PERKIN-ELMER

0S/32
PATCH

Reference Manual

48-016 FOO RO1

The information in this document is subject to change without notice and should not be
construed as a commitment by The Perkin-Elmer Corporation. The Perkin-Elmer Corpo-
ration assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license, and it can be used or
copied only in a manner permitted by that license. Any copy of the described software
must include the Perkin-Elmer copyright notice. Title to and ownership of the described
software and any copies thereof shall remain in The Perkin-Elmer Corporation.

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by Perkin-Elmer.

The Perkin-Elmer Corporation, Data Systems Group, 2 Crescent Place, Oceanport, New Jersey 07757

© 1980, 1984 by The Perkin-Elmer Corporation

Printed in the United States of America

PREFACE

CHAPTERS

TABLE OF CONTENTS

1l 0S/32 PATCH

1.1

1.2

INTRODUCTION

IMAGE PATCHING

OBJECT PATCHING

OBJECT LIBRARIES AND COMPOUND OVERLAY FILES
HISTORY FEATURE

PATCH REQUIREMENTS

STATEMENT SYNTAX CONVENTIONS

File Descriptors (fds)

PATCH

BUILDING THE PATCH IMAGE LOAD MODULE
LOADING PATCH

Loading Patch into an Operating System
Environment

L.oading Patch into a Multi-Terminal Monitor

(MTM) Environment

STARTING PATCH

3 PATCH COMMANDS

3.1
3.2
3.3

INTRODUCTION

BIAS COMMAND

BLOCK COMMAND

48-016 FOO ROl

-

CHAPTERS (Continued)

ii

3.12

3.19
3.20
3.21

3.22

3.26

COMMAND COMMAND
DISPLAY COMMAND
DUMP COMMAND
Object Dump
Image Dump

END COMMAND
EXAMINE COMMAND
Image Mode
Object Mode
Common Blocks
Block Data Subprograms
EXPAND COMMAND
GET COMMAND
HELP COMMAND
IDNO COMMAND
IMAGE COMMAND
LIB COMMAND
LIST COMMAND
LOG COMMAND
MAXLU COMMAND
MODIFY COMMAND
MXSPACE COMMAND
NAME COMMAND
NEWIDNO COMMAND
OBJECT COMMAND
OPTION COMMAND
OVERLAY COMMAND
PAUSE COMMAND
PRIORITY COMMAND

RANGE COMMAND

3-32
3-33
3-34
3-35
3-41
3-42
3-43
3-45
3-47
3-52
3-54

3-55

48-016 F0OO ROl

CHAPTERS (Continued)

3.
3.
3.

3.

3

3

3.
3.

3.

4 PATCHING

4.

28
29
30

31

.32

.33

34
35

36

1

4.2

4.

3

4.4

5 PATCHING

5.1

REVISION COMMAND
SAVE COMMAND
SEND STOP COMMAND
SHARED COMMAND
TABLE COMMAND
TRANSFER COMMAND
TSW COMMAND
VARIABLE COMMAND

VERIFY COMMAND

IMAGE MODULES
INTRODUCTION
PATCHING A TASK IMAGE MODULE

ADDING CODE TO IMAGE MODULES

MODIFYING COMPOUND OVERLAY FILES CREATED

BY TET

MODIFYING TREE-STRUCTURED OVERLAYS

OBJECT MODULES
INTRODUCTION

PATCHING AN OBJECT MODULE

PATCHING A BLOCK DATA SUBPROGRAM

ADDING CODE TO OBJECT MODULES

MODIFYING OBJECT LIBRARIES

48-016 FOO ROl

iii

APPENDIXES

A COMMAND SUMMARY
B PATCH MESSAGE SUMMARY
Cc PERKIN-ELMER 32-BIT OBJECT FORMAT

D PERKIN-ELMER 32-BIT IMAGE FORMAT

F IGURES

D-1 Image Module Format

TABLES

3-1 PATCH COMMAND AND DESCRIPTION SUMMARY
3-2 CODE TABLE

B-1 END OF TASK CODES

c-1 LOADER ITEM DEFINITIONS

D-1 TASK AND OS IMAGE LIB PRODUCED BY TET
D-2 RESIDENT LIBRARY LIB PRODUCED BY TET
D-3 TASK COMMON LIB PRODUCED BY TET

D-4 OVERLAY LIB PRODUCED BY TET

D-5 LIB PRODUCED BY LINK

D-6 OS IMAGE LIB PRODUCED BY LINK

D-7 SHARED SEGMENT IMAGE LIB PRODUCED BY LINK
INDEX

iv

|
w

w w
|
~

[| |
e
N

]
NoOoonshwh N

UtJUtJ?tJU N W

IND-1

48-016 FOO0 ROl

PREFACE

This manual is a guide to using Perkin-Elmer 0S/32 Patch. Patch
allows the user to apply software changes to object or image code
without reassembling the source module.

Users of Patch should be familiar with 0S/32, the Perkin-Elmer
32-bit processor machine instruction formats, object and image
module formats.

Chapter 1 describes the capabilities of 0S/32 Patch. Chapter 2
discusses the procedure for building, loading and starting a
Patch image load module. Chapter 3 provides a detailed

description of all Patch commands. Chapters 4 and 5 describe the
concepts of image and object patching, respectively. The four
appendixes include a Patch command summary, Patch information and
error message summary, and descriptions of the object and image
code formats.

Revision 01 of this manual introduces three new commands :
COMMAND, VERIFY and VARIABLE. This revision also introduces
enhancements to the BIAS, EXAMINE, MODIFY, TSW and TRANSFER
commands to support the use of variables. Changes have also been
made to the RANGE and EXPAND commands to support the use of
program variables. In addition, several new object loader
control items have been added. The loading of overlay files
created by TET in Patch (software number 03-196 R02) differs from
Patch (software number 03-196 ROO0).

For information on the contents of all Perkin-Elmer 32-bit
manuals, see the 32-Bit Systems User Documentation Summary.

48-016 F00 ROl v

CHAPTER 1
08/32 PATCH

1.1 INTRODUCTION

Patch is a program development tool that allows the user to
change object or image versions of programs without reassembling
the source module. Patch provides a convenient means of applying
software changes to object or image code.

The capabilities provided are:

e nmodification of object and image modules,
e addition of code or data,

e a history feature that records all changes made, optionally
labeled with Patch control IDs, and

e mnanipulation of object libraries and compound overlay files.

Patch executes as a disk-based reentrant program. It can be run
in 1interactive or batch mode. The following sections describe
the Patch features.

1.2 [IMAGE PATCHING

All image modules produced by 08/32 Link and TET can be patched,
including tasks, operating system images, overlays, resident
libraries, preinitialized task commons (TCOMs) and shared
segments.

An image module consists of one or more loader information blocks
(LIBs) followed by image code segments that may consist of
impure, pure and overlay segments. If the image module is a task
with tree-structured overlays, there will also be an overlay
descriptor table (ODT). These segments contain the program as it
appears in memory when it is loaded. An LIB contains information
such as segment sizes, entry points for resident 1libraries, and
task parameters and options set by Link or TET. LIBs are
described in Appendix D.

Patch provides commands to change the LIB information and the

data within segments. It also allows segments to be expanded to
accommodate additional code or data.

48-016 FOO ROl 1-1

1.3 OBJECT PATCHING

All object modules produced by the Common Assembly Language (CAL)
assembler can be patched, including named and unnamed object
modules and block data subprograms.

An object module consists of a sequence of loader items as
described in Appendix C. Loader items can define the name and
transfer address of a task, absolute (unrelocatable) data,
address constants, common areas, common references, external
references and other items.

Patch provides commands to examine the code generated by these
loader items and to create additional loader items. The user is
responsible for ensuring that additional 1loader items do not
overlay chains of external references.

1.4 OBJECT LIBRARIES AND COMPOUND OVERLAY FILES

Patch enables the user to process files that contain more than
one module. Files containing more than one object module are
called object libraries. Patch is capable of modifying compound
overlay files that consist of a root segment and at least one
overlay area.

With single modules, Patch reads the original module from an
input file and writes the patched version to an output file.
With object libraries and compound overlay files, Patch allows
the user to select modules to be patched and to decide whether or
not to include intervening modules in the output file. For
instance, it is possible to create a new object 1library with
several modules replaced by patched versions. It is also
possible to produce a file with only the patched modules.

NOTE

See Section 4.4 for an explanation of the
difference between Patch (software number
03-196 R0O2) and Patch (software number
03-196 ROO) in the 1loading of overlays
created by TET.

1.5 HISTORY FEATURE

Patch maintains a record of all changes made during a session.
In addition, a Patch control ID can be associated with each
session of changes.

Particular Patch commands display the patched modules, number of
revisions and associated Patch control 1IDs. For any patched
module, the complete record of all changes made by Patch can be
displayed.

1-2 48-016 FOO RO1

The Patch control ID consists of a positive integer from zero to
32,767 and up to four alphanumeric characters. This Patch
control ID can be issued by Perkin-Elmer with any Perkin-Elmer
supplied patches or by the user according to installation
requirements.

1.6 PATCH REQUIREMENTS

Patch requires these system components:

e Minimum hardware support required for 0S/32
® Operating system of R06.2 or higher

e Disk ‘device

e Print device

e Temporary file support

1.7 STATEMENT SYNTAX CONVENTIONS

These statement syntax conventions are used 1in all instruction
formats. Examples of Patch commands are shown for each
convention.

Examples:
Capital 1letters, parentheses and punctuation marks must be
entered exactly as shown:

BIAS A00O0:P

Lower-case letters represent parameters or information provided
by the user:

RANGE adr ,adr

Underlining indicates that only the underlined portion of the
entry is required:

PAUSE

48-016 F0OO RO1 1-3

An ellipsis represents an indefinite number of parameters or a
range of parameters:

MODIFY data [,...data]

Braces represent required parameters from which one must be
chosen:

D
DISPLAY }
P

Brackets represent an optional parameter that may be chosen:
HELP [command name]

Commas separate parameters and substitute missing positional
parameters:

OBJECT [fd,] [(fd,] [[LIBRARY]

Commas inside brackets must be entered if the optional parameter
is chosen:

IDNO [n] [;charstring)

Braces inside brackets represent optional parameters from which
one may be chosen:

0 [o

Commas preceding braces inside brackets must be entered if one of
the optional parameters is chosen.

name

*QBJECT NOCOPY
GET '

XTASK COPY

*0S

1-4 48-016 FOO ROl

An equal sign separating the keyword from parameters must be
entered to associate a parameter with the keyword.
SHARED NAME= sname
1.7.1 File Descriptors (fds)
All fds are entered in a standard format.
Format:
voln - acctno
: [f ilename] [[ext:]]]
dev - /file class
Parameters:
voln: is a 1- to 4-character alphanumeric string
specifying the name of a disk volume. The
first character must be alphabetic and the
remaining alphanumeric. If the volume name is
omitted, the default is:

e temp volume for temporary files,

e spool volume for spool files,

e user volume for all other files in a
multi-terminal monitor (MTM) environment,
or

e system volume for all other files in an
operating system environment.

dev: is a 1- to 4-character alphanumeric string
specifying a device name. The first character
must be alphabetic and the remaining
alphanumeric.

filename is a 1- to 8-character alphanumeric string

specifying the name of a file. The first
character must be alphabetic and the remaining
alphanumeric. If a filename is specified with

a device name, the filename is ignored.

48-016 FOO ROl

.ext

acctno

file class

is a 1- to 3-character alphanumeric string
specifying the extension to a filename. If
the period (.) 1is specified and the extension
is omitted, the default is blanks. If the
period and extension are omitted, a default
extension appropriate to the particular Patch
command in which the fd appears is appended to
the filename.

is a decimal number ranging from 0 through
65,535 specifying the account number
associated with the file. Account numbers 1
through 65,535 (excluding 255) are used by
MTM. Account number 255 is reserved for the
Authorized User Utility. Account 0 is used
for system files and is the default for all
operator commands.

is a l-character alphabetic string specifying
the type of file class when files are used in
an MTM environment. The file class types are:

e /P for a private file

e /G for a group file

e /S for a system file

An n specifies account number rather than
class designator (P, G and S8). 1If the file
class is omitted, the default is P in an MTM
environment. in an operating system

environment, S is the only file class that can
be specified.

48-016 FOO ROl

CHAPTER 2
STARTING PATCH

2.1 BUILDING THE PATCH IMAGE LOAD MODULE

The following sequence of commands can be used to build Patch as
a sharable segmented image load module from an object module

named PATCH.OBJ:

LOAD LINK
START
ESTABLISH TASK
INCLUDE PATCH.
OPTION WORK=n,
BUILD PATCH
END

The argument of the
calculated by using

Formula:
n=wt+el+tX'5

Where:

The size of the wor
image load module c

48-016 FOO ROl

OBJ
SEGMENTED

WORK parameter in the OPTION command can be
the following formula.

07

is a hexadecimal number specifying the sum of
variables w and e that should be a minimum
value of X'50' to provide space for the START
parameters.

is a hexadecimal number specifying the number
of bytes occupied by the largest program to be
patched in main storage.

is a hexadecimal number specifying the total
number of bytes all Patch EXPAND commands will
add to the current task size.

kspace created during the building of the
an be overridden at load time.

2.2 LOADING PATCH

Patch must be built as an image load module before it can be
loaded (see Section 2.1).

2.2.1 Loading Patch into an Operating System Environment

The following explains how to load Patch into an operating system
environment.

Format:

LOAD taskid E [fd] ; [segsize increment]:l

Parameters:

taskid

fd

segsize
increment

specifies the name of the task after it is
loaded 1into the foreground segment in main
storage.

is the file descriptor of the Patch image load
module to be loaded into main storage. If
this parameter 1is omitted, the default is
taskid.TSK. If the Patch task was built as in
the previous section, the task ID is PATCH.

is a decimal number, in kilobytes,
specifying the additional area to be added to
the task's impure segment. This value

overrides the OPTION WORK value if it was
specified when the task was built.

2.2.2 Loading Patch into a Multi-Terminal Monitor (MTM)

Environment

The following explains how to load Patch into an MTM environment.

Format:

LOAD fd [[segsize increment]

48-016 FOO RO1

Parameters:

fd is the file descriptor of the Patch image load
module to be loaded into main storage.

segsize is a decimal number, in kilobytes, specifying

increment the additional area to be added to the task's

impure segment.

Functional Details:

The segsize increment field is optional and is used to provide
additional storage for workspace. If the workspace is not large
enough to contain the program to be patched, a message is
displayed to inform the user that a temporary file is allocated
for workspace. Use of workspace improves Patch response time.
The necessary increment can Dbe calculated using the following
formula.

Formula:
nr*rs
segsize increment = ----- +1t+exp
1024
Where:
nr is a decimal number specifying the number of
records in the largest program to be patched.
rs is a decimal number of 126 for the record size
of an object module and 256 for the record
size of an image module.
exp . is a decimal number specifying the expansion
size of the memory area to be used for
additional data (see Section 3.9 for

information on the EXPAND command) .

48-016 F00 ROl 2-3

2.3 STARTING PATCH

After Patch is loaded, the START command starts execution and

causes the command,
Format:

START [, COMMAND
Parameters:

COMMAND=

LIST=

Functional Details:

The list device is

list and message devices to be assigned.

-ta,] [,LIST-fq,]

fd, specifies the input device from which
commands are to be entered. If this parameter
is omitted, the default is the console device
(CON:). 1If the specified command input device
is interactive, messages are sent to the
command device. If the specified command
input device is batch, messages are sent to
the list device.

fd, specifies the output list device. If the
LIST parameter is omitted and the command
device is interactive, the list output is sent
to the command device. If the LIST parameter
is omitted and batch is the command device,
the default is PR:.

If the list device is changed in interactive
mode by using the LIST command, the device to
which messages are sent remains unchanged. If
the list device is changed in batch mode by
using the LIST command, the device to which
messages are sent changes to the new list
device (see Section 3.15 for information on
the LIST command).

used by the DUMP, REVISION and TABLE commands

to display various types of information (see Sections 3.6, 3.28
and 3.32, respectively).

48-016 FOO ROl

CHAPTER 3
PATCH COMMANDS

3.1 INTRODUCTION

Commands are listed in alphabetical order in Table 3-1. The
conventions used in describing the syntax are in Section 1.3.

TABLE 3-1 PATCH COMMAND AND DESCRIPTION SUMMARY

{ COMMAND H MEANING |
=ﬂ========‘=================‘==I=E35=Eﬂﬂﬂ==ﬁ=ﬁnﬁﬂ==z=ﬂ=ﬂ=2=!¢=l=:
{ BIAS | Sets the bias address for the EXAMINE and H
i ! MODIFY commands.]
]]]
1]]
1 BLOCK | Specifies the name of a common block. H
]] 1
t] [}
{ COMMAND | Provides the ability to change the input i
i ! command device. !
]] 1
1 !]
{ DISPLAY | Displays the current Patch parameters to the |
H i device to which all messages are output. |
1] 1
1] 1
! DUMP i Displays the specified contents of an object |
| { or image module to the list device. i
]] 1
{ [] 1
{ END ! Terminates execution of Patch. !
1]]
1 t]
{ EXAMINE | Displays the contents of a specified i
t ! location in a module. !
1] []
] f)
{ EXPAND I Adds a Patch area to the end of a specifie !
i | module. , !
{ i i
{ GET | Specifies a module to be patched. H
i i i
{ HELP | Displays the parameters for a specified '
H i command and briefly describes its usage.]
i i i
{ IDNO | Labels patched modules with a Patch control |
i | ID. :
: : :
{ IMAGE { Specifies image patching. i

48-016 FOO ROl 3-1

TABLE 3-1 PATCH COMMAND AND DESCRIPTION SUMMARY
(Continued)

COMMAND | MEANING

i

!
! LIB i Displays the contents of the loader !
H i information blocks (LIBs) for the currently |
H | selected image module being patched. H
i i i
| LIST | Changes the list device. i
i i |
i LOG i Enables or prevents copying of Patch !
i i commands to the list device. H
i i i
| MAXLU i Redefines the maximum number of logical i
| { units a task can use. H
1 1 1
| i i
{ MODIFY | Changes the contents of specified locations |
| { in a module. H
1] 1
f I 1
i MXSPACE | Redefines the maximum amount of system space |
i | that a task can use. |
] | i
1 t L}
{ NAME i Renames an object module. H
1 |]
| !]
i NEWIDNO | Begins a new history record and assigns a i
! { Patch control ID for the new set of patches. |
i i i
! OBJECT i Specifies object patching. H
i i i
{ OPTION | Redefines task options that were initially H
H { defined at Link or TET time. H
] [} 1
{ [}]
{ OVERLAY | References tree-structured overlay modules i
H { while accessing the root segment. |
])]
[} i '
| PAUSE i Suspends Patch processing. |
1 1 1
1 1 i
{ PRIORITY | Redefines initial and maximum priorities for |
i i a task. ;
1 1 1
i 1 t
i RANGE { Computes the relative displacement between 1
H | two addresses in a format suitable for use }
b { in an RX2 format instruction. |
1] 1
[} 1 I
i REVISION | Displays Patch history of a module from the |
1])
§ 1 '

current input file.

