
PERKIN-·ELMER

OS/32
PATCH

Referem~e Manual

48-016 FOO R01

The information in this document is subject to change without notice and should not be
construed as a commitment by The Perkin-Elmer Corporation. The Perkin-Elmer Corpo­
ration assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license, and it can be used or
copied only in a manner permitted by that license. Any copy of the described software
must include the Perkin-Elmer copyright notice. Title to and ownership of the described
software and any copies thereof shall remain in The Perkin-Elmer Corporation.

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by Perkin-Elmer.

The Perkin-Elmer Corporation, Data Systems Group, 2 Crescent Place, Oceanport, New Jersey 07757

© 1980, 1984 by The Perkin-Elmer Corporation

Printed in the United States of America

TABLE OF CONTENTS

PREFACE

CHAPTERS

1 OS/32 PATCH

1.1

1.2

1.3

1.4

1. 5

1.6

1. 7
1. 7 .1

l[NTRODUCT I ON

][MAGE PATCHING

OBJECT PATCHING

OBJECT LIBRARIES AND COMPOUND OVERLAY FILES

HISTORY FEATURE

PATCH REQUIREMENTS

~JTATEMENT SYNTAX CONVENTIONS
File Descriptors (fds)

2 STARTING PATCH

2.1

2.2
2.2.1

2.3

BUILDING THE PATCH IMAGE LOAD MODULE

LOADING PATCH
Loading Patch into an Operating System
l~nvironment

Loading Patch into a Multi-Terminal Monitor
1(MTM) Environment

STARTING PATCH

3 PATCH COMMANDS

3.1 INTRODUCTION

3.2 BIAS COMMAND

3.3 BLOCK COMMAND

48-016 FOO ROl

v

1-1

1-1

1-2

1-2

1-2

1-3

1-3
1-"5

2-1

2-2

2-2

2-2

2-4

3-1

3-4

3-6

i

CHAPTERS (Continued)

3.4 COMMAND COMMAND 3-7

3.5 DISPLAY COMMAND 3-9

3.6 DUMP COMMAND 3-11
3.6.1 Object Dump 3-12
3.6.2 Image Dump 3-14

3.7 END COMMAND 3-15

3.8 EXAMINE COMMAND 3-16
3.8.1 Image Mode 3-17
3.8.2 Object Mode 3-18
3.8.3 Common Blocks 3-19
3.8.4 Block Data Subprograms 3-19

3.9 EXPAND COMMAND 3-20

3.10 GET COMMAND 3-22

3.11 HELP COMMAND 3-25

3.12 IDNO COMMAND 3-27

3 .13 IMAGE COMMAND 3-29

3 .14 LIB COMMAND 3-31

3 .15 LIST COMMAND 3-32

3. 16 LOG COMMAND 3-33

3 .17 MAXLU COMMAND 3-34

3 .18 MODIFY COMMAND 3-35

3.19 MXSPACE COMMAND 3-41

3.20 NAME COMMAND 3-42

3.21 NEWIDNO COMMAND 3-43

3.22 OBJECT COMMAND 3-45

3.23 OPTION COMMAND 3-47

3.24 OVERIAY COMMAND 3-52

3.25 PAUSE COMMAND 3-54

3.26 PRIORITY COMMAND 3-55

3.27 RANGE COMMAND 3-56

ii 48-016 FOO ROl

CHAPTERS (Continued)

3.28 Rgv1s10N COMMAND

3.29 S.PNE COMMAND

3.30 SEND STOP COMMAND

3.31 SHARED COMMAND

3.32 T.MLE COMMAND

3.33 TRANSFER COMMAND

3.34 TSW COMMAND

3.35 VAR I ABLE COMMAND

3.36 VERIFY COMMAND

4 PATCHING IMAGE MODULES

4.1

4.2

4.3

4.4

4.5

INTRODUCTION

PATCHING A TASK IMAG·E MODULE

ADDING CODE TO IMAGJ~ MODULES

MODIFYING COMPOUND OVERLAY FILES CREATED
BY TET

MODIFYING TREE-STRUCTURED OVERLAYS

5 PATCHING OBJECT MODULES

5.1 INTRODUCTION

5.2 PATCHING AN OBJECT MODULE

5.3 PATCIH ING A BLOCK DA'rA SUBPROGRAM

5.4 ADDING CODE TO OBJECT MODULES

5.5 MODIFYING OBJECT LIJBRARIES

48-016 FOO ROl

3-58

3-60

3-62

3-63

3-65

3-66

3-67

3-69

3-71

4-1

4-1

4-3

4-5

4-7

5-1

5-1

5-2

5-3

5-6

iii

APPENDIXES

A COMMAND SUMMARY

B PATCH MESSAGE SUMMARY

c PERKIN-ELMER 32-BIT OBJECT FORMAT

D PERKIN-ELMER 32-BIT IMAGE FORMAT

FIGURES

D-1

TABLES

3-1
3-2

B-1

C-1

D-1
D-2
D-3
D-4
D-5
D-6
D-7

INDEX

iv

Image Module Format

PATCH COMMAND AND DESCRIPTION SUMMARY
CODE TABLE

END OF TASK CODES

LOADER ITEM DEFINITIONS

TASK AND OS IMAGE LIB PRODUCED BY TET
RESIDENT LIBRARY LIB PRODUCED BY TET
TASK COMMON LIB PRODUCED BY TET
OVERLAY LIB PRODUCED BY TET
LIB PRODUCED .BY LINK
OS IMAGE LIB PRODUCED BY LINK
SHARED SEGMENT IMAGE LIB PRODUCED BY LINK

A-1

B-1

C-1

D-1

D-1

3-1
3-37

B-12

C-2

D-2
D-3
D-4
D-4
D-5
D-6
D-7

IND-1

48-016 FOO ROl

PREJ~ACE

This manual is a guide to using Perkin-Elmer OS/32 Patch. Patch
allows the user to apply software changes to object or image code
without reasse:mbl:ing the source module.

Users of Patch should be f amilia1~ with OS/32, the Perkin-Elmer
32-bit processor machine inst1~uction formats, object and image
module formats.

Chapter 1 describes the capabilities of OS/32 Patch. Chapter 2
discusses the procedure for building, loading and starting a
Patch image load module. Chapter 3 provides a detailed
description of all Patch commands. Chapters 4 and 5 describe the
concepts of image and object patching, respectively. The four
appendixes include a Patch co_mmand summary, Patch information and
error message summary, and descr jlptions of the object and image
code formats.

Revision 01 of this manual introduces three new commands:
COMMAND, VERI:FY and VARIABLE. This revision also introduces
enhancements ti0 the BIAS, EXAMINE, MODIFY, TSW and TRANSFER
commands to support the use of variables. Changes have also been
made to the RANGE and EXPAND commands to support the use of
program variables. In additie>n, several new object loader
control items have been added. The loading of overlay files
created by TET in Patch (softwarE~ number 03-196 R02) differs from
Patch (softwar1e number 03-196 ROO).

For information on the contents of all Perkin-Elmer 32-bit
manuals, see the 32-Bit Systems User Documentation Summary.

48-016 FOO ROl v

1.1 INTRODUC'rION

CHAPTER l
OS/3~~ PATCH

Patch is a pr~:>gram development tool that allows the user to
change object or image versions~ of programs without reassembling
the source module. Patch provides a convenient means of applying
software. changes to object or image code.

The capabilities provided are:

• modification of object and image modules,

• addition of code or data,

• a history '.feature that records all changes made, optionally
labeled with Patch control IDs, and

• manipulation of object libraI' ies and compound over lay files.

Patch executeis as a disk-based I'eentrant program. It. can be run
in interactive or batch mode. The following sections describe
t.he Patch features.

l. 2 IMAGE PA'rCH ING

All image modules produced by OS/32 Link and TET can be patched,
including ta:sks, operating system images, over lays, resident
libraries, p·,reinitialized task commons (TCOMs) and shared
segments.

An image module consists of one or more loader information blocks
(LIBs) followed by image code segments that may· consist of
impure, pure and overlay segments.. If the image module is a task
with tree-st:ructured overlays, there will also be an overlay
descriptor table (ODT). These segments contain the program as it
appears in memory when it is loaLded. An LIB contains information
such as segment sizes, entry poi.nts for resident libraries, and
t.ask parameters and options set by Link or TET. LIBs are
described in Appendix D.

Patch provide:s commands to change the LIB information and the
data within segments. It also allows segments to be expanded to
accommodate additional code or data.

48-016 FOO ROl 1-1

1.3 OBJECT PATCHING

All object modules produced by the Common Assembly Language (CAL)
assembler can be patched, including named and unnamed object
modules and block data subprograms.

An object module consists of a sequence of loader items as
described in Appendix C. Loader items can define the name and
transfer address of a task, absolute (unrelocatable) data,
address constants, common areas, common references, external
references and other items.

Patch provides commands to examine the code generated by these
loader items and to create additional loader items. The user is
responsible for ensuring that additional loader items do not
over lay .chains of external references.

1.4 OBJECT LIBRARIES AND COMPOUND OVERIAY FILES

Patch enables the user to process files that contain more than
one module. F ilea containing more than one object module ar·e
called object libraries. Patch is capable of modifying compound
overlay files that consist of a root segment and at least one
overlay area.

With single modules, Patch reads the original module from an
input file and writes the patched version to an output file.
With object libraries and compound overlay files, Patch allows
the user to select modules to be patched and to decide whether or
not to include intervening modules in the output file. For
instance, it is possible to create a new object library with
several modules replaced by patched versions. It is also
possible to produce a file with only the patched modules.

NOTE

See Section 4.4 for an explanation of the
difference between Patch (software number
03-196 R02) and Patch (software number
03-196 ROO) in the loading of overlays
created by TET.

1.5 HISTORY FEATURE

Patch maintains a record of all changes made during a session.
In addition, a Patch control ID can be associated with each
session of changes.

Particular Patch commands display the patched modules, number of
revisions and associated Patch control IDs. For any patched
module, the complete record of all changes made by Patch can be
displayed.

1-2 48-016 FOO ROl

The Patch control ID consists 01: a positive integer from zero to
32, 767 and up to four alphcmumer ic characters. This Patch
control ID can be issued by Perkin-Elmer with any Perkin-Elmer
supplied patches or by the user according to installation
requirements.

1. 6 PATCH REiQUIREMENTS

Patch requires these system components:

• Minimum hardware support required for OS/32

• Operating system of R06.2 or higher

• Disk 'devic 1e

• Print device

• Temporary file support

L 7 STATEMEN1r SYNTAX CONVENTIOtlrs

These statement syntax conventions are used in all instruction
formats. E:x:amples of Patch commands are shown for each
convention.

Examples:

Capital letters, parentheses and punctuation marks must be
entered exactly as shown:

BIAS AOOO:P

Lower-case letters represent parameters or information provided
by the user:

.RANGE adr , adr

Underlining indicates that only the underlined portion of the
entry is required:

.PAUSE

48-016 FOO ROl 1-3

An ellipsis represents an indefinite number of parameters or a
range of parameters:

MODIFY data G •.• data]

Braces represent required parameters from which one must be
chosen:

Brackets represent an optional parameter that may be chosen:

HELP [command name]

Commas separate parameters and substitute missing positional
parameters:

Commas inside brackets must be entered if the optional parameter
is chosen:

.lDNO [n] G charstr ing]

Braces inside brackets represent optional parameters from which
one may be chosen:

Commas preceding braces inside brackets must be entered if one of
the optional parameters is chosen.

name

_*..QBJECT
GET

*OS

1-4 48-016 FOO RO.l

An equal sign :separating the keyword from parameters must be
entered to assiociate a parameter with the keyword.

SHARED NAME:-= sname

1.7.1 File Descriptors (fds)

All fds are entered in a standard format.

Format:

[{
vdoevln :l]) [t' ilename] I[J"j [{ acctno l]

ti ext - /file classf

Parameters:

voln:

dev:

filename

48-016 FOO ROl

is a 1- to 4-character
specifying the name of
first charactE~r must be
remaining alphanumeric.
omitted, the default is:

alphanumeric string
a disk volume. The

alphabetic and the
If the volume name is

• temp vo lumE~ for temporary f i les ,

• spool volume for spool files,

• user volume for all other
multi-term:lnal monitor (MTM)
or

files in a
environment,

• system volume for all other files in an
operating f:system environment.

is a 1- to 4-character alphanumeric string
specifying a device name. The first character
must be alphabetic and the remaining
alphanumeric.

is a 1- to a-character alphanumeric string
specifying the name of a file. The f i'[st
character must be alphabetic and the '[emaining
alphanumeric. If a filename is specified with
a device name.r the filename is ignored.

1-5

.ext

acctno

file class

1-6

is a 1- to 3-character alphanumeric string
specifying the extension to a filename. If
the period (.) is specified and the extension
is omitted, the default is blanks. If the
period and extension are omitted, a default
extension appropriate to the particular Patch
command in which the fd appears is appended to
the filename.

is a decimal number ranging from 0 through
65,535 specifying the account number
associated with the file. Account numbers l
through 65,535 (excluding 255) are used by
MTM. Account number 255 is reserved for the
Authorized User Utility. Account 0 is used
for system files and is the default for all
operator conunands.

is a 1-character alphabetic string specifying
the type of file class when files are used in
an MTM environment. The file class types are:

• /P for a private file

• /G for a group file

• /S for a system file

An n specifies account number rather than
class designator (P, G and S). If the file
class is omitted, the default is P in an MTM
environment. In an operating system
environment, S is the only file class that can
be specified.

48-016 FOO ROl

CHAE>TER 2
STARTJ:NG PATCH

2 .1 BUIIDING THE PATCH IMAGE LC>AD MODULE

The following sequence of commands can be used to build Patch as
a sharable isegmented image load module from an object module
named PATCH. OJBJ:

LOAD LINK
START
ESTABLISH TASK
INCLUDE PATCH.OBJ
OPTION WORK==n,SEGMENTED
BU I ID PA~rcH
END

The argument c:>f the WORK parameter in the OPTION command can be
calculated by uslng the following formula.

Formula:

n = w + e 8- X' 50 iJ

Where:

n

w

e

is a hexadeci.mal number specifying the sum of
variables w and e that should be a minimum
value of X'50' to provide space for the START
parameters.

is a hexadecimal number specifying the number
of bytes occupied by the largest program to be
patched in main storage.

is a hexadecimal number specifying the total
number of bytes all Patch EXPAND commands will
add to the current task size.

The size of the workspace created during the building of the
image load module can be overridden at load time.

48-016 FOO ROJL 2-1

2.2 LOADING PATCH

Patch must be built as an image load module before it can be
loaded (see Section 2.1).

2.2.l Loading Patch into an Operating System Environment

The following explains how to load Patch into an operating system
environment.

Format:

LOAD taekid G [rd], [eegeize increment]]

Parameters:

task id

f d

segsize
increment

specifies the name of the task after it is
loaded into the foreground segment in main
storage.

is the file descriptor of the Patch image load
module to be loaded into main storage. If
this parameter is omitted, the default is
taskid.TSK. If the Patch task was built as in
the previous section, the task ID

is a decimal number, in
specifying the additional area to
the task's impure segment.
overrides the OPTION WORK value
specified when the task was built.

is PATCH.

kilobytes,
be added to
This value
if it was

2.2.2 Loading Patch into a
Environment

Multi-Terminal Monitor (MTM)

The following explains how to load Patch into an MTM environment.

Format:

LOAD fd ~segsize increment]

2-2 48-016 FOO ROl

Parameters:

f d

segsize
increment

Functional Details:

is the file descriptor of the Patch image load
module to be loaded into main storage.

is a decimal number, in kilobytes, specifying
the additional area to be added to the task's
impure segment.

The segsize increment field is optional and is used to provide
additional storage for workspacie. If the workspace is not large
enough to contain the program to be patched, a message is
displayed to inform the user that a temporary file is allocated
for workspace. Use of workspace improves Patch response time.
The necessary increment can be calculated using the following
formula.

Formula:

nr*rs
segsize increment +H·exp

Where:

nr

rs

exp

48-016 FOO ROl

1024

is a decimal number specifying the number of
records in th49 largest program to be patched.

is a decimal number of 126 for the record size
of an object module and 256 for the record
size of an image module.

is a decimal number specifying the
size of the memory area to be
additional data (see Section
information on the EXPAND command).

expansion
used for
3.9 for

2-3

2.3 STARTING PATCH

After Patch is loaded, the START command starts execution and
causes the command, list and message devices to be assigned.

Format:

Parameters:

COMMAND=

LIST=

Functional Details:

fd 1 specifies the input device from which
commands are to be entered. If this parameter
is omitted, the default is the console device
(CON:). If the specified command input device
is interactive, messages are sent to the
command device. If the specified command
input device is batch, messages are sent to
the list device.

fd 2 specifies the output list device. If the
LIST parameter is omitted and the command
device is interactive, the list output is sent
to the command device. If the LIST. parameter
is omitted and batch is the command device,
the default is PR:.

If the list device is changed in interactive
mode by using the LIST command, the device to
which messages are sent remains unchanged. If
the list device is changed in batch mode by
using the LIST command, the device to which
messages are sent changes to the new list
device (see Section 3.15 for information on
the LIST command).

The list device is used by the DUMP, REVISION and TABLE commands
to display various types of information (see Sections 3.6, 3.28
and 3.32, respectively).

2-4 48-016 FOO ROl

3 .. 1 INTRODUC'TION

CHAPTER 3
PATCH COMMANDS

Commands a.re listed in alphabetJLcal order in Table 3-l. The
conventions used in describing the syntax are in Section 1.3.

TABL~ 3-1 PATCH COMMAND AND DESCRIPTION SUMMARY

I COMMAND MEANING
l===~====================:==G•======m==••mc=m=e=su:=•=•===
I BIAS Sets the bias address for the EXAMINE and

MODIFY commands .

. I BLOCK I

COMMAND

DISPLAY

DUMP

END

EXAMINE

EXPAND

GET

HELP

IDNO

IMAGE

48-016 FOO RO.l

Specifies the name of a common block.

