0$/32-ST PROGRAM
REFERENCE MANUAL

EIN"T"EIR I AN A

B E A

0S/32-ST PROGRAM
REFERENCE MANUAL

Publication Number 29-380

This is a PRELIMINARY Manual
and is subject to change without
notice.

© INTERDATA INC,, 1974
All Rights Reserved

PRINTED IN US.A. APRIL 1974

29-380

0S/32-ST
PROGRAM REFERENCE MANUAL

PREFACE

0S/32-ST is a Serial Tasking Operating System designed

for the 32-Bit Architecture Processors. The reader

should be familiar with the 32-Bit Series Reference Manual,

Publication Number 29-365.

Other related user's manuals are:

- 0S/32 User Guides, Publication Number 29-393

- 0S/32 Series General Purpose Driver Manual, Publication

Number 29-384

- 08/32-ST Program Configuration Manual, Publication

Number 29-379

- 0S/32-ST Program Logic Manual, Volume 1 (Text),

Publication Number 29-381

- 0S/32-ST Program Logic Manual, Volume 2 (Flow Charts),

Publication Number 29-381

i/ii

CHAPTER 1.

CHAPTER 2.

CHAPTER 3.

0S/32-ST
PROGRAM REFERENCE MANUAL

TABLE OF CONTENTS

S

1 ABSTRACT

2 IMPORTANT FEATURES

3 SYSTEM CONFIGURATION

4 MEMORY MANAGEMENT

5 SYSTEM STRUCTURE
1.5.1 Executive

1.5.2 Command Processor
1.5.3 Loader
1.5.4 I/O Subsystem
1.5.5 File Management
1.6 DIRECT ACCESS FILES
1.6.1 Volume Organization
1.6.2 Identification of Files
1.6.3 File Access Methods
1.6.4 File Organization
1.6.5 File and Device Protection

OPERATOR'S GUIDE
2.1 SYSTEM START-UP

2.2 SYSTEM ERRORS
2.3 SYSTEM CONSOLE DEVICE
2.4 OPERATOR COMMANDS
2.4.1 Command Syntax
2.4.2 Task Related Commands
2.4.3 General System Commands
2.4.4 Device and File Control Commands
2.4.5 Magnetic Tape and Cassette Commands
2.5 COMMAND SUBSTITUTION SYSTEM
2.5.1 Calling CSS Files
2.5.2 Use of Parameters
2.5.3 Commands Executable from a CSS File
2.5.4 (CSS Command Summary
2.5.5 CSS Error Conditions

GRAMMER'S GUIDE
SYSTEM CONVENTIONS
TASK OPTIONS AND STATUS
SUPERVISOR CALL (SVC)
SVC 1 - INPUT/OUTPUT OPERATIONS
3.4.1 8VC 1 Data Transfer Requests
3.4.2 SVC 1 Command Requests
3.4.3 Returned Status

R

wWwwwhH
L]
S w O

iii

Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure
Figure

APPENDIX 1
APPENDIX 2
APPENDIX 3

=
[T T I T T Y T T A (I
WN

WWWwwwwwwwwwww

HMHERFRFREWOWONO U WN R

whhH=O

ILLUSTRATIONS

Typical 0S/32-ST Configuration
0S/32-ST Memory Map
Functional Block Diagram Function Codes

Interpretation of sSvC 1

SVC Parameter Block for Data Transfers
Interpretation of SVC 1 Status Byte
SVC 1 Attributes

SVC 2 Function Codes

PEEK Parameters

Memory Map Showing Overlay Area

SVC 7 Parameter Block

SVC Command/Modifier Halfword
Interpretation of SVC 7 Status Byte
Valid Access Privilege Changes

SVC 7 Device Attributes Halfword
Example Device Codes

APPENDICES

SYSTEM COMMANDS AND MESSAGES
OS COMPATIBILITY AND HALFWORD MODE
GLOSSARY

iv

CHAPTER 4.

3.5 SVC 2 SYSTEM UTILITY SERVICES
3.5.1 Code 1 - Pause
3.5.2 Code 2 - Get Storage
3.5.3 Code 3 - Release Storage
3.5.4 Code 4 - Set Status
3.5.5 Code 5 - Fetch Pointer
3.5.6 Code 6 - Unpack Binary Number
3.5.7 Code 7 - Log Message
3.5.8 Code 15 - Pack Numeric Data
3.5.9 Code 16 - Pack File
3.5.10 Code 17 - Scan Mnemonic Table
3.5.11 Code 18 - Move ASCII Characters
3.5.12 Code 19 - Peek
3.5.13 Code 20 - Expand Allocation
3.5.14 Code 21 - Contract Allocation
3.6 SVC 3 - END OF TASK (EOT)
3.7 SVC 5 - OVERLAY CALL
3.8 SVC 7 - FILE HANDLING SERVICES
3.8.1 SVC 7 Parameter Block Fields
3.8.2 SVC 7 Functions
EXAMPLES

4.1 INTRODUCTION

4.2 OPERATION EXAMPLES

Establishing Programs on Disc
Assembling with Disc

FORTRAN Compiling with Disc
Building Overlays

Example CSS Files

RAMMING EXAMPLES

1 Using I/O sVC 1

2 Using System Services SVC 2

3 Using Overlay SVC 5

4 Using Disc Files with SVC 7 and SVC 1.

e« o & o
WwwwoOhhNbDNN
moooo
Ui W

>
w
[SO S S v B

v/vi

CHAPTER 1

SYSTEM DESCRIPTION

1.1 ABSTRACT

0S/32-ST is an operating system that provides system control,
resource allocation and program management for single task
programs on a 32-Bit Series Processor. Console operator
facilities, interrupt handling, and Input/Output (I/0)
servicing are built-in functions of 0S/32-ST. Data file
management features are provided when the system is equipped
with a direct access device (disc), and consequently 0S/32-ST
is oriented towards a disc operating system environment.
Command sequences may be executed from Command Substitution
System (CSS) files so that complex command functions can be
issued with one statement. Memory, device and (disc) file
resources can be allocated by the console operator according
to configuration and program needs. Memory and files can
also be allocated by user programs. Large programs can be
accommodated because 0S/32-ST fully supports the ability of

the Processor to directly address up to one megabyte of memory.

This manual provides the information needed for operating the
system and for writing programs that run under it. More
information on use of major 0S/32 features can be found in

the 0S/32 User Guides manual, Publication Number 29-393.

Refer to the 0S/32 Series General Purpose Driver Manual,

Publication Number 29-384, for peripheral device driver
characteristics, program documentation, and the requirements

of user-written drivers.

Refer to the 0S/32-ST Program Configuration Manual, Publication

Number 29-379, for system generation (SYSGEN) procedures and
related configuration, size and performance information. A
preSYSGENed 0S/32-ST STARTER program is provided which is

adequate for many user needs. STARTER is also described in

the 0S/32-ST Program Configuration Manual, Publication Number

29-379.

Refer to the 0S/32-ST Program Logic Manual, Publication Number

29-381, for the purpose of making modifications and program

maintenance.

1.2 IMPORTANT FEATURES

Named Devices and Files

All peripheral devices are referred to by SYSGENable mnemonic
names rather than by hardware addresses which are configuration-
dependent. Direct access files are also referred to by name

and assigned in the same manner as devices. File names are
composed of three fields: Volume Name (the name by which a
direct access volume is known to the system), File Name (intended
to designate a class of files related in some way), and Extension

(intended to designate variously processed forms of the same file)

Device and File Protection

Each device and file is protected by means of read and write
keys which must be supplied by the user program or console
operator when trying to gain access to that file or device.
Keys are eight-bit numbers from X'00' to X'FF'; X'00' being
unconditionally accessible and X'FF' being accessible only

by executive system routines.

Device and File Allocation

Devices are defined at SYSGEN time; files may be allocated by
the console operator or dynamically by user programs. Devices
may be renamed and their read and write keys may be changed
by the operator. Files may alternatively be renamed and have
their read and write keys changed by user programs. Devices

may be marked on or off-line by the operator.

Standard I/O

Input/Output (I/0O) programming is facilitated by a conven-
tional manner in which programs call the executive to perform
I/0 operations. I/O is device independent so that, for example,
a command stream can be read from a card reader to 5 direct

access file in exactly the same manner.

Concurrent I/0

I/0 requests by programs are performed as either wait (non-

overlapped) or I/O proceed (overlapped).

Direct Access Files

Direct access files may be created, named, protected, examined,
and deleted. A file may be created using one of two structures,
both of which support random and sequential access:

Contiguous - A closed and unbuffered organization of a fixed
(when allocated) number of data blocks which are allocated as

an unbroken series of block addresses.

Chained - An open-ended and buffered organization of chain-
linked data blocks. Blocking and deblocking of logical records
is performed automatically by the system. Logical record size

is independent of physical record size.

Disc Pack Interchange

Disc packs with data files may be removed and reinserted into
the system configuration because all the control information

required by the system is resident on the pack.

Overlays

Programs need not be totally memory-resident. They can be

segmented and overlaid from a device or file.

Console Log

The operator may transfer logging functions to a device other
than the console device presumably to a line printer or to a

direct access file.

1-4

Command Processing Routines

Command processing routines in 0S/32-ST are available to

user programs.

Command Substitution System

The Command Substitution System (CSS) is a powerful extension
to the 0S/32-ST Command Processor. It provides the user with
the ability to establish files of commands which can be
called from the console and executed in a defined sequence.
In this way complex operations can be carried out by the
operator with only a small number of commands. For instance,
to compile, load and run a FORTRAN program, only a single

command need be entered.

1.3 SYSTEM CONFIGURATION

A typical 0S/32-ST hardware configuration well suited for
program development is illustrated in Figure 1-1. Other
peripherals are available, such as paper tape and magnetic

tape equipment.

For initial loading and execution, 0S/32-ST requires no
support software other than the 32-Bit Relocating Loader,
(Program Number 03-067). If the user has a disc in his
configuration, he may establish a memory image of 0S/32-ST
on disc and reload rapidly with the 0S/32 Bootstrap Loader,

(Program Number 03-074).

Users normally make use of INTERDATA-provided OS programs,

such as the CAL Assembler (Program Number 03-066), FORTRAN IV

Level 1 Compiler (Program Number 03-060), and the 0S/32 Library
Loader (Program Number 03-065) for their program development.

Several operation examples are given in Chapter 4.

Typical software configurations of 0S/32-ST may be generated
from a library of system object modules by using the 0S/32-ST
Configuration Utility Program (CUP/ST; Program Number 03-076).
Various optional features and device selections may be made
during this object SYSGEN process, including the removal of
file management routines if the system is not configured with
direct access devices. Certain options may also be selected

by reassembling system source.

128 KB

MEMORY
MEMORY BUS
7/32 PROCESSOR WITH
DISPLAY PANEL EXTENDED
SELECTOR
CHANNEL
g
1/0 BUS SELCH
BUS
CONSOLE ‘ 10 MB
TTY .
~—
CASSETTE

—CO0O

CARD
READER B

Figure 1-1. Typical 0S/32-ST Configuration

Selectable SYSGEN options include:

- Inclusion of Floating Point traps

- Deletion of the Command Substitution System

- Deletion of file management support

- Deletion of Chained file support

- The name of system console device

- The name of system direct access volume

- Default system parameters

- Specification of various system/task parameters, drivers,

device names, etc.

A preSYSGENed 0S/32-ST STARTER program (Program Number 03-075)
is provided to run CUP/ST. O0S/32-ST STARTER may

have general applicability, depending on user requirements.
The system generation process and STARTER are described in

the Program Configuration Manual, Publication Number 29-379.

For its direct-access storage medium, an 0S/32-ST configuration
may include one or more of several types of discs. This manual
generally refers to a disc as the direct-access device. On

the other hand, file management procedures in 0S/32-ST are

not directly dependent on a particular disc or disc controller.
Consequently, any type of direct-access device may be employed
if it is characterized by 256 byte sectors or can emulate 256

byte sectors and if an appropriate I/O driver is provided.

1.4 MEMORY MANAGEMENT

A memory map of an 0S/32-ST configuration is illustrated in
Figure 1-2. Memory address space must be contiguous for all
configured memory. The Operating System occupies low memory,
followed in turn by one or more user programs, user data area,
unused space, and system allocated direct access File Control

Blocks (FCBs) at the top.

Memory management concerns the values of certain locations as
maintained by the following system parameters:
User Bottom (UBOT) The first halfword location of
user space above the operating
system; it is a constant dependent
on the size of the user's configured
0S/32-ST (does not change by loading

user programs) .

User Top (UTOP) The first halfword location above
the user's program; it changes with

each program loaded.

Common Top (CTOP) The last halfword location of the

user's allocated memory.

FCB Bottom (FBOT) The first halfword location of the

direct access FCB area.

Memory Top (MTOP) The location of the last halfword of
configured memory, plus two.
The way in which memory is allocated in 0S/32-ST is as follows

(see Figure 1-2).

FILE CONTROL
BLOCKS

MTOP

T

USER
ALLOCATED
MEMORY

GET STORAGE
AND OVERLAY AREA

L1

USER DATA

USER PROGRAM

05/32

FBOT

CTOP (EXPAND MEMORY)
MOVES IN 256 BYTE
INCREMENTS

uTtop

usoT

(1)

MEMORY MAP AFTER PROGRAM

IS LOADED

Figure 1-2. OS/32-ST Memory Map

FILE CONTROL
BLOCKS

MTOP

FBOT

PGM2

PGM1

0S/32

cTop

uToP

UBOT

MEMORY MAP AFTER SECOND

(2)

PROGRAM IS LOADED AT OLD UTOP

1-10

If a load address is not specified when a program is loaded,
space is made available from the value of UBOT upwards;

i.e., from the bottom up. The new program top address is
placed in UTOP. CTOP is then set to the next higher multiple

of 256 bytes (or more depending on the SYSGENed option).

The program may obtain additional memory area by issuing
Get Storage calls (say for temporary data as required by
FORTRAN library routines). Get Storage calls increase UTOP.

Overlays are also loaded in the area between UTOP and CTOP.

The parameters UBOT, UTOP and CTOP provide compatibility with

other INTERDATA operating systems.

To load a new program without overwriting previously loaded
programs, the operator must specify a load bias. He can
determine the current value of UTOP and CTOP by displaying

system parameters via an operator command (DISPLAY).

File management routines require FCBs in memory for active
files. They contain control information and buffer space.

FCBs are allocated dynamically by the system when file are
assigned. Space is allocated from the top of memory down.

The internal parameter FBOT is used to keep track of the

current FCB area bottom. If the allocation of a new FCB would
cause FBOT to overlap CTOP, the allocation request is rejected.
The size of FCBs and buffers is a function of the type of files,
but the operator can ascertain the value of FBOT by displaying

system parameters with an operator command (DISPLAY).

When an Expand Memory Allocation request is executed, CTOP

is incremented in multiples of 256 bytes. If this would

cause CTOP to overlap FBOT, the allocation request is rejected.
On a Contract Allocation request, CTOP is decremented. The
request is considered invalid if it would cause UTOP to

exceed CTOP.

When a Get Storage request is executed, UTOP is incremented.
If this would cause UTOP to exceed CTOP, the request is
rejected. Release Storage works in much the same way except
that UTOP is decremented. Storage is not allowed to be re-

leased past UBOT.

1.5 SYSTEM STRUCTURE

As illustrated in Figure 1-3, 0S/32-ST is functionally
composed of five major module groupings. These are the
executive, command processor, loader, I/O subsystem, and

the file management package.

Running under the Operating System, the user task (user program)
may consist of a single program, or it may include a main
program and a number of subroutines and overlays. User pro-
grams may be resident in memory, or they may be loaded as
required. The total number of programs allowed in memory

at any given time is limited only by the amount of memory
available, but only one user task is known to the system at

any given time.

User tasks are not privileged; they are executed with the
Processor's Protect bit set in the Program Status Word (PSW)
so that an attempt to execute a privileged instruction causes
an Illegal Instruction Interrupt. Privileged instructions
are the type that perform I/O operations or change the state
of the Processor. Tasks can execute in a privileged state,
called Executive mode, but users should not ordinarily employ

it. This capability is provided for running system programs.

As shown in Figure 1-3, there are two distinct user interfaces
to 0S/32-ST. One is the operator command interface that allows
the operator of the console device to control the system (see

Chapter 2). The other interface is at the program level;

1-13

USER TASK

— — — — 05/32-ST SYSTEM — — —

OPERATOR r—
COMMAND [| PROGRAM j
INTERFACE | COMMAND
l INTERFACE '
I
| * |
CONSOLE UTCB EXECUTIVE
OPERATOR |qlg] commanp |
‘ : PROCESSOR |
| UTILITY TASK TASK MEMORY |I
o | FUNC- MANAGER| | DISPAT-| | MANAGER||
| TIONS | CHER I
—_ 1 .
— d
I INTERNAL sve crasa |l
| INTERRUPT | | PROCESSOR | | HANDLER ||
| PROCESSOR I
: LOADER !
FILE
| TASK MANAGER |
| LOADER | fovERLAY) |
| SoR EST FILE I
| PROCES- |
$ | SOR
| |
| I1/0 SUBSYSTEM o [Firs, |
| VOLUME |
DEVICE DEVICE DEVICE UTILITY |
I DRIVER DRIVER | ®®e®| DRIVER I
| |
| |
| DCB DCB ®ee| DCB |
| DCB I
| DCB |
| ‘ |
|
| - I1/0 DEVICES |
+ —— ! |
| |
| YY) |
| | |
I
FIGURE 1-3. FUNCTIONAL BLOCK DIAGRAM 1-14
- - - _ oo

user tasks request services of the system by executing
Supervisor Call (SVC) instructions (see Chapter 3). Many
operator command features are made available to the user

program via SVCs.

An interface between user task and system code is provided
in a system table called the user Task Control Block (UTCB).
The user is not ordinarily aware of this table. It is main-
tained by the system and contains task-related items such as
register save areas, the task's Options, and the task's
current Status. An important item in the UTCB that should be
explained here is the task's Logical Unit Table (LTAB) which
allows I/O operations to be device independent. Programs
simply refer to Logical Unit (LU) numbers instead of to
specific devices. Each LU number corresponds to a slot in
LTAB, ranging from zero to a SYSGENable limit up to 254.

The LUs used by a task are assigned to devices or files as
appropriate for each given task. Use of an unassigned LU is
considered illegal; the user should specify the NULL device

if an assignment is required but no operation is to be performed.

1.5.1 Executive

The executive is the heart of the 0S/32-ST system. It contains
logic for processing SVCs and other internal interrupts, a
memory manager, a task manager, a dispatcher, a crash handler,

and general utility routines.

The memory manager is responsible for memory allocation as

illustrated in Figure 1-2.

The task manager and dispatcher are responsible for controlling
the state of the current task, saving a task's environment

(registers, PSW, etc.), and restoring it.

The crash handler is entered on the occurrence of catastrophic

events such as memory parity error.

Utility routines perform format conversion, mnemonic scan and

other commonly used functions.

1.5.2 Command Processor

The command processor accepts command strings from the system
console device, decodes them, and determines what action should
be taken. It provides the interface between the operator and
the system. It is SYSGENable such that the execution routines
for unneeded commands may be removed from a given system

configuration.

1.5.3 Loader

The 0S/32-ST resident loader loads tasks and overlays. The
input medium must be in one of two loader formats: The

CAL 32-Bit object output, for fullword mode tasks, and the
CAL 16-Bit (or OS Assembler or FORTRAN IV) object format for
halfword mode tasks. Since the two modes have disparate
formats, two loaders are provided in a full 0S/32-ST system:
the halfword mode loader and the fullword mode loader. The

halfword mode loader may be SYSGENed out.

The resident loader in 0S/32-ST does not link object modules.
An assembled program could be loaded and executed as a task,
but if that program requires other modules to be linked with
it as one composite program, the modules must be either

linked with the 0S/32 Library Loader (Program Number 03-065)
prior to loading under 0S/32-ST or reassembled as one complete
program. The linking of a data Common module or overlays

requires the use of the Library Loader.

1.5.4 I/0 Subsystem

The I/O subsystem is composed of peripheral device drivers,
System Queue Service handler, I/0 coordination routines,

Device Control BLocks (DCBs), and other system tables. Drivers
are system routines that control the actual I/O transfers.

They are activated and terminated by the executive. Initiation
and termination phases of drivers are interruptable and execute

as though they were reentrant subroutines of the user task.

Multiple devices of the same type may be controlled by one
common driver, but each device requires a separate DCB.
Drivers are autonomous and may transfer data concurrently with

an executing task in a manner transparent to the user.

The System Queue is a built-in feature of the Processor that
causes an internal interrupt when an entry is in the queue and
the Processor executes a Load PSW instruction. This facility
is a convenient means for system routines to queue sYstem

events. Drivers use it, for example, on termination to

interrupt the user task in an orderly manner (transparent

to the user) and to envoke the Executive.

1.5.5 File Management

File management routines allow direct access files to be

created, named, protected, examined, and deleted. These

routines may be SYSGENed out. Files are described in the

following section.

1.6 DIRECT ACCESS FILES

1.6.1 Volume Organization

Each direct access volume contains a volume descriptor
occupying Sector g, Cylinder # on the volume, in which
information required by the system is maintained. This

descriptor consists of five fields.

FIELD 1 FIELD 2 FIELD 3 FIELD 4 FIELD 5
VOLUME POINTER TO POINTER TO SIZE OF POINTER TO
NAME (4 FILE OS IMAGE Of IMAGE ALLOCATION
CHARACTERS) { DIRECTORY MAP

Field 1 contains the name by which the volume is known to the

system.

Field 2 contains a pointer to the file directory located on the

volume.

Field 3 points to an image of the OS suitable for Bootstrap
Loading. This image is placed on the volume by an operator

command (INITIALIZE).

Field 4 contains the size of the OS Image in sectors.

Field 5 points to an allocation map maintained by the system.
Allocation of direct access space is by 256 byte sectors.
This map records unused and allocated sectors on the volume.

It occupies one sector for every 500,000 bytes on the volume.

1-19

The file directory contains information needed by the system
to process files recorded on the volume. An entry in the

directory is made for each file.

The directory itself is organized as a chained file of one-
sector blocks. A Directory Block has room for up to five

file entries.

When a direct-access volume is cleared by an operator command,
(INITIALIZE), the file directory pointer in the Volume
Descriptor is set to zero indicating that no Directory Blocks
are present. When the first file on the volume is allocated,
a Directory Block is also allocated and its address is placed
in the Volume Descriptor. The first file entry in the
directory is then marked as in use and the remaining four as
not in use. Four more files may now be allocated before a
new Directory Block is required. As new Directory Blocks

are added, they are chained to the end of the file directory.

1.6.2 Identification of Files
An 0S/32 file is identified by name. The full name of a file

has three parts: volume name, file name, and extension.

The volume name is composed of from one to four alphanumeric
characters, of which the first character must be alphabetic.

This is the name of the volume on which the file resides.

The file name consists of from one to eight alphanumeric
characters, of which the first must be alphabetic. This is
the main identifier for the file, and may be anything the

user chooses.

The extension consists of-up to three alphanumeric characters.
It may consist of no characters at all, in which case it is
considered to be made of blanks. The extension usually denotes
the type of material on the file. It may be anything the

user chooses; however, some specific extensions are used by

0S/32 and by some OS utilities, and are assumed to have specific

meanings. These extensions are:
OBJ Absolute or Relocatable loader format.
FTN FORTRAN source format.
CAL CAL assembly language source format.
LST Printer-image listing format.
BAS BASIC source format.

CSsS 0S/32 ST Command Substitution System (CSS) source

format.

The user may use any of these standard extensions, or may

define his own.

File identifiers, called File Descriptors in this manual, are
written as follows:

VOLN : FILENAME . EXT

where VOLN is the volume name, FILENAME is the file name, and

EXT is the extension. VOLN and EXT may be omitted when
default names are assumed, such as system volume and blank

extension.

