PART 1
TUTORIAL

CONTENTS

PREFACE

CHAPTER 1 INTRODUCTION

CHAPTER 2 WRITING THE DRIVER

CHAPTER 3 INCLUDING THE DRIVER IN YOUR OPERATING SYSTEM

CHAPTER 4 SAMPLE DRIVERS

CHAPTER § ADVANCED DRIVER CONCEPTS

APPENDIX A REVIEW OF ASSEMBLY LANGUAGE INPUT/OUTPUT (I/O) COMMANDS
APPENDIX B DEBUG TECHNIQUES

APPENDIX C CRASH CODE ANALYSIS

48-190 F00 R00 i

PREFACE

Part I of the Guide to Writing OS/32 Driver’s Manual is a tutorial for writing basic drivers, with
the last chapter devoted to more advanced concepts. Chapter 1 is a review of basic terminology and
concepts. Chapter 2 covers the essentials for writing driver code and Chapter 3 gives complete
information for including a driver in the operating system. Two sample drivers are provided in
Chapter 4, a simple digital input/output (DIO) interface and a complex TELEX tridensity magnetic
tape driver. Chapter 5 introduces advanced concepts in drivers. These include the translation table,
nonphysical device drivers and supervisor call 6 (SVC6) and trap generating device drivers.

48-190 F00 R0O iii

1.1
1.2
1.3
1.4
1.5
1.6

CHAPTER 1

INTRODUCTION

BASIC CONCEPTS

TERMINOLOGY

COMPONENTS OF A DEVICE DRIVER

OS/32 DRIVER INTERFACE ROUTINES

DRIVER COMMUNICATION WITH THE TOTAL COMPUTER SYSTEM
A SPECIAL NOTE ON DEVICE TIME-OUTS

00 N W N

11

LIST OF FIGURES

Figure 1-1. The Customized Driver as Interface

- i -

CHAPTER 1

INTRODUCTION

1.1 BASIC CONCEPTS

When a new user installs Perkin-Elmer’s 0S/32, it is often necessary to connect the operating
system to the user’s equipment and peripherals via a customized driver. Figure 1-1 demonstrates
this situation.

190-3
PROBLEM:
PE-3200
PROCESSOR
CUSTOM
? WIDGET
0S/32
SOLUTION:
" T USER-BUILT
PE-3200 CUSTOM HARDWARE
PROCESSOR |__ _ INTERFACE |
CUSTOM DEVICE CUSTOM
SOFTWARE DRIVER WIDGET
0S/32

Figure 1-1. The Customized Driver as Interface

The Perkin-Elmer input/output (I/O) driver performs I/O to the device at the hardware level, such
that user programs merely issue reads and writes, thus making the command sequences for each
type of device transparent to the user. FORTRAN and other high-level languages use READ and
WRITE statements which are translated into supervisor call 1 (SVC1) instructions by their
respective compilers. The operating system then executes the SVC1 which calls the device driver
to do the I/O to the requested device.

48-190 F00 R0O 1-1

How does the system get into the I/O driver?
EXAMPLE: A FORTRAN program
READ (1,900) IX
is translated by the compiler into:
SVC 1,PBLK (assembly code)
which is then assembled into object code:
E110 xxxx
The E1 is the op code for an SVC which causes the OS to initiate the I/O.

For those of you who are interested, the operating system processes the SVC instruction in
module EXIN (set up in low memory to handle microcoded vectors from the SVC instruction).
EXIN passes the /O request (SVC1) to module EXIO which handles pre and postprocessing of
the VO. EXIO validates the request, dispatches the driver and processes I/O termination as in the
following:

EXIN--->EXIO--->driver--->EXIO

1.2 TERMINOLOGY

For the user who is unfamiliar with Perkin-Elmer terminology, those terms required for use of this
manual are given here. The order in which these terms are presented correspond to the structural
level within the software at which they are encountered.

 User task (u-task): a complete applications job, typically written in a high-level language such as
FORTRAN, COBOL and Pascal. A u-task can be written in Common Assembly Language/32
(CAL/32), although the existence of powerful optimizing compilers greatly reduces the
requirements for u-tasks written in CAL/32. A u-task performs a useful applications function.

e SVC1: an SVC code 1 is a single machine-level instruction that can be issued by a u-task to
initiate an /O operation. All Series 3200 Processors provide this instruction. Typically,
the SVC1 instruction is issued by a user-callable subroutine or by code compiled as the result
of high-level language statements being processed into machine code by a compiler. Typically,

the user is not explicitly aware of the SVC1 instruction. The user simply issues reads and
writes.

e SVC1 parameter block: the SVC1 instruction references a six-fullword (24 byte) block which
defines the /O operation and is interpreted by the OS/32 I/O subsystem. The definition of
the SVC1 parameter block does not necessarily concern the writer of a device driver. If

1-2 48-190 F00 R00

the driver performs device-dependent functions, then the SVC1 parameter block can be
partially redefined by the device driver.

« Device control block (DCB): This is the principle structure with which the writer of a device
driver must be concerned. The DCB provides all of the parameters required to define the device
to both the device driver and to the OS/32 I/O subsystem software. The DCB consists of a
device-independent and a device-dependent segment. The device-independent segment is defined
in the same manner for all devices. A device driver can reference data in this area, but in
general can alter only a few specific items, since it is reserved for the OS/32 I/O subsystem.

" The device-dependent segment can be defined differently for each type of device and can be of
arbitrary size. There is exactly one, and only one, DCB for each device configured in a
system. For example, a system with four CRTs and a disk drive contains five DCBs.

o Channel control block (CCB): This is a small control block defined by the interrupt service
features implemented in the microcode of the Series 3200 Processors. An additional area of
the CCB has been defined by 0S/32 for use by device drivers. The CCB is the mechanism
available to the device driver for passing control and device information to the interrupt
service routines in the device driver.

« Device driver: A software module consisting of both a definition of the DCB for a specific
type of device, and various sections of executable code required to actually control the device,
communicate with the O0S8/32 I/O subsystem, and service device interrupts in a manner
consistent with the Series 3200 Processor interrupt service scheme. In addition to the DCB, a
device driver written to control any interface consists of a CCB, a driver initialization
routine (DIR), one or more interrupt service routines (ISRs) and one or more event service
routines (ESRs). Several other routines, specified by the I/O handler list (IOH) are
options.

« Interrupt service pointer table (ISPT): An ordered list containing one entry for each possible
device address in the system. This table starts at memory location X‘D0’ with each entry
occupying one halfword. It is the responsibility of the software controlling the /O (the device
driver) to set up this table with the address of the immediate ISR or the address of the CCB+1
for auto driver channel operation.

o Auto driver channel: A microcode routine which is entered whenever the halfword entry in the
ISPT is odd. This routine interprets the address in the ISPT as the address of a CCB plus one.
The CCB consists of a description of the operation to be performed, and a list of parameters
associated with the operation.

1.3 COMPONENTS OF A DEVICE DRIVER

A device driver is divided into major components that carry out all necessary functions. The most
important functions are described in the following list.

48-190 F00 R0OO 1-3

« Driver initialization routine (DIR):

The DIR is the first section of code executed in a device driver. Generally, it performs
certain bookkeeping functions and the initial communication to the device hardware
interface to set up the I/O operation. The I/O subsystem uses register set 5 for driver
initialization service. The user does not have to worry about saving and restoring registers
upon entry and exit from driver initialization routines. The writer of an IO driver can
use 15 of the 16 registers of set 5. Register D, which contains the DCB address, must not be
destroyed. Routines in EXIO require that this register contain the DCB address after exit
from the driver.

« Interrupt service routine (ISR):

ISRs service the hardware interrupts from the device interface. Generally, the ISR performs
* the minimum amount of control required to maintain the progress of the I/O operation and to
determine when the operation is complete. When coding an ISR, certain register conventions
must be upheld to insure the integrity of the system. The operating system expects registers
8-F of set 0 to be untouched by the driver. Therefore, the writer of an ISR should use only
registers 0-7 of set 0. The register set selected (0,1,2, or 3) depends upon the hardware
configuration. Normally, this would be set 0. If other than 0, in addition to backplane
wiring, Sysgen32 or cupmt must also reflect the interrupt level in the device specifications.

NOTE

If set 1, 2, or 3 is used, of course, all registers would be
available for ISR use; however, for compatibility, it is
strongly suggested that only 0-7 be used.

When an ISR is entered, the microcode sets the program status word (PSW) to X‘2800°, which
enables all higher level interrupts and machine malfunction interrupts. If it is necessary to start
two or more devices at the same time, it is usually necessary to disable all interrupts if your
interrupt level is 1, 2 or 3. This prevents higher level interrupts from disrupting the appropriate
sequencing of operations. The PSW to disable all interrupts, leaving machine malfunction
enabled is X“2000°.

« Event service routine (ESR):

ESRs provide termination functions, such as shutting down the device, issuing retries where
appropriate and doing various bookkeeping functions for the OS/32 /O subsystem.

o The /O handler (I0H):

An IOH is an ordered parameter list which defines the appropriate processing routines for
various I/O functions. The list is defined by the $IOH macro. Special routines for
initialization, end of task, as well as device-dependent functions can be defined via an IOH.

1-4 48-190 F00 R0OO

These IOH routines are called by various modules within the operating system. EXIO checks
for read, write and command function IOH entries. EXIN checks for the presence of an
initialization IOH during the SYSINIT routine. If an INIT IOH has been specified, EXIN does
a branch and link to the routine. EXSV, during end of task processing, checks for the presence
of an EOT IOH. If this routine exists, EXSV does a branch and link to the routine.

The following is a sample of the way the IOH macro is used within a device driver. Since
this is a macro, column 72 must contain a continuation character, and each item except the last
is followed by a comma.

ICH NAME=MMDICH,
READ=BARERD,
WRITE=BAREWR,
AIT=SVC1WAIT,
TEST=SVC1TEST,
SET=BARERD,
HALT=SVC1NOOP,
REW=SVC1NOOP,
BSR=SVC1NOOP,
FSR=SVC1NOOP,
FEM=SVC1NOOP,
BFM=SVC1NOOP,
INIT=INIT.MMD,
WEM=SVC1NOOP

HH B HRPBRRBRRRHRHR

Some of the entries in the IOH list are as follows:

INIT:

If a device requires some special setup at system initialization time, the INIT parameter can be
used to specify the name of the routine to be executed. The sysinit code in EXIN branches
and links to this routine. An example of such processing would be the initialization of a
driver’s internal table.

Register Conventions:

Entry: Exit:
R8..ci0vvnn return address R8..... ..+ .Teturn address
Ril........ DCB address Ril........ DCB address

All other registers can be
destroyed.

48-190 F00 R00 1-5

EOT:

If a driver must perform special cleanup operations when a task terminates, then the EOT
parameter must be specified. At EOT time, the SVC3 process or (module EXSV) checks for
an EOT handler for each logical unit (lu). The drawback to this cleanup method is that if the
logical units are already closed, then no cleanup is done, since there is no close IOH.

Register Conventions:

Entry: Exit:

R8.....00.. return address R8......0.. return address
R9......... TCB of task going R9...oonvn TCB of task going
to end of task to end of task

R10........ DCB address R10...v0een DCB address

All other register can be

destroyed.
« DDF:

A device-dependent function is a routine that is to be executed for a particular device. The

function code for all device-dependent functions is X‘81’; however, each device driver

defines this code in a manner specific to each device. See Chapter 4 for more
- information on mag tape drivers.

1.4 OS/32 DRIVER INTERFACE ROUTINES

The writer of an I/O driver needs only to know when and how to call OS/32 routines. There
is no need to be intimately familiar with the details of the operating system interface routines.

DIRDONE - a routine called at the end of a DIR. This routine sets DCB.ESR with a default
termination handler. (Register D must contain the address of the DCB.)

B DIRDONE

IODONE - a routine called at the end of ESR. This routine places the status in the SVC1
parameter block (if any), sets a requested task trap, removes the task from an I/O wait and
disconnects the leaf from the tree. (Register D must contain the address of the DCB.)

B IODONE

EVRTE - a routine which is called after a driver has modified the address of the termination
routine. This routine is called in place of DIRDONE. (Register D must contain the address of
the DCB.)

B EVRTE

1-6 48-190 F00 RO0

EVMOD - a routine in module EXIO to set another entry as the ESR address (modifies
DCB.ESR). For current revisions of the operating system, some system overhead can be
eliminated by performing this function directly:

LA UE, TERMXXX1
oI UE, Y'80000000" set indicator like EVMOD does
ST UE, DCB.ESR (UD)

In most cases, it is recommended that this sub:outine convention be used, so that the
driver is compatible with future revisions of 0S/32. (Register D must contain the address of the
DCB.)

LA UE, TERMXXX1 set new term address
BAL U8, EVMOD

EVREL - a routine to release resources such as controllers and selector channels (SELCHs)
acquired by a driver.

LIS VE, 3 release at SELCH level
L UF, DCB.LEAF (UD)
BAL U8, EVREL

TOCHON - a timer routine that is called, usually before a SINT instruction, to enable the system
to return a time-out condition if a device does not respond within a given period of time.
(Register D must contain the address of the DCB.)

BAL U8, TOCHON

TOCHOFF - a timer routine that is called, after the driver has finished its work, to remove a
given device from the time-out chain. (Register D must contain the address of the DCB.)

BAL U8, TOCHOEF

IIl - an entry point in module EXTI. This routine is the null interrupt routine which performs an
LPSWR. The address of III is stored in the ISPT when the system is to perform no action upon a
device interrupt.

LA E7,III
STH E7,ISPTAB (E2,E2)

SQ - the address of the system queue. This structure is used by a driver ISR to schedule driver
termination.

L E6,DCB.LEAF (E5)
ATL E6,85Q

The above routines are the major interfaces between a device driver and OS/32.

48-190 F00 R0OO 1-7

Associated subroutine file: SUBS.MAC - contains commonly used subroutines for driver use.
For efficiency, since many of these routines are only one or two lines of code, it is recommended
that the code be placed in-line (especially for interrupt service coding).

1.5 DRIVER COMMUNICATION WITH THE TOTAL COMPUTER SYSTEM

The DCB is the principle means by which a device driver communicates with the rest if the system.
Most of the DCB fields are used by various other components of the system to define the
environment or a specific operation to the driver; a few DCB fields are used by the driver to report
the results of an operation to the remainder of the system. In certain situations, specific registers
are used to communicate between the driver and the operating system or processor firmware.

The following system components communicate with a device driver:
1. The user, who issues an SVC1 instruction.
2. The operating system, which provides several services.
3. The user, who defines the system through system generation (sysgen) parameters.
4. The sysgen process, which allocates data structure areas.
5. The processor firmware, which responds to interrupts.
6. The writer of the driver, who defines values in the DCB.

The writer of a driver must be aware of how each one of these system components communicates
with the device driver. '

The user of the system issues an SVC1 instruction to initiate an I/O operation. The associated SVC1
parameter block defines the operation to be done and receives some information on the results of
the operation. The communication between the user and the driver is carried out by the operating
system. The situation is equivalent to two people carrying on a phone conversation: each person
accesses his own telephone set; the telephone company’s equipment moves the signals between the
two telephone sets.

The USER accesses The DRIVER accesses
an SVCl1l parameter the DCB fields:

block:

SVC1.EC ---------- I/0 function code -------- > DCB.EC
SVC1.LU -------------- lu number ------------ > DCB.LU

- SVC1.STA <----- operation result status ------ DCB.STAT
SVC1.8AD ------- I/0 buffer start address ---> DCB.SADR
SVC1.EAD ------- I/0 buffer end address ----- > DCB.EADR
SVC1.RAD ---------- "random address" -------- > DCB.RAND
SVC1.LXF <------- length of transfer --------- DCB.LLXF
SVC1.XOP --------- (user-defined) ----------- > DCB.SVi1iX

1-8 48-190 F00 ROO

In addition to moving operation parameters between the DCB and the user’s SVC1 parameter block,
the operating system is responsible for starting the execution of various sections of the driver, being
sure that the driver does not take too much time to complete the operation and informing the driver

as to which device the operation is to be directed to.

The Operating The Driver:
System: '
Register 13 ------- address of DCB -~------ > Register

address of the
DCB.ESR <-------- next event service ------
routine to execute

DCB.TOUT <-------- time-out value -------->

SQ <=---- event tree leaf address ---------
(schedules ESR execution)

address of the
DCB.UPBK ------- user's SVC1 block ------- >
as seen by the
user

address of the
DCB.PBLK ------- user's SVC1l block ------- >
as seen by the
driver

address of the

DCB.ESR

DCB.TOUT

DCB.LEAF

DCB.UPBK

DCB.PBLK

DCB.TCB -------- task control block ------ > DCB.TCB

for the user

13

Note that since register 13 always points to the DCB, it is important that the driver never modify it.
The DCB.TOUT field is used by all drivers. The DCB.ESR field is occasionally used. The fields
DCB.UPBK, DCB.PBLK and DCB.TCB are almost never needed by a device driver. These fields
are listed here only because a few special circumstances require them.

The user (perhaps unknowingly) defines some parameters through the specifications written in a

sysgen file. For example, the user writes the statement:

D300: ,FE, 54, SELCH=FO, CONTR=EB

48-190 F00 R00

This is mapped to the DCB as follows:

"EE" -------- device address ---------- > DCB.DN

"54" -------- device type code -------- > DCB.DCOD
"SELCH=FO" --- SELCH address ---------- > DCB.SDN
"CONTR=FB" --- controller address ----- > DCB.CDN

For another example, the user writes:
MD5E: , 5E, 39, XDC=X0810,RECL=132

This is mapped to the DCB as follows:

MGE" —------- device address ---------- > DCB.DN

"39" -------- device type code -------- > DCB.DCOD
"XDC=X0810" --- user-defined ---------- > DCB.XDCD
"RECL=132" --- device record length ---> DCB.RECL

When the sysgen procedure is run, various data structure areas (such as the DCB) are assigned
physical locations within the operating system. It is necessary that these data structures contain
pointers to other data structures within the system, so that the various operating system routines can
find their way around. For example, a device driver must be able to locate the DCB if it knows only
the location of the CCB. The operating system must be able to locate the start of the device driver
if it knows only the location of the DCB. Since these pointers are set up at sysgen time, they are
static and must never be modified by the driver. Some of these pointers are: '

Sysgen procedure Driver

DCB.CCB - ------ address of CCB -------- > DCB.CCB
CCB.DCB ~------ address of DCB -------- > CCB.DCB
DCB.LEAF ---- event tree leaf address -> DCB.LEAF

Some entries in the DCB are used primarily by the operating system to locate various routines
within the driver. These fields are set up at sysgen time, and are not modified by the driver. These
fields include:

Sysgen procedure operating system
DCB.INIT ---- address of driver's ----- > DCB.INIT
initialization routine
DCB.TERM ---- address of driver's ----- > DCB.TERM

termination routine
address of driver's
DCB.FUNC ---- command function -------- > DCB.FUNC

processing routine

1-10 48-190 F0O0 R0OO

A device driver must also communicate directly with the processor firmware routines that process
interrupts. The driver must tell the proceésor what ISR is to be executed to process the next
interrupt from the device. The processor must in turn tell the ISR what device interrupted and
where the associated CCB is located. Also, the processor provides the ISR with the proper PSW and
location counter with which to exit from interrupt service. The communication between the
processor and the driver is as follows:

Processor hardware Device

and firmware driver:

ISPTAB <------ address of CCB ---------==---- DCB.CCB
CCB.SUBA <------ address of ISR to execute -- "LA" instruction
hardware -- address of interrupting device -> register 2
hardware -- status of interrupting device --> register 3
microcode --- address of CCB -------=-=--~---- > register 4
microcode --- PSW at time of interrupt ----- > register O
microcode --- LOC at time of interrupt ----- > register 1

1.6 A SPECIAL NOTE ON DEVICE TIME-OUTS

0S/32 uses the line frequency clock (LFC) (which interrupts 120 times per second) to maintain
the device time-out mechanism. Every second, the system decrements the time-out constant for
each device by one. If the time-out constant is X‘7FFF’, the device cannot be timed out.
When a driver’s interrupt service has gone to completion, the time-out constant should be set to -1
(X‘FFFPF’) to indicate that a time-out did not occur. If the time-out constant decrements to zero,
the device did not respond in the specified length of time and the driver should set an X‘8282’
status, to indicate time-out.

The timer management routine which controls the device time-out mechanism is the OS/32 module
EXTI in routine TIMCHS3. If this routine finds X‘7FFF’, 0, or a negative value in DCB.TOUT, it
processes the next device on the time-out chain. The value in DCB.TOUT is decremented by one
and if the value is now zero, the device has timed out. If this time-out condition occurs, EXTI adds
the device leaf to the system queue for termination processing.

Drivers should always check for time-out before adding a leaf to the system queue. Crash code 153
may result if a leaf is added to the system queue twice. A safety check mechanism in EXIO
prevents the item from being added twice (if the system is generated with safety checks enabled).

48-190 F00 R00 1-11

CHAPTER 2

WRITING THE DRIVER

2.1 INTRODUCTION 1
- 2.2 WRITING DRIVER CODE 1

2.3 WRITING DEVICE CONTROL BLOCK/CHANNEL CONTROL BLOCK
(DCB/CCB) SPECIFICATIONS 21

CHAPTER 2

WRITING THE DRIVER

2.1 INTRODUCTION

The previous chapter outlined the basic components required to write a device driver. These basic
components included the device control block (DCB) relationships, the input/output (I/O)
subsystems relationships and the specific routines required within the device driver. With this
conceptual background, the user can now address the essential question, "How do I write the code?"

2.2 WRITING DRIVER CODE

The best way to begin a discussion of writing driver code is to begin with an anyalysis of some
simple examples. The following examples show very basic drivers.

Step 1: The Simplest Case

The following is the simplest possible routine that satisfies the basic operating system interface
requirement for a driver. This driver performs only the function of branching back to the operating
system. The termination routine is never executed, since the initialization routine branches to the
1/0 operation complete routine in the operating system.

The last instruction executed by a driver must be a branch to IODONE, which is an entry point to
the operating system. This is the only way that a driver can indicate to the operating system that the
I/O operation is complete. The operating system enters the driver at the label INITDVRI1. This
label is specified in the DCB. Standard Perkin-Elmer convention requires that the first four
characters be INIT.

*

INITDVR1 B IODONE branches back to the operating system
*

TERMDRV1 EQU * this will never be executed

* but must be here because it must

* be specified in the DCB.

END

Step 2: Scheduling Event Service Routine (ESR)

To schedule an ESR routine, add the contents of the DCB.LEAF field to the system queue. This
can be done anywhere in the driver, but normally is done only in an interru\pt service routine (ISR),
as is illustrated later. Since this driver only has one ESR routine, (the termination routine), this is
the ESR scheduled, by default.

48-190 F00 R00 2-1

This driver also illustrates another basic operating system interface, which is the branch to
DIRDONE. A driver which has initiated an /O operation, but has not completed that operation,
should branch to DIRDONE (another entry in the operating system) to allow the processor to do
other unrelated tasks while the I/O operation is in progress. Branching to DIRDONE normally
forces the next ESR routine that is executed to be the termination routine, labeled TERM..., as
specified in the DCB definition.

This driver also illustrates the fact that register 13 (UD) always points to the DCB of the device to
which the I/O is directed. The operating system sets up this register before branching to the driver.
The contents of register 13 should never be modified by the driver, for several reasons that will be
shown more completely later.

*

* SCHEDULE ESR EXECUTION THROUGH SYSTEM QUEUE SERVICE

*

INITDRVZ2 L UO, DCB.LEAF (UD) Driver is always entered
ATL UO,SQ with reg 13 = addr of DCB
B DIRDONE Register set 5 is always

* used, except on some

* 8/32 and all 7/32 CPUs.

TERMDRV2 B IODONE
*

END

Step 3: Setting Up Entry To ISRs

The following example illustrates the basic execution sequence of a typical driver: from initialization
to interrupt service to termination. This driver utilizes the minimum possible code to set up a path
for entry to an ISR. It also illustrates the important step of entering an ISR to initiate an /O
operation. This is done to avoid responding to an unexpected interrupt while the device is being
started. Also, as will be shown later, it is sometimes necessary to insure that certain sequences of
operations are executed without any interruption, due to timing requirements. This can only be
accomplished in an ISR.

In this driver, the initialization routine consists only of the code required to set up the interrupt
service routine. The termination routine consists only of the exit to the operating system. The one
ISR is entered by execution of the SINT instruction, since it is the first ISR to be executed. Since it
is also the last ISR to be executed, it dismantles the path to itself, to avoid responding to any
additional interrupts from the device.

2-2 48-190 F00 R00

INITDRV3 EQU * entry point specified by DCB

*

*

LH U2,DCB.DN (UD) get physical address of device
LHL UC,DCB.CCB (UD) get address of CCB for device
LIS Uo, 0 set up a nonexecute command
STH UO, CCB.CCW (UC) into the channel control word
LA U0, ISRO put the address of the

STH U0, CCB.SUBA (UC) ISR into the CCB

AIS UcC.1 make CCB address odd for ISPT

STH UC,X'DO' (U2,U2) put CCB addr into ISPT
LH Ul1l,DCB.ILVL (UD) get the interrupt level
SINT U1l,0(U2) force entry into the ISR

(the code at "ISRO" is now executed: after the
ISR exits, the following instruction is executed)

B DIRDONE after exit from first ISR,

* go back to the O0S.

*

* The following ESR is executed sometime after

* the branch to DIRDONE is executed. It is executed

* because it was scheduled by the ISR routine.

*

TERMDRV4 EQU * termination routine entry
B IODONE exits to operating system

*

* The following ISR is entered

* Dby execution of the SINT instruction. The ISR is in

* "PURE" code to insure that it is located

* in the lower part of memory (it must be in the first

* 64KB of memory). The ISR schedules the ESR for

* execution, and disables further interrupts.

*

* Note that on entry to the ISR, the following registers

* have been set up by the processor microcode:

*

* EO,E1 = return program status word (PSW)/location counter

* E2 = address of interrupting device

* E3 = status of interrupting device

* E4 = address of CCB for interrupting device

*

48-190 F00 R00

(LOC)

ISRO EQU *

L E5,CCB.DCB (E4) get address of associated
DCB out of CCB.

LA E7,II1 put address of null

STH E7.X'DO' (E2,E2) interrupt return into ISPT

L E6,DCB.LEAF (E5) now schedule the ESR for

ATL E6.,SQ execution.

LPSWR EO exit interrupt service
NOTE

The examples in Steps 1, 2, and 3 are all complete
drivers with respect to the operating system. The reader
can include any one of them into a system; an
supervisor call 1 (SVC1) directed at a "device" handled
by one of these drivers always returns immediately to
the caller. Any one of these three drivers can be used to
time basic SVC1 service processor overhead.

Step 4: Executing a Sequence of ISR

In the example in Step 3, there was only one ISR, which is generally not very useful. To control a
real device, we must have a minimum of two ISR routines: one to start the device and one to stop
the device. The initialization routine sets up the interrupt path to the first ISR; the first ISR sets up
the interrupt path to the second ISR and starts the device. = The second ISR receives the hardware
interrupt, stops the device, dismantles the interrupt path and schedules the ESR for execution; the
ESR exits to the operating system.

For ease of understanding the sequence of execution of code, the following driver is written in a
way such that the lines of code are in the same order as they are executed by the processor. This is
an acceptable way to write a driver, as long as the placement of the IMPUR and PURE statements
is correctly done.

However, the reader will probably find that a listing of the driver with the code organized as shown
in the example for Step 3 is easier to use when debugging on a system, as all of the IMPUR and
PURE code listings are separated into two separate blocks, just as it is in memory.

2-4 48-190 F00 R00

_ IMPUR

INITDRV4 EQU
LH
LHL
LIS
STH
LA
STH
AIS
STH
LH
SINT

PURE
ISRO EQU

LA

STH

*

LPSWR

IMPUR

*

»*

*

U2, DCB.DN (UD)
UC, DCB.CCB (UD)
U0, 0

UO, CCB. CCW (UC)
U0, ISRO

UO, CCB. SUBA (UC)
uc.1

UC,X'DO" (U2,U2)
U1,DCB.ILVL (UD)
U1,0(U2)

*

E7,ISR1
E7,CCB.SUBA (E4)

EO

entry point from operating system
get physical address of device
get address of CCB for device
set up a nonexecute command
into the channel control word
put the address of the

ISR into the CCB

make CCB address odd for ISPT
put CCB addr into ISPT

get the interrupt level

force entry into the ISR

entered from SINT instruction
get address of next ISR
& put into CCB to set up path

(commands to start the device go here)

exit from this ISR
(returns to instruction after
SINT, which is as follows:

Now exit to the operating system to let the CPU do some unrelated
activity while we wait for the hardware interrupt:

B DIRDONE this is logically part of

* the initialization routine

*

ISR1 EQU * The interrupt from the

* hardware will force this to

* be executed.
LA E7,III get address of null interrupt
STH E7,ISPTAB(E2,E2) routine & put into ISPT to

* disable receipt of more int's.

*

* (commands to stop the device go here)

*

48-190 F00 R0O

L ES5,CCB.DCB(E4) get address of DCB for device

L E7,DCB.LEAF (E5) get value to put on SQ to
ATL E7.8Q schedule ESR execution
LPSWR EO exit this ISR.

*
IMPUR

TERMDRV4 EQU * termination routine
B IODONE exits to operating system.

Step 5: Setting Up Device Time-outs and User Status

The operating system is used to force an ESR to be executed if the /O operation takes too much
time. This happens if the device somehow does not work right. The code sequence shown below is
used to tell the operating system to force a "time-out" (which means forcing an ESR to be executed)
if the operation does not complete within a the number of seconds specified by the driver.

A time-out should always be set up before starting an I/O operation. The reason for doing this is
that if the device should ever fail to interrupt, the /O operation would not complete. This in turn
would cause the user task (u-task) that issued the I/O operation to be "stuck": it could not be
removed from the system (cancelled).

This sample driver illustrates the proper interface to the operating system for "getting on and off the
timer chain": in other words, specifying the time-out interval, and how to tell the operating system
to start and stop timing the /O operation. Notice that the value DCB.TOUT must be set and reset
in an ISR to avoid a possible conflict with the operating system routines that are necessary for the
timing of the I/O operation.

IMPUR
INITDRVS EQU * entry point from operating system
*
BAL U8, TOCHON this call tells the operating system
* to be ready to time an I/0 operation
* This call MUST be made in either
* the initialization routine or
* an ESR routine, NEVER in an ISR!
* This call leaves DCB.TOUT='7FFE'
*
LH U2,DCB.DN (UD) get physical address of device
LHL UC,DCB.CCB(UD) get address of CCB for device
LIS Uo, 0 set up a nonexecute command
STH U0, CCB.CCW (UC) into the channel control word
LA U0, ISRO put the address of the
STH UO, CCB.SUBA (UC) ISR into the CCB
AIS uc,1 make CCB address odd for ISPT

2-6 48-190 F00 RO0O

STH UC,X'DO' (U2,U2)
LH U1,DCB.ILVL (UD)
SINT U1,0(U2)

PURE

ISRO EQU *
LA E7,ISR1
STH E7,CCB.SUBA (E4)
L E5,CCB.DCB (E4)

-put CCB addr into ISPT

get the interrupt level
force entry into the ISR

entered from SINT instruction
get address of next ISR

& put into CCB to set up path
get address of DCB

* now "turn on" the timing of the operation by the operating system:

LIS E7,5
STH E7,DCB.TOUT (E5)

specify a five second time-out
by putting 5 into DCB.TOUT
(notice: it is a HALFWORD!)

* (commands to start the device go here)
*
LPSWR EO exit from this ISR
*
IMPUR
B DIRDONE this is logically part of

»

*

the initialization routine

Since a value of 5 was set into DCB.TOUT, no more than

* five seconds can elapse before the hardware interrupts.

* If the interrupt does not occur, the driver is

* reentered by the operating system at 'TERMDRVS', and

* the code at 'ISR1l' is not executed.

*

ISR1 EQU * The interrupt from the

* hardware forces this to

* be executed.
LA E7,II1 get address of null interrupt
STH E7,ISPTAB(E2,E2) routine & put into ISPT to

* disable receipt of more int's.

*

* (commands to stop the device go here)

*

L E5,CCB.DCB (E4)

48-190 F00 R0OO

get address of DCB for device

* % * * % % % % ¥ % ¥

* % % ¥ %

*

*

*

LI

*

Now check that the operating system did not time-out the
operation just prior to the hardware interrupt occurring,
but before the ESR could dismantle the interrupt path.

This i1s a unlikely event, but must be checked for the
possibility. If the operating system times out the operation,
DCB.TOUT = O, and the execution of the ESR is already
scheduled. Therefore, if the ISR finds that DCB.TOUT = O,
then the ISR should not try to schedule the ESR. Doing so
can cause a system crash under some software configurations.

LH E7,DCB.TOUT (ES) get current DCB value
BZ ISR1EXIT if already zero, exit now.

Since some time elapses between now and the time that

the ESR is executed, 1t is necessary to indicate to both
the operating system and the ESR that the operation
completed (i.e., the expected interrupt was received within
the specified length of time). The operating system expects
that the value 'FFEF' is used for thls purpose.

LCS E7.1 get value of 'FFFE'

STH E7,DCB.TOUT (E5) to set in DCB.TOUT

L E7,DCB.LEAF (E5) get value to put on SQ to
ATL E7.SQ schedule ESR execution

'ISR1EXIT LPSWR EO exit this ISR.

The termination routine customarily sets a status for the

user of '8282' if a time-out has occurred; otherwise some
other status is set, such as '0000' if the operation completes
normally. Thus, the termination routine checks the time-out
value to determine what has happened. The value put into

into DCB.STAT is copied by the operating system into the
user's SVCl parameter block, so that the user can know

of the success or failure of the requested operation.

IMPUR

TERMDRVS EQU * termination routine
LH Ul,DCB.TOUT (UD) get the time-out value
BZ TIMEOUTS if zero, we timed out
LIS Uz,0 and set zero user status

STH U2,DCB.STAT (UD) *

48-190 F00 R00

TERM5X EQU *

BAL U8, TOCHOEF now tell operating system
~that we do not need any more
timing services

B IODONE exit to operating system.

*

TIMEOUTS LHI U2,Xx'8282"' on time-out, tell user what
STH U2,DCB.STAT (UD) happened.
B TERM5X go to common processing

Step 6: Selector Channel (SELCH) I/O, Data Buffer Addresses, and Length of Transfer
NOTE

If your custom device operates under direct processor
control on the processor multiplexor bus, you may wish
to skip directly to Step 7.

Many custom devices operate under a SELCH. To control the I/O operation, both the custom
interface and the SELCH must be controlled. The basic points to be considered when a SELCH is
used to control a device are:

1. The SELCH must have the starting and ending addresses of the data buffer in memory written
to it before the transfer starts.

2. Once the SELCH is commanded to start the transfer, the device under the SELCH cannot be
addressed. The SELCH must be stopped before the device can be accessed.

3. The SELCH terminates the transfer, and interrupts the processor, when either of two
conditions are met:

a. The SELCH determines that the data transfer has proceeded to the end of the data
buffer; in other words, either all of the data in the user’s buffer has been sent to the
device, or the user’s buffer has been filled with data from the device.

b. The device controller indicates to the SELCH that no further data transfer is possible, by
activating the appropriate signals on the SELCH private bus. (How this happens
electrically is of no importance to the driver software).

The following driver, which is complete except for the specific commands required to control the
device, shows all of the steps required to control an I/O operation through a SELCH. To aid
comprehension, all of the SELCH commands are explicitly written. In many Perkin-Elmer supplied
device drivers, subroutines are called to interface to the SELCH. Those routines perform the same
functions as the code written here. It is a matter of individual programming preference as to
whether those subroutines are used, or the commands are written explicitly as shown here. The
routines used by some Perkin-Elmer drivers can be found in the module SUBS.MAC; if you plan to

48-190 F00 ROO 29

use these subroutines, you should refer to the source code in this module to determine the proper

calling sequences.

The fields DCB.FC, DCB.SADR, DCB.EADR, and DCB.LLXF are used in this driver to control
the SELCH. The driver references, but does not modify, DCB.FC, DCB.SADR and DCB.EADR.
The driver does set DCB.LLXF, which is then copied by the operating system back into the user’s
SVC1 parameter block to allow the user to know how much data was actually transferred. The field
DCB.FC, which is copied directly from the user’s SVC1 parameter block, is used to determine
whether to set the SELCH and the device in a device read or device write mode.

IMPUR
INITDRV6 EQU
BAL

LH
LHL
LIS
STH

STH
AIS
STH

LH
SINT

PURE
EQU
L
LA
STH
LH
oc

ISRO

*

»*

WD
WH
WD
WH
LIS
STH

2-10

*

U8, TOCHON

U3, DCB. SDN (UD)
UC, DCB. CCB (UD)
U0, 0

U0, CCB.CCW (UC)
U0, ISRO

U0, CCB. SUBA (UC)
uc, 1

UC, ISPTAB (U3,U3)

U1,DCB.ILVL (UD)
U1,0(U2)

*

ES, CCB.DCB (E4)
E7,ISR1
E7.CCB.SUBA (E4)
E3,DCB. SDN (ES5)
E3, SLCHSTOP

E3,DCB.SADR+1 (ES5)
E3,DCB.SADR+2 (E5)
E3,DCB.EADR+1 (E5)
E3,DCB.EADR+2 (E5)
E6.5
E6,DCB.TOUT (E5)

entry from operating system to start I/0
go get on timer chain

get address of the SELCH

get address of CCB for device

set up a nonexecute command

* in the channel control word

get the address of the first ISR,

& set up for start-up SINT instruction
make CCB address odd,
* set up of ISP table
(note SELCH address 1s used)
get the interrupt level

for

force entry to first ISR

entry from SINT to start I/O

get address of DCB for device

get address of next ISR

& set up CCB for hardware interrupt
get SELCH address

be sure SELCH is reset

The values DCB.SADR and DCB.EADR were set up by the operating system
by copying the values SVC1.SAD and SVC1.EAD from the user's SVC 1 block,
and converting those values to physical memory addresses.

write 24-bit starting addr

* to the SELCH

write 24-bit ending address

* to the SELCH

set up the device time-out
value for the operating system

48-190 F00 R0O0

* Here are some things to consider at this point relative
* to programming a SELCH-controlled I/0 operation:

* 1. Once the SELCH is commanded to a "go" state, the device is
* unaccessable from the processor. Thus, we must issue the
* appropriate commands to the device first, then start SELCH
* 2. Some devices (e.g., magnetic tapes and disks)., require that
* the SELCH be started at essentially the same instant as the
* device, to insure that a data overflow/underflow does not occur.
* Thus, ALL interrupts must be shut off while the device and
* SELCH are started!
* 3. The SELCH (and typically the device) have different command
* sequences that must be used to start read and write modes.
* This driver uses two separate sets of code for starting read
* and write, to simplify understanding of the logic used.
* 4. Most simple devices that operate under a SELCH are most efficiently
* programmed in such a way that only the interrrupt from the SELCH
* is needed toindicate the end of the transfer. Thus, the interrupts
* from the device may be left shut off or ignored, as is done in
* this driver.
*
EPSR E7,E7 get current PSW value
NI E7,Y'EF20FO" reset bit 20 for
* ~ noninterruptable state
*
LB E6,DCB.EC (E5D) get the function code that was
THI E6,X'40" specified by the user, then
BNZ ISROR) test for read/write, and go
* to the appropriate routine
*
ISROW EQU * come here to start write I/0
EPSR E6,E7 become noninterruptable
ocC E2,DEVCWRIT start the device in write mode
ocC E3,SLCHWRIT start the SELCH in write mode
LPSWR EO exit the ISR routine
*
ISROR EQU * come here to start read I/0
EPSR EG6,E7 become noninterruptable
ocC E2,DEVCREAD start the device in read mode
oC E3, SLCHREAD start the SELCH in read mode
LPSWR EO exit the ISR routine
SLCHSTOP DB X'48' command to "stop" (reset) SELCH
SLCHWRIT DB X'50' SELCH "go & write" command

48-190 F00 R0O 2-11

SLCHREAD DB X'70' SELCH "go & read" command

DEVCWRIT DB [P appropriate device write command
DEVCREAD DB appropriate device read command
*

IMPUR

B DIRDONE driver initialization routine
* exit back to operating system.
*

PURE

ALIGN 2 be sure we are not on a
* byte boundary due to DB entries

in previous ISR routine

ISR1 EQU * SELCH interrupt forces this
routine to be executed.

* note that E2 contains the address of the SELCH

ocC E2, SLCHSTOP give the SELCH a stop command
LA E7,I11 dismantle the interrupt path
STH E7,ISPTAB(E2,E2) * to avold any more interrupts,
L E5,CCB.DCB (E4) get address of DCB of device
LH E6,DCB.TOUT (ES5) chech the time-out constant
BZ ISR1X if already timed-out, do nothing,
LCS E6,1 otherwise, indicate no time-out
STH E6,DCB.TOUT(ES) by setting flag to 'FFFE'
L E7,DCB.LEAF (E5) now schedule the ESR to
ATL SQ.E7 * be executed.

ISR1X LPSWR EO exit from this ISR.

*
IMPUR

TERMDRV6 EQU * operating system enters here

* for I/0 operation termination

*

LH U3,DCB.SDN (UD) get SELCH address
oC U3, SLCHSTOP be sure SELCH is stoppecd

* (if we timed-out, it may not be)
RDR U3,uUo0 now get SELCH final address
RHR U3,u1 (all 24 bits)
SLL Uo, 16 make up a 24-bit value...
OR Uo, Ul now UO contains SELCH final addr
C UO,DCB.EADR (UD) is final addr = user's end addr?
BNE TERM6X if not, branch to special logic

2-12 48-190 F00 ROO

TERM6A S UO, DCB. SADR (UD) now calculate the length of xfer

AIS . UO,1 adjust for inclusive addressing
ST U0, DCB.LLXF (UD) and save length of xfer for user
LIS U1,0 no error if equal, so set status

TERM6B STH Ul,DCB.STAT (UD) for user.
*

BAL U8, TOCHOEF get off the timer chain
B IODONE and exit to operating system I/O termination.

%

The following code is executed only if there is not a final address match:
SELCH end address equals user's specified end address. Exactly what
should be done under these circumstances depends upon the device, and

how the system designer wants it to behave. For the purpose of this
driver, make the following choices:

*

* X % %

1. If the final address is not in the range of the

*

the user's start and end addresses, then set the
status = X'8490', the length of transfer to zero,
and exit. (Some Perkin-Elmer supplied drivers crash the system
deliberately if the final address is outside the
user's start/end address, under some conditions.)
2. If the operation timed-out, set the status = X'8282"',
set the length of transfer to zero, and exit
3. If the operation did not time-out, but the end address
is less than the user's end address, calculate the
actual length of transfer, and set the status = O.

*

* % ¥ X X X X X *

TERM6X EQU * come here if SELCH end addr
is not equal user's end address
c UO,DCB.SADR (UD) check end address for being
BM TERM6E out of range
C UO,DCB.EADR (UD) *
BP TERM6E *
LH U4,DCB.TOUT (UD) did we time-out?
BNZ TERM6A if not, no error

LHI Ul,Xx'8282" if time-out, set proper status
LA Us,III and reset the ISP table
STH U8, ISPTAB(U3,U3) *
B TERM6B *
*
TERM6E LHI U1,X'8490' if end address out of range,
B TERM6B set appropriate status

48-190 F00 R0O 2-13

Step 7: Data Transfer Using Autodriver Channel Programming

Many low-speed devices, primarily interactive terminals and some communications equipment, have
controllers that are designed to present an interrupt to the processor for each character transferred.
The following driver provides an explanation of the specific coding sequences that are peculiar to
autodriver channel programming.

Note that this driver is designed to operate on a byte transfer device. This means that:

1. The device controller, when addressed, leaves the HWO (halfword) signal on the multiplexor
(MUX) bus in the inactive (high) state.

2. The device controller, in response to an active DRO signal on the MUX bus (i.e., data
request), activates only eight data lines (D080 through D150).

3. The device controller, in response to an active DAO sighal on the MUX bus (i.e., data
available), responds to only eight data lines (D080 through D150).

It is important to note that the distinction between byte- and halfword-oriented devices is made
based on the behavior of the device controller on the MUX bus (or private SELCH bus). The
characteristics of the data lines that the device controller present to the device have no bearing on
the byte vs. halfword distinction for the purposes of autodriver channel programming. The
hardware design manual, or circuit logic diagrams, for the device controller must be consulted to
determine if the device controller is a byte or halfword device.

INITDRV7 PROG Sample driver #7.
NLIST
$REGSS$
DCB
$CCB
LIST
EXTRN DIRDONE,III,IODONE, ISPTAB, SQ, TOCHOEFE , TOCHCN
ENTRY INITDRV7, TERMDRV7 '

IMPUR
INITDRV7 EQU * entered here by operating system to do I/O op
LH U2,DCB.DN (UD) get the device address

LHL UC,DCB.CCB (UD) get the address of the CCB

* For the purposes of showing how the two-buffer concept can be
* used in autodriver channel programming, this driver outputs

* a prefix and a suffix for each message the user writes to

* the device. Thus, both buffer O and buffer 1 are used.

* We initially set up buffer O to output the prefix and buffer 1 to output
* the user's message. Reuse buffer O to output the suffix of the message.

2-14 48-190 F00 R00

* Since, by design choice, we wish for the complete line
* of output to fit on the CRT screen, we will limit the

* user to a message of 40 characters or less. If the user
* specifies a message greater than 40 characters, the

* initialization routine outputs a status of X'8490'

* and a length of transfer of zero, and exit. This
illustrates the common practice of doing some initial

*

* parameter and device status checks in the initialization

* routine, before the first ISR is entered.

*
L UO,DCB.EADR (UD) get the user's ending address
ST U0, CCB.EB1 (UC) & save as buffer 1 address.
S UO,DCB.SADR (UD) calculate requested message
AIS Uo.,1 * length, then verify it is
CHI Uo, 40 not greater than 40.
BP INIT7ERR If more than 40, error exit.
LIS Ul,1 now calculate value to put
SR U1,U0 * into CCB as buffer count

STH Ul,CCB.LB1 (UC) & save for later use

LA Ul,PREFIX.S now set up the CCB for the
LA UO,PREFIX.E prefix to be output

ST U0, CCB.EBO (UC) (use buffer 0)

SR U1l,vUo0 calculate value for counter

STH Ul,CCB.LBO (UC) and save for later use.

* At this point, both sets of buffer pointers are set up.
* Set up the remainder of the CCB in the usual way to point
to the first ISR. Notice that we wait

%*

* until after the initial parameter‘checks to initialize the
* I/O operation timing services of the operating system. We
* do that now, and go to the first ISR.
*
BAL U8, TOCHON go tell operating system we need timing done
LIS Uo, 0 reset the channel command word
STH U0, CCB.CCW (UC) *
LA U0, ISRO get address of first ISR

STH UO,CCB.SUBA (UC) & save.in CCB.

*

Use the CCB.MISC field to allow the ISR routines
to tell the ESR that a transfer failed, if this should
* happen. Thus, we initialize this field to zero.

*

48-190 F00 R00 2-15

LHI U0, 0 get a zero

STH UO,CCB.MISC(UC) - *

AIS UcC.,1 make CCB addr odd for ISPT

STH UC,ISPTAB(U2,U2) (set up ISPT)

LH Ul,DCB.ILVL(UD) get the interrupt level

SINT U1l,0(U2) go start the transfer

B DIRDONE after first ISR, exit to do
something else while I/0 runs

INIT7ERR EQU * initialization error exit
LHI U5,X'8490' get a status code
STH US5,DCB.STAT(UD) & save for user.
LIS Uo, 0 reset the length of transfer
ST UO,DCB.LLXE (UD) for user
B IODONE terminate the operation.

*
PURE

ISRO EQU * come here to start transfer
LA E7.ISR1 get address of next ISR to use
STH E7,CCB.SUBA(E4) and set up CCB for next ISR.
L E5,CCB.DCB (E4) get DCB address
LIS E6.8 set up an 8 second time-out
STH E6,DCB.TOUT(E5) (this is an arbitrary choice)
oC E2,CMD2 give the COMM-MUX command 2,
ocC E2,CMD1 & command 1

* The autodriver channel operates 1ln response to interrupts.
Since we are now in an ISR, we can not issue another SINT

*

* to start the 1/0 operation. Instead, we utilize the SCP

* instruction to maintain the buffer pointer/counter in the

* CCB, and do a WD to the device. This causes a hardware interrupt,

* which is then handled by the autodriver channel firmware.

*
LH E6,CCWO set the channel command word
STH E6,CCB.CCW (E4) * for buffer O
SCP E7,CCB.CCW (E4) get a character from buffer O
WDR E2,E7 write it to the device
LPSWR EO and exit back to init routine
ALIGN 2

CCWO DC X'A0O84' execute, buffer O

CCW1 DC X'aosc! execute, buffer 1

CMD2 DB X'Fs8' COMM-MUX command 2

2-16 48-190 F00 R0O

CMD1 DB
 DISARM DB
ALIGN
ISR1 EQU
LH
BNP
LA
STH
LH
STH
scp
WDR
LPSWR
ISR2 EQU
LH
BNP
LA
STH
LA
ST
LA
SR
STH
scp
WDR
LPSWR
ISR3 EQU
LH
BNP
ISRDONE L
LA
STH
oc
LCS
STH

ATL
LPSWR
EQU
LHI

ISRERR

48-190 F00 R0O

X'63"
X'co'

*

E7,CCB.LBO (E4)
ISRERR

E6, ISR2
E6,CCB.SUBA (E4)
E7,CCW1
E7,CCB.CCW (E4)
E7,CCB.CCW (E4)
E7,E2

EO

*

E7,CCB.LB1 (E4)
ISRERR

E6, ISR3
E6,CCB.SUBA (E4)
E7,SUFFIX.E
E7,CCB.EBO (E4)
E6,SUFFIX.S
E6,E7

E6, CCB.LBO (E4)
E7,CCB.CCW (E4)
E7.E2

EO

*

E6, CCB.LBO (E4)
ISRERR

E5, CCB.DCB (E4)
E7,III
E7.ISPTAB(E2,E2)
E2,DISARM

E6,1
E6,DCB.TOUT (E5)
E7,DCB.LEAF (E5)
E7.8Q

EO

*

E6,X'8484"'

COMM-MUX command 1
kill interrupts on COMM-MUX

come here when buffer O done:
did all of buffer O go out?

if count not positive, error
set up the CCB for third ISR

* to be used.

set command word for buffer 1

*

get lst char from user's buffer
and send to device

exit to wait for I/0

come here when buffer 1 done:
did all of buffer 1 go out?
if count not positive, error
set up CCB to point to last
* ISR routine to be used

set up CCB for different

* buffer O pointers

now get the value for the

* count field,
* it up.

get 1lst char from suffix buffer

and then set

and send it to device
exit to wait for I/0

come here when all I/0 done
check that all of the last
transfer completed.

get address of DCB of device
clear the interrupt path

*

kill device interrupts
indicate no time-out occurred
*

schedule the termination

* routine for execution

and exit interrupt service.
come here if I/0 fails

set a status code for ESR

2-17

STH E6,CCB.MISC(E4) *

B ISRDONE & go exit ISR sequence
IMPUR
TERMDRV7 EQU * operating system enters here when I/O done

*

* The error checking sequence is somewhat arbitrary. Here, a time-out is
* the most important error; and failure to complete the transfer will be
* less important.

LH UO,DCB.TOUT(UD) get current time-out value
BZ TIMEOUT7 error exit if timed-out
LH UC,DCB.CCB (UD) get CCB address.

LH UO,CCB.MISC(UC) check error indicator

BNZ IOFAIL7 if not zero, I/0 failed

LIS Ul,0 otherwise, indicate no error.
TERM7B STH Ul,DCB.STAT (UD) set error status

BAL U8, TOCHOEF indicate no more timing.

By design choice, we wlll report the length of transfer as only that part
of the user's buffer that was actually transferred. We use the count
value for buffer 1 for this calculation:

* % % *

*

L UO,DCB.EADR (UD) get user's end address

S UO,DCB.SADR (UD) less user's start address

AH U0, CCB.LB1 (UC) plus the residual buffer 1 count
ST UO,DCB.LLXF (UD) equals count of bytes moved.

B IODONE go to operating system I/0 termination
TIMEOUT7 EQU * set time-out status

LHI Ul,X's282"' *

B TERM7B
IOFAIL7 EQU * set I/0 failed status

LHI Ul,X'8484' *

B TERM7B

ALIGN 4

*

* Define the suffix and prefix output by this driver
*

PREFIX.S DC C'<PREFIX>'
PREFIX.E EQU *-1
SUFFIX.S DC C'<SUFFIX>'
DB X'00',X'OD',X'00',X'OA',X'00",X'00"
SUFFIX.E EQU *-1
END

2-18 48-190 ¥00 R0OO

Step 8: Generating User-Level Task Traps

In special circumstances, it is desirable to have the device driver add an item to the user’s task
queue, thereby generating a task trap. This feature is most likely to be used in applications that
require buffer chaining, so that the u-task can be notified each time a data buffer has been processed
by the driver.

The following small driver has been written to illustrate the code sequence required to add items to
the user’s task queue, and thus generate user-level task traps. This particular driver causes an item
to be added to the user’s task queue each time an I/O request is made to the driver. Note that this
sample driver does not interface to a physical device; this is only because a physical device interface
is not necessary in order to illustrate the add to task queue mechanism.

INITDRVS8 EQU * entry from operating system
L U9,DCB.TCB (UD) get user's TCB address
LI UA, QUEITEM get value to put on task queue
BAL U8, TMATQ1 branch to operating system

routine to add item to
the task queue.

B IODONE exit from driver.
TERMDRV8 EQU * not executed: used to
* satisfy reference from
* " DCB.TERM entry in DCB.
*
QUEITEM EQU ve (item definition is arbitrary)
END

It should be noted that the routine "TMATQ1" is subject to being renamed in future revisions of the
operating system. In revision 6.2 and lower, the label was "SV9.ATQ1". For this reason, the writer
of a driver may want to replace the statement:

BAL U8, TMATQ1
with the macro call:
ADDTTSKQ REASON= (UA) , TASKSW=NO

This coding practice assures com patability with future releases of the operating system.

Step 9: Making Changes for IOP Execution

The following two drivers operate identically. However, the first driver does not execute correctly
on an IOP. The second driver contains calls to the new macros needed to generate code that operate
correctly under an IOP.

48-190 F00 R0OO 2-19

2-20

INITDUMB PROG DUMMY DRIVER FOR 0S/32 REVISION 7.
*

*+ THIS DRIVER WILL NOT OPERATE CORRECTLY ON AN IOP

*
MLIBS 8,9,10
ENTRY INITDUMB DRIVER INITIALIZATION
ENTRY TERMDUMB DRIVER TERMINATION
EXTRN DIRDONE, IODONE,SQ,III, ISPTAB

INITDUMB EQU *

LH U2,DCB.DN (UD) GET THE DEVICE ADDRESS.

LA UF,III SET NULL INTERRUPT VECTOR

STH UE, ISPTAB (U2,U2) FOR THE DEVICE.

L UF,DCB.LEAF (UD) GET LEAF TO SCHEDULE TERMINATION
ATL UF,S5Q BY PUTTING IT ON SYSTEM QUEUE.

B DIRDONE EXIT TO OS ROUTINE.

*

TERMDUMB EQU *
B ICDONE DRIVER IS DONE - QUIT NOW.

INITDUMB PROG DUMMY DRIVER FOR 0S/32 REVISION 8.
*

* THIS CODE WILL EXECUTE CORRECTLY ON AN IOP

*
MLIBS 8,9,10
ENTRY INITDUMB DRIVER INITIALIZATION
ENTRY TERMDUMB DRIVER TERMINATION
EXTRN DIRDONE, IODONE,SQ,III,ISPTAB

INITDUMB EQU *

LH U2, DCB.DN (UD) GET THE DEVICE ADDRESS.

LA U6, 111 GET THE NULL INTERRUPT VECTOR.
ISPMOD ITEM=(U6) ,DCB= (UD) ,DN=(U2) , WORK= (UF)

L UE, DCB.LEAF (UD) GET LEAF TO SCHEDULE TERMINATION
ADDSQ ITEM= (UF) ,DCB=(UD) , WORK= (UE)

B DIRDONE EXIT TO OS ROUTINE.

*

TERMDUMB EQU *
B IODONE DRIVER IS DONE - QUIT NOW.

48-190 F00 R0OO

2.3 WRITING DEVICE CONTROL BLOCK/CHANNEL CONTROL BLOCK (DCB/CCB)
SPECIFICATIONS

Every device driver operates primarily on two associated data structures, the DCB and the CCB. It
is the responsibility of the writer of the I/O driver to provide definitions of these two data
structures, along with the actual I/O driver. The remainder of this chapter provides some procedures
for specifying the DCB and CCB structures.

It is very important that the DCB and CCB specification be done exactly right the first time! An
error in the DCB or CCB specification can result in any of the following symptoms:

1. Errors in the Sysgen32 phase of the sysgen procedure.
Errors in the macro expansion phase of the sysgen procedure.
Errors in the CAL assembly phase of the sysgen procedure.

Errors in the link phase of the sysgen procedure.

System crashes of all kinds when attempting to use the driver.
6. Other malfunctions of the driver.

The DCB definition contains all of the keyword definitions which can be used in the sysgen
statement, such as the device name, device address, device code, controller address, SELCH
address, and extended device codes. The DCB definition also provides a definition of all of the
device-dependent data items that can be referenced by the driver, such as (for disks) the number of
sectors per track, tracks per cylinder and cylinders per disk. Other device-dependent data can
include special command tables for setting baud rates on asynchronous lines, and tables of tape
motion speeds for magnetic tape drives. For some devices, data buffers or scratchpads can be
included in the DCB definition.

Fortunately, most custom devices can utilize a DCB definition that is very nearly the same as a
DCB definition already provided for a standard Perkin-Elmer device. Due to the large amount of
detail that must be provided in the DCB definition, the best way to build a new DCB definition is to
start with an existing DCB definition. The following steps provide a guide for building a new DCB
definition:

1. Copy a DCB specification of a similar type of device from SYSGEN32.MLB into a new file,
DCBxxx.MAC (xxx is the new device code, which must be in the range of 240 to 255). This
can be done using MLU32, and listing the appropriate macro definition directly to
DCBxxx.MAC. For example, a device that operates under a SELCH and supports both read
and write, but does not support random access, is similar to a magnetic tape drive, so the
macro definition DCB65 would probably be a good starting point. For example, the following
session copies the definition of a magnetic tape driver into a file named DCB248.MAC:

48-190 F00 R00 ; 2-21

2-22

*1lo mlu32;st

PERKIN-ELMER 0S/32 MACRO LIBRARY UTILITY 03-340 ROO-0O1

MLU>get sysgen32.mlb/s

MLU>1ist dcb248.mac,DCB64

1 MACRO LISTED TO NEW FILE SYS:DCB248.MAC

MLU>end

RW -END OF TASK CODE= 0] PROCESSOR=0.907 TSK-ELAPSED=38

In DCBxxx.MAC, change the DCB number (e.g., 65), to the new device code (e.g., 240)
everywhere that it appears. Be careful not to miss any appearances of the old DCB number,
but also be careful (if you are using EDIT32) not to modify any other character strings that
just happen to match the new DCB number (e.g., 240).

After the line:
CONVNUM
Add the statement:

USERINIT

Modify the parameters for the DCBI macro statement. This includes at least the INIT= and
TERM= parameters, and probably the ATRB= parameter. This macro call specifies the values
assumed by various data items within the DCB. Look over the DCBI macro statement
carefully to be sure that you have adjusted all the terms that apply to your specific custom
device. The device-dependent part of the DCB is specified in the DCBI macro statement with
a COPY= parameter.

It is very unlikely that you will need to modify the CCBI macro statement, other than what
was done in Step 2 above. The CCB is usually set up at run time by the driver. The possible
exception would be a translation table name.

Add the statement
DCBYDCOD%IDVAL PROG USER DCB
after the CCBI macro statement, as shown in the example below. This provides a label that

prints when the macro is assembled at sysgen time. This is a handy way to know if your DCB
definition successfully passed that particular stage of the sysgen procedure.

48-190 F00 R0OO

7. Add the definition of any specific values in the device-dependent portion of the driver. This is
done by the following constructs, which should be placed immediately preceding the
$ST%OFFS statement near the end of the DCBxxx.MAC file:

ORG DCBY%OFFS+DCB.yyyy
DC e

The label DCB.yyyy is a label defined in the device-dependent part of the DCB. The existence
| of the label, and its assigned value, are determined strictly by the requirements of your
specific custom device.

8. After the statement
ORG $STYOFES
Add the statements:

ASIS
END

If these eight steps are carefully done, the DCB definition will be complete.

To use the new DCB definition, which has been created in the file DCBxxx.MAC, it must be put
into a macro library known as USERDLIB.MLB. This is done by using the MLU32 utility program.

Note that the device-dependent part of the DCB is determined by the specific requirements of
your driver. In general, write your driver code first to determine what, if any, specific device-
dependent fields you need, then include them in your DCB definition.

For programmers who are familiar with the now unsupported Configuration Utility Program
(CUP), it is important to know that the use of Sysgen/32 requires that the DCB and the actual
driver code be constructed in separate files, and placed in separate libraries. This is considerably
different from the procedures used with CUP. The Sysgen/32 procedures require that the DCBxxx
macro definition be placed in a macro library, USERDLIB.MLB; the driver code is expanded,
assembled, and included in object format in an object library, USERDLIB.LIB. After this is done,
the supplied SYSGEN.CSS can be used to perform the sysgen.

The major item of concern in writing the DCBXXX macro is the specification of the DCB
macro. This macro defines the initialization, termination, function, and IOH routines used by
the driver. Also specified here is the device code, attributes, and size of the DCB.

48-190 F00 R00 2-23

The DCB specification macro:

DCB DCOD = ,INIT = ,TERM =, ATRB = ,RECL = ,SIZE =, IOH =

DCOD - DCB number (gives each device type a unique code)
INIT - entry point to driver initialization routine.
TERM - name of first ESR to execute.

ATRB - attributes of the device

RECL - record length supported by the device

SIZE - size of the driver + dependent structures

I0OH - name of I/0 handler for this device.
A sample DCBXXX macro to be included in USERDLIB.MLB:

MACRO

DCB243 %DCOD=, %DN=, %CLAS=, %ILVL=, %NAME=, SHCCB=,

%S1ZE=, YRECLN=, 4XDCD=, %I0P=0
GBLC %IDVAL

BGBLA %ID243

LCLA %CCBEL

LCLA %CLASN

LCLC YRXLT, 4RQU

LCLC 9%CORDNM, %PTRPAS
LCLC %OFFS

LCLA %RDN

LCLC %MDN,%MCNT, YMSLCH
LCLA %TRCNT,%UPTR

LCLB %FOUND, %DA

BGBLA %FIRST

%RQU SETC 'COMQ' DEFAULT DEVICE QHANDLER

°/MDN SETC '¢DN' DEVICE ADDRESS
%CCBFL ~ SETA O

AIF (T'Y%CLAS EQ 'U')&CLSNTD
%CLASN SETA %CLAS*12 IOCLASS*12

2-24

48-190 F00 R00

&CLSNTD ANOP

CONVNUM VAL=%ID243 CONVERT CURRENT ID TO HEX.

USERIN
DCB
DCBI

IT

DCOD=243, SIZE=DCB.DVDP, INIT=INITCORD, IOC=2,
TERM=TERMCORD, FLGS=DELG.LNM, RECL=132, ID=)IDVAL,

ATRB=2B80, IOP=y4IO0P

CCBI
CCBY%NAME EQU

9ID243 SETA
&DCBOPT ANOP

DCB%DCODYIDVAL
%/OFFS SETC
DCB_Y%NAME EQU

ORG
DC
ORG
AIF
DAC
EXTRN
AGO
&NSLEAF ANOP
DAC

DCOD=243, ID=%IDVAL
CCBY%DCODYIDVAL
%ID243+1

PROG USER DCB

'%DCOD"' : '4IDVAL"' ESTABLISH PROPER OFESET
DCBY%OFES
ENTRY DCB_%NAME
DCBY%OFES+DCB.DN DEVICE ADDRESS
H'YDN'
DCBY%OFF S+DCB . LEAF LEAF POINTER
(T'%SHCCB' EQ 'U')&NSLEAE B IF NOT SHARED
LEY%SHCCB USE SHARED DEVICE LEAF
LFY%SHCCB
&NRMLEX
LEY%OFFS GENERATE STANDARD LEAF NAME
LEFYOFFS

EXTRN
&NRMLEX ANOP
&NOLEAF ANOP

AIF (T'%CLAS EQ 'U')&NOCLAS
ORG DCBY%OFFS+DCB.CLAS 10 CLASS
DC H'%CLASN' IOCLASS*12
&NOCLAS ANOP
AIF (T'%ILVL EQ 'U')&NOILVL
ORG DCBYOFFS+DCB.ILVL ILEVEL
DC H'%ILVL'
&NOILVL ~ANOP
AIF (T'%XDCD EQ 'U')&NOXDCD IF NOT ENTERED
ORG DCB%OFFS+DCB.XOPT ELSE MOVE XDCD
DC 9XDCD EXTENDED DCOD

48-190 F00 R0O

2-25

2-26

&NOXDCD ANOP
ORG DCBYOFFS+DCB.DMT
DC DMT_%NAME A (DMT ENTRY)
EXTRN DMT_%NAME
AIF ('ZRQU' EQ '')&NOQU
ORG DCBYOFFS+DCB.Q
DAC %RQU
EXTRN %RQU
&NOQU ANOP
AIF. (T'Y%RECLN EQ 'U')&NORECLN
ORG DCBYOFFS+DCB.RECL RECORD SIZE
DC H'YRECLN'
&NORECLN ANOP

ORG $STYOFES ORG TO END OF DCB
ASIS
END

%RDN SETA %DN+1
MEND

48-190 F00 ROO

Chapter 3

INCLUDING THE DRIVER IN YOUR OPERATING SYSTEM

3.1 INTRODUCTION

3.2 EXPANDING AND ASSEMBLING DRIVERS

3.3 SYSTEM GENERATION (SYSGEN) WITH CUPMT
3.4 SYSTEM GENERATION (SYSGEN) WITH SYSGEN/32
3.5 CUPMT VS. SYSGEN/32

10
16

CHAPTER 3

INCLUDING THE DRIVER IN YOUR OPERATING SYSTEM

3.1 INTRODUCTION

Special procedures are necessary at system generation (sysgen) time to include the driver into your
operating system. These include expanding and assembling the driver before incorporating the
driver into the sysgen configuration. Please note that although the Configuration Utility Program
(CUP) is no longer supported, instructions for sysgening with CUPMT have been included for those
users who work with older versions of OS/32.

3.2 EXPANDING AND ASSEMBLING DRIVERS

The conventional name for operating system and driver source modules is XXXX.MAC
(where XXXX is a symbolic name for the device which the driver controls). The command
substitution system (CSS) procedures which follow are typical procedures which can be used;
however, these can be modified for individual installations.

*EXPAND.CSS <name of module - (XXXX)>

XAL @1.CAL,IN,80/8

L .BG,MACR032,50

T .BG

AS 1,@1.MAC, SRO

AS 2,@1.CAL

AS 3,NULL: (this is the list file)
AS 7,SYSGEN.MAC/S, SRO
AS 8,SYSSTRUC.MLB/S, SRO
AS 9,5YSMACRO.MLB/S, SRO
AS 10,DVRM.MLB/S, SRO

AS 11,ITMS.MLB/S, SRO

AS 12,SYSMAC32.MLB/S, SRO
* ST,MLIBS=(8,9,10,11,12)
SEXIT

48-190 ¥00 R00 31

*ASSEMBLE.CSS <name of module - (XXXX)>

XAI, @1.0BJ,IN,126

XAL @1.LST,IN,132/10

L .BG,CAL32, 80

T .BG

AS 1,@1.CAL, SRO

AS 2,@1.0BJ

AS 3,@L.LST

ST, CROSS, SQUEZ, NLSTM, NUREX, NLSTU
SEXIT

The above code expands and assembles both CUP- and Sysgen/32-generated drivers. However, if it
is Sysgen/32, the device control block (DCB) requires special code which is explained below.