Provides the ability to change the input
command device.

Displays the current Patch parameters to the
device to which all messages are output.

Displays the spe~cif ied contents of an object
or image module to the list device.

Terminates execution of Patch.

Displays the contents of a specified
location . in a mc1dule.

Adds a Patch are!a to the end of a specified
module.

Specifies a module to be patched.

Displays the par·ameters for a specified
command and br ie!f ly describes its usage.

Labels patched modules with a Patch control
ID.

Specifies image patching.

3-1

3-2

TABLE 3-1 PATCH COMMAND AND DESCRIPTION SUMMARY
(Continued)

COMMAND MEANING

-======--LIB

LIST

LOG

MAXLU

MODIFY

MXSPACE

NAME

NEWIDNO

OBJECT

OPTION

OVERLAY

PAUSE

PRIORITY

RANGE

REVISION

Displays the contents of the loader
information blocks (LIBs) for the currently
selected image module being patched.

Changes the list device.

Enables or prevents copying of Patch
commands to the list device.

Redefines the maximum number of logical
units a task can use.

Changes the contents of specified locations
in a module.

Redefines the maximum amount of system space
that a task can use.

Renames an object module.

Begins a new history record and assigns a
Patch control ID for the new set of patches.

Specifies object patching.

Redefines task options that were initially
defined at Link or TET time.

References tree-structured overlay modules
while accessing the root segment.

Suupcnds Patch processing.

Redefines initial and maximum priorities for
a task.

Computes the relative displacement between
two addresses in a format suitable for use
in an RX2 format instruction.

Displays Patch history of a module from the
current input file.

48-016 FOO ROl

TABIE 3-1 PATCH COMMA:ND AND DESCRIPTION SUMMARY
(Continued)

COMMAND MEANING
===============----------------------====--=-===========-

SAVE

SHARED

SEND
STOP

TABLE

TRANSFER

TSW

VARIABLE

VERIFY

48-016 FOO ROl

Outputs a patched module to an output file.

Changes access privileges and maximum or
minimum size of a shared segment entry.

Stops execution of the DUMP, EXAMINE,
REVISION and TABLE commands.

Displays a list of all of the modules in an
input file.

Redefines the transfer address of an object
module.

Redefines the starting task status word
(TSW) for a task.

Allows assignment of an internal variable.

Provides the ability to verify the contents
of a location.

3-3

BIAS

3.2 BIAS COMMAND

This command sets the bias address for the specified segment,
which becomes the current default segment descriptor.

Format:

Parameters:

adr

variable

p

A

I

Functional Details:

is a hexadecimal number from zero to FFFFFE
aligned on a halfword boundary specifying an
address in a pure, absolute or impure segment.
The bias addresses for all segments are
initially zero when Patch is started.

is a 1- to 8-character string specifying the
name of a previously defined internal Patch
variable. See Section 3.35 for information on
the VARIABLE command.

specifies the pure segment.

specifies the absolute segment.

specifies the impure segment. This segment is
the default when Patch is first started.

The BIAS command can be used at any time to establish bias
addresses for each of the three segments. The address parameter
in the EXAMINE and MODIFY commands is interpreted as an offset
from the current bias address for the specified segment. If the
address parameter of the BIAS command is omitted, the current
bias for the specified segment is displayed. This segment
descriptor becomes the default segment de~criptor for subsequent
EXAMINE and MODIFY commands.

3-4 48-016 FOO ROl

If no parameters of the BIAS command are specified, the biases
for all segments are displayed. The current default segment
descriptor is preceded by an asterisk (*). The use of the
default segment descriptor is e:x:plained in the EXAMINE and MODIFY
command descr.iptions (Sections 3.8 and 3.18, respectively).

Examples:

BIAS 1234: I

The above example sets the impure bias to 1,234 and t.he
current default segment descriptor to impure.

BIAS :P

BIAS

This •example displays the current pure bias and sets t.he
current default segment descriptor to pure:

*PURE BIAS 0

This example displays the current impure, pure and
absolute biases and indicates t.he default segment
descriptor with an asterisk:

*IMPURE BIAS 1234,
PURE BIAS 0
~\.BSOLUTE B I AS 0

VARIABLE !~NEWADD=l436
BIAS %NEWADD: I

The above example sets the value of the %NEWADD variable
t.o 1,436 and establishes this as the impure bias. This
form of the BIAS command also sets the current default
segment descriptor to impure.

48-016 FOO ROl 3-5

BLOCK

3.3 BLOCK COMMAND

This command specifies the name of a common block in an object
block data subprogram.

Format:

BLOCK [name]

Parameter:

name

Functional Details:

is a 1- to a-character alphanumeric string
specifying the name of the common block to be
patched. If this parameter is omitted, the
current selected common block name is
displayed.

In all subsequent EXAMINE and MODIFY commands, the address
specified is interpreted as an offset from the beginning of the
common block (see Sections 3.8 and 3.18).

Examples:

BLOCK ALPHA

The above example sets the current common block to ALPHA.

BLOCK

This example displays the current common block name.

3-6 48-016 FOO ROl

COMMAND

3.4 COMMAND COMMAND

This command provides the ability to change the input command
device.

Format:

.c.QMMAND f d kRETURN]

Parameters:

f d

RETURN

is the file descriptor of the file or device
from which Pa.t"ch will accept commands.

specifies that the user wishes to return to
the original command device upon completion of
the commands in the new device.

Functional Details:

Upon execution of this command, the file descriptor (fd) is
checked for esyntax. If the fd is correct, it is assigned as the
command input device. Commands are read from this device until
an end of data indicator (/* or ./) is encountered. At this
time, the cur:rent. command input device is closed and, if RETURN
was specified,. Patch reverts back to reading the original command
file. COMMAND entered without any parameters will display the
current command input device and whether or not RETURN is in
effect. If this command is issued from a secondary command file
while RETURN is in effect, the following message will be output.

'NESTING OF COMMAND FUNCTION ILLEGAL'

If an end of data indicator is encountered and RETURN is not in
effect, it is ignored and the following message is generated.

'NO RETURN IN EFFECT'

NOTE

The END command overrides the RETURN
option.

48-016 FOO ROJL 3-7

Example:

COMMAND MAGl:,RETURN

3-8

This example specifies that MAGl: becomes the input
command device. Commands are read from the tape until an
end of data indicator is encountered; Patch will then
revert back to the previous command file.

48-016 FOO ROl

DISPLAY

3.5 DISPLAY COMMAND

This command displays information about current devices being
used and various user-selectE~d parameters. The information is
displayed on the output device to which messages are sent. This
information is divided into two groups:

• Device information

• Patch information

Format:

Parameters:

D

p

48-016 FOO ROl

specifies that device information is to be
displayed. Device information consists of the
current:

• input and output files as set by the last
IMAGE or OBJECT command,

• list device, and

• log mode status (see Section 3.16).

specifies that Patch information is to be
displayed. Patch information consists of the
current:

• common blc>ck name as set by the last BLOCK
command,

• biases and default segment descriptor as
set by thE~ BIAS command,

3-9

·Functional Details:

• locations, segment IDs and sizes of Patch
areas created by the EXPAND command, and

• Patch mode.

See Sections 3.13 and 3.22 for descriptions of the IMAGE and
OBJECT commands.

3-10 48-016 FOO ROl

DUMP

3.6 DUMP COMMAND

This command displays the specified contents of an object or
image module to the list device.

Format:

Parameters:

name

*OBJECT

*TASK

*OS

rec

'title'

48-016 FOO ROl

is a 1- to 8-character alphanumeric string
specifying the name of the module from the
input file whose contents are to be dumped.
If more than eight characters are entered for
a resident l:Lbrary or task common module, an
error message is displayed.

specifies a named or unnamed object module in
the input file. This module must be the only
module within the input file.

specifies a task image module that is a root
segment of a compound overlay file produced by
Link. This module must be the only module
within the input file.

specifies an operating system image module.

specifies a range of records to be displayed
starting with the first specified record and
ending with the last specified record. The
defaults are the first and last record of the
dump.

is a 1- to 50-character alphanumeric string to
be output as a heading preceding the dump. If
t.his paramete~r is omitted, a blank heading is
t.he default.

3-11

Functional Details:

For object modules, DUMP
listing of loader items.
object dump.

produces history information and a
See Section 3.6.1 for the format for an

The input file from which a module is to be dumped must be first
assigned by the IMAGE or OBJECT conunand. If the user fails to do
so, an error message wiLl be displayed.

If the module selected to be dumped to is currently being
patched, the patched version of the program is displayed, along
with the previous history information. The current position of
an object library or a compound overlay file is not affected.

See Section 3.6.1 for an example of an object dump and Section
3.6.2 for an example of an image dump.

Examples:

DUMP *TASK,,'SAMPLE TASK DUMP'

·rhe above example dumps all records of the task on the
input file. Label the dump with the title given.

DUMP ALPHA,1,2

This example dumps the first two records of the module
ALPHA. Use a blank heading.

3.6.1 Object Dump

An object dump contains the following:

• Data

• History records (if applicable)

3-12 48-016 FOO ROl

Example:

SEG HEXADECIMAL
ADR DES HALFWORD(S)

ASCII
REP

LOADER
ITEM NO

LOADER
ITEM DES

000016:P C9ll!:O
OOOOlE:P C9ll!:O
000026:P CSll!:O
00002E:P 4300
000036:P 0000

000038:P C9EO
000040:P 4000

000044:P 0210
00004A:P 08.lE
000052:P 58El
00005A:P 27Dl
000062:P 4000

Fields:

ADR

SEG DES

HEX
HALFWORD

ASCII REP

LOADER
ITEM NO

LOADER
ITEM DES

48-016 FOO ROl

Ol2C
0190
01F4
8456

0066
0000

4000
CBlO
8522
41FO
0000

4280 8042 * ••. ,B •• B * (30) 34 BYTE(S) ABS DATA
4280 807C * B ... *
4280 8304 * B ... *
D310 4000 * c .. V' •• @. *

* *
(13) DEF START OF CHAIN (REF)

000034:P (05) PUR PROG ADR
LUS 000006(08) COMMON REF

(19) PERFORM FULLWORD CHA IN
2134 D310 * 14 .. * (25) 12 BYTE(S) ABS DATA

* @ ••• *
(13) DEF START OF CHAIN (REF)

000040:P (05) PUR PROG ADR
LUS 000002(08) COMMON REF

(19) PERFORM FULLWORD CHAIN
OB6D I (11) 3 BYTE ABS & 3 BYT IMP REL
0065 1112 * * (2D) 28 BYTE(S) ABS DATA
58Dl 8522 * X •• "X .. " *
833E D310 * I .A ..) .. *

* @ ••• *
(00) END OF RECORD

is the hexadecimal address of the first byte
displayed on each line.

is the segment descriptor of I, P or A.

specifies one to four halfwords of hexadecimal
data.

is ASCII representation of absolute data
items. Also included in this area are program
entry pointe1, external references and common
references.

is the loader control item.

is the description of the loader control item.

3-13

3.6.2 Image Dump

For tasks, operating system and shared segments, the image dump
contains:

e LIBs

• History records (if applicable)

• Data

Example:

SEG
ADR DES

2400:P
2410:P
2420:P
2430:P
2440:P
2450:P

Fields:

ADR

SEG DES

OOOF
OOOF
OOOF
OOOF
OOOF
4741

HEX
HALFWORD

ASCII REP

3-14

HEXADECIMAL HALFWORD(S)
ASCII

REP

lCF2
1CF2
1CF2
1F74
lFAA
4C20

OOOF 1F2A OOOF 1CF2 OOOF 1F42 * * ••••••• B *
OOOF 1CF2 OOOF lCF2 OOOF 1CF2 * *
OOOF 1CF2 OOOF 1F6A OOOF 1F74 * *
OOOF 1F74 OOOF 1F7E OOOF 1FA2 * *
OOOF 1F74 OOOF 1F74 494C 4C45 * IILE *
4655 4E43 5449 4F4E 2020 2020 * GAL FUNCTION *

is the hexadecimal address of the first byte
displayed on each line.

is the segment descriptor for I and P.

specifies one to eight hexadecimal halfwords ..

is ASCII representation of hexadecimal data.

48-016 FOO ROl

END

3 .. 7 END COMMAND

This command terminates execution of Patch.

Format:

END

Functional Details:

In interactive mode, a warning message is issued and a prompt is
returned in expectation of another command under the following
conditions:

• An END command has been entered without a corresponding SAVE
command and the module was changed.

• The output file is not a null device and the module is not
being patched in place.

If a second END command is then entered, Patch terminates
execution.

Example:

)END
SAVE CURRE!NT PROGRAM
)END
*01:01:01 PATCH:END OF TASK 0

In thet above example Patch saves modified module.

48-016 FOO ROl 3-15

EXAMINE

3.8 EXAMINE COMMAND

This command is used to display the contents of specified
locations in a module.

Format:

EXAMINE

Parameters:

PATCH

@

hexadr

p

A

I

variable

CURRENT

NEXT

3-16

PATCH

[@] hexadr ~~CK ~n]l
variable

CURRENT

,~ON

specifies that the address of the last Patch
area is to be referenced.

signifies that the bias is not to be added to
the address.

is a hexadecimal number from one to six digits
aligned on a halfword boundary.

specifies a pure segment.

specifies an absolute segment.

specifies an impure segment.

is a 1- to a-character string specifying the
name of a previously defined internal Patch
variable. See Section 3.35 f~r information on
the VARIABLE command.

specifies that the last address given in an
EXAMINE or MODIFY command is to be referenced.

specifies that the halfword following the last
referenced halfword (via the EXAMINE or MODIFY
command) is to be referenced~

specifies an arithmetic addition.

48-016 FOO ROl

off set

BLOCK

COMMON

specifies an arithmetic subtraction.

specifies an optional hexadecimal digit. If
no address is specified, the address defaults
'lo NEXT.

specifies that values within a block data
subprogram a1:e to be displayed.

specifies tha.t a COMMON reference is to be
displayed.

n is a decimal number of halfwords to be
displayed. J[f this parameter is omitted, 1 is
the default.

3.8.l Image Mode

The EXAMINE command displays a number of halfwords, specified by
the parameter n, starting at the location specified by the
address parameter. The parameter n can be any positive decimal
number and a value of 1 is assumed if n is not specified. This
is the only form of the EXAMINE command used in image mode. The
format of the response is:

I I hex I
I adr:seg I halfword I

Fields:

adr is the location of the starting address.

:seg specifies the segment descriptor I, P or A.

hex halfword represents from one to eight
halfword values per line.

hexadecimal

The impure segment descriptor is used when referencing task
commons and overlays as well as the impure segments of task and
operating system images.

The pure segment descriptor is
libraries, sharable ~egments
operating system images.

used when referencing resident
and the pure segments of task and

The absolute segment descriptor is not applicable in image mode.

48-016 FOO ROl 3-17

3.8.2 Object Mode

The EXAMINE conunand is used in object mode in three different
ways:

• to display halfword values in a module,

• to display conunon references, and

• to display halfword values in a conunon block within a block
data subprogram.

Parts of an object module that have not been defined, such as
uninitialized data arrays, are displayed as above with a U in the
halfword value fields.

Examples:

3-18

EXAMINE SA,40

The above example displays 40 halfwords beginning at
address SA plus the current bias.

EXA SA:P,COM

This example displays the name and displacement of the
conunon address reference in the instruction that starts at
SA plus the current pure bias.

EXA 5A,BLOCK,40

This example displays the 40 halfwords beginning at
address 5A plus the current impure bias within the current
conunon block.

VARIABLE %BEGADD=Al0
EXAMINE %BEGADD:P,20

This example sets the value of the variable %BEGADD to
AlO, and then displays 20 halfwords beginning at address
AlO plus the current bias.

48-016 FOO ROl

3.8.3 Common Blocks

The object code for an instruction with a target address within
a common block consists of two successive loader items. The
first loader item contains the instruction with a target address
of zero. This information can be displayed using the EXAMINE
command. The second loader itern contains the name of the common
block referenced by the instruction and the displacement within
that block of the target add1~ess. This information can be
displayed using the EXAMINE command with the keyword COMMON as
the second parameter. The addn~ss, in this case, spec if ies the
beginning of the instruction that references the target address
within a comm,on block. The format of the display is:

I I common I ::
I adr:seg I block I displ ~

Fields:

adr

:seg

common block

dis pl

is the addrE~ss of the first byte of the
instruction i~eferenc ing a common address.

specifies the segment descriptor P, A or I.

is the name of the referenced common block.

is a 1- to fi-digit hexadecimal number t,hat
specifies the displacement within the common
block of the instruction target address.

3.8.4 Block Data Subprograms

When working with a block data ~mbprogram, the BLOCK form of the
EXAMINE command is used. HowevE~r, a BLOCK command must be issued
to select the current common block first. The address of the
BLOCK command then specifies an offset within the current common
block.

No segment descriptor should be used with an address, but the
current impure bias is added to the address to obtain the
effective off:set within the curi~ent common block.

48-016 FOO ROl 3-19

EXPAND

3.9 EXPAND COMMAND

This command allows data to be added to the end of the specified
segment by creating a Patch area.

Format:

EX£AND l}n , [variable]

Parameters:

p

A

I

n

variable

Functional Details:

specifies the pure segment.

specifies the absolute segment. This segment
descriptor cannot be specified in image mode.

specifies the impure segment.

is a decimal number specifying the even number
of bytes in the Patch area. For image
modules, this number can be from 2 to 256.
For object modules, this number can be from 2
to 100. If n is odd, it is rounded to the
next highest even number.

is a 1- to a-character string specifying the
name of a previously defined internal Patch
variable. See Section 3.35 for information on
the VARIABLE command.

For impure segments of a task or an operating system image, the
Patch area begins at the current UTOP. The UTOP and the TET
expand/get area or the Link work area are moved accordingly. For
image segments other than impure, the required number of bytes
for all expands in a session are appended at the end of the
segment. If expanding an overlay results in the need for a
larger overlay area, the root segment should be expanded by the
required amount. Patch areas for the root itself can then be
created by the use of additional EXPAND commands. In image mode,
this Patch area is initially all zero. In object mode, it is
initially undefined.

