Publication Number B29-381

0S/32-ST
PROGRAM LOGIC MANUAL
VOLUME 1

The information contained in this manual
is subject to design change and product
improvement.

THIS MANUAL CONTAINS PROPRIETARY INFORMATION AND IS SUPPLIED BY
INTERDATA FOR THE SOLE PURPOSE OF USING AND MAINTAINING INTERDATA
SUPPLIED EQUIPMENT AND SHALL NOT BE USED FOR ANY OTHER PURPOSE UNLESS
SPECIFICALLY AUTHORIZED IN WRITING.

o
IN"TERIDATA

Subsidiary of PERKIN-ELMER
Oceanport,New Jersey 07757, USA.

© INTERDATA INC., 1974
All Rights Reserved
Printed In U.S.A.
October 1974

CHAPTER

CHAPTER

CHAPTER

1

2

2.1
2.2
2.2.1
2.2.2
2.2.3
2.2.4
2.2.5
2.2.6
2.3
2.3.1
2.3.2
2.3.3
2.3.4
2.3.5
2.3.6
2.3.7
2.4
2.4.1
2.4.2
2.4.3
2.4.4
2.4.5
2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.5.5
2.6

Wwwwww
L]

e

= wno -

0S/32 ST
PROGRAM LOGIC MANUAL

VOLUME I

TABLE OF CONTENTS

INTRODUCTION .« ¢ ¢ o ¢ o « o o o o o o =

SYSTEM STRUCTURE . . . &+ ¢ « o« o « « o &
INTRODUCTION . ¢ o« o o o o o o o o o o o
EXECUTIVE . . ¢ ¢ ¢« &+ o o o o o o o« o @
Task lManagement « .« + + o « .
Executive Services

Internal Interrupts
Event Service Handler
Crash Handler ¢« ¢ ¢« « & « « o«
System Journal+ + ¢« + < .

I/0 SYSTEM . v v v v v v o o o o o o o &
Device/Volume Mnemonic Table (DMT/VMT) .
Logical Unit Table (LTAB) « « .
Device Control Block (DCB)
Channel Control Block (CCB) and

Interrupt Service Pointer Table (ISPTAB)
SVC 1 ProCessSOr . v v o o o o o o o o =

.

Drivers e s s e e e e & e+ o s e = = e
Termination Event Coordlnatlon Table (EVT)
COMMAND PROCESSOR . . v ¢ o ¢ o o o «
Command Processing e e e
Command Substitution System (CSS) o . .
Loader e e e e e e e e e

Direct Access Support e e e e e e e e
Console Support« . « « o« . .
FILE MANAGEMENT « .« ¢« « « « .
SVC 7 Processor . . . « « o o o o o« o =
Bit Map and Directory Handler
Contiguous File Access Method
Chain File Access Method
File/Volume Utility Routines
FLOATING POINT TRAPS . . ¢ ¢ + « « « + =«

SYSTEM CONVENTIONS . . ¢ « « o o o o o o«
SYSTEM STATES o . e e e s e e e s e
User Task State (UT) e e e e e e e e e
Executive Task State (ET) e e e e e e .
Reentrant System State (RS)
Reentrant System State,

Alternate Save Area (RSA) e e e e e .
Event Service State (ES)

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

-
|
=

NN NN
i [|
DO ISR -

|
it N>R o]

ORI NN
|

WWwwww
1
el k]

w w
|
NN

CHAPTER

i1

w W
.
~ O

=

[s0}

N

.

WWWwwwwwwwww

. . « o

UTOUT UL BB W

. « o e .
W N

.

L A L I~ St =

el

e A T L S~ S e o
e s o e e+ @ S
NN NDNNNDNNNFHEH
. e . P

DWW whNH

.

NSO Wi -

.
.

.
.

.
(62 I A A A

[T e S Y S L A R

. . . . « e

WWWwwWwWwwhoNDNDNDDNDNDDNDNDN
.

. . . .
. .

. o .
Ul LN =

Non-reentrant System State (NS)
Non-reentrant System State, User
Register Set (NSU)
Interrupt Service State (IS)
SVC CONVENTIONS . . . ¢ ¢ v o o« o o « .
INTERNAL INTERRUPT CONVENTIONS . e e .
SUBROUTINE CONVENTIONS e e e e e e e s
RS, RSA and NSU Subroutines
NS Subroutines ¢ . . .+ . .
Calling Sequences e e e e e e e e e e
Exits e e . e e e e+ 4 e
GENERAL NAMING CONVFNTIONS e e e e e
Data Structures < . .
Bits . ¢ . ¢ . . 0 e e e e e e e e e

EXECUTIVE DESCRIPTION . . . v ¢ « « o .
TASK MANAGEMENT ¢ ¢ o « « o o .
Task Control . . . e e e e e e .
Task Management Fac111t1es e e e e e .
Dispatch Current Task (TMDISP, TMRDISP)
Suspend the Current Task (TMSTOP) . . .
Chain (TMCHN) « ¢ « o o o o« o
Unchain (TMUCHN) e e e e e e e e e .
Enter System State (TMRSIN TMRSNIN,
TMRSAIN) e e e . .
Exit From System State (TMRSOUT
TMRSNOUT, TMRSAOUT)

Dispatch From Top of EVT Queue (EVDISP)
Remove Wait (TMREMW) e e e e e e e e
Start User Task (TMSTART) . . « .« .« . .
Task States . . . ¢« ¢ ¢ ¢ ¢« « o « + « .
EVENT SERVICE HANDLER
Event Coordination Table
System Queue ¢ ¢ ¢ ¢ o« . .
Coordination« ¢ « ¢« ¢ « < < .
Connection . . ¢« +v & ¢ ¢ ¢ o e e« .

QUEUINT . « v v o + « 4« 4 4 e e e . .
Agsertion

Event Service Facilities
Connect (EVCON, EVQCON)
Disconnect (EVDIS)«
Release (EVREL) e e e e e .
System Queue Service (SQS) e e e e e
Dispatch From EVT (EVTDISP)
Return From Event (EVRTE)
Propagation (EVPROP)
Dispatch Priority « .+ « « .« .
SVC HANDLER e e e .
First Level Interrupt Handler (FLIH)
SVC 1 Executor (SvCl)
SVC 1 Termination (IODONE) e e e .

SVC 2 Executors (SVC2 and SVC2.xx)

SVC 3 Executor (SVC3) « « <« . .

This information s proprietary and s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

w
\
[\

WwWwWwwwwwwwwvww
[
oottt U W W

O i A A S
[|
wrohhNdND -

S
I
w

| N R IR T I I

R T A S A A A T R
| N U O S A S N A R
HFHEFFOUWOWOVWOVOIIIUTUMULTOUTUMEAS S WWW
O

]
—
NN

4-12
4-13
4-14
4-14

SVC 5 Executor (€SVC5) +. « +« « « . 4-15
ADCHK . . . e e s s e e s e e e e e . 4-15
SYSTEM JOURNAL c e e e e e e e e e e e 4-16
EXECUTIVE MESSAGES e e e e e e e e e e 4-16
CRASH HANDLER e e e e e e e 4-17
INTERNAL INTERRUPT HANDLERS e e e e e e e 4-17

¢
.
~N o

L~ S ST T~ g
.
O NNNNNJAO UL W W

7.1 Machine Malfunction Handler (MMH) 4-17
.7.2 Illegal Instruction Handler (IIH) 4-18
.7.3 Memory Fault Handler (MFH) 4-19
.7.4 Arithmetic Fault Handler (AFH) e e « o« o 4-19
. SYSTEM INITIALIZATION . . ¢ v ¢ « o o o« . 4-19

CHAPTER 5 THE COMMAND PROCESSOR . . ¢ ¢ ¢ « o o « = 5-1
5.1 INTRODUCTION . ¢ &« & o« s » =« . 5-1
5.2 COMMAND PROCESSOR INITIALIZATION (COMMAND) 5-1
5.3 COMMAND INPUT/PARSING (COMMANDR) e e e+ 5-1
5.3.1 Command Prompts« « « « « « « . « . 5-1
5.3.2 Command Parsing . . . e e « + + « & 5b=2
5.4 COMMAND ERROR HANDLING (CMDERROR) e e e s 5-2
5.5 COMMANDS e e e e e e e e e e e e e 5-3
5.5.1 Task Related Commands e e « « + « « e« <« « b5b=3
5.5.2 Device/File Commands . . . « « « « « « o 5=3
5.5.3 General Commands . . e + o « « « o« 5-5
5.6 COMMAND SUBSTITUTION SYSTEM (Css) 5-6
5.6.1 Calling CSS (CSSTEST) « « « « « b5-6
5.6.2 Preprocessor/Expansion (PREPRO) .« « « « . b5-6
5.6.3 Additional Commands . . e+ o« « . 5=7
5.6.4 Building CSS Files (BUILD, $BUILD) . e e 5-8
5.7 LOADER . . . e e e e e & e e e . 5-8
5.7.1 Common Loader (LOAD) e e e e e « e o « <« 5=9
5.7.2 Fullword Loader (LOADFULL) e e « « « « . 5=9
5.7.3 Halfword Loader (LOADHALF) e « + « « « « 5=-9
5.7.4 Overlay Loads (LOADOVLY) 5=9
5.7.5 Load Errors (LOADFAIL) . . « « « « « « « 5=9
5.8 CONSOLE HANDLING . .« & ¢ ¢ « o o o o o = 5-9
5.9 THE BREAK KEY « ¢« ¢ ¢ o o o o o & 5-10

CHAPTER 6 FILE MANAGEMENT SYSTEM« + « = 6-1
6.1 FILE HANDLER 6-1
6.2 VOLUME ORGANIZATION AND INITIALIZATION . 6-1
6.3 DIRECTORY MANAGEMENT. e e e e 6-2
6.3.1 Directory Entry Creation And Deletlon

(ALLOD, RELED) e« e . . . e . 6-4
6.3.2 Directory Access (DIRLOOK GETD, PUTD) . 6-4
6.4 BIT MAP MANAGEMENT e e e e e o e e s . 6-4
6.4.1 File Allocation and Deletlon

(GETSECTR, RELEB, GETB, PUTB) 6-4
6.5 SVC 7 SECOND LEVEL INTERRUPT HANDLER

(SVC7) &« v v v v v & & v « « « v « o « . 6-5
6.6 SVC 7 FUNCTION EXECUTORS e e e e e e . 6-5
6.6.1 Allocate (ALLO) e e e 6-5
6.6.2 Assign (OPEN, OPEN.DEV, OPEN. co OPEN. CH) 6~ 5
6.6.3 Change Access Pr1v1leges (cap) 6-6

This nformation is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not bu used for any other purpose unless specifically authorized «n writing.

iii

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

.
.

. . .
. .

. .
B EENEEN o) i e) le) I) Ne) o) le))
. . .

.
H \O 00~ O Ul i

[e)¥e)Ie) e) We) N e\ Ie) o) N o) I e)]
. . .

. .

NN NN NN
. . e e
(o) NG BTSN UV \S I (ST (O I

0O 00O OO 00 00 CO
e & e L I
U wN -

NoJiNeIaNe Ne Vo]
e e e e
W N

10.1
10.2

11

11.1
11.2
11.3
11.4

[Nl

Rename (RENAME) + « « « « « « .
Reprotect (REPRO) + ¢ v « « « + .
Close (CLOSE) . . .+ « ¢ v « o« o« « o« o« «
Delete (DELETE) . . « + « & « « o « &« « .
Checkpoint (CHECKPT)« . . .
Fetch Attributes (FETCH)
SVC 7 Integrity Checking Subroutlnes ..
SVC 1 INTERCEPT ROUTINES
Contiguous File Handler . . . e e e
Data Transfer Requests For Contlguous
Files (CONTIG)
Command Requests For Contlguous Flles

(cMD.CO). e e e e e e e e e e
Chain File Handler . . e e e e .
Chain File Handler Subroutlnes
Data Transfer Requests for Chain Flles
(CHAIN)
Command Requests for Chaln Flles (CMD CH)
Error Recovery For Chain Files

DRIVER DESCRIPTION+ ¢ + « « « « .

DRIVERS . . . e e e e e e e e e
DRIVER CONTROL BIOCKS e e e e e e e e &
Device Control Block (DCB) e e e e e e
Channel Control Block (CCB)

DRIVER INITIALIZATION ROUTINE (DIR) . . .
INTERRUPT SERVICE ROUTINES (ISR) . e e .
EVENT SERVICE ROUTINES (ESR) c e ¢ e e
HALT I/0 ROUTINE (TIMEOUT) e e e e e e

SYSTEM FLOW EXAMPLES
SYSTEM STARTUP+ .+ ¢« ¢ +« « « « .
I/0 REQUEST . . &+ ¢ & v & o o o o o o o
LOG MESSAGE REQUEST« . « « . . .
FETCH OVERLAY REQUEST
CHAIN FILE ACCESS . . + ¢ ¢ « o « o« o« « .

EXECUTIVE TASKS AND SYSTEM EXTENSIONS . .
INTRODUCTION . . .+ .« ¢ « « & . « « o« « .
EXECUTIVE TASKS « « .« « « « « .« .
SYSTEM EXTENSIONS e e e e e e e e
PATCHING . . . ¢ v o v o o o o o o« o o .

JOURNAL AND CRASH CODES
CRASH CODES+ ¢ ¢ ¢ ¢ « o« o o « .

JOURNAL CODES « « « « « .« .

DATA STRUCTURES+ « « o o « « « o« .
INTRODUCTION . . . o e e e e e e
CHANNEL CONTROL BLOCK (CCB) e e e e e e e

DEVICE CONTROL BLOCK (DCB) e e e e e .
DIRECTORY ENTRY (DIR)

AT OO
|
WWOWWOWWoNOII

@)
|
O

6-10
6-11
6-11

6-12

[e) W)
i

-
w N

NN NN NN NN

[[I I B |
HEWOYOoONDNDEH
= O

00 00 0O 0O 00 CO
A .
NSO

O VWO
I
N

10-~2

11-1
11-1
11-1
11-3
11-5

CHAPTER

11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
11.13
11.14

12

12.1
12.2
12.3
12.4
12.5

DEVICE MNEMONIC TABLE (DMT)
EVT LEAF (EVL) e e e e e s e e e
EVT NODE (EVN) . o e e e o o e
FILE CONTROL BLOCK (FCB) e e e e e
INITIAL VALUE TABLE (IVT)
SYSTEM POINTER TABLE (SPT) o e e e
TASK CONTROL BLOCK (TCB) e o e e .
VOLUME MNEMONIC TABLE (VMT)
VOLUME DESCRIPTOR (VD) . e e .

SYSTEM DATA STRUCTURE RELATIONSHIPS

MODULE DEFINITIONS . . . + « « « .
INTRODUCTION . . . « « o « o o « =
EXECUTIVE MODULES . « « « « =« « « =
COMMAND PROCESSOR MODULES
FILE MANAGER MODULES
FLOATING POINT TRAPS

11-6
11-6
11-7
11-8
11-12
11-13
11-15
11-17
11-17
11-18

12-1
12-1
12-2
12-4
12-6
12-8

ILLUSTRATIONS

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

FIGURE

NN N
|
> w N

0S/32 FUNCTIONAL BLOCK DIAGRAM
0S/32 ST MEMORY MAP
EXAMPLE OF EVT STRUCTURE . . .
ELEMENTS OF I/0 SYSTEM

SYSTEM STATES« . .

TASK CONTROL
PORTION OF EVT
CONNECTION AND CONNLCTION WAIT

VOLUME DESCRIPTOR
DIRECTORY EXAMPLE

DCB ATTRIBUTE BIT DEFINITION
DCB FLAG DEFINITION
CCw BIT DEFINITIONS

SYSTEM START UP
svC 1 (I/0 AND WAIT)
LOG MESSAGE REQUEST
FETCH OVERLAY REQUEST
READ REQUEST TO CHAIN FILE . .

CHANNEL CONTROL BLOCK (CCB)
DEVICE CONTROL BLOCK
DIRECTORY ENTRY (DIR).
DEVICE MNEMONIC TABLE (DMT). .
EVT LEAF (EVL) e e e e .
EVT NODE (EVN« o .
FILE CONTROL BI.OCK (FCB) . e .
INITIAL VALUE .ABLE (IVT) . .
SYSTEM POINTER TABLE (SPT) . .
TASK CONTROL BLOCK (TCB) . .
VOLUME MNEMONIC TABLE (VMT)
VOLUME DESCRIPTOR (VD)

SYSTEM DATA STRUCTURE RELATIONSHIPS

CHAPTER 1

INTRODUCTION

This Program Logic Manual (PLM) is a guide to the internal
structure of the operating system 0S/32 ST. It is intended
for use by people involved in maintaining and modifying the
system. It normally should be used with program listings.

Use of this manual requires the reader to be knowledgeable
of the features, functions and conventions of 0S/32 ST from
the user's point of view as documented in Program Reference
Manual, Publication Number 29-380, and Program Configquration
Manual, Publication Number 29-379. Documentation for I/O
drivers is in 0S/32 Series General Purpose Driver Manual,
Publication Number 29-384.

0S/32 ST is an operating system that provides program management
for single task programs. System control via console operator,
interrupt handling and I/O servicing are built-in functions of
0S/32 ST. Disc file management features are also provided when
the system is equipped with a disc, and as such, 0S/32 ST is
oriented towards a disc operating system environment. A file
directory and allocation bit map are maintained on each disc
volume to allow for disc portability.

0S/32 ST is compatible on the program level with the real-time
multi-task operating system 0S/32 MT in most respects not
related to multi-programming, and can serve as a development
tool and "test bed" for many 0S/32 MT-oriented programs.
Moreover, many system routines, I/O drivers in particular,

are identical in both systems; many other routines are quite
similar in structure.

Chapter 2 of this manual describes the general structure of

0S/32 ST. Chapter 3 discusses the conventions followed by

the system in terms of interfacing between modules, naming

of fields and flags and structure of modules. Chapters 4,

5 and 6 contain a detailed technical description of the

major module groupings in 0S/32 ST. These chapters are designed
to provide a technical overview to the detailed module
descriptions in Chapter 12. Chapter 7 contains the Driver Des-
cription. Chapter 8 contains examples of system flow of control.
Crapter 9 contains an explanation of Executive tasks and dis-
cusses user added extensions to 0S/32 ST. Chapter 10 contains

a list of CRASH and JOURNAL Codes and their meanings. Chapter 11
contains the format of system control blocks. Chapter 12 con-
tains detailed module descriptions for each module in 0§/32 ST.
These module descriptions are intended to be used together with
the corresponding flow charts in Volume 2 of the 0S/32 ST Program
Logic Manual, Publication Number 29-382.

Tris ynformation is proprietary and s supphed by INTERDATA to:t IE]
purpose of using and manntaining INTERDATA suppbed cqupm ar sha!
not be used fur any other purpose untess speaificaliy authoriz mg_]

1-1./1-2

CHAPTER 2

SYSTEM STRUCTURE
2.1 INTRODUCTION

This chapter describes, in a broad fashion, the general
structure of 0S/32 ST from a technical viewpoint. As
illustrated in Figure 2-1, 0S/32 ST is composed of four

major module groupings. These are Executive, Command Processor,
File Manager and the 0S/32 Series General Purpose drivers.

This chapter discusses each of these module groupings and how
they interact. I/0 support is provided by the 0S/32 Series
General Purpose drivers together with major portions of the
Executive, so the drivers are discussed in the context of

this I/0 subsystem.

2.2 EXECUTIVE

The executive contains logic for processing Supervisor Calls
(SvCs) and other internal interrupts, a memory manager, task
manager, Event Service handler, a crash handler, general
utility function routines and a system journal handler.
Portions of the Event Service handler and SVC processor
support the I/O subsystem and are discussed in section 2.2.

2.2.1 Task Management

All functions in 0S/32 ST are performed on behalf of a task.
A task is controlled by 0S/32 ST through a Task Control Block
(TCB). 1In 0S/32 ST there are two TCB's, one for the system
task (Command Processor), and one for the user task. A

task may be in one of the following states: current, ready
or wait. A task is in the Wait state when some external
event must take place before the task can proceed. A task
is in the ready state when all external events have occurred
that are necessary to let the task proceed. A task is in
the current state when it is the highest priority ready task.
In 0S/32 ST, the system task has higher priority than the
user task.

2.2.2 Executive Services

5VC handlers

All SVC interrupts cause entry to the SVC First Level Interrupt
Handler. This module performs common preprocessing for SVC 1,2,3,
5, and 7, such as making a Journal entry for the particular SVC,
checking the parameter block address for validity, saving the

- - ————— e -
! This information s proprietary and s o by BN FAT4 te the :mPW
purpose of using and maintaining INT) .
not be used tor any other purpose 2! v Poriesci o Aniting

gt shall

CONSOLE OPERATOR USER TASK
0S/32 ST

SYSTEM EXECUTIVE USER
TCB TCB
commano | bemee-udd | — = — — NAL
. SVC AND INTERNAL
PROCESSOR INTERRUPT PROCESSORS

(SYSTEM TASK)

e ——— e e e e e — e — -

LOADER | - e —_ — — = —_— — o

UTILITY FUNCTIONS

SYSTEM JOURNAL HANDLER

EVENT SERVICE HANDLER
| SVC 1 PROCESSOR

/0 SUBSYSTEM

0S/32 SERIES GENERAL
PURPOSE DRIVERS

FILE
MANAGER

DCB DCB DCB

Figure 2-1. 0S/32 ST FUNCTIONAL BLOCK DIAGRAM

2_ 3 This information s propr:etary and 15 supphed by INTERDAT Y v e ')M—I
= purpose of using and mamtaimng INTERDATA suppliea - :
not be wused for any other purpose uriess speoitically adthorizod v verr g

user registers, if necessary, and branching to the executor
for the particular SVC. SVC 2 Second Level Interrupt Handler
performs similar common pre-processing for the different
codes of SVC 2.

Memory Manager

This routine keeps track of UTOP, CTOP, UBOT, MTOP and FBOT
in the System Pointer Table (see Figure 2-2). It processes
GET/RELEASE storage and EXPAND/CONTRACT Allocation SVCs.

It is called by the file manager to obtain space for File
Control Blocks (FCB). It also contains a routine to check
the validity of addresses passed by the user task to the
system via SVCs. (Any such address must be between UBOT and
CTOP+2). The way in which memory is allocated in 0S/32 ST

is as follows (refer to Figure 2-2):

When a task is loaded, space is allocated upwards from the
value of UBOT. The new program top address is stored at
UTOP. CTOP is then set to UTOP + a SYSGENd number of 256
byte blocks -2. (CTOP is the last halfword of memory in
the program's allocation).

Space for new FCB's is allocated from MTOP down. (MTOP is
the last physical byte address in memory). FBOT points to
the first byte in the FCB area. If allocation of a new

FCB would cause FBOT to be less than CTOP + 2, the allocation
request is rejected, causing the file manager to return a
Buffer Error status.

EXPAND/CONTRACT Allocation calls cause CTOP to be incremented/
decremented by the specified number of 256 byte blocks. If
the call would cause CTOP + 2 to overlap UTOP or FBOT, the
call is rejected.

GET/RELEASE Storage calls cause UTOP to be incremented/
decremented by the specified number of bytes. If the call
would cause UTOP to overlap UBOT or CTOP + 2, the call is
rejected.

General Utility Functions

This package is primarily used for processing the miscellaneous
SVC 2 routines, but it is also entered directly by the other
system elements from time to time. Some of the features

This wmformation 1s proprietary and s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA suppiied equipment and shatl
not be used ‘or any other purpose unless specificatly authorized in writing.

FCB's

MTOP

FBOT

T T

ISER

GET STORAGE AREA

.LLOCATED

USER DATA

IEMORY

|

USER PROGRAM

0S/32 ST

CTOP (SVC2,20 & 21)

ments only
UTOP (SVC 2,2+ 3)

UBOT

(1)

Memory Map After 1 Task is
loaded and started

Moves in 256 byte incre-

MTOP

FBOT

CTOP

UTOP

UBOT

FCB's
PGM2
PGM1
0S/32 ST
(2)

Memory Map After Second
task is loaded at old UTOP

Figure 2-2. 0S/32 ST Memory Map

This informaticn is proprietary and

15 suppired by INTERDATA ior the sole
purpose of using and maintamming INTERDATA supplied equipment and shati

not he used for any other purpose untess specificaliy autharized in writing.

provided are:

UNPACK routine
EXECUTIVE MESSAGE routine

Any subroutine called by more than one system module is
normally placed in this package.

2.2.3 1Internal Interrupt Handlers

This package handles interrupts due to machine malfunction,
illegal instruction, and arithmetic fault. TIllegal instructions,
arithmetic faults or parity errors encountered within the
eyecutive cause an irmmediate ~ntrvy tn the Crash handler.
Arithmetic faults encourtered while a task is running cause

a message to be logged to the system console and the task to

be PAUSEd or continued as specified by the user. 1Illegal
instructions encountered while the task is running may enter

the SYSGENable floating-point trap package to be executed.
Otherwise, the task is PAUSEd via an entry into the task

manager, after logging a message to the system console.

Memory parity machine malfunctions within a task cause the task to
be aborted after logging a message to the system console.
Power failure causes all registers to be saved, whereupon the
system waits for power restoration. When power is restored,
the following actions take place:

All direct-access data transfers are retried.

All other I/0 operations are terminated.

A message is logged to the system console, requesting
the operator to reset peripherals if necessary. The
system waits for the operator to enter 'GO'.

The active task (if there was one) is PAUSEd.

2.2.4 Event Service Handler

Coordination of system resources (mainly I/0 devices) is
controlled through the Event Coordination Table (EVT). The
Event Service Handler contains routines to manage the EVT.

The EVT is a tree structure consisting of nodes (entries

with descendents) and leaves (entries without descendents).
(Figure 2-3 illustrates an example of an EVT structure).

Each path in the tree corresponds to a group of system resources
that must be coordinated as one resource. For example, the
system node, selector channel node and mag tape leaf path
corresponds to all the resources that must be coordinated to
control access to the magnetic tape. Coordination is implemented

and release entries in the EVT. Only one task may be connected
to an EVT entry at a time. The EVT is generated at SYSGEN time
by the 0S/32 ST Configuration Utility Program, 03-076. A task
is not connected to any required entry until it can be connected
to all required entries, thus preventing deadlock conditions.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shatl
not be usad for any other purpose unless specificaliy authorized tn writing.

SYSTEM
NODE

‘_/*

“ TTY K/P AND DUMMY
_ R/P LEAF CONSOLE LEAF
SELECTOR '
(HSPT R/P) |

LEAF CHANNEL LINE PRINTER
NODE LEAF
DISC 1 BIT
MAP LEAF
MAG TAPE DISC

CONTROLLER CONTROLLER _—l

NODE NODE

(DISC 1 DIREC-
TORY LEAF)

| |

MAG TAPE DISC 1 DISC 2 DISC 2 BIT
LEAF LEAF LEAF MAP LEAF
DISC 2 DIREC-
TORY LEAF

Peripherals: ASRTTY
High Speed Paper Tape Reader/Punch
Line Printer
Selector Channel
Mag Tape
Disc Controller
Disc 1
Disc 2

Figure 2-3. Example of Evt Structure

This information s proprietary and is supplied by INTERDATA for the sole
purpose of using and maintarning INTERDATA supplied equipment and shali
not be used for any other purpose unless specifically authorizesdi in writing.

2.2.5 Crash Handler

This routine is entered when the system cannot continue

without the risk of destroying system or user information.

A CRASH CODE is displayed on the Display Panel and is also
stored in the SYSTEM POINTER TABLE (SPT) at SPT.CRSH.

(See Chapter 10 for crash codes and meanings). System
Initialization does not reset SPT.CRSH. Some of the conditions
which cause the Crash handler to be entered are:

Illegal Instruction within the system.
Invalid Item on the System queue.

Invalid TCB ID passed to Task Management.
Interrupt from undefined device.

2.2.6 System Journal

The system journal is a circular list of historical data
maintained by the system. Each entry on the journal consists
of five fullwords of information: the task id of the task
which was active at the time of the entry, the reason for
making the entry (Journal Code) and information pertinent to
that call. The system journal is established at SYSGEN time
by 0S/32 ST Configuration Utility Program 03-076. System
Journal processing may be eliminated at SYSGEN time. See
Chapter 10 for a list of the Journal Codes and their meanings.

2.3 I/0O SYSTEM

The I/0 system consists of system routines and control blocks
necessary to provide a device independent facility for performing
I/0 requests. It is composed of the SVC 1 executor, IODONE,
device drivers, Device/Volume Mnemonic Tables (DMT/VMT) , Device
Control Blocks (DCB), Channel Control Blocks (CCB), Interrupt
Service Point Table (ISPTAB), Logical Unit Table (LTAB), the
Event Coordination Table (EVT), and the Event Service Handler
(see Figure 2-4).

2.3.1 Device/Volume Mnemonic Tables

All devices and direct-access volumes are referred to throughout
the system either by logical unit or by an ASCII identifier.
These tables, DMT and VMT, bind these ASCII identifiers to the
devices' DCB's.

This information s proprietary and s supplied by INTERDATA tor the sole
purpose of using and mantaining INTERDATA supphed equipment and shal
not be used for any other puipose unless specilically authorized i wiitiag.

SVC 1
PARBLK

DEVICE
MNEMONIC
TABLE
DMT

CONTROL

DATA FLOW «———>»

— —_— — -

USER
TASK

AUTO DRIVER
CHANNEL

Figure 2-4. Elements of 1/0 System

svVC 1 EVENT
AND e — > SERVICE
IODONE HANDLER
')
l |
DEVICE
CONTROL | |
TABLE | |
DCB | |
— — —
DRIVER
A
’ [
CHANNEL | ! EVENT
CONTROL sp | COORDI-
BLOCK ! TABLE | ?:;'LZN
cce | | EVT
|

PERIPHERAL
DEVICE

purpose of using and maintaining INTERDATA supplied esupm?
not be used for any other purpose unless <pecificativ suthcnized o v

2.3.2 Logical Unit Table

This table is physically present in the TCB for both the
system and user tasks; however, it is of interest to the
I/0 subsystem and the file manager. It consists of a table
of DCB or FCB addresses, one for each logical unit. If

the logical unit is not assigned to any device, the entry
is set to zero. The size of the user Logical Unit table is
fixed at SYSGEN time. Access privileges are placed in a
Logical Unit entry at ASSIGN time.

2.3.3 Device Control Block (DCB)

A DCB is provided for each device in the system. This control
block contains device-dependent information such as the attri-
butes of the device, flags and register save areas if needed.

Pointers are provided to the driver initialization, interrupt

service, and termination phases, as well as the event service

leaf which coordinates access to this device (see below).

2.3.4 Channel Control Block (CCB) and Interrupt Service
Pointer Table (ISPTAB)

CCB's and the ISP table are used to control I/0 requests through
the Auto Driver Channel capability of the 32-bit series processor.

2.3.5 8VC 1 Processor

The SVC 1 Processor saves the user's registers, picks up the
user's parameter block for the driver, and then makes several
error checks. These are done primarily through the mechanism of
checking the attributes bytes in the device control block
against the function code specified in the call. If the

call is in order, the system enters a reentrant state, places
the data from the parameter block into the DCB and vectors to
the appropriate driver.

2.3.6 Drivers

These are the same as the 0S/32 MT drivers and are consequently
fully reentrant, with the exception of the interrupt-handling
phase. The initiation phase of an 0S/32 driver runs as a
reentrant subroutine of the task, i.e., using the user registers
and with queue service enabled. The interrupt-handling phase
runs with all interrupts inhibited, except for illegal
instruction and machine malfunction. The termination phase

of the driver runs in a reentrant state but as though it were

an interrupt-handling routine of the task.

This information is proprietary and s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized 1n writing.

2.3.7 Termination Event Coordination Table

The 0S/32 Termination Event Coordination Table (EVT) is used
to coordinate access to all devices, controllers, selector
channels and bus switches in the system as well as other
system resources that must have controlled access, such as
bulk storage directories and allocation bit-maps. This table
contains busy flags for all devices and pointers for each
device that requires coordination, to tne controller, channels
and bus switches with which that device must be coordinated.
See Section 2.1.4.

2.4 COMMAND PROCESSOR

The Command Processor provides the operator interface to

0S/32 ST. It executes as one of the two tasks in 0S/32 ST

and is designed so that many functions are performed through
Supervisor Calls. The Command Processor contains routines

to support the Command Substitution System (CSS), the resident
loader and routines to support Direct Access devices. The
Command Processor controls all I/0 regquests to the Console

and Log devices.

2.4.1 Command Processing

The Command Processor accepts commands from the system console
device, decodes them and calls the appropriate executor. Some
commands are executed via Supervisor calls (e.g., EXPAND, ASSIGN)
while others are executed by the Command Processor routines
(e.g., MARK, DISPLAY). The Command Processor contains logic

to provide the console operator with informative messages in
case of error.

2.4.2 Command Substitution System (CSS)

The Comm~-nd Substitution System routines provide the ability

to build, execute and control files of 0S/32 ST operator
commands. CSS consists of routines to execute CSS operator
commands, to manage the CSS buffers and to provide the command
parameter substitution facility. The CSS buffers are established
at SYSGEN time by 0S/32 ST Configuration Utility Program, 03-076.

2.4.3 Loader

The 0S/32 ST resident loader loads tasks and overlays. The
input medium must be in one of two loader formats: CAL 32-bit
object output, for fullword mode tasks, and CAL 1l6-bit or OS
Assembler or Fortran 1V object format (M16/M17) for halfword

This information is proprietary and is supplied by INTERUATA fo. the sej
purpose of using and maintaining INTERDATA suppiied equapment and sheil ‘
not be used for any other purpose unless speciticail , nutivenized o arting. |

mode tasks. Since the two modes have disparate formats,
in essence two loaders are provided in a full 0S/32 ST
system; the halfword mode loader and the fullword mode
loader. The halfword mode loader may be SYSGENed out.

The resident loader supports the 0S/32 ST SVC 5 capability
for loading overlays.

2.4.4 Direct Access Support

The Command Processor provides the operator with the command
functions necessary to initialize a disc pack and name it,
allocate and delete files, display files, save an OS image
suitable for boot loading, perform functions such as Rewind,
backspace record to a file assigned to the user task and

for mounting and dismounting direct access volumes. Most

of these functions are executed via SVC 1 and SVC 7 calls.

2.4.5 Console Support

The Command Processor provides the user task access to the
keyboard/printer device used as the system console. This
is accomplished via a dummy driver which intercepts all
log messages and SVC 1 requests to the console device and
executes them for the user task. Because of this feature
and the structure of Task Management, most commands can be
entered and executed while a user task is active, even if
the task has assigned the console device.

2.5 FILE MANAGEMENT

The file management routines handle all access to bulk storage
files, either by the user task or by the system. There are
five basic modules in this package: the directory and

bit-map handler, the Contiguous file access method, the Chained
file access method, the SVC 7 processor, and the file/volume
utility module.

2.5.1 8SVC 7 Processor

This package processes all SVC 7 calls. It calls on the
directory and bit-map handler when a file is assigned, allocated,
deleted, or check-pointed. When a file is closed, it calls

the disc driver as required to make sure all valid data is
written on the disc. Protection keys are checked by this

mcdule, which also performs all assignment of devices to logical
units.

Tio asformation s proprietary 3
puipose of using and maint !

not be used for any other purpose unless epecif }»J

2.5.2 Directory and Bit-Map Handler

This package handles all access to and modifications of the
directory and bit-map for each bulk storage device. Entries
are provided to look up a file in the directory, to enter a
new file name in the directory, to modify or delete a
directory entry, to allocate one or more contiguous sectors
of storage, or to release allocated bulk storage.

2.5.3 Contiguous File Access Method

This package is entered on an SVC 1 to a Contiguous file.
It performs sector address computations and enters the disc
driver.

2.5.4 Chained File Access Method

This package is entered on an SVC 1 to a Chained file. It
handles all buffering and unbuffering, calls the disc driver
for read or write whenever a buffer is filled, and allocates
new space on bulk storage as required for file expansion.

2.5.5 File/Volume Utility

This package performs certain miscellaneous and non-SVC 7
functions associated with the maintenance of bulk storage
volumes. It contains routines to list a directory, to mount
or dismount a volume, and to initialize a new volume,
writing on it a clean directory and bit-map. It is capable
of marking defective sectors as permanently allocated

(i.e., inaccessible) at volur e initialization time. This
module is called by the Command Processor to perform these
functions.

2.6 FLOATING POINT TRAPS

0S/32 ST provides a SYSGEN option tc include software support
for the floating point instructions of the 32-bit series
processors. This support consists of a trap routine which

is passed control on every Illegal instruction interrupt. If
the illegal instruction is a floating point instruction, it is
then executed by the routine; if it is not a floating point
instruction, control is passed to the Illegal instruction
handler.

This nformation 1s proprietary and s supphed by INTERDATA tor the sole
purpose of using and maintaming INTERDATA supplied agurpment end shall
crot be used for any other pu opose unbess specihicity QUThGrized it wi ing.

L

d=-12

CHAPTER 3

SYSTEM CONVENTIONS

3.1 MACHINE STATES

0S/32 programs, tasks and routines run in one of eight well-
defined states. These states are differentiated by a combination
of PSW bits and status bits of the active task, if a task is
active. Any state not defined below is not permissible. At

any given instant in time, the Processor is executing code

in one of these states. They are, in increasing order of
priority and privilege:

1) User Task (UT)

2) Executive Task (ET)

3) Reentrant System (RS)

4) Reentrant System, Alternate Save Area (RSR)
5) Event Service (ES)

6) Nonreentrant System (NS)

7) Nonreentrant System, User Registers (NSU)
8) Interrupt Service (IS)

The definition of these states in terms of PSW and TCB status
bits is shown in Figure 3-1.

3.1.1 User Task State - UT

The UT state is the state in which all user tasks run. The

PSW Protect bit is set. Internal and external interrupts

are enabled, with the possible exception of the Arithmetic Fault
interrupt bit, which is the only interrupt bit that is under
user control. This state may only be exited via interrupt or
execution of SVC. The User register set is active.

3.1.2 Executive Task State - ET

The ET state is the state in which all executive tasks (E-tasks)
run (see Chapter 9). Protect mode is disabled. All interrupts
other than Arithmetic Fault are enabled. Arithmetic Fault

is under control of the E-task. All SVC's are permitted.

The User register set is active. This state should only be
exited via interrupt or execution of SVC.

3.1.3 Reentrant System State - RS

The RS state is the state in which reentrant system code is
executed on behalf of a task. Machine constraints are the
same as for the ET state; however, software constraints are

This information is proprietary and is supphed by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specificafly authorized in writing.

more stringent: No code may be executed which would cause

the RS state to be entered (e.g., a TYPE II SVC - see Section

3.2). Note that RS, RSA and ES code is executed on behalf of

a task and is scheduled and dispatched as though it were a
privileged routine of the task. For this reason, Queue Service
interrupts are enabled. The User register set is active; the
previous contents of the User registers is assumed to have been
stored by the task manager in the RS Save area of the calling task's
TCB. This state may be exited in several ways:

Branch to task manager to return to UT/ET state
LPSW or EPSR that enters NS or NSU state
I/0 or internal interrupt

3.1.4 Reentrant System State, Alternate Save Area - RSA

This state is identical to RS state except that the previous
contents of the user register set have been stored in an
alternate save area (other than in the TCB); a pointer to
this save area is in TCB.ASV. This allows routines executing
in RSA state to issue SVC's. This state may be exited in
several ways:

LPSW or EPSR that enters NS or NSU state

Branch to task manager to return to UT or ET state
I/0 or internal interrupt

svc

3.1.5 Event Service State - ES

This state is identical to RS state in all respects except
that the ES (Event Service) status bit in the task's TCB is
set, disabling the dispatching of an event for that task (see
Section 4.2). It is used only in drivers, principally in
driver termination code. This state may be exited only via

a call to the Return from Event routine in the event handler

package.

3.1.6 Nonreentrant System State - NS

The NS state is the state in which the system executes system
code which changes critical system information such as EVT,TCB.
This code is nonreentrant and Queue Service interrupts are
disabled. The Executive register set is active, of which NS
code may use registers 8-F. As no new task may be dispatched
while the system is in this state, routines that run in this
state must necessarily be short and quick to execute. No

SVC's may be executed. This state is exited via LPSW, EPSR, or
external interrupt.

purpose of using and maintaminy INTERDATA supplied equipment and shall
not be used for any other purpose unless spec:fica’s; actnoiized 1 wwiting,

This information s proprietary and 1s supplied by INTEKDATA icr the sohe

w
i
N

3.1.7

Nonreentrant System State User Register Set - NSU

This state is identical to the NS state (see Section 3.1.6)

except that the User register set is enabled.

It is used

when the user registers are stored in a TCB or alternate

save

3.1.8

area.

Interrupt Service State - IS

The IS state is used only for interrupt service routines within
drivers and in the machine malfunction handler.

are disabled except machine malfunction.

All interrupts

The Executive register

set is active, of which IS code may use registers 2-7. This
state is only exited via LPSWR on register 0 and 1.

TCB

PSW Status Bits Status Option

I MM AF QS P R ES RS ET

17 18 19 22 23 24:27 0 1 0

UT 1 1 d 1 1 F 0 0 0
ET 1 1 d 1 0 F 0 0 1
RS/RSA 1 1 1 1l 0 F 0 1 d
ES 1 1 1 1 0 F 1 d d
NSU 1 1 1 0 0 F d d d
NS 1 1 1 0 o0 0 d a d
IS 0 1 1 0 0 0 d d d

means bit must be ZERO
means bit must be ONE
means bit may be ZERO or ONE
means all 4 bits are ONE
I - Immediate Interrupt

MM - Machine Malfunction

AF - Arithmetic Fault

QS - System Queue Service

P - Protect

R - Register Select

ES - Event Service State

RS - Reentrant System State
ET - Executive Task

—_
~

el o T o

FIGURE 3-1 System States

T e Da et
This «nformation s propiietary and s supplied by INTERDATA for ihe sole
purpose of using and maintaining INTERDATA supptied campnent and <nel!
rot be used for any other purpose unless specifically auth:or.zed in vt :_J

3.2 SVC DEFINITIONS AND CONVENTIONS

svC Function Type
1 I/0 11
2 code 1 Pause IT
2 Get Storage IT
3 Release Storage I
4 Set Status I
5 Fetch Pointer II
6 Unpack 11
7 Log Message 1T
15 Pack IT
16 Pack File Descriptor 1T
17 Mnemonic Scan 1T
18 Move Characters 11
19 Peek I
20 Expand Allocation I
21 Contract Allocation I
3 End of Job IT
5 Fetch Overlay I1
7 File Management IT

All SVC interrupts cause the system to enter NS state. Each
SVC enters a separate entry point in the First Level Interrupt
Handler (FLIH). FLIH decodes the SVC number and passes control
to the appropriate executor. There are two types of svC

executors: those that are short and do not require access to
the user register set (Type I) and those that are lengthy or
require access to the user register set (Type II). Type I

SVC's execute in NS state, thus eliminating the overhead of
saving the user registers. Type II SVC's execute for some
portion in RS or RSA state.

FLIH passes control to an SVC executor with:

1) address of the Task Control Block of the invoking
task in register 9.

2) address of the SVC parameter block in register 13.

3) resume PSW in registers 14 and 15.

Entry is in the state (NS or RS) indicated in a table contained
in FLIH. On entry to the executor, the parameter block has
been checked to insure it is on a fullword boundary and the
address is between UBOT and CTOP+2. It is the responsibility
of the executor to perform validity checking of any addresses
passed in the parameter block.

This information is proprietary and is supplied by INTERDATA fur the solew‘
purpose of using and maintaining INTERDATA supplied equipment and shali
not be used for any other purpose unless specificaliy authorized 0 writing

3.3 INTERNAL INTERRUPT CONVENTIONS

Internal interrupts cause control to be passed to the
individual interrupt handler in NS state. In all cases,

a message is output to the system console indicating the
nature of the interrupt and the address at which it occurred.
In addition to the interrupts generated by the 32-bit
architecture, illegal SVC calls and invalid addresses passed
in SVC calls are handled by the internal interrupt handler as
for illegal instruction.

3.4 SUBROUTINE CONVENTIONS

Two levels of subroutine linkage are defined for the reentrant
system states, RS and RSA, and for non-reentrant state, user
register set, NSU. One level of subroutine linkage is

defined for non-reentrant system state, NS.

3.4.1 RS, RSA and NSU Subroutines

The mainline level is allowed to use the full register set
U0-UF. First level subroutines are linked through

register 8 and may use Registers U8-UF without save/restore.
Second level subroutines are linked through Register 12

and may use Registers UC-UF without save/restore. This is
a general definition used as a guideline; individual modules
that violate this definition are described in Chapter 12.

3.4.2 NS Subroutines

The mainline is allowed to use Registers E8-EF of the executive
register set. The first level subroutine is linked through
Register 8 and may use Register E8-EB without save/restore.
Subroutines that may be called from either NSU or NS must be
written as an NS subroutine.

3.4.3 Calling Sequences

Parameters are passed in registers or in memory. Parameters

may be passed in memory immediately following the BAL instruction
only if the parameters require halfword alignment. Parameters
may be passed in system tables such as SPT, TCB, etc.

3.4.4 Exits

The normal exit from a subroutine should be to the address
contained in the link register, or to a specified number

of halfwords past the address contained in the link register.
Alternate exits must be to locations passed as parameters.

Exits to unlabeled addresses are not permitted.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and »shall 3-5
not be used for any other purpose unless specifically authorized in writing.

3.5 GENERAL NAMING CONVENTIONS

3.5.1 Data Structures

All data structures (defined by CAL STRUC statements) in

0S/32 are named with three character symbolic names, e.q.,
TCB, SPT, DMT. All fields within these structures are defined
by a name of the form SSS.FFF, where SSS is the structure
name, and FFF is the field ID. (See Chapter 11 for structure
definitions).

3.5.2 Bits

Certain fields in a data structure contain flag bits to
denote information. These flag bits are manipulated with
either bit instructions (e.g., TBT, SBT, RBT) or logical
immediate instructions (e.g., THI, OHI, NHI). For each flag
bit there are two definitions - one for the bit number and one
for the mask. These definitions are of the form SFFF.XXB

and SFFF.XXM where S is a character which refers to the
structure ID, FFF are three characters which refer to the
field, XX identifies the function of the flag bit, B denotes
a bit number, and M denotes a bit mask. For example, in

the TCB there is field TCB.OPT which contains the option bits;
Bit 0 = 1 means the task is an EXEC TASK (E-TASK), Bit 0 = 0
means that the task is a USER TASK (U-TASK). The bit number
and bit mask definitions of this flag are:

TOPT.ETB EQU 0
TOPT.ETM EQU X'8000"

This information is proprietary and is supplied by INFTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in wniting

+ 64

+ 68 JCURRENT TCB ID USER TCB

SYSTEM POINTER TABLE ‘ TCB TABLE SYSTEM TCB
_—ﬁ

CHAPTER 4

EXECUTIVE DESCRIPTION

4.1 TASK MANAGEMENT

4.1.1 Task Control

In 0S/32 ST there are two tasks: the system task and the
user-task. A task may be in Wait state or in Ready state.
Wait state indicates that some external event must take
place before the task may proceed. Ready state indicates
that all such necessary events have taken place. The task
manager controls tasks through the use of several control
blocks (see Figure 4-1).

+4| —e sSTCB *7

+8| —euTCB N

—=TCB TABLE *]

FIGURE 4-1 TASK CONTROL

Each task is described by a Task Control Block (TCB). The
addresses of the TCB's are maintained in the TCB table which
is pointed to by the System Pointer Table (SPT). A chain,

of one or two entries, is maintained of the tasks that are in
ready state. This task ready chain is maintained in priority
order. 1In 0S/32 ST the system task has priority 1 (highest)
and the user task has priority 2. TCBs are referenced by
their address or by their id. TCB id is the index, starting
at 1, of the TCB in the TCB table.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

4-1

4.1.2 Task Management Facilities
The task manager provides subroutines to:

Dispatch the current task

Suspend the current task

Put a task on the ready chain

Remove a task from the ready chain

Cause a task to enter RS, RSA or E£S state
Dispatch from top of EVT

Remove a wait condition from a task

Start the user task

In order to maintain the control of a task as it is in
various states, the task manager uses three PSW and register
gsave areas in the TCB, the dispatch save area, the RS save
area and the ES save area. The state of these save areas

is indicated by the ready chain, RS and ES bits in the
status field of the TCB.

4.1.2.1 Dispatch Current Task (TMDISP, TMRDISP)

The task manager dispatches the current task by deciding

which is higher priority, the task at the top of the ready
chain or the task at the top of the EVT queue (see Section 4.2).
The top of the ready chain is maintained in the SPT. If this
TCB ID is zero, there is no task ready and the task manager
places the system in an enabled wait state. If the TCB ID

is non-zero, the task manager loads the user register set from
the TCB dispatch save area and then passes control to the task
by loading the resume PSW in the dispatch save area.

4.1.2.2 Suspend the Current Task (TMSTOP)

This task manager facility is called to prepare the current
task for removal as current task. The user register set

1s saved in the dispatch save area of the TCB and the task's
resume PSW is saved in the dispatch PSW save area of the TCB.
This facility is used before placing the task in a wait state
or when an event has occurred which has made a higher priority
task ready.

4.1.2.3 Chain (TMCHN)

When a task has become ready it is placed on the ready chain
in priority order. 1In 0S/32 ST the ready chain always takes
one of the following forms: empty, system task only, user
task only, system task then user task.

purpose of using and maintaining INTERDATA supplied equipment and shal
not be used for any other purpose uniess specifically authorized :n writing.

4,1.2.4 Unchain (TMUCHN)

When a condition exists that prevents a task from proceeding
until an external event occurs, the task manager removes the
TCB from the ready chain. The task may or may not be the
current task.

4.1.2.5 Enter System State (TMRSIN, TMRSNIN, TMRSAIN)

All reentrant system routines execute as privileged subroutines
of the invoking task. On entry to one of these routines the
task manager saves the current PSW and user register values
in one of three places: the RS save area in the TCB if the
task is entering RS state, the ES save area of the TCB if the
task is entering ES state, and the specified alternate save
area if the task is entering RSA state. The condition of
these various save areas 1s indicated by the state of the
corresponding bits in the TCB status field; the bit on means
that the save area contains valid data. These routines must
be entered from NS state.

4.1.2.6 Exit From System State (TMRSOUT, TMRSNOUT, TMRSAOUT)

On exit from one of the reentrant system states, RS, RSA or

ES, the task manager restores the state of the task to the
environment saved in the appropriate save area. The corres-
ponding bit in the status field of the TCB is reset to

indicate no valid data in that save area. These routines

also check for I/0 wait pending or pause pending in the status
field of the TCB, and if set, put the task into the corresponding
wait state by moving the PSW and registers from the specified
save area to the TCB dispatch save area, removing the TCB from
the ready chain, and branching to TMDISP.

4.1.2.7 Dispatch from Top of EVT Queue (EVTDISP)

This function of the task manager is discussed more fully in
Section 4.2.4.5. 1In brief, if the task at the top of the EVT
queue 1is higher priority than the task at the top of the
ready chain, it is chained and then dispatched as the current
task.

4.1.2.8 Remove Wait (TMREMW)

This facility of the task manager removes the specified wait
conditions from the specified task by resetting the corres-
ponding bits in the wait field of the TCB. If no wait
conditions remain the task is placed on the ready chain.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

4.1.2.9 Start User Task (TMSTART)

The task manager starts the user task by constructing the
start PSW from the options field in the TCB and the specified
location. This PSW is placed in the dispatch save area of
the TCB and the TCB is chained on the ready chain. When

the svstem kisk enters the Yait state, the user task bhecomes
ton of reardy chain and is dispatched at the saved PSW with
all the user registers set to zero, if the task had been

just loaded.

4.1.3 Task States

The state of a task is defined by the settings of the bits
in status and wait fields of the TCB and the value of the
current TCB field of the SPT. The following is a list of
detailed task states and their meanings:

State Indication Meaning
Dormant Dormant bit No user task has been
TCB wait field loaded.
(user task only)
Loader Wait Load wait bit (Loader executing on
TCB wait field ' behalf of task.

(user task only)

Ready Ready chain bit Task on ready chain
TCB status field

Current TCB ID in SPT Task is the executing
current 'CB field task.

RS RS bit in : TCB RS save area
TCB status field contains valid data.
Task may be Ready or
in wait state.

RSA AS bit in Save area pointed to by
TCB status field TCB contains valid data.
Task may be ready or in
wait. RS bit must also
be set in TCB status
field.

ES ES bit in TCB ES save area contains
TCB status field valid data. Task must
be Ready. I/0 wait bit
may also be set.

