by the main segment program
as well as the subroutines of a task (e.g., FORTRAN common). TET
allocates space for local common in the task's impure segment as
defined by the included programs. Task common allows common
references among 0S/32 tasks and is symbolically referenced the
same as local common. A particular common block is designated as
a task common by the TET TCOM command.

D-4 48-005 FOO RO1



Overlays established for a task use a single overlay area. The
area required by the largest overlay is noted and made part of
the impure segment. All overlays of a task are 1loaded at the
same &address in the segment. Overlays of a task may be built
onto a single file or different overlay files. Overlays may not
call one another; i.e., nested overlays are not permitted.

A TET load module consists of a loader information bloack (LIB)
followed bv the memory image of the task in 256-byte records.
The LIB contains data required by the operating system to 1load
the task in preparation for execution.

D.4 TET COMMANDS

These TET commands can be specified at task establishment time:

ABSOLUTE MXSPACE
AMAP NOLOG
BUILD OPTIONS
EDIT OVERLAY
END PAUSE
ESTABLISH PRICRITY
EXPAND QIO

GET REMOTE
INCLUDE RESOLVE
JOB REWIND
LBLCOY TCOM
LOG TSW

MAP VOLURE
MAXLU WFILE

4g-005 FOO RO1 D-5



ABSOLUTE

D.4.1 ABSOLUTE Command

The ABSOLUTE command is optional. If this command is omitted, a
256-byte wuser dedicated location (UDL) area precedes the impure
task segment. If the ABSOLUTE command is included, it specifies
an absolute amount of memory which should precede the impure
segment in place of the UDL.

Format:

ABSOLUTE xxxxx

Parameter:

XXXXX is a hexadecimal number of up to five digits
specifying the number of bytes of absolute-
addressed code or absolute data to be included
in the task.

Functional Details:

ABSCLUTE establishes a bias of the specified number of bytes
between address 0 and the start of relocatable code. In the
absence of this command, TET automatically reserves 256 bytes
(X*100*') for +the UDL. If less than 256 bytes is specified, a
warning message is printed, but TET biases the impure segment by
the specified amount. A task's UDL may be deleted with an ABS 0
command. This command applies to task establishment only.

) 48-005 FOO RO1
D~-6



De4.2 AMAP Command

AMAP

The AMAP command requests a map with symbols
order rather than address order. Otherwise,

the MAP command.
Format:

AnAP [£4]
Parameter:

fd

4bg-005 FOO RO1

in alphabetical
it is identical to

is the file descriptor of the file or

that the map is written to.

device



BUILD

Del4a3 BUILD Command

The BUILD command indicates the end of pass one and the beginning

of pass two. This

Format:

Parameters:

TASK

RL

segno

command causes the load module to be built.

indicates a task load module is to be built.
The output 1is to the specified fd. If the
previous ESTABLISH command specified pure, two
segments are built, one for a pure and one for
an impure segment. If pure was not specified,
then only one impure segment is built. If £fd
is not specified, LU 2 is assumed.

causes one sharable reentrant library segment
load module to be built, with output to the
specified fd. RL load modules reguire segment
namese. The resident loader checks the nanme
when the console operator loads a task to see
if +the 1library segment in memory is the one
required by the task. All 1library segments
should be resident. The RL segment name can
be specified with the sname parameter, which
is in this format: filename .ext. If sname
is not specified, TET uses the filename.ext
portion of fd.

specifies the segment number to be allocated
for +this 1library segment. The default is
segment 15. RL segments must contain only
pure relocatable code and must not reference
task common or another RL segment.

48-005 FOO RO1



OVLY causes an overlay module to be output to the
specified £d. A BUILD OVLY command must be
entered for, and correspond seguentially to,
each OVERLAY command entered during pass one.
Overlays can be built on one file or separate
files, and are loaded by SVC 5 run time calls
by the main segment.

TCOM causes a task common segment to be built and
output to the file. BUILD TCOM should be used
when establishing an initialized task common
segment with a block data program or absolute
data program. See Section D.4.24,

sname in the BUILD TCOM command specifies an
override segment name. If sname 1is omitted
when building a block data TCOM, the common
definition name is selected as +the segment
name, If sname is omitted when building a
nonblock data TCOM, the segment nanme is
derived from the first included file
containing a program label.

Functional Details:

The BUILD command reads the input program file in the same order
as the first pass. If a temporary file is being used, the systen
rewinds it, if possible. Otherwise, the operator is prompted by
a message to reposition the device. If a temporary file 1is not
being used, the operator is prompted to load each program in
seqguencee.

If the file specified by fd or assigned to LU 2 is a contiguous
disc file, TET builds the load module directly on that file. If
the file is not a contiguous disc file, TET builds in memory and
outruts the 1load module to the file. If the form of the f£fd
parameter is valid for a disc file, but the file does not exist,
TET allocates and assigns a contiguous file with a size
sufficient to hold the task. The output file should not be
preallocated (or assigned) and TET should allocate and assign the
output file.

4e-005 FOO RO1 D-9



EDIT

Dstod4 EDIT Command

The EDIT command is used to edit a file after inclusion of one or
more programs. EDIT includes all programs having program 1labels
referenced by the already included code. This command can be

used when a task reguires a number of subroutines contained
within a subroutine library.

Format:
EDIT [£d]
Paraieter:

fd is the optional file descriptor from which
additional programs are to be included. If £d4
is not specified, LU 1 is assumed.

D-10 48-005 FOO RO1



END

D.4.5 END Command

The reguired END command terminates TET processing and returns
control to the operating system. If the operator wishes to stop
in the middle of an establishment process, and END command must
" be issued and TET reentered via the operating system START
command to begin another establishment. Restarting TET is
necessary to initialize TET pointers and work areas.

Format:

END

ug-005 FOO RO1 N-11



ESTABLISH

Ded.6 ESTABLISH Command

The ESTABLISH command initializes TET task processing.

Format:
s,PURE
IASK
},LHPURE
ESTABLISH —~ -
‘,LQEDATA
TCCH
l-.zpATA ) |
RL
Parameters:
TAS¥Y indicate whether a task, 'reentrant‘ library
TCOM or task «common segment, respectively, is to
RL hbe established. The defaults for TASK and

TCOM are IMPURE and BDATA, respectively.

PURE indicates that any code assembled as pure, via
the CAL assembler pseudo-op PURE, is
established 1in a gseparate segment. The pure
segment can then be shared by several copies
of the same task at task exscution.

IMPURE specifies that the pure and impure code are
established in the same impure segments. The
pur= code of such an established task is not
sharable. If no parameter 1is specified,
IMPIJRE is the default.

NOBDATA pertains only when establishing TCOHM. It
: allows any absolute data (e.g., DS, DC, or DB
types of statements), not a block data
program, to be included as part of the TCOM

segment.
BDATA specifies that a block data program is to be
established. If no parameter is specified,

BDATA is the defaulte.

D-12 48-005 F00 RO1



Functional Details:

If a text editer is established with the code body as pure and
data areas and buffers as impure, several editing tasks can be
run simultaneously, each sharing the pure code body of the
editcre. The 1loader <checks that the necessary pure segment is
already in memory when the task is loaded. The parameter PURE is
valid only when establishing a task, and is ignored for RL and
TCOM.

The ESTABLISH TCOM command is used to separately estaklish a task
common segment with initialized data, i.e., block data or
absoclute data. TET does not allow mixing block data with
absolute data (nonblock data) in a single TCOM segment
establishment. An initialized TCOM segment <can contain either
block data only or nonblock data only. The distinction is made
via the BDATA/NOBDATA optional parameter. If a task common
segment does not contain initialized data, it need not be
established and need only be declared by the TCOM command when
establishing the task.

TET allocates contiguous memory for the impure code starting at
segment 0. If the impure code 1is greater than 64%kb, TET
allocates the next contiguous segment for the impure task areae.
TET allocates contiguous memory for the pure code, starting at
the highest available segment, after all library and task common
segments are resolved.

48-005 FOO RO1 D-13



EXPAND
GET

Ds.4.7 EXPAND and GET Commands

The EXPAND and GET commands are used to add memory to a task
beyond what is required to hold the code body. For example, if
a task requires an area of memory for processing, such as for a
symbol table, GET and EXPAND move CTOP upward. They increase the
minimum memory area in which a task can run. '

Formats:

EXPAND xxxx

GET yyyYYy
Parameters:

XXXX is a 4-digit decimal number specifying the
number of 256-byte blocks to be reserved
beyond the end of the defined taske.

YYYYY is a hexadecimal number of up to five digits,
specifying the number of bytes to be reserved.

Functional Details:

If neither of these commands is specified, and overlays are
produced, a default value of X'300°' bytes is assumed (the amount
necessary for executing a FORTRAN program). If a task has no
overlays, the default allocation is 0.

The GET command can be given with a parameter of 0 to save space
if no GET STORAGE calls are to be issued. The total number of
bytes specified by GET and EXPAND is rounded upward to a 256-byte
boundary. The GET and EXPAND commands can appear anywhere
between the ESTABLISH and BUILD commands.

D18 48-005 FOO RO1



INCLUDE

De4.8 INCLUDE Command

The INCLUDE command
a file are to be i
common).

Format:
1ncrune [£a] [,
Parameters:

fd

progam label

Functional Details:

is required to specify that program(s) from
ncluded into a task (reentrant library or task

program label]

is the optional file descriptor of the input
device. If fd is not specified, LU 1 is
assumed, in which <case the £f4 should be
preassigned to LU 1.

specifies the program name in the input file
and causes this program to be located and
included. If a progam label is not specified,
the entire file is included up to end-of-
medium or end-of-file.

