PERKIN-ELMER

C PROGRAMMING

Manual

48-103 FOO ROO

The information in this document is subject to change without notice and should not be
construed as a commitment by The Perkin-Elmer Corporation. The Perkin-Elmer Corpo-
ration assumes no responsibility for any errors that may appear in this document.
The software described in this document is furnished under a license, and it can be used or
copied only in a manner permitted by that license. Any copy of the described software
must include the Perkin-Elmer copyright notice. Title to and ownership of the described
software and any copies thereof shall remain in The Perkin-Elmer Corporation.

The Perkin-Elmer Corporation assumes no responsibility for the use or reliability of its
software on equipment that is not supplied by Perkin-Elmer.

The Perkin-Elmer Corporation, Data Systems Group, 2 Crescent Place, Oceanport, New Jersey 07757
© 1984 by The Perkin-Elmer Corporation
Printed in the United States of America

UNIX™ 54 trademark of Bell Laboratories

TABLE OF CONTENTS

PREFACE

CHAPTERS

1 THE C LANGUAGE

Introduction
Syntax
Identifiers
Declarations
Initializers
Statements
Expressions
Constants
Preprocessor
Style
Portability
Differences
Diagnostics

The C Compiler

Syntax Rules for C
Naming Things in C
Declar ing Names in C
Giving Values to Data
The Executable Code
Computing Values in C
Compile-Time Arithmetic
Lines That Begin With #
Rules for Writing Good C Code
Writing Portable Code
Comparative Anatomy
Compiler Complaints

EDITION VII COMPATIBLE C RUN-TIME LIBRARY (RTL)

assert
abs
atof
crypt
ctype
ecvt
exp
fclose
ferror
floor

fopen
frexp
fseek
getc
getlogin
gets
hypot
malloc
mktemp

48-103 F00 ROO

Program Verification
Integer Absolute Value
Convert ASCII to Numbers
DES Encryption

Character Classification
Output Conversion
Exponential Functions
Close or Flush a Stream

- Stream Status Inquiries

Absolute Value, Floor, Ceiling
Functions

Open a Stream

Split into Mantissa and Exponent
Reposition a Stream

Get Character or Word from Stream
Get Login Name

Get a String from a Stream
Euclidean Distance

Main Memory Allocator

Make a Unique File Name

vii

]
- HFOOoONOONPdWN

I
ot et et et
ond N

o

[ACI SIS I S I MDNONNNDNNDDNND
|

2-17
2-18
2-19
2-20
2-21

CHAPTERS (Continued)

perror System Error Messages 2-22
printf Formatted Output Conversion 2-23
putc Put Character or Word on a Stream 2-26
puts Put a String on a Stream 2-28
gsort Quicker Sort 2-29
rand Random Number Generator 2-30
scanf Formatted Input Conversion 2-31
setbuf Assign Buffering to a Stream 2-35
setjmp Nonlocal Goto 2-36
sin Tr igonometric Functions 2-37
sinh Hyperbolic Functions 2-38
sleep Suspend Execution for Interval 2-39
stdio Standard Buffered I/0 Package 2-40
string String Operations 2-42
jtyname Find Name of a Terminal 2-44
ungetc Push Character Back into Input

Stream 2-45

3 IDRIS COMPATIBLE C RUN-TIME LIBRARY (RTL)

Conventions Using C With the Standard Libraries 3-4
std.h Standard Header File 3-5
Cio C I/0 Subroutines 3-7
. FIO The File I/0 Structure 3-9
abs Find Absolute Value 3-11
alloc Allocate Space on the Heap 3-12
amatch Look for Anchored Match of Regular

Expression 3-13
arctan Arctangent 3-15
bldks Build Key Schedule from Key 3-16
btod Convert Buffer to Double 3-17
btoi Convert Buffer to Integer 3-19
btol Convert Buffer to Long 3-20
btos Convert Buffer to Short Integer 3-22
buybuf . Allocate a Cell and Copy in Text Buffer 3-23
cmpbuf Compare Two Buffers for Equality 3-24
cmpstr Compare Two Strings for Equality 3-25
cos Cosine in Radians 3-26
cpybuf Copy One Buffer to Another 3-27
cpystr Copy Multiple Strings 3-28
decode Convert Arguments to Text Under Format

Control 3-29
decrypt . Decode Encrypted Block of Text 3-30
doesc Process Character Escape Sequences 3-31
dtento Multiply Double by a Power of Ten 3-32
dtoe Convert Double to Buffer in

Exponential Format 3-33
dtof Convert Double to Buffer in

Fixed Point Format 3-34
encode Convert Text to Arguments Under Format

Control 3-35
encrypt Encode Block of Text 3-36

ii 48-103 FOO ROO

CHAPTERS (Continued)

enter
errfmt
error
exp
fclose
fcreate

fill

finit
fopen

fread
free
frelst
getbfiles
getc
getch
getf
getfiles
getflags
getfmt
getl
getlin
inbuf

instr

isalpha
isdigit
islower
isupper
iswhite
itob
itols

leave
lenstr
1n
lower

lstoi

1stol
1ltob
ltols
mapchar

match
max
min
mkord
nalloc

48-103 F0O0 ROO

Enter a Control Region

Format Output to Error File

Print Error Message and Exit
Exponential

Close a File Controlled by FIO Buffer
Create a File and Initialize a
Control Buffer

Propagate Fill Character Throughout
Buffer

Initialize an FIO Control Buffer
Open a File and Initialize a Control
Buffer

Read Until Full Count

Free Space on the Heap

Free a List of Allocated Cells
Collect files from Command Line

Get a Character from Input Buffer

Get a Character from Input Buffer stdin

Read Formatted Input

Collect Text Files from Command Line
Collect Flags from Command Line
Format Input from stdin

Get a Text Line into the Input Buffer
Get a Text Line from stdin

Find First Occurrence in Buffer of
Character in Set

Find First Occurrence in String of
Character in Set

Test for Alphabetic Character

Test for Digit

Test for Lower-Case Character

Test for Upper-Case Character

Test for Whitespace Character
Convert Integer to Text in Buffer
Convert Integer to Leading Low-Byte
String

Leave a Control Region

Find Length of a String

Natural Logarithm

Convert Characters in Buffer to
Lower—-Case

Convert Leading Low-Byte String to
Integer

Convert Filesystem Date to Long
Convert Long to Text in Buffer
Convert Long to Filesystem Date
Map Single Character to Printable
Representation

Match a Regular Expression

Test for Maximum

Test for Minimum

Make an Ordering Function
Allocate Space on the Heap

3-89
3-92

iii

CHAPTERS (Continued)

iv

notbuf
notstr
ordbuf

pathnm
pattern
prefix

putc
putch
putf
putfmt
putl
putlin
putstr
remark
scnbuf
scnstr
sin
sort
sqrt
squeeze

stdin

stdout
stob
subbuf
substr
tolower

toupper

usage

Find First Occurrence in Buffer of
Character Not In Set

Find First Occurrence in String of
Character Not In Set

Compare Two NUL-Padded Buffers for
Lexical Order

Complete a Pathname

Build a Regular Expression Pattern
Test if One String is a Prefix of the
Other

Put a Character to Output Buffer
Put a Character to stdout Buffer
Output Arguments Formatted

Format Arguments to stdout

Put a Text Line from Buffer

Put a Text Line to stdout

Copy Multiple Strings to File

Print Nonfatal Error Message

Scan Buffer for Character

Scan String for Character

Sine in Radians

Sort Items in Memory

Real Square Root

Delete Specified Character from Buffer
The Standard Input Control Buffer
The Standard Output Control Buffer .
Convert Short to Text in Buffer
Find Occurrence of Substring in Buffer
Find Occurrence of Substring
Convert Character to Lower-Case if
Necessary

Convert Character to Upper-Case if
Necessary

Output Standard Usage Information

C SYSTEM INTERFACE LIBRARY

cint
main
—_pname
brk
chdir
close
creat
create
ctime
envir
exit
getuid
lseek
onexit
open

C Interface To Operating System
Enter a C Program

Program Name

Change Core Allocation

Change Default Volume and Account
Close a File

Create a New File

Open an Empty Instance of a File
Convert Date and Time to ASCII

C Run-Time Environments
Terminate Process

Get User and Group Identity

Move Read/Write Pointer

Call Function on Program Exit
Open a File

LI L L
HEOONOO LN

o

'—J

P
=
o w

Thh#hhhhhhbhb
]

el

~N o

4-18
4-19

48-103 F0O ROO

CHAPTERS (Continued)

pause
read
remove
sbreak
time
uname
unlink
write

Pause Process

Read Characters from a File
Remove a File

Set System Break

Get Date and Time

Create a Unique Filename
Remover Directory Entry
Write Characters to a File

5 C MACHINE INTERFACE LIBRARY

Conventions
_addexp
_domain
_domerr
_dtens
_dzero
_frac
_huge
_norm

ntens
_poly
_raise
_ranerr
_range
_round
_tiny
_unpack
_when

APPENDIXES

C Machine Interface Library

Scale Double Exponent

Report Domain Error

Domain Error Condition

Powers of Ten

Double Zero

Extract Integer from Fraction Part
Largest Double Number

Convert Double to Normalized Text
String

Number of Powers of Ten

Compute Polynomial

Raise an Exception

Range Error Condition

Report Range Error

Round Off a Fraction String
Smallest Double Number

Extract Fraction from Exponent Part
Handle Exceptions

A 0S/32 FILE SYSTEM INPUT/OUTPUT (I/0O) INTERFACE AND
RUN-TIME ENVIRONMENT

B OPERATING INSTRUCTIONS

Introduction
cc

cuU

lister

LN

pp

pone

ptwo

48-103 F0O0 ROO

Compile, Assemble and Link a C Program
Assemble a C Program

Generate a Listing for a C Program
Link a C Program

Preprocess Defines and Includes

Parse a C Program

Generate Code for an 0S/32 C Program

4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27

I
VCENOOVHWN

1

oo
|

d
’-l

HIUJWUUIJWFDUJ o
HFEREONOOOWN

NO

BIBLIOGRAPHY

INDEX

vi

BIB-1

IND-1

48-103 FOO ROO

PREFACE

This manual describes the Perkin-Elmer C Language. Chapter 1 is
an introduction to the C Language and the C Compiler. Chapter 2
introduces the EDITION VII compatible C run-time library (RTL).
Chapter 3 presents the IDRIS compatible € RTL. The operating
system interface library is described in Chapter 4, and Chapter
5 describes the machine interface library.

Appendix A introduces the input/output (1/0) interface to the

0s/32 file system. Appendix B presents operating instructions
for the C Compiler.

This manual is intended for use with software release R07.2 of
0S5/32 or EDITION VII for Perkin-Elmer Series 3200 processors, or
IDRIS for Perkin-Elmer Series 7000 processors.

For information on the contents of all Perkin-Elmer 32-bit
manuals, see the 32-Bit Systems User Documentation Summary.

48-103 FOO ROO vii

Introduction
Syntax
Identifiers
Declarations
Initializers
Statements
Expressions
Constants
Preprocessor
Style
Portability
Differences
Diagnostics

48-103 FO0O0 ROO

CHAPTER 1
THE C LANGUAGE

TABLE OF CONTENTS

The C Compiler

Syntax Rules for C
Naming Things in C
Declaring Names in C
Giving Values to Data
The Executable Code
Computing Values in C
Compile-Time Arithmetic
Lines That Begin With #
Rules for Writing Good C Code
Writing Portable Code
Comparative Anatomy
Compiler Complaints

Introduction The C Compiler Introduction
NAME :

Introduction - The C Compiler

FUNCTION:

The C compiler is a set of three programs that take as input, to
the first of the programs, one or more files of C source code,
and produce as output, from the last of the programs, assembler
code that performs the semantic intent of the source code.
Output from the files may be separately compiled, then combined
at. load time to form an executable program; or C subroutines can
be compiled for later inclusion with other programs. One can
also 1look on the compiler as a vehicle for implementing an
instance of an abstract C machine, i.e., a machine that executes
statements in the language defined by some standard. That
st.andard is generally accepted to be Appendix A of Kernighan and
Ritchie, "The C Programming Language", Prentice-Hall, Inc., 1978.

This section describes the current implementation as succinctly
and as precisely as it is defined in the language standard. It
is organized into loosely-coupled subsections, each covering a
different aspect of the language. No serious attempt is made to
be tutorial; the interested student is referred to Kernighan and
Ritchie, then back to this section for a review of the
differences.

The recommended order of reading is:

Introduction This is 1it.

Syntax How to spell the words and punctuate the
statements.
Identifiers The naming of things, the scope of names and

their important attributes.

Declarations How to introduce identifiers and associate
attributes with them.

Initializers How to specify the initial values of all sorts
of data types.

Statements How to specify the executable code that goes
with a function name.

Expressions The binding of operators, order of evaluation
and coercion of types.

Constants The kinds of expressions that can be evaluated
at compile time.

Preprocessor #define and #include expansion.

1--2 48-103 FOO ROO

Introduction

Style

Portability

Differences

Diagnostics

SEE ALSO:

- 2 - Introduction

Recommendations for what parts of the language
to use, and what to avoid; how to format code.

Techniques for writing C that is maximally
portable.

Comparative anatomy of this implementation,
the language standard and other
implementations.

Things the compiler complains about.

Documentation for proper compiler operation is found in Appendix

B of this manual.

The standard library of C callable functions

is documented in the remaining sections of this manual. It is
also recommended that the user be familiar with Appendix A, which
describes the interface to the 0S/32 file system.

48-103 F0O0 ROO

1-3

Syntax Syntax Rules For C Syntax
NAME :

Syntax - Syntax Rules For C

FUNCTION:

Al. the lowest level, a C program is represented as a text file,
consisting of lines each terminated by a newline character. Any
characters between /* and */ inclusive, including newlines, are
comments and are replaced by a single blank character. A newline
preceded by '\' is discarded so that lines may be continued. The
compiler cannot accommodate a text 1line larger than 512
characters, either before or after the processing of comments and
continuations.

Text lines are broken into tokens, strings of characters possibly
separated by white space. White space consists of one or more
nonprintable characters, such as space, tab or newline; its sole
efifect is to delimit tokens that might otherwise be merged.
Tokens take several forms:

Identifiers consist of a letter or underscore, followed by
zero or more letters, underscores or digits.
Upper -case letters are distinct from
lower-case letters; no more than eight
characters are significant in comparing
identifiers. More severe restrictions may be
placed on external identifiers by the world
outside the compiler (see Differences). There
are also a number of identifiers reserved for
use as keywords:

auto extern short

break float sizeof

case for static

char goto struct

continue if switch

default int typedef

do long union

double register uns igned

else return while
Numer ic consist of a decimal digit, followed by zero
constants or more letters and digits. If the 1leading

characters are "0x" or "0X", the constant is
a hexadecimal 1literal and may contain the

letters 'a' through 'f', in either case, to
represent the digit values 10 through 15,
respectively. Otherwise, a leading '0°

implies an octal literal, which may contain
the digits '8' and 'S9'. A nonzero leading
digit implies a decimal literal.

1-4 48-103 F00 ROO

Syntax

Floating
literals

Character
constants

48-103 FOO ROO

- 2 - Syntax

Any of these forms may end in 'l' or 'L' to
specify a long constant. The constant is also
made long if:

a. a decimal 1literal cannot be properly
represented as a signed integer, or
b. any other 1literal constant cannot be

properly represented as an unsigned
integer. Overflow is not diagnosed.

consist of a decimal integer part, a decimal

point '.', a decimal fraction part, and an
exponent, where an exponent consists of an 'e'
or 'E' and an optionally signed ('+' or '-')

decimal power of ten by which the integer part
plus fraction part must be multiplied. Either
the decimal point or the exponent may be
omitted, but not both; either the integer part
or the fraction part may be omitted, but not
both. Any numeric constant that is not one of
these literal forms is illegal, e.g.; "5ax3".
A floating literal is of type double.

"Overflow is not diagnosed.

consist of a single quote, followed by 2zero
or more character 1literals, followed by a
second single guote. A character literal
consists of:

e any character except '\', newline or single
quote, the value being the ASCII
representation of that character,

e a \ followed by any character except

newline, the value being the ASCII
representation of that character, except
that characters in the sequence ('b', 't’',
'V‘, 'f'l lnl, |r|' l(O' O!O' l)l, IAI>

have the ASCII values for the corresponding
members of the sequence {backspace,
horizontal tab, vertical tab, form feed,
newline, carriage return, YUY, Y, 'y,
12vy, or,

e a '\' followed by one to three decimal
digits, the wvalue being the octal number
represented by those digits.

Syntax

String

constants

Punctuation

Other
characters

NOTATION:

-3 - Syntax

A newline is never permitted inside quotes,
except when escaped with a '\' for 1line
continuation. The value of the constant is an
integer base 256, whose digits are the

character 1literal values. The constant is
long if it cannot be properly represented as
an unsigned integer. Overflow is not
diagnosed.

just 1like character constants, except that

double quotes '"' are used to delimit the
string. The value is the (secret) name of a
NUL-terminated array of characters, the

elements initialized to the character literals
in the string.

consists of predefined strings of one to three
characters. The complete set of punctuation
for C is:

! * : =+ >) \)

I= + F =— >= \A

% ++ < =/) A

& ' << ={< ? {

&& - (= == [|

(-~ = =>>])

(< -> =% = \! i

(i . =& =\ \!! }

) / =x > \ (-
Punctuation in the sequence (' (', '(}!', '>»)°',
N, NEEY, N "N\ N\, D is
entirely equivalent to the corresponding
member of the sequence <'(', ‘'[', '}', '}',

l::l' l(l’ |}|' l“'l' l]l>.

The longest possible punctuation string is

matched, so that "==+", for example, is
recognized as "==", "+", and never as "=",
W=+" .

such as '@' or '\' alone are illegal outside
of character or string constants, and are
diagnosed.

Grammar, the rules by which the syntactic elements above are put
together, permeates the remaining discussions. To avoid lengthy

descriptions, some

simple shorthand 1is used throughout this

section to describe grammatical constructs.

48-103 FOO ROO

Syntax - 4 - Syntax

A name enclosed in angle brackets, such as <(statement)>, is a
"metanotion", i.e., some grammatical element defined elsewhere.
Presumably, any sequence of tokens that meets the grammatical
rules for that metanotion can be used in its place, subject to
any semantic limitations explicitly stated. Just about any other
symbol stands for itself, i.e., it must appear 1literally, like
the semicolon in the following:

{expression> ;

Exceptions are the punctuation "[", "]", "]x", ®»{", "}", and "}|";
these have special meanings unless made literal by being enclosed
in single quotes.

Brackets surround an element that may occur 2zero or one time.
The optional occurrence of a label, for instance, is specified
by:

[{identifier> :] {(statement)

This means that the metanotion (identifier> may, but need not,
appear before (statement>. If it does, it must be followed by a
literal colon. To specify the optional, arbitrary repetition of
an element, the notation "[]*" is used. A comma separated list
of <(id> metanotions, for example (i.e., one instance of <id>
followed by zero or more repetitions), would be represented by:

aia» [, <id>)x

Vertical bars are used to separate the elements in a 1list of
alternatives, exactly one of which must be selected. The line:

char | short | lohg

requires the specification of any one of the three keywords
listed. Such a 1list of alternatives is enclosed in braces in
order to precisely delimit its scope. For example:

{ {(decl> [
{decl)> [

] <(expr> |
] <elist) }

emphasizes that a data initializer has the format given by the
entirety of one of the two lines specified.

48-103 F0OO ROO 1-7

Syntax

EXAMPLE :

Various ways of writing a ten are shown below:

integer
long
double

10, 012, OXa, '\n'
10L

10.0, lel, 1l.0e+01

Syntax

48-103 F0OO0 ROO

Identifiers Naming Things in C Identifiers
NAME :

Identifiers - Naming Things in C

FUNCTION:

Identifiers are used to give names to the objects created in a C
program. Syntactically, an identifier is a sequence of letters,
underscores and digits, starting with a nondigit. For the sake
of comparisons, only the first eight characters are significant,
so "summation" and "summations" are the same identifier.
Externally published identifiers are typically even more
restricted (see Differences).

There are several name spaces in a C program, so that the same
identifier may have different meanings in the same extent of
program text, depending on usage. Things such as struct or union
tags, members of struct or union and 1labels are considered
separately 1later on. The bulk of this discussion concerns the
name space occupied by the names of objects that occupy storage
at execution time.

Each such identifier acquires, from its usage in a C program, a
precisely defined lexical scope, storage class, and type. The
scope is the extent of program text over which the compiler knows
that a given meaning holds for an identifier. The storage class
determines both the lifetime of values assigned to an object and
the extent of program text over which a given meaning holds for
its identifier, whether the compiler knows it or not. The type
determines what operations can be performed on an object and how
its wvalues are encoded. Needless to say, these important
attributes often interact. '

SCOPE:

There are two basic contexts in a C program: inside a program
block and outside a program block. The program block can be the
entire body of a defined function, including its argument
declarations, or any contained region enclosed in braces "{}".
In either case, the scope of an identifier depends strongly on
what context it is first mentioned in.

If an identifier first appears outside a program block, its scope
is from its first appearance to the end of the file, less any
contained program blocks in which that identifier is explicitly
declared to have a storage class other than extern; i.e., a local
redeclaration. To legally appear outside a program block, an
identifier must be:

e explicitly declared to be extern or static, or

e used in an initializer for an object of type pointer.

48-103 FO0O0 ROO 1-9

Identifiers - 2 - Identifiers

In the latter case, the identifier is implicitly declared to be
extern, with type (tentatively) int.

If an identifier appears inside a program block and is explicitly
declared to have a storage class other than extern, its scope is
from that appearance to the end of that program block, less any
local redeclarations.

The only other place an identifier may legally first appear is
inrside a program block, within an expression, where the name of
a function 1is required. In this case, the identifier is
implicitly declared to be extern, with type function returning
(tentatively) int.

In short, locals remain local while externals are made known as
globally as possible, without requiring the compiler to back up
over the text.

STORAGE CLASSES:

A variety of storage classes are available. Depending on
context, there may be subtle differences within storage classes.

extern outside a program block, means that the name
should be published for common use among any
of the files composing the program that also
publish the same name. The published name may
be shortened to as little as six significant
characters, and/or compressed to one case,
depending on the target operating system; so
while the compiler distinguishes "Counted" and
"counter", subsequent processing of the
compiled text may not. Ingide a program
block, extern merely emphasizes that an
earlier definition 1in a containing block
holds, if any was made. If no earlier
definition was made, then the name is
published as above. The 1lifetime of extern
objects is the duration of program execution.

static outside a program block, means that the name
should not be published outside the file.
Inside a program block, static means that the
identifier names an object known only within
the program block, less any local
redeclarations. The lifetime of static
objects is the duration of program execution,
so the value of a local static is retained
between invocations of the program block that
knows about it.

~1-10 48-103 F0OO ROO

Identifiers - 3 - Identifiers

auto can only be declared inside a program block
and means that the identifier names an object
known only within the program block, less any
local redeclarations. The 1lifetime of auto
objects is the time between each entry and
exit of the program block, so the value of an
auto 1is lost between invocations of the
program block that knows about it. Multiple
instances of the same auto may exist
simultaneously, one instance for each dynamic
activation of its program block.

register can only be declared inside a program block,
and means much the same as auto, except that:

e efficient storage, such as the machine's
fast registers, should be favored to hold
the object, -

e the address of the object cannot be taken.

It is not considered an error to declare more
objects of class register than can be
accommodated; excess ones are simply taken as
auto. The lifetime of register objects is the
same as auto objects. An argument declared to
be of <class register 1is copied into a fast
register on entry to the function. Currently,
all implementations support at 1least three
simultaneous register declarations, none of
which hold an object larger than int. '

typedef means that the name should be recognized as a
type specifier, not associated with any
object. Lifetime is, therefore, irrelevant.
Redeclaring a typedef in a contained program
block is permissible but mildly perilous.

TYPE:

All types in C must be built from a fixed set of basic types:
the integer forms char unsigned char, short, unsigned short, long
and unsigned long; and the floating types float and double. The
type int is a synonym either for short or long integer, depending
on the size of pointers on the target machine; char, short, int
and long are signed unless explicitly declared to be unsigned.
From these, the composite forms struct, union, bitfield, pointer
to, array of and function returning are derived. Recursive
application of the rules for deriving composite types lead to a
large, if not truly infinite, assortment of types.

48-103 FOO ROO 1-11 -

Identifiers - 4 - Identifiers

[unsigned] char
is a byte integer; it should be large enough to hold all
of the characters in the machine's character set.
Printable characters and common white space codes are
small, positive integers or zero.

[unsigned] short
is typically a two-byte integer; it should be large
enough to hold reasonable counts.

[unsigned] int
is either a short or a long, depending on the machine.
It should be large enough to count all the bytes in the
machine's address space.

[unsigned] long

is typically a four-byte integer.

float

is a floating number of short precision, typically four
bytes.

double

is a floating number of longer precision than float, if
possible, typically eight bytes. Also known as "long
float"™.

struct

is a sequence of one or more member declarations, with
holes as needed to keep everything on proper storage
boundaries for the machine. There are contexts in which
a struct may have unknown content. Members may be any
type but function returning, array of unknown size and
struct of unknown content.

48-103 FOO ROO

Identifiers -5 - Identifiers
union

is an alternation of one or more members, the union being
large enough and aligned well to accept any of its member
types. Members may be any type but function returning,
array of unknown size and struct of unknown content. A
union of unknown content is treated just like a struct of
unknown content.

bitfield

is a contiguous subfield of an unsigned int, always
declared as a member of struct. It participates in
expressions much like an unsigned int, except that its
address may not be taken.

pointer to
is an unsigned int that is used to hold the address of
some object. No C object will ever have an address of
zero.

array of

is a repetition of some type, whose size is either a
compile-time constant or unknown. Any type but function
returning, array of unknown size and struct of unknown
content may be used in an array.

function returning

is a body of executable text whose invocation returns the
value of some type. Only the basic types or pointer to
may be returned by a function.

OTHER NAME SPACES:

struct or union tags have a scope that extends from first
appearance through the end of the program file; they may not be
redefined. struct tags are a separate name space and union tags
are a separate name space.

Labels in a function body have a scope that extends from first
appearance, in a goto or as a statement label, through the end of
the function body; they may not be redefined within that scope.
Labels are a separate name space.

48-103 FOO ROO 1-13 -

Identifiers - 6 - Identifiers

Members of a struct or union have a scope that extends from first
appearance in the content definition of the struct or union,
through the end of the program file. They may not be redefined
within any struct or union, unless the new definition calls for
the same type and offset. (As a compile-time option, each struct
Ol union may be given its own name space.)

'—l
]

‘14 48-103 F0OO ROO

Declarations Declaring Names in € Declarations
NAME :

Declarations - Declaring Names in C

FUNCTION:

Declarations form the backbone of a C program. They are used to
associate a scope, storage class and type with most identifiers,
to specify the initial values of objects named by identifiers,
and to introduce the body of executable text associated with each
function name. There are four types of declarations, external,
structure, argument and local. The cast operator uses an
abbreviated form of declaration to specify type.

EXTERNAL DECLARATIONS:
Declarations have one of the forms shown below:

[¢sc>] [<ty>] <(decl) <fn-body>
[<sc> 1 [<ty> 1 [<decl> [<dinit>] [, <decl) [<dinit>]]*] ;

i.e., a storage class and type specifier, optionally followed by

either a function body or a comma separated list of declarators

(decl), each optionally initialized, the 1list ending in a

semicolon.

The storage class {(sc> may be extern, static or tYpedef; the

default is extern. The type <(ty> may be

e a basic type,

@ a struct or union declaration, (described below), or

e an identifier earlier declared to be typedef; the default is
int.

The basic types may be written as:

{ [unsigned] [char | short | long] [int] |
[long] float |
double }

where long float is the same as double.

48-103 F0O0 ROO 1-15

Declarations -2 - Declarations
A {(decl)> is recursively defined as, in order of decreasing
binding:

ident

ident is of type <(ty>.

{decl> ([<id> [, <id>]*]) - <decl>

is of type function returning <(ty>. The comma separated
list of identifiers 1is used only if the declaration is
associated with a function body.

{decl> '[' <(const> ']!

where '[' and ']' signify actual brackets. <(decl) is of
type array of <(ty>. <(const) is the unsigned repetition
count.

<decl> '[' ']"'

where '[' and ']' signify actual brackets. <(decl) is of
type array of <ty>, of unknown size.

*{decl>

{decl)> is of type pointer to <(ty>.

(<decl>)

{(ty> is redefined, inside the parentheses, as that type
obtained for X if the entire declaration were rewritten
with (<(decl>) replaced by X.

The last rule has profound implications. It is intended, along
with the rest of the {(decl) notation, to permit declarators to be
written much as they appear when used in expressions. Thus, "*"
for "pointer to" corresponds to '*' for "indirect on", "()" for
"function returning" corresponds to "()" for "called with", and
"[]1" for "array of" corresponds to "[]" for "subscripted with".
Declarators must be read inside out, in the order in which the
cperators would be applied.

The two critical examples are:
int *fpi(); /* function returning pointer to int */

int (*pfi)(); /* pointer to function returning int */

1-16 48-103 FO00 ROO

Declarations - 3 - Declarations

Initializers come in two basic types: for objects of type
function returning, and for everything else. The former is
usually referred to as the definition of a function, i.e., the

body of executable text associated with the function name. A
typedef may not be initialized; a static must be initialized
exactly once in the program file; an extern must be initialized
exactly once among the entire set of files making up a C program.
Function bodies <fn-body> are described 1in Statements; data
initializers <dinit)> are described in Initializers. For now,
observe that each function body begins with an argument
declaration list, and each program block within the function body
begins with a local declaration 1list. Functions may only be
declared to return a basic type or a pointer to some other type.

STRUCTURE DECLARATIONS:

If the type specifier in a declaration begins with struct or
union, it must be followed by one of the following forms:

{ <tag> '{' <(dlist> '}' |
{(tag> |
Y{' <dlist> '}' }

where '{' and '}' signify actual braces. The first form defines
the content of the structure as <(dlist> and associates the
definition with the identifier <(tag>. The second form can be
used to refer either to a structure of unknown content or as an
abbreviation for an earlier instance of the first form. The last
form is used to define content without defining a tag.

dlist is a sequence of one or more member declarations of the
form:

~

{(ty>] <sudecl> [, <{sudecl>]* ;

where {(sudecl) is one of the forms:

{ <decl> [: <width)>] |
: (width> }

{ty> and <{(decl) are the same as for external declarations, except
that the types function returning, array of unknown size and
struct of unknown content may not be declared.

48-103 FOO ROO 1-17

Declarations -4 - Declarations

If the type is int or unsigned int, a bitfield specifier may
follow <decl>, or stand alone. It consists of a colon ':'
followed by a compile-time constant giving its width in bits.
Acljacent <(sudecl) declarators with bitfield specifiers are packed
as tightly as possible into adjacent bitfields in an unsigned
int; bitfield specifiers that stand alone call for unnamed
pédding. A new unsigned int is begun:

e for the first field specifier in a declaration,

e for the first bitfield specifier following a nonbitfield
specifier,

e for a bitfield specifier that does not fit in the remaining
space in the current unsigned int, or

e for a stand alone-field specifier whose width is zero, e.g
".0".

.
-7

Bitfields are packed right-to-left, i.e., the 1least significant
bit (LSB) is used first.

'GUMENT DECLARATIONS:

A function initializer begins with an argument declaration 1list,
which is a sequence of zero or more declarations of the form:

[register] [<ty>] <(decl) [, <(decl)]* ;

{(ty> and <(decl)> are the same as for external declarations, except
that the types char (and possibly short), function returning,
array of, struct and union are misleading, if used. On a
function call, any integer type shorter than int 1is widened to
int; function returning and array of become pointers; and struct
or union cannot be sent, so any such declaration is a (possibly
dangerous) reinterpretation of the actual arguments sent.

The only storage class that may be declared is register; default

is normal argument. The default type for undeclared arguments is
int.

LOCAL DECLARATIONS:

Each program block begins with a local declaration list, which is
a sequence of zero or more declarations having one of the forms:

{ <(1sc> [<ty>] [<decls>]
[<lsc>] <ty> [<decls>]

~e ~e
—? ——

1--18 48-103 FOO ROO

Declarations - 5 - Declarations

where {(decls) is:
(decl> [<(linit>] [, <decl)> [<linit>]]*

In other words, either the storage class {lsc)> or type <(ty> must
be present.

The storage class (lsc) may be auto, register, extern, static or
typedef; the default is auto. <(ty> and (decl) are the same as
for external declarations.

A static may be followed by a data initializer (linit), just like
the (dinit)> of external declarations, described in Initializers.
An auto or register may be followed by an linit of the form:
optional '=', followed by any expression that may appear as the
right operand of '=' in an expression in the same context. Such
initializers for auto and register become code which is executed
on each entry to the program block.

A register may hold only an object of size int (which includes
unsigned and pointer). Anything larger than an unsigned int
declared to be in a register is made an auto; anything declared
smaller than int is taken as register int.

CASTS:

A cast is an operator that coerces a value to a specified type.
It takes the form:

([<ty>] <a-decl>)

(ty> is the same as for external declarations, except that in
conjuncion with <(a-decl)>, only the basic types and pointer to may
be specified. <a-decl) is an abstract declarator, much like the
{(decl) used for external declarations, but with the identifier
omitted. Therefore:

(int *) /* coerces to pointer to int */
(struct x *(*)()) /* coerces to pointer to function
returning pointer to struct x (!) */

"()" is always taken as function returning and never as
(unnecessary) parentheses around the omitted identifier.

48-103 FOO ROO 1-19

Declarations

Declarations
EXAMPLE:

Some simple declarations are:

char c;

int i, j;
long lo {37};
double df();

More elaborate declarations are:

int *fpi(); /* fpi is a function returning pointer to int */
typedef struct {
double re, im;
} COMPLEX; /*

COMPLEX is a synonym for the structure */
static COMPLEX

pc; / pc is a static pointer to COMPLEX */

48-103 F0OO ROO

Initializers Giving Values to Data Initializers

NAME :

Initializers - Giving Values to Data

FUNCTION:

As part of the declaration process, a data object can be given an
initial value. This value 1is established at 1load time for
objects with storage class extern or static, or on each entry to
a program block, for objects with storage class auto or register.
If no initializer is specified in a declaration, then an extern
must be initialized in another declaration (not necessarily in
the same file), a static outside a program block must be
initialized 1in another declaration in the same file, a static
inside a program block is set to all zeros, while the contents of
auto or register storage classes are indeterminate.

The two basic formats for initializers are:

{ <decl> [

=] <expr> |
{decl)> [=

] <elist)> }
where <elist) is
Y{' [<exprd> | <Celist>] [, [<expr> | <elist>] 1* [,] '}'

i.e.; a comma-separated list of expressions and lists, each list
enclosed in braces. Note that a trailing comma is explicitly
permissible in an elist.

Auto and register declarations with initializers behave much like
assignment statements. Only scalar variables may be initialized,
but the initializer may be any expression that can appear to the
right of an assignment operator with that variable on the left.
An <(elist)> is never acceptable in an auto or register
initializer.

The remaining discussion concerns initializers for objects with
storage class extern or static.

A scalar object is initialized with one <(expr). If it 1is an
integer type (char, short, int, long, or bitfield), <expr> must
be an expression reducible at compile-time to an integer literal,
i.e.; a constant expression as described in Constants. If the
object 1is a floating type (float or double), <(expr> must be a
floating literal or a constant expression; a constant expression
is converted to a floating literal by the compiler. The compiler
does not perform even obvious arithmetic involving floating
literals, other than to apply unary '+' or '-' operators.

48-103 FOO ROO 1-21

Initializers - 2 - Initializers

A pointer is initialized with a constant expression or with the
address of an external object, plus or minus a constant
expression. Any constant other than zero is extremely
machine-dependent, hence, this freedom should be exploited only
by hardware interface code. If the address of an object appears
in a pointer initializer and the object has not yet been
daclared, it is implicitly declared to be (tentatively) an
external int.

A union is initialized with one expression; the first member of
the union is taken as the object to be initialized.

A struct is initialized with either an expression or a list. If
an expression is used, the first member of the struct is taken as
the object to be initialized. If a list is used, the elements of
the 1list are used to initialize corresponding members of the
struct. If there are more members than initializers, excess
members are initialized with zeros. It is an error for there to
be more initializers in a list than members in the struct.

An array of known size is initialized much 1like a struct: an
expression initializes the first element only, while a list
initializes elements starting with the first. If there are more
elements than initializers, excess elements are initialized with
zeros. It is an error for there to be more initializers in the
list than there are elements in the array.

An array of unknown size, however, cannot have an excess of
initializers, as its multiplicity is determined by the number of
initializers provided. After initialization, therefore, an array
always has a known size.

By special dispensation, an array of characters may be
initialized by a string literal. For example:

char a[] {"help"}; /* is the same as */
char a[s] {'h', !el' lll' lpl' I\OI};

Elaborate composite types, such as arrays of structs, are
naturally initialized with 1lists of sublists, whose structure
reflects the structure of the composite types being initialized.
It is often permissible, however, to write an initializer by
omitting braces around one or more sublists. In this case, a
struct or array (sub)element uses only as many elements as it
needs, leaving the rest for subsequent subelements.