After the macro definition for the device is prepared, it must be included in the user’s macro

library. If this library, USERDLIB.MLB, does not currently exist, it must be created by the macro
library utility.

«

L MLU32

ST

> ESTABLISH USERDLIB.MLB

> INCLUDE DCB240.MAC (include user DCB/CCB definition)
> S*

> END

If the macro library already exists, use the GET command rather than the ESTABLISH command.

If you are replacing DCB240 with a newer version, use the DELETE command before you do the
include.

L MLU32

ST

> GET USERDLIB.MLB

> DIR {this lists all macros in the library
DCB240

> DELETE DCB240
> INCLUDE DCB240.MAC (include the new DCB/CCB definition)

> S*

> END

For CUPMT-generated systems, it is a requirement that the NUREX option to Common Assembly

Language/32 (CAL/32) be used. If this option is not used, FRMT errors from CUPMT may be
generated.

3-2 48-190 F00 R00

3.3 SYSTEM GENERATION (SYSGEN) WITH CUPMT

For those users who have software release R06 or lower, this section is necessary. If you have
software release R0O7 or higher, you may continue on to Section 3.4.

The following is a discussion of the relationship of the statements in the CUP file to elements in the
DCB.

*Sample device configuration statement in CUP file.

1 DEV:64, 247

where:

1 is a control number for CUP

DEV is the device mnemonic name by which the user references the device
through the "assign" function. This does NOT appear in the DCB. However,
the address where this name can be found appears at DCB.DMT.

64 is the physical device address is determined by the hardware configuration.
This entry in the configuration statement must agree with hardware address
settings. This value appears in the DCB as the 16-bit (halfword) value
DCB.DN.

247 is the device type code that is defined in the DCB.DCOD field. This is the

code used by CUP to select a particular device driver. The DCB definition
statement DCB DCOD=247 corresponds to this value.

To build a new version of OS/32 incorporating a custom device interface, the following files are
required. All of these files, with the exception of USERDLIB.LIB (the file you will build to
contain your driver) are supplied by Perkin-Elmer with OS/32:

SYSGEN1.CSS SYS.LIB CUPMT. TSK
SYSGEN2.CSS ITBSYS.LIB LIBLDR.TSK
SYSGEN3.CSS DRIVER.LIB LINK.TSK
ITBDLIB.LIB
UBOT.OBJ

USERDLIB.LIB
configuration file

The "SYSGEN1" procedure provided with OS$/32 software packages assumes that all customer-
provided drivers are contained in a file named USERDLIB.LIB, in whatever account is used for
doing the sysgen procedure. Therefore, the incorporation of customer drivers requires only that
the customer driver source file be macro-expanded, assembled and the resultant object file be
placed in a file known as USERDLIB.LIB. These procedures can be customized to your
installation (i.e. list files can be assigned instead of the printers, etc.) The following procedure
can be used to build USERDLIB.LIB.

48-190 F0O R00 33

$BUILD USERDLIB.CMD
FI 2 DCBXXX

co 2,1

RW 2

Cco 2,1

END

$ENDB

L. .BG,LIBDLR

T .BG

AS 1,USERDLIB.LIB
AS 2,DRVR.OBJ, SRO
AS 5,USERDLIB.CMD
ST

The following is a sample of a configuration file:

ACCOUNTING 4
VERSION 11-18-83
CPU 3210

MEMORY 4096
CLOCK 60, 6C, 6D
BACKGROUND 128,50
CMDLEN 80

CSS 8

DATE MMDDYY
DEVADS O

" DIRECTORY
DISCBLOCK 255
DSYS 200
ERRORREC SYS:ERROR.LOG, 200, 5
FLOAT H,H

ITAM

JOURNAL O
LOGLEN 80
MAXTASK 40
MODULE

INTC.EO2

ENDM

ROLL SYS

SPOOL SYS

TEMP SYS

VOLUME SYS
DEVICES

34

¥ % % % X * X ¥ % ¥ ¥ ¥ % %

»

* % % % *»

3210

3210 WITH 8 REGISTER SETS

4 MEGABYTES OF MEMORY
STANDARD CLOCK ADDRESSES

.BG MAXPRI=128,MAXSYS1=-=50KB
COMMAND LENGTH = 80 BYTES
CSS NESTING LEVEL = 8

U.S. DATE FORMAT

MAX DEVICE ADDR = X'FFE'

CORE DIRECTORY SUPPORT

MAX BLOCK SIZE = 255 SECTORS
SYS SPACE ALLOCATION

SUPPORT MEMORY ERROR LOGGING
SOFTWARE FLOATING POINT

NO JOURNAL SUPPORT
LOG MESSAGE BUFFER LENGTH
40 CONCURRENT TASKS

ROLL VOLUME = SYS

SPOOL VOLUME = SYS

TEMP VOLUME = SYS
SYSTEM VOLUME = SYS
BEGIN DEVICE STATEMENTS

48-190 F00 RO0

D80:EC,53,D

D300:ED, 54,D
XXXX:64, 247

ENDD

ENDC

1 CON:10,39,C,XD

1 CRT1:12,39,,XD

1 CRT2:20,39,.XD

1 CRT3:22,39, .XD

1l CRT4:24,39,.XD

1 CRT5:26,39,,XD

1 CRT6:28,39,,XD

1 CRT7:2A,39,,XD

1 CRTS8:2C, 39, ,XD

1 CRT9:2E, 39, ,XD
1 LP:62,113

1 PR:0,0,8

1:F1,0

2:0,0

3 MAG1:C5,70

2:EB,O

3

3

1

First Step of Sysgen Procedure:

*

**SYSGEN1.CSS

$IEFNULL @1

*
*
*

%

b 3

* %

CONSOLE-550 ON COM-MUX
CRT AT ADDRESS X'12'
CRT AT ADDRESS X'20'

LINE PRINTER

SPOOL DEVICE

SELCH F1--FOR DISK DEVICES
MAG TAPE CONTROLLER

6250 BPI TELEX TAPE AT X'c5'

user developed device

[CUP ED], [SEGSIZE]

S$WR ***@0: CONFIGURATION STATEMENT EFD OMITTED

$CLEAR
SENDC
EXIST @1

EXIST DRIVER.LIB/S -
EXIST ITBDLIB.LIB/S

XDE CUPOUT.OBJ

AL CUPOUT.OBJ,IN,126/2

$IFNULL @2
LO .BG, CUPMT
$ELSE

LO .BG,CUPMT, @2

SENDC
TA .BG

48-190 F00 R00

AS 1,@1,SRO

AS 2,CUPOUT.OBJ
AS 3,PR:

$IFX USERDLIB.LIB

AS 4,USERDLIB.LIB, SRO

$ELSE
AS 4,NULL:
$ENDC
AS 5,DRIVER.LIB/S, SRO
$IFX ITED2780.LIB/S

AS 6,ITED2780.LIB/S, SRO

$ELSE
AS 6,NULL:
$ENDC
$IFX ITEDZDLC.LIB/S

AS 7,ITEDZDLC.LIB/S, SRO

SELSE
AS 7,NULL:
$ENDC
$IFX ITED327S.LIB/S

AS 8,ITED327S.LIB/S,SRO

SELSE
AS 8,NULL:
SENDC
$IEX ITED327E.LIB/S

AS 9,ITED327E.LIB/S, SRO

SELSE
AS 9,NULL:
$ENDC
$IFX ITBDLIB.LIB/S

AS 10,ITBDLIB.LIB/S, SRO

SELSE
AS 10,NULL:

 $ENDC

$IFX DRIVER.LIB/S

AS 11,DRIVER.LIB/S, SRO

$ELSE
AS 11,NULL:
SENDC
START
$IENE O

SWR ***@0: ERRORS DETECTED BY CUP

DEL CUPOUT.OBJ

48-190 F00 R00

$CLEAR
$ENDC
$WR *** ENTER SYSGEN2 IMPURE,PURE [,SEGSIZE]
SEXIT

Second Step of Sysgen Procedure:

**SYSGEN2.CSS [IMPURE], [PURE], [SEGSIZE]

$IFNULL @1
$WR ***@0: MISSING PARAMETER (IMPURE BIAS)
$CLEAR
$ENDC
$IENULL @2
$WR ***@0: MISSING PARAMETER (PURE BIAS)
$CLEAR
$ENDC
EXIST SYS.LIB/S
EXIST ITBSYS.LIB/S
EXIST UBOT.OBJ/S
" EXIST CUPOUT.OBJ
XAL LIBLDOUT.OBJ,IN,126
XDEL LIBLDR.CMD
$BUILD LIBLDR.CMD
TO FFFEF
oU 2
BI @1
PB @2
LO 1
ED 1
ED 4
ED 6
ED 7
ED 8
ED 9
ED 10
ED 11
ED 12
ED 13
X0
MA 3
AM 3
EN
$ENDB

48-190 F00 R00

$IFNULL @3
LO .BG,LIBLDR
$ELSE
LO .BG,LIBLDR, @3
" $ENDC
TA .BG
AS 1,CUPOUT.OBJ
AS 2,LIBLDOUT.OBJ
AS 3,PR:
AS 5,LIBLDR.CMD, SRO
AS 4,SYS.LIB/S,SRO
$IFX USERSYS.LIB
AS 6,USERSYS.LIB, SRO
$ELSE
AS 6,NULL:
$ENDC
$IFX ITES2780.LIB/S
AS 7,ITES2780.LIB/S, SRO
$ELSE
AS 7,NULL:
$ENDC
$IFX ITESZDLC.LIB/S
AS 8,ITESZDLC.LIB/S, SRO
$ELSE
AS 8,NULL:
$ENDC
$IFX ITES327S.LIB/S
AS 9,ITES327S.LIB/S, SRO
$ELSE
AS 9,NULL:
$ENDC
$IFX ITES327E.LIB/S
$ELSE
AS 10,NULL:
$ENDC
$IFX MCONFIG.OBJ
AS 11,MCONFIG.OBJ
$ELSE
AS 11,NULL:
$ENDC
AS 12,ITBSYS.LIB/S,SRO
AS 13,UBOT.OBJ/S, SRO
. START

3-8

48-190 F00 R00

$IENE O
$WR ***@0: ERRORS DETECTED BY LIBLDR
XDEL LIBLDOUT.OBJ,LIBLDR.CMD

$CLEAR '

$ENDC

XDEL CUPOUT.OBJ,LIBLDR.CMD

$WR *** ENTER SYSGEN3 ,OSFD [,SEGSIZE]

SEXIT

Third Step of Sysgen Procedure.

**SYSGEN3.CSS [1. [0S ED], [SEGSIZE]
* %
$IENULL @2
$WR ***@0: MISSING PARAMETER (OUTPUT ED)
$CLEAR
$ENDC
EXIST LIBLDOUT.OBJ
XDEL @2
$BUILD LINKOS.LNK
ESTAB 0S
MAP PR:
INCL LIBLDOUT.OBJ
BUILD @2
END
$ENDB
$IFNULL @3
1O .BG,LINK
. $ELSE
LO .BG,LINK,@3
SENDC
TA .BG
ST ,C=LINKOS.LNK,L=PR:
$IFNE O
SWR ***@0: ERRORS DETECTED BY LINK
XDE LINKOS.LNK,@2
$CLEAR
$ENDC
XDE LINKOS.LNK,LIBLDOUT.OBJ
$WR *** OS @2 LINKED ***
$EXIT

48-190 F00 R00

3.4 SYSTEM GENERATION (SYSGEN) WITH SYSGEN/32

The following is a discussion of Sysgen/32 device specification statements.

The device has the following characteristics:

Device Name = NEWD
Address = X'64'
Device Code = 247

This device operates on the multiplexor (MUX) bus:

DEVICES

NEWD:, 64, 247

ENDD
DEVICES
NEWD: , 64, 247, SELCH=FO, CONTR=0
ENDD

COPY

MCALL DCBI,CCBI, CONVNUM, EVNGEN,

ENDCOPY

ACCOUNTING = 4,NOFILEACCOUNTING
BACKGROUND 128,50

CLOCK = 60,6C,6D

CMDLEN = 80

CPU = 3210

CSS = 8

DATE = MMDDYY
DEVADS = O
DIRECTORY
DISCBLOCK = 255
DSYS = 1024

ERRORREC = SYS:ERROR.LOG, 1024, 2
FLOAT = H,H

ILEVEL = O

INTERCEPT

IREADER

ITAM

JOURNAL = O

LOGLEN = 80

MAXTASK = 32

MMDGEN

*4 accounting classes

* . bg maxpri=128, sys=50KB
*standard clock addresses
*80 byte command buffer
*processor model 3210

*8 levels of CSS nesting
*U.S.A. date format

*less than 256 devices
*secondary directory support
*permit max blocking

*] MB of system space

*error log readout .. 2 min.
*hardware floating point
*all interrupts on level O
*permit SVC interception
*permits use of SVC 2,14

*don't waste time on journal
*message buffer silze
*default for max# of tasks

MCONFIG BLOCK=0, START=0,RANGE=4, INTERL=0 *mem config for err log

MEMCHECK
MEMORY = 4096

3-10

*verlfy mem exists at IPL
*4 MB system

48-190 FO0 R0O

SPL32 " *spool32 support

SSTABLE = 32 *shared segment tbl entries
TEMP = SYS _ *temp volume = 'SYS'
VERSION = 08321212 *6.2 os bulld on Dec 12.
VOLUME = SYS *system volume = 'SYS'
DEVICES * BEGIN DEVICE STATEMENTS

* System console.

CON:, 10, 39, CONSOLE, CLOCK=XD *system console-fast clock
* Crt type devices. '
* a. Non-bioc CRT driver is selected by USER=(CRT=1).
* b. Fast clock is selected by XD.
NEC:,12,40,REC=132,81Z=66, XD=X6966

IPC:,12, 39,REC=132, CLOCK=XB

CRT2:, 20,156, XDC=X0030,RECL=132,PAD=3
WPO2:, 20, 39, CLOCK=XD

CRT3:, 22,156, XDC=X0030,RECL=132,PAD=3
WPO3:,22, 39, CLOCK=XD

CRT4:, 24,156,XDC=X0030,RECL=132, PAD=3
WPO4:, 24, 39, CLOCK=XD

CRT5:, 26,156, XDC=X0030,RECL=132, PAD=3
WPOS5:, 26, 39, CLOCK=XD

CRT6:, 28,156, XDC=X0030,RECL~=132, PAD=3
WPO6:, 28, 39, CLOCK=XD

CRT7:, 2A,156,XDC=X0030,RECL=132,PAD=3
WPO7:, 2A, 39, CLOCK=XD

*CRT8:, 2C, 156, XDC=X0030,RECL=132,PAD=3
MODA:, 2C, 156, XD=X0810,RECL=132
WPO8:, 2C, 39, CLOCK=XD

CRT9:, 2E, 156, XDC=X0030,RECL=132, PAD=3
WPO09:, 2E, 39, CLOCK=XD

*printers

LP:,62,113

D80OA: ,EC,53,SELCH=F1, CONTR=EB

D300: ,ED, 54, SELCH=F1, CONTR=EB
MAGl:,C5, 68, SELCH=F1, CONTR=0

XXXX:,b 64, 247 *user developed device
- ENDD

ENDC

Once the specifications have been placed in the configuration file (named xxxxxxxx.sys), sysgen is
performed by typing SYSGEN xxxxxxxxx, from account 0. The procedures can be modified to look
for the macro libraries and other files required on any account which you choose. The following
procedures are used with Sysgen/32 for the sysgen procedure:

48-190 F00 R00 3-11

**SYSGEN.CSS
* %

** THIS CSS IS THE FIRST ONE USED TO RUN THE SYSGEN32 PROCEDURE

* &

**+ @1 = CONFIGURATION STATEMENT INPUT FILE (REQUIRED)
** @2 = CORE INCREMENT FOR SYSGEN32 TASK (OPTIONAL)
** @3 = VOLUME FOR LIBRARIES (.MLB & .LIB) (OPTIONAL)
** @4 = MACRO AND CAL LISTING FLAG. @1.PRT FILENAME (OPTIONAL)
*k USED DEFAULT IS ERROR MESSAGES TO @1.PRT ONLY.

** @5 = FILE SAVE FLAG. CSS WILL SAVE ALL INTERMEDIATE (OPTIONAL)
* % FILES CREATED IN THE SYSGEN PROCESS. DEFAULT IS

*k TO DELETE ALL INTERMEDIATE FILES.

** @6 = MACRO & CAL LIST FILE- DEFAULT IS @1.PRT (OPTIONAL)
* &

$WR * SYSGEN.CSS

SWR *

SWR * STATEMENT FORMAT: SYSGEN CS,CI,V,LF,SF,MCL

SWR *

$WR * CS = CONFIGURATION STATEMENT INPUT FILE (REQUIRED)
$WR * CI = CORE INCREMENT FOR SYSGEN32 TASK (OPTIONAL)
$WR * V = VOLUME FOR LIBRARIES (.MLB & .LIB) (OPTIONAL)
“$WR * LF = MACRO AND CAL LISTING FLAG. (OPTIONAL)
$WR * DEFAULT IS ONLY ERROR MESSAGES TO @1.PRT.

$WR * SF = FILE SAVE FLAG. CSS WILL SAVE ALL (OPTIONAL)
SWR * FILES CREATED IN THE SYSGEN PROCESS.

SWR * DEFAULT IS TO DELETE ALL INTERMEDIATE FILES.

$WR * MCL= MACRO & CAL LIST FILE- DEFAULT IS 'CS'.PRT (OPTIONAL)
SWR *

SWR * EXAMPLE : SYSGEN 0S32SYS, 30,M300:,,,CON:

$CL ; $ENDC

SYSGEN32 @1,@2

**SYSGEN32.CSS

* %

** THIS CSS IS USED TO RUN THE FIRST PART OF SYSGEN32 PROCEDURE
* &

* % @l
** @2
* *
$IFNULL @1; $WR *** INPUT FILENAME MISSING ***; $CLEAR; $ENDC
$IENX @1.SYS

$WR *** INPUT FILE @1.SYS DOES NOT EXIT, SYSGEN32 ABORTED ***; $CL

CONFIGURATION STATEMENT INPUT FILE (REQUIRED)
SIZE INCREMENT FOR TASK (OPTIONAL)

3-12 48-190 F00 R00

$ENDC

XDE @1.MAC

XAL @1.LST,IN,132/5

$IFNULL @2 ' ,

LO .BG,SYSGEN32; TA .BG

$ELSE

LO .BG,SYSGEN32,@2; TA .BG

$ENDC

ST ,IN=@l.SYS,OUT=@1.MAC,LIST=@l.LST

$IFNE O; $WR *** SYSGEN32 ERROR ***; $CLEAR; $ENDC

$EXIT

SYSMACRO @1,@3,@4,@5,@6

SYSLINK @1,@3,@5

SEXIT

**SYSMACRO . CSS

* *

** THIS CSS IS THE SECOND ONE USED IN THE SYSGEN32 PROCEDURE
** IT WILL EXPAND AND ASSEMBLE THE MACROS GENERATED BY SYSGEN32

* *

** @1 = CONFIGURATION INPUT FILE NAME (REQUIRED)
** @2 = VOLUME WITH MACRO LIBRARIES (OPTIONAL)
** @3 = LISTING PROVIDED IF NOT NULL (OPTIONAL)
** @4 = DO NOT DELETE FILES (OPTIONAL)
** @5 = LIST FILE- DEFAULT IS @1.PRT (OPTIONAL)

* %

$IEFNULL @1; $WR *** INPUT FILENAME MISSING ***; $CLEAR; $ENDC
$IFNX @1.MAC

$WR *** MACRO FILE @1.MAC DOES NOT EXIST, SYSGEN ABORTED ***; $CL
$ENDC

XAL. @1.CAL,IN,80/20

LO .BG,MACR0O32/S,50; TA .BG

AS 1,@1.MAC, SRO

AS 2,@1.CAL,EWO

$IENULL @5

XAL @1.PRT,IN,132

AS 3,@1.PRT,SWO

$ELSE

AS 3,@5, SWO; $ENDC

MLBCK @2SYSGEN32,8

MLBCK @2DVRM, 9

MLBCK @2ITMS, 10

MLBCK @2SYSSTRUC, 11

MLBCK @2SYSMACRO, 12

48-190 F00 R00 3-13

*MLBCK @2ITED327S,13

*MLBCK @2ITED327E, 14

SIFX USERDLIB.MLB

AS 7,USERDLIB.MLB, SRO

$IFNULL @3

ST ,MLIB=(7,8,9,10,11,12), BATCH, MLIST=(ND, NG)

* 8T ,MLIB=(7,8,9,10,11,12,13,14), BATCH, MLIST=(ND, NG)
$ELSE

ST ,MLIB=(7,8,9,10,11,12), BATCH

* ST ,MLIB=(7,8,9,10,11,12,13,14), BATCH

$ENDC

$ELSE

$IENULL @3

ST ,MLIB=(8,9,10,11,12), BATCH, MLIST= (ND, NG)

* ST ,MLIB=(8,9,10,11,12,13,14),BATCH, MLIST=(ND, NG)
$ELSE

ST ,MLIB=(8,9,10,11,12),BATCH

* ST ,MLIB=(8,9,10,11,12,13,14),BATCH

$ENDC

$ENDC

$IENE O

$WR *** ERRORS IN MACRO EXPANSION, SYSGEN ABORTED ***: $CL
$ENDC

* %k ok

+* ASSEMBLE THE EXPANDED MACRO CODE **
* %k

$IFNULL @4; XDE @1.MAC: $ENDC

XAL @1.0BJ,IN,126/5

LO .BG,CAL32/S,50; TA .BG

AS 1,@1.CAL, SRO
"AS 2,@1.0BJ,EWO

$IFNULL @5

AS 3,@1.PRT, SWO

$ELSE

AS 3,@5, SWO; $ENDC

TE 5, 1IN, 256/5/10

$IFNULL @3; ST ,BATCH,NOSQZ, NLIST

SELSE; ST ,BATCH,NOSQZ,NLSTU,NFREZ; $ENDC
SIENE O

$WR *** ERRORS IN ASSEMBLY, SYSGEN ABORTED ***: $CL
$ENDC

$IFNULL @4: XDE @1.CAL; XDE @1.PRT; $ENDC

SEXIT

3-14 48-190 F00 R00

**SYSLINK.CSS
* %

** THIS CSS IS THE LAST USED IN THE SYSGEN PROCEDURE

** IT WILL LINK THE OBJECT CREATED BY CAL WITH THE APPROPRIATE
** LIBRARIES TO PRODUCE THE OS. THE MAP FOR THE OS WILL BE

** APPENDED TO THE LIST FILE.

* %

** @1 = CONFIGURATION INPUT FILE NAME (REQUIRED)
** @2 = VOLUME WHERE SYSTEM AND DRIVER LIBRARIES RESIDE (OPTIONAL)
** @3 = SAVE LINK CMD FILE - DEFAULT IS DELETE (OPTIONAL)
* %

$IFNULL @1

$WR *** INPUT FILENAME MISSING *#*

$CLEAR

$ENDC

$IFNX @l.0BJ
$WR *** OBJECT OF OS @L.0BJ MISSING **#*
$CLEAR

$ENDC

$BUILD @1.LNK

NLOG

ESTAB 0S

INCL @1.0BJ

$ENDB

SYSCHECK @1,USERDLIB.LIB,1
SYSCHECK @1,USERSYS.LIB,1
SYSCHECK @1,@2DRIVER.LIB
SYSCHECK @1,@2SYS.LIB
SYSCHECK @1,@2ITBDLIB.LIB,1
SYSCHECK @1,@2ITBSYS.LIB
SYSCHECK @1,@2ITES2780.LIB,1
SYSCHECK @1,@2ITED2780.LIB,1
SYSCHECK @1,@2ITEDZDLC.LIB,1
SYSCHECK @1,@2ITESZDLC.LIB,1
*SYSCHECK @1, ITED327S.LIB,1
*SYSCHECK @1, ITED327E.LIB,1
SYSCHECK @1, @2UBOT.OBJ
$BUILD @1.LNK,APPEND

MAP @1.LST,ADDR,ALPHA

BUILD @1.0S

END

$ENDB

XDE @1.0S

48-190 F00 R0OO 3-15

~LO .BG,LINK.TSK/S,100: TA .BG
ST ,COMM=@1.LNK, LOG=NULL:
$IENE O; $WR *** LINK ERROR ***; SCLEAR; $ENDC

$IFNULL @3

XDE @1.LNK;$ENDC

SWR 0S MAP ==> @1.LST
$WR 08 OBJ ==> @1.0BJ
$WR 0S TSK ==> @1.0S
SEXIT

*

3.6 CUPMT VS. SYSGEN/32

It is appropriate to introduce here a discussion of the major differences between CUPMT and
SYSGEN/32. The differences lie in the specification of a shared busy condition and specification
of controllers without specific device addresses.

A shared busy condition (a common leaf) must exist if a device shares the same address as
another device. (This is not necessarily true for pseudo-devices.) When generating a system with
CUPMT, this condition was specified explicitly by an asterisk as the control number, in column
1 of the device(s) sharing the busy condition. With Sysgen/32, the shared busy condition is set
automatically by the program if the device address specifications are the same.

Under CUPMT, a shared busy condition must be explicitly declared:

3 D8OF:FC,62,D
* D16R:FC,59,D

Under CUPMT, controllers are on separate SELCHs:

1:FO0,0

2:0,0 specify the controller as zero
3 MAG1:85,65

1:F1.,0

2:0,0 specify the controller as zero

3 MAG2:C5,65

Under Sysgen/32, a shared busy condition is generated automatically when the same address is
specified:

D8OF: ,EC, 62, SELCH=FO, CONTR=FB
Dl1éR: ,EC, 59, SELCH=FO, CONTR=FB

In addition, under SYSGEN32 controllers are on separate SELCHs:

MAG1:, 85,65, SELCH=FO, CONTR=0
MAG2:,C5, 65, SELCH=F1, CONTR=1

3-16 48-190 F00 ROO

CHAPTER 4
SAMPLE DRIVERS
4.1 INTRODUCTION

4.2 SAMPLE DRIVER FOR DIGITAL INPUT/OUTPUT (DIO) INTERFACE
4.3 TELEX TRIDENSITY MAGNETIC TAPE DRIVER

CHAPTER 4

SAMPLE DRIVERS

4.1 INTRODUCTION

This chapter provides two sample drivers as models. The first, a digital input/output (DIO) driver,
is a very simple and typical driver. The other sample driver, a TELEX tridensity tape driver, is a
complex driver containing many of the possible features that can be found in a driver.

4.2 SAMPLE DRIVER FOR DIGITAL INPUT/OUTPUT (DIO) INTERFACE

The driver for DIO is a typical driver needed by users seeking an interface with the operating
system. It is a very simple driver written under a selector channel (SELCH), and it provides an
interface in a situation where the configuration is unlike the one supported by the standard Perkin-
Elmer driver. In this driver, starting in column 73, a description of the code, i.e., the driver
initialization routine (DIR), interrupt service routine (ISR), event service routine (ESR) and I/O
handlers (IOH), is provided. Where more than one of these routines occur, a sequence code (1-9, or
a-z) follows the basic description.

THE FOLLOWING DRIVER

BASIC DRIVER LOGIC - CASE 7

IS PROVIDED TO ILLUSTRATE PROGRAMMING OF A

* RELATIVELY STRAIGHT FORWARD DIO DEVICE

BATCH

**SDIO

MLIBS 8,9,10,11
SDIO $DVPROG TAL I/0,05, 07-083 $REGS$

DCB
$CCB
$TCB

ENTRY INITSDIO, TERMSDIO

EXTRN IODONE, SQ,ISPTAB,DIRDONE,III
EXTRN TOCHON, TOCHOEF
TITLE INITIATION PHASE FOR DIGITAL I/O

* INITSDIO
LHI
L
THI
BNZ
LHI
LH
LH

48-190 F00 R0OO

EQU *
U1,X'8600"
U6, DCB. SADR (UD)
U6, 1
SDIOSTAT
U1,X'CO00"
U9, DCB.DN (UD)
UA, DCB.EC (UD)

POSSIBLE ERROR CODE: SET UP
GET START ADDRESS

IS IT ON HW BOUNDARY?

NO, ERROR

POSSIBLE ERROR CODE: SET UP
GET DEVICE ADDRESS

GET FUNCTION CODE

structs
structs
structs
entrys
extrns

extrns

dir
dir
dir
dir
dir
dir
dir

4-1

THI
BNZ

BNZ

SDIOREAD EQU

BZ
EQU
LH
LHI
oc
BTC
LHI
STH
LIS
STH
BAL
LHL
LA
STH
LA
LH
STH
LH
SINT

SDIOCOM

ALIGN
STOPSEL DC
ALIGN
SDIOSTAT EQU
LIS
ST
STH

B
*

* TRANSFER INITIATION

*

PURE
EQU
L
THI
BNZ

ISRSDIO

UA,X'4000"
SDIOREAD

U9, 1

SDIOSTAT
SDIOCOM

*

U9, 1

SDIOSTAT

*

UB, DCB. SDN (UD)
U1,X'A000"

UB, STOPSEL

4, SDIOSTAT
U2,X'7FFE"’

U2, DCB. TOUT (UD)
U2,0
U2,DCB.STAT (UD)
U8, TOCHON

UC, DCB. CCB (UD)
U2, ISRSDIO

U2, CCB.SUBA (UC)
U2,1 (UC)

UB, DCB. SDN (UD)
U2, ISPTAB (UB, UB)
Us, DCB. ILVL (UD)
U8, 0 (UB)
DIRDONE

2

X'4800"

4

*

U2,0
U2,DCB.LLXF (UD)
U1l,DCB.STAT (UD)
IODONE

INTERRUPT

*

E5, CCB.DCB (E4)
E3,X'34'
FALSYNC

IS IT A READ?
YES, BRANCH

IS DEV ADDR ODD?
YES, ERROR

IS DEV ADDR EVEN?
YES, ERROR

GET SELCH ADDRESS

POSSIBLE ERROR CODE: SET UP
RESET THE SELCH

IF FALSE SYNC, ISSUE D.U. STAT
SET TIME OUT TO 'DON'T CARE'

* UNTIL ISR IS STARTED

CLEAR DEV STAT - WE WILL USE THIS
* AS A FLAG BETWEEN ISR AND ESR.
GO GET ON TIMER CHAIN.

GET CCB

ISR RETURN ADDRESS

PUT IN CCB

GET CCB ADDR + 1

GET SELCH ADDRESS

PUT IN ISPTAB

GET INTERRUPT LEVEL

FIRE UP SELCH

ZERO LLXE
STORE IN STATUS
QUIT

GET DCB ADDRESSS
CHECK STATUS ON SELCH
DEVICE UNAVAILABLE

dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir

err
err
err
err
err

isrl
isrl
isril
isrl
isril

48-190 F00 R00

LH E6,DCB.DN (ES)
oc E6, X80
BTC 4,FALSYNC
oc E2, STOPSLCH
WD E2,DCB.SADR+1 (E5)
WH E2,DCB.SADR+2 (ES)
WD E2,DCB.EADR+1 (E5)
WH E2,DCB.EADR+2 (E5)
LA E3,ISRISDIO
STH E3,CCB.SUBA (E4)
LIS E3,5
STH E3,DCB.TOUT (ES5)
*
LH E7,DCB.FC (ES)
THI E7,X'4000"
BNZ ISRSELRD
WH E6, X00
oc E2, SELCHWRT
LPSWR EO
ISRSELRD EQU *
RHR E6,E7
oc E2, SELCHRD
LPSWR EO
*
FALSYNC EQU *
LHI E6,X'A000’
STH E6,DCB.STAT (E5)
B ISRDSARM
X80 DC X'8000"
X00 DC X'0000"
SELCHWRT DB X'14"
SELCHRD DB X'34"
STOPSLCH DB X'48"
ALIGN 4

*

* OPERATION COMPLETE INTERRUPT.

*

ISR1SDIO EQU
L
THI
BZ
LHI
STH

48-190 F00 R0O

*

E5, CCB.DCB (E4)
E3,X'34'
ISRDSARM
E7,X'8400"
E7,DCB.STAT (E5)

GET DEVICE NUMBER

DISABLE INTERRUPTS EROM DIO

IF DIO GIVES FALSE SYNC, EXIT NOW

WE ARE NOW COMMITTED TO DOING THE

* TRANSFER, SO GET THE START AND

* END ADDRESSES WRITTEN TO THE SELCH

*

*

ISR RETURN ADDRESS

SET 5 SECOND TIMEOUT.

GET FUNCTION CODE
IS IT A READ?

YES, BRANCH

PRIME OUTPUT DEVICE
START SELCH

PRIME INPUT DEVICE
START SELCH

DEVICE UNAVAILABLE
SAVE IN STATUS

GET DCB ADDRESS

BAD STATUS ON SELCH?
IF NO PROBLEM, GO ON
UNRECOVERABLE ERROR

isrl
isrl
isrl
isrl
isrl
isrl
isrl
isrl
isrl
isrl
isrl
isrl
isrl
isrl
isrl
isrl
isrl
isrl
isrl
isrl
isrl
isrl
isrl

isr2
isr2
isr2

isr2

isr2
isr2
isr2
isr2
isr2
isr2
isr2
isr2

ISRDSARM EQU

ISRRTN

*

LA
STH
LHI
LH
STH
BZ

L

ATL
LPSWR
EQU
LHI
STH
LPSWR

*

E3,III

E3,ISPTAB(E2,E2)

E3,Y'7FFF'

E7.,DCB.TOUT (E5)
E3,DCB.TOUT (ES5)
ISRRTN

E7.DCB.LEAF (E5)
E7,8Q

EO

*

E3,X'8298'
E3,DCB.STAT (E5)
EO

* EVENT SERVICE ROUTINE.

*

TERMSDIO

TDIOCHOF

*

XFERERR

IMPUR
EQU
LH
BNZ
LH
oc
RDR
RHR
SLL
OR
c
BP
S
BM
AIS
ST
LH
BNZ
LHI
STH
EQU
BAL

EQU
LIS

*

U9, DCB. STAT (UD)
XFERERR

U9, DCB. SDN (UD)
U9, STOPSEL

U9, UA

U9, UB

UA, 16

UA,UB

UA, DCB.EADR (UD)

SLCHFAIL

UA, DCB. SADR (UD)

SLCHFAIL

UA,1

UA, DCB.LLXF (UD)
Us, DCB. TOUT (UD)
TDIOCHOF
U6,X'8298"
U6, DCB. STAT (UD)
*
U8, TOCHOEF
IODONE

Uo,0

RESET THE INTERRUPT VECTOR

* SO THAT THERE WILL BE NO STRAY
THIS WILL RESET TIMEOUT VALUE
DID WE TIME OUT?

CLEAR TIMEOUT COUNTER

YES, DON'T SCHEDULE TERM

PUT LEAF ADDRESS ON SYSTEM QUEUE
AND EXIT ISR

SET TIMEOUT ERROR CODE

*

DID WE GET AN ERROR?

IF SO, DO SPECIAL STUEE.

GET SELCH ADDRESS

STOP SELCH, EXTENDED ADDRESS READ
READ SELCH FINAL ADDRESS

(ALL 3 BYTES)

MAKE A 24 BIT WORD OUT OF THIS
GOT FINAL SELCH ADDRESS NOW.
DID IT EXCEED SPECIFIED FINAL?
IF SO, EXIT.

CALCULATE LENGTH OF TRANSFER
IF WE WENT BACKWARDS - FAILED.
ARITHMETIC ADJUSTMENT

GIVE USER LENGTH OF TRANSFER.
TIMED OUT?

NO, BRANCH

UNRECOVERABLE ERROR

REMOVE FROM TIMER CHAIN
WE 'RE THROUGH

CLEAR LENGTH OF TRANSFER

isr2
isr2
isr2
isr2
isr2
isra
isr2
isr2
isr2
isr2
timeout
timeout
timeout

timeout

esr
esTr
esr
esr
esr
esr
esr
esr
esr
esr
esr
esr
esr
esr
esr
esr
esTr
esr
esr
esr
esr
esr
esr
esr

esr

err

err

48-190 F00 R0O

ST UO,DCB.LLXF (UD) . *

LHI UO,X'7FFEF' RESET TIME-OUT VALUE TO DONT CARE.
STH UO,DCB.TOUT (UD) *
BAL U8, TOCHOFF GET OFF TIMER CHAIN
B IODONE
SLCHFAIL EQU *
LHI UO,X'9000" INDICATE EOM ON SELCH
STH UO,DCB.STAT (UD)
B XFERERR *
END

err
err
err
err
2rY
err
err
err
2rr

The following device control block (DCB) shows the code required to write a DCB when using
CUPMT to generate the system. The DCB and channel control block (CCB) macros may be found

in SYSSTRUC.MLB. These macros are also listed in Appendix C of Part II of this manual.

**DCB143
MLIBS 8,9,10
NLIST
DPROG DCOD=143
LIST

EXTRN Z (CDN1)
* BUILD DCB FOR DIGITAL I/O DRIVER

DCB DCOD=143, INIT=INITSDIO, TERM=TERMSDIO,
ATRB=7F00, RECL=0, SIZE=DCB.DVDP+8,
FLGS=DFLG.LNM
DCB.IVAL EQU DCB.RTRY
ORG DCB143+DCB.IVAL
DC H'O' INITIAL VALUE
* DEVICE DEPENDENT PART
ORG DCB143+DCB.CCB
DC Z (CCB143) CCB
DC X'0'
ORG DCB143+DCB.SDN
DC Z (CDN1)

*

BUILD CCB FOR DIGITAL I/O DRIVER

CCB DCOD=143
NLIST

END

BEND

48-190 F00 R0O0

The following macro shows the DCB specification for the DIO driver when using Sysgen/32 for
sysgen. Note that the DCB specification is a separate macro file and is NOT & part of the driver (as
is the case in a CUPMT system). The DCBI and CCBI macros can be found in SYSGEN32.MLB.
These macros are also listed in Appendix C of Part II of this manual.

MACRO

DCB242 %DCOD=, %DN=, %CLAS=, 4ILVL=, NAME=, %SHCCB=, 1
%SLCH=, %CNTR=

GBLB %DCB$,%PDCB, DDCB, 4EVN, %CCB, %DFLG, %SDCB

GBLB %IDCB, %ODCB, %S125DCB, 41CCB, %BDCB

GBLB 9%ADCB, %TCB, 410B,%I0B%, %CRTDCB, %LPDCB

GBLB %MMDDX, %DDEX, 4VEDCB, %MTP, 4CRPDCB, ¥MGDCBX , HEWDST

GBLB %PSDCBX, %CRDP, %AOBDCB, 4BIOCDCB, 4LPTDCB

GBLB 9CORD242

GBLC %IDVAL

BGBLA %ID242

LCLA ¢CCBFL

LCLA %CLASN

LCLC %RXLT, %RQU

LCLC %CORDNM, PTRPAS

LCLC 9%OFFES

LCLA 9%RDN

LCLC 9%MDN, %MCNT, MSLCH

LCLA %TRCNT, %UPTR

LCLB 9%FOUND, %DA

BGBLA %FIRST

Z%RQU SETC 'CoMQ’ DEFAULT DEVICE QHANDLER
ZMDN SETC '¥DN' DEVICE ADDRESS

9CCBFL SETA O
9CORD242 SETB O
AIF (T'YCLAS EQ 'U')&CLSNTD

%CLASN SETA YCLAS*12 IOCLASS*12
&CLSNTD ANOP
CONVNUM VAL=%ID242 CONVERT CURRENT ID TO HEX.
USERINIT
DCB
DCBI DCOD=242,SIZE=DCB.DVDP+8, INIT=INITSDIO, 1
TERM=TERMSDIO, FLGS=DELG.LNM, 2

ID=%IDVAL, ATRB=7F 00

CCBI DCOD=242, ID=%IDVAL, SUBA=III
CCBYZNAME EQU CCBY%DCODY%IDVAL
%ID242 SETA %ID242+1

4-6 48-190 F0O0 R00

&DCBOPT ANOP
DCBYDCOD%IDVAL PROG USER DCB
%OFFS SETC '%DCOD':'Y%IDVAL' = ESTABLISH PROPER OFFSET
DCB.%NAME EQU DCBYOFES
ENTRY DCB.%NAME
ORG DCBYOFES+DCB.DMT
DC DMT . %NAME
EXTRN DMT.%NAME
ORG DCBYOFES+DCB.DN DEVICE ADDRESS
DC H'Y%DN'
DCB.IVAL EQU DCB.RTRY
ORG DCBYOFFS+DCB.IVAL
DC H'O'
ORG DCBYOFES+DCB.LEAF LEAF POINTER
AIF (T'%SHCCB' EQ 'U')&NSLEAF B IF NOT SHARED
DAC LEY%SHCCB USE SHARED DEVICE LEAF
EXTRN LE%SHCCB
AGO &NRMLFX
&NSLEAF ANOP
DAC LFYOFES GENERATE STANDARD LEAF NAME
EXTRN LEYOFES
&NRMLEX ANOP
&NOLEAF ANOP
AIF (T'%CLAS EQ 'U')&NOCLAS
ORG DCBYOFFS+DCB.CLAS IO CLASS
DC H'%CLASN' IOCLASS*12
&NOCLAS ANOP
ATF (T'%ILVL EQ 'U')&NOILVL
ORG DCBYOFFS+DCB.ILVL ILEVEL
DC H'Y%ILVL'
&NOILVL ANOP
AIF ('%RQU' EQ '')&NOQU
ORG DCBYOFES+DCB.Q
DAC Y%RQU
EXTRN %RQU
&NOQU ANOP ‘
AIF ('%SLCH' EQ 'U')&NSLCH
ORG DCBYOFFS+DCB.SDN
DC X'%SLCH'
&NSLCH ANOP
' AIF ('%CNTR' EQ 'U')&NCNTR
ORG DCBYOFES+DCB.CDN
DC X'%CNTR'

48-190 F00 R00

&NCNTR ANOP

ORG $STYOFES ORG TO END OF DCB
ASIS
END
%RDN SETA %DN+1
MEND

4.3 TELEX TRIDENSITY MAGNETIC TAPE DRIVER

This sample driver, a TELEX magnetic tape driver, was written to accommodate a modified
Perkin-Elmer 35-820 tape interface. This includes special device-dependent functions, such as
erase gap, rewind and unload, and read status. (Tridensity refers to the fact that it operates on
three different recording densities.) This driver, as opposed to the previous one, is a very complex
driver and was chosen as an example because it contains so many of the features that a driver is
capable of having. For example, a TELEX driver contains retry logic, multiple ESRs, and
supervisor call 1 (SVC1) command function processing. It also contains resource releases, a
mechanism by which you can release a particular resource (e.g., SELCH or controller) into the
system.

Note that in this type of driver, the ISR (PURE) code is put immediately after the DIR or
ESR that enters the ISR via a SINT. Similarly, the ESR code immediately follows the ISR that
schedules it. This is done to allow the reader to more easily follow the logic flow through the
driver. Also note that generally, in the case of conditional branches, the normal logic path is to
NOT take the branch. This is important because the driver is then easier to read and the
execution speed on the Model 3240/3250 processors is improved.

Of further interest is the fact that this driver happens to contain some sense status loops. This is not
normal practice in writing drivers and should be avoided whenever possible. The loops in this
driver were included after experimentally determining that the no-motion status bit was set after
a minimal amount of time, i.e., after a minimal number of times through the loop. Otherwise, if
the no-motion status bit is not set right away, the status loop is monopolizing too much of the
processor’s time, and it is preferable to set up an interrupt, which is the normal programming
practice in writing drivers. In this particular case, the status loop was necessary. .

4-8 48-190 F00 R00

BATCH
LCNT

MLIBS 8,9,10

SGN.EOV EQU
INITTELX PROG

%

*

* % ¥ %

*

*

NLIST
SUREGS
SEREGS
SPSW
$SVCl
$SVC7
SEVN
$IOH
DCB
$CCB
$TCB
STOPT
SMTP
LIST
TITLE
ENTRY
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
SPACE

STATUS BYTE DEEINITION.

50

1

USED BY $MTP MACRO

TELEX MAG TAPE DRIVER

ENTRY'S, EXTRN'S & EQUATES

INITTELX, CMDTELX, TERMTELX

ADCHKNS, DMT, EVREL, EVRTE, III, IODONE, ISPTAB
MEMFAULT, RELIOB, SQ, SV9,.ATQ1

SVC1BFM, SVC1BSR, SVC1DDF, SVC1EFEM, SVC1ESR, SVC1HALT
SVC1NOOP, SVC1READ, SVC1REW, SVC1TEST, SVC1WAIT
SVC1WEM, SVC1WRIT, TOCHOEF , TOCHON, UBOT

THE FOLLOWING STATUS INFORMATION MAY ALSO BE FOUND IN
THE PERKIN-ELMER HIGH PERFORMANCE TAPE DRIVE (HPTD)
CONTROLLER INSTALLATION AND MAINTENANCE MANUAL.

PUBLICATION NUMBER (47-028RO0).

THE CONTROLLER STATUS BYTE IS OBTAINED BY USE OF THE
SENSE STATUS OR SENSE STATUS REGISTER INSTRUCTIONS.

ERR EQU
TERR EQU
EOM EQU
NMTN EQU
BSY EQU
EX EQU

48-190 F00 R0OO

X's0'
X'40'
X'20'
X'io!
X'os'
X'o4'

ERROR STATUS

TRANSFER ERROR STATUS
END OF TAPE STATUS

NO MOTION STATUS

BUSY STATUS

EXAMINE STATUS

strucs
strucs
strucs
strucs
strucs
strucs
strucs
strucs
strucs
strucs
strucs

strucs

4-9

EOF EQU X'o2' TAPE MARK STATUS (END-OF-FILE)
DU EQU X'ol' DEVICE UNAVAILABLE STATUS
TAPELTH EQU 28800 MAXIMUM TAPE LENGTH

*

*

*

*

L N T e

¥

% % % % % ¥ *

* % % %

*

THERE ARE TWO METHODS OTHER THAN A SENSE STATUS ON THE
CONTROLLER, TO OBTAIN REQUIRED INFORMATION ABOUT A TELEX
TAPE UNIT.

NO-OP COMMAND.

THE NO-OP COMMAND RETURNS DEVICE STATUS HALEWORD INEORMATION.
THERE ARE FOUR POSSIBLE HALEWORDS THAT MAY BE READ. ONLY
THE READ STATUS COMMAND RETURNS ALL FOUR TO THE USER. THE
DRIVER USES THE NO-OP COMMAND TO DETERMINE THE DENSITY OF
THE DRIVES (REQUIRED FOR APPROPRIATE TIMEOUT CALCULATIONS).

UPPER HALFWORD IS THE SAME FOR ALL 4 DEVICE STATUS HALEWORLS.

BIT 8 - ZERO.
BITS 9 & 10 - DENSITY

BIT 9 BIT 10
1 0 NRZI
o) 0] PE
o 1 GCR

BIT 11 - BLOCK (SET WHEN BLOCK STATUS DETECTED FROM ECU)

BIT 12 - ODDBYTE (SET WHEN TRANSFER ENDS ON ODD-BYTE BOUNDARY)
BIT 13 - WRITE UNDERFLOW

BIT 14 - BUS PARITY

BIT 15 - READ OVERRUN

SENSE COMMAND (X'30')

SENSE BYTE O

BIT O - LOAD POINT...SET WHEN THE TAPE UNIT IS AT LOAD POINT.

BIT 1 - FILE PROTECT.SET WHEN TAPE UNIT IS WRITE PROTECTED.

BIT 2 - BACKWARD STATUS.SET WHEN TAPE UNIT IS PERFORMING OR
HAS PERFORMED A BACKWARD OPERATION.

BIT 3 - WRITE STATUS...TAPE UNIT IS NOT IN READ MODE.

BIT 4 - EOT..SET WHEN LEADING EDGE OF EOT MARKER IS SENSED
DURING A FORWARD OPERATION AND RESET WHEN THE
TR*ILING EDGE OF EOT MARKER IS SENSED DURING
A BACKWARD OPERATION.

4-10 48-190 F00 ROO

% % % % % X % X *

* % A % % % ¥ % % % ¥ % ¥ % ¥ H ¥ % % % * *

¥ % % % % k%

* * % %

BIT 5 - LO DENSITY...SET WHEN A DUAL DENSITY TAPE UNIT IS
OPERATING IN THE LOWER DENSITY MODE.

BIT 6 - READY...SET WHEN A TAPE IS LOADED AND THE TAPE UNIT
IS ON-LINE.

BIT 7 - COMMAND REJECT..SET IS THE COMMAND BYTE HAS EVEN
PARITY OF IF A WRITE COMMAND IS RECEIVED IN
CONJUCTION WITH A BACKWARD MOTION COMMAND.

TITLE SPECIAL STATUS DEFINITIONS

FOR EASE OF DEBUGGING BOTH SOETWARE AND HARDWARE RELATED
PROBLEMS, THIS DRIVER REPORTS AS MUCH UNIQUE STATUS INEFORMATION
AS IS POSSIBLE WITHOUT CONFLICTING WITH THE NORMAL (EXPECTED)
STATUS SUCH AS EOF, AND EOT.

‘X'8241' - TIME-OUT ON READ DEVICE HALFWORD ISSUED AT THE

START OF THE DRIVER TO OBTAIN DENSITY. NO-MOTION
DID NOT SET AFTER A LOOP COUNT OF 63.
X'8282' - TIME-OUT ON A WRITE OPERATION.
X'8263' - TIME-OUT ON A READ OPERATION.
X'8484' - SELCH FINAL ADDRESS WAS LESS THAN START ADDR (READ/WRITE)
X'8271' - TIME-OUT ON FORWARD/BACKSPACE RECORD.
X'8275' - TIME-OUT ON WRITE FILEMARK.
X'8272' - TIME-OUT ON FORWARD/BACKFILE OPERATIONS.
X'8273' - TIME-OUZ' ON ERASE GAP FUNCTION.
X'82DD' - TIME-OUT ON READ STATUS FUNCTION,
X'82DE' - TIME-OUT ON READ DEVICE HALEWORD ISSUED TO
CHECK FOR WRITE PROTECT CONDITION.
X'82DF' - TIME-OUT ON READ DEVICE HALEWORD ISSUED TO
CHECK FOR EOT/BOT CONDITIONS.
X'8283' - WRITE PROTECT INDICATOR.
X'8277' - TIME-OUT ON REWIND EFUNCTION.
X'AOOO' - DEVICE UNAVAILABLE.
X'9000' - END OF TAPE.
X'8400' - UNRECOVERABLE ERROR (ERR OR TERR BUT NOT NO-MOTION).
X'82FA' - PARITY ERROR (TRUE PARITY) OR ATTEMPT TO
READ LESS THAN A FULL RECORD ON NON-EXTENDED
OPTION I/O0.
X'82AA' - FILE MARK ERROR - OCCURS WHEN READING LARGE
AREAS OF ERASED TAPE. AS LONG AS THIS STATUS
OCCURS THE USER SHOULD FORWARD SPACE RECORD TO

48-190 F00 R0OO 4-11

GET BY THE ERASE AREA.

(THIS STATUS OCCURS

AFTER 10 FEET OF ERASED TAPE, WHICH IS AS MUCH
AS THE FORMATTER WILL MOVE THE TAPE WITHOUT
EXPECTING A FILE MARK IN THE ERASED AREA).

* CRASH CODES GENERATED WITHIN THIS MODULE.

* CRASH 502 - OCCURS WHEN THE SELCH FINAL ADDRESS IS LESS
THAN THE SELCH START ADDRESS AND THE FINAL
ADDRESS IS LESS THAN UBOT (THIS MEANS 0.8
CODE WAS OVERWRITTEN) .

* REGISTER CONVENTIONS

* (REGISTER SET 5)

* Uo
* Ul
* U2
* U3
* U4
* U5
* U6
* U7
* U8
* U9
* UA
* UB
* UC
* UD
* UE
* UF

CMDTELX
TLXO0010

4-12

SCRATCH
SCRATCH
SCRATCH
SCRATCH
SCRATCH
SCRATCH

DEVICE ADDRESS

SCRATCH
SCRATCH
SCRATCH
SCRATCH
SCRATCH

CCB ADDRESS
DCB ADDRESS

SCRATCH

LEAF ADDRESS BEFORE CALL TO EVREL
TITLE DRIVER INITIALIZATION
INITTELX EQU

EQU
EQU
LHL
LHL
LH

oc

LHL
SSR
BTC

*
*

*

UC, DCB.CCB (UD)
U6, DCB.DN (UD)
U7, DCB. SDN (UD)
U7.CLEARSEL

U8, DCB.FLG1 (UD)
ue, U7

5, TLX2250

AL.SO EQUAL TO INITMAG

SET UP CCB POINTER

GET DEVICE ADDRESS

GET SELCH ADDRESS

CLEAR SELCH

GET THE FLAGS

GET THE DRIVE STATUS

IF EX OR DU, DO EXTRA CHECKS

dir
dir
dir
dir
dir
dir
dir
dir
dir
dir

48-190 F00 R00

TLX0015 EQU

*

RETURN HERE FROM MORE CHECKING
IF NONE OF THESE ARE SET,

WE ASSUME IT IS REWINDING:BRANCH
IF ERR OR TERR AND NOT NMIN,
EXIT WITH X'8400' STATUS.

START HERE AFTER REWIND FINISHES
CLEAR CONTROLLER

SET EOT/BOT CHECK RETURN

WAS EOT PREVIOUSLY ENCOUNTERED
IF SO0, MUST GO DO FULL CHECK

ARE WE NOW AT END OF TAPE?

YES, GO DO FULL CHECK

RESET BITS 0,1,4,5

SAVE THE FLAGS

CLEAR STATUS BEFORE WE START

TRANSPORT UNIT.

FROM THIS INFORMATION, COMPUTE THE DATA TRANSFER RATE,

GIVE FORMATTER A NO-OP CMD

SET LOOP COUNT - PREVENT HANGS!
DECR THE LOOP COUNT

COUNTED OUT - TIME OUT THIS OP.
GET STATUS

DID NO-MOTION SET?

IF NOT, LOOP UNTIL IT IS SET
GET THE DEVICE STATUS H/W

MASK DENSITY BITS

MAKE FULLWORD INDEX

GET ACTUAL TRANSFER RATE

AND SAVE FOR LATER USE

'ERASE BUEFER' DEVICE-DEPENDENT COMMAND EUNCTION.

GET END ADDRESS
LESS THE START ADDRESS
ADJUST FOR INCLUSIVE ADDRS

THI U7,ERR!TERR!NMTN
BZ TLX2260
THI U7, NMIN
BZ TLX2350
TLX0018 EQU *
oc U6, DCB.CCLC (UD)
LA U9, TLX0020
THI ~ U8,X'0800'
BNZ . TLX2050
THI U7.EOM
BNZ TLX2050
NHI U8,X'33EF'
STH US,DCB.FLG1 (UD)
TLX0020 LIS UO,0
STH UO,DCB.STAT (UD)
*
* GET THE DENSITY SELECTION OF THE
*
* ASSUMING THAT THE DRIVE OPERATES AT 125 IPS.
*
oc U6, DCB.DSBO (UD)
LHI U1,63
TLX0030 SIS Ul,1
BNP TLXOO55
SSR U6,U2
THI U2,X'10'
BZ TLX0030
TLX0040 RHR U6,U2
NHI U2,X'60'
SRLS U2,3
L U1,DCB.XRT (UD,U2)
ST U1, DCB.RATE (UD)
* NOTE - U2 MUST BE PRESERVED IF THE REQUEST IS AN
*
*
* COMPUTE THE REQUESTED LENGTH OF TRANSFER.
L U9, DCB.EADR (UD)
S U9, DCB. SADR (UD)
AIS U9,1
ST U9,CCB.XLT (UC)

%*

48-190 F00 R0O

SAVE FOR LATER REFERENCE

U9 WILL BE USED A LITTLE LATER - DO NOT DESTROY!

dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir

4-13

* dir

* dir
* IF THE SVC 1 FUNCTION CODE INDICATES A COMMAND FUNCTION, dir
* BRANCH TO DETERMINE WHAT FUNCTION TO PERFORM. dir
* dir
LB U3,DCB.EC (UD) GET SVC 1 CODE dir
THI U3,Xx's80’ CHECK FOR COMMAND BIT ON dir
BP TLX1280 dir
* dir
* IF THE TASK IS NOT LINKED WITH EXTENDED SVCl1l OPTION, FORCE dir
* THE EXTENDED SVC 1 FUNCTION FIELD TO ZERO FOR LATER USE. dir
* THEN DETERMINE WHICH ROUTINE TO GO TO, BASED ON THE dir
* EXTENDED FUNCTION CODE AND BITS 1 AND 2 IN THE STANDARD dir
* SVC 1 FUNCTION FIELD. dir
* dir
LI Uo, TOPT.X1B FURTHER CHECK FOR TASK OPTION dir
L Ul,DCB.TCB (UD) GET TCB ADDRESS dir
TBT UO, TCB.OPT (U1l) GET TASK OPTION FIELD dir
BZ TLX0070 NOT LINKED WITH EXTENDED OPTRWNS dir
L Ul,DCB.SV1X (UD) FETCH USER EXTEND OPTION dir
NI Ul,X'1F! EXTRACT THE EXTEND CODE dir
SLLS U1l,2 dir
L Ul, TLXOO050 (Ul) INDEX INTO TABLE FOR EXEC ROUTINE dir
BR Ul dir
* dir
SPACE 1 dir
ALIGN 4 dir
TLX0050 EQU * dir
DAC A (TLX0O080) 0 dir
DAC A (TLXO0080) 1 dir
DAC A (TLX0060) 2 dir
DAC A (TLX0060) 3 dir
DAC A (TLX0080) 4 dir
DAC A (TLX0080) 5 dir
DAC A (TLX0080) 6 dir
DAC A (TLX0080) 7 dir
DAC A (TLX0080) 8 dir
DAC A (TLX0080) 9 dir
DO 22 dir
DAC A (TLX2360) dir
SPACE 1 dir
* dir
* COME HERE ONLY ON TIME-OUT OF READ DEVICE STATUS HALFWORD dir

4-14 48-190 F00 ROO

* dir

TLX0055 EQU * dir
LHI U8, X's241' SET A TIME-OUT STATUS dir
STH U8,DCB.STAT (UD) STORE STATUS dir
B TLX2150 CHECK FOR REWIND IN PROGRESS & EXIT. dir
TLX0060 EQU * : dir
BAL UB, TLX1940 IF FILE PROTECT NO RETURN dir
B TLX0920 A dir
TLX0070 EQU * dir
LIS Ul,0 RESET EXTENDED OPTIONS FIELD dir
ST U1,DCB.SV1X (UD) * dir
TLXO080 EQU * dir
* dir
*# U3 = SVC 1 FUNCTION CODE FIELD. dir
* dir
* IF THE REQUESTED LENGTH IS LESS THAN 4, EXIT dir
* dir
CHI U9,4 TOO SHORT (LESS THAN 4 BYTES) dir
BL TLX2360 IF SO, EXIT WITH ILLEGAL ENCTN dir
* _ dir
* CALCULATE THE APPROPRIATE TIME-OUT VALUE, BASED ON dir
* THE DENSITY SETTING READ FROM THE FORMATTER. dir
* dir
LIS U1,1 SET UP TO CALCULATE TIME-OUT dir
L UO, CCB. XLT (UC) GET COMPUTED XFER LENGTH dir
TLX0085 AIS Ul,1 ADD 1 SECOND FOR EACH RATE SIZE dir
S UO, DCB. RATE (UD) COMPARE SIZE TO RATE dir
BP TLX0085 LOOP UNTIL SIZE FIELD IS COUNTED dir
STH U1, CCB.LBO (UC) SAVE TIME-OUT TEMPORARILY dir
* dir
THI U3,SV1.READ READ? dir
BNZ TLX0320 YES, GO READ ONE RECORD dir
THI U3,SV1.WRIT WRITE? dir
BZ TLX2360 NO, ILLEGAL EUNCTION dir
BAL UB,TLX1940 IF FILE PROTECT NO RETURN dir
TITLE WRITE OPERATIONS dir
* k k * Kk k Kk Kk Kk Kk * Kk X Kk * * Kk * * Kk ¥ * *x % * *k * Kk * k*k dir
* WRITE ONE RECORD dir
* dir
* SET UP RETRY COUNTERS dir
* dir
LIS UO,0 INITIALIZE RETRY dir
STH UO,DCB.RTRY (UD) COUNTER dir

48-190 F00 R0OO 4-15

TLXO0090

* SET UP
*

TLX0120

TLX0130

4-16

LH

Bz
LB
STH

THI
BZ
LI
SBT
FOR

LA
STH
LA
ST
LH

STH
STH
BAL
LH
SINT

SPACE
PURE
EQU

LH
STH
LH
oC
WD

WD

EPSR
NHI
EPSR
LI
RBT
BZ
ocC

U1, DCB.WRY1 (UD)
U0, DCB. SV1X (UD)
TLX0090

U1, DCB.SV1X (UD)
U1, DCB.RMAX (UD)
U2, CCB.XLT (UC)
U2,1

TLX0120
Ul,MAGHLFB
U1,DCB.FLG1 (UD)

U1, TLX0130
U1, CCB.SUBA (UC)
U1, TLX0240

U1, DCB.ESR (UD)
U1, DCB.SDN (UD)
U0, 1 (UC)

UO, ISPTAB (U1, Ul)
UO, ISPTAB (U6, U6)
U8, TOCHON

U8, DCB. ILVL (UD)
Us, 0 (U6)

EVRTE

*

E5,CCB.DCB (E4)
E7,CCB.LBO (E4)
E7,DCB.TOUT (ES)
E3,DCB.SDN (E5)
E3, CLEARSEL

E3,DCB.SADR+1 (E5)
E3,DCB.SADR+2 (E5)
E3,DCB.EADR+1 (E5)
E3,DCB.EADR+2 (ES)

E6,E6
E6,X'20F0"
E7,E6

E6, MAGHLFB
E6,DCB.FLG1 (E5)
TLX0140

E2, ODDWRITE

GET DEFAULT WRITE RETRY COUNT
GET EXTENDED FUNCTION CODE

IF EXT. ENCIN =
IF NOT, USE USER'S COUNT

SET RETRY COUNT.

GET REQUESTED LENGTH OF XFER
ODD BYTE XFER ?

NO, BRANCH

YES, SET FLAG FOR ODD BYTE XFER

ISR AND ESR SCHEDULING AND EXECUTION

GET INTERRUPT SERVICE ADDRESS
SETUP ISR POINTER

GET EVENT SERVICE ADDRESS
SET ESR ADDRESS FOR SQS
GET SELCH ADDRESS

MAKE ODD CCB ADDRESS

SET SELCH ISPT ENTRY

SET CONTROLLER ISPT ENTRY
PUT ON TIMEOUT CHAIN
FETCH INTERRUPT LEVEL
ENTER INTO THE ISR

EXIT ESR STATE

GET DCB ADDRESS

GET CALCULATED TIME-OUT VALUE
STORE IT

GET SELCH ADDRESS

CLEAR SELCH

WRITE START ADDRESS TO SELCH

*

WRITE END ADDRESS TO SELCH

*

GET CURRENT PSW

TURN OFF ALL INTERRUPTS

(GO NONINTERRUPTABLE)

CHECK THE ODD BYTE XFER FLAG
RESET THE FLAG

0 , SKIP

GIVE CONTROLLER ODDBYTE CMD.

0, USE DEFAULT

dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir

isrl
isrl
isrl
isrl
isrl
isrl
isril
isrl
isril
isrl
isrl
isrl
isrl
isrl
isrl
isrl
isrl
isrl

48-190 F00 R00

TLX0140 EQU
oc
oc
oc
SPACE
LX0150 EQU
LA
STH
LPSWR
GOWRITE DC
CLEARSEL DC
ODDWRITE DC

*

E2,DCB.CENB (E5)
E2,DCB.CWRT (E5)
E3, GOWRITE

*

E7,TLX0190
E7,CCB.SUBA (E4)
EO

X'1400'

X'4800'

X'4B0OO'

SPACE

TLX0190 EQU

LH
BZ
CLH
BNE
LA
STH
LH
SSR
THI
BNZ
LA
STH
TLX0195 EQU
LPSWR
SPACE
TLX0210 EQU

LH
BZ
CLH
BNE
THI
BNZ

TLX0220 EQU
LPSWR
SPACE

TLX0230 EQU
STB

48-190 F00 R0O

*

E5, CCB.DCB (E4)
E6, DCB.TOUT (E5)
TLX0195
E2,DCB.SDN (E5)
TLX0150

E7,I11
E7,ISPTAB (E2,E2)
E2,DCB.DN (E5)
E2,E3

E3, DU!NMIN
TLX0230
E7,TLX0210
E7,CCB.SUBA (E4)
*

EO

*

E5, CCB.DCB (E4)
E6,DCB.TOUT (E5)
TLX0220
E2,DCB.DN (E5)
TLX0220
E3,DU!NMTN
TLX0230

*

EO

*

E3,DCB.DDPS (E5)

ENABLE INTERRUPTS

'START THE DRIVE

START THE SELCH

SET NEXT ISR ADDRESS

*

EXIT INTERRUPT SERVICE
SELCH WRITE COMMAND
CLEAR SELCH COMMAND
ODD BYTE WRITE COMMAND

GET DCB ADDRESS

GET TIME-OUT CONSTANT
IF TIMED-OUT, EXIT NOW
FROM THE SELCH?

NO, WAIT SOME MORE
RESET SELCH ISPT NOW
*

FETCH DEVICE ADDRESS
SENSE DEVICE STATUS
NO MOTION OR DU??
YES, BRANCH

SET NEXT ISR ADDRESS
*

EXIT INTERRUPT SERVICE

GET DCB ADDRESS

GET TIME-OUT VALUE

IF TIMED OUT, EXIT NOW
FROM DEVICE?

NO, WAIT SOME MORE

DU OR NO MOTION?

YES, GO PROCESS

- WAIT EOR IT TO COME AGAIN

SAVE DRIVE STATUS

isrl
isrl
isrl
isrl
isrl
isrl
isrl
isrl

isrl

isr2
isr2
isr2
isr2
isr2
isr2
isr2
isr2
isr2
isr2
isr2
isr2
isr2
isr2
isr2

isr2

isr3
isr3
isr3
isr3
isr3
isr3
isr3
isr3
isr3
isr3
isr3
isr3

isr3

4-17

TLX0240

TLX0250

TLX0260

4-18

ocC
LH
BTES
LPSWR
LCS
STH

ATL
LPSWR
SPACE
IMPUR
EQU
LHL
LHL
LH
THI
BP

LH
oc
RDR
EXHR
RHR
OR

BM

BNE

ST
BAL
LH
BZ
LB
THI
BNZ
LIS
THI
BZ
OHI
LI
SBT
EQU
STH

E2,DCB.CDAR (E5)
E6,DCB.TOUT (E5)
2,2

EO

E6,1
E6,DCB.TOUT (E5)
E6,DCB.LEAF (E5)
E6,SQ

EO

*

UC, DCB. CCB (UD)
U6, DCB.DN (UD)
U7,DCB. STAT (UD)
U7,DU

TLX2340
U2,DCB. SDN (UD)
U2, CLEARSEL
U2,U0

U0, Uo

v2,U1

Uo, U1

UO, DCB. SADR (UD)
TLX0610

UO, DCB.EADR (UD)
TLX0265

UO, CCB.XLT (UC)
UO, DCB.LLXE (UD)
U8, TOCHOEF
U7,DCB.TOUT (UD)
TLX0310

U3, DCB.DDPS (UD)
U3, ERR!TERR
TLX0270

U0, 0

U3,X'20"
TLX0260

U0, X'9000"

U1, MAGWAT2B
U1l,DCB.FLG1 (UD)

*

UO, DCB. STAT (UD)

DISARM INTERRUPTS

GET TIME-OUT COUNTER
RETURN NOW IF TIMED-OUT
DON'T RE-ADD TO S.Q.
OTHERWISE SET MINUS TO

SHOW WE HAVE BEEN HERE.

GET LEAF ADDRESS

SCHEDULE DRIVER TERMINATION
EXIT AND WAIT FOR TERM.