Wait Ready chain bit Task needs external event
reset before it may proceed.
TCB status field

-
2

purpose of using and maintaining INTERDATA supplied equipmert and il
not be used for any other purpose untess specificativ authorized n artono, i
—_ . . e e —— — =

lT’his information is proprietary and s supphzd by INTERDATA for the ol i

4,2 EVENT SERVICE HANDLER

4.2.1 Event Coordination Table - EVT

Coordination of system resources is controlled through the
Event Coordination Table. The EVT is a tree structure
consisting of nodes (entries with descendants) and leaves
(entries without descendants). Each path in the tree
corresponds to a group of system resources that must be
coordinated as one resource. Figure 4-2 illustrates a
simple portion of an EVT. All paths in the tree are
descendants of the system node.

4.2.2 System Queue

The 32 bit architecture provides for the facility of a system
queue. This queue is maintained in the standard list format,
and is pointed to by a fixed location (X'80') in low memory.
Whenever the status portion of the PSW is updated with the
Queue Service bit set, an internal interrupt is generated

if there is an entry on this queue. 0S/32 ST uses the system
queue to schedule events coordinated by the EVT. The entries
made to the system queue are always in the form of an address
of a leaf in the EVT. When a system queue service interrupt
occurs, the leaf is said to have evented.

4.2.3 Coordination
In order to explain the Event Service Handler, the following

terms must be defined:

4.2.3.1 Connection

In order to assume control of a system resource reflected in
the EVT a task must be connected to the resource. A task

is connected to a leaf and ancestor nodes, up to system node,
by placing the task ID and priority in the leaf and the task
ID, the task priority and the connected leaf address in the
upper nodes. An unconnected leaf has a TCB ID of X'00'

and a priority of X'FF'; unconnected nodes have, in addition,
a connected leaf address of 0. Only one task may be connected
to a leaf or node at a time. A task must be connected to

all entries between a connected leaf and the highest connected

ring to Figure 4-2, a task could be

mm A A ST laa A

iouc Lil LJ..I.C pa l—h. R

purpose of using and maintaining INTERDATA supplied equipment and shali

This information is proprietary and is supplied by INTERDATA for the sole
not be used for any other purpose unrless specifically authorized in wr.ting.

SYSTEM

0

—» DESCENDANT

—-DESCENDANT 1

_/

NODE 1

SYSTEM NODE

—=DESCENDANT O ¢

~—=DESCENDANT 1

LEAF 2

NODE 1

NODE 2
NODE 1

DESCENDANT 0

LEAF 3
NODE 2

Fiqure 4-2. Portion of_EVT

LEAF 1

SYSTEM NODE

purpose of using and maintaircng INTERDATA supphied equ:pmest and shall
not bhe ¢sad for any other purpose unless specificaliy authorized 1 writing.

lThs< wfarmation is proprietary and i< supplizit by INTERDATZA :or tne sole

connected to the following EVT entries:

Leaf 1

Node 1, Leaf 2

Node 1, Node 2, Leaf 3
Node 2, Leaf 3

Leaf 2

Leaf 3

A task could not be cbnnected to just Node 1. Tasks never
connect to the system node.

4.2.3.2 Queueing

Before connection is made to an EVT entry, all upper nodes
must be unblocked (not connected). If an upper node or the
leaf being connected to is blocked, the Event Service Handler,
upon request, will queue the task for the leaf. This leaf
queue is maintained in priority order. While a task is on
the leaf's queue, it is placed in a connection wait state.
Each unblocked node maintains a pointer to the descendant
subtree of the highest priority. Thus the highest priority
task on a leaf queue is queued to the highest unblocked

upper node.

4.2.3.3 Assertion

Although a task must be initially connected to an entire path

in the EVT, it can release upper nodes if they are not

necessary for some portions of an operation. When the task

again requires these upper nodes, it is said to be asserting
reconnection and an assert flag is set in the highest connected
entry of this path, a pending flag is set in the leaf and the
priority of the highest connected entry is propagated. When

the asserting task becomes top of EVT, the dispatcher reconnects
required upper nodes before dispatching the Event Service Routine
(see Section 4.2.4.5).

4.2.4 Event Service Facilities
The Event Service Handler provides subroutines to:

Connect a task to a path in the EVT
Disconnect a task from EVT entries
Release upper nodes

Service System Queue Service interrupts
Dispatch from top of EVT

Return from event

Propagate a priority up the EVT

All Event Service Handler routines execute in NS state
except for return from event.

This information is proprietary and 1s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other puipose unless specifically authorized in writing.

4-7

4.2.4.1 Connect (EVCON, EVQCON)

Requests for connection always specify a leaf address to
be connected to. The connection routines check all upper
nodes up to system node. If any upper nodes are connected
in some other path, a condition code of X'F' is returned
(EVCON) or the task is placed on the leaf's gueue and into
connection wait (EVQCON). If the path is unblocked, the
task is connected to the leaf and the leaf is added to the
task's connected leaf chain and a condition code of X'0'
is returned.

The connected leaf chain is maintained as a bi-directional
list of leafs pointed to by the TCB. The connection wait
chain is maintained as a bi-directional list of TCBs pointed
to by the leaf. A task can be connected to a leaf and in
connection wait for it at the same time. Refer to Figure 4-3
for an example of the user task connected to two leaves and
both the system task and the user task in connection wait
for the first leaf. This would occur if the user task and
the system task issued I/0 requests to a device prior to the
completion of a previous I/0 and proceed request by the user
task to the same device.

SYSTEM TCB (1D=01) USER TCB (1D=02)
+14 00 02 +14 01 00
PREV. NEXT PREV. . NEXT
TCB IN CONN. TCB IN CONN.
WAIT WAIT
+40 0 +40 —— LEAF1
TOP OF CONN. TOP OF CONN.
LEAF CHAIN LEAF CHAIN
LEAF 1 LEAF 2
+7 01 +7 00
TOP OF LEAF
QUEUE
+12 0 +12 | —— LEAF 1
+16 —» LEAF 2 +16 0

FIGURE 4-3 CONNECTION AND CONNECTION WAIT

4"‘3 This information 15 proprietary and is supphed by INTERDATA for thu so!ﬂ
purpose of using and maintaining INTERUCATA supplied equ.pment and ~hall
not be used for any other purpose unle:s snecificalty authorized in writing §

4.2.4.2 Disconnect (EVDIS)

Requests for disconnection always specify a leaf address.

A task is disconnected from the specified leaf and all upper
nodes. After each node is unblocked, the priority of the
task on top of the queue for that node, if any, is propagated
up to the node.

4.2.4.3 Release (EVREL)

Requests for release specify a leaf address and the level
above the leaf that is to be released. All nodes from the
specified level up are unblocked as in disconnection. For
example, the disc driver requires only the disc for a seek
operation, so the nodes from level 2 up can be released
(the disc controller node and the selector channel node).

4.2.4.4 System Queue Service (SQS)

SQS is entered on a queue service interrupt from the microcode.
The leaf address on the bottom of the system queue is removed.
SQS obtains the address of the connected TCB from the TCB ID
stored in the leaf. The event count in the leaf and in the
connected TCB are incremented by one. SQS checks the status
flag to see if the task is eventable. If the task is already
in ES state it is non-eventable and SQS simply loads the

PSW at the time of the interrupt. The non-zero occurrence
counts in the leaf and the TCB queue the event to the task.
If the task is eventable, SQS sets a pending flag in the

leaf and an assertion flag in the highest connected node.

The priority of the task is then propagated up the tree from
the highest connected node (see Section 4.2.4.7). 1If the
priority was able to propagate up to the top of the EVT
(system node), then the current task, if any, is suspended

by saving the current PSW and user registers in the

dispatch save area of its TCB and the event service routine
for the connected task (which may be the current task) is
scheduled by EVTDISP (Section 4.2.4.5), unless the current
task is higher priority. If the current task is higher
priority, it is redispatched and the connected task is
dispatched into the event service routine when it becomes

top of ready chain.

4.2.4.5 Dispatch From EVT (EVTDISP)

Every routine that causes the current task to be changed
branches to the task manager routine TMDISP to determine
the next task to be dispatched. TMDISP determines the next
current task by comparing the priority of the task at the

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and manAn(aining INTERDATA supplied equipment and shall
not be used for any other purpose uniess specifically authorized in writing.

top of the ready chain, if any, with the priority of the
task queued to the system node, if any. If the top of

EVT priority is equal to or higher than the priority of

the task at the top of ready chain, EVTDISP is entered to
dispatch the task queued to the EVT. The task queued to
the top of the EVT is queued for one of two reasons: it is
in connection wait or it is queued for the dispatching of
an event service routine (asserting reconnection).

EVTDISP walks down the EVT by loading the pointer of the
highest queued descendant at each level until it reaches a
leaf or entry with the assert flag set. If it reaches a

leaf, the task at the top of the queue for that leaf is in
connection wait. EVTDISP then removes the TCB from the queue,
connects the task to all upper nodes, removes the task from
connection wait (thus putting it on the ready chain) and
branches to the task manager to dispatch the task.

If EVTDISP reached an entry with the assert flag set, it
resets the assert flag, resets the pending flag in the
connected leaf, connects the task to all upper nodes and
branches to the task manager routine TMRSNIN which puts the
task in the ready chain, if necessary, saves the current state
of the task in the ES save area of the TCB, decrements the
event count in the leaf and the TCB by one, and dispatches

the task at the event service routine pointed to by the leaf.

4.2.4.6 Return From Event (EVRTE)

All event service routines terminate through EVRTE. EVRTE
checks the event count in the TCB in case an event has occurred
for the task during the event service routine. If no events
are queued, EVRTE simply pas es control to the task manager
routine TMRSNOUT to exit from ES state. If the TCB event

count is non-zero, EVRTE searches the connected leaf chain for
the first leaf with a non-zero event count. If the task

is connected to all upper nodes, the task is redispatched in

ES state at the event service routine pointed to by the leaf.
If it is not connected to all upper nodes, the pending flag

is checked. 1If the leaf's pending flag is set, then the

task has been propagated for this leaf and the routine continues
to search the connected leaf chain of the task for a leaf with
a non-zero event count.

If a leaf with a non-zero event count is found without the
pending flag set, pending is set and EVRTE walks up the EVT
to the highest connected node, sets the assert flag in that
node and propagates the priority up the EVT.

When all leaves in the task's connected leaf chain have been
processed, EVRTE passes control to TMRSNOUT to exit from ES
state.

purpose of using and maintaining INTERDATA supphed equipment and shali
not be used for any other purpose unless specifically authorized in writing

This information is proprietary and s supphed by INTERDATA for the soie

4-10

4.2.4.7 Propagation (EVPROP)

Whenever the priority that is queued to an entry in the EVT

is changed, that priority is propagated up the EVT to insure
that the highest priority task is always queued to the top

of the EVT. Since a task is never connected to an entry

in the EVT until it is able to be connected to all the entries
in the path required, propagation insures that the highest
priority task will be connected first at the time the path

is free. Requests for propagation specify the address of the
starting EVT entry and the priority to be propagated up from
that entry.

The priority is propagated by stepping up the EVT one level
at a time and comparing the propagating priority to the highest
queued priority of that node. If the propagating priority
is lower than the priority of the top of the node's queue,
EVPROP returns normally. If the propagating priority is
higher, EVPROP replaces the node's highest queued priority
with the propagating priority and stores the descendant
number of the entry just stepped up from in the node's
highest queued descendant pointer. This continues until the
priority has been propagated up to the system node or a
blocked node is encountered. If the priority is propagated
up to the system node, EVPROP returns with a top-of-tree
indication.

If a blocked node is encountered, EVPROP stops gqueuing
descendants but if the propagating priority is greater

than the priority of the task connected to the node, it
replaces the connection priority and the propagation process
continues.

4.2.5 Dispatch Priority

In 0S/32 ST each task has two priorities associated with it:
the task priority and the dispatch priority. The ready chain
is maintained in dispatch priority order. The system task
priority is 01 and the user task priority is 02. In most
cases the dispatch priority of the task is equal to the task
priority. However, if the user task is connected to an EVT
entry that is blocking a path requested by the system task,
the user task will have its dispatch priority raised to 01
for the time it is connected to that entry. Although this
has no effect on the order of execution in 0S/32 ST, it is
necessary since the Event Service Handler routines are used
in 0S/32 MT.

Thiz information s proprietary and is suppin 1 i
purpos? of using asd mamtaiing 'NTERDATA upe 1 s quipment
not be used for any other nurpose aries: specitica.« authomizei © o

4.3 SVC HANDLER

4.3.1 First Level Interrupt Handler (FLIH)

Each SVC interrupt vectors to a separate entry point in

the First Level Interrupt Handler, in NS state. FLIH
stores the SVC number in a save area and branches to a
common SVC preprocessing routine. FLIH maintains a table
which controls the preprocessing for each SVC. All SVCs
except for SVC 3, require a parameter block. The address
passed in register 13 is checked to insure that it is
between UBOT and CTOP+2 and is on a fullword boundary.

The end of the parameter block is checked except for SVC 2
which may have different length parameter blocks. FLIH
then makes entry in the system journal and checks the table
for the entry state required by the requested SVC executor.
If the executor requires NS entry, FLIH branches to executor;
if the executor requires RS entry, FLIH calls the task
management routine TMRSIN to pass control in RS state. On
entry to an executor, register 9 contains the TCB address
of the invoking task and registers 14 and 15 contain the
resume PSW.

4.3.2 8VC 1 Executor (SVCl)

Entry to the SVC 1 executor is in NS state. The executor
checks the Logical Unit (LU) specified and if it is valid

it loads the address of the DCB (for a device) or

FCB (for a file) from the TCB of the invoking task. Since
the fields of the DCB or FCB used by SVC 1 are identical,
processing is done independent of the device or file being
referenced. SVC 1 checks the validity of the request for
the device or file by comparing the request against the
attributes in the TCB LU table (for data transfer requests)
or the attributes field of the DCB/FCB (for command function
requests). Requests to the null device are returned with
normal status immediately. If any errors are detected in
the request, the appropriate status is placed in the parameter
block and control is returned to the invoking task.

If the request is for wait only or test I/O complete, SVC 1
processes the request in NS state by loading the address of
the leaf in the EVT associated with the device from the DCB.
If the connected TCB ID of the leaf is different from the
TCB ID of the invoking task, normal status is returned
immediately to the task. If the TCB ID is the same, then
the task has I/O proceeding on the specified device. If

it is a test I/O complete request, SVC 1 sets the condition
code to X'F' and returns; if it is a wait only call, SVC 1
checks to see if the incomplete I/O is to the same LU as specified
and, if not, returns normal status to the task. If the I/O

This information is proprietary and s supplied bv INTERDATA for the sole
purpose of using and maintaiming INTERDATA supplied equipment and shall
not be used for any other purpos: unless spectfically authorized in wr.ting.

is to the same LU then SVC 1 places the task into I/O wait
for the I/0 request by setting the I/0 wait bit in the TCB
wait field, removing the TCB from the ready chain, storing
a function code of X'08' (wait only) in the function code
field of the DCB and exiting to the task manager routine
TMDISP.

SVC 1 then enters either RS state (requests for device or
unbuffered file) or RSA state (request to a buffered file)
depending on the state of the buffered access method flag
in the flags field of the DCB/FCB. It then processes

the information in the parameter block.

For data transfer requests, SVC 1 checks the validity of the
start and end addresses and if the request is not for a
buffered file, it calls the event service handler routine
EVQCON to connect the task to the EVT entries pointed to by
the leaf address in the DCB for requests with the unconditional
proceed bit reset, or it calls the routine EVCON for requests
with unconditional proceed set. If EVCON cannot connect

the task to the requested path in the EVT it returns a non-
zero condition code to SVC 1 which sets the condition code

in the resume PSW in the RS save area of the TCB to X'F'

and branches to the task manager routine TMRSOUT to return
control to the invoking task. If EVQCON cannot connect the
task to the requested path, it puts the task in connection
wait. When the task is connected, control returns to the
instruction following the EVQCON call in SVC 1. If the

leaf address in the DCB is zero, no connection is performed.
After processing the required connections, SVC 1 stores the
start, end and random address from the parameter block in

the DCB and branches to the driver or file manager entry point
specified in the DCB/FCB. If the request is for I/0 and
wait, before branching to the driver, SVC 1 sets the I/O wait
pending flag in the status field of the TCB. Upon exit from
the driver or file manager initialization routine, the task
manager puts the task into I/O wait. For command function
requests, SVC 1 performs a call to EVQCON for all device
requests. For all requests, SVC 1 then passes control to the
command function entry point specified in the DCB/FCB.

4.3.3 8SVC 1 Termination (IODONE)

All drivers and file manager access routines exit to IODONE
to complete I/O requests. IODONE is entered in ES state (IODONE)
or RS state (IODONE2) with a DCB address and a leaf address.

TODONE laces the gtatus returned in the DCR into the parameter

o)
VisULNL AT O L9 § X =l LR LD AT W siT —ias B S “ilT poL it LTS

block if there is one, calls EVDIS to disconnect the task from
the specified leaf and its upper nodes, removes the I/0O wait
condition if this call is an I/0O and wait call, and branches to
EVRTE if called from termination routine of a driver, or to
TMRSOUT if called from an initialization routine at entry IODONEZ2.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

4,3.4 SVC 2 Executors (SVC2 and SVC2.xx)

SVC 2 requests are all vectored to the SVC 2 second level
interrupt handler SVC2 for common preprocessing. SVC2
maintains a table of wvalid SVC 2 codes indicating the type
of preprocessing required and the entry state required by
the individual executors. SVC2 checks the validity of

the code and then performs validity checking on the register
specifications passed in the parameter block if necessary.
For SVC 2 codes that require parameters to be passed in
registers, SVC2 assumes 2 formats of the parameter block:

0 [T 2 3
OPTIONS CODE X'0! REGISTER #

for parameter blocks requiring one register specification, and:

0 1 2 3
OPTIONS CODE REGISTER # REGISTER #

for parameter blocks requiring two register specifications.

SVC2 then branches to the SVC 2 executor for the specified
code for NS entry executors, or branches to the task manager
routine TMRSIN to enter RS entry executors.

4.3.5 8SVC 3 Executor (SVC3)

SVC3 is entered in NS state from the first level interrupt
handler. 1In NS state, SVC3 stores the specified return code
in the System Pointer Table and goes down the connected leaf
chain pointed to by the TCB and halts any read requests by
calling the routine TIMEOUT (see Section 7.6). It then
enters RS state for the rest of processing. SVC3 issues

an SVC 7 checkpoint call for each LU in the TCB. This
insures that all writes have been normally completed, that
the timeout of all reads is also complete and that all files
are in a safe condition. It then puts the return code in the
end of task message and sets up the TCB and the message
function code so that the task is put into I/O wait while

the message is printed on the system console and that control
is returned to the SVC 3 processor in NSU state on completion
of the message. After issuing the end of task message, SVC3
removes the TCB from the ready chain, sets the dormant bit

in the TCB wait field and zeroes out the TCB except for the
ID, priority, number of LUs and options fields. SVC3 then
exits to the task manager to wait for the system task to become
ready.

This information is proprietary and is supplieri by :NTERDATA for the sole i
purpose of using and maintaining INTERDATA supplied equipmert and shalt
not be used for any other purpose uniess rpecificaily authorized ' wiiting |

4.3.6 SVC 5 Executor (SVC5)

Entry to fetch overlay request is in NS state. SVC5
prepares the system task for the overlay request by storing
the option specified in the command processor loader request
word, SVC5 then picks up the entry in the task's LU table
specified by the LU in the SVC 5 parameter block and stores
the entry in the LU 1 slot of the system task. This effec-
tively assigns the overlay device or file to the system task
temporarily. It then puts the address of the TCB dispatch
save area slot for register 12 into the field in the command
processor which points to the word that is filled with the
status of the load. SVC5 sets the loader wait bit in the
wait field of the invoking task's TCB and removes the task
from the ready chain.

The task manager routine TMRSIN is called to save the resume
PSW and user registers in the RS save area of the TCB and

to return control to SVC5 still in NS state. SVC5 stores

the address of the parameter block into the register 13 slot
of the TCB dispatch save area and stores a PSW with RS

status and a location counter of entry RSVC 5 in the dispatch
PSW save area. It then branches to a secondary entry point
in the dummy driver (see Section 5.7) in IS state to

schedule the system task. The system task performs the

load of the overlay and upon completion stores the status of
the load in the user task register 12 slot in the TCB dispatch
save area, removes the loader wait condition from the user
task and puts it back on the ready chain.

When the user task becomes top of ready chain, the task
manager dispatches it by loading the user register set from
the TCB dispatch save area and loading the resume PSW in
the dispatch PSW save area. This, in effect, resumes the
task at entry point RSVC 5 in SVC5 with the status of the
load in register 12. SVC5 stores the status into the
parameter block and returns to the user task via TMRSOUT.

SVC 7 is discussed in Chapter 6.

4.3.7 ADCHK

All SVC executors check any addresses passed to insure that
the address is between UBOT and CTOP+2. This prevents the
user task from overwriting the system routines or file control
blocks through the use of an SVC. It is also necessary

for 05/32 MT compatibility. This checking is performed by

the executive routine ADCHK. Entry to ADCHK is in NS or RS
state. 1If the address checked is not valid, the SVC execution
routine branches to MEMFAULT (from NS) or MEMFLTRS (from RS)
to process the error (see Section 4.7). In 0S/32 MT the
address is checked to insure it is within the task program
space and also for writability; in 0S/32 ST all addresses

are writeable.

This information is proprietary and is supplied Ly INTERDATA for the sole !
purpose of using and maintaining INTERDATA supplied equipment and shall
not be wused for any other purpose unless specifically asuthor.zed in writing. |

4.4 SYSTEM JOURNAL

0S/32 ST provides a facility for recording significant

events in the system in a system journal. The journal is

a standard circular list with a length specified at Configuration
Utility Program time. The address of the journal is kept

in the System Pointer Table. Entries to the journal are

made from system routines by executing a BAL instruction to

the journal routine followed by a halfword journal code. Each
entry in the journal consists of five fullwords of information

in the following format:

WORD 1 TCB ID X'0' JOURNAL CODE
WORD 2 CONTENTS OF REGISTER 12
WORD 3 CONTENTS OF REGISTER 13
WORD 4 CONTENTS OF REGISTER 14
WORD 5 CONTENTS OF REGISTER 15

where TCB ID is the ID of the current task at the time of the
journal call, and the last four words are the contents of
registers 12-15 at the time of the journal call. Entry to
the journal routine must be in NS state. When the journal
list is full, the journal routine resets the slots-used

field and reuses the list, thus maintaining the most recent
entries. For a complete list of journal codes made by the
system, see Chapter 10.

In order to allow the system task and other Executive tasks
(see Chapter 9) to make journal entries from other than

NS state, an SVC 2 code 0 call is provided. The parameter
block for SVC 2 code 0 is:

+0 OoPT X'0' JOU RNAL CODE
+4 VALUE 1
+8 VALUE 2
+12 VALUE 3
+16 VALUE 4

where values 1-4 are stored in the second through fifth word
of the journal entry. The journal code is OR'd with X'8000'
before being stored in the journal to identify it as a user
code. This SVC is only valid from a task executing in
privileged mode (bit 23 of the PSW status reset) .

4.5 EXECUTIVE MESSAGES

Since the executive routines cannot issue SVC calls, all
messages output by the executive are processed by the system
task (command processor). This is accomplished by connecting
to the dummy leaf (see Section 5.7), storing the start and
end address of the message in the dummy DCB and branching

to the dummy driver. All messages are processed in this way

by branching to the executive message subroutine EXECMSG.
This information is proprietary and is supplied by INTERDATA for the sa.il

purpose of using and maintaining INTERDATA supptied equipment and shall
not be used for any other purpose unless specifically authorized v writing

4-16

4,6 CRASH HANDLER

Throughout 0S/32 ST are checks for normally impossible
states of the system, such as invalid leaf address on the
system queue or illegal instruction interrupt in system
code. When such a condition is found the system brings
itself to a halt before further destroying the conditions
that led up to the impossible situation. This is done by
entering the Crash handler.

The Crash handler is entered by issuing a SINT instruction

to device number 0 followed by a halfword crash code. The
first entry in the ISP table is set by SYSINIT (see Section 4.8)
to branch to the Crash handler, CRSEP. CRSEP on entry loads
the address of the last entry made to the system journal into
register 6 of the executive register set, displays the crash
code on the display panel and loads a PSW with only the wait
bit and the machine malfunction enable bit set, thus stopping
the system in an uninterruptable state. See Chapter 10 for

a complete list of crash codes and their meanings.

4.7 INTERNAL INTERRUPT HANDLERS

The internal interrupt handlers process the interrupts
generated by the microcode for illegal instruction, arithmetic
fault, memory parity error, power fail and power restore. In
addition, this package processes illegal SVC calls and

invalid addresses passed in SVC calls.

4.7.1 Machine Malfunction Handler (MMH)

On detection of memory parity error, power fail or power
restore, the Machine Malfunction Handler (MMH) is entered.
Entry is in a state with all interrupts masked off. The
condition code is used to determine the type of interrupt
and the appropriate routine is entered.

On parity error in the system, the Crash handler is entered.
If the parity error is detected while the user task is
executing, MMH loads a pointer to the memory parity error
message and enters the illegal instruction handler for
common interrupt processing.

On power fail detect, MMH tests an internal flag to see if

a power restore sequence was in execution at the time of

the power fail. If this is so, MMH simply loads an enabled
wait PSW to wait for the power restore interrupt. If a

power restore sequence was not in execution, the executive

and user register sets are saved in an internal save area,

the machine malfunction old PSW is loaded from reserved memory
and stored in an internal save area. The 0OS does not use

This information is proprietary and s supplied by INTERDATA for 'he sole
purpose of using and maintaining INTERDATA suppiied egu.pm.nt a:d shal!
not be used for any other purpose uniess specifically authoriied moweit B

the Power Restore Auto/Restart save area since multiple power
fails would destroy the original state of the system. MMH

then sets an internal flag to indicate a power restore sequence
is in effect and loads an enabled wait PSW to wait for the
power restore interrupt.

On power restore detect, the Machine Malfunction Handler
enters IS state, clears the Display Panel and loads the
address of the TCB table. For each TCB, all active I/O is
halted by passing the address of all leaves on the connected
leaf chain pointed to by the TCB to the time-out routine

(see Section 7.6). The pause pending bit is set in the

user TCB if it is not dormant. MMH then issues a message to
the system console stating that a power restore has occurred
and that all peripherals must be reset. This is necessary
primarily due to the fact that on a true power fail/restore
sequence the 2.5 and 10 Mbyte disc systems come up in a write
protected state, making it impossible to retry any active
disc I/0. When the operator has reset all necessary peripherals
and typed GO, MMH reloads the register sets from the internal
save area, resets the power restore sequence in effect flag
and reloads the machine malfunction old PSW from the internal
save area.

MMH issues the power restore message from IS state to insure
that no interrupts from the timed out I/O can occur before
the peripherals have been reset. In order to achieve this,
MMH sets up a special CCB, initializes the status field of
the DCB to -1, enters the Teletype Keyboard/Printer driver
first ISR and sits in a loop testing the status field.

When the cleanup ISR is finished, it sets the status field
of the DCB to zero. On completion of the I/0; MMH removes
from the system queue the address of the console leaf which
was put there by the cleanuy ISR, in order to prevent the
scheduling of a termination routine on exit from the machine
malfunction handler. The operator reply is read from the
system console in the same manner.

4.7.2 1Illegal Instruction Handler (IIH)

Entry to IIH is in NS state. IIH contains common processing
for illegal instruction, illegal SVC call, invalid address
passed in an SVC call and memory parity error. Each error
causes control to be passed to a separate entry point which
loads a pointer to the appropriate message and branches to
the common interrupt processing.

This .nformation 1s prop-etary and i< supphed by INTERDAT S i1 the soie
purpose of using and maintain'ng INTERCAT 1+ supplied cquipment and shall |
not be used for any other purpose unless specifically authorizea n writing.

4-18

Common interrupt processing passes control to the crash
handler if the error is detected in system code. If the
error occurred during user task execution, the pause pending
bit is set in the user TCB and the message is scheduled by
branching to the executive message routine. On exit from
the executive message routine, the task manager routine
TMRSOUT detects the pause pending bit and puts the task

into console wait after issuing the task paused message.

An illegal SVC call enters the internal interrupt handler

at entry ISH, if the error is detected in NS state, or at
entry ISHRS, if the error is detected in RS state. Invalid
address passed in an SVC call enters the internal interrupt
handler at entry point MEMFAULT, if the error is detected in
NS state, or at entry MEMFLTRS, if the error is detected in
RS state.

4.7.3 Memory Fault Handler (MFH)

Memory fault interrupts should not occur in 0S/32 ST since
the Memory Access Controller (MAC) is never enabled. A
memory fault indicates a hardware failure so 0S/32 ST enters
the Crash handler on this interrupt.

4.7.4 Arithmetic Fault Handler (AFH)

Entry to the Arithmetic Fault Handler is in NS state. If

the error occurred in the system, the Crash handler is
entered. If the error occurred during user task execution,
the pause pending bit is set in the status field of the

user TCB unless the Arithmetic Fault Continue bit is set

in the options field of the TCB. 1In either case, the
interrupt is logged by loading a pointer to the arithmetic
fault message and branching to the common interrupt processing
in IIH.

4.8 SYSTEM INITIALIZATION

System initialization is performed by the routine SYSINIT.

It is entered whenever the system is started at location

X'60'. On entry, the status of the PSW is unknown, so the

first operation performed by SYSINIT is to put the Processor
into an uninterruptable, privileged state. The Display

Panel is cleared, the ISP table is set to ignore all interrupts,
FBOT is reset to MTOP, all DCBs are reset to initial values,

the EVT is refreshed, the TCBs are reset, and SYSINIT puts the
system TCB on the top of the ready chain and branches to

the Command Processor initialization routine in the ET state.

This information is proprietary and s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment anc shali
not be used for any other purpose unless specifically authorized n writing.

Warmstart capability is supported by SYSINIT and the
command processor initialization routine. If location
X'64' contains a non-zero value, SYSINIT puts the

processor into an uninterruptable, privileged state,

clears the Display Panel, times out the read outstanding

to the console device, if any, puts the system TCB at the
top of the ready chain, sets pause pending in the user task
if it is active and branches to the Command Processor
initialization routine in ET state. This has the effect of
restarting the Command Processor as on system initialization
but the user task is in a state as if a PAUSE command had
Leen issued. A warmstart should not be attempted if the
system crashes in processing a command.

Tius intarmation is proprictary and s suppiied by INTE
purpose of using and maintaining INTERDATA suppled equipmeaent s
not be used for any other purpose uniess specificary othsed o an

4~70

CHAPTER 5

THE COMMAND PROCESSOR
5.1 INTRODUCTION

The Command Processor is the highest priority task in

0S/32 ST. It is an Executive Task (see Chapter 9), and

it is the medium through which the operator communicates

with the Operating System, and controls the system environment.
Whenever possible, the Command Processor tries to perform
functions by executing Supervisor Calls. The Command Processor
is also responsible for control of the system console, the
resident loader, and the Command Substitution System (Css) .

5.2 COMMAND PROCESSOR INITIALIZATION (COMMAND)

After System Initialization has been performed, the Command
Processor is entered. The mnemonic of the console device is
obtained from the Initial Value Table (IVT) and the Device
Mnemonic Table is searched for a matching mnemonic. When
found, the device's read and write counts are forced to -1 and
it's keys to X'FFFF', thereby making the device unavailable to
any other task in the system (see Section 5.7, System Console
Device). The OS identifier is now printed. If a "warm start"
is in progress, the Command Processor merely prompts the user,
however if a "cold start" is taking place, the RESET command
is executed.

5.3 COMMAND INPUT/PARSING (COMMANDR)

The Command Processor reads commands from the system console

or from the device/file indicated by the current CSS level

(see Section 5.5, CSS). A single command, or multiple

commands may appear on a given input line. A new command line
is not input/requested until all commands on the current line
have been executed. The Command Processor executes all commands
on a line until it hits an invalid command, and all commands on
a line after an invalid command are ignored.

5.3.1 Command Prompts

If input to the Command Processor is from the system console
device, and no task is active, an "*" is output to

indicate to the operator that the Command Processor is ready
to receive another input line. If a task is active, the
Command Processor does not prompt with the "*", but still
accepts input from the console. While a task is active, if
previous command input was from a CSS file, the processing

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized 1n writing

of that file is suspended until the task goes to
End-of-Job. During the interval that the task is active,
the console responds to command input.

5.3.2 Command Parsing

After the line is read, it is expanded (see Section 5.5, CSS),

and logged (see Section 5.4.3, Set Log). This is true unless
one of the BUILD commands is in effect, (see Section 5.5.4,
BUILD). After the logging, a scan is made of the command

line for the first non-blank, non-terminator. Note that the
Command Processor uses Register 1 as the pointer to the
current character being processed, and that this register is
never used for anything else. When the first non-blank,
non-terminator is found, it is compared against the Command
Mnemonic Table (COMANTAB). If it is not found and there is
CSS present in the system, the command is assumed to be a

CSS call (see Section 5.5, CSS), or else a MNEMonic error has
occurred (see 5.3, ERROR HANDLING).

A check is made to see if any IF statements have set the

"skip" flag (see Section 5.5.3, IFs). If so, and if this
statement is an IF, then the IF count is incremented, and a
new command is searched for. If the statement is an $ENDC

the IF count is decremented. If it is a $TERMJOB, it is also
executed.

The normal path makes a "user journal entry" (X'8001'), and exits
to the executor.

5.4 COMMAND ERROR HZANDLING (CMDERROR)

When an error in syntax, or an invalid parameter, or a number
of other parsing errors occur, the Command Processor enters
the error handler. All entries are made via a BAL on UC, the
next 4 bytes after the BAL contain the error mnemonic. An
error message is constructed of the form:

XXXX-ERR POS = XX......

The position field attempts to display the last parameter
parsed. It may not always be meaningful. The return code is
set to 255. If the JOB flag indicates a $JOB is in effect,
the JOB "skip" flag is set to indicate all statements until a
STERMJOB are to be skipped. All CSS levels are closed down to
the level of the S$JOB.

If an I/0 error or SVC7 error is encountered while processing
a command, additional information on the error is supplied.
In the case of an I/0 error, or SVC7 error, the error message

This information 1s proprictary anrd is supplied by INTERDATA [or the sowe
purpose of using and ma:rtaiming INTERDATA supplied equ:pment and shaii
not be used for any nther putpose unless spectfrculiy authorized i owrit.ng

J
¥
N

XXXX-ERR TYPE=XXXX POS=XX.....

where TYPE indicates the error type (DU, NAME, BUFF, PRTY,
etc.). If an SVC7 error is an I/0O error, then

XXXX-ERR TYPE=IO TYPE=XXXX POS=XX.....
is displayed, where the second type field indicates the I/0
error type.

5.5 COMMANDS

5.5.1 Task Related Commands
The task related commands in 0S/32 ST are: START, CANCEL,
PAUSE, CONTINUE, OPTIONS, EXPAND, ASSIGN, and CLOSE.

START - obtains the start location, moves in the starting
"options' above UTOP and calls TMSTART.

CANCEIL - Closes all CSS levels and calls CANEOJ.
PAUSE - Calls S21PAUSE to put task in Console wait.

CONTINUE - calls TMREMW to remove the console wait and put
user task back on ready chain.

OPTIONS - used to set/reset the options bits in the user
TCB options field (TCB.OPT).

EXPAND - used to increase the value of CTOP. It merely
executes an SVC 2,20.

ASSIGN - used to assign a file/device to a user logical unit.
It defaults access privileges to SRW. Initially, it assigns
the device/file to Command Processor LU3. If the task is in
user state (UT) then the command processor temporarily puts
itself in UT state. After a successful assign the command
processor LU3 is copied to the appropriate user LU and the
Command Processor LU3 is zeroed out.

CLOSE - Copies the user LU to Command Processor LU3, and puts
Zzero in the user's LU entry, then executes an SVC 7 close.
5.5.2 Device/File Commands

The device/file related commands are: ALLOCATE, DELETE,
INITIALIZE, MARK, RENAME, and REPROTECT.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized 1n writing.

ALLOCATE - Builds an SVC7 parameter block from data as
defined in the input line. If type is chained, it defaults
LRECL to 126 and BKSZ to 1. It then executes an SVC7.

DELETE - Executes an SVC7 with the File Descriptor specified.

MARK - This will mark a device on or off line. If a non-bulk
device, the on-line bit is merely set/reset. If the device
specified is a bulk device (disc) then:

MARK ON: Reads the volume descriptor and moves the
directory pointer to the DCB, and the volume ID to
the VMT.

MARK OFF: Flushes the bit map buffer and directory
buffer, and resets the presence bits. Clears the VMT
entry name portion.

INITIALIZE - may (1) change the name of a disc pack,

(2) save an OS image on a disc pack, (3) check a disc for

bad sectors, build a clean descriptor and bit map.

(1) In the case of just changing the pack name, the VD

is read, the new name stored, and the VD rewritten.

(2) To save an 0OS image, if an OS image is currently present,
these sectors are released. The size of the 0S is computed,
and that number of sectors are allocated. The OS is written
out, and the address of the image is put into the VD.

(3) To clear a disc pack several operations are performed.
First, sector 0 is checked to see if it is good. 1If not, the
pack may not be used. Then an attempt is made to find enough
good contiguous sectors in which to put a bit map. These
sectors are then cleared to zero, marked as allocated in

the appropriate place, and written out. The information as to
the location of the bit map is now put in the VD, along with
the pack name, and the VD is written out.

The entire pack is now "read-checked". All sectors found to
be bad are now marked as allocated. If a bit map sector is
found to be bad (remember, bit map sectors have previously
been checked), the disc is considered bad.

TOTE

If both CLEAR and SAVE are present in the command, CLEAR
must precede SAVE.

RENAME - Executes an SVC 7 to assign the specified file/device
and an SVC 7 to rename it.

REPROTECT - Executes an SVC7 to assign the specified file/device
and an SVC7 to reprotect it.

This information ts proprietary and s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for zny other purpose unless specifically authorized in writing.

5.5.3 General Commands

The other commands are: BIAS, EXAMINE, MODIFY, RESET, SET,
DISPLAY, and VOLUME.

BIAS - read the BIAS value to be used by the EXAMINE and
MODIFY commands and saves it.

EXAMINE - gets the starting location and adds the bias. It
then checks for a "/" or ",". 1If a "/" is found, it gets the
ending address and adds the bias. If a "," is found, it gets
the number of halfwords to be displayed, and computes an ending
address from it. The contents of memory from the starting
location through the ending location inclusive is displayed,

8 halfwords per line, to the console/log device.

MODIFY - This command obtains the starting address and adds
the bias. Data is obtained from the command line as halfwords,
and is stored in successive memory locations.

RESET - Closes all user logical units. If the CLOSE option
is not specified, the default assignments are made.
CTOP, UTOP are set to initial values.

VOLUME - Sets up SPT.VOL for the default volume name.

SET - (A) SET CODE - put value in SPT.RC
(B) SET LOG - gets the file/device and assigns it to LU2.

If no file/device is specified, LU2 (current log) is closed.

If the COPY option is specified, then the copy flag is set.
This command causes all input lines to be logged to the

device specified. If the COPY option is specified, all input/
messages will also appear on the system console. If COPY

is not specified, system messages will not be logged to the
console.

DISPLAY: There are 3 DISPLAYs:

l. DISPLAY LU - This displays a list of all user LUs
that are currently assigned, and to what device/file
they are assigned.

2. DISPLAY PARAMETERS - This displays various system
parameters (number of logical units, task options, CTOP,
UTOP, etc.).

3. DISPLAY FILES - This displays the files on the
specified volume. It gets the pack ID, finds which
drive it is on and assigns the drive SRO. The extent

of display is then checked for. In the syntax "-" means
all, and hence ABC.- means any files with name ABC and
all extensions, or -.- means any file name and any extension.

This information is proprietary and s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

5-5

The directory is searched for a match and when found the
information for the file is displayed.

5.6 COMMAND SUBSTITUTION SYSTEM (CSS)

The Command Substitution System (CSS) is a means for the user
to create catalogued but dynamically variable command input
streams to perform a predetermined job. CSS consists of the
preprocessor and CSS commands.

5.6.1 Calling CSS (CSSTEST)

Whenever a command is parsed, and it is determined that

the command is not in the table of standard mnemonics,

then it is assumed that a CSS call is being made (true only
if CSS is in the system, as is this entire discussion). The
mnemonic is treated as a file descriptor, and an attempt to
assign the file/device is made. If the file/device does not
exist, and the file descriptor did not have an extension,
the extension of '.CSS' is appended, and an attempt is again
made to assign it. If it does not exist, a MNEMonic error
has occurred;

EXAMPLE: ABC is the command, an attempt is made to assign
ABC (default system volume) and if it does not exist,
ABC.CSS is assigned.

Since the Command Processor uses LUs 0-4 for its executors,
CSS files are assigned starting at LU5 (level 1 = LUS5,
level 2 = LU6, etc.). The pointer to the current buffer is
saved (in PTRSTACK) to be used by the preprocessor for
parameter substitution. The 1iddress of a new buffer (for
expansion) is also calculated.

[R e To == T-To o /T 3
JeDes PreproCessor/uXpansion (PR

After each command line is read, it is sent to the preprocessor
to be expanded. The preprocessor moves characters from the
input buffer to the appropriate expansion buffer. When an "@"
is encountered, CSS is alerted that parameter substitution is
needed. The number of @'s are counted to determine how many
levels back to go, and the parameter number is obtained. The
address of the appropriate CSS call is obtained from PTRSTACK,
and that call is scanned for the appropriate parameter. The
parameter is moved into the expansion buffer, and then the
moving of characters from the input buffer resumes.

This information s proprietery and s supplied by iNTERDATA for the sole_]
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any othei purpose unless soecdicall, authosoed i writing

— e O D A |

56

EXAMPLE:

CSS call - ABC PAR1,PAR2

FILE ABC - read - *INPUT LINE @1
- expands to - *INPUT LINE PAR1
- read -~ *@l1@2
- expands to - *PAR1PAR?2
- read - *XX@1lyy@2
- expands to - *XXPAR1YYPAR2

Whenever a request for substitution is made, and the parameter
does not exist, a null is substituted.

EXAMPLE: read *@@1ABC
expands to *ABC
@0 is a special parameter. A call for substitution of @O0

(or @@0, etc), will cause the file descriptor that called

the appropriate CSS level to be substituted. Substitution is
made of the file descriptor exactly as it appears in the call
(without default system volume, or .CSS extension).

5.6.3 Additional Commands

Several additional commands are supplied to allow the user
great flexibility in building CSS files and testing
conditions. They are $COPY, $NOCOPY, $CLEAR, $EXIT, $JOB,
STERMJOB, $SKIP, S$IFE, S$IFNE, IFG, SIFNG, SIFL, $IFNL, S$IFX,
SIFNX, S$IFNULL, $IFNNULL, $FNDC.

$COPY and $NOCOPY - These commands turn on ($COPY) or off
(SNOCOPY) the display of CSS command lines read from a CSS
file. They will or will not be listed depending on whether
$COPY or $NOCOPY is in effect. These 2 executors merely set/
reset a flag (CSSLIST) used by MSGLOG to determine whether to
print the line.

SCLEAR - This command terminates all CSS processing, closes
all CSS LUs, and returns the input function to the console.

$JOB; STERMJOB - These are used to delimit a given sequence
of input as a unit. If a $JOB is in effect and any command
error is detected, then all commands read are skipped until a
STERMJOB is read. $JOB merely saves the level number that
the $JOB appears on. S$TERMJOB resets the $JOB saved, resets
any IFSKIP that is set (see below).

$SKIP - If $JOB is in effect, causes all commands to be
skipped until a S$STERMJOB. It closes all CSS levels down
to the level the $JOB was on.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

5-7

SEXIT - This indicates that input from the current CSS level
is done and that the current CSS LU should be closed. Input
then begins from the next higher CSS level, or the console
if there are no higher levels.

SIFE SIFNE, $IFG, $IFNG, S$IFL, SIFNL - These commands pick

up the value specified in the operand field of the command,

and compare the current value of the return code to the value
on the line. If the compare satisfies the condition specified,
then the next statement is merely read. If the compare does
not meet the condition then IFSKIP is set, and no statements
are processed until a corresponding S$ENDC is found. If

IFSKIP is set, reading another $IF increments IFSKIP, each
SENDC read decrements it. When IFSKIP is 0, skipping is done.

SENDC - Terminator of a $IF (as described above). Parsing
one causes IFSKIP to be decremented.

$IFX, SIFNX - These two check to see if the file/device
specified by the operand exists. If the condition specified
is not met, IFSKIP is incremented. The fd is obtained, and
an attempt is made to assign it. The result returned by
SVC7 determines whether it exists. Success indicates it
exists, but certain errors also indicate the file exists.

SIFNULL, SIFNNULL - These check to see if the parameter
specified is null or not null. Since substitution has been
performed, the line is scanned for the next non-blank; if it
is a terminator, then the parameter was null.

5.6.4 Building CSS Files (BUILD, $BUILD)

BUILD and SBUILD are used to create a CSS file. BUILD copies
input lines to the file/device specified, $BUILD performs
substitution first. When a BUILD or $BUILD is encountered,

an attempt is made to ALLOCATE and ASSIGN the file specified
in the operand field. If it exists, it is assigned. The
BUILD flag (BUILDFLG) is then set positive, for a BUILD,

and negative for a $BUILD. Each time a line is read, if
BUILDFLG is set, BUILDDSP is entered. If $BUILD is in effect,
CSS expansion is done; if BUILD, no expansion is done. The
line is now checked for the special terminator either S$ENDB
or ENDB, and if it is found, then the BUILDFLG is reset.

If not, the line is then copied to the file/device and another
line is read.

5.7 LOADER

The resident loader is part of the Command Processor in 0S/32 ST.
It performs loads as directed by console command and also performs
overlay loading functions.

- P — T
Ttus information is proprietary and is supplied by INTERDATA for tne wole |
purpose of using and maimaining INTERDATA supplied eguipment end chalt
not be used for any other purpose unless specifically authorized it wniting. J

5.7.1 Common Loader (LOAD)

This command gets the file/device specified and assigns it to
LUl. It then obtains the impure and pure biases. If none
are present, it substitutes the value of UBOT for the

impure bias, and calculates the pure bias from the size of
the impure segment. The fullword loader or halfword loader
is then entered.

5.7.2 Fullword Loader (LOADFULL)

The loader is entered if the user task options specify fullword
mode at the time of the load. It reads records, does sequence
checks, checksum, etc. It loads only object programs. When it
is done, it sets up UTOP and CTOP.

5.7.3 Halfword Loader (LOADHALF)

The halfword loader loads 16 bit object programs. The halfword
loader does not run in halfword mode, it is part of the

Command Processor, and runs in fullword mode. It is entered

if the user task options specify halfword mode at the time

of the load.

5.7.4 Overlay Loads (LOADOVLY)

Before reading a new command line the Command Processor checks
a flag, LOADSTAT, to see if an overlay load is being requested.
If so, the LOADOVLY routine is entered. It calls the appro-
priate loader (LOADFULL, LOADHALF) to load the overlay.

5.7.5 Load Errors (LOADFAIL)

If an error is encountered while loading, a check is made to
see if an overlay was being loaded. If so, LOADSTAT contains
the location at which to store the error code. If not, a
message is built LDRX-ERR, and CMDERROR is called. If an
overlay is being loaded, TMREMW is called to remove the loader
wait condition.

5.8 CONSOLE HANDLING

The system console device is handled by a special interrupt
routine in 0S/32 ST. The Command Processor always has the
real device assigned to LUO. Tasks that try to assign a
device that has the console bit set, are instead assigned to
the dummy device. When an I/0O request is issued to this dummy
device, the dummy driver is entered.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

The dummy driver sets a flag to indicate to the Command Processor
that I/0 is being requested by a task to the console. The

dummy driver also times out any read to the console being performed
by the Command Processor, if no characters have been read.

When the Command Processor sees that I/0 is being requested

by a task (CMDPEND is non-zero), it performs the I/0 for the
task. It picks up the starting address, ending address,

and function code from the dummy DCB (DCBCMD). If a read is
requested, a ">" prompt is printed to indicate to the user

that a task is requesting data. The read is then executed.

If a write is requested it is performed. Any write is governed
by the current value of logging. Hence, if log is set with

no copy, the task's write goes only to the log device.

When the I/0 has been performed the Command Processor adds

an item to the System Queue for the dummy leaf (DMLV) in order
to schedule the termination phase of the dummy driver. The
termination phase merely calls IODONE.

5.9 THE BREAK KEY

e PREMY Vev on the corsole has snecial meering to 0S5/32 ST,

It will cause any Command Processor initiated output (a display,
EXAMINE, etc.) to be terminated. If a task write is in progress,
it will be stopped, a "*" prompt printed and a command line will
be read. After the command line has been read, the task write

is retried. It may be interrupted as often as desired and keeps
retrying until successful or until the task is cancelled. If
the task is cancelled, the write will still be printed, but

any queued writes are lost.

If a task is in read mode ("™ " has been printed) and Break
is depressed, a "*" is printed and a command line is read.
As above, when the command is executed, the read is retried,
until completion. If a task is cancelled while a read is
outstanding (a prompt has been interrupted by BREAK), the
read must be completed. Simply hit carriage return.

This information s proprietary and 5 supphed by INTERDATR far try s !
purpuse of using and maintainng INTERDATEA supplied equigarient wnu sha”! i
not be wicd for any other purpose unless specifically authorized in ot g

— —

CHAPTER 6

FILE MANAGEMENT SYSTEM

6.1 FILE HANDLER

The routines in this package include all the logic needed

to support the 0S/32 ST file management system. The File
handler is invoked by the SVC First Level Interrupt Handler
(FLIH) any time a task issues an SVC 7 supervisor call.

When an SVC 7 call is intercepted by FLIH, control is passed
to the SVC 7 Second Level Interrupt Handler SVC7. This
routine then decodes each function specified by the SVC 7
parameter block and invokes the necessary executors. The
SVC 7 executors contain routines to:

Allocate a new file
Assign a file or device to a logical unit
Change the access privileges of a file or device
Rename a file or device
Reprotect (change the protect keys of) a file or device
Close the assignment between a logical unit and a
file or device
Delete a file
Checkpoint a file or device
Fetch the attributes associated with a file descriptor

More than one function can be performed by a single SVC 7
request. Each executor that completes successfully returns

to SVC7 to determine if any other requests are still outstanding.
When all functions have been processed, control is returned to
the calling task via TMRSOUT. If any of the SVC 7 executors
encounter an error, the appropriate error status is returned

in the calling task's parameter block and control returns
directly to the task via TMRSOUT. These executors make use

of the following routines contained within the File handler:

A directory management package for maintaining information on
all currently allocated files.

A bit map management package which provides a method for
allocating and deleting files on direct-access volumes.

The file manager also contains SVC 1 intercept routines which
intercept all I/0 calls to a file.

6.2 VOLUME ORGANIZATION AND INITIALIZATION

~ny direct-access volume to be used within an 0S/32-ST
environment must be formatted by the STANDALONE DISC TEST
and FORMAT PROGRAM (06-122), or equivalent.

This information is proprietary and is supphed by INTERDATA fcr the :ole

purpose ot using and maintaiming INTERDATA supplied equiprrent and shall

not be used for any other purpose unless specifically authorizag .0 writang. l 6 l
B S - PR -

Since 0S/32-ST handles file allocations in multiples of

one sector, the arguments to this program must specify a
DEFSEC of 1. Once a volume has been formatted using this
procedure, it should not have to be formatted again unless

a hardware failure occurs on the volume. After a disc is
formatted, it must be INITIALIZEd, using the INITIALIZE
function provided as an operator command. The INITIALIZE
command will read-check each sector on the volume; any sector
found to be defective will be marked as permanently allocated.
INITIALIZE then creates a bit map and volume descriptor for
this volume.

A Volume Descriptor is shown in Figure 6-1. The Volume
Descriptor (VD) contains the volume name, a pointer to the
bit map and first directory block, and a pointer and the
size of an 0S boot loadable image, if one exists.

Volume Pointer to Pointer to Size Pointer to
Name lst Dir. 0S Image of 0OS bit map
Block

Figure 6-1l. Volume Descriptor

The size of the bit map is determined by the size of the volume;
each complete bit map sector represents 2048 allocatable
sectors on the volume. The final sector within the bit map
represents between 1 - 2048 sectors. A sector is marked as
allocated when the bit representing it is set; free when the
bit is reset.

The Volume Descriptor is pliced on CYLINDER 0, SECTOR 0;
the bit map may be located anywhere on the volume, since it
is pointed to by the VD.

6.3 DIRECTORY MANAGEMENT

A file directory is maintained as a chain of directory
blocks, where each directory block contains the following
fields (see Figure 6-2):

A chain field containing either a zero (indicating it is
the last block in the chain) or the logical block address
(sector) of the next block in the chain.