In general, it is recommended that complex initializers either
have a structure that exactly matches the object to be
initialized, or have no internal structure at all. It is
difficult to get either of these extremes correct; intermediate
forms frequently defy analysis.

1-22 48-103 FOO ROO

Initializers

EXAMPLE:

char *p = "help";

/* p points at the string */

char a[] {"help"}; /* a contains five chars */

struct complex ({
float real,
} xx[31[2]

{ { {0, O},

{ {1, 0},

{ {2, 0},

48-103 F0O0 ROO

imag:;

{0, 1}, {0, 2} },
{1, l}' {1' 2} },
{2, 1}, {2, 2} } };

Initializers

Si-atements The Executable Code Statements
NAME :

St.atements - The Executable Code

FUNCTION:

A C function definition consists of the function declaration
proper, followed by any argument declarations, followed by a
{program-block> which describes the action to be performed when
the function is called. A {program-block> begins with a '{',
optionally followed by a sequence of local declarations,
optionally followed by a sequence of statements and ends with a
'}'. In addition to the {program-block)> just described, which
may be used recursively whenever a (statement) is permitted, the
following are the legal (statement)>s of a C program:

{expression>;

An <{(expression)> terminated by a semicolon is a statement
that causes the <(expression)> to be evaluated and the
result discarded. Assignments and function calls are
simply special cases of the expression statement. It is
considered an error if (expression) produces no useful
side effect; "a = b;" is useful but "a + b;" is not.

-

A semicolon standing alone is a null statement. It does
nothing.

if (<expression)>) {(statement) [else (statement)]

If (expression) evaluates to a nonzero of any type, the
(statement)> following it is evaluated and the else part,
if present, is skipped; otherwise the {(statement)>
following <expression> 1is skipped and the else part, if
present, has its <(statement)> evaluated. As in all
languages, each else part in a nested if (statement) is
asgsociated with the inner-most "un-else‘'d" if.

switch ((expression)>) <{(statement)

If (expression>, converted to an int, matches the value
associated with any of the case labels in the statement
following, execution resumes immediately following the
matching label. Otherwise, if the label "default" is
present in the statement following, execution resumes
immediately following it. Otherwise, execution resumes
with the statement following the switch statement. The
statement controlled by a switch 1is typically a
{program-block>, but does not have to be.

1--24 48-103 F0OO ROO

Statements -2 - Statements
case {(value): {(statement)

The case (statement> may only occur within a switch
(statement), as described above. The value must be an
int computable at compile-time and must not match any
other case <(value>s in the same switch.

default: <(statement)

The default (statement)> may only occur within a switch
(statement)>, as described above. It may occur, at most,
once in any switch.

while ((expression)) (statement)

As long as (expression) evaluates to a nonzero of any
type, {(statement) is executed. <(expression) is evaluated
prior to each execution of the (statement), plus one more
time if it ever evaluates to zero. The {(statement) can
be executed zero or more times.

do (statement)> while (<(expression)>);

The (statement) is executed and, as long as <(expression)
evaluates to nonzero of any type, the (statement) is
repeated. The (statement) may be executed one or more
times; {(expression) is evaluated following each execution
of the {(statement).

for (<exl>; <ex2>; <(ex3>) <{(statement)

{exl), <ex2)> and <(ex3> are all <expression)s. {exl)> is
evaluated exactly once, and as long as <{ex2)> evaluates to
nonzero, the (statement)> 1is executed and <(ex3)> |is
evaluated. Thus, the for behaves much like the sequence
{<exl>; while (<ex2>) {<{(statement) <(ex3)>; }}

break;

A break <(statement)> causes immediate exit from the
inner-most containing switch, while, do or for
(statement)>, i.e.; execution resumes with the (statement)
following. A break {(statement)> may only occur inside a
switch, while, do or for.

48-103 FOO ROO 1-25

Statements - 3 - Statements

1-26

continue;

A continue (statement) causes immediate exit from the
(statement)> part of the inner-most containing while, do
or for {(statement), i.e.; execution resumes with the test
part of a while or do, or with the <(ex3)> part of a for.
A continue (statement) may only occur inside a while, do
or for.

goto (identifier>;

A goto (statement) causes execution to resume immediately
following the <(statement) 1labelled with the matching
identifier contained within a common {program-block>.
Such a labelled (statement)> must be present.

(identifier>: {(statement>

A label (statement) serves as a potential target for a
goto, as described above. All labels within a given
{program-block> must have unique (identifier>s.

return [<{expression)> };

If the (expression> 1is present, it is evaluated and
coerced to the type returned by the function, then the
function returns with that value. If the (expression)> is
absent, the function returns with an undefined value.
There is an implicit return statement (with no defined
value) at the end of each <(program-block)> at the
outer-most level of a function definition.

48-103 FOO0 ROO

Expressions Computing Values in C Expressions

NAME :

Expressions - Computing Values in C

FUNCTION:

C offers a rich collection of operators to specify actions on
integers, floats, pointers and, occasionally, composite types.
Operators can be classified as addressing, unary or binary.
Addressing operators bind most tightly, left-to-right from the
basic term outward; then all unary operators are applied
right-to-left, beginning with (at most one) postfix "++" or "--";
finally, all binary operators are applied, binding either
left-to-right or right-to-left and on a multilevel scale of
precedence.

Parentheses may be used to override the default order of binding,
without fear that redundant parentheses will alter the meaning of
an expression, i.e.; f(p) is the same as f((p)) or (f(p))- The
language makes few promises about the order of evaluation,
however, or even whether certain redundant computations occur at
all. Expressions with multiple side effects can be fragile,
e.g.; *p++ = *++p can legitimately be evaluated in a number of
incompatible ways.

Some operands must be in the class of "lvalues", 1i.e.; things
that make sense on the left side of an assignment operator. An
identifier is the simplest 1lvalue, but any expression that
evaluates to a recipe for locating declared objects can also be
an lvalue. All scalar expressions also have an "rvalue", 1i.e.;
a thing that makes sense on the right side of an assignment
operator. All lvalues are also rvalues.

Nearly all C operators deal only with scalar types, i.e.; the
basic types, bitfield or pointer to. Where a scalar type is
required and a composite type is present, the following implicit
coercions are applied: array of... 1is changed to pointer to...
with the same address value; function returning... is changed to
pointer to function returning... with the same address value;
structure or union is illegal.

ADDRESSING OPERATORS:

func([expr [, expr]*])

func must evaluate to type "function returning..." and
is the function to be called to obtain the rvalue of the
expression, which 1is of type... Any arguments are
evaluated, in unspecified order, and fresh copies of
their values are made for each function call (thus, the
function may freely alter its arguments with limited
repercussions). char or short expressions are widened to
int and float to double; all arguments must be scalor.

48-103 F0O0 ROO 1-27

Expressions -2 - Expressions

No checking 1is made for mismatched arguments or an
incorrect number of arguments, but no harm is done
providing the highest numbered argument actually used and
all its predecessors do correspond properly. Note that
a function declared as returning anything smaller than an
int actually returns int, while a function returning
float actually returns double.

a [i]

is entirely equivalent to "*(a + i)", so the unary ‘'
and binary Y4 should be examined for subtle
implications. If a is of type array of... and i is of
integer type, however, the net effect is to deliver the
ith element of a, having type...

x must be an lvalue, which should be of type struct or
union containing a member named m (m can never be an
expression). The value is that of the m member of x,
with type specified by m.

p->m

p must be coercible to a pointer, which should be a
pointer to a struct or union containing a member named m
(m can never be an expression). The value is that of the
m member of the struct or union pointed at by p, with
type specified by m.

UNARY OPERATORS:

*p

&Xx

+x

p must be of type pointer to... The value is the value
of the object currently pointed at by p, with type...

x must be an lvalue. The result is a pointer that points
at x; the type is pointer to... for x of type...

x must be of type integer or float. The result 1is an
rvalue of the same value and type as x.

48-103 FOO ROO

Expressions -3 - Expressions
-X

x must be of type integer or float. The result 1is an
rvalue which is the negative of x and the same type as Xx.

X

X must be a scalar lvalue. x is incremented in place by
one, following the rules of addition explained below.
The result is an rvalue having the new value and the same
type as x.

x must be a scalar lvalue. Xx is decremented in place by
one, following the rules of addition explained below.
The result is an rvalue having the new value and the same
type as x.

X++

x must be a scalar lvalue other than floating. x is
incremented in place by one, following the rules of
addition explained below. The result is an rvalue having
the old value and the same type as x.

X—-

x must be a scalar lvalue other than floating. X |is
decremented in place by one, following the rules of
addition explained below. The result is an rvalue having
the old value and the same type as x.

x must be an integer. The result is the ones complement
of x, having the same type as x.

x must be scalar. The result is an integer 1 if x |is
zero; otherwise it is an integer O.

'48-103 F0O ROO 1-29

Expressions -4 - Expressions
(<a-type>) x

{(a-type> 1is any scalar type declaration with the
identifier omitted, e.g.; (char *). The result is an
rvalue obtained by coercing x to <(a-type>. This operator
is called a "cast" (see Declarations). Note that a cast
to any type smaller than int is taken as (int), while
(float) is taken as (double).

sizeof x, sizeof (<(a-typed>)

The result is an integer rvalue equal to the size in
bytes of x or the size in bytes of an object of type
{a-type>.

BINARY OPERATORS:

There is an implicit "widening" order among the arithmetic types,
i.e.; char, unsigned char, short, bitfield (if int is equivalent
to short), unsigned short, long, bitfield (if int is equivalent
to long), unsigned long, float and double; double is the widest
tvype. In general, the type of a binary operator is the wider of
the types of its two operands, narrower operand being implicitly
coerced to match the wider. If arithmetic is not done in place,
as in i =+ j, then integer arithmetic is always performed on
operands coerced by widening to at 1least int, and floating
arithmetic is always performed on operands widened to double.

Coercions are made up from a series of transformations: A char
or short becomes an int of the same value. Sign extension occurs
for all int types not declared as unsigned; the latter are
widened by zero fill on the left. An int is simply redefined as
an unsigned, on twos complement machines at least, with no change
in representation. Bitfields are unpacked into unsigned
integers. An integer is converted to a double of the same
numerical value, while a float is reformatted as a double of the
same value, often simply by right fill with zeros.

Assignment may call for a narrowing coercion, which is performed
by the following operations: A double is rounded to its nearest
arithmetic equivalent in float format; conversion to integer
involves discarding any fractional part, then truncating as need
b2 on the left without regard to overflow. Similarly, integers
are converted to narrower types by left truncation.

Tne binary operators are listed in descending order of binding,
those with highest precedence first:
x*y

Both operands must be arithmetic (integer or float). The
result is the product of x and y, with the type of the
wider.

1-30 48-103 F0O0 ROO

Expressions -5 - Expressions

x/y

x%y

xX+y

Both operands must be arithmetic. The result 1is the
quotient of x divided by y, with the type of the wider.
Precedence is the same as for *.

Both operands must be integer. The result 1is the
remainder obtained by dividing x by y, with the type of
the wider. Precedence is the same as for *.

If either operand is of type pointer to..., the other
operand must be of type integer, which is first
multiplied by the size in bytes of the type... then

added to the pointer to produce a result of type pointer.
Otherwise both operands must be arithmetic; the result is
the sum of x and y, with the type of the wider.

If x is of type pointer to... and y is of type integer,
y is first multiplied by the size in bytes of the type...
then subtracted from x. If x is of type pointer to...
and y is of type pointer to... and both point to types
of the same size in bytes, then x is subtracted from y
and the result divided by the size in bytes of the
type... to produce an integer result. Otherwise both x
and y must be arithmetic; the result is y subtracted from
X, with the type of the wider. Precedence is the same as
for +.

x<<y

Both operands must be integer. The result is x left
shifted y places, with the type of x. No promises are
made if y is large (compared to the number of bits in x)
or negative.

Xy

Both operands must be integer. The result 1is x right
shifted y places, with the type of x. If the result type
is unsigned, no sign extension occurs on the shift; if it
is signed, sign extension does occur. No promises are
made if y is large or negative. Precedence is the same
as for <<.

48-103 FOO ROO 1-31

Expressions -6 - Expressions
x{y,.x{=y, XDY, XO>=y

If either operand is of type pointer to... and the other
is of type integer, the integer is scaled as for addition
fore the comparison is made. Otherwise if both operands
are of type pointer to... the pointers are compared as
unsigned integers. Otherwise both x and y must be
arithmetic, and the narrower is widened to match the type
of the wider before the comparison is made. The result
is an integer 1 if the relation obtains; otherwise it is
an integer O.

X==y, X!=y
The operands are coerced as for <(, then compared for
equality (==) or inequality (!=). The result is an
integer 1 if the relation obtains; otherwise it is an
integer 0.

X&y
Both operands must be integer. The result is the bitwise
and of x and y, with the type of the wider.

XAY

Both operands must be integer. The result is the bitwise
exclusive or of x and y, with the type of the wider.

Xy

Both operands must be integer. The result is the bitwise
inclusive or of x and y, with the type of the wider.

X&&Y

Both operands must be scalar. If x is zero, the result
is taken as integer 0 without evaluating y. Otherwise
the result is integer 1 only if both x and y are nonzero.

Xily

Both operands must be scalar. If x 1is nonzero, the
result is taken as integer 1 without evaluating y.
Otherwise the result is integer 1 if either x or y is
nonzero.

1-32 48-103 FO0O ROO

Expressions -7 - Expressions

t2x:

X=y

Y

If t, which must be scalar, is nonzero the result is x
coerced to the final type; otherwise the result is y
coerced to the final type; exactly one of the two
operands x and y is evaluated. The final type is pointer

to... if either operand is pointer to... and the other
is integer (the integer is not scaled). Otherwise if
both operands are of type pointer to... the final type
is the same as x. Otherwise both operands must be

arithmetic and the final type is the wider of the two
types.

Both operands must be scalar, and x must be an 1lvalue.
y is coerced to the type of x and assigned to x. 1If x is

a pointer to..., y may be a pointer to... or an integer
(the integer is not scaled). Otherwise both operands
must be of arithmetic type. The result is an rvalue

equal to the value just assigned, having the type of x.

xX=y, 6 x/=y, x%=y, Xt=y, x-=y, x{{=y, X>>=y, X&=Y, XA=y, X|=y

X,y

Each of the operations "x op= y" is equivalent to "x = x
op Yy"., except that x is evaluated only once and the type
of "x op y" must be that of x, e.g., "x -= y" cannot be

used 1if x and y are both pointers. The operators may
also be written =op, for historical reasons, but in this
form no whitespace may occur after the =. Precedence is
the same as for =. ‘

Both operands must be scalar. x is evaluated first, then
y. The result is the value and type of Y. Note that
commas in an argument list to a function call are taken
as argument separators, not comma operators. Thus,
f(a,b,c) represents three arguments, while f(a,(b,c))
represents two, the second one being ¢ (after b has been
evaluated).

48-103 F0OO ROO 1-33

Ccnstants Compile-Time Arithmetic Constants
NAME :

Constants - Compile-Time Arithmetic

FUNCTION:

There are four contexts in a C program where expressions must be
able to be evaluated at compile-time: the expression part of a
#.f preprocessor control 1line, the size of an array in a
declaration, the width of a bitfield in a struct declaration and
the label of a case statement. In many other contexts, the
compiler endeavors to reduce expressions, but this is not
mandatory except in the interest of efficiency.

The #if statement evaluates expressions using 1long integer
arithmetic. No assigment operators, casts or sizeof operators
may be used. The result is compared against zero. There is no
guarantee that large numbers will be treated the same across
svstems, due to the variation in operand size, but this wvariation
is expected to be minimal among longs.

Bitfield widths, array sizes and case labels are also computed
using 1long integer arithmetic, but only the integer part (if
smaller than long) is retained. Moreover, the sizeof operator is
permitted in such expressions.

In all other expressions, the compiler applies a number of
reduction rules to simplify expressions at compile-time. These
include the following (assumed) identities:

+ 1+ *
M OoOOrH

o I

+ X
y) + z == x + (y + 2)

x +
&& true == x
P

s

X
X
X
X
X
(
X
X false == x

false && x == <{(nothing»

true || x == <{nothing>

(x +y) *z==x*2 +y * 2

plus a number of others. In other words, certain subexpressions
may generate no code at all, if the operation is patently
redundant. This 1is worth keeping in mind when writing

input/ouput (1/0) drivers and other machine-dependent routines
that are expected to produce useful side effects not obvious to
the compiler.

1-34 48-103 FOO ROO

Constants - 2 - Constants

The compiler does not perform common subexpression elimination,
however, nor rearrange the order of computation between
statements, so that a minimal determinism is assured.

To ensure that compile-time reductions occur, on the other hand,
it 1is best to group constant terms within an expression so the
compiler does not have to guess the proper rearrangement to bring
constants together.

48-103 F00 ROO 1-35

Preprocessor Lines That Begin With # Preprocessor
NAME :

Preprocessor - Lines That Begin With #

FUNCTION:

A preprocessor is used by the C compiler to perform #define,
$include and other functions signalled by a control character,
typically #, before actual compilation begins. A number of
options can be specified at preprocess time by the use of flags
whose effects are sometimes mentioned below, but which are more
fully explained in the section for the pp command, described in
Appendix B of/this manual.

Unless -c is specified, /* comments */ are replaced by a single
space and any 1line that ends with a '\' is merged with its
successor. If the first nonwhitespace character on the resultant
line matches either the preprocessor control character or the
secondary preprocessor control character, the line is taken as a
command to the preprocessor; all other lines are either skipped
or expanded as described below.

The following command lines are recognized by the preprocessor:

$define <(ident)> <defn)

defines the identifier <(ident> to be the definition
string <(defn)> that occupies the remainder of the line.
Identifiers consist of one or more 1letters, digits and

underscores '_', where the first character is a nondigit;
only the first eight characters are used for comparing
identifiers. A sequence of zero or more formal
parameters, separated by commas and enclosed in

parentheses, may be specified, provided that no
whitespace occurs between the identifier and the opening
parenthesis. The definition string begins with the first
nonwhitespace character following the identifier or its
parameter list, and ends with the last nonwhitespace
character on the line. It may be empty. If an
identifier is redefined, the new definition is pushed
down on top of the older ones.

#undef <J{(ident)>

pops one level of definition for <(ident)>, if any. It is
not considered an error to undef an undefined identifier.

1-36 48-103 FOO ROO

Preprocessor -2 - Preprocessor

#include {(fname)

causes the contents of the file specified by <(fname) to
be 1lexically included 1in place of the command line. A
filename can be a simple identifier, or an arbitrary
string inside (literal) quotes "", or an arbitrary string
inside (literal) angle brackets <(>. In the last case, a
series of standard prefixes is prepended to the filename,
normally "" unless otherwise specified at invocation
time, to 1locate the file 1in one of several places.
Included files may contain further includes.

$ifdef <(ident)

commences skipping lines if the identifier (ident) is not
defined, otherwise, processing proceeds normally for the
range of control of the #ifdef. The range of control is
up to and including a balancing #endif command. An #else
command encountered in the range of control of the #ifdef
causes skipping to cease if it was in effect, or normal
processing to change to skipping if skipping was not in
effect. It is permissible to nest #ifdef and other #if
groups; entire groups will be skipped if skipping is in
effect at the start. Preprocessor commands such as
$define and #include are not performed while skipping.

$ifndef (ident>

#if

is the same as #ifdef, except that $ifndef commences
skipping if the identifier is defined.

{expression>
is the same as #ifdef, except that the rest of the 1line

is first expanded, then evaluated as a constant
expression; if the expression is 2zero then skipping

commences . An expression may contain parentheses, the
unary operators +, -, ! and °, the binary operators +,
=y X, /0 %, & e A KGO, Ky ==y D, (=, =), 1=, && and

ll, and the ternary operator ? :. The definitions and
bindings of the operators match those for the C language,
subject to the straint that only integer constants may be
used as operands.

#line <(num> <{(fname)

causes the line number used for diagnostic printouts to
be set to num and the corresponding filename to be set to
fname, if present. If no filename is specified, the
filename used for diagnostic printouts is left unchanged.
num must be a decimal integer.

48-103 FOO ROO 1-37

Preprocessor -3 - Preprocessor
#

is taken as an innocuous line, if empty. Anything else
not recognized as a command causes a diagnostic.

Expansion of noncommand lines causes each defined identifier to
be replaced by its definition string, then rescanned for further
expansion. If the definition has formal parameters, and the next
token on the line is a left parenthesis, then a group of actual
parameters, inside balanced parentheses, must occur on the line;
formal parameters with no corresponding actual parameters are
replaced by null strings.

Note that no attempt is made to add whitespace, before or after
replacement text, to avoid blurring of token boundaries, just as
no parentheses are added to avoid bizarre arithmetic binding in
expressions. No expansion occurs within "" or '' strings.

BUGS:

Circular definitions such as
#define x x

cause the preprocessor to behave in an unpredictable manner.

1-38 48-103 FOO ROO

Style Rules for Writing Good C Code Style
NAME :

Style - Rules for Writing Good C Code

FUNCTION:

C is too expressive a language to be used without discipline; it
can rival APL in opacity or PL/I in variety. The following
practices and restraints are recommended for writing good C code:

ORGANIZATION:

If a C program totals more than 500 lines of code, it should be
split into files each no larger than 500 lines of code. As much
as possible, related declarations should be packaged together,
with as many of these declared static (LOCAL) as possible.
Common definitions and type declarations should be grouped into

one or more header files to be #included as need be with each
file.

If any use is made of the standard 1library, its definitions
should be included as well, as in the following:

/* GENERAL HEADER FOR FILE
* copyright (c) 1981 by Whitesmiths, Ltd.
x/

#include <{(std.h>
#include "defs.h"

#$def ine MAXN 100 /* definitions local to this file */

For the contents of <(std.h), including the definitions of LOCAL,
etc., see std.h in Chapter 3.

Header files should be used to contain #defines, typedefs and
declarations that must be known to all source files making up a
program. They should not include any initializers, as these
would be repeated by multiple inclusion. A good convention is to
use upper-case letters for #define'd identifiers, as a warning to
the reader that the language is being extended.

It is also good practice to explicitly import all external
references needed in each function body by the use of extern
(IMPORT) declarations. This not only documents any pathological
connections, but also permits functions to be moved freely among
files without creating problems.

48-103 F0O ROO ' 1-39

Style -2 - Style

Within a file, a good discipline is to put all data declarations
first, then all function bodies in alphabetical order by function
name. Data declarations are typically stored into 1logical
groups, e.g.; all flags, all file control, etc.; an explanatory
comment should precede each group of data and each function body,
with a single blank line preceding the comment. If the body of
a function is sufficiently complex, a good explanatory comment is
the six or so lines of pseudo code that best summarize the
algorithm. There is usually no need for additional comments, but
if they are used, they are best placed to the right of the line
being explained, separated by one tab stop from the end of the
statement.

If the types provided in std.h are not sufficient to describe all
the objects used in a program, then all other types needed should
be provided by #defines or typedefs. All declarations should be
typed, preferably with these defined types, to improve
readability.

RESTRICTIONS:

The goto statement should never be used. The only case that can
be made for it is to implement a multilevel break, which is not
provided in C; but this seldom proves to be prudent in the long
run. If a function has no goto statements, it has no need for
labels. '

Other constructs to avoid are the do-while statement, which
inevitably evolves into a safer while or for statement, and the
continue statement, which 1is typically 3just a poor way of
avoiding the proper use of else clauses inside loops.

More than five levels of indenting (see FORMATTING below) is a
sure sign that a subfuction should be split out, as is the case
with a function body that goes much over a page of 1listing or
requires more than six local variables.

The use of the gquasi-Boolean operators &&, 1, 1, etc., to

produce integer ones and zeros should not be used to perform
arithmetic, as shown below.

sum[i] = a[i] + b[1] + (10 <(= sum[i - 1]);

Such practices, if used, should be commented, as should most
tricky bit manipulations using &, | and A.

Elaborate expressions involving ¥ and :, particularly multiple

instances thereof, are often hard to read. Parenthesizing helps,
but excessive use of parentheses is just as bad.

1-40 48-103 F0O0 ROO

Style -3 - Style

If the relational operators > and >= are avoided, then compound
tests can be made to read like intervals along the number axis,
as shown below which is demonstrably true when ¢ is a digit.

if ('0' (= c && ¢ (= '9')

FORMATTING:

While it may seem a trivial matter, the formatting of a C program
can make all the difference between correct comprehension and
repeated error. To get maximum benefit from support tools such
as editors and cross referencers, one should apply formatting

rules rigorously. The following rules of thumb have proved to be
valuable.

Each external declaration should begin (with optional storage
class and mandatory type) at the beginning of a line, immediately
following its explanatory comment. All defining material, data
initializers or function definitions, should be indented at least
one tab stop, plus additional tab stops to reflect substructure.
Tabs should be set uniformly every four to eight columns.

A function body, for instance, always looks like:

TYPE name(argl, arg2, arg3)
TYPEl argl;

TYPE2 arg2, arg3;

{

{local declarations>

{(statements>

}

This example assumes that arg2 and arg3 have the same type. If
no <(local declarations)> are present, there is no empty line
before {(statements).

(local declarations)> consists of: extern (IMPORT), register
(FAST), auto (no storage class specifier), static (INTERN)
declarations, respectively; these are sorted alphabetically by
type within storage class and alphabetically by name within type.
Comma-separated lists may be used, as long as there are no
initializers; an initialized variable should stand alone with its
initializer. FAST and auto storage should be initialized at
declaration time only if the value is not to change.

(statements) are formatted to emphasize control structure,
according to the following basic patterns:

48-103 FOO0 ROO 1-41

Style

if (test)
{statement>
if (test)
{
{statement>
{statement>

-

}

else
{statement>
if (testl)
{statement)
else if (test2)
{statement>
else if (test3)

else
{default statement)
switch (value)
{
case A:
case B:
{statement)>

break;
case C:
{statement>

-

Sreak;
default:
{statement)

}
while (test)
{statement>
for (init; test; incr)
{(statement>
for (; test; incr)
{statement)
for (init; ;)
{statement>
FOREVER
{statement)>
return (expr);

Style

48-103 F0OO ROO

Style -5 - Style

Note that, with the exception of the else-if chain, each
subordinate (statement)> is indented one tab stop further to the
right than its controlling statement. Without this, an else-if
chain would be written:

if (test 1)
{(statement)
else
if (test 2)
{statement)
else
if (test 3)
{(statement)

else
{default statement>

Within statements, there should be no empty lines, nor any tabs
or multiple spaces imbedded in a line. Each keyword should be
followed by a single space, and each binary operator should have
a single space on each side. No spaces should separate unary or
addressing operators from their operands. A possible exception

to the operator rule 1is a composite constant, such as
(GREEN|BLUE) .

Parentheses should be used whenever there is a hint of ambiguity.
Note, in particular, that & and | mix poorly with the relational
operators, that the assigning operators are weaker than && and

i1, and that (< and >)> are impossible to guess right. The worst
case is shown below.

if ((a & 030) != 030)

-

which does entirely the wrong thing if the parentheses are
omitted.

If an expression is too long to fit on a line (no more than 80
characters) it should be continued on the next line, indented one
tab stop further than its start. A good rule is to continue only
inside parentheses, or with a trailing operator on the preceding
line, so that displaced fragments are more certain to cause
diagnostics.

48-103 F0O0 ROO 1-43

Style

EXAMPLE :

A typical library function looks like this:

1-44

#include {(std.h>

/Yk

X

CONVERT LONG TO BUFFER

copyright (c) 1978 by Whitesmiths, Ltd.
BYTES ltob(is, 1ln, base)

FAST TEXT *is;
LONG 1n;
BYTES base;

FAST TEXT *s;

ULONG 1lb;

s = is;

if (In ¢ 0 && base == 0)
{
In = -1n;
g+t = "0,

}
if (base == 0)
base = 10;
else if (base <(0)
base = -base;
lb = base;
if (In < 0 {} 1lb <= 1n)
8 =+ ltob(s, 1n / 1lb, base);
*s = 1n % 1lb + '0';
if ('9' (*s8)
*s =+ ('a' - ('9' + 1));
return (s - is + 1);

}

Style

48-103 FOO ROO

Portability Writing Portable Code Portability
NAME :

Portability - Writing Portable Code

FUNCTION:

Writing highly portable C code is not difficult. While the
features provided by the machine interface 1library may be
convenient, they should be avoided whenever possible and clearly
marked when it is impossible to avoid using them. When problems
arise with C code that is machine-dependent, they can be
extremely difficult to identify; and trying to keep them out of
new code can often become counter-productive. The following set
of rules eliminate nearly all machine dependencies.

Use the portable library. If at all possible, avoid using the ¢
interface library.

If your program processes text files, assume that carriage
returns, NULs, and other characters that do not print may
disappear if written out and read back later. Assume that 1lseek
will fail, even when it obviously should work on your system.
Text lines may be as 1long as 512 characters, counting the
terminating newline; but then they should never be longer than
that. It is usually best not to depend on the presence of that
trailing newline, if at all possible, in case the program is fed
an unusually long line or a truncated last line.

If your program tries to process STDIN, STDOUT or STDERR as a
binary file, assume that the data will be corrupted; binary files
must be opened by name on most systems. The third argument to
open and create should always be present and for binary files
should always be nonzero. A third argument of 1 is always
acceptable and will not lead to storage inefficiencies in the
target file. The set of functions fopen, fcreate, getfiles,
etc., were frozen before the text/binary dichotomy became
apparent, so they work smoothly only on text files; getbfiles is
a later addition. Performing a binary open, followed by a finit
with third argument READ or BWRITE, does make the buffered 1/0
mechanism safely available for sequential binary 1/0, however.

Many operating systems will pad a binary file with NULs, which
are hard to detect 1in the interface code. Consequently, any
program that does binary reads must be prepared to deal with
trailing NULs. Treating NUL as end of file is best, whenever
possible. Another aspect of this problem is that the 1length of
a binary file is poorly determined on many systems; consequently,
the ability to lseek relative to the end of a file is no longer
supported in the portable specification.

The order in which bytes are stored for encoded arithmetic types
varies. A long integer, '3210' for instance, can read out as
'3210', '0123', or '2301' on three popular processors, where '0°'
is the 1least significant byte. The best rule is never to write
a multibyte datum, unless it is an array of chars or unless it is

48-103 FO0O0 ROO 1-45

Portability -2 - Portability

clearly understood that the resultant file will always be read
into an identically declared datum on the same machine. Look for
sizeof operators not connected with alloc calls; they are a sign
of potential trouble. The library functions lstoi and itols are
provided to ease transmission of two-byte integers among various
implementations, while 1lstol and 1ltols provide a similar
mechanism for four-byte gquantities.

The portable specification states filenames should be no more
elaborate than "xxxxxx.yy". Use uname to build temp file names
and avoid wiring any other file names into code. In the same
vein, external identifiers should be chosen for the worst case,
i.e.; a system where only six characters 1in one case are
retained. It is possible to have the compiler check the
identifiers for conformance to this or similar constraints.

Declarations are designed to ease portability among machines with
different data formats, but they must be used properly to do so.
C is very tolerant to declarations for such things as: arguments
to a function, values returned by a function, data held in
registers and casts. Since all of these items are essentially
rvalues, they are never smaller than an int, or a double if
floating point, no matter how they are declared. The difference
matters only when some 1lvalue enter, as when assignhing to a
register or argument, or taking the address of an argument.

Never assume that assigning to one of these items, or applying a
cast such as (char), will perform any sort of truncation; it will
not, at 1least not below integer. Storing a char in part of an
int may work on some computers, but it will eventually cause
trouble. Look for address of (unary &) operators applied to
arguments and expect problems.

The standard header provides a constellation of defined types to
stylize proper usage. Use the aliases for {char, short, long}:
i.e.; {TINY, COUNT, LONG} or the unsigned versions ({UTINY,
UCOUNT, ULONG} regardless of what processor the program is run
on, when you know the size of the datum being entered. If
something must hold a pointer, declare it as such; if it must
span most or all of the address space of the target machine, as
a. subscript for example, declare it as unsigned int, or BYTES.
Note that case switch values are ints; hence, only short values
are portable for case labels.

There are two other important flexible types besides BYTES:
ZRGINT and TEXT. ARGINT is used when talking about an argument
that is known to have been widened to an integer; it should serve
as a red flag that something special is happening. TEXT, on the
other hand, 1is used heavily to ensure efficient code; it is
cdleclared in the header as either char or unsigned char, depending
on which is more easily handled by the target machine. When
using TEXT variables, the programmer must be careful to mask
possible sign extensions, using BYTMASK, should other than ASCII
characters or small positive integers be stored in them. This
usage parallels the standard uncertainty of char variables in
other implementations of C.

1-46 48-103 FO0O ROO

Portability -3 - Portability

To ensure maximum portability between 16 and 32-bit pointer
machines, the best mind set 1is that an int is not equal to a
short and it is not equal to a long, but it can and will be equal
to either some time or other. Avoid writing constants of fixed
size, such as 0177777; instead write stretchable forms such as ~0
for the above. If a constant must be long on any machine, be
sure to force it long; “0 can be different from "OL.

There will always be at least three registers available. These
can hold anything up to an unsigned int and almost invariably
offer substantial code space and execution time benefits if used
for the most important variables. Pointers benefit particularly
from being placed in registers. The assigning operators, such as
=+ or +=, frequently lead to better code production. This is
particularly true for the smaller data types such as char, since
C is obliged to compute (cl + c2) to int precision, but may do
(cl =+ c2) as a char operation. It is also possible to make code
more efficient by writing expressions such as: ’

if (sizeof (int) == sizeof (short) && {(short test) ||
gizeof (int) == sgsizeof (long) && <{(long test))

Only <(short test)> or (long test)> will actually be generated as
run-time code; the remainder is optimized out by the compiler.

48-103 FOO0 ROO 1-47

Differences Comparative Anatomy Differences

NAME :

Differences - Comparative Anatomy

FUNCTION:

The definitive standard for C is Appendix A of Kernighan &
Ritchie, as explained in the Introduction to this section. This
implementation adheres closely to that standard, except for minor
changes in emphasis. There are also several available
implementations of C that differ in more important respects. A
summary of standards is listed below.

THE STANDARD:
e This implementation includes the types unsigned [char short

long], which are not yet in the standard.

e Backslash is used to continue strings in the standard; its use
is generalized here.

e Character constants with more than one character are defined
here, but not in the standard.

e All struct and union tags share the name space of all members
of struct and union, in the standard; each kind of tag has its
own name space here.

e This implementation permits, as an option, separate name
spaces for each struct or union and much more rigorous
checking of . and -> operators.

e A union may be initialized in this implementation.

e A preprocessor macro invocation, e.g., swap(a,b), must be
written all on one line in this implementation.

e The sizeof operator is explicitly disallowed in $if
expressions, in this implementation.

1-48 48-103 FOO ROO

Differences -2 - Differences

UNIX/V6:

e Not implemented in the UNIX/V6 compiler are: bitfields, short
integers, unsigned integers, 1long integers, casts, unions,
#if, #line, operators of the form op=, static external
declaractions (local to a file) or register arguments.

e UNIX/V6 initializes a structure as if it were an array of
integers. -

UNIX/V7:

e Bitfields may not be initialized, in at 1least one of the
UNIX/V7 compilers.

e Casts of the form (char) or (short) may actually truncate a
value; they have no effect on ints in this implementation.

@ The address of an array cannot be taken.

e Enumerated types, structure assignment and functions returning
structs have been added in UNIX/V7 C.

o e o G = ——— O —— (i t— " - R o e e S > S G fo o

UNIX™is a trademark of Bell Laboratories

48-103 FOO ROO 1-49

Diagnostics Compiler Complaints Diagnostics
NAME :

Diagnostics - Compiler Complaints

FUNCTION:

The first two passes of the compiler produce all user
diagnostics, the initial (preprocessor) pass dealing with #
control lines and lexical analysis, the 'next with everything
else. If a pass produces diagnostics, later passes should not be
run. Any compiler message containing an exclamation mark '!* or
the word "panic" indicates problems with the compiler and they

should be reported. A summary of the diagnostics that can be
produced by erroneous C programs is listed below.