A File Descriptor may also be used to describe a non-direct
access device, in which case the VOLN field describes a
device name rather than a volume name. The colon following
the device name must be retained to avoid confusion with a
file specification having a default volume name and extension.
The FILENAME and EXT fields are ignored for non-direct access
devices and should be omitted. At SYSGEN time each device in
the system is assigned a permanent four-character name by
which it is called. Thus the physical address of each device
need only be known at SYSGEN time. From there on, all

references to each device are by name.

Throughout this manual the term File Descriptor is used to
mean either a direct access file or a device. Examples of

File Descriptors are given in Chapter 2.

1.6.3 File Access Methods

0S/32 supports two methods of access to files: random and
sequential. These methods may be intermixed without having
to close and reopen the file. The chief mechanism used to

implement these methods is the current record pointer.

The current record pointer is a number, ranging from zero to

the number of records currently in the file, indicating the

record to be read or written on the next sequential access
to the file. Each record is numbered in sequence, starting

with zero.

The current record pointer may be adjusted in one of several
ways:

1. It is set to zero by the following operations:

Rewind
Backspace to filemark (except on Contiguous files)
Assigning (except for write-only access)

2. It is set to the number of records in the file (the
proper position to append new records) by the following
operations:

Assigning for write-only access
Forward to filemark (except on Contiguous files)

3. It is decremented by one by a backspace record opera-
tion, unless the file is already positioned at its
beginning.

4. It is incremented by one as follows:

Forward record (unless already at end of file)
Sequential read or write
5. A random read or write sets the current record pointer

to a value one greater than the record read or written.

Random Access

For random access, the user supplies the record number that

he wants to read or write. This record is found, the data

1-23

transfer is performed, and the current record pointer is set
to point to the next sequential record. If the user continues
to use random access, he need not pay attention to the current
record pointer, since it is readjusted on every call. However,
the user may wish to read or write a sequence of records,
starting with a known record number. 1In this case, he would
use a single random call and follow it with a number of

sequential calls.

With a Chained file,the user is somewhat restricted in his use
of the random write call. He may use this call to update any
record currently in the file, or to append one record to the

end of the file. If the record number specified is more than
one record past the end of the file, the call is rejected with
EOM (end of medium) status. Effectively, this means that a

file must be expanded in a sequential manner. If the file has
only five records, a sixth may be added but record number 100,

for example, could not.

On Contiguous Files there is no restriction on the use of
the random write or read call. Any record within the file's

allocation may be read or written.

Sequential Access

Sequential access is probably the simplest and most common
access method. The user performs a series of sequential read
or write calls. These cause records of the file to be read

or written in sequence. The current record pointer is adjusted

automatically at each access. The Rewind, Forward Record,
Backward Record, Forward File and Backward File commands

may be used for repositioning as described above.

1.6.4 File Organization

A file is a collection of related records. From a programmer's
point of view, a file is made up of logical records which may
be of arbitrary length and structure, and are process-dependent.
From the system's point of view, a file is made up of physical
records which are of fixed length appropriate to the particular
device and are process-independent. When a user program is
written, the logical file structure must be considered because
certain information is required at execution time by the I/0
processor routines and therefore must be supplied by the user
program. When a file is allocated, the manner in which the

data is to be stored physically on the device must be specified.

0S/32-ST supports two file structures. Although these structures
differ, in many cases the same data manipulations can be
performed on one structure as another. The choice of file
structure, in most applications, does not depend on the form

of the data to be put in the file, but on the way in which the
data is accessed. 0S/32-ST file structures are each optimized

for one specific form of access.

Chained Files

The Chained file is an open-ended file structure consisting of
a chain of blocks. One fullword of each block is used by the

system as a pointer (this pointer is not available to the user).

1-25

The pointer field of each block points to the next block

in the chain. By following the pointers, all the blocks in
the file can be found, no matter where they are scattered on
the volume. The pointer is bidirectional; that is, it can
be used to follow the chain backwards as well as forwards.
The chain in anchored at each end in the file directory.

The chained structure of this file is completely transparent

to the user.

When a Chained file is created (allocated), the physical block
size of the file may be specified in multiples of a disc
sector (256 bytes). The user's logical record size may be
independent of the physical block size, however. Blocking and
deblocking of logical records is performed automatically by
the system via two FCB buffers allocated by the system when
the file is assigned. The size of each buffer is the physical

block size of the file.

Because of its chained structure, the Chained file is optimized
for sequential access. In order to proceed from any one block
to any other, all intervening blocks must be read. This is

the normal case in sequential access, but is a waste of time

in random access, unless the distances between successive random

accesses are small.

Proceed I/O is not supported on Chained files; the user must

wait for the transfer to complete.

Shared write access (see Section 1.6.5) is not permitted on
Chained files. (If shared write access is requested, the

system automatically grants exclusive write access if possible).

Contiguous Files

The Contiguous file is a fixed-length file structure. All
blocks of a Contiguous file are allocated contiguously on the
volume. The file size in 256 byte sectors is specified at
the time of allocation, and all required space is actually
reserved at that time. Each sector is considered a record to

the system.

Random reads and writes may access any record on the file,
regardless of which records have been previously written. This
makes it possible to create a Contiguous file in a truly random

fashion.

Contiguous file I/O is non-buffered and transfers a variable
amount of data directly to or from the task's buffer. All
transfers begin on a sector boundary and end whenever the
number of bytes specified have been transferred. Although
the user may transfer data in logical record blocks of
different siz€ than sectors, he must specify the appropriate

sector number to position the file for random access.

The Contiguous file supports a pseudo filemark capability that
gives it some of the characteristics of a magnetic tape device.
The filemark is X'1313' at the beginning of a record or block.
Care should be taken to ensure that this datam is not inadver-

tently written at the beginning of a record if filemark operations

1-27

are going to be used. The forward-file and backward-file
operations on a Contiguous file function as they would on

a magnetic tape. That is, the file is positioned forward or
backward respectively until a filemark (X'1313') is found.

The current record pointer is then left following this filemark.
The write-filemark operation results in writing X'1313' at

the beginning of the current record. Note that a forward-file
or backward-file operation positions a Contiguous file at the
end or beginning, respectively, if no filemark is found, but

End-of-Medium error status results.

1.6.5 File and Device Protection
Files and devices may be protected in one of two ways:

statically or dynamically.

Static Protection

Each file or device has associated with it two protection

keys, one for read access and one for write access. Each

key is one byte long and may have any value from X'00' to
X'FF'. The values X'00' and X'FF' have special meanings.

If the values of the keys are within the range X'01l' to X'FE',
the file or device may not be assigned for read or write access

unless the operator or requesting task matches the appropriate

keys.

If a key has a value of X'00', the file or device is unprotected

for that access mode. Any key supplied is accepted as valid.

If a key has a value of X'FF', the file is unconditionally

protected for that access mode. It may not be assigned for

1-28

that access mode to any task, regardless of the key supplied.

Some examples of static protection follow:

Write Read
Key Key
00 00
FF FF
07 00
FF A7
00 FF
27 32

e o o o

Meaning

Completely unprotected.
Unconditionally protected.

Unprotected for read, conditionally
protected for write (user must supply
write key = X'07').

Unconditionally protected for write,
conditionally protected for read.
Unprotected for write, unconditionally
protected for read.

Conditionally protected for both read

and write.

The protection keys of a file are defined when the file is

allocated, and may be changed by the console operator or by

any
the
the
the

for

The

and

task having that file assigned for exclusive access. If

task has the file assigned for exclusive read it may change

read protection key; if it is assigned for exclusive write,

write key may be changed; and if the task has the file open

ERW, it may change either or both keys.

protection keys of a device are defined at SYSGEN time

may be changed by the console operator only.

1-29

Dynamic Protection

When a file or device is assigned to a task, the user may
wish to prevent console operations from accessing that file
or device while it is being used. For this reason, the user
may ask for exclusive access privileges, either for read or
write, at assignment time. This form of protection is termed
dynamic because it is only in effect while the file or device

is actually assigned.

The access privileges are generally known by their abbreviations.
These are:

SRO Sharable read-only.

ERO Exclusive read-only.
SWO Sharable write-only.
EWO Exclusive write-only.
SRW Sharable read-write.
SREW Sharable read, exclusive write.
ERSW Exclusive read, sharable write.
ERW Exclusive read-write.

A task may change its access privileges on a file without having
to close the file. This is only possible if the proper condi-
tions are met. For example, a task having a file assigned for
shared read may not change it to exclusive read if the file is
also assigned for shared read on another Logical Unit. Access

may always be changed from exclusive to shared, however.

If the user attempts to change his access privileges, and for
some reason is unable to get the new privileges, the old access

privileges remain.

CHAPTER 2

OPERATOR'S GUIDE

2.1 SYSTEM START-UP

The initial system to be loaded is either the INTERDATA
supplied 0S/32-ST STARTER program (Program Number 03-075),
or an 0S/32-ST system SYSGENed to user specifications. The

procedure is the same for either system.

To load the initial 0S/32-ST or to reload from any device
other than disc requires the use of the 32-Bit Relocating
Loader (Program Number 03-067). If the system is equipped
with a disc, the operator may, when initializing the disc,
copy a memory image of the system onto the disc. The system
may then be reloaded from disc with the 0s/32 Bootétrap Loader

(Program Number 03-074).

The 0S/32-ST STARTER program is described in the 0S/32-ST

Program Configuration Manual, Publication Number 29-379.

Use of STARTER may require manually changing the peripheral
device addresses assigned in the program if different from
those in the user's configuration. These modifications are

also explained in the 0S/32-ST Program Configuration Manual,

Publication Number 29-379.

0S/32-ST is started (and restarted) at location X' .
During system initialization, 0S/32-ST attempts to mark

all SYSGENed devices on line. If a direct access is SYSGENed,
but not physically present or it is not ready, a message is
issued and it is marked OFFLINE. Initialization also esta-
blishes the default Logical Unit (LU) assignments and task

options, resets task memory allocation, and clears the display

panel.

After initializing itself, 0S/32-ST outputs the asterisk

character, (*) to the system console and the operator may

then enter commands.

2.2 SYSTEM ERRORS
There are three kinds of error conditions that can occur
during operation of 0S/32-ST: system crashes, task crashes

and recoverable errors.

A system crash occurs when a hardware or software malfunction

is detected during execution of system code and the system
cannot proceed without running the risk of destroying infor-
mation, either on some peripheral or in memory. At which point,
the system attempts to display a crash code on the display
panel and write the crash code in dedicated memory. It then
stops. The system crash code meanings and actions to be

taken for each code are listed in the 0S/32-ST Program Logic

Manual, Publication Number 29-381.

System error conditions caused by machine malfunction interrupts
occur for memory parity error, primary power failure, and

power restoration.

A memory parity error causes a system crash if it occurs in
the system or a task crash (the task is terminated) if it

occurs in the task.

If primary power failure occurs, the registers are saved and
the system prepares itself for another interrupt upon power
restoration. When the machine malfunction intexrrupt occurs
upon power restoration, a message is logged showing the

occurrence of the power failure and to request the operator

to restore any devices that may be in an off-line and/or
write-protected state. The operator may then continue the
power restoration process by entering the command GO.

At this point, all non-direct access I/0 is aborted, direct
access I/0 is retried where necessary, and a message is
logged to indicate that power restoration is complete. An

interrupted active task is then PAUSEJ.

A task crash occurs when a malfunction is detected during the

execution of a user task and the system cannot continue executing
the task without destroying the system or user information.

At this point, the system prints an error message which

describes the error detected (e.g., Illegal Instruction, Illegal
SVC, Arithmetic Fault) and the location of the instruction
causing the error. The user task is then PAUSEJ. The operator -
may then correct the error condition and use the CONTINUE

command to proceed; or the operator may abort the task with a

CANCEL command.

CAUTION:
Any PAUSEd task with active I/0O
Proceed calls may have its I/O still
on-going. An I/O Wait call is com-

pleted first, however.

A recoverable error occurs when the system detects a condition

with incomplete information. In this case, the system prints
a message describing the condition (e.q., Command syntax error,
device unavailable, illegal command). The operator may then

issue operator commands to correct the error.

2-4

2.3 SYSTEM CONSOLE DEVICE

The system console device is normally considered to be an

ASR Model 33 or 35 Teletypewriter (TTY), but it may be any
device (e.g., keyboard/CRT) that is TTY program-compatible.

It has a special relationship with the system; operator command
input is read by the Command Processor only from the console
device and messages may be logged to the console device

without reference to device name or address. Under certain
conditions, commands may be read from another device, but this
process must be started by an operator command entered at the

system console.

When data must be entered from the system console in order
for 0S/32-ST or a user task to proceed, a character is output
to the console to prompt the operator. This character is an
asterisk (*) if command entry is required, or a right angle-

bracket (») if data for the user task must be entered.

When a user task is executing,certain commands may be entered
from the system console; however, as the task is capable of
proceeding without further command input, no asterisk is typed

out. The asterisk appears whenever the task goes to End-of-Task.

If a task is in the process of reading from or writing to the
system console, and the operator wishes to input a command,
he should depress the BREAK key on the console device. This
forces the system into command mode for the entry of one
command line. After a command line has been accepted, the
user's I/O to the console is restarted (unless the command

cancelled the user task).

The BREAK Key may also be employed to stop and discard any

response message to a command.

The user-data request prompt () is only output to the console
device; it is not output on user read requests to any other

device in the system.

When entering commands at the system console, the operator

may make corrections to his input line. A back arrow character
(¢) causes the previous character to be ignored; multiple

back arrows cause the deletion of a corresponding number of
consecutive previous characters, up to, but not exceeding the
beginning of the command line. A hash mark character (#)
causes the entire command line to be ignored and a new asterisk

prompt character to be output.

2.4 OPERATOR COMMANDS
A general definition of the command syntax follows;

expressions for the formal rules are given in Appendix 1.

2.4.1 Command Syntax

Commands are accepted one line at a time, where multiple
commands may appear on one line separated by semi-colons (;).
The command line is terminated by a carriage return character
unless the input data buffer is filled first (the size of

this buffer is a SYSGEN parameter).

If the first character of any command is an asterisk (*), the
remainder of the command line is considered to be a remark
and is ignored, although it is copied if commands are being

logged, as explained in Section 2.4.3.

Commands are composed of:
Mnemonics
Decimal numbers
Hexadecimal numbers
Arbitrary character strings

File Descriptors

A mnemonic is shown in this manual in upper-case letters.

Each mnemonic requires a minimum number of characters to be
entered by the operator. These required characters are under-
lined, e.qg.,

COMMAND

Further characters, if entered, must conform to the correct
sequence of the characters of the full command word. For

example, given the above COMMAND:

COoM

COMM

COMMA these are all legal forms of the
COMMAN command shown above

COMMAND

Cco illegal, too short

COMX illegal, unrecognized character

COMMANDZ illegal, too long

Mnemonics consist of alphabetic characters, except for the
first character which may be any ASCII character. A mnemonic
is terminated by the occurrence of any non-alphabetic character

(except for the first).

When a decimal or hexadecimal number is required in a command,

leading zeros may be omitted.

An arbitrary character string field in a command, consisting

of ASCII characters, must be the last field in a command line.

A File Descriptor (illustrated as fd in command formats) is
defined as follows:

VOLN : FILENAME . EXT

Where VOLN is the volume name, FILENAME is the file name,

and EXT is the file name extension. The volume name need not

be specified; the default is the system volume. The extension
need not be specified; the default is usually the blank
extension, although some commands may make use of a different
default value. If the extension is not entered, the period

following FILENAME need not be entered.

The VOLN field may consist of up to 4 characters, FILENAME
may consist of up to 8 characters, and the maximum length of
the EXT field is 3 characters. Each name field must consist
of alphanumeric characters and the first character of the

VOLN and FILENAME fields must be alphabetic only.

File Descriptors may refer to non-direct access peripheral
devices as well. In this case, VOLN is the four-character
device mnemonic and FILENAME and EXT should not be entered.

The colon following the device mnemonic must always be entered.
Examples of legal File Descriptors are:

FRED:PROGRM. TSK

PROGRM. TSK The same file, but on the system volume.
ABLE : PROGR3 Default extension value.

PROG64 Default volume name and extension fields.
CARD: Name of card reader device.

Some commands have optional operands. These are annotated
with brackets surrounding the entire optional part of the
command, including punctuation, e.g.,:

COMMAND xxxx, (yyyy) (.,zzzz)

Note that the comma preceding the operand yyyy is not optional,

but the comma preceding the operand zzzz is optional.

Operands illustrated in lower-case characters mean that they
represent a variable item that the operator must enter.
Upper-case operands imply mnemonic fields and must be entered
as illustrated. For example,

in BIAS adrs

The operand adrs must be specified according to the value
(address) the operator wants.

in DISPLAY LU

the character L (or characters LU) must be entered as specified.

The repertoire of operator commands is summarized in Appendix 1.
The command descriptions follow in this chapter. Examples of

how commands may be used are given in Chapter 4.

If, for some reason, command input is not acceptable to the

system, an error message is issued to the system console device:
XXXX-ERR

where XXXX is an alphanumeric error code of four or fewer

characters. These error messages and other system messages

are listed in Appendix 1. They are also mentioned with each

command description as appropriate.

The error response to an unrecognized command is:
MNEM-ERR
Any commands following an unrecognized command on a command

line are ignored. If entering commands while a task is active,

2—10

the message
SEQ-ERR
is issued if the command cannot be accepted while the task

is active.

2—11

2.4.2 Task Related Commands

OPTIONS

The Options command specifies certain options related to the
program to be loaded or started. The syntax of the Options
command is:

OPTIONS opt [,opt] -

where the operands, opt, may be any one of the following:

HALF Specifies halfword mode. This is valid only
if the system is SYSGENed to support a halfword
mode program.

FULL Specifies fullword mode.

ET Specifies that the program is an executive
task (i.e., privileged task; this option
should only be used with considerable caution).

UT Specifies that the program is a User task
(i.e., unprivileged) task

AFCONT Specifies that the program is continued, with
a message logged, if an Arithmetic Fault is
detected.

AFPAUSE Specifies that the program is PAUSEd if an

Arithmetic Fault is detected.

Note that the options are paired (i.e., HALF/FULL, ET/UT,
AFCONT/AFPAUSE) , but any option may be entered and only the
last one for a pair is accepted as the correct option. For
example, in:

OPT H,F

fullword mode is specified.

2—12

The OPTIONS command is necessary only if the operator wishes
to change the default options defined at SYSGEN time. The
RESET command, as explained later, restores the default options.

This command is rejected when a task is active.

Possible response messages to OPTIONS are:
* Command accepted; another command may be entered.
SEQ-ERR Command entered while task active.
FORM~-ERR Command syntax error.
PARM-ERR Operand syntax error

NOPR-ERR No operand entered.

LOAD

This command causes an object program to be loaded from a
device or file. The program is loaded starting at the current
value of UBOT (bottom of user program space - see Memory
Management Section 1.4), unless a bias value is specified.
The command syntax is:

Loap £d [i E,p]]
where i is the optional Impure bias of the program to be
loaded and p is its optional Pure bias. Both i and p must
be hexadecimal numbers of 6 digits or less. For a direct
access file, the default extension for the file descriptor is

.OBJ.

A program's Pure and Impure segments are defined by CAL
assemblies. No indication is given if the program does not
contain a segment corresponding to the specified options. The
new UTOP is located above either the Pure or Impure segment,

whichever is greater.

2—13

Possible response messages to LOAD are:

* Command accepted

FORM-ERR Command syntax error

PARM-ERR Operand syntax error

NOPR-ERR No fd entered

LDR1-ERR Loader I/0O error

LDR2-ERR Memory size error

LDR3-ERR Invalid load format item

LDR4-ERR Insufficient space between specified pure and

impure biases

LDR5-ERR No Halfword mode support

EXPAND
This command expands a task's memory allocation by increasing
CTOP (see Section 1.4 on Memory Management). The task's
allocation may be expanded in increments of 256 bytes up
to the top of available memory. Note, however, that too great
an allocation for the task prevents the opening of direct-access
files because the Operating System uses the area between the
top of the program's allocation and the top of memory for
direct-access File Control Blocks (FCBs) and buffers. Command
format is:

EXPAND n
where operand ,n, is the number of 256 byte segments for

expansion, in decimal.

2—14

Response messages to EXPAND are:
* Command accepted
FORM-ERR Command syntax error
PARM-ERR Invalid operand
NOPR-ERR No operand entered

MEM-ERR Insufficient memory

START
This command may be used to begin execution of any program in
memory. Once started, the executing program and all the
routines it could execute constitute the currently active
task. Command syntax is:

START [}dr%][}args to proé]
where adrs represents the address at which execution is to
be started. If adrs is not specified, the most recent program
loaded is started at the transfer address specified when
assembled. The START command is rejected if a transfer address

does not exist and a start address is not given.

The optional field, args to prog, contains arguments that are
to be passed to the task for its own decoding and processing.
All characters between the comma beginning the field and the

next terminator (semi-colon or carriage return) are moved to

memory beginning at UTOP, except that any characters that

would be located above CTOP are ignored.

The START command must be the last command, other than a comment,
on the command line. Any other commands appearing on the

command line after START are ignored.

2—15

NOTE
Once a task is started, the asterisk
prompt is not output to the system
console until the task stops executing
and the system is waiting for a new
command. The system does, however,
accept all commands except the following

commands while the task is executing:

LOAD h
START

CONTINUE
> not acceptable while task
RESET
is active
OPTIONS

CSS call j

Possible error responses to START are:

SEQ-ERR Command entered while task active
FORM-ERR Command syntax error
PARM-ERR Operand syntax error

NOPR-ERR No start address given

SLOC—-ERR Invalid start address given

PAUSE
Entering this command halts the running program and reenters
0S/32-ST. The program is stopped as though it had executed
a PAUSE SVC and consequently may be CONTINUEd at the next
instruction. Command format:

PAUSE

2—16

Any on-going Proceed I/O is allowed to continue to its normal
completion after the PAUSE, but Wait I/O is completed first.
Note that the START command would not continue execution at
the next instruction unless so specified. The PAUSE command
is rejected if the task is not active at the time PAUSE is

entered.

Possible response messages to PAUSE are:

TASK PAUSED

* Command accepted

SEQ-ERR Task not active

FORM-ERR Command syntax error
CONTINUE

This command causes a task which has executed a Pause SVC or
has been stopped by the operator to resume operation where it
was Paused. Command format:

CONTINUE

As with the START command, the asterisk prompt is not output

until the task stops executing.

Possible response messages to CONTINUE are:
* Command accepted
SEQ-ERR Command entered while task active

FORM-ERR Command syntax error

2—17

CANCEL
The CANCEL command terminates a program as if it had gone to
End-of-Task (EOT). Any I/0 in progress is terminated and
all assigned Chained files are Checkpointed (see Chapter 3).
Any LU assignments remain in effect. The format of this
command is:

CANCEL
to which the system responds with an EOT message if successful.
No further commands should be entered until the EOT message is

output.

Possible response messages to CANCEL are:

END OF TASK, 255

* Command accepted, return code = 255
SEQ-ERR Task not active
FORM-ERR Command syntax error

2—18

2.4.3 General System Commands
DISPLAY
This command causes certain system and/or task information to
be output to the system console or to some other device or
file. Several options of the DISPLAY command exist. In each,
the optional File Descriptor (fd) argument indicates the device
or file to which the information is output. If fd is omitted,
the system console device is assumed. Allowable options and
the data displayed are as follows.
a) Logical Unit option:

DISPLAY LU [,£d]

displays the following information for assigned LUs:

LU fd
b) Device option:

DISPLAY DEVICES[,fd]

displays the following information for each device in the

system:

Device Name Physical Address On/Off Line Keys Access Priv.

c) PFiles option:

DISPLAY FILES,voln: filename) .)ext [}fd:)
or or '

displays directory information about file(s) currently

| resident on the direct access volume specified by voln.
The volume name field, voln:, must be specified even for
the system volume. The filename and extension.(ext) fields
must contain either a name or a dash (-) character. The

'~' character is interpreted to mean all.