As the input file is read, TET creates a dictionary of external

program references.

A copy of the included program(s) is written

to the temporary file, if present.

48-005 FOO RO1

o
i
ey
(%3]



JOB

Dseti.9 JOB Command

The JOB command allows the operator to title the TET output mnape.

This command is

Format:

JOB title

Parameter:

title

lw]
1

-

ol

permitted any time during the execution of TET.

is the title given to the TET map. Any
characters are permitted in +this 1- to
12-character field. All characters beyond the
twelfth position are ignored.

48-005 FOO R01



LBLCOM

De##.10 LBLCOM Command

The LBLCOM command can be used to structure a task zommdn sagunant
for more than on= namei common block. The LBLZOM command causas
TET to construct refzarences to a task common sa2gment for =2ach
named common that appears in a LBLCOM command and 1is referancai
in the task. The LBLCOM commani must be used in zonjunction witn
a TCOM commani. A TCOM zcommand must be entered first for evary
task conmon segment; ones or more LBLCOM commanis may b2 eatareid
with the sane s=2gment number.

Format:

e —

LBLCOM nam24 /sSegno, /{ } [/size1]

L -

=
=

2]
1c

—

ynan2, /segnoy i/ } [?sizen]

(2%
1=

=
1o

Parameters:

nama specifies a 1= to 8=-charact=2r name Of 13 niaz=1i
cCOmMmMONe
seqgno is the segma2nt number o2f th2 task Zo21mdon. I[f

the segno 13 not thz same 313 tile sejznd in the
TC0M command for +that segym=2at, th=2 LBLIOM
comaand is rejecteai. Thz messajzj: ILLEZAL
SEGUENT NO is printed. [f commani inpat 1is
not remote, TET accapts a LBLCOM coamanl with
the correct segment numbar.

RW and RO specify the access privileges, reai/wcite anid
r=al only, respectively. I£f RA ani RD are
comitted, ti2 Jefault is 3d. Tha 1cz258
nrivileges aust be the sam2 as spacifiedi in
the TCOM czommand for that segm=at. Any
conflict ia access privileges ciuses the
warning message ACCESS PRIVILEGE CONFLIZT to
be orinted. The access privilegas ar2 set
eguial to those enterad with the TZ3Y commanid
for that segment. TET is taen realy to accapt
the next coamand.

48-005 FOO RO1 ' D-17



size is a decimal number specifying the number of
256-byte blocks. If size 1is omitted or
specified as 0, the common block's size is as
defined within the task. The first task
definition of the common block determines the
size. The size of any subsequent task
definition of the same common block must be
less than or equal to the size of the first
definition; otherwise, a TCOM TOJ BIG is
generated and task establishment is aborted.
A specified size overrides the actual size as
encountered in the <common definition during
task establishment. This size must be greater
than or equal to any common definition for
that named common in the task; otherwise, a
TCOM T0O0 BIG is generated and task
establishment is aborted.

Functional Details:

The name given to the task common segment is the name of the
first named common block encountered in the task that matches the
name field 4in a TCOM or LBLCOM command for that segment. The
amount of memory associated with a task common segment at task
load time is the sur of the common block sizes for that segment.
If a TCOM or LBLCOM command specifies an override size for the
first named common block that is encountered while building the
task, the segment size is considered to be an override size by
the system loader.

D-18 48-005 FOO RO1



Delie11 LOG Command

[A LOG

The LOG command causes all operator commands to be copied to a

specified output unit.
REMCTE command is used.

Format:
Loc [£d]

Parameter:

This command is generally used when the

fd specifies the unit to contain the commands.

48-005 FOO RO1



MAP

D.l4.12 MAP Command

The MAP command outputs a display of the symbol table that TET
has built during processing of the program. If the command is
entered during pass one, the user may obtain a list of undefined
symbtols to determine which files are yet required. However, MAP
is most useful at the end of pass two when the establishment 1is
comrlete. The items are output in address order.

Format:

=
|
{iae)

[£4]
Parameter:

fd is the device on which to display the contents
of the dictionary. If fd is not specified, LU
3 is the default.

Functional Details:

The following list is a description of each item in a TET map.
Individual headings are not printed unless there is an item to be
printed under that heading. Sample maps are included in Appendix
Ge

CTOP A hexadecimal value representing the
last halfword location in the user's
reguired memory space. This value
is always the last halfword in a
255‘byte blOCkl ioeo’ XXxXXrEe.

UTOoP A hexadecimal value represanting the
first fullword 1location above the
user's established task. It is, in
effect, the next available 1location
in the user's space.

MIN CORE SI7ZE A decimal value representing the
minimum memory size 1in kilobytes
required by this segment:; €eJey
4.00kb=X"1000"' bytes (impure segment
size 1in a task plus expand and get
storage).

D=20 48-005 FOO RO1



PROGRAM SEGMENTS

PROGRAM LARELS

TASK ENTRY POINTS

LOCAL COMMON BLOCKS

UNDEF-SYM FULLWORD
UNDEF-SYM HALFWORD

LIBRARY ENTRIES

TASK COMMON BLOCKS

OVERLAY

48-005 FOO RO1

All program segments defined or
referenced by this task are listed.
For each segment, the segment name
and size are listed. During pass
two, the segment number 1is also

listed for each segment. This
section of the map does not appear
wvhen establishing reentrant

libraries or task common segments.

Entries in +this 1list are 6-digit
hexadecimal addresses followad by
the corresponding 8-character
program label. Each label
represents a program label and its
program addresse.

Entries in this 1list are 6-digit

hexadecinmal addresses and their
asscciated symbolic names of all
symbols processed within the

established program.

This section lists the components of
local common area of the user task.
An entry 1s a 6-digit hexadecimal
addiress field followed by the 1local
common symbol name.

A 1list of all fullword external
references for which no definitions
have been encountered.

A 1list of all halfword external
references for which no definitions
have been encountared.

A list of all resolved references.
The address fields in this 1list
reflect referencei reentrant library
segments.

A list of all task common blocks and
their addresses.

Each overlay of a taisk is listed on
a separate page after the root has

been mappede. The name of the
ovaerlay 1is followed by all entry
points and undefined symbols

contained in the overlay.



“ MAXLU

De4e13 MAXLU Command

The optional MAXLU command specifies the maximum number of LUs
that a task can assigne.

Format:

{AXLU 1lu

Parameter:

1lu is a decimal number between 0 and 254
specifying the number of LUs.

Functional Details:

If this command is omitted, the default value is 15, Note that
when taking the default or specifying 14 LUs, only 0 through 14
are available to the task. The command may be entered anywhere
in pass one. The value of MAXLU determines the size of the
task's LU table, a dynamic system data structure defined at task
load time. In memory bound situations, the value of MAXLU should
be as small as possible to avoid wasting space. Four bytes of
memcry are required for each LU in the table.

p=-22 48-005 FOO RO



MXSPACE

D.4.14 MXSPACE Command

The optional MXSPACE command sets a limit on the amount of system
space that a run time task can wuse for dynamic system data
structures (file control block, etc.) during execution.

Format:

MXSPACE xxxxx

Parameter:

XXXXX is a hexadecimal number of up to five digits
specifying the number of bytes of system
space.

Functional Details:

A default assumption of 12kb is made if the MXSPACE command is
oimitted. This command can be entered anywhere between ESTABLISH
and BUILD commandse.

48-005 FOO RO1 D=-23



NOLOG

D.4.15 NOLOG Command
The NOLOG command halts the LOG command operatione.

Format:

D-24 48-005 FOO RO1



OPTIONS

D.4,16 OPTIONS Commani

The OPTIONS command specifies one o9r morz2 of th=2 ooptions
asscciated with a taske.

Format:

QPTIONS

Parameters:

uT

AFPAUSE

AFCONTINUE

NONRESIDENT

RESIDENT

SVCPAUSK

48-005 FO0O RO1

Normal user task

An executive task (E-task) that =c-an exacute
privileged instructions. An E-task 1aust
contain o»nly positionally indep=2nient <coie
(BEX2 instruction far memdry referenc=) aad
zannot reference reentrant 1library or task
common seyma2nts. The ET option conflizcts with
the PURE anl ROLL options.

If an arithmetic fault o2czaers daring task
exacution, the task is to b2 pausei.

Tf aa arithmetic fault ozcurs during task
execution, the task is to continue. If 1 task
is to take arithmetic fault traps, it must be
estiblished with the AFCONTINJIE optione.

At =2nd-of-task (EOT), the taisk is d=l2tedl from
MEemOLYe

At EOT, the task rz2mains in m=2uwory. A
resident task cannot be a caniidate f»r roll.

If an SVC 6 execution is attempt=21i, the task

o
|

25



SVCCONTINUE

ROLL

NOROLL

CoM

NOCOM

CON

NOCON

UNIVERSAL

NONUNIVERSRAL

FLOAT

DFLOAT

should be paused. This option applies only to
the background segment.

If an SVC 6 execution is attempted, the call
is ignored and task execution continues. This
option applies only to the background segment.

The task is a candidate for a roll-out/roll-in
operation during its execution. If a task of
higher priority requires the memory occupied
by this task, it can be written (rolled-out)

"to a direct-access device and its execution

suspended until sufficient memory becomes
available. The ROLL option conflicts with the
ET and RES options.

The +task 1is not a candidate for a roll-out/
roll-in operatione.

This task can issue SVC 6 intertask
communication calls (send message, queue
parameter).