A (CCB)

DEVICE NUMBER

GET DEVICE DEPENDENT STATUS
DID IT GO UNAVAILABLE

ERROR EXIT, IF SO.

GET THE SELCH DEVICE ADDRESS
STOP THE SELCH

AND OBTAIN THE SELCH FINAL

* ADDRESS...PLACE IT IN

THE APPROPRIATE POSITION.

*

IF THE FINAL ADDRESS LESS THAN
THE START ADDR-SELCH ERROR.
IS THE FINAL ADDRESS EQUAL

TO REQUESTED END--CHECK FURTHER.

GET THE LENGTH OF TRANSFER
AND SAVE IT IN THE DCB.
REMOVE FROM TIMEOUT CHAIN
CHECK FOR TIME OUT

IF sO, GET OUT

GET STATUS IN ISR

TAPERR ?

YES

CLEAR STATUS

EOT/BOT SET?

NO - GO ON

YES - SET USUAL STATUS
AND SET FLAG FIELD

*

STORE STATUS

48-190 F00 R0OO

isr3
isr3
isr3
isr3
isr3
isr3
isr3
isr3

isr3

esrl
esrl
esrl
esrl
esrl
esrl
esrl
esrl
esrl
esrl
esrl
esrl
esrl
esrl
esrl
esrl
esrl
esrl
esrl
esrl
esrl
esrl
esrl
esrl
esrl
esrl
esrl
esrl
esrl
esrl
esrl
esrl

B
*

* CODE BELOW HERE IS EXECUTED ONLY

*

TLX0265 EQU
s

ST
EQU
LB
CHI

BE

TLX0270

TLX215 O

*

UO, DCB. SADR (UD)
UO, DCB.LLXF (UD)

*

UO, DCB. SV1X+3 (UD)

U0, 4
TLX0250

GO CHECK REWIND CONDITIONS
ON ERROR CONDITIONS

CHECK FOR EXTENDED EUNCTION 4
COMPUTE ACTUAL LENGTH OF TRANSFER
AND SAVE IT IN THE DCB.

GET USER'S OPTION CODE
IGNORE PARITY?
IF SO, JUST CHECK FOR EOT

* COME HERE IF SELCH WROTE LESS THAN REQUESTED, OR IF
* THERE WAS A TAPE ERROR AND USER DID NOT REQUEST

GET RETRY COUNT
AND COMPARE AGAINST MAX COUNT
OK SO FAR, KEEP RETRYING

UB,DCB.SV1X+3 (UD) GET EXTENDED CODE

IS IT USER SPECIFIED NUMBER OF
RETRIES--DO NOT BACKSPACE
REPORT RECOVERABLE ERROR.

CLEAR CONTROLLER BEEORE RETRYING
GET COMMAND BYTE

GO TO COMMON LOGIC FOR BACKSPACE
GET RETRY COUNT

COMPARE TO MAX RETRIES

FINISHED RETRIES, GET OUT

UP RETRY COUNT

STORE

ERASE ONE GAP'S WCRTH

GO DO WRITE AGAIN

* EXTENDED FUNCTION CODE 4
*
LH UO, DCB.RTRY (UD)
CH UO, DCB.RMAX (UD)
BM TLX0300
* RETRIES EXHAUSTED-- CHECK EXTENDED OPTION CODE.
LB
CLH UB,X'8'
*
BE TLX2390
TLX0300 EQU *
oc U6, DCB. CCLC (UD)
LB U2, DCB.CBSR (UD)
BAL UB, TLX1400
LH U0, DCB.RTRY (UD)
CH UO, DCB.RMAX (UD)
BNM TLX2390
AIS UO,1
STH UO,DCB.RTRY (UD)
BAL UB,TLX1760
B TLX0120
SPACE

*

* COME HERE ONLY IF A TIME-OUT ERROR HAS OCCURRED

*

TLX0310 EQU
LHT
STH

B

48-190 F00 R0OO

*

Us,x's282"'
U8, DCB. STAT (UD)
TLX2150

TIMEOUT STATUS
STORE STATUS
CHECK EFOR REWIND IN PROGRESS & EXIT.

4-19

*

SPACE

TITLE READ OPERATIONS

******************i****i**********

READ OPERATIONS

TLX0320
*

EQU

ON A READ,

READ,

ITS DENSITY IS UNKNOWN. SO,

*

* IF WE ARE AT LOAD POINT, WE MUST ASSUME THAT
* WE ARE GOING TO READ AT 800 BPI.
*
*

UNTIL THE TAPE HAS BEEN
IF WE ARE AT LOAD POINT,

WE WILL RE-DO THE TIME-OUT CALCULATION.

*

TLX0325

TLX0330
TLX0340

TLX0350

4-20

LI
TBT
BP
EQU
LIS
STH
LH

NHI
CHI
BNP
LB
STH
EQU
LI
ST

BZ

ST
LB
STB
LA
STH
LA
ST
LH
LA
STH
STH
BAL

UO, MAGBOTB

UO, DCB.FLG1 (UD)
TLX0658

*

U0, 0

UO, DCB.RTRY (UD)
UO, DCB.RRTY (UD)
Ul,DCB.SV1X (UD)
ULl,X'1F'

U1,1

TLX0330

UO, DCB.SV1X (UD)
UO, DCB.RMAX (UD)
*

UB, 0

UB, DCB.ODDA (UD)
U2,X'1'

TLX0350
Ul,DCB.EADR (UD)
U1, DCB.ODDA (UD)
Ul,1 (UB)

U1, DCB.ODDC (UD)
Ul, TLX0360
Ul,CCB.SUBA (UC)
Ul, TLX0470
Ul,DCB.ESR (UD)
Ul,DCB.SDN (UD)
U0, 1 (UC)

UO, ISPTAB (U1, Ul)
UO, ISPTAB (U6, U6)
U8, TOCHON

TEST BOT FLAG
IF SO, BRANCH TO RE-CALCULATE

INITIALIZE RETRY

COUNTER

GET DEFAULT READ RETRY COUNT
GET THE EXTENDED OPTIONS
SAVE ONLY OPTION FIELD

CHECK FOR USER RETRY COUNT
OPTION O OR 1, USE DEFAULT
GET USER RETRY COUNT

SET RETRY COUNT

BEGIN READ OPERATION

CLEAR ADDRESS SAVE AREA

ODD BYTE XFER? (U2 =XFER SIZE)
NO, GO PAST ODD BYTE WORK

GET BUFFER ENDING ADDRESS
SAVE THE END ADDRESS

GET THE CONTENT OF NEXT BYTE
SAVE IT

SET UP INTERRUPT SERVICE ADDRESS
* INTO THE CCB.

SET THE EVENT SERVICE ROUTINE
INTO THE DCB FOR SQS TO USE.
CET SELCH ADDRESS

MAKE ODD CCB ADDRESS

SET SELCH ISPT ENTRY

SET CONTROLLER ISPT ENTRY

PUT ON TIMEOUT CHAIN

48-190 F00 R0O0

dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir

LH
SINT

SPACE
PURE
TLX0360 EQU

LH
AIS
STH
LH
ocC
WD
WH

U8, DCB. ILVL (UD)
U8, 0 (U6)
EVRTE

*

ES, CCB.DCB (E4)
E7,CCB.LBO (E4)
E7.3

'E7,DCB.TOUT (E5)

E3,DCB.SDN (E5)
E3, CLEARSEL

E3,DCB.SADR+1 (E5)
E3,DCB.SADR+2 (E5)

FETCH INTERRUPT LEVEL
ENTER INTO THE ISR
RETURN FROM DRIVER

A (DCB)
GET CALCULATED TIME-OUT

ADD 3 SEC FOR 25 ET. ERASED TAPE

STORE IT
GET SELCH ADDRESS
CLEAR SELCH

WRITE START ADDRESS TO SELCH
*

* ADJUST END ADDRESS AND WRITE IT TO SELCH

LH
OHI
WD
WHR
LB
L
THI
BZ
LB
TLX0370 EQU
STB
EPSR
NHI
EPSR
oc
oc
oc
SPACE
TLX0380 EQU
LA
STH
LPSWR
SPACE
GOREAD DC
SPACE
TLX0400 EQU

LH

48-190 F00 R00

E7,DCB.EADR+2 (E5)

E7.1

E3,DCB.EADR+1 (E5)

E3,E7
E6,DCB.CRDE (E5)
E7.DCB.SV1X (E5)
E7.1

TLX0370
E6,DCB.CRDB (E5)
*
E6,DCB.CMD (E5)
E7.E7
E7,X'B7EE"
E6,E7
E2,DCB.CENB (E5)
E2,DCB.CMD (E5)
E3, GOREAD

*

E7, TLX0400
E7,CCB.SUBA (E4)
EO

X'3400'

*

E5, CCB.DCB (E4)
E6,DCB.TOUT (E5)

MAKE IT ODD

WRITE END ADDRESS TO SELCH
*

GET FOREWARD READ COMMAND
GET EXTENDED OPTIONS

IS IT REALLY BACKWARD?

NO - IS EOREWARD

GET BACKWARD READ COMMAND

SAVE THIS COMMAND

GET CURRENT PSW

TURN OFF ALL INTERRUPTS

AND GO NON-INTERRUPTABLE
ENABLE INTERRUPTS FROM DRIVE
START THE DRIVE

START THE SELCH

SET NEXT ISR ADDRESS
*

EXIT INTERRUPT SERVICE

SELCH READ COMMAND

GET DCB ADDRESS
GET TIME-OUT VALUE

dir
dir
dir

isr4
isr4
isr4a
isr4
isr4
isr4
isr4
isr4
isr4
isr4
isr4
isr4
isr4
isr4
isr4
isr4
isr4
isr4
isr4
isr4
isr4
isr4
isr4
isr4d
isr4
isr4
isr4
isr4
isr4
isr4
isr4
isr4

isr5
isr5
isrS

4-21

TLX0410

TLX0420

TLX0430

TLX0440

*

TLX0450

4-22

BZ
CLH
BNE
LA
STH
SPACE
ocC
LH
SSR
THI
BNZ

STH
EQU
LPSWR
SPACE
EQU

LH
BZ
CLH
BNE
THI
BNZ
EQU
LPSWR
SPACE
EQU
STB
oc

STH
LPSWR

EQU

RHR
STH
ocC

LH

BNP
LCS
STH

TLX0410
E2,DCB.SDN (E5)
TLX0380

E7,III
E7,ISPTAB(E2,E2)

E2, CLEARSEL
E2,DCB.DN (E5)
E2,E3

E3, DU!NMIN
TLX0440

E7, TLX0420
E7,CCB.SUBA (E4)

*

EO

*

E5,CCB.DCB (E4)
E6,DCB.CCB (E5)
TLX0430
E2,DCB.DN (E5)
TLX0430
E3,NMTN!EOF ! DU
TLX0440

*

EO

*

E3,DCB.DDPS (E5)
E2,DCB.DSBO (E5)
E7, TLX0450
E7,CCB.SUBA (E4)
EO

*

E5, CCB.DCB (E4)
E2,E7
E7,CCB.MISC (E4)
E2,DCB.CDAR (E5)
E6,DCB.TOUT (E5)
TLX0460

E7.1
E7,DCB.TOUT (E5)

EXIT NOW IF TIMED OUT

SELCH INTERRUPT?

NOT,THE SELCH, -WAIT FOR SELCH
SET TO IGNORE INTERRUPT

IF THE SELCH BOTHERS US AGAIN.

STOP SELCH

FETCH DEVICE ADDRESS

SENSE DEVICE STATUS

NO MOTION OR DU?

IF SO, PRETEND DEVICE INTERRUPTED

SET NEXT ISR ADDRESS
*

EXIT INTERRUPT SERVICE

GET DCB ADDRESS

GET TIME-OUT VALUE

IF TIMED OUT, EXIT NOW

INT. FROM DEVICE

NO, WAIT SOME MORE

TERR SETS NO MOTION WITH H/W CHNG
YES, PROCESS IT

WAIT FOR INTERRUPT

SAVE DRIVE STATUS
SEND NOP CMD FOR STATUS
SET NEXT ISR ADDRESS

*

EXIT INTERRUPT SERVICE

GET CCB ADDRESS

GET DEViCE STATUS HALFWORD
SAVE FOR ESR USE

NOW TURN OFF INTERRUPTS
CHECK TIMEOUT CONSTANT
DON'T ADD TO QUEUE TWICE.

RESET THE TIME-OUT VALUE
*

48-190 F00 R0O0O

isr5
isr5
isrS5
isr5
isr5
isr5
isr5
isr5
isr5
isr5
isr5
isr5
isr5
isrS5
isr5

isr6
isré
isr6
isré
isré
isr6
isr6
isré
isr6
isr6
isré6
isr6
isré6
isr6
isré
isré
isr6

isr7
isr7
isr7
isr?7
isr7
isr7
isr7
isr7
isr?7

ATL
LPSWR
SPAC
IMPUR
TERMTELX EQU
TLX0470 EQU
LHL
LHL
LH
THI
BP
L
BZ
LB
STB
LI
STB
ST
TLX0480 LHL
* NOW READ THE
LH
oc
RDR
EXHR
RHR
OR
c
BM
C
BNE
L
EQU
ST
LH
BZ
BAL
LB
THI
BNZ

TLX0460

TLX0490

E7,DCB.LEAF (E5)
E7,SQ
EO

*

*

UC, DCB. CCB (UD)
U6, DCB.DN (UD)
U7,DCB: STAT (UD)
U7.DU

TLX2340

U8, DCB. ODDA (UD)
TLX0480

UO, DCB.ODDC (UD)
U0, 1 (U8)

U0, 0

U0, DCB.ODDC (UD)
UO, DCB . ODDA (UD)
U8, CCB.MISC (UC)

SELCH FINAL ADDRESS

U2,DCB. SDN (UD)
U2, CLEARSEL
U2,Uu7

u7,u7

U2,UL

U7.uU1
U7,DCB. SADR (UD)
TLX0610

U7, DCB.EADR (UD)
TLX0522

U7, CCB.XLT (UC)
*
U7,DCB.LLXF (UD)
UO, DCB. TOUT (UD)
TLX0655

U8, TOCHOFF
UO, DCB.DDPS (UD)
UO, TERR!ERR
TLX0590

GET LEAF ADDRESS
PUT ESR ON QUEUE
EXIT FROM ISR.

A (CCB)

DEVICE NUMBER

GET DEVICE DEPENDENT STATUS

DID IT GO OFF-LINE?

IF SO, EXIT HERE

GET THE CONTENT IN ADDRESS SAVE
NOTHING, NORMAL I /0

GET WHATEVER IN SAVE AREA

PUT IT BACK

REINITIALIZE SAVE AREA

GET DEVICE STATUS HALEWORD

TO SEE IF WE GOT WHAT WE WANTED.
GET THE SELCH ADDRESS

AND ISSUE STOP & EXTENDED ADDR REA
GET THE SELCH FINAL ADDRESS

*

*

* INTO U7.

IS FINAL ADDRESS LESS THAN START
IF SO WE MAY HAVE TO CRASH SYSTEM.
DID WE EXACTLY FILL OUR BUEFER?
NO--MAY BE SHORT READ. (CHECK MORE)
GET THE LENGTH OF TRANSFER

AND SAVE IT IN THE DCB.
CHECK FOR LENGTH OF TRANSFER

NOW REMOVE FROM TIME-OUT CHAIN
GET DEV.DEP.STAT.

TAPE ERROR?

ERROR--GO SEE WHICH ERROR

* COME HERE IF NO ERROR STATUS. FOR NORMAL I/O, THE LENGTH OF
* TRANSFER MUST BE EXACTLY AS REQUESTED, OR IT IS DEFINED TO BE
* A PARITY ERROR.

48-190 F00 R00

isr7
isr7

isr7

4-23

esr2

LB UO,DCB.SV1X+3 (UD) GET EXTENDED OPTION CODE esr2
CHI Uo, 1 CHECK FOR NORMAL I/O esr2
BP TLX0530 SPECIAL CASE - BRANCH. esr2
THI us,x'ooo1' DID OVERRUN SET? esr2
BZ TLX0530 ALL O.K.-NO ERROR- GET OUT. esr2
b esr2
TLX0510 LIS Uo, 0 SET UP FOR EOT/EOF CHECK esr2
ST UO, DCB.LLXF (UD) AND ZERO LENGTH OF TRANSFER esr2
* - (BY DEFINITION) esr2
TLX0520 EQU * esr2
LH U8, DCB.STAT (UD) GET THE STATUS esr2
THI Usg,Xx'22" END OF TAPE/END OF FILE? esr2
BNZ TLX0530 GO SET STATUS & EXIT esr2
LB U8,DCB.SV1X+3 (UD) IF EXTEND CODE 4, NO PARITY esr2
CHI us, 4 ERROR IS PERMITTED esr2
BE TLX0570 SO DO NORMAL EXIT, BUT esr2
* KEEP EOF /EOT. esr2
CHI Us,5 BACKWARD IGNORE PARITY CODE? esr2
BE TLX0570 YES, BRANCH. esr2
LI UO,Y'82FA’ DEFINE THIS AS PARITY ERROR esr2
STH U0, DCB.STAT (UD) * esr2
B TLX0630 GO TRY AGAIN. esr2
SPACE esr2
** COME HERE IF WE NEED TO ADJUST LENGTH OF TRANSFER AND SELCH esr2
* FINAL ADDRESS . esr2
* esr2
TLX0522 EQU +# esr2
S U7,DCB.SADR (UD) CALCULATE THE ACTUAL LENGTH OF XFER esr2
B TLX0490 AND RETURN TO MAINLINE RCUTINE. esr2
* esr2
SPACE esr2
TLX0530 EQU * esr2
LIS uo, 0 CLEAR STATUS esr2
* esr2
* BUILD A 4-BIT INDEX INTO THE STATUS TABLE esr2
* esr2
LB Ul,DCB.SV1X+3 (UD) GET FOREWARD/BACKWARD FLAG esr2
NHI U1i,1 * esr2
LR Uo,uo GET PARITY ERROR FLAG esr2
BZ TLX0540 esr2
OHI Ul,4 esr2
TLX0540 LH UO, DCB. STAT (UD) GET EOT/BOT AND F.M. FLAGS esr2

4-24 48-190 F00 R00

THI vo,Xx'o2" FILE MARK? esr2

BZ TLXO0550 esr2
OHI Ul,2 - esr2
TLX0550 THI U0.X'20" EOT/BOT? esr2
BZ TLX0560 esr2
OHI Ul,8 esr2
TLX0560 AR U1,01 MAKE HALF-WORD INDEX esr2
LH U0, TLX0580 (Ul) GET THE STATUS esr2
TLX0570 EQU * ' esr2
STH UO, DCB..STAT (UD) SET STATUS HERE. esr2
* TF WE COME HERE, THE READ OPERATION WAS A SUCCESS. EXIT ESR. esr2
B TLX2150 CHECK FOR REWIND OP. AND EXIT. esr2
SPACE esr2
TLX0580 EQU * EOT/BOT PARITY FILE MK BACKWARD esr2
DC X'0000' O 0] o] (o] esr2
DC X'0000' O 0 0 1 esr2
DC X'8800' O 0 1 (0] esr2
DC X'8800' O 0] 1 1 esr2
DC X'82FA' O 1 (o] o} esr2
DC X'82FA' O 1 o 1 esr2
DC X'8AFA' O 1 i 0] IMPOSSIBLE esr2
DC X'8AFA' O 1 1 1 IMPOSSIBLE esr2
DC X'9000' 1 0 (o} o] esr2
DC X'92FE' 1 0 0] 1 esr2
DC X'9800' 1 0 1 o] esr2
DC X'9AFE' 1 0] 1 1 esr2
DC X'92FA' 1 1 0] (o) esr2
DC X'92FE' 1 1 0 1 esr2
DC X'9A00' 1 1 1 o IMPOSSIBLE esr2
DC X'OAFE' 1 1 1 1 IMPOSSIBLE esr2
* esr2
* esr2
* WE MUST HANDLE THE SITUATION WHEREBY A TAPE CANNOT BE READ esr2
* BECAUSE OF LARGE AREAS OF 'ERASED' TAPE (CREATED BY AN esr2
* ERASE GAP FUNCTION). ATTEMPTS TO READ A FILE WHICH HAS AREAS esr2
* OF ERASED TAPE RESULTS IN A DEVICE DEPENDENT STATUS OF esr2
* X'9C' (ERR,NO-MOTION, BUSY,EXAMINE). THE DEVICE STATUS esr2
* HALFWORD WILL BE A X'1000', INDICATING THAT A FILE MARK WAS esr2
* NOT DETECTED AS EXPECTED. (EMBO - READ BY NO-OP COMMAND-X'00') esr2
* SET A SPECIAL STATUS SO THAT THE USER MAY ISSUE A FORWARD esr2
* 'RECORD COMMAND TO BYPASS THE 'ERASED' AREA OF TAPE AND PROCEED esr2
* WITH OPERATIONS. esr2
* esr2

48-190 F00 R0O 4-25

* MAKE SURE OTHER BITS IN EMBO ARE NOT SET--IF THEY ARE, DO NOT esr2

* ASSUME THAT THE TAPE CANNOT BE READ DUE TO AREAS OF ERASED TAPE. esr2
* esr2
TLX0590 EQU * esr2
LR Uo,Uus DON'T WIPE OUT U8 YET, WE NEED IT esr2
NHI UO,X'FFOO' STRIP OFF LOW BITS OF HALEWORD esr2
CHI U0,X'1000' FILE MARK ERROR? esr2
BE TLX1470 YES-GO DO SPECIAIL PROCESSING esr2
* esr2
* WE HAVE AN ERROR. WE MUST DISTINGUISH BETWEEN 'REAL' PARITY esr2
* ERRORS, AND SHORT READS THAT HAVE NO ERROR. WE MUST ALSO esr2
* TREAT NORMAL I/O AND EXTENDED OPTION I/0O DIFFERENTLY. esr2
* esr2
* REMEMBER THAT U7 CONTAINS REQUESTED LENGTH OF TRANSFER. DON'T esr2
* DESTROY IT, AS WE WILL USE IT LATER! esr2
* esr2
* IF WE HAVE AN ERROR, AND WE ARE DOING NORMAL I/O, THIS IS esr2
* DEFINED AS A PARITY ERROR. SET THE APPROPRIATE CODE IN esr2
* THE DCB STATUS AND RETRY. esr2
* esr2
TLX0600 EQU * esr2
LB UO,DCB.SV1X+3 (UD) GET EXTENDED OPTION CODE esr2
CHI Uo.1 LOOK FOR NORMAL I/O esr2
BNP TLXO0510 WE HAVE NORMAL I/O--BRANCH. esr2
LIS Uo, 0 SET UP UO FOR EOT/EOF TEST esr2
C U7,DCB.LLXF (UD) CHECK LENGTH OF XFER esr2
BP TLX0520 IF SO, IT IS AN ERROR esr2
B TLX0530 CHECK EOF/EOT & QUIT. esr2
TLX0610 EQU * esr2
oC U6,DCB.CCLC (UD) CLEAR CONTROLLER esr2
* IF WE COME HERE, THE SELCH START ADDRESS WAS GREATER THAN esr2
* THE SELCH FINAIL ADDRESS. IF WE HAVE OVERWRITTEN 0.S. CODE esr2
* GIVE A CRASH CODE 500. OTHERWISE, GIVE THE USER A '8484' esr2
* STATUS. esr2
CI UO, UBOT HAVE WE OVERWRITTEN 0.S.? esr2
BP TLX0620 NO--GIVE THE USER AN ERROR. esr2
CRSH 502 YES--CRASH THE SYSTEM (SORRY!) esr2
TLX0620 EQU * esr2
LHI Us,X's8484' SELCH ERROR ON READ OR WRITE esr2
STH U8, DCB.STAT (UD) STORE STATUS esr2
B TLX2150 CHECK FOR RWND IN PROGRESS & EXIT esr2
SPACE esr2
TLX0630 EQU * esr2

4-26 48-190 F00 R00

ocC
LH
CH
BM

U6, DCB.CCLC (UD)
UO, DCB.RTRY (UD)
UO, DCB.RMAX (UD)
TLX0640

CLEAR DEVICE

GET RETRY COUNT

AND COMPARE AGAINST MAX COUNT
OK SO FAR, KEEP RETRYING

* RETRIES EXHAUSTED-- CHECK EXTENDED OPTION CODE.

LB
CLHI

BE
CLHI
- BE
TLX0640 EQU
LB
LB
THI
BZ
LB
TLX0650 EQU
BAL
LH
CH
BNM
AIS
STH
B

UB, DCB. SV1X+3 (UD)
UB.X'8s'

TLX2390
UB,X'9"
TLX2390

*
U2,DCB.CBSR (UD)
UB, DCB.SV1X+3 (UD)
UB, 1

TLX0650
U2,DCB.CFSR (UD)
*

UB, TLX1400

UO, DCB.RTRY (UD)
UO, DCB.RMAX (UD)
TLX2390

vo, 1

UO, DCB.RTRY (UD)
TLX0340

GET EXTENDED CODE

IS IT USER SPECIFIED NUMBER OF
RETRIES--DO NOT BACKSPACE
REPORT RECOVERABLE ERROR.
BACKWARD OPERATION--DO NOT
FORWARD SPACE AFTER ERROR.

GET COMMAND BYTE

GET EXTENDED OPTION CODE

IS IT ODD (IF SO BACKWARD OP)
FORWARD OPERATION--DO BSR.
BACKWARD OPERATION--DO ESR.

GO TO COMMON LOGIC FOR BACKSPACE
CHECK RETRY COUNTER

COMPARE TO MAX RETRIES

NO MORE RETRIES--GIVE UP.

ADD 1 TO THE COUNTER

INCREMENT RETRY COUNT

* COME HERE ONLY IF WE TIME OUT WAITING FOR INTERRUPTS
* DURING A READ OPERATION

TLX0655 EQU
LHI
EPSR
SSR
THI
BNZ
LH
STH
EPSR
B
TLX0657 EQU
EPSR
BAL

LHI

48-190 F00 R00

*

U0, X'2050"
U1,U0

U6, U2

U2,X'91"
TLX0657

UO, DCB.MAXT (UD)
UO, DCB. TOUT (UD)
Uo, U1l

EVRTE

*

Uo, U1

U8, TOCHOFF

U8, X'8263"

GO NON-INTERRUPTABLE

*

GET DEVICE STATUS

DID ANYTHING HAPPEN?

YES - IT DIED OR SOMETHING

NO - SET TIME-OUT VALUE AGAIN
AND WAIT FOR LONG FILE (MAYBE)
NOW GET OUT

*

TIMED-OUT, REALLY - FINISH UP
GET OFF THE TIMEOUT CHAIN
SET UP STATUS FIELD

esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2
esr2

esr2

4-27

STH U8, DCB.STAT (UD) STORE STATUS esr2
B TLX2150 CHECK FOR RWND IN PROGRESS & EXIT esr2

* CALCULATE THE APPROPRIATE TIME-OUT VALUE, BASED ON
* THE ASSUMPTION THAT THE DENSITY IS 800 BPI.

TLX0658 EQU *

LIS Ul,1 SET UP TO CALCULATE TIME-OUT
LR Uo, U2 GET COMPUTED XFER LENGTH
TLX0659 AIS Ul,1 - - ADD 1 SECOND FOR EACH RATE SIZE
S UO, DCB.XRT (UD) COMPARE SIZE TO RATE AT 800 BPI
BP TLX0659 LOOP UNTIL SIZE FIELD IS COUNTED
STH Ul,CCB.MISC (UC) SAVE TIME-OUT TEMPORARILY
B TLX0325 GO BACK TO NORMAL PROCESSING.
*
SPACE
TITLE COMMAND FUNCTION DECODING
IMPUR
TLX1280 EQU * dir
* NOTE - U2 MUST BE PRESERVED IF THE REQUEST IF FOR dir
* AN 'ERASE BUFFER' FUNCTION. dir
CHI U3,X'Co’ REWIND ? dir
BE TLX1350 dir
CHI U3,X'A0' BACK SPACE RECORD? dir
BE TLX1370 dir
CHI U3,X'90' FOREWARD SPACE RECORD? dir
BE TLX1360 dir
CHI U3,X'8s8’ WRITE FILE MARK dir
BE TLX1490 dir
CHI U3,X'sa’ FOREWARD FILE MARD dir
BE TLX1600 dir
CHI U3,X's2' BACKWARD FILE MARK dir
BE TLX1590 dir
CHI U3,X's1’ DEVICE DEPENDENT FUNCTION? dir
BE TLX1320 dir
B TLX2360 ERROR, ILLEGAL FUNCTION CODE dir
SPACE dir
TLX1320 EQU * dir
LA UB, TLX2150 SET LINK REGISTER TO CHECK RWD. dir
LIS UO,TOPT.X1B CHECK THE EXTEND OPT IN TASK dir
L U1, DCB.TCB (UD) GET TCB ADDRESS dir
TBT UO,TCB.OPT (Ul) CHECK THE EXTEND OPTION BIT dir
BZ TLX2360 EXTEND OPT IS NOT SET, BRANCH dir

4-28 48-190 F00 ROO

LB
CHI
BE
CHI
BE
CHI
BE
CHI
BE

B
TITLE
EQU
LI
TBT
BNZ
LI
RBT
LB
STB
OCR
LHI
SIS
BTBS
LI
SBT
B
SPACE

TLX1350

Ul,DCB.SV1X+3 (UD)

Ul,7

TLX1760

U1,10

TLX1710

U1,0

TLX1700

U1,8

TLX1860
TLX2360

REWIND

*

U3, MAGBOTB
U3,DCB.FLGL1 (UD)
TLX2150

U3, MAGEOTB
U3,DCB.FLG1 (UD)
U2, DCB.CREW (UD)
U2, DCB.CMD (UD)
U6, U2

U0, 200

.Uo,1

2,1

UO, MAGREWB

UO, DCB.FLG1 (UD)
TLX2150

GET THE EXTENDED OPTION FIELD
ERASE GAP?

ERASE BUFFER?
UNLOAD/
READ STATUS?

NONE OF THE ABOVE - ILLEGAL

IS THE TAPE AT BOT?

*

CHECK FOR OTHER REWINDS OCCURRING
IS THE TAPE AT EOT?

RESET BIT (SOON BE AT LOAD PT.)
FETCH COMMAND

SAVE COMMAND

ISSUE COMMAND

STALL FOR TIME

(THIS IS STUPID)
* X %

SET REWIND FLAG
CHECK FOR OTHER REWINDS

TITLE BACKSPACE AND FOREWARD SPACE RECORD

*

* FOREWARD SPACE RECORD ENTRY POINT

*

TLX1360 EQU
LI
RBT
LB

B
*

* BACKSPACE RECORD ENTRY POINT

*

TLX1370 EQU
LI
TBT

BZ

48-190 F00 R00

*

U0, MAGEOTB

UO, DCB.FLG1 (UD)
U2, DCB.CESR (UD)
TLX1390

*

UO, MAGBOTB
U0, DCB.FLG1 (UD)
TLX1380

CHECK THE EOT CONDITION
RESET EOT ELAG

GET COMMAND BYTE

GO TO COMMON PROCESSING

CHECK BOT FLAG
NOT SET ! BRANCH

dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir

4-29

TLX1380

*

* "COMMON

*

TLX1390

TLX1400

TLX1410

TLX1420

4-30

B
EQU
LB

TLX2150
*

U2, DCB. CBSR (UD)

CHECK FOR REWIND CONDITIONS

GET COMMAND BYTE.

BACKSPACE RECORD AND FOREWARD SPACE RECORD LOGIC

EQU
BAL
LIS
OH
STH
B
EQU
ST
STB
LA
STH
LA
ST
LA
STH
BAL
LH
SINT
LI

L
BAL
B
SPACE
PURE
EQU

oc
LH
STH
oc
LA
STH
LPSWR
EQU

LH
BZ

*

UB, TLX1400
U0, 0
UO, DCB : STAT (UD)
UO, DCB. STAT (UD)
TLX2150

*
UB, CCB.EBO (UC)
U2, DCB.CMD (UD)
U1, TLX1410
U1, CCB.SUBA (UC)
U1, TLX1460
U1, DCB.ESR (UD)
U0, 1 (UC)
UO, ISPTAB (U6, U6)
U8, TOCHON
U8, DCB. ILVL (UD)
U8, 0 (U6)
UE, 3
UE, DCB.LEAF (UD)
Us, EVREL
EVRTE

*

ES, CCB.DCB (E4)
E2,DCB.CENB (E5)
E6,DCB.MAXT (E5)
E6,DCB.TOUT (ES5)
E2,DCB.CMD (E5)
E7.TLX1420
E7,CCB.SUBA (E4)
EO

*

E5, CCB.DCB (E4)
E6,DCB.CCB (E5)
TLX1425

CLEAR REGISTER

OR STATUS

SAVE STATUS

CHECK FOR REWIND CONDITIONS.

SAVE RETURN REGISTER

SAVE COMMAND

GET INTERRUPT SERVICE ADDRESS
SETUP ISR POINTER

SET THE EVENT SERVICE ADDRESS
* INTO THE DCB FOR SQS.

MAKE ODD CCB ADDRESS .

SET CONTROLLER ISPT ENTRY
GET ON TIMER CHAIN

FETCH INTERRUPT LEVEL

ENTER ISR

LEVEL

LEAF ADDRESS

RELEASE SELCH

RETURN FROM ESR

A (DCB)

ENABLE INTERRUPTS
MAXIMUM TIMEOUT VALUE
START TIMER

ISSUE COMMAND

SET NEXT ISR ADDRESS

*

EXIT INTERRUPT SERVICE

GET DCB ADDRESS
GET TIME-OUT VALUE
IF TIMED OUT, EXIT NOW

48-190 F00 R00

dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir

dir

isrs
isr8
isr8
isr8
isrs8
isrs8
isr8
isrs8
isr8
isrs8
isrs
isr8

isr8

THI
BNZ

TLX1425 EQU
LPSWR
SPACE

TLX1430 EQU
STB
oc
LA
STH
LPSWR

*

TLX1440 EQU

RHR
STH
oC

LH

BNP
LCS
STH

ATL
TLX1450 LPSWR
SPACE
IMPUR
TLX1460 EQU
LHL
LHL
BAL
LH
BZ
LHL
NHI
CHI
BE
LIS
LH
THI
BP
STH

BR

48-190 F00 R0OO

E3,X"'11"
TLX1430
*

EO

*

E3,DCB.DDPS (E5)
E2,DCB.DSBO (E5)
E7, TLX1440
E7.CCB:SUBA (E4)
EO

*

E5,CCB.DCB (E4)
E2,E7
E7,CCB.MISC (E4)
E2,DCB.CDAR (E5)
E6,DCB.TOUT (E5)
TLX1450

E7.1
E7,DCB.TOUT (E5)
E7.DCB.LEAF (E5)
E7.SQ

EO

*

UC, DCB.CCB (UD)
U6, DCB.DN (UD)
U8, TOCHOFF

U7, DCB.TOUT (UD)
TLX1480

U8, CCB.MISC (UC)
U8, X'FF00'

U8, X'1000"
TLX1470

UL, 0

UB, DCB. STAT (UD)
UB, DUt EOM! EOF
TLX1482

U1, DCB.STAT (UD)
UB, CCB.EBO (UC)
UB

CHECK NMIN & DU
YES, GO TOWARDS ESR

GO WAIT FOR ANOTHER INTERRUPT

SAVE STATUS
SEND NOP CMD EOR STATUS
SET NEXT ISR ADDRESS

*

EXIT INTERRUPT SERVICE

GET CCB ADDRESS

GET DEVICE STATUS HALEFWORD
SAVE FOR ESR USE

NOW TURN OFF INTERRUPTS
CHECK TIMEOUT CONSTANT
DON'T ADD TO QUEUE TWICE.
RESET THE TIME-OUT VALUE
*

GET LEAF ADDRESS

PUT ESR ON QUEUE

EXIT FROM ISR.

A (CCB)

DEVICE NUMBER

REMOVE FROM TIMER CHAIN
CHECK FOR TIME OUT

BRANCH IF WE TIMED OUT.

GET DEVICE STATUS HALFWORD
MASK OFF UNWANTED BITS

FILE MARK ERROR?

NO, KEEP GOING

INITIALIZE STATUS FIELD
GET DEVICE DEPENDENT STATUS
DID SOMETHING UNUSUAL HAPPEN?
IF SO GO TO SPECIAL LOGIC
SETS ZERO STATUS

RESTORE LINK REGISTER

EXIT

isr8
isr8
isr8

isr8

isr9o
isr9
isr9
isr9
isr9

isr9

isra
isra
isra
isra
isra
isra
isra
isra
isra
isra
isra

isra

esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3

esr3

4-31

*

TLX1470 EQU

*

* SET SPECIAL STATUS FOR FILE MARK ERROR ON ERASED TAPE.

LHI
LH
THI
BNZ
STH
B

Ul,X'82AA"

UB, DCB.STAT (UD)
UB, EOM

TLX1485
Ul,DCB.STAT (UD)
TLX2150

FILE MARK ERROR STATUS

GET THE DEVICE DEPENDENT STATUS
WAS THERE ALSO END OF TAPE?

IF EOT, GO CHECK FOR BOT/EOT
SAVE THE STATUS

AND GO CHECK REWIND STATUS

* TIMEOUT ESR FOR BACKSPACE AND FOREWARD SPACE RECORD

TLX1480 EQU
ocC
LHI
STH

B

*

U6, DCB. CDAR (UD)
Us,x'8271"

U8, DCB. STAT (UD)
TLX2150

DISARM INTERPT

TIMEOUT ON BACKSPACE RECORD

STORE STATUS

CHECK FOR RWND IN PROGRESS & EXIT

* COME HERE ON EFSR OR BSR OPERATION ONLY IF DU,EOM,OR EOF I8
* SET AT THE CONCLUSION OF THE OPERATION.

TLX1482 EQU
THI
BP
THI
BZ
OHI
STH
EQU
BAL
LI
TBT
BZ
OHI
EQU
STH
B
TITLE
EQU
BAL

TLX1485

TLX1487

TL.X1490

*

* SET UP RETRY
*

LIS
STH

4-32

*

UB, DU

TLX2340

UB, EOF

TLX1485
Ul,X'8800"

U1, DCB.STAT (UD)
*

U9, TLX2050

U8, MAGEOTB

U8, DCB.FLG1 (UD)
TLX1487
U1,X'9000"

*

U1, DCB.STAT (UD)
TLX2150

WRITE FILE MARK

*

UB, TLX1940
COUNTERS

U0, 0
UO, DCB.RTRY (UD)

DID DRIVE GO OFF-LINE?

IF SO, GET OUT.

WAS IT END-OF-FILE?

IF NOT SKIP TO END/BEGIN OF TAPE
SET END OF FILE STATUS.

SAVE THE STATUS

BRANCH HERE IF EOM IS SET

GO SEE IF WE ARE AT EOT OR BOT
NOW TEST FOR EOT.

*

NO EOT, GO CHECK REWIND STATUS
YES, IS EOT, SET STATUS.

*

AND THEN CHECK REWIND STATUS

CHECK WRITE PROTECTED -
WILL NOT RETURN IF DRIVE PROTECTED

INITIALIZE RETRY

COUNTER

48-190 F00 R0OO

esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3
esr3

esr3

dir
dir
dir
dir
dir
dir
dir

LH

BZ
LB

TLX1500 STH
*

* SET UP FOR ESR AND ISR SCHEDULING

*

TLX1510 EQU
LB
STB
LA
STH
LA
ST
LA
STH
BAL
LH
SINT
LI

BAL

SPACE
PURE
TLX1520 EQU

ocC
LH
- STH
ocC
LA
STH
LPSWR
TLX1530 EQU

LH
BZ
STB
THI
BNZ
TLX1535 EQU

48-190 F00 R0O

U1, DCB.WRY1 (UD)
UO, DCB. SV1X (UD)
TLX1500

U1, DCB.SV1X (UD)
U1, DCB.RMAX (UD)

*

U2, DCB.CWEM (UD)
U2,DCB.CMD (UD)
U1, TLX1520

U1, CCB.SUBA (UC)
U1, TLX1550
Ul,DCB.ESR (UD)
U0, 1 (UC)

UO, ISPTAB (U6, U6)
U8, TOCHON

U8, DCB. ILVL (UD)
Us, 0 (U6)

UE, 3

UF, DCB.LEAF (UD)
U8, EVREL

EVRTE

*

E5, CCB.DCB (E4)
E2,DCB.CENB (E5)
E6,DCB.MAXT (ES)
E6,DCB.TOUT (E5)
E2,DCB.CMD (E5)
E7,TLX1530
E7,CCB.SUBA (E4)
EO

*

ES5, CCB.DCB (E4)
E6,DCB.CCB (E5)
TLX1535
E3,DCB.DDPS (ES)
E3,X'11"

TLX1540
*

GET DEFAULT WRITE RETRY COUNT
GET EXTENDED FUNCTION CODE

IF EXT. ENCIN = O, USE DEFAULT
IF NOT, USE USER'S COUNT

SET RETRY COUNT.

AND EXECUTION

FETCH COMMAND

SAVE COMMAND

SET THE INTERRUPT SERVICE ADDR
*INTO THE ISPT.

SET THE EVENT SERVICE ADDRESS
* INTO THE DCB FOR SQS.

MAKE ODD CCB ADDRESS

SET CONTROLLER ISPT ENTRY
PUT ONTO TIMER CHAIN

FETCH INTERRUPT LEVEL

ENTER ISR

LEVEL

LEAF ADDRESS

RELEASE SELCH

RETURN FROM ESR

A (DCB)

ENABLE INTERRUPTS
MAXIMUM TIMEOUT VALUE
START TIMER

ISSUE COMMAND

GET NEXT ISR ADDRESS

*

EXIT INTERRUPT SERVICE

GET DCB ADDRESS

GET TIME-OUT VALUE

IF TIMED OUT, EXIT NOW
SAVE STATUS

CHECK NMTIN & DU

YES, GO TOWARDS ESR

dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir

isrb
isrb
isrb
isrb
isrb
isrb
isrb
isrb
isrdb
isrc
isrc
isrc
isrc
isrc
isrc
isrc

isrc

4-33

TLX1540

TLX1550

TLX1560

TLX1570

LPSWR
SPACE
EQU
oc
LH
BTES
LPSWR
LCS
STH

ATL
LPSWR
SPACE
IMPUR
EQU
LHL
LHL
BAL
LH

BZ

LH
THI
BP
THI
BZ
LIS
THI
BZ
OHI
LI
SBT
EQU
STH

B

EQU

EO

*

E2,DCB.CDAR (E5)
E6,DCB.TOUT (ES)
2,2

EO

E6,1
E6,DCB.TOUT (ES)
E6, DCB.LEAF (E5)
E6,SQ

EO

*

UC, DCB.CCB (UD)
U6, DCB. DN (UD)
U8, TOCHOFF

U8, DCB. TOUT (UD)
TLX1570

UB, DCB. STAT (UD)
UB, DU

TLX2340
UB,X'0002"
TLX1580

Uo, 0

UB,X'20"'
TLX1560

U0, X'9000"
Ul,MAGWAT2B
U1l,DCB.FLG1 (UD)
*

UO, DCB. STAT (UD)

TLX2150
*

GO WAIT FOR ANOTHER INTERRUPT

TURN OFF INTERRUPTS

GET TIME-OUT COUNTER

RETURN NOW IF TIMED-OUT
DON'T RE-ADD TO S.Q.
OTHERWISE SET MINUS TO

SHOW WE HAVE BEEN HERE.

GET LEAF ADDRESS

SCHEDULE DRIVER TERMINATION
EXIT AND WAIT FOR TERM.

A (CCB)

DEVICE NUMBER

REMOVE FROM TIMER CHAIN
CHECK FOR TIME-OUT

TIMED OUT? YES, BRANCH

GET DEVICE DEPENDENT STATUS
DID WE GO DU?

IF SO,EXIT.

IS TAPE MARK STATUS SET?
NO, GO RETRY

EOT/BOT SET?

NO - GO ON

YES - SET USUAL STATUS
AND SET FLAG FIELD

*

PLACE FOR THE USER
EXIT AND CHECK FOR REWINDS.

* TIME OUT ON WRITE FILE MARK OPERATION.

4-34

SSR
THI
BNZ
LHI
STH
B
SPACE

U6, U1

U1,DU

TLX2340
Us,X'8275"

U8, DCB.STAT (UD)
TLX2150

SENSE STATUS

INDICATE TIME OUT ON WEM.
STORE STATUS

CHECK FOR RWND IN PROGRESS & EXIT

isrc

isrd
isrd
isrd
isrd
isrd
isrd
isrd
isrd
isrd
isrd

esr4
esr4
esr4
esr4
esr4
esr4
esr4
esr4
esr4
esr4
esr4
esré
esr4
esr4
esr4
esré
esr4
esr4
esr4
esr4
esr4
esr4
esr4
esr4
esr4
esr4d
esr4
esr4

esr4

48-190 F00 ROO

TLX1580 EQU *
LB U2, DCB.CBSR (UD)
BAL UB, TLX1400
LH UO, DCB.RTRY (UD)
CH U0, DCB.RMAX (UD)
BNM TLX2370

AIS uo, 1

STH UO, DCB.RTRY (UD)
B TLX1510

SPACE

-GET COMMAND BYTE
GO TO COMMON LOGIC FOR BACKSPACE

RETRY COUNTS
COMPARE TO MAX

UP RETRY COUNT
STORE IT
ATTEMPT TO WRITE EM

TITLE FORWARD FILE MARK AND BACK FILE MARK

*

* BACK FILE MARK ENTRY

*

TLX1590 EQU *
LI U0, MAGBOTB
TBT UO,DCB.FLG1 (UD)
LB U2, DCB.CBFM (UD)
BZ TLX1610
B TLX2150
SPACE

*

* FOREWARD FILE MARK ENTRY

*

TLX1600 EQU *
LI UO, MAGEOTB
RBT UO,DCB.FLG1 (UD)
LB U2, DCB.CFEM (UD)

SPACE
*

* COMMON BACKFILE AND FOREWARD FILE

*

TLX1610 EQU *
STB U2,DCB.CMD (UD)
LA U1, TLX1620
STH Ul,CCB.SUBA (UC)
LA U1, TLX1650
ST U1l,DCB.ESR (UD)
LA U0, 1 (UC)
STH UO, ISPTAB (U6,U6)
BAL U8, TOCHON
LH U8, DCB. ILVL (UD)
SINT U8,O0 (U6)

48-190 F00 R00

CHECK BOT FLAG

GET COMMAND BYTE

NOT SET ! BRANCH

GO CHECK REWIND CONDITIONS

CHECK THE EOT CONDITION
RESET EOT FLAG
FETCH COMMAND

LOGIC STARTS HERE

SAVE COMMAND

SET THE INTERRUPT SERVICE ADDR
* INTO THE CCB.

SET THE EVENT SERVICE ADDRESS
* INTO THE DCB EOR SQS.

MAKE ODD CCB ADDRESS

SET CONTROLLER ISPT ENTRY

PUT ONTO TIMER CHAIN

FETCH INTERRUPT LEVEL

ENTER ISR

esr4
esr4
esr4
esr4
esr4
esr4
esr4
esr4

esr4d

dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir

dir

4-35

TLX1620

TLX1630

TLX1635

TLX1640

TLX1650

4-36

LI

BAL

SPACE
PURE
EQU

ocC
LH
STH
oC

STH
LPSWR
EQU

LH
BZ
THI
BNZ
EQU
LPSWR
SPACE
EQU
STB
oc

LH
BTFS
LPSWR
LCS
STH

ATL
LPSWR
SPACE
IMPUR
EQU
LHL
LHL
LH

BZ

UE, 3

UF , DCB. LEAF (UD)
U8, EVREL

EVRTE

*

ES5,CCB.DCB (E4)
E2,DCB.CENB (E5)
E6, DCB.MAXT (E5)
E6,DCB.TOUT (E5)
E2,DCB.CMD (E5)
E7,TLX1630
E7,CCB.SUBA (E4)
EO

*

E5, CCB.DCB (E4)
E6,DCB.CCB (E5)
TLX1635
E3,X'11"
TLX1640

*

EO

*

E3,DCB.DDPS (E5)
E2,DCB.CDAR (E5)
E6,DCB.TOUT (E5)
2,2

EO

E6,1
E6,DCB.TOUT (E5)
E6,DCB.LEAF (E5)
E6,SQ

EO

*

UC, DCB. CCB (UD)
U6, DCB.DN (UD)
U7, DCB.TOUT (UD)
TLX1680

U8, TOCHOFF

LEVEL

LEAF ADDRESS
RELEASE SELCH
RETURN FROM ESR

A (DCB)

ENABLE INTERRUPTS
MAXIMUM TIMEOUT VALUE
START TIMER

ISSUE COMMAND

SET NEXT ISR ADDRESS

*

EXIT INTERRUPT SERVICE

GET DCB ADDRESS
GET TIME-OUT VALUE
IF TIMED OUT, EXIT NOW

YES, GO TOWARDS ESR

GO WAIT FOR ANOTHER INTERRUPT

SAVE STATUS

TURN OFF INTERRUPTS

GET TIME-OUT COUNTER

RETURN NOW IF TIMED-OUT
DON'T RE-ADD TO S.Q.
OTHERWISE SET MINUS TO

SHOW WE HAVE BEEN HERE.

GET LEAF ADDRESS

SCHEDULE DRIVER TERMINATION
EXIT AND WAIT FOR TERM.

A (CCB)

DEVICE NUMBER

CHECK FOR TIME OUT

TIMED OUT? YES, BRANCH
REMOVE FROM TIMEOUT CHAIN

48-190 F00 ROO

isre
isre
isre
isre
isre
isre
isre
isre
isre
isre
isre
isre
isre
isre
isre
isre
isre

isre

isrf
isrf
isrf
isrf
isrf
isrf
isrf
isrf
isrf
isrf

isrf

esr5S
esr5
esrS
esr5S
esr5
esr5

esr5S

LH
THI
BP
LIS
THI
BZ
THI
BNZ
STH
B
TLX1660 EQU
LI
SBT
LHI
STH
B
TLX1670 EQU

UB, DCB. STAT (UD)
UB, DU

TLX2340

U0, 0

UB, X'0002"
TLX1670

UB, EOM

TLX1660

UO, DCB. STAT (UD)
TLX2150

*

U1, MAGWAT2B
U1l,DCB.FLG1 (UD)
U0, X'9000"

UO, DCB. STAT (UD)

TLX2150
*

GET THE STATUS FIELDS
DID WE GO OFF-LINE?

GET OUT, IF SO

CLEAR STATUS HERE.

WE MUST BE ON A FILEMARK.
CHECK TYPE OF OPERATION

END OF TAPE CONDITION?

END OF TAPE DETECTED
SET STATUS FINALLY.
GO CHECK FOR REWIND CONDITIONS.

SET EOT FLAG

*

INDICATE EOT IN STATUS FIELD
SET STATUS FINALLY.

GO CHECK FOR REWIND CONDITIONS.

* NO EOF DETECTED--THIS IS O.K. ONLY ON BACKFILE OPERATIONS

* WHEN THE TAPE IS AT LOAD POINT

LB
CHI
BNE
THI
BZ
STH
B
SPACE
TLX1680 EQU
LHI
EPSR
SSR
THI
BNZ
LH
STH
EPSR
B
TLX1690 EQU
EPSR

* TIMEOUT ON FILE MARK OPERATION.

U1,DCB.FC (UD)
U1,x'82"
TLX2350

UB, EOM

TLX2350

UO, DCB. STAT (UD)
TLX2150

*

U0, X'2050"

U1, U0

U6, U2

U2,X'D1!
TLX1690

UO, DCB.MAXT (UD)
UO, DCB. TOUT (UD)
Uo, U1

EVRTE

*

Uo, Ul

GET THE FUNCTION

BACK FILE OPERATION?
UNRECOVERABLE ERROR-NO FILEMARK
END OF TAPE CONDITION?

NO - REALLY AN ERROR.

SAVE THE STATUS

GO CHECK REWIND CONDITIONS.

GO NON-INTERRUPTABLE

*

GET DEVICE STATUS

DID ANYTHING HAPPEN?

YES - IT DIED OR SOMETHING

NO - SET TIME-OUT VALUE AGAIN
AND WAIT FOR LONG FILE (MAYBE)

NOW GET OUT
*

TIMED-OUT, REALLY - FINISH UP

* REMOVE FROM TIMEOUT CHAIN NOW. HOWEVER, WHEN PERFORMING LONG
* FORWARD AND BACK FILE OPERATIONS, WE MAY TIMEOUT SEVERAL TIMES

* WITHOUT EVER REPORTING THE TIMEOUT TO THE USER.

48-190 F00 R00O

THEREFORE

esr5
esr5
esrS
esr5
esr5
esr5
esr5
esr5
esr5
esr5
esr5
esr5
esr5
esr5
esrb
esr5
esr5
esr5
esr5
esr5
esrb5
esr5
esr5
esr5S
esr5
esr5
esr5
esr5
esr5
esr5
esr5
esrb5
esr5
esr5
esr5
esr5
esr5
esr5
esr5
esr5
esr5
esr5

esrS5

4-37

* WE MUST STAY ON THE TIMEOUT CHAIN UNTIL WE ARE READY TO GIVE esrS

* UP AND GIVE THE USER A TIMEOUT STATUS. esr5
BAL U8, TOCHOFF REMOVE FROM TIMER CHAIN. esrS
LHI Us,X'8272" SET TIME OUT FOR ERROR MESSAGE esr5
STH U8,DCB.STAT (UD) STORE STATUS esr5
B TLX2150 CHECK FOR RWD IN PROGRESS & EXIT esr5
TITLE REWIND & UNLOAD - DEVICE DEPENDENT FUNCTION CODE O
TLX1700 EQU * dir
LB U2,DCB.CUNL (UD) FETCH COMMAND dir
STB U2,DCB.CMD (UD) SAVE COMMAND dir
OCR U6,U02 ISSUE COMMAND dir
LHI uo, 250 STALL FOR TIME TO BE SURE dir
TLX1705 SIS Uo, 1 THE COMMAND DOES NOT GET dir
BP TLX1705 CLEARED BY THE NEXT OPERATION. dir
LI UO, MAGUNLB dir
SBT UO, DCB.FLG1 (UD) SET REWIND/UNLOAG FLAG dir
B TLX2150 BRANCH TO CHECK REWIND COMPLETE dir
TITLE ERASE - DEVICE DEPENDENT FUNCTION CODES 7 AND 10 dir
* dir
* SET UP TO PERFORM THE SOFTWARE 'ERASE BUFFER' OPERATION. dir
* THIS WILL REPEATEDLY CALL A ROUTINE (TLX1760) TO PERFORM dir
* THE HARDWARE ERASE GAP OPERATION. : dir
* dir
* ENTER WITH U2 CONTAINING AN INDEX THAT WILL GIVE THE dir
* PROPER 'BYTES PER GAP' dir
* dir
* dir
TLX1710 EQU * dir
LIS U8, 0 SET UP REG TO COUNT GAPS TO ERASE dir
D U8, DCB.BPG (UD, U2) COMPUTE GAPS NEEDED FOR ERASE dir
LR us,us dir
BZ TLX1740 NO REMAINDER--BRANCH dir
AIS Uo.1 ADJUST UPWARD dir
TLX1740 EQU * dir
STH U9,DCB.ESCT (UD) SAVE COUNT dir
SPACE dir
TLX1750 EQU * dir
BAL UB, TLX1760 ERASE ONE GAP'S WORTH dir
LCS Uo.1 dir
AHM U0, DCB.ESCT (UD) DECREMENT COUNT dir
BP TLX1750 MORE, LOOP dir
B TLX2150 ALL DONE. dir
* dir

4-38 48-190 F0O R0OO

* FOLLOWING ROUTINE EXECUTES ONE ERASE GAP OPERATION

*

TLX1760 EQU
ST
LI
TBT
BZ
LHI
STH

TLX1770 EQU
BAL
LB
STB
LA
STH
LA
ST
LA
STH
BAL
LH
SINT
LI

BAL

SPACE
PURE
TLX1780 EQU

ocC
LH
STH
oC
LA
STH
LPSWR
TLX1790 EQU

LH

BZ
THI

48-190 F00 R0O

*

UB, CCB.EBO (UC)
U1, MAGWAT2B
U1,DCB.FLG1 (UD)
TLX1770

U0, X'9000'"

U0, DCB. STAT (UD)
TLX2150

*

UB, TLX1940

U2, DCB.CERS (UD)
U2, DCB.CMD (UD)
U1, TLX1780

U1, CCB.SUBA (UC)
U1, TLX1810

U1, DCB.ESR (UD)
U0, 1 (UC)

UO, ISPTAB (U6, U6)
U8, TOCHON

U8, DCB. ILVL (UD)
Us, 0 (U6)

UE, 3

UF, DCB.LEAF (UD)
U8, EVREL

EVRTE

*

E5, CCB.DCB (E4)
E2,DCB.CENB (E5)
E6,DCB.MAXT (E5)
E6,DCB.TOUT (E5)
E2,DCB.CMD (E5)
E7,TLX1790
E7,CCB.SUBA (E4)
EO

*
E5,CCB.DCB (E4)
E6,DCB.CCB (E5)
TLX1795
E3,X'13"

SAVE LINK REGISTER

CHECK TO SEE IF EOT CAME UP

*

NO, JUMP TO CONTINUE OPERATION

AT EOT GIVE USER X~9000' STATUS
*

GO CHECK FOR WRITE-RING
FETCH COMMAND

SAVE COMMAND

SET THE INTERRUPT SERVICE ADDR
* INTO THE CCB.

SET THE EVENT SERVICE ADDRESS
*INTO THE DCB FOR SQS.

MAKE ODD CCB ADDRESS

SET CONTROLLER ISPT ENTRY
PUT ONTO TIMER CHAIN

FETCH INTERRUPT LEVEL

ENTER ISR

LEVEL

LEAF ADDRESS

RELEASE SELCH

RETURN FROM ESR

A (DCB)

ENABLE INTERRUPTS
MAXIMUM TIMEOUT VALUE
START TIMER

ISSUE COMMAND

SET NEXT ISR ADDRESS
*

EXIT INTERRUPT SERVICE

GET DCB ADDRESS

GET TIME-OUT VALUE

IF TIMED OUT, EXIT NOW

CHECK EOM OR NO MOTION EOR 6250

dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir

dir

isrg
isrg
isrg
isrg
isrg
isrg
isrg
isrg
isrg
isrg
isrg
isrg
isrg
isrg

isrg

4-39

BNZ
TLX1795 EQU
LPSWR
SPACE
TLX1800 EQU
STB
ocC
LH
BTES
LPSWR
LCsS
STH

ATL
LPSWR
SPACE
IMPUR
TLX1810 EQU
LHL
LHL
BAL
LH
BZ
LH
THI
BP
LIS
THI
BP
STH
L
CR
BR
TLX1820 EQU
*TIME OUT ON E
oc
LHI
STH
B

*

TLX1840 EQU

TLX1800
*

EO

*

E3,DCB.DDPS (ES5)
E2,DCB.CDAR (E5)
E6,DCB.TOUT (ES)
2,2

EO

E6,1
E6,DCB.TOUT (E5)
E6,DCB.LEAF (E5)
E6,SQ

EO

*

UC, DCB.CCB (UD)
U6, DCB.DN (UD)
U8, TOCHOFF
U7, DCB.TOUT (UD)
TLX1820
UB, DCB. STAT (UD)
UB, DU
TLX2340
Uo,0
UB, EOM
TLX1840
UO, DCB.. STAT (UD)
UB, CCB.EBO (UC)
UB, UB
UB
*

RASE

U6, DCB. CDAR (UD)
Us,X'8273"

U8, DCB. STAT (UD)

TLX2150

*

*SET EOM ON ERASE

LT

4-40

Ul,MAGWAT2B

YES, GO TOWARDS ESR

GO WAIT FOR ANOTHER INTERRUPT

SAVE STATUS

TURN OFF INTERRUPTS

GET TIME-OUT COUNTER

RETURN NOW IF TIMED-OUT
DON'T RE-ADD TO S.Q.
OTHERWISE SET MINUS TO

SHOW WE HAVE BEEN HERE.

GET LEAF ADDRESS

SCHEDULE DRIVER TERMINATION
EXIT AND WAIT FOR TERM.

A (CCB)

DEVICE NUMBER

GET OFF TIMEOUT CHAIN
CHECK FOR TIME-OUT
BRANCH IF WE TIMED OUT
GET DEVICE DEPENDENT STATUS
DID IT GO OFF LINE?

IF SO, EXIT NOW

CLEAR REGISTER

CHECK FOR END OF TAPE
EOT SET--BRANCH

PLACE FOR THE USER

GET LINK REGISTER

MUST SET CC=0

AND RETURN TO CALLER.

DISARM INTRPT
TIMEOUT STATUS
STORE STATUS

CHECK EOR RWND IN PROGRESS & EXIT

SET EOT FLAG IN DCB

isrg
isrg
isrg

isrh
isrh
isrh
isrh
isrh
isrh
isrh
isrh
isrh
isrh

isrh

esr6
esr6
esrb
esr6
esr6
esr6
esr6
esr6
esr6
esr6
esr6
esr6
esrb6
esr6
esr6
esr6
esrb6
esr6
esr6
esré6
esr6
esr6
esr6
esr6
esrb6
esrb6

esrb

48-190 F0O0 R0O

TLX1860

TLX1870

TLX1880

TLX1890

SBT Ul,DCB.FLG1 (UD)
LHI U8,X'9000'

STH U8,DCB.STAT (UD)
B TLX2150

SPACE

TITLE READ STATUS - DEVICE

EQU *

L U1, CCB.XLT (UC)
CLI -U1,8

BL TLX2360

LIS Us,3

STH U8,DCB.TOUT (UD)
LA U8, TLX1920

ST U8, DCB.ESR (UD)
LA Us, TLX1870

STH U8, CCB.SUBA (UC)
LA Us, 1 (UC)

STH U8, ISPTAB (U6, U6)
BAL U8, TOCHON

oc U6, DCB.CENB (UD)
oc U6, DCB.DSBO (UD)
B EVRTE

PURE

THI E3,X'10'

BNP TLX1910

L E5,CCB.DCB (E4)
RH E2,DCB.STAO (E5)
LA E7,TLX1880

STH E7,CCB.SUBA (E4)
oc E2,DCB.DSB1 (ES)
LPSWR EO

THI E3,X'10'

BNP TLX1910

L ES, CCB.DCB (E4)
RH E2,DCB.STAL (E5)
LA E7, TLX1890

STH E7,CCB.SUBA (E4)
oc E2,DCB.DSB2 (E5)
LPSWR EO

THI E3,X'10'

BNP TLX1910

L E5, CCB.DCB (E4)

48-190 F00 R0O

*

SET STATUS TO X™9000'

.STORE STATUS
CHECK FOR RWND IN PROGRESS & EXIT
DEPENDENT EFUNCTION CODE 8

GET REQUESTED LENGTH OF XFER
BUFFER SIZE LESS THAN 8 ?

BUFFER IS TOO SMALL

SET A SHORT TIME-OUT CONSTANT

*

GET ADDRESS OF OUR ESR

NOW HAVE ESR ADDR SET UP
GET ADDRESS OF EIRST ISR

PUT IN CCB FOR INT SERV
GET CCB ADDR + 1

ISPT NOW SET UP

GET ON TIME-OUT CHAIN
ENABLE INTERRUPTS

ASK FOR FIRST HALEWORD

DO WE HAVE NO-MOTION
NO - WAIT SOME MORE
GET DCB ADDRESS

GET THE HALEWORD

GET NEXT ISR ADDRESS
SET UP CCB

ASK FOR NEXT HALF WORD

DO WE HAVE NO-MOTION
NO - WAIT SOME MORE
GET DCB ADDRESS

GET THE HALEWORD

GET NEXT ISR ADDRESS
SET UP CCB

ASK FOR NEXT HALE WORD

DO WE HAVE NO-MOTION
NO - WAIT SOME MORE
GET DCB ADDRESS

esr6
esr6
esr6
esr6

dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
dir
isrh
isrh
isrh
isrh
isrh
isrh
isrh
isrh
isrh
isri
isri
isri
isri
isri
isri
isri
isri
isrj
isrj
isrj

4-41

TLX1900

TLX1910

TLX1920

TLX1930

*

* % Kk Kk Kk Kk x * k Kk Kk Kk Kk X X X *x koK

4-42

RH

STH
ocC
LPSWR
THI
BNP

RH
LH
BNP
LCS
STH
LA
STH

ATL
LPSWR
IMPUR
EQU
LHL
LHL
BAL
LH
BZ
L
LH
STH
LH
STH
LH
STH
LH
STH
B
EQU
LHI
STH

E2,DCB.STA2 (E5)
E7, TLX1900
E7,CCB.SUBA (E4)
E2,DCB.DSB3 (E5)
EO

E3,X'10'
TLX1910
E5,CCB.DCB (E4)
E2,DCB.STA3 (E5)
E7,DCB.TOUT (ES)
TLX1910

E7.1
E7,DCB.TOUT (E5)
E7,II1I
E7,ISPTAB (E2,E2)
E7,DCB.LEAF (E5)
E7,SQ

EO

*

U6, DCB.DN (UD)
UC,DCB.CCB (UD)
U8, TOCHOEF

U1, DCB.TOUT (UD)
TLX1930

U1, DCB.SADR (UD)
UO, DCB. STAO (UD)
U0, 0 (U1)

U0, DCB. STA1 (UD)
U0, 2 (U1)

U0, DCB.STA2 (UD)
UO, 4 (U1)

U0, DCB.STA3 (UD)
UO, 6 (U1)
TLX2150

*

Us,X'82DD"

U8, DCB. STAT (UD)

B TLX2150

TITLE SUPPORT SUBROUTINES

* ok Kk ok ok k ok k Kk Kk Kk Kk Kk X kX X * kok

SUPPORT SUBROUTINES

GET THE HALEFWORD

GET NEXT ISR ADDRESS
SET UP CCB

ASK FOR NEXT HALE WORD

DO WE HAVE NO-MOTION

NO - WAIT SOME MORE

GET DCB ADDRESS

GET THE HALFWORD

DID WE TIME OUT?

NO - NOTHING ELSE TO DO
RESET THE TIME-OUT CONSTANT
SO WE DO NOT CRASH SOMETIMES
RESET THE ISPT

*

SCHEDULE ESR
*

WILL RE-ENTER HERE

RE-SET SOME POINTERS

*

GET OFF TIME-OUT CHAIN

DID WE TIME OUT?

YES - BRANCH TO HANDLE TIMEOUT
GET USER BUFFER ADDRESS

MOVE DATA TO USER BUFFER

COME HERE ONLY ON TIME-OUT

SET A TIME-OUT FLAG

STORE STATUS

CHECK FOR RWND IN PROGRESS & EXIT

48-190 F00 R0O

isrj
isrj
isrj
isrj
isrj
isrk
isrk
isrk
isrk
isrk
isrk
isrk
isrk
isrk
isrk
isrk
isrk
esr7
esr7
esr7
esr7
esr7
esr7
esr’7/
esr’7
esr7
esr7
esr7
esr7
esr7
esr7
esr7
esr7
esr’7
esr’7
esr’7
esr7
esr7
esr7

IMPUR

*

»*

BAL

* %

%

*

* % ¥ %

TLX1940 EQU
ST
LA
ST
LA
STH
LA
STH
LIS
STH
BAL
ocC
ocC

B
*

UB, TLX1940

*

UB, CCB.EB1 (UC)
Us, TLX1990

U8, DCB.ESR (UD)
U8, TLX1950

U8, CCB. SUBA (UC)
Us, 1 (UC)

U8, ISPTAB (U6, U6)
Us, 3

U8, DCB.TOUT (UD)
U8, TOCHON

U6, DCB. CENB (UD)

U6, DCB.DSBO+1 (UD)

EVRTE

* INTERRUPT SERVICE

*

PURE

TLX1950 EQU
LA
STH
RH
LPSWR

TLX1960 EQU
THI
BNZ
RHR
LPSWR

TLX1970 EQU

48-190 F00 R00

*

E7,TLX1960
E7,CCB.SUBA (E4)
E2,CCB.MISC (E4)
EO

*
E3,X'10"
TLX1970
E2,E7
EO

*

E5, CCB.DCB (E4)

THIS ROUTINE IS CALLED FROM OPERATIONS WHICH PERFORM WRITE
FUNCTIONS (WRITE, WRITE GAPLESS, WRITE FILEMARK, AND ERASE)

TO SEE IF THE DRIVE IS WRITE PROTECTED. IE THE DRIVE IS
WRITE PROTECTED, THIS ROUTINE SETS AN '8283' STATUS AND EXITS.
IF THE DRIVE MAY BE PLACED IN A WRITE MODE, THIS ROUTINE
RETURNS TO THE CALLER.