2—19

For example,
DISPLAY FILES,ABC:-.-
displays all files on volume ABC.
DI F,ABC:FILEN.-
displays all files on volume ABC with name FILEN and
any extension name.
DI F,ABC:-.CAL
displays all files on volume ABC with extension CAL.
DI F,ABC:MYFILE.OLD

displays information about MYFILE.OLD only.

The information displayed is:

File Name Type Size/Logical Rec. Length Keys Access Priv.
d) System Parameters Option:

DISPLAY PARAMETERS |, fd |

displays system parameters related to the task:

- MTOP

- FBOT

- CTOP

- UTOP

- UBOT

- Transfer address

~ Pause address

- Number of LUs

- Options

2—20

Possible error responses to DISPLAY are:
FORM-ERR Command syntax error
PARM-ERR Operand syntax errorxr
NOPR-ERR Operand(s) missing
SVC1-ERR I/0 erxrror

NODA-ERR No direct access support

SET LOG COMMAND

The SET LOG command gives the operator the ability to produce
a copy of all system console I/0. This copy includes the
following:
. All command lines entered from the console or Command
Substitution System
- All responses to these commands

. All messages logged by the user task

The syntax of this command is:

SET LOG Ed ECOPY]]

The copy is produced on a file or device specified by the fd
operand. This device may be changed at any time by another
SET LOG command. If no operands are specified, logging is
terminated. Logging is automatically terminated under the
following conditions:

I/0 error on the log device

System initialization

Power restoration

Console interrupt from the display panel

221

The SET LOG command may be used for two primary purposes.

These are:
to provide a historical record of system operation, often
on a magnetic tape or direct access file.
To allow system output, e.g., displays, maps, log messages,
etc. to proceed on a high-speed device rather than on the

system console.

If the optional COPY operand is specified, the system console
receives all outputs that it would have received if no SET LOG
command were in effect. This facility would normally be used
when the logging is basically for historical purposes. If
COPY is not specified, however, the system console receives

no outputs other than error responses to commands entered
from the system console. This is the case when logging is
directed at a high-speed printer device used by the console

operator as an adjunct to the system console.

The Log device may be shared with user task output.

Possible error responses to SET LOG are:
FORM-ERR Command syntax error
PARM-ERR operand syntax error
FD-ERR Invalid fad

ASGN-ERR Log device could not be assigned

2—22

BIAS

The command:
B1as [adrs]]
is used to establish a basis for the EXAMINE and MODIFY

commands .

The operand, adrs, is a hexadecimal bias, to be added to any
address given in a subsequent EXAMINE or MODIFY command. If

adrs is omitted, all addresses specified in subsequent EXAMINE
and MODIFY commands are assumed to be absolute physical addresses.

Subsequent BIAS commands override all previous BIASes.

BIAS is not reset on initialization or via the RESET command; the
operator should enter a new BIAS if he is unsure of its

current value.

Possible error responses to BIAS are:

FORM-ERR Command syntax error
PARM-ERR Invalid address syntax
EXAMINE

The EXAMINE command is used to examine the contents of memory.
EXAMINE adrs],n]

causes the contents of the memory location specified by adrs

(modified by any previous BIAS command) to be displayed. The

display address is rounded down to the nearest halfword. If

the decimal operand n is specified, it indicates the number of

halfwords to be displayed beginning at adrs. If n is omitted,

a value of 1 is assumed.

223

Possible error responses to EXAMINE are:

FORM-ERR Command syntax error

PARM-ERR Operand syntax error

NOPR-ERR Address not entered
MODIFY

The MODIFY command is used to change the contents of memory.
MODIFY adrs Edata]):,data:‘ . e

causes the contents of the location specified by adrs

(modified by any previous BIAS command) to be replaced with

data. The modify address is rounded down to the nearest

halfword.

If the operand, data, is omitted, the modify address has its

contents replaced with zeroes. Each data field consists of

0-4 hexadecimal digits which, representing a halfword, is to

be put into memory starting at the location specified by adrs.
Any string of data less than four characters is right-justified

and left-zero filled.

Possible error responses to MODIFY are:
FORM-ERR Command syntax error
PARM-ERR Operand syntax error

NOPR-ERR Address not entered

2—24

RESET

This command causes system variables to be reset to their
SYSGEN-established values. In particular, the LU table is
reset to the default values established at SYSGEN time, user
program spacé is released to UBOT, and default options (see
the OPTIONS command) are restored. Command Format:

RESET

This command is rejected if entered while a task is either

executing or in a PAUSEd state.

Possible error responses to RESET are:
SEQ-ERR Command entered while task active

FORM-ERR Command sYntax error

VOLUME
This command specifies the name of the system volume. This
specification overrides all specifications previously in
effect. The format is:

VOLUME voln
where voln is a four-character volume identifier. The system
volume name is used in any command (other than DISPLAY FILES)

where the operator failed to specify a volume name explicitly.

The possible error responses to VOLUME are:

FORM-ERR Command syntax error
PARM-ERR Volume name syntax error
NODA-ERR No direct access support

2—-25

2.4.4 Device and File Control Commands
ALLOCATE
This command creates a file on a direct-access volume. Its
syntax is:
QEAINED,lrecl[Zsizé][}key%]

ALLOCATE fd
QQNTIGUOUS,sizeIZkey%]

Where fd identifies the file to be allocated. The volume name
field of £fd4 is optional and defaults to the name of the system

volume. The extension field is optional and defaults to blanks.

The fd operand is the only required operand. The remainder
may be omitted as a group. If no operands follow fd, the
default is as follows:

ALLOCATE fd4,CHAINED,80/1,0000

This allocates a chained file whose name is specified by fd

with a logical record size of 80 bytes, a physical block size

of 1 sector, and read and write protection keys of zero. If

this default condition is not desired, further operands must

be entered. The first operand specifies the file type:
CHAINED or

CONTIGUOUS

If CHAINED is chosen, the next operand, lrecl, is required

and it specifies the logical record length.The operand, lrecl,
which cannot exceed 65,535, may optionally be followed by a
slash mark (/) which delimits lrecl from size. The size

operand (for a Chained file) specifies the physical block

2—26

size, in 256 byte sectors, to be used for buffering and de-
buffering operations on this file. If size is omitted, the
default value is 1 sector (256 bytes). Note that, in order

to assign this file, sufficient room must exist in memory

above CTOP for two buffers, each of the stated size. Therefore,
if size is very great, the file may not be opened in some
memory-bound situations. At SYSGEN time a certain maximum
block size parameter is set up in the system. The size operand
of the ALLOCATE command may not exceed this constant, which may
vary from one system to another. 1In no case may size exceed

255. Both lrecl and size are specified as decimal numbers.

If CONTIGUOUS is chosen, the next operand, size, is required
and specifies the total allocation size in 256 byte sectors.
This size may be any value up to the number of contiguous
sectors existing on the specified volume at the time the
command is entered. This size is not to be confused with the
size parameter of a CHAINED file. Size is specified as a

decimal number.

If either CHAINED or CONTIGUOUS is chosen, the last operand,
keys, is always optional. This operand specifies the write
and read protection keys for this file. These keys are

in the form of a hexadecimal halfword, the left byte of which
signifies the write key and the right byte the read key. If

this parameter is omitted, both keys default to zero.

Examples of the ALLOCATE command:

AL, THISFILE

2—27

Allocates on the system volume a Chained file named THISFILE.
(blank extension) with a logical record length of 80 bytes,
a buffer size of 1 sector, and protection keys of zero.

AL PROGRAM.TSK,CO,64
Allocates on the system volume a Contiguous file named
PROGRAM.TSK, whose total length is 64 sectors (16KB) and
protection keys are zero.

AL FRED:EXAMPLE.OBJ,CH, 126
Allocates on the volume FRED a Chained file named EXAMPLE.OBJ,
whose logical record length is 126 bytes. The buffer size of
this file defaults to one sector; the protection keys default
to zero.

AL MORT:GREATBIG.BLK,CH,132/4
Allocates on the volume MORT a Chained file named GREATBIG.BLK,
whose logical record length is 132 bytes, using a physical
block size of 4 sectors. The protection keys default to zero.
Note that whenever this file is assigned, the system must have
2KB of available memory above CTOP (twice the physical block
size) for buffers.

AL SAM:DATABASE.X,CH,480,AA55
Allocates on the volume SAM a Chained file named DATABASE.X,
whose logical record length is 480 bytes, physical block size
is 1 sector, write protection key is X'AA' and read key is X'55'
Note that the logical record length is permitted to exceed the

physical block size.

2—28

Possible response messages to ALLOCATE are:
* command accepted, operator may verify with
DISPLAY command
FORM-ERR Command syntax error
PARM-ERR Operand syntax error
NODA-ERR Direct access support

ALLO-ERR An Allocate operation failed

ASSIGN

This command assigns a device or file to a Logical Unit.

If the LU is already assigned, the command is rejected; the

operator should deassign the LU via the CLOSE command.

The syntax of the ASSIGN command is:

ASSIGN 1u,fd[21§ccess pri{} [}key%j]
in which lu is the LU number in decimal, the File Descriptor
(fd) signifies the file or device to be assigned, and the

optional parameters specify the method of opening.

Access privileges recognized are:
SRO
ERO
SWO
EWO
SRW
SREW

ERSW

ERW

2—29

Default is SRW if omitted. The ASSIGN command is rejected
if the specified access privilege cannot be granted (see

Section 1.6.5 on File Protection).

The keys parameter is a hexadecimal number of which the left-
hand two digits specify write protection keys and the right-
hand two digits specify the read protection key. Default is
X'0000' if omitted. These keys are checked against the appro-
priate existing keys for the file or device; the command is

rejected if the keys are invalid.

An assigned direct access file is positioned at the end for
access privileges EWO and SWO, otherwise the file is positioned

at the beginning.

An example ASSIGN command:
AS 9,THISFILE,ERW
assigns a file, called THISFILE on the system volume with

zero keys, to LU 9 with exclusive read-write access privilege.

Possible response messages to ASSIGN are:
* Command accepted, operator may verify with
DISPLAY LU command
FORM-ERR Command syntax error
PARM-ERR Operand syntax error
NODA-ERR No direct access support
FD-ERR Invalid file descripter
LU-ERR Invalid LU number or LU assigned
PRIV-ERR Unacceptable access privilege

ASGN-ERR An Assign operation failed

2—30

CLOSE
This command removes a file or device assignment from a given
LU. If the LU is assigned to a file, the file is closed.
The command format is:
CLOSE 1lu

where lu is specified as a decimal number.

Possible response messages to CLOSE are:
* Command accepted
FORM-ERR Command syntax error
PARM-ERR Operand syntax error

CLOS-ERR A Close operation failed

DELETE
This command is used to delete a direct-access file. 1Its
format is:

DELETE fd
where fd identifies the file to be deleted. To be deleted,
the file must not be currently assigned to any LU. This
command is not recognized if there are no direct-access

devices in the system.

Possible response messages to DELETE are:
* Command accepted
FORM-ERR Command syntax error
PARM-ERR Operand syntax error
NODA-ERR No direct access support
FD-ERR Invalid fd
ASGN-ERR fd currently assigned

DEL-ERR A Delete operation failed
2—31

RENAME

This command is used to change the name of an unassigned

direct-access file or of a device. Its format is:

RENAME oldfd,newfd

Examples:

REN VOL1:MYFILE.CUR,MYFILE.OLD

REN MTOl: ,MTO2

The volume ID field of the new File Descriptor (new fw) may

be omitted for direct access files.

If it is entered, the.

system ignores it (therefore, this command cannot be used to

rename a direct access volume, USE VOLUME or INITIALIZE.

operator should not rename the console device.

Possible response messages to RENAME are:

*

FORM-ERR
PARM-ERR
ASGN-ERR

RENM-ERR

REPROTECT

Command accepted; operator may verify with
DISPLAY Command

Command syntax error

Operand syntax error

fd currently assigned

A Rename operation failed

This command is used to change the protection keys of an

unassigned direct-access file or of a named device. Its

format is:

REPROTECT fd,keys

The

where the operand, keys, is a hexadecimal halfword constant

specifying the new write and read protection keys.

Possible response messages to REPROTECT are:
* Command accepted; operator may verify with the
DISELAY command
FORM-ERR Command syntax error
PARM-ERR Operand syntax error
ASGN-ERR fd currently assigned
NOPR-ERR keys not specified

REPR-ERR A Reprotect operation failed

INITIALIZE

This command is used to initialize a direct-access volume.
The driver must be in an OFF state. The system may write a
clean bit-map, clear the directory, check the entire volume
for bad spots, and write a new system image on the volume,
depending upon the options specified. A new volume descriptor
is written. Following this command, the volume may be MARKed
ON. The format of the INITIALIZE command is:

INITIALIZE dm,voln|,CLEAR|],SAvE]
where dm is the four-character mnemonic name of the direct
access device which contains the volume to be INITIALIZEG.
Operand voln is the four-character volume identifier to be

given to this volume.

2—33

CLEAR Causes the directory to be cleared, the volume
checked for bad spots (which have been flagged
by an off-line formatter test program) and a

new bit map to be written.

SAVE Causes an image of the 0S/32-ST system presently
in memory to be written onto the volume. This
overrides any previous OS image present on that
volume. If CLEAR is not specified, and if
insufficient contiguous space exists on this
volume for the new image, an error message is
logged, and the previous status of the disc is

retained unmodified.

Examples:
I pIs1,sysv,C,S

I DIS2,FRED,C

NOTE
If neither CLEAR nor SAVE is specified,
the only action taken is to modify the

volume name.

NOTE
CLEAR does not perform reformatting functions
on a volume. If reformatting is required,
it must be done with an appropriate test
program or equivalent prior to using under

0S/32-ST.

2—34

Possible response messages to INITIALIZE are:
* Command accepted; operator may verify with
DISPLAY command
FORM-ERR Command syntax error
PARM-ERR Operand syntax error
NODA-ERR No direct access support
STAT-ERR Device not off-line
SPAC-ERR Not enough space for an OS image

PACK-ERR Pack invalid for 0S/32

MARK

The MARK command is used to take a device off-line, or place
on-line a device previously in off-line mode. Its format is:
+ON
MARK dm
, OFF
where the first operand (dm) specifies the mnemonic name of
the device and the second operand specifies whether the
device 1S to be MARKed as ON or OFF line. If the device
is the console TTY, is assigned or has any assigned files,

the MARK OFF command is rejected. Note that dm does not

include a colon as required by the File Descriptor (fd) operands.

Example:

MA CARD,OF

2—35

Possible response messages to MARK are:
* Command accepted; operator may verify with
DISPLAY command
FORM-ERR Command syntax error
PARM-ERR Operand syntax error

ASGN-ERR dm assigned

2—36

2.4.5 Magnetic Tape and Cassette Commands
Six commands are available to perform certain commonly required

operations on magnetic tapes or cassettes. They are:

REWIND fd rewind

RW fd rewind (alias)

WFILE fd write filemark

FFILE fd forward space filemark
BFILE fd backspace filemark
FRECORD fd forward space record
BRECORD fd backspace record

where the File Descriptor operand, fd, is the device mnemonic
name including colon (:), of the tape unit upon which the

function is to be performed.

Example:

REWIND CASl: rewind cassette unit 1

Before executing these control commands, the Command Processor
makes a temporary internal assignment of the specified device

for Shared Read/Write (SRW) access privilege. The command is
rejected if such assignment cannot be made (as would be the

case if the device is currently assigned with exclusive access
privilege). Note, however, in most applications that the default
SRW access privilege would be employed for devices (see ASSIGN
command above) and that this restriction would not normally be
apparent to the user. Furthermore, this technique carries the
advantage that a task, having assigned a tape for exclusive access,
insures that inadvertent operator action cannot reposition

the tape.

237

REWIND positions the tape at beginning of tape (BOT).

WFILE writes a filemark (defined by the hardware) and positions

the tape to read/write the next record.

FFILE advances the tape to the record just past the next filemark.

BFILE retreats the tape to the previous filemark (or BOT) and then

advances it to the next sequential record following the filemark.

FRECORD advances the tape to the next sequential record.

BRECORD retreats the tape one sequential record, if not at BOT.

Generally, where an analogous situation exists, these control
commands may also be employed with direct access files by using
a complete direct access File Descriptor instead of a device
mnemonic name in the operand field. The control operations
permitted with each file structure are given in Section 1.6 on
Direct Access Files. The operator should understand that in
order to execute these commands, the Command Processor must be
able to temporarily assign the specified file. (Note, for
example, Chained files require exclusive write access.) This
restriction is no different than with tape devices except

that the user may ordinarily use various access privileges
with direct access files, and this restriction may become more

apparent.

REWIND sets the record count to zero.

WFILE writes a pseudo-filemark record and increments the record

count for Contiguous files; it is not supported for Chained files.

2—38

FFILE sets the record count to the number of records in the
file (Position at which to append new records); the file is
positioned after the next sequential filemark record on a

Contiguous file.

BFILE sets the record count to zero, except for Contiguous
files, in which cases the record count is set to correspond
to the previous filemark record number plus one (or zero if

no filemark is present).

FRECORD increments the record count by one, unless already at

the end of file.

BRECORD decrements record count by one, unless the file is already

positioned at its beginning.

Possible response messages to these commands are:
* Command accepted
FORM-ERR Command syntax error
PARM-ERR fd syntax error
SVC1-ERR I/0 errorxr

ASGN-ERR Unaccessible fd/dm

2—39

2.5 COMMAND SUBSTITUTION SYSTEM

The Command Substitution System (CSS) is an extension to

the 0S/32-ST Command Processor. It provides the user with
the ability to establish files of commands which can be
called from the console and executed in a defined sequence.
In this way, complex operations can be carried out by the
operator with only a small number of commands. For instance,
to compile, load, and vun a Fortran program, only a single

command need be entered.

CSS provides more than just the ability to switch the operating
system command input stream to a Batch device:
A set of logical operators are provided to control the
precise sequence of commands to be obeyed.
Parameters can be passed to a CSS-file so that general
sequences can be written which take on specific meaning
only when the parameters are substituted.
One CSS file can call another, in the manner of a sub-
routine, so that the experienced user can develop complex

command sequences,

Using CSS is much like writing programs, where in

operator commands are strung together instead of program
instructions. The following sections define the CSS
‘programming’ rules. Examples of CSS programs are given in

Chapter 4 and in the 0S/32 User Guides Manual, Publication

Number 29-393.

2—40

2.5.1 Calling CSS Files

A CSs File is called and executed by naming it in a stream of
commands. Any valid File Descriptor (fd) can be used,
provided that there is no clash with any of the ordinary
commands. If the file extension is omitted, CSS is assumed.
The CSS call must be the last command on a command line.

In other words, the operator can cause a file of commands to
be executed simply by entering the name (fd) of the file.

The error message, MNEM-ERR, is returned if the file does not

exist as specified.

Parameters are passed to a CSS file by appending them to the
call. The first parameter is separated from the file name by
a space; all other parameters must be separated by commas.
Null parameters are permitted. Leading blanks are suppressed

when parameters are passed.

The following are valid CSS calls:

RUN (Calls CSS file RUN.CSS)
CARD: (Calls CSS file in card reader)
JUMP A,B,C (Calls CSS file JUMP.CSS with three para-

meters A, B, and C)
JUMP .CSS A,B,C (same as above)
Jump ,,C (Calls ¢SS file JUMP.CSS with three para-

meters, the first two of which are null)

2—41

2.5.2 Use of Parameters

Within a CSS file a parameter to that file is referenced by
means of the special symbol '@'. The first parameter is
referenced by @1, the second by @2, etc. A straight forward

text substitution is employed.

Thus, a CSS file RUN might consist of:
LOAD @1
START @3,@2
etc.

This would then be called:

RUN PROGRAM,NOLIST,148

Before each line of the CSS file is obeyed, it is preprocessed,
and any reference to a parameter is substituted with the text
of the parameter. Thus, the file RUN with the previous call
would be obeyed as:

LOAD PROGRAM

START 148,NOLIST

etc.

In general, a reference to a parameter is of the form

@én
Where n is a decimal number indicating which parameter argument
the user is referencing. Arguments are numbered starting with 1.
Argument 0 is a special argument, and is defined in the following

paragraph.

2—42

Being a decimal number, a reference variable is terminated
by a non-decimal character. For example, to reference
variable 12,

@12 or Q@12ABC or @12.EXT

are valid expressions.

Notice that this mechanism allows concatenation. For instance,
if in the above file, RUN, the first command were
LOAD @1.0BJ

then only object files would be presented to the loaded.

Concatenation of numbers requires care. 123@1 is permitted
and would expand correctly, but @1123 is a reference to para-

meter number 1123.

A reference to a non-existent parameter is considered to be

null.

MULTIPLE @'s

cSS files can call each other to a maximum depth specified at
system generation time. The multiple @ facility enables a CSS
file to access parameters of higher level files. Thus, @@2

in a CSS file refers to the second parameter of the file which

called this file.

For instance, given there is a CSS call,
CSSl argl,arg2
and suppose in file CSS1 there is another CSS call,

CSS2 arg3,arg4

2—43

then the following references may be made in CSS2:

@1 = arg3
@2 = argi4
@@l = argl
@@2 = arg2

If a multiple @ sequence is such that the file referred to is

non-existent, then the parameter is considered to be null.

@o

This is a special case parameter. It is used to reference the
CSS file in which it is contained. @0 is replaced, during the
pre-process of the command line, with the name of the File

Descripter in precisely the style used to call the file.

This mechanism can be used to assign the CSS file itself to a
LU of a program. By this means the data for a program can be
included in the CSS file itself. However, the program must
read precisely the right number of data items or else subsequent

CSS processing fails.

By simple extension, @@0 refers to the file which called the

CSS file that contains it.

2.5.3 Commands Executable From a CSS File

Except for PAUSE, all of the commands normally available to the
operator at the console can be used in a CSS file, as well as

a number of commands specifically associated with the CSS

facility. These additional commands are described as follows.

2—44

PAUSE is only meaningful if a program is running. CSS files

are never active if a program is actually running under 0S/32-ST.

Most of the CSS commands start with the character $. If a
log of commands is being kept, the $'s help to emphasize where

CSS has been used, but the $ has no special meaning.

SEXIT and S$CLEAR

These two commands are provided for exiting from CSS files.
$EXIT causes control to return to where it was when the CSS
file was called. Control returns either to the

console or to a higher CSS file.

$SCLEAR causes unconditional return of control to the console.

$JOB and $TERMJOB

These commands delimit CSS jobs. The CSS job is a defensive
mechanism which protects one user against the errors of a
previous user; CSS jobs cannot be nested. Most error conditions
cause the CSS processor to skip to $TERMJOB, and serious errors

may return control immediately to the console.

By this means, independent users can safely mix jobs in a CSS
file (e.g., a card reader), secure in the knowledge that their

jobs are safe from the errors of others.

2—45

Logical Operators

There are ten logical operators available. They all start with
the three characters $IF and carry one argument (e.g., S$IFE 255,

$IFX B.CSS, S$IFNULL @Ql).

Each logical statement establishes a condition which is tested
by the CSS processor. If the result of this test is 'true',
then commands up to a corresponding $ENDC command are obeyed.

If the test gives 'false' these same commands are skipped.

The S$ENDC command delimits the range of a logical operator,
however, nesting is permitted, so each S$IF must have a corres-

ponding S$ENDC.

In the following examples, the ranges of the various conditionals

are indicated by arrows.

2—46

$IF /$IF r--$1F

%ENDC : $IF ‘oo
. ;SENDC
k} %ENDC %IF

E ;ENDC

\\>éENDC

There is no practical restriction on the depth of nesting.
The logical operators fall into three categories as described
below. (Return Code testing, file existence testing, and

parameter existence testing).

2—47

Return Code Testing

The Return Code is a halfword quantity maintained by the

system (also see description of SVC 3 in Chapter 3).