The task cannot 1issue SvVC 6 intertask
communication calls (send message, gueue
parameter)e.

The task can issue SVC 6 intertask control
calls (all SVC 6 functions except send
message, gueuve parameter).

The task cannot issue SVC 6 intertask control
calls (all SVC 6 functions except send
message, queue parameter).

Specifies that the task has the privilege of
communicating with all other tasks in the

system. In a system containing the
multi-terminal monitor (MTHM), intertask
communication is not permitted between the
foreground and the terminal environment.

However, a task that 1is established (using
TET) as a universal task can be lnaded into
the foreground and can communicate with the
terminal environment, using SVC 5 gqueue
parameter and send message requests. .

Communications options are not universally
allowed.

Specifies that a task can execute
single-precision floating point instructions.

Specifies that a task can execute
double-precision floating point instructions.

48-025 F00O EKO1



NOFLOAT Specifies that a task <cannot execute any
floating point instructions. If the FLOAT,
DFLOAT, and NOFLOAT parameters are onmitted,
NOFLOAT is the default.

ACCOUNTING Specifies that the accounting function 1is
enabled for a task.

NACCOUNTING Specifies that the accounting function is
disabled for a task.

ACP Specifies that a user task has extended file
access privileges and can specify an account
number instead of a file class for all SVC 7
functions.

NOACP Specifies that a user task has no extended
file access privileges. If both access
privilege parameters are omited, NOACP is the
default.

DISC Specifies that a user task has an extended

disc privilege and can assign to a bare disc
file. If the disc is on~-line, assignments for
SRO are allowed. All other assignments are
rejected and a message is displayed. If the
disc is marked off-line, all access privileges
are allowed. See the 0S/32 Programmer
Reference Manual for a description of the
access privileges.

NODISC Specifies that a user task has no extended
disc privileges. If both disc privilege
parameters are omitted, NODISC is the default.

Functional Details:

This command is optional, but if entered, it must follow the
ESTABLISH command and precede the INCLUDE command. The OPTIONS
command is not valid when establishing a reentrant 1library or
task commone. The option information is placed in the task LIB,
and eventually, into the task control block (TCB) at run timee.

Refer to the 0S/32 Programmer Reference Manual for a more
detailed description of each option. If two conflicting options
are specified in one OPTIONS command, e.g., OPTIONS ROLL,ET, the
entire OQPTIONS command 1is rejected. If a successive OPTIONS
command is in conflict with a preceding OPTIONS command, one of
the following occurs:

@ The second command takes precedence. This occurs 1if the

csecond command is the direct opposite of the previous command.
For exanmple:

48-005 FOO RO1 D-27



OPT AFP
OPT AFC

No error is generated. The arithmetic fault CONTINUE command
takes precedence.

The second command results in an error. This occurs if the
csecond command is inconsistent with the previous command. For
example:

OPT RES
OPT ROLL

The second command is rejected with an error. The task is not
rollable.

The 0S/32 operator OPTIONS command may be used to changes certain
of these options. Refer to Chapter 3 for details.

D-28 4g-005 FOO RO



OVERLAY

Delte17 OVERLAY Command

The OVERLAY command is used to indicate that an overlay is to be
included in a task being established.

Format:

OVERLAY name

Parameter:

name is the name of the overlay. This name must be
from one to eight alphanumeric characters,
with the first character alphabetic.

Functional Details:

TET interprets this statement as ending the definition of a main
segment (or previous overlay), and starting the definition of an
overlay. Each overlay must be completely defined (with INCLUDE
and EDIT statements) before another OVERLAY statement is
presented in the command stream. After all overlays are defined,
the overlay area 1is set to the size o0f <the largest area
requested, starting at the end of the main segment.

Only one overlay area is reserved in the task®'s impure segment,
no matter how many OVERLAY commands are entered. The OVERLAY
command must precede the INCLUDE and EDIT commands that define
jts contents, and these must precede any other OVERLAY statement
or the BUILD command.’

48-005 FOO RO1 D=-23



PAUSE

Ds4.18 PAUSE Command

The PAUSE command temporarily suspends TET operations and returns
control to the operating system. The operating system CONTINUE
command is used to return control to TET.

Format:

PAUSE

D-30 48-005 FOO RO1



PRIORITY

Ds4o19 PRIORITY Command
The optional PRIORITY command sets the initial and maximunm

pricrities for the task at run time. This command may be entered
during pass one, after the ESTABLISH command.

Format:
PRIORITY ip,mp
Parameters:
ip is a decimal number between 10 and 249
indicating the initial priority of the task.
mp is a decimal number Dbetween 10 and 249
indicating the maximum priority of the task.

Functional Details:

The number specified as mr must be less than or egqgual to that
specified as ip. If mp 1is not less than or equal to ip, the
command is rejected. If +this command is not specified the
default value of 128 is assumed for both parameters.

bg-005 FOO RO1 D-31



Qlo

Delle20 QIO Command

The QIO command allows the user to specify the maximum number of
proceed I/0 reguests that may be engueued by a task.

Format:

QIO n

Parameter:

n is an integer from J througa 65, 535.
Functional Details:

If this command is omitted, the value of n defaults t> 0, and
proceed I/D raquests are processed as in 935/32 R03-J)1. Taisks
established using R03-202 of TET assume a 0 value for n. When n
is set to 0, procesd ra2guests behave exactly as in Rel2ase 03-01
of 0S/32, e.g., a proceed I/0 request for an LU with an
osutstanding rejuest zaus2s th2 task touo snter a wilt state until
the first request is coaplete, unless unconditional procze=2d is
specified, 1in which case the request is rejectel. The number of
I/0 requests a task may issue before the queue is saturated is
2gual to n plus the number of LU's with active I/J ongoing.

)
|

32 48-005 FoOo RO1



REMOTE

Del4.21 REMOTE Command
The REMOTE command is used during batch mode (CSS 1input), to

instruct TET to abort processing if an error is detected, as no
operator is present to reposition, rewind, etc.

Format:
REMOTE
Functional Details:

This command can be issued at any point in the sequence, and
takes effect immediately. Once entered, TET executes to
completion in this mode. To return to an interactive mode, TET
must be terminated and restarted.

In this mode, the use of a temporary file is recommended. Refer
to Section D.6.2 for further information.

48-005 FOO RO1 D-33



RESOLVE

Del4.,22 RESOLVE Command

The RESOLVE command is used to resolve external references to a
previously established reentrant library segment (such as FORTRAN
run time library).

Format:
RESOLVE [£d]
Parameter:

fd is the optional file descriptor on which the
reentrant 1library load module is to be found.
The default is to LU 1.

Functional Details:

This command is used after the program referring to the reentrant
library (RL) has been included. The RESOLVE command resolves all
references to vprograms found in the reentrant 1library 1load
module. The task's LIB srecifies the reentrant library that is
required for the task to run. The task aborts during 1loading if
its required reentrant library is not preseunt.

D-34 48-005 F0o RO1



REWIND

Delto23 REWIND Command

The REWIND command assigns a file to LU 1 and rewinds the file.
Format:

REWIND [£d]
Parameter:

fd is the optional file descriptor of the file to
be assigned to LU 1 and rewound. If fd is not
specified, LU 1 is rewound.

Functional Details:

The REWIND command is used preceding an EDIT command so that the
entire file can be edited. In addition, REWIND is used to ready
a file for pass two, if no temporary file is used.

48-Cc05 FOO RCA D=35



TCOM

Det4.24 TCCM Command

The TCOM command causes TET to construct references to a task
common segment for each named common that appears in a TCOM

command, and is referenced in the task.

Format:
RW
ICOM name,/seqgno, |/ D51ze1]
RO
RW
sName, /segnop [/{ } [}sxzen]]
RO
Parameters:
name specifies a 1- to 8-character name of a named
COmMmMON.
segné is the segment number of task common,

specified as a decimal number from 1 through

15 This field causes TET

position the

task common in the appropriate area of the

task's address space.

kW and RO specify the access privileges

read only respectively.

omitted, the default is RW.

read/write and
RW and RO are

size is a decimal number specifying the number of

256-byte Dblocks. This size
actual size as encountered

overrides the
in the common

definition during task establishment. This

size must be greater than that
common definition, otherwise

establish the task. If

omitted or specified as 0,

from the common definition.

<
'

36

given Dby the
TET fails to

parameter is

TET takes the size

48-005 FOO RO1



Functional Details:

Any named common definition in a task 1is potentially a task
COmmoNe. Any named common which does not appear in a TCOM or
LBLCOM command is considered to he local common, and is included
in the impure segment. See Section D.U4.10 for a description of
the LBLCOM command. A single TCOM command may describe several
task commons, or several TCOM commands may be entered, each
describing one or more task commons. All TCOM commands must be
entered vprior to any INCLUDE commands, and after the ESTABLISH
command.

If a TCOM and LBLCOM command specifies an override size for the
first named common block that is encountered while building the
task, the task common segment size 1is considered +to be an
override size by the system loader. If no TCOM command is given,
but TSKCOM is referenced by the task, TET assumes:

TCOM TSKCCM/14/RW

However, if a TCOM command is given, TET does not recognize the
name TSKCOM unless it appears in a TCOM command.

NOTE

The name symbol, generated by the FORTRAN
V compiler for a common block, consists
of the user-specified name with a period
(.) appended. To provide a compatible
linkage for the CAL user, TET ignores the
period generated by FORTRAN.
Specifically, TET removes the period from
all common block names (both local and

task common) that contain one.
Therefore, the name specified in the TCOMN
command should not contain a final

period, and a CAL program should not
contain two common blocks whose names
differ only by a final period.

