
48-043 F 00 R 03

The information in this document is subject to change without notice and should not be

construed as a commitment bv The Perkin-Elmer Corporation. The Perkin-Elmer Corpo­

ration assumes no responsibilitv for any errors that may appear in this document.

The software described in this document is furnished under a license, and it can be used or

copied only in a manner permiued by that I icense. Any copy of the described software must

include any copyright notice, 1rademarks, or other legends or credits of The Perkin-Elmer

Corporation and/or its suppliers. Title to and ownership of the described software and any

copies thereof shall remain in The Perkin-Elmer Corporation and/or its suppliers.

The licensed programs described herein may contain certain encryptions or other devices

which may prevent or detect unauthorized use of the Licensed Software. Temporary use

permitted by the terms of the License Agreement may require assistance from The

Perkin-Elmer Corporation.

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of the

software on equipment that is not supplied by Perkin-Elmer.

© 1981, 1983, 1984, 198'5 The Perkin-Elmer Corporation - All Rights Reserved

The Perkin-Elmer Co·rporation, Data Systems Group, 2 Crescent Place,

Ciceanport, New Jersey 07757

Printecl in the United States of America

TABLE OF CONTENTS

PREFACE

CHAPTERS

1 GENERAL DESCRIPTION

1.1

1.2

1.3
1.3.l
1.3.2
1.3.3
1.3.4
1.3.5

1.4

1.4.1
1.4.2

1.5

1.6

1.7
1.7.1
1.7.2
1.7.3
1.7.4
1.7.5
1.7.6

1.8
1.8.1
1.8.2
1.8.2.1
1.8.3
1.8.4
1.8.4.1
1.8.4.2

INTRODUCTION

MULTI-TERMINAL MONITOR (MTM) OPERATION

USER INFORMATION
Multi-Terminal Monitor (MTM) Devices
Authorization
Privileged Users
Transmitting Messages
Number of Terminal Users

MULTI-TERMINAL MONITOR (MTM) SUBTASK
ENVIRONMENTS
Multi-Terminal Monitor (MTM) Terminal Modes
Interactive Task to Terminal Mode

MULTI-TERMINAL MONITOR (MTM) IN A
MULTIPROCESSOR ENVIRONMENT

LOADING A TASK

MULTI-TERMINAL MONITOR (MTM) SPECIAL FEATURES
Command Substitution System (CSS)
The Help Facility
Program Development Commands
Spooling
Security and Access Protection of Disks
Signon Command Substitution System (CSS)

CONVENTIONS
Prompt Conventions
Terminal Conventions
Using the BREAK Key
Command Conventions
File Conventions
Private Account Numbers
Group Account Numbers

48-043 FOO R03

ix

1-1

1-1

1-2
1-3
1-3
1-3
1-4
1-4

1-4
1-5
1-6

1-6

1-7

1-7
1-8
1-8
1-8
1-8
1-8
1-9

1-9
1-9
1-10
1-10
1-11
1-11
1-11
1-11

i

CHAPTERS (Continued)

1.8.4.3 System Account Numbers
1.8.4.4 File Descriptors (fds)

2 MULTI-TERMINAL MONITOR (MTM) USER COMMANDS

ii

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

2.19

2.20

2.21

2.22

2.23

2.24

INTRODUCTION

ALLOCATE COMMAND

ASSIGN COMMAND

BFILE COMMAND

BIAS COMMAND

BREAK COMMAND

BRECORD COMMAND

BUILD AND ENDB COMMANDS

CANCEL COMMAND

CLOSE COMMAND

CONTINUE COMMAND

DELETE COMMAND

DISPLAY COMMAND

DISPLAY ACCOUN~~ING COMMAND

DISPLAY DEVICES COMMAND

DISPLAY DFLOAT COMMAND

DISPLAY FILES COMMAND

DISPLAY FLOAT COMMAND

DISPLAY LU COMMAND

DISPLAY PARAME~rERS COMMAND

DISPLAY REGISTBRS COMMAND

DISPLAY TIME COMMAND

DISPLAY USERS COMMAND

ENABLE COMMAND

1-12
1-12

2-1

2-2

2-6

2-12

2-13

2-14

2-15

2-16

2-18

2-19

2-20

2-21

2-22

2-24

2-27

2-29

2-30

2-36

2-37

2-38

2-44

2-45

2-46

2-47

48-043 FOO R03

CHAPTERS (Continued)

2.25 EXAMINE COMMAND 2-49

2.26 FFILE COMMAND 2-51

2.27 FRECORD COMMAND 2-52

2.28 HELP COMMAND 2-53

2.29 !NIT COMMAND 2-55

2.30 LOAD COMMAND 2-56

2.31 LOG COMMAND 2-58

2.32 MESSAGE COMMAND 2-60

2.33 MODIFY COMMAND 2-61

2.34 OPTIONS COMMAND 2-63

2.35 PASSWORD COMMAND 2-65

2.36 PAUSE COMMAND 2-66

2.37 PREVENT COMMAND 2-67

2.38 PRINT COMMAND 2-68

2.39 PUNCH COMMAND 2-69

2.40 $RELEASE COMMAND 2-70

2.41 RENAME COMMAND 2-72

2.42 REPROTECT COMMAND 2-73

2.43 REWIND AND RW COMMANDS 2-74

2.44 RVOLUME COMMAND 2-75

2.45 SEND COMMAND 2-78

2.46 SET CSS COMMAND 2-79

2.47 SET GROUP COMMAND 2-80

2.48 SET KEYOPERATOR COMMAND 2-82

2.49 SET PRIVATE COMMAND 2-84

2.50 SIGNOFF COMMAND 2-86

2.51 SIGNON COMMAND 2-87

48-043 FOO R03 iii

CHAPTERS (Continued)

2.52

2.53

2.54

2.55

2.56

2.57

2.58

2.59

SPOOLFILE COMMAND

START COMMAND

TASK COMMAND

TEMPFILE COMMAN:O

VOLUME COMMAND

WFILE COMMAND

XALLOCATE COMMAND

XDELETE COMMAND

3 MULTI-TERMINAL MONITOR (MTM)/NON-MTM TASK INTERFACES

3.1

3.2
3.2.1

3.3

3.4

INTRODUCTION

INTERFACING WITH A FOREGROUND TASK
Programming Details

HASP INTERFACE

INTEGRATED TRANSACTION CONTROLLER (ITC)/
RELIANCE INTERFACE

4 PROGRAM DEVELOPMENT

4.1

4.2
4.2.1

4.3

4.4

4.5

4.6

4.7

4.8

4.9
4.9.1
4.9.2
4.9.3

INTRODUCTION

CREATING A SOURCE PROGRAM
Creating a Data File

EXECUTING A PROGRAM

MODIFYING A PROGRAM

REEXECUTING A MODIFIED PROGRAM

EXECUTING MULTIPLE PROGRAMS AS A SINGLE
PROGRAM

HOW TO RECOVER FROM ERRORS

ASSIGNING LOGICAL UNITS

PROGRAM DEVELO:PMENT COMMANDS
ADD Command
COMPILE Command
COMPLINK Command

2-91

2-94

2-96

2-97

2-101

2-103

2-104

2-107

3-1

3-1
3-2

3-4

3-5

4-1

4-1
4-4

4-5

4-5

4-5

4-7

4-11

4-12

4-13
4-14
4-17
4-22

iv 48-043 FOO R03

CHAPTERS (Continued)

4.9.4
4.9.5
4.9.6
4.9.7
4.9.8
4.9.8.1
4.9.9
4.9.10
4.9.11

4.10

EDIT Command
ENV Command
EXEC Command
LANGUAGE Command
LINK Command
Link Sequences
LIST Command
REMOVE Command
RUN Command

SAMPLE PROGRAM DEVELOPMENT SESSIONS

5 MULTI-TERMINAL MONITOR (MTM) BATCH PROCESSING

5.1

5.2
5.2.1
5.2.2
5.2.3
5.2.4
5.2.5
5.2.6

5.3

5.4

5.5

5.6

INTRODUCTION

BATCH COMMANDS
INQUIRE Command
LOG Command
PURGE Command
SIGNOFF Command
SIGNON Command
SUBMIT Command

BATCH JOB SUBMISSION USING THE SPOOLER

ERROR HANDLING

BATCH TASK PAUSE OPTION

EFFECT OF RESTRICTED DISKS ON BATCH JOBS

6 COMMAND SUBSTITUTION SYSTEM (CSS)

6.1

6.2

6.3

6.4
6.4.1
6.4.2

6.5
6.5.1
6.5.2
6.5.3
6.5.4

GENERAL DESCRIPTION

ESTABLISHING A COMMAND SUBSTITUTION SYSTEM
(CSS) FILE

CALLING A COMMAND SUBSTITUTION SYSTEM (CSS)
FILE

USE OF PARAMETERS
Positional Parameters
Keyword Parameters

USE OF VARIABLES
Types of Variables
Naming Local or Global Variables
Naming New Global or New Internal Variables
Command Substitution System (CSS) Line
Expansion

48-043 FOO R03

4-26
4-30
4-31
4-34
4-38
4-39
4-42
4-44
4-45

4-47

5-1

5-1
5-3
5-5
5-7
5-8
5-9
5-12

5-14

5-14

5-14

5-14

6-1

6-2

6-3

6-6
6-7
6-9

6-13
6-13
6-15
6-16

6-18

v

CHAPTERS (Continued)

vi

6.5.5 Reserved Variables

6.6 COMMANDS EXECUTABLE WITHIN A COMMAND
SUBSTITUTION SYSTEM {CSS) FILE

6.6.l Character Replacement Command {% ••• %)
6.6.2 $BUILD and $EN:OB Commands
6.6.3 $CLEAR Command
6.6.4 $CONTINUE Command
6.6.5 $COPY and $NOCOPY Commands
6.6.6 $DEFINE Command
6.6.6.1 File Descriptor {fd) Operators
6. 6. 6 .1.1 ACCOUNT Oper.ator
6. 6. 6 .1. 2 EXTENSION Op1erator
6.6.6.1.3 FILENAME Operator
6.6.6.1.4 VOLUMENAME Operator
6. 6. 6. 2 LOGICAL Operiators
6.6.6.3 Computation and Conversion Operators
6.6.6.3.1 DCOMPUTE Operator
6.6.6.3.2 DHCONVERT Operator
6.6.6.3.3 HCOMPUTE Operator
6.6.6.3.4 HDCONVERT Operator
6.6.6.4 Other Operators
6. 6. 6. 4 .1 CLEAR Operab:>r
6.6.6.4.2 CURRENT Operator
6.6.6.4.3 DVOLUMENAME Operator
6. 6. 6. 4. 4 POSTION Operi:itor
6.6.6.4.5 REQUIRED Operator
6.6.6.4.6 SEARCH Operator
6.6.6.4.7 STRING Operator
6.6.6.4.8 SUBSTRING Operator
6.6.7 $EXIT Command
6.6.8 $FREE Command
6.6.9 $GLOBAL Command
6.6.10 $JOB and $TERMJOB Commands
6.6.11 $LOCAL Command
6.6.12 $PAUSE Command
6.6.13 PRIOR Command
6.6.14 $RELEASE Command
6.6.15 $SET Command
6.6.16 SET CODE Command
6.6.17 $SKIP Command
6.6.18 $WAIT Command
6.6.19 $WRITE Command

6.7
6.7.1
6.7.2
6.7.3
6.7.4
6.7.S
6.7.6
6.7.7

LOGICAL IF COMMANDS
End of Task Code Testing Commands
File Existence Testing Commands
Parameter Existence Testing Commands
$ELSE Command
$GOTO and $LJlB EL Commands
$IFEXTENSION Command
$IFVOLUME Command

6-19

6-19
6-20
6-24
6-26
6-27
6-28
6-30
6-31
6-32
6-33
6-34
6-35
6-36
6-37
6-38
6-39
6-40
6-42
6-43
6-43
6-44
6-45
6-46
6-48
6-49
6-52
6-53
6-55
6-56
6-57
6-58
6-61
6-62
6-63
6-64
6-66
6-67
6-68
6-69
6-70

6-70
6-71
6-72
6-73
6-74
6-75
6-78
6-79

48-043 FOO R03

CHAPTERS (Continued)

6.8

7 SPOOLING

7.1

7.2
7.2.1
7.2.2
7.2.2.1
7.2.2.2
7.2.3
7.2.4

7.3
7.3.1

APPENDIXES

$IF ••• CONDITIONAL Commands

INTRODUCTION

THE OS/32 SPOOLER
Input Spooling
Input Spooling Control Card Statements
The /@INPUT Control Statement
The /@SUBMIT Control Statement
Output Spooling
Spooling Errors

THE SPL/32 SPOOLER
SPL/32 and Multi-Terminal Monitor (MTM)
Interaction

6-80

7-1

7-1
7-2
7-2
7-2
7-3
7-5
7-6

7-7

7-8

A MULTI-TERMINAL MONITOR (MTM) COMMAND SUMMARY A-1

B PROGRAM DEVELOPMENT COMMAND SUMMARY B-1

C COMMAND SUBSTITUTION SUMMARY (CSS) COMMAND SUMMARY C-1

D MULTI-TERMINAL MONITOR (MTM) MESSAGE SUMMARY D-1

E COMMAND SUBSTITUTION SYSTEM (CSS) MESSAGE SUMMARY E-1

F PROGRAM DEVELOPMENT MESSAGE SUMMARY F-1

G MULTI-TERMINAL MONITOR (MTM)/NON-MTM TASK INTERFACES G-1

G.l

G.2

$FOREGROUND TASK INTERFACE MESSAGES

HASP INTERFACE MESSAGES

H CONTROL SUMMARY FOR BIDIRECTIONAL INPUT/OUTPUT
CONTROL (BIOC) CRT DRIVER

48-043 FOO R03

G-1

G-2

H-1

vii

FIGURES

4-1

4-2

4-3

4-4

4-5

4-6

4-7

4-8

4-9

4-10

H-1

TABLES

1-1
1-2

2-1
2-2
2-3
2-4

4-1
4-2
4-3

4-4

6-1

H-1

INDEX

viii

COMPILE Command Fun.ctions in the Language
Environment
COMPILE Comma~d Fun.ctions in the Multimodule
Environment
COMPLINK Command FlJlnctions in the Language
Environment
COMPLINK Command Ftmctions in the Multimodule
Environment
EXEC Command Functi.ons in the Language
Environment
EXEC Command Functi.ons in the Multimodule
Environment
LINK Command Functions in the Language
Environment
LINK Command Functions in the Multimodule
Environment
RUN Command Function in the Language
Environment
RUN Command Function in the Multimodule
Environment

Perkin-Elmer Model 1200 Mode Selectors

MTM PROMPT CONVENTIONS
TERMINAL CONVENTIONS

ACCESS PRIVILEGE COMPATIBILITY
DISPLAY PARAMETERS COMMAND FIELDS
TASK OPTION BIT DE:~INITIONS
WAIT STATUS BIT DE'.~INITIONS

PROGRAM DEVELOPMENT LANGUAGE COMMANDS
PROGRAM DEVELOPMENT COMMAND AVAILABILITY
PROGRAM DEVELOPMENT DEFAULT VARIABLE SETTINGS
AND LU ASSIGNMENTS
PROGRAM DEVELOPMENT COMMANDS THAT COMPILE,
LINK AND EXECUTE

EXAMPLES USING THE CHARACTER REPLACEMENT
COMMAND

LINE DISPLAY COMBINATIONS

4-20

4-21

4-24

4-25

4-32

4-33

4-40

4-41

4-46

4-46

H-2

1-9
1-10

2-8
2-39
2-40
2-42

4-1
4-10

4-12

4-47

6-22

H-4

IND-1

48-043 FOO R03

PREFACE

The Perkin-Elmer Multi-Terminal Monitor (MTM) Reference Manual is
written for · the MTM user and can also be helpful to the system
operator and system programmer.

Chapter 1 is a general description of the MTM system containing
information on MTM system requirements, MTM features and various
conventions. Chapter 2 describes MTM user commands. Chapter 3
describes MTM to non-MTM task interfaces that allow users to
transfer control of their terminal between MTM and other non-MTM
tasks (HASP, ITC/Reliance, Foreground) and return to MTM in an
orderly fashion. Chapter 4 describes the program development
commands. Chapter 5 describes batch processing under MTM.
Chapter 6 describes the command substitution system (CSS) and the
CSS commands. Chapter 7 describes spooling and briefly describes
the two spoolers (OS/32 and SPL/32) available to users of OS/32
and MTM.

Appendix A summarizes the MTM user commands. Appendix B is a
summary of the program development commands. Appendix C
summarizes the CSS commands. A~pendix D is an MTM command
message summary. Appendix E is a summary of CSS messages.
Appendix F is a summary of program development command messages.
Appendix G is a summary of MTM to non-MTM task interface
messages. Appendix H is a control summary for the bidirectional
input/output control (BIOC) CRT driver.

Revision FOO R03 reflects the changes required for the OS/32
features of ROS.I. Information about the intelligent peripheral
controller (IPC) tape driver has been added to the FRECORD
command. The task related arithmetic fault, FLOATING POINT
FUNCTION RANGE ERROR, has been included in Appendix D.

A reference to account 255 has been made in the System Account
Numbers section. A new command, the LANGUAGE command has been
added to the Program Development chapter. The program
development procedure will now allow programming in the C
language. The SIGNON command now includes a list of restricted
userids. The SET CSS command has been included in Chapter 2. In
the Command Substitution System chapter, examples have been
provided for the CSS commands. The $GOTO command has a new
option.

This manual is intended for use with the OS/32 ROS.I software
release and higher.

For information on the contents of all Perkin-Elmer 32-bit
manuals, see the 32-Bit Systems User Documentation Summary.

4S-043 FOO R03 ix

1.1 INTRODUCTION

CHAPTER 1
GENERAL DESCRIPTION

The multi-terminal monitor (MTM) permits several terminal users
to share system resources. Each user perceives that a computer
is at his disposal.

Concurrent access from on-line terminals is useful during
application task development, because it reduces turnaround time
and it can be used to extend the type of data processing at an
installation. Using the system-supplied interactive software
means that editing, task development and documentation can be
done simultaneously. If the system-supplied interactive tasks
are supplemented by customer-written tasks, MTM application
becomes limitless, supporting a mixture of terminal users such as
clerks, software development and operations personnel.

1.2 MULTI-TERMINAL MONITOR (MTM) OPERATION

Like all general purpose, multi-access, time-sharing systems, MTM
requires operations involvement from the installation using it.
This involvement includes those functions that accompany MTM when
it is tailored to a specific installation, along with dynamic
functions performed when MTM is operating.

Examples of the MTM tailoring functions are:

• Cataloguing authorized users

• System generation (sysgen)

• Establishing an installation's procedures

Examples of dynamic functions are:

• System console control

• Peripheral device supervision

• Spooled output dissemination

48-043 FOO R03 1-1

Generally, tailoring functions are performed and maintained by
the customer's system support group responsible for making
computing facilities available to system users. The dynamic
functions are performed by a system operator during system
operation and are distinct from those functions performed by
terminal users.

The system operator can per1:orm all the functions described in
the OS/32 Operator ReferE3nce Manual, together with operator
functions required to admin:lster MTM. At any time, the system
operator can initiate and control multiple foreground tasks and
one background task while operating MTM.

1.3 USER INFORMATION

Under MTM control, a termina.l user can:

• load and execute interactive tasks,

• submit multiple batch job requests,

• perform program developmc~nt,

• perform program debugg in~;J,

• create, edit and manipulate files,

• build, modify and execut19 command streams,

• use spooling functions,

• communicate with other tierminal users, and

• communicate with the system operator.

A terminal user is eithe'.r interacting with MTM itself via
commands or interacting with tasks supplied with the system or
developed by the installation. All of the vendor-supplied
language translators can be operated as interactive tasks by a
terminal user. Additionally, a terminal user can use the
vendor-supplied support sioftware programs such as: OS/32 Ed it,
OS/32 COPY, and OS/32 AIDS. It is the MTM software that performs
multiple on-line accessibility; e.g., time sharing, resource
management, batch schedulincg, etc.

The terminal user can be local or remote. The interactive
terminals for local users .are directly connected to the compute:c
and do not require telecommunication devices. Interactive
terminals for remote users require connection via
telecommunication equipment and data communications software.
Basic data communications support both dedicated and dial-up
telecommunication terminals.

1-2 48-043 FOO R03

1.3.l Multi-Terminal Monitor (MTM) Devices

The following devices can be used at any local or remote
installation:

• Model 5508 Video Display Unit (VDU)

• Model 1100 VDU

• Model 1200 VDU

• Model 1250 VDU

• Model 1251 VDU

• Model 6100 VDU

• Perkin-Elmer SIGMA 10 terminal

• M33 Teletype

• M35 Teletype

• Nonediting VDU

• Carousel

• Carousel 300 and 300 EFC

1.3.2 Authorization

The user must be authorized to use MTM facilities. During the
signon procedure, the user must supply an account number and a
password that were previously catalogued within an MTM file
called the authorized user file (AUF). The AUF is updated and
maintained by an MTN-supplied task that can be initiated only by
the system operator. The terminal user can then interact with
MTM from a terminal.

1.3.3 Privileged Users

A variety of new capabilities, called privileges, are now
available to the MTM user. These privileges are associated with
an account through the AUF Utility and are, thereafter, available
to any user that signs on to that account. For the purpose of
delineation throughout the remainder of this manual, any user
that is signed on to an account that has any or all of these new
capabilities enabled is called a privileged user.

48-043 FOO R03 1-3

In addition to all standard MTM capabilities, privileged users
can have extended MTM capabi.lities such as:

• displaying all jobs in the batch queue,

• moving between private ac:counts without knowing passwords (SET
PRIVATE command),

• changing group account numbers (SET GROUP command),

• setting the priority of a subsequently loaded task via a
private command substitution system (CSS) (PRIOR command),

• interfacing with a HASP protocol and returning to MTM control
as desired ($HSP), and

• interfacing with a foreg1:ound task from an MTM terminal and
returning to MTM control as desired ($FRGND).

For information on the spec:Lf ic privileges available through MTM
and the procedures for enabling these privileges on an account
basis, see the OS/32 Multi-~rerminal Monitor (MTM) System Planning
and Operator Reference Manual.

1. 3. 4 Transmitting Message1:s

MTM can transmit messages between terminal users, between a
terminal user and the system operator, and from the system
operator to all or des ignatied terminal users.

1. 3. 5 Number of Terminal U1sere

An installation can have up to 64 terminal users or 64 concurrent
batch streams. The system can support up to 64 terminal users
and batch streams in any combination.

1.4 MULTI-TERMINAL MONITOR (MTM) SUBTASK ENVIRONMENTS

The MTM terminal user controls a single task at the terminal and
has the ability to run jobs through batch streams. Using the
facilities provided by MTM, the user can load a task, start the
task and interact with the task during its execution. Any user
task (u-task) controlled through MTM is processed as a subtask of
MTM. Both batch and interactive environments are available to
MTM subtasks. For the sake of simplicity, subtasks wl.11 be
referred to as tasks through the remainder of this manual. MTM
provides interactive and batch user environments.

In an interactive environment, the user
interact with a task via the terminal.
a dialogue is carried on between the

1-4

has the ability to
In this environment,

user and the task.

48-043 FOO R03

The interactive task receives user commands and processes them.
Only one interactive task at a time can be initiated by each MTM
terminal but all interactive tasks initiated by MTM terminal
users are executed concurrently. During interactive task
execution, a terminal user can direct a command to the MTM and
can receive a response from MTM itself.

In a batch environment, a number of jobs are run under a full set
of automated procedures. Once a batch job is accepted for
execution, no further interaction takes place with the initiating
terminal user. Requests for multiple batch jobs can be submitted
by a user and the same terminal can be used to initiate an
interactive task.

Unlike interactive tasks, requests for batch jobs will not
necessarily be initiated immedjately to MTM. Instead, batch jobs
are queued and then the queue of submitted batch jobs awaiting
execution is serviced by MTM. The number of batch jobs that can
be executing concurrently is specified by the system operator.

A terminal user can request one or more batch jobs to be run.
MTM maintains a queue of submitted batch jobs and concurrently
processes a number of batch jobs specified during MTM system
start-up. A terminal user can monitor the progress of a batch
job by interrogating the MTM batch queue. The returned status
will be either:

AWAITING EXECUTION

or EXECUTING

If a job has already completed execution, the returned status
will be:

NO JOBS FOUND

1.4.1 Multi-Terminal Monitor (MTM) Terminal Modes

An active terminal is in one of six terminal modes. The current
mode of the terminal determines which, if any, MTM terminal
commands can be accepted. Thus, it is important for the terminal
user to be aware of the current mode of the terminal. The user
terminal is defined to be in one of the following six modes:

• Command mode: No task is loaded, a CSS procedure is not
executing, and BUILD is not in effect. All nontask-related
commands are accepted. An asterisk (*) is the default prompt
displayed in this mode.

48-043 F00.R03 1-5

• Task-loaded mode: The task is loaded but it is not started,
or the task is paused. An asterisk is the default prompt
displayed in this mode.

• Task-executing mode: A task is started and executing. If
started from a css, CSS mode is suspended. A hyphen (-) is
the default prompt displayed in this mode. If an interactive
task was started and data input is requested by the task, then
a greater than charactier (>) is the default prompt displayed
to the terminal user.

• CSS mode: A CSS procedure is being built or executed. A
hyphen is the default prompt displayed in this mode. When a
css terminates, the terminal returns to command mode and an
asterisk prompt is output. When BUILD is in effect, a B> is
the default prompt displayed.

• Foreground task mode: The terminal is transferred to the
control of a foreground task. When the foreground task is
completed, the terminal returns control to MTM. MTM commands
are not recognized when in the foreground task mode.

• HASP interface mode: The terminal is interfaced with a HASP
task. The HASP mode prompt is a quotation mark ("). All
commands entered while in this mode are sent to the specified
HASP task.

1.4.2 Interactive Task to Terminal Mode

When a task issues a supervisor call 1 (SVCl) input/output (I/O)
operation to an active terminal that is in task-executing mode
and a previous I/O operation to that terminal is still pending,
MTM treats the I/O as a wait operation. This information is not
vital for tasks that perform SVCl wait I/O, but users with tasks
that issue SVCl proceed I/O (read or write) should be aware that
MTM suspends the task until the I/O is completed. MTM then posts
an SVCl proceed I/O completion trap on the task's task queue and
allows the task to continue. Completion trap posting occurs only
if the appropriate bit is set in the task status word (TSW).

1.5 MULTI-TERMINAL MONITOR (MTM) IN A MULTIPROCESSOR ENVIRONMENT

The load leveling executive (LLE) feature of MTM is designed to
optimize overall system performance in a multiprocessor
environment on a Model 3200MPS System.

The Model 3200MPS System includes a central processing unit (CPU)
and up to nine satellite processors. The satellite processors
can be any combination of auxiliary processing units (APU's) and
input/output processors (IOP's).

The load leveling executive (LLE) distributes the system load
imposed by MTM user tasks between the CPU and APU's. MTM
subtasks are queued for execution on either the CPU ready queue

1-6 48-043 FOO R03

or APU queue O. The ready queue is serviced by the CPU alone,
while queue 0 is serviced by assigned APUs and the CPU when its
ready queue is empty.

Maximum processing power is available for the tasks on queue 01
however, all operating system services (SVC calls, trap and fault
handling, etc.) are performed by the CPU. LLE optimizes MTM
subtask traffic between the two queues by directing
service-intensive tasks (e.g., I/O-intensive) to the CPU ready
queue and computation-intensive tasks to queue O. The LLE

· minimizes the traffic between the two queues (APU/CPU thrashing)
by analyzing the run-time profile of a task at certain intervals
to decide whether this particular task should be run on the CPU
or on an APU to achieve efficient utilization of processors.

Load-leveling is performed only when the LLE is enabled and then
only for those tasks, including executive tasks Ce-tasks) and
diagnostic tasks Cd-tasks), directed to LPU O, or having no SVC
6 control privileges (option LPU =n disabled).

NOTE

Tasks loaded with an LPU number other
than zero and without SVC6 control
privilege, are· reset to LPU number zero
(see Section 2.30).

1.6 LOADING A TASK

The dynamic nature of OS/32 memory management guarantees loading
of any size task unless the task is greater than the available
task memory. If not enough memory is free to load a task, then
some other task is temporarily rolled out if roll support is
included in the operating system at sysgen. If MTM is sysgened
with roll influence enabled, then MTM continually monitors the
state of the roll queue to ensure that rolled out tasks are given
the opportunity to be rolled back in. MTM ensures equity for all
its terminal operators by assigning all the interactive tasks
equal priority. Batch tasks can have user-assigned priorities.

1.7 MULTI-TERMINAL MONITOR (MTM) SPECIAL FEATURES

The following features are designed to make MTM easier and more
efficient to use:

• css

• Help Facility

• Program development commands

48-043 FOO R03 1-7

• Spooling

• Security and access protection of disks

• Signon css

1.7.1 Command Substitution System (CSS)

A terminal user can build a command file on a disk. Once built,
a simple directive to MTM will cause MTM to obtain its directives
from the command file. When invoking the command file, the
terminal user can supply parameters to the command file that can
be used to dynamically modify command execution. Therefore, a
single terminal input can easily initiate complex operations.

1.7.2 The Help Facility

The Help Facility provides a user on-line access to documentation
for MTM and program development commands. This information is
obtained by entering the HE:LP command (see Section 2.28).

1.7.3 Program Development Commands

The program development commands are an integrated set of
standard CSS procedures that perform two major functions:

• maintain information that remains constant throughout a
development effort, and

• keep files current throughout a development effort in terms of
checking source, object and image modules to ensure that their
dates are current.

1.7.4 Spooling

Both input and output spooling are provided for terminal users.
Tasks never need to be delayed waiting for card readers, card
punching or line printing; a batch job can be submitted via the
spooler. The job runs unattended and output goes to the spooler.

1.7.5 Security and Access Protection of Disks

Privately owned disks can be marked on as restricted by the
system operator to offer an MTM user complete security and access
protection of files. The owner of the disk can restrict or
enable access of the disk t.o other MTM users, the system operator
and non-MTM tasks.

1-8 48-043 FOO R03

1.7.6 Signon Command Subsitution System (CSS)

MTM users can build a special css file, USERINIT.CSS, within
their private accounts. This css file can contain commands to
load and start a terminal session, assign logical units, and
specify a language environment. At signon time, MTM searches all
on-line disks within the user's private account for the file
USERINIT.CSS and automatically executes it. If no USERINIT.CSS
file is found within the user's private account, the system
account is searched.

1.8 CONVENTIONS

These conventions used by MTM are detailed in the following
sections:

• Prompt

• Terminal

• Command

• Statement syntax

• File

1.8 .1 Prompt Conventions

A prompt is output to a terminal device to indicate that the MTM
system is ready to accept input from the user. The default
prompts displayed on the terminal devices are shown in Table 1-1.

TABLE 1-1 MTM PROMPT CONVENTIONS

PROMPT I USE

* Indicates MTM system is ready to accept a command.

> Indicates a request for input data.

B> Indicates a request for input data to be copied
to a BUILD file.

Indicates that the system is ready to accept a
command while an interactive task is active or a
css is running. A new CSS cannot be initiated at
this time. A user can i.nstruct MTM to suppress or
enable the appearance of this prompt while an inter­
active task is running, but not while CSS is running.

" Indicates that the terminal is in HASP mode.

48-043 FOO R03 1-9

1.8.2 Terminal Conventions

The conventions in effect fo1~ various terminal devices are shown
in Table 1-2.

TABLE 1-2 ~rERMINAL CONVENTIONS

OPERATION

Deleting a line

Deleting a character

Ending an input line

Communicating with
MTM

CONVENTION

Simultaneously depress the CTRL and
character X keys for all terminals
exc1ept TEC 445 VDU, which uses the
hash mark(#). Basic communications
support both # and CTRL X for line
del,etion for asynchronous remote
device.

Depress the BACKSPACE key.
terminals without a BACKSPACE
simultaneously depress the CTRL
character H keys.

For
key,

and

Depress the carriage return (CR) key.

While an interactive task is executing
or when a BUILD command is active,
depress the BREAK key and enter a
command.

1.8.2.1 Using the BREAK Key

If the data request prompt (>) or a BUILD request prompt (B>) is
displayed and the user wishes to communicate with MTM, depress
the BREAK key and the system is ready to accept a command.

If input or output to the terminal is in progress, the BREAK key
interrupts the process. For example, if the DISPLAY or EXAMINE
command was entered and the output is in progress, depressing the
BREAK key halts the output in progress. The system is then ready
to accept a command.

If a CSS is currently running, the BREAK key interrupts the
execution of the CSS. The system is then ready to accept a
command. Once the command has executed, the CSS will resume
operation unless the entered command affects the status of the
css.

1-10 48-043 FOO R03

1.8.3 Command Conventions

Commands are accepted one line at a time. Multiple commands can
appear on the same line, but each must be separated by a
semicolon. Multiple commands are executed sequentially. If an
error is encountered in a multiple command line that was entered

_from a terminal, the commands following the command in error are
ignored by MTM. When a command line is entered from a CSS, all
the commands are skipped until a $TERMJOB is found. A character
string preceded by an asterisk in column 1 is a comment.

1.8.4 File Conventions

A file is a collection of data stored on a direct access storage
device (DASD). MTM provides terminal users with the capability
of creating and editing files in an interactive manner. Once
created, files remain on the system until they are deleted by the
owner. During the life of a file, ownership can change based on
the needs of an installation or project. File ownership is
established and maintained by MTM via an account number
mechanism.

1.8.4.1 Private Account Numbers

During the signon procedure, a terminal user must supply a
private account number in addition to the correct password.
Whenever a terminal user allocates a file during an MTM session,
the MTM system automatically associates the file with the
terminal user's account number. A file associated with the
terminal user's account number is referred to as a private file.

The owner of a private file has unrestricted access to that file
and can update, execute, access or delete it as required.
Furthermore, no other terminal user, except users with the
correct privilege (privileged user), can gain access to another
user's private files. To supply greater flexibility for file
sharing, however, MTM supports the concept of group files.

1.8.4.2 Group Account Numbers

Authorized MTM terminal users are assigned a private account
number and a group account number within the AUF. Unlike the
private account number, a terminal user is not required to submit
the group account number during the signon procedure. In fact,
a terminal user does not need to know the group account number;
it will generally be the private account number of a different
authorized terminal user. By using the RENAME command and
supplying the letter G in the account field, a terminal user can
change a private file to a group file.

48-043 FOO R03 1-11

As an illustration of the use of group files within an
installation, consider a normal development activity consisting
of two or more members work:Lng under a project leader's control.
During the early development phase, each member would probably
work alone, using private files. However, during the project
integration phase, the majority of the private files would be
switched to the project leader's private account number, which
was defined as the group account for the individual members.

Once a private file has been switched to a group file, the
original private owner nc) longer possesses unrestricted file
manipulation capability. Instead, the file can be read or
executed by the original owner and any other terminal user with
the same group number. Updating or deleting the file can now be
performed by any terminal user who signs on with the group
account number.

Although the use of group files provides a somewhat flexible file
sharing capability, it does not address the problem of universal
sharing. For this purpo;se, MTM supports the concept of system
files.

1.8.4.3 System Account Numbers

Similar to switching a private file to a group file, a terminal
user can supply the letter S in the file account field
instead of the letter G. The letter s indicates that this
private file is now considered a system file. System files have
an account number of O. They can be read or loaded by any
authorized MTM terminal user, but updating or deleting a system
file can only be performed by the system operator.

With respect to file ownership within an MTM environment, the
system operator is viewed as more privileged than terminal users.
The system operator can allocate files on any account in the
system and can also change the account number of any file in the
system to another account number. Similar to a terminal user,
the system operator uses the RENAME command to change file
ownership. MTM users can only access the restricted account 255
by signing on to account 255 with the correct password.

1.8.4.4 File Descriptors (fds)

Some commands require fds. An fd for MTM generally includes four
fields:

• Disk volume name or device name

• Filename

• File extension

• File class

1-12 48-043 FOO R03

Format:

Parameters:

voln:

filename

.ext

p

48-043 FOO R03

is the name of the disk volume on which the
file resides or the name of a device. voln
can be from one to four characters; the first
character must be alphabetic, the remaining
alphanumeric. This parameter need not be
specified. If this parameter is not
specified, the default user volume is used.
When voln is not specified, the colon
separating voln and filename must not be
entered. Where voln refers to a device name,
a colon must follow the device name, and
neither the filename nor the extension is
entered.

is the name of a file. A filename consists of
one to eight alphanumeric characters, the
first of which must be alphabetic.

is a 1- to 3-character alphanumeric string
preceded by a period (.) specifying the
extension to a filename. If the period and
extension are omitted, a default extension is
appended to the filename, if appropriate for
that particular command; otherwise, it remains
blank. If the period is specified and the
extension is omitted, the default is blanks.

indicates a private file. A private file has
the same account number as the terminal user's
current private account number. All of the
facilities for file manipulation are available
to the owner of this file. No other user has
access to this file unless the user has
certain standard file access privileges
(privileged user) or the file is also a group
file. That is, the user's private account
number is the same as some other user's group
account number. P is the default value if
neither P, G nor S is indicated in the
command.

1-13

G

s

n

indicatei:s a group file. A group file, which
can also be some other user's private file, is
accessible to members of that group for
read-only purposes. The group file account
numbe't in the AUF indicates to the system
which usiers can access this group file.

indicate:s a system file. A system file has
account numbe't 0. A terminal user can only
read a system file.

is for users that have the privilege to
specify account numbers instead of account
class de:signators (P, G and S) and can do so
fo't some commands such as ASSIGN, LO.AD, RENAME
and css calls. Access is limited to sha'ted
'tead-only (SRO) if n is not the user's private
account.

Examples:

1-14

PACK:FRED.TSK is a private file FRED.TSK on volume PACK.

FRED.TSK is the same file as in the previous example if
PACK is the default use't volume (private
file).

ABC:FOO/G

CARD:

A:B.C/G

TEXT.FIL/87

is a group file with filename
default extension on volume ABC.

is a device name.

FOO and a

is a group with filename B and extension
C on volume A.

is a file on the default user volume in
account 87.

48-043 FOO R03

CHAPTER 2
MULTI-TERMINAL MONITOR (MTM) USER COMMANDS

2.1 INTRODUCTION

The fallowing steps comprise a bas·ic MTM terminal session.

1. Identify yourself to MTM by signing on to the system.
your userid, account number and a valid password.

SIGNON MAR,118,SWDOC

Enter

2. Establish the volume you will be working on by entering the
VOLUME command and a valid volume name.

V M300

3. Load the editor task into memory by entering LOAD and the
·task name.

LOAD EDIT32

4. Initiate execution of the task by entering the START command.

5. Save all data appended to your file by entering the SAVE
command.

S FILEl

6. Terminate execution of the task by entering the END command.

7. End the terminal session by signing off.

SIGNOF

48-043 FOO R03 2-1

ALUJCATE

2.2 ALUJCATE COMMAND

The ALLOCATE conunand creates a direct access file or a
conununications line contrc1l block (LCB) for a buffered terminal
manager.

Format:

ALLOCATE fd,

Parameters:

f d

CONTIGUOUS

fsize

2-2

!::QNTIGUOUS' fs ize ~{ =~' }] ~ ~~uif.DS~

is the file descriptor of the device or file
to be allocated.

specif ie~s that the file type to be allocated
is cont i~Juous .

is a dee :lmal number indicating the file size
required for contiguous files. It specifies
the total allocation size in 256-byte sectors.
This siz«:t can be any value up to the number of
contiguous free sectors existing on the
specified volume at the time the command is
entered.

48-043 FOO R03

keys

EC

baize

isize

INDEX

lrecl

NB

LR

48-043 FOO R03

specify the write and read protection keys for
the file. These keys are in the form of a
hexadecimal. halfword; the left byte signifies
the write key and the right byte signifies the
read key. If this parameter is omitted, both
keys default to zero.

specifies that the file type to be allocated
is extendable contiguous.

is a decimal number specifying the number of
256-byte sectors contained in a physical block
to be used for buffering. If this parameter
exceeds the maximum block size established for
the system, the system maximum is used. If
baize is omitted, the default blocksize
established at system generation (sysgen) or
by the system operator is used. If no default
value was established at sysgen or by the
system operator, the default value is one
sector for indexed files and 64 sectors for EC
and nonbuffered (NB) indexed files. When the
file type is ITAM, bsize is the buffer size in
bytes.

is a decimal number specifying the indexed
block size. If isize is omitted, the default
indexed blocksize established at sysgen or by
the system operator is used. If no default
value was established at sysgen, the default
value is one sector for indexed files and
three sectors for EC and NB files. Like
baize, isize cannot exceed the maximum block
size established at sysgen. If the value
specified for this parameter is greater than
the system maximum, the system maximum is
used.

specifies that the file type to be allocated
is indexed.

is a decimal number specifying the logical
record length of an indexed file, NB indexed
file or ITAM device. lrecl cannot exceed
65,535 bytes. The default value for lrecl is
126 bytes. It may optionally be followed by
a slash (/), which delimits lrecl from bsize.
For NB files, this number must be even.

specifies that the file type to be allocated
is nonbuffered indexed.

specifies a long record file. For LR files,
the logical record length is specified by the
data block size (baize) parameter (i.e., the
logical record length is the data block size).

2-3

ITAM

Functional Details:

specifies that the device to be allocated is
a communications device.

The MTM user can only allocate files in their private account.
To assign an indexed file, sufficient room must exist in system
space for two buffers, each of the stated size. Therefore, if
baize or isize is very large, the file might not be assignable.
At sysgen time, maximum block size parameters are established in
the system and neither isize nor baize can exceed these
constants. If the user specifies numbers greater than the system
maximum for baize or isize, the maximum is used. No error
message will be displayed in such cases.

The system maximums for baize and isize can easily be determined
by specifying numbers for them that are obviously too large.
When the file is subsequently displayed (DISPLAY FILES command),
the system maximums are shown rather than the specified numbers.

To assign an EC or NB file, sufficient room must exist in system
space to contain only the index block of the stated size. The
data blocks for EC and NB files are not buffered in system space
and thus are not constrained to the sysgened block size.

For LR files, the absolute maximum data block size (logical
record length) that can be specified is 65,535 (64K) sectors.
This equals an absolute maximum logical record length of
16,776,960 (16M) bytes. In practice however, the actual maximum
logical record length for any given system is limited by the
amount of memory available for input/output (I/O) buffering.

The ALLOCATE command can be entered in command mode, task-loaded
mode, task-executing mode and command substitution system (CSS)
mode.

Examples:

Allocate on the default useir volume a contiguous file named
JANE.TSK whose total length is 64 sectors (16kb) with protection
keys of 0:

AL JANE.TSK,C0,64

Allocate on volume M300 an i.ndexed file named AJM.BLK with a
logical record length of 132 bytes, a data block size of four
sectors and the default isi2:e established for the system. The
protection keys default to 0. When this file is assigned, the
system must have 2 .. 25kb of e1ystem space available for buff era.

AL M300:AJM.BLK, IN, 132/4:

2-4 48-043 FOO R03

Allocate on the default user volume an indexed file named
THISFILE (blank extension) with a logical record length of 256
bytes, a data block size of four sectors, an index block size of
two sectors and protection keys of 0.

AL THISFILE,IN,256/4/2

Allocate on volume VOLl an indexed file named AJM.OBJ whose
logical record length is 126 bytes. The buffer size and indexed
block size default to the values established for the system and
the protection keys default to 0.

AL VOLl:AJM.OBJ,IN,126

Allocate on volume VOl an indexed file named AJM.OBJ with logical
record length of 126 bytes. The data block size defaults to the
value established for the system, the index block size is three
sectors and the protection keys default to 0.

AL VOl:AJM.OBJ,IN,126//3

Allocate on volume SYS an extendable contiguous file named
XFILE.DTA with a default data block size of 64 sectors and an
index block size of three sectors. The file initially contains
no records and has a record length of one sector (same as a
contiguous file). •

AL SYS:XFILE.DTA,EC

Allocate on the default volume a nonbuffered indexed file named
YFILE.DAT with a logical record length of 240 bytes, a data block
size of 250 sectors and an index block size of five sectors. The
file initially contains no records.

AL YFILE.DAT,NB,240/250/5

48-043 FOO R03 2-5

ASSIGN

2.3 ASSIGN COMMAND

The ASSIGN command assigns a device, file or communications
device to one of a task's logical units.

Format:

[!
access pr,ivileges!J

ASSIGN lu,fd , II [{;:}]
SVC15
SVCF
VFC

, HI
LOW
MEDIUM

Parameters:

2-6

lu

f d

access
privileges

keys

SVC15
SVCF

is a decimal number specifying the
unit to which a device or file
assigned.

logical
is to be

is the file descriptor of the device or file
to be ass i.gned.

are the desired access privileges.
default access privileges are:

• SRW f ot· contiguous files.

The

• SREW for indexed, nonbuffered indexed and
extendable contiguous files.

• SRO fot'. any files that are not the user's
private, files.

• ERW f ot: devices (except the user 's console.
This has SRW) .

signify the read/write protection keys of the
file or device to be assigned.

signifies that the specified device is to be
assigned for supervisor call 15 (SVC15)
access. SVCF is the hexadecimal equivalent of
SVC15 and can also be specified. This option
pertains to communications devices only.

48-043 FOO R03

VFC

HI

LOW

MEDIUM

If SVC15 access is specified, neither vertical
forms control (VFC) nor tape density can be
specified.

specifies the use of vertical forms control
for the assigned lu. If this parameter is
specified, SVC15 access or tape density
selection cannot be specified. If this
parameter is omitted, there is no VFC for the
device assigned to the specified lu (unless
the task was linked with the VFC option).

indicates that the assigned magnetic tape will
operate at the group coded recording (GCR)
density rate of 6250 bits per inch (bpi).

indicates that the assigned magnetic tape will
operate at the nonreturn to zero inverse
(NRZI) density rate of 800 bpi.

indicates that the assigned magnetic tape will
operate at the phase-encoded (PE) density rate
of 1600 bpi.