A file that has just been INITIALIZEd contains no directory.
The INITIALIZE logic sets the VD directory pointer (VD.FDP)
to zero.

|7Thss .nformation is proprietary and is supphied by INTERDATA fur tie ssle !

purpose of using and maintaining INTERDATA supphed equipment ard snall !
not be used for any other purpose unless specifically authorized n wmh\gj

First Directory Block

VD.FDP Chain Field L’/////l Chain Field
»
Entry #1 #1
Entry #2 #2
each block Entry #3 #3
contains
between 1 and 5
active entries Entry #4 #4
Entry #5 #5
Reserved
Chain Field ,_]| 0
#1
from 1-5
#2 active entries

Figure 6-2. Directory Example

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintamning INTERDATA supplied equipment and shall
not be used for any other purpose uniess specit-cally autharized in writing.

6.3.1 Directory Entry Creation and Deletion (ALLOD, RELED)

When the first file is allocated on a disc volume, a directory
block is allocated. The first entry represents the new file
and the remaining 4 entries are marked inactive and therefore
available for additional new files. Subsequent allocations
search the chain for the first unused directory entry and if
none is found, a new directory block is allocated. The first
directory block is always pointed to by the VD. If a file is
deleted, its entry is marked inactive. If all entries in a
directory block are marked inactive, the directory block is
released and the chain relinked. 1If all the directory blocks
are thus released, the VD.FDP field is again set to zero.

6.3.2 Directory Access (DIRLOOK, GETD, PUTD)

When a function is requested on a currently existing file,

the directory block containing the directory entry (DIR) for
the file must first be found via a call to DIRLOOK. The 1/0
routines used to read directory blocks into memory or to write
out modified blocks are GETD and PUTD.

When a new file is allocated, and one or more directory blocks
currently exist, the routine DIRLOOK searches each block until
an inactive entry is found. If all entries are marked active,
a new directory block is allocated as described above.

6.4 BIT MAP MANAGEMENT

Allocation of 0S/32 direct access files is in multiples of

one sector; the status (free or allocated) of each sector on
the volume is maintained in :he volume's bit map. When an
INITIALIZE command is entered, all non-defective sectors within
the volume are marked as free by resetting the corresponding
bit in the bit map. Then the VD and bit map are created; the
sectors they occupy are marked as allocated by setting the
appropriate bits. The INITIALIZE logic also provides a pointer
from the VD to the bit map (VD.MAP).

6.4.1 File Allocation and Deletion (GETSECTR, RELEB, GETB, PUTB)

When a request is received by the bit map management routines
to allocate a string of contiguous sectors, GETSECTR searches
the bit map for a corresponding number of bits that are reset,
thus indicating available sectors. Since allocations may span
bit map sector boundaries, one or more calls to GETB may be
required to read bit map sectors into memory. When enough
available sectors have been found in this manner, GETSECTR

then sets each bit in the bit map within this allocation. As
bit map sectors are modified, they are written back to disc via
PUTB. o

This information is proprietary and s supplisd by INTERDATA tor the so'e
purpose of using and maintairing INTERDATA suppiied vouipment and shan
not be used for any othcr purpose untess specifically authorzed i wiiting

When a file is deleted, the procedure is reversed by RELEB.
Each bit representing the allocation is reset, indicating
the sector is again available. GETB and PUTB may again

be invoked, to read and write the bit map sectors.

6.5 SVC 7 SECOND LEVEL INTERRUPT HANDLER (SVC7)

The FLIH transfers control to the SVC 7 driver routine, SVC7,
with two arguments, the address of the current TCB and the
address of the calling task's SVC 7 parameter block.

SVC7 processes the function code specified by the parameter
block from left to right. If the function code is initially
zero, the call is a FETCH Attributes. Otherwise, the function
code is saved in TCB.SYS, and each SVC 7 function specified
within it is performed by branching to the appropriate executor.
Each executor that completes successfully returns control to
SVC7. As each function is performed, the bit representing it
in TCB.SYS is reset, until each bit of TCB.SYS has been reset.
Control then returns to the calling task via a branch to the
Task Management routine TMRSOUT.

6.6 SVC 7 FUNCTION EXECUTORS

6.6.1 Allocate (ALLO)

The SVC 7 executor ALLO is called directly from SVC7 when
the function code in the parameter block specifies an allocate
operation.

The logic in ALLO proceeds as follows: The directory management
routines are called to insure that the specified file descriptor
is unique to that file, and establishes a directory entry for
the file being allocated. For a contiguous type file, the
complete file allocation size is established at allocation time;
this is performed by the bit map management routines. Since a
chain file is open-ended and has no predefined size, no allo-
cations are performed on behalf of a chain file at allocation
time. The necessary initial information is established in the
directory for both file types. Control returns directly to

SVC7 upon the successful completion of ALLO.

6.6.2 Assign (OPEN, OPEN.DEV, OPEN.CO, OPEN.CH)

The SVC 7 executor OPEN performs all common assign processing
for direct and non-direct access devices. OPEN establishes
the validity of the logical unit being assigned. If the OPEN
function is being performed upon a non-direct access device,

This information 1s proprietary and :s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized :n writing.

OPEN transfers control to OPEN.DEV which completes any necessary
validity checks, using the subroutines described in Section
6.6.10, and sets up the entry in the LU table to contain the

DCB address and device attributes. If the device being opened
is a direct access device, OPEN completes the assignment

process itself and places the DCB address and device attributes
in the LU table. Otherwise, control is transferred to OFEN.CO,
if the file being assigned is a contiguous file, or OPEN.CH,

if it is a chain file. In either case, the first event to occur
is a call to the memory management routine, GETFCB, to allocate
a File Control Block (FCB) within dynamic system space.

OPEN.CO and OPEN.CH also obtain current control information
about the file from its directory entry and move this to the
FCB.

OPEN.CH positions the file to the requested data block and
allocates a new block for data via the bit map management
routines, if the file is being opened with write privileges.

Upon successful completion, both OPEN.CO and OPEN.CH set up
the entry in the LU table to contain the FCB address and a
file attribute byte, which indicates the allowable data
transfers to the file.

All OPEN processing successfully terminates by returning
directly to SVC7.

6.6.3 Change Access Privileges (CAP)

The SVC 7 executor, CAP, performs the function of changing
the access privileges associated with a given logical unit.
The logical unit can be assijned to a file or device. CAP
is a two pass operation.

On pass one, the routine insures that the new access privileges
are legal, but makes no modifications to any control blocks.
When pass one has completed successfully, the routine proceeds
to pass two, this time making updates to all required control
blocks to reflect the new access privileges. This requires
modifying the write and read count fields in the DCB or FCB
(DCB.WCNT, DCB.RCNT, FCB.WCNT, FCB.RCNT) to reflect the

current access privileges. The current access privileges
associated with a file are reflected in the WCNT and RCNT
fields of the control block in the following manner:

WCNT/RCNT = 0 implies no task having write/read privileges

WCNT/RCNT = -1 implies one task having exclusive write/read
privileges

WCNT/RCNT = +n implies n tasks sharing write/read privileges

Tius information is proprietary and s supplied by INTERDATA tar the sole l
purpose of using and maintaining INTERDATA supplied equiprment and shall I
not be used for any other purpose unifess specifically autherized o whiting.

6.6.4 Rename (RENAME)

RENAME is the SVC 7 executor that changes the name of a

file or device. If the rename function is directed at a
device, RENAME insures that the new name does not currently
exist in the Device Mnemonic Table (DMT) and then replaces

the device's previous name in the DMT with its new name.

To RENAME a file, the procedure is similar except it is the
directory that is checked for a duplicate name. The directory
management routines are used to read the directory, search for
a name match, and rewrite it with the new file name. RENAME
returns to SVC7 upon successful completion.

6.6.5 Reprotect (REPRO)

The SVC 7 executor, REPRO, contains the logic to modify the
protect keys associated with a given LU. The LU can be
assigned to a file or device. The protect keys associated
with a device are kept in its DCB (DCB.WKEY, DCB.RKEY); the
protect keys associated with a file are kept in its directory
entry (DIR.WKEY, DIR.RKEY). A file or device may be uncon-

ditionally protected (Keys = X'FF'), unconditionally unprotected
(Keys = X'00') or conditionally protected with Write, Read
Keys between X'0l1' and X'FE'. The logic in REPRO insures that

the new protect keys are not in violation of the former

protect keys, and updates the control block (DCB or Directory)
with the new protect keys. Control returns to SVC7 for further
SVC 7 processing.

6.6.6 Close (CLOSE)

The purpose of the CLOSE executor is to disconnect an open
logical unit from a file or device. The logic of CLOSE insures
that the given LU is currently assigned.

If the LU was assigned to a device, the read and write count
fields in the DCB are modified as follows:

1. if old WCNT,RCNT = -1, new WCNT,RCNT = 0
(previously one exclusive user)

2. if old WCNT,RCNT = 0, new WCNT,RCNT = 0
(implies there were no users of this privilege)

3. if old WCNT,RCNT = n, n) 0, new WCNT,RCNT = n-1
(previously n shared users)

If the LU is assigned to a file the WCNT,RCNT fields in the
directory and FCB are updated as specified above. A test is
then made to determine if the FCB should be released or if

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specificaily authorized in writing.

it is being shared. (Current file implementations preclude

the possibility of sharing FCB's. The logic is included in

CLOSE for future use). If the FCB is not being shared, its
memory allocation is returned to system space by a call to

the memory management routine, RELEFCB. The directory management
routines are then used to update the directory with the
information about the file which was in the FCB. CLOSE finishes
by setting this LU's entry in the LU table to zero and exiting

to SVC7.

6.6.7 Delete (DELETE)

The DELETE executor is used to delete contiguous and chain
files; it has no meaning with regard to devices and will
generate an error if an attempt is made to delete a device.
The logic in delete requires dynamic system space; this is
obtained by the memory management routine GETFCB. A file is
deleted by releasing its allocated storage on the volume
containing it via the bit map management routines and by
relinquishing its directory entry via the directory management
routines. Finally, the system space is returned via a call
to the memory management routine RELEFCB. DELETE returns
control to SVC7 on completion.

6.6.8 Checkpoint (CHECKPT)

The SVC 7 executor CHECKPT contains the logic to checkpoint to
an LU; the LU may be assigned to a file or a device. If the
checkpoint function is directed to a device, a subroutine is
invoked to perform an SVC 1 I/0 wait only operation on the
device. To checkpoint a file, all current information about
the file is moved from its !CB to its directory entry. The
bit map and directory management routines are used to insure
that the bit map and directory on the volume reflect the current
file allocations. A chain file is also positioned to read
random mode using the chain file reset routine, RESET.CH,
described in 6.7.2. CHECKPT exits to SVC7.

6.6.9 Fetch Attributes (FETCH)

The purpose of the FETCH executor is to obtain the attributes
associated with the file or device assigned to a given LU.
The device/file attributes, device code, and name are moved
from the DCB/FCB to the task's SVC 7 parameter block. FETCH
returns directly to the calling task via the task management
routine, TMRSOUT.

. - " - -
This nformation s proprietary and is supplied by INTERDATA tcy wne cole

purpose of using and maimntaining INTERDATA supplied equipmend W oshand
not be used for any other purpase uniess specificaily authorzed o wrnitiry

6.6.10 SvC 7 Integrity Checking Subroutines

This section briefly describes the integrity checking subroutines
used by the SVC 7 executors:

1. APCHECK - Verifies the legality of the requested
access privileges; converts the requested access
privilege to a numeric quantity, to be saved in
the WCNT and RCNT field of the control block.

2. LUCHECK - determines if a given LU is assigned, and
picks up its LU entry from the LU table.

3. DMTLOOK/VMTLOOK - searches the DMT/VMT for a given
device/volume.

4. FDCHECK - checks the syntax of a given file or
volume name.

6.7 SVC 1 INTERCEPT ROUTINES

When the SVC 1 processor (SVCl) determines that an SVC 1l call
is directed to a file, the file management SVC 1 intercept
routines are entered to process the request.

6.7.1 Contiguous File Handler

The contiguous file handler package consists of the following
two routines:

CONTIG - processes data transfer requests to a contiguous
file

CMD.CO - processes command function requests to a
contiguous file

6.7.1.1 Data Transfer for Contiguous Files (CONTIG)

The routine CONTIG is entered directly from SVCl; the length
of the data transfer request is computed and the random
address is obtained either from the FCB random address (for

a random I/0 request) or from the FCB current sector pointer
(for a sequential I/O request). CONTIG copies the FCB infor-
mation into the DCB and if the I/0 request is a read or write,
CONTIG exits by transferring control directly to the disc driver.
Tf the I/0 request is a test and set (both read and write bits
set in the SVC 1 function code), CONTIG enters RSA state,
moving the RS save area to a save area in the FCB via TMRSRSA,
and then modifies the following fields in the TCB:

This infermation s proprietary and is suppled by INTERDATA toi the sole
purpose of uwry ard mamtaining INTERDATA supplied efquipiment o d shall
1ot pe used for ary other purpose unless speciiically authorica

VOt

TCB.RPSW - the location field of the resume PSW is
set up to contain a secondary entry point
within CONTIG

TCB.RGPR - the general purpose register save area is
set up to contain the current values of user
register set.

The routine then transfers control to the disc driver for

the read portion of the test and set operation. By modifying
the TCB.RPSW and TCB.RGPR fields as specified above, upon
termination of the read the disc driver returns to CONTIG at
its secondary entry point. CONTIG then processes the remainder
of the test and set operation itself. If a write is to be
performed (the first halfword of the buffer read contained a
X'0000'), CONTIG does the write by issuing an SVC 1 WRITE, WAIT
call. Control is returned to the calling task upon successful
completion of CONTIG via the task management routine, TMRSAOUT.
If CONTIG receives an EOM status following an I/O operation,
EOM status is saved in the FCB and control is returned to the
task by branching to IODONE2 to complete the request.

6.7.1.2 Command Requests to Contiguous Files (CMD.CO)

The command function intercept routine for contiguous files,
CMD.CO, contains six command executors. Each executor and
its function is briefly described below:

Rewind (CMD.REW) - Set current sector (FCB.CSEC) in the
FCB to 0 and return via a branch to IODONE2.

Backspace Record (CMD.BSR) - Decrement FCB.CSEC by 1,
enter RSA state and issf 1e an SVC 1 read of new current
sector to check for any I/0 problems. Exit to TMRSAOUT.

Forward Space Record (CMD.FSR) - Increment FCB.CSEC by 1
and proceed as 1in CMD.BSR.

Write End of File (CMD.WEOF) - Increment FCB.CSEC by 1,
enter RSA state and write a pseudo-file mark (X'1313')
at that random address via an SVC 1 WRITE,WAIT call.
Exit via TMRSAOUT.

Forward Space File (CMD.FSF) - Enter RSA state and issue
SVC 1 read commands starting at FCB.CSEC, until a pseudo-
file mark, X'1313' is found. Exit to TMRSAOUT.

Backward Space File (CMD.BSF) - Same as Forward Space File,
except the X'1313' is searched for starting at FCB.CSEC
and backing up one sector at a time. Exit to TMRSAOUT.

This information is proprietary and is supplied by INTERDATA for the sole

purpose of using and maintaining INTERDATA supphed equipment and shali
not be used for any other puipose uniess specitically authorized inowneing

6-10

6.7.2 Chain File Handler (CHAIN, CMD.CH)

The Chain File Handler consists of the following two routines,
CHAIN and CMD.CH, and various subroutines, described in
6.6.2.1. The purpose of each is:

CHAIN - process data transfer requests to a chain file

CMD.CH - process commands to a chain file

6.7.2.1 Chain File Handler Subroutines

The Chain File Handler requires various subroutines in order
to process chain files. Each is briefly described below:

POSITN - position the chain file to a specific block and
record beginning within that block. The current position of
a chain file is indicated by the value of the FCB.CBLK.

GETCHL - move logical record from a system buffer to the
task's buffer. If the logical record spans more than 1
physical block, a call is made to GETCHPR, to read the next
block into a system buffer.

PUTCHL - move logical record from task's buffer to system
buffer. If a logical record spans physical blocks, the
block is written via a call to PUTCHP.

GETCHPR, GETCHPL - perform physical reads to a chain file to
the right (entry point GETCHPR) or to the left (entry point
GETCHPL). If the file is currently in sequential mode, double
buffering is used; in random mode, single buffering is used.

PUTCHP - perform physical writes to a chain file. If the file

is in sequential mode, the write logic uses double buffering;

in random mode, single buffering is used. If the file is in
write sequential mode, a new block of sectors is preallocated

at this time, via a call to the bit management routine, GETSECTR.
If an EOM status on the disc is returned from GETSECTR during
PUTCHP processing, the file is returned to a known state by
writing out the current buffer and backing up until the last
logical record within the file ends in the current block.

CHDIR - establish the direction in which a chain file is to
be processed (right or left).

RESET.CH - change the current state of a chain file. At any
point in time, the contents of the FCB.FLGS field indicate the
state of the chain file, where a state is defined as being one

This information is proprietary and is supplied by INTERDATA for the sote
purpose of using and maintaining INTERDATA supplied equipment and shali
not be used for any other purpose unless specifically authorized in writing.

6-11

of the following:

Operation Processing Mode
Read Sequential

Read Random

Write Sequential
Write Random

Therefore, there are sixteen possible state changes a file
may undergo, where four of these are no-ops. RESET.CH
performs whatever functions are required to change a file
from one state to another.

6.7.2.2 Data Transfer for Chain Files (CHAIN)

The routine CHAIN is entered directly from SVC1l in RSA

state. The routine determines the state the file should be
processed in based upon the function code within the FCB.

EOM status is generated if a Read at the end of the file or

a Write beyond the end of the file is attempted. The current
state of the file is established via a call to RESET.CH.
Control is transferred directly to either GETCHL or PUTCHL,
to perform the logical I/O operation.

6.7.2.3 Command Requests For Files (CMD.CH)

The command function intercept routine for chain files contains
5 executors to perform the 5 allowable commands to a chain file.
These executors all make use of the chain file subroutines
described in Section 6.7.2.1. The following is a brief
description of each executor:

Rewind (CCH.REW) - The fires: block in the file (block 0) is
positioned to by a call to POSITN, and the current logical
record field in the FCB (FCB.CLRL) is set to zero.

Backspace Record (CCH.BSR) - The previous record in the file
is positioned to by decrementing the FCB.CLRL field by 1

and then positioning to the block containing this record via
a call to POSITN.

Forwardspace Record (CCH.FSR) - The logic of CCH.FSR is to
increment the FCB.CLRL by 1 and proceed as CCH.BSR.

Forwardspace File (CCH.FSF) - The last block in the file is
positioned to (FCB.NBLK -1) via POSITN.

Backward Space File (CCH.BSF) - identical to CCH.REW.

All the executors return to the calling task via TMRSAOUT since
entry to CMD.CHN is in RSA state.

This information s proprietary and s supplted Ly INTERDATA for the sole
purpose of using and mamntaining INTERDATA supplied equipmoent and shall
not be used for any other purpose unless specificall; authonized in writing.

6.7.2.4 Error Recovery For Chain Files

I/0 errors may occur during the processing of an SVC 1

Data Transfer or command request to a chain file. An
End-of-Media status (X'90') is a software generated status
that means an attempt to write to a chain file could not be
satisfied because no more allocatable space exists on the
direct-access volume. The file is then 'closed' in the sense
that the last block in the file is written with a proper link
field. The user can then continue to process the file in any
way (i.e., Close, Delete, etc.) or, after making more direct-
access space available on the volume, continue writing to

the file.

CAUTION

Any other type of I/O error is caused by some hardware problem
and may require user intervention to correct. If the user

was updating an existing logical record within a file that

has been closed or checkpointed, and an I/O error occurs, the
file may be closed, the error corrected, and processing of

that file may resume. If however the file was being processed
in any manner and had not been previously closed or checkpointed,
some link fields may not be set properly which causes the file
to be unusable. The action taken by the user in this case
should be to execute the Disc Integrity Checker Utility Program
(program # 03-080) before continuing to process the file.
Failure to do so may result in other files being inadvertently
destroyed if the user attempts to process this file.

This nformation is proprietary and 1s supplied by INTERDATA for the sole
purpose of using and mantaining INTERDATA supplied equipment and shall
not be used for any other purpose uniess spectfically authorized :n writing.

6-13/6-14

CHAPTER 7

DRIVER DESCRIPTION

7.1 DRIVERS

Each driver consists of three phases: Initialization,
Interrupt Service and Termination (or Event Service).
Initiation phase runs as a reentrant subroutine (interrupts
are enabled) of the task issuing the I/O request. 1In
general, the initiation phase uses the information stored
in the DCB by the SVC 1 executor to prepare the device
dependent information required to execute the required
function. After all processing has been done, the
Initiation phase starts the physical I/O process by causing
an interrupt on the device requested. The Initiation phase
then enters the task manager which returns control to the
calling task on an I/O and proceed call, or puts the calling
task into I/0 wait on an I/0O and wait call.

When an interrupt is detected from the device, the microcode
causes control to pass to the Auto Driver Channel or to the
Interrupt Service Phase. If the Auto Driver Channel is
employed, end of buffer or error conditions cause control to
be passed to the Interrupt Service phase of the driver
specified. The Interrupt service phase of the drivers
execute with all interrupts disabled(except for Machine
Malfunction). This phase controls the actual I/0O to the
device, either in conjunction with the Auto Driver Channel
or by I/0 instructions. Error conditions cause status to

be set in the DCB. On completion of the I/O, the Interrupt
Service phase disables interrupts from the device and adds
the address of the device's leaf (EVT entry) to the system
gueue.

When a PSW is loaded that has queue service interrupts
enakbled, the System Queue Service routine (SQS) is entered

by the microcode. SQS removes the address of the device's
leaf from the system queue and schedules the termination
phase of the driver specified in the leaf. This scheduling
of the termination phase is called an event. The Termination
phase (or event service routine - ESR) of the driver executes
as an asynchronous, reentrant, non-eventable subroutine of the
task which requested the I/O. The termination phase is
asynchronous because it is scheduled as the result of a queue
service interrupt. If the calling task is executing (or
about to execute) at the time the Termination phase of the
driver is scheduled, the state of the task is saved in the
TCB until the ESR is complete. The ESR executes with all
interrupts enabled, so it is reentrant. Non-eventable means
that if another queue service interrupt occurs for the
calling task while the ESR is executing, the second ESR

will be queued by the System Queue Service handler for
scheduling when the first ESR completes.

ﬁ!\is information 1s propnietary and s supphied by INTERDATA for the sule 7"1
ipurpose of using and mantaraing INTERDATA supplied equipment and shall
! not be used tor any other purpose unless speciicaily autharized i writing.

m—nis o me. - e emm e ae s o —— i . e [T |

The ESR performs post-processing on the I/0 performed and
either schedules another ISR and enters the Event Service
Handler which passes control back to the calling task or
schedules a queued ESR, or it enters IODONE to complete
the I/0 request.

The executive routine, IODONE, performs common post-processing
for all drivers. It passes status and length of transfer

from the DCB to the SVC 1 parameter block, calls Event Service
Routines to disconnect the task from all EVT entries that

were necessary to coordinate the I/O request, resets the

ISP table entry for the device so that subsequent interrupts
will not cause entry to the driver, removes the I1/0 wait
condition from the task, if necessary, and enters the Event
Service Handler to return control to the task or to schedule

a queued ESR.

1t is the responsibility of the executive to schedule driver
routines in the proper state - Initiation Routines in RS,
Interrupt Service Routines in IS, and Event Service Routines
in ES State. It is the responsibility of the Driver
Initialization and Event Service Routines to enter and exit
from NSU state via LPSW, LPSWR or EPSR instructions if
necessary.

7.2 DRIVER CONTROL BLOCKS

7.2.1 Device Control Block (DCB)

All standard drivers make use of the device independent
portion of the DCB (see Figure 11-2). The DCB is used to

pass information between the executive and the drivers; it

is also used by the drivers, SVC 1 and SVC 7 to control

I/0 requests. The use of the Event Service Handler allows

a driver to assume exclusive access to a DCB for the duration
of an I/0 reguest to the device associated with that DCB.

The following section describes each field in the DCB and

its usage:

DCB.DMT - Address of Device Mnemonic Table entry for this

DCB. Established by the Configuration Utility Program.
Used by File Manager at assign time.

DCB.LEAF - Address of Event Coordination Table entry for
device described by the DCB. Established by the Configuration
Utility Program. Used by the SVC 1 executor to establish

task connection to the required EVT entries before passing
control the the driver.

rTh‘x intormation s propretary and as Supphed by INTERDATA for the sole
purpose of usig and mantaining INTERDATA supphied equpment and shai:
not be used for any other purpose uriess specifically authar:zed 11 witing.

DCB.INIT - Driver entry point for data transfer requests.
Established at DCB assembly time by referencing the data
transfer entry in the driver initialization routine. This
entry point must have a name of the form INITxxXxXX where xxxx
designates the driver. This address is used by the SVC 1
executor to enter the driver for data transfer requests.

DCB.FUNC - Driver entry point for command function requests.
Established at DCB assembly time by referencing the command
function entry in the driver initialization routine. This
entry point must have a name of the form CMDxxxX where xxxx
designates the driver. This address is used by the SVC 1
executor to enter the driver for command function requests.

DCB.TERM - Driver entry point for first Event Service Routine
to be scheduled. Established at DCB assembly time by
referencing the entry address of the desired Event Service
Routine. This address is placed in the device EVT entry
(leaf) at connection time (SVC 1 executor).

DCB.WCNT; DCB.RCNT - Read and Write count fields used by
the File Manager to control access at assign time.

DCB.ATRB - Attributes of device. Used by File Manager to
determine the attributes to associate with the device at
assign time. The File Manager copies the attributes to

the Logical Unit being assigned, possibly resetting the
read or write bit. The Logical Unit is a field in the Task
Control Block. The SVC 1 executor uses this copy of the
attributes to determine the validity of an I/0 request.

The attribute bits are defined in Figure 7-1.

o}
H
H

ATTRIBUTE

RESERVED

SUPPORTS
SUPPORTS
SUPPORTS
SUPPORTS
SUPPORTS
SUPPORTS
SUPPORTS
RESERVED
SUPPORTS
SUPPORTS
SUPPORTS
SUPPORTS
SUPPORTS
SUPPORTS

WOV WNFO

el el el
VbW HO

READ

WRITE

BINARY

WAIT I/0

RANDOM

UNCONDITIONAL PROCEED
IMAGE

REWIND

BACKSPACE RECORD
FORWARD SPACE RECORD
WRITE FILEMARK

FORWARD SPACE FILEMARK

BACKSPACE FILEMARK

RESERVED

FIGURE 7-1. neg

Attrilbate it Defin’+iong

!This informaton s

prop: etary and s supplied by INTERDATA tor the sole
purpuse of using and maintaining INTERDATA supplied 2qutpmont and shall

an be used for any other purpose uniess specifizaily, authorized n wintieg,

DCB.RECL - This field defines the maximum length of a
record for the device. Established at DCB assembly time.
Used by the driver to truncate requests larger than
maximum.

DCB.TOUT - Time-out constant. Established by Interrupt
Service Routines to indicate desired treatment by the
executive or the Timer Routines. The value of the timeout
constant is defined as follows:

-1 (X'FFFF') means the I/O request is in the process
of normal termination by the driver. An ESR has been
scheduled for the I1/0 request.

0 (X'0000') means the driver should abnormally termi-
nate the I/O request. An ESR has been scheduled for
the I/0 request.

2151 (X'7FFF') means the I/0 request is not to be
timed out by a timer interrupt.

1 through X'7FFE' means the timeout constant is to
be decremented by 1 every second by the system clock
if there is one, until wvalue is ZERO.

An ISR normally sets the timeout constant to the appropriate
value for the device and request. After the timeout constant
has been set to a positive value, all subsequent ISRs and ESRs
check for timeout constant = 0. If the request has been timed
out, the appropriate status is placed in the DCB, an ESR is
scheduled if necessary, and the timeout constant is set to -1.

DCB.RTRY - Retry count. Established by driver if necessary.
Used by standard drivers to control number of error retries.

DCB.FLGS - Flag bytes used to describe various characteristics
of the device to the File Manager, the Executive and to

drivers. The flag bits are defined in Figure 7-2.

rTh.s atormation is proprietary and s supplied ty INTERDATA for the sole '
! purpose of using and mamta:ning INTERDATA suppled equipment and shail |
not be used for any othor purpose uniess spectfically authorizea 1 writing

i N O5E UTIESs SRt

7-4

Bit Name Meaning and Usage
0 Bulk device flag Set at DCB assembly time,
used by File Manager.
1 On-line flag Set at DCB assembly time,
Modified by Command
Processor. Used by File
Manager at assign time.
2 Directory Presence Set by system initialization
routine. Used by File
Manager for directory
processing on device. Bulk
Device Flag must also be set.
3 Bit map Presence Similar to Directory presence
bit bit.
4 Check Pseudo File Set by the File Manager.
Mark flag designates to the disc driver
to check for pseudo file mark
5 Bit Map Modify Set and modified by File
flag Manager. Indicates Bit Map
must be updated on device.
Bulk device flag must also
be set.
6 Console flag Device is the console device.
Set by System Initialization
Routine.
7 Uncancellable Set at DCB assembly time.
flag Designates to Executive not
to timeout I/0O to this device
on End of Task.
8-15 Reserved - must be zero.
FIGURE 7-2 DCB Flag Definitions
DCB.STAT - Status field. Set by driver to indicate status
of I/0 request. SVC 1 executor sets value to zero before

passing control to driver.

Executive routine,

IODONE, copies

this field to status field in SVC 1 parameter block on

completion of I/O request.

This information is proprietary and is supplied by INTERDATA for the soie
purpose of using and maintaiung INTERDATA supphied equipmen: and shall
not be used for any other purpuse unless specificolly authorized :n writing.

75

DCB.DCOD - Device Code. Established at DCB assembly time.
Must correspond to nnn in name of DCB module (DCBnnn) .

DCB.WKEY; DCB.RKEY - File protect keys. Established by File
Manager Reprotect function. Used by file manager to control
access at assign time.

DCB.PBLK - Parameter Block Address. Established by SVC 1
executor. Contains the relocated physical address of the
SVC 1 parameter block for current I/O request. Drivers
generally do not use this address.

DCB.FC - Function Code. Established by SVC 1 executor.

Used by driver initialization routine to determine nature

of I/0 request. Subsequent Wait only request may modify this
field, therefore, ISRs and ESRs should not depend on contents.

DCB.LU - Logical Unit of current I/0 request. Established by
SVC 1 executor. Used by File Manager and SVC 1 executor.
Must not be modified by driver.

DCB.DN - Device number. Established by Configuration Utility
Program. Used by drivers to determine physical device to
perform I/O request.

DCR.SADR; DCB.EADR - Data transfer start and end addresses.
Established by SVC 1 executor for data transfer requests.
Contains the relocated physical addresses. Used by drivers
to define buffer for request.

DCB.RAND - Data transfer random address. Established by
SVC 1 executor.

DCB.LLXF - Length of last transfer. Established by driver.
This value is copied to lenc :h of last transfer field of
SVC 1 parameter block by executive routine IODONE for data
transfer requests.

7.2.2 Channel Control Block (CCB)

The Channel Control Block is used to control Auto Driver
Channel operations. The address of the CCB+1l (to make it

odd) is placed in the ISP table entry for a device before

any servicable interrupts are generated. The CCB must

reside in the first 64K of memory since the ISP table entry
must contain a halfword entry. The following section describes
each field in the CCB. Refer to Figure 11-1.

purpose of using and maintaining INTERDATA suophied equipment and shalt

This information is proprietary and is supphed bv INTERDATA tor the sole
not be used for any other purpose unless specifically author zed in wiriting.

CCB.CCW - Channel Command Word. Established and modified
by the driver before enabling interrupts on the device.
Used by Auto Driver Channel to control I/0 request. The
CCW bits are defined in Figure 7-3.

BITS MEANING

0-7 Status mask

8 Execute Bit

12 Buffer bit. Zero value selects buffer 0,
One value selects puffer 1
if Fast bit reset.

13 Write bit When reset, indicates read
operation.

14 Translate Specifies translation if

bit Fast bit reset.

15 Fast bit Specifies no translate, no
puffer switch, no
redundance check.

FIGURZ 7-3 CCW Bit Definitions

CCB.LBO - Length of buffer 0. Used to specify length of
data pointed to by pbuffer 0. Length is expressed as a
negative number whose value is equal to start address minus
end address. Thus, at any time, the length added to the
ending address gives the next character to be processed.

CCB.EBO - End Address of Buffer 0. Last character to be
processed by Auto Driver Channel. Established by driver.

CCB.CW - Check Word. Used by Auto Driver Channel to
accumulate redundancy check. Not used by standard drivers.

CCB.LB1l - Length of Buffer 1 (See CCB.LBO). Established
by driver.

cCB.1LB1 - End Address of buffer 1. Established by driver.

CCB.XLT - Translation table address. Specifies the trans-
Tation table to be used by Auto priver Channel when CCB.CCW
flag bit 14 is set. Established at CCB assembly time by
referencing the translation table address in the driver
module.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

CCB.SUBA - Subroutine address. Specifies an ISR entry
point which is branched to by the Auto Driver Channel
in the following cases:

Execute bit (CCB.CCW bit 8) is reset
End of Buffer Condition
Error condition detected

Since this is a halfword field, the ISR entry point must
exist in the first 64K of memory. Established by the
driver.

CCB.MISC - Miscellaneous field. Established and used by
drivers to pass information between Initiation, Interrupt
Service and Termination phases.

CCB.FLGS - Established and used by drivers to pass infor-
mation between Initiation, Interrupt Service and Termination
phases.

CCB.DCB - Address of DCB for device being controlled by
CCB. Established at CCB assembly time by referencing the
DCB name.

7.3 DRIVER INITIALIZATION ROUTINES

Each Driver Initiation Phase has two entry points: data
transfer request (INIT) entry and command request (FUNC)
entry. These entry points are named INITxxxxX and CMDXXXX,
where xxxx designates the driver. At driver assembly time,
these entry point addresses are coded in each DCB the
driver controls.

Driver Initialization Routines (DIR) execute in Reentrant
System (RS) state, thus executing as reentrant sub-routines
of the calling task. The user task's registers and resume
PSW are stored in the TCB RS save area by the SVC 1 executor.
The user task is connected to the Event Coordination Table
entries corresponding to the peripherals required for the
I/0 request. This insures that no other I/O requests can

be initiated to the device until the driver requests the
task's disconnection. Register 13 of the user register

set contains the address of the SVC 1 parameter block, function
code, logical unit, physical start and end addresses and the
random address as required by the function code in the DCB.

The DIR performs the preprocessing necessary to translate

the device independent SVC 1 parameter block quantities

into the device dependent information to be used by the

ISR and ESR portions of the Driver or by the Auto Driver
Channel (see 32 Bit Series Reference Manual, Publication Number

This information is proprietary and is supplied by INTERDATA for the sole
purpose ot using and maintaining INTERDATA supptied equipment and shall
not be used for any other purpose unless specifical'y authorized 10 writing.

29-365). After preprocessing, the DIR modifies the Interrupt
Service Pointer Table entries for the devices required to point
to the proper CCB or ISR and then issues a Simulate Interrupt
instruction on the device address. The Driver Initialization
Routine then exits to the Task Management routine TMRSOUT.

This routine returns control to the calling task following the
SVC 1 if the call is for I/0 and proceed or it places the calling
task into I/O wait state if the call is for I/O and wait.

The DIR may determine that I/O to the device is not necessary
due to an error condition or because of the nature of the
request. In this case, no ISR will execute. In order to
terminate the I/0 request, the driver does one of two things:

1. Exits to executive routine IODONE at the alternate entry
IODONE2.

2. Schedules an ESR by adding the address of the leaf
contained in the DCB (DCB.LEAF) to the top of the
system queue.

7.4 INTERRUPT SERVICE ROUTINES

Interrupt Service Routines (ISR) execute in the Interrupt
Service (IS) state. They are entered as the result of an
interrupt on a device involved in the I/O request. On entry,
registers 0 and 1 of the executive register set contain the
resume PSW for the program that was executing at the time the
interrupt was serviced. Register 2 contains the device number
of the interrupting device. In the case of drivers which
employ the Auto Driver Channel, Register 4 contains address
of the CCB which is controlling the Auto Driver Channel.

ISRs may use Registers 2 through 7 of the executive register
set.

In general, all I/O instructions (e.g., SS, RD, WB) are
issued from ISRs. The Auto Driver Channel is used both to
perform I/O requests through the appropriate Channel Command
Word and to simply transfer control to an ISR, as would
Interrupt Driven I/0 but with the addition of the CCB pointer
in register 4. An ISR always exits by loading the PSW in
Registers 0 and 1. An ISR may place another ISR entry in

the Interrupt Service Pointer Table or CCB to process the
next interrupt. If the ISR detects that the I/O request is
complete or that some portion of the I/O request is complete
(e.g., SEEK complete on a disc I/0 request), it disarms the
device to prevent further interrupts. The ISR then schedules
the Event Service routine pointed to by the leaf (EVT entry)
for the device by placing the address of the leaf on the top of

This information s prow e tary and s supphied by INTERDATA for the sole
purpas> of using and maiwtaining INTERDATA supphied e jua praent and shall
not te usd for any other purpouse uniess speaifica'ly authors ¢ anoacting]

the system queue with an ATL instruction. It is the
responsibility of the driver to insure that the ESR address
contained in the leaf is the proper address before adding
the leaf address to the system gueue. The address in the
leaf is initially set by the SVC 1 executor to the value
contained in the DCB (DCB.TERM). If the driver determines
that some other ESR should be scheduled, it modifies the
ESR address contained in the leaf by calling the Event
Service Handler routine EVMOD with the address of the new
ESR in Register 14 and the leaf address in Register 15.

If an ISR detects an error condition it sets the Status
field of the DCB to the appropriate value (see respective
driver program descriptions). If Auto Driver Channel
translation is employed, the translation subroutines are
ISRs.

7.5 EVENT SERVICE ROUTINES

Event Service Routines are scheduled in the Event Service (ES)
state by the Task Manager, as a result of a System Queue
Service interrupt. All interrupts are enabled and the

user register set is used. On entry, the registers and PSW

of the task which initiated the I/O request are saved in

the Task Control Block, register 13 contains the address

of the DCB and register 15 contains the address of the leaf
corresponding to the device. ESRs can use Registers 0 through
15 of the user register set.

ESRs perform post-processing on the I/O request being termi-
nated, such as calculating length of last transfer, or

they process intermediate I/0 events in the case where the
request requires more than one I/0 sequence to complete

(e.g., a seek and then a data transfer is required to complete
a DISC read). 1If additional ISRs are required, the ESR may
modify the CCB to schedule a different ISR, or change the
address in the leaf to schedule a different FESR on completion
of the ISR. If further I/0 must be initiated, the ESR causes
an interrupt on the device and exits by branching to the

Event Service Handler routine EVRTE (return from Event).

If I/0 request is complete, the ESR exits to the executive
routine IODONE with DCB address in register 13 and leaf address
in register 15.

This information s proprietary aad s supphed by INTERDAT A for the sole
purpose of usiig and maintaic g INTERDATA suppled equiprment and sba'l
not be u.ed for ary other puriuse untess epecifically authorized 0 wnitirg

7.6 HALT I/0 ROUTINE (TIMEOUT)

At certain times it is necessary to cancel I/O requests that
have already been started, such as in cancel processing.
This is accomplished by a pseudo timeout facility in 0S/32 ST.
In order to halt I/O that is in progress, TIMEOUT is called
from IS state with the address of the leaf corresponding

to the device. TIMEOUT loads the DCB pointer from the leaf
and returns if the pointer is zero (as in the case of the
dummy leaf - see Section 5.7). If the DCB pointer is
non-zero, TIMEOUT checks the timeout constant in the DCB.

If it is zero or negative, an event service routine has
already been scheduled for this request and the routine
returns to the caller. If the timeout constant in the DCB
is positive, TIMEOUT checks the value of the last entry

in the system queue, since a power fail/restore sequence

may have interrupted a driver ISR in between adding the leaf
address to the system queue and setting the DCB timeout
constant to -1. If the address of the leaf is not the

last entry in the system queue, TIMEOUT adds it to the top
of the queue, thus scheduling a termination routine for that
request.

This information is proprietary and s supplied by INTERDATA icr ihe sole
purpose of using and maintaiting INTERDATA supplied equipment and shall
not be used for any otner purpose uniess specifically authorized in wiiting

7-11/7=-12

CHAPTER 8

SYSTEM FLOW EXAMPLES

8.1 System Start Up

Figure 8-1 illustrates system flow during initialization of the
system, loading and starting a task. At location X'60' is a
branch to the first location of the SPT which contains a branch
to SYSINIT. SYSINIT initializes the ISP Table, the EVT, DCBs
and TCBs. The system TCB is placed on the ready chain. All
processing is performed with all interrupts disabled. The
Command Processor is branched to in ET state. The Command
Processor initializes all its internal flags and buffers and
uses SVC 1 to display the OS ID on the system console. It
then issues a write image SVC 1 to prompt with an * and issues
an SVC 1 read and wait to the system console. The system task
enters I/0O wait state, placing the Processor in a System Wait
state. When the load command is entered, the Teletype driver
ESR is scheduled by the task manager, the I/0 is completed

and the Command Processor resumes processing after the SVC 1.
The Command Processor decodes the command and branches to the
resident loader which loads the task. SVC 1 is used to write
the prompt, followed by SVC 1 read and wait to the system
console. The system task enters I/0 wait state. The START
command causes the task manager to schedule the Teletype ESR,
the I/O is completed and the Command Processor resumes execution
following the svC 1. The command is decoded and the Command
Processor branches to the executive routine TMSTART with the
start address. TMSTART constructs a start PSW in the dispatch
PSW save area of the user TCB, calls TMCHN to put the user TCB
on the ready chain behind the system task and returns to the
command Processor. The Command Processor tests the user TCB
to see if it is dormant and since it is not, no prompt is
written to the console; an SVC 1 read and wait is issued thus
leaving the user task at top of ready chain. The task manager
dispatches the user task by loading the user register set from
the dispatch register save area in the user TCB and loading
PSW from the user TCB dispatch PSW save area.

8.2 1I/0 Reguest

Figure 8-2 illustrates system flow during an SVC 1 Write Image
and wait request to the line printer. The task issues an SVC 1
write, image and wait. The First Level Interrupt Handler
decodes the SVC and passes control to the SVC 1 Processor.

gvCl checks the validity of the data in the parameter block

and enters RS state, saving the user registers and resume PSW
in the TCB. EVQCON is called to connect to the line printer
leaf. On return the information in the parameter block is
stored in the line printer DCB and SVC1l branches to the DIR.

This tnformation is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shati
not be used for any other purpose unless specifically authorized in writing.

Current Task

Executive

External Event

None

Command Processor

- init Command Proces-
sor data structures

- SVC 1 write 0S8S32ST

- SVC 1 write *

- 8VC 1 read to console

None

Command Processor

- Decode cmd

- load task

- SVC 1 write *

- 8VC 1 read to console

None

command Processor

- Decode command

- Check validity of
start

- Lranch to TMSTART

- 8VC 1 read to console

i
User Task

N e =

SYSINIT

- Init system tables

- Put system TCB on
_ready chain

v
Task Manager
- Unchain system TCB
- Enter wait state I/O

IODONE ~ Task Manager .

- Complete I/0 - remove
I/0 wait

- Chain system TCB

Task Manager
~ Unchain system TCB
- Enter I/0 wait state

IODONE - Task Manager

- Complete I/0 -
remove 1I/0 wait

- Chain system TCB

f&START

- Set up user TCB
dispatch PSW from
OPTIONS and start
address

- Chain user TCB

Task Manager

- Unchain system TCB

- Set I/0 wait in system
TCB

purpose of using and marmraming INTERDATA suppucd ecipmeaent ard sholl
not b~ used for any other purpose unless specrically authniizeo 3 writing

- |\Thxs information s proprietary and s suppied by INTERDATA tor :hy :‘(;\9, !
i

Figure 8-1.

System Start Up

Start processor at
X'60"'

L.LOAD Command

START command

Program Executive Driver Firmware

svc 1 _
(I/0 & v
Wait) - | SVC 1 processor
Enter RS state
EVQCON
connect to required
EVT entries
A
C SVC 1 processor
T Set I/0 wait pending v
I T Initiation Phase
\Y prepare CCB, etc.)
E Simulate Interrupt }7)
= ISchedule ISR via
: e ISPTAB
18R subroutine T~
I/0 instructions,
4 etc.
TMRSOUT Auto Driver Channel
put task in I/0 wait
v e e
ISR subroutine
disarm interrupts
I add address of
/ ¢ : device leaf to SQ
0 System Queue Service - {..
save task environment
W
A Termination Phase
I E (ESR)
T S calculate length
R e of transfer
A/u’ \\\N\ e
A IODONE Rantes
C return status - remove
T I/0 wait
I
v
E EVDIS
disconnect task from
EVT
EVRTE-TMRSNOUT
return control to task
- ,,../'l
Figure 8-2. svC 1 (I/0 AND WAIT)

r'i'—'ms miormation 1s proprietary and s supphed by INTERDATA for the sole 8-3
purpose of using and maintarning INTERDATA supplied equipment and shall
jrot be used for any other purpose unless specifically authorized 1n writing

The Line Printer DIR sets up the CCB with the proper CCW,
subroutine address and buffer information and then SINTs the
device. The microcode transfers control in IS state to the
ISR routine pointed to by the CCB. The ISR sets the timeout
constant, checks the device status and enables interrupts on
the device. It picks up the first character in the buffer
and writes it to the device and returns control to the DIR
following the SINT. The DIR exits to the task manager which
puts the task into I/O wait by setting the I/0O wait bit,
unchaining the TCB and moving the user registers and resume
PSW from the RS save area to the dispatch save area of the
user TCB. The Auto Driver Channel completes the transfer

and passes control to the ISR on buffer empty. The ISR
disarms interrupts on the printer and adds the address of

the line printer leaf to the system queue. The ISR exits by
loading the PSV in Registers 0 and 1 of Register set 0. This
PSW is the system wait PSW since no task was active. The
Queue Service enable bit is set, so the microcode causes a
queue service interrupt, passing control to SQS. SQS removes
the address of the printer leaf from the system queue, queues
the user task to the top of the EVT by calling EVPROP and branches
to EVTDISP. EVTDISP saves the user task environment by moving
the dispatch save area to the ES save area in the user TCB,
chains the user TCB and schedules the ESR pointed to by the
leaf. The ESR calculates length of transfer, stores it in
the DCB and exits to IODONE. IODONE moves the status and
length of transfer to the SVC 1 parameter block, disconnects
from the leaf by calling EVDIS, resets the I/O wait bit in
the TCB and exits to EVRTE to return from the event. EVRTE
finds no gueued events and exits to TMRSNOUT which returns
control to the user task by loading the user registers and
resume PSW from the TCB ES save area.

8.3 Log Message

Figure 8-3 illustrates system flow during a 10§ message reguest
The user task issues an SVC 2 code 7. The SVC First Level
Interrupt Handler decodes the SVC and passes control to the

SVC 2 Second Level Interrupt Handler. SVC 2 SLIH enters the
SVC 2 code 7 executor (SVC2.7) wvia TMRSIN. SVC2.7 checks

the options and calls EVQCON to connect to the EVT leaf for

the dummy device. On return SVC2.7 moves the text to an
internal buffer, sets up the DCB for the dummy device to

point to the internal buffer and branches to the dummy driver.
The dummy driver sets the message pending flag in the Command
Processor, times out the read outstanding to the system console
Ly storing a carriage return in the command buffer and
scheduling the Teletype ESR. This causes the system task to
be scheduled, suspending the user task inside the dummy driver.
The Command Processor finds the command buffer empty and
message pending set. The data in the DCB for the dummy device

-

purpose of using and maintaining INTERDATA supplied eqguprent and chall
not be used for any othei purpose unless specitically authenzed in writing.

This information 1s proprietary and s supphad by (NTERDATA 1oy the solo

User Task
svc 2,7
log message

-
‘—

Command Processor -
test message
pending
prepare SVC 1
parm blk from
dummy DCB

SVC 1 write &

wait
\\h_____._-“/

!

.//‘

R

User Task -
————————————————— N—————

Command Processor-

- Clear message
pending

- 8VC 1 read & wait

S,

.4‘/.:\

oS

FLIH

- decode SVC

- get TCB address

- branch to SVC 2 FLIH

svC 2
- decode SVC 2 code
- enter executor via TMRSIN

svCc2.7

- branch

L I
IODONE - Task Manager -
Remove I/0 wait from
system task
Chain system TCB
suspend user task

SVCl - Console Driver - Task

Manager

set I/0 wait in system task
unchain system TCB

restore user task registers
LPSW

4
IODONE - Task Manager
- Remove I/0 wait from system
task
- chain system TCB
- suspend user task

1

v

SVC 1 - Console Driver - Task
Manager

- set I/0 wait in system task
- unchain system TCB

- restore user task register

s
- check validity & optiops’ N
- branch T EVQCON
- connect to
dummy leaf
i R - return
- move message to system
buffer
- set up dummy DCB Y

Dummy driver

- set message
pending

- time out console
read

- put CR in command

buffer

-

s

I/0 Complete

Usef—Task

Figure

s 2

- LPSW

8-3.

This information is proprietary and is suppiied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

Log Message Request 8=5

is used to prepare a parameter block for the SVC 1 write and wait
to the system log. The task manager puts the system task
into I/0 wait thus making the user task top of ready chain.
The user task is dispatched at the exit from the dummy driver.
The dummy driver exits to TMRSOUT which returns control to
the user task following the SVC 2 code 7. When the message
completes, the Teletype ESR is scheduled for the system task,
suspending the user task. The Command Processor clears
message pending flag and issues an SVC 1 read and wait to

the system console. The task manager puts the system task
into I/0 wait and returns control to the user task.

8.4 Fetch Overlay Request

Figure 8-4 illustrates system flow during an SVC 5 Fetch
Overlay request. The user task executes an SVC 5. The

First Level Interrupt Handler decodes the SVC and enters the
SVC 5 executor via TMRSIN which puts the user task into RS
state. SVC5 temporarily assigns the specified device/file

to the system task logical unit 3 by moving the LUTAB entry
from the specified user task LU. The option field of the para-
meter block is stored in the Command Processor's load overlay
request field. ©SVC 5 then enters NSU state to prevent the
Command Processor from becoming active. The dispatch PSW

save area of the user TCB is prepared with a PSW with RS status
and a location counter of RSVC5 which is the return address in
SVC 5 executor. The parameter block address is stored in the
register 13 slot of the dispatch save area. SVC 5 then stores
the address of the Register 12 slot of the dispatch save area
into the Command Processor LOADSTAT field, sets loader wait

in the user TCB, unchains the user TCB and branches to the
dummy driver secondary entry voint in IS state. The dummy
driver times out the console read. This terminates the I/0
wait condition and schedules the system task. The Command
Processor detects the overlay request and branches to the
loader which loads the overlay from the device/file assigned

to LU3 of the system task. On completion, the status is placed
in the word pointed to by the address in LOADSTAT and TMREMW

is called to remove the load wait condition from the user

task and to chain the user TCB. The Command Processor issues
an SVC 1 read and wait which places the system task in I/O
wait, thus making the user task top of ready chain. The user
task is dispatched inside SVC5 at RSVC5 by loading the user
register set and PSW from the user TCB dispatch save area which
puts the load status in Register 12 and parameter block address
in Register 13. SVC5 completes the request by storing the
status into the parameter block and branching to TMRSOUT which
returns control to the user task following the SVC 5.

This information is proprietary and is supplied bv INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equiprient and shall
not be used for any other purpose unless specifically authorized in writ.ng.

User Task

svC 5

No

Active
Task

Command
Processor

test for
load ovlay
request
branch to
loader

load over-
lay from
specified

fd

place status
in Reg 12
slot of user

Y

FLIH

- decode SVC

- get TCB address TMRSIN

- save user regs,
PSW in user TCB

/——__—_/RS save area
SVC5

- transfer specified assignment
to system task LU 3

- set load ovlay request field in
command processor

—————————————————————————————————— enter NSU
- prepare PSW to return to SVC 5 state
processing in user TCB dispatch
save area
- save parameter block address in
user task TCB
- unchain user TCB
- set loader wait dummy driver
- branch to dummy driver - time out console
read

- put CR in CMD
t/f—_““—--—~__”buffer
IODONE + Task Manager
- remove I/0 wait from system TCB
- chain system TCB

_/

TCB dispatch)

save area
chain user
TCB

SVC 1 read
to console

User Task

FLIH-SVC1l - Task Manager
- set I/0 wait in system TCB
- unchain system TCB

SVC5

- put status into parameter block
- branch

TMRSOUT

- restore user regs

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

Figure 8-4. Fetch Overlay Request

8-7

8.5 READ REQUEST TO CHAIN FILE

Figure 8-5 illustrates system flow during an SVC 1 read
request to a chain file. On execution of the SVC 1, the
First Level Interrupt Handler passes control to SVCI.

