PERKIN-ELMER

PERKIN-ELMER SERIES 3200
WRITABLE CONTROL STORE (WCS)

SUPPORT PROGRAMS

Reference Manual

48-096 FOO ROO

The information in this document is subject to change without notice and should not be
construed as a commitment by The Perkin-Elmer Corporation. The Perkin-Elmer Corpo-
ration assumes no responsibility for any errors that may appear in this document.

The software described in this document is furnished under a license, and it can be used or
copied only in a manner permitted by that license. Any copy of the described software
must include the Perkin-Eimer copyright notice. Title to and ownership of the described
software and any copies thereof shall remain in The Perkin-Elmer Corporation.

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by Perkin-Eimer.

The Perkin-Elmer Corporation, Data Systems Group, 2 Crescent Place, Oceanport, New Jersey 07757
© 1983, 1984 by The Perkin-Elmer Corporation

Printed in the United States of America

TABLE OF CONTENTS

PREFACE vii

CHAPTERS

1 PERKIN-ELMER SERIES 3200 WRITABLE CONTROL STORE (WCS)

1.1 INTRODUCTION 1-1
1.2 WRITABLLE CONTROL STORE (WCS) FUNCTIONAL
DESCRIPTION 1-8
1.3 STATEMENT SYNTAX CONVENTIONS 1-9
1.3.1 File Descriptors (fds) 1-10

2 CREATING A MICROPROGRAM

2.1 INTRODUCTION 2-1
2.2 USER LEVEL WRITABLE CONTROIL STORE (WCS)

INSTRUCTIONS 2-3
2.2.1 Write Control Store (WDCS) 2-4
2.2.2 Read Control Store (RDCS) 2-4
2.2.3 Branch to Control Store (BDCS) 2-4
2.2.4 Enter Control Store (ECS) 2-5
2.3 MICROPROGRAMMING NOTES FOR THE MODEL 3230

PROCESSOR AND THE MODEL 3200MPS SYSTEM

AUXILIARY PROCESSING UNIT (APU) 2-5

3 LINKING, T.OADING, AND STARTING THE WRITABLE CONTROL
STORE (WCS) SUPPORT PROGRAMS

3.1 INTRODUCTION 3-1
3.2 ENV [RONMENT . ‘ 3-1
3.3 LINKING, T.OADING, AND STARTING 3-3
3.3.1 WCSILINK 3-3
3.3.2 WCSAIDS 3-4
3.3.3 Loader and Power Fail Monitor (MPSLPFM) 3-6
3.3.4 WCSUPP 3-6

48-096 F0O0 ROO

CHAPTERS (Continued)

3.3.5 WCSLPFM 3-8

3.4 WRITABLE CONTROL STORE (WCS) IMAGE BUFFER 3-9

4 WCSLINK COMMANDS

4.1 INTRODUCTION 4-1
4.2 CHOOSING A PROCESSOR TO BE LOADED 4-1
4.3 MANAGING THE CONTENTS OF THE WRITABIE

CONTROL STORE (WCS) IMAGE BUFFER 4-2
4.3.1 Clearing the Writable Control Store (WCS)

Image Buffer 4-2
4.3.2 Loading the Writable Control Store (WCS)

Image Buffer 4-3
4.3.3 Examination and Modification of the Writable

Control Store (WCS) Image Buffer 4-4
4.4 SAVING THE CONTENTS OF THE WRITABLE CONTROL

STORE (WCS) IMAGE BUFFER 4-5
4.5 RETRIEVING A WRITABLE CONTROL STORE (WCS)

IMAGE FILE 4-6
4.6 TERMINATION OF WCSLINK 4-6

5 WCSAIDS COMMANDS

5.1 INTRODUCT I ON 5-1
5.2 WCSAIDS TARGET COMMAND 5-2
5.3 CLEARING THE WRITABLE CONTROL STORE (WCS)

IMAGE BUFFER 5-3
5.4 LOADING THE WRITABLE CONTROL STORE (WCS)

IMAGE BUFFER 5-3
5.5 CELL EXAMINATION 5-4
5.5.1 Models 3220 and 3230 Processors, and the

Model 3200MPS System Auxiliary Processing

Unit (APU) EXAMINE Command 5-5
5.5.2 Models 3240 and 3250 Processors, and the

Model 3200MPS System Central Processing Unit

(CPU) EXAMINE Command 5-8
5.6 CEI.LL MODIFICATION 5-9

ii 48-096 F0O ROO

CHAPTERS (Continued)

5.11

5.11.1
5.11.2

5.12
5.13
5.14
5.15
5.16

5.17

SAVING THE CONTENTS OF THE WRITABLE CONTROL
STORE (WCS) IMAGE BUFFER

RETRIEVING A WRITABLE CONTROL STORE (WCS)
IMAGE FILE

TRANSFERRING MICROCODE TO AND FROM WRITABLE
CONTROL: STORE (WCS)

ESTABLISHING THE WRITABLE CONTROL STORE
(WCS) MICROCODE ROUTINES

INSERTING AND REMOVING BREAKPOINTS IN
WRITABLE CONTROL STORE (WCS) MEMORY
Ingerting Breakpoints

Removing Breakpoints

STARTING THE USER PROGRAM
MICROPROGRAM EXECUTION

RESUMING EXECUTION AFTER A BREAKPOINT
USING THE DUMP IMAGE COMMAND

PAUSING THE WCSAIDS TASK

TERMINATING WSCAIDS

6 LOADER AND POWER FAIL MONITOR (MPSLPFM) START OPTIONS
AND MESSAGES

6.1

6.2

w w

w
N

INTRODUCTION

STARTING THE LOADER AND POWER FAIL MONITOR
(MPSLPFM)

LOADING MICROCODE

Loading the Writable Control Store (WCS)

of the Central Processing Unit (CPU)
Loading the Writable Control Store (WCS) of
an Auxiliary Processing Unit (APU)
Selective Loading of the Writable Control
Store (WCS) of a Processor

Listing of Association Parameters

RESTORING THE WRITABLE CONTROL STORE (WCS)
OF THE CENTRAL PROCESSING UNIT (CPU) AND
AUXILIARY PROCESSING UNIT (APU) UPON POWER
FAIL

VERIFICATION

48-096 FOO0 ROO

iii

CHAPTERS (Continued)

6.6 FLAGS 6-9

6.7 ERROR HANDLING 6--9

7 WCSUPP/WCSLPFM PROGRAMS

7.1 INTRODUCT ION 7-1
7.2 USING WCSUPP : 7-1
7.2.1 Managing the Writable Control Store (WCS)

Image Buffer 7-1
7.2.1.1 Clearing and Loading the Writable Control

Store (WCS) Image Buffer 7-2
7.2.1.2 Transferring Microcode Routines to Writable

Control Store (WCS) Memory 7-2
7.2.2 Cell Examination 7-4
7.2.2.1 Models 3220 and 3230 Processors EXAMINE

Command 7-4
7.2.2.2 Models 3240 and 3250 Processors EXAMINE

Command 7-7
7.2.3 Cell Modification 7-9
7.2.4 Inserting and Removing Breakpoints in

Writable Control Store (WCS) Memory 7-9
7.2.4.1 Inserting Breakpoints 7-11
7.2.4.2 Removing Breakpoints 7-12
7.2.5 Microprogram Execution 7-13
7.2.6 Resuming Execution After a Breakpoint 7-14
7.2.7 Using the DUMP IMAGE Command 7-14
7.2.8 Establishing Writable Control Store (WCS)

Microcode Routines 7-15
7.2.9 Pausing the WCSUPP Task 7-16
7.2.10 Terminating a Task 7-17
7.2.11 Saving the Contents of the Writable Control

Store (WCS) Image Buffer 7-17
7.2.12 Retrieving a Writable Control Store (WCS)

Image File 7-18
7.2.13 Writable Control Store (WCS) Wait State 7-18
7.2.14 Restoring Writable Control Store (WCS) After

a Power Fail 7-19
7.3 WCSLPFM 7-21

8 TYPICAL APPLICATIONS

8.1 INTRODUCTION 8-1
8.2 FIND A IN B g8-1
8.3 FLOATING POINT SQUARE ROOT 8-5

iv 48-096 FOO ROO

APPENDIXES

A WCSLINK COMMAND SUMMARY
B WCSAIDS COMMAND SUMMARIES FOR SPECIFIC PROCESSORS
B.1 MODELS 3220 AND 3230 PROCESSORS, AND THE
MODEL 3200MPS SYSTEM AUXILIARY PROCESSING
UNIT (APU) VERSIONS
B.2 MODELS 3240 AND 3250 PROCESSORS, AND THE
MODEL 3200MPS SYSTEM CENTRAL PROCESSING
UNIT (CPU) VERSIONS
c LOADER AND POWER FAIL. MONITOR (MPSLPFM) OPTION AND
MESSAGE SUMMARY
D WCSUPP/WCSL.PFM COMMAND SUMMARIES
D.1 MODELS 3220 AND 3230 PROCESSORS
D.2 MODELS 3240 AND 3250 PROCESSORS
E ERROR ANI) RESPONSE MESSAGES FROM WCSLINK,
WCSAIDS, AND WCSUPP
F ERROR AND RESPONSE MESSAGES FOR LOADER AND POWER
FAIL MONITOR (MPSLPFM)
G EXAMPLLE OF DUMP IMAGE
H ILLUSTRATIVE WRITABLLE CONTROL STORE (WCS) EXAMPLE
AND SET UP
FIGURES

T e
i
DB W N

Model 3220 Processor Block Diagram
Model 3230 Processor Block Diagram
Model 3240 Processor Block Diagram
Model 3250 Processor Block Diagram
Model 3200MPS System Block Diagrams

Creating Debugged Microcode Routines
Using WCSUPP

Creating Debugged Microcode Routines
Using WCSAIDS

Entering Writable Control Store

WCS Initialization

Flowchart for Finding String A in String B

48-096 FOO ROO

INDEX

vi

WCS INSTRUCTIONS AND ASSOCIATED TASKS

LU ASSIGNMENTS FOR WCS SUPPORT PROGRAMS

IND-1

48-096 FOO ROO

PREFACE

This manual 1is a guide for the development and operation of
writable control store (WCS) microcode routines using any of the
available Perkin-Elmer WCS support program products. These
products include the newer WCS support product consisting of the
three separate programs, WCSLINK, WCSAIDS, and the loader and
power fail monitor (MPSLPFM), and the earlier WCS support product
consisting of a full support program (WCSUPP) and a loader and
power fail monitor (WCSLPFM). In describing each of these
products, the manual takes into account the several versions of
WCSAIDS and WCSUPP applicable to different Perkin-Elmer Series
3200 processors. The WCS user should be familiar with the
operation of the applicable processor hardware to understand the
microprogramming concepts involved with the use of WCS. The user
should also be familiar with the 0S/32 operating system.

Chapter 1 contains an introduction to and a functional
description of the WCS. Chapter 2 describes the procedures for
creating a microcode program and the use of assembly level WCS
instructions and their effects on the operating system. Chapter
3 describes each of the WCS support programs and outlines the
manner in which they are linked, loaded, and started. Chapter 4
presents the WCSLINK commands. Chapter 5 presents the WCSAIDS
commands . MPSLPFM commands are presented in Chapter 6. Chapter
7 describes the commands available to WCSUPP and WCSLPFM.
Chapter 8 provides brief descriptions of two typical WCS
applications. The appendixes contain command summaries, error
messages, and program examples.

This manual is intended for use with the 0S/32 R06.2 software
release or higher. Additional material specifically related to
the Model 3200MPS System has also been included. These Model
3200MPS System features are supported by the 05/32 R07.1 software
release and higher. Throughout the text these features are
identified as applicable only to the Model 3200MPS System.

For information on the contents of all Perkin-Elmer 32-bit
manuals, see the 32-Bit Systems User Documentation Summary.

48-096 F0OO ROO vii

CHAPTER 1
PERKIN-ELMER SERIES 3200 WRITABLE CONTROL STORE (WCS)

1.1 INTRODUCTION

The Perkin-Elmer Series 3200 Writable Control Store (WCS) is a
hardware option for the Models 3220, 3230, 3240 and 3250
microprogrammable processors. These models are uniprocessor
systems consisting of a single central processing unit (CPU)
using a single copy of the operating system. It is also part of
the standard configuration of the Model 3200MPS System. The
Model 3200MP3 System is a tightly coupled multiprocessing system
consisting of a CPU and one or more auxiliary processing units
(APUs) executing a single copy of the operating system. Each

processing unit is capable of executing instructions
simultaneously with the others, and of addressing a common pool
of memory. Tasks may pass from one processing unit to another.

For general block diagrams of these processors, see Figures 1-1
through 1-5. The WCS extends the flexibility of the user level
processor to that of the microprocessor. The WCS provides:

e the ability to use the instructions available for writing to
WCS, reading from WCS, and executing user created microcode
routines located in WCS,

e 2,048 words of high speed control store memory for the Models
3220, 3240, and 3250 processors,

‘e 2,048 words of high speed control store memory for the CPU of
the Model 3200MPS System, and

® 4,096 words of high speed control store memory for the Model
3230 processor and for the APU(s) of the Model 3200MPS System.

48-096 F0O0 ROO 1-1

Z-1

00¥ 004 960-8%

645-1 o — e — — — — — — — e e e e -
] s BUS [] 8 3
P e S SW| I
! s1231 cPuC si23 Vi
STORAGE MODULE 3 P4 sl 169 : | crus :
i I MAR | I LOC]‘— INC R 1
I 1 LOC 12 31 il]
| X [l !
STORAGE MODULE 2 ! MAR 12 31 1) 1
[“ !
T l | T H | | 1
i | ! ! ! REGISTER STACK B REGISTER STACK A
| TATION REGISTERS il |
! | MDR 12 31
STORAGE MODULE 1 1 | uUMIT 1RELOCATION 1 |
| FIELD | FIELD ! 1 [| |
: . |_208i7 AnDER_|
] 1 | SEGMENTATION 2087 ADDER 1 ABUS [v '
] REGISTER |1 |
SELECT 1
. a FIXED POINT
STORAGE MODULE 0 | e-a—n e | : \ ARITHMETIC LOGIC UNIT 1
I |comeanre | e e !
] l | 12 BIT ADDER L N \
i 4s4s } _——— e ————— 1 I
OPTIONAL CACHE l CPU A V!
MEMORY INTERFACE I] PRIORITY R :
OPTIONAL ERROR LOGGER | I lop | pecoper | |'NTERRUPT 1t
' | | [7|ReaD onLY]| DECOCER ! |
e ——— ____I__. —_ il MEMORY 1! —I SHIET REGISTER |
]]
1 |
! & MEMORY ADDRESS BUS '] b 1y }
] 4 i I | {1 P £ N -
| £ MEMORY DATA BUS 3 " —————= o ————
| \
[I EDMA MAR | | .{)
1 by CONTROL STORE ! H
\ 1 h ADORESS : | 1
EDMA MDR.] = 1
! i [wor 1 'l ! I H
1 | | !
| |]
L b EDMA BUS 3 ,' I HIGH SPEED §
. . e e T e e e e e JREDNN PRSI N Wy g | 1 | FLOATING.POINT H
p—————— —_———— e e D D) I 1 PROCESSOR H
f “ WRITABLE READ-ONLY "
1 i I CONTROL CONTROL STORE |)
f MULTIPLEXOR BUS FE AR ! slls ! STORE I | |
T 1 R FORMAT : sl5le) (©OPTION) \ | X
1) [evw] [or | vo]vs] ROM] <18 : : . N
I 16 l p I
1 cuD | | | : .
\ 1 T ROM DATA REGISTER
\ , 1 I \ [}
~ e e e e 1) N Y
comm |V O N PRI MNP - K10 AN TT
ASSIST
L) 3

woptionay) | §

B BUS

Figure 1-1 Model 3220 Processor Block Diagram

00¥ 004 960-8%

€-T

8562 DIRECT CAF‘D‘;:(DGE
o mmm 3 MEMORY SELECTOR
f h ACCESS CHANNEL
MAIN 1 CACHE |
MEMORY 1 OPTION T MEMORY
L] INTERFACE M
~-TT-TTC 3 S~
: ERROR 1 MEMORY
CORRECTION |- 1 ADDRESS
| i TRANSLATOR MAGNETIC
| e —————]] TAPE
1
| A S 3
PSW (STATUS}
e —————— - o —_——————— --9 13 24 28 31
!
1 8SPFP 8 OPFP : L IENECEN LINE
1 REGISTERS REGISTERS] 44 63 rq- PRINTER
| 1 < BSETS OF 16 32-BIT GENERAL REGISTERS
| \ LOCATIO! ;
] t K3
N o
i ! 3
| H INSTRUCTION <
H | REGISTER
i [l A FLOATING- 1 opP
1 T8 POINT)
] ALU | _{ }J a FLOPPY“
po—e-y
! FLOATING.POINT OPTION [} S T) MEDIA
LT oo o _ 3 R - V' ooisk
===
1 ' ‘
| ! CARD
| 1 < READER
1 P]
| <
! wCS ! S § —
1| oprion | ! [« CTERMINAL I
\ | FIXED b FIXED-POINT 2
T x
| 1 cosr;O?:ZL ¥ ARITHMETIC b
1 |] LOGIC z
) \ uNIT 3| e UNIVERSAL
Ll _lJ 2 CLOCK
MICROINSTRUCTION A 8
SEQUENCING AND
DECODE LOGIC
-
§ - 3 l oJ

cPU

Figure 1-2 Model 3230 Processor Block Diagram

v-T

00¥ 00dJ 960-8%

t OMA sy

Mo

wmdiqmrmn
|
T

144

Mart
MEMORY AGDRE LS
THANSLATOR MAT,
STE u
REGISTER HEGISTER
2 SYAUK
2
<
<
“— REaD TAGS sie
AND ADDRESS sis
o Tir
LALCULATE
CALCULATION olo
-

MEMORY

Figure 1-3 Model 3240 Processor Block Diagram

l ¢ ssue 7 2
1 I ¥
| A I3 ’ CONTRQL BUS CPU AND CC BUS 3
| 1 Il 1
oo p—te—y L op
| A Lo oy
I o
HHANGH HEGISTER
[} CUNTROL Atk fed CONSOLETTE
l A
ADDRESY ot
I CALEULATE Rt ¢
I é JAHIT Al
z -
v MCR
3 0 3
11l WM D CONTHIL A .J
& FHIVILEGED J o o o
| g B LA L RCVAS MUX
< HOM
I g 2087 ADDFR lNS'ﬂU(,’»lL;N Butiem
i
IE —
’ ¢ 1 . po—dg
! 4\)':;’:-\?!. o |
Ed 3 0 HUS 3
| s i 1 & ows
onemang
SRS S [I ' [SriAugc
CONTHOL CONTHL :g
I l STORE STORE
ROM IWES
I Faut INT INTRPY 1
] CONTROL Test
| LOGH i# Juor use Aot
2] o[o]vs] [52]
| T T W s
I ¥ s ”k) HOM
DE Vi
KOM DATA . CONTEN .
I REGISTHRA 1 MUX TIMING TUNTROLLENY
I FORMAT -
ROM SUMMEH
/
/ vor [vsi)
I/ L 21 Mux
§ & cocal memorv oata sus oo 3
¥
h A BUS Q
PROCESSOR et
OcEsso A1) H] T
& B BUS) ry 9

00¥ 004 960-8%

0rrrs

DMA BUS

"*_\

STORAGE MODULE

I

*

1 3
CONTROL BUS CPU AND CC BUS

cPa [_“"“—I

_a cpe
| REGISTER
A 8 «me 1 STACK fodg CONSOLETTE
A
STORAGE MODULE 0] ADURESS 1oc I
| CALCULATE :
F 24817 ADDEH
e K
vau «
I 2 2 El INTE RRUPT REGISTER
GuMCo — 1|3 |2 5 WMDR CONTROL STAcK o 5 -
& PRIVILEGED 8 10U | acvrs MUX
cacht WAITE TAGS s o ILLEGAL
>——-{ 5 < a0M
Aot I § J0BIT ADOER INSTRUCTION BUFFER
L 2 3
IE i
> o |
.
~q i comeane || T -
I < 8 2 ._3 M 1
H i Lo
l ! COM:AM ! 0 ! ' FIXED wnnvngéi
CONTROL CON
mat STORE
MEMORY ADDRESS wes INT, INTRPT,
TRANSLATOR (MAT| I] CONTROL TEST
ACK
Sisten e ™ ' J
REGIS REGISTI R _
J | | i
E ALU
E VI
o I CONTROL Evice a
x| l 21 Mux TIMING CONTROLLERS
REMORY
-
| CONTROL FORMAT
; ROM SUMMEF
L—el utap Tacs s (e /
AND ADDR{SS S8 /| '—l 1
N IR YOI i
CALCULATION
o vfv /7 r 21 MUX
§3 Lucal memory oara sus cor B
I]
8 A BUS . 9
—— —
- MEmORY | PROCESSOR T3 3 i I T 3
L
I & 8 BUS

Figure 1-4 Model 3250 Processor Block Diagram

o

| . [3
| - T
! CONTAOL 6US_ CPU AND CL BUA 8
cu-s
[o< l
Ir" cruc
| svsTem
| CONSOLETTE
ADDAESS
| caccouare
g 1K 7ur oot
ik 3)
4 = e
L3 PRIVILEGED
Chae —mire racs 18 WAEGAL M
cacut 1|4 gorey
1€ -]
H
- |
~< 4
T |
‘l | 1 I 1 §_ous
1 FINED WA TABLE
= conTROL "o TROL "— 3
MAT MEMORY ADDRESS STORE STORE
TRANSLATOA {MAT: I row - INT INTRPT
| '« Loon wn T T conTROL TesT
s Acx
e € enalm
H o aus
B ! t o FROM
h 1 srRYETION cmra
3 CoNTROLLERS
L i A : covinos
contaoy
a0 TacS W
AND ADORESS /
b catcutarion , o
| ;
| £3 ocac memorv oata sus icol N
- wesony | N) v
T g 1 T T I I T
| £ e ¥ ¥ § A
a. CPU Block Diagram
' = RN
A b SBUS 4 P
R e e N Y 1
\ s08 51 s 0801 cPUC ‘| | swar !
i i viu |
e ~e
[rra— " arra— P B '.
' e qLi_J;LJ i
]
: AW 08 51 : | | | :
'
MY ' |
: F5TD ssTo ‘| : ” AEGISTER STACK 8 REGISTER STACK A !
| secuenTaTion REGISTERS Mk 123 i !
FAULT CHECKING = l
! % !
1 SEGMENTATION T § v A8y 1 ¥ '
) REGISTER I |
preen SELECT o a I FIXED POINT
] ! : y Cpus ARIPHME TIC LOGIC UNIT :
N
| 17 81T ADDER | TTT T T T T TN 1
' |! 2MAR | ‘f e Ts-T- =" = : |
| | P H !
— t for | oecooen [} |
| | | {fueacony | !
, _———|—— =} il MEMORY | _1 SHIFT REGISTER I
' LOCAL MEMORY ADDRESS (LMAI BUS 2 ! :)
| | P! L1 /
' & DATASYSTEM (MDSIBUS ____ § | : . - ——
N e 4 - N
= ' Vil
Preapmppngs qegepenp N i i | HPEPP \
H TOMA MAFR i ! hy H ! t
| T 1
! o viom IR h AHE o | 1
MOR | | |
L i — ! Rk i
1Y EDMA BUS Vil | } i H | H
: L —_———— el | t §
, cpuD \ ! WRITABLE READ ONLY : ! :
i \ ! CONTAOL CONTROL STORE |
4 MuLUIPLE KO BUS H A |a] STORE | | t
T Bl°|g) ! cBus
FORMAT | | | !
T | ff o E
| - |
!] | 1
\ LENG TR 7] 1 ROM DATA REGISTER : l = :
~- —— —_— o e —— - -— o'
‘ { s et 3 | KN R
N ” e e i T
HTSM
z ' 8us L) b

b. APU Block Diagram

Figure 1-5 Model 3200MPS System Block Diagrams

1-6 48-096 FOO ROO

Through WCS the user can extend the machine architecture without
hardware modification. With WCS instruction set enhancements,
high speed algorithms, and specialized application functions can
be added easily. WCS 1is also used to store the microcode
routines supplied with the FORTRAN enhancement package (FEP).
FEP provides frequently used mathematical routines to speed the
execution of FORTRAN VII programs. These routines are called by
the FORTRAN VII WCS run-time library (RTL) at execution time.