48-016 FOO ROl

TABLE

SEND

STOP

TABLE

TRANSFER

TSW

VARIABLE

VERIFY

————- . —= - - ———— = e e —— e e e m— = w= e o e | ——

48-016 FOO ROl

3-1 PATCH COMMAND AND DESCRIPTION SUMMARY
{Continued)

MEANING

Outputs a patched module to an output file.

Changes access privileges and maximum or
minimum size of a shared segment entry.

Stops execution of the DUMP, EXAMINE,
REVISION and TABLE commands.

Displays a list of all of the modules in an
input file.

Redefines the transfer address of an object
module.

Redef ines the starting task status word
(TSW) for a task.

Allows assignment of an internal variable.

Provides the ability to verify the contents
of a location.

-—— e - ——

3.2 BIAS COMMAND
This command sets the bias address for the specified segment,
which becomes the current default segment descriptor.

Format:

P

adr
BIAS { A
variable) [

Parameters:
adr is a hexadecimal number from zero to FFFFFE
aligned on a halfword boundary specifying an
address in a pure, absolute or impure segment.
The bias addresses for all segments are
initially zero when Patch is started.
variable is a 1- to 8-character string specifying the
name of a previously defined internal Patch
variable. See Section 3.35 for information on
the VARIABLE command.
P gspecifies the pure segment.
A specifies the absolute segment.
I specifies the impure segment. This segment is

the default when Patch is first started.

Functional Details:

The BIAS command can be used at any time to establish bias
addresses for each of the three segments. The address parameter
in the EXAMINE and MODIFY commands is interpreted as an offset

from the current bias address for the specified segment. If the
address parameter of the BIAS command is omitted, the current
bias for the specified segment is displayed. This segment

descriptor becomes the default segment descriptor for subsequent
EXAMINE and MODIFY commands.

3-4 48-016 F0O ROl

If no parameters of the BIAS command are specified, the biases
for all segments are displayed. The current default segment
descriptor is preceded by an asterisk (*). The wuse of the
default segment descriptor is explained in the EXAMINE and MODIFY
command descriptions (Sections 3.8 and 3.18, respectively).

Examples:

BIAS 1234:1

The above example sets the impure bias to 1,234 and the
current default segment descriptor to impure.

BIAS :P

This example displays the current pure bias and sets the
current default segment descriptor to pure:

*PURE BIAS 0

BIAS

This example displays the current impure, pure and
absolute biases and indicates the default segment
descriptor with an asterisk:

*[MPURE BIAS 1234
PURE BIAS 0
ABSOLUTE BIAS O

VARIABLE $%$NEWADD=1436
BIAS $NEWADD: I

The above example sets the value of the $NEWADD variable
to 1,436 and establishes this as the impure bias. This
form of the BIAS command also sets the current default
segment descriptor to impure.

48-016 F0O0 ROl 3-5

3.3 BLOCK COMMAND
This command specifies the name of a common block in an object
block data subprogram.
Format:
BLOCK [name]

Parameter:

name is a 1- to 8-character alphanumeric string
specifying the name of the common block to be
patched. [If this parameter is omitted, the
current selected common block name is
displayed.
Functional Details:
In all subsequent EXAMINE and MODIFY commands, the address

specified 1is interpreted as an offset from the beginning of the
common block (see Sections 3.8 and 3.18).

Examples:

BLOCK ALPHA

The above example sets the current common block to ALPHA.

BLOCK

This example displays the current common block name.

3-6 48-016 F0OO RO1

3.4 COMMAND COMMAND
This command provides the ability to change the input command
device.

Format:

COMMAND fd [[RETURN]

Parameters:
fd is the file descriptor of the file or device
from which Patch will accept commands.
RETURN specifies that the user wishes to return to

the original command device upon completion of
the commands in the new device.

Functional Details:

Upon execution of this command, the file descriptor (fd) is
checked for syntax. If the fd is correct, it is assigned as the
command input device. Commands are read from this device until
an end of data indicator (/* or ./) is encountered. At this
time, the current command input device is closed and, if RETURN
was specified, Patch reverts back to reading the original command
file. COMMAND entered without any parameters will display the
current command input device and whether or not RETURN 1is in
effect. If this command is issued from a secondary command file
while RETURN is in effect, the following message will be output.

'NESTING OF COMMAND FUNCTION ILLEGAL'

If an end of data indicator is encountered and RETURN is not in
effect, it is ignored and the following message is generated.

'NO RETURN IN EFFECT'
NOTE

The END command overrides the RETURN
option.

48-016 F0O ROl 3-7

Example:

COMMAND MAG1l:, RETURN

This example specifies that MAGL: becomes the input
command device. Commands are read from the tape until an
end of data indicator 1is encountered; Patch will then
revert back to the previous command file.

3-8 48-016 FOO RO1l

3.5 DISPLAY COMMAND

This command displays information about current devices being
used and various user-selected parameters. The information is
displayed on the output device to which messages are sent. This
information is divided into two groups:

e Device information

e Patch information

Format:
D

DISPLAY

P
Parameters:

D specifies that device information 1is to be
displayed. Device information consists of the
current:

e input and output files as set by the last
IMAGE or OBJECT command,

e 1list device, and

® log mode status (see Section 3.16).

P gpecifies that Patch information 1is to be
displayed. Patch information consists of the
current:

e common block name as set by the last BLOCK
command,

e biases and default segment descriptor as
set by the BIAS command,

48-016 FOO ROl 3-9

e locations, segment IDs and sizes of Patch
areas created by the EXPAND command, and

e Patch mode.

‘Functional Details:

See Sections 3.13 and 3.22 for descriptions of the [IMAGE and
OBJECT commands.

48-016 F00 ROl

3.6 DUMP COMMAND

This command displays the specified contents of an object or
image module to the list device.

Format:
name
© J*OBJECT
DUMP “TASK [,[rec,] E[reczj Etitle':]]]
*x0s

Parameters:

name is a 1- to 8-character alphanumeric string
specifying the name of the module from the
input file whose contents are to be dumped.
If more than eight characters are entered for
a resident library or task common module, an
error message is displayed.

*OBJECT specifies a named or unnamed object module in
the input file. This module must be the only
module within the input file.

*TASK specifies a task image module that is a root
segment of a compound overlay file produced by
Link. This module must be the only module
within the input file.

*0S specifies an operating system image module.

rec specifies a range of records to be displayed
starting with the first specified record and
ending with the last specified record. The
defaults are the first and last record of the
dump.

'title' is a 1- to 50~-character alphanumeric string to
be output as a heading preceding the dump. If
this parameter is omitted, a blank heading is
the default.

i

48-016 FOO ROl 3-11

Functional Details:

For object modules, DUMP produces history information and a
listing of loader items. See Section 3.6.1 for the format for an
object dump.

The input file from which a module is to be dumped must be first
assigned by the IMAGE or OBJECT command. If the user fails to do
S0, an error message will be displayed.

If the module selected to be dumped to 1is currently being
patched, the patched version of the program is displayed, along
with the previous history information. The current position of
an object library or a compound overlay file is not affected.

See Section 3.6.1 for an example of an object dump and Section
3.6.2 for an example of an image dump.

Examples:

DUMP *TASK,, 'SAMPLE TASK DUMP'

The above example dumps all records of the task on the
input file. Label the dump with the title given.

DUMP ALPHA,1,2
This example dumps the first two records of the module

ALPHA. Use a blank heading.

3.6.1 Object Dump

An object dump contains the following:

e Data

@ History records (if applicable)

3-12 48-016 FOO ROl

Example:

SEG HEXADECIMAL ASCII LOADER LOADER
ADR DES HALFWORD(S) REP ITEM NO ITEM DES
000016:P C9EO 012C 4280 8042 * ...,B..B * (30) 34 BYTE(S) ABS DATA
00001E:P C9EO 0190 4280 807C * ..B... %
000026:P C5E0 OlF4 4280 8304 *B. *
00002E:P 4300 8456 D310 4000 * C..V..@. *
000036:P 0000 * *
(13) DEF START OF CHAIN (REF)
000034:P (05) PUR PROG ADR
LUS 000006 (OB) COMMON REF
(19) PERFORM FULLWORD CHAIN
000038:P C9EO 0066 2134 D310 *1l4.. * (25) 12 BYTE(S) ABS DATA
000040:P 4000 0000 *x Q... *
(13) DEF START OF CHAIN (REF)
000040:P (05) PUR PROG ADR
LUS 000002 (0B) COMMON REF
(19) PERFORM FULLWORD CHAIN
000044:P D210 4000 OB6D I (11) 3 BYTE ABS & 3 BYT IMP REL
00004A:P O081lE CB1l0 0065 1112 * * (2D) 28 BYTE(S) ABS DATA
000052:P 58E1 8522 58D1 8522 * X.."X.." *
00005A:P 27PD1 41F0 833E D310 * '.A..) *
000062:P 4000 0000 *x @, .. *
(00) END OF RECORD
Fields:

ADR is the hexadecimal address of the first byte
displayed on each line.

SEG DES is the segment descriptor of I, P or A.

HEX specifies one to four halfwords of hexadecimal

HALFWORD data.

ASCII REP is ASCII representation of absolute data
items. Also included in this area are program
entry points, external references and common
references.

LOADER is the loader control item.

ITEM NO :

LOADER is the description of the loader control item.

ITEM DES

48-016 FO0O ROl

3.6.2

Image Dump

For tasks, operating system and shared segments, the image dump
contains:

e LIBs

® History records (if applicable)

e Data
Example:
SEG
ADR DES
2400:P OOOF
2410:P OOOF
2420:P OOOF
2430:P 0OOF
2440:P OOOF
2450:P 4741
Fields:
ADR
SEG DES
HEX
HALFWORD
ASCII REP

HEXADECIMAL

1CF2 OOOF
1CF2 OOOF
1CF2 OOOF
1F74 OOOF
1FAA OOOF
4C20 4655

1F2A
1CF2
1CF2
1F74
1F74
4E43

HALFWORD(S)

00OF
00OF
00OF
000F
00O0F
5449

1CF2
1CF2
1F6A
1F7E
1F74
4F4E

OO0OF
00O0F
0GOF
OOOF
494C
2020

1F42
1CF2
1F74
1FA2
4C45
2020

* % % % X% %

ASCII

REP
....... X,B %
................ *
---------------- *
................ *
............ ILLE *
GAL FUNCTION *

is the hexadecimal address of the first byte
displayed on each line.

is the segment descriptor for I and P.

gpecifies one to eight hexadecimal halfwords.

is ASCII representation of hexadecimal data.

48-016 F0OO ROl

3.7 END COMMAND

This command terminates execution of Patch.
Format:

END

Functional Details:
In interactive mode, a warning message is issued and a prompt is

returned in expectation of another command under the following
conditions:

® An END command has been entered without a corresponding SAVE
command and the module was changed.
e The output file is not a null device and the module is not

being patched in place.

If a second END command is then entered, Patch terminates
execution.

Example:

>END

SAVE CURRENT PROGRAM

>END

*01:01:01 PATCH:END OF TASK O

In the above example Patch saves modified module.

48-016 FO0O0 ROl 3-15

3.8 EXAMINE COMMAND

This command

used to display the contents of specified

locations in a module.

Format:

EXAMINE

Parameters:

PATCH

hexadr

P
A
[

variable

CURRENT

NEXT

PATCH }

Y) (A
variable > [{—}offset] » SCOMMON

BLOCK [n]

specifies that the address of the last Patch
area is to be referenced.

signifies that the bias is not to be added to
the address.

is a hexadecimal number from one to six digits
aligned on a halfword boundary.

specifies a pure segment.

specifies an absolute segment.

specifies an impure segment.

is a 1- to 8-character string specifying the
name of a previously defined internal Patch
variable. See Section 3.35 for information on

the VARIABLE command.

specifies that the last address given in an
EXAMINE or MODIFY command is to be referenced.

specifies that the halfword following the last
referenced halfword (via the EXAMINE or MODIFY
command) is to be referenced.

specifies an arithmetic addition.

48-016 FOO ROl

specifies an arithmetic subtraction.

offset specifies an optional hexadecimal digit. If
no address is specified, the address defaults
to NEXT.

BLOCK specifies that values within a block data
subprogram are to be displayed.

COMMON specifies that a COMMON reference 1is to be
displayed.

n is a decimal number of halfwords to be
displayed. If this parameter is omitted, 1 is

the default.

3.8.1 Image Mode

The EXAMINE command displays a number of halfwords, specified by
the parameter n, starting at the 1location specified by the
address parameter. The parameter n can be any positive decimal
number and a value of 1 is assumed if n 1is not specified. This
is the only form of the EXAMINE command used in image mode. The
format of the response is:

i ! hex
| adr:seg | halfword

Fields:
adr is the location of the starting address.
:seg specifies the segment descriptor I, P or A.

hex halfword represents from one to eight hexadecimal
halfword values per line.

The impure segment descriptor 1is used when referencing task
commons and overlays as well as the impure segments of task and
operating system images.

The pure segment descriptor is wused when referencing resident
libraries, sharable segments and the pure segments of task and
operating system images.

The absolute segment descriptor is not applicable in image mode.

48-016 FOO ROl 3-17

3.8.2 Object Mode

The EXAMINE command is used in object mode 1in three different
ways:

e to display halfword values in a module,

e to display common references, and

e to display halfword values in a common block within a block

data subprogram.

Parts of an object module that have not been defined, such as
uninitialized data arrays, are displayed as above with a U in the
halfword value fields. :

Examples:

EXAMINE 5A,40
The above example displays 40 halfwords beginning at
address 5A plus the current bias.

EXA 5A:P,COM
This example displays the name and displacement of the
common address reference in the instruction that starts at
5A plus the current pure bias.

EXA 5A,BLOCK, 40
This example displays the 40 halfwords beginning at

address 5A plus the current impure bias within the current
common block.

VARIABLE $%BEGADD=A10
EXAMINE $%BEGADD:P, 20
This example sets the value of the variable $BEGADD to

Al0, and then displays 20 halfwords beginning at address
Al0 plus the current bias.

3-18 48-016 FOO ROLl

3.8.3 Common Blocks

The object code for an instruction with a target address within
a common block consists of two successive loader items. The
first loader item contains the instruction with a target address
of zero. This information can be displayed using the EXAMINE
command. The second loader item contains the name of the common
block referenced by the instruction and the displacement within
that block of the target address. This information can be
displayed using the EXAMINE command with the keyword COMMON as
the second parameter. The address, in this case, specifies the
beginning of the instruction that references the target address
within a common block. The format of the display is:

i ! common | !
| adr:seg | block | displ |
Fields:
adr is the address of the first byte of the
instruction referencing a common address.
:8eg specifies the segment descriptor P, A or I.

common block is the name of the referenced common block.

displ is a 1- to 6-digit hexadecimal number that
specifies the displacement within the common
block of the instruction target address.

3.8.4 Block Data Subprograms

When working with a block data subprogram, the BLOCK form of the
EXAMINE command is used. However, a BLOCK command must be issued
to select the current common block first. The address of the
BLOCK command then specifies an offset within the current common
block.

No segment descriptor should be used with an address, but the

current impure bias is added to the address to obtain the
effective offset within the current common block.

48-016 F0O ROl 3-19

3.9 EXPAND COMMAND

This command allows data to be added to the end of the specified
segment by creating a Patch area.

Format:
‘P
EXPAND|<A,,n |, [variable]

I

Parameters:

P specifies the pure segment.

A specifies the absolute segment. This segment
descriptor cannot be specified in image mode.

I specifies the impure segment.

n is a decimal number specifying the even number
of bytes in the Patch area. For image

modules, this number can be from 2 to 256.
For object modules, this number can be from 2
to 100. If n 1is odd, it is rounded to the
next highest even number.

variable is a 1- to 8-character string specifying the
name of a previously defined internal Patch
variable. See Section 3.35 for information on
the VARIABLE command.

Functional Details:

For impure segments of a task or an operating system image, the
Patch area begins at the current UTOP. The UTOP and the TET
expand/get area or the Link work area are moved accordingly. For
image segments other than impure, the required number of bytes
for all expands iIn a session are appended at the end of the
segment. If expanding an overlay results in the need for a
larger overlay area, the root segment should be expanded by the
required amount. Patch areas for the root itself can then be
created by the use of additional EXPAND commands. In image mode,
this Patch area 1is initially all zero. In object mode, it is
initially undefined.

3-20 48-016 F0OO ROl

A pure or impure segment being expanded must initially exist.
However, 1in object mode, absolute segments can be created or
expanded independent of prior existence. Block data subprograms
cannot be expanded.

In tree-structured overlays created by Link, the overlays cannot
be expanded. The root can be expanded and used as a Patch area
for the overlays.

Multiple Patch areas can be generated.

Patch returns the starting address (with the segment descriptor)
of the area and its size each time a segment is expanded. If no
parameters are specified, Patch returns the starting address
(with the segment descriptor) and size of each Patch area
created.

Examples:

>EXPAND 1,256

PATCH AREA 318:1 256
The above example creates a Patch area of 256 Dbytes at
the end of the impure segment.

>EXP P, 100

PATCH AREA 162A:P 100
This example creates a Patch area of 100 bytes at the end
of the pure segment.

>VARIABLE $NEW

>EXPAND 1,100, $NEW
This example establishes a variable (%NEW) and
initializes it to zero. The EXPAND command then returns

the Patch address and assigns this value to variable
SNEW.