4g-005 FOO RO1 D-37



TSW

Deldo25 TSW Command
The TSW command specifies initial setting of the task's run time
task status word (TSW), and optionally provides a start address

for the task. The TSW defines trap conditions for which the task
is responsible.

Format:
ISH status |,start addres%
Parameters:
status is an 8~digit hexadecimal  number indicating

the setting for the TSW.

start address 1is an optional 6-digit hexadecimal number
indicating the starting address for the task.

Functional Details:

If the start address parameter is omitted, the 1last ¢transfer
address found in the included <code 1is used as the starting
address. If no transfer address 1is found, X*'100' (the file
location immediately following the UDL) 1is assumed. If a
transfer address is found within the overlay, it is ignored.

For a detailed description of the TSW see the 0S/32 Programmer
Reference Manual.

D-38 48-005 F0O RO



VOLUME

Delto26 VOLUME Command

The VOLUME command assigns an override of the system default
volume used by TET during its execution.

Format:
YOLUME voln

Parameter:

voln is any legitimate volume name of up to four
characters. Whenever a file descriptor that
does not specify a volume name is encountered,
voln is used.

Functional Details:

The VOLUME command can be entered more than once, if desired, and
takes effect immediately. It can appear anywhere in the
seguence. Refer to Chapter 3 for a description of the operator
command VOLUME.

L8-005 FOO0 RO1 D-39




WFILE

Del4.27 WFILE Command
The HWFILE command assigns a file descriptor to LU 2 and writes a
filemark to the file. This command is generally used to separate

the main segment from the overlays when they are ouytput on
magnetic tape or the same contiguous file.

Format:
WFILE [fd]
Parameter:

fd is the file descriptor to be assigned to LU 2,
If £fd is not specified, a filemark is written
to LU 2, which 1is left positioned past the
filemark.

D-u0 48-005 FOO RO1



D.5

OPERATING PROCEDURES

TET is run as an established task under 0S/32 and is executed
use of LOAD and START commands.

D.5.1

Six LUs are used by TET.

-—— . - - . - A G . . S R GO G G S e R SO ER G e G G s e e N A G M S R TS AN T R R R R e G Ee D G e R AR WP G WS e e em

to each unit. LUs 1, 2,
parameters or by the
starting TET. LUs S
If a temporary file 1is used,
before starting. A TEMP file can also be
file.
at EOT.
TABLE D-2
| ! !
| | |
| LOGICAL | DATA |
|  UNIT | TYPE | USE
| | |
|
| 1 | Binary | Object~-code
| | | input,
| | | Image RL
| | | input
' ___________________________
| 2 | Binary | Image load
| i | module
| ] | output
' ___________________________
| 3 | ASCII | Memory
| | | map output,
] | | Command
| | | logging
|
] 4 | Binary | Temporary
| | | file
| | | (optional)
| I I
|
| 5 | ASCII | Command
] | | input
' ———————————————————————————————————————————————————
| 7 | ASCII | Error
| | | messages,
| | | warnings,
| | ] prompts to
| | | operator

Logical Unit Assignments

assigned

usei

DEVICE
EXAMPLES

Paper tape,
Mag tape,
Disc

Paper tape,
Mag tape,
Disc

Console,
line printer,
VDU

Rewindable
device, i.e.,
mag tape,
disc, etce.
Card reader,
Console, VDU
Console,

line printer,
VDU

by

as

TET

TET LOGICAL UNIT ASSIGNMENTS

LOGICAL
RECORD
LENGT!?

e D
e e sl et e a3 — AR

Object 126
Image 256

o e i - . > G- - — - ow G G Gh E e e e G e . G G W G e wm

I e I e e e e

Variable,
up to 120

-~ - o G W G WS S e En W R G G G e e e S (U S e s S M e M S G M G W KR e e W ES MR W e G G e D M e G S e

- - - —— D G G n e Gr TE G G e We @O e B Ae G O WS e G e S N RS G G S . S S S G G e W GE G SR W G G ww EE G e D SR e e

Variable,
up to 80

-~ - v " S AR AR G T AR R N R R N GS S G G G AR WS WS G S G G G T G G - G S G S NS G e e A G N e S S SR G wm e e e

48-005 F0OO RO1

Table D-2 contains information relating
and 3 can be command
operating system ASSIGN command prior to
and 7 must be assigned before starting
it also must be assigned to LU 4
a temporary

TEMP files are automatically deleted when they are closed

TET.



De5.2 Temporary File Operation

The use of a temporary file is a recommended option as it
minimizes the possibility of errors and allows rapid
establishment. Because TET wuses two passes of the command
stream, the temporary file <contains the programs input during
pass one for use during pass two. If a temporary file 1is not
used and the input file(s) 1is nat a direct-access file, the
operator must reload each of the input £files for <the BUILD
process during pass two. If a temporary file is not used, the
following message is output to prompt the operator to 1load
programs:

LOAD PROGRAMS fd

and the program pauses. Programs included from a magnetic tape,
parer tap2, or cassette must be repositioned. TET should then be
resumed by the operator command CONTINUE.

If a temporary file is used, it is rewound at the beginning of
pass one. At the end of pass one, a filemark is written to the
temporary file and it 1is rewound for ©pass two. If a
nonrewindable device 1is used, the operator is prompted via a
message to reposition the temporary file. At EOT, the temporary
file is rewound, which allows one temporary device to be used for
successive TET runs without operator intervention.

NOTE

If TET 1is paused during pass two, a
DISPLAY LU command entered at the system
console reflects the TET reassignment of
LUs.

D.5.3 Command Input Sequence

Certain LU considerations constrain the TET command seguence.
The commands for establishing a task are input from LU D. If LU
5 is assigned to an interactive device, TET executes in +the
interactive mode. Otherwise, TET executes in a batch mode. The
input mode determines the response to error conditions. TET
error messages are summarized in Appendix 4. .

Table D-3 lists the TET commands in recommended order and the
commands permitted when performing a particular operation. Task
establishment is begun by the ESTABLISH command with a parameter
specifying TASK, PBRL, or TCONM. This command must precede all
other commands except REMOTE, JOB, LOG, NOLOG, VOLUME, and MAP,
which can appear at any roint in the stream. The REMOTE command
rrevents TET from pausing in batch mode. This facilitates Dbatch
processing with minimal operator intervention.

D-u42 48-005 FOO RO



Particular operations are:

TA Building a task

RL Building a reentrant library
TC Building a task common

ov Building an overlay

All commands are optional except ESTABLISH, INCLUDE, BUILD,
END.

48-005 FCC RO1

and



— o T — —— S — — —— p— — —— —— —— — —— — — —— — —— — — — — — — — ——— —————— —— — — — —— — —— — — —— o

VERB

TABLE D-3 LOGICAL TET COMMAND SEQUENCE

o= g ol g e R RN T T Rt

REMOTE

JOB

1L0G
NCLOG
VOLUME

ESTRBLISH

QIO
OPTIONS
ABSOLUTE
TCOM

LBLCOM
INCLUDE

REWIND
EDIT
GET

OVERLAY

RESOLVE
EXPAND

MXSPACE

Anyvhere

Anywhere, ncrmally before MAP and

AMAP

Anywvhere

Anywhere

Anywhere

Must precede all commands, exce
those which may be specified an

where

Between ESTABLISH and BUILD

pt
y-

Between ESTABLISH and first INCLUDE

¥ust precede INCLUDE

Between ESTABLISH and first INCLUDE

Retween the associated TCOM and
BUILD

Between ESTABLISH and BUILD or
between OVERLAY and BUILD

Anywhere

Must follow at least one INCLUDE

Retween ESTABLISH and BUILD

After main segment definition;
be followed by INCLUDE or LDIT

After INCLUDE or EDIT
Retween YSTABLISH and BUILD

Retween ESTABLISH and first
BYUILD/OVERLAY

must

* * *
*

* *
* *

*

4y

4s-005 FOO RO



—— . —— —— — p—— — o — —— —— —— — — — —— — — — ——— a— —

TABLE D-3 LOGICAL TET COMMAND SEQUENCE (Continued)
| | I
| COMMAND | |
| VERB | SEQUENCE CONSIDERATIONS | TA RL TC OV
: | |
| MAXLU | Between ESTABLISH and first | *
i | BUILD/OVERLAY |
| | ; |
| PRIORITY | Between ESTABLISH and BUILD | *
| | ]
| TSW | Retween ESTABLISH and BUILD | *
! | |
| BUILD | Must follow all INCLUDE, EDIT and |
| { OVERLAY | o * * *
| | |
| PAUSE | Anywhere | * * *x *
| | |
| WFILE | Anywhere, normally after BUILD | * * * *
| | |
| AMAP | Anywhere, ncrmally after BUILD | * * *x x
| | |
| MAP | Anywhere, normally after BUILD | L L
| | |
| END | Anywhere, ncrmally last | * * * x
NOTES
¢ The BUILD command marks the beginning

of pass two for building the 1load
module. This command is input only
once for each load module. Tasks
with overlays should contain one
BUILD command for each corresponding

overlay.

The ESTABLISH command marks the
beginning of pass one. This command
can be input only once during a TET
session.

The OVERLAY command terminates the
definition of the task's s=agments
(impure and pure) during pass one and
marks the beginning of an overlay
definition during pass one. This
command 1is input once for each
overlaye

48-005 F0O RO1 D

45



TET defines the task on the first pass and constructs the task
load module on the second pass. Therefore, before including any
task code, TET must know if the task is an E-task or if absolute
address space 1s to be reserved. As a result, the OPTIONS and
ABSOLUTE commands must be entered before any INCLUDE command.