Microcode source programs for WCS must be written using the
microinstruction ' set 1listed in the microprogramming reference
manual applicable to the processor to be used. The microcode
source must then be assembled by MICROCAL. The resulting
microcode object program can then be transferred to WCS and
debugged though the use of the appropriate WCS support program.

These support programs are:

e WCSUPP

This is one of two WCS support programs - initially made
available for the earlier models of Perkin-Elmer Series 3200
processors. The WCSUPP aids in transferring microcode from
main memory to WCS, and in debugging microcode. It also
allows examination and modification of «cells, insertion of
breakpoints in WCS microcode routines, and restoration of the
contents of WCS after a power fail/restore sequence. There
are three versions of the WCSUPP: one for the Model 3220
processor, another for the Model 3230 processor, and a third
for the Models 3240 and 3250 processors.

e WCSLPFM

This is the second of the two WCS support programs initially
made available for earlier Perkin-Elmer Series 3200
processors.. WCSLPFM establishes debugged microcode stored as
an 1image file on a direct access device. WCSLPFM cannot be
used to debug microcode. There is a single version of WCSLPFM
for all Perkin-Elmer Series 3200 uniprocessors.

e WCSAIDS

This is one of three more recent and flexible WCS support
programs available. The debugging facility previously
available with the WCSUPP program is now easier to use with
the WCSAIDS program. There are three versions of WCSAIDS:
one for the Model 3220 processor, another for Model 3230
processor and the Model 3200MPS System APU(s), and a third for
the Models 3240 and 3250 processors and the Model 3200MPS
System CPU.

48-096 FOO ROO 1-7

® WCSLINK

This is the second of the more recent WCS support programs.
The facility to build a WCS image file, from the microcode
object file created by MICROCAL, 1is provided by WCSLINK.
WCSLINK cannot be used to debug microcode. It can be used to
build the WCS image file for any Perkin-Elmer Series 3200
processor.

e MPSLPFM

This is the third of the more recent WCS support programs.
MPSLPFM may be used to load the WCS of both the Model 3200MPS
System CPU and APU(s) with debugged microcode from WCS image
files stored on a direct access device. MPSLPFM does all that
WCSLPFM did and has the added advantages of message responses.
MPSLPFM may be used to load the WCS of any Perkin-Elmer Series
3200 processor; however, the larger memory requirements of
MPSLPFM must be kept in mind if it is used in a uniprocessor
configuration. MPSLPFM cannot be used to debug microcode.

In succeeding chapters, this manual will provide the information
needed to use these WCS support programs.

1.2 WRITABLE CONTROL STORE (WCS) FUNCTIONAL DESCRIPTION

WCS is a writable extension of fixed read-only memory (ROM) and
is addressable through the ROM location counter (RLC). For the
Model 3230 processor (equipped with 4K words of WCS) and the
Model 3200MPS System APU(s), the ROM is located between 000:s and
FFF.¢ - For all other Perkin-Elmer Series 3200 processors, the
ROM is located between 000, and 7FF. . The WCS for the Model
3230 (equipped with 4K words of WCS) and the Model 3200MPS System
APUs 1is located between 000, and FFF,, . (This address space
differs from the ROM address space. For more information see the
appropriate processor manuals.) The WCS for all other
Perkin-Elmer Series 3200 processors is located between 800, and
FFF ., -

WCS microcode is volatile; if there is a power failure, the data
stored in WCS is erased. When this happens, it must be reloaded.
Reloading WCS is accomplished through WCSLINK or WCSUPP.

Four assembly level instructions are provided in the processor
instruction set to reference and manipulate WCS:

1. Enter control store (ECS)

Branch to control store (BDCS)

Read control store (RDCS)

_ o W N

Write control store (WDCS)

1-8 48-096 FO0O ROO

By using these instructions, the user can write into WCS, read
from WCS, and transfer control to the WCS resident microcode.
Once control has been transferred to the microcode routine in
WCs, any microinstruction can be executed. There are
microinstructions provided that can disable the memory address
translator (MAT), modify the contents of all general and floating
point registers, control and initialize the program status word
(PSW), and disable or enable interrupts during execution of the
microcode routine. These microinstructions, and the precautions
for using them, are described in the appropriate microprogramming
reference manual.

Although WCS can extend the flexibility of the machine, certain
limitations and precautions exist. WCS memory is only a
supplement to the fixed control store (FCS); therefore, the user
cannot delete or modify user level instructions or machine
features located in the ROM control store. Also, a new emulator
cannot be created in WCS; the user can only add to the existing
one.

1.3 STATEMENT SYNTAX CONVENTIONS

Throughout this manual, these statement syntax conventions are
used to represent instruction formats:

CONVENTION USE

Capital letters, must be entered exactly as shown.
parentheses, and
punctuation marks

Lowercase letters represent parameters or information
: provided by the user.

ESTABLISH progname,fd

Underlining indicates only the underlined por-
tion of the entry is required.

PAUSE
Braces represent required parameters from
which one must be chosen.
IMAGE
TRANSFER staddr, endaddr
HCS

48-096 F00 ROO 1-9

Brackets represent an optional parameter that
can be chosen.

DUMP IMAGE [LOADER] staddr , endaddr

represent optional parameters from

Braces inside brackets
which one can be chosen.

Lettering with shading represents a default option.

wcsaddr
ZAP . .
represents an indefinite number of

Ellipsis
parameters or a range of parameters.

MODIFY x,[xz...x,,,]

1.3.1 File Descriptors (fds)

fds are entered in the following format.

Format:

[{Vo " }] [f ilename [[e;ct :]:H [/5]

dev:

Parameters:

voln: is a 1l- to 4-character alphanumeric string
specifying the name of a volume. The first
character must be alphabetic and the
remaining, alphanumeric. If the volume name
is omitted, the default is the system volume.

48-096 FOO ROO

dev:

filename

.ext

/S

is a 1- to 4- character alphanumeric string
specifying a device name. The first character
must be alphabetic and the remaining,
alphanumeric.

is a 1- to 8-character alphanumeric string
specifying the name of a file. The first
character must be alphabetic and the
remaining, alphanumeric. If a filename 1is
specified when a device name is specified, the
filename is ignored.

is a 1- to 3-character alphanumeric string
specifying the name of the extension to a
filename.

indicates a system file.

The file class always defaults to a system file when using the
WCS support program. Account numbers may not be specified. See
the 0S/32 Application Level Programmer Reference Manual for more

information on fds.

Example:

M300:METER.VAN

48-096 FOO ROO

M300: is the volume name, METER is
the filename, and .VAN is the
extension.

(=]
I

11

CHAPTER 2
CREATING A MICROPROGRAM

2.1 INTRODUCTION

Creating a microcode program using MICROCAL is similar to
creating a user 1level program using common assembly language
(CAL). Figures 2-1 and 2-2 show the logical flow for creating a
microcode program, from analyzing the problem to debugging
microcode in writable control store (WCS). When coding the
microcode program, see the appropriate processor microprogramming
reference manual for a complete list of microinstructions.

6866

ACTION
STEP
. DEFINE AND ANALYZI
THE PROBLEM
2 [FLOW CHART THE STEPS]

l

GENERATE MICROCODE SOURCE
3 REFER TO APPROPRIATE
MICROPROGRAMMING REFERENCE MANUAL

LOAD 0S
LOAD MICROCAL (TETed)
ASSEMBLE USING MICROCAL ASSIGN LOGICAL UNITS
AND GET OBJECT 1 - SOURCE
- OBJECT
LISTING
- SCRATCH
- CROSS
- copPY

S

N bW

5 L LINK WCSUPP]

6 | LOAD LINKed WCSUPP]

LOAD OBJECT, OBTAINED IN
STEP 4, INTO THE WCS IMAGE
IN MAIN MEMORY
USING LOAD COMMANCD

TRANSFER DATA FROM WCS
8 IMAGE TO ACTUAL WCS USING
TRANSFER IMAGE COMMAND

MICROROUTINES YES

10 BE DEBUGGED? >__'—‘—]
%

DEBUG THEM SO THAT
WCS CONTAINS DEBUGGED CODE

|

STATE USING WAIT COMMAND

WAIT STATE

Figure 2-1 Creating Debugged Microcode Routines Using WCSUPP

10 I’ PUT WCSUPP IN WAIT 1

48-096 F0O ROD 2-1

6867
STEP

ACTION

DEFINE AND ANALYZE
THE PROBLEM

[FLow cHART THE sTEPS)

GENERATE MICROCODE SOURCE
REFER TO APPROPRIATE

MICROPROGRAMMING REFERENCE MANUAL

ASSEMBLE USING MICROCAL
AND GET OBJECT

GENERATE A PROGRAM
TO EXERCISE THE
MICROCQODE TO BE

DEBUGGED. GET OBJECT.

—

LINK EXERCISING PROGRAM
WITH APPROPRIATE WCSAIDS

LOAD AND START THE
TASK ESTABLISHED IN STEP 6

LOAD OBJECT, OBTAINED IN
STEP 4, INTO THE WCS IMAGE
IN MAIN MEMORY USING LOAD COMMAND

TRANSFER DATA FROM WCS
IMAGE TO ACTUAL WCS USING
TRANSFER 'MAGE COMMAND

DEBUG THE
MICROCODE

ISAVE DEBUGGED MICROCODE
IN IMAGE FORMAT

~
LOAD 0S

LOAD MICROCAL (LINKed)
ASSIGN LOGICAL UNITS

1

- SOURCE

2- OBJECT

~Noabsw

- LISTING
- SCRATCH
- CROSS

- COPY

Figure 2-2 Creating Debugged Microcode Routines Using WCSAIDS

48-096 FOO ROO

2.2 USER LEVEL WRITABLE CONTROL STORE (WCS) INSTRUCTIONS

WCS user level instructions can be used in an executive task
(e-task) or a user task (u-task). Before an enter control store
(ECS) instruction is executed from a task, the WCS of a processor
must contain proper microcode. The first 16 words of WCS must
contain the address of the user microcode routine or the illegal
instruction handler. This 1is discussed in more detail in
subsequent chapters.

CAUTION

IF AN ECS IS ATTEMPTED AND THE WCS OF A
PROCESSOR IS NOT INITIALIZED PROPERLY, A
SYSTEM FAILURE CAN OCCUR.

Table 2-1 presents the four WCS instructions and the task types
in which each instruction can be used.

TABLE 2-1 WCS INSTRUCTIONS AND
ASSOCIATED TASKS

TASK TYPE

WCS INSTRUCTION USED IN

Enter control store (ECS)

u-task
e-task
d-task

d-task
Read control store (RDCS) e-task
d-task
Write control store (WDCS) e-task
d-task

T e e e - - = " — . — - —— ——— -t o~ = = - - —

! i

i i

= i

| |

i i

i i

' i

Branch to control store (BDCS) | e-task |
.] 1
! |

¥ 1

i i

i i

i i

i i

' !

The BDCS, RDCS, and WDCS instructions are privileged instructions
used only by diagnostic tasks (d-tasks) and e-tasks. Improper
use of these three instructions can also cause system failure
since e-tasks have no operating system protection. Note that
caution should be used when working with e-task and stand alone
programs that use these instructions.

48-096 F00 ROO 2-3

The four WCS user level instructions provide the user with four
functions: the ability to read from, write to, branch to, and
enter WCS memory. See the appropriate processor user's manual
for more information on using these instructions.

2.2.1 Write Control Store (WDCS)

The WDCS instruction transfers a buffer containing data located
in main memory to an area in WCS. The addresses of both the
buffer and the area in WCS memory are specified in the operands
of this instruction.

2.2.2 Read Control Store (RDCS)

The RDCS instruction transfers an area in WCS memory to a buffer
located in main memory. The addresses of the area in WCS and the
buffer in memory are specified in the operands of this
instruction.

2.2.3 Branch to Control Store (BDCS)

The BDCS instruction unconditionally branches to a WCS resident
microcode routine. The address of the microcode routine is
specified in the second operand of this instruction. This
instruction can occur anywhere within a user level routine.

During execution of the BDCS instruction, the address of the next
sequential instruction is placed in the current location counter
(LOC in the Models 3220 and 3230 processors, and in the Model
3200MPS System auxiliary processing unit(s) (APUs); and CLOC in
the Models 3240 and 3250 processors and in the Model 3200MPS
System central processing unit (CPU)). If the microcode routine
entered executes an instruction read (IR) microinstruction
without changing the current 1location counter, the next user
level instruction executed will be the one following the BDCS
instruction. The current location counter must be modified by
the microcode routine prior to an IR if the next user level
instruction to be executed 1is not the next sequential
instruction.

The BDCS instruction has unlimited addressing and can branch to
any location in ROM control store or WCS. It can also branch to
a nonexistent address that causes the system to enter an
undefined state. If the system status can change as a result of
the execution of a microcode routine, use the BDCS instruction.
By using this instruction, the operating system saves the system
status before executing the next instruction.

2-4 48-096 FO0O0 ROO

2.2.4 Enter Control Store (ECS)

The ECS instruction unconditionally branches to one of the first
16 fullword locations in WCS memory. The particular location is
specified by the value of the Rl field of this instruction. Each
of the first 16 fullwords that are reserved should contain a
branch microinstruction that points to one of 16 separate
microcode routines. If all 16 fullwords are not used, a branch
to the address of the illegal instruction interrupt microcode
routine should be loaded into the unused fullwords.

When the ECS instruction is read, the current location counter is
incremented by four, since the ECS instruction is normally
assembled in RI1 format. Figure 2-3 shows the execution sequence
of a normal ECS instruction. After the ECS is executed, control
is returned to the next sequential instruction. If the user
causes the ECS instruction to be assembled in a different format,
the microcode routine entered is responsible for correcting the
value in the current location counter prior to an IR.

WARN ING

IMPROPER USE OF ANY WCS INSTRUCTION CAN
CAUSE A SYSTEM FAILURE.

2.3 MICROPROGRAMMING NOTES FOR THE MODEL 3230 PROCESSOR AND THE
MODEL. 3200MPS SYSTEM AUXILIARY PROCESSING UNIT (APU)

The following restrictions should be observed when writing
microprograms for the Model 3230 processor or the Model 3200MPS
System APU(s):

1. Scratchpad registers 8 through 15 should not be used or
modified by any microprogram in WCS. They are reserved for
use by the microprogram in fixed control store (FCS).

2. Scratchpad registers 8 through 15 may be examined through the

use of the WCSAIDS EXAMINE command, but they must not be
modified via the MODIFY command.

If these restrictions are not observed, a system failure may
occur.

48-096 FOO0 ROO 2-5

2486.2 INSTRUCTION

EXECUTION
SEQUENCE
LR R3,R2
SYSTEM SPACE
[]
[]
[}
IRD *
®
[]
W [)
LR R3,R2
ECS 10,R3 USER CREATED
LH >—- ROUTINE IN
MAIN MEMORY FIXED READ ONLY
CONTROL STORE
»
ENTRY POINT 10
CONTAINS ECS 10,R3
BRANCH
TO
81F v
WCS SUPPORT PROGRAM ' :
[]
[]
81F °
OPERATING SYSTEM ‘,'RD .
(0S/32)
WRITABLE CONTROL
STORE
MAIN MEMORY LH
®
* INSTRUCTION READ AND DECODE (IRD) TO ¢

EMULATE THE NEXT USER LEVEL INSTRUCTION °

Figure 2-3 Entering Writable Control Store

2-6 48-096 F0OO ROO

CHAPTER 3
LINKING, LOADING, AND STARTING
THE WRITABLE CONTROL STORE (WCS) SUPPORT PROGRAMS

3.1 INTRODUCTION

The available WCS support programs are: WCSLINK, WCSAIDS,
MPSLPFM, WCSUPP, and WCSLPFM.

WCSLINK may be used to build microcode image files for any
Perkin-Elmer Series 3200 processor. WCSAIDS has three processor
dependent versions. It enables the user to write microcode into
WCS via the WCS image buffer, examine memory locations and
registers, and to debug microprograms. WCSAIDS is linked with a
user program that exercises the microcode to be debugged.
MPSLPFM is the loader and power fail monitor for the Model
3200MPS System. MPSLPFM provides a means of loading and
initializing WCS after a power failure. Although MPSLPFM may be
used on a uniprocessor system, its larger memory requirements
should be considered.

WCSUPP is different for each processor. 1Its function is the same
as that of WCSAIDS, however, WCSUPP is built alone as a task
rather than linked with a user program. WCSLPFM provides a means
of 1loading and 1initializing WCS after a power failure for any
uniprocessor system. It does not provide any debugging facility.
This chapter describes how to link, load, and start each of the
WCS support programs.

3.2 ENVIRONMENT

The three-part WCS support programs have distinct memory
requirements:

® WCSLINK: 23kb

® WCSAIDS: 30kb

e WCSLPFM: 8kb

e WCSUPP: 21kb (Models 3220 and 3230 processors)
19kb (Models 3240 and 3250 processors)

® WCSLPFM: 1lkb

48-096 F0O0 ROO 3-1

For the programs to operate accurately, the system must contain
these features:

® Perkin-Elmer Series 3200 processor

® Required amount of main memory

® WCS hardware

® Command input device

e List device

e Load modules of WCSLINK, MPSLPFM, WCSUPP, and WCSI.PFM (as
required) stored on disk or magnetic tape

e Object module of WCSAIDS (if used)
® Microcode routine in dbject or image format

e Power fail/auto restart option

The WCS support programs also use some of the operating system
resources such as:

® Supervisor calls (SVCs)

svCc 1 Input/output (I/0) operations
SVC 2 code 1 Pause
code 5 Fetch pointer
code b6 Unpack binary data
code 7 Log message
code 8 Interrogate clock
code 9 Fetch date
code 15 Pack numeric data
code 16 Pack file descriptor
code 17 Scan mnemonic table
code 18 Move ASCII characters
sve 3 End of task
SVC 6 Intertask communications (Model 3200MPS5
System only)
svc 7 File handling services
sSvC 9 Load task status word (TSW)
svec 13 Auxiliary processing unit (APU) control

(Model 3200MPS System only)

e Traps

e Trap wait feature

3-2 48-096 FOO ROO

3.3 LINKING, LOADING, AND STARTING

The WCS support programs are shipped to the wuser in common
assembly language (CAL) object format. Before loading the
support program in the 0S/32 environment, each must be built as
described below.) ‘

The WCS support programs use specific logical units for input and
output. Internal processing uses logical unit 1 (lul). The list
output device for all error messages, response messages, and
warning messages should be assigned to lu3. The command input
device for all commands that load, start, and execute microcode
routines for WCS should be assigned to lu5. Use of these logical
units is outlined in Table 3-1.

TABLE 3-1 LU ASSIGNMENTS FOR WCS SUPPORT

PROGRAMS
i LU | PURPOSE i PREASSIGNED |
"’E:ﬂﬂ-ﬂ--.¥=====-I=--=-===ﬂ’-===========;
i 1 | Internal processing | No '
] i]]
!] !)
i 3 | List device o Yes !
i 1 { !
{ | t U
i 5 | Command input device | Yes |

The following sections deal separately with WCSLINK, WCSAIDS, and
MPSLPFM, and show how to build each program as a task, and then
load and start it.

3.3.1 WCSLINK
The WCSLINK program enables the user to build WCS image files
from the microcode object file(s) created by MICROCAL. WCSLINK

may be built as a user task (u-task).

WCSLINK may be wused to build a WwCS image file for any
Perkin-Elmer Series 3200 processor.

48-096 F0O0 ROO 3-3

The following sequence illustrates the procedures for building
WCSLINK as a task using the 0S/32 Link program:

*SET LOG PR:
*XDE WCSLINK.TSK

*L,OAD,LINK, 40 *Load Link.

*START *Start Link.

PERKIN-ELMER 0S/32 LINKAGE EDITOR Rnn-nn

SMAP PR:,ADDRESS,XREF, *Obtain maps

ALPHABETIC *on a line printer.

> INCLUDE WCSLINK.OBJ *Use the WCSLINK program.
YBUILD WCSLINK.TSK

>END *End the Link task.

After WCSLINK is built using Link, the following sequence of
commands is used to load and start it.