3-20 48-016 FOO ROl

A pure or impure segment being expanded must initially exist.
However, in object mode, abe,olute segments can be created or
expanded independent of prior elC:istence. Block data subprograms
cannot be expanded.

In tree-structured over lays crea.ted by Link, the over lays cannot
be expanded. The root can be expanded and used as a Patch area
for the overlays.

Multiple Patch areas can be generated.

Patch returns the starting address (with the segment descriptor)
of the area and its size each time a segment is expanded. If no
parameters an~ spec if ied, Patch returns the starting address
(with the segment descriptor) and size of each Patch area
created.

Examples:

)EXPAND I,256
PATCH AIU~A 318: I 256

The above example creates a Patch area of 256 bytes at
the end of the impure segment.

)EXP P,100
PATCH AIUm 162A:P 100

This example creates a Patch area of 100 bytes at the end
of the pure segment.

)VARIABLE %NEW
)EXPAND I ,.100, %NEW

This example establishes a variable (%NEW) and
initializes it to zero. The EXPAND command then returns
the Patch address and assigns this value to variable
%NEW.

48-016 FOO ROl 3-21

GET

3.10 GET COMMAND

The GET command is issued for each module to be patched. Modules
must be selected for patching in the same order that they appear
in the compound file or object library.

Format:

name

.!.QllJECT
GET

*OS

Parameters:

name

*OBJECT

*TASK

*OS

3-22

is the name of an object module in a file by
itself or in a library. It can be the name
of:

• a resident library load module,

• a TCOM load module,

• a shared segment,

• an overlay load module in a file by
itself or in a compound overlay file, or

• a tree-structured overlay.

specifies a named or unnamed object module in
a file by itself.

specifies a task image module
itself or the root segment
overlay file.

in a file by
in a compound

specifies an operating system image
module.

load

48-016 FOO ROl

NOCOPY

COPY

Functional Details:

specifies that any modules preceding t.he
module specified by the GET command are not to
be copied from the input file to the output
file.

specifies that any modules preceding the named
module from the input file are to be copied to
the output file. This option is effective
only for object library and compound overlay
files.

The mode and i.nput file must be set by the IMAGE or OBJECT
command. If the user fails to do this, the following message is
displayed:

NO FILES P~SIGNED

After setting the mode and the input file, the module to be
patched can be: selected by the GET command.

The first patrameter spec if ies t.he name of the module to be
patched. For unnamed object modules, task and operating system
images, the special names *OBJECT, *TASK and *OS are used,
respectively. When specifying the name of a resident library,
TCOM or shared segment module, only the first eight characters of
the name should be entered. Entering more than eight characters
causes an errC>r message to be output.

If the input t:ile is an object library or a compound overlay file
created by Link, the GET command selects the modules to be
patched and also determines whether or not the other modules in
the input file are to be copied to the output file. If NOCOPY is
specified, any intervening modules are skipped. If COPY or no
parameter is specified, all intervening modules are copied to t.he
output file. Intervening modules are those modules between the
module specif]Led in the current GET command, and either the
beginning of the input file or the module selected in the
previous GET command.

Tree-structured overlays created by Link are part of the root
segment and do not have their own LIB. A tree-structured overlay
may be selectively accessed by name using the GET command. Only
one overlay can be referenced this way. When the overlay is
saved, all of the overlays and the root are saved. Therefore,
multiple GETs of overlays will produce multiple images after the
save. Since the tree-structured overlays are contained in the
root segment, they are not a compound overlay file; therefore,
the COPY parameter is not needed.

48-016 FOO ROl 3-23

Both the
referenced
command.

root segment and
simultaneously by

tree-structured overlays can be
using GET *TASK and the OVERIAY

In interactive mode, if the GET command is issued before saving
a currently modified module, a message reminding the user to save
the currently modified module is output. If the user reissues
the GET command, normal execution of GET proceeds. No warning
message is issued if the output file is NULL or the INPLACE
option is in effect (see Section 3.13). In batch mode, the
message indicating that the previous module was not saved is
issued, and Patch terminates.

Examples:

3-24

GET *OBJECT

The above example selects the unnamed object module in the
input file to be patched.

GET ALPHA,COPY

This example selects
patched and copies
file.

ALPHA as the next module to be
the preceding modules to the output

48-016 FOO ROl

HELP

3 . 11 HELP COMMAND

This command displays all the available Patch commands and gives
a brief descr i.ption of the command entered.

Format:

HELP (9ommand name]

Parameter:

command name

Functional Details:

is the name of a Patch command. The command
can be entered in full or abbreviated form.
A brief description of the use of the
specified command is displayed. If this
parameter is omitted, the list of Patch
commands is displayed.

The HELP inf ot:mat ion is contained in a file named PATCH. HLP
provided with the OS/32 system. When a HELP command is entered,
Patch attempts to find and assign this file to the:

• same volume and account number from which PATCH.HLP was
loaded, or

• system volume and system account.

If both assign attempts fail, the following message is output:

ASSIGN HELP FILE TO LU 8

The user can then pause Patch and assign logical unit 8 (lu8),
then cont inuE~ the task and reenter the HELP command. The f i le
can be preassigned by the user prior to the execution of Patch,
and lu8 will not be closed.

48-016 FOO ROJL 3-25

Examples:

3-26

HELP IMAGE

The above example displays the parameters and a brief
description of the IMAGE command.

H EXA

HELP

This example displays the parameters and
description of the EXAMINE command.

a

This example displays the following list of
commands:

BI (AS)
BL(OCK)
CO(MMAND)
DI (SPLAY)
DU(MP)
END
EXA(MINE)
EX(PAND)
G(ET)
H(ELP)
ID(NO)
IM(AGE)

LIB
LIS(T)
LO(G)
MA(XLU)
MO(DIFY)
MX(SPACE)
NA(ME)
NEW(IDNO)
OB(JECT)
OP(TION)
OV(ERLAY)
PA(USE)

PR(I OR I TY)
RA(NGE)
RE(VISION)
SA(VE)
SEN(D) STOP
SH(ARED)
TA(BLE)
TR(ANSFER)
TS(W)
VAR(IABLE)
VE(RIFY)

brief

Patch

The letters not enclosed in parentheses indicate the command
abbreviation.

48-016 FOO ROl

IDNO

3.12 IDNO COMMAND

This command labels patched modules with a Patch control ID,
which consists of a control number and string.

Format:

.LQNO [n] I~ chars tr ing]

Parameters:

n

charstring

Functional Details:

is a decimal number from 0
specifying th«~ control number.

to 32,767

is a 1- to 4-character alphanumeric string
specifying the control string.

If IDNO is entered without param~~ters, the current Patch control
ID is displayed.

Special characters, other than carriage return (CR), can also be
used. If less than four characters are entered, the string is
padded with blanks. If no strin9 is given and n is entered,
charstring is set to all blanks.

The Patch control IDs associated with a patched module are also
displayed by T.ABLE, REVISION and DUMP commands.

More than one Patch control ID can be entered for a module, but
only the last one entered is effective.

The NEWIDNO command can be used to specify multiple Patch control
IDs for changes made in a patching session (see Section 3.21).

48-016 FOO ROl 3-27

Examples:

3-28

CDNO 12345,ABCD

The above example labels the current series of changes
with Patch control ID 12345-ABCD.

IDNO 8,A/&

This example labels the current series of changes with
Patch control ID 8-A/&.

IDNO ,ABCD

This example labels the current series of changes with
Patch control ID 0-ABCD.

IDNO

This example displays current Patch control ID.

48-016 FOO ROl

IMAGE

3 .13 IMAGE CiOMMAND

This command specifies that the. user is going to perform image
patching.

Format:

Parameters:

COMPOUND

NOH I STORY

INPLACE

Functional Details:

is the input file descriptor of the module to
be patched. The input file must be a disk
file with a record size of 256 bytes.

is the output file descriptor to receive the
patched module. If this parameter and the
INPLACE parameter are omitted, the
NULL: device is the default. If this
parameter is omitted and INPLACE is specified,
the default is the input file.

specifies that the input file is a compound
overlay file generated by TET.

specifies that no history records are to be
maintained fc1r image modules.

specifies that the changes are to be made
directly to the input file. NOHISTORY is in
effect.

The input file is specified by fd 1 and contains the module to be
patched. The patched version of the module is output to the file
specified by fd 2 . For both fds, the default extension is .TSK.

If INPLACE is specified, then the patches are made directly into
the input file (fd1). The output file (fd2) should not be
specified. If it is, it must match the input filename. No
history recoi~ds are maintained if INPLACE is spec if ied and the
EXPAND command cannot be used. The SAVE command is ignored while
patching imagE~s in place. If the SAVE command is issued, "lu2
unassigned" ies displayed.

48-016 FOO ROl 3-29

If no history records are being maintained (NOHISTORY and
INPIACE), then the task creation ID in the LIB is set to Patch
and the time and date are changed to the current time and date.

The output file is created to be the same type and record size as
the input file. If the input file is a contiguous file, Patch
allocates an indexed file with filename fd2 for output
processing. When the user indicates that all processing of the
input file is completed (by using the TERMINATE option in the
SAVE command), the indexed output file is copied to a contiguous
file with filename fd 2 . If this copy operation fails (perhaps
because a large enough contiguous file could not be allocated),
a message is output and the indexed file is saved with filename
fd2 .

The IMAGE command can be issued as many times as desired during
execution of Patch.

If no parameters are present in the command line, then the
current input and output assignments are displayed. If COMPOUND,
NOHISTORY and/or INPLACE are specified, then those parameters are
also displayed.

Examples:

- >IMAGE PATCHOVL TSK, , C
-) IMAGE
- IMAGE INPUT ON M300:PATCHOVLTSK/P
-- IMAGE OUTPUT ON NUU..:
- COMPOUND OVERLAY FILE

--) IMAGE PATCHOVl. TSK, PATCHOV2. TSK
->IMAGE
- IMAGE INPUT ON M300:PATCHOV1.TSK/P
- IMAGE OUTPUT ON M300:PATCHOV2.TSK/P

-)IMAGE PATCHSRC.TSK,,INPLACE
- NO HISTORY RECORDS MAINTAINED
--) IMAGE
- INPUT ON M300:PATCHSRC.TSK/P
- OUTPUT ON M300:PATCHSRC.TSK/P
- NOHISTORY
-- INPLACE

3-30 48-016 FOO ROl

LIB

3.14 LIB COMMAND

This command displays the information contained in t.he LIBs of
the image module currently selected for patching.

Format:

LIB [{:.}]

Parameters:

n

Functional Details:

is a decimal number specifying the LIB t.o be
displayed. If this parameter is omitted, 1 is
the default.

Only the information that is defined for the type of image module
being patched is displayed. Some modules, such as resident
libraries with many entry points, can have more than one LIB.

Although Patch changes the number of LIB records by including
history recot:·ds, these history records cannot be displayed with
the LIB command. The REVISION command must be used.

Examples:

LIB

The above example displays the first LIB.

LIB 2

This example displays the second LIB.

48-016 FOO ROl 3-31

LIST

3.15 LIST COMMAND

This command allows the user to change the list device. See
Section 2.3 for a definition of the list device.

Format:

L.lS.T [fd]

Parameter:

f d

Functional Details:

is the file descriptor of the new list device.
I'f this parameter is omitted, the current list
device is displayed.

If Patch is in batch mode, the message device is also changed
(see Section 2.3).

Examples:

LIST PR:

The above example changes the current list device to PR:.

LIST

This example displays the current list device.

3-32 48-016 FOO ROl

LOG

3.16 LOG COMMAND

This command is used either to copy or suppress copying of Patch
commands to the list device.

Format:

Parameters:

ON enables logging to the list device.

OFF disables logging to the list device.

Functional Details:

Initially, the log feature is ON in batch mode and OFF in
interactive mode. If the LOG command is given with no parameter,
the current status of the log feature is displayed.

Examples:

LOG OFF

The above example turns the log feature OFF.

LOG ON

This Etxample turns the log feature ON.

LOG

This Etxample displays the current status of the log
featut:e.

48-016 FOO ROJL 3-33

MAXLU

3.17 MAXLU COMMAND

This command allows the user to redefine the maximum number of
logical units a task can use.

Format:

MAXLU [n]

Parameter:

n

Functional Details:

is a decimal number from 1 to 254 specifying
the new maximum number of logical units a task
can use.

Initially, this value is defined during link-edit time. The
parameter gives the new value. If no parameter is given, the
current value is displayed. This information is also displayed
by the LIB command. This command is valid only in image mode
while patching a task.

Examples:

3-34

MAXLU 20

The above example changes the maximum number of logical
units for this task to 20.

MAXLU

This example displays the current maximum number of
logical units.

48-016 FOO ROl

MODIFY

3.18 MODIFY COMMAND

This command enables the user to change the contents of specified
locations in a. module.

Format:

EATCH

MODIFY

[@] hexad.r

variable [{
data [, datan] }]

G: code] ,
variable ~var iablen]

.CURRENT

[l
exname [,ex~ isp]l l
coname,cod1sp

11, codisp

Parameters:

PATCH

p

A

I

@

hexadr

variable

48-016 FOO ROl

specifies that the address of the last Patch
area is to be referenced.

specifies a pure segment.

specifies an absolute segment.

specifies an impure segment.

signifies that the bias is not to be added to
the address.

is a hexadecimal number from one to six digits
aligned on a halfword boundary.

is a 1- to 8-character string specifying the
name of a previously defined internal Patch
variable. Se49 Section 3. 35 for information on
the VARIABLE command.

3-35

CURRENT

NEXT

+

offset

code

data

ex name

exdisp

co name

codisp

II

Functional Details:

specifies that the last address given in an
EXAMINE or MODIFY command is to be referenced.

specifies that the halfword following the last
referenced halfword (via the EXAMINE or MODIFY
command) is to be referenced.

specifies an arithmetic addition.

specifies an arithmetic subtraction.

specifies an optional hexadecimal digit. If
no address is specified, the address defaults
to NEXT.

specifies the type of MODIFY operation. If
this parameter is omitted; the default is ABS.
See Table 3-2 for available codes.

specifies hexadecimal halfword values that
modify the contents starting at the location
specified as the address (see Table 3-2).

is a 1- to a-character alphanumeric string
specifying the name of an external reference.

is a 1- to a-digit
specifying an offset
external reference.

hexadecimal number
from the address of an

is a 1- to a-character alphanumeric string
specifying the name of a common block.

is a 1- to
specifying a
block.

6-digit hexadecimal number
displacement within a conunon

is a special symbol specifying a blank conunon
block.

In all MODIFY commands the address specifies the
changes are to be made. This address may
descriptor or may refer to the default segment.

location where
have a segment

The starting address of the area to be changed is determined by
the specified address plus the bias for the segment involved as
set by the BIAS command.

The code specified determines how the remaining parameters are to
be interpreted. It is the user's responsibility to avoid
destroying chains of external references by attempting to
overwrite an external reference.

3-36 4a-Ol6 FOO ROl

In image mode:, user-specified data
values that are used to ove:cwr i te
location speci.f ied by the addres:s.

are halfword hexadecimal
the data starting at the

The I segment descriptor is used when referencing task commons
and overlays as well as the impu·ce segments of task and operating
system images. The P segment descriptor is used when referencing
resident libt·ar ies and the pu·ce segments of task and operating
system images. The A segment descriptor is not applicable in
image mode.

In object mode~, a MODIFY command results in additional loader
items being appended to the object module. The particular type
of loader item added is determined by the code parameter. Table
3-2 describes the codes and the additional parameters that can be
specified. llmy of the codes in Table 3-2 can be used in object
mode.

TABLE 3-2 CODE TABLE

I NUMBER AND TYPE
CODE I OF ARGUMENTS

OE~JECT CODE
DESCRIPTION NOTES

---9 I 1 halfword value

I 2 half word values

I 3 halfword values

p 1 half word value

p 2 halfword values

p 3 half word values

48-016 FOO ROl

2-bytE' impure re- Used for halfword
location program address.
addreus

4-bytE' impure re- Used for fullword
location program address.
addreHs

3-byt«~ absolute Used for RX3
data, instruction.
3-bytt~ impure
relocation program
addreHs

2-bytt~ pure re­
location program
addrer:ss

4-byt•;, pure re­
locat .ion program
address

3-bybe absolute
data,
3-bybe pure relo­
cation program
addre1ess

Used for halfword
address.

Used for fullword
address.

Used for RX3
instruction.

3-37

I
I

CODE I

TABLE 3-2 CODE TABLE (Continued)

NUMBER AND TYPE
OF ARGUMENTS

OBJECT CODE
DESCRIPTION NOTES

--AI

AP

ABS

TI

TP

EN

WN

DN

3-38

2 halfword values

2 half word values

1-n halfword
values where n
is the maximum
number of values
that can be
input on a
command line

1 halfword value

1 halfword value

exname

exname

exname

2-byte absolute
data,
2-byte impure
relocation program
address

2-byte absolute
data,
2-byte pure
relocation program
address

2-n bytes absolute
data

2-byte impure
translation
table address

2-byte pure
translation
table address

Entry reference
instruction

Weak entry
reference
instruction

Data entry
reference
instruction

Used for halfword
immediate instruc­
tions that ref er­
ence an impure
address.

Used for half wor,d
immediate instruc­
tions that ref er­
ence a pure
address.

This is the code
default.

It is also the
only valid code
for image module
mod if !cations.

Exname is used to
create an addition-
al loader item that
creates a new entry
point.

Exname is used to
create an addition-
al loader item that
creates a new weak
entry point.

Exname is used to
create an addition­
al loader item that
creates a new data
entry point.

48-016 FOO RO!

TABLE 3-2 CODE TABLE (Continued)

I NUMBER AND TYPE
CODE I OF ARGUMENTS

OE~JECT CODE
DESCRIPTION NOTES

2---EX

wx

2 halfword values,
exname, exdisp
{optional)

2 halfword
values, exname
exdisp {optional)

4.8- 016 F'OO ROl

External reference
instruction

Weak Etxternal
instruction

The two halfword
values specify the
first 24 bits of an
RX3 instruction. A
third halfword (•O)
is added by Patch
to complete the RX3
instruction.