PREPROCESSOR DIAGNOSTICS:

e Bad #define - illegal define

e Bad #define arguments - cannot parse #define line

e Bad #include - illegal include

e Bad #line - illegal #line

e Bad #undef - illegal undef

e Bad #xxx - unrecognizable # control line

e Bad flag - see manual page for pp

® Bad macro arguments - cannot parse macro definitions

e Bad output file - cannot create output file

e Can't finclude xxx - cannot open file specified in #include
e Can't open xxx - cannot open file specified as pp argument
e Illegal #if expression

e Illegal #if syntax

® Illegal ? : in #if

e Illegal character: x - not a recognizable token in C

e Illegal constant xxx - not a recognizable numeric form

e Illegal float constant

e Illegal number in #if

1-50 48-103 FO0O0 ROO

Diagnostics -2 - Diagnostics

Illegal operator in #if

Illegal unary op in #if

Misplaced #xxx - preprocessor control line out of place
Missing) in #if

Missing #endif - unbalanced #if, #ifdef, or #ifndef

Missing */ - unbalanced /* comment

String too long - more than 128 characters

Too many -d arguments - more than 10 (see manual page for pp)
Truncated line - more than 512 characters

Unbalanced x - x is a delimiter: ', ", (, < or {

PASS 1 DIAGNOSTICS:

Arithmetic type required - integer or floating

Array size unknown

Bad (declaration) - arguments inside () unrecognizable
Bad field width - negative or larger than word size
Bad flag - see manual page for pl

Bad output file - cannot create output file

Cannot initialize

Constant required

Declaration too complex - more than 5 modifiers.
External name conflict - when truncated for output
Function required - arguments declared, but no function body
Function size undef ined

Illegal &

Illegal =+

Illegal assignment

Illegal bitfield

48-103 FOO ROO 1-51

Diagnostics
e Illegal
e Illegal
e Illegal
e Illegal
e Illegal
e Illegal
@ Illegal
e Illegal
e Illegal
e Illegal
e Illegal
e Illegal
e Illegal
e Illegal
e Illegal
® Illegal
e Illegal
e Illegal
o Illegal
e Illegal
°

e Integer
)

e Missaing
e Missing
e Missing
[

e

1-52

break

case

cast

compar ison

continue

default

double initializer
field

field initializer
indirection - unary "*" operator
integer initializer
member

operand type
pointer initializer
return type
selection

storage class
structure reference
type moifier

unsigned compare

Incomplete declaration

type required

Lvalue required - see Expressions

Missing member name - identifier must follow .

argument
expression

goto label

No structure definition

Diagnostics

or ->

48-103 FOO ROO

Diagnostics - 4 - Diagnostics
e String initializer too long

e Structure size unknown

e Unexpected EOF

e Union size unknown

e Useless expression - result unused, no side effect

48-103 FOO ROO | | 1-53

assert
abs
atof
crypt
ctype
ecvt
exp
fclose
ferror
floor
fopen
frexp
fseek
getc
getlogin
gets
hypot
malloc
mktemp
perror
printf
putc
puts
gsort
rand
scanf
setbuf
setjmp
sin
sinh
sleep
stdio
string
jtyname
ungetc

48-103 FOO ROO

CHAPTER 2
EDITION VII COMPATIBLE
C RUN-TIME LIBRARY (RTL)

TABLLE OF CONTENTS

Program Verification

Integer Absolute Value

Convert ASCII to Numbers

DES Encryption

Character Classification

Output Conversion

Exponential Functions

Close or Flush a Stream

Stream Status Inquiries

Absolute Value, Floor, Ceiling Functions
Open a Stream

Split into Mantissa and Exponent
Reposition a Stream

Get Character or Word from Stream
Get Login Name

Get a String from a Stream
Euclidean Distance

Main Memory Allocator

Make a Unique File Name

System Error Messages

Formatted Output Conversion

Put Character or Word on a Stream
Put a String on a Stream

Quicker Sort

Random Number Generator

Formatted Input Conversion

Assign Buffering to a Stream
Nonlocal Goto

Trigonometric Functions
Hyperbolic Functions

Suspend Execution for Interval
Standard Buffered 1/0 Package
String Operations

Find Name of a Terminal

Push Character Back into Input Stream

|
HEOONOUMIPWND

NNNNNI}FNNNNN

2-1

assert Program Verification assert
NAME :

assert - Program Verification

SYNOPSIS:

#include (assert.h)>

assert (expression)

DESCRIPTION:

Assert is a macro that indicates expression is expected to be
true at this point in the program. It causes an exit (2) with a
diagnostic comment on the standard output when expression is
false (0). Compiling with the pp option, DNDEBUG effectively
deletes assert from the program.

DIAGNOSTICS:

‘Assertion failed: file f line n.' F is the source file and n
the source line number of the assert statement.

2-2 48-103 FOO0 ROO

abs Integer Absolute Value abs
NAME :

abs - Integer Absolute Value

SYNOPSIS:

abs (i)

DESCRIPTION:

abs returns the absolute value of its integer operand.

SEE ALSO:

floor for fabs
BUGS :

The magnitude of the largest negative integer 1is hardware
dependent.

48-103 F0OO ROO 2-3

atof Convert ASCII to Numbers atof
NAME :
atof, atoi, atol - Convert ASCII to Numbers
SYNOPSIS:
double atof (nptr)

char *nptr;

atoi(nptr)
char *nptr;

long atol(nptr)

char *nptr;
DESCRIPTION:
These functions convert a string pointed to by nptr to floating,
integer and long integer representation, respectively. The first
unrecognized character ends the string.
atof recognizes an optional string of tabs and spaces, then an
optional sign, then a string of digits optionally containing a
decimal point, then an optional 'e' or 'E' followed by an
optionally signed integer.

atoi and atol recognize an optional string of tabs and spaces,
then an optional sign, then a string of digits.

SEE ALSO:

scanf

BUGS:

There are no provisions for overflow.

2-4 48-103 FOO ROO

crypt DES Encryption crypt
NAME :

crypt, setkey, encrypt - DES Encryption
SYNOPSIS:

char *crypt(key, salt)
char *key, *salt;

setkey (key)
char *key;

encrypt (block, edflag)
char *block;

DESCRIPTION:

crypt is the password encryption routine. It is based on the
National Bureau of Standards (NBS) Data Encryption Standard, with
variations intended to frustrate use of hardware implementations
of the DES for key search. '

The first argument to crypt is a wuser's typed password. The
second is a 2-character string chosen from the set [a-zA-Z20-9./].
The salt string is used to perturb the DES algorithm in one of
4,096 different ways, after which the password is used as the key
to encrypt repeatedly a constant string. The returned value
points to the encrypted password, in the same alphabet as the
salt. The first two charactrs are the salt itself.

The other entries provide access to the actual DES algorithm.
The argument of setkey 1is a character array of 1length 64
containing only the characters with numerical value 0 and 1. If
this string is divided into groups of 8, the low-order bit in
each group is ignored, leading to a 56-bit key which is set into
the machine. '

The argument to the encrypt entry is likewise a character array
of 1length 64 containing 0's and 1l's. The argumnet array is
modified in place to a similar array representing the bits of the
argument after having been sujected to the DES algorithm using
the key set by setkey. If edflag is 0, the argument is
encrypted; if nonzero, it is decrypted.

BUGS:

The return value points to static data whose content is
overwritten by each call.

48-103 FOO ROO 2-5

ctype Character Classification ctype
NAME :

isalpha, isupper, islower, isdigit, isalnum, isspace, ispunct,
isprint, iscntrl, isascii - Character Classification

SYNOPSIS:

#include <ctype.h>

isalpha(c)

DESCRIPTION:

These macros classify ASCII-coded integer values by table lookup.
Each is a predicate returning nonzero for true and =zero for
false. isacii is defined on all integer values; the rest are
def ined only where isascii is true and on the single non-ASCII
value end of file (EOF) (see stdio(2)).

isalpha c is a letter
.isupper ¢ is an upper-case letter
islower c is a lower-case letter
isdigit c is a digit
isalnum ¢ is an alphanumeric character
isspace c is a space, tab, carriage return, newline or

form feed

ispunct ¢ is a punctuation character (neither control
nor alphanumeric)

isprint ¢ is a printing character, code 040(8) (space)
through 0176 (tilde)

iscntrl c is a delete character (0177) or ordinary
control character (less than 040).

isascii c is an ASCII character, code less than 0200.

2-6 48-103 FOO ROO

ecvt Output Conversion ecvt
NAME :
ecvt,fcvt,gcvt - Output Conversion

SYNOPSIS:

char*ecvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *fcvt(value, ndigit, decpt, sign)
double value;
int ndigit, *decpt, *sign;

char *gcvt(value, ndigit, buf)
double value;
char *buf;

DESCRIPTION:

ecvt converts the value to a NUL-terminated string of ndigit
ASCII digits and returns a pointer there. The position of the
decimal point relative to the beginning of the string is stored
indirectly through decpt (negative means to the left of the
returned digits). If the sign of the result is negative, the
word pointed to by sign is nonzero, otherwise it is zero. The
low-order digit is rounded.

fcvt is identical to evct, except fcvt has Dbeen rounded for
FORTRAN F format output of the number of digits specified by
ndigits.

gcvt converts the value to a NUL-terminated ASCII string in buf
and returns a pointer to buf. It attempts to produce ndigit
significant digits in FORTRAN F format, if possible, otherwise E
format, ready for printing. Trailing zeros may be suppressed.
SEE ALSO:

printf
BUGS:

The return values point to static data whose content is
overwritten by each call.

48-103 FOO ROO | 2-7

exp Exponential Functions exp

NAME :

exp,log,logl0,pow,sqrt - exponential,logarithm,power,square root
- Exponential Functions

SYNOPSIS:

#include<(math.h>

double exp(x)
double x;

double log(x)
double x;

double loglO(x)
double x;

double pow(x,Yy)
double x,y:

double sqgrt(x)
double x;
DESCRIPTION:
exp returns the exponential function of x.

log returns the natural logarithm of x; log 10 returns the base
10 logarithm.

pow returns x¥.

sqrt returns the square root of x.

SEE ALSO:

hypot, sinh,

DIAGNOSTICS:
exp and pow return a large value when the correct value would

overflow; pow returns 0 and sets errno to EDOM when the second

argument is negative and nonintegral and when both arguments are
0.

log returns 0 when x is zero or negative.

sqrt returns O when x is negative; errno is set to EDOM.

2-8 48-103 FOO ROO

fclose Close or Flush a Stream fclose

NAME :

fclose, fflush - Close or Flush a Stream
SYNOPSIS:

#included(stdio.h>

fclose(stream)
FILE *stream;

fflush(stream)

FILE *stream;
DESCRIPTION:
fclose causes any buffers for the named stream to be emptied, and
the file to be closed. Buffers allocated by the standard
input/output (I/0) system are freed.

fclose is performed automatically upon calling exit(5).

fflush causes any buffered data for the named output stream to be
written to that file. The stream remains open.

SEE ALSO:

close(4), fopen, setbuf

DIAGNOSTICS:

These routines return EOF if stream is not associated with an
output file or if buffered data cannot be transferred to that
file.

48-103 F0OO ROO 2-9

ferror Stream Status Inguiries terror
NAME :

feof, ferror, clearerr, fileno - Stream Status Inquiries
SYNOPSIS:

#include(stdio.h>

feof (stream)
FILE *stream;

ferror(stream)
FILE *stream

clearerr (stream)
FILE *stream

fileno(stream)
FILE *stream;
DESCRIPTION:

feof returns nonzero when EOF is read on the named input stream,
otherwise zero.

ferror returns nonzero when an error has occurred reading or
writing the named stream, otherwise zero. Unless cleared by
clearerr, the error indication lasts until the stream is closed.
clrerr resets the error indication on the named stream.

fileno returns the integer file descriptor (fd) associated with
the stream, see open(4).

These functions are implemented as macros; they cannot be
redeclared. '

SEE ALSO:

fopen, open(4)

2-10 48-103 F00 ROO

floor Absolute Value, Floor, Ceiling Functions floor
NAME :

fabs, floor, ceil - Absolute Value, Floor, Ceiling Functions
SYNOPSIS:

#include<{math.h>

double floor(x)
double x;

double ceil(x)
double x;

double fabs(x)
double(x);
DESCRIPTION:
fabs returns the absolute value x.
floor returns the largest integer not greater than x.

ceil returns the smallest integer not less than x.

SEE ALSO:

abs

48-103 F0O0 ROO 2-11

fopen Open a Stream fopen
NAME :

fopen, freopen, fdopen - Open a Stream
SYNOPSIS:

#include(stdio.h>

FILE *fopen(filename,type)
char *filename, *type;

FILE *freopen(filename,type,stream)

char *filename, *type;

FILE *stream;

FILE *fdopen(fildes,type)

char *type;
DESCRIPTION:
fopen opens the file named by filename and associates a stream
with it. fopen returns a pointer to be used to identify the
stream in subsequent operations.

Type is a character string having one of the following values:

e "r" open for reading ASCII files
e "w" create for writing ASCII files

e "a" append: open for writing at end of file, or create for
writing ASCII files

e "rb" open for reading binary files
e "wb" create for writing binary files
e "ab" append: open for writing at end, or create for writing

binary files

freopen substitutes the named file in place of the open stream.
It returns the original value of stream. The original stream is
closed.

freopen is typically used to attach the preopened constant names,
stdin, stdout, stderr, to specified files.

fdopen associates a stream with an fd obtained from open or

creat(4). The type of the stream must agree with the mode of the
open file.

2-12 48-103 FOO ROO

fopen -2 -
SEE ALSO:

open(4), fclose, Appendix A

DIAGNOSTICS:

fopen and freopen return the pointer NULL if filename
accessed.

BUGS:
fdopen is not portable to 0S/32.

48-103 F0O ROO

fopen

cannot be

frexp Split into Mantissa and Exponent frexp

NAME :

frexp, ldexp, modf - Split into Mantissa and Exponent

SYNOPSIS:

double frexp(value,eptr)
double value;
int *eptr;

double ldexp(value,exp)
double value;

double modf (value, iptr)

double value, *iptr;
DESCRIPTION:
frexp returns the mantissa of a double value as a double
quantity, x, of magnitude less than 1 and stores an integer n
such that value = x*2**n indirectly through eptr.

ldexp returns the quantity value *2**exp.

modf returns the positive fractional part of value and stores the
integer part indirectly through iptr.

2-14 48-103 F0O ROO

fseek Reposition a Stream fseek
NAME :

fseek, ftell, rewind - Reposition a Stream
SYNOPSIS:

#include (stdio.h>
fseek(stream, offset, ptrname)
FILE *stream;

long offset;

long ftell(stream)
FILE *stream;

rewind(stream)

DESCRIPTION:

fseek sets the position of the next input or output on the
stream. The new position is at the signed distance offset bytes
from the beginning, the current position, or the end of the file,
according as ptrname has the value 0, 1 or 2.

fseek undoes any effects of ungetc(2).

ftell returns the current value of the offset relative to the
beginning of the file associated with the named stream. It is
measured in bytes on UNIX; on some other systems it is the only
foolproof way to obtain an offset for fseek.

rewind (stream) is equivalent to fseek (stream, OL, 0).

SEE ALSO:

lseek(4), fopen

DIAGNOSTICS:

fseek returns - 1 for improper seeks.

48-103 F00 ROO 2-15

getc Get Character or Word from Stream getc

NAME :

getc, getchar, fgetc - Get Character or Word from Stream

SYNOPSIS:

#include(stdio.h>

int getc(stream)
FILE *stream;

int getchar()

int fgetc(stream)
FILE *stream;

DESCRIPTION:

getc returns the next character from the named input stream.
getchar() is identical to getc(stdin).

fgetc behaves like getc, but is a genuine function, not a macro;
it may be used to save object text.

SEE ALSO:

fopen, putc, gets, scanf, fread, ungetc

DIAGNOSTICS:

These functions return the integer constant EOF at end of file or
upon read error.

A stop with the message, "Reading bad file", means an attempt has
been made to read from a stream that has not been opened for
reading by fopen.

BUGS:

The end of file return from getchar is incompatible with that in
earlier editions of UNIX. A

Because it is implemented as a macro, getc treats a stream
argument with gide effects incorrectly. In particular,
"getc(*f++);" doesn't work sensibly.

2-16 48-103 F0OO0 ROO

getlogin Get Login Name getlogin
NAME :

getlogin - Get Login Name
SYNOPSIS:
char *getlogin();

DESCRIPTION:

getlogin returns a pointer to the login name for Multi-Terminal
Monitor (MTM) users.

If getlogin is called within a process that is not attached to
MTM, it returns NULL.

DIAGNOSTICS:

Returns NULL (0) if name not found.
BUGS:

The return values point to static data whose content is
overwritten by each call.

48-103 FOO ROO 2-17

gets Get a String from a Stream gets
NAME :

gets, fgets - Get a String from a Stream

SYNOPSIS:

#include{(stdio.h>

char *gets(s)
char *s;

char *fgets(s,n,stream)

char *s;

FILE *stream;
DESCRIPTION:
gets reads a string into s from the standard input stream stdin.
The string is terminated by a newline character, which is
replaced in s by a null character. gets returns its argument.
fgets reads n-1 characters, or up to a_ newline character,
whichever comes first, from the stream into the string s. The
last character read into s is followed by a null character.
fgets returns its first argument.

SEE ALSO:

puts, getc, scanf, fread, ferror

DIAGNOSTICS:

gets and fgets return the constant pointer NULL upon end of file
or error.

BUGS :

gets deletes a newline, fgets keeps it.

2-18 48-103 FOO0 ROO

hypot Euclidean Distance
NAME :

hypot, cabs - Euclidean Distance
SYNOPSIS:
#include{math.h>

double hypot(x,y)
double x,y:

double cabs(z)
struct {double x,y;}z;

DESCRIPTION:

hypot and cabs return the following:
sqrt(x*x + y*y),
taking precautions against unwarranted overflows.

SEE ALSO:

exp for sqgrt

48-103 FOO ROO

hypot

malloc Main Memory Allocator malloc
NAME :
malloc, free, calloc - Main Memory Allocator
SYNOPSIS:
char *malloc(size)

unsigned size;

free(ptr)
char *ptr;

char *calloc(nelem,elsize)
unsigned nelem,elsize;

DESCRIPTION:
malloc and free provide a simple, general-purpose memory
allocation package. malloc returns a pointer to a block of at

least size bytes beginning on a word boundary.

The argument to free is a pointer to a block previously allocated
by malloc; this space is made available for further allocation,
but its contents are left undisturbed. Disorder will result if
the space assigned by malloc is overrun or if some random number
is handed to free.

malloc allocates the first, large enough contiguous reach of free
space found in a circular search from the last block allocated or
freed, coalescing adjacent free blocks as it searches. It calls
sbrk (see break(5)) to get more memory from the system when there
is no suitable space already free.

calloc allocates space for an array of nelem elements of size
elsize. The space is initialized to zeros.

Each of the allocation routines returns a pointer to space
suitably aligned (after possible pointer coercion) for storage of
any type of object.

DIAGNOSTICS:

malloc and calloc return a null pointer (0) if there 1is no

available memory or if the area has been detectably corrupted by
storing outside the bounds of a block.

BUGS:

When realloc returns 0, the block pointed to by ptr may be
destroyed.

2-20 48-103 FOO0 ROO

mktemp Make a Unique File Name mktemp
NAME :

mktemp - Make a Unique File Name
SYNOPSIS:

char *mktemp(template)
char *template;

DESCRIPTION:

mktemp replaces template by a unique file name, and returns the
address of the template. The template should look like a file

name with size trailing X's, which will be replaced with a unique
letter.

48-103 F00 ROO 2-21

perror System Error Messages perror

NAME :

perror, sys_errlist, sys_nerr - System Error Messages
SYNOPSIS:

perror (s)
char *s;

int sys_nerr;
char *sys_errlist[];

DESCRIPTION:

perror produces a short error message on the standard error file
describing the last error encountered during a call to the system
from a C program. First, the argument string s is printed, then
a colon, then the message and a newline. Most usefully, the
argument string 1is the name of the program which incurred the
error. The error number is taken from the external variable
errno, which 1is set when errors occur but not cleared when
nonerroneous calls are made.

To simplify variant formatting of messages, the vector of message
strings sys_errlist is provided; errno can be used as an index in
this table to get the message string without the newline.
sys_nerr is the number of messages provided for in the table; it
should be checked because new error codes may be added to the
system before they are added to the table.

2-22 48-103 FOO ROO

printf Formatted Output Conversion printf
NAME :

printf, fprintf, sprintf - Formatted Output Conversion
SYNOPSIS:

#include(stdio.h>

printf(format [,arg]l...)
char *format;

fprintf (stream,format [,arg]...)
FILE *stream;
char *format;

sprintf(s,format [,argl...)
char *s,format;

DESCRIPTION:

printf places output on the standard output stream, stdout.
fprintf places output on the named output stream. sprintf places
output in the string s, followed by the character '/0'.

Each of these functions converts, formats and prints its
arguments after the first under control of the first argument.
The first argument is a character string which contains two types
of objects: plain characters, which are simply copies to the
output stream and conversion specifications, each of which causes
conversion and printing of the next successive arg printf. '

Each conversion specification is introduced by the character §%.
Following the %, there may be:

® an optional minus sign '-' which specifies left adjustment of
the converted value in the indicate field;

e an optional digit string specifying a field width; if the
converted value has fewer characters than the field width, it
will be padded with blanks on the left (or right, if the left
adjustment indicator has been given) to make up the field
width; if the field width begins with a 2zero, =zero-padding
will be done instead of blank-padding;

e an optional period '.' which serves to separate the field
width from the next digit string;

e an optional digit string specifying, a precision which
specifies the number of digits to appear after the decimal
point, for e- and f-conversion, or the maximum number of
characters to be printed from a string;

48-103 F0OO ROO 2-23

printf -2 - printf

e the character 1 specifying that a following d4, o, x or u
corresponds to a long integer arg. (A capitalized conversion
code accomplishes the same thing.)

e a character which indicates the type of conversion to be
applied.

A field width or precision may be '*' instead of a digit string.
In this case an integer arg supplies the field width or
precision.

The conversion characters and their meanings are:

dox The integer arg is converted to decimal, octal
or hexadecimal notation, respectively.

f The float or double arg 1is converted to
decimal notation in the style '[-]ddd.ddd’,
where the number of d's after the decimal
point is equal to the precision specification
for the argument. If the precision is
missing, 8ix digits are given; if the
precision is explicitly 0, no digits and no
decimal point are printed.

e The float or double arg is converted in the
style '[-]d.ddde+dd' where there is one digit
before the decimal point and the number after
is equal to the precision specification for
the argument; when the precision is missing,
six digits are produced.

g The float or double arg is printed in style d,
. in style f or in style e, whichever gives full
precision in minimum space.

c The character arg is printed. Null characters
are ignored.

8 : arg is taken to be a string (character
pointer) and characters from the string are
printed until a null character or until the
number of characters indicated by the
precision specification is reached; however,
if the precision 1is 0 or missing, all
characters up to a null are printed.

u The unsigned integer arg is converted to
decimal and printed (the result will be in the
range 0 to 4,294,967,295).

% Print a '%', no argument is converted.

2-24 48-103 FOO0 ROO

printf ' -3 - , printf

Never does a nonexistent or small field width cause truncation of
a field; padding takes place only if the specified field width
exceeds the actual width. Characters generated by printf are
printed by putc(2).

EXAMPLES :

To print a date and time in the form 'Sunday, July 3, 10:02°',

where weekday and month are pointers to NUL-terminated strings:
printf ("%s,%s %d,%02:%02d" ,weekday,month,day,hour,min);

To print to 5 decimals:

printf("pi = %.5f",4*atan(1.0));

SEE ALSO:

putc, scanf, ecvt

BUGS :

Very wide fields (>128 characters) fail.

48-103 FO0O0 ROO 2-25

putc Put Character or Word on a Stream putc
NAME :

putc, putchar, fputc, putw - Put Character or Word on a Stream
SYNOPSIS:

#include{stdio.h>
int putc(c, stream)
char c;

FILE *stream;
putchar (c)

fputc(c, stream)
FILE *stream;

putw(w, stream)
FILE *stream;
DESCRIPTION:

putc appends the character c to the named output stream. It
returns the character written.

putbhar(c) is defined as putc(c, stdout).

fputc behaves like putc, but is a genuine function rather than a

macro. It may be used to save an object text.
putw appends word (i.e. int) w to the output stream. It returns
the word written. putw neither assumes nor causes special

alignment in the file.

The standard stream stdout is normally buffered only if the
output. does not refer to a terminal; this default may be changed
by setbuf(2). The standard stream stderr 1is, by default,
unbuffered unconditionally, but use of freopen (see fopen(2))
will cause it to become buffered; setbuf, again, will set the
state to whatever 1is desired. When an output stream is
unbuffered information appears on the destination file or
terminal as soon as written; when it is buffered many characters
are saved up and written as a block. fflush (see fclose(2)) may
be used to force the block out early.

SEE ALSO:

fopen, fclose, getc, puts, printf, fread

2-26 48-103 F00 ROO

putc - 2 - _ putc
DIAGNOSTICS:

These functions return the constant EOF upon error. Since this
is a good integer, ferror(2) should be used to detect putw
errors.

BUGS :

Because it is implemented as a macro, putc treats a stream

argument with side effects improperly. In particular,
'putc(c,*f++);f doesn't work sensibly.

48-103 FOO ROO 2-27

puts Put a String on a Stream
NAME :

puts, fputs - Put a String on a Stream

SYNOPSIS:

#include(stdio.h>

puts(s)
char *s;

fputs(s, stream)

char *s;

FILE *stream;
DESCRIPTION:

puts copies the NUL-terminated string s to the standard
stream stdout and appends a newline character.

fputs copies the NUL-terminated string s to the named
stream.

Neither routine copies the terminal null character.

SEE ALSO:

fopen, gets, putc, printf, ferror

BUGS:

puts appends a newline, fputs does not.

puts

output

output

2-28 48-103 FO0O0 ROO

gsort Quicker Sort _ gsort
NAME :

gsort - Quicker Sort
SYNOPSIS:

gsort (base,nel,width, compar)
char *base;
int (*compar) ():;

DESCRIPTION:

gsort is an implementation of the quicker sort algorithm. The
first argument is a pointer to the base of the data; the second
is the number of elements; the third is the width of an element
in bytes; the last is the name of the comparision routine to be
called with two arguments which are pointers to the elements
being compared. The routine must return an integer less than,
equal to or greater than 0 according as the first arguement is to
be considered less than, equal to or greater than the second.

48-103 F0O ROO ‘ 2-29

rand Random Number Generator rand
NAME :

rand, strand - Random Number Generator
SYNOPSIS:

strand(seed)
int seed;

rand()

DESCRIPTION:

rand uses a multiplicative congruential random number generator
with period 23 to return successive pseudo random numbers in the
range from 0 to 2¥ -1.

The generator is reinitialized by calling srand with 1 as

argument. It can be set to a random starting point by calling
srand with whatever you like as argument.

2-30 48-103 F0OO ROO

scanf Formatted Input Cbnversion scanf
NAME :

scanf, fscanf, sscanf - Formatted Input Conversion
SYNOPSIS:

#include(stdio.h>

scanf (format [,pointer J...)
char *s,*format;

fscanf (stream,format [, pointer]...)
FILE *stream;
char *format;

sgcanf (s, format [, pointer]...)
char *s,*format -

DESCRIPTION:

scanf reads from the standard input stream stdin. fscanf reads
from the named input stream. sscanf reads from the character
string s. Each function reads characters, interprets them
according to a format and stores the results in its arguments.
Each expects, as arguments, a control string format, described
below, and a set of pointer arguments indicating where the
converted input should be stored.

The control string usually ' contains conversion specifications,
which are used to direct interpretation of input sequences. The
control string may contain:

1. Blanks, tabs or newlines, which match optional white space in
the input.

2. An ordinary character (not %) which must match the next
character of the input stream.

3. Conversion specifications, consisting of the character %, an
optional assignment suppressing character *, an optional
numer ical maximum field width and a conversion character.

A conversion specification directs the conversion of the next
input field; the result is placed in the variable pointed to by
the corresponding argument, unless assignment suppression was
indicated by *. An input field is defined as a string of
nonspace characters; it extends to the next inappropriate
character or until the field width, if specified, is exhausted.

48-103 F0O ROO 2-31

scanf -2 - scanf

The conversion character indicates the interpretation of the
input field; the corresponding pointer argument must usually be
of a restricted type. The following conversion characters are
legal:

% ' indicates that a single '%' is expected in the
input at this point; no assignment is done.

d indicates that a decimal integer is expected;
the corresponding argument should be an
integer pointer.

o indicates that an octal integer is expected;
the corresponding argument should be a integer
pointer.

X indicates that a hexadecimal integer is

expected; the corresponding argument should be
an integer pointer.

s indicates that a character string is expected;
the corresponding argument should be a
character pointer pointing to an array of
characters large enough to accept the string
and a terminating '/0', which will be added.
The input field is terminated by a space
character or a newline.

c indicates that a character 1is expected; the
corresponding argument should be a character
pointer. The normal skip over space
characters is suppressed in this case; to read
the next nonspace character, try '$ls'. If a
field width is given, the corresponding
argument should refer to a character array,
and the indicated number of characters is

read.
e a floating point number is expected; the next
f field is converted accordingly and stored

through the corresponding argument, which
should be a pointer to a float. The input
format for floating point numbers is an
optionally signed string of digits possibly
containing a decimal point, followed by an
optional exponent field consisting of an E or
e followed by an optionally signed integer.

2-32 48-103 FOO ROO

scanf -3 - ‘ scanf

a indicates a string not to be delimited by
space characters. The left brackets define a
set of characters and a right bracket; the
characters between the brackets define a set
of characters making up the string. If the
first character is not circumflex (A), the
input field is all characters until the first
character not in the set between the brackets;
if the first character after the left bracket
is A,the input field is all characters until
the first character which is in the remaining
set of characters between the brackets. The
corresponding argument must point to a
character array.

The conversion characters d, o and x may be capitalized or
preceeded by 1 to indicate that a pointer to long rather than to

int is in the argument 1list. Similarly, the conversion
characters e or £ may be capitalized or preceded by 1 to indicate
a pointer to double rather than to float. The conversion

characters d, o and x may be preceeded by h to indicate a pointer
to short rather than to int.

The scanf functions return the number of successfully matched and
assigned input items. This can be used to decide how many input
items were found. The constant EOF is returned upon end of
input; note that this is different from 0, which means that no
conversion was done; if conversion was intended, it was
frustrated by an inappropriate character in the input.

For example, the call

int i; float x; char name[50];
scanf ("%d%£%s", &i, &x, name);

with the input line

25 54.32E-1 thompson

will assign to i the value 25, x the value of 5.432, and name
will contain 'thompson/0'. Or,

int i; float x; char name[50};
gscanf ("24d%£f%*d%[124567890]", &i, &x, name);

with input

56789 0123 56a72

48-103 FOO ROO 2-33

scanf - 4 - scanf

will assign 56 to i, 789.0 to x, skip '0123', and place the
string '56/0' in name. The next call to getchar will return 'a'.

SEE ALSO:

atof, getc, printf

DIAGNOSTICS:

The scanf functions return EOF on end of input, and a short count
for missing or illegal data items.

BUGS:

The success of literal matches and suppressed assignments is not
directly determinable.

2-34 48-103 FOO ROO

setbuf Assign Buffering to a Stream setbuf
NAME :

setbuf - Assign Buffering to a Stream

SYNOPSIS:

$#include (stdio.h)>

getbuf (stream, buf)
FILE *stream;
char *buf;

DESCRIPTION:

‘setbuf is used after a stream has been opened but before it is
read or written. It causes the character array buf to be used
instead of an automatically allocated buffer. If buf is the

constant pointer NULL, 1/0 will be completely unbuffered.

A manifest constant BUFSIZ tells how large an array is needed:

char buf [BUFSIZ];

A buffer is normally obtained from malloc(2) upon the first getc
or putc(2) on the file, except that output streams directed to
terminals, and the standard error stream stderr are normally not
buffered.

SEE ALSO:

fopen, getc, putc, malloc

48-103 F00 ROO 2-35

setjmp Nonlocal Goto setjmp
NAME :

setjmp, longjmp - Nonlocal Goto
SYNOPSIS:

#include (setjmp.h>

setjmp(env)
jmp_buf env;

longjmp(env, val)
jmp_buf env;

DESCRIPTION:

These routines are useful for dealing with errors and interrupts
encountered in a low-level subroutine of a program.

setjmp saves its stack environment in env for later wuse by
longjmp. It returns value O.

longjmp restores the environment saved by the last call of
setjmp. It then returns in such a way that execution continues
as if the call of setjmp had just returned the value val to the
function that invoked setjmp, which must not itself have returned
in the interim. All accessible data have values as of the time
longjmp was called.

2-36 48-103 F0OO ROO

sin Trigonometric Functions sin

NAME :

sin, cos, tan, asin, acos, atan, atan2 - Trigonometric Functions
SYNOPSIS:

$include <{(math.h>

double sin(x)
double x;

double cos(x)
double x;

double asin(x)
double x;

double acos(x)
double x;

double atan(x)
double x;

double atan2(x,y)

double x, Yy:
DESCRIPTION:
sin, cos and tan return trigonometric functions of radian
arguments. The magnitude of the argument should be checked by
the caller to make sure the result is meaningful.
asin returns the arc sin in the range - /2 to w/2.
acos returns the arc cosine in the range 0 tomw .

atan returns the arc tangent of x in the range - /2 to w/2.

atan2 returns the arc tangent of x/y in the range - 7 to7.

DIAGNOSTICS:

Arguments of magnitude greater than 1 cause asin and acos to
return value O. The value of tan at its singular points is a
large number.

BUGS:

The value of tan for arguments greater than about 2**31 is
indeterminate.

48-103 F00 ROO 2-37

sinh Hyperbolic Functions sinn
NAME :

sinh, cosh, tanh - Hyperbolic Functions
SYNOPSIS:

#include<math.h>

double sinh(x)
double x;

double cosh(x)
double x;

double tanh(x)
double x;
DESCRIPTION:

These functions compute the designated hyperbolic functions for
real arguments.

DIAGNOSTICS:

sinh and cosh return a large value of appropriate sign when the
correct value would overflow. .

2-38 48-103 FO0O ROO

sleep Suspend Execution for Interval sleep
NAME :

sleep - Suspend Execution for Interval
SYNOPSIS:

sleep(seconds)
unsigned seconds;

DESCRIPTION:

The current process is suspended from execution for the number of
seconds specified by the arguent. The actual suspension time may
be up to 1 second less than that requested, because scheduled
wakeups occur at fixed 1 second intervals, and an arbitrary
amount longer because of other activity in the system.

The routine is implemented by setting an alarm clock signal and
pausing until it occurs. The previous state of this signal is
saved and restored. If the sleep time exceeds the time to the
alarm signal, the process sleeps only until the signal would have
occurred and the signal is sent 1 second later.

48-103 F0O0 ROO 2-39

stdio Standard Buffer I1/0 Package stdio
NAME :

stdio - Standard Buffered I/0 Package

SYNOPSIS:

$include{stdio.h>

FILE *stdin;
FILE *stdout;
FILE *stderr;

DESCRIPTION:

The functions described in Sections 2S constitute an efficient
user-level buffering scheme. The inline macros getc and putc(3)
handle characters quickly. The higher 1level routines gets,
fgets, scanf, fscanf, fread, puts, fputs, printf, fprintf and
fwrite all use getc and putc; they can be freely intermixed.

A file with associated buffering is called a stream, and is
declared to be a pointer to a defined type FILE. fopen(2)
creates certain descriptive data for a stream and returns a
pointer to designate the stream in all further transactions.
There are three normally open streams with constant pointers
declared in the include file and associated with the standard
open files:

stdin standard input file
stdout standard output file
stderr standard error file

A constant 'pointer' NULL(0O) designates no stream at all.

An integer constant EOF (-1) is returned upon end of file or
error by integer functions that deal with streams.

Any routine that uses the standard I/0 package must include the
header file <(stdio.h> of pertinent macro definitions. In
general, the functions and constants mentioned in this chapter
are declared in the include file and need no further declaration.
The constants, and the following 'functions' are implemented as
macros; redeclaration of these names is perilous: .getc, getchar,
putc, putchar, feof, ferror and fileno.

SEE ALSO:

open(4), close (4), read (4), write(4)

2-40 48-103 F0O0 ROO

stdio -2 - v stdio

DIAGONOSTICS:

The value EOF is returned uniformly to indicate that a FILE
pointer has not been initialized with fopen, input(output) has
been attempted on an output(input) stream, or a FILE pointer
designates corrupt or otherwise unintelligible FILE data.

48-103 F0O0 ROO 2-41

string String Operations string
NAME :
strcat, strncat, strcmp, strncmp, strcpy, strncpy, strlen, index,
rindex - String Operations
SYNOPSIS:

char *strcat(sl,s2)

char *sl,*s2;

char *strncat(sl,s2,n)
char *sl,*s2;

stremp(sl,s2)
char *sl,*s2;

strncmp(sl,s2,n)
char *sl,*s2;

char *strcpy(sl,s2)
char *sl,*s2;

char *strncpy(sl,s2,n)
char *sl,*s2;

~strlen(s)
char *s;

char *index(s,c)
char *s,c;

char *rindex(s,c)
char *s;

DESCRIPTION:

These functions operate on NUL-terminated strings. They do not
check for overflow of any receiving string.

strcat appends a copy of string s2 to the end of string sl.
strncat copies, at most, n characters. Both return a pointer to
the NUL-terminated result.

strcmp compares its arguments and returns an integer greater
than, equal to or 1less than s2. strncmp makes the same
compar ison but looks at most n characters.

strcpy copies string s2 to sl, stopping after the null character
has been moved. strncpy copies exactly n characters, truncating
or null-padding s2; the target may not be NUL-terminated if the
length of s2 is n or more. Both return sl.

strlen returns the number of nonnull characters in s.

