

USA003090

32.0/17.0

Space Flight Operations Contract
HAL/S-FC USER’S MANUAL
PASS 32.0/BFS 17.0
November 2005
Contract NAS9-20000

DRD - 1.4.3.8-b

USA003090
32.0/17.0

HAL/S-FC USER’S MANUAL

Contract NAS9-20000
DRD - 1.4.3.8-b

Approved by

 Original Approval Obtained
 Barbara Whitfield, Manager

 HAL/S Compiler and Application Tools

 Original Approval Obtained
 Monica Leone, Director

Application Tools Build and Data Reconfiguration

HAL/S-FC User’s Manual USA003090
32.0/17.0

November 2005

The HAL/S User's Manual has been revised and issued on the following dates1:

Issue Revision Date Change Authority Sections Changed
29.0/14.0 10/26/98 CR12935A 5.2 - p. 5-10

8.10.3 - p. 8-19
App. B - pp. B-26, B-34

CR12940 4.2 - pp. 4-5, 4-6, 4-8
8.1.3 - p. 8-2
App. B - p. B-10

DR101047 8.11 -p. 8-27
DR109063 App. B - p. B-35
DR109076 5.2 - p. 5-10
DR109077 App. B - p. B-27
DR109079 App. B - p. B-59
DR109081 8.1.2 - p. 8-2

8.11 - p. 8-27
App. B - p. B-12

DR109083 8.11 - p. 8-27
DR109086 App. B - p. B-16
DR109091 4.1 - p. 4-2
DR109092 8.1.3 - p. 8-2
DR109097 App. B - pp. B-16, B-63
Cleanup Title page, Signature page, Table

of Contents, List of Figures
2.4.2 -p. 2-8
2.5.1 -p.2-19
4.1 - pp. 4-1, 4-2
4.2 - p. 4-5
5.2 - pp. 5-6, 5-7, 5-8, 5-

9, 5-10
7.2.2.2 -pp. 7-3, 7-4
8.1.2 - pp. 8-1, 8-2
8.1.3 - p. 8-2
8.2 - pp. 8-3, 8-4
8.4 - p. 8-5
8.6 -p. 8-7
8.9 - p. 8-17
8.11 - pp. 8-19, 8-20, 8-21,

8-22, 8-23, 8-24, 8-
25, 8-27

1. A table containing the Revision History of this document prior to the USA contract can be found
in Appendix E.

Revision Log

HAL/S-FC User’s Manual USA003090
32.0/17.0
Issue Revision Date Change Authority Sections Changed
App. B -pp. B-12, B-35, B-59
App. C - pp. C-1, C-2, C-3

30.0/15.0 06/09/00 CR12214 4.2 -p. 4-8
App. B -pp. B-3, B-64

CR13211 App. B -pp. B-3, B-64
CR13212 App. B -pp. B-17
CR13236 App. B -pp. B-17
 8.11

App. B
-p. 8-20
-pp. B-34, B-35

CR13245 5.1
8.10
App. B

-p. 5-4
-p. 8-19
-p. B-62

CR13273 4.3 -p. 4-11
DR111314 5.1 -p. 5-6
DR111320 8.12 -pp. 8-29, 8-30
DR111326 8.12 -p. 8-29
DR111337 8.7

App. B
-pp. 8-12, 8-13
-p. B-65

DR111340 8.12 -p. 8-29
DR111349 4.1 -p. 4-3
Cleanup Preface

4.1
8.9
App. B
Index

-p. 4-3
-p. 8-18
-p. B-12

31.0/16.0 09/14/01 CR13220 App. B -p. B-35
CR13335 8.6 -p. 8-10
CR13372 8.8 -pp. 8-15 thru 8-18
DR111356 4.2 -pp. 4-6, 4-7
DR111362 App. B -p. B-4. B-75
DR111365 4.2 -p. 4-5
DR111367 8.1.2

App. B
-pp. 8-1, 8-2
-p. B-21, B-24, B-60

DR111369 8.12 -p. 8-30
DR111371 8.12 -p. 8-33
DR111376 8.12 -p. 8-33, 8-34
DR111379 App. B -p. B-30
DR111380 App. B -p. B-12
November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
Issue Revision Date Change Authority Sections Changed
Cleanup Preface

5.1
5.2
8.6
App. B

-p. 5-5
-p. 5-11
-p. 8-8, 8-9
-p. B-73

32.0/17.0 11/05 CR13538 8.7
8.11
8.11.1
8.11.2
(deleted)
App. B

-p. 8-10, 8-13, 8-14
-p. 8-23
-p. 8-23
-p. 8-23

-p. B-23, B-38, B-39,
B-40, B-70

CR13570 8.7
8.8
App. B

-p. 8-14, 8-15, 8-16
-p. 8-17
-p. B-37, B-70

CR13571 App. B -p. B-9, B-25, B-37,
B-38, B-40

CR13613 2.1
2.2.3
2.4.3.1
2.5.1
2.5.2
2.5.2.3
(deleted)
2.5.3
3.3.1
5.1
5.2
6.1
6.1.2
6.1.3
6.1.4
6.2
7.0
(deleted)
8.2
8.3
(deleted)
8.4
8.9
App. A
App. C

-p. 2-1
-p. 2-4
-p. 2-11
-p. 2-21
-p. 2-21
-p. 2-23

-p. 2-23, 2-24
-p. 3-3
-p. 5-3
-p. 5-7
-p. 6-1
-p. 6-2
-p. 6-3
-p. 6-3
-p. 6-4
-p. 7-1

-p. 8-3, 8-4
-p. 8-4

-p. 8-5
-p. 8-19
-p. A-1, A-3, A-5
-p. C-1, C-3

CR13615 App. B -p. B-12
CR13652 8.7

App. B
-p. 8-11
-p. B-38
November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
Issue Revision Date Change Authority Sections Changed
CR13670 4.2

5.1
App. B

-p. 4-7
-p. 5-1, 5-5, 5-6
-p. B-13

CR13811 App. B -p.B-4, B-70, B-73
CR13813 App. B -p. B-3, B-72
CR13832A 5.1 -p. 5-2
CR13956 8.2

8.13
App. B

-p. 8-4
-p. 8-34
-p. B-22

CR14216A Preface
1.0 -p. 1-1

DR111386 8.13
App. B

-p. 8-36
-p. B-9

DR120220 4.2 -p. 4-7
DR120226 App. B -p. B-24
DR120228 App. B -p. B-72
DR120262 8.13 -p. 8-31, 8-32
DR120263 App. B -p. B-73
DR120268 8.13 -p. 8-36
DR120271 8-7 -p. 8-12, 8-14
PCR0780 2.2.1

App. B
-p. 2-2
-p. B-38
November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0

November 2005

The current status of all pages in this document is as shown below:

Page No. Change No.
All 32.0/17.0

List of Effective Pages

HAL/S-FC User’s Manual USA003090
32.0/17.0

November 2005

The HAL/S-FC User's Manual was developed by Intermetrics, Inc. and is currently
maintained by the HAL/S project of United Space Alliance.

The intent of the manual is to provide the necessary information to compile and execute
a HAL/S program. It is not, however, intended to serve as a guide to the HAL/S language.

At the time the HAL/S-FC User’s Manual was origianlly written, HAL/S work was done on
an IBM 360 computer and JCL job cards were used to execute jobs. Subsequently, a
different mainframe computer has replaced the 360 computer and JCL statements are
used instead of JCL job cards. Therefore, to be as accurate as possible throughout this
document, the reader should substitute “mainframe” wherever “360” is employed in
reference to the computer and substitute “statements” wherever “cards” is used in
reference to JCL.

The primary responsibility is with USA, Department, 01635A7.

Questions concerning the technical content of this document should be directed to Danny
Strauss (281-282-2647), MC USH-635L.

Preface

HAL/S-FC User’s Manual USA003090
32.0/17.0

Table of Contents
1.0 INTRODUCTION ... 1-1
2.0 USING HAL/S ON THE AP-101 ... 2-1

2.1 Introduction .. 2-1
2.2 The Steps Involved .. 2-1

2.2.1 Compiling ... 2-1
2.2.2 Linkediting .. 2-3
2.2.3 FC Simulation ... 2-4

2.3 Data ... 2-4
2.3.1 Datasets ... 2-4
2.3.2 Source Program Format ... 2-6

2.4 Introduction to JCL .. 2-7
2.4.1 The JOB Card .. 2-7
2.4.2 The EXEC Card ... 2-8
2.4.3 The DD Card .. 2-11

 2.4.3.1 Defining Libraries of Programs: JOBLIB and STEPLIB 2-11
 2.4.3.2 The DISP Parameter: Specifying the Status of Datasets 2-12
 2.4.3.3 Defining Input Data .. 2-13
 2.4.3.4 Defining Output Datasets ... 2-14

2.4.4 Catalogued Procedures ... 2-16
 2.4.4.1 Writing Catalogued Procedures ... 2-16
 2.4.4.2 Using Catalogued Procedures ... 2-18
 2.4.4.3 Modifying Catalogued Procedures ... 2-20

2.5 Using Catalogued Procedures to Process a HAL/S Program 2-21
2.5.1 Introduction .. 2-21
2.5.2 How to Use the Catalogued Procedures .. 2-21

 2.5.2.1 To Compile .. 2-22
 2.5.2.2 To Compile and Link Edit ... 2-23

2.5.3 Standard DDnames and Outputs Associated with the Catalogued
Procedures ... 2-23

3.0 PROCESSING PROGRAM COMPLEXES .. 3-1
3.1 Program Complexes .. 3-1
3.2 Templates: The INCLUDE Directive .. 3-1
3.3 Processing a Program Complex .. 3-3

3.3.1 When All Compilations Are Performed in One Job 3-3
3.3.2 When Compilations Are Done At Different Times 3-6

3.4 Template Generation ... 3-8
3.5 SDF INCLUDEs ... 3-9

4.0 COMPILER LISTINGS ... 4-1
4.1 Format of the Compiler Listing .. 4-1
4.2 Information Provided by the Compiler ... 4-4
4.3 Error Messages Produced By the Compiler .. 4-9

5.0 USER-SPECIFIED OPTIONS .. 5-1
i November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
5.1 Compiler Options ... 5-1
5.2 Compiler Directives ... 5-6

6.0 HAL/S INPUT-OUTPUT OPERATIONS .. 6-1
6.1 Sequential I/O .. 6-1

6.1.1 PAGED and UNPAGED Channels ... 6-1
6.1.2 Input Data Formats .. 6-1
6.1.3 Output Data Formats .. 6-2
6.1.4 JCL Considerations .. 6-3

6.2 File I/O ... 6-4
7.0 THE HAL/S USER CONTROL PROGRAM (HALUCP) ... 7-1
8.0 IMPLEMENTATION DEPENDENCIES .. 8-1

8.1 Compile Time Characteristics .. 8-1
8.1.1 Character Set ... 8-1
8.1.2 Data Size Restrictions .. 8-1
8.1.3 Program Organization Limits .. 8-2

8.2 Runtime Characteristics .. 8-3
8.3 Real-Time Statements ... 8-4
8.4 Runtime Errors .. 8-4
8.5 Access Rights .. 8-5
8.6 Language Subset Restriction Capability .. 8-7
8.7 %MACRO Implementation .. 8-9
8.8 Arrayed Addressing 0th Element and % NAMEADD 8-16
8.9 CSECT Naming Conventions .. 8-18
8.10 Character Code Conventions .. 8-20
8.11 Remote Data ... 8-22

8.11.1 NAME Variable Initialization Restriction ... 8-23
8.11.2 Other Restrictions .. 8-23

8.12 DENSE attribute .. 8-24
8.13 User Note’s .. 8-24

 Appendix A PROTOTYPE CATALOGUED PROCEDURES A-1

 Appendix B COMPILE-TIME ERROR BEHAVIOR.. B-1
 Appendix C EXECUTION-TIME ERRORS .. C-1

 Appendix D HAL/S-FC RUNTIME LIBRARY NAMES ... D-1

 Appendix E CHANGE HISTORY ... E-1
ii November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0

List of Tables
 Table 2-1 Catalogued Procedures Available for Processing HAL/S Programs 2-21
 Table 8-1 HAL/S-FC CONVENTION FOR CHARACTER INPUT............................. 8-21
 Table 8-2 DEU Character Set ... 8-22
iii November 2005

USA003090 HAL/S-FC User’s Manual
32.0/17.0
This page is intentionally left blank.
November 2005 iv

HAL/S-FC User’s Manual USA003090
32.0/17.0

List of Figures
 Figure 4-1 Sample Compilation of Source File ... 4-4
 Figure 8-1 Algorithm for Calculating the 0th Element Offset.................................... 8-17
 Figure A-1 HALFC ..A-4
 Figure A-2 HALFCL ..A-5
v November 2005

USA003090 HAL/S-FC User’s Manual
32.0/17.0
This page is intentionally left blank.
November 2005 vi

HAL/S-FC User’s Manual USA003090
32.0/17.0
1.0 INTRODUCTION
The purpose of this manual is to provide the information needed by a programmer to
compile and execute a HAL/S program. Compilation will take place on the IBM 360/75
computer, producing code for the AP-101 Flight Computer. Simulated execution of
AP-101 programs also takes place on the IBM 360.

The manual is intended both as an introduction for a first-time user of HAL/S on the
AP-101, and as a reference document to be used by experienced HAL/S programmers.
It is not intended as a guide to the HAL/S language, and a knowledge of HAL/S syntax
and programming techniques is assumed throughout.

Chapter 2 is directed toward first-time users of the language, and includes a discussion
of the key concepts involved in compiling and running a program, as well as an
introduction to the use of JCL for communicating with the 360 operating system. The
use of catalogued procedures to compile, link-edit, and simulate AP-101 execution of a
HAL/S program is also explained. Chapter 3 describes the procedures involved in
linking together the elements of a HAL/S program complex, again directing itself to a
relatively inexperienced user.
Later chapters tend to assume greater levels of user sophistication, and in particular
Chapter 8 assumes a knowledge of the Support Software for the AP-101. Information is
provided about the printed output automatically produced by the compiler, about various
user options available for compiling programs, and about HAL/S I/O operations. Use of
the HAL/S User Control Program to run AP-101 simulations on the 360 is also described
in detail. Finally, a complete account of various HAL/S characteristics specific to the use
of HAL/S on the AP-101 is given - including the standard character set employed, data
size and program organization limits, details of the real-time implementation, and the
%macros available. A series of appendices includes a great deal of useful information
for reference purposes.
The user may wish to consult the following reference manual for further information
about certain topics to be discussed below.

AP101S Assembler User’s Guide:
USA000516
1-1 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
This page intentionally left blank.
1-2 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
2.0 USING HAL/S ON THE AP-101

2.1 Introduction
The purpose of this chapter is to enable a first-time user of HAL/S to compile and link a
program for execution on the AP-101 computer. It is assumed that the user already
knows the HAL/S language, as described in the Language Specification and
Programmer’s Guide, and is now interested in putting that knowledge to use.

Unfortunately, running a HAL/S program (or a program in any other high-level language,
for that matter) is not simply a matter of typing it into the machine, pushing a button, and
getting a result. The computer with which you are dealing as a physical entity does not
“know” HAL/S; if it can be said to “know” anything, it knows a machine language.
Furthermore, it typically finds itself confronted at any given moment with a large number
of demands on its attention - TSO users, batch jobs, operator commands, etc. - of which
your own HAL/S program is merely one. Each job it must perform requires specific
amounts of storage to be set aside, library routines to be found and readied for use, and
peripheral devices to be prepared for reading from or writing into.

Thus, before a HAL/S program can be executed it must be translated into a form which
the machine can understand, storage for it must be allocated and other hardware
preparations made, and the computer must be instructed to run the program and must
then decide when and where to do so. Running a HAL/S program, therefore, requires a
certain amount of communication with the computer prior to the performance of any
specific operations associated with the program itself. In this chapter, the user will be
shown the various forms which this communication may take.

2.2 The Steps Involved
A series of preliminary steps must be performed in order to run a program. Before the
execution of the program, it must be compiled and then link edited. Only by passing
through each of these three steps (compilation, link editing, and execution) can a user’s
HAL/S program actually be run.

2.2.1 Compiling
HAL/S is a language designed to be relatively easy for someone to use, even if he or she
has no understanding of the actual hardware within the machine or how it works. HAL/S
statements are given in phrases which closely resemble natural English; numbers can be
specified in decimal form, character strings are written just as they are to appear, and so
on. In order for a HAL/S program to be run, the statements in the program must be
translated into a form in which the computer can follow them. The 360 contains a “HAL/S
compiler” in order to perform this task. Itself a program written in a language called XPL,
the compiler takes the user’s HAL/S program, called the “source code”, and produces
from it a set of specific machine instructions, called the “object code”. The object code is
written in a form which, although not easily comprehensible to the average user, is
simple for the computer to execute and allows it to carry out precisely the operations
specified in the source code.
2-1 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
Thus, before any program can be run, it must first be compiled. Notice that although
typically one may wish to run a program several times, one need only compile it once.
One must be careful to distinguish between the translating of HAL/S commands into a
set of instructions, and the actual carrying out of these instructions; this is precisely the
distinction between compiling and executing a program. In compilation, something is
done to the instructions: they are translated from HAL/S into machine language. In
execution, something is done with them: they are obeyed. The input to the compilation
step is a source program; the input to the execution step, if anything, is a set of data.
This distinction should be kept clear throughout the following discussions.

In point of fact, the HAL/S compiler does more than simply translate. Its action consists
of “phases”, or passes over the source code. Only the most important will be discussed
here.

Phase 1 performs a syntax check, in which each HAL/S statement in the user’s program
is checked for syntactical correctness, as defined in the Language Specification. The
overall program structure is also checked, (i.e., that DO…END statements match and
that such groups are correctly nested, that block headers have corresponding CLOSE
statements, that all variables are declared, etc.). Most user errors (of a syntactical kind)
are discovered in this phase: if you write DECLARE M MATRIX VECTOR, or leave out a
terminating semi-colon or an END on a DO group, or CALL something which you have
declared as a FUNCTION, you will hear about it at this point. Phase 1 emits a series of
error messages if any errors are encountered, and it also produces a standardized and
carefully formatted listing of the source code (see Chapter 4).
The next phase, Phase 1.5, is an “optimization” phase. The compiler makes a series of
standard changes to the program, to the extent that these are possible, so that the time
the program will take to execute is minimized. Certain kinds of egregious programming
inefficiencies are thereby avoided. For example, a program containing the following
code:

DO FOR I = 1 TO 500;

 X$I = I + SQRT(B**2-4AC);

END;

would be grossly inefficient, insofar as the unchanging quantity SQRT(B**2-4AC) would
have to be calculated 500 times. Better code would be:

Y = SQRT(B**2-4AC);

DO FOR I = 1 TO 500;

 X$I = I + Y;

END;

But if you have written a program with the former code, Phase 1.5 of the compiler would
catch it and correct it for you automatically so that the ultimate object code produced
would only instruct the computer to perform the SQRT(B**2-4AC) calculation once.
2-2 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
In Phase 2, the actual machine instructions are generated. Again in this phase certain
errors may be discovered, in which case error messages will be produced. Optionally,
you may ask Phase 2 to print out the instruction set it generates from your source code;
to programmers familiar with assembly language this may be very useful for debugging
purposes. The essential output from Phase 2 is what is known as an “object module” -
the object (machine language) code which is stored in the computer for later use and
which is the subject of all later steps. Again it is important to emphasize that compilation
of a program need only take place once, and that therefore only one object module need
be produced. The object module, in turn, may be repeatedly employed so that more than
one execution of the program takes place.
Finally, Phase 3 of the compiler produces a series of diagnostic tables giving information
about the compilation, the source program, and the object code produced. These tables,
called Simulation Data Files, or SDFs, help supply useful information both to the
programmer and to various debugging and diagnostic systems which are available to
HAL/S users. They can also be used to pass information about HAL/S programs to other
HAL/S compilations which may refer to them. More detail about SDFs will be provided
later (see Sections 3.5 and 4.2).

2.2.2 Linkediting
The object code produced by the compilation step, although written in the machine
language used by the computer, is still not in “executable form.” It must first be
processed by the link editor. The reason for this is as follows:

Almost every HAL/S program contains what are known as “external references”, i.e.,
references to code located outside the object module produced by the program being
compiled. Such references may be to user-written blocks of HAL/S code, such as
external PROCEDUREs or FUNCTIONs, or to other programs (see Section 3.4 for more
details), or they may be to one or more of the HAL/S built-in functions (e.g., SIN,
ARCCOS, MAX, DATE, etc.), or to external HAL/S variables defined in COMPOOLs.
Even a program which seems totally self-contained and does not explicitly call any built-
in functions will in general include external references because the object code produced
by the HAL/S compiler itself always calls certain procedures in the HAL/S runtime library.

From the point of view of the computer, an external reference is an instruction within one
object module which tells it to look to a separate object module to find either its next
instruction, or else some piece of data. Of course, it may be the case that this other
module does not exist yet, or has not been compiled yet; and even if it does, the compiler
will generally not know where in the computer’s memory it resides. The referencing
instruction the compiler produces is therefore an open-ended one; it instructs the
machine to look in another location for its next instruction, but it does not specify where
precisely that location is. The external references produced by the compiler in an object
module are accordingly called “unresolved ones”. It is because of these unresolved
external references that an object module is not yet fully executable by the machine.
Once all the external programs referred to by an object module exist, however, it
becomes possible to “resolve” the external references by replacing them with specific
2-3 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
information as to where the next instruction is to be found. This is the task of the link-
editor. The input to the link-editor is thus a series of object modules, each containing
external references to some other object module in the series. These modules may be
the result of compilations of user-written HAL/S programs, standard procedures called by
the compiler, or members of the runtime library of built-in functions and procedures
called by the compiler. The link-editor goes through each of these modules and resolves
all of the external references by replacing each one with a specific location. It can
therefore be thought of as literally “linking” the object modules together to form one larger
unit. This unit is the output of the link-edit step; it is called a load module and consists of
fully executable code.
AP-101 object modules can be link-edited by a program called LINK101. A simple set of
commands, to be described below in Section 2.5, will permit link-editing to take place
without any user difficulty.

2.2.3 FC Simulation
Compilation, as has been stated, can be viewed as the execution of a program (the
compiler), which takes as input the source program and produces as output the object
code in a machine language the computer can understand. The same is true of link
editing: it takes one or more object modules as input and produces a single fully
executable load module as output. It follows from this that compilation and link editing of
a source program may actually take place on a different computer than the one which will
ultimately be instructed to execute it. Thus, computer A may contain a compiler program
which translates HAL/S source into the machine language not for computer A, but rather
for a different computer B. Such a compiler in A produces object code which is not
executable by A but which can be transferred, by some physical device for example, into
B where execution can take place. With such a set-up, in fact, computer B need not
have any compiler in it at all.

This is precisely what happens with HAL/S code written for the AP-101. The HAL/S
compiler for the AP-101 (the ‘target’ machine) resides and is executed on the 360 (the
‘host’ machine). Source programs are entered into the 360, compiled and link edited
there, and only then transferred in the form of completed load modules to the AP-101.
This is done because the physical AP-101 computer on which programs will ultimately
run is, in general, not easily available to the user.

This manual will not concern itself with the actual execution in real-time of a HAL/S
program on an AP-101 computer. Rather it will concentrate on the AP-101 compiler and
link editor in the 360.

2.3 Data

2.3.1 Datasets
All information to be stored by the computer can be thought of as data. This includes not
only the pieces of (typically numeric) information which will be used as input to your
program, but also the program itself, as well as the object and load modules produced by
2-4 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
the compilation and link edit steps. Data may be entered into the computer in many
different ways: it may be typed directly into a terminal, produced as output from some
program, or transferred from some other computer by means of tape. In the computer,
data is stored in a “dataset” or a “file”. A dataset is simply a collection of related data.
Thus, for example, if you wanted to write a program which would examine each one of a
large number of scientific measurements and calculate a set of statistics about them
(mean, median, correlations, etc.), your program would be in one dataset, the input to the
program would be in another, and as the program ran you would want the output to be
saved in a third dataset for later reference. Object and load modules produced by the
compilation and link editing of your program would exist in datasets as well.
Every dataset has a name, defined either by the user or by the system, and it is this
which gives the organization of data into datasets its flexibility. Without some such
naming convention, referring to a location in memory would require knowing its exact
address - a project time-consuming at best, and, due to the amount of continual shifting
going on in the computer’s main memory, at worst impossible. Organizing data into
datasets thus allows the computer to store large amounts of data while still making it
possible for a user to have access to just the data he or she wants without needing to
know exactly where it is. Calling datasets “files” produces a useful metaphor: just as it is
easier to ask a file clerk for a folder by name rather than as “the eighteenth folder from
the back of the third drawer”, it is easier to refer to collections of data in the computer by
dataset name than by physical location. It is harder on the file clerk, of course: but one
advantage of computers is that they do not seem to mind engaging in long searches.
Thus, although strictly speaking, within the machine all the data in a dataset may not
actually be physically stored in the same location, it is helpful for the user to think of a
dataset as a “place” in the computer’s memory where a collection of related data is kept,
and which can be referred to by name.

Datasets may be organized in one of two ways: sequential or partitioned. A sequential
dataset is simply a collection of data, organized into lines. A partitioned dataset (or PDS)
can best be thought of as a collection of sequential datasets called ‘members’.
Partitioned datasets consist of a directory (like a table of contents) listing the name and
location of each of its members. A partitioned dataset may have several members or it
may contain only one member. Each member must be sequential in organization.
Libraries of programs, for example, are generally stored in partitioned datasets; and load
modules (i.e., programs ready to be executed) must be so stored.
Datasets, whether sequential or partitioned, may be named by the user as he or she
wishes, subject to certain restrictions. Documentation for your specific installation should
be consulted. Often the system requires that the name of a dataset be followed by a
qualifier indicating what sort of file it is (simple data, a load module, or object file, etc.).
Members of partitioned datasets are referred to by appending their name, in
parentheses, to the name of the partitioned dataset. Thus the member PROG1 of the
PDS PROGLIB would be referred to as PROGLIB.LOAD (PROG1), if LOAD is the
qualifier specifying a load module.

The full name of a dataset usually begins with the user’s id, as this is known to the
2-5 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
system. Thus, a dataset called POSITIONS, of DATA type, created by user VIL1917,
could be referred to as ‘VIL1917.POSITIONS.DATA’.

2.3.2 Source Program Format
In order for the HAL/S compiler to translate HAL/S programs into machine language,
certain coding conventions must be followed in the source code. The most important of
these is the first column of each line of source text determines the type of that line as
follows. A “C” in the first column indicates that this is a comment line, to be ignored by
the compiler. A blank (or, alternatively, an “M”), indicates a main line of source text. If
multi-line format is being used in the source program (which is rare), “E” and “S” in the
first column indicate exponent and subscript lines respectively. Compiler directives,
indicated by a “D” in the first column, are described in Sections 3.2, 3.5, and 5.2. In
general, one should get into the habit of always skipping the first column. Lines which
begin there by mistake will be flagged by the compiler with an error message and
ignored.

Otherwise there are no serious restrictions on how code is to be entered. HAL/S, being
stream oriented rather than card oriented, allows more than one statement to be entered
on a line, as well as permitting statements to be broken up over several lines. Good
programming practice would suggest, however, that one statement per line be employed
as much as possible. Semi-colons rather than end-of-line characters are used as
delimiters in HAL/S, and you must therefore be careful to end every statement with a
semi-colon; failure to do so will inevitably be disastrous. As with skipping the first
column, this should become a habit after a little experience. Blanks are used to separate
words; whether one or more are used is immaterial, but at least one must be used,
especially to indicate multiplication (exception: two parenthesized expressions may be
multiplied without an intervening blank). Blanks are illegal within labels or identifiers. A
procedure named COMPUTE ORBIT is illegal and will cause an error; one named
COMPUTE_ORBIT, however, is not. Notice that wherever blanks are legal in the source
text, an imbedded comment is also legal. These are indicated by delimiting the comment
by the character pairs /* at the beginning and */ at the end.
2-6 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
2.4 Introduction to JCL
In order for any program (including compilers, link editors, as well as user-written source
programs), to be run on the 360, the operating system must be informed of where the
program is located, who wishes to run it, to whom the job should be charged, and at what
priority it should be run. Furthermore, all the datasets involved must be explicitly defined
so that the machine can find them (or create them) when the time comes. All this
information is provided to the operating system with the aid of a specialized language
called the Job Control Language, or JCL. Every task you want the computer to perform
must be identified to it with the use of JCL. In its entirety, JCL is a complex and in many
ways difficult language, but fortunately one need not know its intricacies in detail in order
to be able to use it to perform the vast majority of straightforward jobs. This is particularly
true because of the existence of “catalogued procedures”, in which whole blocks of JCL
which are used very often by programmers are saved as units. Such blocks of JCL may
be then invoked in their entirety (much like PROCEDUREs in HAL/S) by being explicitly
called by name. This facility allows most users interested in compiling or link-editing
programs to do so with the submission of a minimum of JCL - generally one or two lines.

It is not the intention of this manual to teach the use of JCL. In fact, because of the
existence of catalogued procedures, very little JCL needs to be known to compile, link
edit, or execute a HAL/S program. The use of these procedures is explained in Section
2.5, where no acquaintance with JCL is presupposed. But the general introduction to
JCL presented here may be helpful, especially for a user with some experience in
employing the catalogued procedures who wishes to make some modifications in the
catalogued JCL for his or her jobs. IBM offers a series of manuals which include a great
deal more detail about the use of JCL, and which should be consulted if any major
modifications are to be made.

2.4.1 The JOB Card
Every set of requests to the operating system must begin with a JOB card identifying the
user, supplying accounting information, and informing the system of the storage
requirements of the various steps to be performed. A typical JOB card might look like:
//TPS1840J JOB 7477,SLOTHROP.T,REGION=64K,TIME=(0,10),

// PRTY=1,NOTIFY=TPS1840

Two slashes begin every card in JCL (except for the /* delimiter card to be discussed
below). On the JOB card, a jobname should be specified immediately following the two
slashes (with no intervening blank). Generally, this will be the user’s id (here TPS1840)
followed by some letter - but the name chosen is entirely arbitrary, as long as no other
job executing on the system at the same time has the same name. After the jobname
comes a blank, then the keyword JOB (identifying this as a JOB card), then another
blank, and then a list of parameters. This structure:
//<name><operator><parameters>

holds for all JCL cards.

On the JOB card the first parameter should be whatever accounting information is
2-7 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
required by your installation - in this case an account number, followed by the user’s
name (7477, SLOTHROP.T). Next comes information relating to the allocation needs of
the job to be run. Here it is specified that the maximum amount of main storage to be
used by the job is 64K, and that the maximum amount of time to be used is 10 seconds
(the format is (minutes, seconds)). The continued line in this example indicates that the
job is to be executed at priority 1 (where 0 is the lowest priority), and that notification of
the user TPS1840 should occur when the job has completed. Defaults exist for all of
these allocation parameters, so they need not always be included.

Notice that among all these parameters no blanks are coded; none are permitted. There
is none of the flexibility with respect to delimiters in JCL that there is in HAL/S. The
trailing comma on the first line indicates that the line is to be continued. Similarly the
leading blank, and lack of an operator such as JOB, EXEC, or DD, on the second line
indicates that it is a continuation line. No statement in JCL, except comments, may
continue past column 71. Comments may be coded on any line beginning with //*, or on
any regular JCL line after the last operand and a blank is coded. Hence in the card:

//STEP1 EXEC PGM=PROG1 EXECUTE THE FIRST PROGRAM

the comment “EXECUTE THE FIRST PROGRAM” is understood as such. The result of
these rules is that blanks are only permitted (and, in fact, are mandatory) at three places
within any JCL card: immediately before the operator (JOB, EXEC, DD, etc.),
immediately after the operator and before the parameter list, and immediately after the
parameter list and before the comments, if there are any. Of course blanks are always
permitted within comments.

2.4.2 The EXEC Card
Each job you submit to the operating system must be identified with a name on a JOB
card prior to anything else. This specifies that requests for action by the system are now
going to be made which are logically separate from those preceding the JOB card. But
the JOB card does not inform the computer what it specifically is being asked to do. This
is the function of the EXEC card, which indicates which program is actually to be run.
Every job consists of one or more job steps; each of these steps requires an EXEC card
to define it. A straight compilation of a HAL/S program consists of only one step, the
running of a program called MONITOR which invokes the compiler and interfaces
between it and the operating system. If, however, you wished to compile and link edit a
program, two EXEC cards would be required - a call to the compiler (MONITOR) and a
call to run the link editor (LINK101).
To do a compilation, for example, the EXEC card might be coded as follows:

//HAL EXEC PGM=MONITOR,REGION=350K,TIME=1,

// PARM=‘LIST,SYMBOLS=500’

As with the JOB card, the keyword HAL immediately following the (compulsory) double
slash is a name: this jobstep will be called HAL (although the job itself, as defined on the
JOB card, may have a different name). The name is not required unless reference to this
2-8 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
step will be made in a later step - which is often the case in jobs consisting of more than
one related step (e.g., compilation, link-editing, and execution). Each name given to a
step in a job should be unique for that job.

After the name a blank is coded, followed by the operator EXEC to identify this as an
EXEC card, and then another blank. Again, this structure is followed in all JCL cards.

The first parameter on an EXEC card must specify the task that is to be performed. This
task will either be the running of a program or the calling of a catalogued procedure. A
program consists simply of a block of executable code, ready for execution by the
system; a catalogued procedure, on the other hand, is a block of JCL, which itself will
include an EXEC card. The user’s JCL, that is, can call up a catalogued block of JCL,
which in turn calls some program to be run. It is this which allows HAL/S compilations,
for example, to be run with a minimum of user-supplied JCL. Instead of invoking the
actual compiler (MONITOR), the JCL can call a catalogued procedure (HALFC, for
instance) where all the complicated JCL for a compilation has been stored, which in turn
calls (on its EXEC card) MONITOR.

If a program is to be run, the parameter coded must be PGM=<name of program>; in the
example, the program MONITOR is being called. If a catalogued procedure is to be
called one may code either PROC=<name of procedure>, or, alternatively, the name of
the procedure alone. That is
//STEP1 EXEC PROC=HALFC and

//STEP1 EXEC HALFC

are both legal, and are identical in effect: the catalogued procedure named HALFC is
invoked.

The REGION and TIME parameters, like those used in the JOB card, specify the
maximum amount of main storage and the time limit for the execution of the task
invoked. But whereas the parameters on the JOB card give overall limits that cannot be
exceeded by any step in the entire job (which may consist of several steps, and hence
several EXEC cards), parameters on the EXEC card specify only limits on the particular
step being defined. If you want to specify different region sizes for each step, no
REGION parameter should be coded on the overall JOB card, because this causes the
REGION parameter on any EXEC cards to be ignored. Here a storage size of 350K and
a time limit of one minute are specified.

The programs and catalogued procedures invoked by a job step may, in many cases,
permit or require arguments or parameters to be passed to them. These parameters
may set initial values or specify options to be employed. For instance, the HAL/S
compiler can have any of a large number of options specified to it, identifying the size of
the various tables it will construct, describing the level of explicitness of the messages it
emits, or instructing it to output dumps and traces. Parameters are passed to programs,
as well as to catalogued procedures, by coding the PARM= parameter, with the right
hand side of the equal sign consisting of the parameters to be passed, all contained
within single quotes. In the example given, the HAL/S compiler is instructed to emit an
2-9 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
assembly list after Phase 2, and is told that space must be left for 500 symbols in the
symbol table, rather than the default 200. (Section 5.1 specifies all of the available
compiler options.)

In a job consisting of more than one step, it may occur that errors detected in an early
step may make execution of a later step undesirable or even impossible. For example, if
the job you are submitting consists of a three-step request to compile, link-edit, and
execute a HAL/S program, and during compilation several serious errors in your source
program are discovered, then you do not really want link-editing or execution to be
attempted; any such attempt could only be expensive and fruitless. It is possible in JCL
to make execution of a jobstep conditional upon successful execution of an earlier
jobstep, with the criteria of “success” being user-defined. This is done using the COND
parameter on the EXEC card, as follows.

Every program and procedure, when completed, produces a “condition code” which is
simply an integer number indicating the outcome of the step. The COND parameter
specifies an arithmetic comparison involving the condition code; if the comparison
succeeds (is true) then execution of the step being defined is bypassed. The format of
the COND parameter is COND=(n, comparison operator, jobstep), “n” may be any
integer number; “comparison operator” is one of “GT” (greater than), “GE” (greater than
or equal to), “EQ” (equal to), “NE” (not equal to), “LT” (less than), or “LE” (less than or
equal to). “Jobstep”, which is optional, indicates by name which previous EXEC card is
being referred to. Thus, e.g., if COND = (4, NE, STEP1) is coded on an EXEC card, that
step will only be executed if the condition code produced by the earlier step named
STEP1 were not equal to 4. If the “jobstep” parameter is not coded, then the comparison
is made with all condition codes produced by all earlier steps.

The HAL/S compiler produces condition codes of 0, 4, 8, 12, or 16, depending on the
severity of any errors discovered in the source program. Error severities will be
discussed in Section 3.3; suffice it to say, however, that if any code greater than 0 is
produced, link editing and execution should almost certainly not take place. Therefore,
JCL for the link-edit step, for instance, should always have the COND parameter coded.
If the compilation step were named HAL, as in the previous example, the link-edit step
might be coded as follows:
//LKED EXEC PGM=LINK101,REGION=100K,COND=(0,LT,HAL)

This would indicate that the LINK101 program should not be executed if 0 were less than
the condition code produced by the step HAL (i.e., the compilation).
2-10 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
2.4.3 The DD Card
Each dataset required during the running of the program or procedure specified on an
EXEC card must be defined for the system on a DD (data definition) card. The DD card
is extremely important in JCL, and often complex in form. It may serve any of many
different purposes. In order simply to execute a typical program, for example, the system
needs the following information, all of which is specified on DD cards:

Every DD card has the form:

//ddnames DD parameters.

The ddnames given may be user-defined, system-defined, or defined by the program
being executed, depending on the request being made.

 2.4.3.1 Defining Libraries of Programs: JOBLIB and STEPLIB
The two most common system-defined ddnames are JOBLIB and STEPLIB. When an
EXEC card is encountered by the operating system, it searches for the program
specified by the PGM= parameter in a system library (i.e., a partitioned dataset available
to all users) called SYS1.LINKLIB. This library consists of a variety of system utilities -
FORTRAN compilers, link-editors, sort and merge routines, etc. If the procedure called
for is found there, well and good. But obviously if you wish to execute a program you
have written yourself, some means is required for indicating to the system that it should
look elsewhere, and for telling it where to look. Furthermore, in most installations the
HAL/S utility routines - the compiler MONITOR, etc. - are found in a library separate from
SYS1.LINKLIB, but available to all HAL/S users. If a catalogued procedure is being
called, finally, the system must again be told where to find it.

This ability to define datasets other than SYS1.LINKLIB as a possible location for
programs and catalogued procedures is provided by the JOBLIB and STEPLIB cards. A
JOBLIB card defines a dataset (which must be of partitioned organization) which will be
searched immediately before SYS1.LINKLIB for all programs and procedures called by
EXEC cards within one job. It is coded immediately following the JOB card which
defines the job. A STEPLIB card serves the same function, except that it remains in
effect for only one step; accordingly, it is coded immediately following an EXEC card.
The syntax for each is the same; only the JOBLIB card is shown.
//JOBLIB DD DSN=<name of user library>, DISP=<disposition>

- it needs to be told where the actual program to be executed is to be found;
- if the program requires any input (e.g., for a HAL/S program, if it contains any

READ or READALL statements) the system needs to know where to find it;
- if output from the program is to be placed in a dataset, printed on the line

printer, etc., the system must be informed of this;
- if temporary datasets are needed as work areas for the running of the

program, the system must be informed and must be told to delete these
datasets at the end of each step.
2-11 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
DSN is an abbreviation for DSNAME, which can alternatively be coded as well. The
function of the DISP parameter will be described below. If more than one user-defined
library is to be searched, they should be concatenated together by submitting additional
JCL cards immediately following the JOBLIB or STEPLIB card, using the same syntax
but omitting the ddname JOBLIB or STEPLIB.

Thus, if the following JCL were submitted:

//TPS1840J JOB 7427,SLOTHROP.T,REGION=64K,TIME=(0,10),

// PRTY=1,NOTIFY=TPS1840

//JOBLIB DD DSN=MYLIB.LOAD,DISP=(SHR,PASS)

//STEP1 EXEC PGM=PROG1

...other JCL associated with STEP1...

//STEP2 EXEC PGM=CHECKOUT

//STEPLIB DD DSN=CHECKS.LOAD,DISP=(SHR,PASS)

...other JCL associated with STEP2...

the system, when it reached the //STEP1 EXEC PGM=PROG1 card, would search first
through MYLIB.LOAD and then, if unsuccessful, through the partitioned dataset
SYS1.LINKLIB for a member named PROG1. When the //STEP2 EXEC
PGM=CHECKOUT card is reached, the system would search through CHECKS.LOAD
and then SYS1.LINKLIB.

 2.4.3.2 The DISP Parameter: Specifying the Status of Datasets
The DISP parameter informs the system of the status (disposition) of the dataset referred
to, both at the beginning and the end of the current jobstep. The first sub-parameter in
parentheses describes the status of the dataset when the job starts. OLD indicates that
the dataset already exists. NEW indicates that it does not yet exist, but rather is to be
created. SHR indicates that the dataset in question is available to more than one user
simultaneously. System libraries, as well as libraries such as the HAL/S runtime library
which may be used by many programmers at once, typically have the disposition SHR.
A dataset with this disposition should in general not be used for output; that is, it should
be read from but not written into. Finally, MOD indicates that the dataset already exists,
and will be modified during the course of the jobstep.

The second sub-parameter in parentheses within the DISP parameter tells the system
what to do with the dataset being discussed once the jobstep is over. This may be
DELETE, which causes the dataset to be deleted; CATLG, which causes it to be kept and
placed in the user’s catalogue; or PASS, which causes it to be kept at least until the
execution of the next jobstep, where presumably it will be needed again. The PASS sub-
parameter is very common, e.g., where one jobstep produces output which is then used
as input for the next jobstep.
Examples of the DISP parameter will be provided throughout the following sections.
2-12 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
 2.4.3.3 Defining Input Data
Every dataset involved in running a program may be thought of as possessing two
names: a “real” or “system” name, defined when the dataset is created, and an “alias” by
which it is known by the program. For example, compilation of a HAL/S program
containing READ(5) statements makes an implicit reference to a “file number 5” (the
compiler actually calls it “CHANNEL5”), from which input is to be read. But the user will
in general have his or her input residing in a dataset which has already been named
TESTDATA.DATA perhaps, and in fact may want to run the program several times,
reading input from a different dataset each time. Therefore, DD cards must indicate to
the operating system which actual datasets are to be associated with which “aliases”, or
internal filenames. Thus, if input to a HAL/S program is to be read from a dataset named
TESTDATA.DATA, the following DD card should be coded:
//CHANNEL5 DD DSN=TESTDATA.DATA,DISP=(OLD,KEEP)

The ddname CHANNEL5 is the program name; the dataset specified after the DSN=
parameter is the system name. DISP is indicated as (OLD,KEEP) to inform the system
that the dataset TESTDATA.DATA already exists in the catalogue, and that it is to
continue to exist after execution.

Every program which takes input has a series of specific program filenames with which
input dataset names are to be associated. These differ from program to program, and
must be determined by the user ahead of time. For a HAL/S programmer, the following
names are important to know:

A complete list of ddnames for HAL/S users will be found in Section 2.5.3.

An alternate method of defining input data is available, allowing the data to be physically
included within the stream of JCL itself. To do this, the DD card should be coded as
//CHANNELn DD DATA, or alternatively, instead of //CHANNELn DD DATA, one may
code //CHANNELn DD *. (If the input data itself contains JCL statements - or any lines
beginning with // in the first two columns - the //CHANNELn DD DATA must be coded.)
Immediately following this DD card should be the input, in whatever format is
appropriate; and immediately following the last line of input should be the special JCL
delimiter card, which consists simply of the two characters /* in the first two columns, with
the rest blank. To execute a HAL/S program called GETPOS, for instance, residing in a

partitioned dataset called PROGS.LOAD with the input to READ(5) statements being
defined within the JCL, the following would be coded after the JOB card:

- the input to a HAL/S program’s READ(5) statement is associated with the
ddname CHANNEL5; and in general READ(n) statements are associated
with CHANNELn, where n is an integer from 0 to 9;

- the primary input to the HAL/S compiler MONITOR (i.e., the program to be
compiled) is associated with the ddname SYSIN.

- the primary input to the link-editor LINK101 (i.e., the object module to be
linked) is associated with the ddname SYSLIN.
2-13 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
//RUNIT EXEC PGM=GETPOS,REGION=64K,TIME=(0,10)
//STEPLIB DD DSN=PROGS.LOAD,DISP=SHR
//CHANNEL5 DD *
 input
 .
 .
 .
/*

It is possible to specify more than one dataset to be associated as input with a particular
program dataset name. Thus, for instance, one may wish to define two datasets to be
used as input to READ(5) statements in a HAL/S program, or (as has already been
mentioned) two program libraries to be searched for a program called on an EXEC card.
This is done simply by coding the second, third, . . . , etc., datasets to be concatenated
with the first one on DD cards immediately following the first one, without specifying any
ddnames.

Thus, if three input datasets are to be used for a READ(5) statement, the following JCL
would be coded:

//CHANNEL5 DD DSN=INPUT1.DATA,DISP=OLD

// DD DSN=INPUT2.DATA,DISP=OLD

// DD DSN=INPUT3.DATA,DISP=OLD

Notice that this means that, unless you wish to specify such a concatenation, a ddname
must always be specified on a DD card.

 2.4.3.4 Defining Output Datasets
The conventions for defining the datasets into which output is to be placed are similar to
those for defining input datasets. Again, each program and procedure has associated
with it a set of ddnames or aliases for the various outputs produced. The most important
ones for HAL/S programmers are as follows:

Often the dataset to which you wish output to be sent will not exist yet; the system must
then be instructed to create it. The first subparameter of the DISP parameter in that case

- the output specified by a HAL/S program with a WRITE(6) statement is
associated with the ddname CHANNEl6; and again in general WRITE(n)
statements are associated with the ddname CHANNELn;

- the HAL/S compiler may produce several pieces of output, depending on the
options specified at compile-time (see Section 5.1). The most important of
these are a formatted source listing associated with the ddname SYSPRINT,
and an object module associated with the ddname OUTPUT3 (Other outputs
produced by the compiler will be described in Section 2.5.3).

- the link-editor LINK101 produces, among other things, an executable load
module, associated with the ddnames SYSLMOD.
2-14 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
must be coded as NEW, and the second subparameter as DELETE, CATLG, or PASS,
depending on what is to be done with the dataset at the end of the step. Furthermore,
information must be given to the system as to how much storage the dataset will require,
where it is to be kept, its internal format, etc. This manual will not attempt to describe the
various JCL parameters (e.g., VOLUME, SPACE, UNIT, RECFM, etc.) for the passage of
such information; the appropriate IBM manuals should be consulted if you wish to create
permanent datasets in this way. If a dataset already exists, however, no such information
need be specified to use it for output; note, however, that anything in such a dataset
before execution of the program will be erased in the course of producing output unless
MOD has been specified as the first DISP subparameter.
Sometimes one wishes to employ datasets merely as temporary work areas. In that
case it is not necessary to code any DSN parameter at all (although information about
location, storage, etc., must still be provided). This will cause the dataset to be deleted
at the end of the jobstep in which it is defined. Coding a DSN name with DISP= (NEW,
DELETE) would have the same effect.

On many occasions, however, datasets are used to communicate data from one jobstep
to the next, in which case one might want to use a temporary dataset which would be
deleted at the end of the job, not the jobstep. In this case, one would code a special
dataset name indicating to the system that the dataset is a temporary one by beginning
the name with a double ampersand (&&). At the end of the job, the system automatically
deletes all datasets whose names begin with those two characters. In each jobstep but
the last, the second subparameter of the DISP parameter should be coded as PASS to
indicate that the dataset is to be made available to future jobsteps.

Although often one wishes to keep the output from a program in a safe, permanent, and
machine readable form by placing it in a dataset, sometimes one only wants to look at it
once, and perhaps to keep a hard copy of it. This can be done by employing the
SYSOUT parameter on the DD card for such output. In most implementations,
SYSOUT=A causes the output data to be printed on a line printer. If SYSOUT is coded,
of course, the DSN parameter should not be coded. To complete the example begun in
the previous section, assuming that you wanted output from the WRITE(6) statements in
the GETPOS program to be sent to the line printer, you would code:
//RUNIT EXEC PGM=GETPOS,REGION=64K,TIME=(0,10)
//STEPLIB DD DSN=PROGS.LOAD
//CHANNEL5 DD *
 input
// *
//CHANNEL6 DD SYSOUT=A

Once a ddname has been associated with a dataset on a DD card, that ddname, rather
than the dataset name, may be used later in a JCL sequence to refer to the dataset. This
is particularly useful in a job consisting of more than one step, where the output from one
step serves in turn as input for a later one. Since ddnames need only be unique within a
jobstep, not a job, naming conventions are used to direct the system to the correct card
defining the dataset. If in jobstep STEP1 the ddname OUTPT is associated with a
2-15 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
dataset, RESULTS.DATA, which is then to be used in jobstep STEP2 as input to a HAL/S
program with READ(5) statements, the JCL would be as follows:

//STEP1 EXEC PGM=FIRSTPROG

//OUTPT DD DSN=RESULTS.DATA,DISP=(OLD,PASS)

//STEP2 EXEC PGM=SECONDPR

//CHANNEL5 DD DSN=*.STEP1.OUTPT

As this example shows, the syntax for DSN parameter references to datasets defined in
an earlier jobstep is “*.stepname.ddname”. A reference to a dataset defined in the same
jobstep is simply coded as “*.ddname” (Note that in the example the second
subparameter of the DISP parameter had to be coded as PASS in order to make the
dataset available to the system in the next step).

On occasion, one may wish to refer to a dataset which has not yet been defined, but
which will be defined later on in the flow of JCL cards (This often occurs when
catalogued procedures are being used: see below). In this case, one may code, instead
of DSN, a DDNAME parameter, which associates with the ddnames specified other
ddnames to be defined later. For example, if one were to code
//CHANNEL5 DD DDNAME=SYSINP

this would mean that the input dataset for channel 5 will be defined later on in the JCL
sequence, on a DD card with ddname SYSINP - for instance,
//SYSINP DD DSN=TESTDATA.DATA,DISP=(OLD,PASS)

2.4.4 Catalogued Procedures
Catalogued procedures are blocks of JCL which are stored in a library and may be called
up by any user. This facility makes it possible to save commonly used sequences of JCL
so that the user need not repeat them on each occasion. Procedures may be called as
they are, or the call may modify them and set or change values of various parameters
specified within them. Such modifications are only effective for that single call; thus
catalogued procedures may allow for a great deal of flexibility in their use.

 2.4.4.1 Writing Catalogued Procedures
The syntax for the JCL within a catalogued procedure is precisely the same as the JCL
syntax for regular jobs. A procedure may consist of more than one step, and so more
than one EXEC card may be coded. There are two exceptions, however: the JOB card is
not permitted in a catalogued procedure, and a catalogued procedure may not call
another catalogued procedure on an EXEC card - only programs may be called.

A sequence of characters within a statement in a catalogued procedure may be defined
to be a symbolic parameter of that procedure by preceding it with a single ampersand
(&). The sequence must not consist of more than seven characters, and the first
character must be alphabetic (or #, @, or $).
2-16 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
Suppose, for example, that a catalogued procedure RUNTEST executes a program
called RUNNER, but that the maximum region size and the maximum execution time are
to be specified by the user when the procedure is called. The EXEC card for this step
might then be coded as follows:
//STEP EXEC PGM=RUNNER,REGION=&MAXREG,TIME=&MAXTIME

When this statement is executed, the system will substitute for &MAXREG and
&MAXTIME the values which have been specified for them when the procedure was
called (See Section 2.4.4.2 for information on how these values may be specified).

The minimal use of blanks in JCL means that under certain conditions it might be
ambiguous to the system where the sequence of characters defining a symbolic
argument (i.e., beginning with an ampersand) actually ends and where the next
parameter begins. In cases where such an ambiguity would otherwise arise, the end of
an argument name must be indicated by a period. Thus, for instance, if a procedure is to
execute a program called TESTPROG, but the library of load modules where it resides is
to be user-specified, the STEPLIB card defining the library might be coded

//STEPLIB DD DSN=&LIBNAME..LOAD,DISP=(OLD,PASS)

where the first period indicates the end of the symbolic argument LIBNAME, allowing the
second one to be correctly interpreted as separating the two parts of a qualified dataset
name.
Often in a catalogued procedure, one may wish to set default values for the various
arguments. This can be done by coding a PROC card as the first card in the procedure.
The syntax for this card is:
//<procedure-name> PROC <default-values>

If one wanted to set default values for the RUNTEST procedure mentioned above, for
example, the following PROC card might head the procedure:
//RUNTEST PROC MAXREG=64K,MAXTIME=(0,10)

Coding this card would mean that the MAXREG argument would be set at 64K and the
MAXTIME argument at (0, 10) unless a user specified them differently when he or she
called the procedure. Note that here the leading ampersand and trailing period are not
coded.

It is also possible to indicate in a PROC statement that certain parameters are not to be
coded at all unless the user so specifies. For example, one may wish to send
parameters to a program only under certain conditions.

Something like these two JCL cards would then be submitted:
2-17 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
//ABLE PROC RUNPARMS=
//GO EXEC PGM=BAKER,REGION=64K,TIME=(1,0),PARM=&RUNPARMS

The effect of these is to execute the program BAKER with the parameters to be passed
to the program being specified by the user when the procedure is called. Rather than
setting a default, however, the PROC card here indicates that, if no parameters are
specified by the user, the PARM parameter on the EXEC card is to be ignored (i.e., no
special parameters are to be passed).

 2.4.4.2 Using Catalogued Procedures
Once a catalogued procedure has been written and stored in a procedure library, the
user need not worry about its details, although it will still be necessary to know what
arguments the procedure expects and what defaults it has set up. This information
should be available in an easily accessible form at your installation.

To call a catalogued procedure and cause it to be executed, you need only specify its
name on an EXEC card within your own JCL. The procedure name should be followed
by a series of parameters specifying the values you wish to assign to the various
symbolic arguments in the procedure. To call the RUNTEST procedure described in the
previous section, for example, the following line of JCL might be coded:

//GO EXEC RUNTEST,MAXREG=16K,MAXTIME=‘(2,0)’

The system would then automatically substitute these values for the symbolic arguments
&MAXREG and &MAXTIME wherever it finds them. MAXTIME’s value is coded in
apostrophes because it contains ‘special characters’. These are the comma, period,
slash (/), apostrophe, left and right parentheses, asterisk, ampersand, plus sign, hyphen,
equals sign, and blank; any argument value containing them must be enclosed within
apostrophes to prevent ambiguities.

Notice that values must be specified on the EXEC card invoking the procedure for each
symbolic argument found in the procedure, unless a default value has been set in a
PROC statement beginning the procedure. Some values may be specified as null, in the
same way that this is done on the PROC card. If the RUNTEST procedure were called
as follows, for example,

//GO EXEC RUNTEST,MAXREG=,MAXTIME=‘(2,0)’

a null value would be transmitted to the procedure as the MAXREG parameter. The
result would be to have the maximum region used for your job set to whatever the default
value is at your installation.

If a catalogued procedure can stand alone as a fully correct sequence of JCL, it is
possible to execute it using only two lines of user-specified JCL - a job card and an
EXEC card. To call such a procedure named INFO, for instance, user TPS1840 might
code only the following:
//TPS1840I JOB 7477,SLOTHROP.T
//GO EXEC INFO

(This assumes that the system default values for job time, region size, priority, etc., are
2-18 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
desired, and that no values for symbolic arguments are to be passed to the procedure).
When the EXEC card is reached, the system simply executes the procedure, and that’s
that. On the other hand, many catalogued procedures are not able to stand alone in this
fashion, and require additional user-supplied JCL to allow them to run. For example, the
procedure HALFC which runs HAL/S compilations calls the compiler MONITOR, which
expects to find a DD card named SYSIN indicating the location of the HAL/S program to
be compiled. Since HALFC presumably will be used to compile many different
programs, the SYSIN DD card is not included within the procedure. It could be included
by using a symbolic argument to stand for the dataset name which the user would have
to supply when calling the procedure; but in general in this situation it is easier to leave
the card out entirely and allow it to be added by the user in his or her own JCL.

Care must be taken in specifying the ddnames on such a user-supplied addition to a
procedure’s JCL. The DD card should be coded immediately following the EXEC card
which calls the procedure, and the ddname given on the card should be
<procstepname>.<procddname> where <procstepname> is the name specified on the
EXEC card in the procedure to which this DD card refers, and <procddname> is the
ddname the procedure expects. Thus, to specify the program to be compiled in the
HALFC procedure, assuming that the EXEC card in the procedure is called HAL, a user
might submit a job as follows:
//TPS1840C JOB 7477,SLOTHROP.T,REGION=64K,TIME=(0,10)

//COMPILE EXEC HALFC

//HAL.SYSIN DD DSN=<location of user’s program>

More than one DD card may be added by a user to a catalogued procedure in this
fashion. For instance, a procedure named HALFCLG can be used in some installations,
to compile, link edit, and then execute a user’s program. The procedure consists of three
steps (i.e., contains three EXEC cards): HAL (which calls the compiler), LKED (which
calls the link editor), and GO (which runs the program). The compile step expects a
SYSIN card indicating the program to be compiled, as above, while the run step expects
a CHANNEL5 card indicating where the input to any READ(5) statements in the program
is to be found.