Exname is used to
create an addition­
al loader item that
specifies the ex­
ternal address ref­
erenced by the RX3
instruction. Exdisp
is an offset from
the address of the
external reference
specified by exname.

The two halfword
values specify the
first 24 bits of an
RX3 instruction. A
third halfword (•0)
is added by Patch
to complete the RX3
instruction.

Exname is used to
create an addition­
al loader item that
specifies the ex­
ternal address ref­
erenced by the RX3
instruction. Exdisp
is an offset from
the address of the
external reference
specified by exname.

3-39

TABLE 3-2 CODE TABLE (Continued)

I I NUMBER AND TYPE
I CODE I OF ARGUMENTS

OBJECT CODE
DESCRIPTION NOTES

·--co

BL

3-40

2 halfword values,
coname or //,
displacement

1-8 halfword
values

Common reference
instructions

Change data in a
block data sub­
program

NOTE

The two halfword
values specify the
first 24 bits of an
RX3 instruction. A
third halfword (•0)
is added by Patch
to complete the RX3
instruction.

Coname (or // for
blank) common and
displacement are
used to create an
additional loader
item specifying the
common block name
and the displace­
ment within that
block of the target
address of the RX3
instruction.

The command uses
the common block
name currently set
by the BLOCK com­
mand. In addition,
the address is
always biased by
the current value
of the impure bias.

All halfword values are in hexadecimal.

48-016 FOO ROl

MXSPACE

3.19 MXSPACE COMMAND

This command allows the user to change the maximum amount of
system space that a task can use.

Format:

MXSPACE [nCJ

Parameter:

n is a 1- to 5-digit hexadecimal number
specifying the new maximum number of bytes of
system space that a task can use. If this
parameter is omitted, the current value is
displayed.

Functional Details:

Initially, this value is defined at TET or Link
information is also displayed by the LIB command.
is valid only in image mode while patching a task.

time. This
This command

Examples:

MXSPACE 15000

MXSP

The above example change:3 the current maximum amount of
system space for a task to 15,000 bytes.

This example displays the current maximum amount of
system space.

48-016 FOO ROl 3-41

NAME

3.20 NAME COMMAND

This conunand renames an object module.

Format:

NAME [name]

Parameter:

name

Examples:

is a 1- to 8-character alphanumeric string
specifying the new name of an object module.
The special characters period (.), dollar sign
($) and the conunercial at sign (@) can also be
used. If this parameter is omitted, the
current name is displayed.

NAME PROGA

NAME

3-42

The above example renames the current object module
PROGA.

This example displays the current module name.

48-016 FOO ROl

NEWIDNO

3.21 NEWIDNO COMMAND

This command starts a new history record for:

• a single Patch change, optionally assigning a Patch control
ID,

• a set of PaLtch changes, optionally assigning a Patch control
ID to each Patch change in the set, or

• a multiple set of Patch changes, optionally assigning a Patch
control ID to the entire set.

Format:

NEYiIDNO ~Q k chars tr ing]

Parameters:

n

charstr ingr

Functional Details:

is a decimal number from O
specifying the control number.

to 32,767

is a 1- to 4-character alphanumeric string.

The identif iei: can be left out and defined later v.ia the IDNO
command, but must be defined before the next NEWIDNO command.

The current Patch control ID can be displayed by entering the
IDNO command without parameters. The Patch control numbers
associated wi.th a patched module are displayed by DUMP, IDNO,
REVISION and 'I'ABLE commands. If NEWIDNO is specified without
parameters, a new set of chang.es is established without a Patch
control ID.

Example:

A user has three sets of patches to make and wants to mark each
set with its. own Patch control ID. The first one is to fix
problem numbe~r 1034, the second is an enhancement with a
reference nunIDer 1279, and the third is another problem, number
92. The module is already in memory.

48-016 FOO ROl 3-43

)IDNO 1034,PROB

)MOD 104:I,FFFF,FFFF
)MOD 310:P,4300
)NEW ID
)MOD 1204:I,2391,0811
)IDNO 1279,ENH

>NEWID 92,PROB

)MODIFY 102C:P,400C,0312

Labels the first set of changes
with Patch control ID 1034-PROB.
Enters patches.
Enters patches.
Establishes new set of changes.
Enters patches.
Labels the second set of changes
with Patch control ID 1279-ENH.
Establishes a third set of patches
and labels them with Patch control
ID 92-PROB.
Enters patches.

The REVISION command displays the following output for the
patched task:

*TASK
REV 1 1034-PROB
07/24/79 14:48:46

104: I FFFF FFFF
310:P 4300

REV 2 1279-ENH
07/24/79 14:49:58

1204: I 2301 0811

REV 3 92-PROB
07/24/79 14:52:15

102C:P 400C 0312

3-44 48-016 FOO ROl

OBJECT

3.22 OBJECT COMMAND

This command i3pecif ies that the user is going to perform object
patching.

Format:

Parameters:

LIBRARY

Functional Details:

is the input file descriptor of the module to
be patched. The input file must be a disk
file with a z:·ecord size of 126 bytes.

is the output file descriptor to receive the
patched modut le. The output file may be NUTL:
or the name C•f a file that does not exist. If
this paramete~r is omitted, the output file
defaults to NULL:.

specifies that the input file is an object
library.

For both fds, the default extens,ion is .OBJ. If present, LIBRARY
specifies that the input file is an object library.

The output file is created to be: the same type and record size as
the input f i lE~.

The OBJECT command can be issued as many times as desired during
execution of Patch.

If no paramE~ters are present in the command line, then the
current input and output files are displayed. If LIBRARY is
specified, a message is displayed indicating that the input file
was designated as an object library.

48-016 FOO ROl 3-45

Examples:

-)OBJECT PATCHOVl.LIB,,L
-)OBJECT
- OBJECT INPUT ON M300:PATCHOV1.LIB/P
- OBJECT OUTPUT ON NULL:
- OBJECT LIBRARY FILE

-)OBJECT PATCHOV1.0BJ,PATCHOV2.0BJ
->OBJECT
- OBJECT INPUT ON M300:PATCHOV1.0BJ/P
- OBJECT OUTPUT ON M300:PATCHOV2.0BJ/P
->

3-46 48-016 FOO ROl

OPTION

3 .. 23 OPTION COMMAND
This command c:hanges the task options that were initially defined
at Link time. The parameters specify the new option settings.

Format:

OPTION [J;:>~;.~_.:}. J ~{::.~:.~::~:E:f] -· t ~1•Y,~@, }

Parameters:

ET ASK

UT ASK

NAFPAUSE

AF PAUSE

RESIDENT

48-016 FOO ROl

specifies that an executive task (e-task)
image load module is to be built. An e-task
must contain only positional-independent pure
and impure code and cannot reference sharable
segments.

specifies that a user task (u-task) image load
module is to be built. If both task
parameters an~ omitted, UTASK is the default.

specifies that the task is to continue if an
arithmetic fault occurs during task execution.

specifies that the task is to pause if an
arithmetic fault occurs during task execution.
If both paus~~ parameters are omitted, AFPAUSE
is the default.

specifies that the task is to remain in memory
when it is tei~minated.

3-47

NRESIDENT

INTERCEPT

NINTERCEPT

SVC PAUSE

NSVCPAUSE

ROLL

NROLL

COM

NCOM

CON

NCON

VFC

3-48

specifies that the task is to be removed from
main storage when it is terminated. If both
parameters are omitted, NRESIDENT is the
default.

specifies that the task can intercept certain
supervisor calls (SVCs) issued by another task
before the SVC goes to the operating system
for processing. If this parameter is omitted,
NINTERCEPT is the default.

specifies that the task cannot intercept the
SVC of another task before the SVC goes to the
operating system for processing. If both
intercept parameters are omitted, the default
is NINTERCEPT.

specifies that all intertask communication and
control macros entered are ignored and task
execution is paused. If both pause parameters
are omitted, SVCPAUSE is the default.

specifies that all intertask communication and
control macros entered are ignored and task
execution continued.

specifies that a task can be rolled in and out
of memory during task execution. If both roll
parameters are omitted, ROLL is the default.

specifies that a task cannot be rolled in and
out of memory during task execution.

specifies that a task can issue intertask
communication.

specifies that a task cannot issue intertask
communication. If both communication
parameters are omitted, NCOM is the default.

specifies that a task can issue intertask
control.

specifies that a task cannot
control. If both control
omitted, NCON is the default.

issue intertask
parameters are

specifies that a task uses the vertical forms
control options in all I/O operations. If VFC
is omitted, NVFC is the default.

48-016 FOO ROl

NVFC

UNIVERSAL

NUN I VE RS AI.

FLOAT

NFLOAT

ACCOUNTING

NACCOUNTING

xsvc

NXSVC

DFLOAT

NDFLOAT

48-016 FOO ROl.

specifies that the task does not use the
vertical forms control option in all I/O
operations. If both the VFC parameters are
omitted, NVFC is the default. Vertical forms
control may still be invoked on a per lu basis
and, if XSVCl is specified, on a per I/O
basis.

specifies that a task can communicate with all
other tasks in the system.

specifies that a task cannot communicate with
all other tasks in the system. If both
universal parameters are omitted, NUNIVERSAI
is the default.

specifies that a t.ask can execute single
precision floating point (SPFP) instructions.

specifies that a task cannot execute SPFP
instructions. If both float parameters are
omitted, NFLO.~T is the default.

specifies that
enabled for a
parameters are
default.

the accounting function is
task. If both accounting

omitted, ACCOUNTING is the

specifies that the accounting function is
disabled for a task.

indicates that if the least significant bit
(LSB) of a supervisor call 1 (SVCl) function
code is set, an extended options fullword
exists. This option must be specified to use
such features as gapless mode on a 6250
magnetic tape drive or to control the use of
VFC on an individual I/O basis.

indicates that if the LSB of an SVCl function
code is set, an image I/O is to be used.
Currently, only the line printer and magnetic
tape drivers use this option. ITAM drivers
always operate as if XSVCl is in effect.
Other drivers always assume NXSVCl.

specifies that a task can execute double
precision floating point (DPFP) instructions.

specifies that a task cannot execute DPFP
instructions. If both double float parameters
are omitted, 'NDFLOAT is the default.

3-49

ACPRIVILEGE

NACPRIVILEGE

DISC

ND I SC

KEYCHECK

NKEYCHECK

Functional Details:

specifies that a u-task has extended file
access privileges and can specify an account
number instead of a file class for all SVC
functions.

specif 1es that a u-task has no extended file
access privileges. If both access privilege
parameters are omitted, NACPRIVILEGE is the
default.

specifies that au-task has an extended disk
privilege and can assign a bare disk. If the
disk is on-line, assignments for shared
read-only (SRO) are allowed. All other
assignments are rejected and a message is
displayed. If the disk is marked off-line,
all access privileges are allowed. See the
OS/32 Programmer Reference Manual for a
description of the access privileges.

specifies that a u-task has no
privileges. If both disk
omitted, NDISC is the default.

extended
privileges

disk
are

specifies that file protection keys are
checked for a privileged u-task or an e-task.
If both keycheck parameters are omitted, the
default is KEYCHECK.

specifies that no file protection keys are
checked for a privileged u-task or e-task.

This command is only valid when patching a task. Any option that
is not specified remains unchanged. Illegal combinations of
options cause the entire command to be rejected.

If no parameter
displayed. This
command.

3-50

is given, the
information is

current option
also displayed

settings are
by the LIB

48-016 FOO ROl

Examples:

OPT I ON RE,. NRO

The above example makes the task resident and unrollable,
and all other parameters remain unchanged.

OPT NAF,N8VC

This example has the task continue on arithmetic faults
and illegal SVC6.

OPTION

This E~xample displays the current option settings.

48-016 FOO ROl 3-51

OVERLAY

3.24 OVERLAY COMMAND

This command is issued for ea(:h over lay to be patched. The Gf<:T
command must be used to rlccess the root segment before t.he
OVERLAY command is issued. Overlays can then be examined and
modified along with lhe toot ·;egment..

Format:

Q'S[ERLAY (!1ameJ

Parameter:

name is the name of a tree-structured overlay.

Functional Details:

The OVERLAY command is valid only for tasks with tree-structured
overlays generated by Link.

All overlays in the same path as the requested overlay are made
accessible. If the requested overlay is in the same path as the
previously requested overlay, both overlays will be accessible.
If they are not in t.he same path, the previous overlay will not
be available for patching.

If the name parameter is omitted, all accessible overlays are
listed in the following format:

I ovlyname I ovyadr I ovysiz I ovrecno I lvl I mlv I prntnode l

Fields:

ovlyname

ovyadr

ovysiz

3-52

is the 1- t.o 8-character ASCII overlay name.

is the overlay start address in hexadecimal.

is the size in bytes of the overlay in
hexadecimal.

48-016 FOO ROl

ovrecno

lvl

mlv

prntnode

Examples:

is the starting record number of the overlay
in the image file in decimal.

is the overlay level in decimal.

is the maximum overlay level in decimal
specifying the highest level (numerically
lowest) overlay that must be loaded with this
overlay durin9 program execution.

is the overlay name of the parent node. It is
used to indicate the overlay path.

>OVERLAY OVERLAY2

)OVERLAY
NAME
OVERLAY2
OVERLAY!

48-016 FOO ROl

START
5000
.2EOO

LENGTH
2EO

3000

REC.NO
360
312

LVL
2
1

MLV
1
0

PARENT NODE
OVERLAYl
.ROOT

3-53

PAUSE

3.25 PAUSE COMMAND

This conunand causes Patch processing to be suspended.
Multi-terminal monitor (MTM) or operating system conunands can now
be entered.

Format:

..PAUSE

Functional Details:

A CONTINUE command causes Patch processing to resume.

Example:

PAUSE

This example suspends Patch processing.

3-54 48-016 FOO ROl

PRIORITY I

3.26 PRIORITY COMMAND

This command allows the user to change the initial and maximum
priorities of a. task. This command is valid only in image mode
while patching a task.

Format:

ERIORITY Q.nipr i ,maxpr i]

Parameters:

inipr i

maxpri

Bunctional Details:

is a decimal number from 10 to 249 specifying
the new initial priority. The initial
priority at which the task begins execution
must be numerically greater than or equal to
the maximum priority.

is a decimal number from 10 to 249 specifying
the new maximum priority.

These priorities are initially defined at Link time. The maximum
priority is the highest priority at which this task is allowed to
execute.

If no parameiters are given, the current values for these
priorities are displayed. This information is also displayed by
the LIB command.

Examples:

PRIORITY 128,100

The above example sets the initial priority of this task
to 128 and its maximum priority to 100. Notice that the
higher priority is numerically smaller than the lower
one.

PRIORITY

This example displays thje current initial and maximum
priorities.

48-016 FOO ROl 3-55

RANGE

3.27 RANGE COMMAND

This conunand computes the relative displacement
addresses in a form suitable for use in an
instruction.

between two
RX2 format

Format:

£.ATCH

[@] hexadr
RANGE

variable

.CURRENT

::~'-if:

Parameters:

PATCH

p

A

hexadr

variable

CURRENT

NEXT

3-56

[{:}offse~ ~variable]

specifies that the address of the last Patch
area is to be referenced.

specifies a pure segment.

specifies an absolute segment.

specifies an impure segment.

signifies that the bias is not to be added to
the address.

is a hexadecimal number from one to six digits
aligned on a halfword boundary.

is a 1- to 8-character string specifying the
name of a previously defined internal Patch
variable. See Section 3.35 for information on
the VARIABLE conunand.

specifies that the last address given in an
EXAMINE or MODIFY conunand is to be referenced.

specifies that the halfword following the last
referenced halfword (via EXAMINE or MODIFY) is
to be referenced.

48-016 FOO ROl

+

offset

Functional Details:

specifies an arithmetic addition.

specifies an arithmetic subtraction.

specifies an optional hexadecimal digit. If
no address is specified, the address defaults
to NEXT.

To obtain the relative displacement between an instruction and a
target address, address specif :Les the instruction that requires
the displacement value, and also specifies the target address.
The value returned by the command can then be used to reference
the target address.

Examples:

)RANGE E08,FOO

The above example displays the displacement between E08
and FOO.

RANGE: 80.F4

In this example, if the instruction at address E08
references the address FOO, then the value 80F4 that is
returned by RANGE can be used in the instruction at E08
to reference either an instruction or data at address
FOO.

>VARIABLE %NEWRAN
)VARIABLE %RANl=E08
)VARIABLE %RAN2=FOO
)RANGE %RAN1, %RAN2, %NEWRAN

This example stores the hexadecimal value 80F4 into variable
%NEWRAN and displays the displacement RANGE:80F4.

48-016 FOO ROl 3-57

I REVISION

3.28 REVISION COMMAND

This command displays the previous Patch history of a module from
the current input file to the list device.

Foi:mat:

REVISION

Parameters:

name

*OBJEC'r

*TASK

*OS

'title'

name

.!QB.JECT
[,'title~

~SK

*OS

is the name of a module in the input file.

specifies a named or unnamed object module.

specifies a task image module.

specifies an operating system module.

is a 1- to 50-character alphanumeric string
specifying the heading to be output at the
beginning of the display. If this parameter
is omitted, a blank heading is used.

Functional Details:

The Patch history consists of the number of rev1s1ons, associated
Patch control IDs and a list of all changes made to the module.

The first parameter selects the module by name. For unnamed
object modules, task and operating system images, the special
names *OBJECT, *TASK and *OS are used, respectively. When
specifying the name of a resident library or task common module,
only the first eight characters of the module name should be
entered. Entering more than eight characters causes an error
message to be output.

3-58 48-016 FOO ROl

If the REVISION command is used for a module currently being
patched, only the previous c:hanges are displayed; none of the
changes in the current sess ic•n are dis played. The current
position of an object library or a compound overlay file is not
affected.