SAVE RETURN ADDR IN SCRATCH AREA

ADDRESS OF ESR FOR RING
SET NEW ESR ENTRY

SET UP FIRST RING ISR

*

MAKE ADDRESS ODD FOR CCB

* AND SET IN ISPT

SET A SHORT TIME-OUT VALUE
*

GET ON TIME-OUT CHAIN
ENABLE INTERRUPTS AND
ISSUE SENSE COMMAND (X'30')
EXIT FROM ESR

NEXT RING ISR

* MUST BE SAVED IN CCB

READ THE HALEWORD WE NEED
WAIT FOR BUSY TO DROP TO GIVE
US THE NEXT INTERRUPT.

IS IT A NO-MOTION INTERRUPT
YES, WRAP IT UP

DON'T NEED THIS HALEWORD
WAIT FOR NEXT INTERRUPT.

GET THE DCB ADDRESS

4-43

LA E7,1I11 SET NULL INTERRUPT

STH E7,ISPTAB(E2,E2) *
OC E2,DCB.CDAR (E5) DISARM INTERRUPTS
LH E7,DCB.TOUT (ES5) SEE IF WE HAVE TIMED OUT
BNP TLX1980 IF SO, DON'T ADD LEAF TO QUEUE
LCS E6,1 RESET THE TIME-OUT VALUE
STH E6,DCB.TOUT (E5) *
L E6,DCB.LEAF (E5) GET THE LEAF ADDRESS
ATL E6,SQ AND ADD IT TO SYSTEM QUEUE
TLX1980 LPSWR EO - - AND GET ON WITH THE SHOW
*
IMPUR
TLX1990 EQU *
LHL UC,DCB.CCB (UD) MAKE SURE THIS IS STILL O.K.
LHL U6,DCB.DN (UD) *
LH U8, DCB. TOUT (UD) DID WE TIME-OUT?
BZ TLX2000 YES-GO SET SPECIAL STATUS.
BAL U8, TOCHOFF GET OFF THE TIME-OUT CHAIN
L UB, CCB.EB1 (UC) RESTORE THE RETURN ADDRESS
LH U9, CCB.MISC (UC) GET THE STATUS WE NEED
THI ~ U9,X'4000' WRITE PROTECTED ?
BZR UB NO, RETURN
LHI U8, X'8283' YES
STH U8,DCB.STAT (UD) STORE STATUS
B TLX2150 CHECK FOR REWIND IN PROGRESS & EXIT.

*

* THE FOLLOWING CODE IS EXECUTED ON A TIMEOUT CONDITION WHICH
* MAY OCCUR IF NO-MOTION DOES NOT SET FOLLOWING AN OUTPUT
* COMMAND OF X'30' (SENSE DRIVE STATUS).

*

TLX2000 EQU *

LHI U8,X'82DE" TIMED OUT - SET SPECIAL STATUS
STH U8,DCB.STAT (UD) STORE STATUS
B TLX2150 CHECK FOR REWIND IN PROGRESS & EXIT.
EJECT
* BAL U9, TLX2050

* THE FOLLOWING ROUTINE IS CALLED WHEN IT IS NECESSARY TO DETERMINE
IF WE ARE AT BOT OR EOT. THIS IS DONE AT THE START OF THE DRIVER
IF EOT WAS ENCOUNTERED PREVIOUSLY OR DURING THE CURRENT SENSE
STATUS OPERATION. THIS ROUTINE IS ALSO CALLED DURING SOME ERROR
ROUTINES SO THAT THE APPROPRIATE 'EOM' STATUS MAY BE SET FOR THE
USER.

* % % % ¥

*

4-44 48-190 F0O0 R00

TLX2050 EQU
LI
RBT
LI
TBT
BNZ
SSR

BZ
TLX2060 EQU
RBT
ST

ST
LA
STH
LA
STH
LIS
STH
BAL
ocC
oC
B

*

*

U8, MAGREWB

U8, DCB.FLG1 (UD)
U8, MAGWAT2B

U8, DCB.FLG1 (UD)
TLX2060

U6, U0

UO,EOM

TLX2140

*

U8, DCB.FLG1 (UD)
U9, CCB.EBO (UC)
Us,TLX2110
U8,DCB.ESR (UD)
Us, TLX2070

U8, CCB.SUBA (UC)
uUs,1(uc)

U8, ISPTAB (U6, U6)
us, 3

U8, DCB.TOUT (UD)
U8, TOCHON

U6, DCB.CENB (UD)

U6, DCB.DSBO+1 (UD)

EVRTE

* INTERRUPT SERVICE

*

PURE

TLX2070 EQU
LA
STH
RH
LPSWR

TLX2080 EQU
THI
BNZ
RHR
LPSWR

TLX2090 EQU

L
LA

48-190 F00 R00

*

E7, TLX2080
E7,CCB.SUBA (E4)
E2,CCB.MISC (E4)
EO

*

E3,X'10'
TLX2090

E2,E7

EO

*

ES, CCB.DCB (E4)
E7,III

REWIND BIT
RESET IT

ET ENCOUNTED IN PREVIOUS ACTION ?

YES
SENSE STATUS

TEST BOT/EOT STATUS
BRANCH IF NOT BOT/EOT

RESET MAGWAT2B FLAG
SAVE RETURN ADDRESS
ADDRESS OF ESR EFOR BOTT
SET NEW ESR ENTRY

SET UP FIRST BOTT ISR

*

MAKE ADDRESS ODD EOR CCB
* AND SET IN ISPT
SET A SHORT TIME-OUT

*

GET ON THE TIME-OUT CHAIN
ENABLE INTERRUPTS AND
ISSUE SENSE COMMAND (X'30')

EXIT FROM ESR

NEXT BOTT ISR

* MUST BE SAVED IN CCB

READ THE HALEWORD WE NEED
WAIT FOR BUSY TO DROP TO GIVE
US THE NEXT INTERRUPT.

IS IT A NO-MOTION INTERRUPT

YES, WRAP IT UP

DON'T NEED THIS HALEWORD
WAIT EFOR NEXT INTERRUPT.

CET THE DCB ADDRESS
SET NULL INTERRUPT

4-45

STH E7,ISPTAB(E2,E2)
oc E2,DCB.CDAR (E5)
LH E7,DCB.TOUT (E5)
BNP TLX2100

LCS E7,1
STH E7,DCB.TOUT (ES5)
L E6,DCB.LEAF (ES)
ATL E6,SQ

TLX2100 LPSWR EO

*
IMPUR

TLX2110 EQU *
LHL UC,DCB.CCB (UD)
LHL U6,DCB.DN (UD)
BAL. U8, TOCHOFF
LH U8, DCB.TOUT (UD)
BZ TLX2145
L U9, CCB.EBO (UC)
LH U0, CCB.MISC (UC)
THI UO,X'8000°
BZ TLX2130
LI U8, MAGBOTB
SBT U8,DCB.FLG1 (UD)
BR U9

TLX2130 EQU +*
LI U8, MAGEOTB
SBT U8,DCB.FLG1 (UD)

BR U9

TLX2140 EQU *
LI U8, MAGEOTB
RBT U8,DCB.FLG1 (UD)
LI U8, MAGBOTB
RBT U8,DCB.FLG1 (UD)
BR U9

*

* COME HERE ONLY ON TIMEOUT
*
TLX2145 EQU *
LHI U8, X'82DF'
STH U8,DCB.STAT (UD)

*

DISARM INTERRUPTS

SEE IF WE HAVE TIMED OUT

IF SO, DON'T ADD LEAF TO QUEUE
SHOW SUCCESSEFUL COMPLETION

*

GET THE LEAF ADDRESS

AND ADD IT TO SYSTEM QUEUE
AND GET ON WITH THE SHOW

MAKE SURE THIS IS STILL 0.K.
*

GET OFF TIME-OUT CHAIN

DID WE TIME-OUT?

YES- GO TO ERROR EXIT
RESTORE LINK REG(JUST IN CASE)
GET STATUS IN UO

BOT STATUS ?

NO ,MUST BE EOT , BRANCH

BOT BIT

SET BOT FLAG

RETURN

CHECK EOT CONDITION

SET EOT FLAG
RETURN

RESET THE EOT FLAG
BOT BIT

RESET BOT FLAG
RETURN

YES - SET SPECIAL FLAG
STORE STATUS

4-46

B TLX2150
TITLE CONCURRENT REWIND LOGIC

CHECK FOR REWIND IN PROGRESS & EXIT.

48-190 F00 R00

* Problem:

*

% .

If a tape drive is rewinding, no I/0O can be done on a

* second drive on the same controller, if an I/0 request

* has been issued to the rewinding drive.

* Solgtion:

*

IODONE) . If

* % X % *

TLX2150 EQU
LHI
STH
L
BZ

LIS
TLX2160 EQU
*
L
BZ
LH
SSR
THI
BZ
LHI
EPSR
LH
BNP
LCS
STH
L
ATL
TLX2170 EQU

EPSR
LIS
ST

48-190 F00 R0O

Upon any I/0 complete, check to see if any other drive on the

same controller is rewinding. If not, proceed normally (go to

so, branch to check if the rewind is complete.

*

UO, X' 7EFE "

UO, DCB. TOUT (UD)
UO, DCB.REWE (UD)
IODONE

U9, 8

U1,DCB.RTBL (U9, UD)
TLX2180
U2,DCB.DN (U1)
U2,U3

U3,X'D1’
TLX2180
U6,X"'2050"
U7,U6

U3, DCB.TOUT (U1)
TLX2170

U3, 1

U3, DCB.TOUT (U1)
U3, DCB.LEAF (U1)

U3,8Q
*

U6, U7
U3,0
U3, DCB.RTBL (U9, UD)

RESET TIME-OUT CONSTANT

(THIS IS SORT OF STUPID)

GET COMMON FLAG (FOR REWIND)

GO TO 0.S. ROUTINE FOR I/O DONE.

INDEX INTO TABLE

GET FIRST ENTRY IN TABLE

NONE, HERE -- TRY NEXT

GET ADDRESS OF REWINDING DRIVE

WHAT IS THE STATUS?

DID SOMETHING HAPPEN?

STILL REWINDING--TRY NEXT

GO NONINTERRUPTABLE (CAN'T BE HELPED)

GET TIMEOUT CONSTANT
ALREADY ON QUEUE

SET TO INDICATE ON QUEUE
GET LEAF ADDRESS
AND ADD TO SYSTEM QUEUE

BECOME INTERRUPTABLE AGAIN

ZERO ENTRY IN TABLE
*

4-47

TLX2180 EQU *
SIS U9,4
BNM TLX2160

L UO, DCB.RTBL+0 (UD)
o) UO, DCB.RTBL+4 (UD)
) UO, DCB.RTBL+8 (UD)

ST UO,DCB.REWF (UD)

B IODONE

*

* START ESR
*
TLX2190 EQU *
LH U6,DCB.DN (UD)
SSR U6,U3
THI U3,X'D1'
BNZ TLX2200

DECREMENT INDEX

GET FIRST ENTRY IN THE TABLE
* ALSO INCLUDE SECOND

* AND THE THIRD

FIX THE FLAG TO SHOW WHETHER

OR NOT WE STILL HAVE WORK TO DO.

* GET OUT OF HERE

GET ADDRESS OF REWINDING DRIVE

WHAT IS THE STATUS?
DID ANYTHING HAPPEN?
IF NOT, CONTINUE PROCESSING

*

* KEEP COUNT OF HOW MANY TIMES WE HAVE DONE THIS. IF WE
* DO THIS 45 TIMES (90 SECONDS) WE WILL ASSUME THAT THE
* REWIND GOT KILLED BY THE OPERATOR.

*

L U2, DCB.RG (UD)

AIS U2,1

ST U2,DCB.RG (UD)

CHI U2,45 ‘

BNM TLX2195 GO FORCE TIME-OUT

LIS U2,2 SET 2 SECOND TIMEOUT

STH U2,DCB.TOUT (UD) *

L UF, DCB.LEAF (UD) GET LEAF ADDR FOR DISCONNECT
LIS UE,3 RELEASE SELCH AGAIN

BAL U8,EVREL *

LIS UE,2 RELEASE CONTROLLER AGAIN
BAL US,EVREL * THIS IS STUPID.

B EVRTE GO BACK TO 0.S.

*

* COME HERE IF THE REWIND TIMES OUT.
*
TLX2195 EQU *

LHI U8,X'8277'

STH U8,DCB.STAT (UD)

B TLX2150

SET INDICATOR
STORE STATUS
CHECK FOR REWIND IN PROGRESS & EXIT.

4-48 48-190 F0O ROO

TLX2200 EQU
LA
STH
ocC
LHL
LHI
STH
BAL
LI
RBT

*

Us,III
U8, ISPTAB (U6, U6)
U6, DCB. CDAR (UD)
UC, DCB. CCB (UD)
U7,X'7EEE"

U7, DCB. TOUT (UD)
U8, TOCHOFF

US, MAGREWB

- U8, DCB.FLG1 (UD)

* NOW DO REWIND BOOKKEEPING

LIS
LIS
TLX2210 EQU
L
BZ
LIS
TLX2220 EQU

BNE
ST
TLX2230 EQU
SIS
BNM

t

ST

TLX2240 EQU
SIS
BNM
B

* % ¥ %

TLX2250 EQU
THI
BNZ
LI
TBT
BNZ
LHI

48-190 F00 R0O

U3,0
U7.8
*
U2, DCB.XDRV (U7, UD)
TLX2240
us, 8
*
UD, DCB.RTBL (U8, U2)
TLX2230
U3, DCB.RTBL (U8, U2)
*
Us, 4
TLX2220
U3, DCB.RTBL+0 (U2)
U3, DCB.RTBL+4 (U2)
U3, DCB.RTBL+8 (U2)
U3, DCB.REWF (U2)
*
U7,4
TLX2210
TLX0018

*

U7,X'FO"'
TLX2255

UO, MAGREWB
UO,DCB.FLG1 (UD)
TLX0015
Us,X'A000"

CLEAR ISPT

DISARM INTERRUPTS FROM DRIVE
RELOAD CCB ADDRESS

NO TIME-OQUT

*
*

RESET THE REWINDING FLAG

*

SET UP ZERO FOR STORAGE IN TABLE
SET UP COUNTER

GET DCB ADDRESS OF ANOTHER DRIVE
TRY ANOTHER SLOT
SET UP INNER INDEX

IS THIS OUR ADDRESS?
NO, IGNORE IT
ZERO THE ENTRY

DECREMENT INNER INDEX
LOOP AGAIN

GET DCB ADDRESS
*

*
*

DECREMENT OUTER INDEX
LOOP AGAIN
RETURN TO MAINLINE CODE

COME HERE IF EX OR DU IS SET ON ENTRY TO THE DRIVER.
STATUS IS IN REGISTER U7.

ERR, TERR, EOM, NMTN SET?

IF SO, BRANCH TO DO NEXT TEST
GET REWIND FLAG BIT

IS IT SET?

IF REWIND FLAG IS SET, GO BACK
OTHERWISE, REPORT DEV UNAVAIL.

4-49

TLX2255

* COME HERE IF WE HAVE ISSUED AN I/O REQUEST TO A DRIVE

STH
B
EQU
THI
BZ
LHI
STH
B

U8, DCB.STAT (UD)
TLX2150

*

U7,DU

TLX0015
U8, X 'A000"'

U8, DCB.STAT (U D)
TLX2150

STORE STATUS

CHECK FOR REWIND IN PROGRESS & EXIT.

IS DU STATUS SET?

IF NOT, CONTINUE PROCESSING
IF DU SET, GIVE ERROR CODE

STORE STATUS

CHECK FOR REWIND IN PROGRESS & EXIT.

* THAT WE BELIEVE TO BE CURRENTLY REWINDING.

TLX2260

'IF THE I/0 REQUEST IS A BSR OR BFM, TERMINATE THE I/O

EQU

*

IF THE I/0 REQUEST IS A REWIND, SET THE STATUS TO ZERQO AND EXIT

*
* REQUEST WITH A STATUS OF '9000'.
*
*

*

LB
CHI
BE
CHI
BE
CHI
BE

U3,DCB.EC (UD)
U3,X'8s2"
TLX2345
U3,X'AO"
TLX2345
U3,X'co’
IODONE

GET THE SVC 1 FUNCTION CODE

BACK FILE MARK?

IF SO,EXIT

BACK SPACE RECORD?
IF SO,EXIT

IS IT REWIND?

* SET A COUNTER TO TIME-OUT THE REWIND.

*

TLX2270

TLX2280

TLX2290

4-50

LIS
ST
LIS
EQU
L
BZ
LIS
EQU

BNZ
ST
ST

EQU
AIS

U3,0

U3, DCB.RG (UD)

U3, 8

*

U8, DCB.XDRV (U3, UD)
TLX2300

U9,0

*
U7.DCB.RTBL (U9, U8)
TLX2290

UD, DCB.RTBL (U9, U8)
UD, DCB.REWF (U8)
TLX2300

*

U9, 4

(SEE ALSO TLX2190)
SET OUTER INDEX

GET DCB ADDRESS

IGNORE IF NOT PRESENT

SET INNER INDEX

GET ENTRY IN OTHER DCB TABLE
THIS SLOT ALREADY USED
SAVE OUR ADDRESS HERE

SET REWIND FLAG
DONE WITH THIS DCB

INCR INNER INDEX

48-190 F00 R00

CHI U9,12

BM TLX2280
TLX2300 EQU *

SIS U3,4

BNM TLX2270

LA UE, TLX2190

ST UE, DCB.ESR (UD)

LIS UE,3

L UE, DCB. LEAF (UD)
BAL U8, EVREL

LIS UE,2

BAL U8, EVREL

LA U7,TLX2310
STH U7, CCB.SUBA (UC)
LA U7, 1 (UC)
STH U7,ISPTAB (U6,U6)
BAL U8, TOCHON
LIS U7,1
STH U7,DCB.TOUT (UD)
oc U6, DCB.CENB (UD)
B EVRTE
PURE
TLX2310 EQU *
THI E3,NMTN!DU
BZ TLX2330
L E5,CCB.DCB (E4)
L E6,DCB.LEAF (E5)
LH E7,DCB.TOUT (E5)
BNP TLX2330
LCS E7.1
STH E7.DCB.TOUT (E5)
ATL E6,SQ
TLX2330 EQU *
LPSWR EO
TITLE ERROR ROUTINES
* ERROR HANDLING SUBROUTINES
*
IMPUR
TLX2340 EQU *
LI U8, X'A000"’
STH US,DCB.STAT (UD)
B TLX2150

48-190 F00 R00

DONE YET?

LOOP UNTIL DONE

DECR OUTER INDEX

LOOP UNTIL DONE

ADDRESS OF ESR

SET UP FOR NEXT ESR SCHEDULING
RELEASE SELCH

GET LEAF ADDRESS

*

RELEASE CONTROLLER
*

ISR ADDRESS

* AND SAVE IT
ODD CCB ADDRESS
*

GET ON TIMER CHAIN

ENABLE DRIVE INTERRUPTS

NO-MOTION OR DU?

YES, SCHEDULE ESR

GET DCB ADDRESS

AND LEAF ADDRESS

HAVE WE TIMED OUT?
GET OUT OF HERE IEF SO
SET TIME OUT TO - 1

*

SCHEDULE ESR

GET OUT

DU STATUS
STORE STATUS

CHECK FOR REWIND IN PROGRESS & EXIT.

4-51

TLX2345 EQU

LHI

STH

B

TLX2350 EQU
LI
STH
B

TLX2360 EQU
LI
STH
B

*

TLX2370 EQU
BAL
OHI

STH

*

TLX2380 EQU
BAL

STH

*

TLX2390 EQU
BAL
OHI
STH
B

*

* BAL
*

TLX2400 EQU
BAL
LIS
LI

TBT
BZR
RBT
LHI

BR

TITLE TELEX I/0 HANDLERS

4-52

U8, X'9000"

U8, DCB. STAT (UD)
TLX2150

*

U8, X'8400"

U8, DCB. STAT (UD)
TLX2150

*

U8, X'Co00"

U8, DCB. STAT (UD)
TLX2150

*

U7, TLX2400
U8, X'84FB'

U8, DCB. STAT (UD)
TLX2150

*

U7,TLX2400
U8, DCB.STAT (UD)
TLX2150

*

U7, TLX2400
U8, X'82FA"

U8, DCB. STAT (UD)
TLX2150

U7,TLX2400

*

U9, TLX2050
Us,o

U9, MAGEOTB

U9, DCB.FLG1 (UD)
U7

U9, DCB.FLG1 (UD)
U8, X'9000"

U7

EOM STATUS
STORE STATUS
CHECK FOR REWIND IN PROGRESS

UNRECOVERABLE ERROR
STORE STATUS
CHECK FOR REWIND IN PROGRESS

ILLEGAL FUNCTION STATUS
STORE STATUS
CHECK FOR REWIND IN PROGRESS

IS IT THE END OF TAPE CASE ?
SET UP STATUS CODE

STORE STATUS

CHECK FOR REWIND IN PROGRESS

IS IT THE END OF TAPE CASE ?
STORE STATUS
CHECK FOR REWIND IN PROGRESS

IS IT AT THE END OF TAPE ?
SET UP RECOVERABLE STATUS
STORE STATUS

CHECK FOR REWIND IN PROGRESS

CLEAR U8
EOT FLAG SET ?

NO, RETURN

RESET EOT FLAG
REPORT EOT STATUS
RETURN

& EXIT.

& EXIT.

& EXIT.

& EXIT.

& EXIT.

& EXIT.

48-190 F00 R0OO

* BUILD IOH LIST FOR COMMON SVCl1 EXECUTORS

*

ALIGN 4

ICH

TLX2420 EQU
ST
ST
LB
CHI
BE
CHI
BE
L
B

TLX2430 EQU
L
THI
BNZ
L
BAL
BC
LR
L
ST
ST
L
B
SPACE

TLX2440 EQU

48-190 F00 R00

NAME=IOHTELX,
READ=TLX2450,
WRITE=TLX2460,
WAIT=SVC1WAIT,
HALT=SVC1HALT,
TEST=SVC1TEST,

- SET=SVC1NOOP,

REW=SVC1REW,
BSR=SVC1BSR,
FSR=SVCI1FSR,
WEM=SVC1WEM,
FEM=SVC1FFM,
BFM=SVC1BEM,
INIT=TLX2490,
DDE=TLX2420

*

EA, TLX2470

EB, TLX2480

EA, IOB.SV1X+3 (EA)
EA,8

TLX2430

EA, 10

TLX2430

EA, TLX2470
SVC1DDF

*

EA, SVC1.SAD (ED)
EA,1

TLX2440

EB, SVC1.EAD (ED)
E8, ADCHKNS
TLX2440

EC,EA

EA, TLX2470

EC, I0B.SADR (EA)
EB, IOB.EADR (EA)
EB, TLX2480
SVC1BEM

*

SAVE IOB ADDRESS

SAVE DCB ADDRESS

GET EXTENDED SVC1 WORD
ADDRESS CHECKING REQUIRED ?
YES, BRANCH

CHECK BUEFER ON ERASE BUFFER
* FUNCTION. .

RESTORE IOB ADDRESS

GO TO ROUTINE TO ENTER DRIVER

GET START AND END ADDRESSES

FOR ADDRESS CHECKING ROUTINE
CHECK ADDRESSES

ADDRESS ERROR, EXIT

SAVE RELOCATED SADR

RESTORE IOB ADDRESS

STORE RELOCATED START AND
END ADDRESSES

RESTORE DCB ADDRESS

GO TO ROUTINE TO ENTER DRIVER

R HB R RERPRRBREBRSEHER}B®R

4-53

TLX2450

TLX2460

TLX2470

TLX2480

TLX2490
*

L

EA,TLX2470

RELIOB REMW=NO

L
LM
B
EQU
L
SRLS
BNC

EQU

SRLS
BNC

SPACE
ALIGN
DCF
DCF
ALIGN

EQU

EA, TCB. SAVE (E9)
EE, CTX.PSW (EA)

MEMFAULT

*

EC, IOB.SADR (EA)
EC,1

SVC1READ

-TLX2440

*

EC,IOB.SADR (EA)
EC.1

SVC1WRIT
TLX2440

4
0]
o]
4

RESTORE IOB ADDRESS

RESTORE REGISTERS

GO TO ERROR ROUTINE

FETCH START ADDRESS
EVEN ?

YES, CONTINUE

NO, ERROR EXIT

FETCH START ADDRESS
EVEN ?

YES, CONTINUE

NO, ERROR EXIT

IOB ADDRESS SAVE AREA
DCB ADDRESS SAVE AREA

* UB CONTAINS THE DCB ADDRESS UPON ENTRY

TLX2500

TLX2510

4-54

L
L

LIS
LA
EQU

BZR
BM
CR
BE

BNE
ST

AIS
EQU

UD, DCB. LEAF (UB)
UD, EVN. CORD (UD)

uc,o
UE, DMT

*

U9, 4 (UE)

Us

TLX2510

UB, U9

TLX2510

UA, DCB.LEAF (U9)
UD, EVN.CORD (UA)
TLX2510

U9, DCB. XDRV (UC, UB)

UcC, 4
*

GET THE LEAF ADDRESS
GET UPPER NODE (COMMON PCINT

FOR DRIVES ON THE SAME CONTROLLER.

INDEX INTO TABLE
GET ADDRESS OF DMT

GET FIRST DCB ADDRESS
RETURN TO SYSINIT.

IGNORE PSEUDO DEVICES
IGNORE OURSELF

*

AND OBTAIN LEAF ADDRESS
AND THEN CORD.

GET NEXT ENTRY

SAVE THIS DRIVE'S ADDRESS

init
init
init
init
init
init
init
init
init
init
init
init
init
init
init
init
init
init
init

48-190 F00 R0O

TLX2520

TLX2530

TLX2540

TLX2550

TLX2570

TLX2580

AIS

TITLE
EQU
LA
LB
NHI
BZ
LA
CLHI
BNE
LB

SPACE
EQU
LB

SPACE
EQU
CLHI
BNE
LB

SPACE
EQU
CLHI
BE
SPACE
LR
BR
SPACE
EQU
LB
SPACE
EQU
LB
NHI
OR
STB
SPACE
LB
NHI
OR

48-190 F00 R0O0

UE, 8 GET NEXT DMT ENTRY
TLX2500
MAG DENSITY SELECTION

*

U3,TLX2600

U1, SVC7.0PT+1 (US5)

ul1,7 DENSITY SELECTED?
TLX2530 NO
U3, TLX2600

.Ul1,87.800 800 BPI SELECTED?

TLX2540 NO
U3,0 (U3)

TLX2580

1

*

U3, 3(U3)

TLX2580

1

*

U1,87.1600 1600 BPI SELECTED?
TLX2550 NO

U3,1(U3)

TLX2580

1
*

Ul,87.6250 6250 BPI SELECTED?,

TLX2570 YEP

1

Us, U8 SET CC=NONO

us RETURN

1

*

U3, 2(U3)

1

*

U1, DCB.DENS (U7)

U1l,X'CE'

U1,U3 SET NEW DENSITY
U1, DCB.DENS (U7)

1

U1, DCB.CENB (U7)

U1l,X'CF'

U1,U3 SET NEW DENSITY

init
init

4-55

STB Ul,DCB.CENB (U7)
SPACE 1

LB U1,DCB.CDAB (U7)
NHI U1,X'CF'

OR U1,U3 SET NEW DENSITY
STB Ul,DCB.CDAB (U7)
SPACE 1

LB U1, DCB.CDAR (U7)
NHI U1,X'CE'

OR U1,U3 . SET NEW DENSITY
STB Ul,DCB.CDAR (U7)
SPACE 1

LB Ul,DCB.CCLC (U7)
NHI Ul.X'CE'

OR U1,U3 SET NEW DENSITY
STB Ul,DCB.CCLC (U7)
SPACE 1

LB Ul,DCB.CGPL (U7)
NHI Ul,X'CE’

OR UL,U3 SET NEW DENSITY
STB U1,DCB.CGPL (U7)
SPACE 1
* OoC Ul,DCB.DSB3 (U7) READ STATUS FOR DENSITY
* RH Ul,DCB.STA3(U7)
*
* STAT CHECKS OUT:
*
* 0K - RETURN CC=0
* NG - RETURN CC=NONO
*
SPACE 1
XAR U1,Ul SET CC=0
BR U8 GO HOME FOR NOW !
SPACE
ALIGN ADC
TLX2600 EQU *
DB X'20' 800 BPI - TELEX & STC
DB X'00' 1600 BPI
DB X'10' 6250 BPI
DB X'30' HARDWARE SELECT (TELEX ONLY)
ALIGN ADC
BR UB EXIT
SIZE EQU IMPTOP-TLX0O010+7/8%8+PURETOP-TLX0360+7/8*8

4-56 48-190 F00 R0O

**DCBO70

SGN.MAGS
SGN.EQV

* ¥ ¥ %

END

NLSTC
MLIBS
EQU
EQU
NLIST

8,9,10
1
1

DPROG DCOD=070

LIST
$MTP

DCB

DCOD=070, INIT=INITTELX, TERM=TERMTELX,

USED BY $MTP MACRO

BUILD DCB FOR TELEX/6250/HALFWORD MODE

ATRB=7BFF , SIZE=MTP, CLASS=IOCLS1,

FUNC=CMDTELX, FLGS=DFLG.UCM+DFLG.LNM+DFLG.MGM, IOH=IOHTELX

* DEVICE DEPENDENT

EXTRN
ORG
DC
ORG
DC
ORG
EXTRN
DAC
EXTRN
DAC
ORG
DB
ORG
DB
ORG
DB
ORG
DB
ORG
DB
ORG
DB
ORG
DB
ORG

48-190 F00 R00

Z (CDN2)

DCBO70+DCB.CCB

Z (CCBO70)

DCBO70+DCB. SDN

Z (CDN2)

DCBO70+DCB. SADR

INITSUBS
INITSUBS
INITMAGS
INITMAGS

DCBO70+DCB.DENS

X'38'

DCBO70+DCB.CENB

X'78'

DCBO70+DCB.CDAB

X'B8'

DCBO70+DCB.CDAR

X'E8'

DCBO70+DCB.CCLC

X'39'

DCBO70+DCB.CCLD

X'io!'

DCBO70+DCB.CRDF

X'40'

DCBO70+DCB.CRDB

CCB

SELCH

SUBROUTINES

Allow drive to select density.

ENABLE INTERRUPTS

DISABLE INTERRUPTS

DISARM INTERRUPTS

CLEAR CONTROLLER

CLEAR DRIVE

READ FORWARD

1
1

4-57

DB
ORG
DB
ORG
DB
ORG
DB
ORG
DB
ORG
DB
ORG
DB
ORG
DB
ORG
DB
ORG
DB
ORG
DB
ORG
DB
ORG
DB
ORG
DB
ORG
DB
ORG
DCX
ORG
DC
ORG
DC
ORG
DC
ORG
DC

X's0!
DCBO70+DCB.CWRT
X'60'
DCBO70+DCB.CREW
X'EO'
DCBO70+DCB.CBSR
X'90'
DCBO70+DCB.CESR
X'BO'
DCBO70+DCB.CWEM
X'co'
DCBO70+DCB.CEFM
X'AO'
DCBO70+DCB.CBFM
X'80'
DCBO70+DCB.CERS
X'Do’
DCBO70+DCB.CLWR
X'70'
DCBO70+DCB.CUNL
X'Fo'
DCB0O70+DCB.CGPL
X'7A"'
DCB0O70+DCB.CNOP
o
DCBO70+DCB.CDDF
0
DCBO70+DCB.CNED
0
DCBO70+DCB.DSBO

0030,0131,0232,0333

DCBO70+DCB.BPG
5600, 21875, 2800
DCBO70+DCB.SPED
H'125'

DCBO70+DCB.RATE

* -k

DCBO70+DCB.XRT

200000, 781250, 100000

READ BACKWARD
WRITE A BLOCK
REWIND

BSR

ESR

WEM

FEM

BFM

ERASE GAP

LOOP WRITE TO READ
TLX1700 REWIND

GAPLESS INTERRUPT ENABLE

NO-OPERATION
DEVICE-DEPENDENT
COMMAND NOT FOUND

NOP AND TAPE UNIT SENSE
BYTES PER GAP

PE, GCR, NRZI

DRIVE SPEED (INCHES/SECOND)

.

DATA TRANSFER RATE (BYTES/SECOND)

DATA TRANSFER RATES

* SET UP A TIMEOUT CONSTANT FOR USE IN SOME OPERATIONS

ORG
DC

DCBO70+DCB.MAXT
X'20'

* READ AND WRITE RETRY COUNTS

4-58

48-190 F00 R00

ORG DCBO70+DCB.RRTY

DC X'o7' .
ORG DCBO70+DCB.WRY1

DC X'07'

ORG DCBO70+DCB.WRY2

DC X'o7' .

ORG DCBO70+MTP

*

* BUILD CCB FOR 6250 BPI MAG TAPE
CCB DCOD=070
END
BEND

SYSGEN32 DCB macro for Telex tape driver:
MACRO
DCB249 %DCOD=, %DN=, 4CLAS=, 4ILVL=, NAME=, 1
9%SLCH=, 4CNTR=, %SHCCB=, %EOV=0
CBLB %DCBs, %PDCB, ¥DDCB, %EVN, %CCB, %DEFLG, %SDCB
GBLB %IDCB, %ODCB, %S125DCB, %ICCB, %BDCB
GBLB %ADCB, %TCB, 410B, %410B$, 4CRTDCB, %LPDCB
GBLB %MMDDX, %DDEX, %VEDCB, %CRPDCB, %MGDCBX, HEWDST
GBLB %PSDCBX, %CRDP, %AOBDCB, BIOCDCB, LPTDCB
GBLB YMTPT
GBLC %IDVAL
BCGCBLA %ID249
LCLA 9CCBEL
LCLA YCLASN
LCLC ¥%RXLT, %RQU
LCLC ¥%CORDNM, %PTRPAS
LCLC YOFES
LCLA ¢YRDN
LCLC ¥MDN, %MCNT, MSLCH
LCLA ¥%TRCNT, %UPTR
LCLB %FOUND, DA
BGBLA %FIRST

%RQU SETC ‘'COMQ'’ DEFAULT DEVICE QHANDLER
%MDN SETC '¥DN' DEVICE ADDRESS

%MCNT SETC 'Y%CNTR' CONTROLLER

YMSLCH SETC '%SLCH' SELCH

9CCBFL SETA O

AIF (T'¢%CLAS EQ 'U')&CLSNTD
9%CLASN SETA %CLAS*12 IOCLASS*12
&CLSNTD ANOP

48-190 F00 R00 4-59

CONVNUM VAL=%ID249 CONVERT CURRENT ID TO HEX.
USERINIT

SGN.MAGS EQU

SGN.TELX EQU

SGN.EOV EQU
DCB%
DCBI

ORG
EXTRN
DAC
TMTPI

ORG
DCX
ORG
DC
ORG
DC
ORG
DB
ORG
DB
CCBI
CCB%NAME EQU

0
1
1

DCOD=249, SIZE=MTPT, INIT=INITTELX, I0C=1, 1
TERM=TERMTELX, FLGS=DFLG.UCM+DFLG . LNM+DFLG .MGM,
FUNC=CMDTELX, ID=%IDVAL, ATRB=7BFF , COPY=4MTPT, 3
SADR=INITSUBS, IOH=IOHTELX
DCB%DCOD¥IDVAL+DCB. SADR +4

[8]

INITMAGS
INITMAGS
DCOD=249, ID=%IDVAL, DENS=38, CENB=78, CDAB=B8, CDAR=F8, 1
CCLC=39, CCLD=10, CRDB=50, CWRT=60, CREW=EO, CBSR=90, 2

CESR=BO, CWFM=CO, CFEM=A0, CBEM=80, CERS=DO, CCON=7E , SPED=125
DCBYDCODYIDVAL+DCB . DSBO

0030,0131,0232,0333 NOP AND TAPE UNIT SENSE
DCBY%DCOD%IDVAL+DCB.BPG BYTES PER GAP

5600, 21875, 2800 NRZI, PE, GCR
DCBYDCOD%IDVAL+DCB.XRT MAX BUFFER SIZE FOR ERASE TAPE
200000, 781250, 1000000 NRZI, GCR, PE
DCBY%DCODY%IDVAL+DCB ., CUNL

X'FO"

DCBY%DCODY%IDVAL+DCB. CGPL

X'7A"

DCOD=249, ID=%IDVAL

CCBY%DCODYIDVAL

%1D249 SETA Y%ID249+1

&DCBOPT ANOP
DCBY%DCOD%IDVAL
%OEES SETC
DCB.%NAME EQU
ENTRY
ORG
DC
ORG
AIF
DAC
EXTRN
AGO
&NSLEAF ANOP
DAC

4-60

PROG USER DCB

'9DCOD' : '%IDVAL' ESTABLISH PROPER OFFSET
DCBY%OFES

DCB. YNAME

DCBYOFFS+DCB.DN DEVICE ADDRESS

H'9YDN'

DCByJOFFS+DCB.LEAF LEAF POINTER
(T'%SHCCB' EQ 'U')&NSLEAF B IF NOT SHARED

LF%SHCCB USE SHARED DEVICE LEAF
LEF%SHCCB

&NRMLFX

LFYOFES GENERATE STANDARD LEAF NAME

48-190 F00 R00

EXTRN LF%OFES
&NRMLEX ANOP
&NOLEAF ANOP : _
AIF (T'YCLAS EQ 'U')&NOCLAS
ORG DCBY%OFFS+DCB.CLAS I0 CLASS
DC H'%CLASN' IOCLASS*12
&NOCLAS ANOP
AIF (T'%ILVL EQ 'U')&NOILVL
ORG DCBYOFFS+DCB.ILVL LEVEL
DC H'YILVL'
&NOILVL ANOP
ORG DCBY%OFFS+DCB.DMT

DC DMT . %NAME A (DMT ENTRY)
EXTRN DMT.%NAME

&SKP ANOP
AIF (T'%SLCH EQ 'U')&NOSLCH
ORG DCBYOFFS+DCB.SDN SELCH

DCX ¥SLCH
&NOSLCH ANOP
- AIF (T'Y%CNTR EQ 'U')&NOCNTR
ORG DCBY%OFFS+DCB.CDN CONTROLLER
DCX %CNTR
&NOCNTR ANOP
AIE ('%RQU' EQ '')&NOQU
ORG DCBYOFFS+DCB.Q
DAC %RQU
EXTRN %RQU
&NOQU ANOP
ORG DCBYOFFS+DCB.MAXT

DC X'20"
ORG DCBYOFFS+DCB.RRTY
DC X'07"
ORG DCBYOFFS+DCB.WRY1
DC X'07"
ORG DCBYOFES+DCB.WRY2
DC X'07"'
ORG $STY%OFFS ORG TO END OF DCB
ASIS
END

%/RDN SETA 9DN+1
MEND

48-190 F00 R0O 4-61

CHAPTER 5§

ADVANCED DRIVER CONCEPTS

5.1 INTRODUCTION 1
5.2 THE TRANSLATION TABLE 1
5.2.1 The TLATE Instruction 1
5.2.2 Function and Design of a Translation Table 1
5.2.3 Driver Code for the Translation Table 2
5.3 NONPHYSICAL DEVICE DRIVERS 6
5.3.1 Purpose of a Nonphysical Device Driver 6
5.3.2 Coding a Nonphysical Device Driver 6
5.4 SUPERVISOR CALL 6 (SVC6) AND TRAP GENERATING DEVICE
DRIVERS 20
5.4.1 Function of a Trap Generating Device Driver 20

5.4.2 Coding a Trap Generating Device Driver 20

CHAPTER §

ADVANCED DRIVER CONCEPTS

5.1 INTRODUCTION

As drivers evolve to handle more complicated situations, comprehension of more advanced driver
concepts becomes necessary. Advanced concepts include the use of a translation table, which is a
necessary driver component when the character set has to be translated from ASCII to EBCDIC or
vice versa. The translation table is also used for recognizing special characters of communications
protocols. Another advanced driver concept is that of the nonphysical device. Sometimes drivers
are designed for a device that does not actually exist in order to satisfy particular design
requirements without having to modify the operating system. The last advanced driver concept to
be discussed in this chapter is the supervisor call 6 (SVC6) and trap generating device driver, a
driver that is desirable in certain system configurations.

5.2 THE TRANSLATION TABLE

Some devices use a data code that must be converted in order to be used by other software in the
system. For example, some card readers transmit a Hollerith code, which must be converted to
ACSCII code to be meaningful. Interactive terminals (CRTs) can transmit special characters to
signify that special processing is to be done, rather than have those characters be treated as data.
CRTs use a variation of ASCII code for some special characters. The translation table is the
mechanism provided to allow the writer of an input/output (I/O) driver to efficiently handle these
special conditions.

5.2.1 The TLATE Instruction

Translation tables are processed by either the autodriver channel microcode routines or by the
TLATE instruction. Typically, a driver accesses the translate table by both methods. The decision to
use a translation table through the autodriver channel or via the TLATE instruction is dictated by
the interrupt response characteristics of the specific device hardware. For example, a card reader
typically begins generating character interrupts as soon as it is given a "go" command; thus, only the
autodriver mechanism need be used. However, the Perkin-Elmer RS-232 interface requires that a
single character be written to it before it generates character interrupts that can be used to drive the
autodriver channel. Thus, for the RS-232 interface, the first character must be output via the
TLATE and WD (WRITE DATA) instructions, while the remaining characters can be output using
the autodriver channel.

5.2.2 Function and Design of a Translation Table

A translation table is structured as a list of 256 halfwords. One halfword entry corresponds to each
possible value of an 8-bit character code. Bit 0 of each halfword entry specifies the interpretation
that is to be made of the remaining 15 bits of that entry. If bit O is set, then the least significant byte
contains the value that is to be substituted for the original character code. If bit 0 is zero, then bits

48-190 F00 R00 5-1

1 through 15 provide the address, divided by two, of a routine that is to be executed when the
corresponding character code is encountered. In this case, an unconditional branch is taken to the
indicated address. Note that this scheme requires that at least the first instruction of the special
routine be in the first 65K of address space, since only halfword addresses can be specified.

To illustrate how a translation table can be used, let us write a simple driver for a hypothetical
device that requires use of a translation table for efficient operation. To keep the example to a
manageable size, assume that this device has some rather unusual characteristics.

We will assume that this device:
« is a transmit-only device (we can only read from it),
o transmits only the 8-bit codes X*‘08’ thru X‘23’,
« the 8-bit codes X‘0A’ through X‘23’ are to be interpreted as the ASCII characters A thru Z,

+ the device begins all transmissions with the code X‘08’, followed by one character that indicates
the number of characters to follow, plus 10,

o the device may, for undisclosed reasons, prematurely terminate a transmission with an X09’
~code.

First, a translation table for this strange device must be designed. Notice what only codes X‘08’
through X3’ are valid, and that codes X‘08’ and X‘09’ are special codes that indicate that special
processing action is required. Common Assembly Language/32 (CAL/32) conveniently provides a
special data type for setting up addresses in translation tables:

TABLE EQU *

DO 8 codes X'00' thru X'07' illegal
DC T (ILLEGAL)

DC T (START) code X'08' = start of xfer

DC T (STOP) code X'09' = end of xfer

DC X'8000'+C'A' code X'10' = letter A

DC X'8000'+C'Z' code X'23' = letter Z

DO 256-35

DC T (ILLEGAL) all other codes are illegal

5.2.3 Driver Code for the Translation Table

With this table defined, a driver can now be written to drive the device. Since we have assumed that
the device has hardware characteristics that are convenient for writing software, the driver in this
example is simpler than it probably would be for a real device. (Compare this code to that of the

5-2 48-190 F00 R00

"read" side of the Perkin-Elmer CRT driver!) We will code this driver so that all character handling
is done in interrupt service. Clearly, three special routines are needed: start of transmission, end of
transmission and illegal transmission.

For the purposes of this example, we will ignore some necessary details, such as what to do about
time-out conditions and bad device status. The intent of this example is to show only the code
concerned with the use of the translation table. We will pick up the code at the end of the driver
initialization routine (DIR) part of the driver:

INITXX EQU * DIR
SINT RS5,0(R6) enter first ISR to start device
B DIRDONE exit to wait for I/0 completion

* .

ISRO EQU * , come here on SINT command from DIR
LIS E7.0 set up channel control block (CCB) for nonexecute
STH E7,CCB.CCW (E4)
LA E7.ISR1 set up address of next ISR
STH E7,CCB.SUBA (E4)
oC E2,ENABLE send command to device to enable it
LPSWR EO exit to wait for first interrupt

*

ISR1 EQU * first device interrupt comes here
RDR E2,E7 get input character into register 7
CHI E7.X'08' is this a start of xfer character?
BNE ILLEGAL if not, it must be illegal

Notice that at this point, we can determine what is a legal input simply by the time sequence: we
demand that the first character received after the enable command is given must be a X’08’.

48-190 F00 R00 5-3

(The data transfer, with translation of character values, proceeds under control of the autodriver
channel, as defined by the values in the CCB. There are three possible exits from autodriver

ISR2

LA
STH
LPSWR

EQU
RDR
SIS

SIS
ST
LIS
SIS
SR
STH
LHI
STH
LA
ST
LA
STH
LPSWR

E7,ISR2
E7,CCB.SUBA (E4)
EO

E2,E7
E7.10

ES5, CCB.DCB (E4)
E6,DCB.SADR (E5)
E6,E7

E6,1
E6,CCB.EBO (E4)
E6,0

E7,1

E6.E7
E6,CCB.LBO (E4)
E6,X'0082"
E6,CCB.CCW (E4)
E7, TABLE
E7,CCB.XLT (E4)
E7,ISR3
E7,CCB.SUBA (E4)
EO

set up to receive next character
this will be character count
walt for next character

second device interrupt comes here
get input character into reg 7
this is character count, plus 10
(because we said that's how this
strange device works!)

get device control block (DCB) address,
and compute xfer end address for
insertion into the CCB...

(adjust for inclusive addressing)
set end addr as buffer O address
buffer count must be -(length-1)
this is (length-1)

this 1s - (length-1)

finally got the buffer length set
set up the channel command word (CCW)
*

get address of translate table

and put in CCB

get address of routine to go to

if xfer terminates normally

exit, and let autodriver channel
do the rest of the work.

operation: to ISR3, to ILLEGAL or to STOP. All of these routines are ISRs.)

48-190 F00 R00

ISR3

ISR3A

*

ILLEGAL
*

STOP

EQU

LIS
STH

AIS
ST
ocC
LA
STH

ATL
LPSWR

EQU

LHI

STH

LIS

EQU

LHI
STH
LH

SIS
B

*

E5, CCB.DCB (E4)
E6,0
E6,DCB.STAT (E5)
E7,CCB.EBO (E4)
E7,DCB.SADR (E5)
E7.1
E7,DCB.LXER (E5)
E2,DISABLE
E7,III
E7,ISPTAB(E2,E2)
E7,DCB.LEAF (E5)
E7,8Q

EO

ES, CCB.DCB (E4)
E6,X'8484"
E6,DCB.STAT (E5)

E7.0

ISR3A

ES, CCB.DCB (E4)
E7,X'8201"
E7,DCB.STAT (E5)
E7,CCB.LBO (E4)
E7,CCB.EBO (E4)
E7,DCB.SADR (E5)
E7, 2

ISR3A

enter this routine if xfer is normal
get DCB address
set normal termination status

compute actual length of xfer...

turn off the device
and reset the ISPTAB

schedule the ESR
on the system queue

finally,
and exit interrupt service

control will come here if

an illegal input is encountered
get DBC address

designer's choice - indicate

a bad character was received,
by setting X'8484' in status
again design choice - show

zero length of transfer

go to common exit

autodriver will come here

if device sends a "stop" code
get DCB address

design choice - we show this
status if we get a stop code
compute actual length of xfer...
(this is actual end addr +1)
less start address

(arithmetic adjustment)

go to common exit

Notice that we have defined only two of the three "special routines” defined in the translation table.
The "START" routine was rendered unnecessary, due to the way that the ISRs were designed. Thus,
if the "start" code was received at any other time, it would be an "illegal" code. The definition of the
"START" routine may be handled simply as:

START EQU

48-190 F00 R00

ILLEGAL

Probably, the greatest mystery in the above code to the first-time reader is the fact that nowhere
was there any executable code written that explicitly invoked the operation of the autodriver channel
and the use of the translation table. Actually, the autodriver channel was enabled by the value
X*‘8002’, which was stored into the CCB.CCW. That same value, plus the address of the translation
table being placed in CCB.XLT, told the autodriver channel to use the translation table that we
wrote. The actual operation of the autodriver channel occurred in response to interrupts generated
by the device.

5.3 NONPHYSICAL DEVICE DRIVERS

In some circumstances, it is-desirable to have in the system a "device" that has no physical reality.
Such a device can have whatever peculiar characteristics are useful to resolving particular system
design requirements. The characteristics and behavior of such a device are determined entirely by
the driver. The driver that will be used as an example defines a pair of related nonphysical devices
that, together, allow a large number of user tasks to coordinate access to a single system resource
(typically, an array processor).

5.3.1 Purpose of a Nonphysical Device Driver

The purpose of this nonphysical device driver is to permit several tasks to share¢ one or more devices
in a manner not supported under the standard features of OS/32. This driver provides the ability for
one task to do several /O operations to a device, separated by time intervals which may be quite
long. The driver prevents any other task sharing that device from doing any I/O operations to that
device. The standard support in OS/32 permits a shared device to be accessed by multiple tasks on a
first-come, first-served basis and, thus, provides no mechanism whereby one task can have exclusive
access to the device for a prolonged period of time (and at the same time, share that device with
other tasks).

5.3.2 Coding a Nonphysical Device Driver

The method implemented here was chosen over several alternatives, on the basis of central
processing unit (CPU) overhead required to maintain the controlled access to the device.

This nonphysical device driver does not provide any "automatic" or "guaranteed" access control to a
device or devices. It provides proper access coordination only among "friendly" tasks, all of which
agree to use the conventions defined by this nonphysical device. The use of this "coordination
device" can be illustrated by the following example: assume that two devices are to be shared among
any number of tasks, with access controlled by these nonphysical devices. Assume the devices are
named DEV1: and DEV2:. Further, assume that these two nonphysical devices are named GET:
and REL:. Then, each task sharing actual devices DEV1: and DEV2: need to have the following
logical units assigned: DEV1:, DEV2:, GET: and REL:. Assume that these are (for the purposes of
this example) LU 6 = DEV1:, LU 7 = DEV2:, LU 8 = GET: and LU 9 = REL:. To gain access to
either DEV1: or DEV2:, the task requests access permission by issuing a read to the "device" GET:,
such as:

5-6 48-190 F00 R00

READ (8, 900) NAME
900 FORMAT (1A4)

When either DEV1: or DEV2: is available, the read operation completes, and the fullword ‘NAME’
contains the device mnemonic of the available device (either DEV1: or DEV2:). Thus, after the
read, ‘NAME’ would, in this example, contain the ASCII string "DEV1" or "DEV2", depending
upon which device was free.

When the task has completed its series of /O operations to the device, the task releases the device
to some other task by writing the name of the device to the "REL:" nonphysical device:

WRITE (9,900) NAME

In this example, the contents of ‘NAME’ is the same ASCII string that was last read from the
“GET:" device. It is the responsibility of the individual user tasks (u-tasks) to correlate the device
name to the specific logical unit (lu) assignment applicable to the task in question.

This driver utilizes a special input/output handler (IOH) entry to force special code to be executed
upon system initialization. By having a special routine that executes only at system initialization
time, the driver can initialize itself once, thus reducing the amount.

*

. **CORD
MLIBS 8,9,10,11
INITCORD PROG SYSTEM COORDINATION NONPHYSICAL DEVICE
NLIST
$REGSS
$DCB#$
$CCB
$TCBs
$IOH
LIST
EXTRN DMT,DIRDONE,EVRTE,IODONE,SQ
EXTRN SV1FCER, SVC1READ, SVC1WRIT, SVC1NOOP
EXTRN COMEOT
ENTRY INITCORD, TERMCORD, CORDEOT, CORDINIT
*
* The following structure defines a device-dependent part of
* the DCB. This section is used to coordinate
* access to the limited-access devices. This is defined here
*

rather than in a separate structure macro as a matter of

»

convenience of its presentation to the reader.
*

DCB.DTBL STRUC
DS DCB.CCB DEFINE DEVICE DEPENDENT AREA

48-190 F00 R00O 5-7

DS 2 ADDR OF ASSOCIATED CCB

DCB.XDCD DS 2 DCB.DCOD OF CONTROLLED RESOURCE
DCB.REQD EQU * ADDRESS OF ASSOCIATED DCB243-SET UP AT
* * SYS INIT TIME.
DCB.DCBT DS 4*20 TABLE OF DCBS OF CONTROLLED UNITS
- DCB.TCBT DS 4*20 TABLE OF TCBS ASSOCIATED WITH DCB'S
DCB.DMNT DS 4*20 TABLE OF ASSOCIATE DEVICE MNEMONICS
DCB.SIZT DS 4 POINTER/COUNTER - ENTRIES IN TABLES
DCB.PEND DS 4 REQUEST-PENDING FLAG
ENDS

5-8

INITCORD EQU *
*
DCB 243 is a read-only device, whereas DCB 244 is a write-only device.
A task requesting access to the controlled-access device issues a read
to the nonphysical device system generated (sysgened) as device code 243.
When the controlled resource is available, the read goes to
I/0 completion, putting the device mnemonic of the available
controlled-access device into the calling task's I/0 buffer. A task
wishing to release a controlled resource writes to the nonphysical
device sysgened as device code 244, with the device mnemonic of the
device being released in the I/0 buffer specified in the
SVC1l write block.
*
* ON ENTRY TO THE DRIVER, DETERMINE WHICH TYPE OF NONPHYSICAL DEVICE
* THE I/0 OPERATION IS DIRECTED TOWARD.
*
* FIRST, BE SURE THE TIME-OUT CONSTANT IS SET SO THAT WE
* CAN NEVER BE TIMED OUT.

LHI UO,X'7EFE"

STH U0, DCB.TOUT (UD)

LB U0, DCB.DCOD (UD) GET OUR DEVICE CODE
CHI U0, 243 TEST WHICH TYPE
BNE INIT.100 DCB 244 PROCESSED ELSEWHERE.

* THE READ-ONLY DCB WAS REFERENCED. VERIFY THIS IS A READ OPERATION
* AND IF NOT, RETURN AN ILLEGAL EUNCTION STATUS.

LB UO,DCB.EC (UD) GET THE CALLER'S FUNCTION
NHI U0,X'60"' SAVE ONLY FUNCTION BITS
CHI Uo,X'40' CHECK FOR READ

BNE INIT. 200 IF NOT, ERROR OUT

* NOW TEST THE I/0 AREA TO BE SURE THERE IS ENOUGH AREA

48-190 F00 R0OO

L
S
CHI
BM

»

L
INIT.O010 SIS
BM
L
BNZ

*

UO, DCB.EADR (UD)
U0, DCB. SADR (UD)
Uo, 3

INIT.210

NOW LOOK FOR A FREE RESOURCE.

U1,DCB.SIZT (UD)
Ul, 4
INIT.050

U0, DCB. TCBT (UD, U1)

INIT.O010

PARITY ERROR IF NOT ENUF

GET SIZE OF TABLE
DECREMENT POINTER

ROOM

IE NOTHING AVAILABLE, WAIT
TEST AN ENTRY FOR AVAILABILITY
IF NOT AVAILABLE, TRY NEXT ONE

* A CONTROLLED RESOURCE IS AVAILABLE, SO ASSIGN THE RESOURCE

* TO THIS TASK, GIVE THE TASK THE DEVICE MNEMONIC OF THE RESOURCE,
*

*

AND EXIT

INIT.020 L
L
EXHR
STH
EXHR
STH
LIS
ST
LIS
STH
ST
L
ST
B

* % * ¥ %

INIT.050 LIS
ST

B
*

WHEN A REQUEST IS ISSUED.
A REQUEST IS PENDING, AND THEN EXIT TO DIRDONE.

UO,DCB.DMNT (U1, UD)

U2, DCB. SADR (UD)
U0, Uo

U0, 0 (U2)

Uo, U0

U0, 2 (U2)

Uo, 4

UO, DCB. LLXF (UD)
U0, 0

UO, DCB. STAT (UD)
UO, DCB. PEND (UD)
U0, DCB.TCB (UD)

U0, DCB.TCBT (U1, UD)

IODONE

Uo,1

U0, DCB. PEND (UD)

DIRDONE

GET NAME OF AVAILABLE DEVICE

GET THE START ADDRESS OF

AND PUT THE DEVICE MNEMO
*

*
*

SET LENGTH OF XFER
*

SET STATUS = O

*

CLEAR THE REQUEST-PENDIN
GET REQUESTING TCB ID
AND SAVE TO SHOW IN USE
ALL DONE.

COME HERE IF THERE IS NO CONTROLLED RESOURCE AVAILABLE
SET A FLAG TO INDICATE THAT

SET REQUEST PENDING FLAG

AND EXIT

* PROCESS AN I/O DIRECTED AT A DCB 244 DEVICE. VERIFY THE

* REQUEST IS A WRITE.

48-190 F00 R0OO

IF IT IS NOT, EXIT WITH AN ILLEGAL

THE BUFFER
NIC OUT

G FLAG

% % % % % ¥ % ¥ *

b]

*

*

INIT.100 LB
NHI
CHI
BNE

L
]
CHI
BM
L
LH
SLL
OH
L
L
INIT.110 SIS
BM
Cc
BNE

BNE
LIS
ST

BZ

ATL
BZ

5-10

FUNCTION ERROR.
FOUR BYTES IN THE I/O BUEEER.
ERROR CODE.
BYTES AS A DEVICE MNEMONIC.
CONTROLLED DEVICE, AND,

UO,DCB.EC(UD)
Uo,X'60"
Uo,X'20'
INIT. 200

U0, DCB.EADR (UD)
UO, DCB. SADR (UD)
vo, 3

INIT.210

U2, DCB. SADR (UD)
U0, 0 (U2)

Uo, 16

U0, 2 (U2)

UC, DCB.REQD (UD)
U1,DCB.SIZT (UC)
Ul.4
INIT. 220
UO, DCB.DMNT (U1, UC)
INIT.110

U0, DCB. TCB (UD)

U0, DCB.TCBT (U1, UC)
INIT.230

U0, 0

U0, DCB. TCBT (U1, UC)

UO, DCB.PEND (UC)
IODONE
UO, DCB.LEAF (UC)
U0, SQ
IODONE

IF IT IS A WRITE, VERIFY THERE ARE AT LEAST
IF NOT, EXIT WITH A PARITY

IF AT LEAST 4 BYTES EXIST, USE THE FIRST FOUR
SCAN THE INTERNAL TABLE FOR THE
IF FOUND, VERIFY THAT THE

CALLING TCB IS THE SAME AS THE TCB ID IN THE TABLE.

IF IT IS NOT, EXIT WITH A DEVICE UNAVAILABLE ERROR. IF THE
TCB IS THE SAME, CLEAR THE TCB ENTRY IN THE TABLE.

IF THE TCB DOES NOT MATCH, EXIT WITH AN UNRECOVERABLE ERROR.
THEN CHECK FOR ANY REQUEST OUTSTANDING. IF SO, SCHEDULE AN
EVENT AGAINST THE READ DEVICE. THEN EXIT.

GET THE CALLER'S EUNCTION CODE
MASK ALL BUT FUNCTION BITS

IS IT A WRITE?

IF NOT, ILLEGAL EFUNCTION.

CHECK THE BUFFER LENGTH

*

*

IF NOT, IT IS A PARITY ERROR.
GET THE BUFFER ADDRESS AGAIN.

GET THE CONTENTS OF THE BUFFER
*

*

GET ADDRESS OF REQUEST DCB

GET THE SIZE OF THE INTERNAL TABLE
DECREMENT THE POINTER

IF NOT FOUND, GIVE BACK D-U

IS IT THIS ENTRY?

NO, TRY NEXT ENTRY.

GET TCB OF REQUESTER.
AND CHECK AGAINST TABLE.
IF WRONG TASK, GIVE UNRECV ERR

ALL IS 0.K., SO RESET TABLE
*

GET THE REQUEST-PENDING FLAG
IF NONE, ALL DONE

IF REQ. PENDING, SCHEDULE ESR.
*

AND THEN WE ARE DONE.

48-190 F00 R00

*

* ERROR EXITS
*

INIT.200 LHI U0, X'Ccooo" ILLEGAL FUNCTION

B INIT.250

INIT.210 LHI U0,X'8282" PARITY ERROR - I/0 BUFFER TOO SMALL
B INIT.250

INIT.220 LHI Uo,X'A000" D-U IF NO SUCH DEVICE
B INIT. 250 '

INIT.230 LHI U0, X'8400" UNRECV IEF WRONG TASK TRYING RELEASE
B INIT. 250 '

*

* ON ERROR EXIT, PUT ERROR CODE IN DCB AND EXIT
*
INIT.250 STH UO,DCB.STAT (UD) *

B IODONE *
*
* TERMINATION (ESR) ENTRY POINT.
TERMCORD EQU *
*
THIS ROUTINE WILL BE ENTERED ONLY IF A REQUEST HAS BEEN PENDING,
AND THERE IS NOW A FAIR CHANCE THAT A CONTROLLED RESOURCE IS NOW
AVAILABLE. IF A REQUEST GETS THIS FAR, THE I/O BUFFER HAS BEEN
CHECKED FOR CORRECT SIZE, SO ALL THAT IS NEEDED IS TO LOCATE
THE FREE RESOURCE, INFORM THE CALLING TASK, MARK THE RESOURCE AS
IN USE, AND EXIT TO IODONE.

L I

* % ¥

* THE FOLLOWING LOOP SCANS THE INTERNAL TABLE FOR A FREE RESOURCE.

L Ul,DCB.SIZT (UD) GET SIZE OF TABLE
TERM.0O10 SIS Ul.,4 DECR THE POINTER
BM EVRTE NOTHING FREE, SO GET OUT
L UO,DCB.TCBT (Ul, UD) TEST AN ENTRY FOR AVAILABILITY
BNZ TERM.O010 NOT FREE, TRY ANOTHER ONE.

* FOUND A FREE ENTRY. WE CAN NOW USE THE SAME PROCESSING AS THE
'INIT' PHASE, GO THERE TO FINISH UP

B INIT.020
ENTRY TO CORDEOT IS VIA AN IOH ENTRY.

*

* %

%

THIS ROUTINE IS ENTERED VIA A BALR U8,U8 FROM EXSV. SETTING
IOH.EOT FORCES BYPASSING THE COMEOT HANDLER (DEFAULT SET BY
* EXSV). UPON RETURN TO EXSV, REGISTER NINE IS RELOADED WITH

»*

48-190 F00 R0O 5-11

* THE TCB ADDRESS BUT NO OTHER REGISTERS ARE PRESERVED BY THE
* CALLING ROUTINE.
*

* REFER TO MODULE EXSV FOR ADDITIONAL DETAILS

*

CORDEOT EQU *
*
UPON ENTRY U9

* TCB ADDR OF TASK GOING TO EOT
* UA
*

DCB ADDR OF THE DEVICE FOR WHICH EOT PROCESSING
1S NOW BEING PEREORMED.

*

* EOT PROCESSING WILL CONSIST OF ZEROING OUT THE TCB TABLE ENTRY
* FOR ANY DEVICE WHICH HAS THIS TCB ADDRESS IN ITS 'DCB.TCBT'

* FIELD IN THE INTERNAL CONTROL TABLES. THEN, CHECK FOR ANY

* REQUEST OUTSTANDING - IF SO, PROCESS THE REQUEST.

L UD, DCB.REQD (UA) GET ADDRESS OF DCB FOR
LR UF,UA SAVE DCB ADDRESS
* ACQUISITION SIDE.
L UA,DCB.SIZT (UD) GET SIZE OF CONTROL TABLE.
EOT.O1 SIS UA. 4 DECREMENT THE POINTER
BM EOT.O3 IF NOTHING ELSE, WE ARE DONE
C U9, DCB.TCBT (UA, UD) IS THIS AN ENTRY TO BE RESET?
BNE EOT.02
LIS UcC.,o0 GET A ZERO
ST UC, DCB.TCBT (UA, UD) CLEAR THE ENTRY.
EQT.02 LR UA,UA ARE WE AT END OF TABLE
BP EOT.O1 GO UNTIL DONE

*

* IT IS NOW NECESSARY TO CHECK FOR ANY UNHONORED REQUESTS PENDING.
*

L UC, DCB.PEND (UD) TEST THE REQUEST PENDING FLAG
BZ EOT.03 IF NO REQUEST, WE ARE ALL DONE
c U9, DCB.TCB (UD) IS REQUESTER THIS TASK?
BZ EOT.03 IF SO, DO NOTHING
L UC, DCB. LEAF (UD) OTHERWISE, SCHEDULE AN EVENT
ATL UC,SQ ON THIS DCB

EOT.03 EQU *

LR UA, UF RESTORE FOR COMEOT
B COMEOT * GO TO STANDARD EOT HANDLING

*

* INIT ROUTINE WHICH IS EXECUTED DURING SYSINIT.
* THE SYSINIT ROUTINE SAVES REGISTERS EIGHT THROUGH

5-12 48-190 F00 R00

FIETEEN BEFORE IT BRANCHES TO THE IOH ENTRY.

THE BRANCH IS PERFORMED BY' A BALR ES8,ED.

ED--HAS BEEN LOADED WITH THE IOH INIT ENTRY--IF THIS
ENTRY IS ZERO--SYSINIT DOES NOTHING WITH IT.

*

THUS THE IOH.INIT ROUTINE MAY USE REGISTERS 9 THROUGH
FIFTEEN TO GET ITS JOB DONE.

THE BRANCH REGISTER TO RETURN FROM AN IOH ENTRY IS REGISTER EIGHT
UPON ENTRY TO THE IOH ROUTINE.....UB = DCB ADDRESS

REFER TO MODULE EXIN FOR ADDITIONAL DETAILS

* % % % % % % % X % X % % *

CORDINIT EQU *

*

* THERE ARE TWO SEPARATE TYPES OF SYSTEM INITIALIZATION, ONE FOR

* THE ACQUISITION NON-PHYSICAL DEVICE, AND ONE FOR THE RELEASE

* NON-PHYSICAL DEVICE. BRANCH TO THE APPROPRIATE ROUTINE BASED ON THE

* DEVICE CODE OF THE NON-PHYSICAL DEVICE.

*

* ON ENTRY, UB = A(DCB) OF COORDINATION NONPHYSICAL DEVICE

*
LB UE, DCB.DCOD (UB) GET DEVICE CODE
CHI UE, 243
BE INIT.00
BNE INIT.10

*

* GO THRU THE DEVICE MNEMONIC TABLE AND BUILD A LIST OF

* DCB ADDRESSES CORRESPONDING TO ALL THE DEVICES USING THE

* DEVICE CODE SPECIFIED IN 'DCB.XDCD'

*

INIT.00 LH UE,DCB.XDCD (UB) GET DEVICE CODE WE ARE TO CONTROL
LIS UA,O COUNTER, AND POINTER TO INTERNAL TABLE
LA UF,DMT GET ADDRESS OF DMT

INIT.01 AIS UF,8 INCREMENT POINTER TO DEVICE MNEMONIC TABLE
L UC, 4 (UF) GET A DCB ADDRESS
BZR U8 IF END OF TABLE, WE ARE DONE
LB UD,DCB.DCOD (UC) GET THE DEVICE CODE OF THIS DEVICE
CR UD, UE IS THIS ONE WE ARE INTERESTED IN?
BNE INIT.O1 IF NOT, GO GET NEXT ENTRY
ST UC,DCB.DCBT (UA,UB) SAVE THIS DCB
LIS UC,0 GET A ZERO

48-190 F00 R0OO 5-13

ST UcC, DCB.TCBT (UA, UB) ZERO THE TCB ENTRY FOR THIS DCB.