The following JCL would then be submitted to call HALFCLG (after an opening JOB
card):

//COMPRUN EXEC HALFCLG

//HAL.SYSIN DD DSN=<name of the source program dataset>

//GO.CHANNEL5 DD DSN=<name of input dataset>

(In fact, the way the HALFCLG program is written, GO.SYSIN could be coded as well as
GO.CHANNEL5. This is because the DDNAME parameter is used to associate the
CHANNEL5 ddname with the SYSIN ddname: the card used in the procedure is
//CHANNEL5 DD DDNAME=SYSIN. This allows the user to employ the more familiar
SYSIN ddname. The double use of SYSIN is unambiguous because they are only
2-19 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
referred to in the user’s call with prefixes HAL or GO).

 2.4.4.3 Modifying Catalogued Procedures
In addition to being able to add statements to incomplete catalogued procedures, you
may also override statements within them as much as you wish. The naming
conventions here are similar. To override a DD card in a catalogued procedure, you
should code a DD card in your own JCL with ddname <procstepname>.<procddname>,
where <procddname> is the ddname of the DD card you want to override, and
procstepname is the name of the step in the catalogued procedure in which it occurs.
Only those parameters you wish to change need be specified on the new DD card.
When the system encounters a line in the catalogued JCL for which you have coded a
modification in this way, it automatically makes the modification, ignoring any parameters
on the catalogued card which you wish to change and reading them from your card
instead.
The HALFCLG procedure, for instance, puts the load module from the linkage editor into
a temporary dataset for passage to the GO step. Since this dataset, called
&&HALMOD(GO) in the procedure, is defined as temporary by the two ampersands
beginning its name, after execution of the procedure it no longer exists. This may not be
a good idea, if you are planning after a single computation to run the program several
times without recompiling it. The line in HALFCLG defining this dataset appears within
the step named LKED, and runs as follows:

//SYSLMOD DD DSN=&&LOADMOD(GO),DISP=(,PASS),

followed by storage information.
(Note that the DISP=(,PASS) parameter really abbreviates DISP=(NEW, PASS), taking
advantage of the fact that NEW is the default for the first subparameter of the DISP
parameter.) In order to override this line so as to create a permanent dataset for later
use, you would code, after the EXEC HALFCLG statement,

//LKED.SYSLMOD DD DSN=HALMOD(GO),DISP=(NEW,CATLG),

and any storage information you wish to change.
The missing ampersands, and the new CATLG disposition, inform the system that this
new partitioned dataset named HALMOD is to be permanent. Again, the
LKED.SYSLMOD ddname is crucial here, for it indicates to the system which card in the
procedure you wish to override (in this case, the SYSLMOD DD card in the LKED step).
Note that only the parameters you wish to change need be specified when you are
overriding a line. It should be mentioned here that all modifying JCL statements must
come before any additional JCL, and must preserve the order in which the ddnames
occur in the catalogued procedure.
2-20 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
2.5 Using Catalogued Procedures to Process a HAL/S Program

2.5.1 Introduction
Catalogued procedures may be used to minimize the amount of JCL you need to submit
in order to perform a number of possible tasks with respect to a HAL/S program. These
tasks include compilation and link-editing. The rest of this section will assume that a
regular complement of these catalogued procedures is available at your installation.
Prototype versions of these procedures are listed in Appendix A. Table 2-1 gives the
names of the procedures and their functions. The naming conventions for these
procedures should be clear: each name begins with HALF (for HAL/S-FC) and has the
letter C, or L, appended to it to refer to compilation or link-editing, respectively.

 Table 2-1 Catalogued Procedures Available for Processing HAL/S Programs

2.5.2 How to Use the Catalogued Procedures
Only the simplest and most direct uses of the catalogued procedures will be described
here. More complex situations, e.g., if more than one compilation unit is involved, will be
discussed below in Chapter 3.

Any job, including one involving a catalogued procedure, must begin with a JOB card.
This must be user-supplied, and must provide the usual information needed by your
installation. A typical JOB card might be:

//TPS1840 JOB 7477,SLOTHROP.T,REGION=64K,TIME=(1,30),

// PRTY=0,NOTIFY=TPS1840

But the requirements and even syntax of the JOB card may differ from installation to
installation.

The procedure itself is called on an EXEC card which should have the following form:
//ANYNAME EXEC <name of procedure>

ANYNAME may in fact be replaced by any name whatsoever, and may even be omitted,
as long as at least one blank is placed between the ‘//’ and the EXEC operator. <name of
procedure> is simply the name of the procedure being called.

It is possible (but not necessary) to pass a series of options to the compiler. A discussion
and complete list of compiler options will be found in Section 5.1. These may be passed
by coding on the EXEC card, immediately after the name of the procedure, a comma and
then OPTION=‘<compiler options>’. The list of options must be enclosed in
apostrophes, and each one must be separated from the next by a comma. If no options
are coded, defaults are specified in MONITOR’s option processor which are sufficient for
most users.

The following JCL card, for example, calls for the compiling and link editing of a program

HALFC Compiles a HAL/S program.
HALFCL Compiles and link-edits a HAL/S program.
2-21 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
with the LISTING2 compiler option on and the SYMBOLS option set to 300.
//COMPLINK EXEC HALFCL,OPTION=‘LISTING2,SYMBOLS=300’

 2.5.2.1 To Compile
Simply to run a compilation, the HALFC procedure should be called. The EXEC card will
be:

//COMPILE EXEC HALFC

with any desired compiler options specified with OPTION=. This should be followed by a
DD card describing to the system the location of the source program you wish compiled.
The ddname associated with this by the cataloged procedures is HAL.SYSIN. The
source program may be included within the user’s JCL itself, in which case the format
would be:

//HAL.SYSIN DD *
 .
 .
 .
 source program
 .
 .
 .
/*

Or else the program may reside in some catalogued dataset, in which case the format
would be:
//HAL.SYSIN DD DSN=<dataset name>,DISP=(OLD,KEEP)

The primary output of the HALFC procedure is an object module, placed in a temporary
dataset named &&HALOBJ. Note that since this dataset is defined by the procedure as
temporary, it will be deleted at the end of your job. If you wish to store it for later use,
modification of the JCL procedure will be required (see Section 2.4.4.3).
2-22 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
 2.5.2.2 To Compile and Link Edit
To compile and link edit a HAL/S program in order to produce an executable load
module, the HALFCL procedure should be called. The EXEC card will be:
//COMPLINK EXEC HALFCL

(with any desired compiler options specified with OPTION=).

This should be followed by a DD card describing to the system the location of the source
program you wish compiled and linked. The format of this card is precisely the same as
the HAL.SYSIN DD card described above in Section 2.5.2.1.

The primary output from the HALFCL procedure is an executable load module, placed in
a temporary partitioned dataset named &&LOADMOD in a member called GO. Note that
since this dataset is defined by the procedure as temporary, it will be deleted at the end
of your job. If you wish to save it for further use, an additional DD card modifying the
procedure will be required (see Section 2.4.4.3).

2.5.3 Standard DDnames and Outputs Associated with the Catalogued
Procedures
Complete listings of the various catalogued procedures available may be found in
Appendix A, along with a detailed description of their workings. The following table lists
the standard ddnames and outputs associated with each of the processes called by the
procedures. Users unfamiliar with the HAL/S compiler and link editing systems should
ignore (or at least postpone reading) this section.
Compilation (Step HAL of Procedures HALFC and HALFCL)

Program: MONITOR
User Options: OPTION

DD names

STEPLIB Defines a load module library where MONITOR is found.
SYSIN The HAL/S program to be compiled.
PROGRAM A dataset defining the compiler to be used.
SYSPRINT A formatted listing of the source program, which is directed to the

line printer.
LISTING2 An unformatted listing of the source program (optional), directed to

the line printer.
OUTPUT3 The object module produced by the compilation, which is kept in a

temporary dataset named &&HALOBJ for passage to the link
editor.

OUTPUT4 A second copy of the object module directed to the card punch
(optional).
2-23 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
Link Editing (Step LKED of Procedure HALFCL)
Program: LINK101
User Options: none

DD names

OUTPUT5 The Simulation Data File produced by Phase 3, which is kept in a
temporary dataset called &&HALSDF for passage to later compile
steps.

OUTPUT6 The template library produced by the compiler, which is kept in a
temporary dataset named &&TEMPLIB for passage to later
compile steps.

ERROR The error library required by the compiler.
FILE1-FILE6 Temporary work files.

SYSLIN The object module to be link edited.
SYSPRINT The diagnostic output dataset, directed to the line printer.
SYSLIB The HAL/S runtime library of built-in functions and procedures.
SYSLMOD The load module produced by the link editor, which is kept as a

member of a temporary dataset called &&LOADMOD for passage
to an execution step.

SYSUT1 Intermediate work dataset for temporary storage purposes.
2-24 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
3.0 PROCESSING PROGRAM COMPLEXES
3.1 Program Complexes
In the HAL/S system, a compilation unit is an independently compiled sequence of
HAL/S statements. Such units may be PROGRAMs, PROCEDUREs, FUNCTIONs, or
COMPOOLS. PROGRAMs, of course, are always separately compiled. Procedures and
functions may be nested within programs, in which case they are compiled along with
their parent program, but they may also be independently compiled in order to allow
them to be shared by several programs. This would be useful, for instance, if many
programs you write will employ a particular procedure, say a simple text editor named
EDIT. It would be highly inefficient to include the source code for EDIT in each program
you write prior to compilation. A much better solution would be to compile EDIT once,
independently, producing an object module which may then be linked to the object code
produced by each later compilation of a new program. Procedures and functions which
are compiled separately in this manner are generically called COMSUBs.
A COMPOOL is a block of data which may be shared by several programs. COMPOOLs
contain no executable code; they simply define data. Thus, for instance, you may wish to
run one program to compute some velocity and position vectors, and then run a separate
program which takes those vectors and issues commands to a navigation system. The
variables storing the velocity and position vectors would then be placed in a COMPOOL
in order that both programs will be able to access them. The user should consult the
Language Specification, Chapter 3, or the Programmer’s Guide, Chapter 15, for more
detailed information about the form and use of COMSUBs and COMPOOLs.

A program complex is a collection of compilation units. Typically, the individual units in a
program complex will reference each other (e.g., many units may reference data in a
COMPOOL unit, or some units may CALL or SCHEDULE other units). Such references
are identical to those employed when the units referenced are not independently
compiled. Thus, if a program is to include a call to the independently compiled
procedure EDIT, a CALL EDIT statement is coded (although the procedure itself is not);
similarly, variables defined in a COMPOOL may be employed by name in a unit
referencing that COMPOOL as if they had been DECLAREd in the unit itself.

3.2 Templates: The INCLUDE Directive
Compilation of each of the units in a program complex occurs separately. When a unit is
compiled which includes references to other units in the complex, information must be
given to the compiler about these other units. First of all, it must be informed that
another unit is in fact being referred to, and that the programmer has not simply forgotten
to declare a variable or to include the code for a procedure or function. This is necessary
in order to enforce the strict HAL/S rules as to the predictability and stability of data
types, arrayness, etc., particularly when function invocations and procedure calls are
made. Furthermore, the compiler must be given information about the data type of all
variables which are referenced in COMPOOLs, and about the number and data type of
all variables passed into COMSUBs as arguments or returned from them as assign
parameters or function values.
3-1 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
Such information is provided to the compiler by a compilation unit TEMPLATE. Every
compilation unit which makes references to other independently compiled units must
include such a template describing each other unit referenced. The format for such
TEMPLATEs is described in detail in the Language Specification, Section 3.6, and the
Programmer’s Guide, Section 15.4, but, in fact, they need never be manually coded, for
the HAL/S-FC compiler automatically produces a TEMPLATE describing each unit it
compiles. Templates so produced are placed in a file which may then be used in
subsequent compilations. Thus, the necessary information about interfacing with
COMSUBs and COMPOOLs is provided (by the user) simply by directing the compiler to
retrieve the proper template from these files. In fact, another (and in many cases more
efficient) method exists for passing such information to the compiler; see Section 3.5 for
details.

Retrieval of the template for a previously compiled unit takes place through the use of the
INCLUDE compiler directive. Compiler directives are instructions, coded as part of a
HAL/S program, which make requests directly to the compiler; they have no function in
execution. A line of HAL/S code is specified to be a compiler directive by placing a D in
the first column of the source text. A complete list of compiler directives will be found in
Section 5.2; here we will be concerned only with one form of the INCLUDE directive. In
order to instruct the compiler to include a template for a COMPOOL named DATALIST,
for instance, the following line would be coded prior to the first line of the program being
compiled:

D INCLUDE TEMPLATE DATALIST

Remember that in this case column 1 must not be blank, but must have the D coded in it.
When it comes across this directive, the compiler begins a search through certain
libraries (see Sections 3.3.1 and 3.3.2 for details) to find the template for the compilation
unit named DATALIST which it then reads as if it were part of the source code.

Templates, when produced by the compiler, are given characteristic names which are
derived from, but not identical with, the user-supplied block name. The first six
characters of the block name, with underscores eliminated, are prefixed with the
characters @@ to form the template name. Thus, compilation of a COMPOOL named
TEST_DATA would result in a template named @@TESTDA. The name specified on an
INCLUDE TEMPLATE statement, however, should be the real block name; the compiler
automatically computes the template name to be searched for. The template for
TEST_DATA would thus be included by coding simply INCLUDE TEMPLATE
TEST_DATA. If for some reason one wishes to refer to a template by its literal name,
“INCLUDE literal name” (i.e., without the keyword TEMPLATE), should be coded. Thus,
e.g.,
D INCLUDE @@TESTDA

would have the same effect as:

D INCLUDE TEMPLATE TEST_DATA.
3-2 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
More information about template generation will be found in Section 3.4. The INCLUDE
directive has other uses as well, and may in general be used to merge any part of a
source program with another one; see Section 5.2 for details.

3.3 Processing a Program Complex
This section describes the concepts as well as the JCL needed to process a program
complex, with special attention to the compilation step. The simplest kind of processing
is that which takes place when each unit in the complex is processed within a single job;
but the units may also (more typically) be compiled at different times, with the resulting
templates and object modules being saved, and with final linking postponed until all
compilations are complete. The simple type is described in Section 3.3.1, the more
complex type in Section 3.3.2, where the template look up conventions which are
employed are also explained.

3.3.1 When All Compilations Are Performed in One Job
Compilation of a program complex, whether this occurs within one job or not, actually
consists of a series of compilations, since each unit in the compilation must be compiled
separately. Every such compilation results in the generation of a template for that unit.
Since compilations of units which reference other units must include templates for each
external unit referenced, the order of compilation is important; COMPOOLs and
COMSUBs should always be compiled before the compilation of any unit referencing
them.

When compilation of an entire complex takes place within one job, the JCL for each
compilation should be such that the object module produced is saved until all the units
are compiled. Furthermore, all templates produced should be directed via JCL to a
common template library so that compilations of later units in the process can reference
the necessary template. The catalogued procedure HALFC is written in such a way that
these things take place automatically. Once compilation of each unit in the complex has
been completed, link editing can take place in the normal way.

In addition to templates, each compilation also produces a Simulation Data File of
symbolic data, which is required for functional simulation of the AP-101 on the 360.
These SDFs may themselves be used instead of templates to pass information to the
compiler about external references (see Section 3.5). Again, JCL should be provided in
order to save the individual SDFs produced by each compilation until the entire complex
has been processed. The HALFC procedure does this automatically as well.
3-3 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
To illustrate the procedure for creating an executable program complex in one job,
consider the following example. There are four independently compilable units in the
complex as follows:

Unit 1 - A COMPOOL named DATA defined as:
 DATA: COMPOOL;
 DECLARE I INTEGER INITIAL(4);
 DECLARE S SCALAR INITIAL(3.2);
 CLOSE DATA;

Unit 2 - A PROCEDURE named PROC1 defined as:

 D INCLUDE TEMPLATE DATA
 PROC1: PROCEDURE(X);
 DECLARE X SCALAR;
 WRITE(6) ‘THE ANSWER IS:’,(X+S);
 RETURN;
 CLOSE PROC1;

Unit 3 - A PROGRAM named PROG1 defined as:
 D INCLUDE TEMPLATE DATA
 D INCLUDE TEMPLATE PROC1
 PROG1: PROGRAM;
 CALL PROC1(S);
 CLOSE PROG1;

Unit 4 - A PROGRAM named DRIVER defined as:
 D INCLUDE TEMPLATE DATA
 D INCLUDE TEMPLATE PROC1
 D INCLUDE TEMPLATE PROG1
 DRIVER: PROGRAM;
 CALL PROC1(S);
 SCHEDULE PROG1;
 CLOSE DRIVER;

Since each of the units in this complex reference all of the units listed above it, it is
necessary to compile the units in precisely the order given here so that template
information produced in a given step is available when needed by subsequent
compilations. The following JCL would be coded in order to compile and link-edit this
complex:
//TRYIT JOB <parameters>

//STEP1 EXEC HALFC

//HAL.SYSIN DD *
3-4 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
 <unit 1 source>

/*
//STEP2 EXEC HALFC
//HAL.SYSIN DD *

 <unit 2 source>

/*
//STEP3 EXEC HALFC
//HAL.SYSIN DD *

 <unit 3 source>

/*
//STEP4 EXEC HALFCL
//HAL.SYSIN DD *

 <unit 4 source>

/*

STEP1 above compiles the COMPOOL named DATA. Because of the way the HALFC
catalogued procedure is written, the object module produced by the compilation is placed
in a temporary file named &&HALOBJ which is automatically passed on to subsequent
steps in the job. Recall that temporary datasets are automatically deleted only at the end
of a job, not a jobstep. A template is also produced by the compilation, and this too is
placed in a temporary file (named &&TEMPLIB), which is passed to later jobsteps, as is
the simulation data file produced by Phase 3 of the compiler (placed in a file named
&&HALSDF).

STEP2 compiles the PROCEDURE named PROC1. Note that the source code for this
step includes a “D INCLUDE TEMPLATE DATA” compiler directive, which requests the
compiler to locate and read the template for the COMPOOL named DATA.

The automatic production of such a template in STEP1, and its retention in the dataset
&&TEMPLIB, makes this possible for the compiler (See Section 3.3.2 for more
information on template lookup). The object code produced by the compilation of
PROC1 is now added to the &&HALOBJ file, and similarly the new template and SDF
produced are added to the existing template and SDF files. All these files once again are
available to later steps.

STEP3 takes place in a manner similar to STEP2, this time compiling the PROGRAM
named PROG1. This compilation requires access to both of the previously compiled
units. The source code to be compiled, therefore, includes two INCLUDE directives to
cause the compiler to retrieve the necessary information. Again, object code, templates,
and SDFs are produced, added to the existing files, and passed along.
3-5 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
STEP4 invokes the HALFCL procedure because this step will perform the last of the
compilations, to be followed by a link edit step. The source code for the fourth unit once
again contains all of the INCLUDE directives needed to retrieve the templates for the
previous compilations which will be referenced by DRIVER. The HALFCL procedure, in
its compilation step, adds the object code for DRIVER to the &&HALOBJ file, produces
an SDF, and also produces a template for DRIVER. Production of the template in this
case is unimportant because it will be required by no subsequent steps. HALFCL then
proceeds to link-edit the object file together with the necessary library routines to form a
load module suitable for execution.

The SDF files created and passed by each step are available in this last step if
simulation, diagnostic information, debugging, etc., are desired. Employing the
HALFCLG procedure will allow simulated execution of the complex to take place under
the control of the HAL/S User Control Program (see Chapter 2.4.4.3).
After linking or simulation, all temporary datasets used to collect object modules,
templates, and SDFs would be deleted by the operating system. If any of these are to be
saved, JCL informing the system of this should be coded. The load module produced
would also be deleted, so that JCL modifications should be made if future execution of
the compiled complex will be desired (see Section 2.4.4.3).

3.3.2 When Compilations Are Done At Different Times
A complicated program complex, particularly one still growing and developing, and
possibly involving different programmers working on different units, will typically not be
compiled and linked in a single job as described in the previous section. More likely,
compilation of the units involved will take place at different times, and final linking of the
entire module will be postponed until all compilations are complete. Conceptually, the
tasks involved in this process are very similar to those outlined above for the simpler
case. In particular, careful attention must be paid to the order in which units are
compiled, in order to ensure that the templates to be INCLUDEd by a particular unit are
available when needed.
But in this case an additional difficulty arises. In the previous section, all templates
produced were placed into a specific temporary dataset &&TEMPLIB, and it was here
that the compiler searched for each template referred to by an INCLUDE statement. In
this case, however, the template produced by one compilation must be saved in a
permanent dataset in order that it may be referenced by other compilations which may
run weeks, months, or even years later. Furthermore, during these later compilations, the
compiler must be informed where such templates are to be found; it can no longer simply
assume that they will be found in the &&TEMPLIB dataset.

In order to save templates produced in one compilation so that they may be available to
the compiler at a later date, the OUTPUT6 card of the compile step in the various
catalogued procedures should be modified. It is this card which defines to the compiler
where the templates it generates should be placed. The dataset on which a template is
to be saved must have partitioned organization. In general, the best idea is to save all
templates for a single complex as members of the same dataset. If templates are to be
3-6 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
saved in a catalogued PDS named TEMPLS, for instance, the following line should be
coded in the JCL calling the catalogued procedure:

//HAL.OUTPUT6 DD DSN=TEMPLS,DISP=(OLD,PASS),

// <other parameters if needed>

Note that the member name of the TEMPLS partitioned dataset should not be specified;
it will be computed by the compiler. Consult Section 3.5 for more details about template
generation.
When a unit is to be compiled which contains INCLUDE directives and therefore requires
access to templates produced by previous compilations, an INCLUDE DD card may be
coded in order to inform the compiler where these templates are to be found.
Compilation of a unit referencing a template in the library RESIDE, for example, might
require the following lines in the JCL:

//HAL.INCLUDE DD DSN=RESIDE,DISP=(OLD,PASS),

// <other parameters if needed>

The dataset referred to in an INCLUDE DD card must have partitioned organization.
Again, it should be referred to in the JCL by dataset name only; member names should
never be specified. When the compiler comes across an INCLUDE statement in the
source text (e.g., D INCLUDE TEMPLATE TESTDATA or D INCLUDE @@COMDAT), it
searches the PDS defined on the INCLUDE DD card for a member with name found or
implied on the INCLUDE statement (e.g., in these cases, @@TESTDA or
@@COMDAT). If more than one template library is to be searched, the different libraries
may be concatenated by following the normal rules for such concatenation.
//HAL.INCLUDE
// DD DSN=<templib1>

// DD DSN=<templib2>
 .
 .
 .
// DD DSN=<templibn>

Note that if an INCLUDE request cannot be satisfied by referencing the INCLUDE DD
card, or if no such card is coded, an attempt will be made to find the member needed by
searching the dataset defined on the OUTPUT6 DD card instead. This search technique
allows multiple-compilation jobs to reference template libraries created automatically in
earlier steps without the need to code an INCLUDE DD card. This facility was employed,
for instance, in the example provided in the previous section.

Furthermore, it follows that even in most of the cases where compilation of the units in a
complex takes place at different times the template library for the complex need only be
specified on the OUTPUT6 card for each compilation. No INCLUDE DD card generally
needs to be coded, since even in its absence the OUTPUT6 dataset is checked for
templates to be INCLUDEd. The OUTPUT6 DD card, however, defines a output dataset,
3-7 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
and so only one dataset may be specified on it; concatenation is impossible. Thus, if for
some reason more than one template library has to be referenced for a particular
compilation, an INCLUDE DD card must be used.

3.4 Template Generation
When compilation of a unit takes place, a template for that unit is automatically
produced, and placed as a new member into the partitioned dataset defined by the
OUTPUT6 DD card. We assume from here on that this partitioned dataset is a template
library whose members consist of templates for all of the units in the program complex.
In that case, it may occur - since units are often compiled, revised, and recompiled
several times - that a template for the unit being compiled already exists in the template
library.

When compilation takes place, therefore, the compiler ascertains first of all whether a
template for the block being compiled already exists. It searches for such a template first
on the dataset defined by the INCLUDE DD card, and then on the one defined by the
OUTPUT6 DD card, just as it does when it encounters a D INCLUDE directive (see
Section 3.3.2). Our assumption again is that the template library is defined on the
OUTPUT6 DD card, and therefore that in fact no INCLUDE DD card is coded.

If no such template exists, then it is added as a new member of the OUTPUT6 dataset.
The following message appears in the output listing:
*****TEMPLATE LIBRARY MEMBER <membername> NOT FOUND-ADDED

If the template does already exist, and the new template is different from the old, the old
one is replaced in the template library by the new template. The compiler emits the
message:
*****TEMPLATE LIBRARY MEMBER <membername> FOUND AND CHANGED

If the new template is the same as the old one, then no replacement occurs and the
compiler emits the message:
*****TEMPLATE LIBRARY MEMBER <membername> FOUND-CHANGE NOT REQUIRED

Automatic updating of members in a template library is therefore ensured. Any error
discovered in a unit during Phase 1 of the compilation will inhibit the generation of a
template for that unit, and so no adding or replacement in the template library will occur.
The following message will be emitted by the compiler:
*****COMPILATION ERRORS INHIBITED TEMPLATE GENERATION.

Each compiler-produced template has attached to it a version number between 1 and
255. When the template is first generated the version number assigned is 1. Every time
it is replaced in the template library by an updated template the version number is
incremented by 1. If the version number exceeds 255, it is reset to 1, and thereafter
begins being incremented again.
The <membername> under which a template is stored in a template library is the
computed template name, as described in Section 3.2 (e.g., the template for a block
3-8 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
named FUNC_ONE would be stored in a template library member named
@@FUNCON). The format of templates produced by the compiler is exactly as
described in the Language Specification, Section 3.6. It is followed by a statement
(actually a compiler directive) specifying the version number.
For example, the template for the PROC1 procedure described in Section 3.3.1 would
look like this:

 PROC1: PROCEDURE(X);

 DECLARE X SCALAR;

 CLOSE PROC1;

 D VERSION #

will be a generally unreadable character whose hexadecimal value is the version
number. For more information about the VERSION compiler directive, see Section 5.2.

Caution must be taken when an INCLUDE DD card is used to specify the location of a
template library of a complex instead of an OUTPUT6 card. For even in this case the
template produced by the actual compilation being performed will still be written to the
OUTPUT6 dataset. If an earlier version of this template exists on one of the datasets
specified on the INCLUDE DD card, then although the compiler will find it, recognize that
it has to be updated, and emit the correct message, replacement will not necessarily take
place since the new template will be placed in the OUTPUT6 dataset, and not in the
INCLUDE dataset where the old one was found. The user should, therefore, make sure
that if a template already exists for the unit actually being compiled, the library containing
that template is specified on the OUTPUT6 card, instead of (or in addition to) being
specified on the INCLUDE card.

3.5 SDF INCLUDEs
When compilation of a block of HAL/S code takes place, the Simulation Data File (SDF)
produced by Phase 3 of the compiler contains a large amount of information describing
the format of the block, the variables it involves, the data types of any formal parameters
and function returns, etc. In particular, therefore, it contains all of the information which is
normally placed into that block’s template, and which must be placed in the code for any
other block referencing that one. It is possible to instruct the compiler to INCLUDE not a
template, but an SDF, and so to read this information directly from the Simulation Data
File. The result in certain cases can be a significant saving in time, particularly when
large COMPOOLs are being included.

No change needs to occur within the HAL/S source code itself. This means that with the
possible exception of a modification in JCL, the use of this new facility can remain
completely transparent to the user as long as an SDF file is available to the compiler.
When the compiler comes upon a D INCLUDE TEMPLATE compiler directive it will begin
its search by looking through the SDF library, analogous to the template library. This
search goes through the partitioned dataset specified on a DD card with ddname
HALSDF, and then through that specified on the OUTPUT5 DD card. If both of these
3-9 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
searches are unsuccessful, it then goes on to search for a template in the regular way
(i.e., by referencing the INCLUDE DD and OUTPUT6 DD cards).

If all compilations are taking place in a single job, (see Section 3.3.1), no new JCL is
needed to allow SDFs to be included; the catalogued procedures will do this
automatically. Otherwise, as is the case for templates, JCL modifications must be made,
either by modifying the HAL.OUTPUT5 DD card to refer to a permanent dataset, or by
adding a HAL.HALSDF DD card. In either case, the dataset referred to should be a
partitioned dataset serving as a library of SDFs for the program complex. All JCL
modifications and considerations here are precisely analogous to those discussed in
Sections 3.3.2 and 3.4 above for OUTPUT6 and INCLUDE DD cards.
Two new optional subcommands (“SDF” and “NOSDF”) for the INCLUDE directive are
now available with respect to the facility for SDF INCLUDEs. “D INCLUDE TEMPLATE
<block name> NOSDF” may be coded to instruct the compiler not to look for any SDFs
but to engage only in a search for templates. This may be used for example when you
know that no SDFs produced for the unit being INCLUDEd are available. Furthermore,
since only SDFs produced by compiler release 17 or later possess the correct structure
for use by this new facility, the compiler checks the SDF version for > 17. If true, it uses
the SDF; otherwise, it searches the template library. In addition, although compilations
producing object code for one machine generate templates which may be included by
other compilations producing object code for a different machine, this is not the case with
SDFs; again, the NOSDF subcommand should be coded to force template searching
only. If you specify “SDF”, the compiler will check to see that any SDFs searched are
compatible with both the target machine or current compiler release. If there is any code
discrepancy between the SDF and program complex, the compiler will go directly to
search for the appropriate template.
The second subcommand now available can be used only when the block being
referenced is a COMPOOL. COMPOOLs in many applications may be extremely large,
and individual programs or COMSUBs will typically reference only a few of the variables
included in them. The templates for a COMPOOL by its very structure is just as large as
the COMPOOL itself, and thus much extraneous information is passed to the compiler
when a COMPOOL template is INCLUDEd. By coding:
 D INCLUDE SDF <name of COMPOOL>:<variable list>;

it is possible to instruct the compiler to retrieve only the information actually needed from
the SDF for the external COMPOOL. <variable list> in this case is simply a list of one or
more symbols defined in the COMPOOL named. Structure templates may also be
included (and indeed must be if structure variables employing them are to be included).
This is done by coding STRUCTURE <template name>. If <variable list> is long, it may
be continued onto several successive ‘D’ cards following the INCLUDE SDF directive.

For example, suppose a COMPOOL named ALPHA contains a large number of
variables as well as structure templates, and that information about only the variables
BETA_STRUC, GAMMA, and DELTA are needed for the compilation of some procedure.
BETA_STRUC is defined in the compool as being a (qualified) BETA-STRUCTURE;
3-10 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
GAMMA is defined as being a GAMMA-STRUCTURE; and so is unqualified. DELTA is a
scalar. Instead of coding

 D INCLUDE TEMPLATE ALPHA

which would cause the template for the entire COMPOOL to be INCLUDEd, one can now
code:

 D INCLUDE SDF ALPHA: STRUCTURE BETA,

 D STRUCTURE GAMMA, BETA_STRUC,

 D GAMMA, DELTA;

Notice that in order to employ this new SDF look-up facility, the compiler directive must
have the form INCLUDE SDF <block name>. If INCLUDE <member name> is coded
without the SDF keyword, search for an SDF will not take place (see Section 5.2 for more
information on this form of the INCLUDE statement).
3-11 November 2005

USA003090 HAL/S-FC User’s Manual
32.0/17.0
This page is intentionally left blank.
November 2005 3-12

HAL/S-FC User’s Manual USA003090
32.0/17.0
4.0 COMPILER LISTINGS
Following the Phase 1 compilation of a HAL/S program, the compiler produces a
standardized, formatted listing of the source code. In addition, large amounts of other
types of information are listed, some automatically, some under the control of user
options. If errors in the source program were encountered during compilation, error
messages are produced as well.

4.1 Format of the Compiler Listing
The HAL/S compiler has been designed to provide standard, automatic annotation of its
output listing in order to enhance the readability of HAL/S source code. The HAL/S
system allows each programmer to enter programs in a free-form input, without stringent
rules regarding indentation, statement labeling, number of HAL/S statements per line,
etc. The compiler, after generating object code, then edits the source program and prints
it in such a way that all program listings will follow the same coding rules. Programmer
flexibility is thus made possible without any loss in program readability or any increase in
the difficulty of program maintenance.

One element in the compiler’s standard formatting is the automatic expansion of single-
line input into the full HAL/S multi-line form. User-written statements such as

C =((X$1)(A$l)+((X$2)**2)(A$2)+((X$3)**3)(A$3))/Y**3;

are printed in the much more natural and easily readable mathematical notation:
C =(X1 A1 + X2

2 A2 + X3
3 A3)/Y

3;

Main lines of text are indicated in the compiler listing by an M at the beginning of the line;
exponent and subscript lines are indicated by E and S respectively. Exponents raised to
powers, or subscripted subscripts, etc., are indicated by more than one E or S line.
Subscripted exponents, however, and subscripts raised to powers, are not expanded to
multi-line format, in order to prevent confusion. Comment lines are indicated with a C in
the compiler listing, and compiler directives are indicated with a D.

Exponent (E) lines are also used to print the characteristic HAL/S data type
overpunches, indicating at each point what data type a variable is understood to be. The
table below lists the overpunch characters and their corresponding data types.

Exponent (E) lines are also used to print the overpunch for the “escape” character

CHARACTER DATA TYPE
* Matrix
- Vector
. Bit
, Character
+ Structure
4-1 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
translation (see Section 8.11).

The mark supplied is determined from the totally subscripted form of the variable. Thus
the overpunch may be changed by subscripting. For instance, a matrix variable
subscripted down to a particular row of the matrix (M$(2,*), for example) receives a
vector mark; a matrix subscripted down to a single element receives no overpunch at all.
Variables which possess arrayness are indicated by being placed in brackets (‘[‘ and ’]’),
while those with multiple copies due to structure copyness are placed in enclosing
braces (‘{‘ and ’}’).

HAL/S is a block oriented language, and the logical indenting of program blocks can do a
great deal to enhance the comprehensibility of a program’s structure. The compiler
automatically indents logically connected sections of program in the output listing. The
body of a DO...END group, for example, is always indented, as are the THEN and ELSE
clauses of any (compound) IF-THEN or IF-THEN-ELSE statements. The result is a
carefully indented listing in which the logical structure of the program is immediately
apparent. Programs indented in this way are always much easier to read and easier to
understand, and they conform conceptually to the requirements of structured
programming practice.

In addition to automatic indention, the compiler enhances program comprehensibility by
printing additional information to the right of each line of a compilation unit. In most
cases, this is the “current scope” which gives the name of the HAL/S block (PROGRAM,
PROCEDURE, FUNCTION, or TASK) to which that line belongs. The following
statements have information other than the current scope printed at the end of the line.
Exceptions and more details for these cases are listed in Section 2.6.1 of the HAL/S-FC
Compiler System Specification. 1) Cases specified in a DO CASE group within a block
are counted and the case number is printed in the scope field. 2) For END statements,
the statement number of its corresponding DO statement is printed in the scope field. 3)
For IF-THEN statements followed by a simple DO statement, the two statements are
printed on the same line if space allows and only the statement number for the IF-THEN
is printed to the left of the statement. For clarification, the statement number for the DO
is printed in the scope field in the form “DO=ST#X” where X is the statement number. 4)
For IF-THEN-ELSE statements followed by a simple DO statement, the DO is printed on
the same line as the ELSE if space allows. The value that appears in the current scope
field will be truncated if it exceeds the maximum length.

Any identifier which has been defined in a REPLACE statement as a label to be replaced
by text is indicated in the compiler listing by underlining. However, the replacement text-
- that is, the text as it is actually constructed by the compiler -- is not printed.

If the replacement text contained exponents or subscripts, blank E or S lines will be

CHARACTER ESCAPE LEVEL
_ Level One
= Level Two
4-2 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
printed for each level.If, however, you place a cent (¢) sign around a REPLACE label in
any statement referencing it, the original text which was replaced will be printed; for
instance:

 REPLACE ADD BY ‘A+B’;
 K=¢ADD¢;
 will output as:
 K=A+B;

in the formatted listing.

With one exception, no more than one HAL/S statement ever appears on a line in the
output produced by the compiler. An IF-THEN statement followed by a simple DO
statement will appear on the same line, unless the line is too long. Sometimes a single
HAL/S statement is broken up over more than one line. This occurs if the statement is
too long, of course; but it also occurs when it will aid comprehensibility of the program.
Thus, in an IF-THEN-ELSE statement, each clause is placed on a separate line; also
compound declarations are broken up to make them easier to read. The compiler
automatically numbers HAL/S statements (not lines) and prints the number of the current
statement to the left of each M line. In instances where the line following a DO CASE
statement contains a label, a sequencing error will occur, giving the same statement
number to two HAL/S statements (DR 103418, 10/22/90). Errors discovered by the
compiler are flagged in the listing and an error message is generated; see Section 4.3 for
more information.

A sample compilation listing is given in Figure 4-1.
4-3 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0

 Figure 4-1 Sample Compilation of Source File

4.2 Information Provided by the Compiler
Much information is provided in the compilation listing in addition to the formatted source
text. Each major phase (Phases 1, 2, 3, and 4) of the compiler produces a listing. The
Phase 1 listing begins with a “complete list of compile-time options in effect”, listing all of
the compiler options chosen by the user or else the defaults which were employed
instead (see Section 5.1 for a list of the available options and defaults).

The option listing is followed by the formatted source code. After each code block has
been printed (i.e., after each PROGRAM, FUNCTION, PROCEDURE, TASK, or
UPDATE) a “BLOCK SUMMARY” is provided which offers a summary of significant

SRN STMT SOURCE CURRENT SCOPE

 000002 1 D| INCLUDE TEMPLATE C2713A |AB|

 *****INCLUDED FROM SDF ##C2713A *****

 *****RVL CATENATION NUMBER 1 *****

 000009 C| |AB|

000010 2 M| C12713: |AA|C12713

000010 2 M| PROGRAM; |AA|C12713

000020 C| |AA|C12713

000021 C| |AA|C12713

000030 3 M| REPLACE ONE BY "1"; |AA|C12713

000070 4 D| INCLUDE C2713B NOLIST |AB|C12713

*****START OF INCLUDED MEMBER, RVL , CATENATION NUMBER 1*****

 *****END OF INCLUDED MEMBER, RVL , CATENATION NUMBER 1*****

000080 6 M| DO CASE I; |BA|C12713

000090 7 M| 1 K = ONE; |BA|CASE 1

000100 8 M| 1 K = 2; |BA|CASE 2

000110 9 M| END; |BA|ST#6

000120 C| |AA|C12713

000170 10 M| IF K = 1 THEN DO; |AA|DO=ST#11

000180 12 M| 1 IF J = 2 THEN DO; |AA|DO=ST#13

000190 14 M| 2 IF I = 4 THEN DO; |AA|DO=ST#15

000200 16 M| 3 I = 1; |AA|C12713

000230 17 M| 2 END; |AA|ST#15

000240 18 M| 2 ELSE DO; |AA|C12713

000250 19 M| 3 I = 16; |AA|C12713

000280 20 M| 2 END; |AA|ST#18

000281 21 M| 1 END; |AA|ST#13

000290 22 M| 1 ELSE |AA|C12713

000290 22 M| 1 DO FOR I = 1 TO 3; |AA|C12713

000300 23 M| 2 K = I J; |AA|C12713

000320 24 M| 1 END; |AA|ST#22

000330 25 M| END; |AA|ST#11

 E| * * | |

000341 26 M| M1 = M2; |AA|C12713

000342 27 M| M1 = M2 ; |AA|C12713

 S| 1,3 2,1 | |

 E| - - | |

000343 28 M| M1 = M2 ; |AA|C12713

 S| 1,* 2,* | |

000350 29 M| CLOSE; |AA|C12713
4-4 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
actions taken within the block: such as, which PROGRAMS and TASKs were scheduled,
terminated or canceled and which had their priorities updated; which event variables
defined outside the current block were changed or used in event expressions; which
external COMSUBs were called and which PROCEDUREs and FUNCTIONS defined in
the same program but outside the current block were called; which errors were sent by
SEND ERROR statements; which variables, replace statements, or structure templates
defined in a COMPOOL were employed, and which variables, replace statements, or
structure templates defined in the same program but outside the current block were
used.

Any variables which are assigned within the block appear with a * after the name.
Variables which are local to the block (i.e., are DECLARED within it) are not included;
neither are locally defined procedures, functions, replace statements, structure
templates, event variables, etc. This is because the block summary is intended to make
clear only the impact of a block on its external environment. Also, the summary for a
block will not repeat information already provided by the summary of a block nested
within it (i.e., if procedure A contains procedure B which schedules program C,
procedure B’s block summary will indicate that program C was scheduled, but procedure
A’s will not).

Following the source program, an overall “COMPILATION LAYOUT SUMMARY” is
provided, indicating the way in which PROGRAMS, TASKs, PROCEDUREs,
FUNCTIONs, and UPDATE blocks were defined. The indentation level in this listing
expresses graphically the nesting level of the block within the overall program. This
serves to give a quick overview of the program structure. Such a listing can be of
assistance not only as a documentation aid, but also as a guide to locating the definition
of procedures and functions which have been diagnosed as undefined by the compiler.
The compiler also produces a complete Symbol and Cross Reference table. This table is
divided into two parts. The first part is the “STRUCTURE TEMPLATE SYMBOL AND
CROSS REFERENCE TABLE” which lists all structure templates from the source
program alphabetically in a complete and fully cross-referenced form. The identifiers
defined within each template are listed beneath it. The second part is the “SYMBOL
AND CROSS REFERENCE TABLE” which contains every variable, statement label, and
block name from the source program alphabetically in a complete and fully cross-
referenced form.

Each line in the cross reference table provides several pieces of information about the
specific identifier described. Under DCL, the number of the statement in which the
identifier is first declared is printed. For explicitly DECLAREd variables, this is the
number of a DECLARE statement; otherwise it is the number of the statement in which
the identifier is first used. Under NAME, the name of the identifier is listed, preceded by
an asterisk if the variable was implicitly defined (e.g., inline functions). Identifiers which
appear in structure templates as structure terminals or minor structures are indented one
space from the structure template name under which they are defined.

Under TYPE, the TYPE of each identifier is described. For variables, both data type and
dimension are listed; e.g., INTEGER, 3-VECTOR, 6x2 MATRIX, CHARACTER(80),
4-5 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
STRUCTURE(5) - (this last indicating copyness). Arrayness is indicated, but not array
size, as by SCALAR ARRAY or BIT(8) ARRAY, for example. NAME variables are
indicated by preceding their type with NAME, as in NAME SCALAR. Structure templates
are described as such, while minor nodes and structure terminals within them are listed
with a structure level number along with their types, and are furthermore indented to
indicate the hierarchical organization of the template of which they form a part.
PROGRAMS, PROCEDUREs, TASKs, and COMPOOLs are listed as such; FUNCTIONs
are listed along with the type of the value they return - 2-VECTOR FUNCTION, for
example. UPDATE block names are listed as UPDATE LABEL; statement labels as
STATEMENT LABEL. REPLACE macros and their arguments are also listed, as
REPLACE MACRO and MACRO ARG.

The “ATTRIBUTES AND CROSS REFERENCE” field indicates first the declaration
attributes of variables or block names. Here the size of arrays is indicated, as are the
precision specification, lock group number, and the presence of any attributes such as
INITIAL, DENSE or ALIGNED, STATIC or AUTOMATIC, ACCESS, REENTRANT,
EXCLUSIVE, REMOTE, and/or LATCHED. Variables defined in TEMPORARY
statements have TEMPORARY in this field. Parameters to functions and procedures are
listed as INPUT PARM or ASSIGN PARM. Procedures and functions themselves may
be identified as EXTERNAL. Structures are listed as <template name>-STRUCTURE.
REPLACE macros have MACRO TEXT =“<text>” listed in the attribute field. Variables
(other than 16-bit NAME variables and structure templates) which are REMOTE due to
their COMPOOLS being included REMOTE will have the attributes of INCREM and
REMOTE. 16-bit variables that are included REMOTEly will only have the INCREM
attribute set (not the REMOTE attribute). For structure templates, all structures declared
using the template are also listed in this field.
Immediately following the attributes, a complete list of cross references to the identifier
appears, after XREF=. These indicate each place in the program at which the identifier
was referred to, and take the form N XXXX. XXXX here is a four digit specification of the
Internal Statement Number (ISN) and N is a cross reference flag which specifies the way
in which the identifier was used. A value for N of 0 indicates the ISN on which the
identifier is first defined; 1 indicates the ISN in which it is used in a subscript; 2 indicates
an ISN in which it is referenced (e.g., appears on the right of an equals sign or in a
WRITE statement) and 4 indicates an ISN in which it is assigned into (e.g. appears on
the left of an equals sign or in a READ statement). If more than one of these things
occurs in a single line, the sum of the applicable flags is printed; thus, if ISN 56 in a
program is “K=K+J;” the cross-reference information for variable K would be 6 0056, the
6 indicating that reference (2) and assignment (4) take place there. The definition
information will be printed separately if the variable is referenced in the same statement
in which it is defined (e.g. NAME nodes that point to the structure template name,
compound or factored declares that reference variables declared in the same
statements, or TEMPORARY loops that both define and assign variables).

Similarly, when a structure template is defined and referenced in a COMPOOL and later
referenced in a compilation unit that includes the COMPOOL, there will be two XREF
4-6 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
entries created for the structure template at the INCLUDE statement: one definition
XREF and one reference XREF. For all other data typed variables, there will only be a
definition XREF for the INCLUDE statement.

Warning messages may be inserted following the list of cross-references. “NOT USED”
will appear if the identifier appears in a DECLARE statement but is neither referenced
nor assigned. “NOT REFERENCED” appears if the identifier is assigned a value but is
never used in any reference context. Both of these describe situations which are unlikely
but will cause no difficulty in execution. If a variable is referenced but never assigned
into or initialized, however, clearly an error has occurred, and execution will not be
meaningful. In that case the message will be “*****ERROR*****REFERENCED BUT
NOT ASSIGNED.” It is not always possible to determine at compile time if a variable has
been initialized before being referenced. Refer to Section 8.13 of this document for
additional information and examples.
Identifiers which are structure terminals or minor nodes are listed twice in the cross-
reference table - once as part of a structure template and once as an actual structure.
The second time no attribute or cross-reference information is given and instead
“*****SEE STRUCTURE TEMPLATE <template name>” is printed. In many cases a
structure terminal or node will never be explicitly referenced or assigned, although
implicitly it will be used in statements involving the overall structure. Therefore, the
warning messages omitted by the compiler take on a more cautious tone when referring
to such identifiers - “POSSIBLY NOT USED” or “POSSIBLY NOT REFERENCED”, etc.,
are printed out.
Following the cross-referenced table a “Built-In Function Cross Reference” table is
printed. This simply lists all of the HAL/S built-in functions which are used in the
program, with information as to where and how they are used printed in the same N
XXXX format described above.

Next the compiler prints a report on the actual size reached by various compiler tables for
which a type 2 compiler option exists to control their allocated size (see Section 5.1).
The report shows the requested size, the amount actually used, and a <-<-<- flag to
indicate if the initial allocation was exceeded and automatically extended. This
information may be needed to change the requested sizes to reflect actual requirements
more closely. SYMBOLS refers to the number of identifiers used in the program;
MACROSIZE to the total number of characters used in replace macro definitions;
LITSTRINGS to the number of characters used in character literals; XREFSIZE to the
number of entries in the cross-reference table; and BLOCKSUM to the size of the tables
used in collecting information for BLOCK SUMMARIES. If the LISTING2 compiler option
was specified, an unformatted verbatim listing of the source program is now printed.
Then a series of performance statistics useful for those involved in work on the compiler
is listed; these are of no concern to the ordinary programmer, and will not be discussed.
A “Summary of Errors Detected in Phase 1” is also printed; see Section 4.3 for more
information. This ends the listing generated by Phase 1 of the compiler.

If the compiler option LIST has been specified, a completely formatted listing of the
object module produced by the compiler will also be printed. First, a list of all control
4-7 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
section names needed by the compiled program is emitted, in a format typical of IBM/360
compilers and translators. Then the object code is listed. This listing shows the
complete code generated for each control section in both hexadecimal and pseudo-
assembler formats. As each new HAL/S statement is encountered in the production of
object code, a line is printed in the format:

 ST#n EQU *

where n is the HAL/S statement number. A LABEL field is also given in order to indicate
both HAL/S label names and internal branch points. A SYMBOLIC OPERAND field
gives information about the symbolic operand referenced by the instruction. Following
this is a map of relocation information included in the produced object module, and then
more information about compiler performance. An error summary for Phase 2 is also
printed; see Section 4.3. Toward the completion of Phase 2, specific compiler
performance statistics (useful only to those involved in compiler development) are
printed, as are optional table sizes.

The Relocation Dictionary (RLD) information is then printed in a table format. The table
contains the Position Pointer (POS.ID), the Relocation Pointer (REL.ID), FLAGS, the
ADDRESS, and the CSECT for both POS.ID and REL.ID. POS.ID is the External
Symbol Dictionary Identification Number (ESDID) of the Section Definition (SD) for the
control section that contains the address constant. REL.ID is the ESDID of the External
Symbol Dictionary (ESD) entry for the symbol being referred to. FLAGS is the flag field
in the form TTTTLLSN, where TTTT is the type, LL is the length of the address constant,
S is the direction of relocation and N is the type of the next RLD item. For BFS, the
CSECT for REL.ID is blank for LEC entries.

A Phase 3 compiler listing is produced, informing the user of any INCLUDEd
COMPOOLs which are not used in the program, and whether the Simulation Data File for
the compilation unit was created or replaced.

Following the Phase 3 listing, an advisory section is printed. This section contains
information for the programmer about improvements that could be made to the source
code of the program.

Finally, in Phase 4, if the TABDUMP or TABLST compiler option was specified by the
user, a listing of the SDF produced by Phase 3 is printed. The listing consists of a
Translation Table which gives the identification codes (decimal and hexadecimal)
assigned to blocks, symbols, and statements in the program, listing the associated block
name, symbol name, and, if present, SRN, together with the virtual memory pointer to
the corresponding file node; and then a hexadecimal dump of the file, page by page. If
TABLST rather than TABDMP was specified as an option, a formatted listing of this
information is provided.
Note that if NOTABLES was specified as an option, Phase 3 and Phase 4 are not
executed: no Simulation Data File is produced, and no listing is printed either. See
Section 5.1 for information about all these options.
4-8 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
4.3 Error Messages Produced By the Compiler
When Phase 1 of the HAL/S compiler (the syntax checking phase) detects an error
condition, a diagnostic message describing the error is placed in the primary (formatted)
source program listing at the point where it was detected. These error messages take
the following form:

 *****c ERROR #n OF SEVERITY s.*****

 *****text of error message

After all error messages other than the first one in a given compilation, the following line
is also printed:
 *****LAST ERROR WAS DETECTED AT STATEMENT m*****

The letter c here represents a mnemonic error name uniquely identifying this message; n
indicates the number of errors which have so far been identified in the compilation; s is a
severity code; and m is the HAL/S statement number of the most recent previous
statement that received an error message.

The compiler can recognize any one of a large number of error conditions, and responds
by searching through the built-in ERROR library to find the correct message. Each error
(and each message) has a unique mnemonic designation or name used by the compiler
to search the ERROR library. The designation may be somewhat helpful to the
programmer because it describes in symbolic form the type of error encountered. The
error name consists of one or two letters, followed by a one or two digit number. The first
letter designates a “major error class” (e.g., errors related to assignment statements,
subscripting errors, etc.), while the second letter, if present, indicates a sub-class further
describing the error. The number specified simply indicates members of a class -
subclass group.
The severity indication s in the error message shows the effect of the error on the
compilation process. The possible severities and their effects are as follows:

No template is generated if a severity 1 (or greater) error occurs in Phase 1. No SDF is
generated if a severity 1 (or greater) error occurs before Phase 3.

A complete list of error groups and subgroups, as well as each of the actual error names
and messages possible and their severities, can be found in Appendix B, along with
more detailed explanations of many of the messages and suggestions as to how the
errors may be fixed.

In many cases when the compiler encounters an error condition, it makes some arbitrary

s = 0 - warning; compilation proceeds normally, execution still possible.
= 1 - error; compilation proceeds, execution prevented.
= 2 - severe error; syntax check (Phase 1) continues, code generation

(Phase 2) prevented.
> 2 - abortive error; compilation halts immediately.
4-9 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
but reasonable assumptions as to what actually was meant by the statement in which it
found an error. Such assumptions allow syntax checking to continue so that other errors
may be discovered. They may also, however, cause the compiler to find “spurious”
errors later on in the program, as a result of the compiler having made the wrong
assumption. Thus, if an identifier is discovered which has not previously been declared,
under most conditions the compiler, after emitting a “DU1 UNDECLARED IDENTIFIER”
message, treats it as a scalar. If however, the identifier had actually been meant by the
programmer to represent a BOOLEAN, for instance, and if a later statement attempted to
assign the value “TRUE” to it, another error message would result from the compiler’s
incorrect assumption. Error conditions which are especially likely to have this effect are
flagged with the message “ERROR RECOVERY MAY CAUSE SUBSEQUENT
SPURIOUS ERRORS”; when debugging, programmers should remain alert to such a
possibility in order not to waste time in a futile attempt to discover the source of a
spurious error.

Near the end of the Phase 1 source listing and table printout, a summary of detected
errors will be printed, in the following form:
x ERRORS WERE DETECTED. THE MAXIMUM SEVERITY WAS y. THE LAST ERROR WAS
DETECTED AT STATEMENT z.

 *****SUMMARY OF ERRORS DETECTED IN PHASE I*****

 ERROR# 1 of SEVERITY s1 AT STATEMENT e1

 ERROR# 2 of SEVERITY s2 AT STATEMENT e2 etc.

Phase 2 of the HAL/S compiler (the code generation phase) may also produce some
error messages. These messages have the form:

 <text of message>

 c ERROR n of SEVERITY s DURING CONVERSION OF HAL STATEMENT x

where x is the HAL/S compiler-assigned statement number to which the error refers.
The mnemonic error names for Phase 2 errors are very similar to those for Phase 1
errors, except that the number is always three digits instead of one or two. They too are
listed and explained in Appendix B. For the most part, Phase 2 errors will only occur if
Phase 1 errors were detected, and indeed the result of these same errors being
reencountered as code generation proceeds. Resolving the problems which led to the
various Phase 1 errors, therefore, will often cause Phase 2 errors to disappear.

In addition to printing out the Phase 2 error messages, the compiler also produces a
disposition message indicating the total effect of all Phase 2 errors on the compilation.
If there are attempts to downgrade an error and the downgrade was successful, then the
error message will still be printed, along with a message of the form:
****** THE FOLLOWING ERROR WAS DOWNGRADED FROM A SEVERITY ONE

ERROR TO A SEVERITY ZERO ERROR ******

 <text of message>
4-10 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
The severity will be changed to zero to allow compilation to continue. However, if an
attempt is made to downgrade an error that does not have a severity of one, then a
severity two error message will be produced. If downgrades are attempted then a
downgrade summary is produced in Phase 2, unless compilation is to be halted, then the
summary will be printed from the latest phase.

 The form of the Downgrade summary is:
************ DOWNGRADE SUMMARY *************

ERROR NUMBER c AT STATEMENT NUMBER n

***WAS DOWNGRADED FROM A SEVERITY ONE ERROR TO A SEVERITY ZERO ERROR
MESSAGE***

The letter c here represents a mnemonic error name uniquely identifying this message; n
indicates the statement number that this error occurred in.

If the downgrade was not successful the following messages will appear in the
downgrade summary:
*********** DOWNGRADE SUMMARY *****************

ATTEMPTED DOWNGRADES THAT WERE NOT DOWNGRADED*

**ERROR NUMBER c FOR STATEMENT NUMBER n WAS NOT DOWNGRADED,

REMOVE DOWNGRADE DIRECTIVE AND RECOMPILE***

If a downgrade is unsuccessful due to it not being needed, then compilation will return a
failure code but the object code and SDF will still be generated.

For further information concerning downgrading error messages, see Section 5.2
concerning compiler directives.

4-11 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
This page is intentionally left blank.
4-12 November 2005

HAL/S-FC User’s Manual USA003090

32.0/17.0
5.0 USER-SPECIFIED OPTIONS
Much of the compiler’s activity is potentially under user control. This is particularly true of
the compilation listing, but also holds with respect to many elements of the compilation
process proper. The user exercises such control by specifying compiler options and
directives. Compiler options are called for by the user in the JCL for the compilation step
by being coded on the EXEC card defining that step. Compiler directives, on the other
hand, actually appear in the source code to be compiled. Such directives are signaled to
the compiler by being placed in “compiler directive lines” which are indicated by coding a
D in the first column. Two of these - INCLUDE and VERSION - have already been
partially described in Chapter 3. This chapter describes all of the various options and
directives available to the user.

5.1 Compiler Options
Compiler options must be specified in the PARM field of the EXEC card in the user’s JCL
which actually invokes the HAL/S compiler. In all cases, options are separated in the
PARM field by commas (and no blanks).

Two distinct types of options exist. Type 1 options are controlled by the presence of
keywords in the PARM field, and take on the Boolean values “on” or “off”. To specify that
a particular option is desired - i.e., that its value should be “on” - simply its name should
be coded in the PARM field. To specify that its value should be “off” - i.e., that it is not
desired - its name preceded by the characters ‘NO’ should be coded. The LIST option
mentioned above in Section 4.2, for instance, is a type 1 option: either one desires to
have a listing of the object code produced and so specifies LIST, or else one does not,
and so specifies NOLIST.