Functional Details:

If the access privileges and keys parameters are omitted and VFC,
SVC15, HI, LOW or MEDIUM is specified, the positional conunas
belonging to the omitted parameters can be omitted.

If the access privileges and VFC, SVC15, HI, LOW or MEDIUM
parameters are specified and the keys parameter is omitted, the
positional conuna belonging to the keys parameter can be omitted.

Access privileges can be one of the following:

SRO
ERO
swo
EWO
SRW
SREW
ERSW
ERW

Shared read-only
Exclusive read-only
Shared write-only
Exclusive write-only
Shared read/write
Shared read, exclusive write
Exclusive read, shared write
Exclusive read/write

If the file is not in the user's private account, only the SRO
access privilege is valid.

When the SVC15 option is specified, only SRW, SREW, ERSW and ERW
access privileges are accepted.

The DISPLAY LU conunand can be used to determine the current
access privileges of all assigned units.

48-043 FOO R03 2-7

The ASSIGN command is rejected if the requested access privilege
cannot be granted.

When a task assigns a file, it might want to prevent other tasks
from accessing that file while it is being used. For this
reason, the user can ask for exclusive access privileges, for
either read or write, at ase.ignment time. This is called dynamic
protection because it is only in effect while the file remains
assigned.

A file cannot be assigned with a requested access privilege if it
is incompatible with some other existing assignment to that file.
A request to open a file for EWO is compatible with an existing
assignment for SRO or ERO, but is incompatible with any existing
assignment for other access privileges. Table 2-1 illustrates
compatibilities and incompatibilities between access privileges.

TABLE 2-1 ACCESS PRIVILEGE COMPATIBILITY

I ERSW I ERO I SRO I SRW I SWO I EWO I SREW I ERW

=======-==---------=--=------------------~-=----=~------ERSW *
ERO *
SRO * * *
SRW * * *
swo * * * * *
EWO * *
SREW *
ERW

An asterisk (*) indicates compatible.
A hyphen (-) indicates :Lncompat ible.

*

* *

The keys format is a 4-digit hexadecimal number. The left two
digits signify the write pr c>tect ion key and the right two digits
signify the read protection key. If omitted, the default is
0000. These keys are checked against the appropriate existing
keys for the file or device. If the keys are invalid, the
command is rejected. The keys associated with a file are
specified at file allocation time. They may be changed by a
REPROTECT command or through an SVC7 reprotect function call.

2-8 48-043 FOO R03

If the value of the keys is within the range X'Ol' to X'FE', the
file or device cannot be assigned for read or write access unless
the requesting task supplies the matching keys. If a key has a
value of X'OO', the file or device is unprotected for that access
mode. Any key supplied is accepted as valid. If a key has a
value of X'FF', the file is unconditionally protected for that
access mode. It cannot be assigned to any user task (u-task) for
that access mode, regardless of the key supplied.

Examples:

WRITE
KEY

00

FF

07

FF

00

27

READ
KEY

00

FF

00

A7

FF

32

MEANING

Completely unprotected

Unconditionally protected

Unprotected for read; conditionally protected
for write (user must supply write key: X'07')

Unconditionally protected for write;
conditionally protected for read

Unprotected for write; unconditionally
protected for read

Conditionally protected for both read and
write

An assigned direct access file is positioned at the end of the
file for access privileges SWO and EWO. It is positioned at the
beginning of the file for all other access privileges. If the
specified lu is already assigned, the command is rejected. To
reassign an lu for an active task, the lu must first be closed.

If the HI, LOW or MEDIUM parameter is not chosen when assigning
to a mag tape device, the standard default density is used. The
default is dependent upon the type of tape drive in use.

NOTE

If this parameter is used to select the
density of the assigned mag tape, SVC15
or VFC access cannot be specified. The
HI, LOW and MEDIUM parameter options are
positionally independent.

The· ASSIGN command can be entered in task-loaded mode.

48-043 FOO R03 2-9

Examples:

The following assigns a disk file to lu2. The EWO
privilege causes the f ilo to be positioned at the end.
conditionally protected with write and read keys of 99AA.
records are appended.

AS 2,FILE.DAT,EW0,99AA

access
It is

New

The following assigns a disJc file to lu2. VFC is in use. Access
privileges and keys parameters are omitted along with their
respective commas.

AS 2,TEST.JOB,VFC

The following assigns a disk file to lu2. VFC is in use. Access
privileges and keys parametE~rs are omitted, but positional commas
are specified.

AS 2,TEST.JOB,,,VFC

The following assigns a dislc file to lu2. VFC is in effect. The
keys parameter, along with the positional comma, is omitted. The
privilege is SRO.

AS 2,TEST.JOB,SRO,VFC

The following assigns a mag tape drive to lu2. The LOW parameter
indicates that the drive will operate at the NRZI density rate of
800 bpi.

AS 2,MAGl: ,LOW

The following assigns a ma~J tape drive
parameter indicates that:. the drive
phase-encoded density rate of 1600 bpi.

AS 2,MAGl:,SRW,MEDIUM

2-10

to lu2. The MEDIUM
will operate at the

48-043 FOO R03

The following assigns a mag tape drive to lu2. The HI parameter
indicates that the drive will operate at the GCR density rate of
6250 bpi. Access privileges and keys parameters are omitted, but
positional commas are specified.

AS 2,MAGl:,,,HI

Invalid Examples:

The following is an invalid assignment because the positional
comma belonging to the omitted access privileges parameter must
be specified.

AS 2,TEST.JOB,OOFF,VFC

The following is an invalid assignment because VFC and SVC15
access are mutually exclusive and cannot be specified in the same
assignment.

AS 2,TEST.JOB,SRO,VPC,SVC15

The following is an invalid assignment because tape density and
SVCF access are mutually exclusive and cannot be specified in the
same ASSIGN command.

AS 2,MAGl:,SRW,LOW,SVCF

48-043 FOO R03 2-11

BF ILE

2.4 BFILE COMMAND

The BFILE command backspaces to the preceding f ilemark on
magnetic tapes, cassettes and direct access files.

Format:

MILE [fdJ lu

Parameters:

f d

lu

Functional Detail:

is the file descriptor of the device or file
to be backspaced to a f ilemark.

is the loi;Jical unit to which the file is
assigned. If lu is specified without fd, the
operation is performed on the lu regardless of
what is assigned to it.

The BFILE command can be entered in task-loaded mode.

Examples:

The following example causes the device or file assigned to lul
to backspace one f ilemark.

BF 1

The following example causes file AJM.OBJ, which is assigned to
lu4 on volume M300, to backspace one f ilemark.

BF M300:AJM.OBJ,4

2-12 48-043 FOO R03

BIAS

2.5 BIAS COMMAND

The BIAS command sets a base address for the EXAMINE and MODIFY
commands.

Format:

.B.lAS {
addr*ess}

Parameters:

address

*

Functional Details:

is a hexadecimal bias to be added to the
address given in any subsequent EXAMINE or
MODIFY command. For a u-task, the address
must be a valid address that exists for the
u-task. For an executive task (e-task), the
address can be any valid address in the
system. The addresses must be aligned on a
halfword boundary. If address is omitted, it
is assumed to be the beginning of the task.

seLs bias to 0 for a u-task and to the
physical load address for an e-task.

A BIAS command overrides all previous BIAS commands. The user
should enter a BIAS command if the current value is unknown.

The BIAS command can be entered in task-loaded and task-executing
modes.

Example:

The following example sets the bias to 100.

BI 100

48-043 FOO R03 2-13

BREAK

2.6 BREAK COMMAND

The BREAK command returns a Joreak status (X'8200') to a task with
an outstanding I/O on the MTM terminal.

Format:

BREAK

Functional Detail:

The BREAK command can be entered in task-executing mode.

2-14 48-043 FOO R03

BRECORD

2.7 BRECORD COMMAND

The BRECORD conunand backspaces to the preceding record on
magnetic tapes, cassettes and direct access files.

Format:

.a.RECORD [f dJ lu

Parameters:

f d

lu

Functional Detail:

is the file descriptor of the device or file
to be backspaced one record.

is the logical unit to which the file is
assigned. If lu is specified without fd, the
operation is performed on the lu regardless of
what is assigned to it.

The BRECORD conunand can be entered in task-loaded mode.

Examples:

The following example causes the device or file assigned to lul
to backspace one record.

BR 1

The followtng example causes the file AJM.OBJ assigned to lu4 on
volume M300 to backspace one record.

BR M300:AJM.OBJ,4

48-043 FOO R03 2-15

I SUII.D AND ENDS

2 .. 8 SUII.D AND ENDS COMMANDS

The BUir..D and ENDS commands c:opy data from the command input
device to the fd specified in the BUILD command.

Format:

{
fd (!APPEND]}

B.UILD
lu

ENDB

Parameters:

f d

APPEND

lu

2-16

is the file descriptor of the device or file
to which data is copied. If fd does not
contain an extension, .CSS is used as default.
If a blanlc extension is desired, the period
following the filename must be typed. If fd
refers to a direct access file, an indexed
file by that name is allocated with a logical
record length equal to the command buff er
length efJLabl ished at sysgen, a blocks ize of
1 and keys of 0000. If the specified fd
already «~xists, that fd is deleted and a new
fd is allc>cated.

allows th«~ user to append data to an existing
fd. If the fd does not exist, it is
allocated ..

is the louical unit to which data is to be
copied. 1\ temporary file is allocated and the
BUILD data is copied to it. When the ENDB is
encounter•~d, the temporary file is assigned to
the specified lu of the loaded task. This
form of the BUILD command is only valid when
a task is loaded.

48-043 FOO R03

Functional Details:

Lines entered from the terminal after the BUILD command are
treated as data and are copied to the specified device or file
until an ENDB command is encountered. ENDB may be followed by
other commands in the command line. Data following the ENDS
command is treated as a command.

If any data follows the BUILD command on the same line, it is
treated as a comment and no action is taken.

The BUILD command can be entered from the terminal only if a CSS
is not active. It can be entered in command, task-loaded and
task-executing modes.

Example:

BUILD ASSN
AS 1, CR:
AS 2, OUT.OBJ
AS 3, PR:
AS 5, CON:
ENDS

48-043 FOO R03 2-17

CANCEL

2.9 CANCEL COMMAND

The CANCEL conunand terminatee1 a task with an end of task code of
255.

Format:

CANCEL

Functional Details:

The normal response to this command is:

Signon name-END OF TASK CODE•255 PROCESSOR•hh:mm:ss:mmm

The CANCEL command can be entered in task-loaded and task­
executing modes.

2-18 48-043 FOO R03

CLOSE

2.10 CLOSE COMMAND

The CLOSE conunand closes (unassigns) one or more files or devices
assigned to the currently selected task's logical units.

Format:

l lu1 G lu2 , ... , lun] l
,CLOSE

ALL

Parameters:

lu

ALL

Functional Details:

is a decimal number specifying the logical
units to be closed.

specifies that all logical units of the task
are to be closed.

Closing an unassigned lu does not produce an error message. A
CLOSE conunand can only be entered if the task is dormant or
paused.

The CLOSE command can be entered in task-loaded mode.

Examples:

The following example closes logical units 1, 3 and 5 of the
task.

CL 1,3,5

The following example closes all logical units of the task.

CLOSE A

48-043 FOO R03 2-19

CONTINUE

2.11 CONTINUE COMMAND

The CONTINUE command causes a paused task to resume operation.

Format:

.CO.NT I NlJE [address]

Parameter:

address

Functional Details:

is a hexadecimal number that specifies where
the task is to resume operation. If this
parameter is not specified or is 0, the task
resumes at the instruction following the
pause.

The CONTINUE command can be •~ntered after the task is paused.
Executing this command causes the terminal mode to be switched
from task-loaded to task-executing mode.

2-20 48-043 FOO R03

DELETE

2.12 DELETE COMMAND

The DELETE command deletes a direct access file.

Format:

Parameter:

f d identifies the file(s) to be deleted.

Functional Details:

The file being deleted must not be currently assigned to an lu of
any task. A file can be deleted only if its write and read
protection keys are 0 (X'OOOO'). If the keys are nonzero, they
can be changed using the REPROTECT command. Only private files
can be deleted.

The DELETE command can be entered in command, task-loaded and
task-executing modes.

48-043 FOO R03 2-21

DISPLAY

2.13 DISPLAY COMMAND

The DISPLAY command is used to display new global or new internal
variables currently defined by the user. This command will not.
display local vr..t:iables or global variables.

Format:

{
.GVAR I ABLE }

DISPLAY
.lVARIABLE

n

Parameters:

GVARIABLE

IVAR I AHLE

n

ALL

f d

Functional Details:

indicates that the variables to be displayed
are new global variables.

indicates that the variables to be displayed
are new internal variables.

specif i.eA that all variables (of the type
selected via the preceding parameter) between
the range n 1 to n 2 be displayed, where n is a
decimal number between 1 and the maximum value
allowed at MTM sysgen for the variable type
selected.

is the decimal number of a specific variable.
n must be between 1 and the maximum value
allowed at MTM sysgen for the variable type
selected.

specifies that all new global or new internal
variables be displayed. This is the default
if no spec:::if ic variable numbers are entered.

is the file descriptor of a file or device to
which th•~ display is to be output. The
default for this parameter is the user's
console.

The DISPLAY command can be used in command, task-loaded and
task-executing modes.

2-22 48-043 FOO R03

The current value of each variable is shown in the DISPLAY
conunand display.

Examples:

·rhe following example illustrates a way to display all new global
variables currently defined by the user.

*DISPLAY GVARIABLE

GVtt NAME •••• VAI..UE
GOl SOURCE TEST.FTN/P
G03 LISTDEV SCRT:TEST.LST/P
G04 BATCH OPTIM XREF

The following example illustrates a way to display information
about new global variable 3.

*DISPLAY GVARIABLE, 3

GVtt NAME •••• VAI..UE
G03 LISTDEV SCRT:TEST.LST/P

The following example illuslrates a way to display all new global
variables between 2 and 5.

*DISPLAY GVARIABLE, 2/5

GVtt NAME •••• VAI..UE
G03 LISTDEV SCRT:TEST.LST/P
G04 BATCH OPTIM XREF

48-043 FOO R03 2-23

DISPLAY
ACCOUNTING

2.14 DISPLAY ACCOUNTING COMMMU>

The DISPLAY ACCOUNTING command displays accounting data collected
for a currently running or previously run task.

Format:

Parameter:

f d

Functional Details:

is the file descriptor to which the accounting
in(ormation is displayed. The user console is
the default.

The general format of the· system response to the DISPLAY
ACCOUNTING command depends upon the configuration of the system.

In a uniprocessor configuration, the system reoponse is:

2-24

USER CPU TIME
SVC CPU TIME
ROLL CPU TIME
PHO<!ESSOR TIME
WAIT ·rIME
ROLL TIME
ELAPSED TIME
ROLLS
I/O

hh:mm:ss:ms
hh:mm:ss.ms
hh:mm:se.ms
hh:mm: se. :ms
hh :mm: se .. ms
hh:mm: se .. ms
hh:mm: se,. ms
n
n

ppp.p%
ppp.p%
ppp.p%
100.0% ppp.p%

ppp.p%
ppp.p%
100.0%

48-043 FOO R03

For a Model 3200MP.S System (multiprocessor configuration), the
system response is:

USER CPU TIME
USER APU TIME
SVC CPU TIME
ROLL CPU TIME
PROCESSOR TIME

WAIT
ROLL
ELAPSED
ROLLS
1/0

·r1ME
'l'IME
TIME

hh:mrn:ss:ms
hh:mrn:ss.ms
hh:mrn:ss.ms
hh:mrn:ss.ms
hh:mrn:ss.ms

hh:mrn:ss.ms
hh:mrn:ss.ms
hh:mrn:ss
n
n

ppp.p%
ppp.p%
ppp.p%
ppp.p%
100.0%

ppp.p%
ppp.p%
ppp.p%
100.0%

The indicated percentages for USER CPU and USER APU, SVC CPU and
ROLL (!PU time are calculated as percentages of PROCESSOR TIME.
The indicated percentages for PROCESSOR, WAIT and ROLL times are
calculated as percentages of ELAPSED TIME. For I/O and ROLLS, n
indicates the number of each that has occurred. All information
displayed in response to the DISPLAY ACCOUNTING command pertains
to the current, or most recently executed, task. If no task has
been loaded or executed during the MTM session, this command is
meaningless and the system responds to it with a SEQ-ERR message.

The DISPLAY ACCOUNTING command can be entered in command mode
(providing at least one task has been run during the current
terminal session), task-loaded mode, task-executing mode and css
mode.

Examples:

The following is an example for a uniprocessor system:

*DISPLAY ACCOUNTING
USER CPU TIME 9:10.344

1:41.975
0.000

10: 52. 319
1:46.764

0.000
12.39

SVC CPU TIME
ROLL CPU 11' I M .. !
PROCESSOR TIME
WAI'r TIME
ROLT.... TIME
ELAPSED TIME
ROLLS
I/O

48-043 FOO R03

0
176759

84.4%
15.6%

0.0%
100.0%

100.0%

85.9%
14.1%

0.0%

2-25

The following example is for a. Model 3200MPS System:

2-26

*D A
USER CPU TIME
USER APU ·rIME
SVC CPU TIME
ROIL CPU TIME
PROCESSOR TIME
WAIT TIME
ROIL TIME
ELAPSED TIME
ROLLS 0
I/O 1650

o.a37
1. :329
2.834
0.000
5.000

51. :l24
0.000

56

16.7%
26.6%
56.7%

0.0%
100.0% 8.9%

91.1%
0.0%

100.0%

48-043 FOO R03

I DISPLAY DEVICES I

2.15 DISPLAY DEVICES COMMAND

The DISPLAY DEVICES command displays to the specified fd the
physical address, keys, on-line/off-line state and volume name
(for on-line direct access devices) of all devices in the system.

Format:

DISPLAY .!2EVICES [{._ ~} J

Parameter:

f d

Functional Detail:

is the file descriptor specifying the file or
device to which the display is routed. If fd
is omitted, the default is the user console.

The DISPLAY DEVICES command can be entered in command, task­
loaded and task-executing modes.

Example:

D D

NAME DN KEYS
NULL 0 0000
D301 DC 0000 M301
D67B ED 0000 MTM
DOSS C7 0000 FIXD
MAG3 cs 0000
CON 2 0000
PRT 63 0000
PRl 0 0000 SPOL
CT36 36 0000
CT42 42 0000
CT4C 4C 0000
CT74 74 0000
CT7C 7C 0000
DI18 18 0000 !TAM
BQLA BB 0000 !TAM
BQ3A BB 0000 !TAM
BQLB BC 0000 ITAM
BQ3B BC 0000 !TAM
IRDR:********·***

48-043 FOO R03

D300
CD D67A
SYS CD DOSA
CD MAG2

MAG4
CR
PR
CT34
CT3C
CT46
CT72
CT7A
IT7E
BI18
BQ2A
BQPA
BQ2B
BQPB

FC 0000
EC 0000
C6 0000
9S 0000
DS 0000

4 0000
0 0000

34 0000
3C 0000
46 0000
72 0000
7A 0000
7E 0000
18 0000
BB 0000
BB 0000
BC 0000
BC 0000

M300 CD
M67A CD
OFF

SPOL

ITAM

ITAM
!TAM
!TAM
ITAM

2-27

In the DISPLAY DEVICES output, the screen or page is divided in
half in order to display mo:r:e devices per page (or screen). The
definition of the columns is applicable to either half of the
display.

• Columns 1, 2 and 3 contain the device name, device number
(address) and keys, respectively.

• Column 4 is only def in1ed for pseudo-pr int (spool), ITAM
(communications) and di·rect access devices. The characters
SPOL specify that the devices are pseudo-print devices used in
spooling. For direct acc·ess devices, column 4 contains the
characters OFF to indicate that the device is off-line. If
on-line, the volume name is output in column 4.

• For write-protected disks, column 5 contains the characters
PROT. For MTM users, if the disk is write-protected, column
5 contains the characters SYS; if the disk is restricted,
column 5 contains the characters RES.

• If the secondary directory option is enabled, the last column
contains the characters CD.

Pseudo devices created by the SVC intercept facility are
displayed as an fd with asterisks (*) filling the filename and
extension fields. As an example, all SPL/32 spooler pseudo
devices are displayed in this manner.

2-28 48-043 FOO R03

I DISPLAY DFLOAT

2.16 DISPLAY DFLOAT COMMAND

The DISPLAY DFLOAT command displays to the specified fd the
contents of the double precision floating point (DPFP) registers
associated with the loaded task.

Format:

DISPLAY D?LOAT [{..:._} J
Parameter:

f d

Functional Details:

is the file descriptor specifying the file or
device to which the contents of the DPFP
registers associated with a user-specified
task are displayed. If fd is omitted, the
default is the user console.

This command suspends the current task, displays the contents of
the DPFP registers and releases the task. The task is only
released if it has not already been suspended by the user.

The user-specified task should have been built with the DFLOAT
option at Link time.

The DISPLAY DFLOAT command can be entered in task-loaded and
task-executing modes.

Example:

D DFL
0,2 00000000
4,6 00000000
8,A 00000000
C,E 00000000

48-043 FOO R03

00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000

2-29

DISPLAY PILES

2.17 DISPLAY PILES COMMAND

The DISPLAY FILES conunand permits information from the directory
of one or more direct access files to be output to a specified
fd.

Format:

DISPLAY ~ILES {l .::ill l [filename] G [ext]]

Parameters:

voln:

2-30

I

s

G
I

N

0

I.

NOTE

See Functional Details for variations on
the DISPLAY FILES conunand syntax.

specifies that all files with the user account
number be· displayed regardless of the volume
in which they reside. Entering the colon with
part of a filename limits the file search to
filenames with the specified characters.

is the 1- to 4-character name of a disk
volume. The first character must be
alphabetic, the remaining alphanumeric. If
voln is omitted, the default is the user
volume.

48-043 FOO R03

filename

ext

p

s

G

N

0

L

f d

Functional Details:

is the 1- to 8-character name of a file. The
first character must be alphabetic, the
remaining alphanumeric.

is the 1- to 3-character extension to a
filename.

indicates that information is requested for a
private file.

indicates that information is requested for a
system file; the default is private file only.

indicates that information is requested for a
group file; the default is private file only.

indicates that information is requested for
private and group files.

indicates that information is requested for
group and system files.

indicates that information is requested for
private and system files.

is the file descriptor specifying the file or
device to which the display is output. If fd
is omitted, the default is the user console.

A hyphen (-) in the command format requests that all files
starting with the characters preceding the hyphen or following
the hyphen are displayed and are subject to any restrictions
specified in the extension, account number and fd fields. For
example:

CAL32-

CAL32.-

-.MTM

CH-.043

48-043 FOO R03

displays all files whose first five characters
are CAL32.

displays all files named CAL32 with
extension.

any

displays all files with the the extension MTM.

displays all files beginning with CH with an
extension of 043.

2-31

The character * requests that all files with matching characters
in the same position(s) els those entered are displayed. For
example:

CAL32***

CAL**CAL

****32.0BJ

displays a.11 files between five and eight
characterf3 in length whose first five
char act er 13 are CAL3 2 .

displays all files, with a filename eight
charactert3 long, whose first three and last
three cha1cacters are CAL.

displays all files with a filename containing
six cha1cacters whose fifth and sixth
characters3 are 32 and whose extension is OBJ.

An asterisk in the account pC)sition indicates that all accounts
are to be searched for a match. If the user is a privileged
user, every account on the system is checked. If the user is a
nonprivileged user, the P, G and S accounts are checked.

The characters * and - can b19 combined in the command format, as
described previously, to further delimit files displayed. For
example:

CAL**l-

****32.0-

displays
char act er 13
is 1.

all files whose first three
are CAL, and whose sixth character

displays i!lll files, eight characters long,
whose la13t two characters are 32 and whose
extension begins with a 0.

A colon entered with part of a filename and a dash displays
filenames with the user account number starting with
specified characters regardl1ess of the volume on which
reside.

all
the

they

D F, :JM-

A colon entered with a specified extension displays all files
under the user account number with the specified extension
regardless of the volume on which they reside.

D F,:.JM

2-32 48-043 FOO R03

An example of the display produced by the DISPLAY FILES command
from a privileged user is:

D F,M300:-.-

VOLUME• M300
FILENAME •••••
SYSEDIT .CMD/00205
TEST .CSS/00205
CONTIG /00205
IN /00205

TY DBS/IBS RECL. RECORDS CREATED LAST WRITTEN .. KEYS
IN 1/1 80 1 11/10/82 22:30 11/10/82 22:30 0000
IN 1/1 132 2 11/15/82 11:30 11/15/82 11:30 0000
co 35 11/15/82 11:35 11/15/82 11:35 0000
IN 10/3 50 0 11/15/82 11:35 11/15/82 11:35 0000

An example of the same DISPLAY FILES command from a nonprivileged
user is:

D F, M300:-.-

VOLUME- M300
FILENAME ••••••
SYSEDIT .CMD/P
TEST .CSS/P
CONTIG /P
IN /P

TY DBS/ IBS RECL. RECORDS CREATED. LAST WRITTEN. . KEYS
IN 1/1 80 1 11/10/82 22:30 11/10/82 22:30 0000
IN 1/1 132 2 11/15/82 11:30 11/15/82 11:30 0000
co 35 11/15/82 11:35 11/15/82 11:35 0000
IN 10/3 50 0 11/15/82 11:35 11/15/82 11:35 0000

For contiguous files, TYPE (TY) is CO and RECORDS is the size of
the file in (decimal) sectors.

For indexed files, TYPE is IN, followed by the data and index
blocking factors. RECL is the logical record length in (decimal)
bytes, and RECORDS is the number of logical records (in decimal)
in the file.

For nonbuffered indexed files, TYPE is NB, RECL is logical record
length in (decimal) bytes, and RECORDS is the number of logical
records (in decimal) in the file.

For extendable contiguous files, TYPE is EC, and RECORDS is the
length of the file in sectors (i.e., the size of the file).

Spool and temporary files are named as *SPOOLFILE* and
TEMPFILE, respectively (unless the user has the privilege to
see the actual filenames, in which case the names are displayed).

The DISPLAY FILES command can be entered in command, task-loaded
and task-executing modes.

48-043 FOO R03 2-33

NOTE

If a DISPLAY FI'LES command is entered by
a privileged user, the account number of
each file is displayed. Nonprivileged
MTM users see only the account class (P,
G or S).

Examples:

The following example displays to the user terminal all files
with the user's account number on the default user volume.

D F

The following example displays file CAL32.TSK in the private,
group and system accounts.

D F,CAL32.TSK/-

The following example displays all files in the private, group
and system accounts on the default user volume.

D F,-/-

The following example displays to the device MAGl all files with
the user's account number on the default user volume.

D F, ,MAGl:

The following example displays to the user's terminal all files
with the user's account number on volume M300.

D F,M300:

The following example displays to the user's terminal all files
on volume M300 with first character A and extension TSK in the
user's account number.

D F,M300:A-.TSK

2-34 48-043 FOO R03

The following example displays all files on the default user
volume in the user's account number with a blank extension,
regardless of filename. The display is routed to device PRl:.

D F, - . , PRl:

The following example displays to the user's terminal all files
that start with CAL, contain the character 1 in the sixth
position, have any extension and are in the user's account
number.

D F,CAL**l-.-

The following example displays to the user's terminal the files
named TASK that have one or two character extensions starting
with the character 5. A separate display of these files is done
for each on-line disk volume whose name starts with the letter M.

D F,M-:TASK.5*

The following example displays to the user's terminal the files
named TASK with any extension. A separate display of these files
is done for each on-line disk volume in the system.

D F,-:TASK.-

The following example displays to the user's terminal all files
that start with the four characters EDIT on all volumes and in
all accounts regardless of the extension. If the user is not
privileged, only matching files in the private, group and system
accounts are displayed.

D F,-:EDIT-/*

The following example displays to the user's terminal all files
in the user's private and group account on the default user's
volume.

D F,-/N

48-043 FOO R03 2-35

DISPLAY FLOAT

2.18 DISPLAY FLOAT COMMAND

The DISPLAY FLOAT command displays to the specified fd the
contents of the single precision floating point (SPFP) registers
associated with the loaded task.

Format:

DISPLAY l.LOAT

Parameter:

f d

Functional Details:

is an optional file descriptor specifying the
file or device to which the display is output.
If fd is omitted, the display is output to the
user's terminal.

The user-specified task must be built with the FLOAT option
specified at Link time.

This command suspends the current task, displays the contents of
the SPFP registers and releases the task. The task is only
released if it has not already been suspended by the user.

The DISPLAY FLOAT command can be entered in task-loaded mode.

Example:

2-36

D FL
0,2
4,6
8,A
C,E

00000000
00000000
00000000
00000000

00000000
00000000
00000000
00000000

48-043 FOO R03

DISPLAY LU

2.19 DISPLAY LU COMMAND

The DISPLAY LU command displays to the specified fd all assigned
logical units of the loaded task.

Format:

DISPIAY LU[.{..:; ... }]
Parameter:

f d is an optional file descriptor specifying the
file or device to which the assigned logical
units are to be displayed. If fd is omitted,
the default is the user console.

Functional Details:

The lu number, file or device name, current access privileges,
current record number and percentage through file are displayed.
The current record number and percentage through file are
displayed only for files. For nonprivileged users, the file
class is shown; for privileged users the account number is shown.

This command suspends the current task, displays the task's lu
assignments and releases the task. The task is only released if
it has not already been suspended by the user.

The DISPLAY LU command can be entered in task-loaded and
task-executing modes.

Example:

DISP LU
LU FILE/DEVICE RECORD THRU

1 M30l:DEMO.IN/P,SREW 1500 100.0%
2 M30l:SORT.OUT/P,SREW 1246 83.7%
3 CON: ,SRW
4 M67C:&2987406.001/P,SREW 14 58.3%
5 M67C:&2987407.001/P,SREW 2 66.6%
9 MTM:SRTMRGII.OVY/S,SRO 141 46.7%

48-043 FOO R03 2-37

DISPLAY
PARAMETERS

2.20 DISPLAY PARAMETERS COMMAND

The DISPLAY PARAMETERS conunand displays the parameters of the
loaded task.

Format:

Parameter:

f d

Functional Details:

is an optional file descriptor specifying the
file or device to which the display is output.
If fd is omitted, the default is the user
console.

This conunand suspends the current task, displays the task's
parameters and releases the task. The task is released only if
it has not already been suspended by the user.

The suspend statue (STAT - 100) is masked for tasks internally
suspended for conunands such as DISPLAY FLOAT, DISPLAY REGISTERS,
etc.

Table 2-2 lists the field ad.dresses and data displayed when the
DISPLAY PARAMETERS conunand is entered.

2-38 48-043 FOO R03

TABLE 2-2 DISPLAY PARAMETERS COMMAND FIELDS

FIELD I VALUE MEANING

=--TASK xxxxxxxx

CTSW xxxxxxxx

CLOC xxxxx

STAT xxxxx

TOPT xxxxxxx

USSP xxxxx

MUSP xxxxx

MXSP xxxxx

CTOP xxxxx

UTOP xxxxx

UBOT xxxxx

SLOC xxxxx

NLU xxx

MPRI xxx

SVOL xx xx

Task n~e; also user signon name

Status portion of current task status word
(TSW)

Current location

Task wait statue

Task options

Current used system space

Maximum used system space

Maximum allowed system space

Task CTOP

Task UTOP

Task UBOT

Task starting location

Number of logical units (decimal)

Maximum priority (decimal)

Default volume ID

The addresses displayed as CTOP, UTOP and UBOT are not physical
addresses, but are addresses within the task's own program space.
CLOC may be a program space address or a physical address in a
system subroutine being executed on behalf of the task. NLU is
given in decimal. SVOL is the ASCII default volume ID. The
fields CTOP, UTOP, UBOT and SLOC are described in detail in the
OS/32 Application Level Programmer Reference Manual.

TOPT is given in hexadecimal. The definitions of task option
bits are listed in Table 2-3.

48-043 FOO R03 2-39

BIT I

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

2-40

TABLE 2-3 TASK OPTION BIT DEFINITIONS

MASK

0800 0000

0400 0000

0200 0000

0100 0000

0080 0000

0040 0000

0020 0000

0010 0000

0008 0000

0004 0000

0002 0000

0001 0000

0000 8000

0000 4000

0000 2000

0000 1000

MEANING

0 = Dynamic scheduling disabled
1 = D}rnamic scheduling enabled

0 = Pi:ompt disabled
1 = Pi:ompt enabled

0 = 1/0 interpreted without VFC
1 = All 1/0 interpreted with VFC

0 = No extended SVC! parameter blocks
uned (excludes communications 1/0)

l = Extended SVC! parameter blocks
Uf3ed

0 = New TSW for task event service
1 = No new TSW for task event service

0 = Task event all registers saved
l = Task event partial registers saved

0 = Task event no register saved
1 = Task event register saved

0 = Not in system group
1 = In system group

0 = No console 1/0 intercept
l = Cc:msole 1/0 intercept enable

0 = Universal status reports disabled
1 = Universal status reports enabled

0 = Allow e-task load
l = Prevent e-task load

0 = Queued I/Os not purged on error
l = Queued I/Os purged on error

0 = U-task
l = E--task

0 = AFPAUSE
l = AFCONT

0 = NOFLOAT
l = Single floating point

0 = NONRESIDENT
l = RESIDENT

48-043 FOO R03

TABLE 2-3 TASK OPTION BIT DEFINITIONS (Continued)

BIT I MASK MEANING

===·=---=---20 0000 0800

21 0000 0400

22 0000 0200

23 0000 0100

24 0000 0080

25 0000 0040

26 0000 0020

27 0000 0010

28 0000 0008

29 0000 0004

30 0000 0002

31 0000 0001

0 = SVC6 control call
1 = Prevent SVC6 control call

0 = SVC6 communication call
1 = Prevent SVC6 communication call

0 = SVCPAUSE
1 = SVCCONT

0 = NODFLOAT
1 = DFLOAT

0 -= NOROLL
1 = ROLL

0 No overlay
1 = Use overlay

" 0 = Accounting disabled
1 = Accounting enabled

0 = Task can issue intercept call
1 = Task cannot issue intercept call

0 = No account privileges
1 = File account privileges

0 = Bare disk assign not allowed
1 = Bare disk assign allowed

0 = Not universal
1 = Universal

0 = No keychecks
1 = Do keychecks

STAT is given in hexadecimal. The definitions of wait status
bits are shown in Table 2-4.

48-043 FOO R03 2-41

TABLE 2-4 WAI 1T STATUS BIT DEFINITIONS

BIT I MASK MEANING

---15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

0001 0000

0000 8000

0000 4000

0000 2000

0000 1000

0000 0800

0000 0400

0000 0200

0000 0100

0000 0080

0000 0040

0000 0020

0000 0010

0000 0008

0000 0004

0000 0002

Intercept wait

I/O wait

(Any) IOB/WAIT

Console wait (paused)

Load wait

Dormant

Trap wait

Time of day wait

Suspended

Interval wait

Terminal wait

Roll pending wait

Intercept initialization (MTM)

Intercept termination (MTM)

System resource connection wait

Accounting wait

NOTE

Zero status indicates an active task.

CTSW is expressed in hexadecimal.
portion of the TSW, see the OS/32
Reference Manual.

For a definition of the status
Application Level Programmer

The DISPLAY PARAMETERS command can be entered in task-loaded and
task-executing modes.

2-42 48-043 FOO R03

Example:

The following is an example of the output generated in response
to a DISPLAY PARAMETERS command:

*DISPLAY PARAMETERS

TASK
CTSW
CLOC
STAT
TOPT
USSP
MUSP
MXSP
CTOP
UTOP
UBOT
SLOC
NLU
MPRI
SVOL

MTMUSER
00001000

F2B7C
2000

10021
14F8
2208
3000
24FE
2370

0
FOOOO

15
140

M67A

48-043 FOO R03 2-43

DISPLAY
REGISTERS

2.21 DISPLAY REGISTERS COMMAND

The DISPLAY REGISTERS command displays to the specified fd the
contents of the general purpose user registers associated with a
loaded task.

Format:

DISPLAY BEGISTERS [.{.~}]

Parameter:

f d

Functional Details:

is the file descriptor to which the contents
of the general purpose user registers are
displayed. If fd is omitted, the display is
output to the user console.

This command suspends the current task, displays the contents of
the task's general purpose registers and releases the task. The
task is released only if it has not already been suspended by the
user.

The DISPLAY REGISTERS command can be entered in task-loaded and
task-executing modes. For u-tasks, the contents of each register
will be 0 until the task has started. For diagnostic tasks
(d-tasks) and e-tasks, register F contains the absolute UBOT
address until the task has started.

Example:

2-44

DR
PSW
0-3
4-7
8-B
C-F

000077FO
00000000
OOOOE83C
OOOOE8CB
OOOOE804

OOOOE588
00000000
00000000
00000000
OOOOE9DO

00000000
00000000
OOOOE848
OOOOE584

00004801
OOOOD2EA
00000028
OOOOEOSE

48-043 FOO R03

DISPLAY TIME

2.22 DISPLAY TIME COMMAND

The DISPIAY TIME command displays the current date and time to a
specified fd.

Format:

DISPIAY ~IME [.{..::.._} J
Parameter:

f d specifies the file or device to which the
display is to be output. If fd is omitted,
the default is the user console.

Functional Details:

The display has the following format:

mm/dd/yy hh:mm:ss

or alternatively (by sysgen option):

dd/mm/yy hh:mm:ss

The DISPLAY TIME command can be entered in command, task-loaded
and task-executing modes.

48-043 FOO R03 2-45

DISPLAY USERS

2.23 DISPLAY USERS COMMAND

The DISPLAY USERS command displays the userid, terminal device
names and operating mode o,f all users currently signed on under
MTM. Additionally, all active batch jobs are displayed.

Format:

DISPtAY llSERS [{~]

Parameter:

f d

Functional Detail:

specifies the file or device
display is output. If fd
default is the user console.

to which the
is omitted, the

This command can be entered in command, task-loaded and task­
executing modes.

Example:

DU
R-NULL:@$HASPOO
LFS-CT26:)MTM-MODE
GRAY-CT2C:@MTM-MODE
DAVE-CT3A:)MTM-MODE

Where:

>
@

MTM-MODE

ECM-MODE

$

BATCH

2-46

BG-C!T22:@MTM-MODE
JON-·CT32: @ECM-MODE
LYNDA-NULL:@$STAT
BRI -·CT3E:)MTM-MODE

NERD-NULL:@$STAT
VAL-CT2A:)MTM-MODE
BJM-CT30:@MTM-MODE
JOB3-BATCH)MTM-MODE

denotes a nonprivileged MTM user.

denotes a privileged MTM user.

indicatee1 standard MTM usage.

indicatee1 environmental control monitor mode.

indicatee1 foreground task-mode and HASP mode.

denotes an active batch job.

48-043 FOO R03

ENABLE

2.24 ENABLE COMMAND

The ENABLE command
suppressed by the
console.

Format:

MESSAGE

E.ROMPT

allows the prompt or messages previously
PREVENT command to be displayed on the user

.TYP.EAHEAD

E[ARIABLE

Parameters:

MESSAGE

PROMPT

ETM

TYPEAHEAD

$VARIABLE

Functional Details:

allows other MTM users to send messages to the
user terminal.

requests the system to print the hyphen prompt
(·-) in task-executing mode. The hyphen is the
default prompt for task-executing mode.

displays the end of task message.

enables input without intervening reads by
MTM. This allows the user to continually type
without waiting for a prompt (i.e., no
connected read request).

enables variable processing of local
global variables on a per user basis.

and

The ENABLE command does not affect messages originating from the
system operator.

Local and global variable support for all MTM users is included
in the MTM sysgen option SGN.VAR.

48-043 FOO R03 2-47

TYPEAHEAD allows for faster typing without losing characters or
having to wait for the prompt to return. Any characters typed
during this time are placed on a typeahead character queue and
then passed to the editor for processing on the following read
request. This conunand is only effective on terminals using the
bidirectional input/output control (BIOC) device driver.

2-48 48-043 FOO R03

EXAMINE

2.25 EXAMINE COMMAND

The EXAMINE command examines the contents of a memory location in
the loaded task.

Format:

EXAMINE addrees 1
{

,n }
/address2

Parameters:

address

n

f d

Functional Details:

::~ti! .

indicates the starting and ending addresses in
memory whose contents are to be displayed in
hexadecimal. All addresses specified are
rounded down to halfword boundaries by the
system.

is a decimal number specifying the number of
halfwords to be displayed. If n is omitted,
one halfword is displayed.

is the file descriptor specifying the file or
device to which the contents of memory are
displayed. If omitted, the default is the
user console.

This command suspends the current task, displays the contents of
the specified location(s) and releases the task. The task is
released only if it has not already been suspended by the user.

Specifying only address1 causes the contents of memory at that
location (as modified by any previous BIAS command) to be
displayed. Specifying address1 and address2 causes all data from
the first to the second address to be displayed.

The EXAMINE command can be entered in task-loaded and task­
executing modes.

48-043 FOO R03 2-49

Any memory that can be accessed by the loaded task can be
examined with the EXAMINE command. For example, if a task uses
a PURE segment that is mapped to segment register F, then
examining addresses at FOOOO or greater will display the contents
of the PURE segment.

Examples:

Examine 24 (decimal) halfwords beginning at relative addreee 2AO:

*EXAMINE 2A0,24
0002AO PPPP PPPP 0000 0000 COSS 44P7 0000 0000
000280 40A5 PAPA 0000 0000 4110 0000 41AO 0000
0002CO 2E50 4155 5345 0000 CBlO 0064 DOBl 0050

* D. • • • • *
* @ ••••••• A ••• A ••• *
* • PAUSE •...• d ... P *

Examine from relative address 2AO to relative address 2CF:

2-50

*BIAS 2AO
*EXA 0/2P
0002AO PPPP PPPP 0000 00001 COSS 44P7 0000 0000
000280 40A5 PAPA 0000 00001 4110 0000 41AO 0000
0002CO 2E50 4155 5345 0000 CBlO 0064 DOSl 0050

* D. • • • • *
* @ ••••••• A ••• A ••• *
* .PAUSE• d .•. P *

48-043 FOO R03

FF ILE

2.26 FFILE COMMAND

The FFILE command forward spaces to the next f ilemark on magnetic
tapes, cassettes and direct access files.

Format:

Parameters:

f d

lu

Functional Detail:

is the file descriptor of the device or file
to be forward spaced one f ilemark.

is the logical unit to which the file is
assigned. If lu is specified without fd, the
operation is performed on the lu regardless of
what is assigned to it.

The FFILE command can be entered in task-loaded mode.

Examples:

The following example causes the file or device to lul to forward
space one f ilemark.

FF 1

The following example causes the file AJM.OBJ on volume M300
assigned to lu4 to forward space one f ilemark.

FF M300:AJM.OBJ,4

48-043 FOO R03 2-51

FRECORD

2.27 FRECORD COMMAND

The FRECORD command forward spaces one record on magnetic tapes,
cassettes and direct access files.

Format:

FRECORD [ta,] lu

Parameters:

f d

lu

Functional Detail:

is the file descriptor of the device or file
to be forward spaced one record.

is the logical unit to which the device or
file is assigned. If lu is specified without
fd, the operation is performed on the lu
regardless of what is assigned to it.

The FRECORD command can be e~ntered in task-loaded mode.

For the streaming tape dri ve~r, the FRECORD command moves the
streaming tape forward one 512-byte block.

Examples:

The following example causes the device or file assigned to lul
to forward space one record.

FR 1

The following example causes file AJM.OBJ on volume M300 assigned
to lu4 to forward space one record.

FR M300:AJM.OBJ,4

2-52 48-043 FOO R03

HELP

2.28 HELP COMMAND

The HELP command displays information on MTM user and program
development commands.

Format:

Parameters:

mnemonic is any valid MTM or program
command mnemonic.

development

* causes a list of
development commands
list device.

all
to

MTM and program
be displayed to the

Functional Details:

The HELP command is implemented as a css procedure. When a
mnemonic or command is entered, information on how to use that
particular command is displayed to the list device. If
parameters are omitted, information on how to use the HELP
command is displayed to the list device.

Example:

HELP *
ADD
BI(AS)
CAL
COMMAND
DE(LETE)
ENDS
FF (ILE)
PORTZ
LINK
MACRO
PASCAL
PRI (NT)
REN(AME)
RUN
SE(T)
ST(ART)
WP(ILE)
INQ(UIRE)

AL(LOCATE)
BREA(K)
CA(NCEL)
COMPILE
D(ISPLAY)
ENV
FILEDESC
FR(ECORD)
LIST
ME(SSAGE)
PAS(SWORD)
PUN(CH)
REP(ROTECT)
RW
SIGNOF(F)
T(ASK)
XAL(LOCATE)
PUR(GE)

AS(SIGN)
BR(ECORD)
CL(OSE)
COMPLINK
EDIT
EXA(MINE)
FORT
HELP
L(OAD)
MO(DIFY)
P(AUSE)
REL(EASE)
REW(IND)
RVOL(UME)
S(IGNON)
TE(MPFILE)
XDE(LETE)

BF (ILE)
BU(ILD)
COBOL
CO(NTINUE)
ENA(BLE)
EXEC
PORTO
INIT
LOG
O(PTION)
PRE(VENT)
REMOVE
RPG
SEN(D)
SPOOLFILE
V(OLUME)
SUB(MIT)

For help on any of the above command mnemonics, type HELP
<mnemonic).

48-043 FOO R03 2-53

Example:

2-54

HELP PASSWORD

PASSWORD: The PASSWORD command enables any user who has the
PASSWORD privilege to alter his own signon password.

FORMAT:

(PAS)SWORD CURRENT P1\SSWORD, NEW PASSWORD

PARAMETERS:

CURRENT PASSWORD

must exactly
password.

NEW PASSWORD

m1itch the us er ' s current account

specifies the new account password. This password
replaces the current password in the authorized user
file. The passwo:rd can be up to 12 characters long;
remaining charact.ers are truncated. All alphabetic,
numeric and special characters except blanks, commas
or semicolons are allowed.