L UD, O (UF) GET THE DEVICE MNEMONIC FOR THIS DEVICE
ST UD,DCB.DMNT(UA,UB) AND SAVE IT IN THE TABLE
AIS UA,4 INCREMENT THE POINTER TO NEXT SLOT
ST UA,DCB.SIZT (UB) SAVE THE POINTER
B INIT.O1 AND GO GET NEXT ENTRY
*
* GO THROUGH THE DEVICE MNEMONIC TABLE AND FIND THE DCB FOR
* THE ACQUISITION NONPHYSICAL DEVICE WHICH IS SYSGENED TO CONTROL
* THE SAME DEVICE CODE AS THE DCB FOR WHICH THIS ENTRY WAS MADE.
*+ PUT THE ADDRESS OF THAT DCB INTO THE RESERVED SPACE IN THE
* DCB FOR WHICH THIS PROCESSING IS BEING PERFORMED.
*
INIT.10 LH UE,DCB.XDCD (UB) GET DEVICE CODE WE ARE TO CONTROL
LA UF,DMT GET ADDRESS OF DEVICE MNEMONIC TABLE
INIT.11 AIS UF,8 INCREMENT POINTER TO DEVICE MNEMONIC TABLE
L UC, 4 (UF) GET A DCB ADDRESS
BZR U8 IF END OF TABLE, WE ARE DONE
LB UD,DCB.DCOD (UC) GET THE DEVICE CODE OF THIS DEVICE
CHI UD, 243 IS THIS AN ACQUISITION NONPHYSICAL DEVICE
BNE INIT.11
LH UD,DCB.XDCD (UC) DOES IT CONTROL THE SAME DCOD WE DO?
CR UD,UE IS THIS ONE WE ARE INTERESTED IN?
BNE INIT.O1 IE NOT, GO GET NEXT ENTRY
ST UC,DCB.REQD (UB) SAVE THIS DCB ADDRESS
BR U8 ALL DONE

*

* DEFINE THE IOH LIST FOR ACQUISITION DEVICE
*

IOH NAME=CRD1.IOH,
READ=SVC1READ,
WRITE=SVC1NOOP,
WAIT=SVC1NOOP,
HALT=SVC1NOOP,
EOT=0,
TEST=SVC1NOOP,
SET=SVC1NOOP,
REW=SVC1NOOP,
BSR=SVC1NOOP,
FSR=SVC1NOOP,
WEM=SVC1NOOP,
FEM=SVC1NOOP,
BEM=SVC1NOOP,

B H R R RBERERREHERERERR R

5-14 48-190 F00 R0OO

*

*

IOH

END
BEND

INIT=CORDINIT

* DEFINE THE IOH LIST FOR RELEASE . DEVICE

NAME=CRD2.IOH,
READ=SVC1NOOP,
WRITE=SVC1WRIT,
WAIT=SVC1NOOP,
HALT=SVC1NOOP,
EOT=CORDEOT,
TEST=8VC1NOOP,
SET=SVC1NOOP,
REW=SVC1NOOP,
BSR=SVC1NOOCP,
FSR=SVC1NOOP,
WEM=SVC1NOOP,
FEFM=SVC1NOOP,
BEM=SVC1NOOP,
INIT=CORDINIT

SYSGEN32 DCB macros for nonphysical device driver:

MACRO

DCB243 %DCOD=, %DN=, %CLAS=, 4ILVL=, NAME=, 4SHCCB=,

GBLB
GBLB
GBLB
GBLB
GBLB
GBLB
GBLC
BGBLA
LCLA
LCLA
LCLC
LCLC
LCLC
LCLA
LCLC
LCLA

48-190 F00 ROO

%SLCH=, 4XDCD= .
%DCB$, %PDCB, %DDCB, 4EVN, %CCB, %DFLG, %SDCB
%IDCB, %ODCB, %S125DCB, ¥ICCB, %BDCB
%ADCB, %TCB, %10B, ¥10B$, %CRTDCB, ¥LPDCB
%MMDDX , %DDEX , 4VEDCB, %MTP, %CRPDCB, ¥MCDCBX , {HFWDST
%PSDCBX, %CRDP, 4AOBDCB, ¥BIOCDCB, 4LPTDCB
9CORD243
% IDVAL
%1D243
% CCBFL
9CLASN
%RXLT, 4RQU
%CORDNM, 4PTRPAS
9OFES
9RDN
9%MDN , YMCNT, MSLCH
%TRCNT, %UPTR

L T T = T = T = T T SO S ST S O

5-15

LCLB %FOUND, %DA
BGBLA %EFIRST
9RQU SETC 'COMQ' DEFAULT DEVICE QHANDLER
9MDN SETC '9%DN' DEVICE ADDRESS
%CCBFL. SETA O
%CORD243 SETB O
AIF (T'%CLAS EQ 'U')&CLSNTD
%CLASN SETA %CLAS*12 TOCLASS*12
&CLSNTD ANOP
CONVNUM - VAL=%ID243 CONVERT CURRENT ID TO HEX.
USERINIT
DCB
DCBI DCOD=243, SIZE=DCB.DVDP+4, INIT=INITCORD,
TERM=TERMCORD, FLGS=DFLG.LNM+DFLG.UCM,
ID=%IDVAL, ATRB=EB80O, COPY=$CORD243, IOH=CRD1.IOH
CCBI DCOD=243, ID=%IDVAL, SUBA=III
CCBYNAME EQU CCB%DCODY%IDVAL
%ID243 SETA ¢ID243+1
&DCBOPT ANOP
DCBYDCOD%ZIDVAL PROG USER DCB
9%OFES SETC '%DCOD':'%IDVAL' ESTABLISH PROPER OFESET
DCB.Y%NAME EQU DCBYOEES
ENTRY DCB.%NAME
ORG DCBYOFES+DCB.DMT
DC DMT . %NAME
EXTRN DMT.%NAME ‘
ORG DCBYOFES+DCB.DN DEVICE ADDRESS
DC H'9YDN'
ORG DCBYOFFS+DCB.LEAF LEAF POINTER
AIF (T'Y%SHCCB' EQ 'U')&NSLEAF B IF NOT SHARED
DAC LFY%SHCCB USE SHARED DEVICE LEAF
EXTRN LEY%SHCCB
AGO &NRMLEX
&NSLEAF ANOP
DAC LFYOFFS GENERATE STANDARD LEAF NAME
EXTRN LFY%OFES
&NRMLFX ANOP
&NOLEAF ANOP
AIF (T'Y%CLAS EQ 'U')&NOCLAS
ORG DCBYOFFS+DCB.CLAS IO CLASS
DC H'%CLASN' TOCLASS*12
&NOCLAS ANOP
5-16

48-190 F00 R0O

AIF (T'%ILVL EQ 'U')&NOILVL
ORG DCBYOFFS+DCB.ILVL ILEVEL
DC H'YILVL'
&NOILVL ANOP -
AIF ('4RQU' EQ '')&NOQU
ORG DCBYOFES+DCB.Q
DAC %RQU
EXTRN %RQU
&NOQU ANOP
ORG DCB%OFFS+DCB.XDCD
DC 9XDCD
ORG DCBYOFFS+DCB.SIZT

DC o)
ORG DCBYOFES+DCB.PEND
DC 0]
ORG $STYOFFS ORG TO END OF DCB
ASIS .
END
%RDN SETA YDN+1
MEND
MACRO

DCB244 %DCOD=,%DN=, %CLAS=, %ILVL=, NAME=, SHCCB=, 1
%SLCH=, %XDCD= :
GBLB ¥DCB$, %PDCB, %DDCB, 4EVN, %CCB, %DFLG, %SDCB
GBLB %IDCB, %ODCB, %S125DCB, 4ICCB, %BDCB
GBLB %ADCB, %TCB, 410B, 4I0B#%, %CRTDCB, 4LPDCB
GBLB %MMDDX, %DDEX, 4VEDCB, MTP, %CRPDCB, MGDCBX , 4HEWDST
GBLB %PSDCBX, %CRDP, %AOBDCB, 4BIOCDCB, %LPTDCB
GBLB %CORD244
GBLC %IDVAL
BGBLA %ID244
LCLA 9%CCBEL
LCLA %CLASN
LCLC %RXLT, %RQU
LCLC %CORDNM, %PTRPAS
LCLC %OFFS
LCLA %RDN
LCLC 9%MDN, %MCNT, ¥MSLCH
LCLA %TRCNT, %UPTR
LCLB %FOUND, %DA
BGBLA %FIRST
YRQU SETC 'COMQ' DEFAULT DEVICE QHANDLER

48-190 F00 R0O : . 5-17

%MDN SETC '9YDN' DEVICE ADDRESS
9CCBFL SETA O
9CORD244 SETB O

AIF (T'%CLAS EQ 'U')&CLSNTD

%CLASN SETA 9CLAS*12 IOCLASS*12
&CLSNTD ANOP
CONVNUM VAL=YID244 CONVERT CURRENT ID TO HEX.
USERINIT
$DCB¢
DCBI DCOD=244,SIZE=DCB.DVDP+4, INIT=INITCORD, 1
TERM=TERMCORD, FLGS=DELG.LNM+DELG.UCM, 2

ID=%IDVAL, ATRB=EB80, COPY=4CORD244, IOH=CRD2 . IOH
CCBI DCOD=244, ID=%IDVAL, SUBA=III
CCBYNAME EQU CCBY%DCOD%IDVAL
%ID244 SETA %ID244+1
&DCBOPT ANOP
DCBYDCOD%IDVAL PROG USER DCB
°/OFFS SETC '¢YDCOD':'%IDVAL"' ESTABLISH PROPER OFFSET
DCB.Y%NAME EQU DCBYOFES
ENTRY DCB.%NAME
ORG DCBYOFFS+DCB.DMT
DC DMT . NAME
EXTRN DMT.%NAME
ORG DCBYOFFS+DCB.DN DEVICE ADDRESS
DC H'9%DN'
ORG DCBYOFEFS+DCB.LEAF LEAF POINTER
AIF (T'%SHCCB' EQ 'U')&NSLEAF B IF NOT SHARED
DAC LFY%SHCCB USE SHARED DEVICE LEAF
EXTRN LE%SHCCB
AGO &NRMLFX
&NSLEAF ANOP
DAC LFYOFFS GENERATE STANDARD LEAF NAME
EXTRN LEYOFFS
&NRMLEX ANOP
&NOLEAF ANOP
AIF (T'%CLAS EQ 'U')&NOCLAS
ORG DCBYOFES+DCB.CLAS IO CLASS
DC H'%CLASN' IOCLASS*12
&NOCLAS ANOP
AIF (T'%ILVL EQ 'U')&NOILVL
ORG DCBZOFFS+DCB.ILVL ILEVEL
DC H'%ILVL'
&NOILVL ANOP

5-18 48-190 F00 R00

&NOQU

%RDN

AIF ('%RQU' EQ '')&NOQU
ORG DCBYOFFS+DCB.Q

DAC %RQU

EXTRN %RQU

ANOP

ORG DCBYOFFS+DCB.XDCD
DC 9XDCD

ORG DCBY%OFFS+DCB.REQD

DC 0

ORG $STYOFFS ORG TO END OF DCB
ASIS

END

SETA 9%DN+1

MEND

Macros used for COPY in DCBI macro for nonphysical device driver:

&NEEDIT
9CORD243
CORD243

DCB.XDCD

DCB.DCBT
DCB.TCBT
DCB.DMNT
DCB.SIZT
DCB.PEND

MACRO
$CORD243
GBLB %CORD243
AIF (NOT %CORD243)&NEEDIT
MEXIT
ANOP
SETB 1
STRUC TABLE OF ASSOCIATED STRUCTURES FOR COORDINATION
DS DCB.CCB DEFINE DEVICE-DEPENDENT AREA
DS 2
Ds 2
ALIGN 4
DS 4*20 TABLE OF DCBS ON CONTROLLED UNITS
DS 4*20 TABLE OF TCBS ASSOCIATED WITH DCBS
DS 4*20 TABLE OF ASSOCIATED DEVICE MNEMONICS
DS 4 POINTER/COUNTER - ENTRIES IN TABLE
DS 4 REQUEST-PENDING FLAG
ENDS
MEND

MACRO

$CORD244

GBLB %CORD244

AIF (NOT 9%CORD244) &NEEDIT
MEXIT

48-190 F00 R00 ‘ 5-19

&NEEDIT ANOP
%CORD244 SETB 1

CORD244 STRUC TABLE OF ASSOCIATED STRUCTURES FOR COORDINATION
Ds DCB.CCB BASIC DCB SIZE
Ds 2
DCB.XDCD DS 2
ALIGN 4
DCB.REQD DS 4 ADDRESS-OF ASSOCIATED DCB243-SET UP
* * AT SYS-INIT TIME.
ENDS
MEND

5.4 SUPERVISOR CALL 6 (SVC6) AND TRAP GENERATING DEVICE DRIVERS

In certain system configurations, it is desirable to have an external device cause a certain piece of
user’s task code to be executed in response to a signal from that device. An example of such a
situation is the existence of an external clock signal, which can be used to synchronize a cyclical
processing activity, such as is found in flight simulators and process control systems.

5.4.1 Function of a Trap Generating Device Driver

In the case of the external synchronization signal (or clock pulse), no data is being transferred to or
from the device. Rather, we simply want to have some particular set of user-level code that is to be
executed in response to that external signal. The appropriate interface between the user-level
program and the clocking signal is a trap generating device driver, using the SVC6 interface for
such devices. To use this feature, the user’s task must be set up to handle task traps and process
items on a task queue. The user’s task then "connects” itself to this trap generating device (i.e.,
clock pulse), and "thaws" (enables) the interrupts from the device by issuing an SVC6 instruction.
The driver then adds items to the task’s queue each time an interrupt occurs, which causes the task
to be forced by the operating system to execute a prespecified piece of code. In this way, the
external hardware signal can cause a specific section of user-level code to be executed each time an
interrupt occurs.

5.4.2 Coding a Trap Generating Device Driver

The system designer should note that a trap generating device cannot also be defined (through the
DCB) as a "normal” SVCI1 interface device. However, a normal SVC1 device driver can be used to
add items to a user’s task queue (and thus cause task traps) in response to specific situations.

5-20 48-190 F00 R0O

MLIBS 8,9,10

$REGS$
$DCB%
$CCB
TCB

EXTRN EVRTE,III,ISPTAB, SQ,TMATQ1
ENTRY CMDTGD, INITTGD, ISRTGD, TERMTGD

instructions:

RD
RE

% % % % % % % % F % % ¥ ¥ % ¥ X% % ¥ % % X * * * *

INITTGD EQU

*
CMDTGD EQU
*

*

LH
LB
LHL

CHI
BE

48-190 F00 R0O

The function processing part of this driver is entered from
the SVC6 processor in the operating system via the following

L UB, DCB.FUNC (UD)
BALR UE,UB

On entry from the SVC6 processor, the following register
conventions apply:

address of the DCB of the trap generating device
address in SVC6 processor to return to after
performing the requested function.

Note that DCB.FC has been set up by the SVC6 processor
to be one of the following values:

DCB.EC = X'CO' for "thaw" function
DCB.FC = X'AQ' for "freeze" function
DCB.FC = X'90' for "simulate interrupt" function

(these are the only three values that can appear)

not used - needed to satisfy
DCB.INIT reference only.
entry point specified in the
DCB.EFUNC term of the DCB.

U2,DCB.DN (UD) get the device address
U3,DCB.FC (UD) get the function code
UC,DCB.CCB(UD) get CCB address

U3,Xx'co' "thaw" function?
TGDTHAW

5-21

CHI U3.X'A0! "freeze" function?

BE TGDEREZ

CHI U3,x'90’ "simulate interrupt" function?
BE TCGDSINT

We should NEVER "fall through" all three tests. Thus, to
assist in debugging an "impossible" situation, we will simply
put a halt instruction here, so that if the "impossible" ever
happens, we can easlly examine all of the relevant reglsters
and locations to-see how we got here.

% % % ¥ ¥ X ¥

HALT should never be executed.

Process "thaw" function: set up the interrupt path to the
interrupt service routine, and enable the interrupt hardware
on the device.

* % X ¥ *

TGDTHAW EQU *

LA UO, ISRTGD get the address of the ISR

STH UO, CCB.SUBA (UC) & put into the CCB.

LIS ~ UO,O . get a zero,

STH U0, CCB.CCW (UC) & reset the channel command word
AIS Uc,1 make the CCB address odd

STH UC,ISPTAB(U2,U2) & set up the ISP table
* commands to enable hardware interrupts on the device go here

BR UE . return to the SVC6 processor

*

Process "freeze" function: dismantle the interrupt path to the

interrupt service routine, and disable the interrupt hardware

* on the device.

*

TGDFREZ EQU *

LA UO,1III get the address of the null

STH U0, ISPTAB(U2,U2) interrupt routine & reset the ISPT
(note that since we do this, there
is no reason to also reset the
CCB.SUBA value)

*

%

commands to disable hardware interrupts on the device go here.

* % % % ¥

BR UE return to the SVC6 processor

5-22 48-190 F00 R0OO

Process "sint" function: simulate an Interrupt on the device.

Note: interrupts from the device, elther real or simulated,
can not be taken until the "thaw" function has been executed.

* % % ¥ * »

TGDSINT EQU *

LH U7,DCB.ILVL (UD) get the proper interrupt level
SINT U7,0(U2) generate the "interrupt"
BR ° UE. - return to SVC6 processor

Interrupt service routine: when an interrupt from the device
is received, schedule the Event Service Routine (ESR) for
execution. Typically, a trap generating device needs no further

% % % % %

commands from the processor once interrupts are enabled. Thus,
it is unlikely that the ISR will contain any hardware lnterface
command instructions.

%

*

PURE
ISRTGD EQU *
L E5,CCB.DCB (E4) get the address of the DCB
L E6,DCB.LEAF (E5) get the item to be put on
ATL E6,S8Q the system queue, and add it
LPSWR EO exit the ISR.
*
* Event Service Routine: The ESR adds an item to the user's
* task queue, by calling a routine in the operating system.
*
IMPUR
TERMTIGD EQU *
‘ L U9, DCB.TCB (UD) get the user's TCB address
L UA,DCB.PBLK (UD) get the task queue parameter
* that was specified by the
* user in the "connect" function
NI UA,Y'FEFEFE"' & be sure it is 24 bits long
*] (this sets the "reason code"
* as defined for task queue
* , entries to be equal zero).
BAL Us, TMATQ1 then call the 0S routine
* to add this to the task's
. queue.
B EVRTE Exit from the ESR.
END

48-190 F00 R0OO 5-23

APPENDIX A
REVIEW OF ASSEMBLY LANGUAGE

INPUT/OUTPUT (VO) COMMANDS

Here are some notes on the usage of Common Assembly Language/32 (CAL/32).

When dealing with device interfaces, it is common to use I/O instructions that are rarely used under
any other circumstances. A review of some of these commands is included here.

Remember that all I/O commands are privileged commands.

SENSE STATUS

SS R1,STAT1 Put status into R2 of the device whose
address is in R1l.

SSR R1,R2 Put status into R2 of the device whose
address is in R1l.

SIMULATE INTERRUPT

SINT R1,0(R2) Where Rl is the interrupt level and
R2 is the device address.

OUTPUT COMMAND

OC R1,DISARM Disarm the interface '

.

DISARM DB X'co' Disarm the command

WRITE DATA/WRITE HALFWORD

WH R1.DCB.SADR (UD) Where Rl contains the device address
and DCB.SADR (UD) is the address that
contains the data to be written.

NOTE

None of the YO commands is provided in immediate
format!

48-190 F0O R0O A-1

APPENDIX B

DEBUG TECHNIQUES

This appendix is a brief discussion of two convenient debug techniques.

« The single step method:

This method is useful in tracing the basic flow of the driver. The systems integrator places the
machine into single step mode (by depressing the single button on the front panel or in the case
of a Model 3210, by using the less than (<) symbol), and then proceeds to step through the
code.

The single step method is not suitable for tracing any problems that are timing related.

o Inserting ‘HALT’ instructions:
A HALT (8800) instruction can be inserted into the driver code at any point. The driver is then
free running until the HALT (breakpoint) instruction is executed. This method is often used to

trap a driver if it is executing code that should never be reached. Some timing problems can be
traced by way of this method.

48-190 F00 R0OO B-1

APPENDIX C

CRASH CODE ANALYSIS

The following is a listing of crash code messages and their meaning:

----102

-=--142

132

A crash code of 153 denotes an invalid memory alignment condition. When this occurs
within the driver code, it is most commonly found to be a fullword reference on a
halfword boundary. This crash may also occur if a device leaf is added to the system
queue more than once.

This crash code is an illegal instruction that is executed within system code. This is the
most difficult crash to trace simply because the pointer that you have points you to the
illegal instruction and not to the mechanism that brought you to the illegal instruction.
The common causes are random branches (i.e., branches using the wrong register),
and data constants not properly placed in memory.

This crash code is caused by a supervisor call 1 (SVC1) ending parameter block
address that is less than the SVC1 starting parameter block address.

This crash code is caused by an illegal SVC call being issued by the driver (such as an
SVC2 call).

48-190 F00 R00 C-1

PART 11
INPUT/OUTPUT (I/0) SUBSYSTEM
REFERENCE INFORMATION

PREFACE

CHAPTER 1

CHAPTER 2

CHAPTER 3

CHAPTER 4

CHAPTER §

CHAPTER 6

CHAPTER 7

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

48-190 F00 R00

CONTENTS

INTRODUCTION

SERIES 3200 INPUT/OUTPUT (/O) ARCHITECTURE
INPUT/OUTPUT (/O) PROGRAMMING METHODS

THE INPUT/OUTPUT (YO) SUBSYSTEM ARCHITECTURE
STRUCTURE OF A DRIVER

COMPONENTS OF THE DEVICE CONTROL BLOCK (DCB) AND
CHANNEL CONTROL BLOCK (CCB)

DIFFERENCES FOR DRIVERS WRITTEN UNDER INPUT/OUTPUT
PROCESSORS (I0P)

DESCRIPTION OF DATA STRUCTURES
MACHINE STATES

THE SYSGEN/32 MACRO OUTPUT FILE
08S8/32 SUBROUTINE DEFINITIONS

SKELETON DRIVER AND ASSOCIATED DCBXXX MACRO

PREFACE

This document serves as a reference manual to the system programmer that plans to write an OS/32
device driver to interface a nonstandard input/output (I/O) device with OS/32. This manual covers
only device drivers accessed by the supervisor call 1 (SVC1) I/O protocol. SVCI1S access is
supported by Integrated Telecommunications Access Method (ITAM) line drivers, is not covered in
this manual.

This manual is divided into two parts; whereas Part I is a tutorial and Part II contains important
background information on I/O subsystems. - Chapter 1 is a discussion of the general philosophy of
OS/32 drivers; i.e, the purpose of a driver and also contains a general outline of the required
information and interfaces which one must understand in order to write a driver. Chapters 2
through 5 present a detailed discussion of those interfaces which are defined by Perkin-Elmer.
Specifically, Chapter 2 describes the Perkin-Elmer Series 3200 Processor I/O architecture. Chapter
3 discusses various methods of I/O programming, giving sample code sequences for each. Chapter 4
describes the OS/32 I/O subsystem architecture. This chapter is based on the I/O subsystem as of the
08/32 R08.1 software release, but it is generally compatible with any revision of OS/32 since
software release R06.2. Chapter 5 is a detailed discussion of the structure of an OS/32 driver.
Sample code sequences for the various major components are given. Chapter 6 describes the steps
that are necessary to create a custom driver and to include it into an OS/32 system, respectively.
Chapter 7 describes the changes that have to be implemented in drivers being written for systems
co'nfigured under an input/output processor (IOP), as opposed to drivers that are written solely for
systems configured under the central processing unit (CPU). Appendix A describes all the
parameters for data structures, such as the device control block (DCB) and the channel control
block (CCB). A detailed description of machine states is given in Appendix B. Appendix C defines
the OS/32 macros that are used by drivers and Appendix D defines the OS/32 driver routines.
Appendix E shows a sample driver, with its corresponding DCB macro.

For information on the contents of all Perkin-Elmer 32-bit manuals, see the 32-Bit Systems User
Documentation Summary.

48-190 F00 R0O i

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION
1.2 PURPOSE OF A DRIVER
1.3 BASIC INFORMATION
1.3.1 The Perkin-Elmer Series 3200 Processor Input/Output (I/O) A rchitecture
1.3.2 08S/32 Input/Output (I/Q0) Subsystem A rchitecture
1.3.3 Programming A ttributes of Physical Devices
1.3.4 Logical Devices Projected by a Driver

1.3.5 Including a Driver in the Operating System

W W W NN N =

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

This chapter introduces OS/32 device drivers. After discussing the general philosophy behind
writing a driver; i.e., the purpose of a driver, an introduction to hardware and software architecture
is provided.

1.2 PURPOSE OF A DRIVER

A device driver in an operating system acts as the control point for the unique physical or device-
dependent characteristics of a peripheral device. The driver is responsible for converting
input/output (I/O) requests made by a user program into physical instructions understood by the
device. The driver, in turn, responds to interrupts from the device or device controller, and reports
status back to the user program.

Instructions that are provided by the Perkin-Elmer Series 3200 Processors to control and
communicate with I/O devices are privileged instructions, meaning that user programs cannot
execute them. This is common practice in computer systems where instructions are used to
communicate with peripheral devices. (In systems which use memory-mapped /O, the memory
cells that control devices are normally inaccessible to user programs, thereby yielding the same
effect.) The main reason for the restriction on I/O control is to protect the system and the user
from unintentional (or malicious) interference. The I/O drivers and supporting /O subsystem
provide the mechanisms for users to access standard devices and for new devices to be added to the
system.

In general, programming of I/O devices is dictated by the physical characteristics of the device and
the needs of the user. In addition, drivers for different devices are programmed quite differently.
However, the typical user level programmer does not want to be concerned with these differences.
From the programmer’s viewpoint, writing a line to the printer should be no different from writing
the same line to a CRT or a disk file. This concept is called device-independent programming. It is
also the domain of the I/O subsystem and device drivers. Device-independent programming is not
always possible, nor is it always desirable. For example, a gapless magnetic tape is a device whose
performance characteristics preclude device-independent programming (due to the system overhead
in handling individual reads and writes). The gapless tape driver provides a device-specific
interface which allows a list of several buffers to be provided in a single read or write call.

For both the case of device-independent programming and that of a device-specific interface, the
device driver is responsible for mapping the logical device interface as seen by the user level
programmer into the physical device. The driver projects an interface which hides, modifies or
passes through unchanged the idiosyncrasies of the physical device’s programming characteristics.

48-190 F00 R0OO 1-1

1.3 BASIC INFORMATION

To successfully implement an OS/32 device driver, the systems programmer must understand
several related interfaces. These interfaces, discussed briefly in the following sections and in
greater detail in subsequent chapters, are:

o the Perkin-Elmer Series Processor 3200 I/O Architecture,
« the OS/32 J/O subsystem architecture,
« the programming attributes of the physical device, and

« the logical device projected by the driver.

1.3.1 The Perkin-Elmer Series 3200 Processor Input/Output (I/O) A rchitecture

The Perkin-Elmer Series 3200 Processor I/O Architecture is the hardware framework in which all
I/O programming is implemented. It is detailed in all of the Perkin-Elmer Series 3200 Processor
Reference Manuals. The I/O architecture consists of definitions of the following:

« device addressing,

o device command and status formats,

o I/O bus data paths,

« instructions to control and communicate with physical devices,

« data structures associated with interrupt processing, and

» interaction of processor status word with external and internal interrupts.

These definitions, and their impact on OS/32 drivers, are summarized in Chapter 2.

1.3.2 0S/32 Input/Output (I/0) Subsystem A rchitecture

The 0S/32 /O subsystem architecture is the software framework in which all device drivers
execute. The user interface to the I/O subsystem is supervisor call 1 (SVC1), which is fully
described in the OS/32 Supervisor Call (SVC) Reference Manual. Integrated Telecommunications
Access Method (ITAM) drivers; i.e, network drivers such as Ethernet, Bisync and SDLC, use
SVC15.

The device driver interface to the I/O subsystem defines the following:
¢ Data structures for controlling the interaction of the driver with the remainder of the system.
o The general structure of device drivers, including register conventions.
« System interface and utility routines and their register calling conventions.

The interface is the primary subject of this document.

1-2 48-190 F00 R00

1.3.3 Programming A ttributes of Physical Devices

/O peripheral devices are connected to a Perkin-Elmer Series 3200 Processor via a device interface
or controller board. Each such controller has its own repertoire of supported commands and
resulting status, and interrupt conditions. Also, correct operation of the device is often dependent
upon a specific sequence of command and data transfers. Failure to observe this programming
sequence will generally lead to the device failing to operate in the desired manner.

It is the responsibility of the driver programmer to understand all of the programming requirements
of the particular device. This information is usually defined in the appropriate device/controller
programming reference manual. Other than the standard command and status formats and the
sample code sequences, this information is outside the scope of this manual.

1.3.4 Logical Devices Projected by a Driver

As discussed earlier in this chapter, one of the primary purposes of a driver is to project a
simplified, often device-independent view of a physical device. This simplified view is the logical
device to which this section refers. It is the user level (SVC1) programming interface to the device.
Unless the driver is being designed to conform to an existing Perkin-Elmer interface (e.g., a new
CRT or disk), the definition of the logical device interface is left to the driver writer.

The OS/32 I/O subsystem places some restrictions on this interface by the way in which it interprets
certain fields of the SVC1 parameter block. Within these limits, the driver writers are at liberty to
extend the interface in any direction which best accomplishes their objectives. It is the responsibility
of the driver writer to document the logical device interface, including:

+ Function codes and options

¢ Status returns

« Extensions to standard SVC1 parameter block
o Sequence of command occurrence

+ Buffer alignment or format requirements

1.3.5 Including a Driver in the Operating System

08S/32 device drivers are included in the system during the system generation (sysgen) process.
Sysgen/32 processes system configuration statements to produce a macro level source file. This file
is assembled and linked with standard Perkin-Elmer supplied system modules and driver libraries to
produce an operating system image.

Sysgen/32 and the sysgen procedures have provisions for including customized device drivers in the
system. Specifically, the sysgen procedures search for a user driver macro library
(USERDLIB.MLB) containing macro definitions for user-written device control block (DCB)
structures, and a user driver object library (USERDLIB.LIB) containing bodies of user-written
drivers in object format.

The procedure for including a driver in the system is described in Part I, Chapter 3.

48-190 F00 R0O 1-3

CHAPTER 2

SERIES 3200 INPUT/OUTPUT (I/O) ARCHITECTURE

2.1 INTRODUCTION
2.2 MULTIPLEXOR (MUX BUS)
2.2.1 Device Address
2.2.2 Device Commands
2.2.3 Device Status
2.2.4 Data
2.3 PROGRAM STATUS WORD (PSW) AND MACHINE STATES
2.4 INPUT/OUTPUT (I/0) INSTRUCTIONS
2.4.1 Output Command (OC) Instructions
2.4.2 Sense Status (SS)
2.4.3 Write Data (WD)/Write Data Halfword (WH)
2.4.4 Read Data (RD)/Read Data Halfword (RH)
2.4.5 Other Input/Output (I/O) Related Instructions
2.5 INTERRUPTS
2.5.1 External Interrupts

O OV 0 NN Ay v s AN NN =

—
(=]

2.5.1.1 Interrupt Service Pointer Table (ISPT)
2.5.1.2 Immediate Interrupt Service

2.5.1.3 Auto Driver Channel
2.5.1.3.1 Channel Control Block (CCB)
2.5.1.3.2 Channel Control Word (CCW)
2.5.1.3.3 Channel Control Block (CCB) Buffers
2.5.1.3.4 Check Word
2.5.1.3.5 Translation Table

2.5.1.3.6 Interrupt Service Routine (ISR) Subroutine A ddress (SUBA)
2.5.2 Internal Interrupts

2.5.2.1 Supervisor Call (SVC) Interrupt
2.5.2.2 System Queue Service (SQS)

—
N o

e e e oy
O N N~ AW

[T
O v

Figure 2-1.
Figure 2-2.
Figure 2-3.
Figure 2-4.
Figure 2-5.
Figure 2-6.
Figure 2-7.

LIST OF FIGURES

Hardware Configuration

Standard Device Command (SELCH not included)
SELCH Command S
Standard Device Status

The ISPT

Auto Driver Control Structures

Channel Control Word

- ij -

S~ W W

11
14
15

TABLE 2-1.

TABLE 2-2.
TABLE 2-3.
TABLE 2-4.

LIST OF TABLES

PSW STATUS FIELD FOR PERKIN-ELMER SERIES 3200
PROCESSORS

REGISTER CONTENTS ON ENTRY TO ISR
REDUNDANCY CHECKS
PROGRAM STATUS WORD CONDITION CODES

- iii -

12
16
18

CHAPTER 2

SERIES 3200 INPUT/OUTPUT (I/O) ARCHITECTURE

2.1 INTRODUCTION

This chapter describes the Perkin-Elmer Series 3200 Processor I/O Architecture. Specifically, it

covers:

o The multiplexor (MUX) bus

« The interaction of the program status word (PSW) with the I/O system

¢ The Series 3200 Processor I/O instruction repertoire

e The Series 3200 Processor I/O interrupt structure

Figure 2-1 shows a detailed description of the hardware architecture on a Series 3200.

190-11

MEMORY
DMA BUS
&
<&/ 4
o
SELECTOR
cPU CHANNEL
Il PRIVATE MUX BUS
" I T
MAG TAPE ity DISK
CONTROLLER UNDER SE e CONTROLLER
S W
MULTIPLEXOR (MUX) BUS w
{
N-LINE CUSTOMIZED LINE
COMMUN. USER INTERFACE PRINTER
CONSOLE MUX TERMINAL ON MUX BUS CONTROLLER

48-190 F00 R0O

Figure 2-1. Hardware Configuration

2-1

2.2 MULTIPLEXOR (MUX BUS)

Control over peripheral devices and communication with them is accomplished via the MUX bus.
Even direct memory access (DMA) devices are programmed (i.e., setup) and monitored via the
MUX bus, and are designed to notify the processor of normal or error termination via the MUX
bus.

The MUX bus gets its name from the fact that device addresses, device commands, device status
and, of course, data are multiplexed on this bus. The bus consists of 16 bidirectional data lines and
several control (from central processing unit (CPU) to controller) lines, and signal (from controller
to CPU) lines. The control.lines determine the interpretation (by the controller) of the contents of
the data bus; i.e., device address, commands, status or actual data. The signal lines are used to
synchronize the operation of the controller with the processor and to request service by the
processor.

2.2.1 Device Address

Controllers on the MUX bus are addressed by a 10-bit device address, sometimes referred to as the
device address. With 10 bits, it is possible to address 1,023 device addresses. In a Model 3260
System containing an input/output processor (IOP), with certain restrictions, this number can be
exceeded. Device address 0 is reserved as the illegal device address.

It is generally not possible to connect 1,023 separate devices to a Series 3200 Processor. The reason
for this is that many device controllers use up more than one device address. For example, a disk
controller, capable of supporting four disk drives, uses five device addresses - one for each drive
and one common address for the controller. Communications interfaces generally require two
addresses per communications line - one for the receive side and one for the transmit side.

Each of the I/O instructions, discussed later in this chapter, operates on a device address. The
device address, specified by a general-purpose register number that contains the address, is placed
on the MUX bus data lines and the appropriate control signal is asserted. This causes the addressed
device to become selected (and all other devices to become deselected). The processor then transfers
commands, status or data either to or from the selected device as specified by the instruction.

NOTE

No two device controllers on the bus can have the same
address. Addresses on an IOP can be the same as on the
CPU or another IOP, with restrictions on diagnostics.

2.2.2 Device Commands

The processor controls the state of a device controller using device commands. A command is an
8-bit datum that is passed to the (selected) controller via the MUX bus data lines. Commands are
differentiated from data by a bus control line. An 8-bit command allows 256 unique commands to
be specified. As commands are normally bit-encoded (i.e., bits are assigned specific meaning), the
effective number of meaningful commands for a controller is usually much less than 255.

2-2 48-190 F00 R0OO

Some device controllers may require a larger command space than afforded by the standard 8-bit
command. This can be done in one of several ways:

o the controller might use multiple device addresses, with commands to the different addresses
interpreted differently, or

« the controller might interpret all data written to one or more device addresses as commands, and

« a specific command bit could condition the controller to accept one or more subsequent data
bytes or halfwords (16 bits) as commands.

By convention, the first two. bits of a command byte are assigned a standard meaning. Bits 0 and 1
control the device’s interrupt flip-flop. Bit 0 is the DISABLE command and bit 1 is the ENABLE
command. See Figure 2-2 for an illustration of these bits. (For reference purposes, Figure 2-3
shows the SELCH command.)

Bt 0 1 2 3 4 5 6 17
D | E
I | N | XX |X|[X|X|X
S| A

Figure 2-2. Standard Device Command (SELCH not included)

Bit 8 9 10 11 12 13 14 15
Extended
Not Address | Read | Go | Stop | SELCH | Not Not
Used Read Status Used | Used

Figure 2-3. SELCH Command

If DISABLE is set and ENABLE reset (10,), interrupts are disabled but queued at the interface.
With DISABLE reset and ENABLE set (01,), interrupts (including a queued interrupt) are allowed
to be passed to the processor. If both DISABLE and ENABLE are set (11,), interrupts are
disarmed; interrupt conditions will be ignored by the controller. The combination of both DISABLE
and ENABLE reset (002) has no effect on the state of the controller’s interrupt logic. This is useful
for commands that otherwise affect the state of the controller, without changing the interrupt state.

The remaining six bits of the command byte are device specific. Not all are necessarily defined for
all controllers. The actual meaning of these bits should be documented in the appropriate device
controller’s programming reference manual. This information is mandatory for writing a driver for
the device.

48-190 F00 R00 2-3

2.2.3 Device Status

The processor senses the state of a device controller by accessing an 8-bit device status. The status
byte is requested from the (selected) device by asserting the appropriate MUX bus control line.
The controller places the status on the bus data line. As with commands, status bytes are usually
bit-encoded. Devices that require more than eight bits of status typically resort to the same types of
mechanisms described in Section 2.2.2.

Certain bits of the device status are assigned default meaning by convention. Figure 2-4 illustrates
default device status settings.

Bit 0 1 2 3 4 5 6 7
B

U | E D

X I XXX 8 | X|X| U
Y

Figure 2-4. Standard Device Status

Bit 4 is interpreted as the busy (or not ready) bit; i.e., when set, the device is busy. For input
devices, this typically means that no data is available at the interface. For output devices, it means
that the controller is not ready to accept further data. If the device supports program detection of
power-up condition, this is normally assigned to bit 7. If set, it indicates device unavailable - this is
a much softer convention than the busy bit above.

Finally, bit 5 is usually defined as the logical OR of bits 0 through 3. Bit 5 is called the examine
bit. The reason for this is as follows: when the processor performs a sense status operation, bits 4
through 7 of the status are copied into the PSW condition code. Conditional branch instructions are
then able to test these bits directly. Bits 0 through 3 cannot be tested in a like manner. Therefore,
the convention was developed that bit 5 would be set whenever any one or more of bits 0 through 3
are set. Thus, with a single branch instruction, one can test bit 5 (which is copied to the overflow
condition code bit) and branch off to a routine to examine bits 0 through 3 one-by-one.

Except for the busy bit (bit 4), which is an almost universal convention and the examine bit, which
is nearly so, the assignment of status bits is device specific. The required action response of the
processor or driver to the status conditions is also device specific. This information should be
documented in the appropriate device/controller programming reference manual, and is required to
write a driver for the device.

2.2.4 Data

The MUX bus supports data transfers in units of 8 or 16 bits. This is called byte and halfword
mode, respectively. The data transfer width is a characteristic of the physical device. Most Perkin-

24 48-190 F0O ROO

Elmer supplied devices are byte-oriented. The exceptions to this tend to be process I/O devices such
as analog-to-digital or digital-to-analog converters and digital /O modules. Also, some newer tape
and disk interfaces use halfword transfers for command and status information, as outlined in
Section 2.2.2.

2.3 PROGRAM STATUS WORD (PSW) AND MACHINE STATES

The PSW is a 64-bit internal register that controls and records the current state of a Series 3200
Processor and consists of two 32-bit fields. One field, the location counter (LOC), always contains
the address of the next instruction to be executed. The other field, shown in Table 2-1, contains
processor status/control information. When an I/O device interrupts the processor, the current
PSW/LOC is saved and a new PSW/LOC is derived based on information supplied by the
interrupting device. Where the old PSW is saved and how the new one is derived are discussed in
Section 2.5. Whether or not an interrupt is possible, is controlled by two bits in the PSW. Bits 17
and 20 control the I/O interrupts as shown in Table 2-1.

TABLE 2-1. PSW STATUS FIELD FOR PERKIN-ELMER SERIES 3200 PROCESSORS

BIT 17 | BIT 20 EXPLANATION

0 0 All YO Interrupts disabled

0 1 Interrupts enabled at higher
priority levels

1 0 Interrupts enabled at all
priority levels

1 1 Interrupts enabled at current
and higher priority levels

When bit 17 is 0, the processor is considered to be in the interrupt service state. This is the most
privileged state of the machine - the program executing in interrupt service state has complete
control of the processer.

PSW bits 24 through 27 are closely related to the /O architecture. These bits select one of eight
register sets on the Series 3200 Processors (one of two sets on the Model 7/32 and some Model 8/32
Processors). Register sets 0 through 3 are tied to the four I/O interrupt priority levels. This is
discussed further in Section 2.5.1, External Interrupts.

PSW bit 22 controls the system queue service (SQS) interrupt. SQS is a software or internal
interrupt as described above. When bit 22 is enabled, the processor is considered to be in a reentrant
or eventable state. When bit 22 is reset, the system is in a nonreentrant or, possibly, event service
state.

48-190 F00 R00 2-5

Finally, PSW bits 28 through 31 contain the condition code. The condition code reflects the results
of the most recent arithmetic or /O operation. It is also setup on an interrupt as discussed in the
section on interrupts.

The machine states associated with driver routines are the nonreentrant system state, the event
service state and the interrupt service state. System states are described in detail in Appendix B.

2.4 INPUT/OUTPUT (I/O) INSTRUCTIONS

Perkin-Elmer Series 3200 Processors I/O instructions control the transfer of commands, status and
data between the processor and the device controllers. They are defined in detail in any Perkin-
Elmer Series 3200 Processor reference manual. An important point to note is that whenever any of
the I/O instructions are issued, the processor waits for the addressed device to respond with a
synchronization signal (called SYNC). To prevent the processor from waiting indefinitely (for a
nonexistent or malfunctioning device), the instructions will time-out after a brief interval has
elapsed. This condition is called a FALSE SYNC. The time interval varies from processor to
processor, but it is on the order of 15-30us When an I/O instruction times-out, the overflow bit in
the PSW condition code is set. This is known as false sync condition.

2.4.1 Output Command (OC) Instructions

The OC instruction causes an 8-bit device command to be transferred to the addressed device. Like
all /O instructions, this command has two formats - a memory (RX) format, and a register (RR)
format.

Example:
OC R1,A(X1) RX format
OCR R1,R2 RR format

In both formats, the R1 contains the device address in bits 22 through 31. In the RX format, the
byte value in memory at A(X2) is the command byte to be transferred. In the RR format, the
command byte is located in bits 24 through 31 of the register specified by R2. Note that this
instruction does not have an immediate format; attempting to use an immediate format is a common
mistake made in drivers. An output command is often the first instruction issued to a device in a
driver. This is normally done to place the device in a known state. It is customary to test for
FALSE SYNC immediately after this initial command.

2-6 48-190 F00 ROO

Example:

LHL R2,DCB.DN (RD) Get device address

OC R2,INITCMD Issue initial command
BO NONESUCH FALSE SYNC - no such device

2.4.2 Sense Status (SS)

The SS instruction requests an 8-bit device status byte to be transferred from the addressed device.
This instruction has both an RX format and an RR format.

Example:

SS R1,A(X2) RX format
SSR R1,R2 RR format

In both formats, R1 contains the device address in bits 22 through 31. In the RX format, the status
byte is returned to the memory byte specified by A(X2). In the RR format, the device status is
returned to bits 24 through 31 of the register specified by R2. When an SS (or SSR) instruction is
executed, the low-order four bits of the status are copied into the condition code bits of the PSW.
While this makes normal tests (e.g., for busy) quite efficient, it makes testing for FALSE SYNC
somewhat more complicated after a sense status. This is because the PSW overflow condition code
may be set for reasons other than FALSE SYNC. In general, it is only necessary to test for FALSE
SYNC once in a driver. It is recommended that this be done after an OC rather an SS instruction.

2.4.3 Write Data (WD)/Write Data Halfword (WH)

There are two types of write instructions. WD transfers an 8-bit data byte to the addressed device.
WH transfers a 16-bit data halfword to the device. Both types of write instructions come in RX and
RR formats.

48-190 F00 R00 2-7

Example:

WD R1,A(X2) Write data RX format
WDR R1,R2 Write data RR format

WH R1,A(X2) Write halfword RX format
WHR R1,R2 Write halfword RR format

In all these instructions, bits 22 through 31 of the register specified by R1 contain the device
address. RX transfers the contents of the memory byte specified by A(X2). RR transfers bits 24
through 31 of the register specified by R2. WH RX transfers the contents of halfword specified by
A(X2). This address must be halfword-aligned (i.e., even). The RR format of WH transfers the
lower halfword (bits 16 through 31) of the register specified by R2. For all write instructions, the
addressed device must support output and must not be busy. Otherwise, the results are undefined.

2.4.4 Read Data (RD)/Read Data Halfword (RH)

There are two types of read instructions. RD transfers an 8-bit data byte from the addressed device,
and RH reads a 16-bit data halfword. Both types of read instructions have both RX and RR
formats.

Example:

RD R1,A(X2) Read data RX format
RDR R1,R2 Read data RR format

RH R1,A(X2) Read halfword RX
RHR R1,R2 Read hal fword RR

In all four instructions, the device address is contained in bits 22 through 31 of the register specified
by R1. RX reads a data byte into the memory byte specified by A(X2). RDR reads the data byte
into bits 24 through 31 of the register specified by R2. Bits 0 through 23 of register R2 are cleared
to zeros. RH reads 16 bits of data into the memory halfword specified by A(X2). This address must
be halfword-aligned (i.e., even). RHR reads the data halfword into bits 16 through 31 of register
R2. Bits 0 through 15 of the register specified by R2 are cleared to zeros. For all of the read
instructions, the addressed device must support input and must not be busy. Otherwise, the results
are undefined.

2-8 48-190 F00 ROO

2.4.5 Other Input/Output (I/O) Related Instructions

There are two additional instructions that are part of the I/O architecture that do not perform any
I/O on the MUX bus. These are the simulate interrupt (SINT) and the simulate channel program
simulate channel program instructions. The SINT instruction is an immediate (RI) format.

Example:

SINT R1,I(X2) - Simulate interrupt R1
SINT I (X2) Simulate interrupt

The SINT instruction causes the processor to execute the same internal sequence as if an interrupt
were received from the device whose address is specified by I(X2). The contents of R1, if present,
specifies the priority level at which the interrupt is simulated. If R1 is not present, the processor
defaults to level 0. The least significant ten bits of the second operand are presented to the interrupt
handler as a device number. The device number is used to index to the interrupt service pointer
table (ISPT), simulating an interrupt from an external device. Interrupts and priority levels are
described in the next section.

The simulate channel program instruction has only an RX format.

Example:

SCP R1,A(X2) Simulate channel program

This instruction causes the processor to execute an auto driver channel control block (CCB)
specified by the A(X2) operand. Data is moved between R1 and the memory buffer specified by the
CCB. The auto driver channel is described in a subsequent section.

2.6 INTERRUPTS

The Series 3200 Processor I/O Architecture, in the context of OS/32 device drivers, supports two
classes of interrupts. External interrupts are those interrupts that are generated by devices on the
MUX bus. They occur asynchronously from instruction execution and, except for a few interruptible
instructions, they are only recognized between instruction executions.

Internal interrupts, on the other hand, are generated by the Series 3200 Processor microprogram.
They occur synchronously with instruction execution. The supervisor call (SVC) and system queue
service (SQS) interrupts, described in a later section, is of particular importance to the 0S8/32 /O
subsystem and device drivers.

48-190 F00 R00 29

2.6.1 External Interrupts

All external interrupts occur via the MUX bus. A device controller requests service by asserting its
attention signal. A controller may be connected to one of four attention lines. The four attention
lines are arranged in four priority levels numbered 0 through 3. Level 0 is the highest priority level;
3 is the lowest. To be sensed, interrupts must by enabled. Interrupts are enabled by a combination
of the PSW bits 17 and 20 and the currently selected register set (bits 24 through 27). See Section
2.4 for a discussion of the PSW bits 17 and 20.

When the processor recognizes an interrupt at level n, the following actions occur:

1. The processor acknowledges the interrupt by asserting a MUX bus control line. This causes
the device to return its device address on the MUX bus data lines. Also, the interrupting
device becomes selected.

2. The processor saves the current PSW and location counter (LOC) and generates a new PSW
that selects the register set equal to the interrupting priority level. Higher level interrupts
remain enabled (i.e., if the interrupting level is not level 0). The old PSW and location are
saved in registers 0 and 1 of the selected set.

3. The processor saves the address of the interrupting device in register 2 of the new set. It then
requests the current status of the selected (interrupting) device and places this status byte in
bits 24 through 31 of register 3 of the new set. All other bits are zeroed.

4. The address of the channel command block is placed in register 4 of the selected register set
(if a CCB is being used; see further discussions of the ISPT in the Chapter 3.

5. The LOC of the new PSW is determined from the contents of an external interrupt vector
table called the ISPT. The ISPT is discussed in the next chapter.

2.5.1.1 Interrupt Service Pointer Table (ISPT)

The ISPT is a vector table for external service. For all Series 3200 Processors and for the Models
7/32 and 8/32, ISPT is a table of halfword (16-bit) pointers located at physical memory address
X‘D0’. (It is sometimes referred to as the "Dog-Zero" Table.) ISPT is indexed by twice the device
address of the interrupting device. Because each entry is only 16 bits wide, the address must be
within the first 64kB of physical memory.

For the Series 3200 IOP associated with the Model 3260MPS system, the ISPT is a fullword table. It
can be located anywhere in physical memory. It is located via a fullword pointer in the I/O
processor block (IPB). Because it contains fullword entries, the addresses it contains can be
anywhere in physical memory. The following paragraphs refer to ISPT entries and are equally valid
for both the fullword IOP ISPT and the halfword CPU ISPT.

If the ISPT entry for a particular device is even (low-order bit = 0), then the entry is the address of
the first instruction of an interrupt service routine (ISR). This address becomes the location counter
(LOC) for the new PSW. (Immediate interrupt service is discussed in the next section.) If the ISPT
entry for a device is odd (low-order bit = 1), then the entry is the address +1 of an auto driver

2-10 | 48-190 F0O R00

CCB. (Note: this is the normal case for some OS/32 device drivers. CCBs are only for common
drivers; disk and tape drivers do not use them.) The CCB is accessed by the processor’s microcode.
Depending on the contents of the CCB, the interrupt might be serviced completely within
microcode; or the LOC for the new PSW might be loaded from a field in the CCB. The auto driver
channel is discussed in a later section.

Figure 2-5 shows the ISPT for a CPU with both immediate interrupts and CCBs. Note that ISPT is
at X‘D0’ on all processors except IOPs. For IOPs ISPT may be anywhere.

190-2 DCB
DCB.ISP
ISPT
IMMEDIATE E@=OLD PSW
ISR E1=0LD LOC

E2 = DEVICE ADDRESS
E3 = DEVICE STATUS

N\
A\Y

A\
A\

LPSWR EQ

‘

ﬁ7 =
W AUTO DRIVER CHANNEL
CCB
cew
[1
E@ = OLD PSW
ISR E1=0LD LOC
E2 = DEVICE ADDRESS
| E3 = DEVICE STATUS
SUBA E4 = ADDRESS OF CCB
LPSWR EQ@

Figure 2-5. The ISPT

48-190 F00 R0O 2-11

2.5.1.2 Immediate Interrupt Service

NOTE
Immediate interrupt service is generally not useful in
the design of custom I/O drivers. All such drivers
require the use of the channel command block and at
least minimal auto driver channel operation.
Immediate interrupts are used only in certain operating
system time-keeping operations.

An immediate interrupt. occurs if the ISPT entry for the interrupting device is even. Here the entry
is the first address of an ISR. For all 3200 Processors, the first instruction of the ISR must be in
the first 64kB of physical memory. (For an IOP, the ISR can be anywhere in physical memory.)

On entry to the ISR, the processor initializes registers 0 through 3 of the newly selected register set
(= interrupt priority) as follows:

TABLE 2-2. REGISTER CONTENTS ON ENTRY TO ISR

REGISTER CONTENTS ON ENTRY INTO ISR

0 Old PSW status (of interrupted program)
1 Old LOC

2 Interrupting device’s address

3 Interrupting device’s status

While the hardware imposes no such restriction, OS/32 requires that ISRs restrict their register
usage to registers O through 7. This is necessary because the nonreentrant service state uses registers
8-F on set 0. If it can be guaranteed that the ISR will execute in register sets 1, 2 or 3, this
restriction is not required. Failure to observe this restriction in an OS/32 driver will result in
system failure. Also, registers 0 through 2 are usually preserved throughout an ISR. An ISR exits
(back to the interrupted program) by loading the old PSW from registers 0 and 1, i.e.,

2-12

LPSWR EO

48-190 F00 ROO

NOTE

It is common practice to refer to registers from within an
ISR as En, where n is the register number. This is to make
clear that the ISR is executing in an executive register set;
ie.,0,1,20r3.

2.5.1.3 Auto Driver Channel

The auto driver channel is a feature of all Perkin-Elmer Series 3200 Processors. It is, in effect, a
built-in ISR. Under the control of the processor’s microcode and as directed by the contents of a
CCB, discussed below, the auto driver channel is capable of servicing a device interrupt completely
within the processor’s microcode.

The auto driver channel supports either byte or halfword devices. ISRs for halfword devices
(RH(R)/WH(R)) must be supplied in assembly language.

The auto driver channel supports the following features:

¢ Read (or write) to/from a memory buffer with automatic entry into an ISR routine within the
driver full/empty.

« Automatic device status checking on each interrupt with entry into the ISR if specified status bits
are set.

» Optional automatic buffer switch on buffer full/empty with concurrent entry into ISR.
« Optional redundancy check generation (longitudinal or cyclic mod 12 or mod 16).

» Optional character set translation "on-the-fly" with special character recognition (e.g., in support
of communications protocols). Recognition of special characters causes a specified ISR to be
entered.

_e Optional no execute mode: direct, unconditional entry into the specified ISR. (This is the mode
most commonly used in /O device drivers). Note that the PSW condition code reflects reason
for entry into the ISR: no execute, buffer full/empty, switch, or status check.

The data structures associated with the auto driver channel are shown in Figure 2-6.
NOTE

CCB.DCB is set at sysgen time. CCB.XLT may be set
at sysgen time or by driver. All other entries are set by
driver.

48-190 F0O R00 2-13

19010

ISPT BUFFER “@"
L} CHANNEL CONTROL BLOCK v
——} r A n)
f—f—— |
ccw I LBO
2* x DEV \ ¥
ADDR EBO l [I O l I l
cow I LB1 ’
EBI
1] XLT
]1 SUBA 1. M!SC_[_FLGS '
i TRANSLATION
N bcs _I TABLE

XCH
XCH
XCH

E3 = DEV STATUS

E4 = CCB ADDRESS

1

1

1

@] A(ISR)/2 ISR
" | [Lo

w

/ EO, E1= OLD PSW, LOC
ISR E2 = DEV ADDRESS

*4 FOR 3200 {OP

LPSWR EQ@

LPSWR E@

Figure 2-6. Auto Driver Control Structures
The auto driver channel is invoked by an odd entry (low-order bit set) in the ISPT. This entry is
the address +1 of the CCB. The CCB is described in the next section.
2.5.1.3.1 Channel Control Block (CCB)

The CCB, as defined by the Series 3200 Processor I/O architecture, is 22 bytes long. (For the Series
3200 IOP, it is optionally 24 bytes long, thereby providing for a fullword ISR address.) The CCB
contains the following fields:

» a channel control word (CCW), which specifies the desired operations and options,

» two pairs of buffer control fields: (LB0,EBO) for buffer 0 and (LB1,EB1) for buffer 1,
o the redundancy check accumulator (CW),

o the translation table Address (XLT),

o the ISR subroutine address (SUBA),

o the address of the associated device control block (DCB) (used for access into the 0S/32 /O
subsystem by the ISRs.)

These fields are initialized by a device driver before starting the device or before issuing a simulate
channel program instruction. The SCP instruction, described in Section 2.4, acts upon a specified
CCB and simulates the actions that would occur for a device interrupt. But, instead of transferring
data to/from a device, data is transferred between memory and the register spacified in the simulate
channel program instruction.

2-14 48-190 F00 ROO

2.5.1.3.2 Channel Control Word (CCW)

The CCW is the operation code or function code of the CCB. The CCW specifies what operation is
to be performed and with what options. The format of the CCW is shown in Figure 2-7.

Status Mask E | X RC B w T F

N N O I |

Figure 2-7. Channel Control Word

Where:
E (8) 1 = full autodriver channel control enabled
0 = always execute ISR indicated by CCB.SUBA; ignore bits 10-15
X9 1 = CCB.SUBA is a fullword (not fully supported yet)

0 = CCB.SUBA is a halfword (currently used by all drivers)

RC (10-11) 00 = LRC parity check only
01 = Bisync CRC
10 = not defined
11 = SDLC CRC

B (12) 0 = use buffer 0
1 = user buffer 1

W (13) 0 = READ mode
1 = WRITE mode

T (14) 0 = no translation
1 = translation enabled

F (15) 0 = normal mode
1 = "fast" mode

NOTE
Always use buffer 0; "no translation” must be used for
halfword device, as well as no parity check.

The status mask of the CCW occupies bits 0 through 7. On every channel operation (i.e., each
device interrupt with the CCW execute bit set), the device status is logically AND-tied with the
status mask in the CCW. This is simply a test and does not alter the status mask or the device

48-190 F00 R0O 2-15

status. If the results of the test is nonzero, the channel operation is aborted and the ISR specified by
the SUBA field is entered. The L bit of the new PSW condition code is set to indicate the reason for
the ISR entry.

The CCW execute bit (CCWEX) is located at bit 8. CCWEX controls the operation of the channel.
If the bit is 0, the channel enters the specified ISR SUBA directly. No other channel operation is
executed, including the status check. The new PSW condition code is set to 0. If CCWEX is set, the
channel operation defined by the remainder of the CCW is executed. This may or may not result in
the ISR subroutine’s being entered.

The extended ISR address bit 9 (CCWXISR) is defined only for the Series 3200 IOP associated with
the Model 3260MPS. It indicates that the ISR (SUBA) field is a fullword rather than a halfword.
For reasons of compatibility, this bit is not used by standard 0S/32 drivers.

Two CCW bits (10 through 11) control the optional redundancy check generation. Three types of
redundancy check are supported as listed in Table 2-3.

TABLE 2-3. REDUNDANCY CHECKS

RC BITS RC TYPE

0 0 Longitudinal redundancy check (LRC)

1 BISYNC cyclic redundancy check (CRC12)
0 Reserved - illegal

1 SDLC cyclic redundancy check (CRC16)

[)

Redundancy check sums are calculated and accumulated in the check word CCB field as each
character is read or written. The details of the redundancy check calculation are given in the
appropriate processor reference manuals. (Note that redundancy check generation is not performed
if the CCW fast bit is set.)

The buffer select bit (CCWB1) is located at bit 12 and controls which of the two CCB buffers (0 or
1) is used by the channel. When a device interrupt causes a data transfer that results in a buffer
overflow (full/empty), this bit is complemented, causing a buffer switch. At the same time, the
specified ISR SUBA is entered with the new PSW condition code G bit set to indicate the reason for
entry to the ISR. Upon the next interrupt after a buffer switch, the channel proceeds to use the
alternate CCB buffer as specified by the complemented CCW buffer select bit. It is the
responsibility of the driver software to ensure that the alternate buffer is setup correctly. (Note that
buffer switching is not performed if the CCW fast bit is set. In that case, only buffer 0 is used.)

The CCW read/write bit (CCWRD/CCWWR) located at bit 13 controls the direction of data
transfer. If reset (0), the channel performs a read operation; if set, a write is attempted. It is the
responsibility of the device driver to ensure that the setting of this bit agrees with the current mode
(input or output) of the device.

2-16 48-190 F00 R0OO

The CCW translation bit (CCWTL) at bit 14 enables optional character set translation and special
character trapping. Translation and the translation table format are described in Section XX. (Note
that translation is not performed if the CCW fast bit is set.)

The CCW fast bit (CCWFST), located at bit 15, disables the optional functions when set. These are
buffer switching, translation and redundancy check generation. This provides for more efficient
interrupt service (in terms of CPU time) for devices that do not require the optional functions.
When the fast bit is set, the channel bypasses the checks for the optional function bits.

2.5.1.8.83 Channel Control Block (CCB) Buffers

The auto driver channel provides for two data buffers with optional automatic buffer switching.
There are two fields in the CCB that control each buffer.

Buffer n (n = 0 or 1) is described to the channel by its end address (EBxn) and its length (LBn).
(The end address is defined as the address of the last byte of the buffer and must be odd for
halfword transfers.) Because the end address is a fullword field, the buffer can be located anywhere
in physical memory.

The buffer length field is defined as the buffer start address minus the end address. Thus, except for
the case of a single byte transfer, the Buffer Length will be a negative value. For each data transfer,
the channel increments the length field by one (for byte) or two (for halfword). When the value
becomes positive, the last character has been transferred. Note that the sum of the end address and
the buffer length yields the address of the next character to be transferred.

2.5.1.3.4 Check Word

The CCB check word is a two-byte field where the optional redundancy check is accumulated. It is
normally initialized to 0 or -1 before transferring a buffer, depending on the communications
protocol.

The check word is updated as each character is read or written. On output, the resulting check
word is usually transmitted after the last data character. On input, it is customary to cease
accumulation after the input termination character is recognized. Then the check word calculated by
the sender is read and compared to that calculated by the channel. A difference generally indicates a
data transmission error. (Check words are used almost exclusively in data communications drivers.)

2.5.1.3.5 Translation Table

The CCB translation table pointer is used only if the CCW translate bit is set (and the fast bit is
reset). This CCB field contains the address of a table of halfword entries. This is illustrated in
Figure 2-5. When translation is enabled, the channel accesses the table using twice the data byte as
the index. If the high-order bit of the addressed entry is set, then the low-order byte contains the
translated character (XCH in Figure 2-5).

If the high-order bit of the entry is reset, then the remaining 15 bits of the entry contain one-half the
address of a special character handling routine. The entry is doubled and the ISR subroutine at the
resulting address is entered exactly as if the CCW execute bit has been reset (i.e., new PSW

48-190 F00 R0O 2-17

condition code = 0).

The translation table can be used for character set translation (e.g., ASCII to EBCDIC, or vice
versa); or for recognizing special characters of communications protocols.

2.5.1.3.8 Interrupt Service Routine (ISR) Subroutine A ddress (SUBA)

The CCB ISR (SUBA) field contains the address of an assembly language ISR that handles all error
and normal termination conditions. In addition, this ISR is entered when the CCW execute bit is
reset. For all 3200 Processors except the IOP, this is a halfword field. Thus, the first instruction of
the ISR must be within the first 64kB of physical memory. For the IOP, this field may optionally be
a fullword if the CCW extended ISR address bit is set.

Entry to the specified ISR is exactly the same for an immediate interrupt ISR except for the
following two items:

1. The new PSW condition code indicates the reason for entry as shown in Table 2-4:

2. In addition to the contents of registers 0 through 3, which are the same as for an immediate
interrupt, register 4 contains the address of the CCB itself. This property is most important to
O8/32 drivers as it provides a dynamic link to a data structure associated with the interrupting
device, allowing reentrant/sharable drivers to be written.

TABLE 2-4. PROGRAM STATUS WORD CONDITION CODES

Condition Code Explanation

0|0 0 0 No Execute or Translation Table
0|10 1|0 1 | Device Status Check
00 1 0 | Buffer End

2.5.2 Internal Interrupts

The Perkin-Elmer Series 3200 Processors support a number of internal interrupts. Two of these
internal interrupts are of particular interest in understanding the 0S/32 IO subsystem and device
drivers. These are:

o the supervisor call (SVC) interrupt, and
o the system queue service (SQS) interrupt.

Other internal interrupts are associated with fault conditions, such as illegal instructions, address
alignment faults or arithmetic faults. If any of these faults occur within a driver, the system will
crash.

2-18 48-190 F00 R0OO

All internal interrupts occur synchronously with instruction execution; and they are serviced by a
common method. A new PSW and LOC are loaded from a dedicated location in low memory.
Each of the internal interrupts cause the PSW and LOC to be loaded from a different location. The
old PSW and LOC are stored in registers 14 and 15 of the register set selected by the new PSW.
Other registers (13, 12, etc.) are loaded with information dependent on the type of internal
interrupt.

NOTE

On the Series 3200 IOP, the new PSW and LOC for
internal .interrupts are located at dedicated locations in
the I/O processor block (IPB). Also, in the IOP, there
is no SQS interrupt. The function of SQS is provided by
the IOP synchronous interrupt service (SIS). These
concepts and other differences between a Series 3200
Processor and the Series 3200 IOP are covered in
Chapter 8.

2.5.2.1 Supervisor Call (SVC) Interrupt

The SVC interrupt is invoked by the SVC instruction. The SVC is the primary instrument for
invoking operating system services. The SVC instruction selects one of 16 service routines (0
through 15) and specifies the address of a parameter block (or parameter list).

The new PSW for all 16 SVC service routines is loaded from the same dedicated memory location.
The new LOC is loaded from a table of halfword service routine addresses, indexed by the SVC
number (0 through 15). Because the table entries are only halfwords, the first instruction of service
routines must reside in the first 64kB of physical memory. The new PSW and LOC values are set
up by the operating system in control of the processor. Usually, the new PSW allows privileged
instructions to be executed and selects a new register set so that the register set of the caller is not
corrupted (e.g., by the PSW and LOC).

In addition to the old PSW and LOC which are saved in registers 14 and 15, the SVC internal
interrupt loads the address of the SVC parameter block into register 13 of the new register set.
Some SVCs may choose to interpret this address as an immediate value.

2.56.2.2 System Queue Service (SQS)

The SQS internal interrupt is the primary mechanism for synchronizing asynchronous events (such
as termination of an I/O operation) with the more orderly sequence of events within an operating
system. The system queue is a standard Perkin-Elmer circular list structure accessed by the Series
3200 Processor LIST instructions (ATL, ABL, RBL, RTL). The address of the system queue is
stored in a dedicated memory location.

The system queue is examined by the processor whenever a new PSW that enables the SQS
interrupt is loaded. If the queue is nonempty, an SQS internal interrupt occurs. A new PSW and
LOC are loaded from a dedicated location and the old PSW and LOC are saved in registers 14 and

48-190 F00 R0O 2-19

15 of the new register set. Register 13 is loaded with the address of the system queue. The SQS
routine must remove and service entries from the system queue. A queue entry is the address of an
event coordination leaf that contains the address of a service subroutine and argument values for

that routine.

2-20 48-190 F00 ROO

CHAPTER 3

INPUT/OUTPUT (1/0) PROGRAMMING METHODS

3.1 INTRODUCTION
3.2 PROGRAMMED INPUT/OUTPUT (I/O)
3.2.1 Status Loop Monitoring
3.2.2 Interrupt-Driven Programmed Input/Output (I/O)
3.2.2.1 Immediate Interrupt Service
3.2.2.2 Auto Driver Channel Programming
3.3 DIRECT MEMORY ACCESS (DMA) PROGRAMMING
3.3.1 The Selector Channel (SELCH)
3.3.2 Programming the Selector Channel (SELCH)

O W N ANN =

oy
o

CHAPTER 3

INPUT/OUTPUT (I/O) PROGRAMMING METHODS

3.1 INTRODUCTION

Device drivers can transfer data between the Perkin-Elmer Series 3200 Processor/memory and VO
devices by one of two ways:

o Programmed I/O where the processor is involved in the transfer of each byte (or halfword) of
data.

o Direct memory access (DMA) I/O where the processor sets up a selctor channel (SELCH) that
performs byte (or halfword) transfers directly between memory and device controllers over the
DMA bus.