Type 2 options, on the other hand, have numeric or character “values” which may be set
by the user. They are specified by coding what looks like an assignment statement in the
PARM field. The LITSTRING option is of type 2, for instance; a user would specify, e.g.,
that no more than 75 character literals will be permitted in his or her program by coding
LITSTRING=75 in the PARM field. (Note that the amount used for each character string
in the program is 1 more than the number of characters in the string).

It is not necessary to code a value for every available option in the JCL. Each option has
a default value defined for it, and in the absence of any reference to an option in the
PARM field the compiler assumes that the default value is desired. The default for the
LIST option, for instance, is “off”; hence if neither LIST nor NOLIST is coded in the user’s
JCL, NOLIST will be assumed and no object code listing will be produced.
Many options have alternate, shorter spellings which may be used interchangeably with
the standard option names in the user’s JCL. LIST, for example, may also be coded as
L; SYMBOLS may be coded as SYM. To turn a type 1 option with such an alternate form
“off”, N should be written instead of NO before the shorter name: “NL” therefore is
equivalent to NOLIST. Note that “NOL” or “NLIST” will not be recognized by the compiler.

The following complete list gives the name, alternate name, default value, and function of
each available option, first for type 1 and then for type 2.
5-1 November 2005

HAL/S-FC User’s Manual USA003090

32.0/17.0
Type 1 Options
(Alternate)
Keyword Default Function
ADDRS (A) off Causes the Simulation Data Files to include

statement address information.
DECK (D) off If specified, an additional copy of the object file

produced by Phase 2 is produced and sent to the
dataset defined on the OUTPUT4 DD card.

DUMP (DP) off Requests the compiler to produce a memory dump if
internal compiler failures occur; useful only for
compiler generation and debugging.

HALMAT (HM) off If specified, HALMAT and literal tables are included in
the SDF generated for this compilation. NOHALMAT
will reduce the size of the SDF considerably.

HIGHOPT (HO) off The high optimization option (HIGHOPT) allows the
compiler to perform optimizations that may not be
valid when the programmer uses %MACROs to
bypass the type checking protection provided by the
HAL/S language.
The high optimization option should not be used if any
of the following conditions exist within the compilation
unit.
a) A NAME variable is used to modify data that is of a
type different from that which the NAME variable was
declared to point. This can occur if the variable that
the NAME points to is modified via a %NAMEADD or
%NAMECOPY. If the NAME variable is in a
COMPOOL, the %NAMEADD or %NAMECOPY can
occur in any compilation unit that includes that
COMPOOL.
b) A %COPY is used to copy data beyond the bounds
of the destination variable listed in the %COPY
statement. This can occur when the %COPY
destination resides in a COMPOOL or when a
variable count is used.

LFXI (NONE) on The LFXI option causes the following:
1) Use of the LFXI instruction to load a register with
integer literal values, if the values are > = -2 and < =
13, excluding 0. If a literal value is outside this range
or NOLFXI is selected, the LHI instruction will
 be used to load the register. In both cases, a literal 0
is handled by the ZH instruction.
5-2 November 2005

HAL/S-FC User’s Manual USA003090

32.0/17.0
Type 1 Options
(Alternate)
Keyword Default Function

2) Use of the LFLI instruction to load a register with
scalar literal values (1.0, 2.0,...15.0). If a literal value
is outside this range, or is not a whole number with a
zero fraction, and is not equal to 0.0 or NOLFXI is
selected, the LE instruction will be used to load the
register. A value of 0.0 will use the SER instruction to
clear the register.

LIST(L) off Produces an assembly listing from Phase 2 of the
compiler (see Section 4.2).

LISTING2(L2) off Causes unformatted source listing to be generated
(see Section 4.2) and sent to the dataset defined on
the LISTING2 DD CARD.

LSTALL (LA) off Debug. Gives assembly and HALMAT in listing.
MICROCODE (MC) on Allows use of instructions which only exist on late

versions of the Space Shuttle GPC. This includes
SCAL, SRET, MVS, MVH, and BIX.

PARSE (P) off Debug. Gives parsing location information if an error
is encountered.

REGOPT (R) off Used to indicate to the compiler that register
optimization is desired. Allows borrowing of register 3
for addressing COMPOOL data. Unlike the SDL
option below, the stack setup is performed, allowing
execution on the APES simulator.
If the DATA_REMOTE directive is in effect, register
optimization is not performed, even if REGOPT
and/or SDL is specified.

SCAL (SC) on Coding NOSCAL specifically inhibits the use of the
SCAL and SRET instructions for subroutine linkage,
even if the MICROCODE option was also chosen.
MICROCODE and NOSCAL together thus cause
HAL/S linkage to be used instead of the SCAL/SRET
instructions. If NOMICROCODE was specified,
neither SCAL nor NOSCAL has any effect (see note
above with respect to error handling). Implemented in
BFS only.
5-3 November 2005

HAL/S-FC User’s Manual USA003090

32.0/17.0
Type 1 Options
(Alternate)
Keyword Default Function
SDL (none) off Used only to indicate to the compiler that this

compilation is for SDL (Software Development Lab)
use. Certain actions specific to SDL operation are
automatically performed, such as inclusion of SRNs,
Change Authorization Fields, and source record
revision indicators in the primary listing. As with the
REGOPT option above, this option indicates to the
compiler that register optimization is desired. If the
DATA_REMOTE directive is in effect, register
optimization is not performed, even if REGOPT
and/or SDL is specified. One side effect is that the
stack setup necessary for the APES is not performed.
Declaration of REMOTE (#R) data is restricted (see
section 8.12).

SREF (SR) off Causes only those variables from an included
EXTERNAL COMPOOL which are actually
referenced by the unit being compiled to be printed in
the cross reference listing.

SRN (none) off This should be specified if the source program is line
numbered. It causes the compiler to scan columns 1-
72 only, allowing columns 73-78 to be used for line
numbers.

TABDMP (TBD) off Causes Phase 4 of the compiler to produce a
hexadecimal dump of the Simulation Data File.

TABLES (TBL) on If not specified, Phases 3 and 4 of the compiler are
inhibited. Simulation Data File generation does not
take place, and FC real-time simulation, debugging,
etc., are not possible (although normal execution can
still occur).

TABLST (TL) off Causes Phase 4 of the compiler to produce a
formatted dump of the Simulation Data File. If
NOTABLES is specified, this will have no effect.

TEMPLATE (TP) off Causes the generation of a template for the
compilation unit.

VARSYM (VS) off If specified, SYM records will be included in the object
module produced by the compilation.

ZCON (Z) on Causes calls to out-of-line routines (external
references) to be performed via long indirect address
constants.
5-4 November 2005

HAL/S-FC User’s Manual USA003090

32.0/17.0
Type 2 Options
Standard Form
(Alternate)

Default Function

BLOCKSUM= (BS=) 400 Specifies the initial size of the internal compiler table
used for collecting information for printing block
summaries. As this value is exceeded, the system
will automatically allocate more space for it within
the available memory.

CARDTYPE= (CT=) null Allows statements with non-standard characters in
the first column to be treated in the standard HAL/S
fashion. A mapping of non-standard into standard
types (E, M, S, C, D and blank) is specified by
coding pairs of characters. E.g., if “CT=XCYM”
were coded, any lines with X in the first column
would be read as comments (C), while lines with Y
in the first column would be read as regular main
source code lines (M).

COMPUNIT= (CU=) 0 Specifies a compilation unit number, which is made
available in the SDF and in the Block Data Areas,
and which allows an analysis of active blocks in a
core dump.

DSR= (none) 1 Specifies the value to be used for the data sector
register in the right hand halfword of the R2 operand
of the MVH instruction. The compiler will use this
value explicitly when it is not possible to use a
standard z-type address constant in which the DSR
field is filled in by the link editor.

LABELSIZE=(LBLS=) 1200 Specifies the initial number of labels which can be
recognized by the compiler. As the value is
exceeded, the system will automatically allocate
more space for it within the available memory.

LINECT= (LC=) 59 Sets the maximum number of lines to be printed on
any one page of the primary or secondary
(unformatted) source listing.

LITSTRING= (LITS=) 2500 Specifies the maximum total number of characters
permitted in all character literals in the program to
be compiled. (Note that the amount used for each
character string in the program is 1 more than the
number of characters in the string).
5-5 November 2005

HAL/S-FC User’s Manual USA003090

32.0/17.0
5.2 Compiler Directives
A compiler directive is a specialized HAL/S command which serves to specify
information to the compiler about the listing and other auxiliary functions of the
compilation. Directives appear as actual lines within the source code, and are recognized
by the compiler by a D in the first column of the source line. The following compiler
directives have been defined for the HAL/S compiler.

MACROSIZE= (MS=) 500 Specifies the initial number of characters allowed in
the text of all REPLACE macro definitions. As the
value is exceeded, the system will automatically
allocate more space for it within the available
memory.

MFID= null Allows specification of the Major Function ID.
Implemented in PASS only.

Type 2 Options
Standard Form
(Alternate)

Default Function

OLDTPL= 0 Determines the logical record length of the
TEMPLATE file. When OLDTPL is not specified, an
80 byte TEMPLATE is generated. If OLDTPL=‘Y’,
then, if SRN or SDL option is specified, a 72 byte
TEMPLATE is generated, otherwise an 80
TEMPLATE file is generated. Implemented in BFS
only. As of 30v0/15v0 this option is no longer valid,
and all TEMPLATE files are created with an 80 byte
record length.

PAGES= (P=) 2500 Sets the number of pages to be used for the primary
compilation listing.

SYMBOLS= (SYM=) 200 Specifies the initial size of the symbol table to be
used by the compiler. As the value is exceeded, the
system will automatically allocate more space for it
within the available memory. Each symbol requires
53 bytes of storage plus 1 byte of storage for each
character in the symbol name.

TITLE= (T=) null Specifies a (1 to 60 character) title to be printed by
the compiler as a header at the top of each page of
the listing. The header should be specified
precisely as it is to appear; no quotes are
necessary.

XREFSIZE= (XS=) 2000 Specifies the initial number of cross reference table
entries available to the compiler. As the value is
exceeded, the system will automatically allocate
more space for it within the available memory. Each
entry requires four bytes of storage.
5-6 November 2005

HAL/S-FC User’s Manual USA003090

32.0/17.0
1. The DEVICE directive has the form:
 D DEVICE CHANNEL=n <option>

This directive sets the mode of the specified channel (referred to via the CHANNELn DD
card) to be the mode indicated by the <option>. The <option> may be “PAGED”,
“UNPAGED”, or null (in which case UNPAGED is assumed).

Character strings produced as output by channels which are designated as UNPAGED
will appear within quotation marks. Channels designated as PAGED, on the other hand,
will write a character string as output simply as is. In the absence of a DEVICE directive,
the compiler determines a default mode for a given channel in the following way.
Channels used only in WRITE statements are presumed to be PAGED, while those used
in READ or READALL statements are presumed to be UNPAGED. Thus, if output
channel 6 is referred to by WRITE(6) statements only, it will be PAGED by default. If
character data written to channel 6 is later input to the program via a READ(5) statement,
then since READ expects character strings to appear within quotation marks, a runtime
error will occur. This may be avoided by coding D DEVICE CHANNEL= 6 UNPAGED.

No more than one DEVICE directive may be specified for each channel. Channels which
are used to READ data may not be defined as PAGED.

Note that mode setting of channels is strictly a compile-time action; when more than one
compilation unit is involved, incorrect channel definitions may cause mode conflict at
runtime. More information on the effect of mode setting may be found in Sections 6.1.1
and 6.1.3.
2. The INCLUDE directive has the form:
 D INCLUDE <name> <option>

 or

 D INCLUDE TEMPLATE <unit name> <options>

 or

 D INCLUDE SDF <unit name> <options>

One use of the INCLUDE directive is to reference needed templates or SDFs for
programs, compools, or comsubs compiled separately from the main compilation unit.
Details on this particular aspect of the INCLUDE directive may be found in Chapter 3.

The INCLUDE directive may also be used as a way of avoiding the repeated insertion of
a common chunk of source code into a program. This facility allows one to include a
given code sequence more than once without calling a PROCEDURE, and may also be
used to assist in program structuring. The facility may be used in two ways:

a. The source code to be repeatedly inserted may reside as a member of a
partitioned dataset. In that case, this dataset should be defined in the JCL with
the same kind of HAL.INCLUDE (or HAL.OUTPUT6) DD card used to define the
template library (see Section 3.3.2). Standard JCL concatenation may be used;
e.g., if a PDS named TEMPLIB contains templates to be referenced by the
compilation, and another one named OTHERLIB contains other bits of source
code, then the following two lines of JCL would be needed:
5-7 November 2005

HAL/S-FC User’s Manual USA003090

32.0/17.0
// HAL.INCLUDE DD DSN=TEMPLIB,<other parameters>

// DD DSN=OTHERLIB,<other parameters>

Note that the dataset referred to must be the entire library, not the specific
member desired.
At the point in the source text where the other text is to be inserted, an INCLUDE
directive should be coded, in the following form:

D INCLUDE <name> <option>

<name> is the precise member name of the file in the INCLUDE library which is to
be included here. The name must be a 1-8 character string. The only <option>
available is NOLIST, in which case the included text is not printed in the primary
compiler listing; if no option is coded all included text is listed.

When the compiler encounters such a directive, it searches through the dataset(s)
defined on the HAL.INCLUDE DD card for a member with the required name; if
none is found, it also searches through the dataset defined on the HAL.OUTPUT6
DD card (see Section 3.3.2).

b. The user can also specify HAL/S source to be in-stream without having to pre-
define the text in an INCLUDE library partitioned dataset. The DEFINE and
CLOSE directives are used first to define the text to be included, and then later
INCLUDE directives referencing this text.
To define a local INCLUDE member, the following directives are used:

D DEFINE <member name> [LIST]

 .

 . <text for member>

 .

D CLOSE <member name>

The specified member name may be from 1 to 8 characters long, and must be
specified on both the DEFINE and CLOSE directive. The optional LIST parameter
will cause the source text to be listed in the same manner as comment cards (i.e.,
no reformatting will take place since no compilation takes place at this time). The
default is not to list the source lines, since they will be listed when INCLUDEd
later.

The normal INCLUDE directive is then used to retrieve the defined member:

D INCLUDE <member name> [NOLIST]

To use this facility, the following JCL card should be added to the HAL compile
step:

//HAL.OUTPUT8 DD UNIT=SYSDA,SPACE=(TRK,(2,2,1)),

// DCB=(RECFM=B,LRECL=80,BLKSIZE=1680)
5-8 November 2005

HAL/S-FC User’s Manual USA003090

32.0/17.0
This causes locally defined included text to be temporarily placed on an
OUTPUT8 dataset; if such a card is present, any later INCLUDE directives cause
the compiler to search OUTPUT8 before it searches any INCLUDE libraries.

It is permissible to have INCLUDE directives specified within local DEFINEd
sequences. However, the text to be included must be previously defined, either
as a previous local definition, or as a member of an existing INCLUDE library.
Such INCLUDEd text actually becomes a part of the member being defined. It is
not permissible to have INCLUDE directives within INCLUDEd sequences.

c. SUMMARY
The following table summarizes the various possible forms of the INCLUDE directive,
and indicates which DD names are searched, and in what order, to find the code which is
to be included:
 INCLUDE <name> OUTPUT8,INCLUDE,OUTPUT6

 INCLUDE SDF <block name> HALSDF,OUTPUT5

 INCLUDE TEMPLATE <block name> HALSDF,OUTPUT5,INCLUDE,OUTPUT6

 INCLUDE TEMPLATE <block name> NOSDF INCLUDE, OUTPUT6

<name> must be the explicit member name under which the text to be included is filed.
<block name> is the name of a compilation unit; the compiler automatically computes the
explicit member name and searches for it (see Sections 3.2 and 8.10 for information
about the member names under which templates and SDFs are stored).

The following options are available for use with the INCLUDE compiler directive:

In addition, the INCLUDE SDF directive will also support the following syntax:

 D INCLUDE SDF <compool name> <options>:<name list>;

where <name list> is a list of one or more symbols defined in the COMPOOL named.
See Section 3.5 for more details.
3. The PROGRAM directive has the form:
 D PROGRAM ID=<id>

This directive provides a Program Identification Name to be used by the compiler to
determine access rights to controlled resources as described in Section 8.6.

NOLIST Indicates that the INCLUDEd source is not to be listed in the
primary compilation listing.

REMOTE Indicates that the external COMPOOL being INCLUDEd is to
be addressed via ZCONS (INCLUDE TEMPLATE and
INCLUDE SDF only).

NOSDF Forces the INCLUDE to be from a template; the SDF library is
not searched (INCLUDE TEMPLATE only).
5-9 November 2005

HAL/S-FC User’s Manual USA003090

32.0/17.0
4. The VERSION directive has the form:
 D VERSION @

where “@” is a character whose hexadecimal value is the version number. See Section
3.4 for a more detailed description of version numbers, and the form of this directive.
Because generation of version numbers takes place automatically, the only situation
where a version directive might be employed would be in a user-creation of a template.
5. The EJECT directive has the form:
 D EJECT

and causes the compiler to begin a new page before resuming generation of the primary
source listing. The EJECT directive is not itself printed on the listing.
6. The SPACE directive has this form:

 D SPACE [<n>]

where n is an integer. This directive causes the compiler to skip <n> lines prior to
generation of the next line in the primary source listing. If <n> is greater than 3, it will be
set to 3. The SPACE directive is not printed on the listing.
7. The DEFINE directive has the form:
 D DEFINE <name> <option>

This directive is used when a local INCLUDE member is placed within the body of a
HAL/S program. It delimits the statements following it as that which can be INCLUDEd
(very much like a HAL/S subprocedure) a number of times at different points in the
program.
See “the INCLUDE directive” (2), above, for more information.
8. The CLOSE directive has the form:

 D CLOSE <name>

This directive specifies the end of the text to be INCLUDED which began with the
DEFINE directive. See “the INCLUDE directive” (2), above, for details.
9. The DOWNGRADE directive has the form:
 D DOWNGRADE <error number>

where error number is the mnemonic error name which uniquely identifies the error to be
downgraded. An example of an error to downgrade is as follows.
 D DOWNGRADE Z01

This directive allows the user the ability to downgrade a severity one error message to a
severity zero error message. The directive must be before the statement in which the
error to be downgraded occurs. More than one directive may be applied to a single
HAL/S statement if more than one severity one message is produced by the statement.
If the directive is placed in the middle of the source for a HAL/S statement, the directive
5-10 November 2005

HAL/S-FC User’s Manual USA003090

32.0/17.0
will apply to the statement in which the directive is found. There is a limit of twenty-one
downgrades per compilation unit.
10. The DATA_REMOTE directive has the form:
 D DATA_REMOTE

 or

 DATA_REMOTE

This directive tells the compiler that all local data declared in the compilation unit (#D
CSECT data) could be placed in a sector other than sector 0 or 1. This is useful in freeing
up 16-bit addressable memory to meet the requirements of large program data areas,
but forces the compiler to generate less efficient object code in order to address local
data. The less efficient code is due to Data Sector Extension (DSE) manipulation and
changes in register allocation.

The directive must be placed before the PROGRAM/PROCEDURE statement in the
compilation unit, and is illegal in a COMPOOL compilation. More than one instance of the
DATA_REMOTE directive occurring in a compilation unit has no ill effect; it is the same
as using one directive.
When the DATA_REMOTE directive is used, there are two restrictions which are
imposed on all local (#D) data, due to the fact that a 32-bit fullword (19-bit address) is
now required to access this data:

a) Local data cannot be assigned to a 16-bit NAME variable by a NAME
assignment statement, NAME INITIAL statement, %NAMECOPY, or
%NAMEADD, as the target must be a 32-bit NAME REMOTE variable.

b) Local data cannot be declared as EVENT type, since SVC parameter lists only
use 16-bit address fields.

An error message will be emitted if any of the above restrictions are not met. Also, the
REMOTE attribute is ignored for non-NAME variables of a compilation unit with the
DATA_REMOTE directive in effect.

Notes
• CONSTANTs declared in a COMPOOL as type INTEGER DOUBLE, SCALAR, and

CHARACTER are actually located in the including compilation unit’s #D CSECT.
Therefore, if that compilation unit contains the DATA_REMOTE directive, those
CONSTANTs will be treated as #D data even though they were declared in a
COMPOOL. The above restrictions will be imposed on those CONSTANTs, and the
CONSTANTs will be addressed in the same way that #D data is addressed.

• Data declared AUTOMATIC in a REENTRANT procedure is allocated on the runtime
stack, not the #D CSECT, so the DATA_REMOTE directive has no effect on such
data.
5-11 November 2005

HAL/S-FC User’s Manual USA003090

32.0/17.0
This page is intentionally left blank.
5-12 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
6.0 HAL/S INPUT-OUTPUT OPERATIONS

6.1 Sequential I/O
Sequential I/O is that part of the HAL/S input-output capability consisting of the READ,
WRITE, and READALL statements. It is the only I/O capability available on the FC. This
section will describe the types of files available for sequential I/O, the input data types
expected, standard formatting performed on output, and some JCL considerations.

Note that the I/O operations described here are those performed when simulated FC
execution is taking place. This form of output is intended only for program checkout
purposes and is in no way meant to correspond to the actual flight computer I/O
structure. In fact, all I/O operations for FSW are setup by the HAL/S-FC runtime library
and actually performed by the operating system.

In certain cases, these operations may not be precisely identical to those described in
the Language Specification.

6.1.1 PAGED and UNPAGED Channels
As described in the Language Specification, Section 10.1, files used for sequential I/O
are considered by the HAL/S system to be in either PAGED or UNPAGED mode. The
file mode determines both the effect of various I/O control functions (LINE, PAGE, etc.)
and the format in which output is produced. The I/O control functions are described in
Section 10.1.3 of the Language Specification, while output formats will be described
below, in Section 6.1.3.

Default modes are assigned to files depending on their use: files used only as output
channels are presumed to be PAGED, while those used for input to READ or READALL
statements are presumed to be UNPAGED. For simple applications, these defaults are
satisfactory, but in cases where a file used for output at one point in a program is to be
used for input later on, some changes may be needed. Information on how to specify
PAGED or UNPAGED mode for a particular I/O channel may be found in Section 5.2(1).

6.1.2 Input Data Formats
The system expects any data which serves as input to READ statements in a HAL/S
program to be in the following form:

1. SCALAR and INTEGER data types may be entered in either a whole number or
floating point format. The whole number representation consists of a string of
decimal digits preceded by an optional - sign. Conversion to mantissa-exponent
form takes place for scalar types.

The floating-point representation is either:
 ddd.dddd

 or
6-1 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
 E
 dddd.dddd B ±dd

 H

where d is a decimal digit. The decimal point may appear in any position. E,B,
and H represent the exponent digits to be powers of 10, 2, and 16 respectively.
There is no limit on the number of digits in the integral, fractional, or exponent
parts although runtime errors may occur if the value is internally unrepresentable
(see Section 8.2 for the maximum and minimum representable values). For
INTEGER types, the representation is rounded to the nearest integral value. The
floating-point representation may be prefixed by a + or - sign to indicate the sign of
the value. In the absence of such a prefix, the value is assumed to be positive.

2. CHARACTER types are represented by a string of characters (from the HAL/S
extended set) enclosed in apostrophes. The number of characters may vary
between zero (a “null string”) and 255. Within the string, apostrophes must be
represented by an apostrophe pair.

Note that the READALL statement may be used to allow input of character strings
without requiring them to occur within apostrophes. See Language Specification,
Section 10.1.1.

3. BIT types may be represented by a string of ‘1’s and ‘0’s enclosed in apostrophes.
Embedded blanks are ignored. The number of bits may vary between one and
32. An alternate representation allows bit strings to be implicitly expressed by
coding a floating-point number in the format described in (1), above. The number
is rounded to the nearest integral value, and the binary representation of the
resulting integer is taken.

6.1.3 Output Data Formats
Output from WRITE statements will be produced in the following form:

1. Integers - each integer, no matter what its precision, is printed in an 11-character
field. The number is right justified, and leading zeros are suppressed. A minus
sign precedes the number if necessary.

2. Scalars -
• Single precision: a 14-character field is printed as follows:

 sd.dddddddE±dd

where s is a blank or minus sign.
• Double precision: a 23-character field is printed as follows:

 sd.ddddddddddddddddE±dd
3. Bit Strings -

• If the output channel is PAGED, the output consists of a string of binary digits
corresponding to the bit string. Leading binary zeroes are not suppressed. The
field width is equal to the number of binary digits in the string plus an inserted
6-2 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
blank following every fourth digit (to enhance readability). This form may not be
used later as input to READ statements.

• If the output channel is UNPAGED, the output consists of the string of binary
digits plus inserted blanks enclosed within apostrophes. The field width is
equal to the total of the number of digits, blanks and two apostrophes. This
form is compatible with later use in READ statements.

4. Character Strings -
• If the output channel is PAGED, the output merely consists of the string of

characters comprising the value. The field width is equal to the number of
characters in the string. This representation is not compatible with later use as
input to READ statements. It is compatible with READALL, however.

• If the output channel is UNPAGED, the string of characters is enclosed in
apostrophes, and all internal apostrophes are converted to apostrophe pairs.
The field width is equal to the total number of characters in the string, including
added apostrophes. This form is compatible with later use as input to READ
statements.

6.1.4 JCL Considerations
The device numbers used in WRITE, READ, and READALL statements are limited to the
range from 2 to 9. The ddname associated with device number n (where n is within this
range) is CHANNELn.

The HAL/S I/O routines make certain assumptions about the characteristics of the
datasets which are defined on the various CHANNELn DD cards. The user may supply
any, all, or none of the DCB attributes for each CHANNELn DD card. The following
restrictions and defaults are defined:

 RECFM - the record formats acceptable to HAL/S are:
 F FB FA FBA FBSA

 V VB VA VBA

 U UA
Machine carriage control (M) is acceptable but is subject to the interpretation described
below, under “carriage control”.

Variable length records may be read as input, but the 4 byte descriptor field on each
record will not be available to the programmer. Thus, the effective length of a variable
record will be four less than the length read. Variable length record specification on
output will cause records to be written in variable format. Format U records (undefined
record format) on output will be written in the proper form, but all records will have the
same LRECL (length).

If no RECFM is supplied, the record formats assigned are FBA (for PAGED files), and FB
(for UNPAGED files).

LRECL - if not supplied by JCL or dataset attributes, the default is 133 (for PAGED files)
6-3 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
and 80 (for UNPAGED files).
BLKSIZE - if no blocksize is supplied in the JCL or the dataset label, then the maximum
block size of the particular device is found. The BLKSIZE is set to the largest multiple of
LRECL which is less than or equal to this block size. Note that for tapes, this maximum
size is 32767 bytes which would require a sizable buffer area to be taken out of main
storage.

Carriage Control - PAGED files with “A” specified in the RECFM cause carriage control
characters to be automatically generated on output. If a PAGED file has “M” specified,
no such automatic character control generation takes place, and it is the user’s
responsibility to ensure that the first character of each output line has the proper control
character. Control characters are not permitted on UNPAGED files used for output.
Carriage control characters encountered during input are available to the programmer;
i.e., scanning of the input begins at the carriage control character.

6.2 File I/O
File I/O is not supported by the HAL/S-FC runtime library. If a FILE I/O statement is
compiled, unresolved external references will occur at link edit time.
6-4 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
7.0 THE HAL/S USER CONTROL PROGRAM (HALUCP)

This section was deleted by CR13613.
7-1 November 2005

USA003090 HAL/S-FC User’s Manual
32.0/17.0
This page intentionally left blank.
November 2005 7-2

HAL/S-FC User’s Manual USA003090
32.0/17.0
8.0 IMPLEMENTATION DEPENDENCIES
The HAL/S language as available on the AP-101 has several implementation
dependencies. These dependencies arise due to the specific hardware and software
facilities available on the machine. Certain additional facilities, not discussed in the
Language Specification, are also available. This chapter describes a number of these
implementation dependent features.

In particular, discussed here are the character sets available on the AP-101 and the
limitations imposed by the HAL/S-FC compiler on the size of data items and the
complexity of programs (Section 8.1); the specific runtime characteristics of the FC
(Section 8.2); a discussion of runtime errors (Section 8.4); details about specification of
access rights (Section 8.5), a list of available %macros (Section 8.7); a description of the
conventions followed by the compiler in naming control sections (Section 8.9); a list of
the character code conventions used in this machine (Section 8.10); and a discussion of
the effect of specifying data items as REMOTE (Section 8.11).

8.1 Compile Time Characteristics

8.1.1 Character Set
The character set specified in the HAL/S Language Specification document is available
in its entirety on the AP-101. The HAL/S-FC compiler will therefore recognize this full
character set. The internal coding scheme for the characters is NASA DEU code. No
other coding scheme is recognized. See Section 8.10 for more information on character
codes.

8.1.2 Data Size Restrictions
1. Up to 74 decimal digits may appear in an arithmetic literal preceding the

exponent field.
2. There is no limit to the number of exponent modifiers which may be

appended to an arithmetic literal, so long as the total length of the literal does
not exceed 256 characters. However, application of each exponent to the
mantissa to which it belongs may not cause generation of a number outside
the range 10**-78 to 10**75.

3. Bit literals may not indicate values requiring more than 32 bits.
4. Bit variables may have declared lengths of from 1 to 32 bits.
5. Character literals may not contain more than 256 characters.
6. Character variables are limited to declared lengths of 255 characters.
7. Comment brackets (/*...*/) may not enclose more than 255 characters in any

one comment.
8. Arrays are limited to three dimensions.
9. Each declared dimension in an array is limited to the range 2 to 32767 and

the maximum number of allowable elements is 32767.
8-1 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
8.1.3 Program Organization Limits

10. The number of declared multiple copies allowed for a structure variable is
limited to the range 2 to 32767 and the maximum number of allowable
elements is 32767.

11. The maximum declarable dimension of a vector is 64.
12. The maximum declarable row or column dimension of a matrix is 64.
13. The maximum level of allowed subscripts (S lines) or exponents (E lines) is

11 on a single statement.
14. The valid range of error groups for user defined errors is 1 to 127. The valid

range of error numbers is 0 to 62. See Appendix C for a list of system-
defined errors.

1. No more than 8191 user-defined symbols should be defined in one
compilation unit. More symbols will be accepted by the compiler, but
incorrect cross-reference information may result.

2. The number of cases in a DO CASE statement is limited to 256.
3. The depth to which code blocks may be nested is limited to 16 levels.
4. The maximum number of nested DO-END groups is 24.
5. The maximum level to which function invocations may be nested is 20.
6. No more than 32,767 literals may be defined in any one compilation unit.
7. The maximum number of labels recognized by the compiler is under the

control of the “LABELSIZE=” compiler option. See Section 5.1.
8. The maximum number of characters which may be defined in all character

string literals in one compilation is under the control of the “LITSTRINGS=”
compiler option. See Section 5.1.

9. There is no compiler-imposed limit on the number of COMPOOL blocks
appearing in a program complex except the limit implied by the number of
user-defined symbols allowed (specified by the “SYMBOLS=” compiler
option).

10. The maximum number of user-defined symbols allowed in one compilation is
under the control of the “SYMBOLS=” compiler option. See Section 5.1.

11. The maximum number of cross-reference list entries allowed in a compilation
unit is under the control of the “XREFSIZE=” compiler option. See Section
5.1.

12. The maximum number of parameters allowed in the definition of any
REPLACE macro is limited to 12.

13. The maximum size of any argument used in the expansion of a REPLACE
macro is limited to 250 characters.

14. The depth to which macro expansions may invoke other macros may not
exceed 8 levels of nesting.

15. The maximum number of external names (ESDs) allowed in one compilation
is limited to 400, of which no more than 256 may be CSECTs defined by the
compilation unit.
8-2 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
8.2 Runtime Characteristics
The hardware available on the AP-101, as well as the design of operating system
support software, determine the kind of storage available at run-time for various data
types, and influence the way conversions between data types are made. These
characteristics are described below.

16. The maximum number of “ON ERROR” statements which may be potentially
active at any time in any compilation unit is limited to 100.

17. The number of arguments indicated in a subroutine invocation may not
exceed 100. This limit includes arguments of nested function invocations;
i.e., function invocations which are themselves part of a list of arguments.

18. The NONHAL attribute is not implemented.
19. Because of compiler limitations, large statements will be processed normally,

but will not be optimized.

1. Single precision integers are represented as l6-bit signed quantities, and
hence INTEGER SINGLE variables cannot take on values outside the range -
32,768 to 32,767.

2. Double precision integers are represented as 32-bit signed quantities, and
hence INTEGER DOUBLE variables cannot take on values outside the range
-2,147,483,648 to 2,147,483,647.

3. Single precision scalar values are represented internally in the standard AP-
101 floating point format using 32 bits (1 sign, 7 exponent, 24 mantissa).
SCALAR values outside the range +10**-78 to +10**75 are therefore
unrepresentable. 7 significant digits are maintained.

4. Double precision scalar values are represented internally in the standard AP-
101 double precision format using 64 bits (1 sign, 7 exponent, 56 mantissa).
The available range for double precision scalars is thus essentially the same
as that for single precision scalars, but 16 significant digits are maintained.

5. The dynamic size of character variables may not exceed 255.
6. The length of bit variables must be in the range 1-32.
7. Runtime conversion of double precision scalar values to single precision

scalar values is performed by truncating the right-most 32 bits from the
double precision mantissa.

8. Runtime conversion of double precision integer values to single precision
integer values is performed by eliminating the left-most 16 bits of the double
precision value.

9. Runtime conversion of integer values to scalar values is performed by
converting the integer value to a double precision scalar value retaining all
significant digits. If the final result of the conversion is to be single precision
scalar, the standard double-to-single precision scalar conversion is then
applied to the intermediate scalar value.

10. Runtime conversion from scalar to integer results in an error condition if the
scalar value cannot be represented in the integer form.
8-3 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
8.3 Real-Time Statements
This section was deleted by CR13613.

8.4 Runtime Errors
Each HAL/S runtime error is given a mnemonic name, consisting of an error group
number and an individual error number within that group. This is true both of system-
defined errors and of those which are user-defined (see Chapter 9 of the Language
Specification for more information about error definitions). A complete list of system-
defined errors may be found in Appendix C.

The response to an error condition encountered at runtime is also either under user or
system control. If an “ON ERROR...” statement for that error appears in the program, the
clause following ON ERROR determines the action. If this clause is “SYSTEM”, or if no
such statement occurs for a particular system-defined error, then a standard action is
taken. These various default system actions are also listed in Appendix C. Otherwise
the clause after ON ERROR defines some specific action to be taken in lieu of the
standard one. This may be some HAL/S statement to be executed, or else may be the
keyword “IGNORE”. Thus three types of action may occur - “SYSTEM action”,

11. Runtime conversion from single precision integer to double precision integer
is performed by propagating the sign bit of the single precision value
throughout the 16 high order bit positions of the double precision value.

12. Runtime conversion of single precision scalar to double precision scalar is
performed by padding 32 zero bits to the right of the single precision
mantissa.

13. Runtime conversion of double precision scalar to character produces a 23
character field with two exponent digits and 17 fractional digits. A double
precision scalar literal converts to a single precision character unless the
precision of the literal is in some way specified (e.g. with a CONSTANT
declare or with a shaping function). See related user’s note 17. See Section
6.1.3 for format.

14. Runtime conversion of single precision scalar to character produces a 14
character field with two exponent digits and 8 fractional digits. See Section
6.1.3 for format.

15. Runtime conversion of a single or double precision integer to a character
string results in a variable length field of up to 11 characters. See Section
6.1.3 for format.

16. Runtime conversion from a character string to an integer or scalar can take
place only if the character string is in one of the standard input formats for
scalar or integer data types. See Section 6.1.2 for details.

17. The DATE built-in function returns a double precision integer whose decimal
value is YYDDD where YY are the year and DDD represents the day of the
year (i.e., February 1, 1978=78032).

18. The RUNTIME and CLOCKTIME built-in function returns a double precision
scalar. RUNTIME returns the simulated elapsed time.
8-4 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
“statement action”, and “IGNORE action”.

8.5 ACCESS Rights
As described in the Language Specification, it is possible to place managerial restrictions
on variables declared in COMPOOLS and on external code blocks by means of the
ACCESS attribute. The HAL/S-FC compiler enforces such restrictions in the following
manner.

Any COMPOOL variable, and any external routine, to which the ACCESS attribute has
been applied is considered to be restricted for the compilation unit which is being
compiled. The restriction is slightly different for variables than for blocks:

1. Variables with the ACCESS attribute may not have their values changed (but may,
e.g., be referenced).

2. Block names may not be used at all.

These restrictions may be selectively overridden for individual variable and block names.
The list of these ACCESS controlled names which are to be made available to the unit
being compiled is provided to the compiler via an external dataset. This external dataset
is known as the Program Access File (PAF). The PAF must have partitioned
organization and is specified by a JCL card provided to the compilation step in the
following format:
//HAL.ACCESS DD DSN=<PAF name>,<other parameters>

where the <PAF name> is the dataset name of the PAF without any member
specification. This card should follow the EXEC card which invokes the compiler. Note
that a PAF need not be defined if the access control facilities of the HAL/S compiler are
not being used.

Each member of the PAF contains information about ACCESS controlled names which
are to be made available to one unit of compilation. The member to be used is specified
to the compiler by using the PROGRAM compiler directive in the primary input stream:
 D PROGRAM ID=<id>

The <id> field of the directive is a 1 to 8 character Program Identification Name (PIN)
which is the name of the member of the PAF which is to be processed for the current
compilation’s ACCESS information. The appearance of the PROGRAM directive in the
compiler’s input stream causes immediate processing of the PAF member specified.
Therefore, the PROGRAM directive must follow any COMPOOL or COMSUB templates
which may specify ACCESS-controlled data. Also, the PROGRAM directive must
appear before the definition of the block which is the primary unit of compilation. In
general, the input stream seen by the compiler should look like the following:
 <COMPOOL or COMSUB template>

 .

 .

 .
8-5 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
 <COMPOOL or COMSUB template>

 D PROGRAM=<id>

 M PROG_NAME: PROGRAM;

 .

 .

 .

The format of an individual PAF member is specified below.
1. Column 1 of each record is ignored except when it contains the character “C”,

in which case the entire record is ignored.
2. The portion of each record which is processed is the same portion which is

processed in the primary compiler input (generally columns 2-80).
3. COMPOOL elements which are to be made available to the compilation are

specified as:
 <COMPOOL-name>(<var-name>,<var-name>,...,<var-name>)

or
 <COMPOOL-name>($ALL)

The first format specifies access to particular variables within the named
COMPOOL. The second format specifies access to all variables within the
named COMPOOL.
4. Access to external block names is specified as:

 $BLOCK(<block-name>,<block-name>,...,<block-name>)

5. Blanks are allowed anywhere in the record, except that names may not be
broken by a blank.

6. Either of the constructions (3) or (4) above may span more than one record.
7. The name of the particular COMPOOL in form (3) above may appear more

than once; i.e., the variables in a particular COMPOOL do not have to be
specified at one time. Similarly, the form $BLOCK may appear more than
once.
8-6 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
Some validity checking is performed by the compiler while processing the PAF
member. Warnings are issued for the following conditions:

If, at the time the PROGRAM directive is encountered, no ACCESS-controlled variables
have been declared, the PAF is not opened. If a user does not require access to any
ACCESS-controlled variable, the PROGRAM directive and associated PAF members
may of course be omitted.

8.6 Language Subset Restriction Capability
A language subsetting facility exists in the HAL/S AP-101 system whereby specific
constructs in the HAL/S language may be defined as illegal. If a HAL/S program using
such a construct is compiled, Phase 1 of the compiler will emit a warning message.

Constructs which may be so restricted fall into two classes:
1. Specific productions in the HAL/S grammar (which is shown in Backus-Naur

notation in Appendix G of the HAL/S Language Specification);
2. Specific built-in functions from the set defined in Appendix C of the HAL/S

Language Specification.
The compiler is informed which productions and built-in functions are to be illegal by
having this information provided in a special member (named $$SUBSET) of the
Program Access File described in Section 8.5. If the subsetting capability is to be used,
therefore, an ACCESS DD card must be provided in the user’s JCL as described above.

The contents of $$SUBSET specify which productions and built-in functions are to be
illegal. The following rules govern the format of this file:

1. A syntax error on a PAF record - the bad record is printed.
2. Names mentioned in the PAF have not yet been defined (possibly caused by

faulty positioning of the PROGRAM directive).
3. Elements of $BLOCK in the PAF are not block names.
4. Requests are made for names which are not ACCESS protected.
5. The variables named have been found, but not within the COMPOOL

specified.
6. The <COMPOOL-name> given is not the name of a COMPOOL.
7. Elements of an ACCESS-protected COMPOOL block are mentioned in the

PAF before the COMPOOL block itself is freed for use.

1. Line 1 is a title line which is transferred by the compiler in its entirety to the
formatted listing output. Its contents are arbitrary.

2. Any subsequent line beginning with C is considered a comment line and is
ignored; otherwise, it is scanned.

3. On scanned lines, blanks are ignored.
4. Text can be continued arbitrarily from line to line.
8-7 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
Example:

A $$SUBSET with the contents shown below will make illegal all real-time constructs,
including UPDATE blocks, and any associated built-in functions:
 HAL/S-360 WITH NO REALTIME CONSTRUCTS

 C THE FOLLOWING PRODUCTIONS ARE ILLEGAL

 $PRODUCTIONS(67,68,71,74,201,219,313,315,371,

 381,433,434,437,438)

 C THE FOLLOWING BUILTINS ARE ILLEGAL

 $BUILTINS(PRIO,NEXTIME,RUNTIME)

Note that if, e.g., 438 is specified, it is not necessary to specify 439-441, since (as
Appendix G of the HAL/S Language Specification shows) these latter define
<SCHEDULE HEAD> recursively and ultimately rest on the non-recursive definition of
438.

An additional useful capability exists. It is possible to specify in $$SUBSET a maximum
length which bit strings (literals or variables) may take on any compilation. The syntax for
this is:
 $BITLENGTH <n>

where <n> is the maximum length bit string allowable and must be less than or equal to
32 (the maximum allowable on the host computer).

At the beginning of execution, Phase 1 of the compiler determines which productions
and/or built-in functions are to be made illegal by scanning member $$SUBSET of the
dataset defined on the ACCESS DD card. If no such card was specified, or if member
$$SUBSET for any reason cannot be accessed, no language restrictions are taken to be
in force. Phase 1 of the HAL/S compiler emits the message:
 *** NO LANGUAGE SUBSET IN EFFECT ***

If member $$SUBSET is successfully accessed, Phase 1 emits the message:
 *** LANGUAGE SUBSET IN EFFECT: <title line>

During the subsequent compilation of the user HAL/S program, if an illegal production or
built-in function is encountered, Phase 1 emits one of the following severity 1 error
messages:

5. The syntax for defining illegal productions is:
$PRODUCTIONS(<number>,<number>,...)

where <number> is an integer whose value lies in the range 0 through the
number of productions in the grammar. See Appendix G of the HAL/S
Language Specification for the current working grammar.

6. The syntax for defining illegal built-in functions is:
$BUILTINS(<name>,<name>,...)

where <name> is the name of a built-in function.
7. Either construct can appear any number of times, and in any order.
8-8 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
*** ERROR XS1: THE FOLLOWING FUNCTION IS NOT IMPLEMENTED IN
THE CURRENT LANGUAGE SUBSET: <name>

*** ERROR XS2: THE ABOVE CONSTRUCT IS NOT IMPLEMENTED IN
THE CURRENT LANGUAGE SUBSET.(VIOLATION AT PRODUCTION nn)

During the scanning of the member $$SUBSET by Phase 1, several errors may be
detected. These are flagged with the generic message:
 1*** SUBSET ACQUISITION ERROR -

and one of the following specific messages:
 1. PREMATURE EOF

 2. BAD SYNTAX:<line of bad text>

 3. UNKNOWN FUNCTION:<function name>

 4. UNKNOWN PRODUCTION:<production number>

8.7 %MACRO Implementation
The following %MACROs are recognized by the HAL/S-FC compiler and generate the
indicated code.

%SVC. The %SVC statement generates a true SVC instruction in which the address
portion points to the operand specified.
 Operation Code
 %SVC(a); SVC a

 .

 .

 a DC <data>

User note: A character string is not a valid argument for the %SVC statement, which
requires an address of an operand. A statement like %SVC(‘A’) results in an 0C1 abend
of the compiler (DR 58890, 5/9/88).
%NAMECOPY. This operation works in the same manner as assignment of NAME
variables except that the operands must be structures. The first operand, the receiver,
must be the NAME of a structure. The second operand, the source, must be a structure
or the NAME of a structure.

The address to be stored into the receiving NAME variable is adjusted such that later,
normal use of that operand will be successful. This occurs when structures with copies
are involved. The address maintained for a multi-copy structure points to a fictitious “0th”
element so that HAL/S subscripting which starts at one can be done efficiently.
Adjustment for the various combinations of structures with and without copies and of
varying copies is handled automatically by the compiler.
8-9 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
Operation Code
%NAMECOPY(NST1,ST); LA R,ST
 STH R,NST1

%NAMECOPY(NST1,NST2); LH R,NST2
 STH R,NST1

%NAMECOPY(RNST1,RST); L R,ZCON → RST
 ST R,RNST1

%NAMECOPY(RNST1,RNST2); L R,RNST2
 ST R,RNST1

%NAMECOPY(RNST1,ST); LA R,ST
 OHI R,x‘8000’ (PASS Only)

IAL R,x‘0000’(linker fills in sector
 number)

ST R,RNST1

%NAMECOPY(RNST1,NST2); LH R,NST2
SRA R,1
SRR R,31
OHI R,x‘8000’ (PASS Only)
ST R,RNST1

where:

NST1, NST2 is a NAME Structure
RNST1, RNST2 is a NAME REMOTE Structure
ST is a locally declared Structure
RST is a REMOTE Structure

A REMOTE source cannot be copied into a non-REMOTE destination.

The programmer may use %NAMECOPY in a way that bypasses the type checking
protection provided by the HAL/S language. See the HIGHOPT option in section 5.1 for
a detailed explanation.

%COPY. The %COPY statement can be used to move data from one location to another
without regard to data types. The general form is:
 %COPY(dest,source,count);

where: source is the variable name from which data will be moved; dest is the variable
name into which data will be moved; and count is optional and if present indicates the
number of halfwords to be moved from source to dest. If count is omitted, the size of the
source operand is used to determine a count. The count can be a literal or a variable.
NAME variables are dereferenced in all cases. Use of a NAME variable as dest or
source operand will refer to the data pointed to by the NAME variable. The count may
also be a NAME variable in which case the count is taken from the storage location
pointed to by the NAME variable.

The move halfword instruction (MVH) is used to implement the %COPY statement when
feasible. If possible, the compiler will optimize the %COPY sequence by performing
LED, STED, L, ST or LH, STH sequences instead of using the MVH instruction. This
optimization occurs when the compiler is able to determine that no more than eight
8-10 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
halfwords need to be moved and that the data alignments match for both source and
receiving data areas. When the destination operand of a %COPY statement is
REMOTE, a call to MSTR is used to implement the move. Since MSTR expects ZCON
inputs, the compiler will perform a YCON to ZCON conversion if the source operand is
LOCAL data. The following examples show some of the possible sequences.

Warning: Neither the source nor receiving data will be checked for LOCK violations
outside of an UPDATE block. However, if %COPY does appear within an UPDATE
block, the LOCK groups of the variables named will be used.

User Notes for %COPY

The compiler emits the severity 2 error FN106 (‘Element or CSECT boundary exceeded
for source of %COPY’) when the source argument of the %COPY is an element of an

Operation Code
%COPY(A,B,12) L R,=YCON(A,12)

L R2,=ZCON(B,DSR)
MVH R,R2

%COPY(A,B,7); LED FR,B
 A, B fullword STED FR,A
 aligned L R,B+4

ST R,A+4
LH R,B+6
STH R,A+6

%COPY(C,D,7); LH R,D
 C,D halfword STH R,C
 Aligned LED FR,D+1

STED FR,C+1
L R,D+5
ST R,C+5

%COPY(E,F,2); LH R,F
 E,F with non- STH R,E
 matching LH R,F+1
 alignments STH R,E+1
%COPY(G,H); L R4,ZCON -> H
 where G and H LFXI R5,Length
 are REMOTE L R2,ZCON -> G

SCAL@# MSTR
%COPY(I,J); LA R4,J
 where I is OHI R4,“8000” (PASS only)
 REMOTE and J IAL R4,“0000”
 is local LFXI R5,Length

L R2,ZCON -> I
SCAL@# MSTR
8-11 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
indefinite array (i.e. declared with arrayness (*); legal only in procedures and functions).
For example, the following test case gets error FN106:
 DR46624: PROCEDURE(SOURCE_ARRAY);

 DECLARE SOURCE_ARRAY ARRAY(*) INTEGER;

 DECLARE DESTINATION INTEGER;

 %COPY(DESTINATION,SOURCE_ARRAY$(1),1);

 CLOSE DR46624;

(DR 46624, 5/9/88).

%COPY statements with variable subscripts will not get the warning FN107
(‘Source/Destination of %COPY involves runtime addressing’) if the source/destination
argument is not local, i.e. it is declared in an included member. Otherwise, %COPY
statements with variable subscripts get the warning (DR 50430, 5/9/88).

If an argument to a %COPY statement is an ARRAY terminal of a multi-copy structure,
then the error message "ZC1 -THE COMPILER CANNOT HANDLE THE MULTI-
COPIED STRUCTURE REFERENCE BECAUSE OF IMPROPER SUBSCRIPTING OR
A NON-CONTIGUOUS REGION SPECIFICATION" will be emitted by the compiler. In
the following HAL/S program, the statements containing the %COPY are flagged by a
"ZC1" error message (DR54123, 3/9/85).
 DR54123: PROGRAM;

 DECLARE I INTEGER;

 STRUCTURE S RIGID:

 1 A ARRAY(3) INTEGER,

 1 B ARRAY(3) BIT(16);

 DECLARE S1 S-STRUCTURE(3);

 %COPY(I,S1.A$(2),1);

 %COPY(I,S1.A,1);

 CLOSE DR54123;

The ZC1 error will also be emitted when an argument of the %COPY is a NAME node of
a multi-copied structure which has an asterisk (*) as the structure subscript. (DR111337,
06/02/99)

An XQ101 error is generated for the third argument (i.e., count) of a %COPY if this
argument is a function return of a user-defined integer (single/double) function with no
parameters (DR120271, 08/02/05).

The programmer may use %COPY in a way that bypasses the type checking protection
provided by the HAL/S language. See the HIGHOPT option in section 5.1 for a detailed
explanation.

Warning: Programmers should be aware that when using the %COPY macro to clear a
memory range (e.g. a buffer), since the MVH instruction moves data from last to first, the
highest indexed items involved should be initialized. And due to a microcode bug, the
8-12 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
source block should reside at least 2 HWs higher than the destination block and so the
last 2 HWs of the source block should be initialized.

Reference the AP-101S Principles of Operation for further details about the Move
Halfword instruction.
%NAMEADD. The %NAMEADD statement allows address arithmetic to be performed
on NAME variables. The allowable forms are:
 %NAMEADD(N1,V,int);

 %NAMEADD(N1,N2,int);

 %NAMEADD(RN1,RV,int);

 %NAMEADD(RN1,RN2,int);

%NAMEADD(RN1,V,int);

 %NAMEADD(RN1,N2,int);

where:

The source cannot be REMOTE if the destination is non-REMOTE.

The effect is the same as if the user specified the (quite illegal) HAL/S statements:
 NAME(N1) = NAME(V) + int;

 or

 NAME(N1) = NAME(N2) + int;

 Operation Code
%NAMEADD(N1,V,5); LA R,V+5

 STH R,N1

%NAMEADD(N1,V,I); LA R,V
 AH R,I
 STH R,N1

 %NAMEADD(N1,N2,8); LH R,N2
 LA R,8(R)
 STH R,N1

 %NAMEADD(RN1,RV,8); L R,ZCON -> RV
RN2 R,8
ST R,RN1

 %NAMEADD(RN1,RN2,8); L R,RN2
AHI R,8

 ST R,RN1

N1,N2 is any NAME variable.
RN1,RN2 is any NAME REMOTE variable.
V is any HAL/S variable which is legal in the context NAME(V).
RV is any HAL/S REMOTE variable which is legal in the context NAME(RV).
Int is either an integer literal or variable which specifies the amount to be

added (which may be negative) to the second operand (Note: literals must
not be signed).
8-13 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0

%NAMEADD(RN1,V,5); LA R,V+5

 OHI R,x‘8000’ (PASS Only)
 IAL R,x‘0800’ OR ‘0000’

 (linker fills in sector number)
ST R,RN1

%NAMEADD(RN1,N2,8); LH R,N2
LA R,8(R)
IAL R,x‘0800’

 (non-aggregate variables only)
SRA R,1
SRR R,31
OHI R,x‘8000’ (PASS only)
ST R,RN1

User Notes for %NAMEADD

It is possible to mix NAME variables of different types as the operands of %NAMEADD.
For example: a NAME SCALAR can be mixed with NAME CHARACTER. This feature
can be used to “convert” a NAME variable from one type to another. Mixing NAME types
in a %NAMEADD should be used with great care. The type of the resulting NAME
variable remains its declared type rather than the type of the data it now points to.
For example:
 DECLARE CH CHARACTER;

 DECLARE NSC NAME SCALAR;

 DECLARE NCH NAME CHARACTER INITIAL(NAME(CH));

 %NAMEADD(NSC,NCH,0);

Here, NSC will point to the CHARACTER, CH, even though it is a NAME SCALAR.
However, NSC should still be thought of as a NAME SCALAR in subsequent uses.

An XQ101 error is generated for the third argument (i.e., count) of a %NAMEADD if this
argument is a function return of a user-defined integer (single/double) function with no
parameters. (DR120271, 08/02/05).

The programmer may use %NAMEADD in a way that bypasses the type checking
protection provided by the HAL/S language. See the HIGHOPT option in section 5.1 for
a detailed explanation.

%NAMEBIAS. By convention, the compiler uses an address for aggregate data that is
offset a certain number of halfwords (depending on data type) before the actual
beginning of the data (see Section 7.8). The %NAMEBIAS statement performs this
zeroth element calculation by determining the positive value needed to point to the first
element of the data. It consists of two operands as seen below:

%NAMEBIAS(X,Y)

where:

X is a destination variable of integer type
8-14 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
Y is a source vairable of any data type (unsubscripted)
The result of the %NAMEBIAS statement is placed into the variable X. Please note that
the offset of a NAME variable is the offset of the variable to which it points.

Operation Code

 %NAMEBIAS(X,Y) LFXI/LHI/L Ry,zeroth element offset of Y
where X is a non-NAME variable STH/ST Ry,X

%NAMEBIAS(X,Y) LFXI/LHI/L Ry,zeroth element offset of Y
where X is a NAME variable LH Rx,X

STH/ST Ry,disp(Rx)

%NAMEBIAS(X,Y) LFXI/LHI/L Ry,zeroth element offset of Y
where X is REMOTE STH@#/ST@# Ry,X

%NAMEBIAS(X,Y) ZH/ZH@# Rx
where Y has zero offset

User Notes for %NAMEBIAS

The following examples illustrate the use of %NAMEBIAS with %NAMEADD. Note that
subscripting the source of the %NAMEADD statement down to the element level
eliminates the need for zeroth element calculations since the starting address is already
specified. Due to this, most assignments where the source and destination are of the
same type can be performed with a NAME assignment with subscripts instead of a
%NAMEADD statement. Also, %NAMEBIAS works strictly on data type and arrayness,
so STT2.B22 below will give the same offset as AB22.