2-42 48-103 FOO ROO

string - 2 - ‘ string
Index (rindex) returns a pointer to the first (last) occurrence

of character ¢ in string s, or zero if c does not occur in the
string.

48-103 FOO ROO 2-43

ttyname Find Name of a Terminal ttyname
NAME :

ttyname, isatty - Find Name of a Terminal
SYNOPSIS:

char *ttyname(fildes)
isatty(fildes)

ttyslot()

DESCRIPTION:

ttyname returns a pointer to the NUL-terminated name of the
terminal device associated with file descriptor (fd) fildes.

isatty returns 1 if fildes is associated with a terminal device,
0 otherwise.

DIAGNOSTICS:

ttyname returns a null pointer (0) if fildes does not describe a
terminal device.

BUGS :

The return value points to static data whose content is
overwritten by each call.

2-44 48-103 F0O0 ROO

ungetc Push Character Back into Input Stream ungetc
NAME :

ungetc - Push Character Back into Input Stream
SYNOPSIS:

#include(stdio.h>

ungetc(c,stream)

FILE *gtream;
DESCRIPTION:
ungetc pushes the character ¢ back on an input stream. That
character will be returned by the next getc call on that stream.
ungetc returns c. '
One-character pushback is guaranteed provided something has been
read from the stream and the stream is actually buffered.

Attempts to push EOF are rejected.

fseek(2) erases all memory of pushed back characters.

SEE ALSO:

getc, setbuf, fseek

DIAGNOSTICS:

ungetc returns EOF if it cannot push a character back.

48-103 F00 ROO 2-45

CHAPTER 3

IDRIS COMPATIBLE C RUN-TIME LIBRARY (RTL)

Conventions
std.h

Cio

FIO

abs

alloc
amatch

arctan
bldks
btod
btoi
btol
btos
buybuf
cmpbuf
cmpstr
cos
cpybuf
cpystr
decode

decrypt
doesc
dtento
dtoe

dtof
encode

encrypt
enter
errfmt
error
exp
fclose
fcreate

fill
finit

48-103 F00 ROO

TABLE OF CONTENTS

Using C with the Standard Libraries
Standard Header File

C I/0 Subroutines

The File I/0 Structure

Find Absolute Value :

Allocate Space on the Heap

Look for Anchored Match of Regular
Expression

Arctangent

Build Key Schedule from Key

Convert Buffer to Double

convert Buffer to Integer

Convert Buffer to Long

Convert Buffer to Short Integer
Allocate a Cell and Copy in Text Buffer
Compare Two Buffers for Equality
Compare Two Strings for Equality
Cosine in Radians

Copy One Buffer to Another

Copy Multiple Strings

Convert Arguments to Text Under Format
Control

Decode Encrypted Block of Text

Process Character Escape Sequences
Multiply Double by a Power of Ten
Convert Double to Buffer in Exponential
Format

Convert Double to Buffer in Fixed Point
Format

Convert Text to Arguments Under Format
Control

Encode Block of Text

Enter a Control Region

Format Output to Error File

Print Error Message and Exit
Exponential

Close a File Controlled by FIO Buffer
Create a File and Initialize a Control
Buffer

Propagate Fill Character Throughout Buffer
Initialize an FIO Control Buffer

fopen

fread
free
frelst

getbfiles

getc
getch
getf
getfiles
getflags
getfmt
getl
getlin
inbuf

instr

isalpha
isdigit
islower
isupper
iswhite
itob
itols

leave
lenstr
1n
lower

1stoi

1stol
ltob
ltols
mapchar

match
max
min
mkord
nalloc
notbuf

notstr
ordbuf
pathnm
pattern
prefix
putc

putch
putf

Open a File and Initialize a Control
Buffer

Read Until Full Count

Free Space on the Heap

Free a List of Allocated Cells
Collect Files from Command Line
Get a Character from Input Buffer
Get a Character from Input Buffer stdin
Read Formatted Input

Collect Text Files from Command Line
Collect Flags from Command Line
Format Input from stdin

Get a Text Line into the Input Buffer
Get a Text Line from stdin

Find First Occurrence in Buffer of
Character in Set

Find First Occurrence in String of
Character in Set

Test for Alphabetic Character

Test for Digit

Test for Lower-Case Character

Test for Upper-Case Character

Test for Whitespace Character
Convert Integer to Text in Buffer
Convert Integer to Leading Low-Byte
String

Leave a Control Region

Find Length of a String

Natural Logarithm

Convert Characters in Buffer to
Lower—-Case

Convert Leading Low-Byte String

to Integer

Convert Filesystem Date to Long
Convert Long to Text in Buffer
Convert Long to Filesystem Date
Map Single Character to Printable
Representation

Match a Regular Expression

Test for Maximum

Test for Minimum

Make an Ordering Function

Allocate Space on the Heap

Find First Occurrence in Buffer of
Character Not In Set

Find First Occurrence in String of
Character Not In Set

Compare Two NUL-Padded Buffers for.
Lexical Order

Complete a Pathname

Build a Regular Expression Pattern
Test if One String is a Prefix of
the Other

Put a Character to Output Buffer
Put a Character to stdout Buffer
Output Arguments Formatted

3-46

3-94

3-95
3-96
3-97

3-100
3-101
3-102
3-104

48-103 F0OO0 ROO

putfmt
putl
putlin
putstr
remark
scnbuf
scnstr
sin
sort
sqrt
squeeze
stdin
stdout
stob
subbuf
substr
tolower

toupper

usage

48-103 F0O ROO

Format Arguments to stdout

Put a Text Line from Buffer

Put a Text Line to stdout

Copy Multiple Strings to File
Print Nonfatal Error Message

Scan Buffer for Character

Scan String for Character

Sine in Radians

Sort Items in Memory

Real Square Root

Delete Specified Character from Buffer
The Standard Input Control Buffer
The Standard Output Control Buffer
Convert Short to Text in Buffer
Find Occurrence of Substring in Buffer
Find Occurrence of Substring
Convert Character to Lower-Case if
Necessary

Convert Character to Upper-Case if
Necessary

Output Standard Usage Information

3-108
3-109
3-110
3-111
3-112
3~-113
3-114
3-115
3-116
3-118
3-119
3-120
3-121
3-122
3-123
3-124

3-125

3-126
3-127

Conventions Using C With the Standard Libraries Conventions
NAME :

Conventions - Using C With the Standard Libraries

FUNCTION:

The current section, and the two that follow, document C callable
functions provided on all systems supported by Whitesmiths, Ltd.
All library functions follow a set of uniform coding conventions,
which form an important part of the Whitesmiths C environment.
These conventions should be mastered, the better to understand
the descriptions following, to interface properly to the library
functions, and, more generally, to write C in a portable manner.

Most standard conventions are supported at compile-time by the
inclusion of a standard header file, std.h, which is separately
documented in this section. The remainder are mainly described
in the subsections on Style and Portability in Chapter 1. Here,
however, are a few general cautions: every C program must
contain a function named main, which is called at the outset and
whose return signals the end of program execution; many library
routines presume a conventional coding of main, documented in
Chapter 4. Several of the "functions" described in this chapter
are actually macros defined in the standard header. They appear
on ordinary manual pages because, aside from certain side effects
for which warning is served, they look to the programmer much
like subprograms. Oon the other hand, there are a few secret
library routines that are not documented anywhere in this manual;
their names invariably begin with an underscore, to minimize
accidental collisions with user-defined names.

The rest of this document provides a summary of the sections in
a typical library function description.

3-4 48-103 FOO0 ROO

std.h Standard Header File std.h
NAME :

std.h - Standard Header File
SYNOPSIS:
#include (std.h>

FUNCTION:

All standard library functions callable from C follow a set of
uniform conventions, many of which are supported at compile time
by including a standard header file, <{(std.h>, at the top of each
program. The file defines a number of gquasi-types and storage
classes (in terms of the standard C types), various system
parameters, the control structure used for buffered input/output
(I/0) and some useful macros. The macros 1in <(std.h> are each
described in separate manual pages since, aside from certain
curious side effects for which warning is served, macros look to
the C programmer much like subroutines.

It is important to know these types and parameters, in order to
understand manual pages for subroutines, to interface to the C
library in a portable manner, and to code in good style. The
principal definitions are as follows:

Quasi-types
BITS - unsigned short, used as a set of 16 bits _
BOOL - int, tested only for nonzero, assigned YES or NO
BYTES - unsigned int, for address arithmetic, indexing
COUNT - short, for counting [-32,768, 32,768)
DOUBLE - double precision floating point
FILE - short, used for file descriptors (fds)
LONG - long integer
METACH - short, EOF or [0, 256)
TBOOL - char, or unsigned char, used like BOOL
TEXT - char, or unsigned char, containing printable text
TINY - char, for counting [-128, 128)
UCOUNT - unsigned short, for counting [0, 65,536)
ULONG - unsigned long
UTINY - unsigned char, for counting [0, 256)
VOID - int, for functions returning nothing

Quasi-storage classes
FAST - register
GLOBAL - synonym for extern, used outside functions
IMPORT - synonym for extern, used inside functions
INTERN - synonym for static, used inside fuctions
LOCAL - synonym for static, used outside fuctions

48-103 FOO RGO 3-5

std.h

Syastem Parameters

BUFSIZE - 512, the standard I/0 buffer size
BWRITE - mode -1, opening for buffered writes
BYTMASK -- 0377, mask for low byte of integer
EOF - -1, end of file metacharacter

FOREVER - for (; ;)

NO - BOOL O

NULL - pointer O

READ - mode 0, opening for read access

STDERR - FILE 2, the standard error output
STDIN - FILE 0, the standard input

STDOUT - FILE 1, the standard output

UPDATE - mode 2, opening for reading and writing
WRITE - mode 1, opening for writing

YES - BOOL 1

Control Structure for Input/Qutput

FIO - struct fio, for buffered 1/0 calls

Macros
(documented in manual pages)

abs

isalpha
isdigit
islower
isupper
iswhite
max

min

tolower
toupper

EXAMPLE :

/* THE MINIMUM PROGRAM

* copyright (c) 1981 by Whitesmiths, Ltd.
x/

$#include <(std.h>

/* put string to STDOUT

x/

BOOL main()

BUGS:

{
wr ite(STDOUT, "hello world\n", 1l2);
return (YES):;

}

It is easy to forget about the macros, which cause

diagnostics when "redeclared".

may lead to severe difficulties.

std.h

unusual

Using std.h and studio.h together

48-103 FOO ROO

Cio C 1/0 Subroutines Cio
NAME :

Cio - C I/0 Subroutines

FUNCTION:

There are dozens of subroutines for performing I/0 at various
levels of sophistication. A brief guide to which groups best
work together follows.

The simplest approach to I/0 is to use putfmt for writing
formatted output to the standard output; the odd error message
can be sent via errfmt. It is easy to obtain simple input from
the arguments passed to main by using getflags; and success or
failure can be reported on program termination by exit, or the
return value from main. If input must be read, getfmt makes it
easy to read and encode items from the standard 1input wunder
control of a format much like that use by the output routines.

Character-by-character or line-by-line, I1/0 is obtained by calls
on getch, putch, getlin, and putlin. So long as output is text
lines, i.e.; strings of characters terminated by newlines,
buffering is automatic. These routines can be called
interchangeably with getfmt and putfmt as well.

The standard header file ¢(std.h) includes a declaration for the
standard 1/0 control buffer, type FIO; all of the above routines
quietly make use of the control buffers input and output,
obtained as needed from the library. It is also possible to open
and close files by name, and associate them with an FIO buffer,
by calls to fopen, fcreate and fclose. Once established, an FIO
puffer can be used for formatted output by calls on getf and
putf. Character or line [/0 under control of arbitrary FIO
buffers can be obtained by calling getc, putc, getl and putl.

At a lower level, there are file descriptors (fds), numbers of
type FILE (defined in the standard header) that are handed out by
certain routines and used by others. Three fds are predefined:
STDIN, STDOUT and STDERR, which are typically terminal input,
terminal output and error output. Others can be obtained by
opening filename arguments passed to main, using getfiles, then
associating them with FIO buffers, using finit. Or, fds can be

used directly with the lowest 1level 1/0 routines, described
below.

The routines open and create generate new fds when they open
files: close discredits an fd by ending its association with a
file. A family of temporary files can be constructed from the
root name returned by uname. Files can be removed from the file
system by calling remove.

48-103 FO00 ROO 3-7

Cio -2 - Cio

Fds are used by the lowest level routines (read and write) to
move sequences of bytes between memory and files. Direct access
is obtained by using lseek to read or write at random places in
a file. Finally, the function putstr can be used to concatenate
a sequence of strings to a specified file, which is useful for
filing simple error messages.

BUGS:

No tutorial is available.

3-8 48-103 FOO ROO

FIO The File I/0 Structure FIO
NAME :

FIO - The File I/0 Strdcture
SYNOPSIS:
FIO stdin, stdout;

FUNCTION:
FIO is the type defined in (std.h> for the control buffers used
by many of the C library I/O routines. Its elements are:

FILE _fd

holds the fd for the file with which I/0 is performed.

COUNT _nleft
on input, tells how many characters are left undelivered
in the buffer; on output, tells how many characters have
been placed in the buffer for output. Setting _nleft to
zero 1is sufficient to initialize an FIO buffer. Input
routines set _nleft to -1 on end of file, as an
indication that no further reads should be attempted.
COUNT _mode
is set to BWRITE, READ or WRITE to indicate the mode of
operation.
TEXT *_pnext
on input, points to the next character to be delivered;
on output, used to chain FIO buffers for draining on
exit. If (_nleft == 0) on input, _pnext is undefined.
TEXT _buf [BUFSIZE]

is the character buffer, where BUFSIZE is 512.

48-103 F00 ROO 3-9

FIO -2 - FIO

BWRITE is a mode not recognized by the 1low-level interface
routines. It is used to indicate buffered writing; i.e., output
only on buffer-full or program exit. Normal output mode calls
for draining the buffer whenever an output sequence ends with a
newline.

All actual input using FIO control buffers is via getc or getl.
All actual output is via putc or putl.

3-10 48-103 FOO ROO

abs Find Absolute Value abs
NAME :

abs - Find Absolute Value
SYNOPSIS:
abs(a)

FUNCTION:

abs obtains the absolute value of its argument. Since abs is
implemented as a C preprocessor macro, its argument can be any
numerical type.

RETURNS :

abs is a numerical rvalue of the form ((a < 0) ? -a a),
suitably parenthesized.
EXAMPLE:

putfmt ("balance %i%p\n", abs(bal), (bal < 0) 2 "CR" : "");

BUGS :

Because it is a macro, abs cannot be called from non-C programs,
nor can its address be taken. An argument with side effects may
be evaluated more than once.

48-103 FOO ROO 3-11

alloc Allocate Space on the Heap alloc
NAME :

alloc - Allocate Space on the Heap

SYNOPSIS:

TEXT *alloc(nbytes, link)
BYTES nbytes, link

FUNCTION:

alloc allocates space on the heap for an item of size nbytes,
then writes 1link in the =zeroth integer location. The space
allocated is guaranteed to be at least nbytes long, starting from
the pointer returned, which pointer is guaranteed to be on a
proper storage boundary for anything. The heap is enlarged as
necessary; if space is exhausted, the message "out of heap space"
is written to STDERR and an error exit is taken.

RETURNS :

If alloc returns, the pointer is guaranteed not to be NULL.

EXAMPLE :

To build a stack:

struct cell {
struct cell *prev;
... rest of cell ...
} *top:

top alloc(sizeof (*top), top):; /* pushes a cell */

SEE ALSO:

buybuf, free, frelst, nalloc, sbreak(4)

BUGS :

The size of the allocated cell is stored in the integer 1location
right before the wusable part of the cell; hence it is easily
clobbered. This number is related to the actual cell size in a
most system-dependent fashion and should not be trusted.

An error may occur when attempting to allocate more than half of
the address space at a time.

3-12 48-103 F0O0 ROO

amatch Look for Anchored Match of Regular Expression amatch

NAME :

amatch - Look for Anchored Match of Regular Expression

SYNOPSIS:

BYTES amatch(buf, n, idx, pat, psubs)
TEXT *buf;
BYTES n, idx;
TEXT *pat;
struct {
TEXT *mtext;
BYTES mlen;
} *psubs;

FUNCTION:

amatch tests the n character buffer starting at buf[idx] for a
match with the encoded pattern starting at pat; the match is
constrained to match characters starting at buf[idx]. It is
assumed that the pattern was built by the function pattern, whose
manual page describes the notation for regular expressions
accepted by these routines.

If (psubs is not NULL) then every balanced pair \(...\) within
the pattern will have the substring it matches recorded at
psubs[i]}, where i counts up from one for the left-most "\(" in
the pattern. psubs{i] .mtext points at the first character of
the matching substring, and psubs[i] .mlen 1is its length.
psubs[0] always records the full match.

The pattern codes are a sequence of bytes with the values:

value name meaning

1 CCHAR literal character follows

2 ANY match anything but \n

3 SBOL match beginning of line (0 width)

4 SEOL match end of line, or just before ending \n
5 CLOSE match following pattern zero or more times
6 CCL character class follows (CCHARs or RANGES)
7 NCCL negated character class follows

8 RANGE lower- and uppper-bound characters follow
9 CCLEND character class ends

10 PEND pattern end

19 RPAR right parenthesis "\)", followed by a

one-byte order number

20 LEFT left parenthesis "\ (", followed by a

one-byte order number

These codes are only needed if patterns are to be built by hand.

48-103 FOO ROO | 3-13

amatch -2 - amatch
RETURNS :
amatch returns the index of the right-most character of the
match, if successful, else -1. The array at psubs is also filled
in, if present.
EXAMPLE :
To match a variable pattern:
if (pattern(pbuf, av[1][0], &av[1l][1]))
while (n = getlin(buf, MAXBUF))
if ((n = amatch(buf, n, 0, pbuf, NULL)) != -1)
putlin(buf, m);
SEE ALSO:

match, pattern

3-14 48-103 F0O0 ROO

arctan Arctangent 4 arctan
NAME :

arctan - Arctangent
SYNOPSIS:

DOUBLE arctan(x)
DOUBLE x;

FUNCTION:

arctan computes the angle in radians whose tangent is x, to full
double precision. It works by folding x into the interval {0,
1], then interpolating from an eight entry table, using the sum

of tangents formula and a fifth-order telescoped Taylor series
approximation. '

RETURNS :

arctan returns the nearest internal representation to arctan x,
expressed as a double floating wvalue in the interval (- w/2,
w/2).

EXAMPLE :

To find the phase angle of a vector:

theta = arctan(y / x) * 180.0 / 7 ;

48-103 F0O ROO 3-15

bldks Build Key Schedule From Key bldks
NAME :

bldks - Build Key Schedule From Key
SYNOPSIS:

TINY *bldks(ks, key)
TINY ks{16]1[8];
TEXT key([8];

FUNCTION:

bldks builds the key schedule used by the Data Encryption
Standard algorithm for encrypting or decrypting data. All eight
characters of key are used to form the key schedule, but the most
significant bit (MSB) of each byte is ignored.

RETURNS :

bldks returns the address of ks, which contains the key schedule.

EXAMPLE :

To decrypt a file given a key already stored in passwd:

bldks (ks, passwd); while (read(STDIN, buf, 8) == 8)
write(STDOUT, decrypt(buf, ks), 8);

SEE ALSO:

decrypt, encrypt

3-16 48-103 F0O0 ROO

btod Convert Buffer to Double btod
NAME :

btod - Convert Buffer to Double
SYNOPSIS:

BYTES btod(s, n, pdnum)
TEXT *s;
BYTES n;
DOUBLE *pdnum;

FUNCTION:

btod converts the n character string starting at s into a double
and stores it at pdnum. The string is taken as the text
representation of a decimal number, with an optional fraction and
exponent. Leading whitespace is skipped and an optional sign is
permitted; conversion stops at the end of the buffer or on the
first unrecognizable character. Acceptable inputs match the
pattern

[+i-]Jax[.d*][e[+]-]dd*]

where d is any decimal digit and e is 'e' or 'E'.

No checks are made against overflow, underflow or unusual
character strings.

RETURNS :

btod returns the number of characters actually consumed, which is
typically greater than zero but never larger than n. The
converted number is stored at pdnum. ’
EXAMPLE :

To convert a program's first command line argument into a double

at dbl:

if (2 ¢ ac)

btod(av[l], lenstr(av[l]), &dbl);
else

dbl = 0.0;

48-103 F00 ROO 3-17

btod -2 - btod
SEE ALSO:

dtento, dtoe, dtof
BUGS :

Nothing simple can be said about the properties of a number that
has overflowed.

3-18 48-103 FOO ROO

btoi Convert Buffer to Integer btoi
NAME :

btoi - Convert Buffer to Integer

SYNOPSIS:

BYTES btoi(s, n, pinum, base)
TEXT *s;
BYTES n, *pinum;
COUNT base;

FUNCTION:

btoi converts the n character string starting at s into an
integer and stores it at pinum. The string is taken as the text
representation of a number in the base specified. Leading
whitespace is skipped and an optional sign is permitted; if (base
== 16) a leading "Ox" or "OX" is skipped; conversion stops at the
end of the buffer or on the first unrecognizable character. If
the stop character is 'l' or 'L', it is skipped over.

Acceptable characters are the decimal digits and letters, either
upper- or lower-case, where the letter 'a' or 'A' has the value
10, as in the usual representation for hexadecimal. Letters with
values greater than or equal to base are not acceptable digits.
Thus, values of base from 1 to 36 are meaningful.
No checks are made against overflow, unreasonable values of base
or unusual character strings.
RETURNS :
btoi returns the number of characters actually consumed, which is
typically greater than =zero but never larger than n. The
converted number is stored at pinum.
EXAMPLE :
BYTES num;
if (btoi(buf, size, &num, 10) != size) putstr(STDERR, "not a
decimal number\n", NULL);
SEE ALSO:

btol, btos, itob, 1ltob, stob
BUGS:

Nothing simple can be said about the properties of a number that
has overflowed.

48-103 FOO ROO | 3-19

btol Convert Buffer to Long btol
NAME :

btol - Convert Buffer to Long
SYNOPSIS:

BYTES btol(s, n, plnum, base)
TEXT *s;
BYTES n;
LONG *plnum;
COUNT base;

FUNCTION:

btol converts the n character string starting at s into a long
integer and stores it at plnum. The string is taken as the text
representation of a number in the base specified. Lead ing
whitespace is skipped and an optional sign is permitted; if (base
== 16) a leading "Ox" or "O0X" is skipped; conversion stops at the
end of the buffer or on the first unrecognizable character. If
the stop character is 'l' or 'L', it is skipped.

Acceptable characters are the decimal digits and letters, either
upper- or lower-case, where the letter 'a' or 'A' has the value
10, . as in the usual representation for hexadecimal. If a letter
has a value greater than or equal to base, it is not an
acceptable digit. Thus, values of base from 1 to 36 are
meaningful.

No checks are made against overflow, unreasonable values of base
or unusual character strings.

RETURNS :

btol returns the number of characters actually consumed, which is

typically greater than zero but never larger than n. The
converted number is stored at plnum.

EXAMPLE:
LONG 1lnum;
if (btol(buf, size, &lnum, 16) != size)

putstr (STDERR, "not a hexadecimal number\n", NULL);

SEE ALSO:

btoi, btos, itob, ltob, stob

3-20 48-103 FOO ROO

btol - 2
BUGS:

Nothing simple can be said about the properties of a number
has overflowed.

48-103 FOO ROO

btol

that

btos Covert Buffer to Short Integer . btos
NAME :

btos - Convert Buffer to Short Integer

SYNOPSIS:

BYTES btos(s, n, pinum, base)
TEXT *s;
BYTES n;
COUNT *pinum, base;

FUNCTION:

btos converts the n character string starting at s into a short .
integer and stores it at pinum. The string is taken as the text
representation of a number to the base specified. Leading
whitespace is skipped and an optional sign is permitted; if (base
== 16) a leading "Ox" or "OX" is skipped; conversion stops at the
end of the buffer or on the first unrecognizable character. If
the stop character is 'l' or 'L', it is skipped over.

Acceptable characters are the decimal digits and letters, either
upper—- or lower-case, where the letter 'a' or 'A' has the value
10, as in the usual representation for hexadecimal. Letters with
values greater than or equal to base are not acceptable digits.
Thus, values of base from 1 to 36 are meaningful.
No checks are made against overflow, unreasonable valués of base
or unusual character strings.
RETURNS :
btos returns the number of characters actually consumed, which is
typically greater than zero but never larger than n. The
converted number is stored at pinum.
EXAMPLE :

COUNT snum;

if (btos(buf, size, &snum, 8) != size)
putstr (STDERR, "not an octal number\n", NULL);

SEE ALSO:

btoi, btol, itob, ltob
BUGS:

Nothing simple can be said about the properties of a number that
has overflowed.

3-22 48-103 FO0O0 ROO

buybuf Allocate a Cell and Copy in Text Buffer buybuf
NAME :

buybuf - Allocate a Cell and Copy in Text Buffer

SYNOPSIS:

TEXT *buybuf (s, n)

TEXT *s;
BYTES n;
FUNCTION:

buybuf allocates a cell of size n on the heap by calling alloc,
then copies the n characters starting at s into it. If the heap
is full, buybuf is terminated by alloc.

RETURNS :

The value returned is the pointer to the allocated cell.

EXAMPLE :

To read a text file into memory:

struct {
~ TEXT *text;
BYTES size;
} lines[];
for (p = lines; 0 ¢ (n = getlin(buf, BUFSIZE)); ++p)
{
p->text = buybuf(buf, n);
p->size = n;
}
SEE AISO:

alloc, free, nalloc

BUGS:

There should be a way of dealing with heap overflow in buybuf.

48-103 FOO ROO 3-23

cmpbuf Compare Two Buffers for Equality cmpbut
NAME :

cmpbuf - Compare Two Buffers for Equality
SYNOPSIS:

BOOL cmpbuf(sl, s2, n)
TEXT *sl, *s2;
BYTES n;

FUNCTION:

cmpbuf compares two text buffers, character-by-character, for
equality. The first buffer starts at sl, the second at s2; both
are n characters long. sl and 82 are satd to be equal if the n
characters in sl and s2 are identical.

RETURNS :

The value returned is YES if the buffers are equal, else NO.
EXAMPLE :

if (cmpbuf (name, "include", 7))
doinclude();

SEE ALSO:

cmpstr, prefix

3-24 48-103 F0OO0 ROO

cmpstr Compare Two Strings for Equality cmpstr
NAME :

cmpstr - Compare Two Strings for Equality
SYNOPSIS:

BOOL cmpstr(sl, s2)
TEXT *sl, *s2;

FUNCTION:

cmpstr compares two strings, character-by-character for equality.
The first string starts at sl and is terminated by a NUL '\0’';
the second 1is likewise described by s2. The strings must match
through and including their terminating NUL characters.

RETURNS :

The value returned is YES if the strings are equal, else NO.
EXAMPLE:
if (cmpstr(name, "include")) doinclude();

SEE ALSO:

cmpbuf, prefix

48-103 FOO ROO 3-25

cos Cosine in Radians cos
NAME :

cos - Cosine in Radians
SYNOPSIS:

DOUBLE cos(x)
DOUBLE x;

FUNCTION:
cos computes the cosine of x, expressed in radians, to full
double precision. It works by scaling x in quadrants, then
computing the appropriate sin or cos of an angle in the first
half quadrant, using a sixth-order telescoped Taylor series
approximation. If the magnitude of x is too large to contain a
fractional quadrant part, the value of cos is 1.
RETURNS :

cos returns the nearest internal representation to cos x,
expressed as a double floating value. :

EXAMPLE :

To rotate a vector through the angle theta:

xnew = xo0ld * cos(theta) - yold * sin(theta);
ynew = xold * sin(theta) + yold * cos(theta);

SEE ALSO:

sin

3-26 48-103 FOO0 ROO

cpybuf Copy One Buffer to Another cpybuf
NAME :

cpybuf - Copy One Buffer to Another
SYNOPSIS:

BYTES cpybuf(sl, 82, n)
TEXT *sl, *s82;
BYTES n;

FUNCTION:

cpybuf copies the first n characters starting at location s2 into
the buffer beginning at sl.

RETURNS :

The value returned is n, the number of characters copied.

EXAMPLE:

To place "first string, second string" in buf(]:

n = cpybuf(buf, "first string", 12);
cpybuf (buf + n, ", second string”", 15);

SEE ALSO:

cpystr

48-103 F00 ROO 3-27

cpystr Copy Multiple Strings cpystr
NAME :

cpystr - Copy Multiple Strings

SYNOPSIS:
TEXT *cpystr(ds, argl, arg2, arg3, arg4, ..., NULL)
TEXT *ds, *argl, *arg2, *arg3, *arg4, ...;
FUNCTION:

cpystr concatenates a series of strings into the destination
string ds. Each string begins at argx and is terminated by a NUL
\O0'. The first character of arg2 is placed just after the last
character (before the NUL) copied from argl, etc. The series of
string arguments is terminated by a NUL pointer argument. A NUL
is appended to the final destination string to terminate it
properly.

RETURNS :

The value returned is a pointer to the terminating NUL in the
destination string.

EXAMPLE :

To concatenate string ssl with " middle ", ss2 and " end." into
buf :

cpystr (buf, ssl, " middle ", ss2, " end.", NULL);
BUGS:
There is no way to specify the size of the destination area, to

prevent storage overwrites. Omitting the terminating NULL
pointer is usually disastrous.

3-28 48-103 FOO0 ROO

decode Convert Arguments to Text Under Format Control decode

NAME :

decode - Convert Arguments to Text Under Format Control
SYNOPSIS:

BYTES decode(s, n, fmt, argl, arg2, ...)

TEXT *s;

BYTES n;

TEXT *fmt;
FUNCTION:
decode writes characters to the n character buffer starting at s
exactly as if the contents were written to a file by putf, using
the format string fmt and the =zero or more arguments argl,
arg2, ... It is not considered an error to generate more

characters than will actually fit in the buffer; excess
characters are simply discarded.

RETURNS :

decode returns the number of characters actually written in the
buffer, a number between 0 and n, inclusive.

EXAMPLE :

To convert the integer symno to a symbolic name:
decode(&name, 6, "L%+051i", symno);

SEE ALSO:

dtoe, dtof, encode, putf, putfmt

48-103 F00 ROO 3-29

decrypt Decode Encrypted Block of Text decrypt
NAME :

decrypt - Decode Encrypted Block of Text
SYNOPSIS:

TEXT *decrypt(data, ks)
TEXT data(8];
TINY ks[16][8];
FUNCTION:
decrypt converts the eight characters in the buffer data to
decrypted form in place, using the key schedule constructed in ks
by the function bldks. The Data Encryption Standard algorithm is

used, taking bit 1 as the least significant bit (LSB) of data[0]
and bit 64 as the MSB of data[7].

RETURNS :

decrypt returns a pointer to the start of data, which contains
the decrypted text.

EXAMPLE :

To decrypt a file given a key already stored in passwd:

bldks (ks, passwd);
while (read(STDIN, buf, 8) == 8)
write(STDOUT, decrypt(buf, ks), 8);

SEE ALSO:

bldks, encrypt

3-30 48-103 F0O ROO

doesc Process Character Escape Sequences doesc
NAME :

doesc - Process Character Escape Sequences
SYNOPSIS:

COUNT doesc(pp, magic)
TEXT **pp, *magic;

FUNCTION:

doesc encodes the sequence of characters beginning at *pp, on the
assumption that (*pp)[0] is an escape character, following the
same escape conventions as the C compiler. It also updates the
pointer at pp to point past the (variable length) escape
sequence.

If ((*pp)[l] is NUL), the code value is (*pp)[0); 1i.e., the
escape character proper; this is the only escape sequence of
length one. If ((*pp)[l] is a digit), then up to three digits
are taken as the octal value of the code. If ((*pp)[l] is in the
sequence "bfnrtv", in either case), the code is the corresponding
member of the sequence (backspace, formfeed, newline, carriage
return, horizontal tab, vertical tab). If (magic 1is not NULL)
and (*pp)[l] is the ith character of the NUL terminated string at
magic, the code is (-1 - i). Otherwise, the code is (*pp)(1l].

In all cases, *pp is updated to point at the last character
consumed .

RETURNS :

doesc returns the code obtained and updates the pointer *pp as
necessary to point past the escape sequence.

EXAMPLE :
for (s = buf; *s; ++s)

kt++ = (*s == '\\') ? doesc(&s, NULL) : *s++;

SEE ALSO:

mapchar

48-103 F0OO ROO 3-31

dtento Multiply Double by a Power of Ten dtento

NAME :

dtento - Multiply Double by a Power of Ten

SYNOPSIS:

DOUBLE dtento(d, exp)

DOUBLE d4d;
COUNT exp;
FUNCTION:

dtento multiplies the double d by 1l0**exp. No check is made
overflow or underflow.

RETURNS :

dtento returns d * 10**exp as a double.

EXAMPLE :

To combine a fraction string and an exponent string:

btoi(fr, nfr, &intpart, 10);
btoi(sexp, nsexp, &exp, 10);
dbl = dtento((DOUBLE) intpart, exp - nfr);

SEE ALSO:

btod, dtoe, dtof

BUGS:

for

If the exponent is large in magnitude, dtento can loop for quite

a long time. No special consideration is given (d == 0.0).

3-32 48-103 F0OO0 ROO

dtoe Convert Double to Buffer in Exponential Format dtoe

NAME :

dtoe - Convert Double to Buffer in Exponential Format
SYNOPSIS:

BYTES dtoe(s, dbl, p, q)
TEXT *s;
DOUBLE dbl;
BYTES p, d;

FUNCTION:

dtoe converts the double number dbl to a text representation in

the buffer starting at s, having the format:

[-]a*.d%e(+]-}d*

where d is a decimal digit. p specifies the number of digits to

the left of the decimal point, and g the number to
There are either two or three digits in the exponent,
upon the target machine.

RETURNS :

The value returned is the number of characters used to
the double number.

EXAMPLE:

putfmt("area = $b\n", buf, dtoe(buf, area, 1, 5));

SEE ALSO:
dtof

48-103 FO0O ROO

the right.
depend ing

represent

dtof Convert Double to Buffer in Fixed Point Format dtof
NAME :

dtof - Convert Double to Buffer in Fixed Point Format
SYNOPSIS:

BYTES dtof(s, dbl, p, q)
TEXT *s;
DOUBLE dbl;
BYTES p, q;

FUNCTION:
dtof converts the double number dbl to a text representation in
the buffer starting at s, having the format:

[—-]a*.dx

where d is a decimal digit, p specifies the maximum number of
digits to the left of the decimal point and g the actual number
to the right.

RETURNS :

The value returned is the number of characters used to represent
the double number.

EXAMPLE :

putfmt ("area = %b\n", buf, dtof(buf, area, 10, 5));

SEE ALSO:

dtoe

3-34 48-103 FOO0 ROO

encode Convert Text to Arguments Under Format Control encode
NAME :

encode - Convert Text to Arguments Under Format Control
SYNOPSIS:

COUNT encode(s, n, fmt, pargl, parg2, ...)
TEXT *s;
BYTES n;
TEXT *fmt;

FUNCTION:

encode converts the contents of the n character buffer starting
at s, using the format string at fmt and the argument pointers
pargx, exactly as if the contents were read from a file by getf.
It is particularly useful when multiple attempts must be made to
read an input line.

RETURNS :

encode returns the number of arguments successfully converted, or

EOF (-1) if end of buffer is encountered before any are
converted.

EXAMPLE :

while (0 ¢ (n = getlin(buf, BUFSIZE)))
if (encode(buf, n, "x = %i", &x) (= 0 &&
encode(buf, n, "y = %i", &y) <= 0)
errfmt ("unknown parameter %b\n", buf, n);
SEE ALSO:

btod, decode, getf, getfmt

48-103 F0O0 ROO 3-35

encrypt Encode Block of Text encrypt
NAME :

encrypt - Encode Block of text
SYNOPSIS:

TEXT *encrypt(data, ks)
TEXT data(8];
TINY ks[16](8];
FUNCTION:
encrypt converts the eight characters in the buffer data from
encrypted form in place using the key schedule constructed in ks
by the function bldks. The Data Encryption Standard (DES)
algorithm is used, taking bit 1 as the LSB of data[0] and bit 64
as the MSB of data[7]. '
RETURNS :
encrypt returns a pointer to the start of data, which contains
the encrypted text.
EXAMPLE :
To encrypt a file given a key already stored in passwd:
bldks (ks, passwd);
while (0 ¢ (n = read(STDIN, buf, 8)))
{
while (n < 8)
buf[n++] = '\0';
write(STDOUT, encrypt(buf, ks), 8);
}
SEE ALSO:

bldks, decrypt

3-36 48-103 FO0O0 ROO

enter Enter a Control Region enter

NAME :

enter - Enter a Control Region
SYNOPSIS:

BYTES enter(pfn, arg)
BYTES (*pfn)():;
BYTES arg;

FUNCTION:
enter establishes a new "control region"; i.e., a function

invocation that can be terminated early by a leave call, then
performs the sequence

leave((*pfn) (arg)):;

i.e.; the function pointed at by pfn is called with the specified
arg; its return value is used as the argument of a call to leave.
The control region may be terminated before (*pfn) returns by a
call to leave in (*pfn) or in any of its dynamic descendants. In
any case, the first leave call encountered disestablishes the new
control region and causes enter to return with the value
specified by the argument to that call to leave.