The mode used is usually based on the hardware configuration and the transfer speed of the device.
Faster devices such as (hard) disks and high performance magnetic tapes can only use DMA to
achieve their maximum performance. Also, DMA devices tend to be block transfer devices rather
than single character interaction devices.

Slower or more interactive devices, or devices whose only purpose is to generate interrupts (such as
a periodic timer) generally use programmed I/O. Regardless of which (programmed I/O or DMA)
mode of data transfer is used, device drivers can control and monitor the device (or SELCH) by one
of two programming methods:

o« Status-Loop Monitoring - the processor loops on device status. Data is transferred when the
device is not busy. Transfer is terminated when all data is transferred or an error condition
occurs. Most OS/32 device drivers should never use status loop I/O since it requires that the
CPU be dedicated to the I/O operation. Status loop I/O is used only in stand alone routines such
as diagnostics.

o Interrupt-Driven I/O - the processor sets up the interrupt service pointer table (ISPT) vector for
the driver and enables device interrupts. The device interrupts the processor; when busy the
processor stops and/or an error status is raised (device-specific). The interrupt service routine
(ISR) transfers a byte/halfword of data if the device is not busy and no error has occurred.
Transfer is terminated when all data is transferred or an error occurs.

The descriptions above specifically describe methods of monitoring programmed I/O. For DMA, the
processor loops on SELCH status or waits for the SELCH to interrupt to indicate that the transfer is
complete. Meanwhile, the SELCH is, itself, performing what is essentially a status monitoring loop
on the device under its control.

48-190 F00 R00 31

3.2 PROGRAMMED INPUT/OUTPUT (I/O)

This section describes the basic sequences of programmed I/O for the Series 3200 Processor I/O
architecture. Sample code sequences are presented and analyzed for status loop monitoring and
interrupt-driver I/O. Both immediate interrupt service and auto driver channel are covered.

3.2.1 Status Loop Monitoring

Status loop monitoring is the most basic form of I/O programming. It is simplest to explain and to
understand. It also forms the basis for both interrupt driven programmed I/O and DMA TO.

While status loop monitoring is the simplest form of I/O, it requires that the processor be dedicated
to the I/O programming during the entire data transfer or other I/O functions. For this reason, it is
normally used only in stand-alone programs such as hardware test programs or operating system
boot loaders. Device drivers in an operating system normally use interrupt-driven I/O (discussed in
Section 3.2.2). Generally speaking, status loop monitoring is not appropriate for OS/32 I/O drivers.

There is one situation where an OS8/32 device driver uses a status loop I/O rather than interrupt-
driven I/O. This is the case where the device has a sufficiently high data transfer rate that is nearly
always ready (i.e., not busy) from the processor’s viewpoint. It is more efficient in terms of both
central processing unit (CPU) use and elapsed time to perform the data transfer in an interruptable
status loop rather under interrupt control. A high-speed buffered line printer with a parallel
interface is one such device.

In the examples below, the following preconditions are assumed:

+ Register zero (RO) is a scratch register.

» Register one (R1) contains a buffer start address.

« Register two (R2)‘contains the constant 1.

o Register three (R3) contains the buffer end address.

+ Register six (R6) contains the device address.

o« SETUPDEY is a memory location that contains a device command byte.

o FALSYNC and IODONE are external program labels.

Note that registers 1 through 3 are setup for a BXLE loop.

3-2 48-190 F00 R00

The first example illustrates a simple sense status loop to read a sequence of data bytes into a
memory buffer until the buffer is full:

oC R6,SETUPDEV Command device

BO FALSYNC False Sync: Device nonexistent
STATLOOP SSR R6,RO Sense device status info RO

BCS STATLOOP Sets CC carry if busy

RD R6,0(R1) Not busy: read a byte

BXLE R1,STATLOOP Increment R1 and loop

B IODONE until buffer is full

The sense status (SSR) instructions copy the low 4 bits of device status into the program status word
(PSW) condition code. The branch on carry short (BCS) instruction tests the busy status that
appears in the carry bit of the condition code. This example loops on busy, i.e., it branches back to
the SSR instructions until busy drops.

Each time busy drops, the BCS falls through and the read data instruction reads a byte of data from
the device and places it in memory of the address contained in R1. The BXLE instruction
increments R1 (by the value in R2) and compares it to the value in R3 (end address). If the update
buffer address in R1 is less than or equal to (LE) the end address, the BXLE branches back to loop
on busy.

A bad status causes the status loop to be exited. At label EXAMINE, the device status in RO is
tested bit by bit. The symbols STAT.XXX, STAT.YYY are assumed to be equated to the various
device status bits. Labels ERRXXX, ERRYYY are program labels that handle the named error
conditions (XXX or YYY).

Often it is desirable to limit the number of times that the sense status loop is executed. This is
called a limited sense status loop. It is used to provide a safety exit if busy does not drop within an
expected time interval. The final example assumes that the symbol SSLIMIT is equated to the
maximum number of times that the sense status loop should be executed:

48-190 F00 R0O 3-3

LI R4,SSLIMIT Set up loop limit

STATLOOP SIS R4.,1 Decrement loop limit
BNP TIMEOUT Exit when limit exhausted
SSR R6,RO Sense device status into RO
BO EXAMINE Exit if errors
BCS STATLOOP Loop if bLlsy

In a limited sense status loop, one usually desires to loop for a specific time interval rather than a
specific number of times. The loop limit is a simple way to terminate a loop after some time
interval. The actual time interval is the product of the loop limit and the sum of the execution times
of the instructions in the loop. This latter value varies from processor to processor so that a
minimum value (for the fastest processor) is usually assumed.

3.2.2 Interrupt-Driven Programmed Input/Output (I/Q)

Interrupt-driven I/O is the most frequently used /O programming method in OS/32 device drivers.
The use of interrupts allows the processor to be used for other tasks while the I/O is in progress,
rather than waiting in a sense status loop. Interrupt programming is generally viewed as more
complex than status loop monitoring because the driver relinquishes control of the processor while
waiting for an interrupt. Thus, it must save its context (e.g., ‘critical register contents) and
reestablish the context when the interrupt occurs. Part of the context is automatically established by
the processor: the device address and status, and (for auto driver channel operation) the CCB
address is loaded into registers. Any other values required must be loaded by the interrupt service
routine (ISR).

Interrupts may be serviced by ISRs by the auto driver channel. Immediate ISRs, entered directly
from an ISPT vector, are not used frequently in OS/32 device drivers. Rather, all interrupt service
is via the auto driver channel, even if only to pass control to the ISR (no execute mode). The reason
for this is that the auto driver channel supplies the address of the CCB in register 4. This allows the
operating system, by software convention, to extend the CCB to contain device specific state data
and/or pointers to other structures managed by the I/O subsystem.

The following sections give examples of both immediate service and Auto Driver Channel
operation. It will be noted that the immediate interrupt example, i.e, setup and service, is a model
for Auto Driver Channel setup and interrupt service. The only difference between immediate ISRs
and auto driver channel ISRs is the CCB addresses in register 4 supplied by the channel.

34 48-190 F00 R00

3.2.2.1 Immediate Interrupt Service

Immediate Interrupt programming, like all interrupt programming, consists of three phases:
initialization, interrupt service and termination. Initialization involves initializing appropriate /O
data structures (specifically the ISPT) and preparing the device.

Interrupt service is handled by a routine whose address is placed in the ISPT by the initialization
phase. Termination includes all processing after the interrupt phase has encountered a termination
condition (all data transferred, device error, /O halted). In OS/32, the termination phase must be
scheduled by adding a structure to the system queue. This will be discussed further in the following
chapters on the OS/32 I/O subsystem and device driver structures. The following is an example of
an initialization and interrupt service phase using an immediate ISR. For the initialization phase,
assume that the memory locations named CURBUFAD and ENDBUFAD, contain the start and
end address, respectively, of a data input buffer. Further, assume that register R6 contains the
device address. The ISPT and device might be set up as follows:

LA RO, ISRODEVR Address of device ISR O

STH RO, ISPT (R6,R6) Set ISR for interrupt

OC R6,SETUPDEV Command device - enable interrupts
B WAITTERM Wait for termination

The STH instruction places the ISR address into the ISPT at offset of twice the device address. On a
3200 IOP, the ISR address would be stored at a fullword offset (4 times the device address). A
slightly different sequence of instructions must be used if the device driver must support devices
under both the CPU and IOP. See Chapter 8 for more information concerning differences for
writing a driver under an IOP. The OC instruction sends the command byte at location
SETUPCMD that, presumably, enables interrupts. This example then branches off to WAITTERM,
to wait for the interrupt service phase to schedule the termination phase.

The ISR is entered when the device requests attention. The following ISR reads a byte of data from
the device into the buffer until the buffer is full:

48-190 F00 R00 3-5

PURE
ISRODEVR THI E3,STATMASK Test for error status

BNZ ISROEXA Examine status

THI E3,STAT.BSY Device just busy?

BNZ ISROEXIT Yes, ignore interrupt
L E6,CURBUFAD Current buffer address
RD E2,0(E6) Read data into buffer
AIS E6.,1 Increment...

ST E6,CURBUFAD and store updated buffer address
CL E6,ENDBUEAD Check if buffer full
BP ISRTERM Schedule termination

ISROEXIT LPSWR EO Exit ISR

This ISR is entered on a device interrupt with registers E0 through E3 initialized by the processor’s
microcode. Note that registers are referred to by mnemonics beginning with an "E." This is to to
indicate that the ISR is executing in one of the Executive register sets.

Register E3 contains the device status, that the example ISR tests for interesting status (defined by
symbol STATMASK) and for device busy. Error conditions will be handled by code off at label
ISROEXA. If the device is still busy, the example exits by branching to ISROEXIT. This test may
be necessary for some devices to ignore any spurious interrupts that might be queued when the
device interrupts are enabled.

The next section of the ISR reads a byte of data from the device (address in E2, thanks to
microcode) into memory at the current buffer location. The buffer address is incremented and
compared to the end address. If the update buffer address is greater than the end address,
termination phase is scheduled at ISRTERM (not shown). Otherwise, the ISR exits at ISROEXIT.

The ISR exits by loading the old PSW and LOC placed in registers EO and E1 by the microcode.
3.2.2.2 Auto Driver Channel Programming

The auto driver channel is a set of microcoded ISRs provided in the basic control store of the Series
3200 Processors. It can be controlled via a CCB to perform very simple or fairly complex I/O
transfers. Each interrupt can be handled entirely within microcode until an error or normal
termination condition forces entry into a channel ISR.

3-6 48-190 F00 R0OO

On the other hand, the channel operation can be completely bypassed. By resetting the Channel
Control Word (CCW) Execute bit (CCWEX), all interrupts are passed directly to the ISR. This is
called the no-execute mode. In this mode, the data transfer in the immediate interrupt example (in
the preceding section) could be initialized as follows:

LA RC,CCBDEV Address of CCB

LIS RO,O S

STH RO, CCB.CCW (RC) Set no-execute CCW

LA RO, ISRODEVR Address of ISRO

STH RO,CCB.SUBA(RC) Set ISR in CCB

AIS RC,1 Address of CCB+l

STH RC, ISPT (R6,R6) Set CCB address in ISPT

OC R6,SETUPCMD Set up device - enable interrupts

This initialization routine set up only the CCW and the ISR address (SUBA) in the CCB. The
address+1 of the CCB is stored in the ISPT and device interrupts are enabled. The same ISR as the
immediate ISR example can be used to service this I/O. All interrupts will be passed directly to the
ISR. The only difference is that, on each interrupt, register E4 will be preloaded with the address of
the CCB. This might be useful, for example, to the routine that schedules termination. Also, the
ISR could be improved to use buffer addresses with the CCB, rather than global symbols.

This first example illustrates how the auto driver channel can be used together with immediate ISRs
simply to get the CCB address. The following example uses the auto driver channel in the fast
mode to transfer a buffer of data from the device to memory. Assume the following register
contents: R1 and R3 contain the buffer start and end addresses, respectively; R6 contains the device
address and RC contains the CCB address: ‘

48-190 F00 R0O 3-7

LI RO,CCWSTAT+CCWEX+CCWEST

STH RO, CCB.CCW (RC) Set CCW= EXEC (READ) FAST

ST R3,CCW.EBO(RC) Set buffer to end

SR R1,R3 Calculate negative length

STH R1,CCW.LBO (RC) Set length in CCB

LA RO,ISR1DEVR .

STH RO,CCB.SUBA(RC) Set ISR address

AIS RC,1 CCB address+1l

STH RC, ISPT (R6,R6) Set CCB address in ISPT

OC R6, SETUPCMD Set up device-enable interrupts

In addition to the CCW and ISR fields, the CCB buffer 0 parameters are initialized. The ISPT is
then set up with the CCB address+1, and device interrupts are enabled.

As bytes of data arrive at the controller, busy drops and the device interrupts the processor. The
auto driver channel receives control (as for the first example) because the ISPT entry is odd. The
CCW specifies Execute, (Read) and Fast.

The channel fetches the device status and tests it against the CCW status mask. If any error bits are
set, the ISR is entered with a condition code (<0) set. If no error status is raised, the channel
accesses the buffer length field (LB0). If LBO is positive, the ISR is entered with a condition code
(>0) set. If LBO is nonpositive, it is added to the end of buffer (EBO) to yield the current buffer
address.

A data byte is read from the device and placed in memory at the current buffer address. The buffer
length field is then incremented. The processor exits from the channel to continue processing
suspended when the interrupt occurred. From the discussion above, it should be clear that the
channel has handled the entire buffer read operation. The ISR is only entered to handle device
errors and buffer full (i.e., channel termination). Aside from the actual error handling and
termination code, the ISR is quite simple:

3-8 48-190 F00 ROO

ISRDE’VR BM ISR1ERR Device error
BP ISRTERM Schedule termination
LPSWR EO Ignore others

The ISR branches directly on the condition code set by the channel. It should never (in this
example) fall through to the LPSWR instruction, unless the CCW execute bit were explicitly reset.

More complex operations can be handled by the auto driver channel. For example, the initialization
phase could be set up by CCB Buffer 1 parameters (LB1,EB1) in addition to buffer 0, and could
reset the CCW fast bit. Then, when buffer 0 became full, the channel would automatically switch to
bufferl by complementing the CCW buffer switch bit. At the same time the ISR is entered with a
buffer full condition code.

By initializing the CCB check word field and selecting a redundancy checkword generation in the
CCW, the channel can accumulate a check sum for the transfer. Finally, character set translation
and special character trapping can be handled by setting up a translate table and enabling translation
in the CCW.

3.3 DIRECT MEMORY ACCESS (DMA) PROGRAMMING

DMA programming transfers data directly between device and memory using the DMA channel.
The DMA channel for Perkin-Elmer Series 3200 is called the Selector Channel (SELCH). DMA
programming involves programming the SELCH to perform the data transfer, as well as setting up
the device. Interrupt programming is used to service the SELCH terminations (errors or end of
buffer).

3.3.1 The Selector Channel (SELCH)

The SELCH controls the data transfer between high speed peripheral devices and memory, without
processor intervention. A SELCH can be connected to a maximum of 16 devices. The SELCH is a
half-duplex, block transfer channel. It can transfer data between memory and a single selected
device. Hence, the name selector channel. The advantage of using a SELCH is that, once
initialized, the SELCH is completely self-supporting, and the processor is free to perform other
tasks.

The SELCH is programmed via the multiplexor (MUX) bus and via the MUX bus, it supplies the
status of the transfer. Both the SELCH and the device controllers, which are connected to it, have
individual device addresses on the MUX bus.

48-190 F00 R0O 39

The SELCH has two registers in which the current address and the end address of the data transfer
will be stored. The starting address of the data transfer is the first current address. This must be
done before the SELCH is started. Using a WRITE instruction, the device driver stores this
information into these registers.

During the actual data transfer, the SELCH will automatically update the current address register,
until it is equal to the end address. This indicates the end of the transfer and cause the SELCH to
stop.

During the operation, the SELCH collects the data bytes or halfwords from the peripheral and
transfers halfwords to memory. For this reason the start address must be on a halfword boundary
and the end address must be odd.

After the SELCH has stopped, the controlling program should verify that the current address
register contains the end address of the buffer. If this is not the case and if they were properly
programmed, a device malfunction or an exceptional situation has occurred. For example, a disk
cylinder was exhausted and the transfer had to be interrupted to enable repositioning of the heads.
Depending upon the device, more information can be obtained by examining the status of the device
or the SELCH.

There are two SELCH modes, the idle mode and the run mode. In idle mode, the private
multiplexor bus (PMUX) is connected to the MUX bus. The SELCH generates its own PMUX to
which device controllers such as disk and tape are connected. In the idle mode, the connected
PMUX allows the CPU to address device controllers to set up for transfers. In the run mode, (i.e,
the SELCH is monitoring the device and transferring data) the PMUX is disconnected from the
MUX. The CPU is unable to access device controllers on the PMUX. The SELCH monitors the
last device accessed, the selected device on the PMUX.

Drivers must always explicitly kill the SELCH via the output command before attempting to access
devices under SELCH.

3.3.2 Programming the Selector Channel (SELCH)

The usual method of programming with the SELCH is the immediate interrupt. The first step in the
operation is to check the status of the SELCH. If the SELCH is not busy, the address of the
termination ISR is placed in the location in the ISPT for the SELCH device number. The program
should then proceed as follows:

1. Give the SELCH a command to stop (i.e., kill the SELCH). This command initializes the
SELCH registers and assures the idle condition of the PMUX connected to the I/O bus, so that
the device may be set up for data transfer.

2. Write the buffer start and end addresses to the SELCH.
3. Prepare the device for the data transfer with the required commands.

4. Give the SELCH the command to start (READ or WRITE).

3-10 48-190 F00 R0O

With the start command, the SELCH breaks the connection between its PMUX and the processor’s
I/O bus, and provides a direct path between memory and the last device addressed over its bus.
When the device becomes ready, the channel starts the transfer, which proceeds to completion
without further processor intervention. Once the start command has been given, the processor can
proceed to the execution of concurrent instructions.

It is imporant to note that the driver must not be interrupted between Steps 3 and 4 described above.
The reason for this is as follows:

o Step 3 causes the device to be selected onv the PMUX bus. It should be left selected by being the
last addressed device in Step 3.

o Step 4 causes the SELCH to do a status loop I/O transfer between memory and the selected
device on its PMUX bus. The SELCH has no device address generation capability on the PMUX
so that it selects the last device addressed by the CPU in Step 3.

« If an interrupt were to occur between Steps 3 and 4, the interrupting device would be selected
and the device selected in Step 3 would be deselected. When the SELCH is started in Step 4, it
would attempt to transfer to or from the wrong device.

Drivers should disable interrupts at all priorities by setting program status word (PSW) bits 17 and
20 to zero. This is true even within ISRs.

Upon termination, the SELCH signals to the processor that it requires service. The processor
subsequently takes an immediate interrupt, transferring control to the SELCH ISR. At this time,
registers 0 to 3 of the new register set are set as for any other immediate interrupt.

48-190 F00 R00 3-11

CHAPTER 4

THE INPUT/OUTPUT (I/O) SUBSYSTEM ARCHITECTURE

4.1 INTRODUCTION
4.2 SUPERVISOR CALL1 (SVC1) SYNOPSIS
4.2.1 Description of Special Supervisor Call 1 (SVC1) Functions
4.2.1.1 Command/Data Transfer
4.2.1.2 Read/Write
4.2.1.3 Wait Read/Write
4.2.1.4 Proceed Read/Write
4.2.1.5 Unconditional Proceed Read/Write
4.2.1.6 Wait-Only
4.2.1.7 Test Input/Output (I/0) Completion
4.2.1.8 Halt Input/Output (I/O)
4.2.1.9 Test and Set
4.3 THE DEVICE CONTROL BLOCK (DCB)
4.3.1 The Device Mnemonic Table
4.3.2 Device-Independent Status Values
4.3.3 The Input/QOutput Block (IOB)
4.3.4 SUPERVISOR CALL 1 (SVC1) Exits
4.3.4.1 Normal Exits
4.3.4.2 Error Exits
4.4 SYSTEM QUEUE SERVICE (SQS)
4.5 The Event Tree (EVT)
4.5.1 Resource Nodes
4.5.2 Extended Direct Memory A ccess (EDMA) Node
4.5.3 System Queue Service (SQS) Executors
4.5.3.1 Single Level Device Dispatch (SQS.SLV)
4.5.3.2 Multilevel Device Dispatch (SQS.MLV)

W & L th L L L W A A D A R e

e o o T o S S W S Gy G
00 00 00 00 00 W N N N = O

4.6 DRIVER SERVICE ROUTINES
4.6.1 EVMOD
4.6.2 EVREL
4.7 DRIVER EXITS
4.7.1 DIRDONE
4.7.2 EVRTE
4.7.3 IODONE
4.7.3.1 IODGST
4.7.3.2 IODTWT
4.7.3.3 IODONE2
4.8 OTHER UTILITY ROUTINES
4.8.1 Timer Services
4.8.1.1 TOCHON
4.8.1.2 TOCHOFF
4.8.2 Queuing Routines

- ii -

19
19
19
20
20
20
20
21
21
21
21
21
22
22
23

' Figure 4-1.
Figure 4-2.
Figure 4-3.
Figure 4-4.

LIST OF FIGURES

Device and Volume Mnemonic Tables A ddress Linking of DCBs
The Event Coordination Tree

Queueing of I/O Requests to a Device

Queueing of I/0 Requests to a Disk Device

- iii -

14
16
17

TABLE 4-1.
TABLE 4-2.
TABLE 4-3.
TABLE 4-4.

LIST OF TABLES

SVC1 PARAMETER BLOCK FORMAT AND CODING
DEVICE/VOLUME MNEMONIC TABLE
DEVICE-INDEPENDENT STATUS CODES
DEVICE-DEPENDENT STATUS CODES

-iv -

10

CHAPTER 4

THE INPUT/OUTPUT (1/O) SUBSYSTEM ARCHITECTURE

4.1 INTRODUCTION

This chapter describes supervisor calll (SVC1) instructions and connect/disconnect queues. It also
gives a description of data structures connected with /O subsystems.

4.2 SUPERVISOR CALLI1 (SVC1) SYNOPSIS

The SVC1 internal intefrubt handle is responsible for servicing task I/O requests. SVC1 runs as in
the nonreentrant system state. That means that it executes in register set 0 with system queue
service (SQS) interrupts disabled. nonreentrant system state routines are restricted to registers 8
through 15 of set 0.

An VO request is encoded in an SVC1 parameter block described in the following section. The
parameter block indicates the /O function requested and contains a task-specific logical unit (1u)
number indicating on which device (or file) the request is to be performed. The remainder of the
parameter block contains additional arguments for the request and space for returned status and
other information. SVC 1 has major functions which it performs. They are the following:

« Validation of the specified logical unit: is it within the task’s range of valid logical units? Is it
" assigned to a device?

« Validation of the data buffer start and end addresses if the request involves data transfer.

o Acquisition and initialization of an Input/Output Block (IOB) if the request requires activation of
the device driver.

« Validation that the request is legal for (i.e., supported by) the device.

« Invocation of a (possible device-specific) I/O handler (IOH) - a routine which performs or
schedules the device driver to perform the I/O request.

All /O requests are directed to an lu. Each task has from 1 to 255 logical units. An lu may be
assigned to a device or file. If an lu is assigned to a device, the entry for that lu in the task’s lu table
contains a pointer to a data structure called a device control block (DCB). For a file, the lu table
entry is the address of a file control block (FCB), which is very similar to a DCB. This manual is
primarily concerned with device drivers.

Not all I/O requests actually perform data transfer. Some are command functions (e.g., REWIND),
which access the device via the driver, but do not require a data buffer. Some requests do not even
require entry into the driver - they are executed completely by the I/O supervisor. Examples of such
requests are Wait Only, Test /O Complete or Halt I/O.

Requests that require activation of the device driver are copied into a data structure called an IOB.
IOB’s are used to queue multiple /O requests to devices that might be busy with a prior request.
1I0Bs are discussed in Section 4.3.3.

48-190 F00 R00 4-1

SVC1 must validate that the requested function is legal for the device as currently assigned. That is,
does the device support the requested function and does its current access privileges (e.g.,
Read/Write, Read Only, Write Only) permit the requested function. The Read/Write validation is
performed explicitly by testing the function request against device attributes as modified by Access
Privileges. These modified attributes are stored as part of the lu entry in the task’s lu table.
Validation of other functions (e.g., Rewind, Halt IO, etc.) is performed implicitly when the /O
Handler is invoked.

The VO supervisor is sometimes called the SVC1 skeleton. This is because it performs all of the
actual /O request processing, once all of the required validations have been performed, by calling a
(possibly device-specific) IOH. The I/O handlers for a device driver are contained in a table called
the IOH list. The IOH list is located by a pointer field in the DCB. Thus, each device type can have
its own device-specific IOH. The IOH list contains one entry for each 1/O request function (plus
entries for system functions such as system initialization or power restore). For each supported
function, the IOH list entry is the address of the SVC1 executor for that function. Entries for
unsupported functions point to the SVC1 illegal function handler (SVC1FCER). The IOH list is
described in Chapter 5.

After performing the requested function or scheduling the device driver to perform the request,
SVC1 exits via the task dispatcher to continue task processing. See Table 4-1 for an illustration of
the SVC1 parameter block.

4-2 48-190 F00 R00

TABLE 4-1. SVC1 PARAMETER BLOCK FORMAT AND CODING

0(0) 1(1) | 2(2) Device- | 3(3) Device-

Function code In independent dependent
status status

4(4) Buffer start address

8(8) Buffer end address

12(C) Random address

16(10) Length of data transfer

20(14) Extended options

svC 1,parblk

ALIGN 4

parblk DB X'function code'
DB X'lu'
DS 2 bytes for status
DC A(buffer start)
DC A(buffer end)
DC 4 bytes for random address
DS 4 bytes for length of data transfer
DC Y'extended options'

Where:

o The function code is a 1l-byte field indicating whether a request is a data transfer or a
command function, and the specific operation to be performed.

o lu is a 1-byte field containing the lu currently assigned to the device to which an I/O request is
directed.

o Device-independent status is a 1-byte field receiving the execution status of an I/O request
after completion. The status received is not directly related to the type of data used.

« Device-dependent status is a 1-byte field receiving the execution status of an I/O request after
completion. The status received contains information unique to the type of device used.

48-190 F00 R00 4-3

« Buffer start address is a 4-byte field used only for data transfer requests and must contain the
starting address of the /O buffer that receives or sends the data being transferred.

« Buffer end address is a 4-byte field used only for data transfer requests and must contain the
ending address of the I/O buffer that receives or sends the data being transferred.

o Random address is a 4-byte field containing the address of the logical record to be accessed for
a data transfer request; a legal binary number must be specified in this field if bit 5 of the
function code is set to 1.

« Length of data transfer is a 4-byte field used only for data transfer requests. It receives the
number of bytes actually transferred as a result of a data transfer request. If an error occurs
during data transfer, this field is modified with indeterminate data.

« Extended options is a 4-byte field specifying device-dependent and device-independent
extended functions that must be executed by the device when it is servicing a data transfer
request.

4.2.1 Description of Special Supervisor Call 1 (SVC1) Functions
The following section gives a brief description of various special SVC1 functions.
4.2.1.1 Command/Data Transfer

Command/data transfer is bit 0 of the SVC1 function code (SVC1.CMDF) and determines whether
the request is a data transfer (READ or WRITE) or command request. When SV1.CMDF is set
(1), the function is a command request. Otherwise, it is a data transfer request.

4.2.1.2 Read/Write

Bit 1 of the function code is the read (SV1.READ) bit. Bit 2 is the write (SV1.WRIT) bit. If both
are set, the function is formally a TEST2SET used to READ-MODIFY-WRITE a lock bit in a file
record/data block. A driver can interpret this code as anything it desires, e.g., "read after write."

4.2.1.3 Wait Read/Write

When the function code wait bit (bit 4) is set, the calling task will be placed in an I/O wait state
until the request has been completed. When the wait bit is reset, the request is a proceed request.

4.2.1.4 Proceed Read/Write

If the device is not in use, this function causes an I/O request to be initiated and control returned to
the calling task immediately. If the device is busy, the request is enqueued unless an unconditional
proceed is requested. Control is then returned to the calling task. When the total number of
enqueued I/O requests exceeds the maximum number of IOBs established at link time, the calling
task is placed in an IOB wait state. The task is awakened when one of its enqueued requests gains
the connection and an IOB is released.

4-4 48-190 F00 R00O

4.2.1.5 Unconditional Proceed Read/Write

This function behaves in exactly the same manner as the PROCEED READ/WRITE function,
except when the maximum number of enqueued I/O requests are reached. Exactly n requests can be
enqueued at any moment in time.

The condition code is set to 0 when the request gains the connection or when it is successfully
enqueued. When the maximum number is exceeded, the request would not be enqueued. In this
case, the error status is set to X‘F’. A condition code X‘0’ implies either the request gains the
connection or is successfully enqueued.

4.2.1.6 Wait-Only

This function is interpreted as a wait for the completion of all pending I/O requests to the specified
lu of the calling task. A pending I/O request implies either an ongoing 1/O or an enqueued request.

4.2.1.7 Test Input/Output (I/0) Completion

This function returns a condition code of X‘F’ if any request is pending on the specified lu of the
calling task. If not, the condition code is X‘0’.

4.2.1.8 Halt Input/Output (I/Q)
This function aborts all outstanding requests issued to the specified lu of the calling task.
4.2.1.9 Test and Set

The test and set function provides a synchronization mechanism for concurrent accesses on the same
file by different tasks. It allows a task to access a record within a file and, at the same time, mark it
as being in use. The first bit in the record is reserved for this purpose. If it contains a 0, the record
is not currently in use. If it contains a 1, the record is by convention in use. Readers interested in
specific details are referred to OS/32 MTM Programming Reference Manual. This function is
implemented within all disk drivers and is therefore supported both for contiguous and indexed files
as well as bare disk accesses.

4.3 THE DEVICE CONTROL BLOCK (DCB)

For every device specified there is a DCB. The DCB is the data representation of a logical device
within the OS/32 VO subsystem. A file control block (FCB), which is a variant of a DCB,
represents a file and is a type of logical device. Tasks open devices (or files) by placing the address
of the DCB (or FCB) in the task’s lu table (along with the read/write access privileges granted). A
DCB consists of two parts:

o The device-independent part of the DCB is defined by the I/O Subsystem Architecture. It
contains fields used by SVC1 and SQS, to schedule the driver and to communicate parameters
and status between the driver, the OS and the task.

« The device-dependent part of the DCB is defined by the device driver. It contains internal driver
state information, and possibly, trace/debug information.

48-190 F00 R00 4-5

The field’s layout for the device-independent DCB and for the standard device-dependent DCB is
given in Appendix A.

The device-independent part of the DCB is analagous to a task’s task control block (TCB). It is the
per device system data structure. As such, it contains data of interest to SVC1 and SQS, for
example:

» the address of the physical device’s event coordination leaf (see Section 4.5),
« the address of the IOH (discussed in Chapter 5) for this device,

e /O request queueing strategy routine address should this device require special request
queueing,

o driver initialization entry points for data transfer and command requests and the driver
termination entry point,

the optional address of a special /O completion handler,
¢ device time-out chain link field and time-out value
o an embedded IOB (see Section 4.3.3) containing the "connected” I/O request, if any.

There are other fields in the DCB used by SVC1 for systems that contain Series 3200 /O Processors
(IOPs). These fields contain the IOP number to which the address is attached (0 for the CPU) and
the address of the system queue for this device.

The device-dependent part of the DCB is analogous to a task’s impure data area. All device drivers
are written to be re-entrant (so that there need be only one copy of the driver for many devices).
Thus, the driver stores all state information and possibly, debug or trace data in the device-
dependent DCB.

A detailed description of the DCB can be found in Appendix A.
4.3.1 The Device Mnemonic Table

All devices and device volumes with direct access are specified in the system and by the user
programs, either by showing a logical device number, or by showing a unique 4-character
mnemonic. In order to relate this mnemonic to a device, the system uses a list of these devices,
together with the device’s DCB. The Device Mnemonic Table lists the relation between device
mnemonic and the address of its DCB.

4-6 48-190 F00 R0O

TABLE 4-2. DEVICE/VOLUME MNEMONIC TABLE

DEVICE MNEMONIC TABLE
DEVICE MNEMONIC (ASCII)
ADDRESS OF RELATED DCB
DEVICE MNEMONIC (ASCII)
ADDRESS OF RELATED DCB
DEVICE MNEMONIC (ASCII)
ADDRESS OF RELATED DCB

Y 00000000’

Y 00000000’

Figure 4-1 shows relationships of system pointer table (SPT), device mnemonic table (DMT),
volume mnemonic table (VMT) and DCBs.

NOTE

The SPT, DMT, and VMT are normally not referenced by
/O drivers.

48-190 F0O R00 | 47

190-7

DCB.DMT
SPT.DMT — DCB
SPT.VMT MNEM1
A(DCB) 7 DCB.DMT
\ MNEM2 7
VOL1 A(DCB)
A(DMT) MNEM3
VOoL2 A(DCB)
SPT A(DMT)
DCB
0)
0] DCB.DMT
VMT DMT
DCB

Figure 4-1. Device and Volume Mnemonic Tables A ddress Linking of DCBs

4.3.2 Device-Independent Status Values

Logical units provide device-independent I/O by causing all /O requests to be made directly to the
lu and not to the device. The execution status of an I/O request that is independent of the physical
characteristics of the device being used is returned to the device-independent status field of the
parameter block (see Table 4-3). The data remaining in this field from a previous I/O request is not
modified until a subsequent I/O is completed or an error occurs.

48-190 F00 ROO

TABLE 4-3. DEVICE-INDEPENDENT STATUS CODES

STATUS
CODE

MEANING

X«co

Illegal function - an error is present in the function

code; the requested function is not supported by the device
or assigned access privilege or the buffer transfer is too
small. When using tape, minimum buffer size is four bytes.

X‘AO

.Device unavailable - the device is either inoperative or

not configured into the system.

X90’

End of medium (EOM) - The I/O directed to the lu reached
the physical end of the device, e.g., end of tape. During
magnetic tape operations, this status can be combined

one of the next three status codes, yielding X‘98’, X‘94°,
and X*92’.

X‘88’

End of file (EOF) - the logical end of file specified by
the assigned lu was reached.

X84’

Parity - an even or odd parity error occurred on a
data transfer request.

Recoverable error - the I/O request is recoverable
and can be retried. A write request was issued to a
write-protected device.

No I/O currently being processed - if a halt VO is requested
is executed, this bit is set, indicating that no I/O is being
processed at this time.

X81’

Illegal or unassigned lu - the lu specified in the parameter
block is either incorrect or was not previously assigned.

X000’

Normal execution or successful I/O is completed, and
no error occurred.

The origin of the status, i.e., whether it came from SVC1 or the driver, varies:

X‘co’ Originates from SVCL if attributes do not match function (READ/WRITE), or if IOH

list does not have entry for the function.

Originates possibly from driver itself after further checks (e.g., buffer alignment).

X'AO0’ Originates from the driver either because false sync received (no such device) or device

status indicates off-line/powered down.

48-190 F00 R00

X990’ Originates from driver.

X88’ Originates from driver.

X84’ Originates from driver. .

X82’ Originates from driver or from SVC1 (e.g., for halted queued I/O requests.)
X‘81° Originates from SVC1 if lu illegal or unassigned.

There are several instances where the device-dependent status field contains what is actually device-
independent status. This is always used in conjunction with device-independent status X‘82’. The
possible status codes are given in Table 4-4.

For example, when a device times out, the driver, by convention, usually returns status X‘8282°. A
driver might return a different value if, for example, there are several possible time-out conditions
which the driver wants to signal (e.g., time-out waiting for seek complete, time-out during data
transfer, time-out waiting for protocol ACK, etc.). Another example is when an I/O is halted. The
driver normally returns status X‘8281’ (as shown in Table 4-4).

TABLE 4-4. DEVICE-DEPENDENT STATUS CODES

STATUS

CODE MEANING

X85’ Exhausted retries on seeks - seeks on disk devices
have been retried the maximum number of times.

X84’ Queued I/O terminated - a queued I/O request is terminated
because a previous I/O request failed.

X‘83’ Device is write-protected - a write operation to a
write-protected device occurred.

X*82’ Read/write time-out - a read or write time-out condition
occurred.

X‘00’ Normal execution - I/O was completed and no error occurred.

4.3.3 The Input/Output Block (IOB)

The (IOB) is a data structure that represents an I/O request within the I/O subsystem. An IOB is
only required for those requests that will involve the device driver in accessing the device. It
contains all of the information required by the I/O subsystem to queue and process the request. This
information includes:

4-10 48-190 F00 R0OO

o A copy of the SVC1 parameter block,

» Both the unrelocated (physical) and relocated addresses of the SVC1 parameter block. The latter
is used in forming the task Q entry for proceed I/O requests.

o The address of the TCB of the task requesting the I/O.

o The address of the DCB for the device.

» The driver entry point to be used when a device event is scheduled for this request.
+ Request dependent flags that specify various optional processing for this request.

+ Link fields for queueing the I/O request.

IOBs are maintained in a free pool for each task. The number of IOBs a task will have is specified
when the task is linked. The default is one in order to ensure that every task has at least one IOB.
IOBs are allocated within system space at task load time.

SVC1 gets an IOB from the requesting task’s free pool by calling the routine GETIOB. IOBs are
released to the free pool by calling RELIOB after the request is connected to the device (leaf), and
the contents of the IOB have been copied into the DCB’s embedded IOB. If it is necessary to queue
the request and if the request resides in the task’s last or only IOB, the task is placed in "IOB
Wait." It cannot proceed (i.e., exit from SVC1) until at least one queued request has been connected
and the IOB released. Because of this convention, GETIOB will always find at least one IOB in the
free pool when called from SVC1.

The IOB event service routine (ESR) field is initialized by SVC1 to contain one of the two driver
initialization routine entry points (for data transfer or command functions). This field governs the
entry to the initialization phase of the driver when the IOB is copiéd into the DCB’s embedded IOB
at connection time. This same field in the embedded IOB is modified by routines EVMOD or
DIRDONE to contain the address of intermediate or termination ESRs.

The "request dependent flags" field is used to specify which optional processing of the request is to
be performed. This includes:

« removing IOB wait on device connection,

o removing I/O wait or adding a parameter to task Q on I/O completion,

« overriding reset of Interrupt Service Pointer Table entry on I/O completion, and others.
A detailed description of the elements in the IOB can be found in Appendix A.
4.3.4 SUPERVISOR CALL 1 (SVC1) Exits

Except for memory faults, SVC1 exits to the task dispatcher when it has completed IOH processing.
As a result of the IOH, the disposition of the request will be one of the following:

o connected to the device and driver initialization scheduled,

« queued to the device, controller or selector channel (SELCH),

48-190 F00 R0OO 4-11

« aborted because of an error, or
» completed within the IOH routine.
Depending on the disposition of the request, different post-processing will be required, including:
« releasing an IOB if one was gotten and it has not been queued,
o placing the task in IOB or I/O wait, if necessary, and
o adding a trap item to the task queue.

Several different exit routines are provided to perform this post-processing. These routines are made
entry points so that custom /O can use them. Most of the standard IOHs exit to one of these
routines. Some IOH exit directly to the task dispatcher.

4.3.4.1 Normal Exits

The following exit routines are normal (nonerror) exits or common routines used for both normal
and error exits:

o SVC1EXIT - normal exit for driver requests (data transfer or commands). This routine sets
IOB or VO wait as appropriate and remembers in the IOB flags (in the DCB’s embedded IOB)
whether to move /O wait or add an I/O completion trap to the task’s queue. It exits to the task
dispatcher.

« SVCINOOP - IOH exit to ignore the function (i.e, no operation). This routine is normally
referenced directly from the IOH list for functions that are to be ignored. It returns a zero status
to the SVC1 parameter block and exits to one of the following common exit routines.

« SVCININA - (No IOB, no ADD to task queue) exits directly to the task dispatcher.

o SVC1INA - (IOB, no ADD to task queue) adds task trap item (/O ‘completion reason code plus
SVC1 parameter block address) to the task’s queue, then exits via SVCININA.

o SVC1IA - (Both IOB and ADD to task queue) releases IOB and exits via SVCINIA to add to
the task queue.

4.3.4.2 Error Exits
The SVC1 error exits are:

1. SVCI1FCER - Illegal Function Code. An illegal function code status (SV1E.IFC = X‘C000°) is
returned to the task’s SVC1 parameter block. This routine exits to one of the SVC1 (N)I(N)A
routines depending on whether an IOB needs to be released or a task queue trap is required.

2. SVC1ADER - Address error. This routine exits to MEMFAULT, the memory fault
(alignment, write protected, not present).

4.4 SYSTEM QUEUE SERVICE (SQS8)

The SQS internal interrupt handler is the front door into the operating system for all external events
such as YO completions, timer events, and system power restore. Such events are signaled by

4-12 48-190 F00 RO0

adding an entry to the system queue.

The system queue entries are the addresses of device structures called leaves. For I/O events, the
leaves are part of the event coordination tree discussed in Section 4.5. For other events such as
timer events and and power restore, special leaves are created solely for the purpose of entering the
SQS or event service state. These special leaves, which are not really part of the /O subsystem, are
described in Section 4.5.1.

Each leaf contains the address of an SQS executor in the field EVN.SQS. After removing a leaf
address from the system queue, SQS fetches and branches to the address of the SQS executor
contained in the leaf. For /O events, one of two executors (SQS.SLV or SQS.MLYV) is invoked.
These executors are described in Section 4.5.3.

Ultimately, the SQS executor will enter a device driver in one of three event service routine (ESR)
states:

1. The driver initialization ESR to initiate a device operation. There are two possible
initialization ESRs for drivers: one for data transfers (DCB.INIT) and command functions
(DCB.FUNC). This ESR is scheduled by SVC1 if the device is not busy, or by the IODONE
handler of a prior I/O.

2. An intermediate ESR, such as a seek, complete on a disk. This ESR is scheduled by a device
interrupt service routine (ISR). The actual ESR entry point is selected by a driver by calling
the routine EVMOD.

3. The driver termination ESR. This ESR is scheduled by a device ISR, or possibly, the system
timeout routine. The termination ESR (DCB.TERM) is automatically selected when the
Initialization ESR exits via DIRDONE (see Section 4.5.5).

4.5 The Event Tree (EVT)

The event tree is a tree-like structure built out of the combination of device leaves and controller,
SELCH and EDMA nodes. The tree mirrors the hardware configuration of the system (selector
channel, device control, devices). The tree is inverted with its leaves at the bottom and its root at
the top. The tree is always processed upwards from the leaf. All of the resources necessary to
perform I/O, such as a SELCH or controller, shared by more than one device, must be acquired for
use by a driver. The EVT handles the allocation of these shared resources. Figure 4-2 gives a
detailed description of the event coordination tree. Note the following in reference to Figure 4-2:

EVN.DCB = O ==> LEAF/NODE free.
EVN.DCB A(DCB) ==> LEAF/NODE connected.
When LEAF is connected, DCB.IOB contains IOB of current I/0.

48-190 F00 R0O 4-13

14 & 4

004 004 061-8%

Figure 4-2. The Event Coordination Tree

190-8
SELECTOR
CHANNEL
NODE
NODE Q
-
L/]

MAG TAPE ‘ DISK l ’

CONTROLLER CONTROLLER |

NODE NODE | i

LEAFQ LEAF Q
.
CONSOLE TERMINAL PRINTER TAPE DRIVE TAPE DRIVE DISK 1 SHARED
LEAF LEAF LEAF 1 LEAF 2 LEAF LEAF DISK LEAF
0 p » o »| >~ -l >
10BQ 10BQ 0B Q 10BQ 10BQ 0B Q 10BQ
\ \ . \.
J _J J \ _J
. |
CONSOLE TERMINAL PRINTER TAPE TAPE DISK 1 FIXED DISK REMV’BLE DISK
DCB DCB DCB DRIVE 1 DRIVE 2 LEAF DCB DCB
DCB DCB

For example, an I/O request for a disk device starts at the IOB, then passes to the leaf, the disk
controller node, the SELCH node and possibly to the optional EDMA or super node. The structure
of each leaf (lowest node) or other node is discussed in Appendix A.

It is important to note that the event coordinating structure contains two waiting queues, one for
leaves and another for IOBs. IOBs are queued to leaves, thus representing I/O requests to a busy
device. Leaves and nodes are queued to higher level nodes if the node is busy servicing another
request.

Figure 4-3 depicts the queueing of I/O requests to a device. The structures depicted in Figure 4-3
are controlled by the operating system I/O executive routines. They are not accessed by I/O drivers.
Figure 4-4 depicts the queueing of I/O requests to a disk device.

48-190 F00 R0O 4-15

9I1-vy

00d 004 061-8p

180-5

1

DCB.LEAF

DCB

\
IOB.NEXT IOB.NEXT ——(¢ 0
EVN.DCB |/
EvNnTOP —
EVN.BOT
| 10B 108 108
LEAF

Figure 4-3. Queucing of /O Requests to a Device

00Y 004 061-8Y

LIV

190-6
- — ~ I0B.NEXT I0B.NEXT I0B.NEXT I0B.NEXT
DCB.LEAF |}—]

0B 10B 0B I0B

EVN.DCB |~ QUEUE OF 1/0’S TO BE PERFORMED ON CURRENT

SWEEP OF THE DISC.
EVN.WRAD
DCB EVN.TOP
EVN.BOT | [
LEAF I0B.NEXT IOB.NEXT IOB.NEXT IOB.NEXT [

I0B. 10B 10B 10B 108

QUEUE OF 1/0’S TO BE PERFORMED ON NEXT

SWEEP OF THE DISC.

Figure 4-4. Queueing of /O Requests to a Disk Device

4.5.1 Resource Nodes

Resource nodes are created at system generation (sysgen) time, and represent logical resouces
rather then devices. ‘

DIRECTORY LEAF and BIT MAP LEAF are noneventing. They behave like locks on the
directory or bit map resource. These leaves are not the concern of the Series 3200 I/O subsystem.
Other leaves (TIMER, POWER RESTORE, TIMESLICE) are all eventing leaves. They are
placed on the system queue to force entry into the SQS state. The EVN.SQS fields in the leaves
contain special executors outside of the I/O subsystem.

4.5.2 Extended Direct Me‘mory Access (EDMA) Node

The EDMA node is used to limit the number of concurrent data transfers on the DMA bus. This
node, if required by hardware configuration, must be specified at sysgen time by the
COORDINATION statement. The COORDINATION statement has parameters which describe
the SELCHs or devices that are to be coordinated and an optional parameter to specify the
maximum number of simultaneous transfers.

4.5.3 System Queue Service (SQS) Executors

The single level and multilevel device dispatchers are the SQS executors.

4.5.3.1 Single Level Device Dispatch (SQS.SLV)

This algorithm is designed for devices attached to the multiplexor (MUX) bus. A test for connection
is simply a test of a parameter (connected DCB address) for zero. If the leaf is indeed connected,
then the driver is entered at the current event service routine entry point, which is found in
DCB.ESR.

For disconnection, the DCB address in the leaf is zeroed. If the IOB queue is not empty, the top of
the queue is selected for connection. Data from this IOB is then moved to the DCB. The DCB
address in the node is updated and the leaf is added to the system queue so that the driver may be
scheduled in its turn. The IOB is then released, and if the task was in an IOB wait, the wait is
removed.

4.5.3.2 Multilevel Device Dispatch (SQS.MLV)

This algorithm is designed for devices attached to a shared controller and/or a SELCH. The current
hardware I/O architecture requires the connection to the SELCH or controller before any
communication is attempted to devices attached to it. This ensures that the channel or controller is
not busy with another I/O. The connection algorithm starts from the first level device node (i.e.,
the leaf) and moves up each time a connection is successfully made. The request is always queued if
the connection cannot be made. The connection algorithm at the first level device node is similar to
simple device connection algorithm. For the connection at an upper level node, a test is made to a
parameter (EVN.DCB) for zero. If zero, the requesting DCB address is saved and the connection
is made. Otherwise, the requesting node is put on the tail of a first-in/first-out (FIFO) Q. For disks,

4-18 48-190 F00 R00

the default Q strategy will queue the node as the head of the queue last-in/first-out (LIFO) if a seek
is required. This policy encourages overlapped seeks.

If the connection is made up to the top of the tree, and the request is a non-data transfer request
(for example, a seek), the driver ESR is entered (DCB.E.SR). The complete connection is said to
be made. For a data transfer request, and if an EDMA node has been configured, the EDMA node
connection routine is called. If the request successfully connects to the EDMA node, the driver
ESR is entered.

The disconnection also starts from the bottom up. Each time a disconnection is made, the top of the
waiting queue on that level becomes connected and enqueues to the next higher level node, if any.

If the connection has been made to the EDMA node, the EDMA disconnection routine is called. If
the queue at the at the top of the tree is not empty and the EDMA bus is needed, then the EDMA
connection routine is entered.

Some operations do not require the connection to all levels after the operation has been initiated.
For example, a seek operation in general only requires connection to the disk. Therefore, the
EVREL routine is supplied to release upper nodes.

4.6 DRIVER SERVICE ROUTINES

Two service routines are provided for drivers to control the sequence of ESRs to be executed and to
control access to the event coordination tree. These are EVMOD and EVREL.

4.6.1 EVMOD

EVMOD is called by a driver initialization or intermediate ESR to select the next ESR to be run,
i.e., when the device ISR adds the device leaf to the system queue or when the system "times out"
the device. Normally, the driver termination ESR (DCB.TERM) is automatically selected when the
DIR exits via DIRDONE. If the DIR made a prior call to EVMOD, the default selection is
overridden. Thus, if a driver makes a call to EVMOD to select an Intermediate ESR, it must
ultimately call EVMOD to explicitly select the termination ESR as it will not be selected by default
thereafter.

EVMOD is called as follows:

L UF,DCB.LEAF (UD)
LA UE, ESR_ADDR
BAL. U8,EVMOD

4.6.2 EVREL

EVREL is called by drivers to release upper level nodes of the event coordination tree while waiting
for some event which does not require those resources. The usual use is to release the SELCH and
device controller nodes while waiting for a seek complete on a disk.

48-190 F00 R00 4-19

Note that when the event occurs and the device ISR schedules the event, it will be necessary for the
device to reacquire these nodes before the ESR can be re-entered. This is the function of the
SQS.MLV executor. EVREL is called as follows:

L UF,DCB.LEAF (UD)
LIS UE, level
BAL US8,EVREL

The level is the level in the event coordination tree at and above which the nodes are to be released.
Level 2 will release both the controller and SELCH nodes. Level 3 will release just the SELCH
node.

4.7 DRIVER EXITS

There are two basic types of driver exits: intermediate (nonterminal) exits and termination exits.
The two intermediate exits, DIRDONE and EVRTE, are used when the current I/O request is not
complete, but control is being returned to the operating system to wait for an external event. The
termination exits, IODONE and IODONE?2, are used when the /O request is finished, either
because of normal or error termination conditions.

4.7.1 DIRDONE

DIRDONE is the normal (nonerror) intermediate exit from the driver initialization. Its purpose is
to set up DCB.ESR with the driver termination routine (from DCB.TERM), unless the driver has
previously called EVMOD (see Section 4.6.1). DIRDONE exits to the SQS main exit, SQS.EX,
which checks for more entries on the System Queue.

4.7.2 EVRTE

EVRTE is a norm.al exit from intermediate ESRs. It performs no function other than to exit directly
to the SQS main exit, SQS.EX.

4.7.3 IODONE

IODONE is the main driver termination exit. It is called for all normal and error terminations with
the resulting SVC1 status in DCB.STAT (2 bytes), and the length of transfer, if applicable, in
DCB.LLXF (fullword).

IODONE resets the HALT I/O Flag (DFLG.HIM) in the DCB.FLGS field and then checks for a
device-specific IODONE handler in DCB.DONE. If one exists (DCB.DONE non-zero), IODONE
branches to it. Such a device-specific routine may choose to return to IODONE after performing
any device-specific processing. It may do so by branching back to the label IODCOM to perform the
common processing described below.

IODONE performs three main functions as part of its common post-processing of an I/O request:

1. Return resulting status and length of transfer to the SVC1 parameter block via subroutine
IODGST.

4-20 48-190 F00 R0O

2. Remove I/O Wait or issue an /O Completion Task Q trap for the task that requested the /O
via subroutine IODTWT.

3. Disconnect the request from the event coordination tree and promote any quened IOB or nodes
by invoking common disconnection routine (COMDIS).

4.7.3.1 IODGST

IODGST is called by IODONE to return the status (DCB.STAT) and the length of transfer
(DCB.LLXF) to the SVC1 parameter block (DCB.PBLK). It may also be called by driver-specific
1/O DONE handlers that choose not to return to IODCOM as discussed above.

In addition to its primary functions described above, IODGST has one other function. It will reset
the Interrupt Service Pointer Table for the device (DCB.DN) to ignore all interrupts (routine III).
This function of IODGST can be overridden by setting IOBF.ISM in the request-dependent flags
within the DCB’s embedded IOB (DCB.RFLAG). Drivers that intend to service interrupts even
when no request is active (e.g., terminal drivers that support "type-ahead") must be sure to set this
flag.

4.7.3.2 IODTWT

IODTWT is called from IODONE or device-specific /O DONE handlers to test the task trap and
I/O Wait flags in the request dependent flags in the DCB’s embedded IOB (IOB.RFLG).

If the task trap flag (IOBF.TPM) is set, IODTWT will create an /O completion task queue entry
and enqueue it to the task queue of the task (IOB.TCB). If the /O Wait flag is set (IOBF.IOM),
then IODTWT will remove YO Wait from the task.

4.7.3.3 IODONE2

IODONE?2? is exactly the same as IODONE. It is maintained for compatibility with earlier revisions
of OS/32. Prior to Revision 04 of OS/32, the driver initialization routine ran in a different state
(RS-State) from the termination routines (ES-State). Therefore, driver initialization routines could
not call IODONE.

IODONE2 was provided as a termination exit for driver initialization routines - in thoses cases
where the driver initial routine completed the request or encountered an error that required the
request to be aborted. It is still common convention to use IODONE2 when it is necessary to
terminate a I/O request from within the driver initialization routine.

4.8 OTHER UTILITY ROUTINES
4.8.1 Timer Services

The OS/32 I/O Subsystem provides a timer with a resolution of one second for monitoring drivers
which are waiting for external events. A driver utilizes the timer services by placing itself (i.e., its
DCB) on the DCB time-out chain. This is accomplished by a call to the routine TOCHON (time-
out chain ON), described below.

Once a DCB is on the time-out chain, the action of the time with respect to that DCB is controlled
by the halfword field DCB.TOUT. The possible values of DCB.TOUT and the corresponding time

48-190 F00 R00 4-21

actions are as follows:

» DCB.TOUT = X‘“7FFF’ - The timer is disabled. That is, the DCB will be ignored by the timer,
even though it is on the time-out chain. Note: TOCHON initializes DCB.TOUT to this value.

« 1 <= DCB.TOUT <= X‘7FFE’ - The timer is armed. Every second the system will examine
each DCB on the time-out chain. If the value is between 1 and X*7FFE’, inclusive, the timer
logic will decrement DCB.TOUT by 1. If the value becomes zero, the device is timed-out. That
is, an ESR is scheduled by adding the device leaf to appropriate system queue. It is the
responsibility of all driver ESRs to check the value of DCB.TOUT for zero to recognize this
time-out condition.

e« DCB.TOUT = zero - The device has already been timed-out (i.e., the timer ignores the DCB.
All driver ISRs should check for DCB.TOUT = zero and exit immediately if that condition is
found. Drivers should never schedule an ESR when DCB.TOUT = zero.

« DCB.TOUT < zero - The timer is disarmed. That is, the driver has already scheduled an ESR.
The timer will ignore the DCB. ISRs should also exit if DCB.TOUT < zero, so that a second
ESR is not scheduled.

It is not possible for a driver to tell when the one second timer event will occur. Therefore, to
guarantee at least one second of time, the driver must always set DCB.TOUT a value greater than
one when arming the timer.

When a driver ESR detects a time-out (i.e., DCB.TOUT = zero), it should clean up, remove the
DCB from the time-out chain (via a call to TOCHOFF), and terminate with a status of X‘8282’.

It should be noted that the Halt /O function of SVC1 mimics a device time-out. That is, Halt /O
sets DCB.TOUT to zero and schedules the device ESR by adding the leaf address to the system
queue. A Halt /O is distinguishable from an actual time-out 'by the fact that a DCB flag
(DFLG.HIM) is set in DCB.FLGS for a Halt. It is customary for a driver to terminate with a
status of X‘8281’ when a Halt I/O is processed.

4.8.1.1 TOCHON

The subroutine TOCHON is called to place a DCB on the system time-out chain; normally from the
Driver Initialization ESR. If the device is already on the Chain, the call is ignored. The call to
TOCHON is coded as follows:

BAL U8, TOCHON place DCB on time-out chain

Register UD (13) must contain the DCB address, as it always does during driver ESR processing.
4.8.1.2 TOCHOFF

_ The subroutine TOCHOFF is called to remove a DCB from the system time-out chain. It should be
called just before a driver exits to IODONE(2). If the DCB is not found on the time-out chain, the
call is ignored. The call to TOCHOFF is coded as follows:

4-22 48-190 F00 R0O0

BAL U8, TOCHOEF

As usual, register UD (13) must contain the DCB address.
4.8.2 Queuing Routines

The acquisition and release of a resource by a device, such as a selector channel, is known as
connection and disconnection. If a leaf is already connected, another connection cannot be made.
The task is put in a wait state and the request is queued. The queue will be handled in priority order
of the tasks in the queué. This assures a priority execution, and still maintains the chain order of
first in, first out. As soon as a leaf is disconnected, the next IOB (on the top of the chain) will be
connected and its wait state will be terminated.

Three different queueing strategies are available for disk I/O:
« A FIFO routine, in which the order is defined by the order entry into the queue (COMFIFO).
o A routine that orders the queue according to task priority (COMQ).
o A routine that sorts I/O requests is such a way that requires the shortest seek times (DISKQ).

Effectively, each DCB can specify its own queueing routine. The choice for standard devices is as
follows:

The priority-ordered queue routine is selected for non-direct access devices and the seek schedule
queue routine for direct access devices. Users can supply their own queueing routines by placing the
routine address in DCB. The queue routine must follow the convention that the request at the top of
the queue is the next one to be serviced. If no queueing routine is specified (a zero is found) in the
DCB, the priority-ordered queue routine is the default. There may be a restriction on the registers
available for use inside the queueing routine.

48-190 F00 R00 4-23

5.1
| 5.2
5.3
54
5.5
5.6

CHAPTER §

STRUCTURE OF A DRIVER

INTRODUCTION

THE INPUT/OUTPUT HANDLERS (IOH)

DRIVER INITIALIZATION ROUTINE

INTERRUPT SERVICE ROUTINE (ISR)

FINAL INTERRUPT SERVICE ROUTINE (ISR)

EVENT SERVICE ROUTINE (ESR) (INTERMEDIATE AND TERMINATION)

LIST OF TABLES

TABLE 1. INPUT/OUTPUT HANDLER (IOH) FORMAT
TABLE 2. IOH MACRO PARAMETERS

- i -

CHAPTER 5

STRUCTURE OF A DRIVER

5.1 INTRODUCTION

OS/32 device drivers are, in general, re-entrant. They are written such that only one copy of the
actual code can be shared by multiple instances of the supported device. The only exceptions to this
are quick and dirty prototype drivers or drivers for one-of-a-kind devices. Chapter 6 discusses how

to

generate these data areas. Chapter 7 describes how a separate copy of the device control block

(DCB) and channel control block (CCB) is generated for each device of this particular type at
system generation (sysgen) time.

The code section of a device driver consists of several different types of routines. They are:

Input/Output Handlers (IOHs) are routines that run in as nonreentrant system state extensions
of the SVC1, in registers E8-E15 only. (See Appendix B for a description of operation states).
These routines are optional as the system will provide a default IOH list (COMIOH).

Event Service Routines (ESRs) are subroutines of the system queue service (SQS). A driver may
have two or three special ESRs and possibly additional intermediate ESRs. These special ESRs
are:

— The driver initialization routine (DCB.INIT) entered from SQS when SVC1 schedules a data
transfer.

— The driver termination routine (DCB.TERM) selected, by default, when the driver
initialization routine exits via DIRDONE. The DCB.TERM is entered when an interrupt
service routine (ISR) adds the device leaf to the system queue.to schedule the next ESR.

— Optionally, the command initialization routine (DCB.FUNC) entered from SQS when SVC1
schedules a command function.

Interrupt Service Routines (ISRs) run as subroutines of the processor microcode in interrupt
service state, registers EO through E7 only. (See Appendix B for a description of operation
states.) In effect, they run outside of the operating system as software extensions to the
processor’s interrupt service. To signal events to the operating system, ISRs add device leafs to
the system queue.

I/O Done Executor (DCB.DONE) is an optional routine that is seldom used except by the
Perkin-Elmer Disk Driver and Contiguous File Manager. If supplied, it runs as a subroutine of,
or in place of, the standard IODONE routine. In addition to special processing, a device-specific
IODONE routine would normally perform many of the same functions as the standard

. IODONE (see Chapter 4).

Queueing Strategy Routines (DCB.Q) several alternate queuing strategies (priority, first-
in/first-out (FIFO), seek-scheduling for disks) are supplied by the operating system and are
sufficient for standard requirements. (See Appendix D for detailed descriptions of queueing

48-190 F00 R00 | 5-1

routines.) If there are special requirements, these routines must by supplied as part of the driver.

« Translation Table is supplied if the driver uses the translation option of the auto driver channel
(or the TRANSLATE command).

o Special Character Handlers are supplied if the translation table includes special character traps.
The special character Handlers are routines to handle these traps or interrupts.

The following sections describe IOHs, ESRs, and ISRs. Standard IODONE and Q strategy are
discussed in Chapter 4.

5.2 THE INPUT/OUTPUT HANDLERS (IOH)

The /O Supervisor is often called the SVC1 skeleton because it performs only standard request
validation and input/output block (IOB) allocation/initialization. It then invokes an IOH to execute
the request. Each device driver has an IOH list, located by a pointer in the device’s DCB. An IOH
list contains an entry for each possible /O request. The entry will contain the address of the IOH
for the requested function, if the driver supports that function. Otherwise, the entry will contain the
address of the SVCI1 illegal function exit.

The IOH list also has entries for special event processing: system initialization, power restore, and
end-of-task. These special entries are discussed in Chapter 5.

The system supplies several standard IOH lists and the associated I/O Handlers. These are:
« the NULL device,
o the bare disks,
« and the common IOH list.

In fact, the contiguous file manager is essentially a sophisticated set of IOH routines that front-end
the disk driver. The dummy console is also a set of IOH routines that pass console I/O requests to
the console monitor task for processing.

IOHSs run as extensions of SVC1. Thus, they run in nonreentrant service state and are restricted to
using registers 8 through 15. There are two basic types of IOH routines - those for requests that
invoke the device driver and those that handle the requests directly without invoking the driver.

The IOH routines that invoke the device driver are those for data transfer functions (READ,
WRITE, TEST and SET) and command functions (REWIND, WRITE FILEMARK, etc.). These
IOH routines require an IOB and are entered with these register contents:

R9 = address of task control block (TCB)
RA address of IOB
RB address of DCB

5-2 48-190 F00 R0O

The IOH routines attempt to connect the request to the device (leaf) so that the driver may be
scheduled. Connection is performed by by copying the IOB into the DCB’s embedded IOB and
placing the DCB address in the leaf. The IOB can then be released, and the driver may be
scheduled by adding the leaf address to the system queue. See Section 2.5.2.2 for information on
SQs.

If the device is busy (i.e, leaf is already connected), the IOB is queued to the leaf unless the SVC1
function code specified Unconditional Proceed. If the task’s IOB free pool is exhausted, the task is
left in IOB wait. IOH routines exit to label SVC1EXIT.

The IOH routines for functions that do not invoke the driver do not require IOBs. These functions
include HALT /O, TEST VO COMPLETE, and WAIT ONLY. The entire request is performed
within the IOH. The following registers are initialized on entry:

R9 address of TCB
RB = address of DCB

TABLE 1. INPUT/OUTPUT HANDLER (IOH) FORMAT

IOH.READ | DS 4 | SVCI1 read executor

IOH.WRIT | DS 4 | SVC1 write executor

IOH.WAIT | DS 4 | SVC1 wait-only executor
IOH.HALT | DS 4 | SVCI1 halt I/O executor

IOH.TEST DS 4 | SVC1 test /O complete executor
IOH.REW DS 4 | SVCI1 rewind executor

IOH.BSR DS 4 | SVC1 backspace record executor
IOH.FSR DS 4 | SVCI1 forward space record executor
IOH.WFM DS 4 | SVC1 write filemark executor
IOH.FFM DS 4 | SVCI1 forward filemark executor
IOH.BFM DS 4 | SVC1 backward filemark executor
IOH.EOT DS 4 | SVC3 task termination execution
IOH.INIT DS 4 | Device initialization

IOH.DDF DS 4 | Device-dependent function executor
IOH.CON DS 4 | Special handler for system console
IOH.PWR DS 4 | Special handler for power restore.

48-190 F00 R00 5-3

The IOH is set up via the IOH macro call.

Some are the concern of SVC1. Others allow for device-specific processing of events like task
termination, system initialization and power restore.

The IOH List allows a driver to have custom SVC1 processing and special event processing (such as
system initialization, power restore, and end-of-task). For most drivers, the SVC1 processing
provided in the system default IOH List (COMIOH), is sufficient. Many drivers have special
system initialization and/or power restore processing requirements. These drivers must include their
own IOH list.

Custom IOH lists can be included in the driver itself. This is the usual case. If a single custom IOH
list will serve several drivers, it may be implemented as a separate source module. In either case,
the label of the IOH list must be an entry point in the source module.

IOH lists are coded using the IOH macro. Table 5-2 lists the parameters to the IOH macro. The
NAME parameter provides the label for the IOH list. This is the only required parameter.

NOTE

The IOH macro automatically generates a weak entry
(WNTRY) for the NAME.

All of the SVC1 function parameters (READ, WRITE, etc.) will default to illegal functions if the
parameter is omitted. To use the default IOHs (i.e., same as those used by COMIOH), use the
label given in the last column of Table 5-2.

NOTE

These labels must be declared as externals (EXTRN) to the
driver/IOH module.

The special IOH entries all default to zero, indicating no special handling. If a driver needs special
IOH processing (e.g., system initialization), the appropriate parameter is supplied, giving the name
(label) of the IOH routine. For example, if a driver has a system initialization IOH with label
DVR.SYSI, the parameter would be supplied as INIT=DVR.SYSI. Other special handlers are
specified in the same manner.

All IOHs are entered via a BRANCH and LINK (BAL) instruction on register 8, with the DCB
address in register 11 (B). Only registers 8 through 15 (F) are available.

5-4 48-190 F00 R0O

TABLE 2. IOH MACRO PARAMETERS

SvC1 FOR DEFAULT
PARAMETER FUNCTION IF OMITTED USE
NAME REQUIRED
READ Read SV1FCER SVC1READ
WRITE Write SVC1WRIT
WAIT Wait Only SVC1WAIT
HALT Halt /O SVC1HALT
TEST Test I/O SVCI1TEST
SET Test & Set SVCINOOP
REW Rewind SVC1REW
BSR Backspace Record SVC1BSR
FSR Forward Record SVC1FSR
WFM Write File Mark SVC1WFM
FFM Forward File Mark SVC1FFM
BFM Backspace File Mark SVC1BFM
DDF Device-dependent function
EOT End-of-task 0 N/A
INIT System Initialization 0
CON Console 0
PWR 0

5.3 DRIVER INITIALIZATION ROUTINE

The driver initialization routine contains preparation for the I/O transfer. The device is connected to
the event tree and the physical I/O is started. This phase would, for example, start a seek operation
for a disk I/O transfer.