The distinction between named common and task common is made by
the TCOM command. References to named common blocks, designated
as task common by a TCOM command, are relocated to the ©proper

program address. The TCOM command must be entered before any
INCLUDE cemmand. The task's program contents must then be
processede. INCLGDE and EDIT commands are used to select the

input object code prrograms that are part of the task, task common
or library. One INCLUDE statement must occur first, to bring in
a single relocatable program or an entire file. Any number of
INCLUDE statements may follow. If a single program is included,
the input read operation stops at the end of that program
allowing the next inclusion from the same file or another file.

The EDIT statement reads the entire edit file, and marks for
inclusion any programs that have program labels referenced by the
already included code. If a temporary file is present, the
entire edit file is copied to it, but only the required prograns
are used during the build operation. EDIT statements can be
repeated, allowing an EDIT to bring 1in programs referenced in
code included by a previous EDIT. The user can select progranmns
from multiple files by varying the fd parameters of successive
EDIT and INCLUDE statements. See examples of this in Section
De7e

TET resolves all references from one included program to another
in a task's included code, but references to a reentrant library
are unresolved until the input of a RESOLVE command. The RL
referenced must be previously established. The RL being resolved
need not be the one currently loaded in the system under which
TET is running. TET reads the LIB of the RL 1load module, and
finds the ENTRY symbols that are the same as the referencing
EXTRNs in the taske. A message indicating +that the unresolved
labels exist is output at the beginning of pass two, in addition
to a table (via the MAP or AMAP commands) which 1lists these
symbols.

Overlays are indicated and named by OVERLAY statements, and
defined by INCLUDE and EDIT statements, after their main segments
have been completely defined (by INCLUDE and EDIT statements).
Space required beyond the area where the task is loaded, for an
expanding operation such as a symbol table or SVC get storage
calls, can be reserved with a GET or EXPAND command. GET or
EXPAND can be entered at any point. The GET or EXPAND area is
located above the overlay area within the task's memory space.
After an ESTARLISH TA command within TET's £first pass, the
MXSPACE, MAXLU, PRIORITY, and TSW commands can also be enterei.

D-4€ 48-005 FOO RO1



The first pass ends and the second pass starts when a BUILD
command 1is encountered. Any unresolved references remaining are
reported by a message to the operator. A B8UILD command creates
an image load module for a task, overlay, task common block, or
reentrant library using the resoclutions and specifications of the
first pass. Each overlay module of a task requires a separate
BUILD command. The RESOLVE command satisfies all references fron
included programs to previously establishedl reentrant library
segments, A message indicating that unresolved labels exist is
output at the Dbeginning of pass two. A RESOLVE command may be
issued for as many library segments as are referenced by the
included program.

D.6 AUTOMATIC ASSIGNMENT

Specifying a file descriptor in certain TET commands
automatically causes the file to be assigned to one of the TET
LUs. Table D-4 summarizes the action of the specific commands.

TABLE D-4 AUTCMATIC ASSIGNMENT OF FILE

e el I e el

I
COMMRAND | ¥D ASSIGNED TO | DEFAULT EXTENSION

| |
I ]
I | | |
| === e e e e e oo |
| INCLUDE { LU 1 | 93J |
| | | |
| EDIT | LU 1 | 03J |
| | | I
| RESOLVE | Lt 1 | RTL |
| | | I
| BUILD TASK | LU 2 | TSK |
| | | |
| BUILD RL | LU 2 | RTL |
| | | ' !
| BUILD OVLY | LU 2 I IVY |
| I | |
| RUILD TCOM | LU 2 | TCH |
| | | |
| WFILE | U 2 | NONE |
I ! | |
| MAP | LU 3 | NONE |
| ! I |
| AMAP { LU 3 | NONE |
| | I |
| LOG u LU 3 1 NONE |
| | | |
| REWIND 1 LU 1 | NONE |

48-065 FOO RO1 D

47



Various parts of the fd, or the entire fd, can be omitted by the
user. Typically, if fd is omitted, TET uses the default LU that
should be assigned for that function until a reassignment occurs.
For example, assume the user has assigned LU 1 to the paper tape
reader/punch (PTRP:) before starting TET:

ES TASK

IN

IN

IN

IN MAG1:

IN

IN

IN PTRP:

IN FILEB

IN FILEA, PROGA
BU TR, TETOUT

When TET finds no file descriptor in the first INCLUDE command,
it uses the device already assigned to LU 1. 1If no device is
assigned, TET outputs the message LU 1 NOT ASSIGNED. In this
case, the paper tape unit is assigned to LU 1, and TET reads data
from LJ 1. The parer tape unit is used for each IN command until
the IN MAG1: command, where TET closes LU 1 and then assigns the
mag tape unit to LU 1. Data is read from the mag tape for each
INCLUDE command (the IN PTRP:), where TET switches LU 1 to the
paper tape unit again.

If the user does not specify the volume name, and if the VOLUME
command has been issued, TET substitutes the volume name
specified in the VOLUME command. If the VOLUME command has not
been issued, as in this example, the default system volume is
used. If the user omits the extension field, TET supplies a
default extension. The default 1is selected according to the
command being executed and the data being processed. Table D-4
lists the default extensions. If the fd specified in the BUILD
command is a disc file, TET allocates a contiguous file of proper
size to build the load module. If a file with the same nane
already exists, that file is not deleted.

D.7 EXAMPLES OF TET OPERATION

The following examples show the command sequence .used to
establish +tasks under a variety of conditions. In all these
examples, use of a temporary file is assumed (LU 4 is assigned
prior to starting TET).

D.7.1 Establishing a Simple Task

This example illustrates how to establish a simple task. FILEA
contains the object program(s).

D-u8 48-005 FOO RO1



ESTABLISH TASK

INCLUDE FILER

BUILD TASK, FILEAR.TSK

MAP Produces a map of the task
END Returns control to the system

D.7.2- Establishing a Task with Pure and Impure Segments

This example illustrates how to establish a task from a file that
contains programs (segmented in pure and impure form), some of
which are nnt required by this task. Programs A, C, and D are to
be included in the task. Figure D-1 is a description of the
input and output files.

- - —————— -~ an o - .- -

| PROGRAM H | | PROGRAM H |

| === mmmmme l e |

| PROGRAM G | | PROGRAM F |

| =m=mmmmmmme ! |======ommo- !

| PROGRAM F | | PROGRAM D |

e ——— | R —— |

| PROGRAM E | | PROGRAM C |

|====-om-me- | |-====- oo |

| PROGRAM D | | PROGRAM A |

e | CONTAINS EXTERNAL =-==--=-e--

| PROGRAM C | REFERENCES TO

|====mmm——-- | PROGRAMS A,D, & H

| PROGRAM B |

| mmmmmm - | CONTAINS EXTERNAL

| PROGRAM A | REFERENCES TO

----------- PROGRAM F

LOAD MODULE OF
ESTABLISHED TASK

FILE A (OUTPUT FILE IMAGE
(INPUT FILE OBJECT CODE) CODE)

Figure D-1 Establishing a Task with Pure and Impure Segments

The required command sequence is as follows:

ESTABLISH TASK, PURE
INCLUDE FILER,PROGRAMA
INCLUDE, PROGRAMC
INCLUDE, PROGRAMD

48-005 FGO RO1 D-49



EDIT Includes PROGRAM F referenced by
PROGRAM A, and PROGRAM H referenced
by PROGRAM C. Programs A and D are
already included.

BUILD TASK As no fd is specified, and assuning
that LU 2 1is not assigned to a
contiguous disc file, this task is
built in memory and output to LU 2.

MAP Produces a map of the task

END Returns control to the system

D.7.3 Establishing a Reentrant Library

This example describes the establishment of the FORTRAN run time
library. The example assumes that the run time library is input
to TET on five paper tapes.

ESTABLISH RL Specifies that a reentrant library
load module be established

INCLUDE PTRP: Includes five paper tapes

INCLUDE ETRP:

INCLUDE PTRP:

INCLUDE PTRP:

INCLUDE PTRP:

BUILD RL,FORT.RTL,RELIBRY,1C
Builds a reentrant 1library load
module with the name RELIBRY, using
seqment 10.

MAP Produces a map of the completed
module
END Returns control to the systenm

De7.4 Establishing a Complex Task with Overlays

The taskX comprises all three programs from File A and, initially,
one program from File C (Program D). However, Program D has
references to Programs A, B, and F in the same file. Therefore,
the main (impure) segment ccntains seven pregrams. Two overlays
are necessary for the task. The first overlay is from File C
(Program E with the two references, Programs B and C in File B).
The second overlay is File B Program A. Figure D-2 is a grabvhic
representation of the task.

D-50 48-0205 FOO RO1



PROGRAM A

PROGRAM F FROM FILE C

PROGRAM B

PROGRAM B FROM FILEC

PROGRAM C

FILE A
VOA:FILEA.EX1

PROGRAM A FROM FILE C

PROGRAMD FROM FILE C

PROGRAM C FROM FILE A

PROGRAM B FROM FILE A

PROGRAM A FROM FILE A

PROGRAM A

PROGRAM B

PROGRAM C

PROGRAM D

DESIRED MAIN SEGMENT
STRUCTURE

FILEB
VOB:FILEB.EX1

PROGRAM C FROM FILE B

PROGRAM B FROM FiLE B

PROGRAM E FROM FILE C

PROGRAM A
INCLUDES LIBRARY

REFS

PROGRAM B

PROGRAM C

PROGRAM D
INCLUDES REFS TO
PROGRAMS A,B,&F

IN THIS FILE

PROGRAM E
INCLUDES REFS TO
PROGRAMS B&C

INFILEB

DESIRED STRUCTURE FOR
OVERLAY ONE

PROGRAM F

PROGRAM A FROM
FILEB

FILEC
VOA:FILEC.EX1

DESIRED STRUCTURE FOR
OVERLAY TWO

Figure D-2 Graphic Description of a Task with Two Overlays

48-005 FOO RO1




This command sequence shows the establishment of a task with
overlays, references to reentrant 1libraries, and task common
segments. The main segment and each overlay are built on a
separate file. Automatic file allocation is used.