48-043 FOO R03

INIT

2.29 INIT COMMAND

The INIT command initializes all data on a contiguous file to
zero.

Format:

INIT fd [{segsize ~ncrement}]

Parameters:

f d is the file descriptor of any unassigned,
unprotected, contiguous file.

segsize
increment

Functional Details:

is the size of the buffer space used.
default is lkb.

The

INIT is implemented with a CSS procedure that loads and starts
the File Manager Support Utility as a task.

The INIT command can be entered in command mode.

Examples:

The following example initializes the file DATA.FIL.

INIT DATA.FIL

The following example initializes the file DATA2.FIL using a 50kb
buffer.

INIT DATA2.FIL,50

48-043 FOO R03 2-55

LOAD

2.30 LOAD COMMAND

The LOAD command is used to load a user's task into memory.

Format:

LO.AD [taskid J fd G segs ize increment] G.s.cTASK]

Parameters:

task id

f d

segsize
increment

SCTASK

Functional Details:

specifies the name of the task to be loaded.

specifies the file or device from which the
task is being loaded.

specifies amount of memory in kilobytes (above
the memory size) that the task needs for
processing. When a task is built (via Link),
the OPTION WORK=n command adds additional
memory to a task~ The size field in the LOAD
command overrides the amount of memory
specified by Link. The size is accepted in
.25kb increments.

specifies that the task is to be loaded as an
SPL/32 spooler subcontrol task. See the
SPL/32 Administration and Reference Manual for
information on subcontrol tasks and their
function. If the SPL/32 spooler is not the
spooler being used on the system, use of this
para.meter will generate an error message.

In order to maintain CSS compatibility, the taskid (.BG) can be
used. The system will, howe~ver, ignore it. Any valid taskid can
be entered, but it will be ignored.

If a task is loaded from
searches the user volume
account. If the file is
search the SYS volume in
volume designator was

2-56

a direct access device, the system first
or the specified volume under the user's
not found in the search, the system will
the SYS account if an account or a
not specified in the LO.AD command.

48-043 FOO R03

Only values that the user does not explicitly specify will
subsequently be searched for. If an extension is not specified
in the LOAD command, the extension .TSK is assumed.

The LOAD command can be entered in command mode.

An error might occur if a user ID under MTM is the same as the ID
of a task loaded from the system console. If a load or fd error
is displayed, sign off and sign on again with a different user
ID.

A privileged user can specify an account number in the fd. All
other users can only specify an account class designator (P, G,
S).

For a Model 3200MPS System, a user without SVC6 control privilege
cannot load a task to a nonzero logical processing unit (LPU)
number. If a nonprivileged user loads a task and then specifies
the OPTION LPU command with an argument other than zero, the
following message is displayed:

*LPU RESET TO 0

Users with SVC6 control privilege can load tasks to LPU numbers
other than 0 regardless of the LLE.

Examples:

The following example loads the task from file VOL:CAL.TSK.

LVOL:CAL

The following example loads the task from the paper tape reader
punch device.

L PTRP:

48-043 FOO R03 2-57

LOG

2 . 31 LOG COMMAND

The LOG command logs all us·er input and MTM responses to a
specified fd.

Formats:

LOG f d [[{=y}] [{~}]
SET LOG [fd] [[{=yt~.[{~ }]

Parameters:

f d

COPY

NOCOPY

n

2-58

is the file descriptor of the log file or
device. If no fd is specified, logging is
terminated. If fd is a file, it must be
previously allocated. Files are assigned EWO
privileges so that logged output is added to
the end of the file. If a log is active when
another LOG command is entered, the old log is
closed and the new one is initiated.

specifies that all output is written to both
the terminal and the log device.

specifies that all output (except messages) is
written to the log device and not to the
terminal. Messages from other users and the
operator are written to both the terminal and
the log device. If this parameter is omitted,
COPY is the default.

is a de!cimal number from 0 to 65, 535
specifying the number of lines after which the
user log file i~ to be checkpointed. If this
parametet· is omitted, the default is 15 lines.
If n is specified as 0, no checkpointing will
occur.

48-043 FOO R03

Functional Details:

The LOG and the SET LOG conunands are the same. The conunand can
be entered either way and both conunand formats perform the same
function. . .
Checkpointing can be done on any type of file. Since indexed
files are buffered, checkpointing may be useful any time the file
is being written to. Checkpointing nonbuffered indexed files and
extendable contiguous files is useful only if the file is being
expanded. Checkpointing a contiguous file is meaningless; no
operation is performed.

The LOG conunand can be entered in conunand, task-loaded and
task-executing modes.

Example:

LOG LOG.FIL,COPY,10

48-043 FOO R03 2-59

MESSAGE

2.32 MESSAGE COMMAND

The MESSAGE conunand sends a message to a specified user.

Fo"Imat:

{
user id }

MESSAGE message
.....QPERATOR

Pa'Iamete'Is:

user id is the name of the user to whom the message is
being sent. This ID can be obtained from the
DISPLAY USERS conunand. A userid of .OPERATOR
sends a mc3ssage to the system console.

message is the te:1tt of the message that the user wants
to send.

Functional Details:

The user receiving the message receives the userid of the sender
as well as the message.

This conunand can be ente:red in conunand,
task-executing modes.

Example:

task-loaded and

The following message is sent to user id AVE from user id TIC. The
fo"Imat of the message sent i:s:

ME AVE HELLO MTM USER

The fo"Imat of the message "Ieieeived is:

TIC-HELLO MTM USER

2-60 48-043 FOO R03

MODIFY

2.33 MODIFY COMMAND

The MODIFY command modifies the contents of a memory location in
the loaded task.

Format:

[{
data1}]

MODIFY address, Ci"\
.a ..

~ data2 , ••• , datan]

Parameters:

address

data

Functional Details:

is the halfword boundary address at which the
modification of the contents of memory is to
begin.

is a data field consisting of zero to four
hexadecimal digits that represents a halfword
to be written into memory starting at the
location specified by address. Any string of
data less than four characters is
right-justified and left-zero filled. If the
comma is entered but data is omitted, 0 is
entered into one halfword.

This command causes the contents of memory, beginning at the
halfword location specified by address (modified by any previous
BIAS command), to be replaced with the specified data. The task
ls suspended, the contents of the specified location are
modified, and the task is released if it is not already suspended
by the user. The modify address must be aligned on a halfword
boundary. The number of halfwords that can be modified by a
single command is limited only by the command buffer size
established at MTM sysgen.

The MODIFY command can
task-executing mode.

be entered in task-loaded and

Any segment (impure, shared or task common) to which au-task has
write access can be modified. For an e-task, only the impure
segment can be modified.

48-043 FOO R03 2-61

Examples:

In the following example each command is used to modify a single
halfword.

*EXA 2C0,8
0002CO 2E50 4155 5345 0000 CBlO 0064 DOBl 0050 * .PAUSE d ... P *
*
*MODIFY 2C0,2B43
*MODI 2C2,4841
*MOD 2C4,4E47
*MO 2C6,452B
*
*EXA 2C0,8
0002CO 2843 4841 4E47 4528 CBlO 0064 DOBl 0050 * *CHANGE+ ... d ... P *

The command can also be used to modify several halfwords. The
number of halfwords that can be modified by a single command is
limited by the size of the command buffer.

*BIAS 2CO
*MO 0,2E50,4155,5345,0
*
*EXA 2C0,8
0002CO 2E50 4155 5345 0000 CBlO 0064 DOBl 0050 * .PAUSE d •.• P *

2-62 48-043 FOO R03

OPTIONS

2.34 OPTIONS COMMAND

The OPTIONS conunand allows an MTM user to change the task options
of the currently loaded task.

Format:

OPTIONS [{ ~USE }] ~{· SYC.f.,AUSE }] GNONRESIDENT] [GLPu-(!lJ] [,NLPuJ]
AF.CONTINUE t ~ONTINUE

Parameters:

AF PAUSE

AFCONTINUE

SVCPAUSE

SVCCONTINUE

NONRESIDENT

LPU=n

NLPU

48-043 FOO R03

specifies that the task is to pause after any
arithmetic fault (AF).

specifies that if the arithmetic fault trap
enable bit is set, a trap is taken. If the
bit is not set, the task continues after an AF
occurs and a message is sent to the log
device.

specifies that SVC6 is treated as an illegal
SVC (applies to background tasks only). If an
SVC6 is executed within a background task, the
task is paused.

specifies that SVC6 is treated as a NO-OP
(applies to background tasks only). If an
SVC6 is executed within a background task, the
task is continued.

specifies that the task is to be removed from
memory at end of task.

sets the task as an LPU-directed task. The
specific LPU can be specified by n.

sets the task as a central processing unit
(CPU)-directed task (invalid if the APUONLY
option is set by Link).

2-63

Functional Details:

For a Model 3200MPS System with load-leveling executive (LLE)
enabled, specification of an LPU number other than zero by a user
without SVC6 control privilege causes the following message to be
displayed:

PARM-ERR POS=LPU=n

The OPTIONS command can be entered in task-loaded mode.

The LPU and NLPU parameters affect the LPU-directed task status.
The NLPU parameter resets the LPU-directed task status (i.e.,
task is CPU-directed). If the combination "LPU•n, NLPU" is
entered, the task's LPU number is set to "n" and the task is
CPU-directed. This assigned LPU number has no effect until the
task is changed to LPU-directed.

Example:

In the following example, task options are set to allow the task
to take a trap or log a message depending on the setting of the
arithmetic fault trap enable bit. If the task is a background
task, any SVC6 will be treated as a NO-OP.

OPT AFC,SVCC

2-64 48-043 FOO R03

PASSWORD

2.35 PASSWORD COMMAND

The PASSWORD command enables any MTM users with the PASSWORD
privilege (privileged user) to alter their own signon passwords.

Format:

£AS.SWORD current password, new password

Parameters:

current password must match the user's current
password exactly.

account

new password

Functional Detail:

specifies the new account password. This
password replaces the current password in
the AUF. The password can be up to 12
characters long; remaining characters are
truncated. All alphabetic, numeric and
special characters except blanks, commas or
semicolons are allowed.

If a user without the PASSWORD privilege enters the PASSWORD
command, a MNEM-ERR message is generated.

48-043 FOO R03 2-65

PAUSE

2.36 PAUSE COMMAND

The PAUSE command pauses the currently running task.

Format:

.EAUSE

Functional Details:

Any I/O proceed ongoing at the time the task is paused is allowed
to go to completion. This c:ommand is rejected if the task is
dormant or paused at the time PAUSE is entered.

The PAUSE command can be entered in task-executing mode.

2-66 48-043 FOO R03

PREVENT

2.37 PREVENT COMMAND

The PREVENT command suppresses either messages or the task­
executing prompt (the hyphen is the default) while an interactive
task is running.

Format:

MESSAGE

EROMPT

.E.REVENT ETM

,T.YEEAHEAD

l~IABLE

Parameters:

MESSAGE

PROMPT

ETM

TYPEAHEAD

$VARIABLE

Functional Details:

prevents other MTM users from being able to
send messages to the user terminal.

suppresses the printing of the
prompt (the hyphen is the
task-executing mode.

task-executing
default) during

supresses the display of end of task message.

MTM resumes a normal command read ("*" command
read).

disables variable processing on a per user
basis.

If a user did not input any of the parameters, the terminal will
receive both messages and task-executing prompts. The
task-executing prompt indicates that either a task or css is
executing.

If the MTM system includes variable support and the $VARIABLE
parameter is entered, the overall performance of MTM increases.

48-043 FOO R03 2-67

PRINT

2.38 PRINT COMMAND

The PRINT command sends the file to be printed to the spooler for
subsequent printing.

Format:

.flUNT fd GDfil!ICE-pseudo device] G,".COPIES=n] GDELETE] G~J

Parameters:

f d

DEVICE=

COPIES•

DELETE

VFC

is the ni:une of the f i le to be pr inted .

pseudo device specifies the print device. If
t.his pa'.rameter is omitted, output is directed
to any available print device.

n allows the user to specify the number of
copies of the file to be output. From 1 to
255 copi 1es can be made. If this argument is
omitted, one copy is the default.

specifies the file fd is to be deleted after
the output operation is completed. If this
argument is omitted and the file is not a
spool file, the file is retained.

specifies that vertical forms control is in
use. Currently, the card punch driver does
not support VFC.

Functional Details:

If the spool option was not selected at OS/32 sysgen, this
command results in an error.

The PRINT command can be entered in command, task-loaded and
task-executing modes.

2-68

NOTE

If the SPL/32 spooler is in use on the
system, the MTM user has additional
options available for use with the PRINT
command. See the SPL/32 Administration
and Reference Manual for a detailed
description of these additional options.

48-043 FOO R03

PUNCH

2.39 PUNCH COMMAND

The PUNCH command indicates to the spooler that the specified
file is to be punched.

Format:

.P..IlNCH fd [,DEY:ICE=pseudo devic~ G.c.oP IES=n] [;DELET!fil [,YE.CJ

Parameters:

f d

DEVICE=

COPIES=

DELETE

VFC

is the name of the file to be punched.

pseudo device specifies the name of the pseudo
output device. If the DEVICE= parameter is
omitted, punch output is directed to any
available punch device.

n is the number of copies desired. From 1 to
255 copies can be made. If the COPIES=
parameter is omitted, only one copy is output.

specifies that the fd is to be
the output operation is
omitted, the file is retained.

deleted after
performed. If

specifies that vertical forms control is in
use. Currently, the card punch driver does
not support VFC.

Functional Details:

If the spool option was not selected at OS/32 sysgen, this
command will result in an error.

The PUNCH command can be entered in command, task-loaded and
task-executing modes.

NOTE

If the SPL/32 spooler is in use on the
system, the MTM user has additional
options available for use with the PUNCH
command. See the SPL/32 Administration
and Reference Manual for a detailed
descripion of these additional options.

48-043 FOO R03 2-69

$RELEASE

2.40 $RELEASE COMMAND

The $RELEASE command is used to release a new global or new
internal variable. It also releases the variable's associated
buffer. This command has no effect on local or global variables
created with the $SET command.

Format:

{
GVARIABLE }[l I.RELEASE , n1
.lVARIABLE

Parameters:

GVARIABLE

I VARIABLE

ALL

Functional Details:

indicates that the variables to be released
are new global variables.

indicates that the variables to be released
are new internal variables.

specifies that all variables (of the type
selected via the preceding parameter) between
the rang·e of n 1 /n 2 be released. n is a
decimal number between 1 and the value allowed
at MTM eysgen for the selected variable type.

n is a decimal number of a variable (either
new global or new internal) or variables to be
released. n must be within the range of 1 and
the ma:x:imum value allowed at MTM sysgen for
the sele!cted variable type.

spec if ieis that all new internal or new global
var iablE!S be released. This is the default if
no spec 1.f ic variable numbers are spec if ied.

This command can be entered
task-executing and CSS mode~s.

in command, task-loaded,

2-70 48-043 FOO R03

In order to reduce buffer overhead, variables that are no longer
being used should be released. If this command is directed to a
variable that was already released, the command is ignored; no
error message is generated.

New internal variables that have a null or zero value are
automatically released.

Examples:

The following example releases.all new global variables from 1
through 5.

$RELEASE GVARIABLE,1/5

The following example releases the new internal
numbered 16, 19, 18 and 25.

$RELEASE IVARIABLE,16,19,18,25

variables

The following example releases all new internal variables.

$RELEASE IVARIABLE,ALL

NOTE

This command does not release local and
global variables created with the $SET
command.

48-043 FOO R03 2-71

RENAME

2. 41 RENAME COMMAND

The RENAME command changes the name of an unassigned, direct
access file.

Format:

RENAME oldfd,newfd

Parameters:

oldfd

newf d

Functional Details:

is the current file descriptor of the file to
be renamed.

is the new file descriptor of the renamed
file.

The volume ID field of newfd may be omitted. A file can only be
renamed if its write and read protection keys are 0 (X'OOOO').

The RENAME command can be entered in command, task-loaded and
task-executing modes.

The user can only rename private files.

Example:

The following example renani1es file AJM.CUR to AJM.NEW on volume
VOL.

REN VOL:AJM.CUR,AJM.NEW

2-72 48-043 FOO R03

RE PROTECT

2.42 REPROTECT COMMAND

The REPROTECT command modifies the protection keys of an
unassigned, direct access file.

Format:

.REEROTECT fd,new keys

Parameters:

f d

new keys

Functional Details:

is the file descriptor of the file to be
reprotected.

is a hexadecimal halfword whose left byte
signifies the new write keys and whose right
byte signifies the new read keys.

Unconditionally protected files can be conditionally reprotected
or unprotected.

The REPROTECT command can be entered in command, task-loaded and
task-executing modes.

The user can only REPROTECT private files.

48-043 FOO R03 2-73

REWIND AND RW

2. 43 REWIND AND RW COMMANDS:

The REWIND and RW commands i:ewind magnetic tapes, cassettes and
direct access files.

Format:

.REYiIND [fd J lu

or RW [fd ,] lu

Parameters:

f d

lu

Functional Detail:

is the file descriptor of the device or file
to be rewound.

is the le>gical unit to which the device or
file is assigned. If lu is specified without
fd, the operation is performed on the lu
regardle~ss of what is assigned to it.

The REWIND and RW commands c:::an be entered in task-loaded mode.

Examples:

The following example causef3 the file or device assigned to lul
to be rewound.

REW 1

The following example causei3 file AJM.OBJ assigned to lu4 on
volume M300 to be rewound.

REW M300:AJM.OBJ,4

2-74 48-043 FOO R03

RVOLUME

2.44 RVOLUME COMMAND

The RVOLUME command enables an MTM user to allow/disallow access
to a privately-owned disk.

Format:

R!lQLUME voln,

Parameters:

voln

ADD

actno

RW

48-043 FOO R03

actno1 '1{;;}] [... ,max actno r1{;~}~] l ·.~~. L .. ft.It J
ADD,

ALLG{;:}J L' ,,a.Q,,,

REMOVE { actno1 ~-,max actno] }

is the volume name of the restricted disk.

indicates that the specified accounts will
have access to the restricted disk.

is a decimal number from 0 to the maximum
account number allowed on the system (limit
65,535) indicating the accounts allowed/
disallowed access to the restricted disk. If
ALL is specified, accounts 0 to the maximum
account number allowed on the system (limit
65,635) can access the restricted disk.

indicates that the specified account has
read/write access to the restricted disk. If
this argument is omitted, the default is
read-only.

2-75

RO

REMOVE

USERS

ind icatE~s that the spec if ied account
read-only access to the restricted disk.

has

indicates that the specified accounts are
disallowed access to the restricted disk. If
ALL is espec if ied, all accounts having access
to the restricted disk are disallowed access,
with thE' except ion of the owner 's account.

displayfs all accounts having access to the
restricted disk along with the access
pr ivile~Jes.

Functional Details:

A disk marked on as a system disk is treatAd as a restricted
disk. Account number 255 is the owner.

The owner of a private disk can allow/disallow other MTM users,
the system operator and other non-MTM tasks access to the
restricted disk.

If an owner enters a REMOVE parameter specifying a private
account, access will be denied to the disk; the owner can still
add accounts, remove accounts and display accounts that have
access, along with the respective access privileges.

For a user with RW acceess to a restricted disk, accessing
private, group and system files is exactly the same as accessing
files on any other disk.

For a user with RO access to a restricted disk, accessing group
and system accounts is the same as accessing files on any other
disk. Files within the user's private account can only be
assigned SRO or ERO. The user cannot allocate, rename, reprotect
or delete any files.

Examples:

2-76

RVOL MTM,U
00000/RW
00255/RW

RVOL MTM,A,87/RW
RVOL MTM,U

00000/RW
00087/RW

RVOL MTM,U,87
00087/RW

00001-00017/RO
00256-01023/RO

00001-00017/RO
00088-00254/RO

00018/RW

00018/RW
00255/RW

00019-00254/RO

00019-00086/RO
00256-01023/RO

48-043 FOO R03

RVOL MTM,R,87
RVOL MTM,U

00000/RW 00001-00017/RO 00018/RW 00019-00086/RO
00088-00254/RO 00255/RW 00256-01023/RO

RVOL MTM,A,87
RVOL MTM,U

00000/RW 00001-00017/RO
00255/RW 00256-01023/RW

00018/RW 00019-00254/RO

RVOL MTM,U,87-1200
ACCT-ERR POS=87-1200
RVOL MTM,U,87-1000
00087-00254/RO

error since account limit was 1023

00255/RW 00256-01000/RO

48-043 FOO R03 2-77

SEND

2.45 SEND COMMAND

The SEND command sends a message to the currently selected task.

Format:

SEND message [; J

Parameters:

message is a 1- to 64-character alphanumeric string.

Functional Details:

The message is passed to the selected task the same way as an
SVC6 send message. Following standard SVC6 procedures, the
message consists of an 8-byte task ID identifying MTM as the
sender, followed by the user-supplied character string. The
message passed to the selected task begins with the first
nonblank character following SEND and ends with a CR or semicolon
(;) as a line terminator. A message cannot be sent to a task
currently rolled out.

The receiving task must have intertask message traps enabled in
its TSW and must have an established message buffer area. See
the OS/32 Supervisor Call (SVC) Reference Manual for more
information on SVC6.

The SEND command can be entered in task-executing mode.

Example:

SEND CLOSE LU2,ASSIGN LU3

The following is received by the task:

.MTM CLOSE LU2, ASSIGN LU3

2-78 48-043 FQ:O R03

SET CSS

2.46 SET CSS COMMAND

The SET CSS command enables a user to specify an account to be
searched just prior to searching the system account, when looking
for a css. The CSS account is designed to be used in conjunction
with the CSS option of the VOLUME command.

Format:

SET CSS

Parameters:

p

G

s

n

Functional Details:

{H
Private Account

Group Account

System Account

a decimal number specifying any account number
except 255. In order to enter this form of
the SET CSS command a user must have SET GROUP
privileges.

This command, in conjunction with the CSS option of the VOLUME
command, allows a user to establish a volume/account where his
CSSs are found.

MTM signon sets the CSS account to the signon account.

The SET CSS command can be entered in command, task-loaded,
task-executing and CSS modes.

48-043 FOO R03 2-79

SET GROUP

2.47 SET GROUP COMMAND

The SET GROUP command enables a privileged user to change the
group account number associated with the account the user is
currently on. This enables a privileged user to specify any
account in the system as the current group account. This command
is only valid when issued by a privileged user.

Foi:mat:

SET GROUP n

Parameter:

n

Functional Details:

is a decimal number specifying the new
account to be associated with the
current account. This number must be
the range of 0 to the maximum account
set in JmF (cannot exceed 65, 53 5).

group
user's
within
number

The SET GROUP command can be entered in command, task-loaded,
task-executing or css modes. If a task is loaded or executing,
MTM also modifies the group account number in the task control
block (TCB).

If a nonprivileged user enters this command the following message
is generated:

MNEM-ERR POS=GROUP

A user may not set his gr01L1p account to 255.

2-80 48-043 FOO R03

Example:

The user signs on to account 205 (with privilege option). The
group account number associated with account 205 is 240. A
DISPLAY FILES command of the following format will cause the
files in account 240 (account 205's group account) to be
displayed:

D F -.-/G

A privileged user can then change the group account with the SET
GROUP command:

SET GROUP 220

Now the same DISPLAY FILES command will cause the files in
account 220 (account 205's new group account) to be displayed.

The new group account association only exists for the length of
the current s1gnon session. The group private account
associations specified with the Authorized User Utility are not
changed by this command. The privileged user can change group
numbers as often as desired.

48-043 FOO R03 2-81

I SET KEYOPERATOR I

2.48 SET KEYOPERATOR CO~ND

The SET KEYOPERATOR command is used to change the operator
character used when def i.ning keywords in a CSS call. When
entered without parameters, this command will display the current
operator character.

Format:

SET .KEYOPERATOR [charac:ter]

Parameters:

character is any cine of the following characters which
will be? used for defining keywords in CSS
calls:

Functional Details:

>
%
&

If no character is entered, the
keyword operator is displayed.

current

At signon, the default keyword operator is the equal sign (=).
When this operator is changed via the SET KEYOPERATOR command,
the new operator remains in. effect until signoff or until another
SET KEYOPERATOR command is entered.

2-82

NOTE

The SET .KEYOPERATOR command only changes
the operator used when defining keywords
in a CSS call. It has no effect on the
operator used when referencing keywords
within a CSS.

48-043 FOO R03

If the character designated as the keyword operator is to be
passed as part of a character string in a CSS call, it must be
placed within single or double quotes.

If the keyword operator is used in a CSS call, is not within
quotes (single or double), and is not a valid keyword assignment,
the following error message is generated.

KEYW-ERR POS=

(x) MUST BE WITHIN 'OR" IF NOT USED AS A KEYWORD OPERATOR.

The SET KEYOPERATOR command can be entered in CSS, task-loaded,
task-executing and command modes.·

48-043 FOO R03 2-83

SET PRIVATE

2.49 SET PRIVATE COMMAND

The SET PRIVATE command enables a privileged user to change the
private account that the uner is currently in without knowing the
password of the new account. This enables a privileged user to
access any account on the Hystem as their private account. This
command is only valid when issued by a privileged user.

Format:

SET ..e.RIVATE n

Parameter:

n

Functional Details:

is a decimal number specifying the new private
account number the user wants to access,
except account 255. Account 255 can only be
accessed via SIGNON. n is within the range of
0 to thE~ maximum account number set in the AUF
(cannot exceed 65,535).

The privileges of the user"s original signon account remain in
effect regardless of thE:! account the user is currently in. A
user can neither gain no1: lose privileges when moving from
account to account.

The SET PRIVATE command can be entered in command, task-loaded,
task-executing and css mC>des. If a task is loaded or executing
when a SET PRIVATE command is entered, MTM also modifies the
private account number in the TCB.

If a nonprivileged user enters this command, the following
message is generated:

MNEM-ERR

2-84 48-043 FOO R03

Example:

The user is signed on to account number 255.
command displays all files in account 255.
current account with a SET PRIVATE command:

SET PRIVATE 210

A DISPLAY FILES/P
The user changes the

The current account number becomes 210. The group account number
remains unchanged. A DISPLAY FILES/P command displays all files
in account 210. The user can alter private accounts as often as
desired. Note that account times and usage information used by
the Accounting Reporting Utility use the original signon account
number regardless of the account the user is in at signoff time.

48-043 FOO R03 2-85

SIGNOFF

2.50 SIGNOFF COMMAND

The SIGNOFF command terminates the terminal session. If a user
signs off when a task is loaded, the task is cancelled.

Format:

SIGNOFF

Functional Details:

When a terminal user signs c)ff the system, these messages are
displayed:

ELAPSED TIME•hh:mm:ss PROCESSOR•hh:mm:ss:mmm TSK-ELAPSED•hh:mm:ss
SIGNON LEFT•hh:mm:ss PROCESSOR LEFT•hh:mm:ss
TIME OFF•mm/dd/yy hh:mm:ss

The SIGNOFF command can be c!ntered in command, task-loaded and
task-executing modes. It cannot be followed by another command
on the same command line.

SIGNON LEFT and PROCESSOR LJ~FT messages are not displayed if no
limits have been set for the account in the AUF.

2-86 48-043 FOO R03

SIGNON

2.51 SIGNON COMMAND

The SIGNON command allows a user to communicate with MTM. No
commands are accepted until a valid SIGNON command is entered.

Format:

.SIGNON userid,actno,password[,.EIDIIRONMENT= { fd }]
NULL(:]

~{.fBQCESSORTIME}=maxtime]
l CPU TIME

[, classid=iocount1 , ••• , classid=iocount32]

Parameters:

user id

act no

password

ENVIRONMENT=

48-043 FOO R03

is a 1- to a-character alphanumeric string
specifying the terminal user's identification.
This parameter must not match any active
userid or foreground task name. See the
functional details for a list of restricted
user ids.

is a 1- to 5-digit decimal number specifying
a valid account number (defined in the AUF}.
If the number is greater than the current
account limit (set in the AUF} or is not an
established account, an error message is
generated.

is a 1- to 12-character alphanumeric string
specifying the terminal user's password.

fd is the file descriptor specifying an
existing file that will establish the user's
environment. at signon time.

NULL specifies that the signon CSS routine,
USERINIT.CSS, should be ignored and the user
will establish the environment after signing
on.

2-87

If the entire keyword parameter is omitted,
MTM searches all on-line disks for the signon
CSS procedure USERINIT.CSS/P. If a
USERINIToCSS procedure is not found on the
private account, the system account on the
system volume is searched. If USERINIT.CSS is
found, MTM calls the CSS and executes the
routine. If it is not found, MTM enters
command mode.

If the user does not have the ENV= privilege
(privileqe to enter ENV= at signon), MTM will
ignore this parameter and force USERINIT.CSS
to be executed (if found).

PROCESSORTIME= is a decimal number specifying the maximum
CPUTIME= session is limited. Processor time in a Model

3200MPS System is CPU+APU time, whereas
processor time in a uniprocessor system is
only CPU time. If this parameter is omitted,
the default established at sysgen is used. If
O is specified, no limits are applied. The
parameter can be specified as:

class id=

iocount

mmmm:: ss
hhhh :: mm: ss
ssss

is one of the 4-character alphanumeric
mnemonics specifi~d at sysgen associated with
each specified device or file class.

is a decimal number specifying the maximum
number of I/O transfers associated with a
particular device class to which the job is
limited. If this parameter is omitted, the
default established at sysgen is used. If 0
is specified, no limits are applied to that
class.

Functional Details:

The SIGNON command can be entered in command mode. It cannot be
followed by another command on the same line.

The following is a list of restricted userids:

HELP, STAT, DLINI<, TIP., RMT, HASP

The userid parameter can not start with or consist solely of
these combinations of characters.

2-88 48-043 FOO R03

When ENVIRONMENT=NULL is specifi~d, the colon is optional. This
allows the user the ability to specify the null device (NULL:).

The ENVIRONMENT= parameter may be ignored by the system,
depending on the user's acco~nt privileges. There are several
methods used to establish the ·environment that a user will be
placed into upon signon. The method that offers the most
standardization is to establish a system USERINIT.CSS file. This
file must reside on the system volume on the system account.

Any (or every) account may have a USERINIT.CSS file specific to
the account. As mentioned, a search for a USERINIT.CSS/P file
(for the account being signed on to) is conducted prior to the
search of the system files. By establishing a private
USERINIT.CSS file, an environment peculiar to the specified
account can be created through the SIGNON command.

Individual users within an account may wish to be placed into an
environment other than the standard system or account
environment. This is accomplished through the c.reation of a file
containing the commands necessary to establish the desired
environment. The user then specifies the fd for this file
through the ENVIRONMENT parameter.

Parameters can be entered as specified above or an interactive
signon procedure can be utilized. By entering only the SIGNON
command, the user will be prompted to enter each parameter as
demonstrated in the following example:

SIGNON
>USERID:
>ACCOUNT: <no-echo>
>PASSWORD: <no-echo>

The purpose of this procedure is mainly for security. When the
account and password are entered, MTM does a no-echo read which
is only effective on a terminal configured with the BIOC device
driver. A privileged user is additionally prompted with the
ENVIRONMENT= parameter. Invalid entries to this signon procedure
will return the following error message:

-INVALID PARAMETER SIGNON REQUIRED

The user is again prompted for entry with no limit on the number
of attempts to signon.

Examples:

In the following example, either the account or system
USERINIT.CSS file can be used to create the signon environment:

SIGNON ME,12,PSWRD

48-043 FOO R03 2-89

In the following example, the desired environment is to be
created after signon:

SIGNON DAVE,118,SWDOC,ENVsNULL

In the following example, the environment is to be created by
execution of the commands contained in the file specified with
the ENVIRONMENT= parameter:

S BETTYSUE, 119, DI FRNT, E:NV-M301: EOUll 9. ENV

The following listing prese~nts an example of a file that might be
used for environment creation:

* EOU119.ENV - this file establishes an alternate EASE OF USE
* (EOU) environment for account 119. It is used in
* conjunction with the ENVIRONMENT parameter of the
* the SIGNON command.
*
PREVENT PROMPT;$WR
$RELEASE GVAR,ALL
* Define default system devices:

$DEFINE GlO,SSYSLST,ST(P)
$DEFINE Gll,SSYSIN,ST(CON:)
$DEFINE Gl2,SSYSOUT,ST(PR1:)
$DEFINE Gl3,SSYSPRT,ST(CON:)
$DEFINE Gl4,SSYSCOM,ST(CON:)
$DEFINE Gl5,SSYSMSG,ST(CON:)
$DEFINE G2,MTMUSR,CUR(USER)

*
FORT

XALLOCATE @*G2.LOG,IN,80
LOG @*G2.LOG,COPY
*
*Display some useful info:

DISPLAY USERS
$WRITE
DISPLAY TIME
$WRITE
VOLUME M30l;VOLUME
$WR; INQUIRE
$WR
$WR WELCOME ABOARD - @*G2
ENABLE PROMPT

$EXIT

2-90

;* clear new global variabl

;* list
;* input
;* output
;* print
;*_command input
;* message output
;* current userid

;* set FORTRAN (D compiler)
;* as current environment.
;* establish and set a log
;* file for the session.

; : show co-users.

. * show date and time. ,

. * set user volume & display. ,

. * any batch jobs? ,

. * say hi. ,

48-043 FOO R03

SPOOLFILE

2.52 SPOOLFILE COMMAND

This command is valid only on systems that are using the SPL/32
spooler. Systems on which the OS/32 spooler is being used may
not use the SPOOLFILE command.

The SPOOLFILE command allows a user to allocate a spool file on
behalf of a specified pseudo device and assign that file to the
specified lu of the currently selected task. This command makes
all spooling options available. at terminal or css level.

Format:

SPOOLFILE lu&lu1 ,pseudo-dev,FORM=formname [{~}]

Parameters:

lu

pseudo-dev

48-043 FOO R03

[{
NQ.LMAGE }] [{ •llllllDllll.••. }]

, 'MR.·., , , '"" , : G .COP I ES=n J
=: · :;:: ::'' ... JI:: NQ.CHECKPO I NT

['{, ~°,~ ,}] ~{ ::iillnli\\i }] G:_E.RIORITY=p]
::BBlh&MB::: t NQDELETE

G .B.LOCK=bs ize/ is ize]

is a decimal number
unit to which the
assigned.

specifying the logical
pseudo device is to be

indicates that lu is to be assigned to the
same spool file as lu1 • lu1 must be the first
lu assigned to the spool file.

is the 1- to 4-character name of a pseudo
device. The first character must be
alphabetic; the remaining alphanumeric.

2-91

FORM=

VFC
IMAGE

NO IMAGE
NOVFC

CHECKPOINT

NOCHECKPOINT

COPIES=

HOLD

RELEASE

DELETE

NODELETE

PRIORITY=p

BLOCK

bsize

2-92

is a des i.red preprinted form name that can be
specified here. If the form specified was not
previously enabled using a FORM command, an
error me:ssage is sent to the monitoring
control or subcontrol task and the request is
processed using the default standard form
name, STD.

specifies the use of vertical forms control
for the assigned lu. When VFC is used, the
first character of each record is interpreted
as a VF'C character. If IMAGE is specified,
there is no VFC for the device assigned to the
spec if iecil lu.

turns the IMAGE
the ass igrned lu.

option or VCF option off for
NOVFC is the default option.

turns on checkpointing for the
This is the default option.
checkpoint option must be on.

assigned lu.
The global

turns off che6kpointing for the assigned lu.

identif iE!S the number of copies to be output.
It must be between 1 and 255 or an error
message i.s sent.

causes the specified file to remain on the
spool queiue until a RELEASE request is issued.

enables al spool file for output when the lu is
closed.

the file is deleted after output. This is the
default ciption.

the file is not deleted after output.

p is the desired print priority. If this
option is not specified, the print priority
becomes the same as the priority of the task
from which the spool file assign originated.

specifies the index and/or data block size.

is a decimal number specifying the physical
block size in 256-byte sectors, to be used for
buffering and debuffering operations involving
the file. If this parameter is not specified,
the default data block size established at
sysgen or by the system operator is used. If
this value exceeds the maximum block size
established for the system, the maximum set at
sysgen is used.

48-043 FOO R03

isize

Functional Details:

is a decimal number specifying the index block
size in 256-byte sectors. If this parameter
is not specified, the default index block size
established at sysgen or by the system
operator is used. Index size cannot exceed
the maximum index block size established for
the system. If a value greater than the
maximum established for the system is
specified, the maximum is used.

The SPOOLFILE command can be used to make an assignment to a
pseudo device from the terminal or CSS level. If two conflicting
parameters are entered in a single SPOOLFILE command, such as
DELETE and NODELETE, the second parameter is executed and an
error message is generated.

The SPOOLFILE command can be entered in task-loaded mode.

Example:

The following example causes a spool file to be allocated for
pseudo device PDl: and assigns that file to lu4 of the current
task. VFC has been specified for the specified lu and the DELETE
option has been selected, which means the file will be deleted
after output. The default physical and index block sizes set at
sysgen will be used.

SPOOLFILE 4,PDl:,VFC,DELETE

48-043 FOO R03 2-93

START

2.53 START COMMAND

The START command initiates eixecution of a dormant task.

Format:

Parameters:

address

parameter

Functional Detail:

specifies the address
is to begin. For
physical a.ddress but
task's o~~ program.
physical a.ddress. If
0, the loa.ded task is
address specified
establishe:d.

at which task execution
u-tasks, this is not a
an address within the

For e-tasks, it is a
address is omitted or is
started at the transfer

when the task was

specifies optional parameters to be passed to
the task for its own decoding and processing.
All user-specified parameters are moved to
memory be·g inning at UTOP. If no parameters
are specified, a carriage return (CR) is
stored at UTOP.

The START command can be entered in task-loaded mode.

Examples:

The following example starts the currently selected task at
x' 138' .

ST 138

2-94 48-043 FOO R03

The following example starts the currently selected task at
X'lOO' and passes NOSEG,SCRAT to the task.

ST 100,NOSEG,SCRAT

The following example starts the currently selected task at
transfer address and passes 1000,ABC to the task.

ST ,1000,ABC

48-043 FOO R03 2-95

TASK

2.54 TASK COMMAND

The TASK command maintains CSS
operating system. No specific
command.

compatibility of MTM
action is performed

to the
by this

Format:

[{
t.askid }]

.TASK BGROUND

Parameters:

task id

.BGROUND

Examples:

T .BG

T COPY

2-96

is the name of the taskid that has been loaded
into the foreground segment of memory.

indicates that the task has been loaded as a
background task.

48-043 FOO R03

TEMPFILE

2.55 TEMPFILE COMMAND

The TEMPFILE command allocates and assigns a temporary file to an
lu for the currently selected task. A temporary file exists only
for the duration of the assignment. When a temporary file is
closed, it is deleted.

Format:

TEMPFILE lu,

Parameters:

lu

CONTIGUOUS

fsize

EC

48-043 FOO R03

,CQNTIGUOUS,fsize

is a decimal number specifying the lu number
to which a temporary file is to be assigned.

specifies that the file type to be allocated
is contiguous.

total
This

of
the

is a decimal number specifying the
allocation size in 256-byte sectors.
size can be any value up to the number
contiguous free sectors existing on
specified volume at the time the command
entered.

is

specifies that the file type to be allocated
is extendable contiguous.

2-97

baize

isize

keys

INDEX

lrecl

NB

LR

2-98

is a decJlmal number specifying the physica.l
block sJLze to be used for buffering and
debuffering operations. bsize represents the
block s 1Lze in sectors of the physical data
blocks ce>ntaining the file. For INDEX files,
this parcuneter cannot exceed the maximum block
size established by sysgen. If a value
greater than the system maximum is specified,
the system maximum is used. For EC and NB
files, this parameter may be any value between
1 and 255 inclusive. If bsize is omitted, the
default value for INDEX and NB files is the
value set at sysgen or by the system operator.
For EC files, the default is 64 sectors.

is a decimal number specifying the index block
size. For INDEX and NB files, the default
value is the value set at sysgen or by the
system operator. For EC files, the default
value is three sectors (768 bytes). The index
block size cannot exceed the maximum disk
block size established by sysgen. If a value
greater than the system maximum is specified,
the syste!m maximum is used. isize may not
exceed 2S5.

specify the write and read protection keys for
the file. These keys are in the form of a
hexadecimal halfword; the left byte signifies
the write key and the right byte signifies the
read key. If this parameter is omitted, both
keys default to zero.

specifies that the file type to be allocated
is indexed.

is a decimal number specifying logical record
length in bytes. It cannot exceed 65,535
bytes; its default is 126. The logical record
length is meaningful only for indexed and
nonbuffered indexed files.

specifies that the file type to be allocated
is nonbuffered indexed.

specifies a long record file. For long record
files, the logical record length is specified
by the data block .size (bsize) parameter
(i.e., the logical record length is the data
block size) .

48-043 FOO R03

Functional Details:

A temporary file is allocated on the temporary volume.

To assign this file, sufficient room must exist in system space
for three buffers, each of the stated size. Therefore, if bsize
or isize is very large, the file cannot be assigned in some
situations. A maximum block size parameter is established for
the system at sysgen or by operator command. If bsize and isize
exceed this constant, the established maximum is used.

To assign an EC or NB file, sufficient room must exist in system
space to contain only the index block of the stated size. The
data blocks for EC and NB files are not buffered in system space,
and thus, are not constrained to the sysgened block size.

The TEMPFILE command can be entered
task-executing modes.

in task-loaded and

For LR files, the absolute maximum data block size (logical
record length) that can be specified is 65,535 (64K) sectors.
This equals an absolute maximum logical record length of
16,776,960 (16M) bytes. In practice, however, the actual maximum
logical record length for any given system is limited by the
amount of memory available for I/O buffering.

Examples:

The following example allocates, on the temporary volume, a
contiguous file with a total length of 64 sectors (16kb) and
assigns it to lu2 of the loaded task.

TE 2,C0,64

The following example allocates, on the temporary volume, an
index file with a logical record length. The data block and
index block sizes default to the size established at sysgen or by
the system operator. The file is assigned to lul4 of the loaded
task.

TE 14,IN,126

The following example allocates, on the temporary volume, an
extendable contiguous file with a default data block size of 64
and index block size of three sectors. The file initially
contains no records and has a record length of one sector (same
as a contiguous file). The file is assigned to lu5 of the task.

TE 5,EC

48-043 FOO R03 2-99

The following example allOCi3.tes, on the default temporary volume,
a temporary nonbuffered indexed file with a logical record length
of 240 bytes, data block s i:ze of 250 sectors and index block size
of five sectors. The file initially contains no records. The
file is assigned to lu7 of the task.

TE 7,NB,240/250/5

2-100 48-043 FOO R03

VOLUME

2.56 VOLUME COMMAND

The VOLUME command sets or changes the name of the default user
volume. It may also be used to query the system for the current
names associated with the user, system, roll, spool, temporary or
CSS volume.

Format:

YOLUME[{voln [/css] }]

[*/css]

Parameter:

voln

css

*/CSS

is a 4-character volume identifier. If this
parameter is omitted, all current default
user, system, roll, spool and temporary volume
names are displayed.

is an option that allows the MTM user to
specify a volume to contain user csss.

disables the CSS volume.

Functional Details:

Any commands that do not explicitly specify a volume name use the
default user volume. No test is made to ensure that the volume
is actually on-line at the time the command is entered. If voln
is not specified, the names of the current default volumes are
output to the user console.

The default user volume is initially set to the system volume or
the default user volume (set at MTM sysgen) when the user signs
on. If no volume was specified at MTM sysgen, the default is the
system volume.

If CSS volume processing is enabled, the search order for CSS
files is as follows:

48-043 FOO R03

Current volume/Private account

CSS volume/Private account

CSS volume/CSS account

2-101

System volume/System account

NOTE

See the SET CSS command for CSS
volume/CSS account determination.

MTM signon sets the CSS volume to '*' to initially disable the
css volume.

This command can be entered in command, task-executing and
task-loaded modes.

Examples:

In the following example, the VOLUME command is used to query the
system.

VOL
USR=MTM SYS=MTM SPL==M67B TEM=M67C RVL=MTM CSS=*

When MTM is used in conjunction with SPL/32, the spool volume is
not displayed by the VOLUME command.

VOL
USR=MTM SYS=MTM TEM==M301 RVL=MTM CSS=*

In the following example, the VOLUME command is used to change
the default user volume and again to query the system.

V M30l;V
USR=M301 SYS=MTM TEM=M67C RVL=MTM CSS=*

In the following example, the VOLUME command is used to enable
css volume processing:

V VOLl/CSS

where VOLl is any volume name.

USR=M67B SYS=MTM TEM=~rnMP RVL=TEMP CSS=VOLl

To disable the CSS volume SE~arches, enter:

V */CSS

USR=M67B SYS=MTM TEM=~~EMP RVL=TEMP CSS=*

2-102 48-043 FOO R03

WFILE

2.57 WFILE COMMAND

The WFILE command writes a f ilemark on magnetic tapes, cassettes
and direct access files.

Format:

fil'. I LE (! d ,] lu

Parameters:

f d

lu

Functional Detail:

is the file descriptor of the file or device
to which a f ilemark is to be written.

is the lu to which the device or file is
assigned. If lu is specified without fd, the
operation is performed on the specified lu
regardless of what is assigned to it.

The WFILE command can be entered in task-loaded mode.

Examples:

The following example causes a f ilemark to be written on the
device or file assigned to lul.

WF 1

The following example causes a f ilemark to be written on file
AJM.OBJ, which is assigned to lu4 on volume M300.

WF M300:AJM.OBJ,4

48-043 FOO R03 2-103

XAILOCATE

2.58 XALLOCATE COMMAND

The XALLOCATE command is Ut3ed to create a direct access file.

Format:

XALLOCATE fd,.

Parameters:

f d

CONTIGUOUS

fsize

2-104

.CONT I GUOUS , f s i z e [{ 'k'~:~ •. }]
Q.QQQ,

is the file descriptor of the file to be
allocated.

specifies that the file type to be allocated
is contiguous.

is a decimal number indicating file size which
is required for contiguous files. It
specifies the total allocation size in
256-byte sectors. This size may be any value
up to the number of contiguous free sectors
existing on the specified volume at the time
the command is entered.