The driver initialization routine is used to establish those aspects of the operation that are not
themselves time critical but are necessary for the next phase which is the processing of interrupts. A
typical sequence of events in the driver initialization routine might be:

o Check that the device is available, i.e., does not give either FALSE SYNC or DEVICE
UNAVAILABLE status when addressed.

o Set up the CCB for an auto driver channel operation but without actually starting it. Use these
guidelines:

— Place the buffer address and length into CCB.EBO and CCB.LBO.
— Place A(ISR) into CCB.SUBA.

48-190 F00 R0O : 5-5

— Initialize the channel command word (CCB.CCW).

o Set up the interrupt service pointer table (ISPT) entry for the first interrupt service routine
(ISR).

¢ Connect the DCB to the time-out chain, but do not initiate the time-out countdown.
« Execute the first ISR via a simulate interrupt (SINT) instruction.
« Terminate the routine by branching to DIRDONE.

The driver initialization phase is entered at the label INITxxxx, where xxxx is the name of the
device. On entry to this phase from SQS, register 13 contains the DCB address and register 15
contains the leaf address. The subroutines used in this phase are TOCHON, EVREL, EVMOD,
and TOCHOFF. The driver may exit from the phase by branching to DIRDONE or IODONE.

TOCHON is used to put entries onto the time-out chain and is called via:
BAL. U8, TOCHON

There is one entry on the chain per DCB. On entry to the subroutine, register 13 contains the DCB
address. The subroutine sets the time-out value to X‘7FFF’ and puts the entry onto the time-out
chain.

DIRDONE is used for a successful exit from the initialization phase. No registers need to be
established before entry. The exit will establish the label TERMxxxx as the current ESR of the
driver termination phase, i.e., the address of the DCB.TERM is put into the field DCB.ESR, unless
an ESR has already been established in the initialization phase via the routine EVMOD.

IODONE is used when the initialization encounters a fatal error or normal termination condition.
For example, the device might be unavailable (not on-line) as determined by the device status. This
exit can also be used in the termination phase.

5.4 INTERRUPT SERVICE ROUTINE (ISR)

One or more ISRs are responsible for responding to interrupts and for starting any subsequent
physical I/O operations or event service routines (ESR). For example, if the disk seek has been
completed, an ISR will be activated, in order to output the data transfer commands to the device.

ISRs are entered with a program status word (PSW) state of X‘28xx’. Only registers 0 through 7
can be used in an ISR, unless one can guarantee absolutely that all devices the driver will control
will always be strapped to interrupt at a level lower than 0, at which point registers 0 through 15
may be used. If registers 8 through 15 of register set 0 are used by an ISR, they are likely to
destroy any register the operation system is currently using and cause the operating system to crash.

The ISRs are used for all occasions in which it is undesirable to be interrupted by other operations.
The first ISR is different from subsequent ISRs because it is entered via SINT instruction. It is
essentially an uninterruptible subroutine of the driver initialization routine.

5-6 48-190 F00 R0OO

The ISR are executed in the interrupt state (IS-STATE). Entry into these is made on the basis of a
resultant hardware interrupt of the device, or by carrying out a SINT command. Normally all /O
commands are executed in the ISRs. Another ISR can be run for the next interrupt of this device,
when the corresponding address in the ISPT or the CCB is being modified. The ISR should be
written in pure reentrant code.

A typical sequence of events in the first ISR might be:
« Check the condition code to determine why you are in the ISR routine.
o Start the time-out countdown by setting a value in DCB.TOUT.
o Prepare the device for transfer (OC DEVADD,COMMAND).
o Transfer a byte of data.
«+ Set up the CCB subroutine address (SUBA) for the next ISR.

« Start the auto driver channel by modifying the channel command word (CCW), enabling
interrupts and attempting the first READ or WRITE on the device. Set the execute bit in the
CCW.

e Return to the driver initialization routine via the instruction LPSWR EO.

Because the first ISR returns to the driver initialization routine, it is possible to return state
information via the PSW condition code in register EQ. If, for example, the initial ISR determines
that the I/O cannot proceed for one reason or another, it is more efficient to abort the I/O in the
driver initialization routine, rather than schedule an ESR to handle termination. The first ISR can
accomplish this setting an appropriate error status in the DCB and setting a bit in the condition code
of the old PSW in EO. When control returns to the driver initialization routine (i.e, when the ISR
performs LPSWR EO), the driver initialization routine can branch on condition to DIRDONE (no
error) or IODONE (error).

Subsequent ISRs deal with the transfer of data, error detection or other special conditions. For
example, the SUBA, which typically would be set up for the next ISR, is given control when the
buffer is empty. This ISR will also be involved when the device gives a bad status. The ISR might
perform the following operation:

o Check the condition code for X‘01’ (bad status) - in which case the status should be returned to
the calling program and the operation terminated.

o Check the condition code for X‘02’ - schedule termination ESR to return status to the caller and
terminate I/O operations.

o Check to determine whether the device timed out with the following:

48-190 F00 R00 5-7

L E5,CCB.DCB (E4) Fetch DCB address
LH E6,DCB.TOUT (E5) Fetch timer value
BZ TIMEOUT If zero, branch to set time-out status

ISRs should be kept as short as possible (15 to 25 instructions).
During their execution, only higher level VO interrupts can be serviced. If the ISR disables all
interrupts, then no interrupts can occur.

ISRs are entered with a PSW state of X‘28xx’. Only registers 0 through 7 can be used in an ISR,
unless one can guarantee absolutely that all devices the driver will control will always be
strapped to interrupt at a level lower than 0, at which point registers 0 through 15 may be used.
If registers 8 through 15 of register set 0 are used by an ISR, they are likely to destroy any
register the operating system is currently using and cause the operating system to crash.

5.5 FINAL INTERRUPT SERVICE ROUTINE (ISR)

The final ISR disarms the device interrupts and places the leaf address on top of the system queue
with an ATL instruction. A typical sequence of events in the final ISR might be:

« Check the condition code to determine why you are in the final ISR routine.
« Place the status code in DCB.STAT and DCB.DDPS

o If DCB.TOUT=0 then a time-out has occurred. If a time-out has not occurred, place -1 into
DCB.TOUT.

+ Schedule TERMxxxx by ATL A(LEAF),SQ.
¢ Disarm the device.

« Return to operating system.

5.6 EVENT SERVICE ROUTINE (ESR) (INTERMEDIATE AND TERMINATION)

The driver ESRs are a collection of routines for intermediate operations and for terminating the /O
operation. In driver termination, the status of the operation is put into the DCB.STAT so that it
may be sent back to the calling program’s parameter block status halfword.

Driver termination is entered when an ESR has been scheduled from the system queue. An ESR
may also be entered because of a time-out.

An entry put on the time-out chain in the initialization phase has to be removed in driver
termination.

Failure to do this can result in a error condilion that can cause a system crash.

5-8 48-190 F00 R00

A typical sequence of events in an ESR would be:
o Check for time-out. Is the countdown value 0? (DCB.TOUT)

e Check for a HALT I/O operation from the calling program. (DCB.TOUT = zero and
DFLG.HIB set in DCB.FLGS)

o Return the I/O operation status and length of transfer to the DCB.
« Exit via branching to routine IODONE or EVRTE if I/O is to continue.

When ESRs are executed in the termination phase of the driver, the only subroutine called is
TOCHOFF. Termination ESRs always end by branching to IODONE, or EVRTE if I/O is to
continue.

TOCHOFEF is called to remove an entry from the time-out chain via:
BAIL. U8, TOCHOEF

On entry, register 13 or UD contains the DCB address. Registers 10 and 11 are destroyed.
Intermediate ESRs are used to:

+ modify CCB.SUBA for the next ISR. A SINT can be used to get it started.

o disconnect the DCB from upper level nodes in the event coordination table.

« modify DCB.ESR. (SQS uses the address in DCB.ESR as the entry point into the driver when
the A(LEAF) is removend from system queue.)

48-190 F00 R00 59

6.1
6.2
6.3
6.4
6.5
6.6

6.7

6.8
6.9

CHAPTER 6

COMPONENTS OF THE DEVICE CONTROL BLOCK (DCB)

AND CHANNEL CONTROL BLOCK (CCB)

INTRODUCTION

THE MACRO PROTOTYPE STATEMENT
ENVIRONMENT INITIALIZATION
UNIQUE DCB ID GENERATION

OBJECT MODULE LABEL GENERATION

DEVICE CONTROL BLOCK (DCB) STORAGE
ALLOCATION/INITIALIZATION

CHANNEL CONTROL BLOCK (CCB) STORAGE
ALLOCATION/INITIALIZATION

DEVICE MNEMONIC TABLE (DMT) AND LEAF LINKAGE

MISCELLANEOUS (OPTIONAL) STORAGE
ALLOCATION/INITIALIZATION ‘

6.10 MACRO TERMINATION

A . s N

10
12

LIST OF TABLES

TABLE 6-1. MACRO PROTOTYPE STATEMENT PARAMETERS
TABLE 6-2. DCBIPARAMETERS AND INITIALIZED FIELDS
TABLE 6-3. OPTIONAL PARAMETERS FOR CCBI MACRO DEFINITION

-ii -

CHAPTER 6

COMPONENTS OF THE DEVICE CONTROL BLOCK (DCB)
AND CHANNEL CONTROL BLOCK (CCB)

6.1 INTRODUCTION

The DCB and associated CCBs are the device driver data and control areas. There is usually one
DCB definition for each type of device. Each type of DCB is assigned a device code or DCOD. The
DCOD is used to select DCBs (and drivers) when configuring the system, as described in Chapter
7. .

DCODs zero through 239 and 255 are either already assigned or reserved for use by Perkin-Elmer.
DCODs 240 through 254 are available for user-written drivers. As mentioned above, it is by DCOD
that devices are configured into the system. The DCOD selects a DCB type corresponding to the
device. The DCB, in turn, selects which driver will be included to handle the device.

When more than one device of the same type are configured, multiple DCBs (and CCBs) of the
same type are generated. DCBs are generated by assembling DCB macro calls that are produced by
the system generation utility (SYSGEN/32) with parameters supplied in the configuration
statements. The remainder of this chapter describes the components of these DCB and CCB macros.

A DCB macro has a name of DCBnnn where n is a 3-digit device code (from 240 to 254). The
macro must be written to generate a customized DCB each time it is called, based on the
parameters supplied. The macro must reserve storage for and initialize fields in the device-
independent and device-dependent portions of the DCB. It must also reserve storage for and
initialize any CCB used by the driver. The DCB macro is made up of the following sections:

o The macro prototype statement - giving the macro name (DCBnnn) and the list of valid keyword
parameters.

o The macro variable declarations and initializations.

« Environment initialization (USERINIT).

¢ Unique DCB ID generation (%2IDVAL).

¢ Object module label generation (PROG).

o Storage allocation and initialization for the DCB (DCBI) and CCB(s) (CCBI).
e Device Mnemonic Table and Device Leaf Linkage.

¢ Miscellaneous (optional) storagé allocation and storage initialization.

e Macro termination (USEREND/MEND).

Each of these items is covered in the following subsections. Additional information and examples
are given in the DCBFORM sample macro included with the OS/32 software package in the
SYSGEN32.MLB macro library. A listing of DCBFORM is included in Appendix C.

48-190 F00 R0O 6-1

6.2 THE MACRO PROTOTYPE STATEMENT

The macro prototype follows the macro statement and gives the macro name (DCBnnn) and the list
of valid parameters. The following parameters are required and will always be supplied by

SYSGEN/32.
%DCOD

is the device code. The device code is used as an ASCII string to form the DCB name.

The device code also is placed in the DCB structure as a halfword value, where it can
be accessed by the driver to control the execution sequence of the driver.

%DN

is the device address (i.e., the physical device address on the multiplexor (MUX) bus

to which the device controller responds). It initializes the DCB.DN field.

%ILVL
%2NAME
%10P

is the device’s interrupt priority level.
is the device mnemonic, a 1-4 character device name.

is the input/output processor (IOP) number and is provided only if the device is under
an IOP in a 3260 System.

A complete list of parameters and their meaning is given in Table 6-1. A more complete description
is given in the SYSGEN/32 manual in the discussion of the devices statement.

TABLE 6-1. MACRO PROTOTYPE STATEMENT PARAMETERS

SYSGEN/32

PARAMETER OPTION DESCRIPTION
%DCOD DCOD Device code; also used to create

unique DCB & CCB names.
%DN ADDR Device address
%CLAS IOCLASS I/O class level
%ILVL ILEVEL Interrupt level
%NAME NAME Device mnemonic used in naming

device DCB & CCB in Device Mnemonic Table (DMT).
% QU QUEUE Queue scheduling routine for disks
% CONS CONSOLE Flags console device
%SLCH SELCH Selector channel address
% CNTR CONTROLLER Device controller address
%10P I0P Processor number where device resides
%XDCD XDCOD Extended device code.
%SPND SPINDLE Specifies spindle for floppy disks
%RECLN RECLEN Record length
%SPCR READCONTROL Read control character sequence

6-2 48-190 F00 R00O

SYSGEN/32
PARAMETER OPTION DESCRIPTION]
%SPCW WRITECONTROL | Write control character sequence
%TV1 SCREEN-TIME Time for entire screen
%TV?2 RESPONSE-TIME | Time for term response
%XLT TRANSLATE Name of translation table
%PDCT PADCOUNT Padcount value
%LDCT LEADSYNC Leading sync. count
%SHCCB Flag for shared CCB
%POLMT POLLIMIT Poll limit value
%EOV EOV End-of-volume flag
% CLOCK CLOCK Clock value
%SIZE SIZE Page size for pseudo-devices
%DUAL DUAL Dual port option
% CM CM Channel manager address
%ITV INTIMER Input device timer
%IOLM IOLIMIT Error retry for I/O
%SLS LINESTATUS Static line status
%MNOF MAXFRAMES Max frames outstanding
%MBFS MAXWRITEBUF Maximum buffer size
%MRBS MINREADBUF Minimum record buffer size
%MTO MTO Master time-out
0N 2 N2 No response
%N C NCS Numbered commands
% 0TV OUTTIMER Output device timer
%PLDT POLLDELAY Poll delay timer
%PLTC POLLTIME Poll time out
%SSA SSA Sec station address
%T1 TO2 T1 timer for X.25
%UCSI UCSI UNNUM cmds input
%UCSO UCSO UNNUM cmds output
%WKTC WAKEUP Wakeup time-out
NODISK Suppresses DA parameter in EVNGEN macro call.
DISK Causes DA parameter in EVNGEN macro call.
NONSHARED Suppresses %SHCCB parameter in
DCB macro call
USER User-defined parameters

48-190 F00 R00

6-3

In addition to these parameters which are known to SYSGEN/32, additional device-dependent
parameters may be specified. These "USER" parameters may be supplied at sysgen time via the
"USER=" parameters on the device specification statement. The following is an example of the
DCB macro prototype statement.

NOTE

Macro continuation lines are indicated by a non-blank
character in column 72. This character will not appear on
Common Assembly Language (CAL) listings.

MACRO
DCB241 %DCOD=,%DN=, YNAME=, %CLAS=, x
%ILVL=, YRECLN=, ¥XDCD=, %PEN=

Two optional parameters (%RECLN and %XDCD) and one USER parameter (%PEN) can be
specified. It is possible to supply default values for any of the optional parameters. For example,
%RECLN=256.

The %XDCOD field may assume whatever significance a particular device driver wishes to assign
to it. For example, in some Perkin-Elmer supplied drivers, the %XDCD field is used to specify the
baud rate and parity of a communications line.

After the DCB macro prototype statement, all local and global macro variables must be declared.
Two are required:

BGBLA %IDnnn is a batch global arithmetic variable that counts DCBs of type nnn (=device
code) - starting at zero.

GBLC %IDVAL is a global character variable that contains the ASCII representation of the
current value of %IDnnn. It is used to generate unique DCB labels of the term
DCBnnnid.

Other local and global macro variables may be declared and initialized as required by the
structure/logic of the particular DCB macro. See the examples in DCBFORM in Appendix C.

6.3 ENVIRONMENT INITIALIZATION

After the macro variable declarations and initializations, the DCB macro for custom drivers must
call the USERINIT macro. This macro resets various macro flags to initialize the macro
environment. In particular, it resets flags that indicate that the structure definition macros have
already been included. If DCB or CCB field names are undefined in a user-written DCB macro
(during the macro/assembly phase of system generation), check the macro definition to ensure that
USERINIT is invoked at the appropriate place in the macro. See Appendix C for the DCB macro
definition.

6-4 48-190 F00 R0O

At this point it is also a good idea to pull in the structure of the device-dependent part of the DCB.
Presumably such a structure is defined when writing the driver code. This provides the symbolic
field definitions for the miscellaneous field initialization section of the macro. It also provides the
total size of the DCB for the DCBI macro. For example, if the device is a plotter with a device-
dependent DCB defined in $SPLTRDCB:

USERINIT initialize macro variables
$SPLTRDCB include device-dependent DCB definition

$PLTRDCB must reside in the USERDLIB.MLB macro library along with the DCB macro itself.
6.4 UNIQUE DCB ID GENERATION

This section of the DCB macro generates the unique ASCII ID value (%IDVAL) and increments
the counter %IDnnn. This is accomplished as follows. First, the current value of %IDnnn is
converted to ASCII in %IDV AL using the macro CONVNUM:

CONVNUM VAL=%IDnnn

Then, the value of %IDnnn is incremented by one for the next device of this type (if any):

%IDnnn SETA %IDnnn+1

%IDV AL can now be used to generate unique DCB/CCB labels. For.example:

DCBYDCODY%IDVAL EQU *
or

CCB%DCODYIDVAL EQU *

Because the sequence %DCOD%IDVAL appears frequently within the macro, it is often
advantageous to define a local character macro variable and initialize to the wvalue
%DCOD%IDVAL. For example,

48-190 F00 R0OO 6-5

LCLC 9OFFS

90OFFS SETC '¢DCOD':'%IDVAL'
The variable % OFFS can then be used in place of %2DCOD%IDVAL.
6.5 OBJECT MODULE LABEL GENERATION

Each user-written DCB is assembled as a separate unit, producing a labeled object module for each
device. The object module is given a name via the "PROG" statement, as follows:

DCBY%NAME PROG DCB program label for link map.

%N AME is the device mnemonic passed by SYSGEN/32.
6.6 DEVICE CONTROL BLOCK (DCB) STORAGE ALLOCATION/INITIALIZATION

This section is the heart of the DCB macro. A utility macro, DCBI, is used to reserve the storage
and perform specified initialization. The parameters to DCBI and the DCB fields that they initialize
are listed in Table 6-2. A listing of the DCBI macro is included in Appendix C.

6-6 48-190 F00 R0OO

TABLE 6-2. DCBIPARAMETERS AND INITIALIZED FIELDS

DCBI DEFAULT DCB

PARAMETER VALUE FIELD COMMENTS

%FUNC 0 DCB.FUNC Command driver entry

%INIT DCB.INIT Data transfer driver entry

%TERM DCB.TERM Termination ESR entry

%ATRB 0 DCB.ATRB Supported attributes

%I10C 0 DCB.CLAS Accounting class

%RECL 0 DCB.RECL Record length

%TOUT X‘TFFF’ DCB.TOUT Initial time-out constant

%FLGS DFLG.LNM DCB.FLGS Device flags

%DCOD DCB.DCOD Device code

%I10H COMIOH DCB.IOH Address of IOH list

%DA DCB.DIRL Points to DIR%DCOD %ID

DCB.BITL Points to BIT%DCOD%ID

%CLOC DCB.CCB+6

%CC4 DCB.CCB+4

%DSIZE DCB.SIZE Disk size in sectors

%STRK DCB.STRK Sectors per track

%TCYL DCB.TCYL Tracks per cylinder

%BMSA DCB.BMSA Bitmap buffer required

%DRSA DCB.DRSA Directory buffer required

%DSC DCB.DSC

%NUM DCB.NUM

%PFUN DCB.PFUN

%PXLT DCB.PXLT Card reader/punch punch
translation table

%RXLT DCB.RXLT Card reader/punch read
translation table

%PSEP DCB.PSEP Card reader/punch punch
separate

%EOLC DCB.EOLC End of line characters for
line printer

%RTRY DCB.RTRY Operation retry counter

%SHCC 0 DCB.CCB If not 0, define first CCB
pointer

%CCB DCB.CCB+4 If not 0 and %SHCC not 0,
then define second CCB pointer

%EDMA 0 DCB.EDMA

%COPY $DCBS$ Used to copy structure

%SIZE DCB.DVDP+4 Size in bytes of DCB

%I0P 0 DCB.IOP, DCB.ISP | Sets up parameter dependent

DCB.SQ fields in the DCB.

48-190 F0O R0OO

6-7

The following DCBI macros are of particular importance:
DCOD* is the device code for this DCB.

SIZE is the amount of storage to be reserved for the DCB. This parameter defaults to the size
of the device-independent DCB plus 4 bytes.

INIT* is the name of the device driver data transfer initialization entry point (e.g., INITxxxx).

TERM* is the name of the device driver termination event service routine (ESR) entry point
(e.g., TERM=TERMzxxxx).

FUNC is the name of the device driver command initialization entry point (e.g.,
FUNC=CMDxxxx).

IOH is the name of the device driver input/output handler (IOH) list (e.g., IOH=IOHxxxx).
ATRB* supported SVC1 function codes for DCB.ATRB (e.g., ATRB=7B80).

ID* is used to pass IDVAL for unique label generation (e.g., ID=%IDVAL).

10P is the processor number where the device resides.

The parameters marked with an asterisk are required parameters to DCBI. The INIT/TERM
parameters are important because reference to the driver entry points by the DCB is the mechanism
for including the appropriate driver to handle the device.

Other parameters to DCBI may be derived from parameters to the DCBnnn macro (e.g.,
RECL=%RECLN) or set as constants within the DCDnnn macro (e.g., RECL=80). Table 6-2 lists
the defaults for other parameters. Any parameter (or DCB field) that is not specified and that does
not have a default will be initialized to zero.

Example:

DCBI DCOD=241, SIZE=PLTRDCB, INIT=INITPLTR, x
TERM=TERMPLTR, FUNC=CMDPLTR , ATRB=7BCO, x
IOH=IOHPLTR, ID=yIDVAL

Additional device-dependent DCB initialization and optional storage allocation/initialization is
discussed later in this chapter.

6.7 CHANNEL CONTROL BLOCK (CCB) STORAGE ALLOCATION/INITIALIZATION

All OS/32 device drivers that handle interrupts require at least one CCB. Some devices such as full-
duplex communication controllers require two CCBs (one for transmit and one for receive). The
CCBI macro will allocate or initialize one CCB on each call. A second call to CCBI is allowed to
generate the second CCB, where required.

There are two required parameters to CCBI:

6-8 48-190 F00 R0OO

e DCOD - the device code
¢ ID - the current IDVAL (e.g., ID=%IDVAL)

These parameters are used for generating a unique CCB label (CCBnnnid), and for referencing the
DCB (as DCBnnnid). Optional parameters are listed in Table 6-3. These parameters initialize
fields in the CCB. Normally, CCB fields are set up dynamically by the device driver.

TABLE 6-3. OPTIONAL PARAMETERS FOR CCBI MACRO DEFINITION

CCBI CCB
PARAMETER FIELD COMMENTS
%XLTAB CCB.XLT Translation table
%SUBA CCB.SUBA | ISR Address
%EBO CCB.EBO Buffer 0 End Address
% CCW CCB.CCWwW Channel Control Word
%CFLGS CCB.FLGS | Driver-dependent flags
% CCBN N/A Must be undefined for first CCB

When calling CCBI to generate a second CCB, the parameter %CCBN must be specified - any value
will do (e.g., CCBN=2). The second CCB will be named "CCXnnnid." Also, when two CCBs are
generated, the DCBI macro parameter CCB should be specified to cause the second CCB to be
referenced by the DCB.

Example of first or only CCB:
CCBI DCOD=241, ID=IDVAL, XLTAB=XLTPLTR
Example of a second CCB, if required:
CCBI DCOD=241, ID=IDVAL, CCBN=X
Note that any value of CCBN is acceptable as long as the parameter is defined. The valué itself is
ignored.

6.8 DEVICE MNEMONIC TABLE (DMT) AND LEAF LINKAGE

For the DCB to be located via the DMT, a special label and entry point must be generated as
follows:

48-190 F00 R0OO 6-9

DCB_Y%NAME EQU DCB%DCODY%IDVAL
ENTRY DCB_%NAME

This generates an alternate name for the DCB that can be referenced by the DMT macro generated
by SYSGEN/32. For example, if a device is named "PLTR" for a plotter, the alternate DCB name
would be DCB_PLTR.

After generating the label for the DMT, it is also necessary to initialize the DCB.DMT field to
reference the DMT entry for this device:

ORG DCBYDCODY%IDVAL+DCB.DMT
EXTRN DMT_%NAME
DAC DMT_%NAME

The label DMT_%NAME is generated by the DMT macro as an entry point.

The DCB.LEAF field must be initialized to point to the correct device leaf. If the device shares a
leaf with other devices, the parameter %SHCCB will be nonnull. In this case the name of the leaf is
LF%SHCCB. Otherwise, the leaf name is LFADCOD%IDVAL. The leaves and their labels are
generated by the EVNGEN macro emitted by SYSGEN/32.

The following code sequence initializes the DCB.LEAF field:

ORG DCBYDCOD%IDVAL
AIF (T'%SHCCB' EQ 'U')&NSLEAF
EXTRN LF%SHCCB
DAC LF%SHCCB
AGO &NRMLFX
&NSLEAF ANOP
EXTRN LE%DCODY%IDVAL
DAC LF%DCODY%IDVAL
&NRMLEX ANOP

Note that if this will never be used with shared leaves, the conditional (AIF), the references to
LF%SHCCB and AGO%NRMLFX can be omitted.

6.9 MISCELLANEOUS (OPTIONAL) STORAGE ALLOCATION/INITIALIZATION

This section of the DCB macro generates any optional storage outside of the DCB itself. For
example, the driver might require a work buffer whose size is specified as a sysgen parameter and
therefore cannot be part of the fixed length device-independent DCB structure.

6-10 48-190 F00 R0OO

This section also performs optional initialization of fields in the DCB (usually the device-dependent
part), such as Extended Device Code (XDCD) or pointers to optional storage discussed above.
Some of the initialization may be driven by parameters supplied at sysgen time. For example:

AIF (T'XDCD EQ 'U')&NOXDCD
ORG DCBY%DCOD%IDVAL+DCB.XDCD
DC %XDCD

&NOXDCD ANOP

This code initializes DCB.XDCD if a value was specified. Otherwise, the field is left at zero.

Other initializations may be required. For example, suppose the driver requires a variable length
buffer, specified by USER parameter %BUFL (default 256). The following code might be used:

ORG DCBy%DCODZIDVAL+DCB.BUES

DAC BEy%DCODy%IDVAL start of buffer

DAC BFEY%DCOD%IDVAL end of buffer

This will set up the buffer start and end addresses in the device-dependent DCB. The buffer would

be allocated as follows:

ORG $STYDCODYIDVAL
ALIGN 4

BF%DCOD%IDVAL EQU *
AIF (T'%BUFL EQ 'U')&BUFDFL

DS %BUEL

AGO &BUFFE
&BUEDEL ANOP

DS 256
&BUFF ANOP

BFE%DCODYZIDVAL EQU *-1
$§STYDCOD%IDVAL EQU *

48-190 F00 R00

end of DCB
(if required)

use default

specified size

default size

redefine end address

6-11

Note that label $ST%DCOD%IDVAL is defined by the DCBI macro as the first location after the
end of the device-dependent DCB. When allocating additional storage, this label should be
redefined as shown.

6.10 MACRO TERMINATION

After all miscellaneous initializations have been completed, all that remains is to properly terminate
the DCB. This requires three steps.

1. "ORG" to the end of the DCB or any allocated storage (label $ST%DCOD%IDVAL).
2. Invoke the USEREND- -macro.
3. Code the MEND (Macro End) statement.

The following is the required code:

ORG $ST%DCOD%IDVAL
USEREND
MEND

6-12 48-190 F0O0 ROO

CHAPTER 7

DIFFERENCES FOR DRIVERS WRITTEN UNDER INPUT/OUTPUT PROCESSORS (IOP)

7.1 INTRODUCTION

7.2 CENTRAL PROCESSING UNIT (CPU) INPUT/OUTPUT PROCESSOR (IOP)
DIFFERENCES

7.3 BUILDING THE DEVICE CONTROL BLOCK (DCB)
7.4 CODE CHANGES

7.4.1 Add to System Queue Macro (ADDSQ)

7.4.2 Interrupt Service Pointer Modification (ISPMOD)

S W W N

CHAPTER 7

DIFFERENCES FOR DRIVERS WRITTEN UNDER INPUT/OUTPUT PROCESSORS (IOP)

7.1 INTRODUCTION

Users of the 3260 System have available to them the 3200 IOP which performs physical input/output
(I/O) to the devices configured under it. The purpose of the IOP is to minimize the amount of time
the central processing unit (CPU) has to spend performing I/O functions, thereby enabling the CPU
to perform other operating system services or execute user tasks in a more efficient manner.

A 3260 System can have up to nine satellite processors which can be a mixture of auxiliary
processing units (APU) and IOPs. The devices in a 3260 System can reside either under an IOP (or
multiple IOPs), the CPU or both. Note that the system console and all Integrated
Telecommunication Access Method (ITAM) devices (including the direct memory access
input/output subsystem (DIOS)) must reside on the CPU. It is possible for a single copy of a device
driver in memory to support devices that reside under multiple processors. In fact, Perkin-Elmer’s
standard device drivers have this capability.

This chapter will discuss the techniques a driver writer should use so that the driver can execute
under both the CPU and IOPs.

7.2 CENTRAL PROCESSING UNIT (CPU) INPUT/OUTPUT PROCESSOR (IOP)
DIFFERENCES

There are several ways in which the IOP differs from the CPU in a 3260 System. The first
difference is that the IOP has an interrupt service pointer table (ISPT) that has fullword entries and
can be located anywhere in memory. The CPU’s ISPT has halfword entries and is always located at
memory address X’D0’. Therefore channel control blocks (CCBs) and interrupt service routines
(ISRs) are not restricted to the first 64KB of memory. A pointer to the ISPT for each IOP is
located in its input/output parameter block (IPB).

The second difference is an optional fullword CCB.SUBA field as specified by bit 9 in the channel
command word (CCW). (See Fig 2-6 and accompanying description of CCB.) Therefore, the ISR
address specified by the CCB.SUBA field is not restricted to the first 64KB of memory. Currently,
this 64KB limit still exists for standard Perkin-Elmer device drivers, as they have not been
modified to use this particular feature of the IOP.

The third difference is the use of a multiple level type of system queue service (SQS) called
synchronous interrupt service (SIS). Drivers configured under the IOP should not attempt to access
the standard system queue of the CPU. On the CPU, leaf structures are added to the system queue
to be serviced. On the IOP, the leaf structure must be added to the level 4 synchronous interrupt
queue.

Mechanisms are provided to handle the differences between the CPU and the IOP, as described
below.

48-190 F00 R0OO 7-1

7.3 BUILDING THE DEVICE CONTROL BLOCK (DCB)

There are a number of new fields in the DCB that play a significant role in the proper operation of
a driver due to the addition of the IOP. These fields are:

DCB.IOP is the id number of the processor where the device resides; RTSM id for IOP
devices; zero for CPU devices.

DCB.ISP is the address of the ISPT for the processor where the device resides. This address is
variable for IOP devices and X‘D0’ for CPU devices.

DCB.SQ is the address -of the proper system queue for the processor where the device resides.
This field is also the address of the synchronous interrupt queue level 4 for IOP
devices and the address of the standard system queue for CPU devices.

These fields must be set up at system generation (sysgen) time by the macros that build each DCB.

The Sysgen/32 task has been modified to recognize devices that are under an IOP and user-written
drivers are included in the operating system using the standard Sysgen/32 mechanism. See the
SYSGEN/32 Reference Manual for more details.

The user-written DCB must set up the new DCB fields described above. The Sysgen/32 task will
add a new parameter to all device macro calls which is the id number of the processor where the
device resides if it is under an IOP. Therefore the user should add an "IOP=0" parameter to the
macro prototype statement of the user DCB macro. The zero is the default value, indicating the
CPU. If the user DCB macro calls the DCBI macro provided by Perkin-Elmer to set up many
standard DCB fields, the user only has to add a "IOP=%IOP" parameter to the parameter list in the
DCBI macro call. If the user DCB macro sets up the DCB fields itself, the following code must be
added to the macro to set up the new fields. These macro statements will follow the

ORG $STYDCODY%ID

line at the end of the standard DCBI definition as shown in Appendix C.

7-2 48-190 F00 R0O

AIF ('%I0P' EQ 'O')&NOIOP Branch if on CPU
ORG DY%SYSINDX+DCB.IPB

DAC A (IPBY%IOP) IPB address
EXTRN IPBY%IOP

ORG DY%SYSINDX+DCB.ISP

DAC A (ISPSY%IOP) ISPT address
EXTRN ISPSY%IOP

ORG DY%SYSINDX+DCB. SQ

DAC A(SIQZIOP:4) system interrupt queue level 4 address
EXTRN SIQ%ZIOP:4

ORG D%SYSINDX+DCB.IOP

DCZ %I0P IOP number
AGO &IOPEXIT Done, branch out
&NOIOP ORG D¥%SYSINDX+DCB.SQ
DAC SQ CPU system queue address
EXTRN SQ
ORG D¥%SYSINDX+DCB.ISP
DAC X'DO! CPU ISPT address
ORG Dy%SYSINDX+DCB.IOP
DCz 0 Not on IOP
&IOPEXIT ANOP Finished

7.4 CODE CHANGES

In the driver code itself, the only problems the programmer should encounter is when the driver
must access the system queue (e.g., to schedule the leaf in an ISR) or modify the entry in the ISPT.
Two macros have been provided that reside in the SYSMACRO.MLB provided by Perkin-Elmer
that enable a driver to be written in a manner that is transparent to the processor.

7.4.1 Add to System Queue Macro (ADDSQ)

For all Series 3200 Processors, except the IOP on the 3260 system, the following instruction is used
by a device driver to add an item to the system queue:

ATL Rx,8Q

On an IOP, this instruction will not produce the desired result, since the IOP Event Service (ES)
state is not driven by the system queue data structure. In addition, the IOP, like all other 3200
Series processors, does not generate internal system queue service interrupts.

48-190 F00 R0OO 7-3

Thus, the ADDSQ macro is provided. This macro will take the item (typically a leaf) and add it to
the queue pointed to by the field DCB.SQ.

Calling convention:

label ADDSQ ITEM=Rx, DCB=Ry,WORK=Rz

Where:
Rx is a register that contains the address of the item to add to the processor’s queue.
Ry is a register that contains the address of the DCB.
Rz is a work register.

This macro will generate the following code, which is compatible with both the IOP and the other
3200 Series processors:

L Rz, DCB.SQ (Ry) Get queue pointer

BNZ LABEL1 If O, implies standard SQ,

LA Rz, SQ so get standard SQ address
LABEL1 EQU *

ATL Rx, O (Rx) Add the item to the queue

EPSR Rz ,Rz Get current PSW

TI Rz ,PSW.NTM If bit 15 on, we are on IOP

BZ LABEL2 If on CPU, then exit

LIS Rz, 4 If ocn IOP, then start

PINT Rz Queue service running
LABEL2 EQU * Done

7.4.2 Interrupt Service Pointer Modification (ISPMOD)
For all Series 3200 Processors, except the IOP on the Model 3260 System, the following instruction
is used by a device driver to modify the ISPT:

STH Rx,ISPT(Rz,Rz)

On an IOP, this instruction will not produce the desired result, since the IOP ISPT is not located at
"ISPT"(X*‘D0’), and is not halfword-indexed. Thus, the ISPMOD macro is provided.

7-4 48-190 F00 R0OO

The ISPMOD macro takes the value in Rx and places it in the proper entry in the ISPT (based on
device address). On the CPU, each entry is a halfword. On an IOP, each entry is a fullword.

Calling convention:

label

Where:

ISPMOD ITEM=Rx,DCB=Ry,DN=Rz, WORK=Rm

Rx is a register that contains the value that should be placed in the ISPT.

Ry is a register that contains the address of the DCB.

Rz is the device address.

Rm is a work register.

This macro will generate the following code:

EPSR Rm,Rm
TI Rm, PSW.NTM
BZ LABEL1
SLLS Rz,2
L Rm, DCB. ISP (Ry)
ST Rx, O (Rm,Rz)
SRLS Rz, 2
B LABEL2

LABEL1 SLLS Rz,1
L Rm,DCB. ISP (Ry)
STH Rx,O(Rm,Rz)
SRLS Rz,1

LABEL2 EQU *

48-190 F00 R0O

Get current PSW
Test for being on CPU or IOP
If on CPU, go do usual code
If on IOP, make up fullword index
Get address of IOP's ISPT
Modify the ISPT
Restore register value
and exit
On CPU, make up halfword index
Get address of CPU's ISPT
Modify the ISPT
Restore the register contents

APPENDIX A

DESCRIPTION OF DATA STRUCTURES

TABLE A-1. DEVICE CONTROL BLOCK (DCB)

DISPLACE-
MENT INTO
STRUCTURE®

LABEL

EXPLANATION

0 (0)

DCB.DMT

Fullword address of the device
mnemonic table entry.

4 (4)

DCB.LEAF

Fullword address of LEAF

8 (8)

DCB.WCNT

Halfword value reflecting the number
of logical units currently assigned for
write operation. If this value is -1, a
logical unit is assigned for exclusive
write. If this value is 0, no logical units
are assigned for writes. If this value is
greater than zero, this number
represents the number of logical units
assigned for a write operation.

10 (A)

DCB.RCNT

Halfword value reflecting the number
of logical units currently assigned for a
read operation. Reference DCB.WCNT
for the meaning of the specific values in
this field.

12 (C)

DCB.FLGS

Fullword value reflecting the various
states of the device. Breakdown of this
fullword value —

Bit Meaning

bulk device

on-line device

W N = o

complete

4 active I/O time-out before driver

initialization routine done

system message to console device
Event service routine (ESR) waiting
for driver initialization routine to

48-190 F00 R0OO

A-1

DISPLACE-

MENT INTO

STRUCTURE - LABEL - EXPLANATION
5 delete pseudo device control block

(DCB)

6 console identifier
7 uncancellable device
8 SVC6 connection table
9 write protected device
10 ITAM supported device
11 assigned for SVC 15 access
12 SVC1 halt I/O
13 time-out due to power fail
14 multiple DCB
15 pseudo DCB bit
16 supports vertical forms control (VFC)
17 power fail, no I/O outstanding
18 MMD type disk
19-31 reserved

16 (10) DCB.1INC Indicates that this device is being
intercepted on an SVCI1 level.

20 (14) DCB.7INC Indicates interception on SVC7.

24 (18) Reserved

25 (19) DCB.DCOD | Byte value reflecting the device code for
this device.

26 (1A) DCB.DN Halfword value reflecting the hardware
wired address of this device.

28 (10) DCB.ATRB Halfword value reflecting which
functions this device supports. The
FMS7 module uses this field at
ASSIGN time. Breakdown of this
halfword value —
Bit Meaning
0 interactive
1 supports read
2 supports write
3 supports binary
4 supports wait /O
5 supports random

48-190 F00 R00

DISPLACE-
MENT INTO
STRUCTURE

LABEL

EXPLANATION

6 supports unconditional proceed
7 supports image

8 supports halt /O

9 supports rewind

10 supports backspace record

11 supports forward space record
12 supports write filemark

13 supports forward space filemark
14 supports backspace filemark

15 reserved

30 (1E)

DCB.RECL

Halfword value reflecting the record
length of this device.

32 (20)

DCB.INIT

Fullword address of driver entry point
for data transfer request.

36 (24)

DCB.FUNC

Fullword address of driver entry point
for a device suported command request.

40 (28)

DCB.TERM

Fullword address of driver entry point
for termination routine.

44 (2C)

DCB.TOUT

Halfword value reflecting the
maximum amount of time any data
transfer should take. If this field
contains X‘7FFFF’, a time-out condition
does not start. If this field contains
X‘FFFF’ (-1), the transfer completed
without a time-out condition. If this
field contains X‘0001’ and X*7FFE’, the
system (LFC) clock decrements this
field by one second until this value
becomes an X‘0000°.

46 (2E)

DCB.RTRY

Halfword value reflecting the
maximum number of retrys the driver
attempts if an error occurs.

48-190 F00 R00

DISPLACE-

MENT INTO

STRUCTURE LABEL EXPLANATION

48 (30) DCB.WKEY Byte value reflecting any write keys
attributed to this device.

49 (31) DCB.RKEY | Byte value reflecting any read keys
attributed to this device.

50 (32) DCB.ILVL Halfword value reflecting the interrupt

level of this device. The device
controller must be hardware wired to be
on one of the four interrupt levels. This
field must agree with the hardware.

52 (34) DCB.ERRL | Error logging data area pointer and
error logging on/off switch used by the
0S/32 Error Logging Facility.

56(38) DCB.ISP Fullword address used as pointer to
ISPT for this device.
60 (3C) DCB.TOCH | Fullword address pointer to next DCB

on time-out chain only if the driver has
put this DCB on the time-out chain. If
this value is -1, this DCB is the last one
on the time-out chain.

64 (40) DCB.XFLG Halfword value reflecting specific
information about this device. Magnetic
tape and disk drivers use this field.
Breakdown of this halfword value —
Bit Meaning

directory presence flag

bit map presence flag

reserved

bit map modify flag

reserved

I/O malfunction

bit map malfunction

hardware protect bit

restricted volume flag

magnetic tape at EOV label
last command to magnetic tape was
REWIND

L -2 - - R Y A S)

—
(=]

48-190 F00 R0O

DISPLACE-

MENT INTO

STRUCTURE - LABEL EXPLANATION
11 magnetic tape is on or past EOT
12-15 reserved

66 (42) DCB.CLAS | Halfword value reflecting the device
class for OS/32 Accounting Facility

68 (44) DCB.IOH Fullword address of the IOH list that

' 1 the SVC1 preprocessor uses. If a user
supplied IOH list is desired, include the
IOH list in the device driver.

72 (48) Spare

73 (49) DCB.LEVL Byte address that specifies level for
ADDSQ.

74 (4A) DCB.IOP Halfword address for index of
input/output (IOP) in APBDIR (0 for
CPU).

76 (4C) DCB.IPB Fullword address used as a pointer to
input/output parameter block (IPB) for
IOP.

80 (50) DCB.SQ Fullword address used as a pointer to
processor’s system queue.

84 (54) DCB.Q Fullword address of the specific queue
strategy routine for this device.

88 (58) DCB.EDMA | Fullword address of the extended direct
memory access (EDMA) strategy
routine. The default routine is
EDMACON.

92 (5C) Reserved

96 (60) DCB.NXT Fullword address of the next I/O block
(IOB) waiting for this DCB.

100 (64) DCB.RFLGS | Halfword value reflecting various traps
that the user wants to take wupon
completion of device driver.

48-190 F00 R00

DISPLACE-

MENT INTO

STRUCTURE LABEL EXPLANATION

102 (66) DCB.PRI Byte value reflecting the priority of the
task issuing the SVC1 request.

103 (67) DCB.TYPE Byte value defining the type of IOB
used.

104 (68) DCB.DONE | Fullword address of a user-supplied

' routine executed at driver-termination
time in place of the standard 0S/32
routine, IODONE.

108 (6C) DCB.DCB Fullword address of this DCB.

112 (70) DCB.TCB Fullword address of the task control
block (TCB) of the task requesting the
ro.

116 (74) DCB.QCB Fullword address that points to connected QCB.

120 (78) DCB.ESR Fullword address reflecting the next
entry point into the driver that the
system queue service routine will
schedule.

124 (7C) DCB.UPBK Fullword address reflecting the logical
address (user task relative) of the
parameter control block within
memory.

128 (80) DCB.PBLK Fullword physical address of the SVC1
parameter block.

132 (84) DCB.FC Byte value reflecting user task
requested function.

133 (85) DCB.LU Byte value reflecting the logical unit
(lu) assigned to this device.

134 (86) DCB.STAT Byte value reflecting the device
independent status after termination of
the driver.

48-190 F00 R0OO

DISPLACE-

MENT INTO

STRUCTURE LABEL EXPLANATION

135 (87) DCB.DDPS Byte value reflecting the specific device
dependent status after termination of
the driver.

136 (88) DCB.SADR Fullword address of the user’s buffer

| starting memory location.

140 (8C) DCB.EADR | Physical address of the user’s buffer
ending memory address.

144 (90) DCB.RAND | Fullword value reflecting the user
supplied relative record number.

148 (94) DCB.LLXF Fullword value reflecting the length of
data actually transferred.

152 (98) DCB.SV1X Fullword value reflecting the specific
communications requests or 6250 Tape
Drive requests.

156 (9C) DCB.LUE Fullword copy of the task’s lu table
entry.

160 (A0) DCB.WCHN | Fullword address of the TCB waiting
for the I/O to compete for a task.

168 (A8) DCB.SIZE Fullword value that represents the
number of sectors on a disk; or if used
for a vertical form control, it represents
the number of lines on the device.

172 (AC) DCB.VFC Fullword address of VFCDCB.

48-190 F00 R00

TABLE A-2. CHANNEL CONTROL BLOCK (CCB)

DISPLACE-

MENT INTO

STRUCTURE LABEL EXPLANATION

0 (0) CCB.CCW Halfword value consisting of a status mask and byte

value describing the channel operation to be performed.

Breakdown of this halfword —

Bit
0-7

10-11

12

13

Meaning

Status mask. The micro-code (ADC)
ANDs the device status with the byte
value contained in this field. If the result
is zero, ADC continues with the data
transfer. If the result is not zero, ADC
vectors to the halfword address contained
in CCB.SUBA and the condition code is
set to X‘1°.

Execute bit. If this bit is reset, ADC
vectors to the halfword value contained in
CCB.SUBA and the condition code is set
to X*0’. If this bit is set, ADC continues
with the data transfer.

Reserved.

Redundancy check bit. This byte specifies
the type of redundancy checking required.
Break down of this bit'—

Bit 10 Bit 11 Meaning

0 0 LRC

0 1 BISYNC CRC
1 0 reserved

1 1 SDLC CRC

Buffer select switch. If this bit is reset,
buffer 0 is used. If this bit is set, buffer 1
is used.

Read/write bit. If this bit is reset, a byte is
read from the device to the processor. If
set, a byte is written from the processor to
the device.

48-190 F00 R00

DISPLACE-
MENT INTO
STRUCTURE

LABEL

EXPLANATION

14 Translation bit. If this bit is reset,
translation does not occur. A 'TLATE’
instruction is not required; but, the driver
defined translation table is set as is for this
instruction. Reference the Processor
User’s Manual.

15 Fast bit. If this bit is set, the fast data
transfer mode occcurs--only buffer 0 is
used; translation and redundancy checking
do not occur. This bit must be set for
halfword devices.

2(2)

CCB.LBO

Halfword value reflecting the negative length of buffer
0. ADC adds one to this field and transfers a data byte
until this value turns positive (not zero). When this value
turns positive, ADC compliments the buffer select switch
(if fast bit is reset), vectors to the halfword address
contained in CCB.SUBA, and sets the condition code to
X2,

4 (4)

CCB.EBO

Fullword ending address of the driver’s buffer 0.
Typically, the driver places this address contained in
DCB.EADR into this field. To determine what byte to
transfer, ADC adds the contents of CCB.LBO to
CCB.EBO.

8 (8)

CCB.CW

Byte value containing the accumulated value of either
cyclic or longitudinal redundancy checking. The initial
value of this field is zero.

10 (A)

CCB.LB1

Halfword value reflecting the negative value of buffer 1.
Reference the description of CCB.LBO.

12 (C)

CCB.EB1

Fullword ending address of the driver’s buffer 1. Most
drivers use this field to point to control characters to be
sent to the device after LBO goes positive.

16 (10)

CCB.XLT

Fullword addres-s of a driver defined translation table.

48-190 F00 R00

DISPLACE-
MENT INTO
STRUCTURE LABEL EXPLANATION
20 (14) CCB.SUBA | Halfword address of a driver’s interrupt service routine
(ISR). The address contained in this field is vectored to
if —
, -upon device interrupt, the execute
' bit within the CCB.CCW s reset,
-LBO or LB1 goes positive, or
-bad status is received from the device.
22 (16) CCB.MISC | Driver defined.
23 (17) CCB.FLGS | Driver defined.
24 (18) CCB.DCB Fullword address of the DCB assigned for this data
transfer or command function.
0 storage CCB.DVDP | End of device-independent segment.
28 (10) CCB.XLT2 Fullword address for secondary translate table.

A-10 48-190 FOO R00

TABLE A-3. INPUT/OUTPUT (I/O) BLOCK

DISPLACE-

MENT INTO

STRUCTURE LABEL EXPLANATION

0 (0) IOB.NXT Fullword address of next IOB on IOB
chain. If this field contains zero, this
IOB is the last on the chain.

4 (4) IOB.RFLG Halfword value reflecting request
dependent conditions and caller task
states. Breakdown of this halfword —

Bit Meaning

0 connection completed

1 caller in I/O wait

2 caller expects an I/O trap

3 caller in connection wait

4 ISPT reset flag, 1 equals no reset
5 EDMA exclusive request

6 EDMA connected flag

7 no disconnection at I/O completion
8 system I/O

9 no purge on error

10 request cannot be halted

11 wait pending request

12 reserved

13 do not free IOB at connect time
14 vertical forms control flag

6 (6) IOB.PRI Byte value reflecting the dispatch
priority of the requesting task.

7() IOB.TYPE Byte value defining the type of IOB.
possible values and appropriate
meanings.

Value Meaning
1 in TCB pool; reserved at LINK time
2 spare TCB (one per each task)
3 contained in parameter control
block (PCB)
4 contained in contiguous file’s DCB

48-190 F00 R0O

A-11

A-12

DISPLACE-

MENT INTO

STRUCTURE LABEL EXPLANATION

8 (8) IOB.DONE | Fullword address of driver defined
IODONE routine. If this field contains
a zero, IODONE is executed.

12 (C) I0B.DCB Fullword address of the DCB for this
request.

16 (10) I0OB.TCB Fullword address of the TCB for this
request.

20 (14) IOB.QCB Fullword address pointing to QCB for
this IOB

24 (18) I0B.ESR Fullword address reflecting the entry
into the driver’s initialization ESR or
termination ESR. System queue service
(SQS) schedules both for execution.

28 (1C) IOB.UPBK Fullword unrelocated (logical) address
of requester’s PCB.

32 (20) IOB.PBLK Fullword relocated (physical) address
of requester’s PCB.

33 (21) I0B.FC Byte value reflecting requester’s
function code.

34 (22) I0B.LU Byte value reflecting requester’s
assigned lu.

35 (23) IOB.STAT Byte value reflecting the device-
independent status.

36 (24) 10B.DDPS Byte value reflecting the device-
dependent status.

40 (28) IOB.SADR Fullword starting address of the user’s
buffer.

44 (20C) IOB.EADR | Fullword ending address of the user’s
buffer

48 (30) IOB.RAND | Fullword value reflecting the relative

record number if the request is for
indexed file.

48-190 F00 R00

DISPLACE-

MENT INTO

STRUCTURE LABEL EXPLANATION

52 (34) IOB.LFX Fullword value for length of transfer.

56 (38) IOB.SV1iX Extended SVC1 fullword.

60 (3C) IOB.LUE Fullword copy of lu table entry of task.
Reference DCB.LUE.

64 (40) IOB.WCHN | Fullword address of a TCB waiting for

i the 1/O for this task to complete.

68 (44) I0B.CYL Halfword value for cylinder *2 for disk
access.

70 (46) IOB.SECT Byte value for relative sector on disk
for seek.

71 (47) IOB.LSEC Byte value for last relative sector used
for seek.

48-190 F00 R00

A-13

TABLE A-4.

EVENT COORDINATION NODE

DISPLACE-
MENT INTO
STRUCTURE LABEL EXPLANATION
0 (0) EVN.CORD | Upper pointer
4 (4) EVN.FLGS Flags - must match QCB.FLGS
6 (6) EVN.LOCK | T & S lock for multiprocessing
8 (8) Spare
9 (9) EVN.CLEV | Connection level
10 (A) EVN.TSIZ Tree size
14 (E) EVN.SQS SQS executor
18 (12) EVN.DCB DCB address
22 (16) EVN.TCB TCB address
26 (1A) EVN.QCB Pointer to current QCB
30 (1E) EVN.EVRS Save area for EVREL
32 (20) EVN.NIO Count of I/0’s (connected + queued)
34 (22) EVN.HWIO | HWM of EVN.NIO
38 (26) EVN.CLC Connected leaf chain
42 (2A) EVN.PREV Previous (node) pointer
46 (2E) EVN.NEXT | Next (node) pointer
50 (32) EVN.TOP Top of waiting queue
54 (36) EVN.BOT Bottom of waiting queue
56 (38) EVN.CYL Current cylinder position
57 (39) EVN.RDCT | Redispatch count
58 (3A) Reserved
38 (26) EVN.EMAX | EQU EVN.CLC - EDMA max transfers value
40 (28) EVN.ECTR EQU EVN.CLC + 2 - EDMA active transfer value
38 (26) EVN.WRAP | EQU EVN.CLC - disk leaf secondary queue pointer

A-14

48-190 F00 R00

APPENDIX B
MACHINE STATES

Event Service (ES) State

¢ Used by:

— System Queue Service (SQS)
— Device Driver Events (initialization and termination
— System events (clocks, power restore)

+ Nontask State:

— SQS Interrupts Disabled
— No Context Block
— SVCs are Illegal

Register Set 5, if available, else set F.

o Entered via:

— System Queue "Interrupt”
— LPSW from Task Dispatcher

« Exits via: LPSW to Task Dispatcher

This state uses register 0 thru 15 of set 5. The data input registers (DIRs) and intermediate
event service routine (ESRs) and termination ESRs of drivers are executed in this state.

Nonreentrant System (NS) State

+ Used by:

— First Level Interrupt Handlers (Faults and service calls (SVCs))
— Short SVC Second Level interrupt handlers
— Task Dispatcher

+ Nontask State:

— SQS Interrupts Disabled
— No Context Block
"— SVCs are Illegal

o Register Set 0
(Restricted to Registers 8-F)

48-190 F00 R00 B-1

« Entered Only Via:

— Internal Interrupt (Fault or SVC)
— Call to Dispatcher (LPSW)

« Exit Via:

— TMNSOUT: Return to current task
— TMDISP: Dispatcher
— TMRS(A)IN: Enter RS(A) state

« All SVC and fault handlers execute in this state initially. Certain SVC and fault handlers may
switch to another state. With respect to drivers, NS state is used by SVC1 and input/output
handlers (IOH).

User Task (UT) State

« Tasklevel States:

— Use "User" Context Block at TCB.UT
— SQS Enabled
— SVCs are Legal

o UT State PSW:

— Relocation/Protection Enabled
— Privileged Instruction Illegal

+ Entered via:

— Task Dispatcher
— TMNSOUT

« Exit via:
— Interrupt (SVC or Fault)
o Uses registers 0 through 15 of set 15.
« User programs, e-tasks, d-tasks, the operation system (OS) command processor, console monitor

and loader execute in this state. Drivers do not execute in this state.

Interrupt Service (IS) State
« Uses registers 0 through 7 of set 0 for level 0. For levels 1 through 3, the IS state uses register 0

through 15 of sets 1 through 3, respectively.

« The interrupt service routines (ISRs) of drivers execute in this state.

B-2 48-190 F0O R0O

Reentrant System (RS) State

o Uses registers 0 through 15 of set 6.

o Certain SVCs, fault handlers and file managers execute in this state. Drivers do not use this

state.

Figure B-1 depicts the various machine states and their associated registers and register sets.

190-4

REGISTERS 0

=z

j=
3/
z/
%

P4
w
]

)
T

FANNNNN

SVC INTERRUPT HANDLERS AND 1/0 HANDLER ROUTINES

INTERRUPT SERVICE ROUTINES

ALL 1/0 DRIVEN CODE, EXCEPT INTERRUPT SERVICE

PRIMARILY FILE MANAGER CODE

USER TASKS

Figure B-1. Machine States and Associated Registers and Registers Sets

48-190 F00 R00

Figure B-2 depicts driver machine states and the driver routines, in sequence, that are associated
with them.

SVC1 {OH DIR I1SR1 ESRn 1SRn TERM IODONE

NS

|
|
!
|
|
i
1
|

ES

INT INT

Figure B-2 Machine States and Associated Driver Routines
In their Proper Time Sequence

B-4 48-190 F00 R0O0

Where:
SQ is scheduled by adding the leaf for the device to the system queue.

INT is scheduled by executing a SINT instruction or by an interrupt from a device.

48-190 F00 R0OO

B-5

APPENDIX C

0S/32 MACROS
THE SYSGEN/32 MACRO OUTPUT FILE

NOTE
For the SYSGEN/32 macro input file, see Chapter 7.

IMPUR

MCALI, DCBI, CCBI,CONVNUM, EVNGEN, $TABLS$

MCALL BIOCGEN,DCB39

MCALL MTPI,DCB64

MCALL DCB246

SPTINIT MLBL=120,CSLV=5,CSBE=122, ISPT=500, MTOP=2048, NTCB=51,
SVOL=0832,RVOL=FIXD, TVOL=FIXD,FREQ=60,PIC=6C,6 LEC=6D,
CPU=3230, SLICE=200, SPVL=FIXD, VERSN=0S32LAB, CLASS=4,
SOPT=92F 67000, ERBL=X

DMT CON,LAB1,LAB2,CRT1,CRT2,PRT,PR,MAGO,MAGL,DSC1

DMT DSC2

DMTEND
SPDMT PR
DCBINIT ' A
DCB39 DCOD=39,DN=16, NAME=CON, CONS=1, ILVL=0, XDCD=X"'280D",
RECLN=120

DCB39 DCOD=39, DN=18, NAME=CRT1, ILVL=0, XDCD=X"'280D'
DCB39 DCOD=39, DN=20, NAME=CRT2, ILVL=0, XDCD=X"280D"
DCB113 DCOD=113,DN=98, NAME=PRT, ILVL=0

DCB1 DCOD=1,DN=0, NAME=PR, ILVL=0,XDCD=X"'71"
DCB64 DCOD=64, DN=133, NAME=MAGO, ILVL=0, SLCH=FO, CNTR=1
DCB64 DCOD=64,DN=197, NAME=MAG1, ILVL=0, SLCH=F4, CNTR=2
DCB51 DCOD=51,DN=198, NAME=DSC1, ILVL=0, SLCH=FO, CNTR=B6
DCBS50 DCOD=50, DN=199, NAME=DSC2, ILVL=0, SLCH=FO, CNTR=B6,

SHCCB=DSC1

DCBTERM

DCB246 COUNT=10,DCOD=246,DN=208, NAME=LAB1, ILVL=0
DCB246 DCOD=246,DN=216, NAME=LAB2, ILVL=0
VMTGEN 2

EVNGEN DCOD=39, NAME=CON, TSIZ=1, NUM=0O

EVNGEN DCOD=246,NAME=LAB1, TSIZ=1,NUM=0

48-190 F00 R0O

Q

C-1.

EVNGEN DCOD=246, NAME=LAB2, TSIZ=1,6 NUM=1
EVNGEN DCOD=39,NAME=CRT1, TSIZ=1, NUM=1
EVNGEN DCOD=39, NAME=CRT2, TSIZ=1, NUM=2
EVNGEN DCOD=113,NAME=PRT, TSIZ=1, NUM=0

EVNGEN DCOD=64, NAME=MAGO, TSIZ=3,NUM=0, TYP1=C, COORD=1, UNOD=1
EVNGEN DCOD=64, NAME=MAG1, TSIZ=3,NUM=1, TYP1=C, COORD=2, UNOD=1
EVNGEN DCOD=51, NAME=DSC1, TSIZ=3,NUM=0, TYP1=C, COORD=B6, UNOD=1,C

DA=1

EVNGEN DCOD=50, NAME=DSC2, TSIZ=3,NUM=0, TYP1=C, COORD=B6, UNOD=1,C

DA=1, BITDIR=1,LAST=1, ERBL=1,CPU=3230

EVNGEN DCOD=1,NAME=C, TSIZ=0, NUM=0, TYP1=S, COORD=FO, UNCD=1, C

TYP=C, FLGS=0

EVNGEN DCOD=2,NAME=C, TSIZ=0,NUM=0, TYP1=S, COORD=F 4, UNOD=1, C

TYP=C, FLGS=0

EVNGEN DCOD=B6, NAME=C, TSIZ=0, NUM=0, TYP1=S, COORD=FO, UNOD=1, C

TYP=C, FLGS=0

EVNGEN DCOD=FO, NAME=S, TSI1Z=0, NUM=O, TYP=S, FLGS=0
EVNGEN DCOD=F4,NAME=S, TSIZ=0, NUM=0, TYP=S,6 FLGS=0
FLTPINIT U=0,CPU=3230,REGS=8
EXTRN UBOT.EOl

EXTRN CDVR.FO1

EXTRN CMDB.E33

EXTRN CMEX.E33

EXTRN CMON.EFO1

EXTRN CMSP.F33

EXTRN CMIR.EO2

EXTRN ERRC.FO3

EXTRN EXAC.EFO2

EXTRN EXIN.ES53

EXTRN EXIO.EO2

EXTRN EXLD.ES53

EXTRN EXMY.F53

EXTRN EXSP.E53

EXTRN EXSV.E53

EXTRN EXTI.EO1

EXTRN EXTM.ES53

EXTRN FMCO.F33

EXTRN FMIN.E33

EXTRN FMS7.F33

EXTRN FMA7.E33

EXTRN FMB7.E33

EXTRN FMUT.EF33

EXTRN INTC.FO2

48-190 F00 R00

EXTRN ITFM.MOO

EXTRN MCHK.FO2

EXTRN APSV.FO1

IVTGEN CSL='CON',MXBX=32000,MXPRI=10, SYSS=204800,
ERFD='0S32ERROR LOG', ERDS=200, ERDP=2, PWRDLAY=0,
PWRMODE=MANUAL

SVTGEN MBLK=100,DBLK=5, IBLK=1, DSPL=5, ISPL=1, DNBE=64, INBF=3

DFLIST 15,SQ

SMCONFIG BLOCK=0, START=0, RANGE=2, INTERL=0
STARTUP
END

THE DEVICE CODE:: MACRO

NOTE

This device control block (DCB) is extracted from
DCBFORM in the SYSGEN/32 macro library.

MACRO col

DCB::: 9%DCOD=, %DN=, %CLAS=, 4ILVL=, ¥NAME=, 4QU=,
9CONS=, %4SLCH=, 4CNTR=, ¥XDCD=, 4SPND=,
9YRECLN=, %4SPCR=, %SPCW=, %XLT=, %PDCT=, %LDCT=,
%SHCCB=, YPOLMT=, 4EOV=0, %CLOCK=, 4SIZE=, 4DUAL=,
%SCR=, YRES=%CM=, 4ITV=, %4I0LM=, %SLS=, YMNOF=, MBES=,
YMRBS=, YMTO=, YN2=, YNC=, 40TV=, %PLDT=, 4PLTC=, %SSA=,
9T1=,4UCSI=, 4UCSO=, YWKTC=

DEFINE GLOBAL COUNTER FOR DEVICE CODES
GBLC ¢%IDVAL DECLARE DEVICE ALPHA GLOBAL VARIABLE

BGBLA %ID::: DECLARE DEVICE GLOBAL VARIABLE

LCLA %CCBFL LOCAL VARIABLES AS NEEDED
LCLA %CLASN

LCLC %RXLT, %RQU

LCLC 9%CORDNM, %PTRPAS

LCLC %OFFS

48-190 F00 R00O

72

O b w N

LCLA %RDN

LCLC 9MDN, MCNT, 4MSLCH
LCLA $TRCNT, %UPTR

LCLB %FOUND, %DA

BGBLA %FIRST

%RQU SETC 'COMQ' DEFAULT DEVICE QHANDLER
%MDN SETC '¥%DN' DEVICE ADDRESS
%MCNT SETC "%CNTR' CONTROLLER

9YMSLCH SETC '%SLCH' SELCH
%CCBFL SETA O :
AIF (T'Y%CLAS EQ 'U')&CLSNTD
9CLASN SETA Y%CLAS*12 IOCLASS*12
&CLSNTD ANOP
MACRO CALL TO
USERINIT INITIALIZE STRUC COPY FLAGS

CONVNUM VAL=¥%ID::: CONVERT ¥%ID::: TO ALPHA
%IDVAL RETURNED WITH ALPHA

VALUE OF %ID:::
%ID::: SETA %ID:: s+l BUMP UP FOR NEXT TIME

DCBY%NAME PROG DCB PROGRAM LABEL FOR LINK MAP

Rk kK R Rk R Rk ok kR kR R AR RN Rk kR kR R Rk kR R kR Rk

&DCBOPT ANOP

s ok ok ok sk ok ok o o o o o o o ok ok ok ol o ok ok ok ok o ol ol ok o oo ok ol el ol ol ok o ok ok ok ok

Now replace all values passed in the macro call.

%OFES SETC 'Y%DCOD':'%IDVAL' ESTABLISH PROPER OFFSET

(The label %DCB:%DCOD:%IDVAL is established as the start address of the DCB in DCBI.)

C-4

48-190 F00 R0O

The following is a sample of how some of the passed parameters may be handled.

DEFINE SYSTEM DEPENDANT FIELDS OF DCB FIRST
ORG DCBYOFFS+DCB.DN DEVICE ADDRESS
DC H'9%DN'

A separate leaf is created unless the %SHCCB parameter is passed. If it is passed, it will contain
the name of the shared busy device. The leaf is created by the EVNGEN macro (see the
SYSGEN/32 Macro Output file above).