48-016 FO0O ROl 3-21

3.10 GET COMMAND

The GET command is issued for each module to be patched. Modules
must be selected for patching in the same order that they appear
in the compound file or object library.

Format:
name
*QOBJECT
GET '
XTASK
*0S

Parameters:

name is the name of an object module in a file by
itself or 1in a library. It can be the name
of:

®© a resident library load module,
e a TCOM load module,
e a shared segment,

e an overlay 1load module 1in a file by
itself or in a compound overlay file, or

e a tree-structured overlay.

*OBJECT specifies a named or unnamed object module in
a file by itself.

*TASK specifies a task image module in a file by
itself or the root segment 1in a compound

overlay file.

*0S specifies an operating system image load
module.

3-22 48-016 F0O0 ROl

NOCOPY specifies that any modules preceding the
module specified by the GET command are not to
be copied from the input file to the output
file.

COPY gspecifies that any modules preceding the named
module from the input file are to be copied to
the output file. This option is effective
only for object library and compound overlay
files.

Functional Details:

The mode and input file must be set by the IMAGE or OBJECT
command . If the user fails to do this, the following message is
displayed:

NO FILES ASSIGNED

After setting the mode and the input file, the module to be
patched can be selected by the GET command.

The first parameter specifies the name of the module to be
patched. For unnamed object modules, task and operating system
images, the special names *OBJECT, *TASK and *0S are used,
respectively. When specifying the name of a resident library,
TCOM or shared segment module, only the first eight characters of
the name should be entered. Entering more than eight characters
causes an error message to be output.

If the input file is an object library or a compound overlay file
created by Link, the GET command selects the modules to be
patched and also determines whether or not the other modules in
the input file are to be copied to the output file. If NOCOPY is
specified, any intervening modules are skipped. If COPY or no
parameter is specified, all intervening modules are copied to the
output file. Intervening modules are those modules between the
module specified in the current GET command, and either the
beginning of the input file or the module selected in the
previous GET command.

Tree-structured overlays created by Link are part of the root
segment and do not have their own LIB. A tree-structured overlay
may be selectively accessed by name using the GET command. Only
one overlay can be referenced this way. When the overlay is
saved, all of the overlays and the root are saved. Therefore,
multiple GETs of overlays will produce multiple images after the
save. Since the tree-structured overlays are contained in the
root segment, they are not a compound overlay file; therefore,
the COPY parameter is not needed.

48-016 FO0O ROl 3-23

Both the root segment and tree-structured overlays can be
referenced simultaneously by using GET *TASK and the OVERLAY
command .

In interactive mode, if the GET command is issued before saving
a currently modified module, a message reminding the user to save
the currently modified module is output. If the user reissues

the GET command, normal execution of GET proceeds. No warning
message 1is issued if the output file is NULL or the INPLACE
option is in effect (see Section 3.13). In batch mode, the

message indicating that the previous module was not saved is
issued, and Patch terminates.

Examples:

GET *OBJECT
The above example selects the unnamed object module in the
input file to be patched.

GET ALPHA,COPY
This example selects ALPHA as the next module to be

patched and copies the preceding modules to the output
file.

3-24 48-016 FOO RO1

3.11 HELP COMMAND
This command displays all the available Patch commands and gives
a brief description of the command entered.
Format:
HELP [command name]

Parameter:

command name is the name of a Patch command. The command
can be entered in full or abbreviated form.
A brief description of the use of the
specified command 1is displayed. If this
parameter is omitted, the 1list of Patch
commands is displayed.

Functional Details:
The HELP information is contained in a file named PATCH.HLP

provided with the 0S/32 system. When a HELP command is entered,
Patch attempts to find and assign this file to the:

e same volume and account number from which PATCH.HLP was
loaded, or

e system volume and system account.

If both assign attempts fail, the following message is output:

ASSIGN HELP FILE TO LU 8

The user can then pause Patch and assign logical wunit 8 (1lu8),
then continue the task and reenter the HELP command. The file
can be preassigned by the user prior to the execution of Patch,
and lu8 will not be closed.

48-016 FOO ROl 3-25

Examples:

HELP IMAGE

The above example displays the
description of the IMAGE command.

H EXA

This

example

displays

parameters

the parameters

and

and a

description of the EXAMINE command.

HELP

This example displays the following 1list of

commands :

BI(AS)
BL(OCK)
CO (MMAND)
DI (SPLAY)
DU (MP)
END

EXA (MINE)
EX (PAND)
G(ET)
H(ELP)
ID(NO)
IM(AGE)

LIB
LIS(T)
LO(G)

MA (XLU)
MO (DIFY)
MX (SPACE)
NA (ME)
NEW (IDNO)
OB (JECT)
OP (TION)
OV (ERLAY)
PA(USE)

PR(IORITY)
RA (NGE)

RE (VISION)
SA(VE)
SEN(D) STOP
SH (ARED)
TA(BLE)

TR (ANSFER)
TS (W)
VAR (IABLE)
VE(RIFY)

The letters not enclosed in parentheses indicate the

abbreviation.

a brief

brief

Patch

command

48-016 FOO ROl

3.12 IDNO COMMAND
This command labels patched modules with a Patch control ID,
which consists of a control number and string.
Format:
IDNO [n] [,charstring]
Parameters:
n is a decimal number from 0 to 32,767
specifying the control number.
charstring is a 1- to 4-character alphanumeric string
specifying the control string.
Functional Details:

If IDNO is entered without parameters, the current Patch control
ID is displayed.

Special characters, other than carriage return (CR), can also be
used. If less than four characters are entered, the string is
padded with blanks. If no string is given and n 1is entered,
charstring is set to all blanks.

The Patch control IDs associated with a patched module are also
displayed by TABLE, REVISION and DUMP commands.

More than one Patch control ID can be entered for a module, but
only the last one entered is effective.

The NEWIDNO command can be used to specify multiple Patch control
IDs for changes made in a patching session (see Section 3.21).

48-016 FOO ROl 3-27

Examples:

IDNO 12345,ABCD

The above example labels the current series of changes
with Patch control ID 12345-ABCD.

IDNO 8,A/&

This example labels the current series of changes with
Patch contrcl ID 8-A/&.

IDNO ,ABCD
This example labels the current series of changes with

Patch control ID 0-ABCD.

IDNO

This example displays current Patch control ID.

3-28 48-016 FOO ROl

3.13 IMAGE COMMAND

This command specifies that the user is going to perform image
patching. :

Format:

IMAGE [fd-, , [fd2] [,QOMPOUND:I ENQHISTORYJ [,_INPLACE]]

Parameters:

fd, is the input file descriptor of the module to
be patched. The input file must be a disk
file with a record size of 256 bytes.

fd, is the output file descriptor to receive the
patched module. If this parameter and the
INPLACE parameter are omitted, the
NULL: device is the default. If this

parameter is omitted and INPLACE is specified,
the default is the input file.

COMPOUND specifies that the input file is a compound
overlay file generated by TET.

NOHISTORY specifies that no history records are to be
maintained for image modules.

INPLACE specifies that the changes are to be made
directly to the input file. NOHISTORY is in
effect.

Functional Details:

The input file is specified by fd; and contains the module to be
patched. The patched version of the module is output to the file
specified by fda. For both fds, the default extension is .TSK.

If INPLACE is specified, then the patches are made directly into
the input file (fdy). The output file (fd,) should not be
gspecified. If it is, it must match the input filename. No
history records are maintained if INPLACE is specified and the
EXPAND command cannot be used. The SAVE command is ignored while
patching images in place. If the SAVE command is issued, "1lu2
unassigned"” is displayed.

48-016 FOO ROl 3-29

If no history records are being maintained (NOHISTORY and
INPLACE), then the task creation ID in the LIB is set to Patch
and the time and date are changed to the current time and date.

The output file is created to be the same type and record size as
the input file. 1If the input file is a contiguous file, Patch
allocates an indexed file with filename fd; for output
processing. When the user indicates that all processing of the
input file 1is completed (by using the TERMINATE option in the
SAVE command), the indexed output file is copied to a contiguous
file with filename fd,. If this copy operation fails (perhaps
because a large enough contiguous file could not be allocated),
a message 1is output and the indexed file is saved with filename
fd, .

The IMAGE command can be issued as many times as desired during
execution of Patch. :

If no parameters are present in the command line, then the
current input and output assignments are displayed. If COMPOUND,
NOHISTORY and/or INPLACE are specified, then those parameters are
also displayed.

Examples:

->IMAGE PATCHOV1.TSK, ,C

-> IMAGE

- IMAGE INPUT ON M300:PATCHOV1.TSK/P
-~ IMAGE OUTPUT ON NULL:

- COMPOUND OVERLAY FILE

->IMAGE PATCHOV1.TSK,PATCHOVZ.TSK

-> IMAGE

- IMAGE INPUT ON M300:PATCHOV1.TSK/P
- IMAGE OUTPUT ON M300:PATCHOVZ.TSK/P

->IMAGE PATCHSRC.TSK, , INPLACE

— NO HISTORY RECORDS MAINTAINED
-> IMAGE

- INPUT ON M300:PATCHSRC.TSK/P
-~ OUTPUT ON M300:PATCHSRC.TSK/P
- NOHISTORY

- INPLACE

3-30 48-016 FOO ROl

3.14 LIB COMMAND

This command displays the information contained in the LIBs of
the image module currently selected for patching.

Format:

o [12]

Parameters:

n is a decimal number specifying the LIB to be
displayed. If this parameter is omitted, 1 is
the default.

Functional Details:
Only the information that is defined for the type of image module

being patched is displayed. Some modules, such as resident
libraries with many entry points, can have more than one LIB.

Although Patch changes the number of LIB records by including
history records, these history records cannot be displayed with
the LIB command. The REVISION command must be used.

Examples:

LIB

The above example displays the first LIB.

LIB 2

This example displays the second LIB.

48-016 F0O ROl 3-31

3.15 LIST COMMAND
This command allows the user to change the 1list device. See
Section 2.3 for a definition of the list device.
Format:
LisT [£d]

Parameter:

fd is the file descriptor of the new list device.
If this parameter is omitted, the current list
device is displayed.

Functional Details: -
If Patch is in batch mode, the message device 1is also changed
(see Section 2.3).

Examples:

LIST PR:

The above example changes the current list device to PR:.

LIST

This example displays the current 1list device.

3-32 48-016 FOO ROl

3.16 LOG COMMAND

This command is used either to copy or suppress copying of Patch
commands to the list device.

Format:
ON
LOG
QFF)
Parameters:
ON enables logging to the list device.
OFF disables logging to the list device.

Functional Details:

Initially, the log feature 1is ON 1in batch mode and OFF in
interactive mode. If the LOG command is given with no parameter,
the current status of the log feature is displayed.

Examples:

LOG OFF

The above example turns the log feature OFF.

LOG ON

This example turns the log feature ON.
LOG

This example displays the current status of the 1log
feature.

48-016 FOO ROL 3-33

3.17 MAXLU COMMAND

This command allows the user to redefine the maximum number of
logical units a task can use.

Format:

MAXLU [n]

Parameter :

n is a decimal number from 1 to 254 specifying
the new maximum number of logical units a task
can use.

Functional Details:

Initially, this value is defined during link-edit time. The

parameter gives the new value. If no parameter is given, the
current value is displayed. This information is also displayed
by the LIB command. This command is valid only in image mode

while patching a task.
Examples:
MAXLU 20
The above example changes the maximum number of 1logical
units for this task to 20.
MAXT.U

This example displays the current maximum number of
logical units.

3-34 48-016 FO0O0 ROl

3.18 MODIFY COMMAND

This command enables the user to change the contents of specified

locations in a module.

Format:

PATCH
[@] hexadr
MODIFY variable

CURRENT

| {//.codisp

Parameters:

PATCH

hexadr

variable

48-016 FOO ROl

[4] 1

+} ffset d ata Laste)
[{_ o sxe] [code] ['{ variable [,var 1ablen]}}

[~/ exname [, exdisp]

coname,codisp

specifies that the address of the 1last Patch
area is to be referenced.

specifies a pure segment.
specifies an absolute segment.
specifies an impure segment.

signifies that the bias is not to be added to
the address.

is a hexadecimal number from one to six digits
aligned on a halfword boundary.

is a 1- to 8-character string specifying the
name of a previously defined internal Patch
variable. See Section 3.35 for information on
the VARIABLE command.

CURRENT specifies that the last address given in an
EXAMINE or MODIFY command is to be referenced.

NEXT specifies that the halfword following the last
referenced halfword (via the EXAMINE or MODIFY
command) is to be referenced.

+ specifies an arithmetic addition.

- specifies an arithmetic subtraction.

offset specifies an optional hexadecimal digit. If
no address is specified, the address defaults
to NEXT.

code specifies the type of MODIFY operation. If

this parameter is omitted, the default is ABS.
See Table 3-2 for available codes.

data specifies hexadecimal halfword values that
modify the contents starting at the location
specified as the address (see Table 3-2).

exname is a 1- to 8-character alphanumeric string
specifying the name of an external reference.

exdisp is a 1- to 8-digit hexadecimal number
specifying an offset from the address of an
external reference.

coname is a 1- to 8-character alphanumeric string
specifying the name of a common block.

codisp is a 1- to 6-digit hexadecimal number
specifying a displacement within a common
block.

// is a special symbol specifying a blank common
block.

Functional Details:

In all MODIFY commands the address specifies the location where
changes are to be made. This address may have a segment
descriptor or may refer to the default segment.

The starting address of the area to be changed is determined by
the specified address plus the bias for the segment involved as
set by the BIAS command.

The code specified determines how the remaining parameters are to
be interpreted. It is the user's responsibility to avoid
destroying chains of external references by attempting to
overwrite an external reference.

3-36 48-016 F0OO RO1

In image mode, user-specified data are halfword hexadecimal
values that are used to overwrite the data starting at the
location specified by the address.

The I segment descriptor is used when referencing task commons
and overlays as well as the impure segments of task and operating
system images. The P segment descriptor is used when referencing
resident libraries and the pure segments of task and operating

system images. The A segment descriptor is not applicable 1in
image mode.

In object mode, a MODIFY command results in additional loader
items being appended to the object module. The particular type
of loader item added is determined by the code parameter. Table
3-2 describes the codes and the additional parameters that can be

specified. Any of the codes in Table 3-2 can be used in object
mode. :

TABLE 3-2 CODE TABLE

{ NUMBER AND TYPE OBJECT CODE
CODE | OF ARGUMENTS DESCRIPTION
I } 1 halfword value 2-byte impure re- Used for halfword
location program address.
address

NOTES

2 halfword values 4-byte impure re-
location program

t]
]]
] t
i]
| |
| |
i ! Used for fullword
] |
! address i
| i
!]
]]
| |
| |
| i

i
i
i
i
|
i
i
i
address. ' |
]
;
=
=
I
}
}
]

3 halfword values Used for RX3

instruction.

3-byte absolute
data,

3-byte impure
relocation program

data,

3-byte pure relo-
cation program
address

instruction.

address
t P { 1 halfword value | 2-byte pure re- | Used for halfword |
i] | location program | address. |
' | { address i H
| | | i i
i P ! 2 halfword values | 4-byte pure re- | Used for fullword |
i H { location program | address.]
i | | address ! |
| | | i i
i P | 3 halfword values | 3-byte absolute | Used for RX3 E
i i i | i
i | i i '
i ! i i |
| i | ' !

48-016 FO0O ROl 3-37

TABLE 3-2 CODE TABLE (Continued)

{ NUMBER AND TYPE i OBJECT CODE]
CODE | OF ARGUMENTS i DESCRIPTION 1 NOTES

i !
i '
] !
i AI | 2 halfword values | 2-byte absolute { Used for halfword !
| ! { data, | immediate instruc- |
H | | 2-byte impure | tions that refer- |
H i | relocation program | ence an impure o
i | i address { address. !
o e e e e e e e e e e e e e e i
| AP | 2 halfword values | 2-byte absolute | Used for halfword !
! } | data, | immediate instruc- |
i ! | 2—-byte pure { tions that refer- i
! | | relocation program | ence a pure H
| i | address 1 address. |
o e !
{ ABS | 1-n halfword { 2-n bytes absolute | This is the code !
| { values where n { data | default. |
b { is the maximum i ! !
! { number of values i ! It is also the |
! { that can be] | only valid code]
! { input on a H | for image module !
] { command line ! | modifications. |
e e e e e e e e e e — !
{ TI | 1 halfword value { 2-byte impure ! i
| | { translation ! !
| i { table address ! !
i i ! i !
i TP | 1 halfword value | 2-byte pure H |
! ! | translation | !
i ! | table address | |
o e e e e e e e e e e e e e e e e — e |
{ EN | exname | Entry reference { Exname is used to |
i | | instruction | create an addition- |
|] i | al loader item that |
{ | ' | creates a new entry |
] | | | point. |
i i ! i '
| WN | exname | Weak entry { Exname is used to !
] ! | reference i create an addition- |
i i i instruction | al loader item that |
| ! H | creates a new weak |
i i] | entry point.]
o T T e e e e e e e e e e e e s — e |
i DN | exname i Data entry { Exname is used to |
| ! | reference { create an addition- |
] H { instruction | al loader item that |
] '] | creates a new data |
i i ! | entry point. !
3-38 48-016 F0O0 ROl

TABLE 3-2 CODE TABLE (Continued)

{ NUMBER AND TYPE | OBJECT CODE H
CODE | OF ARGUMENTS | DESCRIPTION H NOTES

EX | 2 halfword values, | Exterrnial reference | The two halfword
exname, exdisp instruction values specify the
(optional) first 24 bits of an
RX3 instruction. A
third halfword (=0)
is added by Patch
to complete the RX3
instruction.

Exname is
create an
al loader
specifies

used to
addition-
item that
the ex-

ternal address ref-
erenced by the RX3
instruction. Exdisp
is an offset from
the address of the
external reference
specified by exname.
2 halfword | Weak external The two halfword
values, exname instruction values specify the
exdisp (optional) first 24 bits of an
RX3 instruction. A
third halfword (=0)
is added by Patch
to complete the RX3
instruction.

Exname is
create an
al loader
specifies

used to
addition-
item that
the ex-

ternal address ref-
erenced by the RX3
instruction. Exdisp
is an offset from
the address of the
external reference
specified by exname.