*L,O .BG,WCSLINK Load WCSLINK, built using Link, from
a file called WCSLINK.TSK.

*TA .BG Make it a background task .

*AS 3,CON: Assign lu3 to a list device (CON:).

*aS 5,CON: Assign lu5 to a command input device
(CON:).

*START Start task.

When WCSLINK is started, this message 1is written to the list
device:

WCSLINK 03-xxx Fmm Rnn

The user can then enter any valid WCSLINK commands from lu5. See
Chapter 4. N

3.3.2 WCSAIDS
The WCSAIDS can function as a debugging aid. WCSAIDS should be
linked with a user program object module(s) which exercises the

microprogram to be debugged. Those user programs should be
linked as diagnostic tasks (d-tasks).

3-4 48-096 FOO ROO

The following sequence illustrates the procedures for linking

WCSAIDS with wuser

program object module(s) and building a task

used to debug the microprogram(s):

*LO LINK
*START

>ES TA

OPTION WO=X100,DFL, FL,DTASK

> INCLUDE USER.OBJ
> INCLUDE WCSAIDS.OBJ
>MAP PR:,ADDRESS

>BUILD USER.TSK
>END

After WCSAIDS is linked to a usser program and USER.TSK is built
using Link, the following seguence of commands is used to load

and start it:

*LO .BG,USER.TSK
*TA .BG

*AS 3,CON:

*AS 5,CON:
*START

or

*START, SINGLE

or

- *START,DOUBLE

Load USER.TSK, built wusing Link,
from a file called USER.TSK.

Make it a background task

Assign lu3 to a list device (CON:).
Assign lu5 to command input device
(CON:).

Start task.

or

Start task. Inform task that the
processor has single precision
floating point support (must be
built with option FLOAT).

or

Start task. Inform task that the
processor has single and double
precision floating point support
(must be built with options FLOAT
and DFLOAT).

When this task is started, the following message is written to

the list device:

WCSAIDS 03-xxx Fmm Rnn

48-096 FOO ROO

When the user program (linked with WCSAIDS) is started, WCSAIDS
gets control. The user may now issue the commands of WCSAIDS and
start the execution of his program by issuing the WCSAIDS START
command. When a breakpoint in the microcode 1is encountered,
WCSAIDS gets control, at which time the user may issue the
WCSAIDS commands again.

There are three versions of the WCSAIDS: one for the Model 3220
processor, one for the Model 3230 processor and the Model 3200MPS
System APU(s), and one for the Models 3240 and 3250 processors
and the Model 3200MPS System CPU. The user must run the
appropriate version on the specified processor.

The commands accepted by WCSAIDS are described in detail in
Chapter 5. ,

3.3.3 Loader and Power Fail Monitor (MPSLPFM)

The MPSLPFM program may be used to load the WCS of the processor
with debugged microcode that has been SAVEd on a direct access
device (by WCSLINK, WCSAIDS or WCSUPP).

The following sequence illustrates the procedures ' for building
MPSLPFM as a task using the 05/32 Link program:

*L.O LINK,LINK
*TA LINK
*START
>ESTABLISH TA
>OPTION ET,RES,FL,DFL,PR1=(11,11),COM,APM,APC,CON
> INCLUDE MPSLPFM.OBJ
>MAP PR:
>BUILD MPSLPFM.TSK
>END

After MPSLPFM is built using Link, the following sequence of
commands is used to load and start it:

*L.0 MPSLPFM,MPSLPFM.TSK
*TA MPSLPFM

*START (options) (for details on the use of the START
command with MPSLPFM, see Chapter
6).

3.3.4 WCSUPP

The WCSUPP program serves as a debugging aid. It differs from
WCSAIDS in that it is built alone as a task rather than linked
with user programs. WCS for the Model 3230 processor has been
expanded to 4K words and users of this processor should be aware
that WCSUPP has not been upgraded to support this expanded WCS.

3-6 48-096 FO0O ROO

The following command sequence illustrates how a WCSUPP task for

a Model 3220 processor

may be built wusing Link. The same

procedure may be adapted to build a WCSUPP task for other Perkin-
Elmer Series 3200 processors by properly selecting the object

files.
Example:
DSCl: is a disk pack.
0s is a disk volume on the disk device (DSCl:)
that contains these files:
LINK.TSK Link task
TEMP Temporary file
WCS3220.0BJ WCS (CAL) object file
0832 xx-yy Depress PROTECT on disk drive.
*MA DSCl:,0ON Mark disk pack on (DSCl:).
DSCl: 0OS DSC1l has a volume (called O08) of
files.
*V 0S Make 0OS the current volume.

*SET LOG PR:

*XDE WCS3220.TSK
*LOAD LINK,LINK, 40
*TASK LINK

*START

*L.oad Link.
*Make it the current task.
*Start Link.

PERKIN-ELMER 0S/32 LINKAGE EDITOR Rnn-nn

>OPTION PRIORITY =
(llr ll) r
LINK>FLOAT,
LINK)>DFLOAT,
LINK>RESIDENT, ETASK,
LINK>ABSOLUTE = O

*Give the task initial and maximum
*priorities of 11, single and double
*precision floating point registers,
*resident and executive status,
*and no additional UDL.

WARNING: ABSOLUTE SPACE LESS THAN 100

>MAP PR:,ADDRESS, XREF,
LINK>ALPHABETIC

> INCLUDE WCS3220.0BJ
>BUILD WCS3220.TSK
>END

*Obtain four load maps

*on a line printer.

*Use either the full support program
*or load and power fail monitor.
*End the Link task.

The WCS support program load module can now be loaded into main
memory from disk file 0S:W(CS3220.TSK.

48-096 FOO ROO

After the WCS full support program is built, the following
sequence of commands can be used to load and start it.

*LOAD WCS,WCS53220

*TASK WCS
*ASSIGN 3,CON:
*ASSIGN 5,CON:
*START

or

*START, SINGLE

or

*START, DOUBLE

Load WCS full support program load
module from a file called
0S:WCS3220.TSK.

Make it the current task.

Assign list lu to console.

Assign command input lu to console.
Start task. Inform task that the
processor has no floating point
support.

or

Start task. Inform task that the
processor has single precision
floating point support (must be
built with option FLOAT).

or

Start task. Inform task that the
processor has single and double
precision floating point support
(must be built with options FLOAT
and DFLOAT).

When the full support program is started, this message is written
to lu3:

3.3.

5 WCSLPFM

WCS SUPPORT PROGRAM (03-xxx Fmm Rnn

The following sequence of Link commands demonstrates building a
WCSLPFM task:

*LOAD LINK
*TASK LINK
*START

~-PERKIN-ELMER 0S/32 LINKACE EDITOR xx-xxx Rnn-nn

>ESTAB TASK

>OPTION ET,RES,ABS=0,PRI=(1l1l,11)
-WARNING: ABSOLUTE SPACE LESS THAN 100

> INCLUDE WCSLPFM.OBJ
>MAP PR:

>BUILD WCSLPFM.TSK
>END

48-096 FOO ROO

The next sample program sequence of commands illustrates how to
start the WCSLPFM version of the support program:

*LOAD WCS,WCS2 Load WCS support program from file
OSMT:WCS2.TSK.

*TASK WCS Make it the current task.

*START , IMAGE=fd Start task. Inform task that the
WCS image exists on the specified
file. If no extension is given,

.WCS is assumed.

NOTE
The WCSLPFM is not restartable; it must
be reloaded before it is restarted.

When the task starts, this message is displayed on the system
console:

WCS SUPPORT PROGRAM-LOADER/POWER FAIL MONITOR 03-xxx Fmm Rnn
The task performs the following sequence of operations:

1. The specified file is assigned to lul.

2. The image is transferred to WCS memory.

3. The file is rewound and the task enters a power fail/restore
trap wait.

The following message is then displayed on the system console:

WCS LOADED

3.4 WRITABLE CONTROL STORE (WCS) IMAGE BUFFER

WCS support programs maintain a buffer in main memory. For
WCSLINK and WCSAIDS, the 1length of this buffer is 4,096 words
(16,384 bytes). For WCSUPP, this buffer is 2,048 words (8,182
bytes).

The WCS image is read into this buffer from object or image
files. It can then be examined and/or modified through the
various commands available to these programs. The contents of
WCS and the WCS image buffer may also be transferred from one to
the other.

48-096 FOO0 ROO 3-9

CHAPTER 4
WCSLINK COMMANDS

4.1 INTRODUCTION

The WCSLINK program provides a facility for the user to build
writable control store (WCS) image files from the microcode
object file(s) created by MICROCAL. WCSLINK may be built as a
user task (u-task) as described in Chapter 3. The commands
accepted by WCSLINK are:

e TARGET
e CLEAR
e LOAD

e EXAMINE IMAGE

e MODIFY
e SAVE
e GET
e END

4.2 CHOOSING A PROCESSOR TO BE LOADED
When used to build a WCS image file from microcode object files,
WCSLINK should be informed of the model number of the processor
for which the image file is to be built.
The TARGET command is used to pass this information to WCSLINK,

which places the information in the WCS image file for future use
by the other WCS support programs.

Format:

TARGET = nnnnxxx

48-096 FO0OO ROO 4-1

Paramster:

nNNNXXx is the model number of the processor for which
the microcode image file is to be built, i.e.,
3220, 3230, 3240, 3250, 3200cCPU (central
processing unit of the Model 3200MPS System),
and 3200APU (auxiliary processing unit of the
Model 3200MPS System). Xxxx applies only to
the Model 3200MPS System CPU and APU.

If the TARGET command is not used, or TARGET = 0 1is specified,
the microcode 1is assumed to be intended for the processor on
which WCSLINK is running. This model number is encoded in the
loader information block (LIB) of the WCS image file by the SAVE
command. When MPSLPFM is used to load a WCS from a WCS image
file, the model number in the LIB is checked against the model
number of the processor containing the WCS to be loaded.

For the TARGET command to be effective on a WCS image file, it
must be specified before the CLEAR command. As a response to the
CLEAR command, WCSLINK will display the model number of the
TARGET processor.

WCSLINK is not capable of doing relocation. It only merges the
microcode object files generated by MICROCAL. It is the user's

responsibility to see that the object contains only absolute
address references.

4.3 MANAGING THE CONTENTS OF THE WRITABLE CONTROL STORE (WCS)
IMAGE BUFFER

The contents of the WCS image buffer may be cleared, loaded,
examined, or modified through the various WCSLINK commands.

4.3.1 Clearing the Writable Control Store (WCS) Image Buffer

Before a new microcode object routine is loaded into the WCS
image buffer, clear the buffer with the CLEAR command.
Format:

CLEAR

CLEAR fills the WCS image buffer with a microcode branch to the
address of the 1illegal instruction interrupt handler. This
ensures that any errors in the execution of ECS and BDCS
instructions cause illegal instruction interrupts.

4-2 48-096 FOO ROO

For the Model 3220 processor, the image buffer (2,048 words) is
filled with branch to 1location 0074 in fixed control store
(FCS).

For Models 3240 and 3250 processors and the Model 3200MPS System
CPU, the 1image buffer (2,048 words) is filled with branch to
location 208,, in FCS.

For the Model 3230 processor and the Model 3200MPS System APU(s8),
the image buffer is 4,096 words in size. All words except 7FE;q
and 7FF. contain branch to 7FE,, . Words 7FE,; and 7FF, contain
the instructions LI YDI,8 and B 7, YDFF, respectively. Together,
these instructions cause a branch to the illegal instruction
handler in FCS.

In response to the CLEAR command, WCSLINK displays the model
number of the processor for which the image buffer is being
cleared.

WCS IMAGE CLEARED FOR nnnnxxx

where nnnnxxx is the model number. xxx applies only to the CPU
and the APU(s) of the Model 3200MPS System.

In order to properly initialize the image buffer for the
appropriate processor, a TARGET command should be issued prior to
the CLEAR command.

4.3.2 Loading the Writable Control Store (WCS) Image Buffer

After the buffer is cleared, the microcode routine can be loaded
by using the LOAD command.

Format:

LOAD progname [,fd]

Parameters:

progname is the program name in the label field of the
PROG statement in the microcode source
routine. If the DUMP IMAGE LOADER command was
used to build the file specified by fd, DuUMP
must be specified as the progname. Discussion
of the DUMP IMAGE command is deferred until
Chapter 5.

fd is the file descriptor of the device or file
that the routine is stored on. If voln: is
omitted, the current user volume is the
default. If filename is omitted, progname is
the default.

48-096 F00 ROO 4-3

Example:
LO COS,DSC1l:WCS.TST

4.3.3 Examination and Modification of the Writable Control Store
(WCS) Image Buffer

The EXAMINE IMAGE and MODIFY commands for WCSLINK allow the user
to examine and modify cells in the WCS image buffer. A cell, in
the context of the WCS image buffer, is a fullword. The last
cell examined 1is <called the current open cell and is ready for
modification. To examine the WCS image buffer, use the EXAMINE
IMAGE command.

Format:

(m
EXAMINE IMAGE nnn l:,{ }]
1

Parameters:

IMAGE specifies that the WCS image buffer in main
memory is to be displayed.

nnn is the starting address of the image buffer
area to be displayed. For Models 3220, 3240,
and 3250 processors, and the Model 3200MPS
System CPU this may be any value between 800
and FFF, . For the Model 3230 processor, and
the Model 3200MPS System APUs, the valid range
for nnn is 000, to FFF,

m is the number of cells to be examined. The
maximum number for m is 16. If m is omitted,
one cell is examined.

After a cell is examined, the contents of the cell are open for
modification. When more than one cell is examined (by specifying
a value greater than 1 for m), the current open cell is the last
cell examined (nnn + m - 1). Only one cell can be modified at
any one time. To modify the current open cell, use the MODIFY
command.

Format:

MODIFY nnnnnnnn

4-4 48-096 FOO ROO

Parameter:

nnnnnnnn is the hexadecimal number specified to replace
the contents of the current open cell.

The modified cell is then displayed. The address of the current
open cell 1is incremented to the next sequential cell. The next
sequential cell then becomes the current open cell; its contents
are available for modification. The user can modify cells
successively without opening each consecutive cell.

4.4 SAVING THE CONTENTS OF THE WRITABLE CONTROL STORE (WCS)
IMAGE BUFFER

After the WCS image buffer has been loaded with microcode object,
a WCS image file may be built on a direct access device. To
build the WCS image file, use the SAVE command.

Format:

SAVE fd

Parameter:

fa is the file descriptor of the device or file
that the microcode image routine is to be
stored on. If .ext is omitted, .WCS is the
default.

When the SAVE commad is executed, a loader information block
(LIB) 1is built as the first record of the image file. The LIB
contains the segment type (7), the size of the WCS image, the
model number of the processor for which the image is built, and
the date and time the file is created. After it is built, the
LIB is transferred, followed by the contents of the WCS image
buffer, to the filename specified. The specified device is
checked for write and binary attributes. If the specified file
is:

® contiguous, it must contain at least 33 records for Models
3220, 3240, and 3250 processors, and the Model 3200MPS System
CPU, or 65 records for the Model 3230 processor, and the Model
3200MPS System APU(s),

e indexed, it must have a logical record length of 256 bytes, or
‘0 nonexistent., it is allocated as a new contiguous file on the

specified volume, or the system default volume if no volume
name is present.

48-096 FOO ROO ' 4-5

A WCS image file, built and saved in this manner, may be loaded
into the WCS of a processor by using WCSLPFM or MPSLPFM. 'An
image file may also be used by WCSUPP or WCSAIDS.

4.5 RETRIEVING A WRITABLE CONTROL STORE (WCS) IMAGE FILE
A WCS image file can be loaded into the WCS image buffer by using
the GET command.
Format:
GET fd

Parameter:

fd is the file descriptor of the device or file
: that the microcode image is stored on. If
.ext is omitted, .WCS is the default.

If target processor information is coded in the LIB of the WCS
image file, WCSLINK responds to the GET command with the
following message:

THIS IMAGE FILE WAS BUILT FOR nnnnxxx

where nnnnxxx indicates the model number of the processor for
which the image file was built.

4.6 TERMINATION OF WCSLINK

Execution of WCSLINK can be terminated by using the END command.
Format:

END

4-6 48-096 FOO ROO

CHAPTER 5
WCSAIDS COMMANDS

5.1 INTRODUCTION

WCSAIDS can function as a debugging aid. WCSAIDS differs from
the earlier WCSUPP program in the following respects:

® WCSAIDS does not support the feature of entering the power
fail trap wait. The WAIT command is not recognized and the
ESTABLISH command will only perform the CLEAR, LOAD, and
TRANSFER functions.

® A new TARGET command has been added.

¢ WCSAIDS should be linked with a user program object module(s)
that exercises the microprogram to be debugged. Those user
programs should be linked as diagnostic tasks (d-tasks).

When the user program (linked with WCSAIDS) is started, WCSAIDS
gets control. The user can then issue the debugging commands of
WCSAIDS and start the execution of his program by issuing the
START command . When a breakpoint in the microcode is
encountered, control is returned to WCSAIDS, at which time the
user may issue the debugging commands again.

There are three versions of WCSAIDS: one for the Model 3220
processor, another for the Model 3230 processor and the Model
3200MPS System auxiliary processing units (APUs), and a third for
Models 3240, and 3250 processors and the Model 3200MPS System
central processing unit (CPU).

The appropriate WCSAIDS version must be run on the appropriate
processor. If an attempt is made to run a task built with a

version of WCSAIDS inappropriate for the processor being used,
WCSAIDS pauses after displaying the following message:

WARNING: THIS UTILITY SHOULD NOT BE RUN ON THIS PROCESSOR!

48-096 F00 ROO 5-1

The commands accepted by WCSAIDS are:

e TARGET
e CLEAR

e LOAD

e EXAMINE
e MODIFY
e SAVE

e GET

® TRANSFER
e ESTABLISH

[INSERT

® ZAP
® START
e GO

e DUMP I[IMAGE
e PAUSE

e END

5.2 WCSAIDS TARGET COMMAND

If a WCS image file is to be built from microcode object files
through the use of WCSAIDS, the user may specify the model number
of the processor for which this image is to be built. The model
number of this image file should be compatible with the model
number of the processor for which that particular WCSAIDS was
built.

Format:

TARGET = nnnnxxx

5-2 48-096 FOO ROO

Parameter:

nnnnxxx is the model number of the processor on which
the microcode 1is to be loaded (i.e., 3220,
3230, 3240, 3250, 3200CPU, 3200APU). This

model number must be compatible with the model
number of the processor for which the WCSAIDS
was built.

If the TARGET command is not used, or TARGET = 0O is specified,
the microcode is assumed to be for the processor on which WCSAIDS
is running. This model number is encoded in the loader
information block (LIB) of the WCS image file created by the SAVE
command. The MPSLPFM will cross-check this number (if it is
non-zero) against the model number of the processor containing
the WCS to be loaded.

For the TARGET command to be effective on a WCS image file, it
must be specified before the CLEAR command. As a response to the
CLEAR command, WCSAIDS will display the number of the TARGET
processor.

5.3 CLEARING THE WRITABLE CONTROL STORE (WCS) IMAGE BUFFER
Before a new microcode object routine is loaded into the WCS
image buffer, clear the buffer with the CLEAR command.

Format:

CLEAR

CLEAR fills the WCS image buffer with a microcode branch to the
address of the illegal instruction interrupt handler. The image
buffer is initialized as previously described in Section 4.3.1.
This ensures that any errors in the execution of ECS and BDCS
instructions cause illegal instruction interrupts.

5.4 LOADING THE WRITABLE CONTROL STORE (WCS) IMAGE BUFFER
After the buffer is cleared, the microcode object routine can be

loaded by using the LOAD command.

LOAD progname, fd

48-096 FOO ROO 5-3

Parameters:

progname is the program name in the label field of the
PROG statement in the microcode source
routine. If the DUMP IMAGE LOADER command was
used to build the file specified by fd, DUMP
must be specified as the progname.

fd is the name of the device or file the
microcode object 1is stored on. If voln is
omitted, the current wuser volume |is the
default. If filename is omitted, progname 1is

the default value.
Example:
LO COS,DSCl:WCS.TST

5.5 CELL EXAMINATION
The EXAMINE command allows the user to examine memory cells.

A cell can be any of the following locations in memory:

e a fullword in WCS memory, or

e a fullword in the WCS image buffer, or

e a register image, or

® a halfword in main memory.

The last cell examined is called the current open cell and is
ready for modification.

Throughout the remainder of this manual, several of these memory
cells are referred to frequently.

The following cells pertain to all Perkin-Elmer Series 3200
processors:
e the program status word (PSW),

e the first register field of the instruction register (Y¥DI),
and

e the index register field of the instruction register (YSI).

5-4 48-096 FOO ROO

The following cells pertain to the Models 3220 and
processors, and the Model 3200MPS System APU(sS):

e the memory data register (MDR),

e the location counter (LOC), and

e the shift register (SR).

The following cells pertain to the Models 3240 and
processors, and the Model 3200MPS System CPU:

e the current location counter (CLOC),

e the interrupt location counter (ILOC),

® the read memory data register (RMDR), and

e the write memory data register (WMDR).

3230

3250

5.5.1 Models 3220 and 3230 Processors, and the Model 3200MPS

System Auxiliary Processing Unit (APU) EXAMINE Command

The EXAMINE command for the Models 3220 and 3230 processors,

and

the Model 3200MPS System APU version of WCSAIDS has the following

options:

Format:

) v (2]

ALTERNATE
EXAMINE DOUBLE
FLOATING reg [{
MICRO
REG

LOC
MDR
PSW
SR

YDI
YS1I

48-096 FOO ROO

Parameters:

IMAGE

WCS

hexaddr

Y

ALTERNATE

DOUBLE

FLOATING

MICRO

REG

reg

LOC

PSW

specifies that the WCS image buffer in main
memory is to be examined. The contents of the
image buffer are displayed in disassembled
microcode format.

specifies that WCS memory is to be examined.
The contents of WCS memory are displayed in
disassembled microcode format.

is the 1- to 6-character hexadecimal address
of the first cell to be examined.

is a decimal number from 1 to 16 specifying
the number of fullwords to be examined.

is a decimal number from 1 to 16 specifying
the number of halfwords to be examined.

specifies that the contents of the alternate
register images be examined.

specifies that the contents of the double
precision floating point register images be
examined.

specifies that the contents of the single
precision floating point register images be
examined.

specifies that the contents of the
microregister images be examined.

specifies that the contents of the general
register images be examined. The register set
is determined by the program status word
(PSW).

is a decimal number from 0 to 15 specifying
the first register to be examined.

is a decimal number from 1 to 16 specifying
the number of registers to be examined.

specifies that the contents of the LOC
register image be examined.

specifies that the contents of the MDR
register image be examined.

specifies that the contents of the PSW
register image be examined.