STRUCTURE T RIGID:
 1 B2 ARRAY(2) BIT(16),
 1 B22 ARRAY(2,2) BIT(16);

STRUCTURE X RIGID:
 1 B BIT(16),
 1 B3 ARRAY(3) BIT(16);
DECLARE OFF1 INTEGER;
DECLARE OFF2 INTEGER;
DECLARE NB NAME BIT(16);
DECLARE NI NAME INTEGER;
DECLARE AB22 ARRAY(2,2) BIT(16) INITIAL(BIN‘110001’,BIN‘110010’,BIN‘110011’,
 BIN ‘110100’);
DECLARE NAB22 NAME ARRAY(2,2) BIT(16) INITIAL(NAME(AB22));
DECLARE STT2 T-STRUCTURE(2) INITIAL(BIN’0001’,BIN’0010’,BIN’0011’,BIN’0100’,
 BIN‘0101’,BIN‘0110’,BIN‘0111’,BIN‘1000’,BIN‘1001’,BIN‘1010’,BIN‘1011’,BIN‘1100’);
8-15 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
DECLARE NSTX2 NAME X-STRUCTURE(2);

%NAMEBIAS(OFF1,NAB22); ← offset of 3 is saved into OFF1
%NAMEADD(NI,NAB22,OFF1); ← NI=49 (1st element of AB22)
%NAMEADD(NI,NAB22$(1,1:),OFF1); ← NI=52 (3 halfwords added to address of 1st

element)
%NAMEADD(NI,NAB22$(1,1:),0); ← NI=49 (since NAB22 was subscripted

down to the element level, no offset was
required for NI to point to the 1st element of

 NAB22)

%NAMEBIAS(OFF1,STT2); ← offset of 6 is saved into OFF1
%NAMEADD(NB,STT2,OFF1); ← NB=‘0001’ (1st element in structure)

%NAMEBIAS(OFF1,STT2); ← offset of 6 is saved into OFF1
%NAMEADD(NB,STT2$(1;),OFF1); ← NB=‘0111’ (1st element in 2nd copy)

%NAMEBIAS(OFF1,STT2.B22); ← offset of 3 is saved into OFF1
%NAMEADD(NB,STT2.B22$(1;),OFF1); ← NB=‘0011’ (1st element of STT2.B22)

/*IF THE DESTINATION NAME VARIABLE POINTS TO A VARIABLE WITH AN */
/*OFFSET, THEN SUBTRACT THAT OFFSET FROM THE STARTING ADDRESS */
%NAMEBIAS(OFF1,AB22); ← offset of 3 is saved into OFF1
OFF1 = -OFF1;
%NAMEADD(NAB22,STT2.B2$(1;2:),OFF1); ← NAB22 contains 4 BIT(16) values

 starting with the 2nd element of
 STT2.B2=‘0010’, ‘0011’, ‘0100’, ‘0101’

/*IF THE SOURCE ALSO HAS AN OFFSET, THEN THAT OFFSET MUST BE */
/*ADDED AND THE OFFSET OF THE DESTINATION SUBTRACTED. */
%NAMEBIAS(OFF1,STT2); ← offset of 6 is saved into OFF1
%NAMEBIAS(OFF2,NSTX2); ← offset of 4 is saved into OFF2
OFF1 = OFF1 - OFF2;
%NAMEADD(NSTX2,STT2,OFF1); ← NSTX2 now points to the start of STT2 so

 NSTX2.B$(1;)=‘0001’ and
 NSTX2.B$(2;)=‘0101’

/*IF THE SOURCE AND DESTINATION ARE OF THE SAME TYPE AND ARRAYNESS, */
/*THEN THE OFFSETS CANCEL. A NAME ASSIGNMENT SHOULD BE USED */
/*INSTEAD - NAME(NAB22)=NAME(STT2.B22$(1;)). */
%NAMEADD(NAB22,STT2.B22$(1;),0); ← NAB22=‘0011’, ‘0100’, ‘0101’, ‘0110’

8.8 Arrayed Addressing 0th Element and % NAMEADD
The HAL/S-FC compiler arranges data in memory such that the least number of base
registers need be dedicated in addressing. Storage assignments are made with the
required base-displacement combinations being generated to properly access the data.
The storage addresses assigned refer to the actual data beginning, but for arrayed data
types, the base-displacement address includes a negative offset value. This negative
8-16 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
offset value is commonly referred to as an imaginary 0th element. This value can be
computed with %NAMEBIAS.

 Figure 8-1 Algorithm for Calculating the 0th Element Offset
Example:
DECLARE A SCALAR,

B INTEGER,

C CHARACTER(7),

D ARRAY(5) DOUBLE;

DECLARE E ARRAY(5),

OFFSET = 0

STRUCTURE

SP
MATRIX/
VECTOR

COPIES

DP
MATRIX/
VECTOR

OFFSET = 2

OFFSET = 4

ARRAYED

 OFFSET = ALIGNED
 WIDTH OF A SINGLE
 COPY

 ARRAY_FACT = 1 (1D)
 = N2 +1 (2D)

 = N3 (N2 +1) +1 (3D)

COEF = 4

 COEF = 2 ROWS COLS

 COEF = 4 ROWS COLS

COEF = (3+MAX_CHAR) /2

COEF = 1

COEF = 2

 OFFSET = OFFSET + COEF ARRAY_FACT EXIT

N Y

Y N
YN

Y

N

NY

 SP INTEGER, BOOLEAN, EVENT, BIT(1)-BIT(16)
 DP INTEGER, SP SCALAR, BIT(17)- BIT(32)

 DP SCALAR

 SP VECTOR/MATRIX

 DP VECTOR/MATRIX

 CHARACTER
8-17 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
F ARRAY(3,3) VECTOR,

G MATRIX;

DECLARE H DOUBLE,

I ARRAY(5,5) INTEGER;

Ordinarily, the user does not need to be concerned with the addressing mechanism, or
the 0th element, as the compiler handles it automatically. One exception is in the use of
%NAMEADD. If the user uses the %NAMEADD macro to manually create an address for
an arrayed type NAME variable, the 0th element calculation must be taken into
consideration. In the following example, the desire is to treat the three integers in the
structure as an array by making a NAME variable point to them.

STRUCTURE T RIGID:

1 I1 INTEGER,

1 I2 INTEGER,

1 I3 INTEGER,

1 A ARRAY(3) INTEGER;

DECLARE ST T-STRUCTURE INITIAL(1,2,3,44,55,66);

DECLARE NA NAME ARRAY(3) INTEGER;

DECLARE ZEROTH INTEGER;

ZEROTH = -1;

%NAMEADD(NA, ST, ZEROTH);

NA can now be referenced as an ARRAY pointer, pointing to an ARRAY containing
(1,2,3). If the %NAMEADD were to ignore the 0th element and point directly to the data,
NA would point to one element past where it should be, and the 1st element could not be
referenced at all - instead the ARRAY pointed to would have the values (2,3,44).

8.9 CSECT Naming Conventions
Each successful HAL/S compilation produces several named control sections (CSECTs).
The CSECT names are derived as follows. Only the first six characters of a compilation
unit name are used; furthermore, any occurrence of the underscore character (_) in the

Alignment Name Location Base Displacement (In Decimal) 0th element
Halfword B 00002 1 0002 0
Fullword A 00004 1 0004 0
Doubleword H 00008 1 0008 0
Halfword C 0000C 1 000C 0
Halfword I 00011 1 000B -6
Fullword E 0002A 1 0028 -2
Doubleword D 00034 1 0030 -4
Fullword G 00048 1 0046 -2
Fullword F 0005A 1 0040 -26
8-18 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
first six characters of a compilation unit name is eliminated. The resulting characters are
joined together to produce the characteristic name of the compilation unit (e.g. A_B_C
becomes ABC). The name is then padded or truncated to six characters where
necessary. Care should be exercised in naming compilation units to ensure that only
unique names will be generated for a given program complex.

Additional characters are placed on the front of the characteristic name to form the final
name for each of the types of CSECTS generated by the compilation. All CSECT names
therefore take the form:
 ccNNNNNN

where the value of cc for individual cases is:
 PROGRAM : $0

 TASKs : $a a=(0-9, A-Z)

 COMSUBs : #C

 Internal procs : an a=(A-Z),n=(0-9)

 Library : aa a=(A-Z)

 STACK : @a where a=(0-9,A-Z)

 DECLAREd data : #D

 COMPOOL : #P

 Process : #E

 directory

 entry(PDE)

 Remote data : #R

 ZCON for COMSUBs : #Z

 ZCON for Library : #Q

 EXCLUSIVE flag : #X

 Data for Library : #L

If the SDL option is not specified, a separate CSECT is generated for each compilation
which is a PROGRAM. Its contents in AP-101 Assembler language are as follows (the
name of the HAL/S program in this example is HALPROG):
 START CSECT

 EXTRN $0HALPRO

 BAL 4,$0HALPRO

 END START

Linkage editor STACK control cards are issued to force static stack allocation for stand-
alone operation.

In addition to control section names, the characteristic name of a compilation unit may
appear in external contexts preceded by the following characters:
@@ - the member name of the template created for a compilation unit
8-19 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
- the member name of the simulation data file created for a compilation unit
See Sections 3.4 and 3.5.

8.10 Character Code Conventions
The HAL/S language defines a set of standard, printable characters which are used to
create HAL/S programs. In particular, these characters are used to create the HAL/S
primitives known as “character literals”.

The AP-101, however, includes in its character set several special characters which can
be used for display and control purposes but which do not form part of the standard
HAL/S character set. Such special characters are furthermore, in general, not available
on the 360, where HAL/S-FC programs are written and compiled.
The HAL/S language, as described in the Language Specification (Section 2.5), permits
the use of a special “escape” character (¢) to indicate within a character literal that some
special character is required. The following two tables show how this feature is
implemented in the HAL/S-FC system.

Table 8-1 shows the various characters acceptable within character literals in HAL/S
source code.
For each character (or pair of characters, if an escape character is used) the actual
internal hex representation of that character is shown. Thus for instance if the pair ‘¢E’
appears in source code to be compiled by the FC compiler, its internal representation will
be the hex numeral 14.

Table 8-1 should be used in conjunction with Table 8-2, which contains the actual
character set available on the AP-101 and the internal representations associated with
these characters. Here the hexadecimal numeral 14 turns out to stand for the character
epsilon. The result is that ‘¢E’ appearing in a character literal within a HAL/S program
would be interpreted by the FC compiler as the AP-101 character epsilon. WRITE(6)
‘¢E<0’, for example, would, if executed on the AP-101, cause “ε<0” to be displayed on
the appropriate output device.
8-20 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0

First HEX Digit
S HEX 0 1 2 3 4 5 6 7
e 0 ¢0 ¢A blank 0 ¢G P ¢Y p
c 1] ¢B ! 1 A Q a q
o 2 [¢R ¢Q 2 B R b r
n 3 ¢7 ¢W # 3 C S c s
d 4 ¢8 ¢E ¢a 4 D T d t

5 ¢9 ¢O % 5 E U e u
H 6 ¢V __ & 6 F V f v
E 7 ¢. ¢I ‘ 7 G W g w
X 8 ¢__ ¢J (8 H X h x

9 ¢/ ¢K) 9 I Y i y
D A ¢4 ¢M * : J Z j z
i B ¢> ¢N + ; K ¢S k ¢C
g C ¢< ¢1 , < L ¢T l ¢U
i D ¢ ¢2 - = M ¢Z m ¢X
t E ¢5 ¢3 . > N ¢P n ¢L

F ¢6 ¢4 / ? O ¢F o ¢D
 Table 8-1 HAL/S-FC CONVENTION FOR CHARACTER INPUT
8-21 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
 Table 8-2 DEU Character Set

8.11 Remote Data
REMOTE data may be specified three ways:

1) D INCLUDE TEMPLATE CPL REMOTE

which causes all data in the COMPOOL template CPL to be addressed via
ZCON's, a less efficient method than non-REMOTE addressing. If all
compilation units including CPL specify REMOTE, then it is not necessary for
that COMPOOL to be placed in the standard data area (either sector 0 or 1),
since no direct addressing will be generated for accessing CPL data.

Specification of a single-value REMOTE data item will take up space for the data
plus a two halfword ZCON plus a long format (RX) AP-101 instruction for each
data access. See section 5.2, item 2 for more information on the INCLUDE
directive.

First HEX Digit
S HEX 0 1 2 3 4 5 6 7
e 0 NULL α SPACE P ψ p
c 1] β ! 1 A Q a q
o 2 [~ 2 B R b r
n 3 SELF TEST ω # 3 C S c s
d 4 • ε √ 4 D T d t

5 • • Ω % 5 E U e u
H 6 ∇ _ & 6 F V f v
E 7 • ⎯ ‘ 7 G W g w
X 8 BACKSPACE ⏐ (8 H X h x

9 ÷ ◊) 9 I Y i y
D A * : J Z j z
i B • + ; K Σ k σ
g C ↑ , < L θ l |
i
t

D CARRIAGE
RETURN

↓ - = M ___________
OVERSCORE

m UNDERSCORE

E → . > N π n λ
F ← / ? O φ o Δ

ϒ

ρ
∇

∇

8-22 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
2) DECLARE A ARRAY(5) REMOTE

which causes the array A to be located in a REMOTE (#R) CSECT, and can be
placed in a sector other than 0 or 1. As above, the data will use ZCON
addressing. This type of REMOTE specification is restricted when the SDL
option is on (except on NAME variable and formal parameter declarations, in
which case the REMOTE attribute signifies that the data pointed to or passed in
is REMOTE).

3) D DATA_REMOTE

which allows all locally declared data in a PROGRAM or COMSUB to be placed
in a sector other than 0 or 1. The addressing performed for this method is more
efficient than ZCON addressing. See section 5.2, item 10 for more information
on the DATA_REMOTE directive.

All HAL/S data types except EVENT can be specified as REMOTE. An attempt to
specify REMOTE EVENT data will generate a DA9 error.

Note that the construction:
DECLARE N NAME ARRAY (5) REMOTE;

does not cause the name variable N to be placed in the REMOTE CSECT. Instead, N
becomes a 32-bit ZCON rather than the standard 16-bit YCON. It is possible to initialize
N with the NAME of any REMOTE addressable data item either via:

INITIAL (NAME (A));

 or

 NAME (N) = NAME (A);

A NAME REMOTE (32-bit) variable cannot be assigned to a local (16-bit) NAME
variable.
The following sections contain information on known restrictions in the use of REMOTE
data that are not documented elsewhere.

8.11.1 NAME Variable Initialization Restriction
A regular (16-bit) NAME variable cannot be initialized at declaration time with a
REMOTE address or a NAME REMOTE (32-bit) variable. This includes the REMOTE
addresses of variables located in REMOTEly included compools. Any attempt to do this
will result in the DI21 or DI107 error message.

8.11.2 Other Restrictions
An FT108 error is emitted for all REMOTE aggregate data passed to an unverified RTL
routine.

An FT112 error is emitted when a NAME variable is passed inside a NAME() pseudo-
function as an ASSIGN parameter and the NAME variable lives REMOTE. The address
of the NAME variable must be passed to the procedure, and there is no way in HAL/S to
8-23 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
specify in the formal parameter declaration that the NAME variable lives REMOTE (the
REMOTE keyword specifies where it points). Therefore this must be a restriction.

The REMOTE keyword cannot be used on templates for external procedures, external
functions, or external programs. Any attempt to do so will result in a PS13 or X15 error
message.

The REMOTE keyword cannot be used on a ‘D INCLUDE SDF’ directive. Any attempt to
do so will result in an X14 error message.

8.12 DENSE attribute
The DENSE attribute only affects the data storage packing density of non-NAME, non-
arrayed BIT variables in structure templates. The DENSE attribute for all other variable
types is ignored.

Any error checking done for DENSE attribute matching or the restriction of the DENSE
attribute will only be relevant for non-NAME, non-arrayed BIT variables in structure
templates.

The Symbol And Cross Reference Table Listing in the compiler output listing for Phase 1
and the Symbol Data section in the output listing for Phase 4 will only report the DENSE
attribute if specified for a structure template, minor node, or a non-Name, non-arrayed
BIT variable in a structure template.

8.13 User Note’s
This section contains user notes that were required to close Discrepancy Reports (DRs)
against the HAL/S-FC compiler. Each user note is followed by the DR number to which it
applies and the date that the user note was written.
1. Structure Stack Terminals Not Flagged as ‘Stack’
A structure stack variable, such as results from declaring a temporary structure variable
is flagged as ‘stack’ in the SDF. The terminals for the structure are not flagged as stack
variables because they are listed as part of the structure template, not the structure
variable. Programs (such as HALSTAT) that perform processing on the SDFs need to
accommodate this distinction between structure variables and structure templates. The
SDF reflects the storage of structures in the symbol table; it has an entry for the structure
template and its terminal names and attributes. There are no additional entries for the
structure terminals to accompany the structure variable entry. Instead, the structure
variable points back to the structure template to access terminal information (DR 50917,
5/6/88).
2. SUBBIT Incorrectly Expected to Return to 32 Bits
The compiler implementation of the SUBBIT pseudo-variable incorrectly assumes that
an unsubscripted SUBBIT(X) is always a 32-bit quantity regardless of the type of X. For
example, the following SUBBIT statement gets the error EB1 of severity 1 because the
compiler assumes that the result of the catenation is 64 bits:
8-24 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
 DECLARE INT1 INTEGER INITIAL(1);

 DECLARE INT2 INTEGER INITIAL(2);

 DECLARE BIT32 BIT(32);

 BIT32 = SUBBIT(INT1) CAT SUBBIT(INT2);

One work around to this problem is to subscript the SUBBIT pseudo-variable as follows:
 BIT32 = SUBBIT$(1 T0 16)(INT1) CAT SUBBIT$(1 TO 16)(INT2);

Another work around is to break the statement up so that the unsubscripted SUBBIT
pseudo-variables are not used with the CAT operator:
 (BIT1 and BIT2 are declared as BIT(16))

 BIT1 = SUBBIT(INT1);

 BIT2 = SUBBIT(INT2);

 BIT32 = BIT1 CAT BIT2;

(DR 58320, 5/6/88).
3. Misspelled INITIAL in a Declare Statement Causes Infinite Loop
Phase 1 of the compiler goes into an infinite loop when the keyword ‘INITIAL’ is
misspelled more than one time in a program. The cross-reference table is printed over
and over again until the printed page limit is reached, resulting in a 600 DEC abend (DR
58323, 5/6/88).
4. Statement Too Long Error
When a declaration statement of a multi-copy structure with a long initialization list is
compiled, the compiler may issue the optimizer error BI309, “Statement too long.
Compilation abandoned.” The test case that failed compilation with a BI309 error
contained a structure declaration with 159 or more copies and an initialization list for
each structure copy. The structure template consisted of a name variable, a minor node
with 3 bit strings totaling 16 bits, 2 16-bit strings, and 2 integers. The initialization
elements for the name variables are what caused the statement to become “too long,” as
explained in the paragraph below.

Certain types of initialization elements can cause a declaration to grow longer than the
optimizer’s capacity for a single statement. The problem occurs when the optimizer
expands the HALMAT (the HAL/S intermediate language) of the initialization list with NO-
OPs to reserve room for optimization, finds that no optimizations are possible, and then
finds that the expanded HALMAT is too long to fit in the HALMAT double block. All of the
HALMAT for a single statement is required to fit in one double block. In the test case
described above, 10 NO-OPs were produced for each name variable initialization
element that was itself a subscripted multi-copy structure, such as
 NAME(STRUCT_NAME.STRUCT_ELEMENT$(3;))

(the 3 is for example only, any valid subscript would do). No NO-OPs were produced for
simple name variable initialization elements of the form.
 NAME(VARIABLE).
8-25 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
There were enough initialization elements of the first form in the test code that when
combined with the remaining initialization elements the declaration statement become
too long to fit in a double block.

Two possible work arounds to this problem can be implemented at the source code level.
Either rewrite the code to split up the structure into two structures, or use fewer
initialization elements that are themselves subscripted multi-copy structures (DR 63453,
5/6/88).
5. Template Cannot Handle All Nested Includes
The following scenario involving TEMPLATEs fails to compile successfully:

During compilation of the second program the compiler abandons compilation after
Phase 1 because it cannot resolve the reference to the external program in the
compool’s included template.

This scenario works with SDFs (DR 101033, 5/6/88).
6. Invalid Error Message DU5 When Including a Template
An invalid error message may be emitted by the compiler when nested compools define
and use structure templates. In the set of compilation units described below, the
compiler erroneously emits error DU5 (“Reference to undeclared structure template...”)
when compiling Module A.

One work around to this problem is to add compool C to the include list of module A so
that A includes both B and C (DR 101648, 5/6/88).

-- A compool includes an external program and initializes a name variable to
this program name.

-- A second program includes the compool.

Compool C -- defines a structure template
Compool B -- includes compool C

-- contains declarations that refer to the structure template in C
(i.e. Name variables or structure variable declarations)

Module A -- includes only compool B
-- may or may not refer to any of the variables in compools B and

C

8-26 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
7. BI504 Error -- Loop in Operand Stack Pointers
The compiler may emit the severity 2 error BI504 (“Loop in Operand Stack Pointers”)
during Phase 2 of a compilation for certain combinations of statements that use
subscripted references to the same multi-copy structure. As an example, the following
program gets error BI504:
 1: DR57989: PROGRAM;

 2: DECLARE I1 INTEGER INITIAL(1);

 3: DECLARE V1 VECTOR(3) SCALAR INITIAL(1,2,3);

 4: STRUCTURE STRUCT2:

 4: 1 STR2_V VECTOR(3),

 4: 1 STR2_I INTEGER;

 5: DECLARE STRUCT2 STRUCT2-STRUCTURE(3) INITIAL(12#1);

 6: V1= STR2_V$ (I1;);

 7: I1 = STR2_I$(I1;);

 8: CLOSE DR57989;

The code getting the BI504 error has the following characteristics:

Error BI504 indicates an internal compiler failure, not a source code error. Some source
code work arounds for this problem are: use different variable subscripts for the two
structure references, move the integer or scalar assignment before the vector or matrix
assignment, or try separating the two structure references to see if the intervening
statements will prevent the error condition (DR 57989, 6/13/88).
8. BS122 Compilation Error on UPDATE PRIORITY Statement
The compiler emits the severity 2 error BS122 (“Indirect Stack Usage Conflict”) during
Phase 2 of a compilation for an UPDATE PRIORITY statement that does not contain a
label. This error indicates an internal compiler failure. The error is not emitted if the
UPDATE PRIORITY statement contains a label. For example, the statement below gets
error BS122:
 UPDATE PRIORITY TO 10;

whereas the following statement compiles successfully:
 UPDATE PRIORITY PROCESS_NAME TO l0;

(DR 51017, 6/23/88).

1. The same variable subscript is used for both structure references (stmts 6
and 7 in code segment).

2. Both structure references are on the right-hand side of the expression.
3. The first structure reference is a vector or matrix terminal and the second

structure reference is an integer or scalar terminal.
4. The two structure references may or may not have statements between them

(certain intervening expressions, such as an integer assignment other than
the structure terminal, will prevent the error condition).
8-27 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
9. Limited Range of Input Values Valid for FLOOR Function
The range of input values to the single precision FLOOR function is limited to -32768 < x
< 32767.996. Values outside this range will give erroneous results (DR102944,
10/19/88).
10. ZO3 Compilation Error - Loop Invariant Messages
An extraneous ZO3 warning message may sometimes appear when the optimizer pulls
some loop invariant HALMAT from an IF-THEN block to outside of a loop. The compiler
uses HALMAT to generate AP-101 code. The warning message was added under DR
103032 for possible GPC errors due to the loop invariant code being executed when the
IF conditions were false. The ZO3 message could appear even when the loop invariant
HALMAT which is moved does not change the subsequent AP-101 code. For this case,
a GPC error is not possible. Note also that multiple ZO3 warning messages may be
obtained for one line of HAL/S source code since the ZO3 message is due to changes in
HALMAT, not changes in AP-101 code (DR105051, 3/92 & 3/93).
11. Underflow/Overflow Restrictions
The range of ‘safe’ double precision numbers that can be used with a comparison in
HAL/S has been determined to be:
H ‘F1FFFFFFFFFFFFFF’ (-1.004336 E+59) to H ‘8D10000000000001’ (-2.430865E-63)

 and
H ‘0D10000000000001’ (1.004336 E+59) to H ‘71FFFFFFFFFFFFFF’ (2.430865E-63)

If either or both of the numbers being compared are in the specified range then no
underflow or overflow is possible. If both are outside of the ‘safe’ range then the potential
for overflow or underflow exists.

Floating point exponent overflow and underflow are caused by the SED instruction in the
case of a comparison operation using SCALAR DOUBLE values. The compiler will
generate a LED (Load Double) followed by a SED (Subtract Double) instruction
(DR103772, 9/93).
12. BI002 SEVERITY 3 Space Management System Error
A BI002 severity 3 error message is emitted at the end of the compilation listing when
compiling a HAL/S source program which generates any of the following valid error
messages:
BI501: SEVERITY 2, ?? BITS UNACCOUNTED FOR

BS102: SEVERITY 3, SUBPROGRAM STACK OVERFLOW

BS120: SEVERITY 3, DATA STORAGE CAPACITY EXCEEDED

BX100: SEVERITY 2, ?? NOT ADDRESSABLE

BX200: SEVERITY 2, SYT_SCOPE>MAX_SCOPE#

PE100 (only PASS compilers): SEVERITY 2, ILLEGAL NONHAL FUNCTION TYPE

PR6 (only BFS compilers): SEVERITY 2, THE NAME ?? DOES NOT SATISFY HAL/S
NAME UNIQUENESS CRITERIA FOR TASKS; NAMES OF ALL TASKS AND PROGRAMS MUST BE
UNIQUE TO SEVEN CHARACTERS
8-28 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
The BI002 error message states “BI002 SEVERITY 3 BUG IN SPACE MANAGEMENT
SYSTEM ->->IN RECORD_FREE, NOT ALLOCATED: ..”. The BI002 error message is
emitted when the records that are being freed have never been allocated. The records
do not get allocated because a valid error message is emitted (a severity 3 error
message causes a branch to the end of the compilation). Therefore, the code to allocate
the records is never executed and the BI002 error message is emitted (DR108642,
9/93).
13. Unexpected BS117 Error
When a TEMPORARY variable is declared within a DO statement, the compiler attempts
to store and subsequently access this data on the stack. Since the first eighteen
halfwords of the stack are reserved, the first available entry for storage of TEMPORARY
variables is at the nineteenth halfword. For a construct which exhibits arrayness,
including multi-copy structures, the compiler attempts to generate a stack location for its
zeroth element (i.e., it subtracts the length of one element from the starting location on
the stack). When the available stack location minus the length of the zeroth element is
less than zero, the compiler emits a BS117 severity 2 error, as there can be no negative
stack addressability. The only construct which can have a zeroth element of length
greater than the lowest starting address on the stack (nineteen), is a multi-copy structure
with a template length of more than eighteen halfwords (the zeroth element of a multi-
copy structure is a single copy of the structure). Therefore, when a TEMPORARY multi-
copy structure of single-copy length greater than eighteen is declared such that the next
available stack location minus the zeroth element length is less than zero, a BS117 error
is emitted. This same structure, however, would not receive an error and would produce
correct object code if there were enough stack entries assigned prior to it such that the
zeroth element would not reside at a negative stack address. Also, the stack available
for TEMPORARY variable storage is refreshed upon reaching the end of the DO loop, so
the problem can manifest itself over and over again with each subsequent DO statement.
To avoid the BS117 error, the user can either (1) make sure no TEMPORARY multi-copy
structures which have a template length greater than eighteen halfwords are used or (2)
utilize dummy declarations of TEMPORARY variables just prior to the problem declare
such that enough “pad” is established to avoid the BS117 error (DR106639, 9/93).
14. Exceeded Bounds Assignments
The compiler can allow an assignment to exceed the bounds of the receiving data.
There are two methods of doing this that could cause problems, and thus should be
avoided:

a) A %COPY statement with a variable halfword count field larger than the size
of the destination when the destination is local data (this may also go
beyond the bounds of a CSECT). The compiler performs bound checking
when a literal count is provided but cannot perform these checks when a
variable count is used. Local data can be rearranged whenever a
compilation unit is modified.

b) Overindexing an arrayed variable (subscript is greater than the receiving
data’s declared arrayness).
8-29 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
The compiler assumes that arrayed assignments and %COPY are not used in this
manner and does not update registers that may have been modified as a result of a
violation of these rules (DR109030, 03/95).
15. “Referenced but not Assigned” Error (BI105) Is Not Produced (DR103765, 2/15/95)
It is not always possible to determine at compile time if a variable has been initialized
before being referenced. Each situation described below is accompanied by a related
code fragment.

Variables that are referenced after being assigned will not produce an error message
since branching makes execution order of code very difficult for the compiler to
determine.
 DECLARE SCALAR, S1, S2;

 S1 = S2;

 S2 = 3;

NAME variables pointing to uninitialized NAME variables within templates will not
produce error messages as it is impossible to determine what a NAME variable will point
to at compile time.
 STRUCTURE S2:

 1 N1 NAME SCALAR,

 1 S SCALAR;

 DECLARE S2 S2-STRUCTURE;

 DECLARE NS2 NAME S2-STRUCTURE INITIAL(NAME(S2));

 DECLARE NSCAL NAME SCALAR;

 NAME(NSCAL) = NAME(NS2.N1);

The compiler also assumes that all compool variables have been initialized, and will
accordingly not flag as an error compool variables being referenced in programs but not
assigned.
 CM103765 : COMPOOL;

 DECLARE DUMMY SCALAR INITIAL(0);

 DECLARE B SCALAR;

 CLOSE CM103765;

 D INCLUDE TEMPLATE CM103765

 DR103765: PROGRAM;

 DECLARE X SCALAR;

 X = B;

All parameters passed into a function via parameter list or ASSIGN construct are
assumed initialized/assigned prior to the function call if they are referenced in the
function before assigned. The calling program also assumes that parameters passed
using the ASSIGN construct will be modified within the function.
8-30 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
 DECLARE SCALAR,A,B,C;

 QUICK: PROCEDURE(X,Y) ASSIGN(Z);

 DECLARE SCALAR,X,Y,Z,T;

 T = X + Y + Z;

 CLOSE QUICK;

 A = 1;

 B = 2;

 CALL QUICK(A,B) ASSIGN(C);

16. Error Message Is on Wrong Statement (DR109042 -- 6/4/97, DR111369 -- 3/12/01,
DR120262 --9/29/03)

There are three known problems with the compiler and where it prints error messages
1) The compiler may report an error on the wrong statement, usually one statement

too early for two known cases. This problem occurs when the compiler looks
ahead on the next executable statement for an ELSE clause after an “IF
<condition> THEN <true part>” statement or a “DO CASE <variable>” statement
but instead finds an error. When the compiler finishes scanning the current
statement (<true part> of the IF … THEN or the DO CASE statement), it needs to
properly terminate the statement so it looks ahead to the first token of the next
statement looking for an ELSE clause but finds an error. Since the compiler is not
completely finished with the current statement, the error is incorrectly attached to
the current statement, not the statement where the token was read from.
Note: There may be more language constructs for which the parser performs a look-
ahead which are not known at this time.

2) The compiler emits an error one statement too late in a structure template or on a
factored DECLARE statement where the last item declared receives an error and
there is a ‘C’ card (comment card) or a ‘D’ card (compiler directive) between the last
item declared and the semi-colon. The compiler internally attaches the error
message to the correct statement but the ‘C’ card and/or the ‘D’ card breaks the
continuity of parsing of the HAL/S source code and forces a flush of the print stack
before the error is detected. Since the print stack is prematurely flushed, the
compiler does not print the error until the next statement.
Note: There may be more language constructs for which the compiler emits an
error one statement too late which are not known at this time.

3) The compiler generates the M1 error (ILLEGAL CARD TYPE - CHANGED TO
COMMENT) with the wrong statement. If there is a D-card or a C-card line before
the statement with the invalid card-type, then the error will not be printed until the
compiler prints the next M-card line it processes. This occurs because errors are
only printed when the compiler prints an M-card line. If there are M-card lines
before the statement with an invalid card type then the error will be printed one or
two statements before the invalid card-type line. This happens because the
compiler retrieves the next group of E/M/S lines before it completes processing an
M-card line. When the compiler retrieves a line, it checks for invalid card types and
8-31 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
generates the M1 error when it finds one. Since it has not completed processing
and printing the M-card line that precedes the line with the invalid card-type, the
compiler prints the M1 error when it prints the M-card line it is processing. :

Examples for problem 1 are shown in the following HAL/S listing compiled with PASS
28.0 / BFS 12.0:
8-32 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
 0 1 M| E9042C: |E9042C

 1 M| PROGRAM; |E9042C

 2 M| DECLARE SUCCESS BOOLEAN INITIAL(TRUE); |E9042C

 3 M| DECLARE BOL1 BOOLEAN, |E9042C

 3 M| BOL2 BOOLEAN; |E9042C

 4 M| DECLARE INT1 INTEGER, |E9042C

 0 E| . |

 4 M| NAM_BOL1 NAME BOOLEAN INITIAL(NAME(BOL1)), |E9042C

 0 E| . |

 4 M| NAM_BOL2 NAME BOOLEAN INITIAL(NAME(BOL2)); |E9042C

 5 M| DECLARE ARRAY(3), |E9042C

 5 M| A, B, C ARRAY(5) |E9042C

 0 C| |E9042C

 C| THIS SET OF COMMENT CARDS ARE NECESSARY TO CREATE THE USER |E9042C

 C| NOTE SCENARIO #2. DO NOT REMOVE THEM!!!!! THE D6 ERROR IS INCORRECTLY |E9042C

 C| REPORTED ON THE 'IF SUCCESS THEN' STATEMENT. |E9042C

 C| |E9042C

 5 M| ; |E9042C

 0 C| |E9042C

 C| THIS IS SCENARIO #1 -- THE COMPILER IS IN A LOOK-AHEAD STATE WHEN IT |E9042C

 C| FINDS THE %NAMEADDS TOKEN AND REPORTS THE XM1 ERROR ON THE 'INT1 = 2;' |E9042C

 C| STATEMENT, WHICH IS INCORRECT. |E9042C

 C| |E9042C

 0 E| . |

 6 M| IF SUCCESS THEN |E9042C

 0***** D6 ERROR #1 OF SEVERITY 2. *****

 ***** THE DECLARATION OF C HAS BOTH FACTORED AND NON-FACTORED ARRAY SPECIFICATIONS;

 ***** THE NON-FACTORED SPECIFICATION WILL BE USED

 7 M| INT1 = 2; |E9042C

 0***** XM1 ERROR #2 OF SEVERITY 2. *****

 ***** %NAMEADDS IS A NONEXISTENT %MACRO

 ***** LAST ERROR WAS DETECTED AT STATEMENT 6. *****

 0 E| . . |

 8 M| %NAMEADDS(NAM_BOL1, NAM_BOL2, 0); |E9042C

 0 C| |E9042C

 0 E| . . |

 9 M| %NAMEADDS(NAM_BOL1, NAM_BOL2, 0); |E9042C

 0***** XM1 ERROR #3 OF SEVERITY 2. *****

 ***** %NAMEADDS IS A NONEXISTENT %MACRO

 ***** LAST ERROR WAS DETECTED AT STATEMENT 7. *****

 0 C| |E9042C

 C| THIS IS SCENARIO #1 -- THE COMPILER IS IN A LOOK-AHEAD STATE WHEN IT |E9042C

 C| FINDS THE NAMES TOKEN AND REPORTS THE DU1 ERROR ON THE 'DO CASE INT1;' |E9042C

 0 C| STATEMENT, WHICH IS INCORRECT. |E9042C

 C| |E9042C

 10 M| DO CASE INT1; |E9042C

 0***** DU1 ERROR #4 OF SEVERITY 2. *****

 ***** UNDECLARED IDENTIFIER NAMES

 ***** LAST ERROR WAS DETECTED AT STATEMENT 9. *****

 11 M| 1 NAMES (NAM_BOL1) = NAME(BOL1); |CASE 1

 0***** P8 ERROR #5 OF SEVERITY 2. *****

 ***** THE FOLLOWING SYMBOL IS SYNTACTICALLY ILLEGAL IN THE CONTEXT USED: (

 ***** ERROR RECOVERY MAY CAUSE SUBSEQUENT SPURIOUS ERRORS

 ***** LAST ERROR WAS DETECTED AT STATEMENT 10. *****

 12 M| 1 WRITE(6) 'CASE #2.'; |CASE 2

 13 M| 1 WRITE(6) 'CASE #3.'; |CASE 3

 14 M| END; |ST#10 |E9042C

 0 C| %SVCI(0); |E9042C

 15 M| CLOSE
8-33 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
17. Constant Double Scalar Converted to a Character as Single Precision (DR 109083,
02/14/97, DR120223, 7/7/04)

When a scalar arithmetic expression that contains only literals and non-aggregate
constants is converted to a character string via a runtime library routine (ETOC or
DTOC), the calculation and conversion will be in single precision. To force the result to
be in double precision use the @DOUBLE function.
18. Long Statement with Subscripts or Exponents Is Not Printed Correctly (DR109081,

7/16/98), (DR111326, 1/10/00)
Extremely long statements may not be printed correctly if the end of each 100 character
line is part of a subscript or exponent. Either a BS6 error message will be emitted and
the remaining subscript or exponent will not be printed correctly, or the line will be
interrupted with no error issued. These problems may be eliminated by inserting a
comment line. The effects in each case are visual only and do not affect program
execution after the error is downgraded.
19. Comparison of Structures Containing Arrayed Character Strings Fails (DR101047,

5/22/90)
The unverified runtime library routine, CPRA (it compares remote arrays of character
strings when the arrays are located in structures for ‘=’ or ‘^=’), may cause other object
code to be incorrect besides the compare operation.
20. Comparison of Structures Containing Arrayed Character Strings Fails (DR101047,

5/22/90)
The unverified runtime library routine, CPRA (it compares remote arrays of character
strings when the arrays are located in structures for '=' or '^='), may cause other object
code to be incorrect besides the compare operation.
21. Statement Split in Output Listing after REPLACE Macro (DR111340, 09/17/99)
If a non-expanded REPLACE macro contains the last token of a statement (e.g. a semi-
colon or 'THEN') and is followed by a Comment or Directive (C or D card), the statement
may be split in the output listing, and the REPLACE macro will be printed after the C or D
card. The revision level information of the macro may also be lost from the Current
Scope field.
22. Long Factored DECLARE Indented Incorrectly (DR111320 - Incorrectly Printed

Exponent Line in Output Listing, 1/7/00)
Long factored DECLAREs may not be indented correctly in the output listing. If a long
statement cannot fit on the statement stack, the first part is printed to make room on the
stack. At this point the type of statement has not yet been identified as a factored
DECLARE so it is not indented properly. Once enough of the statement has been added
to the stack, the statement is identified, and the remaining lines of the statement are
correctly indented. This usually occurs when each identifier has a separate INITIAL
clause rather than sharing a common clause.
23. REPLACE Macro Statements Incorrectly Printed (DR111320 - Incorrectly Printed
8-34 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
Exponent Line in Output Listing, 1/7/00)
Statements containing REPLACE macros may be incorrectly printed in the output listing.
For example, if a factored or compound DECLARE contains a REPLACE macro, the
statement may not be indented correctly. The identifiers may be printed on the same line
as the attributes or on a line separate from the rest of the statement. These types of
statements are printed based on the location of certain attributes in the statement stack.
If a REPLACE macro token occupies one of these slots, the statement may not be
properly identified and hence not indented correctly.
 0 1 M| TEST: |TEST

1 M| PROGRAM; |TEST
2 M| REPLACE ATTR BY "ARRAY(2) INTEGER INITIAL (1,2)"; |TEST

 0 C| FACTORED DECLARE |TEST
3 M| DECLARE ATTR, F1,F2,F3; |TEST

 + ____
 0 C| COMPOUND DECLARE |TEST
 4 M| DECLARE C1 ATTR, |TEST
 + ____
 4 M| C2 |TEST
 4 M| ATTR, |TEST
 + ____
 4 M| C3 ATTR; |TEST
 + ____
 5 M| CLOSE; |TEST

24. BI512 Error for Large Repetition Factor in Shaping Function (DR111371 -- 03/02/01)
A BI512 error (DISPLACEMENT > 2047 IS INVALID FOR INDEXED RS TYPE
INSTRUCTION) may be emitted if an INTEGER or SCALAR shaping function is used to
create a multidimensional array or a MATRIX shaping function is used to create a matrix
and the array or matrix is over 2034 halfwords in size (a single precision integer is 1
halfword and a single precision scalar is 1 fullword) and a repetition factor is used.
Depending on the stack usage, shaping functions smaller than 2034 halfwords can also
cause the problem.
25. No Compile Time Errors for Invalid CHARACTER Subscripts (DR111 376 - No SR3

Error Generated for CHARACTER Shaping Function -- 05/16/01)
A. The compiler will not generate errors during compilation for an invalid

CHARACTER subscript due to the use of the ‘#’ in a partition subscript (TO - or
AT - partition). Since the maximum length of a CHARACTER variable is the
current length of the variable that may be varied during the execution, there is
no way to check for the validity of a CHARACTER partition subscript that uses
the “#” (to indicate the last element) during compilation.

As examples, the following subscripts will not receive errors during compilation
(run-time errors will be generated):

DECLARE C3 CHARACTER(3);
DECLARE C4 CHARACTER(4) INITIAL(‘123’)

C3=C4$(2 AT #+1);
C3=CHARACTER$(4 AT #-2)(C4);
8-35 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
B. For the same reason that the length of a CHARACTER variable may be
dynamic, the following subscript will receive a run-time error for referencing
an ‘out-of-range’ element:

C3=C4$4

C. The compiler will not check for the validity of the subscript of a CHARACTER
shaping function that has an INTEGER or SCALAR argument since the length
of the INTEGER/SCALAR cannot be determined at compiler time. For
example:
DECLARE S SCALAR INITIAL(1);
DECLARE C3 CHARACTER(3);

C3=CHARACTER$3(S);

26. BI223 Error for CHARACTER(*) Parameter (DR111386-BIX Loop Incorrect for
CHARACTER(*)--03/29/02)

Since the size of a CHARACTER(*) variable is not known until run time, the compiler
could not determine the amount of space to save for CHARACTER(*) variables that were
passed as an argument to a Procedure or Function, an INTEGER/SCALAR Shaping
Function, or a Built-in Function. Instead of assigning the maximun amount of space
needed for the variable (enough space for a CHARACTER string of length 255), code
was added to emit an error when an unknown size has been requested (BI223 Severity
2-NEGATIVE STORAGE SIZE). BS105 or BS102 errors may also be emitted. These
problems will only occur if the variable was attempting to be copied to the run-time stack.
Possible workarounds include assigning the CHARACTER(*) to a local variable first or
only passing one string as the argument.

27. BS108 Error for Large Negative Literal Value (DR120268 - Incorrect Error Near Neg-
ative Limit -- 1/12/05)

Non-integer literal values less than -2,147,483,647.5 but greater than (or equal to)
-2,147,483,648.5 incorrectly receive a BS108 error (LITERAL PROCESSING FAILURE)
when converted to an Integer (e.g. when these literals are used to initialize, assign to, or
pass to an Integer). To avoid this error, assign the literal to a double Scalar or use an
Integer literal value instead.
8-36 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
 Appendix A PROTOTYPE CATALOGUED PROCEDURES
This Appendix contains the two catalogued procedures discussed in Chapter 2 which are
needed to compile and link edit a HAL/S program. The two procedures perform varying
degrees of processing. The procedure names and their functions are:

The following comments describe each of the processes involved in detail. Line
references are to the most complex procedure, HALFCL; the other procedure simply
consists of the first job step invoked in HALFCL.

Step One (HAL): Compilation

HALFC - Compiles a HAL/S program
HALFCL - Compiles and links a HAL/S program

Line 1000 - This PROC statement names the procedure and defines the
symbolic parameters. The OPTION parameter is the means of
supplying optional information to the compiler.

Lines 20000-30000 - The name of the compilation step is HAL. The name of the
actual program to be executed is MONITOR. MONITOR
handles all compiler/OS interfaces and also performs the
actual loading and overlaying of the three phases of the
compiler. The compiler requires a 350K region, although a
larger region may be specified. The compiler will always
use all the memory it is given. A larger region will generally
result in smaller compilation times. A default time limit of 1
minute is supplied. This is sufficient for most average size
HAL/S programs (approximately 300 HAL/S statements).
The PARM field contains the compile-time options. The
OPTION field receives any user-specified options.

Line 40000 - The STEPLIB DD card specifies the location of the load
module library containing the module MONITOR needed to
run the compiler. This card may define any direct access
library which contains the proper module or may be deleted
at installations where the module has been made part of the
system library (SYS1.LINKLIB).

Line 50000 - The PROGRAM DD card defines the compiler phases that
are to be used. This dataset has a DCB of the form:
DCB= (RECFM=F, LRECL=7200, BLKSIZE=7200)
and may reside on direct access or magnetic type. It is
recommended, however, that direct access be used.
A -1 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
Line 60000 - The SYSPRINT DD card defines the primary listing dataset.
This is generally assigned to a system output class, but may
be associated with any sequential dataset with the proper
characteristics. The user may supply DCB attributes; the
record format must be FBA with a logical record length of
133 and any appropriate block size.

Line 70000 - The LISTING2 DD card defines the secondary listing
dataset controlled by the LISTING2 compiler option. It may
define a system output class or any sequential dataset. The
DCB requirements are the same as for SYSPRINT.

Lines 80000-100000 - The OUTPUT3 DD card defines the dataset which is to
receive object code which is produced by the compiler. In
the prototype procedure, this dataset is given a temporary
name (&&HALOBJ) and is passed (DISP=(MOD,PASS)) to
subsequent steps. Since this dataset contains card images,
it must have a logical record length of 80 and a record
format of F or FB. The blocking factor may be any legal
multiple of 80. This DD card may specify a direct access,
magnetic tape, or unit record device.

Line 110000 - The OUTPUT4 DD card defines the location to which a
duplicate of the OUTPUT4 file will be sent under control of
the DECK compiler option. Its DCB characteristics are
identical to OUTPUT3.

Lines 120000-130000 - The OUTPUT5 DD card defines the dataset which will
receive the Simulation Data File (SDF).
The OUTPUT5 DD card must define a partitioned dataset.
The SPACE parameters used in the prototype procedure
are more than adequate to contain the mapping file of any
one HAL/S program.
One member of the partitioned dataset is created for a
compilation unit. The name of the member is the
characteristic name of the unit being compiled, padded with
blanks if necessary and preceded by the characters ##.
If a member with the desired name does not exist at
compile-time, one is created. If a member with the desired
name already exists, it is replaced by the new member.
The use of a permanent partitioned dataset makes it
possible to maintain a “library” of SDFs, with the member
names uniquely specifying the HAL/S compilations to which
they correspond (see Section 3.5).
A -2 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
Lines 140000-150000 - The OUTPUT6 DD card defines the partitioned dataset onto
which templates for compilation units may be placed. Refer
to Section 3.4 for details on template generation. The DCB
attributes for the statement should be compatible with those
used for primary compiler input (SYSIN) and secondary
compiler input (INCLUDE).

Line 160000 - The OUTPUT7 DD card specified as “Dummy” is included
to cover an option which is not used for normal
compilations.

Line 170000 - The ERROR DD card defines the partitioned dataset which
contains the error message texts used by the compiler. This
dataset is supplied with the compiler and, being a
partitioned dataset, must reside on a direct access volume.

Lines 180000-230000 - The FILE1 through FILE6 DD cards specify work files.
These files are used for interphase communication. The
device may be either direct access or magnetic tape. Space
equivalent to approximately 60 tracks on a 2314 should be
available for each DD card. The DCB is internally specified
and should not be altered by JCL.

Step Two (LKED): Link Editing

Lines 240000-340000 - These lines define the link edit step, processing the object
module output of the HAL/S compilation and producing a
load module for the flight computer.

010000 //HALFC PROC OPTION=,LEVEL=HALS101
020000 //HAL EXEC PGM=MONITOR,REGION=350K,TIME=1,
030000 // PARM=‘NOZCON,&OPTION’
040000 //STEPLIB DD DISP=SHR,DSN=&LEVEL..MONITOR
050000 //PROGRAM DD DISP=SHR,DSN=&LEVEL..COMPILER
060000 //SYSPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=3458)
070000 //LISTING2 DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=3458)
080000 //OUTPUT3 DD UNIT=SYSDA,DISP=(MOD,PASS),SPACE=(CYL,(1,1)),
090000 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=400),
100000 // DSN=&&HALOBJ
110000 //OUTPUT4 DD SYSOUT=B,DCB=(RECFM=FB,LRECL=80,BLKSIZE=400,FUNC=I)
120000 //OUTPUT5 DD DISP=(MOD,PASS),DSN=&&HALSDF,SPACE=(TRK,(2,2,1)),
130000 // DCB=(RECFM=F,LRECL=1680,BLKSIZE=1680),UNIT=SYSDA
140000 //OUTPUT6 DD DISP=(MOD,PASS),DSN=&&TEMPLIB,SPACE=(TRK,(2,2,1)),
150000 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=1680),UNIT=SYSDA
160000 //OUTPUT7 DD DUMMY,DCB=(RECFM=FM,LRECL=121,BLKSIZE=121)
170000 //ERROR DD DISP=SHR,DSN=&LEVEL..ERRORLIB
180000 //FILE1 DD UNIT=SYSDA,SPACE=(CYL,3)
A -3 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
 Figure A-1 HALFC

190000 //FILE2 DD UNIT=SYSDA,SPACE=(CYL,3)
200000 //FILE3 DD UNIT=SYSDA,SPACE=(CYL,3)
210000 //FILE4 DD UNIT=SYSDA,SPACE=(CYL,3)
220000 //FILE5 DD UNIT=SYSDA,SPACE=(CYL,3)
230000 //FILE6 DD UNIT=SYSDA,SPACE=(CYL,3)
A -4 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
 Figure A-2 HALFCL

010000 //HALFCL PROC OPTION=,LEVEL=HALS101
020000 //HAL EXEC PGM=MONITOR,REGION=350K,TIME=1,
030000 // PARM=‘NOZCON,&OPTION’
040000 //STEPLIB DD DISP=SHR,DSN=&LEVEL..MONITOR
050000 //PROGRAM DD DISP=SHR,DSN=&LEVEL..COMPILER
060000 //SYSPRINT DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=3458)
070000 //LISTING2 DD SYSOUT=A,DCB=(RECFM=FBA,LRECL=133,BLKSIZE=3458)
080000 //OUTPUT3 DD UNIT=SYSDA,DISP=(MOD,PASS),SPACE=(CYL,(1,1)),
090000 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=400),
100000 // DSN=&&HALOBJ
110000 //OUTPUT4 DD SYSOUT=B,DCB=(RECFM=FB,LRECL=80,BLKSIZE=400,FUNC=I)
120000 //OUTPUT5 DD DISP=(MOD,PASS),DSN=&&HALSDF,SPACE=(TRK,(2,2,1)),
130000 // DCB=(RECFM=F,LRECL=1680,BLKSIZE=1680),UNIT=SYSDA
140000 //OUTPUT6 DD

DISP=(MOD,PASS),DSN=&&TEMPLIB,SPACE=(TRK,(2,2,1)),
150000 // DCB=(RECFM=FB,LRECL=80,BLKSIZE=1680),UNIT=SYSDA
160000 //OUTPUT7 DD DUMMY,DCB=(RECFM=FM,LRECL=121,BLKSIZE=121)
170000 //ERROR DD DISP=SHR,DSN=&LEVEL..ERRORLIB
180000 //FILE1 DD UNIT=SYSDA,SPACE=(CYL,3)
190000 //FILE2 DD UNIT=SYSDA,SPACE-(CYL,3)
200000 //FILE3 DD UNIT=SYSDA,SPACE=(CYL,3)
210000 //FILE4 DD UNIT=SYSDA,SPACE=(CYL,3)
220000 //FILE5 DD UNIT=SYSDA,SPACE=(CYL,3)
230000 //FILE6 DD UNIT=SYSDA,SPACE=(CYL,3)
240000 //LKED EXEC

PGM=LNK101,TIME=1,PARM=(LIST,MAP,NOXREF,NOAUTO,NOTABLE)
,

250000 // COND=(0,LT,HAL)
260000 //STEPLIB DD DISP=SHR,DSN=&LEVEL..SUPPORT
270000 //SYSPRINT DD SYSOUT=A,DCB=BLKSIZE=121
280000 //SYSLIB DD DISP=SHR,DSN=&LEVEL..RUNLIB
285000 // DD DISP=SHR,DSN=&LEVEL..ZCONLIB
290000 //SYSLIN DD DISP=SHR,DSN=&LEVEL..NUCLEUS
300000 // DD DISP=(OLD,DELETE),DSN=&&HALOBJ
310000 // DD DDNAME=SYSIN
320000 //SYSLMOD DD DSN=&&LOADMOD(GO),DISP=(,PASS),UNIT=SYSDA,
330000 // SPACE=(CYL,(1,1,1))
340000 //SYSUT1 DD SPACE=(CYL,(1,1)),UNIT=(SYSDA,SEP=(SYSLIN,SYSLMOD))
A -5 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
This page intentionally left blank.
A -6 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
 Appendix B COMPILE-TIME ERROR BEHAVIOR
The text of all the possible compile-time error messages is presented here, along with a
series of explanations giving more detail about the error encountered, its probable
cause, and often a specific reference in the Language Specification for more information.
See section 4.3 for a discussion of the format of error messages in the compiler listing.
The first table gives the mnemonic naming scheme used to identify the class-subclass
structure of the error messages. The complete list of messages and associated
explanations is presented next. The occurrence of double question marks (??) in the text
of the messages listed here indicate positions at which text specific to each actual error
will be inserted (e.g., a variable name may be inserted to make a clear identification of
the error source).
Errors marked as “Internal compiler failure” should not occur; if they do, a compiler
representative should be informed. Note: “b” denotes a blank.
CLASS A: ASSIGNMENT STATEMENTS
A ARRAY ASSIGNMENT
V COMPLEX VARIABLE ASSIGNMENT
b MISCELLANEOUS ASSIGNMENT

CLASS B: COMPILER TERMINATION
B HALMAT BLOCK SIZE
I INTERNAL ERRORS
N NAME SCOPE NESTING
S STACK SIZE LIMITATIONS
T TABLE SIZE LIMITATIONS
X COMPILER ERRORS
b MISCELLANEOUS

CLASS C: COMPARISONS
b GENERAL COMPARISONS

CLASS D: DECLARATION ERRORS
A ATTRIBUTE LIST
C STORAGE CLASS ATTRIBUTE
D DIMENSION
I INITIALIZATION
L LOCKING ATTRIBUTE
N NAME
Q STRUCTURE TEMPLATE TREE ORGANIZATION
S FACTORED/UNFACTORED SPECIFICATION
T TYPE SPECIFICATION
U UNDECLARED DATA
b MISCELLANEOUS
B -1 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
CLASS E: EXPRESSIONS
A ARRAYNESS
B BIT STRINGS EXPRESSIONS
C CROSS PRODUCT
D DOT PRODUCT
L LIST EXPRESSIONS
M MATRIX EXPRESSIONS
N NAME
O OUTER PRODUCT
V VECTOR EXPRESSIONS
b MISCELLANEOUS EXPRESSIONS

CLASS F: FORMAL PARAMETERS & ARGUMENTS
D DIMENSION AGREEMENT
N NUMBER OF ARGUMENTS
S SUBBIT ARGUMENTS
T TYPE AGREEMENT
b MISCELLANEOUS

CLASS G: STATEMENT GROUPINGS (DO GROUPS)
B BIT TYPE CONTROL EXPRESSION
C CONTROL EXPRESSION
E EXIT/REPEAT STATEMENTS
L END LABEL
V CONTROL VARIABLE

CLASS I: IDENTIFIERS
L LENGTH
R REPLACED IDENTIFIERS
S QUALIFIED STRUCTURE NAMES

CLASS L: LITERALS
B BIT STRING
C CONVERSION TO INTERNAL FORMS
F FORMAT OF ARITHMETIC LITERALS
S CHARACTER STRING

CLASS M: MULTILINE FORMAT
C OVERPUNCH CONTEXT
E E-LINE
O OVERPUNCH USE
S S-LINE
b CONTENTS

CLASS P: PROGRAM CONTROL & INTERNAL CONSISTENCE
A ACCESS CONTROL
C COMPOOL BLOCKS
D DATA DEFINITION
E EXTERNAL TEMPLATES
F FUNCTION RETURN EXPRESSIONS
L LABELS
M MULTIPLE DEFINITIONS
P BLOCK DEFINITION
B -2 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
R ON ERROR/SVCI MACRO (ONLY EMITTED BY BFS COMPILER)
S PROCEDURE/FUNCTION TEMPLATES
T TASK DEFINITIONS
U CLASS FROM UPDATE BLOCKS
b MISCELLANEOUS

CLASS Q: SHAPING FUNCTIONS
A ARRAYNESS
D DIMENSION INFORMATION
S SUBSCRIPTS
X ARGUMENT TYPE

CLASS R: REAL TIME STATEMENTS
E ON/SEND ERROR STATEMENTS
T TIMING EXPRESSIONS
U UPDATE BLOCKS

CLASS S: SUBSCRIPT USAGE
C SUBSCRIPT COUNT
P PUNCTUATION
Q PRECISION QUALIFIER
R RANGE OF SUBSCRIPT VALUES
S USAGE ASTERISKS
T SUBSCRIPT TYPE
V VALIDITY OF USAGE

CLASS T: I/O STATEMENTS
C CONTROL
D DEVICE NUMBER
b MISCELLANEOUS

CLASS U: UPDATE BLOCKS
I IDENTIFIER USAGE
P PROGRAM BLOCKS
T I/O

CLASS V: COMPILE-TIME EVALUATIONS
A ARITHMETIC OPERATIONS
C CATENATION OPERATIONS
E UNCOMPUTABLE EXPRESSIONS
F FUNCTION EVALUATION

CLASS X: IMPLEMENTATION DEPENDENT FEATURES
A PROGRAM ID DIRECTIVE
D DEVICE DIRECTIVE
I INCLUDE DIRECTIVE
R DATA_REMOTE DIRECTIVE
U UNKNOWN OR INVALID DIRECTIVE

CLASS Y: ADVISORY MESSAGES
A ASSIGNMENTS
C COMPARISONS
D DECLARES
E EXPRESSIONS
B -3 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
F FORMAL PARAMETERS & ARGUMENTS

CLASS Z: PRODUCE “TRAP” MESSAGES FROM THE COMPILER
B BIT INSTRUCTION
C %COPY
O OPTIMIZER
P REGISTER PRESSURE
R REMOTE
S SUBBIT EXPRESSION
B -4 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
ERROR MESSAGES FOR MAJOR CLASSIFICATION A
CLASSIFICATION “A” ERRORS ARE RELATED TO ASSIGNMENT STATEMENTS

AA1 - SEVERITY 2
ARRAYNESS OF LEFT HAND SIDE OF ASSIGNMENT DOES NOT MATCH THAT OF RIGHT
HAND SIDE

IN “L=R”, IF R IS ARRAYED, THEN L MUST POSSESS IDENTICAL ARRAYNESS. SPEC-SECTION 7.3

AA2 - SEVERITY 2
ARRAYNESS OF ?? IS INCONSISTENT WITH THAT OF OTHER LEFT HAND SIDE VARIABLES
IN MULTIPLE ASSIGNMENTS SUCH AS “L,M,N=R”, ALL LEFT-HAND VARIABLES MUST
POSSESS IDENTICAL ARRAYNESS.