48-016 F0OO ROl 3-39

co

- —— - - —— - ——— - . ————— - - —— o —— o ——— o —_————

|
|
CODE |

RN R R E R E A R I R I I R I E I A I A A T EEETEEE E RN A EESEEECEEEENE RN ER TR E RS T

!
t
]
1
1
[}
[]
'
]
1
]
'
]
i
]
I
t
|
g
1
1
1
]
|
]
I
]
1
]
1
{
U
]
|
[}
'
]
!
1
1

TABLE 3-2 CODE TABLE (Continued)

NUMBER AND TYPE
OF ARGUMENTS

2 halfword values,
coname or //,
displacement

1-8 halfword
values

Cc
i

e o]

OBJECT CODE
DESCRIPTION

ommon reference
nstructions

hange data in a
lock data sub-

NOTE

NOTES

The two halfword
values specify the
first 24 bits of an
RX3 instruction. A
third halfword (=0)
is added by Patch
to complete the RX3
instruction.

Coname (or // for
blank) common and
displacement are
used to create an
additional loader
item specifying the
common block name
and the displace-
ment within that
block of the target
address of the RX3
instruction.

The command uses
the common block
name currently set
by the BLOCK com-
mand. In addition,
the address is
always biased by
the current value
of the impure bias.

All halfword values are in hexadecimal.

48-016 FOO RO1

3.19 MXSPACE COMMAND

This command allows the user to change the maximum amount of
system space that a task can use.

Format:
MXSPACE [n]
Parameter:

n is a 1- ¢to 5-digit hexadecimal number
specifying the new maximum number of bytes of
system space that a task can use. If this
parameter is omitted, the current value is
displayed.

Functional Details:
Initially, this value is defined at TET or Link time. This

information 1is also displayed by the LIB command. This command
is valid only in image mode while patching a task.

Examples:

MXSPACE 15000

The above example changes the current maximum amount of
system space for a task to 15,000 bytes.

MXSP

This example displays the current maximum amount of
system space.

48-016 FOO ROl 3-41

3.20 NAME COMMAND

This command renames an object module.

Format:

NAME [name]

Parameter:

name

Examples:

NAME

NAME

PROGA

is a 1- to 8-character alphanumeric string
specifying the new name of an object module.
The special characters period (.), dollar sign
($) and the commercial at sign (€) can also be
used. If this parameter is omitted, the
current name is displayed.

The above example renames the current object module

PROGA.

This example displays the current module name.

48-016 FOO0 ROl

3.21 NEWIDNO COMMAND

This command starts a new history record for:

e a single Patch change, optionally assigning a Patch control
ID,

e a set of Patch changes, optionally assigning a Patch control
ID to each Patch change in the set, or

e a multiple set of Patch changes, optionally assigning a Patch
control ID to the entire set.

Format:
NEWIDNO [r] [charstring]

Parameters:
n is a decimal number from 0 to 32,767

specifying the control number.

charstring is a 1- to 4-character alphanumeric string.

Functional Details:

The identifier can be left out and defined 1later wvia the IDNO
command, but must be defined before the next NEWIDNO command.

The current Patch control [ID can be displayed by entering the
IDNO command without parameters. The Patch control numbers
associated with a patched module are displayed by DUMP, IDNO,
REVISION and TABLE commands. If NEWIDNO 1is specified without

parameters, a new set of changes is established without a Patch
control ID.

Example:

A user has three sets of patches to make and wants to mark each
set with its own Patch control 1ID. The first one is to fix
problem number 1034, the second 1is an enhancement with a
reference number 1279, and the third is another problem, number
92. The module is already in memory.

48-016 F0O0 ROl 3-43

The REVISION

>IDNO 1034,PROB

>MOD 104:1,FFFF,FFFF

>MOD 310:P, 4300
>NEWID

>MOD 1204:1,2391,

>IDNO 1279,ENH

>NEWID 92, PROB

0811

>MODIFY 102C:P,400C,0312

patched task:

*TASK
REV 1
07/24/79
104:1 FFFF
310:P 4300

REV 2
07/24/79
1204:1 2301

REV 3
07/24/79
102C:P 400C

1034-PROB
14:48:46
FFFF
1279-ENH
14:49:58
0811

92-PROB
14:52:15
0312

Labels the first set of changes
with Patch control ID 1034-PROB.
Enters patches.

Enters patches.

Establishes new set of changes.
Enters patches.

Labels the second set of changes
with Patch control ID 1279-ENH.
Establishes a third set of patches
and labels them with Patch control
ID 92-PROB.

Enters patches.

command displays the following output for the

48-016 FOO ROl

3.22 OBJECT COMMAND

This command specifies that the user is going to perform object
patching.

Format:

OBJECT Efd1 [£a,) ELIBRAR‘{I]

Parameters:

£d, is the input file descriptor of the module to
be patched. The input file must be a disk
file with a record size of 126 bytes.

fd, is the output file descriptor to receive the
patched module. The output file may be NUIL:
or the name of a file that does not exist. If

this parameter is omitted, the output file
defaults to NULL:.

LIBRARY specifies that the input file is an object
library.
Functional Details:

For both fds, the default extension is .OBJ. If present, LIBRARY
specifies that the input file is an object library.

The output file is created to be the same type and record size as
the input file.

The OBJECT command can be issued as many times as desired during
execution of Patch.

If no parameters are present in the command line, then the
current input and output files are displayed. If LIBRARY is
specified, a message is displayed indicating that the input file
was designated as an object library.

48-016 FOO ROl 3-45

Examples:

->0OBJECT
->OBJECT
~ OBJECT
- OBJECT
- OBJECT

->0BJECT
->OBJECT
- OBJECT
- OBJECT
->

PATCHOV1.LIB, ,L

INPUT ON M300:PATCHOV1.LIB/P
OUTPUT ON NULL:

LIBRARY FILE
PATCHOV1.0BJ,PATCHOV2.0BJ

INPUT ON M300:PATCHOV1.OBJ/P
OUTPUT ON M300:PATCHOV2.0BJ/P

48-016 FO0O0 ROl

3.23 OPTION COMMAND

This command changes the task options that were initially defined

at Link time.

Format:

OPTION [

—

Parameters:

ETASK

UTASK

NAFPAUSE

AFPAUSE

RES IDENT

48-016 FOO RO1

The parameters specify the new option settings.

] e
—r] [
_{HNWERSAL ﬂ [{FLOAT

[(DFLOAT }:I [{ACPRIVILEGE

J] [
] il L1

specifies that an executive task (e-task)
image load module is to be built. An e-task
must contain only positional-independent pure
and impure code and cannot reference sharable
segments.

specifies that a user task (u-task) image load
module is to be built. If both task
parameters are omitted, UTASK is the default.

specifies that the task is to continue if an
arithmetic fault occurs during task execution.

specifies that the task 1is to pause if an
arithmetic fault occurs during task execution.
If both pause parameters are omitted, AFPAUSE
is the default.

gspecifies that the task is to remain in memory
when it is terminated.

NKEYCHECK}J

—— —————

NRES IDENT

INTERCEPT

NINTERCEPT

SVCPAUSE

NSVCPAUSE
ROLL

NROLL
COM
NCOM
CON
NCON

VFC

specifies that the task is to be removed from
main storage when it is terminated. 1If both
parameters are omitted, NRESIDENT is the
default.

specifies that the task can intercept certain
supervisor calls (SVCs) issued by another task
before the SVC goes to the operating system
for processing. If this parameter is omitted,
NINTERCEPT is the default.

specifies that the task cannot intercept the
SVC of another task before the SVC goes to the
operating system for processing. If both
intercept parameters are omitted, the default
is NINTERCEPT.

specifies that all intertask communication and
control macros entered are ignored and task
execution is paused. If both pause parameters
are omitted, SVCPAUSE is the default.

specifies that all intertask communication and
control macros entered are ignored and task
execution continued.

specifies that a task can be rolled in and out
of memory during task execution. If both roll
parameters are omitted, ROLL is the default.

specifies that a task cannot be rolled in and
out of memory during task execution.

specifies that a task can 1issue intertask
communication.

specifies that a task cannot issue intertask
communication. If both communication
parameters are omitted, NCOM is the default.

specifies that a task can 1issue intertask
control.

specifies that a task cannot issue intertask
control. If both control parameters are
omitted, NCON is the default.

specifies that a task uses the vertical forms

control options in all I/0 operations. If VFC
is omitted, NVFC is the default.

48-016 FOO ROl

NVFC

UNIVERSAL

NUNIVERSAL

FLOAT

NFLOAT

ACCOUNTING

NACCOUNT ING

Xsvc

NXSvC

DFLOAT

NDFLOAT

48-016 FOO ROl

specifies that the task does not use the
vertical forms control option in all 1I/0
operations. If both the VFC parameters are
omitted, NVFC is the default. Vertical forms
control may still be invoked on a per lu basis
and, if XSVCl 1is specified, on a per 1I/0
basis.

specifies that a task can communicate with all
other tasks in the system.

specifies that a task cannot communicate with
all other tasks in the system. If both
universal parameters are omitted, NUNIVERSAL
is the default.

specifies that a task can execute single
precision floating point (SPFP) instructions.

specifies that a task cannot execute SPFP
instructions. If both float parameters are
omitted, NFLOAT is the default.

gpecifies that the accounting function is
enabled for a task. If both accounting
parameters are omitted, ACCOUNTING 1is the
default.

specifies that the accounting function is
disabled for a task.

indicates that if the 1least significant bit
(LSB) of a supervisor call 1 (SVCl) function
code is set, an extended options fullword
exists. This option must be specified to use
such features as gapless mode on a 6250
magnetic tape drive or to control the use of
VFC on an individual 1/0 basis.

indicates that if the LSB of an SVCl1 function
code 1is set, an image 1[/0 1is to be used.
Currently, only the line printer and magnetic
tape drivers use this option. ITAM drivers
always operate as if XSVCl 1is 1in effect.
Other drivers always assume NXSVC1.

specifies that a task can execute double
precision floating point (DPFP) instructions.

specifies that a task cannot execute DPFP
instructions. If both double float parameters
are omitted, NDFLOAT is the default.

ACPRIVILEGE specifies that a u-task has extended file
access privileges and can specify an account
number instead of a file class for all SVC
functions.

NACPRIVILEGE specifies that a u-task has no extended file

access privileges. If both access privilege
parameters are omitted, NACPRIVILEGE 1is the
default.

DISC specifies that a u-task has an extended disk

privilege and can assignh a bare disk. If the
disk is on-line, assignments for shared
read-only (SRO) are allowed. All other
assignments are rejected and a message is
displayed. If the disk is marked off-line,
all access privileges are allowed. See the
0S/32 Programmer Reference Manual for a
description of the access privileges.

NDISC specifies that a u-task has no extended disk
privileges. If both disk privileges are
omitted, NDISC is the default.

KEYCHECK specifies that file protection keys are
checked for a privileged u-task or an e-task.
If both keycheck parameters are omitted, the
default is KEYCHECK.

NKEYCHECK gpecifies that no file protection keys are
checked for a privileged u-task or e-task.
Functional Details:
This command is only valid when patching a task. Any option that
is not specified remains unchanged. Illegal combinations of
options cause the entire command to be rejected.
If no parameter 1is given, the current option settings are

displayed. This information 1is also displayed by the LIB
command .

3-50 48-016 F0O ROl

Examples:

OPTION RE,NRO

The above example makes the task resident and unrollable,
and all other parameters remain unchanged.

OPT NAF,NSVC
This example has the task continue on arithmetic faults

and illegal SVC6.

OPTION

This example displays the current option settings.

48-016 FOO ROl 3-51

3.24 OVERLAY COMMAND
This command is issued for each overlay to be patched. The GET
command must be used to access the root segment before the

OVERLAY command 1is issued. Overlays can then be examined and
modified along with the oot segment.

Format:
QVERLAY [name]
Parameter:
name is the name of a tree-structured overlay.

Functional Details:

The OVERLAY command is valid only for tasks with tree-structured
overlays generated by Link.

All overlays 1in the same path as the requested overlay are made
accessible. If the requested overlay is in the same path as the
previously requested overlay, both overlays will be accessible.
If they are not in the same path, the previous overlay will not
be available for patching.

If the name parameter is omitted, all accessible overlays are
listed in the following format.:

i ovlyname | ovyadr | ovysiz | ovrecno | 1lvl | mlv | prntnode |
Fields:
ovlyname is the 1- to 8-character ASCII overlay name.
ovyadr is the overlay start address in hexadecimal.
ovysiz is the size in bytes of the overlay in

hexadecimal.

3-52 48-016 FOO ROl

ovrecno is the starting record number of the overlay
in the image file in decimal.

ivl is the overlay level in decimal.

mlv is the maximum overlay 1level in decimal
specifying the highest 1level (numerically
lowest) overlay that must be loaded with this
overlay during program execution.

prntnode is the overlay name of the parent node. It is
used to indicate the overlay path.

Examples:

>OVERLAY OVERLAYZ2

>OVERLAY

NAME START LENGTH REC.NO LVL MLV PARENT NODE
OVERLAY2 5000 2E0 360 2 1 OVERLAY1l
OVERLAY1 2E00 3000 312 1 0 .ROOT

48-016 F0O ROl _ 3-53

3.25 PAUSE COMMAND

This command causes Patch processing to be suspended.
Multi-terminal monitor (MTM) or operating system commands can now
be entered.

Format:
PAUSE

Functional Détails:

A CONTINUE command causes Patch processing to resume.
Example:

PAUSE

This example suspends Patch processing.

3-54 48-016 FOO ROl

3.26 PRIORITY COMMAND
This command allows the user to change the initial and maximum

priorities of a task. This command is valid only in image mode
while patching a task.

Format:
PRIORITY [inipri,maxpri]
Parameters:

inipri is a decimal number from 10 to 249 specifying
the new initial priority. The initial
priority at which the task begins execution
must be numerically greater than or equal to
the maximum priority.

maxpr i is a decimal number from 10 to 249 specifying
the new maximum priority.
Functional Details:
These priorities are initially defined at Link time. The maximum
priority is the highest priority at which this task is allowed to
execute.
If no parameters are given, the current values for these
priorities are displayed. This information is also displayed by
the LIB command.
Examples:
PRIORITY 128,100
The above example sets the initial priority of this task
to 128 and its maximum priority to 100. Notice that the
higher priority is numerically smaller than the lower
one.

PRIORITY

This example displays the current initial and maximum
priorities.

48-016 FOO ROl 3-55

3.27 RANGE COMMAND
This command computes the relative displacement between two
addresses in a form suitable for use in an RX2 format
instruction.
Format:
[/ parcH P [/paTcH P T
[€] hexadr |[:{A + (@) hexdr [« (A +
RANGE { }offset:] , { }offset [Lvariable]
variable 1 - variable I -

CURRENT

Parameters:

PATCH

CURRENT

specifies that the address of the 1last Patch

area is to be referenced.

specifies
specifies

specifies

a pure segment.
an absolute segment.

an impure segment.

hexadr

variable

CURRENT

NEXT

signifies that the bias is not to be added to
the address.

is a hexadecimal number from one to six digits
aligned on a halfword boundary.

is a 1- to 8-character string specifying the
name of a previously defined internal Patch
variable. See Section 3.35 for information on
the VARIABLE command.

specifies that the last address given in an
EXAMINE or MODIFY command is to be referenced.

specifies that the halfword following the last

referenced halfword (via EXAMINE or MODIFY) is
to be referenced.

48-016 FO0O ROl

+ specifies an arithmetic addition.

- specifies an arithmetic subtraction.

offset specifies an optional hexadecimal digit. If
no address is specified, the address defaults
to NEXT.

Functional Details:

To obtain the relative displacement between an instruction and a
target address, address specifies the instruction that requires
the displacement value, and also specifies the target address.
The value returned by the command can then be used to reference
the target address.

Examples:

>RANGE EO08,F00

The above example displays the displacement between EO0S8
and FO0O0.

RANGE: 80F4

In this example, if the instruction at address EO08
references the address F00, then the value 80F4 that is
returned by RANGE can be used in the instruction at EO08
to reference either an instruction or data at address
FO0O.

>VARIABLE $NEWRAN
>VARIABLE $%RAN1=E08
>VARIABLE %RANZ2=F00

>RANGE $%RAN1, $RANZ2, $NEWRAN

This example stores the hexadecimal value 80F4 into variable
$NEWRAN and displays the displacement RANGE:80F4.

48-016 FOO ROl 3-57

| REVISION |

3.28 REVISION COMMAND

This command displays the previous Patch history of a module from
the current input file to the list device.

Format:
- -
name
*OBJECT
REVISION [,'titlef]
XTASK
*0Ss
Parameters:
name is the name of a module in the input file.
*OBJECT specifies a named or unnamed object module.
*TASK specifies a task image module.
*x0S specifies an operating system module.
'title' is a 1- to b50-character alphanumeric string

gpecifying the heading to be output at the
beginning of the display. If this parameter
is omitted, a blank heading is used.

Functional Details:

The Patch history consists of the number of revisions, associated
Patch control IDs and a list of all changes made to the module.

The first parameter selects the module by name. For unnamed
object modules, task and operating system images, the special
names *OBJECT, *TASK and *0OS are used, respectively. When
specifying the name of a resident library or task common module,
only the first eight characters of the module name should be
entered. Entering more than eight characters causes an error
message to be output.

3-58 48-016 F0OO ROl

If the REVISION command is used for a module currently being
patched, only the previous changes are displayed; none of the
changes in the current session are displayed. The current
position of an object library or a compound overlay file is not
affected.

If the first parameter is not specified, a listing is produced of
the names, number of revisions and associated Patch control IDs
of all modules on the input file that have been patched. For the
display, the names *TASK, *0OS and *OBJECT are used for unnamed

images (including operating systems produced by TET, Link and
object modules, respectively).

Examples:
REVISION PROGA, 'PROGA HISTORY'
The above example displays the Patch history for PROGA
with heading PROGA HISTCRY.
REV

This example displays all modules on the input file that
have been patched.

48-016 FOO ROl 3-59

3.29 SAVE COMMAND

This command is used to output the patched module to the output
file specified in the IMAGE or OBJECT command after all desired
patches are made.

Format:
NQCOPY
SAVE [, TERMINATE]
Parameters:

NOCOPY indicates that remaining modules in the input
file are not to be transferred to the output
file.