Control regions may be nested to any depth.

RETURNS :

enter returns the value of the argument to the first leave call
encountered, or the value of the function at pfn if no leave was
executed.

EXAMPLE :

To restart a function after each error message:

while (s = enter(&func, file))
putstr (STDERR, s, "\n", NULL) ;

so that one can write in, say, one of func's dynamic descendants:

if (counterr)
leave("missing parameter");

48-103 F0OO ROO 3-37

enter - 2 - ' enter
SEE ALSO:

-raise(5), _when(5), leave
BUGS :

There is no way to pass to the function (*pfn) more than one
argument.

3-38 48-103 F0O0 ROO

errfmt Format Output to Error File errfmt
NAME :

errfmt - Format Output to Error File
SYNOPSIS:

VOID errfmt(fmt, argl, arg2, ...)
TEXT *fmt;

FUNCTION:

errfmt performs formatted output to STDERR, in much the same way
as putf. Output is performed by multiple calls directly to
write, which may be inefficient for large volumes of output but
is least likely to lose diagnostics when a program malfunctions.

RETURNS :

Nothing. An error exit occurs if any writes fail.
EXAMPLE :
errfmt("can't open file %p\n", fname);

SEE ALSO:
putf, putfmt

48-103 FO00 ROO 3-39

error Print Error Message and Exit error
NAME :

error - Print Error Message and Exit
SYNOPSIS:

VOID error (sl, s2)
TEXT *sl, s2;

FUNCTION:

error prints an error message to STDERR, consisting of the
program name _pname, a colon and space, the strings at sl and s2
and a newline. It then takes an error exit. Either sl or s2 may
be NULL.

RETURNS :

error never returns to its caller.
EXAMPLE :

if ((fd = open(file, READ, 0)) < 0)
error("can't open ", file);

SEE ALSO:

—pname(4), exit(4)

3-40 48-103 FOO ROO

exp Exponential | exp
NAME :

exp - Exponential
SYNOPSIS:

DOUBLE exp(x)

DOUBLE x;
FUNCTION:
exp computes the exponential of x to full double precision. It
works by expressing x/ln 2 as an integer plus a fraction in the
interval (-1/2, 1/2]). The exponential of the fraction Iis

approximated by a ratio of two seventh-order polynomials.

RETURNS :

exp returns the nearest internal representation to exp x,
expressed as a double floating value. If the result is too large
to be properly represented, a range error condition is raised; if
that is inhibited, the largest representable value is returned.

EXAMPLE :
sinh(x) = (exp(x) - exp(-x)) / 2.0;

SEE ALSO:

_range(5), 1ln

48-103 FOO ROO 3-41

fclose Close a File Controlled by FIO Buffer fclose
NAME :

fclose - Close a File Controlled by FIO Buffer
SYNOPSIS:

FIO *fclose(pfio)
FIO *pfio;
FUNCTION:
fclose closes the file under control of the FIO buffer at pfio.
If the control buffer was initialized with a mode of WRITE or
BWRITE, any remaining output is drained before <closing and the

control buffer is removed from the list of buffers to be drained
on program exit.

RETURNS :

fclose returns pfio if the file was successfully closed, else
NULL. An error exit is taken if (pfio == NULL).

SEE ALSO:

fcreate, finit, fopen

3-42 48-103 F0OO0 ROO

fcreate Create a File and Initialize a Control Buffer fcreate
NAME :

fcreate - Create a File and Initialize a Control Buffer
SYNOPSIS:

FIO *fcreate(pfio, fname, mode)
FIO *fcreate;
TEXT *fname;
COUNT mpde;
FUNCTION:
fcreate creates a file with name fname and specified mode, and if
successful, initializes the control buffer at pfio for proper

operation with the file. mode should have one of the values
BWRITE, READ or WRITE.

RETURNS :
fcreate returns pfio, if successful, else NULL. An error exit is
taken if (pfio == NULL).

EXAMPLE :

if (1fcreate(&fio, "file", READ))
errfmt("can't create file\n");

SEE ALSO:

create(4), fclose, finit, fopen

48-103 FOO ROO 3-43

fill Propagate Fill Character Throughout Buffer £ill
NAME :

fill - Propagate Fill Character Throughout Buffer
SYNOPSIS:

BYTES f£ill(s, n, c¢)
TEXT *s, c:
BYTES n;

FUNCTION:
fill floods the n-character buffer starting at s with fill

character c.

RETURNS :

fill returns n.

EXAMPLE :

To write a 512-byte buffer of NULs:
write(fd, buf, fill(buf, BUFSIZE, '\0'));

SEE AILSO:

squeeze

3-44 48-103 FOO0 ROO

finit Initialize an FIO Control Buffer finit
NAME :

finit - Initialize an FIO Control Buffer
SYNOPSIS:

FIO *finit(pfio, fd, mode)
FIO *pfio;

FILE fd;
COUNT mode;
FUNCTION:

finit initializes the FIO control buffer at pfio for proper
operation with the file specified by fd, in the mode specified by
mode. If (mode == BWRITE) the control buffer is set up for
buffered writes, to be drained only when the buffer is full or
the program exits. If (mode == READ) the control buffer is set
up for reading. Otherwise (mode == WRITE) of necessity and the
control buffer is set up for writing; writes will be buffered as
for BWRITE only if lseek calls are acceptable with the specified
fd, an indication that the output is a file and not an
interactive device or a pipeline. Unbuffered output is drained
whenever a segment of output ends with a newline character or on
program termination.

RETURNS :

finit returns pfio. An error exit occurs if (pfio == NULL).

EXAMPLE :

To adapt stdout for most effective buffering strategy:
finit (&stdout, STDOUT, WRITE);

SEE ALSO:

fclose, fcreate, fopen
BUGS:

No check is made for (mode == UPDATE), which may or may not work
satisfactorily.

48-103 F0O0 ROO 3-45

fopen Open a File and Initialize a Control Bufter fopen
NAME :

fopen - Open a File and Initialize a Control Buffer
SYNOPSIS:

FIO *fopen(pfio, fname, mode)
FIO *fopen;
TEXT *fname;
COUNT mode;
FUNCTION:
fopen opens a file with name fname and specified mode, and if
successful, 1initializes the control buffer at pfio for proper

operation with the file. mode should have one of the values
BWRITE, READ or WRITE.

RETURNS :

fopen returns pfio, if successful, else NULL. An error exit is
taken if (pfio == NULL).

EXAMPLE :
if (!fopen(s&fio, file, READ))

errfmt ("can't open %p\n", file);

SEE ALSO:

fclose, fcreate, finit, open(4)

3-46 48-103 F00 ROO

fread
NAME :

fread - Read Until Full Count
SYNOPSIS:

COUNT fread(fd, buf,
FILE fd4;
TEXT *buf;
BYTES size;

size)

FUNCTION:

Read Until

Full Count fread

fread reads up to size characters from the file specified by fad

into the buffer starting at
calls to read until an end of
characters have been read.

an entire record must be read
right to return a short count

RETURNS :

Unless end of file is encountered,
otherwise the value returned is between 0 and size,

EXAMPLE :

buf. It does so by making repeated
file is encountered or until size
Thus, fread should be used whenever
at once, since read reserves the
at all times.

fread returns size;

inclusive.

always

To copy a file in integral records:

while (fread(STDIN, buf, RECSIZE) == RECSIZE)

wr ite (STDOUT,

SEE ALSO:

read(4)

48-103 F0OO0 ROO

buf, RECSIZE);

free Free Space on the Heap free
NAME :

free - Free Space on the Heap
SYNOPSIS:

TEXT *free(pcell, link)
TEXT *pcell;
TEXT *link;

FUNCTION:

free returns an allocated cell to the heap for subsequent reuse,
then returns 1link to the caller. The cell pointer pcell must
have been obtained by an earlier alloc call; otherwise the heap
will become corrupted. free tries to defend itself as best as it
can against subversive calls and will take an error exit if it
does not like what it is given. The message "bad free call" is
written to STDERR if free is given the address of a pcell that
has never been allocated, or if for some reason, the size field
has been corrupted. "freeing a free cell" is displayed when free
is called with an address within the free chain. A NULL pcell is
explicitly allowed, however, and is ignored.

RETURNS :

If free returns, its value is guaranteed to be link, which is
otherwise unused by free.

EXAMPLE :

To pop a stack item:

struct cell {
struct cell *prev;
... rest of cell ...
} *top;

top = free(top, top->prev); /* pops a cell */

SEE ALSO:

alloc, frelst, nalloc, sbreak(4)

3-48 48-103 F0OO ROO

free -2 - _ free
BUGS:

The size of the allocated cell is stored in the integer location
right before the usable part of the cell; hence it is easily
destroyed. No effort is made to lower the system break when
storage is freed, so it is quite possible that earlier activity
on the heap may cause later activity on the stack to come to
grief, at least on some systems.

48-103 FO0O0 ROO 3-49

frelst Free a wList of AlLlocated Cells rrelsc
NAME :

frelst - Free a List of Allocated Cells
SYNOPSIS:

struct list *frelst(plist, pstop)
struct list (struct list *next; ...} *plist, *pstop;
FUNCTION:
frelst walks a linked list that has been built with calls to
alloc, freeing each cell on the list. Any type of cells can
occur on the list, in any combination, as long as the first entry

in each structure is a pointer used to link to the next cell. A
NULL next pointer or one equal to pstop terminates the list.

RETURNS :
frelst returns the pointer that terminates the list, either NULL
or pstop.

EXAMPLE :

struct list {
struct list *next;
...} *list;

list = frelst(list, NULL);

SEE ALSO:

alloc, free
BUGS :

Freeing a list that was not made from calls on alloc can be
disastrous.

3-50 48-103 FO0O0 ROO

getbfiles Collect Files from Command Line getbfiles
NAME :

getbfiles ~ Collect Files from Command Line
SYNOPSIS:

FILE getbfiles(pac, pav, dfd, efd, rsize)
BYTES *pac, rsize;
TEXT ***pav;
FILE dfd, efd;

FUNCTION:

getbfiles examines the file arguments passed to a command and
opens files as needed for reading. The arguments to examine are
specified by the count pointed at by pac and by the array of text
pointers pointed at by pav; it is assumed that the command name
and any flags have been skipped, for instance, by calling
getflags. If there are no arguments left on the first call to
getbfiles (*pac == 0), the default fd, dfd, is returned and all
subsequent calls will fail. Otherwise, each call to getbfiles
will inspect the next argument in sequence.

If a filename matches the string "-", dfa is returned.
Otherwise, an attempt is made to open the file for reading with
the record size specified by rsize. If the file 1is to contain
arbitrary binary data, as opposed to printable ASCII text, rsize
should be nonzero. On success, the fd of the opened file is
returned. If the open fails, efd is returned instead. After the
last filename is processed, all calls to getbfiles will fail. It
is up to the calling program to close any files opened by
getbfiles.

RETURNS :

getbfiles returns either an fd obtained as described above, or
the failure code -1; the first call to getbfiles will never
return failure. *pac and *pav are updated on each call to
reflect the number of arguments left to encode. To signal end of
arguments, *pac is set to -1. If the returned fd is not dfd, the
name of the file under consideration (successfully opened or not)
is at (*pav)[-1].

48-103 F0O0 ROO ‘ 3-51

getbfiles -2 - getbfiles

EXAMPLE :

To walk a list of binary files:

BYTES ac;
TEXT **av;

while (0 ¢(= (fd = getbfiles(&ac, &av, STDIN, STDERR, 1)))

if (fd == STDERR)
errfmt("can't read %p\n", av[-1]);

else

{

process(fd);
close(fd);

}

SEE ALSO:
getfiles, getflags, open(4)

48-103 FOO ROO

getc Get a Character from Input‘Buffer getc
NAME :

getc - Get a Character from Input Buffer
SYNOPSIS:

METACH getc(pfio)
FIO *pfio;
FUNCTION:
getc obtains the next input character, if any, from the file
controlled by the FIO buffer at pfio; if end of file has been

encountered, a code is returned that is distinguishable from any
character.

RETURNS :

getc returns the character as zero (for '\0') or a small positive
integer; end of file is signalled by the code EOF (-1). An error
exit occurs if any reads fail, or if (pfio == NULL).

EXAMPLE :

To copy a file, character by character:

while (putc(&stdout, getc(&stdin)) != EOF)

r

SEE ALSO:

getch, putc, putch

48-103 F0O0 ROO 3-53

getch Get a Character from Input Buffer stdin getch
NAME :

getch - Get a Character from Input Buffer stdin
SYNOPSIS:
METACH getch()

FUNCTION:
getch obtains the next input character, if any, from the file
controlled by the FIO buffer stdin; if end of file has been

encountered a code is returned that is distinguishable from any
character.

RETURNS :

getch returns the character as zero (for NUL) or a small positive
integer; end of file is signalled by the code EOF (-1). An error
exit occurs if any reads fail.

EXAMPLE :

To éopy a file, character by character:

while (putch(getch()) != EOF)

14

SEE ALSO:

getc, putc, putch

3-54 48-103 FO0O0 ROO

getf Read Formatted Input getf
NAME :

getf - Read Formatted Input
SYNOPSIS:

COUNT getf (pfio, fmt, argl, arg2, ...)
FIO *pfio;
TEXT *fmt;

o s o

FUNCTION:

getf reads input text from the file controlled by the buffer at
pfio, and parses it according to the control format string
starting at fmt, in order to assign converted values to a series
of variables, each pointed at by one ot the arguments argl,...
The format string consists of newlines and literal text to be
matched, interspersed with <(field-specifier>s that determine how
the input text is to be read and how it is to be converted before
assignment. Input is consumed on a line-by-line basis. The
number of 1lines consumed in any one call is typically equal to
the number of newlines encountered in the format string, plus one
if any character follows the last newline encountered in the
format. An exception to this may occur if "% " appears in the
format string; this sequence matches arbitrary whitespace, even
extending across multiple lines.

For example:
getf (&stdin, "%i\n%i\n%i", sargl, &arg2, &arg3);

obtains values for the three integers argl, arg2 and arg3 from
three successive lines of stdin, while:

getf (&stdin, "%i%i%i", &argl, &arg2, &arg3l);

obtains values for the three integers argl, arg2 and arg3 from
three whitespace separated fields on a single line of stdin.

Matching of 1literal text occurs on a character-by-character
basis. If the charater in the format string does not match the
next character to be consumed on the input 1line, the scan is
terminated. A newline character in the format string matches any
characters remaining in the current input 1line, up to and
including the terminating newline, if any. Since a newline is
consumed only by a literal match, by "% ", or (implicitly) by the
end of the format string, an embedded '\n' is the most controlled
way of reading multiple lines with one call to getf.

48-103 F0O ROO 3-55

getf -2 - getf

A (field-specifier> takes the form:

$[+z}|-z][#]1<field-code>

That is, a (field-specifier)> consists of a literal '%', followed
by an optional "+z" or "-z", where 2z can be any character,
followed by an optional field width #, and is terminated by a
(field-code>. A "+z", if present, calls for the stripping of any
left fill with the fill character z, while "-z" calls for the
stripping of any right fill with z. A #, if present, specifies
the total width in characters of the field to be input, and is
either a decimal integer, or the letter 'n'. If an 'n' is given,
then the value of the next argument from the argument 1list is
taken to specify the field width.

To read a nine-character field left-filled with ‘'*', and
interpret it as a floating point number:

getf (&stdin, "%+*9f", &argl);
or:

getf (&stdin, "$+*nf", 9, &argl);
The number of characters to consume during a field conversion is
given by the width specifier, if present. If there are fewer
than that many characters before the next newline, the rest of
the 1line 1is consumed. If no width is specified, leading
whitespace is skipped and the following group of nonwhite
characters 1is taken to be the field; at least one nonwhite
character must be present. The characters actually converted are
the contents of the field less any fill characters. If no fill
character 1is given, getf presumes the field is left-filled with
spaces.

Text input of
$ 100.53

can be read as two integers with:

getf (&stdin, " %6i.%2i", &dollars, ¢s);

or as a single double with either:
getf (&stdin, "%+ 104", &cash);
or

getf (&stdin, " %4d", &cash);

3-56 48-103 F0OO ROO

getf -3 - ' getf

A (field-code> is composed of a <modifier>, a <(specifier)> or
both. The <(specifier)> defines how the input field is to be
converted, and is one of the following:

e C char integer
e s = short integer
e 1 = integer

e 1 = long integer

e p = NUL-terminated string

@ b = buffer of specified length
e d = double

e f = float

e Xx = padding only (no conversion)

A <(modifier)> causes the input to an integer variable to be
interpreted as:

e a = ASCII bytes, in decreasing order of numerical significance
e h = hexadecimal (with or without a leading "0x")

e o0 = octal (with or without a leading '0')

e u = unsigned decimal

If no ¢(specifier)> is given, it is presumed to be 'i', and a

(modifier> given from the above series will be taken to apply to
the implied integer field. If a {(specifier) of 'c', 's', 'i' or
'1' is given with no <modifier>, the input is interpreted as
signed decimal.

In addition, an optional precision modifier, ".#", limits the
number of characters that may be input with a {(specifier)> of 'p'
or 'b', and is permitted but ignored with 'd' and 'f', for

compatibility with putf. Like the field width specifier, the
precision modifier # may be either an explicit integer, or an
'n', to make use of the next argument value in sequence.

Hence a <(field-code) usually consists of one of the following
combinations of {(specifier> and <{(modifier):

sii}l} /* integer input */

} /* precision ignored for f and d */
/% default specifier is i */
/* Jjust skip field */

48-103 F0OO ROO - 3-57

getf -4 - getf

Any other character in the place of a (field-code> is taken as a
single 1literal character to be matched in the input line. Thus,
a '%' may be scanned with the specifier "%%" and a '\n' may be
scanned, without skipping characters in the input line, by using
the specifier "%\n". Hence, while "% " and "\n" have special
meaning, "%\n" and " " each match only one character.

Each <(field-specifier> given in the format string requires the
argument 1list following to contain in identical sequence a
pointer to a datum of the appropriate type; the pointer argument
is used to assign a correctly converted field.

The following would read an int in hex, a char-sized value as
ASCII, and a short as signed decimal, all of them optionally
separated by whitespace:

getf (&stdin, "%8h%ac%s", &addr, &code, &offset);

Any integer field may contain leading whitespace, even after the
stripping of fill characters, as well as an optional [+|-] sign,
and an optional trailing [l|{L] (which is C notation for a 1long
constant). No unexpected conversion character may occur or the
scan is terminated before the corresponding argument is assigned.

The 'a' modifier treats the input as a sequence of characters and
converts it to a base 256 number whose digits are the characters;
the argument gets assigned the value represented by the low-order
bytes of that number.

Entire text strings may be assigned to arguments under the 'p' or
'b' field code. In the first case, the argument is a pointer to
the start of a string, and input characters are copied into that
string with a terminating NUL; in the second case, the argument
is also a pointer to text but characters are copied in without
the terminating NUL, and the number of characters copied is
assigned using the argument following the pointer as a pointer to
integer. In either case, the number of characters actually
copied will be no more than the precision modifier, if it is
present and nonzero.

For example, exactly one character of an 80-character input 1line
could be assigned to str with:

getf (&stdin, "%80.np", 1, str);

3-58 48-103 FOO ROO

getf -5 - , getf
Floating point numbers may be read in wusing 'd' for double
variables and 'f' for float. In either case, the input may be in
either fixed point or scientific notation (see btod). Leading
whitespace will be skipped, even after the stripping of fill
characters. The precision modifier is ignored.

The 'x' field code consumes no arguments; it is a convenient way
to skip over text.

RETURNS :
getf returns the number of arguments successfully assigned, or

EOF if end of file is encountered on input before any argument
has been converted. An error exit occurs if (pfio == NULL).

EXAMPLE :

Given the'code:

FIO input;
TEXT bufl1[BUFSIZE], buf2[10];
BYTES nargs, X, Y. Z;

nargs = getf(&input, "$b%-*i%.6p%4i", &bufl, &x, &y, &buf2, &z);
if (nargs != 5)
putstr (STDERR, "bad input format\n", NULL);

The input line:
LINE 17** IDENTIFIER 263
would assign:

"LINE" to bufl, with no trailing NUL
4 to x

17 to y

"IDENTI" to buf2, with trailing NUL
263 to z

SEE ALSO:

btod, encode, getfmt

48-103 F0O ROO 3-59

getfiles Collect Text Files from Command Line gettiles
NAME :

getfiles - Collect Text Files from Command Line
SYNOPSIS:

FILE getfiles(pac, pav, dfd, efd)
BYTES *pac;
TEXT ***pav;
FILE dfd, efd;

FUNCTION:

getfiles examines the file arguments passed to a command and
opens text files as needed for reading. The arguments to examine
are specified by the count pointed at by pac and by the array of
text pointers pointed at by pav; it is assumed that the command
name and any flags have been skipped, for instance, by calling
getflags. If there are no arguments left on the first call to
getfiles (*pac == 0), the default fd, dfd, is returned and all
subsequent calls will fail. Otherwise each call to getfiles will
inspect the next argument in sequence.

If a filename matches the string "-", dfd is returned. Otherwise
an attempt is made to open the file for reading as a text file;
on success, the fd of the opened file is returned. If the open
fails, efd is returned instead. After the last filename is
processed, all calls to getfiles will fail. It is up to the
calling program to close any files opened by getfiles.

RETURNS :

getfiles returns either an fd obtained as described above, or the
failure code -1; the first call to getfiles will never return
failure. *pac and *pav are updated on each call to reflect the
number of arguments left to encode. To signal end of arguments,
*pac 1is set to -1. If the returned fd is not dfd, the name of
the file under consideration (successfully opened or not) is at
(*pav) [-1].

3-60 48-103 FOO ROO

getfiles -2 -
EXAMPLE :
To walk a list of files:

BYTES ac;

TEXT **av;

while (0 <= (fd = getfiles(&ac, &av, STDIN, STDERR)))

if (fd == STDERR)
errfmt("can't read $p\n", av[-1]);

else

process(fd);
close(fd);
}

SEE ALSO:

getbfiles, getflags, open(4)

48-103 F0O ROO

getfiles

getfiles Collect Flags from Command Line getfiles
NAME :

getflags - Collect Flags from Command Line

SYNOPSIS:

TEXT *getflags(pac, pav, fmt, argl, arg2, ...)
BYTES *pac;
TEXT ***pav;
TEXT *fmt;

FUNCTION:

getflags encodes the flag arguments passed to a command and sets
the flags, counts, character variables and string names specified
by a format string. The arguments to encode are specified by the
count pointed at by pac and by the array of text pointers pointed
at by pav; it 1is assumed that the first argument is a command
name, to be skipped. Each succeeding argument is taken as a set
of one or more flags if a) it begins with '-' or '+' and b) it is
not the string "-" or "--". A leading '-' is otherwise skipped
over on each command argument.

fmt. is a concatenation of descriptors that determine how each of

the succeeding arguments argl,... is to be interpreted. A
descriptor is a sequence of match characters, terminated by a
',', a '¢(' or by the '\0' or ':' that terminates the format

string. Format characters have the following effect:

'x1 always matches the rest of the current
argument, if any left, or all of the
succeeding argument, if present, or a null
string otherwise. The value of the match is

a (non-NULL) pointer to the start of the
matched string.

2! always matches the next argument character, if
any, or a NUL character. The value of the
match is the matched character, taken as an
integer constant.

&' tries to parse, as an integer, the remainder
of the current argument, if any left, or all
of the succeeding argument. The value of the
match 1s the decimal value of the string, if
it does not begin with a '0', or its
hexadecimal value if it begins with '0x' or
'‘0X', or its octal value otherwise. An error
occurs if no argument is found, or if it
cannot be completely scanned as an integer
with the selected base.

3-62 48-103 FOO ROO

getfiles -2 - A getfiles

TH##' same as single ¥ except that target is assumed
to be a long instead of an int.

' delivers a successful match value to the
corresponding argument (in sequence) pointed
at by argl,.... If no match, the command
arguments are rescanned, from the last
successful match, using the descriptor
following.

! behaves just like HIPELE except the

corresponding argument pointer is taken as a
pointer to a structure of the form:

struct { BYTES ntop; TEXT *val[MAX]; }
args {MAX};

If (0 ¢ ntop) ntop 1is decremented and the
value is delivered to val[ntop]; otherwise an
error occurs.

'\o' behaves just like ',', except that if there is
no successful match an error occurs.

e

if a colon is encountered in the format string
before a flag is successfully matched, then
the NUL-terminated string following the colon
is written to STDERR, preceded by "usage:
{pname> " and followed by a newline, where
{pname)> is the name by which the current
program was invoked. getflags then
terminates, reporting failure. Any occurrence
of an 'F' in the diagnostic string is replaced
with a slightly expanded representation of the
flag format string preceding the colon. For
example, the format string "a*>+b,c?,z:F
(files>" would produce the error message:

usage: pname -[a*A +b c? 2z] <(files)

Any other character causes a successful match only if the next
command line character is identical to it. The value of the
match is a boolean YES.

The rules by which getflags parses flag arguments impose two
significant constraints on how flags are ordered within the
format string. Any flag whose name is a prefix of the name of
another flag must appear in the format string after the longer
flag. This also implies that unnamed flags, such as "-#" or
"—44" or "-*", must be given last.

48-103 FOO ROO | 3-63

getfiles -3 - getfiles
RETURNS :

getflags returns a pointer to the remaining command argument
string, if an error occurs and no colon is found in the format
string; otherwise an error causes diagnostic output and an error
exit from the program. If all flag arguments are successfully
scanned, getflags returns NULL. The values pointed at by pac and
pav are updated to reflect the number of arguments consumed; "--"
is consumed as a flags terminator, while "-" is taken as a
potential special file name and is not consumed. One or more
values should be delivered to locations pointed at by the
argl, ...

Note that all locations pointed at are assumed to be ints or

pointers, except that a "##" descriptor expects a long, and a '>'
expects a structure as described above.

EXAMPLE :

To accept the line:
cmd +3 -3 -f filename -mx -b0x10000 <files> ...
one might write:

BOOL mxflag {NO};
BYTES mcnt {0};

BYTES from {0};

BYTES to {0};

LONG bias {0};

TEXT *fname "default”;

COUNT main(ac, av)
BYTES ac;
TEXT **av;

{
getflags(&ac, &av, "b##, £*,mx,mi, +#, #:F <(filesd"”,
&bias, &fname, &mxflag, &mcnt, &from, &to))

SEE ALSO:

getfiles, usage

BUGS:

A "##" descriptor cannot be used with the stacking operation '>'.

3-64 48-103 FOO ROO

getfmt Format Input from stdin getfmt
NAME :

getfmt - Format Input from stdin
SYNOPSIS:

COUNT getfmt(fmt, argl, arg2, ...)
TEXT *fmt;

FUNCTION:

getfmt reads formatted input from the file controlled by the FIO
buffer stdin, in exactly the same way as getf.

RETURNS :

getfmt returns the number of arguments successfully converted, or
EOF (-1) if end of file is encountered before any are converted.
An error exit occurs if any reads fail.

EXAMPLE:

for (lsum = 0; 0 < getfmt("%$1", &lnum);)
1sum =+ lnum;

SEE ALSO:

encode, getf, stdin

48-103 F0O ROO | 3-65

getl Get a Text Line into the Input Buffer getl
NAME :

getl - Get a Text Line into the Input Buffer

SYNOPSIS:

BYTES getl(pfio, s, n)
FIO *pfio;
TEXT *s;
BYTES n;

FUNCTION:

getl copies characters, from the file controlled by the FIO
buffer at pfio, to the n character buffer starting at s.
Characters are copied until a newline is copied, end of file is
reached or n characters have been copied.

RETURNS :

getl returns a count of the number of characters copied, which
will be between 1 and n unless end of file has been encountered,

from which time on all getl calls will return =zero. An error
exit occurs if any reads fail, or if (pfio == NULL).
EXAMPLE :

To copy a file, line by line:

while (putl(&stdout, buf, getl(&stdin, buf, BUFSIZE)))

r

SEE ALSO:

getlin, putl, putlin

3-66 48-103 F0O ROO

getlin Get a Text Line from stdin getlin
NAME :

getlin - Get a Text Line from stdin
SYNOPSIS:

BYTES getlin(s, n)

TEXT *s;
BYTES n;
FUNCTION:

getlin copies characters from the file controlled by the FIO
buffer stdin, to the n character buffer starting at s.
Characters are copied until a newline is copied, end of file is
reached or n characters have been copied.
RETURNS :
getlin returns a count of the number of characters copied, which
will be between 1 and n unless end of file has been encountered,
from which time on all getlin calls will return zero. An error
exit occurs if any read fails.
EXAMPLE :
To copy a file, line by line:

while (putlin(buf, getlin(buf, BUFSIZE)))

SEE ALSO:

getl, putl, putlin, stdin

48-103 F00 ROO 3-67

inbuf Find First Occurrence in Buffer of Character i1n Set inbut

NAME :

inbuf - Find First Occurrence in Buffer of Character in Set
SYNOPSIS:

BYTES inbuf(p, n, s8)
TEXT *p, *s;
BYTES n;

FUNCTION:

inbuf scans the n-character buffer starting at p for the first
instance of a character in the NUL terminated set s. If the NUL
character is to be part of the set, it must be the first
character in the set.

RETURNS :

inbuf returns the index of the first character in p that is also
in the set s, or n if no character in the buffer is in the set.

EXAMPLE :

To blank out imbedded NUL. characters:

while ((i = inbuf(buf, n, "\0")) < n)
buf[i] = ' *;

SEE ALSO:

instr, notbuf, notstr, scnbuf, scnstr, subbuf, substr

3-68 48-103 FOO ROO

instr Find First Occurrence in String of Character in Set instr
NAME :

instr - Find First Occurrence in String of Character in Set
SYNOPSIS:

BYTES instr(p, s)
TEXT *p, *s;

FUNCTION:

instr scans the NUL terminated string starting at p for the first
occurrence of a character in the NUL terminated set s.

RETURNS :

instr returns the index of the first character in p that is also
contained in the set s, or the index of the terminating NUL if
none.

EXAMPLE :

To replace unprintable characters (as for a 64-character
terminal):

while (string[i = instr(string, "'{1}°")1])
string[i] = '@';

SEE ALSO:

inbuf, notbuf, notstr, scnbuf, scnstr, subbuf, substr

48-103 FOO RGO 3-69

isalpha Test for Alphabetic Character isalpha
NAME :

isalpha - Test for Alphabetic Character
SYNOPSIS:
BOOL isalpha(c)

FUNCTION:

isalpha tests whether its argument is an alphabetic character,
either 1lower- or upper-case. Since isalpha is implemented as a
C preprocessor macro, its argument can be any numerical type.

RETURNS :

isalpha is a Boolean rvalue.

EXAMPLE :
To find the end points of an alpha string:

if (isalpha(*first))
for (last = first; isalpha(*last); ++last)

14

SEE ALSO:

isdigit, islower, isupper, iswhite, tolower, toupper

BUGS :
Because it is a macro, isalpha cannot be called from non-C

programs, nor can its address be taken. Arguments with side
effects may be evaluated other than once.

3-70 48-103 FOO ROO

isdigit Test for Digit isdigit
NAME :

isdigit - Test for Digit
SYNOPSIS:
BOOL isdigit(c)

FUNCTION:

isdigit tests whether its argument is a decimal digit, 1i.e.,
between '0' and '9' inclusive. Since isdigit is implemented as
a C preprocessor macro, its argument can be any numerical type.

RETURNS :

isdigit is a Boolean rvalue.

EXAMPLE :

To convert a digit string to a number:

for (sum = 0; isdigit(*s); ++8)
sum = sum * 10 + *s - '0°';

SEE ALSO:

isalpha, islower, isupper, iswhite, tolower, toupper

BUGS:

Because it is a macro, isdigit cannot be called from non-C
programs, nor can its address be taken. Arguments with side
effects may be evaluated other than once.

48-103 F0O0 ROO 3-71

islower Test for Lower-Case Character islower
NAME :

islower - Test for Lower-Case Character
SYNOPSIS:
BOOL islower (c)

FUNCTION:

islower tests whether its argument 1is a lower-case character.
Since islower 1is implemented as a C preprocessor macro, its
argument can be any numerical type.

RETURNS :

islower is a Boolean rvalue.

EXAMPLE :

To convert to uppercase:

if (islower(c))
c =+ 'A' - 'a'; /* but see toupper () */

SEE ALSO:

isalpha, isdigit, isupper, iswhite, tolower, toupper

BUGS :

Because it is a macro, islower cannot be called from non-C
programs, nor can 1its address be taken. Arguments with side
effects may be evaluated other than once.

3-72 48-103 FOC ROO

isupper Text For Upper-Case Character isupper

NAME :

isupper - Test For Upper-Case Character

SYNOPSIS:
BOOL, isupper(c)

FUNCTION:

isupper tests whether its argument is an upper-case character.
Since isupper is implemented as a C preprocessor macro, its
argument can be any numerical type. '

RETURNS :

isupper is a Boolean rvalue.

EXAMPLE :

To convert to lowercase:

if (isupper(c))
c =+ 'a' - 'A'; /* but see tolower() */

SEE ALSO:.

isalpha, isdigit, islower, iswhite, tolower, toupper

BUGS:

Because it is a macro, isupper cannot be called from non-C
programs, nor can its address be taken. Arguments with side
effects may be evaluated other than once.

48-103 FO0O ROO ' 3-73

iswhite Test for Whitespace Character iswhite

NAME :

iswhite - Test for Whitespace Character
SYNOPSIS:
BOOL, iswhite(c)

FUNCTION:

iswhite tests whether its argument 1is a nonprinting character
code, 1i.e., whether its ASCII value is at or below that of ' '
(040) or at or above that of DEL (0177). Note that both NUL *\0'
and newline '\n' qualify as whitespace. Since iswhite is

implemented as a C preprocessor macro, its argument can be any
numer ical type.

RETURNS :

iswhite is a Boclean rvalue.

EXAMPLE :

To ékip whitespace:

while (iswhite(*s))
++8;

SEE AISO:

isalpha, isdigit, islower, isupper, tolower, toupper

BUGS:

Because it is a macro, iswhite cannot be called from non-C
programs, nor can its address be taken. Arguments with side
effects may be evaluated other than once.

3-74 48-103 F00 ROO

itob Convert Integer to Text in Buffer itob
NAME :

itob - Convert Integer to Text in Buffer
SYNOPSIS:

BYTES itob(s, i, base)
TEXT *s;
ARGINT 1i;
COUNT base;

FUNCTION:

itob converts the integer i to a text representation in the
buffer starting at s. The number is represented in the base
specified, using lower-case letters beginning with 'a' to specify
digits from 10 on. If (0 < base) the number i is taken as
unsigned; otherwise if (base < 0) negative numbers have a leading
minus sign and are converted to -base; if (base == 0) it is taken

as -10. Only magnitudes of base between 2 and 36 are generally
meaningful, but no check is made for reasonableness.

RETURNS :

The value returned is the number of characters used to represent
the integer, which in hexadecimal can vary from four to eight
digits, plus sign, depending upon the target machine.

EXAMPLE :

To output i in decimal:
wr ite (STDOUT, buf, itob(buf, i, 10));

SEE ALSO:

btoi, btol, ltob, stob

BUGS:

The length of the buffer is not specifiable. If (ibase| == 1),

the program can bomb; if (36 < }base}) unpredictable characters
can be inserted in the buffer.

48-103 FOO ROO 3-75

itols Convert Integer to Leading Low-Byte String itols
NAME :

itols - Convert Integer to Leading Low-Byte String
SYNOPSIS:

TEXT *itols(s, val)

TEXT *s;
COUNT val;
FUNCTION:

itols writes the integer val into the two-byte string at s, with
the least significant byte at s[{0] and the next least significant
byte at s[l]. No stronger storage boundary than that required
for char is demanded of s.

A number of de facto standard file formats have arisen on
machines that represent integers internally in this fashion;
itols provides a machine-independent way of writing such files.
RETURNS :
itols writes the two bytes at s and returns s as the value of the
function.
EXAMPLE :
To write a library header:
struct {
TEXT name[l4};
COUNT size;
} *p;
write(STDOUT, p->name, 14);
write(STDOUT, itols(buf, p->size), 2);
SEE ALSO:

1lstoi, 1lstol, 1ltols

3-76 48-103 F0O0 ROO

leave Leave a Control Region leave

NAME :

leave - Leave a Control Region
SYNOPSIS:

VOID leave(val)
BYTES val;
FUNCTION:
leave causes an exit from the control region established by the
most recent enter call. Execution resumes as if enter had just
performed a return with value val. Any number of functions may
be terminated early by a leave call, as long as all are dynamic

descendants of at least one enter call. The control region is
disestablished by the call to leave.