SVC1l checks the validity of the request and since the LU
entry points to a chain file FCB, SVCl does not attempt to
perform a connection since the leaf field in the FCB contains
zeroes. SVCl enters RSA state since the request is to an

FCB with the buffered access method flag set. Entry to the
file manager is made at CHAIN. CHAIN resets I/0 wait pending
in the task, determines that it is a read request and calls
GETCHL. GETCHL moves the data from the current FCB buffer

to the user task buffer. When the data in the current buffer
is exhausted, GETCHL calls GETCHPR to refill the buffer.
GETCHPR issues an SVC 1 read and proceed call for the next
sector in the file to be read into the just exhausted buffer.
This causes the SVC 1 Processor to enter RS state, connect
to the disc leaf and branch to the disc driver. The disc
driver initiates the read and exits via TMRSOUT. Since

CHAIN reset I/O wait pending, TMRSOUT returns control to the
file manager in RSA state following the SVC 1 request.
GETCHPR returns to GETCHL which completes the data move

from the other buffer (now current). On completion, the

file manager exits via TMRSAOUT which returns control to

the user task following the SVC 1 read and wait.

This information is proprietary and is supplied by INTERDATA for the sole
purpase of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unizss specificalty authorized 1n writing.

User Task

sve 1
Read & Wait
to chain file

Figure 8-5.

EXEC-Drivers File Manager
//gVC 1 processor //}
- check parameters CHAIN
- enter RSA state ~ find read operation
- enter file manager - reset I/0 wait
pending
GETCHL

- move data from
FCB buffer to
user buffer

GETCHPR
- Request move
data from disc

SVC 1 Processor
- check parameters

- enter RS state via SVC 1 read &
- connect to disc leaf proceed
- enter disc driver - exit

GETCHL
TMRSOUT - complete data
- return to RSA state+ movement to

user buffer
- exit to task

// manager

TMRSAOUT
- return to task
N’

Read Request to Chain File

This information 1s proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equnmem and shall
not be used for any other purposc unless specifically authorized in writing

8-9/8-10

CHAPTER 9

EXECUTIVE TASKS AND SYSTEM EXTENSIONS

9.1 INTRODUCTION

There are several ways of extending or modifying the capa-
bilities of 0S/32 ST. This chapter discusses the features
designed into 0S/32 ST to facilitate such extensions. The

user may wish to incorporate the modification directly into

the system by modifying one or more system modules or by adding

a system module. For example, the user may support a non-
standard peripheral device by writing a driver. On the other
hand, the user may wish to support infrequently used extensions to
the system by writing an executive task (E-task) which may be
loaded and executed on demand.

9.2 EXECUTIVE TASKS

An Executive Task (E-Task) is written as a user task and
executed in ET state by specifying OPTIONS ET before starting
the task. E-Tasks execute in a hardware and software privileged
mode. All machine instructions are allowed and these additional
capabilities are provided:

- All addresses are valid in SVC calls

- A disc device (rather than a file on the disc) may be
assigned to the E-Task

- SVC 2 code 0 (Journal Entry) is valid

- REPROTECT (SVC 7) for a key of X'FF' and to non-bulk
device is valid

- RENAME (SVC 7) for a key of X'FF' and to non-bulk
device is valid

As a direct result of these added capabilities, E-Tasks must
be designed and coded with extreme caution to prevent crashing
the system. E-Tasks may not execute in halfword mode.

Access to system tables and control information is provided
through the System Pointer Table (SPT). The address of the
SPT is contained in the halfword at location X'62' in low
memory. E-Tasks may use all SVCs. An example of a function
which might require an E-Task is a disc utility program. The
0S/32-ST Command Processor executes as an E-Task.

9.3 SYSTEM EXTENSIONS

0S/32 ST may be extended or modified by incorporating changes
into the source of one or more system modules or adding a
system module and using the Configuration Utility Program (CupP)
MODULE statement to include the modified or new module in the

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipmient and shall
not be used for any other purpose unless specifically authorized n writing.

9-1

system (refer to the 0S/32 ST Program Configuration Manual
29-379). All system data structures should be referenced

by copying the STRUC defining the data structure from the
Parameters and Control Block Module (07-063) at assembly time

and using these field definitions in all instructions referencing
the structure.

9.4 PATCHING

In making modifications to 0S/32 ST, debugging usually entails
making patches to new or existing code to avoid reassembling
every time a bug is found. In order to insert a patch in
0S/32 ST:

1) locate the address of SPT.UBOT in the map of the
system produced by the 0S/32 Library Loader (03-065).

2) Use the MODIFY command to increase the value of UBOT
by an amount sufficient to contain the patch.

3) Use the MODIFY command to insert the patch starting
at the old value of UBOT.

4) Use the MODIFY command or the console panel to insert
a branch to the patch area.

This information is proprictary and s supplied by INTERDATA for the soie
purpose of using and maintatning INTERDATA supphed equipment and shali
not be used for any other purpose unless specifically authorized in writing.

CHAPTER 10

JOURNAL AND CRASH CODES

10.1 CRASH CODES

After a system crash, Register 5 of Register set 0 contains

a pointer to the system journal and Register 6 contains a
pointer to the most recent entry to the journal. The following
is a list of crash codes, their meanings and in some cases
additional information concerning the cause of the crash.

(Ex denotes register X of the Executive Register set (set 0);
Ux denotes register X of user register set, Rx denotes register

X of register set in use at time of crash).

CRASH CODE (HEX) DESCRIPTION
1 Console device mnemonic not found in DMT
2 Unrecoverable error on system console
7 Invalid VMT during MARK processing
10 Invalid file descriptor during MARK processing
100 Arithmetic fault not in UT/ET state

E9 contains address of current TCB.
EE-EF contain PSW at time of fault.

101 Arithmetic fault not in user task. E9 contains
current TCB ID, EE-EF contain PSW at time of
fault.

102 Illegal instruction, illegal SVC or illegal

address passed in SVC not in user task. E9
contains current TCB ID, ED contains pointer
to 4 bytes before pointer to message, EE-EF
contain PSW at time of fault.

103 Illegal instruction, illegal SVC or illegal
address passed in SVC-user task not in UT/ET
state. E9 contains address of user TCB, ED-EF
same as for 102.

104 Memory parity error during Auto Driver Channel
operation.

105%* Attempt to pause system task.

106 Illegal SVC or illegal address passed in SVC

with PSW not pointing after an SVC 1 instruction.
EE-EF contain PSW at time of interrupt.

107* Attempt to remove illegal TCB from ready chain.
R9-TCB ID, R8-return address.
108%* Attempt to remove a wait condition from or chain

an illegal TCB ID. R8-return address, R9-TCB ID.

109* Attempt to dispatch illegal TCB ID from top of
ready chain. E9-TCB ID.

10Aa* Attempt to dispatch ESR for illegal TCB ID.
E9-TCB ID; EA-ES priority, EF-leaf address.

110* Attempt to start illegal TCB ID. U9-TCB ID,

UF-start location.

This intormation s proprictary and 1s supplied by INTERDATA for the sole
purpose of using and mataining INTERDATA supplied equipment and shall
not be used for any other purpose uniess specifically authorized in writing

10-1

CRASH CODE

DESCRIPTION

J0-2

111*

112%*

113*

115%*

118

119

200%*

201*

202*

205%*

206*

207*

208*

20A%*
210
211

212%

300

301
302
303
304
305

306
307

Attempt to remove illegal wait bits from TCB.
R8-return address, R9-TCB address, RD-wait bits.
Attempt to put illegal TCB into RS state.

E9-TCB ID; EA-EB-return PSW.

Attempt to take illegal TCB out of RS state.
U9-TCB ID.

Attempt to suspend illegal TCB. EB8-return
address; E9-TCB ID.

TCB has ready chain bit set but is not on

ready chain. E8-return address, E9-TCB ID.
Memory fault interrupt-hardware error. EE-EF-
PSW at time of fault.

System Queue Service interrupt-hardware error.
EE-EF-PSW at time of fault.

Invalid leaf address on system queue. ED-

leaf address.

Event for unconnected leaf. ED-leaf address.
Attempt to disconnect or release leaf not
connected to current task. U8-return address,
U9-connected TCB ID; UF-leaf address.

Release level <2 or greater than connection
level for leaf.

Same as for 205 with UE-release level.

Attempt to connect to invalid leaf address.
U8-return address; UD-DCB/FCB pointer, UF-

leaf address.

Attempt to modify a leaf not connected to current
task. U8-return address, UE-new ESR address;
UF-leaf address.

Leaf queued to system node with no task queued
to leaf. EB-leaf address.

Entry to EVRLE not in ES state. U9-TCB ID;
EQ-E1-PSW at entry to EVRTE.

Task event count non-zero but all leaf occurrence
counts zeroc. U9-TCB address.

Leaf being disconnected has occurrence count
greater than TCB event count. U8-return address;
U9-TCB address; UF-leaf address.

I/0 error reading bit map.

(Disc may be write protected).

I/0 error writing bit map.

Attempt to read non-existent directory block.
I/0 error reading directory block.

Attempt to release non-existent directory block.
I/0 error writing volume descriptor.

(Disc may be write protected).

I/0 error reading volume descriptor.

Request for FCB of invalid size.

This information is proprietary and s supphed by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied cuipment and shall
not be used for any other purpose unless specifically authonzed 1n wrniting.

CRASH CODE

DESCRIPTION

308
30A
30B
30C
30D
30E
30F

Attempt
FCB not
Invalid
Invalid
Bit map
Invalid
Attempt

to release FCB with FBOT=MTOP

found during release attempt

DCB link field during release FCB

FCB chain found during release attempt
or directory leaf added to system queue
save attributes

to close invalid file type

* denotes crash check present only if SGN.SAFE = 1

This information is proprietary and s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

10.2

JOURNAL CODES

CODE DESCRIPTION AND REGISTER CONTENTS
(14 Execution of SVC x. (FLIH)
12 - First word of SVC parameter block (if any)
13 - Address of parameter block
14 - SVC old PSW status
15 - SVC old PSW location (updated)
71 Task dispatched from suspended state or from NS
state (TMRDISP)
12 - n.i.
13 - n.i.
14 - Status portion of PSW to be loaded
15 - Location counter of PSW to be loaded
72 Task exit from RS state. (TMRSOUT)
12 - address of TCB RS save area
13 - n.1i.
14 - n.i. (if 15=0); status portion of exit
PSW (15#0)
15 - 0 means load PSW in TCB.RPSW; location
of exit PSW if non-zero
73 Task entered ES state (TMRSNIN)
12 - n.i.
13 - DCB address
14 - n.i.
15 - leaf address
74 Task exit from ES state (TMRSNOUT)
12 - address of TCB ES save area
13 - n.i.
14 - n.i.
15 - 0
75 Task exit from RSA state (TMRSAOUT)
12 - address of alternate save area
13 - n.i.
14 - n.i. (15=0); status portion of exit PSW
(15#0)
15 - 0 means load PSW from save area; location

10-~4

of exit PSW if non-zero

This information is proprietary and is supplied by INTERDATA fo: the sole
purpose of using and maintaining INTERDATA supphied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

CODE DESCRIPTION AND REGISTER CONTENTS

76 Task entered RS state (TMRSIN)
12 - address of RS save area
13 - n.i.
14 - status portion of resume PSW

15 - location counter of resume PSW

77 Task entered RSA state (TMRSAIN)
12 - address of alternate save area
13 - n.i.
14 - status portion of resume PSW

15 - location counter of resume PSW

80%* Remove wait or Chain call (TMREMW)
12 - n.i.
13 - wait bits if Remove wait call; n.i. if
chain call

14 - n.1.

15 - n.i.
91%* Illegal Instruction Interrupt (IIH)

12 - n.i.

13 - n.i.

14 - status portion of PSW at time of interrupt

15 - location counter of PSW at time of interrupt
92% Arithmetic Fault Interrupt (AFH)

12 - n.i.

13 - n.i.

14 - status portion of PSW at time of interrupt
15 - location counter of PSW at time of interrupt

94 System Queue Service Interrupt (SQS)
12 - n.i.
13 - leaf address
14 - status portion of old PSW
15 - location counter of old PSW

95% Connect to Leaf (EVQCON)
12 - 0 means QCON call; -1 means CON call

13 - DCB address
14 - ESR address
15 - leaf address

This information is proprietary and is supplied by INTERDATA for the soie
purpose of using and maintaming INTERDATA supplied equipment and shall
l not be used for any other purpose uniess specifically authorized in writing.

10-5

CODE DESCRIPTION AND REGISTER CONTENTS

96 Disconnect from Leaf (EVDIS)
12 - n.i.
13 - DCB address
14 - n.1i.

15 - leaf address

8001 Command Processor Command decoded (COMMANDR)
12
13
14 - Index of Command in command table
15

8002 Command Processor Dummy Driver Call (COMMANDR)
12 - n.i.
13 - n.i.
14 - n.1i.
15 - n.i.

XXX User Journal Code (SVC 2 code 0)

* denotes journal code present only if SGN.SAFE = 1

n.i. means register contains no information or
information meaningful only in context.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized 'n writing.

CHAPTER 11

DATA STRUCTURES

11.1 INTRODUCTION

This chapter presents the formats of system control blocks
and table entry. Each field is identified by its name and
a descriptive title. All control blocks and table entries
are referenced in 0S/32 ST by copying the CAL STRUC of the
same name from the 0S/32 ST Parameters and Control Block

module (07-063). The full field identifier is of the form:

BBB.FFFF
where BBB is the control block name and FFFF is the field
name. Most fields are self explanatory; those which are not
are explained following the figure for that control block.
Offsets are given in the form: ‘

DD (HH)
where DD is the offset in decimal and HH is the offset in

hexadecimal.

11.2 CHANNEL CONTROL BLOCK (CCB)

0(0) CCwW 2(2) LBO
channel command word length of buffer 0
4(4) EBO
end address of buffer 0
8(8) CW [10(n) LB1
check word length of buffer 1
12(C) "EB1
end address of buffer 1
16 (10) XLT
address of translation table
20(14) SUBA 22(16) MISC 23(17) FLGS
address of subroutine miscellaneous flags
24 (18) DCB

address of DCB

Figure 11-1. Channel Control Block (CCB)

This infarmation is proprietary and s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specificall s authonzed in witing

11-1

- Channel Command Word (CCW)
Bit Flag Name Meaning

0-7 CCWSTAT This byte is ANDed with device status;
if result is non-zero, control is
passed to CCB subroutine.

8 CCWEX Execute bit. If set Auto Driver
performs operation specified by CCW;
if reset, control is passed to CCB
subroutine.

9-11 Reserved.

12 CCBB1 Buffer bit. If reset buffer 0 in
use; if set buffer 1 in use (unless
bit 15 also set).

13 CCBWR Read/Write bit. Reset means read;
set means write.
14 CCBTL Translate bit. If set translation

is performed using translation table
pointed to by CCB.XLT.

15 CCWFST Fast Bit. Set indicates fast mode -
no translation, buffer 0, no buffer
switch, no redundancy checking.

- Miscellaneous and Flags (MISC and FLGS)

These fields are used by drivers to pass and maintain information
controlling the request from DIR to ISRs and ESRs. Sometimes
referenced as a halfword field, sometimes as two byte fields.

This information s proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supphed equipment and shall
not be used for any other purpose unless specifically authorized i writing.

11-2

11.2 DEVICE CONTROL BLOCK (DCB)

0(0) DMT
address of DMT entry
4(4) LEAF
address of leaf
8(8) INIT
address of driver data xfer entry
12(C) FUNC
address of driver cmd function entry
16 (10) TERM
address of driver termination routine
20(14) WCNT 22(16) RCNT
write count read count
24 (18) ATRB 26 (14) RECL
attributes of device record length
28 (1C) TOUT 30 (1E) RTRY
time out constant retry count
32(20) FLGS 34(22)
flags halfword reserved
36(24) STAT {37(25) DCOD 38(26) WKEY 39(27) RKEY
I/0 status] device code write key read key
40(28) PBLK
relocated SVC 1 parameter block address
44 (2C) FC 45(20) LU 46 (2E) DN
function code|] logical unit device number
48(30) SADR
relocated SVC 1 start address
52 (34) EADR
relocated SVC 1 end address
56 (38) RAND
SVC 1 random address
60 (3C) LLXF
length of last transfer
64 (40)
reserved
68 (44)
reserved

Figure 11-2, Device Control Block (DCB)

The DCB is used by the I/O subsystem to identify characteristics

of each device configured in the system and to serve as a work

space for drivers during an I/O request. DCBs are pointed to

by the Device Menmonic Table (DMT) entry for the device represented.
DCBs are included in the system by the Configuration Utility
Program (CUP) at object SYSGEN time.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in wnting.

11-3

- Attributes

This field is used at assign and SVC 1 time to check the

(ATRB)

validity of the request.

Bit Meaning
0 reserved
1 supports read
2 supports write
3 supports binary formatted records
4 supports wait I/O
5 supports random requests
6 supports unconditional proceed
7 supports image
8 reserved
9 supports rewind
10 supports backspace record
11 supports forward space record
12 supports write file mark
13 supports forward space file mark
14 supports backspace file mark
15 supports device dependent command

- Time out constant (TOUT)

This field is used to control device time out and halt I/O
functions.

Value Meaning

X'001'-X'7FFF' Device active for request
X'0000" Device .as been timed out (I/0 halted)

X'FFFF' ESR has been scheduled for this request

- Flags (FLGS)

Bit Flag Name Meaning
0 DFLG.BLM/B Bulk device flags
1 DFLG.LNM/B On-line flag. Set indicates device
online.
2 DFLG.DRM/B Directory presence flag. Set indicates

valid directory record in memory for
this device. Bulk device flag must
also be set.

This «nformation 1s proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment ard shall
not be used for any other purpose unless specifically authorized n writing.

11--4

Bit Flag Name Meaning

3 DFLG.MPM/B Bit Map presence bit. Set indicates
valid bit map record in memory for
this device. Bulk device flag must
also be set.

4 DFLG.PFM/B Set indicates moving head disc driver
should check record for pseudo file
mark.

5 DFLG.BMM/B Bit map modify bit. Set indicates

bit map record in memory has been
modified and must be rewritten to
disc. Bulk device flag must also be

set.

6 DFLG.CNM/B Console bit. Device is a console
device.

7 DFLG.UCM/B Uncancellable flag. Device not to be

halted on cancel.

- Device Code (DCB)
This field is used to identify the particular device. Value

must be greater than X'OF'. A value of X'FF' indicates the
null device.

11.4 DIRECTORY ENTRY (DIR)

0(0) FNM

File Name
8(8) EXT 11(B) VERS

Extension Version
12(C) FLBA
First Logical Block Address
16(10) LLBA
Last Logical Block Address
20(14) WKEY 21(15) RKEY 22(16) LRCL
Write Key Read Key Logical Record Length
24 (18) DATE
Creation Date/Time
28 (1C) LUSE
Last Used Date/Time
32(20) WCNT 32(22) RCNT
Write Count Read Count
36(24) ATRB 32(25) BKSZ 38(26) FLRO
Attributes Blocksize First Logical Record Offset
40(28) CSEC
Current Sector/# of Logical Records

Figure 11-3. Directory Entry (DIR)

L ——

This nformation is proprietary and s supplied by INTERDATA tu: the =ole
purpose. of using and maintaining INTERDATA supplied equ:pm and stiail
not te used for any other purpose unless wpecifically author.zodl ni vuriterg.

Each directory record contains up to five directory
entries. Version (VERS), Creation date (DATE), date
last used (LUSE), are unused in 0S/32 ST.

- Current Sector/# of Logical Records (CSEC)

This field contains a pointer to the current relative sector

for a contiguous file; number of logical records in a chain
file.

11.5 DEVICE MNEMONIC TABLE (DMT)

0(0) DM
Device Mnemonic
4(4) DCB
Address of DCB

Figure 11-4. Device Mnemonic Table (DMT)

The DMT consists of 1 entry for each device configured in
the system. The table is terminated by a doubleword of
zeroes. The DMT is pointed to by the SPT. There is no
structure for the DMT.

11.6 EVT LEAF (EVL)

0(0) CORD

coordination-ar dress of parent
4(4) CPRI 5(5) FLGS 6(6) QPRI 7(7) QTCB
connection flag byte highest queued 1st TCB ID
priority priority in gqueue
8(8) DSCN 10(a) OCNT

descendent number occurrence count
12 (C) PREV
previous leaf in connected chain

16 (10) NEXT

next leaf in connected chain
20(14) DCB

connected DCB
24 (18) ESR
entry point of ESR

28 (1C) CLEV 29 (1D) TSI1Z 31(1E) CTCB
connection tree size reserved connected TCB
level

Figure 11-5. EVT Leaf (EVL)

This information is proprietary and 1s supplied by INTERDATA for the sote
purpose of using and maintaining INTERDATA suppited equipment and shall
not be used for any other purpose unless specifically authorized 1n writing

- Flags (

FLG)

Bit Offsets are from the halfword boundary - EVL.CPRI.

thus it

Bit Flag Name Meaning

8 EVF.LEFM/B Leaf bit. EVT entry is a leaf.

9 EVF.ASSM/B Assert bit. Task is asserting
reconnection to upper nodes of
leaf.

10 EVF.PENM/B Pending flag. Leaf has evented.
11 EVF.DUMM/B Non-eventing flag. This leaf doesn't
represent a physical device,
should never appear on the system
queue.
- Tree Size (TSIZ)
This is the number of entries in the path up to the system
node including the leaf. For example, TSIZ = 1 for a TTY
leaf; TSIZ = 3 for a disc leaf (disc leaf, disc controller
node, selch node). When connection level (CLEV) = tree size
(TSIZ) the task is connected to all required entries for this
path. EVL is contained in the STRUC named EVT.
11.7 EVT NODE (EVN)

0(0) CORD

coordination-address of parent

4(4) CPRI 5(5) FLAGS 6(6) QPRI 7(7) QDSC

connect flag byte high queued high queued

priority priority dsc

8(8) DSCN 10(a) NDSC

descendant number number of descendants
12(C) LEAF
address of connected leaf

16(10) DPRI DPTR

descendant descendant address (1 for each desc)

priority

Figure 11-6.

EVT Node (EVN)

The bit definitions of the flags field (EVN.FLGS) is identical

to those
pending b
length of
occupies

for the
it (bit
a node
4 bytes

EVT leaf (EVL).
10) should never be set in a node.
is variable since the descendant pointer list
for each direct descendant.

rTh:s informntion is proprietary and is supplied by INTERDATA for the sole
purposc of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing

The leaf bit (bit 8) or the
The

11-7

11.8 FILE CONTROL BLOCK (FCB)
0(0) VMT
address of VMT entry
EXC)) LEAF
address of leaf
2(8) INIT
address of driver data xfer entry
12(C) FUNC
address of driver cmd-function entry
16(10) TERM
address of driver term entry
20(14) WCNT ! RCNT
write count ! read count
24 (18) ATRRB } RECL
attributes of file ' record length
28 (IC) OFF |29(1D) BKSZ 30 (1E)
directory ifile bleck reserved
offset | size
32(20) FLGS 34(22)
flag halfword reserved
36(24) STAT 137(25) DCOD 38(26) WKEY !39(27) RKEY
DCB I/0 ?device code write key ! read key
Status i '
40(28) PELK
relocated SVC 1 parameter block address
44(2C) FC 45 (2D) LU 46 (2E) PA
function code ;logical unit physical address
48 (30C) SADR
relocated SVC 1 start address
52(34) EADR
relocated SVC 1 end address
56 (38) RAND
SVC 1 random address
60(3C) LLXF
length of last transfer
64(40) NAME
file name
72 (48) EXT 75(48) VERS
file extension i reserved
76 (4C) DIR
address of directery block
80(50) DCR
address of DCB

Figure 11-7. File Control Block (FCB)

This information is proprietary and s suppiied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied eguipment and shall
not be used for any other purpose uniess specifically authorized in uriting.

84 (54) FLBA
first logical block address

88 (58) LLBA
last logical block address

92 (5C) CSEC

current sector logical block address
96 (50) RPSW
PSW save area
104 (68) RGPR
general
register

save area

This information is proprietary and is supplied by INTERDATA for the soie
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specificeily authorized in wr:ting.

| 168 (A8)

BAPB

! parameter blcck of buffer A

158 (BC) FCB

i FCB Linkage Field
+ 192 (CO) SLU

; saved LU entry
+ 196 (C4) BAPT

buffer for contiguous files/buffer A parm block
ptr. for chained files

- 200(C8) BBPT
; address of buffer B parm block
1 204 (CC) PBUF
| previous buffer
- 208 (D0) NBLK
number blocks in file
- 212(D4) CBLK
current block number
- 216 (D8) NLR
i number logical records in file
220(DC) CLRL
current logical record number
224 (E0) COFF 218 (DA) 219(DB) CBUF
offset of current block reserved current buffer
228 (E4) BBPB

! parameter block of buffer B

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shalt
not be used for any other purpose unless specifically authorized in writing.

J1-10

248 (F8)

BUFA

BUFB

Chained Files

Buffers

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA sqpphed equipment and shall
not be used for any other purpose unless specifically authorized in writing.

11-11

The first portion of the FCB is defined as the DCB with the
exception of a VMT pointer instead of a DMT pointer and
different flag definitions. The value of the device code
identifies this control block as an FCB rather than a DCB.

- Flags (FLGS)

Bit Flag Name Meaning

0 FFLG.BAM/B Buffered access method flag. Set
indicates a buffered access file.

1 FFLG.USM/B Set implies FCB in use.

2 FFLG.OPM/B Operation flag. Set implies write.

3 FFLG.ABM/B Active buffer bit. Set implies
buffer active (chain files only)

4 FFLG.BMM/B Current buffer flag (chain files only)

5 FFLG.MOM/B Mode flag. Set indicates random
(chain files only)

6 FFLG.DIM/B Direction flag. Set implies left

(chain files only)
- Device Code (DCOD)
Device code must be X'00' (contiguous file) or X'0l' (chain

file).

11.9 INITIAL VALUE TABLE (IVT)

0(0) CSL
Console Device Mnemonic
4(4) UBOT
Top ¢ 0S/32 ST
8(8) TOPT 10(a) LU
Default Options Number of Initial Assigns
12(C) ASGN

SVC 7 parameter blocks for assigns
(28 bytes per block)

Figure 11-8. 1Initial Value Table (IVT)

IVT is pointed to by the SPT.

- Default Options

The default options are defined as the TCB option field.

This information is proprietary and is suppiied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other gurpose unless specifically authorized in writing.

11-12

11.10 SYSTEM POINTER TABLE (SPT)

0(0) INIT
branch to SYSINIT

6(6) CRSH
system crash code
8(8) FLV
address of first leaf
12(C) LLV
address of last leaf
16(10) MLBL 18(12) CTSP
message log buffer length ctop expand quantity
20(14) cSLv
number of CSS levels
CSBF
24(18) size of CSS buffer +2
28(1c) CHBK | 3001E) ISPT
maxXimum chain file block size Top of ISP + MAC
32(20) CTOP
last halfword in allocated memory
36(24) UTOP
1st byte above user program space
UBOT
40(28) lst byte in user program space
FBOT
44 (2€) 1st byte in system storage area
48 (30) MTOP
lst byte above configured memory
52(34) OSID
system ID = OS32STRR RR = release level
IvT
60 (3C) address of initial value table
TTAB
64(40) address of TCB table
68(44) CTCB 69 (45) NTCB 70(46)
current TCB ID max TCB ID +1 reserved
DMT
72(48) address of DMT
76 (4C) VMT

address of VMT

Figure 11-9. System Pointer Table (SPT)

This information is proprivtary and s supphied by INTER{ZATA for the sole
purpose of using and maintaimng INTERUDATA supplied equipment and .hall
not be used for any other purpose unless specifically authorized n writing.

11-13

SPT - page 2

80(50) SVOL
name of default volume
84 (54) SNOD
address of system node
88 (58) JRNL
address of system journal
92 (5C) RC 90 (5A)
return code reserved
96 (60)
PSSV
save area used by Task Manager
104 (68) RSV
save area used by Task Manager
108 (6C) TSV
save area used bv Task Manager
112(70)
AFSV
save area used by Task Manager

The SPT is built by CUP at object SYSTEM TIME.

Location

X'62' contains a halfword pointer to the first byte of
the SPT.

11-14

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintamning INTERDATA suppiied equipment and shali
not be used for any other puwrpose uniess speaficolt; authorized in ariting.

11.11 TASK CONTROL BLOCK (TCB)

0(0) 1ID 1(1) PRI 2(2) DPRI 3(3) NLU
tcb ID # tcb priority dispatch prio. |# logical unit
4(4) oPT 6(6) STAT
options halfword status halfword
8 (8) WAIT 10(a) EVC
wait condition halfword event occurrence count
I2(C) PTCB 13(D) NTCB 14(E) PCWT 15(F) NCWT
previous tcb next tcb on previous tcb next tcb in
on ready ready in conn wt. conn wt.
16(10) SLOC
default starting address
20(14) SYS
system tcb word
24 (18) USER
reserved for user
32(20) ASV
alternate save area pointer
36(24) LEAF
leaf pointer during connection wait
40(28) CLC
connected leaf chain
44 (2C) DPSW
dispatcher save psw
52(34) DGPR
dispatcher save registers
116 (74) RPSW
rs—state save psw
124(7C) RGPR
rs-state save registers
188 (8C) EPSW
es-save psw
196 (C4) EGPR
es—-save psw
260(104) FMLU
file manager LU
264 (108) LTAB (4 bytes per logical

logical unit table unit)

Figure 11-10.

This information 1s proprietary and 1s suppiied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

Task Control Block (TCB)

11-15

- Options (OPT)

Bit

0

1

2=
15

14

Flag Name
TOPT.ETM/B

TOPT.ACM/B

TOPT.HWM/B

- Status (STAT)

Bit

0

Meaning

Set means E-task, reset means

user task.

Set means continue on arithmetic
fault; reset means pause.

Reserved

Set means halfword mode task; reset
means fullword task.

Flag Name Meaning
TSTT.ESM/B Set implies valid data in TCB ES-

TSTT.RSM/B

TSTT.PPM/B

- Wait (WAIT)

Bit

0

w N

(]
!

11-16

15

save area. Task is non-eventable.
Task in ES state.

Set implies valid data in TCB
RS-save area or alternate save area.
Task may be in RS, RSA or ES state
depending on other status bits.
Pause pending. Set means task to

be put into console wait on dispatch
into UT/ET state.

TSTT.RCM/B Set implies task on ready chain.

TSTT.ASM/B Set means valid data in save area
pointed to by TCB.ASV.
TSTT.RSM/B must also be set.

TSTT.IPM/B I/0 wait pending. Task to be put
into I/0 wait on exit from RS or
RSA state.

TSTT.SYM/B Set means TCB is the system task.

TSTT.CPM/B Cancel pending. Task is in SVC 3
processing.

Flag Name Meaning

TWT.IOM/B I/0 wait

TWT.CWM/B Connection wait. Task on an EVT
queue.

TWT .CNM/B Console wait. Task paused.

TWT.LWM/B Load wait. No task has been loaded
or task in SVC 5 processing.

TWT.DMM/B Dormant. Task loaded but not started

or task has gone to EOT.
Reserved.

purpose of using and maintaining INTERDATA suppiied equipment and shati

This information is proprietary and is supplied by INTERDATA for the sole
not be used for any other purpose unless specifically authorized i writing.

In general, if any wait bits are set, the task is not

on the ready chain. The exception to this is a task may
be on ready chain in ES state (TSTT.RCM/B and TSTT.ESM/B
both set) while I/O wait is set (TWT.IOM/B).

- User Field (TCB.USER)
8 bytes of the TCB are reserved for use by E-tasks for task

dependent work area.

11.12 VOLUME MNEMONIC TABLE (VMT)

0(0) VM
Volume Mnemonic
4(4) DMT
address of corresponding DMT entry

Figure 11-11. Volume Mnemonic Table (VMT)

There is one entry in the VMT for each disc device configured

in the system. When the disc is marked online the volume
name is read from the volume directory and placed in the VMT
entry. The VMT is terminated with a doubleword of zeroes.
There is no structure for the VMT.

11.13 VOLUME DESCRIPTOR (VD)

0(0) VOL
Volume Name
4(4) ATRB
Volume Attributes
8(8) FDP
First Directory Block Pointer
12 (C) OSP
Pointer to OS Image
16(10) 0SS '
Size of 0S Image
20(14) MAP
Pointer to Bit Map

Figure 11-12., Volume Descriptor (VD)

The volume descriptor is written onto sector 0 of a disc
pack by the INITIALIZE command. Volume attributes field
is not used in 0S/32 ST.

This intormation is proprietary and 1s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supptied couipment and shali
not be used for any other purpose unless specifically authorized in writing

11-17

11.14

LOW MEMORY

AN

IVT

/

DMT

—

/7777
.

NN

DCB

[

SYSTEM DATA STRUCTURE RELATIONSHIPS

SPT

+60
+64

+72
+76

o——/
T~
ad
VMT
N
\ VN
N
WA_AAA VW

+5 N
P
+80 —
NS AN

This information is proprietary and s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied eauipment and shail
not be used for any other purpose unless specifically authcrized in writing.

11-18

TCB TABLE

+4

/

+8

~.

SYSTEM TCB

+80

USER TCB

LTAB

FCB

A AN

Figure 11-13. System Data Structure Relationships

S

CHAPTER 12

MODULE DEFINITIONS

12.1 INTRODUCTION

The following sections include module definitions for each
module in the three major portions of 0S/32 ST: Executive,
Command Processor and File Manager, as well as the Floating
Point Trap routine. The module definitions are meant to be

used in conjunction with the corresponding flowchart in 0S/32 ST
Program Logic Manual, Publication Number Volume II 29-382 and
the appropriate object listing. The ENTRY and EXTRN names are
names which are referenced within the major module groupings as
well as between the major module groupings. At the start of each
section is listed the ENTRIES and EXTRNS which are needed to
bind the major module groupings together. For module descrip-
tions of the 0S/32 General Purpose Driver, see the 0S/32 General
Purpose Driver Manual, Publication Number 29-384.

This information 1s proprietary and is supplied by INTERDATA fur the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized i writing.

12-1

12~

12.2

ENTRIES:

EXTRNS:

ADCHK
EVMOD
EXEC. XXX
IODONE
MEMFLTRS
SPT.CHBK
SPT.CTCB
SPT.FBOT
SPT.IVT
SPT.MTOP
SPT.RC
SPT.TSV
SPT.VMT
TMRSOUT

CMDBUFFS
DMT
LGMBUFF
SPT.UTCB
UBOT

SYSTEM PARAMETERS:

LIBRARY ROUTINES:

MODULE

FLIH
ITH
AFH
MMH
SQS
SvCl
sSvCe?2
svCc2.0
svca.1
SvVC2.2
SvC2.3

3%

EXECUTIVE MODULES

CANEOJ
EVQCON
FPHWLBIA
IODONE2
NSEVREL
SPT.CRSH
SPT.CTOP
SPT.FLV
SPT.JRNL
SPT.NTCB
SPT.RSV
SPT.TTAB
TMREMW
TMSTART

CMDLR
INITCMDS
LOADSTAT
SQ

VMT

SGN.JRNL
SGN.HWRD
SGN.SAFE

CCB
DCB
EVT
FCB
REGS
SGN
SVCl.
TCB

EVCON
EVREL
ITH
ISPTAB
S21PAUSE
SPT.CSBF
SPT.CTSP
SPT.INIT
SPT.LLV
SPT.OSID
SPT.SNOD
SPT.UBOT
TMRSAIN

COMMAND
IVTBL
SNOD
SvC7
XLTTYKP

EVDIS
EVRTE
IIT
MEMFAULT
SPT.AFSV
SPT.CSLV
SPT.DMT
SPT.ISPT
SPT.MLBL
SPT.PSV
SPT.SVOL
SPT.UTOP
TMRSAOUT

DCBCMD
JRNLBKS
SPT.STCB
TCBTAB

This information is proprietary and is suppliea by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose untess specifically authciized n writing.

PAGE

12-9

12-10
12-11
12-12
12-13
12-14
12-15
12-16
12-17
12-18
12-19

MODULE

SvC2.4
SvC2.5
SVC2.6
svc2.7
SVC2.15
svC2.16

SV2ADCHK

svCc2.17
svCc2.18
SvC2.19
sSvC2.20
SVC3
SVC5
TMDISP
TMRDISP
EVTDISP
TMSTART
TMSTOP
TMRSIN
TMRSOUT
TMRSNIN
TMREMW
TMUCHN
EVCON
EVHOOK
EVMOD
IODONE
EVDIS
EVRTE
EVPROP
CANEOJ
EXECMSG
EXECRSCC
UNPACK
JOURNAL
TIMEOUT
ADCHK
SYSINIT
CRSH

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA suppliec cguipment and shall
not be used for any other purpose unless specifically authorized in writ'ng.

PAGE

12-20
12-21
12-22
12-23
12-24
12-25
12-26
12-27
12-28
12-29
12-30
12-31
12-32
12-33
12-34
12-35
12-36
12-37
12-38
12-39
12-40
12-41
12-42
12-43
12-44
12-45
12-46
12-47
12-48
12-49
12-50
12-51
12-52
12-53
12-54
12-55
12-56
12-57
12-58

12-3

12.3

ENTRIES:

EXTRNS:

CMDLR
INITCMD

CANEOJ
GETSECTR
RELEB
SPT.CSLV
SPT.FBOT
SPT.RC
SPT.UTCB
TMREMW
TMSTART

SYSGEN PARAMETERS:

LIBRARY ROUTINES:

1ODULES

DUMMY DRV
COMMAND
COMMANDR
CMDERROR
CONTINUE
START
CANCEL
BIAS
WRITE
READ

JOB
OPTIONS
SET
SETLOG
PAUSE
CMCLOSE

12-4

CMDP . XXX
INITCMDS$

CMDBUFFS
IODONE
S21PAUSE
SPT.CTOP
SPT.IVT
SPT.STCB
SPT.UTOP
TMRSAIN
VMTLOOK

SGN.BCMD
SGN.CSS
SGN.DA
SGN.HWRD
SGN.JRNL

DCB
DIR
FCB
IVT
REGS
SGN
SVCl.
SVC7.
TCB
VD

COMMAND PROCESSOR MODULES

COMMAND
LOADSTAT

DMLV
IVTBL
SPT.CHBK
SPT.CTSP
SPT.MTOP
SPT.SVOL
SPT.VMT
TMRSAOQUT

DCBCMD
TERMCMD

DMTLOOK
PTRSTACK
SPT.CSBF
SPT.DMT
SPT.OSID
SPT.UBOT
SQ
TMRSOUT

This information is proprietary and is supplisd by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment ard shall
not be used for any other purpose unless specifically authorized i1n writing

PAGE

12-59
12-60
12-61
12-62
12-63
12-64
12-65
12-66
12-67
12-68
12-69
12-70
12-71
12-72
12-73
12-74

MODULE

CLOSSUB
EXPAND
CMRENAME
REPROTEC
ASSIGN
MARK
MARKSUB
MARKOFF
MARKSUB2
DISPLAY
DEVICES
LU
DSPARMS
SCLEAR

$COPY, S$NOCOPY

SEXIT
SETCND
CSSIFS
BUILDS
$JOB
STERMJOB
SSKIP
SETLU
CHECKCSL
COMMACK
SCANNER,
MNMFIND
BUFFINIT
CSSBUF
CSSCLOSE
MSGLOG
PREPRO
BLANKBUF
DISPFD
CMDCLOSE
CMDASGN
CMDWRITE
MAG TAPE
MOFFBLK
MONBLK
VOLUME
CMDELETE
ALLOCATE
DISPFILE
INITIAL
LOADER
LOADOVLY
LOADFULL
LOADHALF
CHEWING
CHECKER

TERMCHK

CMDS

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment ard shall
not be used for any other purpose unless specifically authorized in writing.

PAGE
12-75
12-76
12-77
12-78
12-79
12-80
12-81
12-82
12-83
12-84
12~-85
12-86
12-87
12-88
12-89
12-90
12-91
12-92
12-93
12-94
12-95
12-96
12-97
12-98
12-99
12-100
12-101
12-102
12-103
12-104
12-105
12-106
12-107
12-108
12-109
12-110
12-111
12-112
12-113
12-114
12-115
12-116
12-117
12-118

12110
e

e T e e S

12-120
12-121
12-122
12-123
12-124
12-125/12-126

12-5

12.4 FILE MANAGER MODULES

ENTRIES:

EXTRNS:

SYSGEN PARAMETERS: SGN.CH

SGN.CO
SGN.DA

LIBRARY ROUTINES: DCB

MODULES

svc7
OPEN
OPEN.DEV
OPEN.CO
OPEN.CH
APCHECK
GETSECTR
GETB
RELEB
FDCHECK
LUCHECK
DIRLOOK
GETD
RELED
DMTLOOK
ALLOD
GETFCB
RELEFCB
ALLO
DELETE

12-6

DIR
EVT
FCB
IVT
REGS
SGN
SVCl.
SVC7.
TCB
VD

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA suppliea equipment and shall
not be used for any other purpose uniess specificaily authorized in writing.

DCB25500 DMTLOOK FMGR.XXX GETSECTR
RELEB SVC7 VMTLOOK

DCBCMD DMT EVDIS EVQCON
IODONE2 SPT.CHBK SPT.CTOP SPT.DMT
SPT.FBOT SPT.IVT SPT.MTOP SPT.VMT
TMRSAOUT TMRSOUT

PAGE

12-127
12-128
12-129
12-130
12-131
12-132
12-133
12-134
12-135
12-136
12-137
12-138
12-139
12-140
12-141
12-142
12-143
12-144
12-145
12-146

MODULE PAGE
RENAME 12-147
REPRO 12-148
CLOSE 12-149
CAP 12-150
CHECKFT 12-151
FETCH 12-152
CONTIG 12-153
CMD.CO 12-154
CHAIN 12-155
CMD.CH 12-156
GETCHL 12-157
PUTCHL 12-158
SET.LRCL 12-159
CHN.WAIT 12-160
GETCHRR 12-161
PUTCHP 12-162
POSITN 12-163
CHDIR 12-164
RESET.CH 12-165/12-166
PUTD 12-167
PUTB 12-168
TMRSRSA (TMRSARS) . 12-169/12-17¢C
This inforination is proprietary and is ?upphed by INTERDATA for the sote

purpose of using and maintaining INTERDATA supphlied equipment and shall
nut be used for any other purpose uniess specifically authoiized in writing.

12-7

12.5 FLOATING POINT TRAPS

ENTRY: FLTP.S00

EXTRNS: IIH

4

MODULES PAGE
TRAPS 12-171/12-174

This information is proprietary and s suppiict by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose uniess specificaily authorized in writing.

12-8

0S/32 MODULE DEFINITION

NAME: pirst Level Interrupt Handler (FLIH)
ABSTRACT: All SVC requests are vectored by the microcode to FLIH which performs
validity checking on the parameter block address, calculates the TCB

address, makes a Journal entry and enters the SVC executor in the state
indicated in the FLIH SVC table.

ENTRYS: FLIHl, FLIH2, FLIH3, FLIH5, FLIH7

SOURCE LIBRARY ROUTINES: SGN, TCB, SPT
EXTRN: JOURNAL, ADCHK, MEMFAULT, TMRSIN, ISH

REGISTERS USED: E8-EF

ON ENTRY: EE-EF contain PSW at time of SVC interrupt
ED - contains parameter block address
NS state

ON EXIT:

R9 - TCB address

RD - parameter block address

RE, RF - PSW at time of SVC interrupt
NS or RS state depending on SVC table

PRINCIPLES OF OPERATION:

Each SVC enters FLIH in NS state at FLIHx, where x is the SVC number, via the
SVC new location table in low memory. FLIH also contains the low memory
location data ORGed at absolute X'0'. The appropriate journal code X'é6x"'

is stored in FLIHJC and common processing is entered. FLIH calculates the
TCB address and checks the system state for UT/ET or RSA state. If state is
not one of these, the crash handler is entered. Otherwise, the journal code
is picked up and the SVC number extracted and used to pick up an attribute
word describing the SVC in the FLIH SVC table (FLIHTAB). If a parameter
block is required, the address in register 13 is checked for validity and
alignment by a call to ADCHK. The end address in the parameter block is
checked and the first work of the parameter block is loaded into register 12
for the Journal call. FLIH then enters the specific executor by branching
to the address in FLIHTAB if NS entry is required or by calling TMRSIN to
enter the executor in RS state. The format of a FLIHTAB entry is:

Bit Meaning
0 Reset means NS entry; Set means RS entry
1 Set means parameter block must be writeable
2 Set means perform parameter block checking
3-14 reserved
15 set means SVC allowed in halfword mode
16-23 Fullword parameter block length
24-31 Halfword parameter block length
32-63 Executor address

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any ather purpase unfess specifically authorized in writing.

12-9
EXEC-1

08/32 MODULE DEFINITION

NAME: Illegal Interrupt Handler (IIH)

ABSTRACT: IIH performs error processing for illegal instruction, illegal SVC
and illegal address in SVC faults as well as common processing for
memory parity error. MAC Faults and Ignore Immediate Interrupt
routines are also contained in IIH.

ENTRYS: IIH, ISH, ISHRS, MEMFAULT, MEMFLTRS, MFH, III, IIHCOM
SOURCE LIBRARY ROUTINES: SGN, TCB, SPT

EXTRN: JOURNAL, TMRSIN1, EXECMSG

REGISTERS USED: E8-EF, UO-UF

ON ENTRY: EE, EF - PSW at time of interrupt
NS state (IIH, ISH, MEMFAULT)
RS state (ISHRS, MEMFLTRS)

ON EXIT: Pause Pending bit set in TCB
Exit via EXECMSG in RS state

PRINCIPLES OF OPERATION:

on entry, the fault handler load Register 13 with a pointer to a parameter
block describing the appropriate error. Register 12 is loaded with the
address at the time of the fault. IIHCOM is then entered. IIHCOM checks
the TCB ID and task status and crashes if error occurred during

execution of system code. If error occurred in user task, RS state is
entered (unless entered at ISHRS, MEMFLTRS), the pause pending bit is

set in the user TCB, and the message start, end and address fields and

the address of the fault are loaded into registers and exit is made to
EXECMSG.

This intormaton is proprietary and 1s suppiied by INTERDATA for the sole
purpose of using and maitaning INTERDATA supptied equipment and shall
12-10 not be used for any other pupose wnless specificall authorized 1n writing.

EXEC-2

0S/32 MODULE DEFINITION

NAME: Arithmetic Féult Handler (AFH)

AFH processes arithmetic fault interrupts by placing task in pause
state (unless Arithmetic Fault Continue is set) and issuing a
message describing the error.

ABSTRACT:

ENTRYs: AFH

SOURCE LIBRARY ROUTINES: SGN, TCB, SPT
EXTRN: JOURNAL, TMRSIN1, EXECMSG

REGISTERS USED: EB-EF, UO-UF

ON ENTRY: EE, EF - PSW at time of interrupt
NS state

ON EXIT: Pause Pending set (unless AFCONT set)
Exit via EXECMSG in RS state

PRINCIPLES OF OPERATION:

AFH checks the TCB ID and system state for validity and enters the crash
handler if the fault occurred in system code. If the fault occurred in

user task code, the TCB option field is checked and if AF continue is reset,
the pause pending bit is set in the status field. AFH then enters RS

state via TMRSINl entry point in TMRSIN and prepares registers with the
message start, end and address pointers and the address at the time of the
fault (instruction following the instruction causing the fault) and exits to
EXECMSG.

purpose of using and mantamning INTERDATA supplied equipment and shall

This information is proprietary and s supplied by INTERDATA for the sole
not be used for any other purpose uniess specifically authorized in writing

EXEC-3 12-11

0S8/32 MODULE DEFINITION

NAME: Machine Malfunction Handler (MMH)

ABSTRACT: MMH processes memory parity, power fail and power restore interrupts.
Parity errors are processed by branching to common interrupt processing.
Power fail/restore sequence is processed by saving the state of the
system on power fail and on power restore, pausing the active task, if
there is one, and halting all I/0 except disc transfers which are
retried. .

ENTRYS: MMH, MMWPSW, CRSPSW

SOURCE LIBRARY ROUTINES: SPT, TCB, DCB, CCB
EXTRN: TIMEOUT, IIHCOM, TCBTAB, SQ

REGISTERS USED: EQO-EF

ON ENTRY: EE, EF - PSW at time of interrupt
PSW condition code - C bit means Auto Driver Channels active
L bit means Power Fail interrupt
V, G bits mean parity error
if no bits set it is a power restore interrupt
ON EXIT:
parity error - IIHCOM
power fail - load a wait PSW
power restore - return to state cof system at time of power fail

PRINCIPLES OF OPERATION:

Entry to MMH is an interruptable state; the condition code is used to branch to
the appropriate routine. For parity errors, MMH enters NS state, loads register
13 with a pointer to the parameter block describing the memory parity error,
loads register 12 with the location of the interrupt and branches to IIHCOM for
common interrupt processing.

On power fail, MMH checks for power restore incomplete and if found loads an
enabled wait PSW. If not found, MMH saves the Machine Malfunction old PSW

and both register sets in an internal save area, sets power restore incomplete
and loads an enabled wait PSW.

On power restore, MMH enters IS state, goes down the connected leaf chain for
each TCB and halts I/O on all connected devices and sets pause pending in the
user TCB. MMH then issues the power restore message by obtaining the console
device DCB from LUO of the system TCB, setting up a CCB to control the write,
setting the DCB status to -1 and SINTing the device. The message is output
by the TTY driver ISRs. On completion of the message, the final TTY ISR

sets DCB status to zero and adds the TTY leaf to SQ., MMH loops, testing the
DCB status for zero in NS state, When DCB status goes to ZERO, MMH resets
the status to -1, removes the leaf address from SQ to prevent a spurious

SOS interrupt and reads the GO command by the same method. If anything other
than GO was entered, the messa process is repeated. After GO is entered,
MMH reloads both register sets, resets the power restore incomplete flag and
loads the PSW at time of power fail.

purpose of using and maintaiing INTERDATA supplied equipment and shail

This information 1s proprictary and s supplied by INTERDATA for the soe
not be used for any other purpose uniess specifically authori-ed in weiting.

EXEC-4
12-12

0S8/32 MODULE DEFINITION

NAME: System Queue Service (SQS)
ABSTRACT: SQS handles system queue service interrupts by scheduling ESRs

for the eventing task or queuing the event to the task if it is
non-eventable.

ENTRYS: SQs

SOURCE LIBRARY ROUTINES: SGN, SPT, TCB, EVT

EXTRN: JOURNAL, TCBTAB, TMSTOP, TMRDISP, EVTDISP, EVPROP
REGISTERS USED: " E9-EF
ON ENTRY: EE,EF - PSW at time of SQS interrupt
ED - address of system queue
NS state
ON EXIT: NS state to TMRDISP or EVTDISP

PRINCIPLES OF OPERATION:

SQS removes the entry from the bottom of SQ and checks for a valid leaf address.
After making a journal entry, SQS derives the address of the TCB of the
connected task. The event count is incremented in the leaf and the TCB.

If the task is non-eventable (already in ES state) or the pending flag is
set in the leaf, SQS returns to the interrupted task (or system Wait state)
by loading the PSW in EE-EF. Otherwise SQS sets pending in the

eventing leaf, walks up the EVT to the highest connected ancestor and

sets the assert flag. SQS then calls EVPROP to propagate the connection
priority of the highest connected entry. On return, if the priority
propagated up to the system node and if the priority of the interrupted
task (current task) is lower than the eventing task's priority, the current
task is suspended by a call to TMSTOP and SQS exits to EVTDISP to dispatch
the eventing task's ESR. Otherwise, SQS returns control to the interrupted
task by loading the PSW in register EE-EF.

This information s proprietary and is supplied by INTERDATA for the sole
purpase of using and maintaming INTERDATA supplied equipment and shall
not be used for any other purpose uniess specifically suthorized in writing.

12-13
EXEC-5

0S/32 MODULE DEFINITION

NAME: SVC 1 Handler (SVCl)

ABSTRACT: SVC 1 performs validity checking on data passed in the SVC 1 parameter
block, connects to necessary EVT entries, prepares the DCB and
enters the appropriate driver or file manager routine for
SVC 1 I/0 requests.