It is set in any of the following five ways:

SET CODE n - This command, which can be included in a

CSS file or entered at the console, sets the Return

Code to n.

$JOB - As part of its start job function, this command

resets the Return Code to zero.

Command Error - Any command error causes the CSS

mechanism to skip to $TERMJOB (assuming that a $JOB
has been obeyed, if not, control returns to the console).
To indicate that the skip has taken place, the Return

Code is set to 255.

$SKIP - This command has the same effect as a command

error.

EOT (SVC 3,n) - When any program terminates by executing

the EOT program command (SVC 3,n) the Return Code is

set tc¢ n.

2—48

There are six commands available for testing the return code:

SIFE n Test Return Code equal to n

SIFNE n Test Return Code not equal to n
SIFL n Test Return Code less than n

SIFNL n Test Return Code not less than n
SIFG n Test Return Code greater than n
$SIFNG n Test Return Code not greater than n

In all cases if the test gives 'false', CSS skips commands
until the corresponding $ENDC. If such skipping attempts
to skip beyond a $TERMJOB or End of File, a command error is

given. (see error conditions in Section 2.5.5.)

File Existence Testing

There are two commands concerned with the existence of files:
SIFX fd Test fd for existence
SIFNX fd Test fd for nonexistence
Again, if the test gives 'false', CSS skips to the corres-

ponding $ENDC. The previous restriction on skipping also applies.

Parameter Existence Testing

There are two commands concerned with the existence of parameters:
SIFNULL @n Test @n null

SIFNNULL @n Test @n not null

Again, if the test gives 'false', CSS skips to the corresponding

SENDC, with the same restriction as previously stated.

2—49

The use of the multiple @ notation to test for the existence

of higher level parameters is permitted.

In addition, a combination of parameters can be simultaneously
tested. For example,

$IFNULL @l@2@3

In effect, this tests the logical AND of @1,@2 and @3 for
nullity. If any of the three is present, then the test

results in 'false'.

Listing Directives

Two commands are provided to control the listing of CSS files

as they are executed: $COPY and $NOCOPY.

SCOPY causes subsequent command lines to be listed, in their
expanded form after parameter substitution. The listing takes
place on the console or the log device, according to the

options selected in a previous SET LOG command.

SNOCOPY switches off the listing. The default is $NOCOPY.

CSS File Construction

There are two command pairs provided for construction of CSS

files: BUILD, ENDB and $BUILD, S$ENDB.

The BUILD and ENDB Commands

The BUILD command causes succeeding lines to be copied to a

specified file,up to but excluding the corresponding ENDB

2—50

command. The format of the BUILD command is:
BUILD £fd
where fd is the new CSS file. If f£fd does not already exist

it is created.

BUILD can be issued from the console or from within a CSS
file. No nesting of BUILD commands is possible. The pro-
cessing of BUILD ends when the first ENDB command is
encountered, so any attempt to next BUILD commands

results in a corrupt CSS file being constructed.

The BUILD command must be the last command on its input line.
Any further information on the line is treated as comment and

is not copied to the new CSS file.

The ENDB command must be the only command on a line, and must
occupy the first four character positions on the line. Any
further information on the line is treated as comment and is

ignored.

A S$BUILD....S$ENDB sequence can be nested inside a BUILD....ENDB

pair.

The BUILD....ENDB mechanism can be used to create

any type of file.

2—51

The $BUILD and $ENDB Commands

These commands operate in a similar manner to BUILD and ENDB,
except that before each line is copied to the CSS file, the
CSS pre-processor substitutes any parameters in the line. It
follows that $BUILD is only sensibly used from within a CSS
file so that parameters can be passed to it. The $BUILD
command has the following format:

$BUILD fd
where fd is the new CSS file. If fd does not already exist,

it is created.

As with BUILD, no nesting of $BUILD is possible. A corrupt

CSs file results if the attempt is made.

$BUILD must be the last command on its input line, any further

information is treated as comment and ignored.

$ENDB must be the only command on its input line, and it must
occupy the first five character positions on the 1line. Any

further information is treated as comment and ignored.

A BUILD....ENDB sequence can be nested within a $BUILD....S$SENDB

pair.

2.5.4 CSS Command Summary

$JOB Start next job, reset Return Code

$TERMJOB End of job, any error skip in last job stops at
this command with Return Code = 255, otherwise

Return Code is defined by the job itself.

2—52

SEXIT

SCLEAR

SET CODE n

SIFE n

SIFNE n

SIFL n

$IFNL n

SIFG n

$IFNG n

$IFX fd

$IFNX fd

$IFNULL @n

SIFNNULL @n

SENDC

$COPY

Exit from CSS file.

Return control to console.

Set Return Code to n.

If Return Code equals n, continue obeying
commands, otherwise skip to corresponding SENDC.
If Return Code not equal to n, continue obeying
commands, otherwise skip to corresponding SENDC.
If Return Code less than n, continue obeying
commands, otherwise skip to corresponding S$SENDC.
If Return Code not less than n, continue obeying
commands, otherwise skip to corresponding S$SENDC.
If Return Code greater than n, continue obeying
commands, otherwise skip to corresponding $ENDC.
If Return Code not greater than n, continue
obeying commands, otherwise, skip to corresponding
SENDC.

If fd exists, continue obeying commands, otherwis
skip to corresponding $ENDC.

If fd does not exist, continue obeying commands,
otherwise skip to corresponding S$ENDC.

If parameter does not exist, continue obeying
commands, otherwise skip to corresponding SENDC.
If parameter exists, continue obeying commands,
otherwise skip to corresponding $ENDC.

Delimits above conditionals

Switch on listing

2—53

SNOCOPY Switch off listing

$BUILD Construct CSS file with parameter substitution
$ENDB End of $BUILD

BUILD Construct CSS file without parameter substitution
ENDB End of BUILD

$SKIP Skip to $TERMJOB

2—54

2.5.5 CSS Error Conditions

ERROR MESSAGE ACTION TAKEN

Task active SEQ-ERR Control returned to
console

Command not recognized MNEM-ERR Skips to $TERMJOB
(see note)

Command syntax error FORM-ERR Skips to $TERMJOB

PARM-ERR (see note)

Second $JOB found JOBS—-ERR Returns control to
console

End of File found while | READ-ERR Skips to $TERMJOB

skipping to $ENDC

STERMJOB found while READ-ERR Sets return code to 255

skipping to $ENDC and ends job. (This is

within a job only detected if the
conditional that caused
the skip was also inside
the job; i.e., a skip to
SENDC can skip over a
complete job).

End of file found before{ READ-ERR Skips to $TERMJOB

ENDB while BUILDing a

file

(see note)

255

CSS Error Conditions (cont.)

ERROR MESSAGE ACTION TAKEN

End of file found READ-ERR Skips to $TERMJOB

before SENDB while (see note)

$BUILDing a file

Not enough space to , FD-ERR Skips to $TERMJOB

build an fd

NOTE: 'skips to $TERMJOB' - this action only occurs if the error is
detected within a CSS job. The job is abandoned and the next’
command obeyed is the first command after the $TERMJOB, at
which point the return code is 255. If the error occurs

outside a job, control is returned to the console.

2—56

CHAPTER 3

PROGRAMMER'S GUIDE

3.1 SYSTEM CONVENTIONS

Programs written to execute within the framework of 0S5/32-ST
must adhere to certain established conventions to preserve the
integrity of the system and to make the best use of I/O and

other services performed by the system.

The major constraint on user programming deals with the instruc-
tions that affect Processor status. Because 0S/32-ST administers
all I/0 and interrupts, user programs should execute in User

Mode and not execute privileged instructions (instructions that
relate to I/0O or change the state of the Processor). Programs
request I/0 and other services via specific conventional calls

to the system.

All user programs run with interrupts enabled, except the
Arithmetic Fault interrupt may be either enabled or disabled
in the Program Status Word (PSW) by a request from the user

program.

On the occurrence of an Arithmetic Fault, two options are open
to the user task. If the task is running with the PSW Arith-
metic Fault Interrupt Enable Bit reset, the fault does not
cause an interrupt and therefore is ignored. If this PSW bit
is set, an interrupt occurs. A message is logged, and the
program either resumes execution or PAUSEs, depending on the

latest OPTIONS command (either AFCONT or AFPAUSE) entered.

NOTE

The programmer should be aware that 0S/32-ST does not support

memory protect.

3.2 TASK OPTIONS AND STATUS
A task may be granted certain options. Options recognized by
05/32-ST include the following:

- Executive (privileged) mode

- Continue on Arithmetic Fault

- Halfword mode

They may be set with the OPTIONS command .

During execution, a task can be in several states as

reflected by its status:

Dormant

I/0 Wait

Task Wait (for system program)

Console Wait
The user would not ordinarily be concerned with the task's

status.

3.3 SUPERVISOR CALL (SVC)

The SVC instruction is the means whereby the user task is
enabled to communicate with the Operating System and to use
the facilities thereof. Execution of an SVC causes an
internal interrupt which is processed by the Executive of
0S/32-ST. Through the use of SVCs, a program may access
peripheral devices in a rational, consistent and device-
independent manner, may communicate with the system console,
may modify the conditions under which it operates, and may
perform a variety of useful utility functions. In short,

SVCs provide the Program Command Interface to 0S/32-ST.

The general form of an SVC instruction is:

SVvC n,N
where n represents the type of SVC and N represents a
parameter or an address of a parameter block in the task's

memory space as required by the particular type of SVC.

A parameter block may contain function codes, parameters,
data fields,and status fields depending on the type of SVC.

It must lie on a Fullword boundary.

SVCs recognized by 0S/32-ST are:
SVC 1,PARBLK Input/Output (I/0) operations
SVC 2,PARBLK System utility services
svCc 3,N End of Task (EOT)
SVC 5,PARBLK Overlay call
SvVC 7,PARBLK File handling services

Several examples of SVCs are given in Chapter 4.

Any SVC issued by the user program that is not recognized

by the system, that has a faulty or unrecognizable parameter
block,or that has an address in the parameter block outside
the user's memory allocation causes an error message to be
issued to the system console or log device, and the program
is terminated. The programmer should insure that all his

buffer blocks lie on fullword boundaries.

3.4 SVC 1 - INPUT/OUTPUT OPERATIONS
All requests for I/O operations initiated by the user program
are mediated by the SVC 1 Supervisor Call instruction (See
Chapter 4 for example SVC 1 calls). The format of the SVC 1
instruction is:

SvC 1,PARBLK
where PARBLK is the address of a parameter block on a fullword
boundary. This parameter block requires at a minimum a
Function Code, a Logical Unit (LU) number and status field.
Additional parameters may be required, depending on the parti-
cular command. The format of the SVC 1 parameter block is
as follows:

AT.IGN ADC

PARBLK DB X'xx!' FUNCTION CODE
DB X'xx'! LOGICAL UNIT
DS 2 STATUS
. (additional parameters

. as required by the type of

function being performed)

The Logical Unit number, which is contained in the LOGICAL UNIT
byte, specifies, through the task's LU table, the peripheral
device or direct-access file on which the requested data
transfer or command is to take ?lace. The LU specified in

this byte must be a permissible LU number (i.e., it must not
exceed the maximum LU number established at SYSTEM time), and

it must have been previously ASSIGNed, either by default, via

a console ASSIGN command, or via an Assign SVC 7 call. An
SVC 1 directed to an illegal or unassigned LU is returned

with error status.

The Status field is used by the system in which to return

the results of the SVC 1 request. This is in addition to

the setting of the PSW Fullword and Halfword Condition Codes
which the program can test following the SVC 1 instruction.
The Condition Codes are set to X'F' if the request is rejected
(see Unconditional Proceed explanation below) and the Status
field is unchanged. Otherwise, the Condition Codes are set

to zero and the program should ascertain the final disposition

from the Status field.

The interpretation of the FUNCTION CODE byte may be divided‘
into two classes: data transfer functions and command requests.
These classes may be differentiated by the condition of Bit 0
of the FUNCTION CODE byte. If this bit is 0, a data transfer
is requested; if it is 1, a command function is requested.

All other bits of the function code are interpreted according

to the setting of Bit 0 as illustrated in Figure 3-1.

Bit 0 = 0 Data Transfer Bit 0 = 1 (Command)
BIT
0 1 0 1

1 nil Read nil Rewind

2 nil Write nil Backspace Record

3 ASCII Binary nil Forward Space
Record

4 Proceed Wait nil Write File Mark

5 Sequential Random nil Forward Space File

6 nil Unconditional nil Backspace File

Proceed
7 Formatted Image nil Reserved

FIGURE 3-1. Interpretation of SVC 1 Function Codes

3.4.1 SVC 1 Data Transfer Requests

If Bit 0 of the function code is 0, a data transfer is requested.
The value of Bits 1 through 7 indicates the type of transfer
(Read/Write) and the modifiers selected by the program.

Setting Bit 1 of the function code indicates a read operation;
setting Bit 2, a write operation. If Bits 1 and 2 are both set,

a Test and Set operation is requested. The modifiers offered

are: ASCII/Binary, Proceed/Wait, Sequential/Random, Unconditional
Proceed, and Formatted/Image. These modifiers may not all be

supported on all devices.

In general, the driver accepts the logical 'OR' of all modifier
bits set, and acts accordingly. Thus, the byte X'5F' is

decoded as binary 0101 1111, meaning Read, Binary, Wait, Random,

Unconditional Proceed, and Image. Provided that the Binary ,
Random, and Image modifiers are all appropriate for the selected
LU, a Read operation takes place, affected by all these

modifiers.

The ASCII/Binary, Formatted/Image and Sequential/Random
modifiers convey rather obvious meanings, but their specific
protocol interpretations are device-dependent and are explained

in the 0S/32-ST Series General Purpose Driver Manual, Publica-

tion Number 29-384.

The significance of the Proceed/Wait and Unconditional Proceed

options, however, is common to all devices, and is interpreted

as follows:
Unconditional Proceed deals with the question of whether
I/0 can be started at the time of the SVC call. If
Unconditional Proceed is not specified, the program waits
(regardless of the setting of the Proceed/Wait bit) until
the system is able to activate a driver in response to the
request. If Unconditional Proceed is specified, the system
permits the program to proceed if a driver could not be
activated. The Halfword and Fullword Condition Codes in
the PSW are set to a value of X'F' if the transfer could
not be started because the device is busy. Otherwise, the

condition codes are set to zero.

Once the driver has been started, the Proceed/Wait option

takes on significance. If Wait is specified, the program

waits until termination of the data transfer, either
normally or due to the occurrence of some error. If
proceed is specified, the program is permitted to
execute concurrently with the data transfer. Note

that the Wait option takes precedence over Unconditional

Proceed if the driver is not busy.

The Test and Set operation is currently implemented only

with Contiguous files. It provides compatibility with

previous INTERDATA operating Systems. The Test and Set
function allows a task to access a file or a sector within

a file, and at the same time mark it as being in use. When

a program issues a Test and Set, the system reads the data

into the buffer, randomly or sequentially, and before returning
to any user level task, checks the first halfword of the

data read in. If this halfword is zero, it forces it to

X'FFFF' and rewrites the complete record back in its original
location. It then sets the caller's Condition Code to zero.

If the first halfword is already X'FFFF', the caller's Condi-
tion Code is set to X'F'. If the first halfword is neither
zero nor X'FFFF', the caller's Condition Code is zeroed. The
function code for Test and Set is X'60'. Test and Set operations
must specify wait (i.e., Bit 4 of the Function Code set), but

is otherwise assumed. When requesting a Test and Set operation,
the buffer specified in the SVC 1 Parameter Block should be a

minimum of 1 sector in length.

The parameter block for an SVC 1

is illustrated in Figure 3-2.

of the Data Transfer class

byte 0 byte 1 byte 2 byte 3
0 _ 7 23 31
FUNCTION LOGICAL DEVICE
0 CODE UNIT STATUS ADDRESS

4 | START ADDRESS OF BUFFER

8 | END ADDRESS OF BUFFER

12 | RANDOM ADDRESS

16 { LENGTH OF DATA TRANSFER

Figure 3-2.

PARBLK

ALIGN

DB

DAC

DAC

DC

DAS

SVC Parameter Block for Data Transfers

ADC
X'fc',1u'o,o0
A (START)

A (END)

A (RANDOM)

1

Items in the parameter block may be redefined immediately after

executing a Proceed I/0 call, but the block, itself, should

not be reused until the I/0 completes because the STATUS and

DEVICE ADDRESS bytes and the LENGTH OF DATA TRANSFER fullword

are set by the system on completion of any I/O operation. The

full parameter block is always required for data transfer

requests, although the START ADDRESS, END ADDRESS, RANDOM

ADDRESS and LENGTH fields are not necessarily used by the

individual drivers in all cases.

aligned on a fullword boundary.

All I/0 buffers must be

The LENGTH OF DATA TRANSFER field is set up by the system

following any data transfer operation.

in bytes, of the actual data transfer that took place.

It gives the length,

This

field is most useful when dealing with variable-record length

devices, such as magnetic tape.

NOTE
If the SVC 1 causes a Read request to be made
to the system console device, a ' ' is output

as a prompt to the operator.

3.4.2 SVC L Command Requests

As shown in Figure 3-1, if Bit 0 of the function code is 1,
the system recognizes a command request. The implementation
of all commands is device-dependent and is explained for each

device in the 0S/32-Series General Purpose Driver Manual,

Publication Number 29-384. The implementation of commands
on direct-access files is explained in Section 1.6 of this

manual.

In general, the following principle applies:
The command byte is scanned from the left to right. The
leftmost bit found that is meaningful to the device
associated with the specified Logical Unit indicates

the command to be executed.

3.4.3 Returned Status

The Operating System uses the STATUS and DEVICE ADDRESS bytes
(see Figure 3-2) to return ending status to the user task

upon completion of an SVC 1 request. (These fields are

cleared or set, as the case may be, only if Condition Code = 0).
If the termination is normal, both bytes are set to zero by the
system. If the termination is abnormal, the system stores a
value in the STATUS byte. In addition, it stores the physical

address of the device in the DEVICE ADDRESS byte.

The DEVICE ADDRESS byte is retained for compatibility with
previous INTERDATA Operating Systems; however, it should be
pointed out that, in a system in which named files are commonly
used, the physical device address may be singularly uninforma-
tive to the operator, and a user program should probably inform
the operator of the LU on which the error occurred. This is

so because the LU number is always unique within the program
and the operator may easily determine the identity of the device
or file that failed by means of the DISPLAY command. Alterna-
tively, the Fetch Attributes SVC 7 call may be performed and
the File Descriptor returned to the user. Moreover, the 10-bit
device address is truncated to the eight least significant bits,
creating the possibility of error if the device address is

greater than X'FF'.

Specific interpretations of the error codes as they apply to

devices are explained in the 0S/32-Series General Purpose

Driver Manual, Publication Number 29-384. The general defini-

tion of the status bits is given in Figure 3-3.

Bit Meaning if set to 1 Binary Hexadecimal

0 Always 1 for error status

1 Illegal Function 1100 0000 X'co!
2 Device Unavailable 1010 0000 X'AQ'
3 End of Medium 1001 0000 X'90'
4 End of File 1000 1000 X'ssg!
5 Unrecoverable Error 1000 0100 X'84'
6 Parity or Recoverable Error 1000 0010 X'82"
7 Illegal or Unassigned LU 1000 0001 X'sl'

FIGURE 3-3. Interpretation of SVC 1 Status Byte
3-12

In general, for a data request, if Illegal Function, Device
Unavailable, or Illegal LU status is indicated alone, then no
data was transferred. Otherwise, some data may have been
transferred. Device Unavailable may indicate that the device
is physically inoperative. If the device becomes unavailable
after a transfer is started, Unrecoverable Exror is set to

indicate the possible transfer.

The Illegal Function Status bit is set whenever the system
cannot accept the SVC 1 Function byte as specified. This is
because the SVC 1 processor found that the requested function
does not correspond to the attributes of the named device or

the direct access file (for example, a read request was made

to a line printer), or that the requested data transfer violates
the assigned access privileges (e.g., a write request on a

SRO or ERO-assigned file).

Attributes characterize a device or direct access file. The
standard attributes that may be supported by a given device or

file are listed in Figure 3-4.

Read

Write

ASCII/Binary
Proceed/Wait
Sequential/Random
Unconditional Proceed
Format/Image

Rewind

Backspace Record
Forward Space Record
Write File Mark
Forward Space File Mark
Backspace File Mark

Figure 3-4. SVC 1 Attributes

3.5 §SVC 2 - SYSTEM UTILITY SERVICES

The SVC 2 call is used for miscellaneous service and super-
visory functions. Many of the functions performed by this
call are maintained for program compatibility with other
INTERDATA Operating Systems. The program also uses this
call for communication with the system console device via

Log Message. The general format of an SVC 2 is:

SvVC 2,PARBLK
ALIGN ADC
PARBLK DB OPTIONS,CODE FUNCTION CODE WITH OPTIONS

OTHER PARAMETERS AS REQUIRED

The parameter block must be on a fullword boundary.

The FUNCTION CODE byte is used by the system to determine the

particular type of SVC 2 call. The function codes recognized

are shown in Figure 3-5.

The OPTIONS byte modifies the function code. For those

functions for which no options are required, the OPTIONS

byte must be set to zero.

Code Number Meaning

1 PAUSE

2 GET STORAGE

3 RELEASE STORAGE
4 SET STATUS

5 FETCH POINTER

UNPACK BINARY NUMBER

7 LOG MESSAGE

8 RESERVED

9 RESERVED
10 RESERVED
11 RESERVED

12 RESERVED

13 RESERVED
14 RESERVED

15 PACK NUMERIC DATA
16 PACK FILE DESCRIPTOR
17 SCAN MNEMONIC TABLE
18 MOVE ASCII CHARACTERS
19 PEEK
20 EXPAND ALLOCATION

21 CONTRACT ALLOCATION

NOTE: For compatibility with other operating systems, Codes 8

and 9 are treated as no-operation instead of illegal.

FIGURE 3-5. SVC 2 Function Codes

3.5.1 Code 1 - Pause
This call is used to place the program in a suspended state.
A PAUSE message is issued to the system console or log device.
If the operator enters a CONTINUE command at the system con-
sole device, the program is restarted at the instruction
immediately following the supervisor call. The parameter
block format is as follows:

ALIGN ADC

PARBLK DB 0,1 (no options)

3.5.2 Code 2 - Get Storage

This call gives a program a way to provide temporary storage
locations for certain subroutines it may call, in particular
FORTRAN Run-Time Library subroutines. This call does not
increase the size of the program's memory allocation, but
obtains locations from the program's current allocation.
(See Section 1.4 on Memory Management). The parameter block
format is as follows:

ALIGN ADC

PARBLK DB OPTION, 2 DESIRED OPTION
DC H'REG' ADDRESS REGISTER
DC F'SIZE' NUMBER OF BYTES

Options allowed are:
xX'00' GET specified number of bytes

X'80' GET all allocated storage

Note that the size parameter must be a fullword wvalue; the

register parameter must be a halfword value.

If option X'00' is specified, the system adjusts the system
parameter, UTOP, upwards by the number of bytes requested.

The starting address of the storage obtained is returned in
the designated register. Subsequent calls with this option

obtain new areas.

This call need not be used only on behalf of subroutines but
the user program itself may find it a simple way to perform
certain stack-manipulation operations. If option X'80' is
specified, the system sets the system parameter UTOP equal
to the system parameter CTOP+2 thus making available all of
the task's current allocation. The starting address of the
storage obtained is returned in the designated register and
the number of bytes obtained is placed into the parameter

block's SIZE parameter.

NOTE
If more storage is requested than is
currently available, an address of zero

is returned.

3.5.3 Code 3 - Release Storage
This call is the inverse of the GET STORAGE call (Code 2). It
releases storage previously obtained. Storage is released on
a last-in-first-out basis. The format of the parameter block
is as follows:

ALIGN ADC
PARBLK DB 0,3 NO OPTIONS

DC F'SIZE' NUMBER OF BYTES TO BE RELEASED

Note that the size parameter must be a fullword value.