48-096 FOO ROO

SR specifies that the contents of the SR register
image be examined.

YDI specifies that the contents of the YDI
register image be examined.

YSI specifies that the contents of the YSI
register image be examined.

Examples:

Display the contents of two consecutive halfwords, starting at
location 120, .

*EXA 120,2
120: 4300
122: 90A2

Display the contents of the MDR register image.

*EXA MDR
MDR : 0Al1276D2

Display in disassembled format the contents of the fullword
located at 860, in WCS memory.

*EXA W 860
860 : OO6EOOQOFO L SR, LENGTH

Display the contents of the double precision floating point
register 2.

*EXA D 2
DR2 : 00000084C214979A

If a single or double precision floating point register is
examined and that floating point option was not specified in the
START command, one of these messages is displayed:

NO FLOATING POINT SUPPORT
NO DOUBLE PRECISION SUPPORT

48-096 FO0O0 ROO 5-7

5.5.2 Models 3240 and 3250 Processors, and the Model 3200MPS
System Central Processing Unit (CPU) EXAMINE Command

The EXAMINE command for the Models 3240 and 3250 processors, and
the Model 3200MPS System CPU version of WCSAIDS, shown below,
differs slightly from that wused with the other Perkin-Elmer
Series 3200 processors.

Format:
IMAGE) X
hexaddr |,{
WCs g
Y
hexaddr ¢,
1
SCRATCHPAD
EXAMINE DOUBLE z
FLOATING reg |,g
MICRO 1
REG
CLOC
IL.OC
RMDR
WMDR
PSW
¥YDI
YSI
Parameters:

IMAGE specifies that the WCS image buffer in main
memory is to be examined. The contents of the
image buffer are displayed in disassembled
microcode format.

WCS specifies that WCS memory is to be examined.
The contents of WCS memory are displayed in
disassembled microcode format.

hexaddr is the 1- to b-character hexadecimal address
of the first cell to be examined.

X is a decimal number from 1 to 16 specifying
the number of fullwords to be examined.

y is a decimal number from 1 to 16 specifying

the number of halfwords to be examined.

5-8 48-096 F0O ROO

ALTERNATE specifies that the contents of the alternate
register images be examined.

DOUBLE specifies that the contents of the double
precision floating point register images be
examined.

FLOATING specifies that the contents of the single
precision floating point register images be
examined.

MICRO specifies that the contents of the

microregister images be examined.

REG specifies that the contents of the general
register images be examined. The register set
is determined by the program status word
(PSW) .

reg is a decimal number from O to 15 specifying
the first register to be examined.

z is a decimal number from 1 to 16 specifying
the number of registers to be examined.

CLOC specifies that the contents of the CLOC
register image be examined.

ILOC specifies that the contents of the ILOC
register image be examined.

PSW specifies that the contents of the PSW
register image be examined.

RMDR specifies that the contents of the RMDR
register image be examined.

WMDR gpecifies that the contents of the WMDR
register image be examined.

YDI specifies that the contents of the YDI
register image be examined.

YSI gspecifies that the contents of the YS1
register image be examined.
5.6 CELL MODIFICATION
After a cell is examined, the contents of the cell are open for

modification. Only one cell can be modified at any one time. To
modify the current open cell, use the MODIFY command.

48-096 FOO ROO 5-9

Format:
MODIFY x,[x,.. .x,é]
Parameter:
X is a hexadecimal character.

The characters specified replace the contents of the location
last examined. The maximum number of characters that can be
specified is the number displayed on one line by the EXAMINE
command . The modified cell containing the new contents is then
displayed. The address of the current open cell is incremented
to the next sequential cell. The next sequential cell then
becomes the current open cell; its contents are available for
modif ication. The user can modify cells successively without
opening each consecutive cell. Modifying a location in WCS
memory does not modify the corresponding location in the WCS
image buffer. The reverse is also true.

Example:

*EXA 120,2
120: 4300
122: 801E

*MO 90AZ2
122: 90A2

*EXA 120,2
120: 4300
122: 90A2

5.7 SAVING THE CONTENTS OF THE WRITABLE CONTROL STORE (WCS)
IMAGE BUFFER

wWwhen the WCS image buffer contains a fully debugged microcode
routine, it can be saved on any auxiliary storage media. To save
the contents of the WCS image buffer, use the SAVE command.

Format:

SAVE fd

5-10 48-096 FOO ROO

Parameter:

fd is the file descriptor of the device or file
that the microcode 1image routine 1is to be
stored on. If .ext is omitted, .WCS 1is the
default. ‘

When the SAVE command is executed, an LIB is built and
transferred, followed by the contents of the WCS image buffer, to

the device or the file specified. The specified device is
checked for write and binary attributes. If the specified file
is:

® contiguous, it must contain at least 33 records for Models
3220, 3240 and 3250 processors, and the Model 3200MPS System
CPU, and 65 records for the Model 3230 processor, and the
Model 3200MPS System APU(s),

e indexed, it must have a logical record length of 256 bytes, or

® nonexistent, it is allocated as a new contiguous file on the
specified volume, or the system default volume if no volume
name 1is present.

5.8 RETRIEVING A WRITABLE CONTROL STORE (WCS) IMAGE FILE

A WCS image file can be loaded into the WCS image buffer by using

the GET command.

Format:
GET fd

Parameter:

fd is the file descriptor of the device or file
that the microcode image is stored on. If
.ext is omitted, .WCS is the default.

5.9 TRANSFERRING MICROCODE TC AND FROM WRITABLE CONTROL
STORE (WCS)

Once the microcode object is loaded in the WCS image buffer in
main storage, it can be transferred to WCS memory by the TRANSFER
command . Conversely, the TRANSFER command can be used to load
the WCS image buffer from WCS memory.

48-096 FOO ROO 5-11

Format:

IMAGE
TRANSFER staddr, endaddr
WCcs
Parameters:

IMAGE specifies that data should be transferred from
the WCS image buffer in main memory to the WCS
memory.

WCS specifies that data should be transferred from
the WCS memory to the WCS image buffer in main
memory.

staddr is the starting address, in the source memory,
of the data to be transferred.

endaddr is the ending address, in the source memory,

of the data to be transferred.

Starting and ending addresses range from 800 to FFF, for
Models 3220, 3240, and 3250 processors, and the Model 3200MPS
System CPU, and from 000+ to FFFs for the Model 3230 processor
and the Model 3200MPS System APU(s).

The data defined by the starting and ending addresses in the
source memory 1is transferred to the same location in the
destination memory.

Example:
T I 850,94F

The microcode in the WCS image buffer that occupies locations
850+ through 94F,, 1is transferred to the same locations in WCS
memory .

Example:
T W 800,AFB

The microcode in WCS memory that occupies locations 800, through
AFByw 1is transferred to the same locations in the WCS image
buffer.

5-12 48-096 FOO0 ROO

The memory, either IMAGE or WCS, specified in the TRANSFER
command 1is the memory sending the data (source memory); the
memory not specified in the TRANSFER command is the memory
receiving the data (destination memory).

5.10 ESTABLISHING WRITABLE CONTROL STORE (WCS) MICROCODE
ROUTINES

WCS microcode routines, when debugged and saved on a specified
device and file, can be established as system WCS microcode. To

establish microcode object routines as system WCS microcode, use
the ESTABLISH command.

Format:

ESTABLISH progname, fd

Parameters:
progname is the name of the microcode object routine
that is the label in the PROG statement.
fd is the file descriptor of the device or file

that the microcode object routine is currently
stored on.

When the ESTABLISH command i3 executed, this sequence of
operations occurs:
1. The WCS image buffer is cleared.

2. The microcode object routine stored on the specified device
and file is loaded into the WCS image buffer.

3. The contents of the entire image buffer are transferred to
WCS memory.
NOTE
The ESTABLISH command of WCSAIDS, unlike

that of WCSUPP, does not place the task
in a power fail trap wait.

48-096 FOO ROO 5-13

The ESTABLISH command can be used only with microcode object
routines that are assembled using MICROCAL, or dumped using the
DUMP command of WCSAIDS. Since the contents of the entire image
buffer are loaded into WCS memory as a result of the ESTABLISH
command, the first 16 fullword locations of the image buffer
should contain the appropriate addresses of all the microcode
routines that it contains. If an error occurs during a load
operation, an error message 1is displayed and the next user
command is requested.

After the microcode routine is established as system microcode,
this message is displayed on the system console:

MICROCODE TRANSFERRED TO WCS

5.11 INSERTING AND REMOVING BREAKPOINTS IN WRITABLE CONTROL
STORE (WCS) MEMORY

To aid in debugging the routine, breakpoints stop the execution
of a microcode routine located in WCS memory and transfer control
back to WCSAIDS. A maximum of eight breakpoints can be inserted
at any one time. When a breakpoint takes place, execution of the
routine stops and control is transferred to WCSAIDS. To insert
a breakpoint, WCSAIDS saves the fullword microinstruction at the
specified location, inserts a link microinstruction, and branches
to the register save microcode routine located in high memory of
WCS. (This routine 1is loaded in high memory of WCS by WCSAIDS
whenever a breakpoint is inserted or a GO WCS command is used.)
In addition to saving the double precision, single precision,
general, and scratchpad (alternate) registers, the register save
microcode routine saves or transfers the following registers in
their corresponding areas in the image buffer and returns control
to WCSAIDS.

Models 3220 and 3230 processors, and the Model 3200MPS System
APU(s)

® PSW
e LOC
e MDR
e YDI
e YSI
® SR

® Microregisters

5-14 48-096 FOO0O ROO

Models 3240 and 3250 processors, and the Model 3200MFPS System CPU

e PSW
e ILOC
e CLOC
e RMDR
e WMDR
e YDI
e YSI

® Microregisters

See the EXAMINE command for the definitions of these keywords.

When a breakpoint 1is encountered, the execution of the
microprogram is stopped and control is passed to WCSAIDS. The
user may then issue any of the commands available to WCSAIDS.
Execution of the microprogram may be continued by issuing the GO
command.

NOTES

1. Use caution when setting a breakpoint
at a register-to-register transfer
instruction or a branch and 1link

microinstruction. When the GO
command is used to continue execution
following a breakpoint, the

breakpoint instruction is executed at
the top of WCS.

2. The amount of high memory reserved by
WCSAIDS for the register save
microcode routine is processor
dependent. For the Model 3220
processor, the last 64 fullwords are
reserved; for the Model 3230
processor and the Model 3200MPS
System APU(s), the last 66 fullwords;
for Models 3240 and 3250 processors,
the 1last 46 fullwords. Do not place
microcode in the WCS memory reserved
for WCSAIDS when using breakpoints.

3. A TRANSFER IMAGE command must have

been issued before breakpoints can be
inserted.

48-096 F00 ROO 5-15

4. For Models 3220 and 3230 processors,
and the Model 3200MPS System APU(s),
the contents of the link register are
destroyed when a breakpoint is
encountered.

5.11.1 Inserting Breakpoints
To insert a breakpoint in a microcode routine located in WCS, use

the INSERT command. Inserting a breakpoint does not change the
contents of the WCS image buffer.

Format:
n
INSERT wcsaddr |,
0 8
Parameters:
wcsaddr is the address of a microcode instruction 1in
a routine located in WCS memory where the
breakpoint is to be inserted.
n is a decimal number specifying the number of
times the instruction is encountered before
the breakpoint actually has any effect. If n
is not specified, 1 is the default value.
Example:
[92¢C,13

The microinstruction located at 92C, 1is encountered 12 times 1in
normal sequence. A breakpoint is taken on the thirteenth
encounter.
When a breakpoint is encountered, the following message is
displayed on lu3:

BREAKPOINT HIT AT wcsaddr

wcsaddr is the address of the instruction where
the breakpoint was encountered.

5-16 48-096 FOO ROO

5.11.2 Removing Breakpoints
To remove a breakpoint previously inserted in a microcode routine

located in WCS memory, use the ZAP command. Removing a
breakpoint does not change the contents of the WCS image buffer.

Format:

wcsaddr
e)

Parameter:

wcsaddr is the address of the breakpoint to be
removed.

The breakpoint located at the specified WCS address is removed,
and the microcode instruction at the specified WCS address is
restored. If no WCS address 1is specified, all existing
breakpoints are removed.

Example:
Z 92a

The breakpoint at location 92A, is removed, and the microcode
instruction located at 92A,, is restored.

5.12 STARTING THE USER PROGRAM
When the user program, developed to exercise the microprogram
(and linked with WCSAIDS), is started, WCSAIDS gets control. The

user can now issue the debugging commands of WCSAIDS and start
the execution of the program by issuing the START command.

Format:

START nnnn

48-096 FOO0 ROO 5-17

Parameter:

nnnn is a hexadecimal address where the execution
of the wuser program is to begin. If nnnn is
omitted, execution of the wuser's program is
started at location 100, .

When a breakpoint in the microcode is encountered, WCSAIDS gets
control, at which time the user may issue the debugging commands
again.

5.13 MICROPROGRAM EXECUTION
A microcode routine loaded in WCS memory can be executed by

issuing the GO WCS command. To start a microcode routine, use
the GO WCS command.

Format:

GO WCS wstaddr

Parameter:

wstaddr is the address in WCS where execution begins.

The WCS starting address is checked to see if it is within the
range of the WCS address limits. If the address is valid, the
registers are restored, and control is transferred to the WCS
starting address specified in the GO command.

Example:

Start the microprogram at WCS location 920, :

G W 920

A TRANSFER IMAGE command must have been issued prior to using the
GO command. If it was not, this error message is displayed:

MICROCODE NOT YET TRANSFERRED

5-18 48-096 FOO ROO

5.14 RESUMING EXECUTION AFTER A BREAKPOINT

If a microcode routine is interrupted by a breakpoint, the
microcode execution may be resumed with the microcode instruction
located at the address specified by the breakpoint. To continue
a microcode routine after a breakpoint is encountered, use the GO
command.

Format:
GO

When the GO command is executed after a breakpoint takes place,
the registers are restored, and the microcode instruction located
at the address specified by the breakpoint is executed in high
memory of WCS. If the microcode instruction at the breakpoint is
not a branch instruction, a branch is then taken to the microcode
instruction following the instruction located at the breakpoint,
and execution continues.

When WCSAIDS is being executed on behalf of a task, no other task
should be allowed to execute any of the microcode instructions
via ECS or BDCS instructions. If this restriction is not
observed, results are unpredictable and a system crash may occur.
5.15 USING THE DUMP IMAGE COMMAND

Use the DUMP IMAGE command to copy portions of the WCS image

buffer to an output device in disassembled microcode format or
common microassembler object format.

Format:

DUMP IMAGE [LOADER] staddr, endaddr, fd

Parameters:

LOADER specifies that the data should be dumped in
common microassembler object format.

staddr is the starting address of the area in the WCS
image buffer to be dumped.

endaddr is the ending address of the area in the WCS
image buffer to be dumped.

fd is the file descriptor of the device or file

that the dump is copied to or stored on.

48-096 FOO ROO 5-19

The DUMP IMAGE command dumps, to the specified file or device,
the area in the WCS image buffer specified by the starting and
ending addresses. This dump is output in disassembled microcode
format (see Appendix G) unless LOADER is specified. 1If LOADER is
specified, the fd must be capable of a binary write. This LOADER
dump 1is output in common microassembler object format with the
progname DUMP at the beginning of the output file for
identification.

After the DUMP IMAGE command is executed, the following message
is printed or displayed on the specified device:

I DUMP FROM staddr TO endaddr

5.16 PAUSING THE WCSAIDS TASK
The WCSAIDS task can be paused during execution to allow the user

to do some intermediate processing. To pause the task, use the
PAUSE command.

Format:

PAUSE

To continue execution of a task after the PAUSE command, the
operator should use the operating system command CONTINUE.

5.17 TERMINATING WCSAIDS

Execution of WCSAIDS can be terminated by using the END command.

Format:

END

5-20 48-096 FOO ROO

CHAPTER 6
LOADER AND POWER FAIL MONITOR (MPSLPFM)
START OPTIONS AND MESSAGES

6.1 INTRODUCTION

The linking, loading, and starting of the loader and power fail
monitor (MPSLPFM) program was 1illustrated in Section 3.3.3.
MPSLPFM may be used to load the writable control store (WCS) of
uniprocessors with previocusly debugged microcode that has been
saved on a direct access device through the wuse of WCSLINK or
WCSAIDS. With the Perkin-Elmer Model 3200MPS System, the MPSLPFM
may be used to load the WCS of up to ten processors: one central

processing unit (CPU) and up to nine auxiliary processing units
- (APUs) with debugged microcode that has been SAVEd on a direct
access device by WCSLINK or WCSAIDS. The manner in which a CPU
or an APU may be associated with a microcode image file 1is
described in the following sections.

6.2 STARTING THE LOADER AND POWER FAIL MONITOR (MPSLPFM)
The format of the START command of MPSLLPFM allows the

gspecification of individual microcode images to be loaded into
the WCS of the CPU and the WCS of each APU.

Format:

COMMAND=fd

START |, parameter-list

IMAGE=fd
Parameters:
COMMAND=fd directs the MPSLPFM to read parameters
from the command file specified by fd.
parameter-list is a list of parameters.
IMAGE=£fd specifies the image file for the CPU of

the Model 3200MPS System.

48-096 F00 ROO 6-1

The COMMAND=fd is used to direct the MPSLPFM to read a command
file containing the desired parameters. The command file must be
an ASCII index file. Each record contains a parameter list. An
end of file or a /7* in the first two columns of the record marks
the end of association parameters in the file. In order to be
consistent with other Perkin-Elmer products, MPSLPFM assigns
logical wunit 5 (lub) to the command file for reading the
parameters. When the COMMAND parameter is specified in the START
command, there should not be any other START parameter.

A parameter-list is a list of parameters. Each parameter may be
an association-parameter, ON or OFF. Consecutive parameters are
separated by blanks or commas. An association-parameter
associates one or more processors with a microcode image file.
The format of the association parameter is:

proc-designator=fd

where the file descriptor (fd) is the file containing the
microcode image, and proc-designator= means zero or more
occurrences of proc-designator=. If the extension Iis not
gpecified on the fd, a default extension of .WCS 1is assumed. A
proc-designator is one of the following:

CPU designates the CPU.

apu-no is an integer decimal number designating an
APU (0 also means the CPU).

APU is all APUs which are not otherwise explicitly
mentioned in the START command or the command
file.

All the processors designated by the proc-designator= 1list are
assocliated with the image file f£fd. If the extension is not
specified on the fd, a default extension of .WCS is assumed.

For compatibility with the earlier version of the 1loader and
power fail monitor (WCSLPFM), the START option IMAGE=fd has been
included. The effect of this START option is identical to that
of CPU=fd. Again, if the extension is not specified on the fd,
a default extension of .WCS is assumed. :

The ON (OFF) option directs the MPSLPFM to leave all the APUs
marked ON (OFF) after loading the WCS of the respective APUs. If
neither ON nor OFF is specified, the MPSLPFM assumes the default
of OFF. Marking the APU ON after the completion of loading makes
i* peossible to schedule a task to be run on an APU as soon as its
WCS is defined without the need for operator intervention.

6-2 48-096 FOO ROO

The ON (OFF) option may only be specified with association

parameters. If the option is specified more than once in the
START option list, or in the command file, the Jlatest option
specified becomes effective. The option is applied to all the

APUs. If the START command is issued without parameters, the WCS
of each processor 1is initialized with branches to illegal
instruction traps.

- Examples:
Specify a command file containing parameter lists:
START , COMMAND=PARMFLE .WCS/S

Specify association parameters for the CPU and all APUs
- configured in the system:

START ,CPU=CPUMIC.WCS/S,APU=APUMIC.WCS/S

Specify association parameters for the CPU and 3 APUs; mark all
APUs ON after loading:

START ,CPU=CPUMIC.WCS/S,1=2=3=APUMIC.WCS,ON
Specify an image file to be loaded to the CPU:
START , IMAGE=CPUMIC.WCS/S

NOTES

1. an APU NUMBER greater than the
maximum number of APUs cannot be
specified.

2. If COMMAND= is specified in the START
command, no other option may be
specified.

3. If IMAGE= is specified in the START
command, no other option may be
specified.

4. If the extension is not specified on
the image file, an extension of .WCS
is assumed.

48-096 FOO ROO 6-3

5. The command file must not contain
another COMMAND= option.

6. It 1is the responsibility of the
programmer to see that the
appropriate microcode is loaded into
the WCS of a processor. If the image
file was built using WCSLINK or
WCSAIDS, the loader information block
(LIB) of the image file contains the
model number of the processor for
which the image file was built.
MPSLPFM checks this information
against the model number of the
processor for which WCS is to be
loaded. If the two do not match, an
information message is displayed.

Nevertheless, the WCS of the
specified processor is loaded with
microcode from the image file

regardless of suitability.

If a START parameter error is detected, the MPSLPFM processes as
many options as possible before terminating with an end of task
code of 2.

6.3 LOADING MICROCODE

When all the START parameters are processed, the MPSLPFM starts
loading the WCS of the processor(s). MPSLPFM first establishes
the WCS of the CPU, followed by the WCS of the individual APUs.

6.3.1 Loading the Writable Control Store (WCS) of the Central
Processing Unit (CPU)

If an image file has been specified for the CPU, the MPSLPFM
assigns logical unit 1 (lul) to that file, checks the validity of
the 1image file (for valid LIB) and loads the WCS of the CPU with
the microcode image contained in that file. Validation of the
LIB includes comparing the processor model number with the target
information encoded 1in the LIB. If the CPU is not associated
with an image file, the WCS of the CPU is cleared (filled with
illegal instruction traps).