SPEC-SECTION 7.3

AA3 - SEVERITY 2
ARRAYNESS OF ?? DISAGREES WITH ARRAYNESS OF ITS SUBSCRIPTING

IF AN ARRAYED SUBSCRIPT APPEARS WITHIN AN ARRAYED EXPRESSION, THE ARRAYNESS
MUST MATCH.

AV0 - SEVERITY 2
ARGUMENTS ON EITHER SIDE OF NAME ASSIGNMENT ARE INCOMPATIBLE

IN “NAME(L)=NAME(R)”, L MUST BE A NAME VARIABLE DECLARED TO BE OF THE SAME TYPE,
ETC, AS THE ORDINARY OR NAME VARIABLE, “R”. SPEC-SECTION 11.4.1

AV1 - SEVERITY 2
TYPE OF ?? IS ILLEGAL FOR ASSIGNMENT FROM GIVEN RIGHT-HAND SIDE

IN “L=R”, L AND R MUST MATCH IN TYPE, WITH THE FOLLOWING EXCEPTIONS: INTEGER TO
SCALAR, SCALAR TO INTEGER, ZERO TO VECTOR/MATRIX, AND INTEGER/SCALAR TO
CHARACTER ASSIGNMENTS ARE ALL POSSIBLE.

AV2 - SEVERITY 2
MATRIX DIMENSIONS DISAGREE ACROSS ASSIGNMENT

MAKE SURE THE DIMENSIONS OF THE MATRIX REFERRED TO AND THE MATRIX ASSIGNED INTO
ARE ALL THE SAME.

AV3 - SEVERITY 2
VECTOR LENGTHS DISAGREE ACROSS ASSIGNMENT

MAKE SURE THE LENGTH OF THE VECTOR REFERRED TO AND THE VECTOR ASSIGNED INTO
ARE ALL THE SAME.

AV4 - SEVERITY 2
TREE ORGANIZATIONS DO NOT MATCH ACROSS ASSIGNMENT

IN “S1=S2”, BOTH STRUCTURES MUST HAVE IDENTICAL ORGANIZATION. SPEC-SECTION 7.3

AV5 - SEVERITY 2
ONLY ONE OPERAND IN ASSIGNMENT IS A NAME PSEUDO-FUNCTION OR NULL.

THE NAME PSEUDO-FUNCTION MUST OCCUR ON BOTH SIDES OF THE ASSIGNMENT:
“NAME(L)=R” AND “L=NAME(R)” ARE BOTH ILLEGAL. ONLY NAME(L)=NULL IS LEGAL.

A1 - SEVERITY 2
ILLEGAL ASSIGNMENT TO CONSTANT OR PARAMETER ??

DATA ITEMS DECLARED AS CONSTANTS MAY NOT BE CHANGED (ASSIGNED INTO); NEITHER
MAY INPUT PARAMETERS IN A PROCEDURE. SPEC-SECTION 7.3
B -5 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
A2 - SEVERITY 2
ARGUMENT ?? OF THE NAME PSEUDO-FUNCTION OR SPECIFIED %MACRO POSSESSES
SUBSCRIPTS ILLEGAL IN ASSIGNMENT CONTEXT

IN “NAME(L)=NAME(R)”, THE NAME VARIABLE ‘L’ MAY NOT POSSESS ARRAYNESS OR
COMPONENT SUBSCRIPTING.

 SPEC-SECTION 11.4.11

A3 - SEVERITY 2
ARGUMENT ?? OF THE NAME PSEUDO-FUNCTION OR SPECIFIED %MACRO DOES NOT
POSSESS THE NAME ATTRIBUTE: IT IS THEREFORE ILLEGAL IN ASSIGNMENT CONTEXT

IN “NAME(L)=NAME(R)”, THE VARIABLE L MUST BE A DECLARED NAME VARIABLE. SPEC-SECTION
11.4.6
B -6 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
ERROR MESSAGES FOR MAJOR CLASSIFICATION B
CLASSIFICATION “B” ERRORS RESULT FROM ABORTIVE COMPILER FAILURES

NOTE: MANY ERRORS IN THIS SECTION ARISE BECAUSE PROGRAM ORGANIZATION LIMITS
INTERNAL TO THE COMPILER HAVE BEEN REACHED. MOST OFTEN THIS IS DUE TO THE COM-
PILER’S ATTEMPT TO INTERPRET HAL/S STATEMENTS OF EXTREMELY HIGH COMPLEXITY: E.G.,
WITH MANY NESTED FUNCTION INVOCATIONS IN WHICH PARAMETERS ARE ARRANGED IN SEV-
ERAL DIMENSIONS, ETC. IF THIS OCCURS, THE USER SHOULD TRY TO SIMPLIFY THE SOURCE
PROGRAM AS MUCH AS IS POSSIBLE, BREAKING DOWN COMPLICATED STATEMENTS INTO A
SERIES OF SIMPLER CONSTITUENTS.

BB1 - SEVERITY 3
INTERMEDIATE CODE STORAGE OVERFLOW: ERROR SCAN CONTINUING

SIMPLIFY: TOO MANY LITERALS, INITIAL VALUES, ETC., SPECIFIED AT ONCE. BREAK UNIT INTO
SEPARATE COMPILATIONS.

BI000 - SEVERITY 3
NOTICE FROM DESCRIPTOR_MONITOR: UNABLE TO ALLOCATE ADDITIONAL
DESCRIPTORS. JOB ABANDONED.

CAUSES A USER 4000 ABEND.

BI001 - SEVERITY 3
INVALID CALL TO RETURN DESCRIPTORS

CAUSES A USER 4000 ABEND.

BI002 - SEVERITY 3
BUG IN SPACE MANAGEMENT SYSTEM __ ??

CAUSES A USER 4000 ABEND.

BI003 - SEVERITY 3
BUG IN SPACE MANAGEMENT SYSTEM

CAUSES A USER 4000 ABEND.

BI004 - SEVERITY 3
TOO MANY SPACE MANAGEMENT ERRORS -- ABORTING

 CAUSES A USER 4000 ABEND.

BI005 - SEVERITY 3
NOTICE FROM COMPACTIFY: INSUFFICIENT SORT AREA. JOB ABANDONED.

CAUSES A USER 4000 ABEND. TRY INCREASING REGION SIZE AND/OR THE FREE PARAMETER
FOR THE COMPILATION.

BI006 - SEVERITY 3
BUG IN COMPACTIFY *** ABORTING

CAUSES A USER 4000 ABEND.

BI007 - SEVERITY 3
NOT ENOUGH SPACE AVAILABLE -- TRY LARGER REGION.

CAUSES A USER 4000 ABEND.

BI008 - SEVERITY 3
NOTICE FROM COMPACTIFY: INSUFFICIENT MEMORY FOR STRING STORAGE. JOB
ABANDONED.

CAUSES A USER 4000 ABEND.
B -7 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
BI009 - SEVERITY 3
NOT ENOUGH SPACE FOR INCREASED ALLOCATION, GIVING UP.

CAUSES A USER 4000 ABEND.

BI010 - SEVERITY 3
SPACE MANAGEMENT YOYOING -- TRY LARGER REGION.

CAUSES A USER 4000 ABEND.

BI011 - SEVERITY 3
NOT ENOUGH FREE STRING AVAILABLE, RERUN WITH LARGER REGION

CAUSES A USER 4000 ABEND.

BI100 - SEVERITY 2
ERROR LOOKUP FAILURE: ??

BI101 - SEVERITY 2
WARNING *** TOO MANY ERROR MESSAGES GENERATED FOR THIS STATEMENT; NOT
ALL ERRORS ARE LISTED FULLY

BI102 - SEVERITY 2
XREF LIST WAS FILLED, AND IS THEREFORE INCOMPLETE. ONE OR MORE SPURIOUS
ADMONITIONS MAY APPEAR ABOVE.

BI103 - SEVERITY 2
INVALID MFID CHARACTER ??

BI104 - SEVERITY 2
ERROR *** ONE OR MORE DUPLICATE BLOCK NAMES FOUND.

BI105 - SEVERITY 2
ERROR ONE OR MORE VARIABLES REFERENCED BUT NOT ASSIGNED.

BI106 - SEVERITY 4
TOO MANY ERRORS; COMPILATION ABORTED

BI107 - SEVERITY 2
ERROR CLASS NOT FOUND FOR DOWNGRADE DIRECTIVE, PLEASE CONFIRM ERROR
CLASS AND RECOMPILE.

BI108 - SEVERITY 2
NO ERROR NUMBER TO DOWNGRADE, DETERMINE ERROR NUMBER TO DOWNGRADE
AND RECOMPILE.

BI109 - SEVERITY 2
YOU HAVE EXCEEDED THE NUMBER OF ALLOWABLE DOWNGRADES, NEED TO REMOVE
UNNEEDED DOWNGRADES AND RECOMPILE.

THE LIMIT ON DOWNGRADES IS DOCUMENTED IN APPENDIX B OF THE FC SPEC.

BI200 - SEVERITY 2
SYT VPTR NOT FOUND FOR ??

BI201 - SEVERITY 2
MALFORMED TEMPLATE, STRUCTURE WALK INHIBITED

BI202 - SEVERITY 2
STRUCTURE SUBSCRIPT AT ?? NOT PREPROCESSED

BI203 - SEVERITY 2
SF START NOT FOUND
B -8 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
BI204 - SEVERITY 2
HALMAT OP ?? NOT PREPROCESSED

BI205 - SEVERITY 2
NON-INTEGER SUBSCRIPT

BI206 - SEVERITY 2
INIT REPEAT LIST OPERATOR MISMATCH

BI207 - SEVERITY 2
STRUCT_COPIES NOT EQUAL TO IDLP COUNT

BI208 - SEVERITY 2
SUBSCRIPT NOT PREPROCESSED ??

BI209 - SEVERITY 2
P/F CALL NOT PREPROCESSED ??

BI210 - SEVERITY 2
STRUCT SUBSCRIPT NOT PREPROCESSED ??

BI211 - SEVERITY 2
XXST NOT FOUND ??

BI213 - SEVERITY 2
NEGATIVE NEST LEVEL

BI214 - SEVERITY 2
TINT REF NOT PREPROCESSED ??

BI215 - SEVERITY 2
VAR REF NOT PREPROCESSED: ??

BI216 - SEVERITY 2
GET_STMT_VARS FOUND: ??

BI217 - SEVERITY 2
ILLEGAL INIT LIST OP

BI218 - SEVERITY 5
END OF STMT DATA: ??

BI219 - SEVERITY 5
STACK OVERFLOW WHILE FORMATTING VMEM CELLS

BI220 - SEVERITY 5
SAVE_VACS STACK OVERFLOW

BI221 - SEVERITY 5
WORD STACK OVERFLOW

BI222 - SEVERITY 5
END OF STMT DATA IN DECL: ??

BI223 - SEVERITY 2
NEGATIVE STORAGE SIZE

BI300 - SEVERITY 2
COMPILE-TIME INT/SCA ADDITION FAILURE
B -9 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
BI301 - SEVERITY 2
COMPILE-TIME INT/SCA SUBTRACTION FAILURE

BI302 - SEVERITY 2
COMPILE-TIME INT/SCA MULTIPLICATION FAILURE

BI303 - SEVERITY 2
COMPILE-TIME INT/SCA DIVISION FAILURE

BI304 - SEVERITY 2
LITERAL COLLAPSING ABANDONED

BI305 - SEVERITY 4
LITERAL TABLE OVERFLOW

BI306 - SEVERITY 4
STRUCTURE TEMPLATE USED WITHOUT XREF INDICATION

BI307 - SEVERITY 4
TEMPLATE STACK OVERFLOW

BI308 - SEVERITY 4
CSE TABLE OVERFLOW

BI309 - SEVERITY 4
(PREVIOUS) STATEMENT TOO LONG. COMPILATION ABANDONED

BI310 - SEVERITY 4
STATEMENT TOO LONG. COMPILATION ABANDONED

BI311 - SEVERITY 4
DO LEVEL EXCEEDED

BI400 - SEVERITY 4
SYT_REF_POOL OVERFLOW

BI401 - SEVERITY 4
VAC_REF_POOL OVERFLOW

BI402 - SEVERITY 4
STACK UNDERFLOW

BI403 - SEVERITY 4
ATTEMPT TO DECODE RAND ?? AS RATOR

BI404 - SEVERITY 4
ATTEMPT TO DECODE RATOR ?? AS RAND

BI405 - SEVERITY 4
STACK FRAME TYPE COMPILER ERROR

BI406 - SEVERITY 4
BLOCK CLOSE AND BLOCK OPEN LABELS ON STACK DIFFER

BI407 - SEVERITY 4
ATTEMPT TO DECODE RATOR AS RAND WHILE GENERATING TARGET INFORMATION
B -10 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
BI408 - SEVERITY 4
ATTEMPT TO DECODE RAND AS RATOR WHILE GENERATING TARGET INFORMATION

BI409 - SEVERITY 4
ATTEMPT TO TARGET ?? OPERATOR

BI410 - SEVERITY 4
ATTEMPT TO DECODE RATOR AS RAND WHILE TESTING STOP CONDITIONS FOR
TARGETING

BI411 - SEVERITY 4
ATTEMPT TO DECODE RAND AS RATOR WHILE TESTING STOP CONDITIONS FOR
TARGETING

BI412 - SEVERITY 4
COMPILATION ENDED IN AUXMATTER PHASE DUE TO DEBUG TOGGLE 134 BEING SET

BI500 - SEVERITY 2
HALMAT/FILE6 PHASING ERROR

BI501 - SEVERITY 2
?? BITS UNACCOUNTED FOR

BI504 - SEVERITY 2
LOOP IN OPERAND STACK POINTERS

BI505 - SEVERITY 2
INTERNAL COMPILER ERROR IN BRANCH_CONDENSE

BI506 - SEVERITY 2
EXTRA CODE RECORD, LHS = ??

BI507 - SEVERITY 2
SPLBL LOC NOT EQUAL TO 0 FOR CSECT ??

BI509 - SEVERITY 2
LABEL VERIFICATION ERROR FOR LBL# ??

BI510 - SEVERITY 5
HALMAT/FILE6 ERROR FOUND IN EMIT_ADDRS

BI511 - SEVERITY 4
THE COMPILER GENERATED AN INSTRUCTION WITH A NEGATIVE ?? REGISTER

BI512 - SEVERITY 4
DISPLACEMENT > 2047 IS INVALID FOR INDEXED RS TYPE INSTRUCTION

BI513 - SEVERITY 4
THE COMPILER ATTEMPTED TO GENERATE INCORRECT OBJECT CODE DUE TO
TRUNCATION OF AN INDEX DURING ADJUSTMENT FOR AUTOMATIC INDEX ALIGNMENT

BI514 - SEVERITY 4
DISPLACEMENT > 65535 IS INVALID FOR EXTENDED RS TYPE INSTRUCTION

BI515 - SEVERITY 4
DISPLACEMENT > = 56 IS INVALID FOR ?? TYPE INSTRUCTION
B -11 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
BI516 - SEVERITY 4
COMPILER GENERATED AN INVALID BASE REGISTER FOR ?? INSTRUCTION

BI517 - SEVERITY 4
COMPILER IS INCORRECTLY UTILIZING A BASE REGISTER IN A STORE INSTRUCTION

BI518 - SEVERITY 4
CANNOT FIND A VALID BASE REGISTER TO LOAD VARIABLE.

BI700 - SEVERITY 5
VIRTUAL MEMORY PAGING AREA DEPLETED

BI701 - SEVERITY 5
BAD POINTER DETECTED BY PTR_LOCATE = ??

BI702 - SEVERITY 5
VIRTUAL MEMORY CAPACITY EXHAUSTED

BI703 - SEVERITY 5
REQUESTED VIRTUAL MEMORY CELL SIZE TOO LARGE

BN1 - SEVERITY 4
MAX NAME SCOPE NESTING DEPTH EXCEEDED

CODE BLOCKS (AND HENCE NAME SCOPES) MAY NOT BE NESTED TO A DEPTH OF MORE THAN
16 LEVELS.

BS1 - SEVERITY 4
MAXIMUM DEPTH OF DO...END GROUP NESTING EXCEEDED

NO MORE THAN 24 LEVELS OF DO...END GROUP NESTINGS ARE PERMITTED

BS100 - SEVERITY 2
DO GROUPS NESTED TOO DEEP

NO MORE THAN 16 LEVELS OF DO...END GROUP NESTINGS ARE PERMITTED.

BS101 - SEVERITY 2
FUNCTION CALLS NESTED TOO DEEP

NO MORE THAN 20 LEVELS OF FUNCTION INVOCATION ARE PERMITTED.

BS102 - SEVERITY 3
SUBPROGRAM STACK OVERFLOW

MORE THAN 255 CSECTS WERE GENERATED BY THE COMPILATION (THIS INCLUDES DATA,
CODE, TEMPLATE CSECTS, BUT NOT EXTERNAL REFERENCES, E.G. LIBRARIES).

BS103 - SEVERITY 2
EXCEEDED ARGUMENT STACK SIZE

FUNCTION AND PROCEDURE INVOCATIONS MAY NOT INVOLVE MORE THAN 100 ARGUMENTS.
THIS FIGURE INCLUDES ALL ARGUMENTS TO FUNCTIONS WHICH ARE THEMSELVES USED AS
ARGUMENTS IN THE SUBROUTINE INVOCATION. THUS, CALL PROC1(A,B,FUNC(X,Y)) COUNTS AS
HAVING 4 ARGUMENTS.

BS105 - SEVERITY 2
DATA STORAGE CAPACITY EXCEEDED

A TEMPORARY DATA ITEM WAS DECLARED THAT WOULD OCCUPY MORE THAN 2 MILLION BYTES
(360) OR HALFWORDS (FC) STORAGE.

BS106 - SEVERITY 3
INDIRECT STACK OVERFLOW

SIMPLIFY. MAY POSSIBLY BE COMPILER ERROR. LOOK FOR “LOOP IN OPERAND STACK
B -12 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
POINTERS” MESSAGE AT END OF PHASE II LISTING.

BS107 - SEVERITY 3
CHARACTER LITERAL BUFFER OVERFLOW

INCREASE LITSTRINGS COMPILER OPTION AND RESUBMIT.

BS108 - SEVERITY 2
LITERAL PROCESSING FAILURE

ATTEMPT WAS MADE TO EMPLOY, AS AN INTEGER, A NUMBER WHICH IS NOT INTEGERIZABLE.
INTEGERS MAY NOT TAKE VALUES GREATER THAN 2**32.

BS109 - SEVERITY 3
CONSTANT TABLE OVERFLOW

THE MAXIMUM NUMBER OF UNIQUE CONSTANTS WHICH MAY BE DEFINED IN A COMPILATION IS
2000.

BS110 - SEVERITY 2
TOO MANY EXTERNAL NAMES

NO MORE THAN 400 EXTERNAL NAMES ARE PERMITTED IN ONE COMPILATION.

BS111 - SEVERITY 2
EXCEEDED ON ERROR STACK SIZE

NO MORE THAN 100 ON ERROR STATEMENTS MAY BE POTENTIALLY ACTIVE AT ONE TIME.

BS112 - SEVERITY 2
STORAGE DESCRIPTOR STACK OVERFLOW

NO MORE THAN 100 TEMPORARIES MAY BE EMPLOYED AT ONE TIME. CAUTION: THE LIMIT FOR
USER-DEFINED TEMPORARY VARIABLES WILL IN GENERAL BE LESS THAN THIS, BECAUSE THE
COMPILER GENERATES ITS OWN TEMPORARIES AS WELL, AND THESE COUNT TOWARDS THE
LIMIT OF 100.

BS113 - SEVERITY 2
EXCEEDED TEMPORARY SPACE

SIMPLIFY: DON’T DECLARE TOO MANY TEMPORARY VARIABLES, DECLARE SOME AS
PERMANENT.

BS115 - SEVERITY 2
ARRAYNESS PUSHED TOO MANY LEVELS

SIMPLIFY: AN ARRAYED EXPRESSION INVOLVING NESTED FUNCTION CALLS ? WITH ARRAYED
PARAMETERS IS NESTED MORE THAN 5 LEVELS. BREAK IT UP INTO TWO OR MORE
STATEMENTS.

BS116 - SEVERITY 2
SIMPLIFY: EXCEEDED ARRAY TEMPORARY SIZE STACK.

TOO MANY DIFFERENT ARRAYNESSES AT WORK IN ONE STATEMENT. BREAK IT UP INTO TWO
OR MORE DIFFERENT STATEMENTS.

BS117 - SEVERITY 2
TEMPORARY ?? NOT ADDRESSABLE

AN ADDRESSING DIFFICULTY. SIMPLIFYING OR EVEN CHANGING THE ORDER IN WHICH
TEMPORARY VARIABLES ARE DEFINED MAY HELP. REFER TO SECTION 8.13 USER NOTES FOR
FURTHER INFORMATION.
B -13 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
BS118 - SEVERITY 2
EXCEEDED SHAPING FUNCTION DIMENSION STACK

NO MORE THAN 20 DIFFERENT DIMENSIONS FOR INTEGER/SCALAR SHAPING FUNCTIONS MAY
BE MENTIONED IN ONE STATEMENT. THE SOLUTION HERE IS TO BREAK UP THE STATEMENT.

BS119 - SEVERITY 2
EXCEEDED ARRAYNESS STACK SIZE

SIMPLIFY: TOO MANY DIFFERENT ARRAYNESSES AT WORK IN ONE STATEMENT. BREAK IT UP
INTO TWO OR MORE STATEMENTS.

BS120 - SEVERITY 3
DATA STORAGE CAPACITY EXCEEDED

A DATA ITEM WAS DECLARED THAT WOULD OCCUPY MORE THAN 2 MILLION BYTES (360) OR
HALFWORDS (FC) OF STORAGE.

BS122 - SEVERITY 2
INDIRECT STACK USAGE CONFLICT

INTERNAL COMPILER FAILURE.

BS123 - SEVERITY 1
UNSUPPORTED REMOTE ADDRESSING FORM (??) ENCOUNTERED.

THE BS123 ERROR MAY BE EMITTED UNDER THE FOLLOWING 3 CONDITIONS TO INDICATE AN
UNSUPPORTED REMOTE ADDRESSING FORM:
 1) THE VARIABLE IS REMOTE (EITHER AGGREGATE OR NON-AGGREGATE)
 AND HAS INSTRUCTION MODIFIER CODE ASSOCIATED WITH IT.
 2) THE VARIABLE IS A REMOTE AGGREGATE WITHOUT INDEXING.
 3) THE VARIABLE IS A REMOTE NON-AGGREGATE WITH INDEXING.

THE BS123 ERROR MESSAGE HAS BEEN UPDATED TO INDICATE WHICH OF THE ABOVE CASES
(1, 2, OR 3) HAS BEEN ENCOUNTERED.

BS130 - SEVERITY 2
OFF PAGE REFERENCE NOT FOUND

SAME AS ABOVE.

BS131 - SEVERITY 2
TOO MANY OFF PAGE ENTRIES

SAME AS ABOVE.

BS2 - SEVERITY 3
INDIRECT PARSE STACK SIZE EXCEEDED

SIMPLIFY: E.G., TOO MANY PARENTHESIZED OPERATIONS.

BS3 - SEVERITY 4
PARSE STACK OVERFLOW

SIMPLIFY.

BS4 - SEVERITY 3
CURRENT ARRAYNESS STACK SIZE EXCEEDED

SIMPLIFY: TOO MANY DIFFERENT ARRAYNESSES AT WORK IN ONE STATEMENT. BREAK INTO
TWO OR MORE STATEMENTS.
B -14 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
BS5 - SEVERITY 2
MAXIMUM FUNCTION NESTING DEPTH EXCEEDED

FUNCTIONS MAY NOT BE NESTED TO A DEPTH OF MORE THAN 10 LEVELS.

BS6 – SEVERITY 1
DUE TO INTERNAL COMPILER LIMITATIONS, SUBSCRIPTS OR EXPONENTS ARE
INCORRECTLY PRINTED, INTERLEAVING COMMENT LINES MAY AVIOD THIS PROBLEM

SUBSCRIPTS OR EXPONENTS WILL NOT BE PRINTED CORRECTLY FOR STATEMENTS WITH
OVER 250 TOKENS WHEN SUBSCRIPTS OR EXPONENTS FALL AT THE END OF 100 CHARACTER
OUTPUT LINES AND IN TOKEN POSITION 248 DUE TO SIZE RESTRICTIONS OF THE STATEMENT
STACK (SEE SECTION 8.13)

BS7 – SEVERITY 3
MAXIMUM SUBSCRIPT OR EXPONENT NESTING DEPTH EXCEEDED
SUBSCRIPTS OR EXPONENTS MAY NOT EXCEED 11 LEVELS

BT2 - SEVERITY 2
STATEMENT NODE STACK OVERFLOW IN CURRENT STATEMENT: SIMULATION TABLES
EMITTED BY PHASE III WILL LACK INFORMATION CONCERNING LABELS ATTACHED TO
STATEMENT, OR VARIABLES CHANGED BY IT.

THE SIMULATION DATA FILE TABLES PRODUCED BY PHASE III OF THE COMPILER WILL BE
INCOMPLETE.

BT3 - SEVERITY 4
LITERAL TABLE DATA OVERFLOW

NO MORE THAN 32,767 UNIQUE LITERALS OF ANY TYPE MAY BE REFERRED TO WITHIN ONE
COMPILATION UNIT.

BT4 - SEVERITY 4
 LITERAL TABLE STRING OVERFLOW
INCREASE “LITSTRINGS” COMPILER OPTION AND RECOMPILE

BT7 - SEVERITY 3
INITIAL LIST STORAGE CAPACITY EXCEEDED

NO MORE THAN 32,767 ITEMS MAY BE REFERRED TO IN AN INITIAL LIST.

BX1 - SEVERITY 3
SYT_CLASS = 0 FOR ??

EITHER A SPURIOUS ERROR CAUSED BY PREVIOUS ERROR RECOVERY (PARTICULARLY FROM
A SYNTAX ERROR ENCOUNTERED WITHIN A DECLARE STATEMENT), OR ELSE AN INTERNAL
COMPILER FAILURE.

BX100 - SEVERITY 2
?? NOT ADDRESSABLE

SIMPLIFY. TOO MUCH DATA DECLARED IN COMPOOLS.

BX101 - SEVERITY 2
LEVEL MISMATCH ON PROC/FUNC CALL

THIS AND THE FOLLOWING ERRORS MAY APPEAR AS SPURIOUS BY-PRODUCTS OF ATTEMPTS
AT RECOVERY FROM PREVIOUS ERRORS, AND IN THAT CASE SHOULD BE IGNORED. IN THE
ABSENCE OF OTHER ERRORS, HOWEVER, THEY REPRESENT INTERNAL COMPILER FAILURES.
B -15 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
BX102 - SEVERITY 2
ARRAY LEVEL MISMATCH

SEE BX101

BX103 - SEVERITY 2
INDEX STACK USAGE INCONSISTENT

SEE BX101

BX104 - SEVERITY 2
BASE STACK USAGE INCONSISTENT

SEE BX101

BX105 - SEVERITY 2
UNMATCHED DO CASE ENDING

SEE BX101

BX106 - SEVERITY 2
UNMATCHED DO CASE LABEL

SEE BX101

BX107 - SEVERITY 2
UNMATCHED DO WHILE ENDING

SEE BX101

BX108 - SEVERITY 2
UNMATCHED DO FOR ENDING

SEE BX101.

BX109 - SEVERITY 2
DO FOR ENDING INCOMPLETE DUE TO PREVIOUS ERROR RECOVERY

SEE BX101.

BX110 - SEVERITY 2
ARRAY ENDING MISMATCH

SEE BX101.

BX111 - SEVERITY 2
LEVEL MISMATCH ON PROC/FUNC/IO ARGUMENT

SEE BX101.

BX112 - SEVERITY 2
MISMATCH CLOSING

SEE BX101.

BX113 - SEVERITY 2
ERROR FUNCTION LOOKUP FAILED -- ERRORCODE ??

MOST LIKELY THIS IS THE RESULT OF A FAILURE TO EMPLOY AN UP TO DATE ERROR LIBRARY.
SEE BX101.

BX150 - SEVERITY 1
NOT ALL DATA MOVED VIA MVH ALGORITHM

COMPILER GENERATED LOAD, STORE SEQUENCES TO MOVE DATA.

BX2 - SEVERITY 3
FUNC_TOKEN = 0
B -16 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
BX200 - SEVERITY 2
SYT_SCOPE> MAX_SCOPE#

INTERNAL COMPILER FAILURE

BX5 - SEVERITY 3
EXT_ARRAY OVERFLOW

SIMPLIFY: TOO MANY ARRAYED VARIABLES DECLARED WITH COMPLEX AND DIFFERING
DIMENSIONS. THE TOTAL NUMBER OF DIFFERENTLY-SHAPED ARRAYS DEFINED, PLUS THE
TOTAL NUMBER OF DIMENSIONS DEFINED FOR THESE ARRAYS MUST BE LESS THAN 300.

B1 - SEVERITY 4
INSUFFICIENT CORE AVAILABLE
INCREASE REGION SIZE AND RE-RUN

B100 - SEVERITY 2
STATEMENT CONTAINS PHASE I ERROR

B102 - SEVERITY 2
UNIMPLEMENTED FEATURE OF HAL/S CALLED FOR

B2 - SEVERITY 4
INLINE FUNCTION MAY NOT BE IN A SUBSCRIPT OR EXPONENT. THIS ERROR IS
IRRECOVERABLE.

SEE SPEC-SECTION 11.2.1

B3 - SEVERITY 4
PRIMARY INPUT DATASET EMPTY

MAKE SURE THAT THE CORRECT DATA SET (CONTAINING THE HAL/S SOURCE) IS DEFINED ON
THE SYSIN DD CARD.
B -17 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
ERROR MESSAGES FOR MAJOR CLASSIFICATION C
CLASSIFICATION “C” ERRORS DEAL WITH COMPARISONS

C0 - SEVERITY 2
ARGUMENTS IN NAME COMPARISON ARE INCOMPATIBLE.

NAME VARIABLES MAY ONLY BE COMPARED IF THEY MATCH PRECISELY AS TO TYPE, ETC.
SPEC-SECTION 11.4.8

C1 - SEVERITY 2
?? COMPARISONS MAY ONLY BE = OR NOT=

COMPARISONS BETWEEN ENTIRE ARRAYS, MATRICES, VECTORS AND BITS MAY ONLY BE IN
TERMS OF EQUALITY OR INEQUALITY

C2 - SEVERITY 2
ARRAYED COMPARISONS ARE RESTRICTED TO = OR NOT=

LESS THAN, GREATER THAN, ETC. WOULD GIVE NO UNAMBIGUOUS RESULT HERE.

C3 - SEVERITY 2
TREE ORGANIZATIONS OF STRUCTURES COMPARED DO NOT MATCH

STRUCTURES CAN ONLY BE COMPARED IF THEY POSSESS IDENTICAL ORGANIZATIONS.

C4 - SEVERITY 2
ONLY ONE OPERAND OF COMPARISON IS A NAME PSEUDO-FUNCTION OR NULL.

THE NAME PSEUDO-FUNCTION MUST OCCUR ON BOTH SIDES OF THE COMPARISON:
“NAME(L)=R” AND “L=NAME(R)” ARE BOTH ILLEGAL, UNLESS L OR R REPRESENT THE NULL
NAME VALUE.
SPEC-SECTION 11.4.8

C5 - SEVERITY 1
BROKEN DOUBLE COMPARE INSTRUCTION REPLACED WITH SINGLE COMPARE.

THE COMPILER NEEDS TO GENERATE A DOUBLE PRECISION COMPARE INSTRUCTION (CED OR
CEDR) BUT INSTEAD GENERATES A SINGLE PRECISION COMPARE (CE OR CER) BECAUSE THE
DOUBLE PRECISION COMPARE INSTRUCTIONS ARE CURRENTLY BROKEN ON THE AP101S.
B -18 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
ERROR MESSAGES FOR MAJOR CLASSIFICATION D
CLASSIFICATION “D” ERRORS ARE RELATED TO DATA DECLARATIONS

DA0 - SEVERITY 2
CONFLICTING ATTRIBUTE SPECIFIED WITH THE LATCHED ATTRIBUTE

THE LATCHED ATTRIBUTE APPLIES ONLY TO EVENT VARIABLES; THE REMOTE ATTRIBUTE AND
PRECISION SPECIFICATIONS ARE ILLEGAL FOR EVENT VARIABLES. SPEC-SECTION 4.5

DA1 - SEVERITY 2
ILLEGAL ATTRIBUTE SPECIFIED FOR BIT OR BOOLEAN DATA TYPE

THE LATCHED ATTRIBUTE IS ILLEGAL FOR BIT AND BOOLEAN DATA TYPES. PRECISION
SPECIFICATIONS ARE AS WELL. SPEC-SECTION 4.5

DA10 - SEVERITY 2
ILLEGAL ATTRIBUTE SPECIFIED FOR STRUCTuRE DATA TYPE

THE ATTRIBUTES, ALIGNED AND RIGID, ARE ILLEGAL FOR MAJOR STRUCTURES AS ARE
PRECISION SPECIFICATIONS.

 SPEC-SECTION 4.5

DA11 - SEVERITY 2
CONFLICT BETWEEN ATTRIBUTES AND FUNCTION OR LABEL TYPE SPECIFICATION -
ATTRIBUTES IGNORED

PROCEDURE, TASK, OR FUNCTION DECLARATIONS MAY NOT POSSESS ANY ATTRIBUTES.
SPEC-SECTION 4.5

DA12 - SEVERITY 2
RIGID ATTRIBUTE MAY ONLY APPEAR IN A STRUCTURE TEMPLATE OR COMPOOL BLOCK
DEFINITION

DA13 - SEVERITY 2
?? MAY NOT BE THE NAME OF A FUNCTION

NAME VARIABLES MAY NOT BE DECLARED TO BE THE NAME OF FUNCTIONS. SPEC-SECTION
11.4.1

DA14 - SEVERITY 2
?? MAY NOT BE THE NAME OF A PROCEDURE

NAME VARIABLES MAY NOT BE DECLARED TO BE THE NAME OF PROCEDURES. SPEC-SECTION
11.4.1

DA15 – SEVERITY 2
DATA CANNOT BE DECLARED WITH BOTH THE AUTOMATIC AND REMOTE ATTRIBUTES

NON-NAME DATA DECLARED IN A REENTRANT PROCEDURE WITH THE AUTOMATIC ATTRIBUTE
CAN NOT ALSO BE REMOTE, BECAUSE IT MUST BE ALLOCATED ON THE RUNTIME STACK.

DA2 - SEVERITY 2
ILLEGAL ATTRIBUTE SPECIFIED FOR CHARACTER DATA TYPE

PRECISION SPECIFICATION AND THE LATCHED ATTRIBUTE ARE ILLEGAL FOR CHARACTER DATA
TYPES. SPEC-SECTION 4.5

DA20 - SEVERITY 2
ILLEGAL ATTRIBUTE SPECIFIED FOR MINOR STRUCTURE ??

THE REMOTE, STATIC/AUTOMATIC, ACCESS, LOCKED, OR LATCHED ATTRIBUTES ARE ALL
ILLEGAL FOR MINOR-STRUCTURES.
B -19 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
DA21 - SEVERITY 2
AN ARRAY SPECIFICATION IS NOT ALLOWED FOR THE MINOR STRUCTURE ??

SEE SPEC-SECTION 4.5

DA22 - SEVERITY 2
ILLEGAL ATTRIBUTE SUPPLIED ON TEMPLATE NAME ??

DENSE, ALIGNED, AND RIGID ARE THE ONLY ATTRIBUTES PERMITTED IN STRUCTURE
TEMPLATES. SPEC-SECTION 4.3

DA23 - SEVERITY 2
ILLEGAL ATTRIBUTE FOR THE STRUCTURE TERMINAL ??

DENSE, ALIGNED, RIGID, PRECISION AND ARRAYNESS ARE THE ONLY ATTRIBUTES PERMITTED
FOR STRUCTURED TERMINALS.

 SPEC-SECTION 4.5

DA24 - SEVERITY 2
FACTORED AND NON-FACTORED ATTRIBUTE SPECIFICATIONS FOR ?? DISAGREE; THE
NON-FACTORED ATTRIBUTES WILL BE GIVEN PRECEDENCE.

FOR EXAMPLE, “DECLARE SCALAR AUTOMATIC INITIAL(5), S,X,M STATIC” IS AMBIGUOUS AS TO
M’S INITIALIZATION AND ATTRIBUTES. IN THIS CASE, STATIC WOULD BE ASSUMED. USE CARE IN
EMPLOYING FACTORED ATTRIBUTES.

DA25 - SEVERITY 2
CONTRADICTORY PAIR OF ATTRIBUTES SUPPLIED - FIRST APPEARING ATTRIBUTE WILL
BE USED

STATIC AND AUTOMATIC, DENSE AND ALIGNED, SINGLE AND DOUBLE ARE ALL MUTUALLY
EXCLUSIVE PAIRS OF ATTRIBUTES. USE, AT MOST, ONE FROM EACH PAIR.

DA26 - SEVERITY 2
DECLARATIONS OF THE FORM: <TEMPLATE NAME>-STRUCTURE
MAY NOT HAVE AN ARRAY SPECIFICATION

USE THE COPINESS ATTRIBUTE INSTEAD.

DA3 - SEVERITY 2
ILLEGAL ATTRIBUTE SPECIFIED FOR MATRIX DATA TYPE

LATCHED IS ILLEGAL FOR MATRICES.

DA4 - SEVERITY 2
ILLEGAL ATTRIBUTE SPECIFIED FOR VECTOR DATA TYPE

LATCHED IS ILLEGAL FOR VECTORS.

DA5 - SEVERITY 2
ILLEGAL ATTRIBUTE SPECIFIED FOR SCALAR DATA TYPE

LATCHED IS ILLEGAL FOR SCALARS.

DA6 - SEVERITY 2
ILLEGAL ATTRIBUTE SPECIFIED FOR INTEGER DATA TYPE

LATCHED IS ILLEGAL FOR INTEGERS.

DA9 - SEVERITY 2
ILLEGAL ATTRIBUTE SPECIFIED FOR EVENT DATA TYPE

REMOTE, DENSE, ALIGNED, AND RIGID ARE ALL ILLEGAL FOR EVENTS. ALSO, UNLATCHED
EVENTS CANNOT BE INITIALIZED.
B -20 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
DC1 - SEVERITY 2
DECLARATION CONTAINS BOTH LABEL TYPE AND DATA TYPE SPECIFICATION - LABEL
TYPE IGNORED.

AN ITEM DEFINED TO BE A PROCEDURE OR TASK MAY NOT ALSO BE DEFINED AS AN INTEGER
OR VECTOR. “DECLARE P PROCEDURE BOOLEAN”, FOR INSTANCE, IS ILLEGAL. SPEC-SECTION
4.5

DC2 - SEVERITY 2
THE ATTRIBUTES STATIC AND AUTOMATIC MAY NOT BE SPECIFIED IN COMPOOL
DECLARATIONS.

DC4 - SEVERITY 2
FACTORED AND NON-FACTORED TYPE SPECIFICATION FOR ?? DISAGREE
THE NON-FACTORED TYPE SPECIFICATION WILL BE USED

FOR EXAMPLE, “DECLARE SCALAR, S, X, I INTEGER” IS AMBIGUOUS AS TO I’S TYPE. IN THIS
CASE, INTEGER WOULD BE ASSUMED. USE CARE IN EMPLOYING FACTOR TYPE
SPECIFICATIONS.

DC5 - SEVERITY 2
ACCESS ATTRIBUTES MAY ONLY BE QUALIFIED IN COMPOOL DECLARATIONS.

SEE SPEC-SECTION 4.5

DD1 - SEVERITY 2
ILLEGAL ARRAY DIMENSION SPECIFICATION

ARRAYNESS MUST BE * OR 1 < ARRAYSIZE <= 32767 AND THE TOTAL NUMBER OF ELEMENTS
MAY NOT BE GREATER THAN 32767.
SPEC-SECTION 4.5

DD10 - SEVERITY 2
* ARRAY SIZE IS ILLEGAL FOR ?? - ARRAY SIZE OF 2 ASSUMED.

THE (*) SPECIFICATION IS ONLY PERMITTED IN THE DECLARATION OF FORMAL PARAMETERS
FOR FUNCTIONS AND PROCEDURES.

DD11 - SEVERITY 2
ILLEGAL FORM OF STRUCTURE DIMENSION SPECIFICATION

THE CORRECT FORM FOR SPECIFYING STRUCTURE COPIES, IS: “DECLARE ZIP Q-
STRUCTURE(50);” COPYNESS MUST BE: * OR 1 < COPY <= 32767 AND THE TOTAL NUMBER OF
ELEMENTS MULTIPLIED BY THE NUMBER OF COPIES MAY NOT BE GREATER THAN 32767.

DD12 - SEVERITY 2
ILLEGAL CONTEXT FOR SPECIFICATION OF STRUCTURE COPIES

STRUCTURE COPIES SHOULD BE SPECIFIED IN A DECLARE STATEMENT, NOT IN THE
STRUCTURE TEMPLATE. IN ADDITION, FUNCTIONS OF STRUCTURE TYPE MUST NOT HAVE
COPYNESS.

DD3 - SEVERITY 3
TOO MANY DIMENSIONS IN ARRAY

ARRAYS MAY HAVE NO MORE THAN THREE DIMENSIONS.

DD4 - SEVERITY 2
INVALID MATRIX DIMENSION SPECIFICATION; A DIMENSION OF 3 IS ASSUMED

THE DIMENSIONS SPECIFIED FOR A MATRIX MUST EACH BE AN UNARRAYED INTEGER OF
SCALAR EXPRESSION COMPUTABLE AT COMPILE TIME, AND RESULTING IN DIMENSIONS
BETWEEN 2 AND 64 AFTER CONVERSION TO AN INTEGER.
B -21 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
DD5 - SEVERITY 2
INVALID VECTOR LENGTH SPECIFICATION; A 3-VECTOR IS ASSUMED

THE LENGTH SPECIFIED FOR A VECTOR MUST BE AN UNARRAYED INTEGER OR SCALAR
EXPRESSION COMPUTABLE AT COMPILE TIME, AND RESULTING (AFTER CONVERSION TO AN
INTEGER) IN A LENGTH BETWEEN 2 AND 64.

DD6 - SEVERITY 2
ONLY SINGLE DIMENSION ARRAYS MAY USE THE * TO DENOTE UNKNOWN LENGTH

DD7 - SEVERITY 2
A * MAY NOT BE USED TO SPECIFY VECTOR LENGTH; A 3-VECTOR IS ASSUMED

DD8 - SEVERITY 2
* STRUCTURE COPY NOTATION IS ILLEGAL FOR ?? - STRUCTURE COPY SIZE OF 2
ASSUMED.

THE (*) COPY SPECIFICATION IS ONLY PERMITTED ON THE DECLARATION OF FORMAL
PARAMETERS FOR FUNCTIONS AND PROCEDURES. SPEC-SECTION 4.7

DD9 - SEVERITY 2
A * MAY NOT BE USED TO SPECIFY A MATRIX DIMENSION; A DIMENSION OF 3 IS
ASSUMED

DI1 - SEVERITY 2
REPEAT FACTOR IN INITIALIZATION HAS NO LEGAL VALUE COMPUTABLE AT COMPILE
TIME

“INITIAL (N K)” IS LEGAL ONLY IF N IS COMPUTABLE AT COMPILE TIME. SPEC-SECTION 4.8

DI10 - SEVERITY 2
TOO MANY ELEMENTS SUPPLIED IN INITIAL LIST FOR ??

THE SIZE OF THE INITIAL LIST SHOULD NOT BE GREATER THAN THE DECLARED SIZE OF THE
VARIABLE.

DI100 - SEVERITY 2
INITIALIZATION DATA TYPE MISMATCH

THE DECLARED VARIABLE DATA TYPE MUST MATCH THE TYPE OF DATA SUPPLIED IN THE INITIAL
LIST, OR AT LEAST AN IMPLICIT CONVERSION MUST BE POSSIBLE.

DI101 - SEVERITY 2
NULL ONLY LEGAL NAME CONSTANT

NAME VARIABLES MAY NOT BE INITIALIZED TO ARITHMETIC LITERALS, ALTHOUGH THE
INITIALIZATION TO A NAME PSEUDO-FUNCTION IS LEGAL IF THE ADDRESS OF ITS ARGUMENT IS
KNOWN AT COMPILE TIME.

DI102 - SEVERITY 1
INITIAL STRING TOO LONG

IF A CHARACTER OR BIT STRING IN THE INITIAL LIST IS LONGER THAN THE DECLARED LENGTH
OF THE CHARACTER OR BIT VARIABLE, TRUNCATION WILL OCCUR.

DI103 - SEVERITY 2
INITIAL VALUE TOO LARGE

CANNOT INITIALIZE AN INTEGER WITH A VALUE GREATER THAN 16 BITS. NOTE THAT THIS
ERROR DOES NOT APPLY TO NON-AGGREGATE CONTANTS (SEE LANGUAGE SPECIFICATION
SECTION 4.8).
B -22 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
DI104 - SEVERITY 2
STATIC INITIALIZATION OF DYNAMIC NAME

NAME VARIABLES, IF STATIC, MAY BE INITIALIZED ONLY TO ADDRESSES WHICH ARE
COMPUTABLE AT COMPILE TIME.

DI105 - SEVERITY 2
INITIAL VALUE MUST BE LITERAL VALUE

DI106 - SEVERITY 2
ATTEMPT TO EQUATE TO DYNAMICALLY ADDRESSABLE SYMBOL

THIS OCCURS WHEN EQUATING AN EXTERNAL SYMBOL TO AN ADDRESS UNCOMPUTABLE AT
COMPILE TIME.

DI107 - SEVERITY 1
ATTEMPT TO INITIALIZE A NON-REMOTE NAME WITH A REMOTE VARIABLE. 16 BIT NAME
VARIABLES MUST POINT TO NON-REMOTE DATA.

DI108 - SEVERITY 2
THE TYPE OF THE INITIAL LIST NAME PSEUDO-FUNCTION MUST MATCH EXACTLY THE
TYPE OF THE VARIABLE BEING DECLARED.

DI109 - SEVERITY 2
THE ATTRIBUTE OF THE INITIAL LIST NAME PSEUDO-FUNCTION MUST MATCH EXACTLY
THE TYPE OF THE VARIABLE BEING DECLARED.

DI110 - SEVERITY 2
ARRAYNESS/MULTI-COPINESS CONFLICT BETWEEN THE TYPE OF THE VARIABLE BEING
DECLARED AND THE VARIABLE IN THE INITIAL STATEMENT.

DI11 - SEVERITY 2
THE VARIABLE ?? USED IN A COMPILE-TIME EXPRESSION OR AS THE TARGET OF AN
EQUATE STATEMENT HAS NOT BEEN PREVIOUSLY DEFINED

THE VALUE OF A VARIABLE USED IN AN INITIALIZING EXPRESSION MUST BE AVAILABLE AT
COMPILE TIME, AND IN FACT, THE VARIABLE MUST HAVE BEEN DECLARED AND INITIALIZED
(USING THE CONSTANT FORM) PRIOR TO ITS USE.

DI12 - SEVERITY 2
FORMAL PARAMETER ?? POSSESSES ILLEGAL ATTRIBUTES CONCERNING INITIALIZATION
- ATTRIBUTES IGNORED.

FORMAL PARAMETERS IN FUNCTIONS AND PROCEDURES MAY NOT BE INITIALIZED. SPEC-
SECTION-4.5

DI13 - SEVERITY 2
LABEL OR FUNCTION ?? POSSESSES ILLEGAL ATTRIBUTES CONCERNING INITIALIZATION
- ATTRIBUTES IGNORED.

FUNCTIONS MAY NOT BE INITIALIZED. SPEC-SECTION-4.5

DI14 - SEVERITY 2
IN AN INITIAL LIST, THE ARGUMENT OF A NAME PSEUDO-FUNCTION MAY NOT POSSESS A
PRECISION QUALIFIER.

PROGRAMMER’S GUIDE-SECTION 28

DI15 - SEVERITY 2
IN AN INITIAL LIST, THE ARGUMENT OF A NAME PSEUDO-FUNCTION MAY NOT POSSESS
ARRAYNESS.

DI16 - SEVERITY 2
B -23 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
IN AN INITIAL LIST, THE ARGUMENT OF A NAME PSEUDO-FUNCTION MAY NOT POSSESS
THE NAME ATTRIBUTE.

PROGRAMMER’S GUIDE-SECTION 28

DI17 - SEVERITY 2

INITIAL VALUE TOO LARGE
CANNOT INITIALIZE AN INTEGER CONSTANT WITH A VALUE GREATER THAN 32 BITS. (THIS
ERROR ONLY APPLIES TO NON-AGGREGATE CONSTANTS).

DI18 - SEVERITY 1
IN THE DECLARATION OF ?? , THE SIZE OF THE CHARACTER CONSTANT IS LARGER THAN
THE DECLARED SIZE. THE CONSTANT WILL BE TRUNCATED TO THE DECLARED SIZE.

DI2 - SEVERITY 3
IMPLIED NUMBER OF ELEMENTS IN INITIAL LIST EXCEEDS COMPILER LIMIT.

NO MORE THAN 32767 DATA ITEMS ARE ALLOWED IN AN INITIAL LIST.

DI21 - SEVERITY 1
A REMOTE COMPOOL VARIABLE IS THE OBJECT OF A NAME INITIAL STATEMENT. MAKE
SURE THE NAME VARIABLE IS DECLARED AS NAME REMOTE.

DI3 - SEVERITY 2
EXPRESSION IN INITIAL LIST IS NOT COMPUTABLE AT COMPILE TIME. ALTHOUGH BIT
CONSTANTS ARE COMPUTABLE AT COMPILE TIME, THEY ARE NOT AVAILABLE IN THIS
COMPILER IMPLEMENTATION.

SEE SPEC, APPENDIX F.

DI4 - SEVERITY 2
INITIALIZATION OF ?? HAS ILLEGAL TERMINATING * : NUMBER OF INITIAL VALUES
MATCHES TOTAL NUMBER OF ELEMENTS

THE NUMBER OF VALUES SPECIFIED IN AN INITIAL LIST ENDING IN (*) MUST BE STRICTLY LESS
THAN THE NUMBER OF VALUES IMPLIED IN THE DECLARE STATEMENT. SPEC-SECTION 4.8

DI5 - SEVERITY 2
TOO FEW ELEMENTS SUPPLIED IN INITIAL LIST FOR ??

IF PARTIAL INITIALIZATION IS DESIRED, THE LIST SHOULD END WITH A (*).

DI6 - SEVERITY 2
ILLEGALLY-TYPED INITIAL VALUE--INITIALIZATION OF ?? EXPECTS A VALUE OF
CHARACTER TYPE

SEE SPEC-SECTION 4.8

DI7 - SEVERITY 2
ILLEGALLY-TYPED INITIAL VALUE--INITIALIZATION OF ?? EXPECTS A VALUE OF BIT TYPE

SEE SPEC-SECTION 4.8

DI8 - SEVERITY 2
ILLEGALLY-TYPED INITIAL VALUE--INITIALIZATION OF ?? EXPECTS A VALUE OF INTEGER
OR SCALAR TYPE

SEE SPEC-SECTION 4.8

DI9 - SEVERITY 2
THE DECLARATION OF ?? HAS BOTH FACTORED AND UNFACTORED INITIAL/CONSTANT
ATTRIBUTES; THE UNFACTORED ATTRIBUTES WILL BE USED

FOR EXAMPLE, “DECLARE INTEGER INITIAL (2), I,J,K INITIAL (0)” IS AMBIGUOUS AS TO WHAT THE
B -24 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
INITIAL VALUE OF K IS, IN THIS CASE, INITIAL (0) WOULD BE ASSUMED. USE CARE IN
EMPLOYING FACTORED INITIALIZATIONS.

DL1 - SEVERITY 2

?? DOES NOT APPEAR IN A COMPOOL OR PROGRAM DECLARATION, AND IS NOT AN
ASSIGN PARAMETER: THE LOCKING ATTRIBUTE SPECIFIED IS THEREFORE ILLEGAL.

THE CASES MENTIONED ARE THE ONLY ONES IN WHICH LOCKS MAY BE USED.

DL2 - SEVERITY 2
THE LOCKED ATTRIBUTE MAY NOT BE USED IN CONJUNCTION WITH THE CONSTANT
ATTRIBUTE.

DL3 - SEVERITY 2
ILLEGAL LOCK GROUP NUMBER SPECIFIED

LOCK NUMBERS MUST BE IN THE RANGE FROM 1 TO 15.

DN1 - SEVERITY 2
PROGRAM OR PROCEDURE DECLARATION FOR ?? IS INVALID.

PROGRAMS AND PROCEDURES MAY NOT BE DECLARED. HOWEVER, NAME VARIABLES THAT
POINT TO PROGRAMS MAY BE. FOR EXAMPLE, BOTH “DECLARE PROG PROGRAM” AND
“DECLARE PROC PROCEDURE” ARE ILLEGAL, BUT “DECLARE NAME PROG PROGRAM” IS LEGAL.

DN2 - SEVERITY 2
THE NAME ATTRIBUTE MAY NOT BE USED IN THE DECLARATION OF TEMPORARIES --
ATTRIBUTE IGNORED.

SEE SPEC-SECTION 11.4.3

DQ1 - SEVERITY 2
FIRST NODE DECLARED IN TEMPLATE MUST BE AT LEVEL 1

SEE PROGRAMMER’S GUIDE-SECTION 19 FOR INFORMATION ON HOW TO FORM STRUCTURE
TEMPLATES.

DQ10 - SEVERITY 2
STRUCTURE ?? MAY NOT BE A TEMPORARY SINCE ITS TEMPLATE CONTAINS AT LEAST
ONE TERMINAL NODE WITH THE NAME ATTRIBUTE.

SEE SPEC-SECTION 11.4.3

DQ100 - SEVERITY 2
MALFORMED TEMPLATE, WALK INHIBITED

SEE PROGRAMMER’S GUIDE-SECTION 19 FOR INFORMATION ON HOW TO FORM STRUCTURE
TEMPLATES. THIS ERROR PROBABLY IS A SPURIOUS ONE, RESULTING FROM PREVIOUS ERROR
RECOVERY ACTIONS.

DQ101 - SEVERITY 2
TREE ORGANIZATIONS OF STRUCTURES ARE NOT IDENTICAL

STRUCTURE TREE ORGANIZATIONS MUST MATCH. SEE SPEC-SECTIONS 4.3, 6.4, 7.4, 11.4.1

DQ102 - SEVERITY 2
STRUCTURE NODE SIZE CONFLICT

EITHER A SPURIOUS ERROR RESULTING FROM AN EARLIER ERROR RECOVERY, OR ELSE AN
INTERNAL COMPILER FAILURE.

DQ2 - SEVERITY 2
ILLEGAL SEQUENCE OF LEVEL NUMBERS IN TEMPLATE

NUMBERING OF LEVELS MUST FOLLOW CORRECT CONVENTIONS. ALL NODES MUST BE
NUMBERED, NO LEVELS MAY BE SKIPPED, ETC. PROGRAMMER’S GUIDE-SECTION 19
B -25 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
DQ3 - SEVERITY 2
NAME OF STRUCTURE TEMPLATE CAUSES UNQUALIFICATION IN AN ILLEGAL CONTEXT

FOR INSTANCE: STRUCTURES DEFINED AS DATA ITEMS WITHIN A STRUCTURE TEMPLATE MAY
NOT BE UNQUALIFIED; UNQUALIFIED STRUCTURES MAY NOT HAVE STRUCTURE TERMINALS
WHOSE NAMES ARE NOT UNIQUE WITHIN THE COMPILATION. PROGRAMMER’S GUIDE-SECTION
19

DQ4 - SEVERITY 2
STRUCTURE ?? CANNOT BE UNQUALIFIED - STRUCTURE TEMPLATE IS ALREADY USED
BY AN UNQUALIFIED STRUCTURE

ONLY ONE UNQUALIFIED STRUCTURE MAY BE DEFINED FOR EACH STRUCTURE TEMPLATE.
PROGRAMMER’S GUIDE-SECTION 19

DQ5 - SEVERITY 2
STRUCTURE ?? CANNOT BE UNQUALIFIED - STRUCTURE TEMPLATE IS NOT IN SAME
NAME SCOPE

UNQUALIFIED STRUCTURES MAY ONLY BE DECLARED WITHIN THE SAME NAME SCOPE AS THE
STRUCTURE TEMPLATE THEY REFERENCE. PROGRAMMER’S GUIDE-SECTION 19

DQ6 - SEVERITY 2
STRUCTURE ?? CANNOT BE UNQUALIFIED - STRUCTURE TEMPLATE CONTAINS A
REFERENCE TO ANOTHER STRUCTURE TEMPLATE.

NO STRUCTURES ARE PERMITTED TO BE NESTED WITHIN UNQUALIFIED STRUCTURES: I.E. NO
NODE OF THE UNQUALIFIED STRUCTURE MAY ITSELF BE A STRUCTURE. PROGRAMMER’S
GUIDE-SECTION 19

DQ7 - SEVERITY 2
THE DECLARED NAME ?? DUPLICATES THE NAME OF A NODE OF THE TEMPLATE OF AN
UNQUALIFIED STRUCTURE PREVIOUSLY DECLARED IN THE SAME NAME SCOPE: THIS
CAUSES THE UNQUALIFICATION TO BECOME ILLEGAL.