ORG DCBY%OFES+DCB.LEAF LEAF POINTER
AIF (T'%SHCCB' EQ 'U')&NSLEAF B IF NOT SHARED
DAC LE%SHCCB USE SHARED DEVICE LEAF

EXTRN LEY%SHCCB
AGO &NRMLEX
&NSLEAF ANOP
DAC LEYOFES GENERATE STANDARD LEAF NAME
EXTRN LEYOFES
&NRMLEX ANOP
&NOLEAF ANOP

DEFINE ALTERNATE NAME FOR DMT MACRO
DCB_Y%NAME EQU DCBYOEFS
ENTRY DCB_%NAME
ORG DCBYOFFS+DCB.DMT
DC DMT_%NAME A (DMT ENTRY)
EXTRN DMT_%NAME

AIF (T'%CLAS EQ 'U')&NOCLAS

ORG DCBYOFFS+DCB.CLAS IO CLASS

DC H'%CLASN' IOCLASS12
&NOCLAS ANOP

AIF (T'%ILVL EQ 'U')&NOILVL
ORG DCBYOFES+DCB.ILVL ILEVEL
DC H'YILVL'

&NOILVL, ANOP

48-190 F00 R0OO C-5

&NOXDCD

&NOSLCH

&NOCNTR

&NOSPND

&DEFQU

&NOQU

&NOCLOCK

C-6

CONTINUE WITH OTHER DCB OPTIONS (DEVICE-DEPENDENT)

AIF
ORG
DC
ANOP

AIF
ORG
DCX
ANOP

AIF
ORG
DCX
ANOP

AIF
ORG
DC
DC
ANOP

AIF
ORG
DAC
EXTRN
AGO
ANOP

AIF
ORG
DAC
EXTRN
ANOP

AIF
ORG
DC
ANOP

AIF
ORG

(T'%XDCD EQ 'U')&NOXDCD IF NOT ENTERED
DCBY%OFES+DCB.XDCD ELSE MOVE XDCD

%XDCD EXTENDED DCOD

(T'%SLCH EQ 'U')&NOSLCH
DCBYOFFS+DCB. SDN SELCH
%SLCH -

(T'Y%CNTR EQ 'U')&NOCNTR
DCBYOFFS+DCB. CDN CONTROLLER
9CNTR

(T'%SPND EQ 'U')&NOSPND
DCBY%OFES+DCB.XDCD

H'Y%SPND' FLOPPY SPINDLE
H'o'

(T'9%QU EQ 'U')&DEEFQU
DCB%OFFS+DCB.Q I0 QUEUING
%QU

pALY

&NOQU

("%RQU' EQ '')&NOQU
DCBY%OFFS+DCB.Q

#RQU

9RQU

(T'%CLOCK EQ 'U')&NOCLOCK
DCBY%OFES+DCB.CCB+6
%CLOCK DEFINE CLOCK

(T"%RECLN EQ 'U')&NORECLN
DCB%OFFS+DCB.RECL RECORD SIZE

48-190 FO0 R0OO

DC
&NORECLN ANOP

AIF

ORG

DC
&NOSPCR ANOP

AIF

ORG

DC
&NOSPCW ANOP

AIF

ORG

DC
&NOSCR ANOP

AIF

ORG

DC
&NORES ANOP

AIF
ORG
DAC
EXTRN
AGO
&DEEXLT ANOP

AIF
ORG
DAC
EXTRN
&NOXLT ANOP

AIF

ORG

DC
&NOLDCT ANOP

AIF
ORG

48-190 F00 R00

H'YRECLN'

(T'%SPCR EQ 'U')&NOSPCR
DCBYOFES+DCB.SPCR
%SPCR SPECIAL READ CHARACTER

(T'%SPCW EQ 'U')&NOSPCW
DCB%OFES+DCB.SPCW
%SPCW SPECIAL WRITE CHARACTER

(T'%SCR EQ 'U')&NOSCR
DCBZOFES+DCB.TO1
%SCR SCREEN TRANSMIT TIME

(T'4RES EQ 'U')&NORES
DCBYOFES+DCB.TO2
%RES RESPONSE TIME

(T'%XLT EQ 'U')&DEFXLT
DCBY%OFES+DCB.XLT

#XLT TRANSLATION TABLE
#%XLT AND EXTRN
&NOXLT

("%4RXLT' EQ '')&NOXLT
DCBYOFES+DCB.XLT TRANSLATION TABLE
%RXLT

%RXLT AND EXTERN

(T'%LDCT EQ 'U')&NOLDCT
DCBY%OFFS+DCB . LDCT
H'YLDCT' LEAD. CHAR. COUNT

(T'%4PDCT EQ 'U')&NOPDCT
DCBY%OFES+DCB.PDCT

DC H'Y%PDCT"* PAD COUNT
&NOPDCT ANOP

AIF (T'%POLMT' EQ 'U')&NOMXEC

ORG DCBYOEFES+DCB.MXEC

DC #%POLMT MAX POLL ERR RETRY- POLL LIMIT
&NOMXEC ANQP

AIF (T'¢DUAL' EQ 'U')&NODUAL
ORG DCBYOFEFS+DCB.DUAL DUAL PORT OPTION
DC X'FE'

&NODUAL ~ ANOP

ORG $STYOFFS ORG TO END OF DCB

%RDN SETA ¢DN+1
USEREND MUST END THIS SOURCE MODULE
MEND
MEND

THE DCBI MACRO

MACRO
%SYM DCBI %DCOD=, 4INIT=, %TERM=, 4TOUT=7FFF , ¥DA=, %10C=0,
%I0H=COMIOH, %EDMA=0, %COPY=$DCB#$,
%EUNC=0, 4ATRB=0, ¥RECL=0, ¥SIZE=DCB.DVDP +4,
%FLGS=DFLG.LNM, 4ID=, YDSIZE=, 4STRK=, {TCYL=,
9%BMSA=, ¥{DRSA=, 4DSC=, YNUM=, %SADR=, %SHCC=0,
%CC4=, %CLOC=, %CCB=,
9PFUN=, ¥PXLT=, 4RXLT=,

N O b oW

C-8 48-190 FOO R00O

LCLA

%IOCLN SETA
TITLE
IMPUR
ENTRY
AIF
EXTRN
&NOINIT ANOP
AIF
EXTRN
&NOTERM ANOP
EXTRN
9COPY
D%SYSINDX EQU

9PSEP=, 4EOLC=, 4RTRY=

%IOCLN

%4I0C*12
DCB%DCODYID

DCB%DCODYID

IOCLASS * 12

('%4INIT' EQ 'O')&NOINIT

YINIT

('%TERM' EQ 'O')&NOTERM

%/ TERM

% I0H

*

DCBY%DCODY%ID EQU *

NLIST
DO
DAC
LIST

YSIZE/4
0

$STYDCOD%ID EQU *

AIF
ORG
DAC
AIF
EXTRN
&NEDMA ANOP
ORG
DAC
AIF
EXTRN
&NOEXT ORG
DAC
ORG
DAC
ORG
DCX
ORG
DC
ORG
DC
ORG

48-190 F00 R0OO

MARK END OF DCB

(T'%EDMA EQ 'U')&NEDMA

D%SYSINDX+DCB.EDMA
9 EDMA

DEFINE EDMA

('4EDMA' EQ 'O')&NEDMA

9EDMA

D%SYSINDX+DCB.INIT
YINIT

DRIVER INIT

('%4FUNC' EQ 'O')&NOEXT

YEUNC
D%SYSINDX+DCB.FUNC
9FUNC
D%SYSINDX+DCB.TERM
9 TERM
D%SYSINDX+DCB.ATRB
%ATRB
D%SYSINDX+DCB.CLAS
H'%IOCLN'
D%SYSINDX+DCB.RECL
H'YRECL'
D%SYSINDX+DCB.TOUT

DRIVER EFUNCTION ROUTINE

DRIVER TERMINATION

DEVICE ATTRIBUTES

IO CLASS

RECORD LENGTH

&NSADR

&NODA

&NCC4

&NCLOC

&NDSIZE

&NBMSA

C-10

DCX
ORG
DAC
ORG
DB
ORG
DAC
ORG
DAC
AIF
ORG
DAC
EXTRN
ANOP
AIF
ORG
DAC
EXTRN
ORG
DAC
EXTRN
ANOP
AIF
ORG
DB
ANOP
ATF
ORG
DCX
ANOP
AIF
ORG
DC
ORG
DC
ORG
DC
ANOP
AIF
ORG
DC
DC
ANOP

%TOUT TIME-OUT CONSTANT
D¥%SYSINDX+DCB.FLGS

%EFLGS DEVICE FLAGS
D%SYSINDX+DCB.DCOD

%DCOD DEVICE CODE
D%SYSINDX+DCB.IOH

%IOH I0 HANDLER
Dy%SYSINDX+DCB.DCB

Dy%SYSINDX DCB ADDRESS

(T'%SADR EQ 'U')&NSADR
D%SYSINDX+DCB.SADR
%SADR SADR
%SADR

(T'%DA EQ 'U')&NODA

D%SYSINDX+DCB.DIRL POINT TO DIR.LEAF

DIRYDCODY%ID IF DIR.ACCESS
DIR%DCODYID

DY%SYSINDX+DCB.BITL

BITY%DCODYID BIT.LEAF ALSO
BIT%DCOD%ID

(T'9CCa EQ 'U')&NCC4
DYSYSINDX+DCB.CCB+4
X'ycca',o

(T'%CLOC EQ 'U')&NCLOC
Dy%SYSINDX+DCB.CCB+6
#%CLOC CLOCK SPEC.

(T'YDSIZE EQ 'U')&NDSIZE
D%SYSINDX+DCB.SIZE

#%DSIZE DISC SIZE
D#%SYSINDX+DCB.STRK

X'%STRK' SECTORS/TRACK
D%SYSINDX+DCB.TCYL

X'yTCYL' TRACKS/CYL

(T'%BMSA EQ 'U')&NBMSA
Dy%SYSINDX+DCB.BMSA BITMAP BUEFER
D%SYSINDX+DCB. : BMSA
Dy%SYSINDX+DCB. : %BMSA+255

48-190 F00 R0OO

AIF (T'%DRSA EQ 'U')&NDRSA
ORG D¥%SYSINDX+DCB.DRSA DIR.BUFFER
DC D%SYSINDX+DCB. : 4DRSA
DC D%SYSINDX+DCB. : 4DRSA+255
&NDRSA ANOP
AIF (T'%DSC EQ 'U')&NDSC
ORG DY%SYSINDX+DCB.DSC
DC 9DSC DSC
EXTRN %DSC
&NDSC ANOP -
AIF (T'YNUM EQ 'U')&NNUM
ORG D¥%SYSINDX+DCB.NUM
DC X 'YNUM' NUM
&NNUM ANOP
AIF (T'YPFUN EQ 'U')&NPEUN
ORG D%SYSINDX+DCB.PFUN
DC H'YPFUN' PFUN
&NPFUN ANOP
AIF (T'YPXLT EQ 'U')&NPXLT
ORG D%SYSINDX+DCB.PXLT FOR CARD RDR PUNCH
DAC YPXLT PUNCH TRANSATION
EXTRN %PXLT
&NPXLT ANOP
AIF (T'YRXLT EQ 'U')&NRXLT
ORG DY%SYSINDX+DCB.RXLT

DAC %4RXLT FOR CARD RDR PUNCH.
EXTRN %RXLT READ TRANSLATION

&NRXLT ANOP
AIF (T'YPSEP EQ 'U')&NPSEP
ORG DY%SYSINDX+DCB.PSEP FOR CARD RDR PUNCH
DC X'9YPSEP" PUNCH SEPARATE
&NPSEP ANOP
AIF (T'%EOLC EQ 'U')&NEOLC
ORG DY%SYSINDX+DCB.EOLC
DCX %EOLC (1) PRINTER EOLC
DCX %EOLC (2)
&NEOLC ANOP
AIF (T'%RTRY EQ 'U')&NRTRY
ORG DY%SYSINDX+DCB.RTRY
DCX YRTRY RETRY
&NRTRY ANOP
AIF ('YSHCC' NE 'O')&NOCCBX IF NOT O DONT DO DCB.CCB
ORG DYSYSINDX+DCB.CCB DCB.CCB

48-190 F00 R0O C-11

AIF (T'%CCB EQ 'U')&NOCCBX

DC Z (CCXY%DCOD¥%ID)

&NOCCBX ANOP
ORG $STy%DCODZID

GENERATE SECOND CCB

BACK TO END QF DCB

MEND
THE CCBI MACRO
MACRO
%SYM CCBI %DCOD=, %XLTAB=, %SUBA=, 4EBO=,
% CCW=, %CFLGS=, %ID=, %CCBN=
$CCB
PURE

AIF (T'%CCBN NE

TITLE CCB%DCODY%ID

ENTRY CCB%DCODZID
CCB%DCODY%ID EQU *

AGO &CCBN5
&CCBNX ANOP

TITLE CCX%DCODYID

ENTRY CCX%DCOD¥%ID
CCXY%DCODYID EQU *
&CCBN5 ANOP
CYSYSINDX EQU *

DO CCB+3/4

DAC O

AIF (T'%CCBN EQ
$SXY%DCODYID EQU *

AGO &CCBN9
&CCBN7 ANOP
$SYDCODYID EQU *

C-12

'U')&CCBNX 2ND CCB BRANCH
DEFINE FOR 1ST CCB

B OVER 2ND CCB INIT.

DEFINE FOR 2ND CCB

CLEAR CCB AREA

'U')&CCBN7 B IF FIRST CCB
LABEL EOR 2ND CCB

MARK END OF CCB

48-190 FOO R0O

&CCBN9 ANOP
ORG
DAC
AIF
ORG
DAC
EXTRN
&NOXLTAB ANOP
AIF
ORG
DC
EXTRN
&NOSUBA ANOP
AIF
ORG
DC
&NOCCW ANOP
ATF
ORG
DB
&NOCFLGS ANOP
AIF
ORG
DC
&NOEBO ANOP
ORG
ATF
ORG
&DONE ANOP
MEND

48-190 F00 R0O

C%SYSINDX+CCB.DCB CCB.DCB
DCBY%DCODYID

(T'%XLTAB EQ 'U')&NOXLTAB
CYSYSINDX+CCB.XLT TRANSLATE TABLE
9XLTAB

9XLTAB

(T'%SUBA EQ 'U')&NOSUBA
CYSYSINDX+CCB.SUBA CCB.SUBA
Z (%SUBA)

Z (4SUBA)

(T'%CCW EQ 'U')&NOCCW
C%SYSINDX+CCB.CCW CCB.CCW
X'YCCW'

(T'%CEFLGS EQ 'U')&NOCFLGS
C%SYSINDX+CCB.FLGS CCB.FLGS
X'Y%CFLGS'

(T'%EBO EQ 'U')&NOEBO
C%SYSINDX+CCB.EBO CCB.EBO
Y'%EBO'

$S%DCODY%ID ORG TO END OF CCB
(T'%CCBN EQ 'U')&DONE

$8X%DCOD%ID ORG TO END OF SECOND CCB

C-13

THE USERINIT MACRO

MACRO

USERINIT

GBLB 9CCB,%PDCB, DFLG, %SDCB, %VECDCB

GBLB %DCB$, %DDCB, ¥MMDDX, %DDEX

GBLB %MTP,%BIOCDCB, %LPTDCB, %CDRP

GBLB %ICCB, %IDCB, %ODCB, %S125DCB, %BDCB, 4ADCB, 4AOBDCB
GBLB 9%ETHDCBS, 4ETHSTCM

GBLB 9%EVN,%IOB$,%IOB,%RCTX, 4TCB

%CCB SETB 8CCB - CHANNEL CONTROL BLOCK
%PDCB SETB $PDCB - DEVICE INDEPENDENT DCB
%DELG SETB $DFLG - DCB FLAGS

%SDCB SETB $SDCB ~ SPOOL DCB

%#VECDCB SETB $VECDCB - VEC DCB

%DCB# SETB 8DCBs - DISK DCB

%DDCB SETB $DDCB - DISK DEPENDENT DCB

%MMDDX SETB $MMDDX - MMD DISK DCB
%DDEX SETB $DDEX - ERROR LOGGER DATA AREA

%MTP SETB $MTP - MAG TAPE DCB

%#BIOCDCB SETB $BIOCDCB - BIOC CRT DCB

»LPTDCB SETB $LPTDCB - LINE PRINTER DCB
%CDRP SETB $CDRP - CARD READER/PUNCH DCB
#%»ICCB SETB $ICCB - DATA COMM CCB

%IDCB SETB $IDCB - BASIC DATA COMM DCB
%0DCB SETB $0ODCB - PE 1200 DCB

%S125DCB SETB $58125DCB - PE 1250 DCB

%BDCB SETB $BDCB - BISYNC DCB

%ADCB SETB $ADCB - ASYNC DCB

%AOBDCB SETB $AOBDCB - DATA COMM DCB

O O 0O OO0 0000000000000 oo

%ETHDCBS SETB SETHDCBS - ETHERNET DCB

C-14 48-190 FOO R0OO

%ETHSTCM SETB O $ETHSTCM - ETHERNET DCB
%EVN SETB O $EVN - LEAF /NODE
%I0OB$ SETB O $I0B$ - 1/0 BLOCK & FLAGS
%I0OB SETB O $10B - 1/0 BLOCK
%RCTX SETB O $RCTX - RSA CONTEXT BLOCK
%TCB SETB O $TCB - TASK CONTROL BLOCK
MEND
THE USEREND MACRO
MACRO
USEREND
ASIS
END MUST END THIS MODULE
MEND
IOP MACROS
ISPMOD
%LABEL ISPMOD %ITEM=, %DCB=, %DN=, yWORK=
EPSR %WORK (1) , 4WORK (1) FETCH CURRENT PSW
TI %WORK (1) , PSW.NTM CPU OR IOP?
BZ ISPC%SYSINDX CPU ->
SLLS DN (1), 2 FULLWORD INDEX
L %WORK (1) ,DCB.ISP (%DCB(1)) ISP ADDRESS FOR THIS
PROCESSOR
ST %ITEM (1) ,0 (4WORK (1) ,%DN (1)) STUFF ENTRY
SRLS %DN (1) , 2 RESTORE
B ISPX¥%SYSINDX EXIT

48-190 F00 R00 C-15

ISPCYSYSINDX EQU *

SLLS 9DN (1), 1 HALEWORD INDEX
L 9WORK (1) ,DCB.ISP (4DCB(1)) ISP ADDRESS FOR THIS
PROCESSOR
STH %ITEM(1),0 (%WORK (1) ,DN (1)) STUFE ENTRY
SRLS DN (1), 1 RESTORE
ISPX%SYSINDX EQU *
MEND
ADDSQ
9LABEL ADDSQ %ITEM=, %DCB=, YWORK=
9LABEL LABEL
L 9WORK (1) ,DCB.SQ(%DCB(1)) SQ OR SIQ ADDRESS
BNZ ADDI%SYSINDX NON-ITAM DEVICE
LA 9%WORK (1) , SQ FOR ITAM DEVICES
ADDI%SYSINDX EQU *
ATL 9ITEM (1) , O (%WORK (1)) STUFF THE ITEM
EPSR 9WORK (1) , %WORK (1) CURRENT PSW
TI 9WORK (1) , PSW.NTM CPU OR IOP?
BZ ADDYSYSINDX CPU ->
LIS 9WORK (1) , 4 LEVEL 4...
PINT 9WORK (1) .. .KICKOFF
ADDZSYSINDX EQU *
MEND

C-16 48-190 F00 R0O

APPENDIX D

0S/32 SUBROUTINE DEFINITIONS

SERVICE ROUTINES

NAME: IODGST

ABSTRACT: This routine returns the status to the SVC1 parameter
block.

ENTRYS: IODGST, IODGST2

SOURCE LIBRARY ROUTINES: DCB, IOB, SVC1

EXTRNS: III, ISPTAB

REGISTER USED: R4, R6, RC, RE, RF

ON ENTRY R4 ="Return address
R6 = A (DCB)

ON EXIT: RC, RE, RF destroyed

RF contains status codes
CC is negative if bad status returned

PRINCIPLES OF OPERATION:

At entry, RC is loaded with the address of the parameter block and the interrupt service pointer
table (ISPT) reset flag is tested. If it is not reset, it is done by loading RF with address of III and
setting it at the entry for this request in ISPT. The FC is loaded from the DCB and tested for a
command request. If not command request, move transfer length (LLXF) from device control
block (DCB) to parameter block, which is skipped for command. Next the STAT field is
transferred from DCB to PB and a BZR R4 is executed if this field is zero. If nonzero, the ‘L’ flag
of CC is set and exit is performed via R4.

The alternate entry IOPGST?2 is the same as IODGST except that the testing and resetting ISPTAB
code is skipped.

48-190 F00 R00 D-1

NAME: IODTWT

ABSTRACT: This routine tests for TRAP and WAIT bits and
performs the requested function.

ENTRYS: IODTWT, IODTWT2

SOURCE LIBRARY ROUTINES: I0B, TSW

EXTERNS: TMREMW, SV9.ATQ1

REGISTERS USED: R4, R5, R8-RA, RD, RF

ON ENTRY: R4 = Retrun address
RS = A (I0B)

ON EXIT: R8-RF may be destroyed

PRINCIPLES OF OPERATION:

At entry, R9 is loaded with the address of the task control block (TCB) and the input/output block
(IOB) request dependent flag field (IOB.RFLG) is tested to see if caller expects an input/output
(VO) TRAP. If so, the reason code of the task’s trap queue is set to X‘08’; a BAL to SV9.ATQ1 is
performed to make the queue entry with the unrelocated parameter block address in register RA. If
no trap is expected, this operation is skipped, in which case both paths lead to the checking of the
flag field of IOB again, this time for the YO WAIT bit. If this bit is reset, then return via R4. If
I/O WAIT is indicated, RD is loaded with Y‘8000’ and a BAL to TMREMW is performed; upon
return from the task manager, an exit via R4 is performed.

Entry at the alternate entry IODTWT2 loads R9 with the TCB address and then checks for I/O
WALIT as in the above. I/O Traps are not tested when entered at this label.

D-2 48-190 F00 RO0

UTILITY ROUTINES

NAME: EVMOD
ABSTRACT: This routine modifies the event service routine (ESR)
address to an address specified in register RE.
ENTRYS: EVMOD
SOURCE LIBRARY ROUTINES: EVN, DCB structures
EXTRNS: NONE
REGISTERS USED: R8, R9, RE, RF
ON ENTRY: R8 = LINK
RE = A (ESR)
RF = A (leaf)
ON EXIT: SAME AS ENTRY

R9 will be destroyed

PRINCIPLES OF OPERATION:

Upon entry, R9 is loaded with the address of the DCB from the leaf. If R9 is zero, the leaf is not
connected; therefore, return via R8. If R9 is nonzero, the address of ESR specified in RE has its
most significant bit set (bit 0) to indicate modification by EVMOD. The ESR address is stored at
DCB.ESR. Return to caller via R8.

48-190 F00 R00 D-3

NAME:
ABSTRACT:

ENTRYS:

SOURCE LIBRARY ROUTINES:

EXTRNS:
REGISTERS USED:
ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

EVREL

This routine disconnects a DCB from the tree beginning
at the requested level via a call to COMDIS.

EVREL, NSEVREL
EVN

COMDIS

R6-R9

R8 = LINK
RE = REQUEST LEVEL
RF = leaf ADDRESS

ALL REGISTERS PRESERVED

The two entries, EVREL and NSEVREL are equivalent. At entry, registers R4-RF are saved and
RF is copied to R7, while RE is copied to R9, followed by the loading of R6 with the address of the
DCB obtained from the leaf. A BAL to COMDIS is executed to do the disconnect and when
returned, registers R4-RF are restored and return to caller via R8.

48-190 F00 R00

NAME: GETIOB

ABSTRACT: This routine allocates an IOB from the free list
maintained by each TCB.
ENTRYS: GETIOB
SOURCE LIBRARY ROUTINES: TCB, I0OB
EXTRNS: NONE
REGISTERS USED: R8, RA, RB
ON ENTRY: ES STATE
R8 = LINK
R9 = A (TCB)
ON EXIT: ES STATE
RA = A (IOB)

RB = DESTROYED

PRINCIPLES OF OPERATION:

Upon entry, RA is loaded from the top of the IOB list specified in the TCB. If the list is empty and
safety checks are sysgened in, a system crash ensues with a Crash Code 220*. If list is not empty,
the IOB list pointer is reestablished in the TCB with the address of the next IOB. In the current
IOB, the forward pointer is zeroed, as is the FC, LU, and STAT entries, as well as the parameter
block address, flags, and the IOB DONE executor address. The buffer start address and random
record pointer are set to -1. A return to the caller through R8 is performed.

*This condition should not exist. If a previous I/O and proceed used the last IOB, the task should
have been placed in connection wait at that time. See the SVC1EXIT subroutine definition.

48-190 F00 R0O D-5

NAME:
ABSTRACT:

ENTRYS:

SOURCE LIBRARY ROUTINES:

EXTRNS:
REGISTERS USED:
ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

RELIOB

This routine releases an IOB and returns it to the free
list of the TCB.

RELIOB
1I0B, TCB
NONE

R8, RA, RB

ES State

R8 = LINK
R9 = A (TCB)
RA = A (IOB)

RB DESTROYED
ALL OTHERS PRESERVED

Upon entry, the IOB is tested for type validity (TCB as opposed to spare TCB), and if invalid (not
TCB), a crash with Crash Code 221 is performed if safety checks are sysgened in. For a valid IOB,
the top of list pointer from the TCB (TCB.IOBL) is loaded and stored in the current IOB forward
pointer. The address of the current IOB is then stored in the top of list pointer and an exit to caller

is performed.

48-190 F00 R0OO

NAME:
ABSTRACT:

ENTRYS:

SOURCE LIBRARY ROUTINES:

EXTRNS:
REGISTERS USED:
ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

SQSMLV (Multilevel Device Driver Scheduler)

SQSMLYV dispatches the service routine for devices not
on a single level. Coordination with upper modes is

performed prior to dispatch.
SQS.MLV

DCB, IOB, EVN

None

E8 - EB, ED, EF

In Es State
ED = A (DCB)
EF = A (leaf)

Upon entry, the DCB dependent request flags are checked to ensure an EDMA connection or
connection complete, and if so, the service routine is dispatched. If not, RB is loaded from the upper
node pointer in the leaf. If RB is zero, dispatch the service routine. If not zero, the leaf flag is
checked for the EDMA node and the level is checked for availability. If not available, go to
SQSMSTOP and queue DCB to this node; if so, connect DCB to this node, bump level and retry for
EDMA node. If the EDMA node is found, BAL to EDMAQCON to either connect to the node or
queue the DCB for this node. When returning from EDMAQCON, if the node is gotten, dispatch
the service routine. If queued, exit to SQS.EX.

48-190 F00 R00

EXIT ROUTINES

NAME: DIRDONE
ABSTRACT: DIRDONE is a common exit routine for standard device
Driver Initialization Routines (DIRs)
ENTRYS: DIRDONE
SOURCE LIBRARY ROUTINES: DCB
EXTRNS: SQ
REGISTERS USED: ED - EE
ON ENTRY: ES STATE
ON EXIT: UD = A (SQ)
: ES STATE

PRINCIPLES OF OPERATION:

Upon entry, ED is loaded from SQS.DCB save area. Register EE is loaded from the DCB.ESR
field of the DCB. If the most significant bit is set, this area has already been set by EVMOD and
hence an exit to system queue service (SQS) is performed. If not set be EVMOD, the "ESR"
(termination phase of the driver) address is fetched from the DCB and saved at the dispatch pointer
in the DCB (DCB.ESR). Thereafter, ED is loaded with the address of the SQ and exit is made to
SQS to check for entries on SQ.

D-8 48-190 F00 R0OO

NAME:
ABSTRACT:

ENTRYS:

SOURCE LIBRARY ROUTINES:

EXTRNS:
REGISTERS USED:
ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

EVRTE

This routine is the common exit path for standard device

driver Event Service Routine (ESRs)
EVRTE

NONE

SQ

UD

ES STATE

ES STATE
ED = A (SQ)

Upon entry, ED is loaded with the address of the SQ and an unconditional branch is made to SQS.

48-190 F00 R00

NAME:
ABSTRACT:

ENTRYS:

SOURCE LIBRARY ROUTINES:

EXTRNS:
REGISTERS USED:
ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

IODONE

This routine is the normal or error termination from
standard device driver ESR’s. It returns status to users’
SVC1 PBLK, sets requested task trap, removes I/O
WALIT, and disconnects leaf.

IODONE, IODONE2 (Same as IODONE)
DCB, IOB

NONE

R3 -R8, RD, RF

ES STATE
RD = A (DCB)
RF = A (leaf)

ES STATE
RD = A (5Q)
RF = A (PARAM BLOCK)

Upon entry, the ABORT I/O flag is reset and the address of a special IODONE executor is loaded.
If address nonzero, branch to this routine. If zero, R3 is loaded with the request dependent flags,
and with the leaf address in RF and load R5 with the IOB address, BAL to IODTWT to check
TRAP and /O WAIT conditions. When returned, the parameter block address is loaded to check
for console dummy driver. If not, set status to parameter block and test for disconnect required
(ITAM). If nonrequired, exit to SQS and check system queue. If ITAM device, load leaf address,
set level counter, and BAL to COMDIS to disconnect from leaf and tree. Upon return, exit to SQS.

D-10

48-190 F00 R0OO

QUEUEING ROUTINES

NAME: . COMDIS
ABSTRACT: This routine disconnects a DCB from the tree starting
from the requested level.
ENTRYS: COMDIS
SOURCE LIBRARY ROUTINES: DCB, 1I0B, EVN, TCB
EXTRNS: TMREMW
REGISTERS USED: R4 - RF
ON ENTRY: R4 = LINK
R6 = A (DCB)
R7 = A (leaf)
R9 = Request level
ON EXIT: R8 - RF may be destroyed

PRINCIPLES OF OPERATION:

Upon entry, the DCB and leaf addresses are copied to RD and RB, respectively, and the Connection
Complete and Seek Check flags are reset in the DCB. Next the level is checked to see if it is the
leaf level (=1) to start with first. If it is not a leaf, a loop is entered to go up levels until the
appropriate level is found; it is tested for direct memory access (DMA) level and if so a BAL to
EDMADIS is performed. If not DMA, a BAL to node DIS is executed. When returned, if more
must be released, the EVN.CORD pointers are followed to next item until we have released all
upper nodes to the EDMA node. At this point, return to caller is via R4.

If level to be released is a leaf, then the address of the IOB is fetched from the DCB and the IOB
flags are tested for system buffered I/O. If the /O count of the TCB is decremented by 1 and in
either case the DCB is now disconnected from the leaf by setting EVN.DCB to zero, the queue is
interrogated to see if it is empty, and if so the top and bottom pointers are set to zero. If not, the
top pointer is adjusted and a BAL to LEAFCON is performed to connect top DCB in queue to leaf.
Upon return, the leaf address is added to the SQ. The IOB flags are checked to see if it can be
released now or not. If so, the IOB is released, the TCB is checked for any wait states, and we then
proceed up the tree to next mode and process as in the above for either a node or EDMA node.
Return to caller is via R4.

48-190 F00 R0OO D-11

NAME:
ABSTRACT:

ENTRYS:

SOURCE LIBRARY ROUTINES:

EXTRNS:
REGISTERS USED:
ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

COMFIFO

The routine adds an IOB to the bottom of a leaf
QUEUE or a leaf/node to the bottom of a node
QUEUE.

COMFIFO
NONE
NONE

R8 - RB

R8 = LINK

R9 = LEVEL NUMBER
RA = A (IOB/leaf/node)
RB = OWNER OF QUEUE

RC is destroyed
CC is negative

Upon entry, the level number is checked to see if it is greater than total number of nodes, and if so,
a system crash with Crash Code 203 results. A crash also occurs if the level number is either
negative or zero. If the leaf level is for a leaf, (level = 1) exit to LFIFO and queue the IOB. If
level is not for leaf, exit to NFIFO to queue the leaf or node.

D-12

48-190 F0O0 ROO

NAME:
ABSTRACT:

ENTRYS:

SOURCE LIBRARY ROUTINES:

EXTRNS:
REGISTERS USED:
ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

COMQ

This routine is a common queue routine which branches
to appropriate queue handler depending upon the level
number.

COMQ
NONE
NONE
E8 - EB

EA = A (I0B/leaf/node)

EB = OWNER OF QUEUE
E8 = LINK

E9 = LEVEL NUMBER

EA & EB passed to QUEUE ROUTINES

When entered, the level number in E9 is compared to see if it is greater than the total number of
nodes, and if so, a system crash with Crash Code 203 results. Otherwise, the contents of E9 are
aligned to a fullword boundary. If the level number is zero, a system crash of 203 also results. If
nonzero, the queue routine address is loaded from the CQTABLE and unconditionally branched to

for execution.

48-190 F00 R0OO

D-13

NAME:
ABSTRACT:
ENTRYS:

SOURCE LIBRARY ROUTINES:

EXTRNS:
REGISTERS USED:
ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

DISKNODE

This routine queues a leaf or node to an upper node.
NONE

NONE

NONE

R8 - RF

R8 = LINK

R9 = LEVEL NUMBER

RA = A (I0B/leaf/node)

RB = owner of queue (leaf/node)
RD = A (DCB)

Nothing modified

Upon entry, the level is checked for the disk controller level (=2) and if so, a branch to NFIFO to
do a first-in/first-out (FIFO) queue is executed. If not, BAL to SEEKCHK to decide if a seek is
necessary. If so, branch to NLIFO to set last-in/first-out (LIFO) queuing. If seek not necessary,

branch to NFIFO.

D-14

48-190 F0O R0OO

NAME: DISKQ

ABSTRACT: This routine handles the queuing of IOB’s and nodes for
: disk I/O. Branching to appropriate queue routine is
performed depending upon the level number of the

request.
ENTRYS: DISKQ
SOURCE LIBRARY ROUTINES: IOB, DCB, EVN
EXTRNS: NONE
REGISTERS USED: R8 - RF
ON ENTRY: R8 = LINK

R9 = LEVEL NUMBER

RA = A (IOB/leaf/node)

RB = owner of QUEUE (leaf/node)
RD = A (DCB)

ON EXIT: RC RE, RF destroyed
CC is negative

PRINCIPLES OF OPERATION:

Upon entry, the level number is compared against the maximum and, if found to be greater, a
system crash with Crash Code 203 results. If the level is the EDMA level (=4), then a branch to
NFIFO is executed to queue on FIFO basis. If it is an intermediate level, then go to DISKNODE to
queue the leaf or node to upper node. If level is leaf (=1), the waiting queue is interrogated. If
empty, then the contents of RA is queued to the bottom of this queue, and if this is for active TCB,
then it is queued to the ‘top,” as well as to ‘wrap.” An exit is then performed through RS8 after
setting the ‘L’ flag of CC. If the top of queue equals the wrap, then the item is placed at the top,
the IOB is inserted into queue, and exit. If it is the same, then it is placed on the secondary queue,
and exit. If the top of the queue is not equal to wrap, then the random address from the IOB is
loaded and compared to the current sector pointer. If we are beyond the current sector, then this
request is wrapped. If it is less than the current sector, then put this request into the IOB request
queue in proper order. If this is the current active TCB request, then put onto secondary queue and
exit. If not current TCB, set it on the top of the queue, insert the IOB, and exit.

48-190 F00 R0OO ‘ D-15

NAME: EDMACON

ABSTRACT: This routine either connects a node to EDMA or rejects
the request. :

ENTRYS: NONE

SOURCE LIBRARY ROUTINES: EVN, DCB, IOB

EXTRNS: NONE

REGISTERS USED: R9 - RF

ON ENTRY: R9 = LINK
RA = A (node)

RB = A (EDMA node)
RD = A (DCB)

ON EXIT: RC, RE, RF are destroyed
CC is clear if connection made
CC is negative if no connection

PRINCIPLES OF OPERATION:

Upon entry, the EDMA node is checked to see if it is already connected, and if so, the CC is set to
negative and return to caller via R9 is performed. Next the request is made for an ‘Exclusive’
connection and if so, the EDMA transfer counter (EVN; ECTR) is checked for activity. If zero, the
‘Exclusive’ request active flag is set and connection is made by incrementing the EDMA transfer
counter by one, setting the connect flag in the DCB, clearing the CC, and returning via R9 to the
caller.

If the EDMA °‘Exclusive’ transfer flag is reset, the EDMA transfer counter is compared with the
EDMA ‘Maximum’ and if found equal, this request is rejected as above with CC set negative. If
not equal, then normal connection is accomplished as above.

D-16 48-190 ¥00 R0OO

NAME: EDMADIS

ABSTRACT: This routine disconnects a DCB from an EDMA node, if
connected, and connects as many queued nodes as
possible.

ENTRYS: NONE

SOURCE LIBRARY ROUTINES: DCB, IOB, EVN

EXTRNS: SQ

REGISTERS USED: R8 - RB, RD RF

ON ENTRY: R8 = LINK

RB = A (EDMA node)
RD = A (DCB)

ON EXIT: R9, RA, RC, RE, RF may be destroyed
CC is negative if DCB not connected
CC is clear if DCB was connected

PRINCIPLES OF OPERATION:

Upon entry, the DCB request dependent flags are examined to determine if the DCB is connected to
the EDMA node. If not, the CC is set to negative and a return to caller via R8 is performed. If
connected, then the connect flag and exclusive activé flag of the DCB and node, respectively, are
cleared and the EDMA ACTIVE Counter of the node is decremented by one. If the node top of
queue is zero (queue empty), then a normal exit is performed with CC cleared. If queue is not
empty, then it is checked to see if it is the last item. If so, it is removed and ‘top’ and ‘bottom’
pointers are set to zero. A BAL to EDMACON is performed in attempt to queue this item. If item
is queued, the leaf of new DCB is added to the SQ and a return to check for another queue item is
made as above. If the connection was not made, the item is added to the EDMA queue, the
forward pointer is set, CC is cleared, and return to caller via R8 is performed.

’

48-190 F00 R00 D-17

NAME: EDMAQCON

ABSTRACT: If EDMA is needed, this routine either queues or
connects a node to the EDMA level.

ENTRYS: EDMAQCON

SOURCE LIBRARY ROUTINES: DCB, 10B

EXTRNS: NONE

REGISTERS USED: R8-R9, RA-RB, RD, RF

ON ENTRY: R8 = LINK

RA = A (LOWER node)
RB = A (EDMA node)
RD = A (DCB)

ON EXIT: R9, RC, RE, RF may be destroyed
CC clear if connected or EDMA not required
CC negative if node is queued

PRINCIPLES OF OPERATION:

Upon entry, the DCB is examined to inspect the EDMA strategy routine address, and if found to be
zero, a BAL to EDMACON is performed in attempt to connect the leaf. A successful connection
results in return to caller via R8. Unsuccessful connection causes an unconditional branch to the
queuing strategy routine pointed to by the DCB with R9 loaded with 4 in order to set the level. If
the EDMA strategy routine address is nonzero, a BAL to this routine is performed to determine if
EDMA is needed, and if so, an attempt is made to connect as above. If not needed, the Connection
Complete Flag in the DCB is set, the CC is reset, and a return to caller via R8 is performed.

D-18 48-190 F00 R00

NAME: LEAFCON

ABSTRACT: This routine connects an IOB to a leaf. All IOB
information *is moved to the DCB.
ENTRYS: LEAFCON
SOURCE LIBRARY ROUTINES: I0B, DCB
EXTRNS: NONE
REGISTERS USED: E9, EC, EF
ON ENTRY: R8 = LINK
RA = A (I0B)
RB = A (leaf)
ON EXIT: RA = A (DCB.IOB)
RB = A (leaf)

RC = A (CONNECT DCB)
R9 = A (CONNECT TCB)
RD & RE Preserved others may be destroyed

PRINCIPLES OF OPERATION:

Upon entry, the DCB address is loaded from IOB and stored into the EVN (leaf). The IOB
information is then moved to the DCB. These items are: request dependent flags, IODONE
processor address, the address of the TCB, the addresses of the driver initialization routine, start
and end, unrelocated parameter block, relocated parameter block, the FC, lu, and STAT fields,
random number, and lu entry. Exit is via R8.

48-190 F00 R00 D-19

NAME:
ABSTRACT:
ENTRYS:

SOURCE LIBRARY ROUTINES:

EXTRNS:
REGISTERS USED:
ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

LEAFQ

This routine queues an IOB to a leaf.

LEAFQ
EVN, DCB
NONE

R8 -RC

R8 = LINK
RA = A (IOB)
RB = A (leaf)

RA, RB Preserved
others may be destroyed

Upon entry, R9 is set to contain level number 1, the DCB queue routine is loaded into RC, and if
zero, a branch to COMQ is performed. If queue routine is defined, branch to this routine via RC.

D-20

48-190 F0D ROD

NAME:
ABSTRACT:
ENTRYS:

SOURCE LIBRARY ROUTINES:

EXTRNS:
REGISTERS USED:
ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

LFIFO

This routine adds an IOB to the bottom of a leaf queue.
LFIFO

IOB, EVN

NONE

R8 - RC

R8 = A (RETURN)
RA = A (IOB)
RB = owner of leaf queue

RC is destroyed
CC is negative

Upon entry, the forward pointer of the IOB is cleared and the bottom of the leaf queue is loaded. If
zero (queue empty), then the IOB is set to the top and bottom of the queue, the CC ‘L’ flag is set,
and exit is via R8. If the bottom of queue is not zero, the IOB is set to be the forward pointer of
current bottom and the IOB becomes the new bottom, thereby setting the ‘L’ flag of CC and exiting

via RS.

48-190 F00 R0O

D-21

NAME: NFIFO

ABSTRACT: This routine adds an item to the bottom of a node (leaf)
queue.

ENTRYS: NFIFO

SOURCE LIBRARY ROUTINES: EVN

EXTRNS: NONE

REGISTERS USED: R8 - RC

ON ENTRY: R8 = LINK

RA = A (ITEM)
RB = owner of queue

ON EXIT: RC is destroyed
CC is negative

PRINCIPLES OF OPERATION:

Upon entry, the forward pointer of the node (leaf) is cleared in the item to be queued. The node
(leaf) bottom of the queue is loaded and if zero, a new entry is being made, in which case the item
address is set at the queue top pointer as well as the bottom. If it is nonzero, then the item to be
added becomes new bottom with its address set at the forward pointer in the previous bottom to
maintain the list. The ‘L’ flag of CC is set and an exit via E8 is performed.

D-22 48-190 F00 R0O

NAME: NLIFO

ABSTRACT: This routine places an item on the top of a node’s queue.
ENTRYS: NLIFO

SOURCE LIBRARY ROUTINES: EVN

EXTRNS: NONE

REGISTERS USED: R8, RA - RB, RF

ON ENTRY: R8 = LINK

RA = A (ITEM)
RB = owner of queue

ON EXIT: RF is destroyed
CC is negative

PRINCIPLES OF OPERATION:

Upon entry, the top pointer of the node’s queue is loaded and if queue is empty, the item is added
to bottom pointer of queue. If not empty, the item in RA is placed at the top of the queue. The
address of the previous top is stored at the item’s forward pointer. The ‘L’ flag of the CC is set and
an exit is performed via EA to caller.

48-190 F00 R00 D-23

NAME:
ABSTRACT:

ENTRYS:

SOURCE LIBRARY ROUTINES:

EXTRNS:
REGISTERS USED:
ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

NODECON

This routine connects a lower node (leaf) to an upper

node.

NONE

EVN

NONE

R8, RA - RD, RF

R8 = LINK

RA = A (LOWER node or leaf)
RB = A (UPPER node)

RD = A (DCB)

RC is destroyed

Upon entry, the DCB address is set into the upper node flagging it as being used, the CC is reset,

and an exit via R8 is performed.

D-24

48-190 FOO R0O0O

NAME:
ABSTRACT:

ENTRYS:

SOURCE LIBRARY ROUTINES:

EXTRNS:
REGISTERS USED:
ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

NODEDIS

This routine disconnects a DCB from a node and

connects the top of the queue, if any.
NONE

EVN, DCB

SQ

R8 - RD, RF

R8 = LINK
RB = A (node)
RD = A (DCB)

RA, RC, RD may be destroyed
CC is negative if node was not connected

Upon entry, the contents of RD is compared with EVN.DCB to see if the node is connected. If not,
the ‘L’ flag is set in the CC and an exit via R8 is executed. If connected the node DCB field is
cleared and the queue top pointer is examined. If empty, return via R8; if not empty, check the
queue bottom to see if it is the last item. If it is, zero bottom pointer; if not, fetch the next item and
reset the top pointer to this item (or O if last item). Fetch the DCB address and leaf address from

previous top of queue and add leaf address to top of the SQ list.

NODECON and exit.

48-190 F00 R0OO

Fall through to routine

D-25

NAME: NODEQCON

ABSTRACT: This routine either connects a node or leaf or will queue
a node or leaf if it is unavailable.

ENTRYS: NONE
SOURCE LIBRARY ROUTINES: EVN, DCB
EXTRNS: NONE
REGISERS USED: R8 - RD
ON ENTRY: R8 = LINK

R9 = connect level

RA = lower node (leaf)
RB = upper node (leaf)
RD = A (DCB)

ON EXIT: RC destroyed
if queued, R9 - RF may be destroyed

PRINCIPLES OF OPERATION:

At entry, RC is loaded with the DCB address from the node (leaf). If zero, branch to NODECON
to connect this DCB to node (leaf). If non-zero, this node (leaf) is unavailable and request must be

queued. The queue strategy is loaded from the DCB and if nonzero, exit to this routine. If zero,
fall into routine NFIFO.

D-26 48-190 F00 R0OO

NAME: PRTYQ

ABSTRACT: This routine performs the priority queue handling by
ordering the wait queue by priority.

ENTRYS: PRTYQ

SOURCE LIBRARY ROUTINES: EVN, I0OB

EXTRNS: NONE

REGISTERS USED: E8 - ED _

ON ENTRY: EA = A (IOB)
EB = A (leaf/node)
E8 = LINK

ON EXIT:

PRINCIPLES OF OPERATION:

Upon entry, the top of the node’s (leaf’s) wait queue is loaded. If empty, the IOB address goes on
the top and bottom of the list, the IOB forward pointer is reset, the CC has the ‘L’ flag set and
return is by way of E8. If nonempty, the priority of the IOB to be inserted is compared with the
priority of the queued top. If ‘new’ is less than or equal to ‘bottom,’ append ‘new’ at the bottom. If
in between, then the queue is searched by priority and the new IOB is inserted in the appropriate
place. In all cases, exit is made via E8 after the ‘L’ flag is set in the CC (Condition Code).

48-190 F00 R0O D-27

NAME: SEEKCHK

ABSTRACT: This routine decides whether a seek is necessary, flags
the DCB with the result, and notifies the caller.

ENTRYS: SEEKCHK

SOURCE LIBRARY ROUTINES: DCB, I0B

EXTRNS: NONE

REGISTERS USED: R9, RC - RF

ON ENTRY: R9 = LINK
RD = A (DCB)

ON EXIT: R8 - RB, RD Preserved

RC, RE, RF, destroyed
CC is zero if seek necessary
CC is negative if no seek necessary

PRINCIPLES OF OPERATION:

Upon entry, the DCB request flags are checked to see if a seek check had already been performed,
and if not then one is executed. If it had, the IOB ‘seek necessary’ flag is checked to see if a seek
must be performed. If not, the CC ‘L’ flag is set and exit is via R9. If yes, then set the CC to zero
and exit via R9. If a seek check must be performed, the number of tracks per cylinder is loaded
from the DCB and the number of sectors per cylinder is computed; the DCB.RAND pointer is
loaded and diminished by DCB.CSEC. If the current sector is the same as random, then no seek is
needed and the flags are set in the DCB to indicate such, CC ‘L’ flag is set, and exit is made via
R9. If not current sector, a check is made to see if it is the same cylinder, and if so, the DCB flags
are set, CC is set to zero, and the exit is via R9. If not the same cylinder, then a seek must be
performed; therefore, set flags in DCB and return to caller with CC set to zero.

D-28 48-190 F00 R00

APPENDIX E

SKELETON DRIVER AND ASSOCIATED DCBXXX MACRO

INITSKEL

This module is the body of the skeleton driver. It includes the structure definitions (from the
standard system libraries), the initialization, interrupt service and termination routines.

NOTE

This driver performs all necessary functions (e.g., setup of
the interrupt service table, call to TOCHON, etc.) explicitly
for purposes of illustration. Standard subroutines are
supplied in the file SUBS.MAC (INITSUBS in the standard
DRIVER.LIB), which perform many of these functions.

MLIBS 8,9,10
INITSKEL PROG PERKIN-ELMER 0S/32 SKELETON DRIVER

TITLE STRUCTURE AND MNEMONIC DEFINITIONS:
* INCLUDE STANDARD SYSTEM STRUCTURES:

$PDCB

$CCB

SREGSS

* DEFINE DEVICE-DEPENDENT DCB:

STRUC

DS DCB.DVDP DEVICE~INDEPENDENT PORTION
DCB.CCB DS 2 A (CCB)
DCB.XDCD DS 2 EXT'D DEV CODE FROM SYSGEN INPUT
* (SEE DCB MODULE)
DCB.XXXX DSF 1 OTHER DEVICE-DEPENDENT FIELDS
* DEFINED HERE.

ENDS

48-190 F00 R00 E-1

* MNEMONIC DEFINITIONS:
TOUTSKEL EQU 5 5 SECOND TIMEOUT (FOR EXAMPLE)

* EXTERNAL REFERENCES:

EXTRN ISPTAB INTERRUPT SERVICE TABLE

EXTRN TOCHON PUT DCB ON TIMER CHAIN

EXTRN TOCHOEF TAKE DCB OFF TIMER CHAIN

EXTRN SQ SYSTEM QUEUE

EXTRN DIRDONE EXIT FROM DRIVER INITIALIZATION
EXTRN IODONE2 ERROR EXIT FROM DVR INIT

EXTRN IODONE FINAL. EXIT FROM DRIVER

TITLE DRIVER INITIALIZATION ROUTINE
IMPUR
ENTRY INITSKEL, TERMSKEL

INITSKEL EQU *

* ENTER HERE FROM SYSTEM QUEUE SERVICE. INIT ROUTINE IS SCHEDULED
* BY SVC 1 SUPERVISOR.

*

* UPON ENTRY:
*

* UD = ADDRESS OF DCB

* UE = ADDRESS OF LEAF

* DCB.EC(UD) = SVC 1 FUNCTION CODE

*

DCB. SADR (UD)

il

SVC 1 BUFFER START ADDRESS (RELOCATED)

* DCB.EADR (UD) = SVC 1 BUFFER END ADDRESS (RELOCATED)
* DCB.RAND (UD) = SVC 1 RANDOM ADDRESS FIELD
* DCB.PBLK (UD) = SVC 1 PARAMETER BLOCK ADDRESS (RELOCATED)

* INSERT ANY DEVICE DEPENDENT INITIALIZATION HERE...

* INCLUDING BUFFER ALIGNMENT CHECKS, FUNCTION CODE CHECKS, ETC.
* ON ERROR, SET DCB.STAT AND DCB.DDPS TO DESIRED ERROR CODE AND
* EXIT VIA IODONE2.

* -OTHERWISE, START UP THE DEVICE AS FOLLOWS:

* SET UP ISPTAB WITH CCB ADDRESS + 1:

LHL U4,DCB.DN (UD) GET DEVICE NUMBER
LHL UC,DCB.CCB (UD) GET CCB ADDRESS
LA UB, 1 (UC) UB := A(CCB)+1

E-2 48-190 F00 R0O

STH UB, ISPTAB (U4, U4) SET ODD CCB ADDR IN ISPTAB

* SET UP CCB EOR NO-EXECUTE:
LI UO, CCWSTAT
STH UO,CCB.CCW (UC)

* SET UP 1ST ISR ADDRESS IN CCB:
LA UO, ISROSKEL
STH UO,CCB.SUBA (UC)

* NOW PUT DCB ON TIME-OUT CHAIN:
BAL U8, TOCHON

* SIMULATE INTERRUPT ON DEVICE TO GET INTO 1ST ISR.

* THIS IS ANALOGOUS TO A SUBROUTINE CALL ON THE 1ST ISR.

* ALL I/O IS NORMALLY DONE IN THE ISR.
LHL U8,DCB.ILVL (UD) GET SYSGEN'D INTERRUPT LEVEL
SINT U8,0(U4) "CALL" THE ISR

* NORMAL INIT ROUTINE EXIT IS TO DIRDONE:
B DIRDONE

TITLE INTERRUPT SERVICE ROUTINES
PURE
* NOTE THAT THE ISRS ARE CODED AS "PURE". LINK PROCESSES THIS PURE
* CODE TO ABSOLUTELY INSURE THAT THE ISRS ARE IN THE 1ST 64KB OF
* MEMORY. THIS IS REQUIRED BY THE P-E 3200 SERIES ARCHITECTURE BECAUSE
* THE INTERRUPT SERVICE TABLE CONTAINS HALEWORD (16-BIT) POINTERS.

* NOTE ALSO THAT THE EXECUTIVE REGISTER MNEMONICS ARE USED TO
* REMIND US THAT WE ARE IN THE EXECUTIVE REGISTER SET ASSOCIATED
* WITH THIS INTERRUPT LEVEL.

* 111! BY CONVENTION, ONLY REGISTERS EO THRU E7 MAY BE USED !!!!
ISROSKEL EQU *

* ENTER HERE FROM SIMULATED INTERRUPT IN THE DIR.

*

* ON ENTRY: (SET UP BY MICROCODE)
*
*

EO = OLD PSW STATUS (IN DIR)

48-190 F00 R0O0

El
E2
E3
E4

OLD LOC COUNTER (RETURN TO DIR)
INTERRUPTING DEVICE NUMBER

DEVICE STATUS

A(CCB) - GET A(DCB) FROM CCB.DCB (E4)

* ANY DEVICE INITIALIZATION IS NORMALLY PERFORMED HERE,

* INCLUDING STATUS CHECKS, OUTPUT COMMANDS, ETC.

* THEN DEVICE TIMEOUTS ARE ENABLED, CCB.SUBA IS SET UP TO INTERCEPT
* THE NEXT INTERRUPT AND WE RETURN TO THE DIR.

*

L ES5,CCB.DCB (E4) GET DCB ADDRESS

LI E6, TOUTSKEL TIMEOUT CONSTANT (IN SECONDS)
STH E6,DCB.TOUT (E5) START TIMER

LA E6, ISR1SKEL NEXT ISR ADDRESS

STH E6,CCB.SUBA (E4) SET IN CCB

LPSWR EO RETURN TO DIR BY LOADING OLD PSW

ISR1SKEL EQU

*

* ENTER HERE WHEN THE DEVICE GENERATES AN INTERRUPT.

*

* ON ENTRY:

*

*

EO
El
E2
E3
E4

(SET UP BY MICROCODE)

OLD PSW STATUS (IN INTERRUPTED CODE)

OLD LOC COUNTER (IN INTERRUPTED CODE)
INTERRUPTING DEVICE NUMBER

DEVICE STATUS

A(CCB) - GET A(DCB) FROM CCB.DCB (E4)

* BY CONVENTION THE 1ST THING WE MUST DO IS TEST THE TIMEOUT

* CONSTANT IN THE DCB. IF IT IS ZERO, THIS INTERRUPT IS TOO LATE.
* THE OS HAS ALREADY SCHEDULED DEVICE TERMINATION.
*

L
LH
BNP

E5,CCB.DCB (E4) GET DCB ADDRESS
E6,DCB.TOUT (E6) TEST TIMEOUT VALUE
ISRTOUT TOO LATE, GET OUT !!!

48-190 F00 R0OO

* ANY DEVICE DEPENDENT CODE WOULD BE INSERTED HERE.
* SUCH AS STATUS CHECKS, DATA TRANSFER, OUTPUT COMMANDS.

* IF ANY ERRORS ARE ENCOUNTERED WHICH REQUIRE IMMEDIATE TERMINATION,
LOAD E7 WITH A STATUS CODE (E.G., X'8400') AND EXIT VIA ISR.STAT
BELOW WHICH SCHEDULES DRIVER TERMINATION. OTHERWISE...

*

THIS ISR MIGHT HANDLE MULTIPLE DEVICE INTERRUPTS.
AT SOME POINT, WE WILL SET UP CCB.SUBA TO POINT TO THE FINAL
ISR:

* X %X ¥ %

LA E6, ISRNSKEL FINAL ISR ADDRESS
STH E6,CCB.SUBA (E4) SET IN CCB
LPSWR EO RESUME INTERRUPTED CODE

ISRNSKEL EQU *

* ENTER HERE ON FINAL INTERRUPT FROM THE DEVICE.

*

* ON ENTRY: (SET UP BY MICROCODE)

*

* EO = OLD PSW STATUS (IN INTERRUPTED CODE)

E1l OLD LOC COUNTER (IN INTERRUPTED CODE)
E2 = INTERRUPTING DEVICE NUMBER

>

*

* E3 = DEVICE STATUS
* E4 = A(CCB) - GET A(DCB) FROM CCB.DCB (E4)
*
* AGAIN, WE MUST 1ST CHECK THAT THE DRIVER HAS NOT BEEN TIMED OUT.
*
L E5, CCB.DCB (E4) GET DCB ADDRESS
LH E6,DCB.TOUT (ES) TEST TIMEOUT VALUE
BNP ISRTOUT TOO LATE, JUST GET OUT !!

* DO ANY DEVICE CLEANUP OPERATIONS HERE....
SET UP DCB.STAT AND DCB.DDPS TO REFLECT STATUS IF DESIRED, OR

* LEAVE THIS UP TO THE TERMINATION ROUTINE.
*

*

LIS E7.0 SET GOOD STATUS
ISR.STAT EQU * ERROR EXIT PATH

48-190 F0O R0O

E-5

STH E7,DCB.STAT (ES5) SET STATUS IN DCB

* NOW SCHEDULE DRIVER TERMINATION BY ADDING LEAF ADDRESS TO SYSTEM
* QUEUE.

* NOTE THAT DCB.TOUT IS SET TO -1 (=X'FEFE') TO PREVENT THE OS

* FROM TIMING IT OUT NOW THAT WE HAVE SCHEDULED TERMINATION.

LCS E7.1 GET A -1

STH E7,DCB.TOUT (ES5) ZAP TIMEOUT

L E7,DCB.LEAF (E5) GET LEAF ADDRESS

ATL E7.8Q SCHEDULE TERMINATION ESR
LPSWR EO EXIT FINAL ISR

ISRTOUT EQU *

* COME HERE ON ANY INTERRUPT WHICH FINDS DCB.TOUT <= C
* DO ANY NECESSARY DEVICE DEPENDENT CLEANUP (EG., DISARM)
AND/OR JUST EXIT

»

LPSWR EO EXIT ISR

TITLE DRIVER TERMINATION ROUTINE
IMPUR

*

NOTE THAT THE TERMINATION ESR IS CODED AS IMPUR BECAUSE IT CAN
OCCUR ANYWHERE IN MEMORY. 1I.E., IT IS NOT RESTRICTED TO THE
* 1ST 64KB.

»*

TERMSKEL EQU *

* ENTER HERE FROM SYSTEM QUEUE SERVICE. DRIVER TERMINATION IS
* SCHEDULED BY THE FINAL ISR OR, IN THE EVENT OF A DEVICE TIMEOUT,
* BY THE 0OS ITSELE. WHICH CAN BE DETERMINED BY EXAMINING DCB.TOUT.

*

»*

UPON ENTRY:

E-6 48-190 F00 R00

* UD

* UF =
*
*
* ACCORDINGLY.
*
LH
BNZ

ADDRESS OF DCB

ADDRESS OF LEAF

U0, DCB.TOUT (UD
TERM.OK

BY CONVENTION, WE FIRST TEST EOR TIMEOUT AND SET STATUS

) DID WE TIMEOUT ?2?
NO, OK

* DEVICE TIMED OUT...SET APPROPRIATE STATUS:

LHI
STH

U7.x'8282"'
U7.DCB.STAT (UD

* CLEANUP AS NECESSARY (EG.,

B

TERM.OK EQU

TERM.END

*

* DID NOT TIME OUT. CHECK FO
* NECESSARY CLEANUP, CALCULATE LENGTH OF TRANSFER AND PUT IN
* DCB.LLXF IF APPROPRIATE...

*

*

TERM.END EQU
BAL
B
END

48-190 ¥00 R00

*

U8, TOCHOEF
IODONE

TIMEOUT STATUS

)
DISARM THE DEVICE, ...)

R OTHER POSSIBLE ERRORS, DO ANY

11t REMOVE DCB FROM TIME OUT CHAIN
FINAL EXIT FROM DRIVER

ASSOCIATED DCBxxx MACRO

The following DCBxx macro definition is provided. Notice how this user has only used the
necessary macro parameters and deleted the other parameters.

DEVICE CODE 246
MACRO
DCB246 %DCOD=, %DN=, %CLAS=, 4ILVL=, YNAME=, %SHCCB=, 4COUNT=

* DEFINE GLOBAL COUNTER FOR DEVICE CODES

GBLC %IDVAL
BGBLA %ID246

LCLC %OFES

LCLA %CLASN

AIF (T'%CLAS EQ 'U')&CLSNTD
9CLASN SETA ¢CLAS*12 IOCLASS*12

& CLSNTD ANOP
*

USERINIT INITIALIZE STRUC COPY FLAGS
*
CONVNUM VAL=¥%ID246 SET ZIDVAL WITH STRING EQUIVALENT
*
* CREATE DCB
*
DCB_%NAME PROG GENERATE PROGRAM LABEL FOR LINK MAP
DCBI DCOD=246,SIZE=DCB.DVDP+4, INIT=INITSKEL, TERM=TERMSKEL, 1

ATRB=7F00, IOH=COMICH, ID=%IDVAL, SHCC=1

* CREATE CCB

CCBI DCOD=246, ID=%IDVAL, SUBA=III
*

CCBYNAME EQU CCBY%DCOD%IDVAL

%1D246 SETA %ID246+1

*

* DEFINE SYSTEM DEPENDENT FIELDS OF DCB FIRST

*

%OFE'S SETC '%DCOD':'%IDVAL' ESTABLISH PROPER OFFSET
ORG DCBYOFES+DCB.DN DEVICE ADDRESS

E-8 48-190 F00 R0O

DC H'Y%DN'
ORG DCBYOFFS+DCB.LEAF LEAF POINTER
AIF (T'$%SHCCB' EQ 'U')&NSLEAF
DAC LF%SHCCB USE SHARED DEVICE LEAF
EXTRN LE%SHCCB
AGO &NRMLFX
&NSLEAF ANOP
DAC LF%OEES GENERATE STANDARD LEAF NAME
EXTRN LE%OFFS
&NRMLEX ANOP

&NOLEAF ANOP
*

*

* DEFINE ALTERNATE NAME FOR DMT MACRO
DCB_9YNAME EQU DCBYOFES
ENTRY DCB_¢NAME
ORG DCBY%OFFS+DCB.DMT
DC DMT_%NAME A (DMT ENTRY)
EXTRN DMT_%NAME

AIF (T'Y%CLAS EQ 'U')&NOCLAS
ORG DCBY%OFES+DCB.CLAS IO CLASS
DC H'%CLASN' IOCLASS*12
&NOCLAS ANOP
*
AIF (T'%ILVL EQ 'U')&NOILVL
ORG DCBY%OFFS+DCB.ILVL ILEVEL
DC H'%ILVL'
&NOILVL ~ANOP
*

* CONTINUE WITH OTHER DCB OPTIONS
*
AIF (T'%COUNT EQ 'U')&NCOUNT
ORG DCBY%OFFS+DCB.DVDP
DC 9%COUNT
&NCOUNT ANOP
*
USEREND MUST END THIS SOURCE MODULE
MEND

48-190 F00 R0O

PERKIN-ELMER

PUBLICATION COMMENT FORM

We try to make our publications easy to understand and free of errors. Our
users are an Integral source of information for improving future revisions.
Please use this postage paid form to send us comments. corrections,
suggestions., elc.

1.

Publication number

2. Title of publication

3. Describe. providing page numbers. any technical errors you
found. Attach additional sheet it neccessary.

4. Was the publication easy to understand? If no. why not?

5. Woere lllustrations adequate?

6. What additions or deletions would you suggest?

7. Other comments:

From Date

Position/Title
Company

Address

STAPLE

STAPLE
FOLD FOLD
NO POSTAGE
NECESSARY
iIF MAILED
IN THE
UNITED STATES
S
—
BUSINESS REPLY MAIL CEE—
FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J. =
S—
POSTAGE WILL BE PAID BY ADDRESSEE SE—
S
PERKIN-ELLMER —
P —
2 Crescent Place e —
Oceanport, N.J. 07757 [—
CEE—
]
ATTN:
TECHNICAL SYSTEMS PUBLICATIONS DEPT., HANCE AVE.
~ fOLO T T T T T T T T T T T T T T T T T
STAPLE

STAPLE
9306

	1_000
	1_001
	1_003
	1_1-001
	1_1-002
	1_1-01
	1_1-02
	1_1-03
	1_1-04
	1_1-05
	1_1-06
	1_1-07
	1_1-08
	1_1-09
	1_1-10
	1_1-11
	1_2-001
	1_2-01
	1_2-02
	1_2-03
	1_2-04
	1_2-05
	1_2-06
	1_2-07
	1_2-08
	1_2-09
	1_2-10
	1_2-11
	1_2-12
	1_2-13
	1_2-14
	1_2-15
	1_2-16
	1_2-17
	1_2-18
	1_2-19
	1_2-20
	1_2-21
	1_2-22
	1_2-23
	1_2-24
	1_2-25
	1_2-26
	1_3-001
	1_3-01
	1_3-02
	1_3-03
	1_3-04
	1_3-05
	1_3-06
	1_3-07
	1_3-08
	1_3-09
	1_3-10
	1_3-11
	1_3-12
	1_3-13
	1_3-14
	1_3-15
	1_3-16
	1_4-001
	1_4-01
	1_4-02
	1_4-03
	1_4-04
	1_4-05
	1_4-06
	1_4-07
	1_4-08
	1_4-09
	1_4-10
	1_4-11
	1_4-12
	1_4-13
	1_4-14
	1_4-15
	1_4-16
	1_4-17
	1_4-18
	1_4-19
	1_4-20
	1_4-21
	1_4-22
	1_4-23
	1_4-24
	1_4-25
	1_4-26
	1_4-27
	1_4-28
	1_4-29
	1_4-30
	1_4-31
	1_4-32
	1_4-33
	1_4-34
	1_4-35
	1_4-36
	1_4-37
	1_4-38
	1_4-39
	1_4-40
	1_4-41
	1_4-42
	1_4-43
	1_4-44
	1_4-45
	1_4-46
	1_4-47
	1_4-48
	1_4-49
	1_4-50
	1_4-51
	1_4-52
	1_4-53
	1_4-54
	1_4-55
	1_4-56
	1_4-57
	1_4-58
	1_4-59
	1_4-60
	1_4-61
	1_5-001
	1_5-01
	1_5-02
	1_5-03
	1_5-04
	1_5-05
	1_5-06
	1_5-07
	1_5-08
	1_5-09
	1_5-10
	1_5-11
	1_5-12
	1_5-13
	1_5-14
	1_5-15
	1_5-16
	1_5-17
	1_5-18
	1_5-19
	1_5-20
	1_5-21
	1_5-22
	1_5-23
	1_A-01
	1_B-01
	1_C-01
	2_000
	2_001
	2_003
	2_1-001
	2_1-01
	2_1-02
	2_1-03
	2_2-001
	2_2-002
	2_2-003
	2_2-01
	2_2-02
	2_2-03
	2_2-04
	2_2-05
	2_2-06
	2_2-07
	2_2-08
	2_2-09
	2_2-10
	2_2-11
	2_2-12
	2_2-13
	2_2-14
	2_2-15
	2_2-16
	2_2-17
	2_2-18
	2_2-19
	2_2-20
	2_3-001
	2_3-01
	2_3-02
	2_3-03
	2_3-04
	2_3-05
	2_3-06
	2_3-07
	2_3-08
	2_3-09
	2_3-10
	2_3-11
	2_4-001
	2_4-002
	2_4-003
	2_4-004
	2_4-01
	2_4-02
	2_4-03
	2_4-04
	2_4-05
	2_4-06
	2_4-07
	2_4-08
	2_4-09
	2_4-10
	2_4-11
	2_4-12
	2_4-13
	2_4-14
	2_4-15
	2_4-16
	2_4-17
	2_4-18
	2_4-19
	2_4-20
	2_4-21
	2_4-22
	2_4-23
	2_5-001
	2_5-002
	2_5-01
	2_5-02
	2_5-03
	2_5-04
	2_5-05
	2_5-06
	2_5-07
	2_5-08
	2_5-09
	2_6-001
	2_6-002
	2_6-01
	2_6-02
	2_6-03
	2_6-04
	2_6-05
	2_6-06
	2_6-07
	2_6-08
	2_6-09
	2_6-10
	2_6-11
	2_6-12
	2_7-00
	2_7-01
	2_7-02
	2_7-03
	2_7-04
	2_7-05
	2_A-01
	2_A-02
	2_A-03
	2_A-04
	2_A-05
	2_A-06
	2_A-07
	2_A-08
	2_A-09
	2_A-10
	2_A-11
	2_A-12
	2_A-13
	2_A-14
	2_B-01
	2_B-02
	2_B-03
	2_B-04
	2_B-05
	2_C-01
	2_C-02
	2_C-03
	2_C-04
	2_C-05
	2_C-06
	2_C-07
	2_C-08
	2_C-09
	2_C-10
	2_C-11
	2_C-12
	2_C-13
	2_C-14
	2_C-15
	2_C-16
	2_D-01
	2_D-02
	2_D-03
	2_D-04
	2_D-05
	2_D-06
	2_D-07
	2_D-08
	2_D-09
	2_D-10
	2_D-11
	2_D-12
	2_D-13
	2_D-14
	2_D-15
	2_D-16
	2_D-17
	2_D-18
	2_D-19
	2_D-20
	2_D-21
	2_D-22
	2_D-23
	2_D-24
	2_D-25
	2_D-26
	2_D-27
	2_D-28
	2_E-01
	2_E-02
	2_E-03
	2_E-04
	2_E-05
	2_E-06
	2_E-07
	2_E-08
	2_E-09
	2_replyA
	2_replyB