6-4 48-096 FOO ROO

6.3.2 Loading the Writable Control Store (WCS) of an Auxiliary
Procegssing Unit (APU)

An APU should be marked OFF for the MPSLPFM to initiate the
process of loading its WCS. If the APU is not in the OFF state,
the MPSLPFM will display an information message and continue with
the next APU. If the APU is marked OFF, the MPSLPFM gets the
mapping and control rights to the APU and marks that APU
exclusive ON for itself. If an image file has been specified for
the APU, the MPSLPFM assigns lul to that file, and loads the WCS
of that APU with the microcode contained in the image file after
validating the LIB. If an image file has not been specified, the
WCS of the APU is loaded with the illegal instruction traps. If
the APU is not equipped with WCS, the loading process is omitted
for that APU.

When the loading is complete, the APU is marked ON if the option
ON was specified in the START option; otherwise it is marked OFF.
Finally, the MPSLPFM will release the mapping and control rights
to that APU.

If the WCS of an APU is loaded with microcode from an image file,
the WCS loaded flag for that APU is set; otherwise it is reset.
If an APU was not in the OFF state, or if there were any errors
in the process of loading the WCS of an APU, the WCS loaded and
WCS 1initialized flags are reset; otherwise the WCS initialized
flag is set. If any error 1is encountered during the loading
process, MPSLPFM will display an error message, resetting the WCS
initialized and WCS loaded flags for that processor.

When the WCS image of all the processors has been transferred to
the corresponding WCS, the MPSLPFM enters the power fail/restore
trap wait while enabling the task message entry.

6.3.3 Selective Loading of the Writable Control Store (WCS) of
a Processor

All the processors need not be associated with a microcode image
file when the MPSLPFM is initially brought up. In fact, none of
the processors need be associated with an image file. An
association may be established between a processor and an image
file merely by sending an ESTABLISH message to the MPSLPFM. An
existing association may also be changed by sending this message.
Further, if for some reason, (e.g., an APU was not in the OFF
state) the WCS of an APU was not loaded, it is possible to send
a RESTORE message to the MPSLPFM to initiate the load without
having to reestablish the association. It is also possible to
invalidate the WCS of a processor by sending a CLEAR message to
the MPSLPFM. It should be noted that the MPSLPFM is able to
receive messages only when it.is in the power fail/restore trap
wait state.

If the association of an APU with its microcode image file has

not yet been established, or if the association is to be altered,
the ESTABLISH message may be sent to the MPSLPFM.

48-096 FOO0 ROO 6-5

Format:

COMMAND=fd
SEND ESTABLISH parameter-list

IMAGE=fd

The ESTABLISH message causes the MPSLPFM to associate the image
file specified 1in the parameter with the specified processors.
After completion of processing the message, the WCS of only those
processors specified in the message are loaded as described in
Sections 6.3.1 and 6.3.2. The APU for which an association with
a microcode image file is to be established or altered should be
in the OFF state in order to successfully load its WCS.

Example:
Establish associations for all APUs and mark them ON:
SEND ESTABLISH APU=APUMIC.WCS/S,ON

If the association of an APU with its microcode image file has
been established earlier, the RESTORE message may be sent to the
MPSLPFM to load the WCS of that APU.

Format:

ON
SEND RESTORE apu-no,|,apu-no,,...| |,
’ i oPP
[QEE

Where:

apu-no is an integer number designating the APU
containing the WCS to be reloaded. The
process of loading the WCS 1is described in
Sections 6.3.1 and 6.3.2. The APU containing
the WCS to be reloaded should be in the OFF
state.

6-6 48-096 F0OO ROO

Example:

Reestablish the associations of APU numbers 3 and 5, and mark
them ON:

SEND RESTORE 3, 5, ON

The WCS of a processor may be reinitialized with 1illegal
instruction traps by clearing 1its contents. This may be
requested by sending a CLEAR message to MPSLPFM.

Format:

SEND CLEAR apu-no, [,apu—no2 A] [{

Where:
apu-no is an integer number designating the APU whose
WCS is to be cleared.
Example:

Reinitialize APU numbers 1, 4, and 9:

SEND CLEAR 1, 4, 9, OFF

The CLEAR message causes the MPSLLPFM to 1load the WCS of the
requested APUs with 1illegal instruction traps. The APUs to be
cleared should be in the marked OFF state for the MPSLPFM to load
the WCS with the illegal instruction traps.

If the option ON is specified in the above messages, the APUs for
which this option is specified is marked ON after its WCS has
been loaded. Otherwise, the APU is left marked OFF. The option
ON (OFF) specified in the message applies to all the APUs
appearing in the message.

48-096 FOO ROO 6-7

6.3.4 Listing of Association Parameters

A list of microcode image files associated with each of the
processors can be obtained by sending the following message to
the MPSLPFM:

SEND STATUS

This list will also indicate which processors have WCS loaded or
cleared, or had an error in loading the WCS.

6.4 RESTORING THE WRITABLE CONTROL STORE (WCS) OF THE CENTRAL
PROCESSING UNIT (CPU) AND AUXILIARY PROCESSING UNIT (APU)
UPON POWER FAIL

After a power fail interrupt, the MPSLPFM first reloads the WCS
of the CPU with the microcode from the image file specified for
it. The process of loading the WCS is described 1in Section
6.3.1.

When the MPSLPFM is finished with the CPU, it loads the WCS of
each APU, one after another, as described in Section 6.3.2. The
APUs, however, remain in the state they were in prior to the
power fail interrupt. To initiate transfer of microcode image to
the WCS of an APU, it must be in the OFF state. The operating
system leaves the APUs in the OFF state before invoking MPSLPFM.

It is possible to power down only a set of APUs. When the APUs
are brought up again, a message can be sent to the MPSLPFM for
reloading the WCS of those APUs. However, the APUs should be
marked OFF before sending the message to the MPSLPFM.

The format of the message to be sent to the MPSLPFM (ESTABLISH,
CLEAR, or RESTORE) is described in Section 6.3.3.

If a power fail interrupt occurs while processing the previous
power fail interrupt, the MPSLPFM will pause. If this happens,
MPSLPFM should be cancelled and restarted.

6.5 VERIFICATION

MPSLPFM transfers microcode to the WCS of a processor in parts.
After the microcode is transferred to the WCS, the MPSLPFM reads
that microcode back from the WCS and compares it with the
original code. If there is any mismatch, the MPSLPFM displays an
information message, resets the WCS initialized and WCS loaded
flags, and proceeds with processing of subsequent APUs. The same
action is taken for all kinds of errors; e.g., errors in trying
to assign the image file to lul, errors in reading the image
file, improper image file, etc.

6-8 48-096 FO0O ROO

6.6 FLAGS

The WCS supported flag, located in the system pointer table
(SPT), is set if the WCS of the CPU is loaded with microcode from
an 1image file; otherwise, this flag is reset. This bit may be
examined by a user task (u-task) through SVC 2 code 19, option
X'0l'.

The WCS initialized flag, located in the auxiliary processing
block (APB), of an APU is set 1if the WCS of that APU is
initialized either with the microcode from a specified file or
with illegal instruction traps; otherwise, this flag is reset.

The WCS loaded flag, also located in the APB, of an APU is set if
the WCS of that APU is loaded with microcode from a specified
image file; otherwise, it is reset.

If any error is encountered during the transfer of microcode,
both the WCS loaded and the WCS initialized flags are reset.
These flags may be examined by a u-task through SVC 13 function
code X'01l' fetch APU status.

6.7 ERROR HANDLING

An illegal START option, or any error in the START option causes
the MPSLPFM to terminate with a end of task code of 2. If an
error is encountered in an option in the ESTABLISH/RESTORE/CLEAR
message, the offending option 1is ignored; the 1load is not
performed for the APUs specified in the message.

48-096 F0O0 ROO 6-9

CHAPTER 7
WCSUPP/WCSLPFM PROGRAMS

7.1 INTRODUCTION

The full support program (WCSUPP) and the loader and power fail
monitor (WCSLLPFM) are the earlier versions of writable control
store (WCS) support programs available for the Perkin-Elmer
Series 3200 processors.

WCSUPP is available in three versions; one for the Model 3220
processor, another for Model 3230 processors, and a third for the
Models 3240 and 3250 processcrs. The WCS full support program
enables the user to load a micrccode object routine into the WCS
image buffer located 1in main memory, and then transfer the
contents of the image buffer into WCS memory. This program also
allows the user to examine and modify data located in main
memory, in register images, in the WCS image buffer, or in WCS

memory. It provides the debugging capability to insert and
remove breakpoints, and the commands to execute WCS resident
routines. This support program is also used to initialize WCS

each time power is restored.

WCSL.PFM does not provide debugging capabilities. It establishes
previously debugged microcode from a WCS image file stored on a
direct access device.

7.2 USING WCSUPP

The following sections describe the commands available to the
user of the full support program.

CAUTION

A WCSUPP TASK SHOULD ONLY BE EXECUTED ON
THE PROCESSOR FOR WHICH IT WAS BUILT. IF
THIS RESTRICTION IS NOT OBSERVED,
UNPREDICTABI.E RESULTS OR A SYSTEM CRASH
MAY OCCUR.

7.2.1 Managing the Writable Control Store (WCS) Image Buffer

The WCS support program maintains a buffer that contains 2,048
fullwords (8,192 bytes) located in main memory. The support
program performs relative and absolute addressing for the buffer.
This section describes how to clear, load, and transfer data to
and from the WCS image buffer.

48-096 FOO ROO 7-1

7.2.1.1 Clearing and Loading the Writable Control Store (WCS)
Image Buffer

Before a new microcode object routine is loaded into the WCS
image buffer, clear the buffer with this command:

CLEAR

CLEAR fills the WCS image buffer with a microcode branch to the
address of the 1illegal instruction interrupt handler. This
ensures that any errors in the execution of ECS and BDCS
instructions cause illegal instruction interrupts.

When the buffer is cleared, the microcode object routine can be
loaded by using the following command.

Format:
LOAD progname, fd
Parameters:

progname is the program name in the label field of the
PROG statement in the microcode source
routine. If the DUMP IMAGE LOADER command was
used to store the routine on a binary or
direct access device, DUMP must be specified
as the progname.

fad is the file descriptor of the device or file
that the routine is stored on. If voln: is
omitted, the current user volume is the
default. If filename is omitted, progname is
the default.

Example:
LO COS,DSCLl:WCS.TST
7.2.1.2 Transferring Microcode Routines to Writable Control

Store (WCS) Memory

Once the microcode object routine is loaded in the WCS image
buffer in main storage, it can be transferred to WCS memory by
the TRANSFER command.

7-2 48-096 FOO ROO

Format:

IMAGE
TIRANSFER staddr, endaddr
' WCs
Parameters:

IMAGE specifies that data should be transferred from
the WCS image buffer in main memory to the WCS
memory.

WCS specifies that the data should be transferred
from the WCS memory to the WCS image buffer in
main memory.

staddr is the starting address, in the socurce memory,
of the data to be transferred.

endaddr is the ending address, in the source memory,

of the data to be transferred.

The data defined by the starting and ending addresses in the
source memory 1is transferred to the same location in the
destination memory.

Example:
T I 850,94F

The microcode routine in the WCS image buffer that occupies
locations 85046 through 94F,, is transferred to the same
locations in WCS memory.

Example:
T W 800,AFB

The microcode routine in WCS memory that occupies locations 800
through AFB,; is transferred to the same 1locations in the WCS
image buffer.

The memory, either image or WCS, specified in the TRANSFER
command is the memory from which the data is transferred (source
memory); the memory not specified in the TRANSFER command is the
memory to which the data is transferred (destination memory).

48-096 FOO ROO 7-3

7.2.2 Cell Examination
The EXAMINE command allows the user to examine cells.

A cell can be any of the following locations in memory:

e Fullword in WCS memory

e Fullword in the WCS image buffer

® Register image

e Halfword in main memory

The last cell displayed is called the current open cell and 1is
ready for modification. The cells that can be examined depend
upon the version of WCSUPP being used.

7.2.2.1 Models 3220 and 3230 Processors EXAMINE Command

The EXAMINE command for the Models 3220 and 3230 processors

version of the full support program has the following options:

Format:

—

ALTERNATE

EXAMINE DOUBLE z
FLOATING reg |,{

MICRO
REG

LOC
MDR
PSW
SR

YDI
YS1 /)

7-4 48-096 FOO ROO

Parameters:

IMAGE

wCs

hexaddr

Y

ALTERNATE

DOUBLE

FLOATING

MICRO

REG

reg

LOC

PSW

48-096 F0O0 ROO

specifies that the WCS image buffer in main
memory is to be examined. The contents of the
image buffer are displayed in disassembled
microcode format.

specifies that WCS memory is to be examined.
The contents of WCS memory are displayed in
disassembled microcode format.

is the 1- to 6-character hexadecimal address
of the first cell to be examined.

is a decimal number from 1 to 16 specifying
the number of fullwords to be examined.

is a decimal number from 1 to 16 specifying
the number of halfwords to be examined.

specifies that the contents of the alternate
register images be examined.

specifies that the contents of the double
precision floating point register images be
examined.

specifies that the contents of the single
precision floating point register images be
examined.

specifies ' " that the contents of the
microregister images be examined.

specifies that the contents of the general
register images be examined. The register set
is determined by the program status word
(PSW) .

is a decimal number from 0 to 15 specifying
the first register to be examined.

is a decimal number from 1 to 16 specifying
the number of registers to be examined.

specifies that the contents of the location
counter register image be examined.

specifies that the contents of the MDR
register image be examined.

specifies that the contents of the PSW
register image be examined.

SR specifies that the contents of the SR register
image be examined.

YDI specifies that the contents of the YDI
register image be examined.

YS1 specifies that the contents of the YSI
register image be examined.

Examples:

Display the contents of two consecutive halfwords, starting at
location 120, :

*EXA 120,2
120: 4300
122: 90Aa2

Display the contents of the memory data register (MDR) register
image: ‘

*EXA MDR
MDR : OAl276D2

Display in disassembled format the contents of the fullword
located at 860, in WCS memory:

*EXA W 860
860 : OOG6EOOFO L SR, LENGTH

Display the contents of the double precision floating point
register 2:

*EXA D 2
DR2 : 00000084C214979A

If a single or double precision floating point register is
examined and that floating point option was not specified in the
START command, one of these messages is displayed:

NO FLOATING POINT SUPPORT
NO DOUBLE PRECISION SUPPORT

7-6 48-096 F0O ROO

7.2.2.2 Models 3240 and 3250 Processors EXAMINE Command

The EXAMINE command for the Models 3240 and 3250 processors

version of the full support program differs slightly from that
shown for the other version:

Format:
{ IMAGE b
hexaddr |,¢
hexaddr {
SCRATCHPAD
EXAMINE ROUBLE jz
FLOATING reg |, {
MICRO Lt
REG
CL.OC
ILOC
RMDR
WMDR
PSW
YDI
g YS1I
Parameters:

IMAGE specifies that the WCS image buffer in main
memory is to be examined. The contents of the
image buffer are displayed in disassembled
microcode format.

WCS specifies that WCS memory is to be examined.
The contents of WCS memory are displayed in
disassembled microcode format.

hexaddr is the 1- to 6-character hexadecimal address
of the first cell to be examined.

X is a decimal number from 1 to 16 specifying

the number of fullwords to be examined.

48-096 FOO ROO 7-17

4

ALTERNATE

DOUBL.E

FLOATING

MICRO

REG

reg

CLOC

ILOC

PSW

RMDR

WMDR

¥YDI

YSI

is a decimal number f

roml to 16

spec

the number of halfwords to be examined.

specifies that the contents of

register images be examined.
specifies that the contents of
precision floating point
examined.

specifies that the contents of
precision floating point
examined.

specifies that the contents

microregister images be examined.

specifies that the
is determined by the

is a decimal number f
the first register to

is a decimal number f

contents of
register images be examined.

PSW.

rom 0 to 15
be examined.

rom 1 to 16

the

alt

the

the

of

the g
The register set

spec

spec

the number of registers to be examined.

specifies that the
register image are to

specifies that the
register image are to

specifies that the
register image are to

specifies that the
register image are to

specifies that the
register image are to

specifies that the
register image are to

specifies that the
register image are to

contents of
be examined.

contents of
be examined.

contents of
be examined.

contents of
be examined.

contents of
be examined.

contents of
be examined.

contents of
be examined.

the

the

the

the

the

the

the

ifying

ernate

double

register images be

single

register images be

the

eneral

ifying

ifying

CLOC

ILOC

PSW

WMDR

YDI

YSI

48-096 F0OO ROO

7.2.3 Cell Modification

After a cell is examined, the contents of the cell are open for
modification. Only one cell can be modified at any one time. To
modify the current open cell, use the MODIFY command.

Format:
MODIFY x, Ex2 .. .x16:]
Parameter:
X is a hexadecimal number.

The numbers specified replace the contents of the location 1last

examined. The modified cell containing the new contents is then
displayed. The address of the current open cell is incremented
to the next sequential cell. The next sequential cell then
becomes the current open cell; its ontents are available for
modification. The user can modify cells successively without
opening each consecutive cell. Modifying a location 1in WCS
memory does not modify the corresponding location in the WCS
image buffer. The reverse is also true.
Example:
*EXA 120,2
120: 4300
122: 801E
*MO 90A2 -
122: 90A2
*EXA 120,2
120: 4300
122: 90A2

7.2.4 Inserting and Removing Breakpoints in Writable Control
Store (WCS) Memory

To aid in debugging the microcode routine, breakpoints stop the
execution of a microcode 'routine located in WCS memory and
transfer control back to the WCS support program. A maximum of
eight breakpoints can be inserted at any one time.

48-096 FOO ROO 7-9

When a breakpoint takes place, execution of the routine stops and
control is transferred to the support program. To insert a
breakpoint, the support program gsaves the fullword
microinstruction at the specified location, inserts a 1link
microinstruction, and branches to the register save microcode
routine located in high memory of WCS. (This routine is loaded
in high memory of WCS by the support program whenever a
breakpoint is inserted or a GO WCS command is used.) In addition
to saving the double precision, single precision, general, and
scratchpad (alternate) registers, the register save microcode
routine saves or transfers the following registers to their
corresponding areas 1in the image buffer and returns control to
the support program:

Models 3220 and 3230 processors

e PSW
e LOC
e MDR
e YDI
e YSI
e SR

e Microregisters

Models 3240 and 3250 processors

e PSW
e ILOC
e CLOC
e RMDR
e WMDR
e YDI
e YSI

e Microregisters

See the EXAMINE command for the definitions of these keywords.

7-10 48-096 FOO ROO

When a breakpoint is encountered, execution of the microprogram
is stopped and control is passed to WCSUPP. The user may then
issue any of the commands available to WCSUPP. Execution of the
microprogram may then be continued via the GO command.

NOTES
1. Use caution when setting a breakpoint

at a register-to-register transfer
instruction or a. branch and link

microinstruction. When the GO
command is used to continue execution
following a breakpoint, the
instruction is executed from its

location in high memory of the WCS.

2. The amount of high memory reserved by
WCSUPP for the register save
microcode routine is processor
dependent. For Models 3220 and 3230
processors, the last 64 fullwords are
reserved; for Models 3240 and 3250
processors, the last 46 fullwords are
reserved. Do not place microcode in
the WCS memory reserved by WCSUPP
when using breakpoints.

3. A TRANSFER IMAGE command must be
issued before breakpoints can be
inserted.

4. For Models 3220 and 3230 processors,
the contents of the 1link register
(LR) are destroyed when a breakpoint
is encountered.
7.2.4.1 Inserting Breakpoints
To insert a breakpoint in a microcode routine located in WCS, use

the INSERT command. Inserting a breakpoint does not change the
contents of the WCS image buffer.

Format:

INSERT wcsaddr E{

48-096 FOO ROO 7-11

Parameters:

wcsaddr is the address of a microcode instruction in
a routine located in WCS memory where the
breakpoint is to be inserted.

n is a decimal number specifying the number of
times the instruction is encountered before
the breakpoint actually has any effect. If n
is not specified, 1 is the default value.

Example:
I 92C,13

The microinstruction located at 92C,, is encountered 12 times 1in
normal sequence. A breakpoint 1is taken on the thirteenth
encounter.
When a breakpoint is encountered, the following message is
displayed on logical unit 3 (lu3):

BREAKPOINT HIT AT wcsaddr

where wcsaddr is the address of the instruction where the
breakpoint was inserted.

7.2.4.2 Removing Breakpoints
To remove a breakpoint previously inserted in a microcode routine

located in WCS memory, use the ZAP command. The ZAP command does
not change the contents of the image buffer.

Format:

wcsaddr
m{ }

alk
Parameter:

wcsaddr is the address of the breakpoint to be
removed.

7-12 48-096 FOO ROO

The breakpoint located at the specified WCS address is removed,
and the microcode instruction at the specified WCS address 1is
restored. If no WCS address is specified, all existing
breakpoints are removed.

Example:
Z 92A

The breakpoint at location 922, is removed, and the microcode
instruction located at 92A,, is restored.

7.2.5 Miqroprogram Execution

A microcode routine loaded in WCS memory may be executed by
issuing the GO WCS command. To start a microcode routine, use
the GO WCS command.

Format:
GO WCS wstaddr
Parameter:
wstaddr is the address in WCS where execution begins.

The WCS starting address is checked to see if it is within the
range of the WCS address limits. If the address is valid, the
registers are restored, and control is transferred to the WCS
starting address specified in the GO command. The current values
of all registers (from the register image buffers) are also
transferred to the corresponding registers.

Example:
G W %20

A TRANSFER IMAGE command must have been issued prior to using the
GO command. If it was not, the following error message is
displayed:

MICROCODE NOT YET TRANSFERRED

48-096 FOO RODO 7-13

7.2.6 Resuming Execution After a Breakpoint

If a microcode routine is interrupted by a breakpoint, the
microcode instruction located at the address specified by the
breakpoint can be executed and microcode execution continued. To
continue a microcode routine after a breakpoint is encountered,
use the GO command:

Format:
GO

When the GO command is executed after a breakpoint takes place,
the registers are restored, and the microcode instruction located
at the address specified by the breakpoint is executed in high
memory of WCS. If the microinstruction at the breakpoint was not
a branch instruction, a branch is then taken to the microcode
instruction following the instruction located at the breakpoint,
and execution continues.