If the first parameter is not specified, a listing is produced of
the names, number of revisions aLnd associated Patch control IDs
of all modulei3 on the input f ilei that have been patched. For the
display, the names *TASK, *OS: and *OBJECT are used for unnamed
images (including operating systems produced by 'rET, Link and
object modules, respectively).

Examples:

REVISION PROGA,'PROGA HISTORY'

REV

The above example displays the Patch history for PROGA
with heading PROGA HISTC1RY.

This c~xample displays all modules on the input file that
have been patched.

48-016 FOO ROl 3-59

SAVE

3.29 SAVE COMMAND

This corrunand is used to output the patched module to the output
file specified in the IMAGE or OBJECT corrunand after all desired
patches are made.

Format:

Parameters:

NOCOPY

COPY

TERMINATE

Functional Details:

indicates that remaining modules in the input
file are not to be transferred to the output
file.

indicates that remaining modules in the input
file are to be transferred to the output file.
This parameter is the default option.

indicates that no more Patch processing of the
input file is to occur.

After issuing the SAVE corrunand, the user may Patch another module
or terminate execution.

If the input file specified in the IMAGE or OBJECT corrunand is an
indexed file, the output file is an indexed file. If the input
file specified in an IMAGE corrunand is a contiguous file, the
output file may or may not be a contiguous file. For a further
explanation, see Section 3.13.

The SAVE corrunand must be issued for each module that is modified
in a compound overlay file or object library file.

3-60 48-016 FOO ROl

Examples:

SAVE

The above example outputs the patched version of a module
currently being modified to the output file. Copy the
remainder of the input file to the output file and
terminate Patch processing of an object library or a
compound overlay file. This is the same as issuing SAVE
COPY,TERMINATE.

SAVE NOCOPY

This example outputs the patched version of a module to
the output file. Do not copy the remainder of an object
library or compound overlay file from the input file to
the output file.

SAVE, TERMINATE

This 1example outputs the patched version of a module
currently being modified to the output file. Copy
remaining modules of an object library or compound
overlay file. If appropriate, change the task image file
from index to contiguous. Terminate Patch processing of
an object library or a compound overlay file.

48-016 FOO ROl 3-61

I SEND STOP I

3.30 SEND STOP COMMAND

This command allows a user to stop the execution of the DUMP,
REVISION, EXAMINE or TABLE commands.

Format:

SEND STQ£

Functional Details:

The SEND STOP cornmand is recognized when Patch is executing
either as a foreground task where the current task is the Patch
task, or as a terminal task under an M'I'M system that supports
intertask cornmunication.

The SEND STOP cornmand is
system or MTM prompt.
BREAK key several times.

issued in response to an operating
A prompt is obtained by depressing the

Issuing a SEND STOP cornmand causes Patch to terminate the cornmand
'Lhat was issued just prior to the SEND STOP command. After
processing the SEND STOP command, Patch is ready to accept the
next command.

Examples:

Under M'l1M:

SEND STOP

stops execution of the current command. Patch is resumed
and ready to accept the next command from the user.

Under the operating system:

selects Patch as the current task.

SEND s·roP

stops execution of the current command.

3 -62 48-016 FOO ROl

SHARED

3. 31 SHARED 1COMMAND

This command 1enables the user te> change the access privileges and
the maximum or minimum size of a shared segment entry.

Format:

E

R

SHARED N.AME=sname.ext ,ACCESS= RW

RWE

[s.lZE= ([minsize] [;maxsizeJ)]

Parameters:

NAME=

ACCESS=

48-016 FOO ROl

sname.ext is a 1- to 11-character alphanumeric
string specifying the name of a shared
segment.

E specifies that the access privilege of the
sharable segment allows task execution within
the sharable segment.

R specifies that the access privilege of the
sharable segment allows access of data within
the sharable segment. Execution or
modification of data is not allowed.

RW specifies that the access privilege of the
sharable segment allows access to data and
modification of data within the sharable
segment. Task execution is not allowed.

RWE specifies that the access privilege of the
sharable segment allows access to data,
modification of data, and task execution
within the sharable segment.

RE specifies that the access privilege of the
sharable segment allows access to data and
task execution within the sharable segment.

3-63

SIZE=

Modification of data is not allowed. If the
ACCESS= parameter is omitted, the default i.s
RE.

minsize is a 1- to 6-digit hexadecimal number
specifying the minimum size of a sharable
segment.

maxsize is a 1- to 6-digit hexadecimal number
specifying the maximum size of a sharable
segment.

Example:

3-64

SH NA= F7RTL.SEG,AC=RE

This example changes access privileges for the shared
segment, F7RTL.SEG.

48-016 FOO ROl

TABLE

3. 32 TABLE COMMAND

This command displays the module!:s on the input file to 'Lhe list
device. If they have been patched, the number of revisions and
associated Patch control IDs are also displayed.

Format:

.TABLE ~title·~

Parameter:

'title'

Functional Details:

is a 1- to SO-character alphanumeric string to
be output as a heading at the beginning of the
display. If this parameter is omitted, a
blank heading is used.

The names *OBJECT and *TASK are used for unnamed object and image
modules. *TASK is used both for tasks and operating system
images produced by TET. Operating system images produced by Link
are identified as *OS.

For tasks contain:i.ng tree-structured over lays, the over lay names
are displayed w:i.th their start:lng address, length, first record
numbers, level, maximum level and name of parent node.

Examples:

TABLE 'SAMPLE TABLE LISTING'

The above example producE~s a labeled listing of the input
file.

TABLE

This example produces an unlabeled listing of the input
file.

48-016 FOO ROl 3-65

I TRANSFER

3.33 TRANSFER COMMAND

This command changes the transfer address of an object module.

Format:

Parameters:

adr

variable

p

A

I

Functional Details:

is a 1- to 6-digit hexadecimal
specifying the new transfer address.
parameter is omitted, the current
address is displayed.

number
If this

transfer

is a 1- to a-character string specifying the
name of a previously defined internal Patch
variable. See Section 3.35 for information on
the VARIABLE command.

specifies the pure segment.

specifies the absolute segment.

specifies the impure segment.

This command can be used even if no transfer address had been
originally specified.

Examples:

3-66

TRANSFER 1234:P

TR

The above example sets the transfer address of this
module to 1234 in the pure segment.

This example displays the current transfer address.

48-016 FOO ROl

TSW

3.34 TSW COMMAND

This command changes the starting TSW for a task.

Format:

TS.W r [status] r { stadr lJ] L l variable)

Parameters:

status

stadr

variable

Functional Details:

is a 1- to 8-digit hexadecimal number
specifying the status portion of the TSW.

is a 1- to 6-digit hexadecimal number
specifying the start address of the task.

is a 1- to a-character string specifying the
name of a previously defined internal Patch
variable. See Section 3.35 for information on
the VARIABLE command.

Initially, the starting TSW is defined at Link time. If either
status or start address is unspecified, the value for that
parameter rema.ins the same. If no parameters are specified, the
current TSW is displayed. This information is also displayed by
the LIB command. This command iis valid only in image mode while
patching a task.

Examples:

TSW 0

The above example changes the status portion of the
initial TSW of this task to 0.

TSW , 100

This example changes the starting address of this task to
100.

48-016 FOO ROl 3-67

3-68

TSW 0,100

TSW

This example makes both of the above changes.

This example displays the current initial status and
starting address.

48-016 FOO ROl

VARIABLE I

3 . 3 5 VAR I ABLE: COMMAND

This command provides the ability to define an internal variable
and optionally assign a value to that variable. Up to 20
variables can be created. Variable names can also be deleted in
order to free space for new variable names.

Format:

~!ABLE vname

Parameters:

vname

=value

DELETE

[~ =value }]

,DELETE

is a 1- to 8-character string specifying the
name of the internal Patch variable to be
defined. The first character must be a
percent sign (%), the second character
alphabetic and the remaining alphanumeric.

is a hexadec:i.mal number from 0 to FFFFFE
aligned on a halfword boundary.

specifies that the variable name entered is
not needed in the Patch session any longer.

Functional Details:

Upon execution of the VARIABLE command, Patch scans the syntax of
the vname parameter. If the syntax is correct, Patch then checks
for the value. If a value is assigned to the variable, it is
checked for boundaries. If the variable does not exist, it is
set up by Patch and the specified value is assigned to it. A
variable name that did not previously exist and is entered
without a value is set up and initialized to zero. A previously
defined variable entered without a value results in the current
value being displayed to the use1:. The VARIABLE command with no
parameters results in a list of all variable names and their
values.

When a variable name is invalid the message 'INVALID VARIABLE
NAME' is generated. Any value specified that is not valid
results in the message 'INVALID VALUE SPECIFIED'. When a
variable delete command is spE~c if ied and the variable does not
exist, the message 'VARIABLE NOT DEFINED' is generated.

48-016 FOO ROl 3-69

If a request to add a previously defined variable is entered, the
message 'DUPLICATE VARIABLE NAME' is generated. When a user
attempts to list all the variables and no variables are defined,
the message 'NO ENTRIES IN VARIABLE TABLE' is generated. When a
VARIABLE command is entered and the maximum of 20 variables has
been defined, the message 'VARIABLE TABLE FULL' is generated.

Examples:

)VARIABLE %NEWADD=l234

In the above example, the variable %NEWADD is set up and
the hexadecimal value of 1234 is assigned to it.

3-70

)VARIABLE %NEW1,DELETE

In this example, the variable %NEW1 is deleted.

)VARIABLE %NEW1

In this example, the variable %NEW1 is set up and the
binary value of 0 is assigned to it.

)VARIABLE

%NEWADD 1234
%NEW1 -0

This example displays all of the variable names and thei.r
corresponding values.

48-016 FOO ROl

VERIFY

3.36 VERIFY COMMAND

The VERIFY command provides the ability to verify the contents of
a specified location in a module.

Format:

.EATCH

[@] hexadr

WR I FY variable

CllRRE!NT

HE.XT

Parameters:

PATCH

p

A

I

@

hexadr

variable

CURRENT

NEXT

+

48-016 FOO ROl

rn}J [{:}offse~
data [! ... data,\]

variable E ... var iablen]

BLOCK [{data G: .•• datan] }]

' variable [! ... var iabler\J

specifies that the address of the last Patch
area is to be referenced.

specifies a pure segment.

specifies an absolute segment.

specifies an impure segment.

signifies that the bias is not to be added to
the address.

is a hexadecimal number from 1
aligned on a halfword boundary.

to 6 digits

is a 1- to a-character string specifying the
name of a previously defined internal Patch
variable. See the VARIABLE command in the
previous section.

specifies that the last address given in an
EXAMINE or MODIFY command is to be referenced.

specifies that the halfword following the last
referenced halfword (via an EXAMINE or MODIFY
command) is to be referenced.

specifies an arithmetic addition.

3-71

off set

BLOCK

data

specifies an arithmetic subtraction.

specifies an optional hexadecimal digit. If
no address is specified, the address defaults
to NEXT.

specifies that values within a block data
subprogram are to be displayed.

specifies hexadecimal halfword values that
modify the contents starting at the location
specified as the address (see Table 3-2).

Functional Details:

The VERIFY command uses the same format as the EXAMINE and MODIFY
commands. The parameters hexadr and variable specify the
starting location of the data to be verified. The expected value
at the starting location is specified by two bytes of hexadecimal
data or a previously defined variable name. Subsequent values or
variable names are specified for sequential locations after the
starting location. A value that is not a valid hexadecimal value
or a variable name that is invalid will cause an appropriate
error message in the interactive mode. An error in batch mode
will cause Patch to terminate with a nonzero end of task code.

In an interactive mode, if the contents of the locations are
verified against the expected values, the message 'VERIFY NO
ERROR' is returned. If the contents of the locations do not
match the expected values, the message 'VERIFY ERROR:LOC=nnnnnn
EXPECTED=nnnn ACTUAL=nnnn' is returned. In batch mode, no
message is output.

Examples:

3-72

)VERIFY 134:I,1234,5678
VERIFY NO ERROR

The above example verifies that the
beginning at location X'l34' of the
contain the values 1234 and 5678.

>VERIFY %0NE:I,%TWO,%THREE
VERIFY NO ERROR

two halfwords
impure segment

This example verifies that the values of the variables
%TWO and %THREE are contained in the two halfwords
beginning at the location of %ONE.

48-016 FOO ROl

4.1 INTRODUCTION

CHAPTER 4
PATCHING IMAGE MODULES

This chapter introduces the concepts of image patching through
examples of image patching conunand sequences. The greater than
symbol (>) is a prompt from Patch. Lines not starting with this
symbol are responses from Patch. See Chapter 3 for detailed
information on each command.

4.2 PATCHING· A TASK IMAGE MODrn~

Suppose you have an unsegmented task image in a file called
TASKA.TSK and you want to chanqe byte 43 of subroutine SUBl from
0 to 1. All addresses and contents are in hexadecimal. Assume
you have loaded and started Patch as shown in Chapter 2. The
steps involved are:

• setting image mode,

• loading TASI<A,

• locating SUBl within TASI<A,

• modifying byte 43 of SUBl, and

• saving the new version of TABI<A.

The following example illustrates the steps involved in patching
TASKA.TSK.

Example:

)IMAGE TASKA.TSK,NEWTASKA.TBK
)GET *TASK
)BIAS 3FOO:I

*IMPURE BIAS 3FOO
>EXAMINE 42

3F42:I 4000
)MODIFY 42,4001
>EXAMINE 42

3F42:I 4001
)SAVE
>END

48-016 FOO ROl 4-1

The IMAGE command sets the mode (image versus object), the input
file and the output file. The output file must not already
exist. The output file is created by Patch with the same record
size and file type as the input file.

The GET command specifies that the module to be patched is a task
image and causes the module to be read into the work area. For
overlays, resident libraries and task commons, the module name to
be patched would be specified. For operating system images, *OS
would be used.

The BIAS command sets the impure bias to 3FOO. If you want to
modify routine SUBl, you would examine the Link or TET map for
TASKA and find that subroutine SUBl starts at 3FOO. By setting
the bias to 3FOO, you can address locations relative to the
beginning of the subroutine, using addresses from the subroutine
listing (if they start from 0). All addresses have 3FOO added to
t.hem until the bias is changed; the bias is initially zero.

The I means that the bias refers to the impure segment. I is
also used as the default segment descriptor for EXAMINE and
MODIFY commands. The message output by Patch in this example
(*IMPURE BIAS 3FOO) verifies that the bias for the impure segment
is set to 3FOO. The asterisk (*) indicates that the default
segment is the impure segment.

The EXAMINE command causes the contents of the specified location
to be displayed. This command and its response also illustrate
the biasing mentioned above. All addresses are ,even and the
basic unit of data is a halfword. The parameter of the EXAMINE
command specifies the address of the halfword to be displayed.
The out.put on the next line consists of the address and the
contents of the halfword location. The address has the bias
added in and a segment descriptor (I) appended. For an
unsegmented task, the segment descriptor I always appears,
indicating an impure segment. The address parameters in the
EXAMINE and MODIFY commands in this example do not n.eed segment
descriptors because the default is the impure segment as
established in the previous BIAS command.

The MODIFY command changes the halfword contents, at location
3F42, fr,om 4000 to 4001. Because of the halfword orientation,
the contents of both bytes 42 and 43 are specified.

It i·s .good practice to examine a location after it was changed to
ensure that the correct location is being changed and that the
change has occurred correctly.

The SAVE command causes the updated task image to be copied to
'Lhe file NEWTASKA.TSK. At this point, another program can be
patched by starti:ng with a new IMAGE or OBJECT command (see
Chapter 5).

The END command terminates Patch.

4-2 48-016 FOO ROl

4 . 3 ADD I NG CODE TO I MAGE MODULE:S

Assume that 'rASKB. TSK containst a segmented task image. In
addition to changing code in the pure segment, you should insert
additional code, making the segment and the task larger. You
should also label this change so that, subsequently, it will be
possible to tell that this change was made. Finally, you should
save the result in NEWTASKB.TSK.

The technique for inserting code has two steps. First, replace
the two halfwords, before the insertion point, with a branch to
a patch area. Second, put the replaced code in the patch area,
followed by the code to be inserted, and then a branch back to
the original code. The following example illustrates changing
and adding code to a pure segment.

Example:

)IMAGE TASKB.TSK,NEWTASKB.TSK
)GET *TASK
>BIAS 1234:P

*PURE BIAS 1234
>EXPAND P,10

PATCH AREA 3456:P 10
)EXAMINE •12, 2

1276:P 0834 OA35
)RANGE 1276,3456

RANGE:AlDC
)MODIFY 4;~, 4300 ,AlDC
>EXAMINE CURRENT,2

1276: 1? 4300 AlDC
>RANGE 34SC,127A

RANGE::DElA
)MOD I FY PJ\TCH, 834, A3 5' 2631, 4300 I DElA
>EXAMINE CURRENT,5

3456:1? 0834 OA35 2631 4300 DElA
)IDNO 12345,PEDS
)SAVE
>END

The IMAGE command sets the mode, input and output files.

The GET command specifies that the module to be patched is a task
image and causes the module to be read into the work area.

The BIAS command sets the bias to 1234 in the pure segment (the
location where the additional code is to be inserted). It also
sets the default segment descriptor for succeeding EXAMINE and
MODIFY commands to P for pure.

48-016 FOO ROl 4-3

The EXPAND command creates a patch area at the end of the pure
segment which is initially all zero. The response PATCH AREA ...
gives the address of the beginning of the patch area, its segment
descriptor and its size in bytes.

The second parameter in the first EXAMINE command specifies the
decimal number of halfwords to be displayed, starting at Lhe
address specified by the first parameter. The two halfwords lo
be moved to the patch area are displayed.

The RANGE command gives the relative displacement between two
addresses in a form suitable for subsequent use in RX2
instruction. The first parameter is the address of the
instruction requiring the displacement value. The second
parameter is the target address. An error message is output if
the two ~ddresses are not within RX2 range.

The first MODIFY command can change as many halfwords as can fit
on the MODIFY command line, starting at the address specified in
the first parameter. In this example, the two values constitute
an RX2 instruction that is a branch to the patch area.