ENTRYS: SVCl
SOURCE LIBRARY ROUTINES: SGN, SsvCl., SPT, TCB, DCB, FCB, EVT

EXTRN: TMNSOUT, TMSTOP, TMUCHN, TMDISP, TMRSIN1, TMRSAIN, EVCON, EVQCON, ADCHK,
MEMFLTRS, TMRSOUT
REGISTERS USED:
E9-EF, UO-UF

ON ENTRY: EE,EF - PSW at time of SVC 1 interrupt
ED - parameter block address
E9 - TCB address
NS state

ON EXIT: To Driver/File Manager: UD - parameter block address
RS or RSA state

PRINCIPLES OF OPERATION:

SvC1l picks up the DCB/FCB address from the specified LTAB entry. I1f the null
device is assigned, SVCl returns with valid status. If the LU is not
assigned, SVCl returns a status of X'81'. If the request is for a

command function, SVC1 compares the specified function against the second
byte of the attribute field of the DCB. If any bit is set in the

function code that is not set in the DCB, an error status of X'CO' is
returned (illegal function). If the request is for data transfer, SVCl
makes a similar check against the attributes field of the LTAB entry.

If the request is for wait only or test I/O complete, SVCl loads the
address of the leaf from the DCB, checks the state of the previous I/0O
request and returns the appropriate condition code for test I/O complete
or a completed wait only call. For a wait only call referencing an
incomplete I/O and proceed, SVCl stores a wait only function code in the
DCB function code field, sets the I/O wait bit, removes the TCB from

the ready chain and calls TMSTOP to save the user registers and resume
PSW, thus turning the I/0 and proceed request intc an I/0 and wait.

SVCl then exits to TMDISP to dispatch the new current task.

If the request is not wait only/test I/O complete, SVCl enters RS state

(if not a buffered access methcd request) or RSA state. The start and end
addresses are checked for data :ransfers. SVCl then calls EVQCON or EVCON
(unconditional proceed) to connect the required EVT entries unless the
leaf address is zero in the DCB or the request is for a command function
to a file (FCB). SVCl then prepares the DCB or FCB with the function code,
logical unit, parameter block address, and for data transfers, start, end
and random addresses. SVCl then exits to the address in INIT DCB/FCB.INIT
(data transfers) or DCB/FCB.FUNC (command functions).

This mformation is proprietary and is supplied by INTERDATA for the soie
purpose of using and maintaining INTERDATA supplied equipment and shatl
9.

not be used for any other purpose uniess speciically authorized in writn

12-14
EXEC-€

0S8/32 MODULE DEFINITION

NAME: SVC 2 Second Level Interrupt Handler (svc2)

ABSTRACT: svc2 performs common preprocessing and decoding for the various
SVC 2 codes. SVC2 then passes control to the appropriate executor.

ENTRYS: svC2

SOURCE LIBRARY ROUTINES: SGN, SPT, TCB
EXTRN: TMRSIN, ISH

REGISTERS USED: E8-EB, ED

ON ENTRY: EE, EF ~ PSW at time of interrupt
ED ~ parameter block address
E9 - TCB address
NS state

ON EXIT: RE, RF - PSW at time of interrupt
RD - parameter block address
R9 - TCB address
NS or RS state depending on SVC 2 code

PRINCIPLES OF OPERATION:

SVC2 checks the validity of the code and checks register specifications for
SVC 2 codes that require them. SVC2 then picks up the address of the
executor from an internal table (SVC2TAB) and branches to the routine

(NS entry executors) or calls TMRSIN (RS entry executors).

SVC 2 codes 8 and 9 cause SVC2 to return control to the task via TMNSOUT,
thus ignoring these calls.

SVC2TAB consists of 4 bytes for each code.

Bit Meaning
0 set means RS entry; reset means NS entry
1 set means not valid in halfword mode

5-6 00 means no register check performed

10 means check halfword register number
01 means check two byte register numbers
8-31 executor entry

purpose of using and maintaining INTERDATA supplied equipment and shall

This information is proprietary and is supphed by INTERDATA for the sole
not be used for any other purpose unless specifically authorized in writing.

EXEC-7 12-15

0S§/32 MODULE DEFINITION

NAME: Journal Entry Call (8VC2.0)

ABSTRACT: SVC2.0 makes a user journal entry for privileged tasks

ENTRYS: svC2.0

SOURCE LIBRARY ROUTINES: SGN

EXTRN: JOURNAL, TMNSOUT, ISH

REGISTERS USED: E8-EF

ON ENTRY: EE, EF - PSW at time of interrupt

ED - parameter block address
NS state

ON EXIT: NS state

PRINCIPLES OF OPERATION:

SVC2.0 checks to insure task is privileged (Protect mode bit reset in PSW),
loads the journal code from the parameter block, sets the high order bit,
stores the code in the halfword following the call to JOURNAL, loads EC-EF
from the last four words of the parameter, BALs to JOURNAL and exits via
TMNSOUT.

This information is proprietary and is supplied by INTERDATA for the sote
purpose of using and maintaining INTERDATA supplied equipment and shail
ot be used for amy other purpose untess speciticatly authorized in writing.

12-16 EXEC-8

0S8/32 MODULE DEFINITION

NAME: SVC 2 CODE 1 PAUSE (SVC2.1)

SVC2.1 executes pause requests via SVC 2 code 1 or PAUSE command.

ABSTRACT:
ENTRYS: SVC2.1, S21PAUSE
SOURCE LIBRARY ROUTINES: SGN, TCB

EXTRN: TMRSOUT, TCBTAB

REGISTERS USED: 'U8-UA, UF

ON ENTRY: U9 - TCB address (SVC2.1); TCB ID (S21PAUSE)
U8 - return address (S21PAUSE)
RS or ET state

ON EXIT: RS or ET state

PRINCIPLES OF OPERATION:

SVC2.1 loads U8 with address of TMRSOUT for exit and U9 with TCB ID.
S21PAUSE checks the TCB to insure validity, sets the pause pending bit
in TCB status field and exits via register 8.

purpose of using and maintaining INTERDATA supplied equipment and shali

This information is proprietary and is supplied by INTERDATA for the sole
not be used for any other purpose unless specifically authorized in writing.

EXEC-9 12-17

0S8/32 MODULE DEFINITION

NAME: SVC 2 CODE 2 GET STORAGE (svCz2.2)

ABSTRACT: SVC2.2 processes GET STORAGE requests by adjusting UTOP appropriately
and returning the old value of UTOP in user register zero. UTOP
is maintained on a fullword boundary.

ENTRYS: svc2.2

SOURCE LIBRARY ROUTINES: SGN, SPT, TCB
EXTRN: ADCHK, MEMFLTRS, EXECRSCC
REGISTERS USED: U8-UF

ON ENTRY: U9 - TCB address
UD - parameter block address
RS state

ON EXIT: RS state

PRINCIPLES OF OPERATION:

SVC2.2 obtains the value of CTOP+2 and then checks the options specified.

For get all requests, SVC2.2 checks the end of the parameter block, subtracts
UTOP from CTOP+2 and stores the result in the SIZE field of the parameter
block. The old value of UTOP is stored in the register zero slot of the

TCB RS save area, the new UTOP is stored in the SPT and SVC2.2 exits to
EXECRSCC to set the condition code and exit to the task via TMRSOUT.

If request is for a specific number of bytes, the SIZE field is added to the

value of UTOP (and checked), the result is rounded up to a fullword boundary,
the old value of UTOP is stored in the register zero slot of the TCB RS save

area, the new value of UTOP is stored in the SPT and SVC2.2 exits to EXECRSCC
to set the condition code and exit to the task via TMRSOUT.

purpose of using and maintaining INTERDATA supplied equipment and shali

This information is proprietary and is supplied by INTERDATA for the sole
not be used for any other purpose unfess specifically authorized in writing.

12-18 EXEC-10

0S8/32 MODULE DEFINITION

NAME: sSvC 2 CODE 3 RELEASE STORAGE (SVC2.3)

ABSTRACT: SVC2.3 processes release storage calls by modifying UTOP by
the amount requested '

ENTRYS: svcz.3
SOURCE LIBRARY ROUTINES: SGN, SPT, TCB

EXTRN: pMNsouT
REGISTERS USED: gg_gB, ED-EF

ON ENTRY: EE, EF - PSW at time of SVC
ED - parameter block address
E9 - TCB address
NS state

ON EXIT: NS state

PRINCIPLES OF OPERATION:

SVC2.3 calculates the new UTOP by subtracting the specified size from UTOP.
If the new value of UTOP is greater than UBOT, SVC2.3 rounds it up to a
fullword boundary, stores the value in the SPT, sets the condition code in
register 14 and exits to the task via TMNSOUT.

Purpose of using and maintaining INTERDATA supplied equipment and shall

This information is proprietary and is supplied by INTERDATA for the sale
not be used for any other purpose unless specifically authorized in writing.

EXEC-11 12-19

0S/32 MODULE DEFINITION

NAME: SVC 2 CODE 4 SET STATUS (svc2.4)

ABSTRACT: SVC2.4 provides the user task with the capability to modify the
condition code and arithmetic fault enable bits in the PSW.

ENTRYS: svCe2. 4

SOURCE LIBRARY ROUTINES: ggN, TCB

EXTRN: qunsour
REGISTERS USED: o pn pp_gr

ONENTRY: g EF - PSW at time of SVC
ED - parameter block address
E9 - TCB address
NS state

ON EXIT: NS state

PRINCIPLES OF OPERATION:

SVC2,4 tests the options and if AF modify bit is reset, it skips AF bit
processing. Otherwise, the AF bit in register 14 is set or reset to the
value specified. §8VC2.4 then stores the specified condition code into
register 14 and exits via TMNSOUT.

purpose of using and maintaning INTERDATA supplied equipment and shaii

Ths information is proprietary and 1s supplied by INTERDATA for the sole
not be used for any other purpose unless specifically authorized in wnting

12-20 EXEC-12

0S8/32 MODULE DEFINITION

NAME: SVC 2 CODE 5 FETCH POINTER (svC2.5)

ABSTRACT: SVC2.5 returns the address of the memory management fields in the
SPT to the user. ’

ENTRYS: SVC2.5
SOURCE LIBRARY ROUTINES: SGN, SPT, TCB
EXTRN: TMRSOUT

REGISTERS USED: U9-UB, UD-UF

ON ENTRY: . UD - parameter block address
U9 ~ TCB address
RS state

ON EXIT: RS state

PRINCIPLES OF OPERATION:

If calling task is in halfword mode, SVC2.5 copies the memory management
values from the SPT into an internal table which is DOS compatible” and

returns a pointer to this table. Otherwise SVC2.5 stores the address of
SPT.CTOP into the designated register slot in the RS save area of the TCB

and returns via TMRSOUT.

This information 1s proprietary and s supplied by INTERDATA for the soie
purpose of using and maintaining INTERDATA supphed equipment and shall
not be used for any other purpose unless specifically authorized in writing.

EXEC-13 12-21

08/32 MODULE DEFINITION

NAME: SVC 2 CODE 6 UNPACK (SVC2.6)

SVC2.6 uses the values passed in the parameter block to call
UNPACK to convert a binary number to decimal- or hexadecimal

ASCII.

ABSTRACT:

ENTRYS: SVC2.6

SOURCE LIBRARY ROUTINES: SGN, TCB
EXTRN: ADCHK, MEMFLTRS, .TMRSOUT, UNPACK

REGISTERS USED: U6, U8-UF

ON ENTRY: UD - parameter block address
U9 - TCB address
RS state

ON EXIT: RS state

PRINCIPLES OF OPERATION:

SVC2.6 checks the destination start and end addresses for validity and loads
the options, length, start of destination into registers from the

parameter block and the binary number from the Register 0 slot in the

RS save area of the TCB. After calling UNPACK to do the work, SVC2.6

exits via TMRSOUT.

This information is proprietary and is supplied by INTERDATA for the sow
purpose of using and maintaining INTERDATA suppued equipment and shall
not be wsed for any other purpose unless specifically authorized in writing.

EXEC-14

12-22

08/32 MODULE DEFINITION

NAME: SVC 2 CODE 7 LOG MESSAGE (SVC2.7)
ABSTRACT: SVC2.7 calls EXECMSG to schedule a log message for the calling task.
ENTRYS: svCc2.7

SOURCE LIBRARY ROUTINES: SGN, SPT, TCB
EXTRN: TMRSOUT, EXECMSG, EXECMSGl, LGMBUFF, ISHRS, ADCHK, MEMFLTRS

REGISTERS USED: Ul-Ua, UD

ON ENTRY: UD - parameter block address
U9 - TCB address
RS state

ON EXIT: RS state

PRINCIPLES OF OPERATION:

SVC2.7 picks up the address of the text and calls EXECMSG to connect to the
dummy leaf. On return, the message text is moved to the system log message
buffer. SVC2.7 then sets up the function code with image or format as
specified and exits to EXECMSGl which calls the dummy driver which exits

to the task via TMRSOUT. Subsequent calls to SVC2.7 before the message is
completed by the Command Processor cause the task to enter connection

wait on the call to EXECMSG.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in wriling.

12-23

0S/32 MODULE DEFINITION

NAME: SVC 2 CODE 15 PACK (SVC2.15)

ABSTRACT: SVC2.15 packs a string of decimal or hexadecimal ASCII characters
into a binary number.

ENTRYS: SVC2.15

SOURCE LIBRARY ROUTINES: TCB
EXTRN: SV2ADCHK, EXECRSCC -

REGISTERS USED: U0-U3, U5-U6, U8-UA, UD, UF

ON ENTRY: UD - parameter block address
U9 - TCB address
RS state
ON EXIT: UF - condition code
U9 - TCB address
RS state

PRINCIPLES OF OPERATION:

SVC2.15 calls SV2ADCHK to check the validity of the input string, initializes
the work registers and skips leading blanks in the input string, if specified.
The number is then processed from left to right by multiplying the accumulator
by the base (10 or 16) and adding the next byte after stripping the zone

(and converting if hexadecimal A-F). If the value exceeds 8 digits (hex) or
231-1 (dec) the 'V' bit is set in the condition code. If no characters were
converted, the 'L' bit is set. On the first byte that is not 0-9 (dec) or
0-9,A-F (hex), SVC2.15 updates the input string pointer by adding the index
to the specified register slot in the RS save area of the TCB and exits to
EXECRSCC to set the condition code and return to the task via TMRSOUT.

This information 15 proprietary and s supplied by INTERDATA for the sole

purpase of using and maintaining INTERDATA suptlied equipment and shaft
not be used for any other purpose unless specifically authorized in writing.

12-24 EXEC-16

0S8/32 MODULE DEFINITION

NAME: SVC 2 CODE 16 PACK FILE DESCRIPTOR (SVC2.16)

ABSTRACT: SVC2.16 converts an ASCII string containing a valid file descriptor
into the form necessary in an SVC 7 parameter.block.

ENTRYS: SVC2.16

SOURCE LIBRARY ROUTINES: SPT, TCB
EXTRN: SV2ADCHK, SV2ADCl, -MEMFLTRS, EXECRSCC

REGISTERS USED: Uo0-UF

ON ENTRY: UD - parameter block address
U9 - TCB address
RS state

ON EXIT: RS state

PRINCIPLES OF OPERATION:

SVC2.16 calls SV2ADCHK to check the validity of the target start and end and
the input start. SVC2.16 then uses an internal subroutine PFDGET to
extract the fields of the file descriptor from the input string.

PFDGET4 returns up to 4 alphanumeric characters, starting with an alphabetic,
left justified and right filled with blanks, in register 11. The input
pointer is updated to point past the last character loaded into 11. If

less than 4 characters were processed the condition code ‘is non-zero.

PFDGET4A returns 1-4 alphanumeric characters as specified by register 12.

PFDGET4E decrements register 12 on entry and so returns 1-3 alphanumeric
characters in register 11.

After processing the volume, name and extension fields, SVC2.16 checks for
syntax errors, updates the input and destination pointers in the

specified register slots in the RS save area of the TCB and exits to
EXECRSCC to set the condition code and return to the task via TMRSOUT.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shali
not be used for any other purpose unless specifically authorized in writing,

EXEC-17

12-25

0S/32 MODULE DEFINITION

NAME: SV2ADCHK

ABSTRACT: SV2ADCHK performs common address checking for SVC 2 executors

ENTRYS: SV2ADCHK, SV2ADC1l

SOURCE LIBRARY ROUTINES: TCB

EXTRN: ADCHK, MEMFLTRS

REGISTERS USED: vU0, U1, U8, U9, UA

ON ENTRY: U9 - TCB address
Ul - register number of register containing address
U0 - return

RS state

ON EXIT: UA - checked address
Ul - offset of register in RS save area

PRINCIPLES OF OPERATION:

SV2ADCHK loads the address to be checked from the specified slot in the
RS save area of the TCB, calls ADCHK to perform the validity checking
and returns.

This informetion is proprietary and is supplied by INTERDATA for the sole
puspose of using and maintaining 'NTERDATA supplied equipment and shail
not be used for any other purpose uniess specifically authorized in writing.

12-26 EXEC-18

0S/32 MODULE DEFINITION

NAME: SVC 2 CODE 17 Mnemonic Table Scan (SVC2.17)

ABSTRACT: SVC2.17 scans the input string for a match against the specified
mnemonic table and returns the index of the mnemonic which matches.

ENTRYS: svCc2.17

SOURCE LIBRARY ROUTINES: TCB
EXTRN: SV2ADCHK, ADCHK, MEMFLTRS, EXECRSCC

REGISTERS USED: UO-Ul, U5-UF

ON ENTRY: UD - parameter block address
U9 - TCB address
RS state

ON EXIT: RS state

PRINCIPLES OF OPERATION:

SVC2.17 loads the input address from the specified register in the RS save
area, loads the mnemonic table address and scans the input string for the
first non-alphabetic following the first character. This yields the
length of the input mnemonic. SVC2.17 then compares the input mnemonic
with the first mnemonic in the table character by character, stripping
the high order bit of each table byte. If an unequal compare results
before the byte of X'00' in the table, SVC2.17 steps to the next mnemonic
in the table and starts the compare again. If all the characters of

the input mnemonic match a table entry, SVC2.17 checks the high order

bit of the next table byte. If set, no match is present and SVC2.17
skips to the next table entry; if reset, SVC2.17 updates the input
pointer in the specified register slot in the RS save area and exits to
EXECRSCC to set the condition code and return control to the task via
TMRSOUT.

This informatior is proprietary and is supplied by INTERDATA for the mle"
purpose of using and maintaining INTERDATA supplied equipment and shall i

not be used for any other purpose unless specifically authorized in writing
J

EXEC-19 12-27

0S/32 MODULE DEFINITION

NAME: SVC 2 CODE 18 MOVE ASCII CHARACTERS (svC2.18)

ABSTRACT: SVC2.18 moves a string of bytes, ending on a specified set of
characters or when a specified number of bytes have been moved.

ENTRYS: SVC2.18
SOURCE LIBRARY ROUTINES: TCB
EXTRN: SV2ADCHK, ADCHK, MEMFLTRS, EXERSCC

REGISTERS USED: U0-U3, US-UF

ON ENTRY: U0 - parameter block address
U9 - TCB address
RS state

ON EXIT: RS state

PRINCIPLES OF OPERATION:

5VC2.18 loads the start of the input, destination and ending character string
if present.

If ending character processing is specified U3 is loaded with the length of

the ending character string. Each byte of the input string is then compared

with each ending character. If there is no match or no ending character string
(U3=0) the byte is moved to the next byte in the destination string. This

process is continued until an input character matches an ending character or

the input counter goes to ZERO., SV2.18 then updates the input and destination
pointers in the specified register slots in the RS save area and exits to EXECRSCC
to set the condition code and return control to the task via TMRSOUT.

This information is proprietary and is supplied by INTERDATA for the scle
purpose of using and maintaming INTERDATA supplied equipment and shatt |
12=-28 not be used for any other purpose untess specitically authorized in writing |

EXEC-20

0S8/32 MODULE DEFINITION

NAME: gyc 2 CODE 19 PEEK (SvC2.19)

ABSTRACT: svC2.19 returns the OS ID, number of LUs, task options and wait
status in the SVC 2 code 19 parameter block.

ENTRYS: svC 2
SOURCE LIBRARY ROUTINES: SsPT, TCB

EXTRN: ADCHK, MEMFAULT, TMNSOUT

REGISTERS USED: E8-EF

ON ENTRY: ED - parameter block address
E9 - TCB address
NS state

ON EXIT: NS state

PRINCIPLES OF OPERATION:

SVC2.19 checks the validity of the end of the parameter block and sets up the
parameter block from the SPT and TCB and exits via TMNSOUT.

purpose of using and maintaining INTERDATA supplied equipment and shali

This information is proprietary and is supptied by INTERDATA for the sole
not be used for any other purpose unless specifically authorized in writing.

EXEC-21 12-29

0S/32 MODULE DEFINITION

NAME: syc 2 CODE 20/21, EXPAND/CONTRACT ALLOCATION (SVC2.20/SVC2.21)

ABSTRACT: gyC 2 code 20/21 processes memory allocation expand/contract calls
by modifying CTOP as requested.

ENTRYS: gyc2.20, svcz.21
SOURCE LIBRARY ROUTINES: ggT

EXTRN: ©MNSOUT, ADCHK, MEMFAULT
REGISTERS USED: pg_pp

ON ENTRY: ED - parameter block address
E9 - TCB address
NS state

ON EXIT: NS state

PRINCIPLES OF OPERATION:

SVC2.20/21 loads the parameter block into register 10 and converts the number of
blocks specified into number of bytes. Expand-all requests are processed by
subtracting CTOP from FBOT, rounding the result down to the nearest 256 byte
boundary and storing the number blocks in the parameter block. Other expand
requests and contract requests are processed by adjusting CTOP by the specified
amount. CTOP is updated in the SPT, the condition code is set by modifying '
register 14 and control is returned to the task via TMNSOUT.

purpose of using and maintaining INTERDATA supplied equipment «: 3 shall

This information s proprietary and i suppied by INTERDATA fo tne sole
not be used for any other purpose unless specifically authu ized o ~rting, |
. s}

EXEC-22
12-30

0S8/32 MODULE DEFINITION

NAME: gyc 3 END OF TASK, (SVC3)

ABSTRACT: gyc 3 performs end of task processing by halting all outstanding reads,
check-pointing all LUs, issuing the End of Task message and resetting

the TCB.

ENTRYS: SVC3

SOURCE LIBRARY ROUTINES: SPT, TCB, EVT, IVT, DCB, FCB
EXTRN: TIMEOUT, TMRSIN1, EXECMSG, EXECMSG2, TMDISP

REGISTERS USED: E8-EF, UO-UA, UD-UF

ON ENTRY: ED - return code
E9 - TCB address
NS state

ON EXIT: NSU state

PRINCIPLES OF OPERATION:

SVC3 goes down the connected leaf chain and calls TIMEOUT to halt all reads
outstanding. RSA state is entered by calling TMRSIN and then setting the
alternate save area bit. This is to allow SVC 7 calls from SVC3. SVC3

then issues an SVC 7 checkpoint for each LU, using the area TCB.SYS for a
temporary parameter block. On return from SVC 7, the alternate save area
status bit is reset. SVC3 then prepares the status field with RS, I/0 wait
pending and ready chain bits set and enters NSU state. SVC3 prepares the
EOT message pointers and function code. EXECMSG connects to the dummy leaf
and returns. SVC3 sets cancel pending bit to allow the command processor to
issue the correct command prompt. SVC3 then issues the EOT message as a
subroutine of the ending task via EXECMSG2. Since I/0 wait pending is set
and the RS PSW save area has been set up with an NSU PSW pointing to EOJME,
on completion of the message, SVC3 regains control, unchains the TCB, sets
the dormant wait bit, 2zeroes the TCB except for ID, NLU, PRI, DPRI, and LTAB
and exits to TMDISP.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shal®
not be used for any other purpose unless specifically authorized in writ ng.

EXEC-23
12-31

0S/32 MODULE DEFINITION

NAME: SVC 5 FETCH OVERLAY (SVC5)

ABSTRACT: SVC5 processes load overlay requests by passing the load information
to the command processor, waiting for completion and passing status
back to the calling task.

ENTRYS: SVC5
SOURCE LIBRARY ROUTINES: SPT, TCB

EXTRN: CMDLR, TCBTAB, LOADSTAT, TMRSIN1l, TMDISP, TMNSOUT, TMRSOUT,
INITCMDS
REGISTERS USED: EA-EF, UC-UD

ON ENTRY: ED - parameter block address
E9 - TCB address
NS state

ON EXIT: RS state

PRINCIPLES OF OPERATION:

On entry SVC5 checks the validity of the options and LU specified. SVC5
stores the option byte into CMDLR in the command processor and copies the
attributes and DCB/FCB address from the specified LU of the user TCB

into LUl of the system TCB. It then prepares to wait for completion of
the load by:

1. Storing the address of the Register 12 slot of the user TCB
dispatch save area in LOADSTAT in the command processor.

2. Setting load wait in user TCB.

3. Unchaining the user TCB.

4. Calling TMRSIN to save the user reqisters and resume PSW in the user
TCB RS save area.

5. Saving the parameter block address in the Register 13 slot of the user
TCB dispatch save area.

6. Storiny a PSW with RS status and location of RSVC5 into the PSW save
slot of the user TCB dispatch save area.

SVC5 then enters the dummy driver at the secondary entry point INITCMDS to
complete the SVCl I/0O & wait to the console and schedule the system task.
The command processor detects t e load overlay request in CMDLR, performs
the load, stores the status in _he register 12 slot of the user TCB dispatch
save area (pointed to by LOADSTAT) and calls TMREMW to remove the load wait
and chain the user TCB. When the user task becomes top of ready chain,
TMRDISP dispatches the user task by loading the PSW and registers from the
dispatch save area thus passing control to SVC5 at RSVC5. The status is
converted in Register 12, stored in thc parameter block and SVCS exits to

in the p
the task via TMRSOUT.

purpose of using and maintaining INTERDATA supplied equipment and shall

This information is proprietary and is supplied by INTERDATA for the sole
not be used for any other purpose uniess specifically authorized in writing.

12~32 EXEC-24

08/32 MODULE DEFINITION

NAME: TMDISP

ABSTRACT: TMDISP compares the priority of the current task with top of EVT
and enters TMRDISP or EVTDISP accordingly.

ENTRYS: TMDISP
SOURCE LIBRARY ROUTINES: SPT, TCB, EVT
EXTRN: TMRDISP, EVTDISP

REGISTERS USED: E9-EB

ON ENTRY: NS state

ON EXIT: NS state

PRINCIPLES OF OPERATION:

TMDISP compares the priority of the task at top of ready chain (SPT.CTCB)
with the priority queued to the system node (EVN.QPRI). If CTCB = O,

(no ready task) the ready chain priority is set to X'FE'. TMDISP enters
TMRDISP or EVTDISP as follows:

TMRDISP: L. EVN.QPRI of system node = X'FF'
2, priority of CTCB greater than EVN.QPRI of system node

EVTDISP: 1. EVN.QPRI greater than or equal to priority of CTCB
2. EVN.QPRI not X'FF' and CTCB = 0.

This information is proprietary and 15 supplied by INTERDATA “or the sore
purpose of using and maintaining INTERDATA supplicd equipment and shatl

not be used for any other purpose unless specifically authorized in wr-ting

EXEC-25 12-33

0S/32 MODULE DEFINITION

NAME: TMRDISP (TMNSOUT)

ABSTRACT: TMRDISP dispatches from SPT.CTCB (top of ready chain) or puts system
into wait state. TMRDISP processes pause pending and issues the
task paused message if set.

ENTRYS: TMRDISP, TMNSOUT

SOURCE LIBRARY ROUTINES: SPT, TCB, SGN
EXTRN: TMRSIN1l, EXECMSG, EXECMSGl, MMWPSW, JOURNAL

REGISTERS USED: E8-EF, U0-U4, U7-U9

ON ENTRY: TMNSOUT requires EE, EF to have the resume PSW
U0-UF to have valid user register values

NS state

ON EXIT: state defined in EE-EF or dispatch save area

PRINCIPLES OF OPERATION:

TMRDISP enters NS state via an EPSR and loads SPT.CTCB. If ZERO an enabled
wait PSW is loaded to put the system into a wait state. If non-zero, TMRDISP
loads the user register set from the dispatch save area in NSU state,
reenters NS state and loads the dispatch save area PSW into EE-EF. This
state is equivalent to exit from a type I SVC (TMNSOUT).

TMRDISP then checks for pause pending. If pause pending is not set or

the task is being dispatched intoc RS, RSA or ES state, a journal entry is
made and the task dispatched by doing an LPSWR on EE, EF. If pause pending
is set and the task is being dispatched into UT/ET state, RS state is
entered via TMRSIN1l, and EXECMSG is called to schedule the task paused
message. On exit from the dummy driver, TMRSOUT places the task into
console wait.

This information 15 proprietary and is supplied by INTERDATA for the sor |
purpose of using anrd maintaining INTERDATA supplied equipment and shar. |
not be used for any other purpose unless specifically authorized in writing

12-34 EXEC-26

0S/32 MODULE DEFINITION

NAME: EVTDISP
ABSTRACT: EVTDISP connects the task queued to the top of the EVT
and places it on the ready chain :

ENTRYS: EVTDISP

SOURCE LIBRARY ROUTINES: SPT, EVT, TCB

EXTRN: TCBTAB, EVHOOK2, TMREMW, TMDISP, TMRDISP, TMRSNIN
REGISTERS USED: E8-EF

ON ENTRY: NS state

ON EXIT: NS state

PRINCIPLES OF OPERATION:

EVTDISP processes tasks queued for one of two reasons: connection wait
and assertion. If the highest queue task is in connection wait, EVTDISP
walks down the EVT to the highest queued leaf and removes the task

at the top of the connection queue for that leaf. The task is connected
to the leaf by placing the DCB and ESR address from the register 13 and
register 14 slots of the task's TCB dispatch save area into the leaf
along with the task's ID and dispatch priority. The leaf is added to the
task connected leaf chain. EVTDISP calls EVHOOK to connect all

ancestor nodes and then calls TMREMW to remove the connection wait and
chain the TCB. On return, if CTCB was not changed TMDISP is entered

to see if EVHOOK propagated a new task to the top of the EVT. If the
current task was changed the new task is dispatched via TMRDISP.

If the highest queued task is asserting reconnection, EVTDISP
encounters an EVT entry with the assert flag set while walking down
to the highest queued leaf. 1In this case, EVTDISP resets the assert
flag, loads the connected leaf pointer, if the leaf is not the
asserting entry, resets the pending flag in the connected leaf, calls
EVHOOK to connect from the asserting entry up and branches to TMRSNIN
to schedule the ESR.

This information is proprietary and is supphed by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied ryuipment and shatl
not be used for any other purpase unlass specifically authorized in writing ‘

EXEC-27

12-35

0S§/32 MODULE DEFINITION

NAME: TMSTART

-

ABSTRACT: TMSTART prepares the user TCB for dispatching as a result
of a START command.

ENTRYS: TMSTART
SOURCE LIBRARY ROUTINES: SGN, SPT, TCB

EXTRN: TMREMW, TCBTAB

REGISTERS :SED: U9-UF

ON ENTRY UF - starting location
U9 - TCB ID
ET state

ON EX!T ET state

PRINCIPLES OF GPERATION:

TMSTART derives the TCB address; establishes the starting PSW status from
the TCB options in register 14 and stores registers 14, 15 in the PSW

of the TCB dispatch save area. TMSTART then calls TMREMW tc remove all
wait bits and to chain the user TCB. TMREMW returns to the command

processor via register 8.

| Ths rformation s peoprietary and s suppiea iy ROATA #
" purpose of using 3nd mantaie ry 'NTERDATA suop od - ul -
Lot be used 1o any other purpose unless speciticaiy 3utt

EXEC-28

0S/32 MODULE DEFINITION

NAME: TMSTOP

.

ABSTRACT: TMSTOP saves the state of the current task in the TCB dispatch
save area.

ENTRYS: TMSTOP

SOURCE LIBRARY ROUTINES: SGN, SPT, TCB

EXTRN: TCBTAB

REGISTERS USED. E8-EF, UO-UF

ON ENTRY. EE,EF - PSW to be saved in dispatch save area
E9 - TCB ID
E8 - return address

NS state

ON EXIT: NS state
E9 - TCB address

PRINCIPLES OF OPERATION:

TMSTOP stores the resume PSW in the TCB.DPSW, enters NSU state, saves UO-UF
in TCB.DGPR, reenters NS state and exits via Register 8.

T informaiion 1 proprietary and s supphed by INTERDATA far the suh‘l
purpose of using and maintaining INTERDATA supplied equipment anc <hall
not be used for any other purpose uniess specifically authorized 11 wiiting

EXEC-29

12-37

0S/32 MODULE DEFINITION

NAME: TMRSIN (TMRSAI‘N)

ABSTRACT: TMRSIN saves the user register set and resume PSW in the specified
save area and exits via the PSW in EA-EB.

ENTRYS: TMRSIN, TMRSIN1l, TMRSAIN
SQURCE LIBRARY ROUTINES: SGN, SPT, TCB
EXTRN: TCBTAB, JOURNAL

REGISTERS USED: E8-EF, UO-UF

Old ENTRY. EE,EF - PSW to be saved in RS save area
EA-EB - return PSW
E9 - TCB address {(TMRSIN1, TMRSAIN)
NS state

ON EXT: U9 - TCB address
UA-UF - values passed in EA-EF
state specified by EA-EB

PRINCIPLES OF OPERATION:

TMRSIN, TMRSAIN make separate journal entries, save E9-EF in the SPT
Task Manager save areas and load a pointer to TCB.RGPR or the alternate
save area pointed to by TCB.ASV, respectively. TMRSIN calculates the
address of the current TCB; TMRSIN1 requires the TCB address in E9.
Common processing enters NSU state, saves UO-UF in the specified save
area, loads the saved values of EA-EF into UA-UF and exits via the PSW
in UA, UB.

[This intormation 5 proprretary a0 s supmied hy INTERGATA fo: The sole
purpose of using and maintaining INTERDATA supphiert equipment and shalt

not_be used for any other purpose unless specifically authorized in writing

EXEC-30 .
12-38

08/32 MODULE DEFINITION

NAME: TMRSOUT (TMRSAOUT, TMRSNOUT)

ABSTRACT: TMRSOUT loads the task environment from the specified save area.
Pause pending, I/O wait pending and wait bits are processed.

ENTRYS: TMRSOUT, TMRSOUT1, TMRSAOUT, TMRSNOUT, TMRSAOUL
SOURCE LIBRARY ROUTINES: SGN, TCB, SPT

EXTRN: JOURNAL, TMRDISP, TMUCHN, TMDISP, TCBTAB
REGISTERS USED: U0-UF

ON ENTRY. SPT.CTCB - TCB ID (TMRSOUT)
U9 - TCB ID (TMRSOUT1, TMRSAOUT, TMRSAOUl, TMRSNOUT)
RS, RSA, ES state (TMRSOUT/TMRSOUT1l, TMRSAOUT/TMRSAOUl, TMRSNOUT)
UE - UF - resume PSW (TMRSOUT1, TMRSAOUL)

ON EXIT: state in specified save area

PRINCIPLES OF OPERATION:
This module can be regarded as several functional submodules:

RSOUT: RSOUT sets dispatch flag (UF=0); RSOUT1l enters with dispatch flag
reset (UF#0). The TCB RS status bit is reset unless the alternate
save area bit is set, EC is loaded with a pointer to the TCB RS
save area, and a journal entry is made. TESTF is entered.

RSAOUT: RSAOUT sets the dispatch flag (UF=0):; RSAOUl enters with dispatch
flag reset. The TCB RS and alternate save area bits are reset,
EC is loaded with a pointer to the alternate save area (TCB.ASV),
a journal entry is made and TESTF is entered.

RSNOUT: RSNOUT sets the dispatch flag, resets the ES status bit, makes
a journal entry. If any wait bits are set WAIT is entered. If
not, the task is rechained (no-op in ST), if necessary, by
switching PRI and DPRI, calling TMCHN and setting PRI to DPRI
on return. If task is still current (always in ST) TESTRE
is entered, if not TDISP is entered to dispatch the new current
task.

TESTF: TESTF tests the dispatch flag and if set (UF=0) enters WAIT if any
wait bits are set or TESTRE if no waits are set; if reset (UF#0)
TESTF saves the PSW in UE and UF in SPT.PSV and enters MOVE.

TESTRE: TESTRE checks if task is about to enter UT/ET level. If not, DISP
is entered to dispatch from the save area. If so the following
checks are made:

1) Except for exit to RSA state (AS bit still set in status) pause
pending status causes a PSW with NS states and a location of TMRDISP
to be saved in SPT.PSV and MOVE is entered.

2) Except for exit from ES state (EC contains address TCB.EPSW)

I/0 wait pending causes the pending bit to be reset, I/0O wait

to be set, and WAIT to be entered.

WAIT: WAIT unchains the TCB and enters TDISP.

MOVE: MOVE moves the PSW and registers from the specified save area (EC)
to the TCB dispatch save area and exits via the PSW in SPT.PSV.

DISP: DISP saves the PSW from the specified save area (EC) in SPT.PSV, loads
the user registers from the save area and exits via the PSW in SPT.PSV.

TDISP: Saves a PSW with NS status and a location of TMDISP in SPT.PSV and
enters MOVE.

This information 15 proprietary and 15 supplied by INTERDATA for the ww—[
purpose of using and mantaining INTERDATA supplied equupment ard wholy
not be used for ary other puipase uniess specificall, authorized in wret qu

EXEC-31
12-39

0S8/32 MODULE DEFINITION

NAME: TMRSNIN (E.SR‘GO)
ABSTRACT: TMRSNIN schedules an ESR in ES state for the current task.

The interrupted environment of the task is saved in the
TCB ES save area.

ENTRYS: TMRSNIN, TMRSNIN1l, ESRGO
SOURCE LIBRARY ROUTINES: SGN, SPT, TCB, EVT
EXTRN: TCBTAB, JOURNAL, TMCHN

REGISTERS USED: E8-EF, UO-UF

ON ENTRY: TMRSNIN: EF - leaf address ESRGO: UF - leaf address
EA - ES priority UD - DCB address
E9 - TCB address (TMRSNIN1) U7 - TCB address
NS state NSU state

ES bit set in TCB status
OM EXIT: ES state
UF - leaf address
UD - DCB address

PRINCIPLES CF OPERATION:

TMRSNIN derives the TCB address, sets the task DPRI to the specified ES priority
and calls TMCHN to put the task in the proper place in the ready chain (no-op

in ST). It then enters NSU state, moves the dispatch save area contents to the
ES save area, sets the ES status bit, loads UD with the DCB address from the
leaf and enters ESRGO.

ESRGO resets the pending flag in the leaf, walks up the tree to the highest
connected ancestor (CLEV), resets assert in the highest connected ancestor,
makes a journal entry, decrements the event count in the leaf and TCB and
exits to the ESR routine pointed to by the leaf in ES state.

B/2e

{TM iformation 15 proprietary and 1s suppled by INTERDATA for rae
Do DS oF using and mantaming INFERDATA suppior equpment s <salf |
fel be used for any other purpose uniess specineati, authnzed 1wt ing

12-40
EXEC-32

08/32 MODULE DEFINITION

NAME: TMREMW (TMCHN)

ABSTRACT: TMREMW resets the specified wait bits. If no wait bits remain
set, TMCHN puts the task on the ready chain before the first
task with lower priority.

ENTRYS: TMREMW, TMCHN

SOURCE LIBRARY ROUTINES: SGN, SPT, TCB
EXTRN: TMUCHNS, TCBTAB

REGISTERS USED: R8-RB

ON ENTRY: RD - bits 16-31 contain the wait bits to be reset (TMREMW)
R9 - TCB ID
R8 - return address
any state except IS

ON EXIT: entry state

PRINCIPLES OF OPERATION:

On entry, TMREMW and TMCHN set a flag to indicate which entry, save the entry
state, and enter NS state (if state on entry is NS) or NSU (if entry state was
NSU, RS, ET, RSA). TMREMW calls cause the specified bits to be reset in the
TCB wait field (TCB.WAIT). If any bits remain set, TMREMW returns via the
saved state and Register 8.

TMCHN saves the value of SPT.CTCB and checks the ready chain bit; if set

and DPRI=PRI, TMCHN returns via the saved state and R8. If the ready chain
bit is set and DPRT # PRI, TMUCHNS is called to unchain the TCB from its
present position and on return, the TCB is chained before the first task on
the chain whose DPRI is less than the DPRI of the task being chained.

The value of SPT.CTCB is compared with the value on entry. If the same, the
condition code in the saved entry status is set to 0; otherwise, it is set
to X'F' and TMCHN exits via the saved state and R8.

purpose of using and maintaining INTERDATA supplied equipment and shall

This ioformation is proprietary and is supplied by INTERDATA fe- the snte—'
not be used for any other purpose unless specifically authorized in wr.ting

J

EXEC-33 12-41

0S/32 MODULE DEFINITION

NAME: TMUCHN

.

ABSTRACT: TMUCHN removes a TCB from the ready chain.

ENTRYS: TMUCHN, TMUCHNS

SOURCE . IBKARY ROUTINES: SPT, TCB, SGN

EXTRN: TCBTAB

REGISTERS USED® RB-RB

ON ENTRY: R9 - TCB ID (TMUCHN) TCB address (TMUCHNS)

R8 ~ return address
any sta-e except IS (TMUCHN) NS/NSU (TMUCHNS)

ON EXIT: entry state

PRINCIPLES OF OPERATION:

TMUCH saves the entry state and enters NS (if NS entry) or NSU (all other entries).
TMUCHN then searches the ready chain for the specified TCB and removes it. The
value of CTCB is compared with the CTCB value on entry. If equal, the saved
status is modified to have a condition code of zero; if unequal, it is modified

to have a condition code of X'F'. Exit is via the saved status and RS. ‘

This information 15 proprietary and s suppl.ed by INTERDATA for the sole
purposz of using and meintainng INTERDATA supplied equipment and shall
a0t be used for any other purpose unless speciticaily authorized in writing

EXEC-34

L

12-42

0S8/32 MODULE DEFINITION

NAME: EVCON (EVQCON)

its ancestor nodes in the EVT.

: EVCON connects a task to a leaf a?d i stc EVT
ggstzggzéticn cannot be made to all entries in the spec*fled pathf a CO?ilthn
code of X'F' is returned (EVCON) or the task is placed in connection wait.

ENTRYS: EVCON, EVQCON

SOURCE LIBRARY ROUTINES: SGN, EVT, SPT, TCB
EXTRN: TCBTAB, EVHOOK2,TMSTOP, TMUCEN, TMDISP, EVPROP1

REGISTERS USED: U8-UF, E8-EA, EE-EF

. UF - Leaf address
ON ENTRY: UE - event service routine pointer
UD - DCB address
SPT.CTCB - TCB ID
RS STATE
ON EXIT: UF -~ leaf address
UE - ESR pointer
UD - DCB address
RS STATE

PRINCIPLES OF OPERATION:

On entry, EVCON enters NSU state. EVCON walks up the EVT from the leaf and
checks for a blocked node (CPRI # FF). If none are found, the task is
connected to the leaf by placing the TCB ID, DCB address, ESR address and
task priority into the leaf. The leaf is added to the task connected leaf
chain, EVHOOK is called to connect any upper nodes and EVCON exits by loading
a PSW with RS status and a location of the return address.

If any node in the path is blocked, EVCON entries cause return to the task

in RS state with the 'G' bit set in the condition code. 1If entry is to

EVQCON, the task is placed in connection wait by calling TMSTOP to save the

values of register set X'F' in the TCB dispatch save area, saving a resume PSW

to return to caller in RS state in the dispatch save area, calling TMUCHN to take
the TCB off the ready chain. The task is placed on the leafs connection gqueue

in priority order. If the task is not at the head of the queue EVCON exits to
TMDISP to schedule the next task. If the task is the new head of the queue, EVQCON
calls EVPROP to propagate the new queued priority up the EVT. EVPROP exits to
TMDISP.

This information is proprietary and 1s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in_ writing

EXEC-35 12-43

0S/32 MODULE DEFINITION

NAME: EVHOOK

ABSTRACT: EVHOOK completes connection to a path in the EVT from the specified
level up to.system node.

ENTRYS: EVHOOK, EVHOOK2, EVHOOK1

SOURCE LIBRARY ROUTINES: SPT, EVT
EXTRN: None
REGISTERS USED: R8-RB (EVHOOK2), R8-RE (EVHOOK1)

ON ENTRY: R8 - starting node address
RA - leaf address
R9 - connection priority
NS/NSU state

ON EXIT: entry state

PRINCIPLES OF OPERATION:

EVHOOK saves RC-RF in the SPT and connects the ancestor of the specified node by
stepping up one level and storing the specified leaf address and connection
priority in EVN.LEAF and EVN.CPRI. The descendant pointer of the entry just
stepped up from is given a priority of X'FF' to prevent the descendent from
being queued (since it is connected). EVHOOK then scans the descendent list
and places the highest descendent number and its priority in the node's queue.
This process is continued until system node is reached. The leaf is not)
connected to system node.

)
[This information s proprietary and s supplied by INTERDATA for the sole
purpose of usiag and mamtaiming INTERDATA suppiied equipment and snail
not be used for any other purpose unless specifically authorized 11 writing

EXEC-36

12-44

0S8/32 MODULE DEFINITION

NAME: EVMOD
ABSTRACT: EVMOD changes the ESR address in the specified connected leaf.

ENTRYS: EVMOD
SOURCE LIBRARY ROUTINES: SGN, EVT, SPT
EXTRN: None
REGISTERS USED: R8, R9, RE, RF
ON ENTRY: RF - leaf address
RE - ESR address
R8 - return
any state
ON EXIT: RF - leaf address

RE - ESR address
entry state

PRINCIPLES OF OPERATION:

EVMOD stores the ESR address into the specified leaf.

This information 15 propretary and 15 supphied by INTERDATA fo- the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing,

EXEC- 37 12-45

0S/32 MODULE DEFINITION

NAME: IODONE

ABSTRACT: IODONE performs common post processing of SVC 1 requests.

ENTRYS: IODONE, IODONE2

SOURCE LIBRARY ROUTINES: SPT, DCB, SVCl., TCB, SGN
EXTRN: EVRTE, TMRSOUT, EVDIS, TCBTAB, TMREMW
REGISTERS USED: U0, Ul, U2, U7-UA, UD-UF

ON ENTRY: UF - leaf address
UD - DCB address or FCB address
ES (IODONE) or RS (IODONE2) state

ON EXIT: UF - leaf address
entry state

PRINCIPLES OF OPERATION:

IODONE sets the exit routine to EVRTE; IODONE2 sets it to TMRSOUT. The
parameter block address is loaded from the DCB and the device number is

used to reset the ISP table entry for the device to III. The status is

moved from the DCB into the parameter block. EVDIS is called to disconnect
from the leaf. The function code and length of last transfer fields are
loaded from the DCB before disconnection since they may not be valid on return.
If the function is a command, IODONE exits. If it is a data transfer, the
length of last transfer is stored in the parameter block and if it is an I/0 and
proceed call IODONE exits. For an I/0 and wait, the 1/0 wait pending bit is
reset. If it had been set, IODONE exits since this means the I/0 completed
before the task entered 1/0 wait state. If it had been reset, IODONE calls
TMREMW to remove the I/O wait condition and to exit to EVRTE or TMRSOUT.

IODONE skips parameter block processing if the parameter block address is zero
in the DCB/FCB.

TODONE skips the EVDIS call if the leaf address is zero in the DCB/FCB.

This v rmaion s proprictary aad s suppied by INTERDATA for the sole
purpose of using and maintaining {INTERDATA supplicd equ pment and shat
00t D used for any cther purpor unies: cpecificaiy authcrized ir wertl

12-46 EXEC-38

NAME:

08/32 MODULE DEFINITION

EVDIS (EVREL)

ABSTRACT: EVDIS disconnects a task from a path in the EVT. EVREL disconnects

ENTRYS:

SOURCE
EXTRN:
REGISTE

a task from, the upper portion of a path.

EVDIS, NSEVDIS, EVREL, NSEVREL

LIBRARY ROUTINES: SGN, SPT, TCB, EVT
JOURNAL, EVPROP, TMRDISP, TMSTOP, EVTDISP, TCBTAB

RS USED: R8-RB

ON ENTRY: RF - leaf address

ON EXIT:

RE - release level (EVREL, NSEVREL)
R8 - return
any state except IS

RF - leaf address
entry state

PRINCIPLES OF OPERATION:
This module consists of three separate sub-modules DIS, REL and DLOOP.

DIS:

DLOOP:

DIS unconnects the task from the leaf by zeroing out the CTCB and
connection level and setting the connection priority to X'FF'.
The leaf is removed from the task connected leaf chain. The
priority of the task at the top of the leaf's connection queue is
stored in EVDPSV and DLOOP is entered.

REL sets the new connection level in the connected leaf and walks up
the EVT to the release level, stores a priority of X'FF' in EVDPSV and
enters DLOOP.

DLOOP is entered with R8 = starting level number, RA = starting node
address, EVDCSV = level to stop at, EVDPSV = highest queued priority of
subtree, EVDDS = highest queued descendant #. DLOOP unblocks the node
at its current level and insures that the highest priority subtree
{descendant) is queued to the node. When the stop level is reached, EVPROP
is called to propagate the queued priority at the stop level to the system
node. If the priority is new top of EVT, DLOOP checks the priority of the
current task. If the current task is higher priority EVDIS returns to
caller; if not, or if EVPROP produced a new top of ready chain, the current
task is suspended via TMSTOP and EVTDISP is entered to dispatch new top of
tree.

This information 1s proprictary and is supniied by INTERDATA for the sore
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing

EXEC-39

12-47

0S8/32 MODULE DEFINITION

NAME: EVRTE

.

ABSTRACT: EVRTE checks for queued events and schedules one if possible. If
no events are queued to the task TMRSNOUT is entered to exit from

ES state.

ENTRYS: EVRTE

SOURCE LIBRARY ROUTINES: SPT, TCB, EVT
EXTRN: TCBTAB, TMRSNOUT, ESRGO, EVPROP

REGISTERS USED: U4-UB, UD, UF

ON ENTRY: ES state
SPT.CTCB - TCB ID

ON EXIT: ES state

PRINCIPLES OF OPERATION:

EVRTE checks the TCB event count and if zero, exits to TMRSNOUT. If non-zero,
the connected leaf chain is searched for a leaf with a non-zero event count.
if a leaf is found with non-zero event count and connection level = tree size,
EVRTE exits to ESRGO to schedule the ESR pointed by the leaf.

If CLEV # TSIZE and the pending flag is set then this leaf has already been
processed by EVPROP so EVRTE goes to the next leaf. If pending is not set,
EVRTE sets it, sets assert in the highest connected ancestor and calls EVPROP
to propagate the priority up from connection level before going on to the next
leaf.

After all leaves have been processed, if no queued ESR can be scheduled, TMRSNOUT
is entered to exit from ES state.

[Tiws mformaian s proprietary and s supplied by INTERDATA for the sorc |
| purpose of using and mainiaming INTERDATA supphed cquipment and me

not be used for any other purpase uniuss specifical'. athorized 1 writing

EXECH40
12-48

0S/32 MODULE DEFINITION

NAME: EVPROP

ABSTRACT: EVPROP is called to propagate a priority up the EVT and to queue
descendant. subtrees to entries in the EVT.

ENTRYS: EVPROP, EVPROP1

SOURCE LIBRARY ROUTINES: EVT, TCB
EXTRN: TCBTAB, TMCHN

REGISTERS USED: R8-RB

ON ENTRY: RB - propagation priority

RA - starting node
NS/NSU state

ON EXIT: RB propagation priority

CC = 0 normal exit
CC = 1 top of ready chain changed
CC = 8 priority propagated to top of EVT

NS/NSU state

PRINCIPLES OF OPERATION:

EVPROP performs two basic functions: propagating a priority up a path in the EVT
until a node with a higher connected priority is encountered and queuing a task

to each higher entry in the EVT until a blocked node is encountered or a node with
a higher queued priority is enccuntered.

EVPROP checks the propagating priority against the connected priority (CPRI) at
each level. 1If the CPRI is not X'FF' then the node is blocked and if a higher
priority than the propagating priority EVPROP returns with CC=0 or 1. If CPRI

is lower, EVPROP replaces it with the propagation priority and if the task that is
connected to that node is executing an ESR, EVPROP rechains the task at the new
priority (no-op in ST). If the new priority places the task at the top of ready
chain EVPROP returns with CC=1. If not, EVPROP attempts to continue propagating
until a higher priority is encountered.

If the node is unblocked, EVPROP sets the current descendant (the one just stepped up
from) as the node's highest queued descendant unless the propagating priority is lower
than the already queued priority. In the latter case, this higher queued priority
replaces the propagating priority and EVPROP attempts to queue and propagate the
highest queued descendant of the node.