3-17

This call does not reduce the program's memory allocation.
The pointer UTOP is adjusted downwards by this call, but

not below UBOT. In Fullword mode, fullword alignment of the
parameter block introduces a halfword of fill between the

OPTION/CODE and SIZE fields.

3.5.4 Code 4 - Set Status

This call allows the user to modify the Arithmetic Fault (AF)
Interrupt Enable bit and the Condition Code (CC) of the PSW.
Two options are provided: the first option specifies that
all allowable bits be modified; the second option specifies
that only the Condition Code be modified. In Fullword mode,
both the Halfword and Fullword Condition Codes are set. The

format of the parameter block is:

ALIGN ADC
PARBLK DB OPTION, 4 DESIRED OPTION
DB AF,CC NEW STATUS, CONDITION CODE

The options allowed are:
X'00' Modify Status and Condition Code

X'80" Modify Condition Code only

The AF byte parameter indicates how arithmetic faults are to

be handled and the valid combinations are:

X'00' Disable Arithmetic Faults
X'10' Enable Arithmetic Faults
X'14' Enable Arithmetic Faults (halfword mode only)
X'04' Enable Arithmetic Faults (halfword mode only)

The CC byte parameter has the form:

X'ox' where x is to replace the Condition Code.

3.5.5 Code 5 - Fetch Pointer
This call returns to the user the address of the table of
parameters maintained by the system. The format of the
parameter block is as follows:
ATLIGN ADC
PARBLK DB 0,5 NO OPTIONS

DC H'REG' ADDRESS REGISTER

The address of the table of parameters is returned in register
REG. The first three fullwords in this table are:

CTOP Address of the last halfword in the task's
allocated memory. The task must not attempt
to access locations above this address. This
value is modified by the EXPAND and CONTRACT
ALLOCATION SVCs (SVC 2 Codes 20 and 21).

UTOP Address of the first halfword following the user
task program space. This value is the lowest
available address for more storage and is
modified by the GET STORAGE and RELEASE STORAGE
SVCs (SVC 2 Codes 2 and 3).

UBOT Address of the lowest location in the user task
space. The task must not attempt to access
locations below this address. System code
occupies locations below UBOT.

The items in the system table following are unimportant to

user tasks and are not defined here.

NOTE
The user should not attempt to modify
the contents of CTOP, UTOP or UBOT by
directly storing into these locations.
CTOP and UTOP should be modified by using
the appropriate SVC's; UBOT should not be
modified at all. Failure to abide by this

restriction may cause system failure.

3.5.6 Code 6 - Unpack Binary Number

This call performs the translation of a binary number contained
in the user General Register Zero into ASCII hexadecimal or
decimal format. The converted data is stored in a buffer
pointed to in the parameter block. The format of the para-
meter block is as follows:

ALIGN ADC
PARBLK DB OPTION, 6 DESIRED OPTION
DC A (DEST) POINTER TO DESTINATION

where the A(DEST) parameter must be a fullword address.

Options recognized are as follows:

X'00' + N Convert to Hexadecimal

X'80' + N Convert to Decimal

X'CO' + N Convert to decimal, suppress leading zeros
X'40' + N Convert to hexadecimal, suppress leading zeros

Where 'N' is the length of the buffer supplied at DEST, in

bytes. If 'N' = 0, a value of 4 is assumed.

The converted number is right-justified in the buffer so that
the least significant digit occupies the last byte (highest
address) in the buffer. If the number to be converted exceeds
the buffer length, the most significant bytes are lost. If
suppression of leading zeros is specified, the number is
stored in the user buffer right—justified, and the remaining

characters, if any, are filled with blanks.

The number in General Register Zero is considered to be an

unsigned 32-bit constant.

N must be less than or equal to 63(X'3F'). It should be noted

that 10 is sufficient for decimal, and 8 for hexadecimal.

Fullword alignment of the parameter block introduces a

halfword of fill between the OPTION and A (DEST) fields.

3.5.7 Code 7 - Log Message

‘This call provides access from the user task to the system
console (or log device). It gives the user a means of out-
putting a message with the assurance that it goes to the
console, regardless of device assignments that may be in force.
A number of options are provided, and the parameter block may
take on two forms, Direct Text and Indirect Text. The format
is as follows:

Direct Text

ALIGN ADC

PARBLK DB OPTION, 7 DESIRED OPTION
DC H'LENGTH' LENGTH OF MESSAGE IN BYTES
DC C'TEXT' TEXT OF MESSAGE (DIRECT)

3-21

Indirect Text

AL IGN ADC
PARBLK DB OPTION, 7 DESIRED OPTION
DC H'LENGTH' LENGTH OF MESSAGE IN BYTES
DC A (TEXT) ADDRESS OF MESSAGE TEXT (INDIRECT)

Options that are supported are as follows:

X'00' Direct Text, ASCII Formatted Message
X'80' Direct Text, ASCII Image Message

X'40' Indirect Text, ASCII Formatted Message
X'co! Indirect Text, ASCII Image Message

The meaning of the Formatted/Image Message option depends on

the driver, but its principal effect on a TTY or CRT is to
suppress the Carriage Return/Line Feed sequence at end of the
line if Image mode is selected. Note that the length of the text
parameter is a halfword value. Indirect text may start on

byte boundary, but its address is a fullword parameter.

A Log Message request is treated as I/O Proceed. If the
console device is not busy, the task's message is transferred
to a system buffer and the task proceeds concurrently with

the message output. The task may then use the same parameter
block with a different message and immediately issue another
Log Message request. At this point, the task is suspended from
execution until the previous log message is complete and the

console becomes not busy.

3.5.8 Code 15 - Pack Numeric Data
This call is the inverse of the UNPACK BINARY NUMBER
(SVC 2, Code 6) call and translates ASCII hexadecimal or
decimal character strings to binary numbers. The format of
the parameter block is as follows:

ALIGN ADC

PARBLK DB OPTIONS, 15 DESIRED OPTION
DC H'REG' REGISTER NUMBER HOLDING ADDRESS

Options recognized are:

X'00' Hexadecimal

X'30" Decimal

X'40! Hexadecimal, skip leading blanks
X'co' Decimal, skip leading blanks

The result is returned in the user General Register 0. The
register specified in the parameter block, halfword parameter
REG, must point to the ASCII string that could not be converted
(non-numeric if decimal is specified; other than 0-9 and A-F

if hexadecimal is specified. The Fullword Condition Code is
set to reflect the number of characters processed. If no
characters could be processed, Register 0 is set to 0 and

the CC 'L' bit is set (CC = 1). If more than eight hexadecimal
characters were processed, only the least significant eight

are reflected in Register 0 and the CC 'V' bit is set (CC = 4).
If the decimal number processed was greater than 232—1, the
number returned in Register 0 is the actual number module 231
and the CC 'V' bit is set (CC = 4). In all other circumstances,
the CC is set to zero. Decimal arguments are treated as

unsigned numbers. The returned Halfword CC is undefined.

3-23

NOTE
232 = 4,294,967,296
Pack Numeric Data is a useful
command processing function.

See examples of its use in the

0S/32 User Guides Manual,

Publication Number 29-393.

3.5.9 Code 16 - Pack File Descriptor

This call is used to process a File Descriptor that is expressed
in standard command syntax (VOLN:FILENAME.EXT) and place the
result in a receiving area in standard SVC 7 parameter block
format. This call is particularly useful if the name of the

system volume is unknown.

The receiving area must be 16 bytes long and may be the name

field of an SVC 7 parameter block. The format of the parameter

block is:
ALIGN ADC
PARBLK DB OPTIONS, 16 DESIRED OPTION
DC H'REG' ASCII STRING ADDRESS REGISTER
DC A (DEST) ADDRESS OF RECEIVING AREA
NOTE

The receiving area must be aligned on a

fullword boundary.

Options recognized are:

X'00' Default system volume

X'40' Default system volume, skip leading blanks
X'80"' No default

X'Co' No default, skip leading blanks

The register specified in the parameter block, halfwoxrd
parameter REG, must point to the ASCII string to be processed.
This pointer is returned pointing to the first character after
the end of the File Descriptor. The Fullword Condition Code

is set to reflect the file name processing. If a syntax error
was detected, the 'V' flag is set (CC = 4). 1In this case,

the contents of the receiving area is undefined. If no volume
name (VOLN) was present in the string, the CC 'L' flag is set
(cC = 1); the contents of the receiving area in this case depend
on the selected option. If default system volume is selected,
the current system volume name is placed in the first four-

byte field of the receiving area. If 'no default' is selected,
the first four bytes of the receiving area remain unchanged.

If no extension is present in the string, the CC 'C' flag is

set (CC = 8) and the last four bytes of the receiving area are
set to ASCII blanks. If the ASCII string being processed
contains less than the maximum numbers of characters for any.
field, the excess characters are blank-filled. File Descriptor
scan is stopped by any non-alphanumeric except for colon (:)

and period (.). Except as previously explained, the Fullword CC

is otherwise zeroed. The returned Halfword CC is undefined.

NOTE
See note regarding command processing

under Pack Numeric Data.

3.5.10 Code 17 - Scan Mnemonic Table
This call presents a pointer to an input string of ASCII
characters and the address of a standard format mnemonic

table.

A mnemonic table is composed of strings of 7-bit ASCII bytes,
separated by a null byte (X'00'). The end of the table is
signified by two consecutive null bytes. Mnemonics may
contain only alphabetic characters, except for the first
character, which may be any character except a null byte.

All required bytes of a mnemonic word in the table must be
flagged with B 0 = 1; non-required bytes are flagged with

Bit 0 = 0.

This call scans the mnemonic table for a match on the input
string. If a match occurs, the string pointer is returned
pointing td the byte in the input string following the match,
the index value of the matched mnemonic (i.e., its position in
the mnemonic table) is returned, and the Fullword Condition
Code is zeroed. If no match is found, the string pointer is
returned unchanged, the index value returned is -1, and the
'V' bit of the Fullword CC is set (CC = 4). The returned

Halfword CC is undefined.

3-26

The parameter block format is:

ALIGN ADC

PARBLK DB 0,17 NO OPTIONS
DB REG1l, REG2 INPUT AND INDEX REGS.
DC A (MNEMONIC TABLE)

Where REGl byte specifies the register which contains the
address of the input string and REG2 byte specifies the
register in which the table index is to be placed.
A(MNEMONIC TABLE) is the fullword address of the mnemonic table
to be scanned.
NOTE

The returned index value counts from zero,

i.e., it is zero if the match is found on

the first table entry, one if the second

entry, two if the third entry, etc.

See note regarding command processing under Pack Numeric Data.

3.5.11 Code 18 - Move ASCII Characters

This routine is used to move ASCII characters from an input
string to a target string. The number of characters moved

is controlled by length or by the occurrence of an ending
character in the ASCII string. The parameter block format is:

ALIGN ADC

PARBLK DB OPTION,18 OPTIONS
DB REG1, REG2 INPUT AND OUTPUT POINTERS
DC A (ECSTRING) ADDRESS OF ENDING CHAR. STRING

Where REGl byte specifies the register pointing to the input
ASCII string, and REG2 contains a pointer to the receiving area.
The ending character string is a string of ASCII characters,

any one of which halts the move operation. The first byte of

the ending character string must contain a binary count of the

3-27

number of ending characters.
Options recognized are:
X'00' + N No Ending Characters
X'80" + N Use Ending Characters
Where N is the maximum number of characters to be moved,

limited to X'7F' (decimal 127).

If the ending character option is selected and no ending
character is found, the 'V! flag is set (CC = 4) in the
Fullword Condition Code, otherwise it is zeroed. The input
and output string pointers are returned pointing to the byte
following the last byte moved in the input and output areas

respectively. The returned Halfword CC is undefined.

NOTE
See note regarding command processing

under Pack Numeric Data.

3.5.12 Code 19 - Peek
This call allows a task to extract certain system and task-
dependent information from 0S/32. The information is moved

to the user's parameter block, defined in Figure 3-6.

PARBLK 0
4

8

12

16

20

24

28

31 ALIGN ADC

pB 0,19,0,0

DS 28

Byte O Byte 1 Byte 2 Byte 3
7, 15 23
0 19 NLU Reserved
0SID
RESERVED
RESERVED

CURRENT TASK
OPTIONS

CURRENT TASK
STATUS

Note: The first 2 bytes are the OPTIONS (no options) and

CODE fields.

system.

Figure 3-6. PEEK Parameters

The other fields are supplied by the

NLU is the number of Logical Units available to the task.

OSID is the form OS32STRR, an eight-byte ASCII field suitable

for printing.

RR is the revision level of the Operating System.

The TASK OPTIONS and TASK STATUS fields, used by system

programs, reflect the current state of the user program (see

Section 3.2).

NOTE

The PEEK Parameter block must be 32 bytes long or

information following it is overwritten,

3.5.13 Code 20 - Expand Allocation

This call causes memory to be added to the task's allocation

in blocks of 256 bytes. Memory is always allocated contiguously
upwards from the top of the task's previous allocation (as long
as there is sufficient remaining physical memory for the

requested expansion). The format of the parameter block is as

follows:
ALIGN ADC
PARBLK DB OPTION, 20 DESIRED OPTION
DC H'N' NUMBER OF 256-BYTE BLOCKS
REQUIRED

Options are:
X'00' Expand number of blocks specified by halfword
parameter N.
X'80' Obtain all of available memory and return number

of blocks in N.

This call returns a Fullword Condition Code of zero if the call
was successful; the returned Fullword CC is non-zero if the

call was unsuccessful. The returned Halfword CC is undefined.

This call modifies CTOP, permitting further use of SVC 2 Code 2
(GET STORAGE). The call is rejected with the 'G' bit of the
Fullword CC (CC = 2) if not enough physical memory is available
at the time of a call with options X'00'. With options X'80',

N is returned equal to zero if no additional memory is available.

NOTE
Too great an allocation for the program
may prevent the assigning of direct access
files because the Operating System uses the
area between the top of the task's allocation
(CTOP) and the top of memory (MTOP) for File
Control Blocks (FCBs). See Chapter 4 for
an example of using the ExXpand call in con-
junction with Get Storage to obtain memory

in an orderly manner.

3.5.14 Code 21 - Contract Allocation
This call is the inverse of the EXPAND call. It causes
memory in the task's allocation to be released, from the

top down, in 256 byte blocks. The format of the parameter

block is:
ALIGN ADC
PARBLK DB 0,21 (no options)
DC H'N' NUMBER OF 256-BYTE SECTORS TO BE
RELEASED

This call modifies CTOP. This call is rejected if it would
cause CTOP to be less than UTOP. Therefore, sufficient

SVC 2 Code 3 (RELEASE STORAGE) calls should be made prior

to this call. If the call was successful, the Fullword
Condition Code (CC) returned is zero. If the call is rejected,
the Fullword CC 'L' bit (CC = 1) is set. The returned Half-

word CC is undefined.

3.6 SVC 3 - END OF TASK (EOT)
This call allows a task to terminate itself in an orderly
fashion. Its format is:

svC 3, N EOT

There is no parameter block associated with this call.
Instead, the resultant parameter block address of the SVC
Instruction is treated as a binary constant and it, truncated
to 16 bits, replaces the System Return Code used by the

Command Substitution System (see Chapter 2).

If the task issuing this call has I/0 in progress at the time
the call is made, the I/O is terminated. All assigned Chained
files on direct-access devices are checkpointed (see Section
3.3.5). All LUs remain assigned exactly as before the SVC 3

was executed.

3.7 SVC 5 - OVERLAY CALL
This call permits a task to fetch an overlay from a specified

Logical Unit (LU). See Chapter 4 for examples of use of SVC 5.

The format of the call is as follows:

svC 5,PARBLK

3
.

ALIGN ADC

PARBLK DC C'OVERLAY' EIGHT-CHARACTER OVERLAY ID
DB X'00' STATUS BYTE
DB X'xx! OPTIONS BYTE
DC H'LU' LOGICAL UNIT (HALFWORD)

Options recognized are:
X'ol' Load from LU without positioning

X'o4'! Ioad from LU after Rewind

Status returned is:

X'oo0! Overlay loaded successfully
X'10' Load failed: for various possible reasons
X'40' Load failed: Overlay would not fit in Allocated memory

The 8-character overlay ID field of SVC 5 is ignored in 0S/32-ST,

but the field is required for compatibility with other

INTERDATA Operating Systems.

Overlays must be linked with the root program by establishing

them with the 0S/32 Library Loader (see examples in Chapter 4).

The calling program is suspended until the overlay is loaded.
If the overlay is successfully loaded, the root program may

Branch and Link to it as a subroutine.

3-33

Overlays should not call other overlays, otherwise the results

may be unpredictable.

The task should use caution with the SVC 2, Code 2 (GET STORAGE)
call when using overlays. Figure 3-7 shows a typical memory
map after loading a main program which uses overlays. The

area shown between UTOP and OBOT is allocated when the program
was established with the 0S/32 Library Loader. Get Storage
requests are satisfied from. this area. Overlays always load

at OBOT and if a Get Storage call causes UTOP to exceed OBOT,
some data may be overlaid. Tﬁe size of this Get Storage area

may be zero if the task does not issue an SVC 2, Code 2.

MTOP
FBOT FILE CONTROL BLOCKS
CTOP ‘ e <
OVERLAY AREA
OBOT
UTOP GET STORAGE AREA
MAIN
PROGRAM
UBOT
0S/32-ST
FIGURE 3-7,

Memory Map Showing Overlay Area
3-34

3.8 SVC 7 - FILE HANDLING SERVICES

This call gives the user task a facility whereby files on
direct-access devices may be created, assigned to Logical
Units (LUs), closed, renamed, reprotected, checkpointed and
deleted. In addition, non-direct access devices may be
assigned to LUs and deassigned through this call. I/0 is
not performed through this call; the user must use SVC 1 for
that purpose. The format of the SVC 7 parameter block,
which must be on a Fullword boundary, is illustrated in

Figure 3-8.

Byte 0 Byte 1 Byte 2 Byte 3

0 7 15 23 31 ALIGN ADC
PARBL Modifi Status LU
K 0 Command odifierxr atu DB x'cC',X'MD',0,lu
4 WRITE READ LRE . . . '
KEY KEY CL DC H'KEYS',H'LRECL
8 VOLN DC C'voln'
12
16 FILENAME DC C'filename'
20 | , ,
EXT RESERVED DC C'ext
24
SIZE . DC FlSIZEI

Figure 3-8. SVC 7 Parameter Block

Several examples of an SVC 7 parameter block are given in

Chapter 4.

Not all the elements of this parameter block are required for
all variations of the SVC 7 call. The requirements are

discussed in detail under the specific options following.

3.8.1 SVC 7 Parameter Block Fields

COMMAND/MODIFIER

The format of the Command/Modifier Halfword is shown‘in

Figure 3-9.

0.1 2 3 4 5 6 7 8 10 11 12 13 15
Ol|H|N|P]|CI|D]|T AP BM FT
COMMANDS MODIFIERS

The functions to be performed are specified in the command
byte (Bits 0-7). They are as follows:

A (Bit @) Allocate; requires File Type (FT) field as modifier

o] (Bit 1) Assign; requires Access Privilege (AP) and Buffer
Management (BM) fields as modifiers.

(Bit 2) Change access privileges; requires AP field as
modifier.

(Bit 3) Rename.

(Bit 4) Reprotect.

(Bit 5) Close.

(Bit 6) Delete.

(Bit 7) Checkpoint.

HoQw=Z m

all bits zero = Fetch Attributes
FIGURE 3-9. SVC Command/Modifier Halfword

The SVC 7 functions are sequentially processed from left to

right, if more than one command bit is set.

Bits 8 - 15 are modifiers. They are as follows:

Bits 8 - 10 specify Access Privileges, encoded as follows:

000 = SRO (Shared Read Only)

001 = WRO (Exclusive Read Only)

010 = SWO (Shared Write Only)

011 = EWO (Exclusive Write Only)

100 = SRW (Shared Read-Write)

101 = SREW (Shared Read, Exclusive Write)
110 = ERSW (Exclusive Read, Shared Write)
111 = ERW (Exclusive Read-Write)

Bits 11 - 12 specify Buffer Management, encoded as follows:

00 = Default buffer management method
01 = Unbuffered Physical

10 = Buffered Logical

11 = Reserved, considered illegal

The Default Buffer Management method is unbuffered physical

for Contiguous files and buffered logical for Chained files.

Bits 13 - 15 specify File Type, encoded as follows:

000 = Contiguous

001 = Chained

010 =

e Reserved, considered illegal
111 =

On a Fetch Attributes call, the modifier field is not used in

the call, and instead the Device Code is returned in this field.

Error Status

The interpretation of the status byte depends upon the commands
specified in the call and is defined under the description of
each command. A status of zero always means the desired options
were performed without error. A summary of all possible error

codes is given in Figure 3-10 for reference (hexadecimal).

Hexadecimal

Meaning

00
01

02
03
04
05
06
07

08

09

0A

0B

80-FF

No error, the requested functions are complete

Illegal function, illegal file type or buffer
management

LU Error; illegal LU

Volume Error; no such volume in system
Name Error; mismatch on FILENAME.EXT field
Size Error; erroneous LRECL or SIZE field
Protect Error; erroneous protection keys

Privilege Error; unable to obtain requested
privilege

Buffer Error; no room in system for File Control
Blocks (FCBs) or buffers

Assignment Error; LU not assigned

Type Error; non-direct access device, or device
offline

File Descriptor Error; illegal syntax

I/0 Error; interpreted as SVC 1 Status Byte

FIGURE 3-10. Interpretation of SVC 7 Status Byte

These errors are listed in the order in which the system checks

for them. The first error detected causes the SVC to return.

If multiple functions were specified (e.g., Allocate and Assign)

some functions may have been properly performed (always in left-

to-right sequence).

LU

This byte defines the Logical Unit used for all the SVC 7

functions except Allocate and Delete.

WRITE KEY AND READ KEY

Protection keys for direct-access files and devices are
specified in this halfword. These keys are required for the
Allocate, Assign, Reprotect and Delete functions. This field
is used by the Fetch Attributes call to return the device or

file attributes.

LRECL

This halfword field, on an Allocate call must contain the

logical record length for a buffered file. On a Fetch Attributes
call, the logical record length of a file or physical record
length of a device is returned in this field. LRECL is not

used for the other functions.

VOLUME ID or DEVICE MNEMONIC (VOLN)

This four-byte field identifies the volume (e.g., removable
disc cartridge) if it is a direct access device, or the device
mnemonic if it is a non-direct access device. This field in
ASCII characters is required for the Allocate, Assign, Delete

and Fetch Attributes functions.

VOLN together with FILENAME and EXT fields identify a File
Descriptor. VOLN is returned by the system on a Fetch

Attributes call.

FILENAME

This eight-byte field identifies the file on a direct access
device; it is not required for a non-direct access device.
The user must specify filename in ASCII characters for
Allocate, Assign, Rename and Delete calls. FILENAME is
returned by the system on a Fetch Attributes call; it is

blank for a device.

EXTENSION

This three-byte ASCII field identifies the file type (e.g.,
OBJ, TSK, CSS, etc.), on a direct access device. It is
treated as an extension of, and required under the same
conditions as the FILENAME. The byte following this field

is reserved for future expansion and is ignored.

SIZE

This fullword field on the Allocate call, must contain the

file size in sectors for a Contiguous file or the physical
block size in sectors for a Chained file. On a Fetch Attributes
call, this field is used to return the current size of a direct
access file; SIZE is not used for a non-direct access device.
Note that the full parameter block should be specified for

the Fetch Attributes call or the system may overwrite other

information.

3.8.2 SVC 7 Functions
ALLOCATE
The Allocate function reserves space on a direct-access device

and in the directory for the specified file type (FT). In the

case of Chained files, only a directory entry is made. The
protect keys are entered in the directory. The required

parameters are FT, KEYS, LRECL, VOLN, FILENAME, EXT and SIZE.