PROGRAMMER’S GUIDE-SECTION 19

DQ8 - SEVERITY 2
STRUCTURE ?? CANNOT BE UNQUALIFIED - STRUCTURE TEMPLATE CONTAINS AT LEAST
ONE NAME NOT UNIQUE TO THE NAME SCOPE

PROGRAMMER’S GUIDE-SECTION 19

DQ9 - SEVERITY 2
THE DECLARED NODE ?? DUPLICATES A PREVIOUSLY DECLARED NODE NAME - CAUSING
QUALIFIED REFERENCES TO THE TWO NODES TO BE INDISTINGUISHABLE

TWO NODES IN A SINGLE STRUCTURE HAVE THE SAME NAME. PROGRAMMER’S GUIDE-
SECTION 19

DS1 - SEVERITY 2
INVALID BIT-LENGTH SPECIFICATION

THE EXPRESSION SPECIFYING BIT-LENGTH MUST BE AN ARITHMETIC EXPRESSION
COMPUTABLE AT COMPILE TIME, CREATING A BIT STRING WITH A POSITIVE LENGTH NO
GREATER THAN 32.
B -26 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
DS10 - SEVERITY 2
FACTORED AND NON-FACTORED STRUCTURE TEMPLATE REFERENCES DISAGREE: NON-
FACTORED REFERENCE WILL BE USED

FOR EXAMPLE, “DECLARE Q-STRUCTURE,ZIP,ZAP,ZOOP T-STRUCTURE;” IS AMBIGUOUS AS TO
ZOOP’S TREE ORGANIZATION. IN THIS CASE, TEMPLATE T WOULD BE ASSUMED. USE CARE IN
EMPLOYING FACTORED TEMPLATE REFERENCES.

DS11 - SEVERITY 2
INPUT/ASSIGN PARAMETERS OF CHARACTER TYPE CAN ONLY BE GIVEN A * LENGTH
SPECIFICATION

SPEC-SECTION 4.7

DS2 - SEVERITY 2
INVALID CHAR-LENGTH SPECIFICATION

THE EXPRESSION SPECIFYING CHARACTER LENGTH MUST BE AN ARITHMETIC EXPRESSION
COMPUTABLE AT COMPILE-TIME, CREATING A CHARACTER STRING WITH A LENGTH NO
GREATER THAN 255.

DS3 - SEVERITY 2
A * IS AN ILLEGAL CHARACTER LENGTH SPECIFICATION; A LENGTH OF 8 IS ASSUMED

(*) MAY ONLY BE USED IN DECLARING CHARACTER STRINGS AS FORMAL PARAMETERS IN
PROCEDURES AND FUNCTIONS, OR IF THE VARIABLE IS UNARRAYED, IN DEFINING A NAME
VARIABLE. SPEC-SECTIONS 4.7, 11.4.1

DS4 - SEVERITY 2
A * IS AN ILLEGAL BIT LENGTH SPECIFICATION; A LENGTH OF 1 IS ASSUMED

(*) MAY NEVER BE USED IN SPECIFYING BIT LENGTH.

DS5 - SEVERITY 2
FACTORED AND NON-FACTORED BIT SIZE SPECIFICATION FOR ?? DISAGREE
THE NON-FACTORED SPECIFICATION WILL BE USED

FOR EXAMPLE, “DECLARE BIT(8), B, C, FLAGS BIT(4);” WOULD BE AMBIGUOUS AS TO THE
LENGTH OF THE BIT-STRING FLAGS. IN THIS CASE, A LENGTH OF 4 WOULD BE ASSUMED. USE
CARE IN EMPLOYING FACTORED LENGTH SPECIFICATIONS.

DS6 - SEVERITY 2
FACTORED AND NON-FACTORED CHARACTER LENGTH SPECIFICATION FOR ?? DISAGREE
THE NON-FACTORED SPECIFICATION WILL BE USED.

FOR EXAMPLE, “DECLARE CHARACTER(5), WORD1,WORD2,WORD3,BLANK CHARACTER(1)”
WOULD BE AMBIGUOUS AS TO THE LENGTH OF THE CHARACTER STRING, BLANK. IN THIS CASE,
A LENGTH OF 1 WOULD BE ASSUMED. USE CARE IN EMPLOYING FACTORED LENGTH
SPECIFICATIONS.

DS7 - SEVERITY 2
FACTORED AND NON-FACTORED MATRIX DIMENSION SPECIFICATION FOR ?? DISAGREE
THE NON-FACTORED SPECIFICATION WILL BE USED.

FOR EXAMPLE, “DECLARE MATRIX(4,4), SQUARE1, SQUARE2, NOTSQUARE MATRIX(3,2);” WOULD
BE AMBIGUOUS AS TO THE SHAPE OF THE MATRIX, NOTSQUARE. IN THIS CASE A 3X2 MATRIX
WOULD BE ASSUMED. USE CARE IN EMPLOYING FACTORED DIMENSION SPECIFICATIONS.
B -27 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
DS8 - SEVERITY 2
FACTORED AND NON-FACTORED VECTOR DIMENSION SPECIFICATION FOR ?? DISAGREE
THE NON-FACTORED SPECIFICATION WILL BE USED

FOR EXAMPLE, “DECLARE VECTOR (3), POSITION, VELOCITY, TEST-TIMES VECTOR (5)” WOULD
BE AMBIGUOUS AS TO THE LENGTH OF THE VECTOR, TEST-TIMES. IN THIS CASE, A LENGTH OF
5 WOULD BE ASSUMED. USE CARE IN EMPLOYING FACTORED DIMENSION SPECIFICATIONS.

DS9 - SEVERITY 2
THE FACTORED AND NON-FACTORED STRUCTURE DIMENSION SPECIFICATION FOR ??
DISAGREE
THE NON-FACTORED SPECIFICATION WILL BE USED

FOR EXAMPLE, “DECLARE Q-STRUCTURE(50), Z1,Z2,Z3, Q-STRUCTURE(100)” WOULD BE
AMBIGUOUS AS TO THE NUMBER OF COPIES OF THE STRUCTURE, Z3. IN THIS CASE, 100
COPIES WOULD BE ASSUMED. USE CARE IN EMPLOYING FACTORED COPY SPECIFICATIONS.

DT1 - SEVERITY 2
CONFLICTING TYPE SPECIFICATIONS FOR ??

ONLY ONE TYPE SPECIFICATION MAY BE GIVEN FOR EACH DATA ITEM. “DECLARE M INTEGER
MATRIX,” FOR INSTANCE, IS NOT LEGAL. IF A MATRIX OF INTEGERS MUST BE CREATED, A TWO
DIMENSIONAL ARRAY SHOULD PROBABLY BE EMPLOYED INSTEAD: “DECLARE MA MATRIX”
CREATES A MATRIX OF SCALARS.

DT3 - SEVERITY 2
LABEL TYPE CONFLICT FOR ??

IF AN ITEM IS DECLARED AS A PROCEDURE, FOR INSTANCE, IT SHOULD NOT LATER BE DEFINED
AS A FUNCTION OR TASK. SIMILARLY, IF AN ITEM IS CALLED, IT MUST BE A PROCEDURE; IF IT IS
SCHEDULED, IT MUST BE A PROGRAM OR TASK. THIS MAY ALSO BE THE RESULT OF AN
ATTEMPTED ‘GO TO BLOCK-LABEL’.

DT4 - SEVERITY 2
ILLEGAL CHARACTER; HEX REPRESENTATION IS ??

A CHARACTER NOT VALID IN THE HAL/S CHARACTER SET HAS BEEN USED. SEE SPEC-SECTION
2.2

DT5 - SEVERITY 2
A TYPE SPECIFICATION MAY NOT BE USED ON THE MINOR STRUCTURE ??

A MINOR STRUCTURE NAME IS NOT THE NAME OF ANY ORDINARY DATA ITEM AND HENCE
SHOULD GET NO TYPE SPECIFICATION (SCALAR, VECTOR, ETC.). IN EFFECT, IT IS THE NAME OF
THE STRUCTURE CONSISTING OF ALL THE ELEMENTS BELOW IT ON THE STRUCTURE ‘TREE’.

DT6 - SEVERITY 2
A STRUCTURE TEMPLATE MAY NOT CONTAIN A REFERENCE TO ITSELF

THE RESULT OF SUCH RECURSIVE SELF-REFERENCE WOULD BE A TEMPLATE OF INFINITE SIZE
IN HAL/S.

DT7 - SEVERITY 2
ILLEGAL TYPE FOR THE STRUCTURE TERMINAL ??

A STRUCTURE TERMINAL MAY NOT ITSELF BE A MAJOR STRUCTURE (I.E. ANOTHER
STRUCTURE TEMPLATE) OR EVENT. IT MAY, HOWEVER, BE A STRUCTURE DATA TYPE, AND
REFER TO ANOTHER TEMPLATE NAME. SPEC-SECTION 4.5
B -28 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
DT8 - SEVERITY 2
?? IS EVENT TYPE AND MAY NOT THEREFORE BE AN INPUT PARAMETER

SEE SPEC-SECTION 4.7

DU1 - SEVERITY 2
UNDECLARED IDENTIFIER ??

ALL VARIABLES IN HAL/S MUST BE DECLARED BEFORE THEY’RE REFERENCED. CHECK TO
MAKE SURE THAT THE VARIABLE HAS BEEN DECLARED AND THAT THE VARIABLE NAME HAS
NOT BEEN TYPED INCORRECTLY.

DU10 - SEVERITY 2
ILLEGAL PRECISION QUALIFIER ON VARIABLE ?? IN AN EQUATE STATEMENT.

SEE SPEC-SECTION 11.5.1

DU100 - SEVERITY 2
REFERENCE TO UNDEFINED PROCEDURE OR FUNCTION

DU11 - SEVERITY 2
TARGET OF THE EQUATE SYMBOL ?? MAY NOT BE A SUBBIT PSEUDO-FUNCTION

SEE SPEC-SECTION 11.5.1

DU12 - SEVERITY 2
THE SYMBOL ?? MAY NOT BE USED AS THE TARGET OF AN EQUATE STATEMENT SINCE IT
HAS A CONSTANT VALUE WHICH IS TREATED AS A LITERAL

SEE SPEC-SECTION 11.5.1

DU13 - SEVERITY 2
THE VARIABLE ?? HAS THE AUTOMATIC ATTRIBUTE AND IS DEFINED WITHIN A
REENTRANT PROCEDURE/FUNCTION. IT MAY NOT BE REFERENCED IN AN EQUATE
STATEMENT.

SEE SPEC-SECTION 11.5.1

DU14 - SEVERITY 2
TARGET OF THE EQUATE SYMBOL ?? MAY NOT BE A NAME PSEUDO-FUNCTION

SEE SPEC-SECTION 11.5.1

DU2 - SEVERITY 2
UNDECLARED PARAMETER ??

FORMAL PARAMETERS OF PROCEDURES AND FUNCTIONS MUST BE DECLARED IN THEIR
DECLARE GROUP. MAKE SURE THIS HAS NOT BEEN INADVERTENTLY OMITTED.

DU3 - SEVERITY 0
?? IS NOT A PARAMETER AND CANNOT BE DECLARED IN A TEMPLATE

ONLY FORMAL PARAMETERS (WHICH WILL BE PASSED INTO AND OUT OF A COMSUB) SHOULD
BE DECLARED IN PROCEDURE OR FUNCTION TEMPLATES. ONLY A WARNING: THE COMPILER
WILL IGNORE THIS DECLARATION, AND EXECUTION WILL NOT BE INHIBITED.

DU4 - SEVERITY 2
NO TYPE INFORMATION AVAILABLE FOR ??
A DEFAULT TYPE HAS BEEN ASSIGNED

A FORMAL PARAMETER HAS BEEN EMPLOYED AFTER WHICH NO DECLARE STATEMENT EXISTS.
THE COMPILER WILL ASSUME THAT IT IS SCALAR FOR THE PURPOSE OF FURTHER ERROR-
SCANNING (WHICH MAY RESULT IN FURTHER SPURIOUS ERRORS), BUT EXECUTION WILL BE
INHIBITED. THIS ERROR MAY ALSO BE THE RESULT OF PREVIOUS ERROR RECOVERY ACTIONS.
B -29 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
DU5 - SEVERITY 2
REFERENCE TO UNDECLARED STRUCTURE TEMPLATE ??

FOR EXAMPLE, “DECLARE ZAP Q-STRUCTURE;” CAN ONLY OCCUR AFTER A TEMPLATE
“STRUCTURE Q” HAS BEEN DEFINED.

DU6 - SEVERITY 2
MULTIPLY DEFINED EQUATE NAME: ??

SEE SPEC-SECTION 11.5.1

DU7 - SEVERITY 2
THE VARIABLE ?? REFERENCED IN AN EQUATE STATEMENT IS DEFINED OUTSIDE THE
CURRENT BLOCK

SEE SPEC-SECTION 11.5.1

DU8 - SEVERITY 2
THE SYMBOL ?? HAS AN ILLEGAL TYPE FOR REFERENCE IN AN EQUATE STATEMENT

SEE SPEC-SECTION 11.5.1

DU9 - SEVERITY 2
THE SYMBOL ?? HAS ATTRIBUTES WHICH ARE ILLEGAL FOR THE OBJECT OF AN EQUATE
STATEMENT

SEE SPEC-SECTION 11.5.1

D1 - SEVERITY 2
THE TYPE SPECIFICATION FOR THE PARAMETER ?? IS ILLEGAL

D10 - SEVERITY 2
TEMPORARY STATEMENTS MAY NOT APPEAR AT THE OPENING OF A DO CASE...END
GROUP

D100 - SEVERITY 2
STAR SIZE ARRAY TEMPORARY NOT ALLOWED

TEMPORARY ARRAYS MAY NOT BE DECLARED WITH A (*) LENGTH SPECIFICATION. REMOTE
ARRAY PARAMETERS ARE TREATED LIKE TEMPORARY ARRAYS WHEN USED IN A SUM, MAX,
MIN OR PROD BUILT-IN FUNCTION UNLESS A FINITE SIZE ARRAY IS ALSO PART OF THE
ARGUMENT.

D11 - SEVERITY 2
TYPE SPECIFICATION OF ?? RENDERS NONHAL ATTRIBUTE ILLEGAL
ATTRIBUTE IGNORED.

ONLY PROCEDURES AND FUNCTIONS MAY BE DEFINED TO BE NON-HAL.

D12 - SEVERITY 2
DECLARATION OF ?? SPECIFIES ATTRIBUTES INCOMPATIBLE WITH THE NAME
ATTRIBUTE.

THE ACCESS OR NONHAL ATTRIBUTE MAY NOT APPLY TO THE NAME VARIABLES.

D13 - SEVERITY 2
DECLARATION OF ?? HAS CONFLICTING FACTORED AND UNFACTORED NONHAL
ATTRIBUTES - UNFACTORED ATTRIBUTE WILL BE USED.

FOR EXAMPLE, “DECLARE NONHAL SINGLE, F1 FUNCTION, F2 FUNCTION NONHAL(1);” WOULD BE
AMBIGUOUS AS TO THE NONHAL TYPE OF F2. IN THIS CASE, NONHAL(1) WOULD BE ASSUMED.
B -30 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
D15 - SEVERITY 2
ORDER OF DECLARATIONS WILL CAUSE LOCAL DATA DECLARATIONS TO APPEAR IN ANY
PROCEDURE OR FUNCTION TEMPLATE GENERATED BY THIS COMPILATION

NOT A FATAL ERROR: BUT IT’S BETTER TO DECLARE FORMAL PARAMETERS PRIOR TO ANY
LOCAL DATA DECLARATION. DU3 ERRORS WILL RESULT WHEN INCLUDING THIS TEMPLATE.

D2 - SEVERITY 2
THE PROCEDURE OR FUNCTION ?? MAY NOT BE DECLARED IN A COMPOOL

COMPOOLS CONTAIN ONLY DATA TO BE SHARED. FUNCTIONS AND PROCEDURES TO BE
SHARED SHOULD BE DECLARED IN A COMSUB (EXTERNAL FUNCTION OR EXTERNAL
PROCEDURE). SPEC-SECTION 3.5

D5 - SEVERITY 2
?? HAS BOTH FACTORED AND NON-FACTORED LOCK GROUP SPECIFICATION - NON-
FACTORED SPECIFICATION WILL BE USED.

FOR EXAMPLE, “DECLARE INTEGER LOCK(1), I,J,K LOCK(2);” WOULD BE AMBIGUOUS AS TO K’S
LOCK GROUP. IN THIS CASE, LOCK(2) WOULD BE ASSUMED.

D6 - SEVERITY 2
THE DECLARATION OF ?? HAS BOTH FACTORED AND NON-FACTORED ARRAY
SPECIFICATIONS; THE NON-FACTORED SPECIFICATION WILL BE USED

FOR EXAMPLE: “DECLARE ARRAY(5) INTEGER, I,J,K ARRAY(3)” WOULD BE AMBIGUOUS AS TO
THE LENGTH OF K. IN THIS CASE, A LENGTH OF 3 WOULD BE ASSUMED. USE CARE IN
EMPLOYING FACTORED SPECIFICATIONS.

D7 - SEVERITY 2
TEMPORARY STATEMENT DOES NOT APPEAR BEFORE THE FIRST EXECUTABLE
STATEMENT OF THE ENCLOSING DO...END GROUP

ALL TEMPORARY DECLARATIONS MUST PRECEDE THE FIRST EXECUTABLE STATEMENT OF THE
DO GROUP IN WHICH THEY APPEAR. SPEC-SECTION 11.3.1

D8 - SEVERITY 2
DECLARATION OF ?? SPECIFIES TYPE OR ATTRIBUTES NOT LEGAL FOR TEMPORARIES

TEMPORARY VARIABLES MAY NOT BE INITIALIZED OR DECLARED AS EVENT TYPE. THEY MAY
NOT POSSESS ANY MINOR ATTRIBUTES AT ALL (DENSE/ALIGNED, ACCESS, LOCK, RIGID,
LATCHED, STATIC/AUTOMATIC, NON-HAL, ETC.) SPEC-SECTION 11.3.1
B -31 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
ERROR MESSAGES FOR MAJOR CLASSIFICATION E
CLASSIFICATION “E” ERRORS DEAL WITH EXPRESSIONS

EA1 - SEVERITY 2
ARRAYNESS OF ?? IS INCONSISTENT WITH CURRENT ARRAYNESS OF EXPRESSION

EA100 - SEVERITY 2
ARRAYNESS CONFLICT

THE DEGREE OF ARRAYNESS MUST BE COMPATIBLE WITH THAT SPECIFIED IN THE
STATEMENT. EXAMPLE: VAR(5) IS DECLARED BUT OPERATIONS ARE PERFORMED ON
VAR(4:10), ARRAY ELEMENTS WHICH ARE OUTSIDE THE DECLARED RANGE.

EA101 - SEVERITY 2
ARRAYNESS INCONSISTENT WITH STATEMENT

EA102 - SEVERITY 2
COPYNESS CONFLICT

SAME AS ABOVE, BUT PERTAINING TO COPYNESS.

EA103 - SEVERITY 2
NON-ARRAYED ARGUMENT TO ARRAY FUNCTION

MAX, MIN, PROD, SIZE, AND SUM ALL REQUIRE THEIR ARGUMENTS TO BE ARRAYED. SPEC-
APPENDIX C

EB1 - SEVERITY 1
RESULT OF BIT CATENATION WILL BE LEFT TRUNCATED TO MAXIMUM BIT LENGTH

BIT EXPRESSIONS OF LENGTH GREATER THAN THE IMPLEMENTATION MAXIMUM (LESS THAN
OR EQUAL TO 32) ARE NOT PERMITTED; CARE THEREFORE SHOULD BE TAKEN WHEN
CATENATING BIT VARIABLES. THE RESULTING BIT EXPRESSION WILL BE LEFT TRUNCATED.

EC1 - SEVERITY 2
CROSS PRODUCT MUST BE BETWEEN THREE DIMENSIONAL VECTORS

SEE SPEC-SECTION 6.1.1

EC2 - SEVERITY 2
CROSS PRODUCT * USED WITHOUT A VECTOR AFTER IT

SEE SPEC-SECTION 6.1.1 A 3-ARRAY WILL NOT WORK HERE.

EC3 - SEVERITY 2
CROSS PRODUCT * USED WITHOUT A VECTOR BEFORE IT

SEE SPEC-SECTION 6.1.1 A 3-DIMENSIONAL ARRAY WILL NOT WORK HERE.

ED1 - SEVERITY 2
DOT PRODUCT S USED WITHOUT A VECTOR AFTER IT

SEE SPEC-SECTION 6.1.1 AN ARRAY WILL NOT WORK HERE.

ED2 - SEVERITY 2
DOT PRODUCT S USED WITHOUT A VECTOR BEFORE IT

SEE SPEC-SECTION 6.1.1 AN ARRAY WILL NOT WORK HERE.

EL1 - SEVERITY 2
ONLY ARITHMETIC CONVERSION FUNCTIONS MAY POSSESS ARGUMENTS WITH REPEAT
FACTORS

IN ALL OTHER FUNCTIONS WITH MULTIPLE PARAMETERS, EACH PARAMETER MUST BE
SEPARATELY SPECIFIED.
B -32 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
EL2 - SEVERITY 2
REPETITION FACTOR OF EXPRESSION MUST BE AN UNARRAYED INTEGER OR SCALAR
EXPRESSION COMPUTABLE AT COMPILE TIME

SEE SPEC-SECTION 6.5.1. THUS, FOR EXAMPLE, IF N IS A VARIABLE (NOT PREVIOUSLY
DECLARED AS CONSTANT), THE EXPRESSION N 6 IS ILLEGAL AS AN ARGUMENT IN A
CONVERSION FUNCTION. THE REPETITION FACTOR MUST BE IN THE RANGE: 1 < FACTOR <=
32767

EM1 - SEVERITY 2
DIMENSIONS OF MATRIX OPERANDS IN EXPRESSION DISAGREE

IN OPERATIONS INVOLVING MATRICES, THE SIZES OF THE OPERANDS MUST BE COMPATIBLE
WITH THE OPERATION INVOLVED, IN THE USUAL MATHEMATICAL SENSE. SPEC-SECTION 6.1.1

EM2 - SEVERITY 2
MATRIX ARITHMETIC TYPE CANNOT BE CONVERTED TO ? A CHARACTER STRING

SEE SPEC-SECTION 6.5.3

EM3 - SEVERITY 2
MATRIX-MATRIX MULTIPLICATION DIMENSION DISAGREEMENT

IF M AND N ARE MATRICES, MN IS ONLY LEGAL IF THE SECOND DIMENSION OF M AND THE FIRST
DIMENSION OF N ARE EQUAL.

EM4 - SEVERITY 2
INVERSE OF NON-SQUARE MATRIX ATTEMPTED

ONLY SQUARE MATRICES CAN BE INVERTED, I.E., BOTH DIMENSIONS MUST BE THE SAME.

EN1 - SEVERITY 2
AN ARGUMENT OF THE NAME PSEUDO-FUNCTION OR SPECIFIED %MACRO MAY NOT BE
A NAME PSEUDO-FUNCTION.

NAME(NAME(K)) IS ALWAYS ILLEGAL.

EN10 - SEVERITY 2
ARGUMENT ?? OF THE NAME PSEUDO-FUNCTION OR SPECIFIED %MACRO MAY NOT BE A
TEMPORARY

SEE SPEC-SECTION 11.4.3

EN11 - SEVERITY 2
ARGUMENT ?? OF THE NAME PSEUDO-FUNCTION OR SPECIFIED %MACRO MAY NOT BE A
CONSTANT OR AN INPUT PARAMETER

SEE SPEC-SECTION 11.4.5

EN12 - SEVERITY 2
ACCESS RIGHTS HAVE BEEN DENIED TO ?? - ITS USE AS AN ARGUMENT OF THE NAME
PSEUDO-FUNCTION OR SPECIFIED %MACRO IS THEREFORE ILLEGAL

SEE SPEC-SECTION 11.4.5

EN13 - SEVERITY 2
?? IS NOT A MAJOR STRUCTURE BUT POSSESSES STRUCTURE COPIES - IT IS
THEREFORE ILLEGAL AS AN ARGUMENT OF THE NAME PSEUDO-FUNCTION OR
SPECIFIED %MACRO

EN14 - SEVERITY 2
AN ARGUMENT OF THE NAME PSEUDO-FUNCTION OR SPECIFIED %MACRO MAY NOT
POSSESS A PRECISION QUALIFIER.
B -33 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
EN2 - SEVERITY 2
THE ARGUMENT OF A NAME PSEUDO-FUNCTION MAY NOT BE A SUBBIT PSEUDO-
VARIABLE.

EN4 - SEVERITY 2
THE TYPE OF THE LABEL ?? IS ILLEGAL AS THE ARGUMENT OF A NAME PSEUDO-
FUNCTION.

THE ONLY ALLOWABLE LABEL TYPES ARE: PROGRAM AND TASK. ALL OTHER LABELS ARE
INVALID.

EN5 - SEVERITY 2
ARGUMENT ?? OF THE NAME PSEUDO-FUNCTION OR SPECIFIED %MACRO MAY NOT BE A
NONHAL PROCEDURE OR FUNCTION

EN6 - SEVERITY 2
ARGUMENT ?? OF THE NAME PSEUDO-FUNCTION OR SPECIFIED %MACRO IS A
PROCEDURE OR FUNCTION WHICH IS NOT EXTERNAL

YOU ARE NOT ALLOWED TO USE PROCEDURE NAMES FOR VARIABLES, OR CREATE NAMES OF
PROCEDURE BLOCKS.

EN7 - SEVERITY 2
ARGUMENT ?? OF THE NAME PSEUDO-FUNCTION OR SPECIFIED %MACRO POSSESSES
ILLEGAL SUBSCRIPTING

BIT AND CHARACTER TYPES MAY NOT POSSESS SUBSCRIPTING IN NAME PSEUDO-FUNCTIONS;
AND OTHER TYPES MUST BE SUBSCRIPTED SO THAT A SINGLE ELEMENT IS CHOSEN. SPEC-
SECTION 11.4.5

EN8 - SEVERITY 2
ARGUMENT ?? OF THE NAME PSEUDO-FUNCTION OR SPECIFIED %MACRO MAY NOT
POSSESS THE DENSE ATTRIBUTE

SEE SPEC-SECTION 11.4.5

EN9 - SEVERITY 2
ARGUMENT ?? OF THE NAME PSEUDO-FUNCTION OR SPECIFIED %MACRO MAY NOT BE A
MINOR NODE OF A STRUCTURE

SEE SPEC-SECTION 11.4.5

EO1 - SEVERITY 2
ILLEGAL PRODUCT: OUTER PRODUCT TIMES A VECTOR

EO2 - SEVERITY 2
A PRODUCT INVOLVING BOTH CROSS AND OUTER PRODUCTS IS INDICATED. USE MORE
PARENTHESES.

“V1 V2*V3” IS ILLEGAL, SINCE IT’S INTERPRETED AS “(V1 V2)*V3”. WRITE “V1(V2*V3)” INSTEAD.
SEE SPEC-SECTION 6.1.1

EO3 - SEVERITY 2
A PRODUCT INVOLVING BOTH DOT AND OUTER PRODUCTS IS INDICATED. USE MORE
PARENTHESES.

“V1 V2SV3” IS ILLEGAL, SINCE IT’S INTERPRETED AS (V1 V2)SV3). USE “V1(V2SV3)” INSTEAD. SEE
SPEC-SECTION 6.1.1
B -34 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
EV1 - SEVERITY 2
LENGTHS OF VECTOR OPERANDS IN EXPRESSION DISAGREE

ALL VECTORS EMPLOYED IN AN EXPRESSION MUST HAVE THE SAME LENGTH. SPEC-SECTION
6.1.1

EV2 - SEVERITY 2
MATRIX-VECTOR MULTIPLICATION DIMENSION DISAGREE

IN “M V”, THE LENGTH OF V MUST EQUAL THE SECOND DIMENSION OF M.

EV3 - SEVERITY 2
VECTOR-MATRIX MULTIPLICATION DIMENSION DISAGREEMENT

IN “V M”, THE LENGTH OF V MUST EQUAL THE SECOND DIMENSION OF M.

EV4 - SEVERITY 2
VECTOR MAY NOT HAVE AN EXPONENT

SEE SPEC-SECTION 6.1.1

EV5 - SEVERITY 2
VECTOR ARITHMETIC TYPE CANNOT BE CONVERTED TO A CHARACTER STRING

SEE SPEC-SECTION 6.1.3

E1 - SEVERITY 2
DIVISORS MAY ONLY BE OF INTEGER OR SCALAR TYPE

DIVISION BY A MATRIX OR VECTOR IS NOT PERMITTED. SPEC-SECTION 6.1.1

E100 - SEVERITY 2
EVENT EXPRESSION TOO LONG

THE FOLLOWING LIMITATIONS PERTAIN TO EVENT EXPRESSIONS: IN THE 360 ENVIRONMENT, NO
EXPRESSION CAN HAVE MORE THAN 50 OPERATORS AND 10 OPERANDS, AND ANY
COMBINATION THEREOF CANNOT EXCEED 50. IN THE AP101 ENVIRONMENT, NO EXPRESSION
MAY CONTAIN MORE THAN 5 OPERANDS, WITH ANY COMBINATION THEREOF NOT EXCEEDING
15.

E101 - SEVERITY 2
TOO MANY UNIQUE OPERANDS IN EVENT EXPRESSION

E102 - SEVERITY 2
INVALID EVENT EXPRESSION

VALID EVENT EXPRESSIONS ARE LIMITED TO THE FOLLOWING TYPES: A SINGLE EVENT
VARIABLE WITH OR WITHOUT THE ‘NOT’ OPERATOR, MORE THAN ONE SINGLE EVENT VARIABLE
CONNECTED BY ALL ‘OR’ OPERATORS, AND MORE THAN ONE SINGLE EVENT VARIABLE
CONNECTED BY ALL ‘AND’ OPERATORS.

E2 - SEVERITY 2
MATRIX MUST HAVE AN EXPONENT OF INTEGER TYPE KNOWN AT COMPILE TIME

SEE SPEC-SECTION 6.1.1 EXPONENTIATION OF A MATRIX BY A VARIABLE (NOT DECLARED AS A
CONSTANT) IS THEREFORE ILLEGAL.

E3 - SEVERITY 2
EXPONENT MUST BE A SINGLE VALUED QUANTITY

EXPONENTIATION BY A VECTOR OR MATRIX IS NOT PERMITTED. SEE SPEC-SECTION 6.1.1
B -35 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
E4 - SEVERITY 2
DOT OR CROSS PRODUCT SYMBOL (S OR *) USED IN A PRODUCT NOT INVOLVING
VECTORS

CHECK THAT THE OPERATIONS ARE NOT BEING PERFORMED IN THE WRONG ORDER BECAUSE
OF PRECEDENCE RULES OR IMPROPER PLACEMENT. RECALL ALSO THAT * IS THE SYMBOL FOR
VECTOR CROSS-PRODUCT; MULTIPLICATION IS REPRESENTED BY ADJACENCY. SEE SPEC-
SECTION 6.1.1

E6 - SEVERITY 2
INCOMPATIBLE ARITHMETIC OPERAND TYPES IN EXPRESSION

SEE SPEC-SECTION 6.1.1 FOR A SUMMARY OF ALL LEGAL OPERAND TYPES.
B -36 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
ERROR MESSAGES FOR MAJOR CLASSIFICATION F
CLASSIFICATION “F” ERRORS DEAL WITH FORMAL PARAMETERS AND ARGUMENTS

FD100 - SEVERITY 2
ARRAYNESS CONFLICT ON PARAMETER #??

THE NUMBER OF DIMENSIONS OF ARRAYNESS OF THE ARGUMENT AND ITS CORRESPONDING
FORMAL PARAMETER DO NOT AGREE. SEE SPEC SECTIONS 6.4, 7.4.

FD101 - SEVERITY 2
SIZE CONFLICT ON VECTOR/MATRIX PARAMETER #??

ALL VECTOR/MATRIX ARGUMENTS MUST AGREE IN SIZE WITH THE FORMAL PARAMETERS THEY
REPLACE. SEE SPEC-SECTIONS 6.4, 7.4

FD102 - SEVERITY 2
ARRAY SIZE CONFLICT ON PARAMETER #??

THE SIZE OF AN ARRAYNESS DIMENSION OF THE ARGUMENT AND ITS CORRESPONDING
FORMAL PARAMETER DO NOT AGREE. SEE SPEC SECTIONS 6.4, 7.4.

FD103 - SEVERITY 2
STRUCTURE COPYNESS CONFLICT ON PARAMETER #??

SAME AS FD101, BUT PERTAINING TO COPYNESS

FD104 - SEVERITY 2
STRUCTURE COPY SIZE CONFLICT ON PARAMETER #??

SAME AS FD102, BUT PERTAINING TO COPYNESS

FD4 - SEVERITY 2
ARRAYNESS OF FUNCTION ARGUMENT DOES NOT MATCH CURRENT ARRAYNESS OF
EXPRESSION CONTAINING THE INVOCATION

IF AN ARRAY IS PASSED AS AN ARGUMENT TO A FUNCTION WHICH HAS A SINGLE VALUED
PARAMETER, THE FUNCTION WILL BE REPETITIVELY INVOKED FOR EACH ARRAY ELEMENT TO
CREATE A SIMILARLY ARRAYED RETURN VALUE. SUCH AN ARRAY MUST BE LEGAL WITHIN THE
EXPRESSION IN WHICH THE FUNCTION CALL IS FOUND. SEE SPEC-SECTION 6.4

FD6 - SEVERITY 2
ARGUMENT OF ?? FUNCTION IS NOT A SQUARE MATRIX

DET, INVERSE, AND TRACE MAY ONLY BE USED ON SQUARE MATRICES. SPEC-APPENDIX C

FD7 - SEVERITY 2
A NAME PSEUDO-FUNCTION MAY NOT POSSESS MULTIPLE COPIES IF AN ARGUMENT OF
A PROCEDURE CALL.

FN100 - SEVERITY 2
WRONG NUMBER OF PERCENT MACRO ARGUMENTS

SVC EXPECTS 1 ARGUMENT, NAMECOPY 2 ARGUMENTS, COPY 2 OR 3, NAMEBIAS 2
ARGUMENTS, AND NAMEADD 3 ARGUMENTS. SEE USER’S GUIDE-SECTION 8.7

FN102 - SEVERITY 2
INCORRECT NUMBER OF ARGUMENTS TO ??

EXAMPLE:
 CALL ABC(X,Y,Z);
 ABC:PROCEDURE(X,Y);
INVOKING ABC SPECIFIES 3 PARAMETERS, BUT THE PROCEDURE DECLARATION CONTAINS 2
ARGUMENTS.

FN103 - SEVERITY 2
B -37 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
UNEXPECTED PERCENT MACRO ARGUMENT
FN105 - SEVERITY 1

?? OF %COPY INVOLVES A NAME VARIABLE DEREFERENCE. NOT CHECKED.
FN106 - SEVERITY 2

ELEMENT BOUNDARY EXCEEDED FOR ?? OF %COPY
FN107 - SEVERITY 1

?? OF %COPY INVOLVES RUNTIME ADDRESSING. NOT CHECKED.
FN108 - SEVERITY 1

?? OF %COPY INVOLVES A PASS-BY-REFERENCE PARAMETER DEREFERENCE. NOT
CHECKED.

FN3 - SEVERITY 3
?? USED MORE THAN ONCE AS A PARAMETER

EACH FORMAL PARAMETER MUST BE UNIQUELY NAMED.

FN4 - SEVERITY 2
?? FUNCTION HAS INCORRECT NUMBER OF ARGUMENTS

THIS IS THE RESULT OF CALLING A HAL/S BUILT-IN FUNCTION WITH AN INCORRECT NUMBER OF
ARGUMENTS.

FS1 - SEVERITY 2
AN ASSIGN ARGUMENT OF A PROCEDURE CALL MAY NOT BE A SUBBIT PSEUDO
VARIABLE

SEE SPEC-SECTION 6.5.4

FS2 - SEVERITY 2
THE STRUCTURE COPIES OF ASSIGN ARGUMENT ?? MUST BE SUBSCRIPTED AWAY

SEE SPEC-SECTION 7.4

FT10 - SEVERITY 2
A NAME PSEUDO-FUNCTION MAY NOT BE THE ARGUMENT OF A BUILT-IN OR
SHAPING/CONVERSION FUNCTION.

FT100 - SEVERITY 2
ILLEGAL ARGUMENT TO SIZE FUNCTION

THE ARGUMENT TO THE BUILT-IN SIZE FUNCTION MUST BE AN UNSUBSCRIPTED DATA ITEM
WITH A ONE DIMENSIONAL ARRAY SPECIFICATION OR A MULTIPLE COPY SPECIFICATION, OR
ELSE AN UNSUBSCRIPTED BUT (ONE DIMENSIONALLY) ARRAYED STRUCTURE TERMINAL.
SPEC-APPENDIX C

FT101 - SEVERITY 2
DATA TYPE CONFLICT ON PARAMETER #??

DATA TYPE IN PARAMETER AND ARGUMENT MUST BE COMPATIBLE. SEE SPEC-SECTIONS 6.4,
7.4, 11.4.9

FT102 - SEVERITY 2
ASSIGN PARAMETER ATTRIBUTES MUST MATCH

THE ATTRIBUTES OF A PROCEDURE’S ASSIGN PARAMETERS MUST MATCH PRECISELY THE
ATTRIBUTES OF THE ARGUMENTS EMPLOYED WHEN THE PROCEDURE IS CALLED: THIS IS TRUE
OF TYPE, PRECISION, DIMENSION, ARRAYNESS, AND STRUCTURE TREE ORGANIZATION. THE
REMOTE ATTRIBUTE MUST ALSO MATCH IF THE ASSIGN PARAMETER IS NON-REMOTE OR IS A
NAME VARIABLE. CHARACTER LENGTHS NEED NOT MATCH PRECISELY, HOWEVER. SPEC-
SECTION 7.4
B -38 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
FT103 - SEVERITY 2
LOCK NUMBER CONFLICT ON PARAMETER #??

IF AN ASSIGN ARGUMENT IN A PROCEDURE CALL IS OF LOCK GROUP N, THEN THE
CORRESPONDING ASSIGN PARAMETER MUST ALSO BE OF LOCK GROUP N, OR ELSE OF (*). IF
THE ASSIGN ARGUMENT IS OF GROUP (*), THE ASSIGN PARAMETER MUST BE TOO. SPEC-
SECTION 7.4

FT104 - SEVERITY 2
ILLEGAL NAME PARAMETER #??

THE ARGUMENT OF A NAME PSEUDO-FUNCTION WHICH IS A PARAMETER MUST BE EITHER
NULL OR A VARIABLE. EXPRESSIONS ARE NOT ALLOWED.

 FT105 - SEVERITY 2
NOT ASSIGN PARAMETER

ALL ARGUMENTS IN A PROCEDURE CALL WHICH ARE USED AS ASSIGN ARGUMENTS MUST
CORRESPOND TO A DEFINED ASSIGN PARAMETER IN THE PROCEDURE DEFINITION. FOR
EXAMPLE:
 PROC1:PROCEDURE ASSIGN(A,B,C);
 CALL PROC1(A,B,C);
 OR
 PROC1:PROCEDURE(A,B) ASSIGN(C);
 CALL PROC1(A) ASSIGN(B,C);

FT106 - SEVERITY 2
NOT NAME PARAMETER

IF AN ARGUMENT OF A PROCEDURE OR FUNCTION IS A NAME VALUE, THE CORRESPONDING
FORMAL PARAMETER OF THE PROCEDURE OR FUNCTION MUST BE DECLARED AS HAVING THE
NAME ATTRIBUTE AS WELL.

FT107 - SEVERITY 2
INVALID ARGUMENT TO ARRAY FUNCTION

MAX, MIN, PROD, AND SUM ALL REQUIRE THEIR ARGUMENTS TO BE ARRAYS OF INTEGERS OR
SCALARS. SEE SPEC-APPENDIX C

FT108 - SEVERITY 2
ATTEMPT TO PASS REMOTE PARAMETER BY REFERENCE TO RTL ROUTINE THAT DOES
NOT SUPPORT REMOTE ADDRESSING

FT109 - SEVERITY 2
ASSIGN PARAMETER MUST NOT HAVE DENSE ATTRIBUTE

THIS MESSAGE APPLIES TO BIT STRUCTURE NODES.

FT110 - SEVERITY 2
MISMATCHED ARGUMENTS IN %NAMEADD STATEMENT. REMOTE SOURCE NOT
ALLOWED WITH NON-REMOTE DESTINATION IN %NAMEADD STATEMENT.

FT111 - SEVERITY 2
MISMATCHED ARGUMENTS IN %NAMECOPY STATEMENT. REMOTE SOURCE NOT
ALLOWED WITH NON-REMOTE DESTINATION IN %NAMECOPY STATEMENT.

FT112 - SEVERITY 2
PARAMETER #?? MAY NOT BE NAME (NAMEVAR) IF NAMEVAR LIVES REMOTE

THE REMOTE KEYWORD ON A NAME VARIABLE SPECIFIES WHERE IT POINTS, NOT WHERE IT
LIVES. THERE IS NO CURRENT WAY TO DECLARE A REMOTE NAME INSIDE A
PROCEDURE/FUNCTION.
B -39 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
FT113 - SEVERITY 2
REMOTE INPUT ARGUMENT CANNOT BE PASSED INTO NON-REMOTE NAME
PARAMETER.

FT2 - SEVERITY 2
?? FUNCTION HAS AN ARGUMENT OF INCORRECT TYPE

SEE SPEC, APPENDIX C, FOR COMPLETE INFORMATION ON THE TYPE OF ARGUMENTS USED IN
BUILT-IN FUNCTIONS.

FT3 - SEVERITY 2
ILLEGAL TYPE FOR THE FUNCTION ??

FUNCTIONS MAY NOT BE EVENT TYPE.

FT4 - SEVERITY 2
THE SIZE SPECIFICATION FOR THE RETURN TYPE OF FUNCTION ?? DISAGREES WITH
THE PREVIOUSLY DECLARED SIZE

THE SPECIFICATION OF THE DIMENSIONALITY OF THE VALUE RETURNED BY A FUNCTION
HEADER MUST MATCH THAT OF ANY EARLIER DECLARE STATEMENT IN WHICH THE FUNCTION
WAS FIRST MENTIONED.

FT6 - SEVERITY 2
THE STRUCTURE TEMPLATE INDICATED IN THE TYPE SPECIFICATION OF FUNCTION ??
DISAGREES WITH THE TEMPLATE USED IN A PREVIOUS DECLARATION

THE SPECIFICATION OF THE ORGANIZATION OF THE STRUCTURE RETURNED BY A FUNCTION IN
THE ACTUAL FUNCTION HEADER MUST MATCH THAT OF ANY EARLIER DECLARE STATEMENT IN
WHICH THE FUNCTION WAS FIRST MENTIONED

FT7 - SEVERITY 2
CONFLICTING SINGLE/DOUBLE SPECIFICATION FOR THE FUNCTION ??

THE SPECIFICATION OF THE PRECISION OF THE VALUE RETURNED BY A FUNCTION IN THE
ACTUAL FUNCTION HEADER MUST MATCH THAT OF ANY EARLIER DECLARE STATEMENT IN
WHICH THE FUNCTION WAS FIRST MENTIONED.

FT8 - SEVERITY 2
THE FUNCTION ?? MAY POSSESS NEITHER A SUBSCRIPT NOR A PRECISION QUALIFIER.

F100 - SEVERITY 2
ASSIGN PARAMETER NOT SYMBOL

ASSIGN PARAMETER CAN ONLY BE A VARIABLE, EXPRESSIONS ARE NOT ALLOWED.

F101 - SEVERITY 2
PERCENT MACRO CALL CONFLICT

F102 - SEVERITY 2
NESTED PERCENT MACRO

%MACROS MAY NOT BE NESTED WITHIN EACH OTHER

F103 – SEVERITY 2
THE LITERAL VALUE FOR THE SHIFT COUNT IS OUT OF RANGE.

THE VALID RANGE IS 1 TO 63.
B -40 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
ERROR MESSAGES FOR MAJOR CLASSIFICATION G
CLASSIFICATION “G” ERRORS DEAL WITH STATEMENT GROUPINGS

(DO STATEMENTS)

GB1 - SEVERITY 2
BIT EXPRESSION IN ?? CLAUSE MUST BE BOOLEAN

CONDITIONAL BIT EXPRESSION MAY ONLY INVOLVE BIT STRINGS OF LENGTH 1. THE TERM,
“BOOLEAN” IS EQUIVALENT TO “BIT(1)”.

GC1 - SEVERITY 2
CONTROL EXPRESSION IN A DO CASE MUST BE OF UNARRAYED INTEGER OR SCALAR
TYPE

SEE SPEC-SECTION 7.6.2

GC2 - SEVERITY 2
BIT EXPRESSION IN WHILE OR UNTIL CLAUSE MAY NOT BE ARRAYED

GC3 - SEVERITY 2
CONTROL EXPRESSIONS IN A DO FOR MUST BE OF UNARRAYED INTEGER OR SCALAR
TYPE

SEE SPEC-SECTION 7.6.4

GE1 - SEVERITY 2
EXIT IS EITHER NOT IN A DO...END GROUP, OR NO LABEL MATCH WAS FOUND.

EXIT STATEMENTS ARE ONLY LEGAL WITHIN DO...END GROUPS. EXIT “LABEL” STATEMENTS
CAUSE EXIT FROM THE ENCLOSING DO GROUP WITH THE SAME LABEL; HENCE THE LABEL
GIVEN IN THE EXIT STATEMENT MUST MATCH SOME SUCH GROUP. CHECK THAT MISTYPING
HAS NOT CAUSED A REFERENCE TO A NON-EXISTENT GROUP. SEE SPEC-SECTION 7.7

GE2 - SEVERITY 2
REPEAT IS EITHER NOT IN A DO FOR...END OR DO WHILE/UNTIL...END GROUP, OR NO
LABEL MATCH WAS FOUND.

REPEAT STATEMENTS ARE ONLY LEGAL WITHIN DO FOR, DO WHILE, OR DO UNTIL GROUPS (AND
NOT LEGAL WITHIN DO CASE OR PLAIN DO...END GROUPS WHICH DO NOT CAUSE REPEATED
EXECUTION). REPEAT “LABEL” STATEMENTS CAUSE A JUMP TO THE NEXT EXECUTION OF THE
ENCLOSING DO GROUP WITH THE SAME LABEL; HERE THE LABEL SPECIFIED IN THE REPEAT
STATEMENT MUST MATCH SOME SUCH GROUP. CHECK TO MAKE SURE THAT MISTYPING HAS
NOT CAUSED A REFERENCE TO A NON-EXISTENT GROUP. SPEC-SECTION 7.7

GE3 - SEVERITY 2
EXIT CAUSES ILLEGAL BRANCHING OUT OF CODE BLOCK DEFINITION

EXIT STATEMENTS MAY NOT CAUSE EXECUTION TO BRANCH OUT OF A CODE BLOCK
(PROCEDURE, FUNCTION, ETC.). THUS A PROCEDURE NESTED WITHIN A DO...END GROUP MAY
NOT INCLUDE AN EXIT STATEMENT CAUSING CONTROL OF EXECUTION TO PASS OUT OF THE
PROCEDURE TO THE NEXT EXECUTABLE STATEMENT FOLLOWING THE DO...END GROUP. SEE
SPEC-SECTION 7.7
B -41 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
GE4 - SEVERITY 2
REPEAT CAUSES ILLEGAL BRANCHING OUT OF CODE BLOCK DEFINITION

REPEAT STATEMENTS MAY NOT CAUSE EXECUTION TO BRANCH OUT OF A CODE BLOCK
(PROCEDURE, FUNCTION, ETC.). THUS, A PROCEDURE NESTED WITHIN, FOR EXAMPLE, A DO
FOR...END GROUP, MAY NOT INCLUDE A REPEAT STATEMENT CAUSING CONTROL TO PASS OUT
OF THE BLOCK AND BACK TO THE BEGINNING OF THE DO FOR...END GROUP. SEE SPEC-
SECTION 7.7

GL1 - SEVERITY 2
LABEL AFTER END STATEMENT DOES NOT MATCH DO STATEMENT LABEL

SEE SPEC-SECTION 7.6.6

GL2 - SEVERITY 2
LABEL IS THE DESTINATION OF A GO TO FROM OUTSIDE THE ENCLOSING DO...END
GROUP

SEE SPEC-SECTION 7.7

GL3 - SEVERITY 2
GO TO STATEMENT CAUSES A BRANCH INTO A DO...END GROUP

SEE SPEC-SECTION 7.7

GL4 - SEVERITY 2
LABELED TRUE PART OF IF STATEMENT CANNOT BE DESTINATION OF GO TO STATEMENT

GO TO STATEMENTS MAY NOT CAUSE EXECUTION TO BRANCH TO THE TRUE PART OF AN IF
STATEMENT. (I.E., “IF K=0 THEN ZEROFIX:DO...” IS A STATEMENT IN THE PROGRAM, GO TO
ZEROFIX IS NOT PERMITTED, ALTHOUGH WITHIN THE DO GROUP LABELED ZEROFIX,
STATEMENTS SUCH AS EXIT ZEROFIX AND REPEAT ZEROFIX ARE LEGAL). SPEC-SECTION 7.2

GL5 - SEVERITY 2
LABELED FALSE PART OF IF STATEMENT CANNOT BE DESTINATION OF GO TO
STATEMENT

GO TO STATEMENTS MAY NOT CAUSE EXECUTION TO BRANCH TO THE TRUE PART OF AN IF
STATEMENT.

GL6 - SEVERITY 2
LABELED ELSE PART OF DO CASE STATEMENT CANNOT BE DESTINATION OF GO TO
STATEMENT

GO TO STATEMENTS MAY NOT CAUSE EXECUTION TO BRANCH TO THE TRUE PART OF AN IF
STATEMENT. FOR EXAMPLE:
 IF K=0 THEN DO...
 END;
 ZEROFIX:ELSE DO...

GOING TO ZEROFIX IS NOT PERMITTED, ALTHOUGH WITHIN THE DO GROUP LABELED ZEROFIX,
STATEMENTS SUCH AS “EXIT ZEROFIX” AND “REPEAT ZEROFIX” ARE LEGAL. SEE SPEC-SECTION
7.6.2
B -42 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
GL7 - SEVERITY 2
LABELED TARGET STATEMENT OF ON ERROR STATEMENT CANNOT BE DESTINATION OF
GO TO STATEMENT

GO TO STATEMENTS MAY NOT CAUSE EXECUTION TO BRANCH TO THE TARGET STATEMENT OF
AN ON ERROR STATEMENT. I.E. IF “ON ERROR 72 FIXUP:DO...” IS FOUND IN THE PROGRAM, “GO
TO FIXUP” IS NOT PERMITTED, ALTHOUGH, WITHIN THE DO GROUP LABELED FIXUP,
STATEMENTS SUCH AS “EXIT FIXUP” AND “REPEAT FIXUP” ARE LEGAL. INSTEAD OF “GO TO
FIXUP”, “SEND ERROR” COULD BE USED. SEE SPEC-SECTION 7.1

GV1 - SEVERITY 2
CONTROL VARIABLE IN A DO FOR MUST BE OF UNARRAYED INTEGER OR SCALAR TYPE

SEE SPEC-SECTION 7.6.4
B -43 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
ERROR MESSAGES FOR MAJOR CLASSIFICATION I
CLASSIFICATION “I” ERRORS ARE RELATED TO IDENTIFIERS

IL1 - SEVERITY 2
IDENTIFIER NAME MAY NOT END WITH AN UNDERSCORE CHARACTER

SEE SPEC-SECTION 2.3.2

IL2 - SEVERITY 2
NAME TOO LONG - TRUNCATED

SEE SPEC-SECTION 2.3.2

IR1 - SEVERITY 2
ILLEGAL REPLACEMENT FOR LOCAL NAME: ??

A LOCALLY DECLARED VARIABLE IS LATER SPECIFIED TO BE A REPLACE MACRO NAME.

IR10 - SEVERITY 4
MAXIMUM NUMBER OF PARAMETERS FOR SOURCE MACRO DEFINITION EXCEEDED

NO MORE THAN 12 PARAMETERS ARE PERMITTED IN THE DEFINITION OF ANY REPLACE MACRO.
PROGRAMMER’S GUIDE-SECTION 29

IR4 - SEVERITY 3
ILLEGAL USE OR UNDEFINED REFERENCE OF CENT MACRO ??

THE IDENTIFIER BETWEEN THE CENT SIGNS IS NOT A REPLACE MACRO.

IR5 - SEVERITY 2
DUPLICATE REPLACE FOR ??

TWO DIFFERENT REPLACE MACROS CANNOT CONTAIN THE SAME TEXT.

IR6 - SEVERITY 3
STACK LIMIT OF PARAMETERS EXCEEDED; RECURSIVE EXPANSION OF PARAMETER
LIKELY

A REPLACE MACRO NAME CANNOT BE THE SAME AS AN ARGUMENT WITHIN THE REPLACE
TEXT.

IR7 - SEVERITY 3

REPLACE PARAMETER STRING TOO LONG;?REPLACE NOT PERFORMED
THE MAXIMUM SIZE OF ANY ARGUMENT USED IN THE EXPANSION OF A REPLACE MACRO IS
LIMITED TO 250 CHARACTERS. PROGRAMMER’S GUIDE-SECTION 29

IR8 - SEVERITY 3
INCORRECT NUMBER OF PARAMETERS FOR MACRO CALL; REPLACEMENT NOT
PERFORMED

IR9 - SEVERITY 3
MACRO EXPANSION STACK OVERFLOW; RECURSIVE DEFINITION LIKELY

REPLACE MACRO EXPANSIONS MAY NOT INVOKE OTHER MACROS BEYOND EIGHT LEVELS.

IS1 - SEVERITY 2
ILLEGAL CONSTRUCTION OF QUALIFIED STRUCTURE NAME

THE DECLARATION OF OR REFERENCE TO A QUALIFIED STRUCTURE MUST COME AFTER THE
STRUCTURE TEMPLATE HAVING THAT NAME, I.E., A STATEMENT SUCH AS: “DECLARE Z Q-
STRUCTURE” MUST BE PRECEDED BY THE TEMPLATE DESCRIBING “Q:STRUCTURE”. SPEC-
SECTION 4.6

IS2 - SEVERITY 2
ILLEGAL CONSTRUCTION OF UNQUALIFIED STRUCTURE NAME, INVOLVING ??
B -44 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
ERROR MESSAGES FOR MAJOR CLASSIFICATION L
CLASSIFICATION “L” ERRORS DEAL WITH LITERALS

LB1 - SEVERITY 2
BIT CONSTANTS MAY NOT BE LONGER THAN 32 BITS

LB2 - SEVERITY 2
DECIMAL BIT CONSTANT MUST SPECIFY OR IMPLY A REPETITION FACTOR OF 1

LB3 - SEVERITY 2
ILLEGAL DECIMAL STRING IN DECIMAL BIT CONSTANT

BIT CONSTANTS MAY ONLY CONTAIN 0’S OR 1’S. DIGITS 2-9 ARE INVALID IN STRING.

LB4 - SEVERITY 2
ILLEGAL CHARACTER IN DECIMAL BIT CONSTANT

THE ONLY CHARACTERS PERMITTED IN A DECIMAL BIT CONSTANT ARE 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

LB5 - SEVERITY 2
ILLEGAL CHARACTER IN BINARY BIT CONSTANT

THE ONLY CHARACTERS PERMITTED IN A BINARY BIT CONSTANT ARE 0 AND 1, OFF, ON. TRUE,
FALSE, ETC. ARE NOT PERMITTED EXCEPT IN BINARY BIT OF LENGTH 1 (I.E. BOOLEANS).

LB6 - SEVERITY 2
ILLEGAL CHARACTER IN OCTAL BIT CONSTANT

THE ONLY CHARACTERS PERMITTED IN AN OCTAL BIT CONSTANT ARE 0, 1, 2, 3, 4, 5, 6, 7.

LB7 - SEVERITY 2
ILLEGAL CHARACTER IN HEXADECIMAL BIT CONSTANT

THE ONLY CHARACTERS PERMITTED IN A HEXADECIMAL BIT CONSTANT ARE 0, 1, 2, 3, 4, 5, 6, 7,
8, 9, A, B, C, D, E, F.

LB8 - SEVERITY 2
REPETITION FACTOR OF A BIT LITERAL MUST BE GREATER THAN ZERO

SEE SPEC-SECTION 2.3.4

LC2 - SEVERITY 2
?? NOT EXPRESSIBLE INTERNALLY

NUMBERS OUTSIDE THE RANGE OF 10**-78 TO 10**75 ARE NOT REPRESENTABLE INTERNALLY.

LF1 - SEVERITY 2
ILLEGAL NUMERIC LITERAL CONSTRUCTION

SEE SPEC 2-8 FOR RULES CONCERNING CONSTRUCTION OF ARITHMETIC LITERALS.

LF2 - SEVERITY 2
ONLY ONE DECIMAL POINT ALLOWED

LF3 - SEVERITY 2
TOO MANY SIGNIFICANT DIGITS - 74 ALLOWED

LF5 - SEVERITY 2
EXPONENT INDICATOR BUT NO EXPONENT DIGITS

IF AN EXPONENT INDICATOR IS SPECIFIED (E, B, OR H), THEN SOME POWER MUST BE
SPECIFIED AS WELL. SEE SPEC-SECTION 2.3.4
B -45 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
LS1 - SEVERITY 2
CHARACTER STRING TOO LONG - TRUNCATED TO 255 CHARACTERS

CHARACTER STRINGS OF LENGTH GREATER THAN 255 ARE NOT PERMITTED. THE RESULTING
CHARACTER EXPRESSION WILL BE RIGHT TRUNCATED.