48-043 FOO R03

keys

EC

bsize

isize

INDEX

48-043 FOO R03

specify the write and read protection keys for
the file. These keys are in the form of a
hexadecimal halfword; the left byte signifies
the write key and the right byte signifies the
read key. If this parameter is omitted, both
keys default to 0.

specifies that the file type to be allocated
is extendable contiguous.

is a decimal number specifying the physical
block size to be used for buffering and
debuffering·operations on indexed files or
data conununications devices. When INDEX, EC
or NB is specified, bsize represents the block
size in sectors of the physical data blocks
containing the file. When ITAM is specified,
bsize represents the buffer size in bytes.
For ITAM buffers, this parameter cannot exceed
the maximum block size established for the
system. If a value larger than the system
maximum is specified, the system maximum is
used. For EC files, this parameter can be any
value between 1 and 255 inclusive.

The default blocksize is established at sysgen
and can be altered by the system operator. If
no value is entered for this parameter, the
default value set at sysgen (or by the system
operator) is used. If no default was set at
sysgen or by the system operator, the default
value for INDEX files and ITAM buffers is 256
bytes (one sector). For EC and NB files, the
default is 64 sectors.

is a decimal number specifying the index block
size. For INDEX and NB files, the default
value is established at sysgen or by the
system operator. If no default was
established through sysgen or by the operator,
the default value is one sector. For EC
files, the default value is three sectors (768
bytes). The index block size cannot exceed
the maximum disk block size established for
the system. If a value larger than the system
maximum is specified, the system maximum is
used. Neither bsize nor isize can exceed 255.

specifies that the file type to be allocated
is indexed.

2-105

lrecl

NB

LR

ITAM

Functional Details:

is a decimal number specifying the logical
record length of an indexed file or
communications device. It cannot exceed
65, 535 bytes. Its default is 126 bytes. It
can optionally.be followed by a slash (/),
which deU.mits lrecl from bs ize.

specifies that the file type to be allocated
is nonbuffered indexed.

specifies a long record file. LR record
files, the logical record length is specified
by the data block size (baize) parameter
(i.e., the logical record length is the data
block s izE~) .

specifies that the fd to be allocated is an
ITAM buffE~red communications device.

The XALLOCATE command is different from the ALLOCATE command in
that if fd is an existing file, it is deleted and reallocated.
If fd does not exist, it is allocated.

If the fd to be allocated is a device name instead of a filename,
a DEL-ERR TYPE=VOL occurs.

For LR files, the absolute maximum data block size (logical
record length) that can be specified is 65,535 (64K) sectors.
This equals an absolute maximum logical record length of
16,776,960 (16M) bytes. In practice, however, the maximum
logical record length for any given system is limited by the
amount of memory available for I/O buffering.

The XALLOCATE command can be entered in command, task-loaded and
task-executing modes.

2-106 48-043 FOO R03

XDELETE

2.59 XDELETE COMMAND

The XDELETE command is used to delete one or more files. If the
file does not exist, no error is generated.

Format:

Parameter:

f d

Functional Details:

is the file descriptor of the file to be
deleted.

A file can only be deleted if it is not currently assigned to a
task and its write and read protection keys are 0 (X'OOOO').

A nonprivileged MTM user can only delete private files.

Example:

XDEL FIXD:OS323240.817,RADPROC.FTN

48-043 FOO R03 2-107

CHAPTER 3
MULTI-TERMINAL MONITOR (MTM)/NON-MTM

TASK INTERFACES

3.1 INTRODUCTION

MTM allows the terminal user to transfer control of a terminal to
tasks other than MTM and then return the terminal to MTM control
in an orderly fashion. This orderly transfer of control is
accomplished via the use of interface protocols that are invoked
by specific MTM commands. The MTM terminal user can interface
with:

• foreground tasks,

• HASP tasks, and

• ITC/RELIANCE tasks.

3.2 INTERFACING WITH A FOREGROUND TASK

The foreground interface allows an MTM user to connect an MTM
terminal to any specified foreground task selected via the
following command:

Format:

$foreground task-id

Parameter:

foreground
task-id

48-043 FOO R03

is a taskid of 1- to ?-characters specifying
the selected foreground task to which the MTM
terminal is to be connected. The following
taskids are restricted and cannot be used:

HASP
.MTM
.SPL
ECM

3-1

Functional Details:

This feature is available t.o all MTM users that have the
$foreground privilege.

This command can be entered in command mode as long as no command
substitution system (CSS) is active. This command is not
available in batch mode. While a terminal is connected to a
foreground task, all MTM messages to that terminal are ignored.

The foreground task to which this command is directed must have
particular characteristics and options enabled in order to
establish, maintain and terminate the interface. The foreground
task must be linked with c:>ption UNIVERSAL and must be able to
send and receive messages via supevisor call 6 (SVC6). For
further information regardin~;J SVC6 use, see the OS/32 Supervisor
Call (SVC) Reference Manual.

Example:

In the following example, th1e MTM terminal issuing the $XYZ
command becomes connected to the foreground task identified as
XYZ.

$XYZ

A subsequent DISPLAY USERS conunand from an MTM terminal will
display the terminal transf1erred to the foreground task's (XYZ)
control as shown:

DAVE - NULL:@$XYZ

3.2.1 Programming Details

The foreground task selected with the $FGRND command must have
the following interface and a message buffer ring with message
entries enabled. The taskid can have no more than seven
characters.

The selected task gets the following message from .MTM:

ADD terminal-dn, pr iv-ace, ~;Jroup-acc, user id <CR>

The foreground task must now assign the terminal with terminal-dn
and immediately send the following message to .MTM:

$STA terminal-dn,status <CR>

3-2 48-043 FOO R03

To return the terminal to MTM control, the foreground task should
close the terminal and send the following message to .MTM:

$END terminal-dn<CR>

MTM assigns the terminal and the user returns to MTM control.

Parameters:

terminal-dn

pr iv-ace

group-ace

user id

status

(CR)

Functional Detail:

is the device name of the user's terminal
(variable length from two to five characters
including a colon(:).

is the user's private account number (fixed
length of five characters, right-justified,
leading zeros).

is the user's group account number (fixed
length of five characters, right-justified,
leading zeros).

is the userid under MTM (fixed length of eight
characters, left-justified).

returned from foreground task:

X'30' all OK - foreground task has assigned
the terminal.

X'31' assign-errors terminal was not
assigned by the foreground task (.MTM
reports TASE-ERR to the user).

X'39' space error terminal would have
exceeded the maximum number of allowed
terminals (.MTM reports TSPC-ERR to the
user).

carriage return (X'OD')

Every ten seconds, MTM tries to reassign the terminal; i.e., if
the foreground task closes the terminal or goes to end of task
without sending a $END message, the user terminal remains
unassigned no longer than ten seconds.

48-043 FOO R03 3-3

3.3 HASP INTERFACE

The HASP interface allows an MTM user to communicate with a
specified HASP control task in the foreground. The option for
the HASP interface must be enabled at MTM system generation
(sysgen) in order for it to be available to MTM users. When the
HASP task is started, the optional start parameter OUT=/MTM must
be used to allow messages to be output to MTM. To allow command
input from MTM, the start parameter IN=/MTM must be used.

Format:

$HASPxx

Parameters:

xx

Functional Details:

is a 2-cha.racter alphanumeric extension of the
HASP control tasks foreground ID.

Option UNIVERSAL is required when linking the HASP task. Once
the $HASP command has been executed, the MTM terminal is then in
HASP mode. The HASP mode rea.d prompt is a double quote(").

All commands entered on the terminal are sent to the specified
HASP task. All commands starting with a dollar sign ($) are
prefixed with the HASP message command (i.e., $cmd is expanded to
MES $cmd; this is transparent to the user) and then sent to the
specified HASP task. All messages sent by HASP to the terminal
are displayed in the following format:

HASPxx> message

When the user is ready to return the terminal to MTM control, the
following command is used:

The terminal is then returned to MTM control.

The $HASPxx command can be entered in command mode only. No task
can be loaded or executing, no CSS can be active and the user
must not be in batch mode. While in HASP mode, MTM messages from
other users and the system operator can be displayed on the HASP
terminal.

3-4 48-043 FOO R03

The specified HASP task is set to the same private and group
account number as the user. If $MTM is entered, the specified
HASP task remains on these accounts and continues sending
messages to the user terminal until another user connects to the
same HASP task or until signoff.

Example:

The following example selects the HASP task with the taskid
HASP03 in the foreground. The terminal is now in HASP mode if no
errors occurred.

$HASP03

3.4 INTEGRATED TRANSACTION CONTROLLER (ITC)/RELIANCE INTERFACE

The environmental control monitor (ECM) provides facilities for
terminal users to transfer control of their terminals between
Reliance and MTM, or between different Reliance environments,
without use of the system console or a Reliance controller's
terminal. For details about the use of the ECM, see the
Environmental Control Monitor/32 (ECM/32) Systems Programming and
Operations Manual.

48-043 FOO R03 3-5

4.1 INTRODUCTION

CHAPTER 4
PROGRAM DEVELOPMENT

This chapter is written as a program development tutorial session
for new to intermediate users. The program development commands
enable you to easily create a program and modify, maintain and
execute it from the terminal.

4.2 CREATING A SOURCE PROGRAM

To create a source program that will exist in a single source
file (language environment), enter a program development language
command with a user-specified filename. Source f ilenarne
extensions are program-supplied and language-dependent. The
language command entered must be consistent with the language of
the source file. When a language command is entered, a file is
allocated (if it does not already exist) with the user-specified
filename and program-supplied filename extension, and the editor
is loaded and started. ·rf the file exists, it is set as the
current program (Edit is not loaded.)

Table 4-1 lists the program development language command syntax
and program-supplied filename extensions.

TABLE 4-1 PROGRAM DEVELOPMENT LANGUAGE COMMANDS

LANGUAGE COMMAND SYNTAX

PROGRAM
DEVELOPMENT

FILENAME
EXTENSIONS

=========~-3==--------~------=----~~-------~~~------~~~~ CAL/32

CAL Macro/32

FORTRAN VI I

FORTRAN VI I

48-043 FOO R03

CAL [[voln:] filename]

MACRO [[voln:] filename]

FORT [[voln:] filename]
(using development
compiler)

FORTO [[voln:] filename]
(using optimizing
compiler)

.CAL

.MAC

.FTN

.FTN

4-1

TABLE 4-1 PROGRAM DEVELOPMENT LANGUAGE COMMANDS
(ContinUE!d)

LANGUAGE COMMAND SYNTAX

PROGRAM
DEVELOPMENT

FILENAME
EXTENSIONS

==
FORTRAN VII

COBOL

REPORT
PROGRAM
GENERATOR

Pascal

c

FORTZ [[voln:] filename]
(using the universal
compileI')

COBOL [[voln:] filename]

RPG [[vc1ln:] filename]

PASCAL [[voln:] filename]

C [[voln:] filename]

.FTN

.CBL

.RPG

.PAS

.c

Program development langua.ge commands automatically set up
certain processes that will be used for the remainder of the
development effort. These processes are:

• assignment of the standard source file language extensions,

• th~ compiler or assembler to be used,

• the standard Perkin-Elmer run-time libraries (RTLs) to be
linked, and

• the language tab character, a back slash (\) and tab settings
pertinent to the specified language (displayed when the editor
is entered).

These automatic specifications free the user from constantly
typing or even remembering them. The user-supplied filename with
the program-supplied extension will identify the source file
throughout the program development session.

Once the editor is loaded and started, the full range of edit
commands are available to create the source file. See the OS/32
Edit User Guide.

4-2 48-043 FOO R03

Example:

In the following example, the FORTRAN language conunand entered
with a user-supplied filename allocates an empty file, PROGl.FTN,
then loads and starts the editor. The FORTRAN tab settings are
set and displayed. The specified filename with the default
extension is set as the current program and is always accessed
and/or executed if the user does not specify another filename.

*FORT PROGl
*
*
*
*

New Language Environment -- FORTRAN VII D ROS-01

* Editing new file -- PROGl.FTN (APPEND mode set)
*
PERKIN-ELMER OS/32 EDIT 03-145 R03-01
OPTION TAB=\,7,73;0PTION INPLACE=OFF
GET PROGl.FTN;OPTION COM=CON:;AP

1 >

(edit session)

)SAVE*
)END
-WORK FILE = M67B:PROG1.000/P
-RENUMBERED INPUT FILE AVAILABLE, M67B:PROG1.FTN/P

A source file can also be created by entering a language command
without a filename and then entering the EDIT conunand with a
filename. The EDIT conunand allocates a file, then loads and
starts the editor. All edit conunands can be employed to create
a source file.

Example:

In the sequence below, the FORT conunand creates the language
environment. The EDIT conunand entered with PROGl loads and
starts the editor and allocates PROGl.FTN for the source file
that will be created via the edit conunands. PROGl.FTN is saved
and the edit session is ended.

48-043 FOO R03 4-3

*FORT
*
* New Language Environment -- FORTRAN VII D ROS-01
*
*EDIT PROGl
*
* New current program - PROGl
*
*
* Editing new file -- PROGl.FTN (APPEND mode set)
*
PERKIN-ELMER OS/32 EDIT 03-145 R03-0l
OPTION TAB=\,7,73;0PTION INPLACE-OFF
GET PROGl.FTN;OPTION COM=·CON: ;AP

l)

(edit session)

)SAVE*
>END

4.2.l Creating a Data File

To create a data file, save the source program file to disk and
clear the edit buffer by deleting all lines currently in the
buffer.

Example:

In this example, PROGl.FTN if• saved and then cleared from the
edit buffer. The edit APPE~ND command allows data to be entered
in the data file. The data 1'.ile is saved and the edit session is
terminated with the END command.

4-4

)SAVE*
)DELETE 1-
)AP

(use the editor to creato PROGl.DTA)

)SAVE PROGL DTA
)END

48-043 FOO R03

4.3 EXECUTING A PROGRAM

The program development EXEC command loads and runs the current
program.

Example:

The following example
the current program.
program, PROGl.FTN,
errors occurred). A
was encountered.

assumes that PROGl.FTN already exists as
The EXEC command loads and runs the current
and displays a zero end of task code (if no

nonzero end of task code indicates an error

*EXEC
*Execution of PROGl.FTN follows:
-END OF TASK CODE=O

4.4 MODIFYING A PROGRAM

To modify a program, enter the appropriate language command with
the filename of the source file to be modified. Enter the EDIT
command to access the editor.

Example:

In the following example, the FORTRAN language command is entered
with the filename PROGl. The editor is accessed via the EDIT
command, and the name of the current program is displayed. The
editor is used to modify the source file, PROGl.

*FORT PROGl
*EDIT
-EDIT - PROGl.FTN

(edit session to modify PROGl)

}SAVE*
>END

4.5 REEXECUTING A MODIFIED PROGRAM

When the EXEC command is issued, the source program is compiled,
linked, and executed, creating object and image modules. If the
source file is subsequently modified, the dates assigned to the
previously compiled object and previously linked image modules
will not be current (the object and image files will be older
than the source file).

48-043 FOO R03 4-5

Dates and times (to the neareHt minute) are assigned to source,
object and image modules when they are created. The dates are
stored in the system directory.

The EXEC conunand causes the object and image modules to be date
and timechecked. The source file is then compiled and/or linked
if the object or image files a.re out of date or do not exist.
The object module is assumed to be out of date if it is older
than the source module, or if the dates and times of creation of
the source and object modules are equal to the nearest minute.
The image module is assumed to be out of date if it is older than
the object module or if the dates and times of creation of the
object and image modules are equal to the nearest minute. The
EXEC conunand then loads and runs the image program.

Examples:

The following is an example of output from the EXEC command when
compilation and link-edit are required. This occurs if no object
file exists or if the object file is out of date.

*EXEC
* Compilation required
FORTRAN-VI ID R05-01.00
MARYANN -END OF TASK CODE-=
PERKIN-ELMER OS/32 LINI<AG:E:
MARYANN -END OF TASK CODE=
*

0 PROCESSOR=0.158/0.731
EDITOR 03-242 ROl-00

0 PROCESSOR=3.197/2.442

* Execution of PROGL F1TN follows:
*
This is a demonstration of the EXEC conunand

STOP
MARYANN -END OF TASK CODE= 0 PROCESSOR=0.010/0.016

The following is an example of when only link-edit is required.
This occurs if no image file exists or if the image file is out
of date.

*EXEC
PERKIN-ELMER OS/32 LINKAGE EDITOR 03-242 ROl-00
MARYANN -END OF TASK CODE= 0 PROCESSOR=3.196/2.466
*
* Execution of PROGl.FTN follows:
*
This is a demonstration of the EXEC conunand

STOP
MARYANN -END OF TASK CODE= 0 PROCESSOR=0.010/0.016

In the following example, the EXEC command executes all the
modules as one program and displays end of task code = 0 after
successful execution.

4-6 48-043 FOO R03

*EXEC
*
* Execution of PROGl.FTN follows:
*
This is a demonstration of the EXEC command

STOP
MARYANN -END OF TASK CODE= 0 PROCESSOR=0.011/0.016

In all three cases, PROGl.FTN was previously established as the
current program in the proper environment.

The program development RUN command can also be used to execute
a program. The RUN command does not datecheck, compile or link.
It simply runs a program that was already compiled and linked.

Example:

*RUN PROGl
*
* Execution of PROGl follows:
*
This is a demonstration of the RUN command

STOP
MARYANN -END OF TASK CODE= 0 PROCESSOR=0.010/0.016

If the EXEC or the RUN command is entered without a filename, the
current program is executed. If there is no current program, the
following message is displayed.

RUN
*
* Must have current program or specify file in order to run
*

If a user only wants to compile a program without linking or
executing it, the program development COMPILE command can be
used. The program development COMPLINK command compiles and
links a program, if necessary, but does not execute it. The
program development LINK command links the object program but
does not execute it. These commands are explained fully in their
respective sections.

4.6 EXECUTING MULTIPLE PROGRAMS AS A SINGLE PROGRAM

If a source program exists in multiple source files (multimodule
environment), the user must include the file descriptors (fds) of
each source file in an environment descriptor file (EDF). The
EDF retains the identity of all the source files in the
multimodule environment that will be used to create a program.

48-043 FOO R03 4-7

When using the program development ENV conunand, the user
indicates that a source program exists in more than one file and
is to be created in a multimod.ule environment. The ENV conunand
creates the multimodule environment and allocates an EDF to
contain the fds of the source files.

Example:

In this example the ENV comma1n.d with the user-specified EDF name,
ALLPROG, creates the multimodule environment.

*ENV ALLPROG
*
* New multimodule environment is ALLPROG.EDF
*
*
*

No current pro1gram
Link conunands are standard

No language extension is specified with the EDF filename since
each module can be written in a different language. Attempting
to enter an extension will cause an error. The user-specified or
default volume is searched for ALLPROG. If it is not found, an
empty file named ALLPROG is allocated, and the message, NEW
ENVIRONMENT, is displayed. The EDF is now ready to receive the
fds of the multiple source files. The program development ADD
command is used to add source program fds to the the multimodule
environment.

Example:

In the following example, the multimodule environment is created
and an EDF, ALLPROG, is allocated via the ENV conunand. The ADD
conunand adds the fds (PROGl.FTN and PROG2.CBL) to the multimodule
environment.

4-8

*ENV ALLPROG
*
* New multimodule environment is ALLPROG.EDF
*
*
*
*

No current program
Link conunands a.re standard

*ADD PROGL FTN
*ADD PROG2.CBL

48-043 FOO R03

When the ADD command is entered with a user-specified fd, the EDF
is searched for that fd. If the fd does not already exist in the
multimodule environment, it is added. If it is already in the
multimodule environment, the following message is displayed:

*ADD PROGl.FTN
*
* PROGl.FTN already exists in environment ALLPROG.EDF

You must rename the file or remove the existing entry from the
environment.

The program development LIST command displays the fds in the
multimodule environment, and the program development REMOVE
command removes fds from the multimodule environment.

Example:

The LIST command displays PROGl.FTN and PROG2.CBL as the fds in
the multimodule environment. The REMOVE command removes
PROG2.CBL and the Lrs•r command displays the contents of the
multimodule environment. The EXEC command runs the program,
ALLPROG.

*LIST
*
* Current multimodule environment is ALLPROG.EDF
*
*
*
*

current program = PROG2.CBL
Link commands are standard

Contents of Environment file:
PROGl.FTN
PROG2.CBL

*REMOVE PROG2.CBL
*LIST
*
* Current multimodule environment is ALLPROG.EDF
*
*
*
*

Current program = PROG2.CBL
Link commands are standard

Contents of Environment file:
PROGl.FTN

*EXEC
*
* Execution of ALLPROG.EDF follows:
*
This is a demonstration of the EXEC command

STOP
MARYANN -END OF TASK CODE= 0 PROCESSOR=0.011/0.016

48-043 FOO R03 4-9

If the ADD or REMOVE command is entered without an fd or if the
fd is incorrect, a brief description of the command is displayed.

Not all program development commands are available
language and multimodule environments. Table 4-2
commands that are available in the environments.

TABLE 4-2 PROGRAM DEVELOPMENT
COMMAND AVAILABILITY

COMMAND
I I MULTI-
1 LANGUAGE I MODULE

--------------------------------ADD x
COMPILE x x
COMPLINK x x
EDIT x x
ENV x
EXEC x x
LINK x x
LIST x
REMOVE x
RUN x x

in both
shows the

If a command that is meaningful only in a multimodule environment
is entered in a language environment, the following message is
displayed:

* * Must be in a multimodule environment to use the command xxxxxxxx
*

The xxxxxxxx portion of this message is replaced with the name of
the command. A brief description of the command is then
displayed.

In order to access a source progr~ again, modify the source file
and include it in a multimodule environment, enter the ENV
command followed by the EDIT command and use the editor to modify
the source file.

4-10 48-043 FOO R03

Example:

In the following example, the multimodule environment is entered
via the ENV command and the EDF name, ALLPROG. PROGl.FTN is
added to the multimodule environment. The LIST command displays
the filenames saved in the EDF. The EDIT command accesses the
editor to modify PROGl.FTN. When the edit session is ended, the
EXEC command executes all the modules as one program, displaying
an end task code of 0 after successful execution (if no errors
were encountered).

*ENV ALLPROG
*ADD PROGl.FTN
*LIST
** CURRENT ENVIRONMENT
-PROG2.CBL
-PROGl.FTN
*EDIT PROGl.FTN
-EDIT PROGl.FTN

(edit session)

)SAVE*
)END
*EXEC

ALLPROG

-PERKIN-ELMER OS/32 LINKAGE EDITOR 03/242 R00-01
-END OF TASK CODE = 0
** EXECUTION OF ALLPROG FOLLOWS:
-END OF TASK CODE = 0
>

4.7 HOW TO RECOVER FROM ERRORS

If an error occurs in prog~am compilation or execution, the
process aborts and a nonzero end of task code and an error
message are displayed.

Example:

* PROGl.FTN Compilation errors-listing on PR:

Program development makes it easy for the user to recover from
errors. Compile errors are printed in the listing of the source
file containing the error.

Use the editor to correct the error and reexecute the program.
The EXEC command will recompile only the modified modules.

48-043 FOO R03 4-11

The EXEC command will occasi.onally cause a successfully compiled
program to be recompiled. This happens when the creation times
of the source and object files are equal (to the nearest minute).
Any program that is recompiled will be relinked. A program that
is successfully compiled and linked may be unexpectedly relinked
by the EXEC command if the c:reation time of the object and image
files are equal (to the nearest minute).

See the OS/32 Link Reference Manual for an explanation of Link
error messages.

4.8 ASSIGNING LOGICAL UNITS:

Program development defines and sets global variables that are
associated with particular devices. These devices have default
logical unit (lu) assignments. The global variable names and
settings are displayed whe:n the user signs on. Table 4-3 shows
the variable names, their de·fault settings and lu assignments.

TABLE 4-3 PR.OGRAM DEVELOPMENT
DEFAULT VARIABLE SETTINGS
AND LU ASSIGNMENTS

VARIABLE NAME DEVICE r.u
~=======··-=====~======-·=======-==·

SSYSIN CON: 1

SSYSOUT CON: 2

SSYSPRT PR: 3

SSYSCOM CON: 5

SSYSMSG CON: 7

Before running a program, ensure that the default variable and lu
settings are appropriate. The input device can be changed from
the console (default) to a preallocated file.

Example:

*SSYS IN FILE. IN

Listings can be sent directly to a file rather than to the
printer (default).

4-12 48-043 FOO R03

Example:

*SSYSPRT FILE.OUT

The user has the option to specify lu assignments unique to a
particular session. This is accomplished by creating a file, via
the editor, that contains the-new lu assignments. This file must
be saved with the extension .ASN, and the last line in the file
must be a $EXIT statement. The program development software will
first search for a file with the extension .ASN. If no file is
found, the default lu assignments are used. The HELP command
provides all the information needed to create a new assignment
file.

Any variable settings you change supercede the default variable
settings and are in effect until you change them again or sign
Off.

4.9 PROGRAM DEVELOPMENT COMMANDS

This section describes the functions of each of the following
program development commands:

• ADD

• COMPILE

• COMPLINK

• EDIT

• ENV

• EXEC

• LANGUAGE

• LINK

• LIST

• REMOVE

• RUN

48-043 FOO R03 4-13

ADD

4.9.1 ADD Command

The ADD command adds the new source file fds to the multimodule
environment. These fds are retained in the EDF.

Format:

ADD source-fd [r compile-css] [, arg1 , ••• argi)

Parameters:

source-fd

compile-css

arg

Functional Details:

is the file descriptor of the source file to
be added to the EDF file.

specifies the name of the command substitution
system (CSS) file to be used in the
compilation of the source-fd file.

can be up to seven compilation arguments.
These ariguments are dependent upon the
language of the source file. The user should
refer to the appropriate language environment
commands f 1or details.

The ADD command causes the filename of the specified source-fd to
be searched for in the current EDF. If the filename is not
found, the source-fd is added to the multimodule environment that
was previously invoked by the ENV command. If a matching
filename (regardless of extension) currently exists in the
environment, the file will not be added to the EDF and the
following message is displayed:

* FILENAME already exists in environment edfname.EDF

If the filename is omitted or is in an incorrect format, this
message is displayed, foll1:>wed by the HELP feature of the ADD
command:

*
* ADD requires at least one argument
*

4-14 48-043 FOO R03

If the filename is entered without an extension, the following
message is displayed, followed by the HELP feature of the ADD
conunand:

*
* Must specify extension or compile css name
*

Any file added to the EDF file becomes the current program.

The compile-css parameter must be used if the extension of the
specified file differs from the language extensions listed in
Table 4-1. If this parameter is omitted when using a nonstandard
extension, a search is made for a file named COMPext.CSS (where
ext is the nonstandard extension) and the following message is
displayed:

*
* Compile css COMPext.CSS does not exist
*

The alternate css cannot be specified by just a volume name. It
must contain at least a filename.

The ADD conunand is valid only in a multimodule environment. An
error message is output when an attempt is made to use this
conunand in a language or null environment.

Examples:

The following example demonstrates the addition of three source
files to the current multimodule environment EDF:

*ADD DEMOl.FTN
*ADD DEM02.CAL
*ADD DEM03.RPG

The following example demonstrates the attempted addition of an
fd for which a matching filename already exists within the EDF.
As shown in the example, the filename must be unique. When
adding an fd to the EDF, different extensions will not suffice.

*ADD DEM03.CBL
*
*
*

DEM03.CBL already exists in environment ANYTHING.EDF

48-043 FOO R03 4-15

This example demonstrates thE~ message displayed when the ADD
conunand is issued without an fd. This message is inunediately
followed by the HELP feature for the ADD conunand.

*ADD
*
*
*

ADD requires at least one argument

The following example illustt'ates the message displayed when the
ADD conunand is issued with a filename only (no extension
specified). This message is inunediately followed by the HELP
feature of the ADD conunand.

*ADD PROG4

*
*

Must specify extension or compile css name

In the following example, an fd with a nonstandard extension is
specified, but the compile-css parameter is not used to pass the
name of the required compilation CSS.

*ADD DEM04.DIF
*
*
*

Compile css COMPDIF.CS:S does not exist

In this example, an fd with a nonstandard extension is added to
the EDF file. The name of the css procedure required to compile
this file is passed via the c:ompile-css parameter.

*ADD DEM04.DIF,OTHRCOMP.CSS

4-16 48-043 FOO R03

I COMPILE

4.9.2 COMPILE Command

The COMPILE command compiles a source file or group of source
files when in a language, multimodule or null environment. The
COMPILE command conditionally compiles when the ALL parameter is
specified in the multimodule environment. The COMPILE command
does not execute a program.

Format:

Parameters:

filename

ALL

st-ops

list-op

p

48-043 FOO R03

list-op

jjjfii: G load inc J [, ca lops]

L[A]

E [A] [! copy-f d] G mlbcss]

specifies a 1- to a-character alphanumeric
filename of the source file to be compiled
and/or assembled. The extension for the
source file fd is assigned depending upon the
current language environment. If the
extension is other than the default of the
current environment, or only one file of a
multimodule environment is to be compiled, the
extension must be specified.

specifies that all source files in the EDF
file are to be compiled. If neither filename
nor ALL is specified, the current program is
the default. This only applies in a
multimodule environment.

can be used to specify START options for the
compilation process. If this parameter is
omitted, START options default by language.

is the fd of an existing file to which the
compilation listing is sent.

indicates that the compilation listing is to
be sent to the file or device specified by the
SSYSPRINT global variable.

4-17

E

load inc

ca lops

copy-f d

mlbcss

Functional Details:

indicates that a new file, currprog.LST, is to
be allocated to receive the compilation
listing. If A is included, the listing is to
be appended to the existing currprog.LST file.

indicates that a new file envir.LST, is to be
allocated to receive the listing. If A is
included, the listing is appended to the
existing einvir.LST file. This only applies in
a multimodule environment.

specifies the segment size increment to be
used for ci::>mpilation or assembly. The default
is by language.

specifies the START options for environments
other than CAL, FORT and PASCAL. The default
is by language.

specifies the name of the copy file (if
required) to be assigned to lu7 for assembly.

used in the MACRO environment to specify the
css file to be used in assigning the required
library units for Macro/32.

A successful compilation ends with a zero end of task code. An
end of task code other than zero indicates a compilation error
that will be printed on the listing created as a result of
compile.

If the list-op parameter is omitted, the value specified by the
SSYSLST global variable is used to determine the destination of
the compilation listing.

If the environment is not set and no filename is specified when
the COMPILE command is entered, the following message is
displayed:

*
* Filename must be speci·fied or current program established
* before compilation
*

If no environment is set and a filename is specified, the
following message is displayed:

* * Must be in environment or specify extension to compile
*

4-18 48-043 FOO R03

If a specified filename does not exist, the following message is
displayed:

*
* FILENAME not found in environment edfname.EDF
*

The COMPILE command functions are illustrated in Figures 4-1 and
4-2.

Examples:

No environment is set and no filename is specified.

*COMPILE
*
*
*
*

Filename must be specified or current program established
before compilation

In the following example, no environment is set but a filename is
specified.

*COMPILE DEMOl
*
*
*

Must be in environment or specify extension to compile

In the following example, the environment is set (to FORT) but
the specified file does not exist.

*COMPILE NOSUCH
*
* NOSUCH.FTN not found in environment ALLPROG.EDF
*

In the following example, the command is issued with the proper
environment established, and the specified file exists.

*COMPILE DEMOl
FORTRAN-VI ID ROS-00.00
.MAIN NO ERROR(S)
BARNEY -END OF TASK CODE=

48-043 FOO R03

TABLE SPACE USED: 1 K
0 PROCESSOR=0.632/0.117

4-19

SOURCE MODULES BEFORE COMPILE

=========----=---=--=--··--------------------------------

ALLPROG.EDF

IPHOGl.FTNI
->I

6/20

IPFtOG2.CBLI
->I I

6/20

= ====------------------··--~------------------------------OBJECT AND SOURCE MODULES AFTER COMPILE

=======----------------··--------------------------------
I PFtOGl. FTN I I PROGl. OBJ I

6/20 6/20

IPROG2.CBLI IPROG2.0BJI

6/20 6/20

/\

COMPILE

NO
EXECUTION

Figure 4-1 COMPILE Command Functions in the Language
Environment.

4-20 48-043 FOO R03

SOURCE AND OBJECT MODULES BEFORE COMPILE ALL

IPROGl.FTNI
I
I

->I 6/20
ALLPROG.EDF ---------

->IPROG2.CBLI IPROG2.0BJI

6/20 6/15

SOURCE AND OBJECT MODULES AFTER COMPILE ALL

I PROGl. FTN I

6/20

IPROG2.CBLI IPROG2.0BJI
1--->1

6/20 6/15

/\
I I
I -----··------··-~- I

DATE CHECK

I PROGl.FTN I IPROGl.OBJI
1--->1

6/20 6/20
--------- NO

IPROG2.CBLI IPROG2.0BJI
1--->1

6/20 6/20

/\
I I , _____________ ,

COMPILE

EXECUTION

Figure 4-2 COMPILE Command Functions in the Multimodule
Environment

48-043 FOO R03 4-21

I COMPLINK I

4.9.3 COMPLINK Command

The COMPLINK command per.forms a conditional compile and a
conditional link by datechec:king source, object and image modules
in language, multimodule or null environments. If all modules
are up to date, this command does not perform any function. This
command does not execute the~ program.

Format:

COMPLINK

Parameters:

filename

st-ops

list-op

p

L

4-22

filename

ALL

:i¢.iiill!ilni.1ittll!R!l!iB.:

G st-ops] ,

list-op

!iii! [!load inc] Gmap]

L[AJ

E [A] [,work] Gworklim]

is a 1- to a-character alphanumeric filename
of the source file to be compiled and/or
linked. If the filename is specified and has
no extension or has the extension of the
current language environment, it is checked
for existence and becomes the current program.
If the filename is omitted (as it must be in
a multimodule environment), the current
program or environment is the default.

can be used to specify START options for the
compilation process. If this parameter is
omitted, START options default by language.

is the fd of an existing file to which the
compilation listing or Link output is sent.

indicates that the compilation listing is to
be sent to the file or device specified by the
SSYSPRINT global variable.

indicates that a new file, currprog.LST, is to
be allocated to recieve the compilation
listing. If A is included, the listing is to
be appended to the existing currprog.LST file.

48-043 FOO R03

E

load inc

map

work

worklim

Functional Details:

indicates that a new file, envir.LST, is to be
allocated to receive the listing. If A is
included, the listing is appended to the
existing envir.LST file. This only applies in
a multimodule environment.

specifies the segment size increment to be
used for compilation or assembly. The default
is by language.

is the fd of an existing file to which the
Link map is sent. If this parameter is
omitted, the default is to list-op.

indicates memory workspace is to be allocated
to a task. The default is dependent upon the
language.

indicates the upper boundary of the load
increment size.

When the COMPLINK command
all the fds contained in
linked.

used in a multimodule environment,
EDF are datechecked, compiled and/or

If the object file, filen e.OBJ, does not exist or is older than
the source file, it will e recompiled. If any recompilation is
required, a task does n t exist, or the task file is older than
any object file, OS/32 Li k is invoked to produce a new task.

When a Link command file, filename.LNK (envir.LNK for multimodule
environments) exists, it 's unconditionally used; otherwise, one
will be built automatic lly and discarded after use. The BLINK
command enables the user o build a permanent command file. It
can then be edited to incorporate any special linking
requirements.

If the list-op parameter s omitted, the value specified by the
SSYSLST global variable is used to determine the destination of
the compilation listing.

If there is a compilation error, the process ends with a nonzero
end of task code, the Link procedure never starts, and the
process is aborted. The ollowing message is then displayed:

*FILENAME Compilatio errors-listing on (device):

48-043 FOO R03 4-23

If the specified source file is not found, the COMPLINK sequence
terminates and the following message is displayed:

*
* FILENAME not found in environment edfrarne.EDF

If any arguments are specified in a multimodule environment, the
following message is displayed:

*
*
*
*
*

First argument f ilen~ne is not permitted when in a
multimodule environme1nt. Environment name is
always used.

The COMPLINK conunand functions are shown in Figures 4-3 and 4-4.

SOURCE, OBJECT AND IMAGE MODULES BEFORE COMPLINK

=======---
IPROG4.CBLI IPROG4.0BJI IPROG4.TSKI

6/20 6/15 6/15

======----------~------,·--------------------------------SOURCE, OBJECT AND IMAGE MODULES AFTER COMPLINK

=======----------------,·------------------------------~-

IPROG4.CBLI IPROG4.0BJI IPROG4.TSKI

6/20 6/15 6/15

/\ /\
I I I I------------- I ----------I

DA~rECHECK

I PROG4 . CBL I I PUOG4 . OBJ I I PROG4 . TSK I NO
1->1 1->1 EXECUTION

6/20 6/20 6/20

/\ /\
I I

----I -------1
COMPILE LINK

Figure 4-3 COMPLINK Cc>mrnand Functions in the Language
Environment

4-24 48-043 FOO R03

SOURCE, OBJECT IMAGE MODULES BEFORE COMPLINK

IPROGl.FTNI IPROGl.OBJI
I
I

ALLPROG.EDF -->I 6/20 6/10

6/8
->IPROG2.CBLI IPROG2.0BJI

6/20 6/10

SOURCE, OBJECT AND IMAGE MODULES AFTER COMPLINK

IPROGl.FTNI IPROGl.OBJI
I->

6/20 6/10

IPROG2.CBLI IPROG2.0BJI->

6/20 6/10

I\ I A

ALLPROG.TSK

6/8

I I I I

I ------·--·---- I I ------------- I
DATE CHECK

IPROGl.FTNl->IPROGl.OBJI->

6/20 6/20
ALLPROG.TSK NO

EXECUTION
IPROG2.CBLl->IPROG2.0BJI->

6/20 6/20

I\
I I , __________ ,

COMPILE

6/20

I\
I I I -----------I

LINK

Figure 4-4 COMPLINK Command Functions in the Multimodule
Environment

48-043 FOO R03 4-25

EDIT

4.9.4 EDIT Conunand

The program development language commands load and start the
editor for you to create a source or data file. You can also
enter the EDIT command to create or modify a source or data file.

Format:

Parameters:

filename

INPLACE

COMMAND

LENGTH

PROTECT

4-26

.COMMAND= command

LENGTH= {lmcl}

£ROTECT-{:::m:uii:::}

specifies a 1- to 8-character alphanumeric
filename of the source file to be created or
edited. If this parameter is omitted, the
current p~ogram is the default.

editing is done in place if the edit file
exists.

specifies the first edit command to be
performed on the source file if the file
exists. If the file specified for editing
does not exist, it is allocated and COMMAND=
is forced to APPEND.

allocates the edit file with the specified
record length if file does not exists. The
default is 80.

protection keys of the edit file are cleared
during editing, but are set to FFOO after
editing is completed.

48-043 FOO R03

Functional Details:

The EDIT command can be used whether or not any environment has
been established. If no environment has been established, the
source file is simply edited.

A language command entered with a filename loads and starts the
editor if the file does not· exist. If the language command is
entered without a filename, the EDIT command can be entered with
a filename to access the editor· and create or modify a source
file.

The user can simply type EDI'r, which causes the editor to be
loaded and started without the intervention of the program
development system. If no current program is established, the
following message is displayed to prompt the user to supply the
desired filename:

GIVE FILENAME=

If this command is
character is set
set.

entered in a NULL environment, the tab
and displayed, but the language tabs are not

If this command is entered with a filename not contained in a
multimodule environment, the following message is displayed:

* FILENAME not in edframe.EDF environment--will edit anyway

If this command is entered without a filename in the multimodule
environment and there is no current program, the following
message is displayed:

*
* Enter name of file to be edited
* or * to just start EDITOR

GIVE FILENAME=

48-043 FOO R03 4-27

If the EDIT conunand is entered while a current program is
established, the current program is made available for editing.
For example, if the language environment is set to FORT with a
current program of PROGl .. FTN, the EDIT conunand produces the
following results.

*EDIT
PERKIN-ELMER OS/32 EDIT 03-145 R03-01
OPTION TAB=\,7,73;0PTION INPLACE=OFF
GET PROGl.FTN;OPTION COM=CON:;SC

1)C GO RIGHT AHEAD AND
2)C ENTER THE PROGRAM
3)C YOU ARE DEVELOPING.

!UNABLE TO TYPE FULL SCRE:EN
)

if no current program is established, the result of the EDIT
command is the following:

*EDIT

*
*
*

Enter name of file to be edited
or * to just start EDITOR

GIVE FILENAME=

If the user responds at this point by supplying an fd, the editor
either retrieves an existing file or allocates a new one,
depending on the existence or absence of the specified file.

or

GIVE FILENAME=ANYTHING.EXT (file does not exist)
*
*
*

Editing new file -- ANYTHING.EXT

PERKIN-ELMER OS/32 EDIT 03-145 R03-0l
OPTION TAB=/;OPTION INPL~CE=OFF
GET ANYTHING.EXT;OPTION COM=CON:;AP

1)

(APPEND mode set)

GIVE FILENAME=ANYTHING.EXT (file exists)
PERKIN-ELMER OS/32 EDIT 03-145 R03-01
OPTION TAB=/;OPTION INPL~CE=OFF
GET ANYTHING.EXT;OPTION COM=CON:;AP

1 >ETCETERA

If no extension is specified, the default extension for the
current language environmient is assigned. If no language
environment has been established, no default extension is
assigned and the source file is edited.

4-28 48-043 FOO R03

If the user enters the asterisk (*) character, the system
responds in the following manner:

GIVE FILENAME=*
*
*
*

Entering EDITOR with no file (in APPEND mode)

PERKIN-ELMER OS/32 EDr·r 03-145 R03-01
OPTION COM=CON:;AP

1 >

If a filename other than the filename of the current program is
specified, that file is established as the current program and is
made available for editing (provided the file has the proper
extension). For example, if the current language environment is
FORT, and no current program exists or the current program is
other than PROGl.FTN, the following EDIT command will produce the
indicated response.

*EDI'r PROGl
*
*
*

New current program - PROGl

PERKIN-ELMER OS/32 EDI'r 03-145 R03-01
OPT ION TAB=\, 7, 73; OP'r ION INPLACE=OFF
GET PROGl.FTN;OPTION COM=CON:;SC

1 C GO RIGHT AHEAD AND
2 C ENTER THE PROGRAM
3 C YOU ARE DEVELOPING.

!UNABLE TO TYPE FULL SCREEN
>

For information on the edit commands, see Lhe OS/32 Edit User
Guide.

48-043 FOO R03 4-29

ENV

4.9.5 ENV Conunand

The ENV command entered with an EDF name creates or sets a
multimodule environment and allocates the user-specified EDF, if
necessary. This command ca:n also be used to clear or display the
current environment.

Format:

Parameters:

NULL

filename

Functional Details:

clears the language or multimodule
env i r onm•ents.

is a l·- to 8-character alphanumeric name
specifying the EDF, filename.EDF, which
creates and/or sets multimodule environments.
The EDF extension is automatically appended
and must not be entered by the user. The
optional subenv permits users to specify
subenvirc)nments within language or multimodule
env i r onm«:mts .

If the filename parameter i~5 entered with an extension other than
.EDF, the following message is displayed:

* Environment name must have no extension or .EDF

If the ENV command is enterE~d without a parameter, the name of
the current environment is displayed:

* Current multimodule environment is xxxxxxxx

If the environment was ne>t set or the NULL parameter was
specified at signon, the following message is displayed:

* No current environment

4-30 48-043 FOO R03

EXEC

4.9.6 EXEC Command

The EX.EC conunand will compile and link a program in the language
or null environments or compile and link all modules in a
multimodule environment if they are outdated. When the image
program is current, it is loaded and run.

Format:

Parameters:

filename

runops

runincr

Functional Details:

is a 1- to 8-character alphanumeric name
specifying the program to be run. If this
parameter is omitted, the current program or
EDF name is the default.

is used to start the resulting task.

once the object files are linked to create the
task, the task is loaded with a load
increment, which is set by runincr.

The source file is compiled if no object file exists, or if it is
not older than the object file.

The object file is linked if no image file exists, or if it is
not older than the image file.

When the EXEC conunand is entered in a multimodule environment,
all modules contained in the EDF are compiled and linked if they
are outdated. The task is then loaded and run.

48-043 FOO R03 4-31

If a link error occurs, the following message is displayed:

* Link errors--listing on device:

The filename must not be spiecified in a multimodule environment
since the entire environment is assumed.

The EXEC command functions 1~re shown in Figures 4-5 and 4-6.

SOURCE, OBJECT AND IMAGE MODULES BEFORE EXEC
=================-------~-------------------------------=-

I PROGl. FTN I I PROGl. OBJ I I PROGl. TSK I

6/20 6/18 6/18

==============----------~--=----------------------------=-
SOURCE, OBJECT AND IMAGE MODULES AFTER EXEC

================••••••=•~••••=====s==•••••=••••••=••••====

IPROGl.FTNI IPROGl.OBJI IPROGl.TSKI

6/20 6/18 6/18

I\ I I\ I
I

I I I I
I -----------·-- I I -------------I

DA~rECHECK

I PROGl. FTN I I PROGl. OBJ I I PROGl. TSK I
I -· > I I - > I I - > TASK

6/20 6/20 6/20 EXECUTION

,, I\

I I I I I ----·-----I I ------------I
COMPILE LINK

Figure 4-5 EXEC Command Functions in the Language
Env i r orunent

4-32 48-043 FOO R03

SOURCE, OBJECT AND .IMAGE MODULES BEFORE EXEC

=---~---
----------- --------- ---------

-> IPROGl.FTNI IPROGl.OBJI

ALLPROG.EDF 6/20 6/15
--------- ---------
----·----- ---------

->IPROG2.CBLI ·I PROG2 . OBJ I

6/20 6/15
----------- --------- -·--------

SOURCE, OBJECT AND IMAGE MODULES AFTER EXEC

====------------=====-------==------------------------------------
IPROGl.FTNI IPROGl.OBJI

1->
6/20 6/15.