COPY indicates that remaining modules in the input
file are to be transferred to the output file.
This parameter is the default option.

TERMINATE indicates that no more Patch processing of the

input file is to occur.

Functional Details:

After issuing the SAVE command, the user may Patch another module
or terminate execution.

If the input file specified in the IMAGE or OBJECT command is an
indexed file, the output file is an indexed file. If the input
file specified in an IMAGE command 1is a contiguous file, the
output file may or may not be a contiguous file. For a further
explanation, see Section 3.13.

The SAVE command must be issued for each module that is modified
in a compound overlay file or object library file.

3-60 48-016 F0O0 ROl

Examples

SAVE

SAVE

SAVE

48-016 F

The above example outputs the patched version of a module
currently being modified to the output file. Copy the
remainder of the input file to the output file and
terminate Patch processing of an object library or a
compound overlay file. This is the same as issuing SAVE
COPY, TERMINATE.

NOCOPY

This example outputs the patched version of a module to
the output file. Do not copy the remainder of an object
library or compound overlay file from the input file to
the output file.

, TERMINATE

This example outputs the patched version of a module
currently being modified to the output file. Copy
remaining modules of an object Llibrary or compound
overlay file. 1If appropriate, change the task image file
from index to contiguous. Terminate Patch processing of
an object library or a compound overlay file.

00 ROl 3-61

| SEND STOP |
3.30 SEND STOP COMMAND

This command allows a user to stop the execution of the DUMP,
REVISION, EXAMINE or TABLE commands.

Format:

SEND STOP

Functional Details:
The SEND STOP command 1is recognized when Patch 1is executing
either as a foreground task where the current task is the Patch

task, or as a terminal task under an MTM system that supports
intertask communication.

The SEND STOP command is 1issued in response to an operating
system or MTM prompt. A prompt is obtained by depressing the
BREAK key several times.

Issuing a SEND STOP command causes Patch to terminate the command
that was issued just prior to the SEND STOP command. After

processing the SEND STOP command, Patch is ready to accept the
next command.

Examples:
Under M1IM:
SEND STOP
stops execution of the current command. Patch is resumed
and ready to accept the next command from the user.

Under the operating system:

TASK PATCH

selects Patch as the current task.

SEND STOP

stops execution of the current command.

3-62 48-016 FOO ROl

3.31 SHARED COMMAND

This command enables the user to change the access privileges and
the maximum or minimum size of a shared segment entry.

Format:

SHARED NAME=gsname.ext |,ACCESS=

[S.LZE= ([mins ize] [[maxs izé])]

Parameters:

NAME=

ACCESS=

48-016 FOO ROl

—

sname.ext is a 1- to ll-character alphanumeric
string specifying the name of a shared
segment.

E specifies that the access privilege of the
sharable segment allows task execution within
the sharable segment.

R specifies that the access privilege of the
sharable segment allows access of data within
the sharable segment. Execution or
modification of data is not allowed.

RW specifies that the access privilege of the
sharable segment allows access to data and
modification of data within the sharable
segment. Task execution is not allowed.

RWE specifies that the access privilege of the
sharable segment allows access to data,
modification of data, and task execution
within the sharable segment.

RE specifies that the access privilege of the
sharable segment allows access to data and
task execution within the sharable segment.

Modification of data is not allowed. If the
ACCESS= parameter 1is omitted, the default is

RE.

SIZE= minsize is a 1- to 6-digit hexadecimal number
specifying the minimum size of a sharable
segment .

maxsize is a 1- to 6-digit hexadecimal number
specifying the maximum size of a sharable
segment .

Example:

SH NA= F7RTL.SEG,AC=RE

This example changes access privileges for the shared
segment, F7RTL.SEG.

48-016 FOO ROl

3.32 TABLE COMMAND
This command displays the modules on the input file to the 1list

device. If they have been patched, the number of revisions and
associated Patch control IDs are also displayed.

Format:
TABLE [titlel]
Parameter:

'title! is a 1- to 50-character alphanumeric string to
be output as a heading at the beginning of the
display. If this parameter is omitted, a
blank heading is used.

Functional Details:

The names *OBJECT and *TASK are used for unnamed object and image
modules. XTASK is used both for tasks and operating system
images produced by TET. Operating system images produced by Link
are identified as *0S.

For tasks containing tree-structured overlays, the overlay names

are displayed with their starting address, length, first record
numbers, level, maximum level and name of parent node.

Examples:
TABLE 'SAMPLE TABLE LISTING'
The above example produces a labeled listing of the input
file.
TABLE

This example produces an unlabeled listing of the input
file.

48-016 FOO ROl 3-65

3.33 TRANSFER COMMAND

This command changes the transfer address of an object module.

Format:

adr P
TRANSFER :4A
variable I

Parameters:

adr

variable

Functional Details:

is a 1- to 6-digit hexadecimal number
specifying the new transfer address. If this
parameter is omitted, the current transfer
address is displayed.

is a 1- to 8-character string specifying the
name of a previously defined internal Patch

variable. See Section 3.35 for information on
the VARIABLE command.

specifies the pure segment.
specifies the absolute segment.

specifies the impure segment.

This command can be used even if no transfer address had been
originally specified.

Examples:

TRANSFER 1234:P

The above example sets the transfer address of this
module to 1234 in the pure segment.

TR

This example displays the current transfer address.

48-016 FO0O0 ROl

3.34 TSW COMMAND

This command changes the starting TSW for a task.

Format:
stadr
TSW [ﬁtatué] ’ }
variable
Parameters:
status is a 1- to 8-digit - hexadecimal number
specifying the status portion of the TSW.
stadr is a 1- to 6-digit hexadecimal number
specifying the start address of the task.
variable is a 1- to 8-character string specifying the

name of a previously defined internal Patch
variable. See Section 3.35 for information on
the VARIABLE command.

Functional Details:

Initially, the starting TSW is defined at Link time. If either
status or start address is unspecified, the wvalue for that
parameter remains the same. If no parameters are specified, the

current TSW is displayed. This information is also displayed by
the LIB command. This command is valid only in image mode while
patching a task.

Examples:
TSW 0O
The above example changes the status portion of the
initial TSW of this task to O.
TSW , 100

This example changes the starting address of this task to
100.

48-016 FOO ROl 3-67

TSW 0,100

This example makes both of the above changes.

TSW

This example displays the current initial status and
starting address.

3-68 48-016 FOO ROl

3.35 VARIABLE COMMAND

This command provides the ability to define an internal variable
and optionally assign a value to that wvariable. Up to 20
variables can be created. Variable names can also be deleted in
order to free space for new variable names.

Format:
=value
VARIABLE vname
,RELETE
Parameters:
vhame is a 1- to 8-character string specifying the
name of the internal Patch variable to be
defined. The first character must be a
percent sign (%), the second character
alphabetic and the remaining alphanumeric.
=value is a hexadecimal number from 0 to FFFFFE
aligned on a halfword boundary.
DELETE specifies thalt the variable name entered Iis

not needed in the Patch session any longer.

Functional Details:

Upon execution of the VARIABLE command, Patch scans the syntax of
the vname parameter. If the syntax is correct, Patch then checks
for the value. If a value is assigned to the variable, it is
checked for boundaries. If the variable does not exist, it is
set up by Patch and the specified value is assigned to it. A
variable name that did not previously exist and is entered
without a value is set up and initialized to zero. A previously
defined variable entered without a value results in the current
value being displayed to the user. The VARIABLE command with no
parameters results in a 1list of all variable names and their
values.

When a variable name is invalid the message 'INVALID VARIABLE
NAME' 1is generated. Any value specified that is not valid
results in the message 'INVALID VALUE SPECIFIED’'. When a
variable delete command is specified and the variable does not
exist, the message 'VARIABLE NOT DEFINED' is generated.

48-016 F0O RO1 3-69

If a request to add a previously defined variable is entered, the
message 'DUPLICATE VARIABLE NAME' 1is generated. When a wuser
attempts to list all the variables and no variables are defined,
the message 'NO ENTRIES IN VARIABLE TABLE' is generated. When a
VARIABLE command 1is entered and the maximum of 20 variables has
been defined, the message 'VARIABLE TABLE FULL' is generated.

Examples:

>VARIABLE $NEWADD=1234

In the above example, the variable $NEWADD is set up and
the hexadecimal value of 1234 is assigned to it.

>VARIABLE $%NEW1l,DELETE

In this example, the variable $NEWl is deleted.

>VARIABLE %NEW1

In this example, the variable $NEWl is set up and the
binary value of 0 is assigned to it.

>VARIABLE

$NEWADD 1234
FNEWL -0

This example displays all of the variable names and their
corresponding values.

3-70 48-016 F00 ROl

3.36 VERIFY COMMAND

The VERIFY command provides the ability to verify the contents of
a specified location in a module.

Format:

"~ PATCH

VERIFY variable
CURRENT

NEXT

Parameters:

PATCH

hexadr

variable

CURRENT

NEXT

48-016 FO0O0 ROl

P
[@] nexadr :{A} +
I { }offset . J variable E ...variablep]

1 [caataf;.. .datay) T

BLOCK {data [f--.datap]
"lvariable L-..var iable,ﬂ}]

specifies that the address of the last Patch
area is to be referenced.

specifies a pure segment.
specifies an absolute segment.
specifies an impure segment.

signifies that the bias is not to be added to
the address.

is a hexadecimal number from 1 to 6 digits
aligned on a halfword boundary.

is a 1- to 8-character string specifying the
name of a previously defined internal Patch
variable. See the VARIABLE command in the
previous section.

specifies that the last address given in an
EXAMINE or MODIFY command is to be referenced.

specifies that the halfword following the last
referenced halfword (via an EXAMINE or MODIFY
command) is to be referenced.

specifies an arithmetic addition.

- specifies an arithmetic subtraction.

offset specifies an optional hexadecimal digit. If
no address is specified, the address defaults
to NEXT.

BLOCK specifies that values within a block data

subprogram are to be displayed.

data specifies hexadecimal halfword values that
modify the contents starting at the location
specified as the address (see Table 3-2).

Functional Details:

The VERIFY command uses the same format as the EXAMINE and MODIFY
commands . The parameters hexadr and variable specify the
starting location of the data to be verified. The expected value
at the starting location is specified by two bytes of hexadecimal
data or a previously defined variable name. Subsequent values or
variable names are specified for sequential locations after the
starting location. A value that is not a valid hexadecimal value
or a variable name that is invalid will cause an appropriate
error message 1in the interactive mode. An error in batch mode
will cause Patch to terminate with a nonzero end of task code.

In an interactive mode, if the contents of the locations are
verified against the expected values, the message 'VERIFY NO
ERROR' is returned. If the contents of the 1locations do not
match the expected values, the message 'VERIFY ERROR:LOC=nnnnnn
EXPECTED=nnnn ACTUAL=nnnn' is returned. In batch mode, no
message is output.

Examples:
>VERIFY 134:1,1234,5678
VERIFY NO ERROR
The above example verifies that the two halfwords

beginning at location X'134' of the impure segment
contain the values 1234 and 5678.

>VERIFY %ONE: I, %$TWO, $THREE
VERIFY NO ERROR
This example verifies that the values of the variables

$TWO and %THREE are contained in the two halfwords
beginning at the location of $%ONE. :

3-72 48-016 FOO ROl

CHAPTER 4
PATCHING IMAGE MODULES

4.1 INTRODUCTION

This chapter introduces the concepts of image patching through
examples of image patching command sequences. The greater than
symbol (>) is a prompt from Patch. Lines not starting with this
symbol are responses from Patch. See Chapter 3 for detailed
information on each command.

4.2 PATCHING A TASK IMAGE MODULE

Suppose you have an unsegmented task image in a file called
TASKA.TSK and you want to change byte 43 of subroutine SUB1l from
0 to 1. All addresses and contents are in hexadecimal. Assume
you have loaded and started Patch as shown in Chapter 2. The
steps involved are:

e setting image mode,

e loading TASKA,

® locating SUBl1 within TASKA,

e modifying byte 43 of SUBl, and

® saving the new version of TASKA.

The following example illustrates the steps involved in patching
TASKA.TSK.

Example:

> IMAGE TASKA.TSK,NEWTASKA.TSK
>GET *TASK
>BIAS 3F00:1

*IMPURE BIAS 3F00
>EXAMINE 42

3F42:1 4000
>MODIFY 42,4001
>EXAMINE 42

3F42:1 4001
>SAVE
>END

48-016 F0OO ROl , 4-1

The IMAGE command sets the mode (image versus object), the input
file and the output file. The output file must not already
exist. The output file is created by Patch with the same record
size and file type as the input file.

The GET command specifies that the module to be patched is a task
image and causes the module to be read into the work area. For
overlays, resident libraries and task commons, the module name to
be patched would be specified. For operating system images, *0S
would be used.

The BIAS command sets the impure bias to 3F00. If you want to
modify routine SUBl, you would examine the Link or TET map for
TASKA and find that subroutine SUBl starts at 3F00. By setting
the bias to 3F00, you can address locations relative to the
beginning of the subroutine, using addresses from the subroutine
listing (if they start from 0). All addresses have 3F00 added to
them until the bias is changed; the bias is initially zero.

The I means that the bias refers to the impure segment. I 1is
also used as the default segment descriptor for EXAMINE and
MODIFY commands. The message output by Patch in this example
(*IMPURE BIAS 3F00) verifies that the bias for the impure segment
is set to 3F00. The asterisk (*) indicates that the default
segment is the impure segment.

The EXAMINE command causes the contents of the specified location
to be displayed. This command and its response also 1illustrate
the biasing mentioned above. All addresses are even and the
basic unit of data is a halfword. The parameter of the EXAMINE
command specifies the address of the halfword to be displayed.
The output on the next line consists of the address and the

contents of the halfword location. The address has the bias
added in and a segment descriptor (I) appended. For an
unsegmented task, the segment descriptor 1[I always appears,
indicating an impure segment. The address parameters in the

EXAMINE and MODIFY commands in this example do not need segment
descriptors because the default is the impure segment as
established in the previous BIAS command.

The MODIFY command changes the halfword contents, at 1location
3F42, from 4000 +to 4001l. Because of the halfword orientation,
the contents of both bytes 42 and 43 are specified.

It is good practice to examine a location after it was changed to
ensure that the correct location is being changed and that the
change has occurred correctly.

The SAVE command causes the updated task image to be copied to
the file NEWTASKA.TSK. At this point, another program can be
patched by starting with a new IMAGE or OBJECT command (see
Chapter 5).

The END command terminates Patch.

4-2 48-016 FOO ROl

4.3 ADDING CODE TO IMAGE MODULES

Assume that TASKB.TSK contains a segmented task image. In
addition to changing code in the pure segment, you should insert '
additional code, making the segment and the task larger. You

should also label this change so that, subsequently, it will be
possible to tell that this change was made. Finally, you should
save the result in NEWTASKB.TSK.

The technique for inserting code has two steps. First, replace
the two halfwords, before the insertion point, with a branch to
a patch area. Second, put the replaced code in the patch area,
followed by the code to be inserted, and then a branch back to
the original code. The following example illustrates changing
and adding code to a pure segment.

Example:

> IMAGE TASKB.TSK,NEWTASKB.TSK
>GET *TASK
>BIAS 1234:P

*PURE BIAS 1234
>EXPAND P, 10

PATCH AREA 3456:P 10
>EXAMINE 42,2

1276:pP 0834 O0OA35

>RANGE 1276,3456

RANGE :A1DC
>MODIFY 42,4300,A1DC
>EXAMINE CURRENT, 2

1276:P 4300 AIDC
>RANGE 345C,127A

RANGE :DE1A
>MODIFY PATCH,834,A35,2631,4300,DE1A
>EXAMINE CURRENT, 5

3456:P 0834 OA35 2631 4300 DEI1A
>IDNO 12345,PEDS
>SAVE
>END

The IMAGE command sets the mode, input and output files.

The GET command specifies that the module to be patched is a task
image and causes the module to be read into the work area.

The BIAS command sets the bias to 1234 in the pure segment (the
location where the additional code is to be inserted). It also
sets the default segment descriptor for succeeding EXAMINE and
MODIFY commands to P for pure.

48-016 FOO ROl 4-3

The EXPAND command creates a patch area at the end of the pure
segment which is initially all zero. The response PATCH AREA... .
gives the address of the beginning of the patch area, its segment
descriptor and its size in bytes.

The second parameter in the first EXAMINE command specifies the
decimal number of halfwords to be displayed, starting at the
address specified by the first parameter. The two halfwords to
be moved to the patch area are displayed.

The RANGE command gives the relative displacement between two
addresses in a form suitable for subsequent use in RX2
instruction. The first parameter 1is the address of the
instruction requiring the displacement value. The second
parameter is the target address. An error message is output if
the two addresses are not within RX2 range.

The first MODIFY command can change as many halfwords as can fit
on the MODIFY command line, starting at the address specified in
the first parameter. In this example, the two values constitute
an RX2 instruction that is a branch to the patch area.

The second EXAMINE command is used to verify the modification.
The first parameter, CURRENT, specifies that the address
specified in the last MODIFY or EXAMINE command is to be used
again.

You have inserted a branch to the patch area where new code is to
be added. The code replaced by the branch instruction must be
the first code inserted in the patch area.

The Patch parameter of the second MODIFY command specifies the
address of the start of the pure patch area. Pure is the default
segment; therefore, the segment descriptor was left out. The
segment descriptor can be included in the format, PATCH:P.

The instructions replaced at 1256:P, a new instruction and a
branch back to 127A:P, are put into the patch area and visually
verified. The negative displacement from the patch area back
into the original code was calculated with the RANGE command.
You have now effectively inserted an instruction after the
instruction originally at 1278.

The IDNO command associates a positive number (0 to 32,767) and
a maximum of four alphanumeric characters with the patches made
in the session. This label, called a patch control ID, can be
displayed by any REVISION or TABLE command with NEWTASKB.TSK as
the input file (see Chapter 3).

The SAVE command saves the modified task image to NEWTASKB.TSK.

The END command terminates Patch.

4-4 48-016 FOO RO1l

4.4 MODIFYING COMPOUND OVERLAY FILES CREATED BY TET

In Patch (software number 03-196 R00), the beginning of the
overlay area is always shown to be at impure location zero,
although the actual overlay start address is not at location
zZero. The correct overlay start address can be found by issuing
the LIB command. The address field of the instructions displayed
by the EXAMINE command has been based by TET using the overlay
start address displayed in the L.IB command.