The command seduence to establish the task is as follows:

REMOTE Specifies that TET should not pause;
command input is batche.

VOLUME VOA VOA is the default volume
descriptor.

ESTABLISH TASK ABS 200 Provides X'200° bytes of absolute
address space before beginning the
impure relocatabl=s code.

TCOM GLOBAL/13/RW Designated common block named SLOBAL
as task common; positions GLOBAL in
segment 13, program address D0000.

' Segment has read/write access
privileges.

TCOM COMALL/12//16 Designates common block named COMALL
as task common, positions COMALL in
segment 12, program address CO0000.
Segment has read/write access
privileges as default override
segment size=4kb.

INCLUDE FILEA.EX1 Includes all of FILEA.

INCLUDFE FILEC.FX1, Includes PROGRAM D of FILEC.

PROGRAMD

REWIND FILEC.EX1 Rewinds FILEC for editing.

EDIT FILEC.EX1 Edits FILEC to include ©programs A,
B, and F in the temporary file.

RESOLVE MAG1: The RESOLVE command reads the RL

RESQLVE LIR2 LIRs and satisfies the ra=2ferences.

The libraries have been previously
astaplished.

MXSPACE 2400 Allows the task to use up to X'2400°
bytes of system space for file
control blockse.

MAXLU 20 Allows the task to use LUs numbered
between 0 and 20.

PRIORITY 20,14 Specifies that the task runs at
priority 20. The priority may be

o
|

52 48-005 FOC RO1



changed during run time, but @may not
be set higher than 14.

EXPAND 4 Allows 1024 bytes for get storage
calls in the main segment.

OVERLAY OVONE Terminates definition of +the main
segment; names and initiates

definition of first overlay.

INCLUDE FILEC.EX1, First overlay contains PROGRAME fron
PROGRAME FILEC.EX1/
EDIT VOB:FILEB.EX1 Edits FILEB for programs referenced

by PRCGRAME. 1Includes PROGRAMB and
PROGRAMC from FILEB.

OVERLAY OVTWC Terminates first overlay definition
and initiates second.

INCLUDE VOB:FILEB.EX1, Second overlay contains PROGRAMRA

PROGRAMA from VOB:FILE.EX1.

BUILD TASK,FILED.TSK Initiates pass two processing and
starts building the load module of
the task's main segment, using

temporary files. The f£d of the 192ad
module is VOA:FILED.TSK. The exten-
sion field can be any three
characters such as TSK.

BEUILNM OVLY,FILEG.OVY Builds first overlay 1load module
whose fd is VOA:FILEG.OVY.

BUILD OVLY,FILEH.OVY Buillds second overlay 1load module
whose fd is VOA:FILEH.OVY.

MAP Produces a map of entire task

END Returns control to the systen

The impure main segment is built with the absolute address area
first, followed Lty the main and local common areas, an overlay
area large enough for the 1longest overlay, and the EXPAND
requested area. At run time the system places the CTOP indicator
at the top of the EXPAND ar<ea, rounded up to a 256-byte boundary.

The following illustration describes how the task 1is organized
when loaded into memory. Note that the two libraries were
previously established. Segment 15 was allocated for the library
on MAG1:, and segment 14 was allocated for the 1library on file
LIBRZ2.RTL.

‘48"005 FOO 201 R D'53



RL SEGMENTS (15)
F0O000

(14)
E0000

TCOM SESMENTS (13)
D000O
C0039

CTOP

JTCP

IMPURE SEGMENT (C)

200

Figure D-3

De7.5

This command sequence builds
contiguous file, The O0S

an operating
image produced can be loaded by the
32-bit direct address bootstrap

i LIBRARY FROM MAG1:

- - —e we = - - - - "= e m o e = e=

| LIBRARY FROM LIB2

- = mn - = e . e W T W e e v

- - — o —— . G . . G em ew - e . G W o e

| TASK CONMHON NAMED °*GLOBAL"

————— . - - - = e W wn =P WP wm wm ww W wn W . —

| TRSK COMMON NAMED *'COMALL®

OVERLAY AREA
LOCAL COMHMON

I

I

l

|

| IMPURE CODE/DATA AREA TASK'S
| MAIN

! (ROUT)
| SEGMENT
|
I
l

- — - - —— - ——— > " m W W . S e - . -

Memory Map of Overlay Task Establishment

Building an Operating System Image

system image on

loader or the 1loader

storage
The operating system should be generated in object format
using CUP/MT and the library loader, as outlined in the 0S/32
System Planning and Configuration Guide. TET processes the
cbject module produced by the 1library loader by wusing +the
following command stream:

unite.

48-005 FOO RO1



ESTABLISH TASK
ABSOLUTE xxxxx

xxxxx is the address of UBOT from the library loader map.
INCLUDE MTSYSTEM.OBJ

Includes the output of the library loader (assumes the object
is contained on file MTSYSTEM.ORBRJ).

BUILD TASK,0532MT.301

TET allocates a contiguous file of the proper size and builds
an 0S image.

END

Returns control to the system

NOTE

To be loadable by either the boot loader
or the LSU, the fd of the file containing
the 0S image must be of the form:

0S32xxxx.hhh

XXXxx can be any four ASCII characters;
hhh mwmust be a hexadecimal number between
X'C00*' and X*'FFF°'. :

D.7.6 Establishing Compound Overlay Files

The user can build overlays sequentially on a single file. When
building overlays to single disc files, default allocation of the
files by TET is not sufficient. The user must allocate the file
before starting TET. To determine the exact 1length of the
required file, lengths of the individual images, expressed as the
number of 256-byte blocks, must be summed +to arrive at the
approximate total image length. In addition, a single LIB sector
for each image to be contained in the file, plus four sectors for
work space, are required by TET. The following numerical example
is provided: .

Overlay 1 500 hex roand up to the nearest X'100°
byte boundary

Overlay 2 2200 hex

Overlay 3 1500 hex

The seqgment length expressed in sectors is:

48-005 FOO K01 D-55

f ke .



Overlay 1 500/100 5 sectors

Overlay 2 2200/100 = 22 sectors
Overlay 3 15007100 = 15 sectors
TOTAL = 3C sectors (hex)
+ 3 sectors (LIBs)
+ 4 sectors (workspace)
TOTAL = 43 sectors (hex)

or
67 sectors (decimal)

When generating compound disc files, it is not always permissible
to change output units during the process. Consider a task with
four overlays, where ovarlays 1, 2, and 4 are directed to one £fd,
and overlay 3 is directed to another. Overlays 1 and 2 are built
sequentially. LU 2 assignment is changed for overlay 3, and when
reassigned for overlay 4, the disc file is rewound. Overlay 4
overwrites those previously built on that file. It is
recommended that all overlays for one task be builﬁ/on the sanme
file, or each overlay be built on a separate file.

D.7.7 Establishing a Block Data Task Common Segment

The following example illustrates how to establish a block data
task common segment. Block data is used to initialize the task
COmMMON area.

ESTABLISH TCOM second parameter Jdefaults to BDATA
INCLUDE FILEA.EX1,PROGR

INCLUDE FILEC.FXO9

BUILD TCOM,COMMONBK.TCM

END

PROGB in FILEA.EX1 is a block data subprogram containing a common
block definition named COMMONBK that initializes several items.
FILEC.EX9 contains several block data subprograms, where each
program declares common block COMMONBK and initializes or
reinitializes items in that block.

De7.8 Establishing a Sharable Segment

Assume file EDIT.OBJ 1is a text editor whose code body and
absolute data are assembled as pure and whose buffers and save
areas (any variable data) are assembled as impure. The following
command sequence establishes a pure and impure segment for +the
editor task:

D-5¢ 48-035 F00 RO1



ESTABLISH TASK,PURE
INCLUDE EDIT.OBJ
BUILD TASK,EDIT.TSK
MAP

END

The first time EDIT.TSK is loaded by the operating system loader,
both the pure and impure segments are loaded into memory.
Subsequent loads of EDIT.TSK result in only the impure segment
being loaded, assuring the pure segment is still in memory. All
editing tasks share the same pure segment, saving a considerable
amount of memory.

De7.9 FEstablishing Preinitialized Task Common

R load module of a task common c¢can be generated by including
nonblock data (absolute and variable data) programs as in this
example:

e
e

ESTABLISH TCOM,NOBDATE

INCLUDE MAG1: Reads all programs on mag tape

INCLUDE PTRPF: Reads all programs on paper tape

BUILD TCOM,PTRP:,TSKCCM Load module is output on paper tape
punche Name of task common is
TSKCONM.

MAP CON: Outputs a map on console device

END

D.8 TET ERROR MESSAGES

TETGC01 symbol NOT FOUND

Search for a pregram label has failed

TET001 ABS LESS THAN 100

Warning that ABS request overlaps UDL

TET001 ACCESS PRIVILEGE CONFLICT

Warning that access privileges in a LBLCOM command do not
match the corresponding access privileges in a TCOM Command.