The second EXAMINE command is used to verify the
The first parameter, CURRENT, specifies that
specified in the last MODIFY or EXAMINE command is
again.

modification.
the address
to be used

You have inserted a branch to the patch area where new code is to
be added. The code replaced by the branch instruction must be
the first code inserted in the patch area.

The Patch parameter of the second MODIFY command specifies the
address of the start of the pure patch area. Pure is the default
segment~ therefore, the segment descriptor was left out. The
segment descriptor can be included in the format, PATCH:P.

The instructions replaced at 1256:P, a
branch back to 127A:P, are put into the
verified. The negative displacement from
into the original code was calculated
You have now effectively inserted an
instruction originally at 1278.

new instruction and a
patch area and visually
the patch area back

with the RANGE command.
instruction after the

The IDNO command associates a positive number (0 to 32,767) and
a maximum of four alphanumeric characters with the patches made
in the session. This label, called a patch control ID, can be
displayed by any REVIS ION or TA.BLE command with NEWTASKB. •rsK as
the input file (see Chapter 3).

The SAVE command saves the modified task image to NEWTASKB.TSK.

The END command terminates Patch.

4-4 48-016 FOO ROl

4.4 MODIFYIN1G COMPOUND OVERIAY FILES CREATED BY TET

In Patch (software number 03-196 ROO), the beginning of the
overlay area is always shown to be at impure location zero,
although the actual overlay start address is not at location
zero. The correct overlay start address can be found by issuing
the LIB command. The address f JLeld of the instructions displayed
by the EXAMIN:e: command has been based by TET using the overlay
start address displayed in the LIB command.

The following example illustratE~s the loading of overlay files
created by TET in Patch ROO.

Example:

*LOAD PATCH
*START

PERKIN-ELMER OS/32 PATCH R00-00
)IMA COBOL.OVY/S,COBOL.OVl,COMPOUND
>GET CBL006
)LIB

SEGMENT TYPE
NO. OF LIB'S
HISTORY RECORDS
SEGMENT SIZE
OVERLAY START
OVERLAY NAME
TASK CREATION I.D.
DATE ES'rABLISHED
TIME ES'rABLISHED

)EXA lO:I
10:1 !510

5 OVERLAY
2
1

295
500

CBL006
TE1~32 R03-05
20/02/80
19:59:27

In Patch (software number 03-196 R02), the correct overlay start
address is found by issuing the LIB or EXAMINE CURRENT command
after the GET command is issued. The overlay start address must
be used in the BIAS command to make addressing compatible with
Patch ROO. The following example illustrates the loading of
overlay files created by TET in Patch R02.

48-016 FOO ROl 4-5

Example:

*LOAD PATCH
*START

PERKIN-ELMER OS/32 PATCH R02-00
>IMA COBOL.OVY/S,COBOL.CVl,COMPOUND
)GET CBL006
)EXA CU

500:I 0000
)LIB

SEGMENT TYPE
NO. OF LIB'S
HISTORY RECORDS
SEGMENT SIZE
OVERLAY START
OVERLAY NAME
TASK CREATION I.D.
DATE ESTABLISHED
TIME ESTABLISHED

)BI 500 :I
IMPURE BIAS 500

>EXA 10
10: I 510

5 OVERLAY
2
1

295
500

CBL006
TET32 R03-05
20/02/80
19:59:27

Assume that you want to patch the second and fourth overlays in
a compound overlay file named OVYFILE.OVY that has five overlays
named OVERLAYA through OVERLAYE. The result is a new compound
overlay file named OVYFILE2.0VY with the new versions of OVERLAYS
and OVERLAYD and the old versions of OVERLAYA, OVERLAYC and
OVERLAYE.

Example:

4-6

>IMAGE OVYFILE.OVY,OVYFILE2.0VY,COMPOUND
)GET OVERLAYB,COPY
)EXAMINE 1000

lOOO:I 1234
>MODIFY 1000,5678
>EXAMINE 1000

lOOO:I 5678
)SAVE NOCOPY
>GET OVERLAYD,COPY
>EXAMINE 1000

1000:1 1234
)MODIFY 1000,5678
)EXAMINE 1000

lOOO:I 5678
)SAVE COPY,TERMINATE
>END

48-016 FOO ROl

The third para.meter of the IMAGE: command specifies that the input
file is a compound overlay file.

In addition to specifying the program to be patched, the GET
command causE~s all over lays be!fore OVERLAYS to be copied t.o the
output file. Omi.tting the COPY keyword would still result in
OVERLAYA being in the new overlay file since COPY is t.he default
option.

The first EXAMINE command displays the contents of t.he first
halfword starting at location X'lOOO'.

The MODIFY command changes the contents of location X'lOOO' to
5678.

The second EXl\MINE command verifies the change made.

The first SAVI~ command saves the· patched task image of OVERLAYS
to OVYFILE2.0VY. NOCOPY indicates that the remaining modules in
the input file are not to be transferred to the output file.

The second GE~r command causes O'\lERLAYC to be copied to the output
file and specifies OVERLAYD as the next program to be patched.
The previous patching sequence explanation also applies to
OVERLAYD. OVE~rlays must be sele·cted for patching in t.he same
order that they appear in the compound overlay file. The second
SAVE command Bpecif ies that the rest of the input file is to be
copied to the output file and that processing of this overlay
file is to terminate.

4. 5 MODIFYING· TREE-STRUCTURED Q1VERLAYS

Tree-structurE~d overlays differ from compound overlay files. The
task with tree-structured overlays is just one image (with one
set of LIBs) .. 'Jlhe compound ove·r lay cons is ts of a task image and
one or more overlay images, each with its own set of loader
information blocks (LIBs).

When patching tasks that have tree-structured overlays, the user
only issues one GET. The user can specify the overlay to be
modi f i ed by m3 ing the OVERLAY command .

48-016 FOO ROl 4-7

Example:

)IMAGE TASKOVLY,TASKOVY2
)GET *TASK
)OVERLAY OVERLAYB
)EXAMINE 1000

lOOO:I 1234
)MODIFY CURRENT,5678
)EXAMINE CUR

lOOO:I 5678
)OVERLAY OVERLAYD
)EXAMINE 2100,3
2100:I 4300 4001 023C

)MODIFY CURRENT,4320
>EXAMINE 2100,3
2100:I4320 4003 0200

)SAVE
)END

The GET conunand specifies that a task image is to be patched.

The first OVERLAY conunand selects OVERLAYS for patching.

The first EXAMINE conunand displays the contents of the first
halfword starting at location X'lOOO'.

The MODIFY conunand changes the contents of location X'lOOO' to
5678.

The second EXAMINE conunand verifies the change made.

The second OVERLAY conunand selects OVERLAYD for patching.

Assume that you want to patch only one overlay in a task. The
name of the overlay is OVERLAYS. The result is a new task named
TASKOVY2 with the new version of OVERLAYS and the old version of
the task, OVERLAYA, OVERLAYC, OVER.LAYO and OVERLAYE.

Example:

4-8

)IMAGE TASKOVLY,TASKOVY2
)GET OVERLAYB
)EXAMINE .1000

1000:1 1234
)MODIFY 1000,5678
)EXAMINE 1000

lOOO:I 5678
)SAVE
>END

48-016 FOO ROl

The GET command selects OVERLAYB for patching.

The first EXAMINE command displaLys the contents of the first
halfword starting at location X'lOOO'.

The MODIFY command changes the contents of location X'lOOO' to
5678.

The second EXAMINE command verif'ies the change made.

The SAVE command saves the root segment and all the overlays,
including the patched OVERLAYS, to the file TASKOVY2.TSK.

48-016 FOO ROl 4-9

5 . 1 I NTRODUC'I1 I ON

CHAP1rER 5
PATCHING OB.JECT MODULES

This chapter, through examples of object patching conunand
sequences, introduces concepts of object patching. See Chapter
3 for more detailed information on each command.

5.2 PATCHING AN OBJECT MODULE

Assume that you want to change byte 43 of SUBl from 0 to 1 in the
object code. The steps involved are:

• setting object mode,

• loading SUBl for patching,

• modifying byte 43, and

• saving the new version of SUB!.

The following example illustrates the steps involved in patching
SUBl.

Example:

)OBJECT SUBl.OBJ,NEWSUBl.OBJ
)GET SUBl
>EXAMINE 42

0042:1' 4000
>MODI FY 42~, ABS, 4001
)EXAMINE 412

0042:1 4001
)SAVE
)END

48-016 FOO ROl 5-1

The OBJECT command sets the mode (object versus image), the input
file and the output file. The output file must not already exist.
and will be created with the same record size and file type as
the input file.

The GET command specifies the name of the object module to be
patched and reads it into the work area. If the object module
was unnamed (no PROG statement in the source), *OBJECT would be
used as the parameter of GET.

The EXAMINE command specifies the address of the halfword to be
displayed. Note that aLl addresses are even and the basic unit
of data is a halfword. The output on the next line consists of
the address and the contents of the halfword location. The
address has a segment descriptor appended (I indicating impure).
The address parameters in the EXAMINE and MODIFY commands in this
session· do not need segment descriptors~ because the default
segment is the impure segment.

The MODIFY command changes the halfword value at 42 from 4000 to
4001. Because of the halfword orientation, the value of byte 42
is also specified. The keyword 'ABS' specifies that the type of
data to be inserted is absolute.

Neither EXAMINE command is necessary, but it is good practice to
ensure that the correct location is being changed and that the
change has occurred correctly.

The SAVE command causes the updated object program to be copied
to the file NEWSUBl.OBJ. At this point, another program can be
patched by starting with a new OBJECT or IMAGE command. See
Chapter 3 for image patching.

The END command terminates Patch.

5.3 PATCHING A BLOCK DATA SUBPROGRAM

If the change made in the previous section was to be made within
a common block named COMMONA in a block data subprogram, a
slightly different procedure would be followed. The following
example illustrates the use of the BLOCK command in conjunction
with the BL code in the MODIFY command.

S-2 48-016 FOO ROl

Ex~ple:

)OBJECT SUB2.0BJ,NEWSUB2.0BJ
)GET SUB2
)BLOCK COMMONA

COMMON BLOCK COMMONA
>EXAMINE 42,BLOCK

0042:I 4000
)MODIFY 4.2,BL,4001
)EXAMINE 42,BLOCK

0042:1 4001
)SAVE
>END

The OBJECT and GET commands perform as described in Section 5.2.

The BLOCK conunand selects the common block named COMMONA. The
addresses of subsequent EXAMINE and MODIFY commands (with BLOCK
keyword and BL code, respectively) are treated as offsets from
the beginning of COMMONA.

The EXAMINE and MODIFY commands display and change the contents
of specified locations within a block data subprogram. Offsets
within common blocks are determi.ned by the address spec if ied in
the EXAMINE or MODIFY command plus the current impure bias. In
this example the impure bias is zero, which is the initial value
for all biasei:i.

The SAVE and E;ND commands save the patched object module and
terminate patch.

5.4 ADDING CODE TO OBJECT MODULES

Assume that SUB3.0BJ contains an object module with both pure and
impure code. In this case, you would like to insert some pure
code, making the object module larger.

The technique used has two steps. First, replace the two
halfwords before the insertion point with a branch to a patch
area. Second, put the replaced code in the patch area, followed
by the code to be inserted, and then a branch back to the
original code.. You would also like to label this change so that
it is possible to tell that a patch has been applied. Finally,
the result i~~ saved on NEWSUB3 .OBJ. The following example
illustrates changing and adding code to a pure segment.

48-016 FOO ROJL 5-3

Example:

)OBJECT SUB3.0BJ,NEWSUB3.0BJ
)GET SUB3
)EXPAND P,14

PATCH AREA 1234:P 14
>EXAMINE 42:P,2

0042:P 0834 OA35
>RANGE 42,1234

RANGE:91EE
>MODIFY 42:P,ABS,4300,91EE
>EXAMINE 42:P,2

0042:P 4300 91EE
> B I AS 12 3 4 : P

PURE BIAS 1234
>RANGE 123E,46

RANGE:EE04
)MODIFY 0,ABS,834,A35
)MODIFY 4,C0,5A30,4000,COMMONA1,8
)MODIFY A,ABS,4300,EE04
>EXAMINE 0,5

1234:P 0834 OA35 5A30 4000 0000
>EXAMINE 4,COMMON

1238:P COMMONAl 8
>EXAMINE A,2

123E:P 4300 EE04
>IDNO 12345,PEDS
)SAVE

·>END

The OBJECT and GET commands are similar to those used in the
previous two examples. The EXPAND command creates a patch area
at the end of the pure code, the contents of which are initially
undefined. The response gives the address of the beginning of
the patch area, its segment descriptor and its size in bytes.

The second parameter in t.he first EXAMINE command spec if ies, .in
decimal, the number of halfwords to display, starting at the
address specified by the first parameter. Here, the two
halfwords to be moved to the patch area are displayed.

The first RANGE command gives the relative displacement between
two addresses in a form suitable for subsequent use in an RX2
instruction. The first parameter is the address of the
instruction. The second parameter is the target address. An
error message is output if the two addresses are not within RX2
range.

The first MODIFY command with ABS data type changes two halfword
values starting at the address specified in the first parameter.
In this example, the two values constitute an RX2 instruction,
which is a branch to the patch area.

5-4 48-016 FOO ROl

Now you have inserted a branch to the patch area where new code
is to be added. The code replaced by the branch instruction must
be the first code inserted in the patch area.

After verifying the change, the pure bias is set to the beginning
of the patch area. This allows locations to be addressed
relative to the beginning of the patch area in subsequent EXAMINE
and MODIFY commands. (Initially the bias is 0 and the default
segment descriptor is I for impure.)

The BIAS command also sets the default segment descriptor for
succeeding EXAMINE and MODIFY commands to P for pure.

The second RANGE command computei3 the displacement from the end
of the patch area back to thi9 original code. The next MODIFY
command puts the replaced code into the patch area. The ABS
keyword is used because the replaced code contains no relocatable
data.

The third MODIFY command adds an RX3 instruction that references
a location (8) within a common block named COMMONAl. Since RX3
instructions are represented by loader items different from
absolute data, a different code is used in the second parameter.
The code 'CO' indicates a common reference with the next two
parameters giving the absolute part of the RX3 instruction,
followed by the common block nami~ and displacement of the RX3
target address. Other codes are used for RX3 instructions that
reference pure, impure or external addresses. There are also
codes for address constants and for data in block data
subprograms.

The fourth MODIFY command appendt3 the instruction that
back to the original code. Since this branch is
instruction, it can be treated as absolute data.

branches
an RX2

Each of the last three EXAMINE: commands corresponds to and
verifies one of the previous MODIFY commands. The fifth EXAMINE
command illustrates how to display a common reference.

The IDNO command associates a poi3itive number (0 to 32,767) and
up to four alphanumeric characti9rs with the patches made in this
session. The label, called a patch control ID, can be displayed
by the REVISION or TABLE command with NEWSUB3.0BJ as the input
file (see Chapter 3)~

The SAVE and END commands save the patched object module and
terminate Patch.

48-016 FOO ROl 5-5

5.5 MODIFYING OBJECT LIBRARIES

Assume that the second and fourth object modules in an object
library named OBJLIB.LIB are to be patched. The object library
has five programs named PROGl through PROG5. The result is to be
a new object library named OBJLIB2.LIB with the new versions of
PROG2 and PROG4 and the old versions of PROGl, PROG3 and PROG5.
The following illustrates patching the object library OBJLIB.LIB.

Example:

)OBJECT OBJLIB.LIB,OBJLIB2.LIB,LIBRARY
>GET PROG2,COPY
)EXAMINE 1000

lOOO:I 1234
)MODIFY 1000,ABS,5678
)EXAMINE 1000

lOOO:I 5678
)SAVE NOCOPY
)GET PROG4
>EXAMINE 1000

lOOO:I 1234
)MODIFY 1000,ABS,5678

lOOO:I 5678
>EXAMINE 1000
)SAVE,TERMINATE
)END

The third parameter of the OBJECT command specifies that the
input file is an object library.

In addition to specifying the program to be patched, the GET
command causes all programs before PROG2 to be copied to the
output file. Leaving out the COPY keyword would still result in
PROGl being in the new library file since COPY is the default
option.

The next three commands (MODIFY, EXAMINE and SAVE) illustrate a
sample patching sequence followed by a command to save the
patched version of PROG2. NOCOPY indicates that the remaining
modules in the input file are not to be transferred to the output
file.

The second GET command causes PROG3 to be copied to the output
file and specifies PROG4 as the next module to be patched.
Modules must be selected for patching in the same order that they
appear in the object library.

The same patching sequence (EXAMINE, MODIFY, EXAMINE and SAVE) is
applied to PROG5. The SAVE command specifies that the rest of
the input file is to be copied to the output file and that no
more processing of this library will occur. If the NOCOPY,
TERMINATE parameters had been specified in the SAVE command,
PROGS would not be in the new library file.