If at any unblocked node, the propagating priority is lower than the queued priority
but the descendant numbers are the same, EVPROP forces the lower priority. This
allows a task to be unqueued from the EVT.

purpose of using and maintaining INTERDATA supplied equipment and shalt

Trus information is proprietary and Is supplied by INTERDATA for the sole
not be used for any other purpose unless specifically autnorized m writing |

EXEC-4
c-4l 12-49

0S/32 MODULE DEFINITION

NAME: CANEOJ

ABSTRACT: CANEOJ executes as an ET subroutine of the Command Processor and is the
CANCEL command executor. '

ENTRYS: CANEOJ
SOURCE LIBRARY ROUTINES: TCB, EVT, DCB

EXTRN: TCBTAB, TMRSOUT, TMREMW, TIMEOUT
REGISTERS USED: U8-UF

ON ENTRY: U9 - TCB 1D
ET state

ON EXIT: ET state

PRINCIPLES OF OPERATION:

CANEOJ calculates the TCB address and enters NSU state. Each leaf in the connected
leaf chain is passed to TIMEOUT to halt all ongoing I/O (except for leaves corresponding
to devices which have the uncancellable bit set in the DCB}.

TIMEOUT is entered in IS state via an LPSW.

The task is then removed from connection wait, if necessary, by moving the task
from the leaf queue and if top of queue, calling EVPROP with a propagating priority
of X'FF'. The resume PSW is set to go to TMRSOUT instead of the instruction
following the EVQCON call.

The UT/ET level PSW is then found and modified to execute an SVC 3,255 on dispatching
into UT/ET level. Pause pending is reset and TMREMW is called to remove connection
and conscle waits if necessary. CANEOJ returns to the Command Processor.

This information 15 proprietary and s supplied by INTERDATA for the sole
purpose of using and maintawing INTERDATA supplied equipment 2nd shall
not be used for any other purpose untess spectficatty authorizert n writing

12-50
EXEC~- 42

0S8/32 MODULE DEFINITION

NAME: EXECMSG

ABSTRACT: EXECMSG is called to schedule a message for the executive on behalf of
the current task. It also allows an address to be unpacked into the
message.

ENTRYS: EXECMSG, EXECMSG1l, EXECMSG2
SOURCE LIBRARY ROUTINES: DCB.

EXTRN: DCBCMD, EVQCON, UNPACK
REGISTERS USED: Uo-u4, UB-UF, U8

ON ENTRY: U8 - exit address if Ul=0
U4 - message start

U3 - message end
U2 - message function code and unpack options
Ul - unpack dest or 0

0 - value to unpack

ON EXIT: U
RS State

Exit to Dummy Driver

PRINCIPLES OF OPERATION:

EXECMSG connects to the dummy leaf. If Ul=0, EVQCON returns to caller to allow
processing. If Ul#0, UNPACK is called to unpack the value in U0 into the
message. EXECMSGl entry causes the dummy DCB to be set up pointing to the
message and the dummy driver is entered. The dummy driver exits via TMRSOUT.

purpose of using and maintaining INTERDATA supplied equipment and shall

This information 15 proprietary and is supplied by INTERDATA for the sole
not be used for any other purpose unless specifically authorized in wniting.

EXEC-43 12-51

0S/32 MODULE DEFINITION

NAME: EXECRSCC

.

ABSTRACT: EXECRSCC sets a condition code in the RS resume PSW and exits to
TMRSOUT. .

ENTRYS: EXECRSCC
SOURCE LIBRARY ROUTINES: TCB

EXTRN: TMRSOUT

REGISTERS USED: U2, UE, UF

ON ENTRY: UF - desired condition code

U9 - TCB address
RS state

ON EXIT: RS state

PRINCIPLES OF OPERATION:

EXECRSCC loads the status portion of the RS resume PSW, zeroes the condition
code, ORs in the condition code passed in UF, stores the updated status back

in the RS PSW and exits.

This information 15 proprietary and 1 supplied by INTERDATA for the sole |

purpose of using and maintaining INTERDATA supplied equipment and shall l
nor_be used for any other purpose unless specifcally authorized in viriting. |

12-52 EXEC-44

NAME: UNPACK

0S8/32 MODULE DEFINITION

ABSTRACT: UNPACK is called to unpack a binary number to decimal or hexadecimal
ASCII characters. .

ENTRYS: UNPACK

SOURCE LIBRARY ROUTINES: None

EXTRN: None
REGISTERS USED:

ON ENTRY- UD
uc
UA
us
RS
ON EXIT:
RS

U8-uUD

options and length (same as SVC2.6)
start of destination

binary number

return address (bit 0 must be 0)

State

State
UD - options
UC - start of destination

PRINCIPLES OF OPERATION:

UNPACK processes the number from least significant digit to most significant digit
by repeatedly dividing the argument by 10 or 16 until the length specified has been

unpacked.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be usad for any other purpose unless specifically authorized 1n writing.

EXEC-45 12-53

0S/32 MODULE DEFINITION

NAME: JOURNAL

.

ABSTRACT: JOURNAL makes an entry in the system journal

ENTRYS: JOURNAL

SOURCE LIBRARY ROUTINES: SPT, SGN
EXTRN: None

REGISTERS USED: E8 - EF

ON ENTRY: pC-EF values to be placed in journal
NS/NSU state

ON EXIT: NS/NSU state
EC-EF - same as entry
exit to 2+ contents of register 8.

PRINCIPLES OF OPERATION:

JOURNAL picks up the journal code, ORs in SPT.CTCB, loads the journal address

and executes an ABL instruction. If list overflow results,

the list is reset

to 0 slots used and the ABL is reexecuted. EC-EF are ABL'd to the list and

JOURNAL exits.

purpose of using and maintaining INTERDATA suppiied squioment and shaii |

This information is propretary and is supplied Ly INTERDATA for the sole]
12-54 o7 be used for any othci burpose unless specifically authorized in writing, |

EXEC-46

0S/32 MODULE DEFINITION

NAME: TIMEOUT

ABSTRACT: TIMEOUT halts the I/O outstanding to the specified leaf by setting the
DCB timeout constant to zero and scheduling the ESR.

ENTRYS: TIMEOUT
SOURCE LIBRARY ROUTINES: EVT, DCB
EXTRN: None

REGISTERS USED: E8-EB, EF

ON ENTRY: EF - leaf address
IS State
ON EXIT: IS State

PRINCIPLES OF OPERATION:

TIMEOUT picks up the DCB address from the leaf and if zero, returns. If non-zero,
TIMECUT loads the DCB timeout constant. If the timeout constant is non-positive
then an ESR has already been scheduled and exit is made via E8. If timeout
constant is positive, TIMEOUT checks the system gqueue to see if this leaf is

on the top of queue. If so, TIMEOUT replaces it. If no, TIMEOUT replaces the
top and ATLs the leaf. The timeout constant is set to zero and TIMEOUT exits

via ES8.

12-55

0S/32 MODULE DEFINITION

NAME: ADCHK

.

ABSTRACT: ADCHK checks an address to insure it is within UBOT and CTOP+2.

ENTRYS: ADCHK
SOURCE LIBRARY ROUTINES: SPT, TCB
EXTRN: None

REGISTERS USED: R8-RB

ON ENTRY: RA -~ address to be checked
R9 - TCB address
R8 - return

any state

ON EXIT: RB - logical segment # (always 0)
RA - address
R9 - TCB address
CC = 0 means valid; CC = 8 means invalid
entry state

PRINCIPLES OF OPERATION:

ADCHK checks the options and status in the TCB and if the task is an E-task or
ir RSE state, exits via hegister 8 with zero condition cede and Register 11.
1f a user task, the address is compared with CTOP+2 and UBOT. If valid,
register 11 is set to zero, the condition code is set to zero and ADCHK exits.
If the address is outside CTOP+2 and UBOT, register 11 is set to -1, the 'G’
and 'L' bits are set in the condition code and ADCHK exits.

This information 15 pr 3 s suppnct oy N
15 propretary and s suppied by INTERGATA for the
or the
purpose of using and mamtaining INTERDAT suppited squpm- o1 and ;:;3
not be used for any ther purpose it #ss nec fically avtho

rized writing |

12-56
EXEC-48

0S/32 MODULE DEFINITION

NAME: SYSINIT

ABSTRACT: SYSINIT initializes the TCbs, DCBs, EVT and ISPTAB and starts the
Command Processor. ’ ’

ENTRYS: gSYSINIT, SYSINITE

SOURCE LIBRARY ROUTINES: SpT, DCB, EVT, TCB

EXTRN: CcOMMAND, TCBTAB, TIMEOUT, TMCHN, CMDBUFFS

REGISTERS USED: gg-E3, E7-EF :

ON ENTRY: Not applicable

ON EXIT: Et State

PRINCIPLES OF OPERATION:

SYSINIT first palces the Processor in a known state with all interrupts masked
off. The ISPTAB is then set to contain all entries of III except the first
entry which points to the Crash handler. The Display Panel is cleared.

FBOT is set to MTOP. The DMT is used to address all DCB's, Each DCB has

RCNT, WCNT, RTRY set to zero and TOUT to =-l. The EVT is cleared next by
unblocking all nodes and leaves and restoring all descendant pointers.

The TCBs are then zeroed out except for ID, PRI and NLU. DPRI is set to PRI.
The system TCB is chained by storing X'0l' in the SPT.CTCB and setting the ready
chain bit in TCB status. The system queue is cleared of any entries and the
Command Processor is entered in ET state at entry COMMAND.

purpose of using and maintaning INTERDATA supptied quipment and shat'

This informetion is proprietary and is supplied by INTERDATA for the sole
not be used for any other purpose urless speciiwaily outhorized In writing

EXEC-49 12-57

08/32 MODULE DEFINITION

NAME: CRSH

ABSTRACT: CRSH handles system crashes by displaying the crash code on the
Display Panel and loading a disabled wait PSW.

ENTRYS: CRSEP

SOURCE LIBRARY ROUTINES: SPT
EXTRN: CRSPSW

REGISTERS USED: EO-E6

ON ENTRY: El - crash code address
IS State

ON EXIT: wait state
E5 - address of system journal
E6 - last valid journal entry

PRINCIPLES OF OPERATION:

CRSH loads the journal address, calculates the last valid entry, picks up the
crash code, stores it in SPT.CRSH, displays the crash code on the Display Panel
and loads a PSW with machine malfunction enable and wait status bits set.

purpose of using and mantaining INTERDATA suppiied equipment and shall

This information 15 proprietary and 15 supplied Ly iNTERDATA for the sofe
ot be used for anv other purpose unless specifically authorized 1 weiting. |

12-58 EXEC-50

0S/32 MODULE DEFINITION

N£.AE: DUMMY DRV.

ABSTRACT: Console Intercept Handler

ENTRYS: TERMCMD, INITCMD, INITCMD$

SOURCE LIBRARY ROUTINES: TCB, DCB

EXTRN. IODONE, CMDPEND, CMDBUFFS, SQ, TMRSOUT
REGISTERS USED EQ-E7

ON ENTRY:

ON FXIT:

PRINCIFILLES OF OPERATION:

INITCMD - Enters IS state. Sets CMDPEND to indicate there is I/O to do.
Checks the command read buffer (CMDBUFFS). If empty, just exits.
Else it stores a C/R in the buffer, issues a Disable (X'C4') command, and

schedules the ESR for the real console.

TERMCMD - resets CMDPEND and exits to IODONE to finish the IO.

uipcse of using and maintaining INTERDATA supplied equipment and
not be used for any other purpose uniess specifically a.thorized i writ. g

This information is proprietary and 15 supplied by INTERDATA for the suﬂ
o :

CMDP-1

0S8/32 MODULE DEFINITION

NAME: COMMAND

ABSTRACT: This module is entered by SYSINIT; it inits the Command Processor,
and exits to JOB to reset the user task.

ENTRYS: coMMAND
SOURCE LIBRARY ROUTINES: IVT, DCB, SvCl
EXTRN: JOB

REGISTERS USED: U1,2,3,5,6,7,C

ON ENTRY:

ONEXIT: Register Ul points to Level @ buffer

PRINCIPLES OF OPERATION:

COMMAND is entered by SYSINIT. It first sets all Command Processor flags to #'s.
It sets up the SVC1l parameter block for command ready to point to the read buffer.
The mnemonic of the console device, (as specified in the IVT) is obtained, and a
check is made to see if it is in the CMT. If it is not, SYSTEM CRASH is entered
with code #. The Command Processor now sets up the DCB to look as if it is
assigned ERW, and sets up the LU# entry in the LU tab to the specified DCB.
COMMAND exits to JOB, to initialize the user TCB.

This information is proprietary and is supplied by INTERDATA for the sols
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose untess specifically authorized in writing

CMDP-2

12-60

0S/32 MODULE DEFINITION

NAME: COMMANDR

ABSTRACT: This module does command line scanning, parsing, and coding. The
interaction with the $JOB, IF, SBUILD is controlled here.

ENTRYS: NOPARM, CMDNEXT, $ENDC, CSSTST, CKDORM, CKDORM3, OUTSTAR, CKPASS
SOURCE LIBRARY ROUTINES: TCB.SPT, SVC1l, SVC7

EXTRN:

REGISTERS USED: Uug - UF

ON ENTRY: Ul points to next character in the command line to be examined.

ONEXIT: Ul points to first character to be processed by a command.

PRINCIPLES OF OPERATION:

Scanning for a command is done at CMDNEXT. First blanks are skipped. If the first
non-blank is a terminator (carriage return), a new line is read. If it is a semi-
colon, then the next non-blank is found. If this is a semi colon, an error
condition has been found, and we exit to CMDERROR (code FORM). If the first
character of the command (first non-blank, non-terminator) is a "*", then the

rest of the line is a comment, and we go to read a new line.

An SVC2,17 is executed to see if the command is in the command table. A journal
entry is made indicating this result. Next, the JOBSKIP is tested. If it is set,
the current command is tested to see if it was a TERMJOB. 1If it was a TERMJOB,
then it is executed, else it is skipped.

If JOBSKIP is not set, IFSKIP is checked. 1If it is not set we exit to the executor.
If it is set, we check the current command to see if it is an "IF". If so, the
IFLEVEL is incremented, the command is skipped, and we go to get another command.

If it is not an "IF", we check for an ENDC, and if it is an ENDC, the IFLEVEL is
decremented. Otherwise, the command is skipped.

When all commands on a line have been processed, we go to read another line. If

the task is dormant, the LU to read is determined. If the LU is LU§ (system console)
then an "*" is output and then a lihe is read. If the task is paused or running the
Read is done to LU, and if the task is paused, the "*" is printed first. After the
line is read, the I/0 is checked to see if there was an error. If no error, then

we go to do the preprocessing, etc.

If I/O error is detected, we see if the line was being read from the console. If
not, then the LU is closed, all CSS files open are closed, we exit to CMDERROR

to output an IO error message, and then return to read another line. If the I/O
"was from the console, we check to see if its a recoverable error. If not, we go
to CRASH with code = 2.

If recoverable, we repeat the process by outputting an "*" and forcing a command
line to be read.

purpose of using and maintaining INTERDATA supplied equipment and shall

This information is proprietary and is supplied by INTERDATA for the sole
not be used for any ather purpose unless specifically authorized in writing

CMDP-3 12-61

0S/32 MODULE DEFINITION

NAME: CMDERROR

.

ABSTRACT: This routine builds and displays error messages

ENTRYS: CMDERROR, ERR.ASGN, ERR.IO

SOURCE LIBRARY ROUTINES: SPTE
EXTRN: SPT.RC, CMDWRITE, CMDERMV, CMDPOSV, CSSCLOSE

REGISTERS USED: UC, U2, U6, U7, U8, U9

ON ENTRY: yc - points to error code call is: BAL U('S,CMD]?RROR
Ul - points to last character processed DC C'XXXX
U7 - error type if SVC 1 or SVC 7 error

ON EXIT: Exits to read new command line, registers not meaningful.

PRINCIPLES OF OPERATION:

This sets the task error code to 255, moves in the XXXX-ERR by calling CMDERMV,
and the POS = XXXX.... by calling CMDPOSV. The message is displayed to LU2
(log device) by calling CMDWRITE. All CSS levels down to the JOB level are
closed, and a new command line is read.

If entry is made to ERR.10 or ERR.ASGN, REG 7 contains error code (in hex).
The mnemonic is obtained from a table, and a call to CMDTYMV is made to build
the TYPE = XXXX message. If the ASGN error is an IO error two TYPE = XXXX
fields are built.

This information is proprietary and s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supphed equipment and shall
not be used for any other purpose unless specificaily authorized in writing.

12-62 CMDP-4

0s/32

NAME: CONTINUE

ABSTRACT: Resume PAUSEd Task

ENTRYS: CONTINUE

SOURCE LIBRARY ROUTINES: TCB
EXTRN: TMREMW

REC!STERS USED: U5, Ul, U8, U9, UD
ON ENTRY:

ON EXIT: U8 - A(NOPARM)
U9 - 2
UD - TWT.CWM

PRINCIPLES OF OPERATION:

Makes sure the task is paused, and calls TMREMW to put it back on the

ready chain.

MODULE DEFINITION

This information is proprietary and is supplied by INTERDATA for the sole
purpote of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

CMDP-5

12-63

0S/32 WMODULE DEFINITION

NAME: START

ABSTRACT: Start a task

ENTRYS: START
SOURCE LIBRARY ROUTINES: SPTE, TCB
EXTRN: SPT.UTCB, CMDERROR, .SCANNER, TMSTART

REGISTERS USED.

ON ENTRY.
ON EXIT: U8 = A(CMDEMPTY)
U9 = 2
UF = task start address

PRINCIPLES OF OPERATION:

Checks state of task to make sure it is dormant or paused. Moves the
starting options (or a C/R) above UTOP. Gets the starting location
specified (or default if none specified) and goes to TMSTART to start

the task.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and meimaining INTERDATA suppiied equipment and shall

not be used for any other purpose wnless specifically authorized in writing

12-64 CMDP-6

0S/32 MODULE DEFINITION

NAME: CANCEL

ABSTRACT: Cancel a task

ENTRYS: CANCEL
SOURCE LIBRARY ROUTINES: TCB

EXTRN: SPT.UTCB, CMDEMPTY, CSSCLOSE
REGISTERS USED:

ON ENTRY:

ON EXIT: U9 = 2
U8 = A(CMDEMPTY)

PRINCIPLES OF OPERATION:

Close CSS LU's down to the $JOB level, and calls CANEOJ to cancel the task.

purpose of using and maintaining INTERDATA suppiied equipment and shall

This information is proprietary and is supplied by INTERDATA for the sole
not be used for any other purpose unless specifically authorized in writing.

12-65
CMDP-7

08/32 MODULE DEFINITION

NAME: BIAS ,
ABSTRACT: Sets up the bias for EXAMINE and MODIFY.

ENTRYS: BIAS

SOURCE LIBRARY ROUTINES: SPTE
EXTRN: spr, mMTOP

REGISTERS USED: Ul, UO

ON ENTRY: Ul points to current position in command line

ON EXIT: Ul pointing past paramters

PRINCIPLES OF OPERATION:

Does a SVC 2.15 to get the bias value, and stores it at CMDBIAS for latex..' use.
If the value is invalid (bad characters, or greater than MTOP), PARMERR is

taken as the exit.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipmient and shail
not be used for any other purpose unkas specibicall, authorized 1n writing

12-66 CMDP-8

08/32 MODULE DEFINITION

NAME: WRITE

ABSTRACT: This does the MODIFY command. It modifies the contents of memory.

ENTRYS: WRITE

SOURCE LIBRARY ROUTINES: SPTE
EXTRN: SPT.MTOP, CMDNEXT

REGISTERS USED: Ul, U0, UF, UC

ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

It obtains the relative starting location (if invalid exit to PARMERR, if not
present, NOPR error). The bias is added to obtain the physical start.
Successive halfwords are obtained and stored. If no more data is to be

had, exit is made to CMDNEXT.

This information is propristary and is supplied by INTERDATA for the sole
purpote of using and maintaining INTERDATA supplied equipment and shail
not be used for any other purpose unless specifically authorized in writing.

CMDP-
DP-9 12-67

0S/32 MODULE DEFINITION

NAME: READ

.

ABSTRACT: This command displays the contents of memory to the log device/console

ENTRYS: READ

SOURCE LIBRARY ROUTINES: SPT
EXTRN: SPT.MTOP, BLANKBUFF, CMDWRITE, COMMACK

REGISTERS USED: U0, Ul, U2, U5, U6, U7, U8, UA, UB, UC, UD, UF

ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

The relative starting location is obtained, and relocated to a physical address.
A check to see if next parameter is a "," or a "/". If a comma is found then
"n" is obtained, multiplied by 2 and added to the starting location to obtain
the ending location. If a "/", the relative ending location is obtained, and
converted to a physical ending location.

Display lines are built by putting current address (physical), and then 8 halfwords
of data/per line. The last line contains only as many halfwords as are necessary
to complete the display. Before each line is built BLANKBUF is called to clear

the buffer. CMDWRITE is called to write the line to LU2.

purpose of using and maintaining INTERDATA supplied equipment and shall

This information is proprietary and is supplied by INTERDATA for the soie
not be used for any other purpose ‘inless specifically authorized in writing.

12-68
CMDP-10

0S/32 MODULE DEFINITION

NAME: JOB

ABSTRACT: Puts the system into a known state

ENTRYS: RESET
SOURCE LIBRARY ROUTINES: SPTE, IVT, TCB, SVC 7

EXTRN: CLOSSUB, SPT.STCB, SPT.UTCB, SPT.UBOT, SPT.UTOP, SPT.CTOP
REGISTERS USED: U0, U7, U9, UA, UE

ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

The CLOSE option is checked for and R9 is used as a flag to indicate its
presence. The user task is located, and all his logical units are closed,
by calling CLOSSUB. If "CLOSE" was not specified, the IVT is scanned to
find if any default assigns are to be done. If so, they are made for the
user. Next memory pointers (CTOP, UBOT, etc.) are set back to their initial

values.

NOPARM is exited to, to perform the next command.

purpose of using and maintaining INTERDATA supplied equipment and shall

This information is proprietary and is supplied by INTERDATA for the sole
not be used for any other purpose unless specifically authorized n writing.

CMDP-11 12-69

0S/32 MODULE DEFINITION

NAME: OPTIONS
ABSTRACT: Sets/Resets task options

ENTRYS: OPTIONS

SOURCE LIBRARY ROUTINES: TCB
EXTRN: SPT.UTCB

REGISTERS USED: U5, UB, UE, UC

ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

The state of the task is checked. It must be Dormant or Paused to change its
options. If so, then the line is scanned for each option specified, the
appropriate bit is set/reset in the task's options halfword (TCB.OPT).

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shalt
not be used for any other purpose unless speciticall/ autharized in writing.

12-70
CMDP-12

08/32 MODULE DEFINITION

NAME: SET
ABSTRACT: Finds appropriate executor, and exits to it

ENTRYS: SET
SOURCE LIBRARY ROUTINES:
EXTRN: MNMFIND
REGISTERS USED: UB, UF
ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

Calls MNMFIND to see if modifier is valid, and if so, exits to the appropriate

executor.

This informat.on s proprietary and is supphed by INTERDATA for the <fe
putpote of using and maintaining INTERDATA supphed ejuipment and shail
not be used for 2ny other purpose uidess specifically authorized i writg.

CMDP-13

12-71

08/32 MODULE DEFINITION

NAME: SETLOG

ABSTRACT: Establishes/Terminates Command Logging

ENTRYS: SETLOG

SOURCE LIBRARY ROUTINES: SVC7
EXTRN: SCANNER, COMMACK1,NOPARM, CHECKCSL

REGISTERS USED: uc, uva, UE, U2, U8B

ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

If no operands are specified, LU2 is closed and LOGFLAG is set to 0, to indicate

no logging.

If an operand exists, an attempt is made to assign it to LU2. Next the LU is checked
to see if the user has tried to assign the log to the console, and if so, an error

is indicated. If not, the COPY option is checked for. If specified, LOGFLAG is

set to -1, if not, to +1.

purpose of using and maintamwng INTERDATA suppiied equipment and shalt

This information s proprietary and 15 suppled by INTERDATA for the sole
not be used for any other purncse uniluss specitically authorized in writing

12~-72
CMDP-14

NAME: PAUSE

ABSTRACT: Pauses a task

ENTRYS: PAUSE

SOURCE LIBRARY ROUTINES: TCB
EXTRN: S21PAUSE

REGISTERS USED: us, uUs, U9

ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

Sets up a call to, and return register for, a call to S21PAUSE, who pauses

the task.

08/32

MODULE DEFINITION

This information 15 propeietary .ot s supplied by INTERDATA for the sol~
purpose of using and maintainin: 1N1ERDATA supphie equipment and shali

not he used lor any other purpose wnl-ts specificaly authorized i writing

CMDP-15

12-73

0S/32 MODULE DEFINITION

NAME: CMCLOSE

.

ABSTRACT: This module closes user lcgical units.

ENTRYS: CMCLOSE
SOURCE LIBRARY ROUTINES:
EXTRN: CLOSSUB, ERR.ASGN, CMDNEXT, FORMERR
REGISTERS USED: y1,u7

ON ENTRY: Ul - pointer to current position on input line

ON EXIT: Ul - bumped past last characters on input line processed
U7 - status of close

PRINCIPLES OF OPERATION:

CMCLOSE calls CLOSSUB to scan the input line and perform the actual close.

It is returned the status in U7. If U7 # 9 (LU not opened) or @, then
exit is taken to ERR.ASGN.

Else, the next delimiter is checked. If it is a comma, the pointer is
burped past it, and the above sequence is repeated. If a terminator is
found, we returr to CMDNEXT. If any other character is found, we go to
FORMERR.

This nfoimation 1 propristary ana s supuiied ty INTZRDATA for

purpose of using and mantaning INTESDATA suppiied equipmer
qot be used for auy Uther purpose uniss cpecttitaliv aurhorized

12-74 CMDP-16

0S8/32 MODULE DEFINITION

NAME: CLOSSUB

ABSTRACT: This routine does the actual closing of a given user 1lu.

ENTRYS: CLOSSUB, CLOSSUB2

SOURCE LIBRARY ROUTINES: TCB, SVC7

EXTRN: PARMERR, NOPRERR

REGISTERS USED: ul, U2, U4, U5, U6, U7, UF

ON ENTRY: vl
uc

if entering

at CKISSYB2 Ug = LU #

input string pointer
return pointer

ON EXIT: U7 = status
U4 = user tcb address
U5 = system tcb address

PRINCIPLES OF OPERATION:

The LU number is obtained from the input line; if it is not present we exit
to NOPRERR, if the syntax is bad we exit to PARMERR. The LU number is
compared against the task's maximum number of LU's. If it is not valid,

we load U7 with 2 and return.

The user's LU table entry is moved to the Command Processor's LU3 slot,
and the user's slot is zeroed out. An SVC 7 to close the Command Processor
LU3 is executed, the status is loaded into Register 7, and we return.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using end maintaining INTERDATA supplied squipment and shall
not be used for any other purpose uniess spacifically authorized in writing, 12-75

CMDP-17

08/32 MODULE DEFINITION

NAME: EXPAND

ABSTRACT: Increases a task's memory allocation

ENTRYS: EXPAND
SOURCE LIBRARY ROUTINES:
EXTRN:

REGISTERS USED: U0

ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

i i i i d puts it in an
This routine obtains the expand value from the command line, an)
SVC 2,20 parameter block. An SVC 2,20 is executed, and the results, if error,

are reported.

purpose of using and maintaining INTERDATA supphed wauipment anrt
moT be used for any other purposé unless speciicalty autharized o -

[Th-s information is proprietary and 15 supplied bv INTERDATA fo: the sole]
hatt

12-76

CMDP-18

08/32 MODULE DEFINITION

NAME: CMRENAME

ABSTRACT: This module renames a file/device

ENTRYS: CMRENAME, CMREN2
SOURCE LIBRARY ROUTINES: SVC7

EXTRN: ASGNERR, CMDERROR, CMDNEXT, ERR.ASGN, CMDASGN
REGISTERS USED: U3, U2, UC, UB, U7

ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

CMDASGN is called to assign the specified FD to LU3 for ERW. The
mnemonic is checked to make sure it is not 'NULL'. The new fd is put
into the SVC7 parameter block. Register 7 is set up to indicate
"CLOSE, RENAME". Register C points to 'RENM'. CMREN2 stores register
7 into the function code of the SVC7 parameter block and executes the
SVC7. 1If error occurs, it is reported, else exit is made to CMDNEXT.

This information s proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unhss specificall ; authorized in writing.

CMDP-19

12-77

0S/32 MODULE DEFINITION

NAME: REPROTEC

.

ABSTRACT: Reprotect a file/device

ENTRYS: REPROTEC

SOURCE LIBRARY ROUTINES:

EXTRN: CMREN2, CMDASGN

REGISTERS USED: U3, U2, U7, U0, UB

ON ENTRY:

ON EXIT: U7 = function code to indicate CLOSE, REPROTECT
uc address of the string C'REPR’

PRINCIPLES OF OPERATION:

CMDASGN is called to assign the specified FD to LU3 for ERW. The new keys are
obtained and stored in SVC7PBLK. Register 7 is set up for "CLOSE, REFROTECT"
(X'C000') and Register C points to C'REPR'. CMREN2 is entered to do the Close

and Reprotect.

[Thic informaton > proprictery and s swpplied by INTERDATA for the sofe
purpose of using and marto-ming INTERDATA supphed equipment and shall
toer purpose unless specificaily authorzed o weiting

12-78

not be used fur an:

CMDP-20

08/32 MODULE DEFINITION

NAME: ASSIGN

ABSTRACT: Assigns a file/device to a user logical unit

ENTRYS: ASSIGN

SOURCE LIBRARY ROUTINES: SVC7, TCB

EXTRN: spT.UTCB, SPT.STCB, CMDASSGN1l, SCANNER, CLOSSUB2
REGISTERS USED: U0 - U7 U9, UB, UC

ON ENTRY:

ON EXIT: 1f error, R7 = SVC7 status

PRINCIPLES OF OPERATION:

The LU number is obtained and checked for validity. If the LU is assigned,

the task is checked for DORMANT. If not dormant, then an error is indicated.
If the task is dormant, the LU is closed by calling CLOSSUB, the FD is obtained
and put into SVC7PBLK. If no more parameters are specified, keys of 0, and AP
of SRW are put into the parameter block. If AP and/or keys are specified,

they are put into the parameter block.

If the user task is in UT state, then the Command Processor resets its ET
status in TCB.OPT. CMDASGN is called to assign the file/device to LU3.

The Command Processor now goes back to ET state. If successful, the LU3 entry
is copied to the appropriate user LUTAB entry, and system LU3 is zeroed.

If failure is detected, then ERR.ASGN is entered, with code in Rég 7.

purpose of using and maintaining INTERDATA supptied equipment and shal

This information is proprietary and is supplied by INTERDATA for the sole
not be used for any other purpose unless specifically authorized in writing

12-79

CMDP-21

0S/32 MODULE DEFINITION

NAME: MARK
ABSTRACT: Calls routines to do the MARK

ENTRYS: MARK

SOURCE LIQRARY ROUTINES:
EXTRN: MARKSUB
REGISTERS USED: UB

ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

Calls MARKSUB to do work. If condition code returned is not zero, then
CMDERROR is entered.

hs_information 15 proprietary and s supphed by INTERDATA for the sote

T
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized un writing.

12-80
CMDP-22

08/32 MODULE DEFINITION

NAME: MARKSUB

ABSTRACT: Decodes the command line for mark

ENTRYS: MARKSUB
SOURCE LIBRARY ROUTINES: TCB

EXTRN: CMDASGN, SPT.STCB, COMMACK, MNMFIND
REGISTERS USED: U2, U3, U6, U7, UB, UC, UE

ON ENTRY: U7 = return to MARK

ON EXIT: ué address of DCB to mark off/on line
U7 = return to MARK

PRINCIPLES OF OPERATION:

This routine calls CMDASGN to assign the specified fd to LU3 for ERW.
If there is an error, STATERR is exited to. A call to MNMFIND to
detect ON/OFF option, and call the appropriate executor is made.

This information is proprietary and is supplied by INTERDATA for the sofe
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

CMDP-23

0S8/32 MODULE DEFINITION

NAME: MARKOFF

ABSTRACT: Mark a device offline

ENTRYS: MARKOFF

SOURCE LIBRARY ROUTINES: DCB
EXTRN: MOFFBLK

REGISTERS USED: U8, U6, U7

ON ENTRY: R7 return to MARK

(]

R6 DCB address
ON EXIT: R7 = return to MARK
R6 = DCB address

PRINCIPLES OF OPERATION:

Resets the devices on-line bit (DFLG.LNB). If the device is a bulk device,
MOFFBLK is called.

purpose of using and meintaining INTEROATA supplied squipment and shall

This informetion is proprietary and is supplied by INTERDATA for the sole
not be used for any other purpose uniess specifically authorized in writing.

12-82
CMDP-24

NAME: MARKSUB2

ABSTRACT: Mark device on-line
ENTRYS: MARKSUB2, MARKS2
SOURCE LIBRARY ROUTINES: DCB
EXTRN: MONBLK

REGISTERS USED: U8, UO, U7, U6

DCB address
return to MARK

ON ENTRY: ué
u7

ON EXIT: Same as above

PRINCIPLES OF OPERATION:

Tests to see if device is a bulk device.

08/32

MODULE DEFINITION

If so, MONBLK is called.

the device's on-line bit is set (DFLG.LNB). Exit by BR U7.

This information 1s proprietary and is supplied by INTERDATA for the sole
purpose of uting and maintaining INTERDATA supplied equipment and shalt
not be used for any other purpose unless specifically authorized 'n writing.

CMDP-25

Else,

12-83

0S/32 MODULE DEFINITION

NAME: DISPLAY

ABSTRACT: Selects appropriate executor

ENTRYS: DISPLAY
SOURCE LIBRARY ROUTINES:

EXTRN: SCANNER, MNMFIND
REGISTERS USED: UA, UB, UC, UE

ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

Calls MNMFIND to determine if modifier is appropriate, and exit to the
appropriate executor.

Thes snformation s proprieisry and s supphed by INTERDATA for the sole
purpose of using and maintanung INTERDATA supplied equipment and shall
001 be used for sny Othar pUAPOLs. Lniess specifically Buthorized 1 weriting.

12-84
CMDP-26

0S/32 MODULE DEFINITION

NAME: DEVICES
ABSTRACT: pisplay List of devices/PA/Keys/State

ENTRYS: DEVICES

SOURCE LIBRARY ROUTINES: SPTE, DCB

EXTRN: SPT.DMT, SPT.VMT, CMDNEXT, CMDWGB, DUPFD, GENBUFF, BLANKBUF
REGISTERS USED: U0, U2, U4, U5, U6, U7, U8, UE, UF

ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

Calls DISPFD to get/assign any necessary display device. The GENBUF is cleared,
and the header is written out. The DMT is located for each DMT entry, the
mnemonic, physical address and keys are put in the line. If the device is
off-line, "OFF" is put after the entry. If the device is a bulk device, and

is on-line, then the VMT entry for the device is obtained, and placed in the line.

purpose of using and mamtaining INTERDATA supplied equipment and shail

This information is proprietary and is suppiied by INTERDATA for the sole
not be used for any o’her purpose uniess specifically authorized in writing.

CMDP-27 12-85

0S8/32 MODULE DEFINITION

NAME: LU
ABSTRACT: Display a task's logical units

ENTRYS: LU

SOURCE LIBRARY ROUTINES: TCB, DCB, FCB

EXTRN: SPT.UTCB, DISPFD, CMDWGB

REGISTERS USED: vo, u2, vu4, Us, U6, U8, U9, UD
ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

DISPFD is called to locate/assign any display device. The buffer is cleared,
and the header is displayed. Each task LU entry is obtained. If it is not
assigned nothing is displayed. If it is assigned, then the LU number and
device mnemonic are displayed. If the LU is assigned to a file, then the
volume name, file name and extention are obtained and displayed.

purpose of using and maintainng INTERDATA supplied equipment and shatl

This information is proprietary and is supplied by INTERDATA for the sole
not be wsed for any other pupose unless specsicatly autharized in writing,

12-86 CMDP-28

08/32 MODULE DEFINITION

NAME: DSPARMS

ABSTRACT: Displays parameters

ENTRYS: DSPARMS

SOURCE LIBRARY ROUTINES: SPTE, TCB
EXTRN: SPT.UTCB, SPT.SVOL, TCB,' SPT.CTOP, SPT.UBOT, SPT.UTOP, SPT.MTOP, CMDWGB

REGISTERS USED: U0, U8, U9, UC, U6, U7

ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

DISPFD is called to locate/assign any display device. The buffer is cleared.
The name of each successive parameter is obtained from DPMTBL, each parameter

is obtained, converted if necessary, and displayed.

This informetion is proprietary and is supplied by INTERDATA for the sole

purpose of using and maintsining INTERDATA supplied equipment ani shall
not be used for any other purpose unless specifically authorized n writing.

CMDP-29 12-87

0S/32 MODULE DEFINITION

NAME: $CLEAR

ABSTRACT: Resets CSS to Level 0

ENTRYS: $CLEAR

SOURCE LIBRARY ROUTINES:
EXTRN: CSSCLOSE
REGISTERS USED: U9, U8
ON ENTRY

ON EXIT:

PRINCIPLES OF OPERATION:
Sets register 9 to 0 (to indicate level to close to) and calls CSSCLOSE.

This information is progrietary and is supplied by INTERDATA for the sole
purpote of using and maintaiming INTERDATA supplied equipment and shall
not be used for any other purpose unless speciticaily authorized in writing.

12-88 CMDP-30

0S8/32 MODULE DEFINITION

NAME: ScoPY, $NOCOPY

ABSTRACT: gets cSS copy flag

ENTRYS: $COPY, $NOCOPY
SOURCE LIBRARY ROUTINES:
EXTRN:

REGISTERS USED:

ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

SCOPY sets CSSLIST to 1, $NOCOPY sets CSSLIST to 0.

e ————
This “formaton 15 propr tary and u suppled b. INTERDATA for the o
urpose of using and mairtaining INTERDATA supied squipmert and snail
Dot be used for any other purpose uniess -pweshicaly authorized n writ.rg,

CMDP-31 12~89

08/32

NAME: SEXIT .
ABSTRACT: leave current CS5S level
ENTRYS: SEXIT

SOURCE LIBRARY ROUTINES:

EXTRN: CSSCLOSE
REGISTERS USED: ug, us
ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

Gets current CSS level,
close levels down to current -1.

Tte N rmetn s g ep etary and
tus et morran g NCER:
& med

" urp

CMDP-132

ard subtracts 1.

cup ted 'y v E DA A o 1fr e

MODULE DEFINITION

Uses that value to call CSSCLOSE to

TA supied eqapne 1 a -l sha

o.te purpose ures specica vy u horzed

witig

08/32

NAME: SETCND

.

ABSTRACT: sets value of return code

ENTRYS: SETCND

SOURCE LIBRARY ROUTINES: SPTE
EXTRN: SPT.RC

REGISTERS USED: UO

ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

MODULE DEFINITION

Gets the value specified and stores at SPT.RC.

purpose of using and meintaining INTERDATA supplied equipment andt shatl

This information 1s proprietary and is suppl-ed by INTERDATA for the sole.
not be used for any other purpose unless specifically aithorized in writing.

'CMDP-33

12-91

0S/32 MODULE DEFINITION

NAME: CSSIFS

.

ABSTRACT: These commands are the CSS $IFn commands. They allow conditional
execution of CS8S streams.

ENTRYS: $1FG, $IFNG, SIFE, STFNE, SIFL, SIFNL, $IFNULL, $IFNNULL, $IFX, SIFNX,
GETCC, UPSKP

SOURCE LIBRARY ROUTINES: SPTE

EXTRN: CMDASGN, SPT.RC '

REGISTERS USFD: U0, U2, U3, U7, UC

ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

$IFy y = E, NE, G, NG, L, NL

Calls get CC to get value specified, and compare it to SPT.RC. If the result
of the compare meets the condition specified, then the next command is executed.
If not, CSSSKIP is incremented.

$IFX, $IFNX

Call CMDASGN to assign the fd specified. If $IFX is specified and the assign
is successful, or an error code indicating the file exists is returned, the
next command is executed, else CSSSKIP is incremented. $IFNX checks for
non-existence.

$IFNULL, S$IFNNULL
Calls scanner to find next non-blank. If it is a terminator, then the parameter

specified was null, else it was not. CSSSKIP is set if the condition specified
is not set.

T nformaticn 1 piaprietary and 15 suppi-ed by INTERDATA fo- th: saie
perpose of usiag aad mantaming INTERDATA supplied quipms
{70 b2 et my oiber purpose unies spec cally auhor zve

12-92

CMDP-34

0S/32 MODULE DEFINITION
NAME: py1LDs

ABSTRACT. Module BUILDS CSS files

ENTRYS: BUILD, $BUILD, BUILDDSP
SOURCE LIBRARY ROUTINES: gyc7, SPTE

EXTRN. SPT.CSBF, CMDWRITE, MSGLOG, PREPRO
REGISTERS USED: vo, u2, U3, U4, U6, U7, U8B, UE
ON ENTRY: To BUILDDSP CC + if BUILDFLG is +

i

cc - if BUILDFLG is -

ON EXIT:

PRINCIPLES OF OPERATION:

BUILD and $BUILD call BUILDUP to do the necessary assignments of the file.
BUILD sets BUILDFLG to -1, S$SBUILD to 1.

BUILDUP allocates and assigns (or just assigns, if the file/device exists)
a file.

BUILDDSP is entered with CC + or -. It exits to BUILDl if -(BUILD in effect).

BUILD1 logs the line just read, compares it to an ENDB. If not, it writes it
out, and gets a new line. If ENDB it resets BUILDFLG to 0.

If CC is +, the $BUILD is in effect.” It calls PREPRO to expand the line,
MSGLOG to log it. S$ENDB is checked for. If not, then the line is written out.
If so, the BUILDFLG is set to 0.

This nfurmation 15 propoetary and s suplied b
purpose of using anit ma n cring INTERDATA suppl.
NOL b usid for any 0'her PuIPOSe une s spal Caty mitngne s

CMDP-35 12-93

08/32

NAME: $30B

ABSTRACT: pelimits a run-unit

ENTRYS: $JOB
SOURCE LIBRARY ROUTINES. SPTE

EXTRN: SPT.RL, CSSCLOSE
REGISTERS USED: 3,uy9, U8, UC

If $JOB is in effect (JOBFLAG # 0),

then an error occurs.
closed by a call to CSSCLOSE, and JOBFLAG is set to 0.

MODULE DEFINITION

All CSS LEVELS are

1f $JOB is not in effect, the current CSSLEVEL is stored at JOBFLG, and SPT.RC

is set to 0.

G INTFRD vip -

12-34 CMLP-36

By N

v
upp

wn e Leally erhonzed e ey

0S8/32 MODULE DEFINITION

NAME: S$TERMJOB
ABSTRACT: rTerminates a $JOB delimited run-unit

ENTRYS: $TERMJOB
SOURCE LIBRARY ROUTINES:
EXTRN:

REGISTERS USED: u2, U3

ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

Reset all JOB associated flags to 0.

purpose of uting and ma ntaining INTERDATA supplied equipment aid shaif

This informetion 15 proprietary and is suppi-ed by INTERDATA for the soie
not be used for any other pupote uniess speci cally authorized i writing.

12-95
CMDP-37

0S8/32 MODULE DEFINITION

NAME: $SKIP

.

ABSTRACT: Sets flag to indicate that a $JOB run-unit should not execute any
more commands

ENTRYS: $SKIP
SOURCE LIBRARY ROUTINES: SPTE

EXTRN: SPT.RC
REGISTERS USED: U9
ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

This sets JOBSKIP to indicate to COMMANDR that all statements until a
$STERMJOB should be skipped. It also sets SPT.RC to 255.

This riormation ~ p:opretery and s supp. -1 by INiFRCATA for 1h. <ole
6 purpose of using and mantaiming INTERDATA wapptiu eqamm~ 1t and
12"9 not ke used for any other purpose uness -pecifcaliv o thyized m wrnting

CMDP-38

08/32 MODULE DEFINITION

NAME: SETLU

ABSTRACT: Used to determine which LU command read should come from

ENTRYS: SETLU
SOURCE LIBRARY ROUTINES: TCB
EXTRN: spPT.UTCB

REGISTERS USED" y4, U2

ON ENTRY: UC = return address

ONEXIT: U2 = LU to read from

PRINCIPLES OF OPERATION:

If the task is dormant or paused, returns 0. Otherwise, it gets CSSLEVEL. If
CSSLEVEL = 0 (no CSS files open), it returns 0. Else LU = CSSLEVEL+4.

This informaticn s peopictary and 15 suppred 0y INTERDZTA far the sole

firtase o using and manta.mng INTERDATA supilh -4 squipment and shat

Pt an wed for afy Gl BUrpoie Uil as specit cal'y aothorzed i wrihing.
CMD -39

08/32 MODULE DEFINITION

NAME: CHECKCSL

ABSTRACT:

ENTRYS:

.

Used to see if an LU is assigned to the DCBCM]_D

CHECKCSL

SOURCE LIBRARY ROUTINES: SVC7,TCB
EXTRN. SPT.STCB

REGISTERS USED: u4, U2

ON ENTRY:

ON EXIT:

U2 = LU #

CC = 0 if LU assigned to DCBCMD

PRINCIPLES OF OPERATION:

Check the LU table entry against DCBCMD,

it closes the LU, and exits with CC = 0.

12-98

formation is prop ctary ano 15 suppied by INTERDATA for rt-{m;‘l

Ths 1
purpcse of unng and mewraning INTERDATA sunpl.ed squipment and =hall
ROt be useo fo 3n other pupost antess specificatly author z-d in wiming

CMDP-40

if not equal returns.

If equal,

0S/32 MODULE DEFINITION

NAME: COMMACK

ABSTRACT: Checks to see if next non-blank is a comma

ENTRYS: COMMACK, COMMACK1
SOURCE LIBRARY ROUTINES:

EXTRN: SCANNER

REGISTERS USED: Ul, UA, UC

ON ENTRY: UB - return

Ul - to current position in command line if to COMMACKI1
UA - character to be checked

ON EXIT: UA - current character
Ul - pointing to that character

PRINCIPLES OF OPERATION:

Calls SCANNER to get next non-blank into UA. Compares it against a comma.
If it is it returns, otherwise exits to FORMERR.

This information is proprietaty and is supplied by INTERDATA for the sole
purposs of using and maintaining INTERDATA supplied squ:pment and shall
not be used for any other purpose uniess specificslly authorized in writing.

CMDP-41 12-99

NAME:

ABSTRACT:

ENTRYS:

SCANNER,

08/32 MODULE DEFINITION

TERMCHK

against a ";" or carriage return.

SCANNER

SOURCE LIBHARY ROUTINES:

Finds next non-blank character in command 11ne, and compares it

EXTRN: TERMCHK
REGISTERS USED: Ul, UA
ON ENTRY: UC - return, if call to TERMCHK UA contains the character
ON EXIT: UA - next non-blank character
CC ~ 0 if terminator
Ul - updated to point to non-blank

PRINCIPL ES OF OPERATION:

Finds a non-blank, put it in UA, goes to TERMCHK to check it against C/R or

TERMCHK compares it to a C/R or ";" and returns CC

12-100

This mformation '3 wopmsuy and it sucpled by INTERDATA for the sole
purpose of us.ng sad mamtaming INTERDA A supplied equrpment ard she'l
no. be uted for any oths puTpos- unte: spectcall. authorized 1 writing,

J

CMDP-42

0 if it is one.

n.n
P

08/32 MODULE DEFINITION

NAME: MNMFIND

ABSTRACT: Find a mnemonic in a mnemonic table, exit to a routine

ENTRYS: MNMFIND

SOURCE LIBRARY ROUTINES:
EXTRN: SCANNER, PARMERR
REGISTERS USED: uc, UB, UE

address of mnemonic table
address of branch table

ON ENTRY: UE
UB

[}

ON EXIT:

PRINCIPLES OF OPERATION:

Does an SVC 2,17 against the table pointed to by UE. If found, it branches
to the routine specified by the index into the table and the table pointed

to by UB.

This information is poprietary and 1 suppl.ed by INTERDATA for the sole
purpose of using and ma.ntaining INTERDATA supplied eq: pment any shall
not be used for any other pu pose unless -pecfically authorized n writing

12-101

08/32 MODULE DEFINITION

NAME: BUFFINIT

.

ABSTRACT: Set up a CSS buffer

ENTRYS: BUFFINIT

SOURCE LIBRARY ROUTINES: SPTE
EXTRN: SPT.CSBF

REGISTERS USED: v2, u3

ON ENTRY: UC = return
Ul = address of buffer

ON EXIT:

PRINCIPLES OF OPERATION:

Put a semicolon in first position of buffers, and a C/R at last.

[Thes 1o maticn propneta'y and = supplied by INTERDATA for the soe
' purpose of u: g and meitamn:ng INTERDATA supplied squipnen and thall
[not s sen tor any ctrer purpose uncs speciically auttcized - wriing]

12-102 CMDP-44

08/32 MODULE DEFINITION

NAME: CSSBUFF

.

ABSTRACT: Return address of a buffer, appropriate for this CSSLEVEL

ENTRYS: CSSBUF

SOURCE LlénAnv ROUTINES: SPTE
EXTRN: SPT.CSBF

REGISTERS USED: U2, U3, Ul

ON ENTRY: U2 = return

ON EXIT: Ul = address of buffer

PRINCIPLES OF OPERATION:
Buffer address = CMDBUFFS + (CSSLEVEL*SPT.CSBK)

purpose of using and maintaining INTERDATA supplied equipment and shall

Trie information @ proprietary and 15 suppited by INTERDATA for the sole
Pt be used for any other purpose uniess spaciticaily suthorized n witing

CMDP-45 12-103

08/32 MODULE DEFINITION

NAME: CSSCLOSE

.

ABSTRACT: CLOSE CSSLEVELS down to a specified level

ENTRYS: CSSCLOSE
SOURCE LIBRARY ROUTINES:
EXTRN: CMDCLOSE

REGISTERS USED: U2, ua, U9

ON ENTRY: U9 = CSSLEVEL to close to
U8 = return

ONEXIT: CSSLEVEL update to reflect level closed to

PRINCIFLES OF OPERATION:

Gets CSSLEVEL, compares against limit, if equal exits. If not, it calls CMDCLOSE

to close this CSSLEVEL's LU, decrements CSSLEVEL and stores, loops to do next level.

This informeton 1 g opriesary end 1 suppue by INTERDATA for “h. sate
purpcse of usng ana ma -ain.ng INTERDATA :u-pted equipmert aid shall
172t be_wied tor any other purpose unless prciticatly . thorized . smiting.

12-104 CMDP-46

0S8/32 MODULE DEFINITION

NAME: MSGLOG

ABSTRACT: Used to log a line just read

ENTRYS: MSGLOG
SOURCE LIBRARY ROUTINES: SPTE
EXTRN: SPT.CSBF, CMDWRITE, SETLU

REGISTERS USED: U2, U5, U6, U7, UB, UC, U8

address of line just read
return

ON ENTRY: Ul
UB

ON EXIT:

PRINCIPLES OF OPERATION:

Gets the value of the current LU. If it is 0, then it is not a CSS input, and
need not be logged to console (if LU = 0 then it was read from console).

LU2 is not assigned then the exit is made. If LU2 is assigned, then LOGFLAG
is saved and temporarily set to 0. The line read is written to LU2 and the

value of LOGFLAG is restored.

If LU#0 then CSSLIST is checked. If CSSLIST=0 ($NOCOPY in effect) then nothing

is done. Else the line just read is written to LU2.

purpose of using and maintaining INTERDATA supphied equipment and shall

This information 15 proprietary and s supplied by INTERDATA for the sole
not be used for any other purpose unless specifically authorized in writing

CMDP-47

12-105

If

08/32 MODULE DEFINITION

NAME: PREPRO

.

ABSTRACT: Does CSS expansion

ENTRYS. pPREPRO
SOURCE LIBRARY ROUTINES:

EXTRN: TERMCHK

REGISTERS USED: vl, vU2, U3, U5, U6, U8, U9, UC, UB

ON ENTRY: Ul = address of buffer read

ON EXIT: Ul = address of buffer to process

PRINCIPLES OF OPERATION:

This calls CSSBUFF to get address of buffer to move characters to.
are moved until a C/R is encountered. When a C/R is encountered,

it is moved,

and PREPRO is exited.

1f an @ is encountered, successive @'s are counted. This is subtracted from
CSSLEVEL to get address of buffer (found in PTRSTACK) to scan for parameters.

If total is negative then a null should be substituted. The parameter number

i= obtained. 1If not zero, then the appropriate level buffer is scanned for that
parameter, and when found, it is moved to the expansion buffer. If not found,
then a null is substituted. If parameter 0 is specified, then the line is
scanned backward for a terminator. When found, characters are moved from the
characters after the terminator until the next blank.

Tt miarmatior. s propretary end 15 cuppled by INTERDAA for the soi
¥
2

i purpate of using a-d miimamng INTERDATA supphed equipment and
tot be :ed fo sy othe 3 eposc torass spec ety astnanizedt o we

12-106 CMDP-48

NAME: BLANKBUF

.