The breakpoint feature of the WCS support program can be used to
debug another task that uses microcode routines; however, extreme
caution should be used. When the task to be debugged enters a
microcode routine and a breakpoint is taken, control is
transferred to the support program, but the operating system is
unaware of the change. Therefore, the support program uses the
logical units that are assigned to the other task. In addition,
the other task must have the memory address translator (MAT)
disabled before the breakpoint is taken, or a memory fault will
occur. It is recommended that the microcode routines be debugged
separately before being used by other tasks.

7.2.7 Using the DUMP IMAGE Command
Use the DUMP IMAGE command to copy portions of the WCS image

buffer to an output device in disassembled microcode format or
common microassembler object format.

Format:
DUMP IMAGE [LOA.DERJ staddr, endaddr, £d
Parameters:

LOADER specifies that the data should be dumped 1in
common microassembler object format.

7-14 48-096 FOO ROO

staddr is the starting address of the area in the WCS
image buffer to be dumped.

endaddr is the ending address of the area in the WCS
image buffer to be dumped.

fa is the file descriptor of the device or file
that the dump is copied to or stored on.

The DUMP IMAGE command dumps to the specified file or device the
area in the WCS image buffer specified by the starting and ending
addresses. This dump is output in disassembled microcode format
unless LOADER is specified. If LOADER is specified, the device
must be a binary output device. This LOADER dump is output in
common microassembler object format with the progname DUMP at the
beginning of the output file for identification.

After the DUMP IMAGE command is executed, this message is printed
or displayed on the specified device:
I DUMP FROM staddr TO endaddr
7.2.8 Establishing Writable Control Store (WCS) Microcode
Routines
WCS microcode routines, when debugged and saved on a specified
device and file, can be established as system default WCS. To

establish debugged microcode object routines as system default
WCS, use the ESTABLISH command.

Format:

ESTABLISH progname, fd

Parameters:
progname is the name of the microcode object routine
that is the label in the PROG statement.
fd is the file descriptor of the device or file

that the microcode object routine is currently
stored on.

48-096 FOO ROO 7-15

When the ESTABLISH command 1is executed, this sequence of
operations occurs:

1. The WCS image buffer is cleared.

2. The microcode object routine stored on a specified device and
file is loaded into the WCS image buffer.

3. The contents of the entire image buffer (2,048 fullwords) is
transferred to WCS memory.

4. The WCS support program is placed in a trap wait state.

NOTE

WCSUPP differs from WCSAIDS in that the
ESTABLISH command for WCSAIDS does not
place the support program in a trap wait
state. :

The ESTABLISH command can be used only with microcode object
routines that are assembled using MICROCAL, or dumped using the
WCS support program. Since the contents of the entire image
buffer are loaded into WCS memory as a result of the ESTABLISH
command, the first 16 fullword 1locations of the image buffer
should contain the appropriate addresses of all the microcode
routines that it contains. If an error occurs during a load
operation, an error message is displayed and the next user
command is requested.

After the microcode routine is established as system microcode,
this message is displayed on the system console:

SYSTEM DEFAULT WCS ESTABLISHED

The WCS support program is placed in a trap wait state until a
power restoration trap occurs following a power fail/restore
sequence.

When microcode is established as WCS system microcode with the
ESTABLISH command, the support program will no longer accept
command input.

7.2.9 Pausing the WCSUPP Task

The WCS support program task can be paused during execution to

allow the user to do some intermediate processing. To pause the
task, use the PAUSE command.

7-16 48-096 FO0O ROO

Format:
PAUSE

To continue execution of a task after the PAUSE command, the
operator should use the operating system command CONTINUE.
7.2.10 Terminating a Task

Execution of the WCS support program can be terminated by using
the END command.

Format:
END

7.2.11 Saving the Contents of the Writable Control Store
(WCS) Image Buffer

When the WCS image buffer contains a fully debugged microcode
routine, it can be saved on any auxiliary storage media. To save
the contents of the WCS image buffer, use the SAVE command.

Format:
SAVE fd
Parameter:
fd is the file descriptor of the device or file
that the microcode 1image routine 1is to be
stored on. If .ext is omitted, .WCS 1is the
default.

When the SAVE command is executed, a loader information block
(LIB) is built and transferred, followed by the contents of the
WCS image buffer, to the device or the file specified. The
specified device is checked for write and binary attributes. If
the specified file is:

e contiguous, it must contain at least 33 records,

® indexed, it must contain a logical record length of 256 bytes,
or

48-096 FOO ROO 7-17

® nonexistent, it is allocated as a new contiguous file on the
specified volume, or the system default volume if no volume
name is present.

7.2.12 Retrieving a Writable Control Store (WCS) Image File

A WCS image file can be loaded into the WCS image buffer by using

the GET command.

Format:
GET fd

Parameter:

fd is the file descriptor of the device or file
that the saved microcode image is stored on.
If .ext is omitted, .WCS is the default.

7.2.13 Writable Control Store (WCS) Wait State

When the WCS support program is loaded and started, it is in the
active state. When a WAIT or ESTABLISH command is executed, the
support program enters the wait state, where no user interaction
or program processing occurs. The support program will restore
the data contained in the WCS image buffer into the WCS memory in
the event of a power failure. Before going into the wait state,
the WCS memory must contain a fully debugged microcode routine.
To enter the wait state, use the WAIT command.

Format:
WAIT

When the WAIT command is executed, the following sequence of
operations occurs:

l. The contents of the WCS memory is transferred into the WCS
image buffer in main memory.

2. The WCS support program is placed into trap wait.

7-18 48~-096 FO0OO ROO

NOTE

WCSAIDS does not recognize the WAIT
command .

After the contents of WCS memory are transferred to the WCS image
buffer, the contents becomes the system default WCS image
microcode, and the following message is displayed on the system
console:

SYSTEM DEFAULT WCS ESTABLISHED

The microcode transferred to the buffer becomes established
system microcode because it is eventually restored into WCS
memory. The user can now alter the code in 1image buffer only
through another executive task (e-task).

7.2.14 Restoring Writable Control Store (WCS) After a Power
Fail

After a power failure and when the power is restored, the
operating system restores the system status and displays the
following message on the system console:

POWER RESTORE RESET PERIPHERALS AND ENTER GO

The user should reset all peripherals and issue a GO command.
The power restoration trap is taken by the WCS support program
since it is the highest priority task using WCS in the system.
The contents of the WCS image buffer is then transferred back
into WCS memory and this message is displayed:

WCS RESTORED

See Figure 7-1 for the states and 1logical flow of WCS
initialization.

48-096 FOO ROO 7-19

0s/32

Active
State

Transitory
State

Wait
State

Transitory
State

{ Load and |
! gstart H
! linked WCS |
i !
i H

Load microcode
object routine into
WCS image buffer

Transfer contents of
WCS image buffer to
WCS memory

Use microcode
debugging features

Dump contents of
WCS memory to
device

Establish as
system code

i
i
i
Issue wait i
instruction that i
copies contents of |
WCS memory to H
WCS image buffer i

Put support program
in trap wait

Wait for power
restoration to occur

Restore power

]
i
Restore contents of |
WCS image buffer |

to WCS memory H

as system default |

microcode H

Figure 7-1 WCS Initialization

48-0%6 FOO ROO

7.3 WCSLPFM

The WCSLPFM also provides the user with the ability to establish
system default WCS. No debugging facility is provided by the
WCSLPFM. 1Its main advantage lies in its much smaller memory
requirements. WCSLPFM regquires only lkb of main memory for its
operation.

The microcode to be established must be fully debugged.
Instructions to build, load, and start the WCSLPFM were discussed
in Section 3.3.5.

48-096 FOO ROO 7-21

CHAPTER 8
TYPICAL APPLICATIONS

8.1 INTRODUCTION

This section contains sample programs that illustrate how special
WCS functions are added to the system. All routines in this
section use the enter control store (ECS) instruction rather than
the privileged branch to control store (BDCS) instruction. The
ECS instruction is assumed by the hardware to be an RI1 format
instruction. When the user level instruction is read, two
consecutive halfwords are read. The second halfword is placed in
the MDR and can be used as a 16-bit immediate constant or memory
address. Without hardware modification, the ECS instruction
cannot assume the RR, RX2, RX3, or RI2 formats. Through the user
def ined mnemonic mechanism in CAL., however, the user can cause an
ECS instruction to assemble as an RR or RI1 format instruction.
See the Common Assembly Language/32 (CAL/32) Manual.

If the user chooses the RR format for the ECS instruction, the
microcode routine entered must effectively decrement the location
counter by 2 Dbecause the hardware will have assumed the RI1
format and will have incremented the location counter by 4.

Appendix H shows an example writable control store (WCS)
microprogram for a Model 3250 processor.

8.2 FIND A INB

This instruction set extension compares a string called A,
containing a variable number of bytes, against a string called B,
containing a greater number of bytes than A. When string A is
found in string B, the starting address of the matching string in
B is returned. The routine is presented with the start and end
addresses of A and the start and end addresses of B. Since the
routine may be lengthy, it is interruptible and restartable from
its previous 1location in byte string B where the interrupt
occurred. This is accomplished by modifying the given start
address of B as the routine proceeds. Upon termination, the
condition code field of the PSW indicates whether A was found in
B. See Figure 8-1.

To interface this routine to the ECS mechanism, the symbolic
register names used are broken up into microregisters and wuser
level general registers. The nature of the ECS instruction that
causes this routine to be entered is discussed.

48-096 FOO ROO 8-1

3484

YES (ERROR)

| ERROR
CONDITION CODE=-4

END ’
END OF B REACHED

YES BEFORE END OF A

LOOP 1

B14-BSTRT

A1¢-AﬂRT
LOOP 2

GET BYTE OF A
GETBYTE OF B

MATCH
Ale-AT + 1
BSTRT«BSTRT + 1 BleB1 + 1
)
YES

COMPLETE

MATCH

EXIT

CONDITION CODE=Q

END

FINISH B
CONDITION CODEw1

END

Figure 8-1 Flowchart for Finding String A in String B

48-096 FOO ROO

Through the EQU operation in the CAL assembler, the following
assignment can be made:

FIND EQU X'E92C'

The symbol FIND, if encountered as an operation code mnemonic, is
assembled as an extended RR type instruction. See the Common
Assembly Language/32 (CAL/32) Programming Reference Manual. The
opcode is E9, an ECS instruction, and the Rl field is set to 2.
At the assembly 1language 1level, to execute the Find A in B
microroutine, write:

NAME FIND R2

The general register specified by R2 is the first four sequential
general registers whose functions are:

R2 Start address of A
R2+1 End address of A
R2+2 Start address of B

R2+3 End address of B

Additional overhead is added to this routine to collect the four
parameters. The user register containing the start address of B
is modified by the microcode routine to make the routine
restartable in case of an interrupt. When an interrupt occurs,
LOC is pointing to the FIND ECS instruction. After the interrupt
is handled, the FIND instruction 1is reexecuted. Because the
start address of B was modified, execution resumes where it was
interrupted in the routine.

An example of a microroutine, developed for a Model 3250
processor, is shown in Appendix H. The source program is
assembled using MICROCAL. The program is given the name EXAMPLE
by placing that symbol in the label field of the PROG statement.
Although the PROG statement is not listed, the label of the PROG
statement is shown in the message line on the first page.

EXAMPLLE MICROCODE ROUTfNE FOR APPENDIX H
PROG = EXAMPLE ASSEMBLED BY MICROCAL II (32-BIT)

The operand of the PROG statement, EXAMPLE MICROCODE ROUTINE FOR
APPENDIX H, becomes the main header line on each page of the
program listing.

48-096 FOO ROO 8-3

The object of the EXAMPLE program is loaded into the WCS hsing
the following WCS support program command sequence:

COMMAND ACTION
hh:mm:ss>CLEAR Clear WCS image
hh:mm:ss>LOAD EXAMPLE, PRTP: Load object from a device

(PTRP:)

hh:mm:ss)>TRANSFER IMAGE 800,FFF Transfer WCS image to WCS

The 16 ECS entry points, the first 16 words of the WCS, are set
up in the example. ECS entry point 2 has a vector pointing to
the FIND routine. The remaining entry points have vectors
pointing to fixed control store (FCS) location 208,, which is the
start of the illegal instruction handler in the microcode. This
arrangement results in:

OCCURRENCE OF ECS
IN USER LEVEL CODE ACTION BY WCS CODE

ECS 0,A(X2) Initiate illegal insﬁruction interrupt
ECS 1,A(X2) Initiate illegal instruction interrupt
ECS 2,A(X2) Evoke FIND microroutine

ECS 3,A(X2)

Initiate illegal instruction interrupt

ECS F,A(X2)

When the WCS is set up to support the FIND instruction, the user
level program can be loaded and executed. Every occurrence of
the FIND instruction in the user level program causes the FIND
microprogram sequence 1in WCS to be evoked. The function is
performed by the microcode, and control returns to the user level
instruction immediately following the FIND.

8-4 - 48-096 FOO ROO

Example:

FIND EQU X'E92C'

LA R7,SOURCE BYTE STRING A IS AN

LA R8,SOURCE+7 EIGHT CHARACTER MNEMONIC

LA R9, TABLESRT START ADDRESS OF TABLE

LA R10, TABLEND END ADDRESS OF TABLE

FIND R7 GO FOR A MATCH

BNE NOMATCH BRANCH IF NO FIND; REGISTER 9
* CONTAINS ADDRESS OF MATCHING
* ENTRY

SI R9, TABLE SUBTRACT OUT START ADDRESS
SRLS R9,1 DIVIDE BY 2 FOR WORD INDEX

L R6,VECTOR(R9) COLLECT SUBROUTINE ADDRESS
BR R6 GO TO SUBROUTINE

8.3 FLOATING POINT SQUARE ROOT

Appendix H also shows a microcode routine, again for a Model 3250
processor, that calculates the scuare root of the floating point
quantity contained in a single precision floating point register.
The result replaces the original argument. The ECS entry point
for square root has been filled in at control store location
X'803"'. At the user level source program that uses square root,
the statement:

SQRT EQU X'E93C'

causes every occurrence of the mnemonic SQRT in the operation
field of an instruction statement to assemble as an ECS
instruction with an Rl field of three.

48-096 FOO ROO 8-5

2846

E934

%

*

OPERATION

EQU

SQRT

OPERAND

X'E93C'

4

COMMENT

ASSIGN MNEMONIC
FOR SQUARE ROOT

COPY FLOATING POINT
REGISTER 6 TO
FLOATING POINT
REGISTER 4.

FIND THE SQUARE ROOT
OF THE CONTENTS OF
FLOATING POINT
REGISTER 4.

48-096 F0OO0 ROO

APPENDIX A
WCSLINK COMMAND SUMMARY

CLEAR
Clear writable control store (WCS) image buffer by
initializing all fullwords with a branch to the illegal
instruction interrupt handler.

END
End the task.

m
EXAMINE IMAGE nnn [{ }]

Display the specified area of the WCS image buffer in main
memory in dissassembled microcode format.

GET fd
Load the WCS image buffer with the contents of the specified
file.

LOAD progname [, f d]
Load a microcode routine named progname from the specified
file or device.

MODIFY nnnnnnnn
Replace the currently open cell (i.e., last displayed cell)

with the data specified. The next logical cell becomes the
currently open cell.

48-096 FOO0 ROO A-1

SAVE fd

Save the contents of the WCS image buffer preceded by the
loader information block (LIB) on the specified file.

TARGET = nnnnxxx

Specify the model number of the processor on which the
microcode 1is to be loaded. xxx applies only to the central
processing unit (CPU) and auxiliary processing units (APUs)
of the Model 3200MPS System.

48-096 FOO ROO

APPENDIX B
WCSAIDS COMMAND SUMMARIES
FOR SPECIFIC PROCESSORS

B.1 MODELS 3220 AND 3230 PROCESSORS, AND THE MODEL 3200MPS
SYSTEM AUXILIARY PROCESSING UNIT (APU) VERSIONS

CLEAR
Clear writable control store (WCs) image buffer by
initializing all fullwords with a branch to the illegal
instruction interrupt handler.

DUMP IMAGE [LOADER] staddr,endaddr, £d
Copy or dump the area specified in the WCS image buffer to
the specified file or device in disassembled format or, if
LOADER is specified, in MICROCAL object format.

END
End the task.

ESTABLISH progname, fd

Perform the following functions in order.

1. Clear WCS image buffer.

2. Load the microcode object routine from the named file or
device into the WCS image buffer.

3. Transfer the entire WCS image buffer to the WCS memory.

4. Place the WCS support program into trap wait state.

48-096 FOO0 ROO B-1

e £ oo [14]

ALTERNATE

.EXAMINEC)DOUBLE z

FLOATING reglsq
MICRO 1
REG

LOC

MDR

PSW

SR

YDI

YSI

Display the contents of the specified memory location or the
register image. :
GET fd

Load the WCS image buffer with the contents of the specified
file.

GO
Start the microcode execution at the last breakpoint

encountered. The microcode instruction at the address
specified by the breakpoint is executed.

GO WCS wstaddr

Start microcode execution at the specified WCS address.

n
INSERT wcsaddr {{ }}
1

Insert a breakpoint at the specified address in the WCS
resident microcode. The breakpoint is not taken until it has
been encountered n number of times.

LOAD progname[}fd]

Load a microcode routine named progname from the specified
file or device.

B-2 48-096 FO0O0 ROO

MODIFY x,[}cz...x16
Replace the currently open cell (i.e., last cell displayed)
with the data specified. The next logical cell becomes the
currently open cell.

PAUSE

Pause the task.

SAVE fd
Save the contents of the WCS image buffer, preceded by the
loader information block (LIB), on the specified file.

START nnnn
Start the wuser microprogram that has been linked with
WCSAIDS.

IARGET=nnnnxxx
Specify the model number of the processor on which the

microcode is to be loaded. xxx applies only to the central
processing unit (CPU) and APUs of the Model 3200MPS System.

IMAGE

TRANSFER { } staddr, endaddr

WCS

Transfer the specified area in the specified memory to the
corresponding locations in the unspecified memory.

wcsaddr
ZAP))

Remove a breakpoint at the specified WCS address in the WCS
resident microcode.

B.2 MODELS 3240 AND 3250 PROCESSORS, AND THE MODEL 3200MPS
SYSTEM CENTRAL PROCESSING UNIT (CPU) VERSIONS

CLEAR

Clear WCS image buffer by initializing all fullwords with a
branch to the illegal instruction interrupt handler.

48-096 FO00 ROO ’ B-3

DUMP IMAGE [LOADEK] staddr,endaddr,fd
Copy or dump the area specified in the WCS image buffer to

the specified file or device in disassembled format or, if
LOADER is specified, in MICROCAL object format.

END
End the task.

ESTABLISH progname,fd

Perform the following functions in order.

1. Clear WCS image buffer.

2. Load the microcode object routine from the named file or
device into the WCS image buffer.

3. Transfer the entire WCS image buffer to the WCS memory.

4. Place the WCS support program into trap wait state.

patlin]

hexaddr [{Z }]

SCRATCHPAD
EXAMINE DOUBLE z

FLOATING reg ,{ }
MICRO 1
REG

CLOC

ILOC

RMDR

WMDR

PSW

YDI

YSI

Display the contents of the specified memory location or register
image. -

B-4 48-096 FOO ROO

GET fd

Load the WCS image buffer with the contents of the specified
file.

GO

Start the microcode execution at the last breakpoint
encountered. The microcode instruction at the address
specified by the breakpoint is executed.

GO WCS wstaddr

Start microcode execution at the specified WCS address.

n
INSERT wcsaddr [{

Insert a breakpoint at the specified address in the WCS
resident microcode. The breakpoint is not taken until it has
been encountered n number of times.

LOAD progname Efd]

Load a microcode routine named progname from the specified
file or device.

MODIFY x, [xz .. .x,6]

Replace the currently open cell (i.e., last displayed cell)
with the ' data specified. The next logical cell becomes the
currently open cell.

PAUSE
Pause the task.
SAVE fd
Save the contents of the WCS image buffer preceded by the LIB

on the specifed file.

START nnnn

Start the user microprogram linked to WCSAIDS.

48-096 FOO ROO B-5

TARGET=nnnnxxx

Specify the model number of the processor on which the
microcode 1is to be loaded. xxx applies only to the CPU and
APUs of the Model 3200MPS System.

IMAGE

IRANSFER{ } staddr, endaddr

WCS

Transfer the specifed area in the specified memory to the
corresponding locations in the unspecified memory.

wcsaddr
ZAP
all

Remove a breakpoint at the specified WCS address in the WCS
.resident microcode.

B-6 48-096 FOO ROO

APPENDIX C
LOADER AND POWER FAIL MONITOR (MPSLPFM)
OPTION AND MESSAGE SUMMARY

SEND CLEAR apu—no1[,apu-noz,...] [{W N
Invalidates the writable control store (WCS) of a processor.

COMMAND=fd
SEND ESTABLISH parameter-list
IMAGE=fd

Establishes an association between a processor and an image
file, or changes an existing association.

{

ON
SEND RESTORE apu-no, Eapu—noz,-..] {{g }

Initiates a load of a microcode image file into the WCS of
the specified processors.
SEND STATUS
Obtains a list of microcode image files associated with each
processor.
COMMAND=f4d
START | ,{ parameter-list
JIMAGE=£fd
Starts the MPSLPFM with the specification of individual

microcode images for 1loading into the WCS of individual
processors.

48-096 FOO ROO Cc-1

APPENDIX D
WCSUPP/WCSLPFM COMMAND SUMMARIES

D.1 MODELS 3220 AND 3230 PROCESSORS

CLEAR
Clear writable control store (WCs) image buffer by
initializing all fullwords with a branch to the illegal
instruction interrupt handler.

DUMP IMAGE [LOADER] staddr,endaddr,fd
Copy or dump the area specified in the WCS image buffer to

the specified file or device in disassembled format or, if
LOADER is specified, in MICROCAL object format.

END
End the task.

ESTABLISH progname,fd

Perform the following functions in order.

1. Clear WCS image buffer.

2. Load the microcode object routine from the named file or
device into the WCS image buffer.

3. Transfer the entire WCS image buffer to the WCS memory.

4. Place the WCS support program into trap wait state.

48-096 FOO ROO D-1

o e (44

ALTERNATE
EXAMIN DOUBLE z

ELOATING reg |,
MICRO 1
REG

L.OC

MDR

ESW

SR

¥YDI

¥YSI

Display the contents of the specified memory location or
register image.