IPROG2.CBLI IPROG2.0BJI
I->

6/20 6/15

I\ I "

ALLPROG.TSK

6/5

I
I

I I I I

•-~--------· ·--------~~• DATE CHECK

IPROGl.FTNI IPROGl.OBJI
1->I 1->

6/20 I 6/20

IPROG2.CBLI IPROG2.0BJI

6/20

I
I

1-> I 1->
6/20

I\
I I I
I--------- I I

ALLPROG.TSK -) TASK
EXECUTION

6/20

I\

COMPILE LINK

Figure 4-6 EXEC Command Functions in the Multimodule
Environment

48-043 FOO R03 4-33

I LANGUAGE I

4.9.7 LANGUAGE Command

The LANGUAGE command is used to change the program development
language environment or, for multimodule environments, to
designate the FORTRAN VII compiler to be used to compile any
FORTRAN program in the EDF :Eile.

Format:

LANGUAGE

Parameters:

FORT

FORTO

FORTZ

COBOL

CAL

MACRO

PASCAL

RPG

c

[language environment]

specifies the FORTRAN VII development compiler or
environment ..

specifies 1:he FORTRAN VII global
compiler or environment.

optimizing

specifies the FORTRAN VII universal optimizing
compiler or environment.

specifies the COBOL language environment.

specifies the CAL/32 environment.

specifies the MACRO environment.

specifies the PASCAL language environment.

specifies the RPG language environment.

specifies the C language environment.

Functional Details:

The selected argument must be entered in upper-case for the
LANGUAGE command to function correctly.

The LANGUAGE command is used to change the program development
environment or to determine the current environment.

4-34 48-043 FOO R03

FORTRAN is a special case, because more than one compiler may be
available to process files with the .ftn extension. The default
compiler for FORTRAN programs is the FORTRAN VII development
compiler. To change the default language processor, type
LANGUAGE FORTO or LANGUAGE FORTZ. For multimodule environments,
the LANGUAGE command assigns the compiler to be used to compile
any FORTRAN modules found in the EDF file. This command does not
affect the compilation of programs for which a special
compilation CSS was specified via the ADD command.

When clearing the language or multimodule environments through
the ENV command with the option NULL, the compiler is set to the
default FORT. The compiler is also set to the default (FORT)
when the filename option is used with the ENVIRONMENT command.

The default FORTRAN compiler is not changed when the ENVIRONMENT
command is issued with no arguments to determine what environment
the user is currently in.

Examples:

Set the language environment to PASCAL.

*PASCAL
*
* New Language Environment -- Pascal ROl
*

Determine the current environment.

*LANGUAGE
* LANGUAGE = PASCAL

Change the current environment to COBOL.

*LANGUAGE COBOL
* LANGUAGE = COBOL

This example demonstrates the use of the language command to
determine which FORTRAN VII compiler will be used in the
multimodule environment. The EDF file contains a FORTRAN source
file named PROGl.FTN.

48-043 FOO R03 4-35

*ENV PROG

*
*
*
*
*
*

Current multimodule environment is PROG.EDF

No current program
Link commands are standard

*LANGUAGE FORTO
* LANGUAGE = FORTO

* COMPILE PROGl
FORTRAN-VIIO ROS-01.00

COMPILER FILE: MTM:F7051/S
INPUT FILE: l,M30l:PROG1.F'I'N/P
ELAINE -END OF TASK CODE= 0

SOURCE LISTING: 3,CON:
OBJECT FILE: 2,M30l:PROG1.0BJ/P

CPUTIME=0.670/0.247

The following example illustrates that the use of the ENV command
to report the current environment will not affect the FORTRAN
compiler chosen by a previous LANGUAGE command.

*ENV
*
* Current multimodule environment is PROG.EDF
*
*
*
*

Current program = PROGL FTN
Link commands are standard

*COMPILE PROGl

FORTRAN-VIIO ROS-01.00

COMPILER FILE: MTM:F7051/S SOURCE LISTING: 3,CON:
INPUT FILE: l,M30l:PROG1.FTN/P OBJECT FILE: 2,M30l:PROG1.0BJ/P
ELAINE -END OF TASK CODE= 0 CPUTIME=0.667/0.250

This example illustrates thE~ use of the filename option in the
ENV command, which will cause the default compiler (FORT) to be
used.

4-36 48-043 FOO R03

*ENV PROG
*
*
*
*
*
*

Current multimodule environment is PROG.EDF

No current program
Link commands are standard

*COMPILE PROGl

FORTRAN-VIID R05-0l.OO
.MAIN NO ERROR(S) TABLE SPACE USED: 1 K

STATEMENT BUFFER: 20 LINES/1321 BYTES STACK SPACE: 40 WORDS
ELAINE -END OF TASK CODE= 0 CPUTIME=0.159/0.936

This example illustrates the option NULL, which will cause the
compiler to default to FORT.

*env NULL

*compile progl.ftn
*
* New Language Environment -- FORTRAN VII D R05-01
*
FORTRAN-VIID R05-01.00

STATEMENT BUFFER: 20 LINES/1321 BYTES STACK SPACE: 40 WORDS
ELAINE -END OF TASK CODE= 0 CPUTIME=0.159/0.943

48-043 FOO R03 4-37

LINK

4.9.8 LINK Command

The LINK command links the object module to yield the image
module in language, multimodule or null environments. If no
object module exists, the LINK command causes the source module
to be compiled to yield the object module. The LINK command does
not datecheck, load or execute a program.

Format:

filename list-op

LINK p

cartent program L A

E A

Parameters:

filename

list-op

p

L

E

map

4-38

is a 1- to a-character alphanumeric name
specifying the files to be compiled and/or
linked. If this parameter is omitted, the
current program is the default.. A filename is
meaningful only in a language environment.

is the fd of an existing file to which the
compilation listing is sent.

indicates that the compilation listing is to
be sent to the file or device specified by the
SSYSPRINT global variable.

indicates that a new file, currprog.LST, is to
be allocated to receive the compilation
listing. If A is included, the listing is to
be appended to the existing currprog.LST file.

indicates that a new file, envir.LST, is to be
allocated to receive the listing. If A is
included, the listing is appended to the
existing envir.LST file. This only applies in
a multimodule environment.

is the name of an existing file which will
receive the Link map. If this parameter is
omitted, list-op is the default.

48-043 FOO R03

work is used to allocate memory
task. If this parameter
default is by language.

workspace to a
is omitted, the

worklim specifies the upper boundary of the load
increment size for a task.

dms is the name of the data management system
(DMS) run-time library (RTL) segment to be
resolved against and can only be used with DMS
subenvironments. ·Defaults to OMS.RTL.

Functional Details:

When the LINK command is entered in a multimodule environment and
no object module exists, all source file fds contained in the EDF
are compiled. The resulting object modules are then linked.

The LINK command also links all of the standard Perkin-Elmer RTLs
specified by the language extension assigned when the source file
was created.

4.9.8.1 Link Sequences

The user can specify a Link sequence by building a Link file that
must have the extension .LNK. When the link sequence is
specified, the system searches the default user volume for a file
with the .LNK extension and a filename matching the EDF name or
the filename of the current program. When found, it is executed.

Example:

*BUILD JOB.LNK
B)ESTABLISH TASK
B)INCLUDE PROGl.OBJ
B)INCLUDE PROG2.0BJ
B)LIBRARY F7RTL,COBOL.LIB
B)MAP PR:,AD,AL,XREF
B)BUILD PROG.TSK
B)END
B>ENDB

If the user-specified Link file is not found, the system uses the
default link sequence. There is a default link sequence for each
language environment. Following is an example of a default
FORTRAN link sequence:

)ESTABLISH TASK
>INCLUDE current program
)INCLUDE LIBRARY F7RTL.OBJ/S
)OP DFLOAT, FLOAT, WORK=X3072
)BUILD f ilename.TSK
)END

48-043 FOO R03 4-39

The LINK conunand functions are shown in Figures 4-7 and 4-8.

4-40

SOURCE AND OB,JECT MODULES BEFORE LINK

IPROGl.FTNI IPROGl.OBJI

6/20 6/20

SOURCE AND OBJECT MODULES AFTER LINK

=========----=------~------------------------------~-

IPROGl.FTNI

6/20

IPROGl.OBJI IPROGl.TSKI
1-> I

6/20 6/20

I\
I I
I ------------I

LINK

SOURCE PROGRAM BEFORE LINK

PROGl.FTN

6/20

SOURCE PROGRAM AFTER LINK

I PROGl. FTN I IPROGl.OBJI IPROGl.TSKI
I - >I 1->1

6/20 6/20 6/20

I\ I\
I I I I -----------I----------- I

COMPILE LINK

NO
EXECUTION

NO
EXECUTION

Figure 4-7 LINK Command Functions in the Language
Environment

48-043 FOO R03

I
I

SOURCE AND OBJECT PROGRAMS BEFORE LINK

- > I PROGL FTN I IPROGl.OBJI

6/20 6/~0
IALLPROG.EDF

- > I PROG2. CBL I

6/20 ·1
I

IPROG2.0BJI

6/20

SOURCE AND OBJECT PROGRAMS AFTER LINK

IPROOl.FTNI

6/20

IPROG2.0BJI
I->

6/20

ALLPROG.TSK NO

IPROG2.CBLI

6/20

IPROG2.0BJI
1->

6/20

LINK

SOURCE MODULE BEFORE LINK

EXECUTION

6/20

/\

I
I.ALL.PROO.EDF

I PROGl. FTN I
->I

6/20

->IPR002.CBLI

6/20

~--SOURCE MODULE AFTER LINK

Figure 4-8

48-043 FOO R03

I PROGl. FTN I

6/20

IPROG2.CBLI

6/20

I PROGl.OBJ I I
1->1

6/20
I
l.ALLPROG.TSK

IPROG2.0BJI I
1->I

6/20

/\

6/20

/\

COMPILE LINK

,NO
EXECUTION

LINK Command Functions in the Multimodule
Environment

4-41

LIST

4.9.9 LIST Command

The LIST command lists the fds of all the multimodule environment
programs that are contained in the current EDF.

Format:

Parameters:

filename

*

Functional Details:

is a filename of one of the members of the
current EDF. If a filename is specified, and
special compiler arguments applicable to the
source file, the special compile CSS (if any)
are displayed.

indicates that compiler arguments and special
compile CSSs are to be displayed for all
members of the current EDF.

The LIST command causes a listing to be sent to the list device
specified by SSYSPRT when lu assignments were made. The user
must be in a multimodule environment to use the LIST command. If
not, an appropriate message is displayed.

When the user is in a multimodule environment, the LIS'r command
current

If a
the

also

can be used without parameters to display pertinent
information and the fds of all files in the environment.
file with a nonstandard extension is contained within
environment, the name of the required compilation css is
displayed.

4-42 48-043 FOO R03

*LIST
*
* Current multimodule environment is ANYTHING.EDF

*
*
*

Current program--DEM04.DIF
Link commands are standard

Contents of Environment file:
DEMOl.FTN
DEM02,CAL
DEM03.RPG
DEM04.DIF compiled with OTHRCOMP

If a particular fd is specified with the LIST command, the file,
its compile arguments and the name of the nonstandard compilation
css (if any) are displayed. This information is displayed for
all members of the environment if an asterisk (*) is entered with
Lhe LIST command.

*LIST *

* Current multimodule environment is ALLPROG.EDF

*
*
*

Current program = DEM03.PAS
Link commands are standard

Contents of Environment file:

DEMOl.FTN compiled with OTHRCOMP
compile arguments= "LCNT=55",TRACE,WARN,"",XREF,,
DEM02.CAL
compile arguments "",SCRAT,SQUEZ,"",FREEZE,,
DEM03.PAS
compile arguments="",,,"",,,

If the LIST command is entered and no fds are in the multimodule
environment, an appropriate message is displayed.

48-043 FOO R03 4-43

REMOVE

4.9.10 REMOVE Command

The REMOVE command deletes specified source fds from the current
multimodule environment.

Format:

REMOVE f d

Parameters:

f d

Functional Details:

is a file descriptor of a
contained in the EDF.

source file

When the REMOVE command is entered, the current EDF is searched
for the specified fd. When found, the fd is removed from the
multimodule environment. If the fd is not found, the following
message is displayed:

* FILENAME not found in environment edfname .EDF
*

The REMOVE command is only valid in a multimodule environment,
otherwise an error message is output when an attempt is made to
use it in a language or null environment.

4-44 48-043 FOO R03

RUN

4.9.11 RUN Command

The RUN command loads and runs the image program in language and
multimodule environments. This command does not datecheck,
compile or link.

Format:

Parameters:

filename

st-ops

Functional Details:

is a 1- to 8-character name specifying the
image module. If this parameter is omitted,
the default is the current program.

is used to start the task.

If a filename is not entered with the RUN command, the following
message is displayed:

*
* Must have current program or specify file in order to run
*

If the specified file does not exist, the following message is
displayed:

*
* CANNOT RUN -- f ilename.TSK DOES NOT EXIST
*

Figures 4-9 and 4-10 illustrate the RUN command functions.

48-043 FOO R03 4-45

Figure 4-9

IMAGE MODULE BEFORE RUN

IPRC>Gl.TSKI

Ei/20

IMAGE MODULE AFTER RUN

IPROOl.TSKI

I-> TASK
6/20 EXECUTION

RUN

RUN Command Function in the Language Environment

IMAGE MODULE BEFORE RUN

·-----------------------------

ALLP1WG. TSK

6/20
_________ q __________________ _

IMAGE MODULE AFTER RUN

-> TASK
ALLPROG.TSK EXECUTION

6/20

RUN

Figure 4-10 RUN Command Function in the Multimodule Environment

4-46 48-043 FOO R03

Table 4-4 sununarizes the functions of the conunands used to
compile, link and run a program.

TABLE 4-4 PROGRAM DEVELOPMENT COMMANDS THAT
COMPILE, LINK AND EXECUTE

COMMAND PUNCTION
~==:==:======

COMPILE I Compiles source module into object
I module when object module does not

COMPLINK

LINK

EXEC

I exist or is outdated.

Datechecks source, object and image
modules and compiles and/or links
them, if outdated, to form image
program.

Compiles source module into object
module when object module does not
exist. Then links object module and
standard RTLs to form image program.

Datechecks image, object and source
modules. Compiles and links them if
outdated. Loads and runs up to date
image program.

RUN I Loads and runs image program without
I datechecking, compiling or linking.

4.10 SAMPLE PROGRAM DEVELOPMENT SESSIONS

This section presents coding examples
development commands.

using the program

*FORT TEST
** NEW PROGRAM
-Eorrr

(edit session)

SAVE*
)END

48-043 FOO R03

Create FORTRAN language
environment with the
FORT language command

Specify TEST as filename
to be allocated
FOR'r conunand loads and
starts editor with
TES'r. FTN as current
program

4-47

4-48

*SSYSIN CON:

*SSYSOUT CON:
*SSYSLIST PR:
*EXEC TEST
-FORTRAN:TEST
** COMPILE ERRORS, LISTING ON PR:

*EDI'r
-EDIT - TEST.FTN

(edit session)

SAVE*
)END

*EXEC
-FORTRAN - TEST

(compilation sequence)

-END OF TASK CODE•O
-LINK - TES'r

(link sequence)

-END OF TASK CODE-0

** EXECUTION OF TEST FOLLOWS:

(execution sequence)

-END OF TASK CODE~O

Define and set new global
variables

Execute TEST.FTN
Compile TEST.FTN
Compilation errors in TEST

Find and correct errors

Execute current program

Compile

Sucessful compilation
Link the newly created
object module TEST.OBJ

Successful link, new task
now exists

Run the new task TEST.TSK

48-043 FOO R03

*EXEC

** EXECUTION OF TEST FOLLOWS:

(execution sequence)

-END OF TASK CODE
*RUN

0

** EXECUTION OF TEST FOLLOWS:

(execution sequence)

-END OF TASK CODE~O

*EXEC NEWPROG
** FILE NEWPROG.FTN NOT FOUND

*MACRO

*EXEC NEWPROG
-MACRO - NEWPROG
-CAL - NEWPROG
-LINK - NEWPROG

(link sequence)

** EXECUTION OF NEWPROG FOLLOWS:

(execution sequence)

-END OF TASK CODE=O

48-043 FOO R03

Successful execution
Reexecute
Ensure program is compiled
and linked
Compile, link unnecessary
Object and image up to date

Successful execution

Rerun

Execute NEWPROG
System finds NEWPROG.MAC
Cannot find NEWPROG.FTN
Specif iy MACRO command to
access NEWPROG.MAC and enter
a new language environment

Execute NEWPROG.MAC
Expand
Assemble
Link

successful execution

4-49

*EDIT
EDIT-NEWPROG.MAC

(edit session)

SAVE*
)END

*EXEC
-MACRO - NEWPROG
-CAL - NEWPROG
-LINK - NEWPROG

(link sequence)

** EXECUTION OF NEWPROG FOLLOWS:

(execution sequence)

-END OF TASK CODE=O

Edit current program

Execute current program
Expand
Assemble
Link

Successful execution

Create multimodule envi­
ronment with ENV command

*ENV BIGTASK BIGTASK.EDF allocated
** NEW ENVIRONMENT
*ADD SUB.CAL Add 3 module names to EDF
*ADD MACRTY.CAL
*ADD FTOR.FTN
*LIST List all modules in EDF
** CURRENT ENVIRONMENT=BIGTASK.EDF
-SUB.CAL
-MACRTY.CAL
-FTOR.FTN
*ADD SUBFUNC.FTN Add 2 more modules to EDF
*ADD !{SUB.MAC

4-50 48-043 FOO R03

*REMOVE SUB.CAL
*FORT SUBFUNC
-EDIT - SUBFUNC

(edit session)

SAVE*
)END
*EDIT YSUB

(edit session)

SAVE*
>END
*ENV BIGTASK

*EX.EC
-FOR1rRAN - FTOR. F'rN
-FORTRAN - SUBFUNC.FTN
-MACRO - YSUB.MAC
-CAL - MACRTY.CAL
-LINK - BIGTASK

(link sequence)

END OF TASK CODE=O

* * EXE CUT I ON OF BI G'rASK FOLLOWS :

(execution sequence)

-END OF TASK CODE~2

48-043 FOO R03

Remove fd from EDF

Make changes to SUBFUNC.FTN

Make changes to YSUB.MAC

Create multimodule envi­
ronment
Execute modules remembered
in BIGTASK.EDF
FTOR.OBJ and YSUB.OBJ
modules are outdated

Link BIGTASK

All objects are linked;
appropriate RTLs are also linkt~d

Execution errors traced to YSUB

4-51

4-52

*MAC
*EDIT YSUB

(edit session)

SAVE*
>END

*ENV BIGTASK
*EXEC
-MACRO:YSUB.MAC

-CAL - YSUB.MAC
-LINK - BIGTASK

(link sequence)

** EXECUTION OF BIGTASK FOLLOWS:

(execution sequence)

-END OF TASK CODE=O

Create language environment
Correct errors in YSUB.MAC

Enter multimodule environment

YSUB.MAC object is outdated
Expand, assemble and link-edit

48-043 FOO R03

CHAPTER 5
MULTI-TERMINAL MONITOR (MTM) BATCH PROCESSING

5.1 INTRODUCTION

In addition to interactive processing capabilities, MTM also
supports concurrent batch processing, allowing the user to run
multiple batch jobs from a single batch queue. This feature
enables the user to effectively utilize the capabilities of the
system with minimal interference to the interactive users.

The number of concurrent batch jobs allowed at any time under MTM
is set by the operator from the system console. This number
cannot exceed 64. If more batch jobs are submitted than there
are active job streams, MTM queues the requests until a job
stream becomes available.

The batch queue is an indexed file containing the file
descriptors (fds) of the jobs to be processed. Each job is
identified in the queue by the fd of the conunand file. The batch
queue is ordered in priority order and on an first-in/first-out
(FIFO) basis within a priority.

Tasks executing in the batch environment run at a priority lower
than or equal to the tasks in the terminal environment. Thus, a
batch job executes when the system is not occupied with work from
a terminal user. Batch jobs use the processor's idle time, and
therefore, increase the efficiency of the system.

5.2 BATCH COMMANDS

The batch job file consists of a series of MTM user conunands
and/or conunand substitution system (CSS) calls. The conunands
presented in this section are unique to the batch environment.

To submit a batch job, a user must have created a batch job file
on disk. This file must have a SIGNON conunand as the first
record, and a SIGNOFF command as the last record. The only valid
conunands to be used between the SIGNON and SIGNOFF conunands are
MTM user conunands (see Chapter 2), program development conunands
(see Chapter 4), batch processing conunands and calls to a css
file (see Chapter 6). A batch job file is not a css. This
invalidates CSS conunands, with the exception of $IF ... , $ELSE and
$ENDC. Any conunand that can be used at a terminal can be used in
the batch job file.

48-043 FOO R03 5-1

Examples:

The following is an example of a single batch job file:

SIGNON TESTl,l,PWD
L TEST 1
ST
SIGNOFF

....
css can be used to build a batch job file and submit a job as
follows:

** ASM.CSS [MODULE]
**
* * @ 1 (MODULE TO BE~ ASSEMBLED)
**
** EXAMPLE: ASM EXIN
**
$BU @l.JOB
SIGNON @l
XAL @l.LOG,IN,80
LOG @l.LOG, 5
ASM/G @l
$IFE 0

MESS LEE *** @l.JOB COMPLETE ***
$ELSE
MESS LEE *** @l.JOB ERROR ***
-$ENDC
SIGNOFF
$ENDS
SUB @l.JOB,DEL
INQ
$EXIT

5-2 48-043 FOO R03

I INQUIRE I

5.2.l INQUIRE Command

The INQUIRE command queries the status of a job on the batch
queue.

Format:

Parameters:

f d

Functional Details:

identifies the job for which the status is
desired. If fd is not specified, all jobs
with account numbers the same as the user's
are displayed.

specifies the file or device to which the
display is output. If this parameter is
omitted, the default is the user console.

When this command is entered by a privileged user, information
about all jobs on the system is displayed. Standard MTM users
see just the jobs related to the user's private account. This
command can be entered in command, task-loaded and task-executing
modes.

Possible responses to the INQUIRE command are:

JOB f d NOT FOUND

JOB fd EXECUTING

JOB fd WAITING BEHIND=n

NO JOBS WITH YOUR ACCOUNT

48-043 FOO R03 5-3

Examples:

All jobs with the user account number are displayed with the
following:

INQ

The status of TASK.JOB is displayed with the following:

INQUIRE TASK.JOB

5-4 48-043 FOO R03

LOG

5.2.2 LOG Command

The user can invoke a batch job to produce a log of its commands
by including the LOG command and the $COPY command within the
batch stream.

Format:

LQG [fd] r [{.N.m;;~~;y}] J , [{:.,}] L ,.,.11, s;a

S.ET LOO [f d] [[{=PY}]} [{:}]

Parameters:

f d

NO COPY

COPY

n

48-043 FOO R03

is the file descriptor of the log file or
device. If no fd is specified, logging is
terminated. If fd is a file, it must be
previously allocated. Files are assigned
exclusive write-only (EWO) privileges so that
logged output is added to the end of the file.
If a log is active when a second LOG command
is entered, the old log is closed and the new
one is initiated.

specifies that all output, except messages, is
written to the log device and not the
terminal. Messages from other users and the
operator are written to both the terminal and
the log device.

specifies that all output is written to both
the terminal and the log device.

is a decimal number from 0 through 65,535
specifying the number of lines after which the
log file is to be checkpointed. If this
parameter is omitted, the default is 15 lines.
If n is specified as 0, no checkpointing
occurs.

5-5

Functional Details:

The LOG and the SET LOG commands are the same.
be entered either way, and both formats
function.

The command can
perform the same

Checkpointing can be done on any type of file. For contiguous
files, however, the checkpoint operation is treated as a
no-operation. On nonbuffered indexed and extendable contiguous
files, the checkpointing JLs uaeful only if the file is being
expanded. On indexed files JLt is possible that a significant
amount of time may elapse between the time the data to be written
to the disk leaves the user's buffer and the time it is
physically transferred to the disk. In these cases,
checkpointing flushes the system buffers, as well as updating the
file size in the directory. In general, checkpointing is
justifiable only under very ~~pecif ic circumstances, such as when
a very large amount of data jLs written to an indexed file over an
extended period of time, without the file being closed.

Example:

LOG PR:

5-6 48-043 FOO R03

PURGE

5.2.3 PURGE Command

The PURGE command purges a submitted job from the batch queue.

Format:

.P.URGE f d

Parameter:

f d

Functional Details:

is the file descriptor of the job to be
purged. Only jobs with the user account
number can be purged.

If the specified job is executing, it will be cancelled or
terminated. If the job is waiting to be run, it will be removed
from the batch queue.

Example:

The following will purge TASK.JOB.

PURGE TASK.JOB

48-043 FOO R03 5-7

I SIGNOFF I

5.2~4 SIGNOFF Command

The last command in a batch Htream must be the SIGNOFF command.

Format:

Functional Details:

When a batch job user signs off the system, these messages are
output to the log device or file:

ELAPSED TIME•hh:mm:ss
SIGNON LEFT•hh:mm:ss
TIME OFF•mm/d~/yy hh:mm:ss

PROCESSOR=hh:mm:ss:mnun TSK-ELAPSED•hh:mm:ss
PROCESSOR LEFT•hh:mm:ss

The SIGNOFF·command can be entered in command, task-loaded and
task-executing modes.

If no signon or processor t~ne limits are established in the
authorized user file (AUF) 1Eor the account under which the batch
job is signed on, the SIGNON LEFT and PROCESSOR LEFT messages are
not output.

5-8 48-043 FOO R03

I SIGNON

5.2.5 SIGNON Command

SIGNON must be the first command in a batch job.

Format:

S.IGNON userid,actno,password [EIDLIRONMENT={ fd }]
NULL[:]

[{
ERQCESSORTIME} . J

, =maxt1me
CPUTIME

[, classid=iocount 1 [! ... , classid-=-iocount32J J

Parameters:

user id

act no

password

ENVIRONMENT=

48-043 FOO R03

is a 1- to 8-character alphanumeric string
specifying terminal user identification.

is a 5-digit decimal number specifying the
terminal user's account number. This must be
a valid account number in the AUF and can
never exceed 65,535. If this parameter is
omitted, the password parameter should also be
omitted. MTM will use the account number of
the user submitting the batch job.

is a 1- to 12-character alphanumeric string
specifying the terminal user's password. This
parameter should be omitted if the actno
parameter is omitted. MTM will use the
password of the user submitting the job.

fd is the file descriptor specifying the file
that will establish the user's environment at
signon time.

NULL specifies that the signon CSS procedure,
USERINIT.CSS, should be ignored and the user
will establish the environment at signon time.
If the entire keyword parameter is omitted,
MTM searches all on-line disks for the signon
CSS procedure, USERINIT.CSS/P. The system
volume (system account) is searched last.

5-9

If USERINIT.CSS is found, MTM calls the CSS
and executes the routine. If it is not found,
MTM enters. command mode.

PROCESSORTIME= maxtime i.s a decimal number specifying the
CPUTIME= maximum ptocessor time to which the batch job

is limited. Processor time in a Model 3200MPS
system is central processing unit and
auxiliary processing unit (CPU+APU) time,
whereas i.n a uniprocessor system, processor
t..ime is only CPU time. If this parameter is
omitted, the default established at system
generation (sysgen) is used. If 0 is
specified, no limits are applied. The
parameter can be specified as:

class id=

iocount

numnm: SIS

hhhh:mm:ss
ssss

is one of the 4-character alphanumeric
mnemonics,. specified at sysgen, associated
with each specified device or file class.

is a decimal number specifying the maximum
number of input/output (1/0) transfers
associated with the particular device class to
which the batch job is limited. If this
parameter is omitted, the default established
at sysgen is used. If 0 is specified, no
limits are applied to that class.

Functional Details:

Between the SIGNON and SIGNOJi'F commands, any command or css call
that is valid from the tE~rminal is allowed. A SIGNON command
cannot be followed by anothe1: command on the same line. When
ENVIRONMENT=NULL is specif:ied, the colon is optional. This
allows the user to specify the null device (NUIL:).

The account number and password can be omitted if a batch job is
submitted from a user terminal. If a batch job is submitted from
the system console or via. the spooler, the account number and
password must be specified.

The ENVIRONMENT= parameter iB ignored if the user does not have
the ENVIRONMENT AT SIGNON privilege.

5-10 48-043 FOO R03

Examples:

SIGNON ME

S ME,12,PSWD,CPUTIME=2:30:00,DEV1=150

S ME,CPUTIME=l20

S ME,ENV=NULL,PROCESSORTIME•l20

S ME,ENV=XYZ

48-043 FOO R03 5-11

I SUBMIT

5.2.6 SUBMIT Command

The terminal user adds a job to the batch queue with the SUBMIT
command.

Format:

SUBMIT fd GDELETE] G£RIORITY=pr ior ity]

Parameters:

f d

DELETE

PRIORITY=

Functional Details:

is the file descriptor of the file submitted
to batch.

deletes the batch job file created to submit
t..he batch job. If this parameter is omitted,
t..he batch job file remains on the user volume.

is a dec:imal number that specifies the
priority at which a batch job will run. The
range of valid priority numbers is dependent
upon the user's account privileges, sysgen
options and MTM priority. The maximum range
allowable is MTM priority + 1 through 255. If
this parameter is omitted, a batch job will
run at the default batch priority (the default
batch priority is 12 lower than MTM priority
plus the value specified at MTM sysgen time
for batch priority) or the link priority (the
priority established when the task was built),
whichever is lower.

The priority at which a bat.ch job runs is relative to MTM
priority and the default batc:h priority established at MTM sysgen
time. The user task (u-task) priorities are established at Link
time and can be reset with the PRIORITY parameter of the SUBMIT
command. Interactive tasks run at a default priority that is 12
priorities lower than MTM. Batch jobs run at a default priority
that is 12 lower than MTM plus the value specified at MTM sysgen
time. If the MTM sysgen pr ic,r i ty is set to equal 1 and MTM
priority equals 128, interactive jobs will run at priority + 12
(140), or 12 lower than MTM; batch jobs will run at priority+ 13
(141), 13 lower than MTM.

5-12 48-043 FOO R03

The rules for establishing priorities are:

• Batch jobs can run at the same priority as interactive tasks,
but not higher than interactive tasks if the user account has
this privilege enabled; otherwise, they are run at (maximum)
one priority lower than interactive tasks.

• If a valid priority is specified, the batch job runs at that
priority or the link priority, whichever is lower.

• If the specified priority is invalid, the default priority is
assigned by MTM and the following message is displayed:

WARNING - REQUESTED PRIORITY n ILLEGAL, n USED

• If the specified priority is greater than 255, 255 is used.

• If no u-task priority is specified with
the batch job runs at the default
priority, whichever is lower.

the SUBMIT command,
priority or the link

The SUBMIT command can be entered in command, task-loaded and
task-executing modes.

Example:

Create a batch job stream from the terminal via the BUILD ... ENDB
sequence:

BUILD TEST.JOB
SIGNON ME,ENV=NULL
LOG PR:
L TEST.TSK
AS 3,PR:
START
SIGNOFF
ENDS

Submit the job from the terminal for batch processing:

SUBMIT TEST.JOB

Submit a batch job file and have it deleted after the batch job
execution is complete:

SUBMIT XYZ.JOB, DELETE

48-043 FOO R03 5-13

Submit a batch job and have it run at the same priority as an
interactive job:

SUBMIT XYZ.JOB, P=l29

5.3 BATCH JOB SUBMISSION USING THE SPOOLER

The spooler is also used to submit batch jobs to the batch queue
for execution under MTM. Batch jobs submitted through the
spooler can later be resubml.tted as a batch job through the
terminal.

5.4 ERROR HANDLING

Any error that occurs in cl batch job file causes automatic
termination of the job, and a message is written to the log file
or device. If a batch task pauses, the task is cancelled by MTM
with an end of task code of 255. The job is terminated unless
'the batch task pause option was enabled at MTM sysgen (see
Section 5.5). When a batch task is completed, the end of task
code can be tested by subsequent commands in the batch stream to
determine if the task complE~ted normally.

5.5 BATCH TASK PAUSE OPTION

This option allows a batch task to pause without being
immediately cancelled by M'I'M. MTM logs the following message to
the system console if a batch task enters the paused state:

hh:mm:ss .MTM > tas};:id BTCH TSK PAUSED

In this message, taskid is the name of the batch task that has
paused. The system operato1~ has the option to cancel or continue
the paused batch task.

5.6 EFFECT OF RESTRICTED DISKS ON BATCH JOBS

When accounts with accesfs to restricted disks are given
read/write access, batch jc>bs are not affected. If read-only or
no access is specified, mesEsages are not displayed on the user
console. If a submit f jLle for a batch job is on a restricted
disk and account 0 does not have read/write access, the following
message is displayed on the system console:

.MTM:BATCH ASGN-ERR TYPK=PRIV JOB=fd

5-14 48-043 FOO R03

CHAPTER 6
COMMAND SUBSTITUTION SYSTEM (CSS)

6.1 GENERAL DESCRIPTION

The CSS is an extension of the OS/32 command language.
the user to establish files consisting of sequences of
ranging from elementary to extremely complex.
incorporates such features as parameter substitution,
decision making and branching.

It allows
commands
It also

variables,

Once a CSS file has been established, it can be executed by
entering a single command from a· multi-terminal monitor (MTM)
terminal, or by calling it from another CSS. Parameters can be
passed from one CSS level to the next.

Through css, even the most complex operations can be reduced to
a simple sequence of commands or even a single command.

The features available to users via CSS are:

• the ability to switch the command input stream to a file or
device,

• a set.of logical operators to control the precise sequence of
commands,

• the ability to pass both positional parameters and keyword
parameters to a CSS file so that general sequences or keywords
take on specific meaning when the parameters are substituted
in the CSS,

• the ability to specify replacement characters within a CSS
line to alter the function of the line when executed,

• the ability to perform decimal and hexadecimal computation and
. conversion within a CSS line (addition, subtraction,
multiplication and division),

• the ability to use standard local and global variables or new
global and new internal variables that introduce extended
power and flexibility to variable usage within a CSS,

• the ability to perform searches within specified css calls to
subtract specific sections of the call and use them as
replacements within the css, and

• the ability for one CSS file to call another, in the manner of
a subroutine, so complex command sequences can be developed.

48-043 FOO R03 6-1

A CSS file is simply a sequential text file. It can be stored as
a deck of cards, on a magnetic tape or as a disk file. An
example of a simple CSS file is:

*THIS IS AN EXAMPLE OF A CSS FILE
LOAD TEST.TSK/G,5
ALLOCATE ANYFILE.EXT,C0,40
AS l,OTHRFILE.EXT
AS 2,ANYFILE.EXT;AS 5, CON:
ASSIGN 3,PRT:;*LU3-LINEPRINTER
START
$EXIT

NOTE

Blank lines are ignored. The semicolon
allows more than one command to be
entered on the same line. Null CSS
commands {;;) are ignored. An asterisk
introduces a comment.

6.2 ESTABLISHING A COMMAND SUBSTITUTION SYSTEM {CSS) FILE

Since CSS files differ from other files in content only, they can
be created just as a source or data file would be; i.e., by using
the BUILD and ENDB commands or via an editor.

Both of the following sequences demonstrate the creation of the
same CSS file:

6-2

*BUILD DEMO
B>LOAD ANYTASK,20
B>ASSIGN l,INFILE.IN
B>ASSIGN 2,0UTFILE.OUT
B>ASSIGN 3,CON:
B>START
B>$EXIT
B>ENDB
*
*LO EDIT32
*ST
-PERKIN-ELMER OS/32 EDIT 03-145 R03-01
->APPEND

1
2
3
4
5
6
7

->LOAD ANYTASK,20
->ASSIGN l,INFILE.IN
->ASSIGN 2,0UTFILE.OUT
->ASSIGN 3,CON:
->START
->$EXIT
->

->SAVE DEMO.CSS
->END
-RAY -END OF TASK CODE= 0 PROCESSOR=0.037/0.042

48-043 FOO R03

The advantage with using an editor is that any mistakes can be
rectified immediately. Using BUILD and ENDB saves a few steps
for users not prone to errors, and also supplies the default
extension of .css. BUILD and ENDB are very useful for
establishing short files. No matter which approach is taken, the
last command in every css file should be the $EXIT command.

The extension .css is not required when a CSS is named. If
another extension is used, it must be specified when the CSS is
called.

6.3 CALLING A COMMAND SUBSTITUTION SYSTEM (CSS) FILE

A CSS file is called and executed from the terminal by specifying
the file descriptor (fd) of the css file. The demonstration css
established in the previous section would be executed by the
following entry:

*DEMO

If only the filename is specified, MTM assumes the extension .css
and first searches the user default volume in the user's private
account. If CSS volume is enabled (see Volume Command), then the
users CSS volume, private account is searched. If the CSS
account (see SET CSS Command) is different from the private
account, then the CSS volume, CSS account will be searched. If
the file is not found, the system account (on the system volume)
is searched. If the volume name or account class is specified by
the user, no search of the system account is made. If the CSS
file resides on a volume other than the user default volume (and
is not a system CSS) the volume name must be supplied.

In summary, the order in which MTM searches for a CSS is as
follows:

Current volume, current private account

If the CSS volume is not set to a '*',

CSS volume, current private account
CSS volume, css account

If CSS volume is not set,

Current volume, css account

48-043 FOO R03 6-3

Finally,

System volume, system acbount

For example, if a css was called in the following manne~:

*M30l:DEMO

MTM would search for the CSS in this order:

M30l:DEMO.CSS/P
M30l:DEMO.CSS/CSS ACCOUNT
M30l:DEMO.CSS/SYSTEM ACCOUNT

If a CSS was called in this manner:

*DEMO/P

MTM searches for the CSS in this order:

user:DEMO.CSS/P
cssvol:DEMO.CSS/P
system:DEMO.CSS/P

If a css was called in the following manner:

*DEMO

MTM searches for the CSS in this order:

6-4

If the css volume is not set to a '*',

CSS:DEMO.CSS/P
CSS:DEMO.CSS/CSS ACCOUNT

If a CSS volume is set to a '*',

user:DEMO.CSS/CSS ACCOUNT
system:DEMO.CSS/S

48-043 FOO R03

It is important to remember that MTM will only test any given
combination of volume, filename and account once, even if the
same fd is built using different parameters.

Specification of a volume name also allows the user to call CSS
files that belong to the user's private account, but do not
reside on the current default user volume, or CSS volume.

If a CSS file is saved under an fd with an extension other than
.css, the extension must be specified when the CSS is called.
For example, a CSS file saved as CSSFILE.ANY would be called by
the following entry:

*CSSFILE.ANY

CSS calls can also be made directly into the system or group
accounts by appending the appropriate account type to the fd, as
follows:

DIVE
CLIMB/G
ROLL/S
TUMBLE/actno

CSS call to private file
CSS call to group file
CSS call to system file
css call to file on another account

NOTE

A user's account must have EXTENDED
ACCOUNT ACCESS privileges to use an
account number when calling a CSS
routine.

A CSS can call another CSS file. The level to which CSS calls
can be nested is set at MTM system generation (sysgen). If this
maximum number is exceeded, an error message is displayed and all
active csss are cleared.

A user must have the CSS privilege in order to call CSS files in
the user's private account or group. If not privileged, the user
can only call system CSSs. If the user also has the privilege to
specify account numbers instead of classes, the user can call a
CSS in any account. If the leading characters of a css fd are
the same as a command, MTM assumes a command, but if the .CSS
extension is entered, the CSS will be assumed.

48-043 FOO R03 6-5

Examples:

CLO CLOSE MTM assumes the CLOSE command.

AS3 ASSIGN 3 MTM assumes the ASSIGN command.

A CSS file that would otherwise conflict with an MTM command can
be called by specifying a volume name and/or extension.

Example:

M300:CLO
AS3.CSS

6.4 USE OF PARAMETERS

Parameters can be passed to a CSS when it is called. There are
two types of parameters available to the user, positional
parameters and keyword parameters. These parameters will be
explained later in this section.

Parameters are entered after the CSS fd and are separated from it
by one character space. If there is more than one parameter,
each is separated by a comm,2. If a parameter contains the double
quote character (") or single quote character ('), all parameters
up to the next double quote character are passed as one
parameter. Null parameters are permitted.

Examples:

In the following example, the DEMO.CSS file is called. Two
positional parameters are passed. The first is A, the second is
"B,C".

DEMO A,"B,C"

In this example, three parameters (two positional and one
keyword) are passed. The first positional parameter is A, the
second is null. The parameter passed via the keyword ANYTHING is
c.

DEM02 A,,ANYTHING=C

6-6 48-043 FOO R03

6.4.1 Positional Parameters

Within a CSS file, a positional parameter is referenced by the
use of the special symbol "@n" where n is a decimal integer
number indicating which parameter the user is referencing.
Parameters are numbered starting with 1. Parameter 0 has special
meaning; it refers to the name by which the CSS is called. The
first parameter is referenced by @l, the second @2, etc. A
straightforward text substitution is employed.

Example:

A css file ROG consists of:

LOAD
START

@l
@3,@2

It is called as follows:

ROG PROGRAM,NOLIST,148

Before each line of the CSS file is decoded, it is preprocessed
and any reference to a parameter is substituted with the
corresponding text. Thus, the file ROG with the previous call is
executed as:

LOAD PROGRAM
START 148,NOLIST

@l is replaced with PROGRAM (the 1st parameter in the CSS call).
@3 is replaced with 148 (the 3rd parameter in the CSS call). @2
is replaced with NOLIST (the 2nd parameter in the CSS call).

This mechanism allows concatenation. For instance, if the first
command in file ROG were LOAD @l.TSK, only those files with the
extension .TSK would be presented to the loader. Concatenation
of numbers requires care. 123@1 references parameter 1, but
@1123 is a reference to parameter 1123. A reference to a
nonexistent parameter is null.

All of the following references to parameter 12 are valid
expressions:

@12 or @12ABC or @12.EXT

48-043 FOO R03 6-7

One CSS file can call another. Within a CSS, the rnqltiple @
facility enables a css file to access parameters of highet level
files. css files can call each other to a maximum ~epth
specified at sysgen time. In a CSS file, @@l refers to the ti~~t
parameter of the calling file.

Example:

Within a file named PROC.CSS there is a call to anothei CSS file
named SETUP.CSS. The PROC.CSS file consists of the following:

PREVENT PROMPT;PRE ETM
$COPY
LOAD @l,@2
SETUP
START,@3
$NOCOPY
ENABLE PR;ENA ETM
$EXIT

SETUP.CSS contains:

XAL @@l.OUT,IN,132
AS 6,@@l. IN
AS 7, @@l. OUT
$EXIT

The call to PROC.CSS shown below would produce the subsequent
display at the user's terminal.

*PROC ANYTASK,20,"COM=CON:,LIST=PR:"
-LOAD ANYTASK,20
SETUP
XAL ANYTASK.OUT,IN,132
AS 6,ANYTASK.IN
AS 7,ANYTASK.OUT
$EXIT
START,COM=CON:,LIST=PR:
$NOCOPY

There can be as many @ symbols used to reference hi.gller level
CSSs as there are allowable CSS levels. If the SETUP.CS$ file
from the previous example contained a call to another CSS file,
the CSS called by SETUP.CSS could refer to the parameters passed
to the PROC.CSS file as @@@l, @@@2 and @@@3.

If a multiple @ sequence is such that the calling level referred
to is nonexistent, the parameter is null.

6-8 48-0.43 FOO R03

Parameter @0 (or @@0) is a special parameter used to reference
the name of the CSS file in which it is contained. Parameter @0
(or @@0) is replaced during the preprocessing of the command line
with precisely the same fd used to call the file.

Example:

A CSS file consists of the following commands:

AS l,@O:
$EXIT

If this file is called with the filename CR, logical unit 1 (lul)
is assigned to the card reader (CR:). The executed form of the
ASSIGN command becomes:

AS l,CR:

If this file were called with the filename MAGI, the result is:

AS l,MAGl:

It should be remembered that a CSS file is called by (as a
minimum) the filename portion.of the fd under which it is stored;
no flexibility for calling statements should be inferred from the
example above.

To further illustrate the use of- the @0 parameter, the PROC.CSS
file from previous examples could easily be expanded to contain
the following:

XAL @0.LOG,IN
LOG @0.LOG,NOCOPY

LOG CON:
$EXIT

6.4.2 Keyword Parameters

The css language also provides a means of passing parameters via
keywords in a CSS call. A straightforward substitution procedure
is applied. Keywords enable the user to specify a value that is
subsequently substituted for each reference to the keyword
encountered within the css. The value of a keyword is defined in
the css call in the following format.

48-043 FOO R03 6-9

Format:

keyword keyoperator [parameter]

Parameters:

keyword

keyoperator

parameter

is the 1- to a-character name of a keyword.
The characters must be alphabetic.

is a required delimiter between a keyword and
its assigned value for the CSS call. This
delimi te!r must immediately follow the keyword
(no blanks allowed). The equal sign (=) is
the default keyoperator.

is a character string which
keyword reference with the
parameters are allowed.

replaces the
CSS. Null

Functional Details:

The following rules apply for the use of keywords
file and the relationships between keywords
parameters.

within a CSS
and positional

• The leading blanks of a keyword parameter are skipped unless
they are included with the parameter through the use of single
(' ••• ') or double (" ••• ") quotes.

• All characters between single or double quotes belong to the
same parameter. This allows the user to define a parameter
with leading blanks, semicolons, commas or an equal sign. A
carriage return (CR) is not allowed within the parameter
definition.

• An equal sign (=) (by default) marks the keyword. This equal
sign can be altered (via the SET KEYOPERATOR command) to one
of six other characters. If a user wishes to define a
parameter with an equal sign in it, the equal sign must be
delimited by single or double quotes or the key operator must
be changed to a character other than the equal sign.