Applicable error codes are:
01 Illegal Function; an illegal file type was specified
03 Volume Erxrror; the specified volume was either not
mounted or is not a direct-access device
04 Name Error; the specified file name already exists
on the specified volume
05 Size Error; if a Contiguous file: there is not suffi-
cient contiguous space on the specified volume to
allocate a file of the specified size, if a Chained
file, the specified physical block size exceeds the
limit established at SYSGEN time
0A Type Error
0B File Descriptor Error
ASSIGN
The ASSIGN function establishes a logical connection between
a file (or device) and the task through a specified Logical
Unit, under a given access privilege (AP) and using a given
Buffer Management (BM) technique. The call proceeds as follows:
first the access privilege is examined to determine which
protect key to check. The proper key is then checked against
the keys in the file directory. The BM field is checked to
see if the required Buffer Management technique is valid for the
type of file being assigned. The file is then assigned according
to the requested access privileges. If SWO or EWO (write only)
is specified, the file is positioned at its logical end
(records are appended). Otherwise, the file is positioned at

the beginning (record number = zero). Only the keys are checked

for given access privilege, for non-direct access devices.

The required parameters are AP, BM, LU, KEYS, VOLN, NAME and
EXT; BM, NAME and EXT fields are not used for non-direct

access devices.

Applicable error codes are, in order of decreasing procedence:

01l Illegal function; invalid BM field

02 LU Error; illegal LU or LU already assigned

03 Volume Error; no such volume

04 Name Error; no such name on given volume

06 Protect Error; mismatch on protection keys

07 Privilege Error; requested privilege may not be granted
08 Buffer Error; no room for FCB or buffers

80-FF I/O Error
NOTE
A buffered file requires two system
buffers to be allocated in memory,
each equal to the physical block size
of the file.
For Chained files, only BM = 00 or 10 is
currently wvalid;
For Contiguous files, only BM = 00 or 01 is

currently wvalid.

CHANGE ACCESS PRIVILEGES

This function allows the user to change the current access
privileges of a file or device which is assigned. Only two
parameter fields in the SVC 7 Parameter Block are required,

the LU and AP portion of the modifier field.

The requested new access privilege cannot, however, change the
I/0 mode which was established when the file was originally

assigned. For example, if the file was assigned for ERO, no

access privilege requiring write access is allowed. Figure

3-11 shows all valid access privilege changes.

Entries of Y denote a valid request; N denotes an

invalid request.

If an error is encountered while processing this request, the

file remains assigned with its original access privilege.

Applicable error codes are:

02 LU Error; illegal LU
07 Privilege Error; new Privileges cannot be granted
09 Assignment Error; LU not assigned

HANGE
TO

CHANGE

FROM SRO ERO SWO EWO SRW SREW ERSW ERW
SRO Y Y N N N N N N
ERO Y Y N N N N N N
SWO N N Y Y N N N N
EWO N N Y Y N N N N
SRW Y Y Y Y Y Y Y Y
SREW Y Y Y Y Y Y Y Y
ERSW Y Y Y Y Y Y Y Y
ERW Y Y Y Y Y Y Y Y

FIGURE 3-11. Valid Access Privilege Changes

RENAME

This function permits the name of an assigned file to be
changed. The file must currently be assigned for ERW. The
required parameters are LU, FILENAME and EXT. The given LU
must be assigned to a direct-access file unless the caller is
a system Executive task which may rename non-direct access
devices. The volume name field of the parameter block is
ignored. The specified FILENAME.EXT replaces the previous
FILENAME.EXT in the directory if the Rename function is

successful.

Applicable error codes are:

02 LU Error; illegal LU

04 Name Error; new name already exists on given volume

07 Privilege Error; file not open for ERW (Exclusive
Read/Write)

09 Assignment Error; LU not assigned

0A Type Error; LU for non-direct access device

0B File Descriptor Error

80-FF I/0 Error

REPROTECT

This function pefmits the protection keys of an assigned file
to be changed. The required parameters are Keys and LU. The
given LU must be assigned to a direct-access file, which must
currently be assigned for ERW (unless the caller is a System
Executive task which may modify the protection keys of non-
direct-access devices). If either the specified read key or
write key is equal to X'FF', that key is ignored (unless the
caller is an Executive task). If the call is rejected, the

previous keys remain unchanged.

Applicable error codes are:

02 LU Error; illegal LU

07 Privilege Error; not assigned for ERW

09 Assignment Error; LU not assigned

0A Type Error; LU for non-direct access device

80-FF I/0 Error

CLOSE

This function discontinues an assigned logical connection between
‘a task and a file or device. LU is the only required parameter.
The specified LU is deassigned. Files assigned for write

access have any partially filled buffers written to the file

by the CLOSE call.

Applicable error codes are:

02 LU Error

09 Assignment Error

80-FF I/0 Error
DELETE
For a Delete function, the VOLN, FILENAME, EXT, and Keys
parameters must specify a direct-access file which is not
currently assigned. If these conditions are met and both

read and write keys match, the file is deleted from the

directory of its volume.

Applicable error codes are:

03 Volume Error; no such volume

04 Name Error; file name does not exist on volume
06 Protect Error; invalid protection keys

07 Privilege Error; file not closed

0B File Descriptor Error

80-FF I1/0 Exror

CHECKPOINT

The Checkpoint function permits the user to flush system
Buffer Management buffers and to update the directory entfy
for a file on a given LU. LU is the only required parameter.
This function, in 0S/32-ST, is only recognized for Chained
files; requesting a checkpoint for a Contiguous file or for

a non-direct access device has no effect.

The user may wish to employ Checkpointing after sensitive

data is added to a bugfered file because the logical blocking
of data is memory in system buffers leaves the file vulnerable.
The integrity of the data can be preserved on disc by Check-
pointing. 1In case of system failure, all data on Chained.files
up to the latest Close or Checkpoint operation is recoverable;
data appended after the most recent Checkpoint is lost. Check-
point differs from a Close/Assign sequence in that no reposi-
tioning is performed and that file name, access privileges,

and keys need not be specified.

The applicable error codes are:
02 LU Error

09 Assignment Error
80-FF I/0 Error

FETCH ATTRIBUTES

Certain programs may require, for proper operation, the knowledge
of the physical attributes of the device or file associated with
a given LU. For example, it might be desirable to know if
random access is possible or if the device is rewindable. The

Fetch Attributes function gives the user access to this information.

3-46

Only one status error response is possible:

02 LU Error; illegal LU

Various fields within the SVC 7 parameter block are redefined
for purposes of this call. When the command field is set to
zero, indicating a Fetch Attributes call, the only required
parameter is the Logical Unit. The system returns information

in fields Keys, LRECL, File Descripter, SIZE and Modifier byte.

The Write Key/Read Key halfword is redefined to receive an
attributes halfword as given in Figure 3-12. Any bit set

means the device or file supports the corresponding attribute.

BIT ATTRIBUTE
0 RESERVED _
1 SUPPORTS READ
2 SUPPORTS WRITE
3 SUPPORTS BINARY
4 SUPPORTS WAIT I/O
5 SUPPORTS RANDOM
6 SUPPORTS UNCONDITIONAL PROCEED
7 SUPPORTS IMAGE
8 RESERVED
9 SUPPORTS REWIND
10 SUPPORTS BACKSPACE RECORD
11 SUPPORTS FORWARD SPACE RECORD
12 SUPPORTS WRITE FILEMARK
13 SUPPORTS FORWARD SPACE FILEMARK
14 SUPPORTS BACKSPACE FILEMARK
15 RESERVED

FIGURE 3-12. SVC 7 Device Attributes Halfword

The LRECL field is set by the system to the physical record
length associated with the device (e.g., 80 for a card reader,
120 or 132 for a line printer) if the record length is fixed;
these two bytes are set to zero for a variable record length

device (e.g., mag tape).

A TTY or CRT, which is in the strict sense a variable-record
length device, normally has LRECL set as though it were a
fixed-record length device. This is because such a device

is normally used in a fixed-record length method. Furthermore,
a Contiguous direct-access file is considered to have a fixed
record length, which is the logical record length chosen for

that file at the time of its allocation.

The volume name, file name, and extension (VOLN:FILENAME.EXT)
for a named file, or the device mnemonic for a non-direct access
device is returned in the File Descriptor portion of the
parameter block. The program may use this information, e.g., to
provide the operator with intelligent information in case of
error, to generate the name of a new output file by transfor-

mation on the name of the input file, etc.

The current size of a direct-access file is returned in the
SIZE field; SIZE is unchanged for non-direct access devices.
Number of logical records is returned for a Chained file;

number of sectors is returned for a Contiguous file.

The MODIFIERS byte is set to indicate the file or device type.

A sample of device codes is given in Figure 3-13. The codes for

all supported devices is given in the 0S/32 Series General

Purpose Driver Manual, Publication Number 29-384.

CODE (DECIMAL)

0

1
16
17
18
64
65
66
80
81
82
96
112
114
255

FILE OR DEVICE TYPE

Contiguous File

Chained File

Model 33 TTY, Keyboard/Printer
Model 35 TTY, Keyboard/Printer
Nonediting CRT

800 BPI Magnetic Tape

1600 BPI Magnetic Tape
INTERTAPE Cassette

High Speed Paper Tape Reader/Punch
Model 33 TTY, Reader/Punch
Model 35 TTY, Reader/Punch

CPM Card Reader

Centronics line printer

High Speed line printer

NULL DEVICE

FIGURE 3-13. Example Device Codes

3-49/3-50

CHAPTER 4

EXAMPLES

4.1 INTRODUCTION
This chapter gives examples of operator and program functions
under 0S/32-ST and familiarizes the user with program control

techniques.

An in-depth treatment of some of the basic facilities in

0S/32-ST can be found in the 0S/32 User Guides Manual,

Publication Number 29-393.

Sizing and performance information can be found in the

0S/32-ST Program Configuration Manual, Publication Number

29-379.

4.2 OPERATION EXAMPLES
On all following examples of command and data entry, the
characters '*' and '>' at the beginning of a line are output

by the system as prompts to the operator.

4.2.1 Establishing Programs on Disc

The following procedure demonstrates how the user may establish
a program on a disc file for convenient access. Assume the
program exists as an object module on paper tape. (Standard

record length for 0S/32 object modules is 126 bytes).

First, a disc file (the system volume is assumed) must be
Allocated to contain the program.
Enter:
*ALLOCATE PROGRAM.OBJ,CHAIN, 126 Create file
*ASSIGN1,PTRP: Assign paper tape reader to LUl

*ASSIGN2,PROGRAM. OBJ Open file to LU2

Next, the OS LIBRARY LOADER must be loaded, as it is

used to copy the program to the file. Insert the 0S/32

Library Loader tape in the pPaper tape reader and enter:
*LLOAD PTRP:

*START

Now insert the program to be copied to disc in the paper tape
reader and enter the following commands to the 0OS Library Loader.
>COPY 1,2

DEND

Unless the program file is to be used at this time, it may

be closed.

*CLOSE 2

Now, anytime the program in file PROGRAM.OBJ, is regquired in
memory, it may be loaded via the following command:

*L,OAD PROGRAM.OBJ

NOTE
Default protection keys (X'0000') and
default access privileges (SRW, converted
to SREW by the system for Chained Files)

are used.

4.2.2 Assembling With Disc

This procedure demonstrates how to start the Assembler and
assemble a user program. The system disc volume is assumed.
Also assumed: the assembler is in a disc file named CAL.OBJ,
the source is read from device CARD:, the object is written

to file USER.OBJ, and a disc file is used for the scratch files.
Assume only file CAL.OBJ exists on disc. A symbol table is

not required; the CAL source contains NO COPY statements, and
SQUEEZE is not requested. The following command sequence is

required.

*ALLOCATE
*ASSIGN
*ASSIGN
*ASSIGN
*ASSIGN
*ALLOCATE
*ASSIGN
*ALLOCATE
*ASSIGN

*ASSIGN

*ASSIGN

*LOAD

*START

SCRATCH1
5,SCRATCH1
6 ,NULL

7 yNULL

8 ,NULL
SCRATCH

4,SCRATCH

USER.OBJ,CHAIN, 126

2 ,USER.OBJ

3,PRINT:

1,CARD:

CAL.OBJ

Create
Assign
Assign
Assign
Assign
Create
Assign
Create
Assign

Assign

scratch file for cross ref.
sciatch to LU5

LU6 to Null Device

LU7 to Null Device

LU8 to Null Device

scratch file

scratch to LU4

user program file

binary object to LU2

list device to line printer

on LU3

Assign

source input to card reader

on LUl

Load the Assembler

Start the Assembler

Both the scratch file and the binary object file are allocated

as Chained files since the size of neither file is known in

advance.

When the assembly is complete, the user may wish to:

*CLOSE 2
*CLOSE 4
*CLOSE 5

*DELETE SCRATCH

Leave object program on disc

Close scratch file

*DELETE SCRATCH1

Deleting the scratch files is not necessary.

Remove the scratch files on disc

They can be

re-assigned again after closing if desired to reuse the files;

but they should first be CLOSEd or REWINDed.

4-4

4.2.3 FORTRAN Compiling with Disc

Assume the FORTRAN Compiler, OS Library Loader, OS Assembler,

and the FORTRAN Run Time Library have been established on

disc files using the procedure specified in Section 4.2.1.

The user wishes to compile and execute a FORTRAN source

program on cards. The FORTRAN compiler itself reads its

input from LUl, outputs assembly language source on LUZ, and

prints output on LU3. The required sequence status as follows.
*ASSIGN 1,CARD: Assign card reader as SOURCE input to LUl
*ASSIGN 3,PRNT: Assign list device to line printer in LU3
*ALLOCATE USER.CAL, Create file for assembly
*L,OAD FORTRAN Load FORTRAN compiler
*ASSIGN 2,USER.CAL Assign output to LU2

*START Start compiler

After the FORTRAN compiler completes, the Assembler must be
run to assemble the data written to file USER.CAL by FORTRAN.
This procedure is outlined in Section 4.2.2. Note, however,
that LUl has to be closed and reassigned to USER.CAL, and that
LU2 has to be closed and reassigned to USER.OBJ (or to some

other acceptable name).

Since most FORTRAN programs require routines from the Run Time
Library, the OS Library Loader must be used to create the
final executable task. Assuming the FORTRAN RTL is on a file
named RTL, and the Library Loader is on a file named LIBLDR,

start the Library Loader as follows:

4-5

*ASSIGN 6,RTL Assign Run Time Library to LU6
*LOAD LIBLDR Load Library Loader

*START Start Loader

Now input the following commands to the loader:

BI XXXX Set load bias to some location above loader
RE 2 Rewind binary object file

LO 2 Load binary object file

ED 6 Edit with Run Time Library

END End Library Loader

Any file assignments required for use by the FORTRAN program

may now be entered. Following these assignments, the program
may be started at the BIAS specified in the first command to

the loader. Enter:

ST XXXX Start Program

4.2.4 Building Overlays

The subject of overlays is an important one for system planning.
The use of overlays can substantially reduce the memory require-
ments for a system. There is no limit to the number of overlays

a program may have.

Overlays should not call other overlays. They should always
return to the root segment (main program) and allow it to call
the next overlay. If an overlay calls another overlay, the

new overlay is loaded on top of (overlays) the first, and
program execution resumes from the location immediately following
the SVC instruction in the first overlay. This would not likely

be the starting location for the new overlay.

4-6

Overlays and root segments can communicate with EXTRN and
ENTRY statements. Overlays can reference subroutines that
are loaded with them or loaded with the main program.

Overlays can reference both blank and labeled Common.

Overlays can be very helpful in conserving memory space.
However, the saving is achieved by sacrificing time. Even
when disc is used as the overlay medium, it takes time to
load an overlay. For this reason, overlays should be used

for processing that is not time-critical.

The 0S/32 Library Loader is used to establish overlays (see

the 32-Bit Series Loader Description Manual, Publication Number

29-376). The command, OV, informs the Library Loader that

the subroutine about to be linked is an overlay subroutine. It
is this command that origins the overlay subroutines such

that they occupy a common area of memory. Overlays are esta-

blished by using the OUT feature of the Library Loader.

As an example of overlay establishing procedures, assume a
FORTRAN application program and two subroutines which are to

be linked as overlays. The program and its subroutines have

been compiled and their object programs are on paper tape.

The main program calls the first overlay via LU2 and the second
via LU3 using the IFETCH routine in the Run Time Library. We
begin by allocating disc files for the main program and the
overlay subroutines, and assigning them to LUs, 1, 2, and 3,
respectively. Note that standard object record size is 126 bytes.
Assume the Library and Loader are on disc files RTL and LIBLDR,

respectively:
4-7

*ALLOCATE MAINP,CHAIN,126

*ALLOCATE MAINP.OV1,CHAIN, 126

*ALLOCATE MAINP.OV2,CHAIN,126

*ASSIGN 1,MAINP

*ASSIGN 2,MAINPOV1

*ASSIGN 3,MAINPOV2

*ASSIGN 6,RTL Assign Run Time Library to LU6

*ASSIGN 4 ,PTRP: Assign paper tape reader to LU7

Now load and start the 0S/32 Library Loader
*L,OAD LIBLDR

*START

The following commands are read by the Library Loader.

>ouTrT 1 Set the out option for LUl

> LO 4 Load the main program from paper tape
YED 6 Edit with the Run Time Library

>XOouT

>ov Indicate an overlay to be linked

>ouT 2 Set the out option for LU2

>LI 4 Link first overlay from paper tape
>ED 6 Edit with the Run Time Library

7 XOUT

70V Indicate another overlay is to be linked
yOUuT 3 Set the out option for LU3

7LI 4 Link second overlay from paper tape
>ED 6 Edit with the Run Time Library

7X0UuT Terminate out option

>END Terminate Library Loader

4-8

The main program and its overlay have been established and

may be executed from disc by the following sequence of commands:

*CLOSE 1
*CLOSE 2
*CLOSE 3

*IL,OAD MAINP

Now make any LU assignments required for program execution

and start the program

*START

4.2.5 Example CSS Files

1.

This example shows a CSS file to load and run a program,

assuming that the LU assignments are already made. If the

program goes to Abnormal End, then a skip to $TERMJOB is

initiated, otherwise,

the

file exits.

*RUN < PROGNAME > [[4START PARA>],[{START ADDRESS >1]

*

SIFNULL @1l; $SKIP; S$SENDC;*

*

LOAD @1.0OBJ
*
*

START @3,@Q2

*

SIFNE 0; $SKIP; SENDC

*

SEXIT

. %
’

IF NO PROGRAM SPECIFIED SKIP TO
TERMJOB

PROGRAM IS ASSUMED TO BE ON DISC
FILE

PROGNAME .OBJ

START PROGRAM, PASSING PARAMETERS
IF SPECIFIED

SKIP TO $TERMJOB IF PROGRAM

GIVES ABNORMAL END

A file like this can be thought of as an extra command.
If a library of such extra commands is created, it is
good practice to include, as a comment at the start of

each file, a statement of the command SYNTAX.

Example of a file used to create a direct access file.
If the file already exists, no action is taken.

*CREATE FILE-ID

*

$IFX @l; S$EXIT; S$ENDC;* IF FILE-ID ALREADY EXISTS

* TAKE NO ACTION

ALLOCATE @1;* ALLOCATE CHAINED FILE

* WITH DEFAULT CHARACTERISTICS
$EXIT

This example is included to demonstrate the versatility of
CSS. A number of CSS-files are used, and they call each

other to a depth of 3.

CSS-file MESSAGE

$SCOPY

*RETURN CODE = @@3, IF@@2 @@l @l

$NOCOPY

SEXIT

This file is called by files True and False to list messages

of the form

RETURN CODE 0, IFE 0 OK

RETURN CODE 255, IFL 0 OK

CSS-file TRUE

$JOB

SET CODE @3

$SIF@2 Q1 ; *SEE NOTE

MESSAGE OK

$SSKIP

$SENDC

MESSAGE FAILED

STERMJOB

SEXIT

Note: This artificially constructed conditional should give
true. If it does, a message is listed on the console
confirming that the conditional is OK. If it doesn't,

the Failed message is printed.

Ccss-file FALSE

$JOB

SET CODE @3

$IF@2 @1 ; *SEE NOTE

MESSAGE FAILED

$SKIP

$ENDC

MESSAGE OK

STERMJOB

SEXIT

Note: This artificially constructed conditional should
give false. If it does, a message is listed
on the console confirming that the conditional is

OK. 1If it doesn't, the Failed message is printed.

4-11

CSS-file CHECK

@4 @3, @2, @1;* SEE NOTE

SEXIT

Note: This file is a linking file, it provides an elegant
method of testing the return code conditional opera-
tions, $IFE, $IFNE, $IFL, $IFNL, S$IFG and SIFNG.

A call of CHECK takes the form:

CHECK RETURN CODE , CONDITION , VALUE » ANSWER

where RETURN CODE is the value to which the return code is

to be set,

where CONDITION determines the conditional to be tested,

according to the following table:

CONDITION Conditional
E $IFE
NE $IFNE
L $IFL
NL $IFNL
G $IFG
NG S$IFNG

where VALUE is the value against which the return code is to
be tested.

where ANSWER is true or false according to whether the
answer given by the conditional should be true or false.

The conditionals can now be tested by calling CHECK. For
example, consider the call

CHECK O, E, 0O, TRUE

As a result of this the first command in CHECK becomes

TRUE O, E, O

This calls the file TRUE which sets the return code to 0, then
executes

$IFE 0

This should give 'true', which means that file MESSAGE is
called with parameter OK

MESSAGE therefore prints out

RETURN CODE = 0, $IFE 0 OK

If the $IFE had erroneously given 'false' then the message

i

RETURN CODE 0, S$IFE 0 FAILED

would be listed.

4.3 PROGRAMMING EXAMPLES

4.3.1 Using I/O SvVC 1

The following examples illustrate the general programming

techniques for handling data transfers with SVC 1. These

examples are device-independent and refer to LUs which could

be assigned to direct access files. Examples of techniques

specifically related to direct access files (primarily to

illustrate uses of svC 7),

are given in Section 4.3.4.

The first example uses I/O0 and wait.

PARBLK

STAT

START
END

SvC 1,PARBLK
LH RO, STAT
BM ERROR
ALIGN ADC

DC X'4806"
CALLS FOR READ ASCII AND
DS 2

DC A (START)
DC A (END)
DAS 2

DS N

EQU *-1

I/0 SUPERVISOR CALL

GET STATUS IN GENERAL REG. ZERO

BRANCH IF BIT @ = 1 TO ERROR
ROUTINE

FUNCTION CODE AND LU

WAIT ON LU6

RESERVED FOR STATUS AND DEVICE NO.
STARTING ADDRESS OF BUFFER

ENDING ADDRESS OF BUFFER

UNUSED FIELDS

START OF BUFFER, LENGTH=N
FINAL BUFFER ADDRESS

In the previous example, the program requests that the system

read ASCII data into the specified buffer and suspend the task

until the transfer is complete.

An I/O call specifying wait

causes the program to go into the I/O wait state and remain

there until the data transfer is complete. There are two

exceptions to this rule:

if the function is illegal, as would

be the case if LU6 were assigned to the line printer; or if
the device is unavailable, as would be the case if LU6 were
assigned to an inoperative device. If either of these
exceptions apply, the task resumes execution without I/O

taking place. The second example uses ERROR thus:

ERROR THI RO,X'4000' TEST STATUS FOR ILLEGAL FUNCTION
BNZ ILLFUN BRANCH IF ILLEGAL
THI RO,X'2000" TEST STATUS FOR DEVICE UNAVAILABLE
BNZ DEVUNV BRANCH IF UNAVAILABLE
THI RO ,X"xxxx' TEST OTHER ERROR CONDITIONS

Note that the program uses a Define Storage statement to reserve
a location for the status and device number. This is acceptable
when using I/0 and wait because the contents of this halfword

is always changed by the system. Upon return to the program

it contains zero if the transfer was successful or a negative
value (Bit 0 = 1) and the device number truncated to 8 bits if

the transfer failed.