GET fd
Load the WCS image buffer with the contents of the specified
file.

GO
Start the microcode execution at the last breakpoint
encountered. The microcode instruction at the address
specified by the breakpoint is executed.

GO WCS wstaddr

Start microcode execution at the specified WCS address.

‘n
INSERT wcsaddr [% }}
1

Insert a breakpoint at the specified address in the WCS
resident microcode. The breakpoint is not taken until it has
been encountered n number of times.

LOAD progname [, fd]

Load a microcode routine named progname from the specified
file or device.

D-2 48-096 FOO0 ROO

MODIFY x,[gz..dga
Replace the currently open cell (i.e., last cell displayed)
with the data specified. The next logical cell becomes the
currently open cell.

PAUSE

Pause the task.

SAVE fd
Save the contents of the WCS image buffer preceded by the
loader information block (LIB) on the specified file.

IMAGE

TRANSFER { } staddr ,endaddr

Hes
Transfer the specified area in the specified memory to the
corresponding locations in the unspecified memory.

WAIT
Establish system default WCS. Log SYSTEM DEFAULT WCs
ESTABLISHED message to system console and put task in trap
wait. Wait for the power restoration trap to occur. When it

occurs, restore WCS and log WCS ESTABLISHED message to system
console. Then place task in trap wait state.

wcsaddr
ZAP . '
a1l

Remove a breakpoint at the specified WCS address in the WCS
resident microcode.

D.2 MODELS 3240 AND 3250 PROCESSORS

CLEAR

Clear WCS image buffer by initializing all fullwords with a
branch to the illegal instruction interrupt handler.

DUMP IMAGE st addr,end addr,fd

Copy or dump the area specified in the WCS image buffer to a
device in disassembled format.

48-096 F0O0 ROO D-3

DUMP IMAGE[LOADER|st addr,end addr,fd
Dump the area specified in the WCS image buffer in common

microassembler (MICROCAL) object format to the specified file
or device.

END
End the task.

ESTABLISH progname, fd

Perform the following functions in order:

1. Clear WCS image buffer.

2. Load the microcode object routine from the named file or
device into the WCS image buffer.

3. Transfer the entire WCS image buffer to the WCS memory.

4. Place the WCS support program into trap wait state.

Y
EXAMINE hexaddr {{ }]
1

Display the contents of the specified number of main memory
halfwords (default=1) starting from the specified hexadecimal
address.

EXAMINE CLOC

Display the contents of the CLOC register image.

z
EXAMINE DOUBLE reg {}{ }]
1

Display the contents of the specified number of double

precision floating point register images (default=1) starting
from the register number specified.

D-4 48-096 FO00 ROO

z
EXAMINE FLOATING reg [{ }]

Display the contents of the specified number of single

precision floating point register images (default=1l) starting
from the register number specified.

EXAMINE ILOC

Display the contents of the ILOC register image.

X
EXAMINE [MAGE hexaddr [{ ﬁ}]

Display the contents of the specified number of fullwords in

the WCS 1image buffer in disassembled microcode format
starting from the specified hexadecimal address.

z
EXAMINE MICRO reg {{j }}

Display the contents of the specified number of microregister

images (default=1) starting from the register number
specified.

EXAMINE PSW

Display the contents of the PSW register image.

sawae 350 vos [{]

Display the contents of the specified number of general
register images (default=1l) starting from the register number

specified. The register set is determined by the PSW at the
time of breakpoint in the microcode.

EXAMINE RMDR

Display the contents of the RMDR register image.

48-096 F0O0 ROO

z
EXAMINE SCRATCHPAD reg [{ }]

Display the contents of the specified number of scratchpad
register images (default=1l) starting from the register number
specified. '

X
EXAMINE WCS hexaddr [{ }]
1

Display the contents of the specified number of fullwords in
WCS memory in disassembled microcode format starting from the
specified hexadecimal address.

EXAMINE WMDR

Display the contents of the WMDR register image.

EXAMINE YDI

Display the contents of YDI register image.

EXAMINE YSI

Display the contents of YSI register image.

GET fd

Load the WCS image buffer with the contents of the specified
file.

Start the microcode execution at the last breakpoint
encountered. The microcode instruction at the address
specified by the breakpoint is executed.

GQ WCS wstaddr

Start microcode execution at the specified WCS address.

D-6 48-096 FOO ROO

n
INSERT wcsaddr [{ }}

Insert a breakpoint at the specified address in the WCS
resident microcode. The breakpoint is not taken until it has
been encountered n numbers of times.

LOAD progname, fd
Load a microcode routine named progname from the specified
file or device.

MODIFY hex data
Replace the currently open cell (i.e., last cell displayed)
with the data specified. The next logical cell becomes the
currently open cell.

PAUSE

Pause the task.

SAVE fd

Save the contents of the WCS image buffer, preceded by the
LIB, on the specified file.

TRANSFER IMAGE staddr,endaddr
Transfer the specifed area in WCS memory to the corresponding
locations in the WCS image buffer.

WAIT

Establish system default WCS. Log SYSTEM DEFAULT WCS
ESTABLISHED message to system console and put task in trap
wait. Wait for the power restoration trap to occur. When it
occurs, restore WCS and log WCS ESTABLISHED message to system
console. Then place task in trap wait state.

wcsaddr
all

Remove a breakpoint at the specified WCS address in the WCS
resident microcode.

48-096 FOO ROO D-7

APPENDIX E
ERROR AND RESPONSE MESSAGES FROM
WCSLINK, WCSAID, AND WCSUPP

ADDRESS ERROR

Microroutine being loaded is positioned at an address outside
the WCS limits, or the writable control store (WCS) address
specified in the command is outside the limits.

ALLOCATE ERROR

Error detected while allocating or checking attributes or
file descriptor (fd) in SAVE command.

ALREADY A BREAKPOINT

The specified address is already a breakpoint.

ASSIGN ERROR

Assign error in supervisor call 7 (SVC 7). See the 0S/32
Supervisor Call (SVC) Reference Manual.

BREAKPOINT HIT AT xxx

A breakpoint in microcode was encountered at xxx.

CHECKSUM ERROR, REQUEST TERMINATED

Checksum error detected in the last object record.

DEVICE/FILE HAS INCORRECT ATTRIBUTES

Device or file does not have binary attributes.

1 DUMP FROM xxx TO xxx:

Header for WCS image words dump in disassembled format.

48-096 FOO ROO E-1

ILLEGAL COMMAND
Illegal or out of sequence command entered. See the
individual command description.

ILLEGAL ENTRY INTO BREAKPOINT HANDLER
The register save microcode routine was entered, but not from
a breakpoint.

ILLEGAL SEGMENT TYPE IN LIB
The segment type encoded in the loader information block
(LIB) is not compatible with that required for the WCS image
file.

INTERNAL BREAKPOINT ERROR
Data in the breakpoint directory is corrupt. The support
program should be reloaded. _

I/0 ERROR xxxX
Input/output (I/0) error in SVC 1. See the 08/32 Programmer
Reference Manual.

LOAD ERROR
Improper MICROCAL object format, or error found in object.
Load correct object.

LU ERROR xx
Wrong device or fd, or I/0 error from specified device while
assigning a logical unit (lu) using SVC 7. :

MICROCODE NOT YET TRANSFERRED
An attempt was made either to insert a breakpoint or to
execute a GO command, but no TRANSFER IMAGE command was
issued.

MICROCODE TRANSFERRED TO WCS

Indicates the successful transfer of microcode to WCS.

E-2 48-096 FOO ROO

MULTIPLE DEF INED

Labels encountered while editing are defined more than once.

NO BREAKPOINTS

ZAP command used, but no breakpoints existed.

NO BREAKPOINTS HIT YET
A GO command without operands was issued, but no breakpoint
was encountered, or the last breakpoint hit was removed.

NO DOUBLE PRECISION SUPPORT

An attempt was made to examine a double precision register,
but START option DOUBLE was not specified.

NO FLOATING POINT SUPPORT

An attempt was made to examine a floating point reglster, but
START option SINGLE was not specified.

NOT A BREAKPOINT
Breakpoint address specified in ZAP command is not a
breakpoint.

SEQUENCE ERROR
Object record out of sequence. Reload object from the
beginning.

SYNTAX ERROR
Illegal command syntax. See Appendix A and enter correct
command .

SYSTEM DEFAULT WCS ESTABLISHED

During execution of the WAIT or ESTABLISH command, the
program copied the WCS into the WCS image.

TARGET ERROR

The model number specified 1in the TARGET command is not
acceptable.

48-096 F0O0 ROO E-3

THIS IMAGE WAS BUILT FOR nnnnxxx
Response from WCSLINK and WCSAIDS indicating the model number
of the processor for which the image file is TARGETed.

THIS IMAGE [S NOT ACCEPTABLE ON THIS PROCESSOR
The target information encoded in the LIB of the image file
indicates that the image file was built for the WCS of
another processor model.

THIS TARGET IS NOT ACCEPTABLE ON THIS PROCESSOR
The model number specified in the TARGET command is
incompatible with the model number for which the WCSAIDS is
intended.

WARNING: THIS UTILITY SHOULD NOT BE RUN ON THIS PROCESSOR!
The WCSAIDS version is inappropriate for the processor on
which it has been loaded. ‘

TOO MANY BREAKPOINTS
A maximum of eight breakpoints can be inserted at any one
time.

WCS IMAGE CLEARED FOR nnnnxxx
Response from WCSLINK and WCSAIDS to the CLEAR and ESTABLISH
commands .

WCS RESTORED
After power up, the program restored the system default WCS
to WCS memory.

WCS SUPPORT PROGRAM 03-xxx Fmm Rnn

Program name; nn is the revision level.

WCS SUPPORT PROGRAM-LOADER/POWER FAIL MONITOR 03-xxx Fmm Rnn

Program name; nn is the revision level.

E-4 48-096 FOO ROO

APPENDIX F
ERROR AND RESPONSE MESSAGES FOR
LOADER AND POWER FAIL MONITOR (MPSLPFM)

ILLEGAL OPTION <option>
An unrecognizable option has been encountered in the START
command or in the option specified in the ESTABLISH, CLEAR,
RESTORE, or STATUS message.

(association parameter>APU # TOO LARGE
The auxiliary processing unit (APU) number specified in the
option 1is greater than the maximum number of APUs in the
system.

OLD IMAGE FILE = fd NEW IMAGE FILE = fd FOR APU number
The image file is different from the already specified one
for that APU. The new association is established.

IMPROPER ATTRIBUTES FOR THE FILE fd FOR APU number
The device on which the image file resides does not permit

binary read, or is not a direct access device, or the record
length of the file is not 256.

1/0 ERROR ON COMMAND FILE - LU 5
An input/output (1/0) error has been encountered when reading
an option from the command file. The LPFM would treat this
error as an indication of end of parameter-list.

SVC7 ERROR - CANNOT ASIGN FILE fd
A supervisor call 7 (8VC 7) function (fetch attributes,
assign, or close) fails with an error for the file 'fd'. The
MPSLPFM continues execution to validate the rest of the
parameter list.

NESTING OF "COMMAND=" OPTION IS NOT ALLOWED

A "COMMAND=" option is encountered in the command file;
nesting of command files is not allowed.

48-096 FO0O ROO F-1

"COMMAND=" or "IMAGE=" OPTION CANNOT BE MIXED WITH OTHER OPTIONS
When a COMMAND= or IMAGE= option is specified either in the
START command or in the ESTABLISH message, any other option
cannot be specified with it.

NO IMAGE FILES SPECIFIED FOR ANY PROCESSOR
A SEND STATUS is received by the MPSLPFM, but none of the
APUs or the central processing unit (CPU) is associated with
any image file.

MESSAGE MUST BE "ESTABLISH", "CLEAR", "RESTORE", OR "STATUS"

A message other than ESTABLISH, CLEAR, RESTORE, or STATUS is
not recognized by the MPSLPFM.

APU number IS NOT MARKED OFF
An APU specified is not marked off; the writable control
store (WCS) of that APU is not loaded.

CANNOT WRITE SUCCESSFULLY TO THE WCS OF APU number.

After transferring the microcode to the WCS, it is read back

from the WCS. The latter does not match the microcode
actually transferred - this 1is an indication of hardware
malfunction.

WCS OF APU number IS LOADED SUCCESSFULLY
The microcode from the image file for the APU has been
transferred successfully to the WCS of that APU.

I1/0 ERROR xxxx * LU 1 FOR APU number
While reading a record from the image file logical unit (lul)
for the APU, a nonzero status code (xxxx) is obtained. The
MPSLPFM will clear the WCS of that APU.

LOAD ERROR - IMPROPER IMAGE FILE FOR APU number
The image file specified for the APU does not have a proper
header record in the loader information block. MPSLPFM will

clear the WCS of that APU. An image file must be built using
the WCSLINK.

F-2 48-096 FOO ROO

SYNTAX ERROR IN RESTORE/CLEAR - IGNORED
The syntax of the message is not correct. The function
requested in the message is not performed.

NO IMAGE FILE IS SPECIFIED FOR THE APU number
A request to RESTORE the WCS of an APU has been made, but no
image file has been specified for that APU. The WCS of that
APU is cleared.

APU number IS NOT EQUIPPED WITH WCS
A request to load the WCS of an APU has been encountered
through a RESTORE or CLEAR message or through the START
command or the ESTABLISH message, but the APU is not equipped
with a WCS.

WCS OF APU number 1S CLEARED.

The APU number is not associated with an image file, but the
APU is equipped with WCS, or a CLEAR message is sent to the
MPSI.PFM for that APU or an error was encountered in reading
the image file for that APU. The WCS of the APU is filled
with illegal instruction traps.

APU number IS MARKED ON

or

APU number IS MARKED OFF
After loading the WCS of an APU, the APU is marked ON or OFF.
This is also done even if errors were encountered during the
process of loading the WCS.

SVC 13 ERROR STATUS xxxx FUNCTION nn OPTION mm FOR APU number.
The SVC 13 function 'nn' option 'mm' for the APU returned a
nonzero status code of 'xxxx'.

MISMATCH IN MODEL NUMBERS FOR APU number, IMAGE

FILE fd FOR model-number.

The image file is not TARGETed for an APU (3200APU).

Nevertheless, the microcode is transferred to the WCS of the
indicated APU.

48-096 FOO0 ROO F-3

SIZE OF MICROCODE IN fd IS LARGER THAN WCS SIZE (size) OF APU
number

The microcode in the image file does not fit in the WCS of
the APU.

SUCCESSIVE POWER FAILS, CANNOT PROCEED; RESTART MPSLPFM
A power fail occurred when processing an earlier power fail
interrupt. MPSLPFM cannot proceed under these circumstances.
It should be cancelled, removed, and then reloaded and
restarted. If an attempt is made to continue MPSLPFM, it
would terminate with an end of task code of 1. :

POWER FAIL WHEN PROCESSING A MESSAGE, MESSAGE IGNORED
When processing a message sent to MPSULPFM, a power fail
occurs. The message processing is discontinued and MPSLPFM
proceeds with power fail/restore.

TRANSFER OF MICROCODE TERMINATED
Due to a reason already explained by an earlier message, the
transfer of microcode to the WCS of that processor could not
be continued.

SIZE OF THE WCS OF APU "number” COULD NOT BE DETERMINED
The APU is equipped with WCS, but a read/write to the WCS
location X'800"' could not be performed. This is an
indication of a hardware malfunction. MPSLPFM will assume
that this APU is not equipped with WCS.

THAT APU IS ASSUMED NOT TO HAVE WCS
Due to a reason already indicated by an earlier message, the
APU is assumed not to be equipped with WCS.

COULD NOT START APU number FOR TASK EXECUTION
After obtaining the control privileges of an APU, an attempt
to start the APU for task execution failed.

COULD NOT MARK THAT APU AS REQUESTED

Due to a reason indicated by an earlier message, an attempt
to mark that APU as requested (ON/OFF) was unsuccessful.

F-4 48-096 FOO ROO

COULD NOT RELEASE CONTROL RIGHTS OF THAT APU

After transferring the microcode to the WCS of the APU,

attempt to release the control rights of that failed.

SVC 6 ERROR IN ASSIGN LPU, STATUS = xXXX

An attempt to assign a logical processing unit (LPU)
MPSLPFM failed with status code xxxx.

NO FREE LPU IS AVAILABLE
There was ho logical processing unit (LPU) available

MPSLPFM to use for loading the WCS of the APU.

RESCHEDULE TO APU number FAILED

MPSLPFM was unable to reschedule itself to the specified

48-096 FOO ROO

an

for

for

APU.

950
951
952
953
954
955
956
957
958
959
95A
S5B
95C
95D
95E
95F
960
961
962
963
964
965
966
967
968
969
96A
968
96C
96D
96E
96F
970

48-096 ROO

DUMP FROM

.
.
-
-
-
.

-
-

OOB6EQOCFO
00146040
006200B0
000AAQO01L
00600080
000AAQ03
00610080
000AA002
001C5000
OE4095C0
OOEF8004
OE009790
001Cc4010
0E409600
OOEF 8001
OEG09790
00630080
00620090
00660020
BE0296B0
04690080
00660030
BEO296B0
044C5080

0E789740

0008C001
0E0495C0
006COEB0
0C409710
046884FF
04284050
04680480
0OE010000

APPENDIX G
EXAMPLE OF DUMP IMAGE

950 TO 970

crroxrar

EXBI

EXB
RETN

SR, LENGTH
LOC,SR,LOC
MR2,YS1
YDI,MR2,'01’
MRO, YD
¥YDI,MR2, '03"
MR1, YD
YDI,MR2,'02"'
NULL, ¥S,MRO
c,'95C'

FLR, '04',J2M
'979°

NULL, ¥YD,MR1
C,'960"
FLR,'0l',JAM
'979!

MR3, YD
MR2,YS
MAR,MR2
'96B"' ,DR2
ARSYS,ARSYD
MAR,MR3
'96B"',DR2
NULL,ARSYS,ARSYD
C+V+G+L, '974"'
YD, YD, '01'
'95C', IVJE
NULL,MAR
C,'971'
ARSYD, 'FF'
ARSYD,ARSYD,MDR
ARSYD, ARSYD

00¥ 004 960-87

EXAMPLE MICROCOOE ROUTINES FOR APPENDIX H

PROG6= EXAMPLE

0000

0800
g8¢o1
0802
0803
0804
0805
0806
0807
0808
0809
080A
0808
080C
0800
080E
080F

177C

177C

as e

13FE
17FE
177C
177C
177C
177C
177C
177¢C
177C
177C
177C
177cC
177C
177C

8200

az200

“vw

5400
5co00
8200
8200
8200
8200
8200
8200
8200
8200
8200
8200
8200
8200

ASSEMBLED BY MICROCAL II

1
2

VDO~

(32-BIT)

SCRAT
CROSS

ORG

PAGE

goo

1

07:

THE ECS ENTRY POINT VECTORS FOLLOW

BALD

208° (WMOR)
1208 (WMOR)
FIND(NULL)

FSGRINULL)

°208°% (WMOR)
208 (WMDR)
*208° (WMDR)
©208°¢ (WMDR)
208° (WUMDR)
£208°* (WMDR)
208 (WMDR)
208° (MMDR)
208° (WMDR)
*208° (WMDR)
1208°* (WMOR)
1208 (WMDR)

ZCS
£ECS
ECsS
£CS
ECS
ECS
ECS
ECS
ECS
ECS
ECS
£Cs
ECS
ECS
ECS
ECS

58:43

ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY
ENTRY

07/03/79
POINT -0~
PCINT -1-
POINT -2~
PCINT -3-
POINT -&-
POINT <-5-
POINT -6-
POINT -7-
PCINT -8~
POINT -9-
PCINT -A-
POINT -B-
POINT -C~
POINT -D-
POINT -E-
POINT -~F-

IAI LVILSNTII

"
U

H XI1daNdddv

dn 1dS ANV d1dWVXd (SOM) HIOLS TOULNOD HIGVLI¥M

00d 960-8%

ooY

EXAMPLE MICROCODE ROUTINES FOR APPENDIX H

FINC A IN B

9000
0000
0000
0000
0000
0000
0000
0000

0810

0950

0951
0952

0953
0954
0955

0018
0010
0019
0011
0012
0013
0014
0015

2ASF
33D2
2A1F

33D2
2A3F
33D2

1£80
1001
1C80

1003
1C80
1002

36
37
38
39
40
41

C 42

43
44
45

47

LN I NN N DN BN I N NN)

LONGER BYTE STRING
TO CALL THE ROUTINE.

(R2) =
(R2+1) = END
(R2+2) =
(R2+¢3) = END

PAGE 2

ADORESS OF A

ADDRESS OF 8

* MICRO REGISTER ASSIGNMENTS

*
ASTRT
AEND
ESTRT
BEND
Al

B1
BYTEA
BYTESB

FIND

EQU
EQu
EQU
EQU
eQu
£EQu
£Qu
EQu

ORG

AI

Al

v1ge
t10°
*19¢
11
s12¢
"13°
0140
15

950°

Al YSI
YDIsAle1l
AEND.YD

YDIgAly3
BEND.YD
YDI4Al,e2

07:58243 07/03/779

MATCH A VARIABLE LENGTH BYTE STRING ®A® AGAINST A
"B®e USE AN ECS INSTRUCTION

START ADORESS OF A

START ADDRESS OF B

Ys
4RO
YD
MR1
MR2
MR3
MR 4
MRS

COLLECT R2 FIELD

POINT TO R2+1

COLLECT END ADDRESS OF A
START ADRS OF A IS (YS)
POINT TO R2+3

COLLECT END ADRS OF B
START ADRS OF B IS (YD)

00¥ 004 960-8Y

EXAMPLE MICROCODF ROUTINES FOR APPENDIX H

FIND A IN B

0956

0957
0958
0959

095A

0958
095C
095D

095€E
095F

0960
0961
0962
0963

0964
0965

0966

23F0

338D
3380
13FA

23F1

3380
3380
13FA

2ATF
2ASF

2B9F
2A9F
289F
2ABF

2BF 4
13€2

233F

0CSA

SFFO0
7004
SACO

ocDE

SFFO
7001
SACO

1C80
1Co0

1908
1080
1988
1080

6AR0
59C0

3C9A

56

58
59
60
61
62
63
64
65
66
67
68
69
70
(A}
12
T3
74
15
76
17
78
19
80
81
a2
83
84
85
86

87

88
89
90
21

L

> % 3 8 »

FINISHS

L]

LOOP1A

-

LooP2

SX

NI
oI
BAL

SX

NI

ol
BAL

-~

PAGE

07:58:44% 07703779

NULLeAENDoASTRT+LOOP1+C COMPARE ASTRT=AEND

PSWePSWe *FFO?*
PSWePSWet004"
EXIT1C(NULL)

NULL-BENDBSTRT.