TET001 ADRS OFLO AT xxxXxxx

Halfword address computation greater than FFFF. XXXXXxXx |is
address in program where overflow has occurred.

4g-005 FOO RO D

57

adie



TETO002 ADRS OFLO AT xxxxXxX

Fullword address computation greater than FFFFFF. XXXXXX
address in program where overflow has occurred.

TETOC1 CKSM EFRFR

Checksum error on input object file

TET001 DEV END
Tnd-of-file or end-of-medium encountered on an LU
TET002 DEV END

Device unavailable (hardware error)

TETGCO1 - ©OM™

End-of-medium on LU 1

TET001 EXP TOO BIG

Expandi request makes task greater than X'190000°

TET001 FCB AREAR FULL

Attempt to assign a f£ile has failed

TETCO1 FU SYNTRX

File descriptor syatax is incorrect

TETOC1 FILE ERP: xxxx fd

Error while closing file. XxXxx=SVC 7 status,
(fd)=filename

TFTCO2 FILE EER: xxxx £4

Error while opening file., XXXXx=SVC 7 staitus,
(fd)=filename

TET003 FILE ERR: =xxxx fd

is

1lu

lu

Error while allocating file. xxxx=SVC 7 status, andi lu (£fd)=

filename

D=-5R 48-905 FOO RO1



TETC01 HW EXTRN ABOVE LIMIT

Halfword reference corresponding definition lias above 64kDb
address

TETC01 ILLEGAL SEGMENT NO.

Segment number in a LBLCOM command is not used in a previous
TCOM command.

TET001 TILG ABS ADRS

ABS code higher than specified in ABSOLUTE command found in
this task

TET002 1ILG RABS ADRS

RBS code found in reentrant library segment

TET003 ILG ABS ADRS

ABS code in E-task

TET001 ILG CHMD

Command verb is not valid

TET001 ILG CMD PARMN

Improper command argument

TET002 ILG CMD PARM

Tllegal second parameter in a command

TET003 ILG CMD PARM

Tllegal third parameter in a command

TETOCd4 ILG CMD PARM

Tllegal fourth parameter in a command
TET001 ILG CMD SEQ

Command not legal at this point in TET operation

48-0C5 FOO RO1 D-59

wnk



TET001 IL5 COMN DEFN

TET has encountered common loader items while building a
reentrant library segment

TET002 IL5 COMN DEFN
TET has encountered common loader 1items while building an
E-task

TET003 ILG COMN DEFN

TET has encountered common loader items for block data in
task common

TETOO4 ILG COMN DEFN

-

TET has encountered common loader items for block data in an
overlay

TET005 ILG COMN DEFN

TET has encountered common loader itemas; blank common
definition found when building BDATA-TCOM

TET006 ILG COMN DEFXN

TET has encountered common loader items: more than one common
definition in block data subprogran

TET001 ILG DELIMITER x

Command syntax error; a delimiter other than x is required

TET001 ILG 0BJ ITEM xx

Loader item from an input object program is illegal (xx=item,
see Table AU-1)

TET002 ILG OBJ ITEM xx

Loader item from an input obJject program 1is illegal when
building ETL (xx=item, see Table D-5)

D=-60 48-005 EFOO RO1



TET003 ILG OBJ ITEM xx

Loader item from an input object program 1is 1illegal when
building BDATA-TCOM (xx=item, see Table A4-1)

TETOO4 TILG OBJ ITEM xx

loader item from an input objeét program 1is illegal when
building NOBDATA-TCOM (xx=item, see Table AL-1)

TET001 ILG OPTION

RPoll with F-task, roll with resident

TETGC1T InmP IN RTL

Impure code encountered while processing an RTL segment

TETC01 I/0 DEV FRROR xxdd (fd)

An I/0 error encountered while Ireading commands; fd=device
file descriptor or LU 5 not assigned

TETCC2 I/0 DEV ERROR xxdd (f£4)

An I/0 error encountered while reading input recoris;
fd=device file descrirtor or LU 5 not assigned

TETC03 I/0 DEV ERROR xxdd (£4)

En T/0 error encountered while reading an LIB; fd=device file
descriptor or LU 5 not assigned

TETOO4 I/0 DEV ERROR xxdd (£4d)

An I/0 error encountered while writing to a temporary device;
fd=device descriptor or LU 5 not assigned

TETC05 I/0 DEV ERROK xxdd (£4d)

An I/0 error encountered while outputing a 1load wodule:
fd=device descriptor or LU 5 not assigned

TFT006 I/0 DEV ERROR xxdd (£fd)

An I/0 error encountered while printing a map; fd=device
descriptor or LU £ not assigned

48-005 FOO RO1 D-61



TETC07 TI/0 DEV FRROR xxdd (£d)

An I/0 error encountered; SVC 7 fails during preparation for
pass two; fd=device descriptor or LU 5 not assigned

TET001 LCOM IN OVLY

Common definition in overlay segment is not previously
defined in main segment

TET001 LCOM TOO BIG

lLabeled common too large

TET002 LCOM TOO BIG

Blank common too large in overlay

TETCG1 LCOM IN RTL

Encountered common loader item while building reentrant LIB
segment

TETO01 LOAD PROGRAMS f£d

Prompts operator to locad program if temporary device is not
being used, or to rewind input f£fd

TET001 LU (lu) NOT ASSIGNEL

No device assigned to this LU

TET001 MEM FULL

TET work area has been exhausted. No room to build first LIB
TETOC2 MEM FULL

TET work area has been exhausted. No room to build
subsequent LIBs

TET001 MULT DEFD symbol

Multiple definition of the same symbol

D-62 48-005 FOO RO1



TET001 NO DCHN END xxxxxx

xxxXxx is the def address. Address dechaining has exceeded
200,000 1links

TET001 NO ENTRIES IN RTL

No entry definition found when building RTL

TET001 OUTSIDF AVAIL MEM

Internal TET error.. Attempt to store image code above
available user space

TET0C2 OUTSIDE AVAIL MEHY

Internal TET error. Attempt to store image code helow user
space

TETGO1 OV NAME MULT DEFD

More than one overlay with same nanme

TET001 OV MULT DFFD symbol

Two or more overlays define a symbol referenced by the main
segment

TETC01 TCOM ACCESS PRIV ERR xxxx

Access privilege in TCOM command not RO or RW (xxxx=task
common name)

TET001 PROG TOO BIG

Task greater than ¥X'100000'

TETC02 PROG TOO BIG

KL greater than 64kDb

TET003 PROG TOC BIG

TCOM size greater than X'100000°*

48-005 FOO RO1 D-63

-



TET001 REFPOSITION SCRATCH

Message to operator when using nonrewindable temporary

TETOC1 RESOLVE ERR

Input file not an RL file

TETC02 RESOLVE ERR

device

Input file not the same name as in a previous RESOLVE command

TETG01 SEGMENT ADDRESSING ERROR

Error while mapping logical segment into task address
segment start address plus size greater than Y'100000°

TET002 SEGMENT ADDRESSING ERROR

Error while mapping logical segment into task address
segqment addresses overlap

TETGO3 SEGMENT ADDKESSING ERROR

Frror while mavrring logical segment into task address
not enough contiguous space for a segment

TETCC1 SEQ ERP

Sequence number error on input object file

TET001 SHORT RECCPD

Record length of build fil= is less than 256

TET002 SHORT KECORD

kecord length of temporary file is less than 126

TETCC1 TCOM ADES OUT OF RANGE xxxx

Segment number in TCOM command is less than 1 or great
15. (xxxx=task common name)

space;

space;

ey than

D-€0 4g-005 FOO RO1



TETC01 TCOM MULT DEFD xxxx

Name xxXxx in TCOM command has been used previously in TZOM
command

TET001 TCOM NAME SYNTAX ERROR xxxxx

Name xxxx in TCOM command longer than eight characters or not
terminated by /. '

TETO0C1 TCOM TOO BIG

Second task common definition larger than first

TETCC2 TCOM TOO BIG
Override size in TCOM command smaller than in common
definition

TET001 TET 32 ABORTED

An unrecoverable condition has been detectad in batch mode:
oparator action is required

TETOC2 TET 32 ABORTED

An unrecoverable condition has been detectad when building;
no impure or pure code

TETCO3 TET 32 ABORTED

An unrecoverable condition has been detected; pass two
command not found in dictionary

TETOC4 TET 32 ABORTED

An unrecoverable condition has been detected, 2dit table
overflow; more than 8192 programs processed by EDIT

TET005 TET 32 ABORTED

An unrecoverable condition has been detected, common
reference; no corresponding definition

48-C05 FOO EKO1 D-65



TET006 TET 32 ABORTED

An unrecoverable condition has been detected, block data; no
corresponding definition

TETOC7 TET 32 ABORTED

An unrecoverable <condition has been detected, ovarlays
included not found in dictionary

TET008 TET 32 ABORTED

An unrecoverable condition has been detected, building
cverlay; overlay not found in dictionary

TETC09 TET 32 ABORTED

An unrecoverable conditinn has been detecta2d, object record
read routine failed

TETC10 TET 32 ABORTED

An unrecoverable condition has been detected; sagment table
validation error

TETC11 TET 32 ABOKTFD

An unrecoverable condition has been detected; invalid command
in error format table

TETG12 TET 32 ABOPTED

An unrecoverable condition has been detectad; a common block
defined in a TCOM command contains block data.