08/32

ABSTRACT: Clears GENBUFF to blanks

ENTRYS: BLANKBUF
SOURCE LIBRARY ROUTINES:
EXTRN:

REGISTERS USED: U5, U6
ON ENTRY: UC = return

ON EXIT:

PRINCIPLES OF OPERATION:

Puts blanks in GENBUFF.

MODULE DEFINITION

Thus information 15 proprietary and is supphied by INTERDATA for the

sole
Purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

CMDP-49

12-107

0S/32 MODULE DEFINITION

-

ABSTRACT: Routine to find/assign a file/device for a DISPLAY

ENTRYS: DISPFD

SOURCE LIBRARY ROUTINES:

EXTRAN: SCANNER, CMDASGN, COMMACKl, CHECKCSL
REGISTERS USED: U2, U3, U8, UB, UC

ON ENTRY: U8 = return address

ON EXIT:

PRINCIPLES OF OPERATION:

Finds next non-blank, if it is a terminator it just returns. COMMACK1 is
called to make sure it is a comma. CMDASGN is then called to assign the
FD to LU3 for SWO. If an error, the FDERROR is exited to. Else, the LU is
checked for DCBCMD by CHECKCSL. Return is made to FDERROR if it is to
DCBCMD, else return is made on UC.

This informat.on s proprietary and s ©10; G by INTERDATA for the <ok
pupose of usng and mantarung INTERUE A A equpment 3§ shai
not be usia for any iher purpose uni . ilaally autnn ized N etng

12-108 CMDP-50

08/32 MODULE DEFINITION

NAME: CMDCLOSE

ABSTRACT: 7To close a Command Processor LU

ENTRYS: CMDCLOSE

SOURCE LIBRARY ROUTINES: svC?
EXTRN:

REGISTERS USED: U2

LU to CLOSE
return

ON ENTRY: U3
uc

ON EXIT:

PRINCIPLES OF OPERATION:

Store U2 into an SVC7 parameter block, and executes an SVC7, then returns

without checking status.

Tt informauon 15 proprietary and s supptiaxd by IMTERDATA e
pupose t wintaining INTEADAT S supplied -yiipment and shall

not be usec ‘o Fer purpcse unise pecificaly astharized in weit.ng.

CMDP-51

12-109

0S/32 MODULE DEFINITION

NAME: CMDASGN

ABSTRACT: To assign a file/device to a Command Processor LU

ENTRYS: CMDASGN, CMDASGN1
SOURCE LIBRARY ROUTINES: SvC 7
EXTRN:

REGISTERS USED:

ON ENTRY: To CMDASGN or CMDASGN1

U2 = LU ¢
U3 = access privilege (3 bits)
UC = return
ON EXIT: U7 = status of assign
CC = 0 if successful

PRINCIPLES GF OPERATION:

At CMDASGN a pack-file descriptor to put the file into an SVC7 parameter block
is performed.

At CMDASGN1 the access privilege is shifted left to its appropriate place in
a halfword, and store it in the SVC7PBLK. Register 2 will be stored as the
LU in the SVC7PBLK.

The SVC?7 is executed, the status loaded into U7, and return is made to the
caller.

The, intormation s propriatary ard 15 supphed by INTERDATA for the sole
purpose of using and mamtaing INTERDATA supoued squipment and shal!
not be used for any other prpose unbas specibicall; asuthorized 1N wilting

12-110 CMDP-52

08/32 MODULE DEFINITION

NAME: CMDWRITE

.

ABSTRACT: Used to write a line to any Command Processor LU

ENTRYS: CMDWRITE, CMDWRIMG, CMDWGB, CMDWGDX
SOURCE LIBRARY ROUTINES: SVCl, TCB

EXTRN: SpT.STCB, OUTSTAR

REGISTERS USED:

ON ENTRY: T0: CMDWRITE - U2 = LU U6 = Buffer Start U7 = Buffer End
CMDWIMG - U2 =LU U6 = Buffer Start U7 = Buffer End
U5 = Function Code
CMDWGBX - U2 = LU #

ON EXIT: U7 = status

PRINCIPLES OF OPERATION:

Entry to CMDWGB - loads U2 with a3
U6 = GENBUFF
U7 = GENBUFFE

CMDWGBX- loads U6 = GENBUFF
u7 GENBUFFE

CMDWRITE-loads U5 = X'2800'

Gets the LU and sees if assigned. If not, sees if LU = 2, if not sets LU = 2,
goes to see if LU2 assigned. If LU = 2, sets LU = 0.

When assigned LU is found, LU is stored in CMDSVC1l as LU, U5 is stored as
function code, and U6 and U7 are stored as starting and ending address.

The SVCl is executed. If no error then the LU is checked to see if it was LU2.
If so and if LOGFLAG = -1 (Log with COPY) then the write is repeated to LUO.

If error, and the I/0 was not to the console, the LU is closed, and exit to
IOERR. If the I/O was to the console, and the error was recoverable, exit is
made to OUTSTAR to force a command read. If a I/O error other than recoverable
error is found on the console, the system is crashed with code = 2.

1s proprietary @nd is supphed by INTERDATA for the woie

This informat'on A
purpose of usng and main aining INTERDATA suppied equipment and shall
not be us.d fo any other pu.posa unes specitically authorized n writiw.

CMDP~-53 12-111

0S8/32 MODULE DEFINITION

NAME: Magnetic Tape QOmmands

ABSTRACT: Executes a magnetic tape command to a device/file

ENTRYS: WFILE, FFILE, FORREC, BFILE, BACREC, REWIND
SOURCE LIBRARY ROUTINES: SvCl, SVC7, TCB, SPT.UTCB
EXTRN: CMDCLOSE, COMMACK, SCANNER

REGISTERS USED: U5, UC, U3, U2, U4, U0, U9

ON ENTRY:

ONEXIT:

PRINCIPLES OF OPERATION:

At each entry point the appropriate function code for each function is loaded.
Next, CMDASGN is called to assign the file/device to system LU4 for SRW. If
the fd specified a device, the command is executed.

If the fd specified a file, then LU number tc which this file is assigned is
obtained. The user LU is copied to a Command Processor LU and the command

is executed.

purpose of using and maintaming INT T DATA sucpled equipme 1t and hell

This info:m.tion < proprietary and 's supried by INTERDATA for the soie
R De uses 3 any other durpase unkise specificaily autho.zed in weling

12-112 CMDP-54

0S/32
NAME: MOFFBLK ..
ABSTRACT: Marks a disc off-line
ENTRYS: MOFFBLK
SOURCE LIBRARY ROUTINES: SPTC, DCB

EXTRN: SPT.VMT
REGISTERS USED: U2, U3, U7, U8, U9

ON ENTRY: U6 = points to DCB
U7 = return

ON EXIT:

PRINCIPLES OF OPERATION:

The VMT entry for the disc is found and zeroed.

MODULE DEFINITION

If the bit-map modify

flag is set, then the bit map is written out, and the flag is reset. If
an error occurs writing out the bit map, BPAC-ERR is displayed.

This information is propristary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

CMDP-55

12-113

B/2eé

0S8/32 MOl JLE DEFINITION

NAME: MONBLK

-

ABSTRACT: Used to mark a disc on-line

ENTRYS: MONBLK

SOURCE LiBRARY ROUTINES: DCB, SPTE
EXTRN: gspT.VMT

REGISTERS USED: U3, u2, v4

ON ENTRY: ué
u7

DCB address
return to mark

ON EXIT: U6 - DCB address
U7 - return to mark

PRINCIPLES OF OPERATION:

This routine sets up the bit-map and direc: >ry-read parameter blocks in the DCB.
It reads the VD. The directory pointer ani bit map pointer are stored in the
DCB. The VMT entry is found, and the name inserted. It exists to MARKS2 to set
the on-line bit.

purpnse of using and maintaning INTERDATA supins! cquipnic 1 and shall
not be used for any other purpose unbss speeficall, authonzec . wiling

[Tn.; Infarmation 15 proy.: etary axd - supphed by -NTERDATA 1 the sole ‘

12-114 CMDP-56

0S/32 MUDULE DEFINITION

NAME: VOLUME

.

ABSTRACT: Sets up default system volume

ENTRYS: VOLUME

SOURCE LIBRARY ROUTINES: SPTE
EXTRN: SPT.SVOL

REGISTERS USED: UC, U2, U5

ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

Get a 4 character name and puts it in SPT.SVOL.

12-1i5

CMDP-57

0S/32 MO’ JLE DEFINITION

NAME: CMDELETE

-

ABSTRACT: peletes a file

ENTRYS: CMDELETE
SOURCE LIBRARY ROUTINES: svc 7

EXTRN: ERR.ASGN
REGISTERS USED:
ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

Gets the fd into a SVC7 parameter block, an:id executes an SVC 7 delete. If
unsuccessful, it displays a message.

lrm idormetion @ propriesiy and @ supptied hu

Purpuse of using and maintaining INTERDATA
not be used for any other pL-pose u:.ivss sPact

12-116
CMDP-58

0S/32 MOD 'LE DEFINITION
NAME: ALLOCATE .

ABSTRACT: Allocates a file

ENTRYS: ALLOCATE

SOURCE LIBRARY ROUTINES: sSvC 7, SPT

EXTRN: SPT.CHBK, SCANNER, COMMACK1

REGISTERS USED: ys, ue, U7, UO, U8, UC, UA, UB
ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

The fd is obtained and put in the SVC7 parameter block. Next the file type
option is obtained, and the appropriate sub-executor is entered. If contiguous,
the size must be specified. It is obtained and stored in the SVC7PBLK. Keys
default to 00. Keys are scanned for if they exist they are stored, else they are
set to the default.

If chained, default blocksize = 1, lrecl = 126, Keys = 00. If any of these
parameters are specified they are stored in the SVC7PBLK.

The SVC7 is executed, and if error status is displayed.

[T ntormation s proprietary and < suppiizd by INTERDATA for the sole
puiposs of using and maintaining INTERDATA suppired equioment and snall
[nm be used for any other purpose uriess specfically authorized in wrting,

"—
CMDP-59 12-117

0S/32 MO "ULE DEFINITION

NAME: DISPFILE

ABSTRACT: Display files on a disc

ENTRYS: DISPFILE
SO0URCE LIBRARY ROUTINES: pMT, DCB, svcl, vD, DIR
X fRN: BLANKBUFF, SCANNER, COMMACK

REGISTERS USED: U0-UF

ON ENTRY:

ON EXIT:

FANCIPLES OFr OPERATION:

All indicators are reset. The command is 10w scanned. The volid is obtained and
checked. It's associated device is then found and assigned SRO to LU4. The

rest of the specified display is obtained. If “_n jg specified in the filename
field DISPINDL is set to a positive number. If "-" is specified in the
extention, then DISPIND2 is set to a positive number. If "-" is not specified,
then the name is saved at DIRFN and DIRFXT respectively.

DISPFD is called to find/assign the display device. The VD is read to obtain
the directory pointer. Each directory sector is checked and only active entries
are processed. For an active entry if DISPINDL is not set, then the filename is
compared against the specified filename. If no match, then the next entry is
processed. If DISPINDl is set, no filename compare is made.

If DISPIND2 is not set then an extention compare is made. If a match is not found
then the next entry is processed. If DISPINDZ is set no extention match is made.

1f all match, or if a combination of DISP1ND1l, DISPINDZ and match selects a
directory entry, then it is displayed.

If neither DISPINDl or DISPIND2 is set th2 search stops after a match on both
filename and extention is found. Ctherwise, the entire directory is searched.

| Tris informarice s propriciary and s supolied

B/2é6

12-118 CMDP-60

0S8/32 MODULE DEFINITION

NAME: INITIAL (NOTE: User should be aware of 0S/32 File Structure/allocation
' * before reading)

ABSTRACT:

This routine initializes a disc. It may give it a ﬂame, save an OS image, and/or
clear it to unused state.

ENTRYS: INITIAL

SOURCE LIBRARY ROUTINES: SPTE, TCB, DCB, D, SVC 1

EXTRN: CMDASGN, SCANNER, COMMACK

REGISTERS USED: All .

ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

CMDASGN is called to find/assign the specified device to LU 3 for ERW. It then
verifies that the device is a bulk device. The volid is obtained and saved.

If no options are specified - the volume descriptor is read, the new name
inserted, and the volume descriptor is rewritten.

Options are scanned against a table for CLEAR or SAVE. If CLEAR is specified,
sector 0 of the disc is read-checked to verify it is good. If not, the pack
cannot be used and a message to that effect is logged. The DCB is examined to
determine the size of the disc. From the size of the disc the size of the bit
map is calculated (bit map size = disc size rounded up to the nearest integer).
2048
Next the disc is searched to find enough good, contiguous sectors in which to put
the bit map. If not enough exist anywhere on the pack, it cannot be used, and a
message is logged to that effect.

when the sectors have been found, they are cleared to 0, and written out. _The
sectors used for the bit map are marked as being used in the appropriate place
in the bit map. A volume descriptor is built with pack-id, and bit map pointer
written in, and with the rest of the sector zeroed. This is now written out to
sector 0. The entire disc is now read-checked. 1If a sector is found to be bad
it is marked as allocated in the appropriate place in the bit map. If a sector
found to be bad is a bit map sector, the disc cannot be used, and a message is
logged to say so.

If CLEAR is specified, SAVE is checked for. CLEAR and SAVE can both be given, but
CLEAR must precede SAVE. If SAVE is the first option encountered, it may not be
followed by CLEAR.

If SAVE is specified - the Command Processor puts itself in what appears to be RSA
State. It does this so that it may call SVC 7 subroutines. First the VD is read.
If an OS image is present on the disc, the RELEB is called to release the sectors

it nccupies. Naxt the save of the 0S is computed (UBOT/256 rounded up) and

GFTSECTR is calls:1 to obtain the necessa 'y space. The 0S image is written out to
that area of the aisc. [.SA state is left, and the address of the 0S image is stored
in the VD, along wioh the volume-id, «nd is rewritteu.

r?;\ V'Tl)v;na(’on 15 prop .7h INTERDATA for thw u](\,1l
| puiae of usng and manracung INTERDATS supphet scmpmant and @ '
not £ useq for any other purpase untss spemifiaty o thorized i it

CMDP-61 12~119

0S/32 MODULE DEFINITION

NAME: LOADER

.

ABSTRACT: Parses the load command, sets biases, and goes to appropriate loader.

ENTRYS: 1.0AD/LOADFAIL
SOURCE LIBRARY ROUTINES: TCB

EXTRN: LOADHALF, LOADFULL
REGISTERS USED:

ON ENTRY: y] points to command line

ON EXIT: Ul points after last parameter parsed

PRINCIPLES OF OPERATION:
On entry to LOADER:

The UTCB is examined to see that the RS and ES bits in status are not set,
and that the LW bit in "waits" is 0, and the dormant bit is 1. 1If these
conditions are not met, a branch to SEQERR is taken. An SVC 2,16 to get

the FD to load from is now performed, putting the f£4 into an SVC7 parm block
for later use. If SVC 2,16 detects syntax error, a branch to PARMERR is
taken. A zero is placed at LOADSTAT. "

The £4 just obtained is assigned ERO to SYSLUl. If the assign returns an
error register D is loaded with a 1, branch to LOADFAIL. If assign is

I0, see if any biases are specified. If not, put UBOT to IMPBASE. If so,
set imp bias, round up and store at imp base, set pure bias, if non, store 0
at pure base, else, store value. Then go to appropriate loader.

LOADFAIL - If LOADSTAT = 0, build a LDRn where n is value in UD. BAL to
load register C with address of aat msg. Branch to CMDERROR.

If LOADSTAT # 0, store value in UD at location contained in LOADSTAT,
load U9 with 2, load U8 with A(CMDEMPTY), load UD with TWT.LWM, clear
CMDLR to 0, branch to TMREMW.

Tiis nformation s proprietary and s suppiat by INTERDATA fo. the ;mj

Furpose of using anc maintaing INTERDATA suppiied equipmen: and stall
not be used for any other purpose un.wst spec i-cally author.zed i+ wr t.ag

12-120
CMDP-62

US/32 MJODULE DEFINITION

NAME: LOADOVLY

ABSTRACT. Position for overlay

ENTRYS: LOADOVLY
SOURCE LIBRARY ROUTINES.
EXTRN: CMDLR, LOAD5
REGISTERS USED:

ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

Sees if CMDLR specifies a REWIND is to be done. If so, it does it, if not

it exits to do the load (LOADS) .

[This information 15 propretary and s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized i writing.

CMDP-63 12-121

0S8/32 MODULE DEFINITION

NAME: LOADFULL ..

ABSTRACT: Reads and processes 32-bit object tapes

ENTRYS: LOADFULL
SOURCE LIBRARY ROUTINES:
EXTRN:

REGISTERS USED: ALL

ON ENTRY:
Undefined

ON EXIT:
UD = error code (0 if successful)

PRINCIPLES OF OPERATION:

This module reads 126 byte object records. It calls CHECKER to do
sequence check and checksumming. Loader items are obtained as bytes
and used as an index to branch to the appropriate processing routine.
Processing routines return to LDFUL3 to get the next loader item. At
end it sets up CTOP, UTOP, etc.

This information 15 proprietary and s supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supotied equipment and shall
not be used for any other purpose unless specificaily authorized in writing.

12-122 CMDP-64

0S8/32 MODULE DEFINITION

NAME: LOADHALF

.

ABSTRACT: Reads and processes l6-bit object tapes

ENTRYS: LOADHALF

SOURCE LIBRARY ROUTINES:
EXTRN:
REGISTERS USED: ALL

ON ENTRY: Undefined

ON EXIT: If error during the load, UD = error number

PRINCIPLES OF OPERATION:

This module reads a 108 byte record, and calls CHECKER to do sequence check and
checksumming. Loader items are obtained as nibbles (4 bits). The nibble is
used as an index to branch to the appropriate processing subroutine. After
each processing routine has performed its function it returns to the main
dispatcher to get the next nibble. At end it exits to LDFUL8 to set up system

pointers (UTOP, CTOP, etc.).

This information is proprietary and is supplied by INTERDATA fo: the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

12-123
CMDP-65

0S8/32 MODULE DEFINITION

NAME: CHEWING

ABSTRACT: This routine gets bytes or nibbles from SECTORBF starting from
relative nibble pointer as contained in CURRNIBL.

ENTRYS: BYTER, NIBBLER

SOURCE LIBRARY ROUTINES:

EXTRN:

REGISTERS USED: u2, U3, u4, U5, U7

ON ENTRY. U2 contains count of bytes or nibbles requested

ONEXiT: U5 contains the bytes or nibbles requested

PRINCIPLES OF OPERATION:

A count of nibbles requested is given directly if entered at Nibbler or
calculated by doubling count given to Byter. A byte is fetched from loader
record. If the current nibble count.was even the left nibble of this byte
is used else the right nibble is used. This nitble is logically ORed into
the returning register after the returning register is shifted left 4 bits.
The nibble pointer is incremented, the count is decremented, if non-zero
loop to fetch anotlier nibble.

This information o, murretary and . suppid by (NTERDATA for the sole
puipose of using and mantaining INTERDATA suoplicd e Uiy ent an - <halt

not be used fo- any other purpose unfes specifically authorzad i ants g

12-124 CMDP-66

0S§/32 MODULE DEFINITION

NAME: CHECKER

ABSTRACT: Performs sequence checking and checksum verification on loader records

ENTRYS: CHECKER

SOURCE LIBRARY ROUTINES:

EXTRN:

REGISTERS USED: yg, U9, UA, UB, UD

ON ENTRY: Loader record in SECTORBF, address of UTCB in U4

ONEXIT: opn error exit to LOADFAIL, UD contains error code

PRINCIPLES OF OPERATION:

LASTSEQ is decremented and compared with sequence number just read. If they
match, replace LASTSEQ with this new number. If no match occurs, error exit
to LOADFAIL.

Determine if in halfword or fullword mode, generate checksum for corresponding
length record, and compare to checksum contained in record. If match, return
to caller. If no match, error exit to LOADFAIL.

purpose of using and maintaining INTERDATA supplied equipment and shait

This information is proprietary and 15 supplied by INTERDATA for the sole
not be used for any other purpote uniess specifically authorized in writing.

CMDP-67 12-125/12-12,6

0S/32 MODULE DEFINITION

NAME: svC7 .

ABSTRACT: Decode the SVC7 command byte and invoke the proper executor.

ENTRYS: svc7, Sv7.CMD

SOURCE LIBRARY ROUTINES: TCB

EXTRN: FETCH, ALLO, OPEN, CAP, RENAME, REPRO, CLOSE, DELETE, CHECKPT, TMRSOUT
REGISTERS USED: yg-UF without SAVE/RESTORE

ON ENTRY: RS STATE
U9 -~ Address of TCB
UD - SVC7 parameter block

ON EXIT: RS STATE
U2 - Address of TCB
U5 - SVC7 parameter block

PRINCIPLES OF OPERATION:

SVC7 is entered from the First Level Interrupt Handler (FLIH). The routine
obtains the command byte from the user's parameter block and decodes the cormand ;
multiple commands are processed left to right. The routine branches to the
appropriate executor; upon completion of all commands, exit is via a branch

to TMRSOUT.

This information is propristary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shail
not be used for any other purpose unless specifically authorized in writing.

12-127
FMGR-1

0S/32 MODULE DEFINITION

NAME: OPEN

.

ABSTRACT: Perform common open processing for all devices and files and branch
to the appropriate OPEN logic routine.

ENTRYS: OPEN, OPN.BDSK

SOURCE LIBRARY ROUTINES: DCB, DIR, TCB

EXTRN: LUCHECK, DMTLOOK, VMTLOOK, FDCHECK, APCHECK, EVQCON, TMRSRSA, DIRLOOK, OPEN.CO,
OPEN.CH, OPEN.DEV, SV7.CMD, EVDIS, TMRSARS, SVC7.ERR
RE! :
GISTERS USED UO0-~UF without SAVE/RESTORE
ON ENTRY: RS STATE
U2 - address of the TCB
US - SVC 7 parameter block address

ON EXIT: RS STATE (on exit to OPEN.DEV or SV7.CMD); RSA state otherwise
U2 - address of the TCB
US - SVC7 parameter block address
U7 - address of the DCB
Ul - address of the LU table entry
UB - DCB attribute byte (on exit to OPEN.CH and OPEN.CO)

PRINCIPLES OF OPERATION:

This routine is invoked via a branch from SVC7 and performs all common open
processing. The routine begins by performing SVC7 parameter block validation;

any errors cause a branch to SVC7.ERR. OPEN then calls DMTLOOK to search for

a matching device; if a match is found and the device is not a direct-access
device, the routine exits via a branch to OPEN.DEV, which completes the open

for a non-direct access device. If the device is direct-access, it may only

be opened by an E-task; attempting to open a direct-access device by a U-TASK
causes an exit via a branch to SVC7.ERR. The routine enters NSU state to complete
the open of the direct access device, returns to RS State and returns to SV7.CMD.

If no match was found in the DMT, the VMT is searched for a match; no match in
the VMT causes an error return via SVC7.ERR. .If a match is found in the VMT,
OPEN obtains control of the volume directory via EVQCON and enters RSA state to
allow SVC1 I/O calls. Further error checks are performed; then the routine ends
by branching to OPEN.CO (to complete the open process for contiguous files) or
OPEN.CH (to complete the process fc : chained files).

OPEN contains the sabroutine OPN.BDSK, which assigns the bare disc for requested
privileges- prior to allocating or opening files. It is called directly from
common OPEN processing prior to branching to OPEN.CO or OPEN.CH, and also called
from ALLO. '

This information is prepristary and is supplied by INTERDATA for the sols
purpose of using and meintaining INTERDATA supplisd equipment and sheli
not be used for any other purpose unless specifically authorized in writing.

12-128
FMGR-2 P Py

08/32 MODULE DEFINITION

NAME: OPEN.DEV

ABSTRACT: Complete the Logical Unit Assignment to a non-direct access device.

ENTRYS: OPEN.DEV

SOURCE LIBRARY ROUTINES: DCB
EXTRN: APCHECK, SV7.CMD

REGISTERS USED: UO-UF

ON ENTRY: U2 - TCB Address
U5 - SVC 7 Parameter Block Address
U7 - DCB address

ON EXIT: U2 - TCB Address
U5 - SVC 7 Parameter Block Address

PRINCIPLES OF OPERATION:

OPEN.DEV receives control directly from OPEN to complete the assignment of a
non~-direct access device. ’

If the assignment is directed towards the console device, the address of the
dummy DCB (DCBCMD) and its attributes (DCB.ATRB) are moved to the LU table entry
for the LU being assigned. Return is to SV7.CMD.

If the device is not the console device, the device must be on-line or the
calling task must be an E-task. Then NSU state is entered and the access
privileges are converted to numeric quantities via APCHECK. If the device is
the null device, no further tests are necessary. Otherwise, the DCB Read and
Write keys are checked with the specified keys in the SVC 7 parameter block.

.:

Finally, the new read and write counts are saved in the DCB. The LU table entry
is set up to point to the device's DCB. The DCB attribute byte is also moved to
the LU Table.

The routine returns to SV7.CMD.

If any errors are encountered, the appropriate error status is saved in the task's
SVC 7 Parameter Block, and OPEN.DEV exits directly back to the calling task via
TMRSOUT. .

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shall
not be used for any other purpase unless specifically authorized in writing.

12-129

FMGR-13

08/32 MODULE DEFINITION

NAME: OPEN.CO

ABSTRACT: Complete the open of Contiguous Files. The routine is entered directly
from OPEN, and upon successful c~ompletion returns to SV7.CMD to
continue SVC 7 processing. The routine is entered in RSA state,
having control of the Directory Leaf. OPEN.CO establishes the
initial values in the FCB requi:ed to process a Contiguous file.

ENTRYS: OPEN.CO

SOURCE LIBRARY ROUTINES: FCB, DIR, DCB

EXTRN: LUCHECK, PUTD, APCHECK, DIR.SCAN, TMRSARS, EVDIS, SV7.CMD, TMRSOUT, CLO.BLK
REGISTERS USED: U0-UF, without save/restore

ON ENTRY: RSA STATE
UC, UF - New Write, Read Counts U2 - TCB pointer
UB - Attribute byte U5 ~ User parameter block pointer
U7 - DCB rointer

ON EXIT: RS STATE -
U5 - User parameter block pointer
U2 - TCB pointer

PRINCIPLES OF OPERATION:

OPEN.CO begins by calling GETFCB, to allocate a contiguous FCB. Upon
successful return from GETFCB, OPEN.CO establishes the starting and ending
addresses of the Contiguous file buffer in the FCB. It then calls LUCHECK

to obtain the pointer to the LU table entry for this file, and stores the FCB
pointer and file attribute byte into the LUTABLE. Next the first logical
block address, last logical block address, and current sector number are
obtained and saved in the FCB. The initialization address for data transfers
and the command entry point for the disc driver are saved into the FCB. The
directory is updated via a call to PUTD. The read and write counts are obtained
by a call to APCHECK, and saved into the FCB. A pointer to this FCB's
Directory block, and its offset within that block are established by a call
to DIR.SCAN.

The routine then returns to RS state by calling TMRSARS, releases control of the
Directory by calling EVDIS, and returns to SV7.CMD.

If the call to GETFCB is unsuccessful, a buffer error (X'08') is saved into the
user's parameter block. The Bare disc is closed via CLO.BLK, RS state is entered,

the directory is released, and the task returns directly by branching to TMRSOUT.

purpose of using and maintaining INTERDATA supplied equipment and shall

This information is proprietary and is supplied by INTERDATA for the sole
not be used for any other purpose unless specifically authorized in writing.

12-130 FMGR-4

0S8/32 MODULE DEFINITION

NAME: OPEN.CH ,

ABSTRACT: Complete the open of Chain Files. The routine is entered directly from
common OPEN processing, and returns directly to SV7.CMD upon successful
opening of a Chain File. The routine is entered in RSA state, having
control of the Directory. OPEN.CH establishes the initial values in the
FCB required to process Chain Files.

ENTRYS: OPEN.CH
SOURCE LIBRARY ROUTINES: pIR, FCB, DCB

EXTRN: GETFCB, EVQCON, GETSECTR, EVDIS, TMRSOUT, RELEFCB, PUTD, LUCHECK, APCHECK,
TMRSARS, CLO.BLK, SV7.CMD

REGISTERS USED:
SED UO0-UF, without save/restore

ON ENTRY: RSA STATE
U2 TCB pointer UB Attribute byte)
us User parameter block pointer UC, UF New Write, Read Counts
u7 DCB pointer -

ON EXIT: RS STATE
U2 TCB pointer
us User parameter block pointer

PRINCIPLES OF QPERATION:

OPEN.CH begins by computing the size of the Chain File FCB and calling GETFCB,

to allocate the FCB. Upon successful return from GETFCB, the Directory pointer

in memory is saved into the DCB and the FCB, and the parameter block starting

and ending addresses for the two buffers are computed and saved into the FCB.

The initialization entry point for data transfers and the command entry point

for the disc driver are moved to the FCB. The first logical block address, last
logical block address, number of logical records, blocksize, and logical record length
are moved from the directory tc the FCB. The number of blocks currently in the file
is computed and saved in the FCB.

The access privileges are checked to insure that the file can be assiyned the desired
access privileges. If the file is open for write only, the I/0 flags are set to
indicate a write sequential operation. For a new file, one block is established

on the disc via a call to GETSECTR. The sector pointer returned from GETSECTR is
saved in both the first logical block address and thc last logical block address
fields in the FCB and the routine continues by updating the directory.

If the File already exists, the current logical block is read into memory, via an

SVC 1 Random Wait call. For both new and existing files, the directory is updated

by a call to PUTD. LUCHECK is called to obtain this file's slot in the LUTABLE,

and the FCB pointer and attribute byte are stored into the LUTABLE. The read and
write counts are converted by APCHECK, and saved into the FCB along with the attribute
byte, indicating allowable data transfers for this file.

If the file is being open for read and write privileges, and it is a new file, the
logic proceeds exactly as if it is being open for write privileges only. For an
existing file being opened, the current scctor is read into memory via an SVCl Random
Wait call. If there exists more than one block in the file already, the next block
is read into memory (using the alternate bhuffer in the FCB) via an SVC 1 Read,
Random, and Proceed call. The rest of the logic is identical to that specified
above, starting with the update of the directory.

The routine 1eturns to RSA state via a call to TMRSARS, releases control of the
Directory by a call to EVDIS, and closes the bare disc by calling CLO.BLK. The
routine returns directly to SV7.CMD, if no errors were encountered following

any of the subroutine calls. If any error conditions were returned, the routine
sets the appropriate error status in the user's p» rameter block, relecases the FCB
via RELEFCB, and returns by a branch to TMRSOUT.

his :rformation 15 proprietary and is supplied by INTERDATA for the

T sofe
purpose of using and mantaining INTERDATA supplied equipment and shall
not be used for any other puipose unless specifically autharized in writing.

FMGR-5 12-131

0s/32
NAME: APCHECK

ABSTRACT:

MODULE DEFINITION

Compare the Access Privileges specified in the user SVC 7 parameter

block against the access privileges in the system control block (DCB, FCB, or

Directory) .

If the access privileges are valid, APCHECK converts the desired
access privilege to a numeric value as follows:

0 if the access is not requested,

-1 if the access is requested exclusively, and +1 if the access is requested for

shared privileges.
write count fields in the control block.

ENTRYS: APCHECK
SOURCE LIBRARY ROUTINES; None

EXTRN: None

REGISTERS USED:

ON ENTRY: U4 - Write, Read count from DCB,
u

7 - DCB pointer
U5 - SVC 7 parameter block pointer
UB - attribute byte
ON EXIT: UB - attribute byte
UC - Read Count
EE - Write Count

PRINCIPLES OF OPERATION:

The logic of APCHECK proceeds as follows: An
to indicate whether read or write is desired,
exclusive control, or shared usage. Then the
determine if the required access privilege is
request is ignored if it cannot be supported.
are next set as indicated above. Findlly the
sure that at least read or write was granted.

FCB,

The returned access privileges are then added to read and

U8-UF, U4, U5; U3 cannot be used

or Directory

internal flag is maintained,
and whether the access is for
attribute byte is checked to
supported for the device; the
The read and write counts
routine checks to make

I1f any of these tests fail,

the routine returns a condition code of 0. Otherwise, the read and write
counts are returned, and the condition code is set positively.

Fms information s proprietary and 1s cupplied by INTERDATA for the sole
purpose of using and mamtairing INTERDATA supplied equipment and shall
1nol be used for any other purpose unless spec:fically authorized in writing. |

12-132 FMGR-6

08/32 MC.DULE DEFINITION

NAME: GETSECTR

ABSTRACT: Allocate a requested number of sectors on a directory device.
Each allocatable sector is represented by a bit in an allocation
(bit) map, maintained by the operating system. Each newly allocated
sector is indicated by setting a corresponding bit in the bit map.

ENTRYS: GETSECTR

SOURCE LIBRARY ROUTINES: DCB

EXTRN: None

REGISTERS USED: U0, Ul, US-UF

ON ENTRY: U3 - number of contiguous sectors desired
U7 - DCB pointer

ON EXIT: UC - Starting Logical Block in Allocation
UE - Ending Logical Block in Allocation
CC = 0 - not enough free sectors

CC # 0 - allocation completed

PRINCIPLES OF OPERATION:

GETSECTR begins by checking if there currently exists a bit map sector in
memory. If so and if the allocation desired is one sector, then the
searching begins with the sector in memory. If the allocation desired is
more than one contiguous sector, the first bit map sector is read into
memory via a call to GETB. GETSECTR then searches for 'n' contiguous
sectors. If the allocation spans more than one bit map sector, internal
flags are maintained, indicating the bit map sector the allocation begins
in and another bit map is read into memory using GETB. Once the proper
number of sectors are found, the routine returns to the start of the
allocation to mark each sector as allocated. Then the first logical address
and last logical address of the allocation are computed and returned to the
calling routine. If there are not enough free sectors within the bit map
to satisfy the allocation request, a completion code of 0 is returned.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintair.ing INTERDATA supplied equipment and shall
not be used for any other purpose unless specifically authorized in writing.

12-133
FMGR-7

0S8/32 MODULE DEFINITION

NAME: GETB

ABSTRACT: Read a desired bit map sector into memory

ENTRYS: GETB, GETBA
SOURCE LIBRARY ROUTINES: DCB

EXTRN: None

REGISTERS USED: (9, yC-UE: cannot use UA, UB, UF, U0-US8

ONENTRY: 49 - current relative block address
U7 - DCB address

ON EXIT: U9 - last sector allocatable this bit map sector

UD - previous current relative block address

PRINCIPLES CF OPERATION:

If there currently exists a bit map sector in memory, its relative block
address is compared against the desired block address. If they are the

same, no I/0 is performed. If no sector exists in memory, the desired one is
read in. If one is currently in memory, and if it has been modified, it is
written out before a new sector is read in. If it has not been modified, the
write is not performed, and the desired sector is read in. If the write
encounters any I/0 errors, the system crashes X'301'. If the read encounters
any I/0 errors, the system crashes X'300'.

The DCB.SIZE field is used to compute the last allocatable sector on the last
sector in the bit map. (The first n-1 sectors of the bit map represent 2048
"allocatable sectors; sector n represents the remainder of the allocatable sectors).

If the bit map sector read in is the last sector in the bit map, the ending
sector index is returned in a register. Otherwise, 2047 is returned, indicating

a complete sector.

purpose of using and maintaining INTERDATA supplied equipment and shat

This information s proprietary and is suppied by INTERDATA for the soie
not be used for any other purpose unless specifically authorized n writing

12-134 FMGR-8

0S/32 MODULE DEFINITION

NAME: RELEB

.

ABSTRACT: The purpose of RELEB is to release the allocation of a given number of
sectors from a disc. . ’

ENTRYS: RELEB

SOURCE LIBRARY ROUTINES: DCB

EXTRN: GETB

REGISTERS USED: U3, U4, U8-UF

ON ENTRY: U3 - Logical Block Address of sectors to be released

U4 - number of sectors to be released
U7 - DCB address

ON EXIT: U7 - DCB address

PRINCIPLES OF OPERATION:

RELEB is the inverse of the subroutine GETSECTR. The arguments to RELEB are
two integer numbers, the LBA of the sectors to be released and the number

of sectors to release. The LBA is converted to an ordered pair (S,0) (sector,
offset) corresponding to the bits in the bit map representing this LBA. The
ending bit in the bit map is converted to another ordered pair (S1,01). GETB
is then called to reset all the bits in the bit map between these two points.

purpose of using und ms ntain. g INTERDATA supplied ejquimment end shall

This informat-on 15 nroprietary and is suppiied by INTERUATA for *he sole
not be used for any other purpose uniess speciically authoiized in writing

12-135%
FMGR-9

0S/32 MODULE DEFINITION

NAME: FDCHECK

.

ABSTRACT: The purpose of FDCHECK is to cherk the syntax of a file descriptor.

ENTRYS: FDCHECK, FDCHECK1
SOURCE LIBRARY ROUTINES:
EXTRN:

REGISTERS USED: yg, U8-U¥

ON ENTRY: y5-svCc7 Parm Block Pointer

ON EXIT: y5-SvC7 Parm Block Pointer

PRINCIPLES OF OPERATION:

FDCHECK checks the FD fields in the user's parameter block for syntactic errors.
Entry at FDCHECK checks the file name and éxtension fields; entry at FDCHECK1
checks the volume field.

purpose of using and mawntairing INTERDATA supphed equipmen: and shall

This nformaticn 15 proprietary and s supplied by INTERDATA for the sole
not be :sed for any other purpose unless specifically authorized 1n wiiting

12-130
FMGR-10

0S/32 MODULE DEFINITION

NAME: LUCHECK

.

ABSTRACT: The purpose of LUCHECK is to validate the logical unit specified in the
user's parameter block. :

ENTRYS: LUCHECK

SOURCE LIBRARY ROUTINES: TCB
EXTRN: TMRSOUT

REGISTERS USED: Ul, U2, U5, U7, UF

ON ENTRY: U2 - TCB pointer
US - SVC7 parameter block pointer

ON EXIT: Ul - LUTAB entry address
U2 - TCB pointer
U5 -.SVC7 parameter block pointer
U7 - DCB/FCB address -

PRINCIPLES OF OPERATION:

This routine checks the LU in the user's parameter block to make sure it is less
than the maximum LU number. It sets the condition code to 0 if the LU is not
currently assigned and otherwise if the LU is currently assigned.

It returns both a pointer to the matching entry in the LUTABLE and the address
obtained from this entry. This address is either of an FCB (for a contiguous
or chain file) or a DCB. The File Manager LU "in the TCB is set up for all files.

If the LU was invalid, return is to TMRSOUT.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintsining INTERDATA supplied equipment and shall
not be used for any ather purpose uniess specifically authorized in writing.

FMGR-11 12-137

0S/32 MODULE DEFINITION

NAME: DIRLOOK

.

ABSTRACT: Search directory for file descriptor

ENTRYS: DIRLOOK, DIR.SCAN
SOURCE LIBRARY ROUTINES: DIR, DCB
EXTRN: GETD

REGISTERS USED: U8-UF

ON ENTRY: U2 - TCB address
U5 - SVC 7 parameter block pointer

U7 - DCB address
ON EXIT: cC = 2 if requested FD found
CC = 1 if directory empty
CC = 0 - available entry pointer returned

PRINCIPLES OF OPERATION:

Search volume directory searching for a requested FD. When an FD
match is found, the routine returns. The required directory block

is in memory. The block and offset of the first empty entry within the
directory are also returned.

purpose of using and maintaining INTERDATA supplied equipment and shall

This information is proprietary and is supplied by INTERDATA for the sole
not be used for any other purpose unless specifically authorized in writing.

12-138 FMGR-12

0S8/32 MODULE DEFINITION

NAME: GETD

.

ABSTRACT: GETD reads a requested directory block into memory.

ENTRYS: GErp

SOURCE LIBRARY ROUTINES: pCp
EXTRN: yNoNE

REGISTERS USED: yc, yg, UF, U7

ON ENTRY: U7 - DCB pointer
UE - -1 if the next directory block is desired
0 if the first directory block is desired
n if the nth directory block is desired

ON EXIT: U7 - DCB pointer
cC - 1 if directory block read in successfully
0 if the directory is empty

PRINCIPLES OF OPERATION: r

According to the argument in UE, GETD will read the first, next, or nth directory
block into memory. If the next block is requested, and no block is currently

in memory, the routine crashes X'302'. If the read returns an I/0 error, the
routine crashes X'303'.

Once the required directory block is read into memory, the directory presence
bit is set to insure that the directory is updated prior to another GETD.

The condition code is set as indicated above and the routine returns to the
caller.

This information is progrietary and is supplied by INTERDATA for the sole
purpose of using and meintaining INTERDATA supplied equipment and sheil
not be used for any other purpose unless specifically suthorized in writing.

FMGR-13) 12-139

0S8/32 MODULE DEFINITION

NAME: RELED

.

ABSTRACT: Release a directory block when all its directory entries have
become inactive.

ENTRYS: RELED
SOURCE LIBRARY ROUTINES: DCB, VD
EXTRN: RELEB, GETD, PUTD

REGISTERS USED:

ON ENTRY: U6 - LBA of the directory block to be freed
U7 - DCB pointer

ON EXIT: U7 - DCB pointer

PRINCIPLES OF OPERATION:

The routine begins by reading via GETD, successive directory blocks, searching
for the desired directory block. If the directory was empty on the release
attempt, the routine crashes X'304'. If the first directory block is the one
to be released, the VD must be read in, to be updated to point to the next
directory block as the start of the directory chain. If an I/O error occurs
during the read or write of the VD, the system crashes X'305'.

Once the correct directory block is found, the directory chain is relinked,
excluding the deleted block. If any I/0 errors occur during this operation,
the system also crashes X'305'. The allocation for this block is released by
a call to RELEB, and the routine returns to the caller.

purpose of using and maintaining INTERDATA supplied equipment and shalt

This information is proprietary and is supplied by INTERDATA for the sair
not be used for any other purpose unless specificalty authorized = writing

FMGR-14
12-140

08/32 M(:DULE DEFINITION

NAME: DMTLOOK/VMTLOOK '

ABSTRACT: Search DMT/VMT for match on device/volume name; return
associated DCB pointer. ’

ENTRYS: DMTLOOK, VMTLOOK
SOURCE LIBRARY ROUTINES: SPT
EXTRN: None

REGISTERS USED: U8-UF

ON ENTRY: U5 - address of SVC 7 parameter block

ON EXIT: U5 - as above
U7 - pointer to DCB

PRiINCIPLES OF OPERATION:

The routine searches either the DMT (enters at DMTLOOK) or the VMT (enters
at VMTLOOK) for a match between the name field of the DMT/VMT and the
name contained in the task's SVC 7 parameter block. Upon finding a match,
the associated DCB address is returned and a positive condition code is
returned.

If no match is found, a zero condition code is returned.

This information s proprietary and is supplied by INTERDATA for tha sole
purpose cf using and maintaning INTERDATA supplied equipment and s!\all
not be used for any other purpose uniess specifically authorized in writing.

12-141
FMGR-15

0S8/32 MODULE DEFINITION

NAME: ALLOD

ABSTRACT: Allocate 1 sector for use by Directory.

ENTRYS: ALLOD

SOURCE LIBRARY ROUTINES: DCB, DIR
EXTRN: GETSECTR, GETD, PUTD.
REGISTERS USED: U3, U4, U8-UF

ON ENTRY: U7 - DCB address

ON EXIT: U7 - DCB address

PRINCIPLES OF OPERATION:

ALLOD allocates 1 sector for use by the Directory in the following manner:
GETSECTR is called to allocate 1 sector on the volume. If the directory

did not previously exist (DCB.DIRP=0) then the VD is read into memory and
the VD.FDP pointer is set to contain the address of the sector obtained from
GETSECTR. The VD is rewritten at this time. Then the DCB.DIRP field is

set to contain this same address.

If a directory block already exists, the directory is read via calls to-
GETD, until the last existing directory block is found. Once found, the
link field of the last directory block is set to point to the new sector
and this block is rewritten via PUTD.

In either case, the link field of the new block is zeroced and all its entries
marked inactive.

The directory is updated via call to PUTD; the routine then returns with a
positive condition code.

If there exists no free sectors on the volume, ALLOD returns with a condition
code of 0.

If an I/0 error occurs during the - .ad or write of the VD, the system crashes
X'306"'.

[Tris information 1 proprietary and 15 suppies by INTERDATA for tne sole
purpose of wing and maintaniog INTERDATA susplied equipment anc shal |
not_be ised for anv other purpose unless specif:cally autnorized v writing. |

12-142

0S8/32 MODULE DEFINITION

NAME: GETFCB

ABSTRACT: The purpose of this routine is to allocate new FCBs, starting at the
top of memory. GETFCB allocates both chain and contiguous types of
FCBs.

ENTRYS: GETFCB

SOURCE LIBRARY ROUTINES: FCB, DCB, SPT

EXTRN:

REGISTERS USED: U3, U8-UF without SAVE/RESTORE -

ON ENTRY: RS STATE
U3 - size of FCB to be allocated in bytes

ON EXIT: RS STATE
UA -~ pointer to FCB
CC = 0 if FCB successfully allocated
CC ¢ 0 if allccation not possible

PRINCIPLES OF OPERATION:

This routine manages the chain of FCBs. The chain of FCBs are built starting at
SPT.MTOP, down in memory to SPT.FBOT. The first two words of each FCB contain a
pointer to the next FCB and the size of the current FCB. The bottom of the FCB
chain (SPT.FBOT) must be greater than SPT.CTOP+2. If not, there is not enough
memory available for the allocation, so GETFCB returns with a Condition Code < 0.

Each FCB associated with a DCB is chained from the DCB, starting at DCB.FCB.

GETFCB will Crash with a system crash code of X'307' if the FCB to be allocated is
less than the size of a contiguous FCB.

purpose of using and maintaining INTERDA FA supplied equipment and shall

' This information 1 proprietary and is supplied by INTERDATA for tne sole
not be used for any otiier purpose uniess specifically authorized in writing.

12-143
FMGR-17 B

0S/32 MODULE DEFINITION

NAME: RELEFCB

.

ABSTRACT: The purpose of RELEFCB is to release a specified FCB; if the FCB was on
the bottom of the FCB chain, the memory is freed up by adjusting
SPT.FBOT.

ENTRYS: RELEFCB

SOURCE LIBRARY ROUTINES: DCB, FCB, SPT
EXTRN:

REGISTERS USED: U3, U8-UF

ON ENTRY: RS STATE
U3 - pointer to FCB to be released

ON EXIT: . RS STATE

PRINCIPLES OF OPERATION:

RELEFCB will release an FCB in one cf two ways; if the FCB is the last FCB in the
chain of FCBs in the system, it is removed from the chain and the bottom of the
FCB (SPT.FBOT) is adjusted to reflect the freed FCB. If the FCB is anywhere else
in the chain, the FCB active bit is reset, indicating that the area for this FCB
is available for a subsequent call from GETFCB.

RELEFCB will CRASH for each of the following reasons:

X'308' - attempt to release a non-existent FCB

X'30A' - many FCBs in chain and addresses do not match
X'30B' - FCB chain incorrect in DCB

X'30C' - FCB chain in DCB contains no matching address

This information s proprietary and 1s supplied by INTERDATA for the sole
purpote of using and maintaining INTERDATA supplied equipment and shal
ng.

not_be used for any other purpose unless specifically authorized in writs

12~-144 FMGR-18

0S/32 M.ODULE DEFINITION

NAME: ALLO .

ABSTRACT: The purpose of this module is to allocate new files. For
contiguous files, both a dire tory entry and a disc allocation
are obtained. For chain file'., only the directory entry is
obtained.

ENTRYS: ALLO
SOURCE LIBRARY ROUTINES: TCB, DCB, FCB, DIR

EXTRN: FDCHECK, DMTLOOK, OPN.BDSK, EVQCOW, TMRSRSA, DIRLOOK, ALLOD, GETD, GETSECTR,
PUTB, PUTD, SV7.CMD, CLO.BLK, TMK:3ARS, EVDIS
REGISTERS USED: UO0-UF

ON ENTRY: U2 - TCB address
U5 - SVC 7 parameter block address

ON EXiT: U2 - TCB address
U5 - SVC 7 parameter block address

PRINCIPLES OF OPERATION:

ALLO is the SVC 7 executor entered when an allocate function is indicated
in the task's SVC 7 parameter block. If the system is SYSGENed to delete
direct access support, ALLO returns directly to the task with a type
error. .

The first syntax for the file descriptor is verified by calling FDCHECK.
Then the DMT and VMT are searched to make sure that the allocate is
directed to a volume known to the system. To allow I/O operations to
the disc on behalf of the file being created, the disc is assigned to
the file manager LU via OPN.BDSK.

The bit map and directory leaves are connected to via calls to EVQCON

and the routine enters RSA state (TMRSRSA) to allow the file manager to
perform I/0. The directory management routines are used to search the
directory to insure that the new file name is unique to that volume (DIRLOOK)
and to find an empty entry for the new file. If the directory is currently
empty, a new directory block is allocated by ALLOD. GETD is called to
insure that the required directory block is currently in memory, and the
directory entry for the file is initialized to contain the new file name.

If the file being created is contiguous, the complete file allocation is
obtained via a call to GETSECTR. The directory pointers DIR.FLBA, DIR.LLBA
are set to contain the addresses returned from GETSECTR as the first and
last logical block (sector) addrcsses. The bit map is then updated by a
call to PUTB. For a chain file, no allccation is performed. Rather, the
block size and logical record length are moved from the parameter block

to the directory entry.

For both file types, the Read and Write keys are moved to the Directory.
Then PUTD is called to update the Directory. The assignment to the File
Manager LU is closed by CLO.BLK, the routine returns to RS state {TMRSARS)
and the direc-tory and bit map leaves are disconnected via EVDIS. Return
is to SV7.CMD, to continue scanning the function code.

If any errors are encountered during ALLO processing, the appropriate
error status is saved in the task's SVC 7 parameter block and the task
is returned to directly via TMRSOUT.

This information 15 proprietary and is supplies by INTERDATA for the sofe
purpose of using and maintaining INTERDATA supplied equipme:t and shatt
ot be used for any other purpose unless specifically authorized wn writing

FMGR-19 12-145

08/32 MUDULE DEFINITION

NAME: DELETE

ABSTRACT: For systems with Direct Access support, the DELETE function is
included to delete Contiguous and Chain Files. The delete is
accomplished by freeing the allocation of the file within the bit
map, and marking as inactive the directory entry pertaining to the
file.

ENTRYS: DELETE

SOURCE LiBRARY ROUTINES: DCB, TCB, FCB, D!R

EXTRN: DMTLOOK, VMTLOOK, EVQCON, TMRSRSA, TMRSARS. OPN.BDSK, DIRLOOK, RELED,
PUTD, RELEB, EVDIS, RELEFCB, CLO.BLK, TMRSOUT, SvV7.CMD

REGISTERS USED: U0-UF, without save/restore

ONEN, V. U2 TCB address
U5 - SVC 7 parameter block addiress of user

ON EXIT: U2 - TCB address
U5 - SVC 7 parameter block address

PRINCIPLES OF OPERATION:

DELETE is called directly from the SVC 7 driver routine, SVC7. If no direct
access support exists in the system, the routine returns immediately via
TMRSOUT, indicating a type error (X'0A')in the SVC 7 parameter block.

DELETE searches the DMT and the VMT via calls to DMTLCOK and VMTLOOK. If a
match is found in the DMT, a type error is returned. TIf a match is not found
in the VMT, a volume error is returned. A contiguous FCB is obtained, for use
by DELETE itself, via a call to GETFCB. The routine then obtains control of
the Directory by connecting to the Directory leaf via EVQCON and enters RSA
state via TMRSRSA.

The bare disc is assigned by a call to OPN.BDSK, and the directory is searched
via DIRLOOK, looking for a match between the File Descriptor specified within

the user's parameter block and the directory entries. Once the proper directory
entry is obtained, the write and read count fields are checked. Both fields must
equal zero to allow the delete to take place. If the calling task is a U-task,
the Read and Write keys must also be compared against those specified by the

user in the parameter block.

To release the file, the directory entry is marked inactive. If all of the entries
within this directory block are nc ° inactive, the directory block is released by a
call to RELED. Otherwise, the di- ctory block is just updated by PUTD.

For a contiguous file, the size of the allocation is computed, and the allocation
is released by RELEB. The directory leaf is released by EVDIS and RS state is
returned to by TMRSARS. The FCB allocated at the start of the DELETE function

iz releagsed hy RETRFCR, the bare disc is unassigned by CLO.BLK, and the routine
returns to SV7.CMD.

For a chain file, the directory leaf is released right away, and each link in
the chain is read into memory in order to compute the logical block address of
the next block. As each block is read into memory, the link field is saved
and then the block is freed via RELEB. The routine then returns to RS state
and terminates as above.