The following example illustrates the loading of overlay files
created by TET in Patch RO0O.

Example:

*LOAD PATCH

*START

PERKIN-ELMER 0S/32 PATCH R0O0-00
>IMA COBOL.OVY/S,COBOL.OV1, COMPOUND
>GET CBLOO6

>LIB
SEGMENT TYPE 5 OVERLAY
NO. OF LIB'S 2
HISTORY RECORDS 1
SEGMENT SIZE 295
OVERLAY START 500
OVERLAY NAME CBI.0O06
TASK CREATION I.D. TET32 R0O3-05
DATE ESTABLISHED 20/02/80
TIME ESTABLISHED 19:59:27
>EXA 10:1
10:1 510

In Patch (software number 03-196 R0Z2), the correct overlay start
address 1is found by issuing the LIB or EXAMINE CURRENT command
after the GET command is issued. The overlay start address must
be used 1in the BIAS command to make addressing compatible with
Patch R0O0. The following example illustrates the 1loading of
overlay files created by TET in Patch RO2.

48-016 FOO ROl 4-5

Example:

*LOAD PATCH

*START

PERKIN-ELMER 0S/32 PATCH R02-00
>IMA COBOL.OVY/S,COBOL.CV1l,COMPOUND
>GET CBLOO6

>EXA CU
500:1 0000

>LIB
SEGMENT TYPE 5 OVERLAY
NO. OF LIB'S 2
HISTORY RECORDS 1
SEGMENT SIZE 295
OVERLAY START 500
OVERLAY NAME CBL0OO0b6
TASK CREATION I.D. TET32 RO03-05
DATE ESTABLISHED 20/02/80
TIME ESTABLISHED 19:59:27

>BI 500 :1
IMPURE BIAS 500

YEXA 10

10:1 510

Assume that you want to patch the second and fourth overlays in
a compound overlay file named OVYFILE.OVY that has five overlays
named OVERLAYA through OVERLAYE. The result is a new compound
overlay file named OVYFILE2.0VY with the new versions of OVERLAYB
and OVERLAYD and the old versions of OVERLAYA, OVERLAYC and
OVERLAYE.

Example:

>IMAGE OVYFILE.OVY,OVYFILEZ2.0OVY, COMPOUND
>GET OVERLAYB,COPY
>EXAMINE 1000

1000:1 1234
>MODIFY 1000,5678
>EXAMINE 1000

1000:1 5678
>SAVE NOCOPY
>GET OVERLAYD,COPY
>EXAMINE 1000

1000:1 1234
>MODIFY 1000,5678
>EXAMINE 1000

1000:1 5678
?SAVE COPY,TERMINATE
>END

4-6 48-016 FOO RO1

The third parameter of the IMAGE command specifies that the input
file is a compound overlay file.

In addition to specifying the program to be patched, the GET
command causes all overlays before OVERLAYB to be copied to the
output file. Omitting the COPY keyword would still result in
OVERLAYA being in the new overlay file since COPY is the default
option.

The first EXAMINE command displays the contents of the first
halfword starting at location X'1000'.

The MODIFY command changes the contents of 1location X'l000' to
5678.

The second EXAMINE command verifies the change made.

The first SAVE command saves the patched task image of OVERLAYB
to OVYFILE2.0OVY. NOCOPY indicates that the remaining modules in
the input file are not to be transferred to the output file.

The second GET command causes OVERLAYC to be copied to the output
file and specifies OVERLAYD as the next program to be patched.
The previous patching sequence explanation also applies to
OVERLAYD. Overlays must be selected for patching in the same
order that they appear in the compound overlay file. The second
SAVE command specifies that the rest of the input file is to be
copied to the output file and that processing of this overlay
file is to terminate.

4.5 MODIFYING TREE-STRUCTURED OVERLAYS

Tree-structured overlays differ from compound overlay files. The
task with tree-structured overlays is just one image (with one
set of LIBs). The compound overlay consists of a task image and

one or more overlay images, each with its own set of loader
information blocks (LIBs).

When patching tasks that have tree-structured overlays, the user

only issues one GET. The user can specify the overlay to be
modified by using the OVERLAY command.

48-016 FOO ROL 4-7

Example:

> IMAGE TASKOVLY, TASKOVY2
>GET *TASK
>OVERLAY OVERLAYB
>EXAMINE 1000

1000:1 1234
>MODIFY CURRENT, 5678
>EXAMINE CUR

1000:1 5678
>OVERLAY OVERLAYD
>EXAMINE 2100,3
2100:1 4300 4001 o023cC
>MODIFY CURRENT, 4320
>EXAMINE 2100,3
2100:14320 4003 0200
>SAVE
>END

The GET command specifies that a task image is to be patched.
The first OVERLAY command selects OVERLAYB for patching.

The first EXAMINE command displays the contents of the first
halfword starting at location X'1000°*.

The MODIFY command changes the contents of location X'1000' to
5678.

The second EXAMINE command verifies the change made.
The second OVERLAY command selects OVERLAYD for patching.

Assume that you want to patch only one overlay in a task. The
name of the overlay is OVERLAYB. The result is a new task named
TASKOVYZ2 with the new version of OVERLAYB and the old version of
the task, OVERLAYA, OVERLAYC, OVERLAYD and OVERLAYE.

Example:

> IMAGE TASKOVLY, TASKOVY2
>GET OVERLAYB
>EXAMINE 1000
1000:1 1234
>MODIFY 1000,5678
>EXAMINE 1000
1000:1 5678
>SAVE
>END

4-8 48-016 FO0O ROl

The GET command selects OVERLAYB for patching.

The first EXAMINE command displays the contents of the first
halfword starting at location X'1000'.

The MODIFY command changes the contents of 1location X'1l000' to
5678.

The second EXAMINE command verifies the change made.

The SAVE command saves the root segment and all the overlays,
including the patched OVERLAYB, to the file TASKOVY2.TSK.

48-016 FOO ROl 4-9

CHAPTER 5
PATCHING OBJECT MODULES

5.1 INTRODUCTION

This chapter, through examples of object patching command
sequences, introduces concepts of object patching. See Chapter
3 for more detailed information on each command.

5.2 PATCHING AN OBJECT MODULE

Assume that you want to change byte 43 of SUBl from O to 1 in the
object code. The steps involved are:

e setting object mode,

e 1loading SUBl for patching,

e modifying byte 43, and

e saving the new version of SUBI.

The following example illustrates the steps involved in patching
SUB1.

Example:

>OBJECT SUB1.0BJ,NEWSUB1.0OBJ
>GET SUB1
>EXAMINE 42
0042:1 4000
>MODIFY 42,ABS,4001
>EXAMINE 42
0042:1 4001
>SAVE
>END

48-016 FOO ROl 5-1

The OBJECT command sets the mode (object versus image), the input
file and the output file. The output file must not already exist
and will be created with the same record size and file type as
the input file.

The GET command specifies the name of the object module to be
patched and reads it into the work area. If the object module
was unnamed (no PROG statement in the source), *OBJECT would be
used as the parameter of GET.

The EXAMINE command specifies the address of the halfword to be
displayed. Note that all addresses are even and the basic unit
of data is a halfword. The output on the next line consists of
the address and the contents of the halfword location. The
address has a segment descriptor appended (I indicating impure).
The address parameters in the EXAMINE and MODIFY commands in this
session do not need segment descriptors, because the default
segment 1is the impure segment.

The MODIFY command changes the halfword value at 42 from 4000 to
4001. Because of the halfword orientation, the value of byte 42
is also specified. The keyword 'ABS' specifies that the type of
data to be inserted is absolute.

Neither EXAMINE command is necessary, but it is good practice to
ensure that the correct location is being changed and that the
change has occurred correctly. -

The SAVE command causes the updated object program to be copied
to the (file NEWSUB1.0OBJ. At this point, another program can be
patched by starting with a new OBJECT or IMAGE command. See
Chapter 3 for image patching.

The END command terminates Patch.

5.3 PATCHING A BLOCK DATA SUBPROGRAM

If the change made in the previous section was to be made within
a common block named COMMONA in a block data subprogram, a
slightly different procedure would be followed. The following
example 1illustrates the use of the BLOCK command in conjunction
with the BL code in the MODIFY command.

5-2 48-016 F0O ROl

Example:

>OBJECT SUB2.0BJ,NEWSUBZ2.OBJ
>GET SUB2
>BLOCK COMMONA

COMMON BLOCK COMMONA
>EXAMINE 42, BLOCK

0042:1 4000
>MODIFY 42,BL,4001
>EXAMINE 42, BLOCK

0042:1 4001
>SAVE
>END

The OBJECT and GET commands perform as described in Section 5.2.

The BLOCK command selects the common block named COMMONA. The
addresses of subsequent EXAMINE and MODIFY commands (with BLOCK
keyword and BL code, respectively) are treated as offsets from
the beginning of COMMONA.

The EXAMINE and MODIFY commands display and change the contents
of specified 1locations within a block data subprogram. Offsets
within common blocks are determined by the address specified in
the EXAMINE or MODIFY command plus the current impure bias. In
this example the impure bias is zero, which is the initial value
for all biases.

The SAVE and END commands save the patched object module and
terminate patch.

5.4 ADDING CODE TO OBJECT MODULES

Assume that SUB3.0BJ contains an object module with both pure and
impure code. In this case, you would like to insert some pure
code, making the object module larger.

The technigque used has two steps. First, replace the two
halfwords before the insertion point with a branch to a patch
area. Second, put the replaced code in the patch area, followed
by the code to be inserted, and then a branch back to the
original code. You would also like to label this change so that
it 1is possible to tell that a patch has been applied. Finally,
the result 1is saved on NEWSUB3.0OBJ. The following example
illustrates changing and adding code to a pure segment.

48-016 FOO ROl 5-3

Example:

>OBJECT SUB3.0BJ,NEWSUB3.0BJ
>GET SUB3
>EXPAND P, 14

PATCH AREA 1234:P 14
JEXAMINE 42:P,2

0042:P 0834 OA35
JRANGE 42,1234

RANGE : 91EE
>MODIFY 42:P,ABS,4300,91EE
>EXAMINE 42:P,2

0042:P 4300 91EE
>BIAS 1234:P

PURE BIAS 1234
>RANGE 123E, 46

RANGE : EE04
>MODIFY 0,ABS,834,A35
>MODIFY 4,CO,5A30,4000,COMMONAL, 8
>MODIFY A,ABS,4300,EE04
>EXAMINE 0,5

1234:P 0834 0A35 5A30 4000 0000
>EXAMINE 4, COMMON

1238: P COMMONAL 8
>EXAMINE A,2

123E:P 4300 EEO4
>IDNO 12345,PEDS
>SAVE
>END

The OBJECT and GET commands are similar to those used in the
previous two examples. The EXPAND command creates a patch area
at the end of the pure code, the contents of which are initially
undefined. The response gives the address of the beginning of
the patch area, its segment descriptor and its size in bytes.

The second parameter in the first EXAMINE command specifies, in
decimal, the number of halfwords to display, starting at the
address specified by the first parameter. Here, the two

halfwords to be moved to the patch area are displayed.

The first RANGE command gives the relative displacement between
two addresses 1in a form suitable for subsequent use in an RXZ2
instruction. The first parameter 1is the address of the
instruction. The second parameter is the target address. An
error message is output if the two addresses are not within RX2
range.

The first MODIFY command with ABS data type changes two halfword
values starting at the address specified in the first parameter.
In this example, the two values constitute an RX2 instruction,
which is a branch to the patch area.

5-4 48-016 F0O0 RO1

Now you have inserted a branch to the patch area where new code
is to be added. The code replaced by the branch instruction must
be the first code inserted in the patch area.

After verifying the change, the pure bias is set to the beginning

of the patch area. This allows locations to be addressed
relative to the beginning of the patch area in subsequent EXAMINE
and MODIFY commands. (Initially the bias is 0 and the default

segment descriptor is I for impure.)

The BIAS command also sets the default segment descriptor for
succeeding EXAMINE and MODIFY commands to P for pure.

The second RANGE command computes the displacement from the end
of the patch area back to the original code. The next MODIFY
command puts the replaced code into the patch area. The ABS
keyword is used because the replaced code contains no relocatable
data.

The third MODIFY command adds an RX3 instruction that references
a location (8) within a common block named COMMONAl. Since RX3
instructions are represented by loader items different from
absolute data, a different code is used in the second parameter.
The code 'CO' indicates a common reference with the next two
parameters giving the absolute part of the RX3 instruction,
followed by the common block name and displacement of the RX3
target address. Other codes are used for RX3 instructions that
reference pure, impure or external addresses. There are also
codes for address constants and for data in Dblock data
subprograms.

The fourth MODIFY command appends the instruction that branches
back to the original code. Since this branch is an RX2
instruction, it can be treated as absolute data.

Each of the last three EXAMINE commands corresponds to and
verifies one of the previous MODIFY commands. The fifth EXAMINE
command illustrates how to display a common reference.

The IDNO command associates a positive number (0 to 32,767) and
up to four alphanumeric characters with the patches made in this
session. The label, called a patch control ID, can be displayed
by the REVISION or TABLE command with NEWSUB3.0OBJ as the input
file (see Chapter 3).

The SAVE and END commands save the patched object module and
terminate Patch.

48-016 F0O ROl 5-5

-

5.5 MODIFYING OBJECT LIBRARIES

Assume that the second and fourth object modules in an object
library named OBJLIB.LIB are to be patched. The object library
has five programs named PROGl through PROG5. The result is to be
a new object library named OBJLIB2.LIB with the new versions of
PROG2 and PROG4 and the old versions of PROGl, PROG3 and PROGS.
The following illustrates patching the object library OBJLIB.LIB.

Example:

>OBJECT OBJLIB.LIB,OBJLIB2.LIB,LIBRARY
>GET PROG2,COPY
>EXAMINE 1000
1000:1 1234
>MODIFY 1000,ABS,5678
EXAMINE 1000
1000:1 5678
>SAVE NOCOPY
>GET PROG4
>EXAMINE 1000
1000:1 1234
>MODIFY 1000,ABS,5678
1000:1 5678
>EXAMINE 1000
>SAVE, TERMINATE
>END

The third parameter of the OBJECT command specifies that the
input file is an object library.

In addition to specifying the program to be patched, the GET
command causes all programs before PROG2 to be copied to the
output file. Leaving out the COPY keyword would still result in
PROGl1 being 1in the new library file since COPY is the default
option.

The next three commands (MODIFY, EXAMINE and SAVE) illustrate a
sample patching sequence followed by a command to save the
patched version of PROG2. NOCOPY indicates that the remaining
modules in the input file are not to be transferred to the output
file.

The second GET command causes PROG3 to be copied to the output
file and specifies PROG4 as the next module to be patched.
Modules must be selected for patching in the same order that they
appear in the object library.

The same patching sequence (EXAMINE, MODIFY, EXAMINE and SAVE) is
applied to PROG5. The SAVE command specifies that the rest of
the input file 1is to be copied to the output file and that no
more processing of this 1library will occur. If the NOCOPY,
TERMINATE parameters had been specified 1in the SAVE command,
PROG5 would not be in the new library file.

5-6 48-016 F0O0 RO1

adr !
BIAS (A
variable

BLOCK [name]

COMMAND fd [, RETURN]

D
DISPLAY
P

name

XQBJECT

APPENDIX A

COMMAND SUMMARY

DUMP \asK [,[rec,] [,[reczj Etitle':l]]

*0S
END
[(PATCH
[e] hexadr'E{
EXAMINE var iable

CURRENT

48-016 FOO RO1

A

}offset:]

BLOCK [n]
, { COMMON

n

P
i EXPAND|<{Ad,n ,[:variablél

I

name

XQBJECT
GET '
X*TASK

NOCOP Y}]

HELP [command name]

*x0S

IDNO [n] [[charstring]

i IMAGE [fd1 ,[fd2] [,QOMPOUNDJ [,NQHISTORY] [mPLACE]]

LisT [£d]
ON
LOG []
QFF
MAXLU [nj
PATCH I: {P}:\]
HEY Y
&ﬂ hexadr I
+ data[,datan]
MODIFY variable { }offset [Lcode] ,{
- variable [,variabley]
CURRENT
L .

(exname [, exdisp]

coname,codisp

B //.codisp

A-2 48-016 FOO RO1

MXSPACE [n]

NAME [name]

NEWIDNO [n] [,charstring]
QBJECT [fd1 . [}fdzj [',LIBRARy]]

i | | 1

ftened] |

OUNT‘NG}] [{mc }
}] [{

QVERLAY [namé:] '
PAUSE

PRIORITY [inipri,maxpri]

PATCH P "BPATCH P
[€] hexadr {%Ag} [{+}offset] ’ g’ (€] hexdr I:%A;} l:{+}°f fse% [variabls]
variable I - j‘var iable I -

RANGE

CURRENT CURRENT

name]
*QBJECT
REVISION ['titlel]
*TASK
*x0s
L .

—

48-016 FOO ROl A-3

e

SEND STOPR

SHARED NAME=sname.ext

b

NOCOPY
[L TERMINATE]

ACCESS=

[?12E=([minsize] [}maxsizgj)]

TABLE [titlel]

adr P
TRANSFER { :{A
variable I

stadr
TSW | [status] ,
variable

=value
VARITIABLE vname {
,DELETE

PATCH

VERIFY variable

CURRENT

[e] hexadr [{?}] B+}offset]

data [; .. .datay]

variable E ...variableq]

BLOCK Bda’ca [---datap)

1
variable [;...variablep]

48-016

]

FOO ROl

APPENDIX B
PATCH MESSAGE SUMMARY

aaaaa:s OUT OF RANGE

The address specified by aaaaa:s is outside the boundaries of
the selected program. Use the EXPAND command to extend the
boundaries of the program.

ABSOLUTE BIAS nnnnn

ARG

ARG

This is an information message given in response to a BIAS or
DISPLAY command. The current absolute bias (nnnnn) is
displayed and the message is preceded by an asterisk (*) if
the default segment descriptor is :A.

#nn - ADR ERROR

The address part of argument nn contains no data or contains
nonhexadecimal characters.

#nn - ADR OUT OF RANGE

The address specified by the nnth argument is negative or
greater than 224 -1.