5-6 48-016 FOO ROl

BLOCK [!"iarneJ

CQMMAND f d [, .RE!TURN]

DUMP

END

name

~.QB.JECT~
~-TASK

*OS

.EATCH

APPENDIX A
COMMAND SUMMARY

[@] hexadr H m +

variable [{_}offse~ EXAMINE

CURRENT

48-016 FOO ROl

[~BLOCK E~!] .COMMON

n

A-1

~{111 ·[variabl~
name

~QB.JECT

GET
~TASK

*OS

HELP [command name]·

.lDNO [n] [, charstr ing]

LIB [{;}]

L.lST [ta]

MAXLU [nJ

.EATCH

MODIFY

[~] hexadr

variable [{
data [, datan] }]

Geode] ,
variable G var iablen]

CURRENT

\\\I.ill\

[l
exnarne [. ex~isp]ll
conarne,cod1sp

//,codisp

A-2 48-016 FOO ROl

MXSPACE [n]

NAME [name]

NEWIDNO [n] [charstring]

OPTION cs.E1'AS~.:···.:.·.:.":.·.·,:"".'~.".":.:.:.:}] [{~~~~E}] '{::I~~: __ lJ [{=~~~:,,}] a-5 B.IMt.umm L .'~~H:l&Wf 111~11a:~dr

[
01.PAUl.!f J '{BR -] COM J [CON t] [{VFC }] {~~~:::~~} t_ ~:J_ [{._} · {~s · ,_~

l{DNIVERsAL }] [{.E.LOAT }] I jaR•:t.saL}] [{~c t]
t. ,m:i:mem ' 11m1tr L l NACCOUNT 1 NG ' ''Ervqf _

[{

...
:-.:

.:DF.LO·.··.:·:· .. ·.·.··.,··::··.·.:.··:·.:··: .. :···.:.'· .. : ... '·.·'.·'·A·'·.·:.'· .. :.·:··T·:·.:,::·' .. : .. ::·.·:·.,}J ~ {ACPR I VI L1!:GE }] [{Dl.SC }] [{ •t.J.ffSQl]\j }] ·'•"1:1f~~!t~a::··:··.···,t'~~}~f ,, , 'lbi''t'·s ·'A ,
::-.5)~:J:l.f':~~Q:I:= :: .. '':?.<.: ... :~: NKEYCHECK

QYERLAY [nam~] .

EAU SE

£R.10RITY [inipr i, max pr!]

RANGE

£.ATCH

[@] hexad:r

variable

\~ATCH
,

1

, [@] hexdr

1:=:~·
~·:·:·:·:·:·::::::,,:::

[~:}J [{:}offse~ ~variable]
.CURRENT

,:mm::

name

!_QBJECT
G 'title~ REVISION

_*_T'.ASK

*OS

48-016 FOO ROl A-3

G_ TERM I NATE]

SEND STQE.

E

R

SHARED NAME=sname.ext ,ACCESS= RW

[SlZE= ([minsize] [,maxsizeJ)]

TABLE ~title~

TRANSFER [{va:~~ble}:{;}]

TSW [E< ta tu~ r { 9

tadr }]] t variable

[{
=value }]

Y:ARIABLE vname
,DELETE

.PATCH

[@] hexadr

:'iERIFY variable

.CURRENT

A-4

data G ... datan]

, variable E ... var iablen]

BLOCK l{data G ... datan] }]

L variable G. ... var iablen]

48-016 FOO ROl

aaaaa: s OUT OJP RANGE

APPE~NDIX B
PATCH MESSAGE SUMMARY

The address specified by aaaaa:s is outside the boundaries of
the selected program. Use the EXPAND conunand to extend the
boundar ie:s of the program.

ABSOLUTE BIAS nnnnn

This is an information message given in response to a BIAS or
DISPLAY command. The cuz:rent absolute bias (nnnnn) is
displayed and the message is preceded by an asterisk (*) if
the default segment descriptor is :A.

ARG #nn - ADR ERROR

The address part of argument nn contains no data or contains
nonhexadecimal characters.

ARG #nn - ADR OUT OF RANGE

The address specified by the nnth argument is negative or
greater than 2~ -1.

ARG #nn - INCONSISTENT

The nnth argument is inconststent with a previous argument.
For example, the last record is less than the first record in
a DUMP command, or confU.cting options are specified in an
OPTION command.

ARG #nn - INV~l\LID NAME FORMAT

The nnth argument is not a valid name for either a program or
a COMMON block. Names must be from 1 to 8 alphanumeric
characters starting with an alphabetic character. For names,
the conunercial at sign (@), dollar sign ($) and a period (.)
are acceptable as alphabetic characters.

48-016 FOO ROl B-1

ARG #nn - INVALID PARAMETER NAME

The nnth argument is not one of the parameter choices for
that argument.

ARG #nn - INVALID SEGMENT ID

The nnth argument contains a segment descriptor that is not
P, A or I.

ARG #nn - MISSING

The nnth argument is missing and is required.

ARG #nn - NO DATA ENTERED

The nnth argument is null and is required.

ARG #nn - NOT HALFWORD ADDRESS

An odd address is specified in argument nn. An even address
is required.

ARG #nn - SEGMENT ID MISSING

The nnth argument is an address specified without a segment
descriptor and a segment descriptor is required.

ARG Inn - SYNTAX ERROR

An invalid delimiter or improper argument format (e.g., an
alphabetic character in a decimal number) is detected in
argument nn.

ARG #nn - TOO MANY CHARACTERS

The character string specified in argument nn exceeds the
maximum number of characters allowed.

ARG #nn - VALUE OUT OF RANGE

B-2

Argument nn is not within the range specified for that
argument.

48-016 FOO ROl

ARGUMENT(S) Mj[SSING

The command just issued does not have all of its required
arguments ..

CANNOT CHANGE PROGRAM NAME

The object program being mod:if ied does not have a name. The
name can <>nly be changed if one was originally present.

COMMON BLOCK nnnnnnnn

This is an information message given in response to a BLOCK
command without arguments or a DISPLAY P command. The name
of the currently selected ccimmon block (nnnnnnnn) is given.
The word UNDEFINED is us,ed if no COMMON block has been
selected.

COMMON BLOCK NOT DEFINED

The command just issued assumed a current common block when
one was not defined. Us:e the BLOCK command to select a
current C()mmon block.

COMMON BLOCK NOT IN PROGRAM

The currently selected commc1n block does not exist in the
current program.

CONTIGUOUS F II..E ALLOCATION FAILE:D

An attempt to convert the output file from an indexed file to
a contiguous file has failed. The indexed version of the
output file is saved. (The output file can be converted at
a later date to a contiguous file using OS/32 COPY.) See
Section 3.29 on the SAVE: command. This is an information
message and does not cause termination of Patch.

CONTIGUOUS FILE RENAME ERROR

The output file has been converted from an indexed file to a
contiguous file, but an error has been encountered during the
rename operation. In bat.ch mode, Patch terminates and the
output is lost. In interactive mode, Patch pauses, and when
continued, retries the rename operation.

48-016 FOO ROl B-3

DESTINATION ADR. OUT OF RX2 RANGE

The addresses specified in a RANGE conunand exceed the range
of an RX2 instruction.

DISPLACEMENT OUT OF RANGE

In attempting to MODIFY a conunon reference instruction, the
displacement value exceeds the size of the specified conunon
block.

DUPLICATE VARIABLE NAME

A request to add a previously defined variable was entered.

FILE ERROR: xx LU nn eeee
USE IS ffff

There has been a supervisor call 7 (SVC7) error on logical
unit (lu) nn. The error status is xx and specifies the type
of error described by eeee. Possible error types are:

ASSIGNMENT ERROR
BUFFER ERROR
FILE DESCRIPTOR ERROR
1/0 ERROR
NAME ERROR
PRIVILEGE ERROR
PROTECT ERROR
SIZE ERROR
TYPE ERROR
VOLUME ERROR

The field ffff indicates the usage of the specified lu.
Possible values are:

COMMAND INPUT
INPUT FILE
LIST OUTPUT
MESSAGE OUTPUT
OUTPUT FILE
SCRATCH FILE

FILE IS NOT COMPOUND

B-4

The IMAGE conunand just issued identified the input as a
compound overlay file when it is not.

48-016 FOO ROl

NO RETURN IN gFFECT

If an end of data indicator is encountered and RETURN is not
in effect, the indicator is ignored and this message is
generated ..

IMAGE FILES UNASSIGNED

This is an information message given in response to an IMAGE
command without arguments or a DISPLAY D command. No files
have been assigned by a previous IMAGE command.

IMAGE INPUT ON fdl
IMAGE OUTPUT ON f d2

This is an information messatge given in response to an IMAGE
command without arguments or a DISPLAY D command. The input
and output files spec if ied j_n the last IMAGE command are
given by 1Edl and fd2, respectively.

IMPURE BIAS nnnnn

This is an information messetge given in response to a BIAS or
DISPLAY P command. The curt:ent impure bias (nnnnn) is given,
and the message is preceded by an asterisk (*) if the default
segment descriptor is :I.

INVALID COMMAND -- IMAGE + LIBRARY

An image :file cannot be a Ll BRARY but can be COMPOUND.

INVALID COMMA1t'-l0 INPUT SPECIF I CA'l~ I ON

The file descriptor (fd) specified as the command input
device in the START parameters is invalid or contains a
syntax erroro

INVALID COMMAND MNEMONIC

The command :just issued is not a legal command.

INVALID COMMAND -- OBJECT + COMPOUND

An object file cannot be COMPOUND but can be a LIBRARY.

48-016 FOO ROl B-5

INVALID COMMAND SEQUENCE

The conunand just issued requires another conunand to be
entered first (see Section 6.2).

INVALID COMMAND SYNTAX

The syntax of the conunand just entered is wrong. Check for
illegal arguments and delimiters. The conunand mnemonic must
be separated from its first argument by a blank.

INVALID FD

A device name (other than NUIL:) was given as an input or
output file in an IMAGE or OBJECT conunand.

INVALID KEYWORD

A keyword other than COMMAND or LIST is specified as a START
parameter.

INVALID LIST OUTPUT SPECIFICATION

The fd specified as the list device in the START parameters
is invalid or contains a syntax error.

INVALID VALUE SPECIFIED

Any value specified that is not a valid hexadecimal value or
exceeds the boundaries will generate this message.

INVALID VARIABLE NAME

Variable name is invalid due to syntax error(s).

I/O ERROR: xx LU nn eeee
USE IS f ff f

B-6

There is an SVCl error on lu nn.
specifies the type of error
error types are:

DEVICE UNAVAILABLE
END OF FILE
END OF MEDIUM
ILLEGAL/UNASSIGNED LU
PARITY/RECOVER ERROR
UNRECOVERABLE ERROR

The error status is xx and
described by eeee. Possible

48-016 FOO ROl

The field ffff indicates the usage of the lu.
values ar «~:

COMMAND INPUT
INPUT FILE
LIST OUTPUT
MESSAOE OUTPUT
OUTPU~r FILE
SCRATCH FILE

LIST DEVICE fd

Possible

This is an information message given in response to a LIST
command without arguments or a DISPLAY D command. The
current List device is spectf ied by fd.

LOG MODE == status

This is an information message given in response to a LOG
command without arguments or a DISPLAY D command. The
current status (ON or OFF) e>f command logging is displayed.

LU nn UNASSIGNED
USE IS ffff

lu nn has been closed. The field ffff specifies the usage
for this lu. Possible values are:

COMMAND INPUT
INPUT FILE
LIST OUTPUT
MESSAGE OUTPUT
OUTPU1r FILE
SCRATCH FILE

MISSING OR INVALID PROG. NAME

A program name is incorrect or not specified when it is
required.

NESTING OF COMMAND FUNCTION ILLlmAL

This message will be generated if a COMMAND command is issued
from a secondary command file while return is in effect.

48-016 FOO ROl B-7

NO ABS SEGMENT

An address with an absolute segment descriptor (:A) has
specified and there is no absolute code in the program.
the EXPAND command to allow absolute code to be entered.

been
Use

NO COMMON REF AT THIS ADR

An EXAMINE command with a common keyword is specified, but
the address given is not the beginning of an instruction that
references common.

NO ENTRIES IN VARIABLE TABLE

An attempt was made to list all variables when no variables
were defined.

NO EXPAND REQUEST FOR sssss

This is an information message given in response to an EXPAND
command without arguments, an EXAMINE or DISPLAY with an
invalid Patch argument, an EXPAND command during INPLACE
patching or a DISPLAY P command. There have been no EXPAND
requests for the segment specified by sssss.

NO FILES ASSIGNED

The command just issued requires assignment of an input or
output file by an IMAGE or OBJECT command and none have been
assigned.

NO IMPURE SEGMENT

An address with an impure segment descriptor (:I) has been
specified and there is no impure segment.

NO PATCH HISTORY FOUND

This is an information message given in response to a
REVISION command. An attempt has been made to display the
Patch history of a program or a file of programs and no
history was found.

NO HISTORY RECORDS MAINTAINED

B-8

No history records are maintained for inplace patching.
is displayed when INPLACE keyword is specified in the
command.

This
IMAGE

48-016 FOO ROl

NO PROGRAM LOPIDED FOR PATCHING

The command just issued requires a program and none has been
selected. Use the GET command to select a program.

NO PURE SEGMENT

An address with a pure segment descriptor (:P) has been
specified and there is no pure segment.

NO ROOM TO EXPAND

The workspace does not contain enough space to allow the
requested EXPAND. Existing data can be modified but no more
EXPANDs can be done. The current program can be SAVEd and
the saved version used as input in a new session or the whole
session can be repeated using a larger workspace size or a
scratch file. Reducing the workspace size below the size of
the progz:am forces allocation of a scratch file (see Section
2. 1) .

NO ROOM TO RECORD HISTORY

The Patch history workspace does not contain enough space to
allow thEt requested command. The current program should be
SAVEd and the saved version used as input in a new session.

NOT IN COMMAND REPERTOIRE

The argumemt specified in a HELP command is not the name of
a valid command. To obtain a list of Patch commands, enter
HELP without any arguments.

OBJECT FILES UNASSIGNED

This is an information message given in response to an OBJECT
command without arguments or a DISPLAY D command. No files
have been assigned by a previous command.

OBJECT INPUT ON f d
OBJECT OUTPUT ON f d

This is an information message given in response to an OBJECT
command without arguments or a DISPLAY D command. The input
and output files specified in the last OBJECT command are
given by f:d and fd , respectively.

48-016 FOO ROJL B-9

OPTION INPLACE PROHIBITS EXPAND

An attempt to use the EXPAND command was made while the
option INPLACE was specified.

PATCH AREA aaaaa:s zzzz

This is an information message in response to an EXPAND or
DISPLAY P command. The starting address (aaaaa:s) and the
size (zzzz) of each Patch area created by an EXPAND command
are displayed.

PA'rCH MODE ERROR

An attempt has been made to issue a command that is not valid
for the type of program being patched.

PROGRAM NOT FOUND

The program specified in a GET command could not be found on
the input file. When *OS is specified, and the specified
operating system file was created using DISCINIT, an error
can result if an older version of DISCINIT was used. Patch
requires that the current version of DISCINIT (R02-03 or
higher) be used to create the OS file.

PURE BIAS nnnnn

This is an information message given in response to a BIAS or
DISPLAY P command. The current pure bias (nnnnn) is given
and the message is preceded by an asterisk (*) if the default
segment descriptor is P.

RANGE: nnnn

This is an information message given in response to a RANGE
command. The requested RX2 displacement is nnnn.

RECORD NOT FOUND

A record number specified in a DUMP command is not within the
input file limits.

REQUESTED LIB NOT FOUND

The loader information block (LIB) requested does not exist.

B-10 48-016 FOO ROl

SAVE CURRENT PROGRAM

An attempt has been made to exit Patch (END command), or to
select another program fc1r patching (GET command) without
saving the previous program. This is a warning message when
issued in interactive mode~. If GET or END is issued again,
normal processing occurs. In batch mode, Patch terminates
execution after outputting the warning message.

SCRATCH FILE 1ULOCATED

In memory, workspace reserved by the LOAD command or by the
OS/32 Link OPTION WORK command is not large enough to hold
the program to be patched. A scratch file has been allocated
for Patch workspace. This i.s an information message only.

TEMPF I LE ASS H~NMENT FA I LS

An error was encountered while attempting to assign a
temporary scratch file.

TOO MANY ARGUMENTS

The command just entered has more than the maximum number of
arguments for that command.

USE REVISION CMD FOR HISTORY RECORDS

An LIB conunand has attempted to display a history record.
The REVISION command must be~ used.

VARIABLE NOT DEFINED

A VARIABLJE: DELETE command hcLS been spec if ied for a variable
that does not exist.

VARIABLE TABLJE: FULL

An attempt to use the VARIABLE command has been specified
when the maximum of 20 variables has been defined.

VERIFY ERROR : I...OC=nnnnnn EXPECTED==nnnn ACTUAL==nnnn

The contents of the location(s) do not match the expected
value(s).

48-016 FOO ROl B-11

VERIFY NO ERROR

B-12

The contents of the location(s) are verified against the
expected value(s).

TABLE B-1 END OF TASK CODES

CODE I MEANING

============----===---=--------------------=------------== 0 Normal termination

1 Invalid keyword in START command

2 Invalid command input file/device

3 Command device assign error

4 Command device fetch attributes error

5 List device assign error

6 Message device assign error

7 Not used

8 Invalid list output file/device

9 START command syntax error or too many parameters

10 Input/output (I/O) error in batch mode

11 I/O error in interactive mode

12 Unrecoverable error in batch mode

20 Disk I/O error in interactive mode during history
creation

48-016 FOO ROl

APPENDIX C
PERKIN-ELMER 32·-BIT OBJECT FORMAT

This appendix describes the format of object code produced by
Common Assembly Language (CAL).

Modules in Perkin-Elmer 32-bit object format are divided
records. Each record contains 126 bytes of information.
first four bytes of each record are organized as follows:

into
The

0 15 16 32

Sequence Number Checksum

The sequence numbers are sequential negative integers -1, -2, -3,
etc., represented in two's complement form. The first record in
a program must have sequence number -1. Subsequent records must
be in proper order to be loaded.

The checksum is an Exclusive-OR sum of all halfwords in the
record, except itself, plus a halfword of all ONEs.

The remainder of
byte of loader
loader items and
certain number
items and their

the record is a sequence of items; an item is a
information. There are two types of items:

data items. Each loader item is followed by a
(which might be zero) of data items. The loader

meanings are listed in Table C-1.

History records are appended at the end of the object data.