Another example illustrates the use of calls to read and proceed

that allow processing to overlap I/O:

SVC
LOOP svC

svC

AT.IGN
PARBLK1 DC
STAT1 DS

DC
DC
DAS
PARBLK2 DC
STAT2 D
DC
DC
DAS

1,PARBLK1
1,PARBLK?2
RO,STAT1
ERROR1
Rx,PROC1
1,PARBLK1
RO,STAT2
ERROR2
Rx,PROC2
LOOP

ADC
X'4002'
2

A (START1)
A (END1)

2

X'4002"

2

A (START2)
A (END2)

2

FIRST I/O SUPERVISOR CALL FIRST BUFFE
SECOND SUPERVISOR CALL SECOND BUFFER
CHECK STATUS OF FIRST CALL

BRANCH ON ERROR STATUS

BRANCH AND LINK TO PROCESS FIRST BUFFER
REFILL FIRST BUFFER

CHECK STATUS OF SECOND CALL

BRANCH ON ERROR STATUS

BRANCH AND LINK PROCESS SECOND BUFFER
REFILL SECOND BUFFER

READ ASCII PROCEED LU2

RESERVED LOCATION FOR STATUS AND
DEVICE NUMBER

START OF BUFFER NUMBER ONE

END OF BUFFER NUMBER ONE

UNUSED FIELDS

READ ASCII PROCEED LU2

RESERVED FOR STATUS AND DEVICE NO.

START OF SECOND BUFFER

END OF SECOND BUFFER

UNUSED FIELDS

In this example, the program issues three SVCs that refer to

two parameter blocks.
proceed on LU2.

call is started,

All the calls request read ASCII and

As soon as the data transfers for the first

the task resumes execution at the second SVC.

If at this time the first transfer is still not complete, the

task is put in the I/O wait state.

be processed, the task is again allowed to proceed.

When the second call can

At this

point, since the system was able to start a second transfer on

LU2, the program knows that the first transfer is complete.

It checks the status and processes the data.

It then issues a third call to refill the first buffer. If
the second call is not complete, the task again goes into
the wait state. When the second transfer is complete, the
system starts processing the third call and the program can
proceed with the knowledge that the second buffer is full.
It checks the status, processes the data, and loops back to

repeat the sequence.

The third example uses the unconditional proceed option:

svC 1,PARBLK1 I/0 SUPERVISOR CALL
BTC 15,ERR1 TRANSFER CANNOT BE STARTED

. UNRELATED PROCESSING

CHECK LH RO ,STAT GET STATUS IN REGISTER ZERO
BZ COMPL ZERO STATUS MEANS SUCCESSFUL TRANSFER
BM ERROR ANALYZE ERROR STATUS
SvC 1, PARBLK2 I/0 SUPERVISOR CALL (WAIT)
ALIGN ADC
PARBLK1 DC X'5208" READ BINARY UNCON PROCEED LUS8
STAT DC X'0100' RESERVED FOR STATUS AND DEVICE NUMBER
DC A (START) STARTING ADDRESS OF BUFFER
DC A (END) ENDING ADDRESS OF BUFFER
DAS 2 UNUSED FIELDS
PARBLK2 DC X'0800' WAIT ON TRANSFER
DAS 4 UNUSED FIELDS

In this example, the program request binary read with uncondi-
tional proceed. With this type of call, the task is never put
in the I/O wait state. It is left in the ready state and
resumes execution. The Condition Code (CC) of its Program
Status Word (PSW) indicates the status of the request. If
upon return to the program, the Condition Code is zero, then

the system was able to activate a driver in response to the

request. The transfer may or may not have been started.

The device assigned to LU8 actually exists, and it was not
busy at the time of the call. If the Condition Code has a
value of X'F', then the transfer could not be started because
the device was busy. The Branch on Condition instruction
following the SVC call checks these conditions. If device is
not busy, the program can continue with unrelated processing.
The program must eventually check the status of the call to
determine if the data was properly transferred. Note that

in PARBLK1 the status was initially set to a positive value,
(any positive value will do). If at the time of checking,
this value is zero, then the transfer was successful. If it
is negative then there was a failure. If it is still positive,
the transfer has been started but is not complete. In the
example, the program issues a wait request. This is not
required. It could continue with other processing and return

later to check the status again.

4.3.2 Using System Services SVC 2
The following example uses the UNPACK, LOG MESSAGE, and

PAUSE SVC 2 calls to notify the operator of SVC 1 I/0 error.

4-18

LOoC SvC 1,PARBLK1 I/0 CALL

LH RO, STAT1 GET STATUS AND DEVICE NUMBER
BM ERROR LOG ERROR MESSAGE
ERROR svC 2 ,PARBLK2 UNPACK RO
svC 2,PARBLK3 LOG MESSAGE
SvC 2 ,PARBLK4 PAUSE
B CONTIN CONTINUE EXECUTION
ALIGN ADC
PARBLK1 DC X'4008' READ FROM LUS8
STAT1 DS 2 STATUS AND DEVICE NUMBER
DC A (START) BUFFER ADDRESS
DC A (END)
DAS 2 UNUSED FIELDS
PARBLK2 DC X'0006"' 4-BYTE HEXADECIMAL UNPACK
DC A (DEST) DESTINATION
ALIGN ADC
PARBLK3 DC X'0007' LOG DIRECT ASCII
DC 14 MESSAGE SIZE
DC c't/o ERROR MESSAGE TEXT
DEST DS 4 UNPACK BUFFER
ALIGN ADC
PARBLK4 DC X'0001" PAUSE CODE

The LOGged message in this example comes directly from the LOG
Message parameter block. Also note that the UNPACK BUFFER
follows the LOG Message text and is included in the printout
to appear as:

I/0 ERROR XXXX
where xxxx is the UNPACKed contents of General Register Zero
containing error status and device number returned after an
unsuccessful read operation. This message is then followed
by the PAUSE message indicating that the program has suspended

itself and is waiting action from the operator.

In many situations, a program may require varying amounts of
storage from one moment to another. If such a program were to

seize at once all the memory that it might ever need, it might

have difficulty opening files (since 0S/32-ST allocates File
Control Blocks from memory space above the user's allocation).
In order to provide for an orderly memory management discipline,
while allowing unused space to be efficiently used by the
system, the Expand call can be used in conjunction with the

Get Storage call as follows:

ST QTY ,GETSTORE+4 STORE REQUEST QUANTITY
RETRY SsvC 2 ,GETSTORE TRY TO GET STORAGE

LR ADRS ,ADRS DID WE GET IT?

BNZ OK BRANCH IF YES

svC 2 ,EXPAND NO-EXPAND BY 256 BYTES

BNZ MEMFULL BRANCH IF NO MEMORY

B RETRY EXPAND OK - NOW RETRY
* ALIGN ADC
GETSTORE DB g,2 GET STORAGE PARM BLOCK

DC H'ADRS'

DC F'g’ AMOUNT TO BE STORED HERE
EXPAND DB #,20 EXPAND ALLOCATION

- DC H'1l? ONE BLOCK (256 BYTES)

This routine is entered with the requested number of bytes in
register QTY. A Get Storage call is attempted. If it is
successful, the routine exits with the storage address in
register ADRS. If the Get Storage request is unsuccessful,
an Expand call is made, to expand by another 256 bytes. If
this call is unsuccessful, the routine exits to MEMFUL. If

the expansion succeeds, the Get Storage call is retried.

The Release Storage call should be used in conjunction with
Contract Allocation when and if the program wishes to return

memory to the system.

4.3.3 Using Overlay SVC 5

An example program is shown following to illustrate how to

handle overlays.

This program assumes the program segments

were linked in overlay structure in the same manner as

explained in Section 6.2.4 and the two overlays MAINP.OV1

and MAINP.OV2 reside on Logical Unit 2 and 3 respectively.

* EXTRN SUB1,SUB2

MAIN EQU

SvC
LB
LR
BNZ
BAL
svC
LB
LR
BNZ
BAL

PARBLK1

STAT1

PARBLK2
STAT2

SUB1

SUB2

MAIN PROGRAM

5,PARBLK1
Rg, STAT1
Rg, RO
ERHANDLR
15, SUBL
5,PARBLK2
RO, STAT2
RO, RO
ERHANDLR
15, SUB2

ALIGN ADC
DS 8

DB X'00'
DB X'04'
DC H'2'
ALIGN ADC
DS 8

DB X'00'
DB X'04'
DC H'3'
END

OVERLAY1

ENTRY SUBL

EQU *

.

BR 15
END

OVERLAY2

ENTRY SUB2

EQU *

BR 15
END

4-21

LOAD MAINP.OV1
LOAD STATUS BYTE
CHECK STATUS

IF NOT ZERO, ERROR
CALL OV1 VIA SUB1
LOAD MAINP.OV2
LOAD STATUS BYTE
CHECK STATUS

IF NOT ZERO, ERROR
CALL OV2 VIA SUB2

ILOAD AFTER REWIND OPTION
LOGICAL UNIT 2

LOAD AFTER REWIND OPTION
LOGICAL UNIT 3

GO BACK TO MAIN

GO BACK TO MAIN

In the previous example, the first fetch overlay call causes

the task to be suspended. The 0.S. resident loader is activated
to load MAINP.OV1 from Logical Unit 2 on the top of MAIN. If
upon return to the program, the status is not zero, control is
passed to the error handler routine. If the status is zero,

the task knows MAINP.OV1 was loaded successfully and can issue a
call to SUBl which is an entry point of MAINP.OV1l. After
return from SUBl, a second SVC 5 is issued. The task is
suspended again by the system and MAINP.OV2 is loaded from
Logical Unit 3 on the top of the main program and hence overlays
on MAINP.OV1l. After the second call is processed, - the task

is again allowed to proceed. The status is checked to make

sure the load operation is successfully completed. If the

status is zero, SUB2 is called.

4.3.4 Using Disc Files With SVC 7 and SVC 1
In order to demonstrate the use of disc files with SVC 7 and

SVC 1, the following program is presented.

Assume File A, which has been previously allocated by:

AL DISC:FILEA,CO,100
is a 1l00-sector Contiguous file that contains 150, 80-byte
records. The records were blocked by the user program with a
blocking factor of three and there are no spanning records
over the sector boundary. In addition, the records are followed

by a file mark. We wish to copy File A to a Chained file, File B.

The following program writes File A to File B.

START

GO READ

DEBLOCK

DONE

OPENA
OPSTATA

OPENB
OPSTATB

SvC
LB
LR
BNZ
SVC
LB
LR
BNZ
LA
sSvC
LH
Bz
THI
BNZ
B
ST
AHT
ST
SVvC
LH
BM
AIS
CLI

BL
B
SvC
LB
LR
BNZ
SvC
LB
LR
BNZ

ATLIGN
DC
DB
DS
DC
DC
DS
ALIGN
DC
DB
DB
DC
DC
DC
bDC

7 ,0PENA

RO ,OPSTATA
RO, RO
ERROR1

7, OPENB
RO, OPSTATB
RO, RO
ERROR2

R1l, BUFFER
1,PARBLKA
RO, IOSTATA
DEBLOCK
R0,X'0800"
DONE
ERROR3
R1,WRSAD
R1,79
R1l,WREAD
1, IOSTATB
RO, IOSTATB
ERROR4
R1,1
R1,BUFFER+240

DEBLOCK
GOREAD
7,CLOSEA
RO ,CLSTATA
RO,RO
ERRORS
7,CLOSEB
RO ,CLSTATB
RO, RO
ERROR6

ADC

X'40A0'

0,1

4
C'DISKFILEA'
Cl L}

4

ADC

X'COEl!

0,2

0,0

H'80'
C'DISKFILEB'
Cl L]
F'1°'

ASSIGN FILE A

LOAD STATUS BYTE

CHECK STATUS

IF NOT ZERO, ERROR
ALLOCATE & ASSIGN FILE B
LOAD STATUS BYTE

CHECK STATUS

IF NOT ZERO, ERROR

LOAD BUFFER ADDRESS

READ RECORD FROM FILE A
CHECK STATUS

IF ZERO, NO ERROR/EOF
CHECK EOF

YES, DONE

ELSE ERROR

MOVE START ADRS TO PARBLK
COMPUTE BUFFER END ADDRESS
MOVE END ADRS TO PARM BLK
WRITE RECORD TO FILE B
CHECK I/0 STATUS

IF MINUS, ERROR

BUMP BUFFER POINTER

HAVE ALL THREE LOGICAL RECORDS
PROCESSED?

NO, CONTINUE DEBLOCKING
ELSE GO TO READ NEXT REC
CLOSE FILE A

LOAD STATUS BYTE

CHECK STATUS

IF NOT ZERO, ERROR

CLOSE FILE B

LOAD STATUS BYTE

CHECK STATUS

IF NOT ZERO, ERROR

ASSIGN SREW
TO LUl

ALLOCATE AND ASSIGN ERW
TO LU 2

PROTECTION KEYS

LOGICAL RECORD LENGTH

READA
IOSTATA

WRITEB
IOSTATB
WRSAD
WREAD

BUFFER
CLOSEA
CLSTATA

CLOSEB
CLSTATB

ALIGN
DC
DB
DC
DC
DS
ALIGN
DC
DB
DC
DC
DS
DS
ALIGN
DC
DB
DS
ALIGN
DC
DB
DS

END

ADC
X'4801'
0,0
BUFFER
BUFFER+255
8

ADC
X'2802"
0,0
BUFFER
BUFFER+79
8

256
ADC
X'0400"
0,1

24

ADC
X'0400"
0,2

24

READ,WAIT,LU 1

WRITE ,WAIT,LU 2

CLOSE LUl

CLOSE LU2

The task first assigns File A to Logical Unit 1 with access

privilege SREW,

this file.

not required.

thus preventing any other attempts to write on

Since File A is not protected, protection keys are

Upon return to the program, status is checked.

The task next allocates File B to LU two with access privilege

ERW, making File B unavailable to other assignments. Allocate

and Assign are performed by one supervisor call instruction.

It should be pointed out that for a Chained file, no disc space

is actually allocated at assignment time and space is allocated

only when it is needed.

If there are no errors detected in

assign, the task starts to read records from File A. Since

File A was created with a blocking factor of 3, the task is

looping in the deblocking routine in order to pull the logical
records out. When a logical record is pulled out, the task
then writes this record onto File B sequentially. At the

end, the task closes both files.

4-25/4-26

1.

1.1

APPENDIX 1

SYSTEM COMMANDS AND MESSAGES

OPERATOR COMMAND
Notation

The syntactical rules given below are annotated in a modified
Backus-Naur Form (BNF). The conventions of this notation are
as follows:

1. Terminals. The actual characters and strings of the
command language are called terminals and are composed of
capital letters, numerals, and punctuation, except for the
special characters £ and > .

2. Nonterminals. The names of classes of terminals are
composed of lower-case letters and are enclosed in angle-
brackets, to distinguish them from terminals. For example,
{verb) names a class of terminals. These class names are
nonterminals.

3. Definitions. A nonterminal may be defined as being
composed of groups of terminals, of nonterminals, or of
groups of mixed terminals and nonterminals. A definition
is set forth as follows:

{item being defined> ::= {definition?»
The characters ::= mean 'is defined as'.
4. Selection. Whenever a choice may be made between alter-
native items in a definition, these alternatives are stacked
one above the other and are enclosed in braces. For example:
noun?
Lword? ::={{verb>
Cadjective?

5. Options. If an element of a definition is optional, it
may be enclosed in square brackets. For example:

¢noun phrase> ::= [<artic1eﬂ {noun>

means a noun phrase is defined as a noun, optionally preceded
by an article.

Al—1

6. Mnemonics. When a mnemonic is presented as part of a

_, —aemonlcs) :
definition, the required characters are underlined but the
non-required characters are not. Thus:

APPEND
requires only the character A as an abbreviation.

7. Repetition. Any part of a definition that can be repeated
one or more times is indicated by placing a subscript and
superscript on the right of the enclosing brackets. These may
be angle brackets, square brackets or braces. The subscript
indicates the minimum permissible number of repetitions; the
superscript indicates the maximum. Thus:

{address> ::= {hex digit> i

means an address is composed.of from one to five hexadecimal
digits. If there is no subscript, the superscript indicates
the minimum as well as the maximum. Thus:

{three-digit number) ::= <number>§

{three-digit number) ::= ¢number>3

are identical definitions, meaning a three-digit number is
composed of three repetitions of {number) .

If the superscript is n, that means there is no upper limit
on the number of repetitions of a construct. For example:

{data string> ::= <datum) C,(datum)]g
means {data stringy» is defined as < datum> followed by from
none to any number of the pair comma, ¢ datum®> . Note that

in this context no difference exists between square brackets
and braces.

8. 1In the interest of being clear rather than rigorous, such
obvious definitions as

Lletter) ::={A...Z

are used. Furthermore, such obvious nonterminals as { any ASCII
character are not defined.

Al—2

1.2

Command Lines

The following rules define command lines.

{terminator>
¢command lined)::=]¢ordinary commands)[%blank)% ;Lterminatorg]
¢comment >

¢terminator>::=¢blank»?] ¢start command>
0 {css call>
ccarriage returny

0

Zcommentd::=*¢{any ascii character other than carriage return)%

(ordinary commands)::=(ordinary command>[;blank>n;<ordinary command%}g

{magnetic tape/cassette command>
¢general system command?
£ordinary command)::=<b1ank>g {task-related command >
¢device and file control command >
<css command ?

Al—3

1.3 Task~Related Commands

{start command>::= §2ART<blank)[gaddress{][l<args to program}]
Zargs to program>::={any ASCII character other than carriage return?S
Zoptions command >
£load command >
{task-related command>::=\ ¢expand command?
{pause command)
{continue command >
{cancel command 7
{options command »: := OPTIONS<blank)< task option)[?&task optioﬁag
HALF
FuLL
{task option7::= |TT

¢load command)::= LOADLblank7<£fd 7E {impure bias)E(pure bias 7]]
/impure bias)::=<«addressy

{pure bias?::=¢address

<expand command::= EXPAND(blank¥4{decimal number)

(pause commandy::= PAUSE

{continue command)::= CONTINUE

<cancel command?::= CANCEL

Al—4

1.4 General System Commands

{volume command y
(reset command?>
(set log command)>
Zgeneral system command?::= \/display command.
¢(bias command’>
¢examine command >
cmodify command)

{volume command)::= VOLUMEiblank? «volnYy

{reset command)::= SET

(set log commandy::= SET¢blankyLOG<blanks|<fa>[, copy]]

«(display command)::= DISPLAY{blankY{display option)‘?ifdf}
LU

{display optiony::=)DEVICES
PARAMETERS
FILES,<voln7: %filenamé? .S}exf?

{bias command?::= BIAS4blank?» <address >
(examine command ?::= EXAMINE&blank74address?,<decimal number -
(modify command>::= ggpIFY(blank><address7,<data7{?dataijg

{ datay::=¢hexadecimal digit)g

1.5 Magnetic Tape and Cassette Commands

WFILE
FFILE
BFILE
FRECORD
:= | BRECORD | ¢(blank><dm >
REWIND
RW

<magnetic tape/cassette command?

Al—5

1.6 Device and File Control Commands

(allocate command?
{assign command?>
(close command >
(delete command?

¢device and file control command>::={(rename command?
{reprotect command?
(initialize command’
mark command

CHAINED, ¢lrecl|/<sizey ‘}
{allocate command>::=§£;OCATELblankxfd4:{§§NTIGUOUS,asize7 }tkeysaj
¢lrecl): := {decimal number>
{sizey::= {decimal number >
keysy::= (hexadecimal digit)é

{assign command }: := §§$IGN(blank7(lu?,<fd7€t<access—privi]Eﬁkeyséj]

{access-priv)::=

ﬂﬂggmm
EsJJ&%

4
0
Lclose commandy::= QEQSE<blank><lu7[1(b1ank)8(lu£]g

{keys)y::= {hexadecimal digit)

(delete commandy::= DELETE{blank?<{fd?>

{rename command’::= RENAME{blank7{0ld-£fd7,{new-£fd 7
{0ld-£fd7::=¢fd ;

<new-£f4ar::={(fdz

{reprotect command’::= 5§£30TECT(blank7<fd7,<keys7

{initialize command7::= ZNITIALIZE(blank)<dm7,<voln7{2;&EA§][;§AV§]

{mark command>::= p_d_A;RK(blank><dm7,{(_)_I_I_
OFF

Al—6

1.7 CSS Commands
(css call>::= (fd)Eparameter list7]
{parameter list?::= (parameter> E/;parameter;“:;

(parameter >: :=(blank'>t)1 ¢any ASCII character other than carriage ret.):)1
{set code command ?
(conditional command 3y
{file creation command >
{css command ?: :={{job control command y
{listing control command }
{exit command 7

{clear commandy
(set code command ::= SET CODE, <decimal number?>

Esxe ¢blank)(£dy
STIFNX

{conditional command’::= SIFNG

SIFNL _
‘T?NULL'}(blank>g<any ASCII char.)E}
L

SIFNNUL
SENDC

{file creation command>::=\{BUILD Kblank?4fd>
SBUILD
ENDB

SENDB

S$SSKIP

{job control command)::=)$JOB
STERMJOB

{(listing control commandy::= ($NOCOPY
SCOPY

{exit commandy::= S$EXIT

(clear command)::= $CLEAR

1.8 Miscellaneous Nonterminals
(address>: := {hexadecimal digit> g
{lu::= {decimal number less than 255>

(voln»::= &letter>\(detter>)3
«digity (0

{dm::= (letter)(¢(lettery)3
«digity (O
dmy
{F@y::= Evolm] {filename > E<ext>_]

{(filenameV::= (letterAdettery/?7
«digity 0

(ext 7: :=){letter) 3
digityf o

{lettery::= {A...z}
¢digit7::= {0. . 9}

¢hexadecimal digity: :=§<digit7}
A,..F

Al—8

(to be supplied)

2. PROGRAM COMMANDS

2.1 Supervisor Call

2.2 SVC 1
2.3 SvVC 2
2.4 svC 3
2.5 SvC 5
2.6 SvC 7

3. SYSTEM MESSAGES

4. ERROR MESSAGES

Al1—9/A1—10

APPENDIX 2
0OS COMPATIBILITY
AND HALFWORD MODE
The question of software compatibility between 0S/32-ST and other
INTERDATA operating systems is multifaceted and must be discussed
separately with regard to four different areas. These areas

of compatibility are:

* SVC Compatibility
* File Compatibility
* Operator Command Compatibility

* Memory Management €ompatibility

Section 1 below examines the compatibility issue in general. Sec-

tion 2 is directed specifically towards 0S/32-ST and explains exe-

cuting programs under 0S/32-ST in the halfword mode.

1. COMPATIBILITY AREAS

1.1 SVC Compatibility

0S/32-ST is capable of executing programs in either halfword or
fullword@ mode. Because of 0S/32-ST's dual nature)the subject of
SVC Compatibility must consider the system to be two systems; a

halfword 0S/32-ST and a fullword 0S/32-ST.

Table A2-1 shows the extent of SVC compatibility between BOSS, DOS,

RTEX, 0S/16-MT, RTOS, 0S/32-ST (fullword), and 0S/32-ST (halfword) .
A2—1

An entry in the table of Y refers to a Function supported in a
fully compatible manner among all operating systems. An entry of
N refers to a function not supported by that operating system.
Some functions are supported in a slightly incompatible manner and

these entries are so noted.

All SVC parameter blocks in the halfword mode under 0S/32 are exact-
ly compatible with the form of the same parameter block in all other
operating systems. However, some SVC parameter blocks in 0S/32-ST
fullword mode due to the differing lengths of address constants

and halfword/fullword boundary requirements, are not the same as

in halfword mode 0S/32-ST. Programmers may write parameter blocks
in CAL common mode that Can be translated appropriately into the
fullword or halfword mode. The following restrictions must be ob-

served:

* Every parameter block must be preceded by an ALIGN ADC statement
* All addresses within parameter blocks must be specified with

the A(x) construction or the typeless construction.
* All halfwords within parameter blocks must be specified with

the H'x' construction; fullwords must be specified with the

F'x' or Y'x' construction.