#nn - INCONSISTENT

The nnth argument is inconsistent with a previous argument.
For example, the last record is less than the first record in
a DUMP command, or conflicting options are specified in an
OPTION command.

$nn - INVALID NAME FORMAT

The nnth argument is not a valid name for either a program or
a COMMON block. Names must be from 1 to 8 alphanumeric
characters starting with an alphabetic character. For names,
the commercial at sign (@), dollar sign ($) and a period (.)
are acceptable as alphabetic characters.

48-016 F00 RO1 B-1

ARG

ARG

ARG

ARG

#nn - INVALID PARAMETER NAME

The nnth argument is not one of the parameter choices for
that argument.

#nn - INVALID SEGMENT ID

The nnth argument contains a segment descriptor that is not
P, Aor I.

#nn - MISSING

The nnth argument is missing and is required.

#nn - NO DATA ENTERED

The nnth argument is null and is required.

$nn - NOT HALFWORD ADDRESS

An odd address is specified in argument nn. An even address
is required.

. #nn - SEGMENT ID MISSING

The nnth argument is an address specified without a segment
descriptor and a segment descriptor is required.

#nn - SYNTAX ERROR

An invalid delimiter or improper argument format (e.g., an
alphabetic character in a decimal number) is detected in
argument nn.

$nn - TOO MANY CHARACTERS

The character string specified in argument nn exceeds the
maximum number of characters allowed.

#nn - VALUE OUT OF RANGE

Argument nn is not within the range specified for that
argument . ,

48-016 FOO ROl

ARGUMENT(S) MISSING

The command just issued does not have all of its required
arguments.

CANNOT CHANGE PROGRAM NAME

The object program being modified does not have a name. The
name can only be changed if one was originally present.

COMMON BLOCK nnnnnnnn

This is an information message given in response to a BLOCK
command without arguments or a DISPLAY P command. The name
of the currently selected common block (nnnnnnnn) 1is given.
The word UNDEFINED is wused if no COMMON block has been
selected.

COMMON BLOCK NOT DEFINED

The command just issued assumed a current common block when
one was not defined. Use the BLOCK command to select a
current common block.

COMMON BLOCK NOT IN PROGRAM

The currently selected common block does not exist in the
current program.

CONTIGUOUS FILE ALLOCATION FAILED

An attempt to convert the output file from an indexed file to
a contiguous file has failed. The indexed version of the
output file 1is saved. (The output file can be converted at
a later date to a contiguous file wusing 0S/32 COPY.) See
Section 3.29 on the SAVE command. This is an information
message and does not cause termination of Patch.

CONTIGUOUS FILE RENAME ERROR

The output: file has been converted from an indexed file to a
contiguous file, but an error has been encountered during the
rename operation. In batch mode, Patch terminates and the
output is lost. In interactive mode, Patch pauses, and when
continued, retries the rename operation.

48-016 FOO ROl B-3

DESTINATION ADR. OUT OF RX2 RANGE

The addresses specified in a RANGE command exceed the range
of an RX2 instruction.

DISPLACEMENT OUT OF RANGE

In attempting to MODIFY a common reference instruction, the
displacement value exceeds the size of the specified common
block.

DUPLICATE VARIABLE NAME

A request to add a previously defined variable was entered.

FILE ERROR: xx LU nn eeee
USE IS ffff

There has been a supervisor call 7 (SVC7) error on logical
unit (lu) nn. The error status is xx and specifies the type
of error described by eeee. Possible error types are:

ASSIGNMENT ERROR
BUFFER ERROR

FILE DESCRIPTOR ERROR
I1/0 ERROR

NAME ERROR

PRIVILEGE ERROR
PROTECT ERROR

SIZE ERROR

TYPE ERROR

VOLUME ERROR

The field ffff indicates the wusage of the specified 1lu.
Possible values are:

COMMAND INPUT
INPUT FILE
LIST OUTPUT
MESSAGE OUTPUT
OUTPUT FILE
SCRATCH FILE

FILE IS NOT COMPOUND

The IMAGE command just issued identified the input as a
compound overlay file when it is not.

B-4 48-016 F0OO RO1l

NO RETURN IN EFFECT
If an end of data indicator is encountered and RETURN is not
in effect, the indicator is ignored and this message is
generated.

IMAGE FILES UNASSIGNED
This is an information message given in response to an IMAGE

command without arguments or a DISPLAY D command. No files
have been assigned by a previous IMAGE command.

IMAGE INPUT ON fdl
IMAGE OUTPUT ON fd2

This is an information message given in response to an IMAGE
command without arguments or a DISPLAY D command. The input
and output files specified in the last IMAGE command are
given by fdl and fd2, respectively.
IMPURE BIAS nnnnn

This is an information message given in response to a BIAS or
DISPLAY P command. The current impure bias (nnnnn) is given,
and the message is preceded by an asterisk (*) if the default
segment descriptor is :1I.

INVALID COMMAND - IMAGE + LIBRARY

An image file cannot be a LIBRARY but can be COMPOUND.

INVALID COMMAND INPUT SPECIFICATION

The file descriptor (fd) specified as the command input

device in the START parameters is invalid or contains a
syntax error.

INVALID COMMAND MNEMONIC

The command just issued is not a legal command.

INVALID COMMAND -- OBJECT + COMPOUND

An object file cannot be COMPOUND but can be a LIBRARY.

48-016 FOO RO1 B-5

INVALID COMMAND SEQUENCE
The command just issued requires another command to be
entered first (see Section 6.2).
INVAL.ID COMMAND SYNTAX
The syntax of the command just entered is wrong. Check for
illegal arguments and delimiters. The command mnemonic must
be separated from its first argument by a blank.
INVALID FD
A device name (other than NULL:) was given as an input or
output file in an IMAGE or OBJECT command.
INVALID KEYWORD
A keyword other than COMMAND or LIST is specified as a START
parameter.
INVALID LIST OUTPUT SPECIFICATION
. The fd specified as the list device in the START parameters
is invalid or contains a syntax error. :
INVALLID VALUE SPECIFIED
Any value specified that is not a valid hexadecimal value or
exceeds the boundaries will generate this message.
INVALID VARIABLE NAME
Variable name is invalid due to syntax error(s).
I/0 ERROR: xx LU nn eeee
USE IS ffff
There is an SVC1l error on lu nn. The error status is xx and

gspecifies the type of error described by eeee. Possible
error types are:

DEVICE UNAVAILABLE
END OF FILE

END OF MEDIUM
ILLEGAL/JUNASSIGNED LU
PARITY/RECOVER ERROR
UNRECOVERABLE ERROR

B-6 48-016 FO0O ROl

The field ffff indicates the wusage of the 1lu. Possible
values are:

COMMAND INPUT
INPUT FILE
LIST OUTPUT
MESSAGE OUTPUT
OUTPUT FILE
SCRATCH FILE

LIST DEVICE fd

This is an information message given in response to a LIST
command without arguments or a DISPLAY D command. The
current list device is specified by fd.

LOG MODE = status

This is an information message given in response to a LOG
command without arguments or a DISPLAY D command. The
current status (ON or OFF) of command logging is displayed.

LU nn UNASSIGNED
USE IS ffff

lu nn has been closed. The field ffff specifies the usage
for this lu. Possible values are:

COMMAND INPUT
INPUT FILE
LIST OUTPUT
MESSAGE OUTPUT
OUTPUT FILE
SCRATCH FILE

MISSING OR INVALID PROG. NAME

A program name 1is incorrect or not specified when it is
required.

NESTING OF COMMAND FUNCTION ILLEGAL

This message will be generated if a COMMAND command is issued
from a secondary command file while return is in effect.

48-016 F0O ROl B-7

NO

NO

NO

NO

NO

NO

NO

NO

ABS SEGMENT

An address with an absolute segment descriptor (:A) has been
specified and there is no absolute code in the program. Use
the EXPAND command to allow absolute code to be entered.

COMMON REF AT THIS ADR
An EXAMINE command with a common keyword is specified, but
the address given is not the beginning of an instruction that
references common.
ENTRIES IN VARIABLE TABLE
An attempt was made to list all variables when no variables
were defined.
EXPAND REQUEST FOR sssss
This is an information message given in response to an EXPAND
command without arguments, an EXAMINE or DISPLAY with an
invalid Patch argument, an EXPAND command during INPLACE
patching or a DISPLAY P command. There have been no EXPAND
requests for the segment specified by sssss.
FILES ASSIGNED
The command just issued requires assignment of an input or
output file by an IMAGE or OBJECT command and none have been
assigned.
IMPURE SEGMENT
An address with an impure segment descriptor (:I) has been
specified and there is no impure segment.
PATCH HISTORY FOUND
This is an information message given 1in response to a
REVISION command. An attempt has been made to display the
Patch history of a program or a file of programs and no
history was found.
HISTORY RECORDS MAINTAINED
No history records are maintained for inplace patching. This

is displayed when INPLACE keyword is specified in the IMAGE
command .

48-016 FOO ROl

NO PROGRAM LOADED FOR PATCHING

The command just issued requires a program and none has been
selected. Use the GET command to select a program.

NO PURE SEGMENT

An address with a pure segment descriptor (:P) has been
specified and there is no pure segment.

NO ROOM TO EXPAND

The workspace does not contain enough space to allow the
requested EXPAND. Existing data can be modified but no more
EXPANDs can be done. The current program can be SAVEd and
the saved version used as input in a new session or the whole
session can be repeated using a larger workspace size or a
scratch file. Reducing the workspace size below the size of
the program forces allocation of a scratch file (see Section
2.1).

NO ROOM TO RECORD HISTORY

NOT

The Patch history workspace does not contain enough space to
allow the requested command. The current program should be
SAVEd and the saved version used as input in a new session.

IN COMMAND REPERTOIRE

The argument specified in a HELP command is not the name of
a valid command. To obtain a list of Patch commands, enter
HELP without any arguments.

OBJECT FILES UNASSIGNED

This is an information message given in response to an OBJECT
command without arguments or a DISPLAY D command. No files
have been assigned by a previous command.

OBJECT INPUT ON fd
OBJECT OUTPUT ON fd

This is an information message given in response to an OBJECT
command without arguments or a DISPLAY D command. The input
and output files specified in the last OBJECT command are
given by fd and fd , respectively.

48-016 F00O ROl B-9

OPTION INPLACE PROHIBITS EXPAND

An attempt to use the EXPAND command was made while the
option INPLACE was specified.

PATCH AREA aaaaa:s zzzz
This is an information message in response to an EXPAND or

DISPLAY P command. The starting address (aaaaa:s) and the

size (zzzz) of each Patch area created by an EXPAND command
are displayed.

PATCH MODE ERROR

An attempt has been made to issue a command that is not valid
for the type of program being patched.

PROGRAM NOT FOUND
The program specified in a GET command could not be found on
the input file. When *0S is specified, and the specified
operating system file was created using DISCINIT, an error
can result if an older version of DISCINIT was used. Patch

requires that the current version of DISCINIT (R02-03 or
- higher) be used to create the 0S file.

PURE BIAS nnnnn

This is an information message given in response to a BIAS or
DISPLAY P command. The current pure bias (nnnnn) is given
and the message is preceded by an asterisk (*) if the default
segment descriptor is P.

RANGE : nnnn

This is an information message given in response to a RANGE
command. The requested RX2 displacement is nnnn.

RECORD NOT FOUND

A record number specified in a DUMP command is not within the
input file limits.

REQUESTED LIB NOT FOUND

The loader information block (LIB) requested does not exist.

B-10 48-016 FOO ROl

SAVE CURRENT PROGRAM
An attempt has been made to exit Patch (END command), or to
select another program for patching (GET command) without
saving the previous program. This is a warning message when
issued in interactive mode. If GET or END is issued again,
normal processing occurs. In batch mode, Patch terminates
execution after outputting the warning message.

SCRATCH FILE ALLOCATED
In memory, workspace reserved by the LOAD command or by the
0S/32 Link OPTION WORK command is not large enough to hold
the program to be patched. A scratch file has been allocated
for Patch workspace. This is an information message only.

TEMPFILE ASSIGNMENT FAILS
An error was encountered while attempting to assign a
temporary scratch file.

TOO MANY ARGUMENTS
The command just entered has more than the maximum number of
arguments for that command.

USE REVISION CMD FOR HISTORY RECORDS

An LIB command has attempted to display a history record.
The REVISION command must be used.

VARIABLE NOT DEF INED

A VARIABLE DELETE command has been specified for a variable
that does not exist.

VARIABLE TABLE FULL

An attempt to use the VARIABLE command has been specified
when the maximum of 20 variables has been defined.

VERIFY ERROR : LOC=nnnnnn EXPECTED=nnnn ACTUAL=nnnn

The contents of the location(s) do not match the expected
value(s).

48-016 F00 ROl B-11

VERIFY NO ERROR

e am e e e W A MMt MM M MM MRGE N AR SRAE RGN MR MR GREE AR AT MRS MR dm e MM e Gmem AR e e

The contents of the location(s) are verified
expected value(s).

TABLE B-1 END OF TASK CODES

against the

CODE

0

1

2

10

11

12

MEANING
Normal termination
Invalid keyword in START command
Invalid command input file/devicé
Command device assign error
Command device fetch attributes error
List device assign error
Message device assign error
Not used

Invalid list output file/device

START command syntax error or too many parameters

Input/output (I1/0) error in batch mode
1/0 error in interactive mode

Unrecoverable error in batch mode

Disk I1/0 error in interactive mode during history

creation

48-016 FO00 RO1

APPENDIX C
PERKIN-ELMER 32-BIT OBJECT FORMAT

This appendix describes the format of object code produced by
Common Assembly Language (CAL).

Modules in Perkin-Elmer 32-bit object format are divided into
records. Each record contains 126 bytes of information. The
first four bytes of each record are organized as follows:

The sequence numbers are sequential negative integers -1, -2, -3,
etc., represented in two's complement form. The first record in
a program must have sequence number -1. Subsequent records must
be in proper order to be loaded.

The checksum is an Exclusive-OR sum of all haifwords in the
record, except itself, plus a halfword of all ONEs.

The remainder of the record is a sequence of items; an item is a
byte of loader information. There are two types of items:
loader items and data items. Each loader item is followed by a
certain number (which might be zero) of data items. The loader
items and their meanings are listed in Table C-1.

History records are appended at the end of the object data.

48-016 F0OO RO1 c-1

TABLE C-1 LOADER ITEM DEFINITIONS

en mmem mren wen mmen S R W maE AR S G mmm RS S Ge M Eh A ST ERe MEGY MRS MR e S AMEE MR mGs wmde MG M G e ARG Mm e mmar e e e wa e e e - mmo

@

(=]

=

vz

10

11

12
13

14

15

16

en wmen e e dmen e T . E—. AR A A MmE RGN MG mme AR MAr Madn mde wadn EEn Aem AmOn e wAmn mee MO Mo e MM e emer Mmen CMEm MM Emer A e A dmA e Amas

Common definition
Program label

3 bytes absolute and 3
bytes pure relocatable

3 bytes absolute and 3
bytes impure relocatable
Load program transfer
Def ine starlL of chain
(reference)

Load chain definition
address

2 bytes absolute and 2
bytes pure relocatable

2 bytes absolute and 2
bytes impure relocatable

by item 4, 5 or 6

8-byte
by a 3-

8-character name

6 bytes
6 bytes

Item 4,
Item 4,

item 4,
4 bytes

4 bytes

{ NUMBER OF DATA ITEMS |

MEANING | FOLLOWING H

4 2 32 5 2 3 & 2 2 2 4 2 & 2 A & b F 3 &+ 2 i b i 23 i 2 2 24 & F 2 2342 3 23 533 :
End of record None !
End of program None !
Reset sequence number None i
Block data indicator 8-byte name, i
3-byte displacement, |

any absolute data '

item (20-5B) |

Absolute program address 3-byte address i
Pure relocatable program 3-byte address i
address : i
Impure relocatable program 3-byte address H
address !
2 bytes of pure relocatable 2-byte address |
data }
2 bytes of impure 2-byte address H
relocatable data H
4 bytes of pure relocatable 4-byte address H
data i
]

t

4 bytes of impure relocat- 4-byte address H
able data i
Common reference 8-byte address, i
3-byte displacement i

EXTRN 8-byte name, followed |
by item 4, 5 or 6 i

ENTRY 8-byte name, followed |
]

|

:

=

]

]

i

i

1

[}

)

[}

i

i

i

i

i

i

i

i

i

name, followed
byte length

5 or 6

48-016 F0O0 ROl

TABLE C-1 LOADER ITEM DEFINITIONS (Continued)

LOADER |
ITEM |

17
18
19
1A
1B
1c
1D

1E
1F

20
21

22
23

5B
5C

5D

5E
5F

60
61
62
63

64

A A . AT MR A AR WS MRAe MRAr MR A RS i G MG MREE GREE TS SRGe AT WA MmAr YEE AR AMSE AT AU GRES MG TS RGP GAEE S ARSE GRS GRS MM MEr SRer AT MG Mmee e mer e w——

48-016 FO0O

MEANING
Short form EXTRN

Length of impure and pure
segments
Perform fullword chain

Perform halfword chain

No operation

2-byte pure translation
table address

2-byte impure translation
table address

Not. used

1 byte absolute data

bytes absolute data
bytes absolute data
bytes absolute data
bytes absolute data

e N

i20 bytes absolute data

‘Define pure location counter

Def ine impure location
counter

No operation
Load program address

4 bytes relocatable data
2 bytes ABS/ 2 bytes
relocation

3 bytes ABS/ 3 bytes
relocation

Load translate table
address

ROL

NUMBER OF DATA ITEMS
FOLL.OWING
8-byte name and item

4, 5 or 6
3-byte impure length
and 3-byte pure

None

None
None
2 bytes

2 bytes

N/A
1 byte

bytes
bytes
bytes
bytes

r OOVE N

i20 bytes
l-byte location

number,

8-byte section name

and

8-byte pool name
l-byte location

number,

8-byte section name

and

8-byte pool name

None

l-byte location
number and 3-byte
relocate address

2 bytes
4 bytes
4 bytes

6 bytes

l-byte location
number and 2 bytes

data

e e St SR S e s e Sodn e N e e G AU when e M MM dne Ame RMTe etm Smew MM e Seen e Ee GG G Gmer SRde G i G N SEe e Emey Mmde e Gmee Yeee Smee mes NG GG Smde amee

e Emar Emer Emee e mer Eev mar WG EEGe e MM M Mmem MM Rt Seem Geer A SR GmEe e wmE w— e

TABLE C-1 LOADER ITEM DEFINITIONS (Continued)

{ NUMBER OF DATA ITEMS

MEAN ING H FOLLOWING
Extended extrn reference i 8-byte external
symbol name, l-byte
flag, xxxx xx00
standard extern,
xxxx xx01 weak extrn,
xxxx xx10 include
extrn,
4-byte offset item 4,
5 or 6
8-byte entry symbol,
1l-byte flag,

J
=
=
=
:
:
;
:
=
66 '
!
I
i xxxx xx00 standard
[
;
|
|
[
i
%
|
|
d

Extended entry

entry,

xxxx xx01 data entry,
xXXx xx10 weak entry
item 4, 5 or 6
l-byte length and 1
to 80 characters of
command

8-byte block name,
8-byte pool name and
3-byte length

67 LINK commands

68 Declare common block

Cc-4 48-016 F0O0 RO1

APPENDIX D
PERKIN-~-ELMER 32-BIT IMAGE FORMAT

This appendix describes the format of image modules that can be
loaded by 0S/32 MTR03-01 or higher.