• A keyword must never be followed by a
All positional parameters must be
keywords. Positional parameters and
separated by commas.

6-10

positional parameter •
passed prior to any

keywords must be

48-043 FOO R03

Examples:

These are valid examples of CSS calls using positional parameters
and keywords:

TEST ABC.FTN,,BA,OP=BATCH,LI=CON:
TEST SOURCE=ABC.FTN,LI=CON:

These are examples of illegal CSS calls using
parameters and keywords:

ILLEGAL CSS CALLS REASON

TEST A,B,FTNOPTION=HOLL Keyword is greater than

TEST A,B,OP=HOLL,D Positional parameter D
keyword.

8

TEST B,,OP=LNCT=60 Double equal signs are not

TEST B, ,=HOLL Keyword name is missing.

positional

characters.

is after a

valid.

TEST A'='B,C'=D Second quote is not matched.

Within a CSS file, a keyword parameter is referred to by the use
of the @= symbols (similar to the @ symbol usage for positional
parameters). As with positional parameters, multiple @ symbols
can be used to ref er to the keyword parameters of higher level
css files.

Format:

[@ [@ ••• @J] @-=I [keyword] I

Parameters:

@=

48-043 FOO R03

is the symbol that notifies the preprocessor
that a reference to a keyword parameter is
being made. The use of additional @ symbols
is allowed to access keywords of a higher
level CSS.

6-11

keyword is a 1-· to a-character keyword (excluding
period). The user has the option to define a
minimum set of required characters for a
keyword. This is accomplished by separating
the required characters and the optional
characters with a period. Required characters
precede the period; optional characters follow
the perlod.

For example, use of a keyword in the following
manner:

@=/OP.TION/

indicate~s that the keyword is OPTION and the
minimum required character set to reference
OPTION i.s OP.

Functional Details:

If the same keyword mnemonic is passed more than once in a CSS
call, the first keyword match found is used in substitution
(scanning from left to right in the call).

References to nonexisting keywords or to higher CSS levels which
do not exist are not expanded. The same applies to references
without a keyword. References with a keyword expand in the u~ual
manner. The following examples show the result of using keyword
references in a CSS file and then passing keyword parameters in
the CSS call. An equal sign (=) can be passed as part of the
keyword value as long as it is bracketed with single or double
quotes. Single· quotes can be passed as part of the keyword value
as long as they are bracketed by double quotes. Similarly,
double quotes can be passed as long as they are enclosed within
single quotes.

Examples:

The following listing presents an example CSS that uses keywords:

6-12

XAL @=/O.UTPUT/,IN,66
XAL @=/W.ORK/,IN,66
LO SRTMRGII,50
AS l,@=/I.NPUT/
AS 2,@=/0.UTPUT/
AS 4,@=/W.ORK/
AS 5,CON:
AS 9,MTM:SRTMRGII.OVY/S
START
$EXIT

48-043 FOO R03

The CSS listed above can be_ executed by any of the three calls
listed below (provided the CSS had been saved as SORT.CSS):

SORT INPUT=DEMO.IN,OUTPUT=DEMO.OUT,WORK=DEMO.WRK

SORT IN=DEMO.IN,OUT=DEMO.OOT,WO=DEMO.WRK

SORT W=DEMO.WRK,O=DEMO.OUT,I=DEMO.IN

The executed form of the css would be the listing below.

XAL DEMO.OUT,IN,66
XAL DEMO.WRK,IN,66
LO SRTMRGII,50
AS !,DEMO.IN
AS 2,DEMO.OUT
AS 4,DEMO.WRK
AS 5,CON:
AS 9,MTM:SRTMRGII.OVY/S
START
$EXIT

6.5 USE OF VARIABLES

MTM and batch users can allocate a predetermined number of
variables to be used within a CSS. The maximum number of
variables that can be allocated by a user is set at MTM sysgen.
In general there are two types of variables: those that exist
from signon to signoff, and those that only exist while the
defining CSS is active. There are now further distinctions
between the types of variables available with MTM.

6.5.1 Types of Variables

There are four types of variables available to MTM users:

• global variables,

• local variables,

• new global variables, and

• new internal variables.

48-043 FOO R03 6-13

The first two types, global and local variables, should be
familiar to all users of releases of MTM prior to R06.2. Global
variables exist from signon to signoff or until they are freed
via the $FREE command. Local variables can only be used while
the css in which they are defined is active. When a particular
css level is exited, all local variables defined within it are
freed.

The maximum number of global and .local variables
defined is established at MTM sysgen time.
Multi-Terminal Monitor (MTM) System Planning
Reference Manual.

that can be
See the OS/32
and Operator

The third and fourth variable types, new global and new internal,
are similar to the local and global variables in terms of usage.
The way in which they are defined and released and the
capabilities available when defining these variables make them
much more powerful and flexible than the previous variables.

New global variables exist from signon through signoff, until
they are released via the $RELEASE command, or until assigned an
undefined value by the $DEFINE command. The number of new global
variables allowed in a system is determined at MTM sysgen
(maximum of 99). No new global variables are allowed in the
system if the new global option is disabled at MTM sysgen.

New internal variables exist only while the CSS is active. New
internal variables are released when the highest level CSS exits
(back to MTM command mode). They are global within CSS calls.

Example:

FIRST.CSS
$WR IN FIRST
$DEF l,,STR(IN FIRST)
Y; *make a call to Y
$WR @*l
$EXIT

SECOND.CSS
$WR IN SECOND
$DEF l,,STR(came from second)
$EXIT

The following call

*FIRST.CSS

6-14 48-043 FOO R03

produces this output:

IN FIRST
IN SECOND
came from second

The user can release new internal variables via the $RELEASE
command or by using an undefined value via a $DEFINE command.
The maximum number of new internal variables that can be used is
set at MTM sysgen time (maximum of 99).

NOTE

Users should be familiar with the use of
both new global and new internal
variables. These variable types will
eventually replace the local or global
variables usage.

6.5.2 Naming Local or Global Variables

A local or global variable name can consist of 1- to a-characters
and must be preceded by the commercial @ sign. The character
following the @ sign must be alphabetic; the remaining characters
can be alphanumeric.

Examples:

@LKLl

@GLBLS

@ANYTHING

Local variables are named via the $LOCAL command. Global
variables are named via the $GLOBAL command. Values can be
assigned to predefined local and global variables via the $SET
command. These commands are discussed in detail later in this
chapter. Their basic use is shown in the following example:

$LOCAL @SEGSIZE;$GLOBAL @PRINTDEV
$SET @SEGSIZE=@3;$SET @PRINTDEV=@4
LOAD SOMETASK, @SEGSIZE
OTHERCSS
$EXIT

48-043 FOO R03 6-15

Once a global variable has been defined, it can be referred to by
any CSS file called between the time it is defined and the time
the user signs off or frees the variable. A local variable can
only be referred to within the CSS in which it is defined. To
illustrate, the css file named OTHERCSS called in the example
above could refer to the global variable @PRINTDEV. OTHERCSS
could not, however, refer to the local variable @SEGSIZE unless
it was specifically defined within OTHERCSS.

6.5.3 Naming New Global or New Internal Variables

A new global or new internal variable name can consist of 1- to
8-characters. The first character must be alphabetic; the
remaining characters alphanumeric.

Examples:

INTRNLl

GLBL12

WHATEVER

New global and new internal variables are named via the $DEF~NE
command and, at that time, are associated with a decimal number.
The number associated with the variable is for reference
purposes; it has nothing to do with the value of the variable.
Because new global and internal variables are associated with
numbers, the use of names is optional.

The $DEFINE command provides the user with many options for
establishing and assigning values to new global and new internal
variables.

$DEFINE is an extremely flexible and useful command; the
following examples represent only basic implementations.

The following example establishes a new global variable. The
decimal reference number associated with the variable is 7, its
name is GSYSVOL and the value assigned to it is the name of the
default system volume.

$DEFINE GVARIABLE 1, GSYSVOL, DVOLUMENAME (SYSTEM)

The following example establishes new global variable number 2.
This variable is not given a name; it is assigned the value of
the userid under which the terminal user or batch job is signed
on.

$DEF G 2,,CURRENT (USERNAME)

6-16 48-043 FOO R03

The following example establishes new internal variable number 7,
gives it the name LSTDEV and assigns it the string value CON:

$DEF IVAR 7,LSTDEV, STRING (CON:)

In this example, a new internal variable is established (by
default) and associated with the number two. It is given no
name, and is identified as a required variable.

$DEFINE 2,,REQUIRED

Once defined, the variable can be ref erred to by name or number
within a css. The following conventions apply to the expansion
of a new global or new internal variable within a CSS.

• To reference the value of a new _global or new internal
variable, the following format can be used.

Format:

~GJ~ J @*
ilI /name/

Where:

G

I

n

name

specifies a reference to a new global
variable.

specifies a reference to a new internal
variable. This is the default.

specifies the number of the variable to
be referenced.

specifies the name of the variable.

• To obtain the name of a new variable use the following format.

Format:

48-043 FOO R03 6-17

Where:

G

I

n

Examples:

specifies a new global variable.

specifies a new internal variable.

specifies the number of the variable
whose name is being requested.

The following example references global variable number 3.

@*G3

The following example references the internal variable name
VOLUME.

@*/VOLUME/

The following example references the name of internal variable
number 3.

@*N3

6.5.4 Command Substitution System (CSS) Line Expansion

The MTM preprocessor expands the entire CSS line in one step.
Because of this, be careful when using the new global or new
internal variable name/value in the CSS line after redefining
them with a $DEFINE command.

The following illustrates how the preprocessor handles these
occurrences:

$DEFINE1,,ST(ORIGINAL)
$DEFINE1,,ST(NEW);$DEFINE3,,ST(@*l)

This expands to:

$DEFINE!,, ST (NEW); $DEFI1NE3,, ST (ORIGINAL)

The value of the new internal variable 3 is not the expected
string NEW, but the string ORIGINAL.

6-18 48-043 FOO R03

6.5.S Reserved Variables

Variable names starting with the character string @SYS are
reserved for system use. A user cannot define variables starting
with @SYS. However, a user does have read and write access to
@SYS variables.

The global variable @SYSCODE is reserved and contains the value
of the last end of task code for a particular session.

6.6 COMMANDS EXECUTABLE WITHIN A COMMAND SUBSTITUTION SYSTEM
(CSS) FILE

All of the MTM supported commands can be used in a CSS file (see
Chapter 2), as well as a number of commands specifically
associated with ~he CSS Facility. Several of these commands can
also be used in the command mode. For example, all global
variables can be defined and assigned a value from the users
console. The $COPY and $NOCOPY commands can also be used in
command mode.

Most of the CSS commands start with the $ character with the
exception of the SET CODE and PRIOR commands.

The CSS commands entered within a CSS file are described in the
following sections. See Appendix E for CSS message descriptions.

NOTE

If a task is started when CSS is running,
css becomes dormant until the task is
terminated. Execution of the css stream
will resume after the task terminates.

48-043 FOO R03 6-19

'···'
6. 6 .1 Character Replaceme111t Command (% ••• %)

The character replacement command (% ••• %) enables a user to
define and replace up to four different characters within a
specified CSS line. The user must indicate the line in which
replacement is to occur, the new characters and the characters to
be replaced. Unless otherwise specified, every occurrence of a
specified character within the.line will be replaced.

Format:

,{char lchar 21 [char lchar 22 ••• char lchar 24] '}

\ new delimiter

Parameters:

6-20

%

charlchar21
••• charlchar24

% new
delimiter

is the initial current replacement string
delimiter. This indicates the start of the
character replacement specification.

is the specification of the character to
be replaced (charl) and the character to be
used as the replacement (char2). Up to four
of these replacement specifications can be
specified. The preprocessor translates this
statement as: replace the character specified
by charl with the character specified by
char2. If more than one replacement
specification is present there must be no
blanks between them. If charl and char2 are
the same, charl is deleted from the CSS line.

this indicates that a new replacement
delimiter (by default the % sign) follows.
The new delimiter is the first character after
the % sign and is active for the remainder of
the CSS line (or until a new delimiter is
specified).

48-043 FOO R03

Functional Details:

Character replacement operations are only performed in lines that
have a percent sign (%) in column 1 of the line. This percent
sign (%) is not part of the character replacement command, it
merely flags lines eligible for character replacement.

Character replacement is only allowed within a css.

The only legal use of blanks within the character replacement
delimiters is as replacement characters. The initial replacement
delimiter is always reset to % at the beginning of each CSS line
and previous replacement characters are deleted. In effect, each
CSS line with replacement information is treated as a single
entity.

Each usage of the character replacement command resets all
previously defined replacement characters. When a new
replacement delimiter is specified, all other replacement strings
are cleared. The $COPY command suppresses the display or
printing of replacement string delimiters and replacement
strings.

NOTE

Replacing a character with an @ symbol
will result in an additional
preprocessing step for that line in order
to expand the @ symbol with the
appropriate substitution parameter if
possible.

The examples in Table 6-1 are used to illustrate the basic
functionality of the character replacement command. The uses of
this command are not limited to those shown in the table. The
command becomes extremely powerful as the user introduces more
involved substitution and replacement within the same line.

48-043 FOO R03 6-21

TABLE 6-1 EXAMPLES USIN'G THE CHARACTER REPLACEMENT COMMAND

CHARACTER REPLACEMENT RESULT AFTER I
CSS LINE f INTERPRETATION I PROCESSING I

===I
%LO %',%F7D'20 I Replace the single I >LO F7D,20 I

I quote character (') I I
I with the comma (,) in I I
I the string F7D'20. I I

---)
%LO %%\\',\F7D'20 I Change the replace- I >LO F7D,20

I ment delimiter from I
I % to the \, and I
I replace the single I
I quote character with I
I the comma in the I
I string F7D'20. I

------------------~----------,--------------------~-------------~-----
%LO F7D%',A2B0%'AB I Replace the single I >LO F7D,20

%LO %',%F7D'20;%%%$W'A',

I quote character with I
I a comma, replace A I
I with 2, replace B I
I with a 0 in the char- I
I acter string 'AB. The I
I string F7D remains I
I unchanged. I

Replace the single
quote character with
the comma character
in the string F7D'20.
Then reset the line
(clear all replace­
ment instructions for
the balance of the
line). Because of
this, the single
quotes around A are
not replaced.

>LO F7D,20;$W'A'

Another use of the character replacement command is the
combination of character replacement and parameter substitution.

6-22 48-043 FOO R03

Example:

This example will result in three preprocessing passes through
the line in order to complete the requested functions. A step by
step analysis will show this.

$BUILD TEST

%%%*@\%%+@%$WR @l
$EX
$ENDB

Assume TEST CSS is called with the following call:

TEST *2,+3,'3RD USED'

The first preprocessing pass through the line causes the command
delimiter to be changed from % to \, the first parameter in the
CSS call (*2) replaces the @l reference in the CSS, and the * is
replaced with an @ symbol. The line now looks like this:

%%+@%$WR @2

Replacing an @ sign requires a second preprocessor pass through
the line in order to expand the reference. On the second
preprocessing pass through the line, the second parameter in the
CSS call (+3) replaces the @2 reference in the CSS line, and the
+ is replaced by an @ symbol, according to the second character
replacement specification. The line now looks like this:

$WR @3

Replacing an @ sign reference requires a third preprocessor pass
through the line in order to expand the parameter reference. On
this pass the third parameter in the CSS call (3RD USED) is
substituted for the @3 reference within the CSS. The line now
looks like this:

$WR 3RD USED

No further preprocessing of the line is required. The final
output of this CSS when called as detailed previously would be:

-3RD USED

48-043 FOO R03 6-23

$BUILD AND
$ENDB

6.6.2 $BUILD and $ENDB Cornmands

The $BUILD command causes succeeding lines to be copied to a
specified file up to, but excluding, the corresponding $ENDB
command. Before each line is copied, parameter substitution is
performed.

Format:

{
fd}~APPEND]

_fillUILD
lu

.
$ENDB

Parameters:

f d

lu

APPEND

Functional Details:

is the output file. If fd does not exist, an
indexed file is allocated with a logical
record length equal to the command buff er
length. If the fd specified does not contain
an extension, .css is the default. If a blank
extension is desired, the period following the
filename must be specified.

specifies that a temporary file is to be
created and the $BUILD data is copied to it.
When $ENDB is encountered, the file is
assigned to the specified logical unit of the
loaded task. The lu option is valid only when
a task is loaded.

allows the user to add data to an existing fd.
If the fd does not exist, it is allocated.

The $BUILD command must be the last command on its input line.
Any further information on the line is treated as a comment and
is not copied to the file.

6-24 48-043 FOO R03

The $ENDB command must be the first command in the command line,
but it need not start in column 1. Other commands can follow
$ENDB on the command line, but nesting of $BUILD and $ENDB is not
permitted.

Examples:

The example CSS from section 6.4.1 can be altered to illustrate
the use of the $BUILD and $ENDB commands:

$BUILD SORT.CMD
KEY @=/K.EYS/
SORT @=/I.NPUT/ > SORT.OUT
END

$ENDB
XAL SORT.OUT,IN,66
LO SRTMRGII,20
AS l,@=/I.NPUT/
AS 2,SORT.OUT
AS 3,CON:
TEMP 4,IN,5/3
AS 5,SORT.CMD
AS 9,MTM:SRTMRGII.OVY/S
ST
DEL SORT.CMD
$EXIT

The following version of the example CSS demonstrates the use of
the lu parameter of the $BUILD command.

XAL SORT.OUT,IN,66
LO SRTMRGII,20
AS l ,@=/I. NPUT/
AS 2,SORT.OUT
AS 3,CON:
TEMP 4,IN,5/3
$BUILD 5

KEY @=/K.EYS/
SORT @=/I.NPUT/ >SORT.OUT
END

$ENDB
AS 9,MTM:SRTMRGII.OVY/S
ST
$EXIT

48-043 FOO R03 6-25

$CLEAR

6.6.3 $CLEAR Command

The $CLEAR command terminates a CSS stream, closes all CSS files
and returns to MTM command level.

Format:

~EAR

Functional Detail:

The $CLEAR command can be 1entered in command, task-loaded and
task-executing modes.

Example:

The following CSS is called from another CSS routine:

$JOB
LOAD SOMETASK
START
$IFNE 0

$WR PROCESS ABORTED - SOMETASK
$CLEAR

$ENDC
LOAD NEXTASK
START
$IFNE 0

$WR PROCESS ABORTED - NEXTASK
$CLEAR

$ELSE
$WR PROCESS COMPLE~~E

$ENDC
$TERMJOB
$EXIT

If either SOMETASK or NEXTP1.SK ends with an end of task code other
than O, all CSS levels will be exited; otherwise, css execution
will return to the calling CSS.

6-26 48-043 FOO R03

$CONTINUE

6.6.4 $CONTINUE Command

The $CONTINUE command resumes execution of a css procedure
suspended by a $PAUSE or $WAIT command.

Format:

$CONTINUE

Example:

In this example the $CONTINUE command is entered in command mode.
The name of the CSS used is EXMPL.CSS.

$WR This CSS will pause after this message and will
$WR only resume processing after you enter $CON.
$PAUSE
$WR This is the end of EXMPL.CSS.
$EXIT

*EXMPL

This CSS will pause after this message and will
only resume processing after you enter $CON.

*$CON

This is the end of EXMPL.CSS.

*

48-043 FOO R03 6-27

$COPY AND
$NOCOPY

6.6.S $COPY and $NOCOPY Commands

The $COPY and $NOCOPY commands control the listing of CSS
commands on the terminal or log device (if from batch). $COPY
initiates the listing. All subsequent commands are copied to the
terminal before being executed. The $NOCOPY command deactivates
the listing, but is itself listed. The $COPY command is an aid
in debugging CSS job streams.

Format:

$COPY

$NOCOPY

Example:

This example illustrates the use of the $COPY command and the
$NOCOPY command. The css, LOADER.CSS, loads and starts a task.
The $COPY command is set for the first execution of LOADER.CSS.
The $COPY command is turned off with the $NOCOPY command and
LOADER.CSS is run again.

LOAD @l
ASSIGN l,CON:
START
$EXIT

Execution of LOADER.CSS with $COPY used in MTM command mode.

*$COPY

*LOADER FORT2

LOAD FORT2
ASSIGN l,CON:
START

THIS FORTRAN PROGRAM WILL DISPLAY
THIS MESSAGE ON THE TERMINAi~ SCREEN

STOP
ELAINE -END OF TASK CODE= 0 CPUTIME=0.012/0.013
$EXIT

6-28 48-043 FOO R03

Execution of LOADER.CSS with $NOCOPY used in MTM command mode.

*$NOCOPY

*LOADER FORT2

THIS FORTRAN PROGRAM WILL DISPLAY
THIS MESSAGE ON THE TERMINAL· SCREEN

48-043 FOO R03 6-29

$DEFINE

6.6.6 $DEFINE Command

The $DEFINE command is used to define or to redefine new global
or new internal variables.

Format:

.lDUINE {=:=}n , [nameJ,operator1 [operator2 ••• operator.\]

Parameters:

GVARIABLE

!VARIABLE

n

name

operator

specifies that a new global variable is being
defined. (not allowed if new global option is
set off at MTM sysgen).

specifies that
being defined.

a new internal variable
This is the default.

is

is the new variable number. The allowed range
is between 1 and the maximum value set at MTM
sysgen.

is the new global variable or new internal
variable name. It is one to eight characters
long and can consist of any character A
through z or any number 0 through 9.

operator ••• operator

is one or more of the following operators,
which select a particular function to be
performed to determine the variable's value.

fd operators:

e ACCOUN'l~

• FILENAME

• EXTENSION

• VOLUMENAME

6-30 48-043 FOO R03

Logical operators:

e LOGICAL GO

e LOGICAL LO

e LOGICAL LU

e LOGICAL TD

e LOGICAL TU

Computation and conversion operators:

• DCOMPUTE

• DHCONVERT

e HCOMPUTE

• HDCONVERT

Other operators:

• CLEAR

• CURRENT

• DVOLUMENAME

• POSITION

• REQUIRED

• SEARCH

• STRING

• SUBSTRING

The following sections define the format and function of each of
these operators within the $DEFINE command.

6.6.6.1 File Descriptor (fd) Operators

The following four operators can be used to determine the
account, filename, extension or volume name of a specified fd and
assign the determined portion of the fd as the value of the
variable being defined.

48-043 FOO R03 6-31

6.6.6.1.1 ACCOUNT Operator

The ACCOUNT operator of the $DEFINE command enables a user to
determine the account designator of a specified fd and assign the
designator as the value of the variable being defined.

Format:

Parameters:

f d

=

Functional Details:

is the file descriptor of the file or device
for which the account designator is to be
assigned as the value of the variable.

specifies that the current total result for
this $DEFINE command is used to determine the
account designator.

The value returned is /P, /G or /S depending upon the specified
account. If no account is specified, /P is returned for
filenames and undefined is returned for devices. If the user has
the account number privilege, the account number, rather than an
account class, is returned.

Examples:

The following CSS is built:

$BUILD TEST
$DEFINE 6,,ACCOUNT (@l)
$WR @*6
$EX
$ENDB

The above CSS is called with the following call:

TEST ABC.FTN/G

6-32 48-043 FOO R03

The result of the $WR @*6 command is:

/G

6.6.6.1.2 EXTENSION Operator

The EXTENSION operator of the $DEFINE command enables the user to
assign the extension of a given fd as the value of the variable
being defined.

Format:

Parameters:

f d

=

Functional Detail:

is the file descriptor of the file or device
for which the extension is to be assigned as
the value of the variable.

the current total result for this $DEFINE
command is used to determine the extension.

The returned value will contain a leading period if an extension
was specified: otherwise, the value of the variable is undefined.

Example:

The following CSS is built:

BUILD TEST
$DEFINE 10,,EXTENSION(@l)
$WR @*10
$EX
ENDB

48-043 FOO R03 6-33

When called with the following CSS call:

TEST FORTRAN.FTN

the $WR @*10 command would output .FTN.

6.6.6.1.3 FILENAME Operator

The FILENAME operator of the $DEFINE command enables the user to
assign the filename of a ~iven fd as the value of the defined
variable.

Format:

Parameters:

f d

=

Functional Details:

is the file descriptor or device for which the
filename is to be assigned as the value of the
variable.

the current total result for this $DEFINE
command is used to determine the filename.

If an fd was specified in the FILENAME operator, the returned
value is the filename.

If a device name was specified in the FILENAME operator, the
returned value is undefined.

Examples:

The following CSS is built:

6-34

BUILD TEST
$DEFINE 10,,FILENAME(@l)
$WR @*10
$EXIT
ENDB

48-043 FOO R03

When called with the following CSS call:

TEST M30l:TCHFIN12.FTN

the $WR @*10 result is TCHFIN12.

The FILENAME operator of the $DEFINE command of the CSS is used
in the following example:

$DEF l,,F(@=/I.NPUT/)
XAL @*l.OUT,IN,66; XAL @*l.LST,IN,65
LO SRTMRGII,20
AS l,@=/I.NPUT/
AS 2, @*l. OUT
AS 3, @*l. LST
TE 4,IN,5/3
$B 5

KEY @=/K.EYS/
SORT @=/I.NPUT/ > @*l.OUT
END

$ENDB
AS 9,MTM:SRTMRGII.OVY/S
ST
$EXIT

6.6.6.1.4 VOLUMENAME Operator

The VOLUMENAME operator of the $DEFINE command enables the user
to assign the volume name of a given fd to the variable being
defined.

Format:

Parameters:

f d

=

48-043 FOO R03

is a file descriptor of the file for which the
volume name is to be assigned as the value of
the variable.

the current total result for this $DEFINE is
used to determine the volume name.

6-35

Functional Details:

The new variable value returned is the specified volume name, or
the user's private volumE~ name under MTM. The volume name is
always followed by a colon {:).

Example:

The following CSS is built:

BUILD TEST.CSS
$DEFINE 20,, VOLUMENAME (M30l:SOURCE.FTN)
$WR @*20
$EX
ENDB

Calling the above CSS with the following call:

*TEST

the output from $WR @*20 is M301:.

6.6.6.2 LOGICAL Operators

The LOGICAL operators of the $DEFINE command enable the user to
test the current or last result as defined, exit from the $DEFINE
command or skip operators within the $DEFINE command.

Format:

GO tn:J
L{ :}{Sn:J
X {:}{Sn:J

Parameters:

GO

6-36

specifies an unconditional skip of operators
or an exit from within the $DEFINE command.

48-043 FOO R03

n

L

T

D

u

$name

Example:

This $DEFINE
positional
extension.
performed to
is exited.

is a decimal number between 0 and 999.

• 0 indicates exit the $DEFINE command.

• 1-999 indicates skip
operators.

this number of

specifies that the result of the last operator
is to be testes. The test performed depends
upon whether the D or U option follows.

the current total result of the $DEFINE
command is tested. The test performed depends
upon whether the D or U option follows.

tests to see if the result specified by the L
or T parameters is defined.

tests to see if the result specified by the L
or T parameters is undefined.

is a name defined via the $LABEL command. If
a skip is specified, the skip will be done to
this label.

command perfoms a check to see if the first
parameter in the CSS call contains a filename
If it does, the following two operations are
clear the result of the EXT operator and the $DEFINE

BUILD TEST.CSS
$DEFINE 5,, ST (@l) EXT (=) LU2 CL(L) GOO ST(.FTN)
$WR @*5
$EX
ENDB

If no filename extension is specified, the following two
operators are skipped and an extension is attached.

6.6.6.3 Computation and Conversion Operators

The computation and conversion operators are used to perform
decimal or hexadecimal computation and decimal to hexadecimal (or
vice-versa) conversion, and then assign the result as the value
of the variable specified in the $DEFINE command.

48-043 FOO R03 6-37

6. 6. 6. 3 .1 DCOMPUTE Operato:r:

The DCOMPUTE operator of the $DEFINE command is used to perform
decimal computation within a CSS line. The computed value then
becomes the value of the vair:iable defined in the $DEFINE command.

Format:

(
fJ#digits}l)

DCOMPUTE ll Ill! Joperand0 [[operator, operand,] [operatornoperand!iJ]

Parameters:

#digits

operand

operator

Functional Details:

specifies the number of digits for the decimal
result with leading zeros and including the
sign column (+or-). If not specified, the
default number of digits used (including sign)
is 4.

is the operand (in decimal) with optional sign
(+ or -). The range is absolute up to
Y'OFFFFFF'F'.

is the computational operator:

+ = a.ddition
= subtraction

* = multiplication
I = division

The maximum value allowed for an operand or a result is absolute
Y'OFFFFFFF'. Values outside this range generate the following
message:

DEF6-ERR

Mathematical computation is performed from left to right and the
intermediate result is combined with the next operator and the
following operand. Computation is performed according to the
fixed point integer rules of rounding.

6-38 48-043 FOO R03

Examples:

-033 becomes the value of variable 7 (referenced as @*7). The
default number of digits (4) is used.

$DEFINE 7,,DCOMPUTE (-33)

-00004 becomes the value of variable 4 (referenced as @*4). The
number of digits in the result is defined as 6.

$DEFINE 4,,DCOMPUTE (6,~2+5/-2*4)

+232 becomes the value of variable 5 (referenced as @*5). This
is determined by multiplying the value of variable 4 (referenced
as @*4), which is defined above as -4 with the value of variable
7 (referenced as @*7), which is gefined above as -33, then adding
100 to the result~ The default number of digits (4) is used.

$DEFINE 5,,DC(@*4*@*7+100)

6.6.6.3.2 DHCONVERT Operator

The DHCONVERT operator of the $DEFINE command is used to perform
decimal computation and then convert the result to hexadecimal.
This hexadecimal result is then assigned as the value of the
variable specified in the $DEFINE command.

Format:

(
rJ#digits}l)

DHCONVERT l.l ~I! -Joperand0 [[operator, operand1] [operatornoperandiiJ]

Parameters:

#digits

operand

48-043 FOO R03

specifies the number of digits for the
hexadecimal result with leading zeros and
excluding the sign designator. If not
specified, the default number of digits is 4.

is the operand (in decimal). Negative numbers
are not allowed. Absolute Y'OFFFFFFF' is the
maximum value allowed.

6-39

operator

Functional Details:

is the computational operator:

+ = addition
= subtraction

* = multiplication
I = division

The maximum value allowed for an operand or a result is absolute
Y'OFFFFFFF'. Values outside this maximum generate the following
message:

DEF7-ERR

Mathematical computation is performed from left to right and the
immediate result is combined with the next operator and the
following operand. Computation is performed according to the
fixed point integer rules of rounding.

Examples:

In the following example, the value of variable 7 (@*7) becomes
hexadecimal 0021.

$DEFINE 7,,DHCONVERT(+33)

In the following example, the value of variable 4 (@*4) becomes
a hexadecimal OOOOOC.

$DEFINE 4,,DHCONVERT (6,2+5/2*4)

In the following example, the value of variable 5 becomes a
hexadecimal OOBS. (4x21)+100 = 184 = OOBS in hex.

$DEFINE 5,,DHCONVERT (4*@+7+100)

6.6.6.3.3 HCOMPUTE Operator

The HCOMPUTE operator of the $DEFINE command enables a user to
perform hexadecimal computation within the $DEFINE command and
return the result as the defined variables value.

6-40 48-043 FOO R03

Format:

(fJ#digits}]) HCOMPUTE Ll !lill , operand0 [[operator, operand1] [operatornoperandiiJ]

Parameters:

#digits

operand

operator

Functional Details:

defines the number of digits for the
hexadecimal result with leading zeros. If not
specified, the default number of digits is 4.

is an operand in hexadecimal without sign (all
values are assumed positive}, the maximum
value being absolute up to Y'OFFFFFFF'.

is one of
operators:

+ = addition

the

= subtraction
* = multiplication
I = division

following mathematical

The range allowed for an operand or a result is up to absolute
Y'OFFFFFFF'. Otherwise, the following message is generated:

DEF6-ERR

If the hexadecimal result is negative, the following message is
generated:

DEF7-ERR

Computation within an HCOMPUTE operator is from left to right;
the intermediate result is combined with the next operator and
the following operand.

Examples:

$DEFINE 7,,HCOMPUTE(AEO}

$DEFINE 4,,HCOMPUTE(6,C0/20+18}

48-043 FOO R03

@*7 = OAEO

@*4 = OOOOlE

6-41

6.6.6.3.4 HDCONVERT Operator

The HDCONVERT operator of the $DEFINE command enables the user to
perform hexadecimal computation within a $DEFINE command. The
result is converted to decimal and is returned as the value of
the defined variable.

Format:

.l:IDCONVERT([rd:gits}]operand ([operator, operand,] [operator. operandJ])

Parameters:

#digits

operand

operator

Functional Details:

specifies the number of digits for the decimal
result with leading zeros and the sign (+ or
-). If not specified, the default number of
digits is 4.

is a hexadecimal operand without sign. The
maximum value allowed is absolute Y'OFFFFFFF'.

is one of
operators.:

the

+ = a.ddi ti on
= subtraction

* = multiplication
I = division

following mathematical

The maximum allowable value for an operand
absolute Y'OFFFFFFF'. Values greater than
generate the following message:

or a result is
the maximum will

DEF6-ERR

A negative hexadecimal operand will generate the following
message:

DEF7-ERR

Computation within the HDCONVERT operator is from left to right,
and the intermediate result is always combined with the next
operator and the following operand.

6-42 48-043 FOO R03

Examples:

$DEFINE 7,,HDCONVERT(AO)

$DEFINE 4,,HDCONVERT(6,C0/20+18)

6.6.6.4 Other Operators

@*7 = +160

@*4 = +00030

The following sections detail various miscellaneous operators for
the $DEFINE command.

6.6.6.4.l CLEAR Operator

The CLEAR operator of the $DEFINE command enables the user to
clear the current total result or the last result determined in
the $DEFINE command.

Format:

Parameters:

L

T

Functional Details:

specifies that the last result determined is
to be reset.

the current total result is to be reset.

Use of the CLEAR (L) form of this operator resets the last result
even if a skip was performed. The last result depends on the
value the last operator (except logical operators) determined.

Examples:

The following is an example of how to add the default extension
.FTN to a fd. The fd passed in the CSS call is allowed with or
without an extension.

48-043 FOO R03 6-43

BUILD TEST.CSS
$DEF 5,,VOL(@l) FI(@l) EXT(@l) LDl STR (@l.FTN) ACC(@l)
$WR @*5
$EX
ENDB

This example CSS tests to see if an extension is included in the
CSS call. If an extension is specified, it is not changed. If
no extension is specified, the default extension .FTN is added.
If this CSS was called with the following, the results would be
as follows:

V M301

TEST SYS:ABC/P
TEST BBBB.XYZ

The result @*5 = SYS:ABC.FTN/P
The result @*5 = M30l:BBBB.XYZ/P

6.6.6.4.2 CURRENT Operator

The CURRENT operator of the $DEFINE command is used to determine
current information within the user's environment and to assign
that information as the value of the variable being defined.

Format:

.cI.!RRENT

Parameters:

BATCH

css

DATE

6-44

BATCH \
~s
DATE
EQT
.G_BOUP
INTERACTIVE
PRIVATE
TIME
USERNAME

in batch mode, the value returned is the batch
job fd; in interact~ve mode the value is
undefined ..

the value returned is the 5-digit, current css
account number with leading zeros.

the value returned is the current date in the
format mm/dd/yy or dd/mm/yy depending on the
format selected at OS/32 sysgen.

48-043 FOO R03

EQT

GROUP

INTERACTIVE

PRIVATE

TIME

USERNAME

Example:

the value returned is the last end of task
code generated. A maximum of four digits is
allowed. Leading zeros are dropped.

the value returned is the five digit current
group account number with leading zeros.

in interactive mode the value returned is the
interactive device name; in batch mode the
value is undefined.

the value returned is the five digit current
private account number with leading zeros.

causes the current time (hh:mm:ss) to be
returned.

causes the current username to be returned.

Execution of the following css will cause the current time to be
output.

BUILD TIME.CSS
$DEFINE 5,,CURRENT(TIME)
$WR @*5
$EX
ENDB

The following statement returns the private, group and CSS
accounts.

$DEF l,,CURRENT{PRIVATE) CURRENT{GROUP) CURRENT{CSS)

6.6.6.4.3 DVOLUMENAME Operator

The DVOLUMENAME operator of the $DEFINE command enables the user
to determine default volume names such as SYSTEM volume, SPOOL
volume, etc., and assign the name as the value of the defined
variable.

Format:

DVOLUMENAME

48-043 FOO R03

~s
PRIVATE
_BOLL
~OOL
.S,XSTEM
TEMP

6-45

Parameters:

css returns the volume name of the user's css
volume. If CSS processing is disabled, a null
value is returned.

PRIVATE returns the volume name of the users default
volume.

ROLL returns the volume name of the ROLL volume.

SPOOL returns the volume name of the SPOOL volume.

SYSTEM returns it.he volume name of the SYSTEM volume.

TEMP returns the volume name of the TEMP volume.

Functional Detail:

The volume name returned is always followed by a colon (:).

Examples:

Assume that volume SCRT/TEM1? has been set at the system console.

$DEFINE 6,TEMPVOL,DVOLUMENAME(TEMP)

Reference by variable would return SCRT:

$WR @*6

Reference by variable name would also return SCRT:

$WR @*/TEMPVOL/

The following statement returns the private and CSS volume or a
css undefined message if there isn't a CSS volume.

$DEF l,,DVOLUME(PRIVATE) DVOLUME(CSS) LDO STR(CSS UNDEFINED)

6.6.6.4.4 POSITION Operator

The POSITION operator will return the position of a substring in
a given search string.

6-46 48-043 FOO R03

Format:

$DEFINE POSITION ('delimeter•,substring,searchstring)

Parameters:

delimiter

substring

searchstring

Example:

BUILD PROGl

is any of the following characters that
delimits the beginning and end of the string;

i ... i

+ ••• +
(...)

The character used as the delimiter should
never appear within the string.

is the string being looked for
'searchstring'.

in the

is the string to be searched for the first
occurrence of 'substring'.

$DEFINE l,FRED,POSITION('/',USER3/,USER1,USER2,USER3,USER4/)
$WRITE @*l
END

Call the above CSS with the following call:

*PROGl

The resulting output of the $WRITE @*l statement is:

000013

BUILD PROG2
$DEFINE 1,FRED,POSITION('/',USER6/,USER1,USER2,USER3,USER4/) LDO STR(NOT FOUND)
$WRITE @*l
ENDB

48-043 FOO R03 6-47

Call the above CSS with the following call:

*PROG2

The resulting output of the $WRITE @*l statement is:

NOT FOUND

NOTE

Positions in the searchstring start at 1.
If the string is not found, a null string
(undefined operation) is returned. The
comma is requir1ed after the first '/' and
the second '/',and a')' must follow the
third. Commas between the second and
third '/' are t~eated as text.

6. 6. 6. 4. 5 REQUIRED Operatoic

The REQUIRED operator of th•~ $DEFINE command enables a user to
designate a new internal variable as required; that is, the
variable must have a defined value. If the new internal variable
designated as REQUIRED is not defined within the css, execution
of the css is paused and the user is prompted at the user's MTM
console to supply a definition for the required variable.

Format:

REQUIRED [([!lam~) J

Parameters:

name

Functional Details:

is an optional 1- to a-character name for the
required new internal variable that MTM will
use when the user is prompted at the user's
MTM terminal. This name can be composed of
any of the letters A through z.

The REQUIRED operator must be the last operator in a $DEFINE
command. All blanks between the parentheses and between the name
are dropped.

6-48 48-043 FOO R03

The name for the required new internal variable that is displayed
to the user console is one of the following (in order of
precedence):

• the name specified in the name field of the REQUIRED operator,

• the name used in the $DEFINE command, or

• the number specified in the $DEFINE command.

Examples:

The above css identifies three new internal variables (3, 4 and
5) as required variables.

BUILD TEST.CSS
$DEFINE 3,LISTDEV,REQUIRED
$DEFINE 4,0PTION,REQUIRED (NEWNAME)
$DEFINE 5,,REQUIRED
$EXIT
ENDB

If this CSS is called as follows, th~ following message prompts
will be issued at the user's console:

*TEST

-GIVE LISTDEV=

-GIVE NEWNAME=

-GIVE IVAR 005=

CSS call without parameters

Prompt for the first required variable;
the variable name is used in the name
field.

Prompt for second required variable; the
name in REQUIRED field is used.

Prompt for third required variable; the
variable number is used.

6.6.6.4.6 SEARCH Operator

The SEARCH operator of the $DEFINE command enables the user to
perform string searches for matches with specified keywords
passed in the CSS call. On each match found, the string
(including the keyword) is moved to the value of the new variable
defined in the $DEFINE command.

48-043 FOO R03 6-49

Format:

Parameters:

delimi ter1

keyword1
• • • keywordn

6-50

is one of the following character pairs used
to delimit the SEARCH operator specifications:

delimi ter1 ••• delimi ter1 = t #
I I

+ +
: :
{)

The charatcter pair chosen as the specification
delimiter must not appear in the SEARCH
operator specifications or as a string
delimiter {d2).

is the string delimiter used to separate the
strings to be searched. The string delimiter
can be any character except CR or semicolon.
If the 'd ' option is used, the delimiter {d2)
following the matched string is not included
when the string is moved. If the 'd +'
delimiter is used, the delimiter {d2) is
included when the string is moved.

is a 1- to 8-character {A through Z) keyword •
A keyword specification can be further defined
to show the minimum number of characters that
can be used to reference the keyword. This is
accomplished by separating the required
characters of the keyword and the optional
characters of the keyword with a period. For
example:

OP.TION

The keyw1ord name is OPTION, but a call
specifying OP= will reference this keyword.
Multiple keywords can be defined in a SEARCH
operator. All strings are searched for
matches with each defined keyword. Multiple
keywords are separated by a ' mark.

48-043 FOO R03

string1
••• string"

Functional Details:

is a character string that can contain
any character except CR or semicolon. Null
strings are allowed. The specified string is
searched for· any matches with keywords. If a
positional parameter reference is specified
(@l, @2) the string to be searched can be
passed in the CSS call.

The beginning of a string is tested for a match with the
specified keywords. The search for a match begins with the first
string. If one of the defined keywords matches a string entry,
this string is moved to the new variable's value. The move
includes leading blanks, the keyword and all following characters
up to the next string delimiter (d 2) or including the string
delimiter if the 'd +2 delimiter was specified. This process is
repeated for each string to be searched. For example, if the
keyword is:

OPTION

the string delimiter (d2) is:

I # I

and the string to be searched is:

••• #OPT= HOLL BATCH# •••

The new variable being defined has a value of:

OPT = HOLL BATCH

Example:

The following CSS identifies the pound sign as the string
delimiter; keywords are OP.TION and BA.TCH; the string to be
searched is @l, the first parameter passed in the CSS call.

BUILD TEST.CSS
$DEF 5,,SEARCH('#',OP.TION'BA.TCH, @l)
$WR @*5
$EX
ENDB

48-043 FOO R03 6-51

When calling the above CSS with the following call:

TEST OP/AAAA# BATCH i SOURCE

the first string searched is OP/AAAA. A match with the first
keyword is found OP.TIONu OP/AAAA is moved to the variables
value. The next string searched is BATCH. A match with the
second keyword is found BAoTCH. BATCH is moved to the variables
value. The next string sea1:ched is SOURCE. No match is found.
The subsequent value of $WR @*5 is OP/AAAA BATCH.

If calling TEST.CSS with the following:

TEST xx # BATCH # BA/AAl~ # YY # OPT!

the first string searched (J~x) has no match. The second string
searched (BATCH) matches a keyword. The third string searched
(BA/AAA) matches a keyword. The fourth string (YY) has no match.
The fifth string searched (OPTI) matches a keyword. The
subsequent value of $WR @*5 = BATCH BA/AAA OPTI.

6.6.6.4.7 STRING Operator

The STRING operator of the $DEFINE command enables the value of
the new variable being defined to be a user-specified string.

Format:

STRING delimiter1 string delimiter1

Parameters:

delimiter

6-52

is any of the following characters that
delimits the beginning and end of the string:

t ... t:
'
+ ••• +
(...)

The character used as the delimiter should
never appear within the string.

48-043 FOO R03

string

Example:

is a character string that can contain any
characters except CR or the delimiter
character. This string becomes the value of
the new variable being defined in the $DEFINE
command. Leading and/or trailing blanks are
included.

The following CSS is built:

BUILD TEST
$DEFINE 7,, STRING {ABC) ST i A {$$) Ai
$WR [@*7]
$EX
ENDB

Call the above CSS with the following call:

*TEST

The resulting output of the $WR @*7 statement is:

[ABC A {$$) A]

6.6.6.4.8 SUBSTRING Operator

The SUBSTRING operator will return· a specified portion of the
given string.

Format:

$DEFINE N,NAME,SUBSTRING ('delimiter',string,*starting position,*length)

Parameters:

string

starting
position

48-043 FOO R03

is the string from which the substring will be
taken.

is the start of the substring. If the
starting position is negative or greater than
the length of the string, a parameter error
will be given.

6-53

length

*

is the number of consecutive characters to
include. If length is greater then the number
of characters remaining in the string, only
the remaining portion of the string is taken.

These parameters may be compound expressions
that follow the same syntax and order of
evaluation as argument 2 in the decimal
compute (DC) $DEFINE function, (e.g. 10+2*6).

Example:

BUILD EXAMPL
$DEFINE l,FRED,SUBSTRING(':',CT31:,2,2)
$WRITE @*l
ENDB

Call the above css with the following call:

*EXAMPL

The resulting output of the $WRITE @*1 statement is:

T3

BUILD EXMPL2
$DEFINE 1,POS,PO('/',./,FILE00123./)~ *returns a 10
$DEFINE 2,FRED,SUBSTRING('.',FILE00123.,@*l-5,5)
$WRITE @*2
ENDB

Call the above CSS with the following call:

*EXMPL2

The resulting output of the $WRITE @*2 statement is:

00123

6-54 48-043 FOO R03

$EXIT

6.6.7 $EXIT Command

The $EXIT command terminates a CSS procedure. Control is
returned to the calling CSS procedure or the terminal if the CSS
procedure was called from the terminal. All commands on the
lines after the $EXIT command are ignored.