TET001 TOO MANY SEGMENTS

More than 16 program segnents
TET001 TOO MANY TCOMS xxxx

Cnly 15 task commons can be named in TCOM commands (xxxx=task
comMon name)

‘TETCCt UNDEFINED SYMBOLS

Operator warning that undefined symbols exist

D-&6 48-005 F0O RO1



TET001 WRONG PROG

Program encountered on pass two is in wrong order; symbol not
in dictionary

TET002 WRONG PROG

Program encountered on pass two is in wrong order; symbol has
wrong address :

TET003 WRONG PROG

Program encountered on pass two is in wrong order; no such
symbol in commen DEF's :

TETQO4 WRONG PROG

Program encountered on pass two is in wrong order; block data
subprogram not included when building BDATA-TCOM

TETC0S5 WRONG PROG

Program encountered on pass two is in wrong order;
relocatable address in rass two beyond limit

TET006 WRONG PROG

Frogram encountered on rass two is in wrong order; module
size not same as pass one size

48-005 FOO RO1 D

67



—— e — —— —— — — — ——— — — i — — . —— — — — —— s o —— — — ——— — . . — — — —— — — —— o—— — — —— —— — — ——
— —— — — —— — o —— —— — ———— — tmn O — ——— — — . —— — — 0 . — . St o s — o . o — o, =

TABLE D-5 OBJECT ITEM SIGNIFICANCE

| I
OBJECT | |
ITEMxx | MEANING |

| I

I I N T I S S T o o S S N TSNS ST o S S S S oo oo o S S S ST SRS EEN NN EEESr=mZ=m===z===x= '
0 | End-of-recori |

| I

1 | End-of-program |

| I

2 | Reset seguence number |

| [

3 | Block data indicator |

| [

4y | Absolute program address |

I I

5 | Pure relocatable program address ]

I I

6 | ITmpure relocatable program address |
I |

7 | Two bytes of pure relocatable data {
I I

§ | Two bytes of impure relocatable data |
I !

9 | Four bytes of pure relocatable data |
| I

A | Four bytes of impure relocatable data |
! |

B | Common reference |
| |

C | EXTRN |
| !

D | ENTRY |
! |

F | Common definition |
I !

F | Program label |
l |

10 | Three bytes A3S and three bytes bure relocatable |
| data |

| I

11 | Three bytes ABS and three bytes impure relocatable |
| data |

I I

12 | Load program transfer address |

68 . 48-005 FJ0 RO1



\

TABLE D-5 OBJECT ITEM SIGNIFICANCE (Continued)

- - —— - — - - " e G e G e Y W T (% E R R en e SR R W M e R e S e e W . e e G e e W e = -

16

17

18

16

1A

1B

1C

1D

1E

1F

— —— —— —— — S i . —— —— — — — — —— iy ot — — . — T — — — — — — — —— —— —

- . e - = —— - G o= e = - - - = G . - — —— - - - ——— P wm e w v e - — - . - =

Define start of chain

Load chain definition address

Two bytes AB3 and two bytes pure relocatable data

Two bytes ABS and two bytes impure relocatable data

Short form EXTRN

Length cof impure and pure segments
Perform fullword chain

Perform halfword chain

No operation

2-byte pure translation table address
2-byte impure translation table address
Illegal

One byte RBS data

Two bytes ABS data

Four bytes ABS data

Siy¥x bytes ABS data

Eight bytes ABS data

. . . L]

120 bytes ABS data

Illegal

48-C05 FOO RO1

—— i — — —— — — —— —— ——— —— — oty — — — . o— i —— s s i . it i, e S . i, . — a o— — — — — — —t—— ——— e ot ot e s






Absolute

Absolute data
Access privilege,
E
R
RE
RW
RWE
Accounting
Active LINK commands

Arithmetic fault pause

B

Backspace file (BFILE) command

BUILD command
allocation
assignment
contiguous file
"indexed file
maps

Building image load modules,

COBOL task

COBOL task, commands
imbedded

FORTRAN task

operating systenm
overlaid task, complex
overlaid task, simple
referencing sharable
segments

simple task

Building sharable segments

Cc
COMMON
Common blocks
external
local
moving
D

Define command (DCMD) .
imbedded commands
pseudo-op

DNTRY

48-00%5 FOO KO1

3-22
3-13
3-13
3-13
4-8

INDEX

END command

End of task codes

ENTRY

Entry point symbol
Environment LINK commands

ESTABLISH command
Executive task
Extended disc privilege
Extended file access
privilege
Extended options fullword
EXTERNAL command

common blocks

F GH

File descriptors

Floating point instructions,

double precision
single precision

Forward file (FFILF) command

IJ
Image I/0
Image load modules,
building

operating system
sharable segment
task
IMPURE
INCLUDE command
object modules
Intercept
Intertask communication
Intertask control
I/0 control blocks

K

Keycheck

L

LIBRARY command
entry points
external references
EXTRN pseudo-op
non-linking external
references
object libraries
weak entry points
weak external references

[ | [}
o N

NN WD 2wl OO

@ J o

WWwwwwwwwww
]

]
[8)
[+ )

www
1

- W

w o

3-13

3-28
3-28
3-14

Indi-1



LINK,
building
commands
command summary
command syntax
comparison to TET
features
file descriptors
loading
message summary
requirements
starting

Loading LINK,

from MTM terminal
from system console

LOCAL command
entry point
sharable segment
LOG command
command input
maps
messages
Logical units

MAP command
address
ADDRESS
ALPHABETIC
build summary
XREF

Map listings

NDCMD command
No log (NLOG) command

0

Operating system image load
module
OPTION command
ABSOLUTE
ACCOUNTING
ACP
AFPAUSE
COM
CON
DFLOAT
DISC
ENTRY
ETASK
FLOAT
INTERCEPT
IOBLOCKS
KEYCHECK
LU
NACCOUNTING
NACP
NAFPAUSE
NCOM
NCON
NDFLOAT
NDISC
NFLOAT

Ind-2

NN =2 Wl
i
PN N R S R e e R VR I Y

wwhn
(]
- - AN

3-21
3-22
3-21
3-21
3-22
3-21
3-22

3-10
3-26
3-29
3-3
3-28
3-27
3-27
3-27
3-28
3-28
3-30
3-27
3-28
3-3
3-29
3-31
3-29
3-31
3-28
3-27
3-27
3-27
3-29
3-28
3-28

— — o —— — o —— o — e — ——— — — i t— —— ot ——— —— o —— o v, S ., — ot . . s . s ot g et e it o, e Sty e s .

NINTERCEPT
NKEYCHECK
NRESIDENT
NROLL
NSEGMENTED
NSVCPAUSE
NUNIVERSAL
NVFC
NXSVC1
PRIORITY

RESIDENT
ROLL

SEGMENTED
SVCPAUSE
SYSSPACE
TEQSAVE
TSW
UTASKX
VFC
WORK
Xsvci
Overlay command
level
overlaid tasks
overlay name
root segment
Overlay structure

P Q

Passive LINK commands

PRAUSE command

POSITION command
common blocks
root segment

Priority of task,
initial
maximum

PROG

PURE

RESIDENT
REWIND command
ROLL

SEGMENTED
Sharable segment

access privilege
building

SIZE
starting address
task common block

3-31
3-31
3-27
3-27
3-27
3-28
3-28
3-31
3-30
3-29
3-27
3-27
3-27
3-28
3-29
3-30
3-30
3-27
3-31
'3-29
3-30
3-32
3-32
3-32
3-32
3-32

3-27
3-36
3-27

3-27
1-1

3-10
3-10
4-9

4-10
3-38
3-11
3-38

Sharable segmented image load

module

SHARED command
access privilege
sharable segment
task common block

3-10
3-37
3-37
3-37
3-38

48-005 FOO0 RO1



Shared-read-only assignments 3-28 | TITLE command 3-40
Starting LINK 2-3 | TSW 3-30
Statement syntax conventions 1-2

System space 3-29 '

| U
|

T ' UNIVERSAL 3-28
' User task 3-27

Task image load module 3-10 |

Task status word, | \J
address portion 3-30 |
status portion 3-30 | Vertical forms control (VFC)

TET, ) option 3-31
automatic assignment D-47 | VOLUME command 3-41
commands D-5 |
error messages D-57 '
established task D-2 | WXY Z
examples of operation D-48
operating assignments D-u1 l WFILE command 3-42
system requirements D-1 | Workspace 3-29

|

48-005 FOO RO1 Ind-3






LU ALUNU LINE

PUBLICATION COMMENT FORM

Please usé this postage-paid form to make any comments, suggestions, criticisms, etc. concerning
this publication.

From , Pate

Title Publication Title

Company Publication Number

Address

FOLD

Check the appropriate item.

[} Error Page No. — — ___ Drawing No.

[} Addition Page No.________  Drawing No.

(O other Page No._;______ Drawing No.

Explanation:

‘Fold and Staple
No postage necessary if mailed in U.S.A.

FOLD

FOLD



STAPLE

— o —— o— mm— o— o——— m——— — o— o—— — o— w——— m— e e s e e em— e et e e e e

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J.

POSTAGE WILL BE PAID BY ADDRESSEE

PERKIN-ELMER

Computer Systems Division
2 Crescent Place
Oceanport, NJ 07757

TECH PUBLICATIONS DEPT. MS 322A

STAPLE

— — owe a— m— —— m— e G Gmem  Gamn e ewmn mem wvem e ewen m— e ey e e e

NO POSTAGE
NECESSARY
IF MAILED
IN THE
UNITED STATES
]
]
]
L ]
]
]
I
L]
]
]
L]
L]
]
R
FOLD

STAPLE