Various SVC parameter blocks are illustrated in Table A2-2 along
with the CAL common mode code that will produce these blocks for
the appropriate target machine. The parameter blocks for the SVCs

supported under 0S/32-ST in halfword mode are given.

A2—2

1.2 File Compatibility

File compatibility must be approached from two aspects, volume
portability and program compatibility. File compatibility is

illustrated in Table A2-3.

The BOSS/RTOS file structure is program compatible with the 0S/32
ontiguous file. The DOS Direct-Access file structure is also com-
patible with ontiguous files. The Chained file is nearly, but

not precisely, compatible with BOSS and RTOS, and is very nearly
compatible with the DOS non-direct-access file. The primary dif-
ferences are that the Chained file has a fixed logical record length
(as in DOS), does not support filemarK operations, and is fully

open-ended.

There is a more overriding question however. When a file is built
under one operating system, can it be read under another? This is
the question of volume portability. The portability matrix for

INTERDATA operating systems is also illustrated in Table A2-3.

1.3 Operator Command Compatibility

In general, the structure of operator commands is not compatible
between all INTERDATA operating systems. - In some cases this is
necessary because of the differences in structure and capabilities
of the operating systems themselves. For example, most commands
in RTOS and 0S/l16-MT contain references to task ID's whereas those
of BOSS, DOS, and 0S/32 ST do not. References to physical devices

are made by device address in BOSS and RTOS, by Logical Unit in

A2—3

DOS, and by file name or device mnemonic in 0S/32.
Table A2-4 shows operator command syntax for commands which are
functionally similar (note each OS may have other commands not shown

in the table).

1.4 Memory Management Compatibility

The question of memory management is best investigated by examining
the table of constants returned to the calling task via SVC 2, code
5,Fetch Pointers. Table A2-5 shows this relationship. The con-
stants table returned in 0S/32-ST fullword mode contains fullword
address entries; in the other operating systems the entries are half-

word.

A2—4

2. HALFWORD MODE

2.1 Hardware Architecture Considerations

The hardware architectures of the 16-bit and 32-bit machines differ

as follows:

16-bit vs. 32-bit general registers

Single vs. double set of general registers
Altered lower memory allocation scheme
Altered channel control blocks

Static vs. volatile display panel status

Fullword allignment of data required.

Because of machine differences related to I/O and interrupts, com-—
patibility is restricted to user programs. User programs must ad-

here to the following restrictions:

1. Do not use privileged instructions.
2. Do not reference memory beyond the program itself. This
includes references to system data structures.

3. Use only legal SVC calls defined for the OS.

2.2 Program Conversion

To convert an 0S/16 system to an 0S/32 environment, it is necessary

to:

A2—5

3.

4.

Recode any special drivers used in the system.
Modify any programs in the system that use privileged
instructions or illegal SVC calls (see Section 1.1 for
SVC compatibility).
Preceed all SVC parameter blocks with ALIGH ADC statements
and use address and fullword constructions as indicated
in Section 1.1.

Assemble the program(s) using CAL with a target of 7/32.

2.3 Program Compatibility

Compatibility of User tasks can be achieved in two ways.

2.3.1 HW Mode

The Halfword Mode capability of the 7/32 Processor is
supported under 0S/32-ST. This mode is appropriate
for 16-Bit tasks that are compatible with the features
listed in Section 1. 1In this mode no Fullword Mode
features of the 0S can be used, and the task may not
function on future INTERDATA Processors which do not

support the Halfword Mode.

CAL Common

The CAL assembler provides a Common Mode which enables a
source program to be assembled for either the 16-bit or 32-
bit machines. This approach to compatibility involves ad-
hering to the rules for CAL Common Mode plus the use of
ALIGN ADC preceding all SVC parameter blocks. The CAL ap-

proach is appropriate for:

A2—6

a. Expanding the scope or range of an 0S/16 task to util-
ize more than 16 address bits.
b. Achieving compatibility for tasks on machines that may

not have the halfword mode.

The most direct and straight-forward approach for guaranteeing

program compatibility is:

a. Write all programs to be user programs (i.e., use no
priviledged instructions) in CAL common mode.

b. Do not use special device drivers.

c. Follow the SVC rules in Section 1.1.

2.4 0S/32-ST SYSGEN Considerations

When the user configures a system using the configuration utility
program (CUP), halfword mode support must be specified. Failure
to do so will leave halfword mode support out, allowing only full-

word mode programs.,

2.5 Loading and Executing Halfword Mode Programs

Halfword mode programs are capable of addressing only 64KB of memo-
ry (e.g., from address X'0' to X'FFFF'). Prior to loading the pro-
gram, the system must be placed in halfword mode. This is done

with the OPTIONS operator command specifying halfword mode. Once

the system is in halfword mode, the ensuing LOAD commands activate
the halfword loader. The loader will issue an error message if the
program it is loading goes beyond the 64KB memory limit. The START

command may now be used to start the program.

2.6 Subtle Differences

0S/32 conventions force a little different treatment of various

features that are otherwise compatible in Halfword Mode.

2.6.1 SVC (Test and Set)

This compatible function on Contiguous direct access files returns
a Condition Code of either zero or X'F' to the SVC 1 call. If the
first halfword in the retrieved sector is neither zero or X'FFFF',
a Condition Code of zero is returned by 0S/32, but RTOS leaves the

Condition Code unchanged.

2.6.2 SVC 2, Code 4 (Set Status)

0S/32 provides only one Arithmetic Fault interrupt; consequently,
the Fixed Point and Floating Point options that are available on
16-bit architectures are combined in 0S/32. That is, Options X'14'

and X'04' both Enable Arithmetic Fault in halfword mode.

2.6.3 SVC 5 (Fetch Overlay)

The overlay name field in the SVC 5 parameter block is ignored in
0S/32 ST. However, under 0S/32 ST, the logical unit from which
the overlay is loaded may be assigned to a named direct access

file.

A2—8

6—CV

TABLE A2-1 .VC COMPATIBILITY

1. SVC 1 I/0 supported via IOSET2 module.
2. Additional options provided.
- 3. S8SVC is executed compatibly, but the constant table differs as described in the
following discussion on Memory Allocation.
4. DOS SVC 6 totally incompatible; RTEX upward compatible to 0S/16-MT; 0S/16-MT
interprets the RTOS proceed options and RTOS load option somewhat differently

due to its being a memory only system.

os
sSvC (HALF) (FULL)
- NUMBER BOSS DOS RTEX 0S/16MT RTOS | 0S/328T| 0S/32ST
1 Y Y Note 1 X, R Y Y
| 2 [1 Code! Y Y N Y _Note 2 Y Y
2 Y Y _N Y X Y Y
3 Y Y N Y Y Y Y
4 Y 4 N s Y Y ... Note 2
. 5 Note 3 Note 3 N Note 3 Note 3 Note 3 _ Note 3
‘6 Y Y N Y Y Y Note 2
i 7 Y Y Y Y Y Y __Note 2
- 8 N N Y Y Y, Note 2| N N
-9 N N Y Y Y N N
10 N N N Y Y N N
11 N N N Y Y N N
12 N N Y Y Y N N
13 N N N N Y N N
14 N N N N Y N N
15 N N N N N N Y
16 N N_ N N N N Y
17 N N _N N N N Y
- 18 N N N N N N Y
.19 N N N N N N Y
20 N N N N N N Y
- 21 N N N N N N Y
3 Y Y Note 2 Y Y Y Note 2
4 N Y N , N N N N
5 N Y N Note 2 Note 2 Y Note 2
6 N Note 4 Note 4 Note 4 Note 4 N N
1 N N N N N N Y
8 N N N N Y N N
(10 N N Y Y Y,Note 2 N N
15 N N .Y N N N N
- NOTES:

SvC

svC 1
1,/0

SVC 2 CODE 1
Pause

SVC 2 CODE 2
Get Storage

SVC 2 CODE 3
Release
Storage

SVC 2 CODE 4
Set Status

SVC 2 CODE 5
Fetch Pointer

SVC 2 CODE 6
Unpack

Table A2-2

10

0
2

[\S W)

PARAMETER BLOCK COMPATIBILITY

(Halfword Mode 0S/32ST)

Halfword Mode

0 7 8 15

FC LU
STATUS PA
START ADDRESS
END ADDRESS
RANDOM ADRS.
Generated but
not used

[00 | 01 |
00 02

[REGISTER
¥ BYTES ‘
00 | 03
OF BYTES
00 0
NEW PSW STATUS
00 05
REGISTER
OPT | 06
DEST ADDRESS

A2—10

AENO

N O N O b NO

NN O

Fullword Mode

0 7 8 15
FC LU
STATUS PA

START ADDRESS

"END ADDRESS

 RANDOM ADRS. |

SIZE OF LAST -
. XFER

[00 [0l |
00 02
REGISTER
OF BYTES
00 03

~Iill
OF BYTES
OPT | 04

NEW PSW STATUS

00 | 05
REGISTER #
 OPT | 06
fill
ADDRESS

CAL Code

ALIGN ADC
DB FC,LU

DC H'O'

DC A (START)
DC A (END)

DC A (RANDOM)
DAS 1

ALIGN ADC
DB 0,1

ALIGN ADC
DB 0,2

DC H'REG!'
DC A(SIZE)

ALIGN ADC
DB 0,3

DC H'REG'
DC A(SIZE)

ALIGN ADC
DB OPT,4
DC X'xxxx'

ALIGN ADC
DB 0,5
DC H'REG'

ALIGN ADC
DB OPT,6

DC A (DEST)

SVC

SVC 2 CODE 7
LOG MESSAGE

SvVC 5
FETCH OVERLAY

0
2
4

0
2

PARAMETER BLOCK TABLE (Con't)

Halfword Mode

PT 07]
ENGTH
EXT

OVER-
LAY

4 INAME

6
8

00 OPT

LOGICAL UNIT

A2—11

AN O

Fullword Mode

OVER-
LAY
INAME

fill

00 oP T

OGICAL UNIT

CAL Code

ALIGN ADC

DB OPT,7

DC H'LENGTH'
DC C'TEXT'

OR

ALIGN ADC

DB OPT,7

DC H'LENGTH'
DC A (ADDRESS)

ALIGN ADC
pcclovrynm /
IFZ ADC-2
ORG #-2

ENDC

DB 0,O0PT

DC H'LU'

TABLE A2-3. FILE COMPATIBILITY

File Structure

BOSS DOS RTOS OS/;QMT 0S/32ST
Contiguous Y Y Y Y Y
N N N N Y
Chained
Volume Portability
Read Under
Written Under BOSS DOS RTOS 0S/16MT 0S/32S8T
BOSS Yes No Note 1 Note 1 No
DOS Note 2 Yes Note 2 Note 2 No
RTOS Yes No Yes Yes No
0S/16MT Yes No, Yes Yes No
0S/32ST Note 3 No No No Yes

Note 1: A file written under BOSS can be read under RTOS or 0S/16MT
only if it is allocated on cylinder boundaries.

Note 2: A DOS file can be read under BOSS or RTOS only if it contains
no overflow cylinders and if the user can find out where on
the disc it is allocated.

Note 3: An 0S/32 file can be read under BOSS only if it is a Contiguous
file and if the user can find out where on the disc it is
allocated. (Such a file could also be read under RTOS if it
happened to begin on a cylinder boundary; however, such an
assumption strains the limits of credibility).

A2—12

TABLE A2-4. OPERATOR COMMAND SYNTAX COMPATIBILITY

RTOS

FUNCTION BOSS DOS RTEX 05/16-MT 0S/32-ST
Allocate file ALxxxx,5555,eeee AL NNNNNN, lupa,ccc Note t ALLO fnpa,ssss,eeee, wprp AL fd,ftsize keys
Activate file AC NNNNNN, lupa AS lu,fd,ap keys
Initialize Pack SA pa PA pp,A | dm,voln,options
Set file Attributes AT NNNNNN, xxxx
Delete file DE NNNNNN Note 1 RELE fnpa DE fd
Close CL DL lu
List file LE pa LI tu [pal LIST pa DI f,voln
Run-program from file RU NNNNNN [,pal
Assign logical unit AS lu,pa AS lupal,lupa....] ASSI TASKID,lu,pa ASSI TASKID, lu,pal,...lu,pa) AS 1u,fd,ap,keys
‘Set bias Bl xxxx “BIAS xxxx
Load a program (task) LO pa l LO iu LOAD TASKID,pa L fd,i,p
Start a program (task) ST [xxxx] STAR TASKID STAR TASKID,pa, TADR hhmmss ST [xxxx]
Halt a program (task) HA @ | HALT TASKID P
Cancel a task CANC TASKID
Delete a task | DELE TASKID
Continue a program (task) CcO CONT TASKID co
Connect a program (task) CONN TASKID pa,parm[,...pa,parm]
Set-task options OPTI bbbb bbbb bbbb bbbb O options
Display logical unit Ly DISP TASKID DI 1
Pass message to task TELL TASKID, message
Set task’s priority PRIO TASKID,xx
Set timeout count I I TOUT TASKID 0xxx,xxxx
| Set date DATE mm/dd/yy
Set time TIME hh:mm:ss I TIME hhmmss
Read date RDDA
Read time ROTI
Open memory cell OP xxxx CPEN xxxx|,m] l OPEN xxxx |,xxxx...] EX xxxx,n
Replace memory contents RE xxxx REPL xxxx,yyyy Lyyyy....] MO xxxX
Open preceding cell
Open succeeding cell
Print system map MAP
Protect system PROT
Set TSKCOM size TCOM xxxx
Backspace record BS pa BKSP pa BR fd
- Backspace file mark BF pa BF lu BSFM pa BF fd
Forward space record FS pa FRSP pa FR fd
Forward space file mark FF pa FF lu FRFM pa FF fd
Rewing device RW pa RW pa REW! pa REW fd or RW fd
Write file mark WF pa WF lu WTFM pa WF fd
Transfer command input TR lu
Copy file CP lu,lu,[dddd,A]
Position subfile PO pa,ivNNNNN PO NNNNNN, lu

A2—13

TABLE A2-5 MEMORY MANAGEMENT COMPATIBILITY

~0S (Half) (Full)

Pointer BOSS | DOS | RTEX | RTOS | 0S/16MT 0S/32ST 0S/32ST
CTOP Y Y N Notel| Note 1 Note 1 ,Notel
COMBOT Y Y N Y Y Y ,Note2 Y ,Note?2
UToP Y Y N Y Y Y Y
UBOT Y Y N Y Y Y,Note3 Y,Note3
LDBIAS Y Y N N N Y Y
XFRADR Y Y N N N Y Y

Note 1 CTOP is the last halfword of physical memory in BOSS and DOS.
It is top of programs allocated memory in RTOS, 0S/16-MT and
05/32-ST. Top of memory in 0S/32-ST is indicated by MTOP;
bottom of system file control blocks and buffers (below MTOP)
is indicated by FBOT.

Note 2 COMBOT is always set equal to CTOP in 0S/32-ST.

Note 3 UBOT is set to the bottom of the program being loaded (always
zero in RTOS), but in 0S/32-ST UBOT is always set to the top
of the operating system.

A2—-14

APPENDIX 3

GLOSSARY

Certain terms, which are used often in this document and which
must be understood by the reader in orxrder to gain a good under-

standing of the concepts presented are defined below.

ABSOLUTE - A term applied to an object module meaning that it
must be loaded into memory at a specific location which cannot

be altered at load time.

ACCESS METHOD - A well-defined technique for identifying,

retrieving and storing specific records in a file. The access
method is chosen at the time of a read or write call on the

file.

ACCESS PRIVILEGE - An attribute of a system resource which

defines a level of protection on that resource. - Resources may
be requested by a user for shared or exclusive access and
specific I/0 capabilities within that access. Examples of
access privileges are: shared read only (SRO), exclusive read,

shared write (ERSW).

ALLOCATION - The process of creating a file on a direct access

volume.

ASCII (American Standard Code for Information Interchange) - The

standard code used for information interchange among data proces-
sing communications systems. ASCII is a 7-bit code plus 1 bit

which may be used for parity check. INTERDATA software uses

A3—1

ASCII internally. The Assembler generates 7-bit ASCII with

the parity bit always set to zero. Synonyms: USASCII, ANSCII.

ASSEMBLER - An assembler translates programs written in a
symbolic machine language into a form which can be conven-
iently loaded into the system by a loader program. INTERDATA
provides Assembler programs which number convert assembly

language programs into binary object format.

ASSIGNMENT - The process of binding a specific physical device

or direct access file to a Logical Unit.

ATTRIBUTES - The possible physical/logical functions and

characteristics of any given device or direct access file.

BLOCK (OR PHYSICAL BLOCK) - A physical unit of data accessed

by a single input/output operation.

BUFFER - An area of main memory used for the transfer of blocks
to and from external storage. A buffer may be internal to the
user program, or external to it, depending on the buffer manage-

ment method.

BULK STORAGE - Storage of large-volume capacity used to supple-

ment the Processor's internal memory. Discs (direct access

devices) and magnetic tapes are used for bulk storage.

COMPILER - A compiler accepts programs expressed in a given
language; i.e., the argument language, and produces corresponding
programs expressed in a second language; i.e., the function lan-
guage. For example, FORTRAN V produces as its function language

the INTERDATA assembly language.

A3—2

DIRECT ACCESS DEVICE - Any bulk storage medium that can be

accessed in a random manner. Under 0S/32 the smallest

addressable unit is a sector.

FILE - A collection of related records, treated as a unit and

organized for reference in a well-defined manner.

FILE CONTROL BLOCK (FCB) - A control block dynamically allo-

cated as required whenever a direct-access file is assigned.
FCB's contain information required for the processing of a

file.

FILE DESCRIPTOR - An ASCII string of characters which abide

by certain syntactial rules and shows the location of direct-

access files or now direct-access devices.

FILE STRUCTURE - The physical means whereby a file is organized

on a volume for reference by a buffer management method and
access method. The file structure of any given file is fixed

at the time the file is initially allocated.

FULLWORD - A collection of data, 32 bits (four bytes) in length,

processed as a unit.

HALFWORD - A collection of data, 16 bits (two bytes) in length,

processed as a unit.

LOAD MODULE - A module capable of being loaded into an operating

system environment, and executed as a task.

OBJECT MODULE - The output of a language processor.

A3—3

PRIVILEGED INSTRUCTIONS - Instructions that relate to I/0

change the state of the Processor.

PROCESSOR STATUS - WORD (PSW) - The 64 bit PSW defines the

state of the Processor at any given time.

PROGRAM - A sequence of statements possessing some implicit
or explicit order of execution, and specifying a computer-

oriented representation of a process.

PROTECTION KEYS - A set of values associated with a device file

which must be supplied by users in order to obtain access to

that device or file.

REAL-TIME - Capability of performing computations related to a
physical process during the actual time that the process trans-
pires. This is generally required where the results of the

computation are to be used in guiding the physical process.

RECORD (OR LOGICAL RECORD) - A collection of data items treated

logically as a unit.

RELOCATABLE - Term applied to an object module meaning that it

may be loaded into memory at any location.

SECTOR - In general, the smallest segment of a direct access
file which may be randomly addressed, specifically in 0S/32, a

256-byte unit of storage.

SYSGEN - (System Generation) The building of a system from a

library of source or object modules.

A3—4

SYSTEM QUEUE - A feature of the Processor used by the operating

system to aid in scheduling.

SOURCE MODULE - A mnemonic or easy to read representation of

a program to be input to a language processor.

SUPERVISORY CALL (SVC) - The SVC Instruction is the means

whereby the user program is enabled to communicate with the

Operating System and to use the facilities thereof.

TASK - A general term for any program using an Operating System,
as distinct from a system program which is considered part of

the Operating System itself.

TASK CONTROL BLOCK - The interface between tasks and system

code is provided in an internal System Table called the Task

Control Block.

TASK OPTIONS - These variables, which the user may select,

affect the mode of operation of his task.

TASK STATUS - The state of a task during its execution (e.g.,

Dormant) .

VOLUME - A physical unit of external storage media, for example

a disc cartridge or pack.

8-BIT LOADER - A loader which reads 8-bit bytes from some

binary device such as a paper tape reader and stores the bytes

directly into memory.

A3—5

CUT ALONG LINE

PUBLICATION COMMENT FORM

Please use this postage-paid form to make any comments, suggestions,
criticisms, etc. concerning this publication.

From Date
Title Publication Title
Company Publication Number
Address
Foo FoLp

Check the appropriate item.

Error (Page No.——, Drawing No. —_______)
Addition (Page No._——_, Drawing No.
Other (Page No. » Drawing No. —_____)

Explanation:

FOLD FOLD

Fold and Staple
No postage necessary if mailed in U, S, A.

STAPLE STAPLE

FOLD o D
|
FIRST CLASS |
PERMIT No. 22 i
OCEANPORT , NJ.| |
|
|
v]
BUSINESS REPLY MAIL :
NO POSTAGE NECESSARY IF MAILED INU. S. A. !
. !
POSTAGE WILL BE PAID BY: S :
]
o |
([
2 Crescent Place, Oceanport, New Jersey 07757 ——— :
sassmmssssm——n |
- I
TECH PUBLICATIONS DEPT. MS15 :
o e e o+ e e e . o o - - ——— - = —— = — = ——— = — e— = = m e o S e e e e e _.'
FOLD FOLD

STAPLE STAPLE

e o e o G e e o e e = e - —— —

	0001
	0002
	001
	002
	003
	004
	005
	006
	1-01
	1-02
	1-03
	1-04
	1-05
	1-06
	1-07
	1-08
	1-09
	1-10
	1-11
	1-12
	1-13
	1-14
	1-15
	1-16
	1-17
	1-18
	1-19
	1-20
	1-21
	1-22
	1-23
	1-24
	1-25
	1-26
	1-27
	1-28
	1-29
	1-30
	2-01
	2-02
	2-03
	2-04
	2-05
	2-06
	2-07
	2-08
	2-09
	2-10
	2-11
	2-12
	2-13
	2-14
	2-15
	2-16
	2-17
	2-18
	2-19
	2-20
	2-21
	2-22
	2-23
	2-24
	2-25
	2-26
	2-27
	2-28
	2-29
	2-30
	2-31
	2-32
	2-33
	2-34
	2-35
	2-36
	2-37
	2-38
	2-39
	2-40
	2-41
	2-42
	2-43
	2-44
	2-45
	2-46
	2-47
	2-48
	2-49
	2-50
	2-51
	2-52
	2-53
	2-54
	2-55
	2-56
	3-01
	3-02
	3-03
	3-04
	3-05
	3-06
	3-07
	3-08
	3-09
	3-10
	3-11
	3-12
	3-13
	3-14
	3-15
	3-16
	3-17
	3-18
	3-19
	3-20
	3-21
	3-22
	3-23
	3-24
	3-25
	3-26
	3-27
	3-28
	3-29
	3-30
	3-31
	3-32
	3-33
	3-34
	3-35
	3-36
	3-37
	3-38
	3-39
	3-40
	3-41
	3-42
	3-43
	3-44
	3-45
	3-46
	3-47
	3-48
	3-49
	4-01
	4-02
	4-03
	4-04
	4-05
	4-06
	4-07
	4-08
	4-09
	4-10
	4-11
	4-12
	4-13
	4-14
	4-15
	4-16
	4-17
	4-18
	4-19
	4-20
	4-21
	4-22
	4-23
	4-24
	4-25
	A1-01
	A1-02
	A1-03
	A1-04
	A1-05
	A1-06
	A1-07
	A1-08
	A1-09
	A2-01
	A2-02
	A2-03
	A2-04
	A2-05
	A2-06
	A2-07
	A2-08
	A2-09
	A2-10
	A2-11
	A2-12
	A2-13
	A2-14
	A3-01
	A3-02
	A3-03
	A3-04
	A3-05
	replyA
	replyB