RETURNS :

leave will never return to its caller; instead val is used as the
return value of the most recent call to enter. If no instance of
enter is currently active, 1leave writes an error message to
STDERR and takes an error exit.

EXAMPLE :

To restart a function after each error message:

while (s = enter(&func, file))
putstr (STDERR, s, "\n", NULL);

so that one can write in, say, one of func's dynamic descendants:

if (counterr)
leave("missing parameter");

SEE ALSO:

_raise(5), _when(5), enter

48-103 FOO ROO 3-77

lenstr Find Length of a String lenstr
NAME :

lenstr - Find Length of a String
SYNOPSIS:

BYTES lenstr(s)
TEXT *s;

FUNCTION:

lenstr scans the text string starting at s to determine the
number of characters before the terminating NUL.

RETURNS :

The value returned is the number of characters in the string.

EXAMPLE :

To output a string:

‘write(STDOUT, 8, lenstr(s)):

3-78 48-103 FO0O0 ROO

1n Natural Logarithm 1n
NAME :

In - Natural Logarithm
SYNOPSIS:

DOUBLE 1ln(x)
DOUBLE x;

FUNCTION:

In computes the natural log of x to full double precision. It
works by expressing x as a fraction in the interval [1/2, 1),
times an integer power of two. The logarithm of the fraction is

approximated by a gsixth-order telescoped Taylor series
approximation.

RETURNS :

In returns the nearest internal representation to ln x, expressed
as a double floating value. If x is negative or zero, a domain
error condition is raised.

EXAMPLE:
arcsinh = ln(x + sgrt(x * x + 1));

SEE ALSO:

_domain(5), exp

48-103 FOO ROO 3-79

lower Convert Characters in Buffer to Lower-Case lower
NAME :

lower - Convert Characters in Buffer to Lower-Case

SYNOPSIS:

BYTES lower (s, n)

TEXT *s;
BYTES n;
FUNCTION:

lower converts the n characters in buffer starting at s to their
lower—-case equivalent, if possible.

RETURNS :

lower returns n.

EXAMPLE :

‘buf[lower (buf, size)] = '\0';

SEE ALSO:

tolower

3-80 48-103 F0O0 ROO

lstoi Convert Leading Low-Byte String to Integer 1stoi
NAME :

lstoi - Convert Leading Low-Byte String to Integer
SYNOPSIS:

COUNT 1stoi(s)
TEXT *s;

FUNCTION:

lstoi converts the two-byte string at s into an integer, on the
assumption that the leading byte is the least significant part of
the integer. No stronger storage boundary than that required for
char is demanded of s.

A number of de facto standard file formats have arisen on

machines that represent integers internally in this fashion;
lstoi provides a machine-independent way of reading such files.

RETURNS :
lstoi returns the integer representation of the two-byte integer
at s.
EXAMPLE :
To read a library header:
struct {

TEXT name[l4];
COUNT size;

} *p:

read(STDIN, p, 16);
p->size = lstoi(&p->size);

SEE ALSO:

itols, 1lstol, 1ltols

48-103 FOO ROO 3-81

lstol Convert Filesystem Date to Long lstol
NAME :

lstol - Convert Filesystem Date to Long
SYNOPSIS:

LONG 1lstol(s)
TEXT *s;

FUNCTION:

1stol converts the four-byte string at s into a 1long, on the
assumption that the bytes are ordered 2, 3, 0, 1, where 0 is the
least significant byte. This bizarre order is used to represent
dates in [IDRIS filesystems, due to their PDP-1l1l origins. No

stronger storage boundary than that required for char is demanded
of s.

RETURNS :

lstol returns the long representation of the four-byte integer at
S.

EXAMPLE :

time = 1lstol(&pi-d>n_actime);

SEE ALSO:

itols, 1lstoi, 1ltols

3-82 48-103 F0O0 ROO

ltob Convert Long to Text in Buffer ltob
NAME :

ltob - Convert Long to Text in Buffer
SYNOPSIS:

BYTES ltob(s, 1, base)
TEXT *s;
LONG 1;
COUNT base;

FUNCTION:

ltob converts the long 1 to a text representation in the buffer
starting at s. The number is represented in the base specified,
using lower-case letters beginning with 'a' to specify digits
from 10 on. If (0 << base), the number 1 is taken as unsigned;
otherwise if (base ¢ 0), negative numbers have a leading minus
sign and are converted to -base; if (base == 0), it is taken as

-10. Only values of base between 2 and 36 in magnitude are
generally meaningful, but no check is made for reasonableness.

RETURNS :

The value returned is the number of characters used to represent

the 1long, which, in hexadecimal, can be up to eight digits plus
sign.

EXAMPLE :

To output 1 as an unsigned decimal number:
write (STDOUT, buf, ltob(buf, 1, 10));

SEE ALSO:

btoi, btol, itob, stob

BUGS:

The length of the buffer is not specifiable. If (lbase| == 1)

the program can bomb; if (36 ¢ |basel|) indeterminate characters
can be inserted in the buffer.

48-103 FO0O ROO 3-83

ltols Convert Long to Filesystem Date ltols
NAME :

ltols - Convert Long to Filesystem Date
SYNOPSIS:

TEXT *ltols(plong, 1lo)

TEXT *plong;

LONG lo;
FUNCTION:
ltols writes the four bytes of the 1long 1lo into the buffer,
starting at plong, in the order 2, 3, 0, 1, where 0 is the least
significant byte. This order is used to represent dates in IDRIS
filesystems.
RETURNS :
ltols writes the four bytes at plong and returns plong as its
value.
EXAMPLE :

ltols (&pi-Yn_actime, time);

SEE ALSO:

itols, lstoi, 1lstol

3-84 48-103 F0O0 ROO

mapchar Map Single Character to Printable Representation mapchar

NAME :

mapchar - Map Single Character to Printable Representation

SYNOPSIS:

VOID mapchar(c, ptr)
TEXT c, *ptr;

FUNCTION:

mapchar writes a visible representation of the character ¢ into
a two-byte buffer pointed at by ptr. A printable character
(including space through '"') is written as a space followed by
the character. Other codes appear as:

CHARACTER BECOMES
(0, 07] \0 - \7
backspace \b
tab \t
newline \n
vertical tab \v
formfeed \f
carriage return \r
all other values \?
RETURNS :

Nothing. mapchar writes two characters at ptr[(0] and ptr(l].

EXAMPLE :

To output a visible representation of an arbitrary character, one
might write:

TEXT c, str{2];
mapchar (c,str);

putfmt ("%4b\n", str, 2);

SEE ALSO:

doesc

48-103 FOO ROO 3-85

match Match a Regular Expression match

NAME :

match - Match a Regular Expression
SYNOPSIS:

BOOL: match(buf, n, pat)

TEXT *buf;

BYTES n;

TEXT *pat;
FUNCTION:
match tests the n character buffer starting at buf for a match
with the encoded pattern starting at pat. It is assumed that the
pattern was built by the function pattern, whose manual page

describes the notation for regular expressions accepted by these
routines.

RETURNS :

match returns YES if the pattern matches.

EXAMPLE :

To test a line for the presence of three colons:

if (match(line, n, pattern(pbuf, '\0', ":*:x%x:")))
return (YES);

SEE ALSO:

pattern

3-86 48-103 FO0O0 ROO

max Test for Maximum max
NAME :

max - Test for Maximum
SYNOPSIS:
max(a, b)

FUNCTION:

max obtains the maximum of its two arguments a and b. Since max
is implemented as a C preprocessor macro, its arguments can be
any numerical type, and type coercion occurs automatically.

RETURNS :

max is a numerical rvalue of the form ((a < b) ? b a),
suitably parenthesized.

EXAMPLE :
hiwater = max(hiwater, level);

SEE ALSO:

min

BUGS :

Because it is a macro, max cannot be called from non-C programs,
nor can its address be taken. Arguments with side effects may be
evaluated more than just once.

48-103 FO0O0 ROO 3-87

min Test for Minimum min
NAME :

min - Test for Minimum
SYNOPSIS:
min(a, b)

FUNCTION:

min obtains the minimum of its two arguments a and b. Since min
is implemented as a C preprocessor macro, its arguments can be
any numerical type, and type coercion occurs automatically.

RETURNS :

min is a numerical rvalue of the form ((a < b) ? a b),
suitably parenthesized.

EXAMPLE :
- nmove = min(space, size);

SEE ALSO:

max

BUGS :

Because it is a macro, min cannot be called from non-C programs,
nor can its address be taken. Arguments with side effects may be
evaluated other than just once.

3-88 48-103 F00 ROO

mkord Make an Ordering Function mkord
NAME :

mkord - Make an Ordering Function
SYNOPSIS:

COUNT (*mkord(keyarray, lnordrule))()
TEXT **keyarray, *1lnordrule;

FUNCTION:

mkord uses the encoded text strings pointed at by 1lnordrule and
the elements of keyarray to produce a function, suitable for use
with sort, that compares two text buffers for lexical order. The
function produced can be declared (symbolically, at least) as:

COUNT ordfun(i, j, ppa)
BYTES i, Jj:
struct {
UCOUNT len;
TEXT buf[len];

} ***ppa;

That is, ppa is a pointer to an array of pointers to structures,
each of which consists of a two-byte buffer length len, followed
by the text buffer proper. The function is expected to compare
the text in the structure pointed at by (*ppa)[i] with that in
the structure pointed at by (*ppa)[j], returning a negative
number if the first 1is less than the second, zero if the two
compare equal, and positive otherwise.

keyarray is a NULL-terminated list of "keys", or ordering rules
to be used by ordfun, listed in reverse order of application;
i.e., keyarray[0] specifies a rule that is applied only if
keyarray[l] is NULL or if it (and all higher rules) says that the
two text buffers compare equal, on a given call to ordfun.

Each of the keys, as well as lnordrule, is a NUL-terminated
string that specifies a rule (as shown below) for ordering two
text buffers. 1lnordrule is the key tried last by ordfun; it also
specifies the default method of comparison for any keys in
keyarray that don't explicitly state a method. Thus, if
keyarray[0] is NULL, lnordrule alone specifies the ordering.

Strings in lnordrule and keyarray take the form:

[adln][b][r][t2]1[#.#-#.#%)]

48-103 F00 ROO 3-89

mkord - 2 - mkord

Where:

a - compares character-by-character in ASCI1I collating
sequence. A missing character compares lower than any
ASCII code.

b - skips leading whitespace.

d - compares character-by-character in dictionary collating
sequence; i.e., characters other than letters, digits or
spaces are omitted, and case distinctions among letters
are ignored.

1l - compares character-by-character in ASCII collating
sequence, except that case distinctions among letters
are ignored.

n - compares by arithmetic value, treating each buffer as a
numeric string consisting of optional whitespace,
optional minus sign and digits with an optional decimal
point.

r - reverses the sense of comparisons.

t? - uses ? as the tab character for determining offsets
(described below).

#.%— #.# describes offsets from the start of each text buffer
for the beginning (first character used) and, after the
minus '-', for the end (first character not used) of the
text to be considered by the rule. The number before
each dot '.' is the number of tab characters to skip,
and the number after each dot is the number of
characters to skip thereafter. Thus, in the string
"abcd=efgh", with '=' as the tab character, the offset
"1.2" would point to 'g', and "0.0 would point to 'a'.
A missing number # is taken as zero; a missing final
pair "-#.#" points just past the last of the text in
each of the buffers to be compared. If the first offset
is past the second offset, the buffer is considered
empty.

If no tab character is specified, for each tab to be skipped a
string of spaces, followed by nonspaces other than newlines, is
skipped instead. Thus, in the string " ABC DEF GHI", the offset
"3" would point to the space just after 'I°'.

Only one of 'a', 'd', 'l' or 'n' may be present in a rule, and no
more than ten ordering rules can be specified by keyarray.

3-90 48-103 FO0O0 ROO

mkord -3 - , mkord
RETURNS :

If all keys make sense, mkord returns a pointer to an internal
ordering function as described above; otherwise it returns NULL.

Various internal tables are rewritten, on each call to mkord, so
only one ordering function may be defined at a time.

EXAMPLE:

$def ine MAXKEY 10

INTERN struct {

BYTES n;

TEXT *key[MAXKEY+1];

} kstack {MAXKEY}; /* kstack.key[MAXKEY] is always NULL */

getflags(&ac, &av, "+*:+[#.4-#.# ab d Ll nr t2]", &kstack);
order = mkord(&kstack.key[kstack.n], "a");

sort(nlines, order, &swapfn, linptrs);

SEE ALSO:

sort

BUGS:

It's useful, but difficult to use.

48-103 FO0O ROO 3-91

nalloc Allocate Space on the Heap nalloc

NAME :

nalloc - Allocate Space on the Heap
SYNOPSIS:

TEXT *nalloc(nbytes, link)
BYTES nbytes;
TEXT *link;

FUNCTION:

nalloc allocates space on the heap for an item of size nbytes,
then writes 1link in the =zeroth integer location. The space
allocated is guaranteed to be at least nbytes long, starting from

the pointer returned, which pointer is guaranteed to be on a

proper storage boundary for anything. The heap is grown as
necessary.

RETURNS :

nalloc returns a pointer to the allocated cell if successful;
otherwise, it returns a NULL pointer.

EXAMPLE :
To build a stack:
struct cell {
struct cell *prev;
... rest of cell

} *top:

top = nalloc(sizeof (*top), top); /* pushes a cell */

SEE ALSO:

alloc, free, sbreak(4)

BUGS:

The size of the allocated cell is stored in the integer 1location
right before the wusable part of the cell; hence it is easily
clobbered. This number is related to the actual cell size in a
most system- dependent fashion and should not be trusted.

3-92 48-103 F0O0 ROO

notbuf Find First Occurrence of Character Not In Set notbuf
NAME :

notbuf - Find First Occurrence in Buffer of Character Not In Set
SYNOPSIS:

BYTES notbuf(p, n, s)
TEXT *p, *s;
BYTES n;
FUNCTION:
notbuf scans the n-character buffer starting at p for the first
instance of a character not in the NUL-terminated set starting at

s. If the NUL character is to be part of the set, it must be the
first character in the set.

RETURNS :

notbuf returns the index of the first character in p not
contained in the set s, or the value n if all buffer characters
are in the set.

EXAMPLE :

To check that an input string contains only digits:

if (notbuf (buf, n, "0123456789") < n)
errfmt("illegal number\n");

SEE ALSO:

inbuf, instr, lenstr, notstr, scnbuf, scnstr, subbuf, substr

48-103 FOO ROO 3-93

notstr Find First Occurrence of Character Not In Set notstr

- NAME :

notstr - Find First Occurrence in String of Character Not In Set
SYNOPSIS:

BYTES notstr(p, s)
TEXT *p, *s;

FUNCTION:

notstr scans the NUL-terminated string starting at p for the

first occurrence of a character not in the NUL-terminated set
starting at s.

RETURNS :

notstr returns the index of the first character in p not
contained in the set s, or the index of the terminating NUL if
all are in s.

EXAMPLE :

To check a string for non-numeric characters:

if (str{notstr(str, "0123456789")])
errfmt("illegal number\n");

SEE ALSO:

inbuf, instr, notbuf, scnbuf, scnstr, subbuf, substr

3-94 48-103 FO0O0 ROO

ordbuf Compare Two NUL-Padded Buffers for Lexical Order ordbuf
NAME :

ordbuf - Compare Two NUL-Padded Buffers for Lexical Order
SYNOPSIS:

COUNT ordbuf(sl, s2, n)
TEXT *sl, *s2;
COUNT n;
FUNCTION:
ordbuf compares two text buffers, character-by-character, for
lexical order in the character collating sequence. The first

buffer starts at sl, the second at s2. Both buffers are n
characters long.

Note that encoded numbers, such as int or double, seldom sort
properly when treated as text strings.

RETURNS :

The value returned is -1 when sl is lower, 0 when sl equals s2,
and +1 when s2 is lower.

EXAMPLE :

sort(nthings, &ordbuf, &swap, &data);

SEE ALSO:

sort

48-103 F00 ROO 3-95

pathnm Complete a Pathname pathnm
NAME :

pathnm - Complete a Pathname
SYNOPSIS:

TEXT *pathnm(buf, nl, n2)
TEXT *buf, *nl, *n2;

FUNCTION:

pathnm builds a pathname in buf that is derived from the pair of
NUL-terminated names pointed at by nl and n2.

If the name pointed at by n2 ends in ':' or ']' then the longest
suffix of the string pointed at by nl that does not contain a
':', ']', or '/' is appended to it in buf. If the string pointed
at by n2 does not end in ':' or ']', then a '/' followed by the
same suffix is appended to the n2 string in buf.

Thus, the following results are obtained:

nl n2 buf

X Y y/x

X a: a:x

X [2,3] [2,3]x
z/x Yy y/x
a:x b: b:x
:fl:x :f2: :f2:x

This scheme is designed to be maximally convenient on numerous

operating systems, provided that truly esoteric filenames, such
as "a/3:", are avoided.

RETURNS :

pathnm returns the concatenation of n2, possibly a '/', and the

suffix of nl, NUL terminated in the area pointed at by buf. The
value of the function is always buf.

BUGS:

There is no way to specify the size of buf, which must be at
least lenstr(nl) + lenstr(n2) + 2 characters.

3-96 48-103 FOO ROO

pattern Build a Regular Expression Pattern pattern

NAME :

pattern - Build a Regular Expression Pattern
SYNOPSIS:

TEXT *pattern(pat, delim, p)
TEXT *pat, delim, *p;

FUNCTION:

pattern builds an encoded pattern in the string buffer starting
at pat, suitable for use with amatch or match in matching regular
expressions. The pattern is encoded from the string p, which
should be terminated by an unescaped instance of delim, but which
must be NUL terminated to prevent an ill-formed pattern from
compounding the code. It is assumed that p points just past the
left delimiter.

Code values for the encoded pattern are listed in the manual page
for amatch; simple usage, however, requires no knowledge of these
inner workings. It is sufficient to know that the encoded string
at pat will never occupy more than twice as many bytes as the
string p, counting delimiters at both ends.

A regular expression is a shorthand notation for a sequence of
target characters contained in a temporary file line. These
characters are said to "match"™ the regular expression. The
following regular expressions are allowed:

e An ordinary character is considered a regular expression which
matches that character.

e The character sequences "\b", "\f", "\n", "\r", "\t", "\v", in
upper- or lower-case, are regular expressions each
representing the single character cursor movements of
(backspace>, {(formfeed)>, <(newline>, {(return>, <(tab>, (vertical
tab), respectively. Additionally, any single character in the
character set may be represented by the form "\ddd" where ddd
is the one to three digit octal representation of the
character; this is the safest way to match most nonprinting
characters, and the only way to match ASCII NUL (\O).

e A '?' matches any single character except a <(newline).
e A 'A' as the leftmost character of a series of regular

expressions constrains the match to begin at the beginning of
the line.

48-103 F0O ROO 3-97

pattern -2 - pattern

A 'A' following a character matches zero or more occurrences
of that character. This pattern may, thus, match a null
string which occurs at the beginning of a line, between pairs
of characters or at the end of the line. A 'A' enclosed in
"\(" and "\)", or following either a '\' or an initial 'A', is
taken as a literal 'A', however.

A 'A' in any position other than the ones mentioned above is
taken as a literal 'A°’.

A '*' matches zero or more characters, not including
{newline>. It is conceptually identical to the sequence "?A".

A character string enclosed in square brackets "[]" matches a
single character which may be any of the characters in the
bracketed list, but no other. However, if the first character
of the string is a '!', this expression matches any character
except <(newline)> and the ones in the bracketed list. A range
of characters in the character collating sequence may be
indicated by the sequence of (lowest character)>, '-', <highest
character>. ([z-a] will not work and it is ignored.) Thus,
[eJ-maE] 1is a regular expression which will match one
character that may be E, a, e, j, k, 1 or m. When matching a
literal "-", the "-" must be the first or 1last character in
the bracketed 1list; otherwise it is taken to specify a range
of characters.

A regular expression enclosed between the sequences "\(" and
"\)" tags this expression in a way useful for substitutions,
but otherwise has no effect on the characters the expression
matches. (See the s command for further explanation.)

A concatenation of regular expressions matches the
concatenation of strings matched by individual regular
expressions. In other words, a regular expression composed of
several "sub expressions" will match a concatenation of the
strings implied by each of the individual "subexpressions".

A '$' as the right-most character after a series of regular
expressions constrains the match, if any, to end at the end of
the line prior to the <{(newline).

A null regular expression standing alone stands for the last
regular expression encountered.

Note that arbitrary grouping and alternation are not fully
supported by this notation, as the text patterns utilized are not
the full class of regular mathematical expressions.

3-98 48-103 F0OO ROO

pattern -3 - , pattern
RETURNS :

pattern returns pat, if no syntax errors are found in p, else
NULL.

EXAMPLE :

pattern(pbuf, '0', "A??22222T ");
while (match(buf, n = getlin(buf, MAXBUF), pbuf))
putlin(buf, n);

SEE ALSO:

match

48-103 FOO ROO 3-99

prefix Test if One String is a Prefix of the Other prefix
NAME :

prefix - Test if One String is a Prefix of the Other
SYNOPSIS:

BOOL prefix(sl, s2)
TEXT *sl, *s2;

FUNCTION:

prefix compares two strings, character-by-character, for
equality. The first string starts at sl and is terminated by a
NUL '\0'; the second is likewise described by s2. The strings
must match up to but not including the NUL terminating the second
string; i.e., s2 must be a prefix of sl.

RETURNS :

The value returned is YES if s2 is a prefix of sl, else NO.
EXAMPLE :

if (prefix(line, "#include ")
doinclude();

SEE ALSO:

cmpbuf, cmpstr

3-100 48-103 FOO0 ROO

putc Put a Character to Output Buffer putc
NAME :

putc - Put a Character to Output Buffer
SYNOPSIS:

COUNT putc(pfio, c)
FIO *pfio;
COUNT c;

FUNCTION:
If ¢ is not negative, it is treated as a character to be copied
to the file controlled by the FIO buffer at pfio; otherwise putc
simply ensures that all characters in the buffer are written out.
It may be necessary to explicitly drain the output buffer in this
fashion if putc is used to buffer output, unless pfio has been
initialized by finit which then will take care to drain the
output buffer on exit from the user program. If the pfio buffer
has been opened for WRITE, the output buffer is drained whenever
a newline is encountered.
RETURNS :
putc returns c. An error exit occurs if any writes fail, or if
(pfio == NULL).
EXAMPLE :
To copy a file, character by character:

while (putc(&stdout, getc(&stdin)) != EOF)

SEE ALSO:

finit, getc, getch, putch

BUGS:

Arbitrary characters, as opposed to ASCII text, are often
sign-extended to make negative integers; these quietly disappear
on putc calls.

48-103 FOO ROO 3-101

putch Put a Character to stdout Buffer putch
NAME :

putch - Put a Character to stdout Buffer
SYNOPSIS:

COUNT putch(c)
COUNT c;

FUNCTION:

If ¢ is not negative, it is treated as a character to be copied
to the file controlled by the FIO buffer stdout; otherwise putch
simply ensures that all characters in the buffer are written out.
It should not be necessary to explicitly drain the stdout buffer
in this fashion if putch is used to buffer text output.

RETURNS :

putch returns c¢. An error exit occurs if any writes fail.

EXAMPLE:

To copy a file, character by character:

while (putch(getch()) != EOF)

[4

SEE AIL.SO:

finit, getc, getch, putc, stdout

BUGS:

The stdout buffer is drained only when the character written is
a newline. If stdout has not been explicitly initialized before
use by the call

finit (&stdout, STDOUT, WRITE);

3-102 48-103 FO0O ROO

putch -2 - , putch
a partial line may not be drained on program termination. If
nontext output is to be written to stdout, the call

finit(&stdout, STDOUT, BWRITE);

should be made before stdout is used. Arbitrary characters, as
opposed to ASCII text, are often sign-extended to make negative
integers; these quietly disappear on putch calls unless masked
properly.

48-103 FOO ROO 3-103

putf Output Arguments Formatted putf
NAME :

putf - Output Arguments Formatted
SYNOPSIS:

VOID putf(pfio, fmt, argl, arg2, ...)
FIO *pfio;
TEXT *fmt;

FUNCTION:

putf converts a series of arguments argl,... to text, which is
output to the file controlled by the FIO buffer at pfio, under
control of a format string at fmt. The format string consists of
literal text to be output, interspersed with <(field-specifier)s
that determine how the arguments are to be interpreted and how
they are to be converted for output.

A (field-specifier)> takes the form:
${+z!-z]1[#])<{field-code)

That is, a (field-specifier) consists of a literal '%', followed
by an optional "+z" or "-2", where 2z can be any character,
followed by an optional field width #, and is terminated by a
{(field-code>. If present, a "+z" calls for the field to be
left-filled with the character z, while "-z" calls for the field
to be right-filled with the character =z. If present, a #
specifies total width in characters of the field to be output,
and is either a decimal integer, or the letter 'n'. If an 'n' is
given, then the value of the next argument from the argument list
is taken to specify the field width.

For example, if argl is a double with the value 100.53, then:

putf (&stdout, "%+*9.2f", argl);
putf (&stdout, "%+*n.nf", 9, 2, argl);

both will output:

xxx]100.53

3-104 48-103 FOO ROO

putf - 2 - _ putf

If the number of characters needed to represent the output item
is less than the field width, fill characters are used to left or
right pad the item up to the field width. By default, left fill
with spaces is used. The default field width is zero.

A (field-code) is composed of a <modifier>, a <(specifier)> or
both. The <(specifier> defines how an output field is to be
represented, and is one of the following:

char integer

short integer

integer

long integer

NUL-terminated string

buffer of specified length

double output in scientific notation (e.g., 1.00e+00)
double output in fixed point notation (e.g., 1.00)
fill characters (usually spaces) only

LI

Wononohoh

R HQQOTHHOO

A <(modifier) causes an integer value to be output as:

ASCII characters

hexadecimal (no leading "Ox")
octal (no leading '0')
unsigned decimal

coo9®
Y nonon

If no ¢(specifier) is given, it is presumed to be 'i', and a
(modifier> given from the above series will be taken to apply to
the implied integer field. If a {(specifier> of 'c', 's', 'i' or
"1' is given with no <(modifier)>, the associated value is output
in signed decimal.

In addition, an optional precision modifier, ".#", 1limits the
number of characters actually output with a (specifier> of 'p' or
'b', and specifies the number of fractional digits output with a
(specifier)> of 'd' or 'f'. Like the field width specifier, the
precision modifier # may be either an explicit integer, or an
‘n', to make use of the next argument value in sequence.

Hence a <(field-code) usually consists of one of the following
combinations of (specifier> and (modifier):

isliil} /* integer output */

£} /* string or floating output */
/* default specifier is i */
/* just output fill characters */

48-103 F00 ROO 3-105

putf -3 =~ putf

Any other character in the place of a (field-code)> is taken as a
single 1literal character to be output, permitting a '%' to be
output with a "%%" specification.

The 'a' modifier treats the integer as a sequence of characters
of the appropriate 1length, and outputs the characters in
descending order of their ignificance within the number. This
permits multi-yte binary data to be written to a file in a
host-independent manner.

A string of characters may be output under the 'p' field code, if
it is NUL-terminated, or under 'b' if its length is known.

If arg2 is a vector containing the ll-character NUL-terminated
string "hello world", either of these calls would output the
string:

putf (&stdout, "%p\n", arg2);
putf (&stdout, "%b\n", arg2, 1ll1);

In the first case, the argument is a pointer to the beginning of
the string; in the second case two arguments are used, one a
pointer to the start of the string and the second an integer
specifying its length. In either case, the number of characters
actually output will be no more than the precision modifier, if
it is present and nonzero.

A double (or float) number may be output with 'd‘' or‘ 'f', the
precision modifier specifying the number of characters to the

right of the decimal point. For the 'd' field code, the number
is written in the scientific notation form:

[-J#.#*e(+{-}#x*

There is always one digit to the left of the decimal point; there
are either two or three digits in the exponent, depending on the
target machine. The 'f' field code prints the number in fixed
point format, i.e., without exponent. In either case, no more
than 24 characters will be output.

For example, if argl is a double with the value 100.53, then:
putf (&stdout, "%1.44\n", argl);

would output it as:

1.0053e+02

3-106 48-103 F0O0 ROO

putf - 4 - putf

while:
putf (&stdout, "$%6.nf", 2, argl);
would output it in fixed point notation as:
$100.53

The 'x' field code consumes no arguments; it is a convenient way
to output pure filler.

RETURNS :

Nothing. An error exit occurs if any writes fail, or if (pfio ==
NULL) .

EXAMPLE :

putf (&stdout, "%i errors in file %$p\n", nerrors, fname) ;

SEE ALSO:

decode, dtoe, dtof, errfmt, putfmt
BUGS:

A call with more <(field-specifier)>s than argument variables will
produce unpedictable results.

48-103 FOO ROO | 3-107

putfmt Format Arguments to stdout putfmt
NAME :

putfmt - Format Arguments to stdout

SYNOPSIS:

VOID putfmt(fmt, argl, arg2, ...)
TEXT *fmt;

FUNCTION:

putfmt writes formatted output to the file controlled by the FIO
buffer stdout, wusing the format string at fmt and the arguments
argx, in exactly the same way as putf.

RETURNS :

Nothing. An error exit occurs if any writes fail.

EXAMPLE :

.putfmt ("%i:%p\n", lineno, line);

SEE ALSO:

decode, errfmt, finit, putf, stdout

BUGS:

The stdout buffer is drained only when the last character written

is a newline. If stdout has not been explicitly initialized
before use by the call

finit (&stdout, STDOUT, WRITE);

a partial line may not be drained on program termination. If
nontext output is to be written to stdout, the call

finit(&stdout, STDOUT, BWRITE);

should be made before stdout is used.

3-108 48-103 F0O0 ROO

putl Put a Text Line from Buffer putl
NAME: putl - Put a Text Line from Buffer
SYNOPSIS:
BYTES putl(pfio, s, n)
FIO *pfio;
TEXT *s;
BYTES n;
FUNCTION:
putl copies characters from the n character buffer starting at s
to the file controlled by the FIO buffer at pfio.
RETURNS :
putl returns n. An error exit occurs if any writes fail, or if
(pfio == NULL).
EXAMPLE :
To copy a text file, line-by-line:
while (putl(&stdout, buf, getl(&stdin, buf, BUFSIZE)))
i
SEE ALSO:

getl, getlin, putlin

48-103 F0OO ROO 3-109

putlin : Put a Text Line to stdout putlin
NAME :

putlin - Put a Text Line to stdout
SYNOPSIS:

BYTES putlin(s, n)

TEXT *s;
BYTES n;
FUNCTION:

putlin copies characters from the n character buffer starting at
8 to the file controlled by the FIO buffer stdout.

RETURNS :

putlin returns n. An error exit occurs if any writes fail.

EXAMPLE :

To copy a text file, line by line:

while (putlin(buf, getlin(buf, BUFSIZE)))

[

SEE ALSO:

finit, getl, getlin, putl, stdout

BUGS:

The stdout buffer is drained only when the last character written

is a newline. If stdout has not been explicitly initialized
before use by the call:

finit (&stdout, STDOUT, WRITE);

a partial line may not be drained on program termination. If
nontext output is to be written to stdout, the call

finit(&stdout, STDOUT, BWRITE);

should be made before stdout is used.

3-110 48-103 FOO ROO

putstr Copy Multiple Strings to File putstr
NAME :

putstr - Copy Multiple Strings to File

SYNOPSIS:
VOID putstr(fd, argl, arg2, ..., NULL)
FILE fd;
TEXT *argl, *arg2, ...;
FUNCTION:

putstr writes a series of strings out to a file with descriptor
fa. Each string begins at argl,... and is terminated by a NUL
'"\0'. The series of string arguments is terminated by a NULL
pointer argument. = For each string, putstr invokes lenstr to
discover its size and issues a call directly to write; therefore,
putstr should only be used for low volume output.

RETURNS :

Nothing.
EXAMPLE :
putstr (STDERR, fname, ": bad format\n", NULL);

SEE ALSO:

lenstr, write(4)

BUGS:

Forgetting the terminating NULL pointer is usually disastrous.

48-103 FOO ROO , 3-111

remark Print Nonfatal Error Message remark
NAME :

remark - Print Nonfatal Error Message
SYNOPSIS:

VOID remark(sl, s2);
TEXT *sl, *s2;

FUNCTION:

remark prints an error message to STDERR, consisting of the
concatenation of strings sl and s2, followed by a newline. It
then returns to the caller for further processing.

RETURNS :

Nothing.
EXAMPLE:

- if ((fd = open(name, READ, 0)) < 0)
remark("can't open: ", name);

SEE AILSO:

errfmt, error, putstr

- 3-112 48-103 F0OO0 ROO

scnbuf Scan Buffer for Character scnbuf
NAME :

scnbuf - Scan Buffer for Character
SYNOPSIS:

BYTES scnbuf(s, n, c)
TEXT *s;
BYTES n;
TEXT c;

FUNCTION:

scnbuf looks for the first occurrence of a specific character c
in an n character buffer starting at s.

~RETURNS :

scnbuf returns the index of the first character that matches c,
or n if none.

EXAMPLE :

To map keybuf[] characters into subst[] characters:

if ((n = scnbuf (keybuf, KEYSIZ, *s)) != KEYSIZ)
*g = gubst[n]};

SEE ALSO:

inbuf, instr, notbuf, notstr, scnstr, subbuf, substr

48-103 FOO ROO 3-113

scnstr Scan String for Character
NAME :

scnstr - Scan String for Character
SYNOPSIS:

BYTES scnstr(s, c)
TEXT *s, cC;

FUNCTION:

scnstr looks for the first occurrence of a specific
in a NUL-terminated target string s.

RETURNS :

scnstr returns the index of the first character that
or the index of the terminating NUL if none does.

EXAMPLE :

To map keystr[] characters into subst[] characters:

if (s[n = scnstr(keystr, *s)])
*g = gsubst{n];

SEE ALSO:

inbuf, instr, notbuf, notstr, scnbuf, subbuf, substr

scnstr

character

matches

c

Cr

3-114 48-103 FO0O0 ROO

8in Sine in Radians Sin
NAME :

sin - Sine in Radians
SYNOPSIS:

DOUBLE sin(x)
DOUBLE x;

FUNCTION:
sin computes the sine of x, expressed in radians, to full double
precision. It works by scaling x in quadrants, then computing
the appropriate sin or cos of an angle in the first half
quadrant, using a sixth-order telescoped Taylor series
approximation. If the magnitude of x is too large to contain a
fractional quadrant part, the value of sin is O.
RETURNS :
sin returns the nearest internal representation to sin x,
expressed as a double floating value.
EXAMPLE:
To rotate a vector through the angle theta:

xnew = xold * cos(theta) - yold * sin(theta);

ynew = xold * sin(theta) + yold * cos(theta);
SEE ALSO:

cos

48-103 FOO ROO 3-115

sort Sort Items in Memory sort
NAME :

sort - Sort Items in Memory
SYNOPSIS:

VOID sort(n, ordf, excf, base)
ARGINT n;
COUNT (*ordf) ();
VOID (*excf)();
TEXT *base;

FUNCTION:

sort orders n items in memory using the quicksort algorithm. It
decides whether items i and j are in order by performing the call

(*ordf) (i, j, &base);

where i and j are both guaranteed to be in the range [0, n). If
(item i is to sort less than item j) then the value returned must
be 1less than zero; otherwise if (item i is to sort equal to item
j) then the value returned must be zero; the value is otherwise
unconstrained.

To exchange two items, sort makes the call
(*excf) (i, j, &base);

and henceforth presumes that the items are interchanged.

Note that it is the address of base that 1is passed to both
functions. This permits multiple parameters to follow base in
the original argument list, which can be accessed as members of
a structure pointed to by &base, providing the structure is
declared with careful knowledge of how C passes arguments. For
ordering and exchange functions in the know, base can also simply
be ignored.

RETURNS :

Nothing. The items are sorted in place.

3-116 48-103 FOO ROO

sort - 2 - , : sort
EXAMPLE :
To sort an array of short integers in ascending order:
COUNT iord(i, j. pa)
COUNT i, Jj, **pa;

{
;eturn ((*pa)[i] - (*pa)(il):

VOID iswap(i, j., pa)
COUNT i, Jj, **pa;

{
COUNT t;
t = (*pa)[i], (*pa)[i] = (*pa)[3], (*pa)[3] = t;

}
VOID isort(a, n)-
COUNT a[], n;

sort(n, &iord, &iswap, a);

}

BUGS :

It cannot sort more than half of memory, 1i.e.; n 1is taken as
signed and must be positive.

48-103 F0O ROO 3-117

sqrt Real Square Root sqrt
NAME :

sqrt - Real Square Root
SYNOPSIS:

DOUBLE sqgrt(x)
DOUBLE x;

FUNCTION:

sqrt computes the square root of x to full double precision. It
works by expressing x as a fraction in the interval [1/2, 1),
times an integer power of two. The square root of the fraction

is obtained by three iterations of Newton's method, using a
quadratic approximation as a starting value.

RETURNS :

sqrt returns the nearest internal representation to sqrt x,
expressed as a double floating value. If x is negative, a domain
error condition is raised.