PSWePSWe*FFO*
PSWePSWe'001"*
EXITIC(NULL)

B1+8STRT
Al9ASTRT

MAR+A14DR1
BYTEAsRMOR
MAR¢B14yDR1
BYTEB+RMDR

NULLBYTEA,BYTES
MATCH(NULL)

TRANSFER IF END ADRS EQUAL TO
OR GREATER THAN START (NO CARRY)

FALL THROUGH IF START ADODRESS
OF A GREATER THAN END ADDRESS
CLEAR CONDITIOMN CODE

THEN SET V FLAG

LOOP1A-C COMPARF BSTRT=-BEND

TRANSFER IF BEND EQUAL TO OR
GREATER _THAN BSTRT,

IF FALL THROUGHs REACHED END
OF B BEFORE A MATCH WAS MADF
SET L FLAG IN CONDITION COOE
AND FXIT

MOVE START ADDRESS
INTO WORK REGISTERS

FETCH BYTE FROM STRING A
COPY BYTE TO BYTE A
FETCH BYTE FROM STRING B
COPY BYTE TO BYTER

COMPARE THE TWO BYTES
BRANCH IF EQUAL
NG MATCHs INCREMENT BSTRT (YD)

AINCX BSTRTyNULLyBSTRT,LOOP1 AND LOOP

b-H

N0Y¥ .004 960-8%

EXAMPLE MICROCODE ROUTINES FOR

FIND A IN 8

0967
0968
0969
096A
096B
096C
096D
096E

096F

3252
3273
23F0
3380
325F
2852
2BFF
23F1

13FA

1001
1001
096E
5FF0
1002
1000
1F92
0SE0

56C0

APPENDIX H

92
93
94

96
97
98
99
100
101
102
103
104
105
106
107
108

MATCH1

*

Al
Al
SX

NI

BAL

PAGE A 07:58:45 07703779

AleAlel INCREMENT WORK ADDRESSES

B1,y81,1

NULL9AENDyA14MATCH19C COMPARE PRESENT ADDRESS
OF A TO AEND. TRANSFER IF
NOT DONEe ELSE FALL THRU

PSMePSHe'FFO* COMPLETE MATCHe CLEAR
CONDITION CODE AND EXIT

Ale2

CLOCeAly ILOC INCREMENT LOC BY TWO

NULLsNULL s IRD FETCH & EXECUTE NEXT

USER INSTRUCTION.

NULLyBENDB1,L00P2+C COMPARE PRESENT ADDRESS
OF B TO BEND. TRANSFER IF

FINISHB(NULL) NOT DONEs ELSE GO TO FINISHB.

00d 004 960-8Y%

EXAMPLE MICROCODE ROUTINES FOR APPENDIX H

FLOATING POINT SQUARE ROOT

0000 0970

0970 CA9F
0971 2A9F
0972 17€2
0973 323F
0974 2B5)
0975 CBF8
0976 CBFF
0977 3674
0978 3694
0979 3294
097A 2AF &
0978 36F7
097C 3604
0970 361F
097€ 2A3F
097F 2A11
0980 2AF7
0981 2A1F
0982 2A3F
0983 2A11
0984 2AF7
0985 32F7
0986 2ABF
0987 2A95
0988 2AF7
0989 32F7

1C00
1A00
50Co
1002
1000
2C090
0F 82
59A2
5998
9004

1A00
1990
199F
199¢E
1F80
FB800
0830

1A00
1F80
FB80
1880
8001

1F80
FB80
1A80
1040

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

FSQR

SQRT.ST

-

PAGE S
EQU *
RRE MR4,YS
L MR4yMRA
BALNZ SQRT.ST(NULL)
LI MR1,2
A CLOCyMR1, ILOC
LE ¥YSeYS
RCC NULL9 NULL9E 5 IRD
NI MR34MR4,0SQRTLSPyI
NI MRA«MREFRACT HI

SLLI MR4yMR4,4

07:58:46 07/03/79

CHECK THE SIGN
OF THE ARGUMENT.

INCREMENT LOC

X=0e0 GO HGME

SET CONDITION CODE.
SET CONDITION CODE.
(MR3)=EX000000
00123456

GET F IN SCALE 16#27

GET STARTING VALUE YO=YO#&x16227=42162+T(A¢+,5+F-B/(C+F)).

L]

*

A MRTyMR4, MRS

Al MR7eMR74A.DSGRTH 1
Al MRE9MR49C-DSGRTHI
LI MROsB<DSQARTHI

L MR1eNULL

D MRO 9 MR1 4 MR6

S MR79MR7 ¢ MR1

2+F

2*F+A

C+F

LOAD B

PREPARE TO DIVIDE

B/ (C+F)
(MR7)=STARTING VALUE

*NOW MAKE 2 ITERATIONS YK=oS#(Y+F/Y) FIRSTZ

*

*

*+SECOND

-

L MRO ¢ MRA

L MR1gNULL

D MRO9MR19MR7
A MR7eMR7e¢MR1
SRLI MR7¢MRT7Ts1

ITERATICN:

MRS, NULL
MR & ¢ MRS ¢ MRT
MR79MRT7 9 MRS

I MR7sMR74%040°"

»»0r

LOAD F2

L]

€/Y0

YO+F/YOD
«S*(YO+F/Y0)=Y1

PREPARE F
F/Y1
82162672 Y2
ROUND IT

EXAMPLE MICROCODE ROUTINES FOR APPENDIX H PAGE 6 07:58:47 07/03/79

FLOATING POINT SQUARE ROOT

146 o
147 «NOW COMPUTE SQRT(16++EX).IF EX=2E THEN Y2 IS SHIFTED 1BIT LEFT AND

0¥ 004 960-8%

149 «
098A 37F3 S99C 150 NI NULLeMR3I+ONE LG I IF EXPONENT 0ODD OR EVEN
0988 13E£2 6440 151 BALZ SORT.EV(NULL)
152 =
098C 3673 09SC 153 SQRT.0DD SI MR3sMR3e ONELGoe1I DO SO
098D 3273 8001 154 SRLI MR3¢MR341 32+cC
098E 32F7 8001 155 SRLI MR7¢MR74¢1 Y2%r4s]1622]
098F 3673 19A0 156 Al MR3+MR3+DSARTS7elI ADD 3921622§
0990 13FA 6580 157 BAL SGRTe NR(NULL) GO TO NORMALIZE Y2
158 =
0991 3273 8001 159 SQRT.EV SRLI - MR3,MR3.1 32+E1
0992 3673 19A1 160 Al MR39MR340SQRT.S691 ADD 38+16%s6
0993 32F7 9001 161 SLLI MR7¢MR7,1 Y2+16%28
0994 17F2 6580 162 BALNC SGRT.NR(NULL) SKIP IF NO CARRY
0995 3273 1001 163 Al MR39MR3,41 TRANSFER CARRY BACK
164 =
0996 CBFF 8980 165 SGRT.NR LW NULL+MR3 NORMALIZE (MR3¢MRT7)
0997 CBF8 2880 166 LE YSeMR7)
0998 323F 1002 167 LI MR1,2 SET THE RETURN ADDRESS.
0999 2BS1 1D00 168 A CLOCeMR1.ILOC
099A CBFF 0FB2 169 RCC NULLoNULLyE4 IRD SET CC AND LEAVE.-
170 =
171 + CONSTANTS
_ 172 =
0998 00FF FFFF 173 FRACT DC *00FFFFFF?*
099C 0100 0060 174 ONE.LG DC *01000000°
099D 2529 8CC1 17S A.DSGRT OC $25298CC1°* . e 5806612421 6227
099¢E 0058 897F 176 BeDSQRT OC *005889TF ¢ e 0864622421 6%26
099F 02CD Ccsea2 177 C.DSQRT OC *02CDCI82e e175241%16%27
09A0 2700 0900 178 J3SQRT.S7 DC *27000000° 39216x+6
0341 2600 00GG 179 DSQRTe.S6 DC t26000000° 38%16%26
G3A2 7F00 Q209 180 9JSQRT.SP DC *7F000000°
09A3 181 END

148

*EXPONENT=E~14OTHERWISE Y2 IS SHIFTED 1BIT RIGHT

oo¥ 004 960-8Y

L-H

EXAMPLE MICROCODE ROUTINES FOR APPENDIX H PAGE 7 07358247

FLOATING POINT SQUARE ROOT

ASSEMBLED BY MICROCAL II (32BIT)

A.DSQRT
Al

AEND
ASTRT
8.DSGART
81

BEND
BSTRY
BYTEA
BYTEB
C.DSQRT
DSQRT.S6
DSQRT.S7
OSQRT.SP
XIT1
FIND
FINISHB
FRACT
FSGR
LooOP1
LOOP1A
LOoOP2
MATCH
MATCHI1
ONE.LG
SQRT.EV
SQRT.NR
SGRT.000
SQRT.ST

00600
0000
0000
d000
0goo0
o000
0000
0000
0000
0009
0000
0000
gooc
0009
0000
0000
0300
0000
0000
0000
0000
0000
0000
0009
gooo
0000
0000
0000
0000

099D
0012
0010
0018
099€
0013
0011
0019
0014
0015
099F
09A1
09A0
09A2
0968
0950
0958
0998
0970
095A
095E
0960
0967
096€
0 99c
0991

0996°

098C
0977

NO ASSEMBLY ERRORS

125
49 S50 53 S5 81 83 94 94
51 59 56
59 81
127
80 85 95 95 106
54 71 106
71 80 91 91
84 88
86 88
126
160
156
113
68 78
10
108
119
11
59 91
71
105
89
96
150 153
151
157 162

113

07/03/779

96

101

102

INDEX

A

Error handling

Error messages
MPSLPFM
WCSAIDS
WCSLINK
WCSUPP

ESTABLISH command

Association parameters
listing of 6-8

I
A OHFRFFEHE O

B

m~4mlﬂﬁ!m'ﬂ [«)]
nw

Branch to control store
(BDCS)

ESTABLISH message
Establishing WCS microcode
routines
EXAMINE command
for 3220, 3230, and

1
|

w

(SN]

Breakpoints

END command .
enter control store (ECS)

Enter control store (ECS)

!
H
|
i
H
H
t
!
|
1-8 }
2-3 !
2-4 !
7-9 !
INSERT command 5-16 | 3200MPS APU 5-5
7-11 | for 3240, 3250, and
inserting 5-9 | 3200MPS CPU 5-8
5-14 | for Models 3220 and 3230 7-4
5-16 | for Models 3240 and 3250 7-7
7-11 | EXAMINE IMAGE command 4-5
removing 5-9 |
5-14 |
5-17 | F
7-12 |
resuming execution after 5-19 | File descriptors 1-10
7-14 | Fixed control store 1-9
ZAP command 5-17 | Flags
7-12 | WCS initialized 6-9
] WCS loaded 6-9
] WCS supported 6-9
C
!
Cell examination 5-4 | G,H
Cell modification 5-9 }
CLEAR command 4-2 | GET command 4-7
5-3 | 5-11
7-2 H 7-18
CLEAR message 6-7 |} GO command 5-15
Command summary | 5-19
WCSAIDS B-1) - 7-14
WCSLINK . A-1 | GO WCS command ‘ 5-18
WCSUPP /WCSLPFM D-1 } 7-13
Contents of the WCS 5-16 |
{
H I,3,K
D |
| INSERT command 5-16
Destination memory 5-13 | 7-11
Dump image | Inserting breakpoints 5-14
example of G-1 | 5-16
DUMP IMAGE command 5-19 | 7-9
7-14 | 7-11
! Instructions
{ branch to control store
E i (BDCS) -
|
|
|
|
|
H
|

48-096 FOO0 ROO IND-1

Instructions (Continued) MPSLPFM (Continued)

|
read control store (RDCS) 1-8 ! messages 6-1
2-3 | option summary c-1
2-4 | response messages F-1
write control store | RESTORE message 6-6
(WDCS) 1-8] START command 6-1
2-3 H start options 6-1
2-4 ! STATUS message : 6-8
H verification of microcod 6-8
]
1
L i
| P,Q
Linking 3-3 |
LOAD command 4-3 | PAUSE command 5-20
5-3 ! 7-16
7-2 | Pausing
Loader and power fail 1 WCSAIDS 5-20
monitor. See MPSLPFM. i WCSUPP 7-16
Loader information block 4-6 | Power fail
Loading 3-3 H restoring WCS after 7-19
Loading microcode !
of a Model 3200MPS APU 6-5 i
of a processor 6-5 | R
of the Model 3200MPS CPU 6-4 i
lu assignments for WCS | Read control store (RDCS) 1-8
support programs 3-3 | . 2-3
i 2-4
{ Removing breakpoints 5-14
M,N,O H : 5-17
! 7-9
Microprogram H 7-12
creating a 2-1 ! Response messages
linking 3-3 H MPSLPFM F-1
loading 3-3 1 WCSAIDS E-1
lu assignments for 3-3 | WCSLINK E-1
microinstructions 2-1 } WCSUPP E-1
operating requirements 3-2 |} RESTORE message 6-6
starting 3-3 i ROM location 1-8
Microprogramming notes !
for the Model 3200MPS APU 2-5 H
for the Model 3230 2-5 ! S
scratchpad registers 2-5 H
Model 3200MPS System { SAVE command 4-6
block diagrams 1-6 H 5-10
Model 3220 ! 7~17
processor block diagram 1-2 | Scratchpad registers
Model 3230 ! examination of 2-5
processor block diagram 1-3 ! use of 2-5
Model 3240 { Source memory 5-13
processor block diagram 1-4 { START command 5-17
Model 3250 H 6-1
processor block diagram 1-5 { ©Statement syntax conventions 1-9
MODIFY command 4-5 { STATUS message 6-8
5-9]
7-9 i
MPSLPFM 1-8 { T
3-1 |
association parameters 6-8 { TARGET command 4-1
building 3-6 H 5-2
CLEAR message 6-7 { Terminating
error handling 6-9 i WCSAIDS 520
error messages F-1 { WCSUPP 7-17
ESTABLISH message 6-6 { TRANSFER command 5-11
flags 6-9 { 7z
loading and starting 3-6 { TRANSFER IMAGE command 7-13
c-1 |

message summary

IND-2 48-096 FOO ROO

Typical applications WCSAIDS (Continued)

find A in B 8-1 TARGET command -2
terminating -20

three versions of -6
U TRANSFER command -11

ZAP command -17

User program
starting 5-17

WCSL.INK

building

CLEAR command
commands

END command

error messages
EXAMINE IMAGE command
GET command

load and start

\'

Verification of microcode 6-8

i |
NHFOVORNFOORPOWABNOENENS WD

W, X, Y

WWwWwrE~NWWwWWwH~abOOPWwaADEARBWOWHFOOOIWOO
|

]
]
]
]
i
]
i
|
]
]
i
i
|
]
1
i
|
WAIT command 7-18 | LOAD command
WCS] MODIFY command -
functional description 1-8 | response messages -
image buffer 3-9 | SAVE command -
instructions 2-3 H TARGET command -
WCS examples 8-1 } WCSLPFM -
floating point square | -
root 8-5 H building -
WCS image buffer H loading and starting -
saving the contents of 7-17 | programs -
WCS image file | WCSUPP -7
retrieving 7-18 | -1
WCS instructions | -6
user level 2-3] building -7
WCS support programs | error messages E-1
memory requirements 3-1 | loading and starting 3-8
MPSLPFM 1-8 | response messages E-1
WCSAIDS 1-7 | WCSUPP programs 7-1
WCSLINK 1-8 | cell examination 7-4
WCSLPFM 1-7 ! cell modification 7-9
WCSUPP 1-7 | CLEAR command 7-2
WCS wait state 7-18 | clearing and loading 7-2
WCSAIDS 1-7 | DUMP IMAGE command 7-14
3-1] END command i 7-17
3-4 | ESTABLISH command 7-15
CLEAR command 5-3 | EXAMINE command 7-4
commands 5-1 | GET command 7-18
differences from WCSUPP 5-1 } GO command 7-14
DUMP command 5-19 - | GO WCS command 7-13
END command 5-20 | INSERT command 7-11
error messages E-1 H ingerting breakpoints 7-9
ESTABLISH command 5-13 | 7-11
EXAMINE command 5-4 } LOAD command 7-2
GET command 5-11 | microprogram execution 7-13
GO command 5-15 | MODIFY command 7-9
5-19 | PAUSE command 7-16
GO WCS command 5-18 | removing breakpoints 7-9
inserting breakpoints 5-14 | 7-12
5-16 | SAVE command 7-17
LOAD command 5-3 i terminating 7-17
loading and starting 3-5 | TRANSFER command 7-2
MODIFY command 5-9 | TRANSFER IMAGE command 7-13
PAUSE command 5~-20 | WAIT command 7-18
procedures for linking 3-5 ! ZAP command 7-12
removing breakpoints 5-14 | Writable control store. See
5-17 | WCS.
response messages E-1 ! Write control store (WDCS) 1-8
SAVE command 5-10 | 2-3
START command 5-17 | 2
(]
]
| 2ZAP command 5-17
! 7-12

48-096 F0OO ROO IND-3

PERK IN-ELMER
Computer Systems Division

DOCUMENTATTION CHANGE NOTTICE

The purpose of this documentation change notice (DCN) is to
provide a quick and efficient way of making technical changes to
software manuals before they are formally updated or revised.

The manual affected by these changes is:

48-096 FO1 ROO PERKIN-EIMER SERIES 3200 WRITABLE CONTROL STORE
(WCS) SUPPORT PROGRAMS REFERENCE MANUAL

e Page 3-6

In the description of the Link command seqguence shown for
building MPSLPFM as a task, the Link OPTION command should be
removed, and the following note should be added after the Link
sequence: ‘

NOTE

The following Link options are embedded in
the MPSLPFM object file:

DTASK

RES IDENT

NROLL
PRIORITY=(11,11)
ACPRIVILEGE
CONTROL

APMAPP ING
APCONTROL
WORK=(X2000,X2000)

e Page 6-6

In the example at the bottom of the page, the following:

"Establish associations for all APUs and mark them ON:"

48-096 FOl ROOA 1

should be changed to:

"Establish associations for all APUs and mark their queues
ON:"

Page 6-7
In the first example, the following:

"Reestablish the associations of APU numbers 3 and 5, and mark
them ON:"

should be changed to:

"Reestablish the associations of APU numbers 3 and 5, and mark
their queues ON:"

Page 6-8

In the second paragraph on page 6-8, the following sentences:

"If the option ON is specified in the above messages, the APUs
for which this option is specified is marked ON after its WCS
has been loaded. Otherwise, the APU is left marked OFF. The
option ON(OFF) specified in the message applies to all the
APUs appearing in the message."

should be changed to:

"If the option ON/OFF is specified in the above messages, the
APU queue to which the APU is assigned is marked ON/OFF after
its WCS has been loaded. Otherwise, the APU queue state is
preserved. The option ON/OFF specified in the message applles
to all the APUs appearing in the message. ‘

Page 6-8
The sentence in the third paragraph of section 6.4 that reads:
"However, the APUs should be marked off before sending the

message to the MPSLPFM."

48-096 FOl1 ROOA

should be changed to:

"The APUs should be enabled before sending the message to the
MPSLPFM."

® Page F-3

The SVC1l3 message (second from the bottom of the page) should
be changed to read:

"SVC1l3 ERROR STATUS X'xx' FUNCTION X'nn' OPTION X'mm*' FOR APU
number .

The SVC13 function 'nn' option 'mm' for the APU returned a
nonzero status code of 'xx'; all numbers are hexadecimal."

e Page F-5

The following messages and explanations should be added to
Appendix F :

NO MEMORY TO KEEP CPU WCS FOR AUTO POWER FAIL RESTART

When loading a WCS image into the CPU, MPSLPFM detected that
there was not enough dynamic memory available to store that
image internally.

The program is normally linked with enough memory to store a
CPU WCS image of 2K words, so that on power fail restart there
is no need to access files containing WCS. This allows the
WCS to be loaded before the rest of the tasks are restarted by
the operating system.

COULD NOT SET QUEUE STATUS
After transferring the microcode to the WCS of the APU, an

attempt to set or restore the status of the applicable APU
queue failed.

48-096 FOl1 ROCA 3

PERKIN-EL.LMER
PUBLICATION COMMENT FORM

We try to make our publications easy to understand and free of errors. Our
users are an Iintegral source of information for improving future revisions.
Please use this postage paid form to send us comments. corrections,
suggestions, etc.

1. Pubiication number

2. Title of publication —_

3. Describe. providing page numbers. any technical errors you
found. Attach additional sheet if neccessary.

4. Was the publication easy to understand? |t no. why not?

5. Waere lllustrations adequate?

6. What additions or deletions would you suggest?

7. Other comments:

From Date

Position/Title

Company

Address

6417

STAPLE STAPLE

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J.

POSTAGE WILL BE PAID BY ADDRESSEE

PERKIN-ELLMER

Data Systems Group
106 Apple Street
Tinton Falls, NJ 07724

ATTN:
TECHNICAL SYSTEMS PUBLICATIONS DEPT.

STAPLE STAPLE
) 6433=1

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	6-01
	6-02
	6-03
	6-04
	6-05
	6-06
	6-07
	6-08
	6-09
	7-01
	7-02
	7-03
	7-04
	7-05
	7-06
	7-07
	7-08
	7-09
	7-10
	7-11
	7-12
	7-13
	7-14
	7-15
	7-16
	7-17
	7-18
	7-19
	7-20
	7-21
	8-01
	8-02
	8-03
	8-04
	8-05
	8-06
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	C-01
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	E-01
	E-02
	E-03
	E-04
	F-01
	F-02
	F-03
	F-04
	F-05
	G-01
	H-01
	H-02
	H-03
	H-04
	H-05
	H-06
	H-07
	Index-01
	Index-02
	Index-03
	_01
	_02
	_03
	replyA
	replyB