If any errors are encountered during the DELETE processing, the appropriate
error condition is set into the user's SVC 7 parameter block, RS state is
returned to, the directory leaf is released and the routine returns to the
user via TMRSOUT.

Tiius information propnetery and s suppred by INTERDATA for the <ale
purpose ©f using and maicraining INTERDATA supphmi eguipment and shatl
ot be used for any other purpose uniess speciiica’t authcrized w writing, |

12-146 FMGR-20

0S8/32 MO!)ULE DEFINITION

NAME: RENAME .

ABSTRACT: The function of RENAME is to change the name of devices and
direct-access files.

ENTRYS: RENAME

SOURCE LIBRARY ROUTINES: DCB, FCB, DIR

EXTRN: SV7.CMD, SVC7.ERR, TMRSOUT, TMRSRSK, TMRSARS, EVDIS, EVQCON, FDCHECK,
FDCHECK1, DMTLOOK, DIRLOOK, GETD, FUTD
REGISTERS USED: yo - UF .

ON ENTRY: RS STATE
U2 TCB ADDRESS
U5 SVC 7 PARAMETER BLOCK

ON EXIT: RS STATE
U2 TCB ADDRESS

U5 SVC 7 PARAMETER BLOCK

PRINCIPLES OF OPERATION:

RENZME is an SVC 7 function, called directly from the SVC 7 driver routine, SV7.
RENAME proceeds along two separate paths, depending upon whether the RENAME is
being performed on a device or a direct-access device.

in both cases, the LU must be valid and currently assigned. To rename devices,

the caller must be an E-TASK, the new device mnemornic must be syntactically
correct, and the new name must not currently exist in the Device Mnemonic Table
(DMT). If all these tests are completed successfully, the access privilege is
checked to insure that the device is open for ERW. If so, it has exclusive access.
The new device name is moved to the DMT and the routine returns to SV7.CMD.

If the RENAME function is being performed on a file, the File Descriptor is
checked for syntax. The access privileges are checked to insure that the file

is open for ERW. If so, it has exclusive access. The routine obtains control

of the directory via an EVQCON and searches the directory for the new name.

If the new name does not currently exist in the directory (i.e., is a valid new
name), the directory block pertaining to this file is brought into memory and

the new FD is moved tc the directory entry. The FCB is also updated to contain
the new file name. The directory is then rewritten, and control of it is released
via an EVDIS. Return is directly to SV7.CMD.

If any of the above checks fail, the appropriate status is set ,in the user's
parameter block and SVC 7 processing is terminated by returning directly to
TMRSOUT.

This wnformation is proprietary and is supphied by INTERDATA for the sole
purpose of using and maintaining INTERDATA supplied equipment and shali
not be used for any . ther purpose uriess spec iically authorized n wiling.

12-147
FMGR-21

08/32 MODULE DEFINITION

NAME: REPRO

.

ABSTRACT: Change the protect keys associated with an LU.

ENTRYS: REPRO
SOURCE LIBRARY ROUTINES: TCB, FCB, DCB, DIR

EXTRN: [UCHECK, REN.EPCK, SV7.CMD, TMRSRSA, EV)CON, GETD, PUTD, TMRSARS, EVDIS
REGISTERS USED: U0-UF

ON ENTRY: U2 - TCB address
U5 - SVC 7 parameter block pointer

ON EXIT: U2 - TCB address
US - SVC 7 parameter block pointer

PRINCIPLES OF OPERATION:

The FCB/DCB address associated with the LU is obtained from the LU table via
LUCHECK. ‘

A reprotect may be directed to a device by an E-task only. The read and
write keys are moved from the parameter block to the DCB; return is to
SV7.CMD.

To reprotect a file, RSA state is entered (TMRSRSA), the directory leaf is
connected to (EVQCON) and the required directory entry is obtained (GETD).

The new read and write keys are checked for validity; if the current keys
are X'FF' and the calling task is not an -E-task, the reprotect is not
allowed.

Normal return is to SV7.CMD in RS state. Any errors encountered during
REPRO are saved into the SVC 7 parameter block and the task is returned to
via TMRSOUT.

I'This informatian 1s proprietary ami s supolied by iINTERDATA for the sciz
| purpose of using and maintaining INTERDATA suppliec equipmert and shall
| not be used for any other purnose untess spec:fically authorized . writing

12-148 FMGR-22

0S§/32 MODULE DEFINITION

NAME: CLOSE

-

ABSTRACT: Logically disconnect the assignment between a task and a file or device.

ENTRYS: CLOSE, CLO.BLK

SOURCE LIBRARY ROUTINES: DCB, FCB, DIR

EXTRN: EVQCON, EVDIS, TMRSRSA, TMRSARS, LUCHECK, RESET, GETD, RESET.CH, RELEFCB, PUTD
REGISTERS USED: U0 - UF

ON ENTRY: RS STATE
U2 - TCB Address
U5 - SVC 7 Parameter Block Address

ON EXIT: RS STATE
U2 - TCB Address
U5 - SVC 7 Parameter Block Address

PRINCIPLES OF OPERATION:

CLOSE is the SVC 7 function which removes the logical connection between a task
and a file or device which was established at OPEN time. CLOSE is called
directly from the SVC 7 driver routine, SVC7. The logical unit entry in the

LU table is obtained via a call to LUCHECK; if it was not previously assigned,
unassigned status is placed in the user's parameter block, and the routine
returns via TMRSOUT. This entry is set to zero and the processing continues

in one of two paths, depending upon whether the CLOSE is directed to a device
or a file. -

For the null and console device, the routine terminates immediately, exiting back
to SV7.CMD. Otherwise, the read and write counts in the DCB are reset to reflect
the disconnection and the return is taken to SV7.CMD.

For files, an EVQCON is used to obtain control of the directory and the
required directory block is read into memory via a call to GETD.

For contiguous files, the current sector pointer is moved from the FCB to the
directory. For chain files open for Write or Read/Write, the file is check-
pointed via the routine RESET.CH and the first logical block address, last
logical block address, current sector number and number of logical records is
moved from the FCB to the directory. For all file types, the read and write
counts in the directory and the FCB are reset. If the FCB read and write

counts now equal zero, the FCB is released via a call to RELEFCB. Whether or

not the FCB is released, the DCB read and write counts are updated and the
directory is rewritten, via a call to PUTD. Control of the directory is released
via EVDIS and return is directly to SV7.CMD.

CLO.BLK is an additional entry point to CLOSE to unassign the bare disc; it is
also called directly from ALLO and DELETE, prior to their exiting to SV7.CMD.

purpose of using and maintaining INTERDATA .upplied equipment and shail

This information is proprietary and is supplied by INTERDATA for the sale
not be used for any other purpose unless specifically authorized in writing.

12-149
FMGR-23

08/32 MODULE DEFINITION

NAME: CAP

.

ABSTRACT: Change access privileges associated with a given LU.
ENTRYS: CAP
SOURCE LIBRARY ROUTINES: TCB, FCB, DCB, DIR

EXTRN: LUCHECK, EVQCON, EVDIS, TMRSARS, TMRSRSA, APCHECK , PUTD, GETD
REGISTERS USED: UO0-UF

ON ENTRY: U2 - TCB address
U5 - SVC 7 parameter block address

ON EXIT: U2 - TCB address
U5 - SVC 7 parameter block address

PRINCIPLES OF OPERATION:

CAP is the SVC 7 executor invoked by SVC7 to change the access privileges
associated with a given LU. The LU may be assigned to a device or a file.

CAP is a two pass operation. On pass one, all required error checking is
performed. If the new access privilege is not allowed, a privilege error
is saved into the task's SVC 7 parameter block, and the task is returned
to via TMRSOUT.

If the requested access privilege change is valid, CAP proceeds to pass
two. During pass two, all changes in the DCB (for a device) or the FCB
and Directory (for files) are actually made. The following are the

subroutines used internally within CAP, and a brief description of each:

(1) CHNORW - remove an access currently granted to the LU; U6 acts as a

flag indicating which access to remove, U6 = 0 implies remove read;
Us = 4 implies remove write. U0 and Ul contain current Write and

Read counts.

(2) CKRWCT - determines if new access is in violation of former access;
U6 indicates desired new ac~ess; U0, Ul contain current read and
write counts associated wi 1 the DCB/FCB. If exclusive access is
requested of a privilege (either read or write) the routine insures
that no more than one shared user is currently granted that privilege.

Once a new access privilege is valid, it is indicated in the appropriate
control block via the read write count fields (DCB.WCNT, DCB.RCNT) for a
device, (FCB.WCNT, FCB.RCNT, DIR.WCNT, DIR.RCNT) for a file.

CAP uses the directory management routines GETD and PUTD to read and write
the required directory block. It uses the Task Management routines
TMRSRSA and TMRSARS to switch between RS and RSA states, to allow SVC 1
calls from the file manager and it uses the Event Coordination Routines,
EVQCON and EVDIS to connect to and release control of, the directory leaf.

CAP returns directly to SV7.CMD upon successful completion.

This information is proprietary anc is supplied by INTERDATA for the scle
purpose of using and mainteining INTERDATA supplied equipment and thail
not be used for any other purpose uniess specifically authorized in writing.

12-150 FMGR-24

08/32 MODULE DEFINITION

NAME: CHECKPT

ABSTRACT: Checkpoint a file or device

ENTRYS: CHECKPT

SOURCE LIBRARY ROUTINES: FCB, DCB, DIR

EXTRN: LUCHECK, TMRSRSA, RESET.CH, EVQCON, PUTB, EVDIS, PUTD, TMRSARS, SV7.CMD
REGISTERS USED: UO-UF

ON ENTRY: U2 - TCB address
U5 - SVC 7 parameter block address

ON EXIT: U2 - TCB address
U5 - SVC 7 parameter block address

PRINCIPLES OF OPERATION:

CHECKPT is the SVC 7 executor used to checkpoint an LU. To checkpoint a
device, the routine simply validates its LU via LUCHECK and issues an
SVC 1 WAIT call to the device.

To checkpoint a file, the FCB associated with it is obtained from the LU table-
via LUCHECK. Then RSA state is entered via TMRSRSA. The state of a chain
file is switched to READ, RANDOM via RESET.CH to flush any outstanding buffers.
Then the bit map is connected to via EVQCON; the bit map is updated via PUTB
and the bit map leaf is released via EVDIS.

For both Contiguous and Chain files, the_ directory leaf is connected to, and
the directory block is read into memory via GETD. Current file information

is then moved from the FCB to the directory. The directory is updated by
PUTD, and the directory leaf is released. RS state is returned to via TMRSARS
and the routine exits to SV7.CMD.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maintain.ng INTERDATA supplied equipment and shall
not_be used for any other purpose unless specifically authorized in wr:ing.

FMGR~-25 12-151

0S8/32 MODULE DEFINITION

NAME: FETCH

.

ABSTRACT: FETCH file/device attributes of a given FD.

ENTRYS: FETCH

SOURCE LIBRARY ROUTINES: FCB, DCB

EXTRN: LUCHECK, TMRSOUT

REGISTERS USED: yo-UF without Save/Restore

ON ENTRY: U2 - TCB address
U5 - SVC 7 parameter block address

ON EXIT: U2 - TCB address
U5 - SVC 7 parameter block address

PRINCIPLES OF OPERATION:

FETCH is called directly from the SVC 7 driver routine, SVC 7. The attributes,
logical record length and device code field of the DCB/FCB are moved to the
user's parameter block. For files, the file name and size are obtained from
the FCB and moved to the user's parameter block. For devices the device name
is obtained from the DMT and moved to the user's parameter block. Exit from
FETCH is to TMRSOUT.

If the Logical Unit the FETCH is being perfoérmed upon is unassigned, FETCH
will exit to the SVC 7 error routine to issue a X'09' error code and exit
immediately to TMRSOUT.

The mfoimation 15 proprietary and 15 s-ppled oy INTERDATA for the so.+
pucpose of using and mamtanicg “TERDATA suppisd eiupment and <4

s01 be used for any other purpose w hess specitica:ly authorized in wrting:

12-152 FMGR~-26

08/32 MODULE DEFINITION o

NAME: CONTIG

.

ABSTRACT: Intercept all data transfers to a contiguous file.

ENTRYS: CONTIG, CTG.EP

SOURCE LIBRARY ROUTINES: FCB, DCB, TCB
EXTRN: TMRSRSA, TMRSAOUT, IODONE2
REGISTERS USED: y0-UF

ON ENTRY: y2 - TCB address
U3 - FCB address
U4 - Task SVC 1 parameter block address
U5 - data start address
U6 - data end address
ON EXIT: U7 - random address

On Exit: None

PRINCIPLES OF OPERATION:

CONTIG receives control from SVCl (IQSET) when it intercepts an SVCl data
transfer call to a contiguous file.

The length of the data transfer request is computed and the random address is
obtained either from the FCB random address (for a random I/0O request) or
from the FCB current sector pointer (for a sequential I/0 request). CONTIG
copies the FCB information into the DCB and if the I/0 request is a read or
write, CONTIG exits by transferring control directly to the disc driver.

If the I/O request is a test and set (both read and write bits set in the
SVC 1 function code), CONTIG enters RSA state, moving the RS save area to a
save area in the FCB via TMRSRSA, and then modifies the following fields in
the TCB:

TCB.RPSW - the location field of the resume PSW is set up to contain a
secondary entry point within CONTIG

TCB.RGPR - the general purpose register save area is set up to contain
the current values of user register set.

The routine then transfers control to the disc driver for the read portion
of the test and set operation. By modifying the TCB.RPSW and TCB.RGPR fields
as specified above, upon termination of the read the disc driver returns to
CONTIG at its secondary entry point. CONTIG then processes the remainder
of the test and set operation itself. If a write is to be performed (the
first halfword of the buffer read contained a X'0000'), CONTIG does the
write by issuing an SVC 1 WRITE, WAIT call. Control is returned to the
calling task upon successful completion of CONTIG via the task management
routine, TMRSAOUT. If CONTIG receives an EOM status following an I1/0
operation, EOM status is saved in the FCB and control is returned to the
task by branching to IODONE2 to complete the request.

purpose of using and maintaining INTERDATA supplied equipment and shali

This information 1s proprietary and 's supplied by INTERDATA for the sole
not be used for any other purpose unless specifically authorized n writing.

FMGR-27 12-153

0S8/32 MODULE DEFINITION

NAME: CMD.CO

.

ABSTRACT: Intercept and Execute all commands to a contiguous file

ENTRYS: CMD.CO

SOURCE LIBRARY ROUTINES: FCB, DCB
EXTRN: TMRSRSA, TMRSAOUT,. IODONE2
REGISTERS USED: U0 - UF

ON ENTRY: RS STATE

U2 - TCB Address
UD - FCB Address

ON EXIT: RS/RSA STATE
U2 - TCB Address
UD -~ FCB Address

PRINCIPLES OF OPERATION:

The following are the executors contained in CMD.CO:

Rewind (CMD.REW) - Set current sector (FCB.CSEC) in the
FCB to 0 and return via a branch to -IODONE2.

Backspace Record (CMD.BSR) - Decrement FCB.CSEC by 1, enter RSA
state and issue an SVC 1 read of new current sector to check for
any I/0 problems. Exit to TMRSAOUT.

Forward Space Record (CMD.FSR) - Increment FCB.CSEC by 1 and proceed
as in CMD.BSR.

Write End of File (CMD.WEQF) - Increment FCB.CSEC by 1, enter RSA
state and write a pseudo-file mark (X'1313') at that random address
via an SVC 1 WRITE, WAIT call. Exit via TMRSAOUT.

Forward Space File (CMD.FSF) - Enter RSA state and issue SVC 1 read
commands starting at FCB.CSEC, until a pseudo-file mark, X'1313"'
is found. Exit to TMRSAOUT.

Backward Space File (CMD.BSF) - ame as Forward Space File, except the
X'1313' is searched for starting at FCB.CSEC and backing up one sector
at a time. Exit to TMRSAOUT.

purpose ot using and maintaining INTERDATA supplied eauspment and shal® |

Tiis aformation 5 proprietary anu i< supplied by INTERDATA for the sole |
"ot be used for o w0 uniess specifically authoriz-d in wring, |
o1 b used for any other purpre unless specihicaily utkoriz-id i wisiing. |

] FMGR-28
12-154

08/32 “AODULE DEFINITION

NAME: CHAIN

ABSTRACT: Intercept SVC 1 data transfer requests from the SVC 1 First
Level Interrupt Handler (FLIH) which are directed to a
chain file.-

ENTRYS: CHAIN

SOURCE LIBRARY ROUTINES: TCB, FCB, DCB

EXTRN: RESET.CH, POSITN, GETCHL, PUTCHL, TMRSAOUT
REGISTERS USED: UO-UF

ON ENTRY: U2 - TCB address
U3 - FCB address
U4 - SVC 7 parameter block address
UD - DCB address

ON EXIT: U2 - TCB address
U3 - FCB address
U4 - SVC 7 parameter block address
U7 - DCB address

PRINCIPLES OF OPERATION:

CHAIN recieves control from the FLIH when an SVC 1 call is directed to a
chain file. The function code is obtained from the FCB and the I/0
operation desired is decoded (Read or Write, Random or Sequential access).

If the call is random, the current logical record is updated with the
random address. The block and offset within that block of the logical
record being processed are computed by the subroutine, CCH.BKOF, and the
FCB is updated to contain the new current block and offset. 1If this
requires repositioning of the file, RESET.CH is called first to flush
any outstanding buffers and to switch the file to a known state

(READ, RANDOM). Then RESET.CH is called again to switch to the mode
requested.

If the I/0 to be performed is a read, CHAIN transfers control directly
to GETCHL, to perform the next logical record read. Otherwise, control
is transferred to PUTCHL, to perform the next logical record write.

If a read is requested of FCB.NLR+l (a logical record beyond the end of
the file), or a write of FCB.NLR+2 (a logical record more than one record
beyond the end of the file) an EOM status is generated and saved in the
task's SVC 7 parameter block. Exit is directly back to the task via
TMRSAOUT .

purpose of using and maintaiung INTERDATA supplied equipment and shall

This information is proprietary and 1s supplied by INTERUATA for the sole
not_be used for any other purpose u:iess specifically authorized in writing

FMGR-29 17=-155

08/32 MODULE DEFINITION

NAME: CMD.CH

ABSTRACT: Intercept SVC 1 command requests from the SVCl First Level
Interrupt Handler (FLIH) which are directed to a chain file.

ENTRYS: CMD.

CH

SOURCF LIBRARY ROUTINES: FCB

EXTRN: POSITN, TMRSAOUT

REGISTERS USFD: U0-UF

ON ENTRY: U2 TCB address
U3 FCB address

U4 - SVC 7 parameter block address
UD - DCB address

ON EXIT: None

PRINCIPLES OF OPERATION:

CMD.CH is entered from the FLIH when a SVC 1 command is directed to a chain
file. CMD.CH contains 5 executors, containing the logic necessary to

perform the following functions: Rewind, Backspace Record, Forward Space
Record, Backspace Filemark, and Forward space Filemark. If any other commands
are attempted, the routine ignores them by returning directly to the task :
via TMRSAOUT.

Before decoding the command, CMD.CH sets up the file manager LU in the TCB
(TCB.FMLU) and resets the file to Read Random Mode via RESET.CH. The
following executors perform the

l. CMD.REW - The file is rewound by positioning the file to block 0
by calling POSITN with a zero argument. The current logical record
is set to zero (FCB.CLRL) and the offset within that block is set
to 4 (FCB.COFF).

2. CMD.BSR - If the file is currently positioned at the start, an EOM
status is placed in the SVC 7 parameter block. Otherwise, the block
and offset of the previous logical record (FCB.CLRL-1) is computed
and the file is positioned t the appropriate block. Then the current
logical record (FCB.CLRL), & .d current offset (FCB.COFF) are updated.

3. CMD.FSR - To forward space one record, a test is made to see if the file
is currently positioned at the end. If it is, an EOM status is returned
as above. Otherwise, the block and offset of the next logical record
are computed (FCB.CLRL+1) and the routine proceeds as above.

4. CMD.FSF - To position the file at the end, POSITN is called with an
argument of FCB.NBLK-1l. Then the number of logical records is set
as the current logical record (FCB.NLR =3 FCB.CLRL) and the offset is
computed and saved.

5. CMD.BSF - Identical to CMD.REW.
All executors return to the calling task via TMRSAOUT.
The subroutine CCH.BKOF is used within many of the chain file handling routines

to compute the block number a given logical record begins in and its offset within
that block.

This information 15 propretary end s supplied b T
pose of using and marrtaming INTERDATA suppied equipm
ot be uxcd for any ciher pwbe . Srk s sper Deaiiy th.

12~156 FMGR-30

08/32 MODULE DEFINITION

NAME: GETCHL

ABSTRACT: The purpose of GETCHL is to move a logical record from a system buffer
to the user's buffer. This routine performs no physical I/O and is only
used for buffered chain files.

ENTRYS: GETCHL
SOURCE LIBRARY ROUTINES: FCB

EXTRN: TMRSAOUT, SET.LRCL, GETCHPR
REGISTERS USED: y1, uy2, U3, U4, U7, U8, UC

ON ENTRY: RSA STATE
U2 TCB pointer
U3 FCB pointer
U4 User parm block pointer
U7, UD DCB pointer
ON EXIT:
RSA STATE
U2 TCB pointer
U3 FCB pointer
U4 User parm block pointer
U7 DCB pointer

PRINCIPLES OF OPERATION:

When a task requests a read to a chain file, logical records must be moved from a
system buffer to the user's buffer. GETCHL performs this movement of data.

The data request transfer length is established via a call to SET.LRCL. Data is
then moved, one byte at a time, from the system to the user buffer. If a system
buffer is exhausted before the data transfer is complete, a new buffer must be’
obtained via a call to GETCHPR.

The current logical record number in the FCB is incremented by 1 after the data
transfer is completed; exit is to TMRSAOUT.

i RDATA for the sole

< information is proprietary and 15 supplied by INTE
1\.:‘:;‘0.5: of using and maintaining INTERDATA suppiied equipment and shall
not be used for any other purpcse unless specificatly authorized n writing.

12-157
FMGR-31

0S/32 MODULE DEFINITION

NAME: pytcHL <.

ABSTRACT: Move the current logical record from the system buffer to its
preallocated disc location.

ENTRYS: PUTCHL
SOURCE LIBRARY ROUTINES: FCB

EXTRN: SET.LRCL, PUTCHP, TMRSAOUT
REGISTERS USED: U0 - UF

ON ENTRY: U2 - TCB address
U3 - FCB address
U4 - SVC 1 parameter block address
U7 - DCB address

ON EXIT: None

PRINCIPLES OF OPERATION:

PUTCHL receives control directly from CHAIN, to complete the SVC 1 operation to a
chain file. No physical I/0 is performed by PUTCHL. The record is moved, byte
by byte, from the system buffer to the disc file until a complete record is moved.
The length of the move operation is the smaller of the size of the logical record,
or the length requested in the parameter block.

If a block is filled before the whole record has been moved the block is physically
written to the disc by the routine PUTCHP. When the data transfer is complete,
the FCB is updated by incrementing the FCB current logical record number.

If the file is in sequential mode, the current logical record number is compared
with the number logical records (FCB.CLRL: FCB.NLR).

If the current is greater than or equal to the number of logical records, the
numper of logical records is updated with the value of the current logical record
(FCB.CLRL — FCB.NLR) .

The routine returns control to the user via TMRSAOUT.

This information is proprietary and is supplid Ly INFERDATA for the sole
purpose of using and maintaiming INTERDATA st pphed equipment and shail

not_be used for any other purposc uniess specifically authoczedd i writing.

12-158
FMGR-32

0S/32 MODULE DEFINITION

NAME: SET.LRCL

.

ABSTRACT: Set up various parameters to be used by GETCHL and PUTCHL to move
data between system and task buffers. '

ENTRYS: SET.LRCL

SOURCE LIBRARY ROUTINES: FCB

EXTRN: None

REGISTERS USED: u3, u4, U6, U9, UE, UF

ON ENTRY: U3 - DCB address
U4 - SVC 1 parameter block address

ON EXIT: U3 - DCB address
U4 - SVC 1 parameter block address
U6 - logical record length
UE - system buffer address
UF - system parameter block address

PRINCIPLES OF OPERATION:

SET.LRCL performs the following functions:

Computes the length of the data transfer by comparing the length requesﬁed with
the logical record length; the smaller of the two is returned in U6.

The current logical record number, parameter block pointer and buffer pointer
are picked up from the FCB and returned in registers.

purpose of using and maintaining INTERDATA suppiied equipment and shall

This information is proprietsry and is supplied by INTERDATA for the sole
not be used for any other purpose unless spacifically authorized in writing.

FMGR-33 12-159

0S§/32 MODULE DEFINITION

NAME: CHN.WAIT

.

ABSTRACT: Perform an SVC 1 Wait call on the File Manager LU

ENTRYS: CHN.WAIT
SOURCE LIBRARY ROUTINES: None

EXTRN: None

REGISTERS USED: ucC
ON ENTRY: None
ON EXIT: None

PRINCIPLES OF OPERATION:

CHN.WAIT is used by the file managemeht routines to perform a WAIT call on the
file manager LU.

This wdormation is proprietary and is supplied by INTERDA ' A for the
purpose of using and maintaining INTERDATA scpphed equs
not be used for any ather purpose uniess specifically author

12-160 FMGR~34

0S/32 MODULE DEFINITION

NAME: GETCHPR

ABSTRACT: Perform physical reads to a chain file. The length of the I/0 is in
n multiples of 1 or more sectors, where n is the blocksize of the file
being processed.

ENTRYS: GETCHPR, GETCHPL
SOURCE LIBRARY ROUTINES: FCB

EXTRN: TMRSAOUT
REGISTERS USED: U0 - UF

ON ENTRY: y3 - FCB address
U4 - SVC 1 parameter block address
U5 - cannot be used; contains block, offset information
U7 - DCB address
UE - System buffer address
ON EXIT: UF - System parameter block address

U3 - FCB address

U4 - SVC 1 parameter block address

U5 - cannot be used; contains block, offset information
U7 - DCB address

UE - System buffer address

UF - System parameter block address
PRINCIPLES OF OPERATION:

This routine is called whenever a new physical block is to be read into memory. It
has two entry points: the routine is entered at GETCHPR if the file is to be read
to the right (FCB.NBLK+n); it is entered at GETCHPL if the file is to be read to the
left (FCB.NBLK-n). If the file is in sequential mode, one block is read. If the
file is in random mode, the Read process is continued until the required block is
read in.

Thes infc-matian 15 proprietary and s supphied by INTERDAT
purpose of using a.d maintaimng INTERDATA supplied cautr
e b care for 7ty other puipase acies: sneoificati. authe

12-161
FMGR-35

0S/32 MODULE DEFINITION

NAME: pyTcupP

.

ABSTRACT: perform physical writes to a chain file. The length of the data transfer
is in n multiples of 1 sector, where n.is the blocksize of the file.

ENTRYS: PUTCHP

SQURCE LIBRARY ROUTINES: FCB

EXTRN: EVQCON, EVDIS, GETSECTR, TMRSAOUT, RELEB, CHDIR
REGISTERS USED: y0o - UF

ON ENTRY: U3 - FCB address
U4 - User parameter block address

U7 - DCB address

ON EXIT: None

PRINCIPLES OF OPERATION:

PUTCHP is invoked whenever a physical block is to be written to disc. In random
mode the block is written via an SVC 1 WRITE, RANDOM, WAIT call. Upon successful
completion of the I/0, the routine returns to the task via TMRSAOUT.

In sequential mode, a new block of sectors is obtained on the disc via GETSECTR
prior to issuing the SVCl. The SVCl WRITE, RANDOM, PROCEED is issued on the
current buffer; then the current and alternate buffers are switched. The
FCB.NBLK and FCB.CBLK fields are updated to include the new block allocation.

If an I/O error occurs, the I/O status is set into the task's SVC 1 parameter
block and the task returned to.

If an EOM statu

the file into a known state; i.e., a state that will allow the file to be closed,

or deleted. Also, if space on the disc is subsequently available, the file should

be in a state that the write sequential operation could continue. This is accomplished
by computing which block the last =ector in the file ends in. Once it is determined
that FCB.NLR+1 starts in the curre t block, this has been accomplished. Any sectors
deleted from the file are releasea via RELEB.

atus on the disc is returned from GETSECTR, the routine must set

The backing up procedure is accomplished by using the routine CHDIR to process the
file to the left. Once the file has backed up far enough, CHDIR is called again
to change the processing of the file back to the right.

The routine sets an EOM status in the SVCl parameter block and returns directly to
the task via TMRSAOUT.

purpose of using and matntainiag INTEI*DATA supplied equipment and shall

This information 15 proprietary anc « supgiced Ly INTERDATA for the sole
i not be used for any orher purpose unress speciicolly authorized in wrting.

12-162
FMGR-36

08/32 MODULE DEFINITION

NAME: -POSITN

.

ABSTRACT: Perform physical positioning of a chain file

ENTRYS: posITN
SOURCE LIBRARY ROUTINES: FCB

EXTRN: TMRSAOUT, CHDIR, GETCHPL, GETCHPR
REGISTERS USED: yg - ur

ON ENTRY: U3 - FCB address
U4 - SVC1 parameter block address
U7 - DCB address
U5 - Required Block

ON EXIT: U3-U7 as above

PRINCIPLES OF OPERATION:

The purpose of POSITN is to set up the FCB to point to a specific block in the
file. The routine is entered with a block number in U5. POSITN moves the file
either to the right or left, until the current block (FCB.CBLK) equals this
required block. ’

To move the FCB.CBLK pointer, the routine performs SVC1 Read WAIT calls on the
file. If the file is to be positioned at its start (0 ~»FCB.CBLK) or its end
(FCB.NBLK-1—% FCB.CBLK) , only one Read is necessary. Otherwise, the routine
determines which direction from the current block the required block is. Then
CHDIR is called, if needed, to set the pProcessing mode into the proper direction.
Subsequent blocks are Read, until the required and current blocks are equal.

The routine always changes the direction back to the right, if necessary, before
returning.

purpos: of using and maintaining INTERDATA supplied equipment and shall

This information is proprietary and is supplied by INTERDATA for the soic
rot be used for any other purpose uniess specifically authoriz.d in writing

12-163

FMGR-37

0S/32 MODULE DEFINITION

NAME: CHDIR

.

ABSTRACT: The purpose of CHDIR is to change the direction by which a given
chain file is processed.

ENTRYS: CHDI

5]

SOURCE LIBRARY ROUTINES: FCB, DCB
EXTRN:

REGISTERS USED: Ul, U3, U8, U9, UA, UE, UF

ON ENTRY: Ul - linkage
U2 - return linkage for higher level subroutines
U4 - user parm block pointer

U5 - argument for higher level subroutines .
o UA - argument to CHDIR
ON EXiT: U3 - FCB address

U2, U3, U4, U5 as above

PRINCIPLES OF OPERATION:

A chain file can be processed in either direction; i.e., from any position in the
file, processing may continue either to the right or to the left. This routine
is called whenever the processing of a file is to be changed. Changing direction
of the processing of a file is allowed only when the file is in the read random
mode.

When the direction is changed, the previous and current block pointers in the FCB
are switched to indicate the new direction of the file. Also the new direction

is indicated by setting (for left) or resetting (for right) the appropriate bit in
the FCB.FLGS field.

This 1nformation 15 proprietary and is supplied by INTERDATA for the oie
purpose of using and mawmtanng INTERDATA supplied cquipment shati
an! be used for any other purpose unless specifically authorized r vrity

12-164 FMGR-38

0S8/32 MODULE DEFINITION

NAME: RESET.CH

.

ABSTRACT: Change the current state of a chain file.

ENTRYS: RESET.CH

SOURCE LIBRARY ROUTINES: FCB
EXTRN: TMRSAOUT

REGISTERS USED: U1, U3, U4, U7-UF

ON ENTRY: U0 - Reserved; cannot be used
Ul - New state of file
U3 - FCB address
U4 - SVC 7 parameter block pointer -
U7 - DCB address

U3, U4, U7 as above

ON EXIT:

. PRINCIPLES OF OPERATION:

The purpose of RESET.CH is to switch state. The state of a chain file is
defined to be both its operation (READ or WRITE) and its access method
(RANDOM or SEQUENTIAL). Each mode change is discussed separately as
follows: (The state of a file is indicated by the FCB.FLGS field).

From Read Random To:

(1) Read Random - Return
(2) Read Sequential -
(a) If at last block, set mode to sequential and return.
(b) Otherwise issue Read, Random, Proceed to alternate buffer, reading
in link of current block. Then set mode to sequential and return.
(3) Write Random - Set operation to Write and return.
(4) Write Sequential - Set state to write sequential and return.

From Read Sequential To:

(1) Read Random - Issue SVC 1 WAIT call on alternate buffer. If I/O
completes successfully, the mode is set to Random and the routine
returns. If an I/0 status is returned, this status is stored in the
task's parameter block and the calling task is returned to directly
via TMRSAOUT.

(2) Read Sequential - Return

(3) Write Random - Set operation to write and issue SVC 1 WAIT on
alternate buffer. Proceed as Read Random above.

(4) Write Sequential - Set operation to write and issue SVC 1 WAIT on
alternate buffer. Proceed as above if an I/0 error is encountered.
Otherwise, set mode to sequential; switch current buffer to alternate
and set the last logical block of the file as the current
(FCB.LLBA ~® FCB.CSEC) and total number of logical records to
current (FCB.NLR —% FCB.CLRL), thus positioning the file at the end.

An SVC 1 READ, RANDOM, WAIT call is issued with a random address of the
last logical block in the file. If the status returned is good, the
routine returns. Otherwise, the I/O status is saved and exit is via TMRSAOUT.

From Write Random To:

(1) Read Random - If the current buffer modify bit is set (indicating a buffer
needs flushing) the current buffer is written via an SVCl WRITE, WAIT, RANDOM
call. If an I/0 error occurs, the I/0 error status is saved and the
routine exits via TMRSAOUT. Whether or not the above I/0 is necessary,
the operation is set to Read and the routine returns to the caller.

(2) Read Sequential - Perform all the above functions as in Write Random to

Read Random switch. Then, if the file is currently Positioned at the
end (FCB.CSEC = FCB.LLBA) the mode is set to sequential and the routine
returns.

If the file is not currently positioned at the end, the next block in the
file is read into the alternate buffer via an SVC 1 READ, RANDOM, PROCEED
call. Then the mode is set to sequential and RESET.CH returns.

(3) Write Random - Return

(4) Write Sequential - Again, the current buffer is flushed, if necessary.
Then the file is switched to sequential mode and the routine positions
the file at the end by setting the last block in the file as the current
block (FCB.LLBA FCB.CSEC) and the last logical record as the current
(FCB.NLR FCB.CLRL). The last block is read into a system buffer
and, upon successful completion of the I/O, the routine returns. An
I/0 error causes a return to the task via TMRSAOUT, as described above.

This information is proprietary and is supplied by INTERDATA for the sole
purpose of using and maincaining INTERDATA supplied equipment and shall 12-165
not be used for any other ourpose unless specifically authorized in writing. | D _ 20 1

0S/32 MODULE DEFINITION

NAME: RESET.CH (con;inued)

ABSTRACT:

ENTRYS:

SOURCE LIBRARY ROUTINES:
EXTRN:

REGISTERS USED:

ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

From Write Sequential to all states: (except Write Sequential):

The current buffer is written via SVC1l WRITE, RANDOM, WAIT call, and the
alternate buffer is written via SVC1l WRITE, RANDOM, PROCEED call.

Then to:

1. Read Random - Set Read Random and return

2. Read Sequential - Set Read and return

3. Write Random - Set Random Mode and Return
4. Write Sequential - return

purpose of using and maintairing INTERDATA supptied equipment and shall
not be used for any other purpose unftess specifically authorized in writing.

12-166 FMGR-39 -2

This informetion is proprietary and is supplied by INTERDATA for the sofe

08/32 MODULE DEFINITION

NAME: PUTD

.

ABSTRACT: Write Directory Block

ENTRYS: PUTD

SOURCE LIBRARY ROUTINES: DCB
EXTRN: PUTD

REGISTERS USED: uc, UE, UF

ON ENTRY: U7 - DCB address

ON EXIT: U7 - DCB address

PRINCIPLES OF OPERATION:

PUTD issues an SVC1l WRITE, RANDOM and WAIT call to the current directory block.
If an I/0 error is returned from this SVC1l call, the system crashes X'303'.

This informatior s p.oprietary and ts supplied by INTERDATA for the sale
purpose of usirg and maimaining INTERDATA supplied equipment and shali
7% b used for any other purpose unless specifically authorized in writing.
S i

FMGR-40 12167

NAME: PUTB

.

08/32

MODULE DEFINITION

ABSTRACT: Write a modified Bit Map Sector

ENTRYS: PUTB

SOURCE LIBRARY ROUTINES: DCB
EXTRN: pypp

REGISTERS USED: uc, UE

ON ENTRY: U7 - DCB address

ON EXIT: U7 - DCB address

PRINCIPLES OF OPERATION:

PUTB tests the bit map modify flag to see if the bit map has been modified.
If not, the bit map has not been modified since the last I/O operation to the
bit map, and PUTB returns directly to the caller.
modified, an SVC1l WRITE, RANDOM and WAIT call is issued. If an I/0 error status
is returned from the SVCl, GETB crashes the system with a X'301' crash code.

purpose of using and maintaining INTERDATA supplied eguipment and shail
not be used for any other purpose uniess specificaily authorized in writing.

This information is proprietary and is supplied by INTERDATA for the soie"

12-168

FMGR-41

If the bit map has been

0S/32 MC:OULE DEFINITION

NAME: TMRSRSA, TMRSARS

ABSTRACT: Switch between RS and RSA state to allow I/0 via SVC1l calls from
the file manager.

ENTRYS: TMRSRSA; TMRSARS

SOURCE LIBRARY ROUTINES: TCB
EXTRN: None

REGISTERS USED: U6-UF, U2

ON ENTRY: U6 - points to alternate save area in DCB or FCB (entry to TMRSRSA)
U2 - TCB address

ON EXIT: None

PRINCIPLES OF OPERATION:

TMRSRSA is called by any file management routine which is about to issue an
SVC 1 I/0 call. TMRSRSA moves the 16 general purpose registers saved in
TCB.RGPR to an alternate save area in the DCB or FCB, thus allowing the TCB
save area to be reused by the SVC 1 processor. It sets the RS state bit in
the TCB status field to indicate that this has occurred. TMRSARS is called
when the file management routine has completed the I/O and wants to return
to RS state. The registers are moved from the alternate save area to the
TCB and the alternate save area bit in the TCB status field is reset.

This wnforraation is proprietary and is supplied by INTERDATA for the sole
purpase of using and maintaining INTERDATA supplied equipment and shalt
ot be used for any oOther purpose unless specifically authonized in writing.

FMGR-42 12~169/12-170

0S/32 M ODULE DEFINITION

NAME: 0S/32 ST Floating Point Trap

ABSTRACT: This routine simulates all floating point instructions.

ENTRYS: FLTP.S00
SOURCE LIBRARY ROUTINES: None
EXTRN: IIH

REGISTERS USED: E8, E9, EA, EB, EC, ED, EE, EF. All floating point registers.
Index registers.

ON ENTRY: EE-EF = PSW in user program
All floating point registers: input values
Index register: index value to compute effective address

ON EXIT: All floating point registers = output values
EE-EF = PSW of next instruction in user program

NOTE: All references to condition code in this MDF refer to the condition
code in user program after executing the input floating point instruction.

PRINCIPLES OF OPERATION:

This routine is entered via an illegal instruction trap and in NS state. When
entered, the location counter of user PSW is picked up. If the user program
is in halfword mode, the upper halfword of the location counter is masked off.
The opcode and Rl, R2 fields are then picked up. The opcode is then used to
index into VECTABL. -

- If it is not a floating point instruction but a real illegal one, control
exits to IIH.

- If the user program is in halfword mode and the opcode shows a floating
point instruction not supported in HW mode, control exits to IIH, illegal
instruction handler.

- If it is a FLR instruction, control goes to FLR.1l routine.

- If it is a FXR instruction, control goes to FXR routine.

- If it is a RR floating point instruction other than FLR and FXR, control
goes to first level handler XER routine.

- If it is a RXl, RX2 or RX3 floating point instruction, control goes to
first level handler XE routine.

In XER, R1 and R2 fields are converted into the real address of floating point
registers. The proper second level interrupt handler is entered. 1In return,
condition code is checked to see if overflow occurred. If overflow did occur
and arithmetic fault interrupt is enabled, control exits to arithmetic fault
interrupt handler. Otherwise, control returns to the user program.

In XE, the displacement is picked up. Checks are made to see the instruction
format. Note: only RX1l format is supported in halfword mode.

- If the instruction is in RX1l, the displacement will be added to the index
value, if any. Control goes to second interrupt handler.

- If it is in RX2, the displacement is added to the location counter.
Indexing is then checked and effective address is computed. Second
interrupt handler is then entered.

- If it is in RX3, the displacement is added to the first index value and
then the second index value. Control then goes to second interrupt handler.

NSU state is entered when indexing in order to obtain the value in index registers.

in FXR, the floating point R2 is converted to its real address, the floating number
is then picked up. Checks are made to see if the number is too big or too small
to be an integer.

_ If the float number has nc integer part, a zero value is returned to the user.
_ If the float number is too large to be expressed as an integer, X'7FFFFFFF'
is returned for positive number. X'10000001', the 2's complement of X' 7FFFFFFF’

da vrodiizmad o 3
is returned for negative number.

- If the float number is neither too large or too small, the magnitude is
truncated if necessary.

This information is propiezary and 15 supplied by INTERDATA for tne soe ¢
purpose of using and me.riaining INTERDATA, supplied equipment and shall |

not ba used for any otier purpose uniess specificay authorized in writing |

FLTP-1-1
12171 R

0S8/32 MODULE DEFINITION

NAME: 0S/32 ST Floatjing Point Trap (continued)
ABSTRACT:

ENTRYS:

SOURCE LIBRARY ROUTINES:
EXTRN:

REGISTERS USED:

ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

In ME, the condition code is cleared first. If either operand is zero on
entrance, ME branches immediately to STA, with final result equal to zero.
Otherwise, the exponents and signs are added. The program then tests for
carry out of the exponent field. This information may be determined from
the status of the condition code C and V bits as follows:

Let Cg = carry from the sign field (bit 0)

C carry from the exponent field (bit 1) into sign field.

E
By definition, V = C_ ®cg (& exclusive or)

and C = Cg .
Therefore, Cp = Cg ® € @ c, =Vv@cC

If there was a carry from the exponent field, the routine goes to MEL.

The original exponents were in excess 64 form, so 64 must be subtracted from the
new exponent for correction. Hc rever, if the most significant bit of the
exponent is equal to 1, the subtraction will not be sufficient to compensate

for the carry. Therefore, exponent overflow has taken place. If there was no
carry from the exponent field, the reverse is true. Unless the most significant
bit of the exponent is equal to 1, exponent underflow will take place when the
excess 64 correction takes place. This condition is tested at ME2. The excess
64 correction is performed at ME3. The magnitudes are left-shifted by 7 bits for
best precision. Before rounding, it is necessary to determine whether the result
must be adjusted by 2 or 6 bits. This determination is made by testing the most
significant 4 bits of the final product. The result is then rounded in the appro-
priate place (the bit that will be least significant after adjusting). If the
result required adjustment by 2 bits only, rounding might have caused a carry.
This condition is tested. If it is true, 6 bits will be shifted, otherwise, 2
bits will be shifted. One will be subtracted from the final exponent for
correction.

In DE, the user condition code is set to zero. The second operand is tested for
zero. If it is zero, DIV.BY.0 sets the condition code to 12. If the first operand
is zero, a zero result is returned. The exponent and sign of the second operand
are then subtracted from the exponent and sign of the first operand. Carry out

of the exponent field is tested as described above. In this case, 64 must be

added to the result exponent in order to restore excess 64 notation. Therefore,

if carry from the exponent has taken place, the result exponent is tested at

DE.1 for an underflow condition. If this is true, UNDERFLO is entered. If there
was no carry, the result exponent is tested at DE2 for overflow condition. If

this is true, OVERFLO2 is entered. OVERFLO2 is entered instead of OVERFLO because
the sign bit is already good at this point. If there was no exponent overflow

or underflow, DE.3 is entered where excess 64 correction takes place. The divisor
is shifted left 6-bits for best precision. Before rounding, the result is tested
to determine whether it must be adjusted by 2 or 6 bits. This determination is
made by testing the most significant 4 bits of the final product. The result is
then rounded in the appropriate place (the bit that will be least significant after
adjusting). If the result required adjustment of 2 bits only, rounding might have
caused a carry. This condition is tested. If it is true, 6 bits will be shifted.
Otherwise, 2 bits will be shifted. One will be added to the final exponent for
correction.

This information is proprietary and is supplied by INTERDATA for the soie
purpose of using and meintaining INTERDATA suppiied equipment and shail
oL be used for any. othe: purpose uniess specifically. authorized in wrting, ¢

12-172 FLTP-1-2

08/32 MODULE DEFINITION

NAME: 0S/32 ST Float;ng Point Trap (continued)

ABSTRACT:

ENTRYS:

SOURCE LIBRARY ROUTINES:
EXTRN:

REGISTERS USED:

ON ENTRY:

ON EXIT:

PRINCIPLES OF OPERATION:

The second interrupt handlers comprises FLR2, LE, AE, SE, ME, DE, CE, STME,
LME, STE, which are described by their labels.

In FLR.2, the user CC is first set to zero. Checks are made to the integer
number in the general register.

- If the integer is zero, program gues to store which is in LE handler.
- If the integer is positive or negative, the initial exponent is set
to X'46' or X'C6' correspondingly. The integer value is then normalized
to 6 digits. Program then goes to store routine which is in LE handler.
In LE, the user CC is first set to zero, the datum to be loaded is checked. If
it is normalized already, further checks are put to the datum and the resulting
condition code is set. If it has not been normalized, magnitude is checked for
zero. If it is, the result is set to zero. If it is not, the float number is
then in normalization process. If underflow is produced in the process, the
V flag is set. Otherwise, the condition code is set to L, G, or not set.

In STE, the number is picked up from the register and stored in memory. The
condition code from the old PSW is used without change.

In CE, the user CC is cleared, the source number A and destination number B are
picked up. They are compared by subtraction. C and L bits are set if A< B.
Otherwise, if B2 A, G bit is set.

The add and subtract routines are the same with the exception that the floating-
point subtract reverses the sign of the second operand upon entry. At AESE,

the common process of AE and SE, the exponents of the two operands are picked

up and tested for equality. If the two exponents are not equal, the smaller
operand must be shifted to the right by 4 bits times the exponent difference.
However, if the exponent difference is 6 or greater, no addition need take place
and the larger operand is returned. If the exponents were equal, the magnitudes
are compared, and a branch is taken to AGB (A greater than B) or BGA (B greater
than A) depending on the result. These points are also entered following operand
adjustment in case of exponent difference. At AGB, the signs of the operands

are checked to see whether an add or subtract is required. If a subtract is
required, the 'B' magnitude is subtracted from the A magnitude. A zero result
returns zero to the result. A non-zero result goes to LE.4A to be normalized.

The same thing occurs at BGA, except that the A magnitude is subtracted from the

B magnitude. If an effective add is required, both BGA and AGB transfer control to
AESE.2, the larger exponent will be used as the initial value of the final exponent.
The magnitude of B is added to that of A, and the result is checked to see if a
post-add adjustment is required. If not, a return is made to LE.:. If a carry
occurred, the sum is shifted right 4 bits and at AESE.2B, the exponent is incremented
to compensate for the shift. TIf the exponent overflowed, the sign bit is reversed,
thus compensating for overflow into the sign, and then the result is set to
X'7FFFFFFF' or its two's complement form depending on the sign of the result, and
exits.

purpose of using and maintaining INTERDATA supptiea equipmvat and shall

This information is proprietary and is suppiied 5y INTERDATZ. ior the sole
not be used for any other purpose uniess specifically author-zed in writing.

FLTP-1-3 2=-173/12-174 c——

CUT ALONG LINE

RS TR SR e ST e S e e e e e e e s e e e e e G Gt e e e — ——— — e ots e et e, s et e won e s e

PUBLICATION COMMENT FORM

Please use this postage-paid form to make any comments, suggestions, criticisms, etc. concerning
this publication.

From Date

Title Publication Title

Company Publication Number

Address

FOLD . FOLD

Check the appropriate item.

D Error Page No. — —— . Drawing No.

D Addition Page No. _________ Drawing Wo.

D Other Page No.______ Drawing No.

Explanation:

FOLD FOLD

Fold and Staple
No postage necessary if mailed in U.S.A.

STAPLE STAPLE

FOLD FOLD

o e e .

FIRST CLASS |

PERMIT No. 22 ‘

OCEANPORT, N.J.| |

I
R

BUSINESS REPLY MAIL |

NO POSTAGE NECESSARY IF MAILED IN U.S.A. ‘ l
I

POSTAGE WILL BE PAID BY:] :
D

® |
N

TIN"T"E R IDA"TA | |
]

Subsidiary of PERKIN-ELMER I
]

Oceanport,New Jersey 07757, USA. |
B

I |

TECH PUBLICATIONS DEPT. MS 229 |

o - - - - - - -0 o 1

MNE STAPLE

	000
	001
	002
	003
	004
	005
	006
	01-01
	02-01
	02-02
	02-03
	02-04
	02-05
	02-06
	02-07
	02-08
	02-09
	02-10
	02-11
	02-12
	03-01
	03-02
	03-03
	03-04
	03-05
	03-06
	04-01
	04-02
	04-03
	04-04
	04-05
	04-06
	04-07
	04-08
	04-09
	04-10
	04-11
	04-12
	04-13
	04-14
	04-15
	04-16
	04-17
	04-18
	04-19
	04-20
	05-01
	05-02
	05-03
	05-04
	05-05
	05-06
	05-07
	05-08
	05-09
	05-10
	06-01
	06-02
	06-03
	06-04
	06-05
	06-06
	06-07
	06-08
	06-09
	06-10
	06-11
	06-12
	06-13
	07-01
	07-02
	07-03
	07-04
	07-05
	07-06
	07-07
	07-08
	07-09
	07-10
	07-11
	08-01
	08-02
	08-03
	08-04
	08-05
	08-06
	08-07
	08-08
	08-09
	09-01
	09-02
	10-01
	10-02
	10-03
	10-04
	10-05
	10-06
	11-01
	11-02
	11-03
	11-04
	11-05
	11-06
	11-07
	11-08
	11-09
	11-10
	11-11
	11-12
	11-13
	11-14
	11-15
	11-16
	11-17
	11-18
	12-001
	12-002
	12-003
	12-004
	12-005
	12-006
	12-007
	12-008
	12-009
	12-010
	12-011
	12-012
	12-013
	12-014
	12-015
	12-016
	12-017
	12-018
	12-019
	12-020
	12-021
	12-022
	12-023
	12-024
	12-025
	12-026
	12-027
	12-028
	12-029
	12-030
	12-031
	12-032
	12-033
	12-034
	12-035
	12-036
	12-037
	12-038
	12-039
	12-040
	12-041
	12-042
	12-043
	12-044
	12-045
	12-046
	12-047
	12-048
	12-049
	12-050
	12-051
	12-052
	12-053
	12-054
	12-055
	12-056
	12-057
	12-058
	12-059
	12-060
	12-061
	12-062
	12-063
	12-064
	12-065
	12-066
	12-067
	12-068
	12-069
	12-070
	12-071
	12-072
	12-073
	12-074
	12-075
	12-076
	12-077
	12-078
	12-079
	12-080
	12-081
	12-082
	12-083
	12-084
	12-085
	12-086
	12-087
	12-088
	12-089
	12-090
	12-091
	12-092
	12-093
	12-094
	12-095
	12-096
	12-097
	12-098
	12-099
	12-100
	12-101
	12-102
	12-103
	12-104
	12-105
	12-106
	12-107
	12-108
	12-109
	12-110
	12-111
	12-112
	12-113
	12-114
	12-115
	12-116
	12-117
	12-118
	12-119
	12-120
	12-121
	12-122
	12-123
	12-124
	12-125
	12-126
	12-127
	12-128
	12-129
	12-130
	12-131
	12-132
	12-133
	12-134
	12-135
	12-136
	12-137
	12-138
	12-139
	12-140
	12-141
	12-142
	12-143
	12-144
	12-145
	12-146
	12-147
	12-148
	12-149
	12-150
	12-151
	12-152
	12-153
	12-154
	12-155
	12-156
	12-157
	12-158
	12-159
	12-160
	12-161
	12-162
	12-163
	12-164
	12-165
	12-166
	12-167
	12-168
	12-169
	12-170
	12-171
	12-172
	12-173
	replyA
	replyB