EXAMPLE :

To find the magnitude of a vector:
mag = sqrt(x * x + y * y);

SEE ALSO:

- Qomain(5), exp

3-118 48-103 FOO ROO

squeeze Delete Specified Character from Buffer squeeze
NAME :

squeeze - Delete Specified Character from Buffer
SYNOPSIS:

BYTES squeeze(s, n, C)
TEXT c, *s;
BYTES n;

FUNCTION:

squeeze deletes character c from the n-character buffer starting
at s, and compresses it in place.

RETURNS :

squeeze returns the number of chararcters remaining in s, which
is in the interval [0, n].

EXAMPLE :

To write out a buffer after stripping off NULs and carriage
returns:

write(STDOUT, buf, squeeze(buf, squeeze(buf, BUFSIZE, "\0'"), '\rf)):

SEE ALSO:

fill

48-103 F0OO ROO ' : 3-119

stdin The Standard Input Control Buffer stdin
NAME :

stdin - The Standard Input Control Buffer
SYNOPSIS:
FIO stdin;

FUNCTION:

stdin is an FIO control buffer initialized for input from STDIN.

EXAMPLE :

To count lines:

for (nl = 0; getl(&stdin, buf, BUFSIZE); ++nl)

[4

SEE ALSO:

stdout

3-120 48-103 FOO ROO

stdout The Standard Output Control Buffer stdout
NAME :

stdout - The Standard Output Control Buffer
SYNOPSIS:
FIO stdout;

FUNCTION:

stdout is an FIO control buffer initialized for output to STDOUT.
EXAMPLE :
putl(&stdout, outbuf, outsiz);

SEE ALSO:

finit, stdin

BUGS:

stdout should not be used for nontext output unless initialized

before use by:

finit (&stdout, STDOUT, BWRITE);

48-103 F00 ROO 3-121

stob Convert Short to Text in Buffer stob
NAME :

stob - Convert Short to Text in Buffer
SYNOPSIS:

BYTES stob(s, i, base)
TEXT *s;
COUNT 1i;
COUNT base;

FUNCTION:

stob converts the short i to a text representation in the buffer
starting at s. The number is represented in the base specified,
using lower-case letters beginning with 'a' to specify digits
from ten on. If (0 ¢ base), the number i is taken as unsigned;
otherwise if (base ¢ 0), negative numbers have a leading minus
sign and are converted to -base; if (base == 0), it is taken as
-10. Only magnitudes of base between 2 and 36 are generally
meaningful, but no check is made for reasonableness.

RETURNS :

The value returned is the number of characters used to . represent
the short, which, in hexadecimal, can be up to four digits plus
sign.

EXAMPLE :

To output i in decimal:
write(STDOUT, buf, stob(buf, i, 10));

SEE ALSO:

btoi, btol, btos, itob, ltob

BUGS:
The length of the buffer is not specifiable. If (lbase] == 1)

the program can bomb; if (36 ¢ |base]) unpredictable characters
can be inserted in the buffer.

3-122 48-103 F00 ROO

subbuf Find Occurrence of Substring in Buffer subbuf
NAME :

subbuf - Find Occurrence of Substring in Buffer
SYNOPSIS:

BYTES subbuf(s, ns, p, np)

TEXT *s, *p;

BYTES ns, np;
FUNCTION:
subbuf scans the buffer starting at s of size ns, and looks for
the first occurrence of the substring at p of size np.
RETURNS :
The value returned is the index in s of the left-most character

in the substring if subbuf is successful; otherwise, ns is
returned.

EXAMPLE :

for(p = buf, i = size; (j = subbuf(p, i, "\Nr\n", 2)) < i;
p=+3+2,1i=-73+2)
{
write(fd, p, 3);
write(fd, "\n", 1);
}
SEE ALSO:

inbuf, instr, match, notbuf, notstr, scnbuf, scnstr, substr

48-103 FO0O ROO 3-123

substr Find Occurrence of Substring substr
NAME :

substr - Find Occurrence of Substring

SYNOPSIS:

BYTES substr(s, p)
TEXT *s, *p;

FUNCTION:

substr scans the string starting at s, and looks for the first
occurrence of the substring at p.

RETURNS :

The value returned is the index in s of the left-most character
in the substring if substr is successful; otherwise, the index of
the terminating NUL is returned.

EXAMPLE :

if (line[substr(line, "Page")])
putfmt ("%s: %\n", 1lno / 66 + 1, line);

SEE ALSO:

inbuf, instr, match, notbuf, notstr, scnbuf, scnstr, subbuf

3-124 48-103 FOO ROO

tolower Convert Character to Lower-Case if Necessary tolower

NAME :

tolower - Convert Character to Lower-Case if Necessary
SYNOPSIS:
tolower (c)

FUNCTION:

tolower converts an upper-case letter to its lower -case
equivalent, leaving all other characters unscathed.

RETURNS :

tolower is a numerical rvalue guaranteed not to be an upper-case
character.

EXAMPLE :

To accumulate a hexadecimal digit:

if ('a' <= c & c <= 'f' || 'A' (= c & c (= 'F')
sum = sum * 10 + tolower(c) + (10 - 'a');

SEE ALSO:

isalpha, isdigit, islower, isupper, iswhite, toupper

BUGS:

Because it is a macro, tolower cannot be called from non-C
programs, nor can its address be taken. Arguments with side
effects may be evaluated more than once.

48-103 F0O0 ROO . 3-125

toupper Convert Character to Upper-Case if Necessary toupper
NAME :

toupper - Convert Character to Upper-Case if Necessary
SYNOPSIS:
toupper (c)

FUNCTION:

toupper converts a lower-case letter to its upper-case
equivalent, leaving all other characters unscathed.

RETURNS :

toupper is a numerical rvalue guaranteed not to be a lower-case
character.

EXAMPLE :

To convert a character string to upppercase letters:

for (i = 0; i < size; ++i)
buf[i] = toupper(buf[i]);

SEE ALSO:

isalpha, isdigit, islower, isupper, iswhite, tolower

BUGS:

Because it is a macro, toupper cannot be called from non-C
programs, nor can its address be taken. Arguments with side
effects may be evaluated more than once.

3-126 48-103 FOO ROO

usage Output Standard Usage Information usage
NAME :

usage - Output Standard Usage Information
SYNOPSIS:

COUNT usage(msg)
TEXT *msg;

FUNCTION:

usage outputs to STDERR the string "usage: <(pname)> ", followed
by the string pointed to by msg, where {pname> is the name by
which the current program was invoked. If msg is terminated with
a newline, usage immediately takes an error exit.

RETURNS :
If usage returns to the caller, its value 1is the number of
characters output to STDERR.

EXAMPLE :

if (1 < aflag + bflag + nflag)
usage("-[a b n] <(files>\n");

SEE ALSO:

_pname(4), getflags

48-103 FOO ROO 3-127

Cint
main
—pname
brk
chdir
close
creat
create
ctime
envir
exit
getuid
lseek
onexit
open
pause
read
remove
sbreak
time
uname
unlink
write

48-103 F0OO ROO

CHAPTER 4
C SYSTEM INTERFACE LIBRARY

TABLE OF CONTENTS

C Interface to Operating System
Enter a C Program

Program Name

Change Core Allocation

Change Default Volume and Account
Close a File

Create a New File

Open an Empty Instance of a File
Convert Date and Time to ASCII
C Run-Time Environment
Terminate Process

Get User and Group Identity
Move Read/Write Pointer

Call Function on Program Exit
Open a File

Pause Process

Read Characters from a File
Remove a File

Set System Break

Get Date and Time

Create a Unique Filename

Remove Directory Entry

Write Characters to a File

BB D DD DD DD D
|
HEOVONOOEN

cint C Interface To Operating System Ccint
NAME :

Cint - C Interface to Operating System

FUNCTION:

C programs operating in user mode under any operating system may
assume the existence of several functions which implement program
entry/exit and low-level input/output (I/0). This section
documents these functions, plus several «critical presumptions
that can be made about the environment supplied, in the most
portable of terms. Details of actual implementations may be
found in the various C interface manuals; but these are best
ignored if portability is considered a virtue.

Each C program must provide a function main(), detailed on a
separate manual page that has access to the command line used to
invoke the program. Returning from main, or calling exit(),
terminates program execution and reports, at most, one bit of
status, success or failure, to the invoker.

C programs may assume the existence of three open text files:
STDIN (file descriptor (fd4d) 0), STDOUT (fd 1), and and STDERR (fd
2). The first may be used with read() and close(); the latter
two may be used with write() and close().

The standard input, STDIN and standard output, STDOUT may be
redirected on the command line (transparently to the program);
the standard error file, STDERR is a reliable destination for
error messages. The following conventions apply to 1/0:

filename is a string, hence a NUL terminated hence a
pointer to char when used as an argument. For
maximum portability, a filename should consist
of letters, of one case only, and digits. The
first character should be a letter and there
should be no more than six characters,
optionally followed by a '.' and no more than
two more letters.

file is a short integer (type FILE in the standard
descriptor header std.h) that is guaranteed to be
non-negative. Its wvalue should be otherwise

assumed to be magic.

mode is a short integer that specifies reading
(mode == 0), writing (mode == 1) or updating
(mode == 2). When std.h or stdio.h are

included, mode may be combined with IASCII,
IBINARY or IRAW as, for example, IASCII!1 to
obtain ASCII write mode. (See Appendix A for
details on mode.)

4-2 ' 48-103 FOO ROO

cint -2 - v Cint

binary file looks to a C program 1like a sequence of
characters. There is no record structure and
all character codes are allowed. Trailing
NULs may be provided by some operating
systems.

text file is much like a binary file, except it is

assumed to contain printable text that may be
mapped between internal and external forms.
Most programs deal with such files of
printable text, where a line structure is
imposed (internally) by the presence of a
newline (ASCII line feed) character at the end
of each line. Lines can be assumed never to
be 1longer than 512 characters, counting the
terminating newline, nor should a text file
ever be produced whose last 1line has no
newline at the end.

Space is reserved for each program to grow a stack, or LIFO 1list
option call argument lists and automatic storage frames, and a
heap, structured data area. Heap is purchased in (not
necessarily contiguous) chunks by calls on sbreak(), and is never
given back during program execution. Stack and heap must often
contend for the same (limited) space, so an otherwise correct C
program may terminate early, or misbehave, because insufficient
space was allotted.

Note that all objects in C are presumed to have non-NULL
addresses; the system is never to bind an external identifier to
the value zero. The system interface ensures that address zero
never occurs on the stack or heap, as well. 1In fact, the
addresses -1 and +1 are also discouraged, since some functions
treat these values as codes for discredited pointers, much like
NULL (0).

48-103 FOO ROO | 4-3

main Enter a C Program main
NAME :

main - Enter a C Program

SYNOPSIS:

BOOL main(ac, av)

BYTES ac;
TEXT **av;
FUNCTION:

main is the function called to initiate a C program; hence every
user program must contain a function called main. Its arguments
are a sequence of NUL-terminated strings, pointed at by the first
ac elements of the array av, obtained from the command line used
to invoke the programs. By convention, ac is always at least
one, av[0] is the name by which the program has been invoked, and
av[l], if present, is the first argument string, etc. Program
execution is terminated by returning from main, or by an explicit
call to exit. In either case, one bit of status is returned to
the invoker to signify whether the program ran successfully.

RETURNS :

main returns zero if successful, otherwise nonzero.
EXAMPLE :

/* ECHO ARGUMENTS TO STDOUT
* copyright (c) 1980 by Whitesmiths, Ltd.
*/

#include (std.h>

BOOL main(ac, av)

BYTES ac;
TEXT **av;
{
if (1 < ac)

{

putstr (STDOUT, *++av, NULL);

for (--ac, ++av; --ac; ++av)

putstr (STDOUT, " ", *av, NULL);

write(STDOUT, "\n", 1);

}
return (YES);

}

4-4 48-103 F0O0 ROO

-pname Program Name ‘ _pname
NAME :

_pname - Program Name

SYNOPSIS:

TEXT _pname;

FUNCTION:

_pname is the (NUL-terminated) name by which the program was
invoked, if that can be determined from the command line, or the
name provided by the C programmer, if present, or the name
"error", delivered up by a waiting library module. The library
definition is used only if no definition of _pname is provided by
the C program and/or the compile-time name is not overridden at
run-time.

It is used primarily for labelling diagnostic printouts.

SEE ALSO:

error(3)

48-103 FOO ROO 4-5

brk . Change Core Allocation brk
NAME :

brk, sbrk, break - Change Core Allocation
SYNOPSIS:

char *brk(addr)

char *sbrk(incr)
FUNCTION:
brk sets the system's idea of the lowest location not used by the
program (called the break) to addr. Locations not less than addr
are still in the address space but not available for use.
In the alternate function sbrk, incr more bytes are added to the
program's data space and a pointer to the start of the new area
is returned.
Break performs the function of brk. The name of the routine
differs from that in C for historical reasons.

SEE ALSO:

malloc(2), end(2)

DIAGNOSTICS:
Zero is returned if the break could be set; -1 if the program

requests more memory than the system 1limit or if too many
segmentation registers would be required to implement the break.

4-6 48-103 FOO ROO

chdir Change Default Directory chdir
NAME :

chdir - Change Default Volume and Account

SYNOPSIS:

chdir (dirname)

char *dirname;
FUNCTION:
Dirname is the address of a null-terminated string containing an
optional volume name terminated with a ":" followed by an
optional account preceded by a "/". Chdir causes this volume and

account to be used with filenames not beginning with a volume or
ending with an account.

SEE ALSO
Appendix A
DIAGNOSTICS:

Zero is returned if the call is successful; -1 is returned if the
given name is not that of a volume and/or account.

48-103 F0OO ROO 4-7

close Close a File close
NAME :

close - Close a File
SYNOPSIS:

FILE close(fd)
FILE fd;

FUNCTION:

close closes the file associated with the file descriptor £d,
making the fd available for future open or create calls.

RETURNS :

close returns the now useless file descriptor, if successful, or
a negative number.

EXAMPLE :

To copy an arbitrary number of files:

while (fd = getfiles(&ac, &av, STDIN, -1))
{
while (0 ¢ (n = read(fd, buf, BUFSIZE)))

write(STDOUT, buf, n);
close(fd);

}

SEE ALSO:

create, open, remove, uname

4-8 48-103 FOO ROO

creat Create a New File creat

NAME :

creat - Create a New File
SYNOPSIS:

creat (name,mode)
char *name;

FUNCTION:

icreat creates a new file or prepares to rewrite an existing file
called name, given as the address of a null-terminated string.
If the file does not exist, it is given mode mode. See Appendix
A for construction of the mode argument.

If the file does exist, its mode and owner remain unchanged but
it is truncated to 0 length.

The file is also opened for writing and its fd is returned.

The mode given is arbitrary; it need not allow writing. This
feature is used by programs which deal with temporary files of
fixed names. The creation is done with a mode that forbids
writing. Then, if a second instance of the prcgram attempts a
creat, an error is returned and the program knows that the name
is unusable for the moment.

SEE ALSO:

write(4), close(4), open (4)

DIAGNOSTICS:

The value -1 is returned if: the file does not exist and is
unwritable; the file is a directory; there are already too many
files open. :

48-103 FO00 ROO 4-9

create Open an Empty Instance of a File

NAME :

create - Open an Empty Instance of a File

SYNOPSIS:

FILE create(fname, mode, rsize)
TEXT *fname;
COUNT mode;
BYTES rsize;

FUNCTION:

create

create makes a new file fname, if it did not previously exist, or
truncates the existing file to zero length. If (mode == 0), the

file is opened for reading, else if (mode == 1),

it is opened for

writing, else (mode ==2), of necessity and the file is opened for

updating (reading and writing).

If the file is to contain arbitrary binary data,

as opposed to

printable ASCII text, the record size rsize should be nonzero.

Not all systems behave well if a textfile
updating.

RETURNS :

created for

create returns an fd for the created file or a negative number.

EXAMPLE :

if ((fd = create("xeq", WRITE, 1)) < 0)
write(STDERR, "can't create xeg\n", 17);

SEE ALSO:

close, open, remove, uname

48-103 FOO ROO

ctime Convert Date and Time to ASCII ctime

NAME :

ctime, localtime, gmtime, asctime, timezone - Convert Date and
Time to ASCII

SYNOPSIS:

chgr *ctime(clock)
long *clock;

#include <(time.h>

struct tm *localtime(clock)
long *clock;

struct tm *gmtime(clock)
long *clock;

char *asctime(tm)
struct tm *tm;

setzone (zone, min, dst)
int zone, min, dst;
FUNCTION:
ctime converts a time pointed to by clock such as returned by

time(4) into ASCII and returns a pointer to a 26-character string
in the following form. All the fields have constant width.

Sun Sep 16 10:03:52 1073\n\0

localtime and gmtime return pointers to structures containing the
broken-down time. localtime corrects for the time 2zone and
possible daylight savings time; gmtime converts to GMT, which is
the time UNIX uses. asctime converts a broken-down time to ASCII
and returns a pointer to a 26-character string.

The structure declaration from the include file is:

struct tm {/*see ctime(4) */

int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

48-103 FO0O0 ROO 4-11

ctime -2~ ctime

These quantities give the time on a 24-hour clock, day of month
(1-31), month of year (0-11), day of week (Sunday - 0), year -
1900, day of year (0-365), and a flag that is nonzero if daylight
saving time is in effect.

When local time is called for, the program consults _timezon and
_dst (see bugs below) to determine the time zone and whether the
standard USA daylight saving time adjustment is appropriate. The
program knows about the peculiarities of this conversion in 1974
and 1975; if necessary, a table for these years can be extended.

setzone sets the current time zone and a flag which indicates
whether daylight savings time takes arguments which give setzone
or the zone in hours or minutes west of Greenwich. (To go east
of Greenwich negative values should be used.) The final
argument, dst, indicates whether this time zone is subject to the
daylight savings time transformation.

SEE ALSO:

time(4)

BUGS:

The return values point to static data whose content is
overwritten by each call.

The default values of zone and dst which affect the translation
of time are 5 and 1, respectively. This means that the run-time
system thinks the 0S5/32 clock is measuring time in USA eastern
standard time and that daylight savings applies. In order to get
the proper time from gmtime for other time zones, either setzone
must be called, or _timezon, _tzmins and _dst must be patched to
the proper values in cinit.obj.

4-12 48-103 F00O ROO

envir C Run-Time Environment envir
NAME :

envir - C Run-Time Environment

SYNOPSIS:

#include <{envir.h>

extern struct _ENVIR *_envir;

FUNCTION:

_envir is a pointer in cinit which points to a structure which is
filled in at start-up with information used by the run-time
library (RTL).

Details of the various fields are given in Appendix A.

DESCRIPTION:

/*
* Environment header file
* describes the storage area in cinit
*/

struct _ENVIR {

/* this group is set by cinit, _cinit or _stdass and are
used by various parts of the run-time library */

int _stksz; /* number of bytes reserved for stack default 8k */
int *_stktop; /* top of the stack (only used during startup) */
int *_stkend; /* bottom of stack area */

int *_heaptop; /* top of the heap (only used during startup) */
int _maxlu; /* maximum number of lu's available */

struct inode *_lutab; /* pointer to table of lu descriptors */
int _tskops; /* task options word */

int _sysops; /* system options word */

int _uacc; /* user private account number */
int _gacc; /% user group account number x/
char *_uid; /* user's signod id (mtm only) */

char *_task_id; /* filename from which task was loaded */
char *_def_dev; /* the name of the default console dev */

/* the next group are set by chdir */

char *_def_acc; /* default account number for open */
char *_def_vol; /* default volume name for open x/

48-103 F0O0 ROO 4-13

envir -2- envir

/* the next group are set by setzone (see ctime(4) */

int _timezone; /* timezone in hours west of Greenwich */

int _tzmins; /* alternate in minutes x/

int _dst; /* flag indicating if daylight saving applies */
}i .
SEE ALSO:

Appendix A, time(4), ctime(4)

4-14 48-103 F0O0 ROO

exit Terminate Process exit
NAME :

exit - Terminate Process
SYNOPSIS:

exit(status)
init status;

_exit(status)
int status;

FUNCTION:

exit is the normal means of terminating a process. exit closes
all the process's and notifies the parent process if it is
executing a wait. The low-order eight bits of status are

available to the parent process.
This call can never return.

The C function exit may cause cleanup actions before the final
"sys exit". The function _exit circumvents all cleanup.

48-103 FOO ROO 4-15

getuid Get User and Group Identity getuid
NAME :

getuid, getgid, geteuid, getegid - Get User and Group Identity
SYNOPSIS:

getuid()
geteuid()
getgid()
getegid()

FUNCTION:

getuid and geteuid both return the current multi-terminal monitor
(MTM) user account number as an int. getgid and getegid do the
same for the group account.

4-16 48-103 F0OO0 ROO

lseek Move Read/Write Pointgr lseek
NAME :

lseek, tell - Move Read/Write Pointer

SYNOPSIS:

long lseek(fildes, offset, whence)
long offset;

long tell(fildes)

FUNCTION:

The fd refers to a file open for reading or writing. The read
(resp. write) pointer for the file is set as follows:

e If whence is 0, the pointer is set to offset bytes.

e If whence is 1, the pointer is set to the current position
plus offset bytes.

e If whence is 2, the pointer is set to the end of the file plus
offset bytes. ‘

The returned value is the resulting pointer location.

The obsolete function tell(fildes) is identical to
lseek(fildes,OL, 1). ‘

Seeking far beyond the end of a file, then writing, creates a gap
or "hole", which occupies no physical space and reads as zeros.

SEE ALSO:

open(4), creat(4), fseek(2)

DIAGNOSTICS:

-1 is returned for an undefined fd or seek to a position before
the beginning of file.

BUGS:
lseek is a no-op on terminals and printers. lseek also may

position incorrectly if wused on binary files opened for append
(see Appendix A).

48-103 F0O ROO 4-17

onexit Call Function on Program Ex1t onex1it
NAME :

onexit - Call Function on Program Exit
SYNOPSIS:

VOID (*onexit()) (pfn)
VOID (*(*pfn)())();

FUNCTION:

onexit registers the function pointed at by pfn, to be called on
program exit. The function at pfn 1is obliged to return the
pointer returned by the onexit call, so that any previously
registered functions can also be called.

RETURNS :

onexit returns a pointer to another function; it is guaranteed to
be non-NULL.

EXAMPLE :

To tegister the function thisguy:

GLOBAL VOID (*(*nextguy)()) (), (*thisguy())();

if (!nextguy)
nextguy = onexit(&thisguy);

SEE ALSO:

exit

BUGS:

The type declarations defy description, and are still wrong.

4-18 48-103 F00 ROO

open Open a File , open
NAME :

open - Open a File
SYNOPSIS:

FILE open(fname, mode)
TEXT *fname;
COUNT mode;
FUNCTION:
open opens a file fname and assigns a fd to it. 1If (mode == 0),
the file is opened for reading, else if (mode == 1) it is opened
for writing, else (mode == 2) of necessity and the file is opened
for updating (reading and writing). Mode may also occur in
combined form with IASCII, IBINARY and IRAW. (See Appendix A for
details.))
RETURNS :
open returns an fd for thé opened file, or a negative number, if
unsuccessful.
EXAMPLE :
if ((fd = open("xeq", WRITE, 1)) < 0)
write(STDERR, "can't open xeg\n", 16);
SEE ALSO:

close, create

48-103 F0OO ROO - 4-19

pause Pause

NAME :

pause - Pause Process

SYNOPSIS:

pause()

FUNCTION:

Process

pause

pause performs an 0S/32 supervisor call 2 (SVC2) pause.

48-103 FO0O0 ROO

read Read Characters From a Flle read

NAME :

read - Read Characters From a File
SYNOPSIS:

COUNT read(fd, buf, size)
FILE fd4;
TEXT *buf;
BYTES size;

FUNCTION:

read reads up to size characters from the file specified by fd
into the buffer starting at buf.

RETURNS :

If an error occurs, read returns a negative number; if end of
file 1is encountered, read returns zero; otherwise the value
returned is between 1 and size, inclusive, which is the number of
characters actually read into buf.

EXAMPLE:

To copy a file:

while (0 ¢ (n = read(STDIN, buf, BUFSIZE)))
write(STDOUT, buf, n);

SEE ALSO: .

write

48-103 FOO ROO 4-21

remove Remove a File remove
NAME :

remove - Remove a File
SYNOPSIS:

FILE remove(fname)
TEXT *fname;

FUNCTION:
remove removes the file fname; on most systems, this is an

irreversible act.

RETURNS :

remove returns zero, if successful, or a negative number.
EXAMPLE :

if (remove(uname()) < 0)
putstr (STDERR, "can't remove temp file\n", NULL);

4-22 48-103 FOO0 ROO

sbreak Set System Break sbreak
NAME :

sbreak - Set System Break
SYNOPSIS:

TEXT *sbreak(size)
ARGINT size;

FUNCTION:

sbreak moves the system break, at the top of the data area,
algebraically up by size bytes, rounded-up as necessary to
placate memory management hardware. There is no guarantee that

successive calls to sbreak will deliver contiguous areas of

memory, nor can all systems safely accept a call with negative
size.

RETURNS :

If successful, sbreak returns a pointer to the start of the added
data area; otherwise the value returned is NULL.

EXAMPLE :

if (!(p = sbreak(nsyms * sizeof (symbol))))
{
putstr (STDERR, "not enough room!\n", NULL);

exit (NO);
}

48-103 F0O ROO 4-23

time . Get Data and Time time
NAME :

time - Get Date and Time
SYNOPSIS:

long time(0)

long time(tloc)

long *tloc;
FUNCTION:

time returns the time since 00:00:00 GMT, Jan. 1, 1970, measured
in seconds.

If tloc is non-null, the return value is also stored in the place
to which tloc points.
SEE ALSO:

ctime(4), envir(4)

BUGS :

Time on 0S/32 attempts to return GMT. However, because 0S/32
time 1is always local time, time must convert back to GMT using
_timezone, _tzmins and _dst. All time routines will work without
these being correctly set except gmtime (see ctime(4) and
envir(4) for details).

4-24 48-103 FOO ROO

uname Create a Unique Filename uname
NAME :

uname - Create a Unique Filename
SYNOPSIS:
TEXT *uname()

FUNCTION:

uname returns a pointer to the start of a NUL-terminated name
which is likely not to conflict with normal user filenames. The
name may be modified by a letter suffix (but not in place!), so
that a family of process-unique files may be dealt with. The
name may be used as the first argument to a create, or subsequent
open, call, so long as any such files created are removed before
program termination. It is considered bad manners to leave
scratch files lying about.

RETURNS :
uname returns the same pointer on every call during a given
program invocation. The pointer will never be NULL.

EXAMPLE :

if ((fd = create(uname(), WRITE, 1)) < 0)
putstr (STDERR, "can't create sort temp\n", NULL);

SEE ALSO:

close, create, open, remove

48-103 F0OO ROO 4-25

unlink Remove Directory Entry unlink
NAME :

unlink - Remove Directory Entry
SYNOPSIS:

unlink(name)
char *name;

FUNCTION:

Name points to a null-terminated string. unlink removes the
entry for the file pointed to by name from its directory. If
this entry was the last link to the file, the contents of the
file are freed and the file is destroyed. If, however, the file
was open in any process, the actual destruction is delayed until
it is closed, even though the directory entry has disappeared.

SEE AI.SO:

rm(l), link(5)

DIAGNOSTICS:

Zero is normally returned; -1 indicates that the file does not
exist, that its directory cannot be written, or that the file
containg pure procedure text that is currently in use. Write
permission is not required on the file itself. It is also
illegal to unlink a directory (except for the super user).

4-26 48-103 FOO ROO

write Write Characters to a File

NAME :

write - Write Characters to a File

SYNOPSIS:

COUNT write(fd, buf, size)
FILE fd;
TEXT *buf;
COUNT size;

FUNCTION:
write writes size characters starting

specified by fd.

RETURNS :

at buf to the

If an error occurs, write either returns a negative number
number other than size; otherwise size is returned.

EXAMPLE :

To copy a file:

while (0 ¢ (n = read(STDIN, buf, BUFSIZE)))

if (write(STDOUT, buf, n) != n)

{
putsts (STDERR, "write error\n", NULL);

exit (NO);
}

SEE ALSO

read

48-103 FO00 ROO

write

file

or a

Conventions
_addexp
_domain
_domerrx
_dtens
_dzero
_frac
huge
_norm
.ntens
_poly
_.raise
_ranerr
_.range
_.round
_tiny
-.unpack
_when

48-103 F0O ROO

CHAPTER 5
C MACHINE INTERFACE LIBRARY

TABLE OF CONTENTS

C Machine Interface Library

Scale Double Exponent

Report Domain Error

Domain Error Condition

Powers of Ten

Double Zero

Extract Integer from Fraction Part
Largest Double Number

Convert Double to Normalized Text String
Number of Powers of Ten

Compute Polynomial

Raise an Exception

Range Error Condition

Report Range Error

Round Off a Fraction String
Smallest Double Number

Extract Fraction from Exponent Part
Handle Exceptions

bl {
HEERHMHEOONOO S WN
MWN O

oo o,m
1

5-16
5-17
5-18
5-19
5-20

Conventions C Machine Interface Library Conventions
NAME :

Conventions of the C Machine Interface Library

FUNCTION:

The functions and variables documented in this section are usable
just like any of those in Chapters 3 and 4, but need not be known
to the typical C programmer. Rather, they are called upon by
higher 1level functions to perform machine-dependent operations,
to provide machine- dependent information, or merely to provide
an important service with efficiency and/or extra precision.

They are isolated in a separate section to avoid cluttering an
already extensive collection of useful functions with arcana, and
to show prospective implementors what is required in the way of
low-level support for a new machine. Note that Chaper 4 serves

much the same purpose for implementors of new operating system
interfaces.

5-2 48-103 FOO ROO

—.addexp Scale Double Exponent -.addexp
NAME :

_.addexp - Scale Double Exponent

SYNOPSIS:

DOUBLE __addexp(d, n, msg)
DOUBLE d;
COUNT n;
TEXT *msg;

FUNCTION:

_.addexp effectively multiplies the double d by two raised to the
power n, although it endeavors to do so by some speedy ruse. If
the double result is too large in magnitude to be represented by
the machine, _range is called with msg.

RETURNS :

_.addexp returns the double result 4 * (1 << n), or any value
returned by _range.

EXAMPLE :

DOUBLE sqrt(x)
DOUBLE x;

{
COUNT n;

n = _unpack(&x);
x = newton(x):;
if (n & 1)
X =* SQORT2;
return (_addexp(x, n >> 1, "can't happen"));

}

SEE ALSO:

_frac, _range, _unpack

48-103 FOO ROO . 5-3

_domain Report Domain Error —domain

NAME :

_domain - Report Domain Error
SYNOPSIS:

VOID _domain(msg)
TEXT *msqg;

FUNCTION:

_domain is called by math functions to report a domain error;
i.e., the fact that an input value lies outside the set of values
over which the function is defined. It copies msg to _domerr,
then calls _raise for the condition _domerr. This exception, if
not caught, résults in an error exit that prints the
NUL-terminated string at msg to STDERR, followed by a newline.
There is no way of inhibiting domain errors, though any code
using _when to handle them may choose to ignore their occurrence.

RETURNS :

_domain never returns to its caller. it may return from an
instance of _when that 1is willing to handle a domain error;
otherwise the program exits, reporting failure.

EXAMPLE :

DOUBLE sqrt(x)
DOUBLE x;

{
if (x < 0)
_domain("negative argument to sqrt");

SEE ALSO:

_domerr, _raise, _range, _when

5-4 48-103 F0OO ROO

_domerr Domain Error Condition _domerr
NAME :

_domerr - Domain Error Condition
SYNOPSIS:
TEXT *_domerr

FUNCTION:

_domerr is the condition raised when a domain error occurs; i.e.,
when a math function discovers that an input value lies outside
the set of values over which the function is defined.

SEE ALSO:

_domain, _raise, _ranerr

48-103 FOO ROO 5-5

_dtens Powers of Ten _dtens

NAME :

_dtens - Powers of Ten
SYNOPS1S:
DOUBLE _dtens(];

FUNCTION:
_dtens is an array of doubles with values 1, 10, 100, 10%**4,
10**8, etc. up to the largest such number the machine can

represent. The number of entries in _dtens is recorded in the
variable _ntens.

SEE ALSO:

_ntens

5-6 48-103 FOO0 RQO

_dzero Double Zero , ..dzero
NAME :

_dzero - Double Zero

SYNOPSIS:

DOUBLE _dzero;

FUNCTION:

_dzero is a double

zero, provided for convenience more than
necessity.

SEE ALSO:

_huge, _tiny

48-103 FOO ROO 5-7

_frac Extract Integer from Fraction Part _frac

NAME :

-frac - Extract Integer from Fraction Part
SYNOPSIS:

COUNT _frac(pd, mul)
DOUBLE *pd, mul;

FUNCTION:

—frac forms the double product of *pd and mul, then partitions it
into an integer plus a double fraction in the interval ([-1/2,
172}, delivers the fractional part to *pd and the low bits of the
integer part as the value of the function. If the integer part

cannot be properly represented as a COUNT, it is truncated on the
left without remark.

RETURNS :

-frac returns the low bits of the integer part of the product

(*pd * mul) as the value of the function and writes the
fractional part of the product at *pd.

EXAMPLE :

DOUBLE sind(x)
DOUBLE x;
{
COUNT n;

n = _frac(&x, 1.0/90.0);

SEE ALSO:

_.addexp, _unpack

5-8 48-103 F00 ROO

~huge Largest Double Number _huge
NAME :

-.huge - Largest Double Number
SYNOPSIS:
DOUBLE _huge

FUNCTION:

_huge is the largest representable double number.

SEE ALSO:

_dzero, _tiny

48-103 F0OO ROO 5-9

_norm Convert Double to Normalized Text String _horm

NAME :

_norm - Convert Double to Normalized Text String

SYNOPSIS:

COUNT _norm(s, d, prec)
TEXT *s;
DOUBLE d;
BYTES prec;

FUNCTION:
_norm factors the double d into a double in the interval [0.1l, 1)
or zero, and an integral power of ten. The first prec digits of

the fraction are written as text characters in the buffer

starting at s. If the number is negative on entry, it is forced
positive.

RETURNS :

The value of the function on return is the power of ten to which
the fraction string in s must be raised to give the value of d.

If & is zero, all characters in s are '0's and the value returned
is zero.

SEE ALSO:

_round

5-10 48-103 FOO ROO

_ntens Number of Powers of Ten .ntens

NAME :

_ntens - Number of Powers of Ten
SYNOPSIS:
COUNT _ntens;
FUNCTION:
_ntens is the number of elements in the array _dtens, which holds

various powers of ten as double numbers.

SEE ALSO:

_dtens

48-103 F0OO ROO . 5-11

_poly Compute Polynomial —poly
NAME :

_poly - Compute Polynomial
SYNOPSIS:

DOUBLE _poly(d, tab, n)
DOUBLE 4, *tab;
COUNT n;

FUNCTION:

_poly computes the polynomial of order n in the independent
variable d, using the coefficients in the table pointed to by
tab. Horner's method is used, taking tab[0] as the coefficient
of the highest power of d, so the value computed is:

tab{n] + 4@ * (tab[n-1] +d * (... + d * tab[0]))
No precautions are taken against overflow or underflow.

RETURNS :

_poly returns the double value of the polynomial of order n in d.

EXAMPLE :

return (x * _poly(x * x, coeffs, 6));

5-12 48-103 F0OO ROO

-raise Raise an Exception _raise
NAME :

_raise - Raise an Exception
SYNOPSIS:

VOID _raise(ptr, cx)
TEXT **ptr, **cx;

FUNCTION:

_raise signals the presence of a condition that must be handled
by an earlier call to _when. The _when/_raise mechanism is used
to perform a broad spectrum of stack manipulations normally
beyond the scope of the C language, including: ADA exception
handling, Pascal nonlocal goto's, IDRIS process switching, editor
interrupt fielding and math error reporting.

The handler to be first considered is specified by ptr. If ptr
is -1 or NULL, the latest _when call is used as the start of a
search for a willing handler; otherwise ptr must have been set by
an earlier _when call to specify that call as the starting point
of the search.

If cx is NULL or -1, then the first handler encountered returns
to its caller with the value zero; otherwise cx must match a
condition argument of one of the registered handlers to be
considered, or at some level it must be handled by a NULL
terminating a list of condition arguments.

The return from _when caused by a _raise call cleans up the stack
if either ptr or cx is NULL. Otherwise, the handler for that
_when call remains on the stack and is made the latest of the
chain of handlers.

RETURNS :

_raise never returns to its caller. It returns from the latest
willing _when call with registers, stack, and handler chain
restored to that 1level; the value returned by _when is
nonnegative. The handler chain is initialized to a single
catchall handler which calls error to print an error message, and
takes an error exit. If the condition can be interpreted as the
address of a pointer to a NUL-terminated string, then that
string, followed by a newline, is used as the error message;
otherwise the message is "unchecked condition”.

48-103 F00 ROO 5-13.