Format:

SEX IT

Functional Detail:

The CSS processor must encounter a $EXIT command before it
reaches the end of the CSS file; if it doesn't, an error message
is generated.

Example:

This example illustrates the use of the $EXIT command in a CSS
file and a called CSS file. The name of the main CSS is ONE.CSS
and the name of the called CSS is TWO.CSS.

*** ONE.CSS ***
$WR This is ONE.CSS.
TWO
$EXIT
$WR This is after the exit command and will not print.
$EXIT

*** TWO.CSS ***
$WR This is TWO.CSS.
$EXIT
$WR This is after the exit command and will not print.
$EXIT

*ONE.CSS

This is ONE.CSS.
This is TWO.CSS.

48-043 FOO R03 6-55

$FREE

6.6.8 $FREE Command

The $FREE command frees one or more local or global variables.
This command has no effect on new global or new internal
variables.

Format:

$FREE varname1 [, ••• , varnamen]

Parameter:

varname, is a 1- to a-character name specifying the
••• varnamen variable whose name and value are to be freed.

Example:

$FREE @A

6-56 48-043 FOO R03

$GLOBAL

6.6.9 $GLOBAL Command

The $GLOBAL command names a global variable and specifies the
maximum length of the variable to which it can be set by the $SET
command.

Format:

Parameters:

var name

length

Example:

$GLOBAL @A (6)

48-043 FOO R03

is a 1- to 8-character name (the first
character is alphabetic) preceded by the @
sign, identifying a global variable.

is a decimal number from 4 through 32
specifying the length of the variable defined
by the $SET command. If this parameter is
omitted, the default is 8.

6-57

$JOB AND
$TERMJOB

6.6.10 $JOB and $TERMJOB Ce>mmands

The $JOB and $TERMJOB commands set the boundaries of a CSS job.
The $JOB command indicates the start and the $TERMJOB command the
end of a CSS job that contains all the user CSS commands.

Format:

.LI.OB [{.E.B.QCESSORTIME}-mcuctimJ
CPUTIME :J

[, classid•iocount.1] G ... , classid•iocount32]

~ERMJOB

Parameters:

6-58

PROCESSORTIME= maxtime
CPUTIME= maximum

routine
omitted,
is used.
applied.

is a decimal number specifying the
processor time to which the CSS
is limited. If this parameter is
the default established at MTM sysgen
If 0 is specified, no limits are

class id=

iocount

is one of the 4-character alphanumeric
mnemonics specified at MTM sysgen that is
associated with each specified device or file
class.

is a decimal number specifying the maximum
number of input/output (I/O) transfers to
which the css routine is limited for that
class. If this parameter is omitted, the
default established at sysgen time is used.
If 0 is specified, no limits are applied to
that class.

48-043 FOO R03

Functional Details:

The $JOB and $TERMJOB commands are not necessary in a CSS
procedure. They can be used, however, to prevent errors in one
CSS job from affecting other CSS jobs. If a CSS job contains an
error, the statements remaining in that job are skipped until a
$TERMJOB command is found. The next command executed is the
first command found after a $TERMJOB command. If the next
command is a $JOB command signifying the start of a new CSS job,
it could be skipped becaus~ the system is looking for a $TERMJOB
that signifies the end of the CSS job containing the error.

The css job containing an ~rror is·aborted, and the end of task
code is 255. The $JOB command resets the end of task code to O
for the next css job.

Interactive jobs have no default limits established at sysgen
time. The user can specify central processing unit (CPU) time
and I/O transfer limits for a particular job through the $JOB
command.

Any limits in the $JOB command found in a batch stream are
ignored if limits were already specified in the SIGNON command.

Example:

This example illustrates the use of the $JOB command and the
$TERMJOB command. In the css, JOBTERM.CSS, the loading and
starting of a task is delineated by the $JOB and $TERMJOB
commands. If an error occurs, control passes to the next command
after the $TERMJOB command. The commands following the $TERMJOB
command determine the error message the user will receive.

$JOB
LO @l
ASSIGN l,CON:
START
$EXIT

$TERMJOB
$IFNX @l

$IFNULL @l
$WR ***
$WR* *
$WR * You need to pass the filename of the task you want *
$WR * to load as a parameter. Please enter the css *
$WR * name and the filename of the task you want to *
$WR * load. *
$WR* *
$WR ***
$EXIT
$ENDC

48-043 FOO R03 6-59

$WR ***
$WR * *
$WR * The task you selecte:d does not exist. Please *
$WR * enter the CSS name and the correct filename. *
$WR * *
$WR ***
$EXIT
$ENDC

The css jobterm is called without a filename parameter.

*JOB TERM

*
*
*
*
*

*
You need to pass the filename of the task you want *
to load as a parameter. Please enter the CSS *
name and the filename of the task you want to *
load. *

* *

The CSS jobterm is called with a nonexistant filename.

*JOBTERM PAL

* *
*
*
*

The task you selected does not exist. Please
enter the css name and the correct filename.

*
*
*

The CSS jobterm is called with a legitimate filename.

*JOBTERM FORT2

THIS FORTRAN PROGRAM WILL DISPLAY
THIS MESSAGE ON THE TERMINAL SCREEN

6-60 48-043 FOO R03

$LOCAL

6.6.11 $LOCAL Command

The $LOCAL command names a local variable
maximum length variable to which it can
command.

and specifies the
be set by the $SET

Format:

Parameters:

varname

length

Example:

$LOCAL @A(4)

48-043 FOO R03

is a 1- to a-character name (the first
character is alphabetic) preceded by the @
sign, identifying a local variable.

is a qecimal number from 4 through 32
specifying the length of the variable defined
by the $SET command. If this parameter is
omitted, the default is 8.

6-61

$PAUSE

6.6.12 $PAUSE Command

The $PAUSE command suspends (~xecution of a CSS procedure.

Format:

~AUSE

Functional Detail:

When $PAUSE is entered, the css procedure remains suspended until
the $CONTINUE command is continued or the $CLEAR command is
entered to terminate a procedure suspended by a $PAUSE.

Example:

This example illustrates the use of the $PAUSE
$PAUSE command is issued within the css EXMPL.CSS.
command is used to continue the process of the CSS.

command. The
The $CONTINUE

$WR This CSS will pause after this message and will
$WR give you a command mode prompt. To resume
$WR processing, enter the command $CONTINUE.
$PAUSE
$WR This is the end of EXMPL.CSS.
$EXIT

*EXMPL

This css will pause afte:r this message and will
give you a command mode prompt. To resume
processing enter the command $CONTINUE.

*$CON

This is the end of EXMPL.CSS.

6-62 48-043 FOO R03

PRIOR

6.6.13 PRIOR Command

The PRIOR command is used in css files to set the priority for a
subsequently loaded task. This command is available in CSS files
from the system account, from privileged users of MTM (to raise
or lower the priority of a susbsequently loaded task) and to
nonprivileged MTM users {to lower the priority of a subsequently
loaded task relative to the ·user's MTM priority.) Nonprivileged
users of MTM cannot use the PRIOR command to raise the priority
of a task above their MTM priority.

Format:

PRIOR n

Parameter:

n

Functional Details:

is a decimal number specifying the priority of
the susbsequently loaded task relative to the
priority of MTM. n may range from 1 through
255 when the PRIOR command is in a CSS file
from the system account or from a privileged
user. n may range from 12 through 255 when
the PRIOR qommand is in a CSS file from a
nonprivileged MTM user.

The PRIOR command can be entered from CSS files only. If the
task loaded subsequent to a PRIOR command generates a load error
or goes to end of task, the priority specified in the PRIOR
command is reset to the default MTM priority.

If an invalid priority number is specified in a PRIOR command
(i.e., 1 through 11 by a nonprivileged user), the invalid
priority specification is ignored, no message is generated and
the default MTM priority is used.

If the priority number specified causes the priority to be lower
{i.e., a higher number) than 255, the task priority will default
to 255.

48-043 FOO R03 6-63

$RELEASE

6.6.14 $RELEASE Command

The $RELEASE command is used to release a new global or new
internal variable from its current value and delete the released
variable's associated buffer. This command has no effect on
local or global variables.

Format:

{
.GVAR I ABLE}

I RELEASE ,

Parameters:

GVARIABLE

!VARIABLE

ALL

.I.VARIABLE

indicates that the variables to be released
are new global variables.

indicates that the variables to be released
are new internal variables.

indicates that all variables (of the type
selected via the preceding parameter) between
the range n1 /n2 be released. n is a decimal
number between 1 and the maximum value allowed
at MTM sysgen for the specified variable type.

n is a decimal number of a variable (either
new global or new internal) or variables to be
released. n must be within the range 1 and
the maximum value allowed at MTM sysgen for
the specified variable type.

specifies that all new internal or new global
variables be released. This is the default if
no specific variable numbers are specified.

Functional Details:

This command can be entered in command, task-loaded, task­
executing and css modes.

6-64 48-043 FOO R03

In order to reduce buffer overhead, variables that are no longer
being used should be released. If this command is directed to a
variable that was already released, the command is ignored and no
error message is generated.

Examples:

All new global variables from-1 through 5 are released.

$RELEASE GVARIABLE, 1/5

The new internal variables numbered 16, 19, 18 and 25 are
released.

$RELEASE !VARIABLE, 16, 19, 18, 25

All new internal variables are enclosed.

$RELEASE !VARIABLE, ALL

NOTE

This command does not release local and
global variables created with the $SET
command.

48-043 FOO R03 6-65

$SET

6.6.15 $SET Command

The $SET command establishes the value of a named local or global
variable. This command has no effect on new global or new
internal variables.

Format:

$SET varname=e

Parameter:

varname= e is an expression, variable or parameter
established as the value of the variable.

Functional Details:

Expressions for this command are concatenations of variables,
parameters and character strings. No operators are allowed in an
expression. If a character string is included in an expression,
it must be enclosed between apostrophes ('). If an apostrophe is
part of the character string, it must be represented as two
apostrophes ('').

The initial value of the variable is
$IFNULL and $IFNNULL commands to
value.

Examples:

$SET @A = @Al@A2

$SET @A = @l

$SET @A = 'A I 'B'

blanks. This allows the
test for a null or not null

6-66 48-043 FOO R03

SET CODE

6.6.16 SET CODE Command

The SET CODE command modifies the current end of task code.

Format:

.fil:T ~ODE n

Parameter:

n is a decimal number from 1 through 254.

48-043 FOO R03 6-67

$SKIP

6.6.17 $SKIP Command

The $SKIP command is used between the $JOB and $TERMJOB commands.
The $SKIP command indicates that subsequent commands are to be
skipped until a $TERMJOB command is found. The end of task code
is set to 255.

Format:

~KIP

Example:

This example illustrates the use of the $SKIP command. The CSS
JOB.CSS will skip the section that loads and starts the task if
a user has not entered the fd parameter.

*JOB

$JOB
$IFNULL @l

$SKIP
$ELSE

LOAD @l
ASSIGN l,CON:
START
$EXIT

$ENDC
$TERMJOB
$WR ***
~R* *
$WR * You need to pass the fd of the task you want *
$WR * to load and start as a parameter. *
~R* *
$WR ***
$EXIT

**
* *
* You need to pass the fd of the task you want *
* to load and start as a parameter. *
* *
**

6-68 48-043 FOO R03

$WAIT

6.6.18 $WAIT Command

The $WAIT command suspends execution of a CSS for a specified
period of time.

The $CONTINUE command can be used to override this command and
continue the CSS.

Format:

Parameter:

n

*

Functional Details:

is a decimal number from 1 through 900
specifying the number of seconds CSS execution
will be suspended. If this parameter is
omitted, the default is 1 second.

is for console CSS compatibility and
treated as a nonoperation.

is

The $WAIT command will only function f rorn a css routine.

The $CONTINUE command can be used to override this command and
continue the CSS.

48-043 FOO R03 6-69

$WRITE

6.6.19 $WRITE Command

The $WRITE command writes a message to the terminal or log device
for both interactive and batch jobs.

Format:

~RITE text [;]

Functional Details:

The message is output to the terminal or log device. It begins
with the first nonblank character after $WRITE and ends with a
semicolon or CR. The semicolon is not printed.

Example:

The following is an example i::>f the $WRITE command.

$WR This sentence will print on the terminal screen.
$WR This sentence will also print on the terminal
$WR screen.;$EXIT

*WRITE

This sentence will print on the terminal screen.
This sentence will also print on the terminal
screen.

6.7 LOGICAL IF C0MMANDS

The logical IF commands all start with the three characters, $IF,
and allow one argument; e.g., $IFE 225, $IFX B.CSS, $IFNULL @l.

Each logical IF command establishes a condition that is tested by
the CSS processor. If the result of this test is true, commands
up to a corresponding $ELSE or $ENDC command are executed. If
the result is false, these same commands are skipped.

The $ENDC command delimits the range of a logical IF; however,
nesting is permitted so each $IF must have a corresponding $ENDC.

6-70 48-043 FOO R03

In the following examples, the ranges of the various logical IF
commands are indicated by brackets.

. . .
[$IF $IF $IF

$EiDC . .
[$IF [$IF

$EiDC $EiDC
.

---$ENDC

.
'------$ENDC

There is no restriction on the depth of nesting. . Logical- ·IF
commands are used within a CSS file. They differ from previous
CSS commands in that each one tests a specific built-in, defined
condition rather than causing a specific action.

The logical IF commands fall into three categories:

• end of task code testing,

• file existence testing, and

• parameter existence testing.

6.7.1 End of Task Code Testing Commands

The end of task code is a halfword quantity maintained for each
user by the system. It is set or reset in any of the following
ways:

SET CODE n

48-043 FOO R03

This command, which can be included in. a CSS
file or entered at the terminal, sets the end
of task code to n.

6-71

$JOB As part of its start job function, this
command resets the end of task code for the
current CSS task to O.

Command error A command error causes the CSS mechanism to
skip to $TERMJOB assuming that a $JOB was
executed. (If no $JOB was executed, CSS
terminates.) Tb indicate that the skip took
place, th4~ end of task code is set to 255.

$SKIP

End of task
(SVC3,n)

CANCEL

This command has the same effect as a command
error.

When any task terminates by executing the end
of task program command (SVC3,n), the end of
task code for that task is set to n.

When a task is cancelled, the end of task code
is set to 255.

The six commands available for testing the current end of task
code are as follows:

$IFE n Tests if (md of task code is equal to n.

$IFNE n Tests if Emd of task code is not equal to n.

$IFL n Tests if Emd of task code is less than n.

$IFNL n Tests if Emd of task code is not less than n.

$IFG n Tests if Emd of task code is greater than n.

$IFNG n Tests if Emd of task code is not greater than
n.

In all cases, if the results of the test are false, css skips
commands until the corresponding $ELSE or $ENDC. If a CSS
attempts to skip beyond end of file (EOF) , a command error is
generated.

6.7.2 F'ile Exis.tence Testinc;i Commands

There· are two commands dealing with file existence:

$IFX f d Tests f d for existence.

.fil.l.HX f d Tests f d for nonexistence.

6-72 48-043 FOO R03

If the result of the test .is false, CSS skips to the
corresponding $ELSE or $ENDC command. If a CSS attempts to skip
beyond EOF, an error is generated.

If the fd is omitted when entering $IFX, the result is always
considered false. If $IFNX is entered without the fd, the result
is always considered true.

6. 7. 3 Parameter Existence Te_sting Commands

There are two commands dealing with the existence of parameters:

$IFNULL @n

SIFNNULL @n

Tests if @n is null.

Tests if @n is not null.

If the result of the test is false, CSS skips to the
corresponding $ELSE or $ENDC command. If such skipping attempts
to skip beyond EOF, a command error is given.

The use of the multiple @ notation to test for the existence of
higher level parameters is permitted. In addition, a combination
of parameters can be tested simultaneously.

Example:

$IFNU @1@2@3

This tests to insure parameters @l, @2 and @3 are not null. If
any parameter is defined, the test is false.

48-043 FOO R03 6-73

$ELSE

6.7.4 $ELSE Command

The $ELSE command is used between the $IF and $ENDC command to
test the opposite condition of that tested by $IF. Thus, if the
condition tested by $IF is true, $ELSE causes commands to be
skipped up to the corresponding $ENDC. If the condition is
false, $ELSE terminates skipping and causes command execution to
resume.

Format:

$ELSE

6-74 48-043 FOO R03

$GOTO and
$LABEL

6.7.S $GOTO and $LABEL Commands

The $GOTO command is used to skip to a specific label within a
CSS procedure. The $LABEL is used to define the object of a
$GOTO.

Format:

~OTO label [,.REWIND]

fil.!AB EL 1abe1

Parameters:

label

REWIND

Functional Details:

is from one to eight alphanumeric characters,
the first of which must be alphabetic.

specifies that the CSS file is to be reset to
the beginning of the file. The search for a
label starts at the beginning of the file.
The REWIND option is used when it is known
that a label precedes the current line. If
REWIND is ommitted, the file is searched from
the current position till the end of file and
is then rewound and the search continued.

The $GOTO command causes all subsequent commands to be ignored,
until a $LABEL command with the same label as the $GOTO command
is encountered. At that point, command execution resumes.

Any commands following the $GOTO, with REWIND option or the same
line, will be executed before the rewind takes place.

For example:

$GOTO TOP,REWIND;$WR Going to Top.

will print out the message before the rewind.

48-043 FOO R03 6-75

The $GOTO cannot branch into a logical IF command range, but can
branch out from one.

An example of an illegal $GOTO is:·

$IF
$GOTO

.
$ENDC
$IF
$LABEL

Condition
OUT IF

Condition
OUTIF

The $LABEL occurs within an IF block (the second IF condition)
that was not active when $GOTO was executed. The following is
valid, however:

$IF
$GOTO

.
$ENDC
$IF

.
$ENDC
$LABEL

Condition
OUTIF

Condition

OUT IF

A $GOTO may ref er to a label preceding the $GOTO. If the label
is not found after searching the entire file, the following
message is displayed by MTM:

I/O ERR TYPE=EOF

Example:

6-76

$LABEL TOP
$WR Infinite Loop (use $CLEAR to cancel)
$GOTO TOP

48-043 FOO R03

This example illustrates the use of the REWIND option.

$LABEL LABEL;*lst label

$GOTO LABEL,R;*goto 1st label

.
$GOTO LABEL;*goto 2nd label.

$LABEL LABEL;*2nd label

$GOTO LABEL;*goto 1st label

$EXIT

48-043 FOO R03 6-77

I $IFEXTENSION I

6.7.6 $IFEXTENSION Command

The $IFEXTENSION command is used to test for the existence of an
extension for a given fd. If the extension exists, subsequent
commands are executed up to the next $ELSE or $ENDC command. If
an extension does not exist, subsequent commands are skipped up
to the next $ELSE or $ENDC command.

Format:

SIFEXTENSION fd

Parameter:

f d

Functional Detail:

is the file descriptor to be tested
determine if an extension is included.

to

$IFEX (with no fd) is always considered false.

6-78 48-043 FOO R03

$IFVOLUME

6.7.7 $IFVOLUME Command

The $IFVOLUME command tests for the existence of a volume name in
an fd. If a volume exists, subsequent commands are executed up
to the next $ELSE or $ENDC command. If the volume is omitted in
the fd, subsequent commands are skipped up to the next $ELSE or
$ENDC command.

Format:

SIFVOLUME f d

Parameter:

f d

48-043 FOO R03

is the file descriptor tested to determine if
a volume name is included.

6-79

$IF

6.8 $IF ••• CONDITIONAL Command

The following logical IF commands are used to compare two
arguments. They differ from the other logical IF commands in
that they do not test specific built-in conditions, but test
conditions provided by the user instead. These commands are
available only with MTM.

$IF ••• EQUAL
$IF ••• NEQUAL
$IF ••• GREATER
$IF ••• NGREATER
$IF ••• LESS
$IF ••• NLESS

For each of the logical
according to the mode.

• Character

• Decimal

• Hexadecimal

commands, two arguments are
There are three valid modes:

compared

For character mode, the comparison is left-to-right and is
terminated on the first pair of characters that are not the same.
If one string is exhausted before the other, the short string is
less than the long string. If both strings are exhausted at the
same time, they are equal. For character mode, the arguments can
be enclosed in double quotes if they contain blanks.

For decimal and hexadecimal mode, the comparison is performed by
comparing the binary value of the numbers. The values can be
enclosed in parentheses for compound expressions.

If, after comparing the arguments for each of the commands, the
condition is determined to be true, subsequent commands are
executed up to the corresponding $ELSE and $ENDC. If the
condition is false, commands are skipped up to the corresponding
$ELSE or $ENDC.

The $IF ••• EQUAL command is used to determine if two arguments are
equal, while the $IF ••• NEQUAL is used to determine if two
arguments are not equal.

6-80 48-043 FOO R03

The $IF ••• GREATER command is used to determine if the first
argument is greater than. the second argument. The $IF •••
NGREATER command is used to determine if the first argument is
not greater than the second argument.

The $IF ••• LESS command is used to determine if the first argument
is less than the second argument. The $IF ••• NLESS command is
used to determine if the first argument if not less than the
second argument.

Format:

fill UAL
,CHARACTER

~QUAL

$IF .QECIMAL · [(] arg{)] ~EATER [(] arg2 [)]

filiREATER

.J;&SS
.HEXADECIMAL

NL.ESS

Functional Details:

For the $IF ••• Conditional command, the arguments can be placed
within parentheses. If the argument is within parentheses,
spaces are allowed within the argument.

Example:

The following statement

$IF D (11 * 3) EQ (30 + 3)

is the same as

$IF D 11*3 EQ 30+3

The following are valid $IF ••• CONDITIONAL command statements:

$IF CHAR ABC EQ DEF; $WR EQUAL; $ENDC

$IF CHAR "D E F" EQ "DEF"; $WR EQUAL; $ENDC

$IF HEX AO EQ (60+40); $WR EQUAL; $ENDC

48-043 FOO R03 6-81

7.1 INTRODUCTION

CHAPTER 7
SPOOLING

The OS/32 package (Revision 6.2 or higher) now comes with two
spooler tasks:

• the OS/32 Spooler, and

• the SPL/32 Spooler.

Both spoolers off er input and output spooling capabilites to the
multi-terminal monitor (MTM) user. The SPL/32 Spooler offers a
more extensive range of features and capabilities than the OS/32
Spooler. The system administrator determines which spooler will
be used on a system by selecting the appropriate system
generation (sysgen) statement. Only one spooler can be active on
the system at any given time. The OS/32 System Generation
(Sysgen/32) Reference Manual presents detailed information
regarding the procedures for sysgening either spooler.

NOTE

The manner in which pseudo devices are
specified and used in the spooling
environment differs among the two
spoolers. Pseudo devices created for the
OS/32 Spooler are not compatible with
pseudo devices created for the SPL/32
Spooler. Do not attempt to mix the
various pseudo device types.

7.2 THE OS/32 SPOOLER

The OS/32 Spooler is Perkin-Elmer's first generation spooler.
This spooler provides basic input and output spooling services
with minimal flexibility and control over the spooling
environment. The following sectiqns detail the manner in which
an MTM user can utilize the spooling capabilities of OS/32
spooling.

48-043 FOO R03 7-1

7.2.1 Input Spooling

Input spooling is a process whereby a card deck of information
(such as source programs, operator commands, command substitution
system (CSS) files or user data) is copied into a disk file for
immediate or subsequent processing.

7.2.2 Input Spooling Control Card Statements

Each batch of cards to be spooled to disk must be preceded by a
control card statement. •rhis statement specifies the file
descriptor (fd) to which the input data (card file) is to be
spooled. The OS/32 Spooler provides two such control statements:

e /@INPUT

e /@SUBMIT

7.2.2.1 The /@INPUT Control Statement

The /@INPUT control statement is used to copy a card file to a
specified fd on disk. The resulting file can be explicitly
assigned and read by the user in order to access the spooled
information.

Format:

/JU.NPUT f d/actno [:DELE~rE]

Parameters:

f d

actno

DELETE

7-2

is the file descriptor of the disk file in the
form of voln:f ilename.ext. The only required
field is filename. If voln is omitted, the
default spool volume is used.

is the account number with which the terminal
user signn on.

specifies that if a file with the same name
and account number already exists, that file
is deleted and reallocated.

CAUTION

IF THE WRONG ACCOUN'r NUMBER IS
ENTgREo, THE USER MIGHT DELETE
ANO'l~HER USER F I LE.

48-043 FOO R03

Example:

A task requires five input data records in order to execute. In
the following example, •rEST.DTA in account 12 is identified as
the file to which the five data records are to be spooled. If
the file TEST.OTA currently exists on disk it will be deleted and
reallocated as specified by _the DELETE option in the /@INPUT
statement.

/@IN TEST.DTA/12,DELETE
4 INPUT TEsrr
122736
545627
889710
632192
/@

7.2.2.2 The /@SUBMIT Control Statement

The spooler can also be used to submit batch jobs to MTM. This
is done through the /@SUBMIT control statement. This statement
copies a card file to disk and then submits the file as a batch
job. The commands located within the spooled batch file are
executed in sequence. The file remains on the disk after
execution.

To add batch jobs to the batch queue via the spooler, submit a
control statement card with the following format:

Format:

/..@SUBMIT fd/actno [,DELETE]

Parameters:

f d

actno

DELETE

is the name of the command file (i.e., the
batch job) that is to be placed on the batch
queue.

is the account number with which the terminal
user signs on.

specifies that if a file with the same name
and account number exists, that file is to be
deleted and reallocated.

The end of a card file is signified by placing the symbols /@ in
columns 1 and 2 of the last card in the file.

48-043 FOO R03 7-3

See the OS/32 System Support Utilities Reference Manual for more
detailed information on the OS/32 Spooler.

The following examples are p1~esented to illustrate two methods of
submitting a batch job through the OS/32 Spooler.

Method 1:

A css file named DATA is copl.ed from a card file to a disk file
named TEST.CSS on account number 12 on the default spool volume.
If TEST.CSS already exists, l.t is deleted and reallocated. This
is done as follows:

/@ INPUT TEST. CSS / 12 , DELE'I1E
LO DATA
AS l,DATA.DTA
AS 3,PR:
AS 5 ,MAGl:
START
/@

The CSS file TEST.CSS created with the previous /@INPUT statement
can now be submitted as a batch job named TEST.JOB via the
/@SUBMIT control statement. If a file already exists on the disk
with the name TEST.JOB, it is deleted and reallocated. When
running concurrent batch jobs, each signon ID must be unique.

/@SUBMIT TEST. JOB/12, DELE:TE
SIGNON ME,12,PASSWD
LOG PR:
TES'r .. CSS
SIGNOFF
/@

Method 2:

The procedures shown in Method 1 can also be performed in one
step, as the following example shows. In this example the
process of creating a CSS file and then submitting the CSS file
as a batch job is combined into one step. If the file TEST.JOB
already exists on the disk, it is deleted and reallocated. After
this batch job is completed, the file TEST.JOB remains on the
disk.

7-4 48-043 FOO R03

/@SUBMIT TEST.JOB/12,DELETE
SIGNON ME,12,PASSWD
LOG PR:
LO DATA
AS l,DATA.DTA
AS 3,PR:
AS 5,MAGl:
START
SIGNOFF
/@

7.2.3 output Spooling

Output spooling is a process by which information destined for a
physical output device, such as a printer or card punch, is
initially copied to a disk file. This file is then copied by the
spooler to the physical output device on a task priority basis.
This process enables multiple tasks to be generating output for
the same output device since output is not routed directly to the
device as it is generated.

To make use of the output OS/32 Spooler, assign any logical units
to be printed or punched to one or more pseudo devices. As soon
as the logical unit (lu) is closed, the OS/32 Spooler will
automatically print or punch the results. Printing or punching
may be delayed because of a backlog to the device.

There is no limit to the number of tasks or logical units that
can be assigned to a pseudo device. After the user makes an lu
assignment to a pseudo device, the following occurs internally:
the operating system automatically intercepts all assignments to
that pseudo device and allocates an indexed file called a spool
file on the spool volume. Subsequent output calls cause data to
be written to this file and not to the device. The spooler
supports both image and formatted writes.

When the lu assigned to the spool file is closed, the filename,
task name and priority are placed into the spooler print or punch
queue. The queue is maintained as a file on the spool volume.
If there is an entry on the queue, the output spooler begins
printing or punching and stays active as long as there is
something on the queue. Files are spooled and output on a task
priority basis. The user must ensure that sufficient disk space
is available to accommodate output spooling. The user task
(u-task) is responsible for handling end of medium (EOM) status
while writing to spool files within their own standard I/O error
recovery routines.

Printing multiple copies of a disk file or punching multiple
copies of a card deck is accomplished through use of the spooler.
To print or punch a disk file using the spooler, issue a command
through MTM from the terminal. This is done with the PRIN1r and
PUNCH commands (see Sections 2.38 and 2.39).

48-043 FOO R03 7-5

If the device specified in a PRINT or PUNCH command does not
support printed output or output punching, respectively, the
output will be generated in the way that is supported on the
specified device.

For print files, a header page precedes each file printed. The
header page has the format:

USER ID

ACCOUNT NUMBER

TIME OF DAY

DATE

When a file is directed to a card punch file, each output record
is 80 bytes in length. A header card precedes the punched
output~ a trailer card terminates the punched output. Header
suppression is not supplied.

Examples:

To list and punch a file named TEST.CSS in account number 12 on
the volume MTM using the OS/3.2 spooler, enter:

SIGNON ME,12,MEPASS
PRINT MTM:TEST.CSS
PUNCH MTM:TEST.CSS
SIGNOFF

The header page for the print examples reads:

TES'r
AC=00012
14:36:50
07/08/77

7.2.4 Spooling Errors

The following message is generated by the operating system in
response to a spooler command.

FILE voln:filename.ext/acc:t NOT ENTERED ONTO PRINT QUEUE

7-6 48-043 FOO R03

A spool file was closed but the spooler task was not loaded or
started. The system operator can reenter a .SPL PRINT command
when the spooler is started.

7.3 THE SPL/32 SPOOLER

The SPL/32 Spooler is the latest spooling product offered with
the OS/32 operating system. SPL/32 will only execute on systems
running OS/32 Revision R06.2 or hi9her.

SPL/32 offers increased flexibility in creating and controlling
the spooling environment of a system. Some of the features of
SPL/32 include:

• The number of output devices is dependent only on the amount
of available memory

• The capability of retaining a spooled output file after it is
sent to a device

• The cability of holding spooled files from output processing

• The option to backspace, forward space or rewind a file that
is currently being output by the spooler, and then resume
output

• The option to produce up to 255 copies of an output file

• The option to print informative header and trailer pages to
identify output files

• The capability of using preprinted forms and testing for form
alignment before output

• The capability of altering the output requirements of a file
waiting to be output

• The capability of altering the order in which files are output

• The capability of controlling devices within the output
spooling environment

• The capability to quiesce the entire output spooling function
or individual devices in an orderly fashion

• The capability to add or drop spool devices dynamically

48-043 FOO R03 7-7

7.3.l SPL/32 and Multi-Term.inal Monitor (MTM) Interaction

The SPL/32 capabilities available to an MTM terminal user are
directly dependent upon Lhe manner in which the spooling
environment is configured. MTM users of SPL/32 should see the
SPL/32 Administration and Reference Manual for specific details
on the conunands and conf i9urational considerations of using
SPL/32.

In general, MTM should be de~3ignated the primary control task for
SPL/32. This will enable all SPL/32 spooling facilities at the
MTM terminal level.

7-8 48-043 FOO R03

APPENDIX A
MULTI-TERMINAL MONITOR (MTM) COMMAND SUMMARY

..CONT I GUOUS , f s i z e [{ ~'~:~T~l }]
.. O..dl..rJ.,

ALLOCATE fd,

As.SIGN lu,fd

BF.ILE [f d J lu

{
address}

filAS
*

BREAK

..El.RECORD [f d J lu

48-043 FOO R03

SVC15
SVCF
VFC

, HI
LOW
MEDIUM

A-1

{
fd (!:APPEND]}

B.UILD
lu

ENDS

,CANCEL

~ lu 2 , ••• , lun] /

AIL)

CONTINUE [address]

n 1 /n2 l
j~ J

{
GVAR I ABLE }

DISPLAY ,
.lVARIABLE

DISPUY DfLOAT [{ .. ~}]

A-2 48-043 FOO R03

N

0

L

DISPIAY FLOAT

DISPLAY REGISTERS[.{~}]

DISPLAY TIME [.{~}]

48-043 FOO R03 A-3

MESSAGE

E.ROMPT

ENABLE .ETM

.n:EEAHEAD

iY'.AR I ABLE

F.F.ILE [f d ,J lu

.F..RECORD [fd ;_] lu

INIT fd [tegsize ~ncrement}]

LOAD [task id J fd G segs ize increment] G.scTASK]

[[{
NOCOPYD~ o n }] LQG [fd] ,

11.0lll \IS:

{
user id }

MESSAGE message
.._QPERATOR

A-4 48-043 FOO R03

[{
data1}]

MODIFY address, I!: Edata2 , ••• ,datan]

OPTIONS [{ Af.EAUSE l] [{ .sYCP.AUSE }] GNONBESIDENT] [GLPu- CPJ] [,NLPuJ]
Af..CONTINUEf SYC.CONTINUE

~AS.SWORD current password, new password

:e.AUSE

MESSAGE

E.ROMPT

.EB.EVENT ETM

l.'IlEAHEAD

~IABLE

.EIUNT fd GD~ICE=pseudo device] ~CQPIES=n] GDELETE] G~J

.PJJNCH fd [,~ICE=pseudo devic~ (;.COPIES=n] (;DELET~ [,~]

.E.URGE f d

.RE.NAME oldfd,newfd

RE.E.ROTECT fd,new keys

.RfiliIND [fd J lu

or

RW [fdJ lu

48-043 FOO R03 A-5

.mlQLUME voln,

SE.ND message [;]

.SET .GROUP n

SET KEYOPERATOR [character]

[[{
NOCOPYD] o n }] .SET LQG [fd] ,

:11.0111 II:

SET ERIVATE n

.Sl.GNQE.F

.SIGNON user id, actno, password [.El'nlr RONMENT= { fd }]
NULL[:]

A-6

[
,{EB,QCESSORTIME}•maxtime]

CPUTIME

[• classid=iocount 1 [! ... , classid-iocount3 il J

48-043 FOO R03

SPOOLFlLE lu&lu1 ,pseudo-dev,FORM=formname [{~}]

[, { =~~ ll ~{.:.C:~:~,::~'::}] G .C.OP I ES=n]
:;·· "'' .. :·: .. ,:J~::: fj t ~-.e.KBQ,J,Nm:

[.{.:;:JJ [{=:}J ~£RlOR[TY-p]
G B.LOCK=bs ize/ is ize]

START [{ • .;;:._
11

}]Gparameter1 , ••• ,parameter 0J

SUB.MIT fd [,DELETE][,ERIORITY-priority]

.TASK [{ taskid }]

...BGROUND

.CONTIGUOUS,fsize

E{[t;ze}J]~[t~ze}J] [';;}]

TEMPFILE lu, INPE{Q1;1 8][1[bsizeJ] &[JsizeJ] [{:;}]

NB[, G1::l D] [/[bsize] J ~ [isize] J .{;:;}

L{Gb:~'.ze }J] rw~~;e }J] [{i;:}]
YOLUMEjf[voln] [/css]}]

L1 [*/CSS]

WFILE [fd ,] lu

48-043 FOO R03 A-7

CONTIGUOUS, fs ize [{ =' }]

A-8 48-043 FOO R03

APPENDIX B
PROGRAM DEVELOPMENT COMMAND SUMMARY

ADD source-fd [, compi le-css] [, arg1 , ••• arg7]

list-op

COMPILE [l
f i lename l]

Q'l!f/H::: ~- G st-opi!]
:!:@: G load inc] [, calops]

COMPLINK

filename

ALL

::§lidi1:11:1n1]::11:11.:1::at

L[A]

E [A] G copy-fd] [, mlbcss]

G st-ops] ,

list-op

'If'

L[AJ

[load inc] Gmap]

E [A] Gwork] Gworklim]

COMMAND~command

LENGTH= { 1::~::7-::c 1} gQ

EROTECT~{,;~;}

EXEC [{
f i lename }]

,runops ,runincr ,~1~ G JC J

48-043 FOO R03 B-1

LANGUAGE [language environment]

LINK

filename list-op

Ii:

\:s11~1111tI:11111r::::. :.. L [A]

E[A]

REMOVE f d

Gmap] Gwork] [,worklim] [,dms]

B-2 48-043 FOO R03

APPENDIX C
COMMAND SUBSTITUTION SYSTEM (CSS) COMMAND SUMMARY

%{char lchar 21 [char lchar 22 ••• char lchar 24] %}
% new delimiter

{
fd kAPPEND]}

.l.B.UILD
lu

$ENDB

&LEAR

.S..CQNTINUE

{

.GVAR I ABLE }
.sDEf.INE :;L~lBtill. n , (!lame] , operator1 [operator2 ••• operatorn]

J.ELSE

iENDC

.lE.XIT

$FREE varname 1 G ... , varname0J

48-043 FOO R03 C-1

~OTO label [,REWIND]

CHARACTER

$IF .QECIMAL [(] arg1 DJ

HEXADECIMAL

$IFE n

$IFEXTENSION fd

$IFG n

$IFL n

C-2

mu AL

NEQUAL

GREATER [(] arg1 [)]

,NGREATER

L,ESS

NLESS

48-043 FOO R03

$IFNE n

$IFNG n

$IFNL n

J.l.f.NULL @n

J.l.fNX f d

.ll.E.~OLUME f d

$IFX fd

i~OB [{~..RQCESSORTIME}=maxtimJ
CPUTIME J

[, classid=iocount 1] G ... , classid=iocount32]

iTERMJOB

J.LABEL label

J.NQCOPY

l.fAUSE

.P..R.lQR n

48-043 FOO R03 C-3

{
.GVAR I ABLE}

.l.RE.LEASE ,
. .I.VAR I ABLE

$SET varname=e

SET CODE n

.15.KIP

$WAIT[{,:}]
wit

I.WRITE text [;]

C-4 48-043 FOO R03

APPENDIX D
MULTI-TERMINAL MONITOR (MTM) MESSAGE SUMMARY

ACCESS LEVEL ADDRESS ERROR AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

Indicates that when memory access was attempted by the
current program, the memory access level of the program
status word (PSW) (bits 10-11) contained a lesser value than
the access level field of the appropriate segment table entry
(STE). The program address is XXXXXX. The memory fault
address is given on Perkin-Elmer Series 3200 Processors.

ACCESS PRIVILEGE ADDRESS ERROR AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

An attempt was made to access a valid segment in an invalid
mode; i.e., store into a write-protected segment, execute
instructions from an execute-protected segment, load from a
read-protected segment.

ACCT-ERR

The account number specified is not a valid account.

ADDRESS FAULT IN SVC AT XXXXXX

Indicates that the address of a supervisor call (SVC)
parameter block or an address parameter in the parameter
block points to a data structure that is outside the task
taskid memory allocation or does not point to a data
structure that is properly aligned.

ALIGNMENT FAULT INSTRUCTION AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

Data instruction not properly aligned to specific fields for
fullword or halfword alignment. The memory fault address is
the memory location that is not properly aligned. The memory
fault address is given only on Perkin-Elmer Series 3200
machines.

48-043 FOO R03 D-1

ALLO-ERR TYPE=NAME

A desired filename currently exists on the specified volume,

or the block size of an indexed file exceeds limit
established at system generation {sysgen) time,

or for an indexed file, a zero logical record length or data
block size was specified.

ALLO-ERR TYPE=TYPE

The volume specified is not a direct access device.

ALLO-ERR TYPE=VOL

The volume name specified, or the name it defaulted to, is
not the name of any of the disks currently on-line.

ACCT-ERR

The account number specified is not valid.

APUO-ERR

OPTION NLPU is not valid for task linked with OPTION APUONLY.

ARGS-ERR

The amount of space between CTOP and UTOP is insufficient for
placement of START command arguments by the command
processor.

ARITHMETIC FAULT AT XXXXXX

A fixed or floating point error was detected at address
xxxxxx,

or an attempt was made to divide by zero. This only occurs
on Perkin-Elmer Model 7/32 and 8/32 machines.

ASGN-ERR

The assign failed for rc~ason denoted by TYPE field.

D-2 48-043 FOO R03

ASGN-ERR TYPE=BUFF

An attempt was made to assign a file when there was
insufficient system space available to accommodate the file
control block (FCB).

ASGN-ERR TYPE=LU

An attempt was made to assign to a logical unit (lu) that is
greater than the maximum lu number specified at Link time.

ASGN-ERR TYPE=NAME

An assignment is being directed to a nonexistent file.

ASGN-ERR TYPE=PRIV

The privilege to assign the file.or device cannot be granted.
The access privileges may be incompatible with other current
assignments to the same file descriptor (fd),

or a request was made to assign to a disk when bare disk
privileges are not enabled,

or requested privileges may conflict with user's file access
privileges (e.g., assigning system file exclusive write only
(EWO) when only shared read only (SRO) is valid).

ASGN-ERR TYPE=PROT

The file being assigned to is unconditionally protected (read
and/or write keys=X'FF')

or the read/write keys specified in the ASSIGN command do not
correspond to those associated with the file, and the file is
conditionally protected (read and/or write keys not X'OO' or
X'FF').

ASGN-ERR TYPE=SIZE

An indexed file is being assigned and there is not enough
room on the disk to allocate a physical block.

ASGN-ERR TYPE=SPAC

An assign is refused because the available task system space
was exceeded.

48-043 FOO R03 D-3

ASGN-ERR TYPE=TGD

An attempt was made to assign a trap-generating device.

ASGN-ERR TYPE=VOL

Volume name specified or defaulted to is not the name of any
of the disks currently on-line.

BTCH-ERR

The batch capability was not started and is not available for
a SUBMIT command.

BUFF-ERR

The expanded command substitution
overflowed CSS buff er size.

system (CSS) line

CLOS-ERR

Close failed for reason denoted by TYPE field.

DECIMAL OVERFLOW ERROR AT XXXXXX
NEXT INSTRUCTION AT XXXXXX

Indicates that the result of load packed decimal string as a
binary (LPB) instruction was too large to be stored as a
binary number. The program address of the LPB instruction is
XXXXXX. The instruction aborts and the next instruction is
at XXXXXX. This fault occurs only on the Perkin-Elmer Series
3200 Processors.

DEFO-ERR

More than eight characters were specified for
new variable name or a required name in
operator.

a keyword, a
the REQUIRED

DEFl-ERR

D-4

An illegal character is specified in a keyword or a required
name specification. A through z are the only valid
characters, and they must be capital letters.

48-043 FOO R03

DEF2-ERR

An empty additional keyword afte·r a quote was used in a
SEARCH operator specification.

DEF3-ERR

The specified variable name is already in use.

DEF5-ERR

Division by zero attempted.

DEF6-ERR

Arithmetic fault - result is greater than Y'OFFFFFFF'.

DEF7-ERR

A negative hexadecimal value was specified.
values are allowed.

DELE-ERR TYPE=ACCT

Only positive

An attempt was made to delete a file not on the user's
private account.

DEL-ERR TYPE=ASGN

An attempt is being made to delete a file that is currently
assigned or is being processed by the CSS processor.

DELE-ERR TYPE=BUFF

There is insufficient memory available in system space to
perform a delete function.

DELE-ERR TYPE=DU

An attempt was made to delete a file from a device that is
not on-line.

DELE-ERR TYPE=IO

An input/output (I/O) error was encountered while attempting
to delete a file.

48-043 FOO R03 D-5

DELE-ERR TYPE=NAME

File with a specified name was not found.

DELE-ERR TYPE=PROT

An attempt is being made to delete a file with nonzero
protection keys.

DELE-ERR TYPE=TYPE

The volume name specified or defaulted to is not a direct
access device.

DELE-ERR TYPE=VOL

The volume name specified or defaulted to is not the name of
any of the disks currently on-line.

DINC-ERR

The output from a DISPLAY, EXAMINE, or MODIFY command was
terminated because thE~ user task (u-task) was released or
cancelled from the system console or by another task.

DUPLICATE USERNAME, FOREGROUND TASKNAME OR RESTRICTED USERID

Userid is already in usE~, restricted or matches the name of
a foreground task.

END OF TASK n

Indicates that the task taskid has ended. The end of task
code in decimal is n.

EXECUTE PRIVILEGE ERROR AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

Indicates that an attempt was made by the current program to
execute instructions for a segment that is execute-protected.
The memory fault address is give on Perkin-Elmer Series 3200
Processors.

FD-ERR

D-6

The fd is syntactically incorrect or invalid,

or a program on the disk is being loaded without enough
system space.

48-043 FOO R03

fd IS NOT A CONTIGUOUS FILE

The !NIT command can only be used to initialize contiguous
files.

FILE voln: filename. ext/acct NOT ENTERED ONTO PRINT QUEUE

A spool file was closed but the spooler task was not loaded
or started.

FIXED POINT-ZERO DIVIDE ERROR AT XXXXXX
NEXT INSTRUCTION AT XXXXXXX

An attempt was made to divide by zero. Current instruction
aborted, and next instruction at address XXXXXX.

FIXED POINT-OVERFLOW ERROR AT XXXXXX
NEXT INSTRUCTION AT XXXXXX

Fixed point arithmetic result is too large to be represented.
Instruction aborts. Next instruction at XXXXXX.

FLOATING POINT-FUNCTION RANGE ERROR AT XXXXXX

The floating-point instruction operand is not within the
valid range for the function to be performed. The address of
the faulting instruction is indicated by xxxxxx.

FLOATING POINT-UNDERFLOW ERROR AT XXXXXX
NEXT INSTRUCTION AT XXXXXX

Results of floating point operation are too small to be
represented; the instruction aborts. The next instruction is
at XXXXXX. This error can only occur on the Perkin-Elmer
Series 3200 processors.