48-016 FOO ROl C-1

TABLE C-1 LOADER ITEM DEFINITIONS

LOADER I
ITEM MEANING

I NUMBER OF DATA ITEMS
FOLLOWING

======================·===8====--·=====-=========-=-==========

C-2

0
1
2
3

4
5

6

7

8

9

A

B

c

D

E

F

10

11

12
13

14

15

16

End of record
End of program
Reset sequence number
Block data indicator

Absolute program address
Pure relocatable program
address
Impure relocatable program
address
2 bytes of pure relocatable
data
2 bytes of impure
relocatable data
4 bytes of pure relocatable
data

4 bytes of impure relocat­
able data
Common reference

I EXTRN

ENTRY

Common definition

Program label

3 bytes absolute and 3
bytes pure relocatable
3 bytes absolute and 3
bytes impure relocatable
Load program transfer
Define slacL of chain
(reference)
Load chain definition
address
2 bytes absolute and 2
bytes pure relocatable
2 bytes absolute and 2
bytes impure relocatable

None
None
None
8-byte name,
3-byte displacement,
any absolute data
item (20-SB)
3-byte address
3-byte address

3-byte address

2-byte address

2-byte address

4-byte address

4-byte address

8-byte address,
3-byte displacement
8-·byte name, followed
by item 4, 5 or 6
8-byte name, followed
by item 4, 5 or 6
8-byte name, followed
by a 3-byte length
8-character name

6 bytes

6 bytes

Item 4, 5 or 6
Item 4, 5 or 6

Item 4, 5 or 6

4 bytes

4 bytes

48-016 FOO ROl

LOADER I
ITEM

TABI..E C-1 LOADER ITEM DEFINITIONS (Continued)

MEANING
I NUMBER OF DATA ITEMS

FOLLOWING

======·=----==-=-------========---------------------========-== 17

18

19

lA
lB
lC

lD

lE
lF

20
21
22
23

SB
SC

SD

SE
SF

60
61
62

63

64

Short form EXTRN

Length of impure and pure
se9ments
Pet:form fullword chain

Perform halfword chain
No operation
2-byte pure translation
table address
2-byte impure translation
table address
Not used
1 byte absolute data

2 bytes absolute data
4 bytes absolute data
6 bytes absolute data
8 bytes absolute data

120 bytes absolute data
Define pure location counter

Def: ine impure lo cat ion
counter

No operation
Load program address

4 bytes relocatable data
2 bytes ABS/ 2 bytes
relocation
3 bytes ABS/ 3 bytes
relocation
Load translate table
address

48-016 FOO ROl

8-byte name and item
4, S or 6
3-byte impure length
and 3-byte pure
None

None
None
2 bytes

2 bytes

N/A
1 byte

2 bytes
4 bytes
6 bytes
8 bytes

120 bytes
1-byte location
number,
8-byte section name
and
8-byte pool name
1-byte location
number,
8-byte section name
and
8-byte pool name
None
1-byte location
number and 3-byte
relocate address

2 bytes
4 bytes
4 bytes

6 bytes

1-byte location
number and 2 bytes
data

C-3

LOADER I
ITEM

65

66

67

68

C-4

TABLE C-1 LOADER ITEM DEFINITIONS (Continued)

MEANING

Extended extrn reference

Extended entry

LINK commands

Declare common block

I NUMBER OF DATA ITEMS
FOLLOWING

8-byte external
symbol name, 1-byte
flag, xxxx xxOO
standard extern,
xxxx xxOl weak extrn,
xxxx xxlO include
extrn,
4-byte offset item 4,
5 or 6
8-byte entry symbol,
1-byte flag,
xxxx xxOO standard
entry,
xxxx xxOl data entry,
xxxx xxlO weak entry
item 4, 5 or 6
1-byte length and 1
to 80 characters of
command
8-byte block name,
8-byte pool name and
3-byte length

48-016 FOO ROl

APPE'NDIX D
PERKIN-ELMER 32-BIT IMAGE FORMAT

This appendh: describes the format of image modules that can be
loaded by OS/32 MTR03-01 or higher.

Modules in Perkin-Elmer 32-bit image format consist of. 256-byte
records. The~se records contain one or more loader information
blocks (LIBs) followed by one or two image segments. Figure D-1
illustrates this format.

The format of an LIB depends on the type of image module. The
formats for tasks, operating system images, resident libraries,
task commons and overlays are given in Tables D-1 through D-7.

Patch history records are inserted following the LIBs, and before
the image segments.

The image segment(s) contain the module as it appears in memory.

NUMBER OP LIBS

L L H H I s s p I p I I

I I I I I I E I E u I u I I I I

B I I B s I I s I G I I G R I I R I • • • • I I • • • • I I I • • • • I I • • • • I
I T I T I E I E I I I I

0 0 0 n I 0 n I 0 I n I I I

LIBs History Impure segment Pure segment
created by records or OS segment (segmented

TET produced or resident task only)
by OS/32 or task common
Patch or over lay(s)

Figure D-1 Ima.ge Module Format

48-016 FOO ROl D-1

TABLE D-1 TASK AND OS IMAGE LIB PRODUCED BY TET

I BYTE OFFSET I NUMBER BYTES I USAGE

·----=-======--=---~

D-2

0(0)
1(1)

2(2)
3(3)
4(4)
5(5)
6(6)
7(7)
8(8)
9(9)

lO(A)
12(C)

16(10)
20(14)
24(18)

32(20)
36(24)

40(28)
44(2C)
60(3C)
62(3E)

64(40)
80(50)
96(60)

100(64)
104(68)

108(6C)

After RL
entries

1
1

1
1
1
1
1
1
l
1
2
4

4
4
8

4
4

4
16

2
2

16
16

4
4
4

12/entry

16/entry

Type of module (=l for task)
Number of LIBs (including
history records)
Maximum number of logical units
Not used
Maximum priority
Initial priority
Pure segment register
Number of task corrunons
Number of resident libraries
Not used
Task options
Size of impure segment in
sectors
Start address of overlay area
Maximum system space available
Initial task status word (TSW)
(status + start address)
Size of pure segment in sectors
Starting record number of pure
segment
Not used
TET ID (name and revision level)
Number of history records
Starting record number of
history records
Not used
Date/time established
Not used
CTOP (end of impure segment)
UTOP (end of impure code and
overlay area)
Resident library names (name=ll
bytes, segment register=! byte)
Task corrunon names (name=ll
bytes, access attribute=! bit,
unused=3 bits, segment
register-=4 bits, TCOM segment
size=4 bytes)

NOTE

If there are enough resident library
and/or task corrunon entries, these fields
may extend into a second LIB. Entries
are aligned so that they do not cross LIB
sector boundaries.

48-016 FOO ROl

TABL:E: D--2 RESIDENT LIURARY LIB PRODUCED BY TET

BYTE OFFSET I NUMBER BYTES I USAGE
==============••==•=======•===c•===============================

0(0)

1(1)

2(2)
3(3)

4(4)
12(C)
16(10)
20(14)
32(20)
43(28)
44(2C)
60(3C)
62(3E)

64(40)
80(50)
96(60)

100(64)
104(68)
108(6C)

1

1

1
1

8
4
4

12
11

1
16

2
2

16
16

4
4
4

12/entry

~l'ype of module (=3 for resident
library)
Number of LIBs (including
history records)
Not used
Resident library segment
1:egister
Not used
Size of segment in sectors
Number of entry points
Not used
Segment name
Not used
'l~ET ID (name and rev1s1on level)
Number of history records
Starting record number of
history records
Not used
Date/time established
Not used
CTOP (end of segment)
UTOP (end of code)
E:ntry points (name=8 bytes,
e>ffset=4 bytes)

NOTE

If there are enough entry points, these
f .ields may extend i.nto additional LIB.
Entries are aligned so that they do not
cross LIB sector boundaries.

48-016 FOO ROl D-3

TABLE D-3 TASK COMMON LIB PRODUCED BY TET

BYTE OFFSET I NUMBER BYTES I

0(0)

1(1)

2(2)
12(C)
16(10)
32(20)
43(2B)
44(2C)
60(3C)
62(3E)

64(40)
80(50)
96(60)

100(64)
104(68)
108(6C)

1

1

10
4

16
11

1
16

2
2

16
16

4
4
4

148

USAGE

Type of module (=4 for task
common)
Number of LIBs (including
history records)
Not used
Size of segment in sectors
Not used
Segment name
Not used
TET ID (name and rev1s1on level)
Number of history records
Starting record number of
history records
Not used
Date/time establisheQ
Not used
CTOP (end of segment)
UTOP (end of data)
Not used

TABLE D-4 OVERLAY LIB PRODUCED BY TET

BYTE OFFSET : NUMBER BYTES I USAGE
=========================•••=•a==•~s•==••=••••~••=•••••~•==•z==

D-4

0(0)
1(1)

2(2)
12(C)
16(10)
20(14)
32(20)
40(28)
44(2C)
60(3C)
62(3E)

64(40)
80(50)
96(60)

1
1

10
4
4

12
8
4

16
2
2

16
16

160

Type of module (=5 for overlay)
Number of LIBs (including
history records)
Not used
Size of overlay in sectors
Start address of overlay area
Not used
Overlay name
Not used
TET ID (name and rev1s1on level)
Number of history records
Starting record number of
history records
Not used
Date/time established
Not used

48-016 FOO ROl

TABLE D-5 LIB PRODUCED BY LINK

I BYTE OFFSET I NUMBER BYTES I USAGE
=============•••••••••==·=··==•·=·=·····-·=-==••===========•====I

0(0)
1 (1)

2(2)
3(3)
4(4)
5(5)
6(6)
7(7)
8(8)

12(C)

16(10)

20(14)
24(18)

32(20)
36(24)

44(2C)
60(3C)
62(3E)

64(40)
66(42)
68(44)

72(48)

74(4A)

76(4C)

78(4E)
80(50)
96(60)

98(62)
100(64)
104(68)
108(6C)

After shared
segment
entries

48-016 FOO ROl

1
1

1
1
1
1
1
1
4
4

4

4
8

4
4

16
2
2

2
2
4

2

2

2

2
16

2

2
4
4

20/entry

16/entry

Type of module (=7 for task)
Number of LIBs (including
history records)
Maximum number of logical units
Not used
Maximum priority
Initial priority
Pure segment register
Number of shared segments
Task options
Size of impure segment in
sectors
Address of overlay reference
table in the root node
Maximum system space available
Initial TSW (status + start
address)
Size of pure segment in sectors
Starting record number of pure
segment
Task establishment ID
Number of history records
Starting record number of
history records
Number of overlay levels
Number of overlay nodes
Highest segmentation register
used
Starting record number of the
overlay descriptor table (ODT)
Starting record number for
impure segment
Number of shared segment entry
point/commons
Not used
Date/time established
M~ximum queued input/output

' (I/O) requests
Length in bytes of the ODT
CTOP (end of segment)
UTOP (end of code)
Sharable segment entry (name=ll
bytes, segmentation register
number=! byte, access priv­
ileges=! byte, minimum size=3
bytes, reserved=! byte,
maximum size=3 bytes)
Common entry (name=8 bytes,
type=! byte, size=3 bytes,
reserved=! byte, address=3 bytes)

D-5

NOTE

If there are enough entry points, these
fields may extend into additional LIB.
Entries are aligned ~o that they do not
cross LIB sector boundaries.

TABLE D-6 OPERATING SYSTEM IMAGE LIB PRODUCED BY LINK

BYTE OFFSET I NUMBER BYTES I

0(0)
1(1)

2(2)
12(C)
16(10)
20(14)
24(18)

32(20)
44(2C)
60(3C)
62(3E)

64(40)
74(4A)

76(4C)
80(50)
96(60)

100(64)
104(68)
108(6C)

D-6

l
l

10
4
4
4
8

12
16

2
2

10
2

4
16

4
4
4

148

USAGE

Type of module (=8 for OS)
Number of LIBs (including
history records)
Not used
Size of segment in sectors
Not used
Maximum system space available
Initial TSW (status + start
address (=60))
Not used
Task establish ID
Number of history records
Starting record number of
history records
Not used
Starting record number for
segment
Not used
Date/time established
Not used
CTOP (end of segment)
UTOP (end of code)
Not used

48-016 FOO ROl

TABLE D-7 SHARED SEGMEN'l' IMAGE LIB PRODUCED BY LINK

BYTE OFFSET I NUMBER BYTES I USAGE
=====-------------------------·:·---------------=-====--===-====

0(0)

1(1)

2(2)
7(7)
8(8)

12(C)
16(10)
32(20)
43(2B)
44(2C)
60(3C)
62(3E)

64(40)
74(4A)

76(4C)

78(4E)
80(50)
96(60)

100(64)
104(68)
108(6C)

After shared
segment
entries

1

1

5
1
4
4
4

11
17
16

2
2

10
2

2

2
16

4
4
4

20/entry

16/entry

'l'ype of module (==9 for shared
segment)
Number of LIBs (including
history records)
Not used
Number of shared segments
Not used
Size of segment in sectors
Not used
Segment name
Not used
'l'ask establish ID
Number of history records
Starting record number of
history records
Not used
Starting record number for
s1egment
Number of shared segment entry
point/commons
Not used
Date/time established
Not used
CTOP (end of segment)
UTOP (end of code)
Sharable segment entry (name=ll
bytes, segmentation register
number=! byte, access priv­
ileges=! byte, minimum size=3
bytes, reserved=! byte, maximum
s:ize=3 bytes)
Common entry (name==8 bytes,
type=l byte, size=3 bytes
:reserved=! byte, address=3 bytes

NOTE

If there are enough entry points, these
f :ields may extend into additional LIBs.
Entries are aligned so that they do not
cross LIB section boundaries.

48-016 FOO ROl D-7

A

Adding code
to image modules
to object me>dules

BIAS command

BLOCK command
Blocks

common

B

data subpro~Jrams

c

CAL object code
COMMAND command
Commands

BIAS

BLOCK
COMMAND
DISPLAY
DUMP
END

EXAMINE

EXPAND

GET

HELP
IDNO

IMAGE

LIB
LIST
LOG
MAX LU
MODIFY

MXSPACE
NAME
NEWIDNO
OBJECT
OPTION
OVERLAY
PAUSE
PRIORITY
RANGE

REVISION
SAVE

SEND STOP

48-016 FOO ROl

INDEX

4-3
5-3

3-4
4-3
3-6

3-19
3-19

C-1
3-7
3-1
3-4
4-3
3-6
3-7
3-9
3-11
3-15
4-4
3-16
4-4
3-20
4-4
3-22
4-3
3-25
3-27
4-4
3-29
4-3
3-31
3-32
3-33
3-34
3-35
4-4
3-41
3-42
3-43
3-45
3-47
3-52
3-54
3-55
3-56
4-4
3-58
3-60
4-4
3-62

Commands (Continued)
SHARED
TABLE
TRANSFER
TSW
VARIABLE
VERIFY

Compound overlay files
Compound overlay files (TET)

modifying

D

DISPLAY command
Dump

image
object

DUMP command

E

END command

EXAMINE command

EXPAND command

File class
group
private
system

F

File descriptors
Filename

G

GET command

H

HELP command
History feature

I ,J ,K

IDNO command

Image
module format
patching

3-63
3-65
3-66
3-67
3-69
3-71
1-2

4-5

3-9

3-14
3-12
3-11

3-15
4-4
3-16
4-4
3-20
4-4

1-6
1-6
1-6
1-5
1-5

3-22
4-3

3-25
1-2

3-27
4-4

D-1
1-1

IND-1

IMAGE command

LIB

L

OS image
OS image (Link)
overlay (TET)
produced by Link
resident library (TET)
shared segment (Link)
task corrunon (TET)

LIB command
LIST command
Loader control item
Loader information block.

See LIB.
Loader items

definitions
Loading patch
LOG command

MAXLU command
Mode

M

image
object

MODIFY command

code table
MXSPACE command

N

NAME command
NEWIDNO command

0

OBJECT command
Object libraries

modifying
Object patching
OPTION command
OVERLAY command

P,Q

Patch
corrunand surrunary

IND-2

3-29
4-3

3-14
D-1
D-2
D-6
D-4
D-5
D-3
D-7
D-4
3-31
3-32
3-13

C-2
2-1
3-33

3-34

3-17
3-18
3-35
4-4
3-37
3-41

3-42
3-43

3-45
1-2
5-6
1-2
3-47
3-52

3-1
A-1

Patch (Continued)

control IDs
loading
message surrunary
requirements
starting
system components

Patch features
compound overlay files
history
image patching
object libraries
object patching

Patch image load module
building
formula

Patching
block data subprogram
image
object

task image module
PAUSE command
PRIORITY command

R

RANGE command

REVISION command

s

SAVE command

SEND STOP command
SHARED command
Starting Patch
Statement syntax conventions

T,U

TABLE command
TRANSFER command
Tree-structured overlays

modifying
TSW

command
TSW. See task status word.

V,W,X,Y,Z

VARIABLE command
VERIFY command

1-2
2-1
B-1
1-3
2-4
1-3

1-2
1-2
1-1
1-2
1-2

2-1
2-1

5-2
1-1
1-2
5-1
4-1
3-54
3-55

3-56
4-4
3-58

3-60
4-4
3-62
3-63
2-4
1-3

3-65
3-66

4-7
3-67
3-67

3-69
3-71

48-016 FOO ROl

PERKIN-ELMER

PUBLICATION COMMENT FORM

We try to make our publications easy to understand and free of errors. Our
users are an Integral source of Information for improving future revisions.
Please use this postage paid form to send us comments. corrections.
suggestions. etc.

1. Publication number_--···---------------·---------~------------------------

2. Title of publication ___ _

3. Describe. providing page numbers. any technical errors you
found. Attach additional sheet If ne1ccessary.

4. Was the publllcatlon easy to understand? If no. why not?

5. Were Illustrations adequate? ------·----------------------------

6. What addltlon:s or deletions would you suggest? -------------------

7. Other comments: -------------·----------------------------

From --------------·----------------- Date ----------------------·

Position/Title ---------------· ----·------

Company -------------------------·--

Address

6417

STAPLE STAPLE

FOLD. FOLD

I
I

I
I
I
I
I
I
I
I
I
I

----------------------------~

ATTN:

POSTAGE WILL BE PAID BY ADDRESSEE

PERKIN-ELMER
Data Systems Group
106 Apple Street
Tinton Falls, NJ 07724

TECHNICAL SYSTEMS PUBLICATIONS DEPT.

FOLD

STAPLE

111111
NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

STAPLE

I s