Modules in Perkin-Elmer 32-bit image format consist of. 256-byte
records. These records contain one or more loader information
blocks (LIBs) followed by one or two image segments. Figure D-1
illustrates this format.

The format of an LIB depends on the type of image module. The
formats for tasks, operating system images, resident libraries,
task commons and overlays are given in Tables D-1 through D-7.

Patch history records are inserted following the LIBs, and before
the image segments.

The image segment(s) contain the module as it appears in memory.

NUMBER OF LIBS

i Lo i L | i H | i H | i S | PS P P N
I boTo bIog I i E P E i U i U
i B j....1 B | i 8 t....1 8 | i Gl....1 G | I R | .1 R |
i i | ! i T I i i i i I O i E |
i 0| i 0 | i 0 | in i 0 i n i 0 iono
LIBs History Impure segment Pure segment
created by records or OS segment (segmented
TET produced or resident task only)
by 0S/32 or task common
Patch or overlay(s)

Figure D-1 Image Module Format

48-016 FOO ROl D-1

TABLE D-1 TASK AND OS IMAGE LIB PRODUCED BY TET

unused=3 bits, segment
register=4 bits, TCOM segment
size=4 bytes)

| BYTE OFFSET | NUMBER BYTES | USAGE '
= 3 3+ 20 1 & A 4 3 2 3 3 3 3 2 3 & 23 & 2 3 2 3 A % 3 -3 3 3% 2 -3 3 3 B & 33 2 3 32 3 2 3 -2 3 32-& 3 3 3 32 2 $_ 3 3 3 B- 3 3 J I
! 0(0) ! 1 | Type of module (=1 for task) !
| 1(1) i 1 i Number of LIBs (including i
i ! i history records) |
| 2(2) H 1 { Maximum number of logical units |
| 3(3) i 1 { Not used !
! 4(4) | 1 { Maximum priority '
! 5(5) ! 1 i Initial priority |
! 6(6) | 1 { Pure segment register H
! 7(7) H 1 | Number of task commons i
| 8(8) H 1 | Number of resident libraries i
! 9(9) ' 1 | Not used i
i 10(A) | 2 | Task options i
| 12(C) ! 4 | Size of impure segment in |
i i | sectors !
! 16(10) ! 4 | Start address of overlay area |
i 20(14) ' 4 | Maximum system space available |
| 24 (18) i 8 ! Initial task status word (TSW) |
i H ! (status + start address) !
i 32(20) | 4 { Size of pure segment in sectors |
| 36(24) H 4 | Starting record number of pure i
i i i segment |
| 40(28) | 4 | Not used '
| 44 (2C) ! 16 ! TET ID (name and revision level) |
i 60(3C) | 2 | Number of history records i
' 62(3E) i 2 | Starting record number of i
| | | history records |
1 64(40) ! 16 ! Not used i
| 80(50) | 16 | Date/time established |
! 96 (60) ! 4 i Not used |
H 100(64) | 4 | CTOP (end of impure segment) i
1 104 (68) i 4 { UTOP (end of impure code and |
i 1 | overlay area) i
H l108(6C) H 12/entry | Resident library names (name=11 |
H i i bytes, segment register=1 byte) |
i After RL | 16/entry | Task common names (name=1l1l |
{ entries i | bytes, access attribute=1 bit, i
] 1 1]
z ; | |
i | i i

NOTE

If there are enough resident library
and/or task common entries, these fields
may extend into a second LIB. Entries
are aligned so that they do not cross LIB
sector boundaries.

D-2 48-016 F00 RO1

TABLE D-2 RESIDENT LIBRARY LIB PRODUCED BY TET

! BYTE OFFSET | NUMBER BYTES | USAGE i
= =2 2 & 3 2 & 3 3 & 2 & 5 & 32 2 3 2 32 2 2 2 2 £ 2 3 5 £ - 2 22 3 1 1 2 3 £+ 5 25132+ 212334 E 4t 2333 =
' 0(0) 1 1 { Type of module (=3 for resident |
| i { library) i
| 1(1) | 1 | Number of LIBs (including i
H | | history records) i
! 2(2) H 1l i Not used !
i 3(3) H 1 i Resident library segment i
i i | register i
1 4(4) ! 8 { Not used !
H 12(C) ! 4 | Size of segment in sectors |
' 16(10) i 4 i Number of entry points H
! 20(14) ! 12 { Not used H
i 32(20)] 11 { Segment name !
! 43(2B) : 1 { Not used i
/ 44 (2C) H 16 { TET ID (name and revision level) |
! 60(3C) ! 2 i Number of history records H
' 62 (3E) H 2 | Starting record number of i
! ! | history records H
H 64 (40) } 16 { Not used H
H 80(50) ! 16 { Date/time established !
i 96(60) ! 4 i Not used H
H 100(64) } 4 { CTOP (end of segment) H
' 104 (68) ! 4 { UTOP (end of code) i
H 108(6C) H 12/entry i Entry points (name=8 bytes, i
] [}] 1
1 [} [} {

offset=4 bytes)

NOTE

If there are enough entry points, these
fields may extend into additional LIB.
Entries are aligned so that they do not
cross LIB sector boundaries.

48-016 FOO ROl D-3

TABLE D-3 TASK COMMON LIB PRODUCED BY TET

0(0)
1(1)

2(2)
12(C)
16(10)
32(20)
43(2B)
44(20)
60(3C)
62 (3E)

64(40)
80(50)
96(60)

100(64)

104 (68)

108 (6C)

BYTE OFFSET |

NUMBER BYTES

1

1

10
4
16
11
1
16
2
2

USAGE

Type of module (=4 for task
common)

Number of LIBs (including
history records)

Not used

Size of segment in sectors
Not used

Segment name

Not used

TET ID (name and revision level)
Number of history records
Starting record number of
history records

Not used

Date/time established

Not used

CTOP (end of segment)

UTOP (end of data)

Not used

—— mmen wAew MR mem mmem MmEr Emer Smee Mmee EEee EMe Wees mer Amem Emer e wmam mmee e -

{ BYTE OFFSET | NUMBER BYTES | USAGE i
32 25 & 3k & £ 2 & 3 2 & 4 & 5 & 2 & & 3 3 5 3 £ F 5 8 2 2 2 & L & 2 3 3+ 3 3 & & 2 2 2 & £ 2 3 3 2 2 F- 3 3 3 3 & 3 3 2 3 3 :
0(0) ! 1 i Type of module (=5 for overlay) !

1(1)] 1 { Number of LIBs (including i

i i history records) i

2(2) ' 10 ! Not used i
12(C) H 4 { Size of overlay in sectors H

16 (10) H 4 { Start address of overlay area H
20(14) ' 12 i Not used [
32(20) H 8 { Overlay name H
40(28) ! 4 i Not used !

44 (2C) i 16 { TET ID (name and revision level) |
60(3C) H 2 i Number of history records H
62(3E) - 2 { Starting record number of H

H { history records i

64 (40) H 16 i Not used H
80(50) ! 16 { Date/time established i

96 (60) H 160 ! Not used H

48-016 FO0O ROl

TABLE D-5 LIB PRODUCED BY LINK

{ BYTE OFFSET

0(0)
1(1)

2(2)
3(3)
4(4)
5(5)
6(6)
7(7)
8(8)
12(C)

16(10)

20(14)
24(18)

32(20)
36(24)

44 (2C)
60(3C)
62 (3E)

64(40)
66(42)
68(44)

72(48)
74(4R)
76(4C)

78 (4E)
80(50)
96 (60)

98(62)
100(64)
104(68)
108 (6C)

After shared
segment.
entries

48-016 FOO ROl

NUMBER BYTES

1
1

" b s
SEN NN NN N OBNN NND RS OB B AR RPRREE

20/entry

16/entry

USAGE

E3 31+ 3 1 5 2 2 & 2 3 3 £ 2 2 F & & 2 2 2 2 5 3 2 & 2 & 3 & 3 2 &5 2 & B R 2 & 2 2 £ 3 0 2 32 3 3 3 L BB 3 2 3 3 3 4 3 43

Type of module (=7 for task)
Number of LIBs (including

‘history records)

Maximum number of logical units
Not used

Maximum priority

Initial priority

Pure segment register

Number of shared segments

Task options

Size of impure segment in
sectors

Address of overlay reference
table in the root node
Maximum system space available
Initial TSW (status + start
address)

Size of pure segment in sectors
Starting record number of pure
segment

Task establishment ID

Number of history records
Starting record number of
history records

Number of overlay levels
Number of overlay nodes
Highest segmentation register
used

Starting record number of the
overlay descriptor table (ODT)
Starting record number for
impure segment

Number of shared segment entry
point/commons

Not used

Date/time established

Maximum queued input/output
(I/0) requests

Length in bytes of the ODT
CTOP (end of segment)

UTOP (end of code)

Sharable segment entry (name=11
bytes, segmentation register
number=1 byte, access priv-
ileges=1 byte, minimum size=3
bytes, reserved=1 byte,
maximum size=3 bytes)

Common entry (name=8 bytes,
type=1 byte, size=3 bytes,

[
I
1
t
3
I
[}
1
!
i
t
[}
]
J
i
i
I
'

¥
¥
1}
1
!
i
[}
]
!
1
f
1
L
1
t
)
!
[}
1
t
1
i
|
1
]
1
L]
1
t
]
1
1}
1
i
]
!
[}
|
[}
1
1
I
i
!
|
1
!
[}
1
]
|
]
1
]
i
]
!
)
'
]
]
1
]
1
!
[}
!
1
[}
[}
L}
]
1
1
t
i
|
]
]
I
1
t
1

]
reserved=1 byte, address=3 bytes)|

- — —————————— —————> T ———— T —— ———— T ————— ——— i —— ——— ——— — —— ——— — T — o —

NOTE

If there are enough entry points, these
fields may extend into additional LIB.
Entries are aligned so that they do not
cross LIB sector boundaries.

TABLE D-6 OPERATING SYSTEM IMAGE LIB PRODUCED BY LINK

{ BYTE OFFSET

1
i
|
it
i
il
1}
i
l
[
it
i
]

32(20)
44(2cC)
60(3C)
62 (3E)

64(40)
74 (4A)

76 (4C)
80(50)
96 (60)

100(64)
104 (68)
108(6C)

| NUMBER BYTES | USACE i
A 23 -3 3 A 32 32 A 2 23 -+ 2 32 32 32 3 32 2 2 32 2 333 2 2 3 3 3 A 3 -2 2R 3 0 3 3 B 00 B0 :
| 1 i Type of module (=8 for 0S) |
] 1 { Number of LIBs (including H
! i history records) |
H 10 { Not used !
i 4 | Size of segment in sectors i
H 4 { Not used !
i 4 | Maximum system space available H
[8 i Initial TSW (status + start !
! | address (=60))]
i 12 i Not used |
| 16 | Task establish ID |
| 2 i Number of history records |
| 2 | Starting record number of d
| i history records H
H 10 ! Not used i
! 2 | Starting record number for !
' | segment !
! 4 ! Not used !
i 16 | Date/time established |
! 4 { Not used |
! 4 { CTOP (end of segment) H
! 4 i UTOP (end of code) |
H 148 { Not used i

i - . e — i M ——— i —— - — T — —— - —— o ——— — —— 1 — " 7 —— a7 —- o o

48-016 FOO ROl

TABLE D-7 SHARED SEGMENT IMAGE LIB PRODUCED BY LINK

segment
entries

type=1 byte, size=3 bytes

! BYTE OFFSET | NUMBER BYTES | USAGE H
= ======------ﬂ--ﬂ-ﬂﬂ---’----ﬂ---:--B"-B--B-B=n================== =
i 0(0) H 1 i Type of module (=9 for shared]
i i i segment) |
H 1(1) H 1 | Number of LIBs (including]
! H i history records) H
' 2(2) ' 5 { Not used H
! 7(7) ! 1 i Number of shared segments H
H 8(8) H 4 i Not used H
H 12(C) H 4 | Size of segment in sectors !
it 16(10) 1 4 i Not used i
i 32(20) { 11 i Segment name |
! 43(2B) H 17 i Not used !
i 44(2C) ' 16 i Task establish ID H
! 60(3C) H 2 i Number of history records |
! 62(3E) i 2 | Starting record number of H
i { { history records H
i 64(40) ' 10 i Not used '
i 74(4A) H 2 i Starting record number for H
i 1 { segment i
{ 76(4C) ! 2 | Number of shared segment entry i
! ! | point/commons i
i 78(4E) ! 2 i Not used H
i 80(50) ! 16 i Date/time established !
! 96 (60) ! 4 !} Not used 1
{ 100(64) H 4 { CTOP (end of segment) i
{ 104(68) H 4 { UTOP (end of code) H
{ 108(6C) H 20/entry { Sharable segment entry (name=11 |
i H { bytes, segmentation register i
' H { number=1 byte, access priv- i
i H i ileges=1 byte, minimum size=3 '
H H | bytes, reserved=1l byte, maximum |
| i | size=3 bytes) !
{ After shared| 16/entry | Common entry (name=8 bytes, !
! ! | !
] 1) I

reserved=1 byte, address=3 bytes

NOTE

If there are enough entry points, these
fields may extend into additional LIBs.
Entries are aligned so that they do not
cross LIB section bcundaries.

48-016 FOO ROl D-7

A

Adding code
to image modules
to object modules

BIAS command

BLOCK command
Blocks

common

data subprograms

(o

CAL object code
COMMAND command
Commands

BIAS

BLOCK
COMMAND
DISPLAY
DUMP
END

EXAMINE
EXPAND
GET

HELP
IDNO

IMAGE

LIB
LIST
LOG
MAXILU
MODIFY

MXSPACE
NAME
NEWIDNO
OBJECT
OPTION
OVERLAY
PAUSE
PRIORITY
RANGE

REVISION
SAVE

SEND STOP

48-016 FO0O0 ROl

Wb w
I

w w
|
[Yo ¥

wt»ﬁ»?tu%chfﬁ-%>hcr%>ftff-w.hu:ptuu:w(»uapcuuzwta

1 1 |

BEDPDWWWWWWRNRPNNWNANBEHBAHREHONO WD =
NndwnN

INDEX

Commands (Continued)
SHARED
TABLE
TRANSFER
TSW
VARIABLE
VERIFY

Compound overlay files
Compound overlay files (TET)

modifying

D

DISPLAY command
Dump

image

object
DUMP command

END command
EXAMINE command

EXPAND command

File class
group
private
system

File descriptors

Filename

GET command

HELP command
History feature

1,J3,K
IDNO command
Image

module format
patching

3-63
3-65
3-66
3-67
3-69
3-71
1-2

4-5

3-9
3-14

3-12
3-11

IND-1

IMAGE command

LIB

0S image
0S image (Link)
overlay (TET)
produced by Link
resident library (TET)
shared segment (Link)
task common (TET)

LIB command

LIST command

Loader control item

Loader information block.

See LIB.

Loader items
definitions

Loading patch

LOG command

M

MAXLU command
Mode
image
object
MODIFY command

code table
MXSPACE command

NAME command
NEWIDNO command

0

OBJECT command
Object libraries
modifying
Object patching
OPTION command
OVERLAY command

P,Q

Patch
command summary

IND-2

[
>

[

| R I |

{

wtnU>Uth1?tJthzc(»
HFWOWANIWOBON
wWN

3-17
3-18
3-35
4-4

3-37
3-41

Patch (Continued)

control IDs
loading
message summary
requirements
starting
system components
Patch features
compound overlay files
history
image patching
object libraries
object patching
Patch image load module
building
formula
Patching
block data subprogram
image
object

task image module
PAUSE command
PRIORITY command
R
RANGE command

REVISION command

SAVE command

SEND STOP command
SHARED command
Starting Patch

Statement syntax conventions

T,U

TABLE command
TRANSFER command
Tree-structured overlays
modifying
TSW
command

TSW. See task status word.

vV, WX, Y, 2

VARIABLE command
VERIFY command

48-016 F0OO ROl

[
WP W~ N

]
MO N

i
-

|

1
(LN NS SR)

WWRUFRFO NN HHERERERE RPFNEDN -
i
S

PERKIN-ELMER

PUBLICATION COMMENT FORM

We try to make our publications easy to understand and free of errors. Our
users are an integral source of information for improving future revisions.
Please use this postage paid form to send us comments. corrections,
suggestions, etc.

1.

Publication number_ __ .

et s o e e e i e ke 4 i st i

2. Title of publication _
3. Describe., providing page numbers. any technical errors you
found. Attach additional sheet if neccessary.
4. Was the publication easy to understand? If no. why not?
5. Woere illustrations adequate?
6. What additions or deletions would you suggest? .
7. Other comments:
From Date

Position/Title

Company

Address

STAPLE STAPLE

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J.

POSTAGE WiLL BE PAID BY ADDRESSEE

PERKIN-ELLMER

Data Systems Group
106 Apple Street
Tinton Falls, NJ 07724

ATTN:
TECHNICAL SYSTEMS PUBLICATIONS DEPT.

STAPLE STAPLE