LS2 - SEVERITY 2
REPETITION FACTOR OF A CHARACTER LITERAL IS NOT GREATER THAN ZERO

SEE SPEC-SECTION 2.3.4
B -46 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
ERROR MESSAGES FOR MAJOR CLASSIFICATION M
CLASSIFICATION “M” ERRORS DEAL WITH MULTI-LINE FORMATS

MC1 - SEVERITY 2
ILLEGAL CONTEXT FOR OVERPUNCH

ONLY VARIABLES MAY BE OVERPUNCHED.

MC2 - SEVERITY 2
OVERPUNCH ILLEGAL ON FUNCTION NAMES

FUNCTION NAMES MAY NOT BE OVERPUNCHED.

MC3 - SEVERITY 2
OVERPUNCH ILLEGAL ON REPLACED NAME

REPLACED NAMES MAY NOT BE OVERPUNCHED.

MC4 - SEVERITY 2
OVERPUNCH NOT VALID ON RESERVED WORD ??

HAL/S KEYWORDS MAY NOT BE OVERPUNCHED.

MC5 - SEVERITY 2
OVERPUNCH ILLEGAL ON PARAMETER ??

FORMAL PARAMETERS MAY NOT BE OVERPUNCHED.

MC6 - SEVERITY 2
OVERPUNCH ILLEGAL IN DECLARATION OF ??

OVERPUNCHES MAY NOT APPEAR IN DECLARE STATEMENTS, ONLY IN SUBSEQUENT
STATEMENTS REFERRING TO THE VARIABLE.

MC7 - SEVERITY 2
OVERPUNCH ILLEGAL ON EQUATE

ME1 - SEVERITY 4
EXPONENT STRING OVERFLOW

E AND S LINES MAY NOT CONTAIN MORE THAN 127 CHARACTERS.

ME2 - SEVERITY 2
E-LINE CHARACTER MORE THAN ONE LINE ABOVE PRECEDING CHARACTER

MAKE SURE IN ENTERING MULTI-LINE FORMAT, THAT EACH EXPONENT LIES ON THE LINE
IMMEDIATELY ABOVE THE ITEM IT MODIFIES.

ME3 - SEVERITY 2
E-LINE OVERLAPS M-LINE

ME4 - SEVERITY 2
OVERLAPPING E-LINE CHARACTERS

MO1 - SEVERITY 2
THE OVERPUNCH ON THE CHARACTER Xi??i WITHIN CHARACTER LITERAL IS NOT A
LEGAL “ESCAPE” DESIGNATOR. THE OVERPUNCH HAS BEEN IGNORED.

THE ONLY LEGAL “ESCAPE” CHARACTER IS THE CENT SIGN. SEE SPEC-SECTION 2.3.4

MO2 - SEVERITY 2
INVALID OVERPUNCH ON ??

THE SYMBOL TYPE IMPLIED BY THE USER SUPPLIED OVERPUNCH DOESN’T AGREE WITH THE
SYMBOL TYPE DETERMINED BY THE COMPILER.

MO3 - SEVERITY 2
MULTIPLE OVERPUNCHES NOT VALID - FIRST ACCEPTED
B -47 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
MO4 - SEVERITY 2
USER SUPPLIED OVERPUNCH CHARACTER NOT VALID - IGNORED

THE ONLY LEGAL OVERPUNCHES ARE *,-,.,/,+ WHICH ARE USED TO ANNOTATE MATRIX, VECTOR,
BIT, CHARACTER, AND STRUCTURE DATA TYPES.

MO5 - SEVERITY 2
AN OVERPUNCH IS ILLEGAL ON THE SINGLE QUOTE DELIMITING A CHARACTER LITERAL.
THE OVERPUNCH HAS BEEN IGNORED.

MO6 - SEVERITY 2
THE CHARACTER XI??I HAS BEEN USED IN A CHARACTER LITERAL “ESCAPE” CONTEXT.
AN ALTERNATE CHARACTER FOR THE ESCAPE LEVEL REQUESTED IS NOT DEFINED.
?THE CHARACTER WILL BE USED WITHOUT TRANSLATION.

SEE SPEC-SECTION 2.3.4

MO7 - SEVERITY 2
WITHIN A CHARACTER LITERAL, “ESCAPE” CHARACTERS HAVE BEEN USED TO INDICATE
AN ESCAPE LEVEL GREATER THAN 2 FOR THE CHARACTER Xi??i. AN ESCAPE LEVEL OF
2 WILL BE USED.

MO8 - SEVERITY 2
AN OVERPUNCH ON THE “ESCAPE” CHARACTER IN A CHARACTER LITERAL IS ILLEGAL
AND HAS BEEN IGNORED.

MS1 - SEVERITY 4
SUBSCRIPT STRING OVERFLOW

MS2 - SEVERITY 2
S-LINE CHARACTER MORE THAN ONE LINE LOWER THAN PRECEDING CHARACTER

MAKE SURE IN ENTERING MULTI-LINE FORMAT, THAT EACH SUBSCRIPT LIES ON THE LINE
IMMEDIATELY BELOW THE ITEM IT MODIFIES.

MS3 - SEVERITY 2
S-LINE OVERLAPS M-LINE

MS4 - SEVERITY 2
OVERLAPPING S-LINE CHARACTERS

M1 - SEVERITY 2
ILLEGAL CARD TYPE - CHANGED TO A COMMENT

THE ONLY LEGAL CARD TYPES (I.E. COLUMN 1 SYMBOLS) ARE C, D, E, S, AND M. ANY OTHER
TYPES SPECIFIED WILL BE ASSUMED TO BE A C.

M2 - SEVERITY 2
INVALID SEQUENCE OF CARD TYPES

AN E (EXPONENT LINE) CARD TYPE MAY NOT BE FOLLOWED BY AN S (SUBSCRIPT LINE) CARD
TYPE.

M3 - SEVERITY 1
COMMENT LONGER THAN 256 CHARACTERS - HAS BEEN TRUNCATED

COMMENTS MAY NOT EXCEED 256 CHARACTERS.
B -48 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
ERROR MESSAGES FOR MAJOR CLASSIFICATION P
CLASSIFICATION “P” ERRORS INDICATE FLOW CONTROL PROBLEMS

PA1 - SEVERITY 2
A MEMBER CORRESPONDING TO THE PROGRAM IDENTIFICATION ?? CANNOT BE FOUND
IN THE PROGRAM ACCESS FILE. NO ACCESS VALIDATION WILL BE PERFORMED.

SEE PROGRAMMER’S GUIDE-SECTION 30

PA2 - SEVERITY 2
PROCESSING OF THE PROGRAM ACCESS FILE FOR PROGRAM ID ?? HAS CAUSED
DETECTION OF ONE OR MORE ERRORS AND/OR INCONSISTENCIES WHICH ARE LISTED
BELOW:

SEE PROGRAMMER’S GUIDE-SECTION 30

PC1 - SEVERITY 2
COMPOOL BLOCK CONTAINS STATEMENT(S) OTHER THAN DECLARATIONS

NO STATEMENTS OTHER THAN DECLARATIONS ARE PERMITTED IN A COMPOOL BLOCK. SPEC-
SECTION 3.5

PC2 - SEVERITY 2
COMPOOL TEMPLATE CONTAINS STATEMENT(S) OTHER THAN DECLARATIONS

NO STATEMENTS OTHER THAN DECLARATIONS ARE PERMITTED IN A COMPOOL TEMPLATE.
SPEC-SECTION 3.6

PE1 - SEVERITY 2
EXTERNAL TEMPLATES MUST NOT APPEAR WITHIN A BLOCK DEFINITION

TEMPLATE DEFINITIONS MUST BE INCLUDED BEFORE MAIN COMPILATION UNIT.

PE100 - SEVERITY 2
ILLEGAL NONHAL FUNCTION TYPE

ONLY INTEGERS AND SCALARS ARE ALLOWABLE. MATRICES, VECTORS, AND STRUCTURES
ARE INVALID.

PE101 - SEVERITY 2
ILLEGAL NONHAL FUNCTION INVOCATION

INVOKING ILLEGAL NON-HAL FUNCTIONS IS NOT ALLOWED. HAL/S COMPILER IS UNABLE TO
COMPILE THE OUTPUT SUCH FUNCTIONS GENERATE. (ISSUED IN CONJUNCTION WITH PE100).

PE2 - SEVERITY 2
EXTERNAL TEMPLATES MUST NOT BE PLACED AFTER A BLOCK DEFINITION

TEMPLATE DEFINITIONS MUST BE INCLUDED BEFORE MAIN COMPILATION UNIT.

PF1 - SEVERITY 2
RETURN FROM FUNCTION BLOCK MUST BE FOLLOWED BY AN EXPRESSION

FUNCTIONS BY THEIR DEFINITION ARE PROCEDURES WHICH RETURN SOME VALUE, AND THUS
THE ‘RETURN’ STATEMENT WITHIN THE FUNCTION MUST CONTAIN A VALUE AS AN ARGUMENT.

PF100 - SEVERITY 2
CANNOT RETURN VALUE FROM NON-FUNCTION

FUNC(X) HAS A VALUE ONLY IF FUNC IS A FUNCTION. IF IT’S A PROCEDURE, CALL FUNC(X)
MUST BE USED.
B -49 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
PF2 - SEVERITY 2
RETURN MAY ONLY BE FOLLOWED BY AN EXPRESSION IN A FUNCTION BLOCK

RETURN STATEMENTS IN PROCEDURE BLOCKS SIMPLY RETURN CONTROL TO THE CALLING
PROGRAM, AND MUST BE CODED AS A SINGLE WORD. FUNCTION BLOCKS REQUIRE, E.G.,
RETURN X OR RETURN P+Q, CAUSING THE VALUE SPECIFIED TO BE SUBSTITUTED FOR THE
FUNCTION INVOCATION.

PF3 - SEVERITY 2
EXPRESSION TO BE RETURNED MAY NOT POSSESS ARRAYNESS

FUNCTIONS MAY NOT RETURN ARRAYS AS VALUES (ALTHOUGH, IF THE ARGUMENT TO THE
FUNCTION IS ARRAYED, ELEMENT BY ELEMENT EVALUATION WILL OCCUR, RESULTING IN AN
ARRAY OF SINGLE FUNCTION VALUES).

PF4 - SEVERITY 2
ILLEGAL TYPE CONVERSION OF RETURNED EXPRESSION REQUIRED.

ONLY INTEGER TO SCALAR, SCALAR TO INTEGER, AND INTEGER AND SCALAR TO CHARACTER
IMPLICIT CONVERSIONS ARE PERMITTED.

PF5 - SEVERITY 2
MATRIX DIMENSIONS OF FUNCTION DISAGREE WITH THOSE OF RETURN EXPRESSION

THE DIMENSIONS DECLARED IN THE FUNCTION HEADER MUST AGREE PRECISELY WITH THE
LENGTH OF ALL VALUES SENT IN RETURN STATEMENTS. SPEC-SECTION 7.5

PF6 - SEVERITY 2
VECTOR LENGTH OF FUNCTION DISAGREES WITH THAT OF RETURN EXPRESSION

THE LENGTH DECLARED IN THE FUNCTION HEADER MUST AGREE PRECISELY WITH THE
LENGTH OF ALL VALUES SENT IN RETURN STATEMENTS. SPEC-SECTION 7.5

PF7 - SEVERITY 2
TREE ORGANIZATION OF FUNCTION DOES NOT MATCH THAT OF RETURN EXPRESSION

THE TREE ORGANIZATION IMPLIED BY THE STRUCTURE TEMPLATE REFERRED TO IN THE
FUNCTION HEADER MUST BE IDENTICAL TO THAT OF ALL STRUCTURES SENT IN RETURN
STATEMENTS.

PF9 - SEVERITY 2
RETURN EXPRESSION MAY NOT BE A NAME PSEUDO-FUNCTION OR NULL.

ARGUMENTS IN A RETURN STATEMENT MAY CONTAIN ONLY A VALUE, AND NOT A NAME
PSEUDO-FUNCTION.

PL1 - SEVERITY 2
THE FUNCTION ?? HAS BEEN DECLARED BUT NOT DEFINED

IF “DECLARE F FUNCTION SCALAR” APPEARS IN THE DECLARATION GROUP, A FUNCTION
DEFINITION HEADED BY “F: FUNCTION SCALAR” MUST APPEAR SOMEWHERE IN THE CODE
BLOCK.

PL10 - SEVERITY 2
THE BLOCK BEING DEFINED IS INVOKED FROM OUTSIDE THE ENCLOSING DO...END
GROUP

PL11 - SEVERITY 2
ENCLOSING DO...END GROUP
B -50 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
PL2 - SEVERITY 3
?? IS A DUPLICATE LABEL

ALL BLOCK LABELS MUST BE UNIQUE THROUGHOUT A UNIT OF COMPILATION. SPEC-SECTION
3.8

PL3 - SEVERITY 2
LABEL ON CLOSE DOES NOT MATCH BLOCK DEFINITION
LABEL: ??

IF A CLOSE STATEMENT HAS CLOSE FOLLOWED BY A LABEL, THE LABEL SPECIFIED MUST BE
IDENTICAL TO THE ONE AT THE OPENING OF THE BLOCK. SPEC-SECTION 3.7.4

PL4 - SEVERITY 2
FUNCTION LABEL CONFLICT

THE FUNCTION LABEL OR THE FUNCTION DEFINITION MUST BE DECLARED BEFORE
INVOCATION. TYPE ATTRIBUTES BOTH IN THE DECLARE STATEMENT AND ON THE FUNCTION
HEADER MUST AGREE.

PL5 - SEVERITY 2
LABEL ?? IS NOT DEFINED WITHIN THE CURRENT SCOPE

A LABEL IS NOT ACCESSIBLE FROM WITHIN ANY CODE BLOCKS NESTED WITHIN THE BLOCK
WHERE IT OCCURS. THIS PREVENTS GO TO STATEMENTS FROM CAUSING A BRANCH OUT OF A
CODEBLOCK. SEE SPEC-SECTION 3.8

PL6 - SEVERITY 2
A DEFINITION BLOCK FOR THE PROCEDURE OR TASK ?? IS ABSENT FROM THE
COMPILATION

ALL PROCEDURE OR TASK BLOCKS REFERRED TO MUST BE INCLUDED IN THE COMPILATION
UNIT, UNLESS THEY HAVE BEEN EXPLICITLY DECLARE’D AS EXTERNAL.

PL7 - SEVERITY 2
USED IN A CALL STATEMENT, PROCEDURE LABEL ?? MAY NOT POSSESS ARRAYNESS.

LABELS MAY NOT POSSESS ARRAYNESS.

PL8 - SEVERITY 2
THE PROCEDURE ?? MAY NOT BE CALLED FROM OUTSIDE THE DO GROUP WITHIN
WHICH IT WAS DEFINED

PL9 - SEVERITY 2
THE FUNCTION ?? MAY NOT BE INVOKED FROM OUTSIDE THE DO GROUP WITHIN WHICH
IT AS DEFINED

PM1 - SEVERITY 3
DUPLICATE DEFINITION FOR ??

ALL NAMES MUST BE UNIQUE WITHIN THE NAME SCOPE WHERE THEY ARE KNOWN. SEE SPEC-
SECTION 3.8 FOR NAME-SCOPING RULES.

PM2 - SEVERITY 3
DUPLICATE DEFINITION OF STRUCTURE TEMPLATE ??

STRUCTURE TEMPLATE NAMES MAY DUPLICATE OTHER KINDS OF NAMES WITHIN THE SAME
NAME SCOPE, BUT MUST NOT DUPLICATE OTHER STRUCTURE TEMPLATE NAMES. SEE SPEC-
SECTIONS 3.8 AND 4.3 FOR NAME-SCOPING RULES.
B -51 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
PM3 - SEVERITY 2
EARLIER DEFINITION OVERRIDDEN FOR ??

A VARIABLE NAME DECLARED IN AN OUTER SCOPE HAS BEEN REDEFINED AS A LABEL IN THE
CURRENT SCOPE, AND THE LATTER DEFINITION OVERRIDES THE PREVIOUS.

PM4 - SEVERITY 1
OUTER DEFINITION OVERRIDDEN FOR ??

A NAME DECLARED IN AN OUTER SCOPE IS BEING ACCESSED AS A STATEMENT LABEL (AS IN
‘GOTO NAME’).

PP1 - SEVERITY 2
A ?? DEFINITION MUST BE THE OUTERMOST BLOCK DEFINITION

COMPOOLS AND PROGRAMS CANNOT BE IMBEDDED IN CODE BLOCKS, BUT MUST BE
OUTERMOST COMPILATION UNITS.

PP10 - SEVERITY 3
INLINE FUNCTIONS MAY NOT BE NESTED WITHIN INLINE FUNCTION BLOCKS.

SEE SPEC-SECTION 11.2.1

PP11 - SEVERITY 3
INLINE FUNCTIONS MUST NOT APPEAR IN EXPRESSIONS WHICH ARE REQUIRED TO BE
EVALUATED AT COMPILE TIME

PP2 - SEVERITY 2
BLOCK DEFINITION IS NOT THE FIRST OUTERMOST BLOCK DEFINITION

IT IS INVALID TO FOLLOW THE MAIN COMPILATION BODY WITH ANOTHER PROGRAM. FOR
INSTANCE:

 TEST: PROGRAM;
 CLOSE TEST;
 TEST1: PROGRAM
 CLOSE TEST1;
IS INCORRECT.

PP3 - SEVERITY 2
A ?? DEFINITION CANNOT BE AN OUTERMOST BLOCK DEFINITION

TASK AND UPDATE BLOCKS MUST BE EMBEDDED WITHIN CODE BLOCKS.

PP4 - SEVERITY 3
NO BLOCK DEFINITIONS WERE ENCOUNTERED IN COMPILATION

EVERY COMPILATION MUST CONTAIN A PROGRAM, FUNCTION, PROCEDURE, OR COMPOOL
DEFINITION.

PP5 - SEVERITY 2
AN INLINE FUNCTION MAY NOT CONTAIN AN I/O STATEMENT.

SEE SPEC-SECTION 11-3

PP6 - SEVERITY 2
AN INLINE FUNCTION MAY NOT CONTAIN A REAL TIME STATEMENT.

SEE SPEC-SECTION 11.2.1

PP7 - SEVERITY 2
AN INLINE FUNCTION MAY NOT CONTAIN A PROCEDURE CALL.

SEE SPEC-SECTION 11.2.1
B -52 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
PP8 - SEVERITY 2
AN INLINE FUNCTION MAY NOT CONTAIN A USER FUNCTION INVOCATION.

SEE SPEC-SECTION 11.2.1

PP9 - SEVERITY 2
AN INLINE FUNCTION MAY NOT CONTAIN A PROCEDURE OR FUNCTION DEFINITION
BLOCK

SEE SPEC-SECTION 11.2.1 DEFINITION BLOCK.

PR1 - SEVERITY 1
CLOSE OF TASK OR PROGRAM BLOCK REACHED BUT PREVIOUS STATEMENT IS NOT A
%SVCI

PR2 - SEVERITY 1
CLOSE OF TASK OR PROGRAM BLOCK REACHED BUT NO %SVCI MACRO WAS FOUND IN
THE BLOCK. A TERMINATE SVC HAS BEEN GENERATED AT THE CLOSE OF THE BLOCK

PR3 - SEVERITY 1
THE ON ERROR STATEMENT IS NOT WITHIN A PROGRAM OR TASK BLOCK

PR4 - SEVERITY 1
ONLY ONE ON ERROR <STATEMENT> FORM IS ALLOWED

PR5 - SEVERITY 1
ONLY ONE <ON ERROR> ALTERNATE ENTRY POINT IS ALLOWED PER TASK OR PROGRAM

PR6 - SEVERITY 2
THE NAME ?? DOES NOT SATISFY HAL/S NAME UNIQUENESS CRITERIA FOR TASKS.
NAMES OF ALL TASKS AND PROGRAMS MUST BE UNIQUE TO SEVEN CHARACTERS

PS1 - SEVERITY 2
EXTERNAL PROCEDURE/FUNCTION TEMPLATE CONTAINS STATEMENT(S) OTHER THAN
DECLARATIONS

NO EXECUTABLE STATEMENTS ARE PERMITTED IN AN EXTERNAL PROCEDURE/FUNCTION
TEMPLATE, SINCE ITS PURPOSE IS ONLY TO POINT TO A PROCEDURE OR FUNCTION WHICH HAS
BEEN INDEPENDENTLY COMPILED. SEE SPEC-SECTION 3.6

PS10 - SEVERITY 2
MULTIPLE APPEARANCE OF ACCESS KEYWORD

THE APPEARANCE OF TWO OR MORE ACCESS KEYWORDS IS INVALID. EXAMPLE:
LABEL:COMPOOL ACCESS ACCESS.

PS11 - SEVERITY 2
MULTIPLE APPEARANCE OF RIGID KEYWORD

THE APPEARANCE OF TWO OR MORE RIGID KEYWORDS IS INVALID.

PS12 - SEVERITY 2
RIGID KEYWORD MAY ONLY APPEAR IN A COMPOOL BLOCK OR TEMPLATE

SEE SPEC-SECTION 4.5

PS13 - SEVERITY 2
‘REMOTE’ KEYWORD MAY ONLY BE USED ON EXTERNAL COMPOOL TEMPLATES.

SEE SPEC-SECTION 4.5
B -53 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
PS2 - SEVERITY 2
ONLY PROCEDURES OR FUNCTIONS MAY BE DESIGNATED ??

ONLY PROCEDURES OR FUNCTIONS MAY BE DESIGNATED EXCLUSIVE OR REENTRANT.

PS3 - SEVERITY 2
ILLEGAL ACCESS ATTRIBUTE OR BLOCK HEADER.

ACCESS BLOCK HEADERS MAY NOT BE APPLIED TO UPDATE OR TASK BLOCKS, NOR TO
PROCEDURES OR FUNCTIONS WHICH ARE NOT EXTERNAL. THE ACCESS ATTRIBUTE MAY ONLY
APPLY TO SIMPLE VARIABLE AND MAJOR STRUCTURE NAMES IN A COMPOOL BLOCK OR
COMPOOL TEMPLATE. SPEC-SECTIONS 3.7, 4.5

PS4 - SEVERITY 2
THE ACCESS ATTRIBUTE MAY ONLY BE USED ON THE DEFINITION OF AN OUTERMOST
BLOCK.

THE ACCESS ATTRIBUTE MAY ONLY BE DESIGNATED IN THE OUTERMOST COMPOOL OR CODE
BLOCK. NESTED BLOCKS CANNOT CONTAIN THE ACCESS KEYWORD.

PS5 - SEVERITY 2
THE PROGRAM NAMED ?? IS ACCESS CONTROLLED. THE CURRENT COMPILATION UNIT
IS NOT AUTHORIZED TO SCHEDULE THIS PROGRAM.

IN ORDER TO OBTAIN ACCESS TO THE NAMED PROGRAM, A REFERENCE TO IT SHOULD BE
INCLUDED IN THE PROGRAM ACCESS FILE. SEE PROGRAMMER’S GUIDE-SECTION 30

PS6 - SEVERITY 2
THE PROCEDURE NAMED ?? IS ACCESS CONTROLLED. THE CURRENT COMPILATION
UNIT IS NOT AUTHORIZED TO CALL THIS PROCEDURE.

IN ORDER TO OBTAIN ACCESS TO THE NAMED PROCEDURE, A REFERENCE TO IT SHOULD BE
INCLUDED IN THE PROGRAM ACCESS FILE. SEE PROGRAMMER’S GUIDE-SECTION 30

PS7 - SEVERITY 2
THE FUNCTION NAMED ?? IS ACCESS CONTROLLED. THE CURRENT COMPILATION UNIT
IS NOT AUTHORIZED TO INVOKE THIS FUNCTION.

IN ORDER TO OBTAIN ACCESS TO THE NAMED PROCEDURE, A REFERENCE TO IT SHOULD BE
INCLUDED IN THE PROGRAM ACCESS FILE. SEE PROGRAMMER’S GUIDE-SECTION 30

PS8 - SEVERITY 2
THE VARIABLE NAMED ?? IS ACCESS CONTROLLED. THE CURRENT COMPILATION UNIT IS
NOT AUTHORIZED TO CHANGE THE VALUE OF THIS VARIABLE.

IN ORDER TO BE ABLE TO CHANGE THE NAMED VARIABLE, A REFERENCE TO IT SHOULD BE
INCLUDED IN THE PROGRAM ACCESS FILE. SEE PROGRAMMER’S GUIDE-SECTION 30

PS9 - SEVERITY 2
VARIABLE ?? IS DEFINED WITHIN A COMPOOL BLOCK WHICH IS ACCESS PROTECTED.
THE VARIABLE MAY NOT BE USED BY THIS COMPILATION UNIT.

IN ORDER TO OBTAIN ACCESS TO THE VARIABLES IN THE NAMED COMPOOL, A REFERENCE TO
IT SHOULD BE INCLUDED IN THE PROGRAM ACCESS FILE. PROGRAMMER’S GUIDE-SECTION 30

PT1 - SEVERITY 2
TASK DEFINITIONS OR DECLARATIONS MAY ONLY APPEAR IN THE OUTER MOST BLOCK
OF A PROGRAM COMPILATION

SEE SPEC-SECTION 3.3

PT2 - SEVERITY 2
TASK DEFINITIONS MAY NOT APPEAR WITHIN DO GROUPS
B -54 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
PU3 - SEVERITY 2
INVOCATIONS IN AN UPDATE BLOCK OF PROCEDURES OR USER FUNCTIONS DEFINED
OUTSIDE THE BLOCK ARE ILLEGAL.

SEE SPEC-SECTION 3.4

P1 - SEVERITY 2
END-OF-FILE AT INVALID POINT IN SOURCE TEXT

EVERY UNIT OF COMPILATION MUST END WITH A CLOSE STATEMENT.

P4 - SEVERITY 3
CONFLICTING USE OF ??

P5 - SEVERITY 2
TOO MANY MACRO EXPANSIONS FOR ??

P6 - SEVERITY 2
PROGRAM LAYOUT TABLE EXCEEDED

THE PROGRAM LAYOUT TABLE CANNOT CONTAIN AN EXCESS OF 255 PROGRAM BLOCKS.

A PREVIOUSLY DEFINED VARIABLE HAS BEEN USED AS EITHER A PROCEDURE LABEL OR
STATEMENT LABEL.

P8 - SEVERITY 2
THE FOLLOWING SYMBOL IS SYNTACTICALLY ILLEGAL IN THE CONTEXT USED: ??
ERROR RECOVERY MAY CAUSE SUBSEQUENT SPURIOUS ERRORS

CHECK TO MAKE SURE THAT MISTYPING HAS NOT PRODUCED GIBBERISH. ALSO BE SURE THAT
A HAL/S RESERVED KEYWORD IS NOT BEING INADVERTENTLY USED AS AN IDENTIFIER OR
LABEL. SEE SPEC, APPENDIX B FOR A LIST OF THESE KEYWORDS.
B -55 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
ERROR MESSAGES FOR MAJOR CLASSIFICATION Q
CLASSIFICATION “Q” ERRORS DEAL WITH SHAPING FUNCTIONS

QA1 - SEVERITY 2
ARRAYNESS OF SINGLE ARGUMENT OF INTEGER/SCALAR CONVERSION FUNCTION DOES
NOT MATCH THAT OF EXPRESSION CONTAINING FUNCTION

THE RESULT OF APPLYING THE INTEGER OR SCALAR FUNCTION TO A LIST OF N ELEMENTS IS A
1-DIMENSIONAL ARRAY OF LENGTH N. THIS MUST MATCH THE CURRENT ARRAYNESS OF THE
EXPRESSION CONTAINING THE FUNCTION. SEE SPEC-SECTION 6.5.1

QA2 - SEVERITY 2
ARRAYNESS OF RESULT OF INTEGER/SCALAR CONVERSION FUNCTION IS
UNCOMPUTABLE

THE LENGTH OF THE ARRAY PRODUCED BY THE INTEGER OR SCALAR FUNCTIONS MUST BE
COMPUTABLE AT COMPILE TIME. SEE SPEC-SECTION 6.5.1

QA3 - SEVERITY 2
SPECIFIED ARRAYNESS OF INTEGER/SCALAR CONVERSION FUNCTION IS INCONSISTENT
WITH NUMBER OF DATA ELEMENTS SUPPLIED IN ARGUMENT LIST

THE SUBSCRIPTS TO THE INTEGER AND SCALAR FUNCTIONS DESCRIBE THE DIMENSIONALITY
OF THE ARRAY TO BE PRODUCED. THUS, E.G., INTEGER(2+3,6) WILL PRODUCE A 5X6 ARRAY.
ACCORDINGLY, THE NUMBER OF LIST ELEMENTS SPECIFIED AS THE ARGUMENT TO THE
FUNCTION MUST EQUAL THE PRODUCT OF THE SUBSCRIPTS. SPEC-SECTION 6.5.1

QA4 - SEVERITY 2
ARRAYNESS OF RESULT OF INTEGER/SCALAR CONVERSION FUNCTION DOES NOT
MATCH THAT OF EXPRESSION CONTAINING FUNCTION

THE ARRAYNESS OF THE RESULT OF APPLYING THE INTEGER OR SCALAR FUNCTIONS, AS
SPECIFIED BY THE SUBSCRIPTS OR IMPLIED BY THE LENGTH OF THE ARGUMENT LIST, MUST
MATCH THE CURRENT ARRAYNESS OF THE EXPRESSION CONTAINING THE FUNCTION. SEE
SPEC-SECTION 6.5.1

QD1 - SEVERITY 2
DIMENSIONS OF VECTOR/MATRIX CONVERSION FUNCTION DO NOT AGREE WITH THE
NUMBER OF DATA ELEMENTS SUPPLIED IN THE ARGUMENT LIST

THE DIMENSIONS OF THE RESULT PRODUCED BY APPLYING THE VECTOR OR MATRIX
FUNCTIONS ARE SPECIFIED BY THE SUBSCRIPTS TO THESE FUNCTIONS, OR DEFAULT TO A 3-
VECTOR OR A 3X3 MATRIX. ACCORDINGLY, THE NUMBER OF LIST ELEMENTS SPECIFIED AS THE
ARGUMENT TO THE FUNCTION MUST EQUAL THE PRODUCT OF THE SUBSCRIPTS (OR, IN THE
DEFAULT CASE, 3 OR 9).

QD100 - SEVERITY 2
LEVEL MISMATCH ON SHAPING FUNCTION ARGUMENT.

INTERNAL COMPILER FAILURE.

QD2 - SEVERITY 2
BIT OR CHARACTER CONVERSION FUNCTION MAY ONLY HAVE ONE ARGUMENT

SEE SPEC-SECTIONS 6.5.2, 6.5.3
B -56 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
QS1 - SEVERITY 2
COLONS AND SEMICOLONS MAY NOT APPEAR IN SUBSCRIPT OF CONVERSION
FUNCTIONS

ONLY COMMAS ARE PERMITTED. IN INTEGER, SCALAR, VECTOR AND MATRIX, SUBSCRIPTING
INDICATES THE DIMENSIONALITY OF THE RESULT; IN BIT AND CHARACTER IT INDICATES A
CHOICE FROM THE BIT OR CHARACTER STRING CREATED.

QS10 - SEVERITY 2
BIT OR CHARACTER CONVERSION FUNCTION MAY ONLY HAVE ONE SUBSCRIPT

ARRAY SUBSCRIPTING IS NOT PERMITTED IN THIS CONTEXT. TO CHOOSE THE FIFTH
CHARACTER FROM THE EIGHT ARRAY ELEMENT OF CHARACTER(A), WHERE A IS AN ARRAY OF
CHARACTER STRINGS, WRITE:

(CHARACTER ?(A ?))
 5 8
 ...NOT...
 CHARACTER (A).
 8:5

QS11 - SEVERITY 2
SUBBIT CONVERSION FUNCTION MAY ONLY HAVE ONE SUBSCRIPT

SEE SPEC-SECTION 6.5.4

QS12 - SEVERITY 2
COLONS AND SEMICOLONS MAY NOT APPEAR IN THE SUBSCRIPT OF A SUBBIT PSEUDO-
VARIABLE

SEE SPEC-SECTION 6.5.4

QS13 - SEVERITY 2
SUBSCRIPT OF SUBBIT PSEUDO-VARIABLE MAY NOT CONTAIN A PRECISION QUALIFIER.

SEE SPEC-SECTION 6.5.4

QS2 - SEVERITY 2
MATRIX CONVERSION FUNCTION DOES NOT HAVE TWO SUBSCRIPTS

THE MATRIX CONVERSION FUNCTION MUST HAVE TWO SUBSCRIPTS TO SPECIFY ROW AND
COLUMN DIMENSIONS, OR ELSE NO SUBSCRIPTS AT ALL, IN WHICH CASE A 3X3 MATRIX IS
ASSUMED. SPEC-SECTION 6.5.1

QS3 - SEVERITY 2
VECTOR CONVERSION FUNCTION DOES NOT HAVE ONE SUBSCRIPT

THE VECTOR CONVERSION MAY HAVE NO MORE THAN ONE SUBSCRIPT. IF A SUBSCRIPT
OCCURS, IT SPECIFIES THE LENGTH OF THE VECTOR, AND IF NOT, A LENGTH OF 3 IS ASSUMED.
SPEC-SECTION 6.5.1

QS4 - SEVERITY 2
INTEGER OR SCALAR CONVERSION FUNCTION HAS MORE THAN MAXIMUM PERMITTED
NUMBER OF SUBSCRIPTS

SINCE NO MORE THAN 3 DIMENSIONS ARE PERMITTED IN AN ARRAY, NO MORE THAN 3
SUBSCRIPTS MAY APPEAR IN THE INTEGER OR SCALAR FUNCTION. SEE SPEC-SECTION 6.5.1
B -57 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
QS5 - SEVERITY 2
SUBSCRIPT OF ARITHMETIC CONVERSION FUNCTION IS NOT A SINGLE INDEX

THE AT, TO, *, CONVENTIONS ARE NOT PERMITTED IN THE CONTEXT OF THE BUILT-IN SHAPING
FUNCTIONS INTEGER, SCALAR, VECTOR, MATRIX, SINCE SUBSCRIPTING HERE DOES NOT
SERVE TO PICK OUT ELEMENTS, BUT RATHER TO SPECIFY THE SHAPE OF THE RESULTING DATA
ITEM.

QS6 - SEVERITY 2
SUBSCRIPT OF ARITHMETIC CONVERSION FUNCTION MAY NOT CONTAIN # VALUES

THE CONVENTION IS NOT PERMITTED IN THE CONTEXT OF THE BUILT-IN SHAPING FUNCTIONS
INTEGER, SCALAR, VECTOR, MATRIX, SINCE SUBSCRIPTING HERE DOES NOT SERVE TO PICK
OUT ELEMENTS, BUT RATHER TO SPECIFY THE SHAPE (DIMENSIONS) OF THE RESULTING DATA
ITEM. SEE SPEC-SECTION 6.5.1

QS7 - SEVERITY 2
SUBSCRIPT OF ARITHMETIC CONVERSION FUNCTION MUST BE AN UNARRAYED
INTEGER/SCALAR EXPRESSION COMPUTABLE AT COMPILE TIME

SEE SPEC, APPENDIX F.

QS8 - SEVERITY 2
VALUE OF SUBSCRIPT OF ARITHMETIC CONVERSION FUNCTION LIES OUTSIDE LEGAL
RANGE

FOR VECTOR OR MATRIX SHAPING FUNCTIONS, THE DIMENSION SIZE DEFINED BY THE
SUBSCRIPT MUST BE IN THE RANGE: 1<SIZE<=64. FOR ARRAYED INTEGER OR SCALAR
CONVERSION FUNCTION, THE ARRAY SIZE MUST BE IN THE RANGE: 1<SIZE<=32767, AND THE
TOTAL NUMBER OF ELEMENTS MAY NOT BE GREATER THAN 32767.

QS9 - SEVERITY 2
SUBSCRIPT OF BIT OR CHARACTER CONVERSION FUNCTION MAY NOT CONTAIN A
PRECISION QUALIFIER.

THE PRECISION SPECIFICATION IS ONLY ALLOWABLE FOR ARITHMETIC CONVERSIONS
(INTEGER, SCALAR, VECTOR, OR MATRIX.) SEE SPEC-SECTION 6.5.2

QX1 - SEVERITY 2
CONVERSION FUNCTIONS MAY NOT HAVE ARGUMENTS OF STRUCTURE TYPE

SEE SPEC-SECTION 6.5.1

QX2 - SEVERITY 2
MATRIX/VECTOR CONVERSION FUNCTIONS MAY NOT HAVE ARGUMENTS OF BIT TYPE

SEE SPEC-SECTIONS 6.5.1, 6.5.5

QX3 - SEVERITY 2
MATRIX/VECTOR CONVERSION FUNCTIONS MAY NOT HAVE ARGUMENTS OF CHARACTER
TYPE

SEE SPEC-SECTIONS 6.5.1, 6.5.5

QX4 - SEVERITY 2
MATRIX OR VECTOR ARGUMENT IS ILLEGAL IN BIT OR CHARACTER CONVERSION
FUNCTION

BIT OR CHARACTER CONVERSIONS MUST HAVE ARGUMENTS OF INTEGER, SCALAR, BIT OR
CHARACTER TYPE.

SPEC-SECTIONS 6.5.1, 6.5.2, 6.5.5
B -58 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
QX5 - SEVERITY 2
CHARACTER CONVERSION FUNCTION WITH RADIX DOES NOT HAVE ARGUMENT OF BIT
TYPE

SPEC-SECTIONS 6.5.3, 6.5.5

QX6 - SEVERITY 2
BIT CONVERSION FUNCTION WITH RADIX DOES NOT HAVE ARGUMENT OF CHARACTER
TYPE

SPEC-SECTIONS 6.5.2, 6.5.5

QX7 - SEVERITY 2
IN AN ASSIGNMENT CONTEXT THE ARGUMENT OF A SUBBIT PSEUDO-VARIABLE MAY NOT
ITSELF BE A SUBBIT PSEUDO-VARIABLE

NESTED SUBBIT FUNCTIONS ARE ALSO ILLEGAL AS ASSIGN PARAMETERS AND IN READ AND
READALL STATEMENTS. SPEC-SECTION 6.5.4

QX8 - SEVERITY 2
ARGUMENT OF ILLEGAL TYPE IN SUBBIT PSEUDO-VARIABLE

THE ARGUMENT MUST BE OF INTEGER, SCALAR, BIT, OR CHARACTER TYPE. SPEC-SECTION
6.5.4.

QX9 - SEVERITY 2
THE ARGUMENT OF A SUBBIT PSEUDO-VARIABLE MAY NOT BE A NAME PSEUDO-
FUNCTION
B -59 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
ERROR MESSAGES FOR MAJOR CLASSIFICATION R
CLASSIFICATION “R” ERRORS ARE RELATED TO REAL-TIME STATEMENT ERRORS

RE0 - SEVERITY 2
ILLEGAL FORM OF OFF ERROR SUBSCRIPT

EACH ERROR SUBSCRIPT MUST BE A SINGLE LITERAL NUMBER IN THE RANGE 0 TO 62. THE
CORRECT FORM IS: OFF ERROR$ <GROUP:NUMBER>. SPEC-SECTION 9.1

RE1 - SEVERITY 2
ILLEGAL FORM OR VALUE OF ON ERROR SUBSCRIPT

EACH ERROR SUBSCRIPT MUST BE A SINGLE LITERAL NUMBER IN THE RANGE 1 TO 127. THE
VALID RANGE OF ERROR NUMBERS IS 0 TO 62. THE CORRECT FORM IS: ON ERROR$
<GROUP:NUMBER>.

RE2 - SEVERITY 2
ILLEGAL FORM OR VALUE OF SEND ERROR SUBSCRIPT

EACH ERROR SUBSCRIPT MUST BE A SINGLE LITERAL NUMBER IN THE RANGE 1 TO 127. THE
VALID RANGE OF ERROR NUMBERS IS 0 TO 62. THE CORRECT FORM IS: SEND ERROR$
<GROUP:NUMBER>.

RE3 - SEVERITY 2
TOO MANY ON ERROR STATEMENTS ACTIVE

NO MORE THAN 100 ON ERROR STATEMENTS MAY BE POTENTIALLY ACTIVE AT ANY GIVEN TIME.

RT1 - SEVERITY 2
SCHEDULE STATEMENT CONTAINS AN ILLEGAL FORM OF ?? TIMING EXPRESSION

SCHEDULE...AT, MUST BE FOLLOWED BY AN UNARRAYED INTEGER OR SCALAR EXPRESSION
REPRESENTING A TIME ON THE RTE CLOCK, AT WHICH TIME THE PROCESS REFERRED TO WILL
BE PUT IN THE READY STATE. SCHEDULE IN, REPEAT AFTER, OR REPEAT EVERY, MUST BE
FOLLOWED BY AN EVENT EXPRESSION. UNTIL CAN BE FOLLOWED BY AN UNARRAYED INTEGER
OR SCALAR EXPRESSION REPRESENTING A DURATION AFTER WHICH THE PROCESS
REFERRED TO WILL BE PUT IN THE READY STATE. SCHEDULE ON, OR UNTIL, OR WHILE, MUST
BE FOLLOWED BY UNARRAYED INTEGER/SCALAR EXPRESSION. SPEC-SECTION 8.3

RT10 - SEVERITY 2
AN UNLATCHED EVENT MAY NOT BE SET OR RESET

ONLY EVENT VARIABLES WHICH HAVE BEEN DECLARE’D WITH THE LATCHED ATTRIBUTE MAY BE
SET OR RESET. SPEC-SECTION 8.8

RT11 - SEVERITY 2
USED IN A REAL TIME STATEMENT OR AS A PROCESS EVENT, LABEL ?? MAY NOT
POSSESS ARRAYNESS.

RT14 - SEVERITY 2
?? IS NOT A PROGRAM OR TASK LABEL

DATA ITEMS REFERRED TO IN EVENT EXPRESSIONS, IF NOT EVENT VARIABLES, MUST BE
NAMES OF PROGRAMS OR TASKS. LABELS EMPLOYED IN SCHEDULE, CANCEL, TERMINATE,
AND UPDATE PRIORITY STATEMENTS MUST ALSO BE NAMES ONLY OF PROGRAMS OR TASKS.

RT2 - SEVERITY 2
WHILE EXPRESSION MAY NOT BE A TIMING EXPRESSION

WHILE MUST BE FOLLOWED BY AN EVENT EXPRESSION IN REAL-TIME STATEMENTS. SPEC-
SECTION 8.8
B -60 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
RT3 - SEVERITY 2
SCHEDULE STATEMENT CONTAINS AN ILLEGAL FORM OF ?? EVENT EXPRESSION

THIS MESSAGE APPEARS FROM UTILIZING AN EVENT EXPRESSION THAT SPECIFIES AN
ARRAYED EVENT, BUT WITHOUT SUBSCRIPTING DOWN TO ONE ITEM.

RT4 - SEVERITY 1
PRIORITY EXPRESSION IN ?? STATEMENT ABSENT OR ILLEGAL

SCHEDULE STATEMENTS MUST SPECIFY A PRIORITY FOR THE PROCESS SCHEDULED.
PRIORITIES MUST LIE IN THE RANGE FROM 0 TO 255.

RT5 - SEVERITY 2
SCHEDULE STATEMENT CONTAINS DUPLICATED AT/IN/ON EXPRESSIONS

ONLY ONE AT, IN, OR ON MAY BE INCLUDED IN EACH SCHEDULE STATEMENT.

RT6 - SEVERITY 2
WAIT STATEMENT CONTAINS ILLEGAL FORM OF ?? EXPRESSION

A “WAIT FOR” STATEMENT MUST BE FOLLOWED BY “DEPENDENT”, OR EVENT EXPRESSION.
“WAIT UNTIL” OR “WAIT” ALONE MUST BE FOLLOWED BY AN ARITHMETIC EXPRESSION.

RT8 - SEVERITY 2
AN ARRAYED EVENT MAY NOT BE SIGNALED

SEE SPEC-SECTION 8.8

RT9 - SEVERITY 2
USED IN A REAL TIME STATEMENT OR AS A PROCESS EVENT, LABEL ?? MUST BE A
PROGRAM OR TASK.

DATA ITEMS REFERRED TO IN EVENT EXPRESSIONS, IF NOT EVENT VARIABLES, MUST BE
NAMES OF PROGRAMS OR TASKS. LABELS EMPLOYED IN SCHEDULE, CANCEL, TERMINATE,
AND UPDATE PRIORITY STATEMENTS MUST ALSO BE NAMES ONLY OF PROGRAMS OR TASKS.

RU1 - SEVERITY 2
SIGNAL STATEMENTS ARE THE ONLY REAL-TIME STATEMENTS WHICH MAY APPEAR
INSIDE AN UPDATE BLOCK

SEE SPEC-SECTION 3.4
B -61 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
ERROR MESSAGES FOR MAJOR CLASSIFICATION S
CLASSIFICATION “S” ERRORS INDICATE INCORRECT SUBSCRIPT USAGE

SC1 - SEVERITY 2
?? HAS TOO MANY STRUCTURE SUBSCRIPTS

ONLY ONE STRUCTURE SUBSCRIPT MAY BE SPECIFIED; HENCE, ONLY ONE EXPRESSION MAY
APPEAR PRIOR TO A SEMICOLON IN A SUBSCRIPT EXPRESSION. SPEC-SECTION 5.3.3

SC2 - SEVERITY 2
?? HAS TOO MANY ARRAY SUBSCRIPTS

THE NUMBER OF ARRAY SUBSCRIPTS SUPPLIED (I.E., PRIOR TO A COLON, IF COMPONENT
SUBSCRIPTING IS PRESENT) MUST EQUAL THE NUMBER OF ARRAY DIMENSIONS SPECIFIED
FOR THE DATA ITEM BEING SUBSCRIPTED.

SC3 - SEVERITY 2
?? HAS TOO FEW ARRAY SUBSCRIPTS

THE NUMBER OF ARRAY SUBSCRIPTS SUPPLIED (I.E., PRIOR TO A COLON, IF COMPONENT
SUBSCRIPTING IS PRESENT) MUST EQUAL THE NUMBER OF ARRAY DIMENSIONS SPECIFIED
FOR THE DATA ITEM BEING SUBSCRIPTED - EVEN IF ALL ELEMENTS FROM SOME DIMENSION
ARE BEING CHOSEN.

SC4 - SEVERITY 2
?? HAS TOO MANY COMPONENT SUBSCRIPTS

THE NUMBER OF COMPONENT SUBSCRIPTS (I.E., FOLLOWING A COLON OR SEMICOLON, IF
OTHER SUBSCRIPTING IS PRESENT) MUST BE 2, IF THE DATA ITEM IS A MATRIX, AND 1 IF THE
DATA ITEM IS OF BIT, CHARACTER, OR VECTOR TYPES. SPEC-SECTION 5.3.5

SC5 - SEVERITY 2
?? HAS TOO FEW COMPONENT SUBSCRIPTS

THE NUMBER OF COMPONENT SUBSCRIPTS (I.E., FOLLOWING A COLON OR SEMICOLON, IF
OTHER SUBSCRIPTING IS PRESENT) MUST BE 2, IF THE DATA ITEM IS A MATRIX, AND 1 IF THE
DATA ITEM IS OF BIT, CHARACTER, OR VECTOR TYPES. SPEC-SECTION 5.3.5

SP1 - SEVERITY 2
SUBSCRIPTING CONTAINS MORE THAN ONE LIST OF STRUCTURE SUBSCRIPTS

ONLY ONE STRUCTURE SUBSCRIPT MAY BE GIVEN; THUS ONLY ONE SEMICOLON MAY APPEAR
IN A SUBSCRIPT. MAKE SURE MISTYPING HAS NOT CAUSED AN EXTRA SEMICOLON INSTEAD OF
A COLON.

SP2 - SEVERITY 2
SUBSCRIPTING CONTAINS MORE THAN ONE LIST OF ARRAY SUBSCRIPTS

ONLY ONE LIST OF ARRAY SUBSCRIPTS MAY BE GIVEN; THUS ONLY ONE COLON MAY APPEAR IN
A SUBSCRIPT. MAKE SURE MISTYPING HAS NOT CAUSED AN EXTRA COLON INSTEAD OF A
SEMICOLON.

SP3 - SEVERITY 2
SUBSCRIPT CONTAINS A LEADING COLON, OR A COLON PRECEDED BY A SEMICOLON,
COLON, OR COMMA

IF NO STRUCTURE SUBSCRIPTING IS PRESENT, NO SEMICOLON SHOULD BE CODED. IF
REFERENCE TO ALL THE COPIES OF A STRUCTURE IS DESIRED, “*” SHOULD BE USED.
B -62 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
SP4 - SEVERITY 2
SUBSCRIPT CONTAINS LEADING SEMICOLON, OR A SEMICOLON PRECEDED BY A
SEMICOLON, COLON, OR COMMA

IF NO ARRAY SUBSCRIPTING IS PRESENT, NO COLON SHOULD BE CODED. IF REFERENCE TO
ALL THE ELEMENTS OF A 1-DIMENSIONAL ARRAY IS DESIRED, AND COMPONENT SUBSCRIPTING
IS PRESENT, “*” SHOULD BE CODED.

SP5 - SEVERITY 2
SUBSCRIPT CONTAINS A LEADING COMMA, OR A COMMA PRECEDED BY A SEMICOLON,
COLON, OR COMMA

IF REFERENCE TO ALL THE ELEMENTS IN A PARTICULAR ARRAY OR MATRIX DIMENSION IS
DESIRED, “*” SHOULD BE CODED, AND NOT THE COMMA ALONE.

SP6 - SEVERITY 2
SUBSCRIPT IS EMPTY OR CONTAINS A TRAILING COMMA

IF REFERENCE TO ALL THE ELEMENTS IN A PARTICULAR ARRAY OR MATRIX DIMENSION IS
DESIRED, “*” SHOULD BE CODED, AND NOT THE COMMA ALONE.

SQ1 - SEVERITY 2
?? IS OF INCORRECT TYPE TO POSSESS A PRECISION QUALIFIER.

ONLY INTEGER, SCALAR, VECTOR, AND MATRIX DATA TYPES (AND CONVERSION FUNCTIONS)
MAY POSSESS PRECISION ATTRIBUTES.

SQ2 - SEVERITY 2
SUBSCRIPTED VARIABLE ?? MAY NOT POSSESS A PRECISION QUALIFIER.

A SUBSCRIPTED VARIABLE MAY NOT POSSESS A PRECISION QUALIFIER, BUT A SUBSCRIPTED
VARIABLE WITHIN PARENTHESES IS AN “ARITHMETIC EXPRESSION”, AND MAY POSSESS ONE.
SEE SPEC-SECTION 5.3

SQ3 - SEVERITY 2
?? IS IN AN ASSIGNMENT CONTEXT AND THEREFORE MAY NOT POSSESS A PRECISION
QUALIFIER.

THE LEFT HAND SIDE OF AN ASSIGNMENT STATEMENT MUST SIMPLY BE A VARIABLE. IF ITS
PRECISION DIFFERS FROM THAT OF THE EXPRESSION ON THE RIGHT, IMPLICIT CONVERSION
WILL BE MADE.

SQ4 - SEVERITY 3
SCALING QUALIFIER IS NOT OF INTEGER OR SCALAR TYPE. SEE CR12712.

THIS PROCESSING IS NOT SUPPORTED (REMOVED WITH CR12712).

SQ5 - SEVERITY 3
COMPILE-TIME EXECUTION OF SCALING OPERATION FAILED. SEE CR12712.

COMPUTATION OF THE SCALING FACTOR GENERATED A NUMBER OUTSIDE OF THE RANGE OF
INTERNALLY REPRESENTABLE FLOATING POINT NUMBERS.

THIS PROCESSING IS NOT SUPPORTED (REMOVED WITH CR12712).

SR1 - SEVERITY 2
PARTITION SIZE IN SUBSCRIPT OF ?? IS UNKNOWN

PARTITION SIZES IN ALL SUBSCRIPTING MUST BE COMPUTABLE AT COMPILE TIME. THUS, IN “A$
(N AT X)”, N MUST BE KNOWN AT COMPILE TIME, AND IN “B$(MTO P)”, BOTH M AND P MUST BE
KNOWN AT COMPILE TIME.
B -63 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
SR100 - SEVERITY 2
SUBBIT SUBSCRIPT OUT OF RANGE

A NON-EXISTENT ELEMENT OF THE BIT STRING IS BEING REFERRED TO.

SR2 - SEVERITY 2
PARTITION SIZE IN SUBSCRIPT OF ?? IS EITHER LESS THAN THE LEGAL MINIMUM, OR
IMPLIES AN INDEX VALUE EXCEEDING THE LEGAL MAXIMUM

PARTITION SIZES MUST LIE IN THE RANGE FROM 1 TO THE TOTAL LENGTH OF THE DIMENSION
REFERRED TO. IN “A$(N AT X)”, THEREFORE, N+X MUST NOT BE GREATER THAN THE TOTAL
LENGTH; IN “B$(M TO P)”, M MUST NOT BE LESS THAN 1, ETC.

SR3 - SEVERITY 2
INDEX VALUE IN SUBSCRIPT OF ?? IS GREATER THAN THE LEGAL MAXIMUM

THE INDEX VALUE EXCEEDS THE TOTAL LENGTH OF THE DIMENSION REFERRED TO.

SR4 - SEVERITY 2
INDEX VALUE IN SUBSCRIPT OF ?? IS LESS THAN 1

THE VALUE OF A SUBSCRIPT EXPRESSION MAY NOT BE LESS THAN 1.

SR5 - SEVERITY 2
?? CONTAINED AN ILLEGAL # SUBSCRIPT

A SUBSCRIPT OCCURRED WHERE NO SUBSCRIPTING WAS ALLOWED.

SR6 - SEVERITY 2
INDEX VALUE IN SUBSCRIPT OF ?? IS UNKNOWN

THE SUBBIT FUNCTION WAS APPLIED AND THE SUBSCRIPT SIZE IS INDETERMINATE.

SS1 - SEVERITY 2
IN SUBSCRIPT OF ?? ONLY TRAILING ASTERISKS MAY BE OMITTED

TO CHOOSE ALL OF SOME SPECIFIC STRUCTURE, ARRAY, OR VECTOR-MATRIX DIMENSION, USE
THE * CONVENTION: THE ONLY TIME THIS IS OPTIONAL IS IF THE SUBSCRIPT SPECIFIED IS THE
LAST ONE IN THE SUBSCRIPT LIST. SEE SPEC-SECTION 5.3

ST1 - SEVERITY 2
A SUBSCRIPT OF ?? WAS NOT OF INTEGER OR SCALAR TYPE

SUBSCRIPTS MUST ALWAYS BE ONLY OF INTEGER OR SCALAR TYPE, ALTHOUGH THEY MAY BE
ARRAYED. SPEC-SECTION 5.3

SV1 - SEVERITY 2
SUBSCRIPTING OF ?? IS ILLEGAL IN CONTEXT OF USE AS AN ASSIGN ARGUMENT

COMPONENT SUBSCRIPTING IS NOT PERMITTED FOR ASSIGN ARGUMENTS TO PROCEDURES
OF BIT OR CHARACTER TYPES. ALL OTHER SUBSCRIPTING MUST BE DONE SO THAT A SINGLE
UNARRAYED ELEMENT IS REFERRED TO. SPEC-SECTION 7.4

SV2 - SEVERITY 2
USER SUPPLIED OVERPUNCH NOT CONSISTENT WITH SUBSCRIPTING FOR VARIABLE ??

MAKE SURE THAT SUBSCRIPTING HAS NOT CAUSED A NEW DATA TYPE TO EXIST. IF U IS A 3-
VECTOR, AND M, A 3X3 MATRIX, V(1) AND M(2,3) ARE NONETHELESS SCALARS; AND M(*:2) IS A
VECTOR. SEE SPEC - SECTION 5.3

SV3 - SEVERITY 2
?? MAY NOT POSSESS SUBSCRIPTS

INTEGER, SCALAR, AND EVENT VARIABLES MUST POSSESS ARRAYNESS OR BE TERMINALS OF
STRUCTURES WITH MULTIPLE COPIES TO BE ABLE TO BE SUBSCRIPTED. FUNCTIONS,
PROCEDURES, BUILT-IN FUNCTIONS, KEYWORDS, ETC. MAY NOT BE SUBSCRIPTED (WITH SOME
EXCEPTIONS). SEE SPEC - SECTION 5.3.1
B -64 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
ERROR MESSAGES FOR MAJOR CLASSIFICATION T
CLASSIFICATION “T” ERRORS DEAL WITH INPUT/OUTPUT STATEMENTS

TC1 - SEVERITY 2
ARGUMENT OF I/O CONTROL FUNCTION MUST BE OF UNARRAYED INTEGER OR SCALAR
TYPE

SEE SPEC-SECTION 10.1.3

TD1 - SEVERITY 2
I/O DEVICE NUMBER IS NOT IN RANGE 0 THROUGH ??