FLOATING POINT-OVERFLOW ERROR AT XXXXXX
NEXT INSTRUCTION AT XXXXXX

Floating point arithmetic procedure is too large to be
represented; the instruction aborts. The next instruction is
at XXXXXX.

FLOATING POINT-ZERO DIVIDE ERROR AT XXXXXX
NEXT INSTRUCTION AT XXXXXX

An attempt was made to perform a floating point divide by
zero.

48-043 FOO R03 D-7

FORM-ERR

The command format is invalid or invalid account number
specified.

GOTO-ERR

A $LABEL that is terminating the range of the $GOTO is
branching into an IF group.

ILLEGAL INSTRUCTION AT XXXXXX

The u-task attempted to execute an illegal instruction at
location XXXXXX.

ILLEGAL SVC-INSTRUCTION AT XXXXXX
SVC PARAMETER BLOCK AT XXXXXX

The u-task attempted to execute an illegal supervisor call
(SVC) at location XXXXXX.

INTERNAL REGISTER PARITY FAULT
INSTRUCTION AT XXXXXX

Indicates that a parity error machine malfunction is detected
at location XXXXXX. This is an unrecoverable
hardware-generated fault, which is possibly due to faulty
external registers (REX). This fault occurs only on Model
3203 Processors.

INVALID SEGMENT ADDRESS ERROR AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

An attempt was made to access a memory location not within a
valid mapped segment; i.e., an attempt to access a memory
location outside of the task space.

INVALID ACCOUNT

Account number is invalid or unrecognized.

INVALID PASSWORD

Password is invalid.

D-8 48-043 FOO R03

I/0-ERR

A device/file being accessed by MTM is returning a nonzero
I/O status.

I/0-ERR TYPE=DU

The device is unavailabie.

I/0-ERR TYPE=EOM
I/0-ERR TYPE=EOF

The device reached an end of .medium (EOM) or end of file
(EOF) before completing the operation.

I/0-ERR TYPE=FUNC

An invalid operation is being directed toward a device; e.g.,
attempting to write to a read-only device.

I/0-ERR TYPE=LU

The lu is illegal or unassigned.

I/0-ERR TYPE=PRTY

A parity or other recoverable error occurred.

I/0-ERR TYPE=UNRV

An unrecoverable error occurred.

JOBS-ERR

A $JOB statement was encountered following another $JOB
statement, but prior to a $TERMJOB statement.

JOB NOT FOUND

The fd of job to be_purged is invalid or is not in the batch
job queue.

LOAD-ERR TYPE=ASGN

Load could not be accomplished because the specified fd is
already exclusively assigned or could not be found.

48-043 FOO R03 D-9

LOAD-ERR TYPE=DU

Attempt was made to load from an unavailable device.

LOAD-ERR TYPE=I/O

An I/O error was generated during the load operation.

LOAD-ERR TYPE=LIB

The data in the loader information block (LIB) is invalid.
This error most frequently occurs when an attempt is made to
load a task that was not built with Link.

LOAD-ERR TYPE=LOPT

Task options are incompatible with the system environment
that attempted to load the task; i.e., attempt to load an
executive task (e-task) under MTM where e-task loading under
MTM is not enabled.

LOAD-ERR TYPE=MEM

A load was attempted without enough memory specified for the
task's work space.

LOAD-ERR TYPE=MTCB

The maximum number of tasks specified at sysgen time was
exceeded.

LOAD-ERR TYPE=NOFP

A task requiring floating point support is being loaded, and
the required floating point option is not supported in the
system.

LOAD-ERR TYPE=PRES

A task has been loaded from the system console with the same
name as a current USER ID.

LOAD-ERR TYPE=SEG

D-10

A task requiring a task common area (TCOM) and/or a run-time
library (RTL) is being loaded. The TCOM/RTL is not in the
system and cannot be loaded.

48-043 FOO R03

LOAD-ERR TYPE=ROIO

There is an I/O error on the roll volume.

LOAD-ERR TYPE=RVOL

There is a roll file allocation or assignment error.

LPU#-ERR

The logical processing unit (LPU) number is out of range
(allowed 0 to maximum set at sysgen).

LU-ERR

An lu specified in an assign statement is invalid.

LVL-ERR

The number of sysgen CSS levels was exceeded.

MAT PARITY FAULT
INSTRUCTION AT XXXXXX

Indicates that a memory address translator (MAT) parity error
machine malfunction is detected at location XXXXXX. This is
an unrecoverable hardware-generated fault, which is possibly
due to faulty MAT circuitry or a bad chip. This fault occurs
only on Model 3203 and 3205 Processors.

MEMORY ERROR ON DATA FETCH AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

Attempt was made to retrieve or to load data from a failing
memory area on Perkin-Elmer Series 3200 machines. If
affected memory is within task space and the operating system
has memory dia~nostic support, the affected page is
automatically marked off, and the following message is
displayed:

AFFECTED MEMORY PAGE MARKED OFF AT XXXXXX

48-043 FOO R03 D-11

MEMORY ERROR ON INSTRUCTION FETCH AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

A Perkin-Elmer Series 3200 machine attempted to execute an
instruction from an area of memory that is failing. If
affected memory is within task space and the operating system
has memory diagnostic support, the affected page is
automatically marked off, and the following message is
displayed:

AFFECTED MEMORY PAGE MARKED OFF AT XXXXXX

MEMORY PARITY ERROR AT XXXXXX

An attempt was made to access nonexistent or bad memory on
Model 7/32 and 8/32 machines.

MISSING PASSWORD

Password was omitted.

MISSING OPERAND

The entered command has a missing operand.
command specifying a value for n.

Reenter the

MN EM-ERR

The command mnemonic entered is unrecognizable or a
nonprivileged user attempted to use a command that required
privileged status.

NMPS-ERR

OPTION LPU and NLPU are only valid for the Model 3200MPS
System.

NON EXISTENT SEGMENT ERROR {SST) AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

D-12

Indicates that the current program has made a reference to a
a nonexistant segment in the shared segment table {SST). The
program address that caused the fault is XXXXXX. If the
nonexistant segment is loaded, the instruction that caused
the fault can be reexecuted. The memory fault address
appears on the Perkin-Elmer Series 3200 Processors.

48-043 FOO R03

NO CMD-BUFF AVAILABLE

An attempt was made to send a message to a terminal for
which all command buffers .are occupied.

NOFP-ERR

No floating point support exists in the system.

NON EXISTENT SEGMENT ERROR (PST) AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

An attempt was made to access a memory location greater than
the maximum valid program address; i.e., an attempt to access
a memory location outside of the task space.

NOPR-ERR

A command was entered that required more parameters than
specified in the command line.

NSPL-ERR

An attempt was made to use the SCTASK parameter of the LOAD
command for a system using a spooler other than SPL/32.

PACKED FORMAT-SIGN ERROR AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

An illegal sign digit was detected in a packed decimal number
at XXXXXX for Perkin-Elmer Series 3200 machines only.

PACKED FORMAT-DATA ERROR AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

A data error was detected in a packed decimal number at
XXXXXX for Perki~-Elmer Series 3200 machines only.

PAIR-ERR

The single quotation mark (') or double quotation mark (")
symbols are not matched.

PARM-ERR

A command was entered with invalid or missing parameters.

48-043 FOO R03 D-13

PRIV-ERR

The access privilege mnemonic is syntactically incorrect, or
an MTM user without access privileges tried to access a
restricted file.

PSM NOT SYSGENED

The entered command
scheduling mechanism
(sysgened).

is rejected
(PSM) was

because the
not system

priority
generated

READ PRIVILEGE ADDRESS ERROR AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

Indicates that an attempt was made by the current program to
read from a segment that is read-protected. The memory fault
address is given for Perkin-Elmer Series 3200 Processors.

RENM-ERR TYPE=NAME

A filename already exists in the volume directory.

RENM-ERR TYPE=PRIV

The file/device cannot be assigned
perform the rename) because the
assigned to at least one lu.

for ERW (required to
file/device is currently

RENM-ERR TYPE = PROT

The protection keys of the file to be renamed are not
x•oooo•.

REPR-ERR TYPE=PRIV

The file/device cannot be assigned for ERW (required to carry
out the reprotection) because the file/device is currently
assigned to at least one lu.

REQS-ERR

D-14

The REQUIRED operator is not allowed when used with new
global variables in a $DEFINE command,

or a syntax error was detected in a REQUIRE operator.

48-043 FOO R03

ROLL-ERR

The task is currently rolled out.

SEGMENT LIMIT ADDRESS ERROR AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

An attempt was made to access a memory location within a
valid mapped segment, but the page number in the segment is
greater than the largest valid page number for the segment;
i.e., an attempt to access a memory location outside of the
task space.

SEQ-ERR

A command was entered out of sequence or when the user was
not in the appropriate mode (e.g., CSS call in task-loaded
mode).

SIGNON REQUIRED

An attempt was made to enter a command before signon,

or there was a mistake in the SIGNON command.

SKIP-ERR

An attempt was made to skip beyond the end of a CSS job.

SPAC-ERR

Task exceeds established maximum system space.

SVC ADDRESS ERROR-INSTRUCTION AT XXXXXX
SVC PARAMETER BLOCK AT XXXXXX

The address of
incorrect. The
boundary.

the SVC parameter block at XXXXXX was
SVC parameter block must be on a fullword

SVC6-ERR TYPE=ARGS

There is insufficient room between UTOP and CTOP to contain
the start option string.

SVC6-ERR TYPE=DORM

A command was issued to a specified task that is dormant.

48-043 FOO R03 D-15

SVC6-ERR TYPE=NMSG

The directed task could not receive a message trap.

SVC6-ERR TYPE=PRES

The directed task is not present in memory.

SVC6-ERR TYPE=QUE

The message could not be queued to the directed task.

TASK-ERR

A task-related command was entered and there is no currently
loaded task.

TASK PAUSED

Indicates that the task taskid paused. The pause results
from an SVC2 code 1 or the operator PAU SVC2 code 1 or the
operator PAUSE command.

TIME-ERR

A task cannot be loaded because the user account central
processing unit (CPU) limit expired.

UNDEFINED DATA FORMAT FAULT AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

An undefined data format/alignment fault was detected at
XXXXXX for Perkin-Elmer Series 3200 machines.

USER-ERR

An invalid userid was entered in a MESSAGE command.

VOLN-ERR

D-16

The volume specified is not on-line or the volume name is
invalid.

48-043 FOO R03

WRITE PRIVILEGE ADDRESS ERROR AT XXXXXX
MEMORY FAULT ADDRESS=XXXXXX

Indicates that an attempt was made by the current program to
write to a segment that is write-protected. The memory fault
address is given for Perkin-Elmer Series 3200 Processors.

xxxx ERROR ON fd SECTOR n

An I/O error occurred while attempting to initialize sector
n of file fd. XXXX is the type of error1 it may be
unrecoverable I/O, recoverable I/O or device unavailable.

48-043 FOO R03 D-17

APPENDIX E
COMMAND SUBSTITUTION SYSTEM (CSS) MESSAGE SUMMARY

BUFF-ERR
.

indicates an expanded command line exceeds the CSS buffer.
The task skips to $TERMJOB.

DBUF-ERR

indicates the operators of a $DEFINE command created a result
that is greater than 110 characters or the command buff er
size, whichever is smaller.

DEFO-ERR

indicates more than eight characters were specified for a
keyword or a required name in the REQUIRED operator.

DEFl-ERR

indicates an illegal character is specified in a keyword or
a required name specification. A through Z are the only
valid characters, and they must be capital letters.

DEF2-ERR

indicates an empty additional keyword after a quote was used
in a SEARCH operator specification.

DEF3-ERR

indicates the specified variable name is already in use.

DEF4-ERR

indicates the REQUIRED operator must be the last operator
specified in a $DEFINE command.

DEF5-ERR

indicates a divide by zero was attempted.

48-043 FOO R03 E-1

DEF6-ERR

indicates an arithmetic fault; the result is greater than
Y' OFFFFFFF' .

DEF7-ERR

indicates a negative hexadecimal value was specified.
positive values are allowed.

Only

FD-ERR

indicates an illegal or invalid file descriptor (fd), there
is not enough space to build an fd, or required file support
is not in the system. The task skips to $TERMJOB.

FORM-ERR

indicates a command syntax is invalid.
$TERMJOB.

The task skips to

GOTO-ERR

indicates a $LABEL occurred inside an IF block that was not
active at the time of the $GOTO command. The task skips to
$TERMJOB.

I/0-ERR

indicates an end of file (EOF) was found while skipping to
$ENDC, an EOF was found before a $ENDB while building a file,
or a $TERMJOB was found while skipping to $ENDC within a job.
The css skips to $TERMJOB, end of task code is set to 255,
and the job is ended.

JOBS-ERR

indicates a second $JOB was found before a $TERMJOB was
found.

KEYW-ERR

E-2

indicates a syntax erro·r detected in a keyword, in a keyword
parameter or a position.al parameter appears after a keyword.

48-043 FOO R03

LVL-ERR

indicates the css levels required exceed the
established at system generation (sysgen) time.

MNEM-ERR

indicates the command entered is not recognized.
skips to $TERMJOB.

NOPR-ERR

number

The task

indicates a required operand for a command was not specified.

PAIR-ERR

indicates the single quotation mark(') or double quotation
mark (") symbols are not matched.

PARM-ERR

indicates a command was entered with invalid or missing
parameters or a variable number is not in allowed range.

REQS-ERR

indicates REQUIRED operator is not allowed when used with new
global variables in a $DEFINE command, or a syntax error was
detected in a REQUIRE operator.

SEQ-ERR

indicates a command was entered out of sequence or a
privileged command was used by a nonprivileged user.

TASK-ERR

indicates a task-related command was entered and there is no
currently loaded task. The task skips to $TERMJOB.

%REP-ERR

indicates invalid replacement string definition or more than
four replacement strings were defined in a single character
replacement command.

48-043 FOO R03 E-3

@SYSXXXX VARIABLE ERROR, ILLEGAL NAME

indicates that a variable was
reserved characters @SYS or
system variable.

defined beginning with the
an attempt was made to: free a

@XXXX-VARIABLE ERROR, ALREADY EXISTS

indicates an attempt was made to define a local variable that
already exists.

@XXXX-VARIABLE ERROR, EXCEEDS USER LIMIT

indicates that the variable limit set at sysgen was exceeded.

@XXXX-VARIABLE ERROR, DEFINITION TOO LONG

indicates that the length of the defined variable is. greater
than 32.

@XXXX-VARIABLE ERROR, DOES NOT EXIST

indicates an attempt to set, free or access the value of a
nonexistent variable. Also, during css execution, a variable
definition is required.

@XXXX-VARIABLE ERROR, DEFINITION DOES NOT EXIST

indicates an attempt to set the value of a variable to the
value of a second nonexistent variable.

@SYSCODE-VARIABLE ERROR, UN.ABLE TO ACCESS PAGE-FILE

indicates that at signon time multi-terminal monitor (MTM)
was unable to access the variable page file.

VARIABLE ERROR, VARIABLE PROCESSING NOT SUPPORTED

E-4

indicates that one of the following variable-related commands
was entered into a system that does not support variable
processing:

$FREE
$GLOBAL
$LOCAL
$SET

48-043 FOO R03

VARIABLE ERROR, VARIABLE PROCESSING DISABLED

indicates that one of the following variable-related commands
was entered into a system with variable processing support
that is disabled:

$FREE
$GLOBAL
$LOCAL
$SET

48-043 FOO R03 E-5

APPENDIX F
PROGRAM DEVELOPMENT MESSAGE SUMMARY

ADD requires at least one argument

indicates a filename was not specified with the ADD command.

* CANNOT RUN -- f ilename.TSK DOES NOT EXIST

indicates a filename specified with the EXEC command does not
exist in the environment.

Compile css COMPext.css does not exist

indicates the filename entered with the ADD command contains
a nonstandard extension.

* current multimodule environment is edfname.EDF

*
*

indicates the ENV command was entered without a parameter, or
the LIST command causes the contents of the current
environment to be displayed.

Deleting filename because it contains no records

indicates the EDIT command was entered, no text was allocated
and the END command was entered. This file has been deleted.

Enter name of file to be edited or * to just start EDITOR
GIVE FILENMIB=

indicates the EDIT command was enlered with no f ilenamc.
Entering a space bar and (CR) will enter the EDITOR with no
file (in append mode).

* Environment edfname.EDF contains no files

indicates the LIST command was entered, but there are no
filenames in the environment descriptor file (EDF).

48-043 FOO R03 F-1

* Environment name must have no extensions or .EDF

indicates a filename was specified with the ENV conunand with
an invalid extension.

* Execution of filename follows:

indicates an image program was loaded and is executing.

* FILENAME already exists in environment edfname.EDF

indicates an attempt was made to add an already existing
filename to the EDF.

* F !LEN.AME Compilation err.ors - listing on (device):

indicates errors were encountered while compiling. These
errors are listed on the specified device. FILENAME
indicates the source file containing errors.

* FILENAME is not a valid file descriptor

*
*

indicates an invalid filename form was specified in an ADD,
COMPILE or REMOVE conunand.

Filename must be specifi,ed or current program established
before compilation

indicates the COMPILE conunand was entered with no filename or
current program.

* FILENAME not found in environment edfname.EDF

*
*

indicates the filenam1e was not found in the specified
environment.

Filename to be linked mu13t be specified or there must be a
current program for LINK to work on.

indicates the LINK, EXEC or COMPLINK command was entered with
no filename or current program.

* First argument filename ls not permitted when in a multimodule
* environment. Environment name is always used.

F-2

indicates a filename wat3 specified where it was not required
or allowed.

48-043 FOO R03

* Link errors -- listing on (device):

indicates errors were encountered while linking.
errors are listed on the specified device.

These

* Must be in multimodule environment to use (command)

*

*

indicates a development command such as
EXEC or LIST was entered without
environment to a multimodule env.ironment.

COMPILE, COMPLINK,
first setting the

Must have current program or specify file in order to run

indicates the RUN command was entered when no current
environment is set.

Must specify extension or compile css name

indicates the ADD command was entered along with a filename
and no extension.

* New multimodule environment is edfname.EDF

indicates a new multimodule environment has been allocated.

* No current environment

indicates a filename was not specified with the ENV command.

* REMOVE requires one argument

indicates a filename was not specified with the REMOVE
command.

48-043 FOO R03 F-3

APPENDIX G
MULTI-TERMINAL MONITOR (MTM)/NON-MTM MONITOR

TASK INTERFACE MESSAGES

G.l $FOREGROUND TASK INTERFACE MESSAGES

The following messages are output to the system console:

xxxx-ERR SNDTID

Whet:e:

xx xx

sender task-id MSGE: received message

can be any of the following error statuses:

• PARM indicates bad syntax in terminal-dn.

• TNEX indicates the specified terminal-dn is
not known by MTM.

• TNCM indicates the terminal is not in
correct mode.

• TASE indicates a terminal assign error on
an SEND message (still assigned to
FOREGROUND task?).

• DSTA indicates a duplicate $STA message for
the same terminal-dn was received.

• DENO indicates a duplicate SEND message for
the same terminal-dn was received.

• MSTA indicates a missing $STA message.

• MEND indicates a missing $END message.

The following messages are output to the user console:

MNEM-ERR

interface is not available for normal MTM users.

48-043 FOO R03 G-1

MOSQ-ERR

mode sequence erro1: occurred; the terminal is not in
normal MTM mode.

NTSK-ERR

selected task is nC>t in foreground or restricted task
name.

SEQ-ERR

indicates task-loaded, task-executing, command
substitution system (CSS) or batch mode.

SMGS-ERR

sends message er rot:.

#MST-ERR

$STA message from FOREGROUND task is missing; the
terminal was reassigned.

#MEN-ERR

$END message from FOREGROUND task is missing; the
terminal was reassigned.

TASE-ERR

indicates a FOREGROUND task assign error.

TS PC-ERR

indicates a FOREGROUND task has no more space to add to
the user's terminal; try again later.

G. 2 HASP INTERFACE MESSAGE:S

G-2

MNEM-ERR

a nonpr ivileged us.er entered the $HASPxx command or no
HASP-TUB was generated at MTM system generation (sysgen)
time.

48-043 FOO R03

SEQ-ERR

terminal is in css, batch, task-loaded or task-executing
mode.

NTSK-ERR

no such HASPxx taskid was found in the foreground.

USED-ERR

the selected HASPxx is currently being used by another MTM
user.

TS PC-ERR

no HASP-TUB is available (there are more HASP tasks than were
specified by SGN.$HSP at MTM sysgen time).

SMGS-ERR

indicates an error on the sending message to HASPxx.

48-043 FOO R03 G-3

APPENDIX H
CONTROL SUMMARY FOR BIDIRECTIONAL INPUT/OUTPUT

CONTROL (BIOC) CRT DRIVER

BIOC is a standard OS/32 terminal driver. Listed in this
appendix are function control codes for the BIOC, the standard
control characters generated by the use of the codes and the
functions performed. On terminals that do not generate standard
control characters for any of the function keys, it is necessary
to determine which key will produce the required control
characters in order to invoke a desired function.

When a combination of the control key and an ASCII key cannot be
accepted, BIOC will reject that combination and respond with a
bell code. An example of this would be a cancel request (CTRL-X)
on a line that has no character on it. ASCII control characters
for the BIOC will not be echoed (displayed to the console) to
prevent confusion between BIOC functions and terminal functions.

ASC I I READ MODE:

CTRL-A (SOH) Adjust Baud Rate

The baud rate adjust function must be enabled by the system
programmer before the CTRL-A can be used. When connection to
a terminal is made over a dial-up line, the adjust baud rate
mode is automatically entered.

To change the baud rate on a Perkin-Elmer Model 1200
terminal, locate the front panel and remove the cover. It is
important to know which baud rates have been made available
to your terminal at system generation (sysgen) time. When
this is known, depress CTRL-A and then change the baud rate
setting inside the panel, using the scale depicted on the
inside of the panel cover (see Figure H-1). By depressing
the carriage return (CR) key repeatedly, the user will
synchronize communication at the new baud rate. BIOC then
responds with an asterisk (*) and continues with the mode
that was in use at the time the adjust routine was begun.

48-043 FOO R03 H-1

6428

ggggggggg~LO
ON ONE FULL ON ON

CONCX)"""CX)NCOMN.- I I I ~~Zo I I
0) -::tN.-.-

OFF TWO HALF <(0: w 0 OFF I I I I I I I I I I I OFF a..<C>o en ~ w

BAUD RATE
PROG. STOP

DUPLEX PARITY
AUTO INV.

MODE BIT TAB VID.

Figure H-1 Perkin-Elmer Model 1200 Mode Selectors

CTRL-B (STX) Backspace (Nondestructive)

This code causes the cursor to backspace one character for
each time the code is used. To be effective, CTRL-B cannot
be entered at the first character position on a line. When
the cursor has been backspaced to the desired character
position, the line can be changed by typing the desh:ed
characters. All other characters backspaced over can be
restored and the cursor brought back to the end of the line
in one of two ways:

• CTRL-F moves the cursc::>r forward one character at a time.

• CTRL-Z moves the cursor immediately to the end of the
line.

CTRL-C (ETX) Capture the Last Line Entered

Entering this code will cause the last line entered (maximum
of 80 characters) to b1e displayed on the console. By using
CTRL-C repeatedly, character strings can be concatenated. If
an insert or delete function is performed, the CTRL-C code
will be rejected and a b19ll will sound to remind you that the
buffer has now been overwritten. CTRL-C will also be
rejected if the display of data to the console has been
suppressed by the use of CTRL-E.

CTRL-D (EOT) Device Control ·-- Echo Only

H-2

The next character entered after the CTRL-D code will be
echoed to the terminal but will not be stored in the input
buffer. This function could be helpful, for example, if an
auxiliary peripheral i13 used that requires certain control
characters to be entered at the console. The CTRL-D code
would prevent the perlpheral control characters from being
interpreted as program input.

48-043 FOO R03

CTRL-E (ENQ) Echo Toggle

Each entry of CTRL-E will change the current echo state from
ON to OFF or from OFF to ON. This means that data display to
the console screen can be controlled. Suppression of data
display is useful for entering passwords without others being
able to observe them. All functions will work with echo off
except CTRL-C, CTRL-R, CTRL-W, CTRL-), CTRL-A and CTRL-_. A
CTRL-M (CR) buffer full or· CTRL-X will turn echo back on. A
CTRL-E will be rejected if the insert mode is selected.

CTRL-F (ACK) Forward Space and Restore

This code is used to restore a line that has been backspaced
over by the CTRL-B, CTRL-W or CTRL-) code. After the cursor
has been moved to the desired position and the correction has
been made, CTRL-F will move the cursor forward one character
position at a time until it reaches the end of the line.
CTRL-F will be rejected if there are no characters to be
restored.

CTRL-H (BS) Backspace (Destructive)

This code is used to delete a character or characters.
Unlike CTRL-B, any character(s) backspaced over by using the
the CTRL-H code cannot be restored by using the CTRL-F or
CTRL-Z codes and must be retyped. If they are not retyped,
blank spaces will appear in those character positions.
CTRL-H will be rejected if attempted at the first character
position in a line. On most terminals, the CTRL-H code can
be generated by the backspace key.

CTRL-L (FF) Set Page Pause Line Count

To set the CRT screen display for a specific number of lines,
the CTRL-L code is entered, followed by depressing the
control key again with another ASCII character. The numeric
value of the ASCII character will set the number of lines to
be displayed. To select a count for a 24-line CRT, enter the
sequence: CTRL-L, CTRL-X (X has a decimal value of 24).

The following table shows the proper combinations for line
displays ranging from 1 to 24.

48-043 FOO R03 H-3

H-4

TABLE H-·l LINE DISPLAY
COMBINATIONS

I NUMBER
SEQUENCE I OF LINES

=====-==·=----------------CTRL-L CTRL-A l
CTRL-L CTRL-B 2
CTRL-L CTRL-C 3
CTRL-L CTRL-D 4
CTRL-L CTRL-E 5
CTRL-L CTRL-F 6
CTRL-L CTRL-G 7
CTRL-L C!TRL-H 8
CTRL-L CTRL-I 9
CTRL-L CTRL-J 10
CTRL-L CTRL-K 11
CTRL-L CTRL-L 12
CTRL-L CTRL-M 13
CTRL-L CTRL-N 14
CTRL-L CTRL-0 15
CTRL-L CTRL-P 16
CTRL-L CTRL-Q 17
CTRL-L CTRL-R 18
CTRL-L CTRL-S 19
CTRL-L CTRL-T 20
CTRL-L CTRL-U 21
CTRL-L CTRL-V 22
CTRL-L CTRL-W 23
CTRL-L CTRL-X 24

Each display of the requested number of lines is terminated
with a bell sound. At this point, the user may continue to
the next page by entE!r ing a CR. This will cause the same
number of lines to appea1~; each CR will produce that number
of lines until the page pause line count is changed. To
change the count, terminate write by entering ESC or Break
and enter a different sequence for the desired new line count
(e.g., CTRL-L CTRL-0 - lS lines, etc.).

To cancel the page pauese mode, use the sequence CTRL-L
CTRL-@. If the page pause mode is not terminated within 5
minutes, BIOC will automatically continue output to prevent
the terminal from being permanently tied up.

48-043 FOO R03

CTRL-M (CR) Terminate Read

This function is a CR. Entering
that read should be terminated.
location other than the end of the
move to the end of the line
terminating the read request.

CTRL-M indicates to BIOC
If CTRL-M is entered at a

line, BIOC will perform a
before storing the CR and

CTRL-N (SO) Neutralize Selected Options Back to Default

This code is entered to reset options back to their default
values. CTRL-N can be entered during read operations, during
write operations or between read and write operations.
Entering CTRL-N performs the following functions:

• Resets page pause to zero.

• Resets backspace prompt character to CTRL-H.

• Resets ASCII read prompt cha~acter to sysgen default.

• Resets backspace and ·carriage return/line feed (CR/LF)
protocol to sysgen default.

• Resets output mode to print-on state.

CTRL-0 (SI) Toggle Output Between Print-on and Print-off

To suppress output in the write mode, CTRL-0 is used. To
resume output, this code is used again. Alternately
depressing CTRL-0 will cause output to terminate and resume;
hence, the toggle characteristic. When using CTRL-0 to
select the print-off mode, a prompt can be immediately
received by a terminate read (CTRL-M). If this is not done
within 15 seconds after output ceases, BIOC will prompt and
reinstate the print-on mode automatically. The print-on mode
will also be reinstated upon a successful completion of a
read request or upon entering CTRL-N for a neutralize
function.

CTRL-P (DLE) Set ASCII Read Prompt Character

By entering CTRL-P and any ASCII character, that character
becomes the designated prompt. When making the selection,
the ASCII character is not displayed to the console, but is
output by BIOC upon receipt of an ASCII read request. The
read prompt function can be turned off by the sequence CTRL-P
CTRL-X. To reset the ASCII read prompt character to the
sysgen default, enter CTRL-N.

48-043 FOO R03 H-5

CTRL-Q (DCl) Removed from Input to Allow X-ON/X-OFF Flow Control

CTRL-R (DC 2) Reprint Entered Line

When this code is entered, the current cursor location within
the line will determine the number of characters that will be
reprinted on the next line. All characters, including blank
spaces, to the left of the cursor will be reprinted. The
CTRL-R function will be rejected if the echo state is turned
off (see CTRL-E).

The CTRL-R function is. especially useful for hardcopy
terminals where correcti.ons are made over the existing typed
lines. To view a clean line after all corrections have been
made, CTRL-R is used.

CTRL-S (DC 3) Removed from Input to Allow X-ON/X-OFF Flow Control

CTRL-T (DC4) Single Characte1: Transparent Mode

The use of this code will allow the entry of function control
characters into the input buffer. The next character entered
after a CTRL-T will be entered directly into the input
buffer.

CTRL-W (ETB) Word Backspace (Nondestructive)

CTRL-W causes the cursor to be backspaced (nondestructively)
to the nearest nonalphabetic character. Thus, CTRL-W allows
the cursor to backspace e>ver one complete word, rather than
one character, as with CTRL-B. Words backspaced over may be
restored by the use of c~rRL-F or CTRL-Z. CTRL-W will be
rejected if attempted at the beginning of a line.

CTRL-X (CAN) Cancel Current Input Line

All characters previously entered on the current line will be
deleted upon use of the code. Characters cannot be restored
with the CTRL-F or CTRL-Z functions. If no characters are on
the line, CTRL-X will be rejected. CTRL-X will turn echo
back on if it has been turned off with CTRL-E.

CTRL-Z (SUB) Move to Furthest End of Line

H-6

CTRL-Z can be used to re:store a line that has been backspaced
over by CTRL-B, CTRL-W, or CTRL-]. CTRL-Z will cause the
cursor to move to the end of the line, but will be rejected
if there are no characters to be restored.

48-043 FOO R03

CTRL-] (GS) Backward Character Search (Nondestructive)

This code serves to locate a specific character on the
current line. For example, to find the character $, enter
CTRL-]$. BIOC will backspace until the first $ is found. To
find any additional dollar signs on the same line, the code
must be entered again for each time the $ symbol appears.
Characters backspaced over can be restored by using CTRL-F or
CTRL-Z. CTRL-] will be rejected if attempted at the
beginning of the line.

CTRL-A (RS) Toggle Between Insert-on and Insert-off

Each CTRL-A toggles from insert-on to insert-off or from
insert-off to insert-on. When the insert mode is selected,
characters typed will be inserted in front of the character
currently over the cursor. The insert mode may be selected
only when the cursor is positioned at a location other than
the end of the line and the echo state is on. The insert
mode will be terminated by another CTRL-A or by any command
that takes the cursor position to the end of the line (e.g.,
CTRL-Z). The CTRL-C and CTRL-E functions are not valid while
in the insert mode. All other functions are valid if the
cursor is not in motion. All data entered while the cursor
is in motion will be ignored until the cursor has stopped.

CTRL-_ (US) Delete Character

Each CTRL-_ deletes the character currently over the cursor.
The delete code is valid only when the cursor is positioned
at a location other than the end of the line and the echo
state is on. Characters entered while the cursor is in
motion will be ignored.

WRITE MODE:

BRE.AIC

This key terminates write with the break status.

ESC

This key terminates write with the break status.

CTRL-Q

This code resumes write after write has been suspended by
CTRL-T or CTRL-S functions.

48-043 FOO R03 H-7

CTRL-R

This code resumes write after write has been suspended by
CTRL-T or CTRL-S functions.

CTRL-S

This code suspends write until write is resumed by CTRL-R or
CTRL-Q or until the BRE~K or ESC key is depressed.

CTRL-T

This code suspends write until write is resumed by CTRL-R or
CTRL-Q or until the BREPLK or ESC key is depressed.

H-8 48-043 FOO R03

A

Account numbers
group
private
system

ACCOUNT operator
ADD command
ALLOCATE command
ASSIGN command
Assigning logical units

B

Batch commands
INQUIRE
LOG
PURGE
SIGNOFF
SIG NON
SUBMIT

Batch environment
Batch processing

error handling
PAUSE option
restricted disks
using the spooler

BFILE command
BIAS command
Bidirectional input/output
controller. See BIOC.

BIOC
BREAK command
BRECORD command
$BUILD and $ENDB commands
BUILD and ENDB commands

c

Calling a CSS file
CANCEL command
Character replacement

command (% ••• %)
$CLEAR command
CLEAR operator
CLOSE command
Command conventions
Command substitution system.

see css.
Commands executable within a

CSS file
$BUILD and $ENDB
$CLEAR
$CONTINUE
$COPY and $NOCOPY
$DEFINE
$EXIT
$FREE
$GLOBAL

48-043 FOO R03

1-11
1-11
1-12
6-32
4-14
2-2
2-6
4-12

5-1
5-3
5-5
5-7
5-8
5-9
5-12
1-5
5-1
5-14
5-14,
5-14
5-14
2-12
2-13

H-1
2-14
2-15
6-24
2-16

6-3
2-18

6-20
6-26
6-43
2-19
1-11

6-19
6-24
6-26
6-27
6-28
6-30
6-55
6-56
6-57

INDEX

Commands executable within a
CSS file (Continued)

$JOB and $TERMJOB
$LOCAL
$PAUSE
$RELEASE
$SET
$SKIP
$WAIT
$WRITE
character replacement
PRIOR
SET CODE

COMPILE command
COMPLINK command
Computation and conversion
operators

DCOMPUTE
DH CONVERT
ff COMPUTE
HDCONVERT

CONTINUE command
$CONTINUE command
Control summary for BIOC CRT
driver

Conventions
command
file
prompt
terminal

$COPY and $NOCOPY commands
Creating

css

a data file
a source program

$IF ••• CONDITIONAL
calling a CSS file
command summary
establishing a CSS file
general description
line expansion
logical IF commands
message summary
signon CSS
use of parameters
use of variables

CURRENT operator

D

DCOMPUTE operator
$DEFINE command

operators
computation/conversion
f d
LOGICAL
other

DELETE command
DHCONVERT operator
DISPLAY ACCOUNTING command

6-58
6-61
6-62
6-64
6-66
6-68
6-69
6-70
6-20
6-63
6-67
4-17
4-22

6-38
6-39
6-40
6-42
2-20
6-27

H-1

1-11
1-11
1-9
1-10
6-28

4-4
4-1
1-8
6-80
6-3
C-1
6-2
6-1
6-18
6-70
E-1
1-9
6-6
6-13
6-44

6-38

6-30
6-37
6-31
6-36
6-43
2-21
6-39
2-24

IND-1

DISPLAY command
DISPLAY DEVICES command
DISPLAY DFLOAT command
DISPLAY FILES command
DISPLAY FLOAT command
DISPLAY LU command
DISPLAY PARAMETERS command
DISPLAY REGISTERS command
DISPLAY TIME command
DISPLAY USERS command
DVOLUMENAME operator

E

EDIT command
$ELSE command
ENABLE command
End of task code testing

commands
$IFE
$IFG
$IFL
$IFNE
$IFNG
$IFNL

ENV command
Establishing a CSS file
EXAMINE command
EXEC command
Executing

a program
multiple programs

$EXIT command
EXTENSION operator

F,G

fd operators
ACCOUNT
EXTENSION
FILENAME
VOLUMENAME

FFILE command
File conventions

f ds
group account numbers
private account numbers
system account numbers

File descriptor. See fd.
File existence testing

commands
$IFNX
$IFX

FILENAME operator
FRECORD command
$FREE command
$GLOBAL command
$GOTO and $LABEL commands

H

HASP interface
HCOMPUTE operator

IND-2

2-2:2
2-27
2-29
2-30
2-36
2-37
2-38
2-44
2-45
2-46
6-45

4-26
6-74
2-47

6-72
6-72
6-72
6-72
6-72
6-72
4-30
6-2
2-49
4-31

4-5
4-7
6-55
6-33

6-32
6-33
6-34
6-35
2-51

1-12
1-11
1-11
1-12

6-72
6-72
6-34
2-~;2

6-S6
6-~i7

6-75

3-4
6-40

HDCONVERT operator
HELP command
Help Facility
$IF ••• EQUAL, $IF ••• NEQUAL
commands

$IF ••• GREATER,
$IF ••• NGREATER commands

$IF ••• LESS, $IF ••• NLESS
commands

$IFEXTENSION command
$IFVOLUME command

I,J,K

INIT command
Input spooling

control card statements
/@INPUT control
/@SUBMIT control

/@INPUT control statement
INQUIRE command
Integrated transaction
controller. See ITC.

Interactive environment
Interfacing with a
foreground task

programming details
ITC/RELIANCE interface
$JOB and $TERMJOB commands

L

LANGUAGE
LINK command

link sequences
LIST command
LLE
LOAD command
Load leveling executive.

See LLE.
Loading a task
$LOCAL command
LOG command

Logical IF commands
$ELSE
$GOTO and $LAB EL
$IFEXTENSION
$IFVOLUME
comparing two arguments

$IF ••• EQUAL
$IF ••• GREATER
$IF ••• LESS
$IF ••• NEQUAL
$IF ••• NGREATER
$IF ••• NLESS

end of task code testing
file existence testing
parameter existence
testing

LOGICAL operators

6-42
2-53
1-8

6-80

6-80

6-80
6-78
6-79

2-55
7-2

7-2
7-3
7-2
5-3

1-4

3-1
3-2
3-5
6-58

4-34
4-34d
4-35
4-38
1-6
2-56

1-7
6-61
2-58
5-5
6-71
6-74
6-75
6-78
6-79
6-72
6-81
6-81
6-81
6-81
6-81
6-81
6-71
6-72

6-73
6-33

48-043 FOO R03

M,N

MESSAGE command
MODIFY command
Modifying a program
MTM

basic MTM terminal
session

batch processing
command summary
conventions
devices
functions
loading a task
message summary
multiprocessor

environment
operation
special features
subtask environments
task interfaces
terminal modes
user commands

MTM special features
css
Help Facility
program development

commands
security and access
protection of disks

signon CSS
spooling

MTM user commands
$RELEASE
ALLOCATE
ASSIGN
BFILE
BIAS
BREAK
BRECORD
BUILD AND ENDB
CANCEL
CLOSE
CONTINUE
DELETE
DISPLAY
DISPLAY ACCOUNTING
DISPLAY DEVICES
DISPLAY DFLOAT
DISPLAY FILES
DISPLAY FLOAT
DISPLAY LU
DISPLAY PARAMETERS
DISPLAY REGISTERS
DISPLAY TIME
DISPLAY USERS
ENABLE
EXAMINE
FFILE
FRECORD
HELP
INIT
LOAD
LOG
MESSAGE
MODIFY

48-043 FOO R03

2-60
2-61
4-5·

2-1
5-1
A-1
1-9
1-3
1-1
1-7
D-1

1-6
1-1
1-7
1-4
3-1
1-5
2-1
1-7
1-8
1-8

1-8

1-8
1-9
1-8
2-1
2-70
2-2
2-6
2-12
2-13
2-14
2-15
2-16
2-18
2-19
2-20
2-21
2-22
2-24
2-27
2-29
2-30
2-36
2-37
2-38
2-44
2-45
2-46
2-47
2-49
2-51
2-52
2-53
2-55
2-56
2-58
2-60
2-61

MTM user commands
(Continued)
OPTIONS
PASSWORD
PAUSE
PREVENT
PRINT
PUNCH
RENAME
RE PROTECT
REWIND and RW
RVOLUME
SEND
SET CSS
SET GROUP
SET KEYOPERATOR
SET PRIVATE
SIGNOFF
SIGN ON
SPOOLFILE
START
TASK
TEMPFILE
VOLUME
WFILE
XALLOCATE
XDELETE

MTM/non-MTM task interface
messages

Multi-terminal monitor. See
MTM.

Multiprocessor environment
APO
CPU
load-leveling

0

OPTIONS command
OS/32 Spooler

input spooling
input spooling control
card statements

spooling errors
Other operators

CLEAR
CURRENT
DVOLUMENAME
POSITION
REQUIRED
SEARCH
STRING
SUBSTRING

Output spooling

P,Q

Parameter existence testing
commands

$IFNNULL
$IFNULL

Parameters
keyword
positional

2-63
2-65
2-66
2-67
2-68
2-69
2-72
2-73
2-74
2-75
2-78
2-78a
2-79
2-81
2-83
2-85
2-86
2-90
2-93
2-95
2-96
2-100
2-102
2-103
2-106

G-1

1-6
1-6
1-7

2-63
7-1
7-2

7-2
7-6

6-43
6-44
6-45
6-46
6-48
6-49
6-52
6-53
7-5

6-73
6-73
6-6
6-9
6-7

IND-3

PASSWORD command
PAUSE command
$PAUSE command
POSITION operator
PREVENT command
PRINT command
PRIOR command
Privileged users
Program development

assigning logical units
commands
creating a source
error recovery
executing a program
executing multiple

programs
language commands
modifying a program
reexecuting a modified
program

sample session
Program development commands

ADD
COMPILE
COMPLINK
EDIT
ENV
EXEC
LANGUAGE
LINK
LIST
REMOVE
RUN
summary

Program development language
commands

Program development message
summary

Programs
creating source
executing
executing multiple
modifying
reexecuting

Prompt conventions
PUNCH command
PURGE command

R

Reexecuting a modified
program

$RELEASE command

REMOVE command
RENAME command
REPROTECT command
REQUIRED operator
Restricted userid
REWIND and RW commands
RUN command
RVOLUME command

IND-4

2--65
2-·66
6-·62
6-·46
2-·67
2-·68
6-·63
1-·3

4-·12
4-·13
4-·l
4-·ll
4-·5

4-·7
4-·l
4-·5

4-·5
4-·44
1-·8
4-·13
4-·14
4-·l 7
4-22
4-26
4-30
4-31
4-34
4-34
4-38
4-·40
4-41
B-1

4-1

F-1

4-1
4-5
4-7
4-5
4-5
1-9
2-69
5-7

4-5
2-70
6-64
4-40
2-72
2-73
6-48
2-87
2-74
4-41
2-75

s

SEARCH operator
Security and access
protection of disks

SEND command
SET CODE command
$SET command
SET CSS
SET GROUP command
SET KEYOPERATOR command
SET PRIVATE command
SIGNOFF command

SIGNON command

Signon CSS
$SKIP command
SPL/32 and MTM interaction
SPL/32 Spooler

MTM interaction
SPOOLFILE command
Spooling

errors
OS/32 Spooler
output
SPL/32 Spooler

START command
Streaming tape
STRING operator
SUBMIT command
/@SUBMIT control statement
SUBSTRING operator
Subtask environments

batch environment
interactive environment
interactive task to
terminal mode

terminal modes

T

TASK command
Task interfaces

HASP interface
interfacing with a

foreground task
ITC/RELIANCE interface

TEMPFILE command
Terminal conventions

BREAK key
Terminal modes

command
css
foreground task
HASP interface
task executing
task loaded

Terminal user
local
remote

Transmitting messages

6-49

1-8
2-78
6-67
6-66
2-78a
2-79
2-81
2-83
2-85
5-8
2-86
5-9
1-9
6-68
7-8
7-7
7-8
2-90
1-8
7-6
7-1
7-5
7-7
2-93
2-52
6-52
5-12
7-3
6-53

1-5
1-4

1-6
1-5

2-95

3-4

3-1
3-5
2-96

1-10

1-5
1-6
1-6
1-6
1-6
1-6

1-2
1-2
1-4

48-043 FOO R03

u

user information
authorization 1-3
number of terminal users 1-4
privileged users 1-3
restricted userid 2-87
terminal user 1-2
transmitting messages 1-4

v

variables
line expansion
naming local or global
naming new global or new
internal

reserved
VOLUME command
VOLUMENAME operator

w

$WAIT command
WFILE command
$WRITE command

X,Y,Z

XALLOCATE command
XDELETE command

48-043 FOO R03

6-13
6-18
6-15

6-16
6-19
2-100
6-35

6-69
2-102
6-70

2-103
2-106

IND-5

ConcurrenlEI
':'omputer Corporation

PUBLICATION COMMENT FORM

We try to make our publications easy to understand and free of errors. Our
users are an Integral source of Information for Improving future revisions.
Please use this postage paid form to send us comments. corrections.
suggestions. etc.

1. Publication number __ _

2. Title of publication ____________________ ·---------·-------------

3. Describe. providing page numbers. any technical errors you
found. Attach additional sheet if neccessary.

4. Was the publication easy to understand? If no. why not?

5. Were Illustrations adequate?

6. What additions or deletions would you suggest? ----------------

7. Other comments: -----------------------------------

From -------------------------- Date

Position/Title ---------------

Company -~-------------------------

Address

6417

STAPLE

FOLD

ATTN:

111111

BUSINESS REPL V MAIL
FIRST CLASS PERMIT NO. 22

POSTAGE WILL BE PAID BY ADDRESSEE

Wncurrenfif!ff!J
Computer Corporation

2 Crescent Place
Oceanport, NJ 07757

OCEANPORT, N.J.

TECHNICAL SYSTEMS PUBLICATIONS DEPT., HANCE AVE.

FOLD

STAPLE

STAPLE

FOLD

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

FOLD

STAPLE
930