_raise -2 -
EXAMPLE :

To exit on end of file:

TEXT *endfile {"unchecked end of file"};

VOID readrec(buf)
TEXT *buf;

{

if (fread(STDIN, buf, 80) != 80)
_raise(NULL, &endfile);

}

" switch(_when(NULL, sendfile, NULL))
{

case 1:
oneof () ;

}

SEE ALSO:

_when, error(3), enter(3), leave(3)

BUGS :

You are not expected to understand this.

_Traise

48-103 FOO ROO

_ranerr Range Error Condition -ranerr

NAME :

_ranerr - Range Error Condition
SYNOPSIS:
TEXT *_ranerr

FUNCTION:

_ranerr is the condition raised when a range error occurs; i.e.,
when a math routine discovers that a return value is too large to
represent. Unlike most conditions, the range condition may be

inhibited from time to time by writing a nonzero value in
_ranerr.

SEE ALSO:

_domerr, _range

48-103 F00 ROO 5-15

_range Report Range Error _range
NAME :

_range - Report Range Error
SYNOPSIS:

DOUBLE _range(msg)
TEXT *msg;

FUNCTION:

_range is called by math functions to report a range error; i.e.,
the production of an output value that cannot be represented
properly by the machine. If _ranerr is NULL, _range copies msg
to _ranerr, then calls _raise for the condition _ranerr. This
exception, 1if not caught, results in an error exit that prints
the NUL-terminated string at msg to STDERR, followed by a
newline.

If _ranerr is not NULL, the condition is not raised, and _range
returns to its caller.

RETURNS :

If _range returns to its caller, the value returned is the
largest double that can be represented by the machine; otherwise
the _ranerr condition is raised and _range does not return to its

caller. It may return from an instance of _when that is willing

to handle a range error; otherwise the program exits, reporting
failure.

EXAMPLE :

if (_lnhuge < x)
_range("exp overflow");

SEE ALSO:

_domain, _ranerr, _raise, _when

5-16 48-103 FOO ROO

—round Round Off a Fraction String _round
NAME :

—round - Round Off a Fraction String
SYNOPSIS:

COUNT _round(s, n, prec)
TEXT *s;
BYTES n, prec;
FUNCTION:
_round rewrites the n character buffer starting at s as a
properly rounded string of prec digits. If prec is outside the
buffer, or if (s[prec] < '5'), no action is taken. Otherwise,

the next character to the left is incremented and carries are
propagated. All '9's is rewritten as '1000...' to prec digits.

RETURNS :

_round returns 1 if all '9's rounded up, otherwise zero.

SEE ALSO:

horm

BUGS:

No check is made for nondigits in the buffer.

48-103 F0O ROO 5-17

_tiny Smallest Double Number _tiny
NAME :
_tiny - Smallest Double Number
SYNOPSIS:
DOUBLE _tiny
FUNCTION:
_tiny is the smallest positive representable double number larger

than zero.

SEE ALSO:

_dzero, _huge

5-18 48-103 FOO ROO

_unpack Extract Fraction from Exponent Part _unpack
NAME :

_unpack - Extract Fraction from Exponent Part
SYNOPSIS:

COUNT _unpack(pd)
DOUBLE *pd;

FUNCTION:

_unpack partitions the double at *pd, which should be nonzero,
into a fraction in the interval [l/2, 1) times two raised to an
integer power, delivers the fraction to *pd and returns the
integer power as the value of the function.

RETURNS :

_unpack returns the power of two exponent of the double at pd as
the value of the function and writes the fraction at *pd. The
exponent is generally meaningless if 4 is zero.

EXAMPLE :

DOUBLE sgrt(x)
" DOUBLE x;

{
COUNT n;

n = _unpack(&x);
X = newton(x);
if (n & 1)
X =% SQRT2;
return (_addexp(x, n >> 1));
}

SEE ALSO:

_addexp, _frac

48-103 F0O ROO 5-19

_when Handle Exceptions _wWhen
NAME :

.when - Handle Exceptions

SYNOPSIS:
COUNT _when(ptr, cl, c2, ..., cend)
TEXT **ptr, **cl, **c2, ..., **cend;
FUNCTION:

_when registers a willingness to handle certain exceptions that
may be raised by calls to _raise. The _when/_raise mechanism is
used to perform a broad spectrum of stack manipulations normally
beyond the scope of the C language, including: ADA exception
handling, Pascal rnionlocal goto's, IDRIS process switching, editor
interrupt fielding, and math error reporting.

The call to _when causes its argument 1list and certain
nonvolatile registers to be 1left on the stack, where they are
made the latest part of a chain of condition handlers. Should a
subsequent call to _raise report a condition that is to be
handled by this part of the chain, control flow resumes with a
return from _when, indicating which condition has been raised.
Upon every return, all register variables are restored to their
values at the time of the initial call to _when. The _raise call
may cause the stack to be cleaned up as part of the return from

_when; this is a mandatory prelude to returning from any function
that calls _when.

If ptr is not NULL, it is used as the address of a pointer that
should be set to point at the latest part of the handler chain;
this value may be used by subsequent _raise calls to specify this
particular call to _when instead of the normal top of the handler
chain. ptr is also used when the stack is cleaned up on return,
as the address at which to write the condition being handled.

The conditions cl, c2, etc., each may assume any value except
NULL or -1, although there is a strong presumption that the value
is a valid data space address of a pointer to a NUL-terminated
string of characters. A -1 is taken as a cend that indicates no
further conditions, while a NULL is taken as a cend that will
handle any condition. The left-most condition argument that will
handle a given condition, in the latest part of the handler
chain, is chosen to handle the condition.

_when should never be used except as the lone operand in a switch

statement, and all _when calls must be carefully coordinated with
appropriate _raise calls.

- 5-20 48-103 F0O0 ROO

_when - 2 - , _when
RETURNS :

_when returns -1 upon return from its initial setup. It returns
zero on a cleanup return that reports no condition. Otherwise it
returns the ordinal position, within the argument list, of the
condition it is handling; a one indicates cl, two means c2, etc.
If cend is NULL, its ordinal position will be returned for any
condition not otherwise handled.

The stack is cleared, and a non-NULL ptr is used to return the
second argument to _raise, if either argument to _raise was NULL
or if a NULL cend is handling the condition.

EXAMPLE :

To field interrupts interactively:

VOID endup()
{
putstr (STDOUT, "?\n", NULL);

_raise(NULL, NULL);
}

FOREVER
{

onintr (&endup) ;

_when(NULL, NULL);

if (edit() == EOF)
exit (YES);

}

SEE ALSO:

_raise, enter(3), leave(3)

BUGS :

You are not expected to understand this.

48-103 FO0O ROO 5-21 .

APPENDIX A
0S/32 FILE SYSTEM INPUT/OUTPUT (I/0) INTERFACE
AND RUN-TIME ENVIRONMENT

INTRODUCTION:

The C language was the original language of UNIX operating
systems. For this reason, the run-time environment of C has a
strong relationship to UNIX. This has created the need for some

special compromises in providing an equivalent run-time system
for 0S/32.

Two different run-time libraries (RTLs) are supplied with the
0S/32 C compiler, an EDITION VII compatible library and an IDRIS
compatible library. However, they are not usually compatible
with one another, as they contain duplicate routines which differ
in function. The user should be careful to use only one set of
routines in any single program.

The 0S/32 C language has also been enhanced to permit linkage to
FORTRAN VII subroutines and functions, and to allow reference to
FORTRAN COMMONS.

EXAMPLES :

main ()
{
fortran int FUNC ():
common {
int a;
int b;
} ABC;
ABC.a = FUNC(ABC.a, ABC.b);

Note that FORTRAN function names and COMMON name must be given in
upper-case and are limited to seven characters of significance.

When Linking to FORTRAN VII functions, the user must take care to
Link in the C FORTRAN initializer (CFINIT.OBJ) instead of the
standard C initializer (CINIT.OBJ) and to compile with the -2
option specified to the C preprocessor.

48-103 FOO ROO A-1

The UNIX file system, from which C's run-time system evolved, has
a number of characteristics, among them are:
1. Only one file type.

2. Data may be accessed anywhere in a file, in any 1length
without any record length considerations.

3. A file may grow to any size, at any time.
4. File sharing is controlled by file protection bits.
5. ASCII and binary files are treated identically (packed).

The 0S/32 file system has an even larger number of
characteristics, among them are:

1. Four types of files: indexed, contiguous, unbuffered indexed
and extendable contiguous.

2. Data may be accessed only at logical record boundaries. The
logical record length is fixed at file creation time.

3. Contiguous files may not grow in size.

4. File sharing is controlled both via protection codes and at
open time.

5. ASCII and binary files are treated differently.

6. Files may be preassigned.

In order to deal with these wide differences and still provide a
UNIX-like interface, a number of assumptions have been made
concerning the 05/32 file type, record length, etc. Several of
these assumptions may be overridden by the use of the mode
arguments on open, creat and fopen calls or by use of the global
variables described below.

The user can make use of the mode argument to force image (raw)

mode [/0 on a particular file descriptor (fd) and to set the
ASCII or binary attribute of a file. :

MODE SETTING EFFECT

READ open file read-only

WRITE open file write-only

UPDATE open file for read and write
IASCII open file as ASCII file
IBINARY open file as binary file
IRAW open file in image mode

A-2 48-103 FOO ROO

EXAMPLE:

fda =

VARIABLE NAME

int

int
int
int
int
int

int

int

open ("con:", UPDATE | IASCII| IRAW);

fstype;

fsrecl;
fsrkey;
fswkey:
fsblksz;
fsacp:

fsshare;

ftype:;

FILE CREATION:

The default file created by a call to creat is indexed,

length and blocking factor of 1.
argument to the creat call is O,

logical

fsrecl,

The defaults may be overriden by setting these
a call to creat.

record

. MEANING
file type
3 = unbuffered indexed
2 = indexed
1 = extendable contiguous
0 = contiguous

file record length
file read key
file write key
file size for contiguous files
file account priveledges
(see below)
shared/exclusive access

0 = shared access

1l = exclusive access
ASCII/binary mode

0 determined by record

length
1l = ASCII
2 = Binary

then the variables

DEFAULT

indexed

256
0

0
256
NO

shared

determined by
record length

256-byte

If the mode

fstype,

fsrkey, fswkey, fsblksz and fsacp listed above are used.

variables
These values are not automatically reset after

before

the call - they maintain their values until changed again by the

user.

When a program is running, automatic adjustment is

whether

supported.
account numbers

file

permitted.

48-103 F0O ROO

will be

accepted anywhere

made as
account numbers rather than only file classes are
If the program was linked with account privileges,
a file class was

to

FILE ACCESS:

When a file is opened via a call to open or creat, then it will
be opened for access in the following ways, depending on the

value of fsshare above. The following list indicates the access
modes used:

OPEN MODE FSSHARE = 1 FSSHARE = 0
0 (read) ERO SRO
1 (write) ERW SRW
2 (update) ERW SRW
creat call ERW SRW

ASCII/BINARY MODE

When a file is opened by open, or creat then ASCII or binary mode
is determined either by the mode of the open or creat or by a
combination of the setting of the variable ftype and the logical
length of the file:

FTYPE VALUE RECORD LENGTH ACCESS MODE
0 not 256 ASCII
256 Binary
1 N/A ASCII
2 N/A Binary

Reading from ASCII files (via a call to read) is treated in the
following manner:

l. All CRs are changed to new-lines.

2. All characters within a record following a CR are ignored.

3. A full record (one whose record 1length if filled with
characters none of which is a CR) will have an implied

carriage return added to it.

4. Any number of characters may be requested in a read. The

software will hide the existence of records and record length
from the user.

5. The user may lseek to a position within an ASCII file. That
position 1is calculated by counting the number of real
characters in the records. Note that this is rather slow.

A-4 : 48-103 F0OO ROO

Writing to ASCII files (via a call to write) is treated in the
following manner:

1. All new-lines are changed to CRs and cause the end of the
current logical record.

2. Characters follbwing the CR within a written record are set
to spaces.

3. Any number of characters may be written, the output is
buffered until a record is full or a newline is written.

As in the EDITION VII environment, fd numbers 0, 1 and 2 are set
to standard input, standard output and error output. These fds
are attached to logical units 0, 1 and 2, respectively. These
may be redirected to/from files on the command line (see section
below). They are opened in ASCII mode or preassigned. One
additional call applies to the case of these fds (and any other
fd desired): fsraw. When this routine is called with
appropriate arguments, a read request to the fd will be performed
in image mode and will be satisfied as soon as the requested
number of characters is read or a CR is encountered. Further,
the CR is not mapped to a line feed. Output to fds set into raw
mode will cause any writes performed to be effected immediately
in image mode. When an fd is not in raw mode, input and output

requests are buffered until CR or newline or until the buffer is
full.

Reading from binary files is treated in the following manner:

1. No character mapping occurs.

2. Any number of characters may be read; input 1is buffered
within the software.

3. The user may lseek to any position within the file by
reference to the byte number.

Writing to binary files is treated in the following manner:

1. No character mapping occurs.

2. Any number of characters may be written; output is buffered

within the software.

Only wait input/output (1/0) is utilized.

48-103 F0O ROO A-5

For stack allocation, the C initializers (CINIT.OBJ and
CFINIT.OBJ) contain a constant _stksz which is used to establish
the maximum size of the stack at startup. This value 1is, by
default, set to 8 kb. The only way to adjust the maximum stack
size is to modify _stksz to a different value using the 0S/32
PATCH utility.

EXAMPLE :

0S/32 PATCH
OBJECT CINIT.OBJ
GET *OBJ

EXA 0,2

0000 YYYY

EXA YYYY,2

0000 2000

MOD YYYY,0,4000
SAVE

END

VVV IV I VvVvVYV]

Under EDITION VII, system time is kept in seconds since midnight
January 1, 1970, while system time on 0S/32 is kept as the local
date and time. In order to make the gmtime routine work
properly, the user must set variables in the C initializer
routines which give the local time zone and a flag indicating
whether daylight savings time transformations apply in the local
time zone.

The variables can be accessed either with the 0S/32 PATCH Utility
or by use of the pointer _envir and the envir.h include file.

VARIABLE FUNCTION DEFAULT
_timezon (TIMEZONE for PATCH) hours west of Greenwich 5(EST)
_tzmins (TZMINS for PATCH) minutes west of Greenwich 0

_dst (DST for PATCH) does daylight savings apply 1 (YES)

Only one of _timezon or _tzmins should be set.

A-8 48-103 FOO ROO

EXAMPLE :

$include <(envir.h>)>
main ()

extern struct _ENVIR *_envir;
_envir-)_timzon=6; /* CST */
—envir->_dst =0; /* no daylight savings */

-

}
Finally, to signal End Of File (EOF) on a terminal} use Control
D. If a BIOC terminal is wused, Control D is interpreted as
Echo-only. In this instance, the user must use Control T Control

D to signal EOF on a terminal.

48-103 F0OO ROO

Introduction
cc

CU

LISTER

LN

PP

PONE

PTWO

48-103 F0O0 ROO

APPENDIX B
OPERATING PROCEDURES

TABLE OF CONTENTS

Compile, Assemble and Link a C Program
Assemble a C Program

Generate a Listing for a C Program
Link a C Program

Preprocess Defines and Includes

Parse a C Program

Generate Code for an 0S/32 C Program

wmwmnlumwm
HHEONOOWN
N O

Introduction Introduction
INTRODUCTION:

The following sections describe commands which are supplied with
the 0S/32 C Compiler. They enable the multi-terminal monitor
(MTM) user to compile, assemble, link and list C programs. In
addition to these commands, the C Compiler package also includes
an enhancement to the 0S/32 program development system (EOU.CSS)
which permits the use of C with that system. For the purposes of
the program development system, the C language environment is C
and the C extension is .c. All features of the program
development system are described in the 0S/32 Multi-Terminal
Monitor (MTM) Reference Manual.

The most important of the commands is CC, which involves all of
the others except LISTER. Use of this command permits the user
to compile, assemble and link any C source program which consists
of a single file. 1If CC has been used to create the executable
version of a C program, it may have been run by entering its name
followed by any arguments separated by blanks. UNIX-style
redirection of STDIN and STDOUT is also permitted.

EXAMPLE :

CC cprogram
cprogram -abc (file.in >file.out

B-2 48-103 FOO ROO

cc Compile, Assemble and Link a C Program cc
NAME :

CC - Compile, Assemble and Link a C Program
SYNOPSIS:
CC name[,option]

FUNCTION:

CC takes a C source language file as input and compiles,
assembles, and links the input C program to produce an executable
file. In addition, it creates a command substitution system
(cSS) file which permits the resulting program to be run by
simply invoking its file name. (See introduction).

The arguments are:
name is the name of a C source language file

without an extension. The extension is
assumed to be .c.

option is one of the following:
1l - Stop compilation after running the C
preprocessor. Note that the resulting

file is not ASCII text. To produce
ASCII output from the preprocessor, see
pp in this appendix. Output is left on

name.l.

2 - stop compilation after running the C
compiler first pass. Output is left on
name.2.

cal - stop compilation after running the C

compiler second pass. The output is in
CAL/32 assembly language on name.cal.

obj - stop compilation after assembly.
Output is left on name.obj. Note that
this is the option that must be used if
the C source program consists of

several files. Linking must then be
performed manually. See LN in this
appendix.

48-103 FOO ROO | B-3

cc

-2 - ' cC

Compile, assemble and 1link using the
EDITION VII compatible run-time library
(RTL) . This is the default value of
option. Output is left on name.tsk.

Compile, assemble and 1link using the

IDRIS compatible RTL. As above, output
is left on name.tsk.

48-103 FOO ROO

cu Assemble a C Program Ccu
NAME

CU - Assemble a C Program
SYNOPSIS:
cu name

FUNCTION:

CU takes the assembly language file which is the output of ptwo
and assembles it using CAL/32 R01-01 which distinguishes between
upper—- and-lower case. Note that C programs which are not
assembled with this version of CAL/32 will not function properly.

The argument to CU is name with no extension. The extension is
presumed to be .CAL.

CU invokes the assembler with the following options - 1lcase ur
erl del nlist squez=3 ncros

EXAMPLE:

CU grep

48-103 FOO ROO , B-5

LISTER List Source and Errors

NAME :

LISTER - List Source and Errors

SYNOPSIS:

LISTER -[e 0 1 i* 1# w#] <(file> [<errors>]

FUNCTION:

LISTER

lister produces a line numbered listing of the (file> on stdout.

The

following options may be used:

-e expands include files found in the source

-0 intersperses errors from pass
compiler with the lines of the

0 of the C
source at the

appropriate point. The errors are assumed to

be found 1in the (errors)> file
included with this option.

-1 intersperses errors from pass
compiler with the lines of the

which must be

1 of the C
source at the

appropriate point. The errors are assumed to

be found in the <(errors) file
included with this option.

which must be

—-ix the search path for the #include "..." files.
See chdir (4) for the form of the prefix on
0s/32.

-14 number of lines per page. (Default is 66)

-wi number of characters per line. (Default is
80)

EXAMPLE :

SEE

PP,

LISTER -e -1 -i/usr/include plfunc.c plfunc.erl

ALSO:

PONE

48-103 F0O0 ROO

LN Link a C Program to Run on 0S/32 LN
NAME :

IN - Link a C Program to Run on 0S/32
SYNOPSIS:
LN name, option

FUNCTION:

IN builds a link command file, then loads and runs LINK/32 using
that command file to build a runnable C program. By default, the
resulting program has float and double float support and a
default workspace of 8kb for stack and heap growth. The command
file INCLUDE's CINIT.OBJ, the C run-time initilization routine,
then INCLUDE's a single user C object file name.obj, LIB's
against LIBU.OBJ, the Edition VII compatible library, or
LIBW.OBJ, the IDRIS compatible library, and then LIB's against
LIBE.OBJ, the 0S/32 interface 1library and finally against the
system math library. A short link map is built on file name.MAP
and the task is built on name.TSK.

The arguments to LN are:

name is the name of C object file without
extension. The extension is assumed to be
.OBJ.

option is either "w" or "u". If "w" is specified the

IDRIS compatible C RTL is resolved against.
If "u" is specified the Edition VII compatible
library is resolved against. The default is
"u".

If LN is not used to build the C task, then the following
conventions must be observed:

1. OP FL,DFL must be specified.

2. CINIT.OBJ or CFINIT.OBJ must be included

3. When editing against run-time libraries, the following

order must be observed:

LIB LIBU.OBJ/S
LIB LIBW.OBJ/S
LIB LIBE.OBJ/S
LIB PEMATH.OBJ/S

48-103 FO00 ROO B-7

PP

NAME :

Preprocess Defines and Includes PP

PP - Preprocess Defines and Includes

SYNOPSIS:

PP -[c d* i* o* p? 8? x 6] (files>

FUNCTION:

PP is the preprocessor used by the C compiler to perform #define,
#include and other functions signalled by a #, before actual
compilation begins. It can be used to advantage, however, with
most language processors. The flag options are:

....0*

=X

-V

don't strip out /* comments */ nor continue
lines that end with \. -

where * has the form name=def, define name
with the definition string def before reading
the input; if#=def is omitted, the definition

is taken as "1". The name and def must be in
the argument, i.e.; no blanks are permitted
unless the argument is quoted. Up to ten

definitions may be entered in this fashion.

change the prefix used the #include "filename"
from the default "" to the string *. Multiple
prefixes to be tried in order may be
specified, separated by the character "|".
See chdir(4) for the form of the prefix on
0s/32.

write the output to the file * and write error
messages to STDOUT. Default is STDOUT for
output and STDERR for error messages. On many
systems (other than Idris), the -o option is
mandatory with -X because STDOUT is
interpreted as a text file and, hence, becomes
corrupted.

change the preprocessor control character for
"#" to the character 2.

change the secondary preprocessor control
character fror. "@" to the character ?.

put out lexemes for input to the € compiler
pone, not lines of text.

report source file and 1line number during
processing.

48-103 F0OO0 ROO

PP | -2 - , PP

-6 put out extra newlines and/or SOH ('\1') codes
to keep source 1line numbers correct for
UNIX/V6 compiler or ptc.

-z permit FORTRAN function declarations and
common declarations.

PP processes the named files, or STDIN if none are given, in the
order specified, writing the resultant text to STDOUT.

Preprocessor actions are described in detail in Chapter 1 of this
manual.

The presence of a secondary preprocessor control character
permits two levels of parameters. For instance, the invocation

PP -c-pe@

will expand define and ifdef conditionals, leaving all the
commands and comments intact; invoking PP with no arguments would
expand both @ and # commands. The flag -s# would effectively
disable the secondary control character.

EXAMPLE :

The standard style for writing C programs is:

/* name of program

X

$include <{(std.h>

$def ine MAXN 100
COUNT things [MAXN];
etc.

The use of uppercase identifiers is not required by PP, but is
strongly recommended to distinguish parameters from normal
program identifiers and keywords.

SEE ALSO:

PONE

BUGS:

Unbalanced quotes ' or " may not occur in a line, even in the
absence .of the -x flag. Floating constants longer than 38 digits
may compile incorrectly on some host machines.

48-103 FO0O ROO B-9

PONE Parse C programs PONE
NAME :

PONE - Parse C Programs

SYNOPSIS:

PONE - [a b# ¢ = 1 m n# o# r# u] <(filed

FUNCTION:

PONE is the parsing pass of the C compiler. It " accepts a
sequential file of lexemes from the preprocessor PP and writes a
sequential file of flow graphs and parse trees, suitable for
input to a machine-dependent code generator PTWO. The operation
of PONE is largely independent of any target machine. The flag
options are: :

-a compile code for machines with separate
address and data registers.

-b# enforce storage boundaries according to #,
which 1is reduced modulo 4. A bound of O
leaves no hols in structures or auto

allocations; a bound of 1 (default) requires
short, int and longer data to begin.on an even
bound; a bound of 2 is the same as 1, except
that 4- to 8- byte data are forced to a
multiple of 4 byte boundary; a bound of 3 is
the same as 2, except that 8 byte data
(doubles) are forced to a multiple of 8- byte

boundary.

-c ignore case distinctions in testing external
identifiers for equality, and map all names to
lowercase on output. By default, case
distinctions-matter.

-d use standard C floats and doubles. By default
float and double are distinct.

-e do not force loading of extern references that
are declared but never defined or used in an
expression. Default 1is to load all externs
declared.

-1 take integers and pointers to be 4 bytes long.

Default is 2 bytes.

-m treat each struct/union as a separate name
space, and require x.m to have x a structure
with m one of its members.

B-10 48-103 F0O ROO

PONE -2 - | PONE

-n# ignore characters after the first # in testing
external identifiers for equality. Default is
7; maximum is 8.

ok write the output to the file # and write error
messages to STDOUT. Defalt is STOUT for
output and STDERR for error messages.

-r# assign no more than the # variables to
registers at any one time, where # is reduced
modulo 4. Default is 3 register variable.

-u take "string" as array of unsigned char, not
array or char.

-V report file being processed and line in
increments of 10 characters.

If (file) is present, it is used as the input file instead of the
default STDIN. On many systems (other than IDRIS/UNIX), the o
option and <file> are mandatory because STDIN and STDOUT are
interpreted as text files and, hence, become corrupted.

EXAMPLE :

PONE is usually between PP and some version of PTWO, as in the
following

PP -xv tenol file.o
PONE -ulv -b2 -n8 -otemp2 templ
PTWO -mv -ofile.s temp2

SEE ALSO:

PP

48-103 F00 ROO B-11

NAME :

PTWO - Generate Code for 0S/32 C Programs
SYNOPSIS:
PTWO -[o# p s x#] <(file>

FUNCTION:

PTWO is the code generating pass of the C compiler. It accepts
a sequential file of flow graphs and parse trees from PONE and
writes a sequential file of assembly language statements suitable
for input to the CAL assembler.

The flags are:

-d use standard C conventions on floating point
(i.e.; all arithmetic is double and arguments
are double.

-o# write the output to the file and write error
messages to STDOUT. Default is STDOUT for
output and STDERP for error messages.

p ‘ emit debugging output

-8 put out source 1lines preceeding appropriate
code in assembly file.

-x# mark the three virtual sections for PFunction
(04), Literals (02) and Variables (0l1), to the
two physical sections Code (bit is a one) and
Data (bit is a zero). Thus, "-x4" is for
separate 1/D space, "-x6" 1is for read-only
memory/random access memory (ROM/RAM) code,
and " x7" is for compiling tables into ROM.
Default is 4.

-n generate code for 0S/32

-v report source file and relevant 1line number
during processing.

-8 generate compatible code for 8/32, 7/32.
If {(file> is present, it is used as the input file instead of the
default STDIN. On many systems (other than IDRIS), <(file) is

mandatory, because STDIN in interpreted as a text file and,
hence, becomes corrupted.

B-12 48-103 FOO ROO

PTWO -2 - , PTWO

Files output from pone for use with the code generator should be
generated with: -m signifying 0S/32 as a target; -1 since point
rs are long; and -b2 flag, since only the value of "-p2" is
acceptable.

Whenever possible, labels in the emitted code are followed by a
comment which gives the source 1line from which the code
immediately following obtains, along with a running count of the
number of words of code produced for a given function body. +s
will cause the actual # source text to be output.
EXAMPLE :
PTWO usually follows up and PONE, as follows:

PP -xv -otempl file.c

PONE -ulv -b2 -n8 -otemp2 templ

PTWO -o file.s temp2
SEE ALSO:

PONE

48-103 F00 ROO B-13

BIBLIOGRAPHY

Kernighan, Brian W., Ritchie, Dennis M. The C Programming
Language. New Jersey: Prentice-Hall, Inc., 1978.

48-103 FOO ROO BIB-1

abs
Absolute value

integer
acos
_addexp
Addressing operators
alloc
Allocate
cell
change core
main memory
space on the heap

amatch

Anchored match
build pattern

arctan

Argument declarations

array of

asctime

asin

asgert

atan

atan2

atof

atoi

atol

Auto storage class

B

Binary
file
operators

bitfielad

bldks

break

break statements

brk

btod

btoi

btol

btos

Buf fer
close a file
compare
control

convert double to,

exponential
convert double to,
point

convert to double
convert to integer
convert to long
convert to short

copy

48-103 F00 ROO

Lo
el

~

WHEOENNWNDWN
| | i

NN HFNWWWHRFHW
N

w

|

WWWwWwn bW
| 1
[EPEURY.)

WWN MO

W
i]
o wo

!
AN WW
(8,

U] } | I |
=N MO W

|
ONEHNDN -

w WWWRWWWwwbd >
1

w

[|
w w
- w

3-17
3-19
3-20
3-22
3-27

]
1
'
1
]
I
!
1
1
1
]
]
]
1
i
'
]
1
i
1
]
!
1
]
]
t
]
1
[}
t
]
I
1
i
t
]
1
]
]
1
]
1
]
i
1
t
]
'
[}
]
]
1
]
}
[
1
[]
1
)
1
]
i
1
1
]
[}
1
t
]
}
]
!
[
1
]
[}
]
1
1]
]
]
]
[]
1
1
1
]
]
1
]
[]
i
]
]
!
]
]
1
'
1
}
]
1
]
1
1
L]
1
]
1
L}
!
¢
]
]

INDEX

Buffer (Continued)

propagate fill character

standard [/0
Buffered 1/0
Buffering
buybuf

assemble

compile, assemble, link
compile-time arithmetic

computing values
declar ing names
diagnostics

enter a program
executable code
giving values to data
1/0 subroutines
introduction

link

list source and errors

machine interface
naming things
operating procedures
0S interface

0s/32 file interface

parse
portability
preprocessor
restrictions
run-time environment
standard libraries
style
syntax rules

cabs

calloc

case

Casts

cc

ceil

char

Character
classification
constants

chdir

Cint

Cio

clearerr

close

cmpbuf

cmpstr

Coercions

Command line
collect files
collect flags
collect text files

Constants

continue

3-44
2-40
2-40
2-35
3-23

| LU
NSNS N W O
[l o] (=N NN

U1mlﬂh‘wlTﬁJQPJh'HPJUiW}J
UL |

1 1
HeWRHHENFHON®

woou!mo

S AA
i

NN
|
O

P |
= NN WD
N~ OVNOW

{ S T T
o

|
NN =N dOO = W

HWWH DWW LSRN HND -
]]

w

[=N7, -3

w
I
5]
-

3-62
3-60
1-34
1-26

IND-1

isdigit
islower

isprint
ispunct
isspace
isupper

iswhite
itob
itols

label
ldexp
leave
lenstr
Libraries, standard
#line
LISTER
Literals
1n

LN

Local declarations
localtime
log

logl0
logar ithm
long
longimp
lower
1seek
1lstoi
lstol
1tob
ltols

nain

malloc
Mantissa

mapchar

match

max

Memory allocation
min

mkord

mktemp

Mode

modf

nalloc
_norm
Notation
notbuf
notstr
_ntens

LU I |
s

N

WWwwhhhNWNWN
|
NNNNOOOOOTOONONO

ks w

1-37

111
o

]
WHOO®OK NP
=

[
= ©
~Noon

W WNhENMDNONNAED WD
|

|
[o]
=

3-82
3-83
3-84

4-4

2-20
2-14
3-85
3-86
3-87
2-20
3-88
3-89
2-21
4-2

2-14

Null statement
Numeric constants

o

Octal literal

onexit

open

operators
addressing
binary
unary

ordbuf

0S interface

P

Pass 1 diagnostics

pathnm

pattern

pause

perror

—pname

pointer to

_poly

PONE

Portability

pow

power

PP

prefix

Preprocessor
defines and includes
diagnostics

printf

Process
character escape

sequences

handle exceptions
pause
raise reception
suspend for interval
terminate

Program block

PTWO

Punctuation

putc

putch
putchar
putf
putfmt
putl
putlin
puts
putstr
putw

gsort

48-103 FO0O0 ROO

1-4
4-18
4-19

1-27
1-30
1-28
3-95
4-2

_raise
rand

Random number generation

_ranerr

_range

Range
error condition
report error

read

Register storage class

Regular expression
anchored match
match

remark

remove

Reserved identifiers

return

rewind

r index

_round

sbreak
sbrk
scanf
scnbuf
scnstr
setbuf
setjmp
setkey
short
sin

sinh
sleep
Sorting
gsort
sort
sprintf
sqrt

square root
squeeze
sscanf
stack
standard
header
header file
libraries
Statements
Static storage class
std.h
stdin
format input
get a character
get a text line
stdio
stdout

format arguments

put a text line
stob

48-103 F00 ROO

5-13
2-30
2-30
5-15
5-16

5-15
5-16
4-21
1-11

3-13
3-86
3-112
4-22

1-26
2-15
2-42
5-17

Storage classes

strand

strcat

strcmp

strcpy

Stream)
assign buffering
close or flush
get a string
get character or word
open
push character back
put a string
put character or word
reposition
status ingquiries

string constants

string operations
compare
convert to normalized
copy
copy to file
find length
find substring

scan for character
strlen
strncat
strncmp
strncpy
struct
Structure declarations
Style
formatting
organization
restrictions
subbuf
substr
Supervisor call.
sveC
switch
Syntax
sys_errlist
sys_nerr

See SVC.

tan
tanh
tell
Test
alphabetic character
digit
lower-case character
max imum
minimum
prefix
upper-case character
whitespace character
Text file
time
Time
convert to ASCII
get

1-10
2-30
2-42
2-42
2-42

2-35
2-9

2-18
2-16
2-12
2-45
2-28

2-37
2-38
4-17

3-70
3-71
3-72
3-87
3-88
3-100
3-73
3-74
4-3
4-24

4-11
4-24

IND-5

timezone

~tiny

Tokens

tolower

toupper

Trigonometric functions
ttyname

Type

typedef storage class

u,v

uname
Unary operators
#undef

ungetc

union

unlink

~unpack

usage

W, X,Y,2
_when

while
write

4-11
5-18
1-4
3-125
3-126
2-37
2-44
1-11
1-11

4-25
1-28
1-36
2-45
1-13
4-26
5-19
3-127

5-20
1-25
4-27

e e e . - —— —— —— . ———— e ——— — . ——— = e - ———— ——— —— —— —— . ——— —— ——- ——— e = = e —————— - ————— ———— - - —— —— —— ————

48-103 FOO ROO

PERKIN-ELMER

PUBLICATION COMMENT FORM

We try to make our publications easy to understand and free of errors. Our
users are an Integral source of information for improving future revisions.
Please use this postage paid form to send us comments, corrections,
suggestions, elc.

1.

Publication number_ _.

2. Title of publication

3. Describe. providing page numbers, any technical errors you
found. Attach additional sheet if neccessary.

4. Was the publication easy to understand? If no. why not?

5. Were illustrations adequate?

6. - What addmdns or deletions would you suggest? .

7. Other comments:

From Date

Position/Title
Company

Address

6417

STAPLE STAPLE

NO POSTAGE
NECESSARY
IF MAILED
IN THE

UNITED STATES

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO. 22 OCEANPORT, N.J.

POSTAGE WILL BE PAID BY ADDRESSEE

PERKIN-ELMER

Data Systems Group
106 Apple Street
Tinton Falls, NJ 07724

ATTN:
TECHNICAL SYSTEMS PUBLICATIONS DEPT.

STAPLE STAPLE
6433=-1

	0001
	0002
	001
	002
	003
	004
	005
	006
	007
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	1-31
	1-32
	1-33
	1-34
	1-35
	1-36
	1-37
	1-38
	1-39
	1-40
	1-41
	1-42
	1-43
	1-44
	1-45
	1-46
	1-47
	1-48
	1-49
	1-50
	1-51
	1-52
	1-53
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	3-001
	3-002
	3-003
	3-004
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	3-045
	3-046
	3-047
	3-048
	3-049
	3-050
	3-051
	3-052
	3-053
	3-054
	3-055
	3-056
	3-057
	3-058
	3-059
	3-060
	3-061
	3-062
	3-063
	3-064
	3-065
	3-066
	3-067
	3-068
	3-069
	3-070
	3-071
	3-072
	3-073
	3-074
	3-075
	3-076
	3-077
	3-078
	3-079
	3-080
	3-081
	3-082
	3-083
	3-084
	3-085
	3-086
	3-087
	3-088
	3-089
	3-090
	3-091
	3-092
	3-093
	3-094
	3-095
	3-096
	3-097
	3-098
	3-099
	3-100
	3-101
	3-102
	3-103
	3-104
	3-105
	3-106
	3-107
	3-108
	3-109
	3-110
	3-111
	3-112
	3-113
	3-114
	3-115
	3-116
	3-117
	3-118
	3-119
	3-120
	3-121
	3-122
	3-123
	3-124
	3-125
	3-126
	3-127
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	4-26
	4-27
	5-01
	5-02
	5-03
	5-04
	5-05
	5-06
	5-07
	5-08
	5-09
	5-10
	5-11
	5-12
	5-13
	5-14
	5-15
	5-16
	5-17
	5-18
	5-19
	5-20
	5-21
	A-01
	A-02
	A-03
	A-04
	A-05
	A-08
	A-09
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	B-09
	B-10
	B-11
	B-12
	B-13
	Bib-01
	Index-01
	Index-04
	Index-05
	Index-06
	replyA
	replyB