DEVICE NUMBERS MUST BE IN THE RANGE 0-9

TD2 - SEVERITY 2
RECORD ADDRESS IS NOT AN UNARRAYED INTEGER OR SCALAR

SEE SPEC-SECTION 10.2

T1 - SEVERITY 2
VARIABLE IN READALL IS NOT OF CHARACTER TYPE

THE VARIABLE SPECIFIED IN A READALL STATEMENT MUST BE OF CHARACTER TYPE:
OTHERWISE, USE THE READ STATEMENT. SPEC-SECTION 10.1.1

T2 - SEVERITY 2
VARIABLE IN READ MAY NOT BE OF EVENT TYPE

T3 - SEVERITY 2
VARIABLE IN READ/READALL MAY NOT BE A SUBBIT PSEUDO-VARIABLE

SPEC-SECTION 6.5.4

T4 - SEVERITY 2
A FILE STATEMENT MAY NOT READ INTO A SUBBIT PSEUDO-VARIABLE

T5 - SEVERITY 2
AN I/O STATEMENT MAY NOT CONTAIN A NAME PSEUDO-FUNCTION OR NULL.

T6 - SEVERITY 2
I/O STATEMENT CONTAINS A STRUCTURE WHOSE TEMPLATE CONTAINS AT LEAST ONE
TERMINAL NODE WITH THE NAME ATTRIBUTE.

STRUCTURE TERMINALS WITH THE NAME ATTRIBUTE ARE SIMPLY IGNORED IN SEQUENTIAL I/O
OPERATIONS: NO VALUE IS READ OR WRITTEN. SEE SPEC-SECTION 11.4.11

T7 - SEVERITY 2
IN FILE STATEMENT VARIABLE TO BE READ POSSESSES AN ILLEGAL SUBSCRIPT.

COMPONENT SUBSCRIPTING IS NOT PERMITTED ON VARIABLES OF BIT OR CHARACTER TYPE
USED IN FILE I/O. OTHER TYPES OF VARIABLES, IF SUBSCRIPTED, MUST BE SUBSCRIPTED SO
AS TO PRODUCE A SINGLE UNARRAYED ELEMENT. SPEC-SECTION 10.2

T8 - SEVERITY 2
IN FILE STATEMENT VARIABLE TO BE READ INTO MAY ONLY POSSESS MULTIPLE COPIES
IF IT IS A MAJOR STRUCTURE NAME.

SEE SPEC-SECTION 10.2
B -65 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
ERROR MESSAGES FOR MAJOR CLASSIFICATION U
CLASSIFICATION “U” ERRORS DEAL WITH UPDATE BLOCKS

UI1 - SEVERITY 2
?? IS LOCKED: IT MAY ONLY APPEAR IN UPDATE BLOCKS OR ASSIGN ARGUMENT LISTS.

SEE SPEC-SECTION 8.10

U12 - SEVERITY 2
UPDATE BLOCK DEFINITION MAY NOT APPEAR INSIDE AN UPDATE BLOCK

SEE SPEC-SECTION 3.4

UP1 - SEVERITY 2
THE PROCEDURE, TASK, OR PROGRAM ?? MAY NOT BE INVOKED WITHIN THE CURRENT
UPDATE BLOCK

BLOCKS NOT NESTED WITHIN AN UPDATE BLOCK MAY NOT BE INVOKED FROM WITHIN IT. SPEC-
SECTION 3.4

UP2 - SEVERITY 2
UPDATE BLOCKS MAY NOT CONTAIN RETURN STATEMENTS

UT1 - SEVERITY 2
I/O STATEMENTS ARE ILLEGAL INSIDE UPDATE BLOCKS

SEE SPEC-SECTION 3.4
B -66 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
ERROR MESSAGES FOR MAJOR CLASSIFICATION V
CLASSIFICATION “V” ERRORS ARE RELATED TO COMPILE-TIME VARIABLE ERRORS

VA1 - SEVERITY 2
COMPILE TIME INTEGER/SCALAR ADDITION FAILED.

DURING COMPILE TIME, AN OVERFLOW OR UNDERFLOW OCCURRED. INTERMEDIATE CODE
HAS GENERATED RUNTIME EXECUTABLE CODE FOR ADDITION. THIS TAKES PLACE BECAUSE
ALTHOUGH THE HOST MACHINE WAS NOT ABLE TO HANDLE THE CALCULATIONS, IT IS
PRESUMED THE TARGET COMPUTER MAY HAVE THE CAPABILITY.

VA2 - SEVERITY 2
COMPILE-TIME INTEGER/SCALAR SUBTRACTION FAILED

SAME AS ABOVE, BUT FOR SUBTRACTION

VA3 - SEVERITY 2
COMPILE TIME INTEGER/SCALAR MULTIPLICATION FAILED

SAME AS ABOVE, BUT FOR MULTIPLICATION

VA4 - SEVERITY 2
COMPILE-TIME INTEGER/SCALAR DIVISION FAILED

SAME AS ABOVE, BUT FOR DIVISION

VA5 - SEVERITY 2
COMPILE-TIME INTEGER/SCALAR EXPONENTIATION FAILED

SAME AS ABOVE, BUT FOR EXPONENTIATION

VC1 - SEVERITY 2
COMPILE-TIME CATENATION PRODUCED TOO LONG A CHARACTER STRING - TRUNCATED
TO 255 CHARACTERS

CHARACTER LITERALS AND VARIABLES MAY NOT HAVE A LENGTH GREATER THAN 255.

VE1 - SEVERITY 2
AN EXPRESSION NOT COMPUTABLE AT COMPILE-TIME HAS BEEN USED IN A CONTEXT
WHERE A VALUE MUST BE KNOWN

ALL VALUES SPECIFIED IN DECLARE STATEMENTS, FOR INSTANCE, AS WELL AS THE WIDTHS OF
ALL SUBSCRIPT PARTITIONS, MUST BE COMPUTABLE AT COMPILE TIME.

VF1 - SEVERITY 2
COMPILE-TIME EVALUATION OF ?? FUNCTION FAILED
B -67 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
ERROR MESSAGES FOR MAJOR CLASSIFICATION X
CLASSIFICATION “X” ERRORS DEAL WITH IMPLEMENTATION DEPENDENT FEATURES

NOTE: OCCURS EITHER BECAUSE THE FUNCTION WAS GIVEN CONSTANTS FOR
ARGUMENTS, OR THE ARGUMENTS ARE OUTSIDE ALLOWABLE VALUES

XA1 - SEVERITY 2
ONLY ONE PROGRAM IDENTIFICATION DIRECTIVE IS ALLOWED IN A COMPILATION UNIT.

EACH COMPILATION UNIT MAY RECEIVE, AT MOST, ONE PROGRAM IDENTIFICATION NAME FOR
THE PURPOSE OF ACCESS CONTROL.

XA2 - SEVERITY 2
THE PROGRAM IDENTIFICATION DIRECTIVE DOES NOT CONTAIN A VALID IDENTIFICATION.
THE DIRECTIVE MUST BE OF THE FORM: D PROGRAM ID=<ID>

THE <ID> FIELD MUST CONSIST OF A 1 TO 8 CHARACTER IDENTIFYING NAME.

XA3 - SEVERITY 2
A PROGRAM IDENTIFICATION DIRECTIVE MUST APPEAR FOLLOWING ANY EXTERNAL
TEMPLATES AND PRIOR TO THE BEGINNING OF THE PRIMARY UNIT OF COMPILATION.
THE CURRENT DIRECTIVE IS OUT OF PLACE AND WILL NOT BE PROCESSED.

SEE U.G.-SECTION 5.2

XD1 - SEVERITY 2
UNINTELLIGIBLE INFORMATION IN DEVICE DIRECTIVE

THE DEVICE DIRECTIVE MUST TAKE THE FORM OF: “D DEVICE CHANNEL = N <OPTION>” WHERE
N SPECIFIES THE CHANNEL INVOLVED (0-9), AND <OPTION> MAY BE PAGED, UNPAGED, OR
EMPTY.

XD2 - SEVERITY 2
DUPLICATE DEVICE DIRECTIVE FOR CHANNEL ??

NO MORE THAN ONE DEVICE DIRECTIVE SHOULD BE SPECIFIED FOR EACH CHANNEL USED IN A
COMPILATION UNIT.

XD3 - SEVERITY 2
DEVICE DIRECTIVE DOES NOT CONTAIN A VALID CHANNEL INDICATION

THE CHANNEL SPECIFIED MUST BE IN THE RANGE FROM 0-9.

XD4 - SEVERITY 2
CHANNEL NUMBERS MUST BE IN RANGE 0 TO 9

XD5 - SEVERITY 2
DEFINE DIRECTIVE DOES NOT CONTAIN A NAME

EVERY DEFINE DIRECTIVE, USED TO SPECIFY A LOCAL MEMBER OF AN INCLUDE LIBRARY, MUST
GIVE THIS MEMBER A NAME. SEE U.G. - SECTION 5.2

XD6 - SEVERITY 2
CLOSE ?? DOES NOT MATCH NAME ON DEFINE DIRECTIVE

THE CLOSE DIRECTIVE MUST USE THE SAME NAME AS THE OPENING DEFINE DIRECTIVE. U.G. -
SECTION 5.2

XD7 - SEVERITY 1
DEFINE SEQUENCE IS EMPTY

THE DEFINE DIRECTIVE IS IMMEDIATELY FOLLOWED BY A CLOSE DIRECTIVE.

XD8 - SEVERITY 2
DEFINE DIRECTIVES NOT ALLOWABLE FROM INCLUDED SEQUENCE

DEFINE DIRECTIVES MAY NOT BE NESTED WITHIN INCLUDE DIRECTIVES.
B -68 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
XD9 - SEVERITY 1
A DEFINE DIRECTIVE WITH THE NAME ??
ALREADY EXISTS AND WILL BE REPLACED

NON-EMPTY DEFINE DIRECTIVES MAY NOT HAVE THE SAME NAME.

XI1 - SEVERITY 2
NESTED INCLUDE DIRECTIVES NOT ALLOWED

SEE U.G.-SECTION 5.2. THE NESTED DIRECTIVE IS IGNORED.

XI10 - SEVERITY 1
?? NOT FOUND IN SDF LIBRARY

XI11 - SEVERITY 1
WARNING--UNIT NAME ON INCLUDE CARD DIFFERS FROM THAT IN THE SDF: ??

POSSIBLY TWO COMPILATION UNITS HAVE THE SAME FIRST 6 CHARACTERS, OR THE UNIT NAME
WAS MISSPELLED.

XI12 - SEVERITY 2
ILLEGAL TO INCLUDE A TEMPLATE WITHIN A DEFINE SEQUENCE--INCLUDE IGNORED

XI2 - SEVERITY 2
INCLUDE DIRECTIVE DOES NOT CONTAIN A NAME

THE INCLUDE DIRECTIVE MUST EITHER SPECIFY OR IMPLY A NAME FOR THE INCLUDE’D UNIT,
USING THE D INCLUDE <NAME> OR THE D INCLUDE TEMPLATE <UNIT NAME> FORMATS,
RESPECTIVELY. SEE U.G.-SECTION 5.2. THE DIRECTIVE WILL BE IGNORED.

XI3 - SEVERITY 2
?? NOT IN INCLUDE LIBRARY

INCLUDE DIRECTIVES MUST SPECIFY UNITS TO BE INCLUDE’D WHICH ARE AVAILABLE IN A
SYMBOLIC LIBRARY, DEFINED BY THE APPROPRIATE JCL. SEE U.G.-SECTION 5.2

XI4 - SEVERITY 2
‘REMOTE’ KEYWORD ONLY ALLOWED ON ‘INCLUDE TEMPLATE’ DIRECTIVES

THE KEYWORD, ‘REMOTE’ IS ILLEGAL IN THE INCLUDE SDF DIRECTIVE.

XI5 - SEVERITY 2
‘REMOTE’ KEYWORD SPECIFIED ON NON-COMPOOL TEMPLATE

CODE BLOCKS CANNOT BE REMOTE, ONLY DATA MAY BE.

XI6 - SEVERITY 2
STRUCTURE ?? NOT IN SDF

A STRUCTURE TEMPLATE NAME CONTAINED IN THE VARIABLE LIST FORM OF THE INCLUDE
DIRECTIVE WAS NOT FOUND IN THE INCLUDED SDF.

XI7 - SEVERITY 2
SYMBOL ?? NOT IN SDF

A SYMBOL NAME CONTAINED IN THE VARIABLE LIST FORM OF THE INCLUDE SDF DIRECTIVE
WAS NOT FOUND IN THE INCLUDED SDF.

XI8 - SEVERITY 2
ILLEGAL TO INCLUDE UNQUALIFIED STRUCTURE TERMINAL ?? FROM AN SDF-INCLUDE
THE APPROPRIATE STRUCTURE TEMPLATE AND STRUCTURE VARIABLE INSTEAD
B -69 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
XI9 - SEVERITY 1
?? WAS FOUND IN SDF LIBRARY, BUT IT WAS CREATED BY A VERSION OF THE COMPILER
NOT SUPPORTING SDF INCLUDES.

THE INCLUDED MODULE SHOULD BE RECOMPILED BY A LATER VERSION OF THE COMPILER TO
ALLOW ITS SDF TO BE INCLUDED.

XM1 - SEVERITY 2
?? IS A NONEXISTENT %MACRO

THE ONLY LEGAL %MACROS ARE SVC, NAMECOPY, NAMEADD, NAMEBIAS, AND COPY.
(NAMEADD AND NAMEBIAS ARE ILLEGAL FOR BFS)

XM10 - SEVERITY 2
ARGUMENT OF %MACRO HAS ILLEGAL MULTIPLE NAME COPYNESS

XM2 - SEVERITY 2
?? HAS AN INCORRECT NUMBER OF ARGUMENTS

THE SVC %MACRO ACCEPTS 1 ARGUMENT; NAMECOPY ACCEPTS 2; COPY TAKES 2 OR 3,
NAMEBIAS ACCEPTS 2, AND NAMEADD TAKES 3. SEE U.G.-SECTION 8.7

XM3 - SEVERITY 2
ARGUMENT OF %MACRO MAY NOT BE A LITERAL

XM4 - SEVERITY 2
ARGUMENT OF %MACRO HAS ILLEGAL TYPE

THE ARGUMENTS TO NAME COPY MUST EACH BE STRUCTURES.

XM5 - SEVERITY 2
ARGUMENT OF %MACRO MAY NOT BE A VARIABLE

THE ARGUMENT MUST BE A NAME VARIABLE.

XM7 - SEVERITY 2
ARGUMENT OF %MACRO MAY NOT POSSESS ARRAYNESS

XM8 - SEVERITY 2
ARGUMENT OF %MACRO MAY NOT BE A VARIABLE WITH THE TEMPORARY ATTRIBUTE

XM9 - SEVERITY 2
ARGUMENT OF %MACRO POSSESSES ILLEGAL SUBSCRIPTING

A %MACRO IS SUBJECT TO THE SAME RESTRICTIONS AS SUBSCRIPTION OR WHEN BEING USED
AS ASSIGN PARAMETERS FOR PROCEDURE ARGUMENTS. NAMEBIAS ACCEPTS NO
SUBSCRIPTS.

XQ101 - SEVERITY 2
ATTEMPTED AN ILLEGAL STACK WALKBACK LOOP FOR VARIABLE??

THIS SITUATION ARISES WHEN ONE PROCEDURE BLOCK IS TRYING TO INDIRECTLY LOCATE A
STACK VARIABLE IN AN OUTER BLOCK. INSTEAD, PASS THE VARIABLE TO THE NESTED
PROCEDURE.

XQ102 - SEVERITY 2
ATTEMPT TO ASSIGN NAME OF REMOTE DATA ITEM TO A 16 BIT NAME VARIABLE.

XR1 - SEVERITY 2
THE DATA_REMOTE DIRECTIVE MUST BE PLACED BEFORE THE PROGRAM/PROCEDURE
STATEMENT. THE DIRECTIVE IS IMPROPERLY PLACED AND WILL NOT BE PROCESSED.

XR2 - SEVERITY 2
THE DATA_REMOTE DIRECTIVE IS ILLEGAL FOR A COMPOOL COMPILATION.
B -70 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
XR3 - SEVERITY 1
THE REMOTE ATTRIBUTE IS IGNORED FOR NON-NAME VARIABLES WHEN THE
DATA_REMOTE DIRECTIVE IS IN EFFECT.

XR4 - SEVERITY 2
THE FOLLOWING DATA_REMOTE FCOS RESTRICTION WAS ENCOUNTERED: ??

(REFERENCE: HALS-FC COMPILER SYSTEM SPECIFICATION, USA003089, SECTION 4.1.3.4 FOR
MORE INFORMATION)

XR5 - SEVERITY 2

THE REMOTE ATTRIBUTE IS ONLY SUPPORTED FOR NAME VARIABLES OR FORMAL
PARAMETERS WHEN SDL OPTION IS ON. TO PLACE DECLARED DATA IN A REMOTE
SECTOR, USE DATA_REMOTE OR INCLUDE A COMPOOL REMOTE.

SEE SECTION 8.12 FOR MORE INFORMATION

XS1 - SEVERITY 1
THE FOLLOWING FUNCTION IS NOT IMPLEMENTED IN THE CURRENT LANGUAGE SUBSET:
??

XS2 - SEVERITY 1
THE ABOVE CONSTRUCT IS NOT IMPLEMENTED IN THE CURRENT LANGUAGE SUBSET.
(VIOLATION AT PRODUCTION ??)

XS3 - SEVERITY 1
ATTEMPT TO INVOKE UNVERIFIED RUNTIME LIBRARY ROUTINE ??

XU1 - SEVERITY 2
D CARD CONTAINS UNKNOWN DIRECTIVE

THE ONLY LEGAL DIRECTIVES ARE DEVICE, INCLUDE, PROGRAM, VERSION, EJECT, SPACE,
DEFINE, AND CLOSE. THE DIRECTIVE NAME MUST BE THE FIRST WORD TO FOLLOW THE D IN
COLUMN 1

XV1 - SEVERITY 2
LAST LINE OF TEMPLATE LIBRARY MEMBER ?? IS NOT A VALID VERSION DIRECTIVE

A D VERSION STATEMENT IS EITHER MISSPELLED OR THE TEMPLATE DOES NOT HAVE ONE TO
BEGIN WITH
B -71 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
ERROR MESSAGE FOR MAJOR CLASSIFICATION Y
CLASSIFICATION "Y" IS FOR ADVISORY MESSAGES TO THE PROGRAMMER

YA100 - PROGRAMMING ADVISORY
BIT LENGTH MISMATCHES IN AN ASSIGNMENT STATEMENT

SIZE OF RHS OPERATOR IS NOT EQUAL TO SIZE OF THE LHS OPERATOR IN THE ASSIGNMENT
STATEMENT

YC100 - PROGRAMMING ADVISORY
BIT LENGTH MISMATCHES IN A COMPARISON

SIZE OF RHS OPERATOR IS NOT EQUAL TO SIZE OF THE LHS OPERATOR IN THE BIT
COMPARISON

YD100 - PROGRAMMING ADVISORY
REMOTE ATTRIBUTE IGNORED FOR NON-NAME FORMAL INPUT PARAMETER

SINCE YCONS ARE ALWAYS PASSED INTO NON-NAME INPUT PARAMETERS, THE REMOTE
ATTRIBUTE IS MEANINGLESS AND WILL BE IGNORED BY THE COMPILER.

YE100 - PROGRAMMING ADVISORY
BIT LENGTH MISMATCHES IN AN EXPRESSION

SIZE OF OPERATORS ARE NOT EQUAL IN THE BIT EXPRESSION

YF100 - PROGRAMMING ADVISORY
USE OF A %NAMECOPY WHEN A NAME ASSIGNMENT COULD BE USED

A %NAMECOPY WAS USED WHEN BOTH THE SOURCE AND DESTINATION USE THE SAME OR
TREE EQUIVELENT STRUCTURE TEMPLATE. A NAME ASSIGNMENT STATEMENT SHOULD BE
USED INSTEAD.

YF101 - PROGRAMMING ADVISORY
USE OF A %NAMEADD WHEN A %NAMECOPY COULD BE USED

A %NAMEADD WAS USED WHEN BOTH THE SOURCE AND DESTINATION ARE STRUCTURES AND
AN INCREMENT OF 0 WAS USED. A %NAMECOPY SHOULD BE USED IN THIS CASE.

YF102 - PROGRAMMING ADVISORY
USE OF A %NAMEADD WHEN A NAME ASSIGNMENT COULD BE USED

A %NAMEADD WAS USED WHEN AN INCREMENT OF 0 WAS USED AND THE SOURCE AND
DESTINATION MATCH IN TYPE AND DIMENSION. A NAME ASSIGNMENT SHOULD BE USED IN
THIS CASE.

YF103 - PROGRAMMING ADVISORY
BIT LENGTH MISMATCHES IN A FUNCTION/PROCEDURE CALL OR FUNCTION RETURN

SIZE OF ACTUAL INPUT PARAMETER IN THE FUNCTION/PROCEDURE CALL IS NOT EQUAL TO
SIZE OF THE FORMAL PARAMETER, OR SIZE OF RETURN VALUE IS NOT EQUAL TO SIZE OF THE
DECLARED VALUE IN A FUNCTION BLOCK.

YF104 - PROGRAMMING ADVISORY
NAME CHARACTER LENGTHS MAY MISMATCH IN THE FUNCTION/PROCEDURE CALL

IT IS NOT POSSIBLE TO CHECK THE LENGTHS OF NAME CHARACTER ARRAYS, SO ALL NAME
CHARACTER (ARRAYED OR NON-ARRAYED) ARGUMENTS GENERATE AN ADVISORY MESSAGE
SO THE USER CAN VERIFY THE LENGTHS MATCH. IF THE LENGTHS DO NOT MATCH, THEN THE
LENGTH OF THE ARGUMENT WILL OVERRIDE THE LENGTH OF THE PARAMETER.
B -72 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
ERROR MESSAGE FOR MAJOR CLASSIFICATION Z
CLASSIFICATION “Z” ERRORS DEAL WITH “TRAP” MESSAGES FROM THE COMPILER

ZC1 - SEVERITY 2
THE COMPILER CANNOT HANDLE THE MULTI-COPIED STRUCTURE REFERENCE
BECAUSE OF IMPROPER SUBSCRIPTING OR A NON-CONTIGUOUS REGION
SPECIFICATION

ZO1 - SEVERITY 1
A SIN/COSINE OPTIMIZATION FAILURE AT STATEMENT ?? HAS BEEN DETECTED. THE
COMPILER GENERATES INCORRECT OBJECT CODE FOR THIS STATEMENT. SIMPLIFY THE
EXPRESSION AND RECOMPILE.

ZO2 - SEVERITY 2
THERE IS A PROBLEM IN THE OPTIMIZER FOR THIS STATEMENT WHICH CAUSES THE
COMPILER TO ABEND. SEE THE FC USERS MANUAL FOR FURTHER DETAILS.

IF YOU ARE ATTEMPTING TO REFERENCE AND MODIFY A STRUCTURE ELEMENT IN THE SAME
STATEMENT, TRY SPLITTING THE STATEMENT INTO TWO PARTS WITH A TEMPORARY VARIABLE
AS AN INTERMEDIATE.

ZO3 - SEVERITY 1
LOOP INVARIANT PULLED FROM IF-THEN GROUP AT STATEMENT ?? COULD RESULT IN
UNINTENTIONAL GPC ERROR...DR103032.

CODE THAT WAS IN THE CONDITIONAL EXECUTION PART OF AN IF-THEN BLOCK WAS PULLED
OUTSIDE THE LOOP AS AN INVARIANT EXPRESSION. POSSIBLE RUNTIME ERRORS MAY OCCUR
WHEN THIS CODE IS EXECUTED. TO PREVENT AN EXPRESSION FROM BEING PULLED FROM
THE LOOP, REFERENCE A VARIABLE CONTAINED IN THE EXPRESSION IN THE CONDITIONAL
PART OF THE IF STATEMENT.

ZO4 - SEVERITY 2
THERE IS A PROBLEM FOR THIS STATEMENT IN THE OPTIMIZER WHICH COULD RESULT IN
AN INFINITE LOOP, INCORRECT OBJECT CODE, OR UNEXPECTED ERRORS.

ZP1 - SEVERITY 1
THE COMPILER GENERATES INCORRECT OBJECT CODE AT STATEMENT ?? BECAUSE OF
A REGISTER PRESSURE PROBLEM. SIMPLIFY THE EXPRESSION AND RECOMPILE.

ZS1 - SEVERITY 1
THE COMPILER GENERATES INCORRECT OBJECT CODE FOR THE SUBBIT EXPRESSION
AT STATEMENT ??.
B -73 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
User Abend Codes During Compilation
The following user abend codes may occur during execution of the HAL/S-FC or HAL/S-
360 compiler. The codes marked by a “*” indicate internal compiler failures.

100 Unable to open one of the files: PROGRAM, SYSIN, or SYSPRINT. A missing or
misspelled DD card may be the cause.

200* Unexpected end of file while reading in the XPL program.
300* Synad error while loading the compiler.
400 Compiler won’t fit in the amount of memory available; increase REGION size.
500* Invalid service code from the XPL program.
600 Printed-page limit exceeded; under control of PAGES= option.
700* Linked Phases specified different size common areas.
800 Error on output file; possible bad DCB attributes or missing DD card.
900* Invalid output file used by compiler.
1000 Error on input file; possible bad DCB attributes or missing DD card.
1100* Linking process overlaid common string area.
1200* End of file error on input file.
1300* Impossible to move the common strings up during linking.
1400* Invalid input file used by the compiler.
1500* Unknown request by ‘MONITOR’ function of compiler.
1600* Unknown DD in ‘MONITOR’ request.
1700 Directory error on PDS; possibly not enough directory space.
1800 Error on output PDS file; bad DCB attributes or bad DD card.
1900* Invalid internal member name specified by compiler.
2000+n Synad error on direct access file n; possible not enough direct access space.
2100* Attempt to read from an input PDS without issuing the “FIND” MONITOR request

first.
2200* End of file error on direct access file.
2300* Invalid member to be found.
2400 Error on PDS input file; bad DCB attributes or bad DD card.
2500* File blocking specification error.
2600* Bad name for option processor.
3000* Mon #9/10 error or misaligned #5.
4000* Compiler forced an abend (and a possible core dump).
B -74 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
 Appendix C EXECUTION-TIME ERRORS
The following tables indicate runtime error conditions which may occur during execution
of a HAL/S-FC program. The tables list any standard fixes performed by the runtime
system.
 These errors are detected by the HAL/S-FC library and emitted code. They are
classified as group 4 errors within the HAL/S error grouping scheme.

ERROR
NUMBER

MESSAGE EXPLANATION STANDARD FIXUP

4 Exponentiation of zero to
power < = 0

A**B where B < = 0 The result is set to zero

5 SQRT has argument < 0 The result is the square
root of the absolute value
of the argument

6 EXP function has
argument > 174.673

The result is set to the
maximum representable
value (7.237 x 10**75)

7 LOG function (natural log)
has argument < = 0

If the argument was zero
then the result is set to
the maximum
representable negative
value (-7.237 x 10**75),
else it is set to the natural
log of the absolute value
of the argument

8 SIN or COS function has
|argument| > ~2**18π
(823,296)

The result is set to …

9 SINH or COSH function
has argument > 175,366

The result is set to the
maximum representable
value (7.237 x 10**75)

10 ARCSIN or ARCCOS
function has ⏐argument⏐ >
1

ARCSIN (>1) = π/2
ARCSIN (<-1) = -π/2
ARCCOS (>1) = 0
ARCCOS (<-1) = π

11 TAN function has
|argument| > ~2**18π
(823,549.625) (SP) or
~2**50π (3.537 x 10**15)
(DP)

The result is set to one

2
2-------
C -1 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
ERROR
NUMBER

MESSAGE EXPLANATION STANDARD FIXUP

12 TAN function too close to
singularity

The argument is too
close to an odd
multiple of π/2

The result is set to the
maximum representable
value (7.237 x 10**75)

14 No RETURN statement in
function

No RETURN
statement was
encountered prior to
reaching the close of
the function

Continue

15 SCALAR too large for
INTEGER conversion

The result is set to the
maximum representable
integer value (32767 or
-32768)

16 Division by zero in
REMAINDER

In REMAINDER
(A, B), B=0

The result is set to A

17 Illegal CHARACTER
subscript

Character component
subscribing out-of-
bounds

The out-of-bounds
subscript(s) set to first or
last character

18 Bad length in LJUST or
RJUST

The length is less
than the string length

Truncation to the
specified length occurs
on the left (RJUST) or
right (LJUST)

19 MOD domain error In MOD (A, B), B=0
and A<0

The result is set to zero

20 CHARACTER to SCALAR
conversion

The CHARACTER
variable has a length
of zero or is all blanks

The result is set to zero

22 CHARACTER to INTEGER
conversion

The CHARACTER
variable has a length
of zero or is all blanks

The result is set to zero

24 Negative base in
exponentiation

A**B where A<0 The result is ⏐A⏐ **B

25 VECTOR/MATRIX division
by zero

The result is the original
vector/matrix

27 Argument of INVERSE is a
singular matrix

The result is the identity
matrix
C -2 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
ERROR
NUMBER

MESSAGE EXPLANATION STANDARD FIXUP

28 Argument of UNIT function
is null vector

Every component of
the vector was zero in
value

The result is a vector all
of whose components
are zero (i.e. the input
vector)

29 Illegal BIT string The result is set to zero
30 Illegal SUBBIT subscript The subscript for

SUBBIT exceeded bit
length

Subscript takes value of
exceeded limit

31 BIT@OCT - Invalid
character

The result is set to zero

32 BIT@HEX - Invalid
character

The result is set to zero

33 MOD relative magnitude
error

In MOD (A, B),
⏐A/B⏐ > ~16**6 (SP)
⏐A/B⏐ > ~16**14 (DP)

The result is set to zero

50 Error in HAL/S source Execution of a
statement with
compile time error

Continue

59 ARCCOSH function has
argument <1

The result is set to zero

60 ARCTANH function has
⏐argument⏐ > 1

The result is set to zero

62 ARCTAN2 arguments are
zero

In ARCTAN2(X,Y),
X = Y = 0

The result is set to zero
C -3 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
This page is intentionally left blank.
C -4 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
 Appendix D HAL/S-FC RUNTIME LIBRARY NAMES
The following names are members of the HAL/S-FC runtime library. Care should be
taken that user-written modules which are not processed by the HAL/S compiler be
named in such a way that no conflict occurs with names in this system library.
The members which are actual entry points are shown as being verified or unverified. If
a call to an unverified routine is generated during a HAL/S compilation, the severity 1
warning message XS3 will be emitted (see Appendix B for message).

MEMBER NAME ALIAS OF VERIFIED
ACOS YES
ACOSH NO
ASIN ACOS YES
ASINH NO
ATAN EATAN2 YES
ATANH NO
BIN HIN NO
BOUT IOINIT NO
BTOC NO
CAS CASV YES
CASP CASPV NO
CASPV YES
CASR CASRV YES
CASRP CASRPV NO
CASRPV NO
CASRV NO
CASV YES
CAT CATV NO
CATV YES
CEIL #0ROUND YES
CIN NO
CINDEX NO
CINP NO
CLJSTV NO
COLUMN IOINIT NO
COS SNCS YES
COSH SINH NO
COUT COUTP NO
COUTP NO
CPAS YES
CPASP YES
CPASR NO
CPASRP NO
D -1 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
MEMBER NAME ALIAS OF VERIFIED
CPR YES
CPRA NO
CPRC CPR NO
CPSLD CSLD NO
CPSLDP CSLD NO
CPSST CSLD NO
CPSSTP CSLD NO
CRJSTV NO
CSHAPQ NO
CSLD NO
CSLDP CSLD NO
CSST CSLD NO
CSSTP CSLD NO
CSTR NO
CSTRUC YES
CTOB NO
CTOD CTOE NO
CTOE NO
CTOH CTOI NO
CTOI NO
CTOK CTOI NO
CTOO CTOX NO
CTOX NO
CTRIMV NO
DACOS YES
DACOSH NO
DASIN DACOS YES
DASINH NO
DATAN DATAN2 YES
DATAN2 YES
DATANH NO
DCEIL #0ROUND YES
DCOS DSNCS YES
DCOSH DSINH NO
DEXP YES
DFLOOR #0ROUND YES
DIN HIN NO
DLOG YES
DMAX NO
DMDVAL YES
DMIN NO
D -2 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
MEMBER NAME ALIAS OF VERIFIED
DMOD YES
DOUT IOINIT NO
DPROD NO
DPWRD YES
DPWRH DPWRI YES
DPWRI NO
DROUND #0ROUND YES
DSIN DSNCS YES
DSINH NO
DSLD NO
DSNCS YES
DSQRT YES
DSST NO
DSUM NO
DTAN YES
DTANH NO
DTOC ETOC NO
DTOH ETOH YES
DTOI #0ROUND YES
DTRUNC #0ROUND YES
EATAN2 YES
EIN HIN NO
EMAX YES
EMIN YES
EMOD YES
EOUT IOINIT NO
EPROD NO
EPWRE YES
EPWRH EPWRI YES
EPWRI NO
ESUM NO
ETOC NO
ETOH YES
ETOI #0ROUND YES
EXP YES
FLOOR ROUND NO
GTBYTE YES
HIN NO
HMAX YES
HMIN YES
HMOD IMOD YES
D -3 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
MEMBER NAME ALIAS OF VERIFIED
HOUT IOINIT NO
HPROD NO
HPWRH IPWRI NO
HREM IREM YES
HSUM YES
HTOC ITOC YES
IIN HIN NO
IMAX NO
IMIN NO
IMOD YES
INTRAP IOINIT NO
IOBUF IOINIT NO
IOCODE IOINIT NO
IOINIT NO
IOUT IOINIT NO
IPROD NO
IPWRH IPWRI NO
IPWRI NO
IREM YES
ISUM NO
ITOC NO
ITOD #0ITOD YES
ITOE #0ITOE YES
KTOC NO
LINE IOINIT NO
LOG YES
MM0DNP YES
MM0SNP NO
MM11D3 YES
MM11DN YES
MM11S3 YES
MM11SN NO
MM12D3 YES
MM12DN NO
MM12S3 NO
MM12SN NO
MM13D3 NO
MM13DN NO
MM13S3 YES
MM13SN NO
MM14D3 YES
D -4 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
MEMBER NAME ALIAS OF VERIFIED
MM14DN NO
MM14S3 NO
MM14SN NO
MM15DN YES
MM15SN NO
MM17D3 NO
MM17DN MM17D3 NO
MM17S3 NO
MM17SN MM17S3 NO
MM1DNP YES
MM1SNP NO
MM1TNP NO
MM1WNP NO
MM6D3 YES
MM6DN YES
MM6S3 YES
MM6SN NO
MMRDNP NO
MMRSNP NO
MMWDNP NO
MMWSNP NO
MR0DNP NO
MR0SNP NO
MR1DNP NO
MR1SNP NO
MR1TNP NO
MR1WNP NO
MSTR YES
MV6D3 YES
MV6DN YES
MV6S3 YES
MV6SN NO
OTOC XTOC NO
OUTER1 IOINIT NO
PAGE IOINIT NO
QSHAPQ NO
RANDG RANDOM NO
RANDOM NO
ROUND #0ROUND YES
SIN SNCS YES
SINH NO
D -5 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
MEMBER NAME ALIAS OF VERIFIED
SKIP IOINIT NO
SNCS YES
SQRT YES
STBYTE YES
TAB IOINIT NO
TAN YES
TANH NO
TRUNC #0ROUND YES
VM6D3 YES
VM6DN YES
VM6S3 YES
VM6SN NO
VO6D3 YES
VO6DN YES
VO6S3 YES
VO6SN NO
VR0DN NO
VR0DNP NO
VR0SN NO
VR0SNP NO
VR1DN NO
VR1DNP NO
VR1SN YES
VR1SNP NO
VR1TN NO
VR1TNP NO
VR1WN NO
VR1WNP NO
VV0DN YES
VV0DNP YES
VV0SN YES
VV0SNP NO
VV10D3 YES
VV10DN VV10D3 NO
VV10S3 YES
VV10SN VV10S3 NO
VV1D3 YES
VV1D3P YES
VV1DN YES
VV1DNP VV1D3P YES
VV1S3 YES
D -6 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
MEMBER NAME ALIAS OF VERIFIED
VV1S3P YES
VV1SN YES
VV1SNP VV1S3P NO
VV1T3 YES
VV1T3P YES
VV1TN YES
VV1TNP VV1T3P NO
VV1W3 YES
VV1W3P NO
VV1WN YES
VV1WNP VV1W3P NO
VV2D3 YES
VV2DN NO
VV2S3 YES
VV2SN NO
VV3D3 YES
VV3DN YES
VV3S3 YES
VV3SN NO
VV4D3 YES
VV4DN YES
VV4S3 YES
VV4SN NO
VV5D3 YES
VV5DN NO
VV5S3 YES
VV5SN NO
VV6D3 YES
VV6DN YES
VV6S3 YES
VV6SN YES
VV7D3 YES
VV7DN NO
VV7S3 YES
VV7SN NO
VV8D3 NO
VV8DN VV8D3 NO
VV8S3 YES
VV8SN VV8S3 NO
VV9D3 VV10D3 YES
VV9DN VV10D3 NO
D -7 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
MEMBER NAME ALIAS OF VERIFIED
VV9S3 YES
VV9SN VV10S3 YES
VX6D3 YES
VX6S3 YES
XTOC NO
#0ETOH YES
#0ITOD YES
#0ITOE YES
#0ROUND YES
#LACOS ACOS N/A
#LACOSH ACOSH N/A
#LATANH ATANH N/A
#LCASPV CASPV N/A
#LCASRPV CASRPV N/A
#LCLJSTV CLJSTV N/A
#LCPAS CPAS N/A
#LCPASR CPASR N/A
#LCRJSTV CRJSTV N/A
#LCSHAPQ CSHAPQ N/A
#LCSLD CSLD N/A
#LCTOB CTOB N/A
#LCTOE CTOE N/A
#LCTOI CTOI N/A
#LCTOX CTOX N/A
#LDACOS DACOS N/A
#LDACOSH DACOSH N/A
#LDATAN2 DATAN2 N/A
#LDATANH DATANH N/A
#LDEXP DEXP N/A
#LDLOG DLOG N/A
#LDMOD DMOD N/A
#LDPWRD DPWRD N/A
#LDPWRI DPWRI N/A
#LDSINH DSINH N/A
#LDSLD DSLD N/A
#LDSNCS DSNCS N/A
#LDSQRT DSQRT N/A
#LDSST DSST N/A
#LDTAN DTAN N/A
#LEATAN2 EATAN2 N/A
#LEMOD EMOD N/A
D -8 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
MEMBER NAME ALIAS OF VERIFIED
#LEPWRE EPWRE N/A
#LEPWRI EPWRI N/A
#LETOC ETOC N/A
#LEXP EXP N/A
#LIMOD IMOD N/A
#LIOINIT IOINIT N/A
#LIPWRI IPWRI N/A
#LIREM IREM N/A
#LLOG LOG N/A
#LMM14D3 MM14D3 N/A
#LMM14DN MM14DN N/A
#LMM14S3 MM14S3 N/A
#LMM14SN MM14SN N/A
#LRANDOM RANDOM N/A
#LROUND ROUND N/A
#LSINH SINH N/A
#LSNCS SNCS N/A
#LSQRT SQRT N/A
#LTAN TAN N/A
#LVV10D3 VV10D3 N/A
#LVV10S3 VV10S3 N/A
#LVV5D3 VV5D3 N/A
#LVV5DN VV5DN N/A
#LVV5S3 VV5S3 N/A
#LVV5SN VV5SN N/A
D -9 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
This page is intentionally left blank.

D -10 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
 Appendix E CHANGE HISTORY

REV. RELEASE DATE CR/DR Number Sections Changed
02 19.8 6/10/81 Title page, Table of Contents, pp. iii, iv,

Type 1 Options, pp. 5-2, 5-4, Type 2
Options, p. 5-5, Chapter 9: Using the
SPILL Capability, pp. 9-1 - 9-11

03 21.0 1/1/85 Title page / Foreword, pp.i-1/i-2, 4-11/4-12,
4-13/4-14, 5-11/5-12, B-1/B-99, C-1/C-2

04 21.1 9/30/85 Title page / Foreword, p. B-96
05 21.3 9/26/86 Title page / Foreword, pp. 8-17, B-53
06 21.4 5/17/87 Title page / Foreword, pp. 5-12 - 5-13
07 21.7 8/12/88 Title page / Foreword, pp. iii, 5-2 - 5-4, 8-

14 - 8-16, 8-24 - 8-27, 9-11 - 9-12, C-3
08 23.0 5/15/89 Title page, pp. 8-14, B-17 - B-21, B-30, B-

31, B-31.1, B-53, B-96
09 23.1 2/4/91 Title page, p. iii, 4-3, 4-6, 5-12, 8-15, 8-17,

8-23, 8-23.1, 8-24, B-29, B-30, B-31, B-95,
Appendix D (all pages)

10 23.2 4/22/91 Title page, p. iii, iv, 4-7, 5-3, 5-4, 5-5,
Delete Chapter 9, pp. 9-1 - 9-12

11 24.0 3/30/92 Title page, p. 4-7, 5-3.1, 5-14,8-28, B-5, B-
95, B-96, B-96.1

12 7.0 11/10/92 Title page, pp. 5-2, 5-2.1, 5-3, 5-5, 8-28, B-
4, B-29, B-70

13 8.0 3/15/93 Title page, pp. 5-3.1, 8-28
14 24.1/25.0 9/3/93 Title page, pp. 5-11, 5-12, (blank) & -13

(blank) (item 9 ‘Downgrade directive’
moved to IR-95-12), pp.8-24, 8-28 and 8-
29 (new), B-42, B-95, C-3 & C-95

15 24.2 10/22/93 Title page, Table of Contents, pp. iii, 8-14 -
8-18

16 25.1/9.1 1/11/94 Title page, Chapter 8, pp. 8-29, Appendix
B, B-17

17 26.0/10.0 9/2/94 Title page, Chapter 5 p.5-2, Appendix B
(replace entire appendix)

18 27.0/11.0 6/22/96 Total Reprint
19 27.1/11.1 7/1/96 Pages B-22 - B-38
20 28.0/12.0 08/22/97 Total Reprint to Bring to HAL/S Documen-

tation Standards and HTML Compatibility
CR12157 4.4 - Deleted
CR12432A 8.7 - p. 8-10

8.10 - p. 8-19
8.10.3 - p. 8-20
App. B - p. B-13
E -1 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
REV. RELEASE DATE CR/DR Number Sections Changed
CR12712 App. B - pp. B-20, B-25, B-29, B-36,

B-51, B-52, B-56
App. E - Deleted

CR12713 4.1 - pp. 4-2, 4-3, 4-4
4.2 - p. 4-9
5.1 - pp. 5-2, 5-3

CR12714C App. B - p. B-9
DR107716 4.2 - p. 4-8
DR109042 8.11 - pp. 8-27, 8-28
DR109044 App. B - pp. B-20, B-21, B-28
DR109046 8.10.3 - p. 8-20

App. B - p. B-35
DR109047 App. B - p. B-28
DR109048 App. B - p. B-20
Clean-up 3.2 - p. 3-2

4.1 - p. 4-2
5.1 - pp. 5-4, 5-6
6.1.2 - p. 6-2
7.4 - p. 7-22
8.9 - p. 8-15
App. A - pp. A-2, A-3
App. C.1 - p. C-6

21 04/30/98 Title page, Table of Contents
2.1 - p. 2-3
2.3 - p. 2-5
2.4 - p. 2-7, 2-15
3.1 - p. 3-1, 3-2, 3-6
4.2 - p. 4-8
5.1 - p. 5-12
8.0 - p. 8-1
8.9 - p. 8-18
8.11 - p. 8-23, 8-24, 8-26
App. A -p. A-2
App. B - p. B-1
App. C - p. C-1, C-2
E -2 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
Symbols
%COPY...8-10

user note.. 8-11, 8-13, 8-29
%macro...8-9
%NAMEADD.. 8-13 to 8-14

user note...8-14
%NAMECOPY ... 8-9 to 8-10
%SVC ...8-9
¢..8-20

A
abend codes .. B-74
Access ..8-5
ADDRS ...5-2
arrays

size limit..8-1

B
BIT

input format ...6-2
output format..6-2
overpunch ...4-1
size limit..8-1

BITLENGTH..8-8
BLKSIZE ...6-4
Block Summary.. 4-4 to 4-5
BLOCKSUM..5-5
Built-In Function Cross Reference Table ..4-7
BUILTINS..8-8

C
CARDTYPE ..5-5
catalogued procedures

creating and using...2-16
processing HAL/S programs..2-21

CHARACTER
conversion...8-4
input format ...6-2
output format..6-3
overpunch ...4-1
size limit.. 8-1, 8-3
user note...8-34

character set ...8-20
CLOCKTIME...8-4
CLOSE.. 5-8, 5-11
comments ...2-6

size limit..8-1
Compilation Layout Summary...4-5

Index
Index - 1 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
compiler directives ..5-6
compiler listings ..4-1

Block Summary ... 4-4 to 4-5
Built-In Function Cross Reference Table ..4-7
Compilation Layout Summary ..4-5
current scope ...4-2
Downgrade Summary ..4-11
error messages ..4-9
overpunches ... 4-1 to 4-2
Relocation Dictionary (RLD) ..4-8
REPLACE macro ..4-2
Symbol and Cross Reference Table ..4-5

compiler options..5-1
compiler phases..2-1
COMPOOL..3-1

compiling...3-3
INCLUDE .. 3-1, 5-7
SDF ...3-9
templates ..3-8

COMPUNIT...5-5
COMSUB ..3-1
conversions

CHARACTER... 8-4, 8-34
INTEGER... 8-3 to 8-4
SCALAR .. 8-3 to 8-4

COPY..8-10
user note.. 8-11, 8-13, 8-29

CSECT
naming conventions... 8-18, 8-20

current scope ..4-2

D
data size restrictions .. 8-1 to 8-2
DATA_REMOTE .. 5-11 to 5-12

NAME...5-12
DATE...8-4
DD Card..2-11
DD names

ERROR ..2-24
LISTING2..2-23
OUTPUT3 ...2-23
OUTPUT4 ...2-23
OUTPUT5 ...2-24
OUTPUT6 ...2-24
PROGRAM..2-23
STEPLIB...2-23
SYSIN ..2-23
SYSLIB...2-24
Index - 2 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
SYSLIN...2-24
SYSLMOD...2-24
SYSPRINT ... 2-23 to 2-24
SYSUT1..2-24

DECK..5-2
DEFINE... 5-8, 5-11
DEVICE...5-7
directives, compiler ...5-6
DISP..2-12
DO CASE

level limit ...8-2
user note...4-3

DO-END
level limit ...8-2

DOWNGRADE..5-11
Downgrade Summary ...4-11
DSR ..5-5
DUMP ...5-2

E
EJECT...5-11
ERROR...2-24
error messages...4-9

compile-time ... B-1
user note...8-32
user-defined limits ...8-2

escape character
REPLACE macro ..4-3
special characters ...8-20

EXEC Card ...2-8
exponents

level limit ...8-2
external names

number limit ...8-2

F
FLOOR

user note...8-28
formats

input...6-1
output .. 6-2 to 6-3
source program ..2-6

FUNCTION
argument number limit ...8-3
compiling...3-3
INCLUDE .. 3-1, 5-7
level limit ...8-2
SDF ...3-9
Index - 3 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
templates ..3-8

H
HALFCLG .. A-1
HALMAT..5-2
HIGHOPT..5-2

I
INCLUDE .. 3-1, 5-7

NOLIST ..5-9
NOSDF...5-9
REMOTE ..5-9

INITIAL
user note...8-25

input ..2-13
input formats ...6-1

BIT...6-2
CHARACTER...6-2
INTEGER..6-1
SCALAR ...6-1

INTEGER
conversion.. 8-3 to 8-4
input format ...6-1
output format..6-2
range limit ...8-3

J
JCL..2-7

catalogued procedures...2-16
DD Card..2-11

DISP .. 2-12
input... 2-13
JOBLIB...2-11 to 2-12
output... 2-14
STEPLIB...2-11 to 2-12

EXEC Card..2-8
JOB Card ... 2-7 to 2-8

JOB Card ... 2-7 to 2-8
JOBLIB... 2-11 to 2-12

L
LABELSIZE... 5-5, 8-2
LFXI ..5-2
library routines ...D-1
limits

data size .. 8-1 to 8-2
DO CASE levels ...8-2
DO-END levels ...8-2
Index - 4 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
external names...8-2
FUNCTION levels ...8-2
INTEGER range ...8-3
literals...8-2
ON ERROR ...8-3
program organization .. 8-2 to 8-3
REPLACE macro ..8-2
SCALAR range...8-3
subroutine arguments ..8-3
subscript and exponent levels..8-2
user-defined errors ..8-2
user-defined symbols...8-2

LINECT ...5-5
linkediting... 2-3 to 2-4
LIST .. 4-7, 5-3
LISTING2... 2-23, 4-7, 5-3
literals

number limit ...8-2
LITSTRING ... 5-5, 8-2
LRECL ..6-3
LSTALL ...5-3

M
macro..8-9
MACROSIZE...5-6
MATRIX

overpunch ...4-1
size limit..8-2

MFID ...5-6
MICROCODE..5-3

N
NAME

DATA_REMOTE ...5-12
REMOTE ..8-23
user note...8-30

NAMEADD... 8-13 to 8-14
user note...8-14

NAMECOPY .. 8-9 to 8-10
NOTABLES...4-8

O
OLDTPL..5-6
ON ERROR

number limit ...8-3
options, compiler...5-1
output ..2-14
output formats .. 6-2 to 6-3
Index - 5 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
BIT...6-2
CHARACTER...6-3
INTEGER..6-2
SCALAR ...6-2

output listings..4-1
OUTPUT3 ...2-23
OUTPUT4 ...2-23
OUTPUT5 ...2-24
OUTPUT6 ...2-24
overpunch .. 4-1 to 4-2

BIT...4-1
CHARACTER...4-1
MATRIX ..4-1
STRUCTURE...4-1
VECTOR...4-1

P
PAGED..6-1

BIT...6-2
carriage control...6-4
CHARACTER...6-3
DEVICE ..5-7

PAGES..5-6
PARSE..5-3
precision

CHARACTER conversion ... 8-4, 8-34
INTEGER conversion.. 8-3 to 8-4
SCALAR conversion ... 8-3 to 8-4
user note...8-28

PROCEDURE
argument number limit ...8-3
compiling...3-3
INCLUDE .. 3-1, 5-7
SDF ...3-9
templates ..3-8

PRODUCTIONS ...8-8
PROGRAM ... 2-23, 5-9
program organization limits.. 8-2 to 8-3

R
READ.. 6-1, 6-3
READALL.. 6-1, 6-3
RECFM ...6-3
REGOPT...5-3
Relocation Dictionary (RLD) ...4-8
REMOTE...8-22

NAME...8-23
REPLACE macro ..4-2
Index - 6 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
size and nesting limits ..8-2
routines, library ..D-1
RUNTIME..8-4
runtime characteristics ..8-3
runtime errors..8-4
runtime library routines ..D-1

S
SCAL...5-3
SCALAR

conversion.. 8-3 to 8-4
input format ...6-1
output format..6-2
range limit ...8-3

SDL...5-4
Simulation Data File (SDF) ...3-9
source program format..2-6
SPACE..5-11
SREF ..5-4
SRN ..5-4
STEPLIB ... 2-11 to 2-12, 2-23
STRUCTURE

multi-copied size limit...8-2
overpunch ...4-1
user note.. 8-24 to 8-25, 8-27, 8-34

SUBBIT
user note...8-24

subscripts
level limit ...8-2

SVC...8-9
Symbol and Cross Reference Table ...4-5
SYMBOLS... 5-6, 8-2
symbols

user-defined limits ...8-2
SYSIN ...2-23
SYSLIB ...2-24
SYSLIN ...2-24
SYSLMOD ..2-24
SYSPRINT... 2-23 to 2-24
SYSUT1..2-24

T
TABDMP ...5-4
TABLES ..5-4
TABLST... 4-8, 5-4
TEMPLATE ...5-4
templates ..3-8

user note...8-26
Index - 7 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
TEMPORARY
user note...8-29

TITLE ..5-6

U
UNPAGED ..6-1

BIT...6-3
carriage control...6-4
CHARACTER...6-3
DEVICE ..5-7

unverified library routines...D-1
UPDATE PRIORITY

user note...8-27
user notes

%COPY ... 8-11, 8-13, 8-29
%NAMEADD..8-14
CHARACTER...8-34
DO CASE..4-3
error messages ..8-32
FLOOR...8-28
INITIAL ...8-25
NAME...8-30
precision ...8-28
STRUCTURE.. 8-24 to 8-25, 8-27, 8-34
SUBBIT ..8-24
templates ..8-26
TEMPORARY ..8-29
UPDATE PRIORITY ..8-27

V
VARSYM...5-4
VECTOR

overpunch ...4-1
size limit..8-2

verified library routines...D-1
VERSION..5-9

W
WRITE ... 6-2 to 6-3

X
XREFSIZE .. 5-6, 8-2

Z
ZCON..5-4
Index - 8 November 2005

HAL/S-FC User’s Manual USA003090
32.0/17.0
This is the Last Page of this Document
Index - 9 November 2005

USA003090 HAL/S-FC User’s Manual
32.0/17.0
November 2005 Index - 10

DRD NUMBER: 1.4.3.8-b DOCUMENT NUMBER: USA003090

TITLE: HAL/S-FC User's Manual

Submit NASA distribution changes, including initiator’s name and phone number, to JSC Data Management/BV or call 281-
244-8506. Submit USA distribution changes to USA Data Management/USH-121E or via e-mail to usadm@usa-
spaceops.com. Most documents are available electronically via USA Intranet Web (usa1.unitedspacealliance.com), Space
Flight Operations Contract (SFOC), SFOC Data and Deliverables.

Indicates hardcopy

11/23/2005 7:10 AM

NASA-JSC
*BV N. Moses
MS4 D. Stamper
EV111 EV Library (D. Wall)

USA-Houston
*USH-121G SFOC Technical Library
USH-634G Abel Puente
USH-64A6X L.W. Wingo
USH-633L Anita Senviel
USH-633L Benjamin L. Peterson
USH-633L Cory L. Driskill
USH-633L Judy M. Hardin
USH-633L Mark E. Lading
USH-633L Quinn L. Larson
USH-633L James T. Tidwell
USH-633L Vicente Aguilar
USH-633L Betty A. Pages
USH-633L Jeremy C. Battan
USH-633L George H. Ashworth
USH-634L Mark Caronna
USH-634L Burk J. Royer
*USH-635L Joy C. King
USH-635L Ling J. Kuo
USH-635L Trang K. Nguyen
USH-635L Billy L. Pate
USH-635L Karen H. Pham
*USH-635L Dan A. Strauss
USH-635L Pete Koester
USH-632L Renne Siewers
*USH-635L Barbara Whitfield (2)

Boeing
HS1-40 B. Frere
blake.a.frere@boeing.com

* Denotes hard copy

	COVER
	SIGNATURE
	REVISION LOG
	LIST OF EFFECTIVE PAGES
	PREFACE
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	1.0 INTRODUCTION
	2.0 USING HAL/S ON THE AP-101
	2.1 Introduction
	2.2 The Steps Involved
	2.2.1 Compiling
	2.2.2 Linkediting
	2.2.3 FC Simulation

	2.3 Data
	2.3.1 Datasets
	2.3.2 Source Program Format

	2.4 Introduction to JCL
	2.4.1 The JOB Card
	2.4.2 The EXEC Card
	2.4.3 The DD Card
	2.4.4 Catalogued Procedures

	2.5 Using Catalogued Procedures to Process a HAL/S Program
	2.5.1 Introduction
	2.5.2 How to Use the Catalogued Procedures
	2.5.3 Standard DDnames and Outputs Associated with the Catalogued Procedures

	3.0 PROCESSING PROGRAM COMPLEXES
	3.1 Program Complexes
	3.2 Templates: The INCLUDE Directive
	3.3 Processing a Program Complex
	3.3.1 When All Compilations Are Performed in One Job
	3.3.2 When Compilations Are Done At Different Times

	3.4 Template Generation
	3.5 SDF INCLUDEs

	4.0 COMPILER LISTINGS
	4.1 Format of the Compiler Listing
	4.2 Information Provided by the Compiler
	4.3 Error Messages Produced By the Compiler

	5.0 USER-SPECIFIED OPTIONS
	5.1 Compiler Options
	5.2 Compiler Directives

	6.0 HAL/S INPUT-OUTPUT OPERATIONS
	6.1 Sequential I/O
	6.1.1 PAGED and UNPAGED Channels
	6.1.2 Input Data Formats
	6.1.3 Output Data Formats
	6.1.4 JCL Considerations

	6.2 File I/O

	7.0 THE HAL/S USER CONTROL PROGRAM (HALUCP)
	8.0 IMPLEMENTATION DEPENDENCIES
	8.1 Compile Time Characteristics
	8.1.1 Character Set
	8.1.2 Data Size Restrictions
	8.1.3 Program Organization Limits

	8.2 Runtime Characteristics
	8.3 Real-Time Statements
	8.4 Runtime Errors
	8.5 Access Rights
	8.6 Language Subset Restriction Capability
	8.7 %MACRO Implementation
	8.8 Arrayed Addressing 0th Element and % NAMEADD
	8.9 CSECT Naming Conventions
	8.10 Character Code Conventions
	8.11 Remote Data
	8.11.1 NAME Variable Initialization Restriction
	8.11.2 Other Restrictions

	8.12 DENSE attribute
	8.13 User Note’s

	Appendix A PROTOTYPE CATALOGUED PROCEDURES
	Appendix B COMPILE-TIME ERROR BEHAVIOR
	Appendix C EXECUTION-TIME ERRORS
	Appendix D HAL/S-FC RUNTIME LIBRARY NAMES
	Appendix E CHANGE HISTORY
	Distribution

